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Preface

The present book grew out as an attempt to make more accessible to non-specialists
a subject — Equivariant Analysis — that may be easily obscured by technicalities and
(often) scarcely known facts from Equivariant Topology. Quite frequently, the authors
of research papers on Equivariant Analysis tend to assume that the reader is well
acquainted with a hoard of subtle and refined results from Group Representation
Theory, Group Actions, Equivariant Homotopy and Homology Theory (and co-counter
parts, i.e., Cohomotopy and Cohomology) and the like. As an outcome, beautiful
theories and elegant results are poorly understood by those researchers that would
need them mostly: applied mathematicians. This is also a self-criticism.

We felt that an overturn was badly needed. This is what we try to do here. If
you keep in mind these few strokes you most probably will understand our strenuous
efforts in keeping the mathematical background to a minimum. Surprisingly enough,
this is at the same time an easy and very difficult task. Once we took the decision of
expressing a given mathematical fact in as elementary as possible terms, then the easy
part of the game consists in letting ourselves to go down to ever simpler terms. This
way one swiftly enters the realm of stop and go procedures, the difficult part being
when and where to stop. In our case, we felt relatively at ease only when we arrived
at the safe harbor of matrices. Of course, you have to buy a ticket to enter. The fair
price is to become a jingler with them. After all, nothing is given for free.

We have enjoyed (and suffered) with the fact that so many beautiful results can be
obtained with so little mathematics. Our hope is that you will enjoy (and not suffer)
reading this book.

Acknowledgments. We would like to thank our families for their patience and support
during the, longer than expected, process of writing the book. Very special thanks to
Alma Rosa Rodriguez for her competent translation of ugly hieroglyphics to beautiful
IATEX. Thanks to our colleagues, Clara Garza, for reading the manuscript, to Arturo
Olvera for devising and running some of the numerical schemes which have given
evidence to some of our results and to Ana Cecilia Pérez for her computational support.
We are grateful to L. Vespucci, Director of the Library at La Sapienza, for her help in
our bibliographical search. Last but not least, let us mention the contributions of our
friend and collaborator Ivar Massabé with whom we started, in 1985, the long journey
through equivariant degree.

During the last two years, the authors had the partial support of the CNR, of
the University of Rome, Tor Vergata, given through the scientific agreement between
IIMAS-UNAM and Tor Vergata, and of several agencies on the Italian side, including
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CANE, and from CONACYyT (grant G25427-E, Matemiticas Nolineales de la Fisica
y la Ingenieria, and the agreement KBN-CONACyT) on the Mexican side.

México City and Rome, February 2003 Jorge Ize
Alfonso Vignoli
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Introduction

Nonlinearity is everywhere. But few nonlinear problems can be solved analytically.
Nevertheless much qualitative information can be obtained using adequate tools. De-
gree theory is one of the main tools in the study of nonlinear problems. It has been
extensively used to prove existence of solutions to a wide range of equations.

What started as a topological (or combinatorial) curiosity has evolved into a va-
riety of flavors and represents, nowadays, one of the pillars, together with variational
methods, of the qualitative treatment of nonlinear equations.

In the simplest situation, the “classical” degree of a continuous map f(x) from
R” into itself with respect to a bounded open set 2 such that f(x) is non-zero on 92
is an integer, deg( f; 2), with the following properties:

(a) Existence. If deg(f; €2) # 0, then f(x) = 0 has a solution in €.

(b) Homotopy invariance. If one deforms continuously f(x), without zeros on
the boundary, then the degree remains constant.

(c) Additivity. If €2 is the union of two disjoint open sets, then deg(f; 2) is the
sum of the degrees of f(x) with respect to each of the pieces.

If one has in mind studying a set of equations, those properties have a striking
conceptual importance: asingle integer gives existence results by loosening the rigidity
of the equations and allowing deformations (and not only small ones). In other words,
one does not need to solve explicitly the equations in order to get this information and
one may obtain it by deforming the equations to a simpler set for which one may easily
compute this integer. Furthermore, one has a certain localization of the solutions or
one may obtain multiplicity results for these solutions.

Thus, in dimension one, the degree is another way to view the Intermediate Value
Theorem of Calculus and, in dimension two, it is nothing else than the winding number
of a vector field, familiar from Complex Analysis.

If, furthermore, one requires the property

(d) Normalization. The degree of the identity with respect to a ball containing the
originis 1,

then, one may show that the degree is unique.

Now there are many ways to construct the degree. As a consequence of the unique-
ness, they are all equivalent and depend more on the possible application or on the
particular taste of the user. For instance, one may take a combinatorial approach, or
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analytical (through perturbations or integrals), or topological (homotopical, cohomo-
logical) or an approach from fixed point theory.

Classical degree theory, or Brouwer degree, would have remained a simple cu-
riosity if it were not for the extension to infinite dimensional problems, in particu-
lar to non-linear differential equations. This extension has required some compact-
ness, starting from the Leray—Schauder degree with compact (or completely continu-
ous) perturbations of the identity, continuing with k-set contractions, A-proper maps,
0-epi maps (these terms will be defined in Chapter 1) and so on. In most of these exten-
sions the compactness is used to construct a good approximation by finite dimensional
maps. One of the by-products of the construction presented here is to pinpoint a new
way to see where the compactness is used.

Now the subject of this book is also that of symmetry. This is a basic concept in
mathematics and words like symmetry breaking, period doubling or orbits are familiar
even outside our discipline. In fact, many problems have symmetries: in the domains
and in the equations. Very often these symmetries are used in order to reduce the set of
functions to a special subclass: for instance look for odd (or even) solutions, or radial,
or independent of certain variables. They are also used to avoid certain terms in series
expansions or, in connection with degree theory, in order to get some information on
this integer, the so-called Borsuk—Ulam results. However, since any continuous (i.e.,
not necessarily respecting the symmetry) perturbation is allowed, the ordinary degree
will not give a complete topological information. This very important point will be
clearer once the equivariant degree is introduced and computed in many examples.

In this book we shall integrate both concepts, that of a degree and that of symmetry,
by defining a topological invariant for maps which commute with the action of a group
of symmetries and for open sets which are invariant under these symmetries, i.e., for
equivariant maps and invariant sets.

More precisely, a map f(x), from R” to R™ for instance or between two Banach
spaces, is said to be equivariant under the action of I' (a compact Lie group, for
technical reasons) if

flyx) =y f(x)

for all y in I', where y and y represent the action of the element y in R" and R"”
respectively. Think of odd maps (y = y = —1d) or even maps (y = —1Id, y = 1d),
or any matrix y expressed in two bases. The set €2 will be called invariant if, whenever
x is in €, then the whole orbit T'x is also in 2. By looking only at maps with these
properties, including deformations of such maps, one gets an invariant, deg( f; €2),
which is not an integer anymore (unless m = n, I' = {e}, in which case one recovers
the Brouwer degree) but with properties (a)—(c) valid and (d) replaced by a universality
property.

Since the construction of this equivariant degree is quite simple, we shall not resist
the temptation to present it now. Let f(x) be an equivariant map, with respect to the
actions of a group I', defined in an open bounded invariant set 2 and non-zero on
d2. Since €2 is bounded, one may choose a very large ball B containing it. Then
one constructs an equivariant extension f of f to B. The new map f(x) may have
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new zeros outside €2. One takes an invariant partition of unity ¢ (x) with value 0 in Q
and 1 outside a small neighborhood N of €2, so small that on N\ the map f(x) is
non-zero (it is non-zero on 9£2). Take now a new variable ¢ in / = [0, 1] and define

ft,x) =@t +20(x) — 1, f(x)).

Itis then easy to see that f(t, x) =0onlyifxisin wAith f(x) = f(x) = 0and, since
¢(x) = 0, one has t = 1/2. In particular, the map f (¢, x) is non-zero on d(/ x B)
and defines an element of the abelian group (this group will be studied in Chapter 1)

L, (S™)

of all I'-equivariant deformation (or homotopy) classes of maps from d(/ x B) into
R™+1\ {0}. We define the I"-equivariant degree of f(x) with respect to 2 as the class
of f(t x) in 1'[ 2 (S™):

degr(f; Q) = [fIr.

This degree turns out to have properties (a)—(c), where having non-zero degree here
means that the class [ f]r is not the trivial element of 15, ($™). Furthermore, by

construction, this degree has the Hopf property, which is that if 2 is a ball and [ f Ir
is trivial, then f|3q has a non-zero I'-equivariant extension to 2. In other words,
degr(f; §2) gives a complete classification of I'-homotopy types of maps on spheres.
This property implies also that deg-( f; €2) is universal in the sense that, if one has
another theory which satisfies (a)—(c) such that, for a map f and a set €2, one has a
non-trivial element, then degr-(f; €2) will be non-zero.

The simplest example is that of a non-equivariant map from R" into itself. Then
we shall see that [ f Ir is the Brouwer degree of f with respectto I x B. Since f is not
zero on I x (B\2), this degree is that of f with respect to I x €2, where f is a product
map. A simple application of the product theorem implies that [ f Ir = deg(f; €2),
a result which is, of course, not surprising but which indicates that our approach has
the advantage of a very quick definition, with an immediate extension to the case of
different dimensions, including infinite ones.

A second simple example is that of a Z;-action on R” = R x R*~* = R”, where
x = ,2)and f(y,z) = (fo(y,2), fi(y,2)) with fp evenin z and fi odd in z. It
turns out that in this case H%ﬁ (8") = Z x Z, and that degy, (f; €2) is given by two
integers: deg(fo(y,0); 2N R¥) and deg(f; €2). As a consequence of the oddness of
f1, with respect to z, one has f](x,0) = 0 and it is clear that these two integers are
well defined. The set {x, 0} is the fixed point subspace of the action of Z; and it is not
surprising that these two integers are important. What is less intuitive is that if Qis a
ball then these two integers characterize completely all Z,-maps defined on €.

A third example is that of an §'-action on R x C™1 x ... x C™», where S! leaves
R* fixed and acts as exp(in i), for j =1,..., p,oneach complex coordinate of C"/.
This is an important example because if one writes down the autonomous equation

dx
Z _ f(X)=0, XinR*,
r f(X) in
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for X(t) = > X,e'™, that is for 277 -periodic functions, then the fact that £ (X) does
not depend on ¢ implies that its component f;,(X) on the n-th mode has the property
that

(X (1 +9) = ™ f(X (1)),

i.e., the equation is equivalent to an S'-equivariant problem (infinite dimensional). It
turns out that, in this case, degqi (f; €2) is a single integer given by deg( f |gt; 2|rk),
i.e., by the invariant part of f. This is a slightly disappointing result but it can
also be viewed as indicating that points with large orbits, in the sense of positive
dimension, corresponding to the complex coordinates do not count when classifying
the I"-equivariant classes. This is a general fact which will be true for any group. Thus,
in this particular example, one will have new invariants if the domain has (at least)
one more dimension than the range, i.e., f is a function of a parameter v and of X. In
the case of differential equations, the extra parameter v may come from a rescaling of
time and represent the frequency. This occurs when one looks for periodic solutions
of unknown period. In that case, it turns out that

H“Sg,iH(S”)EszZxe-..

with one Z, giving an integer for each type of one-dimensional orbits, and Z,, an
orientation, corresponding to the invariant part. It is clear that we now have a much
richer structure, which will lead to a host of applications, ranging from Hopf bifurcation
to period doubling and so on. For instance, one may perturb an autonomous differential
equation by a small time-periodic function. Then one may see what happens to the
invariants in Hg,: +1(8™), where one forgets about the S Iaction, i.e., in IT o1 (8" =
Z,. Of course, one could also break the symmetry by adding a (2m/p)-periodic
perturbation, giving rise to other types of invariants.

A last example would be that of the action of a torus T”, or of the largest torus in
a general group. If this torus is generated by the phases ¢y, ..., ¢,, each in [0, 2],
one may look at I'-equivariant maps f (x) which have the additional property of being
orthogonal. This means that

f&x)-Ajix=0, j=1,...,n,

where A; is the infinitesimal generator corresponding to ;. This situation occurs when
one considers gradients of invariant functionals: if f(x) = V¢(x), where ¢(yx) =
@(x), then, by differentiating with respect to ¢;, one obtains this orthogonality. For
instance, this is the situation for Hamiltonian systems, where one of the orthogonality
relations is the conservation of energy. For such I"-orthogonal maps one may repeat
the construction of the degree and obtain a new invariant

deg, (f; ) in T g (S"),

a group which is much larger than I1%, (5™). In fact, it is a product of Z’s, one for each
orbit type, independent of the dimension of the orbit, as we shall describe below, by
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relating this new degree to “Lagrange multipliers”. One may look at zeros of the map
fx) + Z)»jij =0,

where if one takes the scalar product with f(x) one obtains a zero of f(x) and the
relation ) ' A;A;x = 0. Inparticular, if, for some x, the A;x’s are linearly independent,
this implies that A; = 0. Of course, this linear independence depends on x, but the
introduction of these multipliers will enable us to compute completely the group
I i o (8™).

It is now time to have a closer look at the content of the book. We shall do so by
pointing out the parts which may be of special interest to a given group of readers. As
explained in the Preface, we have tried to write a book as self-contained as possible.
This implies that the first chapter is devoted to a collection of some simple facts
from different fields which are needed in the book. Thus we introduce group actions,
equivariant maps, averaging and irreducible representations, in particular, Schur’s
Lemma and its consequences. This is all which will be needed from Representation
Theory.

From the point of view of Topology, one of our main tools will be that of extensions
of equivariant maps. There is a special extension for orthogonal maps. A full proof
is given in Theorem 7.1, using the Gram—Schmidt orthogonalization process. We
give also the definition and some basic properties of equivariant homotopy groups
of spheres, the groups where our degrees live. The last section in the chapter is
a review of some of the results from Analysis, in particular, Ordinary Differential
Equations, which will be needed in the last chapter. Thus we integrate a quick survey
of Bifurcation Theory, Floquet Theory (also expanded in Appendix B), Hamiltonian
systems and the special form of orbits arising in these problems (twisted orbits).

Hence, an expert in any of these fields should only glance at some of these results
in order to get acquainted with our notation, and look at some of the examples. For
a reader who is not familiar with these subjects, we hope that (s)he will find all
the necessary tools and acquire a working knowledge and a good intuition from this
chapter.

In this brief description of the first chapter, we left out the second section on the
fundamental cell. This construction, explained here for abelian groups, is the key to
most of the work on equivariant homotopy groups. It says that one may find a region
in R"”, made of sectorial pieces, such that, if one has any continuous function defined
on the cell with some symmetry properties on its boundary, then one may extend the
map to the whole space, using the action of the group. Think of a map defined on a
half-space and extended as an odd map or of a map defined on a sector in C of angle
2w /n).

The second chapter is devoted to the definition and study of the basic properties
of the equivariant degree. Furthermore, we show how this degree may be extended
to infinite dimensions by approximations by finite dimensional maps, a la Leray—
Schauder, and how one may define the orthogonal degree. Next, we present abstract
applications to continuation and bifurcation problems and, finally, we study the usual
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operators on our degree: symmetry breaking, products and composition, operations
which will be studied more deeply in the next chapter and applied in the last chapter.
Of course, this chapter is the abstract core of the book.

Chapter 3 has amore topological flavor. In it we compute the equivariant homotopy
groups of spheres, in the particular case of abelian groups. The reason for this choice
is that we are able to give explicit constructions of the generators for the groups
with elementary arguments (although sometimes lengthy). Thus, anyone should be
able to follow the proofs. The basic idea is that of obstruction theory, that is, of
extension of maps. The program is to start from an equivariant function which is non-
zero on a sphere d B and see under which conditions one may construct an extension
inside the sphere, first to the fundamental cell where one has either an extension, if
the dimension is low enough, or a first obstruction given by some Brouwer degree,
or secondary obstructions which are not unique but may be completely determined.
Then, one uses the group action to extend the map to the whole ball B. Finally, the
homotopy group structure enables one to subtract a certain number of generators and
write down any map as a sum of multiples of explicit generators. These multiples will
be the essence of the degree.

In order to make this program a reality, we work stage by stage. (Here, we ask
the reader to allow us to use some technical arguments so that we may illustrate the
range of ideas developed in the book.) The first step is to consider a map which is I"-
equivariant and non-zero on d BY and on the union of all BX, such that H is a subgroup
of K, and where B! stands for the ball in the subspace fixed by H. In particular,
all points in B\ U BX have the same orbit type H, and extensions are completely
determined by the behavior on the boundary of the fundamental cell. Hence, if the
map is between the spaces V and W# , the fundamental cell has dimension equal to
dim VH —dimT /H, and, if this difference is less than dim WH one always has a non-
zero extension, while if one has equality one obtains a first obstruction: the degree of
the map on the boundary of the fundamental cell. This is the content of Theorem 1.1.
The next step is to give conditions under which this obstruction is independent of the
previous extensions. One obtains a well-defined extension degree.

The next step is to continue this extension process to non-zero I'-maps defined
from | JdB* with dimT'/H = k, which are also non-zero on ( J BX for K with
dim I'/ K < k. For this purpose the concept of complementing maps is quite important.
We show that essentially this set of maps behaves as a direct sum of maps characterized
by the extension degrees. The final step is to go on for all k’s which meet the hypothesis.
For instance, if V = R* x W, then one proves that

My (SY) =Ty X ZXZx -+,

with one Z for each orbit type H with dim I'/H = k and I1;_; concerns only orbits
of dimension lower than k.

The next question is the following. Given a map, how does one compute its
decomposition into the direct sum? This is done in two different ways: either by
approximations by normal maps (a topological substitute to Sard’s lemma) or by
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looking at global Poincaré sections. One may relate the Z-components in the above
decomposition to ordinary degrees (see Corollary 3.1 in Chapter 3).

The fourth section is devoted to Borsuk—Ulam results, that is to the computation
of the ordinary degree of an equivariant map. The purpose of this section is to show
how the extension ideas can be used in this sort of computations.

The next section treats the case of maps from R x W into W, which is particularly
important when one breaks the S'-symmetry, for instance for an autonomous differ-
ential equation with unknown period by perturbing it by a (27 / p)-periodic field. We
compute then g, in the above formula, and prove that now there are obstructions
for extensions to the faces of the fundamental cell and to the body of that cell. For
each H with I'/H finite one has a classification of the secondary obstructions in a
group isomorphic to Zp x I'/H, with explicit generators according to the different
presentations of I'/ H.

The sixth section deals with the computation of the homotopy group of spheres
for I'-orthogonal maps, proving that

oY) =ZxZx---,

with one Z for each orbit type, independent of its dimension. This is done via the
Lagrange multipliers already mentioned, and the reader will guess why the case of
I'-equivariant maps with parameters, from R* x W onto W, is important here.

The last section of Chapter 3 deals with operations: suspension, products, compo-
sition and symmetry breaking. That is, what happens to the explicit generators under
one of these operations.

As we have already said this third chapter is more topologically inclined. A reader
more interested in applications should only look at the statements of the results, which
will be used in the last chapter, and see some of the examples.

However, we would like to make a few points. Our entire construction relies
on a single basic fact: a map from a sphere into a higher dimensional sphere has a
non-zero extension to the ball, while, if the dimensions are equal, one has a unique
“obstruction”, an integer, for extension (and other invariants if the dimension of the
range is lower). From this, with “elementary” but explicit arguments, and with no
algebraic machinery, we obtain surprising new results which may be understood by
any non-specialist. Of course, there is a price to be paid: our actions are linear and
the groups are abelian (the non-abelian case may be dealt with in a similar, but less
explicit way). On the other hand, our pedestrian approach stresses some new concepts,
like those of complementing maps, normal maps and global Poincaré sections, which
may be useful in a more abstract context. In short, independently of the reader’s
background, we believe that this chapter may be useful and interesting to anyone.

The last chapter is essentially devoted to applications, although the first section
states that any element in Hgv (SW) is the I'-degree of a map defined on a reasonable
Q. Now, in order to be useful, a degree should be computable in some simple generic
cases, for instance for an isolated orbit or an isolated loop of orbits. For the case of an
isolated orbit, the natural hypothesis is to assume that O is a regular value. (We recall
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here our introductory remarks: one does not have to consider the nonlinear equation
under study, but a, hopefully, simpler equation where one may look at these generic
situations.) This leads to approximation by the linearization of the map at the orbit.
The simplest case is when one has a stationary solution, or, even better, a family of
such solutions, leading to bifurcation. In this case, the I'-index is given by the sign of
determinants of the linearization on the fixed point subspace of I and on the subspaces
where I" acts as Z, giving conditions for period doubling. The next case is when the
isolated orbit has an orbit type which is not the full group. For this sort of solution,
we obtain an abstract result (Theorem 2.4) and the I'-index is given in terms of the
spectrum of the linearization, d la Leray—Schauder, but with many of these indices.
This abstract result is applied to autonomous differential equations of unknown period
or of fixed period but with an extra parameter, or with a first integral. One may then
perturb this autonomous differential equation with a time-periodic function and obtain
subharmonics or phase locking phenomena. If the autonomous differential equation
has also a geometrical symmetry, then one obtains twisted orbits.

We are phrasing this part of the introduction in a way which will be easily recog-
nizable by a reader familiar with low dimensional dynamical systems. However, each
specific behavior will be explained in that chapter.

A similar situation occurs for orthogonal maps. In that case the orthogonal index
has components which are of the previous type (i.e., leading to period doubling) and
a new type given by a full Morse index, i.e., the number of negative eigenvalues of a
piece of the linearization. This is applied to Hamiltonian systems of different types,
where variational methods give also invariants depending on Morse numbers. In the
present case it is the orthogonality which brings in this invariant.

In order to show how to apply our degree, we give the complete study of two spring-
pendulum systems. We hope that this example makes the point of the usefulness of
the equivariant degree approach and we challenge the reader to guess (a priori) the
type of solution we obtain.

The final section deals with the index of a loop of stationary solutions, with ap-
plications to Hopf bifurcation, systems with first integrals and so on. It is important
to point out that all our examples (except a very simple retarded differential equation)
come from Ordinary Differential Equations. The main reason for this choice is to avoid
technicalities. It should be clear to anyone interested in Partial Differential Equations,
for instance, how to adapt these result to many situations. For example, replace Fourier
series by eigenfunctions expansions or other Galerkin-type approximations. Another
reason for this choice is that the reader may easily see how the degree arguments are
used to obtain information on the solutions of a nonlinear equation in an integrated
way, that is, with the same tool in different situations (and not with ad hoc degrees),
and see what happens if one modifies the conditions of the problem, as in symmetry
breaking. Here, we would like to stress the Hopf property, i.e., that, if the degree is
zero, then it is likely that one may perturb the problem (in the sense of extensions of
maps) so that the new problem has no solutions. This property and the global picture
which enables one to relate two different solutions or two different problems, is one of
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the main conceptual contributions of degree theory. Of course, we are not computing
the actual solutions (nothing is for free), although it would be interesting to adapt the
homotopy numerical continuation methods to equivariant problems.

Each chapter has a final section on bibliographical remarks. We have tried to
indicate some other approaches to the subject matter of this book. However, it is clear
that most of this book is based on the authors’ research in the last 15 years. It is also
clear that there is still much to do. For instance, perform similar computations for
actions of non-abelian groups with its endless list of applications. Similarly, there are
more or less straightforward extensions (we have mentioned several times the word
k-set contraction) or applications to P.D.E.’s (essentially some technical problems)
and many more. We hope that this book will serve as an incentive for the reader to
follow up in that direction.

A last technical point: theorems, lemmas, remarks and examples are listed inde-
pendently. For instance Theorem 5.2 refers to the second theorem in Section 5 of the
chapter. When referring to a result from another chapter, this is done explicitly: for
instance, Theorem 5.2 of Chapter 1. On the other hand, our notations are standard,
but we would like to emphasize a particular one (maybe not too familiar): H < K
means that H is a subgroup of K (and could be K itself).






Chapter 1

Preliminaries

As mentioned in the Introduction, the main purpose of this chapter is to collect some of
the most useful definitions and properties of actions of compact Lie groups on Banach
spaces, as well as the elements of homotopy theory and some facts about operators
which will be most frequently used in this book. Thus, the reader will find here almost
all the results needed in this text. The expert will have only to glance at the definitions
in order to get acquainted with our notation.

1.1 Group actions

In the whole book I' will stand for a compact Lie group (the reader will see below
which properties of a Lie group are used here).

Definition 1.1. A Banach space E is a I'-space or a representation of the group I',
if there is a homeomorphism p of I into GL(E), the general linear group of (linear)
isomorphisms over E. In this case, we say that I acts linearly on E, via the action
p(y)x, such that

p(yy) =pWpi),
ple) =1d.

When no confusion is possible, we shall denote the action simply by y.
Example 1.1. Let E = R" x R" and I' = Zp = {—1, I} with
p(=D(X,Y)=(=X,Y). (1.1)

Example 1.2. If E = Cand I" = Z,, = {0, 1, ..., m — 1} is the additive group of
the integers modulo m, let

p(k)z = ¥ kP/mz  where p is a fixed integer. (1.2)
Example 1.3. If E = Cand ' = S! = R/27 = {¢ € [0, 27)}, then one may have
p(p)z ="z (1.3)

for some integer n.
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Example 14. f E =Cand ' = T" X Zy, X -+ - X Ly, = {(@1, ..., @n k1, ..., kg)
with ¢; € [0, 27), 0 < k; < m;}, then one may have

n S
Pz =expi( D njg; +2m 3 kili/m; )z, (1.4)
1 1

where n; and /; are given integers.

Remark 1.1. We shall see below that this is the general case of an irreducible rep-
resentation of any compact abelian Lie group. It is easy to see that if Z,, acts on C,
then p(m) = 1 = p(1)™ and p(1) must have the form given in (1.2). Since the same
argument applies to S! acting on C, then any I given by an abelian product as in (1.4),
must act on C as in that formula.

On the other hand if Z,, acts non-trivially on R, then m is even and p(1) = —1,
while S! may act only trivially on R, i.e., p(¢) = p(¢/N)", take N so large that the
continuity of p implies that p(¢/N), being close to 1, must be positive. Hence, p(¢)
is always a positive number. Since p(2r) = 1= p(2n/N YN one gets p(2r/N) =1
and p(2rp/q) = p(27n/q)” = 1 and by denseness of Q in R, one obtains p(p) = 1.
For convenience in the notation, we shall very often use (1.4) to denote also the action
of I" on R, with the convention that, in that case, n ;i =0, ; is a multiple of m; /2 if
m; is even, or [; = 0 if m; is odd.

Example 1.5. Let E = Cgﬂ (R™) be the space of continuous, 277 -periodic functions
on RY with the uniform convergence norm. The group I' = S! may act on E as

p@)X (@) =X+ ¢)
i.e., as the time shift.

One may also set this action in terms of Fourier series by writing
oo
X(t) =) Xpe",
—00

with X,, € CN, X_, = X, (since X(z) € RY). For the Fourier coefficients X,, one
has the equivalent action: .
o(@X, ="X,. (1.5)

Definition 1.2. Let E be a I'-space and x € E be given. The isotropy subgroup of I’
atx isthesetI'y = {y € I' : yx = x}, which is a closed subgroup of I'.

Definition 1.3. The action of I" on E is said to be free if I'y, = {e} for any x € E\{0}.
The action is semi-free if I'y = {e} or I" forany x € E.
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For instance, in Example 1.1, I'(x y) = Z; if and only if X = 0 and the action
is semi-free. In Example 1.2, the action is free only if p and m are relatively prime
(denoted as (p : m) = 1), while if p/m = g/n with (g : n) = 1, thenI'; = Z;,;,, =
{k=sn,5s=0,...,m/n—1}. InExample 1.3,onehas ', =Zy = {¢p = k/N,k =
0, ..., N — 1}. The case of Example 1.4 will be given below in Lemma 1.1.

Definition 1.4. The element x € E is called a fixed point of " if ', = I". The
subspace of fixed points of T in E is denoted by E'. If H is a subgroup of I' then
EH" ={x € E:yx =xforany y € H} is a closed linear subspace of E.

Notation 1.1. If H is a subgroup of K, we shall write H < K. Note thatif H < K,
then EX ¢ EH.

Definition 1.5. If H < I', the normalizer N(H) of H is
NH)={y eT:y 'Hy c H}
and the Weyl group W (H) of H is
W(H)=N(H)/H.
Note that if " is abelian, then N(H) = T'.

Also, if x € E | then yx € EY forany y € N(H), since y1yx = yy2x = yx
for some y; and y; in H. Hence yx is fixed by the action of H. Furthermore, if
H =T, for some x and yx € E*! for some y, then it is easy to see that y belongs to
N(H), i.e., N(H) is the largest group which leaves E H jnvariant. Moreover, if I is
abelian, then N(H) = I" and E¥ is I'-invariant.

Let us now consider the case of Example 1.4.

Lemma 1.1. LetT' =T" X Zp, X -+ X Ly, act on Cvia

expi((N, @) + 27 (K, L/M)),
where (N, ®) = Y1 njp; and (K, L/M) = 35 kjl;/mj. If ;/m; = [; [}, with [;
and m; relatively prime, let m be the least common multiple of the m;’s (I.c.m) and

set IN| = Y"1 |nj|. Then:

(a) If L # 0, thereis Ko such that (Ko, L/M) = 1/m, [2r], and any other K gives
an action of the form q /m for some q € {0, ..., m — 1}. In particular, if N = 0
and H is the isotropy subgroup, then W (H) = Z;.

(b) If N #£ 0, the congruence (N, ®) = 0, [27], gives |N| hyperplanes in T". In
particular, if L = 0, then W(H) = S' = T/Zn.

(©) IfL #0and N # 0, then W(H) = S' = T/Zz .-
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Proof. (a) If s = 1, then kI /m is an integer if and only if k is a multiple of m and
e2Tikl/M gives i distinct roots of unity, hence the result is clear.

If s = 2, from the preceding case, one has k,fj/nﬁj = lzj/nﬁj, with 0 < 12,- < m;
and one has to consider Izl/rhl + 122/7?12. Now, m = pym| = ppyma, with p; and
p2 relatively prime by the definition of a l.c.m. Thus, there are integers o, oy such
that a1 p1 + a2 p2 = 1, where o and oy have opposite signs. Assume that oy > 0.
Divide a1 by m and get oy = aym; + k?, witha; > 0and 0 < k(l) < m. Likewise,
—ay = (a2 + Dy — kY, with ap > 0and 0 < kY < sitp. Then, pik) + pok) =
a1 pr+oaxpr+ (a2~+ 1 —apm, Sieﬁning](o in this case. For any other pair (121, 122),
we have ki /i1 + ka /1y = (piki + paka) /i = (piky + pako) (kY /iy + KD /o),
proving the result for s = 2.

For the general case, assume the result true for s — 1. Let /2 be the l.c.m. of
(mq, ...Mmg—1) and m be the l.c.m. of m and m,;. We have

s—1
> kili /i + K[ = qo/m + kI /i,
1

where ¢ is given by the induction hypothesis in such a way that

s—1

> k)i =1/m and  kj = qok!.
1

One is then reduced to the two “modes” case.

(b) For the action of 7", one has that (N, ®) spans an interval of length 27| N|.
The congruence (N, ®) = 0, [27], gives |N| parallel hyperplanes in 7". One may
change ¢; to 2 — ¢; whenever N; is negative, defining an isomorphism of 7" for
which all N;’s are positive. Then, (N, ®) = [N|p, with0 < ¢ < 27 /|N|, will give
that,if L = 0,then H = T" ! X Zin| X Zn, X - - - X Ly, Wwith W(H) = S = T/Zn.

(c) In general, one may write (N, ®) + 27 (K, L/M) as |N|p + 2w q/m, with
0 < g < m,pin [0,27/|N|). The relation |N|¢ + 2mqg/m = 2km will give
¢ = (N, ®)/IN| = 2krn/|N| — 2mwq/m|N| which represents m|N| different par-
allel hyperplanes in 7". Thus, H = T"~! x Ly vy and W(H) = st = T/ Zg N

O

Definition 1.6. An isotropy subgroup H is maximal if H is not contained in a proper
isotropy subgroup of I.

Lemma 1.2 (Golubitsky). If H is a maximal isotropy subgroup of T and E' = {0},
then W (H) acts freely on EH\{O}.

Proof. In fact, if yx = x for some x # 0 in E and some y € N(H)/H, then
'y D H U {y}. Hence, from the maximality of H, one has I'y = I', but then
x e EU ={0}. O
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Remark 1.2. The groups which act freely on Euclidean spaces have been completely
classified: a reduced number of finite groups, S Land N(SY) in 3 and S3 (see [Br]
p- 153). For an abelian group with an action given by (1.4), one has H = {e}, i.e.,
W(H) =T, only if either n = 0, s = 1 and the action of Z,, is given by e>7/kr/m,
with p and m relatively prime (hence m = m), orn = 1,s = 0, |[N| = 1, with an
action of S! given by ¢’¢ (see Lemma 1.1).

Definition 1.7. The orbit of x under I"'is the set I'(x) = {yx € E: y € I'}.

It is easy to see that I"(x) is homeomorphic to I'/ Ty, that I'y, = nyy_l (in
particular ',y = I'y if I is abelian) and that the orbits form a partition of E. The set
E /T is the orbit space of E with respect to I'.

Definition 1.8. Two points x and y have the same orbit type H if there are yp and y;
such that H = yo_ll"xyo = yl_lf‘yyl.

If E is finite dimensional, then it is clear that there are only a finite number of orbit
types.

Definition 1.9. The set of isotropy subgroups for the action of I on E will be denoted
by Iso(FE).

1.2 The fundamental cell lemma

In this section we shall assume that one has a finite dimensional representation V' of
the abelian group I' = T" X Z,;, X -+ X Zp, in such a way that any X in V is
written as X = ZXjej, where x; € Cif W(Fej) = Zp or st p > 2,0orx; € Rif
W) = {e} or Z;. The action of I on the elements of the basis is given by

yej =expi((N/, ®) + 27 (K, L/ /M))ej,
as in (1.4) and Remark 1.1, with
N o=@, ....n)T and Li/M=/my, ... 1l /my)T.

Then yX = ) xjyej and yX = X gives ye; = ¢; if x; # 0. Hence, ['x = (T,
where the intersection is over those j’s for which x; # 0. Thus, W(T¢;) < W(x).

Lemma2.l. V" ={XeV:W(Tx) < oo}

Proof. If W(I'yx) is finite, then W () is a finite group and I, ; contains 7". In this

case, 'y contains also 7", that is, X belongs to yT, Conversely, if X is fixed by 7",
then W(I'x) is a factor of Z,,, x - - - X Z,,, and hence is finite. O

Denote by H; = Fej and define I:Ij_l =HN---NHj_,Hy=T. Then H;_;
acts on the space V; generated by e; (V; = R or C), with isotropy H/_ 1NH; = H;,if
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xj #0,and I:Ij,l/I:Ij acts freely on V;\{0}. Then, from Lemma 1.1, this Weyl group
is isomorphic either to Sl, to {e}, or to Z,, p > 2. Let k; be the cardinality of this
group: k; = |I-}j_1/f[j|. If the group is S', then kj = oo, while k; = 1 means that
H i1 = H ;. If k; =2 and V; is complex, then V; splits into two real representations
of I:Ij,l/I-NIJ- = Zy, while if V; is real, then k; = 1 or 2.

Consider € = {X € V : |x;| = 1 for any j}, atorusin V. Let H = Hi N
Hy N ---N Hy, be the isotropy type of C, where there are m of the V;’ s which are
complex and r which are real (hence dim V = 2m + r). Let k be the number of j’s
with k;j = oco. Let

A={XeC:0=<Argxj <2m/kjforall j=1,...,m+r}.

That is, if kj = 1 there is no restriction on x i (in C or R), while, if kj = 00, then
xj € R* and, if x; € R and k; = 2, then x; is positive. Let

Ay ={XeV:0<Argx; <2m/ki}.

Then Ay is a cone of dimension equal to dim V — k. The set Ay will be called the
fundamental cell. Tt will enable us to compute all the equivariant homotopy extensions
and to classify their classes in Chapter 3.

Lemma 2.2 (Fundamental cell lemma). The images of A under I"/H cover properly
C (i.e.,in a 1-1 fashion).

Proof. The proof will be by induction on m + r. If there is only one coordinate, then
I'/H; acts freely on V;\{0}. If this group is S', then the image of e; under it will
generate C, while if this group is Zg,, ki > 1, then one has to cut € into k; equal
pieces in order to generate C.

If the result is true forn — 1, let € = Cy—1 X {|xx| = 1}, A = A1 x {0 <
Argx, <2 /k,}and write '/H = (F/Fln_1 )Y(Hp—i / H), recalling that these groups
are abelian. By the induction hypothesis, the images of A,_; under I'/H,_; cover
properly CG,_;. Furthermore, from the case n = 1, the set {x, : |x,| = 1} is covered
properly by the images of {x, : 0 < Argx, < 27 /k,} under H,_| /H, a group which
fixes all points of C,_1. Hence, if (X,,_1, x,) is in C, there are y,,_1 in I‘/Fln_l and
Y in I:In_l/H such that X,,_; = yn_lxg_l, with Xg_l in G,_1, yn__llxn = ynxg,
with 0 < Argx? < 27 /k, and y, X,—1 = Xp—1.

Then (Xu—1.%0) = (u—1X)_ps Va1 Voo 1Xn) = Vao1¥a(X)_y, x0), iee, € is
covered by the images of A under I'/H.

If (Xu—1,%) = yi(X1, x1) = (X2, x?), with (X/,x/) in A and y; in T/H,
then (X!, x!) = yl_lyz(Xz,x2). Thus, X! = y X2, x! = yx?. By the induction
hypothesis, X! = X? and y belongs to H,_1, but then x! = x% and y belongs to H.

O

This fundamental cell lemma will be the key tool in computing the homotopy
groups of Chapter 3.
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Example 2.1. Let S! acton ej viae"i? withn; > 0. Then, H; = {¢ = 27k/n;, k =
0,....n; — 1} = an. Letn; = (ny : --- : nj) be the largest common divisor (l.c.d.)
of ny,....nj, then Hj = {¢ = 27k/iij, k =0,....7; — 1} = Z; . Thus, k; = oo,
ki =nj_1/n;j.

Note that, since I'/H = (I'/H}) x (Hy/ H2) X - - - X (Hp4r—1/H) ifdim T/ H = k,
then there are exactly k coordinates (which have to be complex) with k; = 0o. In
fact, since Hj is the isotropy subgroup for the action of H ;_1 on xj, each factor, by
Lemma 1.1, is at most one-dimensional.

Lemma 2.3. Under the above circumstances, one may reorder the coordinates in such
away thatk; = oo for j =1,..., kandk;j < oo for j > k.

Proof. Assuming k > 0, there is at least one coordinate with dimI'/H; = 1: if
not, H; > T" for all j’s and hence H > T" with |[I'/H| < oo. Denote by z; this
coordinate, then I'/H = (I'/H;)(H/H), withdimH;/H =k — 1. If H|/H is a
finite group, i.e., k = 1, then one has a decomposition into finite groups with lzj < 00
for j > 1. On the other hand, if k > 1, then, by repeating the above argument, one
has a coordinate z, with H;/ H, of dimension 1. O

The following result will be used very often in the book.

Lemma 2.4. Let T" act on V = C™ via expi(Nj, D), j=1,...,m. Let A be the
m X n matrix with N/ as its j-th row. Then:

(a) dimI"'/H = k if and only if A has rank k.

(b) Assuming kj = oo for j =1, ...,k and that the k x k matrix B with B;j = nj-,
1 <i, j < k,isinvertible, then one may write A® = (g)\il,with U = <f>—|—ACi>,
where ®T = (o7, dADT) and T = (1, -+, Q).

(c) With the same hypothesis, there is an action of Tk on C™, generated by wT =
(W1, ..., W) such that (N9, ®) = (M, W), with MJ = (m], ... m]) such
thatmlj =6&Mjforj=1,...,k ie.,theaction of T* on the first k coordinates
reduces to eMiYi .

Proof. () The relation (N J,®) = 0, [27] gives parallel hyperplanes in R” with

normal N/. Thus, dim H = n — k is equivalent to dimker A = n — k.

(b) Write A = <g g) andlet A = B~!C. Then, A® = O means ® = —A® and

(E — DA)Ci) = 0. Since dimker A =n —k,onehas £ = DA, ker A = <—A<f>, CTD)
and A® has the form given in the lemma.

(c) Let M be a k x k diagonal matrix such that B~! M has integer entries. Define
W =M 1'BU. Then, AD = (g)B_lMlIJ = (DB%‘I]",[\D) gives the action of T*, once
one has noticed that the entries of DB~!M are integers. O
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Another simple but useful observation is the following

Lemma 2.5. Let T" act on V as before. Then there is a morphism S ! - T" given
by ¢j = Mjp, M; integers, such that (N7, M) # 0, [27], unless N/ = 0 and
vS' = VT" The vector M is (M, ..., M,)T.

Proof. As before, the congruences (N7, ®) = 0, [27r] give families of hyperplanes
with normal N/, if this vector is nonzero. From the denseness of Q in R it is clear
that one may find integers (M, ..., M,) such that the direction {¢; = M;¢} is not
on any of the hyperplanes (N, ®) =0, for j =1,...,m. Thus, anj M; # 0 and,
being an integer, this number cannot be another multiple of 27, unless N/ = 0 and
the corresponding coordinate is in V7" O

Definition 2.1. Let K be a subgroup of I (not necessarily an isotropy subgroup) and
let H=(Te; D K, where {e;} span VK. We shall call H the isotropy subgroup of
VK. Note that K < Le; and that V7 = v K,

A final technical result is the following:

Lemma 2.6. Let H be an isotropy subgroup with dim W(H) = k. Then there are
two isotropy subgroups H and H, both with Weyl group of dimension k, such that
H < H < H. The group H is maximal among such subgroups and H is the unique
minimal such subgroup. H will be called the torus part of H.

Proof. Let H be such a maximal element, for example given by H; N --- N H;
as in Lemma 2.3. Then, I'/H = (I'/H)(H/H) and H/H is a finite group. If
H=T""%x Ly, X« - - X Ly, , then, from Lemma 2.1 applied to H, one has that VTnik
is the linear space of all points with W (H,) finite. If H is the isotropy subgroup of

n—k . . . . n—k .
VI"™" then, since VH is contained in VI" ", one has that H is a subgroup of H and
contains 7" % (from Definition 2.1) and is clearly unique. O

Remark 2.1. If A is the matrix generated by the action of 7" on V and A¥ its
restrictionon V# (as in Lemma 2.4), then A and A% have rank k. Furthermore, from
Lemma 2.4 (b), AL® = ( DBE)\IJ with ¥ = ® 4+ A® and the torus part corresponds
toW = 0. Itis easy to see that on VX one has exactly nlf = Zle n{xﬁ fori > k and
j=1,...,dim Vﬂ,wherekﬁ,l =1,...,k,i=k+1,...,n are the elements of the
k x (n — k) matrix A.

1.3 Equivariant maps

A look at the heading of this book tells us that perhaps it is time to get started with
some formal definitions.
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Definition 3.1. Let E be a ['-space. A subset Q2 of E is said to be I"-invariant if for
any x in €2, the orbit I"(x) is contained in £2.

Definition 3.2. If B and E are ['-spaces, with actions denoted by y and y respectively,
then amap f : B — E is said to be I"-equivariant if

flyx) =y fx)
for all x in B.

Definition 3.3. Let I" act trivially on E. Amap f : B — E is said to be I"-invariant
if f(yx) = f(x),forallx € B.

Example 3.1. Let Z; act on B = E as —1, then an odd map, f(—x) = — f(x), is
Zs-equivariant. On the other hand, an even map, f(—x) = f(x), with a trivial action
on E is I'-invariant. In general, if B = B% @ By, E = EZ2 @ E,, with an action of
Z, as —I on Bj and E1, then an equivariant map f(xg, x1) = (fo, f1)(x0, x1), will
have the property that fo(xp, —x1) = fo(x0, x1) and f1(xp, —x1) = — f1(x0, x1). In
particular, fi(xo, 0) = 0, that is, f maps B%2 into E%2. We shall see below that this
is a general property of equivariant maps.

Example 3.2. Let an (RN), respectively Czln (RV), be the space of continuous, re-
spectively differentiable, 2m-periodic functions X(r) in R™, with the action
p(@)X () = X(t + ¢). Let f(X) be a continuous vector field on R", independent
of t. Then

dX
F(X)=E—f(X)

is S'-equivariant.
In terms of Fourier series, X (1) = ) X,e'™ with X_, = X,,, one has the equiv-
alent formulation

inX, — fH(Xo, X1,...), n=0,1,2,...,

with f,(Xo, X1,...) = % 02” F(X(t))e™dr. In this case the action of S on

X, is given by ¢ X,,, and it is an easy exercise of change of variables to see that
fu(Xo, €% X1, %X, ...) = €™ f,(Xo, X1, X2, ...), i.e., that the map F is equiv-
ariant.

Note that the isotropy group of X, is the set H = {¢ = 2kn/n, k =0, ...,
n—1} = 7, and that V¥ = {X,,, m = 0 or a multiple of n}.

Example 3.3. Let I'g be a group acting on R and let f(y0X) = yo f(X) be al'p-
equivariant vector field.

IfI' = S' x 'y one may consider the I"-equivariant map

dX
F(X)=E—f(X)
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on the space of 277 -periodic functions in RV . If H is the isotropy subgroup of a Fourier
component X,,, then the space V¥ of “twisted orbits” has an interesting description
given in the last section of this chapter.

We are going now to describe some of the simplest consequences of the equivari-
ance.

Property 3.1 (Orbits of zeros). If f(yx) =y f(x)and f (xo) = 0, then f(yxg) =0,
forally inT.

Property 3.2 (Stratification of the space). If f : B — E is I'-equivariant, then if
H <T, f maps BY into E®. The map 1 = flgn is N(H)-equivariant.

Proof. For x in Bf and y in H, one has f(yx) = f(x) = 7 f(x). Hence, f(x)
is fixed by H, i.e., it belongs to EX. Now, since N(H) is the largest group which
keeps BY invariant, this implies that yx is in B for y in N(H) and x in B and
the remaining part of the statement follows. O

Note that, in particular, if ' is abelian, then f is I'-equivariant. This simple
property implies that one may try to study f by looking for zeros with a given sym-
metry (for example, radial solutions). It is then convenient to reduce the study to the
smallest possible B | i.e., the largest H, in particular to maximal isotropy subgroups,
where one knows that W (H) acts freely on B¥ and which are completely classified.
If, furthermore, one decomposes B into irreducible representations of W(H) (see
Section 5), one may determine, not only the linear terms, but also higher order terms
in the Taylor series expansion, if the number of representations is small. These ideas
have been used extensively, in particular in the physics literature, in order to give
normal form expansions. The information obtained this way is very precise but, from
the requirements of genericity and low dimension, it does not allow for a complete
study of stability, symmetry breaking or period doubling, when one has to consider
perturbations with a symmetry different from the one for the given solutions. Hence,
in these cases, it is convenient not to fix a priori the symmetry of the solution and to
treat the complete equivariant problem. Then one will have a more general vision, but
probably less precise. This is the point of view adopted in this book.

Property 3.3 (Linearization). If f(yx) = y f(x) and f is C' at xo, with 'y, = H,
then
Df (yxo)y =y Df (xo0),

forall y inT. In particular, Df (xo) is H-equivariant.

Proof. Since f(yxo+yx) — f(yxo) = y(f(xo +x) — f(x0)) =y Df (xo)x +---,
one has that f is linearizable at yx¢ and the above formula holds. O

This implies, if B = E = RY, that Df (yxo) is conjugate to Df (xo) with the
same determinant.
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On the other hand, if the dimension of the orbit of xq is positive, i.e., if dim '/ H =
k with H = TI'y,, then one may choose a differentiable path y(¢), with y(0) =
I,y’(0) # 0, such that f(y(t)xo) = f(xp). Differentiating with respect to ¢ and
evaluating at t = 0, one has

Df (x0)y'(0)xo = 0.

Hence, y'(0)xq is in the kernel of Df (xg), for each direction y’(0) such that
y'(0)xo # 0. Since the orbit is a differentiable manifold, this will be true for any
direction tangent to the orbit. Hence one has at least a k-dimensional kernel. For
example, if I" is abelian and 7" acts, as in Example 1.4, by expi (N I, @), then one
may take y(t) = (0,...,1,0,...) ie., ¢; = 0except ¢; = r. In this case, y'(0)x is
i(nllxl, el n;"xm)T.

A property which will be used frequently in this book is the following:

Property 3.4 (Diagonal structure). If B = B @& B,,E = EH @ E| with B| and
E| being N (H)-topological complements and f = f @ f\, then at any xp in BH

one has o
Df (erp) = (D WLy fl>,

where x = xy ®x1 and Dy, D stand for differentials with respect to these variables.

Proof. One has that

Dpfi DifL

From the fact that f| (xg) = 0, one has Dy f| (xg) = 0. Since the decomposition
of B and E is N (H)-invariant (hence H -invariant), the action of H on these spaces
is diagonal. The H-equivariance of Df (xy) implies that D) f1y = y D, f1, and
D, f% = D, fHy forany y in H. Let A denote D, f¥, then, since Ay = A,
one has that ker A is a closed H -invariant subspace of B . Assume there is x| with
Ax) # 0. Let V be the subspace of B generated by x| and ker A. Defining z by the
relation yx; = x; + z(y), one has that z is in ker A and forany x =ax; & yinV
(i.e., y belongs to ker A) one gets yx = ax| + az(y) + y, proving that V is also an
H -invariant subspace, with ker A as a one-codimensional subspace. This implies (see
any book on Functional Analysis) that there is a continuous projection P from V onto
ker A. As a matter of fact, we shall prove below (in Lemma 4.4.) that one may take P
to be equivariant. Then, if x; = (/ — P)x),onehas Ax; = Ax, (since Px belongs
to ker A) and yx; = (I — P)yx_, from the equivariance of P, and yx| = k(y)x1
since (I — P)V is one-dimensional. Applying A to this relation, one obtains k(y) = 1
and x is fixed by H, i.e., X, belongs to B N B| = {0}, a contradiction. Hence
A=0. O

Df (xy) = (DHfH DLfH> _

For the last property of this section, we shall assume that E is a I'-Hilbert space
and the action of I is via orthogonal operators, i.e., yTy = I (in finite dimensional
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spaces one may always redefine the scalar product in such a way that the representation
turns out to be orthogonal: see below, Lemma 5.1).

Property 3.5 (Gradients). IfJ : E — Risa C', T-invariant functional, then f(x) =
VJ(x) is equivariant.

Proof. Since J(yx) = J(x), one has, from Property 3.3, that DJ(yx)y = DJ(x),
since the action  on Ris trivial. But, DJ (x) = VJ(x)T, hence VJ (x) = yDJT(yx),
giving the result. O

Remark 3.1. If T" has positive dimension and one takes a path y (¢) with y(0) = I,
then, differentiating the identity J(y (t)x) = J(x), one obtains

VJ(x)-y0)x =0,

that is y (0)x is orthogonal to the field VJ (x) = f(x). If one looks for critical points
of J, i.e., such that VJ(x) = 0, this orthogonality may be regarded as a reduction
in the number of “free” equations. From the analytical point of view, one may use
some analogue of the Implicit Function Theorem and reduce the number of variables.
Or, one may use, as in conditioned variational problems, a “Lagrange multiplier”, i.e.,
one may add a new variable  and look for zeros of the equation

F@) + 1y O)x =0.

In fact, if f(x) = 0, then u = 0 gives a solution of the above equation. Con-
versely, if (i, x) is a solution, then by taking the scalar product with y (0)x, one has
wlly (0)x]|? = 0, hence f(x) = 0and uy (0)x = 0, in particular 4 = 0if y (0)x # 0.

This argument can be repeated for each subgroup y (¢) and one obtains y; (0) for
j=1,...,dimT. Considering the equation

FO) 4+ 17i(0)x =0,

one obtains a problem with several parameters. A solution of this problem will give
that

@ f(x)=0 and (b) Y u;y(0)x =0.

One will conclude that p; = 0 if ; (0)x are linearly independent. This will depend on
the isotropy subgroup of x. This point of view will be taken when studying orthogonal
maps (see § 7).

1.4 Averaging

At this stage the reader may be puzzled why we insist on working with compact Lie
groups. As a matter of fact, up to now, the compactness of the Lie group I" was not
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used in our considerations and seems to bear only a decorative aspect in the whole
business. Almost the same can be said about linear actions. Now, the consistency of
these two features namely, compactness of I and linearity of the actions, becomes
evident when you realize that, under these two conditions, a powerful instrument is
at hand. Precisely, the existence of an integration on I', the Haar integral, such that
fr dy = 1, which is I'-invariant on the class of continuous real-valued functions g on

I, under both left and right actions, i.e.,

/g(a/_ly)dy =/g(y)dy =/g(w’)dy-
r r I

The firstimportant consequence of this fact is that, provided E is a Banach I'-space,

one may define a new norm, say

il =/ lyxll dy.
I

satisfying, |||y’x||| = ||lx]l|, i.e., the action of " is an isometry.

This allows us to assume in the rest of the book that the action is an isometry. In

particular, the ball
Br = {x : ||x|| < R} is I'-invariant.

Using Pettis integrals and standard averaging, one has the following remarkable

result.

Lemma 4.1 (Gleason’s Lemma). If B and E are T'-spaces and f(x) is a continuous

map from B into E, then
fx) = / f(yx)dy is I-invariant
r
and

F

/ 77 f(yx)dy is T-equivariant.
r

Furthermore, if f is compact, then so are f and f .

Proof. From the change of variables yy’, one has

foy'x) = fr flyy'x)dy = /F f@'x)dy" = fx).

Also, f(y'x) = [7 ' flyy'0)dy = 7 [P fyy'x) dp

under the same change of variables. See [Br. p. 36].

7' f(x),

The continuity of f and f follows from the compactness of I". In fact, the orbit
I"xo is compact and hence f is uniformly continuous on it. Moreover, if x is close
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to xo (therefore, the orbit I'x is close to I"xp, taking into account that the action is an
isometry), one gets

f) = fxo) = fr 7N fyx) = Fyxo)) dy.

Also, . .
I f(x) — fxo)ll < max If(yx) — f(yxo)ll-

As far as compactness is concerned, recall that f is said to be compact if it is
continuous and if f(K) is compact, for any bounded set K in B.
Therefore, the sets A = (Jp g f(yx) and A = Jp, g 771 f(yx) are precom-

pact. In fact, if you have a sequence {)7,:1 S Vuxp)}in A then, by the compactness of
I, you get a subsequence {yy, } converging to some y and { f (y»;xp;)}, converging to
some y. Thus,

fn;lf(ynjxﬂj) - f_ly = (‘}7;171 - ?_l)f(yn_,-xnj) + ‘J;_l(f(ynj-xnj) - Y)

yields the convergence, since ||)7n;1 — 77! tends to 0, as operators, and, since 'K is

bounded, Ais compact and A is bounded.

Now, cover A and A with balls of radius 1/2N*1 and extract a finite subcover
based at f(y;x;), j =1,...,k, and ?l_lf(ylxl),l =1,...,r, respectively. Let {¢;}
be a partition of unity associated to the covering, i.e., ¢; : £ — [0, 1], with support
in a ball centered at y; = f (y;x;), respectively )7j_1 f(yjx;), of radius 1/2" and such

that )~ ¢;(y) = 1.
Define,

fn(x) = /F Y 0 (frof(yx) dy,

v = [ S e oo o) dr.
Then, fN (x) belongs to the space generated by { f'(y;x;)}, while fN (x) belongs to

the finite dimensional space generated by {)71_1 f(yix;)}. Hence, fN(K ) and fN(K )
are precompact. Furthermore,

Fo) = fvo) = /F S 0 (FyaNfrx) — fxg) d7.

w0 = v = [ o™ oo £ =57 Fonso a7
Now, since ¢; (y) is non-zero only if ||y — y; || < 172N and ) ¢;(y) = 1, one gets

If () — fvll <172V and || f(x) — fvoll < 172V,
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But then, for any bounded sequence {x,}, one has a subsequence {x, )} such that
fN (xn(n)), respectively fN (xn(n)), is convergent. Using a Cantor diagonal process,
one obtams due to the uniform approx1mat10n of f (x) by fN (%), respectwely of f (x)
by fN (x), a convergent subsequence for f (xn(n)), respectively f (XN N))- O

Remark 4.1. If f(yx) = f(x), then f(x) = f(x), while, if f(yx) = 7 f(x), then
fx) = fx).

Example 4.1. If [ = § I acts on Cgﬂ (R) via time translation as in Example 1.5, and
f (¢, x) is continuous and 2w -periodic in ¢, then f induces a mapping from Cgﬂ (R)
into itself, via f (¢, x(¢)). Then

27

2w
fam) = (1/211)/0 f, x(t+ @) de = (1/2m) A ft, x(p))de,

2

fax() = (1/27) | f—p.x)de.

Example 4.2. If I' = Z,, is generated by yp, then

m—1

[srdy = arm 3 s,
0

Remark 4.2. In the proof of the compactness of f (x) and f (x), we have seen that a
map f is compact if and only if it can be uniformly approximated on bounded sets by
finite dimensional maps. The reader may recover this important result by forgetting
the action of I". Now, for the case of a non-trivial action of I" on E, a word of caution is
necessary: The map fn (x) is invariant and belongs to a finite dimensional subspace.
However, fN (x) is not equivariant. One could have tried to use the set A also for this
case and define

Fy) = /F S (Frani f ) d

which is I'-equivariant and approximates, within 1/2" on K, the map f (x), but which
is not necessarily finite dimensional, as the following example shows, since the orbit
of f(y;x;) may not span a finite dimensional space.

Example 4.3. On l, = {(xo, X1, X2,...), x0 € R, x; € Cfor j > 1 with }_ |x;|* <
oo}, consider the action of S! given by

ei"’(xo, X1, X2, ...) = (x0, €x1, €4%x2, .. ).

Consider the point xo = (1,1/2,1/2%,...,1/2",...) = (@°,a,a%.a’, ...).
Then, for any n, €'®1xq, ..., e'%nxy, for ¢y, ..., ¢, different, are linearly indepen-
dent. In fact, taking the first n» components, one obtains a Van der Monde matrix, with
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Jj-th row equal to (1, a;, ajz, .. .aj’.’_l), where a; = elvi /2 and determinant equal to
[~ j(ai — aj). Hence, the closure of the linear space generated by the orbit of xo

is [>.

However, we will show in the next section that the set of points in £ whose orbit
is contained in a finite dimensional I'-invariant subspace is dense in E. Thus, in the
definition of f v take y; suchthatI'y; C M, afinite dimensional I'-invariant subspace,
with [ly; — f(y;xj)|| < 1/2V, and define

() = /F > eiyx)p Ty dy.

Thus, since )7*1yj C M;j, the I'-map f v has range in the finite dimensional I'-invariant
subspace generated by the M;’s and || f(x) — £ (x)|| < 1/2N=1,

We have thus proved the following result, which will be crucial for the extension
of the I'-degree to the infinite dimensional setting.

Theorem 4.1. A continuous I'-equivariant map f from B into E is compact if and
only if, for each bounded subset K of B, there is a sequence of I -equivariant maps
fn, with range in a finite dimensional I -invariant subspace My of E, such that, for
all x in K, one has

If ) = fnol < 1727

In our construction of the I'-degree, we shall also need the following consequences
of averaging:

Lemma 4.2 (Invariant Uryson functions). If A and B are closed I"-invariant subsets
of E,with AN B = ¢, then there is a continuous T -invariant function ¢ : E — [0, 1],
with p(x) =0ifx € Aand p(x) = 1ifx € B.

Proof. 1Indeed, let ¢ be any Uryson function relative to A and B (for instance
dist(x, A)/(dist(x, A) + dist(x, B))), then

P(x) = /Fw(yx)dy

has the required properties. Note that, if one has renormed E in such a way that the
action is an isometry, then dist(x, A) = dist(yx, A) and ¢(x) can be chosen to be the
above map. O

Lemma 4.3 (Invariant neighborhood). If A C E is a I'-invariant closed set and U,
containing A, is an open, [-invariant set, then there is a I'-invariant open subset V
suchthat ACV CcV CU.

Proof. Infact, let ¢ : E — [0, 1] be a I'-invariant Uryson function with ¢|4 = 0 and
¢|lyc = 1. Then, V = ©~1([0, 1/2)) has the required properties. O
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Lemma 4.4 (Equivariant projections). If Eg is a closed T -invariant subspace of E
and P is a continuous projection from E onto Ey, then

ISxE/y_lexdy
r

is a T-equivariant projection onto Eo. If Eg = EV, then

Px E/yxdy
r

is a '-invariant projection onto EY. Moreover, E; = (I — f’)E and (I — P)E are
closed T -invariant complements of Ey and E' .

Proof. The first part is clear since fr dy = 1 and Ej is I'-invariant. As far as the
second part is concerned, notice that Px is in £ I'and Px = x for x in ET. O

1.5 Irreducible representations

A good deal of this book is based on the decomposition of finite dimensional repre-
sentations into irreducible subrepresentations and the corresponding form of linear
equivariant maps.

Definition 5.1. Two representations of B and E are equivalent if there is a continuous
linear invertible operator 7 from B onto E such that yT = T'y.

Lemma 5.1. Every finite dimensional representation is equivalent to an orthogonal
representation, i.e., with y in O (n).

Proof. In fact, the bilinear form

B(x,y) = /F(Vx, yy)dy

is positive definite, symmetric and invariant. Hence, there is a positive definite matrix
A such that B(x, y) = (Ax, y). One may define a positive symmetric matrix 7" such
that T2 = A, by diagonalizing A. Hence B(x, y) = (Tx, Ty). Since B(yx, yy) =
B(x, y), one has that (TyT'x, TyT~'y) = B(yT 'x,yT~'y) = (x, y), which
implies that Ty T~! is in O (n). O

Remark 5.1. The same result is true in any Hilbert space. The existence of the self-
adjoint bounded positive operator A follows from Riesz Lemma and that of 7 from
the spectral decomposition of A.

Definition 5.2. A representation E of I' is said to be irreducible if E has no proper
invariant subspace (not necessarily closed).
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This implies that E I = {0} unless I acts trivially on E and dim E = 1.

Definition 5.3. A subrepresentation Eg of I' in E is a closed proper invariant subspace
Egof E.

Lemma 5.2. If E is afinite dimensional representation of I, then there are irreducible
subrepresentations E1, ..., Ex, suchthat E = E| & --- @ Ey.

Proof. From Lemma 5.1 it is enough to consider the case where the representation
is orthogonal. Then, if E| is ['-invariant, the orthogonal complement E f‘ is also
I-invariant, since (yx,y) = (x,yTy) = (x,y~'y). Hence, if x € Ef- and y is in
E; (hence also y~!y € Ey), this scalar product is 0 and yx is in ElL Applying this
argument a finite number of times one obtains a complete reduction of E. O

The above arguments can be extended to the infinite dimensional setting in the
following form.

Lemma 5.3. (a) If Eq is an invariant subspace of the representation E, then Eg is a
subrepresentation. If furthermore E is a Hilbert space, then E = Eo @ E1, where E
is also a subrepresentation.

(b) If E is an orthogonal representation (hence E is Hilbert) and Ey is an invariant
subspace, then Eé‘ is a subrepresentation.

Proof. (a) If {x,} in Eq converges to x, then {yx,}, which is in Eg, converges to yx

and E is invariant. The second part follows from Lemma 4.4, since there is always
a projection on Ej.

(b) follows from the argument used in Lemma 5.2 and the fact that Ed‘ is closed.

O

Lemma 5.4 (Schur’s Lemma). If B and E are irreducible representations of I and
there is a linear equivariant map A from B into E, such that Ay = y A for all y in
I, then either A = 0, or A is invertible.

Proof. Note first that the statement is purely algebraic and no topology is used. Since
the domain of A is linear and I"-invariant (so that the equivariance makes sense), one
has that the domain of A is all of B. Furthermore, since ker A is I'-invariant, then
either it is B (and A = 0) or it reduces to {0} and A is one-to-one. But then Range A
which is also I'-invariant and non-trivial (since A # 0) must be £. Hence A is also
onto and invertible. O

Remark 5.2. If E is not irreducible, then either A = 0, or A is one-to-one and
onto Range A. This last subspace is (algebraically) irreducible since A~! is clearly
equivariant.
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Corollary 5.1. (a) If E is an irreducible representation of I and A is a T"-equivariant
linear map from E into E, i.e., Ay =y A with a real eigenvalue A\, then A = Al.

(b) If E has no proper subrepresentations and A is a bounded " -equivariant linear
map with eigenvalue X, then A = LI. Any bounded I"-equivariant linear map B is
either 0 or one-to-one.

(c) If furthermore E is a Hilbert space with no proper subrepresentations and
equivalent to an orthogonal representation of I (i.e., there is a continuous isomor-
phism T on E such that, if = T~ 'yT, then 777 = I), and A is a bounded
I-equivariant linear map from E into E, then

T~ 'AT = ul +vB
with B> = —1 B+ BT =0. Moreover, T = 1 if the representation is orthogonal.

Proof. (a) In fact, A — Al is I'-equivariant, with a non-trivial kernel, hence, from
Schur’s Lemma, it must be 0.

(b) Since ker(A — A1) is closed, the previous argument gives the result. Similarly,
if ker B £ {0}, then B = 0.

(c)Onehas T™'ATy = T 'AyT = yT~'AT, hence T~' AT is I'-equivariant
with respect to the orthogonal representation. Let A = T~'AT, then A + A” and
AT A are self-adjoint and equivariant Hence, 2u = j:||1§ + AT || is an eigenvalue for
A+ AT. From (b), one has A+ AT = 2ul or, else (A — wl) + (A — uhT = 0.
Furthermore, (A ul I (A ul) = v21, since this operator is either positive, or
identically O if it has a kernel (again from (b)). If v = 0, then (A— pul? =0and
A— I must have a non-trivial kernel, i.e., from (b), A= 1. On the other hand, if
v#0,let B=(A—pul)/v. Then, BT + B=0and BTB =1I,ie., B>=—1. O

Corollary 5.2. If E is a finite dimensional irreducible representation of an abelian
group T, then either E = R and T acts trivially or as Zp, or E = C and " acts as in
(1.4).

Proof. Since T is abelian, one has that yy; = y;y, where y is the equivalent or-
thogonal representation given in the preceding corollary. Furthermore y, a matrix, is
I"-equivariant, hence

y =ul +vB,

where 1, v, B dependon 7. Since 77§ = I onehas u>+v? = 1. If p; = I +v1 By
and y» = uzl + vy By, from y12 = Y1, one obtains, if vivy # 0, that B1By =
B>B; = B. But then, B = B and B? = I. From Schur’s Lemma, the self-adjoint
matrix B must be of the form A7, with A> = 1. If A = 1, then By B, = I implies (by
multiplying with B;) that B) = —Bj and then one may change v> to —vy. While, if
A = —1, then one obtains By = Bj. That is, one has a unique B such that any y is
written as ul + vB.
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Now, if for all y’s the corresponding v is 0, then 7 = =1 (since x> = 1) and any
one-dimensional subspace is invariant. Then E = R and I'" acts trivially if 4 = 1 for
all y, or I acts as Z, if, for some y, p is —1.

On the other hand, if there is a non-zero v, then from B2 = —1I, one has (det B )2 =
(—1)9ME and hence E is even-dimensional. Furthermore, if e # 0, then the subspace
generated by e and Be is I'-invariant and of dimension 2, since Be is orthogonal to
e: (e, Be) = (BTe, ) = —(Be, ¢). Thus, from the irreducibility of E, one has that £
is equal to this subspace. Take e of length 1 and define a complex structure by defining
Be = i. Then, 7 = pu + vi, with u? + v? = 1, is a unit complex number. Remark
1.1 and the fact that any compact abelian group can be represented as a product, ends
the proof. O

Remark 5.3. Another way of seeing the above argument is the following: y, as an
orthogonal real matrix, has two-dimensional invariant eigenspaces, where y acts as a
rotation. Since y; commutes with ¥, these invariant subspaces are also invariant for
y1. Hence, the action of I" on this subspace can be written as R, (;‘) where R, is a

rotation by an angle . Writing z = x + iy, this vector can be identified with ¢'#z.

Clearly, we could have taken z = x — iy. Then this action would have been
e~1%7. These two representations are equivalent as real representations, since the map
T(;‘) = (_xy), corresponding to conjugation, is equivariant. Of course, they are not
equivalent as complex representations.

The next set of results in this section will concern the fact that any irreducible rep-
resentation (in the sense of our definition) of a compact Lie group is finite dimensional.

We shall begin with the Hilbert space case.

Theorem 5.1. If E is an orthogonal irreducible representation of T, with no proper
subrepresentations, then E is finite dimensional. Furthermore, one has the equality

_/F((VXl, YO (x2, y2) + (yx1, y2)(yx2, y1)) dy = 2(x1, x2)(y1, y2)/ dim E,

for all x1, x2, y1, 2.

Proof. The left hand side of the above equality is a continuous linear functional on E,
as a function of x| alone. Hence, from Riesz Lemma, it has the form (x{, z) for some
z which depends upon y1, x3, y». For fixed y1, yz, the vector z depends linearly and
continuously on x,. Therefore one may write z = Ax,, where the operator A depends
on y; and y,. From the invariance of the Haar integral, one has that

(yx1, Ayxz) = (x1, Ax2),

hence 77 A = A and A is equivariant. Furthermore, by interchanging x; with x5,
one has that A = AT. Thus, from Corollary 5.1 (b), one has that A = AI, where, of
course, A depends on y; and y, but the left hand side is A(x1, x3).
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By using the same argument with y; and y», one has that the left hand side is
w(y1, y2), hence it is of the form c(x1, x2)(y1, y2), where c is independent of x1, x3,
v1, y2. Taking x;1 = x2, y;1 = y», the left hand side is fr 2(yx1, yl)zdy and c is
positive.

Takenow, eq, e2, . . ., ey anarbitrary collection of orthonormal vectors in E. Then,
from Parseval’s inequality, one has

N
> rx.e)? < lyxl? < Ix)*.
1

Taking x; = x2 = x and y; = y, = ¢;, and integrating the above equality, one obtains

N
zsz, ei)*dy = Nellx||* < 2|x|.
] r

Hence, ¢ < 2/N. From this it follows that E is finite dimensional. Furthermore, if
dim E = N, one gets an equality, and one obtains ¢ = 2/N. O

Corollary 5.3. If E is a I'-Banach space with no proper subrepresentations, then E
is finite dimensional.

Proof. For a general Banach space E, take X a non-zero element of E*, i.e., a
continuous linear functional on E. Consider

(x, y)x szX(VX)X(Vy)dV-

Then, (x, y)x is bilinear, continuous in x and y and (x, x)x > 0. Hence, E is given
the structure of a pre-Hilbert space: define the equivalence relation x 3 y if and only
if (x —y,x —y)x =0, ie., iff X(y(x —y)) = 0 for all y in I". Taking the set
of equivalence classes and completing with respect to the || || x-norm, one obtains
a Hilbert space Hx and a natural mapping ¢x from E into Hy. Define an action
y of I' on Hy by factorization and extension by continuity of the action of I" on
E. Since, (yx,7y)x = (x,y)x, one has that Hy is an orthogonal representation
of I'. Furthermore, ¢xy = Y ¢x, by construction, and ¢y is a linear mapping, with
g x5 = Jr X(yx)*dy < | X|I*llx||?, i.e., px is continuous (|| X || is the norm of
X in E*).

Now, since E has no proper subrepresentations, one has, from Schur’s Lemma, that
@x 1is one-to-one (since X # 0, at least for some x one has gy (x) # 0). Now, if Hy
contains a proper subrepresentation M, we may assume that M is finite dimensional
(the precise argument will be given in the next corollary). Let P be an equivariant
orthogonal projection from Hy onto M (see Lemma 4.4.). Then, Pgy is a continuous
linear map from E into M. From Corollary 5.1 (b), P¢x is either one-to-one, or
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identically 0. In the first case, this implies that E is finite dimensional. In the second
case, px(E) C M L which contradicts the fact that ¢x (E) is dense in Hy. O

Note that if E = C - (R) and X (x(7)) = x(0), then, under the time shift, one has
% = L 27 x2(<p)d<p and Hy is L*[0, 27].

Corollary 5.4. (a) Any infinite dimensional Banach I'-space E contains finite dimen-
sional irreducible representations.

(b) The set of points whose orbits are contained in a finite dimensional invariant
subspace is dense in E.

Proof. (a) If E has all its subrepresentations of infinite dimension, take a sequence
My D My D --- of subrepresentations and let M, = (| M},. Then, M is a closed
linear invariant subspace of E. By ordering such sequences by inclusion, one should
have, by Zorn’s Lemma, a maximal element. For this element, the corresponding M,
is an infinite dimensional subrepresentation. If E is a Hilbert space (with orthogonal
action), the above conclusion contradicts the maximality, since either M, has a proper
subrepresentation M’ and then {M, N M’} is strictly “larger” than {M,,}, or, M is
finite dimensional. This implies that the argument in Corollary 5.3 is complete and
one may repeat it for a general Banach space.

(b) Take a finite dimensional subrepresentation M of E and N; an invariant closed
complement (which exists, by Lemma 4.4). Since N is an infinite dimensional rep-
resentation, it contains a finite dimensional representation M, (of course, if E is finite
dimensional, there is nothing to prove). Let N; be an invariant closed complement of
M> in Nj. Continuing this process, one obtains a sequence M, of finite dimensional
invariant subspaces and complements N,, such that M, 41 & N,+1 = N,,. Moreover,
there are equivariant projections P, from E onto @] M; such that I — P, projects
onto N,. Let N = [|N,. Then, it is easy to see that N is a closed, linear and
invariant subspace of E. Ordering sequences of such {N,} by inclusion, construct
the corresponding N for a maximal sequence. Then, if N # {0}, N contains a finite
dimensional subrepresentation M and its corresponding complement N (take M = N
in case N is finite dimensional). But then {N, N N} is strictly “larger” than {N,},
contradicting the maximality. Hence, N = {0} and, for any x in E, one has that
(I — Py)x goes to 0, i.e., P,x, which belongs to @’1' M;, approximates x. Note that,
for a Hilbert space, one may take the space Eq of all points whose orbits lie in a finite
dimensional invariant subspace. Clearly, E is an invariant linear subspace and Eo
is a closed invariant subrepresentation. If E is a proper subrepresentation, then EO
contains a finite dimensional subrepresentation N , which is a contradiction, since N
should be in Ey. Hence, Ey is E. Here the maximal N is Eé‘, the intersection of all
the orthogonal complements of finite dimensional invariant subspaces. O

Remark 5.4. In a finite dimensional irreducible representation, the set of finite linear
combinations of points on a given orbit is dense: if not, the closure of the linear space
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generated by such combinations would be a proper subrepresentation.

Our last set of results of this section concerns the form of a linear equivariant map
between two finite dimensional representations V and W.

LetV =Vi®---®V,and W = W @- - -@ W, be adecomposition of V and W into
irreducible subspaces. Let P; : V — V;and Q; : W — W, be equivariant projections,
ie.,yP; = Piyandy Q; = Q;y. Assume that thereisalinearmap A : V. — W, such
that Ay =y A. Let A;; = QjAP; : V; — W;. Then, A;;jy = y A;; and, from Schur’s
Lemma, either A;; = 0 or A;; is an isomorphism, in which case dim V; = dim W;
and V; and W; are equivalent representations. Hence, if one considers all possible
A’s, it follows that one has to look only at the subrepresentations of V which are
equivalent to those of W. Furthermore, since an equivalent representation amounts to
a choice of bases (in V and W) and since ker A as well as Range A are also representa-
tions, with complements which are representations, the problem can be reduced to the
study of A from V into itself, with yA = Ay and A;; = 0 if V; and W; are not
equivalent.

As in Corollary 5.1, one may assume that y is in O (V) (again a choice of basis).
Then A,’j = ,u,-jl + VijBij’ with Bizj = —I and Bij + B; =0.

Theorem 5.2. Let V be a finite dimensional irreducible orthogonal representation.
Then exactly one of the following situations occurs.

(a) Any equivariant linear map A is of the form A = ul, i.e., V is an absolutely
irreducible representation.

(b) There is only one equivariant map B, such that B = —I, BT + B =0. Then,
any equivariant linear map A has the form A = wl + vB. In this case, V has
a complex structure for which A = (u +iv)l.

(c) There are precisely three equivariant maps B1, B2, B3 with the above properties.
Then, B;Bj = —B;B; and B3 = B1By. In this case, V has a quaternionic
structure and any equivariant linear map A can be written as A = pul +
viB1 +vyBy +v3B3 = gl,where g = p + vii] + voip + v3iz is in H.

Proof. If T is abelian, this result was proved in Corollary 5.2, where only (a) and (b)
occur. Since the abelian case is the main topic of our book, we shall not give the proof
of Theorem 5.2 here. However, an elementary proof is not easy to find. Thus, we give
a proof in Appendix A. O

In the same vein, one has the following result (with an easy proof in the abelian
case) which will be proved in Appendix A.

Theorem 5.3. Let V be decomposed as

i=I j=J I=L
DO Do DvH".
i=1 j=1 1=1
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where Vi]R are the absolutely irreducible representations of real dimension m; repeated
n; times, Vj(C are complex irreducible representations of complex dimension m; re-

peated n; times, while VlIHI are quaternionic representations of dimension (over H) m;
and repeated n; times. Then, there are bases of V such that any equivariant matrix
has a block diagonal form

R
Al

H
Al

where AE.R are real n; X n; matrices repeated m; times, A;C are complex nj X n;

matrices, repeated m; times and A}HI are n; X n; quaternionic matrices repeated m;
times.

On the new basis, the equivariance of A and the action have the following form: y
is block diagonal on each subspace corresponding to the repetition of the same matrix,
i.e., if Byxn is repeated m times, on W corresponding to the same representation, then
Y = WijDi<i,j<m, with y;j in K = R, C or H, and I the identity on K", where the
product, for the quaternionic case, is on the right.

Remark 5.5. If T" is abelian, the irreducible representations of I' are either one-
dimensional and I" acts trivially or as Z,, or two-dimensional and I" acts as Z,,, n > 3
or S'. Of course, in this case there are no quaternionic components.

Note also that the equivariance of A and the action of I" on the new basis will
be important when considering I["-equivariant deformations of A: any deformation of
A]l.R, A;C or AL, in the corresponding field, will give rise, by repeating the deformation
on the m replicae, to a I'-deformation of A. This will be the situation when computing
the I'-index of 0, when A is invertible, or when studying the I"-bifurcation with several
parameters, as in [/].



1.6 Extensions of I"-maps 25

1.6 Extensions of I'-maps

Many of our constructions are based upon extensions of equivariant maps, in particular
when possible, by non-zero maps. As a matter of fact, the equivariant degree will
consist of obstructions to such non-zero equivariant extensions. Thus, the key to
our computations of homotopy groups will be a step by step extension of I"-maps,
subtracting “topologically” multiples of generators along the way, in order to get a
formula for the class of each map.

Our first result is a simple extension of Dugundji’s theorem.

Theorem 6.1 (Dugundji—Gleason extensions). Let Ay C Aj be T'-invariant closed
subsets of B. If f : Ay — E is a I'-equivariant continuous map, then there is a
["-equivariant continuous extension f : Ay — E. Furthermore, f is compact if so

is f.

Proof. From Dugundji’s theorem, f has a continuous extension f from A, into E
which is compact if f is compact. From Lemma 4.1, the map

fx) = /F 7 fyx)dy

is I'-equivariant (and compact if fis compact). Furthermore, if x is in Aj, then

flyx) = fyx) =7 f(x)and f(x) = f(x). 0

In case B and FE are infinite dimensional, we shall look at maps with the following
compactness property.

Definition 6.1. If B=U x Wand E =V x W, where U, V are finite dimensional
representations of I" and W is an infinite dimensional representation, an equivari-
ant map f, from a closed I'-invariant subset A of B into E is called a I'-compact
perturbation of the identity if f has the form

S, w) = (gu, w), w — h(u, w)),
where g is I'-equivariant from B into V and /& in W is compact and I"-equivariant.

Definition 6.2. If fy and f] are I'-maps from a closed invariant subset A of B into
E\{0} (I"-compact perturbations of the identity if B and E are infinite dimensional),
then fy is said to be I'-homotopic to f1, if there is f (¢, x), ['-equivariant, from I x A
into E\{0} (and a I'-compact perturbation of the identity), where I = [0, 1], with

f0,x) = fo(x) and f(1,x) = fi(x).
One then has the following crucial result:

Theorem 6.2 (Equivariant Borsuk homotopy extension theorem). Let A1 C A3 be
[-invariant closed subsets of B. Assume that fy and fi, from Ay into E\{0}, are
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I-equivariant maps which are T'-homotopic. Then fy extends I"-equivariantly to A,
without zeros if and only if f1 does. If this is the case, then the extensions are I'-
homotopic. Similarly, if fo, f1 and the I'-homotopy are I'-compact perturbations of
the identity, then the extensions and the homotopy must be taken T'-compact pertur-
bations of the identity.

Proof. Let fo : Ap — E\{0} be the I'-extension of fgand f(¢,x) : I x A| — E\{0}
be the I"'-homotopy from fy to fi. Let, by Dugundji—Gleason Theorem 6.1, g(¢, x)
be any I'-equivariant extension to / x A of the map defined as f(r, x) on I x A; and
Jo(x) on {0} x Aj.

Itis easy to see that, in the infinite dimensional case, one preserves the compactness
of the perturbations.

Let A be the subset of A, consisting of all x for which there is a r with g(¢, x) = 0.

Then, by construction, AN A| = ¢. Furthermore, from the compactness of [0, 1],
if {x,} is in A, converging to x in A, then g(t,, x,,) = 0, {#,} has a subsequence con-
verging to some ¢ and g(¢, x) = 0. Thus, A is closed. Furthermore, the equivariance
of g, with respect to x, implies that A is invariant.

From Lemma 4.2, there is an invariant Uryson function ¢ : Ay — [0, 1] such that
9(A) = 0and p(Ap) = 1.

Define f (t,x) = g(p(x)t, x). Then the I'-equivariance of f follows from that
of g (and of the invariance of ¢), as well as the compactness property. Furthermore,
f(O x) = g0,x) = fo(x) Fmally, if f(t x) = 0 for some ¢, then x belongs to
A, p(x) = 0, but g(O x) = fo(x) # 0. The map f(t x) gives a ['-homotopy on
Ao, from fo(x) to f1 (x) = g(p(x), x), which provides an extension of fi, since, on
A, p(x) = 1. O

Another useful fact is the following observation:

Lemma 6.1. Let S be the unit sphere in the T-space V.= R*™*! and f : §* —
WA\{0} (another finite dimensional representation) a I'-map. Then any I -equivariant
extension f of f to the unit ball has a zero if and only if f is not I'-deformable to a
non-zero constant map.

Proof. Note first that a non-zero constant equivariant map may exist only if WF # {0}.
In other words, if W' is reduced to 0, any equivariant extension f must have f 0 =0
(see also Property 3.2).

Now, if f is such an extension, define the I"-homotopy f : I x $" — W\{0}, by
ft,x)= f((l —t)x), deforming radially and equivariantly f(0, x) = f(x) to f(O).
On the other hand, if f(¢, x) '-deforms f(x), for t = 1, to the constant f (0, x),
define f (x) = f(x|l, x/|lx|l) which will provide the appropriate I"-extension of f.

O

One of the key tools which will be used in our computations of equivariant homo-
topy groups of spheres is the existence of complementing maps, which will play the
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role of a suspension (defined in Section 8). In order to be more specific, let us assume
that U and W are finite dimensional orthogonal representations of an abelian compact
Lie group I', with action given as in Example 1.4. Suppose that an equivariant map
is given from U* into W#, for some subgroup H of I'. The problem is then the
following: is it possible to give a “complementing” I"-equivariant map from (U ")+
into (W)L which is zero only at zero? Recall that, since I is abelian and the action
is orthogonal, all the above subspaces are representations of I'. The answer to the
question is in general negative, as the following example shows.

Example 6.1. On C?, consider the following action of Ly,
tively prime: On (z1, z2) in U, T acts via (ezmk/pz, 2Tk Py fork =0, ..., p>q—1.

On (&1, &) in W, T acts as (e27K/P, ez”ik/(Pz‘f)). The isotropy subgroups for the ac-
tion of I on U are as follows:

where p and g are rela-

H = 74, for k a multiple of p2 and UY = {(z1,0)},
K = 7Z,, fork amultiple of pg and Uk = {(0, z2)},
L= {e}, fork=0and U =0U.
One has WH = WX = {(£, 0)}, but there is no non-zero equivariant map between

(UL and (WH)L, since (U N UK = UK and (WH)- N WK = {0}. On the
other hand, if «g + Bp = 1, the map
F(z1,22) = 2V + 24, 2920)

(where a negative power is interpreted as a conjugate: z~! = 7), is an equivariant map
from U into W with only one zero at the origin.

One of our main hypotheses in Chapter 3 will be the following:
For any pair of isotropy subgroups H and K for U, one has
H) dimU?NnUX =dimw? nwk,

Note that in Example 6.1, hypothesis (H) fails, although there dim U# = dim W# |
for all isotropy subgroups of I on U.

Lemma 6.2. Hypothesis (H) holds if and only if both (a) and (b) hold:
(a) dim U = dim WH, for all isotropy subgroups H on U.

(b) Thereareintegersly, ..., lssuchthatthemap F : (x1, ..., X5) — (xi‘, R xff)
is ['-equivariant. Here x;j is a (real or complex) coordinate of U on which T’
acts as in Example 1.4, and a negative power means a conjugate. Furthermore,
forall y inT one has dety dety > 0.
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Proof. Let H; be the isotropy subgroup of x; and Hy = (| Hj. Then vt =y
and any isotropy subgroup H = I'x = ()| H;, where the intersection is on the j’s for
which the coordinate x; of x is non-zero (see § 2), is such that Hy < H.

Hence, if (H) holds, one obtains (a), since W ¢ WHo_ Note that any equivariant
map from U into W will have its image in W 0. For notational purposes, define, for
K > H,(UX)*# as UH N (UX)L. Then, hypothesis (H) implies that dim(UX)1# =
dim(Wk)Lu,

Now, if I'/H; = Z and y acts as —I on (UTY i | then on (WD) | 7 must
also act as —1, since if not one would violate the equality of the dimensions. Since
the action on a complex coordinate is a multiplication by a unit complex number, i.e.,
corresponding to a rotation with determinant equal to 1, then det y and det y (restricted
to WH0) have the same sign.

We may now begin to build up the map F. We shall identify UT and W' and take
lj = 1 for these components.

Let H be maximal among the H;’s. Then, from Lemma 1.1, I'/H = Z,,n > 2
or S! and acts freely on (U")1#\{0} and without fixed points on (WT)1#\{0}, as it
follows from Lemma 1.2, since no point in the second set, fixed by H, may be fixed
by I'/H without being in W'

Thus, if y generates Z,, one has yx; = e xj with 1 < m; < n,m; and
n relatively prime and y§; = e2minj/ "g;, with 1 < n; < n. Now, there is a unique
pj,» 1 < pj < n,such that pjm; = 1, [n]. Let l; be the residue class, modulo 7, of

2mimj/n

pjn;. Then, (yxj)lf' = )7x]l.j. Note that, if n = 2, thenn; = mj = 1 and [; = 1. That
is, on the real representations of I', where it acts as Z,, the map F is the identity.

On the other hand, if [/H = S!, acting as e'¢ (or e~'%) on (UT)L# and as ¢
on (WH)L# | then [ i = nj (or —n;) will give the equivariant map (with negative /;
meaning conjugates).

Let now K and L be isotropy subgroups for (UH)1. Let H; be the isotropy
subgroup for UX N UL, i.e., Hy is the intersection of the isotropy subgroups for all
the coordinates in that subspace. Then, UX N UL c U, Since K and L are also
intersections of the corresponding subgroups, it is clear that K and L are subgroups
of Hy and then UH! c UK NUZ, thatis UH! = UK NUEL, while WHI ¢ WK nwt.
But, from (H), one has dim U”' = dim W and dim UX N UL = dim WX n WZ,
then W = WK N WL, Since dim(U)LNUKNUL = dim UK NUL —dimU# N
UX NUE, one obtains that the hypothesis (H) is valid on (UYL and (WH)L. Then,
one may repeat the above argument by choosing a maximal isotropy subgroup among
the remaining H;’s, proving the implication in a finite number of steps.

Conversely, if the map F exists, it is clear that dim U < dim W# (and it is easy
to give examples with a strict inequality). While, if (a) and (b) hold, it is easy to see,
by direct inspection, that (H) is true. O

In order to construct the generators of the equivariant homotopy groups, in Chap-
ter 3, we shall need some invariant monomials. We shall again assume that the abelian
group I' acts on U, with coordinates {xi, ..., xs}, with H; = I'y;. Let Hy be a
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subgroup of I' and define, as in § 2, I-NIJ- =HoyNH N---NH;. Letk; = |b~lj,1/l-1j|.

. o . i . .
Lemma 6.3. There are integers oy, ..., as such that xj’ x5 s Hj_y-invariant.

(If « is negative, x* means x'%). If ky < oo, then one may take ay = kg, while if
ks = 00, then ay = 0. Furthermore, if ki = 1 for j < s, then one may take o; = 0.

Proof. The proof will be by induction on j. If j = s and ks = o0, any constant is
I'-invariant, hence oy = 0 will do. While, if k; is finite, then HY 1/ Hv acts freely on
X5 (asin § 2) and any y in H s—1 canbe writtenas y = $4, for some 6 in H and a fixed
By such that B,x; = ™'/ %sx,. Hence, (yx s = ﬂgksxfi — x5 is A,_-invariant.
Assume now that P (x4, ..., Xs) = X; J’rﬁl ...Xxs* is Hj-invariant, for some j > 1.
Then,if H;_/H; = S, this group acts freely onxjandase?onx;, forl = j,...,s,
with n; = 1. Since P(ei”i+1“’x]+1 o, estx) = eZ”"’”P(xjH, ..., Xg), One may
choose aj = — ) mjay and x ..xy will be I:Ij 1-invariant. On the other hand, if
k; is finite, then any y in H 1 is written as y = ,8“8 with 8; generating HJ 1/ H

and acting as e2mi/ki on xj,0 <a < kjand § in H,. Then,
P(YXjt1s s VXs) = ﬂj“’f“ (Bxj 1)U L BT (Bxs)™

Now, as before, 8; = ,32" Nk, where By generates I:Ij_l/(Hk N I:Ij_l), Bixx =
e2mi/mk x, where ny is the order of this group if finite (or Brxx = e!?x; if the group
is isomorphic to ' and ,B,f" means e¢27{é/™ for some ny: since ﬁjkj is in I:Ij, the
Hj-invariance of P implies that the corresponding ¢ is a rational multiple of 277); one

has 0 < g < ng and n is in Hy N Hj_q.
Thus, ,3;‘“" (8x)% = eXmioeker/mk (§x, )%  Hence,

P(yXjt1,...,¥Xs) = eZ”in((SXJH, s 8xg) = eZ”in(xjH, col, Xs),

with ¢ = Zi:j—H opEr [/ nk.

Now, if y = ,8?, i.e., @ = kj, then this y belongs to I:Ij_l NH = I:Ij and
the corresponding ¢k; must be an integer. Let gy be the non-integer part of ¢ and
define a; = —kjgo (it is an integer and o; = 0 if k; = 1). Then, if P(xj, ..., x;) =

aj o
xj’ ...Xs°, one has

P(yxj,...,yxs) = (,Bjxj)“fezmmP(ijr], col, Xs)

= ezni““f/kjezmmP(x,-, ceXg) = P(xj, .., xg) O

1.7 Orthogonal maps

In the last chapters of the book, we shall be interested in a particular class of maps,
which we shall call orthogonal maps. The setting is the following: let I" be a compact
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abelian group acting on the finite dimensional orthogonal representation V. Thus,
if ' = T" X Zy, X -+ X Ly, with the torus T" generated by (¢1, ..., ¢,), ¢; in
[0, 27r], we shall define by

0
Ajx = 8_%(Vx)|y=1d’

the infinitesimal generator corresponding to ¢;.

Sl
Hence, if the action of ¢; on the coordinate x; is as "% then
Ajx = (in}xl, e inl’/nxm)T,
where inx stands for (—nImx, nRe x)7.
Lemma 7.1. Let H = TI'y,. Then:
(a) There are exactly k linearly independent Ajxg if and only if dimI'/H = k.

(b) In this case, if H is the torus part of H and H corresponds to the first k (non-
zero) coordinates of xo, then for any x in VX one has A jx = Zle )»j- Ajx and
Aix, ..., Agx are linearly independent whenever x1, . . ., Xy are non-zero.

Proof. (a) Since H = () Hj, for the non-zero coordinates of xq, one has from
Lemma 2.4 (a), that dimI'/H = k if and only if AH has rank k, where A is the
matrix formed by n;

(b) follows from Remark 2.1 and the definition of AL as given in Lemmas 2.4 (b)
/ g

and 2.6. Note that one may reparametrize 7" by choosing ¥; = ¢; + > |, 11 k{ o1,
for j = 1,..., k and taking Wi 1, ..., W, acting trivially on VE 1n this case, if A j
is the diagonal matrix corresponding to the action of H, that is, to the derivative with
respect to W;, for j =k +1,...,n (since H correspondsto ¥; =0, j = 1,...,k),
then A jisOon VH and, on any irreducible representation of H in (V£)L, one of the
Aj, j=k+1,...,n, will be invertible. O

Definition 7.1. A I'-equivariant map f, from V into itself, is said to be ["-orthogonal
if f(x)-Ajx =0,forall j =1,...,nandall x in the domain of definition of f. Here
the dot stands for the real scalar product. In terms of complex scalar product one has
Re(f(x) - Ajx) =0,

Example 7.1 (Gradient maps). If f(x) = VJ(x), where J(yx) = J(x) is an invari-
antfunction, we have seenin Remark 3.1, that f (yx) = y f (x) and that f(x)-A;jx =0,
i.e., that the gradient of an invariant function is an orthogonal map.

Linearizations of orthogonal maps have quite interesting properties. In fact:

Lemma 7.2. Assume that the T'-orthogonal map f is C' at xo, with a k-dimensional
orbit. Let H = Iy, and denote by D the matrix Df (xp). Then:
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(@) Dis H-orthogonal. IfK < H is any isotropy subgroup, then DX = Df X (xo) =
diag(DH, D k). For K < H, the torus part of H, we have that DK =
diag(D", D, H, D' x), where D' . is a complex self-adjoint matrix which is
H-orthogonal.

(b) If f(x0) = O, then Ajxo are in ker D and are orthogonal to Range D. In
particular, if dimker D = k, then, for any K < H, the matrix D g is invertible
and the algebraic multiplicity of D is k.

Proof. The fact that D is H-equivariant was proved in Property 3.3. The diagonal
structure comes from Property 3.4 and Theorem 5.3. In particular, if K < H, then
D', y is a complex matrix and dim H/K > 1.

Now, since f is I'-orthogonal it is also H-orthogonal. If f K — (f& , J1), then
K - A ix = f1(x)- A; jx1 = Oforany x = xg +x in VK where A are the
generators for the action of H, since Aj jis 0 on VH From f| (xp) = 0, one obtains
(DfyL(xg)xy + R(x1)) - Ajx; =0, where R(x1) = o(|lx_]|). Dividing by ||)cL||2
and taking the limit when x, goes to 0, one has that Df | (xg)x, - ijL =0.In
particular, D', ;. is H-orthogonal.

Take K corresponding to an irreducible representation of H on (V)1 and choose
j such that A j is invertible on it (and hence it is just a multiplication by im, for
some integer m). Set B = D', . Since B is H-equivariant, one has Bfij = AJB
and Bx - ij = 0. Furthermore, from B(x + xq) - Aj(x + x9) = O for any x
and x¢ in the representation, one has AJ.TB + BTA j = 0. But A].T =—A j» hence,

=A jBAj_l = B/i‘,- Aj_l = B on that representation. Now, since the action of H

B A
Then, B = BT implies A = A7 and 8 = —87, thatis (A +iB)* = A +iB.
For the second part of the lemma, differentiating the relation f(yxo) = 0 with
respect to ¢;, one obtains DA;xg = 0. Furthermore, from f(x) - Ajx = 0, one has,
for all x and xg

. .. . . . A —B
on x in that representation is as S!. B,in fact, is a real matrix of the form < ) .

Df(xo)x - Ajxo + f(x0) - Ajx =0.

In particular, if f(xp) = 0, then Ajx is orthogonal to Range D. Also, if dimker D =
k, since {A1xg, ..., Axxo} are linearly independent, then V = ker D @ Range D, the
algebraic multiplicity of D is k and D g is invertible, for any K < H. O

A crucial property of I'-orthogonal maps is the following: they can be extended
as I'-orthogonal maps. Namely,

Theorem 7.1. Let Ay C Aj be I'-invariant closed subsets of V. If f : Ay — V is a
continuous T'-orthogonal map, then there is a continuous I"-orthogonal extension f
to Ay, which is obtained by a Gram—Schmidt orthogonalization process.
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Proof. Let fp be a I'-equivariant extension of f, given in Theorem 6.1. Since fj is
not necessarily orthogonal to A;x, we shall use the following orthogonalization:
Let

Arx/Arxll, ifAix #0
0, if Ajx =0,

j-1
Aj(x) = Ajx — Z(AjX, Ai(x)A; (x)
1

Al(x):{

and

Ao = [BONAIL i 4 £0
0, it Aj(x) =0.
Clearly, the A j(x) are orthogonal and A j(x) = 0if and only if A;x is a linear
combination of Ajx, ..., Aj_ix. Furthermore, A; is I'-equivariant as well as A i (x)

and A.,- (Ax) = )LA.,- (x), for A in R. All these facts can be easily proved by induction.
Let

F) = fox) =D (fox), A (x))A;(x).
1

By construction, f (x) is orthogonal to A j(x) for all j’s and hence to all A;x, which
are linear combinations of them. Furthermore, f (x) is I'-equivariant and if x is in Ay,
then fy(x) = f(x) which is orthogonal to all A;(x) and f(x) = f(x).

Thus, the more delicate part is the continuity of f (x), that is the continuity of
( fo(x), AJ- (x))A j(x). Let {x,} be a sequence converging to xo such that A j(xp) is
non-zero and converges to 0 (the other cases are trivial). Then, since A j (x,) has norm
1, there is a subsequence such that A j (xp) converges to some v, with norm 1, and the
above expression converges to ( fo(xo), v)v.

Assume now that j is the first index for which A j(x0) = 0. Then Ajxo =
Z{_l A{A,-xo, that is xo belongs to ker(A; — Z{_l A{A,-) = V|. But V; is invariant
underI" andinfact V| = VIT1 , where T is the torus (—A{(p, e, —A}_1¢, 0,0,...,0).
Hence, from the equivariance, fo(xo) belongs to V| and one would have proved the
continuity by showing that v is in V, = Vll.

Write any x in V as x| 4+ xp, with x; in V; and A(x) as A(x); + A(x),. Since
A; is equivariant one has that A;(x1) is in V}. Furthermore, since A jX1 is a linear
combination of A1xy, ..., Aj_1xy, it follows that Aj (x1) = 0. Note also that, due to

the linearity of A;, one gets that Ak (x2) is in V>, Ak(x)l is a linear combination of
Ajxy, forl < k, while Ak(x)z is a linear combination of A;xp, for/ < k.

Since j is the first index for which A j(x0) = 0, then, in a neighborhood of x( and
k < j, it follows that Ak(x) is non-zero and continuous, in particular, ||Ak (x| <
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c|lx2|l. Now, we claim that

Aj(x) = Ajx = Y (Ajx, Ap(0) A (x),
k<j
where A; = Aj— )»{A,-. In fact, since A;x = A,- )+, (Aix, Al(x))fil(x),

one deduces, from (Alx, Akx) = &, the cancellation of the extra terms. Since
Ajx = s;x2, one obtains, from the above bound for | A% (x)2 |, the existence of two

i<j

constants, ¢ and C, such that c||#; x| < ||Aj (@) < C||+Ajx||, for x close enough to
xo (in fact for x; small enough). Hence,

Aj(x) = Ajx/llAjx] + 0Cx2).

In particular, any limit point for Aj (x) will be in (ker ,A)j)l.

Assume now, that j is not the first index for which A j(x) = 0. In fact, let I be
the set of indices for which A,-(xo) =0= (A — ) i )»;;Ak)xo = 4A;xo. Then,
xo belongs to ker 4;, which is the fixed point subspace of a one-dimensional torus.
Hence, xq is in the fixed point subspace of a m-torus T,,, where m is the cardinality of
I. Denote by V; the intersection of all ker Ay, for k < i, both in /. Hence, {V;} is a
decreasing sequence of subspaces which are fixed point subspaces of tori. Since x is
in the smallest one then, by equivariance, this is also the case for f(xp). One would
have proved the continuity if one could show that any limit point of A j(x),for jin [,
is in V.

Since the proof, by induction, is rather involved we shall break it up in several
lemmata.

Lemma 7.3. Define Aj as above if j is in I and as A; if j is in 1. Then, one may
change, in the formulae for A.,- (x), Aj by A;, without changing A.,- (x).

Proof. For j = 1, then A; = A and A 1(x) is unchanged. Assume, that the lemma
is true up to j — 1. Then, if j is /¢, there is nothing to prove, while if j isin 7, it is
enough to repeat the above argument. O

Lemma 7.4. Define inductively the following linear operators for j in I :

(a) For the first element of I: Bj = A.

(b) For the subsequent elements of I: Bj = Aj — 3, _; (ij, %)J)’i, where

in the sum one has only elements of 1.
Then . B _
Aj(x) = Bjx — Y (Bjx. Ap(x)) Ag ().

kel€
k<j
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Proof. For the first element of I, the result has already been proved. Assume, by
induction, that it is true for i < j, then,

Aj(x) = Ajx = (Apx, Ar@) Ag(x) = D (Ajx, Ai(x) A (x).
kel€ iel¢

k<j i<j

Using the induction hypothesis in the second sum, one has that

Ai0) = 1A ) (Bix = ) (Bix, Ae()) A ().

kel€

k<i
Collecting the terms with B;x, one recognizes $B;x and one will get the result
provided the double sum of terms (4 x, A,- (x))(B;ix, Ak (x))Ak (x) is the same when
kisinI¢iinl,i < j,andeither k < i (which is what the substitution gives) ork < j
(if the formula is to be verified). The difference between the two sums corresponds
to those k’s with i < k < j (in fact a strict inequality since i and k are in disjoint
sets). But there, by the induction hypothesis, $B;x is a linear combination of A;(x)
and A;(x), for [ < i, hence orthogonal to A (x), proving the result. O

Lemma 7.5. If x is written as x = x| @ x, where x1 is in V; and x2 in VjJ-, then, for
x close to xg, there are constants ¢, C, Cy and D such that, for j in I :

@) |Ax(x)2ll < Callxall, for kin I€, k < j.

(b) cl|Bjx|l < IIA;(x)]| < ClIBjx|| < D[ A;jx].

Proof. The proof will be again by induction, where the first step has already been
done. If the result is true for i < j, then for k in /¢ (hence one does not worry about

1AL (X)), one gets: Ap(x)2 = Apxa — Y (Akx, Aj(x)Ar(x).
If [ is not in I, then the bound is valid by induction, while if / is in I, then

(Arx, A1(x)) = (Axxz, Bix2) /1| Ar(x)]]
— Y (Brxa, An(x)2)(Au(x), Arx)/ A ()],

nel€
n<l

since B;x; = 0. Hence, again by induction, one has (a).
_ For (b) all the inequalities, but the first, are now straightforward. For the first one,
1A; )l > [|Bjx|| — cllBjx]lllx2|l, where one uses (a) and B;x; = 0. ]

End of the proof of the theorem. Since Aj (x) = Bjxz2 + 0(||x2|I18B;x21l), then limit
points of Aj (x) will be of the form a8, n, with ||n]| = 1, hence in VJ.J-. O
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Corollary 7.1 (Orthogonal Borsuk homotopy extension theorem). Let A; C Aj be
[-invariant closed subsets of V. Assume that fy and f1, from Ay to V\{0}, are T'-
orthogonal maps which are T"-homotopic, with an orthogonal homotopy. Then fy
extends T -orthogonally to A, without zeros if and only if fi does. In this case the
extensions are I"-orthogonally homotopic.

Proof. Tt is enough to check that the proof of Theorem 6.2 is still valid, and one uses
Theorem 7.1 instead of Theorem 6.1. O

1.8 Equivariant homotopy groups of spheres

Our equivariant degree, which will be defined in the next chapter, will be an element
of the group of equivariant homotopy classes of ['-maps between two spheres in two
I"-representations. In this section, we shall recall some known results of the ordinary
case, i.e., without a I'-action, and give some preliminary results in the equivariant
case.

The setting is the following: let V and W be two finite dimensional I"-represen-
tations (hence, from Theorem 5.1, one may assume that they are orthogonal). Let Bg
be the ball {x € V : ||x|| < R} and consider the set C of all equivariant maps

F:[0,1]x Bg > Rx W
F:8V =08(0, 1] x Bg) — R x W\{0}.
Thus, F(t, x) has the form (W (¢, x), f(¢, x)), where W is invariant and f is equiv-

ariant withrespectto x. If W' = {0} we shall restrict € to the maps which have W (0, 0)
and W (1, 0) both positive.

These mappings are divided in I'-homotopy classes: F L G ifthere is a continuous
I"-homotopy
H:[0,1]1 x ¥ = R x W\{0}

such that:
(a) H(0,t,x) = F(t,x), H(1,t,x) = G(t, x), for (£, x) in SV;
(b) H(z, -, ) belongs to C for any 7 in [0, 1].

Definition 8.1. The set of all such I'-homotopy classes will be denoted by Hgv (s").
The class of F will be denoted by [ F]r.

Remark 8.1. If V and W are trivial representations of I, then Hgv (W) is nothing
else than the abelian group IT,,(§™), where n = dim V and m = dim W, for which
the following facts are well known (see [Gr]).

(a) I1,,(S™) =0, if n < m, in which case any map f from S” into R x W\{0} has
a non-zero extension to [0, 1] x Bg.
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(b) I1,,(8") = Z and [ F] is its Brouwer degree.

0, ifn=1
(c) Iy+1(S") = {7, ifn =2 where the generator for n = 2 is the Hopf map:
Zy, iftn>2,

C x C - R3,
N, A2) = Qaihg, [A112 = [a2l?),

and, forn > 2, is the suspension of the Hopf map: C x Cx R" 3 — R3 xR"3,
En—3’7()\la )"27 )") = (77()"17 )"2)7 )")

Now, the set Hgv (SW) has also a group structure. In order to define an addition
we shall use the following result.

Lemma 8.1. Forany F in C, thereisa G in C, such that F L GandG(t,x) = (1,0)
fort =0or1.

Proof. Define the following closed I'-invariant set
A = {0} x BR U {1} x Bp.

Clearly, the I'-homotopy F (¢, tx) is admissible on A for any 7 in [0, 1]. Then the
restriction of F to A is I'-homotopicto H (¢, x) = F(¢,0) = (¥ (¢, 0), f(¢,0)), which
is in R x WI\{0}, for = 0 or 1. If dim W' > 0, one may choose two non-zero
paths from F (0, 0) and F (1, 0) to (1, 0). If WT = {0} (and hence f(,0) =0), one
may achieve the same goal since W (0, 0) and W (1, 0) are both positive.

The composition of both maps provides a deformation on A from F(¢,x) to
G(t,x) = (1,0) on A.

Now, using the I'-equivariant Borsuk extension theorem, the map F will be I'-
homotopic to a map G in €, extending (1, 0) on A to all of SV. O

To proceed further, we need a concept of addition in Hgv (SY). To this end let F
and G be any two maps belonging to €. By virtue of Lemma 8.1, we may assume
that F|4 = G|a = {1, 0}. Define their sum F & G as the map

F(2t,x), if 0

(F®G)(t,x) = GQ2t—1,x), if}

Clearly, F & G belongs to C.

Definition 8.2. The addition in IT{, (S") is given by

[Flr + [Glr = [F & G]r.
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This addition turns out to be associative (see [Gr, p. 7]) and the class Or of the map
(1, 0) is the neutral element of the group. Note that, from Lemma 6.1, Or is the class of
all maps which have a non-vanishing I"-equivariant extension to the cylinder / x Bg.
Furthermore, the inverse element of [ F|r is the class of [F (1 — ¢, x)]r. In fact, the
I"-homotopy H- (¢, x), for 0 < t < 1, defined as

F(2t, x), for0<2r<rt
H. (t,x) = { F(z, x), fort <2t <2-—71
FQ2—-2t,x), for2—1t<2t<2

is a valid I"-deformation from (1, 0), for t = 0, to [F]r — [F]r, for t = 1 (here we
have assumed that F(0, x) = F (1, x) = (1,0)).

Therefore, Hgv (W) is a group under the addition defined above.

Lemma 8.2. Ifdim VI > 0, then Hgv (SW) is an abelian group.

Proof. Let xq be a coordinate, in VI of x. Let At = AU {t,x):0<t<1,|x|| =
R, xo > 0}, where A is the set used in the preceding lemma. Then, A" is closed and
I'-invariant. If F isin C, with F(t,x) = (1,0)on A, i.e.,ifr = O or 1, consider the I"-
deformation of F restrictedto A*: Hy(t, xo, y) = F(t, a(t)xo+B(1), a(r)y), where
a(t) = (1+R 'xg sinnr)_% costm/2and B(r) = (1+ R 'xg sinnr)_% sintm/2,
which are chosen in such a way that the arguments in V have norm R if ||x| = R.
Thus, H, is a valid deformation on AT, from F for r = 0, to F(¢, R,0) for t = 1.
One deforms next on A" via F(1(1 — 1), R, 0), to (1, 0).

Hence, F|4+ is I'-homotopic to (1, 0). Then, using the I'-equivariant Borsuk
homotopy extension theorem, the map F is I'-homotopic to a map having value (1, 0)
on AT,

Note that one could have performed the same procedure on A™, corresponding to
xo < 0, by changing R to —R in the deformation H;.

We are now in a position to prove the lemma. Indeed, consider two maps Fj and
F> such that Fy (¢, x) = (1, 0) for (¢, x) in AT and F»(¢, x) = (1, 0) for (¢, x) in A™.
Define the following I'-equivariant homotopy on SV :

Fi(2t — 1, x), for(f,x) nA”and 0 <2t —7t <1
H (t,x)=1FQ2t—(1—-1),x), for(t(,x)inATand0<2t—(1—-1)<1
(1,0, otherwise.

Simple computations give that H; is admissible. Moreover, Hy is in [Fi]r + [F2]r
and H; isin [F>]r + [F1]r. Thus Hgv (%) is abelian. O

Part of Chapter 3 will be devoted to the computation of Hgv (V). See also the
Bibliographical remarks at the end of this chapter.
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A construction that we shall use very often is that of the suspension, more precisely,
that of an equivariant suspension: Let U, V and W be I"-representationsand f : V —
W be a I'-equivariant map.

Definition 8.3. The I'-suspension of f is the map =V f = (f(x), ), from V x U
into W x U.

Itis clear thatif F belongsto C, giving an element of l'[gv (S"),then (F(t, x), u) =

Y F will provide an element of HEVXU (SW*U) and =Y will be a morphism between
these two groups.

Remark 8.2. If I" acts trivially on V and W and U is R, then the Freudenthal sus-
pension theorem asserts that & : IT,,(S”) — IT,.1(S"™*!) is onto if n = 2m — 1 and
an isomorphism if n < 2m — 1.

The situation for the equivariant case is more complicated. In the case of an abelian
group, we shall prove, in Chapter 3, the appropriate result. In the general case we
state, without proof, the corresponding result. We shall only indicate the references
since we shall not use, in this book, the result in its full generality.

The following theorem is due to Namboodiri (cfr. [N]).

Theorem 8.1. Assume V. = RK x W. Then =Y is one-to-one if for all isotropy
subgroups H of W one has

() dim WH > k +2;

(B) dim WHK _dim WH > k +2, for any K isotropy subgroup for U which does
not contain H or any conjugate of H.

Moreover, if k + 2 is replaced by k + 1 in the above inequalities, then ©Y is onto.

Note that if I acts trivially on W and U = R, then the only condition is (&), which
amounts to the standard Freudenthal suspension theorem.

In the case of an abelian action, with V = RK x W, we shall prove, in Chapter 3,
the stronger result:

Theorem 8.2. (a) £V is one-to-one provided

dim W > k+2 —dimT'/H
dim W# —dim WX >k +2 —dimI'/H,

for all isotropy subgroups H and K of W such that H is strictly contained in K and
K N Hy = H, for some isotropy subgroup Hgy of U.

(b) If there are no new isotropy subgroups for U, then XY is onto, replacing k + 2
by k + 1 in the above inequalities. Otherwise, this will not be the case, in general,
unless k = 0 and the new isotropy subgroups Hy are such that T'/Ho = S!.
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Note that () requires that dim W > k + 2 (unless WI' = {0}), while (a) gives
a better result if one has U = {0}. Both conditions coincide if U # {0}. Note
also that if one adds enough dummy variables to W (so that one gets to the point of
dim W' > k 4+ 2 and dim W# — dim WK > k +2 — dimI'/H, for any pair K, H
in Iso(W), with K > H), then, in the abelian case, =V will be one-to-one under any
suspension. This stabilization process will be important when computing the degree
through finite dimensional approximations. On the other hand, if in Theorem 8.1, one
takes H to be the isotropy subgroup of WX when K is in Iso(U) but not in Iso(W),
then K < H and WK = WH: see Definition 2.1. In this case condition () is never
satisfied.

Another argument which we will use often, and which is fundamental for bifurca-
tion, is the deformation of families of linear maps. More precisely, assume that B(A)
is a family of I"-equivariant matrices, defined for ||A|| < p, A in R*, and invertible for
Al = p, an S¥~!-sphere. One has an application:

sk GLp(V),

the set of invertible I"-equivariant matrices. If one considers all I"-deformations of
such matrices, one obtains an element of IT;_; (GL(V)).

Now, from Theorem 5.3, we know that B(A) has a block diagonal structure on
the irreducible subrepresentations of V, that is, any I'-deformation will have to pre-
serve the structure and should be generated by deformations of families of restrictions
AR, AC(1) or A®()), as given in that theorem. The facts which will be used in
this book are the following:

Theorem 8.3. (a) GL(R?) has two components characterized by the sign of the de-
terminant. Thus, To(GL(R?)) = Z,, where AR()) is non-trivial if and only if its
determinant changes sign.

(b) If det AR(L) > 0, then, for d = 2, TI}(GLY(R?)) = Z and is generated

by A(L1, Ap) = (i; _)\)Iz) Ford > 2, T1;(GLT(R?)) = Z, and is generated by

diag(A (A1, A2), Iy_2). T (GL* (]Rd)) is an abelian group with [B]+[D] = [BD].
(c) GL(C?) and GL(H?) are connected, hence Ty = 0 for them. Also,

I, (GL(CY)) = 7,

where AC (1) is deformable to diag(det ACW), 1j—1) and two families are homotopic
if and only if their complex determinants, as maps from S' into C\{0}, are homotopic,
i.e., they have the same winding number. Finally, GL(H?) is simply-connected.

The proof of this result can be found in any book on Lie groups. Notice, that for
k > 1 one has the Bott periodicity results, see [ /], but in the present book we shall limit
ourselves to the case k < 1. We shall see in particular how the non-connectedness of
GL(R?) affects the computations of Hgv s").
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A fundamental tool in bifurcation theory is the following extension of the White-
head homomorphism: consider, as before, a family of I"-matrices B(A), invertible for
A # 0 and such that B(0) = 0 (for instance p~![|A|| B /||A]). INnRx V = RF x W
consider the ball B = {(A, x) : [|A]| < 2p, ||x|| < 2R} and the map

J'(BMx) = (Ix] — R, BG)x).

Then, JT (B(1)x) is non-zero on the boundary of the ball 8 and if B(}), defined as in
the example from ||A|| = p, is ['-homotopic to C()), then J T(B(L)x) is I"'-homotopic
to JU(C(M)x), i.e., one has an induced map:

JU 1 (GLr (W) — Ty (™).

(Here, the variable ¢ is given by Ap).

Furthermore, if all AR()) have positive determinant, then J Misa morphism of
abelian groups.

In the case I' = {e}, the above construction is called the Hopf construction, J is
the Whitehead homomorphism and has been thoroughly studied (for k < d) by Bott
and Adams. Of particular importance is the kernel of J I In fact, if JT[B(L)] # 0,
then, from Lemma 6.1, any I"-extension of J T[B(M)], or of any map I"-deformable to
it on 0B, from 0B to B must have a zero. Now, if g(A, x) = 0(||x||?), then for R
small enough, the couple (||x|| — R, B(A)x + g(A, x)) is ['-deformable to JUBOW]
on 9B, provided B(A) is invertible for |A|| = 2p. Hence, if JYBMV)] # 0, the couple
will have zeros and the map B(L)x + g(x, x) = f(A, x) will have zeros in B, with
x|l = R, for any small R, besides (%, 0).

Note that, on d B, the I"'-homotopy ((1 — 7)(||x|| — R) 4+ t(p — ||Al]), B(XL)x) is
admissible. In fact, on 08, if B(A)x = 0, then either A = 0 and ||x|| = 2R (and
the first component is positive), or x = 0 and ||A|| = 2p (and the first component is
negative). Thus,

JBMWI = [p = IAll, BO)x].

For a more detailed exposition of J I see [I.

Our last set of preliminaries concerns I'-orthogonal maps. As in § 7, let I" be
abelian and W be an orthogonal representation of . Let V be RF x W, where k may
be 0. Then, one may consider the set €, of all I'-orthogonal maps F from [0, 1] x Bg
into R x W, which are not zero on the boundary of the cylinder.

Definition 8.4. The set of all I"-orthogonal homotopy classes in C, is denoted by
', ™).

Lemma 8.3. Ifdim V! > 0, then HE_SV (SW) is an abelian group, where the addition
is that of Definition 8.2.

Proof. 1t is enough to check that one may repeat the arguments of Lemma 8.1 (i.e.,
that F (¢, x) can be taken orthogonally as (1,0) for t = 0 and ¢+ = 1) and that of
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Lemma 8.2 (for the deformation on Ai). Now, both of those arguments were based
on the equivariant Borsuk extension theorem, which is valid for orthogonal maps (see
Corollary 7.1). O

We shall see, in Chapter 3, Section 6, that Hi SV (S W) has a much richer structure

than Hgv (SW). One has also a J-homomorphism. In fact, let B(L) be a family of
I"-orthogonal matrices, then, from Lemma 7.2,

B(A) =diag(A¥ ), ..., AR, AT, ..., A0,

where A]iR()») correspond to the irreducible real representations in vT" while A;C )

are complex self-adjoint matrices in (VT")L. As before, one has a map

JI : o (GLE (W) — My (8™).

Now, the connected components of GL% (W) are characterized by the Morse index
of AjC (i.e., the dimension of the space where A;.C is negative definite). Note, that the

addition in IT;_4 (GLIJ:(W)) is given as in Definition 6.2 and does not correspond to
a product (which is of course not self-adjoint). The base point (corresponding to the
map (1,0) for 7 = 0 and ¢ = 1) will be a matrix of the form (-1, I) for each A},
where [ is the identity on a space of dimension equal to the Morse index of A;.

In this book we will only treat the case k = 1. For the general case see [IV3].

Remark 8.3. The reader may wonder where the finite dimensionality of the spaces
was used, in particular in the definition of Hgv (SY). The answer is that it was never
used and we invite the reader to go over the arguments and check that this group may
be defined also in the case of infinite dimensional spaces.

The problem is that it is likely that this group would be trivial as the following
example shows. Take 1?2 = {(x1, x2, x3, ...) with Zx? < o0} and let S be the unit
sphere in /2. Now, the homotopy

h(Tvx) = T(xlsx27x3’ . ) + (1 - T)(O’ X1, X2, - )

is valid on S, since it is not O there. Hence, the identity on S is homotopic to
(0, x1, x2, ...), which, via ((1 — rz)%, TX1, TX2,...) with norm 1, is in turn ho-
motopic to (1, 0,0, ...). Note that if there is a group action, the first homotopy will
not be equivariant, unless there is only one isotropy subgroup. Hence, the identity
is homotopic to (1, 0,0, ...). Thus, any map f(x1, x2, x3, ...), which is non-zero
on S will be homotopic to f(1,0,0,...), via f(h(r,x)/||h(z, x)||) followed by the
second homotopy. Hence, any map is homotopic to a constant and ITg(S) = {0}.
This is one of the reasons for introducing, in Definition 6.1, compact perturbations
of the identity: thatis,if B = U x W and E = V x W, with U and V finite dimensional
representations of [, then the class C, is reduced to maps of the form

F(t,x) =, x), gt u,w),w—h(,u, w)),
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where & is compact and x = (u, w). The homotopies have to be in this class C. In
order to define an addition on the set I"IgB (SE), the most economical way is to use
the approximation by finite dimensional compact I"'-maps of Theorem 4.1. In fact,
if F(t,x) # 0 on S5, then there is N such that || F(r, x)|| > 1/2¥~1. If not, there
would be (ty, xy) in SZ such that || F(tx, xy)|| < 1/2V~1, for all N. From the finite
dimensionality of U, we may assume that (¢y, uy) converge to (¢, u) and, from the
compactness of %, the sequence h(ty, uy, wy) would converge to some w. Then, wy
would converge to w and one would have F (¢, u, w) = 0 for some point in S5,

Take then Ay, with Ay (I x Br) C My a finite dimensional subrepresentation of
W, such that |h(t, x) —hy(t, )| < 1/2N. Then, F(t, x) is compactly I'-homotopic
on S8 to

Fyn(t,u,wy, wy) = (V(t, x), g1, x), w — hy (2, x)),

where wy is in My and wy is in a complement subrepresentation. The map Fy is in
turn compactly I"-homotopic to

Fyn(t,u, wy, wy) = (W (t, u, wy), g(t, u, wy), wy — hy(t, u, wy), Wy)

by deforming wy in the arguments of W, g and Ay to 0.

Thus, Fy is a suspension of a finite dimensional map by wy. From Lemma 8.1,
one may assume that Fy = (1,0, wy) for t = 0 and t = 1, which is compactly
I"-homotopic to (1,0, w) for t = 0 or t = 1. Two such maps may be added, as
in Definition 8.2, and Lemma 8.2 goes through for such maps, replacing (1, 0) by
(1, 0, w) for the finite dimensional approximation 4 . Hence, l'lg 5 (S Ey. with compact

perturbations of the identity, is an abelian group if dim B" > 0.
We leave to the reader the task of considering other classes of maps, such as
k-set-contractions (see e.g. [IMPV]).

1.9 Symmetries and differential equations

The applications in this book will be mainly to ordinary differential equations. Al-
though it is not difficult to see how to apply the equivariant degree to nonlinear PDE’s
or delay equations, we have chosen, in order to keep the spirit of the preface, to try to
minimize the technical aspects which could obscure the interplay between Symmetry
and Analysis.

The reader is invited to keep in mind the following example: Find 27 -periodic

solutions to the equation

X f@, X, 0

dl’ - ’ ’ ’
where X isin R", 1 is in the space of parameters, f is 27 -periodic in ¢ (for instance f
may be autonomous) and equivariant with respect to a group I'g, i.e., f (¢, X, A) =

Yof @, X, ).
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For instance, if one wishes to find periodic solutions (of unspecified period) of the
equation

dX
= — (X)),
1 =/
then, the time scaling ¢t = vt gives the equivalent system
dX
22— (X
v =fX)

and 27 /v-periodic solutions of the first system correspond to 27 -periodic solutions
of the second and the frequency v appears as an extra-parameter.
As we have seen in Example 1.5, we may write X (¢) as

o0
X(t) = Z X, e,
—00

with X,, in CN, X_,, = X,, and obtain an equivalent formulation
inX, — (X0, X1,...,0) =0, n=0,1,2,...

where the Fourier coefficients will be I'g-equivariant, S' x I'g-equivariant (as in Ex-
ample 3.3), if f is autonomous, or Z, x I'g-equivariant if f(-, X, A) is 27 / p-periodic
int.

The expression dd—)t( — f(t, X, A) may be regarded as anonlinear map from Czlﬂ RN
into Cgﬂ (RM), or between the Sobolev spaces H LS to L%(S"), where, for p >0,

HP(SY) = {X (1) = X2 Xpe™ : 01X, 2(1 + n?P) < oo},

Recall that H?(S") ¢ €9 (RN) for p > §.
Notice that, if f has a linearization A(¢) at some Xg, then ‘fi—f —A(H)X is a
Fredholm operator of index 0 between any of the above spaces.

Definition 9.1. Let B and E be Banach spaces and L be a linear continuous operator
from B into E. Then L is said to be a Fredholm operator of index i if and only if:

(a) dimker L =d < o0,
(b) Range L is closed and has finite codimension d*.
The index i of L is the difference d — d*.

If, in the above example, one assumes that A is a constant matrix (for instance the
0 matrix), then Lx = g is equivalent to

inX, — AX, = gn,
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which is always solvable for any g in L? (and then X is in H'), provided g, is in
the range of inl — A (always true for n large enough) i.e., if g, is orthogonal to
ker(—inl — AT). From Linear Algebra one has that the index is 0. For the case of
a non-constant A, periodic solutions will correspond to starting points X¢ such that
D (2r)X9 = Xo, where ®(¢) is a fundamental matrix or one may use a deformation
of A(t) to 0, using the Ljapunov—Schmidt reduction.

In fact, one of the important properties of maps which have linearizations which
are Fredholm operators, is the reduction to a finite dimensional local problem.

Assume that B and E are Banach spaces and consider the equation

Fo,x)=Ax —TM)x — g, x)

from R¥ x B into E, A a Fredholm operator, 7'(}) is a family of continuous linear
operators with 7(0) = 0, ||T(A)|] — 0as A — 0 and g(X, x) = o(||x]|), uniformly
on A. If B and E are I'-spaces we shall assume that A, T'(A) and g are I"-equivariant.

Let then P and Q be two projections (which we may assume to be equivariant,
since ker A and Range A are subrepresentations) P from B onto ker A and Q from E
onto Range A. Then,

B =kerA® B>
E = Er; ®Range A

with B, a closed subspace (a subrepresentation by Lemma 4.4) and E; of dimension
d*. Any x in B is written as x = x1 + xp, with x; = Px.

Since A is continuous, one-to-one from B; onto Range A, there is a continuous
inverse from Range A onto B», that is,

AKQ=0Q, KAU-P)=1-P.
One may write the equation as
(A= QT W) (x1+x2) — Qg(r, x1 +x2) © (I — Q)T (M) (x1 +x2) + (A, x1 +x2))

and, using the facts that A — QT (M) = A(I — KQT (L)), where for A small, I —
K QT () is an invertible mapping from B into itself, with an inverse which is given
by power series and that

TWUI—KQT(MW))'KQ =TOKQ+(T(WKQ)P+--=U-TOWKQ)'~1I,
as a mapping from E into E, one has that
F(l,x)=(A— QT(W)x2 — (I — KQT (W) 'K QT (Wx1 + g(x, x))]
o —QITOW(U —KQT() ™ 'x1 +x2
— (I = KQT ()" KQ(T(W)x1 + g(, x)))
+UI—=TOKQ) 'gr, x)].
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In order to better appreciate this formula, define
H(.x1,x2) = x2— (I — KQT (W) 'K Q(T (Wx1 + (A, x))
B(W) = —(I = OTMU —KQT()™'P
GG.x) = =(I = Q) = TWK Q) g(h, x).
One then has
F,x) =(A-=QTA)H X, x1, x2)®BM)x1+G A, x)—(I - QT A H (A, x1, x2).

It is clear that, if F (A, x) = 0 and for small A and x, then H(X, x{, x) = 0 has
a unique solution x» = x2(A, x1), with [[x2|| < Cllxt||(IX]| + O(l|x1])), provided
g(x,x)is Cland ||T(1)|| < C||A|l, by using any contraction mapping argument.
Then the zeros of F coincide with those of the bifurcation equation

BM)x1 4+ G, x1 + x2(X, x1)) =0,

where B(0) =0, B(\) is ad x d* matrix and G(X, x1) = o(]|x1]]).

Taking g = 0, one has that dim ker(A — T'(A)) = dim ker B(X), while for g any
element of E, one gets codim Range(A — T(A)) = codim Range B(A), that is, the
spectral properties of A — T (1) can be recovered from those of B(A). In particular,
Range(A — T'(1)) is closed and A — T'(A) is a Fredholm operator of index d — d*.

An important particular case, which will be used throughout the book, is when
B=E,A=1—-TandT()) = AT, with T acompact operator. In this case one may
build up the projections P and Q in two stages. In fact, since 7' is compact, one has
that ker( — T)* = ker(I — T)**# for all B > 0, so, for an «, called the ascent of
I — T, the dimension m of ker(I — T)* is the algebraic multiplicity and one has

E =ker(I — T)* & Range(I — T)“.

Both subspaces are invariant under 7" and A = I — T is nihilpotent on ker(/ —T)%,
hence one may choose a basis such that A is in Jordan form, with d blocks of dimension
m;. On a typical block of dimension m, one has

0 1 0 | 0
A=1-T= =J, 0= ,
1 1
0 0 0 0
0 0 0 0
| 1
K = =JT, I—P= :
0 1 0 0 1

T(A) = AT = AT — AJ.
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Since QJ = J, one obtains JTQ = JT and JTJ =1 — P, then KQT(\) =
AMWTOU —J)=xJT —x(I — P)and itis easy to check directly that

1 0 0 0 0
A 1
T+X ESY 0 0 0
22 A 1
» T aror mx 9 0
(I —-—KQTW) = 23 22 A 1 0
(1+2)3 I+03 a2 T+
}Lm.*l )Lm‘—Z L
(1-‘,—)»)’"*1 (1+)")nl,1 e e e 1+}\.
Hence, the first column of T(A)(I — K QT (1))~ will be
A 22 Am—1 sm T
<1+AX1+MT”'XI+Mm*’a+AW*>

and B(A) on this block will be —A" /(1 + am-l

Hence B(A) will be a diagonal matrix with components —A" /(1 + 1)™~!, for
j=1,...,dand ) m; = m, the algebraic multiplicity.

Another case, which is used mainly for bifurcation purposes, is when B C E, A
is a Fredholm operator of index 0, with O as an isolated eigenvalue and T () = 1.

In this case, one has a finite ascent « and

B = B NRange A* @ ker A%, [E = Range A* & ker A“.

On Jordan blocks as before, A, Q, K, and I — P have the same form, while

1 o ... ... 0
A 1 0 0

(I—-KkQrOW) = . - ,
am=bo o ]

since I — AKQ = I — AJ. Then, on the block, if x in ker A% has coordinates
(x1,0,...,0) and g has components (gi, ..., gn), One obtains

B()\,).X + G(A, .X)|B]0ck = )\m_xl + )\,m_lgl + -+ gm-

Then B(}) is a diagonal matrix with entries A", ... A", with } " m; = m =
dim ker A%, the algebraic multiplicity.

Example 9.1 (Equivariant maps). If A, T'(A) and g are equivariant, then, by choosing
equivariant projections, one sees easily that K is also equivariant, the uniqueness of
x2(A, x1) will imply that x(A, yx1) = yx2(X, x1) and the bifurcation equation is
equivariant. In particular, B(A) has a block-diagonal form, in case B(A) is invertible.
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Example 9.2 (Gradient maps). If B is continuously imbedded in the Hilbert space E
and F (A, x) is the gradient of a C? functional ® (A, x), i.e., D, (A, X)h = (F(A, x), h),
forall 4 in B, then A and T ()) are self-adjoint operators. Assume that A is a Fredholm
operator (hence of index 0).

One may choose B, = B NRange A, E; = kerAand Q =1 — P. Itis easy to
see that K is symmetric and that BT = B().

Furthermore, it is clear that x5 (A, x1) is C!. Let

WA, x1) = P(A, x1 +x2(A, x1)),
then the Frechet derivative of W is such that, for 4 in ker A

WA, x1+h)— VA, x)
= O (A, x1 +x2(A, x1))(h + x2(A, x1 + h) — x2(A, x1) + 0(h))
= &, (b, x1 + 200, x))I — KQT (W) 'h + o(h)
= (F(A, x1 + x2(%, x1)), h) + o(h)
= (BW)x1 + G, x1 + x2(A, x1)), h) + o(h),

where, in the last equality, one uses that F'(A, x; + x2(A, x1)) belongs to ker A, while
K QT (A)h belongs to Range A. Hence,

VWA, x1) = B(A)x1 + G, x1 + x2(A, x1)).

Example 9.3 (Orthogonal maps). Assume that B C E are both I'-Hilbert spaces and
let F (A, x) be I'-orthogonal, with respect to the scalar product in £ and I" is abelian.
As above, A is a Fredholm operator of index O.

Lemma 9.1. Under the above hypothesis, one may choose P and Q such that the
bifurcation equation is I'"-orthogonal.

Proof. From Lemma 7.2, the orthogonality of (A, x) implies that A, T (A) and g(A, x)
are also I"-orthogonal. In particular, A — 7'(1) has a diagonal structure on equivalent
irreducible representations of I" and, on (E T™yL | its restriction has a complex self-
adjoint form A — T (%) and the above space has the decomposition ker A Range A.
Choose P and Q equivariant, hence K and B()) will be equivariant and will commute
with A;. Furthermore, one may choose an orthogonal projection P onto ker A with
Q = I — P, hence the part of B(%) on ker AN (ET")* will be B(A) = —PT(I —
K I - P)T) ! P which commutes with A; and is self-adjoint (expand the inverse in
power series). Hence, B(A) is F—orthogonal. On the other hand,

—(G(A, x), Ajx1) = (I —TKQ) ‘g, Ajx)
= (g, (I — QKT) ' Ajx1)
= (g, Ajx1) + (Qg, KT(I — QKT) " Ajxy),
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by using the fact that A; is 0 on E ™ and that it has a diagonal structure. Since g
is orthogonal, one may replace the first term by —(g, Ajx2). But x2(4, x1) solves
Qg = (A — QT)(x1 + x2), hence, using the fact that A and T are orthogonal and Q
commutes with A;, one obtains

(g, Ajx1) = (QTxy, Ajx2).

The same substitution in the second term yields

(I —TKQ)'TK(A— QT)x2, Ajx1) — (x1, TQKT(I — QKT) ' A;xy),

where the first term reduces to (fxz, Ajx1), by writing TI?(A— Qf") =T-TK Qf =
(I — TKQ)T, since on ET" one has Ajx; = 0. The second term is of the form
(x1, LAjx1), with L self-adjoint (expand again the inverse in power series) and hence
0, since we have seen that orthogonality is equivalent to self-adjointness for linear
operators. Thus

—(G(A,x), Ajx1) = (Txy, Ajx2) + (Txz, Ajx1) =0,
since T is ["-orthogonal. O

In the case of autonomous differential equations, we shall assume that the equation
dX
F(X,)\)EE—JC(XJ»)=0,

for A in R* and X in RY, is such that there are bounded sets A in R¥ and € in RV,
with the following properties:

1. f(yoX,r) =y f(X, L), for yg in I'g, a compact abelian Lie group, of dimen-
sion n.

2. Q is invariant under I'g and any 27 -periodic solution in  is in fact in €2, for
any A in A.

Let then
Q={(XeH'(SH:|IX|I <R, X)) €},

where R is chosen so large that any periodic solution in 2 has | X||; < R/2 : R
depends upon bounds on f over A x €2 and Sobolev constants. Then, F (X, A) # 0
on 92 and is equivariant with respect to I' = ' x I'y.

As particular cases we shall also consider the problem of finding 27 -periodic
solutions to the following Hamiltonian system

H(X,A\)=JX +VH(X, ) =0,
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where X is in R?V, J is the standard symplectic matrix (0 ) and H is C? and

I 0
I"p-invariant.

In this case we shall assume that I'g acts symplectically on R*V , i.e., it commutes
with J. Then, again, #(X, }) is ['-equivariant, with ' = § I'x I'p. In fact, the
following result holds.

Proposition 9.1. The mapping # is T -orthogonal with respect to the L*>(S') scalar
product.

Proof. Here the infinitesimal generators for I' will be AX = X’ for the action of §!
and A; X, j =1,...,n,if therank of I'g is n (i.e., dim I'g = n). Then

27
(H(X, ), AX) =/ (JX - X +VH(X,A)-X)dt =0,
0

since JY - Y = 0 and the second term integrates to H (X (¢), A), giving 0 on periodic
functions.
On the other hand VH (X, A) - A; X = 0, since H is I'g-invariant, and

21
(JX', A;X) =/ ~(xTJA;X) dt/2 =0,
0

where we have used the relations J7 = —J, AJ.T =-A;,JA; =A;J.
Thus, #(X, A) is ["-orthogonal. O

The second particular case is that of a second order Hamiltonian
E(X,»)=-X"+VV(X,1) =0,

under the same assumptions on the potential V. One has the same infinitesimal
generator AX = X' and A j X, if V is ['p-invariant. Here, of course, B is H 2(S!) and,
as before, one has

Proposition 9.2. E(X, 1) is T-orthogonal with respect to the L*>(S') scalar product.

Note that we have taken — X" so that the associated operator is non-negative on
2(¢l
L~ (S).
Recall that the equation F (X, A) = 0 is equivalent to

inX, — fu(X,A) =0, n=0,1,2,...,

where X () = ) X,e'™ with X_,, = X,, in CV. Recall also that the action of 'y on
RN decomposes this space in irreducible subrepresentations of I'y and one may write
any X in RN as (x1, ..., x%), with x/ in R or C, and the action of Iy on x/ is of the
form '

vi = expi((N7, @) + 2 (K, L/ M)),
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(see Example 1.4 and §2). Then, on the j-th coordinate of X, the action of I' =
S! x T, will be of the form

J _ .,J in
Yn = V€ ¢

Remark 9.1. In the Hamiltonian case, I'g commutes with J, hence if X = (Y, Z),
with ¥ and Z in RY, then the actions of ['g on Y and Z are the same. If one of the
complex irreducible representations of 'y associates one coordinate of ¥ with one of
Z, then J on this pair takes the form of a multiplication by i.

Remark 9.2. For the general case it is easy to see that F(X, 1) = 0 may be written
as X, — fu/(in), i.e., of the form Id-compact on H 1 (S 1), a situation where one will
be able to use the equivariant degree in infinite dimension. In the Hamiltonian case,
one could use the same argument (by multiplying by J/(in)) but then one looses the
orthogonality. One has then to keep the strongly indefinite operator J X’ and use a
global Ljapunov—Schmidt reduction in the following form: On a large ball in H!(S!),
one has that X (¢) is bounded as well as D2H (X, 1) (thus, we need that H is C?2).
Write X = X1 @ X3, where X| = P X corresponds to modes n, with [n] < Nj and
X to the others. Note that J X’ is self-adjoint on L?(S") and a Fredholm operator of
index 0 from H!(S!) into LZ(S!). The equation

(I-P)JX +(I—P)VH(X,,) =0

is uniquely solvable for X, asa C I_function of X1, for N, large enough. In fact, the
linearization at any X in the ball has the property that

IJX5 + (I = PYD*H(Xo, W X212 = (1 = M/ND| X2l g1,

where M is a uniform bound for || D% H (Xo, 1)||. Hence, the global implicit function
theorem may be applied. Furthermore, since (VH (X, 1), AX) = 0, where AX is
either X/, or A ; X, one has that the scalar product

(PVH(X1+X2(X1, 1)), AX1) = —((I—=P)VH, AX3) = (I-P)J X}, AX3) = 0.
Thus, the reduced equation is I"-orthogonal and one may look at
JX| + PVH(X| + X2(X1, 1), A) =0,

in the finite dimensional space P H 1 (S 1 ), where the second term inherits the gradient
structure, as in Example 9.2.

Let now X¢(¢) be a 2 -periodic function such that F(Xo(¢), A) = 0, with 'y, =
H. Then, if dim '/ H = k, one has that X6(t), AjX(r) belong to ker DF (X, A), by
Property 3.3, and exactly k of these vectors are linearly independent (Lemma 2.4). In
other words, each of the above vectors is a solution of the equation

Y — Df(Xo(t), )Y =0,
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respectively JY' 4+ D?H (X (1), )Y = 0,0r —Y” + D>V (Xo(1), )Y = 0.

We would have to identify VH VH and VK, where H is the torus part of H and
H/K = 7Z;, where the subgroups K with that property will lead to period doubling
and “twisted orbits” as explained below.

We shall consider three possible cases:

(a) A time-stationary Xo(?)
(b) A rotating wave X(t)
(c) A truly time periodic Xq(?).

Case 9.1. Time-stationary Xo(t). If X6(t) = 0, then H = S! x Hy, with Hy < 'y
such that dimI'g/Hy = k and H = S x T"=%. Thus, V& is contained in RV,
the space of constant functions. Recall that Df (X, 1) is H-equivariant and has the
diagonal structure of Property 3.4 and Theorem 5.3. Since this matrix is constant, one
has for each mode 7, the linearization

(inl — Df (X0, ) Xn.

The spectral properties of Df (Xg, A) will be crucial when discussing the Hopf bifur-
cation, i.e., bifurcation of truly periodic solutions near the constant solution Xj.

Case 9.2. Rotating wave X((t). Assume that X 6 is a linear combination of the A; X¢’s
Writing this relation on Fourier series and taking into account that A; is diagonal (being
equivariant), it is easy to see that for each coordinate z; of R, with a non-trivial action
of T", there is at most one mode 7, such that X(’) is non-zero on that mode.

Consider then the matrix

A(t) = diag(..., e "', ),

written this way according to the action of I, i.e., each exponential corresponds to a
rotation for a pair of real coordinates of X.

Letthen Y () = A(t)X (¢). If Yo(t) = A(¢)Xo(¢), then, since the s’th component
of Xo(?) is ei"Stan, one has that Y(’)(t) = 0, i.e., the rotating wave X(¢) has been
frozen.

Furthermore,

Y =A0AT OY@) + A0 fFAT Y @), 1),
for any solution of F(X(t),A) = 0. It is easy to see that A’A~! = A(0). Also,

since ny = ijn;, where the action of 7" on z; is via exp(i (N¥, ®)), with N*¥ =
(ni, ..., n‘,’;)T, then, from the equivariance of f with respect to I'g, one has that
FATTOY @), 1) = A7 F(Y (@), M), by taking ¢; = A;/t. Hence,

Y'(1t) = A'0)Y (1) + f(Y (1), 1),

and one has a reduction to the previous case.
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Remark 9.3. If the s’th coordinate of X is X* = x + iy, then e~ st XS has to be

interpreted as
cosngt  sinngt\ [x
—sinngt cosngt ) \y

and X*(t) = e'"' X, has the same decomposition. This can also be seen from the
fact that

(1) = ) (e + Fpe ™M)
n>0

Y(E) =D (ne™ + FaeM).

n>0

Then one has x(t) + iy(t) = X*(t) = ano(xn +iyp)e™ + (Xy + iyp)e ™. If
ng > 0, then x, + iy, = 0 forn # n; and x, + iy, = 0 for all n > 0. In particular,
Xn, = iyn, = Xy, /2. Hence, one recovers the above expression for X°(¢).

s

For a Hamiltonian system, the coordinates z; come in pairs or J acts as i on
a complex coordinate. This implies that J commutes with A(z). One arrives at
Y'(t) = A0)Y @)+ JVH(Y (1), L), i.e.,to

JY — JA'(0)Y + VH(Y (1), 1) = 0,

and a new Hamiltonian H(Y, ) = H(Y, 1) — (JA'(0)Y, Y)/2. (Note that, since J
and A’(0) commute and both are antisymmetric, their product is self-adjoint).
For a second order Hamiltonian, the above transformation gives rise to

—Y" — A/(0)*Y +24'(0)Y' + VV(Y, 1) =0.
We leave to the reader to check that this equation is I"-orthogonal.

Case 9.3. Truly periodic solutions. If X6, A1Xo, ..., Ax—1X9 are linearly indepen-
dent, we may assume, from Case 9.2, that Ax Xo, ..., A, Xo are linear combinations
of A1Xp, ..., Ax—1Xo only. In particular, if K = 1, then A; X¢o = 0 and X belongs
to V", In general, from Lemma 2.4, one may reparametrize 7" such that on VEH one
has A; X = 0, for j > k, where H is the torus part of H (see Lemma 2.6).

Assume that X(¢) is 27/ p-periodic in time, hence H = Z,, x Hp, with modes
which are multiples of p. One hasdimI'g/Hy =k —1land H = H, = Tn—k+l

Lemma 9.2. Let Vo = (R0, then VE = (X (1) € Vy, Yt} and (VE)L = (X (1) €
Vb, Vil

Proof. In fact, H = {(¢, ®, K) : ng + (NJ, ®) 4+ (K, LI/M) € Z, for each non-
zero component X;, of Xo}, wher(_e N/ an_d L7 have to be interpreted as in §2. (Here
@, P1,..., ¢y are in [0,1] and N/, K, L/, M are integer-valued vectors). From the
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reparametrization of 7", the phases ¢y, . . ., ¢, do not appear in (N/, ®) and the fact
that X 6 is linearly independent from A; Xo, restricts ¢, @1, . .., @1 to adiscrete setin
the above expression. Hence, the torus part of H and Hy corresponds to (¢, - . ., ¢n).
The lemma is then clear. O

Lemma 9.3. Thereisa yyin g suchthat ngXo = Xoand Xo(t) = yoXo(t+21/q),
with g = pqo.

Proof. As noted above, the set of (¢, ¢1,..., ¢r—1) in H is discrete. Since I is
compact, there is a positive minimum ¢q such that (¢g, Wo, Ko) is in H, where Wy
corresponds to the reparametrization of Lemma 2.4. From the congruences, ¢p, as
well as each component of Wy, is a rational, of the form /g, with r and g coprime. If
r > 1, then there are integers k and a such that kr 4+ ag = 1 and, changing ¢g to k¢p,
one may take o = 1/q.

Then, Xo(¢#) = yoXo(t + 27 /q), where yy corresponds to (Vo, Ko). Now, any
other element of H gives X¢(t) = y Xo(¢t + 2w ¢), with y corresponding to (¥, K).
For such an element, let k be such that 0 < ¢ —k¢@p < ¢o. Then, Xo(¢) = y )7(;‘ Xo(t+
2 (¢ — kgo)) and (¢ — kgo, ¥ — kWo, K — kKp) belongs to H, contradicting the
minimality of ¢, unless ¢ = kgg and y = yé‘.

Recall that Hy < @'y is the isotropy subgroup of the geometrical coordinates of
Xo(t). Since g9 = 1/q, one has that yoq is in Hp and then

H = {k(¢o, Yo, Ko),k =0,...,qg — 1} U{(¥, K) € Ho}.

Let go be the smallest integer such that )/610 € Hp: from the minimality ¢ = pqo, one
has y/°X( = X, and the lemma is proved. ]

Lemma 9.4. The space V! consists of all 27t | p-periodic functions X (t) with X (t) €
V™ for all t and X (1) = X (t + 27/q).

Proof. On the component X;, the action of H is as ;] = exp 2mi(kn/q+k(N/, ¥o) +
k(Ko, LY /M)+ (N7, W)+(K, L/ /M)), with (¥, K) in Hy. Taking k = 0, one needs
that (W, K) is in H;, the isotropy subgroup of the j’th coordinate, hence Hy < H; and
X(t) is in VOHO. In particular, ygo acts trivially on X/. Hence, taking k = g, one
concludes that n has to be a multiple of p and X (¢) is 27/ p-periodic. The inverse
inclusion is clear. o

Consider now K such that H/K = Z,. Since K = (1] Hj,, the inclusions K <
H(\Hj, < H, imply that either H < Hj,, or K = H () Hj,, where H;, is the
isotropy of X;,. In the second case, which must hold at least for one Hj,,, one has that
for any y in H, then 2 must be in Hj,. In particular, for ¢ = 0 and y in Hy, one
needs )72 € Hj and Hy/(Hy N Hj) has at most order 2. Let Ko = HyN Hj, for all such
j’s, then, either Ko = Hy, or Hy/ Koy = Z;. In the second case, let V| = (RN)Xo, then
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there is a y; in Hy, with ylz in Ko, i.e., y1 acts as Id on VOH0 andas —Idon Vi N VOHOL.

Since ygo is in Hy, one has that )/02 9 acts as Id on V. Let VljE be the subspaces of V|
where )/(;10 acts as = Id. Hence, VOHO - V1+.

Lemma 9.5. VX consists of all 2 -periodic functions X (t), in V, for all t, of the form
X(@)=X4+()+ X_(t), with X1 (t) = 2y X+ (t + 27 /q). In particular, if q is odd,
then X (t) arein Vli and both are 27w | p-periodic. If q is even and p is odd, then X (t)
isin Vl+ and it is 21/ p-periodic. The components of X 1 (t) in V1+ are 21 / p-periodic
and those in V|~ are 27 [ p-antiperiodic. The behavior of the components of X _(t)
differs by a factor (—1)90,

Proof. For the coordinate X;, we know that 2g0((N7, Wo) + (Ko, LV /M)) = aj is an
integer, which is even if X is in Vl+ and odd if X; isin V| . Since (2¢0, 2Wo, 2Ko)
fixes X3, one has that 2n/q + aj/qo = b is an integer. Fromn = bg /2 —a;p/2, one
has that, if g is odd, then b has the parity of a;, while, if g is even and q; is odd, then
p hasto be even. Even b’s will give X4 (¢) and odd b’s give X_(¢). There are minima

+

nji such that the modes of X7, are of the form n® = nji + cq, for any integer c¢. The

numbers njj.E are multiples of p, except if p is even and (for X i) aj is odd, or (for X J )
a; and go have opposite parities, in which case n]j.E are odd multiples of p/2. These

elements prove one inclusion. The reverse inclusion is clear. O

Remark 9.4. (a) If X1(¢) = £y X4 (t + 27/q) then, for X (t) = X4+(¢) + X_ (1),
one has

X(1) = y¢X(t +4n/q)

and the relations

1
Xa(t) = S(X(0) % vo ' Xt —2m/q)).

Conversely, if X (¢) = yOZX (t+4m/q) then, defining X 1 (¢) by these last relations,
one obtains X4 (f) = +yX+(t + 27 /q). Hence, VK is the set of all 2m -periodic
functions, with X (¢) in V; for all ¢, such that X (¢) = )/02X (t+4m/q).

(b) If Hy/Ko = Zo, then, for any y in Hy, there is @ = 0 or 1 such that y = y[*$
with § in K. Thus, since y(;m is in Hy, one has either « = 0 and y(;m is in Ko, in
particular V" = {0}, ora = 1 and ygo has the same action as y; on V1, i.e., one may
take y| = ygo, in particular one has, in this case, VOH0 = V1+. Thus, VOH0 is strictly
contained in Vl+ if and only if V;” = {0}.

(c) The components of X (¢) which lie in VOH0 give an element of V¥ . In partic-
ular, if Ko = Hyg and H/K = Z;, one cannot have g odd (since then X _(¢) would be
in V" = {0} and V" = v;1).
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A last result in this section will be the identification of the irreducible representa-
tions of H in (V)L

Lemma 9.6. Assume X°, X', ..., X" are the coordinates of a set of equivalent ir-
reducible representations of Hy in VOJ-. Then, for eachng = 0,...,q — 1, there is
a different set of equivalent irreducible representations of H, with isotropy K, in
(VAL with vEno given by functions X' (t), j =0, ..., r such that

R_2r(no/q+an) Yo X’ (t +27/q) = X/ (1),

where Ry, is a rotation of an angle ¢ of the coordinates of X I, or equivalently Ry X I =
€'Y XJ, and ayg is given by ypX? = €?™%0 X0 Defining aj = qo(aj — ag) with
voX/ = e2™% X7 one has more precisely

X7 (t) = x7 (1) + iy’ (1),

with x/(t) and yJ (t) real, x/ (t) = x{(t) + x% (1), with x{ (1) = )E{(t). Furthermore
the following holds:

1. If 2(ng — a; p) is not a multiple of q, then

o0
x{ (@) = meei(”o_[‘-fp)’eimqt and ' (1) = i(x3(t) — x (1)),

—00
that is X’ (1) = Zx{(t).

2. If2(ng — ajp) = lq, then

x{(t) — Z xmez(lq/Z)tetmqt and y{ (t) = Z ymel(lq/Z)tetmqt.
m+1/20 m+1/20

If X7 (t) is in VEno  then e=219P' XJ (t) is in Va0,

Proof. The action of H on X ,ﬁ is of the form ynj exp2mi(N J, \fl), where ynj has the
form given in the proof of Lemma 9.4, while (N7, &) = an] W, is non-trivial in
VOJ-. One will have the same action for different (n, j)’s if the following happens:
taking ynj =Id(.e.,k=0and ¥ =0, K = 0) then nlj have to be the same for all j’s

forl =k, ...,n. Taking k =0 in ynj, then one needs the same action for all (¥, K).
Hence, the different X/’s are in the same set of equivalent irreducible representations
of Hy in VOJ-. Ifaj = (N7, o) + (Ko, L/ /M) gives the action of yy, then, since ygo

l
np’

that (n; — n;)/q + aj;/qo is an integer. Hence, for XY one has the modes ng + mq,
where 0 < ng < ¢ and m is any integer. For a fixed ng, the modes for X/ will be of

is in Hp, one needs that go(a; — o) is an integer a;j;. Then, for X,J,j and X, , one has
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the form n; = ng — a;p + mq, where a; = aj, = (aj — ap)qo. The action of H on
that mode is of the form

eZﬂi(knj /q+kej+e) _ eZﬂi(kno/q-i-kao-i-(p)

where ¢ corresponds to the action, as § 1 of Hy on the coordinate X J. Hence this
mode is fixed by the group

Kny ={tk, o = —k(no/q + ap), mod 1),k =0,...,9 -1} =Z,.
From here, it is easy to see that, taking k = 1, one has the relation
Rorgyo X/ (t +27/q) = X/ ().

The converse inclusion is qlear. . . . .
Now, one needs that X/ () = x/(t) 4+ iy’ (¢t), with x/ (¢) and y/ (¢) real, that is

xj (t) — Z(xneint + )Ene_int)

n>0

yj (I) — Z(yneint + )—;ne—inl‘)'

n>0
Thus, the pair of modes, e and e~ will be fixed by K, if and only if either

. n=no—ajp+mqg > 0and x, +iy, = 0 (unless —n has the same form, that
is if 2(ng — a; p) is a multiple of ¢), or

2. —n=np—a;p+mq < 0and x, +iy, = 0 (unless 2(ng — a; p) is a multiple

of g). Thus
.Xj(t) — Z (xneint + inefint) + Z ()Zneint + inefint),
n=ng—a; p+mgq=>0 n=no—a; p+mq=<0
while y/ () has y, = —ix, in the first sum and j, = i%, in the second sum. Writing
x,ll (t) — aneint + Z-x:neint
n>0 n<0

and xJ (1) = & (1), one has x (t) = x! (t) 4 xJ (1), while yJ (1) = i (x] (1) — x] (1)),
since ¥, = —iXy.
If 2(np — ajp) = lq, then

.X:‘](t) — Z (xneinl + )Ene—int)

n=ng—a; p+mgq=>0

and y/ (¢) of the same form and independent from x/ (¢).
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Note that, if one sets

Ho= Y Gutiae™

n=ng—aj p+mq=0

So=i > G —xwe™,

n=ng—a; p+mq=>0

then x/ (r) = i{ + ;{ and y/ () = if + )zif, i.e., the two formulations of the lemma
are equivalent.
Finally, if X/ (¢) belongs to V"0 one has

R27r(no/q+a0)770)_(j(t +2rm/q) = Xj(t)~
For Y/ (1) = e 24P XJ (1), one computes easily that

R_2x(—nojqam 0¥’ (t +27/q) = Y/ (¢).

Note that, if a; = 0, then Y J(t) = X/ (1), a fact which can also be seen from the
Fourier series expansion.

Note that for ¢ = 1, then ngp = 0 and the unique set of equivalent irreducible
representations is {Y (¢), 2 -periodic in VOJ-}. O

1.10 Bibliographical remarks

In this short section, we would like to give some references to the results in this chapter
and to some more advanced texts.

1. Group actions. There are many books on representations of groups, with a
variety of flavors. Closest to the spirit of the present text are the following:

A. A. Kirillov: Elements of the theory of representations, Springer-Verlag, 1976.

G. E. Bredon: Introduction to compact transformation groups, Academic Press,
1980.

T. Broecker and T. tom Dieck: Representations of compact Lie groups, Springer-
Verlag, 1985.

T. tom Dieck: Transformation groups and representation theory, Springer- Verlag,
1979.

The last three are more inclined towards topology. The results of this section are
taken from [IV1].

2. Fundamental cell lemma. This construction is taken from [IV1] and, in the
particular case of S ! from [IMV2].

A similar construction is developed, for a general Lie group, in

A. Kushkuley and Z. Balanov: Geometric methods in degree theory for equivariant
maps, Springer-Verlag, 1996.
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Lemmas 2.4-2.6 are extracted from [I.V. 2 and 3].
3. Equivariant maps. Some of the results are taken from [I].

4. Averaging. This important tool is taken from Bredon’s book. The discussion
on approximation by finite dimensional equivariant maps is new, although this fact
was used in [IMV1]. The presentation of the other facts is close to [I].

5. Irreducible representations. The material on Schur’s Lemma is standard (see
for instance Kirillov’s book). Corollaries 5.1 and 5.2 follow [I]. Theorem 5.1 is an
adaptation of the standard result. The presentation of Theorems 5.2 and 5.3 follows
[I], with a proof adapted from Pontrjagin’s book: Topological groups, 1939.

6. Extension of I'-maps. This is the substance of obstruction theory. Here we
have only used the most basic elements, taken from [I]. for further reading, one may
look at the books of Bredon, tom Dieck and Kushkuley—Balanov. The lemmas in this
section are taken from [I.V. 1 and 2].

7. Orthogonal maps. The material presented here is taken, with some modifica-
tions, from [IV3]. The notion of orthogonal map has also been used, for I' = S!, by
S. Rybicki.

8. Equivariant homotopy groups of spheres. The construction and basic prop-
erties are adaptations of the non-equivariant case: see the books of Greenberg or
G. W. Whitehead: Elements of homotopy theory, Springer-Verlag, 1978.

The most useful results can be found in the books by tom Dieck and papers by
Namboodiri and Hauschild. The J -homomorphism is taken from [I], and the results
on I"-orthogonal maps from [IV3].

9. Symmetries and differential equations. In order to apply our techniques to
elliptic equations the reader may consult, for instance, the book by A. Friedman. For
the case of O.D.E’s any book with some Floquet theory may be useful. For the case
of Hamiltonian systems, the book by 1. Ekeland: Convexity methods in Hamiltonian
mechanics, Springer-Verlag, 1990, will provide a good introduction to Conley index
methods.

The Ljapunov—Schmidt reduction is from [I]. The applications to Hamiltonian
systems follows the ideas of Amann—Zehnder and is taken from [IV3], as well as the
classification of “twisted orbits”.



Chapter 2

Equivariant Degree

In this chapter we are entering the main part of equivariant degree: we shall construct
this degree, first in finite dimension, give its first properties and examples. Then,
we shall extend it to infinite dimension and apply it to bifurcation and continuation
problems. We shall also give the construction for orthogonal maps.

2.1 Equivariant degree in finite dimension

As explained in the Introduction to this book, a definition of an equivariant degree
through a geometric construction, as in the case of the classical Brouwer degree,
meets several serious difficulties: a “good” definition of genericity, a density result
similar to Sard’s lemma, a consistent definition of the invariants and of their sum.
The construction below avoids most of these difficulties and may also be used in the
non-equivariant case.

The setting of this section is the following: Let B and E be two finite dimensional
I"-spaces, where I" is a compact Lie group acting via isometries on B and E as in
Chapter 1. We shall indicate by remarks the few places where the finite dimensionality
is used and how to put special hypotheses in order to validate the arguments in infinite
dimensions.

Let €2 be a bounded, open, I'-invariant subset of B and consider a continuous map
f(x), from Q into E, such that

(a) f(x) # 0for x on 02.
(b) f(yx) =7 f(x),forallyinT and x in .

Since €2 is bounded, let Bg be a closed ball of radius R and centered at the origin,
containing €2. Since the action on B is an isometry, B is I'-invariant. Then, there is
a Dugundji—Gleason I"-extension f (x), from Bpg into E, of f(x) (see Theorem 6.1 of
Chapter 1).

Let then N be a I'-invariant neighborhood of 92, such that N is open, contained
in Bg and f(x) # 0 on N: the existence of N follows from Lemma 4.3 of Chapter 1,
using the fact that 92 C U, where U is the open I'-invariant subset of Bg such that
f(x) # 0 (one may also restrict to a small neighborhood of d€2). Let ¢(x), from Bg
into [0,1], be a I'-invariant Uryson function with value 0 in Q and 1 outside Q U N.
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Let F(t,x) : [0, 1] x Bg — R x E be the map defined by
F(t,x) = 21 +2¢(x) — 1, f(x)).

It is clear that F is I'-equivariant, where the action on ¢ in [0,1] and on the first
component of R x E is trivial. Furthermore, F (¢, x) # 0if x is in N (since f x)#0
there) and if x is outside 2 U N (there ¢ (x) = 1 and the first component of F reduces
to 2t + 1 > 1). Hence, if F (¢, x) = 0, then x is in €2, f(x) = f(x) =0,¢(x)=0
andt = % In particular,

F(t,x): S8 =3([0, 1] x Bg) - R x E\{0}

defines an element, [ F]r, of HEB (SE), as defined in §8 of Chapter 1. Note that, if

E' = {0}, then, since f (0) = 0 in this case, our problem will be interesting only if
0 is not in 2. Then one has ¢(0) = 1, and the first component is always positive, as
required in §8 of Chapter 1.

Definition 1.1. The equivariant degree of f with respect to €2, is defined as [ F]r in
HgB (SE), which is an abelian group provided dim BT > 0.

Remark 1.1. It is clear that up to here we have not used the finite dimensionality of
B and E. Thus, one may define the I"-degree either in general or, as in Remark 8.3
of Chapter 1, for maps which are compact perturbations of the identity (or k-set-
contractions).

The next step in our construction is to show that the class of F is independent of
R, N and ¢.

Proposition 1.1. The homotopy class [ F]r does not depend on
(a) the I'-invariant Uryson function ¢,
(b) the choice of the T"-invariant neighborhood N of 92,
(¢) the T'-equivariant extension f of f,

(d) the choice of the ball Bg containing Q.

Proof. (a) Let ¢g, ¢1 : B — [0, 1] be two Uryson functions with values O in Q and
1 outside Q U N. Let ¢ (x) = t¢1(x) + (1 — T)pp(x), T in [0, 1], which is also a
Uryson function with the same properties. Let

Fr(t,x) = Qt + ¢ (x) — 1, f(x)).

Then F; is an admissible I'-homotopy between Fy and F1, therefore [ Folr = [F1]r.-
(b) Let us first assume that there are two invariant open neighborhoods Ny and
Nj, of 9€2, such that No C N; C Bg. Let ¢p and ¢ be the I'-invariant Uryson
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functions associated to Ng and Ny, respectively. Let o; (x) = to1(x) + (1 — 7)@o(x)
and F,(t, x) be defined as above. Since ¢, (x) = 0 for x in Q and ¢, (x) = 1 for x
outside 2 U N1, the I"'-homotopy F7 is admissible and [Fy]r = [F1]r.

In the case where Ny and N are arbitrary, one can use the previous argument
applied to No N N7 and to each Ny and Nj.

(c) Given two ['-equivariant extensions fo and f 1 of f, one can choose a I'-
invariant open neighborhood N of <2 on which the I"-equivariant extensions ff x) =
rfl x)+ (1 - T)fo(x) is not vanishing for 7 in [0, 1] = I, applying Lemma 4.3 of
Chapter 1 todQ2 andtoU = {x in B : f, (x) # Oforall 7 in I}: in fact UC is closed
from the compactness of / and the continuity of fy and fi. This map will induce an
admissible I'-homotopy and the assertion follows.

(d) Let Ry < R with Q C Bg,. Let fo and f be two I'-equivariant extensions of
f to Bg, and B, respectively. By (b) and (c) we may assume that fo and f do not
vanish on a common I'-invariant open neighborhood N C Bpg, of 9€2 and such that
fIBR0 = fo Let ¢ > 0, be such that ||x|| < Ry — &, if x is in N. For any 7 in /
consider the I"-map

fr () = fla(r, x)x)/a(z, x),

where

L, if [x]| < Ro—¢

a(t,x) = .
1+ 7(R—Ro)(lIxll — Ro+¢€)/(eRo), if Ro— ¢ < |lx[| < Ro.

The scaling §; (x) = a(z, x)x is a ['-equivariant homeomorphism from Bg, into

Bpg,leaving fixed Bg,—. and 81 (Bg,) = Bg. Hence, f; (x)isaI-equivariant extension

of f to Bg,, for any 7 in /. Thus, from (c), since fo = f |B Ro? the I"'-homotopy class

[Folr of Fy induced by fo coincides with the class [F]r, where F] is induced by fl

Moreover, if we extend f](x) as f(Rx/|x|)(lx]|/R) for Ry < |lx|| < R, we
obtain a I'-equivariant extension of f to Bg. Thus, once again applying (c), we have
that [F]r = [F]r, where we have identified, via the scaling, the two groups of
I"-homotopy classes of maps defined on the two cylinders I x Bg, and [ x Bg. O

Remark 1.2. Proposition 1.1 is also valid in the case of infinite dimensions, if there
are no restrictions on the maps. Furthermore, in the case of I"'-compact perturbations
of the identity, f (x) is untouched in the proofs of (a) and (b) and it is easy to see
that the linear homotopy of (c) and the scaling of (d) will preserve the character of
perturbations of the identity. Hence, in both cases, the I'-degree is well defined.

2.2 Properties of the equivariant degree

In this section we shall see that the equivariant degree has all the properties of the
Brouwer degree (up to a slight condition for the addition and noticing that in general
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this degree will not be a single integer). As before, we shall leave to remarks the case
of infinite dimensions.

Property 2.1 (Existence). If degp(f; Q2) is non-trivial, then there exists x in 2 such
that f(x) = 0.

Proof. Asnoted in §8 and Lemma 6.1 of Chapter 1, the neutral element Or in l'[g 5 (SE)

consists of the class of all maps which have a non-vanishing I'-extension to / x Bg.
Thus, if f(x) # 0in €2, then F(¢,x) #0on [ x Bg and [F]r = 0. O

Note that, due to the equivariance, f(yx) = 0, that is, solutions come in orbits.

Property 2.2 (I"-homotopy invariance). Let f; : Q — E,0<rt <1, bea continu-
ous one-parameter family of I"-equivariant maps not vanishing on 0S2 for all T in I.
Then the I'-degree degr( fr; Q2) does not depend on t.

Proof. Immediate from the fact that the construction of F; : I x Bg — R x E can
be performed uniformly with respect to . O

Remark 2.1. In the infinite dimensional case, one may construct f; an equivariant
extension to I x Bg of f; on I x Q. Then, taking A = {x in Bg : f,(x) =
0 for some t}, which is a closed set, since if fr, (x,) = 0 and {x,} converges to x,
then one may assume that for some subsequence, also denoted by t,, one has {z,}
converging to T and f; (x) = 0. Then, U = A€ is open and contains 3$2. Applying
Lemma 4.3 of Chapter 1, one obtains a common N for all t’s.

In the particular case of I'-compact perturbations of the identity, one has that
| fz(x)]| > & > Ofor (r, x)in I x 32 and for some ¢: if not one would have a sequence
(T, tn, wy), With fr, (un + wp) = (gr, (Un + wn), Wy — hy, (up + wy)) going to 0.
The compactness of &, (x) and the finite dimensionality of / x P2, P the projection
on U will imply the convergence of some subsequence and a zero of f;(x + w) on
d2. The same argument will show that there is an invariant n-neighborhood of 92
on which || - (x)] > 5.

Hence, in both cases, one has the homotopy invariance property.

Property 2.3 (Excision). Let f : Q — E be a continuous T-equivariant map such
that f(x) # 0 in Q\Qo, where Qo C Q2 is open and T-invariant. Then

degr(f; ) = degr(flg,;: $20)-

Proof. If f , N and ¢ correspond to deg (f; £2), then f is also an extension of flg ,
which never vanishes on the I"-invariant neighborhood N = (Q\Qo) UN U(QN Ny)
of 3. Since Qo U N’ = Q U N, the Uryson function ¢ is also a Uryson function
associated to N'. Thus, from Proposition 1.1, one has that [F]r = degp(f|qq; $20).
In particular, if f(x) # O for all x in , then degr(f; 2) = 0, taking Q¢ = ¢. O
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Remark 2.2. Using the excision property, we may extend the definition of I"-degree
to the class of I'-equivariant maps f : & — E, when 2 is not necessarily bounded,
provided that £ ~1(0) is a compact set, by restricting f to a bounded open I'-invariant
set o containing f ~10).

Property 2.4 (I-homotopy invariance). Let f, : Q — E,0 < t < 1, be a continu-
ous one-parameter family of I"-equivariant maps not vanishing on 92 for all T in I.
Then, the I'-degree degr-(fr; 2) does not depend on t.

Property 2.5 (Suspension). IfthereisaT'-extension f to Bg of f, such that f x)#0
on BR\S2 (in particular, if Q = Bpr), then

degr(f: Q) = degr(f: Br) = ZolfIr.
where X is the suspension (one-dimensional) homomorphism, by 2t — 1.
Proof. Since degp (f; Q) = [2t + 2¢(x) — 1, £ ()], we may deform ¢ (x) to 0 and
obtain the equality with [27 — 1, f(x)]r. Using aradial extension of f to Bg/, R’ > R,

one obtains similarly that this class is equal to degp( f ; Br). (One may also use the
excision property to get degr(f; Br) = degp(f; Q2)). O

Property 2.6 (Hopf property). If Qisaball and ¥ is one-to-one, thendegr (f; Q) =
degr(g; I') if and only if flaq is T'-homotopic to glyq.

Proof. Follows immediately from Property 2.4. In this case the I"-degree characterizes
completely Hgg (SE). O

Property 2.7 (Additivity up to one suspension). If Q& = 1 U o, €; open with
QN Qy = @, then

Yo degr (f; ) = To degr (f; Q1) + Xo degr (f; £22),
where X is again the suspension by 2t — 1.

Proof. Take N = N1 U N3, with NiN Ny = ¢ and let ¢, ¢1, 2 denote the partition
functions associated to N, Ni, N>. Then

F(t,x) = 2t +2¢(x) — 1, f(x))
is I'-deformable to

F = [ (1=20Q0@ = 1. fo), 0s1=3
o fe. Lop<,
by replacing 2¢ + 2¢(x) — 1 with 2t + (1 — 2t7)(2¢(x) — 1) for 0 <t < % and by

T4+ (1 —1)2t+2¢(x) — 1) for % <t < 1: the only zeros of this homotopy are such
that f(x) =0, for x in , and 2r = (1 +7)~L.
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Now, if one changes ¢ by 1 —t in the above formula, one obtains —[15 Ir = —[Flr.
Hence,
2t + (1 —20)Qp(x) — 1), f(x)), 0<r<i
Flr — [Fp = | @+ =0@e@) =D, fe), - 0=r=3
QA=)+ Q2 =DQpx)—1), f(x), 5=t=1,

where [F1]r = degr(f; Q1). y y
Note that, since F(t, x) = Fi(t,x) = (1, f(x)) for% <t <1,then

F(2t, x), 0

[Flr — [Filr = {Fl(z o),

according to Definition 8.2 of Chapter 1, is effectively the above difference by using
the I"-homotopy

F((2 = 1)1, x), 0<r<i
He(r,x) = | L@ 7000 oo
F(2-7(-1,x), ;=<t=<L
Consider next the I'-homotopy
Ho (1, x) = (h: (1, x), f(x)),
where
1, ifx € QUN
2t 4+ (1 —=26)2p1 — 1), ifxeQ UNand0O<2r <t
ot ) T+ -17)Q¢ — 1), ifxeQ UNjandr <2t <2—1
,x = - -
f 20—+ Qr—1DQRp; — 1), ifxeQUNjand2 —1<2r<2
2t + (1 =20)Q2¢pr — 1), ifx e QUN,and0 <t <3
1, ifxeQHUNyand § <t <1

It is easy to check that H, is well defined (recall that ‘p|§2,~u N = i i = 1,2)and
continuous. Clearly, [ﬁl]r = [Flr —[Fi]r, since 902|§z]u1\71 = 1. On the other hand,
Hy(r,x) = 2gi1(x) — 1, f(x)) if x € Q; U Ny (hence, Hy is non-zero there) and
is Fo(t, x) on 22 U N,. That is, Hy is an extension of F> which is not vanishing on
I x (BR\(S22 U N2)).

Now, from Properties 2.3 and 2.4,

degr(Ho; I x Bg) = degr(ﬁzg I x Q) = degr(ﬁz; I x BR) = Eo[ﬁg].

Finally, degr-(Ho; I x Bgr) = Xo[Holr = Zo[HiIr = Xo([F]r — [Fi]r). Since Xg
is a morphism, this proves the additivity. O
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Remark 2.3. In the above proof, if €25 is a ball (hence, by the invariance, centered
at the origin), then, since Hp is non-zero on I X (BR\QQ U Ng) the class of Ho on
d(I x B r) is the same, by a radial retraction, as the class of Ho on (I x ). Thatis,
[Holr = [F>]r = [Hi]r = [Flr — [Fi]r. Hence, in this case, the addition formula
is true without a suspension.

This is not true in general, as the following example shows:

Example 2.1. Let f(x1,x2,x3) = fi+ifa = (xf —|—x% —1+ix3)((x; — 1)? —I—x32 -
1 + ix»), be a map from R3 into R? (here I' = {e}.) The zeros of f are the two
linked circles S1 = {x? +x3 = 1, x3 = 0} and S» = {(x; — D> +x2 = 1,x, = O}.
Take B = {(x1, x2, x3) : xlz + x% + x% < 4} and ©2; be two small disjoint tubular
neighborhoods of S;, j = 1, 2.

Then one has, by Property 2.3, that deg(f; 2) = deg(f; B) = X[f]. But[f]is
in IT»(S') = 0, hence deg(f; B) = 0, see Remark 8.1 in Chapter 1.

On €21, one may perform the deformation

(0 +x3 — 1 +ix)e(xr — D*+x3 — 1) — (1 — 0)x1 +ixl;

on 02 the first factor is non-zero; thus, a zero would have x, = 0, x; close to &1 and
x3 close to 0. If x; is close to 1, the deformed term is negative, while if x is close to
—1, the deformed term is positive. Hence, deg(f; Q) = deg(—z(|z|> — 1 +ix3); Q1),
where z = x{ + ix2. Now, in (27 4+ 2¢p(x) — 1, f(x)), one may take for f(x) the
above map (since ¢ is 1 if z = 0) and linearly deform ¢(x) to (Iz|* = D%, Then
one may deform (|z|2 —1+ix3)via (|z|2 - DA+ — 12t — 1))] + ix3, since
1 —1(2t —1) > 0, being 0 only if T = ¢t = 1, for which 2r — 1 +2(|z|> — 1)> > 1.
One obtains deg(f; Q1) = [2r — 1 +2(|z]* — 1)?, —=z(4(|z|> = )(1 — ) +ix3)]. By
performing the rotation, on the first component and on the term 4(1 — t)(|z|2 -1

T —1=0) 42tz =D\ [ 2r -1
1—7—=21(z)*=1) 27 1zI2=1)"

one arrives at deg(f; 1) = [1 — |z|%, —z(2t — 1 4+ ix3)] = 5, where 5 is the Hopf
map of Remark 8.1 of Chapter 1. Then, deg(f; €21) = 1.
Similarly for €2, make the deformation

[t(xf +x3 — D+ 1 —1)(x; — 1) +ixzl((x1 — D>+ x5 — 1 +ix).

On 027, an eventual zero would be for x3 = 0, (x, x2) close to (2, 0) or to (0, 0). In
the first case the deformed term is positive, while in the second case it is negative.

The resultlng map (x; — 1 +ix3)((x; — D2+ x3 — 1 4+ ixp) can be written as
(1 —zyz)(yl +y2 —14iy3) under the change of variables y; = x;—1,y; = —x3,y3 =
X7, with a positive Jacobian and €2; is sent onto €21. Then, one has deg(f; 22) =
the rotation from z to —z, having Jacobian 1, is a valid deformation.

Then, deg(f; 21 U22) = 0 # deg(f; 22) +deg(f; 22) = 2. Clearly, when one
suspends, the equality holds since 221 = 0 (see Remark 8.1 of Chapter 1).
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Property 2.8 (Universality). If A(f; 2) is any other T'-degree with the properties
2.1-2.3 and X is one-to-one, then if A(f; Q) is non-trivial, this is also the case for
degr(f; €2).

Proof. One has A(F; I x Br) = A(2t — 1, f); I x Q) = ZoA(f; 2), where the
first equality comes from the excision property 2.3 and the second is the suspension.
Hence, if degp(f; €2) = 0O, then [F]r has a non-zero I'-extension from d(/ x Bg) to
I x Bg. By Property 2.1, A(F; I x Br) must be trivial and, since X is one-to-one,
A(f; Q) is also trivial. O

Remark 2.4. Note that properties 2.3—-2.7 are also valid in the infinite dimensional
case, since either f(x) is untouched or changed by a scaling. Hence, all the above
properties hold in the two cases of infinite dimensional settings: the general one and
that of ["'-compact perturbations of the identity.

Property 2.9 (Brouwer topological degree). If B = E and I = {e}, then

deg (f; 2) = degp(f; S2), the Brouwer degree of f.

Proof. Since deg, (f; 2) = [F] = degp(F; [0, 1] x Bg), from Remark 8.1 of
Chapter 1, this last degree, by excision, is equal to

degp((2t — 1, f(x)); I x ) =degp(2r — 1; 1) degp(f(x); 2) = degp(f; £2)

recalling that ¢(x) = 0 on 2 and using the product formula for the Brouwer degree.
O

It is clear that for a compact perturbation of the identity, B = E and I' = {e} one
recovers the Leray—Schauder degree.

In [.LM.V. 0.], the class of I"-epi maps has been introduced. Its definition, for the
case of a bounded domain runs as follows

Definition 2.1. A continuous I'-equivariant map f : Q — E is called I'-epi provided
that

1. f(x) # 0on g

2. f(x) = h(x) has a solution in €2, for any / continuous I"-equivariant compact
map with support contained in €2.

Lemma 2.1. Ifdegp-(f; 2) # {0} then f is I'-epi.

Proof. This follows at once from degp(f; 2) = degr(f — h; 2), since if two I'-
maps, f and g, coincide on 92, they must have the same I'-degree: this last fact
is an immediate consequence of the homotopy property, by using the deformation
7f(x) + (1 — 7)g(x) (which is a I'-compact perturbation of the identity). O
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2.3 Approximation of the I'-degree

We have seen, in the two last sections, that the I"-degree may be defined in the same
way in the case of infinite dimensional spaces B and E, with all the properties 2.1-2.8.
In this section, we shall compute deg-(f; 2) for f a I'-compact perturbation of the
identity, by appealing to suitable finite dimensional approximations. Thus, we shall
consider two I'-spaces B and E such that

B=UxW
E=VxW

where U and V are finite dimensional I"-representations and W is an infinite dimen-
sional I"-space. The maps and homotopies will be of the following form:

f(x) = f(u7 w) = (g(u’ 'LU), w — h(l/l, lU)),

where g(u, w) is in V, h is compact and g and & are I"-equivariant. Homotopies will
affect only g and A.

From Theorem 4.1 of Chapter 1, we know that for any integer n, there is a finite
dimensional I"-subrepresentation M,, of W and a I"'-equivariant map 4, (u, w) : B —
M,,, such that

R, w) — hy (u, | < 1727,

for any (u, w) in Bg. Define

o (x) = fa(u, w) = (g, w), w — hy(u, w)).

We have seen, the last time in Remark 2.1, that the compactness of h(u, w),
together with the finite dimensionality of U, and the fact that f(x) is non-zero on N
imply that there is an ¢ > 0, such that || f(x)|| > 2e, for x in N, where N is the
["-invariant neighborhood of 02 used in the definition of the I"-degree of f.

Hence, it follows that there is an integer nq such that for n > ny,

I frn)] > €, forxin N,

and that
degr (f; 2) = degr(fa; €2),

since the linear deformation 7f(x) + (1 — 7) f,(x) is non-zero on 92 and is a
["-compact perturbation of the identity.

Furthermore, if one writes w = w,, ® w,, with w,, in M,, and w,, in a I'-invariant
complement M,,, it is clear that the I"-homotopy

fnf(x) = (g(u, wy +TWy), W — hy(u, wy + TWy)),

is also valid (since a zero of f,} (x) must have w, = 0 due to the fact that &, (x) is in
M). If x, = u D wy, let

fn(xn) = (g, wy), wy — hy(u, wy)),
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and 2, = QN (U x My), N,,_NO(UXM) Since 9%, CNnﬂ(UxM) we
have that fn (x,) does not vanish on N,,, for n > ng. Therefore, degr( fn, Q) is well
defined and, since f,, Y(x) is the suspension of fn by M,,, one has

degr(f; Q) = B degr(fi: ).

It is clear that, if we had not taken care of seeing that the finite dimensional
construction extends directly to the infinite dimensional case, we would have here an
alternative way of defining the I"-degree through finite dimensional approximations.
This is, of course, nothing else but an adaptation of the classical technique due to Leray
and Schauder when constructing the topological degree for compact perturbations of
the identity via the Brouwer degree of their finite dimensional approximations, noticing
that ©™» in this case is an isomorphism, due to the product formula.

To be more precise, we would have to proceed by comparing degy-( fn; Q,) and
degr (fm; Q), for n,m > ng. To this end, denote by M, ,, the I'-invariant space
(M, M,,) and let P, ,,, P, and P, be the I'-projections on M,, ,,, M, and M,, re-
spectively. Set

=U—-Py)o Pn,mW

and w = (I — P,) o Py yw. Clearly, W is [-invariant and M, P W= M, . Put
Qum =20 (U x My ) and let

FiBOWU X My) = V X My,
be the I"-equivariant map defined by
S, wy, ) = (8, wy, ©), Wy — iy (u, Wy, ), V).

Notice that f (u, wy, 0) = f, (1, wy).
One has the following

Lemma 3.1. degp-(f; Q) = =V degr (Fo; Q).

Proof. Note first that, by the excision property of the I'-degree, we may replace the
set 2., by the set Q, , U (2, x {w € W |w] < e}) and, in turn, this set by the
set Q, x {w € W lw|| < e}. We may also deform the map f to (fn(u Wy), W).

Set Ny, = NN (U x My) and ¢, = ¢|pnwxm,), where ¢ is the Uryson function
associated to N. Obviously, 92, C N, and ¢, is a ['-invariant Uryson function
associated to N,,.

If B. denotes {w € W lw|| < e}, then N, x By, is a I'-invariant neighborhood of
d(€2, x Bg) such that f(u w,, W) is not zero on it. Let ¥ : BN (U x My m) — [0,1]
be defined as

©n (U, wy), if lw|| <e
Y, wy, w) = 3 @, (u, w,)2 — |W||/e) + |w|l/e — 1, ife < W] <2
1, if 2 < |Jw]|.
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Clearly, ¥ is a I'-invariant Uryson function associated to N, x By,. It follows that in
tlge I"-homotopy class of degp(f; €2,,,,) we have the map (2¢ + 2y (u, w,, w) — 1,

f(u, wy, w)), which can be deformed (via a convex I"'-homotopy) to the map
2t +2¢,(u, wy) — 1, ﬂz(’/ﬁ wy), W),

which is the W—suspension of degp (fn; Q). O

Clearly, Lemma 3.1 can be equally applied to fm and to f x) = (g(u, wy, w),
Wy — b (U, Wy, W), W), where wy, = Pywand w = (I — Py,) o Pyw. Hence, we
have that A .

degr (f: Qum) = 2V degp (fin. ).

Finally, it is clear that f and f are I"-homotopic, via a convex homotopy, on
082, Therefore, ZW degr(fu; Q) = EW degr(fin; Qm), provided n, m > no.

To perform the last step of our construction, we would need that the I"-suspensions
=W and ZW should be one-to-one. We could then define degp(f; €2) as the direct
limit of the finite dimensional I'-degrees, degr(f,; €2,) and Hgyxw(S VW) as the
direct limit of Ty, (SV*Mn).

Remark 3.1. Since in this alternative approach, we are asking for one-to-one suspen-
sions, we would have, in this case, the complete additivity of the I"-degree.

Furthermore, it is clear that if U = V and I' = {e}, then deg(f; 2) is the
Leray—Schauder degree of f with respect to €2.

Note that, in order to apply the finite dimensional approximation, one has to keep
track of the suspensions used, in particular of the orientation chosen.

2.4 Orthogonal maps

The reader can see easily that one may extend the I"-degree to other categories of infi-
nite dimensional maps, such as k-set contractions, A-proper or C ! -Fredholm nonlinear
maps, as in the case of the Leray—Schauder degree. However, the case of orthogonal
maps is more interesting since the invariants which will give this degree are much
richer, as we shall see in the next chapter, even in the finite dimensional case.

Let then T be abelian, U = R* x V be a finite dimensional representation of
" (with trivial action on R¥), Q be an open ['-invariant subset of U and consider a
I'-orthogonal map f (A, x) from Q into V such that:

fOuyx)=yfR, x)
S, x)-Ajx =0, j=1,....n,
FOuLx) £0 if (1, x) € 9,

for A; the infinitesimal generators of the action of the torus part of I'.
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As proved in Theorem 7.1 of Chapter 1, one may extend f (X, x) to a I"-orthogonal
map f (A, x), for (A, x) in Bg, a large ball, centered at the origin and containing €2.

It is then clear that one may repeat the construction for the I'-degree: take an
invariant neighborhood N of 92 where f (A, x) is non-zero, construct a ["-invariant
Uryson function and define

F(t,h,x) = 2t + 290, x) — 1, f(A,x))

which will be a I'-orthogonal map on / x Bg and non-zero on its boundary, thus,
defining an element of the abelian group 1'[5_ SU (8V), see Lemma 8.3 in Chapter 1.

Definition 4.1. Define the orthogonal degree of f, degf_(f; Q),as [F(t, A, x)]r in
' o (sY).

It is easy to see that, as in Proposition 1.1, this orthogonal degree is independent
of the construction, since all the deformations can be chosen to be I"-orthogonal.

Theorem 4.1. The orthogonal degree has all the properties 2.1-2.7, i.e., existence,
homotopy invariance (for I'-orthogonal deformations), excision, suspension, the Hopf
property, additivity (up to one suspension) and universality.

Proof. We invite the reader to check all those properties. If k = 0, we shall prove
later that the additivity is true without any suspension. O

We leave also to the reader the task of extending this degree to infinite dimensions
for I'-orthogonal and compact perturbations of the identity. The examples we shall
be looking at can be studied by a global reduction to finite dimensions, as explained
in Remark 8.2 of Chapter 1, avoiding in this way some of the technicalities necessary
for the infinite dimensional setting.

Remark 4.1. We have seen that gradients of I'-invariant functionals are orthogonal
maps (Example 7.1 of Chapter 1). That is, if ® (X, x) is ['-invariant then f(A, x) =
V,® (A, x) is I'-orthogonal. In this case, one could reduce the class of maps to
gradients and define a degree in the following way: Assume that f (X, x) is non-zero
on d<2 and let By be the ball containing 2. Let CTD(A, x) be an invariant extension of
&b to Bp.

By using mollifiers, one may assume that ® is C' in x and that V,®(%, x) =
f (A, x) is arbitrarily close to f (A, x). In fact, let ¢(p) : Rt — RT be decreasing,
C°°, with values A for p < g and O for p > 1, where A is such that fU o(zlhdz =1,
forz=(A,x). IfdimU = N, let

e (1, X) =8‘N/U<p(llz—yll)d~>(y)dy.
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Then, ®, (%, x) is C* and [-invariant (since the action of I' is an isometry and
lyz— yll = llz — yT y|). Furthermore, since

B (1, ) =/U<P(||y||)&>(z+sy)dy,

D, (A, X) approximates d(r, x) uniformly on Bg and its gradient, f., with respect
to x, does approximate f (A, x) on an = {(A,x) € Q : dist(A, x; 02) > &g}, for
& < gg. Since f (A, x) is non-zero on d€2, one may choose &g such that (A, x) # O
on Q\Q, and replace Q by Q.

For the construction of the invariant neighborhood N of €2, take N to be an ¢1-
neighborhood, N| and N, be ¢1/3 and 2¢; /3 neighborhoods of 2. Choose then ¢
to have value 0 in 2 U N, and 1 outside 2 U N,. Take then mollifiers ¢, in order to
obtain a C'! invariant function ¢, such that ¢ is 0 in Q and 1 outside 2 U N, by taking
g <ey.

Next, let &€ > 0 be such that

4| Vo, x) | < I £ O, )l

forall (A, x) in N.
Define, for ¢ in [0, 1],
D, 1, x) = e +1 2o, x) — 1)) + (L, x).
Then,
A _ et +2¢p(A,x)—1)
Vi @t 4, x) = <f(,\, X) + 26tVep(h, x).)

Thus, the zeros of this gradient are such that f (A, x) =0andr = 1/2. Itis clear that
if one has a gradient I'-homotopy on 9€2, the corresponding gradients of ® will be
I"-homotopic as maps from d(/ x Bp) into R x V\{0}.

Definition 4.2. Let Hg su (S V) be the set of I'-homotopic gradients (with respect to

t and x) from SY = 8(I x Bg) into SV = R x V\{0}. Define the gradient degree of
V,® (A, x) with respect to 2 as degg(de)(A, x); ) = [V, @@, A, x)]v.

However, at this point, we don’t know if Hg su(S V) is a group, since it is not clear
that the Borsuk extension theorem holds for gradient maps. Thus, we may consider
instead the orthogonal degree of V, ® (A, x), which is an easier object to study. Of
course, one could also forget the orthogonality and consider only deg (V, @ (X, x); 2),
obtaining the following maps:

1 I
My (SY) = T g (8Y) = Ty (8Y),

where | means forgetting the gradient character but retaining the orthogonality and
[T corresponds to maintaining only the equivariance. It is clear that IT is a morphism
of abelian groups, and one may show (see Chapter 3, § 6) that IT is onto if Xk = 0. On
the other hand, one may conjecture, if k = 0, that _L is one-to-one and onto.
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2.5 Applications

There are a certain number of classical applications of any degree theory, such as
continuation and bifurcation for problems with parameters. In the case of symmetries
one may also consider the implication of breaking the symmetry.

In the case of parametrized problems, assume that we have continuous families of
I"-perturbations of the identity, from B = REX U x Winto E =V x W,

f()"v x) = (g()‘" u, w)v w — h()‘" u, w))s

where A is in R¥, x = (u, w) with U and V finite dimensional I'-representations while
W may be an infinite dimensional representation, in which case 4 is assumed to be
compact. Furthermore,

Jyx) =7 f®, x).

Let S be the set of zeros of f and assume we know an invariant closed subset 7' of
S, called “trivial” solutions and that we wish to concentrate on an invariant set G of
“good” or non-trivial solutions. Suppose S = G U T. Clearly G\G C T. The set
G\G will be called the “bifurcation” set.

Note that if A is a closed bounded subset of B, then SN A, GNAandTNA
are compact, from the finite dimensionality of R¥ x U and the compactness of % (this
argument has already been used several times).

Let (Ao, x0) be a point in G\G and let C be the connected component of G
containing (Ag, xg). Assume that ['C is bounded (hence compact) and let €2 be an
open invariant bounded subset containing I"C.

The following result is an adaptation of a well known topological lemma.

Lemma 5.1. There is an open bounded invariant set 1 such that TC C €1 C Q
and G NI = ¢.

Proof. Set G{ = G N 3, then G and € are two disjoint compact subsets of G N Q
and hence at a positive distance one from the other. Note that G is invariant while C
may not be so.

It is easily seen that there is an &9 > 0, such that, if &€ < &g, no e-chain in GNQ
can join G to C: recall that an e-chain is a finite number of balls, Ay, ..., A, , with
diameter smaller than ¢, such that A; = A; N(GNQ) has the property that AiNA i=¢
if and only if |i — j| > 1.

In fact, if this is not true, there are a,, in G| and b, in C and a (1/n)-chain joining
an to b,. By compactness there is a subsequence (ay;, by;) converging to (a, b) in
(G1, @) and, for all £ > 0, there is an e-chain joining a to b. Let then C, be the set of
all x in G N2 such that, for all ¢ > 0, a and x can be joined by an e-chain. Both a and
b are in G, and clearly C, is closed, hence compact. Furthermore, G, is connected
since if not there would be two open subsets X and Y with G, N X, G, NY disjoint,
non-empty and covering C,.
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From the above, it follows that G, N X and C, N Y are disjoint and hence at a
positive distance €] one from the other. Note that any two points in G, are joined by
e-chains (passing through a and eliminating intersections). Hence, for x in G, N X
and y in G, N Y, for any n larger than 4/¢1, there is a (1/n)-chain joining x to y and
a point ¢, on it, with ¢, in G N Q and distant at least & /2 from C,. Passing through a
subsequence one would get a ¢, with dist(c, C;) > &€1/2 and such that, for any & > 0,
there is an g-chain from ¢ to x and to y. But then one would have an e-chain from
c to a, i.e., ¢ should be in C,, giving a contradiction. Hence C, is connected, a and
b are in G, and C is a connected component. One would have thata € G, C C,
contradicting the fact that G and C are disjoint.

This proves the existence of g such that, if & < g, no e-chain in G N Q can join
G to C. Choose then

Gy ={xeGNQ: thereisa y in G| and an g-chain from x to y}.

Clearly, G| C G2, G2 N C = ¢ by construction and G is closed. Furthermore, if x
is in G, then any point in (G N Q) N B(gp, x) is also in G2, hence G is relatively
open. Note also that G is invariant, since the action of I" is an isometry and if one
has an gp-chain from x to y, its image under y will join yx to yy.
Let Cp = (G N S_Z)\Gz, then C, and G, are compact, disjoint, invariant and cover
G N Q. They are at a positive distance &> one from the other. Choose € an g5 /2-
neighborhood of C;. Clearly, 'C C 1 C 2 and GNow = ¢ and 2 is invariant.
O

A first application of this result will be for the continuation problem:

Theorem 5.1. Let Q be an open bounded T-invariant subset of R x U x W and
set 5, = QN{A = Ao}. Assume that f(\,x) is non-zero on 02y, and that
degr(f (Ao, x); Qx,) is non-trivial. Suppose that the suspension by any trivial repre-
sentation of I' is one-to-one. Then, there is a set of solutions ¥ of f(A,x) =0in ,
such that %/ T is a connected component of orbits and X joins Ay to 2. In fact, for
each straight line £ in RX, passing through Ao, there is such a set of solutions
going from the left part of 0Q2¢ to its right part, where Qe = Q N {A € L} and the
left part means A in L and to the left of Ao (with respect to the given orientation of L).

Remark 5.1. In fact, using the tool of I"-epi maps, [I.M.P.V] and [.M.V.0], one may
show that there is a X, with ¥ C X for all £, and X/ I" has local dimension at least
k, where the dimension is the covering dimension.

Proof of Theorem 5.1. Let H(A, x) = (A — Ag, f(X, x)), then degp(H (X, x); Q) is
defined and non-trivial, since, by excision, one may replace 2 by B, (Ag) X £2,, where
B (1o) is the ball, in R¥, of center A¢ and radius &. Hence H (X, x) is a suspension.
Since the I'-degree is non-trivial, the equation f (Ao, x) = 0 has solutions in €2y,
and, as well, f (A, x) has zeros in 2, for A close to Ag. Using the fact that £(A, x) is
compact and R¥ x U is finite dimensional, one has that there are points (Ag, xg) in
2, which are limit points of zeros of f (A, x), for A # Ao.
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Let T be such a point (Ao, xo) and let G = S\T, hence G = S. If the connected
component C of (Ag, xg) in S does not touch 9€2, then we may apply Lemma 5.1 and
get €21 contained in €2, containing ¥ = I"C and such that f (X, x) is non-zero on 92;.
Thus, degp (H (A, x); 1) is defined and, deforming A to A outside €21, this I'-degree
is trivial (since if A = A1, f (A1, x) has no zeros in 21). By the addition formula (and
using the fact that the suspension is one-to-one), one has that degr-(H (A, x); Q\Ql)
is non-trivial.

If all the components of zeros of f(A¢, x) in £2;, do not join €2, one may repeat
the above construction and arrive, through Zorn’s lemma, at minimal sets £2; on which
the I'-degree of H (X, x) is non-trivial. An application of the above argument would
contradict the minimality and prove the first part of the theorem.

For the second part, by restricting A to £, we may as well assume that & is 1. Let
then T be SNQC and G = SN Q. Suppose that none of the connected components of
G originating on the left part of 32 crosses all the way, in €, to the right part of d<2.
From the first part, we know there is at least one of these components which reaches
Ao (if not, start from the right part of 9€2). Let C be such a component. Since f (X, x)
is non-zero on d<2 for |A — Ag| < &, for some € (a compactness argument), one may
construct 21 in €2, containing I'C N {A > A¢ — ¢} and such that f (X, x) is non-zero
on 921 N {A > Ao} (this requires a slight modification of the sets G and S). Hence,
degr-(H (A, x); 1) is well defined and zero, by pushing A to the right. By repeating
the argument of the first part (taking out €21 and doing the same excision on all the
components going from the left of 9€2 to A¢) one arrives at the same contradiction. O

The second classical application is that of bifurcation. Let f (i, x) bea C' —I'-
compact perturbation of the identity from R¥ x B into E, with a known branch of
solutions (A, x (1)), where x (1) is continuous in A.

If one linearizes f (A, x) around this solution, one has

fOux) =AM —x()) + g4, x),

where A(L) = Dfy (A, x(1)) and g(A, x) = o(]]x — x(Q)])).

Let H, be the isotropy subgroup of x (). If for some Ag, one has that A(Xg) is
invertible, then the orbit I'x(Ap) must be finite since any one parameter subgroup in
I" gives rise to a vector in ker A(Ag), see Property 3.3. in Chapter 1. Furthermore,
from the diagonal structure of A(A), one has that A()LO)HAO =D, f o (rg, x(Xg)) 1s
also invertible. From the implicit function theorem, one has that, near (A9, x (X)),
the solutions are in B™% that is, by uniqueness, that x(A) belongs to that space and
H,, < H,, for A close to Ag. Furthermore, since Dfy (Ao, yx(Xo)) is also invertible,
for any y in I', one has that, by the same implicit function theorem, the order of the
orbit of x (1) is the same as that of x(Ag). Thus, H,, = H;, for A close to Ao.

Lemma 5.2. Let A = {\ : A(A) is invertible}. Then, A is open and on any connected
component B of A, Hy, is constant and will be called the isotropy of that component.
If Lo is a limit point of B, with isotropy H, then H < H,.
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Proof. For the last part, it is enough to recall that x (1) is in E*, which is closed.
Hence x(Ag) is fixed by H. O

Since A()) is H-equivariant, we shall assume in most of this book that H =T’
and look, except for some examples, at bifurcation from stationary solutions. Hence,
the change of variables which takes x()) into O is admissible and one may consider
the bifurcation problem

f,x)=Ax —T)x — g(A, x)

where A, T(A) and g(X, x) are as in § 9 of Chapter 1, i.e., A being a ['-compact
perturbation of the identity, is a Fredholm operator of index 0, || 7 (A)|| — 0O, uniformly
as A goes to 0, and g(A, x) = o(||x||), uniformly in A.

Among all the possible hypotheses on A — T'(}), see [I.M.P.V] and [I], we shall
choose the following:

For A close to 0, R¥ decomposes as Rk x Rk2, wzth A = (A1, Ap), such that
A — T (A1, 0) is invertible for A1 in {0 < ||Aq|| < 2p} =

Let G be the set of non-trivial zeros of f (A, x), i.e., with x # 0. Denote by
Gi=Gn{rx =0}

Theorem 5.2. Under the above hypothesis, assume that
degr(Ix] — &, (A—T(h1,00)x; B}, x Bao)

is non-trivial, where By, = {x : ||x|| < 2&}, and that any suspension by a trivial
representation of T is one-to-one, then there is a branch ¥ of non-trivial solutions
bifurcating from (0, 0), such that the following holds.

1) If 1 = XN Ay =0), then > is connected, 3 is either unbounded or returns
to (A1, 0), with | A1 > 2p.

2) Let Cy be the connected component of _(O, 0) in Gy and assume that C; is

bounded. Then, if all the return points (A, 0, 0) of Cy satisfy the above hypoth-
esis, one has

Y degr(llxll — &, (A = T(hi, 00)x; By, (A]) x Bae)
j
is trivial, where B}, (1) = {A1 : [lh = A1l < 2;).
3) The local dimension of ¥/ T is at least kp + 1.

4) If BV has a closed invariant complement By and f (A, 0, x) is not zero on
sz X (B2:\{0}), then (1)-(3) is true for a set ) of points which are non-
stationary, except for the return points.
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Proof. As in the continuation problem, we shall not prove here (3) since (3) depends
on the notion of I'-epi maps (see [I]). The argument relies on the fact that

degr (A2, x| — &, f(h. x); B, x B3, x Ba)

is the suspension by A, of the previous degree, by deforming g(A, x) to 0, hence
non-trivial.

For A = 0, let T1 = (A1, 0, 0) and C; be the connected component of (0, 0) in
G. Note that, since 0 is stationary, one has that I'C; = C;. If C; is bounded and
does not return to 77, let €21 given by Lemma 5.1, be such that f (11,0, x) # 0 on
0921, unless x = 0 and ||A{|| < 2p. Then,

degr(llx|l — &, f(A1,0,x); 1)

is well defined for all positive .
In particular, one may use the excision property, to see that for & small enough,
the above degree is equal to

degp(llx]| — &, f (A1, 0,x); By, x Ba).

Choose ¢ so small that (A — T(A))x = tg(A, x), for A = (A1,0), ||A1]] = 2p and
x|l < 2e, is true only for x = 0: since A — T'(}) is invertible, the left hand side
dominates the right hand side.

Thus, degr(||x]| — &, f (A1, 0, x); 1) is non-trivial.

However, since €2 is bounded, by taking € very large, one does not have zeros of
f(x1,0, x), with ||x|| = ¢, in 1. This proves (1).

For (2), it is enough to remark that if C; is bounded and the return points satisfy
the non-degeneracy hypothesis, then they are isolated and hence in finite number. In
this case, degp (||x]| — ¢, f(A1, 0, x); 1) is the sum given in (2).

For (4), write x = xo® x1, with xo in BT and x| in B;. Itis enough to complement
f(A1,0,x) by ||x1|| — ¢ instead of ||x|| — ¢, taking the set T as the set of stationary
zeros, {(A, x) : f(A1,0,x) =0, xin B'}. o

Remark 5.2. Using the arguments of [IMV1] and [I] one may characterize the set of
points XA such that A — T (4) is not invertible.

Corollary 5.1. Ifk; = 1, then degp(||x]| — &, (A — T (%1, 0))x; lep X Byg) is non-
trivial if and only if

degr((A — T'(=p, 0))x; Ba) # degr((A — T (p, 0))x; Bae).

Proof. In fact, the homotopy 7(]lx|| — ¢) + (1 — 7)(p — |A1]) is valid, since on
8(321p X Byg), either ||x|| = 2¢ and A1 = 0, since A — T (A, 0) is invertible for
A1 # 0, in which case the deformed term is positive, or |A1| = 2p and x = 0, in
which case the deformed term is negative.
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Thus, the first degree is equal to degr (o — |A1], (A — T (A1, 0))x; lep X Byg) =
degr(p—A1, (A—=T (11, 0))x; By x Bye)+degr(p+A1, (A—T (A1, 0))x; B_ x Bag),
where B1 = {A; : |A; F p| < p/2}: by Remark 2.3, the addition formula holds
without suspension. On B; x Bj., one may deform A — T(A;,0) to A — T (p, 0),
while, on B_ x By, one deformsto A— T (—p, 0). Furthermore, from the definition of
l'[gB (SE), itis clear that degr(p—X1, (A=T(—p,0)x; By x Bae) = —Xpdegr((A—
T (—p))x; Bae). Hence,

degr (x|l — &, (A — T(A1, 0))x; B21p X Bag)
= To(degr ((A — T'(—p, 0))x; Bze) — degr((A — T(p, 0)x; Bae)).

Since Xy is one-to-one, one gets the result. O

Recall that, under the above hypothesis, the equation f(A, x) = 0 is equivalent to
the bifurcation equation (see § 9 of Chapter 1)

B(M)x1+ G, x1) =0,

where x| is in ker A, of dimension d, and B(A) is a d x d equivariant matrix with
G(X, x1) = o(||x1]]). Furthermore B = ker A @ B, where B; is a subrepresentation
of I.

Corollary 5.2.

degr(|lx|l — &, (A = T (A1, 0)x; By, x Ba,)
= degr (x| — &, B(\)x1, Axa: By, x Bae)

and is non-trivial if and only if Eﬁz JU(B(X1)) is non-trivial, where

JU My, _1(GLr (ker A)) — TTF (sker 4y

S]Rkl xker A
is the equivariant Whitehead map, and Eﬁz is the suspension by Ax;.
Proof. It is enough to deform (A — T (A1, 0)x to B(A1)x] & Axo, as it follows from
§ 9 of Chapter 1. The exact effect of the suspension by Ax; depends on I" and will be

given in the next chapter. O

Remark 5.3. The above considerations hold also for I"-orthogonal problems.

2.6 Operations

In classical degree theory one has formulae for the products and compositions of
maps. This is also the case when one has symmetries. Furthermore, for the equivariant
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problem, one may also consider the effect of changing the group of symmetries. In
this last section we shall have a first visit to these operations, by relating them to the
corresponding homotopy groups of spheres. In the next chapter, we shall compute
these groups and give results for these operations.

2.6.1 Symmetry breaking

The first type of general operation is that of symmetry breaking or forcing. More
specifically, assume that f (X, x) is ['-equivariant and has a well-defined I"-degree
with respect to some open, bounded and I'-invariant subset  of R x B.

Let g(X, x) be a ['g-perturbation of the identity, where I'¢ is a subgroup of I.

Then, for & small enough, the map f (X, x) + €g(A, x) is non-zero on 92 (using
the fact that || f (A, x)|| = n > 0, for some 7, on 92 and that g is bounded on ) and
thus degp, (f (&, x) + g (%, x); §2) is also well defined.

Since any I'-map can be considered as a ['gp-map, one has a natural morphism

P, : nngxB(sE) — I, (s

SkaB
and degp (f (A, x) + eg(A, x); 2) = Prdegp(f (2, x); €2).

Example 6.1. Consider the problem of finding 2 -periodic solutions to

dX
Voo = fQ, X),
for X in RY and f autonomous. As we have seen, this gives rise to an S'-equivariant
problem.
If one perturbs f (A, x) by eg(¢, A, X), where g(z, A, X) = g(¢t + 27”, A, X), then
the S'-equivariance is broken to a Zp-equivariance: see § 3 and § 9 of Chapter 1. This
sort of example will be studied in Chapter 1V.

Note also that if a map f (A, x) is ['-orthogonal, it will be ['g-orthogonal, since
the torus part of I'g is a subgroup of the torus part of I". One will have the morphism

(sE)y — ', (sE)

.
Py 1T LSREx

SkaB

and the I'g-orthogonal degree of f(A, x) + eg(A, x) will be the image, under P, , of
the I"-orthogonal degree of f (X, x).
The properties of P, and P will be studied in §7 of next chapter.

2.6.2 Products

Consider the classical problem of a product of maps (f(x1), f2(x2)) defined on a
product = Q1 x Q7 from V| x V5 into Wi x W,, where f] and f> are ["-equivariant
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and €2; are I'-invariant, open and bounded. The associated maps, which define the
["-degree, are
Fi(ti, xi) = 2t + 20 (x;) — 1, fi(xi)).

One may consider the pair (F(t1, x1), Fa(t2, x3)) from R x Vi x R x V; into R x
Wi x R x Ws. Let

o(x1, x2) = @1(x1) + @2(x2) — @1(x1)@2(x2) = @2(1 — @1) + ¢1.

Then clearly, 0 < ¢ < 1,9 = 0 on Q] x Q3 and ¢ = 1 on the complement of
(21 U Np) x (22 U Ny). Furthermore, (Fp, F3) is linearly deformable to (2¢; +
2¢ — 1, fi1, F»), since f;(x;) # 0 on N;. This last map is in turn deformable to
(2t; +2¢ — 1, f1,2t5 — 1, f>). Hence,

Lemma 6.1. If X is the suspension by 2t — 1, one has
[F1, F2] = Zodegr((f1, f2); 21 X 22).

Note that if f1 and f> are I'-orthogonal, this will be also the case for (f1, f2) and
the same relation holds for the I'-orthogonal classes.

Furthermore, it is easy to see that, since [ F;] belongs to Hgvi (SYi), then [Fy, F>]
is in 1L

V1 <ExV) (SW1xBxW2y and that one has a morphism of groups, i.e.,

[F1 + Gy, F2] = [F1, F2]1+ (G, F2]
[F1, I + G2] = [F1, I2]1+ [F1, G,

where, for this last operation, with the sum defined on #,, one has to translate this sum
to t1 (see §7 of next chapter).

Example 62. If Vi = Wy =R, Vo, = Wy = R" and I' = {e}, then [F;] =
deg( f;; €2;)[1d], hence, from the above morphism, one obtains that, for the Brouwer
degree,

deg((f1, f2); Q1 x Qo) = deg(f1; Q1) deg(f2; 7).

The situation for an abelian group is more complicated but several results will be
given in §7 of next chapter.

2.6.3 Composition

The last operation which we shall study is that of composition of maps. Consider three
representations V, W and U of the group I" and assume f : V — Wand g : W — U
are I'-equivariant maps. Then go f is also I'-equivariant. Let 2 be a bounded open
invariant subset of V.

Assume f : Q — W is non-zero on 3. Let Q1 = f(£2). Assume £ is open
and that g is non-zero on d€21. It is easy to see that €21 is invariant and bounded (in
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infinite dimensions this is due to the appropriate compactness), that f(d2) C 9L
and that 0 is away from 0€2;.

Let B be the ball used in the definition of the I"-degree of f, with the associated
extension f of f. Then f (B) C Bj for some ball B centered at the origin. If g is
the extension of g to By, then g o f will be an equivariant extension of go f to B. If
Ny is aneighborhood of 0€21, where g is non-zero and not containing 0, then one may
choose a neighborhood N of 92 contained in f ~1(N1), with its associated ¢. Thus,

[F] = [2t +20(x) — 1, f(x)] = degr(f; Q)
[H] = [2t +2¢(x) — 1, g(f(x))] = degr(g o f; Q)
[G] = [2t1 +2¢1(y) — 1, g(y)] = degr(g; 221)

are well defined.

In order to be able to compare these I'-homotopy classes, let us replace 2¢ — 1
by s and 2¢; — 1 by s1, hence s and s belong to the interval [—1, 1], and replace the
component 2t 4+ 2¢(x) — 1 by (s 4+ 2¢(x))/3, which belongs to the interval [—1, 1].
Thus F is I'-homotopic on d([—1, 1] x B) to (s1, y), with s; = (s 4+ 2¢(x))/3 and
y= f(x). Then,

[G(F (s, )] = [(s + 20(x))/9 + 201 (f (x))/3, §(f (x))].

One may deform ¢; (f(x)) to 0, since (f(x)) # 0on N and ¢(x) = 1 outside QUN,
that is the first component is larger than 1/9 and the deformation is valid. We have
proved

Lemma 6.2. Under the above hypothesis one has
degr(go f:€2) =[G o Flr,
where [Flr = degr(f; Q) and [Glr = degr(g; f(£2)).

Remark 6.1. If V = W = U = R" and I" = {e}, the classical formula for the degree
of a composition runs as follows.

Proposition 6.1. Let Q2; be the bounded components of R\ f (dQ2) and suppose that
g o f is non-zero on 0Q2. Then

deg(go f; Q) =) deg(g; Qi) deg(f — pis ),
where p; is any point in ;.

Proof. Assuming, from Sard’s lemma, that f and g are C' and that 0 is a regular value
for g o f, one has

deg(go f;2) = > Signdet Dy(go f(x)) =
gof(x)=0
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Z Signdet Dy g(y) Signdet Dy f(x)

y=f(x)
gof(x)=0

> Signdet Dg(y) deg(f(x) — y; Q).

YERM\ £(39)
g(»=0

But R™\ f(9€2) is the union of the disjoint connected sets €2;, so that deg( f(x) —
y; ) = deg(f(x) — pi; ) for y in 2; Hence

deg(go f; Q) = Zdeg(f(x) pl,sz)< > slgndeth(y))

yeQ;
g(»=0

=) deg(f(x) — pi; Q) deg(g: ). D

In the equivariant case, it is clear that €2; are open, connected and invariant. Fur-
thermore,

degr(go f; Q) =) degr(go fi f~'(Q) N Q)

up to one suspension. For €2; which contains 0, one may apply Lemma 6.2 (taking
pi = 0), however, in general f(x) — p; will not be equivariant. This explains the
hypothesis of Lemma 6.2.

Now, in order to use the algebraic structure of the homotopy groups of spheres,
one needs to look at maps from SV into SY, i.e., to normalize F to F(s xX) =
F(s,x)/||F(s,x)| (one may assimilate the radii R and R to a change of scale). In
that case F (s, x) sends the boundary of the cylinder [—1, 1] x {x : ||x]| < 1} into
the boundary of the cylinder [—1, 1] x {y : ||y]| < 1} in W. One may then take the
composition with a I'-map G and obtain a pairing

My ($™) x Mgy (8Y) — My (sY)

(FIr, [GIr) = [G o Fr

which is well defined on homotopy classes. We shall see, in §7 of next chapter, that
the pairing is in fact a morphism.

Remark 6.2. As maps from SV into W\{0}, it is clear that F (s, x)Aand I:"(s, x) are
I'-homotopic. However, this homotopy is not true for G(F) and G(F). For instance,
ifV=W=V=R"and I = {e}, then any map F : B — R"\{0}, is such that

[F] = deg(F; B)[Id].
The morphism property of the pairing implies that

[G o F] = deg(G o F; B)[Id] = deg(G; B) deg[F; B)[Id]
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and deg(ﬁ ; B) = deg(F; B). The first equality follows also from Proposition 6.1,
since F(dB) C dB and 2; = B contains the origin. However, deg(G o F; B) may
be quite different, as the following example shows.

Example 6.3. On R?, let f(x, y) = (x, (x —¢&)y), where 0 < & < 1/2. Then f sends
the unit disk B into the interior of a lemniscate, with two components, 2_ containing
the origin and 4. By computing the Jacobian of f at the origin, one has that
deg(f; B) = —1, whiledeg(f(x, y)—(2¢,0); B) = 1. Hence, from Proposition 6.1.,
one has

deg(g o f; B) = deg(g; Q24) — deg(g; €2-).

For instance, if g(x1, y1) = (x1 —2¢, y1), thendeg(g; 2+) = 1 and deg(g; 2_) =0,
hence deg(g o f; B) = deg((x — 2¢, (x — ¢)y); B) = 1, which is not the product of
deg(g; B), which is 1, by deg(f; B).

However, if one considers f/|| f|| on d B, then

gU/IFID = &/ILfI = 2¢e, (x = &)y /I fID-

This map, which is non-zero on 9B, is homotopic to || f|lg(f/ll fI), which is
(x —2¢|| f1l, (x — €)y), a continuous map on B. For x = ¢ or y = O then || f| = |x]|,
thus the only zero of this map is (0, 0). Near the origin, one may deform the map to
(x, —ey), with degree equal to —1.

Example 6.4. Let 2 be the annulus {z € C; 1/4 < |z| < 1} and let f(z) = 7", for
some integer n > 1. Let Q1 = f(2) and g(y) = y — 1/2 be defined on 2. Then

[F1=1[(s +2¢(2)/3,2"1 = 0,[G] = [s1 + 201 (), y — 1/2] = 1 x [1d],

since F(s,z) #0on B = {(s,2) : |s|] <1, |z] <1} and G has degree 1 with respect
to By = {(s1,y) : Is1] < 1, |y| < 1}. On the other hand

[G o F1=[(s +20(2))/3 + 201 ("), " — 1/2] =[5, 2" — 1/2] = n[1d],

since ¢1(1/2) = ¢((1/2)!/") = 0.

However, since F(s,z) # 0 and G(s1,y) # 0 on 9B, one may perform the
deformation G(F(rs 77)), where F(s z) = F(s,2)/||F(s, 2)|l, and have [G o F]
[G(1,0)]=0.

There is however one case where [G o F] = [G o a ], which we shall phrase in
terms of the hypothesis of Lemma 6.2.

Lemma 6.3. Assume Q1 = f(R2) is open and has the following property: If y is
non-zero and in ﬂg_lA(O), then the segment {ty, 0 <t < 1} is entirely in Q21. Then
degr(go f; Q) =[G o Flr.

Proof One has that F (s, x) = ((s 4+ 2¢(x))/3, f(x)) and, for (s, x) on d( x BR),
F(s x) = (a(s+2¢(x))/3, af(x)) where a(s1, y) = (as], ay) belongstod (I x By),
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i.e., is the intersection of the line segment, going from the origin to (sq, y), with the
boundary of the cylinder. Then,

G(F (s, x)) = (a(s + 290(x))/3 + 201 (@ f (x)), & f(x))).

Replacing « by 7, going from 1 to «(s1, y), one would obtain a I"-homotopy from Go F
toGoF , provided that, on d(/ x Bpg), this homotopy is valid. Now if one has a zero,
then tf(x) cannot belong to (€21 U Np)¢, since there ¢ is 1 and o (s +2¢(x)) /3| < 1.
Thus, for a zero, one would need that © f (x) should be in 21 and s +2¢(x) = 0. This
last equality, on d(/ x Br), is possible only if s = —1 and p(x) = 1/2,i.e.,xisin N,
f (x) in N (and non-zero), and g(t f x)N)=0.Ify=r< f (x), one has a contradiction
with the assumption on €. O

Note that the above condition is violated in the examples above and that, on the
contrary, it is fulfilled if Q; is starshaped about the origin, or if g~1(0) N Q; C
B(0, p) C 21, where B(0, p) is a ball of radius p and center at the origin.

Remark 6.3 (Orthogonal maps). Let V. = W = U and I" be abelian. If f and g are
I"-orthogonal, i.e., f(x) - Ajx = 0, g(x) - Ajx = 0, where A; are the infinitesimal
generators for the torus part of I, it is easy to see that the composition of f and g is
not necessarily orthogonal. However, if one follows the case of gradients,

g =Va(y), h(x)=Vi(®(f(x)),

then

h(x) = Df(x)"g(f(x))

where g(y) is '-orthogonal, then one may ask that f(x) is C! and I'-equivariant.
From the relations Df (yx)y = yDf(x) and Df(x)Ajx = A; f(x) (obtained by
differentiating f(yx) = yf(x)), one sees that i (x) is ['-orthogonal.

If f(02) C 921, 0 &€ 021 and g(y) is non-zero on d<21, then one may look at
degr(f; 2), deg, (g; 21) and deg | (h; 2) provided 4 is non-zero on d€2, for instance
if Df (x) is invertible on 9€2.

As in Lemma 6.2, one has, for |s]|, |s1| < 1,

F(s,x) = (s +20(x))/3, f(x))
G(s1.y) = (51 + 2013, 8(Y)
[H(s, )11 = [s +20(x), D) g(f ()L = [DF (s, x)T G(F(s, x)11

assuming fis C'and Dfis invertible in N C f~1(Ny).

In order to get a result similar to Lemma 6.3, i.e., working with F, one needs to
make cumbersome computations. Instead, we shall consider the following particular
case:



84 2 Equivariant Degree

Proposition 6.2. Assume Q2 = B(0, R), f(0) = 0, Df (x) invertible in 2, g(y) # 0
for lIyll = Ry and || f (x)Il = Ry if |x|| = R. Then

deg | (Df)" g(f(x)); B(0, R)) = deg, (g(); B(O, RY)).

Proof. Since Q2 = B(0, R) and one may choose €21 = B(0, R), then the construction
of F and G is not necessary: one may compute directly the classes of #(x) and of
g(y). Note that the invertibility of D f (x) implies that O is the only zero of f(x). Note
also that Dh(x) = Df(x)TDg(y)Df(x), whenever g(f(x)) = 0. Hence, if O is a
regular value of &, then the Brouwer degree of 4 is that of g.

Now, on 9€2, one may deform orthogonally % (x) to the map

DFTIF IR F)/NLF D
via(l — 1+ r||f(x)||2)h(x) first and then via

DF @I fIPe(f @)1 =1+ TR/ILf (D))

The new map has its only zero at x = 0, hence one may deform x in 9€2 to ex, for ¢
small and use the homotopy where f(ex) is replaced by (1 — 7) f(ex) + tDf (0)ex
and Df (ex) by (1 — t)Df(ex) + tDf(0): since Df(0) commutes with any y in T’
(and hence with A;) the deformation is clearly I"-orthogonal and, for & small enough,
the path from Df(0) to Df (¢x) consists of invertible matrices, that is the only zero
of the deformation is at x = 0.

At this stage, one has that

[h]L = [DFf(O)T | Df(0)x|I*g(R1 Df (0)x/|| Df (0)x[)]..
Now, in GL(V), one has that Df (0) is I'-deformable to
A = diag(er, €z,, ..., 1),

where er = diag(Signdet Df(0)"', 1) on VI and €7, 1s a similar matrix on v
(VYL foreach H with T’ /H = 7 and the last [ is on the other irreducible represen-
tations (see Theorem 8.3 in Chapter 1). Hence, by replacing D f (0) by its deformation
to A, one obtains an orthogonal deformation for # and

[h]L = [Allx|*g(RiA(x/IxIN]L = [Ag(AY)]L,
where y is on d B(0, Ry).
Now, we shall see, in Theorem 6.1 of Chapter 3, that
(e =Y dulFu()]L,

with one generator Fy for each isotropy subgroup H of I'. In particular, each Fy has
the form (..., Xo, (y*> — y)y, ...), where y is a real coordinate where I' acts as Z,
and X corresponds to V! It is then clear that

[Ag(AY)]L = Y dulAFu(A)]L =Y dulFu(y)]L = [g()]L,

from the form of Fy, since 8%X0 = Xo, —((—y)%> = D(—=y) = (y* — Dy. O
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2.7 Bibliographical remarks

The literature on the “classical” degree theory and its extensions (to k-set contractions,
A-proper maps, etc.) is very extensive. For the reader with interest in analysis, the most
accessible texts are the books by Nirenberg, Berger and Krasnosel’skii—Zabrejko. For
a survey of the Russian literature, the reader may consult the paper [Z], by Zabrejko.

On the equivariant side, the situation is scarcer. There are indices coming from
Algebraic Topology, with the inconvenient that, having to assume that the orbit space
is a nice manifold, the action has to be free.

For the case of autonomous differential equation, Fuller has introduced in [F], a
degree which is a rational. The relation between the Fuller degree and ours has been
shown in [[.M.V. 2]. Dancer, in [Da], has defined a degree for S 1 -gradient maps, which
is also a rational, and can be shown to follow from the S!-degree with a “Lagrange
multiplier”, see [.LM.V. 2].

Geba et al. have defined an S'-degree in [D.G.J.M.] and then a degree for a general
Lie group in [GKW.], which corresponds to the “free part” of our degree. Their
definition, using the “normal map” approach will be related to ours in the next chapter.
Finally, Rybicki has also defined a degree for S!-orthogonal maps in [R] and Geba for
["-gradient maps, for a general I, in [G].

The material in this chapter is taken from [IMV1] for § 1-3, from [L. V. 3] for § 4.
Lemma 5.1 is known as “Whyburn lemma” and has been widely used in the bifurcation
literature.



Chapter 3
Equivariant Homotopy Groups of Spheres

As we have seen in the preceding chapter, the equivariant degree in an element
of HEB (SE), the group of all equivariant homotopy classes of I'-maps from S into

SE. Thus, it is necessary to compute these groups, to know their generators and to
understand the effect of some operations, like changing the group I', taking products
or composition of maps. This chapter is devoted to these topological considerations.
Our tools have been completely expounded in § 8 of Chapter 1 and are based on the
idea of extension of maps, what is known as obstruction theory. However, we have
avoided, as much as possible, most of the abstract scaffolding of Algebraic Topology
so that any reader should be able to follow our constructions. The price we have to
pay is maybe some long formulae and the restriction to abelian groups and to spaces
which satisfy hypothesis (H) of § 2 of Chapter 1. We refer to the section on bibli-
ographical remarks for the very few results for the non-abelian case and some other
abstract results. If, nevertheless, the reader wishes to go quickly to applications, then
he has only to see the main results of this chapter and go on to the next one.

3.1 The extension problem

Let the abelian group I" act on the finite dimensional representations B and E and
consider an element F of l'[gB (SE), ie., Fisan equivariant map from d(I x B) into
R x E\{0}. Let V and W stand for / x B and R x E respectively.

For any isotropy subgroup K denote by BX = (I x B)X.

The problem we shall be considering in this section is the following: Let H be
a fixed isotropy subgroup and assume that F has a I'-equivariant extension: F :
U~y BX — W\{0}.

Under which condition F on 3B (and F on the union of the balls BX) will have
a non-zero I'-extension from B into W#\{0}?

From Gleason’s lemma (Lemma 4.1 of Chapter 1) one has a I"'-extension from

aBH U B:.(K) into WH\{0}
K>H

which will be non-zero in an g-neighborhood B, (K) of BX.
Note that all points in B\ Uk~ g B:(K) have H as isotropy subgroup and that
I'/H acts freely on them.
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Theorem 1.1. (a) If dim VZ — dimT/H < dim WH, then there is a non-zero T-
extension to BY.

(b) If instead one has equality of the dimensions, then there in an integer which is
an obstruction to the T"-extension.

Proof. Write VH componentwise, in real and complex representations as

(xlv--"xm):(ylv---,Yr,Zla---st)

with y; real and z; complex. Then H = (| H;, where H; = Iy;. Letk =dimI'/H,

define H = H; N ---N Hj and let k; be the order of Hj 1/H As seen in § 2 of
Chapter 1 there are exactly k complex coordinates for which k; = oo, i.e., where

H;_ 1/H acts as S'. Let
={e(1 —1/k;) < Ixj| < R, 0 < Argx; < 27/k;}

be a fundamental cell corresponding to H.

Hence, if k; = 1, there are no limitations on x;, while on y; with k; = 2, one has
yj = €/2. Also, if k; = o0, then x; is real and positive.

Then, G, is a (r + 2s — k)- dimensional ball and, from the hypothesis of the
theorem, one has dim W# > dim C,. From the fundamental cell lemma (Lemma 2.2
in Chapter 1), B\ Uk~ g Beg (K) is covered properly by the images of G, under
I'/H, where gk is chosen to fit e(1 — 1/k;).

In particular, if X belongs to C¢\Cs, i.e., for some j, with x; complex and k; >
1, one has Argx; = ¢; = 2m/kj, then there is a unique point y; X, with y; in
Hj_1/Hj, such that (y;X); = x; fori < j and the argument of (y;X); is 0, i.e.,
yj X belongs to dC,. In particular, y;, with y; real and positive, i.e., with k; = 2,
and z;, with k; = oo, are left unchanged under y;. For such an X, let j; be the
first index such that ¢, = 27 /kj, then, if X = (x1, ..., x;,), there is a unique y;,
in Hjlfl/Hjl such that leX = (x1,... > Xji—1, |le [, Vit Xjigrs -« yjlxm). If J2 is
the first index for y; X such that Arg(y;,x;,) = 2m/k;, one obtains a y;, such that
ViV X = (1, ..., x|, ..., 1xjls - .-, ¥ V1 Xm). In a finite number of steps one
gets the unique y in I'/ H, given in the fundamental cell lemma, such that y X belongs
to G, N 0C,.

Note that any equivariant ['-extension of F' must satisfy F(X) = )7_1 F(yX),ie.,
F on ég\G‘S is determined by F restricted to C. N dC,, while on interior points of Cg,
F may be arbitrary.

Let § be the number of complex z;’s with k; < co. Thens = § + k and dim C; =
F 4+ 25 +k < dim WH . Let § be the number of complex z;’s, with 1 < k; < oo.

The proof of the theorem, by induction on dim V#, will consist in showing that,
on 0C,, there is a non-zero extension of F (and of F ). This extension needs to have
the necessary symmetry properties allowing, under the action of I'/H, a consistent
extension, i.e., ['-equivariant, to BH of any continuous extension inside C.
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The minimal dimension possible, for the starting point of the induction, will be
that for the case when H = ("] H;, while any intersection without one group will give
a group strictly bigger than H. In particular, k; > 1.

(a) The simplest case. Points on dC; are then either with |x;| = R, where F'is
givenory; = g/2realor |z;| = e(1—1/k;) withk; > 1 and z; complex, or Argz; =0
or2m/k; when 1 < kj < 0o. Now, if x; = 0, from the minimality of the intersection,
the corresponding isotropy subgroup contains strictly H and for |x;| < &(1 — 1/kj)
one has the given equivariant extension Fof F. In particular, one does not have to
worry about y; real or z; with k; = co.

The rest of dC corresponds to points with some phase @j on d1;, where I; =
[0, 27/ k], for 1 < k; < oo and z; complex (there are § such j’s). Let A;_; be the
(§ — i)-torus

Ag_iE{(pj=0f01‘j=1,...,i,(pjE]jforj=i+1,...,§}.

(There is a slight abuse of notation here: x; are not necessarily consecutive variables
since we are taking out the real variables and those for which k; = o0).

Then, Ag = {¢; =0for j = 1,..., 5§} gives a piece of dC which has dimension
r+25 —§+k < dim W¥, since § > 1. From Remark 8.1 in Chapter 1, one has a
continuous non-zero extension on it: that is, any map from 3(B"*!) into R"+1\ {0}
has a non-zero extension to B" 1, provided n < m.

For Ay = {¢; = 0 for j < § and ¢; in I}, one has already an extension
for ¢; = O (i.e., on Ag). Furthermore, there is a unique y; in Hs 1/ H such that
Arg(y;|x;|e?™/ kS) = 0, hence y; leaves untouched the preceding x;’s while, for an
eventual j > §, one would have k; = oo and y;x; = x;: by the minimality of vH,
there are no x; with k; = 1. Deﬁne

Fxi, ... lzgle™ s, )y =97 ' Fan, oIzl

which gives an extension to the front face, ¢; = 27 /k;, of A from the back face
@; = 0, which is compatible with the action of I'/ H (leaving fixed ¢; for j < §). If
§ > 1,i.e.,if Aj corresponds to a piece of 3C, (§ = 1 would give C,), then this piece
is a ball of dimension r + 25 — § + k 4+ 1 < dim W#. Hence, again from Remark 8.1
of Chapter 1, one obtains a continuous non-zero extension on it.

Assume now that one has obtained an extension for the last § — i phases, that is
for A;_;. Consider now A;_; . which has a back face ¢; = 0, i.e., A;_;, and a front
face for ¢; = 27/k;. For a point X on that front face, let y; be the unique element of
[‘N]l',l/ﬁi such that

2mifk;
ViQxts oo ximt, xR i xg) = (X X (X ViXigds e Vig)
in G, i.e, with ¢; in [0, 27/ k;) for j > i. Define then

F(X)=7""FX)
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which will preserve the symmetry on that face. It remains to extend F to I; = {¢; €
[0, 27/ k;]}. This is done in the following sequence:

1. Extend to I; x {¢; = 0, for j > i} by the dimension argument.
2. Extend to I; x {¢; =0, fori < j < §} x {¢; = 2m/k;} by the action of y;.
3. Extend to I; x {¢; =0, fori < j < §} x I; by the dimension argument.

4. Extend to I; x {¢; = 0,fori < j <§ — 1} x {g;_; =2m/k;_;} x I; by the
action of y;_1.

5. Extend to I; x {¢; = 0,fori < j < §—1} x I;_; x {g; = 0} by the dimension
argument.

6. Extendto I; x {¢; = 0fori < j <§—1} x I;_| x {¢; = 27/ k;} by the action
of y;.

7. Extend to I; x {¢; = 0,fori < j < § — 1} x I;_; x I; by the dimension
argument.

8. One continues with I;_,, first with ¢; = ¢;_; = 0 and so on ..., i.e., repeating
all the constructions which lead to the extension to A;_; but now with /; instead
of ¢; = 0. Each time one makes an extension, one has to be sure that all the
symmetries affecting the phases, which are placed later in the sequence, are
taken care of.

Example 1.1. We invite the reader to make a pause and to see in simple examples
what is the mechanics of the construction. We propose the following case. Take
I' = Z3p, acting on (z1, 22, z3) via (ekmi | ekmi/3 o2kmi/5y for k = 0,...,29. Then,
H| = 75, corresponding to even k’s and k| = 2. Also Hy = Zs, corresponding to
multiples of 6, with Hy < Hj, thatis H N Hy = H; and k; = 3. One has H3 = Zg,
corresponding to multiples of 5, with k3 = 5, H] N H3 = Z3, with multiples of 10
and Hy N H3 = {e}.

Then, 0 < ¢ < 7,0 < ¢ < 27/3,0 < @3 < 27/5 is the fundamental cell.
The y3_1 which sends (¢1, ¢2, ¢3) = (0, 0, 0) into (0, 0, 27t /5) corresponds to k = 6,
while y2_1(0, 0,0) = (0,27/3,0) for k = 20 and yl_l(O, 0,0) = (w, w/3,0) for
k = 25.

Consider now the following equivariant map on [0, 1] x {(z1, 22, 23) : |zi] < 2,
i=1,2,3}

Q1 + 1 =2|z12223, (23 + Dz1, @123 — D22, (25 + Dz3),

which is non-zero if one z; is 0. One recognizes in z%, Z]Z% and zg the invariant
monomials of Lemma 6.3 in Chapter 1. The zeros of the map are for z; = +i, z3 =
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eTISHUTI]S o = TI/OF2KTI[3 op oTi/242k7i/3 and t = 1/2, i.e., 30 in all, but only
one in C: (i, emile, e”i/S), fort = 1/2. Now, on dC, one may deform the map to

2t—-1,71 —Z?,Z2 - zg,m — zg),

where (Z(l), Zg, zg) is the unique zero, which has an index 1. We leave to the reader
the details of the deformation, as well as the computation of the ordinary degree (i.e.,
non-equivariant) of the map, which is 30: make a deformation to (2¢ — 1, z%, zg, zg)
or use the fact that each zero has the same index (see Property 3.3 in Chapter 1).

A final note on this example: if one takes the order (z2, 21, 23), then 121 =6, 122 =
1, 1;3 = 5, that is, the fundamental cell depends on the order of the coordinates. Of
course, if I'/H is finite, then |I"/ H| = I1k; is independent of the order.

(b) End of the proof of the theorem. In order to complete the induction argument,
one needs to see what happens when adding a new variable, without changing H. Thus,
one may assume that this new variable is the last one, x,, 11, such that I:In =H= FI,,H ,
that is k,4+1 = 1. Hence, G4, the new fundamental cell, is G, X {|x,+1| < R}.
On 0C, 41, one has either |x,41| = R, with the original map F, or X in dC, and
|xn+1] < R. The first step is the extension to dC, 1 N {x; = 0}, where the minimality
argument is replaced by the induction hypothesis.

The next step is the construction on Az, where one allows some k;’s to be 1, i.e.,
that there is no restriction on ¢;. One may perform the same steps by either ignoring
these phases or by taking y; = Id.

Thus, if dim V¥ < dim W +k, one may go all the way and obtain an extension to
C which respects the action of I'/ H on dC. Then this extension is reproduced by I'/ H
to give a I'-equivariant map on B¥. While if dim V# = dim W# + k, one has a non-
zero extension to dC and, given any continuous extension to @, with possible zeros,
one obtains a I'-equivariant map on B which is non-zero on I'(3€). The possibility
of a non-zero continuous extension to € will be determined by the Brouwer degree of
this map from dC into W#\{0}: see again Remark 8.1 of Chapter 1: such a map has
a non-zero extension if and only if its degree is 0. O

Corollary 1.1. If for all isotropy subgroups H for the action of T on V, one has
dim V# < dim W# + dim T/ H, then T, (S) = 0.

Proof. This is clear, since one may extend any F : §¥ — R x W\{0} to a non-zero
equivariant map on I x B, starting with H = I', I x B' and the invariant part of F,
then on all maximal isotropy subgroups (which correspond to some of the coordinates)
and then, by stages, for a given H, having first extended for all K’s, with H < K. O

Corollary 1.2. Let J be the subset of 1so(V') consisting of all isotropy subgroups H
with the property that for any K < H, one has dim VK < dim WX + dimT'/K.
Denote by S ;c the union of SH’s for H in J€. Then the following holds.
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(@) If FinTIY, (SY) is such that F restricted to S ;c has a non-zero T -equivariant
sV J
extension to the union of the B"’s, for H in J¢, then [F]r = 0.

(b) If F and G are I"-homotopic on Sjc, then [F]r = [G]r.

(c) IfJ is the subset of Iso(V) defined as J but withdim VX < dim WX +dim I'/K
instead of a strict inequality, then if there is a non-zero I'-equivariant map._ F
defined on S ., then F extends to an element ofl'l v (W), In particular, sz is

all of 1so(V), there is an equivariant map from SV into SV, even if VI = {0}.

Proof. (a) Starting from maximal elements in J, one extends F, step by step, to a
non-zero equivariant map from S Vinto R x W\{0}, thus, [F]r = 0.

(b) Either replace V by I x V, defining a new map, on I x S, by F forz = 0
and G for T = 1 and the I"-homotopy on I x Sjc, or use the algebraic structure of
l'[gv s") by considering [ F]r — [G]r, where the sum is defined on the first variable.

This map, being trivial on Sjc, has a I'-equivariant extension to the union of the BHg,
for H in J¢. By (a), one obtains [F]r — [G]r = 0.

(c) It is enough to follow the extension procedure given in Theorem 1.1, but now
on € N SV, which has one dimension less. Since this construction does not involve
the group structure, one obtains the result. O

Returning to the case of a single H with dim V# = dim W# 4-dim '/ H, we have
seen that the Brouwer degree of the extension to d C is the obstruction for the extension
to B, A priori, this degree may depend on the extensions to d€ and on the choice of
C, i.e., on the decomposition of I'/ H. We shall give below several conditions under
which this degree is independent of these factors.

We shall first complete some of our results on the fundamental cell.

Definition 1.1. Let zy, ..., z; be the complex coordinates with k; = oo, in the de-
composition of the fundamental cell C, (z1, ..., zx are not necessarily consecutive).
The ball By = {x € B, z;j real and non-negative, j = 1,..., k} will be called
the global Poincaré section. Note that B has dimension dim V¥ — dimI'/H. Let
Hy = Hy N ---N Hy, with H; the isotropy of the coordinate z;, j = 1, ..., k, then
Hy, which leaves By globally invariant, will be called the isotropy of the Poincaré
section By.

Lemma 1.1. (a) Hy acts as a finite group on By and |Ho/H| = Tlk;, for those x;
with kj < 0o. The fundamental cell for this action of Hy on By is C.

(b) Any T-equivariant map on BY induces, by restriction, an Hy-equivariant
map on By and, conversely, any Hy-equivariant map on By can be extended to a
I-equivariant map on B . These two operations are the inverse of one another.

) If Fy is a non-zero Ho-equivariant map on 9 By which has a non-zero Hy-
extension Fo to UK>H(B N By), then one obtains a T -equivariant map F on S™ and
a non-zero T-extension F to UK>H(BK) If (Fp, Fo) is Ho-homotopic to (G, Go)
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then (F, 15) is I'-homotopic to (G, G). Conversely, if (F, F) is I-equivariant on
SH U g~y (BX) and dim V' < dim WH 4 dim '/ H, then one may build (Fy, Fo)
ondBr Ug-py (BX N By) a non-zero Hy-map which depends only on the I"-homotopy
class of (F, F).

Proof. (a) We have seen, in Lemma 2.4 (a) of Chapter 1, that the matrix (n{ ) giving
the action of 7" has rank k = dim I'/ H and an invertible submatrix corresponding to
Z1,...,2k- Hence dimI'/Hy = k and, since '/H = (I'/Ho)(Hy/H), one gets that
Hy/H is a finite group.

Write now I'/H as (['/H) x -+ x (Hi—1/H;) x -+ x (Hp—1/H), where k; =
|FI]~_1/I-I]~|. For a complex coordinate, if k; < oo, then I:Ij_l/ﬁj = ij, from
Lemma 1.1 in Chapter 1, and one may choose as a generator the y;, given in the proof
of Theorem 1.1, such that y; (|z; |e27i/kiy = |7 i1 and sends C onto itself. In particular,
y; leaves invariant the argument of the coordinates zp, ..., zx with k; = oo, that
is y; belongs in fact to Hy. For a real coordinate y; with isotropy H; and k; = 2,
then we have seen that all the preceding y;’s, corresponding to complex coordinates,
belong to H;. Furthermore, H; contains 7" and any subgroup of odd order. If y;
generates Hi_ / H; = 7, then the action of I" on y; is by exp(2i (K, L' /M)) and
¥i corresponds to a choice K( of K such that (K¢, L' /M) = 1/2. Since the action
on zy,...,Zk is by exp(i(Nj, o) + 2mi(K, Lj/M)), where N, ..., Ny are linearly
independent, there is a ®¢ such that (N7, ®q) + 27 (Ko, L/ /M) is a multiple of 27
for j =1,..., k. Thatis y; is in Hy.

Note that y; is in I:Ij_l, i.e., leaves invariant x; for i < j, and that yjkj is
in I:I i. Following the decomposition of I'/H, one may write any y in ['/H as
vty k8. . 8k, where O < o < kj and 8y, ..., & correspond to the coordi-
nates with k; = oo. Thus ¥y = yd, where yp = ]_[ 1z 7isin Hy/H and 8 = § ... 8.

From the fact that y ) acts trivially on Xj, it is easy to see that the set of all possible
Y0’s gives a subgroup of Hy/H of order [ [ k;. Furthermore, if y is in Hy then, from
§ = yofly, one would have 8;...8; = yp is in Hy. But then §; = ?08;1 . ..8,:1
would be in Hj, since §; fixes z; for j > 1, that is §; would be in H,, hence trivial.
Continuing this argument one gets that §; are all trivial and y = yy, thatis Hy/H has
order [ ] ;.

Now, for fixed j with k; < 00, one has that yjp(@), forp=0,...,ki — 1, are
k; disjoint cells contained in By, since y; is in Hy. Moreover, C and yjé have only
the face Argx; = 0 in common. Note also thatif 0 < Argx; < 2n/k;, fori # j,
then Arg y; x; belongs to an interval of length 27 / k; which intersects the previous one,
since y; was defined from a point X of C\C such that y; X was in C. Furthermore, if
x;j is complex, then y; preserves the argument of any y; real with k; = 2.

Now, if thereis an X in yl.p (Chd ﬂyjq C?, where C? isthe interiorof € and 0 < p < k;,
0 < g < k;j, then if y; corresponds to y; real and k; = 2, then yjq (yi) > 0 and
vi(yi) < 0, which is impossible. Thus, the only possibility is for complex z; and z;
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with Arg z; in (=27 p/k;, —2n(p—1)/k;) and Arg zj in (—2mq / kj, =27 (g — 1)/ k;).
Assuming i < j, one has that y; fixes x;, hence Arg z; must belong to (0, 27/ ;) and
p = 0. Butthen C°Ny/C” = ¢ unless ¢ = 0. Similarly, if yo = ]_[y;x-" and

70 = ]_[y]aj and one has an X in yC° N 7C?, then X = »Xo = JoXo and

Xo = g 70 Xo. Since ya‘ ~“! will move the argument of x; out of C°, where x; # 0,

unless a; = &, one gets that this equality is possible only if yo = 7. Thus, the [ ] k;
images of C? do not intersect and, since By can also be decomposed in |Hy/H | cells
of equal volume, one has that the images of G cover properly By. Furthermore, from
the decomposition of any yg in Hy/H as [ y , one has that if X belongs to C, then
10X belongs to the corresponding image of G and Hp/H acts freely on C, that is C is
a fundamental cell for Hy acting on By.

(b) If F is I'-equivariant on BH  then F restricted to By is Hp-equivariant. Con-
versely, if Fy is Ho-equivariant on By, take any X in B, Then, there is a § in I'/ Ho
such that § X is in By. Define

F(X) =§"Fy(X).
Recall that § is given by the solution of the system
(N/, @)+ 27 (K, L/ /M) = Argz;, j=1,....k,

see Lemma 2.4 in Chapter 1, where the vectors Ny, ..., Ni are linearly independent.
Thus, one may solve for W = (¢, ..., ¢) (for instance) and some K so that ¢; are in
[0, 277). Ttis then clear that if 8’ solves also this system, then 8~ 8" will fix the argument
of z;, i.e., will belong to Ho. But then, Fy(8'X) = Fo(818'8X) = §~1§' Fo(8X),
since Fy is Ho-equivariant. Thus, F'(X) is well defined and F|p, = Fy.

Let y = 980 be in I', with yg in Hy and §g in I'/ Hy. Then, if X is in By, one
has that 880_1 (yX) is in By, since yy is in Hy and I" is abelian. Thus,

F(yX) = 8087 Fo(88, 'y X) = 808~ Fo(yod X) = 80708 ' Fo(8X) = 7 F(X),

where one has used the Hy-equivariance of Fy. Hence, F is ['-equivariant.

(¢) Let (Fo, Fo) be Hp-equivariant and non-zero, on d By for Fp and on BX N By
for Fy. The above construction gives the extension, after noticing that if X is in BX
then 8X is also in BX and that B N B; = BkK NHo Furthermore, any Hp-homotopy
for (Fy, Fo) will generate a ['-homotopy for (F, F).

Conversely, consider z;, with k; = oo, and set VH VH N {z; = 0} and let BH
be the corresponding ball with dimension equal to d1m VH _ 2. If the isotropy of BIH
is bigger than H, then F has the extension F on BiH . However, if this isotropy is H,
the dimension hypothesis implies that one has a I"-extension to BiH . For two different
['-extensions F and F3, define, on the boundary of [0, 1] x BiH , a '-equivariant map
definedas Fj fort =0, F,> fort = 1 and F for [0, 1] x BBI.H (and of course F on BiK).
Applying Theorem 1.1 to I x BI.H , withdimensiondim V¥ —1 < dim W +dim '/ H,
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one obtains a I'-equivariant extension to / x BiH ,1.e., a I'-equivariant homotopy from
F1 to F;.

It is clear that, starting from [ BI.H and going up in dimension, one may extend
this homotopy to a I'-homotopy to | BiH and, by restriction, to an Hyp-homotopy on
By Thus, this construction of Fy on By is independent of the extensions to BI.H .

Furthermore, if one has a I'-homotopy of (F, F) on (S H. U BK ) one may extend
it, using the arguments of Corollary 1.2 (c), to a I'-homotopy on (I xJ SI.H , I x| BK )
and, by gluing the I'-homotopy of (F, F) and by restricting to 9 By, one obtains an
Hop-homotopy for (Fy, Fp), since dim I X S[H < dim W + dim I'/H. Thus, Fy
depends only on the I"-homotopy class of (F, F). O

Definition 1.2. If F is a non-zero '-map on S which extends to a non-zero I'-map F
on|Jg. y BX and dim V# = dim W# 4 dim I'/ H, the obstruction for the extension

to B will be called the extension degree and denoted by deg g(F, F).

Theorem 1.2. Let the following condition hold:
(H) Forall y in T one has dety dety > 0.

Then degp (F, F) depends only on the I'"-homotopy class of (F, F) and on Hy. In
fact, if Fy is any Hy-equivariant extension to By, one has

deg(Fo; By) = |Ho/H|degy (F, F).

Proof. From the preceding lemma, one has that Fy depends only on the I'-homotopy

class of (F, F). One may also perform the construction of Theorem 1.1, by choosing

the first k coordinates to be z1, . .., zx, and get a non-zero Hp-equivariant map on 0C.
Then, if yp =[] yiai is in Hyp, one defines on y(dC)

Fyo(X) = 70 Fo(yy ' X).

Then, whenever X = y9Xo = y1 X1, with Xg and X in dC, one has X¢ = yo_llel
and Fy(Xp) = )70_1)71 Fy(X1), by the equivariance of Fy on dC. Thus, F),(X) =
Fy,(X). Furthermore, the new map is clearly Hp-equivariant on Hy(9C), which
contains 0 Bg.

This implies that

deg(Fo; Bi) = Y, deg(Fy; 10(C)).
Yo€Ho

Now, from the property of the composition for the Brouwer degree (this is easy to
prove for the case where the zeros are non-degenerate), one has

deg(Fy,; yo(C)) = Signdet yp Signdet yy deg(Fp; C).
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From (H), one has that
deg(Fyy; y0(C)) = deg(Fp; C)

and
deg(Fo; Br) = Hki deg(Fp; C) = |Ho/H|deg(Fop; C). o

Remark 1.1. Condition (H) affects only the real variables yi, ..., y,, since on any
complex variable, the real determinant is always positive. Thus, if det y and det y
have opposite sign, this must be on the real variables, where the generators of the
action of I' may be chosen to be in Hy, as we have seen in the proof of Lemma 1.1.
Hence, for such a y; one would have:

deg(Fo(y0X); Bx) = Signdet yp deg(Fo(X); Bx) = Signdet y deg(Fo(X); Bx),
by using again the composition property. Thus, if (H) is not valid, one has
deg(Fo(X); Bx) = 0.

Remark 1.2. The independence of the extension degree on the extension process
includes the fact that one may change the order of the special variables z1, . . ., zx which
give Hy and Byx. However, the extension degree could be different for a different choice
of Hy. For instance, if S! acts on C2 via (%%, ¢3#), then H; = {p=0o0rmn}, Hy =
{o = 0,27/3 or 4w /3}. If one takes for Hy the first coordinate, then k1 = 2 and
C={z1 e R, 0< Arg 7o < m}, while if one takes for Hp the second coordinate,
thenk, =3 and C; = {0 < Argz; < 27/3,z, € RT}. The Sl—map, from R? x C2
into R x C?, defined by

F(t, 2 21,22) = 2t +1=2|2322], (A +i (2t — D)z1, (Z323 + Dz2)

has its zeros, on [0, 1] x R x C?, fort = 1/2, A =0, |z1] = |22 = 1 with Z{z5 = —1,
which is a pair of circles (z; = el?, 70 = +ie30/2),

On 9C1, one may perform the following deformations:
1. (1 — 7)z1 + t in the second component.

2. Replace z; in the third component by |z3|e/ (1799 with 0 < 6 < 7 and |z;| by
(I =Dlz2 + 7.

3. Replace 2¢, in the first component, by 2(1 — 7)¢ + .
At this stage, one has deformed F, on dC, to the map

@ =2z Pzl A +i@ — 1), 222+ 1.
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4. Replace |z2], in the first component, by (1 — 7)|z2| + 7|21 |=3/2, arriving at

1/2

QA =z, A+i2t—1), z112+1) since z1 > 0.

5. Deform linearly zf’ to 1.

One may then linearize the mapat ( = 1/2, A = 0, z1 = 1, zo = i), obtaining that
the sign of the Jacobianis 1, i.e., the extension degree for C; is 1 (and deg(Fp; B1) = 2).
On the other hand, on dC;, one may perform the following deformations:

—

. 22 to 1 in the last component.
Z1 to 1 in the second component, via a rotation.

2t + 1 to 2 in the first component.

el A

After reducing C; to the set {zo > ¢,0 < Argz; < 2m/3}, deform linearly
|z1]?, in the first component, via (1 — 7)|z1|> + 7|z2| /3.

5. Deform linearly Z% in the last component to 1, arriving at
(1 =2z ") A+ 120 = 1,2 +1).

The linearization, at the only zero in C,, has a positive determinant, i.e., the
extension degree for C; is 1 (and deg(Fop; B2) = 3).

We shall see, in the next result, that the extension degree is independent of Hp.

Let us now continue with the extension problem. Denote by V and W the subspaces
VH and WH respectively.

Definition 1.3. (a) Let I[1(H) denote the subset of Hgv (S W) consisting of those ele-
ments F which have a non-zero I'-extension to all BX with K > H.
(b) Denote by l'I(H K) the set of I"'-homotopy classes of maps [F, F 1, with
F:9BH — wH\{0}, F: UBK — W\{0}, for K > H and F a I'-extension of F.
(c) Let IT be the assignment [ F, F] — [F], from IT1(H, K) into IT(H).

Note that if F is in IT(H), with extension F,and FisT -homotopic to G on S L
then, from the equivariant Borsuk extension theorem (Theorem 6.2 of Chapter 1), G
has a non-zero ['-extension G to U BX and (F, F ) is I'-homotopic to (G, G). This
implies that T[T(H), [1(H, K) and IT depend only on I"’-homotopy classes. We have
the following result.

Theorem 1.3. Assume that dim V = dim W + dim I'/H and that (H) hold. Then,
[T1(H) is a subgroup ofl'IF (SW). Furthermore, T1(H, K) is an abelian group which
is isomorphic to 7 via the extension degree. The map 1 is a morphism onto T1(H),
with ker IT = {[(1, 0), F]} for all possible extensions F of the map (1, 0): recall that
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W =R x Ef and (1, 0) corresponds to a map with value 1 on R and 0 on E¥ . In
particular, the extension degree is independent of Hy, up to conjugations, and any
extension degree is achieved.

Proof. Recall that BY is a cylinder I x Bg, fortin I = [0, 1]and || X| < R. Let
A ={(, X) witheithert =0or 1 or X in BX, for K > H}.

If[F, F lisin I[1(H, K), then F is defined in A and F is non-zero there. Further-
more, the I"'-homotopy (F (¢, T X), F(r, TX)) is admissible on A, since if (7, X) is in
A then (¢, TX) is also in A and these maps are non-zero on A. Since (¢, 0) is in BT,
one has that F(r,0) # 0 and (F(z, 0), F(t, 0)) is deformable to (F(0, 0), F(0, 0)),
since H is a proper subgroup of I" (if H = T  there is nothing to prove). This last map
is in turn deformable to ((1, 0), (1, 0)), since, if dim W' = 1, the admissibility of F
requires that F'(0, 0) > 0: see §8 of Chapter 1.

Thus, (F, F) is I"'-homotopic on A to ((1, 0), (1,0)). The Borsuk equivariant
extension theorem implies that (F, F) is I"-homotopic, on 3B U BX to a map
(F1, (1,0)). Hence one may assume that (F, F) is of the form (F1, (1, 0)) on A. This
implies, as in §8 of Chapter 1, that one may define a group structure on I1(H, K).
Furthermore, if dim VI > 1, one has that I[T(H, K) is abelian. If VT is reduced to r,
the commutativity will follow from the rest of the proof.

Note that, by reducing A to { = 0 or 1}, one sees that I[1(H) is a subgroup of

Hgv (S%), abelian if dim VI > 1. Furthermore, it is clear that IT is a morphism, onto

I1(H) and with ker IT = {((1, 0), F)}.

Note also that, up to here, we have not used any of the two hypotheses.

However, if these hold, then degg (F, F ) depends only on [F, F ] and on Hj.
Hence, one hasamap from I[1(H, K) into Z, givenby deg (F, F) =degg (F1, (1,0)).
From Theorem 1.1, this assignment, which is clearly a morphism, is one-to-one, since
if the extension degree is 0, one has a I"'-extension to BH  which is I"-homotopic,
radially and together with F,to (F(0), I:"(O)), ie., to ((1,0), (1, 0)).

Thus, I[T(H, K) is isomorphic to a subgroup of Z, hence abelian.

Finally, define a map Fp on CU BX with value (1, 0) on U BX t=0orl, xj =0
if k; > 1 (including z1, ..., zx) and on Argx; = 0 or 27/ k; (if 1 < k; < 00) and, on
the rest of dC, which defines a continuous map of degree 1: one may always localize
a map of any degree in a neighborhood of a point on a sphere, with a constant value
outside the neighborhood. One may either use an explicit construction or use the fact
that the complement of the neighborhood is contractible and appeal to the classical
Borsuk extension theorem. This map is invariant on é\@, hence one may extend it,
by the action of I'/ H to a I'-equivariant map F on S¥, which has an extension degree
equal to 1. Thus, the morphism

di
M(H,K) —2£ 7
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is an isomorphism, since one may achieve any extension degree, and I1(H, K) = Z.
Any [F, F]in I[1(H, K) can be written as

[F, F]=degy(F, F)[Fo, (1,0)],

where Fy is the above map.
Now, if ~21 , ..., 2r and Hy correspond to another choice of fundamental cell, with
generator [ Fp, (1, 0)] and extension degree deg f,» one has

[Fo, (1,0)] = degg, (Fo)[Fo, (1,0)]
[Fo. (1, 0)] = degy, (Fo)[Fo. (1, 0)],

which means that degﬁo(Fo) degHO(I:”o) = 1, since [Fp, (1, 0)] is not trivial, having
degg (Fo, (1,0)) = 1, hence (Fp, (1, 0)) has no non-zero I'-extension to B, Thus,
deg[:IO(Fo) = degy, (Fo) = £1.

Moreover, one may construct Fo, by a change of variables, from Fy, leaving
untouched the variables which are different from z1, ..., zx, Z1, . . . , Zk, in particular
the real variables: one may localize the map in the intersection of the sectors for all
these variables. Since one does not alter the order of the variables, the Jacobian of the
change of variables is 1 and one has the same extension degree. This last argument
is valid only on complex representations. Hence, if I" acts on (z1, z2) in a complex
conjugate way, then either one changes z to z> (and the same action) or one has a
Jacobian which is —1: see Remark 5.3 in Chapter 1. O

Remark 1.3. If H belongs to J, defined in Corollary 1.2, then one may extend Fp to an
equivariant map on V, with value (1, 0) on any BX whenever K is not a subgroup of H':
if H < K this is how Fy was constructed and for other K ’s, which are not subgroups
of H, define Fy as (1, 0) and use the dimension argument of Corollary 1.2 (c).

One may have examples where I is not one-to-one, although most of our appli-
cations will be for the case where ker [T = {0}.

Example 1.2. LetV =[0, 1] xCand W = R2, with" = S, acting as ¢'% on C and
with a trivial action on W. Consider the S'-map, on [0, 1] x {z : |z| <2} = B:

F(t,z2) = (1 —4t(1 — 1)(|z| — 2)%, 21 — Dt (1 — 1)(|z| — 2)).

Then, F(t,z) = (1,0) on B and F(t,z) = Oonly fort = 1/2,|z] = 1in B. In
particular, FS' (t,0) # 0. For z > 0, one sees that the Jacobian of the map at (1/2, 1)
is positive, i.e., degg((1,0), F Sl) = 1. In fact, by using the addition of homotopy
classes, one obtains that ker IT = Z and I1({e}) = 0.

This case, for I' = §!, dim VI = dim W' + 1 —2p, dim V = dim W + 1, was
studied in [[.LM.V. 1 Appendix D] and [I.M.V. 2, Lemmas 2.2 and 2.3 and Theorem 3.1],
where it is shown that, if p % 1, then IT is one-to-one, while if p = 1, ker [T =
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Zmo(nnj)/(nmjy where the action on (Vr)L is by eimie, j=1,...,n,and on (Wr)L
by ei”-i¢,j =1,....n—1,n; =kim; = lgjmn,j =1,...,n — 1, and mg is the
largest common divisor of the m;’s. Note that (]_[ kj)mo /my is an integer, since there
are integers a;, j = 1, ...n, such that

Y ajmj/mo =1,

then, one obtains, using m; = kjm,/k;,

(mn/mo)(an ij + Z (ajlzj Hh)) = Hk/

i#]
that is m, /mg divides [ ] k;.

As in the above example, this result depends on an explicit construction of ker IT:

Let V =1[0,1] x Rl x C*", W = R'"*? x C"~!, with x = (X, Z) in R x C",
and |[x|| = max |x;|. The ball B will be [0, 1] x {x : [x|| < 2}. With the above
actions one has that H = Z,,, and taking for Hy = Z,,, with the last variable, one
has B = B N {z, > 0}. Consider the equivariant map

F(t,x)=(1,0)+ 11 —0)(llx] —2)(—4(llxl —2),2t — 1,
k i kn— kn—
Xo 2 — 2 =Y.
The zeros of Frarefort = 1/2, Xg =0, | Z|| = landhence |z;| = 1forj =1, ..., n.
One easily checks that

deg(F; By) = l_[k/'

Hence, the extension degree degr ((1, 0), F) = (]_[ kj)(mo/mn).

Furthermore, let F(t, X0, 21, --.,2Zn—1) be a non-zero S'-extension of (1, 0) to
B N {z, = 0}, then the map (1 — zn/2)l3 + (z,/2, 0) is an extension of (1, 0) to d B;
and, with a trivial action on z, > 0, is an S 1-map. We shall show, when treating
Borsuk—Ulam results, that such a map has a degree which is a multiple of [ %; (in
fact the multiple is deg((1 — z,,/2) Fs' + (24/2,0); BIS1 ). Thus, any element in ker I1
has an extension degree which is a multiple of ( I1 kj) (mo/my).

Example 1.3. Let V = [0, 1] x Rl x C", W = RI*2P x C*~P, p > 1 and actions of
St of the following form: On z; in C" as €M% on & inC" P as e with nj =kjmj,
for j =1,...,n — p, and n; are multiples of m,_p,11, ..., m,. As above my is the
largest common divisor of the m;’s, hence H = Zj,,. Furthermore, since p > 1, one
has dim VS' < dim WS' — 2 and if K > H, with K = Z,,, then z; is in VX if m; is
a multiple of m and one has

(Hy) dim VX <dim wX +dimI/K — 2.
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Lemma 1.2. For a general abelian group, if (Hy) holds, then ker IT = {0}, [1(H) =
ngv (W), which is Z if (H) is true and dim V¥ = dim W# + dim'/H.

Proof. Use the arguments of Corollary 1.2 to show that F in Hgv S Vi/) has a non-zero
['-equivariant extension to UBK for K > H, and, replacing BY by I x B that
any two extensions F1 and F2, will give rise to pairs (F, F 1), (F, F2) which are I'-
homotopic on BH U BX. Thus, degp (F, F ) is 1ndependent of F and, if F = (1,0,
then ker IT = {0}. Hence, [1(H, K) = [1(H) = ngv sW). O

Example 1.4. Ifdim V# = dim W# and I'/ H is finite, then if (H) holds, one has that
deg(F, B¥) = |I'/H| deg g(F, F), hence the extension degree depends only on F and
ker IT = {0}. In particular, [F'] = d[Fp], where d is the extension degree and [ Fp] is
the generator constructed in Theorem 1.3. Note that if H is in J of Corollary 1.2 (c),
then Fy can be extended to V, such that Fy = (1, 0) on BX, for any K which is not a
subgroup of H (see Remark 1.3). While, if K < H and dim VX = dim WX, one has
that the fundamental cell for VX is of the form

GK=GHXGJ_

where €| is the fundamental cell on (V)+ N VX for the action of H. Then, if B
is the ball in this space, one has that BX is made of |I"/H| images of Cy x B .
Furthermore, since Fyp = (1, 0) on dCp, one may extend Fyp as (1,0) on 0Cy x B.
Then deg(FOK; BX) is the sum of the degrees on the |I'/H| images of dCy x B,

which are all equal, due to the action of this group and hypothesis (H). Then,
deg(F{'; BX) = |T/H| deg(FJ; Cy x BL).
This result will be used when studying the Borsuk—Ulam theorems.

In general, a hypothesis which will enable us to compute I1(H) and, from there,
I'II;V (V) is based on the following:

Definition 1.4. K > H has a complementing map in V¥ if there is a non-zero equiv-
ariant map F, from VH N (VE)1\{0} into WH n (WK)1\{0}, with F| (0) = 0.

The existence of complementing maps is a non-trivial question: for instance if I’
acts on the above spaces as Z,, then the Borsuk—Ulam theorem implies that dim VHEN
(VEYL < dim WH N (WX)L. We shall elaborate further on this type of results in
Section 4.

Note that hypothesis (H) of §6 of Chapter 1, applied to the two spaces above,
implies the existence of an explicit complementing map: see Lemma 6.2 of Chapter 1.
In this case (H) holds on these spaces.
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Theorem 1.4. Assume the following hypothesis:
(K) Any minimal K > H has a complementing map in vH

Here minimal means that adding a variable to VX, the isotropy of the new space is
H. Then:

(a) TI(H, K) = T1(H).

(b) If furthermore, (H) holds and Qim VH = dim WH +dim T /H, then the exten-
sion degree is independent of F, extension of F to | J B K and TI(H) = Z

Proof. Consider ((1, 0), F), an element of ker I1, that is, F is a non-zero I'-extension
of (1, 0) defined on B to U BX. Take a minimal K (hence if K > K one has

Bk c BX) and its associated complementing map F; . Write X in VH as (Xk, X 1)
and define, on the cylinder BY = I x B = {(t,x),0 <t < 1, | X|| = max lxj| <1},
the map

F(t.x) = (1= [ XLIDF(t, Xg) + IXLI(L 0), (1 = IX Dt (1 = HFL(X1)).
It is easy to see that
1. Fis I'-equivariant,
2. F and F coincide on BX i.e. if X| =0,
3. F(t,X) = (1,0) if (, X) ison 9 B",
4. F(t,X) #0on BH.
The last property implies that [(1, 0), ﬁ] =0inI1(H, K), or else
[(1,0), F1—[(1,0). F]=[(1,0), G] = [(1,0). F],
where G (¢, X) is given by the homotopy difference

F(2t, X), 0<r<1/2
G(r. X) = A( ) =t=1/
FQ2-2t,X), 1/2<t<1
(recall that all these maps have value (1,0) fort = 0and ¢ = 1).

Then G(t, X) is I'-homotopic on BX (relative to its boundary, i.e., on dBX
dBH | the homotopy is fixed and equal to (1,0)), to (1, 0). From the equivariant
Borsuk extension theorem applied to d B UBX | ((1,0), G) is I'- -homotopic to a map
((1, 0) Fo) with value (1, 0) on BX or else, one may assume that F(t X)=(1,0)
on BK ~

N9W, if for some other minimal K , one has already that F (t, X) = (1,0) on BX,
then F(z, Xz) = (1, 0)(1 = | Xz Dt (1 =) F1L.(X 1)), with X = Xg & X and Xk
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isin BX N BK. Then, G(t, X) is I'-homotopic to (1, 0) on BX U BK (relative to their
boundary), by deforming linearly the second part of F' (¢, X z) to 0. Thus, ((1, 0), G)
is I'-homotopic to ((1,0), Fy), with Fy = (1,0) on BX U BX.

By induction, one finds that F is I'-homotopic, relative to 9B to(1,0)0n U BK,
that is ker IT = {0}. Part (b) is then a consequence of Theorem 1.3. O

3.2 Homotopy groups of I'-maps

In this section, we shall continue our computations of the I'-homotopy groups of
spheres. In §1, we have considered a fixed isotropy subgroup H, withdim I'/H = k.
We shall now study, for a fixed k, the set of all isotropy subgroups whose Weyl group
has dimension k.

Definition 2.1. Denote by I1(k) the set of all I"'-homotopy classes of maps
F:| JaB" — w\(0},

for isotropy subgroups H with dim I'/H = k, which have I"-extensions
F:|JBX - w\{o0},

for all K with dimI'/K < k. Define also by IT(k, k — 1) the set of I"-homotopy
classes [F, F]r.

Note that if F is in I1(k) and F is I'-homotopic to G on | J 9B then G has also
a [-extension G to U BX | from the Borsuk extension theorem, with (F, F ) being
I'-homotopic to (G, G) on | JdBH | BX. Thus, I (k) and TT(k, k — 1) depend only
on homotopy classes.

As before, one may deform F on {r =0 or 1} BX and assume that it has value
(1, 0) there. Hence, one may define group structures on I1(k) and I1(k, kK — 1) which
are abelian if dim VI > 1.

Let IT : TI(k, k — 1) — TI(k) be the restriction. Then, IT is a morphism. As in
Theorems 1.3 and 1.4, one has

Lemma 2.1. (a) I1(k, k — 1) and T1(k) are groups (a[gelian if dim Vvl > 1). The
morphism I1 is onto and ker I1 = {((1, 0), F)}, where F is any extension of (1, 0) to
U BX, with dimT'/K <k — 1.

(b) If every H with dim I'/ H = k satisfies

a) Any minimal K > H has a complementing map inV¥
b) H has a complementing map F| inV,

(K) {

then ker IT = {0}.
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Proof. (a) is similar to Theorem 1.3. For (b), one starts with H such that any K > H
satisfies dim I" / K <k—1.1If ((1,0), F ) belongs to ker I, then, from Theorem 1.4,
one has that F is homotoplc to (1,0) on BH. However in order to continue this
homotopy for other H’s, one needs to extend the map F (¢, X ) from B to V. This
is where part (b) of (K) is used: replace the above map by

F(t.Xp, X1) = (1= [XLIDF . Xa) + X LI, 0), (1= XNt (1 =) FL(X1)).

Then, the induction argument on H, so that one has compatible extensions on inter-
sections of B ’s, is similar to the proof of Theorem 1.4. O

Definition 2.2. If H has a complementing map F in V, then for [F] in [T(H) (or in
Hg\y S, Vv =vH w = wH), the map

F(t,X) = (F(t, Xp), t(1 — ) FL.(X 1)),

where X = Xy @ X, is called the suspension of F by the complementing map.
The image of IT1(H) under this construction, which is a morphism, is a subgroup of
Mg, (S) and is denoted by 1(H).

Note that the factor #(1 — ¢) is there only to facilitate the addition property
(F(t,Xg) = (1,0)if t = 0or 1) ang may be deformed to 1 when considering
only the equivariant homotopy class of F.

Lemma 2.2. (a) The suspension by complementing maps is one-to-one.
(b) IfZ[Fj]r = 0, where [F;]r is in T1(H}), then [Fj]r = 0 for all j’s.

Proof If [ﬁ]r = 0, then F is extendable to a non-zero I'- -map on / x Bg. Thus,
FH = F is also extendable, by restriction, on B . This proves (a).

For (b), if H; is maximal among the isotropy subgroups of the sum, with [F;] # 0
and [Fi]r = > —[F i 1r, then, recalling that the homotopy sum is by superposition of
the maps by rescaling ¢, one has, for X in V1,

F @ X) = (F (0 Xy, 11 = DF (X 1)),

that is X H is in VA1 0 VHi If this intersection is strictly contained in VHi | then its
isotropy is larger than H; and F ! extends as a non-zero I'-map. While, if the inter-

section is V% , then VHJ - VH1 and Hy < H; which contradicts the maximality of
Hi. By superposing the extensions on B!, one would have that, by Borsuk extension
theorem, F] would have a non-zero I'-extension, that is [ F}] = 0, a contradiction. O

Theorem 2.1. If(K) holds for all H withdim I'/H = k, then

(k) = @ I1(H).

dim T/ H=k
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If furthermore, (H) holds and dim VH < dim W + dim T'/H for all H with
dimI'/H =k, then T1(k) = Z X - - - X Z, where there is one Z for each H; such that
dimI'/H; = k and dim Vi = dim W + k.

Proof. Let [ F]r be an element of I1(k) and H; be a maximal isotropy subgroup, that
is,dimI'/H; = k but dimI'/K < k — 1, for all K > H;. Then, FHi . 9BH —
W\{0} is an element of IT(H;), with a well-defined extension degree if (H) holds and
dim Vi = dim WH + k: in that case [FHi] = d;[Fj], where Fj is a generator for
IT(H;) with extension degree 1. Note that one may assume that F" and F; have value
(1,0) onUBK,K > Hj and forr =0 or 1.

Now, for any element G in I1(H}), consider the suspension operation defined by

G(t, X) = (G(t, Xj),t(1 —)F j(X 1))

where X = X; ® X j, with X; in VHi and F| j is the complementing map for H;.
Then, [F] — [F ] has a non-zero extension to B, where [F] is the restriction
from T, (SW) to T1(k).
One may do the same procedure for each such maximal H; since we know that,
on Vi N VH the isotropy subgroups K have dim I'/K < k and there all maps are
assumed to be (1, 0). Let

[Fl=[F]1-) [F%]

where the sum is taken over all maximal H;’s.

Note that, at this stage, d; are unlquely determined by F = F| nu ;- Note also
that, from the analogue of Lemma 2.1, one may assume F; = (1, 0) on U BYi and
that the homotopy type on | J B | J BX | J B is unchanged by this assumption.

Take then H, with dimI'/H = k and for all K > H, either dimI'/K < k or
K = H; for some of the preceding H;’s. Then, the map Fj " defines an element
of TT1(H), which is a’H[F #] in the particular case of the theorem, where Fp is the
generator for IT1(H) and F g its suspension by F . Clearly, [F1]—[F lH ]is extendable
to BH

One may perform the same construction for all H’s with these characteristics
and conclude that [F1] — ) H[I:“ IH ] is extendable to | J BY. Note again that [F 1H ]is
completely and uniquely determined by [F']. In the particular case, [I:“ 1H 1=dy [1:" V2d|
has a unique extension degree dp.

One may go on to the next stages of isotropy subgroups, arriving finally at

[F1-) [F1=0
i H
in IT(k), with [1:" jH l=d H[F 7] in the particular case of (ﬁ) and a unique extension

degree dy. The set of [I:"jH ]’s is uniquely determined by [F] and the step by step
construction. Note that, from the construction, Fj is (1,0) on the previous stage of

isotropy subspaces, in particular [FjH ] belongs to T1(k).
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Conversely, if [ F] is in [T(H ), with F(t, X)=(F(, Xg),t(1—t)F (X)), then
FX(t, Xk) = (FK(t, Xp), t(1—=t) FK (X 1)). Then, if V¥ N VX is strictly contained
in V¥ the map FX is non-zero on BX N B and FX is non-zero on BX.

While, if VE N vK = VH and K # H, one has K < H and dimI'/K >
dim I'/ H. Thus, in this case, one cannot have dim I'/K < kanddim I'/H = k. That,
is [F]is in T1(k).

Let now M be the morphism from € I1(H) into I1(k) given by

MF™Y, R =) I,

which is well defined from the previous argument. Furthermore, from Lemma 2.2,
M is one-to-one and onto, due to the construction. In the particular case, recall, from
Theorem 1.1, that TI(H) = 0 if dim V¥ < dim W + k and T1(H) = Z if one has
equality of dimensions (Theorem 1.4 (b)). O

In order to continue with the study of Hgv (S") it is natural to keep up with the
ordering begun with IT(k).

Definition 2.3. Let IT; be the set of all I'-homotopy classes of maps F : | JdBH —
W\{0}, for all H withdimI"'/H < k.

It is clear that I is a group (abelian if dim VI > 1) and that T1(k) is a subgroup
of Iy.

Theorem 2.2. If(K) holds for all H withdimI'/H = k, then
(a) TIy = y—y x (k).

(b) If moreover, dim VL < dim WL + dim I'/L, for all L with dimT'/L > k, then
ngv (SY) = 11y

Proof. Let P, : 1y — Il;_; be the restriction map. We shall show that P, is onto
and that ker P, = IT(k).

Letthen [ F'] be an element of [1;_;. Take aminimal K, i.e., withdimI'/K = k—1
anddim I'/H = k for any H < K. Consider the suspension Fx of FX (first to some
H with dimI'/H = k and then by F). Clearly, [F] — P*[I:" x ] is deformable to
(1,0) on dBX. Hence, by the equivariant Borsuk theorem, the above difference is
I"-homotopic in I1;_ to a map F which has value (1, 0) on d BX and can be extended
as (1, 0) on BX,

Let K be another minimal isotropy subgroup and consider the suspension F % of
F. Then, Fg|BK = ((1,0),1(1 = t)FL(X | g)). thus, [F] — P,[Fg] is deformable

to (1, 0) on 9BK U3BX and the difference may be replaced by a map with this value
on these two spheres.
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By performing this operation on all minimal K’s, we arrive at [F] — > P.[Fk]l,
which is deformable to (1, 0) on | J 9aBX  for all K’s, hence zero in IT;_1. That is,

[F1=) P.Fl.

Or else, from the equivariant Borsuk theorem, F' has an extension F with [I:" ] =
Z[F x]land [F] = P*[I:“ ]. Note that F depends on the chosen order for the minimal
K’s (and on the complementing maps) however, for a given choice, it is easy to see
that if F is ['-homotopic to G then F and G are I"-homotopic, that [Fx]are uniquely
determined by this choice and that this construction sends sums into sums, i.e., that it
is a morphism.

Let now [F] in Il; be such that P,[F] = 0. Then, F is extendable to a non-
zero I'-map on | J BX for K with dim I')K <k — 1. Thatis, [F] belongs to TT1(k).
Conversely, if [ F] belongs to I1(k), then one may assume, from Lemma 2.1, that F
restricted to _J BX,dimI'/K < k—1,is (1, 0). Thus, P,[F] = 0andker P, = I1(k).

In general, if [F] is an element of T, let P, [F] =) _ P*[I:" x | and the difference
[F]— Z[FK] belongs to ker Py, i.e., is of the form Z[I:“jH], from Theorem 2.1. Thus,

[F1=) [Fxl+ > _[FF,

where the first sum is on the minimal K’s with dimI['/K = k — 1 and FjH are the
generators for I1(k). Note that all these maps are defined in Hgv (W), although the
equality is in ITg.

Under the hypothesis of (b), let [F] be an element of Hgv (S") and let P;[F] be
the class of its restriction on Iy, where Py is the map induced by this restriction. Then
[F1— Y[Fk]— Y [F}/'] = [G]is such that P[G] = 0, that is Py41[G] belongs to
[1(k + 1). But, from the dimension hypothesis, [1(k + 1) = 0 = I[1(k + /) for any
[ > 1 by Corollary 1.2. Hence, the I'-homotopy of P;[G] extends to a I'-homotopy
of Gon I x Bg. O

Remark 2.1. Under the hypothesis of Theorem 2.2, consider the set of H’s, with
dim['/H = k, which are minimal. As in the proof of Theorem 2.2, one obtains
that [F] = )_ Pk[l:" 1], for any F in [Ty and Py is the above morphism induced by
restriction to I1;. Hence, Py is onto.

On the other hand, if [F] belongs to TIT, (S"), then P [F] = Y Pi[Fu] =
> Pk[I:” k1+>. Pk[I:”jH ], from Theorem 2.2. An easy induction argument leads to

Theorem 2.3. If (K) holds for all isotropy subgroups, then

My (s") = @),
H

where TL(H) stands for the suspension by the corresponding complementing map.
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Corollary 2.1. Let T =T/T", V = VT, W = WT" then the following holds.

(a) If (ﬁ) and (K) hold for all H’s with dimT'/H = 0 and if, for all H, one has
dim VH# < dim W#, then

g, (sV) = HEV(SW) 27 x7Z,

with one Z for each H with dimI'/H = 0 and dim vH = dim WH. One has
[F] =) dulFul, where dy is the extension degree and Fp is the generator
suspended by its complementing map.

) If (ﬁ) and (K) hold for all H’s with dimI"'/H = 1 and if, for all H, one has
dim VH# < dim WH + 1, then

Mg, (sY) = HEV(SW) XL X X7,

with one Z for each H with dimI"/H = 1 and dim VH = dim WH 4+ 1. One
has [F1 = [F1+ >_dgl[Fg), where F is the suspension ofFT".

Proof. (a) is an immediate consequence of Theorems 2.2~and 1.4 (b), while, for (b),
one needs to recall, from Lemma 2.1 of Chapter 1, that V' corresponds to all points

with isotropy H withdim ['/H = 0, hence [Ty = Hg(/ (SY). Since [F] — [I:“], where

F is the suspension of F7" by its complementing map, is in TT1(1), one obtains the
result. o

Example 2.1. If V. = RF x W, then (K) is clearly satisfied, with complementing
maps which are the identity on (V¥ )L, The hypothesis (H) is also satisfied.

Hence, one may apply Theorems 2.2 and 2.3. In particular, since dim V¥ =
k4 dim W7 < dim W# 4 dim T'/H, provided dim I'/H > k. Then, T, (S¥) =
ey [1(H) for H with dimT'/H < k. Thus, only the orbits of dimension less than or
equal to k count topologically. Furthermore, Hgv (SY)=TI4_1 X Z x - -- x Z, with
one Z for each H withdimI'/H = k.

Our last result in this section relates Hgv (S") to Hgvo (S0, where Vy = Vo,
Wo = WH0 for some isotropy subgroup Hy of I'. This point will be important for
symmetry breaking.

Theorem 2.4. Assume (K) holds for all isotropy subgroups. Let Hy be an isotropy
subgroup of T, let Vo = VHo Wy = WH0 and denote by Py the morphism from
Hgv (SY) into Hgvo (S™0) induced by restricting the T'-maps to Vo. Then Py is onto

and N 3
Po( Y UFulr) = 3 AP,
H H>Hy

where Fy is in TI(H).
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Proof. Let F f (X1H) be the complementing map for VH_ Then, if [Fy] is in
HEVO (S™0), one has that [Fj, Ffo] is in Hgv (S%) and Py is onto. Furthermore,
Ff is a non-zero I'-map from (VvHyLn Vo\{0} into (WHYL N Wy, for any H > Hy,
by Property 3.2 of Chapter 1. Thus, (F f yH0 is a complementing map on V; and one

has hypothesis (K) on V.
From Theorem 2.3, one has

[F1= [Ful,
H

where [f”H] = [Fy, Ff] and [Fy] in [1(H), i.e., Fg(X) is non-zero on |_J BX for
K > H. From the definition of the homotopy sums and the above Property 3.2 of
Chapter 1, one obtains

[FH0) =Y [0, (o).
H

If Hy is not a subgroup of H, then V0 N V# is a strict subspace of V¥, with
isotropy strictly larger than H, hence Fllf‘) # 0 on B0 and [F,f,l", (Ff)HO] =0.
The other H'’s, with Hy < H, will give the result. O

3.3 Computation of I'-classes

Although the preceding results may be appealing, the construction of the isomorphisms
is involved and requires a step by step extension process on the subspaces V¥, for
decreasing H’s. So the problem is the following: given a I'-map F, how does one
compute its decomposition on € IT1(H)?

On one hand Fpg, in I[1(H), is not the restriction of F to VvH, except for the first
steps in the construction and, on the other hand, we have given formulae only for the
extension degree, i.e., when dim VH = dim WH +dim T /H . In this section, we shall
give partial answers to these two problems: constructing a new map, a ‘“normal map”
for which the restriction argument is valid and, when hypothesis (H) holds, explicit
generators for the “free” part of Hgv (SW) with an explicit way of computing the
extension degrees via Poincaré sections.

Definition 3.1. We shall define an order on the set, Iso(V'), of isotropy subgroups of
I on V, by denoting them by Hy, ..., Hy, in such a way that if H; > Hj, theni < j,
i.e., in decreasing order.

Thus, H; = I, Hy, is the isotropy of V and the elements of I1(k — 1) come before
those of TT(k).

In this section we shall assume that hypothesis (K) holds for all H in Iso(V),
that is, decomposing V as VAV g, Was WH @ W, 5, one has a complementing
[-map F L from V| g into W, g with its only zero at 0. We shall assume that these
complementing maps are compatible, i.e., that Fﬁl‘l Vik = ngl Vig.
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This will be the case for V = R¥ x W, since F ﬁ is the identity, or when one has
hypothesis (H) for U and W with V = R¥ x U (see below).

Write X = Xy ® X, g and F = (F2, Fip).

Lemma 3.1. For a fixed H, any map F in Hgv (SY) is T-homotopic to a map

F(t,X) = (FH(t, X), FLu(t, X)), such that F1y(t, X) = Fg(X1m) if X1l <
g, for & small enough.

Proof. Let Wy : Vi iy — R be defined as a non-increasing function of || X | g ||, with
value 1 if | X y|| < e andvalue Oif | X g > 2¢. Let

Ft,X)= (FF@t, X), (1 = Vy(X 1 u)Fin +¥YuX1m)Fir(X1m)).

Since F1 g = 0if X,y = 0 (Property 3.2 of Chapter 1), one ha§ an ¢ such that
FH(t, X) Z£0if (¢, X)isin (I x Bg) and | X 1 g| < 2e. ~Hence, F is non-zero on
d(I x Br) and, replacing Wy by t Wy, it is easy to see that F' is I'-homotopic to F. O

Definition 3.2. A map Fin HEV (s") will be called a normal map if for all H’s, one
has Fp (1, X) = Fjp(Xom), if |1 X1mll <.

Lemma 3.2. Any F in l'[gv (W) is T-homotopic to a normal map F.

Proof. Arrange the isotropy subgroups in decreasing order : Hy =T, ..., Hy, is the
isotropy of V. For W, decomposed as W @ W H;» we shall write any map G as
(G/, GYJ). Starting from Fy = F, define the sequence of maps

i1 Lj+1
Fit1= (F/Jr (=W ) F; vy Fﬁu)

where W = Wp;,, and F]L-‘r-l is the complementing map for H; ;. From Lemma
3.1, Fj44 is I"-homotopic to F; and, by induction, to F in Hgv (SW). The last map,
for j + 1 = m, will be the map F. .

Assume, by induction, that if i < j, then Fjl’ = FiJ- whenever || X ;|| < e (this
is clearly true for i = j, since F]lj =(1- lIJj)FjL_j1 + lIlji'ﬂjJ‘).

Notice that the compatibility conditions on the complementing maps say that
(Fl.J-)J-J = (Fﬁ-)”. Furthermore, from the projections, for any map G, one has
(GHH = (GY) and (G = (G1/)L. Then,

| " L ,
Fify = ((FOM = W) (F O + v (FpY)

= ((F)7H (1= W) (FFOSH 4w (FHHH,
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Hence, using the induction hypothesis, one has, for || X ;|| < &:

Fitfy = ((FHH, (= W) (FH)S 4 4wy ()

Thus, for j = m, one has FX = Fl.L provided || X ;|| < e, i.e., F is a normal
map. O

For a normal map one may compute the decomposition of [F] onto @ IT(H),
from restrictions to V¥, in the following way:

Theorem 3.1. Assume that (K) holds for all H, with the compatibility conditions on
the complementing maps. Let F, in Hgv (W), be T-homotopic to a normal map F,

with an associated €. Let BgK be an g-neighborhood of BX in V and let oy be an
invariant Uryson function on BY with value 0 in B\ g ; BX and value 1 on
Uk-n BX . Let s be in [0, 11, then, up to one suspension, one has

25 — 1, F(t, X)] = Z[2s + 20x(t, Xg) — 1, FH(t, Xp), Fi (X 1)1,
independently of F.

Proof. Note first that the left hand side is degp(F; I x Bpg), from the suspension
property 2.4 of Chapter 2. Furthermore, each term on the right hand side is in [1(H),
where V has been replaced by I x V, with s in I = [0, 1]. Then, if one has two normal
maps homotopic to F, one may choose a common ¢, their restriction to B¥ will be
I'-homotopic and, from Lemma 2.2 (b), the decomposition will be unique. Note that,
since (s, 1) is in (I x V)T, the sum is commutative.

Now, the sets (Bf \Ug-py BX ) = Ae,m have disjoint interiors and cover all of
I x Bg, as it is easily seen. Furthermore, F is non-zero on their boundary. Thus, up
to one suspension, one has

degr(ﬁ; I X BR) = Zdegr(ﬁ; Acp).

OnA.p, F(t,X) = (FH(t, X), Fj-(X L)), where Fj+ hasits only zeroat X | i = 0.
Hence, by excision

degr(F; Aerr) = degr(F", Fip); I x Bg).
In F (t, X), one may deform X to Xp, as well as in ¢ and one gets the result. O

We shall continue our more detailed description of Hgv (SV) by recalling hypoth-
esis (H): see Section 6 of Chapter 1. We shall assume that

V = RF x U and that U and Wsatisfy (H),
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ie.:
(H) For all isotropy subgroup H and K for U, one has
dim U nUX = dim w¥ nw¥.
Or equivalently (Lemma 6.2 of Chapter 1):
(a) dim U¥ = dim W#

(b) There is a T -equivariant map: (xy, ..., Xs) — (xi‘, A xis),from U into W,
where [ are integers and x!, for negative 1, means x!! (lj =1on U and on
the real representations of ).

Furthermore, (H) holds. From the dimension hypothesis, if a coordinate x; is not

in U then le:f isnotin W and is a piece of F' ﬁ Thus, (K) holds for all H and the
complementing maps are compatible.

Theorem 3.2. If V =R x U, where U and W satisfy (H), then
Mgy (SY) =My X Z x -+ x Z,
with one 7 for each H with dim I'/H = k. Moreover,
[Flr = [FIr + Y _dulFulr.

where [F] = Z[FK] is constructed from Py_1 [F],Nthe resm;ction of [F]to Ti_1 and
from the suspensions of Theorem 2.2, and where [ Fy] is in T1(H) and the suspension
of Fy with extension degree 1.

Proof. 1t is enough to use Theorems 2.2, 2.3, Remark 2.1 and Example 2.1 O

The generator Fyg was proved to exist in Theorem 1.3. We shall give an explicit
form, in case (H) holds.

Let H be an isotropy subgroup with dimI'/H = k. Let VI' = RF x UT be
generated by (¢, A1, ..., Az, Xo), with#in [0, 1]. On (VT)L NV #  we shall build the
fundamental cell C, by choosing first zy, ... zx, with k; = 00 and isotropy Hj, then
Xk41, - - - » Xm, With x; complex and k; finite, and finally y1, ..., y, with y; in R and
kj =1 or 2. Define the following invariant polynomials:

(@) Fork+1<j <m: P; = Pj(x1,...,xj) :x‘lx1 ...le.cj,asgiveninLemma6.3
of Chapter 1, and x; = z1, ..., Xk = Z.

(b) Forl1 <i <r,Q; = Qi(y)) =y ifki =2,0r2ifk; = 1.
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Since I" acts on y; as Z,, Q; is invariant. Define, on I x Bg, with R > 1:

Fi(e. Xp) = (20 +1=2] TP ] 57 Xo. G + il = D)3,
(o +i(lz2l” = )23, .. O +ie(zl = D)2,
l
(Pist + DX s P+ Dl (0= Dy, (@0 = Dy ).

In []x; |2, one has all j’s between 1 and m, while in I1 yj2 one has only those y;

with k; = 2. The factor ¢ is (— 1)kk=1)/24kdimXo The order of the components has
been taken to be that of the fundamental cell so that the notation is lighter. In fact,
they should appear in their natural place. Note that, if H,, is the isotropy of V, one
has dim U = dim W#» but W could be larger. However, any I'-map on V will have
its range in W,

The map Fy is given by suspending Fy by le.j for the remaining x;’s.

Theorem 3.3. The map Fy generates T1(H), i.e., it has extension degree 1. For any
integer dy, one may give a map F in T1(H) with extension degree dp .

Proof. The zeros of Fy in I x Bg are for X9 = 0, A = --- = X = 0, |z1] =
=zl = l,yj2 =1ifk; =2andy; = 0if k; = 1, and |Pj| = 1. Since P;
ends with xl.{j , one may solve iteratively the relations |P;| = 1 for |x;| = 1, since
|z1]l = -+ = |zx| = 1. Then, t = 1/2.

Then, on a zero of Fjy, one has |z;| = 1, and, for all j’s, |x;| = 1. In particular,
any zero, in I x Bg, has isotropy H and Fy|BX # 0 for any K > H, that is Fy
defines an element of IT(H).

Furthermore, on By = B N{z; > 0 for j = 1,...,k}, there are exactly []4;
zeros, since for x1, ..., xj_1 fixed, the relation P; + 1 = 0 is solvable for k; values
of x;j. By changing P; + 1 to P; + n;, with |n;| = 1, one may choose the phases of
n; iteratively so that none of the zeros is on dCp, that is, there is only one zero X 0
inside Cg, with a well defined extension degree.

In order to compute the extension degree, recall that for z; = --- = zx = 1, the
only solution in Cy of P; +n; = 0 is for x; = xj(.). Perform then the following
sequence of deformations:

1. Replace z; by T + (1 — 7)z; in zj:’ and in |z;| in the first component, for j =

1, ..., k. Replace x; by rxf +(1—1)xjin xj:i and in |x;| in the first component,
for j = k+1,...,m. For kj = 2, replace y; by T + (1 — 7)y; in the term
(yj +1)y; and in yj2 in the first component. One arrives at the map, deforming

2 _
zj—ltOZJ 1,

Qt =1, Xo, i +i(zi — ..o e +iez — 1), P+ 0,y — y)).
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i—1 ki . . . .

2.In P = xf" .. .x;lillxj", one may deform, linearly in Cp, x; to x? fori < j,

arriving at (x; — xJQ)Rj (xj), where R;(x;) is a polynomial of degree k; — 1

with no zeros in Cy, hence deformable, via R; ((1 — 7)x; + rx](.)), to a constant
complex number, which can be deformed to 1.

By the product theorem for the Brouwer degree, the degree of the part (21 —1, x; —
xJQ, Vi — y](.)) being 1, one has to compute the degree of the map

()"17"'7}"k7X07217--'7Zk)_) (X07)"17Z1 - 1112722—1,~-,)»k78(1k— 1))

The number of necessary permutations to bring (A1, ..., A, Xo, 21, - - ., Zk) Into
(Xo, M1, 21, A2, 22, - - -, Ak, 2k) 1Sk dim Xo+k(k—1)/2. This proves that the extension
degree is 1.

For the second part of the theorem, replace Ay +ie(|zx |2— 1) by (Ax+ie(|zk |2—1))d,
where z¢, with d negative, means z'?!. One may also replace Py by Pde, with the
same convention on negative powers meaning conjugation.

While, if there are no complex coordinates (hence k = 0) and r > 2 then, if
II'/H| > 2, take two y’s say y; and y,, with k; = ko = 2, and replace (Q1 — 1) and
(Q2 — 1) by the real and imaginary parts of (yl2 -1+ i(y% — 1))? respectively. On
the other hand, if |[I'/H| = 2 and ky = 2, with k; = 1 for j > 1, replace the first
three components by (27 + 1 — 2y12y§, y1 Re(y12 —14+iyiy2— 1)y Irn(yl2 -1+
i(y1y2 — 1))?), which gives an extension degree d, or replace the first two components
by Re(2r + 1 —2y2 +i(y? — )4, yIm2r + 1 — 2y% 4+ i(y* — 1))?). In all cases,
it is easy to see that the maps are equivariant and of degree d on Cg. O

For the case I' = S!, several other hypothesis were given in [IMV2, Chapter 3].

Remark 3.1. In Theorem 3.1, we have seen that the generator is unique up to con-
jugations. Let us make this dependence more precise: assume that, in V¥ one
has zi,...,zs and z}, ...,z such that the action on z} is the conjugate of that

of I' on zj. Assume that one has constructed two fundamental cells ¢ and ¢/,
where z; > 0 for € and z; > 0 for C’. Then, one has two generators F and F’.

The map F will have terms of the form ((A; + iSj(|Zj|2 — 1))zj.j, (zjz;. + l)zj/.lj),
while F’ will have z; and z} interchanged. The components which do not concern
2Ly o vy Zss Z/l, R zg, may be chosen equal for both maps. On C the map F, as a map
from (A, Rez;, Re ZJ'-, Im z}) has degree 1 (from the choice of ¢;: this piece of the
map contributes £;). While on C’, the map F, as a map from (A;, Re zj,Imzj, Re Z}),
is deformable to (4, 8]~(|z,-|2 —1),RezjRe z;- + 1,Re z} Im z;), near the zero z; =
-1, z;- =1,and to (Aj, —gj(Rezj + 1), 1 —Re ZJ’., Im z;), with a contribution of —¢;

to the degree. Thus, on €', the map F has extension degree (—1) and

[Flr = (=D*[F'Ir.
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Itis easy to see that, if a pair (z;, zj’.) has k; < oo, then the generator is independent
of the order one has taken for C.

The last part of this section concerns Poincaré sections, as defined in Definition 1.1,
which will enable us to compute the dp; ’s for a certain class of maps, by relating them
to usual Brouwer degrees.

Theorem 3.4. Assume V = R¥ x U, where U and W satisfy (H). Let z1, . . ., zx with
isotropy Hy, with dim I'/ Hy = k and global Poincaré section B = {(t, X) in I x Bg,
withz; > 0,for j =1,...,k}. Then, if F : I x Bg — R x W, is a I"-map which is
non-zero on o(I x Bg) U 0By, one has

[Flr= ) dulFulr,

H<H<Hy

where H is the torus part of Hy (see Lemma 2.6 of Chapter 1, hence dimI'/H = k).
Furthermore, for each H in the above sum, one has

deg(F"; Bfy = )" Buxd|Ho/K|,
H<K<H)

where, if(xil, R xé") is the complementing map of vK invH (i.e., an equivariant
map from VLN VH jnto (WYL N WH)Y, then Bux = [1{. In particular,
Bun = 1.

Proof. Note first that if F' is non-zero on 0 By, it is also non-zero on d(/ x Bg) due
to the action of I'/ Hy (see Lemma 1.1). Furthermore, for any isotropy subgroup H,
FH is a non-zero map from BBE into WH. If H < H < Hy, then V¥ contains
21, ..., 2k and since dim I'/ H = k, the spaces BkH and WH have the same dimension
and deg(F¥; Bf?) is well defined.

Now, if K is not a subgroup of Hy, in particular, if dimI'/K < k, then z; = 0O for
some j =1,...,k,in VK This implies that FK # 0, in particular, [ F]r is in T1(k)
and [F]r = 0, as given in Theorem 3.2. Then, [F] = Y dy[Fyu].

For such a K one has, from Theorem 2.4,

0=[FK1= )" dulFf1.
K<H
From Lemma 2.2 and Theorem 2.4, one gets that d [155] =0=dylFy, FIJ{-K], since
VH c vK_ Since F #I-K is a complementing map for V# in VX and this suspension
is one-to-one (Lemma 2.2 (a)), one has dg = O forall H > K. Since H is the unique
smallest isotropy subgroup, with a Weyl group of dimension k contained in Hp, the
above sum is reduced to those H’s between H and Hy:

[Flr= Y dulFulr.

H<H<Hy
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Let Vo) = REx VENB,, Wy = WL, Then, from Lemma 1.1, we know that H acts
as a finite group on V. The isotropy subgroups for that action are exactly those H’s
with H < H < Hy, since Hyxy = I'x N Hy. Furthermore, one has dim VOH = dim W#

and {x]l.j } gives, for x; different from z1, ..., zx, complementing maps. Thus, one has
property (H) for V. Moreover, Cg is also the fundamental cell for the action of Hy on
VOH (see Lemma 1.1) and, the generators Fg of Theorem 3.3 have extension degree

equal to 1, one may choose Fg|By as the generators for Hg@o (S"0). Applying the

above argument to Hy and F|y,, which gives an element of 1'1?80 (S"0), one has

(Folug = Y dylFilu,.

where FU stands for F|y,. This equality means that one has an Hy-homotopy F°(t, X)
on d(Bx N V) from the left-hand side to the right-hand side. From Lemma 1.1, by the
action of I'/ Hy, one may lift this homotopy between F (X) and ) _ H<H<Hy d}l [Fglr:

again use Lemma 1.1 (b) to see that the lifting of F¥ and 152 is FIL and F g respec-
tively, on VE Hence,
~H
[Fr = )" dylFyr,
H<H<H)

but, from Theorem 2.4, [ F]r has the same decomposition, with dy instead. From
Lemma 2.2, one has d}; = dp. Since,

(FO9m, = Y dx[FR" 1.
H<K<H

which is a homotopy on 9 (By N Vp), the two sides have the same Brouwer degree, for
which the sum operation is an isomorphism, i.e., the degree of a topological sum is
the sum of the degrees. Since I:"[%H = (F 0 F IJ(-H ), one has, from Theorem 3.3, that
deg(ﬁIgH; B,fl) = (]_[kj)(]_[lj) = |Hy/K|BrHk, using Theorem 1.2. This finishes
the proof of the theorem. O

Remark 3.2. The passage through Hp may seem, at first sight, unnecessary. The
point is that a I'-homotopy on S" does not imply an Hy-homotopy on 9 By, since,
even if the two maps are non-zero on 9 By, the I"’-homotopy may have zeros, when
one z; is 0. In Lemma 1.1, we have proved that this can be fixed for I1(H), and the

summation formulae, for [ F°] Hy and [F H]r, extend this property to P 1:I(H ).

Now, if H < Hy, one has dim VHN B; = dim WH, and if H is not a subgroup
of H, then in V# one has coordinates of (VZ)L, if H is not the isotropy of V.
From the definition of the torus part of Hp, this implies that dim Hy/H > 0. From
Theorem 2.2 (b), one has
s (%) =g =kl (s™).

5%
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In particular,

[FIBilty = [Fmy = Y dulFln,

Remark 3.3. Consider the map F = (FZ, F), where F, from (VE)L into

(W)L has degree []/;, coming from the complementing map. Then F is non-
zero on 0By, FH = FH for H < H < Hy, thus, deg(ﬁH; B,f') = deg(FH; B,f’).
Hence the two maps have the same set of I'-degrees, i.e., the same dg’s, by inverting
the relations of the Brouwer degrees (see below). That is,

[FIr = [F]r.

Furthermore, the preceding remark implies that [F| g, |5, = [F | B, 1H,, thus

deg(Flg,: B) = deg(Flg: By) = deg(F™| g s B 0 VED (T 15).

So,

deg(Flp,; Bi)= Y BundulHo/H|,
H<H<Hy

independently of F on (V)L

Corollary 3.1. Ordering the subgroups H with H < H < Hy, as in Definition 3.1,
the relations of Theorem 3.4 may be expressed in the form

deg(FHo; Bl0) 1 0 do
deg(F™; By | = | B1  |Ho/Hjl 0 dj
deg(FH; Bki) Bst  BsjlHo/H;| |Ho/H|/ \ds

with ﬂ,’j = ,BHI.H]., dj = dH_]..

This triangular matrix, since 8;; is non-zero if and only if H; < Hj, in particular
i > j,isinvertible. Hence, the d;’s are completely determined by the Brouwer degrees
on the left. One may use the Md6bius inversion formula to get a compact expression
for the inverse. Note that 8;; = 1,if H; < H;,for V = RF x W.

Example 3.1. Consider the action of Z, x Z; on R x R3 givenby (¢, y1x, Y2¥, Y1122),
with ylz =1d, yzz = Id. One has the following information.
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Isotropy H vH CH
Ho =17y x Z» (¢,0,0,0) (¢,0,0,0)
Hi =7 x {1} (1,0, y,0) 1,0,y > 0,0)
Hy ={1} x Zs (t,x,0,0) (t,x > 0,0,0)
Hz ={(1, 1), (=1, = 1)} (t,0,0,2) (,0,0,z > 0)
Hy = {1, 1)} (t,x,y,2) (t,x >0,y >0,2)
IT/H]| Fy
1 Qt—1,x,y,2)
2 @t +1-2y% x, (2 — Dy, 2)
2 Qt+1—2x2,(x2—=Dx, y,2)
2 Qt+1-22%x,y, (> —1)2)
4 2t +1—2x2y%, (x%2 — Dx, %> = Dy, 2)

Since Bg = I x Bg, any map in Hgv (SY) can be written as

4
[F1=_dj[F}],
0

and, if i; is the degree of F on B | one obtains

io 1 0 0 0 O do
i 1 2 0 0 O di
hbl=1]1 0 2 0 O d>
i3 1 0 0 2 O ds
iq 1 2 2 2 4 dy

In particular, deg(F; I x Bg) = deg(F"; I)+2p, aBorsuk—Ulam result. For instance,
if F(t,x,y,2) = 2t —1,—x,—y,—2),one has ip = dyp = 1, i; = —1 = d; for
j=1,2,3,is=—1and ds = +1.

Example 3.2. Assume V = Rf x W, Then By = 1 if H < K and 0 otherwise.
Define the following Mdobius function:
g =1
— Y H<L<k PHL =~ Yy <k WLk, fH <K
MHK =

0, otherwise.
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Thus, u gk is integer-valued and can be computed iteratively. Then, if

in= Y |Ho/Kldg,
H=<K<Hy

one has

|Ho/Hldy = Y pukix.
H<K<Hy

In fact, if one writes
ix =) Skr|Ho/LldL.
L

with §g; = 1if K < L < Hy and 0 otherwise, the substitution in the formula for
|Ho/H |dp gives

Z Z mwHkSkLIHo/Lld = Z ( Z MLK5KL>|H0/L|dL,

H<K K<L H<L H=<K=<L

where one has changed the order of the sums. Since )y _x; unk = 0, for H a
strict subgroup of L, one obtains the result.

In the preceding example, the upx’s give the matrix

1 o 0 0 O
-1 1 0 0 O
-1 0 1 0 o
-1 0 O 1 O
2 -1 -1 -1 1

In many examples iy corresponds to the index of an isolated solution, i.e., to the
sign of the determinant of A”, where A is an Hy-equivariant matrix: see Property 3.4.
and Theorem 5.3 of Chapter 1. That is, iy = %1 for all H’s. One has the following:

Proposition 3.1. Assuming V = R x Wandiyg = +1 forall H’s, with H < H <
Hy, for a map satisfying the conditions of Theorem 3.4, then

dg =0 ifVH has a coordinate where Hy acts as Zy,, m > 3,

dHy = iHy,

du; = (iH; — iHy)/2, for all maximal Hj’s, with Hy/Hj = Zs,

dy and iy are completely determined by ip;, the above Hj's, for all H's not
included in the above list.

Proof. Let V be the subspace of V where H acts trivially or as Z, i.e., 1% corresponds
to the “real” representations of Ho. Let H be the isotropy of V. Then any y in Hy
is such that y? belongs to H, since the action of Hy on a “real” coordinate is by 1.

Thus, Hy/ H = Zy X --- X Zo and one cannot have a “complex” coordinate in vH,
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i.e., with an action of Hy as Z,,, with m > 3: any generator y of Z,, would need to
have yz in H , hence, if that coordinate would be in Vﬂ , one has m = 2. That is,
vE = V.

Let H be such that V¥ contains at least one complex coordinate. Then,

in= Y |Ho/Kldg+ Y  |Ho/K|dk +|Ho/H|dy.

H<K<H H<K
H<K

where the first sum is on the real coordinates of V#, with isotropy H, hence equal to
i ;- The second sum is over those isotropy subgroups K, different from H, with VK
containing at least one complex coordinate.

Assume, by induction, that dxy = 0 in the second sum, then

in=ig+I|Ho/H|dy.

Since |Ho/H| > 2, because of the complex coordinate, the only possibility is dy = 0
and iy = ip. Note that if F (¢, X) = AX, with A an Hp-equivariant matrix, then,
due to the block diagonal structure, A| VHAV AL is complex, hence with determinant
landi H = i 0

It remains to prove the last point of the proposition: let H correspond to some
isotropy of real coordinates, then |Hy/H| = 2™, for some m > 1. Then,

m—1
in=diy+2 Y dy+ 32X de) +2dn,
H<H]' a=2 H<K

|Hp/K|=2%

where the first sum corresponds to the maximal H;’s containing H. Given dp, du;’s
(hence i g, and ip;’s), assume by induction that the dg’s in the second sum are com-
pletely determined, and that one has the above identity for iz and dy and for i}, and
d},;. Then the difference will give

in —ily =2"(dy — dy)
which is not possible, since m > 1, unless iy = i}y and dy = d. O

This proposition implies that any change of the I"-degree, at this stage, is detected
by changes of d, or on dp;, with Hy/H; = Z,. This fact will lead to period doubling.

3.4 Borsuk-Ulam results

One of the first uses of symmetry, to give information on a map, is the Borsuk—Ulam
theorem, which states that the Brouwer degree of an odd map, with respect to a ball
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centered at the origin, is an odd integer. There is a vast literature on extensions of this
result to different situations. In this section, we shall indicate how the ideas of the
three preceding sections may be used to give sharp results for the Brouwer degree of
a I'-map, when I' is abelian. This section is not central to the book and is more of a
topological interest.

In this section V and W are two arbitrary finite dimensional representations of I.

Our first result will yield a classification of I'-maps in a context different from
that of Theorem 2.3, i.e., where one may have no complementing maps but where the
problematic isotropy subgroups have a finite Weyl group.

Theorem 4.1 (Hopf classification). Assume dim vl > Al and suppose that (H) holds
(i.e., Sign(det y) Sign(det y) > O for all y inT'). Let J be the set of all elements H
of Iso(V') with the property that for all K < H one has

dim VK < dim WX, ifdimT'/K =0,

dim VK <dimWK+dimF/K, ifdimI"/K > 0.

(Note that J C J C J, where J and J are defined in Corollary 1.2).
Then, if F and Fy are two equivariant maps which are I’ -homotopic on|_J Heje
one has integers dy such that

sV

’

[Flr = [Folr + Y _ dulFulr,
1

where the sum is over the subset 1 of J of H’s, with dim V# = dim W¥ and
dimI['/H = 0, and Fpy is the e)ftension given in Example 1.4, of the map Fy with
extension degree 1 in TI(H). If J = Iso(V), then Fy is not present.

Proof. Let T1 = {[Flr : F: Uycje S¥" = W\{O}}, with [T = (1, 0) if / = Iso(V).
As in Sections 1 and 2, it is easy to see that IT is a group. Let R be the morphism,
from Hgv (8%} into I1, induced by restriction to the isotropy subgroups in Je.

From Corollary 1.2 (c), since J C J, any element in IT extends to an element
in Hgv (S"), that is R is onto. Furthermore, any [F] in ker R is such that F has a
non-zero I"-extension to J,;_ je B,

Let [ Fp] be in ker R and let H| be an element of J which is maximal in 1. Thus, if
H > Hj, then either H is in J¢ordim VH < dim WH +dim I'/H. In both cases, Fy
has a non-zero I'-extension to B : use Theorem 1.1 in the second case. This implies
that F(fl ! belongs to TT(H), as defined in Definition 1.3, and its extendability to B!
is characterized by its extension degree, given by

deg(F{'; By = |/ Hy|degy (Fo) = |T/Hldp,,

from Theorem 1.2. From Example 1.4, degy (Fo) depends only on Fy and there is a
generator Fpy,, of I[1(H;), which has an extension F H, tO I'IFV s"). F H, 1s also in
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ker R, from the construction of Fpg,. Let
[Filr = [Folr — dp, [Fi,Ir-

Then, [F]] is in kerR and is extendable to B!, Let J1 j\{H > H;}. Define
as above 1'[1, over J1 , and the projection R; onto 1'[1 It is clear that [F;] belongs
to ker Ry and that one may repeat the above construction with another maximal H>.
After a finite number of steps, one will arrive at

[Folr — Y dulFulr =0.
1

Finally, if F and Fj are as in the statement of the Eheorem, then [F] — [Fp] is in
ker R and has an expression as a combination of the [Fg]. O

Example 4.1. Let us consider Example 6.1 of Chapter 1: one has the actions of Z p?q,
with p and ¢ relatively prime, on V = C2, as (62””‘/1’2, e27ik/Pqy and on W = C2,
as (e2mik/p, 62””‘/[’2‘/). Then, on I x B, with B = {(z1, z2) : |zi| < 2}, one has the
isotropy subgroups:

I =7y, wih V' ={r00} W' =R,
H=7,  with V7 ={@t, 21,00}, W¥ =R x {(£,0)},
K=7,  with VK ={(1,0,22}, WK =R x {(&1,0)},
L={e), withVi=IxV, WLE=RxW.
Thus, J = Iso(V) and any equivariant map F from I x V into R x W, which is
non-zero on d(/ x B), may be written as

[FIr = dr[Fr] + dulFul + dk[Fx] + diFL],
where, if «g + Bp = 1, the generators are the following:
Fr=@—1,720 + 22, 29%)
Fr=Qt+1-2la G -, 220
Fx = 2t +1 -2z, (5 — l)zg,zz,zlzﬂ)
Fr = Qt+1—2z122/%, (z1 — )2, @ — 1)),

The zeros of Fr — (0, €, 0) are at (1/2, 0, !/9¢2k7/0) and (1/2, !/Pe2k7i/P ()
with index « and B respectively. Hence, deg(Fr) = ag + Bp = 1. Similarly,
deg Flfl = p,deg FX = ¢. It is then not difficult to show that

deg FT 1 0 0 0 dr
degFHl |p p* 0 0 dy
deg FK qg O Pq 0 dg

deg F I Bp* apq p’q) \dv
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In particular, if F is an equivariant map from V into W, then F = (2t — 1, F ),
hasdr =1 and 3
degF =degF =1+mp

for some integer m.

Example 4.2. Let V and W be S!-spaces with dim V = dim W. Then on a coordinate
zj of (VS : )™ one has the action ¢/ and on a coordinate & ;in ( wS' )1 the action is
as /% One has, of course, that (H) always holds. Recall that a negative m j means
conjugates. Then, the following statement holds

Proposition 4.1. If dim V = dim W and F is an S'-map, from I x V into R x W,
which is non-zero on 9(I x B), then

(a) Ifdim vs' # dim WSI, one has deg(F; I x B) =0.
(b) Ifdim VS' = dim W5', then

deg(F: I x B) = Bdeg(FS': I x BS'),
where B is the integer ([]n;)/(T1m;).
Proof. We shall use the following useful trick: Let V be the S I_space defined as

{(Xo, Z1, ..., Z)}, where X is in VSI, the action of S' on Zj is as €' and k =

dim V — dim VSl, 1.e., dim V = dim W and S acts semi-freely on V. Furthermore,
the map
Fo(Xo, Z1, ..., Zi) = (Xo, Z{", ... Z%)

is an S'-equivariant map from V into V. Moreover, if F is an S'-equivariant map
from I x V into R x W, then

F(t, X0, Z1, ..., Zx) = F(t, Xo, Z\", ..., Z[™)

is an S!'-equivariant map from I x V into R x W, which is non-zero on the sphere
a(I x Fy ' (B)).

Since V has only two isotropy subgroups, then, if dim VS ! < dim wSs : , the set J s
of Theorem 4.1, is Iso(V) and

[Flr =0, ifdim V5 < dim WS,
or

[Flr = d[Fr]p, ifdim VS = dim WS,

since, in the first case / is empty and, in the second, / = I' = S'. On the other hand

[Flr = [Folr, ifdim VS > dim w5,
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where Fj is any S 1 -map, with Fg homotopic to FT: in this case, J reduces to {e} and
I is empty. One may choose

Fo=(FS',z",...,Z",0,...,0),

since F$' = FS' and dim(WSl)L > dim(VSl)L. If one replaces one 0 by ¢ in Fo
one obtains a non-zero map (of course non-equivariant), that is, deg(Fp; I x B) = 0.

Thus, if dim vs' £ dim wS' ,one has deg(ﬁ; I x Fo_l(B)) = 0. In the remaining
case, d = deg(F s! : [ x BD), by definition of the extension degree. Furthermore, the

map 150 = (FSI, Z;”, - ZZ") has the same invariant part and the same d: this
implies that . _
[Flr = [Folr.

From the product theorem for the Brouwer degree, one gets
deg(l:"; I x Fo_l(B)) = (Hnj> deg(FSl; I x BSI).

The proof of the proposition will be complete, once one uses the formula for the
degree of a composition which yields

deg(F; 1 x Fy\(B)) = (]_[mj) deg(F: I x B).
The fact that § is an integer follows from the next result. O

Corollary 4.1. IfV and W are S'-spaces with dim VS' = dim WS, then if 2t — 1,
Xo), Xo in vs' , has a non-zero S'-extension Fsl from (I x B) into R x W, one has

(@) dim VH < dim W | for all H inTso(V),
(b) [Flg1 = deg(FS'; I x BS)[Fgl,
(©) 1S, (") =z,

1

Proof. If Hgv (S") has an element F with deg(FSl; I x BSl) = (0, for instance ﬁsl,

then, if for some H, one hasdim V# > dim W#  consider FOH the restriction of FH to
asubspace Vp of V# with dimension equal to dim W# i.e., with at least one coordinate
zo equal to 0. From Proposition 4.1, one has that deg(FOH ; I x Vp) # 0. But one may
deform (t, Xo, zj in Vo) to (1/2,0,...,0,z0 = R) and F{' to F¥(1/2,0,...,0, R),
a constant map with degree 0. This contradiction implies (a).

But then, from Theorem 4.1, one has that J= Iso(V) and the only element of /
is S'. This implies (b) and that (2t — 1, X¢) has the extension F 51 (hence to assume

that there is a map F, with non-zero degree for FS : , 1s equivalent to assuming that
Fsl exists). Then, any element in Hgi, (S%) is classified by deg(FS1 3 I x BSI).
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Finally, one has that 8 = deg(F s1; 1 x B), hence an integer. Note that, if all maps
F have deg(F Sl; I x BS 1) = 0, then the fact that g is an integer or not is irrelevant.
O

Compare this result with Theorem 2.2 (b), where one has assumed, in this case,
. . 1
the existence of a complementing map F : there [F] = [F S FL].
The results above generalize to the case of an action of a torus 7.

n

Proposition 4.2. Let T" act on V and W and take F in Hgv (SW), then
(a) Ifdim yT" # dim WT" but diim V = dim W, one has deg(F; I x B) =0.
() Ifdim VT" = dim WT" and dim V = dim W, then
deg(F; I x B) = Bdeg(F™"; I x BT"),
where B is a non-zero integer, independent of F .

(©) ijdim vI" = dim WT" and 2t — 1, Xo), Xo in VT", has a non-zero extension
Frn, from 0(I x B) into R x W, then
(@) dim V7 <dim W, forall H inlso(V)
(B) [Flgn =deg(F™": 1 x BT")[Fra]

Tn
» [Js™ =z
SV

) 18l = (ﬁa;)/(ﬂa,), if dim V = dim W,

=1 =1

where ay is the greatest common divisor of(lnl1 [, ..., Inf1 |) and the action of T"
on the coordinate z; is given by expi < N, ® >, with N' = (nll, R ni) and
S = (p1,..-,0n),l = 1,..., k. The integer al/ is given analogously by the
action of T" on W.

Proof. From Lemma 2.5 of Chapter 1, one has an action of S! given by ¢; = M;¢,

such that (Nl, M) #£ 0, [27], unless N! =0 and VSl = vT". This implies most of
the proposition, since (a) and (b) are consequences of Proposition 4.1 (a) and (b), with

B = (f[<N/’, M))/(]i[w’, M)).

Furthermore, if I:“Tn is a T"-extension of (2t — 1, Xg), then under the above
morphism, it is also an § 1—extension, and its restriction to any VK K < T, is
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a valid S'-extension for maps from VX into WX (here we are using the fact that,
since T" is abelian, VX and WX are T"-representations). From Corollary 4.1, with
H={}<S 1 one has dim VK < dim WX, for any K strictly contained in 7", hence
dim7"/K > 0.

But then, the set J of Theorem 4.1 is Iso(V) and there is only one element in
I : T". As in Corollary 4.1, this implies (8) and (y).

Itremains only to prove (§): note first that § is independent of the chosen morphism
from S! into 7", provided (N ! M) and (N, M) are not multiples of 27. Since the
number k of terms in the quotient is fixed and the same in the numerator and the
denominator one may take the components of M to be rational, provided the new
(N', M) and (N"', M) are not congruent to 0 modulo 2, and by denseness, for real
M. Hence, 8 is the quotient of homogeneous polynomials of degree 1. This implies
that for each [ there is a ¢, such that (N, M) = clg(N9, M). Thus, N = cigN?

e 4 _ q r_ oty 4
and, 1fnj = agm;,n; = aym;, one has that ¢;gaqy/a; = m; /mj = m’/m for all

i
j=1,...,n, where m" and m are relatively prime. Hence, m’ divides all m;.l and m
divides all m;?, which is impossible, from the fact that ¢, and a; are largest common
divisors, unless |[m'| = |m| = 1 and ¢;; = :I:al//aq, that is, g is the expression of (§).
O

For a general abelian group, one has the following Borsuk—Ulam result.

Theorem 4.2 (Borsuk—Ulam result). Let V and W be two arbitrary representations
of T withdim V = dim W and let F : V\{0} — W\{0} be an equivariant map. Then:

(a) deg(F; B) = 0 if (H) does not hold or if dim VT" # dim WT" .
(b) If (H) holds and dim VT" = dim WT", then
deg(F; B) = Bdeg(F""; B""),
where B is the non-zero integer given in Proposition 4.2.

(©) Let J' = {H € Iso(V") : VK, T" < K < H,dim VX < dim WX} and
I'={H e J :dim V¥ = dim WH}, then, if the hypothesis of (b) holds and
Fo: VTn\{O} — WTn\{O} is I'-homotopy to F on Ung, SVH, one has for
any HinI'

deg(F"; BY) = deg(Fy'; B") + > dxBuk|T/K],
[/
where Bgx = 0 if H is not a subgroup of K, Bxkx = 1, Bug are integers
independent of F and Fy, while dx are integers depending of F and Fy.

If J = Iso(VTn), then Fy is absent. Furthermore, if wh = {0}, one has to
add, on the right, a term Byr.
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Proof. 1If (H) does not hold, then deg(F; B) = 0 follows from Remark 1.1. If
VI = {0}, one may complement F by 2t — 1 and obtain an element of Hgv (s").
Thus, from Proposition 4.2, one obtains (a) and (b). Furthermore, from Theorem 4.1,
applied to V7", one has

[FT"1=[F)"1+ ) dk[FE'].
7
Thus, deg(ﬁgn; By = Buk|T'/K|, from Example 1.4, where B x has the properties
listed in the theorem.

Finally, if WI' = {0}, then V' = {0} since F' maps the second space into the
first. Hence, when supplementing by 27 — 1, one has Iso(R x V) = Iso(V) UT, J J'
remains the same unless J' = = Iso(VT"), since this is the only possibility for I" to
belong to the new J /. In that case, I’ has to be supplemented by I and

(2t — 1, FT" =) dg[F{ 1+ FF L,
]/

where I:"E =2t —1and Byr = deg[ﬁ#; I x BH]. O

In order to get congruence results, characteristic of Borsuk—Ulam theorems, it is
interesting to know when one may construct Fy such that deg(F, H. pHY — ( for all
H’s in I, or at least for H = T". In that case deg(F; B) would be a multiple of
the greatest common divisor of the |['/K|’s, for K in I’'. Besides the case where
J = Iso(VT"), one has the following

Corollary 4.2. Let M be the set of minimal elements K; of f/c, ie., dimVEKi >
dim WXi put diim V¥ < dim W, for any H > T", strict subgroup of K;. Assume
that the hypothesis of Theorem 4.2 (c) holds. Then we have the following.

(@) ForanyHinl', H < K; for some K; in M, one has

deg(F"; By = 3" di B¢ 1K /K],
Kel;

where I; = {K € I', K < Kj}, /SHK are mtegers independent of F and with
ﬂHK = 0if H is not a subgroup of K and,BHH =1

(b) If for each K in M, there is an equivariant map
F{ - (vEnh\(o) — (wkntyo,
then one may construct Fy in Theorem 4.2 (c) with

deg(Fp; BTn) =0.
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(¢) If M has a unique element Ko and there is a complementing map F©, then, for
all H in I', one has
deg(FOH; BH) =0.

(d) If M =T, then the conclusion of (c) holds because FJO_ exists.

Proof. The proof of (a) will be a consequence of (d), hence we shall prove (b) first.
Let I1 be as in Theorem 4.1 and R be the morphism from Hgan (S wt ) onto I1. Let
[Fol = R[F]. Then, define, for some K| in M

[Fi] = [Fol — R[F, ', F!],

where, from Borsuk equivariant extension theorem, one may take F’ IK‘ = (1, 0). For
another element K, of M, define

[F>] = [Fi] — RIF{, F?],

with FX2 = (1,0). Since [F{?, F2 1K1 = [Fily&ayke, Fo5'1 = [(1,0), FT51

which is I'-deformable to (1, 0), one may use the equivariant Borsuk theorem and
K1 _

assume that F,"" = (1, 0).

K:
Continuing this process, one arrives at a final map Fs with Fy; = (1, 0) on U sV
i.e., with R[F;] = 0. Hence,

N
K; j
[Fol = ) RIF;}, F]].
p=1

Since the maps on the right have obvious extensions to sV, one may construct F
19 .
as Y[F, ), F11.
Now, if H isin I’ and H < K, then dim V¥ n (VKL < dim WH n (wki)+
and F iH is deformable (non-equivariantly) to a non-zero constant map. This implies

that . _
deg((F;, F)H; B™) = 0.

Since T" < K; for all j’s and T" is in I, one obtains deg(Fp; B™) = 0,
proving (b). The proof of (c) follows from the same argument, since one may take
[Fo] = [FXo, FE], and any H in I’ is a subgroup of K. If furthermore, Ky = I, then
dim(VHL nvH < dim(WHL nw#, for any strict subgroup of I" (and containing
T™). Hence, from Corollary 1.2 (c), the complementing map Fg exists.

Finally, for each K;, consider F' as a Kj-equivariant map. Then, the isotropy
subgroups for K are those H inIso(V) with H < K. Thus, the corresponding set of
minimal elements reduces to K; and /" reduces to /;. One may apply (d) with a K-
equivariant Fp, with degree equal to O on any B, H < K ;. Apply then Theorem 4.2.

O
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Corollary 4.3. Assume that T'/T" is a p-group, i.e., |T/T"| = p*, for some prime
number p. If V.and W are two arbitrary representations of T with dim V = dim W
and F : V\{0} — W\{0} is an equivariant map, then deg(F; B) is a multiple of p,
unless hypothesis (H) holds for V", in which case

deg(F™; By = 3" ax ([T)Ir/K|,

H<K KH

for all H in Iso(VT"), where the I;’s are given in Lemma 6.2 of Chapter 1 and
correspond to the variables in (VKL N VH . Here |T'/K| is a multiple of p, except
for K =T and dr = deg(F"; BD).

Proof. 1If (H) does not hold or if dim VT" # dim WT", then deg(F; B) = 0. Oth-
erwise if J' is not all of Iso(VT"), take any minimal element K; of M, then for any
element K of I;, |K;/K]| is a positive power of p. Thus, from Corollary 4.2 (a),
deg(F; B) is a multiple of p.

Hence, if this degree is not a multiple of p, then (H) holds, dim VT" = dim w"
and (H) holds on V7" in particular dim V¥ < dim W# forall H with 7" < H <T..
Now, if there is H such that dim V# < dim W# | then viewing FT" as a H-map, one
should have

deg(F™": B™") = > " df pfuy|H/K|.
K<H
for K in I’, and since H isnot in I’, |H/K| is a positive power of p, and therefore
deg(F . BT") would be a multiple of p, that is, for all H in Iso(VTn), one has
dim V# = dim W¥.

Finally, if K and H in Iso(VT") are such that dim V¥ N VX and dim W7 n wX
are different, consider FX, from VX into WX, as an H -equivariant map. The fixed
point subspaces for the action of H on VX and WX are V¥ N VK and WH n wk
respectively. Since H is also a p-group, from the arguments above, one gets that
deg(FX; BX) is a multiple of p. Now, regarding F" as a K-map, one has from
Theorem 4.2, since /' N{H < K} = I’ N {H < K} is the set Iso(VT") N {H < K},
that

deg(F™; B™) = adeg(F¥; BX) + bp,

hence, in this case a multiple of p. The contradiction with
deg(F; B) = Bdeg(FT"; BT"),

and not a multiple of p, implies that (H) holds for v,
In conclusion, one has, in this case,

(F™'Ir =) " dulFulr,

where each generator FH is of the form (Fy, x]l.j), with deg(Fy; B")y=|T'/H|. O
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Example 4.3. If ' = 7Z,, then deg(F’; B) is even unless dim vl = dim W' in
which case, deg(F; B) = deg(FF; B") + 2d, where deg(Fr; B") is replaced by 1
if VI' = {0}, by adding 2t — 1. In particular, the degree of an odd map is odd and
the degree of an even map is even (in that case V' = {0}, W' = W and, if V is odd
dimensional, then (H) does not hold and the degree is 0).

Example 44. Let f : C" — C", or R" — R”, be such that f(x) = P(x) + g(x),
where each component P; of P is a homogeneous polynomial of degree k;. Assume
that P (x) has an isolated zero at the origin and that g(x) is small with respect to P (x)
near the origin. Then,

Index(f) = Index(P) = l_[kj

in the complex case and modulo 2 in the real case.

The first equality is clear. For the second, put the standard S!-action on the first
copy of C" and the action given by ¢Xi# on the second copy (in the real case replace
S by Z, and ¢ by k). The map P(x) is clearly equivariant. In the complex case,
Index(P) = B, independently of P, from Theorem 4.2. Taking P;(x) = x]].cj , it is
clear that B is [ [ k;. In the real case, either all k; are odd and Index(P) is odd, or
otherwise VI' = {0} and dim W' > 0, hence from the preceding example, the degree
is even.

Example 4.5. One may wonder if Corollary 4.2 (b) depends really on the existence
of complementing maps. Here is an example to the contrary. Let Zj» act on two
copies of C® in the following way: on the first copy, as e2mk/4 on x1, x2, x3, x4 and
as e27ik/6 op y1 and y;; on the second copy, as e2mik/2 on &1,&, & and as e2mik/12 o
N1, N2, n3. The elements of Iso(V) are

Iso(V) vH wh
K = Zs (for k multiple of 4) {x1, x2, x3, x4} {&1, &, &)
H = Z, (for k a multiple of 6) 1, 12} (£, 6, &)
{e} \% w
I" if one adds a dummy variable t R

Hence J = {H,{e}},I' = {e}, M = {K}. There is no equivariant map F
from (VX)+\{0} into (WK)1\{0}, since any such map should map (VKL = vH
into WH = WX _ If the conclusion of Corollary 4.2 (c) were true, one would have
deg(F; B) = |T'|d,, a multiple of 12.

However, the following map has degree 6:

2 =2 =3 2 -2 =3 : 2, =2 = 2 = 2, = 2
F = (x{—=X3—){, x3—X;—y;5, Rexixo+i Re x3x4+y7 y2, X1y7, X3y5, X2y{ +X4y3).

The equivariance of F' is clear. The fact that F has only one zero follows from
the following considerations: subtract ¢ > 0 from the last equation. At a zero, one
needs y;y2 = 0, since if not one would have x; = x3 = 0 and the 3rd component
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non-zero. Then, if y; = 0, one has x; = +x, and Re x{x2 = &£|x; |2, hence the 3rd
equation implies x; = xp = 0. If y; is also O, then x3 = +x4 = 0, while if y; # 0
then x3 = 0, )E4y2 = ¢ and )Ef + &g =0,1ie., —|y2|6y2 = 2. In this case, the zero is
A =(0,0,0, 83/%, 0, —&2/7).

On the other hand, if y; # 0,then y; = 0,x3 = x4 =0,x; =0, )'czylz = ¢ and
)Z% + )7% = 0, and the zero is

B =(0,87,0,0, —%7,0).

In order to compute the degree of F it is enough to compute the index at A and B.

Near A one may deform linearly x3 y% to X3¢*7 and to 3. Then x3 can be deformed
to O in the other equations. Then yl2 v, is deformed to yl2 and the term x; yl2 to 0. One
obtains the product of three maps:

x3 with index — 1
(xf — %5 — 1. Rex1xa + ¥, %1y7)
(=% — 93, 553 — o).

In order to compute the index of the second map at its only zero, the origin, perturb
the second equation by —ie. The zeros of the perturbed map are for x; = 0, yl2 =ie.
One may deform x in the first two equations to 0 and yl2 to i¢ in the third. The degree
will be

— deg(—%3 — 37, yi —ie).

Taking ¢ to 0 and )_zf to 0, one obtains a degree which is —(—2)(2) = 4.

For the third map, with a unique zero, one may deform ¢ to 0 and consider the

map

(% + 53 — &, ay))
with 3 zeros of the form (x4 = 0, |y2|3 = ¢), each of index (—1)(—1) = 1, and two
zeros of the form (|x4]? = &, y2 = 0), each of index (—1)(2) = —2. Hence, the
degree of the third map is —1, and the index of F at A is 4.

For B, one follows the same steps, except that the term yl2 v2, which was deformed
to ylz, is now deformed to y,. Otherwise, one interchanges (x1, x2) with (x3, x4) and
y1 with y,. The index of the second map is now 2 instead of 4, and the index of F at
B is 2. Thus,

deg(F; B) = 6.

By replacing the term yl2 y2 by y12+6” y2, where a negative exponent means conjugation,

the index at A is changed to 2(2 4 6n), while that of B in unchanged. Hence, any odd
multiple of 6 is achieved as the degree of a I'-map from V into W.
Furthermore, if two I'-maps F and Fy coincide on VK then

(2t =1, Flr = [2t — 1, Folr +d[Felr,
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where
Fo=Qt+1 =2y’ xf(xf — 1), x{ F1x2 — D), 37 (Fpxz — 1),
BTGy = D, By Gz = D, 21yf Grox — D).
It is easy to check that F, is I"-equivariant, with 12 zeros at |x;| = |y;| = 1, each of

index 1, i.e., Fy is the generator for I1(e). Then,
deg(F; I x B) = deg(Fp; I x B) 4+ 12d.

By choosing Fj the map of the example, one generates, for maps from R x V into
R x W, all odd multiples of 6, while if one replaces (2t — 1, Fp) by (2¢ + 1, 0), with
degree equal to 0, one obtains all even multiples of 6 by varying d.

Hence, for maps from R x V into R x W, all multiples of 6 are achieved.

The simplest case is when hypothesis (H) holds on V1", i.e., dim V¥ = dim w#

for all H, with T" < H < T, and there is an equivariant map {le.j } from vT" into
wT".

Corollary 4.4. If dim V = dim W and (H) holds on V1", then, if m is the greatest
common divisor of{(]_[lj)lF/Hl,for T" < H < T and xj in (VL n VTn}, one
has
deg(F; B) = Bdeg(FT"; BT")
deg(FT"; BT") = (]_[ z,) deg(F': BT) + dm

where any integer d is achieved. The term deg(F'; BY) is replaced by 1 if VI = {0}.

Proof. Since (H) holds, one has J =1so(VT"y = I' and Brnpy = deg(Ff; (BHYL),
where F# is the complementing map. Thus, Brny = (1), forx; in (vELnyT",
From Theorem 4.2, one has

deg(F™"; B™") = dr Bror + Y dupProulT/H|
H<TI'

deg(F'; BY) = dr.

Hencedeg(F™"; B ") has the form of the corollary. Moreover, if m; = ( I1 l,-) '/ Hj,
then from Darboux theorem, one has

m = E ajmj,

where («y, ..., «;,) are relatively prime. Let [FTn] =d) o [I:"Hj], where FHj is the
generator of I1(H;) and FHj = (Fu;, Ffj). O
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This result may be refined by considering the greatest common divisor of
{IC/H|, T" < H < T}, see [I.V. 2, Proposition 4.3] and other references in the
section on bibliographical remarks. One of its main applications is the following
observation, which is used very often in order to prove the existence of non-trivial
Zeros.

We shall consider only one of the simplest cases: when I acts freely on V and

= {0}. Then " = S! or Z,, (see Definition 1.3 in Chapter 1). If ' = Z,,, then
the action on a coordinate x; of V' is of the form exp(2wikm;/m), with m; and m
relatively prime, in particular there is an integer p; such that pjm; = 1,[m]. On
a coordinate &; of W the action is of the form exp(2wikn;/m), with 0 < n; < m.

Recall that le.j , with l; = p;n;, is an equivariant map.
Corollary 4.5. If T acts freely on V and W' = {0}, then

@) IfT = S' and dim V > dim W, then any equivariant map from d Bg into W
must have a zero on 0 BR.

(b) IfT = S! and dim V = dim W, then any equivariant map d Bg — W\{0} has
a degree equal to ([ nj).

(¢) IfT = Zy anddim V > dim W, then if [ | n; is not a multiple of m, for instance
if m is a prime, any equivariant map from 0 Bg into W must have a zero on 0 Bg.

(d) If T = Z,, and dim V = dim W, then any equivariant map o Bg — W\{0} has
a degree equal to [ [1; + dm , where any d is achieved.

Proof. Adding the variable 7 and the component 27 — 1, one may use the previous
results. In particular, if ' = § !, then the action on z j is by e'? or e™'? and on &; by
e"? . 1If dim V = dim W, then, from Proposition 4.1, one has

deg((21 — 1, F); I x Bg) = deg(F; Bg) = (]_[nj)/(]_[mj),

where m; = %1, for any I"-map from 0 Bg into W\{0}. This proves (b). Furthermore,
ifdim V' > dim W and there is a I"-map from d B into W\ {0}, choose Varl- -subspace
of V, with dim V = dim W. Then, if x = ¥ @®x,xin V and x] in a I'-complement,
one has

deg(F(%,0); BN V) =+ ][ ]n;.

Let x; = (R, 0) then F(costx, sin TR, 0) is a valid deformation for || X|| = R,
that is F'(x, 0) is homotopic (not equivariantly) to the constant F (0, R, 0), hence with
degree 0. This contradiction implies (a).

IfT' = Z, and dimV = dim W, then hypothesis (H) is satisfied and, from
Corollary 4.4, one has

deg(F: B) =[] 1; +dm.
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Furthermore, consider the equivariant map

) d i I ;=p1m Iy ;=P1Mg
F@ = (A g™ = D, 5 E ™ =, b @z = 1),
j=2

where s is the number of variables in V, and «y, ..., oy are positive and chosen so
that md — p Z; ajm; is non-zero. Recall that, if m = 2, thenm; =n; =1 =1;.

The zeros of F are for x = 0, with an index equal to [ [ /; (1 form = 2) and m d
zeros of the form (z(l), z(l)p m z(l)p sy with z(l)m d_1 (this is where the condition
on the ;s is used).

I . 0 N

Near one of these zeros, one may deform zj:’, via (1 — 1)z + _L_lelm_, )i to
a constant. The deformation, in |z;|, via (1 — 7)z; + 7 /Z{7 "I followed by a linear
deformation of z; to z(l) in Zf 1 and, finally, another linear deformation of |z |~ 7! Tojmj
to 1, will leave the map, near the zero,

-0p1m Op1m,
(Z}ind_lazlpl 222_13---,Z1p] Aszs_l)’

which has an index 1 at that zero. Hence,
deg(F; Br) = Hl, + dm.

If dim V > dim W, take any V with dim V = dim W. As before, one has, if there is
['-map from d Bg into W\{0}:

deg(F|y: BRN V) =[]l +dm =0,

which would lead to the desired contradiction if [[/; is not a multiple of m. Since
lj = pjm;, one could think that /; depends on the choice of Vv, through p;. However
pijmj = 1,[m], hence n; = m;l;, [m] and (]_[lj)(]_[mj) = [[n;, [m]. Thus, if [T
is a multiple of m, sois [ [ n j. Conversely, if []n ;j is a multiple of m, since m; and m
have no common factor, one needs to have (]_[ ) j) =km. Thus, [ n ;i # 0, [m] if and
only if [[1; # 0, [m], for any choice of V. O

Example 4.6. If diim V > dim W, then for any V, with dim V = dim W, one has
deg(F|y, BNV) =0, as a necessary condition for a non-zero map from d B into W.
For instance, in Example 4.5, one has the action of Z4 on VX = C* and WK = C3.
On the other hand, a zero degree may often be used to construct non-zero equivariant
maps from 9 B into W. For instance, let Z > act freely on C? (i.e., as 27K/ p2) and as
e?™k/P on a second copy of C2. Consider the equivariant map from C? into C2:

fzi,z2) = (zf(2f2|z2| —1),25@iz2 — D).

2
The zeros of f, are the origin, with index p2 and the p2 points (z?, z?), with z{’ =1,
each of index —1. Thus, deg(f; Br) = 0 and there is a (non-equivariant) deformation
fe(z1, 22), from 9 Bg into C2, with fi(z1,22) = (1,0).
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Consider the fundamental cell on C> given by
C={0<|zl <R 0<Argz=¢ <27/p’ || <R, j=1,234}
Consider the following map defined from € into C*:

F(z,21, 22,23, 24)

(falel cos?(pp2/2)/R (@12 22)s (foyz) sin? (pp2/2)/ R (23: 24))
for |z < R, 0 < ¢ <m/p?

. o2 o2
(€7 fo costopjay )€ TP 21, €72 P 7)), J212) sin2(op2/2)/ R (235 24)
for |z < R, 7/p* < ¢ <2r/p?,

where f; = (1,0), fort > 1.
Since fj is equivariant, one has

.0 P2 [
F (2™ |z, ¥ i/P 7y .y = P PFE(I2), 21, . . ),

hence when using the action of Z,> to cover Br by images of C, one obtains an

equivariant map from By into C*. Furthermore, if |z il = R for some j, F is non-
zero, since f; is non-zero, in that case. For |z| = R, then for any ¢, one has either
2cos?(pp?/2) > 1 or 2 sin®(¢p?/2) > 1. Hence F is non-zero on 9 Bg.

Example 4.7. Another way of constructing equivariant maps from V into W with
dim W > dim V, can be illustrated as follows: Let p and ¢ be relatively prime, hence
there are o and B such that ag + Bp = 1, and let Z,, act on C? as yk = 7ik/P on
z1 and yk = ¢27*/4 on z,. Consider the map

f@ ) = @ET - D, 2@ - DETST+ ).

Then f(z1, z2) is equivariant, from C? into itself, and its zeros are: (0, 0) with index
1; (O, qu — 1 = 0), that is |a|g zeros each of index —1 if « > 0 and index 1 if

a < 0; (pr = 1, 0), that is | 8| p zeros each of index —1; (pr = l,qu = 1), with

laB| pq zeros with index 1; and (Z’fp = 1,257 = —1), |alpq zeros of index —1.
Then

deg(f; Br) =0

for R > 1. Let fr(z1, z2) be an ordinary homotopy of f on d Bg to (1, 0). Denote by
fe = fo/llfelland f = f/IfIl.

Assume that Z,, acts on z as e27ik/pa and consider the fundamental cell, for the
action on C3, given by

C={0=<|z| =R,0=<Argz <2n/pq,lz1l, 22| < R}.
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On 9C define the following non-zero map:

fiayr(Rf (21, 22)), ifArgz =0
F(z,21,22) = { ¥ fizyr(Ry ™' f (21, 22)).  if Argz =27/ pq
(€'99,0), if |z] = R.

From the construction, one has F(e2™/P4|z|, z1,z2) = v F(z|, v 'z1, ¥ " '22),

hence F has the right symmetry and is well defined at z = 0. Replacing f by f;
and deforming next y to Id and €'9% to 1, one has that, on dC, F is homotopic to
fizi/r (R, 0), which is a non-zero path in C2, from (R(RPP — 1), 0) to (1,0). Since
C2\{0} is simply connected, one may deform this path to (1, 0). Thus, F has a non-
zero continuous extension to € and, using the action of the group, one may extend F
to an equivariant map from C3\ {0} into C?\{0}.

Example 4.8. When one has more than one isotropy subgroup, then the situation may
be very complicated. For instance, consider the action of Z,,>, on V = C"*™ and on
W = C"** in the following manner:

On (x1,...,x,) as ezmk/f’z, with isotropy K = Z,
On (y1, ..., ym) as ¥ k/P4_with isotropy H = Z,,,
On (&1, ...,&) as e?™*/P giving WH = WK,

On (01, ..., 1) as e27ik/P*a

Assume p and g are relatively prime, hence one has «g + Bp = 1. Suppose
n+m=r+sandn > r > 2 (the existence of an equivariant map from VX into
WX follows from Example 4.6). Note that I' acts on VH ag Zpq, with a free action
of I'/H, that is, applying Corollary 4.5, with [[n; = ¢", which is not a multiple of
pq, one obtains that dim VH < dim WH | that is m < r, if there is a non-zero I"-map
FonodB.

One has the following result.
Proposition 4.3. For the above situation, one has
(@) Ifm =r, then deg(F; B) = o " +g +dpq # 0, [pq].
(b) If m =r — 1, then deg(F; B) = " " pq +dp*q # 0, [p*q].

(c) Ifm < r — 1, then deg(F; B) = dp*q.

Proof. We shall indicate only the proof of (a), since (b) and (c¢) have proofs which are
tedious, and refer to [IV2, Proposition 4.1]. It is enough to say that the proof is based
on a construction of Fy, extension of FX, so that one may apply Theorem 4.2, with
deg(Fo; B) = " ™ pq, [p*>ql,if m =r — 1and 0 if m < r — 1, then the term dp>q
comes from Theorem 4.2. The extension of F' involves terms of the form x? 4 y9 on
WH and xo‘yﬂ on (WH)L,
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If m = r, viewing F as a K-map, one may use Corollary 4.3 and one has that
deg(F; B) is amultiple of g. If we view F as an H-map (hence if m < r one has that
deg(F; B) is a multiple of p), one has

deg(F; B) = deg((F¥,x¢,...,x%); B) + dp = " deg(F; B¥) + dp.
But viewing F H a5 a ["-map, one has
deg(F™; By = deg((2t — 1, ¥, ..., yh) +dpg = ¢" + dpq.

Thus, y
deg(F:; B) =a"(¢" +dpq) +dp = cq.

n—m+1 )mfl

This implies that disa multiple of ¢g. Writing a"¢™ = «
aq = 1 — Bp, one obtains

q(ag and using

deg(F; B) = " g +dpq,

in particular, this number is not 0, nor a multiple of pg, since o and § are relatively
prime and n > m. O

3.5 The one parameter case

Let V = R x U and assume that U and W satisfy condition (H), i.e., dim U? =

dim W# , for all H in Iso(U), and there is a I'-equivariant map {le.j } from U into W.
From Corollary 2.1 and Theorem 3.2, one has

g, (sY) = HEV(SW) XL X X7,

with one Z for each isotropy subgroup H with dimI'/H = 1, and L=r/1",V=
vt w=wl",
Then, any element of Hgv (SV) may be written as

[FIr = [Flr + Y dulFyl = [FT" /10 + Y dulFul,

where {dp } are given, for the special case of well-defined Poincaré sections, in Corol-
lary 3.1. y
The purpose of this section is to compute [ F] which is the suspension by a com-

. Tn J_ 1" W . ad .
plementing map on (V' )= of an element of HSV (S"), with I" a finite group. Thus,

one may assume I' = T" a finite group and one wishes to compute HERX[, (SW). This is
the case of a Hopf bifurcation when an autonomous equation is perturbed by a 2w/ p-
periodic nonlinearity, breaking the action of S! to an action of Z,, (see Example 5.1
in Chapter 2).
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From Theorem 2.3 one has, for I" a finite group,
gy (s") = P T(H),

for H in Iso(V'), where fI(H ) is the suspension by the complementing map of IT1(H).
Recall that, from Lemma 2.2, this particular suspension is one-to-one.

Any element in VH is written as (z, W, X0, Y1y -5 Vss 215 - - - » 2r), Where (¢, Xo)
isin Ul =~ Rt w is the parameter, I' acts on y;, in R, with I'/H; = Z and on z;
in C, with '/ H; = Zj,;. Define BH ={0 <1t <1,|ul X0l lyjl, 1zj] < 2} and set
A=2t—14ipu.

LemmaS.1. If H =T, then TI(I') = [1,41(S8"), ie.,0ifn < 1,Zifn =2,7Z if
n > 3. The part of T'-degree on TI(H) is given by [F'].

Proof. See Remark 8.1 in Chapter 1. Recall that the Hopf map 7 generates IT3(S2)
and its suspension 7] generates I1,41(S"). O

Let F be (FT, Flﬂ-), where Flﬂ- is the complementing map, and let [F|] = [F] —
[F]. Then, one may assume that F{ = (1, 0). The next isotropy subgroups are those
corresponding to y;, i.e., such that I'/ H; = Z.

Theorem 5.1. If T/H = Z,, withdim VI =n +2,dim V# —dim VI =5, then

Ty x T ifs >2
Z x 7o ifs=2andn >0
Zx 7 ifs=2andn =0
Moo (S ifs = 1.

M(H) =

Proof. (a)If s = 1,ie., VH = {t, u, X0, y1}, the fundamental cell € is BT x {y; >
0}, F1 is given for y; = R and it is (1, 0) for y; = 0. Then, the obstruction for the
extension to C is [Fi|se] in [T,42(S"T1).

Ifn > 0, let Xg = (xo0, )~(0) and let n; be the map, with A =2 — 1 4+ ipu:

((1/4 = (y1 = D* = xP(1/4 — (1 + D* — x), Xo,
Re(A(yf — 1 +ix0)), y1 Im(.(y7 — 1 +ixp))).

The map n; is equivariant, i.e., all but the last components are even in y; and the
last is odd in y;. The zeros of n; are for )~(0 =0,A=0, x(% + (1 = 1?2 = 1/4. On
dC, it is easy to see that 1] is homotopic to the suspension 7 of the Hopf map. Hence,
thereisad, in Hn+2(S"+l), such that [F1|3e] —d1[n1lse] = 0. Thus, this difference
has an extension to € and, by the action of I'/H, to B¥ . Thus,

[FA1=di[m].
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If n = 0, then TT»(S') = 0 and [F)|y¢e] = O.

Note that [1]|55#] = 277 and that changing A to 191 one realizes d; [71].

(b) If s > 1, the fundamental cell is € = B N {y1 = 0}, of dimension n + s + 2.
From Theorem 1.1, one has a I'-extension to C N {y; = y» = 0} and an obstruction,
an integer, to extension to the set B N {y; = 0}, which is the degree of the extension
Fyond(BH N {y1 =0, y» > 0}). Note that on the space V¥ N {y; = 0}, hypothesis
(H) does not hold, hence the obstruction may be not unique (except if s = 2), and the
degree on 3(B N {y; = 0}) is 0. Let

dn = (1 -y —y3, Xo, M1 +iy2), y)).

It is easy to see that deg(dn; BY N {y; = 0,y > 0})) = (—1)"T'd. Thus, for
some d, [ﬁl] = [Fl] — d[n] has an equivariant extension to BN {y1 =0}.

Note that, from Theorem 8.3 in Chapter 1, (A (y; + iy2), yj) represents A4(V)y,
with A(L) = diag(}, Id), in IT; (GL(R")) and that, if s > 2, A%()) is deformable to
A9*2(),), thus, only the parity of d is important here. If s = 2, d may be any integer.

As before, the next obstruction will be the class of F 1 in I, 541 (S"1%) given by
F 1lae- Let diny be the equivariant map

(4/3)%(1/4 — (y1 = D> = y7y)(1/4 — (1 + D> = yiy)),
YiXo, M (1 OF — D+ iviya), yiyi)-

Again, it is easy to see that d1n; = (1,0) for y; = 0, that dinilse = d1[7],
and that d1n1|,p# = 2d1[7], where 7 is the suspension of the Hopf map generating
I, 1541(S""*). Hence, thereis ad; (in Zy if n +s > 2,in Zif n = 0, s = 2) such
that [F] — di[n1] = 0. Thus,

[Filr =dnlr +dilm]r.

By forgetting the action of I', one obtains on dB*, that if n + s > 2, one has
[F1] = d[7] in [, 1511 (S") = Zj,, hence the parity of d is uniquely determined by
F1 and the first invariant d is unique (in Z; if n +s > 2,in Z if s = 2). Therefore,
from the above formula, d; (in Z if s = 2andn = 0, in Zy if n +s > 2) is also
unique. O

Consider now the case of a general isotropy subgroup H, with fundamental cell
C. As in the proof of Theorem 1.1, we shall extend and modify a given element [ F']
of I1(H) to an equivariant map F without zeros on dC. There will be obstructions
to modifications on each of the faces of dC (i.e., with just one y; = 0 or one z;
with Argz; = 0). As seen in the proof of Theorem 1.1, the value of F on an edge
(Argz; = 0, Argz; = 2m/k;) may be given by the value on a face Argz; = 0 for
some k < i. Thus, one has to start with the first face, modify F so that the new map
will have a non-zero extension on that face and work the way up on the faces. For F
one will have a last obstruction, in Z,, for the extension to €. This construction will
be broken up in several lemmas.
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In order to simplify the argument we shall assume that if y; is a real variable with
isotropy Hj, then there is at least another coordinate yj/- with the same isotropy. In
that case, if z; = yj’. + iyj, the face y; = 0in C, with y; > 0 and k; = 2, corresponds
to Argz; = 0.

Consider first the face y; = 0. From the presence of y|, the isotropy of the face
is still H and one has a fundamental cell €’ for that face where y; is not present
and one has y; > O but the other variables and k;’s are the same as for €. From
Theorem 1.1, one has a I'-extension to BY N {y; = y; = 0} and an integer as an
obstruction to I'-extension to ¢’. Note that (ﬁ) is not satisfied for I'. However,
since '/H = (I'/H;) x (H/H), €’ is still the fundamental cell for H;-maps on
B n{y =0, y1 = 0} and there (H) holds for H;.

Lemma 5.2. Let deg(F; B n{y; = 0,y] > 0}) = di|H,/H|, then there is a
["-map n1 such that [Flr — di[n1]r has a non-zero I -extension to BH N {y1 =0}, in
particular to the face y1 = 0.

Proof. Let 1 be the I'-map
. ;
m= (2041207 + YD [T Xo, 207 + i), . (@5 = Dy (P + Daf'),

where A = u+i(y} +y2 — 1), 0; = y?ifk; =2and Q; = 2ifk; = 1, P, =
P; (y; + iy1,...,x;) is the monomial of Theorem 3.3 if k; > 1 and P; = O for
ki = 1. The product in the first component is over all the variables with k; > 1. For
y1 =0,y =1, theset {Q; — 1, P; + 1} has exactly |H;/H| zeros, with |x;| = 1, and
just one in €’.

It is easy to see that deg(n1 ]y, =0; C’) = (=1)".. Since this is an orientation factor,
due to the chosen order of the components, changing A to its conjugate, if necessary,
we may assume that 1]y, —o is the generator for IT; (H), where this group stands for
Hj-maps defined on {y; = 0, y| > 0}.

Since F isin [T1(H), i.e., it has a ['-extension to BX for K > H,then F|{y1:0,y{ >0}
belongs to I1;(H) and d; is its extension degree given in Theorem 1.2. Then [F]] =
[F] — di[n1], has a non-zero H;-extension to B N {vi =0, y; > 0}. Since
F1|y1:yi:0 is a -map, if F) is the H}-extension for yi = 0, define ﬁl(—ly{ [, x) =
)71:"1 GAE y~1x), forany y in T such that yy; = —y1. If y1 and y, satisfy this relation
then y; y{l is in Hy, one may write y{l = (1 )/271))/171 and use the Hj-equivariance
of Fi to prove that the new map is well defined and a I'-equivariant extension of
Fily =y, =0- o

For a face of the form Arg z; = 0, or for a pair of real variables with z; = yj’. +iyj
as above, if one considers C N {z; = 0}, then there is always, from Theorem 1.1, a
non-zero I'-extension to B N {z; = O} (if the isotropy of the face is K > H, then
the extension is given a priori).
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Lemma 5.3. Assume F has been modifiedto [Fj_1]r = [F]r — ZRJ- di[nilr, amap
in I1(H) without zeros on the faces Argz; = 0,i < j. Then, if d; is defined by

(Hki)dj = deg(Fj—1; B n {Argz; = 0})
i#]

one has a I'-map n; such that
[Filr = [Fj—1]r —d;[n;1r
belongs to TI(H) and has no zeros on the faces Argz; = 0,i < j.

Proof. Let H; be the isotropy subgroup of z;. In order to get an Hj-equivariant
extension to the ball B; = B H N {Argz i = 0} one needs to consider the extension
degree of F;_; on the fundamental cell C; for the action of H; on B;: since F;_j is
in TT(H) it is also in I1;(H), the group for the action of H;. Furthermore, from the
dimension, F;_; has a non-zero H;-extension to 9C;.

From Theorem 1.2, one has that this extension degree dy is given by

deg(Fj_1; Bj) =dy|H;j/H|.

Now, the ball B; is covered by | H; / H| disjoint replicae of C; and F;_; has degree
dy on each of them. Note that k; = |ﬁ,-_1/1-1,-| is the same, fori > j, for C and C;,
hence F;_ is non-zero on 9(C N Argz; = 0), by hypothesis if Argz; = 0,i < j,
and by the action of I" for Argz; = 2w /k; fori < j; fori = j, by the dimension
for z; = 0 and by definition for z; = R; and for i > j, since F;_; has a non-zero
Hj-extension to dC;. Thus, Fj_; has a well-defined degree on € N {Arg z; = 0}, and
also on C N {Arg z; = ¢} for any ¢, such that all these degrees are equal, using ¢ as
a deformation parameter.

Now, we know that B is covered by the |I'/H| disjoint replicae of C. Thus,
B; = BHN{Arg zj = 0} is covered by the intersections of the sets y © with Arg z; = 0.
Recall that the action of I" on z; is as e2mik/mj and that I:Ij_l acts on z; as e2mik/k;
Taking k = m; in the second expression, one should have a trivial action, since I:I i—1
is a subgroup of I and y" |z,- = Id. Thus, k; divides m;. Notice that, since

IC/H) = [T/ Hy || Hj /| = m; | H; /HI, then |Hy/HI = ([T ki )tk /m)).

i#]
Now, if y € N {Arg z; = 0} is not empty, then this set comes from the subset of C
with Argz; = 2mk/mj, forsome k =0, ..., m;/k; — 1. If y; acts on z; as e>mi/mj,

one may write y = yj_k Y, with y in H;. This implies that, for each such k, the number
of y’s such that y C intersects {Arg z; = 0} is the same and is equal to | H; /H|. Thus,
one arrives at a total of ]_[L-#j k; sets of the form y (C N Argz; = 2k /m;) covering
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B; and, on each of them, F;_1 has the same degree. This implies that deg(F;_1; B;)
is a multiple of ]_[i#j ki and dy is a multiple of m; /k;. Let n; be

~ [ .
ny = (201 =2 Il Xo, (@i = Dy K/ AP + Dl )

where & = p + i(|zj|2 — 1) or its conjugate if n = dim X is odd, the product
is over all the variables, except y; with k; = 1, and the set {Q; — 1, P; 4+ 1} has,
for z; = 1, ]_[l-#j k; zeros, with |x;] = 1 and just one of them on the face of C
corresponding to Arg z; = 0 (one may have to change 1,in P; + 1, to &;, with |¢;| = 1,
as in Theorem 3.3, in order to have this last property).

Then, the degree of n; on that face is 1, n; is trivial when restricted to the faces of
C given by Argz; = 0 fori < j (since P; is a monomial in xp, ..., x; and the zeros
of (P1 +1,..., P; + 1) are not on these faces). Finally, deg(n;; B;) = ]—[i#j k; and,

if one replaces A by 14, one obtains a map I"-homotopic to dn;.

Hence, dn; generates all possible obstructions on the face ¢ N {Argz; = 0} and
does not modify the previous construction. Choosing d as in the statement of the
present lemma, one obtains that [ F;_1] — d;[n;] has a non-zero extension on the faces
of C with Argz; = 0,i < j. This extension is then reproduced by the action of I" on
the other faces. O

Remark 5.1. Note first that d;j, in the above construction, depends only on the ex-
tension to C N {z; = 0}, from the Hj-extension argument and the formula for d;.
This dependence will be used to compute I[T(H) and see that one may have several
values for d;. Note also that, at each step, F' is modified on the subsequent faces.
Furthermore, in the formula for F;_;, the sum stands for a I'-homotopy on B and
for extensions to the faces C [|{Argz; = 0};<;j. However, the homotopy is not ex-
tended to these faces and, in particular, there is no relationship between the ordinary
degrees of F on the face {Arg z; = 0} and the sum of the degrees of d;n; on that face
and even less with respect to the degrees on Bj, except in particular cases, such as for
the first face for which F has no extension, given in Lemma 5.2, and in the case of
Theorem 5.3 below. This lack of relationship will be demonstrated in Example 5.1.

Lemma 5.4. Any F in I1(H) can be written as
[Flr =Y djln;Ir +dlilr,

where dj and n;j are given in Lemma 5.3, disOorlandijisa I"-map which is non-zero
on 0C and is deformable, on 0C, to the suspension of the Hopf map.

Proof. From Lemma 5.3, one may construct a step by step modification of F, such that
the last one, say F;, with [Fs]r = [F]r — Zdj [7;]1r, is non-zero on €. In order to
extend F; to C one has a last obstruction, this time in Zy, if dim € = dim W +1 > 4,
and in Z if dim @€ = 4. In that case, V' N (V1)L has only one complex variable, d;



142 3 Equivariant Homotopy Groups of Spheres

is uniquely determined by deg(F; B N {Argz = 0})/|I"/H| and T1(H) turns out to
be Z x Z. Let the generator 7) be

i= (| TThl Py = eal” = €2 X0, (@ = Dyis (P = el APy — el ),
1<n

where A = u + i(2¢t — 1), the constants g;, with |¢;| = 1, are chosen such that the
set (Q; — 1, P; — ¢&;) has |I'/H| zeros, with |x;| = 1, and just one, X%, in @. The
product is over all variables, except y; with k; = 1 and x,. Note that k,, may be 1.
The positive constant ¢ is chosen so small that the disc || X — X Ol < & is contained
in C. Hence, the only zeros of 7 are for x; = x?, A=0,|x, — )c2|2 = &2, In fact, if
x; = 0, the first component reduces to 1 — 82, since |e,| = 1. Furthermore, on 0C,
one may deform 7 to the suspension of (|x, — X,(,)|2 — &2, A(xy — x,?)), which is the
Hopf map (deform xf" to x? l by a linear path joining X to X and the deformation is
done at the same time in [ ] |x;|, and P; — &; to x; — x?).

Replacing A by A%, one generates d7. If d = 2, then 2] has a non-zero continuous
extension to C and, by the action of ', to BH . Thus, 2[nlr =0, if dim C > 4. O

Theorem 5.2. Assume that whenever k; > 1, j =1, ..., s, the corresponding vari-
able zj has a double z;. with the same isotropy if z; is complex and is repeated twice

10yj, yj/., yJ// if real. Then, TI(H) is a finite group generated by [n;lr, j = 1,...,s
and [n]r, with the relations, with d;; integers and c?j =0orl:

2[nlr =0
kilnj1r + Y djilnilr + djliilr =0,
i>j
in particular, one has
2kg[nslr = 0

2ks_1ks[ns—1lr =0

2] JkilmIr =0
2IC/H|[Flr = 0,
forany F in T1(H).

Proof. Let I1 be the following morphism from Z X - - - x Z x Zy into I1(H):
N, ...,ds,d) = dilnjlr +dlilr.

It is easy to see that if K > H, the sum is non-zero on VK and, from Lemma §.4,
IT is onto. Thus, one has to study ker IT, which is the set of all possible d;’s and d ’s
corresponding to the trivial element (1, 0).
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The extension of (1, 0) will be studied by following the steps of Lemmas 5.2 and
5.3. Hence, if k; = 2 and corresponding to real variables yi, y|, y{, there is always
a I'-extension to the set {y; = y; = 0} which has a fundamental cell of the form
{y{ > 0} x C”, where in C” one has the same variables as in C. By the dimension
argument, on {y; = 0} x €” all I'-extensions are homotopic, hence one may assume
that this extension is still (1, 0). If one extends as (1, 0) to y; = yi/ =0, yi > 0, then
B N {y; = 0,y] > 0} can be divided into two pieces, according to the sign of y{,
the map is (1, 0) on its boundary, except for y; = y| = 0, =2 < y{ < 2, where it is
a ['-map. Hence, from Theorem 1.2,

deg(FH; B n{y; =0,y > 0})) =2deg(F7; B¥ n{y; =0,y; >0,y > 0})

is a multiple of |[I'/H|. Thus, dj is even.

If F;_y = (1,0)r — ij di[n;]r has been extended to {Argz; = 0};<;, then
(1, 0) has a I'-extension F for z; = 0, as in Lemma 5.3, by dimension. Furthermore,
BN {zj = 0} is covered by |I'/H| replicae of the fundamental cell ¢’ which has
the same form as C, except that z} replaces z;. From the dimension, dim ¢’ =

dim WH# — 1, one may deform the map F on dC’ to (1,0) without changing the
homotopy type of the map F on €/, relative to its boundary.

Now, the set B N {Arg zj = 0} is covered by the ball ¢’ x {Argz; = 0} and its
IT"/ H|-replicae, where z; is considered as a parameter. The map F' is (1, 0) on the
boundary, except on €’ x {z; = 0} where it is a I'-map. Thus, as before, deg(F’; BAN
{Arg z; = 0}) depends only on the extension F and is a multiple of |['/ H|.

Now, if d; = 0,fori < j,orif d;n; are trivial on Arg z; = 0, fori < j, then F;_;
is homotopic to F on 8(B” N Argz i = 0) and they have the same degree, that is, in
this case d; is a multiple of k; (see Remark 5.1).

Consider the map, with A=+ i8(|Zj|2 —1), & = (=1)dimXo,

Fy = (2041211 [T bwil, Xo. (Qf = Dy A}, (P = ez}’ AP = enzf hig),
i#]

where {P/} is the usual set of invariant polynomials but with z; replaced by z}, such
that the set (Q; — 1, P/ — &;) has |I'"/H| zeros of the form y X, with |x?| =1,
none of which is on the faces Argz; = 0,i # j or for Arg Z} = (. The zeros of
Fjare for Xo =0,u =0,X = )/XO, |zjl = 1and t = 1/2. For Argz; = 0, the
degree of this map is [[k; = |[I'/H| and F; # O for Argz; = 0,i # j. Hence,
in [Fjlr = > dji[nilr + c?j [17], one has dj; = 0 fori < j and, from Lemma 5.3,
djj = kj, since one does not need to modify F;.

Furthermore, on B, one may ["-deform A to w+ie(lzj |2 + 27 — 1), since one
does not have any more the restriction 0 < z; < R. But, for T = 1 the map has no
zeros in B that is [F;]r = 0, proving the relations.

Since 2[7] = 0, one obtains 2k,[ns]r = 0 and, iteratively, (2 [Ts; ki)nj1=0
and, from Lemma 5.4, 2|T'/H|[F]r = O for any F in [1(H), that is any element of
[T1(H) has, at most, order 2|I"/H .
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Finally, if one has a representation of the trivial map,
0= dilnlr +dlilr,

then we know that d; = p1k;. Since ki[n1] = —( Zi dij[n;1+ Jl[ﬁ]), upon substi-
tuting this in the above equality, one obtains

0= (dj — pidi )Inj1+ (d — prdD[iil.
2

From the argument at the beginning of the proof (absence of 1, and the sum equal
to 0) one has that
dy — p1di2 = paks.

Substituting the equality for k>[n;], one gets

N
0= Z(dj — pidij — pado )Nl + (d — pidy — p2d>)[il.
3

Continuing this argument, one concludes

di kk 0 0 ... 0 P1
dr dig ko 0 ... 0 )22
ds dis dos das ... kg Ds

together with the relation
d~ = Zp,‘(?i mod 2.

On the other hand, one may take the p;’s to be arbitrary integers and prove for
them that ) d;[n;] + d[7] = 0. That is, we have proved that ker IT is generated by
the above relations. O

Remark 5.2. The computation of d;; and d ; isinvolved. A way of doing itis indicated
in [I.V. 1, Theorem 8.2]. Here we shall only give it in the particular case where
V =R x W, after studying two examples.

2mwik/3 2mik/9

Example 5.1. Suppose I' = Zg acts on (z1, z2) as (e 71, € Z2) together
with their twins (z’l,z’z). Taking € to be {|z;j| < 2,0 < Argz; < 2n/3,j = 1,2},
with k| = kp = 3, let

m = Qt+1—=2lz1llzal, (w+i(z1] — D)z1, 2}, (2323 + D22, 25)
n2 = 2t +1-2|z1llz2], (Z? + D)z1, 24, (w4 i(lz2] — 1))z2, 25)
i = (> —|zlPlziz + 11, (3 + Dz1, 2, (w 4+ Q21 — D) (2323 + Dz, 25).
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Note that the generators given in Lemma 5.3 should have as first component
(2t + 1 —2|z1Z}2225|) and (Z; Z} + l)z;- instead of z;.. If these generators are denoted
by 7} and 7}, one has, from Lemma 5.4,

m = dyn| +din +dii
m = dynh + o,
since deg(n1]Argz;=0; B n Argzy = 0) = 3, thus, di = 1. Also, n2|Argz =0 is
non-zero and deg(n; B N Argz; = 0) = 3, hence d), = 1. One may then express
n} and 7}, in terms of 7y and 7> (and 7) and choose 71 and 7 as generators. One has
the relations
301+ dama + difj =0
3ny + donp = 0.
On the other hand, one may choose €’ = {|z2| < 2, 0 < Argzy < 27/9} with
the generators
n = Qt+1-2lz2l, 21, 2}, (w +i(z2] — )22, 25),
i = (67— |23+ 1, 21,2, (412 — D)@ + D22, 25),
since the same argument about the generator given in Lemma 5.3 is valid: in fact, the
term (P; + l)zj:i, with k; = 1, is useful only when [; > 1; if [; = 1, one replaces it
by Zj-
One has the relation 3
9 +di’ =0,
and looking at deg(n;; BY N Argz, = 0), for j = 1,2, one has

m =20 +di77,
m = 30" +dyiy,
q=dn.
(The last relation comes from the fact that 7 is not zero on Argz, = 0).
Now, if one forgets the action of I', one obtains maps from R0 into R?, hence
elements of [To(S%), which is generated by the suspension of the Hopf map.
For 1, and 7 one may take small neighborhoods of the three zeros of z? + 1 and
get that
m = 3[Qr + 1 =2|z2], 21, 2}, (u + i(lz2] — 1)z2, 25)]
i =3[(* — 23 + 1,21, 2}, (u +i 2t — D)(z3 + Dz2, 2H)].
In the first map one may replace |[z3| — 1 by (1 — 7)(J]z2| — 1) + (¢ — 1/2) and

then, in the first component, 2¢ + 1 by (1 — 7)(2¢ + 1) + 27. On the other hand, near
the three zeros of zg + 1, one obtains

7 =90 — |22 — 291, 21. 2} Mz2 — 29, H)1.
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Thus, 2 = 3n, 1 = 9n, where 7 is the suspension of the Hopf map.

The same argument yields n’ = 5,7’ = 97 in [T9(S%). From here one obtains
db=1,d=1,d =1,d,=0.

Substitution of these values in the relation for 37 yields

(64 3dy)n' + 3d; +d)ij =0,

hence 6 + 3dp, = 9k and 3di + c?l = k. Thus, d» = 3k — 2 and two values of d, differ
by 3, which, given the relation 317% + 1 = 0, changes only the second term. Hence,
one may take k = 1 and get d| +d; = 1 and
3m+m+dii=0, 9 +i=0, m=2n"+dij
3 +7=0, 7=1 m=37.

In order to compute the class of 7y in [To(S%), one may perform the following

sequence of deformations:
(1—1)x T 21
—1tizy  (1—1)z) \&3z3 + 1

where A = ,u + i(|z112 = 1). If 2o # 0, then z; = 0 and 5 has no zeros. If
X = 0, then zlz3 +1=0and |z1| = |z2] = 1, ¢ = 1/2, hence the deformation
is valid.

1.

2. In X change lziI> = 1to (1 — )|z1|> + (t + 1/2)6 — 1: on a zero, one has
lz2] = 211723, |z122] = ¢ + 1/2 = Iz111/3, hence |z;| = 1 and the zeros are
inside B,

3.Ifx=1+1/2,thenx®— 1= (x — D +x* +x¥ + x> + x + 1) and the
second term may be deformed linearly to 6 and then to 1.

4. Deform linearly 2¢ + 1 to 2 in the first component. One has obtained the map
(1 = lz1z2l, Aziz2, 2325 + .

5. Replace z7z3 + 1 by zi2322 + 1 — T + 7(2122)(2122)%, where on a zero, with
|z122] = 1, one obtains |z5| = 1.

1—-1 tz% AZ122
-1z} (1-1)zi3) \ 2+ @122)°

3 =2 4 3
(1 — |z1z2], 73 + Z71221", —Az{z2).

6. The rotation

gives the map
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7. The deformation z3 + Z3]z2|*((1 — 7)|z2|* + 7) is valid, since on a zero, with
|z1z2] = 1, one would obtain

2P = (1 - D)na* +1, ie, (z2l = D(z2f* +tlz2l +7) =0,
which has a unique zero at |z2| = 1.

8. Deform 1 — |z1z2] to 1 — (1 — 7)|z122| — T|z2|3/?, which is valid since a zero
of the second component gives |z2| = |z1|? or zo = 0.

9. Replace z3 + Z2|z2|? by 23 + 23 ((1 — 7)|z2/% + 7).

10. Deform 1 — |z2>/? to t(|A| = 1) + (1 — ©)(1 — |z2/>/?): on a zero of the map
one has either z?zg = 0 and then z; = z = 0 from the second equation. On the
boundary of B, one would have | 1| = 2 and the above expression is positive. The
other possibility is A = 0, then, if |z1| = 2, one gets |z2| = |z1]*/? = 2%/ > 1
and, if |z2| = 2, one has also |z2| > 1 and the above deformation is negative,
hence the deformation is valid. One has arrived at the map

(Al = 1,23 + 7, —Aziz2).

11. Replace Z? by Z? — 7, obtaining, for t = 1, the following zeros:

(a) |A| =1, z2 =0, z; =0, where the map is locally deformable to (x| — 1,
E%, Az2), which is —2n, where 7 is the suspension of the Hopf map.

) Al =1,z1 = 20 with 20 = 1 or 2™ki/3 z) = =47k | =0, ..., 8,
where the map is locally deformable to (JA| — 1, z0 — Zg, —A(z1 — Z(l))),
1e., ton.

12. Since the additivity for the degree in [T9(S?) is valid one obtains that the class
qf N1 in [To(S?) is 7n. i.e., since this group is Zy, 11 is 1 in this group and
d; = 0,d] = 1. The relations are
3m+m=0, 9 +7=0, m=20"+7
3+ =0, m =31

Thus, choosing 7’ as the generator, one obtains that [T(H) = Zg.

Note that the other isotropy subgroup is K = Z3, with VK = VI x {(z1, z))}.
For I1(K), one has the generators

no = 2t +1—=2lz1% (u+i(lz11* — D)z1, 2}, 22, 25)
o = (8% — |23 + 1], Az} + Dz1, 24, 22, 25)

with the relations
3n0+dno =0, 21 =0.
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By following the preceding deformations, it is easy to show that, in ITo(S%), one
has 79 = 3np and n9p = n and thend = 1.

Thus, IT(K) = Zg.

If one adds X, with dim X > 3, one gets

HEV(SW) =7y X Zg X Zq3.

Note that deg(n1; BY N {Argzy = 0}) = —2.
In fact, the zeros of 1y on this set are for u = 0,7 = 1/2,z; = £i,z20 = 1 and
one may perform the following deformations:

1. (z}z3 + D((1 — 1)z2 + 1), since z > 0.

2. w+i((1=1)|z1]+ vt +1/2)3 — 1), since, on a zero, one has |z2| = |z1|~>/>
and |z1z2| = |z1]'? = ¢ + 1/2. Deform next (r + 1/2)3 —1tot — 1/2 and
2t + 1 — 2|z1z2| to 2(1 — |z1z2]) and next to 1 — |z;z2|. One has obtained the
map

(1 = lz122], 221, 2723 + D).

3. The deformation (1 — 7)(1 — |z122|) 4 7(|z2|/? — 1) is valid (again, on a zero,
one has |z1| = |z2|7/% and |z122| = |z2|7V/?).

1/2

4. Multiplying the first component by |z3|'/“ 4+ 1 and deforming z% to 1, one has

the map
(z2 — L, Az1, 27 + 1)
which has degree —2.

However, one has that deg(3n; + n2; BY N {Argz; = 0}) = —6+3 = -3,
i.e., this justifies the second part of Remark 5.1, that the relation 35 + n, =0
is valid in Hgv (S") but not in BA N {Argz, = 0}

Nevertheless, there is one important case where one may compute the coefficients
of the relations from the degrees of restrictions. That is

Theorem 5.3. Assume that V. = R x W and kj = m; = |I'/H;}| for all j’'s with
kj > 1. Then [Flr = Y_d;[n;Ir + d[7]r, where
d; = deg(F: B N {Argz; = 0})/( I1 m,-)
i#]j
and the relations for T1(H) are
m;([n;lr + [7lr) = 0
2[nlr = 0.

In particular, [F]r = 0if and only if d; = ajm; and d has the parity of Y d;.
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Proof. The condition k; = m; means that one has s coordinates with the same k;’s
regardless of the order in the construction of C, the other variables are just a suspension.
Hence, one may take P; = x'" and the generators 7); are the same, independently of
the order. Thus, if one chooses x; as the first coordinate in C, then d; will have the
form stated after using Lemma 5.2.
On the other hand, taking x; as the last coordinate in C, one has the relation
mj[n;1+d;[7;1=0
where
m; Y /
m = (201 =2l T bil. Xo, (@i = Dyi, " + Dixi, 3z, 7))
i = (2 = [Tl + 1P, Xo, (@5 = Dy " + Dxis G + 1z;.7)).
i#]

Note that, by construction, 7; is non-zero on dC and has the class of 7 in C, this
implies that all 7 ’s are homotopic on € and I"-homotopic on dB™ to asingle map 7.

Note also that, in ;, one may perform the deformations, in the first component
and in A, given by

(=2 = D +200 = I [Thab, 1+ (1 = Dz = D+ 7@ = D) :
on a zero of the map one has |x;| = 1 and the above components can be written as
(l—r -2 )(2t—1)
T (1-1))\Uzl—-1
which gives an admissible deformation. Hence, with A = p +ie(2t — 1)
ny = (1= 11 [T il Xo. (@i = Dyis " + i, 227, 7).
Denote by 4 the vector (Xo, (Q; — 1)yj, {(xl.mi + Dx;}ixj) and by A = IT1xil-

For a lighter notation we shall drop the index j in z;, z} and m;. Consider then the
map

F=(1—A(z| + |Z]), A, hz', Am—1zm=D%

Do o . 2_
which is equivariant since 7 ~2"

is invariant. Take the equivariant deformation
(=)A= 12" 22 ™ (1 — a1,

On a zero, conjugate the first equation and take its (m — 1)-power. One obtains the

system
(1— .L,)m—IXm—l _.L,m—l Z/m—l
( v (1- mm*) <z<m—1>2) =
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The only zero of the deformed map is for A = 0,7 =0, |x;| = 1 and |z] + |Z/| = 1.
Furthermore, for T = 1, the map has no zeros, that is F is trivial.
One may also perform the equivariant deformation

(1= DAL + 7m0 g7/ (1 — am=1m=17%)
which deforms F' to
F'= (1= AQlz] + [2']), A, 47207 2,

This map is non-zero on the faces of C, except for Argz = 0, on which it has degree
m. Hence, ~
0 =[F]=mj[n;]+d;[n].

One may also rotate A™ and obtain
2
(1= Azl + 12, A, 2™, 2707,

Replace z(m_l)z by (2" + 127™)"~2z. For t = 1, one has a map with zeros at
lxil =1,i # j, A =0andeitherz =0, |7/| = 1,0r |z| = 1/2 = |Z/].

Divide BY into two invariant sets: B; = B¥ N {|z| < 1/4} and its complement
B;>. One may compute the I"-degree on each one and, from Remark 2.3 of Chapter 2,
one has

degr(F; B”) = deg(F; By) + degp(F; By).

Now, degp(F; B1) = Zo[F'|p,Ir. But, on B; one may deform z” to 0, rotate
back A and obtain the map

(1 = A(lz| + |2']), A, A"z, =2') = m[n;].

Furthermore, from the form of the generators, X is an isomorphism.
On 4 By, one may deform linearly the first componentto (1/2—A(|z™+27"|+|Z'|)
and deform z™ 4 27 to 7™ + 1. Rotate back A™ to get the map

F=(1/2=A(Z" + 1]+ 12, A, A" " 4+ )" 2z, —7))

once one has noticed that any disk with center at a point with |z] = 1 and with
1/2 — |z™ + 1| = 0 does not intersect 9 B;.

The map F has no zeros on the faces of C , hence its class is a multiple of [7]r,
which is given by its ordinary class with respect to C, where the set (Q; — 1, z;”i +1)
has just one zero. It is easy to see that this class is m(m — 2)-times the Hopf map
in Z,. Thus, [I:" Ir = m[7]r, proving the theorem, since for the last point, one has
that ker IT, in the proof of Theorem 5.2, is given by multiples of m;, with the stated

congruence for d (one has d;; = 0, fori # j, and c?i = m;). O

Although Theorem 5.3 seems to be a very special case, it will enable us to give
another description of I1(H).
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Assume V = R x Wand I'/H = Zp, X -+ X Zp,,, generated by y1, ..., yn.
Let X = {Z;, Z{, s Zm, Z,/n} be a new I'-space with the following action: y; Z; =
e¥IPIZ; i Zi = Zi,i # j,and ZJ’. is the duplicate of Z;.

For any F in [1(H) one has the suspension >XF = (F, X) from VH x x#
into WH x X If one takes C x B)I{ as fundamental cell, then any I'-map G from
VH % XH into WH x X* which is non-zero on the ball in (V x X)K, forall K > H,
is classified by the formula

[Glr =) _d;[2*n;Ir +d[=¥dnlr,

since the suspensions XX n; and X7 are clearly the generators for the group IT(H)
corresponding to V x X. This formula proves also that SXTI(H) 2 T1(H).

But one may choose the cell €’ given by {0 < ArgZ; < 2m/p;}, with the
generators

=V = (1= [11Z1. Xo. (s}, 2" + 121, 21,32, 7))
Vi = (e = [T1ZAIZE" + 1, Xo, (6} A2 + DZibiam, MZE" + DZ ).
i<m
Then, [G]r = Zd}’.[Ean’.]r +d’ [£V#/] as in Theorem 5.3. Furthermore, the rela-
tions of that theorem hold and =" is an isomorphism. We have proved the following

Theorem 5.4. If V=R x WandT'/H = Z,, X --- X ZLp,,, then any F in I1(H) is
given by
S FIe =) &= nile + 412V i,
with the relations
2[7'lr =0
pi(i1Ir + [7'1r) = 0.
For instance, one may have p; = k; coming from the fundamental cell.

Note that in order to compute d/f with the formula of Theorem 5.3, one has to

perturb XX F so that it has no zeros on the edges of €, that is for Z; = 0. However,
[Flr = 0 if and only if d]f = a;pj and Zdj’ + d’ is even, since X and =V are
isomorphisms.

One may give a better presentation of the above relations. For example, let

il = Wilr +[7Tr, j=1,...,m
[nolr = [7'Ir.

Then I1(H) is presented by [n;]Ir, j =0, ..., m, with the relations

pilnilr =0, po=2.
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Theorem 5.5. If V=R x W, then TI(H) = Z, x I'/H.

Proof. Any F in TI(H) is given by SX[FIr = Y d/[=Vnlr + d'[ZViIr =
Zdj’.[Ean]r +d — Zd]’.)[EVno]r. In particular [F]r = 0 if and only if djf isa
multiple of p;, for j =0, ..., m. Thus, each n; generates a cyclic group of order p;.

Note however that the generators 7; are more difficult to write down explicitly. O

Another presentation of I1(H) is the following

Theorem 5.6. If V = R x Wand U'/H = Z,, X --- X Lp,,, then TI(H) = Zg, x

© X ZLg,,, with qo = (2 : p1 : ... pm) the largest common divisor, g, is the least
common multiple of 2, p1, ..., py. Furthermore, qj = hj 1/ hj for j =0,...,m,
where hg = 1, hj is the largest common divisor of all possible products of j among
the numbers pg, ..., Pm.

Proof. Given p;, pj,let p = (p; : p;), then there are k;, k; such that p;k; + pjk; = p.
Let

& = (pi/p)ni — (pj/p)nj
& = kjni + kinj.

Then, (pi/p)§; = nj + k;&i, (pj/p)§j = ni — ki&;. Furthermore,
péi =pini —pjn; =0, (pipj/p)§ = (pjkj/p)pini + (piki/p)pjn; = 0.

Without taking into account the relations, one may express, on the basis &;, &;, these
equations in the form

(6 o) = (ot ) (5 1) (i, 270
0 pipj/p piki/p piki/p) \ 0 p;j) \—k;j pi/p)’

where the non-diagonal matrices have determinant equal to 1, i.e., they are invertible
over Z. Thus, one may replace n;, n; by &;, &; and (p;, p;) by p = (p; : p;) and the
least common multiple of p; and p;. Note that p may be 1 and thatif p = min(p;, p;),
say p = p;, then one may take k; = 1, k; = 0 and the change of variables does not
change the relations.

Continuing this process, it is easy to see that one arrives at a new set of gen-
erators (o, ..., { and relations g;¢; = 0, where gqo = (po : p1 : -~ : pwm)s
gm = l.cm.(po, p1, ..., pm), q; divides g; 11 and one has matrices M and N, in-
vertible over Z, such that

QO=MPN,
where

Q = diag(qgo,q1,---,9m) and P = diag(po, p1,---, Pm)-
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This is the content of the Fundamental Theorem for abelian groups [Jo, p. 57]. The
integers g; are called the invariant factors of P.

If h; (A) is the greatest common divisor of the principal (i x i)-minors of a matrix
A with integers entries, then one may prove that, if 0 = M PN, with M and N
invertible over Z, then h; (P) = h;(Q).

Furthermore, since ¢; divides g; 1, we have that 7;(Q) = ]_[j<i g;j and h;(P)
is the greatest common divisor of all possible products of i of the p;’s. Hence,
qi = hit+1(P)/h;(P). Since the above results are true for arbitrary P and Q,
they will also hold for the triangular matrix 7 of Theorem 5.2, where h;(T) =
h;(diag(2, k1, ..., ks)), since principal minors of triangular matrices reduce to prod-
ucts of terms on the diagonal. O

Corollary 5.1. If V=R x WandT'/H = Z,,, then

Zo X Ly, ifniseven

[(H) = .
Loy, if nisodd.

Corollary 5.2. If V=R x Wand'/H = Z,, X -+ X Zp, , where any two p;, pj
are relatively prime and odd, then

INH) = ZZ|I‘/H|-

Note that if one applies the same presentation to I'/H in this last corollary, one
has that I'/H = Zr/g. In fact, from a purely algebraic point of view, one may
reformulate Theorem 5.5, i.e., [1(H) = Z, x I'/H, in the following form (losing the
starting point of the action on W and the construction of the fundamental cell).

Theorem 5.7. If V =R x WandT'/H = Z;, x -+ X L, , where p; divides pji1
and po = 1, then

M(H) =Zp, x--- X% Zf’jo—l X ZZP/’O X ij0+1 X oo X Lipys
where jo is the largest index j with p; odd.
Proof. When taking products of j terms among 2, pi, ..., pn, One gets as largest

common divisor 2p; ... pj_q or p;...pj, if one takes 2 in the first case, since p;
divides p;+1. Hence

B — PlL...Dj—1, ifpj is odd
I 2py...pj—1, if pjiseven.

Since gj = hjy1/hj, withhg =1, po = 1, one gets g; = h; if p; 1 is odd (hence p;

is also odd), gj, = 2pj, since pj,4+1 is even and pj, is odd, and g; = p; for j > jo

since then pj and p; are even. O
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Example 5.2. The relations of the last theorems are a good source of problems where
there is no bifurcation, i.e., with no non-trivial solutions. For instance, if Z,, acts on
C2, then the equivariant map

AZ1 _Zm—l
e+l A2 | =0,
()\m—lzém 1)) (leﬂ 1

where A = u+ivand t = (|71 12 + |z2]?), has no solution but z; = z» = 0: use the
argument of Theorem 5.3.

The action of I'/H on the auxiliary space is, in a certain sense, arbitrary. In
studying Hopf bifurcation for non-autonomous problems we shall encounter the fol-
lowing situation: Let V be a Z,-space of the form (i, z1, z;»), with action of Z, as
exp(2mik/p) on z1 and as exp(2wimk/ p) on z,,, with m and p relatively prime. One
has then the following generators, with A = u 4 i (2t — 1)

m = —lzil,Az1,2m). 71 = (¢ — |2} + 11, A} + Dz1, 2m)

with the relations
pm+n) =0, 2n=0.

One could have taken instead 7, and 7, which are defined as 1 and 7 but with z;
and z,, interchanged.

Proposition 5.1. There is an integer n such that nm = 1, modulo p, and |n| is odd,
with the property
Nm =nn1, Om = 1.

Proof. Since m and p are relatively prime, there is n such that nm = 1, modulo p,
with n > 0, or else nm 4+ ap = 1. If p is even, then n and m are odd, while if p is
odd and 7 is even, replace n by n — p (and o by & + m), with |[n — p| odd.

Recall, from Theorem 5.3, that any Z,-map f such that f|; —o is non-zero, can
be written as

[fIr = dIm]Ir +dI7Flr,

where d = deg(f; B N {Argz; = 0}).

Take f = (¢ — |z + 1], 21 — 2%, AM(zh + 1)zs) which is Z,-deformable to 7j,,.
Since, on a zero, z,, is close to a p-th root of " i hence the argument of z/,, will be
close to wn(1 4+ 2k), which is not close to 27/, since n is odd. Thus, f is non-zero for
Argz; = 0 and one has [n,]r = d [7]r. Since one may interchange z; and z,, (and
z, by z['), one has [)]r = c?m[f;m]r, hence dd,, = 1 and one has n=nm.

Consider now the maps

2 2
fi = A =1z11" = lzm|™, 27", Azm)

2 2
o= A —=lz1l” = lzml", A" 2", zm)-



3.5 The one parameter case 155

From the above rules, one has [ fi] = mn[n,] + di[9m] and [ f2] = nlni] + dal7].
Now, on 9B?% x 0B, one has the Z,-deformations

(1 —0)z" + A"z, (1 — DAz — t27")

(which, by taking the expression (1 — T)Az,;, = 7z} to the n-th power, is zero only if
Z1 = Azm = 0), hence fi is Z,-homotopic to

2 2
(= lz1l" = lzm|" Mz, =27

Then, the rotation ((1—1)z), +tz{", —(1—1)z}'+7z,) gives that f is Z,-homotopic
to f». Hence,

My + dii = (L +kp)nm + diii = i + diii = nny + daij
and 0, = nny +dn.
If p is odd, then from pn,, = —pn, pn1 = —pn, one gets pd = p(n — 1), [2].
But, since 7 is odd, one gets d = 0, [2].
If p is even, then m and n are odd. Let mn = 1 + kp and on 3{(A, z1, z’l, Zm) -

|A] < 1, |Z] < 2}, consider the following maps, which are Z,-homotopic to a suspen-
sion of f:

fi= =12 2 0@ +7275), Azm)
fo= (=122, @ +127), 2)
(the second map comes from a rotation of z{""* and z/ in f>).

Decompose the set {Z : |z1| < 2} in B; = {z1 : |z1] < 1/4} and its complement
B,. The Z,-degree of the above maps is the sum of the degrees on B and B.

On B; one may deform z]fp to 0 and obtain 7, for f3 and nn; for f4. On B;, one
may use the homotopy

k _
(1 =)A= |ZP) + (P — |27 + 275212 — 1241 = |zm]?),

where ¢ is so small that any disk, with center at a point with z/l =0,z, =0, 21| = 1/2,
and of radius ¢ does not intersect d B, hence, for T = 1, the degree is the same on
B> and on the full set {Z : |Z| < 2}. Now, for ¢ < 1/2, the maps are non-zero if
Arg z; = 0. Hence, the classes of the maps are multiples of 77, which may be computed
on the boundary of the fundamental cell {0 < Argz; < 27/p}.

There, one may deform z; to 1 and obtain k zeros of z]fp + 27k in the cell. It is
then easy to see that, for the first map, one obtains k7 and kn7 for the second. Hence,

[f3] = nm + k7, [fa] = nn1 + knq.
From the fact that [ f3] = [ f4] and n,, = nny + d7j one gets
dij = k(n — ).

Since we have chosen n to be odd, we have d = 0, [2], and the proposition is proved.
O
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3.6 Orthogonal maps

Recall that if the abelian group I' = T" X Z,,, X - - - X Z,, acts on the finite dimensional
space V, then a I'-orthogonal map F(x) from V into itself is an equivariant map with
the property that

Fx)-Ajx=0, j=1,...,n,

where A; is an infinitesimal generator for the action of 7". (see §7 of Chapter 1).
Gradients of I'-invariant functionals are I"-orthogonal maps. In §4 of Chapter 2, we
have defined an orthogonal degree for such maps, as elements of 1'[5_ sV (SY), the
abelian group of all orthogonal I'-homotopy classes of S into itself. One has the
following important result

Theorem 6.1. 1. HE_S‘, (V)= Z x --- x Z, with one Z for each isotropy subgroup
of T.

2. [F1L = Y dylFulL, with explicit generators Fg. If dg # 0, then F has a
zeroin V.

Proof. Let F be an orthogonal I'-map, from B into V, which is non-zero on 9 B (recall
that we are including the variable 7 in V). We shall decompose [F] | by modifying it
on the different isotropy subspaces.

Step 1. If V =VT" then [FT"]is an element of HEV (S‘N/) and as such, one has from
Corollary 2.1 and Theorem 3.2

[F™"1= " dulFul.

T"<H

Since Ajx = 0 on V, then [Fil. = [F1L — [FT", Z]. has a non-zero orthogonal
I-extension to BT". Thus, F1(X, Z) may be written as (FlTn (X, 2), F1 (X, Z)),with
F1(X,0) #0and F| (X, Z) orthogonal to A; Z.

Step 2. Recall that the action of 7" on the k-th coordinate of Z is of the form
expi(Nk, @), where NK = (n’l‘, R n,';). Assume, without loss of generality, that

n} # 0 and define A; =n{/n{ for j =2,...n. Let
Vi=V"" x{z :nf #0and nf = anf, j > 2).

(Of course, by removing the condition n’l‘ # 0, one includes directly vT" in vp).
Then, on Vi, one has Ajx = AjAjx and V| = VT where T is the (n — 1)-torus
(= > 5 Aj®j, @2, .., ¢n). Let By be the ball B"1, then the map Fj(x) + AAjx is
non-zero on d(/ x Bjp), where A isin I = [—1, 1]: in fact, F1(X, 0) # 0 and, from
the fact that Fj is orthogonal to Ajx a zero of the above map is such that Fj(x) = 0
and AA1X = 0. Thatis, if Z # 0, then A = 0 and F;(x) + LA x defines an element
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(SW)__HF

SRXV

H withdimI'/H = 1 (see Corollary 2.1). Since F 1T " # 0, one has that

of L,

SRXV] (S V) X Z X - -+ x Z, with one Z for each isotropy subgroup

[Fix) +AAx] =0+ Y dulFul.
T\ <H<T"

where Fy is given in Theorem 3.2:
Fr(h, x) = (2t+ L=zt T xil, Xo, (621l = D +i2)z1, (Qi = Dyi, (P + 1)Zi>,

where Q;, P; are the familiar monomials, ¢ = +1 is such that the degree of F ' on
the fundamental cell is 1. Let

Fr(x) = Fy(0,x) — (Fr (0, x), A1 (x))A; (x),

where Al(x) = A1x/||A1x]|, is as in Theorem 7.1 of Chapter 1. By construction,
Fp(x) is an orthogonal I'-map. Its zj-component is (¢(|z;] — 1) — ia(x)n})zl,
where o (x) = (I:"H 0, x), A (x))/1lA1x]|. Furthermore, the first component of Fpy is
(2t—|— L—|z1| [T %] ) Thus, the zeros of Fy are those of I:"H (0, x) and Fy defines an el-
ement of Hrsv (SV). Moreover, Fy (A, x) is I'-homotopic to Fg(x)+Ae; A1x, where
e = Slgnnl. in fact, the zx-component of this last map is (Pk+1+z(A81—a(x))n1)Zk,
while the z;-component has the form (¢(|z1] — 1) +i(re] — a(x))ni)zl Since zeros
must be with z; # 0 (first component), one may deform rer — a(x) to 0 in the zz-
component, (x) to 0 in the z;-component, and then sln to 1 and arrive at Fy (A, x).
Note that the zeros of Fg(x) + AgjA1x are only at A = 0 and with Fg(x) = 0, since
F H is orthogonal to Ajx. Hence, Fy(x) + Ag1A1x can be taken as a generator for
M., (5Y).

Complementing Fg by the identity on VIL, one has that

[RlL=[FAlL— Y dulFuly
T\<H<T"

is orthogonal to A;x and F>(x) + AA;x, is I'-extendable on d(/ x By) U B™ toa
non-zero I'-map F (XA, x) on I x Bj.

Claim 6.1. F|y, has a non-zero orthogonal extension to By, i.e., [F2V1]J_ =0.

Proof. The proof follows the lines of Theorem 1.1 by working on VlH , for H in
decreasing order. Thus, if H is maximal (hence any K > H must contain 7"), one
may extend [Fz’] 1 = [F1]L — dygl[Fg]L in such a way that the resulting orthogonal
map is non-zero on dCg: in fact, this is true on VK for K > H, since there FlK
is non-zero and by a dimension argument, since dimdCy = dim V¥ — 2, as in
Corollary 1.2. Thus, one may assume that Fé(x) +AAix is non-zero on d(I x Cg)
and has a zero extension degree, i.e., the degree with respect to I x Cg.
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Now, on Cy one has that z; is in RT and, since Fz’(x) # 0 for z; = 0, one may
compute this obstruction degree on the ball A = I x Cy N {z; > ¢}, for some small
e If F2’ is written as (f1, f2, F1), where f| + if> corresponds to the z;-component,
one may perform on d A the homotopy

Fy(x) + At A1x + (1 — 1) A121).

In fact, taking the scalar product with F;(x) one has |F2’|2 +A(1=1)(F}, A1z1) =0,
on a zero of the homotopy, that is, from the orthogonality,

|F512 —2(1 — O)(F1, Ary) = |[F)* + 2*(1 — 1)|A1y)* =0

since on a zero of the homotopy one has F; = —AtA;y. Hence, F2’ (x) = 0 and
AA1z1 = 0, but, since 71 > ¢, this means A = 0, that is, the zeros of the homotopy
are inside A. The resulting map ( f1, fo + )»n}m, F) is linearly deformable on 0 A to
(f1, A, F1), since from the orthogonality one has, for z real: foz; = —(F L, A1y),
assuming n} > 0.

From the product theorem, one obtains that deg( f1, F1; Cg N{z1 > ¢}) =0, i.e.,
(f1, F1) has a non-zero extension, (f], I:l), to Cy N {z1 > ¢}. Defining, on this set,
fz = (—F |, A1Y)/z1, one obtains a non-zero orthogonal extension Fz/ (x) of F3(x)
first on Cy (since for 0 < z; < ¢, one has the given map Fé) and then, by the action
of the group I', on VlH .

For a general H, one assumes by induction that

[F3le =[FilL— Y dk[FklL
H<K

has been extended, as a non-zero orthogonal map to all VIK , for H < K. That is,
together with a dimension argument, one has a non-zero map on dCy, in particular
for the corresponding z; = 0. Then, one repeats the above argument in order to obtain
a non-zero orthogonal extension F; on VIH . O

Step 3. On VIJ- consider the first coordinate z; with nlf # 0 and repeat the above
construction in order to get 171 =vh, Clearly, 171 AV, = VT" and one obtains a
non-zero orthogonal extension on V; of F7". Since the generators for F are trivial
on Vlj-, one obtains a compatible extension. One repeats this construction until all
coordinates with n’f # 0 are exhausted and then, with

n .
Vo = VT x {z :n]f =0, né £0, n}‘ = )»jnlg, j > 2, where A; = n}“’/ng"},

and so on.
Hence, if H is such that dim['/H = 1, one has one z; with dimI'/H; = 1 and
|H{/H| < oo, and one has an extension

[RlL=[Fl.— Y  dulFulL.
dimT/H=1
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which is orthogonal and non-zero on {J g /= v,

Step 4. The next stage is for two-dimensional Weyl groups. Assume

det ("% ”5> —detA #0
2 2]
ny n

and define, for j > 3, k} and }\JZ by

Let V) = {zx : n;‘ = k}nlf + )»Jzné,j > 2}

Then, on V,, one has A;jx = A}Alx + Ajz.Azx for j >3 and V, = VT2, where T»
is the (n — 2)-torus (— > k} TREDY k}(pj, @3, ..., @y). In particular, any isotropy
subgroup H for V, has dim I'/H < 2 and the action of 7" on z; in V3 is exp i(n’fl/fl +
ny), where ¥ = ¢ + ZA}(pj, Yo = @ + ijz.(pj: see Lemmas 2.4, 7.1, and
Remark 2.1 of Chapter 1.

Consider the map Fo(x)+A1Ajx +AzAzx, A1, Apinl = [—1, 1], where F>(x) #
OifdimI'/ 'y < 1and F> is an orthogonal I"-extension of F'(x). Hence, a zero of this
map will give a zero of F> and with A1 = A, = 0: in fact, since A;x is tangent to the
orbit I'x, here at most two-dimensional, and that F>(x) #~ O if I"x is one-dimensional.
Hence, on zeros of F», A1x and A,x are linearly independent. (We are assuming here
that det A > 0; if not, change A1 to —A1).

Thus, [F>(x) + A1 Aix + ApAsx] is an element of HERQ (S"2), the group of all

XV
I"-homotopy classes of maps from 9 (/ 2 x B>) into V»\{0}, where B> is the ball B"2.
Now, this groupis A X Z X --- x Z, with A corresponding to isotropy subgroups H
on V, with dimI'/H < 1 and there is one Z for each H with dimI'/H = 2: see
Theorem 3.2. Then,

[F2(x) + M1A1x + Ao Aoxlr =0+ Y dulFulr,
Th<H

with dim I'/H = 2. Here Fy is the following map
Fux) = (2041 =201 [T bil, Xo, (i = Dy (P + Dz,

(211> = 1+ i(r1h1 + niha))zi,
(222 = D) + it +n3r2))zs),

where x;, Xo, z;, P; are as in the first step. The zeros of Fyareat|zi| =1, |z = 1,
|xi| =1,t =1/2, A1 = X2 = 0. For 71 and z, real and positive the index of each zero
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is equal to ¢ Sign det A, and ¢ is chosen such that this index is 1. Thus, F; may be
taken as a generator. Let

Fr(x) = Fy(0,x) — (Fu (0, x), A1 (x))A1(x) — (Fu (0, x), A2(x)) Az (x),

as in Theorem 7.1 of Chapter 1. By construction Fg (x) is an orthogonal map. Writing
Fyx) = ﬁH(O, x) —a(x)A1x — B(x)Azx, one easily sees that the zeros of Fy are
those of F 1 (0, x), looking at the (z1, z2)-components, and that for them one has
a(x) = B(x) = 0. Furthermore, as a '-map, Fgy(x) + A;A1x + A2A2x is linearly
deformable to F g0, x) + A{A1x + ApApx (the zeros of the deformation are for
Al = T, Ay = 6 and Fr(0, x) = 0, for which « = B = 0). Then, this last map is
deformable to Fz (A, x) = F(0,x) + M A1 Z + MAyZ, with ZT = (z1, z2). This
means that one may take Fy(x) + A1A1x + ApApx as a generator in HERZ (5V2).
Let then

xVy

[F3lo=[F2l— Y dulFull.
Th<H
dimT/H=2
Hence, F3 is an orthogonal I'-map and F3(x) + A1 A1x + A2 Azx is ['-extendable on
8(12 X Br) UdimF/H§1 VH to a non-zero map F (A, x) on I? x B,.

Claim 6.2. In fact, [F3]1 = 0.

Proof. As before, one proceeds on isotropy subspaces of increasing dimension by
considering on each fundamental cell Cy an orthogonal map F; which, by induction
and dimension arguments, is non-zero on dCy. In particular, F3’ (x) #0for0 < z; <
gor(0 < zp < g and the obstruction degree dp is the degree of F3’ (xX)+r1A1x+X12A2x
ontheball A = I*xCyN{z1, 22 > e}. If Fi(x) = (fi+if2, g1+ig, F2) = (F, F1),
then one may deform linearly F3(x) + A1 A1x + A2Azx to F5(x) + M A1 Z +212A2Z
with ZT = (z1, 22): by taking the scalar product with F3’ (x) one obtains, on a zero of
the homotopy,

|F;()1 + (1 = D)0 (F, A1 Z) 4+ 2a(F, A22)) = 0.

But, by the orthogonality, (F, A; Z) = —(F1, A;Y)and,onazero, F| =—t(AL A1 Y+
M A2Y), hence

IF51% 4+ (1 = DAY 2+ 2022(A1Y, A2Y) + A3 ALY ?) = 0.
Since the quadratic form is non-negative, this implies that F5(x) = Oand A{ A1 Z +

AMA2Z = 0, thatis Ay = Ay = 0, since, on 4, the vectors A1 Z and A Z are linearly
independent. Hence, the zeros of the deformation are inside 4. The resulting map

(i a(2)+ ()0
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(fl,glaA(i;>7FJ_),

since, from the orthogonality,

AT (212 _ ((FL AY)
2282 (F1, A2Y)
and a zero of F| on A will give f, = go = 0 and then z; and z; may be deformed
to 1.
This last map is a product and since the extension degree is 0 one has that

(f1, &1, F1) has a degrge equal to 0 on Cy N {51, zo > ¢} and, therefore, a non-
zero extension (f1, g1, F1) to this set. Defining f> and g, on this set via

AT (Zlfz) _ ((Izl, AlY))
28 (FL, A2Y))’
one obtains a non-zero orthogonal extension 153 (x) of F3’ (x) first on Cy and then, by
the action of the group I', on V2H . O

is linearly deformable to

The rest of the proof of (1) in Theorem 6.1 is then clear: exhaust all isotropy
subgroups H with dim I'/H = 2 and then go on to higher dimensional Weyl groups.

Now, if [F11 = Y du[Fpli, then [FX], = > dy[FX]1. and, in fact, the sum
reduces to those H > K, since F 5 # 0 if K is not a subgroup of H, in which case
VH N VK s a strict subspace of VH  hence there is at least one x; = 0 and the first
component of F I]I{( is non-zero. For K < H, it s easy to see that F 5 is the generator
for the group HJ_S,( (SK). Hence, if FX £ 0, one has dy = Oforall K < H, proving
2). O

The last results of this section concern the computation of an orthogonal class by
approximations by normal maps or by reduction to Poincaré sections as in §3.

Lemma 6.1. For any fixed H, any map F in HE_SV (SV) is orthogonally T'-homotopic

to a map F(x) = (FH(x), F|(x)), such that FL(x) =x) iflx1] < eand x =
xg @© x1, withxy in VH_ In case of a gradient, the homotopy is also a gradient.

Proof. This lemma is parallel to Lemma 3.1: let ¢ : (VH)L - [0, 1] be such that
Y(xp)islif x| <eand Oif |x | > 2¢e. If F(x) is written as

(F™(xp,x1), FL(xg, x1)),
then F(x) is I'-orthogonally homotopic to the map

(F™ Cerr, (1= y)x 1), (1= ) Fu(xp, (1= ¥)x1) + ¥xi),
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since A x is orthogonal to x; and to F'(x). Since F| (xg, 0) = 0 and FH(xg,0)#0
on 3B one may choose ¢ so small that F¥ (xy, x1) # 0 for |x1 | < 2e, justifying
the homotopy.

In the case of a gradient, if F(x) = V& (x), let

D(x) = Y )(Prg) + [xL17/2) + (1 — Y (x )P (xp, x1).
Then,
Vo) = (F7(x) + v (F" (xp) — F7(x)), (1 = ¢)FL(x)
+xL + (@(ep) — @) + [xL/2) V).

If |xi| > 2¢, then V®(x) = F(x), while if |x;| < &, one has Vd(x) =
(FH (xg),x1). If on 9B one has that |[Ff (xy)| > 1, one chooses ¢ so small
that on 9B x {x| : |x|| < 2¢}, one has |[F” (x) — FH (xy)| < n/2. Thus, V® is
I"-homotopic to V. O

Lemma 6.2. Any F in 1'15_ v (SV) is orthogonally T-homotopic to a normal orthog-
onal map Fy.

Proof. As in Lemma 3.2, working in stages, one gets that F is orthogonally I'-
homotopic to Fy, where Fy(xy,x1) = (Fﬁ(xH,xL),xL), for any H, provided
|x1] < g,1.e., anormal map. Similarly, for the case of gradients, V® is I"'-homotopic
to Vdy. O

Finally, as in Theorem 3.4, we shall study the following situation: let H be an
isotropy subgroup such that dimI'/H = k. Then, there are complex coordinates
21, - .-, 2k With isotropy Hy > H and |Hyp/H| < oo.

Assume that the orthogonal map F, from B into V, is non-zero on dB and on
each set given by z; = 0 for each j =1, ..., k. Let H be the torus part of Hy (see

Lemma 2.6 of Chapter 1). If Af is the N x n matrix with Ag = n; i=1,...,N =
dim VA, ] =1,...,n, then AH has rank k and has an invertible submatrix A, for
instance n;, fori, j = 1,...,k, corresponding to zy, ..., zx and ¢1, ..., @g. If for

J > k one defines )»;. from

1 1
Aj n
= A" 1 .

k k
Aj n;

then, the subspace V£ is given by those coordinates z; for which nj. = ZII‘ k; ni for
j > k (if for some j and [ one does not have equality then AZ would have rank bigger
than k). See Remark 2.1 of Chapter 1.

Note that Ajx = Zlf )»‘]’.'Axx for j > kand x in VHEand Ayx, ..., Agx are linearly
independent if x has its coordinates zy, ..., zx non-zero.
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Proposition 6.1. Let F be as above, then [F11 = Yy, di[Fj11. If B] = B n

{z1,...,2x € RY}, then for H; > H, the corresponding d; are given by the formulae
k H .
deg ((F n ZA;Alx) : B,i) = 3 &|Hy/Hl.
1 Hi<Hj<Hy

Proof. If K is not a subgroup of Hy, then for some j, j = 2,...,k, one has z; =0
in VK. Hence, from Theorem 6.1 (2), the corresponding dg is 0. Also, one has
that [F2], = Zdj[Fjﬂ]L, where the sum is over those j with H < H; < Hy (for

the others [Fjﬁ] 1 = 0). This equality means that there is a ['-orthogonal homotopy

F (7, x) between both sides. It is clear that F(t, x) + Zlf AjA;x provides the I'-
homotopy to prove that [(F + 3", Ax)H ] =3 di[(Fi+) 2 A2, From the
construction of Theorem 6.1 and Theorem 3.4, one has the above formula.

Note that these formulae can be arranged as a lower triangular invertible matrix,
as in Corollary 3.1, which will yield d; for H < H; < Hy. The other components d;,
with dim I/ H; # k, have to be computed in special cases as for that of an isolated
orbit in next chapter. O

Remark 6.1. For the correct application of Proposition 6.1, it is important to take the
generators [F;] such that (Fj + ) 2 A;x)2 has index 1 on the fundamental cell,
that is, (F; + > MAX)H is I'-homotopic to the generator Fj(A, x) of Theorem 3.3
and given in the proof of Theorem 6.1. Now, due to Theorem 1.3, [F; (A, x)]r is
unique up to conjugations. However, [Fj] | is not unique since it depends on the
choice of the set of k linearly independent A;x’s. For instance, if T2 acts on C
as /@179 then the I'-orthogonal map F(r,z) = (2t + 1 — 2|z|%, (1 — |z]?)z) is
such that F(f,z) + AA1z has extension degree equal to 1 and is I"'-homotopic to
2t +1—=2z2, (|z|* = 1 —i))z) = F'(t, z) + AAaz, via the rotation ¢™'*. However,
F + LA,z has a degree (on the set z € RT) equal to —1, as a map from (¢, A, z) into
R3. Thus, from Proposition 6.1, one has [F]; = —[F’],. In fact, one has

Proposition 6.2. Let F}; be the generators obtained by orthogonalization of Fy, (0, x),
where F}; (A, x) is the generator of T1(H) given in Theorem 3.3. Then, if Fy is the
generator obtained from Fg + Z/f MAx, one has

[FulL = Signdet A[Ff]1,

where A;j = n;. isthek xk matrixof A1x, ..., Agx forx = (z1, ..., zx), withz; = 1.
The generators Fyy, will be called the normalized generators.

Proof. Note first that F;; was constructed in Step 2 of the proof of Theorem 6.1, while
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Fp was constructed in Step 4. Thus, if
Fi( x) = <2t+ =2kl (= [z + iRz,
= P+ iz ),

where ¢* is such that the index on Cg is 1, then

k

Fjy(x) = F;(0.x) = Y (F};(0. ), Aj(x)) A (x)
1

= F};(0.x) = > oy(x)Asx.

Then, as in the proof of Theorem 6.1, F};(x) + > XA;x is ['-homotopic to the
map

(2;+1-]‘[|xj|,..., A=l212+i S anDzr. . A=z +i Y anb)z, )
which has index, on Cp, equal to Signdet A, since, for Fg,&* is replaced by
£* Sign det A. O

Example 6.1. Suppose S Vactson (z1, z2) as (¢'%z1, e"%z5), thatis the representation
on 73 is conjugate to that on z1, but as real representations they are the same. Then
one may take as generators of 1" the map

F(t,h,21,22) = Qt + 1 =2|z122], (1 — |z11* + iM)z1, (2122 — D)22)
F'(t, A, 21,22) = Qt + 1 =2|z122], (2221 — Dz1, (1 — 22> +iX)22),

since, on C = {z; € R*}, the first map has degree 1 while the second has degree 1 on
C’ = {zo € R"}. However, on €’ the first map has degree —1: for z; > 0 the only zero
is for z; real and positive, i.e., for z; = 1. If 71 = x+iy, the map is locally deformable
to(2t — 1,1 —x>—y>, A, xzp — 1, yzp) and thento (2t — 1,1 — x, A, 20 — 1, y).
Thus, one has
[FIr = —[F'Ir,

as expected, since conjugation changes the sign of the degree: see Remark 3.1. Here
F*(t,21,22) = F(1,0, 21, 22) — a(2) Az, where a(z) = i|z2|* (2122 — 2122) /2, while
F'™*(t,z1,22) = F'(1,0,z1,22) — &'(z) Az, where o’ (z) = —i|z11*(z122 — Z122) /2.
One has [F* + AAzlr = [F(¢,0,z) + LAz]r = [F]r, by following the steps of the
proof of Theorem 6.1. On the other hand, [F™* + LAz]lr = [F'(¢,0,z) + AAzlr =
—[F'lr = [Flr. Thus, [F*]L = [F™]..

Now, consider the orthogonal maps

Fo(t,z1,22) = Qt +1—=2|z1], (1 — |z11)z1, 22)
Fi(t,21,22) = Qt + 1 =2|z2], 21, (1 — |22]*)22).
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Clearly, [Fo + AAzlr = [F]r, since the degree of Fyp + AAz on C is 1. On the other
hand, [Fj + AAz]lr = —[F']r. Thus, [FolL = [FjlL.

Note that, if one changes z> to Zo = z), then F has to be modified in its last
component to (z1z, — 1)z5, which gives a degree 1 for F on C and on C’. (Here F’
has to be modified to (2/211 — 1.)11); and [F0]4_ = [Fé]L. In this case the map z, — Z/z
is equivariant (with action e~'# on z5 and ¢'¥ on z}) with a complementing map z5,
ie., withl = —1.

In general, one has the following.

Proposition 6.3. The normalized generators are independent of conjugations.

Proof. If, as in Remark 3.1, one has two fundamental cells, € and €', such that one
has coordinates z1, ..., zy with k; = oo (hence s < k) in C and Z/l, ..., 25 in €', with
action on z} conjugate from that on z;, then one has [F]r = (=D’[F'Ir, where F
and F’ are the generators of Theorem 3.3.

Now, if F* and F’* are the orthogonalizations of F (0, x) and F’(0, x) one has
[F* + Z]f MAxIr = [F(0,x) + > 2 A;x]r = Signdet A[F]r, by following the
proof of Theorem 6.1, where A corresponds to the matrix of A;z, ..., Az, on the co-
ordinates z1, . .., zx of € (whichinclude z1, . . ., zy). Similarly, [F"* +Z'1‘ MAXIr =
Signdet A'[F']r. But, since A’ has s lines which are the opposite of those of A, one
has Signdet A’ = (—1)* Signdet A and [F']r = (=1)*[F]r. Thus,

[F*+ > nAix]. = [F*+> nAx]. and [F*]L=[F*], O

3.7 Operations

In the last section of this chapter, we shall examine how the I'-homotopy groups
of spheres behave under different operations: suspension, reduction of the group,
products and composition, for the case of parameters and that of orthogonal maps.
These operations will enable us to acquire a certain number of tools for applications.
This section is the continuation of § 6 of Chapter 2.

3.7.1 Suspension

We have seen in § 8 of Chapter 1 that the suspension operation enables us to go to the
infinite dimensional setting, when a map may be approximated with maps of finite
dimensional range.

The setting will be that of Theorem 3.2, i.e., that V = R x U, where U and W
satisfy (H), that is diim U N UX = dim W# N WX for all H, K inIso(U). Let then
Vo be an irreducible representation of I', generated by a real or complex variable x
with isotropy subgroup Hy (hence I'/ H is trivial or Z; in the first case, Z,,m > 3
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or S! in the second case). From Theorem 2.3, one has that

My (") = @ TH) and Ty, (V") = @ TIH),
H H/

where H is in Iso(V) and H' in Iso(V x Vj). The group H’ will be of the form H
with H inIso(V) or H N Hy. Then, if Hy is not an isotropy subgroup for V, there will
be more isotropy types for V x Vj (at least Hp) and the equivariant group for V x Vj
will have more components (unless trivial). In order to make clearer our statements,
we shall use also the notation Iy (H), respectively ITy v, (H"), for the subgroup H
in Iso(V), respectively H' in Iso(V x Vp).

Theorem 7.1. For any H inIso(V), one has
(@) Y0 maps My (H) into My xv, (H).
(b) =V is an isomorphism if H is not a subgroup of Hy.

(c) If H isa subgroup of Hy and for all K inlIso(V),with H < K and KNHy = H,
one has dim W —dim WK > k41 —dim '/ H, then "0 is onto. If for these
K’s, one has dim WH — dim WX > k + 2 — dim I'/H, then >V is also one-
to-one.

(d) Ifthere are no K’s as above, then £"0 is onto if dim WH > k+1—dimT'/H,
and V0 is an isomorphism from Ty (H) onto My v, (H) if dim WH >k +
2 —dimI'/H. (Note that t is not taken to be part of V).

Proof. Let us consider first the case where H' is notin Iso(V), i.e., H' = H N Hy. Let
H be the isotropy subgroup of W / (see Definition 2.1 of Chapter 1), then W# = wh
and H < H. Furthermore, H < H implies W ¢ wH = WH hence H < H.
Thus, H = HNHy < HNHy < HN Hy, thatis H' = HNHyand WH = WH_ This
implies that if F belongs to IT(H'), then F maps (BY*Y0)X" into (W x Vp)X'\{0}
for all K’ > H’, in particular for K’ = H which is not a subgroup of Hy. Then,
(V x Vo) = vH and FP = Fl|,— # (0. That is, F cannot come from the
suspension of a non-trivial element.

On the other hand, if H’ = H, then TT1(H") consists of maps from (V x Vo) into
(W x Vo) which map (V x Vo)X into (W x Vo)X \{0} forall K’ > H,with K’ = K
or KN Hy,i.e., for K > H. Thus, if H is nota subgroup of Hy, then (V x Vo) = vH
and (V x VO)K/ = VK (there are no K’ of the form K N Hy > H in this case) and any
element of [T(H') isin [T(H). If H < Hy, then (V x Vo)X = VK" x vy = VK x v
if H< K' < Ho, KN Hy = K' with VK = VK" if K’ is not in Iso(V), while
(Vx Vo)X = VKif K isnota subgroup of Hy. Thus, if F belongsto I1(H), (F, x)K/
will be (FX, x) in the first case (or (FK,x)if H < K’ = K N Hy), or FX if K is
not a subgroup of Hy, that is, in all cases, different from 0. That is, >VF belongs to
MHYiIfH =H.
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Hence, if [ F]r belongs to Hgv (W), then [F]r = Y _[Fu]r, where Fy belongs to
I1(H) and "0 Fy belongs to IT(H') with H' = H. Thus, "0 is an isomorphism if
H is not a subgroup of Hy. While if H < Hy, the elements Fy will be given by a sum
of obstruction classes for extensions of a map to edges and to faces of the fundamental
cell, respecting the symmetries and ending with a map from dCy into W\ {0} (it
is enough to follow the argument given for the case k = 1). Thus, the obstruction
will come from elements of Mg (S¥"), for n < dim€ = dim V# — dim'/H,
while the obstruction classes for IT(H') will be in ITgnxv, (S WxVoy  n particular,
if x remains as a dummy variable at each stage of the extension, then for (Fpy, x)
the obstruction classes would be the suspension of the classes for Fy. From the
ordinary suspension theorem, one would have an isomorphism if n < 2dim W# —2,
for any n < dim V¥ — dim I'/H. In this case " would be one-to-one from IT(H)
into TT(H’) and for any element G in IT(H'), the obstruction classes would be the
suspensions by x, that is [G]r = ) [Fk,x] = [)_ Fk, x], therefore >" would be
onto.

There is however a delicate point here: the new variable x has really to remain a
dummy variable in this process. In fact, if F is an element of [Ty (H), then F K is
non-zero for any K > H and, of course, (F K x) is non-zero in (V x Vo)X /, where
K’ = K N Hy. If K’ is strictly larger than H, then x is still a dummy variable,
however, if K’ = H, one may have a first obstruction, for an element of Iy v, (H),
for a non-zero [-extension to VK x Vj of a map F(xg, x), with F(xg,0) # 0.
Clearly, if F(xg,x) = (F K(xg), x), there is always the non-zero extension given
by (F K x). But, for a general map F(xg, x), one needs to look at the fundamental
cell Cxr = Cg x {x : 0 < Argx < ko}, where kg = |K/H| if finite, or kg = 0 if
dim K/H =1 =dim "/ Hp.

From Theorem 1.1, one will have a non-zero I'-extension to VK x Vy if
dim(VE x Vo) —dim'/H < dim(W x Vp).

Since dim VX = k + dim WX and dim(W x Vo) = dim W# + dim V}), because
H < Hy, one has that, if dim W# — dim WX > k, there is no additional obstruction
for Iy x v, (H), coming from this K.

Subsequent obstructions, by adding new variables to VX, will be obtained for
My (H) and ITy x v, (H), for the edges of Cp, in such a way that the ordinary suspen-
sion is onto, due to the fact that dim W# > k + dim WK > k.

On the other hand, if for all K’s with K > H, one has that K N Hy is larger than
H, then the condition dim W# > k will suffice to give ontoness. This is the case if
Hy=T.

In order to prove injectivity, assume that F in ITy (H) is such that £ Y0 F is trivial,
that is (F(xg), x) has a non-zero equivariant extension F (xp,x) to B>V, Let
K > H, with K N Hy = H, and consider on B(BVKXVO x I) the I'-map ﬁ(xK, X, T)
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defined as .
(FK(xg),x) ond(BY *Y0) x I
Foeg,x, 1) =  (FK(xg),x) on BV x (0)
F(xg,x) on BV x% x {1}.

Then, from Theorem 1.1, F has a non-zero I'-extension to BVK Vo s [ if
dim(VE x Vo x I) —dimT/H < dim(W# x V),

that is, if dim W# —dim WX > k+1—dim I'/ H. This non-zero extension provides a
I"-homotopy of (FX (xx), x) on BV xVo o F(xk, x) fixing the value on B(BVK *Voy,
Thus, one may assume that F(xk, x) is of the form (FX (xx), x). If K N Hy is larger
than H, then we know, from Hypothesis (H), that the obstructions are independent of
the extensions to VXN Ho,

At this point, one has started an induction argument: if one assumes that, on the
boundary of some face, F (xH, x) is a suspension, then, from the fact that the ordinary
suspension is one-to-one and the fact that F (xg, x) has an extension to the face, one
has that F' has a non-zero extension to that face. One arrives finally at the result that
F is trivial. O

Remark 7.1. Given the explicit generators for the subgroups I[1(H), ifdimI'/H =k
orif k = 0 or 1, it is apparent that £ "0 is one-to-one for any Hy provided dim W' >
k +2,if Hy = T, and dim W — dim WX > 2 (always true if W contains a
complex variable which is not in WX) for IT(H) if k = dim I'/H. In this last case,
the suspension is always onto, from Iy (H) = Z onto Ilyyy,(H) = Z, hence it
has to be one-to-one. For the case k = 1, the condition dim W# — dim WX > 3 is
consistent with the results of Section 5 and explains why we have asked for repetition
of variables: see Theorems 5.1 and 5.3.

The properties of "0, as a map from HEV (s%) into HngVo (SW>xVo) will follow
from the study of the behavior of the suspension on [Ty (H), for all H in Iso(V) with
H < Hp. However, it is not necessary to check the dimension conditions for all of
these H'’s.

Corollary 7.1. (a) If Hy is an isotropy subgroup for V, then the suspension map
TV gy (8™) = My, (S710)

is one-to-one provided

o) dimW!' >k+2, if Hy=T, or
g) dim W — dim WX > k +2 —dim '/ Hy

forall K > Hy.
The map will be onto if k + 2 is replaced by k + 1 in the above inequalities.
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(b) If Hy is not an isotropy subgroup for V , then Y0 will not be, in general, onto
unless k = 0 and dim I'/ Hy = 1. The suspension will be one-to-one if it satisfies the
dimension conditions of Theorem 7.1.

(c) In all cases, £V is one-to-one if the number of real coordinates with the same
isotropy is at least k + 2 and the number of complex coordinates with the same action
of U is at least k /2 + 1, if this action is finite, or at least k /2, if the action of T is as st

Proof. If Hy is an isotropy subgroup for V, then either Hy = I" and one has condition
(o) or for any K, strictly larger than Hyp, one has K N Hy = Hy and condition (8)
is given in Theorem 7.1. Let then H < Hp be in Iso(V). One has dim wH >
dim WHo > k 4+ 2 — dim I'/JHy > k+ 2 — dimI"'/H. Furthermore, if K > H is
such that K N Hy = H, let K be the isotropy of WX N WHo Then, K¢ contains
K and Hp, thus, Ko N Hy = Hy and, if Ko = Hj, one would have K < Hj and
K N Hy = K > H, contradicting the equality K N Hy = H. Hence, from (),

dim W0 — dim WX0 > k 42 — dim I"/ H.
But, WK n wHo ¢ Wko which implies

dim W — dim WX = dim W — dim wX n wo
+ dim(WH)L — dim wX n (wHo)L
>k +2—dimI'/Hy > k +2 —dimT'/H,

and the condition is verified for H. Replacing k + 2 by k + 1 one has the surjectivity
result.

In order to prove (b), one has to show that TI(H') = 0 for all H' = H N Hy
which are not in Iso(V). Now, for H' = H N Hy = H N Hy, with VA = VH/, the
group IT(H') will vanish, from Theorem 1.1, provided dim(V x Vo) ' —dimT'/H'" <
dim(W x Vo), ie., dim WH 4+ k 4+ dim Vy — dimT/H' < dim W + dim Vj, or
else if k < dimI'/H'. This inequality has to be true in particular for H' = Hj,
where dim I'/Hy is 0 or 1. Hence k = 0 and I'/Hy = S', then dimI'/H’ > 0 for
any H = H N Hp, and the equivariant group for V x V, has no new components.
Furthermore, if H < Hg one has dim I"'/H > 1 and the other conditions for ontoness
of Theorem 7.1 are trivially met. On the other hand, if k > dim '/ Hy, then the first
obstruction for extension, in Iy v, (Hp), will be in the group Ii4,—dimr/Hy(S"),
where n = dim W# + dim Vy and W# = WHo_ Since this group is, in general,
non-trivial, this explains the wording of Corollary 7.1.

Finally, under the condition of (c), one has dim WH > dim W' > k + 2, and
dim WH — dim WX > k 42 — dim I'/H, for any pair H < K in Iso(V), noting that
if, on some coordinate of (WX)= N WH the group I acts as S!, then dimI'/H > 1.

O

Let us turn now to Theorem 8.2 in Chapter 1, under the following formulation.
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Corollary 7.2. Let Vy be a not necessarily irreducible representation of T, with co-
ordinates x1, ..., X, and H; the isotropy of x;. Then:

(@) The suspension Y0 is one-to-one, if whenever Hy is an isotropy subgroup for
Vo one has that for all H and K in Iso(V), with H < Hy, H < K (strictly)
and K N Hy = H, the following inequality holds

dim WH — dim WX > k +2 — dim '/ H.

If there are no K’s as above, then the inequality
dimWH# >k +2—dimI'/H,

will suffice. If Hy is in Iso(V), then H = Hy is allowable and is enough for
other H’s.

(b) IfTso(Vy) C Iso(V), then Y0 will be onto if

dim W' > k+1
dim W —dim WX > k+1—dimI'/H;j,

forall K inlso(V), with K > Hj and all j’s.

(c) If some H; is not an isotropy subgroup for V, then Y0 will not be, in general,
onto unless k = 0 and dim I'/ H; = 1 for all such H;’s.

(d) Ifforall K, H inIso(V), with H < K, one has
dim W' > k+2
dim W7 —dim WX > k+2 —dimI'/H,

then any suspension will be one-to-one. This will be the case if one has the
repetition of coordinates of Corollary 7.1 (c).

Proof. It is enough to note that "0 is the composition

=" =2
My (H) — Myxy,(H) — Dyxyxv,(H) = -+ = My xy, (H),

where © Y/ is the suspension by the coordinate x i, and likewise for the full equivariant
groups. Note that the order of the suspensions is irrelevant. Now, for

I HVXV]X---XV/‘_l(H) - HVXV]X-HXVJ‘(H)a

one has an isomorphism if H is not a subgroup of H;, while if H < H; one needs
dim(W x Vy x --- x Vi) —dim(W x Vi x --- x Vi_)K >k +2 —dimI'/H,
for any K in Iso(V x Vi x --- x V;_1), with H < K and K N H; = H. But, if
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K < Hjj, ..., H; foriy, ... i between 1 and j — 1, then K = K N Hj, --- N Hy,
vgherelzis the isotropy of WK = wK_ Then, i_fH():H,~1 N---N H; N Hj, one has
K NHy=H,hence H < Hyand H < K < K. Since

1
dim(W x Vi x -+ x V;_p# > dim WH# 4> " dim v

s=1

_ l
dim(W x V| x -+ x Vj,l)K = dim WX +Zdim Vis,

s=1

the above inequality is true under the condition of (a). Of course, if there are no
K’s then the second condition of (a) is stronger than the one needed here. If Hy is in
Iso(V) and H < Hp, one may repeat the argument of Corollary 7.1, in order to show
that one does not need to check the inequalities for H.

Part (b) is then clear since "/ is onto at each stage, since dim(Vq x- - - x V;_; yii >
dim(Vy x - X Vj_l)K and using Corollary 7.1. On the other hand, if H; is not an
isotropy subgroup for V, one may start the above sequence by

=Y gy (SY) — My, (87,

which will be, in general, not onto unless k = 0 and dimI'/H; = 1. If k = 0 and
dimI'/H; = 1 for all such j’s, then the inequalities of (b) hold for any H; in Iso(V)
and =0 is onto. The word “in general” has to be taken in this context. Finally the
conditions of (d) cover all possible suspensions. O

Remark 7.2. In the case of orthogonal maps, without parameters, the explicit con-
struction of Theorem 6.1 implies that "0 is one-to-one. This implies that the ap-
proximation by finite dimensional orthogonal maps is valid and that one may take the
direct limit of these groups to give an alternative definition of the orthogonal degree
in the infinite dimensional case, as in § 3 of Chapter 2.

3.7.2 Symmetry breaking

Let I'g be a subgroup of I'. If a map is ["-equivariant it is also ['g-equivariant and, in
case itis I'-orthogonal it will be ['g-orthogonal, since the torus part of ['g is a subgroup
of the torus part of I'. One has then two morphisms

P, : TG, (SY) — Iy (s™)
Pyl g (8" - ', (s

corresponding to the reduction of the group from I" to I'y.
Under hypothesis (K) we have seen, in Theorem 2.3, that Hgv (SW) is of the form

&b [1(H). It is thus important to determine first the relation between the isotropy
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subgroups for I" and for I'g and then the relation between the subgroups I1(H), for ",
and Iy (Hyp), for I'y.

Lemma 7.1. (a) Any isotropy subgroup Hy for g is of the form H N Ty, with H an
isotropy subgroup for I'. For a given Hy, there may be several H’s, but there is a
minimal one H, for which VL = yHo,

(b) For all H with Hy = H N To, one has dimTo/Hy < dimI'/H. In case of
equality, if Hy is the isotropy of the k variables with kj = oo (k = dimI'/H) and
H(? = Ho N T, then |H8/H0| divides |H0/H|. Moreover, Ho isTifk=0

(©) IfdimTy/Hy = dim '/ H and Signdet y Signdety > 0, for all y in ", then
P, maps T1(H) into To(Hp) and if dim WX = dim VEZ — dim T'/H , then

wy . _ [VHo/HI/VAS HolLF o1y, if Wi = wHo
P [F=r = .
0, otherwise,

where F&L generates 11(H) and F Ho generates Ty(Hp).

Proof. If Hy =Tox = {y € I'o : yx = x}, then clearly Hy = I'y N I'g. Hence, H is
the intersection of all such H ’s and the isotropy subgroup for V 0 (see Definition 2.1 of
Chapter 1). If z; is a coordinate in this space with the subgroups Hi_y = HiN...H_
and H H 1 N H;, then the corresponding subgroups for I'g will be H 0 H NT.
Furthermore, if k; = |Hl_1/ H;| is finite, then any y in Hi_ may be written as
y =y "y, with0 < o; < ki, yiki and 7 in H;. Thus, if y is also in I'g, then y%i is
in Ty N Hj, that is k? = |Hi0_1/H,~| is finite and divides k;. Hence, if x; is the last
coordinate in V¥ then H; = H. Thus, HZO = Hpand k? = 1fori > [. Since there are
atmost k = dim I'/ H coordinates with k? infinite, one has thatdim I'/Hy < dimI'/H
and the rest of (b) is then clear, since |H(()) /Hol =[] k? divides |Hy/H| = [Tki.

For (c) one has that the fundamental cell Gy for Hy is made of [ k; /[ | k? copies of
the fundamental cell € for H. If F belongs to [T(H) and Ko > Hp,then Ko = KNIy,
where K is minimal and the isotropy subgroup for VK0 ¢ V#o_ Thus, K > H and
FX +£ 0, by definition of TI(H), i.e., F|,k, # 0 and F is in [Io(H). If dim V& =
dim W2 +dimT"'/H, dim 'y/Hy = dim T'/H, since Hy = HNT( < H,then W&
WHo Hence, if WL = WHo_ one obtains that dim V70 = dim WH0 4+ dim I'/Hy
and F in [1g(Hp) is characterized by its extension degree degFO(F ), such that, from
Theorem 1.2,

deg(F; By) = |Ho/H|deg (F) = |H{ / Ho| degp, (F).

Since degp (F Hy — 1, degp, (F Hoy — 1, by definition, one obtains the equality of (c),
since Py[F2]r = degp, (FE)[F™]r,. Finally, if W is strictly contained in W0,
thendim V0 < dim W0 4dim I'g/ Hp and, from Theorem 1.1, one has [To(Hp) = 0.

O
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Lemma 7.2. (a)Iffor all H's there is a complementing map F3:, then this is also true
for all Hy's. In this case, Py maps TI(H) into To(Ho).

() IfV = REx U, such that U and W satisfy hypothesis (H) for I (e, dimU? =
dim W¥ forall H inlso(U) and one has the T -equivariant map X; y Yand if WH = WHO
forall Hy, then U and W satisfy hypothesis (H) for T'g. This is the caseif V=RExW.

Proof. Since VH0 = VA any complementing map for H will also work for Hj.
Now, if Hy = H N Ty and H is a strict subgroup of H, let F¥ be in TI(H) and
consider (FH Ff)ﬂ. Take Ko > Hy, hence as above, Ko = K NI'g with K > H.
If (F, FH)Ko(x) = 0, then x is in V¥, since F is zero only at the origin, and
FH(x) = 0. But x is in VK0 = VL thus x is fixed by H and K. But H cannot be
a strict subgroup of Iy, since one would have F H(x) # 0 for F H in TI(H). That is,
'y = H and K < H. But the relation H < K would imply Hy = Ky, which is a
contradiction. Thus, (F¥, F{)Xo +£ 0 if Ky > Hy and the pair (F, F{) belongs
to I:IQ(H()).

(b) is clear, since U0 = UH and UKo = UX and the I'-equivariant map x]l.j is
also I'p-equivariant. O

Proposition 7.1. If V = R x U, where U and W satisfy hypothesis (H) and W =
WHo for all H inIso(U), then, for any H such that dimTo/Hy = dimT'/H = k,
one has

|Ho/H| FHo

PFH, Fir = deg((FIHE) —"—[F,

» F1 Iy,
|HY/Hol ’

where FH generates I1(H) and FOH0 generates I1y(Hp).

Proof. Since FH™ is in TI(H), one has that (F Ff) is non-zero on d By and, from
Theorem 3.4, for any H; < I:IQ, with dim I'/ H; = k, one has

deg(F™: By =" Pydj|Ho/Hjl,
Hi<Hj<Hy

where f;; = deg((F|")H).

Then, for F = (FH , F HY) the degree on the left is a product and the degree
of (FH)Hi corresponds to VH N Vi which has isotropy larger than H, i.e., there
Fk # 0,unless H; < H,in which case the degree is By, HlHo/Hl On the right-hand
side, one has d; = 0, except for dy = 1. Hence, deg(FH, B,f) = |H0/H|.

From the product theorem, one has

deg(FX, FI'; By) = |Hy/H| deg(F ).
Now, as a I'g-map, one has, from Lemma 7.2, that

H; H
PF? F e = alF, F{ I,
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where a is an integer, recalling that FLE is a complementing map for Hy. Since
deg(FH‘), B,flo) = |I:18/H0|, one gets

~ ~ H
a = |Ho/H|/|HS/Ho| deg(F ")/ deg(F{")
and the result follows. O

Corollary 7.3. If V = RK x W and

[Flr =[Flc+ ) dulFul,
dimI'/H=k

where F corresponds to isotropy subgroups K with dimI'/K < k, then

- |Ho/H| -
PJFlr = PFIr+ ) deH[Fﬂo]ro.
no—rrg |Ho/Hol

dim "o/ Hy=k

Proof. Since dimI'g/Hy < dim I'/ H, one has that P.[F] corresponds to subgroups
with Weyl group of dimension less than k. Similarly, if dimI'/K > k, then the
component of F on that [1(K) is 0 and so it does not appear in I1o(Kp), even if
dimro/K():k. Here, ,BEH =1. O

Example 7.1. If k = 0 and 'y = {e}, with V = W, then for

[FIr= Y dulFulr.

dim '/ H=0

one obtains P,[F]r = deg(F; B)[Id] = (ZdH|F/H|)[Id]. (Compare with Corol-
lary 3.1) _
For instance, if Z, acts on C2, via (x, ez”’k/”z), k=0,...,n— 1, then the map

F(t,x,2) = 2t + 1 =2(Ix| + |z, ¥(x" = 1), 2(" = 1))

has zeros at (x = 0, z" = 1), with index —1 and at (x" = 1, z = 0), with index 1,
and t = 1/2. One has deg(F'; B') = n, deg(F, B) = 0. From Corollary 3.1,

n\ (1 0\ (do
0/ \1 n)\d1)"
Hence, dy = n and d; = —1. As a Z,-map, one has

[Flr =n[Folr — [Filr,

with Fy = (21 — 1/2, x0,2) and F = (21 + 1 —2[z], x, z(z" — 1)), while [F] ¢} = 0.
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There are two other cases where we have explicit generators: the case k = 1 and
for orthogonal maps. Let us consider first the case k = 1.

Let V = R x W, then Hgv (V) is generated, in its free part, by [F¥ ] as
above fordimI'/H =1, and for H with I'/H = A = Z,, X -+ X Zp,,, by 17]’. and
7', j =1, ..., m,given in terms of the auxiliary space X = (Z1, ..., Z,,) with action
of I'/H on Z; given by exp(2mi/p;). Then r;j’. and 77’ are given in Theorem 5.4 and
one has the relations

Gl +i) =0, 27 =0.

Similar definitions hold for I'g/ Hy = Ap.
Proposition 7.2. (a) I[fdimI"/H =dim I'g/Hy = 1, then

Hy/H
P = L pry
|HO/ Hol

® IfdimI'/H =dimT'g/Hy =0, thenfor j =1,....,m

Al po;

/ f—
P*[nj]f' = Ao D

[77(/)]]1“0 + ézj [776]1"07

where d; is 0 or 1 and d; = 0 if |Ao| or pj is odd. Moreover,

LAl
Pin'lr = m[ﬁo]l‘o-

(©)IfdimI'/H =1 and dim "o/ Hoy = O, then

|Ho/H|

PF" ] =
* | Aol

poi1[n;Ire + dl7ipIr,»

where d = 0 if |Ao| is odd, and F' is given below.

Proof. (a) was already proved in the previous proposition. For (b), notice that if "
acts as exp(2mi/p;) on Z;, then I'g has to act as exp(2wi/pg;), where py; divides
pj- Hence, |Ag| divides |A].

From Theorem 5.4 and 5.7, the components of P*[nj’.] r on 77(/)1' can be computed

via deg(n}; BHo N {Arg Z; = 0})/ Hi;&k pok. Since

m = (1=TT121, Xo, tu), 2" + 1241, 2},22;. Z,),

it is clear that this degree is 0 if i # j and nj;,gk Pk/ nj;ék pok,ifi = j.
Now, if one computes the ordinary class of both sides in IT,4(S"), one obtains
that [ P, n}] = ( I1 ik pk)n, where 7 is the suspension of the Hopf map, while, on the
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right-hand side, one has |A|/p;n +d;|Agln. Thus, dj|Ag|n = 0, in particular, d; = 0
if |Ao| is odd.

Furthermore, since 77’ is the Hopf map based on the fundamental cell for I'/ H and
the fundamental cell for I'g/ Hy is generated by |A|/|Ag| copies of the first one, with
a suspension on the variables on X N (xH)L, one has

P.[i'Ir = |Al/1Aol[iig]ry-

Then, from the relations pj(n;- +7') = 0, one has

(1Al/1AoD (pojng; + pifip) + pidjiig = O,

or else i
pidj + (|Al/|Aol)(pj — poj) is even.
Hence, if p; is odd, po;, which divides p;, is also odd and one has d; = 0.
For (c),one has I'/H = st x ZLp, X -+ X Lp, and, using the auxiliary space X,

one may take the action of I on Z, as ¢'? and on Zj as e2m1/Pi while Ty acts as
e?7i/Poj  One may take

F' = i +1 =212, Xo, xi, A Z1, (Z]" + 1)Z)),

where A = u~+i(|Z1] — 1), see Theorem 3.3.
Again, the components of Py[F]r on 1o j are given by

deg(F"; B™ n{Arg Z; =0/ [ | por-
k#

Hence, these components are 0 if j > 1 (since Z;)'" + 1 # 0, for Z; real and positive)

and ([Tg- pk)/(Nl_[k>1 pox) for j = 1.
The fact that d is O if | Ag| is odd is proved as above. 0

Example 7.2. Consider the action of § ' on Fourier series, i.e., as exp(img) on z,,,
for m > 0, which is broken to a Z-action for I'g = {¢ = 2kn/p,k =0,..., p—1}.
Here V = R x W and, according to Theorem 3.2, one has

M (SM) = Zo x Zx -~ x Z,
where Z; corresponds to the invariant part and is generated by the suspension of the
Hopfmap (1—|xo|2—|x1|%, A(xo—+ix1)), where xo, x; arein W and A = pu+i (2t —1).
The isotropy subgroups are of the form H,, = {¢ = 2kn/m,k =0, ..., m — 1}, with

WHn = {z,, n multiple of m} and the corresponding generator is the suspension of

Mm = (1 = |zml, Azm).
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Note that Theorem 3.3 gives the generator (2t + 1 — 2|z, Azm) = n,, with
A=pn+i(lzm| —1). The homotopy

(A =1)@2r =D +2=2zml, (u +i((1 = )(|zm| = D + 72 = 1))zm)

is valid, since if z,, = 0, one has (2 — 7)(2¢t — 1) + 2 > 1, and otherwise one has a
rotation between 2t — 1 and 1 — |z,,|. Thus, n,, = n,,. Hence, any S '_map will be of
the form

[Flgt = ) dultimlst-

m=>0

On the other hand, the isotropy subgroups of I'g are of the form Hy = {¢ =
2kp'nt/p, k = 0,1,..., p/p" — 1}, where p’ divides p, that is Hy = Z,,,y and
I'o/Hy = Z, . Furthermore, z,, belongs to WHo if m is a multiple of p/p’ and z,,
will have exactly the isotropy Hy if m = kp/p’, with k and p’ relatively prime (if
k/p' = k'/p" then z,, belongs to W0, with Hy = Zp;pr > Hp). One may write
k=m+kp', withl < m’ < p’ such that m’ and p’ are relatively prime. Hence,
m=m'p/p +k'p.

Now, any Zp,-map can be written as

(Glz, = Z(dlg/P/[n;?/P/]Zp + gP/P’[ﬁP/P’]ZP)’
p/

where for any divisor p’ of p, one has that n; ) is the suspension of

(I =lzp/prls Azpspr)-

In this case, according to Proposition 7.2 (c), one has that
P*[np/p’] = [77;,/]

since in this case |Ag| = p’ = po1 and |I-IO/H| =1.

Now, one could have taken a different generator for Ilo(Hp), for instance
(1=|zml, Azm), withm = m'p/p’+k’ p. From Proposition 5.1, we have that [1,,]z, =
n/[n;)/p,]zp, where |n’| is odd and n'm’ = 1, modulo p’ (in fact (m’ + k'p)n’ = 1,
modulo p”).

Proposition 7.3. Under the above hypothesis, if

[Flgi = dulimls,

m=>0

then

PAF1=) " d), [0, 1z,
r'lp
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where

dypyp = Z nj ( Z dm/P/P’+kp)

j k>0

with |nj| odd, njm; = 1, modulo p', and 1 < mj < p', with m; and p’ relatively
prime. The number d;,/p, is in Zy if p" is even and in Zyy if p' is odd. The number
d;, is in Zy, corresponds to Hy = Z), and is

iy =d, =Y dip.
k>0
For instance, if p = 2, then one has
iy = dymod2,  diy =) dyy mod 2.
For p = 3, one has
di, = dy mod 2, dj, = (ds1 — dss2) mod 6.

For p = 4, one has

diy = dy mod 2, dj, = dayys mod 2,

di,y = Z(d4k+l — d4+3) mod 4.

For p = 5 one has
dp, = dsy mod 2,

diyy = Z(dSk—H — dsk+4) + 3 Z(d5k+2 — dsk+3) mod 10.
For p = 6, one has
di, = Y dex mod2.dy = derys mod 2, for p’ =2,
dy = Z(d6k+2 — dsi+4) mod 6, for p’ =3,
diy = Y (dsky1 — dexrs) mod 6.
For p =7, one has
dlio = Zd”‘ mod 2,
dipy = Y (dris1 — dyirs) —3) (drra — dikys) + 5 (drkss — dyiys) mod 14,

In order to illustrate this sort of result, consider the following system in R? x C2,
with action on z; as e”/¢, for j = 1 and p — 1:

f=0—z1* = lzp=11* 221, Azp—1).
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This map is S'-equivariant and non-zero on d{(, z1, Zp-1) LA = Lzl < 2,
J =1, p — 1}. One may perturb Az, to (A — £)z,_1, for |¢| < 1, obtaining the
zeros (A =0, |z1| =1,zp-1 =0)and (A = ¢,21 =0, |[zp—1] = 1). The Sl—degree
is then the sum of two S -degrees, the first one, near A = 0, is [;], while the second
one, near A = ¢, is [n,—1]. Hence,

[flst = [milst + [mp—1lg1.

(This result may also be obtained by using Whitehead’s homomorphism: this method
will be used, in next chapter, when discussing bifurcation).
One may perturb f to get a Z,-map:

2 2 . .
fe= A —lz1" = Izp-1l", Az1 + €Zp—1, Azp—1 — €21).

However, conjugating the third equation, one has

Aoe 7]

—& A Zp—l
whose only zero, for ¢ # 0, is z; = z,—1 = 0, i.e., f; is never zero. Here n; = 1,
np—1 =—1and [fg]zp =0.

Let us conclude this subsection by considering the case of orthogonal maps, i.e.,
the morphism

Py T o (8Y) — %, (8Y),

where 'g = 70 x ... isasubgroup of ' = T" x ... Itis clear that one may choose
T"0 to correspond to @1, ..., @n,-

We have seen, in Theorem 6.1, that HE sV (SY). has explicit generators Fg, which
are orthogonal maps, for each isotropy subgroup H. Furthermore, if dim['/H = k,
with Ayx, ..., Agx linearly independent in VH  then,

k
F(A, ..., e, x) = Fp(x) + ZMAJX
1

may be taken as the generator of I[1(H) in Hng (S .

From Proposition 7.1, we know that if dim I'g/ Hy = dim ['/H = k, then

| Ho/H|
P*[F()"lv . "7)\'k7-x)]r = ?[FO()\'Ia .. ")\'ky-x)]rov
|Hy/Hol

where Fo(A1, ..., Ak, x) = Fry(x) + ZII‘ ij?x is the generator for [1g(Hp), and A?
are the infinitesimal generators for the action of I'g. We shall prove the following
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Proposition 7.4.

3 |Ho/H|
PJ_( > dH[FH]J_) = > (ZldH—IFI(?/H()I)[FHOh’

H<T Hy<TIy

where the sum ), is over all H with Hy = H N Ty and dimT"'/H = dim g/ Hy. In
particular, P, [Fg]l, =0ifdimT'y/Hy <dimI'/H.

Proof. From the proof of Theorem 6.1, it is clear that one may take the generators for
the parametrized problem as Fg (A, ..., Ak, x). If K = ko, then Ajx, ..., Apx are
linearly independent for x with I'y = H and I'p, = Hp. Proposition 7.1 will give part
of the answer.

On the other hand, if kg < k for some H, then, since H < H, where H is the
minimal isotropy subgroup such that Hy = H N I'p, one has dimI'/H > dimI'/H.
But, since V£ = Vo the only possibility is that ng < n and the action of 770 on
VEH reduces the number of linearly independent A jx from k to k. Assume then that
Aix, ..., Agx correspond to I'g and are linearly independent if I'g, = Hp, while
Aqx, ..., Agx correspond to I" and are linearly independent if 'y = H (and a fortiori
if 'y = H).

Consider the map Fg(x) + Ak0+ 1(x), where Ak0+] (x) is the vector constructed
from the Gram—Schmidt process and orthogonal to Ajx, ..., Ag,x (see § 7 of Chap-
ter 1), hence it is a [y-orthogonal map in V 0. Now, the zeros of this map are such that
Fygx) = (Fg(xH), Z) = 0 and Agy+1x is a linear combination of Aqx, ..., Agx
(since Fp(x) is I'-orthogonal to all A;x). But then, Z = 0, xg which has isotropy H
issuch that Ajxy, ..., Axxpy are linearly independent. This means that this map has
no zeros. But P, [Fyl. = [Fy + Ak0+l(x)]L = 0 (since as ['g-orthogonal map, Fy
and Fy + A~k0+1 (x) are I'g-homotopic). O

3.7.3 Products

We have considered, in § 6 of Chapter 2, a product of maps ( f1(x1), f2(x2)) defined
on a product Q = Q1 x Q from V| x V, into W; x W;, where f] and f; are I'-
equivariant, and €2; are I'-invariant, open and bounded. The associated maps, which
define the I"-degree, are F;(¢;, x;) = 2t; +2¢;(x;) — 1, fi(xi)).

As shown in Lemma 6.1 of Chapter 2, [Fy, F2] = Zodegr((f1, f2); Q21 x Q2),
where X is the suspension by 2f; — 1.

Note that if [F;] belongs to Ty, (S"1), then [F1, Fal is in TT(y, .z, (SV1F2)
and one has a morphism of groups, i.e.,

[F1 + Gy, F2] = [Fy, F2]1 + 1[G, F2]
[F1, I + Go] = [F1, B2]1+ [F1, G2,

where, for this last operation, with the sum defined on #,, one has to translate this
sum on #1. This is done as in any text on homotopy and is left to the reader. Hence,
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if [F1] and [F>] are expressed as sums, as we have already seen in several examples,
one may expand [F, F2] in terms of elementary products of the generators. Let
V=VixRxVyand W = W; x R x W,. (t, will be absorbed in V).

Lemma 7.3. (a) Any isotropy subgroup H for V is of the form H) N Hp, with H; in
Iso(V;). There are minimal isotropy subgroups H;, with H = H{ N H,, Ve = Vl.H
and

dimI'/H; <dimI'/H <dimI'/H, +dimI'/H,.

(b) If [Filisin TI(H;), then [ F1, F>] is in I1(H). If for any H; there are comple-
menting maps Fi | then, if [ F;, Fj_] is in TI(H;), we have that | F, Fj_, F, FJZ_] isin
T1(H).

() If V; = Rk x U; and hypothesis (H) holds for U; and W; and furthermore
WH: = Wl.H ,then V = R\*%2 5« R % U and hypothesis (H) holds for U and W. This
is the case if V; = Rk x W;.

Proof. If H = I'(y, x,),then H =Ty, NT, = H; N H>, by recalling that ', = ("] H;
over the isotropy subgroups of the non-zero variables in x. Then V7 = VIH xR x V2H .
Now, if H; is the isotropy of VI.H (see Definition 2.1 of Chapter 1), then H < H; < H;
and Viﬁi = Vl.H. Since H = Hy N H,one hasdimI'/H; <dimI'/H; < dimI'/H.

In the decomposition of I'/ H over the isotropy subgroups of the coordinates of
V., one obtains the groups H/ ,/H] for the first coordinates, corresponding to Vlﬂl,
with order kil, and then H| N I:Il.z_1 /Hp N ﬁiz, for the coordinates of Vzﬁz, with order
1212 We shall denote by ki2 the order of I:Il.{ 1/ FIZ.Z, corresponding to the coordinates of

H . . — . -
szz. If kl.2 is finite, then any y in Hiz_1 can be written as yi“y, where 0 < a < kl.z,

y; " and y arein I:Il.z. In particular, for y in H; N I:Il.z_l, one has that yki2 isin H N I:Il.z,
then &2 divides k2.

Thus, the number of k;’s infinite for V¥ is the sum of the number for those of
Vlﬁ1 and a quantity less or equal to the number of those for V2ﬂ2. Note that when
HyNH? | = H, then k} = 1 for j > i.

For (b), if K = K, N K, > Hy N Hy, then VK = Vlﬂ1 x R x VZK2 is strictly
contained in V# = VIE1 x R x Vzﬂz. Then, either K| > H,, or K, > H, and the
corresponding FI.K" #0,ie., [F|, F2]isin T1(H).

Also, if (Fy, Fi, P, Fi) has a zero at (x, x2) in VK for K > H, then, since Fi 18
zero only at the origin, (x1, x2) must be in VIH1 X V2H2, with [, ) < HHNHy = H,
leading to a contradiction. Thus, the above map is in T1(H).

Finally, if (H) holds for V; = Rk x U; and W;, let K = K NKyand H = H{NH,.
It is then clear that dim U? N UX = dim W# N WX since UH = Ulﬂl X UZE2 and
likewise for K and one has Wiﬂi = W!. Note that in general Wl.ﬂi c WH. O
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Proposition 7.5. (a) I[f dim V" = dim W/ +dim'/H,,i = 1,2 and dim T'/H =
dmI'/H, +dimI'/H,, then, for [F;]in I1(H;), one has

degp (Fi, Fy) = degg (F1) degg (Fy) [ (k7 /D)

if WiH” = Wl.H and 0 otherwise.

dIfV; = RY x U; and let U; and W; satisfy hypothesis (H) and W = WZ.H .
Assume dimI'/H; = k; and dimT"'/H = k| + ky, then, for [ F;, Fj_] in TI(H;), one
has [F1, Fj_, P, FJZ_] = dy[Fy], where Fy is the generator for l:I(Hl N Hy) and

|HY/H,| - |HY Ha)
|HY N HY/H\ N Ha|

dy = B, H,BH,H,

Here I:Il.0 is the maximal isotropy subgroup containing H;, with dim T"/ I:Ii0 = k; and
B, 1, = deg((F})Hi).

(c) Furthermore, if [Fi]r = Zd;[F iIr + [IEi]r with dim F/HJ? =k; and I:", in
- J
Hk,-—l, then

_ 142 =
[Fi. Rlr = Y_ d}diduy,nn [ FrnmIr + [Fr,

where the sum is over all (j, k)’s such that dimI'/H; N Hy = ki + k2, dH_;ﬂHk is as
above and [ﬁ]r belongs to I:Ik1+k2,1, as defined in Theorem 3.2.

Proof. Itis clear that the fundamental cell for H ;N H , is the product of the fundamental
cell for H,; by the fundamental cell for H; N H, on V,. The dimension conditions

imply that 125 is infinity exactly when kJ = oo. From Theorem 1.2, one has

degg (F1, F2) = deg((F1, F2); By, X Bkﬂ/(ﬂ"f)(l_[’;jz)

if WH = WHi x R x WH2 and 0 otherwise. From the degree of a product, one
obtains the result.

For (b), from Lemma 7.4 (b) and (c), one sees that it is enough to compute d .
Now, as in Proposition 7.1, the map [ F7, Fj_, P, FJZ_] is non-zero if z; = O for any
j with k! or ka (hence IEJZ) infinite. That is, one may apply Theorem 3.4 (on global
Poincaré sections). Thus

H H H H
ﬂHUBHz deg (Fl 1|Bk1 ) F2 2|Bk2) == ﬂHlﬂHz deg(Fl 1; Bkl) deg(F2 2; Bkz)
= B B | HY / Hi || H3 / Ho|
= Budp|H N H;/Hi N Hy,
since clearly H 10 N Flz() is the maximal isotropy subgroup for H; N Hj (recalling the
dimension hypothesis of (b)). Here, By, = deg(F i) = deg(F i Viﬁi)ﬂﬁi. Since one
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may complement Fy by (Fi, Ff) |(v #yL with degree equal to By, B, , one obtains
the result. y 5 3 y 3 3

Note that, we have HYNHY/H\NH, = (HYNHY /HiNHY) (HiNHY /Hi N Hy).
The first quotient has order [ | k} since the coordinates coming from ﬁg have ka = 00,
and the second has order [ | IEJZ Hence (a) and (b) give the same result for H; = H;.

For (c) it is enough to note that if [I:" 1]r belongs to ﬁkl _1, 1.e., to subgroups with
dimI'/K < ki, then, from Lemma 7.4 (a), [F1, F>] isin ﬁk1+k2—1- Then one applies
the bilinearity of the product. O

Example 7.3. If Vi = Rx Wjand V, = W>, then the only relevant isotropy subgroups
for the product are those H; with dimI'/H; < 1 and those H, with dimI'/H, = 0.
Assume dim I'/H; = 1 with [1(H;) generated by 1 and [1(H;) generated by n;.
Then, from Lemma 7.4, one has dimI'/H = 1 and I1(H) generated by n. From
Proposition 7.5 (b) one has

|HY/H,| - T/ Hs|
|HY/Hy N Hy|

71, m2Ir = [7]r.

Suppose now that Vi = R x Wy, V, = W, and that dimI'/H; = dimI'/H, = 0.
Then, from Lemma 7.4, one has dim I'/ H = 0. We shall consider the presentations
of I'/H; and I'/H given by the fundamental cell decomposition. That is, I'/H; =
(T/HH(H!/HY) ... (H}/H)), with kjl = |Hj1_1 /Hjll, as in Lemma 7.4. Similarly,
'/ Hy will have the decomposition in ]_[(1:11.2_1 / I:Ijz), with order k} and I'/H with
subgroups of order kj1 for the coordinates of VIHl and of order IEJZ = |Hi N I:Ij{1 /
Hi N I:Ij2| for the coordinates of VZHz, with 1212 dividing ka and the coordinates of
Viﬁ" N (Vl.Hi )L staying as suspensions.

As in §5, we shall use auxiliary spaces with a special action of I': namely the
spaces X1, X and X, with

Xl = (217 /17"'aZS19Z§l)
X2 = (Y17 Y1/7-~-5YS29Y;2)
X =X1 xX»

where s; is the number of k} which are larger than 1, the action on Z; and ZJ/. is by

yj in I:Ijl_1 / ﬁjl and as a cyclic group of order k!, while y; acts trivially on the other
coordinates. If k; = 2 and corresponds to a real variable of Vi, then Z; is complex.
The action of I" on X, is similar but with ka, while the action on X coincides for X

but, on X3, it is as cyclic groups of order 1212. If 12,.2 = 1, then the action is trivial. Then,
on X1 x Vi, one has the following generators for I[1(H1):

k!
=Wl = (1= TT1Zil wi (2 + D7 2] %24, 2))
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. ks k! ki
=it = (2 = [T1Zi1Zs" + 1w (0 + DZ0 ZL M Z + DZ,,),
i<sy
where wyisin Wyand A = u +i(2t; — 1).
The generator of I[1(H>) on X, x V,, will be

k2
2% = (20 + 1= 2[ [l wa, (v + DY, 7)),

with w; in W5 and j going from 1 to s5.
Finally, the generators of [1(H) on X x V will be

ki
2% = (1= [T1Xil w, &KF + DX3, X 2%, X)),

with w in W and k; being kj1 for j =1,...s; and Ing afterward. The other generator

© W7 is constructed similarly.

For other presentations of I1(H;) we refer to Proposition 6.4 in [IV2]: the proof is
much longer than the one for the present special case. Note that, from Theorem 7.1,
all these I"-suspensions are isomorphisms.

Proposition 7.6. Under the above hypothesis one has

\T'/H;| - |/ Ha| ~ _
W 1’ »W2 — 0 P e W, adrsv
[% 7 n; n2lr T/ H, N H] [Z"nilr +d;[Z7 7lr
. \T'/H| - |/ Ha| .
2W1 1’ EWQ — EW
(X277 mlr ITH N H| [Z" nlr

where k} d; is even.

Proof. Note first that (z™m 771, »W"21,) is non-zero if X; = 0, and that the action of T
on X x V is such that the hypothesis of Theorem 5.3 may be applied, i.e.,

[FIr ==Y}, 2" mle = Y dil=V nilr + 4;17),

where
d; = deg(F: B" nArgX; = 0)/ [ [ k-
i#]
2
Here, fori # j, (Zki1 +1)Z; or (Yiki 4+ 1)Y; is O for Arg X; = 0, only if X; = 0, in

which case the first equation for n jl or 12 is non-zero. Hence d; = 0 fori # j. On
the other hand, it is easy to compute d; as

dj = (Hkil><1_[ki2)/l_[ki,

i#] i#]
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that is d; = (IF/HlI/k})IF/Hzl/(IF/HI/k;)-
Since k; = k} one has the first result.

For the same reasons as above, one has that (ZW! N1, W2 12) is non-zero on the
boundary of the fundamental cell for X x V (i.e., if Arg X; = 0 or 27/ k;), this implies
that the class of this map is a multiple of X" 7. Counting the zeros of the map in the
fundamental cell, one gets that

(="', =W2mlr = [ [&F /DY Fr,

giving the second formula, since one obtains the suspension of the Hopf map.
Finally, since

k(" +=M7)y =0 and ki (=9 +2"5) =0,
one obtains that k} c?j 1s even. O

Example 7.4. When studying Hopf bifurcation, one will need to compute the class
of [n!, —y]r, where I acts on y as Z and n! = (1 — |z|%, Az) with T acting on z as
S! or Z,. Consider the map

FL=0Q2rh—-1,—-y,7),

where y and Y have isotropy Hj, with I'/Hy = 7Z,. Now, one may look at the map
no = (2t —1, y, Y), which generates I1(I") for Vo = W,. But 59 may be deformed to
(2t —1, y3, Y) and thento (21, — 1, y(y*> — 1), ¥), whose I'-degree is decomposed on
the set |y| < 1/2, giving F; and on the set |y| > 1/2, where it is linearly deformable
ton, = 26 + 1 —2y%, y(y> — 1), Y). Hence,

[F2]r = [nolr — [n2]r.

Since F is the suspension of —y, one may compute as well [771, F]r. For
[n', nol, no is just a suspension, hence this part is ¥"2n! = 5, which generates
IT1(H,;) for V.

For [nl, n2], assume first that dimI'/H; = 1, i.e., [" acts as S! on z. Then, in
Example 7.3, one has H® = H, IT'/H>| = 2 and |H|/H| = 2, since H; is maximal
and Hj cannot be a subgroup of Hj: in fact the elements of H; are of the form (®, K)
such that (N, ®) + 27 (K, L/M) is an integer. Hence, for any K in Z,,,, X - -+ X Zy,_,
there is a ®(K) such that (®(K), K) is in H;. On the other hand, H, = T" x A,,
with Z,,;, X -+ X Zy, /A2 = Zy. If H is a subgroup of H», then one would have
Ly X -+ X Ly, = Ap, which is not true.

In this case, [nl, m2lr = [Fu,nH,] and one has, if dim I'/Hy =1,

[1—|z|%, Az, —=yIr = [1—|z%, Az, YIr—[1—|z|-|y], Az, O*=Dylr = [nlr—[ni2lr.

On the other hand, if I'/ H; = 7Z,,, then H| may be a subgroup of H, if n is even,
since then I'/H, < I'/Hj, hence one has a y such that yy = —y and yz = €>7/",
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If H; is not a subgroup of Hy, then |I'/H; N Ha| = 2n, since k2 = 2 and k% = 2.
Then, from Proposition 7.6 one has

(1 —|z[%, Az, =yIr = [m]r — [m2lr — dI7],

where 7j = (¢ — |y||2"* + 1], A(z" + 1)z, (y*> — 1)y). We shall see, in the next chapter,
Lemma 4.2, that in fact d = 0. Recall that n(n12 + 7)) = 0 and 277 = 0.
If H; is a subgroup of H», then k2 =2,k*=1and

(', malr = 20m1 + dili],

where 71 = (¢ — |Z" + 1], A(z" + 1)z, ¥), in which case one has
[1—[z*, Az, =yIr = —[m]Ir — di[fi]r.

We shall see, in the next chapter (Theorem 4.1) that d; = 1 if n = 2m with m odd.
Since n is even one has nn; = 0 and 277; = 0 in this case. In particular, if n = 2, then

[n'. m2] = [i].
As we have done with the previous operations, we shall end this subsection by

looking at products of orthogonal maps. Clearly, Lemma 7.3 is still valid, with the
orthogonal degree on the right hand side.

Proposition 7.7. Let V; = W; and for any isotropy subgroup H;, withdimI'/H; = k,

let I:IJQ be the isotropy of the k coordinates with kj = oo. Let F;, in HESVZ, (SV1), be
written, fori = 1,2, as

[FilL =) dylFjlL.
then _ _
|HY/Hi||Hj)/H;|
|HY N HY/Hi N Ha|
where the sum is over all Hy inIso(V1), Hy inIso(V2), withdimI'/Hy+dim '/ Hy =
dimI['/(H| N Hy).

[F1. F]L =) d}ydp, [Frynm]L.

Proof. 1t is clearly enough to compute the class [F 11, F%Iz] 1 for the generators.

Writing VH as (VIH1 X V2H2) X (VIHI)J- X (VZHZ)J-, one has for the action of

I'/H = (I'/Hy) x (H/H, N H)

k1 coordinates of VIHI, 21, -+, k> EIVING A1 X1, ..., A, x1 linearly independent, and
k — kq coordinates of V2H2, Z1, ..., Zk—k, for the action of H; on that space. Here,
ki = dimI'/H; and k = dimT'/H. Note that, given the order chosen in V¥ the
coordinates of (VIHI)J- and of (VZHZ)J- do not contribute, in a non-trivial way, to the
fundamental cell.
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Now, as in Lemma 7.1 of Chapter 1, one may write the action of 7" on VIH1 as
Cy,..., ‘/fkl)T, that is under a reparametrization of 7", one gets Ajxy = 0 for
Jj > ki and x1 in VlH'. Assume that ¥, 41, ..., Yi—k, give A;jx; linearly independent
for the action of H| on V2H2, then, one may suppose, changing the parametrization,
that A;x, = O for j > k and that A;x; are linearly independent for k1 < j < k —ky.
There are also k; + k> — k linearly independent vectors A;x; for j < kj.

Now, if k = k1 + ko, then [F}h + leq rjAjxy, Flzi2 + ZQI_H )»jijz] has been
computed in Proposition 7.5 and gives « [F HiNH, + Zlf AjA jx], where « is the integer
of the proposition: recall, from Theorem 6.1, that Fz 4+ ) A; Ajx may be taken as
generator of I1(H), whenever Fy generates I1, (H).

On the other hand, if k < k| + k>, one has to add to F%,z + Zilﬂ AjAjx; the sum
Y AjAjx; for j in a subset J of ki + k» — k elements of {1, ..., k} in order to get
the generator of I1(H>) in Hrsz vy (S"2). But for this second sum one may deform

Aj to 0 and then to ¢; # 0 fixed, without affecting the class of

k1 k
1 2 )
[FHI + E | AjAjxy, Fg, + E J)‘jAjXZ + E k1+l)Ljij2]’

a zero of the pair implies FII'I-I,- (x;) =0, either x; =0orA; =0forj =1,...,k,
but the zeros of F}h (x1) have isotropy H;, with dim I"'/ H; = k{, hence x| # 0. But
then, Y ;A A;jxpis 0.

The last map is never 0, since Flzi2 (x2) = 0 implies A; = O for j in J and for
J = ki +1,..., k. In particular, £;A;x, implies that the map is never 0. Thus,
[Fllll , F,%,zh = 0, using Proposition 6.1, since this pair is & [Fy,nH,]1 -

Note that one may use Proposition 6.1 to prove this result: in fact (F Ilﬂ, Fflz) is
non-zero on d By, and thus,

[Fi. Filu= Y.  dilFlL
Hy <A{NAY

with, for any H; > H, the torus part of H; N H3, one has, with Hy = I:IP N I:Igz

k k H; .
deg ((Fiy + 3 it F, + Y MAm, ) 5 B) = Dy iV HO i

Now, a zero of the pair gives (x1,x2) with I'y;, = H{,I'y, = Hrand ,; = 0
for/ =1, ..., k. Thus, the degree on the left hand side is O if H; is not a subgroup
of Hy N H,. Furthermore, F 11{1 = (F 51 ', x1H,), hence for H; a strict subgroup of
Hi N Hy, the degree is the degree for H; N H,. From this, we deduce that d; = 0,
except for H; = Hy N Hy, in which case

[F,. Fi, 1L = d[Frnm]L

with |Ho/Hy N Hold = deg(Fly + Y3 Ay, F3 + Y] dApxp) 0z, gIiniz)
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If k < k1 + ko, we have already seen that this degree is 0. While, if k = k1 + ko,
H H
then B,fI‘mHz = Ble X B,f, one may deform A;A;x; to O for [ < ki, and one obtains

a product:

|Ho/Hy N Hpld

13 H, H k H, H
= deg ((Fllil + Zl A[Ale) ; Blg1> deg ((FI%IZ + Zkl-HMAle) ; 3152).

From the fact that on Vi one has a suspension of VI.H", one has
k1 H ~
deg (Fllﬂ + Zl M Ax; B,ql) = |H}/H|
k ~
2 Hy\ _ 0
deg (FH2 +>, , JiAxe, B ) — |/ Hy|

by repeating the application of Proposition 6.1 or from the construction of Theorem 6.1.
This gives the result. O

3.7.4 Composition

The last operation which we shall consider is that of composition of maps. Consider
three representations V, W and U of the group I'" and assume f : V — W and
g : W — U are equivariant maps. Then g o f is also equivariant. Let 2 be a bounded
open invariant subset of V.

We have seen, under the hypothesis of Lemma 6.2 of Chapter 2, that

degr(g o f;€) =[G o Flr,

where [F1r = degp(f; Q) and [G1r = degr(f; f(R)).

Furthermore, we have also seen in Lemma 6.3 of Chapter 2, that under certain
hypothesis, one has that [G o F]r = [G o Flp, where F(s, x) = F(s, x)/|| F(s, )],
a fact which will enable us to use the algebraic properties of the I'-homotopy groups
of spheres.

In general, if F (s, x) = (p(s, x), f(s,x)),isdefinedon [—1, 1] x {x : ||x|| < 1},
and non-zero on the boundary of this cylinder, then F=F /IIF|| will belong to a
cylinder with similar characteristics and one may take the composition with a I"'-map
G, i.e., one obtains a pairing

My, (SY) x T, (8Y) — Mg, (8Y)
([Flr, [Glr) — [G e Flr,
which is well defined on homotopy classes. Furthermore, since one may take
F(s,x) = (1,0) if s = =1 (Lemma 8.1 of Chapter 1), with 2t — 1 = s, one has, for
lxll =1,
Fi2s+1,x), if—1<s<0

Fi e F , =
(F1® F2)(s. %) {F2(2s—1,x), ifo<s<I,
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since, on each s-interval, the first argument of F; must go form —1 to 1.
Lemma 7.4. (a) [G o (F1 ® F2))Ir =[G o Fi]r + [G o F2]r

() [(G1 ® G2) o ZofIr = [G1 0o Zof]r + [G2 0 Eoflr, where (o f)(s1, x)
is the suspension by s1 of f(x), i.e., (s1, ||x||f(x/|x|)) with || f(x)|| = 1 whenever

[xl =1
Proof. The proof of (a) follows from the definition, while for (b) one has, for || x| = 1,

Gi@2si+1, f(x), if-1=<s5=<0

G1D Gy o (X f) = G251 — 1, f(x)), if0<s <1

which corresponds to the second sum. As usual, one may perform the sum on s or on
s1 and here we may always assume that F is a suspension. O

Thus, if [FIr = Y d;[FIr and [G]r = Y. ej [Gj]r, as an application of Theo-

rem 2.3, then A 3 5
[G o F][‘ = Zdiej[Gj o Fi][‘-

Note that if FX|gx has an extension to VX, then FX | ¢« is T'-deformable to (1, 0)
and then (G o F)X is also I'-deformable to G (1, 0) = (1, 0). Similarly, if GK has a
non-zero extension to WX | then this will be also true for (G o F)X . It is thus important
to study the composition for the generators.

Lemma 7.5. (a)lfV = Rki+ke v/ W = R¥2 x W’ and hypothesis (H) holds for V'
and W' and for W' and U , and furthermore dim V'H = dim U¥ for all H inTso(V),
then hypothesis (H) holds for V' and U.

(b) If, under the same hypothesis, {xfi } is a complementing map from (V)L onto
(WHYL and {z;-]j} is a complementing map from (WH)+ onto (UP)L, then {xf[qi} will

be a complementing map from (V)L onto (UH)*.

Proof. Let H and K be inIso(V). Then dlm(V’H NV'Ey = dim(WHnN W’K) Let H
be the isotropy of W'# , then H < H and WH = W'H. One has dim(W'H n w'K) =
dlm(UH UK) Now, UH UH. From hypothesis (H), one has dim yH =
dim W'H = dim Ul , hence the extra hypothesis implies that U = U H , proving (a).

Now, the spaces (VL (wiL = (WFI)J-, (UMt = (Ug)J- have the same
dimension and one has equivariant monomials between them, the composition will be
a complementing map. O

Note that the extra dimension condition will be met if Iso(V) C Iso(W), since
then U H = UM, because H is in Iso(W). On the other hand, if H isin Iso(W), then,
if H is the isotropy of VH onehas H < H, VI = VH and WH  WH. In order to

compare the I"-degrees of F and G], we shall assume that Iso(V) = Iso(W). This is
the case if V. = R¥ x Wand W = R* x U.
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Lemma 7.6. Under the hypothesis of the preceding lemma and assuming that
Iso(V) = Iso(W), let Ft - VI — WH be in TI(Hy) and G2 - W2 — U™ pe
in [1(Hy). Define F = (FH',xf") and G = (GH2, z;jj) and H = Hy N\ Hy. Then:

(@) dimT/H; <dim/H < dimT'/H; + dim '/ H>.

) (G o F) isin TI(H).

Proof. Since H < H;, the first inequality is clear. Now, since Hj is also in Iso(V),
then H is the isotropy subgroup for the space V; generated by V1 and V2. Then,
VH — yH o (vHyL nyH (VlL N V), hence, as in the proof of Lemma 7.4,
one has k; = kj1 for x; in VA and kj = 1212 which divides ka, in the second space,
while k; = 1 in the third. This proves the second inequality.

Note that G o F = {xfiqi} on VIJ- and that if H; < H», then for any K > H;, FX
is ['-deformable to (1, 0) and (G o F)™ isin [1(H;) = I1(H). A similar result holds
if H, < Hj. In general,

V =RM x RR2 x (V/H vy (v yriRLy o (L iy oy

and any X in V is of the form X = (A1, A2, X0, X1, X2, X1).
Similarly,

W =Rk s (WH n w2y s (W q why o (WL iy o wit

and any Y in W is of the form Y = (A2, Yo, Y1, Y2, Y1).

From the hypothesis on V'’ and W’, these subspaces have the same dimension.
A similar decomposition holds for U, and any element Z of U is of the form Z =
(Zo, Z1, Z>, Z). One has

F(X) = ((Fy, Fo, F1)(A1, A2, X0, X1), X5, X',

with F1|x,=0 = 0 and (F}, Fp)|x,=0 # 0, since the isotropy of vH Ny H2 g strictly
larger than H; and FH isin I1(H;). Here (Xl , Xll) stands for {xf"} and one should
normalize F as F/||ﬁ||.

Similarly, one has

G o F(X) = (Go(F, Fo, X3), F{ (A1, 2, Xo, X1), Ga(Fy., Fo, Xb), X',

where G3(A3, Yp,0) = 0 and Go(A3, Yp,0) # O on WH N WH2 since G2 is
in TI(H,). Thus, (G o F)" with X, = X, = 0, has Gy deformable to
(1,0). Similarly, (G o I:“)HZ, with X1 = X = 0, has F; = 0 and (F,, Fp) in-
dependent of X, and I'-deformable to (1, 0). Hence (G o F YH2 is I'-deformable to
(Go(1,0, X5),0, G2(1,0, X4), 0) and then to (1,0). Thus, if H is a strict subgroup
of H;,i = 1,2, then G o F is trivial on VA1 U v 2,
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Let now K > H and decompose VX as above. One has a non-zero I'-extension
of Go Fon VKN (VH1 @] VH2), ie.,for Xo =0o0r X; =0. If VKN vH g strictly
contained in V1 then X has some components x; = 0 and the remaining variables,
in X, have isotropy Hj containing strictly H; (if not VK N VHi = V1 would be
VH1) Hence, on VE N VHI one may extend FHitoa map of norm 1. Then, for X,
in the unit ball of VX, one has either | X2|| = 1 and (Go, G2) # 0, or | X2] < 1,
in which case, from ||[F1|| = 1, either |Fi|| = land Go F # O or ||Fi| < 1
and || (F), Fp)|| = 1 with (Go, G2) # 0. Hence, in this case one has a non-zero
"-extension to VK

On the other hand, if VE NVl = VHi then VK N V2 s strictly contained in
V2 and (G, G») has a non-trivial ['-extension to WX N W2 But (F,\, Fo, F1) has
a I'-extension to VA1 = VK N Vi with norm one. If F; # 0, then (G o F)K # 0,
while if F; = 0, then (F;, Fp) is in VK N V2 and (G, G») has the non-trivial I'-
extension. Thus, (G o F)X has a non-trivial [-extension forall K > H.,i.e., (Go F)?
isin IT(H). O

Proposition 7.8. Let V = Rf\ithe x v/ W = Rk x W/, Iso(V) = Iso(W) and
assume hypothesis (H) holds for V' and W' and for W' and U. If dimT'/H; = k;
and k = dimT'/H = ki + ka, let F and G be the generators of I1(H;). Then,
[G ) F]r = [FH]I-, where FH generates H(H) F= F/||F|| and

- |HY/Hy| - |H)/Ha|
d = Bum Bam, ~é 0 2 ,
|HY N H) /H\ N Hy|

where B, = [1L for xi in VE 0 (vVEYL (V)L By, = [1q; for yj in
WH N (WH2)L Here 1'-~Ii0 is the isotropy of the k; coordinates with kj = oo.

More generally, ifFHl |aBk1 # 0and GH2|aBk2 = 0, with FH in TI(H}) and G™2
in I'I(HAZ), then G~ o F is in TI(H) and has a non-zero extension G o F to 0By, 4k,,
where F(x) = aF(x), with

o~ (x) = min(|| F||) max (|| F (x)||/ min | F||, 1 — [|x]|)
9By, 3By,

and one has, with the number d above,
deg (G o F)) = d deg(F™') deg(G™).

Proof. Let zy, ..., zx, be the variables in VH with k} = oo and Zg,+1, - . ., 2k, be the
variables in V2 with k} = 00. From the fact that k = k| + k, one has that none of
these variables are in V1 N V2,
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From Theorem 3.3 and rescaling the variables so that one works in a unit ball, one
has, with s = 2¢ — 1, that F is, up to normalization

F= (s +2 -2 12x1 X§. A20 M)+ i (221 = D)2}
. ) 1
O 4122 1> — D)zt (Pj(2X1,2X0) + Dx/, (Qj2y;) — Dyj. X5, xi),

where X8 isin VT, Xj is in VH | with x;j in the first component standing for those
coordinates with k} > 1 (including z; and y;), and P;, Q; have the usual meaning.
By starting the fundamental cell with the components of X1, P; will be a monomial
in the coordinates of X7, for x; in X. The zeros of F in By 4k, arefors = 0,1 =0,
2z; = 1, [2x;| = 1 and there are | H?/ H, | of them.

One has a similar expression for G, before normalization

G = (s+2-2[TR% P X0, ¥{. G4 + (22112 = D)
OF + (22 = )l (B Y2, 2%0) + DEP (0, 25) — ;. Y1),

where X; are in WH2_ By starting the fundamental cell with the coordinates of Y, P
will depend on these coordinates for X; in Y>.

We leave to the reader the task of giving expressions for G(aF) and to compute
its degree on By, 4,. In fact, in general, if FM(Xy, X)) = (Fy, F)), with Fy in
WHIAWH2 and Fy in WHIN(WH2)L, then F (X0, X1, X2, X 1) = (Fo, Fi, X5, X)),
while, if G2 (Y, Y2) = (Go, G2), with G in Ut N U2 and G, in U2 0 (U 1)L,
then

G(Yo, Y1, Y2, Y1) = (Go, Y/, Go, Y.

Then, G (aF) = (Go(aFo, aXb), ad F{ (Xo, X1), Ga(aFo, aX}), a7 X"). Note that
@™ (x) = [IF(0)||if lx]| = 1 (on dB) and on 3By, (there ||F(x)[|/ mingp, | F| >

1 >1—|x|). In general, ifa=l(x) = ||F(x)|| then G(aF(x)) is non-zero (smce G
is non-zero on the unit sphere), while if o~ (x) = mmaBk ||F||(1 —IxID = ||F(x)||

then [|a F (x)|| < 1.
For ky < j <k, zj in By, appears as zj.j in F, thus o F maps By, +k, into By, and

3 By, +k, into 3 By,, where G is non-zero.
From Proposition 6.1 of Chapter 2, one has

deg(GaP); B ;) = deg(G: Bl!) deg(aF — p; Bfl ).
where p is in By,. The left hand side is
AP N A/ H| deg (G (F)),

while y N
deg(G; B{) = |Hy [ Ha| deg(G) [ ] 4
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for g; corresponding to Y and Y, hence ]_[qj = EH H,. On the other hand, one
may choose all the components of p to be 0 except those corresponding to z;, j =
ki + 1,..., k, which may be taken to be 1/2. One may deform « to 1 and use the

i . . l;
product theorem, where x j’ will contribute /; except for z ,:’ — 1/2, for z; real and
positive, which contributes 1, i.e., a total degree equal to

deg(FH0; Bi)Bum, = |HY/Hi| degp (FI) By p,. O

Corollary 7.4. Under the hypothesis of Proposition 7.8, if
[Flr = Y _dilFilr + [Flr
[GIr = ) _¢;[GjIr +[Glr,
with dim T/ H; = ki, diim T/H; = ko, [F1r in Ty, —1, [G] in Ty,—1, then
[GoFlr =) filKdr +[KIr with fi =) die;dij,

where [K1r is in TIj_ and the second sum is over all (i, J) such that H; N H; = Hj,
withdim I'/ H; = ki + ky = k, and d;; is given in Proposition 7.8.

Proof. From Lemma 7.4, one has [G o F]r = Zd,-ej[ﬁi o G,-]r + [I?]r with [I%]r in
[T;—1 and [Fl ) Gj][‘ = dij[leij]r, for Hy = H; N H; withdimI'/H; = k and d;; =
Brn, Brm | HY /Hi||HP/H;|/|H) 0 HY/H|. O

Example 7.5. Let V = W, hence k; = 0, and V = RK x U. Then, ,BHHJ. =
BHH,- = 1, and from Lemma 7.6, one has dimI'/H; = dim I'/ H; for any H;, with
dimI'/H; = 0. In this case F = 0, 1':11.O = I'". For instance, assume that F' consists

in changing one real variable y, where I" acts as —Id, into —y, leaving the other
coordinates unchanged. Then, from Example 7.4, one has

[F] = [Fr] - [F1],

where Fi(s, y, X) = (s +2 — 8y?, £4y2 — 1y, X) and [Fr] = [s, y, X].
Then, if [Glr = }_ ¢;[FjIr + [G]r, one has

[Go Flr =[G]r — [G o Filr.
If dim I'/H; = k,and H; is the isotropy of y, then, either H{NH; = Hj,ie., H; < Hj,
and dy; = |I'/Hy| = 2, or Hy N H; is a strict subgroup of Hj, with II:I]Q/Hl NHj| =
|151j0 /H;||H;/Hy N H;| = 2|F119 /Hj|, since any y in T, in particular in H;, is such that
)/2 is in Hj, in which case dy; = 1. Thus,

[GoFlr=— Y elFjlr+ Y e(Flr — [Funmlr) + [Klr,
Hj<H, H; £H\



194 3 Equivariant Homotopy Groups of Spheres

for H; with dim I'/H; = k and [K] in TTj_;.

The last result in this section will concern the case ki = 1,k =0,V = R x
W, W =U. Thecase dimI'/H; =dimI'/H = 1,dim I'/ H, = 0 was treated in the
preceding proposition. There remains only the case dimI'/H =dimI'/H; = 0.

Let {k}} corresponding to the fundamental cell decomposition for H; and {k,?}

for Hj. Then, for H = Hj N Hj, one has the fundamental cell with k; = kjl for
the variables in V! and 121.2, dividing kj2, for the variables in V72 N (VHI)J-. Let
X1 = (Z], Zg ey Zsl’ Z;l), X2 = (Yl, Yl/’ ey YSZ* stz) and X = X1 X X2 be as in
Proposition 7.6, with the special action on Z; and Y;.

Then, on (X x V)™ one has the generators for [1(H)

1
=Vl = (1= TRzl w. (@Z0% + D2, 7). .32, 2}, Vi, Y]
withA=u+is,(s=2t—1),and

- 1
=it = (2= [ pzillezy)™ + 11w,

i<s|

1 1
(QZ)N +1)Zi, Z), ..., MQZs)"1 +1)Zy,, Z§1>.
On the other hand, on (X x V)2, one has the generator for I[T(H3)
=V = (s +2 -2 T 2¥il w, @04 + DY, ¥/, 2, Z)).

Finally, the generators, on (X X WYH | for I1(H), are similar to 17} and f;l but of
the form

=V = (1= [T RXil w, (XD + DX, X], ... 2.2, 7))

with k; = kl.l for X; =Z;and 1 <i <sjandk; = 1212 for Y;.
As in Propositions 7.6 and 7.8, one has

[Flr ==Y m@zYn)ie =Y dil=Ynilr + djlil
where « is the normalization of Proposition 7.8,

d; = deg(F; B nArg X; = 0)/ [ ] k1.
il
Since

anz(aEWn}) = (a(l — l_[ |ZZi|) +2— 21_[ 12Y;], aw,

(2™ + D2y, @Z), 012y, aZ), (Y + DY, Y]),
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it is clear that, if Z; > 0,7 # j, orif ¥; > 0, this map has no zeros.
Hence, d; = 0,i # j. While

2
4 = (TT4)(TT#)/ Tk
i#] i#]
We have proved the first part of

Proposition 7.9. Under the above hypothesis, one has

C/Hi| - T/ Hy| W

[Ewﬂz(zwn})]p = W[EWW]F +dj[zw’7]r
_ IC/Hil - T/ Hol [y -
[ mEYih]. = VYR Yilr

where k; d; is even.

Proof. For the second equality, one has that ¥ Wi (ZVi 1Y is non-zero on the funda-
mental cell for X x V, hence its class is a multiple of & W3, Counting the zeros of the
map in the fundamental cell, one obtains ]_[(kf / ka) of them, which gives the equality.

The fact that k} d /; is even is proved as in Proposition 7.6. O

3.8 Bibliographical remarks

The problem of classification of equivariant homotopy classes of maps on spheres
has been partially studied from the point of view of algebraic topology, essentially
for finite groups and self-maps, but not necessarily linear actions. The obstruction
approach has been used in the books by T. t. Dieck and Bredon. Study of the
first obstruction has been given in the paper by Kosniowski. A complete result (with a
proof corrected by Dancer) for self-maps and linear actions was given by Rubinstein.
This obstruction idea was used in [I0] for the group S! and a semi-free action.
The results on the extension problem and the first 3 sections of this chapter are taken
from [L.V. 1-3]. The case of non-abelian actions is treated in the book of Kushkuley
and Balanov, with an important contribution to the general Borsuk—Ulam problem.
This last subject, the ordinary degree of equivariant maps, has been extensively
studied: see the survey papers by Steinlein, Zabrejko and interesting results by Niren-
berg, Wang, Rabier and the book by Bartsch. As seen in Section 4, a complete answer
is still lacking, even for abelian actions.
The one parameter case, in particular the problem of secondary obstructions, is
taken from [IV2]. The recent papers by Balanov and Krawcewicz give results for
non-abelian actions.



196 3 Equivariant Homotopy Groups of Spheres

Orthogonal maps are classified in [[V3]. The results on operations are taken from
[IV2] and [IV3]. Products of maps are also considered in the book by Krawcewicz
and Wu.

The suspension Theorem 7.1 was given incompletely in [IV1].



Chapter 4

Equivariant Degree and Applications

In this last chapter we shall see how to apply the results for the equivariant homotopy
groups, given in the previous chapter, to the computation of the equivariant degree of
a map, in particular coming from differential equations. We shall first prove that any
class in these homotopy groups is achieved as the I"-degree of a map on a reasonable set
2. Then, we shall compute the I'-index of an isolated orbit, with several applications
to bifurcation. The next section will concern the orthogonal index of an isolated orbit
and an application to two mechanical systems. The last section regards the I"-degree
of a loop of orbits and its applications to Hopf bifurcation, systems with first integrals
and similar problems.

4.1 Range of the equivariant degree

Recall that if V' and W are two I'-representations and if €2 is a bounded open and
invariant subset of V, then for f(x), a I'-equivariant map from €2 into W and non-zero
on 02, one defines the I'-degree of f with respect to Q2 as

degr(f: Q) = [FIr = [2t +20(x) — 1, f ()],

where f is a I'-extension of f to a ball By containing 2 and ¢(x) is an invariant
Uryson function with value 0 in © and value 1 outside a neighborhood of Q. Then,
[F]r is an element of Hgv (SW). Hence, the first question is the following: given
[F]r in the above group, does there exist a ['-map f, from Q into W, such that
degr-(f; 2) = [Flr? In this section we shall give a partial, but explicit, answer to
this question, that is, in all the cases studied in Chapter 3, where one had concrete
generators for the above group, or at least its “free part”. We shall also answer this
question for the case of I'-orthogonal maps.

Assume then that V = R¥ x U and U and W satisfy hypothesis (H), that is, for
an abelian group I':

(a) dim U" = dim W#, for all H in Iso(V)
(b) There is a I'-equivariant map {x;} — {xf" } from U into W.
Then we have seen in Theorem 3.2 of Chapter 3 that

Mgy (SY) =M1 X Z x -+ x Z,
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with one Z = T1(H) for each H with dimI'/H = k, and [1(H) is generated by the
maps Fp given in Theorem 3.3 of Chapter 3.
Furthermore, if kK = 1, then

Mo= @ 1@ =ns",
dimT'/H=0

where I' = r/r", V=vT" w=wT" and II1(H) is a finite group generated by
njH, j=1,...,sg,and f;H, as given in Theorem 5.2 of Chapter 3 (here sy is the
number of k;’s which are larger than 1 and one has repetition of the variables).

Thus, any element [ F]r in Hgv (SY) is written as

[FIr = [FIr + Y _dulFulr,

where [F]risin [T¢_; anddy isan ipteger. The sumisoverall H’s withdim I'/H = k.
If k = 1, then one may write [ F]r in the form

[Flr =) (Z dinlnf'Ir + JH[ﬁH]r> :
H

where the sum is over all H’s withdimI'/H = 0. If U = W, then one may use the
presentation of IT1(H) given in Theorem 5.5 of Chapter 3.

Theorem 1.1. (a) If V = R x U, where U and W satisfy (H), then, given any
sequence {dy} of integers, there is a I'-map f from Q into W, non-zero on 9S2, such
that

degr(f: Q) =[Flr + Y _dulFulr.

provided one takes dy = 0 if Q¥ = ¢ and |T'/H||dy| at most equal to the number
of components of QH ifdim V¥ = 1, hence |T'/H| < 2.

®)Ifk =1, then any [F]r in Hgv (SW) is the T'-degree of a T-map f defined on
Q, provided the corresponding invariants dy , d;y, d H are taken to be 0, if QH = 1)

(the repetition of variables, of Theorem 5.2 in Chapter 3, is assumed here), and dr = 0
ifdim Wl < 2.

Proof. Note first that if there is an H with Qf empty then QX = ¢ forany K > H,
in particular for K = I". On the other hand, if Qf % ¢, then, since QH is open in
VH thereisa X0 = (A9, Xg, y?, z;-)), with le and z;) different from 0, in Q. Here,
any point in V = R* x U is written as (A, X), with A in R*, X in U of the form
X = (Xo, yi, zj), where X is in UL, the group I acts as Z; on y; and as Z,, or S!on
the complex coordinate z;. By changing variables, we shall assume that =X 8 =0.

Our next step will be to show that any of the explicit generators given in the
previous chapter may be taken as the I'-degree of amap f : @ — W, 92 — W\{0}.
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(@ IfdimT'/H =k > Oand dim W' > 1 (hence dim U" > 1), let Xo = (x0, X0)
be a decomposition of U". Define xj/. = x]'/lxj(-)l, for xj = yj or zj, and x; = xo/R
where R is the radius of a large ball containing 2. Let

l.
(—0; + Dy, (B + e} 4l

where the product is over all xj’. in U” n UM, 2y, ...,z are the variables with
kj = 0o and an isotropy subgroup Hy = FZ/I N---N FZ]/( with dim '/ Hy = k. The
invariant polynomial Q; is y}fz if k; =2 and P;(y},..., y]’.) if kj = 1, where P; is
based on the real coordinates. For z;, one takes P; = P; (xi, ..., x") as the invariant
polynomial of Lemma 6.3 in Chapter 1. Finally, x; are the coordinates of (V).

For any integer d, one may replace Ax +i(|z}, |>—1) = A by A%, where A? means
Allif d is negative.

Since |x)| < 1in QH | the zeros of f in Q have xj # 0 for all j’s and for
|xj’.| = 1, as in Theorem 3.2 of Chapter 3. For z; in R*, for j =1, ..., k, there are
I1 kj = |Ho/H| zeros, equal to yXO, for some y in I', and only one of these zeros is
in Cy, the fundamental cell for H. For the map (2t — 1 + 2¢(A, X), f(A, X)) one
may deform ¢ to O on (1 X B since the zeros of f, X)in I x BH are the orbit
of X 0, i.e., in . Furthermore, one may rotate 2¢ — 1 and x(’) to obtain the map

S . lj I
(=xto 2+ 12T T2 Ko, G2y = (P = 1)/, (— 0+ Dyj. (P + Dz, 1k,

After a rotation of the first two components, one obtains a I"-map which is similar
to the generator Fy of Theorem 3.3 in Chapter 3: it differs from the fact that here
one has all the components xj’. and by the new definition of Q;, while in Fg one had
considered only y; with k; = 2. In any case, this map is in I[1(H), since, if K > H,
one needs that one of the x; to be 0. Furthermore, this map has an extension degree 1,
up to an orientation factor which may be fixed by choosing d = —1. Thus, one may
take this new map as a generator of [1(H) and, by letting d to be arbitrary, have the
complete [1(H) = Z.

(b)If k > 0 and dim W' = {0}, then f (%, 0) = 0 and one needs Q' = ¢ in order
to define the I"-degree of f. As before, let (0, x](.)) be a point of Q7 with x](.) = 0 for

all j’s and define A} = A;/R. Let

(42 2 = D? +idlz P = D)zt

l:
(122 Q; + Dy (142P; + D] k)
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where Q; = Q;(y{, ..., yj’.) and P; = Pj(x{,..., x]’.) as before, and the sum in the

Zx-component is over all j’s. The factor A of zi" may be replaced by A?.
If f(A,X) = 0and zx = 0, then x; = 0 for all j’s and X = O, that is (4, 0)
belongs to Q' = ¢. Hence, z; # 0, |zj’.| =1forj=1,...,k, and iij/. = 0 for

j > k, one has A} + 22(|x]’,|2 —1)? > A; +2 > 0. Thus, the zeros in QH are for
il=1,1=0X= y X°. For the map

one may deform ¢(A, X) to 0, obtaining an element of IT(H). The extension degree
of F on the fundamental cell Cy is 1, up to an orientation factor, and one may take
F(t, A, X) as the generator of I[1(H).

(c) If k = 0 and one has at least one complex z; in VH then, if dim W' is positive,
the map

~ d l
£ = (x5 = 2([T )2 = 1), Ko, =(Q; = Dy, (P + Dz} k)
gives anelement F (¢, X) = (2t — 14+2¢(X), f(X)) whichis in I[T(H) with extension
degree equal to [ [ d /;. While, if dim WT = 0, then one defines

FX) = (=aQ; + Dy, @P 4+ 1)z xb),

wherea = || |x; |. Itis clear that one cannot have a = 0 in a zero, unless X = 0 which

does not belong to Q. Since P; () = z’lk‘, on a zero in 7, one has |fo| = a% and
one may modify a P| to a” P in such a way that ) " «; # 1. Hence, on a zero, one has
a=1, |x]/.| =1,ie, X = yX" and deg(f; Q) = (]_[dj)[FH], since for the zero in

I 0l;
Cpy, one may deform xj’ to x; Jandato 1.

(d) If all coordinates in VH are real, k = 0 and dim wT > 0, then if IT/H| > 2,
take two y’s, say y; and y,, with k| = k» = 2 and consider the map

£ = (56 = 2(TTo2 = 1), Ko, ~Ref = 140 = D),
—(mOR = 1407 = 1)z, =2 = Dy xb),

where Q; = yj’.2 if ki =2 and P;(y{, ..., yj/.) if k; = 1. Again, the zeros of f(X) are
for Xo =0, | yj/.| = 1, with an extension degree equal to d (up to an orientation factor).
While, if [I'/H| = 2 and ky = 2, with k; = 1 for j > 1, consider the above map but
with y?2 — 1 4+i(y% — 1) replaced by y> — 1 +i(y|y, — D, if dim VZ n (VD)L > 1.
If this dimension is one, take the map

F(X) = (Im(x) — 257 = 1) +iy? (" — )4,
yRe(x) — 20y — 1) +iy?(y* — 1)?, 1),



4.1 Range of the equivariant degree 201

which has only two zeros in QA . y = =41, x(’) = 0. Then, one proves that (2t —
1 + 2¢p(x), f(x)) has an extension degree equal to d: near (x(/) =0,y = 1) deform
yto 1, use (1 — 7)y? + 7)(y’> — 1) and deform (xy — 207 = D) +i(y? — 1))
to (x) +i(y — 1)), with degree equal to d. If H = T and dim W' > 2, the map
((x0 + ixl)d, )N(o, xf") gives, on wr . a degree equal to d.

If dim W' = 1, then QT is the union of disjoint intervals and with =(xo — x;), x;
a fixed point in the j’th interval, one achieves at most £ (the number of components
of Q).

(e) If all coordinates in V' arereal, k = 0 and dim W = 0, then, if dim V¥ > 1,
takea =[] yl’.2 and consider the map

f(X) = (—Re(@Q; — 1 +ib(aQr — 1))y,
—Im(aQ1 — 1 +ib(@aQs — D))y, (@Q; — y)),

where b is a positive number, depending on d, such that (1 + ib)? is neither real nor
pure imaginary. Thus, a = 0 leads to y; = 0 for all j, i.e., a zero X = 0 in Q' = ¢.
Hence, a # 0 and the zeros of f(X) in € are such that |y;| = a®. Modifying a Q;
to a®Q; if > «aj =1, one gets thata = 1 and |y;| = 1. In particular, there is only
one zero in Cy, with y; = 1 for all j’s. Near that zero, one may deform f(X) to
((@Q1 —1+i(@Q>—1)4, aQj — 1), with index d.

Ifdim V# = 1, then Q¥ is the union of disjoint intervals, one has deg (2t +2¢ (y) —
1, f(y); Bp) = deg(f(y); BoN2f) and, on each interval of BynQH = QHﬂ{y > 0},
the degree of f may be 0 or £1. It is then easy to construct an odd map with local
index equal to =1 on each such interval.

(f)Ifk =1and |I'/H| < oo with dim W' > 1, let

£ X0 = (w6 = 2(TTi 1 = 1), %o, (s = Dy,
, . lj i
G i P = DY) P+ Dl g, 2,

where Q; and P; are functions of xi, A xlf . Here the repetition of variables of
Theorem 5.2 of Chapter 3 is also assumed. Thus, if z; corresponds to a couple of
real variables with a Z;-action, then z; = y; + iy;. It is clear that deg(2r — 1 +
2¢(, X), fj; € N {Argz; = 0}) = d (up to an orientation factor), i.e., that f; may
replace 7;, when d = 1, in Lemma 5.4 of Chapter 3.

Similarly, choose ¢, ..., &,, with |&;| = 1, such that {(Q; — 1, P; — &)} has
|/ H| zeros, with |x/| = 1, and only one zero X% in Cy. Take & small enough and
with A = —&;7 ' ], _, [x/| P, + 1, define

F, X0 = (AP = &, o, (—e 71410 + Dyi,
{(—(ee) T AL + DY cn i (e + ix0) Axly, 61,
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recalling that n > 1 since at least x,, is repeated. Since x; = 0 or x,, = 0 implies
|A| = 1 and A = 0 implies, on a zero, y; = x; = 0, a contradiction, the zeros of
f(pL, X) are such that u = xg = XO =0X; = yX |x, — x0| = ¢. Furthermore,
on dCy, the map (2 + 2¢(u, X) — 1, f(/L, X)) is homotopic to the generator 7 of
Lemma 5.4 in Chapter 3.

If H=Tand n = dim W', then deg(FF; QL), as defined in Chapter 2, belongs
to I1,4+1(S™), due to the presence of ¢ and u. Then, if n > 3, the map (xl2 + x22 -
&2, i(u + ixp)(x; + ix2),...) is the Hopf map, while if n = 2 and 2 is the ball
{(u?> + xg + xl2 < 2}, then any FT is homotopic, on the boundary of the ball, to a
constant map (since [1,(S') = 0), hence dr must be 0 in this case. If n < 2, then
dy = 0.

(@) Ifk =1and |T/H| < oo, with WI' = {0}, take the map
fi(n, X) = ((_|Z}|Qi + Dyi, (1z;1 P + Dy,

(W42 (5P = D+ = D)) 2b),
1

where Q; and P; are functions of x|, ..., x; and u’ = u/R. The zeros of f; in Qf
are for Iz;-l =1, |xl{| = land u = 0 (since Q' = ¢). As in Theorem 5.2 of Chapter 3,
it is easy to compute deg(fj; Cy N {Argz; = 0}) = d and to see that there are no
zeros on the previous faces of Cy. Hence, deg-(fj; 2) = dn;.

In order to get a map with I"-degree equal to 7, consider

Fanx) = (11 =e"e W AIP)x] i,

(1 230512 = D? + (e = |APL; D) Axl, 1k,
1

where P/ corresponds to Q; or P;, functions of xj,...,x/, the factor A = 1 —
8;1(1_[1'<n |xlf|)Pn, and the phases ¢;, with |¢;| = 1, are chosen as above. Hence, if
X, = 0, then x; = 0 for all i, i.e., a point in Ql' = ¢. While A = 0leads to x; = 0
for i < n, a contradiction. Thus, a zero of f, in 2, gives |x/| =1, P/ =g, fori < n,
that is x; = yxio (since x] = 0 would not give a zero of 1’ + 2 Z'l’(|xlf|2 —1)?), with
X/ || Py — &n] = & and ' + 2(]x,|> — 1) = 0. Since |u'| < 1 in , the last equality
implies that |x;l |2 >1—-(1/ 2)1/ 2, hence, for ¢ small enough, x,; is close to the unique
Zero x,(l) /R in Cp. In order to get the I'-degree of f one has to compute the class of
2t —142¢(u, X), f(p,, X)) on dCy. In particular, since Ql = qb one may assume
that ¢ (i, 0) = 1. Replace, for j < n, {x;} byx ={1-1)x + tx in the terms xf

|)r J | and in ¢. A zero of the deformed map may have x, = 0, but then x! =0 for all
i, that is the path goes through the origin, but there ¢ has value 1. Furthermore, if the
deformed A is 0, one gets xl.r = 0 fori < n, again a contradiction. Thus, a zero of the
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deformed map will lead to P/ = &;, |x,||P, — &, = ¢ and ' + 2(Jx/ > — 1)? =0,
with xir = x? fori < n. As before, x,, should be close to x,? , hence a point inside Cg .

It is then easy to deform x,l{“ and |x, | to x,?l" and 1, arriving at the map

2t — 1420, —e &7 Py — ea| P+ 1, (1t + i(62 = | Py — £, (Py — &)).
One may deform linearly the first component to 2t — 1 4 (| P, — &,|> — £2). Replacing
2t — 1 by (1 — t)(2¢t — 1) in this component and i(e2—|P, —en]?) byi(l — 7)(e% —
|Py — &a]?) + iT(2t — 1), one arrives at

1Py —enl* — &%, — e, 1Py — en| P+ 1, (W +i (2t — 1)(Py — &2)).

One may replace ¢ “!| P, —&,,| by 1 and get the map 7} of Lemma 5.4 in Chapter 3.

Thus, up to here we have seen that all the known generators and their multiples
are realized by the I'-degree of some map defined on 2. It remains to show that any
sequence {dy} may be realized by the I'-degree of a map.

Let then {dy} be any admissible sequence of integers (i.e., dy = 0 if Qf = ¢
and dy limited by the number of components of Q¥ if dim V¥ = 1). We shall give
two constructions, according to the case k > 0 or k = 0, leaving to the reader the task
to extend each one to the other case.

() If k > 0, choose N values of Ay = u, labelled 11, ..., uy, with N = )" |dy]|
and wj;1 — puj > 4eq, for some small &1 such that, for each j, there is an isotropy
group H and a point (AO, .. )‘2—1’ M, Xg, X%) in Qf | with all the components of
X (;1 non zero. This is possible because ¥ is open (and non-empty) in V' and there
are only a finite number of dy’s different from O.

For each j, corresponding to a certain H and a possible face of Cp, let f; be one
of the above generators with the following modifications:

1. Replace (A, Xg) by (A — X9, Xo — Xg), where A = (A(,..., Ar—1, u) and
Ao = ()\0, e, )‘2—1’ Mj)-

2. Let ¢; be a Uryson function depending only on w, with value 1, if [u — ;| < &
and value O, if | — ;| > 2&1. Then, in case (b), replace the factor of zi" by

k
(14 Y A=l P2 +4 Y (=0l 02 +4 Y 11+l PP +i(lz)2 — 1).
j=1
A similar modification is made for the first maps f; in case (g).
For the map f in (g) replace the factor of xf,” by

n—1
i(W 42 ) Ikl P = e+ 200 2 = 17 = i1 = g2l PlAPe ™) ) A,
1
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Define then (with a slight change, given below, for the maps f of cases (f) and (g))

9 fiC) + (1= (1,0,... x ), if | — | < 26

(1,0,.. .xfi, ), on the complement,

fx) =

where (1, 0) has the usual meaning on W' and is not present if WI' = {0}. We shall
see below that f(x) is non-zero on 9€2, hence, if

Q=QN{u:|u—pjl <2},

one has that, up to one suspension (which is an isomorphism for the IT(H) of the
theorem),

degr(f; Q) =) _ degr(f; @)

Since QI = ¢ if wh = {0}, the map (1, O, ...,xfi, ...) is never 0 in 2. Fur-

thermore, if ¢f; (x) + (1 — ¢)(1,0, ... ,x{i, ...) =01n £;, then in case (a), the first
component is

1

o(xo+2(1-TTwP)) +a-w =0

and the component of zi" will give, by translating p; to 0,

(o +1- gl M)z =0.

If zx = 0, the first component would be positive (recall that |x(’)| < 1), hence
ou = 0. But ¢ = 0 gives a non-zero map, hence 4 = 0 and ¢ = 1, giving the
original map f;, generator of IT(H). A change to —pu in the z; component, will give
the inverse of the generator.

In case (b), a zero of f(x) with zx = O leads to y; = 0, z; = 0, i.e., a point of
the form (&, 0) in Q' = ¢. Hence, on a zero, one has zj # 0 and, since |u/| < 1
by construction and Q; = 0if y; = 0, or P; = 0, if z; = 0, none of these variables
may be 0. This implies that if f(x) = 0 in £;, one has galzj|2 =1,forj=1,...,k,
¢lz,1Q; = 1,and ¢|z;| P +1 = 0, reducing the factor ofz,lc" toin'o—¢lz) >+1=0,
that is £’ = 0. Since ¢ = 0 cannot happen on a zero, one has ;1 = 0 and ¢(u) = 1
and one gets the generator of (b).

For the maps for the faces of Cg in case (f), the argument is parallel to case (a)
and for the maps for the faces of Cy in case (g), one follows the steps of case (b).
Thus, the only remaining cases are for the Hopf map f of cases (f) and (g). For these
cases, one will modify the construction of f(x) by defining it as

of + (1 —@)(1,0,x", ..., (FAb + (1 — @)xln, .. ),
for | — pj| < 4e1, where 9(u) = (0 — )/2), hence o(u) = 1if |u — u;| < 2¢;

and ¢(u) = 0if |t — wj| > 4e1. The factor b is 1 in case (f) and 1 — 8_2|A|2|x,/l|2<p2
in case (g).
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Taking p; = 0, the map, for case (f), has, for [u| < 2¢, a factor of xf," of the
form (iug — xo + (1 — ¢))A and a first component ¢(|A]? — €?) + (1 — ¢). Hence,
if x, = 0, then A = 1 and the first component is positive, while if A = 0, the other
components of the map reduce to y; of xf" which are never 0 if A = 0. Hence, on a
zero of the map, one has wp = 0; but ¢ = 0 is not possible and then © = 0,¢ = 1
and one is back to the original map. On the other hand, if || > 2¢1, then ¢ = 0 and
the map is not 0. (The case H = I is covered by taking A = (xl2 + x%)l/z).

For the map f of case (g),if || > 2¢1, then a zero of the map implies that x; = 0
for j < nand A = 1, hence x,, = 0, which gives a point which is not in €2, since
Ql = ¢. On the other hand, if |u| < 2¢1, then ¢ = 1 and if x,, = 0, thus, on a
zero, one has that x; = 0 for all j, hence not a point in Q. If A = 0, then x; = 0
for j < n, which contradicts the definition of A. Hence, a zero of the map will
have all x;’s different from 0 and A # O (if x; = O then the coefficient of Axi" has
an imaginary part which is positive, since |1'| < 1). On a zero, this coefficient is
ipu' 4+ 2ip(@?|x, 1> — D? + 1 — e72|A[*|x]|?¢>. Hence, on a zero, one has P; = &;
with solution x; with |x;| = 1 fori < n. Thus, A = 1 — sn_an, elAllx,| = e,
W 4 2(@?|x, 1> = 1)? = 0. Since |i1/| < 1, one has, as before, that ¢|x/ | > 1 — 1/4/2
hence |A| < Ce¢ and x,, cannot be close to 0: in fact, |x, | has to be close to 1 (for |A|
to be small, i.e., for | P,| close to 1), ¢ has to be close to 1, i.e., u is close to 0 and the
map is essentially the one given in (g) and, in fact, deformable to it on £2;.

(B) For the remaining cases, i.e., with k = 0, one will use the following construc-
tion:

Let H be any isotropy subgroup and write any point X inU as X = Xo® Xy B X IJ;I,
where Xoisin U', Xy in U? N(U")L and XIJ;, in (UM)L. For some small ¢, let the
open set

Qu = {X € Q,IX§|l < e, |x;| > 2¢ for all x; components of Xy }.

Take an even function ¢(x) , non increasing for x > 0, with value 1 if |x| < &,
and value 0 if |x| > 2¢ and define

onX)= [ (—=e@) [] o0

xieUEN@WT)L xie(UH)+

In particular, ¢ (X) = 1 if X belongs to 2. Now, if K and H are two different
isotropy subgroups then either U¥ N (UX)+ or UX N (UH)* do not reduce to 0: in
fact, UY N (UX)L = {0} if and only if U H = UK hence, if both intersections are
{0}, one has U = UK and, H and K being isotropy subgroups, one gets H = K.
Thus, if x; is a common component to UH and (UX)L, one has that Qy N Qg = ¢
and ¢ (X) = 0on Qg.

Foreach H and dy, consider the maps given in (c)—(e), denoted as fz and modified
in the following way: if the coefficient of y; or of zj-j is denoted by a; then multiply

a; by €' ¥ in such a way that a;j has a positive real part if y; or z; is 0. The angle ¥
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will depend only on d. The maps of (c)—(e) have been set up in such a way that this
condition is met when dg = 1.

Since P; or Q; are 0 when z; or y; are 0, the maps in (c) do not need any adjustment,
while, for those of (d) and (e), it is easy to figure out the rotation needed in the first
two components. Define

FXO =" onX) fu(X) + ] = o)1, 0,x0).
H H

Then, f(X) = fu(X) if X is in Q. Furthermore, if X belongs to Q\ Uy 24, then
X has a non-zero component x; in (U YL with |x;| < 2e (if all such components are
with norm |x;| > 2e, then X would be in Qp,, with Hy = I'x). But then the i-th
component of f(X) will be

(D amen + T = o)l

One may choose ¢ small enough, since €2 is bounded, such that Re(ag,) > 0 for
|xi| < 2e. Then, if all g ’s are 0, the product is 1.
Hence, f(X) is non-zero on the complement of |, Q# and

degr(f; Q) =) degr(fu; @m) = Y _dulFal,

since the suspension is an isomorphism. O

A similar result holds for orthogonal maps: recall that in this case, the abelian
group I" acts on the finite dimensional space V and one considers I'-maps F(x) from
V into itself, such that

F(x)-Ajix=0, j=1,...,n=dimTl,

where A; is an infinitesimal generator for the torus part of I'. When considering the
abelian group IT" sV (SY), of all orthogonal I"-homotopy classes of SV into itself, we

have proved, in Theorem 6.1 of Chapter 3, that

o (sY) = % Z,
with one Z for each isotropy subgroup of I', and that any [F]; in HE v (S V) can be
written as

[Flo =) dulFulL,

with explicit generators Fy. Also, in §4 of Chapter 2, we have defined the orthogonal
degree of a I'-orthogonal map f(x), defined on a I"-invariant open bounded set €2 in
V and non-zero on 02, with the usual construction, as

deg) (f: Q) =12t +2¢p(x) — 1, f()]L = [F(t, x)]1.
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Theorem 1.2. Any sequence of dy’s is the orthogonal degree of some orthogonal
I'-map defined on Q, provided dy is taken to be 0 if Q¥ is empty.

Proof. As in the preceding theorem, we shall first construct orthogonal maps which
have an orthogonal degree equal to d[ Fy ], for each isotropy subgroup H, such that
Q" £ ¢. If dimI'/H = 0, then the generators were already constructed in the
preceding theorem, with k = 0, since then V# vT" and any map, on V# is
orthogonal.

Assume then that dim I'/H = k > 0 and that one has the components z1, ..., Zx,
with action of 7" given on z; by exp i (Nl, @), where N! = (nl1 e, nﬁl), and isotropy
Ho > H such that |[Hy/H| < oo. Let N be the dimension of V and let A” be the

anmatrixwithAgzn;.,iz1,...,N,j=1,...,n. Then A has rank k and

has an invertible submatrix A, for instance n}, fori, j = 1,..., k, corresponding to

Z1, .-+, 2k and @1, ..., @¢. Then, if for j > k, one defines k; by

Al n!

one has, for any coordinate z; in VH and J > k, the relation

k

I_Z s 1
n; = )»jns.

s=1

See § 6 of Chapter 3 and Lemma 7.1 of Chapter 1. Furthermore, for X in V# and

Jj > k, one has
k

AjX = ij.AsX,
1

and A1 X, ..., AxX are linearly independent if X has its first coordinates, zy, . . ., 2k,
non-zero.

(a) If dim VI > 1, let the point Xg = (xg, )28, y](.), u;), z?) be in Q, where

(xg, )2'8) isin VI (by translation we shall assume it to be (0, 0)) and (y;, u;) is in
vT" with T acting as Z on y; and as Zj,, on the complex variable u;. By perturbing
a little, one may assume that yj(.), u;.), Z? are non zero, provided they are components
of VA, Let xJ{ = x,/lx](.)l for these components and x, = xo/R, where Q@ C Bg.
Consider the generator f (A, X), given in (a) of the preceding theorem,

(—Qj + Dyj. (P + 1)zj-,xs)
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where some P; may be changed to P¢ if one wants an equivariant degree equal to
d[Fpy). If there are no P;, let ¢ (x) be a smooth function for x > 0, with ¢(0) =0
and with exactly d solutions of ¢(x) = 1,atx; =1+ je,for j =0,...,d — 1 and
with ¢’ (x;) # 0. Replace then the coefficient of zx by ax = i¢’ (|1, DAx +1—@(|z;]).
For z; real and positive, it is easy to see that the map (Ax, zx) — ai has index 1 at
(0, z; = x;) and degree d. Let ¢ be the Uryson map with value 0 if some |x]/.| <e
and value 1 if all |x]<| > 2¢, for x; a coordinate in V# N (VvI)+.
Define

o, X) = ou f (1, X) + (1 —¢n)(1,0).

The linear deformationtfo+ (1 —7)f = (tog + (1 — 1)) f + (1 —¢gy)(1, 0) has
all its zeros fixed at A; = 0, and the orbit of Xy: in fact, if xj’. = 0, then the first
component reduces to (1 — t)(x(/) +2) + © > 1, since then ¢y = 0. Thus, fo(A, X)
can be taken as generator for this part of Hng (S V).

Now, since A is invertible, let A(t) be a path of invertible matrices joining A,

fort =1,to I,if detA > O, or to ( O) if det A < 0, for T = 0. Replace in

0 I
f (&, X), the vector (Aq, ..., r)T by A(t)(Aq, ..., )T . Then, one obtains again a
I"-homotopy to the generator (if det A < 0, one may choose the map with —X as the
generator). This implies that fo(A, X) is I'-homotopic to

k
106 X) = fo(0, X) 4+ 9n Y hjA;X;
j=1

the imaginary parts of the factorof z;, j = 1, ..., k, give A(Aq, ..., Ak)T = A\, with
its only zero at A = 0, since for z; = 0 one has gy = 0.

Let A(X) be the k x k matrix with entries a;; (X) = (A; X, A; X). If A(X)A =
0, one has (A,-X, ZAjAjX) = 0, hence L = 0 whenever the A;X’s are linearly
independent, in particular if ¢z (X) > 0. For such an X let b(X) be the vector with
i-th component b; (X) equal to (A; X, f(0, X)) and define

AMX) = —AH(X)b(X).
Then, (A; (X), fi(A(X), X)) = @g (b;(X) + (AX)A(X));) = 0. Thus, if A(X) =
o (X)A(X), if o (X) > 0 and O otherwise, one has a continuous vector and
k
fu(X) = fo(0.X) + ) A (X)A;X
j=1
is a I'-orthogonal map, recalling that on V7 A; X isalinear combinationof A1 X, ...,

A X, for j > k, and that fo(0, X) = (1,0) if ¢y = 0. Furthermore, the zeros of
fu(X),in Q, are T' X with A(Xo) = 0.
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If one considers the I'-function

k
LOLX) = fu(X)+ ) 4jAjX,
j=1

then
k

HOGX) = [il, X) + ) (euhi(X) + (1 — or)ijA; X,
j=1
When ¢y = 0, one has f(X) = (1,0), hence f(A, X) is non-zero on this
set. If oy > 0, one may deform linearly f> to fi, since on a zero one would have
A(r)z + Mg + (1 —pg)T)) =0and fp(0, X) =0,hence A =0, X = I'Xj.
Then, either by recalling the proof of Theorem 6.1 in Chapter 3, or by using Propo-
sition 6.1 and Corollary 3.1 of Chapter 3, one has that, if [ f5(X)]L = >_ di[Fi].,

deg(fo(0, )M B = Y dj|Ho/Hjl
H[<Hj<HO

and the same relations, with [ f2(A, X)]r = )_ c?j [ﬁj]p. But, f> has all cfj = 0 except
for H, where dy = 1, or d if one has taken Pld, for some /. Hence, d; = cij and
[fH(XOlL = [FH]L.

Note that one may also compute directly the set of degrees for f> (A, X)™ , noticing
first that if V¥ 0 (VH)L = {0}, then £, has a component x; in V¥ which is 0, that
ispy = 0for X in VHi and fu(X) = (1, 0): in this case the above degree is 0. Thus,
one has to compute these degrees only for H; < H. However, if H; is a strict subgroup
of H, then for some component x; of V4 N(V#)+ the map will be (o +i > )Ljnj)xs
which can be deformed to x;, thatis fo(A, X YHi isa suspension of f(A, X YA | with the
same degree. Since we have computed many times deg(f>(A, X)¥; B,f ) =|Ho/H]|,
the relations give

|Ho/H|= Y dj|Ho/Hjl
Hi<Hj<H

and d; = 0 if H; is not a subgroup of H. From here it is easy to see that d; = 0 if
Hj # H anddpy = 1.
Then, if f(X) is defined as

FO =" ou(X) fu(X) + [ = eu(X)(1,0, x),

one obtains an orthogonal map which reduces to fy(X) on Qp, as defined in the
proof of the preceding theorem, and which is non-zero on Q\ | J Qp, giving that the
orthogonal degree of f is

deg, (f; ) =) dulFulL.
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(b) If dim V' = 0, then {0} does not belong to 2. As before, for each H with
dimT/H = k, let {ij} be a point of Q¥ with ij £ 0 for all j’s. If k = 0, one

may use, in V7", the generators of the preceding theorem. Thus, assume k > 0 and
let z1, ..., zx be the coordinates with isotropy Hy such that |H/Hy| < oo and the
submatrix A is invertible. Let f (X, X) be the generator of (b) in the proof of the
preceding theorem

FO XY = (102 = (2P = D=1k,
(A +2) (X = D7 441 = D)z,
(14 2Q; + Dy (z42P; + Dz x, ),
and let ¢y be as before. Define

o, X) = f(x, ouX") + (1 — pm)X,
where, in f(A, oy X’), one replaces the factors |z/1|2, ,|z;(|2 by (pH|z/1|2
<,0H|zk|2 On a zero of f one has ¢y > 0 and, since x; # 0, one gets A} = --- =
M1 =0, 1 =g |2j> = 0,for j = 1,....k; Qj(puX') = Pj(puX') = 1. The last
equalities imply that (pylx | =1,in partlcular |x | > 1 for all j’s. But then gy =1
and one has the orbit of X¢. Replacing P; by Pd or by repeating the construction

given in (a), one has that

degr(fo(A, X); ) = degp(f (A, X); Qp) =d[Fylr.

Observe that, due to the multiplication by ¢y, one may deform the term
(11204 — D2 10 0.

Define then fi(A, X) as before, giving the same degree. Since X is orthogonal
to Aj X, one may define A(X) as above (the term ¢y factors out) and with rX) =
oH (X)A(X), the map

k
fu(X) = fo(0.X) + ) A (X)A;X

j=1

is ["-orthogonal and f>(A, X), defined as before, has I"-degree equal to d[ Fy ], since
the imaginary parts of the factors of zy, . .., zx are not affected by (1 — ¢y )X, that is
the argument is the same as before. This proves that [ fy]1 = d[Fy].1.

Defining the orthogonal map

f(X) = Z¢H<X)fH<X) + ][0 —emx,

one has that the factor of x; has real part equal to

Y en( =gl M+ - en)
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for j =1,..., k (with z,’c+1 to be replaced by z)), or

> en(l+oplz*Re P) + [ [ — om),

with P; replaced by —Q; for yJ Hence, this real part is strictly positive if |x | < 2e,
for ¢ small enough (for j = 1,...,k, one has to consider the factor of z] 1 for
j =1,..., k and that of z; forj = 1) Thus, f(X) is non-zero on Q\ | Qy and its
orthogonal degree is

Y dulFply.
H

4.2 T'-degree of an isolated orbit

One of the basic results in classical degree theory is that the index of Ax at 0, where
A is an invertible matrix, is Sign det A. This fact is the building block for the analytic
definition of the degree: if f(x) is a continuous function defined from Q into R”,
where €2 is an open and bounded subset of R”, and f(x) is non-zero on 92, then one
approximates f, on 92, by a smooth function f (x) which, due to Sard’s lemma, has
0 as aregular value. In particular, £~1(0) consists of a finite number of points (due to
the compactness of ) with non-zero Jacobian. Then, the degree of f with respect to
Q2 is the sum of the degrees of f with respect to small neighborhoods of these points,
so small that on each of them f(x) is deformable to D f (x0)(x — x0). Hence, one
obtains

deg(f(x); Q) = deg(f(x); @)= ) Signdet D f(xo).

x0ef~1(0),

Thus, one of the first questions, in case of equivariant maps, is what is the I"-index of
an isolated orbit? L.e., if xq is such that f(xg) = 0, hence f(I"'xg) = 0, and there is
an invariant neighborhood €2 of the orbit I'xp, what is degp (f (x); €2)?

Definition 2.1. The I'-index of an isolated orbit, I"xg, will be denoted by it (f; xp)
and is equal to degp(f(x); 2) for any small invariant neighborhood €2 of the orbit
I'xp.

It is clear that, since one has orbits of solutions, the answer to this question will
be much more involved than in the non-equivariant case and will depend on the orbit
type of xp.

However, let us begin with the case of a linear map. As seen in §5 in Chapter 1,
if there is a I'-equivariant linear map A, between two representations of I', which
is invertible, this implies that the representations are equivalent. Hence assume A
is an invertible equivariant matrix on the finite dimensional space V. Then, from
Theorem 5.3 in Chapter 1, we know that A has a diagonal structure

A = diag(A", A}, AD)
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where Al is the restriction of Ato VI, Ai.R{ are real matrices on each subspace of equiv-

alent irreducible representations, where I" acts as Z,, and A;C are complex matrices,
corresponding to an action of I" as Z,,n > 3, or S 1,
From Theorem 8.3 in Chapter 1, each of the real matrices A" or A}R isI'-deformable

Signdet AT 0 Signdet AR 0
or J
0 1 0 1)’

to

while the complex matrices are I"-deformable to the identity. Hence, if €2 is an invariant
neighborhood of 0, one has

degr(Ax; Q) = degr(goxo, ... &jXj, ...; 20)

where g9 = Signdet A", ¢ i = Signdet A}Q‘ and €2 is a neighborhood of 0 in the space
{(x0,...,xj,...,}, after using the suspension on the other variables. One has the
following result

Proposition 2.1. If A is a I"-equivariant invertible matrix, then
ir(Ax; 0) = eo([Folr + Y (& = D/2IFIr + Y dulFulr)

where gy = Signdet AT, gogj = Signdet Afi | where I'/H; = Z, and dy are
completely determined by e and {&;}’s, for H’s which are intersections of more than
one of the H;’s.

Proof. This is a direct consequence of Proposition 3.1 in Chapter 3. O

As a simple application of the above result, consider the bifurcation problem, for
the I"-equivariant function

Jou)y=(A-=Tx)u — g, u,

from R x E into the I"-space E, where A is a ['-compact perturbation of the identity,
IT(A)|| = Oas A goestoOand g(x, u) = o(||ul]).
As seen in §9 of Chapter 1, the equation f (A, u) = 0 is equivalent, near (0, 0) to
the bifurcation equation
BAMx + G, x) =0,

where x is in ker A, B(0) = 0, B(A) is an equivariant matrix and G (X, x) = o(||x|])-
Proposition 2.2. Assume B(A) is invertible for . # 0 and let

go(r) = Signdet B, e9(r)e; (1) = Signdet B(r),
withT'/H; = 7.

(@) If eo(A) changes at A = 0, one has global bifurcation in ET .
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(b) If ej(A) changes at . = 0, one has global bifurcation in E Hj
(c) If all €j (1) remain constant, then there is an equivariant nonlinearity g(A, u)

such that the only solution of f(A,u) =0isu =0.

Proof. (1) and (2) follow directly from the above proposition and Theorem 5.2, Corol-
lary 5.2 of Chapter 2. Part (3), the “necessary condition for linearized bifurcation”,
follows from Proposition 6.3 in [I], where the construction of g(A, u) is given. O

Remark 2.1. In this case there is also an orientation factor due to the invertible part
of A — T'()): in fact if one writes, as in §9 of Chapter 1,

(A=TM)u=A—-0TM)HR, x,x2) ® BL)x — (I — OTA)H(*, x, x2)

with H(A, x, x2) = xo—(I—KQT (L))" 'K QT (A)x, one may perform an equivariant
deformation, using the fact that 7'(0) = 0, to

Axy) @& B(AM)x.

Since A = I — Ty, where Tj is a compact operator, one may decompose equivari-
antly
E = ker A* @ Range A%,

with o the ascent of A and m = dim ker A%, the algebraic multiplicity of 1 as eigen-
value of Tp. In this case, if one has chosen bases on ker A“ so that the nihilpotent A

is in Jordan form with d blocks of size my, ..., mq, with )_ mj = m and x having
coordinates on the i-th block (x;1, x;2, . .., Xim;), With (x;1, 0, ..., 0) corresponding
to a generator of ker A and (0, ..., 0, 1) to a generator of coker A, then on ker A% the

map Axy & B(A)x has the form

(X110, X125+« s Xlmys X21, X225 -+ .)
— (X12, X13, - -+, X1y, D11 M) x11 + br2xor + .., x22, .00 ),

which has a degree equal to Sign det B(1)(=1)"=4: in fact, the factor Signdet B(})
comes from the composition and, on the other hand, the second factor is the degree of
the map

(X115 X125 o+ o XDy X205 -+ ) = (X12, X135+« Xlmgs X115 X215 -+ - )5

that is (=)™ ~1(=1)m2=1  (=1)ma—1 = (=1)"~4_due to the necessary permuta-
tions.

If T (A) = ATp, then we have seen in §9 of Chapter 1 that
B(}) = diag(—A™ /(1 + )™~ L =AM /(1 4 2y

with Signdet B(L) = (— 14 Sign A™, hence the contribution to the index is Sign(—A)™.
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On the other hand, the contribution to the index for A restricted to Range(A)* is
(—=1)X™i where m ; is the algebraic multiplicity of A; as characteristic value of Ty,
i.e., such that I — A;Tp is not invertible, for 0 < A; < 1: this is well known but a
proof of this fact will be given in Theorem 2.4 below. Hence,

ir(A—=T():0) =eo(lFolr + Y _(gj — D/2[FjIr + Y _ dulFu),
where
€0 = (=1)Z™ Signdet(—BM)")
660 = (=™ Signdet(—BO) ),
with mir the algebraic multiplicity of (1 —A; To)" for0 < A; < 1and mlH’ the algebraic
multiplicity of (I — A; To) for 0 < 1; < 1.

In case A is a Fredholm operator of index 0 with an isolated eigenvalue at 0, then
we have seen in §9 of Chapter 1 that

B() = ™, ..., A,
Hence, whenever defined one has
g0 = (—=1)™ ~" Sign A" Index(A"; Range(A")*)
gjgo = (—l)mHj ~d"i Sign AmHj Index(A™ ; Range(A™)?).

Example 2.1. If ' = Z, x Z, acts on R> via (x, y1y, y22), then any linear map has
the form (gox, &1y, £2z) and one has

&0 1 0 0 O do
£0€1 1 2 00 dj
E0€2 - 1 0 2 0 d2
E0€1&2 1 2 2 4 d3
According to Example 3.2 in Chapter 3,
dy 1 0 0 O £0
2| _ | -1 1 0 O £0€1
2d | " |-1 O 1 0 £0€2
4dy I -1 -1 1 £0€1€2
In particular, d3 = dp if e = ¢y = —1 and 0 otherwise. If one has the following
bifurcation problem
(A%x, Ay, A2),

then the set (do, dy, da, d3) goes from (1, —1,—1,1) for A < 0, to (1, 0,0, 0) for
A > 0, hence one has a global bifurcation in £ Hi and EH2, Note, however, that the
branches may coincide and be in E'. For instance,

A2x+y2+22 0y, 42) =0
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has its solutions, either x = y = z = 0, the trivial solution,or A = 0,y = z = 0, in
E". Note also that if one breaks the symmetry, then one may have no bifurcation. For
instance (A2x +y2+zz+8(r)x, Ay+e(r)z, iz—e(r)y), where e(r) = (x> +y?+z2),
with ¢ > 0, has the only solutionx =y =z = 0.

For maps without parameters between spaces which satisfy hypothesis (H), one
has the following result.

Theorem 2.1. Assume U and W satisfy (H), in particular if U = W, and let f (x) be
an equivariant map from Q C U into W, which is non-zero on 2. Then

degr(f(x): Q) =Y _dj[Fjlr,

where H; is such that I / H; is finite and, with the usual order, one has

deg(f; @) 1 0 do
deg(fHi; Qfiy | = | Bi T/ Hj| 0 d;
deg(f1"; Q") Bsi BsIT/H;| IT/T") \d

as in Theorem 3.4 and Corollary 3.1 of Chapter 3. In particular, if U = W then
Bij = lifand only if H; < H;.

Proof. This follows from Corollary 3.1 of Chapter 3 and the fact that By = I x Bg
with deg(2t 4+ ¢ (x) — 1, f(x); I x Bgr) = deg(f(x); 2) in this case. ]

The above relations imply that the information obtained from the I"-degree is, in
this case, equivalent to the one obtained from the set of all the ordinary degrees on
QH , for isotropy subgroups H, with I'/ H finite. The value of the I'-degree is to prove
the above equivalence (in particular that one may forget H’s withdimI"'/H > 0) and
that if €2 is a ball, then the Hopf property implies that two I"-maps are I"-homotopic
if and only if they have the same set of dy’s. This fact, used in (3) of Proposition 2.2
cannot be proved directly from the equality of the ordinary degrees.

However, the full strength of the I'-degree is clearer in case of parametrized
problems. Let f(A,X) : Q@ — W be a I'-equivariant map, where  is an open
bounded invariant subset of V = RK x U, where U and W satisfy hypothesis (H).
Assume that f_l(O) = (Ao, 'Xp) with I'y, = H such that dimI'/H = k. Then, f
has a well-defined I"-degree with respect to €2 or to any small invariant neighborhood
of f -1 (0). Furthermore, X has coordinates z(l), R z,g which are non-zero and with
Hy = Hy N ---N Hg such that dim I'/ Hy = k. From Lemma 2.4 in Chapter 1, one
may use the action of I" in order to assume that z;.) are real and positive.
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Theorem 2.2. Let (1o, ['Xg) be an isolated orbit with isotropy H such that
dimT/H = k and a zero of f(A,X) : R x U — W, where U and W satisfy
hypothesis (H). Then

ir(f; 0o, Xo)) = Y dklFxlr,

H<K=<H

where H is the torus part of H. Furthermore, for any K in the above sum, define ig

as the Poincaré index at (Ao, Xo) of fX restricted to VK N {zj € R, j=1,...,k}.
Then
ik =Y, BxrdilH/L|,
K<L<H
where, if(xi', e xﬁx) is the complementing map from VHENVE into WEHENWK,

then Bk = [11;. In particular, Bxx = 1 and Bxr, = 1ifU = W.

Proof. Choose the tubular neighborhood €2 of the orbit so small that if X has a
coordinate xJQ # 0, then x; is non-zero in . Thus, if

degr (f; Q) = [2¢ +2¢(h, X) — 1, f (4, X)Ir = [FIr,

one may construct ¢ (A, X) such that it has value 1 whenever one of the coordinates
x;j is 0. This implies that F'|y,x # O for any K which is not a subgroup of H (and not
only of Hy as in Theorem 3.4 of Chapter 3). The argument of this last result implies
that dx = 0 for such a K and that one gets, in it (f; (Lo, X0)), contributions only
from those isotropy subgroups between H and H.

Furthermore, from Theorem 3.4 in Chapter 3, one has

deg(F*; Bf)= Y BkrdrlHo/Ll,
K<L<H

where By = {(t, A, X) in I x Bg, with z; in R* for j = 1,...,k}. Then, from the
product theorem for the ordinary degree, one has

deg(FX; BE) = deg(f¥; @F),

where Qr = Q2 N Bx. Now, |Hy/L| = |Ho/H||H/L| and, due to the Hp-action on
By, as in Theorem 1.2 of Chapter 3, one has that f ~1(0) N By has |Hy /H| points,
each with the same index ix on VX N By. Hence, one may divide the above equality
by |Ho/H | and obtain the result. O

Assume now that f is C! in a neighborhood of (Ao, I'X(). Then according to
Properties 3.3 and 3.4 of Chapter 1, it follows that for any K < H

Df (o, X0) 0 >

K __
Df (o, X0)¥ = ( 0 Df*(o, X)X
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which is H-equivariant. Suppose also that 0 is a regular value of f on 2, that is
Df (Ao, Xo) has maximal rank. Since U and W have the same dimension, from
Hypothesis (H), this implies that D f (19, Xo) is onto and has a k-dimensional kernel.

Lemma 2.1. If 0 is a regular value of the equivariant map f and f (Ao, Xo) = O,
where Xo has isotropy H with dimI'/H = k, then U and W are equivalent H-
representations, ker D f (Lo, Xo) is k-dimensional and is generated by k vectors among
A1 Xo, ..., AyXo, with AjX = 3(y X)/0¢;j|y=1d, the infinitesimal generators of the
action of T", the torus part of I'. Furthermore, Df (Ay, X0)|B, is invertible, where By
is the global Poincaré section, and the Poincaré index ix of f at (Lo, Xo) on vEnB
is
ix = Signdet Df (Ao, X0)X|p, = iy Signdet Df (1o, Xo).

Proof. By differentiating the relation f(Ao, y Xo) = 0 with respect to ¢;, one has that
Df (Ao, X0)AjXo = 0, as in Lemma 7.2 of Chapter 1. Furthermore, from Lemma 7.1
in that chapter, one has exactly kK among the A; X( which are linearly independent.
Since A; X generate the tangent space to the orbit at (A9, Xo) and that one has as-
sumed z?, ey zg to be real and positive, one has that By, is orthogonal to that tangent
space and corresponds to the usual Poincaré section of the orbit at (Lo, Xo). Hence,
Df (Ao, X0), when restricted to By, is invertible and the formula for i follows. Fi-
nally, since Df (Ao, Xo)|, is H-equivariant and invertible, one has that V N By and
W are equivalent H-representations and, since zy, ..., zx are fixed by H, one gets
that U and V N By are equivalent H -representations. O

Assume then that U = W. This implies that Sk, in Theorem 2.2, is always 1.

Theorem 2.3. Let V = R* x W and 0 be a regular value of f on Q with an isolated
orbit (Ao, I' Xg) with isotropy H such that dimI'/H = k. Let igx be the Poincaré
indices given in Lemma 2.1. Then, the I'-index of the orbit is given by (dp, dk,, ...)
such thatdy = ig,dx = (ix —ig)/2,if H/K = 7, dk is completely determined
by the above integers if H/ K = 7y X - - - X Zo with more than one factor, and dg = 0
otherwise.

Proof. The result follows directly from Theorem 2.2, Lemma 2.1 and Proposition 3.1
in Chapter 3, since this last result is purely number theoretical and is based on the fact
thatixg = +1. O

Another way to prove it, is to see that, on Q2 N By, f (X, X) is H-deformable to
(fr(ho, X0) (A — 20) + fw (o, Xo)(X™ = X0), f1(ho, X0)X )

and one may compute the H-degree of the linearization Df (Xo)|p,:

in(Df (o, X0)|g:0) = Y dglFlu,
H<K<H
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where F I/{ are the generators of H?W (SW), with W = VHE N By and W =W,
From Proposition 2.1, one obtains that the d}’s are given by the formulae of
the theorem, since f;l decomposes into a block diagonal matrix, according to the
H -irreducible representations, where each block is a real matrix if H acts as Z; and
a complex matrix, if H acts as Z,,, m > 3 (on W, H acts as a finite group). By

deforming the complex matrices to the identity, one has to consider only K’s with
H/K =75 x --- X 7y, with

Df (ro, X0)X |5, = diag(A”, A1, ..., Ay),

with iy = Signdet A¥ A; is the matrix Df |V, with H/K; = Z, and ix; =
ipg Signdet A;. Hence ix =iy H§:1(in/iH) and Corollary 3.1 in Chapter 3 gives

Y di|H/L| =ik —in =Y (ik; —in)

where the sum on the left is over all L’s with K < L and |H/L| > 2. This gives,
when varying K over all non-maximal isotropy subgroups, i.e., with |H/K| > 2, a
lower triangular invertible matrix. Since the right hand side is completely determined
byin,ik,,...,Iik,,over all maximal isotropy subgroup K, one obtains the relations
of the theorem.

Now, we have seen in Remark 3.2 of Chapter 3, that if

degr(f; = Y dklFxlr,

H<K<Hy

then

degy, (fla: QN B = > dglFl]u,.
H<K<Hj

But, on one hand we know that dx = 0 if K is not a subgroup of H and, on the
other hand, from Corollary 7.1 in Chapter 3, one has

degy (flp: 2N Br) =Y |Ho/Hldk [Filu,

since for the reduction from Hy to H (with k = 0) one has the factor |Hy/K |/|H /K| =
|Ho/H|. But, f|p, has |Hy/H| zeros in N By, all with the same H-index: in fact,
if y in Hy/H sends Xg to y Xo, one has, from Property 3.3 in Chapter 1,

Df (Ao, ¥ X0) = y Df (ho, Xo)y”

and, since these two matrices are conjugate, one has the same set of indices iy, ix,
and, from the previous argument, the same set of d}(. Thus,

degy (flB: @20 By) = |Ho/H|ipg (Df (2o, X0)|B,: 0),

proving that dj, = dk.
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Example 2.2. If I' = S! and k = 1, then any strict subgroup H of I is of the form
Zm and H/K cannot be a product. Thus, if H = I', one has dr = ir and dx = 0O for
all K’s, while, if H = Z,, thendy = ip,dg = O unless m is even and K = Zy, 2
withdg = (ix — ig)/2.

As an abstract application of the preceding theorem, assume that f(u, A, X) is a
family, parametrized by ., of T-equivariant functions from R¥ x W into W, with
0 as a regular value for u # po. Assume there is a known curve of zeros of
S, A, X), o(p), Xo(p) withcommon isotropy H, withdim I'/H = k. Thenig (n)
and ig (i) are well defined for u # po and K < H.

Corollary 2.1. (a) If iy (1) changes sign at (g, then one has a global bifurcation at
(140, 20 (120), Xo(10)) in VH.

(b) If ig () remains constant but ix () changes sign at |1o for some K with
H/K = 7y, then there is global bifurcation in VX | i.e., with a period doubling. Topo-
logically all bifurcations are in maximal isotropy subgroups, i.e., with
H/K = 7.

Proof. This is clear from our previous results on bifurcation. The last sentence means
that if i and ig’s, for all K’s with H/K = Z,, do not change, then there will be
no other changes for smaller isotropy subgroups. This does not hold for non-abelian
actions. Note that the isotropy of the bifurcating solution is at least H is case (a) and
at least K in the second case and one may construct examples where, in case (b), this
isotropy is H. O

Example 2.3. Assume that S! acts on C? as (¢/9z, €*'¥z5) and consider the equiv-
ariant map, for u in a neighborhood of 1/2:

fluah, 21, 22) = ((1— Wz — pzazr, (1 — |22 +id)z2).

If z # 0, a zero of f implies A = 0, |z2] = 1 and (1 — w)|z1| = wlz1l, i.e.,
uw = 1/2 or z; = 0. Hence, for u # 1/2, the isotropy of the orbit (0, [z2] = 1) is
H = Zj;. The only other isotropy subgroup is K = {e}. One has iy = deg((1 — z +
irA; M < 1,1 —e < z2 < 1+¢) =1, while ig, which is constant for u #= 1/2,
changes from +1 for © = 0 to —1 for u = 1. Hence, any equivariant perturbation of
this map will have a bifurcation on this p-interval.

Note that the linearization of f at (u, 0,0, 1) is (1 — w)z1 — nz1,iA — 22 — 22)
which is Zj-equivariant (changing z; into —z; but keeping z» fixed). One has that

0O -2 0 1-2 0

H, K 1L 12

b7y = (1 0 0) . DU = < 0 1)'

It is important to recall that, as usual, index computations are mostly useful in

getting degrees of complicated maps after performing deformations. It is clear that
if one has a map where one may compute directly the Poincaré index then one could
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object to the construction of the equivariant degree. In order to convince the reader to
the contrary, let us present two simple examples.

Example 2.4. Let St act on R? x C? as (x,y, €'%z1, €'%z,) and consider the map
(21l + 122* = 2, r + iy (211> = D21, (x +iy)22)

with zeros on the 3-dimensional sphere and x = y = 0. Hence, one may not compute
directly any Poincaré index. However, the deformation (1 — D(z12 = 1) + it is
admissible, as well as the rotation

(I -1 +iy) -7 1
T(x +iy)? (1= +iy)\z2)’

i.e., after another rotation, and simple deformations, one may compute the S'-degree
of

(z1l? = 1, (x +iy)%z1, 22).

For this last map, one may compute the Poincaré index, which is 2. Thus,
deggi (f; B) = 2[Felg1,

where B is a big ball and F, = (|73 |2 — 1, (x +iy)zy) is the generator of 115" in this
case. Accordingly, any S'-perturbation of the map will have a zero in B. However,
the non-equivariant perturbation

(21 + 122> = 2, (x +iy) (211> — D21 + t22, (x +iy)z2 — TZ1)

has no zeros for T % 0 (write the last two equations as a linear system in z; and z, by
conjugating the last equation).
Note that the first map is S'-deformable to

(1 —x% =2, (x +iy)(z11* = D21, (x +iy)22).

In order to compute the S'-degree of this map, one may either deform |z1|> — 1 to
1 as above, or use the deformation |z1|2 — 7. In both cases, the S!-index of the orbit
(lz1l =1,22 =0) is 0.

Example 2.5. Consider the pair of averaged Van der Pol’s equations, that is for
integro-differential equations. Look for 27 -periodic solutions to

1 2
x" = x/(l - —/ (x? +y2)dt) + (1 +v)x = f(x,y)
2w 0

1 2 ) )
y' = y’(l - 2—/ (x“+y )dt) + (1 +v)y =gx, y).
T Jo
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If x(t) = Y x,e and y(¢) = Y y,e™, one has, for n > 0 and denoting by p?
the integral term,
(=n? —in(1 — p*) + (1 +v)x, = 0.

Thus, if v is close to 0, the only non-trivial solutions will be x, = y, = 0 forn # 1,
v =0, |x112+|y1]* = 1, corresponding to x (f) = a cos(t +¢), y(t) = B cos(t + V),
with o? 4+ g2 = 2.

In order to compute the S'-degree of the non-trivial solution, one takes
[—1/2,1/2] x B, where B is a big ball containing these solutions. For n # 1,
one may deform the coefficients to 1 and the S'-degree is that of

(v —i(1 = p*)x1, W —i(1 = p*)y1),

or, after a rotation as in the preceding example, the S'-index of (v —i(1 — |x; 12))2x;
near |x1| = 1, which is 2. Hence, any small autonomous perturbation of the system
will have solutions near v = 0, |x1|> + |y1|> = 1.

On the other hand consider the Z;-perturbation

f(x,y) + t(3cos2ty +sin2t y) =0
g(x,y) — t(3cos2tx +sin2t x') = 0.

On 27 -periodic functions, the system is only Z,-equivariant and is equivalent, on
Fourier coefficients, to the system

(= n?=in( = p2) + 14+ )%y + = (0 + Dya—z = (1 = Dyr2) =0
(—n2—in(1 = p2) +1+v)y, — %((n + D)Xy2 — (1 — Dxpga) = 0.
For n = 1, one has
w—i(l—p)x1+ 151 =0
(w—i(l=p*)y — ¥ =0,

whose only solution, for T # 0, is x; = y; = 0 (conjugate the second equation and
treat the system as a linear system in x; and y;). Then, the remaining equations form
a closed system with, for v close to 0 and 7 small, dominant diagonal terms, hence
with a unique solution x;,, = y,, = 0. Thus, for t small and non-zero, the only solution
isx=y=0.

These last two examples are illustrations of the restriction map from
1 ~
M (S ZZy x Zx -

to
N3, (V) = 2y x 2o,
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where, according to Proposition 7.3 in Chapter 3, one has

dp, =Y dy mod2, di, =) dy1 mod2.

Here dj = 0 for j # 1 and di = 2. We leave to the reader the task of building other
examples.

Let us continue to study the generic case of 0 as regular value of f(A, X) and
relate the I'-index to the “Floquet multipliers” for a “hyperbolic orbit”. We shall take
the following setting: V = Rk x W, f, X)=X—F(, X), from V into W, is c!
and F (A, X) is a compact map with f (X, Xo) = O for X( with isotropy H such that
dimI'/H = k. As before, we choose an orientation of W in such a way that the first
variables z1, ..., zx have an isotropy subgroup Hy, with dim I'/Hy = k and, on the
orbit, z;.) is real and positive.

Definition 2.2. Let K < H. Then (A9, Xo) is said to be K -hyperbolic if and only if
(a) dimker(I — Fx (o, Xo)X =k
(b) F.(h, Xo) : R¥ = W is one-to-one
(c) Range F; (Lo, Xo) N Range(I — Fx (ro, X0))X = {0}.

Similarly, (Lo, Xo) is said to be K-simply hyperbolic if (Lo, Xo) is K -hyperbolic
and the algebraic multiplicity of O as eigenvalue of (I — Fx (A, X)X isk.

Note that, since X¢ is in V', it follows that fx, Xp) is in WH and thus,
F.(M, Xo)i belongs to W Similarly, since I'Xo C V#, A;X( belongs to VH.
Furthermore, since F )’(( (A0, X0) has the diagonal structure

F{ (0, Xo) 0
0 Fi* (ro, Xo)
one obtains the following result.

Proposition 2.3. (19, Xo) is K-hyperbolic if and only if (Ao, Xo) is H-hyperbolic
and I — F )J(-K is invertible.

Note that the above notions depend only on the orbit and not on the representative
Xo. This follows easily from the relations

I — Fx(ho, ¥Xo) = y(I — Fx(ko, X0))y ™!
Fy.(ho, ¥y Xo) = v F.(ho, Xo).

Example 2.6 (Autonomous differential equations). Consider the problem of finding
2m -periodic solutions to

dx
E—g(X,v):O, X inRY,
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for instance with g(X, v) = g(X)/v coming from the system ‘[i[—f = g(X). In order
to set the problem as above, let W = H 1(S1 and consider the operator

K :L*S"Y — H'(sY
defined on the Fourier series X (t) = (X) 4+ Y_ X,.e!" as

K((X) 4> Xpe™) = (X) + ) Xu/(in)e™.
n#0 n#0

Then, KX’ = (KX)' = X — (X) and the above equation is equivalent to
X —(X)—Kg(X,v) =0,

where I?g is a compact map on H!(S!).
If Xo(¢) is a solution, with minimal period 277/ p, for some vg, and g(X, v) in c!
in a neighborhood of (X¢(?), vg), then one gets the linearization

X—Fx(Xo, v0) X —F,(Xo, vo)pp = X—(X)—KgxX—K gupt = K(X'—gx X —gu ).

Here H is the space of (27r/ p)-periodic functions, or else those Fourier series with n
a multiple of p. Now, X 6 is solution of

X' — gx(Xo,v0)X =0,

hence, if X¢(¢) is non-constant, the first condition of K -hyperbolicity means that X,
is the only (27r/ p’)-periodic solution of the last equation, for p’ dividing p, while the
second condition means that g, (Xg, vp) is non-zero. For the special case of g(X) /v,
then g, = —g(X)/ 1)5 = —X(/) /v and condition (b) is met if X is non-constant. The
third condition is equivalent to say that the equation

X' —gxX = gup

has no Zp—’f—periodic solution for u # 0. In the case of g(X)/v, taking u = —vyp,

. . 2.
then X’ — gxX = X|, cannot have solution. But this means that ker (% - gX) is
generated by X/, that is 0 is a simple eigenvalue of the operator % —gx.

Proposition 2.4. Let (vo, Xo(1)) be a 2w/ p)-periodic solution of vX' — g(X) = 0.
Then, if WX is the subspace of H'(SY) consisting of (21 / p')-periodic functions, with
p’ dividing p, (vo, Xo) is K-hyperbolic if and only if 0 is a simple eigenvalue of the
operator voc‘f—t — gx(Xo) in WX that is 1 is a simple Flogquet multiplier of ®(27/p’),
where ©(t) is the fundamental matrix of the linear system.

Proof. There remains only to see the equivalence with Floquet theory. This is done in
Appendix B. O



224 4 Equivariant Degree and Applications

Since ®(27) = ®(27/p)? and X, is always an eigenvector, then (vg, Xo) is
{e}-hyperbolic if and only if 1 is a simple Floquet multiplier of the first return map
@ (27 / p) and this matrix has no other eigenvalues which are p-th roots of unity. This
is the usual definition of hyperbolicity.

In the general case, {K }-hyperbolicity means that X, is the only (27/p’)-periodic
solution of X’ — gxX = 0, that g,(Xo, vo) # 0 and /0271 gy - Z(t)dt # 0, where
7' =— g)T(Z is the solution of the adjoint problem (see Appendix B).

Returning to the abstract setting of f (XA, X), with (g, X¢) an H-hyperbolic or-
bit, note that Range F) (Ao, Xo) has the right dimension to complement Range(/ —
Fx (%o, X0)™)in W Inorder to compute the I'-index of the orbit, we shall introduce
an auxiliary operator. Recall that zy, . .., zx are the first variables in W with isotropy
Ho > H anddimI'/Hy = k.

Definition 2.3. Let the compact linear H -equivariant operator J, from V into itself,
be defined by

K, Y) = (uy —Imzy, ..., up —Imzg, Fr (o, Xo)u + Fx (Mo, X0)Y).

In particular, X maps VX into VX forany K < H.

Proposition 2.5. (Lo, Xo) is K-hyperbolic if and only if (I — X)X is invertible, for
K < H.

Proof. It (I — KK, Y) = 0, then Imz; = 0and (/ — Fx)Y = F,u. Thus, if
(X0, Xo) is K-hyperbolic, one needs u = 0 and Y belongs to ker(/ — Fx)H, that is
Y = ZLI o A1 Xo. Considering the first k£ coordinates, one has

k
Imz; = (Zazn{)z}’,
=1

since z? has been taken real and positive. But, from Lemma 2.4 of Chapter 1, the

matrix (nlj )i; is invertible. Then, since Imz; = 0, one has ¢y = 0 and / — X K s
one-to-one. Since JK is compact, one has that I — KX K is invertible.

Conversely, if dimker(/ — F § ) > k, let Yq be in this kernel and linearly indepen-
dentfrom A; Xg. Let B be the invertible matrix givenby Bj; = n'/ and,if yy, ..., y; are
the first k variables of Y, define ap, . .., oy through the relations (Ba); = Im y; /z?.
Replacing then Y by

Yo — ZOHAJXO,

one may assume that Imy; = 0. Thus, (0, Yp) is in ker(/ — KK, which is not
possible, unless Yo = 0, if I — XX is invertible. Similarly, if F; (Ao, Xo)p = O,
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then (i, 0) is in ker(/ — K ). Hence, if I — X is invertible, one has u = 0 and
condition (b) is verified. Finally, if Fou = (I — F )1(( )Y, then

(M, Y — Z V1A1X0>

is in ker(/ — X X) if y, are defined by (By); = Im yj/zﬁ?. But then, if I — XK is
invertible, one has u = 0, Y = ) 31A4; X0 and condition (c) is met. O

Thus, if (Lo, Xo) is K-hyperbolic, then it is an isolated zero of the H-map
(I-=F)*, X)=mz, ..., Imz, X — F(&, X))

from VX into itself, since its linearization is I — K X.
Recall, from Theorem 2.2, that i g is the index, at (Ao, X¢), of themap X — F (X, X)
when restricted to VX N {Im zj=0,Rez; >0,j=1,...,k}.
For the same reason, the Leray—Schauder index of (I — F
(X0, X0), and clearly both indices are related.

YK is also defined at

Lemma 2.2. ix = (—1)*CkD/2 [ndex((I — F)X; (1o, x0)).

Proof. The natural orientation of R x WX is given by
(AM,..., A, Rez;,Imzy,...,Re zx, Imzg, ...).
Via a series of permutations, this identity map is homotopic to

(=D mzy, (=D*Imza, ..., (=D Imzx, A1, ..., A Rezp, ..., Rez, ...).

Hence, from the product theorem, Index(/ — Ky = (—1)2?11 Tig, giving the result.
O

Now, if (Ao, Xo) is K-hyperbolic, one may approximate (I — F)X by its lin-
earization at (Ag, Xo), i.e., by (I — K Ky(u,Y) and compute the index of this linear
H-equivariant map at (0,0). Here u = A — Xpand ¥ = X — X, since Im zj.) =0.

From the fact that F )I('I is a compact linear operator, one has the decomposition
WH =ker(I — Ff)* ® Range(I — F{)*,

where the first term is the generalized eigenspace, whose dimension is the algebraic
multiplicity m of 1 as eigenvalue of F )’Z and « is the ascent. Then, I — F )’g leaves
each subspace invariant and one may write

Y =uov

with u in the generalized eigenspace. Furthermore, since A Xy, ..., Ax X generate
ker(/ — F f ), one may choose a basis for the generalized eigenspace in such away
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that I — F )If is in Jordan form on it. Thus, there are exactly k Jordan blocks, of size
mi, ..., mg such that > m; = m and max m; = «. On the /-th block, corresponding
to A;Xg, one has

(I — Fu = Juy,

where
0 1

Ji

1
0

is an m; x m; matrix and u; is the projection of u on the block (recall that, on the
generalized kernel, the matrix I — F )’g is nihilpotent). Thus, on this basis, A; X¢ has
coordinates (1,0, ..., 0) on the j-th block and O on the others. Let (x;1, ..., x1,) be
the coordinates of u;, then

u= ZXHAIXO + w,
where w corresponds to the other variables. Let Fj u be written as
Fuu= (Fip, ..., Fp, Fu),
where Fju is the projection on the /-th block with components
(Frim, ooy Fig )

and Fu is the projection on Range(/ — F )1(1 )%, Then, (I — X ') has the following
form

where Zle n'l’ x;1 will be written, as before, (Bx); and the components of Jju; — Fju

are (XIZ - FllM, <o Xinp — Flml-l#’ Flz111M)-
In particular, if ¥; has coordinates (0, ..., 0, 1) on the /-th block and 0 on the
others, i.e., if ¥; generates, for/ = 1, ..., k, the kernel of the adjoint matrix, one has

oF
Fim 1t = ( o, Y).
Imy & Z L Ky, Xp
Let A be the k x k matrix with [-th row given by (3_12’ Yl).

Lemma 2.3. The matrix A is invertible.
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Proof.  Assume this is not true and that some p belongs to ker A. Then taking
v= (- F;’)_IF,u, and x;;41 = Fiip,fori =1,...,m;—1,1i.e., for the coordinates
of w, and (x11, ..., xx1) solving the system

Im(wy + v1)/z)
Bx = — :

Im(wi + ) /20

one obtains an element of ker(/ — ), which is impossible, unless © = 0. O

Theorem 2.4. Let (Lo, Xo) be K-hyperbolic and A be the above matrix. Then:

(@) ig = (—DFEED/Z(_1yu Signdet A Signdet B, where ng is the number of
eigenvalues of FY | counted with algebraic multiplicity, which are larger than
or equal to 1.

(b) ix = (— 1)"/KiH, where n’K in the number of eigenvalues of F)J{K, counted with
algebraic multiplicity, which are larger than 1.

Proof. In order to compute iz or the index of I — K at 0, one may deform linearly
to O the terms F;,L and Fj;, for j = 1,...,m; —land ! = 1,...,k, ie., those
concerning w and v. Then, one may also deform Im(w; + v;) to 0 and, later, z? to
1. Using the two compositions @ — Ap and x — Bx, and since the permutation
(1j,x;) — (xj, —p;) has index 1, one is left with the map

(x113x125"'7-x1m1’-x217"'5xk15"'7v)

- (x127 x139 LRI xlmls xll’ x22’ x2m27 x227 LR (I - F)I(-[)v)
Via permutations, the x-part of this map contributes (—1)” ¥ to the index. Hence,
Index(I — X) = (=1)"~* Sign det A Sign det B Index (I — F{)v).

One may decompose Range(/ — F g )¥ into
Prert — 4 FH% @ W,

where A; are the characteristic values (i.e., inverses of eigenvalues) of F }(LI between Oy
1 with algebraic multiplicity m; and ascent «;. In fact, the generalized eigenspaces are
disjoint, since if (/ —A; F)*1x = 0 = (I -2 F)*x, thenif y = (I - F{)*1 1k,
onehasy = A Fflyand (I — 2 Ff)*y = 0= (1 — A2/A1)*y. Thus, y = 0 and if
z=U—-M F)Ig')‘)‘l 2 one may proceed to prove x = 0. Furthermore, since (1 —2; Ff)
commutes with (I — F 5 )%, one has the above decomposition with a finite number of

subspaces due to the fact that the compact operator F )1(1 has only a finite number of
eigenvalues larger than 1.
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The operator I — F f preserves each of these subspaces. One may choose bases
on ker(/ — A; F }(q )% so that the nihilpotent matrix I — A; F g is in Jordan blocks,
i.e., of the form J as above. Hence, on such a block, I — F )I({ will have the form
(11— )Lj_l)l + Aj_l J, which is deformable to — /. Hence, each generalized kernel will

contribute (—1)" to the index. On the other hand, on W, the operator I — F };I is
deformable to /. Thus,

Index((I — Ff)v) = (=)=,
Using Lemma 2.2, one obtains
ig = (—DKCEHD/2(_pym=k(_1)2m; Sjon det A Sign det B.

Sinceny = m+)_ mjandk(3k+1)/2+k = 3k(k+1)/2 has the parity of k(k+1)/2,
one obtains the first part of the theorem.
For (b), it is enough to recall the block diagonal structure of I — F )’(( . Thus,

Index(I — KX X) = Index(I — X) Index(1 — FxX),

where [ — F)J(-K is invertible in WX N (WH)L. Decomposing this last space in
@Pker(I — A F }J{K Y1 @ W as before, one obtains the contribution (_1)"’1< to the
index. =
Remark 2.2. Note that if one has a set of equivalent irreducible H -representations,

where H acts as S! or as Lo, m > 3, then, since F )%K preserves these representations,
themap I — F }J{K can be seen on them as a real operator of the form

. . A —B\ (X
(A+ZB)(X+ZY)—(B A)(Y)'
(T L i -1

P_<—i1 il) and P _Z<i1 1)’

A =B\ _ ,(A+iB 0 i
<B A>_P< 0 A—iB)P’

If
one has

and it follows that
A— Al —B _ )
det( B A_)J>—|det(A—)J+lB)| > 0.

Hence, the algebraic multiplicity of any real eigenvalue is even. Similarly, if (};>

. . . . Y . .
is an eigenvector with real eigenvalue, then | x) also an eigenvector and the
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geometric multiplicity is even. Thus, in the computation of ix one has to take into
account only the representations in (VH )L where H acts as Z,, since, on the others,
n'e will conserve its parity. This gives another proof, for the case of hyperbolicity, of
this part of Theorem 2.3.

Corollary 2.2. If (Ao, Xo) is {e}-hyperbolic with isotropy H, then the I -index is given
by (dy,dg,...), for K < H, where

dy =ig = (=DHF**D/Z(_ 1) Sign det A Sign det B,

where ny is the number of generalized eigenvalues of F )I({ which are larger than or
equal to 1, and B and A are defined above. If K/H = 7, then

dg = (ix —in)/2, withig = (=1)"Kiy,

where n/K is the number of generalized eigenvalues of F )%K which are larger than 1.
The integer dk is completely determined by the above integers if K /H is a product of
Zy’s and dg = 0 otherwise.

Proof. This is just a rephrasing of Theorems 2.3 and 2.4. O

Example 2.6 (continued). Let us return to the system
VX' —g(X)=0, XinR",

with a hyperbolic solution (vg, Xo), i.e., if A(t) = gx(Xo(?))/vo and P (¢) is the
fundamental matrix of the linearization

LX =X — A()X

then 1 is a simple eigenvalue of ®(27) = ®(27/p)?, with X{; as only solution of
LX = 0, where 21t/ p is the least period of Xo(?).

Now, the operator I — Fx of Theorem 2.4 has the form K (X' — A(t)X) and its
characteristic values, i.e., such that ker(/ — AFY) is non trivial, correspond to non-
trivial solutions of X’ — AA(#)X = 0. However, since K and A(t) do not commute
unless A is constant, the generalized kernels are difficult to relate. Hence, we shall
use another way in order to compute iy and ig, a way which is related to standard
Floquet multipliers.

Proposition 2.6. If 1 is a simple eigenvalue of ®(2m), let o4 be the number of real
eigenvalues, counted with algebraic multiplicity, of ® (2w /p) which are larger than
1 and let o_ be the number of real eigenvalues of ® (2w /p) which are less than —1,
then, on WK = (X (¢), in H'(SY), which are 21/ p'-periodic, p’ dividing p},

ix =—(—1)* if p/p’isodd

1)57+a+

ix =—(— if p/p’iseven.
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2 In particular, the S'-index has at most two non-zero components: dy = iy and, if
piseven, dx = (ix —ig)/2,for |H/K| =2 or p' = p/2, corresponding to period
doubling.

Proof. As seen in Lemma 2.2, ix = Index(/ — K Ky, where
(I — K)(u, X) = (Imz1, K(X' — AX + X{u/v0)),

with z; the component of X on a mode m (a multiple of p) for which X¢ has its
corresponding z(l) real and positive. Now, from Proposition 2.5, one has that I — X
is invertible on VX, hence this will be also the case for I — X + AK for small A and
this small compact perturbation does not alter the index.

Now, since the matrix @ (27) has N eigenvalues, the number e2™* will not be one
of them for small, strictly positive A. Thus, from Appendix B, the Fredholm operator,
from H'(S') into L%(S!),

LiX =X — AX + X

will be invertible. In particular, the solution of the equation L, X = —‘L'MX6 /vo 18
X = —tuX(/rvo, with corresponding Imz; = —tumz?/kvo. Hence, one may
deform linearly (I — X + AK)(w, X) to (—u, K(X' — AX + 2X)) and

ix = —Index (K(X' — AX +2X)|y«).

Increasing A, one will get a possible change of index at a point A¢ such that
K L, is not invertible in WX | i.e., if e27%0/7" is a Floquet multiplier of ® (27 /p’), p’
dividing p.

Although KL, and L, have the same kernel, their generalized kernels do not
coincide in general. However, as seen in Remark 2.1, one may detect the change of
index by looking at the bifurcation equation B(}), for both operators. For

~ - - - (d
KL;,+AK =KLA0+A:K<E—A+(AO+)»)I>,

defined on H'(S") or on WX, one has
BO) =AxI—- QKU +AROK)™'P,

where P is a projection from H'(S') onto ker L, the operator Qisa projection from
WX onto Range K L;, and R is the pseudo-inverse of K L;,, defined by RK Ly, (I —
P)=1—-Pand KL AOI% Q = Q On the other hand, for the Fredholm operator from
H'(S') into L2(S1), or from WX into L2(S")X, defined by & — A + (Ao + V)1 =
Lyg+x = Ly, + A1, one has

B(A) =A(I — Q)(I +ARQ)'P,
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where Q projects L? onto Range L;,and L;,,RQ = O, RL;,(I — P) = I — P. Note
that the identity in I + AR Q is that of H'(S").

Now, for a given Q one may choose Q = (% + PO) QI? , where Py is the pro-
jection on the constants, hence K (% + Po) K = Iy, (% + Po) K = I;2. One
may take in this case R = RK. Conversely, for a given Q, one may take 0 =
I%Q (% + Po) and R = R (% + PO): in fact, it is easy to see that Q, as defined above,
maps L? into Range L, and that Q? = Q. Similarly, Q maps H' into Range K L,
and 0% = Q. Furthermore, it is immediate to check that R and R have the right prop-
erties. Moreover, I;1 +ARQ = I +ARQK and I;> — Q = (% + Po) Iy —O)K.
Thus,

d ~
B() = (E + P()) B(A).

Hence, there is a change in the sign of the determinant of B (1) if and only if there is a
change of sign in the determinant of B()). The later will be the case if and only if Ag
is an eigenvalue of g—l — A of odd algebraic multiplicity (see Remark 2.1). That is, at
each Floquet multiplier of ® (27 /p’) one has a change of the index of (I — F +AK)K
equal to (—1)", where n is the algebraic multiplicity of the multiplier itself.

Now consider, for A > 0, the deformation

X —1t(X)+Tt(AKX — KAX), t€l0,1].
Applying % + Py to this deformation, one obtains the equation
X' + (1 —1)X)+1(AX — AX).

Multiplying this equation by X7 and taking A > NY2| All, where ||A|| = max |A;; ()],
one gets, after integrating on [0, 2], that

(1—)(X)2+ X1 = (X, AX) = (1 — 0)(X)2 + (0 — N2 A X2

Hence, one has a valid deformation for A sufficiently large. Clearly, for 7 = 0,
the index is 1 and the index of (I — Fx)X is (—l)zm/ , where m; are the algebraic
multiplicities of the eigenvalues of ® (27 /p’) which are real and larger than 1.

Finally, since ®(27/p’) = ®(2n/p)P/?, the spectrum of ®(27/p’) is made
of the (p/p’)-powers of the eigenvalues of ® (27 /p). But, if u is an eigenvalue of
® (27 /p) then 1 will also be an eigenvalue. Hence, non real eigenvalues come in
pairs with the same algebraic multiplicity and will not contribute to the index. For
real negative u, one will have 1”/ >0 only if p/p’ is even.

Then, Theorem 2.2 gives the final part of the proof. O

Remark 2.3 (S'-degree and Fuller degree). One may define the § I_degree for the
equation vX’ — g(X) in the form X — (X) — Kg(X)/v, in H'(S'), by making the
following hypothesis:
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Assume that there is an open bounded subset 2 of R x R such that the differential
equation has no 2w -periodic solution (v, X (t)) which touches 92 for some 7. This
assumption ensures that if (v, X) belongs to € for some X ona periodic solution, then
the whole orbit stays in Q. Moreover, if X is a statlonary solution, that is g(X )=20,
then (v, X) is also a solution for all v. Thus, since Q is bounded, the set € cannot
contain stationary solutions. Furthermore, for the integral equation, one needs that
v>38>0o0ng.

Now, if (v, X) is in €2 and belongs to a periodic orbit, then g(X)/v is bounded in
€ and X’ will be bounded in L? and Xl < R for some constant R. Let

={, X)inRx H'(SYH : |IX]1 <R, (v, X)) € @}.

Since any function in H 1(S1) is continuous, we have that if (v, X) is close to (vo, Xo)
in H' then X (¢) will be close to Xo(z) for all £. Thus, the set Q is open. Clearly,
Q is invariant under the S'-action and any periodic solution (v, X (¢)) in Q will give
exactly one solution (v, X) in €2 of the integral equation and conversely. In particular,
X — F(v, X) # 0 on 99 and its S'-degree is well defined.

Since g(X) # 0 in Q, the invariant part of the S'-degree is 0 and

degsi (X — F(v, X): Q) = Y _dulFulg,

where dpy is in Z and H runs over all the Fourier modes m, with |H| = m > 0. (Since
F is compact all but a finite number of the dg’s are 0).
In this case, Fuller has defined a rational number which turns out to be

> du/|H|.

For a hyperbolic orbit, of least period 27/ p, this number is

— (=1)%/p, if pisodd,
— (=D /p — (=D = (=1)*)/2)/(p/2) = —(=1)7+17~ /p, if piseven.

Thus, in both cases, the Fuller index is I(¢}/p.

Example 2.7 (Differential equations with fixed period). Consider now the autono-
mous differential equation

dX

— —g(X,1) =0, XeR",

o 8X.v) =

where v is not necessarily the frequency. Assume (v, Xo(¢)) is a 27/ p-periodic
solution which is K -hyperbolic, for K corresponding to (27 / p’)-periodic functions,
with p’ dividing p. This means that multiples of X, are the only non-trivial solutions
of the linearized equation

dXx
=~ _AMX =0,
dt
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where A(t) = gx(Xo(?), vo). Furthermore, if Z(¢) generates the kernel of the adjoint

equation

— 4+ A" Z=0,
dt

with fundamental matrix ®~!7 (¢), then gv(Xo, vp) is not L2—orthogonal to Z(1).

Proposition 2.7. Let k be the algebraic multiplicity of 1 as eigenvalue of ® (2n/p’)
and let ex_ be a vector in RN such that (I — ®Qn/p ) lep_ = X,(0) = eo.
Then, if nk is the sum of the algebraic multiplicities of real eigenvalues of ® (2m/p’)
which are larger than or equal to 1, one has

27
ix = —Sign (ex—1 - Z(0)) Sign </ gy Z(1) dt)(—l)"K.
0

Proof. The argument is parallel to the one used in Proposition 2.6:
ix = Index(I — X%),

where )

Now, one may replace g, by any Z;(¢), in WX which has (Z1, Z) 2 of the same
signas (g,, Z);2: infact, the whole segment t Z; 4+ (1 — 7) g, is not in Range (% - A).
Hence, under the deformation, if one has a zero, one needs u = 0 and X is a multiple
of X(), which has z; =i mz?, where m is the mode of z;. Hence, the only zero is for
X =0.

Now, let e; be orthogonal to eg and such that (I — ®(2n/p’))e; = ej_1 for
j=1,...,k—1, ie., the generators of ker(/ — dD(ZJT/p/))K. Thus, ¢; = (I —
O /p )1 er_1, withe; - Z(0) = 0for j =0, ..., k—2, while ex_1 - Z(0) # 0
(if not the algebraic multiplicity would be more than k, recalling that Z(0) generates
ker(I — ®~'T(2x/p’)), see Appendix B).

If n is the product of the two signs in the proposition, define

k—1 tp’ k—1—j
zl<r)=nd><r>(z<§> ej>.

0

Since ®(2r/p) Y6 ej = @ Qr/p) Yo U —@Qu/p ) e = (I — (1 -
&2/ p)Ker_1 = ex_1, one has Z1(2/p’) = Z1(0) and Z;(¢) belongs to WK.
(The above sum is of the form (I — B) Zg_ BJ = I — B¥ as a geometric sum, with
B=1-®Q2n/p).

Furthermore, since Z(t) = ®~'7 Z(0) and ej - Z(0) = 0for j <k — 2, one has
(Z1, Z);2 = n(exk—1 - Zp) with the right sign.

Now, the ZP—’f—periodic solution of (j—t — (A —2))X = Z; is then

¢ k—1 sp' k—1—j
=t ) )
X5.(1) = ne c1>(z)<c +/0 e XO: (E) e,ds>,
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where C is chosen such that X,\(Z—’f) = X;(0), 1i.e.,

/

, , 27 /p ) Sp/ k—1—j
C = 274p q)(ZJT/p/)(I—e_Z”Mp (D(ZJT/p/))_I/ o Z (_) ¢j ds,
0 2
which is possible if A is small.
Next, we claim that, if z; is the component of X on the m-th mode, then Im z;
has the sign of (—1)¥~! for A small and positive.
In fact, if & denotes e’zn)‘/p/, ® denotes ®(27/p’) and B = %(1 — ),

then we have I — B = (I — u®)/(1 — p), and from (I — B) Zé B/l = — B/l

. ]— . . .
one obtains that (I — B) Z(J) (%) e = (I — B) Z(J) BIH(I — &)k 1iep_ | =
(I — B/ — ®)f=1=Jg_| = ej, since Bbey_1 =0ande; = (1 — ®)F 1=V gp_y.
Thus,

J j—I
- _ —
I —pu®)~ej=(1-p) 12(1—> el
0 iy 2
and lim, (1 — u)k(l — ;LCD)_lej = O unless j = k — 1, where it is (—1)k—1ep,
since j goes from 0 to k — 1, hence, k — j — 1 4+ > 0, except for j = k — 1 and
[ = 0. Thus,
lim (1 — e~ 2™/PY*X; (1) = n(—= 1)@/ p) X4 (1),
A—01
since (1 — w)*C tends to ®(27/p')ey = 27/ p)ey and Xo(t) = ®(1)ep.
But the component z; for X is i mz?. This proves the claim.
The next step is to make the deformation

(tImz1+ (1 =)D pu, K(X' — AX + 12X — tZ))),

which is valid since a zero, in Wk, in the second term gives X = tuX,, with a
corresponding z; of the sign of (—1)¥~!5/. One obtains, for T = 0, a product and

ix = (—1)*'nTndex (K (X' — AX + 2 X)|yx),

for A small and positive. But, in Proposition 2.6, we have proved that this last index
is (—1)"¥~k proving the proposition.

Note that, if g(X,v) = g(X)/v, then g, = —X{/vo and k = 1. Then, since
X() = ®(t)egand Z(1) = ® 17 (1) Z(0), the scalar productin n is =21 /vo(eg — Z(0))
and n = —1. Note also that k is also the algebraic multiplicity of 1 as eigenvalue of
® 27/ p) since ®2x/p’) = <I>(27r/p)p/p/ and ® (27 /p) has no eigenvalues, except
1, which are p/p’-roots of unity.

Example 2.8 (Differential equations with first integrals). This case can be translated
into an instance of the last proposition. In fact, assume that the equation

X' =gX), X inRY, hasafirst integral V (X).
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This means that V (X (#)) remains constant on solutions of the equation, or equiv-
alently that
VV(X)-X'=VV(X)-g(X)=0.
Consider the problem of finding 2 -periodic solutions to the equation
X' = g(X) + vWV(X) = g(X, v).

If Xo(t) is such a solution, then X, - VV (Xo) = VIVV(Xo)|I? = %V(Xo(t)).
Integrating over a period, one has v||VV (X (?))|| = 0, thus v = 0 if, on the orbit
VV(Xg) # 0, or VV(Xg) = 0 on the orbit and, in both cases, X () is a 2 -periodic
solution of the original problem.
Let then denote by A(#) the matrix Dg(Xo(¢)) and let ®(¢) be the fundamental
matrix for the variational equation X’ — A(¢)X. Then, if X () is solution to the initial

value problem

X' = g(X) = g(Xo(1) + AN(X (1) — Xo(1)) + R(X — X0)
X(0) = Xo(0) + W,

then,
t
X(t) = Xo(t) + ()W + CD(t)/ CD_I(s)R(X(s) — Xo(s)) ds.
0

Hence, linearizing the identity V(X (¢)) = V(X (0)), one obtains
VV(Xo(t)) - D)W = VV(X((0)) - W, for all W in R,
Thus, if VV (X¢(0)) = 0, one has that VV (X (#)) is orthogonal to all ®(¢) W and,

since @ (¢) is invertible, the only possibility is that VV (Xo(¢)) = 0 on the orbit of X,
that is, if VV (X((¢)) is non-zero at some time ¢, it will remain so for all #’s.

In general, for a 2 -periodic orbit, one has Xo(27) = X¢(0) and VV (X((0)) is
orthogonal to Range(/ — ®(27)). In other words, VV (X((0)) belongs to ker(/ —
®27)7) and generates it if it is non-zero and if ker(/ — ®(2m)) is generated only by
X(,(0). Furthermore, in this case the algebraic multiplicity has to be more than one:
in fact, since Xé(O) is orthogonal to VV (X((0)), then X6(0) belongs to Range(/ —
®(27)). Hence, there is another vector in ker(/ — ®(27))? besides X6 0).

Then, if Z(t) = @7 (£)VV (X((0)), is the 27 -periodic solution of

Z+AnTz =0,

and, since g, (Xo(2), v) = VV(Xo(?)), one has
2 27
/ gv - Z(t)dt = / VV(Xo@)) @)@ (1)@ T (1)VV (X (0)) dt
0 0

27
= / VV(X0(0) - @~ (1)@ T (1) VV (X((0)) dt
0

27
_ /0 \Z@)1 dr,
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where one has used the relation VV (X(¢)) - @ ()W = VV (Xy(0)) - W.

Since ®~!®~!7 is a positive definite matrix, the integrand is positive and the
only condition for hyperbolicity in this case is that dim ker(I — ®(27)) = 1, or else,
whenever X is a 27 -periodic solution of X’ — A(#) X = 0, then X is a multiple of X(/).

Proposition 2.8. Ler X((t) be a non-constant (27 / p)-periodic solution of X' = g(X)
such that VV (X(0)) # 0 and X6 is the generator of ker(I — ®(2m)). Let k, e
and ng be as in Proposition 2.7, then

ik = — Sign(ex—1 - VV (X0 (0)))(—1)"¥.

In particular, the S'-index of X' — g(X) —vVV(X) at (0, Xo(2)) has at most two non-
zero components dgg = ig = n(—1)°+, where n = —(=1)¥ Sign (ex—1 - VV(Xp(0)))
and o4 is the number of real Floquet multipliers of ® (2 /p) counted with algebraic
multiplicity, which are larger than 1, while dg = (ix —ipg)/2,for |H/K| = 2 (hence
for p even) andig = n(—1)7+1= where o_ is the number of real Floquet multipliers
of (2w /p), which are less than —1.

Proof. 1t is enough to apply Propositions 2.6 and 2.7. O

Remark 2.4. (a) Given an open bounded set Q; in RV such that no periodic solution
of X' = g(X) touches 9 and such that VV(X) # 0 on 2 -periodic solution in Q
(including stationary ones), one may take Q= {(w, X) v <e X € Ql} and Q2 as
in Remark 2.3. Thus, degg: (IE'(X’ —g(X) —vVV(X)); ) is well defined.

(b) For the Hamiltonian system X' — JVH(X), we have that H(X) is a first
integral. The augmented system looks like

X' — (J —vI)VH(X),
which may also be written as, on solutions of the equations
JX'+VHX)+vX' =0.

But, this is exactly what is obtained when one studies J X’ + V H(X) as an orthogonal
map. This approach has the advantage of considering also stationary solutions. This
will be done in the next section.

(c) One may have several first integrals to the systems X’ — g(X) and one could
look at the augmented system

X' —g(X)+ > 1 VV;j(X) =0,

Taking the scalar product of this equation with ) 1;VV;(X) and integrating on
[0, 27r] for a 27 -periodic solution of the augmented system one obtains

1D %YV (X2 =0.
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Thus, if (&, X) is a 2w -periodic solution of the augmented system, then X (¢) is a
27 -periodic solution of X’ = g(X) and > A;jVV;(X) = 0. Note that, as before,
if this relation holds at some 7y it will hold for all #’s. In order to have a well-
defined equivariant degree one needs to conclude that all A;’s are 0, i.e., that the
vector fields VV;(X) are linearly independent on the orbit. Since VV;(X(0)) are
in ker(/ — ®2n)7), this implies a high dimensional kernel for I — ®(2x). If § 1
is the only group acting, then the computation of the S'-degree of the augmented
system may be quite involved. On the other hand, one has a nonlinear equivalent of
orthogonal maps. In fact, if g(X) = JVH (X), where H is I'p-invariant and A; X are
the infinitesimal generators of the symplectic action of [y, then for the equation

JX'+VH+Y XAX,

one may define V;(X) = %(AJJX, X). Since A;J is self-adjoint, one has that
VV;(X) = JA;X: see Proposition 9.1 in Chapter 1. This particular case will be
studied in the next section.

Example 2.9 (Time dependent equations). Consider the problem of finding 2 -peri-

odic solutions to the problem
x _ f(X, 1)
dt - ’ 9

where f(X,t) is 2/ po-periodic in ¢. Then, as seen in § 9 of Chapter 1, one has a
natural Zj, action on Czln (SH. If Xo(r) is a 27 / p-periodic solution of the equation,
with p dividing pg, then the linearization of the equation at X will be

dX

— —A)X,
P ()

where A(t) = Df (Xo(¢), t) is 2w/ p-periodic.

Proposition 2.9. If WK = {X(¢) in H'(S') which are 2mt] p'-periodic, where p’
divides p}, then Xo(t) is K-hyperbolic if and only if ‘Z—f — A@®)X = 0 has no
27/ p’-periodic solutions. If o1 and o_ are the number of real eigenvalues, counted
with multiplicity, of ® (2w / p) which are larger than 1, respectively less than —1, then

(=)o if p/p'is odd

ix =
K (=D)o+To= if p/p’ is even.

In this case the Zp,-index of Xo(t) isdy = iy and, if p is even, dx = (ix —ig)/2
for |H/K| = 2.

Proof. In this case, applying Theorem 2.4, the number £ is 0 and the argument follows
the proof of Proposition 2.6. Recall that

T ") =ZxZx---
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with one Z for each divisor of py. O

Clearly, this example corresponds to the classical situation where one can use
Poincaré sections. The purpose of including it here is to contrast it with the situation
of the following examples.

Example 2.10 (Symmetry breaking for differential equations). Assume that the au-
tonomous equation ‘il—f = g(X, v) has an {e}-hyperbolic solution (vg, X¢(#)) of least

period 27 /q. Consider the problem of finding 27 -periodic solutions to the equation

dX
T gX,v) +th(t, X, v),

for small v and where % is 277/ po-periodic in . Hence, the S'-symmetry is broken
to a Zp,-symmetry, for T # 0. This is an entrainment or phase locking problem and
solutions of the perturbed problem are called po-subharmonics.

Let p be the largest common divisor of ¢ and pg, then the isotropy subgroup of
X is Zp, with W% corresponding to 27/ p-periodic functions.

Proposition 2.10. If (vo, Xo) is a 27w /q-periodic solution of the autonomous equation
X' = g(X,v) such that X(/) generates the kernel of LX = X' — Dg(Xo, vo)X and
such that the non-homogeneous equation LX = g,(Xg, vo) has no solution, then
the equation X' = g(X,v) + th(t, X, v), where h is 21/ po-periodic in t, has a
global continuum of (2w /p)-periodic solutions (v, X) going through (vo, Xo) and
parametrized by t, where p is the largest common divisor of q and pg, provided, in
the case po = p and q/po even, one has that the sum of the algebraic multiplicities
of real eigenvalues of ® (2w /q) which are less than —1 is even.

Proof. Recall that nfﬂ’g‘;w (V) = @ TI(H), where TI(H) = Zy x I'/H for each
isotropy subgroup of Z, (see Theorem 5.5 in Chapter 3), hence if H = Z,,,,, where
p’ divides po, then I'/H = Z,y and TI(H) = Zy x Z,, if p’is even and Zy,y, if p’
is odd. We have proved, in Proposition 7.3 of Chapter 3, that if

[Flgi =) dulimls.
then

_ / /
PlF] = deo/p/[”po/p/]zpo’

where

zlao/p/ = Z nj ( Z dmjpo/P’Jrkpo)’

k>0
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with |n;| odd, njm; = 1, modulo p’, and 1 < m; < p’ with m; and p’ relatively
prime (one may take |n;| < p’).

The number d;o/p’ is in Z,/ if p’ is even and in Z,, if p’ is odd. For p’ =1,
corresponding to H = Zp,, one has d,,, = > ;- dkp, in Zo.

Here, d,,, = 0 except form = g and m = ¢q/2, if g is even, where one has

dg = n(=1)°r
dyn = —n(=1)% (1 — (=1)7-)/2, if g is even,

where n = — Sign(ex—1-Z(0)) Sign 02" gv-Z(t)dt and o4 is the sum of the algebraic
multiplicities of real eigenvalues of ® (277 /g) which are larger than or equal to 1, while
o_ is the corresponding sum for real eigenvalues of ® (27 /q) which are less than —1:
see Proposition 2.7.

Then, if pg = p1p and ¢ = q1p with p; and g; relatively prime, one has
mjpo/p’ = q if and only if m;p; = g1 p/, thatis p’ = kpy and m; = kqy, but, since
p’ and m; are also relatively prime, one has p’ = p; and m; = g1 with po/p’ = p.
In this case nj = nis such that ng; = 1+ kpy, with |n]| < pq. On the other hand, if ¢
is even, one has m;po/p’ = q/2, if and only if 2m;p; = ¢ p’, thatis p’ = kp; and
2mj = kg which implies k = 1 or 2.

If k = 1, then p’ = p1,2m; = g1 and po/p’ = p and n; = n’ is such that
n'q1/2 = 1+ k'py. While, if k = 2, then p’ = 2p1, m; = ¢ which must hold since
p’isevenand po/p’ = p/2,and n’q; = 1 + 2k’ p; (in this case, since g is even but
q1 is odd, one has that p is even).

Thus, if ¢ is odd, one has a’;, = nd, with nq; = 1, [p1]. While, if g is even,
then either pg is odd, which implies that the only possibility for d; 2 is k = 1 and
d, = ndy + n'dyp, or po is even. If pg is even and g; is odd, then k = 2 and
d;, = nd,, d;;/z = n'dy >, while if g1 is even, then k = 1 and d;; =ndy +n'dy)>.

Since ng; = 1+ kp’ and n’'m; = 1 + k’p’ the numbers n and n’ are non-zero
modulo p’, hence the only case where the new invariants may be 0 is when k = 1 and
dj, = 0, modulo 2p;. This is possible only if o_ is odd and n" — n = 2k pi. But then,
multiplying by ¢, one would have

kg —2k' +k)p1 = 1.

Hence, py = 1,inwhichcasen =n' =1, k=q; — 1,k =¢q;/2 -1 and k = 0 and
q1 is even.

The global continuum going through (v, Xo) is then given by Theorem 5.1 of
Chapter 2, by taking any bounded S'-invariant set € in R x W which intersects the
slice T = 0 in a neighborhood of X, where X is the only solution. Since d1/7 #0

one has that the solutions are in W7 i.e., they are 27/ p-periodic. O

Remark 2.5. It would be quite interesting to construct an autonomous system with
an isolated m-periodic solution, with o_ odd, such that with a 27 -periodic pertur-
bation one looses the solution at some value of the parameter. Since det ®(t) =
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exp( fé Trace A(s)ds) is positive, o odd implies that there is at least 3 eigenvalues
of ® () : 1 and two negative, one less than —1 and one between —1 and 0, hence the
system must be at least three-dimensional. In this case one would have ¢ = 2 and

po =1

On Fourier series one may take the system, from R x C? into C2,

f,z2,21) = (v +i(lz2] = 1))z2, 2221)
where S! acts on z| as e!¥ and on 75 as €2¢. If 25 # 0, the only solutionisv =0, z1 =
0,|z2] = 1. If H = 7, is the isotropy subgroup of z, the index of f (v, z2, [
at (0, 1, 0) is 1 while the index of f (v, z2, z1), for z; real and positive at (0, 1, 0) is
—1. Hence, from Theorem 2.1, one has d» = 1 and d; = —1, the situation of the last
proposition, where €2 is a small neighborhood of the orbit.

If one adds the parameter t one may look at the open bounded set

Q={(t,v, 22,200, v < L, |z1] < 1, 7] <2,1/4 — 1% < |z2] <4 — 7%}

which, in the (7, z2) space and T > 0 is the region between two paraboloids, the first
of vertex (t = 1/2, zo = 0) and basis (r = 0, |z2| = 1/4) and the second of vertex
(t = 2,20 = 0) and basis (t = 0, |z2] = 4). Now, if Ay = v +i(|z2] — 1 + 72), the
non-equivariant map

(Ar22 + T21, 2221 — TAy)

which, after conjugation of the second component, can be written as

(= 2) )

has the only solution, for 7 # 0, the point v = 0,z; = 0, |z2] = 1 — 2, which
disappears at T = 1, without touching the boundary of €.

Example 2.11 (Twisted orbits). Consider the problem of finding 2 -periodic solu-

tions to the problem

dX
. = X9 5 Xi RN’
7 = 8w in

where v could be the frequency and g is equivariant with respect to the abelian group
['g. The preceding examples were particular cases with I'g trivial. If (vg, Xo(¢)) is a
solution, we have seen, in § 9 of Chapter 1, that X (¢) may be a time-stationary solution,
or arotating wave or a truly time periodic solution. The first two cases correspond to a
Hopf bifurcation and will be studied in the last section of this chapter or, if one fixes v,
to invariants which involve only the stationary part, i.e., for the equation g(X, v) = 0.
Thus, let us assume that X¢(#) is a truly periodic solution, that is X¢(#) is non-constant
and (27 / p)-periodic, with isotropy H = Z, x Hy, where dim I'g/ Hy = 0. (The case
of more parameters and higher dimensional orbit will be studied, for orthogonal maps,
in the next section). Assume that X¢(#) is {e}-hyperbolic, i.e., X(’)(t) generates the
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kernel of the linearization X’ — A(¢) X, with A(t) = Dg(X(t), vo) and the equation
X' —A(1)X = g,(Xo(t), vo) hasno 27 -periodic solution. Then, according to Theorem
2.3, the only relevant isotropy subgroups of I' = S! x I'g are H and K ’s, with K < H
and H/K = 7Z;. Since dimI'/H = 1, the torus part of H (and K) is the torus part
of Hy and that of T': see Lemma 9.2 in Chapter 1. If T is this torus part, all the

relevant information will be given by orbits which lie in Vy = (RN )Tk for all time.
We have seen, in Lemma 9.4 of Chapter 1, that V' is the space of all 277/ p-periodic
functions with X () in VOHO forallt and X () = yoX (t + 27 /q), where ygo isin Hy
and g = pqo. The element yy of ['g and the integer g are determined by Xq(¢).
Furthermore, for each K, with H/K; = Z, one has a subgroup Ko; of Hp such
that Ho/Ko; = Zy or Hy = Ko, with V; = VOKOJ — VjJr @V, where o acts as £1d
on Vji. We have seen, in Lemma 9.4 and Remark 9.4 of Chapter 1, that VOH0 = Vj+
if and only if Vj_ # {0} and that the elements of VX are those 27 -periodic functions

X (1), with X (#) in V; forall t, and X (1) = y¢ X (t +47/q).
Now, the matrix is H-equivariant and since g(X, vp) is ['p-equivariant and X(?)
is in VOHO for all ¢, one has, for any § in I'g,

8Dg(Xo, vo) = Dg(6Xo, v)é.

In particular, for 6 in Hy, the matrix A(t) is Hyp-equivariant for each ¢. Thus, on V;

one has Ao(s) 0
_ [Aolt
Am_( 0 Aj(t))’

where A corresponds to VOH0 and A;(t) to Vf or to the complement of VOH0 in

VjJr (if Koj = Hp, the matrix A; is not present). If ®(¢) is the fundamental matrix
for the problem X’ — A(#)X, one has ®(t) = diag(®o(t), ..., ®;(r),...) on the
decomposition of R¥ into irreducible representations of Hy.

Lemma 2.4. One has the following relations
YoA(r +21/q) = A()yo, P +21/q) = PO)yoP(2r/q).
In particular, for any integer s,

SQ2rs/q) =y, (PQ2r/q))".

Proof. For any y in I" one has y Dg(X, v9) = Dg(yX,vo)y. In particular, for
v0Xo(t + 27 /q) = Xo(t), one obtains ygA(t + 27 /q) = A(t)yo. Then, ®'(r +
21/q) = A(t+27/q) @ (t+21/q) = vy ' A) @ (1+27/q), thatis yo®(t +27/q)
is also a fundamental matrix and as such, one has

W +2n/q) = ©(1)C, with C = p®2n/q).

Then, y§®(27s/q) = v§~ ' @n(s — D/@)n®Q2r/q) = (W®2r/q))* fors > 0
and yp = ®(—27/q)yoP(2m/q) gives the result for s < 0. O
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Proposition 2.11. Let (v, Xo(¢)) be a hyperbolic solution of X' = g(X, v) and define
n = Sign(ex—1 - Z(0)) Sign(g, (Xo, vo), Z(t)) 2, as in Proposition 2.7, where k is the
algebraic multiplicity of 1 as eigenvalue of ®o(2m/p). If g(X,v) = g(X)/v then
n=-—1.

Let aji be the number of real eigenvalues, counted with algebraic multiplicity, of
vo®; (2w /q) which are larger than 1, for o7, or less than —1, for orj_, where j =0
for H and j > 1 for each K; with H/K; = Z,. Then

in = (D (=10

(—1)‘7/+ if q isodd andVJ.‘ = {0}

o (—1)% if q isodd andV.~ # {0}

IHIK; = _ : . . J B
(—1)% if q iseven, pisoddand V;~ # {0}

4
(=) 1% T if q iseven, pisodd and Vj_ = {0} or piseven.

Proof. Recall first that X 6 is the only generator of ker(X’ — A(¢) X) and that g, (X0, vo)
does not belong to the range of this operator. In particular, k depends only on ® (277 /p)
and it is the algebraic multiplicity of X' — A(1)X on H 1(S1). Furthermore, since the
operator X' —A(r) X +AX and K are H -equivariant, the arguments of Propositions 2.6
and 2.7 remain valid, that is the index ik is given by

ik = (=D (=1,
where ok is the number of real eigenvalues A > 0, including algebraic multiplicity,
of X' — A()X + AX = 0in VX, But, from Appendix B, X satisfies this equation
in H'(S') if and only if X (r) = e ®(r)W, with W in ker(®(27) — ¢***I). Thus,
X (¢) will be in V# if and only if X (¢) lies in VOH0 and X (t +27/q) = X (t), while
X (¢) will be in VX if and only if X (¢) lies in VOKj = Vj and )/02X(t +4m/q) = X(t).
Thus, for V| one needs

e D (1)@ 2n /)W = P ()W,
and, since ®(¢) is invertible and CID(t)IVHO = ®g(2),.
0
Yo®o2r/q)W = 7w
Conversely, if W satisfies this last relation then
Yo' @/ p)W = (n@o (2 /q)) W = *™HP W

and, since " = Id on VOHO, one obtains ® (27)W = 2™ W.
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For the generalized kernel, one has that, if (% — A+ )aX =0, then X (1) =
e M) Y2 wirl /11, with Wy in ker (@ (27) — ¢27*1)*~! uniquely determined by
Wo. The relation yo X (¢ + 27 /q) = X (¢) leads to

oa—1

a—1
B! ( S Wi+ 2n/q)1/zz) =Y wit,
=0 =0

where B~! = ¢72"*/9yy® (27 /q). This polynomial equality is satisfied if and only
if all k-derivatives at t = 0 are equal, that is

a—1

B! ( > wi@n /) ~ k)!) — W,

I=k

But these are the relations given in Appendix B, with 2 replaced by 27 /q. Thus,
(B — DfWy_i =0, ie., W is in ker(yo® (27 /q) — ¢>™*/41)*~! and is completely
determined by Wy. The converse is clear, hence the algebraic multiplicity of % —A+Al

on V# is that of ¢2™*/4 as eigenvalue of y® (277 /g). In particular, oy = o(;r .
For K, the relation yOZX(t +4m/q) = X (¢) leads to

VeRUT )W = (yo®(2/q))*W = ¥4 W,

for any X (1) = e ®(t)W, with W in ker(® (27) — e2™*1).

Conversely, if yo®2n/qg)W = ee?™ AW with ¢ = +1, then ygd>(27r)W
e?e?™ W, for W in V;. Writing W = (Wy, W;) on VOHO @ (VOHO)J- NVjand ®(2r) =
diag(®o(27), ®;(27)), one has

Do2m)Wo = e9e*™ Wy and  (y*)’®; 2m)W; = ele*™ W,

where y* = 1d if Vv, = {0} and vd = —1dif Vi # {0}

Hence, for @, one has ¢ = %1 if g is even, while only ¢ = 1 is possible if g is
odd. For ®; and Vj_ = {0}, then yg" = Id and ¢ is as above, while if Vj_ # {0} then
ygo = —Id. In this case, if p is even, then ¢ = %1 (g is also even). If p is odd and ¢
even, then W; = 0 (in fact, we have seen in Lemma 2.4 of Chapter 1 that, in this case,
X (@) isin V" = V). Finally, if ¢ is odd, then & = —1.

The argument for the generalized kernel is then as before, with (yo® (277 /¢))% —
e¥*/4], with no further restriction. This proves the proposition. Note that one may
have Hy = Ky: in this case H/K = Z; only if ¢ is even (if ¢ is odd then X (¢) is in
V) and the contribution to i g is (—1) . O

Remark 2.6. Onmay also look at 27 -periodic solutions, in V; for all ¢, of the equation

Y —AY +AY =0, A>0,
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for functions which satisfy the relations
Y(t+21/p) = a¥Y(t), wY(t+2n/q) =bY (@),
where a = +1, b = +1.

In fact, b = 1 corresponds to y = X, in Lemma 9.5 of Chapter 1, with com-
ponents in VJ7L ifa = 1orin Vf ifa = —1. While,if b = —1 then Y () = X_(¢)
with components in Vj+, if a = 1 and gg even or if a = —1 and ¢g odd, or in Vj_, if
a = —1and gog even or a = 1 and ¢g¢ odd.

Now, the requirement that Y (¢) is 27 -periodic implies that a”? = 1 and yOqOY (t+
21/p) = ylaY (t) = bPY (1), that is ayy" = b%I, where y° = I on vj+ and
y® =—IonV; and V;" # {0} if and only if VjJr = VOHO.

Thus, by writing Y (1) = e M ® (1) W, with W = (W, W;), Wy in V0H° and W; in
(VOHO)J- NV, and ®(¢) = diag(Po, ®;), one has the following spectral problem: find
A > 0, W # 0, such that

(Yo Do) Wy = ae*™/p Wo and pyPoWy = be*™ 4 Wo,
(Y0 P)°W; = ae®™™Pyf°W; and yy®oW; = be*™/1W;,

with the restrictions a” = 1, (a — b?)Wy = 0, (a — b?)W; = 0 if Vj_ = {0} or
(a+b1)W; =0if Vj’ = {0}.
Hence, one has the following cases:

1. K=H,ie,a=b=1,W; =0, with a contribution ofa(;r.

2. H/K = Zj and p odd, then a = 1. If gg is odd, one has a contribution from
Wo (only if b = 1) of UO+ and from W; of aj+ af Vj_ ={0}and b = 1) or of o*j_
af Vj_ # {0} and b = —1). While, if g is even, one has a contribution from
Wo of oy + oy (for b = £1), and from W; of crj+ +o; onlyif V" = {0}

3. H/K = Z; and p even. If g is odd, one has a contribution from Wy only if a
and b have the same sign. Thus, if Vj_ = {0} one has cr(;r +c7j+ (fora=b=1)

and o, + ajf (fora = b = —1) for a total of O’&L +o, + crj+ + ij. If
Vj_ # {0}, then a and b have the same sign for Wy and opposite signs for W;,
giving Uo+ + o, for Wy and oj+ +o; for W; with the same total as above.
While, if gg is even, then if Vj_ = {0} oneneeds a = 1,b = =1 and a total
contribution of O’J_ +o, + O’j+ + O’j_. If Vj_ # {0} then, for Wy one hasa = 1

and a contribution of oroJr + 0, , and for W; one has a = —1 and a contribution
of O'j+ + 0, . Thus, for p even one gets og' +o, + aj+ + 0, confirming
Proposition 2.11.
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Remark 2.7. Since y02 7 = 1d on V;, one has an action of the cyclic group generated
by yp, which couples two variables x; and y;, giving them a complex structure and an
action of the form e271%/240 (x; + iy;), where a; is even on Vj+ and odd on Vj_. Now,
it is important to note that A(¢) does not preserve this complex structure, unless it is
yo-equivariant. Thus, since A () is a real matrix, the action of yg on the couple (x;, y;)
has to be represented by the rotation Ry, /24,. Then, since A(t) is 27/ p-periodic, one
has the Fourier series expansion for A(¢):

At) =) Ape™,

where m is a multiple of p. The relation ypA(t + 271/61))/0_1 = A(t) leads to
yoAmeZ”im/‘fyo_l = A, and, if A,, is decomposed in 2 x 2 matrices Aﬁf corre-
sponding to the couples (x;, y;) and on the coordinates (xi, yx), one obtains
Aﬁf = ?mimle Rak/zquI:nIR_al/ZqO'

If, for some (k, ) and fixed m, one has that det Aﬁf is non-zero, then one has that
2m/q is an integer. If this integer is even, then A,, is yp-equivariant and, as such, has
a block diagonal structure, in particular Afrf = O unless a; = a;. If this integer is odd,
then A,, is yoz-equivariant and Aﬁf = 0 unless a; = a; or a; + go/2: in fact, in this
case one needs gg even, since yoqo ==4Idand A,, = —Y0An yo_l.

This is the situation if Aﬁf has a complex structure, i.e., of the form (a+ib) (x;+iy;),
. k a —b
with AX = (b B >

However, consider yy = (COS 27 /3 —sin2m/3

sin27/3  cos2w/3 ) = Ron/3 and

_ [ cos2t —sin2r\ 1/1 i sir L1 =i\ _ay
A(t)_<—sin2t —0052t>_5<i —1)6 +§ —i-1)¢

Here, p = 2, g0 = 3 and g = 6, with 2m /g = £2/3, which is not an integer.
It is easy to see that y9A(t + 27 /3) = A(t + w/3) = A(t)yp and det AL, = 0.

4.3 TI'-Index for an orthogonal map

Orthogonal maps give a very rich structure for their orthogonal I'-degrees, since, if
I'=T" X Zpy, X --- X Ly, acts on the finite dimensional space V, with infinitesi-
mal generators Ax, ... A,x for the action of 7", then according to Theorem 6.1 in
Chapter 3, one has 1'[5 v (S V) = 7 x - - - x Z, with one Z for each isotropy subgroup
of I'. Hence, if ['xq is an isolated zero-orbit of an orthogonal I'-map f(x), i.e., such
that f(x) - Ajx =0for j = 1,...,nand f(yx) = yf(x) for all y in I", then one
should expect an index with many components. In this section we shall compute the
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orthogonal I'-index at I"xg, relating it to the spectral properties of its linearization.
Furthermore, we shall apply these computations to the case of differential equations,
in particular to Hamiltonian systems and to examples of spring-pendulum mechanical
systems.

Let us assume that I xq is an isolated k-dimensional orbit, with f(xo) = 0and H
the isotropy subgroup of xg, thatisdim I'/ H = k. Then, there are complex coordinates
21, ..., 2k With isotropy Hy > H and |Hy/H| < oo and z; real and positive for xg.
One may choose an invariant neighborhood of I'xg such that z; # 0 in it, that is
F(t,x) = 2t +2pkx) — 1, f(x)) will be non-zero on the set given by z; = 0 for
each j = 1,..., k. We shall assume that Ax, ..., Arx are the linearly independent
vectors if x has its coordinates z1, . . . , zx non-zero. Then, according to Proposition 6.1
of Chapter 3, one has

[FlL= ) djlFjlL.

H;<Hy

where, for H; > H the torus part of Hy and B,{ = BHin {z1,...,2x € R"}, the dj’s
are given by

deg(<F+Xk:x1A1x)Hi;B,§>= Y d|Ho/Hl.
1

H;<Hj<Hy

Choose the tubular neighborhood €2 of the orbit so small that if xg has a coordinate
xJQ # 0, then x; is non-zero in €2 and construct ¢(x) with value 1 whenever one of
these coordinates x; is 0. Thus, F|yx # 0 for any K which is not a subgroup of
H. From Theorem 6.1 (2) of Chapter 3, this implies that the corresponding dx is 0.
Hence,

[Flo= ) dlFlL.

Hj<H
Furthermore, if Q;{ =QnN B,’;, one has, for H; > H, that

k

deg (£ +nman) B x o) = Y djiHo/H;)
1

Hi<Hj<H

|Ho/H| Index ((f +Xk: xlA,x>Hf; (0, xo)),
1

since the orbit I"xq intersects 2 in |Hyp/ H | points, all with the same index. Thus, the
argument is, up to here, parallel to Theorem 2.2, except that one may have isotropy
subgroups H; with dim H/H; > 0.

If fis C! at xg, let D denote Df(xg). Then, we have seen in Lemma 7.2
of Chapter 1, that D is H-equivariant (and as such it has a block diagonal struc-
ture on fixed-point subspaces of subgroups of H and that, for K < H, then D =
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diag(D", D H, D' i), where D', ;. is complex self-adjoint). Furthermore, A;xo are

in ker D and orthogonal to Range D. In particular, if dim ker D = k, thenfor K < H,

the matrix D g is invertible and the algebraic multiplicity of 0 as eigenvalue of O is k.
We shall use this information in the following result

Theorem 3.1. Let I'xg be an isolated orbit of dimension k and isotropy H. Assume
that dimker Df (xo) = k. Then, the orthogonal index is well defined and is equal
to the product il(fﬂ(xﬁ); xo)il(DfL(xo))_(; 0), where H is the torus part of H
and Df| (x0) X is the linearization on (VI which is complex self-adjoint and H -
orthogonal. One has

i =dulFuli+ ) dulFgli+ ),  dglFglL,
H/H =7 H/giEZ2x-~~XZ2

with dy = n(—=1)"¥ , where ny is the number of negative eigenvalues of Df ¥ (xo),
and n = (—1)¥*+1/2 Sion det B, where B;j = nlj is given by the i-th-coordinate of
Ajxo, fori, j < k. Theinteger dy, = du ((—=1)""i —1)/2, where np, is the number of
negative eigenvalues of D ffi (x0) and d 7 is completely determined by dy and dp;.
Furthermore,

n—k

iL(DfL(0)X) = [FrlL + Y mini(K)[Fx 1L + Y Tnj(Kj)[Frg; 1,
s=2

where K; are the irreducible representations of H in (VE)L ie, H/K; = S' and
Df1 (xo), which is block-diagonal on these representations, has a complex Morse
number n(K;). In the second sum one has the product nin(K;)...n(K; ) with
dim H/K;, N---NK;, = s and n; = (=1)*¢~D/2Signdet B;, where B; corre-
sponds to the action of I' on s variables, defining the generator F;. For the first
sum n; = Sign B;. Finally, (Fu1L[Fk;1L = [FHnk;]L- If one takes normalized
generators Fj , F;éj then n = (—D*&*D/2 apd n; = (—1)s6=D/2,

Since the proof is involved, we shall break it up in several remarks and lemmas
together with some illustrative examples.

Remark 3.1. (a) The generators Fy, Fg;, Fk, are those of Theorem 6.1 in Chapter 3
such thatif K < H anddimI'/K = s > k, with Ax, ..., Asx linearly independent
in VK, then Fg (x) + Zsl AjAjx has index 1 in the fundamental cell and degree, with
respect to R® x By, equal to |[Ko/K |, where Ko < Hj corresponds to the isotropy of
s variables such that dim I'/ Ko = s. Thus, if s = k, one has Ko = Hy.

The generator Fx has an orientation factor ¢ designed to compensate the sign of
the determinant of the matrix given by Ay, ..., A; on those s coordinates. If one
uses the normalized generators F, of Proposition 6.2 in Chapter 3, then the terms
Sign det B; are not present.
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(b) In the product, fﬁ(XE) is T-orthogonal but Df| (xo)X is H-orthogonal
only. The term i) (Df| (x0)X) has to be interpreted as the sum in the formula.
We shall prove that f(x) is I'-orthogonally deformable to ( f&(x H), AX) where A
has the same Morse numbers as Df| (xg). Also, strictly speaking, we should have
written ) n}n}[F I/(j] | for each irreducible representation of I' on (V)L where

77;. = Sign B}, where B; is the non-zero coefficient of the action of 7" on a variable

in that representation and F}  is the associated generator, with A having n} terms
with —1 on variables with the same action of I". Now, when one takes the product
with [Fp, ], one obtains, for the same H; N K; = H; N K, subgroup of H, the sum
2 Frnk; 1L = nHiﬂK(Zn})[FH,ﬂK]J_» with } S n’; = n(K) and npng = 1if
one has chosen normalized generators. In this context it is important to recall that one
has to assimilate complex conjugate representations of H, since, as seen in Remark
5.3 of Chapter 1, they are the same real representations. Thus, if H acts as ¢/¢ on
X =(x1,...,xs)andase ™ onY = (»1, ..., ), coordinates of X, it may happen
that Df) (xo) has a block-diagonal form on (X, Y), with complex Morse numbers
ny and ny. Then the ng of the theorem is ny + ny. Note also that if the complex
self-adjoint matrix 4 = A 4 iB has an eigenvector X 4 iY, with real eigenvalue

> has eigenvectors (X, Y) and (-7, X), i.e., the real

B A
Morse number is twice the complex Morse number (see Lemma 7.2 of Chapter 1).

A, then the real matrix

(c) The numbers d j; are given in terms of dy and dp;, as in the proof of Theo-

rem 2.3. If H actson VK N (VH )L as Zy,, m > 3, then the algebraic multiplicity of
any real eigenvalue is even: See Remark 2.2.

Lemma 3.1. iL(fﬂ(xﬁ)) is given by the formula of Theorem 3.1.
Proof. As seen above one has

[FE = > dilFlL,

H<H;<H

where

k
ig, = Index((f + Y MAX)T: O.x0) = Y djIH/Hj|.
1 H,ijfH

Now, (0, xo) is H-hyperbolic for the map I — F = f(x) + Zlf M A;x, since its
linearization with respect to x at (0, xg) is D f (xp) with a k-dimensional kernel, while
its linearization with respect to A is the matrix A with columns given by A;xg which
are linearly independent and orthogonal to Range D f (xg): see Definition 2.2. Hence,
from Theorem 2.4, one has

ig =n(=D", igx=ig(—1)"%,
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for H < K < H and n', is the number of eigenvalues of FXH (0, x0) = I — DfH (x0)
which are larger than or equal to 1, that is the number of non-positive eigenvalues of
DfH (x0), while n g corresponds to eigenvalues of FXJ-K =1—- fo (xp),andn = £1
is an orientation factor which depends on the matrix A. According to Theorem 2.4,
one has

n = (—=1)*®+D/2 Sjon det A Sign det B,

where A is given in Lemma 2.3, as the projection of F; onker(I — F,)”. Here, since
the algebraic multiplicity of 0 as eigenvalue of D is k, one has ker(/ — Fy)” = ker D,
generated by Ajxg, ..., Agxg. Furthermore, F,\j = —Ajxo, thus, A = —1I. Then,
Signdet A = (—l)k and, since "}1 = ngy + k, one has

in = (—D)FKEFED/2 §on det B(—1)"7 .
Thus, Corollary 2.2 gives the result. O

Before computing dx for K with dim H/K > 0, let us look at some examples.

Example 3.1. Let Z; act on y as antipodal map and S! act on z as ¢!#. Then, the map
f(y,2) = (—=y, (z]? = Dz) is ['-orthogonal with respect to I' = Z; X S!. One has
the isolated zero-orbit, y = 0, |z| = 1 with H = Z, and K = {e}. Furthermore,

-1 0 O
Df(y=0,z=1)=[ 0 2 0
0 0 O

00
Thus, iy = —1 and ix = 1, which coincides with the index of the map (A, x) —
(x)> = Dx + ixx. Note that f = V®, with ®(y, z) = —y?/2 + (|z|*/2 — D)|z]?/2.

with (2 O) corresponding to DfH(0,1). Hence, ng = 0,k = 1and B = 1.

Example 3.2. LetI" = St acton (z1, 22) by (€71, €%%7,) and let

@ = fo(z) — AMz)Az,

with fo(z) = (2271, (1221* — Dz2), Az = (iz1,2iz2) and A(z) = fo(z) - Az/|Az|>.
Recall, from Definition 7.1 of Chapter 1, that the scalar product is the real scalar
product,i.e.,if f =a+iband g =c+id, then f-g =ac+ bd = Re(fg). Hence,
A(z) isreal and A(z) = i(Zzz% - zzZ%)/(Iml2 +4|z2/%).

Clearly f(z) is I'-orthogonal and the zeros of f(z) are (z1,0) and (0, |z2] = 1).
20
00
to compute the index of f(z) + AAz at A = 0,z; = 0,z = 1, for z; in R, by
deforming A(z) to 0, getting iy = —1 and ix = 1 with H = Z; and K = {e}. Here,

k=1,B=2,ng =0andng = 1since Df; (0, 1) = ((1) _01) corresponding to 7.

This second set is an isolated orbit for which Df# (0, 1) = ( . It is then easy



250 4 Equivariant Degree and Applications

Example 3.3. If f is in normal form, then fL(xH,xL) = x for |x| | < &, then
DfL(xo, 0) =Idandig =iy forany K < H. Inthis case dy = iy and dx = 0 for
H < K < H. By choosing 2 contained in the set where |x| | < &, one has that f+
acts as a suspension and Index | (f; xo) = dy[Fr]..-

‘We may now go on to the next step of the proof of Theorem 3.1.

Lemma 3.2. In Q, the map f(x) is I'-orthogonally deformable to (fi(xg), AX),
where A is the diagonalization of Df | (x0)|(yuy1, hence with the same Morse number.

Proof. Recall that one may reparametrize the torus 7" in I' in such a way that H
corresponds to Yy = --- = Y = 0, [27], and that Y4, ..., ¥, act trivially on
VH: see Lemma 2.4 and Remark 2.1 in Chapter 1. Take then the orthonormal A ()
constructed in Theorem 7.1 of Chapter 1, starting the orthogonalization process from
J = n,ie.,inreverse order. Then, for j > k,onehas Ajxy = Oand Aj (x)isin (VE)L
and orthogonal to Dy, f| (xg)x, since this matrix is H-orthogonal: the infinitesimal
generators for the action of H are the derivatives with respect to Y41, ..., ¥y. For
Jj=1,...,kdefine ~
3j () = Dy f1(em)xy - Aj(),

and define, as in Theorem 7.1 of Chapter 1, the I"-equivariant map

k
FL@) =Dy, frlemxs — Y A (0)A; ().
1

The I'-equivariance follows from Property 3.3 of Chapter 1 and the fact that x g is left
as a variable. Furthermore, f) (x) is [-orthogonal. From Lemma 7.5 of Chapter 1,
one has, for j < k, that A;(x) = A;(xy) + O(x1) and, since A; (xy) isin V#, while
the matrix Dy, f| (xg) maps into (VH)L one has that Aj(x) = 0(lx 1 [?).

Consider then the I'-orthogonal homotopy

(R, txn), ofL(xm, Txn) + (1= ©2) fL(x),

on the tubular neighborhood of the orbit I"x(p, which may be taken of the form Q =
{(xg,x1) : dist(xyg, I'xg) < n, |x1| < €}. Since the homotopy reduces, for x; = 0,
to (f H(xy,0), 0) which is non-zero on the boundary of €2 (since I"xg is isolated), one
may choose ¢ so small that the second component is non-zero for |x, | = ¢: in fact,
by linearizing | (xg, Tx ), one has the approximation Dy, f1 (xg)x1 + 20(x )+
(1— ‘c2)0(|xL |3) and since D, , f1 (I'xp) is invertible, one may choose 1 so small that
Dy, fi(xg) is invertible in €.

Now, Dy, fi(xp) has the form diag(B(xg), B(xp)), where B is complex self-
adjoint and has a block diagonal structure on the equivalent irreducible representations
of H. On each block, B(xg) is similar to a diagonal real matrix A (xgy) with a well-
defined Morse index ng which is constant in Q¥ since B(xy) is invertible there.
Furthermore, if v is an eigenvector of B(xy) then, from Property 3.3 of Chapter 1,

B(yxm)y =y B(xn)
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and yv is an eigenvector of B(yxy) with the same eigenvalue. Hence, if B(xy) =
U(xg) Axg)U*(xg), with U unitary, then U(yxg) = yUxg)y™, Alyxyg) =
yA(xp)y* = A(xg) will diagonalize B(yxp) since A and y are diagonal, hence
commute. Note that U(xpy) is continuous in xg if the eigenvalues of B(xq) are
simple. In general, for xy close to xp and in Cg, the fundamental cell for H, define
U(xH) = U(xp) and U(ny) = yU(xg)y™ (yxg is not in Cy by construction).
Let A(xp) = U*(xp)B(xp)U(xp), and A(yxp) = yA(xp)y*. Then, A(yxn)
is close to A(xp), for xy close to xg, but not necessarily diagonal. Now, the space
of unitary complex matrices is path-connected, hence one may choose a path Uy (xq)
from U (xg) to I, hence a path from 0()/)61-]) to I and from B(xy) to A(xg), which
is linearly deformable to A(xp) = A. By modifying A;(x) along the deformations,
one obtains an equivariant I"-orthogonal homotopy to

k
FHxem), Bem)X, AX) =Y 30 A;(x),
1

where x| is written as X + X. Now, since A is real and diagonal, it is orthogonal
to Ajx for all j and to the corresponding components of Aj (x), hence ):j x) =
Bxp)X - Aj(x). Since AX - Aj(x) = 0, one may deform X to 0 in )Lj(x)fij (x) and
still get a I"-orthogonal homotopy. Hence, one has arrived at the map

k
(FHem), Bem) X, AX) =Y hj(xm) Aj(xn).
1

Since A j(xg) are in VEH by letting X = 0, one has a I'-orthogonal homotopy of
the last map restricted to V& to fH(x H), that is a I"-orthogonal homotopy of f(x)
to (f Hx H)» AX). Note that, if one had linearized f at xg, instead of xy, then the
matrix Dfy (xg) would be H-equivariant and would give larger blocks, however the
final result would be the same. O

Since (fH2(x H), AX) is a product, Theorem 3.1 will be essentially proved once
the orthogonal index of AX at 0 is computed.

Lemma 3.3. The orthogonal index of AX at 0 is given by

i (AX) =[Frl. + Z ninilFg; 1L + Z ’7j<l_[”ji>[FKn”“'”st]i’

s>1 i=1

where the first sum is over all K; isotropy subgroups of the coordinates of X, n j is
the number of these coordinates for which A is negative and the second sum is over
those K; = Kj, N ---N K;, intersection of s of the previous isotropy subgroups for
whichdim I'/K; = 5. The orientation factor n; is (— 1)$6=D/2 Sjgn det Bj, where B;
corresponds to the invertible matrix of the action of " on these s coordinates.
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Proof. 1t is clear that A may be deformed to blocks of the form (—1, ), where one
deforms linearly each eigenvalue to —1 or 1 according to its sign. The /-part acts as
a suspension and does not affect the degree while, on a ball of the form {z, ..., zs :
|z;j] < 2}, one may change any —z; to (1 — |z;|*)z; and one gets the sum of the degrees

onsetsof the form {zy, ..., z; : |zj] < %;Zl+1,...,: % < lzi4jl < 2}. For|zj| < 1/2,
one may deform back to z; and obtain a suspension. Hence, one is reduced to compute
the orthogonal degree on sets of the form Q = {z1,...,z : 1/2 < |z;| < 2} of the

map (..., (1 — |Zj|2)Zj, ...). Let H; be the isotropy subgroup of z; (by construction
I'/H; = SYandlet K = ﬂll H; withdim I'/ K = s and let K be the intersection of s
of the Hj suchthatdim I'/ Ky = s, say the first s variables. Then, from Proposition 6.1
in Chapter 3, the orthogonal degree with respect to Qis given by

[Flo= Y dlFlL

K<Kj<Ko

where, since K = K, the d; are given by the relations

N

deg([(1=lz1P)zr, o, A=+ Y Al s QF ) = 3 djIKo/K;l,
1 Ki<Kj<Kp

as amap defined on {Ay, ..., A5, 21 > 0,...,2 >0,z € Qf"} and where Az, ...,

Agz are the s linearly independent vector fields. Since on < all Zj are non-zero, it
follows that the degree on the left is 0, except for K; = K.

For K, since Az, ..., Az, restricted to VKo, are linearly independent, one may
deform Agz; to O, for j > s, if of course s < [. In this case one may add itz; to
A — |z, giving a non-zero map in Q. Hence, if s < [, all d; are 0.

The only case left is when s = [, K = Ky, where one has to compare the indices
of the following two maps

S
Fr,(h,2) = (2t +1=2]Tlzil fg; (121> = Dz ;:1) + Y MAiz
1

S
F(h2) = (2t +202) — 1L{(1 = |z1D)z)—)) + D Az,
1

where g1 = - .- = g,_1 = 1 and &; is chosen in such a way that the index of F,|p, at
Aj=0,z; =landt = 1/21is 1: see Theorem 6.1 of Chapter 3. On the other hand,
@(z) is 1 if one of the z; has norm less that 1/4 and is O if all z; have norm larger than
1/2.

For z; all real and positive, one may easily deform the first map to

(2 = 1ej = D +i Y i)
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and the second map is deformed to

(2r =112+ nnf).

The degree of the first map is &5(—1)*¢+1/2 Sign det B; = 1 (determining &), while
the degree of the second map is (—=1)5(=1)s6+D/2 Signdet By = (—1)%gs (here By is
the s x s matrix given by n,]C of the action of " on z1, ..., z5). Thus,

dx, = (—1)’eg and [F1| = dg,[Fk,]lL.

When s = 0, the only contribution is from the set where all z’s are small, giving the
generator FT = (2t — 1, X). While, for s = 1, i.e., with only one z;, we may collect
all sets giving the same F;, i.e., with the same action of T', giving a total contribution

of —njej, where g; = —Signn{ (if A1z; # 0) and n; is the number of sets, i.e.,
of coordinates with the same K; and where A is —1. In terms of the normalized
generators of Proposition 6.2 of Chapter 3, one has [F]| = dg, Sign det BS[FI"QO] 1,
i.e.,

[Flo = (=D D2[Fg 1L

In particular, for coordinates with the same action of I', one obtains the sum of
the contributions. Furthermore, as seen in Proposition 6.3 of Chapter 3, on conjugate
representations one has the same normalized generator. For s > 1, one has to collect
all sets with exactly s coordinates (s = /) and the same isotropy K; = K;, N---NKj,

with dimI'/K; = s. Since dimI'/Kj, = 1 one cannot have two coordinates with
the same isotropy and, if K; is as above, one will have nj, ...n; sets with the same
contribution. Note that here s < n. O

Proof of Theorem 3.1. It is enough to use the formula for the product given in Propo-
sition 7.7 of Chapter 3. Here, 151{) = Hp and I;IZO =H =KjorK; Nn---NKj.
Since Ajx = 0 for j > k and x in VA the condition dim(I"/(H; N Kj) =k+s
implies that one has to take into account only those K;’s for which there are s among
Ajy1x, ..., Ayx which are linearly independent on the s coordinates of (VAL By
construction of V& this is clearly true for s = 1 and any coordinate of (VE)L . Further-
more, if x1, . . ., x; are the coordinates of V 7o defining the matrix B, and ifxi, e X
are the coordinates of (V)<L defining B;, with the vectors A;y1x, ..., Ajysx (for

. . . . (B 0
instance), then on the union of those k + s coordinates one has the matrix ( c B-) .
j

Since B and B; may be deformed to diag(e, I) and diag(/;, I), the above matrix has
a determinant with sign equal to ¢ ;.

Now, |Ho/H;| = [k in the decomposition of I'/H; on coordinates of VHi
Then, for |[Hy N K;/H; N K|, one has the same product, by ordering the coordinates
of VHiNK; by taking first (xy, ..., x¢), then the rest of VHi  then (xi, ..., Xx;) and
finally any other coordinate. One will get the decomposition

I'/H; " K; = (I'/Ho)(Ho/ H;)(H;/H; N K}).
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Since Aj11x, ..., Ajsx are linearly independent on (x{, ..., x{), one has that the
k;’s for these s variables are oo and k; = 1 for any other coordinate in the tail. Thus,

[Fr,1L[Fk;11L = [Fank; 11

Furthermore, from the above argument for e¢;, this equality is also true for nor-
malized generators. Note that one may have several K;’s giving the same H; N K
and their contributions have to be summed according to Propositions 6.2 and 6.3 of
Chapter 3, with a direct sum if one takes normalized generators. In particular, since
H; < H, the K;’s coming from equivalent H -representations in (VE)L give the
same H; N K; = H; N K, with ) n; = n(K), the Morse number of Df| (xp) on
(VE)L N VK. For K; = Kj, N--- N Kj,, the count of the sets of Lemma 3.3 gives
[Ti_; n(Kj,) sets. O

Remark 3.2. Another way to prove Theorem 3.1 is the following: since one has
Ajxy = 0forl > k, consider the map

k
FOL ) = Q)+ MAxy,
1

on RF x Q, i.e., with x1, ..., x; real and positive. Itis c~lear that f is H-equivariant
(in fact it is Hp-equivariant) and, since the projection of f on (VE)L is that of f with
@1 =--- = = 0for H, the map f is in fact H-orthogonal. As in Lemma 3.2, one

may prove that fis H -orthogonally homotopic to

k

(f2(xp) + ZMAZXQ, Bi(x@) X1, ...\ Bu(xg)Xm),
1

where B; are the blocks of Df), on (VE)L In fact, in this case one does not need to or-
thogonalize the linearization. As before, each block may be deformed to diag(—1;, I),
where I; has the dimension of the Morse number of B;(xp). One may replace —I; X
by terms of the form (1 — |z; |2)zj, as in Lemma 3.3, and compute the sum of the
H -orthogonal degrees on the different sets, arriving at

Index 1 (/5 (0,00) = Y di[F{l.,

where the djf are given by the same formula as the d;’s: in fact, for f H the formula of
Proposition 6.1 of Chapter 3 gives this result. However, the problem is to show that the
homotopy of H-orthogonal maps lifts to a homotopy of I'-orthogonal maps and that
F; '=F + Zlf AMA;xg: see Remark 3.2 of Chapter 3 and the proof of Theorem 3.4
in that Chapter. This operation may be done but it is delicate: it requires to prove a
different version of Lemma 1.1 in Chapter 3 and to examine carefully the generators.
We leave this task to the reader.
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Let us consider a particular case of Theorem 3.1, that of a I"-orthogonal linear
map, which is useful for bifurcation.

Corollary 3.1. Assume that B is an invertible T-orthogonal matrix. Hence,
B = diag(BF, B}R, By, Bj), where B}R stands for B restricted on a set of real co-
ordinates, each with the same isotropy H; with |I'/H;| = 2, while By stands for B on
coordinates with action of " as Zy,,m > 3, and B; = Bj* stands for B on complex
coordinates with the same isotropy K; with dimI'/K; = 1. Let o9 = Signdet BT,
o; = Signdet BIR and n;j be the complex Morse number of Bj. Then

i1 (Bx) = (=1)% ([FF]J_ + ZF/HI_;ZZ W[F:I,-]J— 4+ .. >
x([FP:]L + Zr/Kjgsl nj[Fk*j]J_ + .. .>’

where the unspecified terms are completely determined by oy, o, n; and are given in
Theorem 3.1.

Proof. Here, k = 0, s = 1 and since we have chosen the normalized generators, there
are no more signs to take into account. O

Example 3.4 (Bifurcation). Assume that one has a family f (A, x) of I'-orthogonal
C! maps, with f(1,0) = 0,2 € R, x € V. As seen in Lemma 7.2 of Chapter 1, if
one writes

f(, x) =BMx + R(A, x),

where B(A) = Df (X, 0), then B(A)x and R(A, x) are ["-orthogonal and B(A) has the
structure given in Corollary 3.1.

Assume B(A) is invertible for A # 0 in a neighborhood of 0, then, as seen in
Theorem 5.2 of Chapter 2, deg | (|x| — &, f (X, x); By, X By) is well defined, where
By, = {A 1 |A] < 2p} and By, = {x : |x| < 2¢}. Furthermore, one may deform
linearly R to O (this is an orthogonal deformation). Then

deg, ((Ix| — &, B(W)x); Bap x Bye) = deg, ((p° — A%, B(A)x); Ba, X Bae)

will give the standard results on local and global bifurcation.
For the case of one parameter, the above degree is

Index | (B(—p)x) — Index | (B(p)x),

see Corollary 5.1 in Chapter 2. Hence, one has to compare the orthogonal indices at
0 of B(xp)x given in Corollary 3.1.

Proposition 3.1. Ler (A, x) be C'-orthogonal, with f(x,0) = 0 and Df(x,0)
invertible for & % 0 small. Let

oo(A) = Sign det Dfr(k, 0), o;(A) = Signdet foi (A, 0),



256 4 Equivariant Degree and Applications

for H; such that '/ H; = Z, and nj (L) be the complex Morse number of fo" 2, 0)
for K isotropy of a coordinate suchthatT'/K; = § L. Then one has global bifurcation,
i.e., there is a continuum of non-trivial solutions emanating from (0, 0) which is either
unbounded or returns to (A, 0) with A #£ 0:

e invl, if oo (L) changes sign, or
o in VHi if 6;(\) changes sign, or
o in VK, if nj (L) changes.

Furthermore, if the continuum is bounded and the bifurcation points on it are iso-
lated, then the sum of the jumps of the orthogonal indices is 0. Finally, if og(L), o; (X)
and nj(A) don’t change, then there is an orthogonal nonlinearity Ié()», x) such that
Df(A,0)x + Ié(k, x) is zero only at x = 0.

Proof. The first part is a direct consequence of Theorem 5.2 in Chapter 2. For the last
part, the construction of R, we refer to [[.V. 3, Theorem 5.2]. O

Remark 3.3. (a) The case of more parameters is treated in [I] and [IV3]. In that case
the real and complex Bott periodicity theorems play a major role.

() If f(A, x) = Ve(A, x), then the change in the Morse number is sufficient to
guarantee local bifurcation, even in the non-equivariant case. However one does not
get a continuum. See the bibliographical remarks at the end of this chapter.

(c) If ij (A) = AB, then n; changes provided B has a non-zero signature, for
example if B = 1.

(d) For the correct application of Proposition 3.1 it is important to assimilate com-
plex conjugate representations (they are the same as real representations) as the fol-
lowing example shows: Let S act on C? as (¢!#z;, e '¥z5). Consider the orthogonal
I"-map

f(A,2) = (Az1 + 122, —Az2 + £21),

witht = |z1|>+|z2|?. Since Az = i(z1, —z2), one has f(A, z)- Az = Re(f, Az) = 0.

Taking the conjugate of the second component, one has that (A, z) = 0 if and only

if (); t}\) (§1> = 0, i.e., the map has no zeros except z; = zo = 0, that is there
- 2

is no bifurcation. When A goes through 0, the Morse number for z; goes from 1 to 0

and that for z; goes from O to 1, but their sum remains constant.

Example 3.5 (Periodic solutions of Hamiltonian systems). As an illustration of the
preceding results, we shall consider the problem of finding 27 -periodic solutions of
Hamiltonian systems of first and second order.

For first order systems, one looks at

FX)=JX +VH(X) =0,
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where X = (Y, Z) is in R?V, J is the standard symplectic matrix and H is C2. Note
that by rescaling time, there is no loss of generality when one looks for 27 -periodic
solutions instead of a fixed period T'.

Assume that the abelian group Iy acts symplectically on R?V | i.e., it commutes
with J or, if X = (Y, Z), with Y and Z in R", then the action on Y and Z is the same.
Assume also that H is ['g-invariant and autonomous. Then, if ' = S! x 'y acts on
spaces of 27 -periodic functions with values in R?Y and S! acts by time translation,
we have seen, in Proposition 9.1 of Chapter 1, that f(X) is I"-orthogonal with respect
to the L>(S") scalar product. Here the infinitesimal generators for I’ willbe AX = X’
for the action of S! and AjX,j=1,...,n=RankIy.

For the second order Hamiltonian equation

E(XX)=—-X"+VV(X) =0,

for X in RV and a C? potential V' which is ['g-invariant, one has that E(X) is I'-
orthogonal with respect to the L>(S') scalar product (Proposition 9.2 in Chapter 1),
with infinitesimal generators AX = X', A iX,j=1,...,n.

In order to apply the orthogonal degree, we shall assume that there is an open
bounded subset Q of R2V (or RY) invariant under Ty such that any 2m-periodic
solution cannot touch <2 at any time. Then, as in Remark 2.3, one defines

Q={XeW:|X|lw<R,X@¢) e},

where W = H'(S") in the first case and H2(S!) for the second order system, and R
is chosen so large that any periodic solution in  has || X|lw < R/2, since VH and
V'V are bounded on € and X (¢) is continuous (or C1) in W. However, the orthogonal
degree has been defined here only for finite dimensional spaces and the extension to
infinite dimensional spaces requires either modifying the equations and/or working
with intermediate spaces like H 1/2 (S 1), and many technical difficulties: for instance
the operator AX is a Fredholm operator only from H! into L. Furthermore, the
compactness assumptions which we have used in order to define the I'-degree in
infinite dimensions imply that almost all the components of the degree should be 0:
this is a result of the suspension isomorphism. However, if one takes VH (X) = BX
for a constant matrix B, then the complex Morse index of inJ + B is N for large n.
Then, one could look at differences of degrees or differences with respect to a fixed
reference map like J X’. However, it is simpler to use the fact that one has a large ball
in W and, as in Remark 9.2 of Chapter 1, decompose W, writing any X as X| & X»,
where X; = P X corresponds to modes n, with |n| < Np and X» to the others. Then,
solving for X as a function of X1, by the global implicit theorem, one is lead to the
study of the reduced equation

JX|+ PVH(X + X2(X1)) =0,

which is I"-orthogonal and inherits the gradient structure, for X in the finite dimen-
sional space PW. One may then study deg, (Pf (X1 4+ X2(X1); P2). Of course
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the price one has to pay is that it will be necessary to see how the spectrum of the
linearization depends on Nj.

Assume then that I' X is an isolated solution of the Hamiltonian system f(X),
i.e., an orbit of dimension k with ker Df(X() of dimension k and generated by
X (1), AjXo(r) with exactly k of them linearly independent. Let H be the isotropy
of Xg. One will be able to apply Theorem 3.1 provided one identifies H and one
computes ny, ny; and n(K;) for the reduced equation and for all N;’s large enough.

Remark 3.4. The hyperbolic condition on Df(X() prevents it to commute with J,
unless k = 0. In fact, if this would be the case, then if V belongs to ker Df (X¢) so
does JV which has thus to be a real combination of X 6 and A; Xo.

But, from Proposition 9.1 of Chapter 1, J X|, is I'-orthogonal with respect to the
L?-scalar product, i.e., it is orthogonal to X and A;Xo. This is possible only if X
is constant. In that case, the relation JA; Xo = ij:l AjAjXo, with Xo = (Yo, Zo)
leads, for a pair of coordinates (y;, z;), with the same action of I'g, to

k

—niz; = (ijn})yi
)
k

nyyi = (ijn;.)zi.
1

Thus, either y; = z; = 0 or ni1 and Zf‘ )\jnj. = 0. Then, if £k > 0, X is non zero
and one arrives at a contradiction. Note that one may have pieces of Df (X() which
commute with J.

Now, we have seen in §9 of Chapter 1 that Xo may be of three different types: a
time stationary solution, a rotating wave or a truly time periodic solution.

(a) Stationary solution. If Xy is time stationary, then H = S x Hy, with Hy < Ty
such that dimI'g/Hy = k and H = sl x n—k, Thus, V& is contained in RzN,
the space of constant functions, B = Df(Xg) has the form diag(BH , B}S, BZ(C, B;C),
where, on each B, the group H acts as Z, on the complex B; as Zp, p > 3, and
on the complex By as S!. Since B = D?*H (Xp), each of these matrices is self-
adjoint. Furthermore, B; is complex self-adjoint and H -orthogonal. Note that since
J commutes with I'g, J has also a diagonal structure diag(Jg, Ji, Ji, Js), each piece
coupling a pair of coordinates. The hyperbolicity condition means that ker B has
dimension k, that B,,, B; and Bj are all invertible and that, for n # 0, in J 4+ B is
invertible. One has the following result.

Proposition 3.2. For a stationary hyperbolic orbit, the orthogonal index is given by
(@) dg = n(—=1D)"#, with ny the Morse number ofBH andn = (—1)kk+D/2.

(b) dp; = dp ((—1)" — 1)/2, with (—1)" = Sign det BF,
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(c) the Morse index of inJ + B where Bis any of the matrices B, B,;lf, Bl(C or B;C,
for the mode n > 0 and the decomposition of C*N (induced by that of R*N)
into irreducible representations of H ;

(d) the Morse index of BC.

Proof. As seen above, the index we have to compute is that of the projection on the
modes n with |n| < Nj for Ny large enough, that is

(ind + B)X, + gn(Xl +52(X1)) =0,

where X | corresponds to these modes. As in Theorem 3.1, one has to look at the index
of BEZX, + gtH(X ) and that of (inJ + B)X,, for n # 0. Now, if X = X in VX,
since in J + B are all invertible for n # 0, one has X,(Xy) = 0. This gives (a) and
(b). The rest of the proof comes from Corollary 3.1. O

Remark 3.5. (a)Since B = D*H (Xo) = BT isareal self-adjoint matrix and in J+ B
is complex self-adjoint, this last matrix has real spectrum. Furthermore, if X is an
eigenvectorin C*N of inJ + B, with eigenvalue A, then X is an eigenvector of —inJ +B
with the same eigenvalue A. Hence, the Morse index of in J + Bis equal to the Morse
index of —inJ + B. Since one has to assimilate conjugate representations, the Morse
index of Corollary 3.1, is, for n # 0, twice the Morse index of inJ + B. For B;C,
which has a complex structure and is complex self-adjoint, its complex Morse index
is half its real Morse index, as seen in Remark 3.1. (b).

(b) If one has a family of Hamiltonians f (A, X), with f(X, Xo) = 0 for some
stationary X, which is hyperbolic for A; and A;, then, if any of the above numbers
change, one has a global bifurcation in the interval from A to A,. This bifurcation
will take place in VX, where K < H is any of the isotropy subgroups for which dg
has changed and VX is characterized in Lemmas 9.4-9.6 in Chapter 1. In particular,
if there is no bifurcation in VZ, then one has a bifurcation from a k-torus ' X to
a (k 4+ 1)-torus, either stationary if the Morse index of B;C has changed, or, if there
is no bifurcation of stationary solutions, to a time-periodic solution, i.e., a pulsating
k-torus.

(c) If J commutes with BJR, then n; is even and de = 0. More generally,

if J commutes with B, then one may decompose the space into two-dimensional
subspaces, invariant under J, (Xy, JX;) corresponding to the eigenvalue A; of B
with two eigenvectors, orthogonal between them. The eigenvalues of in J + B on
this subspace are Ay £ n and the Morse number of in J + B is (a(n) + a(—n))/2,
where a(n) is the number of eigenvalues of B which are less that n: recall that, since
B = D?H(X() = BT, the spectrum of B is real and that a(n) is even. In particular,
if n is very large (larger that || B||), then a(n) = 2N and a(—n) = 0.

(d) For the system — X" 4+VV(X) = 0, with B = D2V(X0) then the Morse index
of n2I + B is a(—n?), the number of eigenvalues of B which are less that —n>. Part
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(a) of these remarks apply here. Note that, for the system X' = —Y, Y’ = VV(X),
then J commutes with D%(V (X) + ||Y||2/2) onlyif B=1.

(b) Reduction to the stationary case. Assume that X is a rotating wave, i.e., that X 6
is a linear combination of the A; X(’s. Then, we have seen in Case 9.2 of Chapter 1
that there is a moving coordinates change of variables A(¢) suchthat Y (1) = A(¢) X (¢)
satisfies the equivalent systems

JY — JA(0)Y + VH(Y) =0,
—Y" — A0)’Y + 24 (0)Y' + VV(Y) =0,

which are I'-orthogonal and Yo(t) = A(#)Xo(¢) is constant in time, i.e., one has
frozen the rotating wave. See Remark 9.3 of Chapter 1 for the form of A(¢). Then,
if B = D2H(Yy), respectively D2V (Yy), with VH (Yy) = JA'(0)Y, respectively
VV (Yy) = A’(0)2Y), one has to look at the Morse numbers of

inJ — JA'(0) + B, n’I +2inA’(0) — A'(0)* + B,
respectively, where B is one of the pieces of B due to the action of I'y.

(c) Truly periodic solutions. Assume that X isa (27 / p)-periodic hyperbolic solution
of any of the above Hamiltonian systems, with isotropy H and dimI'/H = k, such
that X{;, A1 Xo, ..., Ax—1Xo are linearly independent. One has that H = Z, x Hy, the
torus part of H is H = H, VH = (X (1) € Vo = (RV)Ho}. Furthermore, according
to Lemmas 9.4-9.6 of Chapter 1, one has

VH = (X (1) € Vg, 2/ p)-periodic, X (1) = yoX (¢ + 27/9))},

where y(;”’ is in Hy and ¢ = pqo. See Example 2.11.
Also, for each K;, with H/K; = Z,, one has a subgroup Ky j of Hp such that

Hy/Koj = Zp or Hy = Ko with V; = VOKOj = VjJr ® Vj_ where ygo acts as =1d on
Vji and VOH0 = V/.+ if and only if Vj_ = {0}. Then,

VK = (X (r) € V}, 27-periodic, X (1) = y§ X (t +47/q)}.

Finally, for each set of equivalent irreducible representations V; of Hy in VOJ-,
with complex coordinates X 0 ..., X" and action of o on X J as €2™i% then for each
ng =0, ..., q — 1, there is a different set of equivalent irreducible representations of
H, with isotropy K, in (VE)L and

VEi = (X (1) = (X°(0), ..., X" (1)), R-2n(ne/q+a) Yo X/ (t +27/q) = X7 (1)},

when R, is a rotation of angle ¢ of the coordinates of X/. A complete description of
V&no is given in Lemma 9.6 of Chapter 1.



4.3 T-Index for an orthogonal map 261

Let B(r) = D*H (X(r)) whichis symmetric, (277 / p)-periodic and Hy-equivariant
for each ¢. Furthermore, as in Lemma 2.4, one has

B(t) = diag(Bo(t), B;(t), Bi(1)),
where By corresponds to VOHO, BjtoV; or (V;’) N (VOI%)L and B to V. Furthermore,
YoB(t +2n/q) = B(t)yo.

Now, recall that LX = JX’ + B(t)X is a bounded Fredholm operator of index
0, from H'(S!) into L2(S') and self-adjoint on L?(S'), with kernel generated by
(X}, A1Xo, ..., Ak—1Xo}. (For —X” + B(t)X the domain is H>(S!)).
Hence, one has the decompositions
Hl(Sl) = ker L @ Range L N H!
Lz(Sl) = ker L @ Range L,
where this last decomposition is L?-orthogonal, and one has a bounded pseudo-inverse
K from Range L onto Range L N H'.
Furthermore, the reduction to finite dimensions, on Vy, generated by all modes n

with |n| < Ny, is done by using the implicit function theorem on the higher modes to
solve the equation

JXy, + I — Py)VH(Xy, + X)) =0,
for X, in V]ﬂ,-l and reduce to
IXj, + Py VHXy, + Xy, (Xnp) =0,

which is a finite dimensional I"-orthogonal map. It is not difficult to see that the
linearization of this last equation is of the form

Ly, Xy, = J X}y, + Py BO)(Xn, + Xn) =0,
where X N, 1s the unique solution, for Ny large enough, in Vﬁl of the equation
Ly, Xy, = JX}y, + I = Py)BM)(Xy, + Xy,) = 0.

Thus, [|Xnll1 < CIXnllo and [ Xnllo < [ Xw; 1/N1, where C depends only on
sup | B(¢)|, defining a continuous operator Xy, (Xy,) into H Lesh.

Lemma 3.4. If Ny is large enough, the operator Ly, is self-adjoint, with ker Ly, =
Py, (ker L) of dimension k and Range Ly, = Range L N Vy,. The pseudo-inverse
KN1 OfLN1 is PNIKPle with ||KN1 I < IK].
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Proof. One may use the gradient structure of the linearization of the reduction, or see
directly that

(L XNy ZN) 2 — (XN Ly Zny) 2 = (BXy,. Zn,) — (X, BZy,)
= (X.BZn,) — (Xy,. B2),

using the symmetry of B. But, since Jf(;vl = —(I — Py,)BX, then
(JXN\,. Zn) = —(BX. Zy,) = (Xn,. JZ}y)) = —(BZ., Xy)).
Then, the above difference is (Z, BX) — (X, BZ) = 0. Since
LXZLleNl@Z/Nl)?Nl, X=XN1@)~(N1,

where L N X ~, = 01n the definition of Ly, , then clearly ker L, = Py, (ker L) with
dimker Ly, < k, equality coming from linear 1ndependence and the definition of
Ly, . Furthermore, if Ly, Xy, = Zy, then L(Xy, + Xn,) = Zy, and Range Ly, =
Range LNVy,. From LKZ = Z,for Z = Zy, in Vy,, one has that Ky, = Py, K Py,
and, as operator from L? into H', one has IKn, |l < IK|land Ly, Ky, = IdVNl‘ O

Note that, if P is the projection onto ker L and I — P that on Range L, one has
that Py, P will map onto ker L y,.

Now, since the inclusion of H' in L? is compact, the operator L — A[ is also
a Fredholm operator of index 0, from H I into L2, self-adjoint in L? and K , as an
operator from L% into L2, is compact. Hence, the spectrum of L, o (L), is discrete.

Recall that J X' is strongly indefinite, i.e., its spectrum goes to +oo, while —X"”
is an elliptic operator which is non-negative.

Lemma 3.5. Let K be a compact interval in R. Then:
@ Ifo(L)yNK = ¢, theno(Ln,) N K = ¢ for Ny large enough.
d) Ifo(L)NK = Agwithdimker(L —Agl) =d < 2N, thenfor Ny large enough

o (Ly,) N K has d eigenvalues (counted with multiplicity).

Proof. Assume A isnotino (L), let K, be the inverse of L — A7, then ||(L — A1) X|lo >
1K I X = 1Kl = 1 X [lo. If X, is defined by Ly, X, = 0, then one has

(L —AD (XN, + X§y) = (Ly, — A Xn, — AXp,
Thus, one gets the estimate
1Ly, =D XN, llo = 1K I X o= M1 X, o = (K&~ = CIA/NDI X, llo-

Hence, for Ny large enough, A is not in o (L, ). For the compact set X, it is easy to
see that one will get an upper bound for || K, || on K and Ly, — Al will be invertible,
for all A in K, provided N is large enough.



4.3 T-Index for an orthogonal map 263

For (b), write
(Ln, —ADXn, = (L — 2oD)(Xn, + Xnp) + (ko — DXy, + 20X,

and treat this problem as a (linear) bifurcation problem by projecting on ker(L —Xio1),
via Py, and on Range(L — Agl), via I — Py:

(Ly, —AD Xy, = (L — 2D — Po)(Xn, + Xy,
+ Ky (I — Po)((ho — M) Xn, + 20X )]
@ (Ao —A)PoXn, + )»oPof(Nl-

Then, (Ly, — AI)Xn, = 0 gives two equations. The first one is uniquely solvable for
(I — Pp)Xn, in terms of PyX y, , as a linear operator:

(I — Po)Xn, = —(I 4+ (o — ) Kig) (I + oK) — Po) X,
for A such that |A — X¢| < [| K}, 71/2 and N, large enough. In fact,
I = Po)Xn, llo < CliXw, llo < CUIPoXw, IF + 1T — Po)X v, 13) %/ Ny,

that is, |(I — Po)Xn, llo < C||PoXn, |lo/ N1, for this range of A’s. The second term is
of the form
(Ao =) +C)PoXnN, =0,

where C(A) is a d x d matrix, analytic in A and symmetric (as it is easy to see)
with |[C(A)]| < C/Np: since Ly, is symmetric, its spectrum is real. Then, for
N1 = 2C|| K, I, the spectrum of C(A) is completely contained in the interval |u| <
| Ko |=1/2 and gives d curves parametrized by A (this is due to the fact that C (1)
is symmetric) and the line A — Ay = u intersects these curves in d points. From
(@), in K\{A : |A — Agl < Ky, ||_1/2}, one has no eigenvalues of Ly, for Ny large
enough. (Note that, if LX = AX, then X (¢) is a 2w -periodic solution of the differential
equation, hence d < 2N). |

The above information is enough to prove the following
Proposition 3.3. If X((¢) is a hyperbolic (21 / p)-truly periodic solution of the system
—X" + VV(X) = 0, then, for Ny large enough, the truncated system —Xy +
Py, VV (XN, + X ~Ny) = 0 has an orthogonal index given by the following:

1. dg = n(=1)"H, where ny is the Morse number of —X" + Bo(t)X, with
Bog = D2V (X) restricted on VOH0 and X in VY ie., X(t) isin VOHO, 2n/p)-
periodic and X (t) = yoX(t + 27 /q), with )/610 in Hy and q = pqo. Here
n= (—l)k(k+1)/2,

2. dg; = dy ((=1)"8i —1)/2, where n; is the Morse number of —X" + Bj (1) X,
with Bj = D2V (Xo) restricted to V; N (VOHO)L and X in VEi ie., X (t) isin
this subspace and X (t) = yOZX(t +4r/q).
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3. dKnO is the complex Morse index of —X" + B;(t)X , for eachng =0, ..., q — 1
and X (t) in VK e, X(t)isin V; and R—27T(n()/q+a0)VOXj (t+2m/q) = X/ (1)
for j =1,...,r the complex coordinates of X (t) in f/l and l~31 (1) is D*V (Xo)
restricted to \71

Proof. Note first that the projection on the modes is compatible with the decomposition
of B(t). Hence, the orthogonal index is given by the different Morse numbers of
Ly X = —X;\’ll + Py,B(Xn, + )}Nl). Since LX = —X” + B(t)X is an elliptic
operator, its spectrum is bounded from below, because

(LX =X, X)p2 = IX'3, = (M +DIX[3, >0 for A < —M = —||Bl|co.

Then, the finite number of strictly negative eigenvalues of L will give the same number
of negative eigenvalues of L y,, for N large enough, due to Lemma 3.5: this gives the
result for n K; and d Kng since L is invertible on Vi and VXm0, For V#, Lemma 3.4
implies that ker L y, is k-dimensional, i.e., none of the zero eigenvalues of L escapes
from the origin when dealing with the approximation L y,. This finishes the argument.

O

For the system J X' + VH (X) = 0, the situation is slightly different and requires
the following preliminary result

Lemma 3.6. For the system LX = JX' + é(t)X, the Morse numbers n(L y,) of L,
and X (1) in V = VOHO orV;N (VOHO)J- or V; are such that, for N», the next integer
after N1 where one has new modes, one has n(Ly,) = n(Ly,) +dim V,where V has
even dimension.

Proof. Note first that in V# all functions are 27/ p-periodic, hence No = N + p,
while in VXi and VX% one has N, = N + q (see Lemmas 9.5 ar_1d 9.6 in Chapter 1).
Hence, if Xy, = Xy, @ Yy,, one has that Yy, = (X,,, X_,, = X,;) for one mode m
(a multiple opr for VH), with X,, = (X, Y) in C¥, where 2r = dim V: because of
J, the space V is even dimensional. Then,
Ly, XN, = Ly, Xn, + Py BN, + Xn, — X))
@ JYy, + (P, — Py)B(Xy, + Y, + Xn,).
But, since Xy, = Xy, @ V,, with J Y, + (Py, — Py,) B(Xw, + Xn,) = 0, one
has
Ly, XN, = Ly, Xy, + Pny B(Yy, — Y,)
@ J(Yy, —Yi) + (Px, — Py)B(Yy, — Y.

Now, since Ly, Xn, and Ly, Xy, & JY I,Vl are self-adjoint, this is also the case
for the linear deformation Lzrvz’ where B is replaced by 7 B in the above expression.
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Then, for m > || B||, if one has L}VZXN2 = O then Yy, — )N’Nl =0and Ly, XN, =0,
ie., Ly,Xn, = 0. Thus, the kernel of Ly, is preserved and the other eigenvalues of
Ly, do not cross 0. Similarly, the deformation J (Y 1’\,1 — 1Y ,’Vl) will not introduce a
new eigenvector with eigenvalue 0, hence the Morse indices are related by

n(Ln,) =n(Ly,) +n(JYy).

Now, if JYI/V1 = AYn,, with Y, = cosmtX + sinmtY, where X and Y are in ]RZr,
thenmJY = AX, —mJ X = AY and, multiplying by J, m?>Y = —AmJX = A%Y, that
is A = +£m, each eigenvalue with a (2r)-dimensional eigenspace. O

Note that the matrices Ly, and Py, L Py, are such that
L3 Xwy = PnLXwyllo = 1Py BXwillo < ClIXw, lo/ N1

hence, for N; large enough,, the two matrices have their spectra close, but the 0
eigenvalue of Ly, may split into k eigenvalues for Py, L Py, .

Proposition 3.4. If X((t) is a hyperbolic (21 / p)-truly periodic solution of the system
JX'+VH(X) =0, then, for Ny large enough, Py, Xo gives an orthogonal index for
JX;Vl + Py, VH(XnN, + Xn,) equal to

1. dy = n(=1)"", where ny is the Morse number of Ly, restricted to V¥, with
n= (_l)k(k+1)/2’

2. dg; = dy ((=1)"8i —1)/2, where ng; is the Morse number of Ly, restricted
to VK n (v

3. dk,, the Morse number of Ly, restricted to vEno,

where VH, VEi and V& are defined in Proposition 3.3. For Nj large enough, the
numbers ny and nk; have a constant parity while d Kng increases by the even number

dim \71, when Ny is replaced by N1 + q.
Proof. It is enough to note that dim V = 2r and apply Corollary 3.1. O

Remark 3.6. If JB = BJ for some block B in B, let ®(r) be the fundamental
matrix for X’ = JBX, with ®(0) = I. Since ® = JB® = BJ®, then J& and
®J are also fundamental matrices and, being equal for t = 0, one has that J and &
commute. Now, (CI>TJ<I>)’ = 0, hence ®TJ® = J and, since J and ® commute,
one has that ® is an orthogonal matrix and hence with spectrum on the unit disk. If
JX'+ BX = AX, then X(t) = e *'®(1)X(0) and X (27) = X (0) if and only
if X(0) is in ker( — e=>™*/ ®(27)). Furthermore, e*/! preserves the generalized
eigenspaces of ®@(¢). Then, if ®27)W = uW, one has (I — e M ORr)W =0
if and only if e/ W = uW = (cos 2w Al 4 sin 27 AJ)W, that is p = T2,
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Note also that if J X' + BX = AX, then Y (1) = e~/ X (t) satisfies JY' + BY =
(A 4+ 1)Y and is 2z-periodic if X (¢) is 2w -periodic. Similarly, if X (¢) belongs to
VH vEKior vEu then Y1) = e 97X (1) belongs to the same subspace: this is due
to the facts that VOHO, V; and V; are invariant under J, that =477 is (27 /q)-periodic
and that I'o commutes with J (see Lemmas 9.4-9.6 in Chapter 1). Thus, if one
knows the eigenvalues of J X' + BX = LX which are in [—q, 0], then the whole
spectrum of L will be given by translations of multiples of g. Note also that, if X is
an eigenvector of L, then J X is also an eigenvector with the same eigenvalue. Hence,
all eigenvalues of L have even multiplicity (see also Remark 3.4). In this case, one
has that f(N, JXn) = J}?Nl (Xn,), by uniqueness of the solution to Z,Nl }?N, =0,
and Ly, commutes with J. Hence, the corresponding Morse number is even and, if
B is based on Vi one has dg; =0.

Note finally that one may relate the spectra of ®(27/q) to that of ®(2), as in
Lemma 2.4 and Proposition 2.11.

However, if J and B don’t commute then the spectra of L and of ® need not be
related.

Example 3.6 (Spring-pendulum systems). We shall give now an illustration of how
the equivariant degree for orthogonal maps, in particular for Hamiltonian systems, may
be used to show bifurcation from an S!-orbit to a T'2-orbit in two spring-pendulum
apparatus.

The first system consists of a spring, moving vertically only, with a rigid pendu-
lum suspended at the end, free to move in any direction. If one pulls the pendulum
downwards slightly, one obtains a stable harmonic oscillation. For a stronger pull,
this oscillation looses its stability and one has an oscillation in a plane. For a still
stronger pull, one gets an oscillation of the pendulum with a triangular pattern in
space. Stronger pulls seem to lead to more complicated patterns.

The second apparatus is a pendulum with an elastic shaft. The same succession of
patterns is observed and follow the behavior predicted by the study we shall present.

For the first system, the spring has length /g at rest and a constant k. It is suspended
at the origin, with a mass M at the end, i.e., at the point (0, 0, /), orienting the z-axis
downwards. From this mass, one attaches a rigid pendulum, of length r¢, with a mass
m at its end, of coordinates (x, y, z). The kinetic and potential energies are

1 ., 1
T = EMZ2+§m()€2+5)2+22)

1
K = ki - o) — Mgl — mgz

with the relation rg =x2+y>+ @z -1
Instead of using a Lagrange multiplier for this holonomic relation, we shall write

l=z—r=z—(r§—x2—y2)1/2,
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assuming thus that 0 </ < z, i.e., that the pendulum does not reach the horizontal
position. The Euler equations for x(z), y(¢), z(¢), denoted x; (¢), j = 1,2, 3, are

d < 0 ) 0
— (T —-K))=—(T—-K)
0x;

dr \ 0x g j
and give the following system of equations
X _x/r 0
MLIV]|+Cly/r|+]| 0 | =0,
Z 1 —mg

where C = C + k(z — r — lg) — Mg, with
.2 .2 . . 2
C=M(x +y _'_(xx—l-%yy))

r r-

2 MY Mx
r r
M2
y r r

X M2 m+M

If one defines
Z=z—ro—lo—(m+M)g/k,

then C is transformed into C + B + A, where

A=mg, B=k(Z+4+ry—r).

Since we are looking at periodic solutions of the system, of unknown frequency

v, we shall scale the time by T = v#, and get the system

x” x/r x/r
"1+ Aly/r |+ B+vO) | y/r] =0,
1

f,x,y,2) = v2M y
zZ" 0

where, in C, we have changed the derivative with respect to ¢ by the derivative with

respect to t.
Note that det M = mZ(m + M + M(x% + yz)/rz), that is, M is an invertible,

symmetric, positive definite matrix. Furthermore,

x/r 5 x/r
y/r +B+vien (y/r ],
1

U—ZM—lf — X// +A
—M 2+ 2 /(m + M)r?

where X7 = (x,y,2), A = gim 4+ M)/(m + M + M(x*> + y*)/r?), B +12C| =
(B +v2C)/(m + M + M(x*> + y*)/r?).
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Notice that, forx = y = 0, the system reduces to v (m+M)Z"+kZ = 0, with 27 -
periodic solutions of the form a cos(nt +¢), withn = vy/vand vg = (k/(m+ M)) 1/2
is the natural frequency of the spring when it oscillates vertically.

The mapping f (v, X) is continuous from C%ﬂ into Cgﬂ and satisfies the properties
of the following lemma.

Lemma 3.7. (a) The mapping f (v, X) is S' x S'-orthogonal, that is

L f,TpyX) =Ty y f(v, X)
2. (fw, X), XN)2=0, (f(v,X),AX);2 =0,

where Ty 4 X (t) = Ry (X(t + ¢)) and Ry is a rotation of angle  and axis the
Z-axis, hence with infinitesimal generator AX = (—y, x, 0).

(d) f(v, X) is also reversible, in the sense that f (v, IégX) = Rgf(v, X), where
Re(x(1), y(1), Z(1)) = (x(=7), £y(—1), Z(—1)), & = £1.

Proof. The equivariance with respect to the time shift, X (z + ¢), follows from the
fact that the system is autonomous. Furthermore, since in C one has terms of the form
X-X"and X’- X', itis clear that C is invariant under Ry, and the equivariance of f (v, X)
with respect to Ry, reduces to that of M X". Since M = mI+ M D(X) and itis easy to
check directly that D(Ry X) = R¢D(X)R_1 ,one has D(Ry X)Ry X = Ry D(X)X,
ie., that f(v, Ry X) = Ry f(v, X).

For the orthogonality one has, by direct calculation, that f (v, X)- X' = j—r (K+T)
which integrates to O on periodic functions, i.e., one has conservation of energy on
solutions.

On the other hand, f(v, X) - AX = v2m(xy” — x”y), which integrates to 0 on
periodic functions.

Finally, the reversibility is easily checked. O

Remark 3.7. (a) One has (xx" + yy')/r = (ro—r) and (ro —r)" = C/M + (xx" +
yy")/r, hence one may rewrite the systems in the form

mv*U" + (mg +kV + Mv2V"\U/r =0

mv?Z" 4+ kV + Mv?V" =0,
where U = x +iy and V = Z + ro — r. In this form the equivariance with respect
to RyU = e'V'U is clear, as well as that with respect to conjugation, equal to R_ R;.

Furthermore, one derives easily the conservation of the energy. One may also use the
second equation in order to write the first one as

VU + (g —v2Z2"U/r =0,

but with the loss of the orthogonality.
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(b) Itis easy to check that R. T}, y = T—, ey Re, i.e., these actions don’t commute.
As a matter of fact, we should have stated that f (v, X) is O(2) x O(2)-orthogonal,
where the first component O (2) acts as T, and R1, while the second component acts
as Ty and the conjugation R_1R;. We have chosen, since the theory developed in this
book is for abelian actions, to put together the non-abelian part in R, and we shall
use this information to characterize further the bifurcated solutions. Note here that if
X (7) is a solution, then Ié,lﬁlX and R, X are also solutions.

The second system consists of an elastic spring, of length at rest ry and suspended
at the origin (the z-axis is again oriented downwards), with a mass m at its end. One
has

1

T = Em()e2 + 32+ 22
1 2

K = Ek(r —rg)” —mgz,

where r = (x% + y* 4+ z%)!/2. The Euler equations are
mX + k(r —ro)X/r —mg(0,0, )T = 0.
Let Z = z — (ro + mg/k) and T = vt, then one gets the system

—X
gv, X) =mv2X”-|-kX+kr—0 -y =0,
"N+ ) /(Z 41 410 +mg/k)

where the last term in the third component comes from k(ro/r)(r — z) and r — z =
(r2 =22/ (r +2), withr = (x2 + y*> + (Z + ro +mg/k)*)/?. Thus, the problem is
to find 27 -periodic solutions to g(v, X) = 0. Itiseasy toseethatx =0,y =0,Z =
acos(nt + @), withn = vy/v and vy = (k/m)'/?, the natural frequency of the spring
when it oscillates vertically, is a solution.

Note that g(v, X) is a continuous map from C%” into C(Z)n’ provided r # 0, i.e., if
the spring does not collapse.

Lemma 3.8. The mapping g(v, X) is S' x S'-orthogonal with respect to the action
defined in Lemma 3.7 and reversible as well.

Proof. The equivariance with respect to the time shift and the rotation around the z-axis
are easy to prove. The orthogonality to X’ follows from the conservation of energy
and that to AX is immediate. The reversibility follows as in the previous system. O

As noted above, Xo(t) = (0,0, acos(nt + ¢)) is a solution, with v = vg/n, of
f(, X) = 0. Let us linearize f (v, X) around this solution, with v = vp/n + u and
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Z = Zp + z and obtain

(vo/n)*mx" +m(g + (k/(m + M))Zo)(x/r0)
(vo/n)>my” + m(g + (k/(m + M))Zo)(y/r0)
(vo/n)*>(m + M)Z" + kz — 2k(n/vo) Zo

where we have used the fact that (vy/ n)2(m + M) Z(/)/ + kZy = 0. Equivalently, with
Zo = acos(nt + ¢) and vo = (k/(m + M))'/?, one has

(¢ +2Bcos(nt + ¢))x
La(w, X) = X" +n* [ (@ + 2B cos(nt + ¢))y
zZ+ py cos(nt + ¢)

where & = g/(v3ro) = g(m + M)/(kro), B = a/(2ro), y = —2an/vp.

That is, the two first equations are Mathieu’s equations and the third is a resonant
harmonic oscillation. The amplitude a of Z plays the role of an extra parameter.

As before we shall fix the phase ¢ of the one-dimensional orbit Zg, at 0. Notice
the complex structure induced by the action of Ry,.

Lemma 3.9. One has dimker L,, = 2,4 or 6, with eigenvectors u = 0,z = cosnt
or sinnt, x and y are Mathieu functions corresponding to analytic curves ay/,(B),
ay/n(B) passing through the point (o« = (k/n)?, B = 0). Solutions on ag/n(B) are
evenint and those on &y, (B) are odd. Furthermore, these curves are symmetric with
respect to the a-axis, except O{(2k+1)/2(—,3) = &(2k+l)/2 (B). Also, Ok /n B) = &k/n B)
ifk/n # ki/2, where ky is an integer, while oy, 2(B) and ay, j2(B) intersect only at
B = 0. Also, ay;n(B) tends to —oo when |B| goes to 0o and ap(B) = ap(—B) < 0,
while a(B) does not exist. Moreover, oy, (B) foliate the region between the curves
bifurcating from two consecutive half-integers, i.e., those curves do not intersect and
are dense. In this region any solution of LoX = 0 (not necessarily periodic) is
bounded, while in the complementing region (the Arnold’s tongues), the solutions
are unbounded, as well as the other solution on the transition curves ay, ;2(B) and
ax, 2(B).

If x,(t) is a 2w -periodic solution for ay;,(B) and k/n = ki /ny, with ki and n,
relatively prime, then x, (t) = x,,(nt/ny), in particular x,(t) is (2w ny /n)-periodic.
The solutions x, (1) onayn(B) have 2k simple internal zeros in (0, 27r) and on d s, (B)
the solution X, (t) has 2k — 1 internal zeros.

Proof. On the space of 2z -periodic functions one needs that the last equation has
bounded solutions, hence it cannot be resonant, then # = 0 and z(7) is a combination
of cosnt and sin nt.

For the Mathieu equation, if x(7) is a 2 -periodic solution, then so is x(—7) and
x(7) &£ x(—7). Hence one may assume that x(7) has a definite parity. Furthermore,
from the uniqueness of the initial value problem, for a given («, 8), one has at most
one even and one odd solution. Similarly, x(z + 7 /n) is a solution for (¢, —f) and
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x (7 +2m/n) is asolution for (¢, B). In particular, x(t + 7 /n) £ x(—t +7/n) are two
linearly independent solutions for (¢, — ) since of different parity, unless one of them
is 0. If one has started with x(t) even, if x(t + 7 /n) = x(—t+7/n) = x(r — 7 /n),
then x(7) is (27 /n)-periodic, while, if x(t + 7 /n) = —x(—71 + 7 /n), then x(7) is
(27 /n)-antiperiodic and (4 /n)-periodic (this implies that n is even). On the other
hand, if x (7) is odd then the situation is reversed. Thus, if x () is not (457 /n)-periodic,
one has two periodic solutions for («, —f) and also for (¢, 8). Note that if x(7) is
(4 /n)-periodic, then y(t) = x(27/n) is a 2w -periodic solution of Loy (7) = 0, the
classical Mathieu equation, i.e., with n = 2.

Assume now that, for («g, Bo), one has a solution xo(7) of a definite parity. Con-
sider then the self-adjoint operator L, in the spaces of periodic functions with that
parity, say from H' into L2, with a one-dimensional kernel generated by xo. Take
x = axo + x1, with x; being L?-orthogonal to xo. Then, the classical Ljapunov—
Schmidt reduction implies that L,x = 0 is equivalent to a unique analytic solution
x1(a,a, B) = axi(1, a, B), with x1(1, ag, o) = 0, and a solution to the bifurcation
equation, coming from the L2-projection on xq (see Section 9 of Chapter 1)

2
oa—oo+ 28— ﬂo)/ (xg + xpx1)cosntdt =0,
0

after normalizing x( to have norm 1 in L2. The implicit function theorem implies that
this equation has a unique analytic solution «(), with

2 2
o' (Boy) = —2/ x3 cosntdr = / (aoxg — xi7/n?)/ o dx.
0 0

Since for 8 = 0, one has @ = (k/n)2 one obtains the curves o/, (8) and a/, (B)
characterized by the parity of the solutions and defined for all B’s. These curves are
monotonous for g < 0. Furthermore, the number of zeros on each curve is conserved
(by uniqueness of the initial value problem, the zeros are simple, since the L>-norm
of xq is 1) and are those of cos kt for ay/, (B) or of sin kt for ax/, (7). It is then easy
to see that a,/c/n(O) =0, except if k/n = 1/2, with oz’l/2(0) =—1=—a],(0).

Furthermore, ifk/n = k1 /n1, thenif x, (t) is a 2w -periodic solutionof L,,, x = 0,
then x(v) = x,,(nt/ny) is a (2wny/n)-periodic solution of L,x = 0, with the
parity of x,,, that is x(t) belongs to the unique curve which goes through (k/ n)2.
This implies that these curves are correctly labelled by k/n and that, conversely, the
solutions on oy, (B) are (2wny/n)-periodic. In particular, if ny > 3, one has that
x(7) is not (4 /n)-periodic (if it were y(r) = x(2t/n) would belong to the curve
for L, going through k{/n1, for 8 = 0, and hence n; = 1 or 2) and, as seen above,
ai/n(B) = ak/n(B), curves which are symmetric with respect to the cc-axis.

Forn = 2,if k/n = ki, i.e., n; = 1, then x(7) is mw-periodic and x(t + 7/2),
solution for (&, —f), has the parity of x(t), that is the curves are symmetric with
respect to the o-axis. On the other hand, if k is odd, then we have seen that x (t + ) is
a solution for («, B) of the same parity as x (7), hence from the uniqueness, x (7 +x) =
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ax(t). Evaluation at T = 0 and t = 7, leads to a®> = 1. Furthermore, it is clear
that the sign of a is invariant on the curves a(2x41),2(8) and @2k 41)/2(B) and it is —1
at B = 0. Thus, x(t + 7) = —x(r) and x(—t 4+ 7/2) = —x(—t — 7/2) has the
opposite parity of x (), that is ¢k+1)/2(—=B) = @@k+1),2(B). Fora = g = 0, only
the constant solutions (hence even) exist, thus &o(8) does not appear.

Now, if n = 2, two curves may intersect at («g, fo 7# 0) only if one has
ag = ay,2(Bo) = o, 2(Bo): in fact, within the same parity, the implicit function
theorem prevents intersections and if o, /2(Bo) = &ki /2(,30) for ki # ki, with solu-
tions xo and X, then, from the separation of the zeros (i.e., between two consecutive
zeros of xp one has exactly one zero of Xg: if not, if Xg is not O on this interval, then
(x0/%0) = W(x0, X0) /)Eg, with a wronskian |W| = 1, must have a zero) and from the
conservation of zeros along the curves, one gets a contradiction. Thus, if k| is even
(hence x¢ and X¢ are 7 -periodic), one has

xo(t) = Ag/2 + Z Aoy, cos2mt

m>1

xo(1T) = Z B>, sin 2mt,

m>1
with the recurrence relations
(@/2)Ap + BA2 =0

(@ —m*) Az + B(Agm—2 + Agni2) =0, m>1,
(¢ —m*)Boy + B(Bam—z + Bami2) =0, m>1, By =0.

Now, for m > mg large enough, one may solve this system in terms of BA2y,,
in particular Ay 42 = Ba(a, B)Azm, and Byya42 = Ba(a, B)Bap,, reducing to two

tri-diagonal systems: one for X = (Ao, ..., Aam,) of the form
/2 B _
ax=(" 2)x=o
and one for Y = (By, ..., By,;) of the form
BY =0,

where the last line of BY is BByn,—2 + (o — m% + ,BZa(oz, B)) Bomg.-

If the two systems have non-trivial solutions, then det A = detB = 0. But
det A = («/2) det B — ,32 det 81,1, where 811 is B with its first line and first column
deleted. Thus, det 81,1 = 0 and, since det B = (¢ — 1) det By,; — ,82 det 87 >, with
deleting from B ; the first line and first column to get 85 2, one obtains det B2 » = 0.
Continuing this process, one arrives at o — m(z) + B2a(a, B) = 0, a contradiction if
my is large enough (it is easy to prove that a(«, §) is a decreasing function of mq and
tends to O when m( goes to 00).
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If k1 is odd (hence xg and X are 7 -antiperiodic), one has

x0(t) = Y Agmy1cos@m + Dt

m>0

%o(t) = Y Bamy1sin@m + ),

m=>0
with the relations
(4a—14+4B)A1 +4B8A3 =0

(4a—1+4+4B)B; +48B3 =0
(4o — 2m + 1)2)C2m+1 +4B8(Com—1 + Cop43) = 0, m > 1and Cp = Ay or By.

With the same arguments, one obtains the tridiagonal matrices

AX:<4O[_1+4’3 4’3>X:0

48 e
- (da—1-48 4B\,
N R T

where € is common. Then det 4 = (4a —1+4B)detC — (4,3)2 det C11 and det B
= (4o — 1 —4B)detC — (4/3)2 det C1,1, where both determinants have to be 0.
This implies, if B # 0, that det© = detC;,; = 0. One arrives then at the same
contradiction.

If, for n and n’ greater than 2, one has a/, (8) = ay /n'(B), with k and n relatively
prime (respectively k' and n’), then for N the least common multiple of n and n’
and x(t) solution on ay/, (B), then y(t) = x(Nt/n) will be a solution on ay,;n (8)
for k/n = ki/N with 2k; or 2k; — 1 zeros. Hence, one would have four periodic
solutions for Lyy = 0, two even and two odd, with 2k; and 2k} = 2k’N /n’ zeros,
hence independent, which is clearly a contradiction for a second order equation.

With respect to the boundedness of solutions of L,x = 0, convert the equation into
afirst order system X’ = A(t)X, with Trace A = Oand A(t+7m) = A(t). Then, from
Remark B.1, one has that the fundamental matrix satisfies ® (t +mmw) = & ()P (r)™.
Instead of using the full strength of Floquet theory, it is easy to see that ® (;r) has two
eigenvalues with product equal to 1. If they are complex conjugate, then ® ()™
is bounded as well as ®(7), for t in [0, 27]. Hence, in this case any solution is

0 A ™™
giving unbounded solutions when 7 goes to +co. Finally, if A = 1, since there is only

m
bounded. While, if the eigenvalues are real, then & (;r)™ is similar to 5 0 ) ,

one periodic solution on oy /2 (B), for B # 0, ® ()™ is similar to ((1) nf) , giving an

unbounded second solution.
Notice that, if x(7) belongs to oy, (8), then y(t) = x(27/n) is a nw-periodic
solution of Loy(r) = 0. Thus, for n > 3, ®(w)" = [ and the eigenvalues of
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@ () are exp(£2k’im/n). But Trace ® () = 2cos 2k’ /n is analytic on ay/, (),
hence constant and equal to its value at ay/,(0) = (k/n)z, that is for ®(r) =

—1 .
(_(]:{Ossiikz;{/r ,;n k cozlgkzrk;n/ n) , or else k' = k, mod n. The rational k/n is called
the rotation number. Now, Trace ® (7) is an analytic function of & and 8 and, on each
stable region and for fixed By, covers the interval from —2 (for k/n = k1 /2 with k;
odd) to 2 (for k/n = k1 /2 with k| even).

Furthermore, since the curves oy, (8) do not intersect, the points oy, (Bo), where
Trace ® () = 2cos2km/n, are ordered in the same way as o/, (0). Therefore,
Trace ® (;r) cannot be locally constant and is strictly monotone as a function of .
This implies that, arbitrarily close to («, 8), there are points of the form (o, (8), B),
giving the foliation.

The last point is the asymptotic behavior, when 8 goes to co: let x(t) belong to
a/2(B), hence an even solution of

x" 4+ 4(a + 2B — 4B sin’ T)x =0,

with 2k zeros in [—m, r]. Multiplying the equation by x (7), integrating over [—, 7]
and using the periodicity of x (7), one needs thata+28 > 0. Let y(r) = x (1:/(2,31/4)),
then y(7) is a (47 8!/4)-periodic, even solution of

Y+ (A= 2B *sint/(28"*)Hy =0,

with A = (a 4+ 28)/B'/2. Since 48'/2 sin?(r/(2B'/*)) < 72, the solution y(t) will
be compared to solutions of the equation

"+ A-1tHz=0.
Let H(t) = z(r)e’z/z, then H (7) satisfies Hermite’s equation
H' —2tH +(A—1)H =0.
A series solution H(t) = )_ h,t" yields the recurrence relation
n+2)n+ Dhypo = 2n+1— A)h,.

In particular, if A = 2N + 1, one solution will be a polynomial Hy () of degree N,
with the parity of N and normalized so that the leading coefficient is V. Now, it is
easy to verify that T Hy — H}, /2 satisfies the equation for Hy 1 and, having a leading
coefficient equal to N¥*1 one has that

HN-H =tHy — H]/V/2

This implies that between two consecutive zeros of Hy (hence with Hy, of different
signs) one has a zero of Hy, 1. Furthermore, if 7y is the largest zero of Hy (with
Hl’V (zny) > 0, since the leading term of Hy is ™), then Hy1(tn) < 0 and one has
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a zero of Hy 41 to the right of 7y. Due to the parity of Hy1, this last zero generates
its symmetric, for T < 0. An easy induction argument implies that Hy (7) has exactly
N zeros. Now, zy(t) = e"z/zHN (7) is bounded and as such has all its N zeros
confined to the interval || < 2M + nHY 2. in fact, if z ~ has its last zero, Ty, outside
this interval, then zy () > 0, zjy () > 0 for T > 7 and, since z) (ty) > 0, one has
that z (7) is increasing and convex, contradicting the boundedness.

We shall then use the following comparison principle:

If y(t) and z(t) are solutions to the equations
V' +p)y=0 and 7" +q(r)z =0,
with p(t) > q(t), then between two zero of z there is at least one zero of y.

(If y(7) is not 0, say positive, between 7| ant 13, two consecutive zeros of z with,
say, z() > 0 and 7/(t1) > 0,z'(12) < O (if not change z to —z), then fr? 7"y —
2y dt = f:lz (p—q)yzdt = 7'y — zy'|¢ leads to a contradiction, since the integral
is non-negative while the last term is strictly positive).

Hence, if A > 2N + 1, then y(7) has at least N — 1 zeros for |[7| < 2N + Hi/2,
since zy () has N zeros in this interval. But y(t) has 2k zeros for |t| < 27p8/4.
Taking N = 2k + 2, one would arrive, if A > 4k 4 5, at a count of at least 2k + 1
zeros for y(t) for |t| < (4k + 5)'/2, which is not possible if 2784 > (4k + 5)1/2.
Then, if 8 > (4k 4 5)%/(27)* one has that 0 < A = (a 4+ 28)B~'/? < 4k + 5. This
implies that ot /> (8) cannot be bounded from below.

In fact, one may prove, by looking more closely at the distribution of zeros of
y(t), that

o =28+ 4k + 1)BY?/2 +0(1). O

Remark 3.8. One may prove that, for k/n # 1/2, one has
4
4k/n)2 —1°

In fact, since xq is analytic in 8, one has that

o), (0) = &, (0) =

2
a"(B) = —4/ x0x0g cosnt dt
0
and, by differentiating the Mathieu equation, that at 8 = 0, one has that xgg is a
solution (of the same parity of xq) of
v +k%y = —2n% cosntxo,

where one has used that «(0) = (k/n)? and o’ (0) = 0. Then, for xo = cos kt/m,
one has that xg is orthogonal to xo and

n (cos(n+k)tr cos(n—k)t
X0 = ——
08 VT n+ 2k n—2k

and the result follows.
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For the second system, one has that Xo(7) = (0,0, a cos(nt + ¢)) is a solution,
with v = vo/n, of g(v, X) = 0, where vy = (k/m)'/%. Let us linearize g(v, X)
around that solution, with v = vo/n + n and Z = Z,, + z and obtain M, X = 0, or
else

¥ 42 a + Bcos(nt + @) =0
1 + Bcos(nt + ¢)
o + Bcos(nt +

y// + n2 .3 ( (/))
1 + Bcos(nt + ¢)

7"+ nPz = 21131)0_1 cos(nt + @)L,

where o = mg/(mg + krg) and 8 = ak/(mg + kro).

In this linearization, we have taken r = Z,, 4+ ro + mg/k, i.e., that || < 1. Note
that |8| = 1 corresponds to a = rg +mg/k,ie.,to Z, = 0 for nt + ¢ = m, that is
to a spring totally collapsed.

Notealsothat0 < @ < 1. Thus, we shall work intherectangle0 < o < 1, |8] < 1.
The first two equations are singular Hill’s equations, while the third will have a non-
resonant solution only for © = 0 and z = ¢ cos(nt + ). Note that, as before, one
may fix the phase ¢ of the one-dimensional orbit Z, at 0.

Lemma 3.10. One has dimker M,, = 2, 4 or 6, with eigenvectors i = 0, 7 = cosnt
orsinnt, x and y corresponding to analytic curves o, (B), Ax/n(B) passing through
a/n(0) = ar/n0) = (k/n)z. Solutions on oy, (B) are even in Tt and those on
ay/n(B) are odd. Furthermore, these curves are symmetric with respect to the a-axis
and equal except for n = 2k, where o1 2(—B) = a1,2(B). The region, for constant
B, between these two curves, which intersect only at B = 0, « = 1/4, is a region of
instability, while the regions, for constant o, between a12(B) and o 2(B) is foliated
by the curves ay/y(B). Also, ag(B) = 0, with unique solution 1 + B cosnt (while
o (B) does not exist) and a1 (B) = a1(B) = 1 with solution cosnt and sinnt. The
solutions on a12(B) and o 2(B) are (2w /n)-antiperiodic and, if k/n = ki /ny, with
ki and ny relatively prime, then x,(t) = x,,(nt/n1) and has period 2mny/n. On
ai/n(B), the solution x,(t) has 2k internal zeros and on ay;,(B) the solution X, (1)
has 2k — 1 internal zeros.

Finally, o, (B) goes to 0 if |B| goes to 1, if k/n < 1/2 and to 1, ifk/n > 1/2.
In fact, a1,2(B) is monotone, decreasing from (0, 1), where it is vertical, to (1, —1)
where it is horizontal.

Proof. Fortunately, most of the arguments in the proof of Lemma 3.9 did not depend
on the special form of o + 28 cosnt but only on the fact that this function is even.
Thus, one has to concentrate on the complement of these arguments. The first one is
the Ljapunov—Schmidt reduction to the bifurcation equation

T =0,

M) /271 (@ — o+ (B — Bo + o — atpf) cos nt) (x5 + xox1) J
RN (1 + Bcosnt)(1+ Bocosnt)
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where x¢ and x; have the same meaning as before, that is x = axp + x;, with
x1(a, o, B) = ax1(1,«, B) and x;(1, @p, fo) = 0 : h(x, B) is just the projection
on xg of x” + P(a, B)x. Then,

2
ha (a0, fo) = / xg(1+ Bocosnt) tdr > 0
0

and )
J
hg (oo, o) = (1 — ao)/ xg cosnt(l+ Bo cosnt) 2 dr.
0

Thus, one has an analytic curve «(8), for || < 1, which must cross the a-axis at
some o (0) = (k/n)z, for some 0 < k < n.

In particular, for n = 1, there are only two curves, ag(8) = 0 with only even
solutions (bifurcating from 8 = 0 with the constant solution) and «;(8) = 1 with
solutions of both parities and given in the lemma. The other solution, for ap(8) = 0,
obtained by reduction of order, is

v(t) = (1 + Bcosnrt) /r(l + ,BCosns)_2 ds,
0

which is neither periodic nor bounded.

Forn =2 and B = 0 with a1 2(0) = @1,2(0) = 1/4, the solutions are cos  and
sin T and one has oz’l /2(0) = —3/8 and &i /2(0) = 3/8. Furthermore, solutions on
a1/2(B) are even and 7 -antiperiodic and those on &1 /2 () are odd and 7 -antiperiodic.
Hence, if these curves intersect at some («, 8) one has

o0
x(t) = Z Agppr1cos(2n + 1)t
0

o0
() = ZanH sin@n + 1)t
0

with the recurrence relations
(m* — 42)Cypy + (B/2)((m = 2)* — 4)Cpy—z + ((m +2)> —4)Cpi2) = 0,

where m = 2n + 1 > 0, Cy, stands for Aj,41 or Bo,y1, with A; = A_; and
B_; = —Bj. If one defines D,, = (m* — 4)C,,, with > D,i < 00, since the solution
is in H?, one has to solve the system
((4a —1)/3+¢B/2)D1 + (B/2)D3 = 0
(A+4(1 —a)M)X + (B/2)D1 = 0,
wheree = 1forx(tr)ande = —1forx(r), X = (D3, Ds, ...)isian,theoperatorA

is symmetric and tridiagonal, with 1 on the diagonal and 8/2 on the two off -diagonals,
and M is a diagonal operator with terms 1/ (m?>—4),m =3,5,... Now,

(AX, X) = [IX|*+ B _ DiDiy1 > |BID3/2+ (1 — 1BDIXI?,
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then, for |8] < 1 and @ < 1, the operator B8 = A + 4(1 — a)M is invertible with
1871 < 1/(1 — |B]). In particular, D3 = —(8/2)a(w, B) D1, where a(a, ) =
(8~1(1,0,...),(1,0,...)) > 0, since B and B! are positive operators. Hence,
the problem is reduced to

fla, B) = (4a — 1)/3 +ep/2 — (B*/Ha(a, B) = 0.

This implies that the two transition curves meet only at § = 0 and o = 1/4.

Note that a(1, ) = limg_, », det(4,_1)/ det(A,), where A, is the truncation of
A to p modes. Asdet A, = det A,_1 — (/32/4) det A,_5 for p > 3, withdet A =1,
det Ay = 1 — B%/4, one may use the generating function g(z) = 310 det ApzP 1o
get

8@ = 1+ (B /D2 —z+ D7 = —1 44/ -2 > (" =z 7P,
0

where
212=Q/BHU £ - pHY), 2120 =4/p% and 21 — 22 = (1 — pH/?4/8%.

Thus, det A, = [(1 + (1 — BHYHPH — (1 — (1 — gHl/2)PH1 20+l (1 — gHl/2,
From this relation it follows that a(1, 8) = 2/(1 + (1 — p*)1/?).
Now
fo=4/3 = (B*/9)aa.
with @ = 4(B8'MB71(1,0,...),(1,0,...)) and, using M = (B — 4)/4(1 — ),
one has
ag =1 —a) Ya—AB711,0,...), 87(1,0,...))).

Since (AB~1(1,0,...),871(1,0,...)) > |Bla’/2, one obtains

(I —a)fy =41 —a)/3 — (B*/Da + (B} /8)a*.

Then, if f(«, B) = 0, one has a = 4872(1 4+ ¢8/2 — x), with x = 4(1 — «)/3 and,
after a short computation,

21811 — ) fu = 2+ 6B — 1Bl — 20> + 812 + 6B — |B).

Thus, since |B| < 1, the left-hand side is strictly positive, unless ¢8 = —1 and
x = 0, i.e., for o = 1. We have recovered the fact that the transition curves can be
parametrized by 8. Note that, since M is a positive operator, one has a, > 0 and
0<fo=<4/3.

On the other hand,

fp=¢€/2— Baj2 — B*ag/4,
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withag = —(8 1 AgB871(1,0,...),(1,0,...)). Since forp = B—1 —4(1—a)M,
one obtains

Bfs = eB/2 — p*a/d — (B*/H(I1B71(1,0,... )
+4(1 —a)(MB~1(1,0,...), 871(1,0,...)).

In particular, on the transition curves, one gets
—Bfp = (o= D/3+ (B /HUB™ 1O +4(1 —)(MB~'(1,0), 87 (1,0))).

Hence, if « > 1/4, one has 8fg < 0 and in this range of «’s one may parametrize
the curves by «. This implies that, for 1/4 < a < 1, the curve ay,2(B) is de-
creasing, with B < 0, while a1 2(pB) is increasing from (1/4,0) to (1, 1). Note that
B87'1,0,...)=2(,-1,1,—1,..)fora =1, = 1 and f, =4/3-Y"(2n+
1)?> — 4)~ ! is positive and finite, that is, the transition curves arrive horizontally at
(1, 1).

Now, if one denotes by C the diagonal operator I + 4(1 — o) /M and by X the
vector 3_1(1, 0,...), one has

Bag = —a + (CX, X)
fp=¢/2—Ba/4—(B/H(CX, X),

then, using the relation BAg = B — C, one obtains

fpe = —(1/2)(B~'CX, €X) <0,

since 8! is a positive operator, hence fp is a decreasing function. Now, for o« =
0, B = —1,itiseasy to verify that X = 2(1/3, 1/5, 1/7, ...), noting that, for |8]| < 1,
one has (8X, X) > |,8|a2/2, i.e., 8B is one-to-one. Thus, a(0, —1) = 2/3 and, for
& = —1, one has f(0, —1) = 0, that is the curve &y, starts at 8 = —1, a = 0.
Furthermore, for that X, one has

(CX.X) =4) n+ D21 +4/(@n+1)* —4))
1

=43 "1/@n—1)@2n+3) =4/3,
1

by using partial fractions. Thus, fg(0, —1) = 0 fore = —1. This implies that fg < 0
and that one may parametrize the curves 1,2 by «, starting vertically at (0, —1) and
arriving horizontally at (1, 1).

The rest of the properties (regions of stability, foliations) follow the same lines of
proof as in the preceding case, since they do no depend on the particular form of the
equation. O
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Remark 3.9. By normalizing xo in such a way that kg (g, Bo) = 1, then &’ (B) =
—hg. Hence,fork/n # 1/2and By = 0,onehas xo(7) = 7~ Y2 coskranda/(0) = 0,
with

2
" (0) = -2(1 — (k/n)z)/ xo cosnt(xop — xpcosnt)dr,
0
where xqg is a solution (by differentiating the Hill equation) of
v +k*y = (k* — n®)xo cosnt,

thus,

n? —k?* fcos(n + k)t  cos(n — k)t
x0p(1) = ( )

2n/m n+ 2k n—2k
From this it is easy to prove that

o, (0) = 3(k/m)*(1 — (k/m)*) (4(k/n)* — ).

Remark 3.10. For a given n, one may compute numerically the curves ay/,(8) by
combining a path following method with a numerical integration of the solution: in
fact, if («g, Bo) is on this curve, one may take a point at a certain distance on the tangent
and, on an orthogonal line, test for periodicity by looking at the Poincaré return map
of the solution for (¢, B): these are obtained by Runge—Kutta of high order. For the
transition curves (n = 1 or 2), one may also use the fact that the solutions in the
Arnold tongues are unstable. It is interesting to see the foliation phenomenon and
that the curves corresponding to high rotation numbers are easier to follow than the
transition curves. For Mathieu’s equation, the regions of stability decay very fast as
| 8] increases.

Let us turn now to the non-linear systems and the application of the orthogonal
degree. Since the arguments are similar for both systems, we shall treat them simul-
taneously. Thus, fix n and assume that the vertical line, corresponding to a fixed «,
crosses the line ay/, (B) at (ao, Bo). Since the points of tangency are finite, we may
assume that the crossing is transversal. On that line the nonlinear systems have the
solution v = vy/n,x =y =0, Z, = acos(nt + ¢), where a is proportional to 8,
that is a family, parametrized by 8, of one-dimensional orbits. If ap corresponds to
Bo, let 2 be the following tubular neighborhood of (vo/n, 0, 0, ag cos(nt + ¢)):

Q = {(v,x,y,acos(nt + ¢) + Z) 7 is Lz-orthogonal tocosnt and sinnrt,
lv—vo/n| < 26, [IxII* + [IylI* < 4%, la — aol < 2p, | ZI| < 2},

where || x|| is the H?-norm of x (). Consider, from R x H>(S") into R x L2(S!), the
following pair

fe, X) = (d*(v, X) — €%, — f (v, X)),
(or —g (v, X) for the second system), where d>(v, X) = (v—vo/n)>+ x>+ Iy >+
| Z||? is the distance to the plane v = vy/n,x =y =0, Z = acos(nt + ¢), which
will be called the trivial solution.
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Choose ¢ so small that the only v in €2, of the form vo/m, is form = n. Inparticular,
any zero in Q of f; (v, X) must have, from the form of the equations, || x 1%+ Iy 12 > 0:
in fact, if x = y = 0, then f(v, X) reduces to v>Z" + ng = 0. Furthermore, for
la — ag| = 2p small enough, the (x, y) part of the linearization is invertible, since
one is off the curve oy, (8), and the only solution, for £ small enough, will be on the
plane, i.e., with d = 0. Thus, f;(v, X) is non-zero on d€2 and its orthogonal degree
is well defined, more precisely, the orthogonal degree of the projection on Nj modes,
after solving for the other modes in €2, as in Example 3.5; we leave these details to
the reader.

Choosing p and v appropriately, one may assume that, whenever f (v, X) = 0 in
Qand |a —ag| > p/2,then x = y = 0and d(v, X) = 0. Then, one may perform the
orthogonal deformation (A(d? — &%) 4+ (1 — A)(p? — (a — ap)?), —f (v, X)) on I
Then,

deg) (fe: Q) = i—(fo) + it (fe),

where i+ ( f;) is the orthogonal index of (p* — (a — ap)?, —fatv=1vy/n,x =y =
0,a = ap %+ p, Z, = acos(nt + ¢), with isotropy H = Z, x S'. For ¢ = 0, the
linearization of the pair, at Z,, = (ag & p) cosnt, will be

Dfs(u, X) = (F2pe1, =MoLy (1, X)),

where v = vg/n+ u, Z = Z, + z, with z = | cosnt + gy sinnt + Z, hence a? =

(apEp+e1)*+ 8%. Here, Mo = (vo/n)2 diag(m, m, m + M) comes from the matrix
M evaluated at x = y = 0. For the second system, one has —m(vo/n)zMn(u, X).
Hence, the kernel of the linearization is generatedby u = 0, x = y =0, z = & sinnrt,
i.e., by X{,. Thus, both indices may be computed from the results given for the case of
truly periodic solutions of 2"¢ order Hamiltonian systems of Proposition 3.3, modified
by the v-variable.

Since H = Z, x S', one has Hy = S!, VOHO = {(v,0,0, Z)}, the torus part
H = {e} x S' with V&£ = {(1,0,0, Z(z))} and VI = {(v,0,0, Z(1)), with Z(7)
being (27 /n)-periodic}, i.e., with modes which are multiples of n: here p = g = n
and yy = Id. Furthermore, if K is such that H /K = Z, thenniseven, K = Z, » X § 1
and VX correspondsto (v, 0, 0, Z(t)) where Z(t) is (47 /n)-periodic, i.e., with modes
which are multiples of n/2. Thus, dy and dk are given by the number of negative
eigenvalues A of the system

(Fe1 — i, =2 —n’z +bZyu — 12),

in the spaces of (277/n) and (47 /n)-periodic functions, where b = 2n3 /v, that is b
is positive.

Since, for . < 0, the second equation z” + (n241)z = ba cos nt is non-resonant,
its particular solution has tobe z = ¢ cosnt, withe; = bu(apxp)/A = FAiu. Since
b > 0, one has a contribution, for u # 0, only atag— p with A = —(b(ap—p)) 172 For
@ = 0, one has non-trivial solutions only for n? + A = k2, hence, in the spaces under
consideration, only for A = (m? — 1)n? for the case of (27/n)-functions, i.e., with
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modes mn and, for A < 0, only for m = 0, while for the case of (4 /n)-functions,
i.e., with modes mn/2, for A = (m?/4 — 1)n? and, for A < 0, only for m = 0 and 1.
For this last case, with m = 1, one has a two-dimensional kernel, while for m = 0,
the kernel is one-dimensional. Hence, ng(agp + p) = 1,ng(ag — p) = 2, while
nk(ao+p) = ng(ag— p) = 2, since we have to look at modes in VX N (VH)L . Note
that, if one restricts the study to even functions z(t), then the linearization is invertible
at ag & p, the Morse number n g is the same but ng is lowered by one. Thus, taking
into account that n = —1, since the orbit is one-dimensional, one has

dH(a0+p):17 dH(aO_p):_la

and, for n even, one has dg (ag = p) = 0, according to Proposition 3.3.
Hence, by writing i (f;) as iit(fﬂ) X iJi_(DfJ_X), as in Theorem 3.1, we have,

Ty = £[F}1.,

where Fy, is the normalized generator. From Proposition 3.1 in Chapter 3, the other
elements in i | (f£) are 0.

It remains to identify the irreducible representations of H in (VEYL that is for x
and y only, their isotropy K,,,, the operators By and their Morse numbers as well as
the isotropy subspaces.

Lemma 3.11. There are n different irreducible representations of H in (V)L with
Kny ={U, ¥ = —2mnol/n),l =0,...,n =1}, forng =0,...,n — 1. The space
VE&no is spanned by functions x (), y(t), z(t) with the property that

R x(t)\ _ (x(r +2m/n)
o\ y(@)) = \y(x + 27 /n)
and z(t) is 21t /n-periodic. More precisely, x(t) = Re X (1), y(t) = Im X (1), where

00
X(‘E) — meeinoreimnr.
—00

Furthermore, if (x (), y(v)) is in V5, then (x(v), —y(r)) is in V¥r—ro.

Proof. This is just a straight application of Lemma 9.6 of Chapter 1, after one notices
that, since ¥y = Id, then cp = @; = a; = 0 and that H acts on z(7) only by the time
shift of 2zl/n forl = 0,...,n — 1, i.e., that z(7) is (27 /n)-periodic. Recall that
the action of H on (x(7), y(7)) is by the time shift and a rotation Ry,. Hence, on the
mode m, one has

. iy .
Xm 2rilm/n —1 e 0 Xm 2rilm/n
R e =P | P e ,
Y (ym) ( 0 e‘””) (ym>



4.3 T-Index for an orthogonal map 283

1
= (! 1)

) will be fixed if either v = —2xlm/n, [27], and y,, = —ix,; or

where

X
Hence, < "

m

¥ =2mlm/n, [27], and y,, = ixy, since Ry (?m) e2milm/n — (j}m) leads to
m m

ei(z//+27rlm/n) (X
ei(—l//+27'rlm/n)) (Xm

+iym) = Xm +iym
—iyYm) = Xm — iYm-

Thus, for each ng fixed, 0 < ng < n, one has K,,, as in the statement of the
lemma, and modes m = ng + kn, with y,o4xn = iXpg+kn, and also modes m =
—ng+kn = —ng— kn, with Yono—in = ix—no—lZn‘ The first set of modes gives x1(7)
and the second, with the condition that x(t) = x1(tr) 4+ x2(tr) must be real, gives
x2(t) = x1(7), with y1 (v) = —ix1(7), y2(t) = ix2(7). Note that, forng = 0orn/2,
the modes in x; and x, are the same: for ng = 0, the functions x(t) and y(t) are
(27 /n)-periodic, while, for ng = n/2, they are (27t /n)-anti-periodic. Note also that,
for m = ny, the elements of VX% are (cosngt, sinngt) and (— sinngt, cosngt). O

In order to compute the Morse numbers at ag = p, one has to look at negative
eigenvalues of —L, X (respectively —M, X), when restricted to v N (VEyL e,
only for the functions x(7) and y(t): the parts corresponding to the variables v and
z(t) are in VI,

Hence, one has to consider the eigenvalue problem

x" 4+ n*( + 2B cosnt)x = Ax
'+ n* (o + 2Bcosnt)y = Ay,

for . > O and x and y in vEno | with an analogous linear system in the second case.
One could plug in the Fourier series of Lemma 3.11 and arrive at an infinite system
of equations, as in Lemmas 3.9 and 3.10. However, it is simpler to see that this
Morse number is constant in the regions separated by the curves oy, (8): since the
operators are self-adjoint no eigenvalue may change sign without going through 0. In
particular, one may compute them for 8 = 0. Furthermore, since the linearization
is H-equivariant, this argument can be done for each v Kno separately. Also, since
iit(fi) = £[F};]1 and deg, (fe; ) = i_(fe) + i1 (fe), the only ng’s which will
count in this last degree are those for which there is a change when crossing o/, (8),
at (o, Bo), when B varies, that is, those for which L, X is not invertible in v K,
Hence, one may identify these ng’s by looking, as above, at the kernel of L, at § = 0,
a = (k/n)?.

Lemma 3.12. Letk = kg +l€n, withQ < ko < n, thenthe only no’s for which there is a
change in the Morse number are ng = ko andng = n—ko. If n,,(ao = p) is this Morse
number, one has ny,(ap £ p) = np—ky(ao £ p). Furthermore, if g = Sign a,/(/n(,BO),
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(a) if 2k/n is not an integer, then the complex Morse numbers are

niy(ao + gop) = [2k/n]
ngy(ao — eop) = [2k/n] + 1,

where [2k/n] is the integer part of 2k /n;

(b) if 2k/n = ky, then, on the left transition curve, one has

niy(ao + eop) = k1 — 1
niy(ao — €op) = ki,

while, on the right transition curve, one has

nio(ao + gop) = ki
niy(ao — gop) = k1 + 1.

Proof. It is enough to look at the spectrum of x” + an’x, for § = 0, near @ =
(k/n)2 and_ in VK"O, that is for x (and y) as in Lemma 3.11. One gets, for X(7) =
X Xm0 e Jand A > 0,

(—(ng +mn)? + an® — A)x;, = 0.

For A = 0,0 = (k/ n)? k = ko + kn, the only non-zero modes are such that
no = tko+ (£k — m)n, that is no = ko and m = k, i.e., no +mn = k, and
no=n—kopandm = —k — 1,ie., ng +mn = —k.

ForA > O0andoa = (k — 8)2/n2, one has a contribution of the mode mn + ng, i.e.,
with x,, # 0, onlyif A = (ko+kn —e)% — (ko +mn)? = —(mn —kn+¢)(2ko +mn +
kn —¢) > 0, that is for all integers m between —k — 2ko/n+¢/n and k — e /n. Taking
& small enough, it is easy to see that the number of m’s in this interval is [2k/n], if
& > 0, and 2k /n not an integer, [2k/n] + 1, if ¢ < 0, and 2k /n not an integer, while,
if 2k/n = ki, one has ky — 1 suchm’s,if ¢ > 0,and k1 + 1, if e < 0.

If 2k/n is not an integer the y component is completely determined by x1(7)
which is complex, i.e., the real Morse number is twice the complex Morse number.
Furthermore, if ag > 0, that is, if Bp > 0, then the point (g, ap — p) is to the left
of the curve ay/,(B), if &g = —1, and to the right, if &9 = 1, while (o, ap + p) has
the inverse collocation. Being to the left means ¢ > 0 and to the right means ¢ < 0.
On the other hand, if ap < 0, that is, if B9 < 0, then («g, ap — p) is to the right of
ag/n(B),if &g = 1, and to the left, if g9 = —1.

If2k/n = ki, acrossing of the transition curve will increase (or decrease according
to the sign of gp) the real Morse number by 1, but then the y-component will give a
similar contribution, with a total complex Morse number changing by 1. In particular,
on the left transition curve, ag — p will be with ¢ > 0, if e¢g = —1 (and the complex
Morse number for ap + p is increased by 1), while ag + p will be with ¢ > 0, if
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g0 = 1, with an increase of 1 in the Morse number for ap — p. On the right transition

curve, if g = 1, then ag — p corresponds to ¢ < 0, while, if &g = —1, then ap + p
corresponds to € < 0. Crossing the transition curve will decrease the Morse number
by 1.

Finally, since VEno and VEn=n0 are isomorphic the Morse numbers are equal. O

Since '/ H has dimension one, one has (for the relevant isotropy subgroups) that,
according to Theorem 3.1,

iL(AX) = [FrlL + nioLFE 1L + nn—ig[Fr_g, 1L

since I" is two-dimensional, hence, in the formula of Theorem 3.1, one has only s = 1.
Note that, if 2k/n = k1, then there is only one F, l::) .

Theorem 3.2. The orthogonal degree for the spring-pendulum system is
deg, (fe: @) = —Sign aj, (B)(Ff, 1 +[Ff, 10,

where k = no, [n], and only one generator if 2k/n = ki, with no = 0 or n/2.
From (Bo, ak/n(Bo)) there is a global bifurcation, in VEno and VK=o of a branch of
non-trivial solutions which is either unbounded in (v, x, y, Z) or returns to another
intersection of the line a = ay, (Bo) with the curve oy, (B) with an opposite sign of
o, .

k/’golutions (x, y) onthe branch are not identically zero (exceptatv = vo/n, B = Po,
a = ag/n(Bo)), have 2k zeros in [0, 2m) and satisfy the symmetry of Lemma 3.11, i.e.,

for vEno
R x(¥)\ _ (x(z +2m/n)
zoin \y(@) = v +21/m) )0
z(t) is 2w /n)-periodic and (x(1)), —y(7)) is in v Knng
Proof. Using the product formula of Theorem 3.1, one has
is(fe) = £AFH1L + niglao £ p)(FF, 11 +[Ff,_ 10).
Since deg | (fz; ) =i+ (fe) +i-(fe), one gets

deg (fe; Q) = (nig(ao + p) — nig(ao — P Fg, 1o+ [Fg, , 11).

The difference of Morse numbers is —1 if gg = 1 and 1 if &9 = —1, and the same
argument works for 2k /n = k.

The argument for the global bifurcation comes from Theorem 5.2 in Chapter 2 and
Proposition 3.1, in particular, that the bifurcation takes place in VX"0 and VX7—"0,
The relation between the two branches is given in Remark 3.7 and the isomorphism
(x,y) = (x, —y) of Lemma 3.11, between the two isotropy subspaces. The nodal
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properties follow from the fact that the equations for x and y are of the form x” +
f(r)x = 0, hence, the number of zeros on the branch is conserved. Furthermore, the
branch cannot return to a point on a curve oy, (8), with k" # k, since, when x goes
to 0 and near a bifurcation point, the number of zeros is determined by k: Lemmas
3.9 and 3.10.

Since (x, y) is in VK70 then, if x(t) = 0, one has y(t) = 0, unless 2ng/n = k.
Hence, if (x, y) tends to (0, 0) on the branch, one has to go to a bifurcation point,
ie.,, withv = vg/n, Z = acos(nt + ¢) and o = O i (B). In the limit, the elements

on that curve need to have 2k zeros, thus, k = k and, from the periodicity of Z(t), i
should be a multiple of n. From the fact that on each curve o} /i there are only two

linearizations which are not invertible, corresponding to vEKio and VX0, the above
argument is reversible and n = n. Thus, the only (x, y) = (0, 0) on the branch are
the bifurcation points from the trivial solutions. Of course, this argument may also be
given directly from the fact that the bifurcation is in vEno O

Remark 3.11. If one varies «, one obtains “surfaces” bifurcating from the curve
ag/n(B), following the arguments of I'-epi maps of [L.LM.V.0].

In particular, for any segment, in the («, 8)-plane, which is transversal to o/, (8),
either the branch is unbounded over the segment (in (x, y, Z)), or it covers one of the
end points. For instance, if one has a-priori bounds, then the branch covers one of the
components of the complement of the curve: See [I. p.395].

Remark 3.12. If one wishes to use the reversibility, then one may restrict the study to
fixed point subspaces of R, and of R; R, i.e., for Z(t) even, x(7) and y(t) of equal
parity (¢ = 1) or opposite parity (¢ = —1).

(a) Fixing the parity will destroy the equivariance with respect to the time shift. On
the other hand, if x () and y(t) have the same parity, thatis & = 1, one will keep
the equivariance with respect to Ry, and the equations are still orthogonal. In this
case ' = S, acting via Ry, and the isotropy of (x =0,y =0, Z, = acosnt)
is H = S!, with only one strict subgroup K = {e}. In order to compute
iit (fH), one has to count the negative eigenvalues A of the linearization in
VH ={(v,0,0, Z(1)), with Z(t) even and 27 -periodic},

Dfi(p,2) = (F&1 — A, =2 —n’z +bZyu — 12),

where z(t) = ejcosnt + Z(t), with Z(r) even. As before, for u # 0,
one has a contribution only at ag — p. On the other hand, if © = 0, then
e = 0and Z” + (n®2 4+ A)Z = 0 will give 27-periodic even solutions for
A =k?>—n?withO < k < nand Z(r) = coskt. Thus, dy(a + p) = (—D"
and dy(a — p) = (—1)"*T1. As before, one has

i+(fe) = £(=D"[FglL x ((Fg 1L +nlao £ p)[F11)
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and, as a consequence,

deg, (fi; @) = (=1)"(n(ao + p) = nao — PHIFfy L
= —(=1)" Sign o, (Bo)[F{;11,

since the difference, in the complex Morse numbers, is — Sign oz,’( /n (Bo), if one
crosses the curve oy, (for x(7) and y(z) even) or the curve ay, (for x(r) and
y(7) odd). Solutions on the branch conserve the parity, by construction, and
the nodal properties. However, since the periodicity of Z(t) on the branch is
only 27, there is no topological argument to prevent the branch coming out of

(Bo, ak/n(Bo)) to goto a point (B1, a7 (B1) = akyn(Po)), for an different from
n. Furthermore, one may have x(t) = 0 or y(r) = 0 on the bifurcating branch.

In fact, if one puts y(t) = 0, then the system reduces to two equations and
one may use the standard Leray—Schauder degree theory on spaces of functions
(x(7), Z(7)), with are 2 -periodic, with Z(t) even and x(7) of a given parity,
either even or odd. On these spaces, the kernels of the linearization of f, are
one-dimensional (due to the parity of Z (7)) on the curve oy, (), with a change
in the index from ag — p to a9 + p. Hence, one has the same bifurcation results,
but now of planar solutions. It is likely that these solutions, rotated by Ry,
generate the solutions obtained by the reversibility argument. However, except
for the case where 2k /n is an integer, they are different from the ones given in
v Kn | Hence, one has a double bifurcation from (Bo, otk yn(Bo)), if 2k /n is not
an integer, of planar and non-planar solutions.

For the case of opposite parity, then the equivariance with respect to Ry, is also

destroyed. However, the subspaces VXm0 remain fixed by the action of R_j,
that is, if

o0
X() = Z Xt roTmT
—00

with x(t) = Re X (7) and y(tr) = Im X (7), then, if all x,,,’s are taken real, one
has

o o
x(1) = me cos(ng +nm)r and y(r)= me sin(ng + nm)t,

—00 —00

and x(7) is even, while y(t) is odd. On the other hand by taking all x,,’s pure
imaginary, then x(t) will be odd and y(t) will be even. Thus, by decomposing
functions in VX7 as sums of the form (x(t) even, y(t) odd) and (x(t) odd,
y(7) even), one may study the equations in the above subspaces. One will have
a jump of one eigenvalue when crossing o/, () and one may use the Leray—
Schauder theory in that space. However, this invariance property of VX0 is not
clear a priori, while the existence of v Kno, coming from the analysis of twisted
orbits is natural.
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(c) From the stability in the complement of the Arnold’s tongues, it seems likely
that the first bifurcation will correspond to a crossing of a transition curve, i.e.,
with 2k/n an integer and a planar solution.

4.4 TI'-Index of a loop of stationary points

In this last section of the book, we shall study the case of an isolated loop of stationary
solutions, for problems with one extra parameter, with the main intention of applying
the results to different kinds of Hopf bifurcation. More precisely,let F : Rx U — W
be a ["-equivariant map such that F has a simple loop P of zeros in R x U, on which
F is regular, with the usual compactness if U is infinite-dimensional. Hence D F has
a one-dimensional kernel, at each point of P, generated by the tangent vector to P.
This situation forces U and W to be equivalent representations (see § 5 in Chapter 1).
Then, if 2 is a small invariant neighborhood of P such that F I has only P as zeros in
QL one may define deg-(F; €2). Furthermore, if X, in R x U, is written as xXrex,
and F as FU @ F*L, the regularity implies that Dy, F L is invertible, hence, as it has
been done already several times

degr (F; Q) = degr (FT(X1), Dx, FL (X)X 1); Q).

We have in mind the special case of the Hopf bifurcation, or variations of it,
that is U = R x V, and X is written as (u, v, Xo, X1), with Xg in VI while
FU(u, v, Xo) = (0% — u?> —v2, Fo(u, v, Xo)), with Fo(u, v, 0) = 0. Thus, the loop
P is the circle p? = u? +v2, Xo = X = 0.

If we assume that Dx, Fo(u, v, 0) is invertible on the loop, then one may simplify
further the computation of the I"-degree

degr(F; Q) = degp((0* — u* — v2, Dx, Fo(ie, v, 0)Xo, Dx, F* (i, v, 0)X1); Q)

and we take Q to be {(i, v, X0, X 1) : % +v% < 402, | Xoll, |1 X LI < 2¢}.
As we have seen in Corollary 5.2 of Chapter 1, one has

degp (F; Q) = SoJ ' (Dx, Fo, Dx, F1),

where X is the suspension by 2¢ — 1 and J! is the J"'-homomorphism, or Whitehead
map, from the set of all '-homotopic classes from S! into GL' (V) into the group
Mg, (SY):

(' > L' We L 0, sY)
A, v) — (IXI = &, A, WX),

recalling that the homotopy t(p? — 2 — v + (1 — 1)(||X]|| — &) is valid on 9%,
once A(u,v) = diag(Dx, Fo, Dx, Fl)|ﬂz+v2=p2 has been extended, to all (u, v),
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by defining A(ut, vr) = tA(u, v), for t > 0 and u? 4+ v? = p?. Note that, from
Definition 8.1 of Chapter 1, the group Hngv(S V) requires an extra variable, here
given by t = 2u1 — 1. Recall also that X is an isomorphism provided dim VI' > 3,
see Corollary 7.1 of Chapter 3.

Example 4.1 (The classical Hopf bifurcation). In order to motivate the study de-
scribed above, consider the problem of finding 277 -periodic solutions to the autonomous
system

dx N
(VO+V)E—L(M)X—f(X,M)=O, X in R™,

where f(X, 1) = 0(| X||?). Thus, X = 0 is a solution for all (i, v). The problem is
equivalent, on Fourier series, to

in(vo+v)X, —L(WX, — fu(X, ) =0, n=>0,

where f;, is S!-equivariant. Clearly, a necessary condition for the existence of solutions
with X # 0, is that in(vg + v)I — L(u) is not invertible. Hence, assume that L (0)
has +ivg as eigenvalues, but that invgl — L(0) is invertible for n # 1 (non-resonance
condition), then this will be case for (u, v) close to (0, 0) and one may solve, by
the implicit function theorem for instance, for X,, in terms of (u, v, X1) and one is
reduced to _
(i(vo+wv)I —L(w)X1 — filXy, p,v) =0,
where, due to the uniqueness of X,,, one has fl(ei‘le, n,v) = ei‘/’fl (X1, i, v). If,
furthermore, i vg is a simple eigenvalue of L(0), then the Ljapunov—Schmidt reduction
leads to 5
(iv —a(u)x — fx, 1, v) =0,

where a(0) = 0 and L(u) has the eigenvalue ivy + a(u), the variable x is now in C
and f is S'-equivariant and 0(|x|?). Using this last fact for x = re’?, one is finally
reduced to

r@iv—a(uw) —g(r, n,v)) =0,
with g(r, u,v) = 0(r). If Rea’(0) # 0 (non-zero speed crossing), then one may
solve uniquely, again by the implicit function theorem, these two equations for (u, v)
in terms of r, giving periodic solutions.

In this derivation, the S!'-equivariance was used, at the last step, to reduce the
dimension of the domain. Now, if one has resonances or a non-simple eigenvalue, or
more symmetries, the argument does not work anymore. But, on the other hand, the
I'-degree (an S'-degree in the case of classical Hopf bifurcation) can be computed.

Let us return to the general situation described at the beginning of this section,
ie., to TgJT(DF), where DF is the linearization at (i, v, 0) of (Fp, F1), with
respect to (Xo, X1). Using a Ljapunov—Schmidt reduction, we may assume that V
is finite dimensional. Since DF is I'-equivariant, it has a block diagonal structure
(Theorem 5.3 of Chapter 1)

DF = diag(Dx, Fo, DYI,FJ.L, .. Dz, Fi, ..., Dz, F{),
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where Y; is made of real coordinates with an action of I' as Z,, while I" acts on the
complex coordinate Z; as Z,,, and on Zy as § 1 Each of the pieces of D F depends on
(w, v) and is invertible on the circle u2? + v2 = p2. In particular, the determinant of
each piece has a constant sign on the circle, positive for the complex matrices.

Now, we have seen in Theorem 8.3 of Chapter 1, that if

A(p, v) = diag(Ao, Aj, By, Ck),

where A corresponds to Xo, AjtoY; with j =1, ..., r andisotropy H; withI"/H; =
Zy, and By or Cy correspond to Z; or Z; with action of I" as Z,,, or S!. is such that
Ao and A; have positive determinant, then J " is a morphism of groups, i.e.,

JF
M (GLL(V)) —— Mg,y (8)

is such that
JNAB) =J"(A) + 77 (B),

where all pieces of A and B have positive determinants.

In order to compute deg- (F'; €2), we shall use this property of J I by relating first
JU(A) to JU(A*), where A* is obtained from A by changing the sign of one row in
case A has a negative determinant, in which case A* has a positive determinant (of
course this will be done for each piece Ag, A; of A).

Let Iy be the linear map which changes the first component of X into its opposite
and /; the similar map for ¥;. Since the addition in HERW (V) is defined on ¢, the
maps /o and /; induce two morphisms on this group by

LU O = LI
IFLFCOIF = Ui FXOIr,

for j =0 (and lp),and j =1, ...,r.
Lemma 4.1. The morphisms 1 j* and 1 J’* have the following properties:
() 1;2 = 1}!*2 =1d,
(o) IFIF = FIF, LML = 10, L = P,
© IGLfIr =~Lf]Ir.
(d) Ifdim VT > 3, then If[ f1r = I[*[ f]r.
(e) Ifdim{Y;} = 3, then I*[f1r = I/*[fr.
() Ifdim{Y;} = 1, then [JV A; (1, v)Ir = 0.
(@) Ifdim{Y;} =2, then IX[J " Ajlr = = 1*[J " Ajlr and 211" AjIr = 210 " Aj]r.
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(h) Ifdim{Y;} > 3, then 2[JFAJ~]1~ = 0, where, for j = 0, {Yo} stands for V.

Proof. Since I ].2 = Id, it follows that [ j* and [ ]’* are involutions. Furthermore, the
commutativity is immediate. Notice that, via a rotation, one has that (2t — 1, —xp) is
homotopic to (1 — 2t, xg). This proves (c).

Now, if one suspends by y;, with isotropy H; (taking again yo with Hy = I"), one
has

by performing the rotations between the components or the variables. Hence,
5L fIr = S fr.
But, from Corollary 7.1 of Chapter 3, X; is an isomorphism if dim{Y;} > 3, proving
(d) and (e).
Finally, if dim{Y;} = 1, then A;(u, v) is a non-zero scalar, deformable to a

constant. Hence, [JFAj]r = [lyj|—1, £y;Ir = 0. Onthe other hand, if dim{Y;} > 3,
then 2[A;] = 0 if det A; > O (see Theorem 8.3 in Chapter 1), or 2[1;A;]r = 0 if

det A; < 0. For the case dim{Y;} = 2, let /; be the matrix (_01 (1)> , then, if

det A; > 0, one has that A; is homotopic to 24, where A = w ~+1iv and Y; is written
as y1 + iyz. Then, according to Theorem 5.1 of Chapter 3, one gets

[T A Ir = 111 — 1, A; Y- = dn,

where 7 is the Hopf map and a generator of IT(Hj).
Recall that, in this case
[I(Hj) =7 x 7y,

generated by n = (]¥;| — 1, AY;), which is such that its degree (as a map from
(i, v, y1 > 0) into R?) is 1, and by 11 with 2n; = 0. Then,
BT Ajlr = dIn = dl|Yj| — 1, =AY;]r = d(n + dim),

since the degree of (y; — 1, —Ay;), for y; > 0, is also 1. Since 271 = 0, one has part
of the answer, with Ij*[JFAj]r = d([JFAj]r +din).

On the other hand, if det A; < 0, then A;; has a positive determinant and homo-
topic to 24 Y;, for some d. Then,

BT AjLIr = dIn = d(n +dim) = [T Ajlr,

from the above result and since I]?kz = Id. One gets Ij*[JFAj]r =dn = [JFAJ]F -

ddiny = d([J" AjIr + din1), since 21 = 0.
Further_more, since I;Al; = A, one has, if det A; > 0 and using the fact that the
map A — A is homotopic to I,

LA e = LU Ajle = =1 Ajlr,
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hence IJ-’*[JFAJ-]F = —I].*[JFAj]r. If, on the contrary, det A; < 0, then A;I; has
positive determinant and one has

LT Al = IV A e = =TT A L = —[J " Ajlr,
with the same result. O

Remark 4.1. We shall prove below, in Lemma 4.2, that, after one suspension, one
has

(I =i —m) = Zj(n +dim),
thatis (1 +d)X;n; = 0, where ¥;n and X;n; generate [1(H;) = Z; x Zj in this
dimension. Thus, 1 4 d is even, or else d; is odd and may be taken to be —1.
Let us now return to the matrix
A(w,v) = diag(Ao, Aj, B, Cr),
where the different pieces have the same meaning as before. Let ¢; = Signdet A;, for
j=0,1,...,r, that is, for the pieces of VI and Vi N (VF)J-, where I'/H; = 7.
Define A;‘f = A;jI%, where aj = (1 — ¢;)/2 and let
A* = diag(Ag, A}k, B, Cp).

Then A*(u, v) belongs to I (GLE_(V)) and can be written as a product of matrices
of the form

diag(Ag, 1, I, I)diag(1, A7, I, I)diag(1, I, B;, I) diag(1, I, I, Cy).
Thus, from the group morphism property of J', one has

JUA =TT+ > st An + > st B+ ) st c,
j I k

where X! is the suspension by the corresponding identity. Hence, one has
r
0 7
+Y =TI+ ) =T ITICA.
l k

It remains to identify the action of 1 j* on each term and to compute J I'ra il J TIB]

and JU[C¢] in terms of the generators of Hngv (V), as given in Theorems 5.1 and
5.2 in Chapter 3.
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Assume, for simplicity, the following dimension conditions:

dim VI >3
(H1) dmV; >3, j=1,...,r
dimcV; > 2, dimcV, >1

where V; is spanned by ¥; = (y1, ..., y»), each with isotropy H; with I'/H; = Z,
the space V; is spanned by Z; = (z1, ..., z»), each with isotropy H; with I'/H; = Z,,
and action of I" on z; as exp(2mwimg/p), where m and p are relatively prime. The
coordinates Z; = (z1,...,2n), giving Vi, have isotropy Hj with action of ' as
exp(2mwimy ), including conjugates.

From Theorem 7.1 of Chapter 3, any suspension of HERXv (SV) is one-to-one and
any suspension by one of the variables present in V is an isomorphism, in particular
>o: recall that deg-(F; 2) = SoJV[DF]r isin HERZW(SRXV). Now, according to
Theorems 3.2 and 5.5 of Chapter 3, this group is a product of [T(H)’s, with IT(H) = Z,
if dmI'/H = 1, and I1(H) = Z, x I'/H, if I'/H is finite. Here, since DF is
diagonal on equivalent irreducible representations of I', only those H’s corresponding
to coordinates in V will be concerned in the first computation of the I'-degree of
JUIDF].

Let us write A = w + iv and, in Vy = vl Vj, Vi or Vi, single out a complex
coordinate z (made up of two real coordinates in the case of Vp or V;) and write
Xo as (z, Xp), ¥ as (z, Y/./) and Z; or Z as (z, Z)) or (z, Z;). As functions of
(t, u, v, Xo, Y;, Z;, Zy), consider the following generators

Fo = Qt — 1,1z — 1, xz, X4, ¥}, Z1, Z)

Fj = Qt—1,1z> = 1, Xo, Az, Y}, Z1, Z)

F = Qt— 1,1z = 1, X0, Y}, Az, Z), Zi)

Fp = 2t — 1,12 — 1, X0, Y}, Z1, Az, Z}).

The map Fy is the suspension of the Hopf map and generates IT(I"): Lemma 5.1
of Chapter 3. The map Fj has an ordinary degree, for z in R™, equal to (—1)%, where
gj = dim Vp+ > i<j dim V;, and, as such, can be taken as one of the two generators of
IT(H;): see Theorem 5.1 in Chapter 3. The same argument yields an ordinary degree
of (=1)®+! for F; and Fy. Since IT1(H)) is Z X Zp, if p is even, or Z,), if p is odd,
from Corollary 5.1 in Chapter 3, one may choose F; as generator (see Lemma 5.4 in
Chapter 3). For Fy one uses Theorem 3.3 in Chapter 3.

Recall that D F has a diagonal structure on equivalent irreducible representations
of I', in particular on V;, with I'/H; = Z,,, one has D F'|y, = diag(Ay, ..., A,), where
the action of I on Z;; is as exp(2wimg/p) and A corresponds to all coordinates with
the same m.
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Theorem 4.1. Assume hypothesis (H1) holds and that DF is invertible on the loop
X = p, then, for € small enough, one has

degr ((IXI1* — &%, F (i, v. Xo. ;. Z1, Z1): Q)
= ([15")@lFolr + Y dlF I+ (X md)lFIr + Y dlFilr ).
Jj=0 J l s k

where
DF = diag(Dx,F". Dy, F}". Dz, Fj;. Dz, ;")

and
aj = (1 — Signdet Dy, F;")/2

on the loop, for j = 0,1,...,r. If n is the generator of T1{(GL1.(V))), i.e., n =
diag(r, I),for j =0,1,...,r, then

() don is the class of (Dx, F*) 15 in TI1(GL4. (V")) = Z,,
(b) djn is the class of (Dy, F)I;" in T (GL1.(V})) = Zs,

(c) For Zjs, with action as exp(2rwimg/p), with mg and p relatively prime, the
number |\ng| is an odd integer such that ngmg = 1, mod p, and ds is the winding
number of det(Dz,, Fli_)’ as a mapping from the loop onto C\{0},

(d) Finally, dy is the winding number of det(Dz, Fkl), where I acts as exp(Limp@).

Proof. The only point to check is the computation of J F[Dlzs FIJS-]F = d[Fislr,
where the generator Fjg is built on the model of F; but with action of I" on z given by
exp(2mimg/p). Thus, one has to relate [ Fis]r to [F;]r, where the action on z for F;
is given by a fixed my, for instance 1. This computation was done in Proposition 5.1
of Chapter 3:

[Fislr = ng[Fi]r,

where |ng| is odd and ngmg; = 1, modulo p. For Hy, use Theorem 8.3 of Chapter 1. O

Remark 4.2. The reader should notice that there is a slight inconsistency in our state-
ment of Theorem 4.1: whereas we have assimilated complex conjugate representations
in Vi, with action as exp(Fimy¢), we did not do so in V;, where exp(2wim;/p) and
exp(2mi(p — my)/p)give the same equivalent real representations (see Remark 5.3
of Chapter 1). Furthermore, in general D F|y, is not necessarily block diagonal on
conjugate representations. However, in the cases of our applications, to symmetry
breaking of differential equations, on one side one may eliminate negative modes
(i.e., my < 0) and, on the other side, one has this block diagonal structure. Note
that —ng(p — mg) = 1, modulo p, if ngm; = 1 (see the examples of Proposition 7.3
in Chapter 3). On the other hand, if Fj is built on z with action exp(imy¢) and
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F,é on a z with a conjugate action, we have seen, in Remark 3.1 of Chapter 3, that
[F,é]r = —[Filr. Hence, if DF|y, is made of two blocks, one should have, in The-
orem 4.1, the contribution (d; — d,i)[Fk]r, where dj is the winding number for the
modes with action exp(im¢) and d; the winding number for the conjugates. If the
two blocks are of the form +im;vI — L(w), as in the Hopf bifurcation, with L(u)
real, then the blocks are conjugates one of the other and dl/c = —dy, giving 2di [ Fi]r:
then, there is no loss by considering only positive modes.

It remains to study the effect of the isomorphisms / J?k on each of the generators.

Lemma 4.2. Let F,,u = 0, j, k, [ denote any of the above generators, then
(a) I(Sk[Fu]F = —[Fyulr.

(b) IJ*[FM]F = [Fylr — [Fujlr, where Fyj, with z in 'V, and y; in V}, is the map

©) If j1 # Jo, then IJ[Fyjlr = [Fuj,Ir — [FujijpIr, where the map Fyj j, =
@1 = L yj - 1yl - 12l = 1, Xo, Yi, 07 = Dyjis O, = Dyjpe Az, ..., while
IF[Fujlr = —[Fyjlr.

Proof. Write F, as (2t — 1, ]z|> — 1, Xo, y;, Az, . ..), on the ball
B={0<t<1A <2yl 2,1zl =2, IIXoll, ... 1 Zcll <2},

then [F, Ir = degp(F,; B), by using the fact that the suspension X in the definition
of the I'-degree is an isomorphism. Then, the deformation y;(1 — t + r(yj2 —1))is
valid on 0 B. But then,

degr (Fy; B) = degr(Fu; B N {ly;| < 1/2}) + degr(Fu: BN {ly;| > 1/2}).

For the first degree, one may deform yj2 to 0 and obtain / ].*[Fu]r.

For the second degree, one may use, on the set {|y;| > 1/2}, the deformation
I+ 1 =1z zI(1 = 7 + tly;]) — 1), since, there, a zero of yj(yj2 — 1) implies
|yil = 1. For T = 1, one gets F,;. Since (a) was already proved in Lemma 4.1, one
obtains (b).

By using IJ?“Z = Id, it is easy to see that IJ*[FL,]-]F = —[F,;]r. Furthermore, by
repeating the above argument, one has [F;, [r = 1 ;;[Fu I + [Fuj j, I, as stated in
(c). Further applications of 1 ]?“ are built on the same scheme. O

Finally, one may identify F,; with some of the remaining generators of

HF (SRXV).

SRZXV
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Lemma4.3. Let H, = I'; and Hj = Ty, with U'/Hj = Zp and T'/H,, = {e}, Z)
or S'.

(a) If H; < H,, then [ Fy;]r is the second generator of T1(H;) = 7y X Z.

(b) If H, < Hj, thenT'/H, = Z and
[Fujlr = 2[F,Ir +d[F]Ir.

where d = 1ifk is~0dd and F, generates the second part of 11(H,) = Zoy X 7,
with IJ?k[Fu]F = [FLt]F-

(c) If Hy is not a subgroup of H;j and I'/H,, = Z,, then [F,;]r is a generator of
II(H,NHj) = Zp x L x Lo, with p([Fyj1Ir +[Fujlr) = 0, with2[F,j]r = 0.
The third generator is [ Fj,]r. If, furthermore, H, is not a subgroup of Hj, , then
[FujjIr i:v a generator for I11(H, " H; N H;), with p([Fyjj Ir +[Fujj,Ir) =0,
where 2[Fyjj Ir = 0.

@ IfT/H, = S then [Fujlr generates T1(H, N H;) = Z and [ F,jj, Ir generates
I(H, N Hj O Hjy).

The action of 1 j’; follows from the above.

Proof. If H, is not a subgroup of H;, then there is an & in H,, such that hy; = —y;, in
which case I'/(H,, N H;) = (I'/H,) x Z3, since h? is in H, and acts as the identity
on y;. On the other hand, if H, < Hj and I'/H, = S', then the action of I on z is
given by expi((N, ®) + 27 (K, L/M)) (see Lemma 1.1 in Chapter 1). Hence, for
any L there is a ®¢ such that the exponential is 1, that is (®g, L) is in H,, since N is
not 0. On yj;, the action of I" is given by exp(wi{(Kj, L)). Then, if H, < H;, this last
expression should be 1 for any L, which is impossible, since I'/ H; = Z,. Thus, the
only case where H), is a subgroup of H; is for I'/H, = 7Z, with a generator yq such
that ygz = exp(2mi/p) and y9y; = —y; (if yoy; = y;, then any y in I is of the form
y = yé‘h, with & in H, < H; and one would have H; = I'). Since y(f isin H, < H;,
this implies that p is even.

Now, if H; = H,, i.e., H, = H; or I', then the fundamental cell for IT1(H;) can
be taken as {0 < y; < 2} and F,; is non-zero on its boundary and its class, on this
boundary, is the suspension of the Hopf map, hence, from Theorem 5.1 of Chapter 3,
Fj is the second generator of IT(H;), proving (a).

Now, if H, is not a subgroup of H; and I'/H, = Z,,, then the fundamental cell
for I1(H, N Hj) is {(z,yj,...) : 0 < Argz < 2n/p, 0 < y; < 2}, where the
order for y; and z is irrelevant. Hence, from Theorems 5.3 and 5.4 of Chapter 3,
one has IT1(H, N Hj) = Z, x Zp x Z, with generators 7y, 72 and 7 satisfying
the relations p(n; + ) = 0,29, = 0,27 = 0, and F,; is given on 1y and 1 by
d; = deg(F,;; BNArgz =0)/2and d = deg(F,j; BN{y; >0, y]’. = 0})/p, where
yj/. is one of the twins of y;. By deforming y]’. to &, it is clear that do = 0, while
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di = (=1)4mYo+l Then, one may choose Fy,; as the generator, instead of 7. The
other generators will be, according to Theorem 5.4 of Chapter 3

Fiu = Qt —1,1z| - |zl — 1, Xo, Az, (] — Dzr,...)

Foj = @t —10zlz = 1] = 1. (&> = Dz. 2 = Dz,

where z = (y; + iyj/.) and z; belongs to V.

Similarly, if H, does not contain H; nor Hj,, with H; different from H;,, so that
VvHi nvHi = VT, one has the same situation for I1(H, N H; N Hj;) and one may
take F,;; as a generator for this group, with the same relation as above. This proves
(c).

On the other hand, if I'/H,, = S', then dim I"/(H,, N H;j) =land I1(H, N H;) =
Z. Then, one may compute the extension degree of F,; on the fundamental cell
C=({(z,yj,...): 0 <y <2, z € R}, which is (—1)4mYo+! ‘a5 above. Hence,
we may choose F,; as a generator of the group. This proves (d).

Finally, if H, < H;, with I'/H, = Zy;, one may construct a fundamental cell for
[T1(H) in two different ways: the first one, as the set characterized by {z : 0 < Argz <
7/ k}, with the generators [ F,, ] and [ﬁu]r and the relations 2k[ F,, ]r = 0, Z[Fu]r =0.
The second one, with a fundamental cell characterized by {(y;,z) : 0 < y; < 2,
0 < Argz < 2n/k}, with the generators

m o= @t —1,|yl- Izl = 1, Xo, Ay, 5z* = |y])2),
n2 = [Fylr

= [Fudr =@t —1,12% —i| = 1/2, X0, yj, 2@ = i)z, ..),

where y = y; +i yj/., with the relations

2 +dama +di =0, k(p+i) =0, 27=0,

see Theorem 5.2 of Chapter 3: on the set B N {y; > 0, yj’. = 0}, the map n; has
a degree equal to (—1)%™m Y0k and, according to Lemma 5.3 in Chapter 3, it may be
taken as a generator, since d, and d are O or 1.

Note that, according strictly to Lemma 5.4 of Chapter 3, 7 should be the map

with zeros at t = 1/2, Xo = 0,y; = £1, A =0, |Zk 4 i| = 1/2. In particular, 7 is
non-zero on the boundary of the first fundamental cell, where one has 0 < Arg *<m
and z* real on the boundary. Furthermore, in the cell, the only zero is for yj = 1and
I —il =1 /2. From here, it is easy to see that the class of 7, on this fundamental
cell, is the Hopf map, that is 7 = [F,]r.



298 4 Equivariant Degree and Applications

Now, on the set B N {z : Arg z = 0}, one has the following relations between the
ordinary degrees:

deg(I/[F.]) = —deg([F,]), deg([Fy;]) = 2deg([F D).
Hence, according to Lemma 5.4 in Chapter 3, one has
[[[Fr = =[Fr +di, [Fylr = 2[F]r + di7).

Since, I]*[Fu]p + [Fujlr = [Fulr, from Lemma 4.2, one has d; + d = 0, that is, in
Z>,d; = d. Furthermore, in the map 711, one may perform the equivariant rotation

(1 =Dr— TG = lyD)y, (th + (1 = D)(F* = [y)2).

For v = 1, the term |y|y — |y|?z* is deformed linearly to |z|y — z* (on a zero of the
map, one has |y| - |z| = 1). Then, |y| - |z| — 1 is deformed linearly to |z|* — 1 and,
next, to |z|> — 1. Finally, |z|y — zF is deformed (since on a zero one has |z| = 1), to
y— zF and then to v. Thus, n1 = [F,]r.

From [F,;lr = n2 = 2[F,]r +dn = 2n1 +d7, one obtains d = —1 andd = d.
Since 2k[F,Ir = 2kn; = 0 and k(12 + i) = O, one gets dkn = —k7, that is, if & is
odd, one needs d = 1. Note that 7 has the class of the Hopf map on the fundamental
cell and that 1 j*ﬁ = 7 (since 217 = 0). As in Propositions 7.2, 7.6 and 7.9 of Chapter 3,
we leave out the determination of d, when k is even.

Note that, from Lemma 4.2 and from what we have proved in the present lemma,
the effect of subsequent applications of ;;, 1 J?;, and so on, may be easily derived.
Remark that part of this theorem was proved, in Example 7.4 in Chapter 3, by using
products. O

Corollary 4.1 (Abstract Hopf bifurcation).  Assume hypothesis (H1) and let
F(u,v, X) be a C' map from R? x U into U (of the form Identity — Compact,
if U is infinite dimensional) such that F(u,v,0) = 0 and DxF is invertible for
0 < u?>+v? < 4p? and X = 0. Then, there is a global continuum C of zeros of
F, with X # 0, bifurcating from (0, 0, 0), which is either unbounded or returns to
(u1,v1,0) £ (0,0,0), if one of the following numbers is non-zero:

dop mod 2, and C isin U

dj mod 2, and C isin vt

Znsds mod p if p isevenand mod 2p if p is odd, and C is in vt
dy and C is in Uk,

If C is bounded and Dx F is invertible in punctured neighborhoods of the return
points (i, vj, 0), then the sum of the I'-degrees in Theorem 4.1 is 0.

If all the numbers are 0, then there is a F—n}ap ﬁ(u, v, X), with DXI:"(,u, v,0) =
Dx F(u,v,0), for uz +1v2 < 4,02, such that F(u, v, X) = 0 only for X = 0.



4.4 T-Index of a loop of stationary points 299

Proof. It is enough to apply Theorem 5.2 of Chapter 2 and, for the last part, the results
of [I]. The proof relies only on the fact that for any p > 0, small enough, there is
an e(p) such that F(u, v, X) = 0, for | X|| < 2e(p) and p* < u? + v? < 4p2, then
X = 0. Then, for ¢ < &(p), one defines the set

Q= {(u,v, X) : u® +> < 4p% |X| <2e},

and perform the deformation (z (|| X| — &) 4+ (1 — ) (p? — n? —v?), F(u, v, X)) on
0€2, followed by the linearization of F', on the loop w? 4+ v = p?,to DF(u, v, 0)X.
O

Remark 4.3. There are many possible variations on the hypothesis of invertibility of
DF. For instance, that D F is invertible only outside a disk of the form p? 4+ v? < ,03:
the above argument goes through and the bifurcation will take place from this disk.
Another hypothesis, which we will use in the case of differential equations, is the
following:

For some ¢q, pg > 0, if,og < ,u2 +1? < 4,0(%, one has
(H2) Dy, F+(u, v, 0) invertible and, in the same ring,
FT (i, v, Xo) # 0if 0 < [ Xo| < 2eo.

In fact, since F(u, v, Xo, X1) = O(|X_L|[IX]), due to the equivariance, in
the above disk and for || X|| < 2gp, a zero of F is only for X; = 0 and with
FU(u,v, Xo) = 0, i.e., with Xg = 0. Thus, the deformation of (| X|| — &, F)
to (pg —u?2 =3 F)is possible on 2. Then, it is straightforward to deform to
(pg — 1> —v2, F'(u, v, Xo), Dx, FL (11, v, 0)X 1), since the invertibility of Dx, F*
at (i, v, 0) implies its invertibility at (i, v, Xo), for Xo small. Note that, for w42 =
pg, the index of F F(M, v, Xo) at 0, is well defined and independent of (u, v) on this
circle, since one may move along the circle, with a constant index. Note also that, if
FU(u, v, Xo) is zero only at Xy = 0, for u2 +12 < 4,0%, then one may deform FT,
via FF(T/L, v, Xo), to FL (0,0, Xo), obtaining a product map. In general, one has
the following result:

Corollary 4.2. Assume (H1) and (H2) hold. Then, deg (IX)?*= 88, F); Q) is given
as in Theorem 4.1, with dy = deg((||X0||2 — 8(2), FU(u, v, X0)); QD), in Zo, and Ig“o
replaced by Index(F" (o, vo, X0); 0), for any (o, vo) on the loop u? 42 = pg. In
particular, ifFF(M, v, Xo) is zero only at Xo = 0, for MZ +2 < 4,03, then dy = 0,
there is no bifurcation of stationary solutions, and, if Index(F 0,0, Xo); 0)d, is
non-zero, then one has a global bifurcation of non-stationary solutions in V*.

Proof. It is clear that one may perform the above deformation for 1/ ;xj F. Thus, one

may assume that each piece of Dy | F L has a positive determinant on the loop |A| = p.
Furthermore, on that loop, the piece / ]‘.xj A; is homotopic to diag(kdf LId). If G(t, L)
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is the homotopy of the family of matrices, for || = p, then [A|G (T, Ap/|A|) is a valid
extension to 2. Thus, one may assume that IT/ ;1"' Dx, F 1 has this special form.

Letp(X )belif || X 1] < e&p/2andbe Oif | X || > 9. Then, one may replace
Dy, F-by (1—¢)Dx, F* +¢Id*, where Id*, on a component zj such that Dy | Ft
is A% ;. is of the form —p% ', with [1;] = 1 and the d; roots of the equation 77’ = 1
are different for all j’s. Hence, if €2 is the part of 2 with || X || < &9/2 and 2 the
part with &9/2 < || X1 || < 2g0p, one obtains

degr((0* — |11, FT, Dx, F1); Q)
= degp((p* — A%, FF1d* X 1); Q1)
+degr (0 — A%, FT, (1 — @) Dx, FX + @ 1d*) X 1); Q).

In the first degree, one may deform Id* to Id and obtain the suspension of dy. For
the second degree, the zeros of the map are such that, for some of the pieces of Dx | F l,
onehas (1-)1% zj—gp® ! 2 = 0, withz; # 0. Hence,¢ = 1/2and % = pdin’,
something which happens for different values of A. Hence, one may divide the loop,
and subsequently €27, into smaller pieces, where this last relation occurs for just one
value A; of A. On each of these pieces of the loop, one may deform F' T, v, Xg) to
Fl(u i» Vi, Xo), obtaining a product of maps and, from Proposition 7.6 of Chapter 3,
a product of degrees. In this case, it is obvious that the product of the generators
is just the generator of the product. Furthermore, since the index of FT (1 i Vi, X0)
is constant on the loop, one may factor it and recompose €2, from its pieces and, in
fact, return to €2, without the dependence on X(. Note that, since dim vinv, =o,
technically the hypothesis (H1) is not satisfied for the I"-degree for (A, X ). But,
one may suspend by X of large dimension and use Theorem 7.1 of Chapter 3, where
one has that, for strict subgroups of I, this suspension is an isomorphism, due to the
rest of hypothesis (H1). Note also that one could compute directly the I"-degree on
a small neighborhood of 1; = u;j + ivj, by taking the section z; in RT, giving a
contribution of Sign d;, for each root. Also, if F Cw, v, Xo) # 0, for Xg non-zero
and ;Lz + p2 < 4,0%, then by deforming to FT(0,0, Xo), one may use directly the
product theorem. In this case, deg((pg — |2, FT(0, 0, X0)): Q) = 0, since one

may deform the first component to || Xol|> — 88, obtaining a pair without zeros. O

Example 4.2. As an illustration of the last corollary, consider the group Z; acting
trivially on zg in C and as — Id on (z1, z2) in C2. Consider the ['-map

F = (23 — M, Az1 +20(z2 + 72) — 121, [Mz2 — (zoz1 + Z0Z1) — 122),

where A = p +ivand t = |z1|*> + |z2|*. Then, Dx, F1(%,0) = diag(, |A|) and
FU' = z2, that is (H2) is satisfied, with Index(F';0) = 2. Furthermore, d; =
[Dx, F L] = 1 (the term |A| is deformable to 1). From Corollary 4.2 and taking
into account that 2[F;] = 0, one has that degp (,02 — |A|2, F; Q) = 0. In fact, if
F(A, X) = 0, one may write the last two components, each multiplied by ¢, in the
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20t (z0z1 + tz22 —0
—t Zo0) \20z2 — 1tZi ’

If X # 0, the matrix is invertible and, conjugating the second component, one may

write the vector as
20 t 1Y) _ 0
—t 7Z0) \22 ’

Hence the only zero of F is (X, 0), i.e., with no bifurcation.

Remark 4.4. For a correct application of Corollary 4.1, it is important to note that
if d, # 0, then there is global bifurcation in V*. But this does not mean that the
isotropy of the solution is exactly H,,. Similarly, one may have d, and d; non-zero for
two subgroups H, and Hy. Hence, one will have global bifurcation in V# and V s
but it may happen that these branches are the same in VN Vs with an isotropy H
which contains H, U H,.. Even if dg = 0, this is not enough to guarantee that the two
solutions are distinct.

In fact, consider the action of S! on C* via
. iy 3 . .
(21, 22, 23, 24) = (€921, €925, €523, %9 2y),

and the map F (X, X) = (Xo, Az1, Az2, Az3 + 23, Aza + 23).

From the linearization, it is easy to see that dz, = 1 = dz, and dz, = 0, corre-
sponding to the linear map diag(X, A), with winding number equal to 0. However, the
non-trivial solutions are for A = 0, z; = z» = 0, i.e., in VZ6,

Similarly, the map (|A|>x0 + |z1]*> + |z2/%, Az1, Az2), with action of S' as
€' (x0, 21, 22) = (x0, €%z, €3925), has dr = 0, dz, = dz; = 1, but the non-trivial
solutions are for A = 0 = z1 = 2.

Clearly, if it is known that there is no bifurcation in any V# for H containing
H, U H and the numbers dp, and dp, are non-zero, then one will have two distinct
branches. This is the case if DFH (), 0) is invertible, for all such H’s, or in the
situation of Corollary 4.2.

Example 4.3 ( Hopf bifurcation for autonomous differential equations). Letusreturn
to the autonomous system

dX o
81 v, X) = (0 + )~ —LWX — f(X. ) =0, X inRY,

where f(X, 1) = 0(|| X ||%), or equivalently, to the infinite system of Fourier series
(in(vo +v)I — L(u)Xn — fu(X,n) =0, n =0,

where f, is S!-equivariant. Note that the equation for n = 0, i.e., for the stationary
part, is independent of v.
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Proposition 4.1. Assume that L(0) has eigenvalues imvy, ..., imgsvg and that,
for p small but non-zero, L(1) has its corresponding eigenvalues off the imaginary
axis. Assume also that if L(w)X + f(X, ) = 0, for p and || X|| small, then X =
0. Then, for any ¢ and p small enough, deggi ((||X| — &, g(u, v, X)); {|A] < 2p,
| X || < 2e}) is well defined and equal to

N
> dy [yl

j=1

where d,, ;= Index(L(w)X + f(X, w); 0)oy, : and oy, ;s the net crossing number
of eigenvalues of L(w) at imjvy, that is the number of eigenvalues which cross the
imaginary axis at imjvy, when (. goes through 0, from left to right minus the number
of those which cross from right to left.

Proof. The hypothesis insures that in(v+vg)I — L () is invertible for A = p+iv non
zero and small, provided n > 0. The second part of the hypothesis implies that one
may apply Corollary 4.2. From the point of view of the reduction to finite dimension,
any contraction argument will lead to considering the modes m1, ..., m, and 0. Note
that the second part of the hypothesis is met if L(0) is invertible, in which case the
index of the statement is just the sign of det L(0). It remains only to compute the
winding number of det(im;(vo + v)I — L(uw)).

It is enough to recall that one may identify the eigenvalues Aq(w), ..., Any(p)
of L(u) in a continuous way (unless the eigenvalue is simple, or L(u) is self-
adjoint, the corresponding eigenvector is not continuous, although the projection on
the generalized eigenspace is continuous: see for instance [K]). Then, if one writes
() = ax(w) + iBr(n), it is clear that in the above determinant one may de-
form to 1, in C, all the terms corresponding to eigenvalues which do not satisfy
ar(0) = 0 and B¢(0) = imjvy. Thus, the winding number of the determinant is
the degree of IT(—ax (i) +im;(v — yx (1)), where k runs over all eigenvalues corre-
sponding to the generalized eigenspace ker(L(0) — imjvol)%, of dimension d, and
Bi(u) = im;(vo + vk ().

Since o (1) # 0 for u # 0, and y4(0) = 0, one may deform, on /,Lz +v2 = ,02,
the term yx(u) to 0. Furthermore, ox (1) may be deformed to Sign «x (1) and then the
corresponding factor is deformed to 1, in C, if o (t) does not change sign. While, if
oy () changes sign as -u, then one may deform it to &u. Thus, one has to compute
the degree of (—u +imjv)"+ (u +imju)"~, where ny are the number of eigenvalues
which cross the imaginary axis at im;vg as =, when p goes through 0. Hence the
degree is n_ — n,.. This gives the result up to an orientation factor (—1)V*!, given
by the change from n_ — n to ny —n_ and to the degree of — Id in R". This factor
is absorbed by the generator F,;. The fact that dy = 0 comes from the special case
of hypothesis (H2). O
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Remark 4.5. Let us return to the point of the type of the solutions. Consider the
three-dimensional system

/

x1 po10\ (m) [PX.w
I+v)|x] =1-1 n O nl+loX, W],
X3 0 0 w2/ \x3 R(X, )

where P, Q, R are C 2 functions with vanishing first derivatives at X = 0. Here the
action is that of S! and only two modes are important: n = 1, with a crossing of
a simple eigenvalue from left to right, and n = 0 with a non-negative eigenvalue
touching the origin at u = 0.

(a) fR(X, pn) = a(u)xl2 +b(,u)x% +c(u)x1x2 +x§ +H.O.T., where H.O.T. means

terms of order 3 (different from x%) and higher. Since L(u) is singular, one has
to look at the stationary solutions in order to verify hypothesis (H2). In this
case, one may solve the first two equations, for x; and x; in terms of x3, with
X, = O(x32), i = 1, 2. The last equation will be of the form x3 (M2 +x32 + O(xg’)),
which, for x3 small, has the only solution x3 = 0. Hence, one obtains a global
branch of truly periodic solutions, since the index of L ()X + f (X, ) is 1, for

 small and non-zero.

(b) If the third equation is replaced by (1 + v)xé = R(X, ), then, as above, the
only stationary solution, for x small, is X = 0 and its index is 1 (from the term
xg’ ). Thus, one has the same behavior as in the preceding case.

(c) Take the system, with P = Q =0, R(X, u) = xl2 + x%. Then, any periodic
solution gives either © = v = 0, 0or x; = xo = 0. But xé = )cl2 +x22 > ( cannot
have a periodic solution, unless x; = x = 0. Thus, u =0, x; = x =0, x3 in
R is a global branch of stationary solutions.

Example 4.4 (Hopf bifurcation for autonomous systems with symmetries). We con-
sider the problem of finding (277 )-periodic solutions to the system

dx N
g(u,v,X)z(ervo)E—L(M)X—f(X,M,v)=0, X in R™,

for (u, v) close to (0, 0) and f (X, u, v) = o(|| X||). Here we shall assume that L(x)
and g(X, u, v) are I'p-equivariant. Then the problem is equivalent to the system

(in(v +vo)l — L(W)Xn — fu(X, 4, v) =0, n>0, X, inC",

We shall assume that L (14) has the same spectral behavior as in the preceding example
and, for simplicity, that L(0) is invertible. Now, if X,,; is the j’th coordinate of X,,,
then the action of I' = S x I’y on X, j is of the form

expi((N/, @) +27(K, L/ /M) + ng),
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as in Section 1 of Chapter 1, with n > 0. Hence, X,; and Xj; belong to the same
representation only if n = k, N/ = Nl'and L/ = Ll, mod M. Sincen > 0, conjugates
will enter only forn = 0, N/ = —N*!, L/ = —L!, i.e., for conjugate representations
of I'g. Furthermore, if H,; is the isotropy of X,,;, then I'/ H,; is finite only if n = 0
and N/ = 0, in which dj j = 0, since L(0) is invertible. Similarly, if I'/Hp; = § L
one obtains also dy; = 0.

Now, since L(u) is ['gp-equivariant, one has

L(p) = diag(Lo(p), Lr(n), - .., Li(n)),
where I"g acts trivially on Lo, as — Id on L and as Zj,, or S Lon L;.
One gets the following application of Theorem 4.1:

Proposition 4.2. Assume L(0) is invertible and has eigenvalues +imvy, . .., imgvy,
with0 < m; < mp < --- < myg, and with the corresponding eigenvalues of L(1L)
off the imaginary axis, for u small and non-zero, and L(u) = diag(Lo, Lk, ..., L1),
with Ly of real dimension at least 3 and L; of complex dimension at least 2, then

degr ((1X1| = &, 9): {11 < 20} x (1X]) < 26} = [ ] 17 (3 dujlFuIr).

n>1

where dyj is the net crossing number of eigenvalues of in(v + vo)I — L;j(u) in VH,
where H; is the isotropy of the piece corresponding to L;j. The generator Fy; is, up to
an orientation factor, the suspension of (1 — |znj|2, Aznj). The terms aq, ay are
(1 — Signdet Lg)/2 and (1 — Signdet Ly)/2 respectively. One has I,;"[Fnj]r =
[Fujlr — [Fujklr, where the last generator corresponds to the resonance of the sta-
tionary part Ly (i), with action of T'g as — 1d, on the n-th mode z,;. For Iy, the action
of 1§ is the antipodal one. If dyj # 0, one has a global bifurcation in VHi | with
solutions X (t) which satisfy

X(t) =y X(t +2m/q), where yy isin 'y, ygo isin H; and nqo = q.

Proof. This follows from Theorem 4.1, Corollaries 4.1 and 4.2 and Lemma 9.4 in
Chapter 1. In order to determine «y, it is enough to see which subgroups of I' give
I'/H = 7Z,: this is possible only if n = 0, N/ = 0 and I’y acts as — Id. Note that, due
to spectral conditions, there are at most N /2 possible d;,; which may be non-zero. O

Example 4.5 (Hopf bifurcation for time-dependent differential equations). Consider
the problem of Hopf bifurcation for the equation

dX
g1 v, X) = (v v0)—= = LW X — f (1, v, X) —0h(X, . v,1) = 0, X € RY,

where X (¢) is 2z -periodic, (u, v) is close to 0, the autonomous term has f(u, v, X) =
o(|| X||) and the non-autonomous term has #(0, i, v,t) = 0 and is (27/p)-periodic
in ¢. Thus, for &g = 0, one has an S'-action, while for & # 0, the action is reduced
to a Zp-action.
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Proposition 4.3. Assume L(0) is invertible and has eigenvalues +imvy, . .., imgvg,
withQ < my <my--- < myg, and with the corresponding eigenvalues of L() off the
imaginary axis, for |1 small and non-zero. Then, for ey small enough, the Z,-degree
of (IIX|| — &, g) with respect to By, x By is well defined and equal to

Signdet L(0)(dr[Frlz, + ) dulFulz,),
p'lp

where, if d,, denotes the net crossing number of eigenvalues of in (v + vo)l — L(11),
one has

o0
dr =) dp mod2,
k=1

o0

dy = an dejp/p/+kp mod 2p’ if p’ is odd and mod p' if p' is even.
j k=1

Here, T'/H = Z,, for any divisor p" of p, the sum is over all m;’s, relatively prime

to p',with1 < mj < p', and |n;| is odd such that njm; = 1, modulo p'. If dr is

odd, one obtains Hopf bifurcation of (2m/p)-periodic solutions, while if dy is not

congruent to 0, one has Hopf bifurcation of 2mp’/ p)-periodic solutions.

Proof. If h(X, u,v,t) = A(t)X + ... one may choose &g so small that the Fredholm
operator (v+vg)d /dt —L(u)—egA(t) isinvertible, for w2 +v? = p?, fromthe space of
27 -periodic C! functions onto the space of 27 -periodic C° functions: this comes from
the fact that, for |u| < p, L(u) is invertible and has no pure imaginary eigenvalues,
for u # 0, close to a multiple of vy, hence the operator (v + vg)d/dt — L(u) is
invertible on the loop. Furthermore, one may Z,-deform g(u, v, X), on the loop, to
(v +v9) X" — L(n) X, considered, when &g # 0, as a Z,-equivariant linear map.

While, for &g = 0, any non-zero winding number d,, of in(v + vg)I — L(u)
will give rise to a Hopf bifurcation of 27 -periodic solutions (not necessarily least
periodic), for g9 # 0, we have to study the isotropy subgroups H of Z, for its action
on Fourier series, that is as exp(2wink/p) on X,, with 0 < k < p. Hence, if
n/p =n'/p’, withn’ and p’ relatively prime, the isotropy H of X,, willbe H = {k =
0,p,2p,...(p/p = Dp'} =Ly and T /H = Zyy.

Now, two representations of Z, will be equivalent, on X, and X,, and as complex
representations, if and only if n = m, modulo p. Furthermore, in order to apply
Theorem 4.1, one needs to identify all modes X,, which have exactly H, as above,
as isotropy, i.e., such that the action of I' on X, is of the form exp(2mwimk/p’), for
k=0,...,p — 1 and where m; and p’ are relatively prime, with m/p = mg/p’.
Then, my = mj + ap’, with 1 < m; < p’, and m; and p’ relatively prime, and
m = mjp/p’ + ap. If p’ is prime, then any integer m; between 1 and p’ — 1
is allowed. Clearly, if n;, with |n;| odd, is such that m;n; = 1, modulo p’, then
mgnj = 1, modulo p’. Also,if H =T, thenm = kp, since p’ = l andm; = n; = 1.
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Finally, since I" acts only on the non-trivial modes, ;° is not present, except for /§
which contributes Sign det L(0). O

Remark 4.6. Note first that this symmetry breaking argument was given, in an abstract
form, in Proposition 7.3 in Chapter 3. From the point of view of Hopf bifurcation, note
that a mode m belongs to just one p’: infact,if m = mp/p1+kip = map/pr+kap,
then m py — myp1 = kpy p2, where m; and p; are relatively prime. But this implies
p1 = p2. Thus, it is convenient to list the divisors of p in increasing order and begin
with the smallest (1 corresponds to dr). Then, for a given integer j < p’, either j
is relatively prime to p’ or the corresponding modes jp/p’ + kp have already been
assigned to a smaller divisor of p. Note also that, if m;jn; = 1, modulo p’, with m 3
and p’ relatively prime, then it is also true for m; = p' —m; and n; = —n;: this
natural pairing corresponds to conjugation. Finally, note that if p’ is an odd prime (if
p' =2, then m; = n; = 1), then, due to the pairing, one has to consider all integers
between 1 and (p’ — 1)/2, with n; = 1,np = (1 + p’)/2, if this number is odd, or
ny = (1 — p')/2 otherwise, and n(,_1y2 = p’ — 2.

Finally, for p < 7, we refer the reader to the examples after Proposition 7.3 in
Chapter 3, where dr and dy are computed in terms of the d,,’s.

Remark 4.7. Recall that, if the bifurcation index is 0, then, given a linear part, there is
anon-linear part at the level of Fourier series (not necessarily coming from a differential
equation) such that there is no bifurcation. Here, we shall give an example, which is
parallel to Example 2.5, showing how one may force a linear system which has a Hopf
bifurcation with a linear time-periodic perturbation which destroys the bifurcation.

Take p any integer larger than 1 and consider the following system for 27 -periodic
functions:

x" — px" +vx +2e((p+1)ycos pt +y'sin pt) =0
Yy — (p—Duy' + (p — D%y —2e(p — D((2p — )x cos pt + x’sin pr) = 0.

For ¢ = 0, u close to 0 and v close to 1, one has a vertical Hopf bifurcation for (x, 0)
with n = 1 and for (0, y) with n = p — 1. The winding numbers are all 0, except

di =dp_1 = 1.
For ¢ # 0, the system is equivalent to
(=n® = ipn 4+ )% + (1 + DYn—p — (2 = Dyngp) =0
(—n* —ipn(p — 1)+ v(p — D)y,
—e(p—D((+p—Dxp_p — (0 = p+ Dxpyp) = 0.

Taking the first equation for n = 1 and the second for n = p — 1, one obtains the pair

(v =1 —ip)x1 +2e5p_1, (p — DXV — 1 —ip)yp_1 — 2ex1)),
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with only zeros x| = Yp—1 = 0, unlessv = 1,u = 0 and ¢ = 0. For ¢ # 0, the
remaining equations form a closed system with invertible diagonal, that is, the only
solution, for & small and (i, v) close to (0, 1),is x =y = 0.

For p = 1, one takes out the factors p — 1, in the second equation, and one has
d; = 2 but the same result holds.

It would be interesting to have similar simple examples for, say, p = 3,d| =
6,dj =0for j > 1,0r p=15,d; =3,d, = —1 and d; = 0 otherwise.

Remark 4.8 (Global Hopf bifurcation). In this book we have not stressed the aspects
of global bifurcation, since [IMPV] and [I] deal with this problem. However, we
should warn the reader about the meaning of unboundedness of global branches, in
particular for the equation

vX' = g(X, ).

As explained in Remark 2.3 of Chapter 3, this equation has to be transformed into
an equation of the form Id-compact, in order to apply any degree theory in infinite-
dimensional spaces. The integral equation will then have the term v~!, that is, when
v goes to 0, the equation becomes unbounded. Hence, a natural parameter for the
global bifurcation is the period T = 27 /v.

Furthermore, if g(X, p) is C I"and one has a 27 -periodic solution X (¢), then,

VX' (1) — X'(0))? < L*1X (1) — X (0))?,

where L is a bound for Dg(X (s), u) on the orbit. Since foh X'(t) - X'(0)dt = 0,
from the periodicity, one obtains

VIXIP < VAXIP + X' O)F) < 272L%)1X')1.
Thus, for a non-stationary solution lying in a bounded region of R", one has
v < JT\/EL.
Also, if X (¢) is close to a stationary solution X, the Fourier series
invX, — Dg(Xo)Xn = hn(X),

imply that, if |[v| > ||[Dg(Xo)||, then the only solution is a stationary solution and X
cannot be a bifurcation point of truly periodic solutions.

Note that, if there are no stationary solutions in some bounded subset of RV, then
K <|gX)|<M,and K < || X'| <= M.

In particular, any truly periodic solution, in a bounded subset €2 of H!, will be, from
Sobolev inequality, bounded in R" and, from the above, with a bounded frequency.

Thus, the global Hopf theorem should be stated as: either the branch of non-trivial
solutions is unbounded in (u, T, || X||1), or returns to another trivial solution, where
trivial solution means either X = 0, if one has complemented with || X||; — &, or a
stationary solution, if the complementing map is || X'|| — &: in this last case, one needs
that there is no bifurcation of stationary solutions at (0, 0), for instance, if L(0) is
invertible.
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Example 4.6 (Hopf bifurcation for autonomous systems with first integrals). Consi-
der the problem of finding 2 -periodic solutions to the problem

dX
gX, ) = —- — L)X — fX,wy =0, XinRY, f(X, 1) =o(IX]),

for which one has a family of first integrals V (X, p). Thus, VV (X, w) is orthogonal to
g(X, ) foreach fixed y, thatis V'V is orthogonal, on RY , to LX+ f and VV (X (1), i)
is Lz—orthogonal to g(X (¢), n), if X (¢) is 2mw-periodic. As explained in Example 2.8,
this problem is equivalent to finding 27 -periodic solutions to the equation

dX
o L)X — f(X, ) =vVV(X, n) =0,

where, if one has a solution with VV (X, u) # 0, then v = 0.

Assume there is a family of stationary solutions X (1) such that g(X (u), n) = 0,
VV(X(un), n) = 0. Without loss of generality, we may take X (i) = 0. Let

VV(X, ) = Hw)X + k(X, p), with k(X, n) = o([[ X]).
Lemma 4.4. One has the following relations:
H(w) = H"(w), Lw"Hw +H@Lk) =0,

Proof. The first relation follows immediately from the fact that H (1) is the Hessian
of V. For the second relation, from the orthogonality

(L)X + f(X, ), VV(X, ) =0,
one obtains, dividing by || X |? and taking limits when X goes to 0:
(L(wX, H(w)X) =0,
and thus, from (X, (LT H + HL)X) = 0, the symmetric matrix LTH+ HLis0. O

Assume that L(0) has eigenvalues +imy, ..., £img, with0 < m| < --- < myg,
counted with multiplicities. Let A; () = a; () +iB;j (1) be the eigenvalues of L(u),
for u close to 0, such that «;(0) = 0, 8;(0) = B;. We shall impose the following
hypothesis:

H) a) If Aj(n) = imj, for u close to 0, then p = 0.

J b) ker H(0) Nker(im;l — L(0)) ={0}for j =1,...,s.
Proposition 4.4. Hypothesis (H;) is equivalent to have im;I — L(jt) — vH(u) in-
vertible for (., v) # (0, 0), but close to (0, 0).
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Proof. If im;jI — L(u) — vH () is invertible, take v = 0, u # 0, then one obtains
(a). On the other hand, taking © = 0, v # 0, one gets (b).
Conversely, consider the complex scalar product

(L(w)+vH () =D X, H () X) = (H () L) X, X)+v]| H () X |*—=A(H (1) X, X),

where A = o +if. The first term on the right is, due to Lemma 4.4, purely imaginary,
while the other two are real, since H(u) is real. Hence, if A is an eigenvalue of
L(n) + vH (), with corresponding eigenvector X, one obtains

VIHWX|* = a(HWwX, X).
On the other hand, one has, in general,

I(L(w) + vH(r) — ADX|?
= [(L(p) = ADX|> + v | H () X ||> + 2vRe((L(n) — ADX, H(w)X)
= [(L(p) = ADX|> + v H () X||> = 2va(H (W) X, X).

Thus, if A = im; and X is an eigenvector, then a = 0, v|H(u)X|| = 0 and X
is an eigenvector of L(x) — im;I. From (a), this implies = 0 and, from (b), one
needs H(0)X # 0, thus, v = 0. O

We shall need some information on the spectral behavior of L(u):
Lemma 4.5. Assume (H;) holds, then, for small j, one has the following.
(a) Forany k > 1, ker H(u) Nker(L(w) — A; () ¥ = {0}.

(b) If A = Aj(u) is an eigenvalue of L(1) so are —\ and +X, with the same
algebraic multiplicity.

(©) IfiB = Aj(w) is a simple eigenvalue of L(w) with corresponding eigenvector
X, then (H(uw)X, X) #0.

(@ If i = Aj(n) is an eigenvalue of L(n), with generalized eigenspace
ker(L(un) — iBl YK, then H () induces a non-degenerate quadratic form on
this eigenspace, with a well-defined signature og(i1).

Proof. If (a) is false for k = 1, then there are sequences ., converging to 0, eigenvalues
Ay converging to im;, eigenvectors X,, with norm 1, and a subsequence converging
to some X, such that (L(u,) — Ayl) X, = 0, H(u,)X, = 0. Taking limits, one will
get a contradiction to (H;). For k > 1, let X be such that (L(u) — AD*X = 0 and
set Y = (L(w) — AI)" X, where n is the largest integer for which (L(n) — A" X #
0, hence n < k. Thus, (L(n) — AI)Y = 0. If H(w)X = 0, then H(n)Y =
(=D)L ()T +AD"H(uw)X = 0, from Lemma 4.4. Hence, from the case k = 1,
one has Y = 0, which results in a contradiction.



310 4 Equivariant Degree and Applications

For (b) one uses the relation H (u)(L(p) — A1 = (—=DX(L(w)T + AD*H ().
Since L (1) is real, if A is an eigenvalue, so is A, with the same algebraic multiplicity.
From the above relation, this is also the case for — (and —) as eigenvalue of LT,
with eigenvector H (1) X, non-zero because of (a), and hence for L(w). Since H (1)
is a one-to-one morphism from ker(L () — AD¥ into ker(L(n)" + AD)¥, the second
space is at least as large as the first.

Decompose orthogonally RN as V(u) ® V ()L, where V(i) = ker H (). Since
H (u) is symmetric, the space V (w)*is Range H (11). From the relation L (1) H (1) +
H ()L () = 0, one obtains, on this decomposition,

_ (A(w) B(w)

with C(u)T H() + H(n)C () = 0. Since H () is invertible on V (i)*, one has
C(n) = —H(w)~'C(w)T H(w), which implies that dim V ()" is even. From (H;),
it follows that, if A = A;(u), then A(n) — A1 is invertible and, from the triangular
form of L(u), one has

k_ ((Aw) =Dk 0) (1 0 I (A(w) — A7 Dy
(L) =AD"= < 0 1) (0 (C(w) —,\I)k) (0 I > ’

that is, ker(L () — A1)¥ is isomorphic to ker(C () — Al ). Furthermore, the relation
with H () gives

H)(C(p) — 1D = (=D @) + 2D H (W),

with H (u) invertible on this subspace. Thus, ker(C ()7 + A1 ) has the same dimen-
sion as ker(C(u) — AI)X. This implies that ker(L(u) — A1) and ker(L ()T + A1)*
have the same dimension and that H (w) is an isomorphism between them. The equal-
ity of the algebraic multiplicities follows from standard arguments.

For (c), if i is a simple eigenvalue of L(u), with eigenvector X, then, from
(a), H(w)X # 0and H ()X generates ker(L(u)” +iBI). If (H(u)X, X) = 0, then
X would be orthogonal to H (14) X, hence X would belong to Range(L () —iB1) and
the multiplicity of i would be greater than 1.

For (d), if & is the ascent of L(u) —iB1, then one has the (non necessarily orthog-
onal) decomposition

CN =ker(L(n) — iBI)* @ Range(L(w) — iBI1)*.

Let P be the orthogonal projection on ker(L(un) — i1 ). Since H (w) is an isomor-
phism from this last space onto ker(L ()T +i1)* = (Range(L (1) — iBI)*)*, then
PH ()P generates a symmetric bilinear form on ker(L(n) — i1 )X. Furthermore,
if PH(u)X = 0, for some X in this space, then (X, H(n)Y) = 0, for any Y in
this space and, from the above isomorphism, X is orthogonal to ker(L(u)T + iBI)¥,
hence X belongs to Range(L () — il )X, that is X = 0: hence the quadratic form is
non-degenerate. O
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Definition 4.1. (a) The signature of a complex self adjoint matrix A, i.e., the number
of positive eigenvalues minus the number of negative eigenvalues (A may be singular)
will be denoted by o (A).

(b) We shall denote, for . # 0, by O’j:t (w) the sum of the signatures of H on
Uker(L(n) —iB; (w))*, for Bj(n) > mj and close to m; (for a]*(u)) and for B; () <
m; and close to m; (for o; (). Letoj(n) = o;“(u) +0; ().

Note that Hypothesis (H;) implies that aji (u) are well defined for & # 0. We shall
prove below that, in fact, they remain constant provided p does not change sign and
that o () = 0;(0). Recall that Sylvester inertial law says that o (A) is independent
of the basis.

In order to compute the Hopf bifurcation indices, we shall need the following
perturbation result

Lemma 4.6. (a) For each fixed (1, one may perturb L() to Z(M) and H (14) to ﬁ(u),
such that the rela{ionship Lw)TH(W) + HwL(w) = 0is preserved during the
perturbation and L (1) has all its purely imaginary eigenvalues, close to im;, simple

and o (H(p)) = oj(H ().
(b) oj () = 0;(0) and o]i(p,) are constant for p # 0.

Proof. From our previous considerations, it is enough to look at C(u), such that

A(n) B(u)

L =
(n) ( 0 C(w)
drop the u dependence. Let if be an eigenvalue of C, close to some im; and let k be

the least integer such that V ()t = C%, with s even, and

) , on (ker H(p))*. In order to lighten the notation, we shall

C* = ker(C — iBI)* @ Range(C — iBI) .
Let P be the orthogonal projection onto ker(C — i) and let
F=i*'PH(C —ipD)"'P = PHA"P.

Itiseasytocheckthat HA = A*H and F* = FT = F. Furthermore, if FX = 0, then
H(C —iBI)*~'PX would be orthogonal to ker(C —iBI)¥, i.e.,in Range(CT +iBI)X,
that is H(C — iBD*'PX = (CT + iB)*Y, for some Y. Apply CT + iBI to this
equality, use the anticommutativity for H and (C — i81) and the fact that P X is in
ker(C — B, to conclude that (CT 4+iBI)k*t1y = 0. But, since ker(CT +igI)¥*t! =
ker(CT + iBI)¥, by definition of the ascent, this implies that (CT + iBI)*Y = 0, or
else, since H is an isomorphism, that (C — iﬂl)k_lPX = 0. Since ker(C — iﬂl)k_1
is strictly contained in ker(C — iB1)*, one concludes that F is not identically 0 and
that ker F = ker AX 1.

Thus, there is anon-zero X, inker(C —i,BI)k, and A; # 0,suchthat FX| = A X;.
Normalize X in such a way that (F X, X1) = n; = Sign ;. Let

X;=i"NC—ipD/ T X = ATIXy, j=1,. k.
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Then (HXj, X;) = n1 if [+ j =k + 1 and 0if{ + j > k + 1. Define

'in=Xi+aXo+- - +aXe
Y, = i/7NC —ipD)/T 'Y = AT Yy, forj=1,..k,

where as, .. ., aj are obtained by setting (HYy,Y;) =0,for j =1,...,k — 1: since
Y, = ZalAf_le =Y a;Xj4i1—1, one has
(HY1,Y)) = Z amai(H X, Xjyi-1) = 2mag—j1+---,

I+m<k—j+2

where the suspension dots correspond to indices less that k — j 4 1. From this triangular

form, it is clear that one may find as, ..., ai.
Since Yy = Xy # 0 (from (HXy, X1) = n1), and ¥; = AY;_y, it is standard
to see that {Yy, ..., Y;} form a sub-basis of ker AKX and that +A, on this basis, is in

Jordan form, with O on the diagonal and 1 on the lower diagonal. Furthermore,
(HY,,Yj) = (HA7Y, Y)) = (HY), ATYY)) = (HY), Yip—1) = 0if j +1 <k,
and, since Y,, = O for m > k, this product is also O if j +/ > k 4+ 1. While,
(HY1,Yx) = Y ai(HX;, Xx) = n1. Thus, on the {Y;} basis, the matrix H is 0
everywhere except on the antidiagonal, / + j = k + 1, where it is 1.

Repeat this process for each eigenvalue of F, then replace F by PHA*2P, on
ker F, and so on. The result is a basis and a change of variables T for ker AX, for
which 4 and H are in the above form. More precisely, if Y; = Tej, then J = T—l'AT
and Q = T*HT. Then, on ker A one has

C=ifl —iTJT .

By repeating this Jordan process for all eigenvalues (not necessarily pure imagi-
nary) of C, one gets
C=T(A—-i)T™,

where J corresponds to the Jordan blocks and A is a diagonal matrix composed
with the eigenvalues of C. Let A be such an eigenvalue, of algebraic multiplicity
k. Then, if X is in ker(C — AI)*, one has that 77X is in ker(A — iJ — AD)K,
while HX is in ker(CT + ADF = (Range(C + AD*)E, hence T*HX belongs to
(Range(A —iJ + 11Kt =ker(A*+iJT +11)*. Thus, Q maps ker(A —iJ — AI)X
onto ker(A* +iJT + Ak, i.e., associating the generalized kernels of A for A and
—A (they are the same if A = if). Hence, if A, on the direct sum of these kernels ,

is of the form diag()/, —1), then Q is of the form ( 0 , assuming that A is not

A
A* 0
pure imaginary. From here, it is easy to see that Qi A = (i A)* Q. On the other hand,
since H(iC) = (iC)*H,onehas Q(iA +J) = ((iA)*+JT)Q. Thus, 0J = JT Q.

Now, take any real number y and consider the self-adjoint matrix (on (ker H b,
yH+iHC = H(yI 4+ iC). From Sylvester law, one has

o(yH+iHC)=0(QWyI+iA+J)).
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Assumethat y # B8, foranyif eigenvalue of C. Then, Q(y I+i A+J)isinvertible and
self-adjoint. Hence, any self-adjoint perturbation, which preserves the invertibility,
will also preserve the signature. An admissible perturbation is Q(—tJ), for any 7.
Hence,

o(yH +iHC) =0 (Q(yl +iA))
= " Sign(y — Bog(Q) + Y 03 i (Q(yI +iA)),

BeR irgR

where o5(Q) is the signature of Q onker(iA + J + ,BI)k, i.e., the signature of P H P
on ker(C — iBI)¥, and 0, 5 corresponds to the pair of eigenvalues A and —X. But,
if (X,Y) is an eigenvector of Q(yI + iA) on this pair of eigenspaces, with real
eigenvalue &, then

EX = (y —iNAY, EY = (y +iV)A*X,

that is, £2X = ((y — B)? + a?)AA*X, is A = a + if, with @ # 0. Since Q is
invertible (as H on this space), on has that A*X # 0 and & # 0, independently of y.
Thus, this part of the signature is independent of y .

Take then y; < y,, with iy; not an eigenvalue of C, one obtains

o(nH+iHC)—o(yH+iHC)=2 Y op(Q).
V1<B<rn2

Letus take ¢ > 0, so small that y; H +i HC +¢1 is invertible, hence the signatures
are unchanged, and consider the invertible matrices y; H +i H L +¢1, whose signature
iso(yjH+iHC)+dimker L. Then, the above difference is valid for y; H +i H L+¢1
and for yjI:I +iHL +¢l if H and L are sufficiently close to H and L. In particular,
Z)/I <<y 08(1) is locally constant, provided i y; is not an eigenvalue of L (). Then,
choosing y; < mj < y», and y, y2 close to m;, one gets that o; (i) is constant for
small x and o; (M) remain constant provided p keeps the same sign. This proves (b).

Now, recall that Q, on a Jordan block associated to i8, is n1I*, where I* is the
anti-diagonal. It is easy to see, by induction, that det(Q — A7) is ()\2 — n%)’", if the
dimension of the block is 2m, or (A2 — n%)m (n1 — A), if the dimension is 2m + 1.
Hence o (Q) is 0, if the dimension of the block is even, and 1y, if the dimension is
odd. This argument implies, for (a) to be true, that, for such a block, one will have no
imaginary eigenvalue for the perturbed problem, if the dimension is even, and only
one, if the dimension is odd. Note that, on such a block, Q2 =1.

Let K = diag(1,2,...,m,m+1,m, ..., 2, 1), if the block has dimension 2m 41,
or K = diag(1,2,...,m,m,...,2,1),if the dimension is 2m. On this block, define
S = QK. Then, S is the anti- dlagonal matrix with elements (1,2,...,2,1) and
QK = K Q, that is § is self-adjoint. Define S, on the generalized eigenspaces with
eigenvalue non pure imaginary, as 0 (also on ker H) and let § = T*~'ST~!. Define,
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for £ small enough,

) . /A B
H=H+eS L= <0 (H+8S)_1HC>'

Then, ker H = ker H, H is self-adjoint and H (i l~,) = f,)*ﬁ . (Note that we are
not claiming that § is real. Since we are studying the winding number of complex
determinants, S may be complex self-adjoint).

Then, if A is an eigenvalue of L, close to im;,one has det((H +eS)"'HC—AI) =
0, since A — im;[ is invertible. Thus,

det(C — Al —reH™'S) =det(A —iJ — Al — 1K) = 0.

Thus, either A is a non pure imaginary eigenvalue of C or A = i8/(1 + €l), for
[ =1,...,m or m + 1 according to the parity of the dimension of K. Thus, the
Jordan block is split into m two-dimensional blocks and one single eigenvalue if the
dimension is odd. By choosing different sets of integers for different blocks, one may
assume that the Jordan blocks are at most two dimensional.

On such a block, one may take S = —n11 and

A—iJ =l —2e07'§ = <_”?J:XAS l.ﬁxf /\>,

with two eigenvalues, for & > 0 small, off the imaginary axis, since 8, being close to
mj, is positive. Thus, after the deformation, an even dimensional block will give rise
to eigenvalues off the imaginary axis, while an odd dimensional block gives a single
pure imaginary eigenvalue, below i8. Then, the stability analysis of the signature will
complete the proof of the lemma. O

In order to complete the set of hypothesis needed for the S!-index computation,
we shall assume one of the following two conditions:

a) L(w) is invertible for pu # 0, small

(Ho) b
) ker H(0) Nker L(0) = {0},

There are gg, po > 0, such that if L(n)X + (X, uw) =0, for | X| < 2e9

/
(Ho) and || < 2pg, then either X = 0, or |u| < pg and VV (X, u) # 0.

As in Proposition 4.4., (Hp) is equivalent to the invertibility of L(uw) + vH (u),
for (i, v) # (0, 0) and small. Furthermore, its clear that (Hp) implies (H6) which, in
turn, implies that if L(u)X + f(X, u) + vVV (X, n) = 0, then, if | X| < 2¢¢ and
u? 4+ v? < 4p3, either X = 0 or v = 0 and |u| < po, that is, hypothesis (H2) of
Remark 4.3 is verified. We are then in the position of applying Corollary 4.2, where
do will be computed later.



4.4 T-Index of a loop of stationary points 315

Proposition 4.5. Assume (Hy) and (H;) holdfor j =1, ...,s. Thenthe S degree of
(IXI1> —&d. X' = L(w) X — f (X, n) = VV (X, ) on the set {|| X|| < 2e0, u? +v* <
4,0%} is given by do[ Fs1]1+ )" dj[ Fin, 1, where

d; = Index(L(p0)X + f (X, p0); 0)(a;" (—p0) — ;" (p0)),

with crji (p) are given in Definition 4.1.
If (Hp) holds, then Index(L(pg) X + f (X, po); 0) = Signdet L(pp).

Proof. From Theorem 4.1, one has to compute the winding number of det(L(u) +
vH () —im;I), on the circle w412 = ,0% . As in Proposition 4.1, this determinant
is ]_[jlv ay(u, v), where the eigenvalues ay(w, v) are chosen to be continuous and
counted according to their multiplicity. Since the winding number of the product is
the sum of the winding numbers of the factors, it is enough to look at each of them.
If a;(0,0) # O, i.e., it corresponds to an eigenvalue A of L(0) which is not im;,
then a(w, v) will remain away from the origin and will not wind around 0: one may
then deform it to a;(0,0) = A and then to 1. On the other hand, if a;(0,0) = 0
and ax(u, v) = a(u,v) + iB(u, v), then it corresponds to an eigenvector X, with
H(u)X # 0and v|H(w)X||> = a(H(w)X, X): see the proof of Proposition 4.4.
Thus, for v # 0, one gets « (i, v) # 0 and, since it is continuous, it keeps the same
sign for all v’s positive (or negative). If, for v = 0, one has a(3+pg, 0) # 0, then
ok (e, v) stays on the same half complex plane and its winding number is 0.

Hence, ar(u, v) crosses the imaginary axis at most twice, for v = 0 and u =
+po. Assuming one has performed the perturbation of Lemma 4.6, this implies that
ai(£po, 0) is a simple eigenvalue and, by Lemma 4.5, one has (H (£p9)X, X) # 0,
for the corresponding eigenvector. Thus, as v crosses 0 from negative values to positive
values, o (u, v) will cross 0 in the same direction, if (HX, X) > 0, and in the other
direction, if (HX, X) < 0. Note that, in this case, (H X, X) keeps the same sign on
the whole loop, by using the continuity of X (), near © = %pg, which is true since
ai(£po, 0) is simple.

Taking the orientation (i, v), the loop described by ai(u, v) will give a wind-
ing number equal to 0 if 8(%pp, 0) have the same sign, and, otherwise, equal to
Sign (HX, X),if B(pg, 0) < 0 < B(—po, 0),and to — Sign (H X, X),if B(—pg,0) <
0 < B(po, 0).

For j1 = 4pp and n = =1, let n* (i1, n) be the number of imaginary eigenvalues
i\ of L(u), close to im;, which are above im;, that is B(u,0) > 0 (for n™T), or
below imj, that is B(u,0) < O (for n™), and which have the simple eigenvector X
with Sign (HX, X) = n. Hence, oji(u) = n*(u, 1) — nF(u, —1). Let a*(n)
be the number of eigenvalues of L(w), with Sign (HX, X) = 5, which cross im;
from below to above as u goes from —pg to pg (i.e., B(u, v) goes from negative
to positive), for a™ (1), and in the inverse direction for a~(n). Then, then winding
numberisa (1) —at (1) +at(=1) —a (-1).

Let b* () be the number of eigenvalues, with Sign (H X, X) = n, which remain
above im; (i.e., with B(u, v) > 0), for b™, or below im; (i.e., with (i, v) < 0),
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for 5. Then, one has the relations

n*(—po.m) = a" () +b*(n)
n~(—=po,n) =at(m+b"(n)
n*(po,m) = at(m) +b"(n)
n(po,m) =a (n)+b- ().

Thus, a™ (7)) —a~ () = n*(po, n) —=n*(=po, n) = n=(=po, n) —n~(po, n). We
have proved that the winding number is O'j+(— £0) — a]*(po) = O'j_(p()) — aj_(— 00)-
O

For instance, if L() = (1 + Ag)L, with A9 > 0 and %im; /Ao an eigenvalue of
L, then O'j+(—,0()) =0, a;r(po) = o, the signature of H for im;/Ag.

Remark 4.9. Hypothesis (H;)) implies that X = 0 is an isolated zero of L(u)X +
f(X,n) +vVV(X, n), provided w? +v? = ,05, and with a constant index on the
loop. At first sight this hypothesis could seem awkward and a more elegant hypothesis
could have been to ask that L(u)X + f(X, ) and VV (X, ) have O as an isolated
zero, for p # 0, for the first equation, and for any small u, for VV (X, n).

This happens, for instance, if H(0) is invertible and L(u) is also invertible for
w #~ 0 (astronger hypothesis than (Hp)). But this new hypothesis implies that either N
iseven or Index(L(00) X + f (X, po); 0) = 0, in which case d; = 0, forall j’s. In fact,
for po, the maps L (po) X+ f (X, po) and VV (X, pp) have a well-defined index at O (this
isnotnecessarily true for V'V in case (H{)) holds). Furthermore, since V'V is orthogonal
to L(po) X + f (X, po), the index, at 0, of T (L (o)X + f (X, po)) £ (1 —t)VV (X, po)
is well defined and constant. Then Index(L(pp) X + f (X, po); 0) = Index(VV; 0) =
Index(—VV:0) = (—1)" Index(V V; 0).

In order to compute dp, assume that (Hp) holds. Thus, according to Theorem 4.1,
do is the class of L(p)+vH () in IT{ (GL(RV)) = Z, (since the change of orientation
170 does not affect dy, we may assume that L(u) + vH (i) has positive determinant
on the loop w? 4?2 = ,02).

Decompose RY into ker H(0) ® Range H (0) and write

A+vH B+ vH
L(M)+UH(M)=<D+VH21T C—I—sz>’

where H;(0) = H>(0) = D(0) = 0, and, from (Hg), the matrices A(0) and H (0) are
invertible. The relation LT H + HL = 0, is then

H/ A+ H,D and H2T B + HC are skew symmetric,
HI A+ HD + B"H + (H,0)" = 0.

Note that, for v 7% 0, L(0) + vH (0) is deformable to diag(A(0), C(0) + vH (0))
and to diag(A(0), vH (0)). This implies that dim Range H (0) is even (since the sign
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of det(L () + vH (u)) is positive on the loop) and that det A and det H have the same
sign, for p small. Let H=H— (A_IB)THQ, then, for p small, H is invertible
and the matrix 4 = diag(AT, H ) is invertible and deformable to 4 (0) and then to 1.
Consider the matrix

T T T T A D
A(L(/L)+VH(M))=<A A+vATH, ATB+vA Hz)_(A B).

HD+vHH] HC+vHH ) \D C

The class of this matrix in IT; (GL(R")) is the class of L+v H. Since Aisinvertible, for
(u, v) small, multiply Band D by cos t and replace C by C—sin2tDA™'B: if (X, Y)
gives a zero of the deformation, then X = — cos tA~'BY and (C‘ — Dﬁ_lé)Y =0,
hence Y = 0 since this last matrix is invertible on the loop. For T = 7/2, on obtains
the matrix

diag(A, C — DA™'B) = diag(A, I) diag(I, C — DA™'B).

The matrix A is always invertible, for u smal~1, anc~1 Qefotmable to /. Hence, the class
of L 4+ vH is the suspension of the class of C — DA~!B.

Lemma 4.7. Under hypothesis (Hy), the matrix C—DA 'B=C+vH?+ vO(u),
where C (1) is skew-symmetric and invertible for u # 0.

Proof. The matrix C— DA 'Bis,withH =H — (A"'B)TH>, equal to

HC +vHH — (HD +vHHIY(ATA +vATH)"Y (AT B +vAT H))
= H(C — DA™'B) + vH? +v0(w).

Using the identity HDA™! = —(H] + (A7'B)TATH|A™! + (H,C)TATY),
one obtains HC + HI' B + (A7'B)T(ATH, + H,D)A™'B + (H,C)TA™'B —
(A"'BYTHyC + vH? + O(u).

It is clear now that the first terms are skew symmetric and, since they are equal
to H (C — DA™'B), they give a matrix C(u), which is invertible for © # 0 (from
(Hp), L(w) is invertible for u # 0). O

Now, recall that any invertible skew-symmetric matrix C can be put in real Jordan

form A, via an orthogonal change of basis 7', where A consists of blocks ( (I)B %),
—bj

Jj =1,...,m, with dim Range H(0) = 2m: in fact, C?is self-adjoint and negative
definite, hence with eigenvalues — ﬁ.2 and orthonormal eigenvectors X1, ..., Xoy. If
Y; is defined by CX; = B;Y}, then CY; = —B;X;, and Y; is orthogonal to X;, with
Cy i =— ,3].2 Y;, thatis, — ,3].2 is a double eigenvalue of C2. Of course, one may choose
all B;’s to be positive, but then det 7' (which is 1), may be negative. On the other
hand, one may insist in det 7 being positive, but then one may have to take one of the
B;’s to be negative.
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Definition 4.2. The matrix € = TT AT, with det T > 0, will define a positive com-
plex structure if all B;’s are positive. Otherwise, if one g; has to be negative, then the
complex structure will be said to be negative.

Proposition 4.6. If (Ho) holds, then the class of L(u) + vH () will be non trivial if
and only if C(p) and C(—p) define complex structures of different signs.

Proof. We have seen that the class of L(u) + vH () is the class of C(u) + vH? +
vO (). One may deform the last term to O, since if, for some X # 0, one has
a zero of the deformation, then, because (CX, X) = 0, one obtains v(||HX|? +
7(0(n)X, X)) = 0. For || < p, one has |HX|*> > C|/X||?, hence one gets v = 0
and C(u)X = 0, for u = £p on the loop, something which is impossible. Since H 2
is positive definite, one may use the same sort of deformation to arrive at C(u) + vI.
Furthermore, one may replace C(u) by C(t, i) defined as

(1=1)C(1) + T(1t/p)*(C(p) + C(—p)) + T(1/P)(C(p) — C(—p)).

In fact, the above matrix is skew-symmetric, hence, if C(z, u)X + vX = 0,
taking the scalar product with X, one has v = 0 and, for 4 = =+p, the condition
C(xp)X = 0, which is not possible, unless X = 0. For t = 1, one may perform a
linear deformation to

C(p) +C(—=p) + (u/pP)(C(p) — C(—p)) + vI.

Finally, since C(p) = TT A(p)T, withdet T > 0, one may deform 7 to I, keeping
the deformed matrix skew - symmetric, hence one may replace C(p) by A(p) and this

last matrix by diag(J, ..., =J), where J = ( 01 by deforming f; to 1, and with

-1 0)°
+J according to the positive or negative complex structure for C(p). With a similar
argument at 4 = —p, one obtains

diag(2J +vi, ..., £2(u/p)J +vI),

where the last component is not present if the complex structures are the same. Since
2J 4+ vl is deformable to I and since pJ + v generates I1; (GL(IR?)), one obtains
the result. O

An interesting particular case is the following

Corollary 4.3. Assume that (Hg) holds, with the condition ||L(u)|| > Clu|, then
[L(w) + vH (u)] is non-trivial if and only if (dim ker L(0))/2 is odd.

Proof. The condition || L|| > C|u|, which implies the invertibility of L, holds also for
AL, thatis |AL(X, Y)||> > C2u?(|| X||> + ||Y||?). In particular, for X = —A~!BY,



4.4 T-Index of a loop of stationary points 319

one has AL(X,Y) = (0, CY), that is ||CY| = C|u|||Y]|. Now, if one writes C, on
the orthogonal decomposition given by ker Gy @ Range Cy,

Co+uCy nC
€ = Co+pei(w) = ( e M@>
one has that Gp = C(0) and C;(u) are skew-symmetric, as well as C; and C.
Repeating the above argument, one has that |G| > C|ul, that is, C(0) is in-
vertible. Now, as we have done in the last proposition, one may deform C to
diag(/, //,(é + ,uCZT(GO + nC)~'Cy)) and then, to diag(/, ué(O)). Deforming
é(O) to its Jordan form, the class of L + vH is the suspension of the class of
(ud +vl,...,£ud 4+ vi), that is (m/2) -times the Hopf map, if m is the dimen-
sion of G, i.e., of ker G (note that, since C + nC, T'(Cy+ nCy)~1C, is invertible (here
forall it’s) and skew-symmetric, this dimension is even). Now, since Cg = H (0)C(0),
one has ker Gy = ker C(0) = ker L(0). m]

Note that in general, i.e., if only one assumes (Hp), the matrix C=C+ uC, T'(Co+
nCp)~ 1C2, will be invertible for i # 0, but C(0) may have a non-trivial kernel.
Writing G = @(0) + nCy(pn), one may repeat the above argument, with a de-
composition on ker (9(0) @ Range G(O) On Range (9(0) one will get a contribu-
tion of (d1m Range G(O)) /2 and, on ker G(O) a skew symmetric matrix ;/,2@2 On
Range ¢ (0), one will get a zero contribution (due to u1?), while, on ker ¢ (0), one has
to look at the third order terms. Thus, for smooth L () and H (i), one may compute
the homotopy class in terms of dimension of subspaces.

Remark 4.10. The reader should notice that, for this Hopf bifurcation, we are asking
that VV (0, u) = 0, while in the case of non-stationary solutions (Example 2.8), the
condition was VV(X) # 0. The reason is the following: from the orthogonality
condition g(X) - VV(X) = 0, one has, after linearization

Dg(X)"VV(X)+ H(X)g(X) =0,

where H (X) is the Hessian of V (X). Thus, if VV(X) = 0 and one is in the natural
situation of an invertible H (X) (hence the point X is isolated in the set of zeros of
VV), one needs g(X) = 0, i.e., a stationary point. Now, if X belongs to an orbit of
solutions of the equation X’ = g(X), we have seen, in Example 2.8, that VV (X (¢))
is either identically zero or never zero. Hence, under the hypothesis of a discrete set
of zeros of VV (X), one has that either X (¢) is constant, i.e., stationary, or X (¢) is
truly periodic with VV 7 0. On the other hand, if g(X) = 0 and VV (X) # 0, then
dimker Dg(X) > 0. For X = 0 and Dg(0, u) = L(u), this is incompatible with
(Hp). This explains our hypotheses.

On the other hand, one may still study the bifurcation of periodic solutions, from
a set of stationary solutions, when VV (0, u) # 0. As seen above, this implies that
L(w)TVV (0, n) = 0. Assume that dim ker L(0) = 1.
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Let RV = ker L(0) @ Range L7 (0) and write X = aX( ® Y, with L(0)X( = 0.
Then, one may linearize the stationary equation g(X, w)+vVV(X, u) = F(a, Y, v, u)
and obtain

Dy »F(0,0,0,0)(Z,n) = L(0O)Z+nVV(0,0).

Since this is an isomorphism, the equation F(a, Y, v, u) = 0 has a unique local
solution Y (a, u), v(a, n), with v(a, u) = 0, from the orthogonality. Furthermore,
Y (0, u) = 0 and ker L(u) is also one-dimensional, generated by Xo + Y, (0, ).

Let X(a,u) = aXo + Y(a, n) be this unique local stationary solution of
g(X,u) = 0 and let A(a,u) = Dxg(X(a,n), ). Then, ker A(a, n) is one-
dimensional and generated by Xo + Y, (a, ), while, as seen above, VV (X (a, 1), 1)
generates ker A(a, wT.

Proposition 4.7. Assume g(0, u) = 0 and ker Dxg(0, 0) = {aXo}. Then, locally,

(@ g(X,n)=0ifandonly if X = X(a, n).

d) If A(a, n) = Dxg(X(a, ), i) is such that inl — A(a, ) is invertible for
alln > 0 and (a, ) # 0, then the S'-degree of the pair (| Z|1 — &, X'(t) —
g(X (@), u) —vVV(X(), ), with respect to Q2 = {(X(#) = X(a,n)+Y +
Z(t), 1, v) : 1ZII1 < 2e, || < 2p,|v] < 2¢,|a]l < 2p, Y] < 2¢, where Y
is orthogonal to X, and Z(t) has only non-zero modes} is well defined. (Here
| - |l is the H'-norm). This S'-degree is given by

do =0, d, =noy,,

where oy, is the winding number of det(A(a, nu) — inl) and n is the sign of
det D(y,,)(g +vVV)(0,0), with Y in Range A(0, 0.

Proof. Part (a) has already been proved. For part (b), write X (t) = ) X, et =
Xo + Z(t) and, after linearizing at X (a, i), the equation
X' — Aa, p)(X — X(a, p)) —vVV(X(a, ), 1)
—VH (X (a, ), WX = X(@, ) + -+ =0

is equivalent to the system
— A(a, p)(Xo — X(a, n)) —vVV(X(a, n), u)
+0((Xo — X(a, W) + X (1) — X(a, wII}) =0
(in I —Aa, )X, +0wX, + X (@) — X(a, w|}) = 0.

Since ker A(a, w) is generated by X, (a, u), let Xg = aX, DY, with Y orthogonal
to X,. Then, Xg — X(a,u) =Y + 0(a?). As before, A(a, wY +vvVVvV(X(a, n))
is an isomorphism from Range A(a, w)T x R onto Range A(a, u) @ ker A(a, wT
(since VV (X (a, u)) generates ker A(a, 1)7). Thus, one may solve uniquely for
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(Y(a, p, Z2),v(a, i, Z)) = 0(a® + [|IZ(t)|1?). Note that, due to the orthogonality,
v(a, u, Z) = 0 for periodic solutions. Furthermore, if in is not an eigenvalue of
A(0,0) = L(0), which is true for large n, one may solve these equations in terms
of the resonant modes, obtaining an H'-bound for X (¢). In particular, if one has a
zero of the differential equation in €2, then ||Y|| and v are of the order of €2 and, if
a’? + pu? > p?, one will have || Z||; = 0(¢2), i.e., the S'-degree of the pair is well
defined.

As done many times, one may deform the pair to (||Z]; — &, —A(a, n)Y —
vVVi(a, n),{(in I—A(a, 1)) X,}) and one may apply Theorem4.1. Since A(a, n)Y+
vVV (a, n) may be deformed to A(0, 0)Y +vVV (0, 0), which gives an invertible ma-
trix, one gets the result: the orientation factor (=D is, as before, absorbed in the
generator. O

Remark 4.11 (Global bifurcation). Corollary 4.1. says that, if dy or d;, in Proposi-
tions 4.5 and 4.6, are non-zero, then there is a continuum of solutions G, with X = 0
on C, which is either unbounded in the space {X(f), i, v} or returns to some point
{0, w1, v} with, in case of boundedness and a nice local behavior (i.e., (H;) and (Hp)
hold), a sum of S'-indices equal to 0. Now, near {0, 0, 0}, one has good information
on the solution set and on C: for instance, if L(0) is invertible, there is no bifurcation
of stationary solutions and, near the bifurcation point, the solutions are truly periodic.

However, if C contains apoint (X (¢), i), with X (¢) £ 0and VV (X, ) = 0 (recall
that this vector is either identically zero or never zero on solutions of X’ = g(X, u)),
then € will be unbounded in the v-component. Since v was introduced in an artificial
way, this is not a natural result. In order to avoid this situation, introduce the set

S = {(X(t), n), with X (¢) a periodic (or stationary)
solution of X' = g(X, ) and VV (X (¢), u) = 0}.

The conditions g(0, ) = 0, VV(0, u) = 0, imply that {(0, n)} C S. Comple-
ment the equation X' —g (X, u)—vVV (X, u) with the condition dist (X (¢), n); S)—e,
where the distance is in the H'-norm: S is compact on bounded sets in that norm.
Any solution in the complement of S will have v = 0.

Now, if (H;) and either (Hp) or (Hf)) hold, then, in a neighborhood of (0, 0), S is
just (0, w): in fact, if, for some solution of X’ = g(X, ), one has VV (X, u) = 0,
then for the Fourier series, one has

(inl = L(u)Xn — fu(X, ) =0
H(u) Xy — kn(X, n) = 0.

Hence, for any v
(inl —L(p) —vH(u)Xn — fu — vk, = 0.

Taking v = p, Proposition 4.4. implies that the linear part is invertible, for n # 0,
and the non-linear part is of the order of || Z]|1|| X |1, where X = Xo + Z(¢). Hence,
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for || X||; small enough, one has Z(t) = 0 and X = X is a stationary solution of
g(X, n) = 0. The same argument for n = 0, in case (Hgp) holds, or by hypothesis, if
(Hj)) holds, implies that X = 0, if |u| < p.

Hence, near (0, 0), dist((X, n); S§) = || X||1 and Propositions 4.5 and 4.6 are valid.
Thus, if one of the d;’s is non-zero, the global branch will be unbounded, in X or p,
or will meet a point of S, a stationary point if S N { = wo} is discrete. Further
computations of the s! -degrees, near S, are given in [IMV2], Remark 6.9.

Note that Remark 4.8 holds also here.

Remark 4.12 (First integrals and symmetries). If g(X, n) and VV (X, n) are equiv-
ariant with respect to a group I'g, then one may repeat the considerations of Exam-
ple 4.3: the linearizations L () and H (1) will have a block diagonal structure and
the S! x Ig-degree will be given in terms of the spectral behavior of each of the
sub-matrices of in I — L() — vH (u), as in Proposition 4.2.

Remark 4.13 (Hamiltonian systems). Consider the system

dx oy 0 —1I
—-=IVV(X, ), XinR ,J_<I 0).

As pointed out in Remark 2.4, we have that V (X, ) is a first integral and we may
either apply the orthogonal degree, as in Example 3.5, or consider the equations

X' —(J—v)VV(X, n) =0,
or solutions of the equations
JX +VV(X,u) +vX =0.

An important special case is when V (X, u) = V(X)/(uo + 1), where po +
stands for the frequency.

Assume that VV (0, u) = 0. Let H(u) be the Hessian of V at (0, ). Suppose
that J H(0) has eigenvalues +im| £ ..., Ximg, with0 < m; < --- < my.

Then, hypothesis (H;) is equivalent to asking that J H (i) — im; 1 is invertible for
w # 0, u close to O (this is always true if V (X, u) = V(X)/(uo + n)). Hypothesis
(H6) is verified provided X = 0 is an isolated zero of VV (X, w). For hypothesis (Hp)
one needs the invertibility of H (0) (in this case dy = 0).

Then Proposition 4.5 gives the bifurcation index in terms of crj+(— p) — aj+ (0),
while Proposition 3.2 gives it in terms of .M (—p) — M (p), where M (1) is the Morse
number of im;J + H(u). The factor Index(JVV (X, p); 0) = Index(VV (X, p); 0)
is common to both formulations. The two formulae are the same: in fact, one
has (H +im;J)JH + (JHT(H + imjJ) = 0 and H + im;J is self-adjoint and
invertible, if u # 0. Thus, as in Lemma 4.5, H + im;J maps ker(J H — )J)k into
ker(HJ — AI)*. Furthermore, if i is a simple eigenvalue of J H, with eigenvector
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Xp,then (H +im;J)Xpg = (B —mj),B_lHX,g. In particular, on ker(J H —iB1), the
signature of H + im;J is

op(H +im;1) = Sign(8 — mj)B~ op(H).

For a couple of eigenvalues, (X, —X), of JH one has that, as in the proof of

Lemma 4.6, the matrix H + im;J has the form (f* g) , with a zero signature.

Hence,
o(H +im;I) =) Sign(8 —mj)B~'op(H).
BeR

(Note that, since H () + im; [ is invertible for u # 0, we don’t have to worry about
the kernel, as in Lemma 4.6). Thus, after perturbing J H (£p), so that they have simple
purely imaginary eigenvalues and using the fact that (H X, X) has a constant sign on
the loop w? + v? = p2, one obtains

o(H(p) +im;l) —o(H(=p) +im;I)
=) (Sign(B(p) — m;) — Sign(B(—p) — m;)) Sign(H X, X),

since only those B’s close to m; are involved. Hence, in terms of a*(n), defined in
the proof of Proposition 4.5, the difference is

2@t (1) —a~(1) —a* (=) +a~ (=) = 207 (p) — 07" (—p)).

Since M(H +imjl) = N —o(H + im;I)/2, one gets that M;(—p) — M;(p) =
—(aj+(— p) — oj+ (p)), the sign being again an orientation factor.

In case JH = HJ, one may see this equality in a more direct way: as in
Remark 3.5 (c), decompose C?V into two-dimensional subspaces, invariant under
J, Xk, JXi), k= 1,..., N, corresponding to the eigenvalue A; of H. On that sub-
space, JH — il = <_)le’6 :j;;f) , with eigenvalues, if 8 = £, 0 and —2ig, that
is B is a simple eigenvalue, with (HX, X) = A¢||X||>. Hence, if 8 > n and 8 = A,
the signature of H is 1, while it is —1 if 8 = —X;. Recalling that each A, is a double
eigenvalue of H, one has that 20*(M) is the number of A;’s larger than m; (but close
to m ;) minus the number of those less than —m; (but close to —m;). That s, if a(n) is
the number of eigenvalues of H, less than n, as in Remark 3.5 (c), and [oj“L] denotes

the jump crj+(—p) — o;r(p), one gets
2[0]*] = —la(=mj) + a(mj)] = =2[M].

Note that, if V(X,n) = V(X)/(o + 1), then H(nw) = H/(uo + n), one has
crj+(,o) =0, oj+(—,o) = o; the signature of H onker(JH — im‘,-yvl)k.
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Example 4.7 (Hopf bifurcation for equations with delays). Asalastillustration of the
use of the equivariant degree, let us look at a (slightly) different context from ordi-
nary differential equations. Consider the problem of finding periodic solutions to the
system

dX N
d—:g()\,X(r—rl),...,X(‘c—rs)), X in R™,
T

which, after the scaling ¢ = v, is equivalent to finding 2 -periodic solutions to
vX'(1) =g\, X(t —vry), ..., X ({1 — vry)).

Here r; may be a fixed delay or may be taken as a parameter or even depend on X. The
problem is clearly S'-equivariant. If there is only one delay in g, then the n-th Fourier
coefficient of g(X (t — vr)) is e """ g, (X (1)), for a 2m -periodic X (¢). In particular,
if g(,0,...,0) =0and A;(1) = Dng(k, 0,...,0), the problem is equivalent to
the system, for X (t) = )_ X,e'™,

(nvl =" Aj0)e™ ™)Xy = fu(X), n=0.
1

The linear parts are called the indicial equations and it is not difficult to devise con-
ditions under which they have isolated singularities and non-zero winding numbers.
For instance, if N = 1 and the equation is

X(t) = =ax(0) = Af(x(r = 1)),  f(0) =0,
with f/(0) = k > 1, the indicial equations are
(inv + A + Ake ™™ ) x,,.

For A > 0, the possible bifurcation points are such that v = (vg + 2mm)/(nr),
where m > 0 and 7/2 < vg < m is such that cosyy = —k~!, and A = (v +
2mm)r~ ' (k? — 1)~ /2. By linearizing the equation inv + A + Ake™""" around one of
these points, it is immediate to see that the winding number, for the orientation (A, v),
is —1if A > Oand 1 if A < 0. Thus, one has bifurcation from each of these points (of
truly periodic solutions, if A # 0).

Assume x f (x) > 0 for x # 0. This has several consequences:

(a) the only constant solution is x = 0 if A # 0 or A = 0 and any constant.

(b) Any periodic solution for A # 0 must change sign (if of constant sign then it
would be monotone and non-periodic).

(c) No branch of solutions may go to A = 0, with ||x||; and periods bounded (that is
v > a > 0): infact, if || x, ||| is bounded, then there is a convergent subsequence,
in C9, to a solution, with A = 0, i.e., a constant solution. If this constant is non-
zero, then nearby periodic solutions can not change sign, while, if the constant
is 0, then (x = 0, A = 0) would be a bifurcation point, which would contradict
the indicial equations.
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Hence, the bifurcating branches must go to oo (in ||x]|1, A > 0, or periods).

If Cu m is the branch bifurcating from v = (v 4+ 2mm)/(nr), L = (vo +
2mm)r— (k% — 1)~Y2, then, since if (v, A, x(¢)) is solution this is also the case for
(v, oA, x (1)), one has that, on G, 1, (v, 1) = (v, Ag), Witha = —1—|—2m7w0_1 and
(vo, Ap) on Gy 0. Also, if z(1) = x(nt), then (v/n)7'(t) = —rz(t) — Af (x(nt — vr)),
if x(¢) is solution for (v, A). Thus, z(¢) is solution for (v/n, ). This implies that
solutions on G ;, are those of C; ,,, rescaled as above. Thus, it is enough to study
one of these branches, for instance Cj .

Now, if x(¢) is a solution, for (v, A), let y(¢) = x(¢t — vr), then

vy' () = —Ay(®) — Af (x(t — 2vr)).

Assume that vr = [, then, from the 27 -periodicity of x(¢), one has the system of
ordinary differential equations

vx' = —Ax —Af(y), vy =—iy —Af(x).

Suppose that, for some 19, (x(f), y(f9)) = (a, b) holds with a # b. Then one has
(x(tg —vr), y(to — vr)) = (b, a), that is, if (a, b) is on one side of the diagonal in the
(x, y)-plane, then (b, a) is on the other side. But then, the path (x(¢), y(¢)) must cross
the diagonal at some point, that is, there is a T, with x () = y(t). From the uniqueness
of the initial value problem for the system of O.D.E.’s, one has x(¢) = y(¢), which
should be a 27 -periodic solution of vx’ = —Ax — Af(x), something impossible in
dimension one, unless x(¢) is constant and A = 0. Thus, vr = Iw are forbidden
frequencies.

In particular, C;,1, which starts at v = (vp 4 2m)/r, with % < Vg < 7, must
stay in the interval 2w < vr < 3m. Hence, for Cj o, one has that vr has to be in
Qm (1l + 27rv0_1)_1, 37(1 + 27[1)0_1)_1). Thus, the periods are bounded on C1 .

If, in addition, f(x) is bounded by M, then, since any 27 -periodic solution must
have a zero, let x(7) = 0 and write a solution of the equation as

t
x(t) = —% / fx(s —vr))e =9/ gs.

Thus, for t > 7, one gets |x ()| < M and v|x'(¢)] < AM. Thus, on Cj o, one has
lx"|l1 < K|A| and €y o goes to infinity in A.

Clearly, these conditions are rather particular, but we hope that the reader will be
able to study more general situations.

4.5 Bibliographical remarks

There is an uncountable number of applications of classical degree theory. For prob-
lems with symmetries, the current literature is more inclined toward variational meth-
ods or to generic situations, as in the books [Fi], [B], [GS]. For the case of equivariant
degrees, we refer to [KW] and the articles in the References.
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Section I is taken from [IV 1], for the general case, and from [[V3] for the orthogonal
degree. The basic material of Section 2 comes from [[V2]. However some of the
examples are taken from [IMV2], [1], and earlier work. The notion of hyperbolicity,
which mimics the one for differential equations, was introduced in [IMVO]. The
treatment of autonomous differential equations and their periodic solutions is now a
standard application of Fourier series, as well as the period doubling phenomenon.
Chow and Mallet-Paret were the first to use the Fuller index in this context. Many
papers were published later on generalizing Fuller’s ideas.

The examples of differential equations with first integrals are taken from [IMV2].
A treatment with Fuller degree is due to Dancer and Toland. The special spectral
behavior of Remark 2.6 is similar to the one introduced by Fiedler.

The bulk of Section 3 comes from [IV3]. However, we invite the reader to compare
these results with the ones coming from variational methods (in case of gradients or
Hamiltonians) so that he may judge by himself the advantages and shortcomings of
this degree for orthogonal maps. For the case of S!-orthogonal maps, we refer also to
the papers by Rybicki.

The spring-pendulum was published in part in [12]. Here, we have given complete
proofs of the local behavior of the singular Hill’s equation. We refer to the references
of this last paper for other special treatments of these systems.

The last section, essentially on Hopf bifurcation, is taken from [I0], [1], [IMV2]
and [IV2]. There is a vast literature on the classical Hopf bifurcation. Among the
first papers using topological tools, one has to mention [AY], [I0] and [CM-P]. The
examples of classical Hopf bifurcation are taken from [IMV0], while the case of first
integrals was treated in [IMV2]. Part of Lemma 4.6 is inspired in [GLR.] and in [DT2].
The example on retarded differential equations was taken, as a very special case of
the literature in this subject, from [M-P.N].



Appendix A

Equivariant Matrices

The purpose of this appendix is to prove Theorems 5.2 and 5.3 of Chapter 1. Several
versions of these results are well known in the literature. However, most of them either
do not give such a precise description or are based on much more sophisticated tools.
The proof of the first result is inspired on the proof of Frobenius Theorem, as given in
Pontrjagin’s book [P].

Theorem A.1 (Cfr. Theorem 5.2 of Chapter 1). Let V be a finite dimensional irre-
ducible orthogonal representation, then exactly one of the following statements is
satisfied.

(a) Any equivariant linear map A is of the form A = ul, i.e., V is an absolutely
irreducible representation.

(b) There is only one equivariant map B, such that B> = —I, BT + B = 0. Then,
any equivariant linear map A has the form A = wl + vB. In this case, V has
a complex structure for which A = (u +iv)I.

(c) There are precisely By, By, B3 with the above properties. Then, B; Bj = —B; B;
and B3 = B1 By. Moreover, V has a quaternionic structure and any equivariant
linear map can be written as A = ul + viB; + v2By + v3B3z = ql, where
q = W+ vii] + vaip + v3i3 is in H.

Proof. Let C be the set of equivariant matrices from V into itself. Define D = {A €

C:A=kl}and F ={A € C: A> = —k?I, A+ AT = 0}. Itis clear that C and

D are linear subspaces and that the three sets are closed under transposition, since
T -1

y.=v

Step (a). F is a linear subspace. Infact,if A € ¥ ,thenaA € F. Also,if A| and A,
are in ¥, then, from Corollary 5.1 (c) in Chapter 1, we get A| + Ay = ul + vB, for
some B in ¥ . However, A1A2T + AzAlT is equivariant and self-adjoint, hence, from
Schur’s lemma, it belongs to D, thatis Aj Ay + Ay A} = k1. Similarly, BA;+ A B is
self-adjoint, hence equal to a/. On the other hand, kI = A1Ay + A2A1 = A(ul +
VB — Ay)+ (ul +vB — A1) Ay = 2uA; +val +2k31, where A7 = —k?1. Hence,
2uA1 = (k—va — 2k%)l. Thus, if © # 0, we have A} € D NF = {0}, which is not
possible. This implies that u =0, A + A = vBisin F.
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Step (b). If not empty, ¥ has dimension 1 or 3. Note first that if F = ¢ then, from
Corollary 5.1 (c) in Chapter 1, any A in C is in fact in O and this gives (a) of the
theorem. Furthermore, if ¥ is one-dimensional, then any element A in ¥ is of the
form a B, with B in ¥ and B2 = —1.

Let By, By in ¥ be such that 312 = 322 = —I. Then, B1B; is in C and as such
B1By = ul + vB, for some B in F, with B> = —I. Multiplying by By, one has
uB1 + By = —vB1 B, and, from Step (a), one has that vB; B is in ¥ .

Ifv=0,By=—uBj and B? = —p2l = —1I gives By = +Bj. If, on the other
hand, v # 0, then B|Bisin ¥. Set B] = By, B; = Band B; = B|B = B| Bj. Then,
since B3 belongs to ¥, one has that BéT + B3 = 0 and B3B = BlBBTBlT =1,
hence B = —1. Furthermore B|B), = B} = —BgT = —B)B|,B|B, = —B) =
— BB and BB, = —B| = —BéBg. Thus, the B;’s, dropping the primes, satisfy the
anticommutativity properties of the theorem.

Now, these B, By, B3 are linearly independent in & : In fact, if A; By + A2 B2 +
A3B3z = 0, then, multiplying by B one has Ay B3 — A3B1 = A;l. But, from the
fact that ¥ is a linear subspace, one gets that the left-hand side is in ¥ and so A1/
would be in ¥, which is impossible, unless A; = 0. A multiplication by By will give
A By = A3l and Ay = A3 = 0, hence, B;, i = 1, 2, 3 are linearly independent.

Finally, suppose that there is a B in ¥, with B2 = —I, which is not a linear
combination of Bj, By, B3. Then, as above, B;jB = ,uJI + vJB and, by taking
transposes, BBj = u;l — va Let, for some o # 0, B = (B + 1By + ;rsz +
u3B3). Then, B isin F and it is easy to see that B? = —a%(1 — ,ul — ,ul —
M%)I = —k2]. Hence, either B2 = 0 and B has a nontrivial kernel, in which case,
from Schur’s lemma, B = 0 and B is a linear combination of B1, B, B3, contrary
to the hypothesis; or, one may choose o such that k? = 1 and B2 = —I. Now,
B; B = oc(v,B + ,ukBl + wBy) = —BB,, for k #1 # j. Thus, B; B belongs to
F. Furthermore (B]B)B3 —(BBl)B3 = BB2, while Bl(BB3) = —Bl(B3B)
BzB = —BB2 That is 332 = 0, which is not possible, since both are isomorphisms.
This proves that any B is a linear combination of By, B>, B3 and finishes the proof of
step (b). Note that, because of the associativity of the product of matrices, there is no
equivalent to Cayley numbers.

It remains to make explicit the structure of V.

Step (¢). Let B be in F such that B2 = —], then there is a basis for V such that

I 0
A = A, with A in C. Note that, since (det B)? = (—1)4™V then dim V = n = 2m.
In fact, take e a unit vector, then, since B + BT = 0, Be; is orthogonal to e¢; and
also a unit vector. Choose e, orthogonal to {e;, Be1}, then Be, is orthogonal to
{e1, Beq, ez}, and so on...On the basis {e1, e3, ..., ey, Bey, Bey, ..., Bey}, B has
the above form. Defining z; = xj + ixp4j and Z = X + iY, then V = C".

B = (O _I) and V has a complex structure such that any A in C has the form

Ify = (;; Zj), then y B = By implies that y3 = —y» and y4 = y;. Thus,



Appendix A Equivariant Matrices 329

Y (;ﬁ) =yZ = (1 +iy)(X +iY) and B(?) = BZ = il(X +iY), where

B = il. Hence, if A isin &, with A = ul + vB = (u + iv)I = AI, with A in C.
This proves Part (b) of the theorem, in case ¥ has dimension 1.

Step (d). If & has dimension 3, then V has a quaternionic structure and Part (¢) of
the theorem holds.

In fact, take a unit vector ej, then (e, Biey, Bae1, Biey) are orthogonal. Next,
take e, orthogonal to that set. It is easy to see that the vectors (ep, Biea, Brea, Bzer)
are all orthogonal to the first set and among themselves, by using the relations of

anticommutation of the B;’s. This implies that dimV = 4m and, on the basis
{ei,...,en, Biei, ..., Biey, Brey, ... Byey, Biey, ..., Biey}, Bj has the form of
the Pauli matrices:
0 —-10 0 00 —-10 00 0 -1
I 0 0 O 0 0 0 I 00 -1 0
Bi=1o 0 o -1 B2=|7r 0 o o]l B=|or 0o o
0 0 I O 0 -1 0 O 1 0 0 O
Then, if X = (Xo, X1, X2, X3)T is written as X = Xo +i1 X1 +iX2 +i3X3, an
element of H™, with ij2 = —1,ijix +ixij = 0, i1ip = i3, one has that B; X is written
as ij)A(. Furthermore, if y is written as a (4m x 4m)-matrix (yx;), k,l = 0,..., 3,

then the relations y B; = B;y imply that

Yo —Vi —Y2 —V3
Yr Yo v —"
Y2 =V3 Yo "1
Vi Y2 —Y1 Y0

‘}/:

can be written as y = yo+i1y1 +i2y2 +i3y3, acting on X on the right: yX = )A()? =
(Xo + i1 X1 +i2X2 +i3X3) (o + i1y1 + i2y2 + i3Y3).

Then, any A in C may be written as A = g/, with g = p 4+ vii1 + v2lp + v3i3 in
H and I is the identity on H". Thus, AX = ¢X and A(y X) = qy X = ¢ X7, while
yAX = (AX)p = gX7p. O

One may give the general form of an equivariant linear map between finite dimen-
sional representations.

Theorem A.2 (Cfr. Theorem 5.3 of Chapter 1). Let V be decomposed as
i=1 j=J I=L
P @BEy ewhHr,
i=1 j=1 =1

where Vl-]R are the absolutely irreducible representations of real dimension m; repeated
n; times, Vj(C are complex irreducible representations of complex dimension m; re-

peated nj times, while VlIHI are quaternionic representations of dimension (over H) m
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repeated n; times. Then, there are bases of V such that any equivariant matrix has a
block diagonal form

R
Al

H
Al

where A{R arerealn; xn; matrices repeated m; times, A}C are complexnj x nj matrices,
repeated m; times and AEHI are n; X nj quaternionic matrices repeated m; times. On
the new basis, the equivariance of A and the action have the following form: y is
block diagonal on each subspace corresponding to the repetition of the same matrix,
i.e.,if Byxn is repeated m times, on W corresponding to the same representation, then
Y = VijDi<i,j<m, with y;j in K = R, C or H, and I the identity on K" where the
product, for the quaternionic case, is on the right.

Proof. From the considerations of § 5 in Chapter 1, it is enough to consider A on
equivalent subrepresentations of V. Take then V = V| @ --- @ Vi, where V; are
irreducible but with equivalent actions. Then, if yA = Ay, A maps V into V and is
similar to amatrix A from (V})¥ into itself, such thaty A = Ay and  acts orthogonally
on V}. Note that the similarity depends only on the actions, not on A. Hence, assume
that there are bases in V and a norm such that y is in O (V) and has a diagonal form
diag(y, ..., y), since V; are I"-invariant.

Let m = dimg V;, where K = R, C or H. Then, y|y, can be written as above,
when considering the real matrix, or as y for the K-structure: A;; : V; — V;is
Aij = AjjI, with A;; in K and [ the identity in K™, i, j = 1, ...k, on the basis of
Theorem A.1.

Take a new basis for V by ordering the bases for Vi, {e11,e12, ..., e1m}, of
Vo, {ea1, €2, ..., e}, ... and of Vi, {ex1,er2, ..., erm}, in the following way:
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{e11,e21, ..., €k1,€12,€22, ..., €, ..., ekm}. Itiseasy to see that, on this new basis,
A has the form
A 0
A= A ,
0 A

where A = (A;j)1<i,j<k is repeated m times on the diagonal. On the other hand, if
y : Vi = V; has the form (y;;)1<;, j<m, then on the new basis y , = VijDi<i,j<m»

where I is the identity in K¥. The relation y A = Ay is maintained in the new basis:
in fact, if K is R or C, then y;; is a scalar which commutes with A. If K = H, then
the action is on the right and y ¢ has to be interpreted as g7 (one may also go back to
the 4 x 4 real matrices, where y;; is as above and commutes with g). O
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Periodic Solutions of Linear Systems

In this appendix we shall collect the results of Floquet theory needed in the book. Most
of these results are well known, however the presentation given here will be slightly
different.

Consider, in RV, the system

d
LX=—X - AX
dt

where A(¢) is a continuous matrix, which is (27 /p)-periodic. The operator L is
a continuous operator from H'(SHN .into L2(SHN. In terms Qf Fourier series, if
X(t) = Xpe™ and A(t) = Y Ane’™, then A()X = Y Cre'*, where

Cr = Z A X1

corresponds to a convolution.
Let ®(¢) be the fundamental matrix associated to L, i.e.,

P =Ad, PO =1,
(P (t) = e if A is constant).

Then, LX =Y if and only if

t
X(t) = D)X (0) + CD(t)/ &1 (5)Y (5) ds.
0

Recall that the columns of ®(¢) are linearly independent solutions of LX = 0 and
that det ®(t) = exp(f trA(s) ds).

Hence, as an operator from H 1 into L2, the equation LX = Y will have a 2m-
periodic solution if and only if

21
(I — ®Q2n))X(0) = <I>(27'[)/ o L(s)Y () ds.
0

Lemma B.1. One has the following isomorphism from ker(L + wul) in H' onto
ker(®(2m) — ¥, given by ker (4% — A + ul) = {X(1) = e MD)W, with
W e ker(®(2m) — 2" 1)).
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Proof. By direct differentiation, it is easy to see that e #' ®(¢) is the fundamental
matrix for L + pl. Hence X (1) = e # ® (1) X (0) belongs to ker (L + w 1) if and only
if X (0) belongs to ker(e " 2"*d(27) — I). O

In particular, the multiplicity of —u as eigenvalue of L is equal to the multiplicity
of e2™H as eigenvalue of ®(277). The number e2™* is the Floguet multiplier of L, or
of the Poincaré return map ® (2m).

Remark B.1. Since A(?) is (27/ p)-periodic, one has

, 2 2r 2 2

Q@+ —)=A0+ —)Pt+ —)=A0OPC+ —),
p p p p
hence ® (¢ + 27/ p) is a fundamental matrix and, as such, one has
2 2
P+ —)=PW)P(—).

p p

In particular, if p’ divides p, one has

2 27\ P/
(=)= () .
V4 p

Thus, the multiplicity of 0, as eigenvalue of L, is the sum of the multiplicities of the
eigenvalues of the Poincaré map of first return (19(27”), which are p’th roots of unity.

On the other hand, the elements of ker (613(27”) —1 ) give (%’)—periodie solutions of
LX =0.

The L?-adjoint of L is the operator

d
L*=— =4 AT
<dr+ )

which has the fundamental matrix W (¢t) = & '(#)T: since ®~'® = 1, one has
(@ =-0"'o'o"! = -4

Then, LX = Y has a solution if and only if ®(2r) f027r O~ 1(s)Y (s)ds belongs to
Range(I/ — ®(2m)), that is, if it is orthogonal, in RN toall Z’s inker(/ — ®2n)T) =
ker(®~!(27)T — I). Performing the scalar product in R¥, one arrives at

2
/ Y(s) o 1(s)T zds =0,
0
that is, Y (r) is L2-orthogonal to Z(r) = ®~!(s)” Z, any element of ker(L*). This

argument gives another proof of the fact that L is a Fredholm operator of index O.
Assume now that A(#) is smooth enough, then
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Lemma B.2. ker(L + ul)® in H' and ker(® (27) — 2" 1)® in RN are isomorphic.
In fact, ker (% — A+ Ml)a = {X(t) = e D) 2871 Wk%, with Wy uniquely
determined by Wy, Wy € ker(®(2m) — g2 ya—ky

Proof. Let X (1) be inker (4 — A + puI)” and define
Y(t) =o)X (1),

then, (L + pu)X = e M ®@)Y'(t) and (L + p)¥X = e M > ()Y P (¢). Thus, if
(L + pl)*X =0, one has Y@ (r) = 0 and

a—1 1

Y(t) = ZW,;—'.
- !

One needs that e~ * & ()Y © (1) belong to the space of 2m -periodic functions for
k=0,...,a — 1. If B~ is the matrix e ">"*®(27), this requirement amounts to
solving the system

a—l I—k
2
B <Zl—k W ((zj?k)!> =700 =W

Hence, one has the linear relations

(B—=DWu-1 =0
(B—=DWy—2 = 27 Wy

(2m)? Qm)*!
(B—DHWy =21W; + Wot ookl W,
2! (a — 1!
From here, one has that W,,_; belongs to ker(B — I)¥ and that, fork = 1, ..., «,

(B— DW= @) Wy,

One may view the last (¢« — 1)-equations as a linear system for Wy, ..., Wy,_; in
terms of (B — I)Wj. If this term is O, then, from (B — I)"‘_1 Wy, one has, if « > 1,
that W1 =0, (B — I)k_2Wa_k = (2n)k_2Wa_2, that is, the same system with o
replaced by o — 1. But then, (B — I)‘)"2 Wy leads, if ¢ > 2, to W,_» = 0, and so on.

Thus, if (B — I)Wy = 0, one obtains that Wy = --- = W,_; = 0. Thus implies that
the system for Wy, ..., W,_1 is invertible and these vectors are uniquely determined
by Wy, in fact by (B — I)Wj. O

If A is constant, then e "“ & (r) = eA~"M" which will have 1 as eigenvalue if and
only if A has u=+ in as eigenvalue. If A is taken in Jordan form, then on a Jordan
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block, A — nl =inl + J, where J is the upper diagonal. Then, on a block of size «,
one has

-1
e(A—M)t:elnf I+t‘]+"'+LJa_l .
@— 1!

a—1 X
Furthermore, X (1) = ¢(A—)! > Wk%, can be expressed as
5 1
2

. t
X(1) = e””[Wo 1 (W1 4+ I Wo) + 5 (W 4+ 20 W1 + Wo) + -
k

t
+ E(Wk kI Wiy o ()T W T wo)
}a—l
+ — W1 4+ + Ja_IW())].
(a —1)!
The requirement of periodicity determines Wy, ..., W,_1 in terms of Wy. Itis not

difficult, but tedious, to check that these are the same as the other set of conditions.
Then, one has

X@) = anei”’, with (inl — A+ ul)* X, =0, o = max o,

a result which, of course, follows directly by looking at Fourier series.
If A is non-constant, then by complexifying A, one has that ®(r) = P(t)eR!,
where P(t) is 2 -periodic and R has, as eigenvalues, the Floquet exponents.
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This book presents a new degree theory for maps which commute
with & group of symmetries. This degree is no longer a single in-
teger but an clement of the group of equivariant homotopy
classes of maps between two spheres and depends on the orbit
types of the spaces.

The authors develop completely the theory and applications of
this degree in a sclf-contained presentation starting with only
clementary facts. The first chapter explains the basic tools of re-
presentation theory, homotopy theory and differential equations
needed in the text. Then the degree i ed and its ma
abstract properties are derived. The next part is devoted to the
dy of equivariant homotopy groups of spheres and to the
classification of equivariant maps in the case of abelian actions
These groups are explicitely computed and the effects of sym-
metry breaking. products and composition are thorougly studicd.
The last part of the baok deals with computations of the
equivariant index of an isolated orbit and of an isolated loop of
stationary points. Here differential equations in a variety of
situations are considered: symmetry breaking, forcing, period
doubling, twisted orbits, first integrals. gradients and so on.
Periodic solutions of Hamiltonian systems. in particular sprin;
pendulum systems, are studied as well as Hopf bifurcation for all
these situations.

The book will be of interest to graduate students in math
as well as to rescarchers in non
tions, tapolog

matics
r analysis, differential equ:
. and in quantitative aspects of applied mathe-

matics.




	Preface
	Contents
	Introduction
	Chapter 1 Preliminaries
	1.1 Group actions
	1.2 The fundamental cell lemma
	1.3 Equivariant maps
	1.4 Averaging
	1.5 Irreducible representations
	1.6 Extensions of Γ-maps
	1.7 Orthogonal maps
	1.8 Equivariant homotopy groups of spheres
	1.9 Symmetries and differential equations
	1.10 Bibliographical remarks

	Chapter 2 Equivariant Degree
	2.1 Equivariant degree in finite dimension
	2.2 Properties of the equivariant degree
	2.3 Approximation of the Γ-degree
	2.4 Orthogonal maps
	2.5 Applications
	2.6 Operations
	2.7 Bibliographical remarks

	Chapter 3 Equivariant Homotopy Groups of Spheres
	3.1 The extension problem
	3.2 Homotopy groups of Γ-maps
	3.3 Computation of Γ-classes
	3.4 Borsuk–Ulam results
	3.5 The one parameter case
	3.6 Orthogonal maps
	3.7 Operations
	3.8 Bibliographical remarks

	Chapter 4 Equivariant Degree and Applications
	4.1 Range of the equivariant degree
	4.2 Γ-degree of an isolated orbit
	4.3 Γ-Index for an orthogonal map
	4.4 Γ-Index of a loop of stationary points
	4.5 Bibliographical remarks

	Appendix A Equivariant Matrices
	Appendix B Periodic Solutions of Linear Systems
	Bibliography
	Index



