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Preface

The present book grew out as an attempt to make more accessible to non-specialists
a subject – Equivariant Analysis – that may be easily obscured by technicalities and
(often) scarcely known facts from Equivariant Topology. Quite frequently, the authors
of research papers on Equivariant Analysis tend to assume that the reader is well
acquainted with a hoard of subtle and refined results from Group Representation
Theory, GroupActions, Equivariant Homotopy and Homology Theory (and co-counter
parts, i.e., Cohomotopy and Cohomology) and the like. As an outcome, beautiful
theories and elegant results are poorly understood by those researchers that would
need them mostly: applied mathematicians. This is also a self-criticism.

We felt that an overturn was badly needed. This is what we try to do here. If
you keep in mind these few strokes you most probably will understand our strenuous
efforts in keeping the mathematical background to a minimum. Surprisingly enough,
this is at the same time an easy and very difficult task. Once we took the decision of
expressing a given mathematical fact in as elementary as possible terms, then the easy
part of the game consists in letting ourselves to go down to ever simpler terms. This
way one swiftly enters the realm of stop and go procedures, the difficult part being
when and where to stop. In our case, we felt relatively at ease only when we arrived
at the safe harbor of matrices. Of course, you have to buy a ticket to enter. The fair
price is to become a jingler with them. After all, nothing is given for free.

We have enjoyed (and suffered) with the fact that so many beautiful results can be
obtained with so little mathematics. Our hope is that you will enjoy (and not suffer)
reading this book.

Acknowledgments. We would like to thank our families for their patience and support
during the, longer than expected, process of writing the book. Very special thanks to
Alma Rosa Rodríguez for her competent translation of ugly hieroglyphics to beautiful
LATEX. Thanks to our colleagues, Clara Garza, for reading the manuscript, to Arturo
Olvera for devising and running some of the numerical schemes which have given
evidence to some of our results and toAna Cecilia Pérez for her computational support.
We are grateful to L. Vespucci, Director of the Library at La Sapienza, for her help in
our bibliographical search. Last but not least, let us mention the contributions of our
friend and collaborator Ivar Massabó with whom we started, in 1985, the long journey
through equivariant degree.
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the University of Rome, Tor Vergata, given through the scientific agreement between
IIMAS-UNAM and Tor Vergata, and of several agencies on the Italian side, including
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Introduction

Nonlinearity is everywhere. But few nonlinear problems can be solved analytically.
Nevertheless much qualitative information can be obtained using adequate tools. De-
gree theory is one of the main tools in the study of nonlinear problems. It has been
extensively used to prove existence of solutions to a wide range of equations.

What started as a topological (or combinatorial) curiosity has evolved into a va-
riety of flavors and represents, nowadays, one of the pillars, together with variational
methods, of the qualitative treatment of nonlinear equations.

In the simplest situation, the “classical” degree of a continuous map f (x) from
Rn into itself with respect to a bounded open set � such that f (x) is non-zero on ∂�

is an integer, deg(f ;�), with the following properties:

(a) Existence. If deg(f ;�) �= 0, then f (x) = 0 has a solution in �.

(b) Homotopy invariance. If one deforms continuously f (x), without zeros on
the boundary, then the degree remains constant.

(c) Additivity. If � is the union of two disjoint open sets, then deg(f ;�) is the
sum of the degrees of f (x) with respect to each of the pieces.

If one has in mind studying a set of equations, those properties have a striking
conceptual importance: a single integer gives existence results by loosening the rigidity
of the equations and allowing deformations (and not only small ones). In other words,
one does not need to solve explicitly the equations in order to get this information and
one may obtain it by deforming the equations to a simpler set for which one may easily
compute this integer. Furthermore, one has a certain localization of the solutions or
one may obtain multiplicity results for these solutions.

Thus, in dimension one, the degree is another way to view the Intermediate Value
Theorem of Calculus and, in dimension two, it is nothing else than the winding number
of a vector field, familiar from Complex Analysis.

If, furthermore, one requires the property

(d) Normalization. The degree of the identity with respect to a ball containing the
origin is 1,

then, one may show that the degree is unique.
Now there are many ways to construct the degree. As a consequence of the unique-

ness, they are all equivalent and depend more on the possible application or on the
particular taste of the user. For instance, one may take a combinatorial approach, or
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analytical (through perturbations or integrals), or topological (homotopical, cohomo-
logical) or an approach from fixed point theory.

Classical degree theory, or Brouwer degree, would have remained a simple cu-
riosity if it were not for the extension to infinite dimensional problems, in particu-
lar to non-linear differential equations. This extension has required some compact-
ness, starting from the Leray–Schauder degree with compact (or completely continu-
ous) perturbations of the identity, continuing with k-set contractions, A-proper maps,
0-epi maps (these terms will be defined in Chapter 1) and so on. In most of these exten-
sions the compactness is used to construct a good approximation by finite dimensional
maps. One of the by-products of the construction presented here is to pinpoint a new
way to see where the compactness is used.

Now the subject of this book is also that of symmetry. This is a basic concept in
mathematics and words like symmetry breaking, period doubling or orbits are familiar
even outside our discipline. In fact, many problems have symmetries: in the domains
and in the equations. Very often these symmetries are used in order to reduce the set of
functions to a special subclass: for instance look for odd (or even) solutions, or radial,
or independent of certain variables. They are also used to avoid certain terms in series
expansions or, in connection with degree theory, in order to get some information on
this integer, the so-called Borsuk–Ulam results. However, since any continuous (i.e.,
not necessarily respecting the symmetry) perturbation is allowed, the ordinary degree
will not give a complete topological information. This very important point will be
clearer once the equivariant degree is introduced and computed in many examples.

In this book we shall integrate both concepts, that of a degree and that of symmetry,
by defining a topological invariant for maps which commute with the action of a group
of symmetries and for open sets which are invariant under these symmetries, i.e., for
equivariant maps and invariant sets.

More precisely, a map f (x), from Rn to Rm for instance or between two Banach
spaces, is said to be equivariant under the action of � (a compact Lie group, for
technical reasons) if

f (γ x) = γ̃ f (x)

for all γ in �, where γ and γ̃ represent the action of the element γ in Rn and Rm

respectively. Think of odd maps (γ = γ̃ = − Id) or even maps (γ = − Id, γ̃ = Id),
or any matrix γ expressed in two bases. The set � will be called invariant if, whenever
x is in �, then the whole orbit �x is also in �. By looking only at maps with these
properties, including deformations of such maps, one gets an invariant, deg�(f ;�),
which is not an integer anymore (unless m = n, � = {e}, in which case one recovers
the Brouwer degree) but with properties (a)–(c) valid and (d) replaced by a universality
property.

Since the construction of this equivariant degree is quite simple, we shall not resist
the temptation to present it now. Let f (x) be an equivariant map, with respect to the
actions of a group �, defined in an open bounded invariant set � and non-zero on
∂�. Since � is bounded, one may choose a very large ball B containing it. Then
one constructs an equivariant extension f̃ of f to B. The new map f̃ (x) may have
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new zeros outside �. One takes an invariant partition of unity ϕ(x) with value 0 in �̄

and 1 outside a small neighborhood N of �, so small that on N\� the map f̃ (x) is
non-zero (it is non-zero on ∂�). Take now a new variable t in I = [0, 1] and define

f̂ (t, x) = (2t + 2ϕ(x)− 1, f̃ (x)).

It is then easy to see that f̂ (t, x) = 0 only if x is in�with f̃ (x) = f (x) = 0 and, since
ϕ(x) = 0, one has t = 1/2. In particular, the map f̂ (t, x) is non-zero on ∂(I × B)

and defines an element of the abelian group (this group will be studied in Chapter 1)

��
Sn(S

m)

of all �-equivariant deformation (or homotopy) classes of maps from ∂(I × B) into
Rm+1\{0}. We define the �-equivariant degree of f (x) with respect to � as the class
of f̂ (t, x) in ��

Sn(S
m):

deg�(f ;�) = [f̂ ]�.
This degree turns out to have properties (a)–(c), where having non-zero degree here
means that the class [f̂ ]� is not the trivial element of ��

Sn(S
m). Furthermore, by

construction, this degree has the Hopf property, which is that if � is a ball and [f̂ ]�
is trivial, then f |∂� has a non-zero �-equivariant extension to �. In other words,
deg�(f ;�) gives a complete classification of �-homotopy types of maps on spheres.
This property implies also that deg�(f ;�) is universal in the sense that, if one has
another theory which satisfies (a)–(c) such that, for a map f and a set �, one has a
non-trivial element, then deg�(f ;�) will be non-zero.

The simplest example is that of a non-equivariant map from Rn into itself. Then
we shall see that [f̂ ]� is the Brouwer degree of f̂ with respect to I ×B. Since f̂ is not
zero on I × (B\�), this degree is that of f̂ with respect to I ×�, where f̂ is a product
map. A simple application of the product theorem implies that [f̂ ]� = deg(f ;�),
a result which is, of course, not surprising but which indicates that our approach has
the advantage of a very quick definition, with an immediate extension to the case of
different dimensions, including infinite ones.

A second simple example is that of a Z2-action on Rn = Rk×Rn−k = Rm, where
x = (y, z) and f (y, z) = (f0(y, z), f1(y, z)) with f0 even in z and f1 odd in z. It

turns out that in this case �
Z2
Sn (S

n) ∼= Z × Z, and that degZ2
(f ;�) is given by two

integers: deg(f0(y, 0);� ∩ Rk) and deg(f ;�). As a consequence of the oddness of
f1, with respect to z, one has f1(x, 0) = 0 and it is clear that these two integers are
well defined. The set {x, 0} is the fixed point subspace of the action of Z2 and it is not
surprising that these two integers are important. What is less intuitive is that if � is a
ball then these two integers characterize completely all Z2-maps defined on �.

A third example is that of an S1-action on Rk×Cm1 × · · ·×Cmp , where S1 leaves
Rk fixed and acts as exp(injϕ), for j = 1, . . . , p, on each complex coordinate of Cmj .
This is an important example because if one writes down the autonomous equation

dX

dt
− f (X) = 0, X in Rk,
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for X(t) =∑
Xne

int , that is for 2π -periodic functions, then the fact that f (X) does
not depend on t implies that its component fn(X) on the n-th mode has the property
that

fn(X(t + ϕ)) = einϕfn(X(t)),

i.e., the equation is equivalent to an S1-equivariant problem (infinite dimensional). It
turns out that, in this case, degS1(f ;�) is a single integer given by deg(f |Rk ;�|Rk ),
i.e., by the invariant part of f . This is a slightly disappointing result but it can
also be viewed as indicating that points with large orbits, in the sense of positive
dimension, corresponding to the complex coordinates do not count when classifying
the�-equivariant classes. This is a general fact which will be true for any group. Thus,
in this particular example, one will have new invariants if the domain has (at least)
one more dimension than the range, i.e., f is a function of a parameter ν and of X. In
the case of differential equations, the extra parameter ν may come from a rescaling of
time and represent the frequency. This occurs when one looks for periodic solutions
of unknown period. In that case, it turns out that

�S1

Sn+1(S
n) ∼= Z2 × Z× Z× · · ·

with one Z, giving an integer for each type of one-dimensional orbits, and Z2, an
orientation, corresponding to the invariant part. It is clear that we now have a much
richer structure, which will lead to a host of applications, ranging from Hopf bifurcation
to period doubling and so on. For instance, one may perturb an autonomous differential
equation by a small time-periodic function. Then one may see what happens to the
invariants in �S1

Sn+1(S
n), where one forgets about the S1-action, i.e., in �Sn+1(Sn) ∼=

Z2. Of course, one could also break the symmetry by adding a (2π/p)-periodic
perturbation, giving rise to other types of invariants.

A last example would be that of the action of a torus T n, or of the largest torus in
a general group. If this torus is generated by the phases ϕ1, . . . , ϕn, each in [0, 2π ],
one may look at �-equivariant maps f (x) which have the additional property of being
orthogonal. This means that

f (x) · Ajx = 0, j = 1, . . . , n,

whereAj is the infinitesimal generator corresponding toϕj . This situation occurs when
one considers gradients of invariant functionals: if f (x) = ∇ϕ(x), where ϕ(γ x) =
ϕ(x), then, by differentiating with respect to ϕj , one obtains this orthogonality. For
instance, this is the situation for Hamiltonian systems, where one of the orthogonality
relations is the conservation of energy. For such �-orthogonal maps one may repeat
the construction of the degree and obtain a new invariant

deg⊥(f ;�) in ��⊥Sn(S
n),

a group which is much larger than ��
Sn(S

n). In fact, it is a product of Z’s, one for each
orbit type, independent of the dimension of the orbit, as we shall describe below, by
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relating this new degree to “Lagrange multipliers”. One may look at zeros of the map

f (x)+
∑

λjAjx = 0,

where if one takes the scalar product with f (x) one obtains a zero of f (x) and the
relation

∑
λjAjx = 0. In particular, if, for some x, theAjx’s are linearly independent,

this implies that λj = 0. Of course, this linear independence depends on x, but the
introduction of these multipliers will enable us to compute completely the group
��⊥Sn(S

n).
It is now time to have a closer look at the content of the book. We shall do so by

pointing out the parts which may be of special interest to a given group of readers. As
explained in the Preface, we have tried to write a book as self-contained as possible.
This implies that the first chapter is devoted to a collection of some simple facts
from different fields which are needed in the book. Thus we introduce group actions,
equivariant maps, averaging and irreducible representations, in particular, Schur’s
Lemma and its consequences. This is all which will be needed from Representation
Theory.

From the point of view of Topology, one of our main tools will be that of extensions
of equivariant maps. There is a special extension for orthogonal maps. A full proof
is given in Theorem 7.1, using the Gram–Schmidt orthogonalization process. We
give also the definition and some basic properties of equivariant homotopy groups
of spheres, the groups where our degrees live. The last section in the chapter is
a review of some of the results from Analysis, in particular, Ordinary Differential
Equations, which will be needed in the last chapter. Thus we integrate a quick survey
of Bifurcation Theory, Floquet Theory (also expanded in Appendix B), Hamiltonian
systems and the special form of orbits arising in these problems (twisted orbits).

Hence, an expert in any of these fields should only glance at some of these results
in order to get acquainted with our notation, and look at some of the examples. For
a reader who is not familiar with these subjects, we hope that (s)he will find all
the necessary tools and acquire a working knowledge and a good intuition from this
chapter.

In this brief description of the first chapter, we left out the second section on the
fundamental cell. This construction, explained here for abelian groups, is the key to
most of the work on equivariant homotopy groups. It says that one may find a region
in Rn, made of sectorial pieces, such that, if one has any continuous function defined
on the cell with some symmetry properties on its boundary, then one may extend the
map to the whole space, using the action of the group. Think of a map defined on a
half-space and extended as an odd map or of a map defined on a sector in C of angle
(2π/n).

The second chapter is devoted to the definition and study of the basic properties
of the equivariant degree. Furthermore, we show how this degree may be extended
to infinite dimensions by approximations by finite dimensional maps, à la Leray–
Schauder, and how one may define the orthogonal degree. Next, we present abstract
applications to continuation and bifurcation problems and, finally, we study the usual
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operators on our degree: symmetry breaking, products and composition, operations
which will be studied more deeply in the next chapter and applied in the last chapter.
Of course, this chapter is the abstract core of the book.

Chapter 3 has a more topological flavor. In it we compute the equivariant homotopy
groups of spheres, in the particular case of abelian groups. The reason for this choice
is that we are able to give explicit constructions of the generators for the groups
with elementary arguments (although sometimes lengthy). Thus, anyone should be
able to follow the proofs. The basic idea is that of obstruction theory, that is, of
extension of maps. The program is to start from an equivariant function which is non-
zero on a sphere ∂B and see under which conditions one may construct an extension
inside the sphere, first to the fundamental cell where one has either an extension, if
the dimension is low enough, or a first obstruction given by some Brouwer degree,
or secondary obstructions which are not unique but may be completely determined.
Then, one uses the group action to extend the map to the whole ball B. Finally, the
homotopy group structure enables one to subtract a certain number of generators and
write down any map as a sum of multiples of explicit generators. These multiples will
be the essence of the degree.

In order to make this program a reality, we work stage by stage. (Here, we ask
the reader to allow us to use some technical arguments so that we may illustrate the
range of ideas developed in the book.) The first step is to consider a map which is �-
equivariant and non-zero on ∂BH and on the union of allBK , such thatH is a subgroup
of K , and where BH stands for the ball in the subspace fixed by H . In particular,
all points in BH \⋃BK have the same orbit type H , and extensions are completely
determined by the behavior on the boundary of the fundamental cell. Hence, if the
map is between the spaces VH and WH , the fundamental cell has dimension equal to
dim VH−dim �/H , and, if this difference is less than dim WH , one always has a non-
zero extension, while if one has equality one obtains a first obstruction: the degree of
the map on the boundary of the fundamental cell. This is the content of Theorem 1.1.
The next step is to give conditions under which this obstruction is independent of the
previous extensions. One obtains a well-defined extension degree.

The next step is to continue this extension process to non-zero �-maps defined
from

⋃
∂BH with dim �/H = k, which are also non-zero on

⋃
BK for K with

dim �/K < k. For this purpose the concept of complementing maps is quite important.
We show that essentially this set of maps behaves as a direct sum of maps characterized
by the extension degrees. The final step is to go on for all k’s which meet the hypothesis.
For instance, if V = Rk ×W , then one proves that

��
SV (S

W ) = �k−1 × Z× Z× · · · ,
with one Z for each orbit type H with dim �/H = k and �k−1 concerns only orbits
of dimension lower than k.

The next question is the following. Given a map, how does one compute its
decomposition into the direct sum? This is done in two different ways: either by
approximations by normal maps (a topological substitute to Sard’s lemma) or by
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looking at global Poincaré sections. One may relate the Z-components in the above
decomposition to ordinary degrees (see Corollary 3.1 in Chapter 3).

The fourth section is devoted to Borsuk–Ulam results, that is to the computation
of the ordinary degree of an equivariant map. The purpose of this section is to show
how the extension ideas can be used in this sort of computations.

The next section treats the case of maps from R×W into W , which is particularly
important when one breaks the S1-symmetry, for instance for an autonomous differ-
ential equation with unknown period by perturbing it by a (2π/p)-periodic field. We
compute then �0, in the above formula, and prove that now there are obstructions
for extensions to the faces of the fundamental cell and to the body of that cell. For
each H with �/H finite one has a classification of the secondary obstructions in a
group isomorphic to Z2 × �/H , with explicit generators according to the different
presentations of �/H .

The sixth section deals with the computation of the homotopy group of spheres
for �-orthogonal maps, proving that

��
⊥SV (S

V ) = Z× Z× · · · ,
with one Z for each orbit type, independent of its dimension. This is done via the
Lagrange multipliers already mentioned, and the reader will guess why the case of
�-equivariant maps with parameters, from Rk ×W onto W , is important here.

The last section of Chapter 3 deals with operations: suspension, products, compo-
sition and symmetry breaking. That is, what happens to the explicit generators under
one of these operations.

As we have already said this third chapter is more topologically inclined. A reader
more interested in applications should only look at the statements of the results, which
will be used in the last chapter, and see some of the examples.

However, we would like to make a few points. Our entire construction relies
on a single basic fact: a map from a sphere into a higher dimensional sphere has a
non-zero extension to the ball, while, if the dimensions are equal, one has a unique
“obstruction”, an integer, for extension (and other invariants if the dimension of the
range is lower). From this, with “elementary” but explicit arguments, and with no
algebraic machinery, we obtain surprising new results which may be understood by
any non-specialist. Of course, there is a price to be paid: our actions are linear and
the groups are abelian (the non-abelian case may be dealt with in a similar, but less
explicit way). On the other hand, our pedestrian approach stresses some new concepts,
like those of complementing maps, normal maps and global Poincaré sections, which
may be useful in a more abstract context. In short, independently of the reader’s
background, we believe that this chapter may be useful and interesting to anyone.

The last chapter is essentially devoted to applications, although the first section
states that any element in ��

SV (S
W ) is the �-degree of a map defined on a reasonable

�. Now, in order to be useful, a degree should be computable in some simple generic
cases, for instance for an isolated orbit or an isolated loop of orbits. For the case of an
isolated orbit, the natural hypothesis is to assume that 0 is a regular value. (We recall
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here our introductory remarks: one does not have to consider the nonlinear equation
under study, but a, hopefully, simpler equation where one may look at these generic
situations.) This leads to approximation by the linearization of the map at the orbit.
The simplest case is when one has a stationary solution, or, even better, a family of
such solutions, leading to bifurcation. In this case, the �-index is given by the sign of
determinants of the linearization on the fixed point subspace of � and on the subspaces
where � acts as Z2, giving conditions for period doubling. The next case is when the
isolated orbit has an orbit type which is not the full group. For this sort of solution,
we obtain an abstract result (Theorem 2.4) and the �-index is given in terms of the
spectrum of the linearization, à la Leray–Schauder, but with many of these indices.
This abstract result is applied to autonomous differential equations of unknown period
or of fixed period but with an extra parameter, or with a first integral. One may then
perturb this autonomous differential equation with a time-periodic function and obtain
subharmonics or phase locking phenomena. If the autonomous differential equation
has also a geometrical symmetry, then one obtains twisted orbits.

We are phrasing this part of the introduction in a way which will be easily recog-
nizable by a reader familiar with low dimensional dynamical systems. However, each
specific behavior will be explained in that chapter.

A similar situation occurs for orthogonal maps. In that case the orthogonal index
has components which are of the previous type (i.e., leading to period doubling) and
a new type given by a full Morse index, i.e., the number of negative eigenvalues of a
piece of the linearization. This is applied to Hamiltonian systems of different types,
where variational methods give also invariants depending on Morse numbers. In the
present case it is the orthogonality which brings in this invariant.

In order to show how to apply our degree, we give the complete study of two spring-
pendulum systems. We hope that this example makes the point of the usefulness of
the equivariant degree approach and we challenge the reader to guess (a priori) the
type of solution we obtain.

The final section deals with the index of a loop of stationary solutions, with ap-
plications to Hopf bifurcation, systems with first integrals and so on. It is important
to point out that all our examples (except a very simple retarded differential equation)
come from Ordinary Differential Equations. The main reason for this choice is to avoid
technicalities. It should be clear to anyone interested in Partial Differential Equations,
for instance, how to adapt these result to many situations. For example, replace Fourier
series by eigenfunctions expansions or other Galerkin-type approximations. Another
reason for this choice is that the reader may easily see how the degree arguments are
used to obtain information on the solutions of a nonlinear equation in an integrated
way, that is, with the same tool in different situations (and not with ad hoc degrees),
and see what happens if one modifies the conditions of the problem, as in symmetry
breaking. Here, we would like to stress the Hopf property, i.e., that, if the degree is
zero, then it is likely that one may perturb the problem (in the sense of extensions of
maps) so that the new problem has no solutions. This property and the global picture
which enables one to relate two different solutions or two different problems, is one of
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the main conceptual contributions of degree theory. Of course, we are not computing
the actual solutions (nothing is for free), although it would be interesting to adapt the
homotopy numerical continuation methods to equivariant problems.

Each chapter has a final section on bibliographical remarks. We have tried to
indicate some other approaches to the subject matter of this book. However, it is clear
that most of this book is based on the authors’ research in the last 15 years. It is also
clear that there is still much to do. For instance, perform similar computations for
actions of non-abelian groups with its endless list of applications. Similarly, there are
more or less straightforward extensions (we have mentioned several times the word
k-set contraction) or applications to P.D.E.’s (essentially some technical problems)
and many more. We hope that this book will serve as an incentive for the reader to
follow up in that direction.

A last technical point: theorems, lemmas, remarks and examples are listed inde-
pendently. For instance Theorem 5.2 refers to the second theorem in Section 5 of the
chapter. When referring to a result from another chapter, this is done explicitly: for
instance, Theorem 5.2 of Chapter 1. On the other hand, our notations are standard,
but we would like to emphasize a particular one (maybe not too familiar): H < K

means that H is a subgroup of K (and could be K itself).





Chapter 1

Preliminaries

As mentioned in the Introduction, the main purpose of this chapter is to collect some of
the most useful definitions and properties of actions of compact Lie groups on Banach
spaces, as well as the elements of homotopy theory and some facts about operators
which will be most frequently used in this book. Thus, the reader will find here almost
all the results needed in this text. The expert will have only to glance at the definitions
in order to get acquainted with our notation.

1.1 Group actions

In the whole book � will stand for a compact Lie group (the reader will see below
which properties of a Lie group are used here).

Definition 1.1. A Banach space E is a �-space or a representation of the group �,
if there is a homeomorphism ρ of � into GL(E), the general linear group of (linear)
isomorphisms over E. In this case, we say that � acts linearly on E, via the action
ρ(γ )x, such that

ρ(γ γ ′) = ρ(γ )ρ(γ ′),
ρ(e) = Id .

When no confusion is possible, we shall denote the action simply by γ .

Example 1.1. Let E = Rn × Rm and � = Z2 = {−I, I } with

ρ(−I )(X, Y ) = (−X, Y ). (1.1)

Example 1.2. If E = C and � = Zm = {0, 1, . . . , m − 1} is the additive group of
the integers modulo m, let

ρ(k)z = e2πikp/mz, where p is a fixed integer. (1.2)

Example 1.3. If E = C and � = S1 = R/2π = {ϕ ∈ [0, 2π)}, then one may have

ρ(ϕ)z = einϕz (1.3)

for some integer n.
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Example 1.4. If E = C and � = T n×Zm1 ×· · ·×Zms = {(ϕ1, . . . , ϕn, k1, . . . , ks)

with ϕj ∈ [0, 2π), 0 ≤ kj < mj }, then one may have

ρ(γ )z = exp i
( n∑

1

njϕj + 2π
s∑
1

kj lj /mj

)
z, (1.4)

where nj and lj are given integers.

Remark 1.1. We shall see below that this is the general case of an irreducible rep-
resentation of any compact abelian Lie group. It is easy to see that if Zm acts on C,
then ρ(m) = 1 = ρ(1)m and ρ(1) must have the form given in (1.2). Since the same
argument applies to S1 acting on C, then any � given by an abelian product as in (1.4),
must act on C as in that formula.

On the other hand if Zm acts non-trivially on R, then m is even and ρ(1) = −1,
while S1 may act only trivially on R, i.e., ρ(ϕ) = ρ(ϕ/N)N , take N so large that the
continuity of ρ implies that ρ(ϕ/N), being close to 1, must be positive. Hence, ρ(ϕ)
is always a positive number. Since ρ(2π) = 1 = ρ(2π/N)N one gets ρ(2π/N) = 1
and ρ(2πp/q) = ρ(2π/q)p = 1 and by denseness of Q in R, one obtains ρ(ϕ) ≡ 1.
For convenience in the notation, we shall very often use (1.4) to denote also the action
of � on R, with the convention that, in that case, nj = 0, lj is a multiple of mj/2 if
mj is even, or lj = 0 if mj is odd.

Example 1.5. Let E = C0
2π (R

N) be the space of continuous, 2π -periodic functions
on RN with the uniform convergence norm. The group � = S1 may act on E as

ρ(ϕ)X(t) = X(t + ϕ)

i.e., as the time shift.

One may also set this action in terms of Fourier series by writing

X(t) =
∞∑
−∞

Xne
int ,

with Xn ∈ CN,X−n = X̄n (since X(t) ∈ RN ). For the Fourier coefficients Xn one
has the equivalent action:

ρ(ϕ)Xn = einϕXn. (1.5)

Definition 1.2. Let E be a �-space and x ∈ E be given. The isotropy subgroup of �
at x is the set �x = {γ ∈ � : γ x = x}, which is a closed subgroup of �.

Definition 1.3. The action of � on E is said to be free if �x = {e} for any x ∈ E\{0}.
The action is semi-free if �x = {e} or � for any x ∈ E.
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For instance, in Example 1.1, �(X,Y ) = Z2 if and only if X = 0 and the action
is semi-free. In Example 1.2, the action is free only if p and m are relatively prime
(denoted as (p : m) = 1), while if p/m = q/n with (q : n) = 1, then �z = Zm/n =
{k = sn, s = 0, . . . , m/n− 1}. In Example 1.3, one has �z = ZN = {ϕ = k/N, k =
0, . . . , N − 1}. The case of Example 1.4 will be given below in Lemma 1.1.

Definition 1.4. The element x ∈ E is called a fixed point of � if �x = �. The
subspace of fixed points of � in E is denoted by E� . If H is a subgroup of � then
EH = {x ∈ E : γ x = x for any γ ∈ H } is a closed linear subspace of E.

Notation 1.1. If H is a subgroup of K , we shall write H < K . Note that if H < K ,
then EK ⊂ EH .

Definition 1.5. If H < �, the normalizer N(H) of H is

N(H) = {γ ∈ � : γ−1Hγ ⊂ H }
and the Weyl group W(H) of H is

W(H) = N(H)/H.

Note that if � is abelian, then N(H) = �.

Also, if x ∈ EH , then γ x ∈ EH for any γ ∈ N(H), since γ1γ x = γ γ2x = γ x

for some γ1 and γ2 in H . Hence γ x is fixed by the action of H . Furthermore, if
H = �x for some x and γ x ∈ EH for some γ , then it is easy to see that γ belongs to
N(H), i.e., N(H) is the largest group which leaves EH invariant. Moreover, if � is
abelian, then N(H) = � and EH is �-invariant.

Let us now consider the case of Example 1.4.

Lemma 1.1. Let � = T n × Zm1 × · · · × Zms act on C via

exp i(〈N,/〉 + 2π〈K,L/M〉),
where 〈N,/〉 = ∑n

1 njϕj and 〈K,L/M〉 = ∑s
1 kj lj /mj . If lj /mj = l̃j /m̃j , with l̃j

and m̃j relatively prime, let m̃ be the least common multiple of the m̃j ’s (l.c.m) and
set |N | =∑n

1 |nj |. Then:

(a) If L �= 0, there is K0 such that 〈K0, L/M〉 ≡ 1/m̃, [2π ], and any other K gives
an action of the form q/m̃ for some q ∈ {0, . . . , m̃− 1}. In particular, if N = 0
and H is the isotropy subgroup, then W(H) ∼= Zm̃.

(b) If N �= 0, the congruence 〈N,/〉 ≡ 0, [2π ], gives |N | hyperplanes in T n. In
particular, if L = 0, then W(H) ∼= S1 = T/Z|N |.

(c) If L �= 0 and N �= 0, then W(H) ∼= S1 = T/Zm̃|N |.



4 1 Preliminaries

Proof. (a) If s = 1, then kl̃/m̃ is an integer if and only if k is a multiple of m̃ and
e2πikl̃/m̃ gives m̃ distinct roots of unity, hence the result is clear.

If s = 2, from the preceding case, one has kj l̃j /m̃j ≡ k̃j /m̃j , with 0 ≤ k̃j < m̃j

and one has to consider k̃1/m̃1 + k̃2/m̃2. Now, m̃ = p1m̃1 = p2m̃2, with p1 and
p2 relatively prime by the definition of a l.c.m. Thus, there are integers α1, α2 such
that α1p1 + α2p2 = 1, where α1 and α2 have opposite signs. Assume that α1 > 0.
Divide α1 by m̃1 and get α1 = a1m̃1 + k0

1 , with a1 ≥ 0 and 0 ≤ k0
1 < m̃1. Likewise,

−α2 = (a2 + 1)m̃2 − k0
2 , with a2 ≥ 0 and 0 ≤ k0

2 < m̃2. Then, p1k
0
1 + p2k

0
2 =

α1p1 + α2p2 + (a2 + 1− a1)m̃, defining K0 in this case. For any other pair (k̃1, k̃2),
we have k̃1/m̃1 + k̃2/m̃2 = (p1k̃1 + p2k̃2)/m̃ ≡ (p1k̃1 + p2k̃2)(k

0
1/m̃1 + k0

2/m̃2),
proving the result for s = 2.

For the general case, assume the result true for s − 1. Let m̂ be the l.c.m. of
(m̃1, . . . m̃s−1) and m̃ be the l.c.m. of m̂ and m̃s . We have

s−1∑
1

kj l̃j /m̃j + kl̃/m̃s ≡ q0/m̂+ kl̃/m̃s,

where q0 is given by the induction hypothesis in such a way that

s−1∑
1

k0
j l̃j /m̃j ≡ 1/m̂ and kj = q0k

0
j .

One is then reduced to the two “modes” case.
(b) For the action of T n, one has that 〈N,/〉 spans an interval of length 2π |N |.

The congruence 〈N,/〉 ≡ 0, [2π ], gives |N | parallel hyperplanes in T n. One may
change ϕj to 2π − ϕj whenever Nj is negative, defining an isomorphism of T n for
which all Nj ’s are positive. Then, 〈N,/〉 = |N |ϕ, with 0 ≤ ϕ < 2π/|N |, will give
that, if L = 0, then H ∼= T n−1×Z|N |×Zm1×· · ·×Zms with W(H) ∼= S1 = T/Z|N |.

(c) In general, one may write 〈N,/〉 + 2π〈K,L/M〉 as |N |ϕ + 2πq/m̃, with
0 ≤ q < m̃, ϕ in [0, 2π/|N |). The relation |N |ϕ + 2πq/m̃ = 2kπ will give
ϕ = 〈N,/〉/|N | = 2kπ/|N | − 2πq/m̃|N | which represents m̃|N | different par-
allel hyperplanes in T n. Thus, H ∼= T n−1 × Zm̃|N | and W(H) ∼= S1 = T/Zm̃|N |.

� 

Definition 1.6. An isotropy subgroup H is maximal if H is not contained in a proper
isotropy subgroup of �.

Lemma 1.2 (Golubitsky). If H is a maximal isotropy subgroup of � and E� = {0},
then W(H) acts freely on EH \{0}.

Proof. In fact, if γ x = x for some x �= 0 in EH and some γ ∈ N(H)/H , then
�x ⊃ H ∪ {γ }. Hence, from the maximality of H , one has �x = �, but then
x ∈ E� = {0}. � 
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Remark 1.2. The groups which act freely on Euclidean spaces have been completely
classified: a reduced number of finite groups, S1 and N(S1) in S3 and S3 (see [Br]
p. 153). For an abelian group with an action given by (1.4), one has H = {e}, i.e.,
W(H) = �, only if either n = 0, s = 1 and the action of Zm is given by e2πikp/m,
with p and m relatively prime (hence m̃ = m), or n = 1, s = 0, |N | = 1, with an
action of S1 given by eiϕ (see Lemma 1.1).

Definition 1.7. The orbit of x under � is the set �(x) = {γ x ∈ E : γ ∈ �}.
It is easy to see that �(x) is homeomorphic to �/�x , that �γx = γ�xγ

−1 (in
particular �γx = �x if � is abelian) and that the orbits form a partition of E. The set
E/� is the orbit space of E with respect to �.

Definition 1.8. Two points x and y have the same orbit type H if there are γ0 and γ1
such that H = γ−1

0 �xγ0 = γ−1
1 �yγ1.

If E is finite dimensional, then it is clear that there are only a finite number of orbit
types.

Definition 1.9. The set of isotropy subgroups for the action of � on E will be denoted
by Iso(E).

1.2 The fundamental cell lemma

In this section we shall assume that one has a finite dimensional representation V of
the abelian group � = T n × Zm1 × · · · × Zms in such a way that any X in V is
written as X = ∑

xj ej , where xj ∈ C if W(�ej )
∼= Zp or S1, p > 2, or xj ∈ R if

W(�ej ) = {e} or Z2. The action of � on the elements of the basis is given by

γ ej = exp i(〈Nj ,/〉 + 2π〈K,Lj/M〉)ej ,
as in (1.4) and Remark 1.1, with

Nj = (n
j
1, . . . , n

j
n)

T and Lj/M = (l
j
1/m1, . . . , l

j
s /ms)

T .

Then γX = ∑
xjγ ej and γX = X gives γ ej = ej if xj �= 0. Hence, �X = ⋂

�ej ,
where the intersection is over those j ’s for which xj �= 0. Thus, W(�ej ) < W(�X).

Lemma 2.1. V T n = {X ∈ V : W(�X) < ∞}.

Proof. If W(�X) is finite, then W(�ej ) is a finite group and �ej contains T n. In this

case, �X contains also T n, that is, X belongs to V T n
. Conversely, if X is fixed by T n,

then W(�X) is a factor of Zm1 × · · · × Zms and hence is finite. � 

Denote by Hj = �ej and define H̃j−1 = H1 ∩ · · · ∩ Hj−1, H0 = �. Then Hj−1

acts on the space Vj generated by ej (Vj ∼= R or C), with isotropy H̃j−1∩Hj = H̃j , if
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xj �= 0, and H̃j−1/H̃j acts freely on Vj\{0}. Then, from Lemma 1.1, this Weyl group
is isomorphic either to S1, to {e}, or to Zp, p ≥ 2. Let kj be the cardinality of this
group: kj = |H̃j−1/H̃j |. If the group is S1, then kj = ∞, while kj = 1 means that
H̃j−1 = H̃j . If kj = 2 and Vj is complex, then Vj splits into two real representations
of H̃j−1/H̃j

∼= Z2, while if Vj is real, then kj = 1 or 2.
Consider C = {X ∈ V : |xj | = 1 for any j}, a torus in V . Let H = H1 ∩

H2 ∩ · · · ∩Hm+r be the isotropy type of C, where there are m of the Vj ’ s which are
complex and r which are real (hence dim V = 2m + r). Let k be the number of j ’s
with kj = ∞. Let

6 = {X ∈ C : 0 ≤ Arg xj < 2π/kj for all j = 1, . . . , m+ r}.
That is, if kj = 1 there is no restriction on xj (in C or R), while, if kj = ∞, then

xj ∈ R+ and, if xj ∈ R and kj = 2, then xj is positive. Let

6V = {X ∈ V : 0 ≤ Arg xj < 2π/kj }.
Then 6V is a cone of dimension equal to dim V − k. The set 6V will be called the
fundamental cell. It will enable us to compute all the equivariant homotopy extensions
and to classify their classes in Chapter 3.

Lemma 2.2 (Fundamental cell lemma). The images of 6 under �/H cover properly
C (i.e., in a 1-1 fashion).

Proof. The proof will be by induction on m+ r . If there is only one coordinate, then
�/H1 acts freely on V1\{0}. If this group is S1, then the image of e1 under it will
generate C, while if this group is Zk1 , k1 ≥ 1, then one has to cut C into k1 equal
pieces in order to generate C.

If the result is true for n − 1, let C = Cn−1 × {|xn| = 1}, 6 = 6n−1 × {0 ≤
Arg xn < 2π/kn} and write �/H = (�/H̃n−1)(H̃n−1/H), recalling that these groups
are abelian. By the induction hypothesis, the images of 6n−1 under �/H̃n−1 cover
properly Cn−1. Furthermore, from the case n = 1, the set {xn : |xn| = 1} is covered
properly by the images of {xn : 0 ≤ Arg xn < 2π/kn} under H̃n−1/H , a group which
fixes all points of Cn−1. Hence, if (Xn−1, xn) is in C, there are γn−1 in �/H̃n−1 and
γn in H̃n−1/H such that Xn−1 = γn−1X

0
n−1, with X0

n−1 in Cn−1, γ−1
n−1xn = γnx

0
n ,

with 0 ≤ Arg x0
n < 2π/kn and γnXn−1 = Xn−1.

Then (Xn−1, xn) = (γn−1X
0
n−1, γn−1γ

−1
n−1xn) = γn−1γn(X

0
n−1, x

0
n), i.e., C is

covered by the images of 6 under �/H .
If (Xn−1, xn) = γ1(X

1, x1) = γ2(X
2, x2), with (Xj , xj ) in 6 and γj in �/H ,

then (X1, x1) = γ−1
1 γ2(X

2, x2). Thus, X1 = γX2, x1 = γ x2. By the induction
hypothesis, X1 = X2 and γ belongs to H̃n−1, but then x1 = x2 and γ belongs to H .

� 

This fundamental cell lemma will be the key tool in computing the homotopy
groups of Chapter 3.
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Example 2.1. Let S1 act on ej via enj ϕ , with nj > 0. Then, Hj = {ϕ = 2πk/nj , k =
0, . . . , nj − 1} ∼= Znj . Let ñj = (n1 : · · · : nj ) be the largest common divisor (l.c.d.)

of n1, . . . , nj , then H̃j = {ϕ = 2πk/ñj , k = 0, . . . , ñj − 1} ∼= Zñj . Thus, k1 = ∞,
kj = ñj−1/ñj .

Note that, since�/H = (�/H̃1)×(H̃1/H̃2)×· · ·×(H̃m+r−1/H) if dim �/H = k,
then there are exactly k coordinates (which have to be complex) with kj = ∞. In
fact, since H̃j is the isotropy subgroup for the action of H̃j−1 on xj , each factor, by
Lemma 1.1, is at most one-dimensional.

Lemma 2.3. Under the above circumstances, one may reorder the coordinates in such
a way that kj = ∞ for j = 1, . . . , k and kj < ∞ for j > k.

Proof. Assuming k > 0, there is at least one coordinate with dim �/Hj = 1: if
not, Hj > T n for all j ’s and hence H > T n with |�/H | < ∞. Denote by z1 this
coordinate, then �/H = (�/H1)(H1/H), with dim H1/H = k − 1. If H1/H is a
finite group, i.e., k = 1, then one has a decomposition into finite groups with k̃j < ∞
for j > 1. On the other hand, if k > 1, then, by repeating the above argument, one
has a coordinate z2 with H1/H̃2 of dimension 1. � 

The following result will be used very often in the book.

Lemma 2.4. Let T n act on V = Cm via exp i〈Nj ,/〉, j = 1, . . . , m. Let A be the
m× n matrix with Nj as its j -th row. Then:

(a) dim �/H = k if and only if A has rank k.

(b) Assuming kj = ∞ for j = 1, . . . , k and that the k× k matrix B with Bij = nij ,

1 ≤ i, j ≤ k, is invertible, then one may write A/ = (
B
D

)
8̃, with 8̃ = /̃+9/̂,

where /T = (/̃T , /̂T ) and /̃T = (ϕ1, . . . , ϕk).

(c) With the same hypothesis, there is an action of T k on Cm, generated by 8T =
(81, . . . , 8k) such that 〈Nj ,/〉 = 〈Mj,8〉, with Mj = 〈mj

1, . . . , m
j
k〉 such

thatmj
l = δljMj for j = 1, . . . , k, i.e., the action of T k on the first k coordinates

reduces to eiMj8j .

Proof. (a) The relation 〈Nj ,/〉 ≡ 0, [2π ] gives parallel hyperplanes in Rn with
normal Nj . Thus, dim H = n− k is equivalent to dim ker A = n− k.

(b) Write A =
(
B C

D E

)
and let 9 = B−1C. Then, A/ = 0 means /̃ = −9/̂ and

(E −D9)/̂ = 0. Since dim ker A = n− k, one has E = D9, ker A = 〈−9/̂, /̂〉
and A/ has the form given in the lemma.

(c) Let M be a k × k diagonal matrix such that B−1M has integer entries. Define
8 = M−1B8̃. Then, A/ = (

B
D

)
B−1M8 = (

M8
DB−1M8

)
gives the action of T k , once

one has noticed that the entries of DB−1M are integers. � 
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Another simple but useful observation is the following

Lemma 2.5. Let T n act on V as before. Then there is a morphism S1 → T n given
by ϕj = Mjϕ, Mj integers, such that 〈Nj ,M〉 �≡ 0, [2π ], unless Nj = 0 and

V S1 = V T n
. The vector M is (M1, . . . ,Mn)

T .

Proof. As before, the congruences 〈Nj ,/〉 ≡ 0, [2π ] give families of hyperplanes
with normal Nj , if this vector is nonzero. From the denseness of Q in R it is clear
that one may find integers (M1, . . . ,Mn) such that the direction {ϕj = Mjϕ} is not

on any of the hyperplanes 〈Nj ,/〉 = 0, for j = 1, . . . , m. Thus,
∑

n
j
l Ml �= 0 and,

being an integer, this number cannot be another multiple of 2π , unless Nj = 0 and
the corresponding coordinate is in V T n

. � 

Definition 2.1. Let K be a subgroup of � (not necessarily an isotropy subgroup) and
let H = ⋂

�ej ⊃ K , where {ej } span VK . We shall call H the isotropy subgroup of
VK . Note that K < �ej and that VH = VK .

A final technical result is the following:

Lemma 2.6. Let H be an isotropy subgroup with dim W(H) = k. Then there are
two isotropy subgroups H and H̄ , both with Weyl group of dimension k, such that
H < H < H̄ . The group H̄ is maximal among such subgroups and H is the unique
minimal such subgroup. H will be called the torus part of H .

Proof. Let H̄ be such a maximal element, for example given by H1 ∩ · · · ∩ Hk

as in Lemma 2.3. Then, �/H = (�/H̄ )(H̄ /H) and H̄ /H is a finite group. If
H = T n−k×Zn1 ×· · ·×Znl , then, from Lemma 2.1 applied to H̄ , one has that V T n−k

is the linear space of all points with W(Hx) finite. If H is the isotropy subgroup of
V T n−k

, then, since VH is contained in V T n−k
, one has that H is a subgroup of H and

contains T n−k (from Definition 2.1) and is clearly unique. � 

Remark 2.1. If A is the matrix generated by the action of T n on V and AH its
restriction onVH (as in Lemma 2.4), thenAH andAH have rank k. Furthermore, from
Lemma 2.4 (b), AH/ = (

B
DH

)
8̃ with 8̃ = /̃ + 9/̂ and the torus part corresponds

to 8̃ ≡ 0. It is easy to see that on VH one has exactly n
j
i =

∑k
l=1 n

j
l λ

l
i for i > k and

j = 1, . . . , dim VH , where λli , l = 1, . . . , k, i = k+ 1, . . . , n are the elements of the
k × (n− k) matrix 9.

1.3 Equivariant maps

A look at the heading of this book tells us that perhaps it is time to get started with
some formal definitions.
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Definition 3.1. Let E be a �-space. A subset � of E is said to be �-invariant if for
any x in �, the orbit �(x) is contained in �.

Definition 3.2. IfB andE are�-spaces, with actions denoted by γ and γ̃ respectively,
then a map f : B → E is said to be �-equivariant if

f (γ x) = γ̃ f (x)

for all x in B.

Definition 3.3. Let � act trivially on E. A map f : B → E is said to be �-invariant
if f (γ x) = f (x), for all x ∈ B.

Example 3.1. Let Z2 act on B = E as −I , then an odd map, f (−x) = −f (x), is
Z2-equivariant. On the other hand, an even map, f (−x) = f (x), with a trivial action
on E is �-invariant. In general, if B = BZ2 ⊕ B1, E = EZ2 ⊕ E1, with an action of
Z2 as −I on B1 and E1, then an equivariant map f (x0, x1) = (f0, f1)(x0, x1), will
have the property that f0(x0,−x1) = f0(x0, x1) and f1(x0,−x1) = −f1(x0, x1). In
particular, f1(x0, 0) = 0, that is, f maps BZ2 into EZ2 . We shall see below that this
is a general property of equivariant maps.

Example 3.2. Let C0
2π (R

N), respectively C1
2π (R

N), be the space of continuous, re-
spectively differentiable, 2π -periodic functions X(t) in RN , with the action
ρ(ϕ)X(t) = X(t + ϕ). Let f (X) be a continuous vector field on RN , independent
of t . Then

F(X) = dX

dt
− f (X)

is S1-equivariant.
In terms of Fourier series, X(t) =∑

Xne
int with X−n = X̄n, one has the equiv-

alent formulation

inXn − fn(X0, X1, . . . ), n = 0, 1, 2, . . . ,

with fn(X0, X1, . . . ) = 1
2π

∫ 2π
0 f (X(t))e−int dt . In this case the action of S1 on

Xn is given by einϕXn, and it is an easy exercise of change of variables to see that
fn(X0, e

iϕX1, e
i2ϕX2, . . . ) = einϕfn(X0, X1, X2, . . . ), i.e., that the map F is equiv-

ariant.
Note that the isotropy group of Xn is the set H = {ϕ = 2kπ/n, k = 0, . . . ,

n− 1} ∼= Zn and that VH = {Xm, m = 0 or a multiple of n}.
Example 3.3. Let �0 be a group acting on RN and let f (γ0X) = γ0f (X) be a �0-
equivariant vector field.

If � = S1 × �0 one may consider the �-equivariant map

F(X) = dX

dt
− f (X)
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on the space of 2π -periodic functions in RN . IfH is the isotropy subgroup of a Fourier
component Xn, then the space VH of “twisted orbits” has an interesting description
given in the last section of this chapter.

We are going now to describe some of the simplest consequences of the equivari-
ance.

Property 3.1 (Orbits of zeros). Iff (γ x) = γ̃ f (x) andf (x0) = 0, thenf (γ x0) = 0,
for all γ in �.

Property 3.2 (Stratification of the space). If f : B → E is �-equivariant, then if
H < �, f maps BH into EH . The map f H ≡ f |BH is N(H)-equivariant.

Proof. For x in BH and γ in H , one has f (γ x) = f (x) = γ̃ f (x). Hence, f (x)
is fixed by H , i.e., it belongs to EH . Now, since N(H) is the largest group which
keeps BH invariant, this implies that γ x is in BH for γ in N(H) and x in BH , and
the remaining part of the statement follows. � 

Note that, in particular, if � is abelian, then f H is �-equivariant. This simple
property implies that one may try to study f by looking for zeros with a given sym-
metry (for example, radial solutions). It is then convenient to reduce the study to the
smallest possible BH , i.e., the largest H , in particular to maximal isotropy subgroups,
where one knows that W(H) acts freely on BH and which are completely classified.
If, furthermore, one decomposes BH into irreducible representations of W(H) (see
Section 5), one may determine, not only the linear terms, but also higher order terms
in the Taylor series expansion, if the number of representations is small. These ideas
have been used extensively, in particular in the physics literature, in order to give
normal form expansions. The information obtained this way is very precise but, from
the requirements of genericity and low dimension, it does not allow for a complete
study of stability, symmetry breaking or period doubling, when one has to consider
perturbations with a symmetry different from the one for the given solutions. Hence,
in these cases, it is convenient not to fix a priori the symmetry of the solution and to
treat the complete equivariant problem. Then one will have a more general vision, but
probably less precise. This is the point of view adopted in this book.

Property 3.3 (Linearization). If f (γ x) = γ̃ f (x) and f is C1 at x0, with �x0 = H ,
then

Df (γ x0)γ = γ̃ Df (x0),

for all γ in �. In particular, Df (x0) is H -equivariant.

Proof. Since f (γ x0 + γ x)− f (γ x0) = γ̃ (f (x0 + x)− f (x0)) = γ̃ Df (x0)x + · · · ,
one has that f is linearizable at γ x0 and the above formula holds. � 

This implies, if B = E = RN , that Df (γ x0) is conjugate to Df (x0) with the
same determinant.
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On the other hand, if the dimension of the orbit of x0 is positive, i.e., if dim �/H =
k with H = �x0 , then one may choose a differentiable path γ (t), with γ (0) =
I, γ ′(0) �= 0, such that f (γ (t)x0) = f (x0). Differentiating with respect to t and
evaluating at t = 0, one has

Df (x0)γ
′(0)x0 = 0.

Hence, γ ′(0)x0 is in the kernel of Df (x0), for each direction γ ′(0) such that
γ ′(0)x0 �= 0. Since the orbit is a differentiable manifold, this will be true for any
direction tangent to the orbit. Hence one has at least a k-dimensional kernel. For
example, if � is abelian and T n acts, as in Example 1.4, by exp i〈Nj ,/〉, then one
may take γ (t) = (0, . . . , t, 0, . . . ) i.e., ϕj = 0 except ϕl = t . In this case, γ ′(0)x0 is
i(n1

l x1, . . . , n
m
l xm)

T .
A property which will be used frequently in this book is the following:

Property 3.4 (Diagonal structure). If B = BH ⊕ B⊥, E = EH ⊕ E⊥ with B⊥ and
E⊥ being N(H)-topological complements and f = f H ⊕ f⊥, then at any xH in BH

one has

Df (xH ) =
(
DHfH 0

0 D⊥f⊥

)
,

where x = xH⊕x⊥ andDH , D⊥ stand for differentials with respect to these variables.

Proof. One has that

Df (xH ) =
(
DHfH D⊥f H

DHf⊥ D⊥f⊥

)
.

From the fact that f⊥(xH ) = 0, one has DHf⊥(xH ) = 0. Since the decomposition
of B and E is N(H)-invariant (hence H -invariant), the action of H on these spaces
is diagonal. The H -equivariance of Df (xH ) implies that D⊥f⊥γ = γ̃ D⊥f⊥, and
D⊥f H = D⊥f Hγ for any γ in H . Let A denote D⊥f H , then, since Aγ = A,
one has that ker A is a closed H -invariant subspace of B⊥. Assume there is x⊥ with
Ax⊥ �= 0. Let V be the subspace of B⊥ generated by x⊥ and ker A. Defining z by the
relation γ x⊥ = x⊥ + z(γ ), one has that z is in ker A and for any x = ax⊥ ⊕ y in V

(i.e., y belongs to ker A) one gets γ x = ax⊥ + az(γ )+ y, proving that V is also an
H -invariant subspace, with ker A as a one-codimensional subspace. This implies (see
any book on Functional Analysis) that there is a continuous projection P from V onto
ker A. As a matter of fact, we shall prove below (in Lemma 4.4.) that one may take P

to be equivariant. Then, if x̃⊥ = (I−P)x⊥, one has Ax̃⊥ = Ax⊥ (since Px⊥ belongs
to ker A) and γ x̃⊥ = (I − P)γ x⊥, from the equivariance of P , and γ x̃⊥ = k(γ )x̃⊥
since (I−P)V is one-dimensional. Applying A to this relation, one obtains k(γ ) = 1
and x̃⊥ is fixed by H , i.e., x̃⊥ belongs to BH ∩ B⊥ = {0}, a contradiction. Hence
A = 0. � 

For the last property of this section, we shall assume that E is a �-Hilbert space
and the action of � is via orthogonal operators, i.e., γ T γ = I (in finite dimensional
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spaces one may always redefine the scalar product in such a way that the representation
turns out to be orthogonal: see below, Lemma 5.1).

Property 3.5 (Gradients). If J : E → R is aC1, �-invariant functional, then f (x) =
∇J (x) is equivariant.

Proof. Since J (γ x) = J (x), one has, from Property 3.3, that DJ(γ x)γ = DJ(x),
since the action γ̃ on R is trivial. But,DJ(x) = ∇J (x)T , hence∇J (x) = γDJT (γ x),
giving the result. � 

Remark 3.1. If � has positive dimension and one takes a path γ (t) with γ (0) = I ,
then, differentiating the identity J (γ (t)x) = J (x), one obtains

∇J (x) · γ̇ (0)x = 0,

that is γ̇ (0)x is orthogonal to the field ∇J (x) = f (x). If one looks for critical points
of J , i.e., such that ∇J (x) = 0, this orthogonality may be regarded as a reduction
in the number of “free” equations. From the analytical point of view, one may use
some analogue of the Implicit Function Theorem and reduce the number of variables.
Or, one may use, as in conditioned variational problems, a “Lagrange multiplier”, i.e.,
one may add a new variable µ and look for zeros of the equation

f (x)+ µγ̇ (0)x = 0.

In fact, if f (x) = 0, then µ = 0 gives a solution of the above equation. Con-
versely, if (µ, x) is a solution, then by taking the scalar product with γ̇ (0)x, one has
µ‖γ̇ (0)x‖2 = 0, hence f (x) = 0 and µγ̇ (0)x = 0, in particular µ = 0 if γ̇ (0)x �= 0.

This argument can be repeated for each subgroup γ (t) and one obtains γ̇j (0) for
j = 1, . . . , dim �. Considering the equation

f (x)+
∑

µj γ̇j (0)x = 0,

one obtains a problem with several parameters. A solution of this problem will give
that

(a) f (x) = 0 and (b)
∑

µj γ̇j (0)x = 0.

One will conclude that µj = 0 if γ̇j (0)x are linearly independent. This will depend on
the isotropy subgroup of x. This point of view will be taken when studying orthogonal
maps (see § 7).

1.4 Averaging

At this stage the reader may be puzzled why we insist on working with compact Lie
groups. As a matter of fact, up to now, the compactness of the Lie group � was not
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used in our considerations and seems to bear only a decorative aspect in the whole
business. Almost the same can be said about linear actions. Now, the consistency of
these two features namely, compactness of � and linearity of the actions, becomes
evident when you realize that, under these two conditions, a powerful instrument is
at hand. Precisely, the existence of an integration on �, the Haar integral, such that∫
�
dγ = 1, which is �-invariant on the class of continuous real-valued functions g on

�, under both left and right actions, i.e.,∫
�

g(γ ′−1γ ) dγ =
∫
�

g(γ ) dγ =
∫
�

g(γ γ ′) dγ.

The first important consequence of this fact is that, providedE is a Banach�-space,
one may define a new norm, say

|‖x‖| =
∫
�

‖γ x‖ dγ,

satisfying, |‖γ ′x‖| = |‖x‖|, i.e., the action of � is an isometry.
This allows us to assume in the rest of the book that the action is an isometry. In

particular, the ball
BR = {x : ‖x‖ < R} is �-invariant.

Using Pettis integrals and standard averaging, one has the following remarkable
result.

Lemma 4.1 (Gleason’s Lemma). If B and E are �-spaces and f (x) is a continuous
map from B into E, then

f̃ (x) ≡
∫
�

f (γ x) dγ̃ is �-invariant

and

f̂ (x) ≡
∫
�

γ̃−1f (γ x) dγ̃ is �-equivariant.

Furthermore, if f is compact, then so are f̃ and f̂ .

Proof. From the change of variables γ γ ′, one has

f̃ (γ ′x) =
∫
�

f (γ γ ′x) dγ̃ =
∫
�

f (γ ′′x) dγ ′′ = f (x).

Also, f̂ (γ ′x) = ∫
�
γ̃−1f (γ γ ′x) dγ̃ = γ̃ ′

∫
�
(γ̃ γ̃ ′)−1f (γ γ ′x) dγ̃ = γ̃ ′f̂ (x),

under the same change of variables. See [Br. p. 36].
The continuity of f̃ and f̂ follows from the compactness of �. In fact, the orbit

�x0 is compact and hence f is uniformly continuous on it. Moreover, if x is close
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to x0 (therefore, the orbit �x is close to �x0, taking into account that the action is an
isometry), one gets

f̂ (x)− f̂ (x0) =
∫
�

γ̃−1(f (γ x)− f (γ x0)) dγ̃ .

Also,
‖f̂ (x)− f̂ (x0)‖ ≤ max

�
‖f (γ x)− f (γ x0)‖.

As far as compactness is concerned, recall that f is said to be compact if it is
continuous and if f (K) is compact, for any bounded set K in B.

Therefore, the sets Ã ≡ ⋃
�×K f (γ x) and Â ≡ ⋃

�×K γ̃−1f (γ x) are precom-

pact. In fact, if you have a sequence {γ̃−1
n f (γnxn)} in Â then, by the compactness of

�, you get a subsequence {γnj } converging to some γ and {f (γnj xnj )}, converging to
some y. Thus,

γ̃−1
nj

f (γnj xnj )− γ̃−1y = (γ̃−1
nj

− γ̃−1)f (γnj xnj )+ γ̃−1(f (γnj xnj )− y)

yields the convergence, since ‖γ̃−1
nj

− γ̃−1‖ tends to 0, as operators, and, since �K is

bounded, Ã is compact and Â is bounded.
Now, cover Ã and Â with balls of radius 1/2N+1 and extract a finite subcover

based at f (γjxj ), j = 1, . . . , k, and γ̃−1
l f (γlxl), l = 1, . . . , r , respectively. Let {ϕj }

be a partition of unity associated to the covering, i.e., ϕj : E → [0, 1], with support
in a ball centered at yj ≡ f (γjxj ), respectively γ̃−1

j f (γj xj ), of radius 1/2N and such
that

∑
ϕj (y) = 1.

Define,

f̃N (x) =
∫
�

∑
ϕj (f (γ x))f (γjxj ) dγ̃ ,

f̂N (x) =
∫
�

∑
ϕl(γ̃

−1f (γ x))γ̃−1
l f (γlxl) dγ̃ .

Then, f̃N (x) belongs to the space generated by {f (γjxj )}, while f̂N (x) belongs to
the finite dimensional space generated by {γ̃−1

l f (γlxl)}. Hence, f̃N (K) and f̂N (K)

are precompact. Furthermore,

f̃ (x)− f̃N (x) =
∫
�

∑
ϕj (f (γ x))(f (γ x)− f (γjxj )) dγ̃ ,

f̂ (x)− f̂N (x) =
∫
�

∑
ϕl(γ̃

−1f (γ x))(γ̃−1f (γ x)− γ̃−1
l f (γlxl)) dγ̃ .

Now, since ϕj (y) is non-zero only if ‖y−yj‖ < 1/2N and
∑

ϕj (y) = 1, one gets

‖f̃ (x)− f̃N (x)‖ ≤ 1/2N and ‖f̂ (x)− f̂N (x)‖ ≤ 1/2N.
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But then, for any bounded sequence {xn}, one has a subsequence {xn(N)} such that
f̃N (xn(N)), respectively f̂N (xn(N)), is convergent. Using a Cantor diagonal process,
one obtains, due to the uniform approximation of f̃ (x) by f̃N (x), respectively of f̂ (x)
by f̂N (x), a convergent subsequence for f̃ (xN(N)), respectively f̂ (xN(N)). � 

Remark 4.1. If f (γ x) = f (x), then f̃ (x) = f (x), while, if f (γ x) = γ̃ f (x), then
f̂ (x) = f (x).

Example 4.1. If � = S1 acts on C0
2π (R) via time translation as in Example 1.5, and

f (t, x) is continuous and 2π -periodic in t , then f induces a mapping from C0
2π (R)

into itself, via f (t, x(t)). Then

f̃ (x(t)) = (1/2π)
∫ 2π

0
f (t, x(t + ϕ)) dϕ = (1/2π)

∫ 2π

0
f (t, x(ϕ)) dϕ,

f̂ (x(t)) = (1/2π)
∫ 2π

0
f (t − ϕ, x(t)) dϕ.

Example 4.2. If � = Zm is generated by γ0, then

∫
�

g(γ ) dγ = (1/m)

m−1∑
0

g(γ j ).

Remark 4.2. In the proof of the compactness of f̂ (x) and f̃ (x), we have seen that a
map f is compact if and only if it can be uniformly approximated on bounded sets by
finite dimensional maps. The reader may recover this important result by forgetting
the action of �. Now, for the case of a non-trivial action of � on E, a word of caution is
necessary: The map f̃N (x) is invariant and belongs to a finite dimensional subspace.
However, f̂N (x) is not equivariant. One could have tried to use the set Ã also for this
case and define

f̂ ′N(x) =
∫
�

∑
ϕj (f (γ x))γ̃

−1f (γjxj ) dγ̃

which is �-equivariant and approximates, within 1/2N on K , the map f̂ (x), but which
is not necessarily finite dimensional, as the following example shows, since the orbit
of f (γjxj ) may not span a finite dimensional space.

Example 4.3. On l2 = {(x0, x1, x2, . . . ), x0 ∈ R, xj ∈ C for j ≥ 1 with
∑ |xj |2 <

∞}, consider the action of S1 given by

eiϕ(x0, x1, x2, . . . ) ≡ (x0, e
iϕx1, e

2iϕx2, . . . ).

Consider the point x0 = (1, 1/2, 1/22, . . . , 1/2n, . . . ) = (a0, a, a2, a3, . . . ).
Then, for any n, eiϕ1x0, . . . , e

iϕnx0, for ϕ1, . . . , ϕn different, are linearly indepen-
dent. In fact, taking the first n components, one obtains a Van der Monde matrix, with
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j -th row equal to (1, aj , a2
j , . . . a

n−1
j ), where aj = eiϕj /2 and determinant equal to∏

i>j (ai − aj ). Hence, the closure of the linear space generated by the orbit of x0
is l2.

However, we will show in the next section that the set of points in E whose orbit
is contained in a finite dimensional �-invariant subspace is dense in E. Thus, in the
definition of f̂ ′N take yj such that�yj ⊂ Mj , a finite dimensional�-invariant subspace,
with ‖yj − f (γjxj )‖ ≤ 1/2N , and define

f̂ ′′N(x) =
∫
�

∑
ϕj (γ x)γ̃

−1yj dγ̃ .

Thus, since γ̃−1yj ⊂ Mj , the�-map f̂ ′′N has range in the finite dimensional�-invariant

subspace generated by the Mj ’s and ‖f̂ (x)− f̂ ′′N(x)‖ ≤ 1/2N−1.
We have thus proved the following result, which will be crucial for the extension

of the �-degree to the infinite dimensional setting.

Theorem 4.1. A continuous �-equivariant map f from B into E is compact if and
only if, for each bounded subset K of B, there is a sequence of �-equivariant maps
fN , with range in a finite dimensional �-invariant subspace MN of E, such that, for
all x in K , one has

‖f (x)− fN(x)‖ ≤ 1/2N.

In our construction of the�-degree, we shall also need the following consequences
of averaging:

Lemma 4.2 (Invariant Uryson functions). If A and B are closed �-invariant subsets
of E, with A∩B = φ, then there is a continuous �-invariant function ϕ̃ : E → [0, 1],
with ϕ̃(x) = 0 if x ∈ A and ϕ̃(x) = 1 if x ∈ B.

Proof. Indeed, let ϕ be any Uryson function relative to A and B (for instance
dist(x,A)/(dist(x,A)+ dist(x, B))), then

ϕ̃(x) =
∫
�

ϕ(γ x) dγ

has the required properties. Note that, if one has renormed E in such a way that the
action is an isometry, then dist(x,A) = dist(γ x,A) and ϕ̃(x) can be chosen to be the
above map. � 

Lemma 4.3 (Invariant neighborhood). If A ⊂ E is a �-invariant closed set and U ,
containing A, is an open, �-invariant set, then there is a �-invariant open subset V
such that A ⊂ V ⊂ V̄ ⊂ U .

Proof. In fact, let ϕ̃ : E → [0, 1] be a �-invariant Uryson function with ϕ̃|A = 0 and
ϕ̃|UC = 1. Then, V = ϕ−1([0, 1/2)) has the required properties. � 
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Lemma 4.4 (Equivariant projections). If E0 is a closed �-invariant subspace of E
and P is a continuous projection from E onto E0, then

P̃ x ≡
∫
�

γ−1Pγ x dγ

is a �-equivariant projection onto E0. If E0 = E� , then

P̄ x ≡
∫
�

γ x dγ

is a �-invariant projection onto E� . Moreover, E1 ≡ (I − P̃ )E and (I − P̄ )E are
closed �-invariant complements of E0 and E� .

Proof. The first part is clear since
∫
�
dγ = 1 and E0 is �-invariant. As far as the

second part is concerned, notice that P̄ x is in E� and P̄ x = x for x in E� . � 

1.5 Irreducible representations

A good deal of this book is based on the decomposition of finite dimensional repre-
sentations into irreducible subrepresentations and the corresponding form of linear
equivariant maps.

Definition 5.1. Two representations of B and E are equivalent if there is a continuous
linear invertible operator T from B onto E such that γ̃ T = T γ .

Lemma 5.1. Every finite dimensional representation is equivalent to an orthogonal
representation, i.e., with γ̃ in O(n).

Proof. In fact, the bilinear form

B(x, y) =
∫
�

(γ x, γy) dγ

is positive definite, symmetric and invariant. Hence, there is a positive definite matrix
A such that B(x, y) = (Ax, y). One may define a positive symmetric matrix T such
that T 2 = A, by diagonalizing A. Hence B(x, y) = (T x, T y). Since B(γ x, γy) =
B(x, y), one has that (T γ T −1x, T γ T −1y) = B(γ T −1x, γ T −1y) = (x, y), which
implies that T γ T −1 is in O(n). � 

Remark 5.1. The same result is true in any Hilbert space. The existence of the self-
adjoint bounded positive operator A follows from Riesz Lemma and that of T from
the spectral decomposition of A.

Definition 5.2. A representation E of � is said to be irreducible if E has no proper
invariant subspace (not necessarily closed).
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This implies that E� = {0} unless � acts trivially on E and dim E = 1.

Definition 5.3. A subrepresentationE0 of� inE is a closed proper invariant subspace
E0 of E.

Lemma 5.2. IfE is a finite dimensional representation of�, then there are irreducible
subrepresentations E1, . . . , Ek , such that E = E1 ⊕ · · · ⊕ Ek .

Proof. From Lemma 5.1 it is enough to consider the case where the representation
is orthogonal. Then, if E1 is �-invariant, the orthogonal complement E⊥

1 is also
�-invariant, since (γ x, y) = (x, γ T y) = (x, γ−1y). Hence, if x ∈ E⊥

1 and y is in
E1 (hence also γ−1y ∈ E1), this scalar product is 0 and γ x is in E⊥

1 . Applying this
argument a finite number of times one obtains a complete reduction of E. � 

The above arguments can be extended to the infinite dimensional setting in the
following form.

Lemma 5.3. (a) If E0 is an invariant subspace of the representation E, then Ē0 is a
subrepresentation. If furthermore E is a Hilbert space, then E = Ē0 ⊕E1, where E1
is also a subrepresentation.

(b) IfE is an orthogonal representation (henceE is Hilbert) andE0 is an invariant
subspace, then E⊥

0 is a subrepresentation.

Proof. (a) If {xn} in E0 converges to x, then {γ xn}, which is in E0, converges to γ x

and Ē0 is invariant. The second part follows from Lemma 4.4, since there is always
a projection on Ē0.

(b) follows from the argument used in Lemma 5.2 and the fact that E⊥
0 is closed.

� 

Lemma 5.4 (Schur’s Lemma). If B and E are irreducible representations of � and
there is a linear equivariant map A from B into E, such that Aγ = γ̃ A for all γ in
�, then either A = 0, or A is invertible.

Proof. Note first that the statement is purely algebraic and no topology is used. Since
the domain of A is linear and �-invariant (so that the equivariance makes sense), one
has that the domain of A is all of B. Furthermore, since ker A is �-invariant, then
either it is B (and A = 0) or it reduces to {0} and A is one-to-one. But then RangeA
which is also �-invariant and non-trivial (since A �= 0) must be E. Hence A is also
onto and invertible. � 

Remark 5.2. If E is not irreducible, then either A = 0, or A is one-to-one and
onto RangeA. This last subspace is (algebraically) irreducible since A−1 is clearly
equivariant.
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Corollary 5.1. (a) If E is an irreducible representation of � and A is a �-equivariant
linear map from E into E, i.e., Aγ = γA with a real eigenvalue λ, then A = λI .

(b) If E has no proper subrepresentations and A is a bounded �-equivariant linear
map with eigenvalue λ, then A = λI . Any bounded �-equivariant linear map B is
either 0 or one-to-one.

(c) If furthermore E is a Hilbert space with no proper subrepresentations and
equivalent to an orthogonal representation of � (i.e., there is a continuous isomor-
phism T on E such that, if γ̃ ≡ T −1γ T , then γ̃ T γ̃ = I ), and A is a bounded
�-equivariant linear map from E into E, then

T −1AT = µI + νB

with B2 = −I, B + BT = 0. Moreover, T = I if the representation is orthogonal.

Proof. (a) In fact, A − λI is �-equivariant, with a non-trivial kernel, hence, from
Schur’s Lemma, it must be 0.

(b) Since ker(A−λI) is closed, the previous argument gives the result. Similarly,
if ker B �= {0}, then B = 0.

(c) One has T −1AT γ̃ = T −1AγT = γ̃ T −1AT , hence T −1AT is �-equivariant
with respect to the orthogonal representation. Let Ã = T −1AT , then Ã + ÃT and
ÃT Ã are self-adjoint and equivariant. Hence, 2µ = ±‖Ã+ ÃT ‖ is an eigenvalue for
Ã + ÃT . From (b), one has Ã + ÃT = 2µI or, else (Ã − µI) + (Ã − µI)T = 0.
Furthermore, (Ã − µI)T (Ã − µI) = ν2I , since this operator is either positive, or
identically 0 if it has a kernel (again from (b)). If ν = 0, then (Ã − µI)2 = 0 and
Ã− µI must have a non-trivial kernel, i.e., from (b), Ã = µI . On the other hand, if
ν �= 0, let B = (Ã− µI)/ν. Then, BT + B = 0 and BT B = I , i.e., B2 = −I . � 

Corollary 5.2. If E is a finite dimensional irreducible representation of an abelian
group �, then either E ∼= R and � acts trivially or as Z2, or E ∼= C and � acts as in
(1.4).

Proof. Since � is abelian, one has that γ̃ γ̃1 = γ̃1γ̃ , where γ̃ is the equivalent or-
thogonal representation given in the preceding corollary. Furthermore γ̃ , a matrix, is
�-equivariant, hence

γ̃ = µI + νB,

whereµ, ν, B depend on γ̃ . Since γ̃ T γ̃ = I one hasµ2+ν2 = 1. If γ̃1 = µ1I+ν1B1
and γ̃2 = µ2I + ν2B2, from γ̃1γ̃2 = γ̃2γ̃1, one obtains, if ν1ν2 �= 0, that B1B2 =
B2B1 ≡ B. But then, BT = B and B2 = I . From Schur’s Lemma, the self-adjoint
matrix B must be of the form λI , with λ2 = 1. If λ = 1, then B1B2 = I implies (by
multiplying with B1) that B2 = −B1 and then one may change ν2 to −ν2. While, if
λ = −1, then one obtains B2 = B1. That is, one has a unique B such that any γ̃ is
written as µI + νB.
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Now, if for all γ ’s the corresponding ν is 0, then γ̃ = ±I (since µ2 = 1) and any
one-dimensional subspace is invariant. Then E = R and � acts trivially if µ = 1 for
all γ , or � acts as Z2 if, for some γ, µ is −1.

On the other hand, if there is a non-zero ν, then fromB2 = −I , one has (det B)2 =
(−1)dim E and hence E is even-dimensional. Furthermore, if e �= 0, then the subspace
generated by e and Be is �-invariant and of dimension 2, since Be is orthogonal to
e : (e, Be) = (BT e, e) = −(Be, e). Thus, from the irreducibility ofE, one has thatE
is equal to this subspace. Take e of length 1 and define a complex structure by defining
Be = i. Then, γ̃ = µ + νi, with µ2 + ν2 = 1, is a unit complex number. Remark
1.1 and the fact that any compact abelian group can be represented as a product, ends
the proof. � 

Remark 5.3. Another way of seeing the above argument is the following: γ̃ , as an
orthogonal real matrix, has two-dimensional invariant eigenspaces, where γ̃ acts as a
rotation. Since γ̃1 commutes with γ̃ , these invariant subspaces are also invariant for
γ̃1. Hence, the action of � on this subspace can be written as Rϕ

(
x
y

)
, where Rϕ is a

rotation by an angle ϕ. Writing z = x + iy, this vector can be identified with eiϕz.

Clearly, we could have taken z̄ = x − iy. Then this action would have been
e−iϕ z̄. These two representations are equivalent as real representations, since the map
T
(
x
y

) = (
x
−y

)
, corresponding to conjugation, is equivariant. Of course, they are not

equivalent as complex representations.
The next set of results in this section will concern the fact that any irreducible rep-

resentation (in the sense of our definition) of a compact Lie group is finite dimensional.
We shall begin with the Hilbert space case.

Theorem 5.1. If E is an orthogonal irreducible representation of �, with no proper
subrepresentations, then E is finite dimensional. Furthermore, one has the equality∫

�

((γ x1, y1)(γ x2, y2)+ (γ x1, y2)(γ x2, y1)) dγ = 2(x1, x2)(y1, y2)/ dim E,

for all x1, x2, y1, y2.

Proof. The left hand side of the above equality is a continuous linear functional on E,
as a function of x1 alone. Hence, from Riesz Lemma, it has the form (x1, z) for some
z which depends upon y1, x2, y2. For fixed y1, y2, the vector z depends linearly and
continuously on x2. Therefore one may write z = Ax2, where the operator A depends
on y1 and y2. From the invariance of the Haar integral, one has that

(γ̃ x1, Aγ̃ x2) = (x1, Ax2),

hence γ̃ T Aγ̃ = A and A is equivariant. Furthermore, by interchanging x1 with x2,
one has that A = AT . Thus, from Corollary 5.1 (b), one has that A = λI , where, of
course, λ depends on y1 and y2 but the left hand side is λ(x1, x2).



1.5 Irreducible representations 21

By using the same argument with y1 and y2, one has that the left hand side is
µ(y1, y2), hence it is of the form c(x1, x2)(y1, y2), where c is independent of x1, x2,
y1, y2. Taking x1 = x2, y1 = y2, the left hand side is

∫
�

2(γ x1, y1)
2dγ and c is

positive.
Take now, e1, e2, . . . , eN an arbitrary collection of orthonormal vectors inE. Then,

from Parseval’s inequality, one has

N∑
1

(γ x, ej )
2 ≤ ‖γ x‖2 ≤ ‖x‖2.

Taking x1 = x2 = x and y1 = y2 = ej , and integrating the above equality, one obtains

2
N∑
1

∫
�

(γ x, ei)
2 dγ = Nc‖x‖2 ≤ 2‖x‖2.

Hence, c ≤ 2/N . From this it follows that E is finite dimensional. Furthermore, if
dim E = N , one gets an equality, and one obtains c = 2/N . � 

Corollary 5.3. If E is a �-Banach space with no proper subrepresentations, then E

is finite dimensional.

Proof. For a general Banach space E, take X a non-zero element of E∗, i.e., a
continuous linear functional on E. Consider

(x, y)X =
∫
�

X(γ x)X(γy) dγ.

Then, (x, y)X is bilinear, continuous in x and y and (x, x)X ≥ 0. Hence, E is given
the structure of a pre-Hilbert space: define the equivalence relation x

X̃
y if and only

if (x − y, x − y)X = 0, i.e., iff X(γ (x − y)) ≡ 0 for all γ in �. Taking the set
of equivalence classes and completing with respect to the ‖ ‖X-norm, one obtains
a Hilbert space HX and a natural mapping ϕX from E into HX. Define an action
γ̃ of � on HX by factorization and extension by continuity of the action of � on
E. Since, (γ̃ x, γ̃ y)X = (x, y)X, one has that HX is an orthogonal representation
of �. Furthermore, ϕXγ = γ̃ ϕX, by construction, and ϕX is a linear mapping, with
‖ϕ

X
(x)‖2

X = ∫
�
X(γ x)2dγ ≤ ‖X‖2‖x‖2, i.e., ϕX is continuous (‖X‖ is the norm of

X in E∗).
Now, sinceE has no proper subrepresentations, one has, from Schur’s Lemma, that

ϕX is one-to-one (since X �= 0, at least for some x one has ϕX(x) �= 0). Now, if HX

contains a proper subrepresentation M , we may assume that M is finite dimensional
(the precise argument will be given in the next corollary). Let P be an equivariant
orthogonal projection from HX onto M (see Lemma 4.4.). Then, PϕX is a continuous
linear map from E into M . From Corollary 5.1 (b), PϕX is either one-to-one, or
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identically 0. In the first case, this implies that E is finite dimensional. In the second
case, ϕX(E) ⊂ M⊥, which contradicts the fact that ϕX(E) is dense in HX. � 

Note that, if E = C0
2π (R) and X(x(t)) ≡ x(0), then, under the time shift, one has

‖x‖2
X = 1

2π

∫ 2π
0 x2(ϕ)dϕ and HX is L2[0, 2π ].

Corollary 5.4. (a) Any infinite dimensional Banach �-space E contains finite dimen-
sional irreducible representations.

(b) The set of points whose orbits are contained in a finite dimensional invariant
subspace is dense in E.

Proof. (a) If E has all its subrepresentations of infinite dimension, take a sequence
M1 ⊃ M2 ⊃ · · · of subrepresentations and let M∞ = ⋂

Mn. Then, M∞ is a closed
linear invariant subspace of E. By ordering such sequences by inclusion, one should
have, by Zorn’s Lemma, a maximal element. For this element, the corresponding M∞
is an infinite dimensional subrepresentation. If E is a Hilbert space (with orthogonal
action), the above conclusion contradicts the maximality, since eitherM∞ has a proper
subrepresentation M ′ and then {Mn ∩M ′} is strictly “larger” than {Mn}, or, M∞ is
finite dimensional. This implies that the argument in Corollary 5.3 is complete and
one may repeat it for a general Banach space.

(b) Take a finite dimensional subrepresentationM1 ofE andN1 an invariant closed
complement (which exists, by Lemma 4.4). Since N1 is an infinite dimensional rep-
resentation, it contains a finite dimensional representation M2 (of course, if E is finite
dimensional, there is nothing to prove). Let N2 be an invariant closed complement of
M2 in N1. Continuing this process, one obtains a sequence Mn of finite dimensional
invariant subspaces and complements Nn such that Mn+1 ⊕ Nn+1 = Nn. Moreover,
there are equivariant projections Pn from E onto

⊕n
1 Mj such that I − Pn projects

onto Nn. Let N ≡ ⋂
Nn. Then, it is easy to see that N is a closed, linear and

invariant subspace of E. Ordering sequences of such {Nn} by inclusion, construct
the corresponding N for a maximal sequence. Then, if N �= {0}, N contains a finite
dimensional subrepresentation M and its corresponding complement Ñ (take M = N

in case N is finite dimensional). But then {Nn ∩ Ñ} is strictly “larger” than {Nn},
contradicting the maximality. Hence, N = {0} and, for any x in E, one has that
(I − Pn)x goes to 0, i.e., Pnx, which belongs to

⊕n
1 Mj , approximates x. Note that,

for a Hilbert space, one may take the space E0 of all points whose orbits lie in a finite
dimensional invariant subspace. Clearly, E0 is an invariant linear subspace and Ē0
is a closed invariant subrepresentation. If Ē0 is a proper subrepresentation, then E⊥

0
contains a finite dimensional subrepresentation Ñ , which is a contradiction, since Ñ

should be in E0. Hence, Ē0 is E. Here the maximal N is E⊥
0 , the intersection of all

the orthogonal complements of finite dimensional invariant subspaces. � 

Remark 5.4. In a finite dimensional irreducible representation, the set of finite linear
combinations of points on a given orbit is dense: if not, the closure of the linear space
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generated by such combinations would be a proper subrepresentation.

Our last set of results of this section concerns the form of a linear equivariant map
between two finite dimensional representations V and W .

LetV = V1⊕· · ·⊕Vq andW = W1⊕· · ·⊕Wl be a decomposition ofV andW into
irreducible subspaces. LetPi : V → Vi andQj : W → Wj be equivariant projections,
i.e., γPi = Piγ and γ̃Qj = Qj γ̃ . Assume that there is a linear mapA : V → W , such
thatAγ = γ̃ A. LetAij = QjAPi : Vi → Wj . Then, Aijγ = γ̃ Aij and, from Schur’s
Lemma, either Aij = 0 or Aij is an isomorphism, in which case dim Vi = dim Wj

and Vi and Wj are equivalent representations. Hence, if one considers all possible
A’s, it follows that one has to look only at the subrepresentations of V which are
equivalent to those of W . Furthermore, since an equivalent representation amounts to
a choice of bases (in V and W ) and since ker A as well as RangeA are also representa-
tions, with complements which are representations, the problem can be reduced to the
study of A from V into itself, with γA = Aγ and Aij = 0 if Vi and Wj are not
equivalent.

As in Corollary 5.1, one may assume that γ is in O(V ) (again a choice of basis).
Then Aij = µij I + νijBij , with B2

ij = −I and Bij + BT
ij = 0.

Theorem 5.2. Let V be a finite dimensional irreducible orthogonal representation.
Then exactly one of the following situations occurs.

(a) Any equivariant linear map A is of the form A = µI , i.e., V is an absolutely
irreducible representation.

(b) There is only one equivariant map B, such that B2 = −I , BT + B = 0. Then,
any equivariant linear map A has the form A = µI + νB. In this case, V has
a complex structure for which A = (µ+ iν)I .

(c) There are precisely three equivariant mapsB1, B2, B3 with the above properties.
Then, BiBj = −BjBi and B3 = B1B2. In this case, V has a quaternionic
structure and any equivariant linear map A can be written as A = µI +
ν1B1 + ν2B2 + ν3B3 = qI,where q = µ+ ν1i1 + ν2i2 + ν3i3 is in H.

Proof. If � is abelian, this result was proved in Corollary 5.2, where only (a) and (b)
occur. Since the abelian case is the main topic of our book, we shall not give the proof
of Theorem 5.2 here. However, an elementary proof is not easy to find. Thus, we give
a proof in Appendix A. � 

In the same vein, one has the following result (with an easy proof in the abelian
case) which will be proved in Appendix A.

Theorem 5.3. Let V be decomposed as

i=I⊕
i=1

(V R

i )ni
j=J⊕
j=1

(V C

j )nj
l=L⊕
l=1

(V H

l )nl ,
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whereV R

i are the absolutely irreducible representations of real dimensionmi repeated
ni times, V C

j are complex irreducible representations of complex dimension mj re-

peated nj times, while V H

l are quaternionic representations of dimension (over H) ml

and repeated nl times. Then, there are bases of V such that any equivariant matrix
has a block diagonal form

A =




AR

1
. . .

AR

1
AR

2
. . .

AR

2
. . .

AC

1
. . .

AC

1
. . .

AH

1
. . .

AH

1
. . .




,

where AR

i are real ni × ni matrices repeated mi times, AC

j are complex nj × nj

matrices, repeated mj times and AH

l are nl × nl quaternionic matrices repeated ml

times.
On the new basis, the equivariance of A and the action have the following form: γ

is block diagonal on each subspace corresponding to the repetition of the same matrix,
i.e., if Bn×n is repeated m times, on W corresponding to the same representation, then
γ = (γij I )1≤i,j≤m, with γij in K = R, C or H, and I the identity on Kn, where the
product, for the quaternionic case, is on the right.

Remark 5.5. If � is abelian, the irreducible representations of � are either one-
dimensional and � acts trivially or as Z2, or two-dimensional and � acts as Zn, n ≥ 3
or S1. Of course, in this case there are no quaternionic components.

Note also that the equivariance of A and the action of � on the new basis will
be important when considering �-equivariant deformations of A: any deformation of
AR

i , A
C

j or AH

l , in the corresponding field, will give rise, by repeating the deformation
on the m replicae, to a �-deformation of A. This will be the situation when computing
the �-index of 0, when A is invertible, or when studying the �-bifurcation with several
parameters, as in [I ].
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1.6 Extensions of �-maps

Many of our constructions are based upon extensions of equivariant maps, in particular
when possible, by non-zero maps. As a matter of fact, the equivariant degree will
consist of obstructions to such non-zero equivariant extensions. Thus, the key to
our computations of homotopy groups will be a step by step extension of �-maps,
subtracting “topologically” multiples of generators along the way, in order to get a
formula for the class of each map.

Our first result is a simple extension of Dugundji’s theorem.

Theorem 6.1 (Dugundji–Gleason extensions). Let A1 ⊂ A2 be �-invariant closed
subsets of B. If f : A1 → E is a �-equivariant continuous map, then there is a
�-equivariant continuous extension f̃ : A2 → E. Furthermore, f̃ is compact if so
is f .

Proof. From Dugundji’s theorem, f has a continuous extension f̂ from A2 into E

which is compact if f is compact. From Lemma 4.1, the map

f̃ (x) ≡
∫
�

γ̃−1f̂ (γ x) dγ̃

is �-equivariant (and compact if f̂ is compact). Furthermore, if x is in A1, then
f̂ (γ x) = f (γ x) = γ̃ f (x) and f̃ (x) = f (x). � 

In case B and E are infinite dimensional, we shall look at maps with the following
compactness property.

Definition 6.1. If B = U ×W and E = V ×W , where U,V are finite dimensional
representations of � and W is an infinite dimensional representation, an equivari-
ant map f , from a closed �-invariant subset A of B into E is called a �-compact
perturbation of the identity if f has the form

f (u,w) = (g(u,w),w − h(u,w)),

where g is �-equivariant from B into V and h in W is compact and �-equivariant.

Definition 6.2. If f0 and f1 are �-maps from a closed invariant subset A of B into
E\{0} (�-compact perturbations of the identity if B and E are infinite dimensional),
then f0 is said to be �-homotopic to f1, if there is f (t, x), �-equivariant, from I ×A

into E\{0} (and a �-compact perturbation of the identity), where I = [0, 1], with
f (0, x) = f0(x) and f (1, x) = f1(x).

One then has the following crucial result:

Theorem 6.2 (Equivariant Borsuk homotopy extension theorem). Let A1 ⊂ A2 be
�-invariant closed subsets of B. Assume that f0 and f1, from A1 into E\{0}, are



26 1 Preliminaries

�-equivariant maps which are �-homotopic. Then f0 extends �-equivariantly to A2
without zeros if and only if f1 does. If this is the case, then the extensions are �-
homotopic. Similarly, if f0, f1 and the �-homotopy are �-compact perturbations of
the identity, then the extensions and the homotopy must be taken �-compact pertur-
bations of the identity.

Proof. Let f̂0 : A2 → E\{0} be the �-extension of f0 and f (t, x) : I ×A1 → E\{0}
be the �-homotopy from f0 to f1. Let, by Dugundji–Gleason Theorem 6.1, g(t, x)
be any �-equivariant extension to I ×A2 of the map defined as f (t, x) on I ×A1 and
f̂0(x) on {0} × A2.

It is easy to see that, in the infinite dimensional case, one preserves the compactness
of the perturbations.

Let A be the subset of A2 consisting of all x for which there is a t with g(t, x) = 0.
Then, by construction, A∩A1 = φ. Furthermore, from the compactness of [0, 1],

if {xn} is in A, converging to x in A2, then g(tn, xn) = 0, {tn} has a subsequence con-
verging to some t and g(t, x) = 0. Thus, A is closed. Furthermore, the equivariance
of g, with respect to x, implies that A is invariant.

From Lemma 4.2, there is an invariant Uryson function ϕ : A2 → [0, 1] such that
ϕ(A) = 0 and ϕ(A1) = 1.

Define f̂ (t, x) = g(ϕ(x)t, x). Then the �-equivariance of f̂ follows from that
of g (and of the invariance of ϕ), as well as the compactness property. Furthermore,
f̂ (0, x) = g(0, x) = f̂0(x). Finally, if f̂ (t, x) = 0 for some t , then x belongs to
A, ϕ(x) = 0, but g(0, x) = f̂0(x) �= 0. The map f̂ (t, x) gives a �-homotopy on
A2, from f̂0(x) to f̂1(x) = g(ϕ(x), x), which provides an extension of f1, since, on
A1, ϕ(x) = 1. � 

Another useful fact is the following observation:

Lemma 6.1. Let Sn be the unit sphere in the �-space V ∼= Rn+1 and f : Sn →
W\{0} (another finite dimensional representation) a �-map. Then any �-equivariant
extension f̂ of f to the unit ball has a zero if and only if f is not �-deformable to a
non-zero constant map.

Proof. Note first that a non-zero constant equivariant map may exist only ifW� �= {0}.
In other words, if W� is reduced to 0, any equivariant extension f̂ must have f̂ (0) = 0
(see also Property 3.2).

Now, if f̂ is such an extension, define the �-homotopy f : I × Sn → W\{0}, by
f (t, x) = f̂ ((1− t)x), deforming radially and equivariantly f (0, x) = f (x) to f̂ (0).
On the other hand, if f (t, x) �-deforms f (x), for t = 1, to the constant f (0, x),
define f̂ (x) = f (‖x‖, x/‖x‖) which will provide the appropriate �-extension of f .

� 

One of the key tools which will be used in our computations of equivariant homo-
topy groups of spheres is the existence of complementing maps, which will play the
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role of a suspension (defined in Section 8). In order to be more specific, let us assume
that U and W are finite dimensional orthogonal representations of an abelian compact
Lie group �, with action given as in Example 1.4. Suppose that an equivariant map
is given from UH into WH , for some subgroup H of �. The problem is then the
following: is it possible to give a “complementing” �-equivariant map from (UH )⊥
into (WH )⊥ which is zero only at zero? Recall that, since � is abelian and the action
is orthogonal, all the above subspaces are representations of �. The answer to the
question is in general negative, as the following example shows.

Example 6.1. On C2, consider the following action of Zp2q , where p and q are rela-

tively prime: On (z1, z2) in U , � acts via (e2πik/p2
, e2πik/(pq)) for k= 0, . . . , p2q−1.

On (ξ1, ξ2) in W , � acts as (e2πik/p, e2πik/(p2q)). The isotropy subgroups for the ac-
tion of � on U are as follows:

H ∼= Zq, for k a multiple of p2 and UH = {(z1, 0)},
K ∼= Zp, for k a multiple of pq and UK = {(0, z2)},
L ∼= {e}, for k = 0 and U {e} = U.

One has WH = WK = {(ξ1, 0)}, but there is no non-zero equivariant map between
(UH )⊥ and (WH )⊥, since (UH )⊥ ∩ UK = UK and (WH )⊥ ∩WK = {0}. On the
other hand, if αq + βp = 1, the map

F(z1, z2) = (z
p
1 + z

q
2 , z

α
1 z

β
2 )

(where a negative power is interpreted as a conjugate: z−1 ≡ z̄), is an equivariant map
from U into W with only one zero at the origin.

One of our main hypotheses in Chapter 3 will be the following:

For any pair of isotropy subgroups H and K for U , one has

(H) dim UH ∩ UK = dim WH ∩WK.

Note that in Example 6.1, hypothesis (H) fails, although there dim UH = dim WH ,
for all isotropy subgroups of � on U .

Lemma 6.2. Hypothesis (H) holds if and only if both (a) and (b) hold:

(a) dim UH = dim WH , for all isotropy subgroups H on U .

(b) There are integers l1, . . . , ls such that the mapF : (x1, . . . , xs) → (x
l1
1 , . . . , x

ls
s )

is �-equivariant. Here xj is a (real or complex) coordinate of U on which �

acts as in Example 1.4, and a negative power means a conjugate. Furthermore,
for all γ in � one has det γ det γ̃ > 0.
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Proof. Let Hj be the isotropy subgroup of xj and H0 = ⋂
Hj . Then UH0 = U

and any isotropy subgroup H = �x = ⋂
Hj , where the intersection is on the j ’s for

which the coordinate xj of x is non-zero (see § 2), is such that H0 < H .
Hence, if (H) holds, one obtains (a), since WH ⊂ WH0 . Note that any equivariant

map from U into W will have its image in WH0 . For notational purposes, define, for
K > H , (UK)⊥H as UH ∩ (UK)⊥. Then, hypothesis (H) implies that dim(UK)⊥H =
dim(WK)⊥H .

Now, if �/Hj
∼= Z2 and γ acts as −I on (U�)

⊥Hj , then on (W�)
⊥Hj , γ̃ must

also act as −I , since if not one would violate the equality of the dimensions. Since
the action on a complex coordinate is a multiplication by a unit complex number, i.e.,
corresponding to a rotation with determinant equal to 1, then det γ and det γ̃ (restricted
to WH0 ) have the same sign.

We may now begin to build up the map F . We shall identify U� and W� and take
lj = 1 for these components.

Let H be maximal among the Hj ’s. Then, from Lemma 1.1, �/H ∼= Zn, n ≥ 2
or S1 and acts freely on (U�)⊥H \{0} and without fixed points on (W�)⊥H \{0}, as it
follows from Lemma 1.2, since no point in the second set, fixed by H , may be fixed
by �/H without being in W� .

Thus, if γ generates Zn, one has γ xj = e2πimj /nxj with 1 ≤ mj < n,mj and
n relatively prime and γ̃ ξj = e2πinj /nξj , with 1 ≤ nj < n. Now, there is a unique
pj , 1 ≤ pj < n, such that pjmj ≡ 1, [n]. Let lj be the residue class, modulo n, of

pjnj . Then, (γ xj )lj = γ̃ x
lj
j . Note that, if n = 2, then nj = mj = 1 and lj = 1. That

is, on the real representations of �, where it acts as Z2, the map F is the identity.
On the other hand, if �/H ∼= S1, acting as eiϕ (or e−iϕ) on (U�)⊥H and as einj ϕ

on (W�)⊥H , then lj = nj (or −nj ) will give the equivariant map (with negative lj
meaning conjugates).

Let now K and L be isotropy subgroups for (UH )⊥. Let H1 be the isotropy
subgroup for UK ∩ UL, i.e., H1 is the intersection of the isotropy subgroups for all
the coordinates in that subspace. Then, UK ∩ UL ⊂ UH1 . Since K and L are also
intersections of the corresponding subgroups, it is clear that K and L are subgroups
of H1 and then UH1 ⊂ UK ∩UL, that is UH1 = UK ∩UL, while WH1 ⊂ WK ∩WL.
But, from (H), one has dim UH1 = dim WH1 and dim UK ∩ UL = dim WK ∩WL,
then WH1 = WK ∩WL. Since dim(UH )⊥∩UK ∩UL = dim UK ∩UL−dim UH ∩
UK ∩UL, one obtains that the hypothesis (H) is valid on (UH )⊥ and (WH )⊥. Then,
one may repeat the above argument by choosing a maximal isotropy subgroup among
the remaining Hj ’s, proving the implication in a finite number of steps.

Conversely, if the map F exists, it is clear that dim UH ≤ dim WH (and it is easy
to give examples with a strict inequality). While, if (a) and (b) hold, it is easy to see,
by direct inspection, that (H) is true. � 

In order to construct the generators of the equivariant homotopy groups, in Chap-
ter 3, we shall need some invariant monomials. We shall again assume that the abelian
group � acts on U , with coordinates {x1, . . . , xs}, with Hj = �xj . Let H0 be a
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subgroup of � and define, as in § 2, H̃j = H0 ∩H1 ∩ · · · ∩Hj . Let kj = |H̃j−1/H̃j |.
Lemma 6.3. There are integers α1, . . . , αs such that x

αj
j . . . x

αs
s is H̃j−1-invariant.

(If α is negative, xα means x̄|α|). If ks < ∞, then one may take αs = ks , while if
ks = ∞, then αs = 0. Furthermore, if kj = 1 for j < s, then one may take αj = 0.

Proof. The proof will be by induction on j . If j = s and ks = ∞, any constant is
�-invariant, hence αs = 0 will do. While, if ks is finite, then H̃s−1/H̃s acts freely on
xs (as in § 2) and any γ in H̃s−1 can be written as γ = βα

s δ, for some δ in H̃s and a fixed
βs such that βsxs = e2πi/ks xs . Hence, (γ xs)ks = β

αks
s x

ks
s = x

ks
s is H̃s−1-invariant.

Assume now thatP(xj+1, . . . , xs) ≡ x
αj+1
j+1 . . . x

αs
s is H̃j -invariant, for some j ≥ 1.

Then, if H̃j−1/H̃j
∼= S1, this group acts freely on xj and as einlϕ on xl , for l = j, . . . , s,

with nj = 1. Since P(einj+1ϕxj+1, . . . , e
insϕxs) = e

∑
nlαlP (xj+1, . . . , xs), one may

choose αj = −∑
nlαl and x

αj
j . . . x

αs
s will be H̃j−1-invariant. On the other hand, if

kj is finite, then any γ in H̃j−1 is written as γ = βα
j δ, with βj generating H̃j−1/H̃j

and acting as e2πi/kj on xj , 0 ≤ α < kj and δ in H̃j . Then,

P(γ xj+1, . . . , γ xs) = β
ααj+1
j (δxj+1)

αj+1 . . . β
ααs
j (δxs)

αs .

Now, as before, βj = β
εk
k ηk , where βk generates H̃j−1/(Hk ∩ H̃j−1), βkxk =

e2πi/nkxk , where nk is the order of this group if finite (or βkxk = eiϕxk if the group

is isomorphic to S1 and β
εk
k means e2πiεk/nk for some nk: since β

kj
j is in H̃j , the

H̃j -invariance of P implies that the corresponding ϕ is a rational multiple of 2π ); one
has 0 ≤ εk < nk and ηk is in Hk ∩ H̃j−1.

Thus, βααk
j (δx)αk = e2πiααkεk/nk (δxk)

αk . Hence,

P(γ xj+1, . . . , γ xs) = e2πiεαP (δxj+1, . . . , δxs) = e2πiεαP (xj+1, . . . , xs),

with ε =∑s
k=j+1 αkεk/nk .

Now, if γ = β
kj
j , i.e., α = kj , then this γ belongs to H̃j−1 ∩ Hj = H̃j and

the corresponding εkj must be an integer. Let ε0 be the non-integer part of ε and
define αj = −kj ε0 (it is an integer and αj = 0 if kj = 1). Then, if P(xj , . . . , xs) =
x
αj
j . . . x

αs
s , one has

P(γ xj , . . . , γ xs) = (βjxj )
αj e2πiεαP (xj+1, . . . , xs)

= e2πiααj /kj e2πiεαP (xj , . . . , xs) = P(xj , . . . , xs) � 

1.7 Orthogonal maps

In the last chapters of the book, we shall be interested in a particular class of maps,
which we shall call orthogonal maps. The setting is the following: let � be a compact
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abelian group acting on the finite dimensional orthogonal representation V . Thus,
if � = T n × Zm1 × · · · × Zms , with the torus T n generated by (ϕ1, . . . , ϕn), ϕj in
[0, 2π ], we shall define by

Ajx = ∂

∂ϕj
(γ x)

∣∣
γ=Id,

the infinitesimal generator corresponding to ϕj .

Hence, if the action of ϕj on the coordinate xl is as ein
l
j ϕj , then

Ajx = (in1
j x1, . . . , in

m
j xm)

T ,

where inx stands for (−n Im x, nRe x)T .

Lemma 7.1. Let H = �x0 . Then:

(a) There are exactly k linearly independent Ajx0 if and only if dim �/H = k.

(b) In this case, if H is the torus part of H and H̄ corresponds to the first k (non-
zero) coordinates of x0, then for any x in VH one has Ajx =∑k

l=1 λ
l
jAlx and

A1x, . . . , Akx are linearly independent whenever x1, . . . , xk are non-zero.

Proof. (a) Since H = ⋂
Hj , for the non-zero coordinates of x0, one has from

Lemma 2.4 (a), that dim �/H = k if and only if AH has rank k, where AH is the
matrix formed by nij .

(b) follows from Remark 2.1 and the definition of λlj as given in Lemmas 2.4 (b)

and 2.6. Note that one may reparametrize T n by choosing 8j = ϕj +∑n
l=k+1 λ

j
l ϕl ,

for j = 1, . . . , k and taking 8k+1, . . . , 8n acting trivially on VH . In this case, if Ãj

is the diagonal matrix corresponding to the action of H , that is, to the derivative with
respect to 8j , for j = k + 1, . . . , n (since H corresponds to 8j = 0, j = 1, . . . , k),
then Ãj is 0 on VH and, on any irreducible representation of H in (V H )⊥, one of the
Ãj , j = k + 1, . . . , n, will be invertible. � 

Definition 7.1. A �-equivariant map f , from V into itself, is said to be �-orthogonal
if f (x) ·Ajx = 0, for all j = 1, . . . , n and all x in the domain of definition of f . Here
the dot stands for the real scalar product. In terms of complex scalar product one has
Re(f (x) · Ajx) = 0.

Example 7.1 (Gradient maps). If f (x) = ∇J (x), where J (γ x) = J (x) is an invari-
ant function, we have seen in Remark 3.1, thatf (γ x) = γf (x) and thatf (x)·Ajx = 0,
i.e., that the gradient of an invariant function is an orthogonal map.

Linearizations of orthogonal maps have quite interesting properties. In fact:

Lemma 7.2. Assume that the �-orthogonal map f is C1 at x0, with a k-dimensional
orbit. Let H = �x0 and denote by D the matrix Df (x0). Then:
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(a) D isH -orthogonal. IfK <H is any isotropy subgroup, thenDK =DfK(x0) =
diag(DH ,D⊥K). For K < H, the torus part of H , we have that DK =
diag(DH ,D⊥H ,D′⊥K), where D′⊥K is a complex self-adjoint matrix which is
H -orthogonal.

(b) If f (x0) = 0, then Ajx0 are in ker D and are orthogonal to RangeD. In
particular, if dim ker D = k, then, for any K < H , the matrix D⊥K is invertible
and the algebraic multiplicity of D is k.

Proof. The fact that D is H -equivariant was proved in Property 3.3. The diagonal
structure comes from Property 3.4 and Theorem 5.3. In particular, if K < H , then
D′⊥K is a complex matrix and dim H/K ≥ 1.

Now, since f is �-orthogonal it is also H -orthogonal. If fK = (f H , f⊥), then
f K(x) · Ãj x = f⊥(x) · Ãj x⊥ = 0 for any x = xH + x⊥ in VK , where Ãj are the
generators for the action of H , since Ãj is 0 on VH . From f⊥(xH ) = 0, one obtains
(Df⊥(xH )x⊥ + R(x⊥)) · Ãj x⊥ = 0, where R(x⊥) = o(‖x⊥‖). Dividing by ‖x⊥‖2

and taking the limit when x⊥ goes to 0, one has that Df⊥(xH )x⊥ · Ãj x⊥ = 0. In
particular, D′⊥K is H -orthogonal.

Take K corresponding to an irreducible representation of H on (V H )⊥ and choose
j such that Ãj is invertible on it (and hence it is just a multiplication by im, for
some integer m). Set B ≡ D′⊥K . Since B is H -equivariant, one has BÃj = ÃjB

and Bx · Ãj x = 0. Furthermore, from B(x + x0) · Ãj (x + x0) = 0 for any x

and x0 in the representation, one has ÃT
j B + BT Ãj = 0. But ÃT

j = −Ãj , hence,

BT = ÃjBÃ−1
j = BÃj Ã

−1
j = B on that representation. Now, since the action of H

on x in that representation is as S1, B, in fact, is a real matrix of the form

(
A −B
B A

)
.

Then, B = BT implies A = AT and B = −BT , that is (A+ iB)∗ = A+ iB.
For the second part of the lemma, differentiating the relation f (γ x0) = 0 with

respect to ϕj , one obtains DAjx0 = 0. Furthermore, from f (x) · Ajx = 0, one has,
for all x and x0

Df (x0)x · Ajx0 + f (x0) · Ajx = 0.

In particular, if f (x0) = 0, then Ajx0 is orthogonal to RangeD. Also, if dim ker D =
k, since {A1x0, . . . , Akx0} are linearly independent, then V = ker D ⊕ RangeD, the
algebraic multiplicity of D is k and D⊥K is invertible, for any K < H . � 

A crucial property of �-orthogonal maps is the following: they can be extended
as �-orthogonal maps. Namely,

Theorem 7.1. Let A1 ⊂ A2 be �-invariant closed subsets of V . If f : A1 → V is a
continuous �-orthogonal map, then there is a continuous �-orthogonal extension f̃

to A2, which is obtained by a Gram–Schmidt orthogonalization process.
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Proof. Let f̃0 be a �-equivariant extension of f , given in Theorem 6.1. Since f̃0 is
not necessarily orthogonal to Ajx, we shall use the following orthogonalization:

Let

Ã1(x) =
{
A1x/‖A1x‖, if A1x �= 0

0, if A1x = 0,

Âj (x) = Ajx −
j−1∑

1

(Ajx, Ãi(x))Ãi(x)

and

Ãj (x) =
{
Âj (x)/‖Âj (x)‖, if Âj (x) �= 0

0, if Âj (x) = 0.

Clearly, the Ãj (x) are orthogonal and Ãj (x) = 0 if and only if Ajx is a linear
combination of A1x, . . . , Aj−1x. Furthermore, Aj is �-equivariant as well as Ãj (x)

and Âj (λx) = λÂj (x), for λ in R. All these facts can be easily proved by induction.
Let

f̃ (x) = f̃0(x)−
s∑
1

(f̃0(x), Ãj (x))Ãj (x).

By construction, f̃ (x) is orthogonal to Ãj (x) for all j ’s and hence to all Ajx, which
are linear combinations of them. Furthermore, f̃ (x) is �-equivariant and if x is in A1,
then f̃0(x) = f (x) which is orthogonal to all Ãj (x) and f̃ (x) = f (x).

Thus, the more delicate part is the continuity of f̃ (x), that is the continuity of
(f̃0(x), Ãj (x))Ãj (x). Let {xn} be a sequence converging to x0 such that Âj (xn) is
non-zero and converges to 0 (the other cases are trivial). Then, since Ãj (xn) has norm
1, there is a subsequence such that Ãj (xn) converges to some v, with norm 1, and the
above expression converges to (f̃0(x0), v)v.

Assume now that j is the first index for which Ãj (x0) = 0. Then Ajx0 =∑j−1
1 λ

j
i Aix0, that is x0 belongs to ker(Aj −∑j−1

1 λ
j
i Ai) ≡ V1. But V1 is invariant

under� and in factV1 = V
T1
1 , whereT1 is the torus (−λ

j
1ϕ, . . . ,−λ

j
j−1ϕ, ϕ, 0, . . . , 0).

Hence, from the equivariance, f̃0(x0) belongs to V1 and one would have proved the
continuity by showing that v is in V2 ≡ V ⊥

1 .
Write any x in V as x1 + x2, with xi in Vi and A(x) as A(x)1 + A(x)2. Since

Ãi is equivariant one has that Ãi(x1) is in V1. Furthermore, since Ajx1 is a linear
combination of A1x1, . . . , Aj−1x1, it follows that Âj (x1) = 0. Note also that, due to
the linearity of Ai , one gets that Âk(x2) is in V2, Ãk(x)1 is a linear combination of
Alx1, for l ≤ k, while Ãk(x)2 is a linear combination of Alx2, for l ≤ k.

Since j is the first index for which Ãj (x0) = 0, then, in a neighborhood of x0 and
k < j , it follows that Ãk(x) is non-zero and continuous, in particular, ‖Ãk(x)2‖ ≤
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c‖x2‖. Now, we claim that

Âj (x) = Aj x −
∑
k<j

(Aj x, Ãk(x))Ãk(x),

where Aj = Aj−∑i<j λ
j
i Ai . In fact, sinceAix = Âi(x)+∑l<i(Aix, Ãl(x))Ãl(x),

one deduces, from (Ãlx, Ãkx) = δlk , the cancellation of the extra terms. Since
Aj x = Aj x2, one obtains, from the above bound for ‖Ak(x)2‖, the existence of two
constants, c and C, such that c‖Aj x‖ ≤ ‖Âj (x)‖ ≤ C‖Aj x‖, for x close enough to
x0 (in fact for x2 small enough). Hence,

Ãj (x) = Aj x/‖Aj x‖ + 0(‖x2‖).
In particular, any limit point for Ãj (x) will be in (ker Aj )

⊥.
Assume now, that j is not the first index for which Âj (x) = 0. In fact, let I be

the set of indices for which Âi(x0) = 0 = (Ai −∑
k<i λ

i
kAk)x0 ≡ Aix0. Then,

x0 belongs to ker Ai , which is the fixed point subspace of a one-dimensional torus.
Hence, x0 is in the fixed point subspace of a m-torus Tm, where m is the cardinality of
I . Denote by Vi the intersection of all ker Ak , for k ≤ i, both in I . Hence, {Vi} is a
decreasing sequence of subspaces which are fixed point subspaces of tori. Since x0 is
in the smallest one then, by equivariance, this is also the case for f (x0). One would
have proved the continuity if one could show that any limit point of Ãj (x), for j in I ,
is in V ⊥

j .
Since the proof, by induction, is rather involved we shall break it up in several

lemmata.

Lemma 7.3. Define Aj as above if j is in I and as Aj if j is in I c. Then, one may
change, in the formulae for Âj (x), Aj by Aj , without changing Âj (x).

Proof. For j = 1, then A1 = A1 and Â1(x) is unchanged. Assume, that the lemma
is true up to j − 1. Then, if j is I c, there is nothing to prove, while if j is in I , it is
enough to repeat the above argument. � 

Lemma 7.4. Define inductively the following linear operators for j in I :

(a) For the first element of I : Bj = Aj .

(b) For the subsequent elements of I : Bj = Aj −∑
i<j

(
Aj x,

Ãi (x)

‖Âi (x)‖
)
Bi , where

in the sum one has only elements of I .

Then
Âj (x) = Bj x −

∑
k∈Ic
k<j

(Bj x, Ãk(x))Ãk(x).
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Proof. For the first element of I , the result has already been proved. Assume, by
induction, that it is true for i < j , then,

Âj (x) = Aj x −
∑
k∈Ic
k<j

(Aj x, Ãk(x))Ãk(x)−
∑
i∈Ic
i<j

(Aj x, Ãi(x))Ãi(x).

Using the induction hypothesis in the second sum, one has that

Ãi(x) = ‖Âi(x)‖−1(Bix −
∑
k∈Ic
k<i

(Bix, Ãk(x))Ãk(x)).

Collecting the terms with Bix, one recognizes Bj x and one will get the result
provided the double sum of terms (Aj x, Ãi(x))(Bix, Ãk(x))Ãk(x) is the same when
k is in I c, i in I , i < j , and either k < i (which is what the substitution gives) or k < j

(if the formula is to be verified). The difference between the two sums corresponds
to those k’s with i ≤ k < j (in fact a strict inequality since i and k are in disjoint
sets). But there, by the induction hypothesis, Bix is a linear combination of Âi(x)

and Ãl(x), for l < i, hence orthogonal to Ãk(x), proving the result. � 

Lemma 7.5. If x is written as x = x1 ⊕ x2, where x1 is in Vj and x2 in V ⊥
j , then, for

x close to x0, there are constants c, C,C2 and D such that, for j in I :

(a) ‖Ãk(x)2‖ ≤ C2‖x2‖, for k in I c, k < j .

(b) c‖Bj x‖ ≤ ‖Âj (x)‖ ≤ C‖Bj x‖ ≤ D‖Aj x‖.

Proof. The proof will be again by induction, where the first step has already been
done. If the result is true for i < j , then for k in I c (hence one does not worry about
‖Âk(x)‖), one gets: Âk(x)2 = Akx2 −∑

l<k(Akx, Ãl(x))Ãl(x)2.
If l is not in I , then the bound is valid by induction, while if l is in I , then

(Akx, Ãl(x)) = (Akx2,Blx2)/‖Âl(x)‖
−
∑
n∈Ic
n<l

(Blx2, Ãn(x)2)(Ãn(x), Akx)/‖Âl(x)‖,

since Blx1 = 0. Hence, again by induction, one has (a).
For (b) all the inequalities, but the first, are now straightforward. For the first one,

‖Âj (x)‖ ≥ ‖Bj x‖ − c̃‖Bj x‖‖x2‖, where one uses (a) and Bj x1 = 0. � 

End of the proof of the theorem. Since Âj (x) = Bj x2 + 0(‖x2‖‖Bj x2‖), then limit
points of Ãj (x) will be of the form αBj η, with ‖η‖ = 1, hence in V ⊥

j . � 
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Corollary 7.1 (Orthogonal Borsuk homotopy extension theorem). Let A1 ⊂ A2 be
�-invariant closed subsets of V . Assume that f0 and f1, from A1 to V \{0}, are �-
orthogonal maps which are �-homotopic, with an orthogonal homotopy. Then f0
extends �-orthogonally to A2 without zeros if and only if f1 does. In this case the
extensions are �-orthogonally homotopic.

Proof. It is enough to check that the proof of Theorem 6.2 is still valid, and one uses
Theorem 7.1 instead of Theorem 6.1. � 

1.8 Equivariant homotopy groups of spheres

Our equivariant degree, which will be defined in the next chapter, will be an element
of the group of equivariant homotopy classes of �-maps between two spheres in two
�-representations. In this section, we shall recall some known results of the ordinary
case, i.e., without a �-action, and give some preliminary results in the equivariant
case.

The setting is the following: let V and W be two finite dimensional �-represen-
tations (hence, from Theorem 5.1, one may assume that they are orthogonal). Let BR

be the ball {x ∈ V : ‖x‖ < R} and consider the set C of all equivariant maps

F : [0, 1] × BR → R×W

F : SV = ∂([0, 1] × BR) → R×W\{0}.
Thus, F(t, x) has the form (8(t, x), f (t, x)), where 8 is invariant and f is equiv-

ariant with respect tox. IfW� = {0}we shall restrict C to the maps which have8(0, 0)
and 8(1, 0) both positive.

These mappings are divided in�-homotopy classes: F
�∼ G if there is a continuous

�-homotopy
H : [0, 1] × SV → R×W\{0}

such that:

(a) H(0, t, x) = F(t, x),H(1, t, x) = G(t, x), for (t, x) in SV ;
(b) H(τ, ·, ·) belongs to C for any τ in [0, 1].

Definition 8.1. The set of all such �-homotopy classes will be denoted by ��
SV (S

W ).
The class of F will be denoted by [F ]� .

Remark 8.1. If V and W are trivial representations of �, then ��
SV (S

W ) is nothing
else than the abelian group �n(S

m), where n = dim V and m = dim W , for which
the following facts are well known (see [Gr]).

(a) �n(S
m) = 0, if n < m, in which case any map f from Sn into R×W\{0} has

a non-zero extension to [0, 1] × BR .
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(b) �n(S
n) ∼= Z and [F ] is its Brouwer degree.

(c) �n+1(S
n) =




0, if n = 1

Z, if n = 2

Z2, if n > 2,

where the generator for n = 2 is the Hopf map:

C× C → R3,
η(λ1, λ2) = (2λ1λ̄2, |λ1|2 − |λ2|2),

and, for n > 2, is the suspension of the Hopf map: C×C×Rn−3 → R3×Rn−3,

Qn−3η(λ1, λ2, λ) = (η(λ1, λ2), λ).

Now, the set ��
SV (S

W ) has also a group structure. In order to define an addition
we shall use the following result.

Lemma 8.1. For any F in C, there is a G in C, such that F
�∼ G and G(t, x) = (1, 0)

for t = 0 or 1.

Proof. Define the following closed �-invariant set

A = {0} × BR ∪ {1} × BR.

Clearly, the �-homotopy F(t, τx) is admissible on A for any τ in [0, 1]. Then the
restriction ofF toA is�-homotopic toH(t, x) = F(t, 0) = (8(t, 0), f (t, 0)), which
is in R × W�\{0}, for t = 0 or 1. If dim W� > 0, one may choose two non-zero
paths from F(0, 0) and F(1, 0) to (1, 0). If W� = {0} (and hence f (t, 0) = 0), one
may achieve the same goal since 8(0, 0) and 8(1, 0) are both positive.

The composition of both maps provides a deformation on A from F(t, x) to
G(t, x) = (1, 0) on A.

Now, using the �-equivariant Borsuk extension theorem, the map F will be �-
homotopic to a map G in C, extending (1, 0) on A to all of SV . � 

To proceed further, we need a concept of addition in ��
SV (S

W ). To this end let F
and G be any two maps belonging to C. By virtue of Lemma 8.1, we may assume
that F |A = G|A = {1, 0}. Define their sum F ⊕G as the map

(F ⊕G)(t, x) =
{
F(2t, x), if 0 ≤ t ≤ 1

2

G(2t − 1, x), if 1
2 ≤ t ≤ 1.

Clearly, F ⊕G belongs to C.

Definition 8.2. The addition in ��
SV (S

W ) is given by

[F ]� + [G]� = [F ⊕G]�.
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This addition turns out to be associative (see [Gr, p. 7]) and the class 0� of the map
(1, 0) is the neutral element of the group. Note that, from Lemma 6.1, 0� is the class of
all maps which have a non-vanishing �-equivariant extension to the cylinder I ×BR .
Furthermore, the inverse element of [F ]� is the class of [F(1 − t, x)]� . In fact, the
�-homotopy Hτ (t, x), for 0 ≤ τ ≤ 1, defined as

Hτ (t, x) =



F(2t, x), for 0 ≤ 2t ≤ τ

F (τ, x), for τ ≤ 2t ≤ 2 − τ

F (2 − 2t, x), for 2 − τ ≤ 2t ≤ 2

is a valid �-deformation from (1, 0), for τ = 0, to [F ]� − [F ]� , for τ = 1 (here we
have assumed that F(0, x) = F(1, x) = (1, 0)).

Therefore, ��
SV (S

W ) is a group under the addition defined above.

Lemma 8.2. If dim V � > 0, then ��
SV (S

W ) is an abelian group.

Proof. Let x0 be a coordinate, in V � , of x. Let A+ = A ∪ {(t, x) : 0 ≤ t ≤ 1, ‖x‖ =
R, x0 ≥ 0}, where A is the set used in the preceding lemma. Then, A+ is closed and
�-invariant. If F is in C, with F(t, x) = (1, 0) on A, i.e., if t = 0 or 1, consider the �-
deformation ofF restricted toA+: Hτ (t, x0, y) = F(t, α(τ )x0+β(τ), α(τ)y), where
α(τ) = (1+R−1x0 sin πτ)− 1

2 cos τπ/2 and β(τ) = (1+R−1x0 sin πτ)− 1
2 sin τπ/2,

which are chosen in such a way that the arguments in V have norm R if ‖x‖ = R.
Thus, Hτ is a valid deformation on A+, from F for τ = 0, to F(t, R, 0) for τ = 1.
One deforms next on A+ via F(t (1 − τ), R, 0), to (1, 0).

Hence, F |A+ is �-homotopic to (1, 0). Then, using the �-equivariant Borsuk
homotopy extension theorem, the map F is �-homotopic to a map having value (1, 0)
on A+.

Note that one could have performed the same procedure on A−, corresponding to
x0 ≤ 0, by changing R to −R in the deformation Hτ .

We are now in a position to prove the lemma. Indeed, consider two maps F1 and
F2 such that F1(t, x) = (1, 0) for (t, x) in A+ and F2(t, x) = (1, 0) for (t, x) in A−.
Define the following �-equivariant homotopy on SV :

Hτ (t, x) =



F1(2t − τ, x), for(t, x) in A− and 0 ≤ 2t − τ ≤ 1

F2(2t − (1 − τ), x), for (t, x) in A+ and 0 ≤ 2t − (1 − τ) ≤ 1

(1, 0), otherwise.

Simple computations give that Hτ is admissible. Moreover, H0 is in [F1]� + [F2]�
and H1 is in [F2]� + [F1]� . Thus ��

SV (S
W ) is abelian. � 

Part of Chapter 3 will be devoted to the computation of ��
SV (S

W ). See also the
Bibliographical remarks at the end of this chapter.
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A construction that we shall use very often is that of the suspension, more precisely,
that of an equivariant suspension: Let U,V and W be �-representations and f : V →
W be a �-equivariant map.

Definition 8.3. The �-suspension of f is the map QUf = (f (x), u), from V × U

into W × U .

It is clear that ifF belongs toC, giving an element of��
SV (S

W ), then (F (t, x), u) ≡
QUF will provide an element of ��

SV×U (S
W×U) and QU will be a morphism between

these two groups.

Remark 8.2. If � acts trivially on V and W and U is R, then the Freudenthal sus-
pension theorem asserts that Q : �n(S

m) → �n+1(S
m+1) is onto if n = 2m− 1 and

an isomorphism if n < 2m− 1.

The situation for the equivariant case is more complicated. In the case of an abelian
group, we shall prove, in Chapter 3, the appropriate result. In the general case we
state, without proof, the corresponding result. We shall only indicate the references
since we shall not use, in this book, the result in its full generality.

The following theorem is due to Namboodiri (cfr. [N]).

Theorem 8.1. Assume V = Rk × W . Then QU is one-to-one if for all isotropy
subgroups H of W one has

(α) dim WH ≥ k + 2;

(β) dim WH∩K −dim WH ≥ k+2, for any K isotropy subgroup for U which does
not contain H or any conjugate of H .

Moreover, if k + 2 is replaced by k + 1 in the above inequalities, then QU is onto.

Note that if � acts trivially on W and U = R, then the only condition is (α), which
amounts to the standard Freudenthal suspension theorem.

In the case of an abelian action, with V = Rk ×W , we shall prove, in Chapter 3,
the stronger result:

Theorem 8.2. (a) QU is one-to-one provided

dim WH ≥ k + 2 − dim �/H

dim WH − dim WK ≥ k + 2 − dim �/H,

for all isotropy subgroups H and K of W such that H is strictly contained in K and
K ∩H0 = H , for some isotropy subgroup H0 of U .

(b) If there are no new isotropy subgroups for U , then QU is onto, replacing k+ 2
by k + 1 in the above inequalities. Otherwise, this will not be the case, in general,
unless k = 0 and the new isotropy subgroups H0 are such that �/H0 ∼= S1.
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Note that (α) requires that dim W� ≥ k + 2 (unless W� = {0}), while (a) gives
a better result if one has U� = {0}. Both conditions coincide if U� �= {0}. Note
also that if one adds enough dummy variables to W (so that one gets to the point of
dim W� ≥ k + 2 and dim WH − dim WK ≥ k + 2 − dim �/H , for any pair K,H

in Iso(W), with K > H ), then, in the abelian case, QU will be one-to-one under any
suspension. This stabilization process will be important when computing the degree
through finite dimensional approximations. On the other hand, if in Theorem 8.1, one
takes H to be the isotropy subgroup of WK , when K is in Iso(U) but not in Iso(W),
then K < H and WK = WH : see Definition 2.1. In this case condition (β) is never
satisfied.

Another argument which we will use often, and which is fundamental for bifurca-
tion, is the deformation of families of linear maps. More precisely, assume that B(λ)

is a family of �-equivariant matrices, defined for ‖λ‖ ≤ ρ, λ in Rk , and invertible for
‖λ‖ = ρ, an Sk−1-sphere. One has an application:

Sk−1 → GL�(V ),

the set of invertible �-equivariant matrices. If one considers all �-deformations of
such matrices, one obtains an element of �k−1(GL�(V )).

Now, from Theorem 5.3, we know that B(λ) has a block diagonal structure on
the irreducible subrepresentations of V , that is, any �-deformation will have to pre-
serve the structure and should be generated by deformations of families of restrictions
AR(λ), AC(λ) or AH(λ), as given in that theorem. The facts which will be used in
this book are the following:

Theorem 8.3. (a) GL(Rd) has two components characterized by the sign of the de-
terminant. Thus, �0(GL(Rd)) ∼= Z2, where AR(λ) is non-trivial if and only if its
determinant changes sign.

(b) If det AR(λ) > 0, then, for d = 2, �1(GL+(Rd)) ∼= Z and is generated

by A(λ1, λ2) ≡
(
λ1 −λ2
λ2 λ1

)
. For d > 2, �1(GL+(Rd)) ∼= Z2 and is generated by

diag(A(λ1, λ2), Id−2). �k−1(GL+(Rd)) is an abelian group with [B]+[D] ≡ [BD].
(c) GL(Cd) and GL(Hd) are connected, hence �0 = 0 for them. Also,

�1(GL(Cd)) ∼= Z,

where AC(λ) is deformable to diag(det AC(λ), Id−1) and two families are homotopic
if and only if their complex determinants, as maps from S1 into C\{0}, are homotopic,
i.e., they have the same winding number. Finally, GL(Hd) is simply-connected.

The proof of this result can be found in any book on Lie groups. Notice, that for
k > 1 one has the Bott periodicity results, see [I ], but in the present book we shall limit
ourselves to the case k ≤ 1. We shall see in particular how the non-connectedness of
GL(Rd) affects the computations of ��

SV (S
W ).
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A fundamental tool in bifurcation theory is the following extension of the White-
head homomorphism: consider, as before, a family of �-matrices B(λ), invertible for
λ �= 0 and such that B(0) = 0 (for instance ρ−1‖λ‖B(λρ/‖λ‖)). In R×V = Rk×W

consider the ball B = {(λ, x) : ‖λ‖ < 2ρ, ‖x‖ < 2R} and the map

J�(B(λ)x) = (‖x‖ − R,B(λ)x).

Then, J�(B(λ)x) is non-zero on the boundary of the ball B and if B(λ), defined as in
the example from ‖λ‖ = ρ, is �-homotopic to C(λ), then J�(B(λ)x) is �-homotopic
to J�(C(λ)x), i.e., one has an induced map:

J� : �k−1(GL�(W)) → ��
SV (S

W ).

(Here, the variable t is given by λ1).
Furthermore, if all AR(λ) have positive determinant, then J� is a morphism of

abelian groups.
In the case � = {e}, the above construction is called the Hopf construction, J is

the Whitehead homomorphism and has been thoroughly studied (for k < d) by Bott
and Adams. Of particular importance is the kernel of J� . In fact, if J�[B(λ)] �= 0,
then, from Lemma 6.1, any �-extension of J�[B(λ)], or of any map �-deformable to
it on ∂B, from ∂B to B must have a zero. Now, if g(λ, x) = 0(‖x‖2), then for R
small enough, the couple (‖x‖ − R,B(λ)x + g(λ, x)) is �-deformable to J�[B(λ)]
on ∂B, provided B(λ) is invertible for ‖λ‖ = 2ρ. Hence, if J�[B(λ)] �= 0, the couple
will have zeros and the map B(λ)x + g(λ, x) ≡ f (λ, x) will have zeros in B, with
‖x‖ = R, for any small R, besides (λ, 0).

Note that, on ∂B, the �-homotopy ((1 − τ)(‖x‖ − R) + τ(ρ − ‖λ‖), B(λ)x) is
admissible. In fact, on ∂B, if B(λ)x = 0, then either λ = 0 and ‖x‖ = 2R (and
the first component is positive), or x = 0 and ‖λ‖ = 2ρ (and the first component is
negative). Thus,

J�[B(λ)] = [ρ − ‖λ‖, B(λ)x].
For a more detailed exposition of J� , see [I ].
Our last set of preliminaries concerns �-orthogonal maps. As in § 7, let � be

abelian and W be an orthogonal representation of �. Let V be Rk ×W , where k may
be 0. Then, one may consider the set C⊥ of all �-orthogonal maps F from [0, 1]×BR

into R ×W , which are not zero on the boundary of the cylinder.

Definition 8.4. The set of all �-orthogonal homotopy classes in C⊥ is denoted by
��
⊥SV (S

W ).

Lemma 8.3. If dim V � > 0, then ��
⊥SV (S

W ) is an abelian group, where the addition
is that of Definition 8.2.

Proof. It is enough to check that one may repeat the arguments of Lemma 8.1 (i.e.,
that F(t, x) can be taken orthogonally as (1, 0) for t = 0 and t = 1) and that of
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Lemma 8.2 (for the deformation on A±). Now, both of those arguments were based
on the equivariant Borsuk extension theorem, which is valid for orthogonal maps (see
Corollary 7.1). � 

We shall see, in Chapter 3, Section 6, that ��
⊥SV (S

W ) has a much richer structure

than ��
SV (S

W ). One has also a J -homomorphism. In fact, let B(λ) be a family of
�-orthogonal matrices, then, from Lemma 7.2,

B(λ) = diag(AR

1 (λ), . . . , A
R
m(λ),A

C

1 (λ), . . . , A
C
s (λ)),

where AR

i (λ) correspond to the irreducible real representations in V T n
, while AC

j (λ)

are complex self-adjoint matrices in (V T n
)⊥. As before, one has a map

J�⊥ : �k−1(GL⊥� (W)) → ��
SV (S

W ).

Now, the connected components of GL⊥� (W) are characterized by the Morse index
of AC

j (i.e., the dimension of the space where AC

j is negative definite). Note, that the

addition in �k−1(GL⊥� (W)) is given as in Definition 6.2 and does not correspond to
a product (which is of course not self-adjoint). The base point (corresponding to the
map (1, 0) for t = 0 and t = 1) will be a matrix of the form (−I1, I2) for each Aj ,
where I1 is the identity on a space of dimension equal to the Morse index of Aj .

In this book we will only treat the case k = 1. For the general case see [IV3].

Remark 8.3. The reader may wonder where the finite dimensionality of the spaces
was used, in particular in the definition of ��

SV (S
W ). The answer is that it was never

used and we invite the reader to go over the arguments and check that this group may
be defined also in the case of infinite dimensional spaces.

The problem is that it is likely that this group would be trivial as the following
example shows. Take l2 = {(x1, x2, x3, . . . ) with

∑
x2
i < ∞} and let S be the unit

sphere in l2. Now, the homotopy

h(τ, x) = τ(x1, x2, x3, . . . )+ (1 − τ)(0, x1, x2, . . . )

is valid on S, since it is not 0 there. Hence, the identity on S is homotopic to

(0, x1, x2, . . . ), which, via ((1 − τ 2)
1
2 , τx1, τx2, . . . ) with norm 1, is in turn ho-

motopic to (1, 0, 0, . . . ). Note that if there is a group action, the first homotopy will
not be equivariant, unless there is only one isotropy subgroup. Hence, the identity
is homotopic to (1, 0, 0, . . . ). Thus, any map f (x1, x2, x3, . . . ), which is non-zero
on S will be homotopic to f (1, 0, 0, . . . ), via f (h(τ, x)/‖h(τ, x)‖) followed by the
second homotopy. Hence, any map is homotopic to a constant and �S(S) = {0}.

This is one of the reasons for introducing, in Definition 6.1, compact perturbations
of the identity: that is, ifB = U×W andE = V×W , withU andV finite dimensional
representations of �, then the class C, is reduced to maps of the form

F(t, x) = (8(t, x), g(t, u,w),w − h(t, u,w)),
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where h is compact and x = (u,w). The homotopies have to be in this class C. In
order to define an addition on the set ��

SB (S
E), the most economical way is to use

the approximation by finite dimensional compact �-maps of Theorem 4.1. In fact,
if F(t, x) �= 0 on SB , then there is N such that ‖F(t, x)‖ ≥ 1/2N−1. If not, there
would be (tN , xN) in SB such that ‖F(tN , xN)‖ < 1/2N−1, for all N . From the finite
dimensionality of U , we may assume that (tN , uN) converge to (t, u) and, from the
compactness of h, the sequence h(tN , uN,wN) would converge to some w. Then, wN

would converge to w and one would have F(t, u,w) = 0 for some point in SB .
Take then hN , with hN(I × BR) ⊂ MN a finite dimensional subrepresentation of

W , such that ‖h(t, x)− hN(t, x)‖ ≤ 1/2N . Then, F(t, x) is compactly �-homotopic
on SB to

FN(t, u,wN, w̃N) = (8(t, x), g(t, x), w − hN(t, x)),

where wN is in MN and w̃N is in a complement subrepresentation. The map FN is in
turn compactly �-homotopic to

F̃N (t, u,wN, w̃N) = (8(t, u,wN), g(t, u,wN),wN − hN(t, u,wN), w̃N)

by deforming w̃N in the arguments of 8, g and hN to 0.
Thus, F̃N is a suspension of a finite dimensional map by w̃N . From Lemma 8.1,

one may assume that F̃N = (1, 0, w̃N ) for t = 0 and t = 1, which is compactly
�-homotopic to (1, 0, w) for t = 0 or t = 1. Two such maps may be added, as
in Definition 8.2, and Lemma 8.2 goes through for such maps, replacing (1, 0) by
(1, 0, w) for the finite dimensional approximationhN . Hence,��

SB (S
E), with compact

perturbations of the identity, is an abelian group if dim B� > 0.
We leave to the reader the task of considering other classes of maps, such as

k-set-contractions (see e.g. [IMPV]).

1.9 Symmetries and differential equations

The applications in this book will be mainly to ordinary differential equations. Al-
though it is not difficult to see how to apply the equivariant degree to nonlinear PDE’s
or delay equations, we have chosen, in order to keep the spirit of the preface, to try to
minimize the technical aspects which could obscure the interplay between Symmetry
and Analysis.

The reader is invited to keep in mind the following example: Find 2π -periodic
solutions to the equation

dX

dt
= f (t, X, λ),

where X is in RN, λ is in the space of parameters, f is 2π -periodic in t (for instance f
may be autonomous) and equivariant with respect to a group �0, i.e., f (t, γ0X, λ) =
γ̃0f (t, X, λ).
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For instance, if one wishes to find periodic solutions (of unspecified period) of the
equation

dX

dτ
= f (X),

then, the time scaling t = ντ gives the equivalent system

ν
dX

dt
= f (X)

and 2π/ν-periodic solutions of the first system correspond to 2π -periodic solutions
of the second and the frequency ν appears as an extra-parameter.

As we have seen in Example 1.5, we may write X(t) as

X(t) =
∞∑
−∞

Xne
int ,

with Xn in CN , X−n = X̄n and obtain an equivalent formulation

inXn − fn(X0, X1, . . . , λ) = 0, n = 0, 1, 2, . . .

where the Fourier coefficients will be �0-equivariant, S1 × �0-equivariant (as in Ex-
ample 3.3), if f is autonomous, or Zp×�0-equivariant if f (·, X, λ) is 2π/p-periodic
in t .

The expression dX
dt
−f (t, X, λ)may be regarded as a nonlinear map fromC1

2π (R
N)

into C0
2π (R

N), or between the Sobolev spaces H 1(S1) to L2(S1), where, for p > 0,

Hp(S1) = {
X(t) =∑∞

−∞Xne
int :∑∞

0 |Xn|2(1 + n2p) < ∞}
.

Recall that Hp(S1) ⊂ C0
2π (R

N) for p > 1
2 .

Notice that, if f has a linearization A(t) at some X0, then dX
dt

− A(t)X is a
Fredholm operator of index 0 between any of the above spaces.

Definition 9.1. Let B and E be Banach spaces and L be a linear continuous operator
from B into E. Then L is said to be a Fredholm operator of index i if and only if:

(a) dim ker L = d < ∞,

(b) RangeL is closed and has finite codimension d∗.

The index i of L is the difference d − d∗.

If, in the above example, one assumes that A is a constant matrix (for instance the
0 matrix), then Lx = g is equivalent to

inXn − AXn = gn,
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which is always solvable for any g in L2 (and then X is in H 1), provided gn is in
the range of inI − A (always true for n large enough) i.e., if gn is orthogonal to
ker(−inI − AT ). From Linear Algebra one has that the index is 0. For the case of
a non-constant A, periodic solutions will correspond to starting points X0 such that
/(2π)X0 = X0, where /(t) is a fundamental matrix or one may use a deformation
of A(t) to 0, using the Ljapunov–Schmidt reduction.

In fact, one of the important properties of maps which have linearizations which
are Fredholm operators, is the reduction to a finite dimensional local problem.

Assume that B and E are Banach spaces and consider the equation

F(λ, x) = Ax − T (λ)x − g(λ, x)

from Rk × B into E,A a Fredholm operator, T (λ) is a family of continuous linear
operators with T (0) = 0, ‖T (λ)‖ → 0 as λ → 0 and g(λ, x) = o(‖x‖), uniformly
on λ. If B and E are �-spaces we shall assume that A, T (λ) and g are �-equivariant.

Let then P and Q be two projections (which we may assume to be equivariant,
since ker A and RangeA are subrepresentations) P from B onto ker A and Q from E

onto RangeA. Then,

B = ker A⊕ B2

E = E2 ⊕ RangeA

with B2 a closed subspace (a subrepresentation by Lemma 4.4) and E2 of dimension
d∗. Any x in B is written as x = x1 + x2, with x1 = Px.

Since A is continuous, one-to-one from B2 onto RangeA, there is a continuous
inverse from RangeA onto B2, that is,

AKQ = Q, KA(I − P) = I − P.

One may write the equation as

(A−QT (λ))(x1 + x2)−Qg(λ, x1 + x2)) (I −Q)(T (λ)(x1 + x2)+ g(λ, x1 + x2))

and, using the facts that A − QT (λ) = A(I − KQT (λ)), where for λ small, I −
KQT (λ) is an invertible mapping from B into itself, with an inverse which is given
by power series and that

T (λ)(I−KQT (λ))−1KQ = T (λ)KQ+(T (λ)KQ)2+· · · = (I−T (λ)KQ)−1−I,

as a mapping from E into E, one has that

F(λ, x) = (A−QT (λ))[x2 − (I −KQT (λ))−1KQ(T (λ)x1 + g(λ, x))]
) (I −Q)[T (λ)((I −KQT (λ))−1x1 + x2

− (I −KQT (λ))−1KQ(T (λ)x1 + g(λ, x)))

+ (I − T (λ)KQ)−1g(λ, x)].
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In order to better appreciate this formula, define

H(λ, x1, x2) = x2 − (I −KQT (λ))−1KQ(T (λ)x1 + g(λ, x))

B(λ) = −(I −Q)T (λ)(I −KQT (λ))−1P

G(λ, x) = −(I −Q)(I − T (λ)KQ)−1g(λ, x).

One then has

F(λ, x) = (A−QT (λ))H(λ, x1, x2)⊕B(λ)x1+G(λ, x)−(I−Q)T (λ)H(λ, x1, x2).

It is clear that, if F(λ, x) = 0 and for small λ and x, then H(λ, x1, x2) = 0 has
a unique solution x2 = x2(λ, x1), with ‖x2‖ ≤ C‖x1‖(‖λ‖ + 0(‖x1‖)), provided
g(λ, x) is C1 and ‖T (λ)‖ ≤ C‖λ‖, by using any contraction mapping argument.

Then the zeros of F coincide with those of the bifurcation equation

B(λ)x1 +G(λ, x1 + x2(λ, x1)) = 0,

where B(0) = 0, B(λ) is a d × d∗ matrix and G(λ, x1) = o(‖x1‖).
Taking g = 0, one has that dim ker(A − T (λ)) = dim ker B(λ), while for g any

element of E, one gets codim Range(A − T (λ)) = codim RangeB(λ), that is, the
spectral properties of A − T (λ) can be recovered from those of B(λ). In particular,
Range(A− T (λ)) is closed and A− T (λ) is a Fredholm operator of index d − d∗.

An important particular case, which will be used throughout the book, is when
B = E,A = I −T and T (λ) = λT , with T a compact operator. In this case one may
build up the projections P and Q in two stages. In fact, since T is compact, one has
that ker(I − T )α = ker(I − T )α+β for all β > 0, so, for an α, called the ascent of
I − T , the dimension m of ker(I − T )α is the algebraic multiplicity and one has

E = ker(I − T )α ⊕ Range(I − T )α.

Both subspaces are invariant under T andA = I−T is nihilpotent on ker(I−T )α ,
hence one may choose a basis such thatA is in Jordan form, with d blocks of dimension
mj . On a typical block of dimension m, one has

A = I − T =




0 1 0
. . .

. . .

. . . 1
0 0


 = J, Q =




1 0
. . .

1
0 0


 ,

K =




0 0

1
. . .

. . .
. . .

0 1 0


 = J T , I − P =




0 0
1

. . .

0 1


 ,

T (λ) = λT = λI − λJ.
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Since QJ = J , one obtains J TQ = J T and J T J = I − P , then KQT (λ) =
λJTQ(I − J ) = λJT − λ(I − P) and it is easy to check directly that

(I −KQT (λ))−1 =




1 0 0 0 . . . 0
λ

1+λ
1

1+λ
0 0 . . . 0

λ2

(1+λ)2
λ

(1+λ)2
1

1+λ
0 . . . 0

λ3

(1+λ)3
λ2

(1+λ)3
λ

(1+λ)2
1

1+λ
. . . 0

...
...

...
...

. . .

λm−1

(1+λ)m−1
λm−2

(1+λ)m−1 . . . . . . . . . 1
1+λ




Hence, the first column of T (λ)(I −KQT (λ))−1 will be(
λ

1 + λ
,

λ2

(1 + λ)2 , . . . ,
λm−1

(1 + λ)m−1 ,
λm

(1 + λ)m−1

)T

and B(λ) on this block will be −λm/(1 + λ)m−1.
Hence B(λ) will be a diagonal matrix with components −λmj /(1 + λ)mj−1, for

j = 1, . . . , d and
∑

mj = m, the algebraic multiplicity.
Another case, which is used mainly for bifurcation purposes, is when B ⊂ E, A

is a Fredholm operator of index 0, with 0 as an isolated eigenvalue and T (λ) = λI .
In this case, one has a finite ascent α and

B = B ∩ RangeAα ⊕ ker Aα, E = RangeAα ⊕ ker Aα.

On Jordan blocks as before, A, Q, K , and I − P have the same form, while

(I −KQT (λ))−1 =




1 0 . . . . . . 0
λ 1 0 . . . 0
...

. . .
. . .

...
. . .

. . .
. . .

λm−1 . . . . . . λ 1




,

since I − λKQ = I − λJ . Then, on the block, if x in ker Aα has coordinates
(x1, 0, . . . , 0) and g has components (g1, . . . , gm), one obtains

B(λ)x +G(λ, x)|Block = λmx1 + λm−1g1 + · · · + gm.

Then B(λ) is a diagonal matrix with entries λm1 , . . . , λmd , with
∑

mj = m =
dim ker Aα , the algebraic multiplicity.

Example 9.1 (Equivariant maps). If A, T (λ) and g are equivariant, then, by choosing
equivariant projections, one sees easily that K is also equivariant, the uniqueness of
x2(λ, x1) will imply that x2(λ, γ x1) = γ x2(λ, x1) and the bifurcation equation is
equivariant. In particular, B(λ) has a block-diagonal form, in case B(λ) is invertible.
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Example 9.2 (Gradient maps). If B is continuously imbedded in the Hilbert space E

andF(λ, x) is the gradient of aC2 functional/(λ, x), i.e., /x(λ, x)h = (F (λ, x), h),
for all h in B, then A and T (λ) are self-adjoint operators. Assume that A is a Fredholm
operator (hence of index 0).

One may choose B2 = B ∩ RangeA,E2 = ker A and Q = I − P . It is easy to
see that K is symmetric and that B(λ)T = B(λ).

Furthermore, it is clear that x2(λ, x1) is C1. Let

8(λ, x1) = /(λ, x1 + x2(λ, x1)),

then the Frechet derivative of 8 is such that, for h in ker A

8(λ, x1 + h)−8(λ, x1)

= /x(λ, x1 + x2(λ, x1))(h+ x2(λ, x1 + h)− x2(λ, x1)+ o(h))

= /x(λ, x1 + x2(λ, x1))(I −KQT (λ))−1h+ o(h)

= (F (λ, x1 + x2(λ, x1)), h)+ o(h)

= (B(λ)x1 +G(λ, x1 + x2(λ, x1)), h)+ o(h),

where, in the last equality, one uses that F(λ, x1 + x2(λ, x1)) belongs to ker A, while
KQT (λ)h belongs to RangeA. Hence,

∇8(λ, x1) = B(λ)x1 +G(λ, x1 + x2(λ, x1)).

Example 9.3 (Orthogonal maps). Assume that B ⊂ E are both �-Hilbert spaces and
let F(λ, x) be �-orthogonal, with respect to the scalar product in E and � is abelian.
As above, A is a Fredholm operator of index 0.

Lemma 9.1. Under the above hypothesis, one may choose P and Q such that the
bifurcation equation is �-orthogonal.

Proof. From Lemma 7.2, the orthogonality ofF(λ, x) implies thatA, T (λ) andg(λ, x)
are also �-orthogonal. In particular, A− T (λ) has a diagonal structure on equivalent
irreducible representations of � and, on (ET n

)⊥, its restriction has a complex self-
adjoint form Ã− T̃ (λ) and the above space has the decomposition ker Ã⊕ Range Ã.
Choose P and Q equivariant, hence K and B(λ) will be equivariant and will commute
with Aj . Furthermore, one may choose an orthogonal projection P̃ onto ker Ã with
Q̃ = I − P̃ , hence the part of B(λ) on ker A ∩ (ET n

)⊥ will be B̃(λ) = −P̃ T̃ (I −
K̃(I − P̃ )T̃ )−1P̃ which commutes with Aj and is self-adjoint (expand the inverse in
power series). Hence, B(λ) is �-orthogonal. On the other hand,

−(G(λ, x), Ajx1) = ((I − T̃ K̃Q̃)−1g,Ajx1)

= (g, (I − Q̃K̃T̃ )−1Ajx1)

= (g,Ajx1)+ (Q̃g, K̃T̃ (I − Q̃K̃T̃ )−1Ajx1),
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by using the fact that Aj is 0 on ET n
and that it has a diagonal structure. Since g

is orthogonal, one may replace the first term by −(g,Ajx2). But x2(λ, x1) solves
Qg = (A−QT )(x1 + x2), hence, using the fact that A and T are orthogonal and Q

commutes with Aj , one obtains

(g,Ajx1) = (QT x1, Ajx2).

The same substitution in the second term yields

((I − T̃ K̃Q̃)−1T̃ K̃(A−QT )x2, Ajx1)− (x1, T̃ Q̃K̃T̃ (I − Q̃K̃T̃ )−1Ajx1),

where the first term reduces to (T̃ x2, Ajx1), by writing T̃ K̃(Ã−Q̃T̃ ) = T̃−T̃ K̃Q̃T̃ =
(I − T̃ K̃Q̃)T̃ , since on ET n

one has Ajx1 = 0. The second term is of the form
(x1, LAjx1), with L self-adjoint (expand again the inverse in power series) and hence
0, since we have seen that orthogonality is equivalent to self-adjointness for linear
operators. Thus

−(G(λ, x), Ajx1) = (T x1, Ajx2)+ (T x2, Ajx1) = 0,

since T is �-orthogonal. � 

In the case of autonomous differential equations, we shall assume that the equation

F(X, λ) ≡ dX

dt
− f (X, λ) = 0,

for λ in Rk and X in RN , is such that there are bounded sets 9 in Rk and � in RN ,
with the following properties:

1. f (γ0X, λ) = γ0f (X, λ), for γ0 in �0, a compact abelian Lie group, of dimen-
sion n.

2. � is invariant under �0 and any 2π -periodic solution in �̄ is in fact in �, for
any λ in 9.

Let then
�̃ ≡ {X ∈ H 1(S1) : ‖X‖1 < R,X(t) ∈ �},

where R is chosen so large that any periodic solution in � has ‖X‖1 < R/2 : R
depends upon bounds on f over 9 × � and Sobolev constants. Then, F(X, λ) �= 0
on ∂�̃ and is equivariant with respect to � ≡ S1 × �0.

As particular cases we shall also consider the problem of finding 2π -periodic
solutions to the following Hamiltonian system

H(X, λ) = JX′ + ∇H(X, λ) = 0,
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where X is in R2N, J is the standard symplectic matrix

(
0 −I

I 0

)
and H is C2 and

�0-invariant.
In this case we shall assume that �0 acts symplectically on R2N , i.e., it commutes

with J . Then, again, H(X, λ) is �-equivariant, with � = S1 × �0. In fact, the
following result holds.

Proposition 9.1. The mapping H is �-orthogonal with respect to the L2(S1) scalar
product.

Proof. Here the infinitesimal generators for � will be AX ≡ X′ for the action of S1

and AjX, j = 1, . . . , n, if the rank of �0 is n (i.e., dim �0 = n). Then

(H(X, λ),AX) =
∫ 2π

0
(JX′ ·X′ + ∇H(X, λ) ·X′) dt = 0,

since JY · Y = 0 and the second term integrates to H(X(t), λ), giving 0 on periodic
functions.

On the other hand ∇H(X, λ) · AjX = 0, since H is �0-invariant, and

(JX′, AjX) =
∫ 2π

0
−(XT JAjX)′ dt/2 = 0,

where we have used the relations J T = −J , AT
j = −Aj , JAj = AjJ .

Thus, H(X, λ) is �-orthogonal. � 

The second particular case is that of a second order Hamiltonian

E(X, λ) = −X′′ + ∇V (X, λ) = 0,

under the same assumptions on the potential V . One has the same infinitesimal
generator AX = X′ and AjX, if V is �0-invariant. Here, of course, B is H 2(S1) and,
as before, one has

Proposition 9.2. E(X, λ) is �-orthogonal with respect to the L2(S1) scalar product.

Note that we have taken −X′′ so that the associated operator is non-negative on
L2(S1).

Recall that the equation F(X, λ) = 0 is equivalent to

inXn − fn(X, λ) = 0, n = 0, 1, 2, . . . ,

where X(t) =∑
Xne

int with X−n = X̄n in CN . Recall also that the action of �0 on
RN decomposes this space in irreducible subrepresentations of �0 and one may write
any X in RN as (x1, . . . , xs), with xj in R or C, and the action of �0 on xj is of the
form

γ
j
0 ≡ exp i(〈Nj ,/〉 + 2π〈K,Lj/M〉),
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(see Example 1.4 and §2). Then, on the j -th coordinate of Xn, the action of � =
S1 × �0, will be of the form

γ
j
n = γ

j
0 e

inϕ.

Remark 9.1. In the Hamiltonian case, �0 commutes with J , hence if X = (Y, Z),
with Y and Z in RN , then the actions of �0 on Y and Z are the same. If one of the
complex irreducible representations of �0 associates one coordinate of Y with one of
Z, then J on this pair takes the form of a multiplication by i.

Remark 9.2. For the general case it is easy to see that F(X, λ) = 0 may be written
as Xn − fn/(in), i.e., of the form Id-compact on H 1(S1), a situation where one will
be able to use the equivariant degree in infinite dimension. In the Hamiltonian case,
one could use the same argument (by multiplying by J/(in)) but then one looses the
orthogonality. One has then to keep the strongly indefinite operator JX′ and use a
global Ljapunov–Schmidt reduction in the following form: On a large ball in H 1(S1),
one has that X(t) is bounded as well as D2H(X, λ) (thus, we need that H is C2).
Write X = X1 ⊕ X2, where X1 = PX corresponds to modes n, with |n| ≤ N1 and
X2 to the others. Note that JX′ is self-adjoint on L2(S1) and a Fredholm operator of
index 0 from H 1(S1) into L2(S1). The equation

(I − P)JX′ + (I − P)∇H(X, λ) = 0

is uniquely solvable for X2 as a C1-function of X1, for N1 large enough. In fact, the
linearization at any X0 in the ball has the property that

‖JX′
2 + (I − P)D2H(X0, λ)X2‖L2 ≥ (1 −M/N1)‖X2‖H 1 ,

where M is a uniform bound for ‖D2H(X0, λ)‖. Hence, the global implicit function
theorem may be applied. Furthermore, since (∇H(X, λ),AX) = 0, where AX is
either X′, or AjX, one has that the scalar product

(P∇H(X1+X2(X1, λ)), AX1) = −((I−P)∇H,AX2) = ((I−P)JX′
2, AX2) = 0.

Thus, the reduced equation is �-orthogonal and one may look at

JX′
1 + P∇H(X1 +X2(X1, λ), λ) = 0,

in the finite dimensional space PH 1(S1), where the second term inherits the gradient
structure, as in Example 9.2.

Let now X0(t) be a 2π -periodic function such that F(X0(t), λ) = 0, with �X0 ≡
H . Then, if dim �/H = k, one has that X′

0(t), AjX0(t) belong to ker DF(X0, λ), by
Property 3.3, and exactly k of these vectors are linearly independent (Lemma 2.4). In
other words, each of the above vectors is a solution of the equation

Y ′ −Df (X0(t), λ)Y = 0,
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respectively JY ′ +D2H(X0(t), λ)Y = 0, or −Y ′′ +D2V (X0(t), λ)Y = 0.
We would have to identify VH , V H and VK , where H is the torus part of H and

H/K ∼= Z2, where the subgroups K with that property will lead to period doubling
and “twisted orbits” as explained below.

We shall consider three possible cases:

(a) A time-stationary X0(t)

(b) A rotating wave X0(t)

(c) A truly time periodic X0(t).

Case 9.1. Time-stationary X0(t). If X′
0(t) ≡ 0, then H = S1 × H0, with H0 < �0

such that dim �0/H0 = k and H = S1 × T n−k . Thus, VH is contained in RN ,
the space of constant functions. Recall that Df (X0, λ) is H -equivariant and has the
diagonal structure of Property 3.4 and Theorem 5.3. Since this matrix is constant, one
has for each mode n, the linearization

(inI −Df (X0, λ))Xn.

The spectral properties of Df (X0, λ) will be crucial when discussing the Hopf bifur-
cation, i.e., bifurcation of truly periodic solutions near the constant solution X0.

Case 9.2. Rotating wave X0(t). Assume that X′
0 is a linear combination of the AjX0’s

Writing this relation on Fourier series and taking into account thatAj is diagonal (being
equivariant), it is easy to see that for each coordinate zs of RN , with a non-trivial action
of T n, there is at most one mode ns such that X′

0 is non-zero on that mode.
Consider then the matrix

A(t) = diag(. . . , e−ins t , . . . ),

written this way according to the action of �0, i.e., each exponential corresponds to a
rotation for a pair of real coordinates of X.

Let then Y (t) = A(t)X(t). If Y0(t) = A(t)X0(t), then, since the s’th component
of X0(t) is eins tXns , one has that Y ′0(t) = 0, i.e., the rotating wave X0(t) has been
frozen.

Furthermore,

Y ′ = A′(t)A−1(t)Y (t)+ A(t)f (A−1(t)Y (t), λ),

for any solution of F(X(t), λ) = 0. It is easy to see that A′A−1 = A′(0). Also,
since ns = ∑

λjn
s
j , where the action of T n on zs is via exp(i〈Ns,/〉), with Ns =

(ns1, . . . , n
s
n)

T , then, from the equivariance of f with respect to �0, one has that
f (A−1(t)Y (t), λ) = A−1f (Y (t), λ), by taking ϕj = λj/t . Hence,

Y ′(t) = A′(0)Y (t)+ f (Y (t), λ),

and one has a reduction to the previous case.
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Remark 9.3. If the s’th coordinate of X is Xs = x + iy, then e−ins tXs has to be
interpreted as (

cos nst sin nst

− sin nst cos nst

)(
x

y

)

and Xs(t) = eins tXns has the same decomposition. This can also be seen from the
fact that

x(t) =
∑
n≥0

(xne
int + x̄ne

−int )

y(t) =
∑
n≥0

(yne
int + ȳne

−int ).

Then one has x(t) + iy(t) = Xs(t) = ∑
n≥0(xn + iyn)e

int + (x̄n + iȳn)e
−int . If

ns > 0, then xn + iyn = 0 for n �= ns and x̄n + iȳn = 0 for all n ≥ 0. In particular,
xns = iyns = Xns /2. Hence, one recovers the above expression for Xs(t).

For a Hamiltonian system, the coordinates zs come in pairs or J acts as i on
a complex coordinate. This implies that J commutes with A(t). One arrives at
Y ′(t) = A′(0)Y (t)+ J∇H(Y(t), λ), i.e., to

JY ′ − JA′(0)Y + ∇H(Y(t), λ) = 0,

and a new Hamiltonian H̃ (Y, λ) = H(Y, λ) − (JA′(0)Y, Y )/2. (Note that, since J

and A′(0) commute and both are antisymmetric, their product is self-adjoint).
For a second order Hamiltonian, the above transformation gives rise to

−Y ′′ − A′(0)2Y + 2A′(0)Y ′ + ∇V (Y, λ) = 0.

We leave to the reader to check that this equation is �-orthogonal.

Case 9.3. Truly periodic solutions. If X′
0, A1X0, . . . , Ak−1X0 are linearly indepen-

dent, we may assume, from Case 9.2, that AkX0, . . . , AnX0 are linear combinations
of A1X0, . . . , Ak−1X0 only. In particular, if k = 1, then AjX0 = 0 and X0 belongs
to V T n

. In general, from Lemma 2.4, one may reparametrize T n such that on VH one
has AjX = 0, for j ≥ k, where H is the torus part of H (see Lemma 2.6).

Assume that X0(t) is 2π/p-periodic in time, hence H = Zp × H0, with modes
which are multiples of p. One has dim �0/H0 = k − 1 and H = H 0 = T n−k+1.

Lemma 9.2. Let V0 ≡ (RN)H 0 , then VH = {X(t) ∈ V0,∀t} and (V H )⊥ = {X(t) ∈
V ⊥

0 ,∀t}.

Proof. In fact, H = {(ϕ,/,K) : nϕ + 〈Nj ,/〉 + 〈K,Lj/M〉 ∈ Z, for each non-
zero component Xj

n of X0}, where Nj and Lj have to be interpreted as in §2. (Here
ϕ, ϕ1, . . . , ϕn are in [0,1] and Nj ,K,Lj ,M are integer-valued vectors). From the
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reparametrization of T n, the phases ϕk, . . . , ϕn do not appear in 〈Nj ,/〉 and the fact
thatX′

0 is linearly independent fromAjX0, restricts ϕ, ϕ1, . . . , ϕk−1 to a discrete set in
the above expression. Hence, the torus part of H and H0 corresponds to (ϕk, . . . , ϕn).
The lemma is then clear. � 

Lemma 9.3. There is a γ0 in�0 such that γ q0
0 X0 = X0 andX0(t) = γ0X0(t+2π/q),

with q = pq0.

Proof. As noted above, the set of (ϕ, ϕ1, . . . , ϕk−1) in H is discrete. Since � is
compact, there is a positive minimum ϕ0 such that (ϕ0, 80,K0) is in H , where 80
corresponds to the reparametrization of Lemma 2.4. From the congruences, ϕ0, as
well as each component of 80, is a rational, of the form r/q, with r and q coprime. If
r > 1, then there are integers k and a such that kr + aq = 1 and, changing ϕ0 to kϕ0,
one may take ϕ0 = 1/q.

Then, X0(t) = γ0X0(t + 2π/q), where γ0 corresponds to (80,K0). Now, any
other element of H gives X0(t) = γX0(t + 2πϕ), with γ corresponding to (8,K).
For such an element, let k be such that 0 ≤ ϕ−kϕ0 < ϕ0. Then, X0(t) = γ γ̄ k

0 X0(t+
2π(ϕ − kϕ0)) and (ϕ − kϕ0, 8 − k80,K − kK0) belongs to H , contradicting the
minimality of ϕ0, unless ϕ = kϕ0 and γ = γ k

0 .
Recall that H0 < �0 is the isotropy subgroup of the geometrical coordinates of

X0(t). Since ϕ0 = 1/q, one has that γ q
0 is in H0 and then

H = {k(ϕ0, 80,K0), k = 0, . . . , q − 1} ∪ {(8,K) ∈ H0}.
Let q0 be the smallest integer such that γ q0

0 ∈ H0: from the minimality q = pq0, one
has γ q0

0 X0 = X0 and the lemma is proved. � 

Lemma 9.4. The space VH consists of all 2π/p-periodic functions X(t) with X(t) ∈
V

H0
0 for all t and X(t) = γ0X(t + 2π/q).

Proof. On the component Xj
n the action of H is as γ j

n ≡ exp 2πi(kn/q+k〈Nj ,80〉+
k〈K0, L

j /M〉+〈Nj ,8〉+〈K,Lj/M〉), with (8,K) in H0. Taking k = 0, one needs
that (8,K) is in Hj , the isotropy subgroup of the j’th coordinate, hence H0 < Hj and

X(t) is in V
H0
0 . In particular, γ q0

0 acts trivially on Xj . Hence, taking k = q0, one
concludes that n has to be a multiple of p and X(t) is 2π/p-periodic. The inverse
inclusion is clear. � 

Consider now K such that H/K ∼= Z2. Since K = ⋂
Hjn, the inclusions K <

H
⋂

Hjn < H , imply that either H < Hjn, or K = H
⋂

Hjn, where Hjn is the

isotropy of Xj
n . In the second case, which must hold at least for one Hjn, one has that

for any γ in H , then γ 2 must be in Hjn. In particular, for ϕ = 0 and γ̃ in H0, one
needs γ̃ 2 ∈ Hj and H0/(H0∩Hj) has at most order 2. Let K0 = H0∩Hj , for all such
j’s, then, either K0 = H0, or H0/K0 ∼= Z2. In the second case, let V1 ≡ (RN)K0 , then
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there is a γ1 in H0, with γ 2
1 in K0, i.e., γ1 acts as Id on V

H0
0 and as− Id on V1∩V

H0⊥
0 .

Since γ
q0
0 is in H0, one has that γ 2q0

0 acts as Id on V1. Let V ±
1 be the subspaces of V1

where γ
q0
0 acts as ± Id. Hence, VH0

0 ⊂ V +
1 .

Lemma 9.5. VK consists of all 2π -periodic functions X(t), in V1 for all t , of the form
X(t) = X+(t)+X−(t), with X±(t) = ±γ0X±(t + 2π/q). In particular, if q is odd,
then X±(t) are in V ±

1 and both are 2π/p-periodic. If q is even and p is odd, then X(t)

is in V +
1 and it is 2π/p-periodic. The components of X+(t) in V +

1 are 2π/p-periodic
and those in V −

1 are 2π/p-antiperiodic. The behavior of the components of X−(t)
differs by a factor (−1)q0 .

Proof. For the coordinate Xj , we know that 2q0(〈Nj ,80〉 + 〈K0, L
j /M〉) = aj is an

integer, which is even if Xj is in V +
1 and odd if Xj is in V −

1 . Since (2ϕ0, 280, 2K0)

fixes Xj
n , one has that 2n/q + aj /q0 = b is an integer. From n = bq/2− ajp/2, one

has that, if q is odd, then b has the parity of aj , while, if q is even and aj is odd, then
p has to be even. Even b’s will give X+(t) and odd b’s give X−(t). There are minima
n±j such that the modes of Xj

± are of the form n± = n±j + cq, for any integer c. The

numbers n±j are multiples of p, except if p is even and (for Xj
+) aj is odd, or (for Xj

−)

aj and q0 have opposite parities, in which case n±j are odd multiples of p/2. These
elements prove one inclusion. The reverse inclusion is clear. � 

Remark 9.4. (a) If X±(t) = ±γ0X±(t + 2π/q) then, for X(t) = X+(t) + X−(t),
one has

X(t) = γ 2
0 X(t + 4π/q)

and the relations

X±(t) = 1

2
(X(t)± γ−1

0 X(t − 2π/q)).

Conversely, if X(t) = γ 2
0 X(t+4π/q) then, defining X±(t) by these last relations,

one obtains X±(t) = ±γ0X±(t + 2π/q). Hence, VK is the set of all 2π -periodic
functions, with X(t) in V1 for all t , such that X(t) = γ 2

0 X(t + 4π/q).

(b) If H0/K0 ∼= Z2, then, for any γ in H0, there is α = 0 or 1 such that γ = γ α
1 δ

with δ in K0. Thus, since γ
q0
0 is in H0, one has either α = 0 and γ

q0
0 is in K0, in

particular V −
1 = {0}, or α = 1 and γ

q0
0 has the same action as γ1 on V1, i.e., one may

take γ1 = γ
q0
0 , in particular one has, in this case, VH0

0 = V +
1 . Thus, VH0

0 is strictly
contained in V +

1 if and only if V −
1 = {0}.

(c) The components of X+(t) which lie in V
H0
0 give an element of VH . In partic-

ular, if K0 = H0 and H/K ∼= Z2, one cannot have q odd (since then X−(t) would be
in V −

1 = {0} and V
H0
0 = V +

1 ).
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A last result in this section will be the identification of the irreducible representa-
tions of H in (V H )⊥.

Lemma 9.6. Assume X0, X1, . . . , Xr are the coordinates of a set of equivalent ir-
reducible representations of H0 in V ⊥

0 . Then, for each n0 = 0, . . . , q − 1, there is
a different set of equivalent irreducible representations of H , with isotropy Kn0 , in
(V H )⊥, with VKn0 given by functions Xj(t), j = 0, . . . , r such that

R−2π(n0/q+α0)γ0X
j(t + 2π/q) = Xj(t),

where Rϕ is a rotation of an angle ϕ of the coordinates of Xj , or equivalently RϕX
j =

eiϕXj , and α0 is given by γ0X
0 = e2πiα0X0. Defining aj = q0(αj − α0) with

γ0X
j = e2πiαj Xj , one has more precisely

Xj(t) = xj (t)+ iyj (t),

with xj (t) and yj (t) real, xj (t) = x
j
1 (t) + x

j
2 (t), with x

j
2 (t) = x̄

j
1 (t). Furthermore

the following holds:

1. If 2(n0 − ajp) is not a multiple of q, then

x
j
1 (t) =

∞∑
−∞

xme
i(n0−ajp)t eimqt and yj (t) = i(x

j
2 (t)− x

j
1 (t)),

that is Xj(t) = 2xj1 (t).

2. If 2(n0 − ajp) = lq, then

x
j
1 (t) =

∑
m+l/2≥0

xme
i(lq/2)t eimqt and y

j
1 (t) =

∑
m+l/2≥0

yme
i(lq/2)t eimqt .

If Xj(t) is in VKn0 , then e−2iaj pt X̄j (t) is in VKq−n0 .

Proof. The action of H on X
j
n is of the form γ

j
n exp 2πi〈Nj , 8̃〉, where γ

j
n has the

form given in the proof of Lemma 9.4, while 〈Nj , 8̃〉 = ∑n
k n

j
l 8l is non-trivial in

V ⊥
0 . One will have the same action for different (n, j)’s if the following happens:

taking γ
j
n = Id (i.e., k = 0 and 8 = 0,K = 0) then n

j
l have to be the same for all j ’s

for l = k, . . . , n. Taking k = 0 in γ
j
n , then one needs the same action for all (8,K).

Hence, the different Xj ’s are in the same set of equivalent irreducible representations
of H0 in V ⊥

0 . If αj = 〈Nj ,80〉 + 〈K0, L
j /M〉 gives the action of γ0, then, since γ

q0
0

is in H0, one needs that q0(αj − αl) is an integer ajl . Then, for Xj
nj and Xl

nl
, one has

that (nj − nl)/q + ajl/q0 is an integer. Hence, for X0 one has the modes n0 + mq,
where 0 ≤ n0 < q and m is any integer. For a fixed n0, the modes for Xj will be of
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the form nj = n0 − ajp +mq, where aj = ajo = (αj − α0)q0. The action of H on
that mode is of the form

e2πi(knj /q+kαj+ϕ) = e2πi(kn0/q+kα0+ϕ)

where ϕ corresponds to the action, as S1, of H0 on the coordinate Xj . Hence this
mode is fixed by the group

Kn0 = {(k, ϕ = −k(n0/q + α0), mod 1), k = 0, . . . , q − 1} ∼= Zq .

From here, it is easy to see that, taking k = 1, one has the relation

R2πϕγ0X
j
(
t + 2π/q) = Xj(t).

The converse inclusion is clear.
Now, one needs that Xj(t) = xj (t)+ iyj (t), with xj (t) and yj (t) real, that is

xj (t) =
∑
n≥0

(xne
int + x̄ne

−int )

yj (t) =
∑
n≥0

(yne
int + ȳne

−int ).

Thus, the pair of modes, eint and e−int , will be fixed by Kn0 if and only if either

1. n = n0 − ajp +mq ≥ 0 and x̄n + iȳn = 0 (unless −n has the same form, that
is if 2(n0 − ajp) is a multiple of q), or

2. −n = n0 − ajp +mq ≤ 0 and xn + iyn = 0 (unless 2(n0 − ajp) is a multiple
of q). Thus

xj (t) =
∑

n=n0−ajp+mq≥0

(xne
int + x̄ne

−int )+
∑

n=n0−ajp+mq≤0

( ¯̃xneint + x̃ne
−int ),

while yj (t) has yn = −ixn in the first sum and ỹn = ix̃n in the second sum. Writing

x
j
1 (t) =

∑
n≥0

xne
int +

∑
n≤0

¯̃xneint

and x
j
2 (t) = x̄

j
1 (t), one has xj (t) = x

j
1 (t) + x

j
2 (t), while yj (t) = i(x

j
2 (t) − x

j
1 (t)),

since ¯̃yn = −i ¯̃xn.
If 2(n0 − ajp) = lq, then

xj (t) =
∑

n=n0−ajp+mq≥0

(xne
int + x̄ne

−int )

and yj (t) of the same form and independent from xj (t).
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Note that, if one sets

x̃
j
1 (t) =

∑
n=n0−ajp+mq≥0

(xn + x̃−n)e
int

ỹ
j
1 (t) = i

∑
n=n0−ajp+mq≥0

(x̃−n − xn)e
int ,

then xj (t) = x̃
j
1 + ¯̃xj1 and yj (t) = ỹ

j
1 + ¯̃yj1 , i.e., the two formulations of the lemma

are equivalent.
Finally, if Xj(t) belongs to VKn0 , one has

R2π(n0/q+α0)γ̄0X̄
j (t + 2π/q) = X̄j (t).

For Y j (t) = e−2iaj pt X̄j (t), one computes easily that

R−2π(−n0/q+α0)γ0Y
j (t + 2π/q) = Y j (t).

Note that, if aj = 0, then Y j (t) = X̄j (t), a fact which can also be seen from the
Fourier series expansion.

Note that for q = 1, then n0 = 0 and the unique set of equivalent irreducible
representations is {Y (t), 2π -periodic in V ⊥

0 }. � 

1.10 Bibliographical remarks

In this short section, we would like to give some references to the results in this chapter
and to some more advanced texts.

1. Group actions. There are many books on representations of groups, with a
variety of flavors. Closest to the spirit of the present text are the following:

A. A. Kirillov: Elements of the theory of representations, Springer-Verlag, 1976.
G. E. Bredon: Introduction to compact transformation groups, Academic Press,

1980.
T. Broecker and T. tom Dieck: Representations of compact Lie groups, Springer-

Verlag, 1985.
T. tom Dieck: Transformation groups and representation theory, Springer-Verlag,

1979.
The last three are more inclined towards topology. The results of this section are

taken from [IV1].

2. Fundamental cell lemma. This construction is taken from [IV1] and, in the
particular case of S1, from [IMV2].

A similar construction is developed, for a general Lie group, in
A. Kushkuley and Z. Balanov: Geometric methods in degree theory for equivariant

maps, Springer-Verlag, 1996.
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Lemmas 2.4–2.6 are extracted from [I.V. 2 and 3].

3. Equivariant maps. Some of the results are taken from [I].

4. Averaging. This important tool is taken from Bredon’s book. The discussion
on approximation by finite dimensional equivariant maps is new, although this fact
was used in [IMV1]. The presentation of the other facts is close to [I].

5. Irreducible representations. The material on Schur’s Lemma is standard (see
for instance Kirillov’s book). Corollaries 5.1 and 5.2 follow [I]. Theorem 5.1 is an
adaptation of the standard result. The presentation of Theorems 5.2 and 5.3 follows
[I], with a proof adapted from Pontrjagin’s book: Topological groups, 1939.

6. Extension of �-maps. This is the substance of obstruction theory. Here we
have only used the most basic elements, taken from [I]. for further reading, one may
look at the books of Bredon, tom Dieck and Kushkuley–Balanov. The lemmas in this
section are taken from [I.V. 1 and 2].

7. Orthogonal maps. The material presented here is taken, with some modifica-
tions, from [IV3]. The notion of orthogonal map has also been used, for � = S1, by
S. Rybicki.

8. Equivariant homotopy groups of spheres. The construction and basic prop-
erties are adaptations of the non-equivariant case: see the books of Greenberg or
G. W. Whitehead: Elements of homotopy theory, Springer-Verlag, 1978.

The most useful results can be found in the books by tom Dieck and papers by
Namboodiri and Hauschild. The J�-homomorphism is taken from [I], and the results
on �-orthogonal maps from [IV3].

9. Symmetries and differential equations. In order to apply our techniques to
elliptic equations the reader may consult, for instance, the book by A. Friedman. For
the case of O.D.E’s any book with some Floquet theory may be useful. For the case
of Hamiltonian systems, the book by I. Ekeland: Convexity methods in Hamiltonian
mechanics, Springer-Verlag, 1990, will provide a good introduction to Conley index
methods.

The Ljapunov–Schmidt reduction is from [I]. The applications to Hamiltonian
systems follows the ideas of Amann–Zehnder and is taken from [IV3], as well as the
classification of “twisted orbits”.



Chapter 2

Equivariant Degree

In this chapter we are entering the main part of equivariant degree: we shall construct
this degree, first in finite dimension, give its first properties and examples. Then,
we shall extend it to infinite dimension and apply it to bifurcation and continuation
problems. We shall also give the construction for orthogonal maps.

2.1 Equivariant degree in finite dimension

As explained in the Introduction to this book, a definition of an equivariant degree
through a geometric construction, as in the case of the classical Brouwer degree,
meets several serious difficulties: a “good” definition of genericity, a density result
similar to Sard’s lemma, a consistent definition of the invariants and of their sum.
The construction below avoids most of these difficulties and may also be used in the
non-equivariant case.

The setting of this section is the following: Let B and E be two finite dimensional
�-spaces, where � is a compact Lie group acting via isometries on B and E as in
Chapter 1. We shall indicate by remarks the few places where the finite dimensionality
is used and how to put special hypotheses in order to validate the arguments in infinite
dimensions.

Let � be a bounded, open, �-invariant subset of B and consider a continuous map
f (x), from �̄ into E, such that

(a) f (x) �= 0 for x on ∂�.

(b) f (γ x) = γ̃ f (x), for all γ in � and x in �̄.

Since � is bounded, let BR be a closed ball of radius R and centered at the origin,
containing �. Since the action on B is an isometry, BR is �-invariant. Then, there is
a Dugundji–Gleason �-extension f̃ (x), from BR into E, of f (x) (see Theorem 6.1 of
Chapter 1).

Let then N be a �-invariant neighborhood of ∂�, such that N is open, contained
in BR and f̃ (x) �= 0 on N̄ : the existence of N follows from Lemma 4.3 of Chapter 1,
using the fact that ∂� ⊂ U , where U is the open �-invariant subset of BR such that
f (x) �= 0 (one may also restrict to a small neighborhood of ∂�). Let ϕ(x), from BR

into [0,1], be a �-invariant Uryson function with value 0 in �̄ and 1 outside � ∪ N .
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Let F(t, x) : [0, 1] × BR → R× E be the map defined by

F(t, x) = (2t + 2ϕ(x)− 1, f̃ (x)).

It is clear that F is �-equivariant, where the action on t in [0,1] and on the first
component of R×E is trivial. Furthermore, F(t, x) �= 0 if x is in N̄ (since f̃ (x) �= 0
there) and if x is outside �∪N (there ϕ(x) = 1 and the first component of F̄ reduces
to 2t + 1 ≥ 1). Hence, if F(t, x) = 0, then x is in �, f̃ (x) = f (x) = 0, ϕ(x) = 0
and t = 1

2 . In particular,

F(t, x) : SB ≡ ∂([0, 1] × BR) → R× E\{0}
defines an element, [F ]� , of ��

SB (S
E), as defined in §8 of Chapter 1. Note that, if

E� = {0}, then, since f̃ (0) = 0 in this case, our problem will be interesting only if
0 is not in �. Then one has ϕ(0) = 1, and the first component is always positive, as
required in §8 of Chapter 1.

Definition 1.1. The equivariant degree of f with respect to �, is defined as [F ]� in
��

SB (S
E), which is an abelian group provided dim B� > 0.

Remark 1.1. It is clear that up to here we have not used the finite dimensionality of
B and E. Thus, one may define the �-degree either in general or, as in Remark 8.3
of Chapter 1, for maps which are compact perturbations of the identity (or k-set-
contractions).

The next step in our construction is to show that the class of F is independent of
R,N and ϕ.

Proposition 1.1. The homotopy class [F ]� does not depend on

(a) the �-invariant Uryson function ϕ,

(b) the choice of the �-invariant neighborhood N of ∂�,

(c) the �-equivariant extension f̃ of f ,

(d) the choice of the ball BR containing �̄.

Proof. (a) Let ϕ0, ϕ1 : BR → [0, 1] be two Uryson functions with values 0 in �̄ and
1 outside � ∪ N . Let ϕτ (x) = τϕ1(x) + (1 − τ)ϕ0(x), τ in [0, 1], which is also a
Uryson function with the same properties. Let

Fτ (t, x) = (2t + ϕτ (x)− 1, f̃ (x)).

Then Fτ is an admissible �-homotopy between F0 and F1, therefore [F0]� = [F1]� .
(b) Let us first assume that there are two invariant open neighborhoods N0 and

N1, of ∂�, such that N0 ⊂ N1 ⊂ BR . Let ϕ0 and ϕ1 be the �-invariant Uryson
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functions associated to N0 and N1, respectively. Let ϕτ (x) = τϕ1(x)+ (1− τ)ϕ0(x)

and Fτ (t, x) be defined as above. Since ϕτ (x) = 0 for x in �̄ and ϕτ (x) = 1 for x
outside � ∪N1, the �-homotopy Fτ is admissible and [F0]� = [F1]� .

In the case where N0 and N1 are arbitrary, one can use the previous argument
applied to N0 ∩N1 and to each N0 and N1.

(c) Given two �-equivariant extensions f̃0 and f̃1 of f , one can choose a �-
invariant open neighborhood N of ∂� on which the �-equivariant extensions f̃τ (x) ≡
τ f̃1(x) + (1 − τ)f̃0(x) is not vanishing for τ in [0, 1] = I , applying Lemma 4.3 of
Chapter 1 to ∂� and to U = {x in BR : f̃τ (x) �= 0 for all τ in I }: in fact UC is closed
from the compactness of I and the continuity of f0 and f1. This map will induce an
admissible �-homotopy and the assertion follows.

(d) Let R0 < R with � ⊂ BR0 . Let f̃0 and f̃ be two �-equivariant extensions of
f to BR0 and BR , respectively. By (b) and (c) we may assume that f̃0 and f̃ do not
vanish on a common �-invariant open neighborhood N ⊂ BR0 of ∂� and such that
f̃ |BR0

= f̃0. Let ε > 0, be such that ‖x‖ ≤ R0 − ε, if x is in N̄ . For any τ in I

consider the �-map
f̃τ (x) = f̃ (α(τ, x)x)/α(τ, x),

where

α(τ, x) =
{

1, if ‖x‖ ≤ R0 − ε

1 + τ(R − R0)(‖x‖ − R0 + ε)/(εR0), if R0 − ε ≤ ‖x‖ ≤ R0.

The scaling δτ (x) = α(τ, x)x is a �-equivariant homeomorphism from BR0 into
BR , leaving fixedBR0−ε and δ1(BR0) = BR . Hence, f̃τ (x) is a�-equivariant extension
of f to BR0 , for any τ in I . Thus, from (c), since f̃0 = f̃ |BR0

, the �-homotopy class

[F0]� of F0 induced by f̃0 coincides with the class [F1]� , where F1 is induced by f̃1.
Moreover, if we extend f̃1(x) as f̃ (Rx/‖x‖)(‖x‖/R) for R0 ≤ ‖x‖ ≤ R, we

obtain a �-equivariant extension of f to BR . Thus, once again applying (c), we have
that [F1]� = [F ]� , where we have identified, via the scaling, the two groups of
�-homotopy classes of maps defined on the two cylinders I × BR0 and I × BR . � 

Remark 1.2. Proposition 1.1 is also valid in the case of infinite dimensions, if there
are no restrictions on the maps. Furthermore, in the case of �-compact perturbations
of the identity, f̃ (x) is untouched in the proofs of (a) and (b) and it is easy to see
that the linear homotopy of (c) and the scaling of (d) will preserve the character of
perturbations of the identity. Hence, in both cases, the �-degree is well defined.

2.2 Properties of the equivariant degree

In this section we shall see that the equivariant degree has all the properties of the
Brouwer degree (up to a slight condition for the addition and noticing that in general
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this degree will not be a single integer). As before, we shall leave to remarks the case
of infinite dimensions.

Property 2.1 (Existence). If deg�(f ;�) is non-trivial, then there exists x in � such
that f (x) = 0.

Proof. As noted in §8 and Lemma 6.1 of Chapter 1, the neutral element 0� in��
SB (S

E)

consists of the class of all maps which have a non-vanishing �-extension to I × BR .
Thus, if f (x) �= 0 in �, then F(t, x) �= 0 on I × BR and [F ]� = 0. � 

Note that, due to the equivariance, f (γ x) = 0, that is, solutions come in orbits.

Property 2.2 (�-homotopy invariance). Let fτ : �̄ → E, 0 ≤ τ ≤ 1, be a continu-
ous one-parameter family of �-equivariant maps not vanishing on ∂� for all τ in I .
Then the �-degree deg�(fτ ;�) does not depend on τ .

Proof. Immediate from the fact that the construction of Fτ : I × BR → R × E can
be performed uniformly with respect to τ . � 

Remark 2.1. In the infinite dimensional case, one may construct f̃τ an equivariant
extension to I × BR of fτ on I × �̄. Then, taking A = {x in BR : f̃τ (x) =
0 for some τ }, which is a closed set, since if fτn(xn) = 0 and {xn} converges to x,
then one may assume that for some subsequence, also denoted by τn, one has {τn}
converging to τ and f̃τ (x) = 0. Then, U = AC is open and contains ∂�. Applying
Lemma 4.3 of Chapter 1, one obtains a common N for all τ ’s.

In the particular case of �-compact perturbations of the identity, one has that
‖fτ (x)‖ > ε > 0 for (τ, x) in I×∂� and for some ε: if not one would have a sequence
(τn, un,wn), with fτn(un + wn) = (gτn(un + wn),wn − hτn(un + wn)) going to 0.
The compactness of hτ (x) and the finite dimensionality of I × P�̄, P the projection
on U will imply the convergence of some subsequence and a zero of fτ (u + w) on
∂�. The same argument will show that there is an invariant η-neighborhood of ∂�
on which ‖fτ (x)‖ ≥ ε

2 .
Hence, in both cases, one has the homotopy invariance property.

Property 2.3 (Excision). Let f : �̄ → E be a continuous �-equivariant map such
that f (x) �= 0 in �̄\�0, where �0 ⊂ � is open and �-invariant. Then

deg�(f ;�) = deg�(f |�̄0
;�0).

Proof. If f̃ , N and ϕ correspond to deg�(f ;�), then f̃ is also an extension of f |�̄0
,

which never vanishes on the �-invariant neighborhood N̄ ′ = (�̄\�0)∪ N̄ ∪ (�̄∩ N̄0)

of ∂�0. Since �̄0 ∪ N̄ ′ = �̄ ∪ N̄ , the Uryson function ϕ is also a Uryson function
associated to N̄ ′. Thus, from Proposition 1.1, one has that [F ]� = deg�(f |�0;�0).
In particular, if f (x) �= 0 for all x in �̄, then deg�(f ;�) = 0, taking �0 = φ. � 
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Remark 2.2. Using the excision property, we may extend the definition of �-degree
to the class of �-equivariant maps f : � → E, when � is not necessarily bounded,
provided that f−1(0) is a compact set, by restricting f to a bounded open �-invariant
set �0 containing f−1(0).

Property 2.4 (�-homotopy invariance). Let fτ : �̄ → E, 0 ≤ τ ≤ 1, be a continu-
ous one-parameter family of �-equivariant maps not vanishing on ∂� for all τ in I .
Then, the �-degree deg�(fτ ;�) does not depend on τ .

Property 2.5 (Suspension). If there is a�-extension f̃ toBR of f , such that f̃ (x) �= 0
on B̄R\� (in particular, if � = BR), then

deg�(f ;�) = deg�(f̃ ;BR) = Q0[f̃ ]�,
where Q0 is the suspension (one-dimensional) homomorphism, by 2t − 1.

Proof. Since deg�(f ;�) = [2t + 2ϕ(x)− 1, f̃ (x)]� , we may deform ϕ(x) to 0 and
obtain the equality with [2t−1, f̃ (x)]� . Using a radial extension of f̃ toBR′ , R′ > R,
one obtains similarly that this class is equal to deg�(f̃ ;BR). (One may also use the
excision property to get deg�(f̃ ;BR) = deg�(f ;�)). � 

Property 2.6 (Hopf property). If � is a ball andQ0 is one-to-one, then deg�(f ;�) =
deg�(g;�) if and only if f |∂� is �-homotopic to g|∂�.

Proof. Follows immediately from Property 2.4. In this case the�-degree characterizes
completely ��

SB (S
E). � 

Property 2.7 (Additivity up to one suspension). If � = �1 ∪ �2, �i open with
�̄1 ∩ �̄2 = φ, then

Q0 deg�(f ;�) = Q0 deg�(f ;�1)+Q0 deg�(f ;�2),

where Q0 is again the suspension by 2t − 1.

Proof. Take N = N1 ∪ N2, with N̄1 ∩ N̄2 = φ and let ϕ, ϕ1, ϕ2 denote the partition
functions associated to N , N1, N2. Then

F(t, x) = (2t + 2ϕ(x)− 1, f̃ (x))

is �-deformable to

F̃ (t, x) =
{
(2t + (1 − 2t)(2ϕ(x)− 1), f̃ (x)), 0 ≤ t ≤ 1

2

(1, f̃ (x)), 1
2 ≤ t ≤ 1,

by replacing 2t + 2ϕ(x) − 1 with 2t + (1 − 2tτ )(2ϕ(x) − 1) for 0 ≤ t ≤ 1
2 and by

τ + (1− τ)(2t + 2ϕ(x)− 1) for 1
2 ≤ t ≤ 1: the only zeros of this homotopy are such

that f (x) = 0, for x in �, and 2t = (1 + τ)−1.
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Now, if one changes t by 1− t in the above formula, one obtains−[F̃ ]� = −[F ]� .
Hence,

[F ]� − [F1]� =
{
(2t + (1 − 2t)(2ϕ(x)− 1), f̃ (x)), 0 ≤ t ≤ 1

2

(2(1 − t)+ (2t − 1)(2ϕ(x)− 1), f̃ (x)), 1
2 ≤ t ≤ 1,

where [F1]� = deg�(f ;�1).
Note that, since F(t, x) = F̃1(t, x) = (1, f̃ (x)) for 1

2 ≤ t ≤ 1, then

[F̃ ]� − [F̃1]� =
{
F̃ (2t, x), 0 ≤ t ≤ 1

2

F̃1(2 − 2t, x), 1
2 ≤ t ≤ 1,

according to Definition 8.2 of Chapter 1, is effectively the above difference by using
the �-homotopy

Hτ (t, x) =
{
F̃ ((2 − τ)t, x), 0 ≤ t ≤ 1

2

F̃1((2 − τ)(1 − t), x), 1
2 ≤ t ≤ 1.

Consider next the �-homotopy

H̃τ (t, x) = (hτ (t, x), f̃ (x)),

where

hτ (t, x) =




1, if x �∈ �̄ ∪ N̄

2t + (1 − 2t)(2ϕ1 − 1), if x ∈ �̄1 ∪ N̄1 and 0 ≤ 2t ≤ τ

τ + (1 − τ)(2ϕ1 − 1), if x ∈ �̄1 ∪ N̄1 and τ ≤ 2t ≤ 2 − τ

2(1 − t)+ (2t − 1)(2ϕ1 − 1), if x ∈ �̄1 ∪ N̄1 and 2 − τ ≤ 2t ≤ 2

2t + (1 − 2t)(2ϕ2 − 1), if x ∈ �̄2 ∪ N̄2 and 0 ≤ t ≤ 1
2

1, if x ∈ �̄2 ∪ N̄2 and 1
2 ≤ t ≤ 1

It is easy to check that H̃τ is well defined (recall that ϕ|�̄i∪N̄i
= ϕi, i = 1, 2) and

continuous. Clearly, [H̃1]� = [F ]� − [F1]� , since ϕ2|�̄1∪N̄1
= 1. On the other hand,

H̃0(t, x) = (2ϕ1(x) − 1, f̃ (x)) if x ∈ �̄1 ∪ N̄1 (hence, H0 is non-zero there) and
is F̃2(t, x) on �̄2 ∪ N̄2. That is, H0 is an extension of F̃2 which is not vanishing on
I × (BR\(�̄2 ∪ N̄2)).

Now, from Properties 2.3 and 2.4,

deg�(H0; I × BR) = deg�(F̃2; I ×�2) = deg�(F̃2; I × BR) = Q0[F̃2].
Finally, deg�(H0; I × BR) = Q0[H0]� = Q0[H1]� = Q0([F ]� − [F1]�). Since Q0
is a morphism, this proves the additivity. � 
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Remark 2.3. In the above proof, if �2 is a ball (hence, by the invariance, centered
at the origin), then, since H̃0 is non-zero on I × (BR\�̄2 ∪ N̄2), the class of H̃0 on
∂(I ×BR) is the same, by a radial retraction, as the class of H̃0 on ∂(I × �̄2). That is,
[H̃0]� = [F̃2]� = [H̃1]� = [F̃ ]� − [F̃1]� . Hence, in this case, the addition formula
is true without a suspension.

This is not true in general, as the following example shows:

Example 2.1. Let f (x1, x2, x3) = f1 + if2 = (x2
1 + x2

2 − 1+ ix3)((x1 − 1)2 + x2
3 −

1 + ix2), be a map from R3 into R2 (here � = {e}.) The zeros of f are the two
linked circles S1 = {x2

1 + x2
2 = 1, x3 = 0} and S2 = {(x1 − 1)2 + x2

3 = 1, x2 = 0}.
Take B = {(x1, x2, x3) : x2

1 + x2
2 + x2

3 < 4} and �j be two small disjoint tubular
neighborhoods of Sj , j = 1, 2.

Then one has, by Property 2.3, that deg(f ;�) = deg(f ;B) = Q[f ]. But [f ] is
in �2(S

1) = 0, hence deg(f ;B) = 0, see Remark 8.1 in Chapter 1.
On �1, one may perform the deformation

(x2
1 + x2

2 − 1 + ix3)[τ((x1 − 1)2 + x2
3 − 1)− (1 − τ)x1 + ix2];

on ∂�1 the first factor is non-zero; thus, a zero would have x2 = 0, x1 close to±1 and
x3 close to 0. If x1 is close to 1, the deformed term is negative, while if x1 is close to
−1, the deformed term is positive. Hence, deg(f ;�) = deg(−z̄(|z|2−1+ ix3);�1),
where z = x1 + ix2. Now, in (2t + 2ϕ(x) − 1, f̃ (x)), one may take for f̃ (x) the
above map (since ϕ is 1 if z = 0) and linearly deform ϕ(x) to (|z|2 − 1)2. Then
one may deform (|z|2 − 1+ ix3) via (|z|2 − 1)[(1+ τ)(1− τ(2t − 1))] + ix3, since
1 − τ(2t − 1) ≥ 0, being 0 only if τ = t = 1, for which 2t − 1 + 2(|z|2 − 1)2 ≥ 1.
One obtains deg(f ;�1) = [2t − 1+ 2(|z|2 − 1)2,−z̄(4(|z|2 − 1)(1− t)+ ix3)]. By
performing the rotation, on the first component and on the term 4(1 − t)(|z|2 − 1)(

τ −(1 − τ)+ 2τ(|z|2 − 1)
1 − τ − 2τ(|z|2 − 1) 2τ

)(
2t − 1
|z|2 − 1

)
,

one arrives at deg(f ;�1) = [1 − |z|2,−z̄(2t − 1 + ix3)] = η, where η is the Hopf
map of Remark 8.1 of Chapter 1. Then, deg(f ;�1) = 1.

Similarly for �2, make the deformation

[τ(x2
1 + x2

2 − 1)+ (1 − τ)(x1 − 1)+ ix3]((x1 − 1)2 + x2
3 − 1 + ix2).

On ∂�2, an eventual zero would be for x3 = 0, (x1, x2) close to (2, 0) or to (0, 0). In
the first case the deformed term is positive, while in the second case it is negative.

The resulting map (x1 − 1 + ix3)((x1 − 1)2 + x2
3 − 1 + ix2) can be written as

(y1−iy2)(y
2
1+y2

2−1+iy3) under the change of variables y1 = x1−1, y2 = −x3, y3 =
x2, with a positive Jacobian and �2 is sent onto �1. Then, one has deg(f ;�2) = 1:
the rotation from z̄ to −z̄, having Jacobian 1, is a valid deformation.

Then, deg(f ;�1∪�2) = 0 �= deg(f ;�2)+deg(f ;�2) = 2. Clearly, when one
suspends, the equality holds since 2Q0η = 0 (see Remark 8.1 of Chapter 1).
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Property 2.8 (Universality). If 6(f ;�) is any other �-degree with the properties
2.1–2.3 and Q0 is one-to-one, then if 6(f ;�) is non-trivial, this is also the case for
deg�(f ;�).

Proof. One has 6(F ; I × BR) = 6((2t − 1, f ); I × �) = Q06(f ;�), where the
first equality comes from the excision property 2.3 and the second is the suspension.
Hence, if deg�(f ;�) = 0, then [F ]� has a non-zero �-extension from ∂(I × BR) to
I × BR . By Property 2.1, 6(F ; I × BR) must be trivial and, since Q0 is one-to-one,
6(f ;�) is also trivial. � 

Remark 2.4. Note that properties 2.3–2.7 are also valid in the infinite dimensional
case, since either f̃ (x) is untouched or changed by a scaling. Hence, all the above
properties hold in the two cases of infinite dimensional settings: the general one and
that of �-compact perturbations of the identity.

Property 2.9 (Brouwer topological degree). If B = E and � = {e}, then

deg{e}(f ;�) = degB(f ;�), the Brouwer degree of f.

Proof. Since deg{e}(f ;�) = [F ] = degB(F ; [0, 1] × BR), from Remark 8.1 of
Chapter 1, this last degree, by excision, is equal to

degB((2t − 1, f (x)); I ×�) = degB(2t − 1; I ) degB(f (x);�) = degB(f ;�)

recalling that ϕ(x) = 0 on � and using the product formula for the Brouwer degree.
� 

It is clear that for a compact perturbation of the identity, B = E and � = {e} one
recovers the Leray–Schauder degree.

In [I.M.V. 0.], the class of �-epi maps has been introduced. Its definition, for the
case of a bounded domain runs as follows

Definition 2.1. A continuous �-equivariant map f : �̄ → E is called �-epi provided
that

1. f (x) �= 0 on ∂�

2. f (x) = h(x) has a solution in �, for any h continuous �-equivariant compact
map with support contained in �.

Lemma 2.1. If deg�(f ;�) �= {0} then f is �-epi.

Proof. This follows at once from deg�(f ;�) = deg�(f − h;�), since if two �-
maps, f and g, coincide on ∂�, they must have the same �-degree: this last fact
is an immediate consequence of the homotopy property, by using the deformation
τf (x)+ (1 − τ)g(x) (which is a �-compact perturbation of the identity). � 
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2.3 Approximation of the �-degree

We have seen, in the two last sections, that the �-degree may be defined in the same
way in the case of infinite dimensional spaces B and E, with all the properties 2.1–2.8.
In this section, we shall compute deg�(f ;�) for f a �-compact perturbation of the
identity, by appealing to suitable finite dimensional approximations. Thus, we shall
consider two �-spaces B and E such that

B = U ×W

E = V ×W

where U and V are finite dimensional �-representations and W is an infinite dimen-
sional �-space. The maps and homotopies will be of the following form:

f (x) = f (u,w) = (g(u,w),w − h(u,w)),

where g(u,w) is in V , h is compact and g and h are �-equivariant. Homotopies will
affect only g and h.

From Theorem 4.1 of Chapter 1, we know that for any integer n, there is a finite
dimensional �-subrepresentation Mn of W and a �-equivariant map hn(u,w) : B →
Mn, such that

‖h(u,w)− hn(u,w)‖ ≤ 1/2n,

for any (u,w) in BR . Define

fn(x) = fn(u,w) = (g(u,w),w − hn(u,w)).

We have seen, the last time in Remark 2.1, that the compactness of h(u,w),
together with the finite dimensionality of U , and the fact that f (x) is non-zero on N̄

imply that there is an ε > 0, such that ‖f (x)‖ > 2ε, for x in N̄ , where N is the
�-invariant neighborhood of ∂� used in the definition of the �-degree of f .

Hence, it follows that there is an integer n0 such that for n ≥ n0,

‖fn(x)‖ > ε, for x in N̄,

and that
deg�(f ;�) = deg�(fn;�),

since the linear deformation τf (x) + (1 − τ)fn(x) is non-zero on ∂� and is a
�-compact perturbation of the identity.

Furthermore, if one writes w = wn ⊕ w̃n, with wn in Mn and w̃n in a �-invariant
complement M̃n, it is clear that the �-homotopy

f τ
n (x) = (g(u,wn + τw̃n), w − hn(u,wn + τw̃n)),

is also valid (since a zero of f τ
n (x) must have w̃n = 0 due to the fact that hn(x) is in

Mn). If xn = u⊕ wn, let

f̃n(xn) = (g(u,wn),wn − hn(u,wn)),
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and �n = � ∩ (U ×Mn), N̄n = N ∩ (U ×Mn). Since ∂�n ⊂ N̄n ∩ (U ×Mn), we
have that f̃n(xn) does not vanish on N̄n, for n ≥ n0. Therefore, deg�(f̃n;�n) is well
defined and, since f 0

n (x) is the suspension of f̃n by M̃n, one has

deg�(f ;�) = QM̃n deg�(f̃n;�n).

It is clear that, if we had not taken care of seeing that the finite dimensional
construction extends directly to the infinite dimensional case, we would have here an
alternative way of defining the �-degree through finite dimensional approximations.
This is, of course, nothing else but an adaptation of the classical technique due to Leray
and Schauder when constructing the topological degree for compact perturbations of
the identity via the Brouwer degree of their finite dimensional approximations, noticing
that QM̃n in this case is an isomorphism, due to the product formula.

To be more precise, we would have to proceed by comparing deg�(f̃n;�n) and
deg�(f̃m;�m), for n,m ≥ n0. To this end, denote by Mn,m the �-invariant space
(Mn,Mm) and let Pn,m, Pn and Pm be the �-projections on Mn,m, Mn and Mm re-
spectively. Set

W̃ = (I − Pn) + Pn,mW

and w̃ = (I − Pn) + Pn,mw. Clearly, W̃ is �-invariant and Mn ⊕ W̃ = Mn,m. Put
�n,m = � ∩ (U ×Mn,m) and let

f̃ : B̄ ∩ (U ×Mn,m) → V ×Mn,m

be the �-equivariant map defined by

f̃ (u,wn, w̃) = (g(u,wn, w̃), wn − hn(u,wn, w̃), w̃).

Notice that f̃ (u,wn, 0) = f̃n(u,wn).
One has the following

Lemma 3.1. deg�(f̃ ;�n,m) = QW̃ deg�(f̃n;�n).

Proof. Note first that, by the excision property of the �-degree, we may replace the
set �n,m by the set �n,m ∪ (�n × {w̃ ∈ W̃ : ‖w̃‖ < ε}) and, in turn, this set by the
set �n × {w̃ ∈ W̃ : ‖w̃‖ < ε}. We may also deform the map f̃ to (f̃n(u,wn), w̃).

Set Nn = N ∩ (U ×Mn) and ϕn = ϕ|B∩(U×Mn), where ϕ is the Uryson function
associated to N . Obviously, ∂�n ⊂ Nn and ϕn is a �-invariant Uryson function
associated to Nn.

If Bε denotes {w̃ ∈ W̃ : ‖w̃‖ < ε}, then Nn×B2ε is a �-invariant neighborhood of
∂(�n×Bε) such that f̃ (u,wn, w̃) is not zero on it. Let ψ : B̄∩ (U ×Mn,m) → [0, 1]
be defined as

ψ(u,wn, w̃) =



ϕn(u,wn), if ‖w̃‖ ≤ ε

ϕn(u,wn)(2 − ‖w̃‖/ε)+ ‖w̃‖/ε − 1, if ε < ‖w̃‖ ≤ 2ε

1, if 2ε ≤ ‖w̃‖.
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Clearly, ψ is a �-invariant Uryson function associated to N̄n × B̄2ε. It follows that in
the �-homotopy class of deg�(f̃ ;�n,m) we have the map (2t + 2ψ(u,wn, w̃) − 1,
f̃ (u,wn, w̃)), which can be deformed (via a convex �-homotopy) to the map

(2t + 2ϕn(u,wn)− 1, f̃n(u,wn), w̃),

which is the W̃ -suspension of deg�(f̃n;�n). � 

Clearly, Lemma 3.1 can be equally applied to f̃m and to f̂ (x) = (g(u,wn, ŵ),

wm − hm(u,wm, ŵ), ŵ), where wm = Pmw and ŵ = (I − Pm) + Pnmw. Hence, we
have that

deg�(f̂ ;�n,m) = QŴ deg�(fm,�m).

Finally, it is clear that f̂ and f̃ are �-homotopic, via a convex homotopy, on

∂�m,n. Therefore, QW̃ deg�(fn;�n) = QŴ deg�(fm;�m), provided n,m ≥ n0.
To perform the last step of our construction, we would need that the �-suspensions

QW̃ and QŴ should be one-to-one. We could then define deg�(f ;�) as the direct
limit of the finite dimensional �-degrees, deg�(fn;�n) and ��

SU×W (SV×W) as the

direct limit of ��
SU×Mn

(SV×Mn).

Remark 3.1. Since in this alternative approach, we are asking for one-to-one suspen-
sions, we would have, in this case, the complete additivity of the �-degree.

Furthermore, it is clear that if U = V and � = {e}, then deg�(f ;�) is the
Leray–Schauder degree of f with respect to �.

Note that, in order to apply the finite dimensional approximation, one has to keep
track of the suspensions used, in particular of the orientation chosen.

2.4 Orthogonal maps

The reader can see easily that one may extend the �-degree to other categories of infi-
nite dimensional maps, such as k-set contractions, A-proper orC1-Fredholm nonlinear
maps, as in the case of the Leray–Schauder degree. However, the case of orthogonal
maps is more interesting since the invariants which will give this degree are much
richer, as we shall see in the next chapter, even in the finite dimensional case.

Let then � be abelian, U = Rk × V be a finite dimensional representation of
� (with trivial action on Rk), � be an open �-invariant subset of U and consider a
�-orthogonal map f (λ, x) from �̄ into V such that:

f (λ, γ x) = γf (λ, x)

f (λ, x) · Ajx = 0, j = 1, . . . , n,

f (λ, x) �= 0 if (λ, x) ∈ ∂�,

for Aj the infinitesimal generators of the action of the torus part of �.
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As proved in Theorem 7.1 of Chapter 1, one may extend f (λ, x) to a �-orthogonal
map f̃ (λ, x), for (λ, x) in BR , a large ball, centered at the origin and containing �.

It is then clear that one may repeat the construction for the �-degree: take an
invariant neighborhood N of ∂� where f̃ (λ, x) is non-zero, construct a �-invariant
Uryson function and define

F(t, λ, x) = (2t + 2ϕ(λ, x)− 1, f̃ (λ, x))

which will be a �-orthogonal map on I × BR and non-zero on its boundary, thus,
defining an element of the abelian group ��

⊥SU (S
V ), see Lemma 8.3 in Chapter 1.

Definition 4.1. Define the orthogonal degree of f , deg�⊥(f ;�), as [F(t, λ, x)]� in
��
⊥SU (S

V ).

It is easy to see that, as in Proposition 1.1, this orthogonal degree is independent
of the construction, since all the deformations can be chosen to be �-orthogonal.

Theorem 4.1. The orthogonal degree has all the properties 2.1–2.7, i.e., existence,
homotopy invariance (for�-orthogonal deformations), excision, suspension, the Hopf
property, additivity (up to one suspension) and universality.

Proof. We invite the reader to check all those properties. If k = 0, we shall prove
later that the additivity is true without any suspension. � 

We leave also to the reader the task of extending this degree to infinite dimensions
for �-orthogonal and compact perturbations of the identity. The examples we shall
be looking at can be studied by a global reduction to finite dimensions, as explained
in Remark 8.2 of Chapter 1, avoiding in this way some of the technicalities necessary
for the infinite dimensional setting.

Remark 4.1. We have seen that gradients of �-invariant functionals are orthogonal
maps (Example 7.1 of Chapter 1). That is, if /(λ, x) is �-invariant then f (λ, x) =
∇x/(λ, x) is �-orthogonal. In this case, one could reduce the class of maps to
gradients and define a degree in the following way: Assume that f (λ, x) is non-zero
on ∂� and let BR be the ball containing �. Let /̃(λ, x) be an invariant extension of
/ to BR .

By using mollifiers, one may assume that /̃ is C1 in x and that ∇x/̃(λ, x) ≡
f̃ (λ, x) is arbitrarily close to f (λ, x). In fact, let ϕ(ρ) : R+ → R+ be decreasing,
C∞, with values A for ρ < ε0 and 0 for ρ ≥ 1, where A is such that

∫
U
ϕ(‖z‖)dz = 1,

for z = (λ, x). If dim U = N , let

/̃ε(λ, x) = ε−N

∫
U

ϕ(‖z− y‖)/̃(y) dy.
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Then, /̃ε(λ, x) is C∞ and �-invariant (since the action of � is an isometry and
‖γ z− y‖ = ‖z− γ T y‖). Furthermore, since

/̃ε(λ, x) =
∫
U

ϕ(‖y‖)/̃(z+ εy) dy,

/̃ε(λ, x) approximates /̃(λ, x) uniformly on BR and its gradient, fε, with respect
to x, does approximate f (λ, x) on �̄ε0 ≡ {(λ, x) ∈ � : dist(λ, x; ∂�) ≥ ε0}, for
ε ≤ ε0. Since f (λ, x) is non-zero on ∂�, one may choose ε0 such that f (λ, x) �= 0
on �̄\�ε0 and replace � by �ε0 .

For the construction of the invariant neighborhood N of ∂�, take N to be an ε1-
neighborhood, N1 and N2 be ε1/3 and 2ε1/3 neighborhoods of ∂�. Choose then ϕ1
to have value 0 in � ∪ N1, and 1 outside � ∪ N2. Take then mollifiers ϕε in order to
obtain a C1 invariant function ϕ, such that ϕ is 0 in �̄ and 1 outside �∪N , by taking
ε < ε1.

Next, let ε > 0 be such that

4ε‖∇xϕ(λ, x)‖ ≤ ‖f̃ (λ, x)‖
for all (λ, x) in N .

Define, for t in [0, 1],
/̂(t, λ, x) = ε(t2 + t (2ϕ(λ, x)− 1))+ /̃(λ, x).

Then,

∇(t,x)/̂(t, λ, x) =
(

ε(2t + 2ϕ(λ, x)− 1)
f̃ (λ, x)+ 2εt∇xϕ(λ, x).

)

Thus, the zeros of this gradient are such that f̃ (λ, x) = 0 and t = 1/2. It is clear that
if one has a gradient �-homotopy on ∂�, the corresponding gradients of /̂ will be
�-homotopic as maps from ∂(I × BR) into R× V \{0}.
Definition 4.2. Let ��

∇SU (S
V ) be the set of �-homotopic gradients (with respect to

t and x) from SU = ∂(I ×BR) into SV ≡ R× V \{0}. Define the gradient degree of
∇x/(λ, x) with respect to � as deg�∇(∇x/(λ, x);�) ≡ [∇(t,x)/̂(t, λ, x)]∇ .

However, at this point, we don’t know if ��
∇SU (S

V ) is a group, since it is not clear
that the Borsuk extension theorem holds for gradient maps. Thus, we may consider
instead the orthogonal degree of ∇x/(λ, x), which is an easier object to study. Of
course, one could also forget the orthogonality and consider only deg�(∇x/(λ, x);�),
obtaining the following maps:

��
∇SU (S

V )
⊥→ ��

⊥SU (S
V )

�→ ��
SU (S

V ),

where ⊥ means forgetting the gradient character but retaining the orthogonality and
� corresponds to maintaining only the equivariance. It is clear that � is a morphism
of abelian groups, and one may show (see Chapter 3, § 6) that � is onto if k = 0. On
the other hand, one may conjecture, if k = 0, that ⊥ is one-to-one and onto.



72 2 Equivariant Degree

2.5 Applications

There are a certain number of classical applications of any degree theory, such as
continuation and bifurcation for problems with parameters. In the case of symmetries
one may also consider the implication of breaking the symmetry.

In the case of parametrized problems, assume that we have continuous families of
�-perturbations of the identity, from B = Rk × U ×W into E = V ×W ,

f (λ, x) = (g(λ, u,w),w − h(λ, u,w)),

where λ is in Rk, x = (u,w) with U and V finite dimensional �-representations while
W may be an infinite dimensional representation, in which case h is assumed to be
compact. Furthermore,

f (λ, γ x) = γ̃ f (λ, x).

Let S be the set of zeros of f and assume we know an invariant closed subset T of
S, called “trivial” solutions and that we wish to concentrate on an invariant set G of
“good” or non-trivial solutions. Suppose S = G ∪ T . Clearly Ḡ\G ⊂ T . The set
Ḡ\G will be called the “bifurcation” set.

Note that if A is a closed bounded subset of B, then S ∩ A, Ḡ ∩ A and T ∩ A

are compact, from the finite dimensionality of Rk ×U and the compactness of h (this
argument has already been used several times).

Let (λ0, x0) be a point in Ḡ\G and let C be the connected component of Ḡ

containing (λ0, x0). Assume that �C is bounded (hence compact) and let � be an
open invariant bounded subset containing �C.

The following result is an adaptation of a well known topological lemma.

Lemma 5.1. There is an open bounded invariant set �1 such that �C ⊂ �1 ⊂ �

and Ḡ ∩ ∂�1 = φ.

Proof. Set G1 = Ḡ ∩ ∂�, then G1 and C are two disjoint compact subsets of Ḡ ∩ �̄

and hence at a positive distance one from the other. Note that G1 is invariant while C
may not be so.

It is easily seen that there is an ε0 > 0, such that, if ε < ε0, no ε-chain in Ḡ ∩ �̄

can join G1 to C: recall that an ε-chain is a finite number of balls, A1, . . . , Am, with
diameter smaller than ε, such that Ãi = Ai∩(Ḡ∩�̄) has the property that Ãi∩Ãj = φ

if and only if |i − j | > 1.
In fact, if this is not true, there are an in G1 and bn in C and a (1/n)-chain joining

an to bn. By compactness there is a subsequence (anj , bnj ) converging to (a, b) in
(G1,C) and, for all ε > 0, there is an ε-chain joining a to b. Let then Ca be the set of
all x in Ḡ∩ �̄ such that, for all ε > 0, a and x can be joined by an ε-chain. Both a and
b are in Ca and clearly Ca is closed, hence compact. Furthermore, Ca is connected
since if not there would be two open subsets X and Y with Ca ∩ X, Ca ∩ Y disjoint,
non-empty and covering Ca .
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From the above, it follows that Ca ∩ X̄ and Ca ∩ Ȳ are disjoint and hence at a
positive distance ε1 one from the other. Note that any two points in Ca are joined by
ε-chains (passing through a and eliminating intersections). Hence, for x in Ca ∩ X̄

and y in Ca ∩ Ỹ , for any n larger than 4/ε1, there is a (1/n)-chain joining x to y and
a point cn on it, with cn in Ḡ∩ �̄ and distant at least ε1/2 from Ca . Passing through a
subsequence one would get a c, with dist(c,Ca) ≥ ε1/2 and such that, for any ε > 0,
there is an ε-chain from c to x and to y. But then one would have an ε-chain from
c to a, i.e., c should be in Ca , giving a contradiction. Hence Ca is connected, a and
b are in Ca and C is a connected component. One would have that a ∈ Ca ⊂ C,
contradicting the fact that G1 and C are disjoint.

This proves the existence of ε0 such that, if ε ≤ ε0, no ε-chain in Ḡ ∩ �̄ can join
G1 to C. Choose then

G2 = {x ∈ Ḡ ∩ �̄ : there is a y in G1 and an ε0-chain from x to y}.
Clearly, G1 ⊂ G2,G2 ∩ C = φ by construction and G2 is closed. Furthermore, if x
is in G2, then any point in (Ḡ ∩ �̄) ∩ B(ε0, x) is also in G2, hence G2 is relatively
open. Note also that G2 is invariant, since the action of � is an isometry and if one
has an ε0-chain from x to y, its image under γ will join γ x to γy.

Let C2 = (Ḡ∩ �̄)\G2, then C2 and G2 are compact, disjoint, invariant and cover
Ḡ ∩ �̄. They are at a positive distance ε2 one from the other. Choose �1 an ε2/2-
neighborhood of C2. Clearly, �C ⊂ �1 ⊂ � and Ḡ ∩ ∂�1 = φ and �1 is invariant.

� 

A first application of this result will be for the continuation problem:

Theorem 5.1. Let � be an open bounded �-invariant subset of Rk × U × W and
set �λ0 = � ∩ {λ = λ0}. Assume that f (λ, x) is non-zero on ∂�λ0 and that
deg�(f (λ0, x);�λ0) is non-trivial. Suppose that the suspension by any trivial repre-
sentation of � is one-to-one. Then, there is a set of solutions Q of f (λ, x) = 0 in �,
such that Q/� is a connected component of orbits and Q joins λ0 to ∂�. In fact, for
each straight line L in Rk , passing through λ0, there is such a set of solutions QL

going from the left part of ∂�L to its right part, where �L = � ∩ {λ ∈ L} and the
left part means λ in L and to the left of λ0 (with respect to the given orientation of L).

Remark 5.1. In fact, using the tool of �-epi maps, [I.M.P.V] and [I.M.V.0], one may
show that there is a Q, with QL ⊂ Q for all L, and Q/� has local dimension at least
k, where the dimension is the covering dimension.

Proof of Theorem 5.1. Let H(λ, x) = (λ − λ0, f (λ, x)), then deg�(H(λ, x);�) is
defined and non-trivial, since, by excision, one may replace � by Bε(λ0)×�λ0 , where
Bε(λ0) is the ball, in Rk , of center λ0 and radius ε. Hence H(λ, x) is a suspension.
Since the �-degree is non-trivial, the equation f (λ0, x) = 0 has solutions in �λ0

and, as well, f (λ, x) has zeros in �λ for λ close to λ0. Using the fact that h(λ, x) is
compact and Rk × U is finite dimensional, one has that there are points (λ0, x0) in
�λ0 which are limit points of zeros of f (λ, x), for λ �= λ0.
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Let T be such a point (λ0, x0) and let G = S\T , hence Ḡ = S. If the connected
component C of (λ0, x0) in S does not touch ∂�, then we may apply Lemma 5.1 and
get �1 contained in �, containing Q = �C and such that f (λ, x) is non-zero on ∂�1.
Thus, deg�(H(λ, x);�1) is defined and, deforming λ0 to λ1 outside�1, this�-degree
is trivial (since if λ = λ1, f (λ1, x) has no zeros in �1). By the addition formula (and
using the fact that the suspension is one-to-one), one has that deg�(H(λ, x);�\�̄1)

is non-trivial.
If all the components of zeros of f (λ0, x) in �λ0 do not join ∂�, one may repeat

the above construction and arrive, through Zorn’s lemma, at minimal sets �j on which
the �-degree of H(λ, x) is non-trivial. An application of the above argument would
contradict the minimality and prove the first part of the theorem.

For the second part, by restricting λ to L, we may as well assume that k is 1. Let
then T be S∩�C and G = S∩�. Suppose that none of the connected components of
Ḡ originating on the left part of ∂� crosses all the way, in �, to the right part of ∂�.
From the first part, we know there is at least one of these components which reaches
λ0 (if not, start from the right part of ∂�). Let C be such a component. Since f (λ, x)

is non-zero on ∂� for |λ − λ0| < ε, for some ε (a compactness argument), one may
construct �1 in �, containing �C ∩ {λ ≥ λ0 − ε} and such that f (λ, x) is non-zero
on ∂�1 ∩ {λ ≥ λ0} (this requires a slight modification of the sets G and S). Hence,
deg�(H(λ, x);�1) is well defined and zero, by pushing λ0 to the right. By repeating
the argument of the first part (taking out �1 and doing the same excision on all the
components going from the left of ∂� to λ0) one arrives at the same contradiction. � 

The second classical application is that of bifurcation. Let f (λ, x) be a C1 − �-
compact perturbation of the identity from Rk × B into E, with a known branch of
solutions (λ, x(λ)), where x(λ) is continuous in λ.

If one linearizes f (λ, x) around this solution, one has

f (λ, x) = A(λ)(x − x(λ))+ g(λ, x),

where A(λ) = Dfx(λ, x(λ)) and g(λ, x) = o(‖x − x(λ)‖).
Let Hλ be the isotropy subgroup of x(λ). If for some λ0, one has that A(λ0) is

invertible, then the orbit �x(λ0) must be finite since any one parameter subgroup in
� gives rise to a vector in ker A(λ0), see Property 3.3. in Chapter 1. Furthermore,
from the diagonal structure of A(λ), one has that A(λ0)

Hλ0 = Dxf
Hλ0 (λ0, x(λ0)) is

also invertible. From the implicit function theorem, one has that, near (λ0, x(λ0)),
the solutions are in BHλ0 , that is, by uniqueness, that x(λ) belongs to that space and
Hλ0 < Hλ, for λ close to λ0. Furthermore, since Dfx(λ0, γ x(λ0)) is also invertible,
for any γ in �, one has that, by the same implicit function theorem, the order of the
orbit of x(λ) is the same as that of x(λ0). Thus, Hλ0 = Hλ, for λ close to λ0.

Lemma 5.2. Let A = {λ : A(λ) is invertible}. Then, A is open and on any connected
component B of A, Hλ is constant and will be called the isotropy of that component.
If λ0 is a limit point of B, with isotropy H , then H < Hλ0 .
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Proof. For the last part, it is enough to recall that x(λ) is in EH , which is closed.
Hence x(λ0) is fixed by H . � 

Since A(λ) is H -equivariant, we shall assume in most of this book that H = �

and look, except for some examples, at bifurcation from stationary solutions. Hence,
the change of variables which takes x(λ) into 0 is admissible and one may consider
the bifurcation problem

f (λ, x) = Ax − T (λ)x − g(λ, x)

where A, T (λ) and g(λ, x) are as in § 9 of Chapter 1, i.e., A being a �-compact
perturbation of the identity, is a Fredholm operator of index 0, ‖T (λ)‖ → 0, uniformly
as λ goes to 0, and g(λ, x) = o(‖x‖), uniformly in λ.

Among all the possible hypotheses on A − T (λ), see [I.M.P.V] and [I], we shall
choose the following:

For λ close to 0, Rk decomposes as Rk1 × Rk2 , with λ = (λ1, λ2), such that
A− T (λ1, 0) is invertible for λ1 in {0 < ‖λ1‖ ≤ 2ρ} = B̄1

2ρ .
Let G be the set of non-trivial zeros of f (λ, x), i.e., with x �= 0. Denote by

G1 = G ∩ {λ2 = 0}.
Theorem 5.2. Under the above hypothesis, assume that

deg�(‖x‖ − ε , (A− T (λ1, 0))x;B1
2ρ × B2ε)

is non-trivial, where B2ε = {x : ‖x‖ < 2ε}, and that any suspension by a trivial
representation of � is one-to-one, then there is a branch Q of non-trivial solutions
bifurcating from (0, 0), such that the following holds.

1) If Q1 = Q∩ (λ2 = 0), then Q̄1 is connected, Q1 is either unbounded or returns
to (λ1, 0), with ‖λ1‖ > 2ρ.

2) Let C1 be the connected component of (0, 0) in Ḡ1 and assume that C1 is
bounded. Then, if all the return points (λj1, 0, 0) of C1 satisfy the above hypoth-
esis, one has∑

j

deg�(‖x‖ − ε, (A− T (λ1, 0))x;B1
2ρj (λ

j
1)× B2ε)

is trivial, where B1
2ρj

(λ
j
1) = {λ1 : ‖λ1 − λ

j
1‖ < 2ρj }.

3) The local dimension of Q/� is at least k2 + 1.

4) If B� has a closed invariant complement B1 and f (λ, 0, x) is not zero on
B1

2ρ × (B2ε\{0}), then (1)–(3) is true for a set Q̃ of points which are non-
stationary, except for the return points.
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Proof. As in the continuation problem, we shall not prove here (3) since (3) depends
on the notion of �-epi maps (see [I]). The argument relies on the fact that

deg�(λ2, ‖x‖ − ε, f (λ, x);B1
2ρ × B2

2ρ × B2ε)

is the suspension by λ2 of the previous degree, by deforming g(λ, x) to 0, hence
non-trivial.

For λ2 = 0, let T1 = (λ1, 0, 0) and C1 be the connected component of (0, 0) in
Ḡ1. Note that, since 0 is stationary, one has that �C1 = C1. If C1 is bounded and
does not return to T1, let �1 given by Lemma 5.1, be such that f (λ1, 0, x) �= 0 on
∂�1, unless x = 0 and ‖λ1‖ ≤ 2ρ. Then,

deg�(‖x‖ − ε, f (λ1, 0, x);�1)

is well defined for all positive ε.
In particular, one may use the excision property, to see that for ε small enough,

the above degree is equal to

deg�(‖x‖ − ε, f (λ1, 0, x);B1
2ρ × B2ε).

Choose ε so small that (A − T (λ))x = τg(λ, x), for λ = (λ1, 0), ‖λ1‖ = 2ρ and
‖x‖ ≤ 2ε, is true only for x = 0: since A − T (λ) is invertible, the left hand side
dominates the right hand side.

Thus, deg�(‖x‖ − ε, f (λ1, 0, x);�1) is non-trivial.
However, since �1 is bounded, by taking ε very large, one does not have zeros of

f (λ1, 0, x), with ‖x‖ = ε, in �1. This proves (1).
For (2), it is enough to remark that if C1 is bounded and the return points satisfy

the non-degeneracy hypothesis, then they are isolated and hence in finite number. In
this case, deg�(‖x‖ − ε, f (λ1, 0, x);�1) is the sum given in (2).

For (4), write x = x0⊕x1, with x0 in B� and x1 in B1. It is enough to complement
f (λ1, 0, x) by ‖x1‖ − ε instead of ‖x‖ − ε, taking the set T as the set of stationary
zeros, {(λ, x) : f (λ1, 0, x) = 0, x in B�}. � 

Remark 5.2. Using the arguments of [IMV1] and [I] one may characterize the set of
points λ such that A− T (λ) is not invertible.

Corollary 5.1. If k1 = 1, then deg�(‖x‖ − ε, (A − T (λ1, 0))x;B1
2ρ × B2ε) is non-

trivial if and only if

deg�((A− T (−ρ, 0))x;B2ε) �= deg�((A− T (ρ, 0))x;B2ε).

Proof. In fact, the homotopy τ(‖x‖ − ε) + (1 − τ)(ρ − |λ1|) is valid, since on
∂(B1

2ρ × B2ε), either ‖x‖ = 2ε and λ1 = 0, since A − T (λ1, 0) is invertible for
λ1 �= 0, in which case the deformed term is positive, or |λ1| = 2ρ and x = 0, in
which case the deformed term is negative.
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Thus, the first degree is equal to deg�(ρ − |λ1|, (A− T (λ1, 0))x;B1
2ρ × B2ε) =

deg�(ρ−λ1, (A−T (λ1, 0))x;B+×B2ε)+deg�(ρ+λ1, (A−T (λ1, 0))x;B−×B2ε),
where B± = {λ1 : |λ1 ∓ ρ| < ρ/2}: by Remark 2.3, the addition formula holds
without suspension. On B+ × B2ε, one may deform A − T (λ1, 0) to A − T (ρ, 0),
while, onB−×B2ε, one deforms toA−T (−ρ, 0). Furthermore, from the definition of
��

SB (S
E), it is clear that deg�(ρ−λ1, (A−T (−ρ, 0)x;B+×B2ε) = −Q0 deg�((A−

T (−ρ))x;B2ε). Hence,

deg�(‖x‖ − ε, (A− T (λ1, 0))x;B1
2ρ × B2ε)

= Q0(deg�((A− T (−ρ, 0))x;B2ε)− deg�((A− T (ρ, 0)x;B2ε)).

Since Q0 is one-to-one, one gets the result. � 

Recall that, under the above hypothesis, the equation f (λ, x) = 0 is equivalent to
the bifurcation equation (see § 9 of Chapter 1)

B(λ)x1 +G(λ, x1) = 0,

where x1 is in ker A, of dimension d, and B(λ) is a d × d equivariant matrix with
G(λ, x1) = o(‖x1‖). Furthermore B = ker A⊕ B2, where B2 is a subrepresentation
of �.

Corollary 5.2.

deg�(‖x‖ − ε, (A− T (λ1, 0))x;B1
2ρ × B2ε)

= deg�(‖x1‖ − ε, B(λ1)x1, Ax2;B1
2ρ × B2ε)

and is non-trivial if and only if QB2
A J�(B(λ1)) is non-trivial, where

J� : �k1−1(GL�(ker A)) → ��

SR
k1×ker A

(Sker A)

is the equivariant Whitehead map, and Q
B2
A is the suspension by Ax2.

Proof. It is enough to deform (A − T (λ1, 0)x to B(λ1)x1 ⊕ Ax2, as it follows from
§ 9 of Chapter 1. The exact effect of the suspension by Ax2 depends on � and will be
given in the next chapter. � 

Remark 5.3. The above considerations hold also for �-orthogonal problems.

2.6 Operations

In classical degree theory one has formulae for the products and compositions of
maps. This is also the case when one has symmetries. Furthermore, for the equivariant
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problem, one may also consider the effect of changing the group of symmetries. In
this last section we shall have a first visit to these operations, by relating them to the
corresponding homotopy groups of spheres. In the next chapter, we shall compute
these groups and give results for these operations.

2.6.1 Symmetry breaking

The first type of general operation is that of symmetry breaking or forcing. More
specifically, assume that f (λ, x) is �-equivariant and has a well-defined �-degree
with respect to some open, bounded and �-invariant subset � of Rk × B.

Let g(λ, x) be a �0-perturbation of the identity, where �0 is a subgroup of �.
Then, for ε small enough, the map f (λ, x) + εg(λ, x) is non-zero on ∂� (using

the fact that ‖f (λ, x)‖ ≥ η > 0, for some η, on ∂� and that g is bounded on �̄) and
thus deg�0

(f (λ, x)+ εg(λ, x);�) is also well defined.
Since any �-map can be considered as a �0-map, one has a natural morphism

P∗ : ��

SRk×B
(SE) → �

�0

SRk×B
(SE)

and deg�0
(f (λ, x)+ εg(λ, x);�) = P∗ deg�(f (λ, x);�).

Example 6.1. Consider the problem of finding 2π -periodic solutions to

ν
dX

dt
= f (λ,X),

for X in RN and f autonomous. As we have seen, this gives rise to an S1-equivariant
problem.

If one perturbs f (λ, x) by εg(t, λ,X), where g(t, λ,X) = g(t + 2π
p
, λ,X), then

the S1-equivariance is broken to a Zp-equivariance: see § 3 and § 9 of Chapter 1. This
sort of example will be studied in Chapter 1V.

Note also that if a map f (λ, x) is �-orthogonal, it will be �0-orthogonal, since
the torus part of �0 is a subgroup of the torus part of �. One will have the morphism

P⊥ : ��

⊥SRk×B
(SE) −→ �

�0

⊥SRk×B
(SE)

and the �0-orthogonal degree of f (λ, x)+ εg(λ, x) will be the image, under P⊥, of
the �-orthogonal degree of f (λ, x).

The properties of P∗ and P⊥ will be studied in §7 of next chapter.

2.6.2 Products

Consider the classical problem of a product of maps (f1(x1), f2(x2)) defined on a
product � = �1×�2 from V1×V2 into W1×W2, where f1 and f2 are �-equivariant
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and �i are �-invariant, open and bounded. The associated maps, which define the
�-degree, are

Fi(ti , xi) = (2ti + 2ϕi(xi)− 1, f̃i(xi)).

One may consider the pair (F1(t1, x1), F2(t2, x2)) from R × V1 × R × V2 into R ×
W1 × R×W2. Let

ϕ(x1, x2) = ϕ1(x1)+ ϕ2(x2)− ϕ1(x1)ϕ2(x2) = ϕ2(1 − ϕ1)+ ϕ1.

Then clearly, 0 ≤ ϕ ≤ 1, ϕ ≡ 0 on �1 × �2 and ϕ ≡ 1 on the complement of
(�1 ∪ N1) × (�2 ∪ N2). Furthermore, (F1, F2) is linearly deformable to (2t1 +
2ϕ − 1, f̃1, F2), since f̃i (xi) �= 0 on Ni . This last map is in turn deformable to
(2t1 + 2ϕ − 1, f̃1, 2t2 − 1, f̃2). Hence,

Lemma 6.1. If Q0 is the suspension by 2t2 − 1, one has

[F1, F2] = Q0 deg�((f1, f2);�1 ×�2).

Note that if f1 and f2 are �-orthogonal, this will be also the case for (f1, f2) and
the same relation holds for the �-orthogonal classes.

Furthermore, it is easy to see that, since [Fi] belongs to ��

SVi
(SWi ), then [F1, F2]

is in ��

SV1×R×V2
(SW1×R×W2) and that one has a morphism of groups, i.e.,

[F1 +G1, F2] = [F1, F2] + [G1, F2]
[F1, F2 +G2] = [F1, F2] + [F1,G2],

where, for this last operation, with the sum defined on t2, one has to translate this sum
to t1 (see §7 of next chapter).

Example 6.2. If V1 = W1 = Rn, V2 = W2 = Rm and � = {e}, then [Fi] =
deg(fi;�i)[Id], hence, from the above morphism, one obtains that, for the Brouwer
degree,

deg((f1, f2);�1 ×�2) = deg(f1;�1) deg(f2;�2).

The situation for an abelian group is more complicated but several results will be
given in §7 of next chapter.

2.6.3 Composition

The last operation which we shall study is that of composition of maps. Consider three
representations V,W and U of the group � and assume f : V → W and g : W → U

are �-equivariant maps. Then g+ f is also �-equivariant. Let � be a bounded open
invariant subset of V .

Assume f : �̄ → W is non-zero on ∂�. Let �1 = f (�). Assume �1 is open
and that g is non-zero on ∂�1. It is easy to see that �1 is invariant and bounded (in
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infinite dimensions this is due to the appropriate compactness), that f (∂�) ⊂ ∂�1
and that 0 is away from ∂�1.

Let B be the ball used in the definition of the �-degree of f , with the associated
extension f̃ of f . Then f̃ (B) ⊂ B1 for some ball B1 centered at the origin. If g̃ is
the extension of g to B1, then g̃ + f̃ will be an equivariant extension of g+ f to B. If
N1 is a neighborhood of ∂�1, where g̃ is non-zero and not containing 0, then one may
choose a neighborhood N of ∂� contained in f̃−1(N1), with its associated ϕ. Thus,

[F ] = [2t + 2ϕ(x)− 1, f̃ (x)] = deg�(f ;�)

[H ] = [2t + 2ϕ(x)− 1, g̃(f̃ (x))] = deg�(g + f ;�)

[G] = [2t1 + 2ϕ1(y)− 1, g̃(y)] = deg�(g;�1)

are well defined.
In order to be able to compare these �-homotopy classes, let us replace 2t − 1

by s and 2t1 − 1 by s1, hence s and s1 belong to the interval [−1, 1], and replace the
component 2t + 2ϕ(x)− 1 by (s + 2ϕ(x))/3, which belongs to the interval [−1, 1].
Thus F is �-homotopic on ∂([−1, 1] × B) to (s1, y), with s1 = (s + 2ϕ(x))/3 and
y = f̃ (x). Then,

[G(F(s, x))] = [(s + 2ϕ(x))/9 + 2ϕ1(f̃ (x))/3, g̃(f̃ (x))].
One may deform ϕ1(f̃ (x)) to 0, since g̃(f̃ (x)) �= 0 on N and ϕ(x) = 1 outside �∪N ,
that is the first component is larger than 1/9 and the deformation is valid. We have
proved

Lemma 6.2. Under the above hypothesis one has

deg�(g + f ;�) = [G + F ]�,
where [F ]� = deg�(f ;�) and [G]� = deg�(g; f (�)).

Remark 6.1. If V = W = U = Rn and � = {e}, the classical formula for the degree
of a composition runs as follows.

Proposition 6.1. Let �i be the bounded components of Rn\f (∂�) and suppose that
g + f is non-zero on ∂�. Then

deg(g + f ;�) =
∑

deg(g;�i) deg(f − pi;�),

where pi is any point in �i .

Proof. Assuming, from Sard’s lemma, that f and g are C1 and that 0 is a regular value
for g + f , one has

deg(g + f ;�) =
∑

g+f (x)=0

Sign det Dx(g + f (x)) =
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=
∑

y=f (x)
g+f (x)=0

Sign det Dyg(y)Sign det Dxf (x)

=
∑

y∈Rn\f (∂�)
g(y)=0

Sign det Dg(y) deg(f (x)− y;�).

But Rn\f (∂�) is the union of the disjoint connected sets �i , so that deg(f (x)−
y;�) = deg(f (x)− pi;�) for y in �i Hence

deg(g + f ;�) =
∑
i

deg(f (x)− pi;�)

( ∑
y∈�i
g(y)=0

Sign det Dg(y)

)

=
∑
i

deg(f (x)− pi;�) deg(g;�i). � 

In the equivariant case, it is clear that �i are open, connected and invariant. Fur-
thermore,

deg�(g + f ;�) =
∑
i

deg�(g + f ; f−1(�i) ∩�)

up to one suspension. For �i which contains 0, one may apply Lemma 6.2 (taking
pi = 0), however, in general f (x) − pj will not be equivariant. This explains the
hypothesis of Lemma 6.2.

Now, in order to use the algebraic structure of the homotopy groups of spheres,
one needs to look at maps from SV into SW , i.e., to normalize F to F̂ (s, x) =
F(s, x)/‖F(s, x)‖ (one may assimilate the radii R and R1 to a change of scale). In
that case F̂ (s, x) sends the boundary of the cylinder [−1, 1] × {x : ‖x‖ ≤ 1} into
the boundary of the cylinder [−1, 1] × {y : ‖y‖ ≤ 1} in W . One may then take the
composition with a �-map G and obtain a pairing

��
SV (S

W )×��
SW (SU ) → ��

SV (S
U )

([F̂ ]�, [G]�) → [G + F̂ ]�
which is well defined on homotopy classes. We shall see, in §7 of next chapter, that
the pairing is in fact a morphism.

Remark 6.2. As maps from SV into W\{0}, it is clear that F(s, x) and F̂ (s, x) are
�-homotopic. However, this homotopy is not true for G(F) and G(F̂ ). For instance,
if V = W = V = Rn and � = {e}, then any map F : B → Rn\{0}, is such that

[F ] = deg(F ;B)[Id].
The morphism property of the pairing implies that

[G + F̂ ] = deg(G + F̂ ;B)[Id] = deg(G;B) deg[F̂ ;B)[Id]
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and deg(F̂ ;B) = deg(F ;B). The first equality follows also from Proposition 6.1,
since F̂ (∂B) ⊂ ∂B and �i = B contains the origin. However, deg(G + F ;B) may
be quite different, as the following example shows.

Example 6.3. On R2, let f (x, y) = (x, (x−ε)y), where 0 < ε < 1/2. Then f sends
the unit disk B into the interior of a lemniscate, with two components, �− containing
the origin and �+. By computing the Jacobian of f at the origin, one has that
deg(f ;B) = −1, while deg(f (x, y)−(2ε, 0);B) = 1. Hence, from Proposition 6.1.,
one has

deg(g + f ;B) = deg(g;�+)− deg(g;�−).
For instance, if g(x1, y1) = (x1−2ε, y1), then deg(g;�+) = 1 and deg(g;�−) = 0,
hence deg(g + f ;B) = deg((x − 2ε, (x − ε)y);B) = 1, which is not the product of
deg(g;B), which is 1, by deg(f ;B).

However, if one considers f/‖f ‖ on ∂B, then

g(f/‖f ‖) = (x/‖f ‖ − 2ε, (x − ε)y/‖f ‖).
This map, which is non-zero on ∂B, is homotopic to ‖f ‖g(f/‖f ‖), which is

(x − 2ε‖f ‖, (x − ε)y), a continuous map on B. For x = ε or y = 0 then ‖f ‖ = |x|,
thus the only zero of this map is (0, 0). Near the origin, one may deform the map to
(x,−εy), with degree equal to −1.

Example 6.4. Let � be the annulus {z ∈ C; 1/4 < |z| < 1} and let f (z) = zn, for
some integer n ≥ 1. Let �1 = f (�) and g(y) = y − 1/2 be defined on �1. Then

[F ] = [(s + 2ϕ(z))/3, zn] = 0, [G] = [s1 + 2ϕ1(y), y − 1/2] = 1 × [Id],
since F(s, z) �= 0 on B = {(s, z) : |s| ≤ 1, |z| ≤ 1} and G has degree 1 with respect
to B1 = {(s1, y) : |s1| ≤ 1, |y| ≤ 1}. On the other hand

[G + F ] = [(s + 2ϕ(z))/3 + 2ϕ1(z
n), zn − 1/2] = [s, zn − 1/2] = n[Id],

since ϕ1(1/2) = ϕ((1/2)1/n) = 0.
However, since F(s, z) �= 0 and G(s1, y) �= 0 on ∂B1, one may perform the

deformation G(F̂ (τs, τz)), where F̂ (s, z) = F(s, z)/‖F(s, z)‖, and have [G + F̂ ] =
[G(1, 0)] = 0.

There is however one case where [G + F ] = [G + F̂ ], which we shall phrase in
terms of the hypothesis of Lemma 6.2.

Lemma 6.3. Assume �1 = f (�) is open and has the following property: If y is
non-zero and in �1∩g−1(0), then the segment {ty, 0 ≤ t ≤ 1} is entirely in �1. Then
deg�(g + f ;�) = [G + F̂ ]� .

Proof. One has that F(s, x) = ((s + 2ϕ(x))/3, f̃ (x)) and, for (s, x) on ∂(I × BR),
F̂ (s, x) = (α(s+2ϕ(x))/3, αf̃ (x)), whereα(s1, y) = (αs1, αy)belongs to ∂(I×B1),
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i.e., is the intersection of the line segment, going from the origin to (s1, y), with the
boundary of the cylinder. Then,

G(F̂ (s, x)) = (α(s + 2ϕ(x))/3 + 2ϕ1(αf̃ (x)), g̃(αf̃ (x))).

Replacingα by τ , going from 1 toα(s1, y), one would obtain a�-homotopy fromG+F
to G + F̂ , provided that, on ∂(I ×BR), this homotopy is valid. Now if one has a zero,
then τ f̃ (x) cannot belong to (�1∪N1)

c, since there ϕ1 is 1 and |α(s+2ϕ(x))/3| ≤ 1.
Thus, for a zero, one would need that τ f̃ (x) should be in �1 and s+2ϕ(x) = 0. This
last equality, on ∂(I ×BR), is possible only if s = −1 and ϕ(x) = 1/2, i.e., x is in N ,
f̃ (x) in N1 (and non-zero), and g(τ f̃ (x)) = 0. If y = τ f̃ (x), one has a contradiction
with the assumption on �1. � 

Note that the above condition is violated in the examples above and that, on the
contrary, it is fulfilled if �1 is starshaped about the origin, or if g−1(0) ∩ �1 ⊂
B(0, ρ) ⊂ �1, where B(0, ρ) is a ball of radius ρ and center at the origin.

Remark 6.3 (Orthogonal maps). Let V = W = U and � be abelian. If f and g are
�-orthogonal, i.e., f (x) · Ajx = 0, g(x) · Ajx = 0, where Aj are the infinitesimal
generators for the torus part of �, it is easy to see that the composition of f and g is
not necessarily orthogonal. However, if one follows the case of gradients,

g(y) = ∇/(y), h(x) = ∇x(/(f (x)),

then

h(x) = Df (x)T g(f (x))

where g(y) is �-orthogonal, then one may ask that f (x) is C1 and �-equivariant.
From the relations Df (γ x)γ = γDf (x) and Df (x)Ajx = Ajf (x) (obtained by
differentiating f (γ x) = γf (x)), one sees that h(x) is �-orthogonal.

If f (∂�) ⊂ ∂�1, 0 �∈ ∂�1 and g(y) is non-zero on ∂�1, then one may look at
deg�(f ;�), deg⊥(g;�1) and deg⊥(h;�) provided h is non-zero on ∂�, for instance
if Df (x) is invertible on ∂�.

As in Lemma 6.2, one has, for |s|, |s1| ≤ 1,

F(s, x) = (s + 2ϕ(x))/3, f̃ (x))
G(s1, y) = (s1 + 2ϕ1(y), g̃(y))

[H(s, x)]⊥ = [s + 2ϕ(x),Df̃ (x)T g̃(f̃ (x))]⊥ = [DF(s, x)T G(F(s, x))]⊥
assuming f̃ is C1 and Df̃ is invertible in N ⊂ f−1(N1).

In order to get a result similar to Lemma 6.3, i.e., working with F̂ , one needs to
make cumbersome computations. Instead, we shall consider the following particular
case:
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Proposition 6.2. Assume � = B(0, R), f (0) = 0,Df (x) invertible in �, g(y) �= 0
for ‖y‖ ≥ R1 and ‖f (x)‖ ≥ R1 if ‖x‖ = R. Then

deg⊥((Df )T g(f (x));B(0, R)) = deg⊥(g(y);B(0, R1)).

Proof. Since � = B(0, R) and one may choose �1 = B(0, R1), then the construction
of F and G is not necessary: one may compute directly the classes of h(x) and of
g(y). Note that the invertibility of Df (x) implies that 0 is the only zero of f (x). Note
also that Dh(x) = Df (x)T Dg(y)Df (x), whenever g(f (x)) = 0. Hence, if 0 is a
regular value of h, then the Brouwer degree of h is that of g.

Now, on ∂�, one may deform orthogonally h(x) to the map

Df (x)T ‖f (x)‖2g(R1f (x)/‖f (x)‖)
via (1 − τ + τ‖f (x)‖2)h(x) first and then via

Df (x)T ‖f (x)‖2g(f (x)(1 − τ + τR1/‖f (x)‖)).
The new map has its only zero at x = 0, hence one may deform x in ∂� to εx, for ε
small and use the homotopy where f (εx) is replaced by (1 − τ)f (εx)+ τDf (0)εx
and Df (εx) by (1 − τ)Df (εx)+ τDf (0): since Df (0) commutes with any γ in �

(and hence with Aj ) the deformation is clearly �-orthogonal and, for ε small enough,
the path from Df (0) to Df (εx) consists of invertible matrices, that is the only zero
of the deformation is at x = 0.

At this stage, one has that

[h]⊥ = [Df (0)T ‖Df (0)x‖2g(R1Df (0)x/‖Df (0)x‖)]⊥.
Now, in GL�(V ), one has that Df (0) is �-deformable to

A = diag(ε�, εZ2 , . . . , I ),

where ε� = diag(Sign det Df (0)�, I ) on V � and εZ2 is a similar matrix on VH ∩
(V �)⊥, for each H with �/H ∼= Z2 and the last I is on the other irreducible represen-
tations (see Theorem 8.3 in Chapter 1). Hence, by replacing Df (0) by its deformation
to A, one obtains an orthogonal deformation for h and

[h]⊥ = [A‖x‖2g(R1A(x/‖x‖))]⊥ = [Ag(Ay)]⊥,
where y is on ∂B(0, R1).

Now, we shall see, in Theorem 6.1 of Chapter 3, that

[g(y)]⊥ =
∑

dH [FH (y)]⊥,
with one generator FH for each isotropy subgroup H of �. In particular, each FH has
the form (. . . , X0, (y

2 − y)y, . . . ), where y is a real coordinate where � acts as Z2
and X0 corresponds to V � . It is then clear that

[Ag(Ay)]⊥ =
∑

dH [AFH(Ay)]⊥ =
∑

dH [FH (y)]⊥ = [g(y)]⊥,
from the form of FH , since ε2

�X0 = X0,−((−y)2 − 1)(−y) = (y2 − 1)y. � 
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2.7 Bibliographical remarks

The literature on the “classical” degree theory and its extensions (to k-set contractions,
A-proper maps, etc.) is very extensive. For the reader with interest in analysis, the most
accessible texts are the books by Nirenberg, Berger and Krasnosel’skii–Zabrejko. For
a survey of the Russian literature, the reader may consult the paper [Z], by Zabrejko.

On the equivariant side, the situation is scarcer. There are indices coming from
Algebraic Topology, with the inconvenient that, having to assume that the orbit space
is a nice manifold, the action has to be free.

For the case of autonomous differential equation, Fuller has introduced in [F], a
degree which is a rational. The relation between the Fuller degree and ours has been
shown in [I.M.V. 2]. Dancer, in [Da], has defined a degree for S1-gradient maps, which
is also a rational, and can be shown to follow from the S1-degree with a “Lagrange
multiplier”, see [I.M.V. 2].

Geba et al. have defined an S1-degree in [D.G.J.M.] and then a degree for a general
Lie group in [GKW.], which corresponds to the “free part” of our degree. Their
definition, using the “normal map” approach will be related to ours in the next chapter.
Finally, Rybicki has also defined a degree for S1-orthogonal maps in [R] and Geba for
�-gradient maps, for a general �, in [G].

The material in this chapter is taken from [IMV1] for § 1–3, from [I.V. 3] for § 4.
Lemma 5.1 is known as “Whyburn lemma” and has been widely used in the bifurcation
literature.



Chapter 3

Equivariant Homotopy Groups of Spheres

As we have seen in the preceding chapter, the equivariant degree in an element
of ��

SB (S
E), the group of all equivariant homotopy classes of �-maps from SB into

SE . Thus, it is necessary to compute these groups, to know their generators and to
understand the effect of some operations, like changing the group �, taking products
or composition of maps. This chapter is devoted to these topological considerations.
Our tools have been completely expounded in § 8 of Chapter 1 and are based on the
idea of extension of maps, what is known as obstruction theory. However, we have
avoided, as much as possible, most of the abstract scaffolding of Algebraic Topology
so that any reader should be able to follow our constructions. The price we have to
pay is maybe some long formulae and the restriction to abelian groups and to spaces
which satisfy hypothesis (H) of § 2 of Chapter 1. We refer to the section on bibli-
ographical remarks for the very few results for the non-abelian case and some other
abstract results. If, nevertheless, the reader wishes to go quickly to applications, then
he has only to see the main results of this chapter and go on to the next one.

3.1 The extension problem

Let the abelian group � act on the finite dimensional representations B and E and
consider an element F of ��

SB (S
E), i.e., F is an equivariant map from ∂(I × B) into

R× E\{0}. Let V and W stand for I × B and R× E respectively.
For any isotropy subgroup K denote by BK = (I × B)K .
The problem we shall be considering in this section is the following: Let H be

a fixed isotropy subgroup and assume that F has a �-equivariant extension: F̃ :⋃
K>H BK → W\{0}.

Under which condition F on ∂BH (and F̃ on the union of the balls BK ) will have
a non-zero �-extension from BH into WH \{0}?

From Gleason’s lemma (Lemma 4.1 of Chapter 1) one has a �-extension from

∂BH
⋃
K>H

Bε(K) into WH \{0}

which will be non-zero in an ε-neighborhood Bε(K) of BK .
Note that all points in BH \⋃K>H Bε(K) have H as isotropy subgroup and that

�/H acts freely on them.
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Theorem 1.1. (a) If dim VH − dim �/H < dim WH , then there is a non-zero �-
extension to BH .

(b) If instead one has equality of the dimensions, then there in an integer which is
an obstruction to the �-extension.

Proof. Write VH componentwise, in real and complex representations as

(x1, . . . , xm)=(y1, . . . , yr , z1, . . . , zs)

with yj real and zj complex. Then H = ⋂
Hj , where Hj = �xj . Let k = dim �/H ,

define H̃j = H1 ∩ · · · ∩ Hj and let kj be the order of H̃j−1/H̃j . As seen in § 2 of
Chapter 1, there are exactly k complex coordinates for which kj = ∞, i.e., where
H̃j−1/H̃j acts as S1. Let

Cε = {ε(1 − 1/kj ) ≤ |xj | ≤ R, 0 ≤ Arg xj < 2π/kj }
be a fundamental cell corresponding to H .

Hence, if kj = 1, there are no limitations on xj , while on yj with kj = 2, one has
yj ≥ ε/2. Also, if kj = ∞, then xj is real and positive.

Then, C̄ε is a (r + 2s − k)- dimensional ball and, from the hypothesis of the
theorem, one has dim WH ≥ dim Cε. From the fundamental cell lemma (Lemma 2.2
in Chapter 1), BH \⋃K>H BεK (K) is covered properly by the images of Cε under
�/H , where εK is chosen to fit ε(1 − 1/kj ).

In particular, if X belongs to C̄ε\Cε, i.e., for some j , with xj complex and kj >

1, one has Arg xj ≡ ϕj = 2π/kj , then there is a unique point γjX, with γj in
H̃j−1/H̃j , such that (γjX)i = xi for i < j and the argument of (γjX)j is 0, i.e.,
γjX belongs to ∂Cε. In particular, yi , with yi real and positive, i.e., with ki = 2,
and zi , with ki = ∞, are left unchanged under γj . For such an X, let j1 be the
first index such that ϕj1 = 2π/kj1 , then, if X = (x1, . . . , xm), there is a unique γj1

in H̃j1−1/H̃j1 such that γj1X = (x1, . . . , xj1−1, |xj1 |, γj1xj1+1 , . . . , γj1xm). If j2 is
the first index for γj1X such that Arg(γj1xj2) = 2π/k2, one obtains a γj2 such that
γj2γj1X = (x1, . . . , |xj1 |, . . . , |xj2 |, . . . , γj2γj1xm). In a finite number of steps one
gets the unique γ in �/H , given in the fundamental cell lemma, such that γX belongs
to Cε ∩ ∂Cε.

Note that any equivariant �-extension of F must satisfy F(X) = γ̃−1F(γX), i.e.,
F on C̄ε\Cε is determined by F restricted to Cε ∩ ∂Cε, while on interior points of Cε,
F may be arbitrary.

Let s̃ be the number of complex zj ’s with kj < ∞. Then s = s̃ + k and dim Cε =
r + 2s̃ + k ≤ dim WH . Let ŝ be the number of complex zj ’s, with 1 < kj < ∞.

The proof of the theorem, by induction on dim VH , will consist in showing that,
on ∂Cε, there is a non-zero extension of F (and of F̃ ). This extension needs to have
the necessary symmetry properties allowing, under the action of �/H , a consistent
extension, i.e., �-equivariant, to BH of any continuous extension inside Cε.
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The minimal dimension possible, for the starting point of the induction, will be
that for the case when H =⋂

Hj , while any intersection without one group will give
a group strictly bigger than H . In particular, kj > 1.

(a) The simplest case. Points on ∂Cε are then either with |xj | = R, where F is
given or yj = ε/2 real or |zj | = ε(1−1/kj )with kj > 1 and zj complex, or Arg zj = 0
or 2π/kj when 1 < kj < ∞. Now, if xj = 0, from the minimality of the intersection,
the corresponding isotropy subgroup contains strictly H and for |xj | ≤ ε(1 − 1/kj )
one has the given equivariant extension F̃ of F . In particular, one does not have to
worry about yj real or zj with kj = ∞.

The rest of ∂C corresponds to points with some phase ϕj on ∂Ij , where Ij =
[0, 2π/kj ], for 1 < kj < ∞ and zj complex (there are ŝ such j ’s). Let 6ŝ−i be the
(ŝ − i)-torus

6ŝ−i ≡ {ϕj = 0 for j = 1, . . . , i, ϕj ∈ Ij for j = i + 1, . . . , ŝ}.
(There is a slight abuse of notation here: xj are not necessarily consecutive variables
since we are taking out the real variables and those for which kj = ∞).

Then, 60 = {ϕj = 0 for j = 1, . . . , ŝ} gives a piece of ∂C which has dimension
r + 2s̃ − ŝ + k < dim WH , since ŝ ≥ 1. From Remark 8.1 in Chapter 1, one has a
continuous non-zero extension on it: that is, any map from ∂(Bn+1) into Rm+1\{0}
has a non-zero extension to Bn+1, provided n < m.

For 61 = {ϕj = 0 for j < ŝ and ϕŝ in Iŝ}, one has already an extension
for ϕŝ = 0 (i.e., on 60). Furthermore, there is a unique γŝ in H̃ŝ−1/H̃ŝ such that
Arg(γŝ |xŝ |e2πi/kŝ ) = 0, hence γŝ leaves untouched the preceding xj ’s while, for an
eventual j > ŝ, one would have kj = ∞ and γŝxj = xj : by the minimality of VH ,
there are no xj with kj = 1. Define

F(x1, . . . , |zŝ |e2πi/kŝ , . . . ) = γ̃−1
ŝ

F (x1, . . . , |zŝ |, . . . )
which gives an extension to the front face, ϕŝ = 2π/kŝ , of 61 from the back face
ϕŝ = 0, which is compatible with the action of �/H (leaving fixed ϕj for j < ŝ). If
ŝ > 1, i.e., if 61 corresponds to a piece of ∂Cε (ŝ = 1 would give Cε), then this piece
is a ball of dimension r + 2s̃ − ŝ + k+ 1 < dim WH . Hence, again from Remark 8.1
of Chapter 1, one obtains a continuous non-zero extension on it.

Assume now that one has obtained an extension for the last ŝ − i phases, that is
for 6ŝ−i . Consider now 6ŝ−i+1 which has a back face ϕi = 0, i.e., 6ŝ−i , and a front
face for ϕi = 2π/ki . For a point X on that front face, let γi be the unique element of
H̃i−1/H̃i such that

γi(x1, . . . , xi−1, |xi |e2πi/ki , xi+1, . . . , xŝ) = (x1, . . . , xi−1, |xi |, γixi+1, . . . , γixŝ)

in Cε, i.e, with ϕj in [0, 2π/kj ) for j > i. Define then

F(X) = γ̃−1
i F (γiX)
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which will preserve the symmetry on that face. It remains to extend F to Ii = {ϕi ∈
[0, 2π/ki]}. This is done in the following sequence:

1. Extend to Ii × {ϕj = 0, for j > i} by the dimension argument.

2. Extend to Ii × {ϕj = 0, for i < j < ŝ} × {ϕŝ = 2π/kŝ} by the action of γŝ .

3. Extend to Ii × {ϕj = 0, for i < j < ŝ} × Iŝ by the dimension argument.

4. Extend to Ii × {ϕj = 0, for i < j < ŝ − 1} × {ϕŝ−1 = 2π/kŝ−1} × Iŝ by the
action of γŝ−1.

5. Extend to Ii ×{ϕj = 0, for i < j < ŝ−1}× Iŝ−1×{ϕŝ = 0} by the dimension
argument.

6. Extend to Ii ×{ϕj = 0 for i < j < ŝ−1}× Iŝ−1×{ϕŝ = 2π/kŝ} by the action
of γŝ .

7. Extend to Ii × {ϕi = 0, for i < j < ŝ − 1} × Iŝ−1 × Iŝ by the dimension
argument.

8. One continues with Iŝ−2, first with ϕŝ = ϕŝ−1 = 0 and so on …, i.e., repeating
all the constructions which lead to the extension to 6ŝ−i but now with Ii instead
of ϕi = 0. Each time one makes an extension, one has to be sure that all the
symmetries affecting the phases, which are placed later in the sequence, are
taken care of.

Example 1.1. We invite the reader to make a pause and to see in simple examples
what is the mechanics of the construction. We propose the following case. Take
� = Z30, acting on (z1, z2, z3) via (ekπi, ekπi/3, e2kπi/5) for k = 0, . . . , 29. Then,
H1 = Z15, corresponding to even k’s and k1 = 2. Also H2 ∼= Z5, corresponding to
multiples of 6, with H2 < H1, that is H1 ∩H2 = H2 and k2 = 3. One has H3 ∼= Z6,
corresponding to multiples of 5, with k3 = 5, H1 ∩ H3 = Z3, with multiples of 10
and H2 ∩H3 = {e}.

Then, 0 ≤ ϕ1 < π, 0 ≤ ϕ2 < 2π/3, 0 ≤ ϕ3 < 2π/5 is the fundamental cell.
The γ−1

3 which sends (ϕ1, ϕ2, ϕ3) = (0, 0, 0) into (0, 0, 2π/5) corresponds to k = 6,
while γ−1

2 (0, 0, 0) = (0, 2π/3, 0) for k = 20 and γ−1
1 (0, 0, 0) = (π, π/3, 0) for

k = 25.
Consider now the following equivariant map on [0, 1] × {(z1, z2, z3) : |zi | ≤ 2,

i = 1, 2, 3}
(2t + 1 − 2|z1z2z3|, (z2

1 + 1)z1, (z̄1z
3
2 − 1)z2, (z

5
3 + 1)z3),

which is non-zero if one zi is 0. One recognizes in z2
1, z̄1z

3
2 and z5

3 the invariant
monomials of Lemma 6.3 in Chapter 1. The zeros of the map are for z1 = ±i, z3 =
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eπi/5+2kπi/5, z2 = eπi/6+2kπi/3 or eπi/2+2kπi/3 and t = 1/2, i.e., 30 in all, but only
one in C: (i, eπi/6, eπi/5), for t = 1/2. Now, on ∂C, one may deform the map to

(2t − 1, z1 − z0
1, z2 − z0

2, z3 − z0
3),

where (z0
1, z

0
2, z

0
3) is the unique zero, which has an index 1. We leave to the reader

the details of the deformation, as well as the computation of the ordinary degree (i.e.,
non-equivariant) of the map, which is 30: make a deformation to (2t − 1, z2

1, z
3
2, z

5
3)

or use the fact that each zero has the same index (see Property 3.3 in Chapter 1).
A final note on this example: if one takes the order (z2, z1, z3), then k̃1 = 6, k̃2 =

1, k̃3 = 5, that is, the fundamental cell depends on the order of the coordinates. Of
course, if �/H is finite, then |�/H | = �kj is independent of the order.

(b) End of the proof of the theorem. In order to complete the induction argument,
one needs to see what happens when adding a new variable, without changingH . Thus,
one may assume that this new variable is the last one, xn+1, such that H̃n = H = H̃n+1,
that is kn+1 = 1. Hence, Cn+1, the new fundamental cell, is Cn × {|xn+1| ≤ R}.
On ∂Cn+1, one has either |xn+1| = R, with the original map F , or X in ∂Cn and
|xn+1| ≤ R. The first step is the extension to ∂Cn+1∩{xj = 0}, where the minimality
argument is replaced by the induction hypothesis.

The next step is the construction on 6ŝ , where one allows some kj ’s to be 1, i.e.,
that there is no restriction on ϕj . One may perform the same steps by either ignoring
these phases or by taking γj = Id.

Thus, if dim VH < dim WH+k, one may go all the way and obtain an extension to
C which respects the action of �/H on ∂C. Then this extension is reproduced by �/H

to give a �-equivariant map on BH . While if dim VH = dim WH + k, one has a non-
zero extension to ∂C and, given any continuous extension to C̄, with possible zeros,
one obtains a �-equivariant map on BH which is non-zero on �(∂C). The possibility
of a non-zero continuous extension to C will be determined by the Brouwer degree of
this map from ∂C into WH \{0}: see again Remark 8.1 of Chapter 1: such a map has
a non-zero extension if and only if its degree is 0. � 

Corollary 1.1. If for all isotropy subgroups H for the action of � on V , one has
dim VH < dim WH + dim �/H , then ��

SV (S
W ) = 0.

Proof. This is clear, since one may extend any F : SV → R ×W\{0} to a non-zero
equivariant map on I × B, starting with H = �, I × B� and the invariant part of F ,
then on all maximal isotropy subgroups (which correspond to some of the coordinates)
and then, by stages, for a given H , having first extended for all K’s, with H < K . � 

Corollary 1.2. Let J be the subset of Iso(V ) consisting of all isotropy subgroups H
with the property that for any K ≤ H , one has dim VK < dim WK + dim �/K .
Denote by SJC the union of SH ’s for H in JC . Then the following holds.
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(a) If F in ��
SV (S

W ) is such that F restricted to SJC has a non-zero �-equivariant

extension to the union of the BH ’s, for H in J c, then [F ]� = 0.

(b) If F and G are �-homotopic on SJc , then [F ]� = [G]� .

(c) If J̃ is the subset of Iso(V ) defined as J but with dim VK ≤ dim WK+dim �/K

instead of a strict inequality, then if there is a non-zero �-equivariant map F̃

defined on S
J̃ c , then F̃ extends to an element of ��

SV (S
W ). In particular, if J̃ is

all of Iso(V ), there is an equivariant map from SV into SW , even if V � = {0}.

Proof. (a) Starting from maximal elements in J , one extends F , step by step, to a
non-zero equivariant map from SV into R×W\{0}, thus, [F ]� = 0.

(b) Either replace V by I × V , defining a new map, on I × SV , by F for τ = 0
and G for τ = 1 and the �-homotopy on I × SJc , or use the algebraic structure of
��

SV (S
W ) by considering [F ]� −[G]� , where the sum is defined on the first variable.

This map, being trivial on SJc , has a �-equivariant extension to the union of the BH ’s,
for H in J c. By (a), one obtains [F ]� − [G]� = 0.

(c) It is enough to follow the extension procedure given in Theorem 1.1, but now
on C ∩ SV , which has one dimension less. Since this construction does not involve
the group structure, one obtains the result. � 

Returning to the case of a single H with dim VH = dim WH +dim �/H , we have
seen that the Brouwer degree of the extension to ∂C is the obstruction for the extension
to BH . A priori, this degree may depend on the extensions to ∂C and on the choice of
C, i.e., on the decomposition of �/H . We shall give below several conditions under
which this degree is independent of these factors.

We shall first complete some of our results on the fundamental cell.

Definition 1.1. Let z1, . . . , zk be the complex coordinates with kj = ∞, in the de-
composition of the fundamental cell C, (z1, . . . , zk are not necessarily consecutive).
The ball Bk = {x ∈ BH , zj real and non-negative, j = 1, . . . , k} will be called
the global Poincaré section. Note that Bk has dimension dim VH − dim �/H . Let
H0 = H1 ∩ · · · ∩ Hk , with Hj the isotropy of the coordinate zj , j = 1, . . . , k, then
H0, which leaves Bk globally invariant, will be called the isotropy of the Poincaré
section Bk .

Lemma 1.1. (a) H0 acts as a finite group on Bk and |H0/H | = �kj , for those xj
with kj < ∞. The fundamental cell for this action of H0 on Bk is C.

(b) Any �-equivariant map on BH induces, by restriction, an H0-equivariant
map on Bk and, conversely, any H0-equivariant map on Bk can be extended to a
�-equivariant map on BH . These two operations are the inverse of one another.

(c) If F0 is a non-zero H0-equivariant map on ∂Bk which has a non-zero H0-
extension F̃0 to

⋃
K>H (BK∩Bk), then one obtains a �-equivariant map F on SH and

a non-zero �-extension F̃ to
⋃

K>H (BK). If (F0, F̃0) is H0-homotopic to (G0, G̃0),
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then (F, F̃ ) is �-homotopic to (G, G̃). Conversely, if (F, F̃ ) is �-equivariant on
SH

⋃
K>H (BK) and dim VH ≤ dim WH + dim �/H , then one may build (F0, F̃0)

on ∂Bk

⋃
K>H (BK ∩Bk) a non-zero H0-map which depends only on the �-homotopy

class of (F, F̃ ).

Proof. (a) We have seen, in Lemma 2.4 (a) of Chapter 1, that the matrix (n
j
i ) giving

the action of T n has rank k = dim �/H and an invertible submatrix corresponding to
z1, . . . , zk . Hence dim �/H0 = k and, since �/H = (�/H0)(H0/H), one gets that
H0/H is a finite group.

Write now �/H as (�/H1)× · · · × (H̃i−1/H̃i)× · · · × (H̃m−1/H), where kj =
|H̃j−1/H̃j |. For a complex coordinate, if kj < ∞, then H̃j−1/H̃j

∼= Zkj , from
Lemma 1.1 in Chapter 1, and one may choose as a generator the γj , given in the proof
of Theorem 1.1, such that γj (|zj |e2πi/kj ) = |zj | and sends C̄ onto itself. In particular,
γj leaves invariant the argument of the coordinates z1, . . . , zk with ki = ∞, that
is γj belongs in fact to H0. For a real coordinate yi with isotropy Hi and ki = 2,
then we have seen that all the preceding γj ’s, corresponding to complex coordinates,
belong to Hi . Furthermore, Hi contains T n and any subgroup of odd order. If γi
generates H̃i−1/H̃i

∼= Z2, then the action of � on yi is by exp(2πi〈K,Li/M〉) and
γi corresponds to a choice K0 of K such that 〈K0, L

i/M〉 = 1/2. Since the action
on z1, . . . , zk is by exp(i〈Nj ,/〉 + 2πi〈K,Lj/M〉), where N1, . . . , Nk are linearly
independent, there is a /0 such that 〈Nj ,/0〉 + 2π〈K0, L

j /M〉 is a multiple of 2π
for j = 1, . . . , k. That is γi is in H0.

Note that γj is in H̃j−1, i.e., leaves invariant xi for i < j , and that γ
kj
j is

in H̃j . Following the decomposition of �/H , one may write any γ in �/H as
γ
α1
1 . . . γ

αm−k

m−k δ1 . . . δk , where 0 ≤ αj < kj and δ1, . . . , δk correspond to the coordi-

nates with kj = ∞. Thus, γ = γ0δ, where γ0 =∏
γ
αj
j is in H0/H and δ = δ1 . . . δk .

From the fact that γ
kj
j acts trivially on xj , it is easy to see that the set of all possible

γ0’s gives a subgroup of H0/H of order
∏

kj . Furthermore, if γ is in H0 then, from
δ = γ−1

0 γ , one would have δ1 . . . δk = γ̃0 is in H0. But then δ1 = γ̃0δ
−1
2 . . . δ−1

k

would be in H1, since δj fixes z1 for j > 1, that is δ1 would be in H̃1, hence trivial.
Continuing this argument one gets that δj are all trivial and γ = γ0, that is H0/H has
order

∏
kj .

Now, for fixed j with kj < ∞, one has that γ p
j (C), for p = 0, . . . , kj − 1, are

kj disjoint cells contained in Bk , since γj is in H0. Moreover, C̄ and γj C̄ have only
the face Arg xj = 0 in common. Note also that if 0 ≤ Arg xi < 2π/ki , for i �= j ,
then Arg γjxi belongs to an interval of length 2π/ki which intersects the previous one,
since γj was defined from a point X of C̄\C such that γjX was in C. Furthermore, if
xj is complex, then γj preserves the argument of any yi real with ki = 2.

Now, if there is anX in γ
p
i Co∩γ q

j Co, where Co is the interior of C and 0 ≤ p < ki ,

0 ≤ q < kj , then if γi corresponds to yi real and ki = 2, then γ
q
j (yi) > 0 and

γi(yi) < 0, which is impossible. Thus, the only possibility is for complex zi and zj
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with Arg zi in (−2πp/ki,−2π(p−1)/ki) and Arg zj in (−2πq/kj ,−2π(q−1)/kj ).
Assuming i < j , one has that γj fixes xi , hence Arg zi must belong to (0, 2π/ki) and
p = 0. But then Co ∩ γ

q
j Co = φ unless q = 0. Similarly, if γ0 = ∏

γ
αj
j and

γ̃0 = ∏
γ
α̃j
j and one has an X in γ0C

o ∩ γ̃0C
o, then X = γ0X0 = γ̃0X̃0 and

X0 = γ−1
0 γ̃0X̃0. Since γ α̃1−α1

1 will move the argument of x1 out of Co, where xj �= 0,
unless α1 = α̃1, one gets that this equality is possible only if γ0 = γ̃0. Thus, the

∏
kj

images of Co do not intersect and, since Bk can also be decomposed in |H0/H | cells
of equal volume, one has that the images of C cover properly Bk . Furthermore, from
the decomposition of any γ0 in H0/H as

∏
γ
αj
j , one has that if X belongs to C, then

γ0X belongs to the corresponding image of C and H0/H acts freely on C, that is C is
a fundamental cell for H0 acting on Bk .

(b) If F is �-equivariant on BH , then F restricted to Bk is H0-equivariant. Con-
versely, if F0 is H0-equivariant on Bk , take any X in BH . Then, there is a δ in �/H0
such that δX is in Bk . Define

F(X) = δ̃−1F0(δX).

Recall that δ is given by the solution of the system

〈Nj ,/〉 + 2π〈K,Lj/M〉 = Arg zj , j = 1, . . . , k,

see Lemma 2.4 in Chapter 1, where the vectors N1, . . . , Nk are linearly independent.
Thus, one may solve for 8 = (ϕ1, . . . , ϕk) (for instance) and some K so that ϕj are in
[0, 2π). It is then clear that if δ′ solves also this system, then δ−1δ′ will fix the argument
of zj , i.e., will belong to H0. But then, F0(δ

′X) = F0(δ
−1δ′δX) = δ̃−1δ̃′F0(δX),

since F0 is H0-equivariant. Thus, F(X) is well defined and F |Bk
= F0.

Let γ = γ0δ0 be in �, with γ0 in H0 and δ0 in �/H0. Then, if δX is in Bk , one
has that δδ−1

0 (γX) is in Bk , since γ0 is in H0 and � is abelian. Thus,

F(γX) = δ̃0δ̃
−1F0(δδ

−1
0 γX) = δ̃0δ̃

−1F0(γ0δX) = δ̃0γ̃0δ̃
−1F0(δX) = γ̃ F (X),

where one has used the H0-equivariance of F0. Hence, F is �-equivariant.
(c) Let (F0, F̃0) be H0-equivariant and non-zero, on ∂Bk for F0 and on BK ∩ Bk

for F̃0. The above construction gives the extension, after noticing that if X is in BK

then δX is also in BK and that BK ∩ Bk = B
K∩H0
k . Furthermore, any H0-homotopy

for (F0, F̃0) will generate a �-homotopy for (F, F̃ ).
Conversely, consider zi , with ki = ∞, and set VH

i = VH ∩ {zi = 0} and let BH
i

be the corresponding ball with dimension equal to dim VH − 2. If the isotropy of BH
i

is bigger than H , then F has the extension F̃ on BH
i . However, if this isotropy is H ,

the dimension hypothesis implies that one has a �-extension to BH
i . For two different

�-extensions F1 and F2, define, on the boundary of [0, 1]×BH
i , a �-equivariant map

defined asF1 for τ = 0, F2 for τ = 1 andF for [0, 1]×∂BH
i (and of course F̃ onBK

i ).
Applying Theorem 1.1 to I×BH

i , with dimension dim VH−1 < dim WH+dim �/H ,
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one obtains a �-equivariant extension to I ×BH
i , i.e., a �-equivariant homotopy from

F1 to F2.
It is clear that, starting from

⋂
BH
i and going up in dimension, one may extend

this homotopy to a �-homotopy to
⋃

BH
i and, by restriction, to an H0-homotopy on

Bk . Thus, this construction of F0 on Bk is independent of the extensions to BH
i .

Furthermore, if one has a �-homotopy of (F, F̃ ) on
(
SH ,

⋃
BK

)
one may extend

it, using the arguments of Corollary 1.2 (c), to a�-homotopy on
(
I×⋃ SH

i , I×⋃BK
)

and, by gluing the �-homotopy of (F, F̃ ) and by restricting to ∂Bk , one obtains an
H0-homotopy for (F0, F̃0), since dim I × SH

i ≤ dim WH + dim �/H . Thus, F0

depends only on the �-homotopy class of (F, F̃ ). � 

Definition 1.2. IfF is a non-zero�-map on SH which extends to a non-zero�-map F̃

on
⋃

K>H BK and dim VH = dim WH + dim �/H , the obstruction for the extension
to BH will be called the extension degree and denoted by degE(F, F̃ ).

Theorem 1.2. Let the following condition hold:

(H̃) For all γ in � one has det γ det γ̃ > 0.

Then degE(F, F̃ ) depends only on the �-homotopy class of (F, F̃ ) and on H0. In
fact, if F0 is any H0-equivariant extension to Bk , one has

deg(F0;Bk) = |H0/H | degE(F, F̃ ).

Proof. From the preceding lemma, one has that F0 depends only on the �-homotopy
class of (F, F̃ ). One may also perform the construction of Theorem 1.1, by choosing
the first k coordinates to be z1, . . . , zk , and get a non-zero H0-equivariant map on ∂C.

Then, if γ0 =∏
γ
αi
i is in H0, one defines on γ0(∂C)

Fγ0(X) = γ̃0F0(γ
−1
0 X).

Then, whenever X = γ0X0 = γ1X1, with X0 and X1 in ∂C, one has X0 = γ−1
0 γ1X1

and F0(X0) = γ̃−1
0 γ̃1F0(X1), by the equivariance of F0 on ∂C. Thus, Fγ0(X) =

Fγ1(X). Furthermore, the new map is clearly H0-equivariant on H0(∂C), which
contains ∂Bk .

This implies that

deg(F0;Bk) =
∑

γ0∈H0

deg(Fγ0; γ0(C)).

Now, from the property of the composition for the Brouwer degree (this is easy to
prove for the case where the zeros are non-degenerate), one has

deg(Fγ0; γ0(C)) = Sign det γ̃0 Sign det γ0 deg(F0;C).
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From (H̃), one has that

deg(Fγ0; γ0(C)) = deg(F0;C)

and
deg(F0;Bk) =

∏
ki deg(F0;C) = |H0/H | deg(F0;C). � 

Remark 1.1. Condition (H̃) affects only the real variables y1, . . . , yr , since on any
complex variable, the real determinant is always positive. Thus, if det γ and det γ̃
have opposite sign, this must be on the real variables, where the generators of the
action of � may be chosen to be in H0, as we have seen in the proof of Lemma 1.1.
Hence, for such a γ0 one would have:

deg(F0(γ0X);Bk) = Sign det γ0 deg(F0(X);Bk) = Sign det γ̃0 deg(F0(X);Bk),

by using again the composition property. Thus, if (H̃) is not valid, one has

deg(F0(X);Bk) = 0.

Remark 1.2. The independence of the extension degree on the extension process
includes the fact that one may change the order of the special variables z1, . . . , zk which
giveH0 andBk . However, the extension degree could be different for a different choice
of H0. For instance, if S1 acts on C2 via (e2iϕ, e3iϕ), then H1 = {ϕ = 0 or π}, H2 =
{ϕ = 0, 2π/3 or 4π/3}. If one takes for H0 the first coordinate, then k1 = 2 and
C1 = {z1 ∈ R+, 0 ≤ Arg z2 < π}, while if one takes for H0 the second coordinate,
then k2 = 3 and C2 = {0 ≤ Arg z1 < 2π/3, z2 ∈ R+}. The S1-map, from R2 × C2

into R× C2, defined by

F(t, λ, z1, z2) = (2t + 1 − 2|z2
1z2|, (λ+ i(2t − 1))z1, (z̄

3
1z

2
2 + 1)z2)

has its zeros, on [0, 1]×R×C2, for t = 1/2, λ = 0, |z1| = |z2| = 1 with z̄3
1z

2
2 = −1,

which is a pair of circles (z1 = eiθ , z2 = ± i e3iθ/2).

On ∂C1, one may perform the following deformations:

1. (1 − τ)z1 + τ in the second component.

2. Replace z2 in the third component by |z2|ei(1−τ)θ , with 0 ≤ θ ≤ π and |z2| by
(1 − τ)|z2| + τ .

3. Replace 2t , in the first component, by 2(1 − τ)t + τ .

At this stage, one has deformed F , on ∂C, to the map

(2 − 2|z1|2|z2|, λ+ i(2t − 1), z̄3
1z

2
2 + 1).
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4. Replace |z2|, in the first component, by (1 − τ)|z2| + τ |z1|−3/2, arriving at

(2(1 − z
1/2
1 ), λ+ i(2t − 1), z3

1z
2
2 + 1), since z1 ≥ 0.

5. Deform linearly z3
1 to 1.

One may then linearize the map at (t = 1/2, λ = 0, z1 = 1, z2 = i), obtaining that
the sign of the Jacobian is 1, i.e., the extension degree forC1 is 1 (and deg(F0;B1) = 2).

On the other hand, on ∂C2, one may perform the following deformations:

1. z2 to 1 in the last component.

2. z1 to 1 in the second component, via a rotation.

3. 2t + 1 to 2 in the first component.

4. After reducing C2 to the set {z2 > ε, 0 < Arg z1 < 2π/3}, deform linearly
|z1|2, in the first component, via (1 − τ)|z1|2 + τ |z2|−4/3.

5. Deform linearly z2
2 in the last component to 1, arriving at

(
2
(
1 − z

−1/3
2

)
, λ+ 1(2t − 1), z̄3

1 + 1
)
.

The linearization, at the only zero in C2, has a positive determinant, i.e., the
extension degree for C2 is 1 (and deg(F0;B2) = 3).

We shall see, in the next result, that the extension degree is independent of H0.
Let us now continue with the extension problem. Denote by V̄ and W̄ the subspaces

VH and WH respectively.

Definition 1.3. (a) Let �(H) denote the subset of ��

SV̄
(SW̄ ) consisting of those ele-

ments F which have a non-zero �-extension to all BK with K > H .

(b) Denote by �(H,K) the set of �-homotopy classes of maps [F, F̃ ], with
F : ∂BH → WH \{0}, F̃ :⋃BK → W\{0}, for K > H and F̃ a �-extension of F .

(c) Let � be the assignment [F, F̃ ] → [F ], from �(H,K) into �(H).

Note that if F is in �(H), with extension F̃ , and F is �-homotopic to G on SH ,
then, from the equivariant Borsuk extension theorem (Theorem 6.2 of Chapter 1), G
has a non-zero �-extension G̃ to

⋃
BK and (F, F̃ ) is �-homotopic to (G, G̃). This

implies that �(H),�(H,K) and � depend only on �-homotopy classes. We have
the following result.

Theorem 1.3. Assume that dim V̄ = dim W̄ + dim �/H and that (H̃) hold. Then,
�(H) is a subgroup of ��

SW̄
(SW̄ ). Furthermore, �(H,K) is an abelian group which

is isomorphic to Z via the extension degree. The map � is a morphism onto �(H),
with ker � = {[(1, 0), F̃ ]}, for all possible extensions F̃ of the map (1, 0): recall that
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W̄ = R × EH and (1, 0) corresponds to a map with value 1 on R and 0 on EH . In
particular, the extension degree is independent of H0, up to conjugations, and any
extension degree is achieved.

Proof. Recall that BH is a cylinder I × BR , for t in I = [0, 1] and ‖X‖ ≤ R. Let

A = {(t, X) with either t = 0 or 1 or X in BK, for K > H }.

If [F, F̃ ] is in �(H,K), then F̃ is defined in A and F is non-zero there. Further-
more, the �-homotopy (F (t, τX), F̃ (t, τX)) is admissible on A, since if (t, X) is in
A then (t, τX) is also in A and these maps are non-zero on A. Since (t, 0) is in B� ,
one has that F̃ (t, 0) �= 0 and (F (t, 0), F̃ (t, 0)) is deformable to (F (0, 0), F (0, 0)),
since H is a proper subgroup of � (if H = � there is nothing to prove). This last map
is in turn deformable to ((1, 0), (1, 0)), since, if dim W� = 1, the admissibility of F
requires that F(0, 0) > 0: see §8 of Chapter 1.

Thus, (F, F̃ ) is �-homotopic on A to ((1, 0), (1, 0)). The Borsuk equivariant
extension theorem implies that (F, F̃ ) is �-homotopic, on ∂BH

⋃
BK , to a map

(F1, (1, 0)). Hence one may assume that (F, F̃ ) is of the form (F1, (1, 0)) on A. This
implies, as in §8 of Chapter 1, that one may define a group structure on �(H,K).
Furthermore, if dim V � > 1, one has that �(H,K) is abelian. If V � is reduced to t ,
the commutativity will follow from the rest of the proof.

Note that, by reducing A to {t = 0 or 1}, one sees that �(H) is a subgroup of
��

SV̄
(SW̄ ), abelian if dim V � > 1. Furthermore, it is clear that � is a morphism, onto

�(H) and with ker � = {((1, 0), F̃ )}.
Note also that, up to here, we have not used any of the two hypotheses.
However, if these hold, then degE(F, F̃ ) depends only on [F, F̃ ] and on H0.

Hence, one has a map from�(H,K) into Z, given by degE(F, F̃ ) = degE (F1, (1, 0)).
From Theorem 1.1, this assignment, which is clearly a morphism, is one-to-one, since
if the extension degree is 0, one has a �-extension to BH , which is �-homotopic,
radially and together with F̃ , to (F (0), F̃ (0)), i.e., to ((1, 0), (1, 0)).

Thus, �(H,K) is isomorphic to a subgroup of Z, hence abelian.
Finally, define a map F0 on C∪BK with value (1, 0) on

⋃
BK , t = 0 or 1, xj = 0

if kj > 1 (including z1, . . . , zk) and on Arg xj = 0 or 2π/kj (if 1 < kj < ∞) and, on
the rest of ∂C, which defines a continuous map of degree 1: one may always localize
a map of any degree in a neighborhood of a point on a sphere, with a constant value
outside the neighborhood. One may either use an explicit construction or use the fact
that the complement of the neighborhood is contractible and appeal to the classical
Borsuk extension theorem. This map is invariant on C̄\C, hence one may extend it,
by the action of �/H to a �-equivariant map F0 on SH , which has an extension degree
equal to 1. Thus, the morphism

�(H,K)
degE−−−→ Z
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is an isomorphism, since one may achieve any extension degree, and �(H,K) ∼= Z.
Any [F, F̃ ] in �(H,K) can be written as

[F, F̃ ] = degE(F, F̃ )[F0, (1, 0)],
where F0 is the above map.

Now, if z̃1, . . . , z̃k and H̃0 correspond to another choice of fundamental cell, with
generator [F̃0, (1, 0)] and extension degree deg

H̃0
, one has

[F0, (1, 0)] = deg
H̃0

(F0)[F̃0, (1, 0)]
[F̃0, (1, 0)] = degH0

(F̃0)[F0, (1, 0)],

which means that deg
H̃0

(F0) degH0
(F̃0) = 1, since [F0, (1, 0)] is not trivial, having

degE(F0, (1, 0)) = 1, hence (F0, (1, 0)) has no non-zero �-extension to BH . Thus,
deg

H̃0
(F0) = degH0

(F̃0) = ±1.

Moreover, one may construct F̃0, by a change of variables, from F0, leaving
untouched the variables which are different from z1, . . . , zk, z̃1, . . . , z̃k , in particular
the real variables: one may localize the map in the intersection of the sectors for all
these variables. Since one does not alter the order of the variables, the Jacobian of the
change of variables is 1 and one has the same extension degree. This last argument
is valid only on complex representations. Hence, if � acts on (z1, z2) in a complex
conjugate way, then either one changes z2 to z̄2 (and the same action) or one has a
Jacobian which is −1: see Remark 5.3 in Chapter 1. � 

Remark 1.3. IfH belongs to J̃ , defined in Corollary 1.2, then one may extendF0 to an
equivariant map onV , with value (1, 0) on anyBK wheneverK is not a subgroup ofH :
if H < K this is how F0 was constructed and for other K’s, which are not subgroups
of H , define F0 as (1, 0) and use the dimension argument of Corollary 1.2 (c).

One may have examples where � is not one-to-one, although most of our appli-
cations will be for the case where ker � = {0}.
Example 1.2. Let V = [0, 1]×C and W = R2, with � = S1, acting as eiϕ on C and
with a trivial action on W . Consider the S1-map, on [0, 1] × {z : |z| ≤ 2} = B:

F(t, z) = (1 − 4t (1 − t)(|z| − 2)2, (2t − 1)t (1 − t)(|z| − 2)).

Then, F(t, z) = (1, 0) on ∂B and F(t, z) = 0 only for t = 1/2, |z| = 1 in B. In
particular, FS1

(t, 0) �= 0. For z > 0, one sees that the Jacobian of the map at (1/2, 1)
is positive, i.e., degE((1, 0), F S1

) = 1. In fact, by using the addition of homotopy
classes, one obtains that ker � ∼= Z and �({e}) = 0.

This case, for � = S1, dim V � = dim W� + 1 − 2p, dim V = dim W + 1, was
studied in [I.M.V. 1Appendix D] and [I.M.V. 2, Lemmas 2.2 and 2.3 and Theorem 3.1],
where it is shown that, if p �= 1, then � is one-to-one, while if p = 1, ker � ∼=
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Zm0(�nj )/(�mj ), where the action on (V �)⊥ is by eimjϕ , j = 1, . . . , n, and on (W�)⊥

by einj ϕ , j = 1, . . . , n − 1, nj = kjmj = k̃jmn, j = 1, . . . , n − 1, and m0 is the
largest common divisor of the mj ’s. Note that

(∏
kj
)
m0/mn is an integer, since there

are integers aj , j = 1, . . . n, such that

∑
ajmj/m0 = 1,

then, one obtains, using mj = k̃jmn/kj ,

(mn/m0)
(
an
∏

kj +
∑(

aj k̃j
∏
i �=j

ki

))
=
∏

kj ,

that is mn/m0 divides
∏

kj .

As in the above example, this result depends on an explicit construction of ker �:
Let V = [0, 1] × Rl × Cn,W = Rl+2 × Cn−1, with x = (X0, Z) in Rl × Cn,

and ‖x‖ = max |xj |. The ball B will be [0, 1] × {x : ‖x‖ ≤ 2}. With the above
actions one has that H = Zm0 and taking for H0 ∼= Zmn with the last variable, one
has B1 = B ∩ {zn ≥ 0}. Consider the equivariant map

F(t, x) = (1, 0)+ t (1 − t)(‖x‖ − 2)
(− 4(‖x‖ − 2), 2t − 1,

X0, z
k1
1 − zk̃1

n , . . . , z
kn−1
n−1 − z

k̃n−1
n

)
.

The zeros ofF are for t = 1/2, X0 = 0, ‖Z‖ = 1 and hence |zj | = 1 for j = 1, . . . , n.
One easily checks that

deg(F ;B1) =
∏

kj .

Hence, the extension degree degE((1, 0), F ) = (∏
kj
)
(m0/mn).

Furthermore, let F̃ (t, X0, z1, . . . , zn−1) be a non-zero S1-extension of (1, 0) to
B ∩ {zn = 0}, then the map (1− zn/2)F̃ + (zn/2, 0) is an extension of (1, 0) to ∂B1
and, with a trivial action on zn ≥ 0, is an S1-map. We shall show, when treating
Borsuk–Ulam results, that such a map has a degree which is a multiple of

∏
kj (in

fact the multiple is deg((1− zn/2)F̃ S1 + (zn/2, 0);BS1

1 ). Thus, any element in ker �
has an extension degree which is a multiple of

(∏
kj
)
(m0/mn).

Example 1.3. Let V = [0, 1] ×Rl ×Cn,W = Rl+2p ×Cn−p, p > 1 and actions of
S1 of the following form: On zj in Cn as eimjϕ , on ξj in Cn−p as einj ϕ , with nj = kjmj ,
for j = 1, . . . , n − p, and nj are multiples of mn−p+1, . . . , mn. As above m0 is the
largest common divisor of the mj ’s, hence H ∼= Zm0 . Furthermore, since p > 1, one

has dim V S1 ≤ dim WS1 − 2 and if K > H , with K ∼= Zm, then zj is in VK if mj is
a multiple of m and one has

(H1) dim VK ≤ dim WK + dim �/K − 2.
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Lemma 1.2. For a general abelian group, if (H1) holds, then ker � = {0},�(H) =
��

SV̄
(SW̄ ), which is Z if (H̃) is true and dim VH = dim WH + dim �/H .

Proof. Use the arguments of Corollary 1.2 to show that F in ��

SV̄
(SW̄ ) has a non-zero

�-equivariant extension to
⋃

BK for K > H , and, replacing BH by I × BH , that

any two extensions F̃1 and F̃2, will give rise to pairs (F, F̃1), (F, F̃2) which are �-
homotopic on BH

⋃
BK . Thus, degE(F, F̃ ) is independent of F̃ and, if F = (1, 0),

then ker � = {0}. Hence, �(H,K) = �(H) = ��

SV̄
(SW̄ ). � 

Example 1.4. If dim VH = dim WH and�/H is finite, then if (H̃) holds, one has that
deg(F, BH ) = |�/H | degE(F, F̃ ), hence the extension degree depends only onF and
ker � = {0}. In particular, [F ] = d[F0], where d is the extension degree and [F0] is
the generator constructed in Theorem 1.3. Note that if H is in J̃ of Corollary 1.2 (c),
then F0 can be extended to V , such that F0 = (1, 0) on BK , for any K which is not a
subgroup of H (see Remark 1.3). While, if K < H and dim VK = dim WK , one has
that the fundamental cell for VK is of the form

CK = CH × C⊥

where C⊥ is the fundamental cell on (V H )⊥ ∩ VK for the action of H . Then, if B⊥
is the ball in this space, one has that BK is made of |�/H | images of CH × B⊥.
Furthermore, since F0 = (1, 0) on ∂CH , one may extend F0 as (1, 0) on ∂CH × B⊥.
Then deg(FK

0 ;BK) is the sum of the degrees on the |�/H | images of ∂CH × B⊥,
which are all equal, due to the action of this group and hypothesis (H̃). Then,

deg(FH
0 ;BK) = |�/H | deg(FK

0 ;CH × B⊥).

This result will be used when studying the Borsuk–Ulam theorems.

In general, a hypothesis which will enable us to compute �(H) and, from there,
��

SV (S
W ) is based on the following:

Definition 1.4. K > H has a complementing map in VH if there is a non-zero equiv-
ariant map F⊥ from VH ∩ (V K)⊥\{0} into WH ∩ (WK)⊥\{0}, with F⊥(0) = 0.

The existence of complementing maps is a non-trivial question: for instance if �
acts on the above spaces as Z2, then the Borsuk–Ulam theorem implies that dim VH ∩
(V K)⊥ ≤ dim WH ∩ (WK)⊥. We shall elaborate further on this type of results in
Section 4.

Note that hypothesis (H) of §6 of Chapter 1, applied to the two spaces above,
implies the existence of an explicit complementing map: see Lemma 6.2 of Chapter 1.
In this case (H̃) holds on these spaces.
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Theorem 1.4. Assume the following hypothesis:

(K) Any minimal K > H has a complementing map in VH

Here minimal means that adding a variable to VK , the isotropy of the new space is
H . Then:

(a) �(H,K) ∼= �(H).

(b) If furthermore, (H̃) holds and dim VH = dim WH + dim �/H , then the exten-
sion degree is independent of F̃ , extension of F to

⋃
BK , and �(H) ∼= Z.

Proof. Consider ((1, 0), F̃ ), an element of ker �, that is, F̃ is a non-zero �-extension
of (1, 0) defined on ∂BH to

⋃
BK . Take a minimal K (hence if K̃ > K one has

BK̃ ⊂ BK ) and its associated complementing map F⊥. Write X in VH as (XK,X⊥)
and define, on the cylinder BH = I ×B = {(t, x), 0 ≤ t ≤ 1, ‖X‖ = max |xj | ≤ 1},
the map

F̂ (t, x) = ((1 − ‖X⊥‖)F̃ (t, XK)+ ‖X⊥‖(1, 0), (1 − ‖X‖)t (1 − t)F⊥(X⊥)).

It is easy to see that

1. F̂ is �-equivariant,

2. F̂ and F̃ coincide on BK , i.e., if X⊥ = 0,

3. F̂ (t, X) = (1, 0) if (t, X) is on ∂BH ,

4. F̂ (t, X) �= 0 on BH .

The last property implies that [(1, 0), F̂ ] = 0 in �(H,K), or else

[(1, 0), F̃ ] − [(1, 0), F̂ ] = [(1, 0),G] = [(1, 0), F̃ ],
where G(t,X) is given by the homotopy difference

G(t,X) =
{
F̃ (2t, X), 0 ≤ t ≤ 1/2

F̂ (2 − 2t, X), 1/2 ≤ t ≤ 1

(recall that all these maps have value (1, 0) for t = 0 and t = 1).
Then G(t,X) is �-homotopic on BK (relative to its boundary, i.e., on ∂BK ⊂

∂BH , the homotopy is fixed and equal to (1,0)), to (1, 0). From the equivariant
Borsuk extension theorem applied to ∂BH ∪BK, ((1, 0),G) is �-homotopic to a map
((1, 0), F̃0) with value (1, 0) on BK , or else, one may assume that F̃ (t, X) = (1, 0)
on BK .

Now, if for some other minimal K̃ , one has already that F̃ (t, X) = (1, 0) on BK̃ ,
then F̂ (t, X

K̃
) = ((1, 0)(1−‖X

K̃
‖)t (1− t)F⊥(X⊥)), with X

K̃
= XK ⊕X⊥ and XK
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is in BK ∩BK̃ . Then, G(t,X) is �-homotopic to (1, 0) on BK ∪BK̃ (relative to their
boundary), by deforming linearly the second part of F̂ (t, X

K̃
) to 0. Thus, ((1, 0),G)

is �-homotopic to ((1, 0), F̃0), with F̃0 = (1, 0) on BK ∪ BK̃ .
By induction, one finds that F̃ is�-homotopic, relative to ∂BH , to (1, 0) on

⋃
BK ,

that is ker � = {0}. Part (b) is then a consequence of Theorem 1.3. � 

3.2 Homotopy groups of �-maps

In this section, we shall continue our computations of the �-homotopy groups of
spheres. In §1, we have considered a fixed isotropy subgroup H , with dim �/H = k.
We shall now study, for a fixed k, the set of all isotropy subgroups whose Weyl group
has dimension k.

Definition 2.1. Denote by �(k) the set of all �-homotopy classes of maps

F :
⋃

∂BH → W\{0},

for isotropy subgroups H with dim �/H = k, which have �-extensions

F̃ :
⋃

BK → W\{0},

for all K with dim �/K < k. Define also by �(k, k − 1) the set of �-homotopy
classes [F, F̃ ]� .

Note that if F is in �(k) and F is �-homotopic to G on
⋃

∂BH , then G has also
a �-extension G̃ to

⋃
BK , from the Borsuk extension theorem, with (F, F̃ ) being

�-homotopic to (G, G̃) on
⋃

∂BH
⋃

BK . Thus, �(k) and �(k, k − 1) depend only
on homotopy classes.

As before, one may deform F on {t = 0 or 1}⋃BK and assume that it has value
(1, 0) there. Hence, one may define group structures on �(k) and �(k, k − 1) which
are abelian if dim V � > 1.

Let � : �(k, k − 1) → �(k) be the restriction. Then, � is a morphism. As in
Theorems 1.3 and 1.4, one has

Lemma 2.1. (a) �(k, k − 1) and �(k) are groups (abelian if dim V � > 1). The
morphism � is onto and ker � = {((1, 0), F̃ )}, where F̃ is any extension of (1, 0) to⋃

BK , with dim �/K ≤ k − 1.

(b) If every H with dim �/H = k satisfies

(K̃)

{
a) Any minimal K > H has a complementing map inVH ,

b) H has a complementing map F⊥ in V,

then ker � = {0}.
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Proof. (a) is similar to Theorem 1.3. For (b), one starts with H such that any K > H

satisfies dim �/K ≤ k − 1. If ((1, 0), F̃ ) belongs to ker �, then, from Theorem 1.4,
one has that F̃ H is homotopic to (1, 0) on BH . However, in order to continue this
homotopy for other H̃ ’s, one needs to extend the map F̂ (t, XH ) from BH to V . This
is where part (b) of (K̃) is used: replace the above map by

F̂ (t, XH ,X⊥) = ((1−‖X⊥‖)F̂ (t, XH )+‖X⊥‖(1, 0), (1−‖X‖)t (1− t)F⊥(X⊥)).

Then, the induction argument on H , so that one has compatible extensions on inter-
sections of BH ’s, is similar to the proof of Theorem 1.4. � 

Definition 2.2. If H has a complementing map F⊥ in V , then for [F ] in �(H) (or in
��

SV̄
(SW̄ ), V̄ = VH , W̄ = WH ), the map

F̃ (t, X) = (F (t, XH ), t (1 − t)F⊥(X⊥)),

where X = XH ⊕ X⊥, is called the suspension of F by the complementing map.
The image of �(H) under this construction, which is a morphism, is a subgroup of
��

SV (S
W ) and is denoted by �̃(H).

Note that the factor t (1 − t) is there only to facilitate the addition property
(F (t, XH ) = (1, 0) if t = 0 or 1) and may be deformed to 1 when considering
only the equivariant homotopy class of F̃ .

Lemma 2.2. (a) The suspension by complementing maps is one-to-one.

(b) If
∑[F̃j ]� = 0, where [Fj ]� is in �(Hj ), then [Fj ]� = 0 for all j ’s.

Proof. If [F̃ ]� = 0, then F̃ is extendable to a non-zero �-map on I × BR . Thus,
F̃ H = F is also extendable, by restriction, on BH . This proves (a).

For (b), if H1 is maximal among the isotropy subgroups of the sum, with [F1] �= 0
and [F̃1]� =∑−[F̃j ]� , then, recalling that the homotopy sum is by superposition of
the maps by rescaling t , one has, for X in VH1 ,

F̃
H1
j (t, X) = (F

H1
j (t, XHj

), t (1 − t)F
H1⊥j

(X⊥j )),

that is XHj
is in VH1 ∩ VHj . If this intersection is strictly contained in VHj , then its

isotropy is larger than Hj and F
H1
j extends as a non-zero �-map. While, if the inter-

section is VHj , then VHj ⊂ VH1 and H1 < Hj which contradicts the maximality of
H1. By superposing the extensions on BH1 , one would have that, by Borsuk extension
theorem, F1 would have a non-zero �-extension, that is [F1] = 0, a contradiction. � 

Theorem 2.1. If (K̃) holds for all H with dim �/H = k, then

�(k) ∼=
⊕

dim �/H=k

�(H).
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If furthermore, (H̃) holds and dim VH ≤ dim WH + dim �/H for all H with
dim �/H = k, then �(k) ∼= Z× · · · × Z, where there is one Z for each Hj such that
dim �/Hj = k and dim VHj = dim WHj + k.

Proof. Let [F ]� be an element of �(k) and Hj be a maximal isotropy subgroup, that
is, dim �/Hj = k but dim �/K ≤ k − 1, for all K > Hj . Then, FHj : ∂BHj →
W\{0} is an element of �(Hj ), with a well-defined extension degree if (H̃) holds and
dim VHj = dim WHj + k: in that case [FHj ] = dj [Fj ], where Fj is a generator for
�(Hj ) with extension degree 1. Note that one may assume that F and Fj have value
(1, 0) on

⋃
BK,K > Hj and for t = 0 or 1.

Now, for any element G in �(Hj ), consider the suspension operation defined by

G̃(t, X) = (G(t,Xj ), t (1 − t)F⊥j (X⊥j ))

where X = Xj ⊕X⊥j , with Xj in VHj , and F⊥j is the complementing map for Hj .
Then, [F ] − [F̃ Hj ] has a non-zero extension to BHj , where [F̃ ] is the restriction

from ��
SV (S

W ) to �(k).
One may do the same procedure for each such maximal Hj since we know that,

on VHi ∩ VHj , the isotropy subgroups K have dim �/K < k and there all maps are
assumed to be (1, 0). Let

[F1] = [F ] −
∑

[F̃ Hj ]
where the sum is taken over all maximal Hj ’s.

Note that, at this stage, dj are uniquely determined by FHj = F |
B

Hj . Note also

that, from the analogue of Lemma 2.1, one may assume F1 = (1, 0) on
⋃

BHj and
that the homotopy type on

⋃
∂BH

⋃
BK

⋃
BHi is unchanged by this assumption.

Take then H , with dim �/H = k and for all K > H , either dim �/K < k or
K = Hj for some of the preceding Hj ’s. Then, the map FH

1 defines an element
of �(H), which is dH [F̃H ] in the particular case of the theorem, where FH is the
generator for�(H) and F̃H its suspension byF⊥H . Clearly, [F1]−[F̃ H

1 ] is extendable
to BH .

One may perform the same construction for all H ’s with these characteristics
and conclude that [F1] −∑

H [F̃ H
1 ] is extendable to

⋃
BH . Note again that [F̃ H

1 ] is
completely and uniquely determined by [F ]. In the particular case, [F̃ H

1 ] = dH [F̃H ]
has a unique extension degree dH .

One may go on to the next stages of isotropy subgroups, arriving finally at

[F ] −
∑
j,H

[F̃ H
j ] = 0

in �(k), with [F̃ H
j ] = dH [F̃H ] in the particular case of (H̃) and a unique extension

degree dH . The set of [F̃ H
j ]’s is uniquely determined by [F ] and the step by step

construction. Note that, from the construction, Fj is (1,0) on the previous stage of
isotropy subspaces, in particular [F̃ H

j ] belongs to �(k).
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Conversely, if [F ] is in �(H), with F̃ (t, X) = (F (t, XH ), t (1− t)F⊥(X⊥)), then
F̃ K(t, XK) = (FK(t, XH ), t (1−t)FK⊥ (X⊥)). Then, ifVH ∩VK is strictly contained
in VH , the map FK is non-zero on BK ∩ BH and F̃ K is non-zero on BK .

While, if VH ∩ VK = VH and K �= H , one has K < H and dim �/K ≥
dim �/H . Thus, in this case, one cannot have dim �/K < k and dim �/H = k. That,
is [F̃ ] is in �(k).

Let now M be the morphism from
⊕

�(H) into �(k) given by

M([FH1 ], . . . , [FH ], . . . ) =
∑

[F̃ Hj ],

which is well defined from the previous argument. Furthermore, from Lemma 2.2,
M is one-to-one and onto, due to the construction. In the particular case, recall, from
Theorem 1.1, that �(H) = 0 if dim VH < dim WH + k and �(H) ∼= Z if one has
equality of dimensions (Theorem 1.4 (b)). � 

In order to continue with the study of ��
SV (S

W ) it is natural to keep up with the
ordering begun with �(k).

Definition 2.3. Let �k be the set of all �-homotopy classes of maps F :⋃ ∂BH →
W\{0}, for all H with dim �/H ≤ k.

It is clear that �k is a group (abelian if dim V � > 1) and that �(k) is a subgroup
of �k .

Theorem 2.2. If (K̃) holds for all H with dim �/H = k, then

(a) �k
∼= �k−1 ×�(k).

(b) If moreover, dim V L < dim WL + dim �/L, for all L with dim �/L > k, then
��

SV (S
W ) ∼= �k .

Proof. Let P∗ : �k → �k−1 be the restriction map. We shall show that P∗ is onto
and that ker P∗ = �(k).

Let then [F ] be an element of�k−1. Take a minimalK , i.e., with dim �/K = k−1
and dim �/H = k for any H < K . Consider the suspension F̃K of FK (first to some
H with dim �/H = k and then by F⊥). Clearly, [F ] − P∗[F̃K ] is deformable to
(1, 0) on ∂BK . Hence, by the equivariant Borsuk theorem, the above difference is
�-homotopic in �k−1 to a map F̂ which has value (1, 0) on ∂BK and can be extended
as (1, 0) on BK .

Let K̃ be another minimal isotropy subgroup and consider the suspension F̃
K̃

of

F̂ . Then, F̃
K̃
|BK = ((1, 0), t (1 − t)F⊥(X⊥,K̃

)), thus, [F̂ ] − P∗[F̃K̃
] is deformable

to (1, 0) on ∂BK̃ ∪ ∂BK and the difference may be replaced by a map with this value
on these two spheres.
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By performing this operation on all minimal K’s, we arrive at [F ] −∑
P∗[F̃K ],

which is deformable to (1, 0) on
⋃

∂BK , for all K’s, hence zero in �k−1. That is,

[F ] =
∑

P∗[F̃K ].

Or else, from the equivariant Borsuk theorem, F has an extension F̃ with [F̃ ] =∑[F̃K ] and [F ] = P∗[F̃ ]. Note that F̃ depends on the chosen order for the minimal
K’s (and on the complementing maps) however, for a given choice, it is easy to see
that if F is �-homotopic to G then F̃ and G̃ are �-homotopic, that [F̃K ] are uniquely
determined by this choice and that this construction sends sums into sums, i.e., that it
is a morphism.

Let now [F ] in �k be such that P∗[F ] = 0. Then, F is extendable to a non-
zero �-map on

⋃
BK for K with dim �/K ≤ k − 1. That is, [F ] belongs to �(k).

Conversely, if [F ] belongs to �(k), then one may assume, from Lemma 2.1, that F
restricted to

⋃
BK , dim �/K ≤ k−1, is (1, 0). Thus, P∗[F ] = 0 and ker P∗ = �(k).

In general, if [F ] is an element of �k , let P∗[F ] =∑
P∗[F̃K ] and the difference

[F ]−∑[F̃K ] belongs to ker P∗, i.e., is of the form
∑[F̃ H

j ], from Theorem 2.1. Thus,

[F ] =
∑

[F̃K ] +
∑

[F̃ H
j ],

where the first sum is on the minimal K’s with dim �/K = k − 1 and F̃ H
j are the

generators for �(k). Note that all these maps are defined in ��
SV (S

W ), although the
equality is in �k .

Under the hypothesis of (b), let [F ] be an element of ��
SV (S

W ) and let Pk[F ] be
the class of its restriction on �k , where Pk is the map induced by this restriction. Then
[F ] −∑[F̃K ] −∑[F̃ H

j ] ≡ [G] is such that Pk[G] = 0, that is Pk+1[G] belongs to
�(k + 1). But, from the dimension hypothesis, �(k + 1) = 0 = �(k + l) for any
l ≥ 1 by Corollary 1.2. Hence, the �-homotopy of Pk[G] extends to a �-homotopy
of G on I × BR . � 

Remark 2.1. Under the hypothesis of Theorem 2.2, consider the set of H ’s, with
dim �/H = k, which are minimal. As in the proof of Theorem 2.2, one obtains
that [F ] = ∑

Pk[F̃H ], for any F in �k and Pk is the above morphism induced by
restriction to �k . Hence, Pk is onto.

On the other hand, if [F ] belongs to ��
SV (S

W ), then Pk[F ] = ∑
Pk[F̃H ] =∑

Pk[F̃K ] +∑
Pk[F̃ H

j ], from Theorem 2.2. An easy induction argument leads to

Theorem 2.3. If (K̃) holds for all isotropy subgroups, then

��
SV (S

W ) ∼=
⊕
H

�̃(H),

where �̃(H) stands for the suspension by the corresponding complementing map.
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Corollary 2.1. Let �̃ = �/T n, Ṽ = V T n
, W̃ = WTn

, then the following holds.

(a) If (H̃) and (K̃) hold for all H ’s with dim �/H = 0 and if, for all H , one has
dim V H ≤ dim WH , then

��
SV (S

W ) ∼= ��̃

SṼ
(SW̃ ) ∼= Z× · · · × Z,

with one Z for each H with dim �/H = 0 and dim VH = dim WH . One has
[F ] = ∑

dH [F̃H ], where dH is the extension degree and F̃H is the generator
suspended by its complementing map.

(b) If (H̃) and (K̃) hold for all H ’s with dim �/H = 1 and if, for all H , one has
dim V H ≤ dim WH + 1, then

��
SV (S

W ) ∼= ��̃

SṼ
(SW̃ )× Z× · · · × Z,

with one Z for each H with dim �/H = 1 and dim VH = dim WH + 1. One
has [F ] = [F̃ ] +∑

dH [F̃H ], where F̃ is the suspension of FT n
.

Proof. (a) is an immediate consequence of Theorems 2.2 and 1.4 (b), while, for (b),
one needs to recall, from Lemma 2.1 of Chapter 1, that Ṽ corresponds to all points
with isotropy H with dim �/H = 0, hence �0 = ��̃

SṼ
(SW̃ ). Since [F ] − [F̃ ], where

F̃ is the suspension of FT n
by its complementing map, is in �(1), one obtains the

result. � 

Example 2.1. If V = Rk × W , then (K̃) is clearly satisfied, with complementing
maps which are the identity on (V H )⊥. The hypothesis (H̃) is also satisfied.

Hence, one may apply Theorems 2.2 and 2.3. In particular, since dim VH =
k + dim WH < dim WH + dim �/H , provided dim �/H > k. Then, ��

SV (S
W ) =⊕

�̃(H) for H with dim �/H ≤ k. Thus, only the orbits of dimension less than or
equal to k count topologically. Furthermore, ��

SV (S
W ) = �k−1 ×Z× · · · ×Z, with

one Z for each H with dim �/H = k.

Our last result in this section relates ��
SV (S

W ) to ��

SV0
(SW0), where V0 = VH0 ,

W0 = WH0 for some isotropy subgroup H0 of �. This point will be important for
symmetry breaking.

Theorem 2.4. Assume (K̃) holds for all isotropy subgroups. Let H0 be an isotropy
subgroup of �, let V0 = VH0 ,W0 = WH0 and denote by P0 the morphism from
��

SV (S
W ) into ��

SV0
(SW0) induced by restricting the �-maps to V0. Then P0 is onto

and
P0

(∑
H

[F̃H ]�
)
=

∑
H>H0

[F̃ H0
H ]�,

where F̃H is in �̃(H).
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Proof. Let FH⊥ (X⊥H ) be the complementing map for VH . Then, if [F0] is in

��

SV0
(SW0), one has that [F0, F

H0⊥ ] is in ��
SV (S

W ) and P0 is onto. Furthermore,

FH⊥ is a non-zero �-map from (V H )⊥ ∩ V0\{0} into (WH )⊥ ∩W0, for any H > H0,
by Property 3.2 of Chapter 1. Thus, (FH⊥ )H0 is a complementing map on V0 and one
has hypothesis (K̃) on V0.

From Theorem 2.3, one has

[F ] =
∑
H

[F̃H ],

where [F̃H ] = [FH , FH⊥ ] and [FH ] in �(H), i.e., FH (X) is non-zero on
⋃

BK for
K > H . From the definition of the homotopy sums and the above Property 3.2 of
Chapter 1, one obtains

[FH0 ] =
∑
H

[FH0
H , (FH⊥ )H0 ].

If H0 is not a subgroup of H , then VH0 ∩ VH is a strict subspace of VH , with
isotropy strictly larger than H , hence F

H0
H �= 0 on BH0 and [FH0

H , (FH⊥ )H0 ] = 0.
The other H ’s, with H0 < H , will give the result. � 

3.3 Computation of �-classes

Although the preceding results may be appealing, the construction of the isomorphisms
is involved and requires a step by step extension process on the subspaces VH , for
decreasing H ’s. So the problem is the following: given a �-map F , how does one
compute its decomposition on

⊕
�(H)?

On one hand FH , in �(H), is not the restriction of F to VH , except for the first
steps in the construction and, on the other hand, we have given formulae only for the
extension degree, i.e., when dim VH = dim WH +dim �/H . In this section, we shall
give partial answers to these two problems: constructing a new map, a “normal map”
for which the restriction argument is valid and, when hypothesis (H) holds, explicit
generators for the “free” part of ��

SV (S
W ) with an explicit way of computing the

extension degrees via Poincaré sections.

Definition 3.1. We shall define an order on the set, Iso(V ), of isotropy subgroups of
� on V , by denoting them by H1, . . . , Hm in such a way that if Hi > Hj , then i < j ,
i.e., in decreasing order.

Thus, H1 = �,Hm is the isotropy of V and the elements of �(k− 1) come before
those of �(k).

In this section we shall assume that hypothesis (K̃) holds for all H in Iso(V ),
that is, decomposing V as VH ⊕ V⊥H , W as WH ⊕W⊥H , one has a complementing
�-map F⊥

H , from V⊥H into W⊥H with its only zero at 0. We shall assume that these
complementing maps are compatible, i.e., that F⊥

H |V⊥K = F⊥
K |V⊥H .
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This will be the case for V = Rk ×W , since F⊥
H is the identity, or when one has

hypothesis (H) for U and W with V = Rk × U (see below).

Write X = XH ⊕X⊥H and F = (FH , F⊥H ).

Lemma 3.1. For a fixed H , any map F in ��
SV (S

W ) is �-homotopic to a map

F̃ (t, X) = (FH (t, X), F̃⊥H (t,X)), such that F̃⊥H (t,X) = F⊥
H (X⊥H ) if ‖X⊥H‖ ≤

ε, for ε small enough.

Proof. Let 8H : V⊥H → R+ be defined as a non-increasing function of ‖X⊥H‖, with
value 1 if ‖X⊥H‖ ≤ ε and value 0 if ‖X⊥H‖ ≥ 2ε. Let

F̃ (t, X) = (
FH (t,X), (1 −8H(X⊥H ))F⊥H +8H(X⊥H )F⊥

H (X⊥H )
)
.

Since F⊥H = 0 if X⊥H = 0 (Property 3.2 of Chapter 1), one has an ε such that
FH (t,X) �= 0 if (t, X) is in ∂(I × BR) and ‖X⊥H‖ ≤ 2ε. Hence, F̃ is non-zero on
∂(I ×BR) and, replacing 8H by τ8H , it is easy to see that F̃ is �-homotopic to F . � 

Definition 3.2. A map F̃ in ��
SV (S

W ) will be called a normal map if for all H ’s, one

has F̃⊥H (t,X) = F⊥
H (X⊥H ), if ‖X⊥H‖ ≤ ε.

Lemma 3.2. Any F in ��
SV (S

W ) is �-homotopic to a normal map F̃ .

Proof. Arrange the isotropy subgroups in decreasing order : H1 = �, . . . , Hm is the
isotropy of V . For W , decomposed as WHj ⊕ W⊥Hj

, we shall write any map G as
(Gj ,G⊥j ). Starting from F0 = F , define the sequence of maps

Fj+1 =
(
F

j+1
j , (1 −8j+1)F

⊥j+1
j +8j+1 F⊥

j+1

)
,

where 8j+1 = 8Hj+1 and F⊥
j+1 is the complementing map for Hj+1. From Lemma

3.1, Fj+1 is �-homotopic to Fj and, by induction, to F in ��
SV (S

W ). The last map,

for j + 1 = m, will be the map F̃ .
Assume, by induction, that if i ≤ j , then F⊥i

j = F⊥
i whenever ‖X⊥i‖ ≤ ε (this

is clearly true for i = j , since F
⊥j
j = (1 −8j)F

⊥j
j−1 +8jF

⊥
j ).

Notice that the compatibility conditions on the complementing maps say that
(F⊥

i )⊥j = (F⊥
j )⊥i . Furthermore, from the projections, for any map G, one has

(Gi)⊥j = (G⊥j )i and (G⊥i )⊥j = (G⊥j )⊥i . Then,

F⊥i
j+1 = (

(F
j+1
j )⊥i , (1 −8j+1)(F

⊥j+1
j )⊥i +8j+1(F

⊥
j+1)

⊥i
)

= (
(F⊥i

j )j+1, (1 −8j+1)(F
⊥i
j )⊥j+1 +8j+1(F

⊥
i )⊥j+1).
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Hence, using the induction hypothesis, one has, for ‖X⊥i‖ ≤ ε:

F⊥i
j+1 = (

(F⊥
i )j+1, (1 −8j+1)(F

⊥
i )⊥j+1 +8j+1(F

⊥
i )⊥j+1)

= (
(F⊥

i )j+1, (F⊥
i )⊥j+1) = F⊥

i .

Thus, for j = m, one has F̃⊥i = F⊥
i provided ‖X⊥i‖ ≤ ε, i.e., F̃ is a normal

map. � 

For a normal map one may compute the decomposition of [F̃ ] onto
⊕

�(H),
from restrictions to VH , in the following way:

Theorem 3.1. Assume that (K̃) holds for all H , with the compatibility conditions on
the complementing maps. Let F , in ��

SV (S
W ), be �-homotopic to a normal map F̃ ,

with an associated ε. Let BK
ε be an ε-neighborhood of BK in V and let ϕH be an

invariant Uryson function on BH with value 0 in BH \⋃K>H BK
ε and value 1 on⋃

K>H BK . Let s be in [0, 1], then, up to one suspension, one has

[2s − 1, F (t, X)] = Q[2s + 2ϕH (t,XH )− 1, F̃ H (t, XH ), F⊥
H (X⊥H )],

independently of F̃ .

Proof. Note first that the left hand side is deg�(F ; I × BR), from the suspension
property 2.4 of Chapter 2. Furthermore, each term on the right hand side is in �̃(H),
where V has been replaced by I×V , with s in I = [0, 1]. Then, if one has two normal
maps homotopic to F , one may choose a common ε, their restriction to BH will be
�-homotopic and, from Lemma 2.2 (b), the decomposition will be unique. Note that,
since (s, t) is in (I × V )� , the sum is commutative.

Now, the sets
(
BH
ε \

⋃
K>H BK

ε

) = Aε,H have disjoint interiors and cover all of
I × BR , as it is easily seen. Furthermore, F̃ is non-zero on their boundary. Thus, up
to one suspension, one has

deg�(F̃ ; I × BR) =
∑

deg�(F̃ ;AεH ).

OnAεH , F̃ (t, X) = (F̃H (t, X), F⊥
H (X⊥H )), whereF⊥

H has its only zero atX⊥H = 0.
Hence, by excision

deg�(F̃ ;AεH ) = deg�((F̃
H , F⊥

H ); I × BR).

In F̃ H (t, X), one may deform X to XH , as well as in ϕH and one gets the result. � 

We shall continue our more detailed description of ��
SV (S

W ) by recalling hypoth-
esis (H): see Section 6 of Chapter 1. We shall assume that

V = Rk × U and that U and W satisfy (H),
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i.e.:

(H) For all isotropy subgroup H and K for U , one has

dim UH ∩ UK = dim WH ∩WK.

Or equivalently (Lemma 6.2 of Chapter 1):

(a) dim UH = dim WH

(b) There is a �-equivariant map: (x1, . . . , xs) → (x
l1
1 , . . . , x

ls
s ), from U into W ,

where lj are integers and xl , for negative l, means x̄|l| (lj = 1 on U� and on
the real representations of �).

Furthermore, (H̃) holds. From the dimension hypothesis, if a coordinate xj is not

in UH , then x
lj
j is not in WH and is a piece of F⊥

H . Thus, (K̃) holds for all H and the
complementing maps are compatible.

Theorem 3.2. If V = Rk × U , where U and W satisfy (H), then

��
SV (S

W ) ∼= �k−1 × Z× · · · × Z,

with one Z for each H with dim �/H = k. Moreover,

[F ]� = [F̃ ]� +
∑

dH [F̃H ]�,

where [F̃ ] =∑[F̃K ] is constructed from Pk−1[F ], the restriction of [F ] to �k−1 and
from the suspensions of Theorem 2.2, and where [F̃H ] is in �̃(H) and the suspension
of FH with extension degree 1.

Proof. It is enough to use Theorems 2.2, 2.3, Remark 2.1 and Example 2.1 � 

The generator FH was proved to exist in Theorem 1.3. We shall give an explicit
form, in case (H) holds.

Let H be an isotropy subgroup with dim �/H = k. Let V � ∼= Rk × U� be
generated by (t, λ1, . . . , λk,X0), with t in [0, 1]. On (V �)⊥ ∩VH , we shall build the
fundamental cell CH , by choosing first z1, . . . zk , with kj = ∞ and isotropy H0, then
xk+1, . . . , xm, with xj complex and kj finite, and finally y1, . . . , yr with yj in R and
kj = 1 or 2. Define the following invariant polynomials:

(a) For k+1 ≤ j ≤ m: Pj = Pj (x1, . . . , xj ) = x
α1
1 . . . x

kj
j , as given in Lemma 6.3

of Chapter 1, and x1 = z1, . . . , xk = zk .

(b) For 1 ≤ i ≤ r , Qi = Qi(yi) = y2
i if ki = 2, or 2 if ki = 1.
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Since � acts on yi as Z2,Qi is invariant. Define, on I × BR , with R > 1:

FH (t,XH ) =
(

2t + 1 − 2
∏

|xj |2
∏

y2
j , X0, (λ1 + i(|z1|2 − 1))zl1l ,

(λ2 + i(|z2|2 − 1))zl22 , . . . , (λk + iε(|zk|2 − 1))zlkk ,

(Pk+1 + 1)xlk+1
k+1, . . . , (Pm + 1)xlmm , (Q1 − 1)y1, . . . , (Qr − 1)yr

)
.

In
∏ |xj |2, one has all j ’s between 1 and m, while in

∏
y2
j one has only those yj

with kj = 2. The factor ε is (−1)k(k−1)/2+k dim X0 . The order of the components has
been taken to be that of the fundamental cell so that the notation is lighter. In fact,
they should appear in their natural place. Note that, if Hm is the isotropy of V , one
has dim U = dim WHm , but W could be larger. However, any �-map on V will have
its range in WHm .

The map F̃H is given by suspending FH by x
lj
j for the remaining xj ’s.

Theorem 3.3. The map FH generates �(H), i.e., it has extension degree 1. For any
integer dH , one may give a map F in �(H) with extension degree dH .

Proof. The zeros of FH in I × BR are for X0 = 0, λ1 = · · · = λk = 0, |z1| =
· · · = |zk| = 1, y2

j = 1 if kj = 2 and yj = 0 if kj = 1, and |Pj | = 1. Since Pj

ends with x
kj
j , one may solve iteratively the relations |Pj | = 1 for |xj | = 1, since

|z1| = · · · = |zk| = 1. Then, t = 1/2.
Then, on a zero of FH , one has |zj | = 1, and, for all j ’s, |xj | = 1. In particular,

any zero, in I × BR , has isotropy H and FH |BK �= 0 for any K > H , that is FH

defines an element of �(H).
Furthermore, on Bk = BH ∩ {zj > 0 for j = 1, . . . , k}, there are exactly

∏
kj

zeros, since for x1, . . . , xj−1 fixed, the relation Pj + 1 = 0 is solvable for kj values
of xj . By changing Pj + 1 to Pj + ηj , with |ηj | = 1, one may choose the phases of
ηj iteratively so that none of the zeros is on ∂CH , that is, there is only one zero X0

inside CH , with a well defined extension degree.
In order to compute the extension degree, recall that for zl = · · · = zk = 1, the

only solution in CH of Pj + ηj = 0 is for xj = x0
j . Perform then the following

sequence of deformations:

1. Replace zj by τ + (1 − τ)zj in z
lj
j and in |zj | in the first component, for j =

1, . . . , k. Replace xj by τx0
j +(1−τ)xj in x

lj
j and in |xj | in the first component,

for j = k + 1, . . . , m. For kj = 2, replace yj by τ + (1 − τ)yj in the term
(yj + 1)yj and in y2

j in the first component. One arrives at the map, deforming

z2
j − 1 to zj − 1,

(2t − 1, X0, λ1 + i(z1 − 1), . . . , λk + iε(zk − 1), Pj + ηj , yj − y0
j ).
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2. In Pj = x
α1
1 . . . x

αj−1
j−1 x

kj
j , one may deform, linearly in CH , xi to x0

i for i < j ,

arriving at (xj − x0
j )Rj (xj ), where Rj (xj ) is a polynomial of degree kj − 1

with no zeros in CH , hence deformable, via Rj ((1− τ)xj + τx0
j ), to a constant

complex number, which can be deformed to 1.

By the product theorem for the Brouwer degree, the degree of the part (2t−1, xj−
x0
j , yj − y0

j ) being 1, one has to compute the degree of the map

(λ1, . . . , λk,X0, z1, . . . , zk) → (X0, λ1, z1 − 1, λ2, z2 − 1, . . . , λk, ε(zk − 1)).

The number of necessary permutations to bring (λ1, . . . , λk,X0, z1, . . . , zk) into
(X0, λ1, z1, λ2, z2, . . . , λk, zk) is k dim X0+k(k−1)/2. This proves that the extension
degree is 1.

For the second part of the theorem, replaceλk+iε(|zk|2−1)by (λk+iε(|zk|2−1))d ,
where zd , with d negative, means z̄|d|. One may also replace Pk+1 by Pd

k+1, with the
same convention on negative powers meaning conjugation.

While, if there are no complex coordinates (hence k = 0) and r ≥ 2 then, if
|�/H | > 2, take two y’s say y1 and y2, with k1 = k2 = 2, and replace (Q1 − 1) and
(Q2 − 1) by the real and imaginary parts of (y2

1 − 1 + i(y2
2 − 1))d respectively. On

the other hand, if |�/H | = 2 and k1 = 2, with kj = 1 for j > 1, replace the first
three components by (2t + 1− 2y2

1y
2
2 , y1 Re(y2

1 − 1+ i(y1y2 − 1))d , y2 Im(y2
1 − 1+

i(y1y2−1))d), which gives an extension degree d, or replace the first two components
by (Re(2t + 1− 2y2 + i(y2 − 1))d , y Im(2t + 1− 2y2 + i(y2 − 1))d). In all cases,
it is easy to see that the maps are equivariant and of degree d on CH . � 

For the case � = S1, several other hypothesis were given in [IMV2, Chapter 3].

Remark 3.1. In Theorem 3.1, we have seen that the generator is unique up to con-
jugations. Let us make this dependence more precise: assume that, in VH , one
has z1, . . . , zs and z′1, . . . , z′s such that the action on z′j is the conjugate of that
of � on zj . Assume that one has constructed two fundamental cells C and C′,
where zj > 0 for C and z′j > 0 for C′. Then, one has two generators F and F ′.

The map F will have terms of the form ((λj + iεj (|zj |2 − 1))z
lj
j , (zj z

′
j + 1)z

′l′j
j ),

while F ′ will have zj and z′j interchanged. The components which do not concern
z1, . . . , zs, z

′
1, . . . , z

′
s may be chosen equal for both maps. On C the map F , as a map

from (λj ,Re zj ,Re z′j , Im z′j ) has degree 1 (from the choice of εj : this piece of the
map contributes εj ). While on C′, the map F , as a map from (λj ,Re zj , Im zj ,Re z′j ),
is deformable to (λj , εj (|zj |2 − 1),Re zj Re z′j + 1,Re z′j Im zj ), near the zero zj =
−1, z′j = 1, and to (λj ,−εj (Re zj + 1), 1− Re z′j , Im zj ), with a contribution of −εj

to the degree. Thus, on C′, the map F has extension degree (−1)s and

[F ]� = (−1)s[F ′]�.
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It is easy to see that, if a pair (zj , z′j ) has kj < ∞, then the generator is independent
of the order one has taken for C.

The last part of this section concerns Poincaré sections, as defined in Definition 1.1,
which will enable us to compute the dH ’s for a certain class of maps, by relating them
to usual Brouwer degrees.

Theorem 3.4. Assume V = Rk ×U , where U and W satisfy (H). Let z1, . . . , zk with
isotropy H0, with dim �/H0 = k and global Poincaré section Bk = {(t, X) in I ×BR ,
with zj ≥ 0, for j = 1, . . . , k}. Then, if F : I × BR → R×W , is a �-map which is
non-zero on ∂(I × BR) ∪ ∂Bk , one has

[F ]� =
∑

H≤H≤H0

dH [F̃H ]�,

where H is the torus part of H0 (see Lemma 2.6 of Chapter 1, hence dim �/H = k).
Furthermore, for each H in the above sum, one has

deg(FH ;BH
k ) =

∑
H≤K≤H0

βHKdK |H0/K|,

where, if (xl11 , . . . , x
ls
s ) is the complementing map of VK in VH (i.e., an equivariant

map from (V K)⊥ ∩ VH into (WK)⊥ ∩ WH), then βHK = ∏
lj . In particular,

βHH = 1.

Proof. Note first that if F is non-zero on ∂Bk , it is also non-zero on ∂(I × BR) due
to the action of �/H0 (see Lemma 1.1). Furthermore, for any isotropy subgroup H ,
FH is a non-zero map from ∂BH

k into WH . If H < H < H0, then VH contains
z1, . . . , zk and since dim �/H = k, the spaces BH

k and WH have the same dimension
and deg(FH ;BH

k ) is well defined.
Now, if K is not a subgroup of H0, in particular, if dim �/K < k, then zj = 0 for

some j = 1, . . . , k, in VK . This implies that FK �= 0, in particular, [F ]� is in �(k)

and [F̃ ]� = 0, as given in Theorem 3.2. Then, [F ] =∑
dH [F̃H ].

For such a K one has, from Theorem 2.4,

0 = [FK ] =
∑
K<H

dH [F̃ K
H ].

From Lemma 2.2 and Theorem 2.4, one gets that dH [F̃ K
H ] = 0 = dH [FH , F⊥K

H ], since
VH ⊂ VK . Since F⊥K

H is a complementing map for VH in VK and this suspension
is one-to-one (Lemma 2.2 (a)), one has dH = 0 for all H ≥ K . Since H is the unique
smallest isotropy subgroup, with a Weyl group of dimension k contained in H0, the
above sum is reduced to those H ’s between H and H0:

[F ]� =
∑

H<H<H0

dH [F̃H ]�.
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LetV0 = Rk×VH∩Bk,W0 = WH . Then, from Lemma 1.1, we know thatH0 acts
as a finite group on V0. The isotropy subgroups for that action are exactly those H ’s
withH < H < H0, sinceH0X = �X∩H0. Furthermore, one has dim VH

0 = dim WH

and {xljj } gives, for xj different from z1, . . . , zk , complementing maps. Thus, one has
property (H) for V0. Moreover, CH is also the fundamental cell for the action of H0 on
VH

0 (see Lemma 1.1) and, the generators FH of Theorem 3.3 have extension degree

equal to 1, one may choose FH |Bk as the generators for �H0

SV0
(SW0). Applying the

above argument to H0 and F |V0 , which gives an element of �H0

SV0
(SW0), one has

[F 0]H0 =
∑

H≤H≤H0

d ′H [F̃ 0
H ]H0 ,

whereF 0 stands forF |V0 . This equality means that one has anH0-homotopyF 0(τ,X)

on ∂(Bk ∩V0) from the left-hand side to the right-hand side. From Lemma 1.1, by the
action of �/H0, one may lift this homotopy between F(X) and

∑
H<H<H0

d ′H [F̃H ]�:

again use Lemma 1.1 (b) to see that the lifting of F 0 and F̃ 0
H is FH and F̃

H

H , respec-
tively, on VH . Hence,

[FH ]� =
∑

H≤H≤H0

d ′H [F̃ H

H ]�,

but, from Theorem 2.4, [FH ]� has the same decomposition, with dH instead. From
Lemma 2.2, one has d ′H = dH . Since,

[F 0H ]H0 =
∑

H≤K≤H0

dK [F̃ 0H
K ]H0 ,

which is a homotopy on ∂(Bk ∩V0), the two sides have the same Brouwer degree, for
which the sum operation is an isomorphism, i.e., the degree of a topological sum is
the sum of the degrees. Since F̃ 0H

K = (F 0
K, F⊥H

K ), one has, from Theorem 3.3, that
deg(F̃ 0H

K ;BH
k ) = (∏

kj
)(∏

lj
) = |H0/K|βHK , using Theorem 1.2. This finishes

the proof of the theorem. � 

Remark 3.2. The passage through H0 may seem, at first sight, unnecessary. The
point is that a �-homotopy on SV does not imply an H0-homotopy on ∂Bk , since,
even if the two maps are non-zero on ∂Bk , the �-homotopy may have zeros, when
one zj is 0. In Lemma 1.1, we have proved that this can be fixed for �(H), and the
summation formulae, for [F 0]H0 and [FH ]� , extend this property to

⊕
�̃(H).

Now, if H < H0, one has dim VH ∩ Bk = dim WH , and if H is not a subgroup
of H , then in VH one has coordinates of (V H )⊥, if H is not the isotropy of V .
From the definition of the torus part of H0, this implies that dim H0/H > 0. From
Theorem 2.2 (b), one has

�
H0
∂Bk

(SW ) ∼= �0 = �
H0

SV0
(SW0).
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In particular,

[F |Bk]H0 = [F 0]H0 =
∑

H≤H≤H0

dH [F̃ 0
H ]H0 .

Remark 3.3. Consider the map F̃ = (FH , F⊥
H ), where F⊥

H , from (V H )⊥ into

(WH )⊥, has degree
∏

lj , coming from the complementing map. Then F̃ is non-
zero on ∂Bk, F̃

H = FH for H < H < H0, thus, deg(F̃H ;BH
k ) = deg(FH ;BH

k ).
Hence the two maps have the same set of �-degrees, i.e., the same dH ’s, by inverting
the relations of the Brouwer degrees (see below). That is,

[F ]� = [F̃ ]�.

Furthermore, the preceding remark implies that [F |Bk
]H0 = [F̃ |Bk

]H0 , thus

deg(F |Bk
;Bk) = deg(F̃ |Bk

;Bk) = deg(FH |Bk∩VH ;Bk ∩ VH )
(∏

lj

)
.

So,

deg(F |Bk
;Bk) =

∑
H≤H≤H0

βHHdH |H0/H |,

independently of F on (V H )⊥.

Corollary 3.1. Ordering the subgroups H with H < H < H0, as in Definition 3.1,
the relations of Theorem 3.4 may be expressed in the form




deg(FH0;BH0
k )

...

deg(FHi ;BHi

k )

...

deg(FH ;BH

k )



=




1 0
...

...

βi1 |H0/Hj | 0
...

...
...

βs1 βsj |H0/Hj | |H0/H |







d0

...

dj
...

ds




with βij = βHiHj
, dj = dHj

.

This triangular matrix, since βij is non-zero if and only if Hi < Hj , in particular
i > j , is invertible. Hence, the dj ’s are completely determined by the Brouwer degrees
on the left. One may use the Möbius inversion formula to get a compact expression
for the inverse. Note that βij = 1, if Hi < Hj , for V = Rk ×W .

Example 3.1. Consider the action of Z2×Z2 on R×R3 given by (t, γ1x, γ2y, γ1γ2z),
with γ 2

1 = Id, γ 2
2 = Id. One has the following information.
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Isotropy H VH CH

H0 = Z2 × Z2 (t, 0, 0, 0) (t, 0, 0, 0)

H1 = Z2 × {1} (t, 0, y, 0) (t, 0, y > 0, 0)

H2 = {1} × Z2 (t, x, 0, 0) (t, x > 0, 0, 0)

H3 = {(1, 1), (−1,−1)} (t, 0, 0, z) (t, 0, 0, z > 0)

H4 = {(1, 1)} (t, x, y, z) (t, x > 0, y > 0, z)

|�/H | F̃H

1 (2t − 1, x, y, z)

2 (2t + 1 − 2y2, x, (y2 − 1)y, z)

2 (2t + 1 − 2x2, (x2 − 1)x, y, z)

2 (2t + 1 − 2z2, x, y, (z2 − 1)z)

4 (2t + 1 − 2x2y2, (x2 − 1)x, (y2 − 1)y, z)

Since B0 = I × BR , any map in ��
SV (S

V ) can be written as

[F ] =
4∑
0

dj [F̃j ],

and, if ij is the degree of F on BHj , one obtains




i0

i1

i2

i3

i4


 =




1 0 0 0 0

1 2 0 0 0

1 0 2 0 0

1 0 0 2 0

1 2 2 2 4







d0

d1

d2

d3

d4




In particular, deg(F ; I×BR) = deg(F�; I )+2p, a Borsuk–Ulam result. For instance,
if F(t, x, y, z) = (2t − 1,−x,−y,−z), one has i0 = d0 = 1, ij = −1 = dj for
j = 1, 2, 3, i4 = −1 and d4 = +1.

Example 3.2. Assume V = Rk × W , Then βHK = 1 if H ≤ K and 0 otherwise.
Define the following Möbius function:

µHH = 1

µHK =
{−∑

H≤L<K µHL = −∑
H<L≤K µLK, if H < K

0, otherwise.
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Thus, µHK is integer-valued and can be computed iteratively. Then, if

iH =
∑

H≤K≤H0

|H0/K|dK,

one has
|H0/H |dH =

∑
H≤K≤H0

µHKiK.

In fact, if one writes
iK =

∑
L

δKL|H0/L|dL,

with δKL = 1 if K ≤ L ≤ H0 and 0 otherwise, the substitution in the formula for
|H0/H |dH gives∑

H≤K

∑
K≤L

µHKδKL|H0/L|dL =
∑
H≤L

( ∑
H≤K≤L

µLKδKL

)
|H0/L|dL,

where one has changed the order of the sums. Since
∑

H≤K≤L µHK = 0, for H a
strict subgroup of L, one obtains the result.

In the preceding example, the µHK ’s give the matrix


1 0 0 0 0
−1 1 0 0 0
−1 0 1 0 0
−1 0 0 1 0
2 −1 −1 −1 1




In many examples iH corresponds to the index of an isolated solution, i.e., to the
sign of the determinant of AH , where A is an H0-equivariant matrix: see Property 3.4.
and Theorem 5.3 of Chapter 1. That is, iH = ±1 for all H ’s. One has the following:

Proposition 3.1. Assuming V = Rk ×W and iH = ±1 for all H ’s, with H ≤ H ≤
H0, for a map satisfying the conditions of Theorem 3.4, then

dH = 0 if VH has a coordinate where H0 acts as Zm,m ≥ 3,

dH0 = iH0 ,

dHj
= (iHj

− iH0)/2, for all maximal Hj ’s, with H0/Hj
∼= Z2,

dH and iH are completely determined by iHj
, the above Hj ’s, for all H ’s not

included in the above list.

Proof. Let Ṽ be the subspace of V where H0 acts trivially or as Z2, i.e., Ṽ corresponds
to the “real” representations of H0. Let H̃ be the isotropy of Ṽ . Then any γ in H0
is such that γ 2 belongs to H̃ , since the action of H0 on a “real” coordinate is by ±1.
Thus, H0/H̃ ∼= Z2 × · · · × Z2 and one cannot have a “complex” coordinate in V H̃ ,
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i.e., with an action of H0 as Zm, with m ≥ 3: any generator γ of Zm would need to
have γ 2 in H̃ , hence, if that coordinate would be in V H̃ , one has m = 2. That is,
V H̃ = Ṽ .

Let H be such that VH contains at least one complex coordinate. Then,

iH =
∑

H̃≤K≤H0
H≤K

|H0/K|dK +
∑
H<K

|H0/K|dK + |H0/H |dH ,

where the first sum is on the real coordinates of VH , with isotropy Ĥ , hence equal to
i
Ĥ

. The second sum is over those isotropy subgroups K , different from H , with VK

containing at least one complex coordinate.
Assume, by induction, that dK = 0 in the second sum, then

iH = i
Ĥ
+ |H0/H |dH .

Since |H0/H | > 2, because of the complex coordinate, the only possibility is dH = 0
and iH = i

Ĥ
. Note that if F(t,X) = AX, with A an H0-equivariant matrix, then,

due to the block diagonal structure, A|
VH∩(V Ĥ )⊥ is complex, hence with determinant

1 and iH = i
Ĥ

.
It remains to prove the last point of the proposition: let H correspond to some

isotropy of real coordinates, then |H0/H | = 2m, for some m > 1. Then,

iH = dH0 + 2
∑

H<Hj

dHj
+

m−1∑
α=2

2α
( ∑

H<K
|H0/K|=2α

dK

)
+ 2mdH ,

where the first sum corresponds to the maximal Hj ’s containing H . Given dH0 , dHj
’s

(hence iH0 and iHj
’s), assume by induction that the dK ’s in the second sum are com-

pletely determined, and that one has the above identity for iH and dH and for i′H and
d ′H . Then the difference will give

iH − i′H = 2m(dH − dH ′)

which is not possible, since m > 1, unless iH = i′H and dH = d ′H . � 

This proposition implies that any change of the �-degree, at this stage, is detected
by changes of dH0 or on dHj

, withH0/Hj
∼= Z2. This fact will lead to period doubling.

3.4 Borsuk–Ulam results

One of the first uses of symmetry, to give information on a map, is the Borsuk–Ulam
theorem, which states that the Brouwer degree of an odd map, with respect to a ball
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centered at the origin, is an odd integer. There is a vast literature on extensions of this
result to different situations. In this section, we shall indicate how the ideas of the
three preceding sections may be used to give sharp results for the Brouwer degree of
a �-map, when � is abelian. This section is not central to the book and is more of a
topological interest.

In this section V and W are two arbitrary finite dimensional representations of �.
Our first result will yield a classification of �-maps in a context different from

that of Theorem 2.3, i.e., where one may have no complementing maps but where the
problematic isotropy subgroups have a finite Weyl group.

Theorem 4.1 (Hopf classification). Assume dim V � ≥ 1 and suppose that (H̃) holds
(i.e., Sign(det γ )Sign(det γ̃ ) > 0 for all γ in �). Let Ĵ be the set of all elements H

of Iso(V ) with the property that for all K ≤ H one has

dim VK ≤ dim WK, if dim �/K = 0,

dim VK < dim WK + dim �/K, if dim �/K > 0.

(Note that J ⊂ Ĵ ⊂ J̃ , where J and J̃ are defined in Corollary 1.2).
Then, ifF andF0 are two equivariant maps which are�-homotopic on

⋃
H∈Ĵ c S

V H
,

one has integers dH such that

[F ]� = [F0]� +
∑
I

dH [F̃H ]�,

where the sum is over the subset I of Ĵ of H ’s, with dim VH = dim WH and
dim �/H = 0, and F̃H is the extension given in Example 1.4, of the map FH with
extension degree 1 in �(H). If Ĵ = Iso(V ), then F0 is not present.

Proof. Let �̂ = {[F ]� : F :⋃
H∈Ĵ c S

V H → W\{0}}, with �̂ = (1, 0) if Ĵ = Iso(V ).

As in Sections 1 and 2, it is easy to see that �̂ is a group. Let R be the morphism,
from ��

SV (S
W ) into �̂, induced by restriction to the isotropy subgroups in Ĵ c.

From Corollary 1.2 (c), since Ĵ ⊂ J̃ , any element in �̂ extends to an element
in ��

SV (S
W ), that is R is onto. Furthermore, any [F ] in ker R is such that F has a

non-zero �-extension to
⋃

H∈Ĵ c B
H .

Let [F0] be in ker R and let H1 be an element of Ĵ which is maximal in I . Thus, if
H > H1, then either H is in Ĵ c or dim VH < dim WH +dim �/H . In both cases, F0
has a non-zero �-extension to BH : use Theorem 1.1 in the second case. This implies
that FH1

0 belongs to �(H1), as defined in Definition 1.3, and its extendability to BH1

is characterized by its extension degree, given by

deg(FH
0 ;BH1) = |�/H1| degE(F0) = |�/H1|dH1 ,

from Theorem 1.2. From Example 1.4, degE(F0) depends only on F0 and there is a
generator FH1 , of �(H1), which has an extension F̃H1 to ��

SV (S
W ). F̃H1 is also in
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ker R, from the construction of FH1 . Let

[F1]� ≡ [F0]� − dH1 [F̃H1 ]�.
Then, [F1] is in ker R and is extendable to BH1 . Let Ĵ1 = Ĵ\{H ≥ H1}. Define
as above �̂1, over Ĵ c

1 , and the projection R1 onto �̂1. It is clear that [F1] belongs
to ker R1 and that one may repeat the above construction with another maximal H2.
After a finite number of steps, one will arrive at

[F0]� −
∑
I

dH [FH ]� = 0.

Finally, if F and F0 are as in the statement of the theorem, then [F ] − [F0] is in
ker R and has an expression as a combination of the [F̃H ]. � 
Example 4.1. Let us consider Example 6.1 of Chapter 1: one has the actions of Zp2q,
with p and q relatively prime, on V = C2, as (e2πik/p2

, e2πik/pq) and on W = C2,
as (e2πik/p, e2πik/p2q). Then, on I × B, with B = {(z1, z2) : |zi | ≤ 2}, one has the
isotropy subgroups:

� ∼= Zp2q, with V � = {(t, 0, 0)}, W� = R,

H ∼= Zq, with VH = {(t, z1, 0)}, WH = R× {(ξ1, 0)},
K ∼= Zp, with VK = {(t, 0, z2}, WK = R× {(ξ1, 0)},
L ∼= {e}, with V L = I × V, WL = R×W.

Thus, Ĵ = Iso(V ) and any equivariant map F from I × V into R × W , which is
non-zero on ∂(I × B), may be written as

[F ]� = d�[F�] + dH [FH ] + dK [FK ] + dL[FL],
where, if αq + βp = 1, the generators are the following:

F� = (2t − 1, zp1 + z
q
2 , z

α
1 z

β
2 )

FH = (2t + 1 − 2|z1|2, (zp
2

1 − 1)zp1 , z
α
1 z

β
2 )

FK = (2t + 1 − 2|z2|2, (zpq2 − 1)zq2 , z
α
2 , z

α
1 z

β
2 )

FL = (2t + 1 − 2|z1z2|2, (zp
2

1 − 1)zp1 , (z̄
p
1 z

q
2 − 1)zα1 z

β
2 ).

The zeros of F� − (0, ε, 0) are at (1/2, 0, ε1/qe2kπi/q) and (1/2, ε1/pe2kπi/p, 0)
with index α and β respectively. Hence, deg(F�) = αq + βp = 1. Similarly,
degFH

� = p, degFK
� = q. It is then not difficult to show that


degF�

degFH

degFK

degF


 =




1 0 0 0
p p2 0 0
q 0 pq 0
1 βp2 αpq p2q





d�
dH
dK
dL


 .
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In particular, if F̃ is an equivariant map from V into W , then F = (2t − 1, F̃ ),
has d� = 1 and

degF = deg F̃ = 1 +mp

for some integer m.

Example 4.2. LetV andW be S1-spaces with dim V = dim W . Then on a coordinate
zj of (V S1

)⊥ one has the action eimjϕ and on a coordinate ξj in (WS1
)⊥ the action is

as einj ϕ . One has, of course, that (H̃) always holds. Recall that a negative mj means
conjugates. Then, the following statement holds

Proposition 4.1. If dim V = dim W and F is an S1-map, from I × V into R ×W ,
which is non-zero on ∂(I × B), then

(a) If dim V S1 �= dim WS1
, one has deg(F ; I × B) = 0.

(b) If dim V S1 = dim WS1
, then

deg(F ; I × B) = β deg(F S1; I × BS1
),

where β is the integer
(∏

nj
)
/
(∏

mj

)
.

Proof. We shall use the following useful trick: Let Ṽ be the S1-space defined as
{(X0, Z1, . . . , Zk)}, where X0 is in V S1

, the action of S1 on Zj is as eiϕ and k =
dim V − dim V S1

, i.e., dim Ṽ = dim W and S1 acts semi-freely on Ṽ . Furthermore,
the map

F0(X0, Z1, . . . , Zk) = (X0, Z
m1
1 , . . . , Z

mk

k )

is an S1-equivariant map from Ṽ into V . Moreover, if F is an S1-equivariant map
from I × V into R×W , then

F̃ (t, X0, Z1, . . . , Zk) = F(t,X0, Z
m1
1 , . . . , Z

mk

k )

is an S1-equivariant map from I × Ṽ into R ×W , which is non-zero on the sphere
∂(I × F−1

0 (B)).

Since Ṽ has only two isotropy subgroups, then, if dim V S1 ≤ dim WS1
, the set Ĵ ,

of Theorem 4.1, is Iso(V ) and

[F̃ ]� = 0, if dim V S1
< dim WS1

,
or

[F̃ ]� = d[F̃�]�, if dim V S1 = dim WS1
,

since, in the first case I is empty and, in the second, I = � = S1. On the other hand

[F̃ ]� = [F̃0]�, if dim V S1
> dim WS1

,
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where F̃0 is any S1-map, with F̃ �
0 homotopic to F̃ �: in this case, Ĵ reduces to {e} and

I is empty. One may choose

F̃0 = (F S1
, Z

n1
1 , . . . , Z

nk
k , 0, . . . , 0),

since F̃ S1 = FS1
and dim(WS1

)⊥ > dim(Ṽ S1
)⊥. If one replaces one 0 by ε in F̃0

one obtains a non-zero map (of course non-equivariant), that is, deg(F̃0; I × B) = 0.
Thus, if dim V S1 �= dim WS1

, one has deg(F̃ ; I×F−1
0 (B)) = 0. In the remaining

case, d = deg(F S1; I ×B�), by definition of the extension degree. Furthermore, the
map F̃0 = (F S1

, Z
n1
1 , . . . , Z

nk
k ) has the same invariant part and the same d: this

implies that
[F̃ ]� = [F̃0]�.

From the product theorem for the Brouwer degree, one gets

deg(F̃ ; I × F−1
0 (B)) =

(∏
nj

)
deg(F S1; I × BS1

).

The proof of the proposition will be complete, once one uses the formula for the
degree of a composition which yields

deg(F̃ ; I × F−1
0 (B)) =

(∏
mj

)
deg(F ; I × B).

The fact that β is an integer follows from the next result. � 

Corollary 4.1. If V and W are S1-spaces with dim V S1 = dim WS1
, then if (2t − 1,

X0), X0 in V S1
, has a non-zero S1-extension F̃S1 from ∂(I ×B) into R×W , one has

(a) dim VH ≤ dim WH , for all H in Iso(V ),

(b) [F ]S1 = deg(F S1; I × BS1
)[F̃S1 ],

(c) �S1

SV (S
W ) ∼= Z.

Proof. If �S1

SV (S
W ) has an element F with deg(F S1; I × BS1

) �= 0, for instance F̃S1 ,

then, if for someH , one has dim VH > dim WH , considerFH
0 the restriction ofFH to

a subspaceV0 ofVH with dimension equal to dim WH , i.e., with at least one coordinate
z0 equal to 0. From Proposition 4.1, one has that deg(FH

0 ; I ×V0) �= 0. But one may
deform (t, X0, zj in V0) to (1/2, 0, . . . , 0, z0 = R) and FH

0 to FH (1/2, 0, . . . , 0, R),
a constant map with degree 0. This contradiction implies (a).

But then, from Theorem 4.1, one has that Ĵ = Iso(V ) and the only element of I
is S1. This implies (b) and that (2t − 1, X0) has the extension F̃S1 (hence to assume

that there is a map F , with non-zero degree for FS1
, is equivalent to assuming that

F̃S1 exists). Then, any element in �S1

SV (S
W ) is classified by deg(F S1; I × BS1

).
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Finally, one has that β = deg(F̃S1; I ×B), hence an integer. Note that, if all maps

F have deg(F S1; I × BS1
) = 0, then the fact that β is an integer or not is irrelevant.

� 

Compare this result with Theorem 2.2 (b), where one has assumed, in this case,
the existence of a complementing map F⊥: there [F ] = [FS1

, F⊥].
The results above generalize to the case of an action of a torus T n.

Proposition 4.2. Let T n act on V and W and take F in �T n

SV (S
W ), then

(a) If dim V T n �= dim WTn
, but dim V = dim W , one has deg(F ; I × B) = 0.

(b) If dim V T n = dim WTn
and dim V = dim W , then

deg(F ; I × B) = β deg(F T n; I × BT n

),

where β is a non-zero integer, independent of F .

(c) If dim V T n = dim WTn
and (2t − 1, X0),X0 in V T n

, has a non-zero extension
F̃T n , from ∂(I × B) into R×W , then

(α) dim VH ≤ dim WH, for all H in Iso(V )

(β) [F ]T n = deg(F T n; I × BT n

)[F̃T n ]

(γ )

T n∏
SV

(SW ) ∼= Z

(δ) |β| =
( k∏

l=1

a′l
)/( k∏

l=1

al

)
, if dim V = dim W,

where al is the greatest common divisor of (|nl1|, . . . , |nln|) and the action of T n

on the coordinate zl is given by exp i < Nl,/ >, with Nl = (nl1, . . . , n
l
n) and

/ = (ϕ1, . . . , ϕn), l = 1, . . . , k. The integer a′l is given analogously by the
action of T n on W .

Proof. From Lemma 2.5 of Chapter 1, one has an action of S1 given by ϕj = Mjϕ,

such that 〈Nl,M〉 �≡ 0, [2π ], unless Nl = 0 and V S1 = V T n
. This implies most of

the proposition, since (a) and (b) are consequences of Proposition 4.1 (a) and (b), with

β =
( k∏

1

〈N ′l ,M〉
)/( k∏

1

〈Nl,M〉
)
.

Furthermore, if F̃T n is a T n-extension of (2t − 1, X0), then under the above
morphism, it is also an S1-extension, and its restriction to any VK,K < T n, is
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a valid S1-extension for maps from VK into WK (here we are using the fact that,
since T n is abelian, VK and WK are T n-representations). From Corollary 4.1, with
H = {e} < S1, one has dim VK ≤ dim WK , for any K strictly contained in T n, hence
dim T n/K > 0.

But then, the set Ĵ of Theorem 4.1 is Iso(V ) and there is only one element in
I : T n. As in Corollary 4.1, this implies (β) and (γ ).

It remains only to prove (δ): note first thatβ is independent of the chosen morphism
from S1 into T n, provided 〈Nl,M〉 and 〈N ′l ,M〉 are not multiples of 2π . Since the
number k of terms in the quotient is fixed and the same in the numerator and the
denominator one may take the components of M to be rational, provided the new
〈Nl,M〉 and 〈N ′l ,M〉 are not congruent to 0 modulo 2π , and by denseness, for real
M . Hence, β is the quotient of homogeneous polynomials of degree 1. This implies
that for each l there is a q, such that 〈N ′l ,M〉 = clq〈Nq,M〉. Thus, N ′l = clqN

q

and, if n
q
j = aqm

q
j , n

′l
j = a′lm

′l
j , one has that clqaq/a′l = m′l

j /m
q
j = m′/m for all

j = 1, . . . , n, where m′ and m are relatively prime. Hence, m′ divides all m′l
j and m

divides all mq
j , which is impossible, from the fact that aq and a′l are largest common

divisors, unless |m′| = |m| = 1 and clq = ±a′l/aq , that is, β is the expression of (δ).
� 

For a general abelian group, one has the following Borsuk–Ulam result.

Theorem 4.2 (Borsuk–Ulam result). Let V and W be two arbitrary representations
of � with dim V = dim W and let F : V \{0} → W\{0} be an equivariant map. Then:

(a) deg(F ;B) = 0 if (H̃) does not hold or if dim V T n �= dim WT n
.

(b) If (H̃) holds and dim V T n = dim WTn
, then

deg(F ;B) = β deg(F T n;BT n

),

where β is the non-zero integer given in Proposition 4.2.

(c) Let Ĵ ′ = {H ∈ Iso(V T n
) : ∀K, T n ≤ K ≤ H, dim VK ≤ dim WK} and

I ′ = {H ∈ Ĵ ′ : dim VH = dim WH }, then, if the hypothesis of (b) holds and
F0 : V T n\{0} → WTn\{0} is �-homotopy to F on

⋃
H �∈Ĵ ′ S

VH
, one has for

any H in I ′

deg(FH ;BH) = deg(FH
0 ;BH)+

∑
I ′

dKβHK |�/K|,

where βHK = 0 if H is not a subgroup of K,βKK = 1, βHK are integers
independent of F and F0, while dK are integers depending of F and F0.

If Ĵ ′ = Iso(V T n
), then F0 is absent. Furthermore, if W� = {0}, one has to

add, on the right, a term βH� .
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Proof. If (H̃) does not hold, then deg(F ;B) = 0 follows from Remark 1.1. If
V � = {0}, one may complement F by 2t − 1 and obtain an element of ��

SV (S
W ).

Thus, from Proposition 4.2, one obtains (a) and (b). Furthermore, from Theorem 4.1,
applied to V T n

, one has

[FT n ] = [FT n

0 ] +
∑
I ′

dK [F̃ T n

K ].

Thus, deg(F̃ T n

K ;BH) = βHK |�/K|, from Example 1.4, where βHK has the properties
listed in the theorem.

Finally, if W� = {0}, then V � = {0} since F� maps the second space into the
first. Hence, when supplementing by 2t − 1, one has Iso(R × V ) = Iso(V ) ∪ �, Ĵ ′
remains the same unless Ĵ ′ = Iso(V T n

), since this is the only possibility for � to
belong to the new Ĵ ′. In that case, I ′ has to be supplemented by � and

[2t − 1, F T n ] =
∑
I ′

dK [F̃ T n

K ] + [F̃ T n

� ],

where F̃ �
� = 2t − 1 and βH� = deg[F̃ H

� ; I × BH ]. � 

In order to get congruence results, characteristic of Borsuk–Ulam theorems, it is
interesting to know when one may construct F0 such that deg(FH

0 ;BH) = 0 for all
H ’s in I ′, or at least for H = T n. In that case deg(F ;B) would be a multiple of
the greatest common divisor of the |�/K|’s, for K in I ′. Besides the case where
Ĵ ′ = Iso(V T n

), one has the following

Corollary 4.2. Let M be the set of minimal elements Kj of Ĵ ′c, i.e., dim VKj >

dim WKj but dim VH ≤ dim WH , for any H ≥ T n, strict subgroup of Kj . Assume
that the hypothesis of Theorem 4.2 (c) holds. Then we have the following.

(a) For any H in I ′, H < Kj for some Kj in M, one has

deg(FH ;BH) =
∑
K∈Ij

d
j
Kβ

j
HK |Kj/K|,

where Ij = {K ∈ I ′,K < Kj }, βj
HK are integers independent of F and with

β
j
HK = 0 if H is not a subgroup of K and β

j
HH = 1.

(b) If for each Kj in M, there is an equivariant map

F
j
⊥ : (V Kj )⊥\{0} → (WKj )⊥\{0},

then one may construct F0 in Theorem 4.2 (c) with

deg(F0;BT n

) = 0.
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(c) If M has a unique element K0 and there is a complementing map F 0⊥, then, for
all H in I ′, one has

deg(FH
0 ;BH) = 0.

(d) If M = �, then the conclusion of (c) holds because F 0⊥ exists.

Proof. The proof of (a) will be a consequence of (d), hence we shall prove (b) first.

Let �̂ be as in Theorem 4.1 and R be the morphism from ��

SVT n (S
WTn

) onto �̂. Let

[F0] = R[F ]. Then, define, for some K1 in M

[F1] = [F0] − R[FK1
0 , F 1⊥],

where, from Borsuk equivariant extension theorem, one may take F
K1
1 = (1, 0). For

another element K2 of M, define

[F2] = [F1] − R[FK2
1 , F 2⊥],

with FK2 = (1, 0). Since [FK2
1 , F 2⊥]K1 = [F1|VK1∩VK2 , F

2K1⊥ ] = [(1, 0), F 2K1⊥ ]
which is �-deformable to (1, 0), one may use the equivariant Borsuk theorem and
assume that FK1

2 = (1, 0).

Continuing this process, one arrives at a final map Fs with Fs = (1, 0) on
⋃

SV
Kj

,
i.e., with R[Fs] = 0. Hence,

[F0] =
s∑

p=1

R[FKj

j−1, F
j
⊥].

Since the maps on the right have obvious extensions to SV T n

, one may construct F0

as
∑[FKj

j−1, F
j
⊥].

Now, if H is in I ′ and H < Kj , then dim VH ∩ (V Kj )⊥ < dim WH ∩ (WKj )⊥

and F
jH
⊥ is deformable (non-equivariantly) to a non-zero constant map. This implies

that
deg((F

Kj

j−1, F
j
⊥)

H ;BH) = 0.

Since T n < Kj for all j ’s and T n is in I ′, one obtains deg(F0;BT n
) = 0,

proving (b). The proof of (c) follows from the same argument, since one may take
[F0] = [FK0 , F 0⊥], and any H in I ′ is a subgroup of K0. If furthermore, K0 = �, then
dim(V �)⊥ ∩ VH < dim(W�)⊥ ∩WH , for any strict subgroup of � (and containing
T n). Hence, from Corollary 1.2 (c), the complementing map F 0⊥ exists.

Finally, for each Kj , consider F as a Kj -equivariant map. Then, the isotropy
subgroups for Kj are those H in Iso(V ) with H < Kj . Thus, the corresponding set of
minimal elements reduces to Kj and I ′ reduces to Ij . One may apply (d) with a Kj -
equivariant F0, with degree equal to 0 on any BH ,H < Kj . Apply then Theorem 4.2.

� 
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Corollary 4.3. Assume that �/T n is a p-group, i.e., |�/T n| = pk , for some prime
number p. If V and W are two arbitrary representations of � with dim V = dim W

and F : V \{0} → W\{0} is an equivariant map, then deg(F ;B) is a multiple of p,
unless hypothesis (H) holds for V T n

, in which case

deg(FH ;BH) =
∑
H≤K

dK

(∏
KH

li

)
|�/K|,

for all H in Iso(V T n
), where the li’s are given in Lemma 6.2 of Chapter 1 and

correspond to the variables in (V K)⊥ ∩ VH . Here |�/K| is a multiple of p, except
for K = � and d� = deg(F�;B�).

Proof. If (H̃) does not hold or if dim V T n �= dim WTn
, then deg(F ;B) = 0. Oth-

erwise if Ĵ ′ is not all of Iso(V T n
), take any minimal element Kj of M, then for any

element K of Ij , |Kj/K| is a positive power of p. Thus, from Corollary 4.2 (a),
deg(F ;B) is a multiple of p.

Hence, if this degree is not a multiple of p, then (H̃) holds, dim V T n = dim WTn

and (H) holds on V T n
, in particular dim VH ≤ dim WH , for all H with T n ≤ H ≤ �.

Now, if there is H such that dim VH < dim WH , then viewing FT n
as a H -map, one

should have
deg(F T n;BT n

) =
∑
K<H

dH
K βH

T nK |H/K|,

for K in I ′, and since H is not in I ′, |H/K| is a positive power of p, and therefore
deg(F T n;BT n

) would be a multiple of p, that is, for all H in Iso(V T n
), one has

dim VH = dim WH .
Finally, if K and H in Iso(V T n

) are such that dim VH ∩ VK and dim WH ∩WK

are different, consider FK , from VK into WK , as an H -equivariant map. The fixed
point subspaces for the action of H on VK and WK are VH ∩ VK and WH ∩WK

respectively. Since H is also a p-group, from the arguments above, one gets that
deg(FK ;BK) is a multiple of p. Now, regarding FT n

as a K-map, one has from
Theorem 4.2, since Ĵ ′ ∩ {H ≤ K} = I ′ ∩ {H ≤ K} is the set Iso(V T n

) ∩ {H ≤ K},
that

deg(F T n;BT n

) = a deg(FK ;BK)+ bp,

hence, in this case a multiple of p. The contradiction with

deg(F ;B) = β deg(F T n;BT n

),

and not a multiple of p, implies that (H) holds for V T n
.

In conclusion, one has, in this case,

[FT n ]� =
∑

dH [F̃H ]�,

where each generator F̃H is of the form (FH , x
lj
j ), with deg(FH ;BH) = |�/H |. � 
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Example 4.3. If � = Z2, then deg(F ;B) is even unless dim V � = dim W� in
which case, deg(F ;B) = deg(F�;B�) + 2d, where deg(F�;B�) is replaced by 1
if V � = {0}, by adding 2t − 1. In particular, the degree of an odd map is odd and
the degree of an even map is even (in that case V � = {0},W� = W and, if V is odd
dimensional, then (H̃) does not hold and the degree is 0).

Example 4.4. Let f : Cn → Cn, or Rn → Rn, be such that f (x) = P(x) + g(x),
where each component Pj of P is a homogeneous polynomial of degree kj . Assume
that P(x) has an isolated zero at the origin and that g(x) is small with respect to P(x)

near the origin. Then,

Index(f ) = Index(P ) =
∏

kj

in the complex case and modulo 2 in the real case.
The first equality is clear. For the second, put the standard S1-action on the first

copy of Cn and the action given by eikj ϕ on the second copy (in the real case replace
S1 by Z2 and ϕ by kπ ). The map P(x) is clearly equivariant. In the complex case,

Index(P ) = β, independently of P , from Theorem 4.2. Taking Pj (x) = x
kj
j , it is

clear that β is
∏

kj . In the real case, either all kj are odd and Index(P ) is odd, or
otherwise V � = {0} and dim W� > 0, hence from the preceding example, the degree
is even.

Example 4.5. One may wonder if Corollary 4.2 (b) depends really on the existence
of complementing maps. Here is an example to the contrary. Let Z12 act on two
copies of C6 in the following way: on the first copy, as e2πik/4 on x1, x2, x3, x4 and
as e2πik/6 on y1 and y2; on the second copy, as e2πik/2 on ξ1, ξ2, ξ3 and as e2πik/12 on
η1, η2, η3. The elements of Iso(V ) are

Iso(V ) V H WH

K = Z3 (for k multiple of 4) {x1, x2, x3, x4} {ξ1, ξ2, ξ3}
H = Z2 (for k a multiple of 6) {y1, y2} {ξ1, ξ2, ξ3}
{e} V W

� if one adds a dummy variable t R

Hence Ĵ = {H, {e}}, I ′ = {e},M = {K}. There is no equivariant map F⊥
from (V K)⊥\{0} into (WK)⊥\{0}, since any such map should map (V K)⊥ = VH

into WH = WK . If the conclusion of Corollary 4.2 (c) were true, one would have
deg(F ;B) = |�|de, a multiple of 12.

However, the following map has degree 6:

F = (x2
1−x̄2

2−ȳ3
1 , x

2
3−x̄2

4−ȳ3
2 ,Re x1x2+i Re x3x4+y2

1y2, x̄1y
2
1 , x̄3y

2
2 , x̄2y

2
1+x̄4y

2
2 ).

The equivariance of F is clear. The fact that F has only one zero follows from
the following considerations: subtract ε ≥ 0 from the last equation. At a zero, one
needs y1y2 = 0, since if not one would have x1 = x3 = 0 and the 3rd component
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non-zero. Then, if y1 = 0, one has x1 = ±x̄2 and Re x1x2 = ±|x1|2, hence the 3rd
equation implies x1 = x2 = 0. If y2 is also 0, then x3 = ±x̄4 = 0, while if y2 �= 0
then x3 = 0, x̄4y

2
2 = ε and x̄2

4 + ȳ3
2 = 0, i.e., −|y2|6y2 = ε2. In this case, the zero is

A = (0, 0, 0, ε3/7, 0,−ε2/7).
On the other hand, if y1 �= 0, then y2 = 0, x3 = ±x̄4 = 0, x1 = 0, x̄2y

2
1 = ε and

x̄2
2 + ȳ3

1 = 0, and the zero is

B = (0, ε3/7, 0, 0,−ε2/7, 0).

In order to compute the degree of F it is enough to compute the index at A and B.
NearA one may deform linearly x̄3y

2
2 to x̄3ε

4/7 and to x̄3. Then x3 can be deformed
to 0 in the other equations. Then y2

1y2 is deformed to y2
1 and the term x̄2y

2
1 to 0. One

obtains the product of three maps:

x̄3 with index − 1

(x2
1 − x̄2

2 − ȳ3
1 ,Re x1x2 + y2

1 , x̄1y
2
1 )

(−x̄2
4 − ȳ3

2 , x̄
4y2

2 − ε).

In order to compute the index of the second map at its only zero, the origin, perturb
the second equation by −iε. The zeros of the perturbed map are for x1 = 0, y2

1 = iε.
One may deform x1 in the first two equations to 0 and y2

1 to iε in the third. The degree
will be

− deg(−x̄2
2 − ȳ3

1 , y
2
1 − iε).

Taking ε to 0 and ȳ3
1 to 0, one obtains a degree which is −(−2)(2) = 4.

For the third map, with a unique zero, one may deform ε to 0 and consider the
map

(x̄2
4 + ȳ3

2 − ε, x̄4y
2
2 )

with 3 zeros of the form (x4 = 0, |y2|3 = ε), each of index (−1)(−1) = 1, and two
zeros of the form (|x4|2 = ε, y2 = 0), each of index (−1)(2) = −2. Hence, the
degree of the third map is −1, and the index of F at A is 4.

For B, one follows the same steps, except that the term y2
1y2, which was deformed

to y2
1 , is now deformed to y2. Otherwise, one interchanges (x1, x2) with (x3, x4) and

y1 with y2. The index of the second map is now 2 instead of 4, and the index of F at
B is 2. Thus,

deg(F ;B) = 6.

By replacing the term y2
1y2 by y2+6n

1 y2, where a negative exponent means conjugation,
the index at A is changed to 2(2+ 6n), while that of B in unchanged. Hence, any odd
multiple of 6 is achieved as the degree of a �-map from V into W .

Furthermore, if two �-maps F and F0 coincide on VK , then

[2t − 1, F ]� = [2t − 1, F0]� + d[Fe]�,
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where

Fe = (2t + 1 − 2|x1y1|2, x2
1 (x

4
1 − 1), x2

1 (x̄1x2 − 1), x2
1 (x̄1x3 − 1),

x̄1y
2
1 (x̄

2
1y

3
1 − 1), x̄1y

2
1 (ȳ1y2 − 1), x̄1y

2
1 (x̄1x4 − 1)).

It is easy to check that Fe is �-equivariant, with 12 zeros at |xi | = |yi | = 1, each of
index 1, i.e., Fe is the generator for �(e). Then,

deg(F ; I × B) = deg(F0; I × B)+ 12d.

By choosing F0 the map of the example, one generates, for maps from R × V into
R×W , all odd multiples of 6, while if one replaces (2t − 1, F0) by (2t + 1, 0), with
degree equal to 0, one obtains all even multiples of 6 by varying d.

Hence, for maps from R× V into R×W , all multiples of 6 are achieved.
The simplest case is when hypothesis (H) holds on V T n

, i.e., dim VH = dim WH

for all H , with T n ≤ H ≤ �, and there is an equivariant map {xljj } from V T n
into

WTn
.

Corollary 4.4. If dim V = dim W and (H) holds on V T n
, then, if m is the greatest

common divisor of
{(∏

lj
)|�/H |, for T n ≤ H < � and xj in (V H )⊥ ∩ V T n}

, one
has

deg(F ;B) = β deg(F T n;BT n

)

deg(F T n;BT n

) =
(∏

lj

)
deg(F�;B�)+ dm

where any integer d is achieved. The term deg(F�;B�) is replaced by 1 if V � = {0}.

Proof. Since (H) holds, one has Ĵ ′ = Iso(V T n
) = I ′ and βT nH = deg(FH⊥ ; (BH )⊥),

where FH⊥ is the complementing map. Thus, βT nH = (∏
lj
)
, for xj in (V H )⊥∩V T n

.
From Theorem 4.2, one has

deg(F T n;BT n

) = d� βT n� +
∑
H<�

dHβT nH |�/H |

deg(F�;B�) = d�.

Hence deg(F T n;BT n
) has the form of the corollary. Moreover, ifmj =

(∏
li
)|�/Hj |,

then from Darboux theorem, one has

m =
∑

αjmj ,

where (α1, . . . , αr) are relatively prime. Let [FT n ] = d
∑

αj [F̃Hj
], where FHj

is the

generator of �(Hj ) and F̃Hj
= (FHj

, F
Hj

⊥ ). � 
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This result may be refined by considering the greatest common divisor of
{|�/H |, T n ≤ H < �}, see [I.V. 2, Proposition 4.3] and other references in the
section on bibliographical remarks. One of its main applications is the following
observation, which is used very often in order to prove the existence of non-trivial
zeros.

We shall consider only one of the simplest cases: when � acts freely on V and
W� = {0}. Then � ∼= S1 or Zm (see Definition 1.3 in Chapter 1). If � ∼= Zm, then
the action on a coordinate xj of V is of the form exp(2πikmj/m), with mj and m

relatively prime, in particular there is an integer pj such that pjmj ≡ 1, [m]. On
a coordinate ξj of W the action is of the form exp(2πiknj /m), with 0 < nj < m.

Recall that x
lj
j , with lj = pjnj , is an equivariant map.

Corollary 4.5. If � acts freely on V and W� = {0}, then

(a) If � ∼= S1 and dim V > dim W , then any equivariant map from ∂BR into W

must have a zero on ∂BR .

(b) If � ∼= S1 and dim V = dim W , then any equivariant map ∂BR → W\{0} has
a degree equal to ±(∏ nj

)
.

(c) If� ∼= Zm and dim V > dim W , then if
∏

nj is not a multiple ofm, for instance
if m is a prime, any equivariant map from ∂BR into W must have a zero on ∂BR .

(d) If � ∼= Zm and dim V = dim W , then any equivariant map ∂BR → W\{0} has
a degree equal to

∏
lj + dm , where any d is achieved.

Proof. Adding the variable t and the component 2t − 1, one may use the previous
results. In particular, if � ∼= S1, then the action on zj is by eiϕ or e−iϕ and on ξj by
einj ϕ . If dim V = dim W , then, from Proposition 4.1, one has

deg((2t − 1, F ); I × BR) = deg(F ;BR) =
(∏

nj

)/(∏
mj

)
,

where mj = ±1, for any �-map from ∂BR into W\{0}. This proves (b). Furthermore,
if dim V > dim W and there is a�-map from ∂BR intoW\{0}, choose Ṽ a�-subspace
of V , with dim Ṽ = dim W . Then, if x = x̃⊕ x⊥, x̃ in Ṽ and x⊥ in a �-complement,
one has

deg(F (x̃, 0);BR ∩ Ṽ ) = ±
∏

nj .

Let x⊥ = (R, 0) then F(cos τ x̃, sin τR, 0) is a valid deformation for ‖x̃‖ = R,
that is F(x̃, 0) is homotopic (not equivariantly) to the constant F(0, R, 0), hence with
degree 0. This contradiction implies (a).

If � ∼= Zm and dim V = dim W , then hypothesis (H) is satisfied and, from
Corollary 4.4, one has

deg(F ;B) =
∏

lj + dm.
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Furthermore, consider the equivariant map

F(x) =
(
z
l1
1 (z

md
1

∏
j≥2

|zj |αj − 1), zl22 (z̄
p1m2
1 z2 − 1), . . . , zlss (z̄

p1ms

1 zs − 1)
)
,

where s is the number of variables in V , and α2, . . . , αs are positive and chosen so
that md − p1

∑s
2 αjmj is non-zero. Recall that, if m = 2, then mj = nj = 1 = lj .

The zeros of F are for x = 0, with an index equal to
∏

lj (±1 for m = 2) and md

zeros of the form (z0
1, z

0p1m2
1 , . . . , z

0p1ms

1 ), with z0md
1 = 1 (this is where the condition

on the αj ’s is used).

Near one of these zeros, one may deform z
lj
j , via ((1 − τ)zj + τz

0p1mj

1 )lj to

a constant. The deformation, in |zj |, via (1 − τ)zj + τ/z̄
p1mj

1 followed by a linear
deformation of z1 to z0

1 in z̄
p1mj

1 and, finally, another linear deformation of |z1|−p1Qαjmj

to 1, will leave the map, near the zero,

(zmd
1 − 1, z̄0p1m2

1 z2 − 1, . . . , z̄0p1ms

1 zs − 1),

which has an index 1 at that zero. Hence,

deg(F ;BR) =
∏

lj + dm.

If dim V > dim W , take any Ṽ with dim Ṽ = dim W . As before, one has, if there is
�-map from ∂BR into W\{0}:

deg(F |
Ṽ
;BR ∩ Ṽ ) =

∏
lj + dm = 0,

which would lead to the desired contradiction if
∏

lj is not a multiple of m. Since
lj = pjmj , one could think that lj depends on the choice of Ṽ , through pj . However
pjmj ≡ 1, [m], hence nj ≡ mj lj , [m] and

(∏
lj
)(∏

mj

) ≡∏
nj , [m]. Thus, if

∏
lj

is a multiple of m, so is
∏

nj . Conversely, if
∏

nj is a multiple of m, since mj and m

have no common factor, one needs to have
(∏

lj
) = km. Thus,

∏
nj �≡ 0, [m] if and

only if
∏

lj �≡ 0, [m], for any choice of Ṽ . � 

Example 4.6. If dim V > dim W , then for any Ṽ , with dim Ṽ = dim W , one has
deg(F |

Ṽ
, B ∩ Ṽ ) = 0, as a necessary condition for a non-zero map from ∂B into W .

For instance, in Example 4.5, one has the action of Z4 on VK ∼= C4 and WK ∼= C3.
On the other hand, a zero degree may often be used to construct non-zero equivariant
maps from ∂B into W . For instance, let Zp2 act freely on C2 (i.e., as e2πik/p2

) and as
e2πik/p on a second copy of C2. Consider the equivariant map from C2 into C2:

f (z1, z2) = (z
p
1 (z̄

p2

1 |z2| − 1), zp2 (z̄1z2 − 1)).

The zeros of f , are the origin, with index p2 and the p2 points (z0
1, z

0
1), with z

p2

1 = 1,
each of index−1. Thus, deg(f ;BR) = 0 and there is a (non-equivariant) deformation
fτ (z1, z2), from ∂BR into C2, with f1(z1, z2) = (1, 0).
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Consider the fundamental cell on C5 given by

C = {0 ≤ |z| ≤ R, 0 ≤ Arg z = ϕ < 2π/p2, |zj | ≤ R, j = 1, 2, 3, 4}.

Consider the following map defined from C into C4:

F(z, z1, z2, z3, z4)

=




(f2|z| cos2(ϕp2/2)/R(z1, z2), (f2|z| sin2(ϕp2/2)/R(z3, z4))

for |z| ≤ R, 0 ≤ ϕ ≤ π/p2

(e2πi/pf2|z| cos2(ϕp2/2)/R)(e
−2πi/p2

z1, e
−2πi/p2

z2), f2|z| sin2(ϕp2/2)/R(z3, z4)

for |z| ≤ R, π/p2 ≤ ϕ ≤ 2π/p2,

where fτ = (1, 0), for τ ≥ 1.
Since f0 is equivariant, one has

F(e2πi/p2 |z|, e2πi/p2
z1, . . . ) = e2πi/pF (|z|, z1, . . . ),

hence when using the action of Zp2 to cover BR by images of C, one obtains an
equivariant map from BR into C4. Furthermore, if |zj | = R for some j , F is non-
zero, since fτ is non-zero, in that case. For |z| = R, then for any ϕ, one has either
2 cos2(ϕp2/2) ≥ 1 or 2 sin2(ϕp2/2) ≥ 1. Hence F is non-zero on ∂BR .

Example 4.7. Another way of constructing equivariant maps from V into W with
dim W > dim V , can be illustrated as follows: Let p and q be relatively prime, hence
there are α and β such that αq + βp = 1, and let Zpq act on C2 as γ k = e2πik/p on
z1 and γ k = e2πik/q on z2. Consider the map

f (z1, z2) = (z1(z̄
βp
1 − 1), z2(z̄

αq
2 − 1)(z̄βp1 z

αq
2 + 1)).

Then f (z1, z2) is equivariant, from C2 into itself, and its zeros are: (0, 0) with index
1; (0, z̄αq2 − 1 = 0), that is |α|q zeros each of index −1 if α > 0 and index 1 if

α < 0; (z̄βp1 = 1, 0), that is |β|p zeros each of index −1; (z̄βp1 = 1, z̄αq2 = 1), with

|αβ|pq zeros with index 1; and (z̄
βp
1 = 1, zαq2 = −1), |αβ|pq zeros of index −1.

Then
deg(f ;BR) = 0

for R > 1. Let fτ (z1, z2) be an ordinary homotopy of f on ∂BR to (1, 0). Denote by
f̂τ = fτ /‖fτ‖ and f̂ = f/‖f ‖.

Assume that Zpq acts on z as e2πik/pq , and consider the fundamental cell, for the
action on C3, given by

C = {0 ≤ |z| ≤ R, 0 ≤ Arg z < 2π/pq, |z1|, |z2| ≤ R}.
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On ∂C define the following non-zero map:

F(z, z1, z2) =



f|z|/R(Rf̃ (z1, z2)), if Arg z = 0

γf|z|/R(Rγ−1f̂ (z1, z2)), if Arg z = 2π/pq

(eiqϕ, 0), if |z| = R.

From the construction, one has F(e2πi/pq |z|, z1, z2) = γF(|z|, γ−1z1, γ
−1z2),

hence F has the right symmetry and is well defined at z = 0. Replacing f̂ by f̂τ
and deforming next γ to Id and eiqϕ to 1, one has that, on ∂C, F is homotopic to
f|z|/R(R, 0), which is a non-zero path in C2, from (R(Rβp − 1), 0) to (1, 0). Since
C2\{0} is simply connected, one may deform this path to (1, 0). Thus, F has a non-
zero continuous extension to C and, using the action of the group, one may extend F

to an equivariant map from C3\{0} into C2\{0}.
Example 4.8. When one has more than one isotropy subgroup, then the situation may
be very complicated. For instance, consider the action of Zp2q on V = Cn+m and on
W = Cr+s in the following manner:

On (x1, . . . , xn) as e2πik/p2
, with isotropy K ∼= Zq ,

On (y1, . . . , ym) as e2πik/pq , with isotropy H ∼= Zp,
On (ξ1, . . . , ξr ) as e2πik/p, giving WH = WK ,
On (η1, . . . , ηs) as e2πik/p2q .
Assume p and q are relatively prime, hence one has αq + βp = 1. Suppose

n + m = r + s and n > r ≥ 2 (the existence of an equivariant map from VK into
WK follows from Example 4.6). Note that � acts on VH as Zpq , with a free action
of �/H , that is, applying Corollary 4.5, with

∏
nj = qr , which is not a multiple of

pq, one obtains that dim VH ≤ dim WH , that is m ≤ r , if there is a non-zero �-map
F on ∂B.

One has the following result.

Proposition 4.3. For the above situation, one has

(a) If m = r , then deg(F ;B) = αn−m+1q + dpq �≡ 0, [pq].
(b) If m = r − 1, then deg(F ;B) = αn−mpq + dp2q �≡ 0, [p2q].
(c) If m < r − 1, then deg(F ;B) = dp2q.

Proof. We shall indicate only the proof of (a), since (b) and (c) have proofs which are
tedious, and refer to [IV2, Proposition 4.1]. It is enough to say that the proof is based
on a construction of F0, extension of FK , so that one may apply Theorem 4.2, with
deg(F0;B) ≡ αn−mpq, [p2q], if m = r − 1 and 0 if m < r − 1, then the term dp2q

comes from Theorem 4.2. The extension of F involves terms of the form xp + yq on
WH and xαyβ on (WH )⊥.
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If m = r , viewing F as a K-map, one may use Corollary 4.3 and one has that
deg(F ;B) is a multiple of q. If we view F as an H -map (hence if m < r one has that
deg(F ;B) is a multiple of p), one has

deg(F ;B) = deg((FH , xα1 , . . . , x
α
n );B)+ dp = αn deg(FH ;BH)+ d̂p.

But viewing FH as a �-map, one has

deg(FH ;BH) = deg((2t − 1, yq1 , . . . , y
q
m)+ d̃pq = qm + d̃pq.

Thus,
deg(F ;B) = αn(qm + d̃pq)+ d̂p = cq.

This implies that d̂ is a multiple of q. Writing αnqm = αn−m+1q(αq)m−1 and using
αq = 1 − βp, one obtains

deg(F ;B) = αn−m+1q + dpq,

in particular, this number is not 0, nor a multiple of pq, since α and β are relatively
prime and n > m. � 

3.5 The one parameter case

Let V = R × U and assume that U and W satisfy condition (H), i.e., dim UH =
dim WH , for all H in Iso(U), and there is a �-equivariant map {xljj } from U into W .
From Corollary 2.1 and Theorem 3.2, one has

��
SV (S

W ) = ��̃

SṼ
(SW̃ )× Z× · · · × Z,

with one Z for each isotropy subgroup H with dim �/H = 1, and �̃ = �/T n, Ṽ =
V T n

, W̃ = WT n
.

Then, any element of ��
SV (S

W ) may be written as

[F ]� = [F̃ ]� +
∑

dH [F̃H ] = [FT n

, x
lj
j ]� +

∑
dH [F̃H ],

where {dH } are given, for the special case of well-defined Poincaré sections, in Corol-
lary 3.1.

The purpose of this section is to compute [F̃ ] which is the suspension by a com-
plementing map on (V T n

)⊥ of an element of ��̃

SV̄
(SW̃ ), with �̃ a finite group. Thus,

one may assume � = �̃ a finite group and one wishes to compute ��
SR×U (S

W ). This is
the case of a Hopf bifurcation when an autonomous equation is perturbed by a 2π/p-
periodic nonlinearity, breaking the action of S1 to an action of Zp (see Example 5.1
in Chapter 2).
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From Theorem 2.3 one has, for � a finite group,

��
SV (S

W ) =
⊕

�̃(H),

for H in Iso(V ), where �̃(H) is the suspension by the complementing map of �(H).
Recall that, from Lemma 2.2, this particular suspension is one-to-one.

Any element in VH is written as (t, µ,X0, y1, . . . , ys, z1, . . . , zr ), where (t, X0)

is in U� ∼= Rn+1, µ is the parameter, � acts on yj , in R, with �/Hj
∼= Z2 and on zj

in C, with �/Hj
∼= Zmj

. Define BH = {0 ≤ t ≤ 1, |µ|, ‖X0‖, |yj |, |zj | ≤ 2} and set
λ = 2t − 1 + iµ.

Lemma 5.1. If H = �, then �(�) = �n+1(S
n), i.e., 0 if n ≤ 1,Z if n = 2,Z2 if

n ≥ 3. The part of �-degree on �(H) is given by [F�].

Proof. See Remark 8.1 in Chapter 1. Recall that the Hopf map η generates �3(S
2)

and its suspension η̃ generates �n+1(S
n). � 

Let F̃ be (F�, F⊥
� ), where F⊥

� is the complementing map, and let [F1] = [F ] −
[F̃ ]. Then, one may assume that F�

1 = (1, 0). The next isotropy subgroups are those
corresponding to yj , i.e., such that �/Hj

∼= Z2.

Theorem 5.1. If �/H ∼= Z2, with dim V � = n+ 2, dim VH − dim V � = s, then

�(H) ∼=




Z2 × Z2 if s > 2

Z× Z2 if s = 2 and n > 0

Z× Z if s = 2 and n = 0

�n+2(S
n+1) if s = 1.

Proof. (a) If s = 1, i.e., VH = {t, µ,X0, y1}, the fundamental cell C is B� × {y1 ≥
0}, F1 is given for y1 = R and it is (1, 0) for y1 = 0. Then, the obstruction for the
extension to C is [F1|∂C] in �n+2(S

n+1).
If n > 0, let X0 = (x0, X̃0) and let η1 be the map, with λ = 2t − 1 + iµ:(

(1/4 − (y1 − 1)2 − x2
0 )(1/4 − (y1 + 1)2 − x2

0 ), X̃0,

Re(λ(y2
1 − 1 + ix0)), y1 Im(λ(y2

1 − 1 + ix0))
)
.

The map η1 is equivariant, i.e., all but the last components are even in y1 and the
last is odd in y1. The zeros of η1 are for X̃0 = 0, λ = 0, x2

0 + (y1 ± 1)2 = 1/4. On
∂C, it is easy to see that η1 is homotopic to the suspension η̃ of the Hopf map. Hence,
there is a d1, in �n+2(S

n+1), such that [F1|∂C]−d1[η1|∂C] = 0. Thus, this difference
has an extension to C and, by the action of �/H , to BH . Thus,

[FH
1 ] = d1[η1].
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If n = 0, then �2(S
1) = 0 and [F1|∂C] = 0.

Note that [η1|∂BH ] = 2η̃ and that changing λ to λd1 one realizes d1[η1].
(b) If s > 1, the fundamental cell is C = BH ∩ {y1 ≥ 0}, of dimension n+ s + 2.

From Theorem 1.1, one has a �-extension to C ∩ {y1 = y2 = 0} and an obstruction,
an integer, to extension to the set BH ∩ {y1 = 0}, which is the degree of the extension
F̃1 on ∂(BH ∩ {y1 = 0, y2 ≥ 0}). Note that on the space VH ∩ {y1 = 0}, hypothesis
(H̃) does not hold, hence the obstruction may be not unique (except if s = 2), and the
degree on ∂(BH ∩ {y1 = 0}) is 0. Let

dη = (1 − y2
1 − y2

2 , X0, λ
d(y1 + iy2), yj ).

It is easy to see that deg(dη;BH ∩ {y1 = 0, y2 ≥ 0}) = (−1)n+1d. Thus, for
some d, [F̂1] = [F̃1] − d[η] has an equivariant extension to BH ∩ {y1 = 0}.

Note that, from Theorem 8.3 in Chapter 1, (λd(y1 + iy2), yj ) represents Ad(λ)y,
with A(λ) = diag(λ, Id), in �1(GL(Rs)) and that, if s > 2, Ad(λ) is deformable to
Ad+2(λ), thus, only the parity of d is important here. If s = 2, d may be any integer.

As before, the next obstruction will be the class of F̂1 in �n+s+1(S
n+s) given by

F̂1|∂C . Let d1η1 be the equivariant map(
(4/3)2(1/4 − (y1 − 1)2 − y2

1y
2
2 )(1/4 − (y1 + 1)2 − y2

1y
2
2 ),

y2
1X0, λ

d1(y1(y
2
1 − 1)+ iy2

1y2), y
2
1yj

)
.

Again, it is easy to see that d1η1 = (1, 0) for y1 = 0, that d1η1|∂C = d1[η̃],
and that d1η1|∂BH = 2d1[η̃], where η̃ is the suspension of the Hopf map generating
�n+s+1(S

n+s). Hence, there is a d1 (in Z2 if n + s > 2, in Z if n = 0, s = 2) such
that [F̂ ] − d1[η1] = 0. Thus,

[F1]� = d[η]� + d1[η1]�.
By forgetting the action of �, one obtains on ∂BH , that if n + s > 2, one has
[F1] = d[η̃] in �n+s+1(S

n+s) ∼= Z2, hence the parity of d is uniquely determined by
F1 and the first invariant d is unique (in Z2 if n + s > 2, in Z if s = 2). Therefore,
from the above formula, d1 (in Z if s = 2 and n = 0, in Z2 if n + s > 2) is also
unique. � 

Consider now the case of a general isotropy subgroup H , with fundamental cell
C. As in the proof of Theorem 1.1, we shall extend and modify a given element [F ]
of �(H) to an equivariant map F̃ without zeros on ∂C. There will be obstructions
to modifications on each of the faces of ∂C (i.e., with just one yj = 0 or one zj
with Arg zj = 0). As seen in the proof of Theorem 1.1, the value of F on an edge
(Arg zj = 0,Arg zi = 2π/ki) may be given by the value on a face Arg zk = 0 for
some k < i. Thus, one has to start with the first face, modify F so that the new map
will have a non-zero extension on that face and work the way up on the faces. For F̃
one will have a last obstruction, in Z2, for the extension to C. This construction will
be broken up in several lemmas.
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In order to simplify the argument we shall assume that if yj is a real variable with
isotropy Hj , then there is at least another coordinate y′j with the same isotropy. In
that case, if zj = y′j + iyj , the face yj = 0 in C, with yj ≥ 0 and kj = 2, corresponds
to Arg zj = 0.

Consider first the face y1 = 0. From the presence of y′1, the isotropy of the face
is still H and one has a fundamental cell C′ for that face where y1 is not present
and one has y′1 ≥ 0 but the other variables and kj ’s are the same as for C. From
Theorem 1.1, one has a �-extension to BH ∩ {y1 = y′1 = 0} and an integer as an
obstruction to �-extension to C′. Note that (H̃) is not satisfied for �. However,
since �/H = (�/H1) × (H1/H),C′ is still the fundamental cell for H1-maps on
BH ∩ {y1 = 0, y′1 ≥ 0} and there (H̃) holds for H1.

Lemma 5.2. Let deg(FH ;BH ∩ {y1 = 0, y′1 > 0}) = d1|H1/H |, then there is a
�-map η1 such that [F ]� − d1[η1]� has a non-zero �-extension to BH ∩ {y1 = 0}, in
particular to the face y1 = 0.

Proof. Let η1 be the �-map

η1 =
(

2t + 1− 2(y2
1 + y′21 )

∏
|xj |2, X0, λ̃(y

′
1 + iy1), . . . , (Qi − 1)yi, (Pi + 1)xlii

)
,

where λ̃ = µ + i(y2
1 + y′21 − 1),Qi = y2

i if ki = 2 and Qi = 2 if ki = 1, Pi =
Pi(y

′
1 + iy1, . . . , xi) is the monomial of Theorem 3.3 if ki > 1 and Pi = 0 for

ki = 1. The product in the first component is over all the variables with kj > 1. For
y1 = 0, y′1 = 1, the set {Qi − 1, Pi + 1} has exactly |H1/H | zeros, with |xj | = 1, and
just one in C′.

It is easy to see that deg(η1|y1=0;C′) = (−1)n.. Since this is an orientation factor,
due to the chosen order of the components, changing λ̃ to its conjugate, if necessary,
we may assume that η1|y1=0 is the generator for �1(H), where this group stands for
H1-maps defined on {y1 = 0, y′1 ≥ 0}.

SinceF is in�(H), i.e., it has a�-extension toBK forK > H , thenF |{y1=0,y′1≥0}
belongs to �1(H) and d1 is its extension degree given in Theorem 1.2. Then [F1] =
[F ] − d1[η1], has a non-zero H1-extension to BH ∩ {y1 = 0, y′1 ≥ 0}. Since
F1|y1=y′1=0 is a �-map, if F̃1 is the H1-extension for y′1 ≥ 0, define F̃1(−|y′1|, x) =
γ̃ F̃1(|y′1|, γ−1x), for any γ in � such that γy′1 = −y′1. If γ1 and γ2 satisfy this relation
then γ1γ

−1
2 is in H1, one may write γ−1

2 = (γ1γ
−1
2 )γ−1

1 and use the H1-equivariance
of F̃1 to prove that the new map is well defined and a �-equivariant extension of
F1|y1=y′1=0. � 

For a face of the form Arg zj = 0, or for a pair of real variables with zj = y′j + iyj
as above, if one considers C ∩ {zj = 0}, then there is always, from Theorem 1.1, a
non-zero �-extension to BH ∩ {zj = 0} (if the isotropy of the face is K > H , then
the extension is given a priori).
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Lemma 5.3. Assume F has been modified to [Fj−1]� = [F ]�−∑i<j di[ηi]� , a map
in �(H) without zeros on the faces Arg zi = 0, i < j . Then, if dj is defined by

(∏
i �=j

ki

)
dj = deg(Fj−1;BH ∩ {Arg zj = 0})

one has a �-map ηj such that

[Fj ]� = [Fj−1]� − dj [ηj ]�
belongs to �(H) and has no zeros on the faces Arg zi = 0, i ≤ j .

Proof. Let Hj be the isotropy subgroup of zj . In order to get an Hj -equivariant
extension to the ball Bj = BH ∩ {Arg zj = 0} one needs to consider the extension
degree of Fj−1 on the fundamental cell Cj for the action of Hj on Bj : since Fj−1 is
in �(H) it is also in �j(H), the group for the action of Hj . Furthermore, from the
dimension, Fj−1 has a non-zero Hj -extension to ∂Cj .

From Theorem 1.2, one has that this extension degree dH is given by

deg(Fj−1;Bj ) = dH |Hj/H |.

Now, the ball Bj is covered by |Hj/H | disjoint replicae of Cj and Fj−1 has degree
dH on each of them. Note that ki = |H̃i−1/H̃i | is the same, for i > j , for C and Cj ,
hence Fj−1 is non-zero on ∂(C ∩ Arg zj = 0), by hypothesis if Arg zi = 0, i < j ,
and by the action of � for Arg zi = 2π/ki for i < j ; for i = j , by the dimension
for zj = 0 and by definition for zj = R; and for i > j , since Fj−1 has a non-zero
Hj -extension to ∂Cj . Thus, Fj−1 has a well-defined degree on C ∩ {Arg zj = 0}, and
also on C ∩ {Arg zj = ϕ} for any ϕ, such that all these degrees are equal, using ϕ as
a deformation parameter.

Now, we know that BH is covered by the |�/H | disjoint replicae of C. Thus,
Bj = BH∩{Arg zj = 0} is covered by the intersections of the sets γC with Arg zj = 0.
Recall that the action of � on zj is as e2πik/mj and that H̃j−1 acts on zj as e2πik/kj .
Taking k = mj in the second expression, one should have a trivial action, since H̃j−1
is a subgroup of � and γmj

∣∣
zj = Id . Thus, kj divides mj . Notice that, since

|�/H | = |�/Hj ||Hj/H | = mj |Hj/H |, then |Hj/H | =
(∏
i �=j

ki

)
(kj /mj ).

Now, if γC ∩ {Arg zj = 0} is not empty, then this set comes from the subset of C
with Arg zj = 2πk/mj , for some k = 0, . . . , mj/kj − 1. If γj acts on zj as e2πi/mj ,
one may write γ = γ−k

j γ̃ , with γ̃ in Hj . This implies that, for each such k, the number
of γ ’s such that γC intersects {Arg zj = 0} is the same and is equal to |Hj/H |. Thus,
one arrives at a total of

∏
i �=j ki sets of the form γ (C ∩ Arg zj = 2πk/mj ) covering



3.5 The one parameter case 141

Bj and, on each of them, Fj−1 has the same degree. This implies that deg(Fj−1;Bj )

is a multiple of
∏

i �=j ki and dH is a multiple of mj/kj . Let ηj be

ηj =
(

2t + 1 − 2
∏

|xi |2, X0, (Qi − 1)yi, λ̃z
lj
j , {(Pi + 1)xlii }i �=j

)
,

where λ̃ = µ + i(|zj |2 − 1) or its conjugate if n = dim X0 is odd, the product
is over all the variables, except yi with ki = 1, and the set {Qi − 1, Pi + 1} has,
for zj = 1,

∏
i �=j ki zeros, with |xi | = 1 and just one of them on the face of C

corresponding to Arg zj = 0 (one may have to change 1, in Pi+1, to εi , with |εi | = 1,
as in Theorem 3.3, in order to have this last property).

Then, the degree of ηj on that face is 1, ηj is trivial when restricted to the faces of
C given by Arg zi = 0 for i < j (since Pi is a monomial in x1, . . . , xi and the zeros
of (P1 + 1, . . . , Pi + 1) are not on these faces). Finally, deg(ηj ;Bj ) =∏

i �=j ki and,

if one replaces λ̃ by λ̃d , one obtains a map �-homotopic to dηj .
Hence, dηj generates all possible obstructions on the face C ∩ {Arg zj = 0} and

does not modify the previous construction. Choosing d as in the statement of the
present lemma, one obtains that [Fj−1]− dj [ηj ] has a non-zero extension on the faces
of C with Arg zi = 0, i ≤ j . This extension is then reproduced by the action of � on
the other faces. � 

Remark 5.1. Note first that dj , in the above construction, depends only on the ex-
tension to C ∩ {zj = 0}, from the Hj -extension argument and the formula for dj .
This dependence will be used to compute �(H) and see that one may have several
values for dj . Note also that, at each step, F is modified on the subsequent faces.
Furthermore, in the formula for Fj−1, the sum stands for a �-homotopy on ∂BH and
for extensions to the faces C

⋂{Arg zi = 0}i<j . However, the homotopy is not ex-
tended to these faces and, in particular, there is no relationship between the ordinary
degrees of F on the face {Arg zj = 0} and the sum of the degrees of diηi on that face
and even less with respect to the degrees on Bj , except in particular cases, such as for
the first face for which F has no extension, given in Lemma 5.2, and in the case of
Theorem 5.3 below. This lack of relationship will be demonstrated in Example 5.1.

Lemma 5.4. Any F in �(H) can be written as

[F ]� =
∑

dj [ηj ]� + d̃[η̃]�,

where dj and ηj are given in Lemma 5.3, d̃ is 0 or 1 and η̃ is a �-map which is non-zero
on ∂C and is deformable, on ∂C, to the suspension of the Hopf map.

Proof. From Lemma 5.3, one may construct a step by step modification of F , such that
the last one, say Fs , with [Fs]� = [F ]� −∑

dj [ηj ]� , is non-zero on ∂C. In order to
extendFs to C one has a last obstruction, this time in Z2, if dim C = dim WH+1 > 4,
and in Z if dim C = 4. In that case, VH ∩ (V �)⊥ has only one complex variable, d1
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is uniquely determined by deg(F ;BH ∩ {Arg z = 0})/|�/H | and �(H) turns out to
be Z× Z. Let the generator η̃ be

η̃ =
(∣∣∏

i<n

|xi |Pn − εn
∣∣2 − ε2, X0, (Qi − 1)yi, (Pi − εi)x

li
i , λ(Pn − εn)x

ln
n

)
,

where λ = µ + i(2t − 1), the constants εi , with |εi | = 1, are chosen such that the
set (Qi − 1, Pi − εi) has |�/H | zeros, with |xi | = 1, and just one, X0, in C. The
product is over all variables, except yj with kj = 1 and xn. Note that kn may be 1.
The positive constant ε is chosen so small that the disc ‖X − X0‖ ≤ ε is contained
in C. Hence, the only zeros of η̃ are for xi = x0

i , λ = 0, |xn − x0
n|2 = ε2. In fact, if

xi = 0, the first component reduces to 1 − ε2, since |εn| = 1. Furthermore, on ∂C,
one may deform η̃ to the suspension of (|xn − x0

n|2 − ε2, λ(xn − x0
n)), which is the

Hopf map (deform x
li
i to x

0li
i by a linear path joining X to X0 and the deformation is

done at the same time in
∏ |xi |, and Pi − εi to xi − x0

i ).
Replacing λ by λd , one generates dη̃. If d = 2, then 2η̃ has a non-zero continuous

extension to C and, by the action of �, to BH . Thus, 2[η̃]� = 0, if dim C > 4. � 

Theorem 5.2. Assume that whenever kj > 1, j = 1, . . . , s, the corresponding vari-
able zj has a double z′j with the same isotropy if zj is complex and is repeated twice
to yj , y

′
j , y

′′
j if real. Then, �(H) is a finite group generated by [ηj ]�, j = 1, . . . , s

and [η̃]� , with the relations, with dji integers and d̃j = 0 or 1:

2[η̃]� = 0

kj [ηj ]� +
∑
i>j

dji[ηi]� + d̃j [η̃]� = 0,

in particular, one has

2ks[ηs]� = 0

2ks−1ks[ηs−1]� = 0
...

2
∏

ki[η1]� = 0

2|�/H |[F ]� = 0,

for any F in �(H).

Proof. Let � be the following morphism from Z× · · · × Z× Z2 into �(H):

�(d1, . . . , ds, d̃) =
∑

dj [ηj ]� + d̃[η̃]�.
It is easy to see that if K > H , the sum is non-zero on VK and, from Lemma 5.4,

� is onto. Thus, one has to study ker �, which is the set of all possible dj ’s and d̃ ’s
corresponding to the trivial element (1, 0).
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The extension of (1, 0) will be studied by following the steps of Lemmas 5.2 and
5.3. Hence, if k1 = 2 and corresponding to real variables y1, y

′
1, y

′′
1 , there is always

a �-extension to the set {y1 = y′1 = 0} which has a fundamental cell of the form
{y′′1 > 0} × C′′, where in C′′ one has the same variables as in C. By the dimension
argument, on {y′′1 = 0} × C′′ all �-extensions are homotopic, hence one may assume
that this extension is still (1, 0). If one extends as (1, 0) to y1 = y′′1 = 0, y′1 > 0, then
BH ∩ {y1 = 0, y′1 > 0} can be divided into two pieces, according to the sign of y′′1 ,
the map is (1, 0) on its boundary, except for y1 = y′1 = 0,−2 < y′′1 < 2, where it is
a �-map. Hence, from Theorem 1.2,

deg(FH ;BH ∩ {y1 = 0, y′1 > 0}) = 2 deg(FH ;BH ∩ {y1 = 0, y′1 > 0, y′′1 > 0})
is a multiple of |�/H |. Thus, d1 is even.

If Fj−1 ≡ (1, 0)� −∑
i<j di[ηi]� has been extended to {Arg zi = 0}i<j , then

(1, 0) has a �-extension F for zj = 0, as in Lemma 5.3, by dimension. Furthermore,
BH ∩ {zj = 0} is covered by |�/H | replicae of the fundamental cell C′ which has
the same form as C, except that z′j replaces zj . From the dimension, dim ∂C′ =
dim WH − 1, one may deform the map F on ∂C′ to (1, 0) without changing the
homotopy type of the map F on C′, relative to its boundary.

Now, the set BH ∩ {Arg zj = 0} is covered by the ball C′ × {Arg zj = 0} and its
|�/H |-replicae, where zj is considered as a parameter. The map F is (1, 0) on the
boundary, except on C′ ×{zj = 0}where it is a �-map. Thus, as before, deg(F ;BH ∩
{Arg zj = 0}) depends only on the extension F and is a multiple of |�/H |.

Now, if di = 0, for i < j , or if diηi are trivial on Arg zj = 0, for i < j , then Fj−1
is homotopic to F on ∂(BH ∩ Arg zj = 0) and they have the same degree, that is, in
this case dj is a multiple of kj (see Remark 5.1).

Consider the map, with λ̃ = µ+ iε(|zj |2 − 1), ε = (−1)dim X0 ,

Fj =
(

2t + 1− 2|z′j |
∏
i �=j

|xi |, X0, (Q
′
1 − 1)yi, λ̃z

′lj
j , (P ′

j − εj )z
′lj
j , {(P ′

i − εi)z
li
i }i �=j ),

where {P ′
i } is the usual set of invariant polynomials but with zj replaced by z′j , such

that the set (Q′
i − 1, P ′

i − εi) has |�/H | zeros of the form γX0, with |x0
i | = 1,

none of which is on the faces Arg zi = 0, i �= j or for Arg z′j = 0. The zeros of

Fj are for X0 = 0, µ = 0, X = γX0, |zj | = 1 and t = 1/2. For Arg zj = 0, the
degree of this map is

∏
ki = |�/H | and Fj �= 0 for Arg zi = 0, i �= j . Hence,

in [Fj ]� = ∑
dji[ηi]� + d̃j [η̃], one has dji = 0 for i < j and, from Lemma 5.3,

djj = kj , since one does not need to modify Fj .
Furthermore, on BH , one may �-deform λ̃ to µ + iε(|zj |2 + 2τ − 1), since one

does not have any more the restriction 0 ≤ zj ≤ R. But, for τ = 1 the map has no
zeros in BH , that is [Fj ]� = 0, proving the relations.

Since 2[η̃] = 0, one obtains 2ks[ηs]� = 0 and, iteratively,
(
2
∏

i≥j ki
)[ηj ] = 0

and, from Lemma 5.4, 2|�/H |[F ]� = 0 for any F in �(H), that is any element of
�(H) has, at most, order 2|�/H |.
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Finally, if one has a representation of the trivial map,

0 =
∑

dj [ηj ]� + d̃[η̃]�,

then we know that d1 = p1k1. Since k1[η1] = −(∑s
2 d1j [ηj ] + d̃1[η̃]

)
, upon substi-

tuting this in the above equality, one obtains

0 =
s∑
2

(dj − p1d1j )[ηj ] + (d̃ − p1d̃1)[η̃].

From the argument at the beginning of the proof (absence of η1, and the sum equal
to 0) one has that

d2 − p1d12 = p2k2.

Substituting the equality for k2[η2], one gets

0 =
s∑
3

(dj − p1d1j − p2d2j )[ηj ] + (d̃ − p1d̃1 − p2d̃2)[η̃].

Continuing this argument, one concludes

d1
d2
...

ds


 =




k1 0 0 . . . 0
d12 k2 0 . . . 0
...

d1s d2s d3s . . . ks





p1
p2
...

ps




together with the relation
d̃ =

∑
pid̃i mod 2.

On the other hand, one may take the pi’s to be arbitrary integers and prove for
them that

∑
dj [ηj ] + d̃[η̃] = 0. That is, we have proved that ker � is generated by

the above relations. � 

Remark 5.2. The computation of dij and d̃j is involved. A way of doing it is indicated
in [I.V. 1, Theorem 8.2]. Here we shall only give it in the particular case where
V = R×W , after studying two examples.

Example 5.1. Suppose � ∼= Z9 acts on (z1, z2) as (e2πik/3z1, e
2πik/9z2) together

with their twins (z′1, z′2). Taking C to be {|zj | ≤ 2, 0 ≤ Arg zj < 2π/3, j = 1, 2},
with k1 = k2 = 3, let

η1 = (2t + 1 − 2|z1||z2|, (µ+ i(|z1| − 1))z1, z
′
1, (z

2
1z

3
2 + 1)z2, z

′
2)

η2 = (2t + 1 − 2|z1||z2|, (z3
1 + 1))z1, z

′
1, (µ+ i(|z2| − 1))z2, z

′
2)

η̃ = (ε2 − |z1|2|z2
1z

3
2 + 1|, (z3

1 + 1)z1, z
′
1, (µ+ i(2t − 1))(z2

1z
3
2 + 1)z2, z

′
2).
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Note that the generators given in Lemma 5.3 should have as first component
(2t + 1− 2|z1z

′
1z2z

′
2|) and (z̄j z

′
j + 1)z′j instead of z′j . If these generators are denoted

by η′1 and η′2, one has, from Lemma 5.4,

η1 = d1η
′
1 + d ′1η′2 + d̃1η̃

η2 = d ′2η′2 + d̃2η̃,

since deg(η1|Arg z1=0;BH ∩ Arg z1 = 0) = 3, thus, d1 = 1. Also, η2|Arg z1=0 is
non-zero and deg(η2;BH ∩ Arg z2 = 0) = 3, hence d ′2 = 1. One may then express
η′1 and η′2 in terms of η1 and η2 (and η̃) and choose η1 and η2 as generators. One has
the relations

3η1 + d2η2 + d̃1η̃ = 0

3η2 + d̃2η̃ = 0.

On the other hand, one may choose C′ = {|z2| ≤ 2, 0 ≤ Arg z2 ≤ 2π/9} with
the generators

η′ = (2t + 1 − 2|z2|, z1, z
′
1, (µ+ i(|z2| − 1))z2, z

′
2),

η̃′ = (ε2 − |z9
2 + 1|, z1, z

′
1, (µ+ i(2t − 1))(z9

2 + 1)z2, z
′
2),

since the same argument about the generator given in Lemma 5.3 is valid: in fact, the

term (Pj + 1)z
lj
j , with kj = 1, is useful only when lj > 1; if lj = 1, one replaces it

by zj .
One has the relation

9η′ + d̃η̃′ = 0,

and looking at deg(ηj ;BH ∩ Arg z2 = 0), for j = 1, 2, one has

η1 = 2η′ + d ′1η̃′,
η2 = 3η′ + d ′2η̃′1,
η̃ = d̃ ′η′.

(The last relation comes from the fact that η̃ is not zero on Arg z2 = 0).
Now, if one forgets the action of �, one obtains maps from R10 into R9, hence

elements of �9(S
8), which is generated by the suspension of the Hopf map.

For η2 and η̃ one may take small neighborhoods of the three zeros of z3
1 + 1 and

get that

η2 = 3[(2t + 1 − 2|z2|, z1, z
′
1, (µ+ i(|z2| − 1))z2, z

′
2)]

η̃ = 3[(ε2 − |z3
2 + 1|, z1, z

′
1, (µ+ i(2t − 1))(z3

2 + 1)z2, z
′
2)].

In the first map one may replace |z2| − 1 by (1 − τ)(|z2| − 1) + τ(t − 1/2) and
then, in the first component, 2t + 1 by (1− τ)(2t + 1)+ 2τ . On the other hand, near
the three zeros of z3

2 + 1, one obtains

η̃ = 9[(ε2 − |z2 − z0
2|, z1, z

′
1, λ(z2 − z0

2), z
′
2)].
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Thus, η2 = 3η, η̃ = 9η, where η is the suspension of the Hopf map.
The same argument yields η′ = η, η̃′ = 9η in �9(S

8). From here one obtains
d̃2 = 1, d̃ = 1, d̃ ′ = 1, d ′2 = 0.

Substitution of these values in the relation for 3η1 yields

(6 + 3d2)η
′ + (3d ′1 + d̃1)η̃ = 0,

hence 6+ 3d2 = 9k and 3d ′1 + d̃1 = k. Thus, d2 = 3k− 2 and two values of d2 differ
by 3, which, given the relation 3η2 + η̃ = 0, changes only the second term. Hence,
one may take k = 1 and get d ′1 + d̃1 = 1 and

3η1 + η2 + d̃1η̃ = 0, 9η′ + η̃ = 0, η1 = 2η′ + d ′1η̃
3η2 + η̃ = 0, η̃′ = η̃, η2 = 3η′.

In order to compute the class of η1 in �9(S
8), one may perform the following

sequence of deformations:

1. (
(1 − τ)λ̃ τ

−τ λ̃z2 (1 − τ)z2

)(
z1

z2
1z

3
2 + 1

)

where λ̃ = µ + i(|z1|2 − 1). If λ̃z2 �= 0, then z1 = 0 and η1 has no zeros. If
λ̃ = 0, then z2

1z
2
3 + 1 = 0 and |z1| = |z2| = 1, t = 1/2, hence the deformation

is valid.

2. In λ̃ change |z1|2 − 1 to (1 − τ)|z1|2 + τ(t + 1/2)6 − 1: on a zero, one has
|z2| = |z1|−2/3, |z1z2| = t + 1/2 = |z1|1/3, hence |z1| = 1 and the zeros are
inside BH .

3. If x = t + 1/2, then x6 − 1 = (x − 1)(x5 + x4 + x3 + x2 + x + 1) and the
second term may be deformed linearly to 6 and then to 1.

4. Deform linearly 2t + 1 to 2 in the first component. One has obtained the map

(1 − |z1z2|, λz1z2, z
2
1z

3
2 + 1).

5. Replace z2
1z

3
2 + 1 by z2

1z
2
2z2 + 1− τ + τ(z1z2)

2(z̄1z̄2)
2, where on a zero, with

|z1z2| = 1, one obtains |z2| = 1.

6. The rotation (
1 − τ τz2

2−τz2
1 (1 − τ)z2

1z
2
2

)(
λz1z2

z2 + (z̄1z̄2)
2

)

gives the map
(1 − |z1z2|, z3

2 + z̄2
1|z2|4,−λz3

1z2).
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7. The deformation z3
2 + z̄2

1|z2|2((1 − τ)|z2|2 + τ) is valid, since on a zero, with
|z1z2| = 1, one would obtain

|z2|3 = (1 − τ)|z2|2 + τ, i.e., (|z2| − 1)(|z2|2 + τ |z2| + τ) = 0,

which has a unique zero at |z2| = 1.

8. Deform 1 − |z1z2| to 1 − (1 − τ)|z1z2| − τ |z2|3/2, which is valid since a zero
of the second component gives |z2| = |z1|2 or z2 = 0.

9. Replace z3
2 + z̄2

1|z2|2 by z3
2 + z̄2

1((1 − τ)|z2|2 + τ).

10. Deform 1 − |z2|3/2 to τ(|λ| − 1)+ (1 − τ)(1 − |z2|3/2): on a zero of the map
one has either z3

1z2 = 0 and then z1 = z2 = 0 from the second equation. On the
boundary ofB, one would have |λ| = 2 and the above expression is positive. The
other possibility is λ = 0, then, if |z1| = 2, one gets |z2| = |z1|2/3 = 22/3 > 1
and, if |z2| = 2, one has also |z2| > 1 and the above deformation is negative,
hence the deformation is valid. One has arrived at the map

(|λ| − 1, z3
2 + z̄2

1,−λz3
1z2).

11. Replace z3
1 by z3

1 − τ , obtaining, for τ = 1, the following zeros:

(a) |λ| = 1, z2 = 0, z1 = 0, where the map is locally deformable to (|λ| − 1,
z̄2

1, λz2), which is −2η, where η is the suspension of the Hopf map.

(b) |λ| = 1, z1 = z0
1 with z0

1 = 1 or e2πki/3, z2 = −e−4πki/9, k = 0, . . . , 8,
where the map is locally deformable to (|λ| − 1, z2 − z0

2,−λ(z1 − z0
1)),

i.e., to η.

12. Since the additivity for the degree in �9(S
8) is valid one obtains that the class

of η1 in �9(S
8) is 7η. i.e., since this group is Z2, η1 is η in this group and

d̃1 = 0, d ′1 = 1. The relations are

3η1 + η2 = 0, 9η′ + η̃ = 0, η1 = 2η′ + η̃

3η2 + η̃ = 0, η2 = 3η′.

Thus, choosing η′ as the generator, one obtains that �(H) ∼= Z18.

Note that the other isotropy subgroup is K = Z3, with VK = V � × {(z1, z
′
1)}.

For �(K), one has the generators

η0 = (2t + 1 − 2|z1|2, (µ+ i(|z1|2 − 1))z1, z
′
1, z2, z

′
2)

η̃0 = (ε2 − |z3
1 + 1|, λ(z3

1 + 1)z1, z
′
1, z2, z

′
2)

with the relations
3η0 + dη̃0 = 0, 2η̃0 = 0.
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By following the preceding deformations, it is easy to show that, in �9(S
8), one

has η̃0 = 3η and η0 = η and then d = 1.
Thus, �(K) ∼= Z6.
If one adds X0, with dim X0 ≥ 3, one gets

��
SV (S

W ) ∼= Z2 × Z6 × Z18.

Note that deg(η1;BH ∩ {Arg z2 = 0}) = −2.
In fact, the zeros of η1 on this set are for µ = 0, t = 1/2, z1 = ±i, z2 = 1 and

one may perform the following deformations:

1. (z2
1z

3
2 + 1)((1 − τ)z2 + τ), since z2 ≥ 0.

2. µ+ i((1− τ)|z1| + τ(t + 1/2)3 − 1), since, on a zero, one has |z2| = |z1|−2/3

and |z1z2| = |z1|1/3 = t + 1/2. Deform next (t + 1/2)3 − 1 to t − 1/2 and
2t + 1 − 2|z1z2| to 2(1 − |z1z2|) and next to 1 − |z1z2|. One has obtained the
map

(1 − |z1z2|, λz1, z
2
1z

3
2 + 1).

3. The deformation (1− τ)(1− |z1z2|)+ τ(|z2|1/2 − 1) is valid (again, on a zero,
one has |z1| = |z2|−3/2 and |z1z2| = |z2|−1/2).

4. Multiplying the first component by |z2|1/2 + 1 and deforming z3
2 to 1, one has

the map
(z2 − 1, λz1, z

2
1 + 1)

which has degree −2.

However, one has that deg(3η1 + η2;BH ∩ {Arg z2 = 0}) = −6 + 3 = −3,
i.e., this justifies the second part of Remark 5.1, that the relation 3η1 + η2 = 0
is valid in ��

SV (S
W ) but not in BH ∩ {Arg z2 = 0}.

Nevertheless, there is one important case where one may compute the coefficients
of the relations from the degrees of restrictions. That is

Theorem 5.3. Assume that V = R × W and kj = mj = |�/Hj | for all j ’s with
kj > 1. Then [F ]� =∑

dj [ηj ]� + d̃[η̃]� , where

dj = deg(F ;BH ∩ {Arg zj = 0})/(∏
i �=j

mi

)

and the relations for �(H) are

mj([ηj ]� + [η̃]�) = 0

2[η̃]� = 0.

In particular, [F ]� = 0 if and only if dj = ajmj and d̃ has the parity of
∑

dj .
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Proof. The condition kj = mj means that one has s coordinates with the same kj ’s
regardless of the order in the construction of C, the other variables are just a suspension.
Hence, one may take Pj = x

mj

j and the generators ηj are the same, independently of
the order. Thus, if one chooses xj as the first coordinate in C, then dj will have the
form stated after using Lemma 5.2.

On the other hand, taking xj as the last coordinate in C, one has the relation

mj [ηj ] + d̃j [η̃j ] = 0

where

ηj =
(

2t + 1 − 2|zj |
∏

|xi |, X0, (Qi − 1)yi, (x
mi

i + 1)xi, λ̃zj , z
′
j

)
η̃j =

(
ε2 −

∏
i �=j

|xi ||xmj

j + 1|2, X0, (Qi − 1)yi, (x
mi

i + 1)xi, λ(z
mj

j + 1)zj , z
′
j

)
.

Note that, by construction, η̃j is non-zero on ∂C and has the class of η in C, this
implies that all η̃j ’s are homotopic on ∂C and �-homotopic on ∂BH to a single map η̃.

Note also that, in ηj , one may perform the deformations, in the first component
and in λ, given by

(1 − τ)
(

2t − 1)+ 2(1 − |zj |
∏

|xi |), µ+ i((1 − τ)(|zj | − 1)+ τ(2t − 1)
)
:

on a zero of the map one has |xi | = 1 and the above components can be written as(
1 − τ −2
τ (1 − τ)

)(
2t − 1
|zj | − 1

)

which gives an admissible deformation. Hence, with λ = µ+ iε(2t − 1)

ηj =
(

1 − |zj |
∏

|xi |, X0, (Qi − 1)yi, (x
mi

i + 1)xi, λzj , z
′
j

)
.

Denote by A the vector (X0, (Qi − 1)yi, {(xmi

i + 1)xi}i �=j ) and by A = ∏ |xi |.
For a lighter notation we shall drop the index j in zj , z

′
j and mj . Consider then the

map

F = (1 − A(|z| + |z′|),A, λz′, λm−1z(m−1)2
)

which is equivariant since zm
2−2m is invariant. Take the equivariant deformation

((1 − τ)λz′ − τ z̄m−1, τ z̄′ m−1 + (1 − τ)λm−1z(m−1)2
).

On a zero, conjugate the first equation and take its (m − 1)-power. One obtains the
system (

(1 − τ)m−1λ̄m−1 −τm−1

τ (1 − τ)λm−1

)(
z̄′m−1

z(m−1)2

)
= 0.
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The only zero of the deformed map is for λ = 0, τ = 0, |xi | = 1 and |z| + |z′| = 1.
Furthermore, for τ = 1, the map has no zeros, that is F is trivial.

One may also perform the equivariant deformation

((1 − τ)λz′ + τλmz(m−1)2
,−τz′ + (1 − τ)λm−1z(m−1)2

)

which deforms F to

F ′ = (1 − A(|z| + |z′|),A, λmz(m−1)2
,−z′).

This map is non-zero on the faces of C, except for Arg z = 0, on which it has degree
m. Hence,

0 = [F ] = mj [ηj ] + d̃j [η̃].
One may also rotate λm and obtain

(1 − A(|z| + |z′|),A, λmz′, z(m−1)2
).

Replace z(m−1)2
by (zm + τ2−m)m−2z. For τ = 1, one has a map with zeros at

|xi | = 1, i �= j, λ = 0 and either z = 0, |z′| = 1, or |z| = 1/2 = |z′|.
Divide BH into two invariant sets: B1 = BH ∩ {|z| < 1/4} and its complement

B2. One may compute the �-degree on each one and, from Remark 2.3 of Chapter 2,
one has

deg�(F ;BH) = deg�(F ;B1)+ deg�(F ;B2).

Now, deg�(F ;B1) = Q0[F ′|B1 ]� . But, on B1 one may deform zm to 0, rotate
back λm and obtain the map

(1 − A(|z| + |z′|),A, λmz,−z′) = m[ηj ].
Furthermore, from the form of the generators, Q0 is an isomorphism.

On ∂B2, one may deform linearly the first component to (1/2−A(|zm+2−m|+|z′|)
and deform zm + 2−m to zm + 1. Rotate back λm to get the map

F̃ = (1/2 − A(|zm + 1| + |z′|),A, λm(zm + 1)m−2z,−z′)

once one has noticed that any disk with center at a point with |z| = 1 and with
1/2 − |zm + 1| = 0 does not intersect ∂B2.

The map F̃ has no zeros on the faces of C, hence its class is a multiple of [η̃]� ,
which is given by its ordinary class with respect to C, where the set (Qi − 1, zmi

i + 1)
has just one zero. It is easy to see that this class is m(m − 2)-times the Hopf map
in Z2. Thus, [F̃ ]� = m[η̃]� , proving the theorem, since for the last point, one has
that ker �, in the proof of Theorem 5.2, is given by multiples of mj , with the stated
congruence for d̃ (one has dij = 0, for i �= j , and d̃i = mi). � 

Although Theorem 5.3 seems to be a very special case, it will enable us to give
another description of �(H).
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Assume V = R × W and �/H ∼= Zp1 × · · · × Zpm , generated by γ1, . . . , γm.
Let X = {Z1, Z

′
1, . . . , Zm,Z

′
m} be a new �-space with the following action: γjZj =

e2πi/pj Zj , γjZi = Zi, i �= j , and Z′
j is the duplicate of Zj .

For any F in �(H) one has the suspension QXF = (F,X) from VH × XH

into WH × XH . If one takes C × BH
X as fundamental cell, then any �-map G from

VH ×XH into WH ×XH which is non-zero on the ball in (V ×X)K , for all K > H ,
is classified by the formula

[G]� =
∑

dj [QXηj ]� + d̃[QXd̃η]�,
since the suspensions QXηj and QXη̃ are clearly the generators for the group �(H)

corresponding to V ×X. This formula proves also that QX�(H) ∼= �(H).
But one may choose the cell C′ given by {0 ≤ ArgZj < 2π/pj }, with the

generators

QV η′j =
(

1 −
∏

|Zi |, X0, {xi}, (Zpi

i + 1)Zi, Z
′
i , λZj , Z

′
j

)
QV η̃′ =

(
ε2 −

∏
i<m

|Zi ||Zpm
m + 1|, X0, {xi}, {(Zpi

i + 1)Zi}i<m, λ(Z
pm
m + 1)Zm

)
.

Then, [G]� =∑
d ′j [QV η′j ]� + d̃ ′ [QV η̃′] as in Theorem 5.3. Furthermore, the rela-

tions of that theorem hold and QV is an isomorphism. We have proved the following

Theorem 5.4. If V = R×W and �/H ∼= Zp1 × · · · × Zpm , then any F in �(H) is
given by

QX[F ]� =
∑

d ′j [QV η′j ]� + d̃ ′[QV η̃′]�,
with the relations

2[η̃′]� = 0

pj ([η′j ]� + [η̃′]�) = 0.

For instance, one may have pj = kj coming from the fundamental cell.

Note that in order to compute d ′j with the formula of Theorem 5.3, one has to

perturb QXF so that it has no zeros on the edges of C′, that is for Zj = 0. However,
[F ]� = 0 if and only if d ′j = ajpj and

∑
d ′j + d̃ ′ is even, since QX and QV are

isomorphisms.
One may give a better presentation of the above relations. For example, let

[ηj ]� = [η′j ]� + [η̃′]�, j = 1, . . . , m

[η0]� = [η̃′]�.
Then �(H) is presented by [ηj ]�, j = 0, . . . , m, with the relations

pj [ηj ]� = 0, p0 = 2.



152 3 Equivariant Homotopy Groups of Spheres

Theorem 5.5. If V = R×W , then �(H) ∼= Z2 × �/H .

Proof. Any F in �(H) is given by QX[F ]� = ∑
d ′j [QV η′j ]� + d̃ ′[QV η̃′]� =∑

d ′j [QV ηj ]� + (d̃ ′ −∑
d ′j )[QV η0]� . In particular [F ]� = 0 if and only if d ′j is a

multiple of pj , for j = 0, . . . , m. Thus, each ηj generates a cyclic group of order pj .
Note however that the generators ηj are more difficult to write down explicitly. � 

Another presentation of �(H) is the following

Theorem 5.6. If V = R ×W and �/H ∼= Zp1 × · · · × Zpm , then �(H) ∼= Zq0 ×
· · · × Zqm , with q0 = (2 : p1 : . . . pm) the largest common divisor, qm is the least
common multiple of 2, p1, . . . , pm. Furthermore, qj = hj+1/hj for j = 0, . . . , m,
where h0 = 1, hj is the largest common divisor of all possible products of j among
the numbers p0, . . . , pm.

Proof. Given pi, pj , let p = (pi : pj ), then there are ki, kj such that piki+pjkj = p.
Let

ξi = (pi/p)ηi − (pj /p)ηj

ξj = kjηi + kiηj .

Then, (pi/p)ξj = ηj + kj ξi, (pj /p)ξj = ηi − kiξi . Furthermore,

pξi = piηi − pjηj = 0, (pipj /p)ξj = (pj kj /p)piηi + (piki/p)pjηj = 0.

Without taking into account the relations, one may express, on the basis ξi , ξj , these
equations in the form(

p 0
0 pipj/p

)
=
(

1 −1
pjkj /p piki/p

)(
pi 0
0 pj

)(
ki pj /p

−kj pi/p

)
,

where the non-diagonal matrices have determinant equal to 1, i.e., they are invertible
over Z. Thus, one may replace ηi, ηj by ξi, ξj and (pi, pj ) by p = (pi : pj ) and the
least common multiple ofpi andpj . Note thatp may be 1 and that ifp = min(pi, pj ),
say p = pi , then one may take ki = 1, kj = 0 and the change of variables does not
change the relations.

Continuing this process, it is easy to see that one arrives at a new set of gen-
erators ζ0, . . . , ζm and relations qj ζj = 0, where q0 = (p0 : p1 : · · · : pm),
qm = l.c.m.(p0, p1, . . . , pm), qj divides qj+1 and one has matrices M and N , in-
vertible over Z, such that

Q =MPN,

where

Q = diag(q0, q1, . . . , qm) and P = diag(p0, p1, . . . , pm).
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This is the content of the Fundamental Theorem for abelian groups [Jo, p. 57]. The
integers qj are called the invariant factors of P .

If hi(A) is the greatest common divisor of the principal (i× i)-minors of a matrix
A with integers entries, then one may prove that, if Q = MPN , with M and N

invertible over Z, then hi(P ) = hi(Q).
Furthermore, since qj divides qj+1, we have that hi(Q) = ∏

j<i qj and hi(P )

is the greatest common divisor of all possible products of i of the pj ’s. Hence,
qi = hi+1(P )/hi(P ). Since the above results are true for arbitrary P and Q,
they will also hold for the triangular matrix T of Theorem 5.2, where hi(T ) =
hi(diag(2, k1, . . . , ks)), since principal minors of triangular matrices reduce to prod-
ucts of terms on the diagonal. � 

Corollary 5.1. If V = R×W and �/H ∼= Zn, then

�(H) ∼=
{

Z2 × Zn, if n is even

Z2n, if n is odd.

Corollary 5.2. If V = R ×W and �/H ∼= Zp1 × · · · × Zpm , where any two pi , pj
are relatively prime and odd, then

�(H) ∼= Z2|�/H |.

Note that if one applies the same presentation to �/H in this last corollary, one
has that �/H ∼= Z|�/H |. In fact, from a purely algebraic point of view, one may
reformulate Theorem 5.5, i.e., �(H) ∼= Z2 × �/H , in the following form (losing the
starting point of the action on W and the construction of the fundamental cell).

Theorem 5.7. If V = R ×W and �/H ∼= Zp1 × · · · × Zpm , where pj divides pj+1
and p0 = 1, then

�(H) ∼= Zp1 × · · · × Zpj0−1 × Z2pj0
× Zpj0+1 × · · · × Zpm,

where j0 is the largest index j with pj odd.

Proof. When taking products of j terms among 2, p1, . . . , pm, one gets as largest
common divisor 2p1 . . . pj−1 or p1 . . . pj , if one takes 2 in the first case, since pi

divides pi+1. Hence

hj =
{
p1 . . . pj−1, if pj is odd

2p1 . . . pj−1, if pj is even.

Since qj = hj+1/hj , with h0 = 1, p0 = 1, one gets qj = hj if pj+1 is odd (hence pj
is also odd), qj0 = 2pj0 since pj0+1 is even and pj0 is odd, and qj = pj for j > j0
since then pj+1 and pj are even. � 



154 3 Equivariant Homotopy Groups of Spheres

Example 5.2. The relations of the last theorems are a good source of problems where
there is no bifurcation, i.e., with no non-trivial solutions. For instance, if Zm acts on
C2, then the equivariant map(

λz1

λm−1z
(m−1)2

2

)
+ τ

(−z̄m−1
2

z̄m−1
1

)
= 0,

where λ = µ+ iν and τ = (|z1|2 + |z2|2), has no solution but z1 = z2 = 0: use the
argument of Theorem 5.3.

The action of �/H on the auxiliary space is, in a certain sense, arbitrary. In
studying Hopf bifurcation for non-autonomous problems we shall encounter the fol-
lowing situation: Let V be a Zp-space of the form (µ, z1, zm), with action of Zp as
exp(2πik/p) on z1 and as exp(2πimk/p) on zm, with m and p relatively prime. One
has then the following generators, with λ = µ+ i(2t − 1)

η1 = (1 − |z1|, λz1, zm), η̃ = (ε − |zp1 + 1|, λ(zp1 + 1)z1, zm)

with the relations
p(η1 + η̃) = 0, 2η̃ = 0.

One could have taken instead ηm and η̃m which are defined as η1 and η̃ but with z1
and zm interchanged.

Proposition 5.1. There is an integer n such that nm ≡ 1, modulo p, and |n| is odd,
with the property

ηm = nη1, η̃m = η̃.

Proof. Since m and p are relatively prime, there is n such that nm ≡ 1, modulo p,
with n > 0, or else nm + αp = 1. If p is even, then n and m are odd, while if p is
odd and n is even, replace n by n− p (and α by α +m), with |n− p| odd.

Recall, from Theorem 5.3, that any Zp-map f such that f |z1=0 is non-zero, can
be written as

[f ]� = d[η1]� + d̃[η̃]�,
where d = deg(f ;B ∩ {Arg z1 = 0}).

Take f = (ε − |zpm + 1|, z1 − znm, λ(z
p
m + 1)zm) which is Zp-deformable to η̃m.

Since, on a zero, zm is close to a p-th root of eπi , hence the argument of znm will be
close to πn(1+ 2k), which is not close to 2πl, since n is odd. Thus, f is non-zero for
Arg z1 = 0 and one has [η̃m]� = d̃[η̃]� . Since one may interchange z1 and zm (and
znm by zm1 ), one has [η̃]� = d̃m[η̃m]� , hence d̃d̃m = 1 and one has η̃ = η̃m.

Consider now the maps

f1 = (1 − |z1|2 − |zm|2, zmn
1 , λzm)

f2 = (1 − |z1|2 − |zm|2, λnzmn
1 , zm).
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From the above rules, one has [f1] = mn[ηm] + d1[η̃m] and [f2] = n[η1] + d2[η̃].
Now, on ∂B2 × ∂B, one has the Zp-deformations

((1 − τ)zmn
1 + τλnznm, (1 − τ)λzm − τzm1 )

(which, by taking the expression (1− τ)λzm = τzm1 to the n-th power, is zero only if
z1 = λzm = 0), hence f1 is Zp-homotopic to

(1 − |z1|2 − |zm|2, λnznm,−zm1 ).

Then, the rotation ((1−τ)znm+τznm1 ,−(1−τ)zm1 +τzm) gives thatf1 is Zp-homotopic
to f2. Hence,

mnηm + d1η̃ = (1 + kp)ηm + d1η̃ = ηm + d̃1η̃ = nη1 + d2η̃

and ηm = nη1 + dη̃.

If p is odd, then from pηm = −pη̃, pη1 = −pη̃, one gets pd ≡ p(n− 1), [2].
But, since n is odd, one gets d ≡ 0, [2].
If p is even, then m and n are odd. Let mn = 1 + kp and on ∂{(λ, z1, z

′
1, zm) :|λ| ≤ 1, |Z| ≤ 2}, consider the following maps, which are Zp-homotopic to a suspen-

sion of f1:

f3 = (1 − |Z|2, z′1, z1(z
kp
1 + τ2−kp), λzm)

f4 = (1 − |Z|2, λnz′1, z1(z
kp
1 + τ2−kp), zm)

(the second map comes from a rotation of zmn
1 and z′1 in f2).

Decompose the set {Z : |z1| ≤ 2} in B1 = {z1 : |z1| ≤ 1/4} and its complement
B2. The Zp-degree of the above maps is the sum of the degrees on B1 and B2.

On B1 one may deform z
kp
1 to 0 and obtain ηm for f3 and nη1 for f4. On B2, one

may use the homotopy

(1 − τ)(1 − |Z|2)+ τ(ε2kp − |zkp1 + 2−kp|2 − |z′1|2 − |zm|2),
where ε is so small that any disk, with center at a point with z′1 = 0, zm = 0, |z1| = 1/2,
and of radius ε does not intersect ∂B2, hence, for τ = 1, the degree is the same on
B2 and on the full set {Z : |Z| ≤ 2}. Now, for ε < 1/2, the maps are non-zero if
Arg z1 = 0. Hence, the classes of the maps are multiples of η̃, which may be computed
on the boundary of the fundamental cell {0 ≤ Arg z1 < 2π/p}.

There, one may deform z1 to 1 and obtain k zeros of zkp1 + 2−kp in the cell. It is
then easy to see that, for the first map, one obtains kη̃ and knη̃ for the second. Hence,

[f3] = ηm + kη̃, [f4] = nη1 + knη̃.

From the fact that [f3] = [f4] and ηm = nη1 + dη̃ one gets

dη̃ = k(n− 1)η̃.

Since we have chosen n to be odd, we have d ≡ 0, [2], and the proposition is proved.
� 
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3.6 Orthogonal maps

Recall that if the abelian group� = T n×Zm1×· · ·×Zms acts on the finite dimensional
space V , then a �-orthogonal map F(x) from V into itself is an equivariant map with
the property that

F(x) · Ajx = 0 , j = 1, . . . , n,

where Aj is an infinitesimal generator for the action of T n. (see §7 of Chapter 1).
Gradients of �-invariant functionals are �-orthogonal maps. In §4 of Chapter 2, we
have defined an orthogonal degree for such maps, as elements of ��

⊥SV (S
V ), the

abelian group of all orthogonal �-homotopy classes of SV into itself. One has the
following important result

Theorem 6.1. 1. ��
⊥SV (S

V ) ∼= Z× · · · × Z, with one Z for each isotropy subgroup
of �.

2. [F ]⊥ = ∑
dH [FH ]⊥, with explicit generators FH . If dH �= 0, then F has a

zero in VH .

Proof. Let F be an orthogonal �-map, from B into V , which is non-zero on ∂B (recall
that we are including the variable t in V ). We shall decompose [F ]⊥ by modifying it
on the different isotropy subspaces.

Step 1. If Ṽ = V T n
, then [FT n ] is an element of ��

SṼ
(SṼ ) and as such, one has from

Corollary 2.1 and Theorem 3.2

[FT n ] =
∑

T n≤H

dH [FH ].

Since Ajx = 0 on Ṽ , then [F1]⊥ ≡ [F ]⊥ − [FT n
, Z]⊥ has a non-zero orthogonal

�-extension to BT n
. Thus, F1(X,Z) may be written as (F T n

1 (X,Z), F⊥(X,Z)), with
F1(X, 0) �= 0 and F⊥(X,Z) orthogonal to AjZ.

Step 2. Recall that the action of T n on the k-th coordinate of Z is of the form
exp i〈Nk,/〉, where Nk = (nk1, . . . , n

k
n). Assume, without loss of generality, that

n1
1 �= 0 and define λj = n

j
1/n

1
1 for j = 2, . . . n. Let

V1 = V T n × {zk : nk1 �= 0 and nkj = λjn
k
1, j ≥ 2}.

(Of course, by removing the condition nk1 �= 0, one includes directly V T n
in V1).

Then, on V1, one has Ajx = λjA1x and V1 = V T1 , where T1 is the (n − 1)-torus
(−∑n

2 λjϕj , ϕ2, . . . , ϕn). Let B1 be the ball BV1 , then the map F1(x) + λA1x is
non-zero on ∂(I × B1), where λ is in I = [−1, 1]: in fact, F1(X, 0) �= 0 and, from
the fact that F1 is orthogonal to A1x a zero of the above map is such that F1(x) = 0
and λA1X = 0. That is, if Z �= 0, then λ = 0 and F1(x)+ λA1x defines an element



3.6 Orthogonal maps 157

of ��

SR×V1
(SV1) ∼= ��

SR×Ṽ
(SṼ )×Z× · · ·×Z, with one Z for each isotropy subgroup

H with dim �/H = 1 (see Corollary 2.1). Since FT n

1 �= 0, one has that

[F1(x)+ λAx] = 0 +
∑

T1≤H<T n

dH [F̃H ],

where F̃H is given in Theorem 3.2:

F̃H (λ, x) =
(

2t+1−|z1|
∏

|xi |, X0, (ε(|z1|−1)+ iλ)z1, (Qi −1)yi, (Pi +1)zi
)
,

where Qi, Pi are the familiar monomials, ε = ±1 is such that the degree of F̃H on
the fundamental cell is 1. Let

FH (x) = F̃H (0, x)− (F̃H (0, x), Ã1(x))Ã1(x),

where Ã1(x) = A1x/‖A1x‖, is as in Theorem 7.1 of Chapter 1. By construction,
FH (x) is an orthogonal �-map. Its z1-component is (ε(|z1| − 1) − iα(x)n1

1)z1,
where α(x) = (F̃H (0, x), Ã1(x))/‖A1x‖. Furthermore, the first component of FH is(
2t+1−|z1|∏ |xi |

)
. Thus, the zeros ofFH are those of F̃H (0, x) andFH defines an el-

ement of��
⊥SV (S

V ). Moreover, F̃H (λ, x) is�-homotopic toFH (x)+λε1A1x, where

ε1 = Sign n1
1: in fact, the zk-component of this last map is (Pk+1+i(λε1−α(x))nk1)zk ,

while the z1-component has the form (ε(|z1| − 1)+ i(λε1 − α(x))n1
1)z1. Since zeros

must be with z1 �= 0 (first component), one may deform λε1 − α(x) to 0 in the zk-
component, α(x) to 0 in the z1-component, and then ε1n

1
1 to 1 and arrive at F̃H (λ, x).

Note that the zeros of FH (x)+ λε1A1x are only at λ = 0 and with FH (x) = 0, since
FH is orthogonal to Ajx. Hence, FH (x) + λε1A1x can be taken as a generator for
��

SR×V1
(SV1).

Complementing FH by the identity on V ⊥
1 , one has that

[F2]⊥ ≡ [F1]⊥ −
∑

T1≤H<T n

dH [FH ]⊥

is orthogonal to Ajx and F2(x) + λA1x, is �-extendable on ∂(I × B1) ∪ BT n
to a

non-zero �-map F(λ, x) on I × B1.

Claim 6.1. F2|V1 has a non-zero orthogonal extension to B1, i.e., [FV1
2 ]⊥ = 0.

Proof. The proof follows the lines of Theorem 1.1 by working on VH
1 , for H in

decreasing order. Thus, if H is maximal (hence any K > H must contain T n), one
may extend [F ′

2]⊥ = [F1]⊥ − dH [FH ]⊥ in such a way that the resulting orthogonal
map is non-zero on ∂CH : in fact, this is true on VK , for K > H , since there FK

1
is non-zero and by a dimension argument, since dim ∂CH = dim VH − 2, as in
Corollary 1.2. Thus, one may assume that F ′

2(x) +λA1x is non-zero on ∂(I × CH )

and has a zero extension degree, i.e., the degree with respect to I × CH .
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Now, on CH one has that z1 is in R+ and, since F ′
2(x) �= 0 for z1 = 0, one may

compute this obstruction degree on the ball A ≡ I × CH ∩ {z1 > ε}, for some small
ε. If F ′

2 is written as (f1, f2, F⊥), where f1 + if2 corresponds to the z1-component,
one may perform on ∂A the homotopy

F ′
2(x)+ λ(τA1x + (1 − τ)A1z1).

In fact, taking the scalar product with F ′
2(x) one has |F ′

2|2 +λ(1− τ)(F ′
2, A1z1) = 0,

on a zero of the homotopy, that is, from the orthogonality,

|F ′
2|2 − λ(1 − τ)(F⊥, A1y) = |F ′

2|2 + λ2(1 − τ)|A1y|2 = 0

since on a zero of the homotopy one has F⊥ = −λτA1y. Hence, F ′
2(x) = 0 and

λA1z1 = 0, but, since z1 ≥ ε, this means λ = 0, that is, the zeros of the homotopy
are inside A. The resulting map (f1, f2 +λn1

1z1, F⊥) is linearly deformable on ∂A to
(f1, λ, F⊥), since from the orthogonality one has, for z1 real: f2z1 = −(F⊥, A1y),
assuming n1

1 > 0.
From the product theorem, one obtains that deg(f1, F⊥;CH ∩{z1 > ε}) = 0, i.e.,

(f1, F⊥) has a non-zero extension, (f̃1, F̃⊥), to CH ∩ {z1 ≥ ε}. Defining, on this set,
f̃2 = (−F̃⊥, A1y)/z1, one obtains a non-zero orthogonal extension F̃ ′

2(x) of F ′
2(x)

first on CH (since for 0 ≤ z1 ≤ ε, one has the given map F ′
2) and then, by the action

of the group �, on VH
1 .

For a general H , one assumes by induction that

[F ′
2]⊥ = [F1]⊥ −

∑
H≤K

dK [FK ]⊥

has been extended, as a non-zero orthogonal map to all VK
1 , for H < K . That is,

together with a dimension argument, one has a non-zero map on ∂CH , in particular
for the corresponding z1 = 0. Then, one repeats the above argument in order to obtain
a non-zero orthogonal extension F ′

2 on VH
1 . � 

Step 3. On V ⊥
1 consider the first coordinate zk with nk1 �= 0 and repeat the above

construction in order to get Ṽ1 = V T̃1 . Clearly, Ṽ1 ∩ V1 = V T n
and one obtains a

non-zero orthogonal extension on Ṽ1 of FT n
. Since the generators for F2 are trivial

on V ⊥
1 , one obtains a compatible extension. One repeats this construction until all

coordinates with nk1 �= 0 are exhausted and then, with

V2 = V T n × {zk : nk1 = 0, nk2 �= 0, nkj = λjn
k
2, j > 2, where λj = n

k0
j /n

k0
2 },

and so on.
Hence, if H is such that dim �/H = 1, one has one z1 with dim �/H1 = 1 and

|H1/H | < ∞, and one has an extension

[F2]⊥ = [F1]⊥ −
∑

dim �/H=1

dH [FH ]⊥,
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which is orthogonal and non-zero on
⋃

dim �/H=1 V
H .

Step 4. The next stage is for two-dimensional Weyl groups. Assume

det

(
n1

1 n1
2

n2
1 n2

2

)
= det A �= 0

and define, for j ≥ 3, λ1
j and λ2

j by

(
n1
j

n2
j

)
= A

(
λ1
j

λ2
j

)
.

Let V2 = {zk : nkj = λ1
j n

k
1 + λ2

j n
k
2, j ≥ 2}.

Then, on V2, one has Ajx = λ1
j A1x + λ2

j A2x for j ≥ 3 and V2 = V T2 , where T2

is the (n − 2)-torus (−∑
λ1
j ϕj ,−

∑
λ2
j ϕj , ϕ3, . . . , ϕn). In particular, any isotropy

subgroup H for V2 has dim �/H ≤ 2 and the action of T n on zk in V2 is exp i(nk1ψ1+
nk2ψ2), where ψ1 = ϕ1 +∑

λ1
j ϕj , ψ2 = ϕ2 +∑

λ2
j ϕj : see Lemmas 2.4, 7.1, and

Remark 2.1 of Chapter 1.
Consider the map F2(x)+λ1A1x+λ2A2x, λ1, λ2 in I = [−1, 1], where F2(x) �=

0 if dim �/�x ≤ 1 and F2 is an orthogonal �-extension of F(x). Hence, a zero of this
map will give a zero of F2 and with λ1 = λ2 = 0: in fact, since Ajx is tangent to the
orbit �x, here at most two-dimensional, and that F2(x) �= 0 if �x is one-dimensional.
Hence, on zeros of F2, A1x and A2x are linearly independent. (We are assuming here
that det A > 0; if not, change λ1 to −λ1).

Thus, [F2(x)+ λ1A1x + λ2A2x] is an element of ��

SR2×V2
(SV2), the group of all

�-homotopy classes of maps from ∂(I 2 × B2) into V2\{0}, where B2 is the ball BV2 .
Now, this group is A× Z× · · · × Z, with A corresponding to isotropy subgroups H
on V2 with dim �/H ≤ 1 and there is one Z for each H with dim �/H = 2: see
Theorem 3.2. Then,

[F2(x)+ λ1A1x + λ2A2x]� = 0 +
∑
T2≤H

dH [F̃H ]�,

with dim �/H = 2. Here F̃H is the following map

F̃H (λ, x) =
(

2t + 1 − 2|z1z2|
∏

|xi |, X0, (Qi − 1)yi, (Pj + 1)zj ,

(|z1|2 − 1 + i(n1
1λ1 + n1

2λ2))z1,

(ε(|z2|2 − 1)+ i(n2
1λ1 + n2

2λ2))z2

)
,

where xj , X0, zj , Pj are as in the first step. The zeros of F̃H are at |z1| = 1, |z2| = 1,
|xi | = 1, t = 1/2, λ1 = λ2 = 0. For z1 and z2 real and positive the index of each zero
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is equal to ±ε Sign det A, and ε is chosen such that this index is 1. Thus, F̃H may be
taken as a generator. Let

FH (x) = F̃H (0, x)− (F̃H (0, x), Ã1(x))Ã1(x)− (F̃H (0, x), Ã2(x))Ã2(x),

as in Theorem 7.1 of Chapter 1. By construction FH (x) is an orthogonal map. Writing
FH (x) = F̃H (0, x)− α(x)A1x − β(x)A2x, one easily sees that the zeros of FH are
those of F̃H (0, x), looking at the (z1, z2)-components, and that for them one has
α(x) = β(x) = 0. Furthermore, as a �-map, FH (x) + λ1A1x + λ2A2x is linearly
deformable to F̃H (0, x) + λ1A1x + λ2A2x (the zeros of the deformation are for
λ1 = τα, λ2 = τβ and F̃H (0, x) = 0, for which α = β = 0). Then, this last map is
deformable to F̃H (λ, x) = F̃H (0, x) + λ1A1Z + λ2A2Z, with ZT = (z1, z2). This
means that one may take FH (x) + λ1A1x + λ2A2x as a generator in ��

SR2×V2
(SV2).

Let then
[F3]⊥ = [F2]⊥ −

∑
T2≤H

dim �/H=2

dH [FH ]⊥.

Hence, F3 is an orthogonal �-map and F3(x)+ λ1A1x + λ2A2x is �-extendable on
∂(I 2 × B2)

⋃
dim �/H≤1 V

H to a non-zero map F(λ, x) on I 2 × B2.

Claim 6.2. In fact, [F3]⊥ = 0.

Proof. As before, one proceeds on isotropy subspaces of increasing dimension by
considering on each fundamental cell CH an orthogonal map F ′

3 which, by induction
and dimension arguments, is non-zero on ∂CH . In particular, F ′

3(x) �= 0 for 0 ≤ z1 ≤
ε or 0 ≤ z2 ≤ ε and the obstruction degree dH is the degree ofF ′

3(x)+λ1A1x+λ2A2x

on the ball A = I 2×CH∩{z1, z2 ≥ ε}. IfF ′
3(x) = (f1+if2, g1+ig2, F2) = (F, F⊥),

then one may deform linearly F ′
3(x)+ λ1A1x + λ2A2x to F ′

3(x)+ λ1A1Z + λ2A2Z

with ZT = (z1, z2): by taking the scalar product with F ′
3(x) one obtains, on a zero of

the homotopy,

|F ′
3(x)|2 + (1 − τ)(λ1(F,A1Z)+ λ2(F,A2Z)) = 0.

But, by the orthogonality, (F,AiZ)=−(F⊥, AiY ) and, on a zero,F⊥ =−τ(λ1A1Y+
λ2A2Y ), hence

|F ′
3|2 + τ(1 − τ)(λ2

1|A1Y |2 + 2λ1λ2(A1Y,A2Y )+ λ2
2|A2Y |2) = 0.

Since the quadratic form is non-negative, this implies thatF ′
3(x) = 0 and λ1A1Z+

λ2A2Z = 0, that is λ1 = λ2 = 0, since, on A, the vectors A1Z and A2Z are linearly
independent. Hence, the zeros of the deformation are inside A. The resulting map(

f1, g1,

(
z1 0
0 z2

)
A

(
λ1
λ2

)
+
(
f2
g2

)
, F⊥

)
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is linearly deformable to (
f1, g1, A

(
λ1
λ2

)
, F⊥

)
,

since, from the orthogonality,

AT

(
z1f2
z2g2

)
= −

(
(F⊥, A1Y )

(F⊥, A2Y )

)

and a zero of F⊥ on A will give f2 = g2 = 0 and then z1 and z2 may be deformed
to 1.

This last map is a product and since the extension degree is 0 one has that
(f1, g1, F⊥) has a degree equal to 0 on CH ∩ {z1, z2 ≥ ε} and, therefore, a non-
zero extension (f̃1, g̃1, F̃⊥) to this set. Defining f̃2 and g̃2 on this set via

AT

(
z1f̃2
z2g̃2

)
= −

(
(F̃⊥, A1Y )

(F̃⊥, A2Y )

)
,

one obtains a non-zero orthogonal extension F̃3(x) of F ′
3(x) first on CH and then, by

the action of the group �, on VH
2 . � 

The rest of the proof of (1) in Theorem 6.1 is then clear: exhaust all isotropy
subgroups H with dim �/H = 2 and then go on to higher dimensional Weyl groups.

Now, if [F ]⊥ = ∑
dH [FH ]⊥, then [FK ]⊥ = ∑

dH [FK
H ]⊥ and, in fact, the sum

reduces to those H ≥ K , since FK
H �= 0 if K is not a subgroup of H , in which case

VH ∩ VK is a strict subspace of VH , hence there is at least one xj = 0 and the first
component of FK

H is non-zero. For K ≤ H , it is easy to see that FK
H is the generator

for the group ��
⊥SK (S

K). Hence, if FK �= 0, one has dH = 0 for all K ≤ H , proving
(2). � 

The last results of this section concern the computation of an orthogonal class by
approximations by normal maps or by reduction to Poincaré sections as in §3.

Lemma 6.1. For any fixed H , any map F in ��
⊥SV (S

V ) is orthogonally �-homotopic

to a map F̃ (x) = (FH (x), F̃⊥(x)), such that F̃⊥(x) = x⊥ if |x⊥| ≤ ε and x =
xH ⊕ x⊥, with xH in VH . In case of a gradient, the homotopy is also a gradient.

Proof. This lemma is parallel to Lemma 3.1: let ψ : (V H )⊥ → [0, 1] be such that
ψ(x⊥) is 1 if |x⊥| < ε and 0 if |x⊥| > 2ε. If F(x) is written as

(FH (xH , x⊥), F⊥(xH , x⊥)),

then F(x) is �-orthogonally homotopic to the map

(FH (xH , (1 − ψ)x⊥), (1 − ψ)F⊥(xH , (1 − ψ)x⊥)+ ψx⊥),
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since Ajx is orthogonal to x⊥ and to F(x). Since F⊥(xH , 0) = 0 and FH (xH , 0) �= 0
on ∂BH , one may choose ε so small that FH (xH , x⊥) �= 0 for |x⊥| < 2ε, justifying
the homotopy.

In the case of a gradient, if F(x) = ∇/(x), let

/(x) = ψ(x⊥)(/(xH )+ |x⊥|2/2)+ (1 − ψ(x⊥))/(xH , x⊥).

Then,

∇/̃(x) = (FH (x)+ ψ(FH (xH )− FH (x)), (1 − ψ)F⊥(x)
+ ψx⊥ + (/̃(xH )−/(x)+ |x⊥|2/2)∇ψ).

If |x⊥| > 2ε, then ∇/̃(x) = F(x), while if |x⊥| < ε, one has ∇/̃(x) =
(FH (xH ), x⊥). If on ∂BH one has that |FH (xH )| > η, one chooses ε so small
that on ∂BH × {x⊥ : |x⊥| ≤ 2ε}, one has |FH (x) − FH (xH )| < η/2. Thus, ∇/̃ is
�-homotopic to ∇/. � 

Lemma 6.2. Any F in ��
⊥SV (S

V ) is orthogonally �-homotopic to a normal orthog-
onal map FN .

Proof. As in Lemma 3.2, working in stages, one gets that F is orthogonally �-
homotopic to FN , where FN(xH , x⊥) = (FH

N (xH , x⊥), x⊥), for any H , provided
|x⊥| < ε, i.e., a normal map. Similarly, for the case of gradients, ∇/ is �-homotopic
to ∇/N . � 

Finally, as in Theorem 3.4, we shall study the following situation: let H be an
isotropy subgroup such that dim �/H = k. Then, there are complex coordinates
z1, . . . , zk with isotropy H0 > H and |H0/H | < ∞.

Assume that the orthogonal map F , from B into V , is non-zero on ∂B and on
each set given by zj = 0 for each j = 1, . . . , k. Let H be the torus part of H0 (see

Lemma 2.6 of Chapter 1). If AH is the N × n matrix with A
H

ij = nij , i = 1, . . . , N =
dim VH , j = 1, . . . , n, then AH has rank k and has an invertible submatrix A, for
instance nij , for i, j = 1, . . . , k, corresponding to z1, . . . , zk and ϕ1, . . . , ϕk . If for

j > k one defines λij from 

λ1
j

...

λkj


 = A−1



n1
j

...

nkj


 ,

then, the subspace VH is given by those coordinates zl for which nlj =
∑k

1 λ
s
j n

l
s for

j > k (if for some j and l one does not have equality then AH would have rank bigger
than k). See Remark 2.1 of Chapter 1.

Note that Ajx =∑k
1 λ

s
jAsx for j > k and x in VH and A1x, . . . , Akx are linearly

independent if x has its coordinates z1, . . . , zk non-zero.
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Proposition 6.1. Let F be as above, then [F ]⊥ =∑
Hj<H0

dj [Fj ]⊥. If Bj
k = BHj ∩

{z1, . . . , zk ∈ R+}, then for Hi > H , the corresponding di are given by the formulae

deg
((

F +
k∑
1

λlAlx
)Hi ;Bi

k

)
=

∑
Hi<Hj<H0

dj |H0/Hj |.

Proof. If K is not a subgroup of H0, then for some j, j = 2, . . . , k, one has zj = 0
in VK . Hence, from Theorem 6.1 (2), the corresponding dK is 0. Also, one has
that [FH ]⊥ = ∑

dj [FH

j ]⊥, where the sum is over those j with H < Hj < H0 (for

the others [FH

j ]⊥ = 0). This equality means that there is a �-orthogonal homotopy

F(τ, x) between both sides. It is clear that F(τ, x) +∑k
1 λlAlx provides the �-

homotopy to prove that [(F +∑
λlAlx)

H ]� =∑
dj [(Fj +∑

λlAlx)
H ]� . From the

construction of Theorem 6.1 and Theorem 3.4, one has the above formula.
Note that these formulae can be arranged as a lower triangular invertible matrix,

as in Corollary 3.1, which will yield dj for H < Hj < H0. The other components dj ,
with dim �/Hj �= k, have to be computed in special cases as for that of an isolated
orbit in next chapter. � 

Remark 6.1. For the correct application of Proposition 6.1, it is important to take the
generators [Fj ]⊥ such that (Fj +∑

λlAlx)
H has index 1 on the fundamental cell,

that is, (Fj +∑
λlAlx)

H is �-homotopic to the generator Fj (λ, x) of Theorem 3.3
and given in the proof of Theorem 6.1. Now, due to Theorem 1.3, [Fj (λ, x)]� is
unique up to conjugations. However, [Fj ]⊥ is not unique since it depends on the
choice of the set of k linearly independent Ajx’s. For instance, if T 2 acts on C

as ei(ϕ1−ϕ2), then the �-orthogonal map F(t, z) = (2t + 1 − 2|z|2, (1 − |z|2)z) is
such that F(t, z) + λA1z has extension degree equal to 1 and is �-homotopic to
(2t + 1− 2|z|2, (|z|2 − 1− iλ)z) = F ′(t, z)+ λA2z, via the rotation eπiτ . However,
F + λA2z has a degree (on the set z ∈ R+) equal to −1, as a map from (t, λ, z) into
R3. Thus, from Proposition 6.1, one has [F ]⊥ = −[F ′]⊥. In fact, one has

Proposition 6.2. LetF ∗
H be the generators obtained by orthogonalization ofF ∗

H (0, x),
where F ∗

H (λ, x) is the generator of �(H) given in Theorem 3.3. Then, if FH is the

generator obtained from FH +∑k
1 λlAlx, one has

[FH ]⊥ = Sign det A[F ∗
H ]⊥,

where Aij = nij is the k×k matrix of A1x, . . . , Akx for x = (z1, . . . , zk), with zj = 1.
The generators F ∗

H will be called the normalized generators.

Proof. Note first that F ∗
H was constructed in Step 2 of the proof of Theorem 6.1, while
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FH was constructed in Step 4. Thus, if

F ∗
H (λ, x) =

(
2t + 1 − 2

∏
|xj |, . . . , (1 − |z1|2 + iλ1)z1,

. . . , (ε∗(1 − |z1|2)+ iλk)zk, . . .
)
,

where ε∗ is such that the index on CH is 1, then

F ∗
H (x) = F ∗

H (0, x)−
k∑
1

(F ∗
H (0, x), Ãl(x))Ãl(x)

= F ∗
H (0, x)−

∑
αl(x)Alx.

Then, as in the proof of Theorem 6.1, F ∗
H (x) +∑

λlAlx is �-homotopic to the
map(

2t+1−
∏

|xj |, . . . , (1−|z1|2+i
∑

λln
1
l )z1, . . . , (ε

∗(1−|zk|2)+i
∑

λln
k
l )zk, . . .

)
which has index, on CH , equal to Sign det A, since, for FH , ε∗ is replaced by
ε∗ Sign det A. � 

Example 6.1. SupposeS1 acts on (z1, z2) as (eiϕz1, e
−iϕz2), that is the representation

on z2 is conjugate to that on z1, but as real representations they are the same. Then
one may take as generators of �� the map

F(t, λ, z1, z2) = (2t + 1 − 2|z1z2|, (1 − |z1|2 + iλ)z1, (z1z2 − 1)z2)

F ′(t, λ, z1, z2) = (2t + 1 − 2|z1z2|, (z2z1 − 1)z1, (1 − |z2|2 + iλ)z2),

since, on C = {z1 ∈ R+}, the first map has degree 1 while the second has degree 1 on
C′ = {z2 ∈ R+}. However, on C′ the first map has degree−1: for z2 > 0 the only zero
is for z1 real and positive, i.e., for z1 = 1. If z1 = x+iy, the map is locally deformable
to (2t − 1, 1 − x2 − y2, λ, xz2 − 1, yz2) and then to (2t − 1, 1 − x, λ, z2 − 1, y).

Thus, one has
[F ]� = −[F ′]�,

as expected, since conjugation changes the sign of the degree: see Remark 3.1. Here
F ∗(t, z1, z2) = F(t, 0, z1, z2)− α(z)Az, where α(z) = i|z2|2(z1z2 − z̄1z̄2)/2, while
F ′∗(t, z1, z2) = F ′(t, 0, z1, z2) − α′(z)Az, where α′(z) = −i|z1|2(z1z2 − z̄1z̄2)/2.
One has [F ∗ + λAz]� = [F(t, 0, z) + λAz]� = [F ]� , by following the steps of the
proof of Theorem 6.1. On the other hand, [F ′∗ + λAz]� = [F ′(t, 0, z) + λAz]� =
−[F ′]� = [F ]� . Thus, [F ∗]⊥ = [F ′∗]⊥.

Now, consider the orthogonal maps

F0(t, z1, z2) = (2t + 1 − 2|z1|, (1 − |z1|2)z1, z2)

F ′
0(t, z1, z2) = (2t + 1 − 2|z2|, z1, (1 − |z2|2)z2).
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Clearly, [F0 + λAz]� = [F ]� , since the degree of F0 + λAz on C is 1. On the other
hand, [F ′

0 + λAz]� = −[F ′]� . Thus, [F0]⊥ = [F ′
0]⊥.

Note that, if one changes z2 to z̄2 = z′2, then F has to be modified in its last
component to (z̄1z

′
2 − 1)z′2, which gives a degree 1 for F on C and on C′. (Here F ′

has to be modified to (z̄′2z1−1)z1); and [F0]⊥ = [F ′
0]⊥. In this case the map z2 → z′2

is equivariant (with action e−iϕ on z2 and eiϕ on z′2) with a complementing map z̄2,
i.e., with l = −1.

In general, one has the following.

Proposition 6.3. The normalized generators are independent of conjugations.

Proof. If, as in Remark 3.1, one has two fundamental cells, C and C′, such that one
has coordinates z1, . . . , zs with kj = ∞ (hence s ≤ k) in C and z′1, . . . , z′s in C′, with
action on z′j conjugate from that on zj , then one has [F ]� = (−1)s[F ′]� , where F

and F ′ are the generators of Theorem 3.3.
Now, if F ∗ and F ′∗ are the orthogonalizations of F(0, x) and F ′(0, x) one has

[F ∗ +∑k
1 λlAlx]� = [F(0, x) +∑

λlAlx]� = Sign det A[F ]� , by following the
proof of Theorem 6.1, where A corresponds to the matrix of A1z, . . . , Akz, on the co-
ordinates z1, . . . , zk of C (which include z1, . . . , zs). Similarly, [F ′∗+∑k

1 λlAlx]� =
Sign det A′[F ′]� . But, since A′ has s lines which are the opposite of those of A, one
has Sign det A′ = (−1)s Sign det A and [F ′]� = (−1)s[F ]� . Thus,

[
F ∗ +

∑
λlAlx

]
�
= [

F ′∗ +
∑

λlAlx
]
�

and [F ∗]⊥ = [F ′∗]⊥ � 

3.7 Operations

In the last section of this chapter, we shall examine how the �-homotopy groups
of spheres behave under different operations: suspension, reduction of the group,
products and composition, for the case of parameters and that of orthogonal maps.
These operations will enable us to acquire a certain number of tools for applications.
This section is the continuation of § 6 of Chapter 2.

3.7.1 Suspension

We have seen in §8 of Chapter 1 that the suspension operation enables us to go to the
infinite dimensional setting, when a map may be approximated with maps of finite
dimensional range.

The setting will be that of Theorem 3.2, i.e., that V = Rk × U , where U and W

satisfy (H), that is dim UH ∩UK = dim WH ∩WK for all H,K in Iso(U). Let then
V0 be an irreducible representation of �, generated by a real or complex variable x

with isotropy subgroup H0 (hence �/H0 is trivial or Z2 in the first case, Zm,m ≥ 3



166 3 Equivariant Homotopy Groups of Spheres

or S1 in the second case). From Theorem 2.3, one has that

��
SV (S

W ) ∼=
⊕
H

�̃(H) and ��

SV×V0
(SW×V0) ∼=

⊕
H ′

�̃(H ′),

where H is in Iso(V ) and H ′ in Iso(V × V0). The group H ′ will be of the form H

with H in Iso(V ) or H ∩H0. Then, if H0 is not an isotropy subgroup for V , there will
be more isotropy types for V × V0 (at least H0) and the equivariant group for V × V0
will have more components (unless trivial). In order to make clearer our statements,
we shall use also the notation �V (H), respectively �V×V0(H

′), for the subgroup H

in Iso(V ), respectively H ′ in Iso(V × V0).

Theorem 7.1. For any H in Iso(V ), one has

(a) QV0 maps �V (H) into �V×V0(H).

(b) QV0 is an isomorphism if H is not a subgroup of H0.

(c) IfH is a subgroup ofH0 and for allK in Iso(V ), withH < K andK∩H0 = H ,
one has dim WH − dim WK ≥ k+ 1− dim �/H , then QV0 is onto. If for these
K’s, one has dim WH − dim WK ≥ k + 2 − dim �/H , then QV0 is also one-
to-one.

(d) If there are no K’s as above, then QV0 is onto if dim WH ≥ k+ 1− dim �/H ,
and QV0 is an isomorphism from �V (H) onto �V×V0(H) if dim WH ≥ k +
2 − dim �/H . (Note that t is not taken to be part of V ).

Proof. Let us consider first the case where H ′ is not in Iso(V ), i.e., H ′ = H ∩H0. Let
H̄ be the isotropy subgroup ofWH ′

(see Definition 2.1 of Chapter 1), thenWH ′ = WH̄

and H ′ < H̄ . Furthermore, H ′ < H implies WH ⊂ WH ′ = WH̄ , hence H̄ < H .
Thus, H ′ = H∩H0 < H̄∩H0 < H∩H0, that isH ′ = H̄∩H0 andWH ′ = WH̄ . This
implies that if F belongs to �(H ′), then F maps (BV×V0)K

′
into (W × V0)

K ′ \{0}
for all K ′ > H ′, in particular for K ′ = H̄ which is not a subgroup of H0. Then,
(V × V0)

H̄ = V H̄ and F H̄ = F |x=0 �= 0. That is, F cannot come from the
suspension of a non-trivial element.

On the other hand, if H ′ = H , then �(H ′) consists of maps from (V ×V0)
H into

(W×V0)
H which map (V ×V0)

K ′
into (W×V0)

K ′ \{0} for all K ′ > H , with K ′ = K

orK∩H0, i.e., forK > H . Thus, ifH is not a subgroup ofH0, then (V ×V0)
H = VH

and (V ×V0)
K ′ = VK (there are no K ′ of the form K ∩H0 > H in this case) and any

element of �(H ′) is in �(H). If H < H0, then (V ×V0)
K ′ = VK ′ ×V0 = V K̄ ×V0

if H < K ′ < H0, K̄ ∩ H0 = K ′ with V K̄ = VK ′
if K ′ is not in Iso(V ), while

(V ×V0)
K = VK if K is not a subgroup of H0. Thus, if F belongs to �(H), (F, x)K

′

will be (F K̄ , x) in the first case (or (FK, x) if H < K ′ = K ∩ H0), or FK if K is
not a subgroup of H0, that is, in all cases, different from 0. That is, QV0F belongs to
�(H ′) if H ′ = H .
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Hence, if [F ]� belongs to ��
SV (S

W ), then [F ]� =∑[FH ]� , where FH belongs to

�(H) and QV0FH belongs to �(H ′) with H ′ = H . Thus, QV0 is an isomorphism if
H is not a subgroup of H0. While if H < H0, the elements FH will be given by a sum
of obstruction classes for extensions of a map to edges and to faces of the fundamental
cell, respecting the symmetries and ending with a map from ∂CH into WH \{0} (it
is enough to follow the argument given for the case k = 1). Thus, the obstruction
will come from elements of �Sn(SWH

), for n ≤ dim C = dim VH − dim �/H ,
while the obstruction classes for �(H ′) will be in �Sn×V0 (S

W×V0). In particular,
if x remains as a dummy variable at each stage of the extension, then for (FH , x)

the obstruction classes would be the suspension of the classes for FH . From the
ordinary suspension theorem, one would have an isomorphism if n ≤ 2 dim WH − 2,
for any n ≤ dim VH − dim �/H . In this case QV0 would be one-to-one from �(H)

into �(H ′) and for any element G in �(H ′), the obstruction classes would be the
suspensions by x, that is [G]� = ∑[FK, x] = [∑FK, x], therefore QV0 would be
onto.

There is however a delicate point here: the new variable x has really to remain a
dummy variable in this process. In fact, if F is an element of �V (H), then FK is
non-zero for any K > H and, of course, (FK, x) is non-zero in (V × V0)

K ′
, where

K ′ = K ∩ H0. If K ′ is strictly larger than H , then x is still a dummy variable,
however, if K ′ = H , one may have a first obstruction, for an element of �V×V0(H),
for a non-zero �-extension to VK × V0 of a map F(xK, x), with F(xK, 0) �= 0.
Clearly, if F(xK, x) = (FK(xK), x), there is always the non-zero extension given
by (FK, x). But, for a general map F(xK, x), one needs to look at the fundamental
cell CK ′ = CK × {x : 0 ≤ Arg x < k0}, where k0 = |K/H | if finite, or k0 = 0 if
dim K/H = 1 = dim �/H0.

From Theorem 1.1, one will have a non-zero �-extension to VK × V0 if

dim(V K × V0)− dim �/H < dim(W × V0)
H .

Since dim VK = k + dim WK and dim(W × V0)
H = dim WH + dim V0, because

H < H0, one has that, if dim WH − dim WK > k, there is no additional obstruction
for �V×V0(H), coming from this K .

Subsequent obstructions, by adding new variables to VK , will be obtained for
�V (H) and �V×V0(H), for the edges of CH , in such a way that the ordinary suspen-
sion is onto, due to the fact that dim WH > k + dim WK > k.

On the other hand, if for all K’s with K > H , one has that K ∩H0 is larger than
H , then the condition dim WH > k will suffice to give ontoness. This is the case if
H0 = �.

In order to prove injectivity, assume that F in �V (H) is such that QV0F is trivial,
that is (F (xH ), x) has a non-zero equivariant extension F̃ (xH , x) to BV×V0 . Let
K > H , with K ∩H0 = H , and consider on ∂(BVK×V0 × I ) the �-map F̂ (xK, x, τ )
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defined as

F̂ (xK, x, τ ) =



(FK(xK), x) on ∂(BVK×V0)× I

(FK(xK), x) on BVK×V0 × {0}
F̃ (xK, x) on BVK×V0 × {1}.

Then, from Theorem 1.1, F̂ has a non-zero �-extension to BVK×V0 × I if

dim(V K × V0 × I )− dim �/H < dim(WH × V0),

that is, if dim WH −dim WK > k+1−dim �/H . This non-zero extension provides a
�-homotopy of (FK(xK), x) on BVK×V0 to F̃ (xK, x) fixing the value on ∂(BVK×V0).
Thus, one may assume that F̃ (xK, x) is of the form (FK(xK), x). If K ∩H0 is larger
than H , then we know, from Hypothesis (H), that the obstructions are independent of
the extensions to VK∩H0 .

At this point, one has started an induction argument: if one assumes that, on the
boundary of some face, F̃ (xH , x) is a suspension, then, from the fact that the ordinary
suspension is one-to-one and the fact that F̃ (xH , x) has an extension to the face, one
has that F has a non-zero extension to that face. One arrives finally at the result that
F is trivial. � 

Remark 7.1. Given the explicit generators for the subgroups �(H), if dim �/H = k

or if k = 0 or 1, it is apparent that QV0 is one-to-one for any H0 provided dim W� ≥
k + 2, if H0 = �, and dim WH − dim WK ≥ 2 (always true if WH contains a
complex variable which is not in WK ) for �(H) if k = dim �/H . In this last case,
the suspension is always onto, from �V (H) ∼= Z onto �V×V0(H) ∼= Z, hence it
has to be one-to-one. For the case k = 1, the condition dim WH − dim WK ≥ 3 is
consistent with the results of Section 5 and explains why we have asked for repetition
of variables: see Theorems 5.1 and 5.3.

The properties of QV0 , as a map from ��
SV (S

W ) into ��

SV×V0
(SW×V0), will follow

from the study of the behavior of the suspension on �V (H), for all H in Iso(V ) with
H < H0. However, it is not necessary to check the dimension conditions for all of
these H ’s.

Corollary 7.1. (a) If H0 is an isotropy subgroup for V , then the suspension map

QV0 : ��
SV (S

W ) → ��

SV×V0
(SW×V0)

is one-to-one provided

α) dim W� ≥ k + 2, if H0 = �, or

β) dim WH0 − dim WK ≥ k + 2 − dim �/H0

for all K > H0.
The map will be onto if k + 2 is replaced by k + 1 in the above inequalities.
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(b) If H0 is not an isotropy subgroup for V , then QV0 will not be, in general, onto
unless k = 0 and dim �/H0 = 1. The suspension will be one-to-one if it satisfies the
dimension conditions of Theorem 7.1.

(c) In all cases, QV0 is one-to-one if the number of real coordinates with the same
isotropy is at least k+ 2 and the number of complex coordinates with the same action
of � is at least k/2+1, if this action is finite, or at least k/2, if the action of � is as S1.

Proof. If H0 is an isotropy subgroup for V , then either H0 = � and one has condition
(α) or for any K , strictly larger than H0, one has K ∩ H0 = H0 and condition (β)

is given in Theorem 7.1. Let then H < H0 be in Iso(V ). One has dim WH ≥
dim WH0 ≥ k + 2 − dim �/H0 ≥ k + 2 − dim �/H . Furthermore, if K > H is
such that K ∩ H0 = H , let K0 be the isotropy of WK ∩ WH0 . Then, K0 contains
K and H0, thus, K0 ∩ H0 = H0 and, if K0 = H0, one would have K < H0 and
K ∩H0 = K > H , contradicting the equality K ∩H0 = H . Hence, from (β),

dim WH0 − dim WK0 ≥ k + 2 − dim �/H0.

But, WK ∩WH0 ⊂ WK0 which implies

dim WH − dim WK = dim WH0 − dim WK ∩WH0

+ dim(WH0)⊥ − dim WK ∩ (WH0)⊥

≥ k + 2 − dim �/H0 ≥ k + 2 − dim �/H,

and the condition is verified for H . Replacing k + 2 by k + 1 one has the surjectivity
result.

In order to prove (b), one has to show that �(H ′) = 0 for all H ′ = H ∩ H0

which are not in Iso(V ). Now, for H ′ = H ∩ H0 = H̄ ∩ H0, with V H̄ = VH ′
, the

group �(H ′) will vanish, from Theorem 1.1, provided dim(V ×V0)
H ′ −dim �/H ′ <

dim(W × V0)
H ′

, i.e., dim WH̄ + k + dim V0 − dim �/H ′ < dim WH̄ + dim V0, or
else if k < dim �/H ′. This inequality has to be true in particular for H ′ = H0,
where dim �/H0 is 0 or 1. Hence k = 0 and �/H0 ∼= S1, then dim �/H ′ > 0 for
any H ′ = H ∩ H0, and the equivariant group for V × V0 has no new components.
Furthermore, if H < H0 one has dim �/H ≥ 1 and the other conditions for ontoness
of Theorem 7.1 are trivially met. On the other hand, if k ≥ dim �/H0, then the first
obstruction for extension, in �V×V0(H0), will be in the group �k+n−dim �/H0(S

n),

where n = dim WH + dim V0 and WH = WH0 . Since this group is, in general,
non-trivial, this explains the wording of Corollary 7.1.

Finally, under the condition of (c), one has dim WH ≥ dim W� ≥ k + 2, and
dim WH − dim WK ≥ k + 2− dim �/H , for any pair H < K in Iso(V ), noting that
if, on some coordinate of (WK)⊥ ∩WH the group � acts as S1, then dim �/H ≥ 1.

� 

Let us turn now to Theorem 8.2 in Chapter 1, under the following formulation.
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Corollary 7.2. Let V0 be a not necessarily irreducible representation of �, with co-
ordinates x1, . . . , xn and Hj the isotropy of xj . Then:

(a) The suspension QV0 is one-to-one, if whenever H0 is an isotropy subgroup for
V0 one has that for all H and K in Iso(V ), with H < H0, H < K (strictly)
and K ∩H0 = H , the following inequality holds

dim WH − dim WK ≥ k + 2 − dim �/H.

If there are no K’s as above, then the inequality

dim WH ≥ k + 2 − dim �/H,

will suffice. If H0 is in Iso(V ), then H = H0 is allowable and is enough for
other H ’s.

(b) If Iso(V0) ⊂ Iso(V ), then QV0 will be onto if

dim W� ≥ k + 1

dim WHj − dim WK ≥ k + 1 − dim �/Hj ,

for all K in Iso(V ), with K > Hj and all j ’s.

(c) If some Hj is not an isotropy subgroup for V , then QV0 will not be, in general,
onto unless k = 0 and dim �/Hj = 1 for all such Hj ’s.

(d) If for all K,H in Iso(V ), with H < K , one has

dim W� ≥ k + 2

dim WH − dim WK ≥ k + 2 − dim �/H,

then any suspension will be one-to-one. This will be the case if one has the
repetition of coordinates of Corollary 7.1 (c).

Proof. It is enough to note that QV0 is the composition

�V (H)
QV1−−−→ �V×V1(H)

QV2−−−→ �V×V1×V2(H) → · · · → �V×V0(H),

where QVj is the suspension by the coordinate xj , and likewise for the full equivariant
groups. Note that the order of the suspensions is irrelevant. Now, for

QVj : �V×V1×···×Vj−1(H) → �V×V1×···×Vj (H),

one has an isomorphism if H is not a subgroup of Hj , while if H < Hj one needs
dim(W × V1 × · · · × Vj−1)

H − dim(W × V1 × · · · × Vj−1)
K ≥ k + 2 − dim �/H ,

for any K in Iso(V × V1 × · · · × Vj−1), with H < K and K ∩ Hj = H . But, if
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K < Hi1 , . . . , Hil for i1, . . . , il between 1 and j − 1, then K = K̄ ∩ Hi1 · · · ∩ Hil ,

where K̄ is the isotropy of WK =WK̄ . Then, if H0 = Hi1 ∩ · · · ∩Hil ∩Hj , one has
K̄ ∩H0 = H , hence H < H0 and H < K < K̄ . Since

dim(W × V1 × · · · × Vj−1)
H ≥ dim WH +

l∑
s=1

dim Vis

dim(W × V1 × · · · × Vj−1)
K = dim WK̄ +

l∑
s=1

dim Vis,

the above inequality is true under the condition of (a). Of course, if there are no
K’s then the second condition of (a) is stronger than the one needed here. If H0 is in
Iso(V ) and H < H0, one may repeat the argument of Corollary 7.1, in order to show
that one does not need to check the inequalities for H .

Part (b) is then clear sinceQVj is onto at each stage, since dim(V1×· · ·×Vj−1)
Hj ≥

dim(V1 × · · · × Vj−1)
K and using Corollary 7.1. On the other hand, if Hj is not an

isotropy subgroup for V , one may start the above sequence by

QVj : ��
SV (S

W ) → ��

S
V×Vj

(SW×Vj ),

which will be, in general, not onto unless k = 0 and dim �/Hj = 1. If k = 0 and
dim �/Hj = 1 for all such j ’s, then the inequalities of (b) hold for any Hj in Iso(V )

and QV0 is onto. The word “in general” has to be taken in this context. Finally the
conditions of (d) cover all possible suspensions. � 

Remark 7.2. In the case of orthogonal maps, without parameters, the explicit con-
struction of Theorem 6.1 implies that QV0 is one-to-one. This implies that the ap-
proximation by finite dimensional orthogonal maps is valid and that one may take the
direct limit of these groups to give an alternative definition of the orthogonal degree
in the infinite dimensional case, as in § 3 of Chapter 2.

3.7.2 Symmetry breaking

Let �0 be a subgroup of �. If a map is �-equivariant it is also �0-equivariant and, in
case it is �-orthogonal it will be �0-orthogonal, since the torus part of �0 is a subgroup
of the torus part of �. One has then two morphisms

P∗ : ��
SV (S

W ) → �
�0
SV (S

W )

P⊥ : ��
⊥SV (S

W ) → �
�0
⊥SV (S

W )

corresponding to the reduction of the group from � to �0.
Under hypothesis (K̃) we have seen, in Theorem 2.3, that ��

SV (S
W ) is of the form⊕

�̃(H). It is thus important to determine first the relation between the isotropy
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subgroups for � and for �0 and then the relation between the subgroups �(H), for �,
and �0(H0), for �0.

Lemma 7.1. (a) Any isotropy subgroup H0 for �0 is of the form H ∩ �0, with H an
isotropy subgroup for �. For a given H0, there may be several H ’s, but there is a
minimal one H , for which VH = VH0 .

(b) For all H with H0 = H ∩ �0, one has dim �0/H0 ≤ dim �/H . In case of
equality, if H̃0 is the isotropy of the k variables with kj = ∞ (k = dim �/H ) and
H̃ 0

0 = H̃0 ∩ �0, then |H̃ 0
0 /H0| divides |H̃0/H |. Moreover, H̃0 is � if k = 0.

(c) If dim �0/H0 = dim �/H and Sign det γ Sign det γ̃ > 0, for all γ in �, then
P∗ maps �(H) into �0(H0) and if dim WH = dim VH − dim �/H , then

P∗[FH ]� =
{
|H̃0/H |/|H̃ 0

0 /H0|[FH0 ]�0 , if WH = WH0

0, otherwise,

where FH generates �(H) and FH0 generates �0(H0).

Proof. If H0 = �0x = {γ ∈ �0 : γ x = x}, then clearly H0 = �x ∩ �0. Hence, H is
the intersection of all suchH ’s and the isotropy subgroup forVH0 (see Definition 2.1 of
Chapter 1). If zi is a coordinate in this space with the subgroups H̃i−1 = H1∩. . . Hi−1
and H̃i = H̃i−1∩Hi , then the corresponding subgroups for �0 will be H̃ 0

i = H̃i ∩�0.
Furthermore, if ki = |H̃i−1/H̃i | is finite, then any γ in H̃i−1 may be written as
γ = γ

αi
i γ̃ , with 0 ≤ αi < ki, γ

ki
i and γ̃ in H̃i . Thus, if γ is also in �0, then γ ki is

in �0 ∩ H̃i , that is k0
i = |H̃ 0

i−1/H̃i | is finite and divides ki . Hence, if xl is the last

coordinate inVH , then H̃l = H . Thus, H̃ 0
l = H0 and k0

i = 1 for i > l. Since there are
at most k = dim �/H coordinates with k0

i infinite, one has that dim �/H0 ≤ dim �/H

and the rest of (b) is then clear, since |H̃ 0
0 /H0| =∏

k0
i divides |H̃0/H | =∏

ki .
For (c) one has that the fundamental cell C0 forH0 is made of

∏
ki/

∏
k0
i copies of

the fundamental cell C forH . IfF belongs to�(H) andK0 > H0, thenK0 = K∩�0,
where K is minimal and the isotropy subgroup for VK0 ⊂ VH0 . Thus, K > H and
FK �= 0, by definition of �(H), i.e., F |VK0 �= 0 and F is in �0(H0). If dim VH =
dim WH +dim �/H, dim �0/H0 = dim �/H , since H0 = H ∩�0 < H , then WH ⊂
WH0 . Hence, if WH = WH0 , one obtains that dim VH0 = dim WH0 + dim �/H0
and F in �0(H0) is characterized by its extension degree deg�0

(F ), such that, from
Theorem 1.2,

deg(F ;Bk) = |H̃0/H | deg�(F ) = |H̃ 0
0 /H0| deg�0

(F ).

Since deg�(F
H ) = 1, deg�0

(FH0) = 1, by definition, one obtains the equality of (c),
since P∗[FH ]� = deg�0

(FH )[FH0 ]�0 . Finally, if WH is strictly contained in WH0 ,
then dim VH0 < dim WH0+dim �0/H0 and, from Theorem 1.1, one has�0(H0) = 0.

� 
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Lemma 7.2. (a) If for all H ’s there is a complementing map F⊥
H , then this is also true

for all H0’s. In this case, P∗ maps �̃(H) into �̃0(H0).

(b) IfV = Rk×U , such thatU andW satisfy hypothesis (H) for� (i.e., dim UH =
dim WH for allH in Iso(U)and one has the�-equivariant mapx

lj
j )and ifWH = WH0

for allH0, thenU andW satisfy hypothesis (H) for�0. This is the case ifV = Rk×W .

Proof. Since VH0 = VH , any complementing map for H will also work for H0.
Now, if H0 = H ∩ �0 and H is a strict subgroup of H , let FH be in �(H) and
consider (FH , FH⊥ )H . Take K0 > H0, hence as above, K0 = K ∩ �0 with K > H .
If (FH , FH⊥ )K0(x) = 0, then x is in VH , since FH⊥ is zero only at the origin, and
FH (x) = 0. But x is in VK0 = VK , thus x is fixed by H and K . But H cannot be
a strict subgroup of �x , since one would have FH (x) �= 0 for FH in �(H). That is,
�x = H and K ≤ H . But the relation H < K would imply H0 = K0, which is a
contradiction. Thus, (FH , FH⊥ )K0 �= 0 if K0 > H0 and the pair (FH , FH⊥ ) belongs
to �̃0(H0).

(b) is clear, since UH0 = UH and UK0 = UK and the �-equivariant map x
lj
j is

also �0-equivariant. � 

Proposition 7.1. If V = Rk ×U , where U and W satisfy hypothesis (H) and WH =
WH0 , for all H in Iso(U), then, for any H such that dim �0/H0 = dim �/H = k,
one has

P∗[FH , FH⊥ ]� = deg((FH⊥ )H )
|H̃0/H |
|H̃ 0

0 /H0|
[FH0

0 , F
H

⊥ ]�0 ,

where FH generates �(H) and F
H0
0 generates �0(H0).

Proof. Since FH is in �(H), one has that (FH , FH⊥ ) is non-zero on ∂Bk and, from
Theorem 3.4, for any Hi ≤ H̃0, with dim �/Hi = k, one has

deg(FHi ;BHi

k ) =
∑

Hi≤Hj≤H̃0

βij dj |H̃0/Hj |,

where βij = deg((F
Hj

⊥ )Hi ).
Then, for F = (FH , FH⊥ ), the degree on the left is a product and the degree

of (FH )Hi corresponds to VH ∩ VHi , which has isotropy larger than H , i.e., there
FK �= 0, unless Hi < H , in which case the degree is βHiH |H̃0/H |. On the right-hand
side, one has dj = 0, except for dH = 1. Hence, deg(FH ;BH

k ) = |H̃0/H |.
From the product theorem, one has

deg(FK, FH⊥ ;Bk) = |H̃0/H | deg(FH⊥ ).

Now, as a �0-map, one has, from Lemma 7.2, that

P∗[FH , FH⊥ ]� = a[FH0
0 , F

H

⊥ ]�0 ,
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where a is an integer, recalling that F
H

⊥ is a complementing map for H0. Since

deg(FH0
0 , B

H0
k ) = |H̃ 0

0 /H0|, one gets

a = |H̃0/H |/|H̃ 0
0 /H0| deg(FH⊥ )/ deg(FH

⊥ )

and the result follows. � 

Corollary 7.3. If V = Rk ×W and

[F ]� = [F̃ ]� +
∑

dim �/H=k

dH [F̃H ],

where F̃ corresponds to isotropy subgroups K with dim �/K < k, then

P∗[F ]� = P∗[F̃ ]� +
∑

H0=H∩�0
dim �0/H0=k

|H̃0/H |
|H̃ 0

0 /H0|
dH [F̃H0 ]�0 .

Proof. Since dim �0/H0 ≤ dim �/H , one has that P∗[F̃ ] corresponds to subgroups
with Weyl group of dimension less than k. Similarly, if dim �/K > k, then the
component of F on that �(K) is 0 and so it does not appear in �0(K0), even if
dim �0/K0 = k. Here, βHH = 1. � 

Example 7.1. If k = 0 and �0 = {e}, with V = W , then for

[F ]� =
∑

dim �/H=0

dH [F̃H ]�,

one obtains P∗[F ]� = deg(F ;B)[Id] = (∑
dH |�/H |)[Id]. (Compare with Corol-

lary 3.1)
For instance, if Zn acts on C2, via (x, e2πik/nz), k = 0, . . . , n− 1, then the map

F(t, x, z) = (2t + 1 − 2(|x| + |z|), x̄(xn − 1), z(zn − 1))

has zeros at (x = 0, zn = 1), with index −1 and at (xn = 1, z = 0), with index 1,
and t = 1/2. One has deg(F�;B�) = n, deg(F, B) = 0. From Corollary 3.1,(

n

0

)
=
(

1 0
1 n

)(
d0
d1

)
.

Hence, d0 = n and d1 = −1. As a Zn-map, one has

[F ]� = n[F0]� − [F1]�,
with F0 = (2t − 1/2, x0, z) and F1 = (2t + 1− 2|z|, x, z(zn− 1)), while [F ]{e} = 0.
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There are two other cases where we have explicit generators: the case k = 1 and
for orthogonal maps. Let us consider first the case k = 1.

Let V = R × W , then ��
SV (S

W ) is generated, in its free part, by [FH ]� as
above for dim �/H = 1, and for H with �/H = A = Zp1 × · · · × Zpm , by η′j and
η̃′, j = 1, . . . , m, given in terms of the auxiliary space X = (Z1, . . . , Zm) with action
of �/H on Zj given by exp(2πi/pj ). Then η′j and η̃′ are given in Theorem 5.4 and
one has the relations

pj (η
′
j + η̃′) = 0, 2η̃′ = 0.

Similar definitions hold for �0/H0 = A0.

Proposition 7.2. (a) If dim �/H = dim �0/H0 = 1, then

P∗[FH ]� = |H̃0/H |
|H̃ 0

0 /H0|
[FH0 ]�0 .

(b) If dim �/H = dim �0/H0 = 0, then for j = 1, . . . , m

P∗[η′j ]� =
|A|
|A0|

p0j

pj
[η′0j ]�0 + d̃j [η̃′0]�0 ,

where d̃j is 0 or 1 and d̃j = 0 if |A0| or pj is odd. Moreover,

P∗[η̃′]� = |A|
|A0| [η̃

′
0]�0 .

(c) If dim �/H = 1 and dim �0/H0 = 0, then

P∗[F ′H ]� = |H̃0/H |
|A0| p01[η′01]�0 + d̃[η̃′0]�0 ,

where d̃ = 0 if |A0| is odd, and F ′H is given below.

Proof. (a) was already proved in the previous proposition. For (b), notice that if �
acts as exp(2πi/pj ) on Zj , then �0 has to act as exp(2πi/p0j ), where p0j divides
pj . Hence, |A0| divides |A|.

From Theorem 5.4 and 5.7, the components of P∗[η′j ]� on η′0i can be computed

via deg(η′j ;BH0 ∩ {ArgZi = 0})/∏i �=k p0k . Since

η′j =
(

1 −
∏

|Zj |, X0, {xi}, (Zpi

i + 1)Zi, Z
′
i , λZj , Z

′
j

)
,

it is clear that this degree is 0 if i �= j and
∏

j �=k pk/
∏

j �=k p0k , if i = j .
Now, if one computes the ordinary class of both sides in �n+1(S

n), one obtains
that [P∗η′j ] =

(∏
j �=k pk

)
η, where η is the suspension of the Hopf map, while, on the
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right-hand side, one has |A|/pjη+ d̃j |A0|η. Thus, d̃j |A0|η = 0, in particular, d̃j = 0
if |A0| is odd.

Furthermore, since η̃′ is the Hopf map based on the fundamental cell for �/H and
the fundamental cell for �0/H0 is generated by |A|/|A0| copies of the first one, with
a suspension on the variables on XH ∩ (XH )⊥, one has

P∗[η̃′]� = |A|/|A0|[η̃′0]�0 .

Then, from the relations pj (η′j + η̃′) = 0, one has

(|A|/|A0|)(p0j η
′
0j + pj η̃

′
0)+ pj d̃j η̃

′
0 = 0,

or else
pj d̃j + (|A|/|A0|)(pj − p0j ) is even.

Hence, if pj is odd, p0j , which divides pj , is also odd and one has d̃j = 0.
For (c), one has �/H ∼= S1 × Zp2 × · · · × Zpm and, using the auxiliary space X,

one may take the action of � on Z1, as eiϕ and on Zj as e2πi/pj , while �0 acts as
e2πi/p0j . One may take

F ′H = (2t + 1 − 2�|Zj |, X0, xi, λ̃Z1, (Z
pj
j + 1)Zj ),

where λ̃ = µ+ i(|Z1| − 1), see Theorem 3.3.
Again, the components of P∗[FH ]� on η′0j are given by

deg(FH ;BH0 ∩ {ArgZj = 0})/
∏
k �=j

p0k.

Hence, these components are 0 if j > 1 (since Z
pj
j + 1 �= 0, for Zj real and positive)

and
(∏

k>1 pk

)
/
(∏

k>1 p0k
)

for j = 1.
The fact that d̃ is 0 if |A0| is odd is proved as above. � 

Example 7.2. Consider the action of S1 on Fourier series, i.e., as exp(imϕ) on zm,
for m ≥ 0, which is broken to a Zp-action for �0 = {ϕ = 2kπ/p, k = 0, . . . , p− 1}.
Here V = R×W and, according to Theorem 3.2, one has

�S1

SR×W (SW ) ∼= Z2 × Z× · · · × Z,

where Z2 corresponds to the invariant part and is generated by the suspension of the
Hopf map (1−|x0|2−|x1|2, λ(x0+ix1)), where x0, x1 are inW� andλ = µ+i(2t−1).
The isotropy subgroups are of the form Hm = {ϕ = 2kπ/m, k = 0, . . . , m− 1}, with
WHm = {zn, n multiple of m} and the corresponding generator is the suspension of

ηm = (1 − |zm|, λzm).
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Note that Theorem 3.3 gives the generator (2t + 1 − 2|zm|, λ̃zm) = η′m with
λ̃ = µ+ i(|zm| − 1). The homotopy

((1 − τ)(2t − 1)+ 2 − 2|zm|, (µ+ i((1 − τ)(|zm| − 1)+ τ(2t − 1)))zm)

is valid, since if zm = 0, one has (2 − τ)(2t − 1) + 2 ≥ 1, and otherwise one has a
rotation between 2t − 1 and 1− |zm|. Thus, ηm = η′m. Hence, any S1-map will be of
the form

[F ]S1 =
∑
m≥0

dm[ηm]S1 .

On the other hand, the isotropy subgroups of �0 are of the form H0 = {ϕ =
2kp′π/p, k = 0, 1, . . . , p/p′ − 1}, where p′ divides p, that is H0 ∼= Zp/p′ and
�0/H0 ∼= Zp′ . Furthermore, zm belongs to WH0 if m is a multiple of p/p′ and zm
will have exactly the isotropy H0 if m = kp/p′, with k and p′ relatively prime (if
k/p′ = k′/p′′ then zm belongs to WH ′

0 , with H ′
0 = Zp/p′′ > H0). One may write

k = m′ + k′p′, with 1 ≤ m′ < p′ such that m′ and p′ are relatively prime. Hence,
m = m′p/p′ + k′p.

Now, any Zp-map can be written as

[G]Zp
=
∑
p′

(d ′p/p′ [η′p/p′ ]Zp
+ d̃p/p′ [η̃p/p′ ]Zp

),

where for any divisor p′ of p, one has that η′
p/p′ is the suspension of

(1 − |zp/p′ |, λzp/p′).
In this case, according to Proposition 7.2 (c), one has that

P∗[ηp/p′ ] = [η′p′ ]

since in this case |A0| = p′ = p01 and |H̃0/H | = 1.
Now, one could have taken a different generator for �0(H0), for instance

(1−|zm|, λzm), withm = m′p/p′+k′p. From Proposition 5.1, we have that [ηm]Zp =
n′[η′

p/p′ ]Zp
, where |n′| is odd and n′m′ ≡ 1, modulo p′ (in fact (m′ + k′p′)n′ ≡ 1,

modulo p′).

Proposition 7.3. Under the above hypothesis, if

[F ]S1 =
∑
m≥0

dm[ηm]S1 ,

then
P∗[F ] =

∑
p′|p

d ′p/p′ [η′p/p′ ]Zp
,
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where
d ′p/p′ =

∑
j

nj

(∑
k≥0

dmjp/p
′+kp

)

with |nj | odd, njmj ≡ 1, modulo p′, and 1 ≤ mj < p′, with mj and p′ relatively
prime. The number d ′

p/p′ is in Zp′ if p′ is even and in Z2p′ if p′ is odd. The number

d ′p is in Z2, corresponds to H0 ≡ Zp and is

d ′�0
= d ′p =

∑
k≥0

dkp.

For instance, if p = 2, then one has

d ′�0
=
∑

d2k mod 2, d ′{e} =
∑

d2k+1 mod 2.

For p = 3, one has

d ′�0
=
∑

d3k mod 2, d ′{e} =
∑

(d3k+1 − d3k+2) mod 6.

For p = 4, one has

d ′�0
=
∑

d4k mod 2, d ′
Z2
=
∑

d4k+2 mod 2,

d ′{e} =
∑

(d4k+1 − d4k+3) mod 4.

For p = 5 one has
d ′�0

=
∑

d5k mod 2,

d ′{e} =
∑

(d5k+1 − d5k+4)+ 3
∑

(d5k+2 − d5k+3) mod 10.

For p = 6, one has

d ′�0
=
∑

d6k mod 2, d ′3 =
∑

d6k+3 mod 2, for p′ = 2,

d ′2 =
∑

(d6k+2 − d6k+4) mod 6, for p′ = 3,

d ′{e} =
∑

(d6k+1 − d6k+5) mod 6.

For p = 7, one has

d ′�0
=
∑

d7k mod 2,

d ′{e} =
∑

(d7k+1 − d7k+6)− 3
∑

(d7k+2 − d7k+5)+ 5
∑

(d7k+3 − d7k+4) mod 14.

In order to illustrate this sort of result, consider the following system in R2 ×C2,
with action on zj as eijϕ , for j = 1 and p − 1:

f = (1 − |z1|2 − |zp−1|2, λz1, λzp−1).
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This map is S1-equivariant and non-zero on ∂{(λ, z1, zp−1) : |λ| ≤ 1, |zj | ≤ 2,
j = 1, p − 1}. One may perturb λzp−1 to (λ − ε)zp−1, for |ε| < 1, obtaining the
zeros (λ = 0, |z1| = 1, zp−1 = 0) and (λ = ε, z1 = 0, |zp−1| = 1). The S1-degree
is then the sum of two S1-degrees, the first one, near λ = 0, is [η1], while the second
one, near λ = ε, is [ηp−1]. Hence,

[f ]S1 = [η1]S1 + [ηp−1]S1 .

(This result may also be obtained by using Whitehead’s homomorphism: this method
will be used, in next chapter, when discussing bifurcation).

One may perturb f to get a Zp-map:

fε = (1 − |z1|2 − |zp−1|2, λz1 + εz̄p−1, λzp−1 − εz̄1).

However, conjugating the third equation, one has(
λ ε

−ε λ̄

)(
z1

z̄p−1

)

whose only zero, for ε �= 0, is z1 = zp−1 = 0, i.e., fε is never zero. Here n1 = 1,
np−1 = −1 and [fε]Zp

= 0.

Let us conclude this subsection by considering the case of orthogonal maps, i.e.,
the morphism

P⊥ : ��
⊥SV (S

V ) → �
�0
⊥SV (S

V ),

where �0 = T n0 × . . . is a subgroup of � = T n× . . . It is clear that one may choose
T n0 to correspond to ϕ1, . . . , ϕn0 .

We have seen, in Theorem 6.1, that ��
⊥SV (S

V ). has explicit generators FH , which
are orthogonal maps, for each isotropy subgroup H . Furthermore, if dim �/H = k,
with A1x, . . . , Akx linearly independent in VH , then,

F(λ1, . . . , λk, x) = FH (x)+
k∑
1

λjAjx

may be taken as the generator of �(H) in ��

SRk×V
(SV ).

From Proposition 7.1, we know that if dim �0/H0 = dim �/H = k, then

P∗[F(λ1, . . . , λk, x)]� = |H̃0/H |
|H̃ 0

0 /H0|
[F0(λ1, . . . , λk, x)]�0 ,

where F0(λ1, . . . , λk, x) = FH0(x)+
∑k

1 λjA
0
j x is the generator for �0(H0), and A0

j

are the infinitesimal generators for the action of �0. We shall prove the following
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Proposition 7.4.

P⊥
( ∑
H<�

dH [FH ]⊥
)
=

∑
H0<�0

(∑
1
dH

|H̃0/H |
|H̃ 0

0 /H0|
)
[FH0 ]⊥,

where the sum
∑

1 is over all H with H0 = H ∩ �0 and dim �/H = dim �0/H0. In
particular, P⊥[FH ]⊥ = 0 if dim �0/H0 < dim �/H .

Proof. From the proof of Theorem 6.1, it is clear that one may take the generators for
the parametrized problem as FH (λ1, . . . , λk, x). If k = k0, then A1x, . . . , Akx are
linearly independent for x with �x = H and �0x = H0. Proposition 7.1 will give part
of the answer.

On the other hand, if k0 < k for some H , then, since H < H , where H is the
minimal isotropy subgroup such that H0 = H ∩ �0, one has dim �/H ≥ dim �/H .
But, since VH = VH0 , the only possibility is that n0 < n and the action of T n0 on
VH reduces the number of linearly independent Ajx from k to k0. Assume then that
A1x, . . . , Ak0x correspond to �0 and are linearly independent if �0x = H0, while
A1x, . . . , Akx correspond to � and are linearly independent if �x = H (and a fortiori
if �x = H ).

Consider the map FH (x) + Ãk0+1(x), where Ãk0+1(x) is the vector constructed
from the Gram–Schmidt process and orthogonal to A1x, . . . , Ak0x (see § 7 of Chap-
ter 1), hence it is a �0-orthogonal map in VH0 . Now, the zeros of this map are such that
FH (x) = (FH

H (xH ), Z) = 0 and Ak0+1x is a linear combination of A1x, . . . , Ak0x

(since FH (x) is �-orthogonal to all Ajx). But then, Z = 0, xH which has isotropy H

is such that A1xH , . . . , AkxH are linearly independent. This means that this map has
no zeros. But P⊥[FH ]⊥ = [FH + Ãk0+1(x)]⊥ = 0 (since as �0-orthogonal map, FH

and FH + Ãk0+1(x) are �0-homotopic). � 

3.7.3 Products

We have considered, in § 6 of Chapter 2, a product of maps (f1(x1), f2(x2)) defined
on a product � = �1 × �2 from V1 × V2 into W1 × W2, where f1 and f2 are �-
equivariant, and �i are �-invariant, open and bounded. The associated maps, which
define the �-degree, are Fi(ti , xi) = (2ti + 2ϕi(xi)− 1, fi(xi)).

As shown in Lemma 6.1 of Chapter 2, [F1, F2] = Q0 deg�((f1, f2);�1 × �2),
where Q0 is the suspension by 2t2 − 1.

Note that if [Fi] belongs to ��

SVi
(SWi ), then [F1, F2] is in ��

SV1×R×V2
(SW1×R×W2)

and one has a morphism of groups, i.e.,

[F1 +G1, F2] = [F1, F2] + [G1, F2]
[F1, F2 +G2] = [F1, F2] + [F1,G2],

where, for this last operation, with the sum defined on t2, one has to translate this
sum on t1. This is done as in any text on homotopy and is left to the reader. Hence,
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if [F1] and [F2] are expressed as sums, as we have already seen in several examples,
one may expand [F1, F2] in terms of elementary products of the generators. Let
V = V1 × R× V2 and W = W1 × R×W2. (t2 will be absorbed in V2).

Lemma 7.3. (a) Any isotropy subgroup H for V is of the form H1 ∩ H2, with Hi in
Iso(Vi). There are minimal isotropy subgroups Hi , with H = H 1 ∩H 2, V

Hi = VH
i

and
dim �/Hi ≤ dim �/H ≤ dim �/H 1 + dim �/H 2.

(b) If [Fi] is in �(Hi), then [F1, F2] is in �(H). If for any Hi there are comple-
menting maps F i⊥, then, if [Fi, F

i⊥] is in �(Hi), we have that [F1, F
1⊥, F2, F

2⊥] is in
�̃(H).

(c) If Vi = Rki × Ui and hypothesis (H) holds for Ui and Wi and furthermore
WHi = WH

i , then V = Rk1+k2 ×R×U and hypothesis (H) holds for U and W . This
is the case if Vi = Rki ×Wi .

Proof. If H = �(x1,x2), then H = �x1 ∩�x2 = H1∩H2, by recalling that �x =⋂
Hj

over the isotropy subgroups of the non-zero variables in x. ThenVH = VH
1 ×R×VH

2 .
Now, if Hi is the isotropy of VH

i (see Definition 2.1 of Chapter 1), then H < Hi < Hi

and V
Hi

i = VH
i . Since H = H1 ∩H2, one has dim �/Hi ≤ dim �/Hi ≤ dim �/H .

In the decomposition of �/H over the isotropy subgroups of the coordinates of

V , one obtains the groups H̃ ′
i−1/H̃

′
i for the first coordinates, corresponding to V

H 1
1 ,

with order k1
i , and then H1 ∩ H̃ 2

i−1/H1 ∩ H̃ 2
i , for the coordinates of V

H 2
2 , with order

k̃2
i . We shall denote by k2

i the order of H̃ 2
i−1/H̃

2
i , corresponding to the coordinates of

V
H 2
2 . If k2

i is finite, then any γ in H̃ 2
i−1 can be written as γ α

i γ̃ , where 0 ≤ α < k2
i ,

γ
k2
i

i and γ̃ are in H̃ 2
i . In particular, for γ in H1∩ H̃ 2

i−1, one has that γ k2
i is in H1∩ H̃ 2

i ,

then k̃2
i divides k2

i .
Thus, the number of ki’s infinite for VH is the sum of the number for those of

V
H 1
1 and a quantity less or equal to the number of those for V

H 2
2 . Note that when

H1 ∩ H̃ 2
i−1 = H , then k̃2

j = 1 for j ≥ i.

For (b), if K = K1 ∩ K2 > H1 ∩ H2, then VK = V
H 1
1 × R × V

K2
2 is strictly

contained in VH = V
H 1
1 × R × V

H 2
2 . Then, either K1 > H 1, or K2 > H 2 and the

corresponding F
Ki

i �= 0, i.e., [F1, F2] is in �(H).
Also, if (F1, F

1⊥, F2, F
2⊥) has a zero at (x1, x2) inVK forK > H , then, sinceF i⊥ is

zero only at the origin, (x1, x2) must be in V
H1
1 ×V

H2
2 , with �(x1,x2) ≤ H1∩H2 = H ,

leading to a contradiction. Thus, the above map is in �̃(H).
Finally, if (H) holds forVi = Rki×Ui andWi , letK = K1∩K2 andH = H 1∩H 2.

It is then clear that dim UH ∩ UK = dim WH ∩WK , since UH = U
H 1
1 × U

H 2
2 and

likewise for K and one has W
Hi

i = WH
i . Note that in general W

Hi

i ⊂ WH
i . � 
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Proposition 7.5. (a) If dim V
Hi

i = dim W
Hi

i + dim �/Hi, i = 1, 2 and dim �/H =
dim �/H 1 + dim �/H 2, then, for [Fi] in �(Hi), one has

degE(F1, F2) = degE(F1) degE(F2)
∏

(k2
i /k̃

2
i )

if W
Hi

i = WH
i and 0 otherwise.

(b) If Vi = Rki × Ui and let Ui and Wi satisfy hypothesis (H) and WHi = WH
i .

Assume dim �/Hi = ki and dim �/H = k1 + k2, then, for [Fi, F
i⊥] in �̃(Hi), one

has [F1, F
1⊥, F2, F

2⊥] = dH [FH ], where FH is the generator for �̃(H1 ∩H2) and

dH = βH 1H1βH 2H2

|H̃ 0
1 /H1| · |H̃ 0

2 /H2|
|H̃ 0

1 ∩ H̃ 0
2 /H1 ∩H2|

.

Here H̃ 0
i is the maximal isotropy subgroup containing Hi , with dim �/H̃ 0

i = ki and
βHiHi

= deg((F i⊥)Hi ).

(c) Furthermore, if [Fi]� =∑
di
j [FHi

j
]� + [F̃i]� with dim �/Hi

j = ki and F̃i in

�̃ki−1, then

[F1, F2]� =
∑

d1
j d

2
k dHj∩Hk

[FHj∩Hk
]� + [F̃ ]�,

where the sum is over all (j, k)’s such that dim �/Hj ∩ Hk = k1 + k2, dHj∩Hk
is as

above and [F̃ ]� belongs to �̃k1+k2−1, as defined in Theorem 3.2.

Proof. It is clear that the fundamental cell forH 1∩H 2 is the product of the fundamental
cell for H 1 by the fundamental cell for H 1 ∩ H 2 on V2. The dimension conditions

imply that k̃j2 is infinity exactly when k
j
2 = ∞. From Theorem 1.2, one has

degE(F1, F2) = deg((F1, F2);Bk1 × Bk2)
/(∏

k1
j

)(∏
k̃2
j

)
if WH = WH 1 × R × WH 2 and 0 otherwise. From the degree of a product, one
obtains the result.

For (b), from Lemma 7.4 (b) and (c), one sees that it is enough to compute dH .
Now, as in Proposition 7.1, the map [F1, F

1⊥, F2, F
2⊥] is non-zero if zj = 0 for any

j with k1
j or k2

j (hence k̃2
j ) infinite. That is, one may apply Theorem 3.4 (on global

Poincaré sections). Thus

βH1βH2 deg
(
F

H1
1 |Bk1

, F
H2
2 |Bk2

) = βH1βH2 deg(FH1
1 ;Bk1) deg(FH2

2 ;Bk2)

= βH1βH2 |H̃ 0
1 /H1||H̃ 0

2 /H2|
= βHdH |H̃ 0

1 ∩ H̃ 0
2 /H1 ∩H2|,

since clearly H̃ 0
1 ∩ H̃ 0

2 is the maximal isotropy subgroup for H1 ∩ H2 (recalling the

dimension hypothesis of (b)). Here, βHi
= deg(F i⊥) = deg(F i⊥;VHi

i )βHi
. Since one
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may complement FH by (F 1⊥, F 2⊥)
∣∣
(V H )⊥ with degree equal to βH 1

βH 2
, one obtains

the result.
Note that, we have H̃ 0

1 ∩H̃ 0
2 /H1∩H2 = (H̃ 0

1 ∩H̃ 0
2 /H1∩H̃ 0

2 ) (H1∩H̃ 0
2 /H1∩H2).

The first quotient has order
∏

k1
j since the coordinates coming from H̃ 0

2 have k2
j = ∞,

and the second has order
∏

k̃2
j . Hence (a) and (b) give the same result for Hi = Hi .

For (c) it is enough to note that if [F̃1]� belongs to �̃k1−1, i.e., to subgroups with
dim �/K < k1, then, from Lemma 7.4 (a), [F̃1, F2] is in �̃k1+k2−1. Then one applies
the bilinearity of the product. � 

Example 7.3. IfV1 = R×W1 andV2 = W2, then the only relevant isotropy subgroups
for the product are those H1 with dim �/H1 ≤ 1 and those H2 with dim �/H2 = 0.
Assume dim �/H1 = 1 with �(H1) generated by η1 and �(H2) generated by η2.
Then, from Lemma 7.4, one has dim �/H = 1 and �(H) generated by η. From
Proposition 7.5 (b) one has

[η1, η2]� = |H̃ 0
1 /H1| · |�/H2|
|H̃ 0

1 /H1 ∩H2|
[η]�.

Suppose now that V1 = R×W1, V2 = W2 and that dim �/H1 = dim �/H2 = 0.
Then, from Lemma 7.4, one has dim �/H = 0. We shall consider the presentations
of �/H1 and �/H given by the fundamental cell decomposition. That is, �/H1 =
(�/H̃ 1

1 )(H̃
1
1 /H̃

1
2 ) . . . (H̃

1
s /H1), with k1

j = |H̃ 1
j−1/H̃

1
j |, as in Lemma 7.4. Similarly,

�/H2 will have the decomposition in
∏
(H̃ 2

j−1/H̃
2
j ), with order k2

j and �/H with

subgroups of order k1
j for the coordinates of V

H1
1 and of order k̃2

j = |H1 ∩ H̃ 2
j−1/

H1 ∩ H̃ 2
j | for the coordinates of V

H2
2 , with k̃2

j dividing k2
j and the coordinates of

V
Hi

i ∩ (V
Hi

i )⊥ staying as suspensions.
As in §5, we shall use auxiliary spaces with a special action of �: namely the

spaces X1, X2 and X, with

X1 = (Z1, Z
′
1, . . . , Zs1 , Z

′
s1
)

X2 = (Y1, Y
′
1, . . . , Ys2 , Y

′
s2
)

X = X1 ×X2

where si is the number of kij which are larger than 1, the action on Zj and Z′
j is by

γj in H̃ 1
j−1/H̃

1
j and as a cyclic group of order k1

j , while γj acts trivially on the other
coordinates. If kj = 2 and corresponds to a real variable of V1, then Zj is complex.
The action of � on X2 is similar but with k2

j , while the action on X coincides for X1

but, on X2, it is as cyclic groups of order k̃2
j . If k̃2

i = 1, then the action is trivial. Then,
on X1 × V1, one has the following generators for �(H1):

QW1η1
j =

(
1 −

∏
|Zi |, w1, (Z

k1
i

i + 1)Zi, Z
′
i , λjZj , Z

′
j

)
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QW1 η̃1 =
(
ε2 −

∏
i<s1

|Zi ||Zk1
s1

s1 + 1|, w1, (Z
k1
i

i + 1)Zi, Z
′
i , λ(Z

k1
s1

s1 + 1)Zs1

)
,

where w1 is in W1 and λ = µ+ i(2t1 − 1).
The generator of �(H2) on X2 × V2, will be

QW2η2 =
(

2t2 + 1 − 2
∏

|Yj |, w2, (Y
k2
j

j + 1)Yj , Y
′
j

)
,

with w2 in W2 and j going from 1 to s2.
Finally, the generators of �(H) on X × V will be

QWηj =
(

1 −
∏

|Xi |, w, (X
ki
i + 1)Xi,X

′
i , λXj ,X

′
j

)
,

with w in W and kj being k1
j for j = 1, . . . s1 and k̃2

j afterward. The other generator

QWη̃ is constructed similarly.
For other presentations of �(Hi) we refer to Proposition 6.4 in [IV2]: the proof is

much longer than the one for the present special case. Note that, from Theorem 7.1,
all these �-suspensions are isomorphisms.

Proposition 7.6. Under the above hypothesis one has

[QW1η1
j , Q

W2η2]� = |�/H1| · |�/H2|
|�/H1 ∩H2| [QWηj ]� + d̃j [QWη̃]�

[QW1 η̃1, QW2η2]� = |�/H1| · |�/H2|
|�/H2 ∩H2| [QWη̃]�

where k1
j d̃j is even.

Proof. Note first that (QW1η1
j , Q

W2η2) is non-zero if Xi = 0, and that the action of �
on X × V is such that the hypothesis of Theorem 5.3 may be applied, i.e.,

[F ]� ≡ [QW1η1
j , Q

W2η2]� =
∑

di[QWηi]� + d̃j [η̃],

where
di = deg(F ;BH ∩ ArgXi = 0)

/∏
i �=j

kj .

Here, for i �= j, (Zk1
i + 1)Zi or (Y

k2
i

i + 1)Yi is 0 for ArgXi = 0, only if Xi = 0, in
which case the first equation for η1

j or η2 is non-zero. Hence di = 0 for i �= j . On
the other hand, it is easy to compute dj as

dj =
(∏
i �=j

k1
i

)(∏
k2
i

)/∏
i �=j

ki,
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that is dj = (|�/H1|/k1
j )|�/H2|/(|�/H |/kj ).

Since kj = k1
j one has the first result.

For the same reasons as above, one has that (QW1 η̃1, Q
W2η2) is non-zero on the

boundary of the fundamental cell for X×V (i.e., if ArgXi = 0 or 2π/ki), this implies
that the class of this map is a multiple of QWη̃. Counting the zeros of the map in the
fundamental cell, one gets that

[QW1 η̃1, QW2η2]� =
∏

(k2
j /k̃

2
j )[QWη̃]�,

giving the second formula, since one obtains the suspension of the Hopf map.
Finally, since

k1
j

(
QW1η1

j +QW1 η̃1) = 0 and k1
j

(
QWηj +QWη̃

) = 0,

one obtains that k1
j d̃j is even. � 

Example 7.4. When studying Hopf bifurcation, one will need to compute the class
of [η1,−y]� , where � acts on y as Z2 and η1 = (1 − |z|2, λz) with � acting on z as
S1 or Zn. Consider the map

F2 = (2t2 − 1,−y, Y ),

where y and Y have isotropy H2, with �/H2 ∼= Z2. Now, one may look at the map
η0 = (2t2−1, y, Y ), which generates �(�) for V2 = W2. But η0 may be deformed to
(2t2−1, y3, Y ) and then to (2t2−1, y(y2−1), Y ), whose �-degree is decomposed on
the set |y| < 1/2, giving F2 and on the set |y| > 1/2, where it is linearly deformable
to η2 = (2t2 + 1 − 2y2, y(y2 − 1), Y ). Hence,

[F2]� = [η0]� − [η2]�.
Since F2 is the suspension of −y, one may compute as well [η1, F2]� . For

[η1, η0], η0 is just a suspension, hence this part is QW2η1 ≡ η1, which generates
�(H1) for V .

For [η1, η2], assume first that dim �/H1 = 1, i.e., � acts as S1 on z. Then, in
Example 7.3, one has H̃ 0

1 = H1, |�/H2| = 2 and |H1/H | = 2, since H2 is maximal
and H1 cannot be a subgroup of H2: in fact the elements of H1 are of the form (/,K)

such that 〈N,/〉+ 2π〈K,L/M〉 is an integer. Hence, for any K in Zm1 × · · ·×Zms ,
there is a /(K) such that (/(K),K) is in H1. On the other hand, H2 = T n × A2,
with Zm1 × · · · × Zms /A2 ∼= Z2. If H1 is a subgroup of H2, then one would have
Zm1 × · · · × Zms = A2, which is not true.

In this case, [η1, η2]� = [FH1∩H2 ] and one has, if dim �/H1 = 1,

[1−|z|2, λz,−y]� = [1−|z|2, λz, y]�−[1−|z|·|y|, λz, (y2−1)y]� = [η1]�−[η12]�.
On the other hand, if �/H1 ∼= Zn, then H1 may be a subgroup of H2 if n is even,

since then �/H2 < �/H1, hence one has a γ such that γy = −y and γ z = e2πi/n.
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If H1 is not a subgroup of H2, then |�/H1 ∩H2| = 2n, since k2 = 2 and k̃2 = 2.
Then, from Proposition 7.6 one has

[1 − |z|2, λz,−y]� = [η1]� − [η12]� − d[η̃],
where η̃ = (ε− |y||zn+ 1|, λ(zn+ 1)z, (y2 − 1)y). We shall see, in the next chapter,
Lemma 4.2, that in fact d = 0. Recall that n(η12 + η̃) = 0 and 2η̃ = 0.

If H1 is a subgroup of H2, then k2 = 2, k̃2 = 1 and

[η1, η2]� = 2[η1] + d1[η̃1],
where η̃1 = (ε − |zn + 1|, λ(zn + 1)z, y), in which case one has

[1 − |z|2, λz,−y]� = −[η1]� − d1[η̃1]�.
We shall see, in the next chapter (Theorem 4.1) that d1 = 1 if n = 2m with m odd.

Since n is even one has nη1 = 0 and 2η̃1 = 0 in this case. In particular, if n = 2, then
[η1, η2] = [η̃1].

As we have done with the previous operations, we shall end this subsection by
looking at products of orthogonal maps. Clearly, Lemma 7.3 is still valid, with the
orthogonal degree on the right hand side.

Proposition 7.7. LetVi = Wi and for any isotropy subgroupHj , with dim �/Hj = k,
let H̃ 0

j be the isotropy of the k coordinates with kj = ∞. Let Fi , in ��

⊥SVi
(SVi ), be

written, for i = 1, 2, as

[Fi]⊥ =
∑

di
H [F i

H ]⊥,
then

[F1, F2]⊥ =
∑

d1
H1

d2
H2

|H̃ 0
1 /H1||H̃ 0

2 /H2|
|H̃ 0

1 ∩ H̃ 0
2 /H1 ∩H2|

[FH1∩H2 ]⊥,

where the sum is over all H1 in Iso(V1),H2 in Iso(V2), with dim �/H1+dim �/H2 =
dim �/(H1 ∩H2).

Proof. It is clearly enough to compute the class [F 1
H1

, F 2
H2
]⊥ for the generators.

Writing VH as (V H1
1 × V

H2
2 )× (V

H1
1 )⊥ × (V

H2
2 )⊥, one has for the action of

�/H = (�/H1)× (H1/H1 ∩H2)

k1 coordinates of VH1
1 , z1, . . . , zk1 , giving A1x1, . . . , Ak1x1 linearly independent, and

k − k1 coordinates of VH2
2 , z̃1, . . . , z̃k−k1 for the action of H1 on that space. Here,

ki = dim �/Hi and k = dim �/H . Note that, given the order chosen in VH , the
coordinates of (V H1

1 )⊥ and of (V H2
2 )⊥ do not contribute, in a non-trivial way, to the

fundamental cell.
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Now, as in Lemma 7.1 of Chapter 1, one may write the action of T n on V
H1
1 as

C(ψ1, . . . , ψk1)
T , that is under a reparametrization of T n, one gets Ajx1 = 0 for

j > k1 and x1 in V
H1
1 . Assume that ψk1+1, . . . , ψk−k1 give Ajx2 linearly independent

for the action of H1 on V
H2
2 , then, one may suppose, changing the parametrization,

that Ajx2 = 0 for j > k and that Ajx2 are linearly independent for k1 < j ≤ k − k1.
There are also k1 + k2 − k linearly independent vectors Ajx2 for j ≤ k1.

Now, if k = k1 + k2, then
[
F 1
H1
+∑k1

1 λjAjx1, F
2
H2
+∑k

k1+1 λjAjx2
]

has been

computed in Proposition 7.5 and gives α
[
FH1∩H2 +

∑k
1 λjAjx

]
, where α is the integer

of the proposition: recall, from Theorem 6.1, that FH +∑
λjAjx may be taken as

generator of �(H), whenever FH generates �⊥(H).
On the other hand, if k < k1+ k2, one has to add to F 2

H2
+∑k

k1+1 λjAjx2 the sum∑
λjAjx2 for j in a subset J of k1 + k2 − k elements of {1, . . . , k1} in order to get

the generator of �(H2) in ��

SR
k2×V2

(SV2). But for this second sum one may deform

λj to 0 and then to εj �= 0 fixed, without affecting the class of[
F 1
H1
+
∑k1

1
λjAjx1, F

2
H2
+
∑

J
λjAjx2 +

∑k

k1+1
λjAjx2

]
;

a zero of the pair implies F i
Hi
(xi) = 0, either x1 = 0 or λj = 0 for j = 1, . . . , k1,

but the zeros of F 1
H1

(x1) have isotropy H1, with dim �/H1 = k1, hence x1 �= 0. But
then,

∑
J λjAjx2 is 0.

The last map is never 0, since F 2
H2

(x2) = 0 implies λj = 0 for j in J and for
j = k1 + 1, . . . , k. In particular, εjAjx2 implies that the map is never 0. Thus,
[F 1

H1
, F 2

H2
]⊥ = 0, using Proposition 6.1, since this pair is α [FH1∩H2 ]⊥.

Note that one may use Proposition 6.1 to prove this result: in fact (F 1
H1

, F 2
H2

) is
non-zero on ∂Bk and thus,

[F 1
H1

, F 2
H2
]⊥ =

∑
Hj<H̃ 0

1 ∩H̃ 0
2

dj [Fj ]⊥

with, for any Hi > H , the torus part of H1 ∩H2, one has, with H0 = H̃ 0
1 ∩ H̃ 0

2 :

deg
((

F 1
H1
+
∑k

1
λlAlx1, F

2
H2
+
∑k

1
λlAlx2,

)Hi ;Bi
k

)
=
∑

Hi<Hj<H0
dj |H0/Hj |.

Now, a zero of the pair gives (x1, x2) with �x1 = H1, �x2 = H2 and λl = 0
for l = 1, . . . , k. Thus, the degree on the left hand side is 0 if Hi is not a subgroup
of H1 ∩ H2. Furthermore, F 1

H1
= (F

H1
H1

, x⊥H1), hence for Hi a strict subgroup of
H1 ∩ H2, the degree is the degree for H1 ∩ H2. From this, we deduce that dj = 0,
except for Hj = H1 ∩H2, in which case

[F 1
H1

, F 2
H2
]⊥ = d[FH1∩H2 ]⊥

with |H0/H1 ∩H2|d = deg(F 1
H1
+∑k

1 λlAlx1, F
2
H2
+∑k

1 λlAlx2)
H1∩H2;BH1∩H2

k ).
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If k < k1 + k2, we have already seen that this degree is 0. While, if k = k1 + k2,

then B
H1∩H2
k = B

H1

k1
×B

H2

k2
, one may deform λlAlx2 to 0 for l ≤ k1, and one obtains

a product:

|H0/H1 ∩H2|d
= deg

((
F 1
H1
+
∑k1

1
λlAlx1

)H 1;BH 1
k1

)
deg

((
F 2
H2
+
∑k

k1+1
λlAlx2

)H 2;BH 2
k2

)
.

From the fact that on VHi one has a suspension of VHi

i , one has

deg
(
F 1
H1
+
∑k1

1
λlAlx1;BH1

k1

)
= |H̃ 0

1 /H1|
deg

(
F 2
H2
+
∑k

k1+1
λlAlx2, B

H2
k2

)
= |H̃ 0

2 /H2|
by repeating the application of Proposition 6.1 or from the construction of Theorem 6.1.
This gives the result. � 

3.7.4 Composition

The last operation which we shall consider is that of composition of maps. Consider
three representations V,W and U of the group � and assume f : V → W and
g : W → U are equivariant maps. Then g +f is also equivariant. Let � be a bounded
open invariant subset of V .

We have seen, under the hypothesis of Lemma 6.2 of Chapter 2, that

deg�(g + f ;�) = [G + F ]�,
where [F ]� = deg�(f ;�) and [G]� = deg�(f ; f (�)).

Furthermore, we have also seen in Lemma 6.3 of Chapter 2, that under certain
hypothesis, one has that [G + F ]� = [G + F̂ ]� , where F̂ (s, x) = F(s, x)/‖F(s, x)‖,
a fact which will enable us to use the algebraic properties of the �-homotopy groups
of spheres.

In general, if F(s, x) = (ϕ(s, x), f (s, x)), is defined on [−1, 1] × {x : ‖x‖ ≤ 1},
and non-zero on the boundary of this cylinder, then F̂ = F/‖F‖ will belong to a
cylinder with similar characteristics and one may take the composition with a �-map
G, i.e., one obtains a pairing

��
SV (S

W )×��
SW (SU ) → ��

SV (S
U )

([F ]�, [G]�) → [G + F ]�,
which is well defined on homotopy classes. Furthermore, since one may take
F(s, x) = (1, 0) if s = ±1 (Lemma 8.1 of Chapter 1), with 2t − 1 = s, one has, for
‖x‖ = 1,

(F1 ⊕ F2)(s, x) =
{
F1(2s + 1, x), if −1 ≤ s ≤ 0

F2(2s − 1, x), if 0 ≤ s ≤ 1,
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since, on each s-interval, the first argument of Fi must go form −1 to 1.

Lemma 7.4. (a) [G + (F1 ⊕ F2)]� = [G + F1]� + [G + F2]�
(b) [(G1 ⊕ G2) + Q0f ]� = [G1 + Q0f ]� + [G2 + Q0f ]� , where (Q0f )(s1, x)

is the suspension by s1 of f (x), i.e., (s1, ‖x‖f (x/‖x‖)) with ‖f (x)‖ = 1 whenever
‖x‖ = 1.

Proof. The proof of (a) follows from the definition, while for (b) one has, for ‖x‖ = 1,

(G1 ⊕G2) + (Q0 f ) =
{
G1(2s1 + 1, f (x)), if −1 ≤ s1 ≤ 0

G2(2s1 − 1, f (x)), if 0 ≤ s1 ≤ 1

which corresponds to the second sum. As usual, one may perform the sum on s or on
s1 and here we may always assume that F is a suspension. � 

Thus, if [F ]� = ∑
di[F̃i]� and [G]� = ∑

ej [G̃j ]� , as an application of Theo-
rem 2.3, then

[G + F̂ ]� =
∑

diej [G̃j + F̃i]�.
Note that if FK |SK has an extension to VK , then FK |SK is �-deformable to (1, 0)

and then (G + F)K is also �-deformable to G(1, 0) = (1, 0). Similarly, if GK has a
non-zero extension to WK , then this will be also true for (G+F)K . It is thus important
to study the composition for the generators.

Lemma 7.5. (a) If V = Rk1+k2 ×V ′,W = Rk2 ×W ′ and hypothesis (H) holds for V ′
and W ′ and for W ′ and U , and furthermore dim V ′H = dim UH for all H in Iso(V ),
then hypothesis (H) holds for V ′ and U .

(b) If, under the same hypothesis, {xlii } is a complementing map from (V H )⊥ onto

(WH )⊥ and {zqjj } is a complementing map from (WH )⊥ onto (UH )⊥, then {xliqii } will

be a complementing map from (V H )⊥ onto (UH )⊥.

Proof. Let H and K be in Iso(V ). Then dim(V ′H ∩V ′K) = dim(W ′H ∩W ′K). Let H̃
be the isotropy of W ′H , then H < H̃ and W ′H̃ = W ′H . One has dim(W ′H̃ ∩W ′K̃ ) =
dim(UH̃ ∩ UK̃). Now, UH̃ ⊂ UH . From hypothesis (H), one has dim V ′H =
dim W ′H = dim UH̃ , hence the extra hypothesis implies that UH = UH̃ , proving (a).

Now, the spaces (V H )⊥, (WH )⊥ = (WH̃ )⊥, (UH )⊥ = (UH̃ )⊥ have the same
dimension and one has equivariant monomials between them, the composition will be
a complementing map. � 

Note that the extra dimension condition will be met if Iso(V ) ⊂ Iso(W), since
then UH̃ = UH , because H is in Iso(W). On the other hand, if H̃ is in Iso(W), then,
if H is the isotropy of V H̃ , one has H̃ < H , VH = V H̃ and WH ⊂ WH̃ . In order to
compare the �-degrees of F̃i and G̃j , we shall assume that Iso(V ) = Iso(W). This is
the case if V = Rk1 ×W and W = Rk2 × U .
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Lemma 7.6. Under the hypothesis of the preceding lemma and assuming that
Iso(V ) = Iso(W), let FH1 : VH1 → WH1 be in �(H1) and GH2 : WH2 → UH2 be
in �(H2). Define F̃ = (FH1 , x

li
i ) and G̃ = (GH2 , z

qj
j ) and H = H1 ∩H2. Then:

(a) dim �/Hi ≤ dim �/H ≤ dim �/H1 + dim �/H2.

(b) (G̃ + F̃ )H is in �(H).

Proof. Since H < Hi , the first inequality is clear. Now, since H2 is also in Iso(V ),
then H is the isotropy subgroup for the space V1 generated by VH1 and VH2 . Then,
VH = VH1 × (V H1)⊥ ∩ VH2 × (V ⊥

1 ∩ VH ), hence, as in the proof of Lemma 7.4,
one has kj = k1

j for xj in VH1 and kj = k̃2
j , which divides k2

j , in the second space,
while kj = 1 in the third. This proves the second inequality.

Note that G̃ + F̃ = {xliqii } on V ⊥
1 and that if H1 < H2, then for any K > H1, F

K

is �-deformable to (1, 0) and (G +F)H1 is in �(H1) = �(H). A similar result holds
if H2 < H1. In general,

V = Rk1 × Rk2 × (V ′H1 ∩ V ′H2)× (V ′H1 ∩ V ′H2⊥)× (V ′H1⊥ × V ′H2)× V ⊥
1

and any X in V is of the form X = (λ1, λ2, X0, X1, X2, X⊥).
Similarly,

W = Rk2 × (W ′H1 ∩W ′H2)× (W ′H1 ∩W ′H2⊥)× (W ′H1⊥ ∩W ′H2)×W⊥
1

and any Y in W is of the form Y = (λ2, Y0, Y1, Y2, Y⊥).
From the hypothesis on V ′ and W ′, these subspaces have the same dimension.

A similar decomposition holds for U , and any element Z of U is of the form Z =
(Z0, Z1, Z2, Z⊥). One has

F̃ (X) = ((Fλ, F0, F1)(λ1, λ2, X0, X1),X
l
2, X

l⊥),

with F1|X1=0 = 0 and (Fλ, F0)|X1=0 �= 0, since the isotropy of VH1 ∩VH2 is strictly
larger than H1 and FH1 is in �(H1). Here (Xl

2, X
l⊥) stands for {xlii } and one should

normalize F̃ as F̃ /‖F̃‖.
Similarly, one has

G̃ + F̃ (X) = (G0(Fλ, F0, X
l
2), F

q
1 (λ1, λ2, X0, X1),G2(Fλ, F0, X

l
2),X

lq
⊥ ),

where G2(λ2, Y0, 0) = 0 and G0(λ2, Y0, 0) �= 0 on WH1 ∩ WH2 , since GH2 is
in �(H2). Thus, (G̃ + F̃ )H1 , with X2 = X⊥ = 0, has G0 deformable to
(1, 0). Similarly, (G̃ + F̃ )H2 , with X1 = X⊥ = 0, has F1 = 0 and (Fλ, F0) in-
dependent of X2 and �-deformable to (1, 0). Hence (G̃ + F̃ )H2 is �-deformable to
(G0(1, 0, Xl

2), 0,G2(1, 0, Xl
2), 0) and then to (1, 0). Thus, if H is a strict subgroup

of Hi, i = 1, 2, then G̃ + F̃ is trivial on VH1 ∪ VH2 .
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Let now K > H and decompose VK as above. One has a non-zero �-extension
of G̃ + F̃ on VK ∩ (V H1 ∪ VH2), i.e., for X2 = 0 or X1 = 0. If VK ∩ VH1 is strictly
contained in VH1 , then X1 has some components xi = 0 and the remaining variables,
in X1, have isotropy H̃1 containing strictly H1 (if not VK ∩ VH1 = V H̃1 would be
VH1 ). Hence, on VK ∩ VH1 , one may extend F H̃1 to a map of norm 1. Then, for X,
in the unit ball of VK , one has either ‖X2‖ = 1 and (G0,G2) �= 0, or ‖X2‖ < 1,
in which case, from ‖F H̃1‖ = 1, either ‖F1‖ = 1 and G̃ + F̃ �= 0 or ‖F1‖ < 1
and ‖(Fλ, F0)‖ = 1 with (G0, G2) �= 0. Hence, in this case one has a non-zero
�-extension to VK .

On the other hand, if VK ∩ VH1 = VH1 , then VK ∩ VH2 is strictly contained in
VH2 and (G0,G2) has a non-trivial �-extension to WK ∩WH2 . But (Fλ, F0, F1) has
a �-extension to VH1 = VK ∩ VH1 with norm one. If F1 �= 0, then (G̃ + F̃ )K �= 0,
while if F1 = 0, then (Fλ, F0) is in VK ∩ VH2 and (G0,G2) has the non-trivial �-
extension. Thus, (G̃+ F̃ )K has a non-trivial �-extension for all K > H , i.e., (G̃+ F̃ )H

is in �(H). � 

Proposition 7.8. Let V = Rk1+k2 × V ′,W = Rk2 × W ′, Iso(V ) = Iso(W) and
assume hypothesis (H) holds for V ′ and W ′ and for W ′ and U . If dim �/Hi = ki
and k = dim �/H = k1 + k2, let F̃ and G̃ be the generators of �̃(Hi). Then,
[G̃ + F̃ ]� = d[F̃H ]� , where F̃H generates �̃(H), F̂ = F̃ /‖F̃‖ and

d = βHH1 β̃HH2

|H̃ 0
1 /H1| · |H̃ 0

2 /H2|
|H̃ 0

1 ∩H 0
2 /H1 ∩H2|

,

where βHH1 = ∏
li for xi in VH ∩ (V H1)⊥ ∩ (V H̃ 0

2 )⊥, β̃HH2 = ∏
qj for yj in

WH ∩ (WH2)⊥. Here H̃ 0
i is the isotropy of the ki coordinates with kj = ∞.

More generally, if FH1 |∂Bk1
�= 0 and GH2 |∂Bk2

�= 0, with FH1 in �(H1) and GH2

in �(H2), then G̃ + F̃ is in �(H) and has a non-zero extension G̃ + F̂ to ∂Bk1+k2 ,
where F̂ (x) = αF̃ (x), with

α−1(x) = min
∂Bk1

(‖F̃‖)max(‖F̃ (x)‖/ min
∂Bk1

‖F̃‖, 1 − ‖x‖)

and one has, with the number d above,

degE((G̃ + F̃ )H ) = d degE(F
H1) degE(G

H2).

Proof. Let z1, . . . , zk1 be the variables in VH1 with k1
j = ∞ and zk1+1, . . . , zk , be the

variables in VH2 with k2
j = ∞. From the fact that k = k1 + k2 one has that none of

these variables are in VH1 ∩ VH2 .
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From Theorem 3.3 and rescaling the variables so that one works in a unit ball, one
has, with s = 2t − 1, that F̃ is, up to normalization

F̃ =
(
s + 2 − 2

∏
|2xj |, X0

0, λ2, (λ
1
1 + i(|2z1|2 − 1))zl11 , . . . ,

(λ
k1
1 + i(|2zk1 |2 − 1))z

lk1
k1

, (Pj (2X1, 2X0)+ 1)x
lj
j , (Qj (2yj )− 1)yj ,X

l
2, X

l⊥
)
,

where X0
0 is in V �, xj is in VH1 , with xj in the first component standing for those

coordinates with k1
j > 1 (including zj and yj ), and Pj ,Qj have the usual meaning.

By starting the fundamental cell with the components of X1, Pj will be a monomial
in the coordinates of X1, for xj in X1. The zeros of F̃ in Bk1+k2 are for s = 0, λ = 0,
2zj = 1, |2xi | = 1 and there are |H̃ 0

1 /H1| of them.
One has a similar expression for G̃, before normalization

G̃ =
(
s + 2 − 2

∏
|2x̃j |2, X0

0, Y
q
1 , (λ

1
2 + i(|2zk1+1|2 − 1))z

qk1+1

k1+1 , . . . ,

(λ
k2
2 + i(|2zk|2 − 1))zqkk , (P̃j (2Y2, 2Y0)+ 1)x̃

qj
j , (Q̃j (2ỹj )− 1)ỹj , Y

q
⊥
)
,

where x̃j are in WH2 . By starting the fundamental cell with the coordinates of Y2, P̃j
will depend on these coordinates for x̃j in Y2.

We leave to the reader the task of giving expressions for G̃(αF̃ ) and to compute
its degree on Bk1+k2 . In fact, in general, if FH1(X0, X1) = (F0, F1), with F0 in
WH1∩WH2 andF1 inWH1∩(WH2)⊥, then F̃ (X0, X1, X2, X⊥) = (F0, F1, X

l
2, X

l⊥),
while, if GH2(Y0, Y2) = (G0,G2), with G0 in UH1 ∩UH2 and G2 in UH2 ∩ (UH1)⊥,
then

G̃(Y0, Y1, Y2, Y⊥) = (G0, Y
q
1 ,G2, Y

q
⊥).

Then, G̃(αF̃ ) = (G0(αF0, αX
l
2), α

qF
q
1 (X0, X1),G2(αF0, αX

l
2), α

qX
ql
⊥ ). Note that

α−1(x) = ‖F̃ (x)‖ if ‖x‖ = 1 (on ∂B) and on ∂Bk1 (there ‖F̃ (x)‖/min∂Bk1
‖F̃‖ ≥

1 ≥ 1− ‖x‖). In general, if α−1(x) = ‖F̃ (x)‖, then G̃(αF̃ (x)) is non-zero (since G̃

is non-zero on the unit sphere), while if α−1(x) = min∂Bk1
‖F̃‖(1−‖x‖) ≥ ‖F̃ (x)‖,

then ‖αF̃ (x)‖ ≤ 1.

For k1 < j ≤ k, zj in Bk2 appears as z
lj
j in F̃ , thus αF̃ maps Bk1+k2 into Bk2 and

∂Bk1+k2 into ∂Bk2 , where G̃ is non-zero.
From Proposition 6.1 of Chapter 2, one has

deg(G̃(αF̃ )H ;BH
k1+k2

) = deg(G̃;BH
k2
) deg(αF̃ − p;BH

k1+k2
),

where p is in Bk2 . The left hand side is

|H̃ 0
1 ∩ H̃ 0

2 /H | degE(G̃(F̃ )),

while
deg(G̃;BH

k2
) = |H̃ 0

2 /H2| degE(G)
∏

qj ,
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for qj corresponding to Y1 and Y⊥, hence
∏

qj = β̃HH2 . On the other hand, one
may choose all the components of p to be 0 except those corresponding to zj , j =
k1 + 1, . . . , k, which may be taken to be 1/2. One may deform α to 1 and use the

product theorem, where x
lj
j will contribute lj except for z

lj
j − 1/2, for zj real and

positive, which contributes 1, i.e., a total degree equal to

deg(FH0;Bk1)βHH1 = |H̃ 0
1 /H1| degE(F

H1)βHH1 . � 

Corollary 7.4. Under the hypothesis of Proposition 7.8, if

[F ]� =
∑

di[F̃i]� + [F̃ ]�
[G]� =

∑
ej [G̃j ]� + [G̃]�,

with dim �/Hi = k1, dim �/Hj = k2, [F̃ ]� in �k1−1, [G̃] in �k2−1, then

[G + F ]� =
∑

fl[K̃l]� + [K̃]� with fl =
∑

diej dij ,

where [K̃]� is in �k−1 and the second sum is over all (i, j) such that Hi ∩Hj = Hl ,
with dim �/Hl = k1 + k2 = k, and dij is given in Proposition 7.8.

Proof. From Lemma 7.4, one has [G +F ]� =∑
diej [F̃i + G̃j ]� +[K̃]� with [K̃]� in

�k−1 and [F̃i + G̃j ]� = dij [K̃ij ]� , for Hl = Hi ∩Hj with dim �/Hl = k and dij =
βHHi

β̃HHj
|H̃ 0

i /Hi ||H̃ 0
j /Hj |/|H̃ 0

i ∩ H̃ 0
j /H |. � 

Example 7.5. Let V = W , hence k1 = 0, and V = Rk × U . Then, βHHj
=

β̃HHj
= 1, and from Lemma 7.6, one has dim �/Hl = dim �/Hj for any Hi , with

dim �/Hi = 0. In this case F̃ = 0, H̃ 0
i = �. For instance, assume that F consists

in changing one real variable y, where � acts as − Id, into −y, leaving the other
coordinates unchanged. Then, from Example 7.4, one has

[F ] = [F�] − [F1],
where F1(s, y,X) = (s + 2 − 8y2, (4y2 − 1)y,X) and [F�] = [s, y,X].

Then, if [G]� =∑
ej [F̃j ]� + [G̃]� , one has

[G + F ]� = [G]� − [G + F1]�.
If dim �/Hj = k, andH1 is the isotropy of y, then, eitherH1∩Hj = Hj , i.e.,Hj < H1,
and d1j = |�/H1| = 2, or H1 ∩Hj is a strict subgroup of Hj , with |H̃ 0

j /H1 ∩Hj | =
|H̃ 0

j /Hj ||Hj/H1∩Hj | = 2|H̃ 0
j /Hj |, since any γ in �, in particular in Hj , is such that

γ 2 is in H1, in which case d1j = 1. Thus,

[G + F ]� = −
∑

Hj<H1

ej [F̃j ]� +
∑

Hj �<H1

ej ([F̃j ]� − [F̃H1∩Hj
]�)+ [K̃]�,
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for Hj with dim �/Hj = k and [K̃] in �k−1.

The last result in this section will concern the case k1 = 1, k2 = 0, V = R ×
W,W = U . The case dim �/H1 = dim �/H = 1, dim �/H2 = 0 was treated in the
preceding proposition. There remains only the case dim �/H = dim �/Hi = 0.

Let {k1
j } corresponding to the fundamental cell decomposition for H1 and {k2

j }
for H2. Then, for H = H1 ∩ H2, one has the fundamental cell with kj = k1

j for

the variables in VH1 and k̃2
j , dividing k2

j , for the variables in VH2 ∩ (V H1)⊥. Let
X1 = (Z1, Z

′
1 . . . , Zs1 , Z

′
s1
),X2 = (Y1, Y

′
1, . . . , Ys2 , Y

′
s2
) and X = X1 ×X2 be as in

Proposition 7.6, with the special action on Zj and Yj .
Then, on (X × V )H1 , one has the generators for �(H1)

QWη1
j =

(
1 −

∏
|2Zi |, w, ((2Zi)

k1
i + 1)Zi, Z

′
i , . . . , λZj , Z

′
j , Yi, Y

′
i

)
with λ = µ+ i s, (s = 2t − 1), and

QWη̃1 =
(
ε2 −

∏
i<s1

|2Zi ||(2Zs1)
k1
s1 + 1|, w,

((2Zi)
k1
i + 1)Zi, Z′

i , . . . , λ((2Zs1)
k1
s1 + 1)Zs1 , Z

′
s1

)
.

On the other hand, on (X × V )H2 , one has the generator for �(H2)

QWη2 =
(
s + 2 − 2

∏
|2Yi |, w, ((2Yi)

k2
i + 1)Yi, Y

′
i , Zi, Z

′
i

)
.

Finally, the generators, on (X × V )H , for �(H), are similar to η1
j and η̃1 but of

the form

QWηj =
(

1 −
∏

|2Xi |, w, ((2Xi)
ki + 1)Xi,X

′
i , . . . , λZj , Z

′
j

)
with ki = k1

i for Xi = Zi and 1 ≤ i ≤ s1 and ki = k̃2
i for Yi .

As in Propositions 7.6 and 7.8, one has

[F ]� = [QWη2(αQ
Wη1

j )]� =
∑

di[QWηi]� + d̃j [η̃]
where α is the normalization of Proposition 7.8,

di = deg(F ;BH ∩ ArgXi = 0)
/∏

i �=l

kl .

Since

QWη2(αQ
Wη1

j ) =
(
α
(

1 −
∏

|2Zi |
)
+ 2 − 2

∏
|2Yi |, αw,

α((2Zi)
αk1

i + 1)Zi, αZ
′
i , αλZj , αZ

′
j , ((2Yi)

k2
i + 1)Yi, Y

′
i

)
,
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it is clear that, if Zi ≥ 0, i �= j , or if Yi ≥ 0, this map has no zeros.
Hence, di = 0, i �= j . While

dj =
(∏
i �=j

k1
i

)(∏
k2
i

)/∏
i �=j

ki .

We have proved the first part of

Proposition 7.9. Under the above hypothesis, one has

[
QWη2(Q

Wη1
j )
]
�
= |�/H1| · |�/H2|

|�/H1 ∩H2|
[
QWηj

]
�
+ d̃j

[
QWη̃

]
�

[
QWη2(Q

W η̃1)
]
�
= |�/H1| · |�/H2|

|�/H1 ∩H2|
[
QWη̃

]
�

where k1
j d̃j is even.

Proof. For the second equality, one has that QWη2(Q
W η̃1) is non-zero on the funda-

mental cell for X×V , hence its class is a multiple of QWη̃. Counting the zeros of the
map in the fundamental cell, one obtains

∏
(k2

j /k̃
2
j ) of them, which gives the equality.

The fact that k1
j d̃j is even is proved as in Proposition 7.6. � 

3.8 Bibliographical remarks

The problem of classification of equivariant homotopy classes of maps on spheres
has been partially studied from the point of view of algebraic topology, essentially
for finite groups and self-maps, but not necessarily linear actions. The obstruction
approach has been used in the books by T. t. Dieck and Bredon. Study of the
first obstruction has been given in the paper by Kosniowski. A complete result (with a
proof corrected by Dancer) for self-maps and linear actions was given by Rubinstein.

This obstruction idea was used in [I0] for the group S1 and a semi-free action.
The results on the extension problem and the first 3 sections of this chapter are taken

from [I.V. 1–3]. The case of non-abelian actions is treated in the book of Kushkuley
and Balanov, with an important contribution to the general Borsuk–Ulam problem.

This last subject, the ordinary degree of equivariant maps, has been extensively
studied: see the survey papers by Steinlein, Zabrejko and interesting results by Niren-
berg, Wang, Rabier and the book by Bartsch. As seen in Section 4, a complete answer
is still lacking, even for abelian actions.

The one parameter case, in particular the problem of secondary obstructions, is
taken from [IV2]. The recent papers by Balanov and Krawcewicz give results for
non-abelian actions.
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Orthogonal maps are classified in [IV3]. The results on operations are taken from
[IV2] and [IV3]. Products of maps are also considered in the book by Krawcewicz
and Wu.

The suspension Theorem 7.1 was given incompletely in [IV1].



Chapter 4

Equivariant Degree and Applications

In this last chapter we shall see how to apply the results for the equivariant homotopy
groups, given in the previous chapter, to the computation of the equivariant degree of
a map, in particular coming from differential equations. We shall first prove that any
class in these homotopy groups is achieved as the�-degree of a map on a reasonable set
�. Then, we shall compute the �-index of an isolated orbit, with several applications
to bifurcation. The next section will concern the orthogonal index of an isolated orbit
and an application to two mechanical systems. The last section regards the �-degree
of a loop of orbits and its applications to Hopf bifurcation, systems with first integrals
and similar problems.

4.1 Range of the equivariant degree

Recall that if V and W are two �-representations and if � is a bounded open and
invariant subset of V , then for f (x), a �-equivariant map from �̄ into W and non-zero
on ∂�, one defines the �-degree of f with respect to � as

deg�(f ;�) = [F ]� = [2t + 2ϕ(x)− 1, f̃ (x)]�,
where f̃ is a �-extension of f to a ball BR containing � and ϕ(x) is an invariant
Uryson function with value 0 in �̄ and value 1 outside a neighborhood of �̄. Then,
[F ]� is an element of ��

SV (S
W ). Hence, the first question is the following: given

[F ]� in the above group, does there exist a �-map f , from �̄ into W , such that
deg�(f ;�) = [F ]�? In this section we shall give a partial, but explicit, answer to
this question, that is, in all the cases studied in Chapter 3, where one had concrete
generators for the above group, or at least its “free part”. We shall also answer this
question for the case of �-orthogonal maps.

Assume then that V = Rk × U and U and W satisfy hypothesis (H), that is, for
an abelian group �:

(a) dim UH = dim WH , for all H in Iso(V )

(b) There is a �-equivariant map {xi} → {xlii } from U into W .

Then we have seen in Theorem 3.2 of Chapter 3 that

��
SV (S

W ) = �k−1 × Z× · · · × Z,
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with one Z ∼= �(H) for each H with dim �/H = k, and �(H) is generated by the
maps FH given in Theorem 3.3 of Chapter 3.

Furthermore, if k = 1, then

�0 =
⊕

dim �/H=0

�(H) = ��̃

SṼ
(SW̃ ),

where �̃ = �/T n, Ṽ = V T n
, W̃ = WTn

, and �(H) is a finite group generated by
ηHj , j = 1, . . . , sH , and η̃H , as given in Theorem 5.2 of Chapter 3 (here sH is the
number of kj ’s which are larger than 1 and one has repetition of the variables).

Thus, any element [F ]� in ��
SV (S

W ) is written as

[F ]� = [F̃ ]� +
∑

dH [F̃H ]�,

where [F̃ ]� is in�k−1 anddH is an integer. The sum is over allH ’s with dim �/H = k.
If k = 1, then one may write [F̃ ]� in the form

[F̃ ]� =
∑
H

(∑
djH [ηHj ]� + d̃H [η̃H ]�

)
,

where the sum is over all H ’s with dim �/H = 0. If U = W , then one may use the
presentation of �(H) given in Theorem 5.5 of Chapter 3.

Theorem 1.1. (a) If V = Rk × U , where U and W satisfy (H), then, given any
sequence {dH } of integers, there is a �-map f from �̄ into W , non-zero on ∂�, such
that

deg�(f ;�) = [F̃ ]� +
∑

dH [F̃H ]�,
provided one takes dH = 0 if �H = φ and |�/H ||dH | at most equal to the number
of components of �H if dim VH = 1, hence |�/H | ≤ 2.

(b) If k = 1, then any [F ]� in ��
SV (S

W ) is the �-degree of a �-map f defined on

�, provided the corresponding invariants dH , djH , d̃H are taken to be 0, if �H = φ

(the repetition of variables, of Theorem 5.2 in Chapter 3, is assumed here), and d� = 0
if dim W� ≤ 2.

Proof. Note first that if there is an H with �H empty then �K = φ for any K > H ,
in particular for K = �. On the other hand, if �H �= φ, then, since �H is open in
VH , there is a X0 = (λ0, X0

0, y
0
i , z

0
j ), with y0

i and z0
j different from 0, in �H . Here,

any point in V = Rk × U is written as (λ,X), with λ in Rk, X in U of the form
X = (X0, yi, zj ), where X0 is in U� , the group � acts as Z2 on yi and as Zm or S1 on
the complex coordinate zj . By changing variables, we shall assume that λ0 = X0

0 = 0.
Our next step will be to show that any of the explicit generators given in the

previous chapter may be taken as the �-degree of a map f : � → W, ∂� → W\{0}.
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(a) If dim �/H = k > 0 and dim W� ≥ 1 (hence dim U� ≥ 1), let X0 = (x0, X̃0)

be a decomposition of U� . Define x′j = xj /|x0
j |, for xj = yj or zj , and x′0 = x0/R

where R is the radius of a large ball containing �. Let

f (λ,X) =
(
x′0 − 2

(∏ |x′j |2 − 1
)
, X̃0, {(iλj − (|z′j |2 − 1))z

lj
j }j=1,...,k,

(−Qj + 1)yj , (Pj + 1)z
lj
j , x

ls
s

)
,

where the product is over all x′j in UH ∩ (U�)⊥, z′1, . . . , z′k are the variables with
kj = ∞ and an isotropy subgroup H0 = �z′1 ∩ · · · ∩ �z′k with dim �/H0 = k. The

invariant polynomial Qj is y′2j if kj = 2 and Pj (y
′
1, . . . , y

′
j ) if kj = 1, where Pj is

based on the real coordinates. For zj , one takes Pj = Pj (x
′
1, . . . , x

′
j ) as the invariant

polynomial of Lemma 6.3 in Chapter 1. Finally, xs are the coordinates of (V H )⊥.
For any integer d, one may replace λk+ i(|z′k|2−1) = A by Ad , where Ad means

Ā|d| if d is negative.
Since |x′0| ≤ 1 in �H , the zeros of f in �H have xj �= 0 for all j ’s and for

|x′j | = 1, as in Theorem 3.2 of Chapter 3. For zj in R+, for j = 1, . . . , k, there are∏
kj = |H0/H | zeros, equal to γX0, for some γ in �, and only one of these zeros is

in CH , the fundamental cell for H . For the map (2t − 1 + 2ϕ(λ,X), f (λ,X)) one
may deform ϕ to 0 on ∂(I ×BH), since the zeros of f (λ,X) in I ×BH are the orbit
of X0, i.e., in �. Furthermore, one may rotate 2t − 1 and x′0 to obtain the map

(
−x′0, 2t+1−2

∏
|x′j |2, X̃0, (iλj − (|z′j |2−1))z

lj
j , (−Qj +1)yj , (Pj +1)z

lj
j , x

ls
s

)
.

After a rotation of the first two components, one obtains a �-map which is similar
to the generator FH of Theorem 3.3 in Chapter 3: it differs from the fact that here
one has all the components x′j and by the new definition of Qj , while in FH one had
considered only yj with kj = 2. In any case, this map is in �(H), since, if K > H ,
one needs that one of the xj to be 0. Furthermore, this map has an extension degree 1,
up to an orientation factor which may be fixed by choosing d = −1. Thus, one may
take this new map as a generator of �(H) and, by letting d to be arbitrary, have the
complete �(H) ∼= Z.

(b) If k > 0 and dim W� = {0}, then f (λ, 0) = 0 and one needs �̄� = φ in order
to define the �-degree of f . As before, let (0, x0

j ) be a point of �H with x0
j �= 0 for

all j ’s and define λ′k = λk/R. Let

f (λ, x) =
(
{(iλj − (|z′j+1|2 − 1))z

lj
j }j=1,...,k−1,

i
(
λ′k + 2

∑
(|x′j |2 − 1)2 + i(|z′1|2 − 1)

)
z
lk
k ,

(−|z′k|2Qj + 1)yj , (|z′k|2Pj + 1)z
lj
j , x

ls
s

)
,
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where Qj = Qj(y
′
1, . . . , y

′
j ) and Pj = Pj (x

′
1, . . . , x

′
j ) as before, and the sum in the

zk-component is over all j ’s. The factor A of zlkk may be replaced by Ad .
If f (λ,X) = 0 and zk = 0, then xj = 0 for all j ’s and X = 0, that is (λ, 0)

belongs to �� = φ. Hence, zk �= 0, |z′j | = 1 for j = 1, . . . , k, and if x′j = 0 for

j > k, one has λ′k + 2
∑

(|x′j |2 − 1)2 ≥ λ′k + 2 > 0. Thus, the zeros in �H are for

|x′j | = 1, λ = 0, X = γX0. For the map

F(t, λ,X) = (2t − 1 + 2ϕ(λ,X), f (λ,X)),

one may deform ϕ(λ,X) to 0, obtaining an element of �(H). The extension degree
of F on the fundamental cell CH is 1, up to an orientation factor, and one may take
F(t, λ,X) as the generator of �(H).

(c) If k = 0 and one has at least one complex z1 in VH , then, if dim W� is positive,
the map

f (X) =
(
x′0 − 2

(∏ |x′j |2 − 1
)
, X̃0,−(Qj − 1)yj , (P

dj
j + 1)z

lj
j , x

ls
s

)
gives an element F(t,X) = (2t−1+2ϕ(X), f (X)) which is in �(H) with extension
degree equal to

∏
dj . While, if dim W� = 0, then one defines

f (X) = ((−aQj + 1)yj , (aP
dj
j + 1)z

lj
j , x

ls
s ),

where a =∏ |x′j |. It is clear that one cannot have a = 0 in a zero, unless X = 0 which

does not belong to �H . Since P1(z
′
1) = z

′k1
1 , on a zero in �H , one has |x′j | = aαj and

one may modify aP1 to apP1 in such a way that
∑

αj �= 1. Hence, on a zero, one has
a = 1, |x′j | = 1, i.e., X = γX0 and deg�(f ;�) = (∏

dj
)[F̃H ], since for the zero in

CH , one may deform x
lj
j to x

0lj
j and a to 1.

(d) If all coordinates in VH are real, k = 0 and dim W� > 0, then if |�/H | > 2,
take two y’s, say y1 and y2, with k1 = k2 = 2 and consider the map

f (X) =
(
x′0 − 2

(∏
y′2j − 1

)
, X̃0,−(Re(y′21 − 1 + i(y′22 − 1))dy1,

−(Im(y′21 − 1 + i(y′22 − 1))d)y2,−(Qj − 1)yj , x
ls
s

)
,

where Qj = y′2j if kj = 2 and Pj (y
′
1, . . . , y

′
j ) if kj = 1. Again, the zeros of f (X) are

for X0 = 0, |y′j | = 1, with an extension degree equal to d (up to an orientation factor).
While, if |�/H | = 2 and k1 = 2, with kj = 1 for j > 1, consider the above map but
with y′21 − 1+ i(y′22 − 1) replaced by y′21 − 1+ i(y′1y′2 − 1), if dim VH ∩ (V �)⊥ > 1.
If this dimension is one, take the map

f (X) = (Im(x′0 − 2(y′2 − 1)+ iy′2(y′2 − 1))d ,

y Re(x′0 − 2(y′2 − 1)+ iy′2(y′2 − 1))d , xlss ),
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which has only two zeros in �H : y′ = ±1, x′0 = 0. Then, one proves that (2t −
1 + 2ϕ(x), f (x)) has an extension degree equal to d: near (x′0 = 0, y′ = 1) deform
y to 1, use ((1 − τ)y′2 + τ)(y′2 − 1) and deform (x′0 − 2(y′2 − 1) + i(y′2 − 1))d

to (x′0 + i(y′ − 1))d , with degree equal to d. If H = � and dim W� ≥ 2, the map

((x0 + ix1)
d , X̃0, x

li
i ) gives, on W� , a degree equal to d.

If dim W� = 1, then �� is the union of disjoint intervals and with ±(x0 − xj ), xj
a fixed point in the j ’th interval, one achieves at most ± (the number of components
of ��).

(e) If all coordinates in VH are real, k = 0 and dim W� = 0, then, if dim VH > 1,
take a =∏

y′2j and consider the map

f (X) = (−Re(aQ1 − 1 + ib(aQ2 − 1))dy1,

− Im(aQ1 − 1 + ib(aQ2 − 1))dy2, (aQj − 1)yj ),

where b is a positive number, depending on d, such that (1 + ib)d is neither real nor
pure imaginary. Thus, a = 0 leads to yj = 0 for all j , i.e., a zero X = 0 in �� = φ.
Hence, a �= 0 and the zeros of f (X) in � are such that |yj | = aαj . Modifying a Qs

to a2Qs if
∑

αj = 1, one gets that a = 1 and |yj | = 1. In particular, there is only
one zero in CH , with yj = 1 for all j ’s. Near that zero, one may deform f (X) to
((aQ1 − 1 + i(aQ2 − 1))d , aQj − 1), with index d.

If dim VH = 1, then�H is the union of disjoint intervals, one has deg(2t+2ϕ(y)−
1, f̃ (y);B0) = deg(f (y);B0∩�H) and, on each interval ofB0∩�H = �H∩{y > 0},
the degree of f may be 0 or ±1. It is then easy to construct an odd map with local
index equal to ±1 on each such interval.

(f) If k = 1 and |�/H | < ∞ with dim W� ≥ 1, let

fj (µ,X) =
(
x′0 − 2

(∏ |x′i |2 − 1
)
, X̃0, (Qi − 1)yi,

i(µ+ i(|z′j |2 − 1))dz
lj
j , {Pi + 1)xlii }i �=j , x

ls
s

)
,

where Qi and Pi are functions of x′1, . . . , x′i . Here the repetition of variables of
Theorem 5.2 of Chapter 3 is also assumed. Thus, if zj corresponds to a couple of
real variables with a Z2-action, then zj = y1 + iy2. It is clear that deg(2t − 1 +
2ϕ(µ,X), fj ;C ∩ {Arg zj = 0}) = d (up to an orientation factor), i.e., that fj may
replace ηj , when d = 1, in Lemma 5.4 of Chapter 3.

Similarly, choose ε1, . . . , εn, with |εi | = 1, such that {(Qi − 1, Pi − εi)} has
|�/H | zeros, with |x′i | = 1, and only one zero X0 in CH . Take ε small enough and
with A = −ε−1

n

∏
i<n |x′i |Pn + 1, define

f̃ (µ,X) = (|A|2 − ε2, X̃0, (−ε−1|A|Qi + 1)yi,

{(−(εεi)
−1|A|Pi + 1)xlii }i<n, i(µ+ ix0)Axlnn , xlss ),
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recalling that n > 1 since at least xn is repeated. Since xi = 0 or xn = 0 implies
|A| = 1 and A = 0 implies, on a zero, yi = xi = 0, a contradiction, the zeros of
f̃ (µ,X) are such that µ = x0 = X̃0 = 0, Xi = γX0

i , |xn − x0
n| = ε. Furthermore,

on ∂CH , the map (2t + 2ϕ(µ,X) − 1, f̃ (µ,X)) is homotopic to the generator η̃ of
Lemma 5.4 in Chapter 3.

If H = � and n = dim W� , then deg(F�;��), as defined in Chapter 2, belongs
to �n+1(S

n), due to the presence of t and µ. Then, if n ≥ 3, the map (x2
1 + x2

2 −
ε2, i(µ + ix0)(x1 + ix2), . . . ) is the Hopf map, while if n = 2 and � is the ball
{µ2 + x2

0 + x2
1 < 2}, then any F� is homotopic, on the boundary of the ball, to a

constant map (since �2(S
1) = 0), hence d� must be 0 in this case. If n < 2, then

dH = 0.

(g) If k = 1 and |�/H | < ∞, with W� = {0}, take the map

fj (µ,X) =
(
(−|z′j |Qi + 1)yi, (|z′j |Pi + 1)xlii ,

i
(
µ′ + 2

n∑
1

(|x′i |2 − 1)2 + i(|z′j |2 − 1)
)d
z
lj
j , x

ls
s

)
,

where Qi and Pi are functions of x′1, . . . , x′i and µ′ = µ/R. The zeros of fj in �H

are for |z′j | = 1, |x′i | = 1 and µ = 0 (since �� = φ). As in Theorem 5.2 of Chapter 3,
it is easy to compute deg(fj ;CH ∩ {Arg zj = 0}) = d and to see that there are no
zeros on the previous faces of CH . Hence, deg�(fj ;�) = dηj .

In order to get a map with �-degree equal to η̃, consider

f̃ (µ,X) =
(
{1 − ε−1ε−1

i |x′n||A|P ′
i )x

li
i }i<n,

i
(
µ′ + 2

n∑
1

(|x′i |2 − 1)2 + i(ε2 − |A|2|x′n|2)
)
Axlnn , xlss

)
,

where P ′
i corresponds to Qi or Pi , functions of x′1, . . . , x′i , the factor A = 1 −

ε−1
n

(∏
i<n |x′i |

)
Pn, and the phases εj , with |εj | = 1, are chosen as above. Hence, if

xn = 0, then xi = 0 for all i, i.e., a point in �� = φ. While A = 0 leads to xi = 0
for i < n, a contradiction. Thus, a zero of f̃ , in �, gives |x′i | = 1, P ′

i = εi , for i < n,
that is xi = γ x0

i (since x′i = 0 would not give a zero of µ′ + 2
∑n

1(|x′i |2 − 1)2), with
|x′n||Pn − εn| = ε and µ′ + 2(|x′n|2 − 1)2 = 0. Since |µ′| ≤ 1 in �, the last equality
implies that |x′n|2 ≥ 1− (1/2)1/2, hence, for ε small enough, x′n is close to the unique
zero x0

n/R in CH . In order to get the �-degree of f̃ one has to compute the class of
(2t−1+2ϕ(µ,X), f̃ (µ,X)) on ∂CH . In particular, since �� = φ, one may assume

that ϕ(µ, 0) = 1. Replace, for j < n, {xj } by xτj = (1− τ)xj + τx0
j in the terms x

lj
j ,

|x′j | and in ϕ. A zero of the deformed map may have xn = 0, but then xτi = 0 for all
i, that is the path goes through the origin, but there ϕ has value 1. Furthermore, if the
deformed A is 0, one gets xτi = 0 for i < n, again a contradiction. Thus, a zero of the
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deformed map will lead to P ′
i = εi, |x′n||Pn − εn| = ε and µ′ + 2(|x′n|2 − 1)2 = 0,

with xτi = x0
i for i < n. As before, xn should be close to x0

n , hence a point inside CH .

It is then easy to deform x
ln
n and |x′n| to x

0ln
n and 1, arriving at the map

(2t − 1 + 2ϕ,−ε−1ε−1
i |Pn − εn|Pi + 1, (µ+ i(ε2 − |Pn − εn|2))(Pn − εn)).

One may deform linearly the first component to 2t−1+ (|Pn−εn|2−ε2). Replacing
2t − 1 by (1− τ)(2t − 1) in this component and i(ε2 − |Pn − εn|2) by i(1− τ)(ε2 −
|Pn − εn|2)+ iτ (2t − 1), one arrives at

(|Pn − εn|2 − ε2,−ε−1ε−1
i |Pn − εn|Pi + 1, (µ+ i(2t − 1))(Pn − εn)).

One may replace ε−1|Pn− εn| by 1 and get the map η̃ of Lemma 5.4 in Chapter 3.
Thus, up to here we have seen that all the known generators and their multiples

are realized by the �-degree of some map defined on �. It remains to show that any
sequence {dH } may be realized by the �-degree of a map.

Let then {dH } be any admissible sequence of integers (i.e., dH = 0 if �H = φ

and dH limited by the number of components of �H if dim VH = 1). We shall give
two constructions, according to the case k > 0 or k = 0, leaving to the reader the task
to extend each one to the other case.

(α) If k > 0, choose N values of λk ≡ µ, labelled µ1, . . . , µN , with N =∑ |dH |
and µj+1 − µj ≥ 4ε1, for some small ε1 such that, for each j , there is an isotropy
group H and a point (λ0

1, . . . λ
0
k−1, µj ,X

0
0, X

0
H ) in �H , with all the components of

X0
H non zero. This is possible because �H is open (and non-empty) in VH and there

are only a finite number of dH ’s different from 0.
For each j , corresponding to a certain H and a possible face of CH , let fj be one

of the above generators with the following modifications:

1. Replace (λ,X0) by (λ − λ0, X0 − X0
0), where λ = (λ1, . . . , λk−1, µ) and

λ0 = (λ0
1, . . . , λ

0
k−1, µj ).

2. Let ϕj be a Uryson function depending only on µ, with value 1, if |µ−µj | < ε1

and value 0, if |µ− µj | > 2ε1. Then, in case (b), replace the factor of zlkk by

i
(
µ′ +4

k∑
j=1

(1−ϕ|zj |2)2+4
∑

(1−ϕ|z′k|Qj)
2+4

∑
|1+ϕ|z′k|Pj |2+ i(|z′1)2−1

)
.

A similar modification is made for the first maps fj in case (g).

For the map f̃ in (g) replace the factor of xlnn by

i
(
µ′ + 2

n−1∑
1

|ϕ|x′n||A|Piε
−1 − εi |2 + 2|ϕ2|x′n|2 − 1|2 − i(1 − ϕ2|x′n|2|A|2ε−2)

)
A.
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Define then (with a slight change, given below, for the maps f̃ of cases (f) and (g))

f (x) =
{
ϕjfj (x)+ (1 − ϕj )(1, 0, . . . , xlii , . . . ), if |µ− µj | < 2ε1

(1, 0, . . . xlii , . . . ), on the complement,

where (1, 0) has the usual meaning on W� and is not present if W� = {0}. We shall
see below that f (x) is non-zero on ∂�, hence, if

�j = � ∩ {µ : |µ− µj | < 2ε1},
one has that, up to one suspension (which is an isomorphism for the �(H) of the
theorem),

deg�(f ;�) =
∑

deg�(f ;�j).

Since �� = φ if W� = {0}, the map (1, 0, . . . , xlii , . . . ) is never 0 in �. Fur-

thermore, if φfj (x)+ (1 − φ)(1, 0, . . . , xlii , . . . ) = 0 in �j , then in case (a), the first
component is

ϕ
(
x′0 + 2

(
1 −

∏
|x′j |2

))
+ (1 − ϕ) = 0

and the component of zlkk will give, by translating µj to 0,

(iϕµ+ 1 − ϕ|z′k|2)zlkk = 0.

If zk = 0, the first component would be positive (recall that |x′0| ≤ 1), hence
ϕµ = 0. But ϕ = 0 gives a non-zero map, hence µ = 0 and ϕ = 1, giving the
original map fj , generator of �(H). A change to −µ in the zk component, will give
the inverse of the generator.

In case (b), a zero of f (x) with zk = 0 leads to yj = 0, zj = 0, i.e., a point of
the form (λ, 0) in �� = φ. Hence, on a zero, one has zk �= 0 and, since |µ′| ≤ 1
by construction and Qj = 0 if yj = 0, or Pj = 0, if zj = 0, none of these variables
may be 0. This implies that if f (x) = 0 in �j , one has ϕ|zj |2 = 1, for j = 1, . . . , k,

ϕ|z′k|Qj = 1, and ϕ|z′k|Pj+1 = 0, reducing the factor of zlkk to iµ′ϕ−ϕ|z′1|2+1 = 0,
that is µ′ϕ = 0. Since ϕ = 0 cannot happen on a zero, one has µ′ = 0 and ϕ(µ) = 1
and one gets the generator of (b).

For the maps for the faces of CH in case (f), the argument is parallel to case (a)
and for the maps for the faces of CH in case (g), one follows the steps of case (b).
Thus, the only remaining cases are for the Hopf map f̃ of cases (f) and (g). For these
cases, one will modify the construction of f (x) by defining it as

ϕf̃ + (1 − ϕ)(1, 0, xl11 , . . . , (ϕ̃Ab + (1 − ϕ̃))xlnn , . . . ),

for |µ−µj | ≤ 4ε1, where ϕ̃(µ) = ϕ((µ−µj )/2), hence ϕ̃(µ) = 1 if |µ−µj | ≤ 2ε1
and ϕ̃(µ) = 0 if |µ−µj | ≥ 4ε1. The factor b is 1 in case (f) and 1− ε−2|A|2|x′n|2ϕ2

in case (g).
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Taking µj = 0, the map, for case (f), has, for |µ| ≤ 2ε1, a factor of xlnn of the
form (iµϕ − x0 + (1 − ϕ))A and a first component ϕ(|A|2 − ε2)+ (1 − ϕ). Hence,
if xn = 0, then A = 1 and the first component is positive, while if A = 0, the other
components of the map reduce to yi of xlii which are never 0 if A = 0. Hence, on a
zero of the map, one has µϕ = 0; but ϕ = 0 is not possible and then µ = 0, ϕ = 1
and one is back to the original map. On the other hand, if |µ| > 2ε1, then ϕ = 0 and
the map is not 0. (The case H = � is covered by taking A = (x2

1 + x2
2 )

1/2).
For the map f̃ of case (g), if |µ| > 2ε1, then a zero of the map implies that xj = 0

for j < n and A = 1, hence xn = 0, which gives a point which is not in �, since
�� = φ. On the other hand, if |µ| ≤ 2ε1, then ϕ̃ = 1 and if xn = 0, thus, on a
zero, one has that xj = 0 for all j , hence not a point in �. If A = 0, then xj = 0
for j < n, which contradicts the definition of A. Hence, a zero of the map will
have all xj ’s different from 0 and A �= 0 (if xj = 0 then the coefficient of Ax

ln
n has

an imaginary part which is positive, since |µ′| ≤ 1). On a zero, this coefficient is
iϕµ′ + 2iϕ(ϕ2|x′n|2 − 1)2 + 1− ε−2|A|2|x′n|2ϕ2. Hence, on a zero, one has Pi = εi
with solution xi with |xi | = 1 for i < n. Thus, A = 1 − ε−1

n Pn, ϕ|A||x′n| = ε,
µ′ + 2(ϕ2|x′n|2 − 1)2 = 0. Since |µ′| ≤ 1, one has, as before, that ϕ|x′n| ≥ 1− 1/

√
2

hence |A| ≤ Cε and xn cannot be close to 0: in fact, |x′n| has to be close to 1 (for |A|
to be small, i.e., for |Pn| close to 1), ϕ has to be close to 1, i.e., µ is close to 0 and the
map is essentially the one given in (g) and, in fact, deformable to it on �j .

(β) For the remaining cases, i.e., with k = 0, one will use the following construc-
tion:

LetH be any isotropy subgroup and write any pointX inU asX = X0⊕XH⊕X⊥
H ,

where X0 is in U�,XH in UH ∩ (U�)⊥ and X⊥
H in (UH )⊥. For some small ε, let the

open set

�H = {
X ∈ �, ‖X⊥

H‖ < ε, |xi | > 2ε for all xi components of XH

}
.

Take an even function ϕ(x) , non increasing for x > 0, with value 1 if |x| ≤ ε,
and value 0 if |x| ≥ 2ε and define

ϕH (X) =
∏

xi∈UH∩(U�)⊥
(1 − ϕ(xi))

∏
xi∈(UH )⊥

ϕ(xi).

In particular, ϕH (X) = 1 if X belongs to �H . Now, if K and H are two different
isotropy subgroups then either UH ∩ (UK)⊥ or UK ∩ (UH )⊥ do not reduce to 0: in
fact, UH ∩ (UK)⊥ = {0} if and only if UH ⊂ UK , hence, if both intersections are
{0}, one has UH = UK and, H and K being isotropy subgroups, one gets H = K .
Thus, if xi is a common component to UH and (UK)⊥, one has that �H ∩ �K = φ

and ϕK(X) = 0 on �H .
For eachH and dH , consider the maps given in (c)–(e), denoted asfH and modified

in the following way: if the coefficient of yj or of z
lj
j is denoted by aj then multiply

aj by eiψ in such a way that aj has a positive real part if yj or zj is 0. The angle ψ
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will depend only on dH . The maps of (c)–(e) have been set up in such a way that this
condition is met when dH = 1.

SincePj orQj are 0 when zj or yj are 0, the maps in (c) do not need any adjustment,
while, for those of (d) and (e), it is easy to figure out the rotation needed in the first
two components. Define

f (X) =
∑
H

ϕH (X)fH (X)+
∏
H

(1 − ϕH )(1, 0, xlii ).

Then, f (X) = fH (X) if X is in �H . Furthermore, if X belongs to �\⋃H �H , then
X has a non-zero component xi in (U�)⊥ with |xi | ≤ 2ε (if all such components are
with norm |xi | > 2ε, then X would be in �H0 , with H0 = �X). But then the i-th
component of f (X) will be(∑

aHi
ϕH +

∏
(1 − ϕH )

)
x
li
i .

One may choose ε small enough, since � is bounded, such that Re(aHi
) > 0 for

|xi | ≤ 2ε. Then, if all ϕH ’s are 0, the product is 1.
Hence, f (X) is non-zero on the complement of

⋃
H �H and

deg�(f ;�) =
∑

deg�(fH ;�H) =
∑

dH [FH ],
since the suspension is an isomorphism. � 

A similar result holds for orthogonal maps: recall that in this case, the abelian
group � acts on the finite dimensional space V and one considers �-maps F(x) from
V into itself, such that

F(x) · Ajx = 0, j = 1, . . . , n = dim �,

where Aj is an infinitesimal generator for the torus part of �. When considering the
abelian group ��

⊥SV (S
V ), of all orthogonal �-homotopy classes of SV into itself, we

have proved, in Theorem 6.1 of Chapter 3, that

��
⊥SV (S

V ) ∼= Z× · · · × Z,

with one Z for each isotropy subgroup of �, and that any [F ]⊥ in ��
⊥SV (S

V ) can be
written as

[F ]⊥ =
∑

dH [FH ]⊥,
with explicit generators FH . Also, in §4 of Chapter 2, we have defined the orthogonal
degree of a �-orthogonal map f (x), defined on a �-invariant open bounded set � in
V and non-zero on ∂�, with the usual construction, as

deg⊥(f ;�) = [2t + 2ϕ(x)− 1, f̃ (x)]⊥ = [F(t, x)]⊥.
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Theorem 1.2. Any sequence of dH ’s is the orthogonal degree of some orthogonal
�-map defined on �, provided dH is taken to be 0 if �H is empty.

Proof. As in the preceding theorem, we shall first construct orthogonal maps which
have an orthogonal degree equal to d[FH ]⊥, for each isotropy subgroup H , such that
�H �= φ. If dim �/H = 0, then the generators were already constructed in the
preceding theorem, with k = 0, since then VH ⊂ V T n

and any map, on VH , is
orthogonal.

Assume then that dim �/H = k > 0 and that one has the components z1, . . . , zk ,
with action of T n given on zl by exp i〈Nl,/〉, where Nl = (nl1, . . . , n

l
n), and isotropy

H0 > H such that |H0/H | < ∞. Let N be the dimension of VH and let AH be the
N × n matrix with AH

ij = nij , i = 1, . . . , N , j = 1, . . . , n. Then AH has rank k and

has an invertible submatrix A, for instance nij , for i, j = 1, . . . , k, corresponding to

z1, . . . , zk and ϕ1, . . . , ϕk . Then, if for j > k, one defines λij by



λ1
j

...

λkj


 = A−1



n1
j

...

nkj


 ,

one has, for any coordinate zl in VH and j > k, the relation

nlj =
k∑

s=1

λsj n
l
s .

See § 6 of Chapter 3 and Lemma 7.1 of Chapter 1. Furthermore, for X in VH and
j > k, one has

AjX =
k∑
1

λsjAsX,

and A1X, . . . , AkX are linearly independent if X has its first coordinates, z1, . . . , zk ,
non-zero.

(a) If dim V � ≥ 1, let the point X0 = (x0
0 , X̃

0
0, y

0
j , u

0
j , z

0
j ) be in �H , where

(x0
0 , X̃

0
0) is in V � (by translation we shall assume it to be (0, 0)) and (yj , uj ) is in

V T n
, with � acting as Z2 on yj and as Zm on the complex variable uj . By perturbing

a little, one may assume that y0
j , u0

j , z0
j are non zero, provided they are components

of VH . Let x′j = xj /|x0
j | for these components and x′0 = x0/R, where � ⊂ BR .

Consider the generator f (λ,X), given in (a) of the preceding theorem,

f (λ,X) =
(
x′0 − 2

(∏ |x′j |2 − 1
)
, X̃0, {(iλj − (|z′j |2 − 1))zj }j=1,...,k,

(−Qj + 1)yj , (Pj + 1)zj , xs
)
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where some Pj may be changed to Pd
j if one wants an equivariant degree equal to

d[FH ]. If there are no Pj , let ϕ(x) be a smooth function for x ≥ 0, with ϕ(0) = 0
and with exactly d solutions of ϕ(x) = 1, at xj = 1 + jε, for j = 0, . . . , d − 1 and
with ϕ′(xj ) �= 0. Replace then the coefficient of zk by ak = iϕ′(|z′k|)λk+1−ϕ(|z′k|).
For zk real and positive, it is easy to see that the map (λk, zk) → ak has index 1 at
(0, z′k = xj ) and degree d. Let ϕH be the Uryson map with value 0 if some |x′j | ≤ ε

and value 1 if all |x′j | ≥ 2ε, for x′j a coordinate in VH ∩ (V �)⊥.
Define

f0(λ,X) = ϕHf (λ,X)+ (1 − ϕH )(1, 0).

The linear deformation τf0 + (1− τ)f = (τϕH + (1− τ))f + τ(1− ϕH )(1, 0) has
all its zeros fixed at λj = 0, and the orbit of X0: in fact, if x′j = 0, then the first
component reduces to (1 − τ)(x′0 + 2)+ τ ≥ 1, since then ϕH = 0. Thus, f0(λ,X)

can be taken as generator for this part of ��

SRk×V
(SV ).

Now, since A is invertible, let A(τ) be a path of invertible matrices joining A,

for τ = 1, to I , if det A > 0, or to

(−1 0
0 I

)
if det A < 0, for τ = 0. Replace in

f (λ,X), the vector (λ1, . . . , λk)
T by A(τ)(λ1, . . . , λk)

T . Then, one obtains again a
�-homotopy to the generator (if det A < 0, one may choose the map with −λ1 as the
generator). This implies that f0(λ,X) is �-homotopic to

f1(λ,X) = f0(0, X)+ ϕH

k∑
j=1

λjAjX;

the imaginary parts of the factor of zj , j = 1, . . . , k, give A(λ1, . . . , λk)
T ≡ Aλ, with

its only zero at λ = 0, since for zj = 0 one has ϕH = 0.
Let A(X) be the k × k matrix with entries aij (X) = (AiX,AjX). If A(X)λ =

0, one has
(
AiX,

∑
λjAjX

) = 0, hence λ = 0 whenever the AjX’s are linearly
independent, in particular if ϕH (X) > 0. For such an X let b(X) be the vector with
i-th component bi(X) equal to (AiX, f (0, X)) and define

λ(X) = −A−1(X)b(X).

Then, (Ai(X), f1(λ(X),X)) = ϕH (bi(X) + (A(X)λ(X))i) = 0. Thus, if λ̃(X) =
ϕH (X)λ(X), if ϕH (X) > 0 and 0 otherwise, one has a continuous vector and

fH (X) = f0(0, X)+
k∑

j=1

λ̃j (X)AjX

is a�-orthogonal map, recalling that onVH ,AjX is a linear combination ofA1X, . . . ,

AkX, for j > k, and that f0(0, X) = (1, 0) if ϕH = 0. Furthermore, the zeros of
fH (X), in �, are �X0 with λ̃(X0) = 0.
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If one considers the �-function

f2(λ,X) = fH (X)+
k∑

j=1

λjAjX,

then

f2(λ,X) = f1(λ,X)+
k∑

j=1

(ϕHλj (X)+ (1 − ϕH )λj )AjX.

When ϕH = 0, one has f (X) = (1, 0), hence f2(λ,X) is non-zero on this
set. If ϕH > 0, one may deform linearly f2 to f1, since on a zero one would have
A(τ λ̃+ λ(ϕH + (1 − ϕH )τ)) = 0 and f0(0, X) = 0, hence λ = 0, X = �X0.

Then, either by recalling the proof of Theorem 6.1 in Chapter 3, or by using Propo-
sition 6.1 and Corollary 3.1 of Chapter 3, one has that, if [fH (X)]⊥ =∑

dj [Fj ]⊥,

deg(f2(λ,X)Hi ;Bi
k) =

∑
Hi<Hj<H0

dj |H0/Hj |

and the same relations, with [f2(λ,X)]� =∑
d̃j [F̃j ]� . But, f2 has all d̃j = 0 except

for H , where d̃H = 1, or d if one has taken Pd
l , for some l. Hence, dj = d̃j and

[fH (X)]⊥ = [FH ]⊥.
Note that one may also compute directly the set of degrees for f2(λ,X)Hi , noticing

first that if VH ∩ (V Hi )⊥ �= {0}, then f
Hi

2 has a component xj in VH which is 0, that
is ϕH = 0 for X in VHi and fH (X) = (1, 0): in this case the above degree is 0. Thus,
one has to compute these degrees only forHi < H . However, ifHi is a strict subgroup
ofH , then for some component xs ofVHi ∩(V H )⊥ the map will be

(
ϕH+i

∑
λjn

s
j

)
xs

which can be deformed to xs , that is f2(λ,X)Hi is a suspension of f2(λ,X)H , with the
same degree. Since we have computed many times deg(f2(λ,X)H ;BH

k ) = |H0/H |,
the relations give

|H0/H | =
∑

Hi<Hj<H

dj |H0/Hj |

and dj = 0 if Hj is not a subgroup of H . From here it is easy to see that dj = 0 if
Hj �= H and dH = 1.

Then, if f (X) is defined as

f (X) =
∑

ϕH (X)fH (X)+
∏

(1 − ϕH (X))(1, 0, xi),

one obtains an orthogonal map which reduces to fH (X) on �H , as defined in the
proof of the preceding theorem, and which is non-zero on �\⋃�H , giving that the
orthogonal degree of f is

deg⊥(f ;�) =
∑

dH [FH ]⊥.
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(b) If dim V � = 0, then {0} does not belong to �. As before, for each H with
dim �/H = k, let {x0

j } be a point of �H with x0
j �= 0 for all j ’s. If k = 0, one

may use, in V T n
, the generators of the preceding theorem. Thus, assume k > 0 and

let z1, . . . , zk be the coordinates with isotropy H0 such that |H/H0| < ∞ and the
submatrix A is invertible. Let f (λ,X) be the generator of (b) in the proof of the
preceding theorem

f (λ,X′) =
(
{(iλj − (|z′j+1|2 − 1)zj }j=1,...,k−1),

i
(
λ′k + 2

∑
(|x′j |2 − 1)2 + i(|z′1|2 − 1)

)
zk,

(−|z′k|2Qj + 1)yj , (|z′k|2Pj + 1)zj , xs
)
,

and let ϕH be as before. Define

f0(λ,X) = f (λ, ϕHX′)+ (1 − ϕH )X,

where, in f (λ, ϕHX′), one replaces the factors |z′1|2, . . . , |z′k|2 by ϕH |z′1|2, . . . ,
ϕH |z′k|2. On a zero of f0 one has ϕH > 0 and, since xj �= 0, one gets λ1 = · · · =
λk−1 = 0; 1− ϕ2

H |z′j |2 = 0, for j = 1, . . . , k;Qj(ϕHX′) = Pj (ϕHX′) = 1. The last
equalities imply that ϕH |x′j | = 1, in particular, |x′j | ≥ 1 for all j ’s. But then ϕH = 1

and one has the orbit of X0. Replacing Pj by Pd
j or by repeating the construction

given in (a), one has that

deg�(f0(λ,X);�) = deg�(f (λ,X);�H) = d[FH ]�.
Observe that, due to the multiplication by ϕH , one may deform the term∑
(|x′i |2ϕ2

H − 1)2 to 0.
Define then f1(λ,X) as before, giving the same degree. Since X is orthogonal

to AjX, one may define λ(X) as above (the term ϕH factors out) and with λ̃(X) =
ϕH (X)λ(X), the map

fH (X) = f0(0, X)+
k∑

j=1

λ̃j (X)AjX

is �-orthogonal and f2(λ,X), defined as before, has �-degree equal to d[FH ]� , since
the imaginary parts of the factors of z1, . . . , zk are not affected by (1− ϕH )X, that is
the argument is the same as before. This proves that [fH ]⊥ = d[FH ]⊥.

Defining the orthogonal map

f (X) =
∑
H

ϕH (X)fH (X)+
∏

(1 − ϕH )X,

one has that the factor of xj has real part equal to∑
ϕH (1 − ϕ2

H |z′j+1|2)+
∏

(1 − ϕH )
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for j = 1, . . . , k (with z′k+1 to be replaced by z′1), or∑
ϕH (1 + ϕ2

H |z′k|2 RePj )+
∏

(1 − ϕH ),

with Pj replaced by −Qj for yj . Hence, this real part is strictly positive if |x′j | ≤ 2ε,
for ε small enough (for j = 1, . . . , k, one has to consider the factor of zj−1 for
j = 1, . . . , k and that of zk for j = 1). Thus, f (X) is non-zero on �\⋃�H and its
orthogonal degree is ∑

H

dH [FH ]⊥.
� 

4.2 �-degree of an isolated orbit

One of the basic results in classical degree theory is that the index of Ax at 0, where
A is an invertible matrix, is Sign det A. This fact is the building block for the analytic
definition of the degree: if f (x) is a continuous function defined from �̄ into Rn,
where � is an open and bounded subset of Rn, and f (x) is non-zero on ∂�, then one
approximates f , on ∂�, by a smooth function f̃ (x) which, due to Sard’s lemma, has
0 as a regular value. In particular, f̃−1(0) consists of a finite number of points (due to
the compactness of �̄) with non-zero Jacobian. Then, the degree of f̃ with respect to
� is the sum of the degrees of f̃ with respect to small neighborhoods of these points,
so small that on each of them f̃ (x) is deformable to Df̃ (x0)(x − x0). Hence, one
obtains

deg(f (x);�) = deg(f̃ (x);�) =
∑

x0∈f̃−1(0),

Sign det Df̃ (x0).

Thus, one of the first questions, in case of equivariant maps, is what is the �-index of
an isolated orbit? I.e., if x0 is such that f (x0) = 0, hence f (�x0) = 0, and there is
an invariant neighborhood � of the orbit �x0, what is deg�(f (x);�)?

Definition 2.1. The �-index of an isolated orbit, �x0, will be denoted by i�(f ; x0)

and is equal to deg�(f (x);�) for any small invariant neighborhood � of the orbit
�x0.

It is clear that, since one has orbits of solutions, the answer to this question will
be much more involved than in the non-equivariant case and will depend on the orbit
type of x0.

However, let us begin with the case of a linear map. As seen in §5 in Chapter 1,
if there is a �-equivariant linear map A, between two representations of �, which
is invertible, this implies that the representations are equivalent. Hence assume A

is an invertible equivariant matrix on the finite dimensional space V . Then, from
Theorem 5.3 in Chapter 1, we know that A has a diagonal structure

A = diag(A�,AR

j , AC

l )
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whereA� is the restriction ofA toV �,AR

j are real matrices on each subspace of equiv-

alent irreducible representations, where � acts as Z2, and AC

l are complex matrices,
corresponding to an action of � as Zn, n ≥ 3, or S1.

From Theorem 8.3 in Chapter 1, each of the real matricesA� orAR

j is�-deformable
to (

Sign det A� 0
0 I

)
or

(
Sign det AR

j 0
0 I

)
,

while the complex matrices are�-deformable to the identity. Hence, if� is an invariant
neighborhood of 0, one has

deg�(Ax;�) = deg�(ε0x0, . . . εj xj , . . . ;�0)

where ε0 = Sign det A�, εj = Sign det AR

j and �0 is a neighborhood of 0 in the space
{(x0, . . . , xj , . . . , }, after using the suspension on the other variables. One has the
following result

Proposition 2.1. If A is a �-equivariant invertible matrix, then

i�(Ax; 0) = ε0

(
[F0]� +

∑
(εj − 1)/2[Fj ]� +

∑
dH [FH ]�

)
where ε0 = Sign det A� , ε0εj = Sign det AHj , where �/Hj

∼= Z2, and dH are
completely determined by ε0 and {εj }’s, for H ’s which are intersections of more than
one of the Hj ’s.

Proof. This is a direct consequence of Proposition 3.1 in Chapter 3. � 

As a simple application of the above result, consider the bifurcation problem, for
the �-equivariant function

f (λ, u) = (A− T (λ))u− g(λ, u),

from R×E into the �-space E, where A is a �-compact perturbation of the identity,
‖T (λ)‖ → 0 as λ goes to 0 and g(λ, u) = o(‖u‖).

As seen in §9 of Chapter 1, the equation f (λ, u) = 0 is equivalent, near (0, 0) to
the bifurcation equation

B(λ)x +G(λ, x) = 0,

where x is in ker A,B(0) = 0, B(λ) is an equivariant matrix and G(λ, x) = o(‖x‖).
Proposition 2.2. Assume B(λ) is invertible for λ �= 0 and let

ε0(λ) = Sign det B(λ)�, ε0(λ)εj (λ) = Sign det B(λ)Hj ,

with �/Hj
∼= Z2.

(a) If ε0(λ) changes at λ = 0, one has global bifurcation in E� .
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(b) If εj (λ) changes at λ = 0, one has global bifurcation in EHj .

(c) If all εj (λ) remain constant, then there is an equivariant nonlinearity g(λ, u)

such that the only solution of f (λ, u) = 0 is u = 0.

Proof. (1) and (2) follow directly from the above proposition and Theorem 5.2, Corol-
lary 5.2 of Chapter 2. Part (3), the “necessary condition for linearized bifurcation”,
follows from Proposition 6.3 in [I], where the construction of g(λ, u) is given. � 

Remark 2.1. In this case there is also an orientation factor due to the invertible part
of A− T (λ): in fact if one writes, as in §9 of Chapter 1,

(A− T (λ))u = (A−QT (λ))H(λ, x, x2)⊕ B(λ)x − (I −Q)T (λ)H(λ, x, x2)

withH(λ, x, x2) = x2−(I−KQT (λ))−1KQT (λ)x, one may perform an equivariant
deformation, using the fact that T (0) = 0, to

Ax2 ⊕ B(λ)x.

Since A = I − T0, where T0 is a compact operator, one may decompose equivari-
antly

E = ker Aα ⊕ RangeAα,

with α the ascent of A and m = dim ker Aα , the algebraic multiplicity of 1 as eigen-
value of T0. In this case, if one has chosen bases on ker Aα so that the nihilpotent A
is in Jordan form with d blocks of size m1, . . . , md , with

∑
mj = m and x having

coordinates on the i-th block (xi1, xi2, . . . , ximi
), with (xi1, 0, . . . , 0) corresponding

to a generator of ker A and (0, . . . , 0, 1) to a generator of coker A, then on ker Aα the
map Ax2 ⊕ B(λ)x has the form

(x11, x12, . . . , x1m1 , x21, x22, . . . )

→ (x12, x13, . . . , x1m1 , b11(λ)x11 + b12x21 + . . . , x22, . . . ),

which has a degree equal to Sign det B(λ)(−1)m−d : in fact, the factor Sign det B(λ)

comes from the composition and, on the other hand, the second factor is the degree of
the map

(x11, x12, . . . , x1m1 , x21, . . . ) → (x12, x13, . . . , x1m1 , x11, x21, . . . ),

that is (−1)m1−1(−1)m2−1 . . . (−1)md−1 = (−1)m−d , due to the necessary permuta-
tions.

If T (λ) = λT0, then we have seen in §9 of Chapter 1 that

B(λ) = diag(−λm1/(1 + λ)m1−1, . . . ,−λmd /(1 + λ)md−1)

with Sign det B(λ)= (−1)d Sign λm, hence the contribution to the index is Sign(−λ)m.
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On the other hand, the contribution to the index for A restricted to Range(A)α is
(−1)

∑
mj where mj is the algebraic multiplicity of λj as characteristic value of T0,

i.e., such that I − λjT0 is not invertible, for 0 < λj < 1: this is well known but a
proof of this fact will be given in Theorem 2.4 below. Hence,

i�(A− T (λ); 0) = ε0([F0]� +
∑

(εj − 1)/2[Fj ]� +
∑

dH [FH ]),
where

ε0 = (−1)
∑

m�
i Sign det(−B(λ)�)

εj ε0 = (−1)
∑

m
Hj
i Sign det(−B(λ)Hj ),

withm�
i the algebraic multiplicity of (I−λiT0)

� for 0 < λi ≤ 1 andm
Hj

i the algebraic
multiplicity of (I − λiT0)

Hj for 0 < λi ≤ 1.
In case A is a Fredholm operator of index 0 with an isolated eigenvalue at 0, then

we have seen in §9 of Chapter 1 that

B(λ) = (λm1 , . . . , λmd ).

Hence, whenever defined one has

ε0 = (−1)m
�−d� Sign λm

�

Index(A�; Range(A�)α)

εj ε0 = (−1)m
Hj−d

Hj
Sign λm

Hj
Index(AHj ;Range(AHj )α).

Example 2.1. If � = Z2 × Z2 acts on R3 via (x, γ1y, γ2z), then any linear map has
the form (ε0x, ε1y, ε2z) and one has


ε0
ε0ε1
ε0ε2
ε0ε1ε2


 =




1 0 0 0
1 2 0 0
1 0 2 0
1 2 2 4





d0
d1
d2
d3


 .

According to Example 3.2 in Chapter 3,


d0
2d1
2d2
4d4


 =




1 0 0 0
−1 1 0 0
−1 0 1 0
1 −1 −1 1






ε0
ε0ε1
ε0ε2
ε0ε1ε2


 .

In particular, d3 = d0 if ε1 = ε2 = −1 and 0 otherwise. If one has the following
bifurcation problem

(λ2x, λy, λz),

then the set (d0, d1, d2, d3) goes from (1,−1,−1, 1) for λ < 0, to (1, 0, 0, 0) for
λ > 0, hence one has a global bifurcation in EH1 and EH2 . Note, however, that the
branches may coincide and be in E� . For instance,

(λ2x + y2 + z2, λy, λz) = 0
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has its solutions, either x = y = z = 0, the trivial solution, or λ = 0, y = z = 0, in
E� . Note also that if one breaks the symmetry, then one may have no bifurcation. For
instance (λ2x+y2+z2+ε(r)x, λy+ε(r)z, λz−ε(r)y), where ε(r) = ε(x2+y2+z2),
with ε > 0, has the only solution x = y = z = 0.

For maps without parameters between spaces which satisfy hypothesis (H), one
has the following result.

Theorem 2.1. Assume U and W satisfy (H), in particular if U = W , and let f (x) be
an equivariant map from �̄ ⊂ U into W , which is non-zero on ∂�. Then

deg�(f (x);�) =
∑

dj [Fj ]�,

where Hj is such that �/Hj is finite and, with the usual order, one has




deg(f �;��)
...

deg(f Hi ;�Hi )
...

deg(f T n;�T n
)



=




1 0
...

...

βi1 |�/Hj | 0
...

...
...

βs1 βsj |�/Hj | |�/T n|







d0
...

dj
...

ds




as in Theorem 3.4 and Corollary 3.1 of Chapter 3. In particular, if U = W then
βij = 1 if and only if Hi < Hj .

Proof. This follows from Corollary 3.1 of Chapter 3 and the fact that B0 = I × BR

with deg(2t + ϕ(x)− 1, f̃ (x); I × BR) = deg(f (x);�) in this case. � 

The above relations imply that the information obtained from the �-degree is, in
this case, equivalent to the one obtained from the set of all the ordinary degrees on
�H , for isotropy subgroups H , with �/H finite. The value of the �-degree is to prove
the above equivalence (in particular that one may forget H ’s with dim �/H > 0) and
that if � is a ball, then the Hopf property implies that two �-maps are �-homotopic
if and only if they have the same set of dH ’s. This fact, used in (3) of Proposition 2.2
cannot be proved directly from the equality of the ordinary degrees.

However, the full strength of the �-degree is clearer in case of parametrized
problems. Let f (λ,X) : �̄ → W be a �-equivariant map, where � is an open
bounded invariant subset of V = Rk × U , where U and W satisfy hypothesis (H).
Assume that f−1(0) = (λ0, �X0) with �X0 ≡ H such that dim �/H = k. Then, f
has a well-defined �-degree with respect to � or to any small invariant neighborhood
of f−1(0). Furthermore, X0 has coordinates z0

1, . . . , z
0
k which are non-zero and with

H0 ≡ H1 ∩ · · · ∩ Hk such that dim �/H0 = k. From Lemma 2.4 in Chapter 1, one
may use the action of � in order to assume that z0

j are real and positive.
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Theorem 2.2. Let (λ0, �X0) be an isolated orbit with isotropy H such that
dim �/H = k and a zero of f (λ,X) : Rk × U → W , where U and W satisfy
hypothesis (H). Then

i�(f ; (λ0, X0)) =
∑

H≤K≤H

dK [F̃K ]�,

where H is the torus part of H . Furthermore, for any K in the above sum, define iK
as the Poincaré index at (λ0, X0) of f K restricted to VK ∩ {zj ∈ R+, j = 1, . . . , k}.
Then

iK =
∑

K≤L≤H

βKLdL|H/L|,

where, if (xl11 , . . . , x
ls
s ) is the complementing map from (V L)⊥∩VK into (WL)⊥∩WK ,

then βKL =∏
lj . In particular, βKK = 1 and βKL = 1 if U = W .

Proof. Choose the tubular neighborhood � of the orbit so small that if X0 has a
coordinate x0

j �= 0, then xj is non-zero in �. Thus, if

deg�(f ;�) = [2t + 2ϕ(λ,X)− 1, f̃ (λ,X)]� = [F ]�,
one may construct ϕ(λ,X) such that it has value 1 whenever one of the coordinates
xj is 0. This implies that F |VK �= 0 for any K which is not a subgroup of H (and not
only of H0 as in Theorem 3.4 of Chapter 3). The argument of this last result implies
that dK = 0 for such a K and that one gets, in i�(f ; (λ0, X0)), contributions only
from those isotropy subgroups between H and H .

Furthermore, from Theorem 3.4 in Chapter 3, one has

deg(FK ;BK
k ) =

∑
K≤L≤H

βKLdL|H0/L|,

where Bk = {(t, λ,X) in I × BR , with zj in R+ for j = 1, . . . , k}. Then, from the
product theorem for the ordinary degree, one has

deg(FK ;BK
k ) = deg(f K ;�K

k ),

where �k = � ∩ Bk . Now, |H0/L| = |H0/H ||H/L| and, due to the H0-action on
Bk , as in Theorem 1.2 of Chapter 3, one has that f−1(0) ∩ Bk has |H0/H | points,
each with the same index iK on VK ∩ Bk . Hence, one may divide the above equality
by |H0/H | and obtain the result. � 

Assume now that f is C1 in a neighborhood of (λ0, �X0). Then according to
Properties 3.3 and 3.4 of Chapter 1, it follows that for any K < H

Df (λ0, X0)
K =

(
Df (λ0, X0)

H 0
0 Df⊥(λ0, X0)

K

)
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which is H -equivariant. Suppose also that 0 is a regular value of f on �, that is
Df (λ0, X0) has maximal rank. Since U and W have the same dimension, from
Hypothesis (H), this implies that Df (λ0, X0) is onto and has a k-dimensional kernel.

Lemma 2.1. If 0 is a regular value of the equivariant map f and f (λ0, X0) = 0,
where X0 has isotropy H with dim �/H = k, then U and W are equivalent H -
representations, ker Df (λ0, X0) is k-dimensional and is generated by k vectors among
A1X0, . . . , AnX0, with AjX = ∂(γX)/∂ϕj |γ=Id, the infinitesimal generators of the
action of T n, the torus part of �. Furthermore, Df (λ0, X0)|Bk

is invertible, where Bk

is the global Poincaré section, and the Poincaré index iK of f at (λ0, X0) on VK ∩Bk

is
iK = Sign det Df (λ0, X0)

K |Bk
= iH Sign det Df⊥(λ0, X0)

K.

Proof. By differentiating the relation f (λ0, γX0) = 0 with respect to ϕj , one has that
Df (λ0, X0)AjX0 = 0, as in Lemma 7.2 of Chapter 1. Furthermore, from Lemma 7.1
in that chapter, one has exactly k among the AjX0 which are linearly independent.
Since AjX0 generate the tangent space to the orbit at (λ0, X0) and that one has as-
sumed z0

1, . . . , z
0
k to be real and positive, one has that Bk is orthogonal to that tangent

space and corresponds to the usual Poincaré section of the orbit at (λ0, X0). Hence,
Df (λ0, X0), when restricted to Bk , is invertible and the formula for iK follows. Fi-
nally, since Df (λ0, X0)|Bk

is H -equivariant and invertible, one has that V ∩ Bk and
W are equivalent H -representations and, since z1, . . . , zk are fixed by H , one gets
that U and V ∩ Bk are equivalent H -representations. � 

Assume then that U = W . This implies that βKL, in Theorem 2.2, is always 1.

Theorem 2.3. Let V = Rk ×W and 0 be a regular value of f on � with an isolated
orbit (λ0, �X0) with isotropy H such that dim �/H = k. Let iK be the Poincaré
indices given in Lemma 2.1. Then, the �-index of the orbit is given by (dH , dK1 , . . . )

such that dH = iH , dK = (iK − iH )/2, if H/K ∼= Z2, dK is completely determined
by the above integers if H/K ∼= Z2×· · ·×Z2 with more than one factor, and dK = 0
otherwise.

Proof. The result follows directly from Theorem 2.2, Lemma 2.1 and Proposition 3.1
in Chapter 3, since this last result is purely number theoretical and is based on the fact
that iK = ±1. � 

Another way to prove it, is to see that, on � ∩ Bk, f (λ,X) is H -deformable to

(fλ(λ0, X0)(λ− λ0)+ f H
XH (λ0, X0)(X

H −X0), f
⊥
X⊥(λ0, X0)X

⊥)

and one may compute the H -degree of the linearization Df (X0)|Bk
:

iH (Df (λ0, X0)|Bk
; 0) =

∑
H≤K≤H

d ′K [F ′
K ]H ,
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where F ′
K are the generators of �H

SW̃
(SW̄ ), with W̃ = VH ∩ Bk and W̄ = WH .

From Proposition 2.1, one obtains that the d ′K ’s are given by the formulae of
the theorem, since f⊥

X⊥ decomposes into a block diagonal matrix, according to the
H -irreducible representations, where each block is a real matrix if H acts as Z2 and
a complex matrix, if H acts as Zm, m ≥ 3 (on W̃ ,H acts as a finite group). By
deforming the complex matrices to the identity, one has to consider only K’s with
H/K ∼= Z2 × · · · × Z2, with

Df (λ0, X0)
K |Bk

= diag(AH ,A1, . . . , As),

with iH = Sign det AH ,Aj is the matrix Df⊥|VKj , with H/Kj
∼= Z2 and iKj

=
iH Sign det Aj . Hence iK = iH

∏s
j=1(iKj

/iH ) and Corollary 3.1 in Chapter 3 gives

∑
d ′L|H/L| = iK − iH −

∑
(iKj

− iH ),

where the sum on the left is over all L’s with K ≤ L and |H/L| > 2. This gives,
when varying K over all non-maximal isotropy subgroups, i.e., with |H/K| > 2, a
lower triangular invertible matrix. Since the right hand side is completely determined
by iH , iK1 , . . . , iKs , over all maximal isotropy subgroup Kj , one obtains the relations
of the theorem.

Now, we have seen in Remark 3.2 of Chapter 3, that if

deg�(f ;�) =
∑

H≤K≤H0

dK [F̃K ]�,

then
degH0

(f |Bk
;� ∩ Bk) =

∑
H≤K≤H0

dK [F̃ |Bk
]H0 .

But, on one hand we know that dK = 0 if K is not a subgroup of H and, on the
other hand, from Corollary 7.1 in Chapter 3, one has

degH (f |Bk
;� ∩ Bk) =

∑
|H0/H |dK [F ′

K ]H ,

since for the reduction fromH0 toH (with k= 0) one has the factor |H0/K|/|H/K| =
|H0/H |. But, f |Bk

has |H0/H | zeros in � ∩ Bk , all with the same H -index: in fact,
if γ in H0/H sends X0 to γX0, one has, from Property 3.3 in Chapter 1,

Df (λ0, γX0) = γDf (λ0, X0)γ
T

and, since these two matrices are conjugate, one has the same set of indices iH , iK ,
and, from the previous argument, the same set of d ′K . Thus,

degH (f |Bk
;� ∩ Bk) = |H0/H |iH (Df (λ0, X0)|Bk

; 0),

proving that d ′K = dK .
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Example 2.2. If � = S1 and k = 1, then any strict subgroup H of � is of the form
Zm and H/K cannot be a product. Thus, if H = �, one has d� = i� and dK = 0 for
all K’s, while, if H = Zm, then dH = iH , dK = 0 unless m is even and K = Zm/2
with dK = (iK − iH )/2.

As an abstract application of the preceding theorem, assume that f (µ, λ,X) is a
family, parametrized by µ, of �-equivariant functions from Rk × W into W , with
0 as a regular value for µ �= µ0. Assume there is a known curve of zeros of
f (µ, λ,X), λ0(µ),X0(µ)with common isotropyH , with dim �/H = k. Then iH (µ)

and iK(µ) are well defined for µ �= µ0 and K < H .

Corollary 2.1. (a) If iH (µ) changes sign at µ0, then one has a global bifurcation at
(µ0, λ0(µ0),X0(µ0)) in VH .

(b) If iH (µ) remains constant but iK(µ) changes sign at µ0 for some K with
H/K ∼= Z2, then there is global bifurcation in VK , i.e., with a period doubling. Topo-
logically all bifurcations are in maximal isotropy subgroups, i.e., with
H/K ∼= Z2.

Proof. This is clear from our previous results on bifurcation. The last sentence means
that if iH and iK ’s, for all K’s with H/K ∼= Z2, do not change, then there will be
no other changes for smaller isotropy subgroups. This does not hold for non-abelian
actions. Note that the isotropy of the bifurcating solution is at least H is case (a) and
at least K in the second case and one may construct examples where, in case (b), this
isotropy is H . � 

Example 2.3. Assume that S1 acts on C2 as (eiϕz1, e
2iϕz2) and consider the equiv-

ariant map, for µ in a neighborhood of 1/2:

f (µ, λ, z1, z2) =
(
(1 − µ)z1 − µz2z̄1, (1 − |z2|2 + iλ)z2

)
.

If z2 �= 0, a zero of f implies λ = 0, |z2| = 1 and (1 − µ)|z1| = µ|z1|, i.e.,
µ = 1/2 or z1 = 0. Hence, for µ �= 1/2, the isotropy of the orbit (0, |z2| = 1) is
H ∼= Z2. The only other isotropy subgroup is K = {e}. One has iH = deg((1− z2 +
iλ); |λ| < 1, 1 − ε < z2 < 1 + ε) = 1, while iK , which is constant for µ �= 1/2,
changes from +1 for µ = 0 to −1 for µ = 1. Hence, any equivariant perturbation of
this map will have a bifurcation on this µ-interval.

Note that the linearization of f at (µ, 0, 0, 1) is ((1− µ)z1 − µz̄1, iλ− z2 − z̄2)

which is Z2-equivariant (changing z1 into −z1 but keeping z2 fixed). One has that

DHf =
(

0 −2 0
1 0 0

)
, DKf⊥ =

(
1 − 2µ 0

0 1

)
.

It is important to recall that, as usual, index computations are mostly useful in
getting degrees of complicated maps after performing deformations. It is clear that
if one has a map where one may compute directly the Poincaré index then one could
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object to the construction of the equivariant degree. In order to convince the reader to
the contrary, let us present two simple examples.

Example 2.4. Let S1 act on R2 × C2 as (x, y, eiϕz1, e
iϕz2) and consider the map

(|z1|2 + |z2|2 − 2, (x + iy)(|z1|2 − 1)2z1, (x + iy)z2)

with zeros on the 3-dimensional sphere and x = y = 0. Hence, one may not compute
directly any Poincaré index. However, the deformation (1 − τ)(|z1|2 − 1) + iτ is
admissible, as well as the rotation(

(1 − τ)(x + iy) −τ

τ(x + iy)2 (1 − τ)(x + iy)

)(
z1
z2

)
,

i.e., after another rotation, and simple deformations, one may compute the S1-degree
of

(|z1|2 − 1, (x + iy)2z1, z2).

For this last map, one may compute the Poincaré index, which is 2. Thus,

degS1(f ;B) = 2[Fe]S1 ,

where B is a big ball and Fe = (|z1|2 − 1, (x + iy)z1) is the generator of �S1
in this

case. Accordingly, any S1-perturbation of the map will have a zero in B. However,
the non-equivariant perturbation

(|z1|2 + |z2|2 − 2, (x + iy)(|z1|2 − 1)2z1 + τ z̄2, (x + iy)z2 − τ z̄1)

has no zeros for τ �= 0 (write the last two equations as a linear system in z1 and z̄2 by
conjugating the last equation).

Note that the first map is S1-deformable to

(1 − x2 − y2, (x + iy)(|z1|2 − 1)2z1, (x + iy)z2).

In order to compute the S1-degree of this map, one may either deform |z1|2 − 1 to
1 as above, or use the deformation |z1|2 − τ . In both cases, the S1-index of the orbit
(|z1| = 1, z2 = 0) is 0.

Example 2.5. Consider the pair of averaged Van der Pol’s equations, that is for
integro-differential equations. Look for 2π -periodic solutions to

x′′ − x′
(

1 − 1

2π

∫ 2π

0
(x2 + y2) dt

)
+ (1 + ν)x = f (x, y)

y′′ − y′
(

1 − 1

2π

∫ 2π

0
(x2 + y2) dt

)
+ (1 + ν)y = g(x, y).
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If x(t) =∑
xne

int and y(t) =∑
yne

int , one has, for n ≥ 0 and denoting by ρ2

the integral term,
(−n2 − in(1 − ρ2)+ (1 + ν))xn = 0.

Thus, if ν is close to 0, the only non-trivial solutions will be xn = yn = 0 for n �= 1,
ν = 0, |x1|2 +|y1|2 = 1, corresponding to x(t) = α cos(t +ϕ), y(t) = β cos(t +ψ),
with α2 + β2 = 2.

In order to compute the S1-degree of the non-trivial solution, one takes
[−1/2, 1/2] × B, where B is a big ball containing these solutions. For n �= 1,
one may deform the coefficients to 1 and the S1-degree is that of

((ν − i(1 − ρ2))x1, (ν − i(1 − ρ2))y1),

or, after a rotation as in the preceding example, the S1-index of (ν − i(1− |x1|2))2x1
near |x1| = 1, which is 2. Hence, any small autonomous perturbation of the system
will have solutions near ν = 0, |x1|2 + |y1|2 = 1.

On the other hand consider the Z2-perturbation

f (x, y) + τ(3 cos 2t y + sin 2t y′) = 0

g(x, y) − τ(3 cos 2t x + sin 2t x′) = 0.

On 2π -periodic functions, the system is only Z2-equivariant and is equivalent, on
Fourier coefficients, to the system

(− n2 − in(1 − ρ2)+ 1 + ν)xn + τ

2
((n+ 1)yn−2 − (n− 1)yn+2

) = 0

(− n2 − in(1 − ρ2)+ 1 + ν)yn − τ

2
((n+ 1)xn−2 − (n− 1)xn+2

) = 0.

For n = 1, one has

(ν − i(1 − ρ2))x1 + τ ȳ1 = 0

(ν − i(1 − ρ2))y1 − τ x̄1 = 0,

whose only solution, for τ �= 0, is x1 = y1 = 0 (conjugate the second equation and
treat the system as a linear system in x1 and ȳ1). Then, the remaining equations form
a closed system with, for ν close to 0 and τ small, dominant diagonal terms, hence
with a unique solution xn = yn = 0. Thus, for τ small and non-zero, the only solution
is x = y = 0.

These last two examples are illustrations of the restriction map from

�S1

SR×W (SW ) ∼= Z2 × Z× · · ·
to

�
Z2
SR×W (SW ) ∼= Z2 × Z2,
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where, according to Proposition 7.3 in Chapter 3, one has

d ′�0
=
∑

d2k mod 2, d ′{e} =
∑

d2k+1 mod 2.

Here dj = 0 for j �= 1 and d1 = 2. We leave to the reader the task of building other
examples.

Let us continue to study the generic case of 0 as regular value of f (λ,X) and
relate the �-index to the “Floquet multipliers” for a “hyperbolic orbit”. We shall take
the following setting: V = Rk ×W,f (λ,X) = X− F(λ,X), from V into W , is C1

and F(λ,X) is a compact map with f (λ0, X0) = 0 for X0 with isotropy H such that
dim �/H = k. As before, we choose an orientation of W in such a way that the first
variables z1, . . . , zk have an isotropy subgroup H0, with dim �/H0 = k and, on the
orbit, z0

j is real and positive.

Definition 2.2. Let K < H . Then (λ0, X0) is said to be K-hyperbolic if and only if

(a) dim ker(I − FX(λ0, X0))
K = k

(b) Fλ(λ0, X0) : Rk → W is one-to-one

(c) RangeFλ(λ0, X0) ∩ Range(I − FX(λ0, X0))
K = {0}.

Similarly, (λ0, X0) is said to be K-simply hyperbolic if (λ0, X0) is K-hyperbolic
and the algebraic multiplicity of 0 as eigenvalue of (I − FX(λ0, X0))

K is k.

Note that, since X0 is in VH , it follows that f (λ,X0) is in WH , and thus,
Fλ(λ0, X0)µ belongs to WH . Similarly, since �X0 ⊂ VH ,AjX0 belongs to VH .
Furthermore, since FK

X (λ0, X0) has the diagonal structure(
FH
X (λ0, X0) 0

0 F
⊥K

X (λ0, X0)

)

one obtains the following result.

Proposition 2.3. (λ0, X0) is K-hyperbolic if and only if (λ0, X0) is H -hyperbolic
and I − F⊥K

X is invertible.

Note that the above notions depend only on the orbit and not on the representative
X0. This follows easily from the relations

I − FX(λ0, γX0) = γ (I − FX(λ0, X0))γ
−1

Fλ(λ0, γX0) = γFλ(λ0, X0).

Example 2.6 (Autonomous differential equations). Consider the problem of finding
2π -periodic solutions to

dX

dt
− g(X, ν) = 0, X in RN,



4.2 �-degree of an isolated orbit 223

for instance with g(X, ν) = g(X)/ν coming from the system dX
dτ

= g(X). In order
to set the problem as above, let W = H 1(S1) and consider the operator

K̃ : L2(S1) → H 1(S1)

defined on the Fourier series X(t) = 〈X〉 +∑
Xne

int as

K̃(〈X〉 +
∑
n�=0

Xne
int ) = 〈X〉 +

∑
n�=0

Xn/(in)e
int .

Then, K̃X′ = (K̃X)′ = X − 〈X〉 and the above equation is equivalent to

X − 〈X〉 − K̃g(X, ν) = 0,

where K̃g is a compact map on H 1(S1).
If X0(t) is a solution, with minimal period 2π/p, for some ν0, and g(X, ν) in C1

in a neighborhood of (X0(t), ν0), then one gets the linearization

X−FX(X0, ν0)X−Fν(X0, ν0)µ = X−〈X〉−K̃gXX−K̃gνµ = K̃(X′−gXX−gνµ).

Here H is the space of (2π/p)-periodic functions, or else those Fourier series with n

a multiple of p. Now, X′
0 is solution of

X′ − gX(X0, ν0)X = 0,

hence, if X0(t) is non-constant, the first condition of K-hyperbolicity means that X′
0

is the only (2π/p′)-periodic solution of the last equation, for p′ dividing p, while the
second condition means that gν(X0, ν0) is non-zero. For the special case of g(X)/ν,
then gν = −g(X)/ν2

0 = −X′
0/ν0 and condition (b) is met if X0 is non-constant. The

third condition is equivalent to say that the equation

X′ − gXX = gνµ

has no 2π
p′ -periodic solution for µ �= 0. In the case of g(X)/ν, taking µ = −ν0,

then X′ − gXX = X′
0 cannot have solution. But this means that ker

(
d
dt
− gX

)2
is

generated by X′
0, that is 0 is a simple eigenvalue of the operator d

dt
− gX.

Proposition 2.4. Let (ν0, X0(t)) be a (2π/p)-periodic solution of νX′ − g(X) = 0.
Then, if WK is the subspace of H 1(S1) consisting of (2π/p′)-periodic functions, with
p′ dividing p, (ν0, X0) is K-hyperbolic if and only if 0 is a simple eigenvalue of the
operator ν0

d
dt
− gX(X0) in WK , that is 1 is a simple Floquet multiplier of /(2π/p′),

where /(t) is the fundamental matrix of the linear system.

Proof. There remains only to see the equivalence with Floquet theory. This is done in
Appendix B. � 
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Since /(2π) = /(2π/p)p and X′
0 is always an eigenvector, then (ν0, X0) is

{e}-hyperbolic if and only if 1 is a simple Floquet multiplier of the first return map
/(2π/p) and this matrix has no other eigenvalues which are p-th roots of unity. This
is the usual definition of hyperbolicity.

In the general case, {K}-hyperbolicity means that X′
0 is the only (2π/p′)-periodic

solution of X′ − gXX = 0, that gν(X0, ν0) �= 0 and
∫ 2π

0 gν · Z(t) dt �= 0, where
Z′ = −gTXZ is the solution of the adjoint problem (see Appendix B).

Returning to the abstract setting of f (λ,X), with (λ0, X0) an H -hyperbolic or-
bit, note that RangeFλ(λ0, X0) has the right dimension to complement Range(I −
FX(λ0, X0)

H ) inWH . In order to compute the�-index of the orbit, we shall introduce
an auxiliary operator. Recall that z1, . . . , zk are the first variables in W with isotropy
H0 > H and dim �/H0 = k.

Definition 2.3. Let the compact linear H -equivariant operator K , from V into itself,
be defined by

K(µ, Y ) = (µ1 − Im z1, . . . , µk − Im zk, Fλ(λ0, X0)µ+ FX(λ0, X0)Y ).

In particular, K maps VK into VK for any K < H .

Proposition 2.5. (λ0, X0) is K-hyperbolic if and only if (I −K)K is invertible, for
K < H .

Proof. If (I − KK)(µ, Y ) = 0, then Im zj = 0 and (I − FX)Y = Fλµ. Thus, if
(λ0, X0) is K-hyperbolic, one needs µ = 0 and Y belongs to ker(I − FX)

H , that is
Y =∑k

l=1 αlAlX0. Considering the first k coordinates, one has

Im zj =
( k∑

l=1

αln
j
l

)
z0
j ,

since z0
j has been taken real and positive. But, from Lemma 2.4 of Chapter 1, the

matrix (n
j
l )lj is invertible. Then, since Im zj = 0, one has αl = 0 and I − KK is

one-to-one. Since K is compact, one has that I −KK is invertible.
Conversely, if dim ker(I −FK

X ) > k, let Y0 be in this kernel and linearly indepen-

dent fromAjX0. LetB be the invertible matrix given byBjl = n
j
l and, if y1, . . . , yk are

the first k variables of Y0, define α1, . . . , αk through the relations (Bα)j = Im yj /z
0
j .

Replacing then Y0 by

Y0 −
∑

αlAlX0,

one may assume that Im yj = 0. Thus, (0, Y0) is in ker(I − KK), which is not
possible, unless Y0 = 0, if I − KK is invertible. Similarly, if Fλ(λ0, X0)µ = 0,
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then (µ, 0) is in ker(I − KH ). Hence, if I − KH is invertible, one has µ = 0 and
condition (b) is verified. Finally, if Fλµ = (I − FK

X )Y , then(
µ, Y −

∑
γlAlX0

)
is in ker(I − KK) if γl are defined by (Bγ )j = Im yj /z

0
j . But then, if I − KK is

invertible, one has µ = 0, Y =∑
γlAlX0 and condition (c) is met. � 

Thus, if (λ0, X0) is K-hyperbolic, then it is an isolated zero of the H -map

(I − F )(λ,X) ≡ (Im z1, . . . , Im zk,X − F(λ,X))

from VK into itself, since its linearization is I −KK .
Recall, from Theorem 2.2, that iK is the index, at (λ0, X0), of the mapX−F(λ,X)

when restricted to VK ∩ {Im zj = 0, Re zj > 0, j = 1, . . . , k}.
For the same reason, the Leray–Schauder index of (I − F )K is also defined at

(λ0, X0), and clearly both indices are related.

Lemma 2.2. iK = (−1)k(3k+1)/2 Index((I − F )K ; (λ0, x0)).

Proof. The natural orientation of Rk ×WK is given by

(λ1, . . . , λk,Re z1, Im z1, . . . ,Re zk, Im zk, . . . ).

Via a series of permutations, this identity map is homotopic to

((−1)k+1 Im z1, (−1)k+2 Im z2, . . . , (−1)2k Im zk, λ1, . . . , λk,Re z1, . . . ,Re zk, . . . ).

Hence, from the product theorem, Index(I −F K) = (−1)
∑2k

k+1 j iK , giving the result.
� 

Now, if (λ0, X0) is K-hyperbolic, one may approximate (I − F )K by its lin-
earization at (λ0, X0), i.e., by (I −KK)(µ, Y ) and compute the index of this linear
H -equivariant map at (0, 0). Here µ = λ − λ0 and Y = X − X0, since Im z0

j = 0.

From the fact that FH
X is a compact linear operator, one has the decomposition

WH = ker(I − FH
X )α ⊕ Range(I − FH

X )α,

where the first term is the generalized eigenspace, whose dimension is the algebraic
multiplicity m of 1 as eigenvalue of FH

X and α is the ascent. Then, I − FH
X leaves

each subspace invariant and one may write

YH = u⊕ v

with u in the generalized eigenspace. Furthermore, since A1X0, . . . , AkX0 generate
ker(I − FH

X ), one may choose a basis for the generalized eigenspace in such away
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that I − FH
X is in Jordan form on it. Thus, there are exactly k Jordan blocks, of size

m1, . . . , mk such that
∑

ml = m and maxml = α. On the l-th block, corresponding
to AlX0, one has

(I − FH
X )ul = Jlul,

where

Jl =




0 1
. . .

. . .

. . . 1
0




is an ml × ml matrix and ul is the projection of u on the block (recall that, on the
generalized kernel, the matrix I − FH

X is nihilpotent). Thus, on this basis, AlX0 has
coordinates (1, 0, . . . , 0) on the j -th block and 0 on the others. Let (xl1, . . . , xlml

) be
the coordinates of ul , then

u =
∑

xl1AlX0 + w,

where w corresponds to the other variables. Let Fλµ be written as

Fλµ = (F1µ, . . . , Flµ, F̃µ),

where Flµ is the projection on the l-th block with components

(Fl1µ, . . . , Flml
µ)

and F̃µ is the projection on Range(I − FH
X )α . Then, (I − KH ) has the following

form

(I −KH )(Y, µ) =
({( k∑

l=1

n
j
l xl1

)
z0
j + Im(wj + vj )

}
j=1,...,k

,

{Jlul − Flµ}l=1,...,k, (I − FH
X )v − F̃µ

)
,

where
∑k

l=1 n
j
l xl1 will be written, as before, (Bx)j and the components of Jlul−Flµ

are (xl2 − Fl1µ, . . . , xlnl − Flml−1µ,Flml
µ).

In particular, if Yl has coordinates (0, . . . , 0, 1) on the l-th block and 0 on the
others, i.e., if Yl generates, for l = 1, . . . , k, the kernel of the adjoint matrix, one has

Flml
µ =

(∑ ∂F

∂µj

µj , Yl

)
.

Let 9 be the k × k matrix with l-th row given by
(
∂F
∂µj

, Yl
)
.

Lemma 2.3. The matrix 9 is invertible.
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Proof. Assume this is not true and that some µ belongs to ker 9. Then taking
v = (I−FH

X )−1F̃µ, and xli+1 = Fliµ, for i = 1, . . . , ml−1, i.e., for the coordinates
of w, and (x11, . . . , xk1) solving the system

Bx = −



Im(w1 + v1)/z
0
1

...

Im(wk + vk)/z
0
k


 ,

one obtains an element of ker(I −K), which is impossible, unless µ = 0. � 

Theorem 2.4. Let (λ0, X0) be K-hyperbolic and 9 be the above matrix. Then:

(a) iH = (−1)k(k+1)/2(−1)nH Sign det 9Sign det B, where nH is the number of
eigenvalues of FH

X , counted with algebraic multiplicity, which are larger than
or equal to 1.

(b) iK = (−1)n
′
K iH , where n′K in the number of eigenvalues of F⊥K

X , counted with
algebraic multiplicity, which are larger than 1.

Proof. In order to compute iH or the index of I −KH at 0, one may deform linearly
to 0 the terms F̃µ and Flj , for j = 1, . . . , ml − 1 and l = 1, . . . , k, i.e., those
concerning w and v. Then, one may also deform Im(wj + vj ) to 0 and, later, z0

j to
1. Using the two compositions µ → 9µ and x → Bx, and since the permutation
(µj , xj ) → (xj ,−µj ) has index 1, one is left with the map

(x11, x12, . . . , x1m1 , x21, . . . , xk1, . . . , v)

→ (x12, x13, . . . , x1m1 , x11, x22, x2m2 , x22, . . . , (I − FH
X )v).

Via permutations, the x-part of this map contributes (−1)m−k to the index. Hence,

Index(I −KH ) = (−1)m−k Sign det 9Sign det B Index ((I − FH
X )v).

One may decompose Range(I − FH
X )α into⊕

ker(I − λjF
H
X )αj ⊕ W̃ ,

where λj are the characteristic values (i.e., inverses of eigenvalues) of FH
X between 0 y

1 with algebraic multiplicity mj and ascent αj . In fact, the generalized eigenspaces are
disjoint, since if (I−λ1F

H
X )α1x = 0 = (I−λ2F

H
X )α2x, then if y = (I−λ1F

H
X )α1−1x,

one has y = λ1F
H
X y and (I − λ2F

H
X )α2y = 0 = (1− λ2/λ1)

α2y. Thus, y = 0 and if
z = (I−λ1F

H
X )α1−2 one may proceed to prove x = 0. Furthermore, since (I−λjF

H
X )

commutes with (I − FH
X )α , one has the above decomposition with a finite number of

subspaces due to the fact that the compact operator FH
X has only a finite number of

eigenvalues larger than 1.
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The operator I − FH
X preserves each of these subspaces. One may choose bases

on ker(I − λjF
H
X )αj so that the nihilpotent matrix I − λjF

H
X is in Jordan blocks,

i.e., of the form J as above. Hence, on such a block, I − FH
X will have the form

(1− λ−1
j )I + λ−1

j J , which is deformable to −I . Hence, each generalized kernel will

contribute (−1)mj to the index. On the other hand, on W̃ , the operator I − FH
X is

deformable to I . Thus,

Index((I − FH
X )v) = (−1)

∑
mj .

Using Lemma 2.2, one obtains

iH = (−1)k(3k+1)/2(−1)m−k(−1)
∑

mj Sign det 9Sign det B.

Since nH = m+∑mj and k(3k+1)/2+k = 3k(k+1)/2 has the parity of k(k+1)/2,
one obtains the first part of the theorem.

For (b), it is enough to recall the block diagonal structure of I − FK
X . Thus,

Index(I −KK) = Index(I −KH ) Index(I − F⊥K
X ),

where I − F⊥K
X is invertible in WK ∩ (WH )⊥. Decomposing this last space in⊕

ker(I − λjF
⊥K
X )mj ⊕ W̃ as before, one obtains the contribution (−1)n

′
K to the

index. � 

Remark 2.2. Note that if one has a set of equivalent irreducible H -representations,
where H acts as S1 or as Zm,m ≥ 3, then, since F⊥K

X preserves these representations,
the map I − F⊥K

X can be seen on them as a real operator of the form

(A+ iB)(X + iY ) =
(
A −B

B A

)(
X

Y

)
.

If

P =
(

I I

−iI iI

)
and P−1 = 1

2i

(
iI −I

iI I

)
,

one has (
A −B

B A

)
= P

(
A+ iB 0

0 A− iB

)
P−1,

and it follows that

det

(
A− λI −B

B A− λI

)
= | det(A− λI + iB)|2 > 0.

Hence, the algebraic multiplicity of any real eigenvalue is even. Similarly, if

(
X

Y

)

is an eigenvector with real eigenvalue, then

(
Y

−X

)
is also an eigenvector and the
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geometric multiplicity is even. Thus, in the computation of iK one has to take into
account only the representations in (V H )⊥ where H acts as Z2, since, on the others,
n′K will conserve its parity. This gives another proof, for the case of hyperbolicity, of
this part of Theorem 2.3.

Corollary 2.2. If (λ0, X0) is {e}-hyperbolic with isotropyH , then the�-index is given
by (dH , dK, . . . ), for K < H , where

dH = iH = (−1)k(k+1)/2(−1)nH Sign det 9Sign det B,

where nH is the number of generalized eigenvalues of FH
X which are larger than or

equal to 1, and B and 9 are defined above. If K/H ∼= Z2, then

dK = (iK − iH )/2, with iK = (−1)n
′
K iH ,

where n′K is the number of generalized eigenvalues of F⊥K
X which are larger than 1.

The integer dK is completely determined by the above integers if K/H is a product of
Z2’s and dK = 0 otherwise.

Proof. This is just a rephrasing of Theorems 2.3 and 2.4. � 

Example 2.6 (continued). Let us return to the system

νX′ − g(X) = 0, X in RN,

with a hyperbolic solution (ν0, X0), i.e., if A(t) = gX(X0(t))/ν0 and /(t) is the
fundamental matrix of the linearization

LX = X′ − A(t)X

then 1 is a simple eigenvalue of /(2π) = /(2π/p)p, with X′
0 as only solution of

LX = 0, where 2π/p is the least period of X0(t).
Now, the operator I − FX of Theorem 2.4 has the form K̃(X′ − A(t)X) and its

characteristic values, i.e., such that ker(I − λFX) is non trivial, correspond to non-
trivial solutions of X′ − λA(t)X = 0. However, since K̃ and A(t) do not commute
unless A is constant, the generalized kernels are difficult to relate. Hence, we shall
use another way in order to compute iH and iK , a way which is related to standard
Floquet multipliers.

Proposition 2.6. If 1 is a simple eigenvalue of /(2π), let σ+ be the number of real
eigenvalues, counted with algebraic multiplicity, of /(2π/p) which are larger than
1 and let σ− be the number of real eigenvalues of /(2π/p) which are less than −1,
then, on WK = {X(t), in H 1(S1), which are 2π/p′-periodic, p′ dividing p},

iK = −(−1)σ+ if p/p′ is odd

iK = −(−1)σ−+σ+ if p/p′iseven.
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2 In particular, the S1-index has at most two non-zero components: dH = iH and, if
p is even, dK = (iK − iH )/2, for |H/K| = 2 or p′ = p/2, corresponding to period
doubling.

Proof. As seen in Lemma 2.2, iK = Index(I −KK), where

(I −K)(µ,X) = (Im z1, K̃(X′ − AX +X′
0µ/ν0)),

with z1 the component of X on a mode m (a multiple of p) for which X0 has its
corresponding z0

1 real and positive. Now, from Proposition 2.5, one has that I − K

is invertible on VK , hence this will be also the case for I −K + λK̃ for small λ and
this small compact perturbation does not alter the index.

Now, since the matrix /(2π) has N eigenvalues, the number e2πλ will not be one
of them for small, strictly positive λ. Thus, from Appendix B, the Fredholm operator,
from H 1(S1) into L2(S1),

LλX = X′ − AX + λX

will be invertible. In particular, the solution of the equation LλX = −τµX′
0/ν0 is

X = −τµX′
0/λν0, with corresponding Im z1 = −τµmz0

1/λν0. Hence, one may
deform linearly (I −K + λK̃)(µ,X) to (−µ, K̃(X′ − AX + λX)) and

iK = − Index
(
K̃(X′ − AX + λX)|WK

)
.

Increasing λ, one will get a possible change of index at a point λ0 such that
K̃Lλ is not invertible in WK , i.e., if e2πλ0/p

′
is a Floquet multiplier of /(2π/p′), p′

dividing p.
Although K̃Lλ and Lλ have the same kernel, their generalized kernels do not

coincide in general. However, as seen in Remark 2.1, one may detect the change of
index by looking at the bifurcation equation B(λ), for both operators. For

K̃Lλ0 + λK̃ = K̃Lλ0+λ = K̃

(
d

dt
− A+ (λ0 + λ)I

)
,

defined on H 1(S1) or on WK , one has

B̃(λ) = λ(I − Q̃)K̃(I + λR̃Q̃K̃)−1P,

where P is a projection from H 1(S1) onto ker Lλ0 , the operator Q̃ is a projection from
WK onto Range K̃Lλ0 and R̃ is the pseudo-inverse of K̃Lλ0 defined by R̃K̃Lλ0(I −
P) = I − P and K̃Lλ0R̃Q̃ = Q̃. On the other hand, for the Fredholm operator from
H 1(S1) into L2(S1), or from WK into L2(S1)K , defined by d

dt
− A + (λ0 + λ)I =

Lλ0+λ = Lλ0 + λI , one has

B(λ) = λ(I −Q)(I + λRQ)−1P,
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where Q projects L2 onto RangeLλ0 and Lλ0RQ = Q,RLλ0(I −P) = I −P . Note
that the identity in I + λRQ is that of H 1(S1).

Now, for a given Q̃ one may choose Q = (
d
dt
+ P0

)
Q̃K̃ , where P0 is the pro-

jection on the constants, hence K̃
(
d
dt
+ P0

)
K̃ = IH 1 ,

(
d
dt
+ P0

)
K̃ = IL2 . One

may take in this case R = R̃K̃ . Conversely, for a given Q, one may take Q̃ =
K̃Q

(
d
dt
+ P0

)
and R̃ = R

(
d
dt
+ P0

)
: in fact, it is easy to see thatQ, as defined above,

maps L2 into RangeLλ0 and that Q2 = Q. Similarly, Q̃ maps H 1 into Range K̃Lλ0

and Q̃2 = Q̃. Furthermore, it is immediate to check that R and R̃ have the right prop-
erties. Moreover, IH 1+λRQ = IH 1+λR̃Q̃K̃ and IL2−Q = (

d
dt
+ P0

)
(IH 1−Q̃)K̃ .

Thus,

B(λ) =
(

d

dt
+ P0

)
B̃(λ).

Hence, there is a change in the sign of the determinant of B̃(λ) if and only if there is a
change of sign in the determinant of B(λ). The later will be the case if and only if λ0
is an eigenvalue of d

dt
−A of odd algebraic multiplicity (see Remark 2.1). That is, at

each Floquet multiplier of /(2π/p′) one has a change of the index of (I−FX+λK̃)K

equal to (−1)n, where n is the algebraic multiplicity of the multiplier itself.
Now consider, for λ > 0, the deformation

X − τ 〈X〉 + τ(λK̃X − K̃AX), τ ∈ [0, 1].
Applying d

dt
+ P0 to this deformation, one obtains the equation

X′ + (1 − τ)〈X〉 + τ(λX − AX).

Multiplying this equation byXT and takingλ > N1/2‖A‖, where‖A‖ = max |Aij (t)|,
one gets, after integrating on [0, 2π ], that

(1 − τ)〈X〉2 + τ(λ‖X‖2 − (X,AX)) ≥ (1 − τ)〈X〉2 + τ(λ−N1/2‖A‖)‖X‖2.

Hence, one has a valid deformation for λ sufficiently large. Clearly, for τ = 0,
the index is 1 and the index of (I − FX)

K is (−1)
∑

mj , where mj are the algebraic
multiplicities of the eigenvalues of /(2π/p′) which are real and larger than 1.

Finally, since /(2π/p′) = /(2π/p)p/p
′
, the spectrum of /(2π/p′) is made

of the (p/p′)-powers of the eigenvalues of /(2π/p). But, if µ is an eigenvalue of
/(2π/p) then µ̄ will also be an eigenvalue. Hence, non real eigenvalues come in
pairs with the same algebraic multiplicity and will not contribute to the index. For
real negative µ, one will have µp/p′ > 0 only if p/p′ is even.

Then, Theorem 2.2 gives the final part of the proof. � 

Remark 2.3 (S1-degree and Fuller degree). One may define the S1-degree for the
equation νX′ − g(X) in the form X − 〈X〉 − K̃g(X)/ν, in H 1(S1), by making the
following hypothesis:
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Assume that there is an open bounded subset �̃ of R×RN such that the differential
equation has no 2π -periodic solution (ν,X(t)) which touches ∂�̃ for some t . This
assumption ensures that if (ν, X̃) belongs to �̃ for some X̃ on a periodic solution, then
the whole orbit stays in �̃. Moreover, if X̃ is a stationary solution, that is g(X̃) = 0,
then (ν, X̃) is also a solution for all ν. Thus, since �̃ is bounded, the set �̃ cannot
contain stationary solutions. Furthermore, for the integral equation, one needs that
ν ≥ δ > 0 on �̃.

Now, if (ν,X) is in �̃ and belongs to a periodic orbit, then g(X)/ν is bounded in
�̃ and X′ will be bounded in L2 and ‖X‖1 < R for some constant R. Let

� = {
(ν,X) in R×H 1(S1) : ‖X‖1 ≤ R, (ν,X(t)) ∈ �̃

}
.

Since any function in H 1(S1) is continuous, we have that if (ν,X) is close to (ν0, X0)

in H 1 then X(t) will be close to X0(t) for all t . Thus, the set � is open. Clearly,
� is invariant under the S1-action and any periodic solution (ν,X(t)) in �̃ will give
exactly one solution (ν,X) in � of the integral equation and conversely. In particular,
X − F(ν,X) �= 0 on ∂� and its S1-degree is well defined.

Since g(X) �= 0 in �̃, the invariant part of the S1-degree is 0 and

degS1(X − F(ν,X);�) =
∑

dH [FH ]S1 ,

where dH is in Z and H runs over all the Fourier modes m, with |H | = m > 0. (Since
F is compact all but a finite number of the dH ’s are 0).

In this case, Fuller has defined a rational number which turns out to be∑
dH/|H |.

For a hyperbolic orbit, of least period 2π/p, this number is

− (−1)σ+/p, if p is odd,

− (−1)σ+/p − (((−1)σ++σ− − (−1)σ+)/2)/(p/2)=−(−1)σ++σ−/p, if p is even.

Thus, in both cases, the Fuller index is I{e}/p.

Example 2.7 (Differential equations with fixed period). Consider now the autono-
mous differential equation

dX

dt
− g(X, ν) = 0, X ∈ RN,

where ν is not necessarily the frequency. Assume (ν0, X0(t)) is a 2π/p-periodic
solution which is K-hyperbolic, for K corresponding to (2π/p′)-periodic functions,
with p′ dividing p. This means that multiples of X′

0 are the only non-trivial solutions
of the linearized equation

dX

dt
− A(t)X = 0,
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where A(t) = gX(X0(t), ν0). Furthermore, if Z(t) generates the kernel of the adjoint
equation

dZ

dt
+ AT Z = 0,

with fundamental matrix /−1T (t), then gν(X0, ν0) is not L2-orthogonal to Z(t).

Proposition 2.7. Let k be the algebraic multiplicity of 1 as eigenvalue of /(2π/p′)
and let ek−1 be a vector in RN such that (I − /(2π/p′))k−1ek−1 = X′

0(0) = e0.
Then, if nK is the sum of the algebraic multiplicities of real eigenvalues of /(2π/p′)
which are larger than or equal to 1, one has

iK = −Sign (ek−1 · Z(0))Sign

(∫ 2π

0
gν · Z(t) dt

)
(−1)nK .

Proof. The argument is parallel to the one used in Proposition 2.6:

iK = Index(I −KK),

where
(I −K)(µ,X) = (Im z1, K̃(X′ − AX − gνµ)).

Now, one may replace gν by any Z1(t), in WK , which has (Z1, Z)L2 of the same
sign as (gν, Z)L2 : in fact, the whole segment τZ1+(1−τ)gν is not in Range

(
d
dt
−A

)
.

Hence, under the deformation, if one has a zero, one needs µ = 0 and X is a multiple
of X′

0, which has z1 = imz0
1, where m is the mode of z1. Hence, the only zero is for

X = 0.
Now, let ej be orthogonal to e0 and such that (I − /(2π/p′))ej = ej−1 for

j = 1, . . . , k − 1, i.e., the generators of ker(I − /(2π/p′))K . Thus, ej = (I −
/(2π/p′))k−1−j ek−1, with ej ·Z(0) = 0 for j = 0, . . . , k−2, while ek−1 ·Z(0) �= 0
(if not the algebraic multiplicity would be more than k, recalling that Z(0) generates
ker(I −/−1T (2π/p′)), see Appendix B).

If η is the product of the two signs in the proposition, define

Z1(t) = η/(t)

( k−1∑
0

(
tp′

2π

)k−1−j

ej

)
.

Since /(2π/p′)
∑k−1

0 ej = /(2π/p′)
∑k−1

0 (I−/(2π/p′))k−1−j ek−1 = (I− (I−
/(2π/p′))k)ek−1 = ek−1, one has Z1(2π/p′) = Z1(0) and Z1(t) belongs to WK .
(The above sum is of the form (I −B)

∑k−1
0 Bj = I −Bk as a geometric sum, with

B = I −/(2π/p′).
Furthermore, since Z(t) = /−1T Z(0) and ej · Z(0) = 0 for j ≤ k − 2, one has

(Z1, Z)L2 = η(ek−1 · Z0) with the right sign.
Now, the 2π

p′ -periodic solution of
(
d
dt
− (A− λ)

)
X = Z1 is then

Xλ(t) = ηe−λt/(t)

(
C +

∫ t

0
eλs

k−1∑
0

(
sp′

2π

)k−1−j

ej ds

)
,
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where C is chosen such that Xλ

( 2π
p′
) = Xλ(0), i.e.,

C = e−2πλ/p′/(2π/p′)(I−e−2πλ/p′/(2π/p′))−1
∫ 2π/p′

0
eλs

∑(
sp′

2π

)k−1−j

ej ds,

which is possible if λ is small.
Next, we claim that, if z1 is the component of Xλ on the m-th mode, then Im z1

has the sign of η(−1)k−1 for λ small and positive.
In fact, if µ denotes e−2πλ/p′ ,/ denotes /(2π/p′) and B = −µ

1−µ
(I − /),

then we have I − B = (I − µ/)/(1 − µ), and from (I − B)
∑j

0 B
j−l = I − Bj+1

one obtains that (I − B)
∑j

0

( −µ
1−µ

)j−l

el = (I − B)
∑j

0 B
j−l (I −/)k−1−j ek−1 =

(I − Bj+1)(I −/)k−1−j ek−1 = ej , since Bkek−1 = 0 and ej = (I −/)k−1−j ek−1.
Thus,

(I − µ/)−1ej = (1 − µ)−1
j∑
0

( −µ

1 − µ

)j−l

el

and limµ→1(1 − µ)k(I − µ/)−1ej = 0 unless j = k − 1, where it is (−1)k−1e0,
since j goes from 0 to k − 1, hence, k − j − 1 + l > 0, except for j = k − 1 and
l = 0. Thus,

lim
λ→0+

(1 − e−2πλ/p′)kXλ(t) = η(−1)k−1(2π/p′)X′
0(t),

since (1 − µ)kC tends to /(2π/p′)e0 = (2π/p′)e0 and X′
0(t) = /(t)e0.

But the component z1 for X′
0 is imz0

1. This proves the claim.
The next step is to make the deformation

(τ Im z1 + (1 − τ)(−1)k−1ηµ, K̃(X′ − AX + λX − τµZ1)),

which is valid since a zero, in Wk , in the second term gives X = τµXλ, with a
corresponding z1 of the sign of (−1)k−1ηµ. One obtains, for τ = 0, a product and

iK = (−1)k−1η Index
(
K̃(X′ − AX + λX)|WK

)
,

for λ small and positive. But, in Proposition 2.6, we have proved that this last index
is (−1)nK−k , proving the proposition.

Note that, if g(X, ν) = g(X)/ν, then gν = −X′
0/ν0 and k = 1. Then, since

X′
0 = /(t)e0 and Z(t) = /−1T (t)Z(0), the scalar product in η is−2π/ν0(e0−Z(0))

and η = −1. Note also that k is also the algebraic multiplicity of 1 as eigenvalue of
/(2π/p) since /(2π/p′) = /(2π/p)p/p

′
and /(2π/p) has no eigenvalues, except

1, which are p/p′-roots of unity.

Example 2.8 (Differential equations with first integrals). This case can be translated
into an instance of the last proposition. In fact, assume that the equation

X ′ = g(X), X in RN , has a first integral V(X).
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This means that V (X(t)) remains constant on solutions of the equation, or equiv-
alently that

∇V (X) ·X′ = ∇V (X) · g(X) = 0.

Consider the problem of finding 2π -periodic solutions to the equation

X′ = g(X)+ ν∇V (X) = g(X, ν).

If X0(t) is such a solution, then X′
0 · ∇V (X0) = ν‖∇V (X0)‖2 = d

dt
V (X0(t)).

Integrating over a period, one has ν‖∇V (X0(t))‖ ≡ 0, thus ν = 0 if, on the orbit
∇V (X0) �≡ 0, or ∇V (X0) ≡ 0 on the orbit and, in both cases, X0(t) is a 2π -periodic
solution of the original problem.

Let then denote by A(t) the matrix Dg(X0(t)) and let /(t) be the fundamental
matrix for the variational equation X′ −A(t)X. Then, if X(t) is solution to the initial
value problem

X′ = g(X) = g(X0(t))+ A(t)(X(t)−X0(t))+ R(X −X0)

X(0) = X0(0)+W,

then,

X(t) = X0(t)+/(t)W +/(t)

∫ t

0
/−1(s)R(X(s)−X0(s)) ds.

Hence, linearizing the identity V (X(t)) = V (X(0)), one obtains

∇V (X0(t)) ·/(t)W = ∇V (X0(0)) ·W, for all W in RN.

Thus, if∇V (X0(0)) = 0, one has that∇V (X0(t)) is orthogonal to all /(t)W and,
since /(t) is invertible, the only possibility is that ∇V (X0(t)) = 0 on the orbit of X0,
that is, if ∇V (X0(t)) is non-zero at some time t , it will remain so for all t’s.

In general, for a 2π -periodic orbit, one has X0(2π) = X0(0) and ∇V (X0(0)) is
orthogonal to Range(I − /(2π)). In other words, ∇V (X0(0)) belongs to ker(I −
/(2π)T ) and generates it if it is non-zero and if ker(I −/(2π)) is generated only by
X′

0(0). Furthermore, in this case the algebraic multiplicity has to be more than one:
in fact, since X′

0(0) is orthogonal to ∇V (X0(0)), then X′
0(0) belongs to Range(I −

/(2π)). Hence, there is another vector in ker(I −/(2π))2 besides X′
0(0).

Then, if Z(t) = /−1T (t)∇V (X0(0)), is the 2π -periodic solution of

Z′ + A(t)T Z = 0,

and, since gν(X0(t), ν) = ∇V (X0(t)), one has∫ 2π

0
gν · Z(t)dt =

∫ 2π

0
∇V (X0(t)) ·/(t)/−1(t)/−1T (t)∇V (X0(0)) dt

=
∫ 2π

0
∇V (X0(0)) ·/−1(t)/−1T (t)∇V (X0(0)) dt

=
∫ 2π

0
‖Z(t)‖2 dt,
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where one has used the relation ∇V (X0(t)) ·/(t)W = ∇V (X0(0)) ·W .
Since /−1/−1T is a positive definite matrix, the integrand is positive and the

only condition for hyperbolicity in this case is that dim ker(I −/(2π)) = 1, or else,
whenever X is a 2π -periodic solution of X′ −A(t)X = 0, then X is a multiple of X′

0.

Proposition 2.8. LetX0(t) be a non-constant (2π/p)-periodic solution ofX′ = g(X)

such that ∇V (X0(0)) �= 0 and X′
0 is the generator of ker(I − /(2π)). Let k, ek−1

and nK be as in Proposition 2.7, then

iK = −Sign(ek−1 · ∇V (X0(0)))(−1)nK .

In particular, the S1-index of X′ −g(X)−ν∇V (X) at (0, X0(t)) has at most two non-
zero components dH = iH = η(−1)σ+ , where η = −(−1)k Sign (ek−1 · ∇V (X0(0)))
and σ+ is the number of real Floquet multipliers of /(2π/p) counted with algebraic
multiplicity, which are larger than 1, while dK = (iK − iH )/2, for |H/K| = 2 (hence
for p even) and iK = η(−1)σ++σ− , where σ− is the number of real Floquet multipliers
of /(2π/p), which are less than −1.

Proof. It is enough to apply Propositions 2.6 and 2.7. � 

Remark 2.4. (a) Given an open bounded set �̃1 in RN such that no periodic solution
of X′ = g(X) touches ∂�̃1 and such that ∇V (X) �= 0 on 2π -periodic solution in �̃1
(including stationary ones), one may take �̃ = {(ν,X) : |ν| < ε,X ∈ �̃1} and � as
in Remark 2.3. Thus, degS1(K̃(X′ − g(X)− ν∇V (X));�) is well defined.

(b) For the Hamiltonian system X′ − J∇H(X), we have that H(X) is a first
integral. The augmented system looks like

X′ − (J − νI)∇H(X),

which may also be written as, on solutions of the equations

JX′ + ∇H(X)+ νX′ = 0.

But, this is exactly what is obtained when one studies JX′ +∇H(X) as an orthogonal
map. This approach has the advantage of considering also stationary solutions. This
will be done in the next section.

(c) One may have several first integrals to the systems X′ − g(X) and one could
look at the augmented system

X′ − g(X)+
∑

λj∇Vj (X) = 0.

Taking the scalar product of this equation with
∑

λj∇Vj (X) and integrating on
[0, 2π ] for a 2π -periodic solution of the augmented system one obtains

‖
∑

λj∇Vj (X)‖L2 = 0.
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Thus, if (λ,X) is a 2π -periodic solution of the augmented system, then X(t) is a
2π -periodic solution of X′ = g(X) and

∑
λj∇Vj (X) = 0. Note that, as before,

if this relation holds at some t0 it will hold for all t’s. In order to have a well-
defined equivariant degree one needs to conclude that all λj ’s are 0, i.e., that the
vector fields ∇Vj (X) are linearly independent on the orbit. Since ∇Vj (X(0)) are
in ker(I − /(2π)T ), this implies a high dimensional kernel for I − /(2π). If S1

is the only group acting, then the computation of the S1-degree of the augmented
system may be quite involved. On the other hand, one has a nonlinear equivalent of
orthogonal maps. In fact, if g(X) = J∇H(X), where H is �0-invariant and AjX are
the infinitesimal generators of the symplectic action of �0, then for the equation

JX′ + ∇H +
∑

λjAjX,

one may define Vj (X) = 1
2 (AjJX,X). Since AjJ is self-adjoint, one has that

∇Vj (X) = JAjX: see Proposition 9.1 in Chapter 1. This particular case will be
studied in the next section.

Example 2.9 (Time dependent equations). Consider the problem of finding 2π -peri-
odic solutions to the problem

dX

dt
= f (X, t),

where f (X, t) is 2π/p0-periodic in t . Then, as seen in § 9 of Chapter 1, one has a
natural Zp0 action on C1

2π (S
1). If X0(t) is a 2π/p-periodic solution of the equation,

with p dividing p0, then the linearization of the equation at X0 will be

dX

dt
− A(t)X,

where A(t) = Df (X0(t), t) is 2π/p-periodic.

Proposition 2.9. If WK = {X(t) in H 1(S1) which are 2π/p′-periodic, where p′
divides p}, then X0(t) is K-hyperbolic if and only if dX

dt
− A(t)X = 0 has no

2π/p′-periodic solutions. If σ+ and σ− are the number of real eigenvalues, counted
with multiplicity, of /(2π/p) which are larger than 1, respectively less than−1, then

iK =
{
(−1)σ+ if p/p′ is odd

(−1)σ++σ− if p/p′ is even.

In this case the Zp0 -index of X0(t) is dH = iH and, if p is even, dK = (iK − iH )/2
for |H/K| = 2.

Proof. In this case, applying Theorem 2.4, the number k is 0 and the argument follows
the proof of Proposition 2.6. Recall that

�
Zp0
SW (SW ) = Z× Z× · · ·
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with one Z for each divisor of p0. � 

Clearly, this example corresponds to the classical situation where one can use
Poincaré sections. The purpose of including it here is to contrast it with the situation
of the following examples.

Example 2.10 (Symmetry breaking for differential equations). Assume that the au-
tonomous equation dX

dt
= g(X, ν) has an {e}-hyperbolic solution (ν0, X0(t)) of least

period 2π/q. Consider the problem of finding 2π -periodic solutions to the equation

dX

dt
= g(X, ν)+ τh(t, X, ν),

for small τ and where h is 2π/p0-periodic in t . Hence, the S1-symmetry is broken
to a Zp0 -symmetry, for τ �= 0. This is an entrainment or phase locking problem and
solutions of the perturbed problem are called p0-subharmonics.

Let p be the largest common divisor of q and p0, then the isotropy subgroup of
X0 is Zp, with WZp corresponding to 2π/p-periodic functions.

Proposition 2.10. If (ν0, X0) is a 2π/q-periodic solution of the autonomous equation
X′ = g(X, ν) such that X′

0 generates the kernel of LX = X′ − Dg(X0, ν0)X and
such that the non-homogeneous equation LX = gν(X0, ν0) has no solution, then
the equation X′ = g(X, ν) + τh(t, X, ν), where h is 2π/p0-periodic in t , has a
global continuum of (2π/p)-periodic solutions (ν,X) going through (ν0, X0) and
parametrized by τ , where p is the largest common divisor of q and p0, provided, in
the case p0 = p and q/p0 even, one has that the sum of the algebraic multiplicities
of real eigenvalues of /(2π/q) which are less than −1 is even.

Proof. Recall that �
Zp0
SR×W (SW ) = ⊕

�(H), where �(H) ∼= Z2 × �/H for each

isotropy subgroup of Zp0 (see Theorem 5.5 in Chapter 3), hence if H ∼= Zp0/p′ , where
p′ divides p0, then �/H ∼= Zp′ and �(H) ∼= Z2 × Zp′ , if p′ is even and Z2p′ , if p′
is odd. We have proved, in Proposition 7.3 of Chapter 3, that if

[F ]S1 =
∑

dm[ηm]S1 ,

then

P∗[F ] =
∑

d ′p0/p′ [η′p0/p′ ]Zp0
,

where

d ′p0/p′ =
∑

nj

(∑
k≥0

dmjp0/p′+kp0

)
,
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with |nj | odd, njmj ≡ 1, modulo p′, and 1 ≤ mj < p′ with mj and p′ relatively
prime (one may take |nj | < p′).

The number d ′
p0/p′ is in Zp′ if p′ is even and in Z2p′ if p′ is odd. For p′ = 1,

corresponding to H = Zp0 , one has d ′p0
=∑

k≥0 dkp0 in Z2.
Here, dm = 0 except for m = q and m = q/2, if q is even, where one has

dq = η(−1)σ+

dq/2 = −η(−1)σ+(1 − (−1)σ−)/2, if q is even,

where η = −Sign(ek−1 ·Z(0))Sign
∫ 2n

0 gν ·Z(t)dt and σ+ is the sum of the algebraic
multiplicities of real eigenvalues of /(2π/q) which are larger than or equal to 1, while
σ− is the corresponding sum for real eigenvalues of /(2π/q) which are less than−1:
see Proposition 2.7.

Then, if p0 = p1p and q = q1p with p1 and q1 relatively prime, one has
mjp0/p

′ = q if and only if mjp1 = q1p
′, that is p′ = kp1 and mj = kq1, but, since

p′ and mj are also relatively prime, one has p′ = p1 and mj = q1 with p0/p
′ = p.

In this case nj = n is such that nq1 = 1+ kp1, with |n| < p1. On the other hand, if q
is even, one has mjp0/p

′ = q/2, if and only if 2mjp1 = q1p
′, that is p′ = kp1 and

2mj = kq1 which implies k = 1 or 2.
If k = 1, then p′ = p1, 2mj = q1 and p0/p

′ = p and nj = n′ is such that
n′q1/2 = 1 + k′p1. While, if k = 2, then p′ = 2p1,mj = q1 which must hold since
p′ is even and p0/p

′ = p/2, and n′q1 = 1 + 2k′p1 (in this case, since q is even but
q1 is odd, one has that p is even).

Thus, if q is odd, one has d ′p = ndq with nq1 ≡ 1, [p1]. While, if q is even,
then either p0 is odd, which implies that the only possibility for dq/2 is k = 1 and
d ′p = ndq + n′dq/2, or p0 is even. If p0 is even and q1 is odd, then k = 2 and
d ′p = ndq, d

′
p/2 = n′dq/2, while if q1 is even, then k = 1 and d ′p = ndq + n′dq/2.

Since nq1 = 1 + kp′ and n′mj = 1 + k′p′ the numbers n and n′ are non-zero
modulo p′, hence the only case where the new invariants may be 0 is when k = 1 and
d ′p = 0, modulo 2p1. This is possible only if σ− is odd and n′ − n = 2k̃p1. But then,
multiplying by q1, one would have

(2k̃q1 − 2k′ + k)p1 = 1.

Hence, p1 = 1, in which case n = n′ = 1, k = q1 − 1, k′ = q1/2 − 1 and k̃ = 0 and
q1 is even.

The global continuum going through (ν0, X0) is then given by Theorem 5.1 of
Chapter 2, by taking any bounded S1-invariant set � in R ×W which intersects the
slice τ = 0 in a neighborhood of X0, where X0 is the only solution. Since d ′p �= 0

one has that the solutions are in WZp , i.e., they are 2π/p-periodic. � 

Remark 2.5. It would be quite interesting to construct an autonomous system with
an isolated π -periodic solution, with σ− odd, such that with a 2π -periodic pertur-
bation one looses the solution at some value of the parameter. Since det /(t) =
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exp(
∫ t

0 TraceA(s)ds) is positive, σ− odd implies that there is at least 3 eigenvalues
of /(π) : 1 and two negative, one less than −1 and one between −1 and 0, hence the
system must be at least three-dimensional. In this case one would have q = 2 and
p0 = 1.

On Fourier series one may take the system, from R× C2 into C2,

f (ν, z2, z1) = ((ν + i(|z2| − 1))z2, z2z̄1)

where S1 acts on z1 as eiϕ and on z2 as e2iϕ . If z2 �= 0, the only solution is ν = 0, z1 =
0, |z2| = 1. If H ∼= Z2 is the isotropy subgroup of z2, the index of f (ν, z2, z1)

H

at (0, 1, 0) is 1 while the index of f (ν, z2, z1), for z2 real and positive at (0, 1, 0) is
−1. Hence, from Theorem 2.1, one has d2 = 1 and d1 = −1, the situation of the last
proposition, where �0 is a small neighborhood of the orbit.

If one adds the parameter τ one may look at the open bounded set

� = {(τ, ν, z2, z1), |ν| < 1, |z1| < 1, |τ | < 2, 1/4 − τ 2 < |z2| < 4 − τ 2}
which, in the (τ, z2) space and τ ≥ 0 is the region between two paraboloids, the first
of vertex (τ = 1/2, z2 = 0) and basis (τ = 0, |z2| = 1/4) and the second of vertex
(τ = 2, z2 = 0) and basis (τ = 0, |z2| = 4). Now, if λτ = ν + i(|z2| − 1 + τ 2), the
non-equivariant map

(λτ z2 + τz1, z2z̄1 − τ λ̄τ )

which, after conjugation of the second component, can be written as(
z2 τ

−τ z̄2

)(
λτ
z1

)

has the only solution, for τ �= 0, the point ν = 0, z1 = 0, |z2| = 1 − τ 2, which
disappears at τ = 1, without touching the boundary of �.

Example 2.11 (Twisted orbits). Consider the problem of finding 2π -periodic solu-
tions to the problem

dX

dt
= g(X, ν), X in RN,

where ν could be the frequency and g is equivariant with respect to the abelian group
�0. The preceding examples were particular cases with �0 trivial. If (ν0, X0(t)) is a
solution, we have seen, in § 9 of Chapter 1, thatX0(t)may be a time-stationary solution,
or a rotating wave or a truly time periodic solution. The first two cases correspond to a
Hopf bifurcation and will be studied in the last section of this chapter or, if one fixes ν,
to invariants which involve only the stationary part, i.e., for the equation g(X, ν) = 0.
Thus, let us assume that X0(t) is a truly periodic solution, that is X0(t) is non-constant
and (2π/p)-periodic, with isotropy H = Zp×H0, where dim �0/H0 = 0. (The case
of more parameters and higher dimensional orbit will be studied, for orthogonal maps,
in the next section). Assume that X0(t) is {e}-hyperbolic, i.e., X′

0(t) generates the
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kernel of the linearization X′ − A(t)X, with A(t) = Dg(X0(t), ν0) and the equation
X′−A(t)X = gν(X0(t), ν0)has no 2π -periodic solution. Then, according to Theorem
2.3, the only relevant isotropy subgroups of � = S1×�0 are H and K’s, with K < H

and H/K ∼= Z2. Since dim �/H = 1, the torus part of H (and K) is the torus part
of H0 and that of �0: see Lemma 9.2 in Chapter 1. If T k is this torus part, all the
relevant information will be given by orbits which lie in V0 ≡ (RN)T

k
for all time.

We have seen, in Lemma 9.4 of Chapter 1, that VH is the space of all 2π/p-periodic
functions with X(t) in V

H0
0 for all t and X(t) = γ0X(t + 2π/q), where γ

q0
0 is in H0

and q = pq0. The element γ0 of �0 and the integer q are determined by X0(t).
Furthermore, for each Kj , with H/Kj

∼= Z2, one has a subgroup K0j of H0 such

that H0/K0j ∼= Z2 or H0 = K0, with Vj = V
K0j
0 = V +

j ⊕V −
j where γ

q0
0 acts as± Id

on V ±
j . We have seen, in Lemma 9.4 and Remark 9.4 of Chapter 1, that VH0

0 = V +
j

if and only if V −
j �= {0} and that the elements of VKj are those 2π -periodic functions

X(t), with X(t) in Vj for all t , and X(t) = γ 2
0 X(t + 4π/q).

Now, the matrix is H -equivariant and since g(X, ν0) is �0-equivariant and X0(t)

is in V
H0
0 for all t , one has, for any δ in �0,

δDg(X0, ν0) = Dg(δX0, ν0)δ.

In particular, for δ in H0, the matrix A(t) is H0-equivariant for each t . Thus, on Vj
one has

A(t) =
(
A0(t) 0

0 Aj(t)

)
,

where A0 corresponds to V
H0
0 and Aj(t) to V −

j or to the complement of V
H0
0 in

V +
j (if K0j = H0, the matrix Aj is not present). If /(t) is the fundamental matrix

for the problem X′ − A(t)X, one has /(t) = diag(/0(t), . . . , /j (t), . . . ) on the
decomposition of RN into irreducible representations of H0.

Lemma 2.4. One has the following relations

γ0A(t + 2π/q) = A(t)γ0, γ0/(t + 2π/q) = /(t)γ0/(2π/q).

In particular, for any integer s,

/(2πs/q) = γ−s
0 (γ0/(2π/q))s .

Proof. For any γ in � one has γDg(X, ν0) = Dg(γX, ν0)γ . In particular, for
γ0X0(t + 2π/q) = X0(t), one obtains γ0A(t + 2π/q) = A(t)γ0. Then, /′(t +
2π/q) = A(t+2π/q)/(t+2π/q) = γ−1

0 A(t)γ0/(t+2π/q), that is γ0/(t+2π/q)
is also a fundamental matrix and as such, one has

γ0/(t + 2π/q) = /(t)C, with C = γ0/(2π/q).

Then, γ s
0 /(2πs/q) = γ s−1

0 (2π(s − 1)/q)γ0/(2π/q) = (γ0/(2π/q))s for s > 0
and γ0 = /(−2π/q)γ0/(2π/q) gives the result for s < 0. � 
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Proposition 2.11. Let (ν0, X0(t)) be a hyperbolic solution ofX′ = g(X, ν) and define
η = Sign(ek−1 ·Z(0))Sign(gν(X0, ν0), Z(t))L2 , as in Proposition 2.7, where k is the
algebraic multiplicity of 1 as eigenvalue of /0(2π/p). If g(X, ν) = g(X)/ν then
η = −1.

Let σ±j be the number of real eigenvalues, counted with algebraic multiplicity, of

γ0/j(2π/q) which are larger than 1, for σ+j , or less than −1, for σ−j , where j = 0
for H and j ≥ 1 for each Kj with H/Kj

∼= Z2. Then

iH = (−1)k−1η(−1)σ
+
0

iH iKj
=




(−1)σ
+
j if q is odd andV −

j = {0}
(−1)σ

−
j if q is odd andV −

j �= {0}
(−1)σ

−
0 if q is even, p is odd and V −

j �= {0}
(−1)σ

−
0 +σ+j +σ−j if q is even, p is odd and V −

j = {0} or p is even.

Proof. Recall first thatX′
0 is the only generator of ker(X′−A(t)X) and that gν(X0, ν0)

does not belong to the range of this operator. In particular, k depends only on/(2π/p)
and it is the algebraic multiplicity of X′ −A(t)X on H 1(S1). Furthermore, since the
operatorX′−A(t)X+λX and K̃ areH -equivariant, the arguments of Propositions 2.6
and 2.7 remain valid, that is the index iK is given by

iK = (−1)k−1η(−1)σK ,

where σK is the number of real eigenvalues λ > 0, including algebraic multiplicity,
of X′ − A(t)X + λX = 0 in VK . But, from Appendix B, X satisfies this equation
in H 1(S1) if and only if X(t) = e−λt/(t)W , with W in ker(/(2π)− e2πλI ). Thus,
X(t) will be in VH if and only if X(t) lies in V

H0
0 and γ0X(t + 2π/q) = X(t), while

X(t) will be in VKj if and only if X(t) lies in V
Kj

0 = Vj and γ 2
0 X(t + 4π/q) = X(t).

Thus, for VH , one needs

e−λ2π/q/(t)γ0/(2π/q)W = /(t)W,

and, since /(t) is invertible and /(t)|
V

H0
0

= /0(t), .

γ0/0(2π/q)W = e2πλ/qW.

Conversely, if W satisfies this last relation then

γ
q0
0 /0(2π/p)W = (γ0/0(2π/q))

q0W = e2πλ/pW

and, since γ
q0
0 = Id on V

H0
0 , one obtains /(2π)W = e2πλW .
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For the generalized kernel, one has that, if
(
d
dt
− A + λI

)α
X = 0, then X(t) =

e−λt/(t)
∑α−1

0 Wlt
l/ l!, with Wl in ker(/(2π)− e2πλI )α−l uniquely determined by

W0. The relation γ0X(t + 2π/q) = X(t) leads to

B−1
( α−1∑

l=0

Wl(t + 2π/q)l/ l!
)
=

α−1∑
l=0

Wlt
l,

where B−1 = e−2πλ/qγ0/(2π/q). This polynomial equality is satisfied if and only
if all k-derivatives at t = 0 are equal, that is

B−1
( α−1∑

l=k

Wl(2π/q)
l−k/(l − k)!

)
= Wk.

But these are the relations given in Appendix B, with 2π replaced by 2π/q. Thus,
(B − I )kWα−k = 0, i.e., Wl is in ker(γ0/(2π/q) − e2πλ/qI )α−l and is completely
determined byW0. The converse is clear, hence the algebraic multiplicity of d

dt
−A+λI

on V H is that of e2πλ/q as eigenvalue of γ0/(2π/q). In particular, σH = σ+0 .
For Kj , the relation γ 2

0 X(t + 4π/q) = X(t) leads to

γ 2
0 /(4π/q)W = (γ0/(2π/q))2W = e4πλ/qW,

for any X(t) = e−λt/(t)W , with W in ker(/(2π)− e2πλI ).
Conversely, if γ0/(2π/q)W = εe2πλ/qW , with ε = ±1, then γ

q
0 /(2π)W =

εqe2πλW , for W in Vj . Writing W = (W0,Wj ) on V
H0
0 ⊕ (V

H0
0 )⊥∩Vj and /(2π) =

diag(/0(2π),/j (2π)), one has

/0(2π)W0 = εqe2πλW0 and (γ
q0
0 )p/j (2π)Wj = εqe2πλWj ,

where γ
q0
0 = Id if V −

j = {0} and γ
q0
0 = − Id if V −

j �= {0}.
Hence, for /0, one has ε = ±1 if q is even, while only ε = 1 is possible if q is

odd. For /j and V −
j = {0}, then γ

q0
0 = Id and ε is as above, while if V −

j �= {0} then

γ
q0
0 = − Id. In this case, if p is even, then ε = ±1 (q is also even). If p is odd and q

even, then Wj = 0 (in fact, we have seen in Lemma 2.4 of Chapter 1 that, in this case,

X(t) is in V +
j = V

H0
0 ). Finally, if q is odd, then ε = −1.

The argument for the generalized kernel is then as before, with (γ0/(2π/q))2 −
e4πλ/qI , with no further restriction. This proves the proposition. Note that one may
have H0 = K0: in this case H/K ∼= Z2 only if q is even (if q is odd then X(t) is in
VH ) and the contribution to iK is (−1)σ

−
0 . � 

Remark 2.6. On may also look at 2π -periodic solutions, inVj for all t , of the equation

Y ′ − A(t)Y + λY = 0, λ > 0,
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for functions which satisfy the relations

Y (t + 2π/p) = aY (t), γ0Y (t + 2π/q) = bY (t),

where a = ±1, b = ±1.

In fact, b = 1 corresponds to y = X+, in Lemma 9.5 of Chapter 1, with com-
ponents in V +

j if a = 1 or in V −
j if a = −1. While, if b = −1 then Y (t) = X−(t)

with components in V +
j , if a = 1 and q0 even or if a = −1 and q0 odd, or in V −

j , if
a = −1 and q0 even or a = 1 and q0 odd.

Now, the requirement that Y (t) is 2π -periodic implies that ap = 1 and γ
q0
0 Y (t +

2π/p) = γ
q0
0 aY (t) = bq0Y (t), that is aγ

q0
0 = bq0I , where γ

q0
0 = I on V +

j and

γ q0 = −I on V −
j and V −

j �= {0} if and only if V +
j = V

H0
0 .

Thus, by writing Y (t) = e−λt/(t)W , with W = (W0,Wj ),W0 in V
H0
0 and Wj in

(V
H0
0 )⊥ ∩Vj and /(t) = diag(/0,/j ), one has the following spectral problem: find

λ > 0,W �= 0, such that

(γ0/0)
q0W0 = ae2πλ/pW0 and γ0/0W0 = be2πλ/qW0,

(γ0/0)
q0Wj = ae2πλ/pγ

q0
0 Wj and γ0/0Wj = be2πλ/qWj ,

with the restrictions ap = 1, (a − bq0)W0 = 0, (a − bq0)Wj = 0 if V −
j = {0} or

(a + bq0)Wj = 0 if V −
j �= {0}.

Hence, one has the following cases:

1. K = H , i.e., a = b = 1,Wj = 0, with a contribution of σ+0 .

2. H/K ∼= Z2 and p odd, then a = 1. If q0 is odd, one has a contribution from
W0 (only if b = 1) of σ+0 and from Wj of σ+j (if V −

j = {0} and b = 1) or of σ−j
(if V −

j �= {0} and b = −1). While, if q0 is even, one has a contribution from

W0 of σ+0 + σ−0 (for b = ±1), and from Wj of σ+j + σ−j only if V −
j = {0}.

3. H/K ∼= Z2 and p even. If q0 is odd, one has a contribution from W0 only if a
and b have the same sign. Thus, if V −

j = {0} one has σ+0 +σ+j (for a = b = 1)

and σ−0 + σ−j (for a = b = −1) for a total of σ+0 + σ−0 + σ+j + σ−j . If

V −
j �= {0}, then a and b have the same sign for W0 and opposite signs for Wj ,

giving σ+0 + σ−0 for W0 and σ+j + σ−j for Wj with the same total as above.

While, if q0 is even, then if V −
j = {0} one needs a = 1, b = ±1 and a total

contribution of σ+0 + σ−0 + σ+j + σ−j . If V −
j �= {0} then, for W0 one has a = 1

and a contribution of σ+0 + σ−0 , and for Wj one has a = −1 and a contribution
of σ+j + σ−j . Thus, for p even one gets σ+0 + σ−0 + σ+j + σ−j , confirming
Proposition 2.11.
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Remark 2.7. Since γ
2q0
0 = Id on Vj , one has an action of the cyclic group generated

by γ0, which couples two variables xl and yl , giving them a complex structure and an
action of the form e2πial/2q0(xl + iyl), where al is even on V +

j and odd on V −
j . Now,

it is important to note that A(t) does not preserve this complex structure, unless it is
γ0-equivariant. Thus, since A(t) is a real matrix, the action of γ0 on the couple (xl, yl)
has to be represented by the rotation Ral/2q0 . Then, since A(t) is 2π/p-periodic, one
has the Fourier series expansion for A(t):

A(t) =
∑

Ame
imt ,

where m is a multiple of p. The relation γ0A(t + 2π/q)γ−1
0 = A(t) leads to

γ0Ame
2πim/qγ−1

0 = Am and, if Am is decomposed in 2 × 2 matrices Akl
m corre-

sponding to the couples (xl, yl) and on the coordinates (xk, yk), one obtains

Akl
m = e2πim/qRak/2q0A

kl
mR−al/2q0 .

If, for some (k, l) and fixed m, one has that det Akl
m is non-zero, then one has that

2m/q is an integer. If this integer is even, then Am is γ0-equivariant and, as such, has
a block diagonal structure, in particular Akl

m = 0 unless ak = al . If this integer is odd,
then Am is γ 2

0 -equivariant and Akl
m = 0 unless ak = al or al + q0/2: in fact, in this

case one needs q0 even, since γ
q0
0 = ± Id and Am = −γ0Amγ

−1
0 .

This is the situation ifAkl
m has a complex structure, i.e., of the form (a+ib)(xl+iyl),

with Akl
m =

(
a −b

b a

)
.

However, consider γ0 =
(

cos 2π/3 − sin 2π/3
sin 2π/3 cos 2π/3

)
= R2π/3 and

A(t) =
(

cos 2t − sin 2t
− sin 2t − cos 2t

)
= 1

2

(
1 i

i −1

)
e2it + 1

2

(
1 −i

−i −1

)
e−2it .

Here, p = 2, q0 = 3 and q = 6, with 2m/q = ±2/3, which is not an integer.
It is easy to see that γ0A(t + 2π/3) = A(t + π/3) = A(t)γ0 and det A±2 = 0.

4.3 �-Index for an orthogonal map

Orthogonal maps give a very rich structure for their orthogonal �-degrees, since, if
� = T n × Zm1 × · · · × Zms acts on the finite dimensional space V , with infinitesi-
mal generators A1x, . . . Anx for the action of T n, then according to Theorem 6.1 in
Chapter 3, one has ��

⊥SV (S
V ) ∼= Z× · · · ×Z, with one Z for each isotropy subgroup

of �. Hence, if �x0 is an isolated zero-orbit of an orthogonal �-map f (x), i.e., such
that f (x) · Ajx = 0 for j = 1, . . . , n and f (γ x) = γf (x) for all γ in �, then one
should expect an index with many components. In this section we shall compute the
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orthogonal �-index at �x0, relating it to the spectral properties of its linearization.
Furthermore, we shall apply these computations to the case of differential equations,
in particular to Hamiltonian systems and to examples of spring-pendulum mechanical
systems.

Let us assume that �x0 is an isolated k-dimensional orbit, with f (x0) = 0 and H

the isotropy subgroup of x0, that is dim �/H = k. Then, there are complex coordinates
z1, . . . , zk with isotropy H0 > H and |H0/H | < ∞ and zj real and positive for x0.
One may choose an invariant neighborhood of �x0 such that zj �= 0 in it, that is
F(t, x) = (2t + 2ϕ(x) − 1, f̃ (x)) will be non-zero on the set given by zj = 0 for
each j = 1, . . . , k. We shall assume that A1x, . . . , Akx are the linearly independent
vectors if x has its coordinates z1, . . . , zk non-zero. Then, according to Proposition 6.1
of Chapter 3, one has

[F ]⊥ =
∑

Hj≤H0

dj [Fj ]⊥,

where, for Hj > H the torus part of H0 and B
j
k = BHj ∩ {z1, . . . , zk ∈ R+}, the dj ’s

are given by

deg
((

F +
k∑
1

λlAlx
)Hi ;Bi

k

)
=

∑
Hi≤Hj≤H0

dj |H0/Hj |.

Choose the tubular neighborhood � of the orbit so small that if x0 has a coordinate
x0
j �= 0, then xj is non-zero in � and construct ϕ(x) with value 1 whenever one of

these coordinates xj is 0. Thus, F |VK �= 0 for any K which is not a subgroup of
H . From Theorem 6.1 (2) of Chapter 3, this implies that the corresponding dK is 0.
Hence,

[F ]⊥ =
∑

Hj≤H

dj [Fj ]⊥.

Furthermore, if �i
k = � ∩ Bi

k , one has, for Hj > H , that

deg
((

f +
k∑
1

λlAlx
)Hi ;Rk ×�i

k

)
=

∑
Hi<Hj<H

dj |H0/Hj |

= |H0/H | Index
((

f +
k∑
1

λlAlx
)Hi ; (0, x0)

)
,

since the orbit �x0 intersects �k in |H0/H | points, all with the same index. Thus, the
argument is, up to here, parallel to Theorem 2.2, except that one may have isotropy
subgroups Hj with dim H/Hj > 0.

If f is C1 at x0, let D denote Df (x0). Then, we have seen in Lemma 7.2
of Chapter 1, that D is H -equivariant (and as such it has a block diagonal struc-
ture on fixed-point subspaces of subgroups of H and that, for K < H , then D =
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diag(DH ,D⊥H ,D′⊥K), where D′⊥K is complex self-adjoint). Furthermore, Ajx0 are
in ker D and orthogonal to RangeD. In particular, if dim ker D = k, then for K < H ,
the matrix D⊥K is invertible and the algebraic multiplicity of 0 as eigenvalue of 0 is k.

We shall use this information in the following result

Theorem 3.1. Let �x0 be an isolated orbit of dimension k and isotropy H . Assume
that dim ker Df (x0) = k. Then, the orthogonal index is well defined and is equal
to the product i⊥(f H (xH ); x0)i⊥(Df⊥(x0)X̄; 0), where H is the torus part of H

and Df⊥(x0)X̄ is the linearization on (V H )⊥, which is complex self-adjoint and H -
orthogonal. One has

i⊥(f H ) = dH [FH ]⊥ +
∑

H/Hi
∼=Z2

dHi
[FHi

]⊥ +
∑

H/H̃i
∼=Z2×···×Z2

d
H̃i
[FH̄i

]⊥,

with dH = η(−1)nH , where nH is the number of negative eigenvalues of DfH(x0),
and η = (−1)k(k+1)/2 Sign det B, where Bij = n

j
i is given by the i-th-coordinate of

Ajx0, for i, j ≤ k. The integer dHi
= dH ((−1)nHi −1)/2, where nHi

is the number of

negative eigenvalues of Df
Hi⊥ (x0) and d

H̃i
is completely determined by dH and dHj

.
Furthermore,

i⊥(Df⊥(x0)X̄) = [F�]⊥ +
∑

ηini(Ki)[FKi
]⊥ +

n−k∑
s=2

�nj (Kj )[F∩Kj
]⊥,

where Ki are the irreducible representations of H in (V H )⊥, i.e., H/Ki
∼= S1 and

Df⊥(x0), which is block-diagonal on these representations, has a complex Morse
number n(Ki). In the second sum one has the product ηjn(Ki1) . . . n(Kis ) with
dim H/Ki1 ∩ · · · ∩ Kis = s and ηj = (−1)s(s−1)/2 Sign det Bj , where Bj corre-
sponds to the action of � on s variables, defining the generator FKj

. For the first
sum ηi = Sign Bi . Finally, [FHi

]⊥[FKj
]⊥ = [FHi∩Kj

]⊥. If one takes normalized

generators F ∗
Hi
, F ∗

Kj
then η = (−1)k(k+1)/2 and ηj = (−1)s(s−1)/2.

Since the proof is involved, we shall break it up in several remarks and lemmas
together with some illustrative examples.

Remark 3.1. (a) The generators FH , FHi
, FKi

are those of Theorem 6.1 in Chapter 3
such that if K < H and dim �/K = s ≥ k, with A1x, . . . , Asx linearly independent
in VK , then FK(x)+∑s

1 λjAjx has index 1 in the fundamental cell and degree, with
respect to Rs × Bs , equal to |K0/K|, where K0 ≤ H0 corresponds to the isotropy of
s variables such that dim �/K0 = s. Thus, if s = k, one has K0 = H0.

The generator FK has an orientation factor ε designed to compensate the sign of
the determinant of the matrix given by A1, . . . , As on those s coordinates. If one
uses the normalized generators F ∗

K , of Proposition 6.2 in Chapter 3, then the terms
Sign det Bj are not present.
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(b) In the product, f H (xH ) is �-orthogonal but Df⊥(x0)X̄ is H -orthogonal
only. The term i⊥(Df⊥(x0)X̄) has to be interpreted as the sum in the formula.
We shall prove that f (x) is �-orthogonally deformable to (f H (xH ),9X̄) where 9

has the same Morse numbers as Df⊥(x0). Also, strictly speaking, we should have
written

∑
η′j n′j [F ′

Kj
]⊥ for each irreducible representation of � on (V H )⊥, where

η′j = Sign Bj , where Bj is the non-zero coefficient of the action of T n on a variable
in that representation and F ′

Kj
is the associated generator, with 9 having n′j terms

with −1 on variables with the same action of �. Now, when one takes the product
with [FHi

]⊥, one obtains, for the same Hi ∩Kj = Hi ∩K , subgroup of H , the sum∑
η′j n′j [FHi∩Kj

]⊥ = ηHi∩K
(∑

n′j
)[FHi∩K ]⊥, with

∑
n′j = n(K) and ηHi∩K = 1 if

one has chosen normalized generators. In this context it is important to recall that one
has to assimilate complex conjugate representations of H , since, as seen in Remark
5.3 of Chapter 1, they are the same real representations. Thus, if H acts as einϕ on
X = (x1, . . . , xs) and as e−inϕ on Y = (y1, . . . , yl), coordinates of X̄, it may happen
that Df⊥(x0) has a block-diagonal form on (X, Y ), with complex Morse numbers
nX and nY . Then the nK of the theorem is nX + nY . Note also that if the complex
self-adjoint matrix A = A + iB has an eigenvector X + iY , with real eigenvalue

λ, then the real matrix

(
A −B

B A

)
has eigenvectors (X, Y ) and (−Y,X), i.e., the real

Morse number is twice the complex Morse number (see Lemma 7.2 of Chapter 1).

(c) The numbers d
H̃i

are given in terms of dH and dHj
, as in the proof of Theo-

rem 2.3. If H acts on VK ∩ (V H )⊥ as Zm,m ≥ 3, then the algebraic multiplicity of
any real eigenvalue is even: See Remark 2.2.

Lemma 3.1. i⊥(f H (xH )) is given by the formula of Theorem 3.1.

Proof. As seen above one has

[FH ]⊥ =
∑

H≤Hj≤H

dj [Fj ]⊥,

where

iHi
= Index((f +

k∑
1

λlAlx)
Hi; (0, x0)) =

∑
Hi≤Hj≤H

dj |H/Hj |.

Now, (0, x0) is H -hyperbolic for the map I − F ≡ f (x) + ∑k
1 λlAlx, since its

linearization with respect to x at (0, x0) is Df (x0) with a k-dimensional kernel, while
its linearization with respect to λ is the matrix A with columns given by Alx0 which
are linearly independent and orthogonal to RangeDf (x0): see Definition 2.2. Hence,
from Theorem 2.4, one has

iH = η(−1)n
′
H , iK = iH (−1)nK ,
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for H ≤ K ≤ H and n′H is the number of eigenvalues of FH
x (0, x0) = I −DfH(x0)

which are larger than or equal to 1, that is the number of non-positive eigenvalues of
DfH(x0), while nK corresponds to eigenvalues ofF⊥K

x = I−DfK⊥ (x0), and η = ±1
is an orientation factor which depends on the matrix A. According to Theorem 2.4,
one has

η = (−1)k(k+1)/2 Sign det 9Sign det B,

where 9 is given in Lemma 2.3, as the projection of Fλ on ker(I −Fx)
T . Here, since

the algebraic multiplicity of 0 as eigenvalue of D is k, one has ker(I −Fx)
T = ker D,

generated by A1x0, . . . , Akx0. Furthermore, Fλj = −Ajx0, thus, 9 = −I . Then,
Sign det 9 = (−1)k and, since n′H = nH + k, one has

iH = (−1)k(k+1)/2 Sign det B(−1)nH .

Thus, Corollary 2.2 gives the result. � 

Before computing dK for K with dim H/K > 0, let us look at some examples.

Example 3.1. Let Z2 act on y as antipodal map and S1 act on z as eiϕ . Then, the map
f (y, z) = (−y, (|z|2 − 1)z) is �-orthogonal with respect to � = Z2 × S1. One has
the isolated zero-orbit, y = 0, |z| = 1 with H = Z2 and K = {e}. Furthermore,

Df (y = 0, z = 1) =

−1 0 0

0 2 0
0 0 0




with

(
2 0
0 0

)
corresponding to DfH(0, 1). Hence, nH = 0, k = 1 and B = 1.

Thus, iH = −1 and iK = 1, which coincides with the index of the map (λ, x) →
(|x|2 − 1)x + iλx. Note that f = ∇/, with /(y, z) = −y2/2+ (|z|2/2− 1)|z|2/2.

Example 3.2. Let � = S1 act on (z1, z2) by (eiϕz1, e
2iϕz2) and let

f (z) = f0(z)− λ(z)Az,

with f0(z) = (z2z̄1, (|z2|2 − 1)z2), Az = (iz1, 2iz2) and λ(z) = f0(z) · Az/|Az|2.
Recall, from Definition 7.1 of Chapter 1, that the scalar product is the real scalar
product, i.e., if f = a+ ib and g = c+ id, then f · g = ac+ bd = Re(f ḡ). Hence,
λ(z) is real and λ(z) = i(z̄2z

2
1 − z2z̄

2
1)/(|z1|2 + 4|z2|2).

Clearly f (z) is �-orthogonal and the zeros of f (z) are (z1, 0) and (0, |z2| = 1).

This second set is an isolated orbit for which DfH(0, 1) =
(

2 0
0 0

)
. It is then easy

to compute the index of f (z) + λAz at λ = 0, z1 = 0, z2 = 1, for z2 in R+, by
deforming λ(z) to 0, getting iH = −1 and iK = 1 with H = Z2 and K = {e}. Here,

k = 1, B = 2, nH = 0 and nK = 1 since Df⊥(0, 1) =
(

1 0
0 −1

)
corresponding to z̄1.
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Example 3.3. If f is in normal form, then f⊥(xH , x⊥) = x⊥ for |x⊥| < ε, then
Df⊥(x0, 0) = Id and iK = iH for any K < H . In this case dH = iH and dK = 0 for
H ≤ K < H . By choosing � contained in the set where |x⊥| < ε, one has that f⊥
acts as a suspension and Index⊥(f ; x0) = dH [FH ]⊥.

We may now go on to the next step of the proof of Theorem 3.1.

Lemma 3.2. In �, the map f (x) is �-orthogonally deformable to (f H (xH ),9X̄),
where 9 is the diagonalization of Df⊥(x0)|(V H )⊥ , hence with the same Morse number.

Proof. Recall that one may reparametrize the torus T n in � in such a way that H
corresponds to ψ1 = · · · = ψk ≡ 0, [2π ], and that ψk+1, . . . , ψn act trivially on
VH : see Lemma 2.4 and Remark 2.1 in Chapter 1. Take then the orthonormal Ãj (x)

constructed in Theorem 7.1 of Chapter 1, starting the orthogonalization process from
j = n, i.e., in reverse order. Then, for j > k, one hasAjxH = 0 and Ãj (x) is in (V H )⊥
and orthogonal to Dx⊥f⊥(xH )x⊥ since this matrix is H -orthogonal: the infinitesimal
generators for the action of H are the derivatives with respect to ψk+1, . . . , ψn. For
j = 1, . . . , k define

λj (x) = Dx⊥f⊥(xH )x⊥ · Ãj (x),

and define, as in Theorem 7.1 of Chapter 1, the �-equivariant map

f̃⊥(x) = Dx⊥f⊥(xH )x⊥ −
k∑
1

λj (x)Ãj (x).

The �-equivariance follows from Property 3.3 of Chapter 1 and the fact that xH is left
as a variable. Furthermore, f̃⊥(x) is �-orthogonal. From Lemma 7.5 of Chapter 1,
one has, for j ≤ k, that Ãj (x) = Ãj (xH )+O(x⊥) and, since Ãj (xH ) is in VH , while
the matrix Dx⊥f⊥(xH ) maps into (V H )⊥, one has that λj (x) = 0(|x⊥|2).

Consider then the �-orthogonal homotopy

(f H (xH , τx⊥), τf⊥(xH , τx⊥))+ (1 − τ 2)f̃⊥(x),

on the tubular neighborhood of the orbit �x0, which may be taken of the form � =
{(xH , x⊥) : dist(xH , �x0) < η, |x⊥| < ε}. Since the homotopy reduces, for x⊥ = 0,
to (f H (xH , 0), 0) which is non-zero on the boundary of � (since �x0 is isolated), one
may choose ε so small that the second component is non-zero for |x⊥| = ε: in fact,
by linearizing τf⊥(xH , τx⊥), one has the approximation Dx⊥f⊥(xH )x⊥+τ 2o(x⊥)+
(1− τ 2)0(|x⊥|3) and since Dx⊥f⊥(�x0) is invertible, one may choose η so small that
Dx⊥f⊥(xH ) is invertible in �.

Now, Dx⊥f⊥(xH ) has the form diag(B(xH ), B̄(xH )), where B̄ is complex self-
adjoint and has a block diagonal structure on the equivalent irreducible representations
of H . On each block, B̄(xH ) is similar to a diagonal real matrix 9(xH ) with a well-
defined Morse index nK which is constant in �H , since B̄(xH ) is invertible there.
Furthermore, if v is an eigenvector of B̄(xH ) then, from Property 3.3 of Chapter 1,

B̄(γ xH )γ = γB(xH )
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and γ v is an eigenvector of B̄(γ xH ) with the same eigenvalue. Hence, if B̄(xH ) =
U(xH ) 9(xH )U∗(xH ), with U unitary, then U(γ xH ) = γU(xH )γ ∗,9(γ xH ) =
γ9(xH )γ ∗ = 9(xH ) will diagonalize B̄(γ xH ) since 9 and γ are diagonal, hence
commute. Note that U(xH ) is continuous in xH if the eigenvalues of B̄(x0) are
simple. In general, for xH close to x0 and in CH , the fundamental cell for H , define
Ũ (xH ) = U(x0) and Ũ (γ xH ) = γU(x0)γ

∗ (γ xH is not in CH by construction).
Let 9̃(xH ) = Ũ∗(xH )B̄(xH )Ũ(xH ), and 9̃(γ xH ) = γ 9̃(xH )γ ∗. Then, 9̃(γ xH )

is close to 9(x0), for xH close to x0, but not necessarily diagonal. Now, the space
of unitary complex matrices is path-connected, hence one may choose a path Uτ (x0)

from U(x0) to I , hence a path from Ũ (γ xH ) to I and from B̄(xH ) to 9̃(xH ), which
is linearly deformable to 9(x0) ≡ 9. By modifying λj (x) along the deformations,
one obtains an equivariant �-orthogonal homotopy to

(f H (xH ), B(xH )X,9X̄)−
k∑
1

λ̃j (x)Ãj (x),

where x⊥ is written as X + X̄. Now, since 9 is real and diagonal, it is orthogonal
to Ajx for all j and to the corresponding components of Ãj (x), hence λ̃j (x) =
B(xH )X · Ãj (x). Since 9X̄ · Ãj (x) = 0, one may deform X̄ to 0 in λj (x)Ãj (x) and
still get a �-orthogonal homotopy. Hence, one has arrived at the map

(f H (xH ), B(xH )X,9X̄)−
k∑
1

λ̃j (xH )Ãj (xH ).

Since Ãj (xH ) are in VH , by letting X̄ = 0, one has a �-orthogonal homotopy of
the last map restricted to VH to f H (xH ), that is a �-orthogonal homotopy of f (x)
to (f H (xH ),9X̄). Note that, if one had linearized f at xH , instead of xH , then the
matrix DfX̄(xH ) would be H -equivariant and would give larger blocks, however the
final result would be the same. � 

Since (f H (xH ),9X̄) is a product, Theorem 3.1 will be essentially proved once
the orthogonal index of 9X̄ at 0 is computed.

Lemma 3.3. The orthogonal index of 9X̄ at 0 is given by

i⊥(9X̄) = [F�]⊥ +
∑

ηjnj [FKj
]⊥ +

∑
s>1

ηj

( s∏
i=1

nji

)
[FKj1∩···∩Kjs

]⊥,

where the first sum is over all Kj isotropy subgroups of the coordinates of X̄, nj is
the number of these coordinates for which 9 is negative and the second sum is over
those Kj = Kj1 ∩ · · · ∩ Kjs , intersection of s of the previous isotropy subgroups for
which dim �/Kj = s. The orientation factor ηj is (−1)s(s−1)/2 Sign det Bj , where Bj

corresponds to the invertible matrix of the action of � on these s coordinates.
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Proof. It is clear that 9 may be deformed to blocks of the form (−I, I ), where one
deforms linearly each eigenvalue to −1 or 1 according to its sign. The I -part acts as
a suspension and does not affect the degree while, on a ball of the form {z1, . . . , zs :
|zj | < 2}, one may change any−zj to (1−|zj |2)zj and one gets the sum of the degrees
on sets of the form {z1, . . . , zl : |zj | < 1

2 ; zl+1, . . . , : 1
2 < |zl+j | < 2}. For |zj | < 1/2,

one may deform back to zj and obtain a suspension. Hence, one is reduced to compute
the orthogonal degree on sets of the form �̃ ≡ {z1, . . . , zl : 1/2 < |zj | < 2} of the
map (. . . , (1− |zj |2)zj , . . . ). Let Hj be the isotropy subgroup of zj (by construction
�/Hj

∼= S1) and let K =⋂l
1 Hj with dim �/K = s and let K0 be the intersection of s

of theHj such that dim �/K0 = s, say the first s variables. Then, from Proposition 6.1
in Chapter 3, the orthogonal degree with respect to �̃ is given by

[F ]⊥ =
∑

K<Kj<K0

dj [Fj ]⊥,

where, since K = K , the dj are given by the relations

deg
(
[((1−|z1|2)z1, . . . , (1−|zl |2)zl)+

s∑
1

λkAkz]Ki ; �̃Ki
s

)
=

∑
Ki<Kj<K0

dj |K0/Kj |,

as a map defined on {λ1, . . . , λs, z1 > 0, . . . , zs > 0, z ∈ �̃
Ki
s } and where A1z, . . . ,

Asz are the s linearly independent vector fields. Since on �̃ all zj are non-zero, it
follows that the degree on the left is 0, except for Ki = K .

For K , since A1z, . . . , Asz, restricted to VK0 , are linearly independent, one may
deform Akzj to 0, for j > s, if of course s < l. In this case one may add iτzl to
(1 − |zl |2)zl , giving a non-zero map in �̃. Hence, if s < l, all dj are 0.

The only case left is when s = l, K = K0, where one has to compare the indices
of the following two maps

FK0(λ, z) =
(

2t + 1 − 2
∏

|zi |, {εj (|zj |2 − 1)zj }sj=1

)
+

s∑
1

λkAkz

F (λ, z) = (
2t + 2ϕ(z)− 1, {(1 − |zj |2)zj }sj=1

)+ s∑
1

λkAkz,

where ε1 = · · · = εs−1 = 1 and εs is chosen in such a way that the index of FK0 |Bs at
λj = 0, zj = 1 and t = 1/2 is 1: see Theorem 6.1 of Chapter 3. On the other hand,
ϕ(z) is 1 if one of the zj has norm less that 1/4 and is 0 if all zj have norm larger than
1/2.

For zj all real and positive, one may easily deform the first map to(
2t − 1, εj (zj − 1)+ i

∑
λkn

j
k

)
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and the second map is deformed to(
2t − 1, 1 − zj + i

∑
λkn

j
k

)
.

The degree of the first map is εs(−1)s(s+1)/2 Sign det Bs = 1 (determining εs), while
the degree of the second map is (−1)s(−1)s(s+1)/2 Sign det Bs = (−1)sεs (here Bs is
the s × s matrix given by n

j
k of the action of � on z1, . . . , zs). Thus,

dK0 = (−1)sεs and [F ]⊥ = dK0 [FK0 ]⊥.
When s = 0, the only contribution is from the set where all z’s are small, giving the

generator F� = (2t − 1, X̄). While, for s = 1, i.e., with only one zj , we may collect
all sets giving the same FKj

, i.e., with the same action of �, giving a total contribution

of −nj εj , where εj = −Sign n
j
1 (if A1zj �= 0) and nj is the number of sets, i.e.,

of coordinates with the same Kj and where 9 is −1. In terms of the normalized
generators of Proposition 6.2 of Chapter 3, one has [F ]⊥ = dK0 Sign det Bs[F ∗

K0
]⊥,

i.e.,
[F ]⊥ = (−1)s(s−1)/2[F ∗

K0
]⊥.

In particular, for coordinates with the same action of �, one obtains the sum of
the contributions. Furthermore, as seen in Proposition 6.3 of Chapter 3, on conjugate
representations one has the same normalized generator. For s > 1, one has to collect
all sets with exactly s coordinates (s = l) and the same isotropy Kj = Kj1 ∩ · · · ∩Kjs

with dim �/Kj = s. Since dim �/Kji = 1 one cannot have two coordinates with
the same isotropy and, if Kj is as above, one will have nj1 . . . njs sets with the same
contribution. Note that here s ≤ n. � 

Proof of Theorem 3.1. It is enough to use the formula for the product given in Propo-
sition 7.7 of Chapter 3. Here, H̃ 0

1 = H0 and H̃ 0
2 = H2 = Kj or Kj1 ∩ · · · ∩ Kjs .

Since Ajx = 0 for j > k and x in VH , the condition dim(�/(Hi ∩ Kj)) = k + s

implies that one has to take into account only those Kj ’s for which there are s among
Aj+1x, . . . , Anx which are linearly independent on the s coordinates of (V H )⊥. By
construction ofVH this is clearly true for s = 1 and any coordinate of (V H )⊥. Further-
more, if x1, . . . , xk are the coordinates ofVH0 , defining the matrixB, and if x′1, . . . , x′s
are the coordinates of (V H )⊥ defining Bj , with the vectors Aj+1x, . . . , Aj+sx (for

instance), then on the union of those k + s coordinates one has the matrix

(
B 0
C Bj

)
.

Since B and Bj may be deformed to diag(ε, I ) and diag(Ij , I ), the above matrix has
a determinant with sign equal to ε εj .

Now, |H0/Hi | = ∏
kl in the decomposition of �/Hi on coordinates of VHi .

Then, for |H0 ∩Kj/Hi ∩Kj |, one has the same product, by ordering the coordinates
of VHi∩Kj by taking first (x1, . . . , xk), then the rest of VHi , then (x′1, . . . , x′s) and
finally any other coordinate. One will get the decomposition

�/Hi ∩Kj = (�/H0)(H0/Hi)(Hi/Hi ∩Kj).
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Since Aj+1x, . . . , Aj+sx are linearly independent on (x′1, . . . , x′s), one has that the
kl’s for these s variables are ∞ and kl = 1 for any other coordinate in the tail. Thus,

[FHi
]⊥[FKj

]⊥ = [FHi∩Kj
]⊥.

Furthermore, from the above argument for εεj , this equality is also true for nor-
malized generators. Note that one may have several Kj ’s giving the same Hi ∩ Kj

and their contributions have to be summed according to Propositions 6.2 and 6.3 of
Chapter 3, with a direct sum if one takes normalized generators. In particular, since
Hi < H , the Kj ’s coming from equivalent H -representations in (V H )⊥ give the
same Hi ∩ Kj = Hi ∩ K , with

∑
nj = n(K), the Morse number of Df⊥(x0) on

(V H )⊥ ∩ VK . For Kj = Kj1 ∩ · · · ∩ Kjs , the count of the sets of Lemma 3.3 gives∏s
i=1 n(Kji ) sets. � 

Remark 3.2. Another way to prove Theorem 3.1 is the following: since one has
AlxH = 0 for l > k, consider the map

f̃ (λ1, . . . , λk, x) = f (x)+
k∑
1

λlAlxH ,

on Rk ×�k , i.e., with x1, . . . , xk real and positive. It is clear that f̃ is H -equivariant
(in fact it is H0-equivariant) and, since the projection of f̃ on (V H )⊥ is that of f with
ϕ1 = · · · = ϕk = 0 for H , the map f̃ is in fact H -orthogonal. As in Lemma 3.2, one
may prove that f̃ is H -orthogonally homotopic to

(
f H (xH )+

k∑
1

λlAlxH , B1(xH )X1, . . . , Bm(xH )Xm

)
,

whereBj are the blocks ofDf⊥ on (V H )⊥. In fact, in this case one does not need to or-
thogonalize the linearization. As before, each block may be deformed to diag(−Ij , I ),
where Ij has the dimension of the Morse number of Bj (x0). One may replace −IjXj

by terms of the form (1 − |zj |2)zj , as in Lemma 3.3, and compute the sum of the
H -orthogonal degrees on the different sets, arriving at

Index⊥H (f̃ ; (0, 0)) =
∑

d ′j [F ′
j ]⊥H ,

where the d ′j are given by the same formula as the dj ’s: in fact, for f̃ H , the formula of
Proposition 6.1 of Chapter 3 gives this result. However, the problem is to show that the
homotopy of H -orthogonal maps lifts to a homotopy of �-orthogonal maps and that
F ′
j = Fj +∑k

1 λlAlxH : see Remark 3.2 of Chapter 3 and the proof of Theorem 3.4
in that Chapter. This operation may be done but it is delicate: it requires to prove a
different version of Lemma 1.1 in Chapter 3 and to examine carefully the generators.
We leave this task to the reader.
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Let us consider a particular case of Theorem 3.1, that of a �-orthogonal linear
map, which is useful for bifurcation.

Corollary 3.1. Assume that B is an invertible �-orthogonal matrix. Hence,
B = diag(B�, BR

i , Bl, Bj ), where BR

i stands for B restricted on a set of real co-
ordinates, each with the same isotropy Hi with |�/Hi | = 2, while Bl stands for B on
coordinates with action of � as Zm,m ≥ 3, and Bj = B∗

j stands for B on complex

coordinates with the same isotropy Kj with dim �/Kj = 1. Let σ0 = Sign det B� ,
σi = Sign det BR

i and nj be the complex Morse number of Bj . Then

i⊥(Bx) = (−1)σ0

(
[F ∗

�]⊥ +
∑

�/Hi
∼=Z2

((−1)σi−1)
2 [F ∗

Hi
]⊥ + · · ·

)
×
(
[F ∗

�]⊥ +
∑

�/Kj
∼=S1 nj [F ∗

kj
]⊥ + · · ·

)
,

where the unspecified terms are completely determined by σ0, σi , nj and are given in
Theorem 3.1.

Proof. Here, k = 0, s = 1 and since we have chosen the normalized generators, there
are no more signs to take into account. � 

Example 3.4 (Bifurcation). Assume that one has a family f (λ, x) of �-orthogonal
C1 maps, with f (λ, 0) = 0, λ ∈ R, x ∈ V . As seen in Lemma 7.2 of Chapter 1, if
one writes

f (λ, x) = B(λ)x + R(λ, x),

where B(λ) = Df (λ, 0), then B(λ)x and R(λ, x) are �-orthogonal and B(λ) has the
structure given in Corollary 3.1.

Assume B(λ) is invertible for λ �= 0 in a neighborhood of 0, then, as seen in
Theorem 5.2 of Chapter 2, deg⊥(|x| − ε, f (λ, x);B2ρ × B2ε) is well defined, where
B2ρ = {λ : |λ| < 2ρ} and B2ε = {x : |x| < 2ε}. Furthermore, one may deform
linearly R to 0 (this is an orthogonal deformation). Then

deg⊥((|x| − ε, B(λ)x);B2ρ × B2ε) = deg⊥((ρ2 − |λ|2, B(λ)x);B2ρ × B2ε)

will give the standard results on local and global bifurcation.
For the case of one parameter, the above degree is

Index⊥(B(−ρ)x)− Index⊥(B(ρ)x),

see Corollary 5.1 in Chapter 2. Hence, one has to compare the orthogonal indices at
0 of B(±ρ)x given in Corollary 3.1.

Proposition 3.1. Let f (λ, x) be C1-orthogonal, with f (λ, 0) = 0 and Df (λ, 0)
invertible for λ �= 0 small. Let

σ0(λ) = Sign det Df�(λ, 0), σi(λ) = Sign det Df
Hi⊥ (λ, 0),
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for Hi such that �/Hi
∼= Z2, and nj (λ) be the complex Morse number of Df

Kj

⊥ (λ, 0)
forKj isotropy of a coordinate such that�/Kj

∼= S1. Then one has global bifurcation,
i.e., there is a continuum of non-trivial solutions emanating from (0, 0) which is either
unbounded or returns to (λ, 0) with λ �= 0:

• in V � , if σ0(λ) changes sign, or

• in VHi if σi(λ) changes sign, or

• in VKj , if nj (λ) changes.

Furthermore, if the continuum is bounded and the bifurcation points on it are iso-
lated, then the sum of the jumps of the orthogonal indices is 0. Finally, if σ0(λ), σi(λ)

and nj (λ) don’t change, then there is an orthogonal nonlinearity R̃(λ, x) such that
Df (λ, 0)x + R̃(λ, x) is zero only at x = 0.

Proof. The first part is a direct consequence of Theorem 5.2 in Chapter 2. For the last
part, the construction of R̃, we refer to [I.V. 3, Theorem 5.2]. � 

Remark 3.3. (a) The case of more parameters is treated in [I] and [IV3]. In that case
the real and complex Bott periodicity theorems play a major role.

(b) If f (λ, x) = ∇ϕ(λ, x), then the change in the Morse number is sufficient to
guarantee local bifurcation, even in the non-equivariant case. However one does not
get a continuum. See the bibliographical remarks at the end of this chapter.

(c) If B
Kj

⊥ (λ) = λB, then nj changes provided B has a non-zero signature, for
example if B = I .

(d) For the correct application of Proposition 3.1 it is important to assimilate com-
plex conjugate representations (they are the same as real representations) as the fol-
lowing example shows: Let S1 act on C2 as (eiϕz1, e

−iϕz2). Consider the orthogonal
�-map

f (λ, z) = (λz1 + t z̄2,−λz2 + t z̄1),

with t = |z1|2+|z2|2. Since Az = i(z1,−z2), one has f (λ, z) ·Az = Re(f, Āz) = 0.
Taking the conjugate of the second component, one has that f (λ, z) = 0 if and only

if

(
λ t

t −λ

) (
z1
z̄2

)
= 0, i.e., the map has no zeros except z1 = z2 = 0, that is there

is no bifurcation. When λ goes through 0, the Morse number for z1 goes from 1 to 0
and that for z2 goes from 0 to 1, but their sum remains constant.

Example 3.5 (Periodic solutions of Hamiltonian systems). As an illustration of the
preceding results, we shall consider the problem of finding 2π -periodic solutions of
Hamiltonian systems of first and second order.

For first order systems, one looks at

f (X) = JX′ + ∇H(X) = 0,
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where X = (Y, Z) is in R2N, J is the standard symplectic matrix and H is C2. Note
that by rescaling time, there is no loss of generality when one looks for 2π -periodic
solutions instead of a fixed period T .

Assume that the abelian group �0 acts symplectically on R2N , i.e., it commutes
with J or, if X = (Y, Z), with Y and Z in RN , then the action on Y and Z is the same.
Assume also that H is �0-invariant and autonomous. Then, if � = S1 × �0 acts on
spaces of 2π -periodic functions with values in R2N and S1 acts by time translation,
we have seen, in Proposition 9.1 of Chapter 1, that f (X) is �-orthogonal with respect
to the L2(S1) scalar product. Here the infinitesimal generators for � will be AX ≡ X′
for the action of S1 and AjX, j = 1, . . . , n = Rank �0.

For the second order Hamiltonian equation

E(X) ≡ −X′′ + ∇V (X) = 0,

for X in RN and a C2 potential V which is �0-invariant, one has that E(X) is �-
orthogonal with respect to the L2(S1) scalar product (Proposition 9.2 in Chapter 1),
with infinitesimal generators AX ≡ X′, AjX, j = 1, . . . , n.

In order to apply the orthogonal degree, we shall assume that there is an open
bounded subset �̃ of R2N (or RN ) invariant under �0 such that any 2π -periodic
solution cannot touch ∂�̃ at any time. Then, as in Remark 2.3, one defines

� = {X ∈ W : ‖X‖W < R,X(t) ∈ �̃},
where W = H 1(S1) in the first case and H 2(S1) for the second order system, and R

is chosen so large that any periodic solution in �̃ has ‖X‖W < R/2, since ∇H and
∇V are bounded on �̃ and X(t) is continuous (or C1) in W . However, the orthogonal
degree has been defined here only for finite dimensional spaces and the extension to
infinite dimensional spaces requires either modifying the equations and/or working
with intermediate spaces like H 1/2(S1), and many technical difficulties: for instance
the operator AX is a Fredholm operator only from H 1 into L2. Furthermore, the
compactness assumptions which we have used in order to define the �-degree in
infinite dimensions imply that almost all the components of the degree should be 0:
this is a result of the suspension isomorphism. However, if one takes ∇H(X) = BX

for a constant matrix B, then the complex Morse index of inJ + B is N for large n.
Then, one could look at differences of degrees or differences with respect to a fixed
reference map like JX′. However, it is simpler to use the fact that one has a large ball
in W and, as in Remark 9.2 of Chapter 1, decompose W , writing any X as X1 ⊕X2,
where X1 = PX corresponds to modes n, with |n| ≤ N1 and X2 to the others. Then,
solving for X2 as a function of X1, by the global implicit theorem, one is lead to the
study of the reduced equation

JX′
1 + P∇H(X1 +X2(X1)) = 0,

which is �-orthogonal and inherits the gradient structure, for X1 in the finite dimen-
sional space PW . One may then study deg⊥(Pf (X1 + X2(X1);P�). Of course
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the price one has to pay is that it will be necessary to see how the spectrum of the
linearization depends on N1.

Assume then that �X0 is an isolated solution of the Hamiltonian system f (X),
i.e., an orbit of dimension k with ker Df (X0) of dimension k and generated by
X′

0(t), AjX0(t) with exactly k of them linearly independent. Let H be the isotropy
of X0. One will be able to apply Theorem 3.1 provided one identifies H and one
computes nH , nHi

and n(Ki) for the reduced equation and for all N1’s large enough.

Remark 3.4. The hyperbolic condition on Df (X0) prevents it to commute with J ,
unless k = 0. In fact, if this would be the case, then if V belongs to ker Df (X0) so
does JV which has thus to be a real combination of X′

0 and AjX0.

But, from Proposition 9.1 of Chapter 1, JX′
0 is �-orthogonal with respect to the

L2-scalar product, i.e., it is orthogonal to X′
0 and AjX0. This is possible only if X0

is constant. In that case, the relation JA1X0 = ∑k
j=1 λjAjX0, with X0 = (Y0, Z0)

leads, for a pair of coordinates (yi, zi), with the same action of �0, to

−ni1zi =
( k∑

l

λjn
i
j

)
yi

ni1yi =
( k∑

1

λjn
i
j

)
zi .

Thus, either yi = zi = 0 or ni1 and
∑k

l λjn
i
j = 0. Then, if k > 0, X0 is non zero

and one arrives at a contradiction. Note that one may have pieces of Df (X0) which
commute with J .

Now, we have seen in §9 of Chapter 1 that X0 may be of three different types: a
time stationary solution, a rotating wave or a truly time periodic solution.

(a) Stationary solution. If X0 is time stationary, then H = S1 ×H0, with H0 < �0
such that dim �0/H0 = k and H = S1 × T n−k . Thus, VH is contained in R2N ,
the space of constant functions, B ≡ Df (X0) has the form diag(BH ,BR

m,B
C

l , B
C
s ),

where, on each Bm the group H acts as Z2, on the complex Bl as Zp, p ≥ 3, and
on the complex Bs as S1. Since B = D2H(X0), each of these matrices is self-
adjoint. Furthermore, Bs is complex self-adjoint and H -orthogonal. Note that since
J commutes with �0, J has also a diagonal structure diag(JH , Jm, Jl, Js), each piece
coupling a pair of coordinates. The hyperbolicity condition means that ker BH has
dimension k, that Bm,Bl and Bs are all invertible and that, for n �= 0, in J + B is
invertible. One has the following result.

Proposition 3.2. For a stationary hyperbolic orbit, the orthogonal index is given by

(a) dH = η(−1)nH , with nH the Morse number of BH and η = (−1)k(k+1)/2;

(b) dHj
= dH ((−1)nj − 1)/2, with (−1)nj = Sign det BR

j ;
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(c) the Morse index of inJ + B̃ where B̃ is any of the matrices BH ,BR
m,B

C

l or BC
s ,

for the mode n > 0 and the decomposition of C2N (induced by that of R2N)

into irreducible representations of H ;

(d) the Morse index of BC
s .

Proof. As seen above, the index we have to compute is that of the projection on the
modes n with |n| ≤ N1 for N1 large enough, that is

(inJ + B)Xn + gn(X1 +X2(X1)) = 0,

where X1 corresponds to these modes. As in Theorem 3.1, one has to look at the index

of BHX0 + g
H

0 (XH ) and that of (inJ + B)Xn for n �= 0. Now, if X = XH in VH ,
since in J + B are all invertible for n �= 0, one has X2(XH ) = 0. This gives (a) and
(b). The rest of the proof comes from Corollary 3.1. � 

Remark 3.5. (a) SinceB = D2H(X0) = BT is a real self-adjoint matrix and in J+B

is complex self-adjoint, this last matrix has real spectrum. Furthermore, if X is an
eigenvector in C2N of inJ+B̃, with eigenvalueλ, then X̄ is an eigenvector of−inJ+B̃

with the same eigenvalue λ. Hence, the Morse index of in J + B̃ is equal to the Morse
index of −inJ + B̃. Since one has to assimilate conjugate representations, the Morse
index of Corollary 3.1, is, for n �= 0, twice the Morse index of inJ + B̃. For BC

s ,
which has a complex structure and is complex self-adjoint, its complex Morse index
is half its real Morse index, as seen in Remark 3.1. (b).

(b) If one has a family of Hamiltonians f (λ,X), with f (λ,X0) = 0 for some
stationary X0, which is hyperbolic for λ1 and λ2, then, if any of the above numbers
change, one has a global bifurcation in the interval from λ1 to λ2. This bifurcation
will take place in VK , where K < H is any of the isotropy subgroups for which dK
has changed and VK is characterized in Lemmas 9.4–9.6 in Chapter 1. In particular,
if there is no bifurcation in VH , then one has a bifurcation from a k-torus �X0 to
a (k + 1)-torus, either stationary if the Morse index of BC

s has changed, or, if there
is no bifurcation of stationary solutions, to a time-periodic solution, i.e., a pulsating
k-torus.

(c) If J commutes with BR

j , then nj is even and dHj
= 0. More generally,

if J commutes with B̃, then one may decompose the space into two-dimensional
subspaces, invariant under J, 〈Xk, JXk〉 corresponding to the eigenvalue λk of B̃

with two eigenvectors, orthogonal between them. The eigenvalues of in J + B̃ on
this subspace are λk ± n and the Morse number of in J + B̃ is (a(n) + a(−n))/2,
where a(n) is the number of eigenvalues of B̃ which are less that n: recall that, since
B = D2H(X0) = BT , the spectrum of B is real and that a(n) is even. In particular,
if n is very large (larger that ‖B‖), then a(n) = 2N and a(−n) = 0.

(d) For the system−X′′+∇V (X) = 0, withB = D2V (X0), then the Morse index
of n2I + B̃ is a(−n2), the number of eigenvalues of B̃ which are less that −n2. Part
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(a) of these remarks apply here. Note that, for the system X′ = −Y, Y ′ = ∇V (X),
then J commutes with D2(V (X)+ ‖Y‖2/2) only if B = I .

(b) Reduction to the stationary case. Assume that X0 is a rotating wave, i.e., that X′
0

is a linear combination of the AjX0’s. Then, we have seen in Case 9.2 of Chapter 1
that there is a moving coordinates change of variables A(t) such that Y (t) = A(t)X(t)

satisfies the equivalent systems

JY ′ − JA′(0)Y + ∇H(Y) = 0,

−Y ′′ − A′(0)2Y + 2A′(0)Y ′ + ∇V (Y ) = 0,

which are �-orthogonal and Y0(t) = A(t)X0(t) is constant in time, i.e., one has
frozen the rotating wave. See Remark 9.3 of Chapter 1 for the form of A(t). Then,
if B = D2H(Y0), respectively D2V (Y0), with ∇H(Y0) = JA′(0)Y0, respectively
∇V (Y0) = A′(0)2Y0, one has to look at the Morse numbers of

inJ − JA′(0)+ B̃, n2I + 2inA′(0)− A′(0)2 + B̃,

respectively, where B̃ is one of the pieces of B due to the action of �0.

(c)Truly periodic solutions. Assume thatX0 is a (2π/p)-periodic hyperbolic solution
of any of the above Hamiltonian systems, with isotropy H and dim �/H = k, such
thatX′

0, A1X0, . . . , Ak−1X0 are linearly independent. One has thatH = Zp×H0, the
torus part of H is H = H 0, V

H = {X(t) ∈ V0 = (RN)H 0}. Furthermore, according
to Lemmas 9.4–9.6 of Chapter 1, one has

VH = {X(t) ∈ V
H0
0 , (2π/p)-periodic, X(t) = γ0X(t + 2π/q))},

where γ
q0
0 is in H0 and q = pq0. See Example 2.11.

Also, for each Kj , with H/Kj
∼= Z2, one has a subgroup K0j of H0 such that

H0/K0j ∼= Z2 or H0 = K0j with Vj = V
K0j
0 = V +

j ⊕ V −
j where γ

q0
0 acts as ± Id on

V ±
j and V

H0
0 = V +

j if and only if V −
j �= {0}. Then,

VKj = {X(t) ∈ Vj , 2π -periodic, X(t) = γ 2
0 X(t + 4π/q)}.

Finally, for each set of equivalent irreducible representations Ṽl of H0 in V ⊥
0 ,

with complex coordinates X0, . . . , Xr and action of γ0 on Xj as e2πiαj , then for each
n0 = 0, . . . , q − 1, there is a different set of equivalent irreducible representations of
H , with isotropy Kn0 , in (V H )⊥, and

VKn0 = {X(t) = (X0(t), . . . , Xr(t)), R−2π(n0/q+α0)γ0X
j(t + 2π/q) = Xj(t)},

when Rϕ is a rotation of angle ϕ of the coordinates of Xj . A complete description of
VKn0 is given in Lemma 9.6 of Chapter 1.
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LetB(t) = D2H(X0(t))which is symmetric, (2π/p)-periodic andH0-equivariant
for each t . Furthermore, as in Lemma 2.4, one has

B(t) = diag(B0(t), Bj (t), B̃l(t)),

where B0 corresponds to V
H0
0 , Bj to V −

j or (V +
j )∩(V

H0
0 )⊥ and B̃l to Ṽl . Furthermore,

γ0B(t + 2π/q) = B(t)γ0.

Now, recall that LX = JX′ + B(t)X is a bounded Fredholm operator of index
0, from H 1(S1) into L2(S1) and self-adjoint on L2(S1), with kernel generated by
{X′

0, A1X0, . . . , Ak−1X0}. (For −X′′ + B(t)X the domain is H 2(S1)).
Hence, one has the decompositions

H 1(S1) = ker L⊕ RangeL ∩H 1

L2(S1) = ker L⊕ RangeL,

where this last decomposition isL2-orthogonal, and one has a bounded pseudo-inverse
K from RangeL onto RangeL ∩H 1.

Furthermore, the reduction to finite dimensions, on VN1 generated by all modes n
with |n| ≤ N1, is done by using the implicit function theorem on the higher modes to
solve the equation

J X̃′
N1
+ (I − PN1)∇H(XN1 + X̃N1) = 0,

for X̃N1 in V ⊥
N1

and reduce to

JX′
N1
+ PN1∇H(XN1 + X̃N1(XN1)) = 0,

which is a finite dimensional �-orthogonal map. It is not difficult to see that the
linearization of this last equation is of the form

LN1XN1 = JX′
N1
+ PN1B(t)(XN1 + X̃N1) = 0,

where X̃N1 is the unique solution, for N1 large enough, in V ⊥
N1

of the equation

L̃N1X̃N1 = J X̃′
N1
+ (I − PN1)B(t)(XN1 + X̃N1) = 0.

Thus, ‖X̃N1‖1 ≤ C‖XN1‖0 and ‖X̃N1‖0 ≤ ‖X̃N1‖1/N1, where C depends only on
sup |B(t)|, defining a continuous operator X̃N1(XN1) into H 1(S1).

Lemma 3.4. If N1 is large enough, the operator LN1 is self-adjoint, with ker LN1 =
PN1(ker L) of dimension k and RangeLN1 = RangeL ∩ VN1 . The pseudo-inverse
KN1 of LN1 is PN1KPN1 , with ‖KN1‖ ≤ ‖K‖.
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Proof. One may use the gradient structure of the linearization of the reduction, or see
directly that

(LN1XN1 , ZN1)L2 − (XN1 , LN1ZN1)L2 = (BX̃N1 , ZN1)− (XN1 , BZ̃N1)

= (X,BZN1)− (XN1 , BZ),

using the symmetry of B. But, since J X̃′
N1

= −(I − PN1)BX, then

(J X̃′
N1

, Z̃N1) = −(BX, Z̃N1) = (X̃N1 , J Z̃
′
N1

) = −(BZ, X̃N1).

Then, the above difference is (Z,BX)− (X,BZ) = 0. Since

LX = LN1XN1 ⊕ L̃N1X̃N1 , X = XN1 ⊕ X̃N1 ,

where L̃N1X̃N1 = 0 in the definition of LN1 , then clearly ker LN1 = PN1(ker L) with
dim ker LN1 ≤ k, equality coming from linear independence and the definition of
L̃N1 . Furthermore, if LN1XN1 = ZN1 then L(XN1 + X̃N1) = ZN1 and RangeLN1 =
RangeL∩VN1 . From LKZ = Z, for Z = ZN1 in VN1 , one has that KN1 = PN1KPN1

and, as operator from L2 into H 1, one has ‖KN1‖ ≤ ‖K‖ and LN1KN1 = IdVN1
. � 

Note that, if P is the projection onto ker L and I − P that on RangeL, one has
that PN1P will map onto ker LN1 .

Now, since the inclusion of H 1 in L2 is compact, the operator L − λI is also
a Fredholm operator of index 0, from H 1 into L2, self-adjoint in L2 and K , as an
operator from L2 into L2, is compact. Hence, the spectrum of L, σ(L), is discrete.

Recall that JX′ is strongly indefinite, i.e., its spectrum goes to ±∞, while −X′′
is an elliptic operator which is non-negative.

Lemma 3.5. Let K be a compact interval in R. Then:

(a) If σ(L) ∩K = φ, then σ(LN1) ∩K = φ for N1 large enough.

(b) If σ(L)∩K = λ0 with dim ker(L−λ0I ) = d ≤ 2N , then for N1 large enough
σ(LN1) ∩K has d eigenvalues (counted with multiplicity).

Proof. Assume λ is not in σ(L), let Kλ be the inverse of L−λI , then ‖(L−λI)X‖0 ≥
‖Kλ‖−1‖X‖1 ≥ ‖Kλ‖−1‖X‖0. If X̃N1 is defined by L̃N1X̃N1 = 0, then one has

(L− λI)(XN1 + X̃N1) = (LN1 − λI)XN1 − λX̃N1 .

Thus, one gets the estimate

‖(LN1 −λI)XN1‖0 ≥ ‖Kλ‖−1‖XN1‖0−|λ|‖X̃N1‖0 ≥ (‖Kλ‖−1−C|λ|/N1)‖XN1‖0.

Hence, for N1 large enough, λ is not in σ(LN1). For the compact set K , it is easy to
see that one will get an upper bound for ‖Kλ‖ on K and LN1 − λI will be invertible,
for all λ in K , provided N1 is large enough.
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For (b), write

(LN1 − λI)XN1 = (L− λ0I )(XN1 + X̃N1)+ (λ0 − λ)XN1 + λ0X̃N1 ,

and treat this problem as a (linear) bifurcation problem by projecting on ker(L−λ0I ),
via P0, and on Range(L− λ0I ), via I − P0:

(LN1 − λI)XN1 = (L− λ0I )[(I − P0)(XN1 + X̃N1

+Kλ0(I − P0)((λ0 − λ)XN1 + λ0X̃N1)]
⊕ (λ0 − λ)P0XN1 + λ0P0X̃N1 .

Then, (LN1 − λI)XN1 = 0 gives two equations. The first one is uniquely solvable for
(I − P0)XN1 in terms of P0XN1 , as a linear operator:

(I − P0)XN1 = −(I + (λ0 − λ)Kλ0)
−1(I + λ0Kλ0)(I − P0)X̃N1 ,

for λ such that |λ− λ0| ≤ ‖Kλ0‖−1/2 and N1 large enough. In fact,

‖(I − P0)XN1‖0 ≤ C̃‖X̃N1‖0 ≤ C̃(‖P0XN1‖2
0 + ‖(I − P0)XN1‖2

0)
1/2/N1,

that is, ‖(I −P0)XN1‖0 ≤ C̃‖P0XN1‖0/N1, for this range of λ’s. The second term is
of the form

((λ0 − λ)I + C(λ))P0XN1 = 0,

where C(λ) is a d × d matrix, analytic in λ and symmetric (as it is easy to see)
with ‖C(λ)‖ ≤ C/N1: since LN1 is symmetric, its spectrum is real. Then, for
N1 ≥ 2C‖Kλ0‖, the spectrum of C(λ) is completely contained in the interval |µ| ≤
‖Kλ0‖−1/2 and gives d curves parametrized by λ (this is due to the fact that C(λ)

is symmetric) and the line λ − λ0 = µ intersects these curves in d points. From
(a), in K\{λ : |λ − λ0| ≤ ‖Kλ0‖−1/2}, one has no eigenvalues of LN1 , for N1 large
enough. (Note that, ifLX = λX, thenX(t) is a 2π -periodic solution of the differential
equation, hence d ≤ 2N ). � 

The above information is enough to prove the following

Proposition 3.3. If X0(t) is a hyperbolic (2π/p)-truly periodic solution of the system
−X′′ + ∇V (X) = 0, then, for N1 large enough, the truncated system −X′′

N1
+

PN1∇V (XN1 + X̃N1) = 0 has an orthogonal index given by the following:

1. dH = η(−1)nH , where nH is the Morse number of −X′′ + B0(t)X, with
B0 = D2V (X0) restricted on V

H0
0 and X in VH , i.e., X(t) is in V

H0
0 , (2π/p)-

periodic and X(t) = γ0X(t + 2π/q), with γ
q0
0 in H0 and q = pq0. Here

η = (−1)k(k+1)/2.

2. dKj
= dH ((−1)nKj − 1)/2, where nKj

is the Morse number of −X′′ +Bj (t)X,

with Bj = D2V (X0) restricted to Vj ∩ (V
H0
0 )⊥ and X in VKj , i.e., X(t) is in

this subspace and X(t) = γ 2
0 X(t + 4π/q).
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3. dKn0
is the complex Morse index of −X′′ + B̃l(t)X, for each n0 = 0, . . . , q− 1

andX(t) inVKn0 , i.e., X(t) is in Ṽl andR−2π(n0/q+α0)γ0X
j(t+2π/q) = Xj(t)

for j = 1, . . . , r the complex coordinates of X(t) in Ṽl , and B̃l(t) is D2V (X0)

restricted to Ṽl .

Proof. Note first that the projection on the modes is compatible with the decomposition
of B(t). Hence, the orthogonal index is given by the different Morse numbers of
LN1X = −X′′

N1
+ PN1B̃(XN1 + X̃N1). Since LX = −X′′ + B̃(t)X is an elliptic

operator, its spectrum is bounded from below, because

(LX − λX,X)L2 ≥ ‖X′‖2
L2 − (M + λ)‖X‖2

L2 ≥ 0 for λ ≤ −M = −‖B̃‖C0 .

Then, the finite number of strictly negative eigenvalues ofL will give the same number
of negative eigenvalues of LN1 , for N1 large enough, due to Lemma 3.5: this gives the
result for nKj

and dKn0
since L is invertible on VKj and VKn0 . For VH , Lemma 3.4

implies that ker LN1 is k-dimensional, i.e., none of the zero eigenvalues of L escapes
from the origin when dealing with the approximation LN1 . This finishes the argument.

� 

For the system JX′ + ∇H(X) = 0, the situation is slightly different and requires
the following preliminary result

Lemma 3.6. For the system LX = JX′ + B̃(t)X, the Morse numbers n(LN1) of LN1

and X(t) in Ṽ = V
H0
0 or Vj ∩ (V

H0
0 )⊥ or Ṽl are such that, for N2, the next integer

after N1 where one has new modes, one has n(LN2) = n(LN1)+ dim Ṽ , where Ṽ has
even dimension.

Proof. Note first that in VH all functions are 2π/p-periodic, hence N2 = N1 + p,
while in VKj and VKn0 one has N2 = N1 + q (see Lemmas 9.5 and 9.6 in Chapter 1).
Hence, if XN2 = XN1 ⊕ YN1 , one has that YN1 = (Xm,X−m = X̄m) for one mode m

(a multiple of p for VH ), with Xm = (X̃, Ỹ ) in C2r , where 2r = dim Ṽ : because of
J , the space Ṽ is even dimensional. Then,

LN2XN2 = LN1XN1 + PN1B(YN1 + X̃N2 − X̃N1)

⊕ JY ′N1
+ (PN2 − PN1)B(XN1 + YN1 + X̃N2).

But, since X̃N1 = X̃N2 ⊕ ỸN1 , with J Ỹ ′N1
+ (PN2 −PN1)B(XN1 + X̃N1) = 0, one

has

LN2XN2 = LN1XN1 + PN1B(YN1 − ỸN1)

⊕ J (Y ′N1
− Ỹ ′N1

)+ (PN2 − PN1)B(YN1 − ỸN1).

Now, since LN2XN2 and LN1XN1 ⊕ JY ′N1
are self-adjoint, this is also the case

for the linear deformation Lτ
N2

, where B is replaced by τB in the above expression.
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Then, for m > ‖B‖, if one has Lτ
N2

XN2 = 0 then YN1 − ỸN1 = 0 and LN1XN1 = 0,
i.e., LN2XN2 = 0. Thus, the kernel of LN2 is preserved and the other eigenvalues of
LN2 do not cross 0. Similarly, the deformation J (Y ′N1

− τ Ỹ ′N1
) will not introduce a

new eigenvector with eigenvalue 0, hence the Morse indices are related by

n(LN2) = n(LN1)+ n(JY ′N1
).

Now, if JY ′N1
= λYN1 , with YN1 = cosmtX + sin mtY , where X and Y are in R2r ,

then mJY = λX,−mJX = λY and, multiplying by J,m2Y = −λmJX = λ2Y , that
is λ = ±m, each eigenvalue with a (2r)-dimensional eigenspace. � 

Note that the matrices LN1 and PN1LPN1 are such that

‖LN1XN1 − PN1LXN1‖0 = ‖PN1BX̃N1‖0 ≤ C‖XN1‖0/N1,

hence, for N1 large enough„ the two matrices have their spectra close, but the 0
eigenvalue of LN1 may split into k eigenvalues for PN1LPN1 .

Proposition 3.4. If X0(t) is a hyperbolic (2π/p)-truly periodic solution of the system
JX′ + ∇H(X) = 0, then, for N1 large enough, PN1X0 gives an orthogonal index for
JX′

N1
+ PN1∇H(XN1 + X̃N1) equal to

1. dH = η(−1)nH , where nH is the Morse number of LN1 restricted to VH , with
η = (−1)k(k+1)/2,

2. dKj
= dH ((−1)nKj − 1)/2, where nKj

is the Morse number of LN1 restricted
to VKj ∩ (V H )⊥,

3. dKn0
the Morse number of LN1 restricted to VKn0 ,

where VH , VKj and VKn0 are defined in Proposition 3.3. For N1 large enough, the
numbers nH and nKj

have a constant parity while dKn0
increases by the even number

dim Ṽl , when N1 is replaced by N1 + q.

Proof. It is enough to note that dim Ṽ = 2r and apply Corollary 3.1. � 

Remark 3.6. If J B̃ = B̃J for some block B̃ in B, let /(t) be the fundamental
matrix for X′ = J B̃X, with /(0) = I . Since /′ = J B̃/ = B̃J/, then J/ and
/J are also fundamental matrices and, being equal for t = 0, one has that J and /

commute. Now, (/T J/)′ = 0, hence /T J/ = J and, since J and / commute,
one has that / is an orthogonal matrix and hence with spectrum on the unit disk. If
JX′ + B̃X = λX, then X(t) = e−λJ t/(t)X(0) and X(2π) = X(0) if and only
if X(0) is in ker(I − e−2πλJ/(2π)). Furthermore, eλJ t preserves the generalized
eigenspaces of /(t). Then, if /(2π)W = µW , one has (I − e−2πλJ/(2π))W = 0
if and only if e2πλJW = µW = (cos 2πλI + sin 2πλJ )W , that is µ = e±2πiλ.
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Note also that if JX′ + B̃X = λX, then Y (t) = e−J tX(t) satisfies JY ′ + B̃Y =
(λ + 1)Y and is 2π -periodic if X(t) is 2π -periodic. Similarly, if X(t) belongs to
VH , V Kj or VKn0 then Y (t) = e−qJ tX(t) belongs to the same subspace: this is due
to the facts that VH0

0 , Vj and Ṽl are invariant under J , that e−qJ t is (2π/q)-periodic
and that �0 commutes with J (see Lemmas 9.4–9.6 in Chapter 1). Thus, if one
knows the eigenvalues of JX′ + B̃X = L̃X which are in [−q, 0], then the whole
spectrum of L̃ will be given by translations of multiples of q. Note also that, if X is
an eigenvector of L̃, then JX is also an eigenvector with the same eigenvalue. Hence,
all eigenvalues of L̃ have even multiplicity (see also Remark 3.4). In this case, one
has that X̃N1(JXN1) = J X̃N1(XN1), by uniqueness of the solution to L̃N1X̃N1 = 0,
and LN1 commutes with J . Hence, the corresponding Morse number is even and, if
B̃ is based on VKj , one has dKj

= 0.
Note finally that one may relate the spectra of /(2π/q) to that of /(2π), as in

Lemma 2.4 and Proposition 2.11.
However, if J and B̃ don’t commute then the spectra of L̃ and of / need not be

related.

Example 3.6 (Spring-pendulum systems). We shall give now an illustration of how
the equivariant degree for orthogonal maps, in particular for Hamiltonian systems, may
be used to show bifurcation from an S1-orbit to a T 2-orbit in two spring-pendulum
apparatus.

The first system consists of a spring, moving vertically only, with a rigid pendu-
lum suspended at the end, free to move in any direction. If one pulls the pendulum
downwards slightly, one obtains a stable harmonic oscillation. For a stronger pull,
this oscillation looses its stability and one has an oscillation in a plane. For a still
stronger pull, one gets an oscillation of the pendulum with a triangular pattern in
space. Stronger pulls seem to lead to more complicated patterns.

The second apparatus is a pendulum with an elastic shaft. The same succession of
patterns is observed and follow the behavior predicted by the study we shall present.

For the first system, the spring has length l0 at rest and a constant k. It is suspended
at the origin, with a mass M at the end, i.e., at the point (0, 0, l), orienting the z-axis
downwards. From this mass, one attaches a rigid pendulum, of length r0, with a mass
m at its end, of coordinates (x, y, z). The kinetic and potential energies are

T = 1

2
Ml̇ 2 + 1

2
m(ẋ2 + ẏ2 + ż2)

K = 1

2
k(l − l0)

2 −Mgl −mgz

with the relation r2
0 = x2 + y2 + (z− l)2.

Instead of using a Lagrange multiplier for this holonomic relation, we shall write

l = z− r = z− (r2
0 − x2 − y2)1/2,
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assuming thus that 0 ≤ l ≤ z, i.e., that the pendulum does not reach the horizontal
position. The Euler equations for x(t), y(t), z(t), denoted xj (t), j = 1, 2, 3, are

d

dt

(
∂

∂ẋj
(T −K)

)
= ∂

∂xj
(T −K)

and give the following system of equations

M


ẍ

ÿ

z̈


+ C̃


x/r

y/r

1


+


 0

0
−mg


 = 0,

where C̃ = C + k(z− r − l0)−Mg, with

C = M

(
ẋ2 + ẏ2

r
+ (xẋ + yẏ)2

r3

)

M =

m+M x2

r2 M
xy

r2 M x
r

M
xy

r2 m+M
y2

r2 M
y
r

M x
r

M
y
r

m+M


 .

If one defines
Z = z− r0 − l0 − (m+M)g/k,

then C̃ is transformed into C + B + A, where

A = mg, B = k(Z + r0 − r).

Since we are looking at periodic solutions of the system, of unknown frequency
ν, we shall scale the time by τ = νt , and get the system

f (ν, x, y, z) ∼= ν2M


x′′
y′′
Z′′


+ A


x/r

y/r

0


+ (B + ν2C)


x/r

y/r

1


 = 0,

where, in C, we have changed the derivative with respect to t by the derivative with
respect to τ .

Note that det M = m2(m + M + M(x2 + y2)/r2), that is, M is an invertible,
symmetric, positive definite matrix. Furthermore,

ν−2M−1f = X′′ + Ã


 x/r

y/r

−M(x2 + y2)/(m+M)r2


+ (B̃ + ν2C1)


x/r

y/r

1


 ,

where XT = (x, y, Z), Ã = g(m +M)/(m +M +M(x2 + y2)/r2), B̃ + ν2C1 =
(B + ν2C)/(m+M +M(x2 + y2)/r2).
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Notice that, forx = y = 0, the system reduces to ν2(m+M)Z′′+kZ = 0, with 2π -
periodic solutions of the form a cos(nτ+ϕ), with n = ν0/ν and ν0 = (k/(m+M))1/2

is the natural frequency of the spring when it oscillates vertically.
The mapping f (ν,X) is continuous from C2

2π into C0
2π and satisfies the properties

of the following lemma.

Lemma 3.7. (a) The mapping f (ν,X) is S1 × S1-orthogonal, that is

1. f (ν, Tϕ,ψX) = Tϕ,ψf (ν,X)

2. (f (ν,X),X′)L2 = 0, (f (ν,X),AX)L2 = 0,

where Tϕ,ψX(τ) = Rψ(X(τ + ϕ)) and Rψ is a rotation of angle ψ and axis the
Z-axis, hence with infinitesimal generator AX = (−y, x, 0).

(b) f (ν,X) is also reversible, in the sense that f (ν, R̃εX) = R̃εf (ν,X), where

R̃ε(x(τ ), y(τ ), Z(τ)) = (x(−τ), εy(−τ), Z(−τ)), ε = ±1.

Proof. The equivariance with respect to the time shift, X(τ + ϕ), follows from the
fact that the system is autonomous. Furthermore, since in C one has terms of the form
X·X′ andX′ ·X′, it is clear thatC is invariant underRψ and the equivariance off (ν,X)

with respect to Rψ reduces to that of MX′′. Since M = mI+MD(X) and it is easy to
check directly that D(RψX) = RψD(X)R−1

ψ , one has D(RψX)RψX = RψD(X)X,
i.e., that f (ν, RψX) = Rψf (ν,X).

For the orthogonality one has, by direct calculation, that f (ν,X) ·X′ = d
dτ

(K+T )

which integrates to 0 on periodic functions, i.e., one has conservation of energy on
solutions.

On the other hand, f (ν,X) · AX = ν2m(xy′′ − x′′y), which integrates to 0 on
periodic functions.

Finally, the reversibility is easily checked. � 

Remark 3.7. (a) One has (xx′ + yy′)/r = (r0 − r)′ and (r0 − r)′′ = C/M + (xx′′ +
yy′′)/r , hence one may rewrite the systems in the form

mν2U ′′ + (mg + kV +Mν2V ′′)U/r = 0

mν2Z′′ + kV +Mν2V ′′ = 0,

where U = x + iy and V = Z + r0 − r . In this form the equivariance with respect
to RψU = eiψU is clear, as well as that with respect to conjugation, equal to R̃−1R̃1.
Furthermore, one derives easily the conservation of the energy. One may also use the
second equation in order to write the first one as

ν2U ′′ + (g − ν2Z′′)U/r = 0,

but with the loss of the orthogonality.
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(b) It is easy to check that R̃εTϕ,ψ = T−ϕ,εψ R̃ε, i.e., these actions don’t commute.
As a matter of fact, we should have stated that f (ν,X) is O(2) × O(2)-orthogonal,
where the first component O(2) acts as Tϕ and R̃1, while the second component acts
as Tψ and the conjugation R̃−1R̃1. We have chosen, since the theory developed in this
book is for abelian actions, to put together the non-abelian part in R̃ε and we shall
use this information to characterize further the bifurcated solutions. Note here that if
X(τ) is a solution, then R̃−1R̃1X and RπX are also solutions.

The second system consists of an elastic spring, of length at rest r0 and suspended
at the origin (the z-axis is again oriented downwards), with a mass m at its end. One
has

T = 1

2
m(ẋ2 + ẏ2 + ż2)

K = 1

2
k(r − r0)

2 −mgz,

where r = (x2 + y2 + z2)1/2. The Euler equations are

mẌ + k(r − r0)X/r −mg(0, 0, 1)T = 0.

Let Z = z− (r0 +mg/k) and τ = νt , then one gets the system

g(ν,X) = mν2X′′ + kX + k
r0

r


 −x

−y

(x2 + y2)/(Z + r + r0 +mg/k)


 = 0,

where the last term in the third component comes from k(r0/r)(r − z) and r − z =
(r2 − z2)/(r + z), with r = (x2 + y2 + (Z + r0 +mg/k)2)1/2. Thus, the problem is
to find 2π -periodic solutions to g(ν,X) = 0. It is easy to see that x = 0, y = 0, Z =
a cos(nτ +ϕ), with n = ν0/ν and ν0 = (k/m)1/2, the natural frequency of the spring
when it oscillates vertically, is a solution.

Note that g(ν,X) is a continuous map from C2
2π into C0

2π , provided r �= 0, i.e., if
the spring does not collapse.

Lemma 3.8. The mapping g(ν,X) is S1 × S1-orthogonal with respect to the action
defined in Lemma 3.7 and reversible as well.

Proof. The equivariance with respect to the time shift and the rotation around the z-axis
are easy to prove. The orthogonality to X′ follows from the conservation of energy
and that to AX is immediate. The reversibility follows as in the previous system. � 

As noted above, X0(τ ) = (0, 0, a cos(nτ + ϕ)) is a solution, with ν = ν0/n, of
f (ν,X) = 0. Let us linearize f (ν,X) around this solution, with ν = ν0/n+ µ and
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Z = Z0 + z and obtain

(ν0/n)
2mx′′ +m(g + (k/(m+M))Z0)(x/r0)

(ν0/n)
2my′′ +m(g + (k/(m+M))Z0)(y/r0)

(ν0/n)
2(m+M)z′′ + kz− 2k(n/ν0)Z0

where we have used the fact that (ν0/n)
2(m+M)Z′′

0 + kZ0 = 0. Equivalently, with
Z0 = a cos(nτ + ϕ) and ν0 = (k/(m+M))1/2, one has

Ln(µ,X) = X′′ + n2


(α + 2β cos(nτ + ϕ))x

(α + 2β cos(nτ + ϕ))y

z+ µγ cos(nτ + ϕ)




where α = g/(ν2
0r0) = g(m+M)/(kr0), β = a/(2r0), γ = −2an/ν0.

That is, the two first equations are Mathieu’s equations and the third is a resonant
harmonic oscillation. The amplitude a of Z0 plays the role of an extra parameter.

As before we shall fix the phase ϕ of the one-dimensional orbit Z0, at 0. Notice
the complex structure induced by the action of Rψ .

Lemma 3.9. One has dim ker Ln = 2, 4 or 6, with eigenvectors µ = 0, z = cos nτ
or sin nτ, x and y are Mathieu functions corresponding to analytic curves αk/n(β),
α̃k/n(β) passing through the point (α = (k/n)2, β = 0). Solutions on αk/n(β) are
even in τ and those on α̃k/n(β) are odd. Furthermore, these curves are symmetric with
respect to the α-axis, except α(2k+1)/2(−β) = α̃(2k+1)/2(β). Also, αk/n(β) = α̃k/n(β)

if k/n �= k1/2, where k1 is an integer, while αk1/2(β) and α̃k1/2(β) intersect only at
β = 0. Also, αk/n(β) tends to −∞ when |β| goes to ∞ and α0(β) = α0(−β) < 0,
while α̃0(β) does not exist. Moreover, αk/n(β) foliate the region between the curves
bifurcating from two consecutive half-integers, i.e., those curves do not intersect and
are dense. In this region any solution of L2X = 0 (not necessarily periodic) is
bounded, while in the complementing region (the Arnold’s tongues), the solutions
are unbounded, as well as the other solution on the transition curves αk1/2(β) and
α̃k1/2(β).

If xn(τ ) is a 2π -periodic solution for αk/n(β) and k/n = k1/n1, with k1 and n1
relatively prime, then xn(τ ) = xn1(nτ/n1), in particular xn(τ ) is (2πn1/n)-periodic.
The solutions xn(τ ) onαk/n(β) have 2k simple internal zeros in (0, 2π) and on α̃k/n(β)

the solution x̃n(τ ) has 2k − 1 internal zeros.

Proof. On the space of 2π -periodic functions one needs that the last equation has
bounded solutions, hence it cannot be resonant, then µ = 0 and z(τ ) is a combination
of cos nτ and sin nτ .

For the Mathieu equation, if x(τ) is a 2π -periodic solution, then so is x(−τ) and
x(τ) ± x(−τ). Hence one may assume that x(τ) has a definite parity. Furthermore,
from the uniqueness of the initial value problem, for a given (α, β), one has at most
one even and one odd solution. Similarly, x(τ + π/n) is a solution for (α,−β) and
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x(τ+2π/n) is a solution for (α, β). In particular, x(τ+π/n)±x(−τ+π/n) are two
linearly independent solutions for (α,−β) since of different parity, unless one of them
is 0. If one has started with x(τ) even, if x(τ +π/n) = x(−τ +π/n) = x(τ −π/n),
then x(τ) is (2π/n)-periodic, while, if x(τ + π/n) = −x(−τ + π/n), then x(τ) is
(2π/n)-antiperiodic and (4π/n)-periodic (this implies that n is even). On the other
hand, if x(τ) is odd then the situation is reversed. Thus, if x(τ) is not (4π/n)-periodic,
one has two periodic solutions for (α,−β) and also for (α, β). Note that if x(τ) is
(4π/n)-periodic, then y(τ) = x(2τ/n) is a 2π -periodic solution of L2y(τ) = 0, the
classical Mathieu equation, i.e., with n = 2.

Assume now that, for (α0, β0), one has a solution x0(τ ) of a definite parity. Con-
sider then the self-adjoint operator Ln in the spaces of periodic functions with that
parity, say from H 1 into L2, with a one-dimensional kernel generated by x0. Take
x = ax0 + x1, with x1 being L2-orthogonal to x0. Then, the classical Ljapunov–
Schmidt reduction implies that Lnx = 0 is equivalent to a unique analytic solution
x1(a, α, β) = ax1(1, α, β), with x1(1, α0, β0) = 0, and a solution to the bifurcation
equation, coming from the L2-projection on x0 (see Section 9 of Chapter 1)

α − α0 + 2(β − β0)

∫ 2π

0
(x2

0 + x0x1) cos nτ dτ = 0,

after normalizing x0 to have norm 1 in L2. The implicit function theorem implies that
this equation has a unique analytic solution α(β), with

α′(β0) = −2
∫ 2π

0
x2

0 cos nτ dτ =
∫ 2π

0
(α0x

2
0 − x′20 /n2)/β0 dτ.

Since for β = 0, one has α = (k/n)2 one obtains the curves αk/n(β) and α̃k/n(β)

characterized by the parity of the solutions and defined for all β’s. These curves are
monotonous for α0 < 0. Furthermore, the number of zeros on each curve is conserved
(by uniqueness of the initial value problem, the zeros are simple, since the L2-norm
of x0 is 1) and are those of cos kτ for αk/n(β) or of sin kτ for α̃k/n(τ ). It is then easy
to see that α′k/n(0) = 0, except if k/n = 1/2, with α′1/2(0) = −1 = −α̃′1/2(0).

Furthermore, if k/n = k1/n1, then if xn1(τ ) is a 2π -periodic solution ofLn1x = 0,
then x(τ) = xn1(nτ/n1) is a (2πn1/n)-periodic solution of Lnx = 0, with the
parity of xn1 , that is x(τ) belongs to the unique curve which goes through (k/n)2.
This implies that these curves are correctly labelled by k/n and that, conversely, the
solutions on αk/n(β) are (2πn1/n)-periodic. In particular, if n1 ≥ 3, one has that
x(τ) is not (4π/n)-periodic (if it were y(τ) = x(2τ/n) would belong to the curve
for L2 going through k1/n1, for β = 0, and hence n1 = 1 or 2) and, as seen above,
αk/n(β) = α̃k/n(β), curves which are symmetric with respect to the α-axis.

For n = 2, if k/n = k1, i.e., n1 = 1, then x(τ) is π -periodic and x(τ + π/2),
solution for (α,−β), has the parity of x(τ), that is the curves are symmetric with
respect to the α-axis. On the other hand, if k is odd, then we have seen that x(τ +π) is
a solution for (α, β) of the same parity as x(τ), hence from the uniqueness, x(τ+π) =
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ax(τ). Evaluation at τ = 0 and τ = π , leads to a2 = 1. Furthermore, it is clear
that the sign of a is invariant on the curves α(2k+1)/2(β) and α̃(2k+1)/2(β) and it is −1
at β = 0. Thus, x(τ + π) = −x(τ) and x(−τ + π/2) = −x(−τ − π/2) has the
opposite parity of x(τ), that is α(2k+1)/2(−β) = α̃(2k+1)/2(β). For α = β = 0, only
the constant solutions (hence even) exist, thus α̃0(β) does not appear.

Now, if n = 2, two curves may intersect at (α0, β0 �= 0) only if one has
α0 = αk1/2(β0) = α̃k1/2(β0): in fact, within the same parity, the implicit function
theorem prevents intersections and if αk1/2(β0) = α̃k′1/2(β0) for k′1 �= k1, with solu-
tions x0 and x̃0, then, from the separation of the zeros (i.e., between two consecutive
zeros of x0 one has exactly one zero of x̃0: if not, if x̃0 is not 0 on this interval, then
(x0/x̃0)

′ = W(x0, x̃0)/x̃
2
0 , with a wronskian |W | ≡ 1, must have a zero) and from the

conservation of zeros along the curves, one gets a contradiction. Thus, if k1 is even
(hence x0 and x̃0 are π -periodic), one has

x0(τ ) = A0/2 +
∑
m≥1

A2m cos 2mτ

x̃0(τ ) =
∑
m≥1

B2m sin 2mτ,

with the recurrence relations

(α/2)A0 + βA2 = 0

(α −m2)A2m + β(A2m−2 + A2m+2) = 0, m ≥ 1,

(α −m2)B2m + β(B2m−2 + B2m+2) = 0, m ≥ 1, B0 = 0.

Now, for m > m0 large enough, one may solve this system in terms of βA2m0 ,
in particular A2m0+2 = βa(α, β)A2m0 and B2m0+2 = βa(α, β)B2m0 , reducing to two
tri-diagonal systems: one for X = (A0, . . . , A2m0) of the form

AX =
(
α/2 β

β B

)
X = 0,

and one for Y = (B1, . . . , B2m) of the form

BY = 0,

where the last line of BY is βB2m0−2 + (α −m2
0 + β2a(α, β))B2m0 .

If the two systems have non-trivial solutions, then det A = det B = 0. But
det A = (α/2) det B−β2 det B1,1, where B1,1 is B with its first line and first column
deleted. Thus, det B1,1 = 0 and, since det B = (α − 1) det B1,1 − β2 det B2,2, with
deleting from B1,1 the first line and first column to get B2,2, one obtains det B2,2 = 0.
Continuing this process, one arrives at α − m2

0 + β2a(α, β) = 0, a contradiction if
m0 is large enough (it is easy to prove that a(α, β) is a decreasing function of m0 and
tends to 0 when m0 goes to ∞).
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If k1 is odd (hence x0 and x̃0 are π -antiperiodic), one has

x0(τ ) =
∑
m≥0

A2m+1 cos(2m+ 1)τ

x̃0(τ ) =
∑
m≥0

B2m+1 sin(2m+ 1)τ,

with the relations

(4α − 1 + 4β)A1 + 4βA3 = 0

(4α − 1 + 4β)B1 + 4βB3 = 0

(4α − (2m+ 1)2)C2m+1 + 4β(C2m−1 + C2m+3) = 0, m ≥ 1 and Ck = Ak or Bk.

With the same arguments, one obtains the tridiagonal matrices

ÃX =
(

4α − 1 + 4β 4β
4β C

)
X = 0

B̃Y =
(

4α − 1 − 4β 4β
4β C

)
Y = 0,

where C is common. Then det Ã = (4α − 1+ 4β) det C − (4β)2 det C1,1 and det B̃
= (4α − 1 − 4β) det C − (4β)2 det C1,1, where both determinants have to be 0.
This implies, if β �= 0, that det C = det C1,1 = 0. One arrives then at the same
contradiction.

If, for n and n′ greater than 2, one has αk/n(β) = αk′/n′(β), with k and n relatively
prime (respectively k′ and n′), then for N the least common multiple of n and n′
and x(τ) solution on αk/n(β), then y(τ) = x(Nτ/n) will be a solution on αk1/N (β)

for k/n = k1/N with 2k1 or 2k1 − 1 zeros. Hence, one would have four periodic
solutions for LNy = 0, two even and two odd, with 2k1 and 2k′1 = 2k′N/n′ zeros,
hence independent, which is clearly a contradiction for a second order equation.

With respect to the boundedness of solutions of L2x = 0, convert the equation into
a first order systemX′ = A(τ)X, with TraceA = 0 andA(τ+π) = A(τ). Then, from
Remark B.1, one has that the fundamental matrix satisfies/(τ+mπ) = /(τ)/(π)m.
Instead of using the full strength of Floquet theory, it is easy to see that /(π) has two
eigenvalues with product equal to 1. If they are complex conjugate, then /(π)m

is bounded as well as /(τ), for τ in [0, 2π ]. Hence, in this case any solution is

bounded. While, if the eigenvalues are real, then /(π)m is similar to

(
λm 0
0 λ−m

)
,

giving unbounded solutions when τ goes to±∞. Finally, if λ = 1, since there is only

one periodic solution on αk/2(β), for β �= 0, /(π)m is similar to

(
1 m

0 1

)
, giving an

unbounded second solution.
Notice that, if x(τ) belongs to αk/n(β), then y(τ) = x(2τ/n) is a nπ -periodic

solution of L2y(τ) = 0. Thus, for n ≥ 3,/(π)n = I and the eigenvalues of
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/(π) are exp(±2k′iπ/n). But Trace/(π) = 2 cos 2k′π/n is analytic on αk/n(β),
hence constant and equal to its value at αk/n(0) = (k/n)2, that is for /(τ) =(

cos 2kτ/n k−1 sin 2kτ/n
−k sin 2kτ/n cos 2kτ/n

)
, or else k′ ≡ k,mod n. The rational k/n is called

the rotation number. Now, Trace/(π) is an analytic function of α and β and, on each
stable region and for fixed β0, covers the interval from −2 (for k/n = k1/2 with k1
odd) to 2 (for k/n = k1/2 with k1 even).

Furthermore, since the curves αk/n(β) do not intersect, the points αk/n(β0), where
Trace/(π) = 2 cos 2kπ/n, are ordered in the same way as αk/n(0). Therefore,
Trace/(π) cannot be locally constant and is strictly monotone as a function of α.
This implies that, arbitrarily close to (α, β), there are points of the form (αk/n(β), β),
giving the foliation.

The last point is the asymptotic behavior, when β goes to ∞: let x(τ) belong to
αk/2(β), hence an even solution of

x′′ + 4(α + 2β − 4β sin2 τ)x = 0,

with 2k zeros in [−π, π ]. Multiplying the equation by x(τ), integrating over [−π, π ]
and using the periodicity ofx(τ), one needs thatα+2β ≥ 0. Lety(τ) = x(τ/(2β1/4)),
then y(τ) is a (4πβ1/4)-periodic, even solution of

y′′ + (A− (2β1/4 sin τ/(2β1/4))2)y = 0,

with A = (α + 2β)/β1/2. Since 4β1/2 sin2(τ/(2β1/4)) ≤ τ 2, the solution y(τ) will
be compared to solutions of the equation

z′′ + (A− τ 2)z = 0.

Let H(τ) = z(τ )eτ
2/2, then H(τ) satisfies Hermite’s equation

H ′′ − 2τH ′ + (A− 1)H = 0.

A series solution H(τ) =∑
hnτ

n yields the recurrence relation

(n+ 2)(n+ 1)hn+2 = (2n+ 1 − A)hn.

In particular, if A = 2N + 1, one solution will be a polynomial HN(τ) of degree N ,
with the parity of N and normalized so that the leading coefficient is τN . Now, it is
easy to verify that τHN −H ′

N/2 satisfies the equation for HN+1 and, having a leading
coefficient equal to τN+1, one has that

HN+1 = τHN −H ′
N/2.

This implies that between two consecutive zeros of HN (hence with H ′
N of different

signs) one has a zero of HN+1. Furthermore, if τN is the largest zero of HN (with
H ′

N(τN) > 0, since the leading term of HN is τN ), then HN+1(τN) < 0 and one has
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a zero of HN+1 to the right of τN . Due to the parity of HN+1, this last zero generates
its symmetric, for τ < 0. An easy induction argument implies that HN(τ) has exactly
N zeros. Now, zN(τ) = e−τ 2/2HN(τ) is bounded and as such has all its N zeros
confined to the interval |τ | ≤ (2M + 1)1/2: in fact, if zN has its last zero, τN , outside
this interval, then zN(τ) > 0, z′′N(τ) > 0 for τ > τN and, since z′N(τN) > 0, one has
that zN(τ) is increasing and convex, contradicting the boundedness.

We shall then use the following comparison principle :

If y(τ) and z(τ ) are solutions to the equations

y′′ + p(τ)y = 0 and z′′ + q(τ)z = 0,

with p(τ) ≥ q(τ), then between two zero of z there is at least one zero of y.

(If y(τ) is not 0, say positive, between τ1 ant τ2, two consecutive zeros of z with,
say, z(τ ) > 0 and z′(τ1) > 0, z′(τ2) < 0 (if not change z to −z), then

∫ τ2
τ1
(z′′y −

zy′′) dτ = ∫ τ2
τ1
(p− q)yz dτ = z′y− zy′|τ2

τ1 leads to a contradiction, since the integral
is non-negative while the last term is strictly positive).

Hence, if A ≥ 2N + 1, then y(τ) has at least N − 1 zeros for |τ | ≤ (2N + 1)1/2,
since zN(τ) has N zeros in this interval. But y(τ) has 2k zeros for |τ | ≤ 2πβ1/4.
Taking N = 2k + 2, one would arrive, if A ≥ 4k + 5, at a count of at least 2k + 1
zeros for y(τ) for |τ | ≤ (4k + 5)1/2, which is not possible if 2πβ1/4 > (4k + 5)1/2.
Then, if β > (4k + 5)2/(2π)4 one has that 0 ≤ A = (α + 2β)β−1/2 ≤ 4k + 5. This
implies that αk/2(β) cannot be bounded from below.

In fact, one may prove, by looking more closely at the distribution of zeros of
y(τ), that

α = −2β + (4k + 1)β1/2/2 + 0(1). � 
Remark 3.8. One may prove that, for k/n �= 1/2, one has

α′′k/n(0) = α̃′′k/n(0) =
4

4(k/n)2 − 1
.

In fact, since x0 is analytic in β, one has that

α′′(β) = −4
∫ 2π

0
x0x0β cos nτ dτ

and, by differentiating the Mathieu equation, that at β = 0, one has that x0β is a
solution (of the same parity of x0) of

y′′ + k2y = −2n2 cos nτx0,

where one has used that α(0) = (k/n)2 and α′(0) = 0. Then, for x0 = cos kτ/
√
π ,

one has that x0β is orthogonal to x0 and

x0β = n√
π

(
cos(n+ k)τ

n+ 2k
+ cos(n− k)τ

n− 2k

)

and the result follows.
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For the second system, one has that X0(τ ) = (0, 0, a cos(nτ + ϕ)) is a solution,
with ν = ν0/n, of g(ν,X) = 0, where ν0 = (k/m)1/2. Let us linearize g(ν,X)

around that solution, with ν = ν0/n + µ and Z = Zn + z and obtain MnX = 0, or
else

x′′ + n2
(
α + β cos(nτ + ϕ)

1 + β cos(nτ + ϕ)

)
x = 0

y′′ + n2
(
α + β cos(nτ + ϕ)

1 + β cos(nτ + ϕ)

)
y = 0

z′′ + n2z = 2n3ν−1
0 cos(nτ + ϕ)µ,

where α = mg/(mg + kr0) and β = ak/(mg + kr0).
In this linearization, we have taken r = Zn + r0 +mg/k, i.e., that |β| ≤ 1. Note

that |β| = 1 corresponds to a = r0 + mg/k, i.e., to Zn = 0 for nτ + ϕ = π , that is
to a spring totally collapsed.

Note also that 0 < α < 1. Thus, we shall work in the rectangle 0 ≤ α ≤ 1, |β| ≤ 1.
The first two equations are singular Hill’s equations, while the third will have a non-
resonant solution only for µ = 0 and z = ε cos(nτ + ψ). Note that, as before, one
may fix the phase ϕ of the one-dimensional orbit Z0, at 0.

Lemma 3.10. One has dim ker Mn = 2, 4 or 6, with eigenvectors µ = 0, z = cos nτ
or sin nτ , x and y corresponding to analytic curves αk/n(β), α̃k/n(β) passing through
αk/n(0) = α̃k/n(0) = (k/n)2. Solutions on αk/n(β) are even in τ and those on
α̃k/n(β) are odd. Furthermore, these curves are symmetric with respect to the α-axis
and equal except for n = 2k, where α1/2(−β) = α̃1/2(β). The region, for constant
β, between these two curves, which intersect only at β = 0, α = 1/4, is a region of
instability, while the regions, for constant α, between α1/2(β) and α̃1/2(β) is foliated
by the curves αk/n(β). Also, α0(β) ≡ 0, with unique solution 1 + β cos nτ (while
α̃0(β) does not exist) and α1(β) = α̃1(β) = 1 with solution cos nτ and sin nτ . The
solutions on α1/2(β) and α̃1/2(β) are (2π/n)-antiperiodic and, if k/n = k1/n1, with
k1 and n1 relatively prime, then xn(τ ) = xn1(nτ/n1) and has period 2πn1/n. On
αk/n(β), the solution xn(τ ) has 2k internal zeros and on α̃k/n(β) the solution x̃n(τ )

has 2k − 1 internal zeros.
Finally, αk/n(β) goes to 0 if |β| goes to 1, if k/n < 1/2 and to 1, if k/n > 1/2.

In fact, α1/2(β) is monotone, decreasing from (0, 1), where it is vertical, to (1,−1)
where it is horizontal.

Proof. Fortunately, most of the arguments in the proof of Lemma 3.9 did not depend
on the special form of α + 2β cos nτ but only on the fact that this function is even.
Thus, one has to concentrate on the complement of these arguments. The first one is
the Ljapunov–Schmidt reduction to the bifurcation equation

h(α, β) =
∫ 2π

0

(α − α0 + (β − β0 + αβ0 − α0β) cos nτ)(x2
0 + x0x1)

(1 + β cos nτ)(1 + β0 cos nτ)
dτ = 0,
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where x0 and x1 have the same meaning as before, that is x = ax0 + x1, with
x1(a, α, β) = ax1(1, α, β) and x1(1, α0, β0) = 0 : h(α, β) is just the projection
on x0 of x′′ + P(α, β)x. Then,

hα(α0, β0) =
∫ 2π

0
x2

0 (1 + β0 cos nτ)−1 dτ > 0

and

hβ(α0, β0) = (1 − α0)

∫ 2π

0
x2

0 cos nτ(1 + β0 cos nτ)−2 dτ.

Thus, one has an analytic curve α(β), for |β| < 1, which must cross the α-axis at
some α(0) = (k/n)2, for some 0 ≤ k ≤ n.

In particular, for n = 1, there are only two curves, α0(β) = 0 with only even
solutions (bifurcating from β = 0 with the constant solution) and α1(β) = 1 with
solutions of both parities and given in the lemma. The other solution, for α0(β) = 0,
obtained by reduction of order, is

v(τ) = (1 + β cos nτ)
∫ τ

0
(1 + β cos ns)−2 ds,

which is neither periodic nor bounded.
For n = 2 and β = 0 with α1/2(0) = α̃1/2(0) = 1/4, the solutions are cos τ and

sin τ and one has α′1/2(0) = −3/8 and α̃′1/2(0) = 3/8. Furthermore, solutions on
α1/2(β) are even and π -antiperiodic and those on α̃1/2(β) are odd and π -antiperiodic.
Hence, if these curves intersect at some (α, β) one has

x(τ) =
∞∑
0

A2n+1 cos(2n+ 1)τ

x̃(τ ) =
∞∑
0

B2n+1 sin(2n+ 1)τ

with the recurrence relations

(m2 − 4α)Cm + (β/2)((m− 2)2 − 4)Cm−2 + ((m+ 2)2 − 4)Cm+2) = 0,

where m = 2n + 1 ≥ 0, Cm stands for A2n+1 or B2n+1, with A1 = A−1 and
B−1 = −B1. If one defines Dm = (m2 − 4)Cm, with

∑
D2

m < ∞, since the solution
is in H 2, one has to solve the system

((4α − 1)/3 + εβ/2)D1 + (β/2)D3 = 0

(A+ 4(1 − α)M)X + (β/2)D1 = 0,

where ε = 1 for x(τ) and ε = −1 for x̃(τ ),X = (D3,D5, . . . ) is inL2, the operator A
is symmetric and tridiagonal, with 1 on the diagonal and β/2 on the two off -diagonals,
and M is a diagonal operator with terms 1/(m2 − 4),m = 3, 5, . . . Now,

(AX,X) = ‖X‖2 + β
∑

DiDi+1 ≥ |β|D2
3/2 + (1 − |β|)‖X‖2,
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then, for |β| < 1 and α ≤ 1, the operator B = A + 4(1 − α)M is invertible with
‖B−1‖ ≤ 1/(1 − |β|). In particular, D3 = −(β/2)a(α, β)D1, where a(α, β) =
(B−1(1, 0, . . . ), (1, 0, . . . )) > 0, since B and B−1 are positive operators. Hence,
the problem is reduced to

f (α, β) = (4α − 1)/3 + εβ/2 − (β2/4)a(α, β) = 0.

This implies that the two transition curves meet only at β = 0 and α = 1/4.
Note that a(1, β) = limβ→∞ det(Ap−1)/ det(Ap), where Ap is the truncation of

A top modes. As det Ap = det Ap−1−(β2/4) det Ap−2 forp ≥ 3, with det A1 = 1,
det A2 = 1 − β2/4, one may use the generating function g(z) = ∑∞

1 det Apz
p to

get

g(z) = −1+ ((β2/4)z2 − z+ 1)−1 = −1+ 4/β2(z1 − z2)

∞∑
0

(z
−p−1
2 − z

−p−1
1 )zp,

where

z1,2 = (2/β2)(1 ± (1 − β2)1/2), z1z2 = 4/β2 and z1 − z2 = (1 − β2)1/24/β2.

Thus, det Ap = [(1 + (1 − β2)1/2)p+1 − (1 − (1 − β2)1/2)p+1]/2p+1(1 − β2)1/2.
From this relation it follows that a(1, β) = 2/(1 + (1 − β2)1/2).
Now

fα = 4/3 − (β2/4)aα,

with αα = 4(B−1MB−1(1, 0, . . . ), (1, 0, . . . )) and, using M = (B−A)/4(1−α),
one has

aα = (1 − α)−1(a − (AB−1(1, 0, . . . ),B−1(1, 0, . . . ))).

Since (AB−1(1, 0, . . . ),B−1(1, 0, . . . )) ≥ |β|a2/2, one obtains

(1 − α)fα ≥ 4(1 − α)/3 − (β2/4)a + (|β|3/8)a2.

Then, if f (α, β) = 0, one has a = 4β−2(1 + εβ/2 − x), with x = 4(1 − α)/3 and,
after a short computation,

2|β|(1 − α)fα ≥ (2 + εβ − |β| − 2x)2 + |β|(2 + εβ − |β|).
Thus, since |β| ≤ 1, the left-hand side is strictly positive, unless εβ = −1 and
x = 0, i.e., for α = 1. We have recovered the fact that the transition curves can be
parametrized by β. Note that, since M is a positive operator, one has aα > 0 and
0 ≤ fα ≤ 4/3.

On the other hand,
fβ = ε/2 − βa/2 − β2aβ/4,
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with aβ = −(B−1AβB−1(1, 0, . . . ), (1, 0, . . . )). Since βAβ = B−I−4(1−α)M,
one obtains

βfβ = εβ/2 − β2a/4 − (β2/4)(‖B−1(1, 0, . . . , )‖2

+ 4(1 − α)(MB−1(1, 0, . . . ),B−1(1, 0, . . . )).

In particular, on the transition curves, one gets

−βfβ = (4α− 1)/3+ (β2/4)(‖B−1(1, 0)‖2 + 4(1−α)(MB−1(1, 0),B−1(1, 0))).

Hence, if α ≥ 1/4, one has βfβ < 0 and in this range of α’s one may parametrize
the curves by α. This implies that, for 1/4 ≤ α ≤ 1, the curve α1/2(β) is de-
creasing, with β < 0, while α̃1/2(β) is increasing from (1/4, 0) to (1, 1). Note that
B−1(1, 0, . . . ) = 2(1,−1, 1,−1, . . . ) for α = 1, β = 1 and fα = 4/3−∑∞

1 ((2n+
1)2 − 4)−1 is positive and finite, that is, the transition curves arrive horizontally at
(1, 1).

Now, if one denotes by C the diagonal operator I + 4(1 − α)M and by X the
vector B−1(1, 0, . . . ), one has

βaβ = −a + (CX,X)

fβ = ε/2 − βa/4 − (β/4)(CX,X),

then, using the relation βAβ = B − C, one obtains

fββ = −(1/2)(B−1CX,CX) < 0,

since B−1 is a positive operator, hence fβ is a decreasing function. Now, for α =
0, β = −1, it is easy to verify that X = 2(1/3, 1/5, 1/7, . . . ), noting that, for |β| ≤ 1,
one has (BX,X) ≥ |β|a2/2, i.e., B is one-to-one. Thus, a(0,−1) = 2/3 and, for
ε = −1, one has f (0,−1) = 0, that is the curve α̃1/2 starts at β = −1, α = 0.
Furthermore, for that X, one has

(CX,X) = 4
∞∑
1

(2n+ 1)−2(1 + 4/((2n+ 1)2 − 4))

= 4
∞∑
1

1/(2n− 1)(2n+ 3) = 4/3,

by using partial fractions. Thus, fβ(0,−1) = 0 for ε = −1. This implies that fβ < 0
and that one may parametrize the curves α̃1/2 by α, starting vertically at (0,−1) and
arriving horizontally at (1, 1).

The rest of the properties (regions of stability, foliations) follow the same lines of
proof as in the preceding case, since they do no depend on the particular form of the
equation. � 
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Remark 3.9. By normalizing x0 in such a way that hα(α0, β0) = 1, then α′(β) =
−hβ . Hence, for k/n �= 1/2 andβ0 = 0, one hasx0(τ ) = π−1/2 cos kτ andα′(0) = 0,
with

α′′(0) = −2(1 − (k/n)2)

∫ 2π

0
x0 cos nτ(x0β − x0 cos nτ) dτ,

where x0β is a solution (by differentiating the Hill equation) of

y′′ + k2y = (k2 − n2)x0 cos nτ,

thus,

x0β(τ ) = n2 − k2

2n
√
π

(
cos(n+ k)τ

n+ 2k
+ cos(n− k)τ

n− 2k

)
.

From this it is easy to prove that

α′′k/n(0) = 3(k/n)2(1 − (k/n)2)(4(k/n)2 − 1)−1.

Remark 3.10. For a given n, one may compute numerically the curves αk/n(β) by
combining a path following method with a numerical integration of the solution: in
fact, if (α0, β0) is on this curve, one may take a point at a certain distance on the tangent
and, on an orthogonal line, test for periodicity by looking at the Poincaré return map
of the solution for (α, β): these are obtained by Runge–Kutta of high order. For the
transition curves (n = 1 or 2), one may also use the fact that the solutions in the
Arnold tongues are unstable. It is interesting to see the foliation phenomenon and
that the curves corresponding to high rotation numbers are easier to follow than the
transition curves. For Mathieu’s equation, the regions of stability decay very fast as
|β| increases.

Let us turn now to the non-linear systems and the application of the orthogonal
degree. Since the arguments are similar for both systems, we shall treat them simul-
taneously. Thus, fix n and assume that the vertical line, corresponding to a fixed α,
crosses the line αk/n(β) at (α0, β0). Since the points of tangency are finite, we may
assume that the crossing is transversal. On that line the nonlinear systems have the
solution ν = ν0/n, x = y = 0, Zn = a cos(nτ + ϕ), where a is proportional to β,
that is a family, parametrized by β, of one-dimensional orbits. If a0 corresponds to
β0, let � be the following tubular neighborhood of (ν0/n, 0, 0, a0 cos(nτ + ϕ)):

� = {(ν, x, y, a cos(nτ + ϕ)+ Z̃) : Z̃ is L2-orthogonal to cos nτ and sin nτ,

|ν − ν0/n| < 2ε, ‖x‖2 + ‖y‖2 < 4ε2, |a − a0| < 2ρ, ‖Z̃‖ < 2ε},
where ‖x‖ is the H 2-norm of x(τ). Consider, from R×H 2(S1) into R×L2(S1), the
following pair

fε(ν,X) = (d2(ν,X)− ε2,−f (ν,X)),

(or−g(ν,X) for the second system), where d2(ν,X) = (ν−ν0/n)
2+‖x‖2+‖y‖2+

‖Z̃‖2 is the distance to the plane ν = ν0/n, x = y = 0, Z = a cos(nτ + ϕ), which
will be called the trivial solution.
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Choose ε so small that the only ν in�, of the form ν0/m, is form = n. In particular,
any zero in� of fε(ν,X)must have, from the form of the equations, ‖x‖2+‖y‖2 > 0:
in fact, if x = y = 0, then f (ν,X) reduces to ν2Z′′ + ν2

0Z = 0. Furthermore, for
|a − a0| = 2ρ small enough, the (x, y) part of the linearization is invertible, since
one is off the curve αk/n(β), and the only solution, for ε small enough, will be on the
plane, i.e., with d = 0. Thus, fε(ν,X) is non-zero on ∂� and its orthogonal degree
is well defined, more precisely, the orthogonal degree of the projection on N1 modes,
after solving for the other modes in �, as in Example 3.5; we leave these details to
the reader.

Choosing ρ and ν appropriately, one may assume that, whenever f (ν,X) = 0 in
� and |a − a0| > ρ/2, then x = y = 0 and d(ν,X) = 0. Then, one may perform the
orthogonal deformation (λ(d2 − ε2) + (1 − λ)(ρ2 − (a − a0)

2),−f (ν,X)) on ∂�.
Then,

deg⊥(fε;�) = i−(fε)+ i+(fε),
where i±(fε) is the orthogonal index of (ρ2 − (a − a0)

2,−f ) at ν = ν0/n, x = y =
0, a = a0 ± ρ,Zn = a cos(nτ + ϕ), with isotropy H = Zn × S1. For ϕ = 0, the
linearization of the pair, at Zn = (a0 ± ρ) cos nτ , will be

Df±(µ,X) = (∓2ρε1,−M0Ln(µ,X)),

where ν = ν0/n+ µ,Z = Zn + z, with z = ε1 cos nτ + ε2 sin nτ + Z̃, hence a2 =
(a0±ρ+ ε1)

2+ ε2
2. Here, M0 = (ν0/n)

2 diag(m,m,m+M) comes from the matrix
M evaluated at x = y = 0. For the second system, one has −m(ν0/n)

2Mn(µ,X).
Hence, the kernel of the linearization is generated byµ = 0, x = y = 0, z = ε2 sin nτ ,
i.e., by X′

0. Thus, both indices may be computed from the results given for the case of
truly periodic solutions of 2nd order Hamiltonian systems of Proposition 3.3, modified
by the ν-variable.

Since H = Zn × S1, one has H0 = S1, V
H0
0 = {(ν, 0, 0, Z)}, the torus part

H = {e} × S1 with VH = {(ν, 0, 0, Z(τ))} and VH = {(ν, 0, 0, Z(τ)), with Z(τ)

being (2π/n)-periodic}, i.e., with modes which are multiples of n: here p = q = n

and γ0 = Id. Furthermore, if K is such that H/K ∼= Z2 then n is even, K ∼= Zn/2×S1

andVK corresponds to (ν, 0, 0, Z(τ))whereZ(τ) is (4π/n)-periodic, i.e., with modes
which are multiples of n/2. Thus, dH and dK are given by the number of negative
eigenvalues λ of the system

(∓ε1 − λµ,−z′′ − n2z+ bZnµ− λz),

in the spaces of (2π/n) and (4π/n)-periodic functions, where b = 2n3/ν0, that is b

is positive.
Since, forλ < 0, the second equation z′′+(n2+λ)z = bµa cos nτ is non-resonant,

its particular solution has to be z = ε1 cos nτ , with ε1 = bµ(a0±ρ)/λ = ∓λµ. Since
b > 0, one has a contribution, forµ �= 0, only at a0−ρ with λ = −(b(a0−ρ))1/2. For
µ = 0, one has non-trivial solutions only for n2 + λ = k2, hence, in the spaces under
consideration, only for λ = (m2 − 1)n2 for the case of (2π/n)-functions, i.e., with
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modes mn and, for λ < 0, only for m = 0, while for the case of (4π/n)-functions,
i.e., with modes mn/2, for λ = (m2/4 − 1)n2 and, for λ < 0, only for m = 0 and 1.
For this last case, with m = 1, one has a two-dimensional kernel, while for m = 0,
the kernel is one-dimensional. Hence, nH (a0 + ρ) = 1, nH (a0 − ρ) = 2, while
nK(a0+ρ) = nK(a0−ρ) = 2, since we have to look at modes in VK ∩(V H )⊥. Note
that, if one restricts the study to even functions z(τ ), then the linearization is invertible
at a0 ± ρ, the Morse number nH is the same but nK is lowered by one. Thus, taking
into account that η = −1, since the orbit is one-dimensional, one has

dH (a0 + ρ) = 1, dH (a0 − ρ) = −1,

and, for n even, one has dK(a0 ± ρ) = 0, according to Proposition 3.3.
Hence, by writing i±(fε) as i±⊥(f H )× i±⊥(Df⊥X), as in Theorem 3.1, we have,

i±⊥(f
H ) = ±[F ∗

H ]⊥,
where F ∗

H is the normalized generator. From Proposition 3.1 in Chapter 3, the other
elements in i⊥(f H ) are 0.

It remains to identify the irreducible representations of H in (V H )⊥, that is for x
and y only, their isotropy Kn0 , the operators B̃l and their Morse numbers as well as
the isotropy subspaces.

Lemma 3.11. There are n different irreducible representations of H in (V H )⊥, with
Kn0 ≡ {(l, ψ = −2πn0l/n), l = 0, . . . , n − 1}, for n0 = 0, . . . , n − 1. The space
VKn0 is spanned by functions x(τ), y(τ), z(τ ) with the property that

R2πn0/n

(
x(τ)

y(τ )

)
=
(
x(τ + 2π/n)
y(τ + 2π/n)

)

and z(τ ) is 2π/n-periodic. More precisely, x(τ) = ReX(τ), y(τ) = Im X(τ), where

X(τ) =
∞∑
−∞

xme
in0τ eimnτ .

Furthermore, if (x(τ ), y(τ )) is in VKn0 , then (x(τ ),−y(τ)) is in VKn−n0 .

Proof. This is just a straight application of Lemma 9.6 of Chapter 1, after one notices
that, since γ0 = Id, then α0 = αj = aj = 0 and that H acts on z(τ ) only by the time
shift of 2πl/n for l = 0, . . . , n − 1, i.e., that z(τ ) is (2π/n)-periodic. Recall that
the action of H on (x(τ ), y(τ )) is by the time shift and a rotation Rψ . Hence, on the
mode m, one has

Rψ

(
xm
ym

)
e2πilm/n = P−1

(
eiψ 0
0 e−iψ

)
P

(
xm
ym

)
e2πilm/n,
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where

2P =
(

1 i

1 −i

)
.

Hence,

(
xm
ym

)
will be fixed if either ψ ≡ −2πlm/n, [2π ], and ym = −ixm or

ψ ≡ 2πlm/n, [2π ], and ym = ixm, since Rψ

(
xm
ym

)
e2πilm/n =

(
xm
ym

)
leads to

ei(ψ+2πlm/n)(xm + iym) = xm + iym

ei(−ψ+2πlm/n))(xm − iym) = xm − iym.

Thus, for each n0 fixed, 0 ≤ n0 < n, one has Kn0 , as in the statement of the
lemma, and modes m = n0 + kn, with yn0+kn = ixn0+kn, and also modes m =
−n0 + kn = −n0 − k̃n, with y−n0−k̃n

= ix−n0−k̃n
. The first set of modes gives x1(τ )

and the second, with the condition that x(τ) = x1(τ ) + x2(τ ) must be real, gives
x2(τ ) = x̄1(τ ), with y1(τ ) = −ix1(τ ), y2(τ ) = ix2(τ ). Note that, for n0 = 0 or n/2,
the modes in x1 and x2 are the same: for n0 = 0, the functions x(τ) and y(τ) are
(2π/n)-periodic, while, for n0 = n/2, they are (2π/n)-anti-periodic. Note also that,
for m = n0, the elements of VKn0 are (cos n0τ, sin n0τ) and (− sin n0τ, cos n0τ). � 

In order to compute the Morse numbers at a0 ± ρ, one has to look at negative
eigenvalues of −LnX (respectively −MnX), when restricted to VKn0 ∩ (V H )⊥, i.e.,
only for the functions x(τ) and y(τ): the parts corresponding to the variables ν and
z(τ ) are in VH .

Hence, one has to consider the eigenvalue problem

x′′ + n2(α + 2β cos nτ)x = λx

y′′ + n2(α + 2β cos nτ)y = λy,

for λ > 0 and x and y in VKn0 , with an analogous linear system in the second case.
One could plug in the Fourier series of Lemma 3.11 and arrive at an infinite system
of equations, as in Lemmas 3.9 and 3.10. However, it is simpler to see that this
Morse number is constant in the regions separated by the curves αk/n(β): since the
operators are self-adjoint no eigenvalue may change sign without going through 0. In
particular, one may compute them for β = 0. Furthermore, since the linearization
is H -equivariant, this argument can be done for each VKn0 separately. Also, since
i±⊥(f H ) = ±[F ∗

H ]⊥ and deg⊥(fε;�) = i−(fε) + i+(fε), the only n0’s which will
count in this last degree are those for which there is a change when crossing αk/n(β),
at (α0, β0), when β varies, that is, those for which LnX is not invertible in VKn0 .
Hence, one may identify these n0’s by looking, as above, at the kernel of Ln at β = 0,
α = (k/n)2.

Lemma 3.12. Let k = k0+k̃n, with 0 ≤ k0 < n, then the only n0’s for which there is a
change in the Morse number are n0 = k0 and n0 = n−k0. If nn0(a0±ρ) is this Morse
number, one has nk0(a0 ± ρ) = nn−k0(a0 ± ρ). Furthermore, if ε0 = Sign α′k/n(β0),
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(a) if 2k/n is not an integer, then the complex Morse numbers are

nk0(a0 + ε0ρ) = [2k/n]
nk0(a0 − ε0ρ) = [2k/n] + 1,

where [2k/n] is the integer part of 2k/n;

(b) if 2k/n = k1, then, on the left transition curve, one has

nk0(a0 + ε0ρ) = k1 − 1

nk0(a0 − ε0ρ) = k1,

while, on the right transition curve, one has

nk0(a0 + ε0ρ) = k1

nk0(a0 − ε0ρ) = k1 + 1.

Proof. It is enough to look at the spectrum of x′′ + αn2x, for β = 0, near α =
(k/n)2 and in VKn0 , that is for x (and y) as in Lemma 3.11. One gets, for X(τ) =∑∞

−∞ xme
in0τ einmτ , and λ ≥ 0,

(−(n0 +mn)2 + αn2 − λ)xm = 0.

For λ = 0, α = (k/n)2, k = k0 + k̃n, the only non-zero modes are such that
n0 = ±k0+ (±k̃ − m)n, that is n0 = k0 and m = k̃, i.e., n0 + mn = k, and
n0 = n− k0 and m = −k̃ − 1, i.e., n0 +mn = −k.

For λ > 0 and α = (k− ε)2/n2, one has a contribution of the mode mn+ n0, i.e.,
with xm �= 0, only if λ = (k0+ k̃n−ε)2−(k0+mn)2 = −(mn− k̃n+ε)(2k0+mn+
k̃n−ε) > 0, that is for all integers m between−k̃−2k0/n+ε/n and k̃−ε/n. Taking
ε small enough, it is easy to see that the number of m’s in this interval is [2k/n], if
ε > 0, and 2k/n not an integer, [2k/n] + 1, if ε < 0, and 2k/n not an integer, while,
if 2k/n = k1, one has k1 − 1 such m’s, if ε > 0, and k1 + 1, if ε < 0.

If 2k/n is not an integer the y component is completely determined by x1(τ )

which is complex, i.e., the real Morse number is twice the complex Morse number.
Furthermore, if a0 > 0, that is, if β0 > 0, then the point (α0, a0 − ρ) is to the left
of the curve αk/n(β), if ε0 = −1, and to the right, if ε0 = 1, while (α0, a0 + ρ) has
the inverse collocation. Being to the left means ε > 0 and to the right means ε < 0.
On the other hand, if a0 < 0, that is, if β0 < 0, then (α0, a0 − ρ) is to the right of
αk/n(β), if ε0 = 1, and to the left, if ε0 = −1.

If 2k/n = k1, a crossing of the transition curve will increase (or decrease according
to the sign of ε0) the real Morse number by 1, but then the y-component will give a
similar contribution, with a total complex Morse number changing by 1. In particular,
on the left transition curve, a0 − ρ will be with ε > 0, if ε0 = −1 (and the complex
Morse number for a0 + ρ is increased by 1), while a0 + ρ will be with ε > 0, if
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ε0 = 1, with an increase of 1 in the Morse number for a0 − ρ. On the right transition
curve, if ε0 = 1, then a0 − ρ corresponds to ε < 0, while, if ε0 = −1, then a0 + ρ

corresponds to ε < 0. Crossing the transition curve will decrease the Morse number
by 1.

Finally, since VKn0 and VKn−n0 are isomorphic the Morse numbers are equal. � 

Since �/H has dimension one, one has (for the relevant isotropy subgroups) that,
according to Theorem 3.1,

i⊥(9X̄) = [F�]⊥ + nk0 [F ∗
k0
]⊥ + nn−k0 [F ∗

n−k0
]⊥,

since � is two-dimensional, hence, in the formula of Theorem 3.1, one has only s = 1.
Note that, if 2k/n = k1, then there is only one F ∗

k0
.

Theorem 3.2. The orthogonal degree for the spring-pendulum system is

deg⊥(fε;�) = −Sign α′k/n(β0)([F ∗
Kn0

]⊥ + [F ∗
Kn−n0

]⊥),

where k ≡ n0, [n], and only one generator if 2k/n = k1, with n0 = 0 or n/2.
From (β0, αk/n(β0)) there is a global bifurcation, in VKn0 and VKn−n0 , of a branch of
non-trivial solutions which is either unbounded in (ν, x, y, Z̃) or returns to another
intersection of the line α = αk/n(β0) with the curve αk/n(β) with an opposite sign of
α′k/n.

Solutions (x, y)on the branch are not identically zero (except at ν = ν0/n,β = β0,
α = αk/n(β0)), have 2k zeros in [0, 2π) and satisfy the symmetry of Lemma 3.11, i.e.,
for VKn0

R2πn0/n

(
x(τ)

y(τ )

)
=
(
x(τ + 2π/n)
y(τ + 2π/n)

)
,

z(τ ) is (2π/n)-periodic and (x(τ )),−y(τ)) is in VKn−n0 .

Proof. Using the product formula of Theorem 3.1, one has

i±(fε) = ±([F ∗
H ]⊥ + nk0(a0 ± ρ)([F ∗

Kn0
]⊥ + [F ∗

Kn−n0
]⊥)).

Since deg⊥(fε;�) = i+(fε)+ i−(fε), one gets

deg⊥(fε;�) = (nk0(a0 + ρ)− nk0(a0 − ρ))([F ∗
Kn0

]⊥ + [F ∗
Kn−n0

]⊥).

The difference of Morse numbers is −1 if ε0 = 1 and 1 if ε0 = −1, and the same
argument works for 2k/n = k1.

The argument for the global bifurcation comes from Theorem 5.2 in Chapter 2 and
Proposition 3.1, in particular, that the bifurcation takes place in VKn0 and VKn−n0 .
The relation between the two branches is given in Remark 3.7 and the isomorphism
(x, y) → (x,−y) of Lemma 3.11, between the two isotropy subspaces. The nodal
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properties follow from the fact that the equations for x and y are of the form x′′ +
f (τ)x = 0, hence, the number of zeros on the branch is conserved. Furthermore, the
branch cannot return to a point on a curve αk′/n(β), with k′ �= k, since, when x goes
to 0 and near a bifurcation point, the number of zeros is determined by k: Lemmas
3.9 and 3.10.

Since (x, y) is in VKn0 , then, if x(τ) ≡ 0, one has y(τ) ≡ 0, unless 2n0/n = k1.
Hence, if (x, y) tends to (0, 0) on the branch, one has to go to a bifurcation point,
i.e., with ν = ν0/ñ, Z = a cos(ñτ + ϕ) and α = α

k̃/ñ
(β). In the limit, the elements

on that curve need to have 2k zeros, thus, k = k̃ and, from the periodicity of Z(τ), ñ

should be a multiple of n. From the fact that on each curve α
k̃/ñ

there are only two

linearizations which are not invertible, corresponding to VKñ0 and VKñ−ñ0 , the above
argument is reversible and n = ñ. Thus, the only (x, y) = (0, 0) on the branch are
the bifurcation points from the trivial solutions. Of course, this argument may also be
given directly from the fact that the bifurcation is in VKn0 . � 

Remark 3.11. If one varies α, one obtains “surfaces” bifurcating from the curve
αk/n(β), following the arguments of �-epi maps of [I.M.V.0].

In particular, for any segment, in the (α, β)-plane, which is transversal to αk/n(β),
either the branch is unbounded over the segment (in (x, y, Z)), or it covers one of the
end points. For instance, if one has a-priori bounds, then the branch covers one of the
components of the complement of the curve: See [I. p.395].

Remark 3.12. If one wishes to use the reversibility, then one may restrict the study to
fixed point subspaces of R̃ε and of RπR̃ε, i.e., for Z(τ) even, x(τ) and y(τ) of equal
parity (ε = 1) or opposite parity (ε = −1).

(a) Fixing the parity will destroy the equivariance with respect to the time shift. On
the other hand, if x(τ) and y(τ) have the same parity, that is ε = 1, one will keep
the equivariance with respect toRψ and the equations are still orthogonal. In this
case � = S1, acting via Rψ , and the isotropy of (x = 0, y = 0, Zn = a cos nτ)
is H = S1, with only one strict subgroup K = {e}. In order to compute
i±⊥(f H ), one has to count the negative eigenvalues λ of the linearization in
VH = {(ν, 0, 0, Z(τ)), with Z(τ) even and 2π -periodic},

Df±(µ, z) = (∓ε1 − λµ,−z′′ − n2z+ bZnµ− λz),

where z(τ ) = ε1 cos nτ + Z̃(τ ), with Z̃(τ ) even. As before, for µ �= 0,
one has a contribution only at a0 − ρ. On the other hand, if µ = 0, then
ε2 = 0 and Z̃′′ + (n2 + λ)Z̃ = 0 will give 2π -periodic even solutions for
λ = k2 − n2 with 0 ≤ k < n and Z̃(τ ) = cos kτ . Thus, dH (a + ρ) = (−1)n

and dH (a − ρ) = (−1)n+1. As before, one has

i±(fε) = ±(−1)n[F ∗
S1 ]⊥ × ([F ∗

S1 ]⊥ + n(a0 ± ρ)[F ∗{e}]⊥)
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and, as a consequence,

deg⊥(fε;�) = (−1)n(n(a0 + ρ)− n(a0 − ρ))[F ∗{e}]⊥
= −(−1)n Sign α′k/n(β0)[F ∗{e}]⊥,

since the difference, in the complex Morse numbers, is−Sign α′k/n(β0), if one
crosses the curve αk/n (for x(τ) and y(τ) even) or the curve α̃k/n (for x(τ) and
y(τ) odd). Solutions on the branch conserve the parity, by construction, and
the nodal properties. However, since the periodicity of Z(τ) on the branch is
only 2π , there is no topological argument to prevent the branch coming out of
(β0, αk/n(β0)) to go to a point (β1, αk/ñ(β1) = αk/n(β0)), for a ñ different from
n. Furthermore, one may have x(τ) ≡ 0 or y(τ) ≡ 0 on the bifurcating branch.

In fact, if one puts y(τ) ≡ 0, then the system reduces to two equations and
one may use the standard Leray–Schauder degree theory on spaces of functions
(x(τ ), Z(τ)), with are 2π -periodic, with Z(τ) even and x(τ) of a given parity,
either even or odd. On these spaces, the kernels of the linearization of fε are
one-dimensional (due to the parity of Z(τ)) on the curve αk/n(β), with a change
in the index from a0−ρ to α0+ρ. Hence, one has the same bifurcation results,
but now of planar solutions. It is likely that these solutions, rotated by Rψ ,
generate the solutions obtained by the reversibility argument. However, except
for the case where 2k/n is an integer, they are different from the ones given in
VKn0 . Hence, one has a double bifurcation from (β0, αk/n(β0)), if 2k/n is not
an integer, of planar and non-planar solutions.

(b) For the case of opposite parity, then the equivariance with respect to Rψ is also
destroyed. However, the subspaces VKn0 remain fixed by the action of R̃−1,
that is, if

X(τ) =
∞∑
−∞

xme
i(n0+nm)τ ,

with x(τ) = ReX(τ) and y(τ) = Im X(τ), then, if all xm’s are taken real, one
has

x(τ) =
∞∑
−∞

xm cos(n0 + nm)τ and y(τ) =
∞∑
−∞

xm sin(n0 + nm)τ,

and x(τ) is even, while y(τ) is odd. On the other hand by taking all xm’s pure
imaginary, then x(τ) will be odd and y(τ) will be even. Thus, by decomposing
functions in VKn0 as sums of the form (x(τ) even, y(τ) odd) and (x(τ) odd,
y(τ) even), one may study the equations in the above subspaces. One will have
a jump of one eigenvalue when crossing αk/n(β) and one may use the Leray–
Schauder theory in that space. However, this invariance property of VKn0 is not
clear a priori, while the existence of VKn0 , coming from the analysis of twisted
orbits is natural.
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(c) From the stability in the complement of the Arnold’s tongues, it seems likely
that the first bifurcation will correspond to a crossing of a transition curve, i.e.,
with 2k/n an integer and a planar solution.

4.4 �-Index of a loop of stationary points

In this last section of the book, we shall study the case of an isolated loop of stationary
solutions, for problems with one extra parameter, with the main intention of applying
the results to different kinds of Hopf bifurcation. More precisely, let F : R×U → W

be a �-equivariant map such that F has a simple loop P of zeros in R×U� , on which
F is regular, with the usual compactness if U is infinite-dimensional. Hence DF has
a one-dimensional kernel, at each point of P , generated by the tangent vector to P .
This situation forces U and W to be equivalent representations (see § 5 in Chapter 1).
Then, if � is a small invariant neighborhood of P such that F� has only P as zeros in
�� , one may define deg�(F ;�). Furthermore, if X, in R×U , is written as X�⊕X⊥
and F as F� ⊕ F⊥, the regularity implies that DX⊥F

⊥ is invertible, hence, as it has
been done already several times

deg�(F ;�) = deg�((F
�(X�),DX⊥F

⊥(X�)X⊥);�).

We have in mind the special case of the Hopf bifurcation, or variations of it,
that is U = R × V , and X is written as (µ, ν,X0, X⊥), with X0 in V � , while
F�(µ, ν,X0) = (ρ2 −µ2 − ν2, F0(µ, ν,X0)), with F0(µ, ν, 0) = 0. Thus, the loop
P is the circle ρ2 = µ2 + ν2, X0 = X⊥ = 0.

If we assume that DX0F0(µ, ν, 0) is invertible on the loop, then one may simplify
further the computation of the �-degree

deg�(F ;�) = deg�((ρ
2 − µ2 − ν2,DX0F0(µ, ν, 0)X0,DX⊥F

⊥(µ, ν, 0)X⊥);�)

and we take � to be {(µ, ν,X0, X⊥) : µ2 + ν2 < 4ρ2, ‖X0‖, ‖X⊥‖ < 2ε}.
As we have seen in Corollary 5.2 of Chapter 1, one has

deg�(F ;�) = Q0J
�(DX0F0,DX⊥F

⊥),

where Q0 is the suspension by 2t−1 and J� is the J�-homomorphism, or Whitehead
map, from the set of all �-homotopic classes from S1 into GL�(V ) into the group
��

SR×V (S
V ):

[S1 → GL�(V )]� J�−→ ��
SR×V (S

V )

A(µ, ν) −→ (‖X‖ − ε,A(µ, ν)X),

recalling that the homotopy τ(ρ2 − µ2 − ν2) + (1 − τ)(‖X‖ − ε) is valid on ∂�,
once A(µ, ν) = diag(DX0F0,DX⊥F

⊥)|µ2+ν2=ρ2 has been extended, to all (µ, ν),
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by defining A(µτ, ντ) = τA(µ, ν), for τ ≥ 0 and µ2 + ν2 = ρ2. Note that, from
Definition 8.1 of Chapter 1, the group ��

SR×V (S
V ) requires an extra variable, here

given by t = 2µ − 1. Recall also that Q0 is an isomorphism provided dim V � ≥ 3,
see Corollary 7.1 of Chapter 3.

Example 4.1 (The classical Hopf bifurcation). In order to motivate the study de-
scribed above, consider the problem of finding 2π -periodic solutions to the autonomous
system

(ν0 + ν)
dX

dt
− L(µ)X − f (X,µ) = 0, X in RN,

where f (X, λ) = 0(‖X‖2). Thus, X = 0 is a solution for all (µ, ν). The problem is
equivalent, on Fourier series, to

in(ν0 + ν)Xn − L(µ)Xn − fn(X,µ) = 0, n ≥ 0,

wherefn isS1-equivariant. Clearly, a necessary condition for the existence of solutions
with X �≡ 0, is that in(ν0 + ν)I − L(µ) is not invertible. Hence, assume that L(0)
has±iν0 as eigenvalues, but that inν0I −L(0) is invertible for n �= 1 (non-resonance
condition), then this will be case for (µ, ν) close to (0, 0) and one may solve, by
the implicit function theorem for instance, for Xn in terms of (µ, ν,X1) and one is
reduced to

(i(ν0 + ν)I − L(µ))X1 − f̃1(X1, µ, ν) = 0,

where, due to the uniqueness of Xn, one has f̃1(e
iϕX1, µ, ν) = eiϕf̃1(X1, µ, ν). If,

furthermore, iν0 is a simple eigenvalue of L(0), then the Ljapunov–Schmidt reduction
leads to

(iν − a(µ))x − f̃ (x, µ, ν) = 0,

where a(0) = 0 and L(µ) has the eigenvalue iν0 + a(µ), the variable x is now in C

and f̃ is S1-equivariant and 0(|x|2). Using this last fact for x = reiϕ , one is finally
reduced to

r(iν − a(µ)− g(r, µ, ν)) = 0,

with g(r, µ, ν) = 0(r). If Re a′(0) �= 0 (non-zero speed crossing), then one may
solve uniquely, again by the implicit function theorem, these two equations for (µ, ν)
in terms of r , giving periodic solutions.

In this derivation, the S1-equivariance was used, at the last step, to reduce the
dimension of the domain. Now, if one has resonances or a non-simple eigenvalue, or
more symmetries, the argument does not work anymore. But, on the other hand, the
�-degree (an S1-degree in the case of classical Hopf bifurcation) can be computed.

Let us return to the general situation described at the beginning of this section,
i.e., to Q0J

�(DF), where DF is the linearization at (µ, ν, 0) of (F0, F
⊥), with

respect to (X0, X⊥). Using a Ljapunov–Schmidt reduction, we may assume that V
is finite dimensional. Since DF is �-equivariant, it has a block diagonal structure
(Theorem 5.3 of Chapter 1)

DF = diag(DX0F0,DYj F
⊥
j , . . . , DZl

F⊥
l , . . . , DZk

F⊥
k ),
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where Yj is made of real coordinates with an action of � as Z2, while � acts on the
complex coordinate Zl as Zml

and on Zk as S1. Each of the pieces of DF depends on
(µ, ν) and is invertible on the circle µ2 + ν2 = ρ2. In particular, the determinant of
each piece has a constant sign on the circle, positive for the complex matrices.

Now, we have seen in Theorem 8.3 of Chapter 1, that if

A(µ, ν) = diag(A0, Aj , Bl, Ck),

whereA0 corresponds toX0, Aj to Yj with j = 1, . . . , r and isotropyHj with�/Hj
∼=

Z2, and Bl or Ck correspond to Zl or Zk with action of � as Zml
or S1, is such that

A0 and Aj have positive determinant, then J� is a morphism of groups, i.e.,

�1(GL�+(V ))
J�−→ ��

SR×V (S
V )

is such that
J�(AB) = J�(A)+ J�(B),

where all pieces of A and B have positive determinants.
In order to compute deg�(F ;�), we shall use this property of J� by relating first

J�(A) to J�(A∗), where A∗ is obtained from A by changing the sign of one row in
case A has a negative determinant, in which case A∗ has a positive determinant (of
course this will be done for each piece A0, Aj of A).

Let I0 be the linear map which changes the first component of X0 into its opposite
and Ij the similar map for Yj . Since the addition in ��

SR×V (S
V ) is defined on t , the

maps I0 and Ij induce two morphisms on this group by

I ∗j [f (X)]� = [f (IjX)]�
I ′∗j [f (X)]� = [Ijf (X)]�,

for j = 0 (and I0), and j = 1, . . . , r .

Lemma 4.1. The morphisms I ∗j and I ′∗j have the following properties:

(a) I ∗2
j = I ′∗2

j = Id,

(b) I ∗j I ∗k = I ∗k I ∗j , I ′∗j I ′∗k = I ′∗k I ′∗j , I ∗j I ′∗k = I ′∗k I ∗j ,

(c) I ∗0 [f ]� = −[f ]� .

(d) If dim V � ≥ 3, then I ∗0 [f ]� = I ′∗0 [f ]� .

(e) If dim{Yj } ≥ 3, then I ∗j [f ]� = I ′∗j [f ]� .

(f) If dim{Yj } = 1, then [J�Aj (µ, ν)]� = 0.

(g) If dim{Yj } = 2, then I ∗j [J�Aj ]� =−I ′∗j [J�Aj ]� and 2I ∗j [J�Aj ]� = 2[J�Aj ]� .
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(h) If dim{Yj } ≥ 3, then 2[J�Aj ]� = 0, where, for j = 0, {Y0} stands for V � .

Proof. Since I 2
j = Id, it follows that I ∗j and I ′∗j are involutions. Furthermore, the

commutativity is immediate. Notice that, via a rotation, one has that (2t − 1,−x0) is
homotopic to (1 − 2t, x0). This proves (c).

Now, if one suspends by yj , with isotropy Hj (taking again y0 with H0 = �), one
has

[Ijf, yj ] = [f,−yj ] = [f (Ij ), yj ],
by performing the rotations between the components or the variables. Hence,

QjI
′∗
j [f ]� = QjI

∗
j [f ]�.

But, from Corollary 7.1 of Chapter 3, Qj is an isomorphism if dim{Yj } ≥ 3, proving
(d) and (e).

Finally, if dim{Yj } = 1, then Aj(µ, ν) is a non-zero scalar, deformable to a
constant. Hence, [J�Aj ]� = [|yj |−1,±yj ]� = 0. On the other hand, if dim{Yj } ≥ 3,
then 2[Aj ] = 0 if det Aj > 0 (see Theorem 8.3 in Chapter 1), or 2[IjAj ]� = 0 if

det Aj < 0. For the case dim{Yj } = 2, let Ij be the matrix

(−1 0
0 1

)
, then, if

det Aj > 0, one has that Aj is homotopic to λd , where λ = µ+ iν and Yj is written
as y1 + iy2. Then, according to Theorem 5.1 of Chapter 3, one gets

[J�Aj ]� = [|Yj | − 1, AjYj ]� = dη,

where η is the Hopf map and a generator of �(Hj ).
Recall that, in this case

�(Hj ) ∼= Z× Z2,

generated by η = (|Yj | − 1, λYj ), which is such that its degree (as a map from
(µ, ν, y1 > 0) into R3) is 1, and by η1 with 2η1 = 0. Then,

I ∗j [J�Aj ]� = dI ∗j η = d[|Yj | − 1,−λȲj ]� = d(η + d1η1),

since the degree of (yj − 1,−λy1), for y1 > 0, is also 1. Since 2η1 = 0, one has part
of the answer, with I ∗j [J�Aj ]� = d([J�Aj ]� + d1η1).

On the other hand, if det Aj < 0, then AjIj has a positive determinant and homo-
topic to λdYj , for some d. Then,

I ∗j [J�Aj Ij ]� = dI ∗j η = d(η + d1η1) = [J�Aj ]�,
from the above result and since I ∗2

j = Id. One gets I ∗j [J�Aj ]� = dη = [J�Aj ]� −
dd1η1 = d([J�Aj ]� + d1η1), since 2η1 = 0.

Furthermore, since IjλIj = λ̄, one has, if det Aj > 0 and using the fact that the
map λ → λ̄ is homotopic to I ∗0 ,

[J�IjAj Ij ]� = I ′∗j I ∗j [J�Aj ]� = −[J�Aj ]�,
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hence I ′∗j [J�Aj ]� = −I ∗j [J�Aj ]� . If, on the contrary, det Aj < 0, then AjIj has
positive determinant and one has

I ′∗j Ij [J�Aj ]� = I ′∗j [J�Aj Ij ]� = −I ∗j [J�Aj Ij ]� = −[J�Aj ]�,
with the same result. � 

Remark 4.1. We shall prove below, in Lemma 4.2, that, after one suspension, one
has

Qj(I
∗
j η) = Qj(η − η1) = Qj(η + d1η1),

that is (1 + d1)Qjη1 = 0, where Qjη and Qjη1 generate �(Hj ) ∼= Z2 × Z2 in this
dimension. Thus, 1 + d1 is even, or else d1 is odd and may be taken to be −1.

Let us now return to the matrix

A(µ, ν) = diag(A0, Aj , Bl, Ck),

where the different pieces have the same meaning as before. Let εj = Sign det Aj , for
j = 0, 1, . . . , r , that is, for the pieces of V � and VHj ∩ (V �)⊥, where �/Hj

∼= Z2.
Define A∗

j = AjI
αj , where αj = (1 − εj )/2 and let

A∗ = diag(A∗
0, A

∗
j , Bl, Ck).

Then A∗(µ, ν) belongs to �1(GL�+(V )) and can be written as a product of matrices
of the form

diag(A∗
0, I, I, I ) diag(I, A∗

j , I, I ) diag(I, I, Bl, I ) diag(I, I, I, Ck).

Thus, from the group morphism property of J� , one has

J�[A∗] = Q�J�[A∗
0] +

∑
j

Q�J�[A∗
j ] +

∑
l

Q�J�[Bl] +
∑
k

Q�J�[Ck],

where Q� is the suspension by the corresponding identity. Hence, one has

J�[A] =
( r∏
j=0

I
∗αj
j

)
[I ∗α0

0 Q�J�[A0] +
∑
j

I
∗αj
j Q�J�[Aj ]

+
∑
l

Q�J�[Bl] +
∑
k

Q�J�[Ck]].

It remains to identify the action of I ∗j on each term and to compute J�[Aj ], J �[Bl]
and J�[Ck] in terms of the generators of ��

SR×V (V ), as given in Theorems 5.1 and
5.2 in Chapter 3.
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Assume, for simplicity, the following dimension conditions:

dim V � ≥ 3

(H1) dim Vj ≥ 3, j = 1, . . . , r

dimC Vl ≥ 2, dimC Vk ≥ 1

where Vj is spanned by Yj = (y1, . . . , yn), each with isotropy Hj with �/Hj
∼= Z2,

the space Vl is spanned by Zl = (z1, . . . , zn), each with isotropy Hl with �/Hl
∼= Zp

and action of � on zs as exp(2πims/p), where ms and p are relatively prime. The
coordinates Zk = (z1, . . . , zn), giving Vk , have isotropy Hk with action of � as
exp(2πimkϕ), including conjugates.

From Theorem 7.1 of Chapter 3, any suspension of ��
SR×V (S

V ) is one-to-one and
any suspension by one of the variables present in V is an isomorphism, in particular
Q0: recall that deg�(F ;�) = Q0J

�[DF ]� is in ��

SR2×V
(SR×V ). Now, according to

Theorems 3.2 and 5.5 of Chapter 3, this group is a product of�(H)’s, with�(H) ∼= Z,
if dim �/H = 1, and �(H) ∼= Z2 × �/H , if �/H is finite. Here, since DF is
diagonal on equivalent irreducible representations of �, only those H ’s corresponding
to coordinates in V will be concerned in the first computation of the �-degree of
J�[DF ].

Let us write λ = µ + iν and, in V0 = V �, Vj , Vl or Vk , single out a complex
coordinate z (made up of two real coordinates in the case of V0 or Vj ) and write
X0 as (z,X′

0), Yj as (z, Y ′j ) and Zl or Zk as (z, Z′
l ) or (z, Z′

k). As functions of
(t, µ, ν,X0, Yj , Zl, Zk), consider the following generators

F0 = (2t − 1, |z|2 − 1, λz,X′
0, Yj , Zl, Zk)

Fj = (2t − 1, |z|2 − 1, X0, λz, Y
′
j , Zl, Zk)

Fl = (2t − 1, |z|2 − 1, X0, Yj , λz, Z
′
l , Zk)

Fk = (2t − 1, |z|2 − 1, X0, Yj , Zl, λz, Z
′
k).

The map F0 is the suspension of the Hopf map and generates �(�): Lemma 5.1
of Chapter 3. The map Fj has an ordinary degree, for z in R+, equal to (−1)εj , where
εj = dim V0+∑i<j dim Vi , and, as such, can be taken as one of the two generators of
�(Hj ): see Theorem 5.1 in Chapter 3. The same argument yields an ordinary degree
of (−1)εr+1 for Fl and Fk . Since �(Hl) is Z2 × Zp, if p is even, or Z2p if p is odd,
from Corollary 5.1 in Chapter 3, one may choose Fl as generator (see Lemma 5.4 in
Chapter 3). For Fk one uses Theorem 3.3 in Chapter 3.

Recall that DF has a diagonal structure on equivalent irreducible representations
of�, in particular onVl , with�/Hl

∼= Zp, one hasDF |Vl
= diag(A1, . . . , An), where

the action of � on Zls is as exp(2πims/p) and As corresponds to all coordinates with
the same ms .
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Theorem 4.1. Assume hypothesis (H1) holds and that DF is invertible on the loop
|λ| = ρ, then, for ε small enough, one has

deg�((‖X‖2 − ε2, F (µ, ν,X0, Yj , Zl, Zk);�)

=
( r∏
j=0

I
∗αj
j

)
(d0[F0]� +

∑
j

dj [Fj ]� +
∑
l

(∑
s

nsds)[Fl]� +
∑
k

dk[Fk]�
)
,

where
DF = diag(DX0F

�,DYj F
⊥
j ,DZls

F⊥
ls , DZk

F⊥
k )

and
αj = (1 − Sign det DYjF

⊥
j )/2

on the loop, for j = 0, 1, . . . , r . If η is the generator of �1(GL+(Vj )), i.e., η =
diag(λ, I ), for j = 0, 1, . . . , r , then

(a) d0η is the class of (DX0F
�)I

αo
o in �1(GL+(V �)) ∼= Z2,

(b) djη is the class of (DYj F
⊥
j )I

αj
j in �1(GL+(Vj )) ∼= Z2,

(c) For Zls , with action as exp(2πims/p), with ms and p relatively prime, the
number |ns | is an odd integer such that nsms ≡ 1, mod p, and ds is the winding
number of det(DZls

F⊥
ls ), as a mapping from the loop onto C\{0},

(d) Finally, dk is the winding number of det(DZk
F⊥
k ), where� acts as exp(±imkϕ).

Proof. The only point to check is the computation of J�[DZls
F⊥
ls ]� = ds[Fls]� ,

where the generator Fls is built on the model of Fl but with action of � on z given by
exp(2πims/p). Thus, one has to relate [Fls]� to [Fl]� , where the action on z for Fl

is given by a fixed ms , for instance 1. This computation was done in Proposition 5.1
of Chapter 3:

[Fls]� = ns[Fl]�,
where |ns | is odd and nsms ≡ 1, modulo p. For Hk , use Theorem 8.3 of Chapter 1. � 

Remark 4.2. The reader should notice that there is a slight inconsistency in our state-
ment of Theorem 4.1: whereas we have assimilated complex conjugate representations
in Vk , with action as exp(±imkϕ), we did not do so in Vl , where exp(2πims/p) and
exp(2πi(p − ms)/p)give the same equivalent real representations (see Remark 5.3
of Chapter 1). Furthermore, in general DF |Vl

is not necessarily block diagonal on
conjugate representations. However, in the cases of our applications, to symmetry
breaking of differential equations, on one side one may eliminate negative modes
(i.e., mk < 0) and, on the other side, one has this block diagonal structure. Note
that −ns(p −ms) ≡ 1, modulo p, if nsms ≡ 1 (see the examples of Proposition 7.3
in Chapter 3). On the other hand, if Fk is built on z with action exp(imkϕ) and
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F ′
k on a z with a conjugate action, we have seen, in Remark 3.1 of Chapter 3, that

[F ′
k]� = −[Fk]� . Hence, if DF |Vk

is made of two blocks, one should have, in The-
orem 4.1, the contribution (dk − d ′k)[Fk]� , where dk is the winding number for the
modes with action exp(imkϕ) and d ′k the winding number for the conjugates. If the
two blocks are of the form ±imkνI − L(µ), as in the Hopf bifurcation, with L(µ)

real, then the blocks are conjugates one of the other and d ′k = −dk , giving 2dk[Fk]�:
then, there is no loss by considering only positive modes.

It remains to study the effect of the isomorphisms I ∗j on each of the generators.

Lemma 4.2. Let Fu, u = 0, j, k, l denote any of the above generators, then

(a) I ∗0 [Fu]� = −[Fu]� .

(b) I ∗j [Fu]� = [Fu]� − [Fuj ]� , where Fuj , with z in Vu and yj in Vj , is the map

(2t − 1, |yj | · |z| − 1, X0, Yi, (y
2
j − 1)yj , λz, . . . ).

(c) If j1 �= j2, then I ∗j2
[Fuj1 ]� = [Fuj1 ]� − [Fuj1j2 ]� , where the map Fuj1j2 =

(2t − 1, |yj1 | · |yj2 | · |z| − 1, X0, Yi, (y
2
j1
− 1)yj1 , (y

2
j2
− 1)yj2 , λz, . . . ), while

I ∗j [Fuj ]� = −[Fuj ]� .

Proof. Write Fu as (2t − 1, |z|2 − 1, X0, yj , λz, . . . ), on the ball

B = {0 ≤ t ≤ 1, |λ| ≤ 2, |yj | ≤ 2, |z| ≤ 2, ‖X0‖, . . . ‖Zk‖ ≤ 2},
then [Fu]� = deg�(Fu;B), by using the fact that the suspension Q0 in the definition
of the �-degree is an isomorphism. Then, the deformation yj (1 − τ + τ(y2

j − 1)) is
valid on ∂B. But then,

deg�(Fu;B) = deg�(Fu;B ∩ {|yj | < 1/2})+ deg�(Fu;B ∩ {|yj | > 1/2}).
For the first degree, one may deform y2

j to 0 and obtain I ∗j [Fu]� .
For the second degree, one may use, on the set {|yj | > 1/2}, the deformation

(1 + (1 − τ)|z|)(|z|(1 − τ + τ |yj |) − 1), since, there, a zero of yj (y2
j − 1) implies

|yj | = 1. For τ = 1, one gets Fuj . Since (a) was already proved in Lemma 4.1, one
obtains (b).

By using I ∗2
j = Id, it is easy to see that I ∗j [Fuj ]� = −[Fuj ]� . Furthermore, by

repeating the above argument, one has [Fuj1 ]� = I ∗j2
[Fuj1 ]� + [Fuj1j2 ]� , as stated in

(c). Further applications of I ∗j are built on the same scheme. � 

Finally, one may identify Fuj with some of the remaining generators of
��

SR2×V
(SR×V ).
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Lemma 4.3. Let Hu = �z and Hj = �yj , with �/Hj
∼= Z2 and �/Hu = {e}, Zp

or S1.

(a) If Hj ≤ Hu, then [Fuj ]� is the second generator of �(Hj ) ∼= Z2 × Z2.

(b) If Hu < Hj , then �/Hu
∼= Z2k and

[Fuj ]� = 2[Fu]� + d[F̃u]�,
where d = 1 if k is odd and F̃u generates the second part of �(Hu) ∼= Z2k×Z2,
with I ∗j [F̃u]� = [F̃u]� .

(c) If Hu is not a subgroup of Hj and �/Hu
∼= Zp, then [Fuj ]� is a generator of

�(Hu∩Hj) ∼= Zp×Z2×Z2, with p([Fuj ]�+[F̃uj ]�) = 0, with 2[F̃uj ]� = 0.
The third generator is [Fju]� . If, furthermore, Hu is not a subgroup of Hj1 , then
[Fujj1 ]� is a generator for �(Hu∩Hj ∩Hj1), with p([Fujj1 ]�+[F̃ujj1 ]�) = 0,
where 2[F̃ujj1 ]� = 0.

(d) If �/Hu
∼= S1, then [Fuj ]� generates �(Hu ∩Hj) ∼= Z and [Fujj1 ]� generates

�(Hu ∩Hj ∩Hj1).

The action of I ∗j2
follows from the above.

Proof. If Hu is not a subgroup of Hj , then there is an h in Hu such that hyj = −yj , in
which case �/(Hu ∩ Hj) ∼= (�/Hu) × Z2, since h2 is in Hu and acts as the identity
on yj . On the other hand, if Hu < Hj and �/Hu

∼= S1, then the action of � on z is
given by exp i(〈N,/〉 + 2π〈K,L/M〉) (see Lemma 1.1 in Chapter 1). Hence, for
any L there is a /0 such that the exponential is 1, that is (/0, L) is in Hu, since N is
not 0. On yj , the action of � is given by exp(πi〈Kj ,L〉). Then, if Hu < Hj , this last
expression should be 1 for any L, which is impossible, since �/Hj

∼= Z2. Thus, the
only case where Hu is a subgroup of Hj is for �/Hu

∼= Zp with a generator γ0 such
that γ0z = exp(2πi/p) and γ0yj = −yj (if γ0yj = yj , then any γ in � is of the form
γ = γ k

0 h, with h in Hu < Hj and one would have Hj = �). Since γ
p
0 is in Hu < Hj ,

this implies that p is even.
Now, if Hj

∼= Hu, i.e., Hu = Hj or �, then the fundamental cell for �(Hj ) can
be taken as {0 < yj < 2} and Fuj is non-zero on its boundary and its class, on this
boundary, is the suspension of the Hopf map, hence, from Theorem 5.1 of Chapter 3,
Fuj is the second generator of �(Hj ), proving (a).

Now, if Hu is not a subgroup of Hj and �/Hu
∼= Zp, then the fundamental cell

for �(Hu ∩ Hj) is {(z, yj , . . . ) : 0 ≤ Arg z < 2π/p, 0 < yj < 2}, where the
order for yj and z is irrelevant. Hence, from Theorems 5.3 and 5.4 of Chapter 3,
one has �(Hu ∩ Hj) = Zp × Z2 × Z2, with generators η1, η2 and η̃ satisfying
the relations p(η1 + η̃) = 0, 2η2 = 0, 2η̃ = 0, and Fuj is given on η1 and η2 by
d1 = deg(Fuj ;B ∩Arg z = 0)/2 and d2 = deg(Fuj ;B ∩ {yj > 0, y′j = 0})/p, where
y′j is one of the twins of yj . By deforming y′j to ε, it is clear that d2 = 0, while
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d1 = (−1)dim V0+1. Then, one may choose Fuj as the generator, instead of η1. The
other generators will be, according to Theorem 5.4 of Chapter 3

Fju = (2t − 1, |z| · |zl | − 1, X0, λz, (z
p
l − 1)zl, . . . )

F̃uj = (2t − 1, |z||zpl − 1| − 1, (z2 − 1)z, λ(zpl − 1)zl, . . . ),

where z = (yj + iy′j ) and zl belongs to Vl .
Similarly, if Hu does not contain Hj nor Hj1 , with Hj different from Hj1 , so that

VHj ∩ VHj1 = V � , one has the same situation for �(Hu ∩ Hj ∩ Hj1) and one may
take Fujj1 as a generator for this group, with the same relation as above. This proves
(c).

On the other hand, if �/Hu
∼= S1, then dim �/(Hu ∩Hj) = 1 and �(Hu ∩Hj) ∼=

Z. Then, one may compute the extension degree of Fuj on the fundamental cell
C = {(z, yj , . . . ) : 0 ≤ yj ≤ 2, z ∈ R+}, which is (−1)dim V0+1, as above. Hence,
we may choose Fuj as a generator of the group. This proves (d).

Finally, if Hu < Hj , with �/Hu
∼= Z2k , one may construct a fundamental cell for

�(H) in two different ways: the first one, as the set characterized by {z : 0 ≤ Arg z <

π/k}, with the generators [Fu]� and [F̃u]� and the relations 2k[Fu]� = 0, 2[F̃u]� = 0.
The second one, with a fundamental cell characterized by {(yj , z) : 0 ≤ yj < 2,
0 ≤ Arg z < 2π/k}, with the generators

η1 = (2t − 1, |y| · |z| − 1, X0, λy, (ȳz
k − |y|)z),

η2 = [Fuj ]�
η̃ = [F̃u]� = (2t − 1, |z2k − i| − 1/2, X0, yj , λ(z

2k − i)z, . . . ),

where y = yj + iy′j , with the relations

2η1 + d2η2 + d̃η̃ = 0, k(η2 + η̃) = 0, 2η̃ = 0,

see Theorem 5.2 of Chapter 3: on the set B ∩ {yj > 0, y′j = 0}, the map η1 has

a degree equal to (−1)dim V0k and, according to Lemma 5.3 in Chapter 3, it may be
taken as a generator, since d2 and d̃ are 0 or 1.

Note that, according strictly to Lemma 5.4 of Chapter 3, η̃ should be the map

η̃ = (2t − 1, |yj ||yj zk − i| − 1/2, X0, (y
2
j − 1)yj , λ(yj z

k − i)z),

with zeros at t = 1/2, X0 = 0, yj = ±1, λ = 0, |zk ± i| = 1/2. In particular, η̃ is
non-zero on the boundary of the first fundamental cell, where one has 0 ≤ Arg zk < π

and zk real on the boundary. Furthermore, in the cell, the only zero is for yj = 1 and
|zk − i| = 1/2. From here, it is easy to see that the class of η̃, on this fundamental
cell, is the Hopf map, that is η̃ = [Fu]� .
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Now, on the set B ∩ {z : Arg z = 0}, one has the following relations between the
ordinary degrees:

deg(I ∗j [Fu]) = − deg([Fu]), deg([Fuj ]) = 2 deg([Fu]).
Hence, according to Lemma 5.4 in Chapter 3, one has

I ∗j [Fu]� = −[Fu]� + dη̃, [Fuj ]� = 2[Fu]� + d1η̃.

Since, I ∗j [Fu]� + [Fuj ]� = [Fu]� , from Lemma 4.2, one has d1 + d = 0, that is, in
Z2, d1 = d. Furthermore, in the map η1, one may perform the equivariant rotation

(((1 − τ)λ− τ(ȳzk − |y|))y, (τλ+ (1 − τ)(ȳzk − |y|))z).
For τ = 1, the term |y|y − |y|2zk is deformed linearly to |z|y − zk (on a zero of the
map, one has |y| · |z| = 1). Then, |y| · |z| − 1 is deformed linearly to |z|k − 1 and,
next, to |z|2 − 1. Finally, |z|y − zk is deformed (since on a zero one has |z| = 1), to
y − zk and then to y. Thus, η1 = [Fu]� .

From [Fuj ]� = η2 = 2[Fu]� + dη̃ = 2η1 + dη̃, one obtains d2 = −1 and d = d̃.
Since 2k[Fu]� = 2kη1 = 0 and k(η2 + η̃) = 0, one gets dkη̃ = −kη̃, that is, if k is
odd, one needs d = 1. Note that η̃ has the class of the Hopf map on the fundamental
cell and that I ∗j η̃ = η̃ (since 2η̃ = 0). As in Propositions 7.2, 7.6 and 7.9 of Chapter 3,
we leave out the determination of d, when k is even.

Note that, from Lemma 4.2 and from what we have proved in the present lemma,
the effect of subsequent applications of I ∗j1

, I ∗j2
, and so on, may be easily derived.

Remark that part of this theorem was proved, in Example 7.4 in Chapter 3, by using
products. � 

Corollary 4.1 (Abstract Hopf bifurcation). Assume hypothesis (H1) and let
F(µ, ν,X) be a C1 map from R2 × U into U (of the form Identity − Compact,
if U is infinite dimensional) such that F(µ, ν, 0) = 0 and DXF is invertible for
0 < µ2 + ν2 < 4ρ2 and X = 0. Then, there is a global continuum C of zeros of
F , with X �= 0, bifurcating from (0, 0, 0), which is either unbounded or returns to
(µ1, ν1, 0) �= (0, 0, 0), if one of the following numbers is non-zero:

d0 mod 2, and C is in U�;
dj mod 2, and C is in UHj ;∑

nsds mod p if p is even and mod 2p if p is odd, and C is in UHl ;
dk and C is in UHk .

If C is bounded and DXF is invertible in punctured neighborhoods of the return
points (µj , νj , 0), then the sum of the �-degrees in Theorem 4.1 is 0.

If all the numbers are 0, then there is a �-map F̃ (µ, ν,X), with DXF̃ (µ, ν, 0) =
DXF(µ, ν, 0), for µ2 + ν2 ≤ 4ρ2, such that F̃ (µ, ν,X) = 0 only for X = 0.
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Proof. It is enough to apply Theorem 5.2 of Chapter 2 and, for the last part, the results
of [I ]. The proof relies only on the fact that for any ρ > 0, small enough, there is
an ε(ρ) such that F(µ, ν,X) = 0, for ‖X‖ ≤ 2ε(ρ) and ρ2 ≤ µ2 + ν2 ≤ 4ρ2, then
X = 0. Then, for ε ≤ ε(ρ), one defines the set

� = {(µ, ν,X) : µ2 + ν2 ≤ 4ρ2, ‖X‖ ≤ 2ε},
and perform the deformation (τ (‖X‖ − ε)+ (1− τ)(ρ2 −µ2 − ν2), F (µ, ν,X)) on
∂�, followed by the linearization of F , on the loop µ2 + ν2 = ρ2, to DF(µ, ν, 0)X.

� 

Remark 4.3. There are many possible variations on the hypothesis of invertibility of
DF . For instance, that DF is invertible only outside a disk of the form µ2+ν2 ≤ ρ2

0 :
the above argument goes through and the bifurcation will take place from this disk.
Another hypothesis, which we will use in the case of differential equations, is the
following:

(H2)

For some ε0, ρ0 > 0, if ρ2
0 ≤ µ2 + ν2 ≤ 4ρ2

0 , one has

DX⊥F
⊥(µ, ν, 0) invertible and, in the same ring,

F�(µ, ν,X0) �= 0 if 0 < ‖X0‖ ≤ 2ε0.

In fact, since F⊥(µ, ν,X0, X⊥) = 0(‖X⊥‖‖X‖), due to the equivariance, in
the above disk and for ‖X‖ ≤ 2ε0, a zero of F is only for X⊥ = 0 and with
F�(µ, ν,X0) = 0, i.e., with X0 = 0. Thus, the deformation of (‖X‖ − ε, F )

to (ρ2
0 − µ2 − ν2, F ) is possible on ∂�. Then, it is straightforward to deform to

(ρ2
0 −µ2−ν2, F�(µ, ν,X0),DX⊥F

⊥(µ, ν, 0)X⊥), since the invertibility of DX⊥F
⊥

at (µ, ν, 0) implies its invertibility at (µ, ν,X0), forX0 small. Note that, forµ2+ν2 =
ρ2

0 , the index of F�(µ, ν,X0) at 0, is well defined and independent of (µ, ν) on this
circle, since one may move along the circle, with a constant index. Note also that, if
F�(µ, ν,X0) is zero only at X0 = 0, for µ2 + ν2 ≤ 4ρ2

0 , then one may deform F� ,
via F�(τµ, τν,X0), to F�(0, 0, X0), obtaining a product map. In general, one has
the following result:

Corollary 4.2. Assume (H1) and (H2) hold. Then, deg�((‖X‖2− ε2
0, F );�) is given

as in Theorem 4.1, with d0 = deg((‖X0‖2 − ε2
0, F

�(µ, ν,X0));��), in Z2, and I
∗α0
0

replaced by Index(F�(µ0, ν0, X0); 0), for any (µ0, ν0) on the loop µ2 + ν2 = ρ2
0 . In

particular, if F�(µ, ν,X0) is zero only at X0 = 0, for µ2 + ν2 ≤ 4ρ2
0 , then d0 = 0,

there is no bifurcation of stationary solutions, and, if Index(F�(0, 0, X0); 0)du is
non-zero, then one has a global bifurcation of non-stationary solutions in V u.

Proof. It is clear that one may perform the above deformation for �I
αj
j F . Thus, one

may assume that each piece of DX⊥F
⊥ has a positive determinant on the loop |λ| = ρ.

Furthermore, on that loop, the piece I
αj
j Aj is homotopic to diag(λdj , Id). If G(τ, λ)
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is the homotopy of the family of matrices, for |λ| = ρ, then |λ|G(τ, λρ/|λ|) is a valid
extension to �. Thus, one may assume that �I

αj
j DX⊥ F⊥ has this special form.

Let ϕ(X⊥) be 1 if ‖X⊥‖ < ε0/2 and be 0 if ‖X⊥‖ > ε0. Then, one may replace
DX⊥F

⊥ by (1−ϕ)DX⊥F
⊥+ϕ Id∗, where Id∗, on a component zj such that DX⊥F

⊥

is λdj zj , is of the form−ρdj η
dj
j , with |ηj | = 1 and the dj roots of the equation η

dj
j = 1

are different for all j ’s. Hence, if �1 is the part of � with ‖X⊥‖ < ε0/2 and �2 the
part with ε0/2 < ‖X⊥‖ < 2ε0, one obtains

deg�((ρ
2 − |λ|2, F�,DX⊥F

⊥);�)

= deg�((ρ
2 − |λ|2, F�, Id∗X⊥);�1)

+ deg�(ρ
2 − |λ|2, F�, ((1 − ϕ)DX⊥F

⊥ + ϕ Id∗)X⊥);�2).

In the first degree, one may deform Id∗ to Id and obtain the suspension of d0. For
the second degree, the zeros of the map are such that, for some of the pieces ofDX⊥F

⊥,

one has (1−ϕ)λdj zj−ϕρdj η
dj
j zj = 0, with zj �= 0. Hence, ϕ = 1/2 andλdj = ρdj η

dj
j ,

something which happens for different values of λ. Hence, one may divide the loop,
and subsequently �2, into smaller pieces, where this last relation occurs for just one
value λj of λ. On each of these pieces of the loop, one may deform F�(µ, ν,X0) to
F�(µj , νj ,X0), obtaining a product of maps and, from Proposition 7.6 of Chapter 3,
a product of degrees. In this case, it is obvious that the product of the generators
is just the generator of the product. Furthermore, since the index of F�(µj , νj ,X0)

is constant on the loop, one may factor it and recompose �2 from its pieces and, in
fact, return to �, without the dependence on X0. Note that, since dim V � ∩ V⊥ = 0,
technically the hypothesis (H1) is not satisfied for the �-degree for (λ,X⊥). But,
one may suspend by X̃0 of large dimension and use Theorem 7.1 of Chapter 3, where
one has that, for strict subgroups of �, this suspension is an isomorphism, due to the
rest of hypothesis (H1). Note also that one could compute directly the �-degree on
a small neighborhood of λj = µj + iνj , by taking the section zj in R+, giving a
contribution of Sign dj , for each root. Also, if F�(µ, ν,X0) �= 0, for X0 non-zero
and µ2 + ρ2 ≤ 4ρ2

0 , then by deforming to F�(0, 0, X0), one may use directly the
product theorem. In this case, deg((ρ2

0 − |λ|2, F�(0, 0, X0));��) = 0, since one
may deform the first component to ‖X0‖2 − ε2

0, obtaining a pair without zeros. � 

Example 4.2. As an illustration of the last corollary, consider the group Z2 acting
trivially on z0 in C and as − Id on (z1, z2) in C2. Consider the �-map

F = (z2
0 − λt, λz1 + z0(z2 + z̄2)− t z̄1, |λ|z2 − (z0z1 + z̄0z̄1)− t z̄2),

where λ = µ + iν and t = |z1|2 + |z2|2. Then, DX⊥F
⊥(λ, 0) = diag(λ, |λ|) and

F� = z2
0, that is (H2) is satisfied, with Index(F�; 0) = 2. Furthermore, d1 =

[DX⊥F
⊥] = 1 (the term |λ| is deformable to 1). From Corollary 4.2 and taking

into account that 2[F1] = 0, one has that deg�(ρ
2 − |λ|2, F ;�) = 0. In fact, if

F(λ,X) = 0, one may write the last two components, each multiplied by t , in the
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form (
z0 t

−t z̄0

)(
z0z1 + t z̄2
z0z2 − t z̄1

)
= 0.

If X �= 0, the matrix is invertible and, conjugating the second component, one may
write the vector as (

z0 t

−t z̄0

)(
z1
z̄2

)
= 0.

Hence the only zero of F is (λ, 0), i.e., with no bifurcation.

Remark 4.4. For a correct application of Corollary 4.1, it is important to note that
if du �= 0, then there is global bifurcation in V u. But this does not mean that the
isotropy of the solution is exactly Hu. Similarly, one may have dr and ds non-zero for
two subgroups Hr and Hs . Hence, one will have global bifurcation in VHr and VHs ,
but it may happen that these branches are the same in VHr ∩VHs , with an isotropy H

which contains Hr ∪Hr . Even if dH = 0, this is not enough to guarantee that the two
solutions are distinct.

In fact, consider the action of S1 on C4 via

eiϕ(z1, z2, z3, z4) = (e2iϕz1, e
3iϕz2, e

6iϕz3, e
6iϕz4),

and the map F(λ,X) = (X0, λz1, λz2, λz3 + z3
1, λ̄z4 + z3

2).
From the linearization, it is easy to see that dZ2 = 1 = dZ3 and dZ6 = 0, corre-

sponding to the linear map diag(λ, λ̄), with winding number equal to 0. However, the
non-trivial solutions are for λ = 0, z1 = z2 = 0, i.e., in V Z6 .

Similarly, the map (|λ|2x0 + |z1|2 + |z2|2, λz1, λz2), with action of S1 as
eiϕ(x0, z1, z2) = (x0, e

2iϕz1, e
3iϕz2), has d� = 0, dZ2 = dZ3 = 1, but the non-trivial

solutions are for λ = 0 = z1 = z2.
Clearly, if it is known that there is no bifurcation in any VH for H containing

Hr ∪ Hs and the numbers dHr and dHs are non-zero, then one will have two distinct
branches. This is the case if DFH(λ, 0) is invertible, for all such H ’s, or in the
situation of Corollary 4.2.

Example 4.3 ( Hopf bifurcation for autonomous differential equations). Let us return
to the autonomous system

g(µ, ν,X) ≡ (ν0 + ν)
dX

dt
− L(µ)X − f (X,µ) = 0, X in RN,

where f (X,µ) = 0(‖X‖2), or equivalently, to the infinite system of Fourier series

(in(ν0 + ν)I − L(µ))Xn − fn(X,µ) = 0, n ≥ 0,

where fn is S1-equivariant. Note that the equation for n = 0, i.e., for the stationary
part, is independent of ν.
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Proposition 4.1. Assume that L(0) has eigenvalues ±im1ν0, . . . ,±imsν0 and that,
for µ small but non-zero, L(µ) has its corresponding eigenvalues off the imaginary
axis. Assume also that if L(µ)X + f (X,µ) = 0, for µ and ‖X‖ small, then X =
0. Then, for any ε and ρ small enough, degS1((‖X‖ − ε, g(µ, ν,X)); {|λ| ≤ 2ρ,
‖X‖ ≤ 2ε}) is well defined and equal to

s∑
j=1

dmj
[Fmj

]S1 ,

where dmj
= Index(L(µ)X + f (X,µ); 0)σmj

and σmj
is the net crossing number

of eigenvalues of L(µ) at imjν0, that is the number of eigenvalues which cross the
imaginary axis at imjν0, when µ goes through 0, from left to right minus the number
of those which cross from right to left.

Proof. The hypothesis insures that in(ν+ν0)I−L(µ) is invertible for λ = µ+ iν non
zero and small, provided n > 0. The second part of the hypothesis implies that one
may apply Corollary 4.2. From the point of view of the reduction to finite dimension,
any contraction argument will lead to considering the modes m1, . . . , ms and 0. Note
that the second part of the hypothesis is met if L(0) is invertible, in which case the
index of the statement is just the sign of det L(0). It remains only to compute the
winding number of det(imj (ν0 + ν)I − L(µ)).

It is enough to recall that one may identify the eigenvalues λ1(µ), . . . , λN(µ)

of L(µ) in a continuous way (unless the eigenvalue is simple, or L(µ) is self-
adjoint, the corresponding eigenvector is not continuous, although the projection on
the generalized eigenspace is continuous: see for instance [K]). Then, if one writes
λk(µ) = αk(µ) + iβk(µ), it is clear that in the above determinant one may de-
form to 1, in C, all the terms corresponding to eigenvalues which do not satisfy
αk(0) = 0 and βk(0) = imjν0. Thus, the winding number of the determinant is
the degree of �(−αk(µ)+ imj (ν − γk(µ)), where k runs over all eigenvalues corre-
sponding to the generalized eigenspace ker(L(0) − imjν0I )

αj , of dimension d, and
βk(µ) = imj (ν0 + γk(µ)).

Since αk(µ) �= 0 for µ �= 0, and γk(0) = 0, one may deform, on µ2 + ν2 = ρ2,
the term γk(µ) to 0. Furthermore, αk(µ) may be deformed to Sign αk(µ) and then the
corresponding factor is deformed to 1, in C, if αk(µ) does not change sign. While, if
αk(µ) changes sign as ±µ, then one may deform it to ±µ. Thus, one has to compute
the degree of (−µ+ imjν)

n+(µ+ imjµ)
n− , where n± are the number of eigenvalues

which cross the imaginary axis at imjν0 as ±µ, when µ goes through 0. Hence the
degree is n− − n+. This gives the result up to an orientation factor (−1)N+1, given
by the change from n− − n+ to n+ − n− and to the degree of − Id in RN . This factor
is absorbed by the generator Fmj

. The fact that d0 = 0 comes from the special case
of hypothesis (H2). � 
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Remark 4.5. Let us return to the point of the type of the solutions. Consider the
three-dimensional system

(1 + ν)


x1
x2
x3



′
=

 µ 1 0
−1 µ 0
0 0 µ2




x1
x2
x3


+


P(X,µ)

Q(X,µ)

R(X,µ)


 ,

where P,Q,R are C2 functions with vanishing first derivatives at X = 0. Here the
action is that of S1 and only two modes are important: n = 1, with a crossing of
a simple eigenvalue from left to right, and n = 0 with a non-negative eigenvalue
touching the origin at µ = 0.

(a) IfR(X,µ) = a(µ)x2
1+b(µ)x2

2+c(µ)x1x2+x3
3+H.O.T., where H.O.T. means

terms of order 3 (different from x3
3 ) and higher. Since L(µ) is singular, one has

to look at the stationary solutions in order to verify hypothesis (H2). In this
case, one may solve the first two equations, for x1 and x2 in terms of x3, with
xi = 0(x2

3 ), i = 1, 2. The last equation will be of the form x3(µ
2+x2

3 +0(x3
3)),

which, for x3 small, has the only solution x3 = 0. Hence, one obtains a global
branch of truly periodic solutions, since the index of L(µ)X+f (X,µ) is 1, for
µ small and non-zero.

(b) If the third equation is replaced by (1 + ν)x′3 = R(X,µ), then, as above, the
only stationary solution, for µ small, is X = 0 and its index is 1 (from the term
x3

3 ). Thus, one has the same behavior as in the preceding case.

(c) Take the system, with P = Q = 0, R(X,µ) = x2
1 + x2

2 . Then, any periodic
solution gives either µ = ν = 0, or x1 = x2 = 0. But x′3 = x2

1 +x2
2 ≥ 0 cannot

have a periodic solution, unless x1 = x2 = 0. Thus, µ = 0, x1 = x2 = 0, x3 in
R is a global branch of stationary solutions.

Example 4.4 (Hopf bifurcation for autonomous systems with symmetries). We con-
sider the problem of finding (2π)-periodic solutions to the system

g(µ, ν,X) = (ν + ν0)
dX

dt
− L(µ)X − f (X,µ, ν) = 0, X in RN,

for (µ, ν) close to (0, 0) and f (X,µ, ν) = o(‖X‖). Here we shall assume that L(µ)
and g(X,µ, ν) are �0-equivariant. Then the problem is equivalent to the system

(in(ν + ν0)I − L(µ))Xn − fn(X,µ, ν) = 0, n ≥ 0, Xn in CN.

We shall assume that L(µ) has the same spectral behavior as in the preceding example
and, for simplicity, that L(0) is invertible. Now, if Xnj is the j ’th coordinate of Xn,
then the action of � = S1 × �0 on Xnj is of the form

exp i(〈Nj ,/〉 + 2π〈K,Lj/M〉 + nϕ),
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as in Section 1 of Chapter 1, with n ≥ 0. Hence, Xnj and Xkl belong to the same
representation only if n = k,Nj = Nl andLj ≡ Ll , modM . Since n ≥ 0, conjugates
will enter only for n = 0, Nj = −Nl, Lj ≡ −Ll , i.e., for conjugate representations
of �0. Furthermore, if Hnj is the isotropy of Xnj , then �/Hnj is finite only if n = 0
and Nj = 0, in which d0j = 0, since L(0) is invertible. Similarly, if �/H0j ∼= S1,
one obtains also d0j = 0.

Now, since L(µ) is �0-equivariant, one has

L(µ) = diag(L0(µ), Lk(µ), . . . , Ll(µ)),

where �0 acts trivially on L0, as − Id on Lk and as Zm or S1 on Ll .

One gets the following application of Theorem 4.1:

Proposition 4.2. AssumeL(0) is invertible and has eigenvalues±im1ν0, . . . ,±imsν0,
with 0 < m1 ≤ m2 ≤ · · · ≤ ms , and with the corresponding eigenvalues of L(µ)
off the imaginary axis, for µ small and non-zero, and L(µ) = diag(L0, Lk, . . . , Ll),
with Lk of real dimension at least 3 and Ll of complex dimension at least 2, then

deg�((‖X‖ − ε, g); {|λ| < 2ρ} × {‖X‖ < 2ε}) =
∏

I
∗αk
k

(∑
n≥1

dnj [Fnj ]�
)
,

where dnj is the net crossing number of eigenvalues of in(ν + ν0)I − Lj (µ) in VHj ,
where Hj is the isotropy of the piece corresponding to Lj . The generator Fnj is, up to
an orientation factor, the suspension of (1 − |znj |2, λznj ). The terms α0, αk are
(1 − Sign det L0)/2 and (1 − Sign det Lk)/2 respectively. One has I ∗k [Fnj ]� =
[Fnj ]� − [Fnjk]� , where the last generator corresponds to the resonance of the sta-
tionary part Lk(µ), with action of �0 as− Id, on the n-th mode znj . For I0, the action
of I ∗0 is the antipodal one. If dnj �= 0, one has a global bifurcation in VHj , with
solutions X(t) which satisfy

X(t) = γ0X(t + 2π/q), where γ0 is in �0, γ
q0
0 is in Hj and nq0 = q.

Proof. This follows from Theorem 4.1, Corollaries 4.1 and 4.2 and Lemma 9.4 in
Chapter 1. In order to determine αk , it is enough to see which subgroups of � give
�/H ∼= Z2: this is possible only if n = 0, Nj = 0 and �0 acts as− Id. Note that, due
to spectral conditions, there are at most N/2 possible dnj which may be non-zero. � 

Example 4.5 (Hopf bifurcation for time-dependent differential equations). Consider
the problem of Hopf bifurcation for the equation

g(µ, ν,X) = (ν+ν0)
dX

dt
−L(µ)X−f (µ, ν,X)− ε0h(X,µ, ν, t) = 0, X ∈ RN,

whereX(t) is 2π -periodic, (µ, ν) is close to 0, the autonomous term has f (µ, ν,X) =
o(‖X‖) and the non-autonomous term has h(0, µ, ν, t) = 0 and is (2π/p)-periodic
in t . Thus, for ε0 = 0, one has an S1-action, while for ε0 �= 0, the action is reduced
to a Zp-action.
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Proposition 4.3. AssumeL(0) is invertible and has eigenvalues±im1ν0, . . . ,±imsν0,
with 0 < m1 ≤ m2 · · · ≤ ms , and with the corresponding eigenvalues of L(µ) off the
imaginary axis, for µ small and non-zero. Then, for ε0 small enough, the Zp-degree
of (‖X‖ − ε, g) with respect to B2ρ × B2ε is well defined and equal to

Sign det L(0)(d�[F�]Zp
+
∑
p′|p

dH [FH ]Zp),

where, if dn denotes the net crossing number of eigenvalues of in (ν + ν0)I − L(µ),
one has

d� ≡
∞∑
k=1

dkp mod 2,

dH ≡
∑
j

nj

∞∑
k=1

dmjp/p
′+kp mod 2p′ if p′ is odd and mod p′ if p′ is even.

Here, �/H ∼= Zp′ , for any divisor p′ of p, the sum is over all mj ’s, relatively prime
to p′, with 1 ≤ mj < p′, and |nj | is odd such that njmj ≡ 1, modulo p′. If d� is
odd, one obtains Hopf bifurcation of (2π/p)-periodic solutions, while if dH is not
congruent to 0, one has Hopf bifurcation of (2πp′/p)-periodic solutions.

Proof. If h(X,µ, ν, t) = A(t)X+ . . . one may choose ε0 so small that the Fredholm
operator (ν+ν0)d/dt−L(µ)−ε0A(t) is invertible, forµ2+ν2 = ρ2, from the space of
2π -periodicC1 functions onto the space of 2π -periodicC0 functions: this comes from
the fact that, for |µ| ≤ ρ,L(µ) is invertible and has no pure imaginary eigenvalues,
for µ �= 0, close to a multiple of ν0, hence the operator (ν + ν0)d/dt − L(µ) is
invertible on the loop. Furthermore, one may Zp-deform g(µ, ν,X), on the loop, to
(ν + ν0)X

′ − L(µ)X, considered, when ε0 �= 0, as a Zp-equivariant linear map.
While, for ε0 = 0, any non-zero winding number dn of in(ν + ν0)I − L(µ)

will give rise to a Hopf bifurcation of 2π -periodic solutions (not necessarily least
periodic), for ε0 �= 0, we have to study the isotropy subgroups H of Zp for its action
on Fourier series, that is as exp(2πink/p) on Xn, with 0 ≤ k < p. Hence, if
n/p = n′/p′, with n′ and p′ relatively prime, the isotropy H of Xn will be H = {k =
0, p′, 2p′, . . . (p/p′ − 1)p′} ∼= Zp/p′ and �/H ∼= Zp′ .

Now, two representations of Zp will be equivalent, on Xn and Xm and as complex
representations, if and only if n ≡ m, modulo p. Furthermore, in order to apply
Theorem 4.1, one needs to identify all modes Xm which have exactly H , as above,
as isotropy, i.e., such that the action of � on Xm is of the form exp(2πimsk/p

′), for
k = 0, . . . , p′ − 1 and where ms and p′ are relatively prime, with m/p = ms/p

′.
Then, ms = mj + ap′, with 1 ≤ mj < p′, and mj and p′ relatively prime, and
m = mjp/p

′ + ap. If p′ is prime, then any integer mj between 1 and p′ − 1
is allowed. Clearly, if nj , with |nj | odd, is such that mjnj ≡ 1, modulo p′, then
msnj ≡ 1, modulo p′. Also, if H = �, then m = kp, since p′ = 1 and mj = nj = 1.
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Finally, since � acts only on the non-trivial modes, I ∗k is not present, except for I ∗0
which contributes Sign det L(0). � 

Remark 4.6. Note first that this symmetry breaking argument was given, in an abstract
form, in Proposition 7.3 in Chapter 3. From the point of view of Hopf bifurcation, note
that a mode m belongs to just one p′: in fact, if m = m1p/p1+k1p = m2p/p2+k2p,
then m1p2 −m2p1 = kp1p2, where mj and pj are relatively prime. But this implies
p1 = p2. Thus, it is convenient to list the divisors of p in increasing order and begin
with the smallest (1 corresponds to d�). Then, for a given integer j < p′, either j
is relatively prime to p′ or the corresponding modes jp/p′ + kp have already been
assigned to a smaller divisor of p. Note also that, if mjnj ≡ 1, modulo p′, with mj

and p′ relatively prime, then it is also true for m′
j = p′ − mj and n′j = −nj : this

natural pairing corresponds to conjugation. Finally, note that if p′ is an odd prime (if
p′ = 2, then mj = nj = 1), then, due to the pairing, one has to consider all integers
between 1 and (p′ − 1)/2, with n1 = 1, n2 = (1 + p′)/2, if this number is odd, or
n2 = (1 − p′)/2 otherwise, and n(p′−1)/2 = p′ − 2.

Finally, for p ≤ 7, we refer the reader to the examples after Proposition 7.3 in
Chapter 3, where d� and dH are computed in terms of the dn’s.

Remark 4.7. Recall that, if the bifurcation index is 0, then, given a linear part, there is
a non-linear part at the level of Fourier series (not necessarily coming from a differential
equation) such that there is no bifurcation. Here, we shall give an example, which is
parallel to Example 2.5, showing how one may force a linear system which has a Hopf
bifurcation with a linear time-periodic perturbation which destroys the bifurcation.

Take p any integer larger than 1 and consider the following system for 2π -periodic
functions:

x′′ − µx′ + νx + 2ε((p + 1)y cospt + y′ sin pt) = 0

y′′ − (p − 1)µy′ + (p − 1)2νy − 2ε(p − 1)((2p − 1)x cospt + x′ sin pt) = 0.

For ε = 0, µ close to 0 and ν close to 1, one has a vertical Hopf bifurcation for (x, 0)
with n = 1 and for (0, y) with n = p − 1. The winding numbers are all 0, except
d1 = dp−1 = 1.

For ε �= 0, the system is equivalent to

(−n2 − iµn+ ν)xn + ε((n+ 1)yn−p − (n− 1)yn+p) = 0

(−n2 − iµn(p − 1)+ ν(p − 1)2)yn

− ε(p − 1)((n+ p − 1)xn−p − (n− p + 1)xn+p) = 0.

Taking the first equation for n = 1 and the second for n = p− 1, one obtains the pair

((ν − 1 − iµ)x1 + 2εȳp−1, (p − 1)2((ν − 1 − iµ)yp−1 − 2εx̄1)),
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with only zeros x1 = yp−1 = 0, unless ν = 1, µ = 0 and ε = 0. For ε �= 0, the
remaining equations form a closed system with invertible diagonal, that is, the only
solution, for ε small and (µ, ν) close to (0, 1), is x = y = 0.

For p = 1, one takes out the factors p − 1, in the second equation, and one has
d1 = 2 but the same result holds.

It would be interesting to have similar simple examples for, say, p = 3, d1 =
6, dj = 0 for j > 1, or p = 5, d1 = 3, d2 = −1 and dj = 0 otherwise.

Remark 4.8 (Global Hopf bifurcation). In this book we have not stressed the aspects
of global bifurcation, since [IMPV] and [I] deal with this problem. However, we
should warn the reader about the meaning of unboundedness of global branches, in
particular for the equation

νX′ = g(X,µ).

As explained in Remark 2.3 of Chapter 3, this equation has to be transformed into
an equation of the form Id-compact, in order to apply any degree theory in infinite-
dimensional spaces. The integral equation will then have the term ν−1, that is, when
ν goes to 0, the equation becomes unbounded. Hence, a natural parameter for the
global bifurcation is the period T = 2π/ν.

Furthermore, if g(X,µ) is C1 and one has a 2π -periodic solution X(t), then,

ν2|X′(t)−X′(0)|2 ≤ L2|X(t)−X(0)|2,
where L is a bound for Dg(X(s), µ) on the orbit. Since

∫ 2π
0 X′(t) · X′(0) dt = 0,

from the periodicity, one obtains

ν2‖X′‖2 ≤ ν2(‖X′‖2 + |X′(0)|2) ≤ 2π2L2‖X′‖2.

Thus, for a non-stationary solution lying in a bounded region of RN , one has

ν ≤ π
√

2L.

Also, if X(t) is close to a stationary solution X0, the Fourier series

inνXn −Dg(X0)Xn = hn(X),

imply that, if |ν| > ‖Dg(X0)‖, then the only solution is a stationary solution and X0
cannot be a bifurcation point of truly periodic solutions.

Note that, if there are no stationary solutions in some bounded subset of RN , then
K ≤ |g(X)| ≤ M , and K ≤ |ν|‖X′‖ ≤ M .

In particular, any truly periodic solution, in a bounded subset� ofH 1, will be, from
Sobolev inequality, bounded in RN and, from the above, with a bounded frequency.

Thus, the global Hopf theorem should be stated as: either the branch of non-trivial
solutions is unbounded in (µ, T , ‖X‖1), or returns to another trivial solution, where
trivial solution means either X = 0, if one has complemented with ‖X‖1 − ε, or a
stationary solution, if the complementing map is ‖X′‖−ε: in this last case, one needs
that there is no bifurcation of stationary solutions at (0, 0), for instance, if L(0) is
invertible.
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Example 4.6 (Hopf bifurcation for autonomous systems with first integrals). Consi-
der the problem of finding 2π -periodic solutions to the problem

g(X,µ) = dX

dt
− L(µ)X − f (X,µ) = 0, X in RN, f (X,µ) = o(‖X‖),

for which one has a family of first integralsV (X,µ). Thus,∇V (X,µ) is orthogonal to
g(X,µ) for each fixedµ, that is∇V is orthogonal, on RN , toLX+f and∇V (X(t), µ)

is L2-orthogonal to g(X(t), µ), if X(t) is 2π -periodic. As explained in Example 2.8,
this problem is equivalent to finding 2π -periodic solutions to the equation

dX

dt
− L(µ)X − f (X,µ)− ν∇V (X,µ) = 0,

where, if one has a solution with ∇V (X,µ) �= 0, then ν = 0.

Assume there is a family of stationary solutions X(µ) such that g(X(µ), µ) = 0,
∇V (X(µ), µ) = 0. Without loss of generality, we may take X(µ) ≡ 0. Let

∇V (X,µ) = H(µ)X + k(X,µ), with k(X,µ) = o(‖X‖).
Lemma 4.4. One has the following relations:

H(µ) = HT (µ), L(µ)T H(µ)+H(µ)L(µ) = 0.

Proof. The first relation follows immediately from the fact that H(µ) is the Hessian
of V . For the second relation, from the orthogonality

(L(µ)X + f (X,µ),∇V (X,µ)) = 0,

one obtains, dividing by ‖X‖2 and taking limits when X goes to 0:

(L(µ)X,H(µ)X) = 0,

and thus, from (X, (LT H +HL)X) = 0, the symmetric matrix LTH +HL is 0. � 

Assume that L(0) has eigenvalues ±im1, . . . ,±ims , with 0 < m1 ≤ · · · ≤ ms ,
counted with multiplicities. Let λj (µ) = αj (µ)+ iβj (µ) be the eigenvalues of L(µ),
for µ close to 0, such that αj (0) = 0, βj (0) = βj . We shall impose the following
hypothesis:

(Hj )
a) If λj (µ) = imj , for µ close to 0, then µ = 0.
b) ker H(0) ∩ ker(imj I − L(0)) = {0} for j = 1, . . . , s.

Proposition 4.4. Hypothesis (Hj ) is equivalent to have imj I − L(µ) − νH(µ) in-
vertible for (µ, ν) �= (0, 0), but close to (0, 0).
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Proof. If imj I − L(µ) − νH(µ) is invertible, take ν = 0, µ �= 0, then one obtains
(a). On the other hand, taking µ = 0, ν �= 0, one gets (b).

Conversely, consider the complex scalar product

((L(µ)+νH(µ)−λI)X,H(µ)X)=(H(µ)L(µ)X,X)+ν‖H(µ)X‖2−λ(H(µ)X,X),

where λ = α+ iβ. The first term on the right is, due to Lemma 4.4, purely imaginary,
while the other two are real, since H(µ) is real. Hence, if λ is an eigenvalue of
L(µ)+ νH(µ), with corresponding eigenvector X, one obtains

ν‖H(µ)X‖2 = α(H(µ)X,X).

On the other hand, one has, in general,

‖(L(µ)+ νH(µ)− λI)X‖2

= ‖(L(µ)− λI)X‖2 + ν2‖H(µ)X‖2 + 2ν Re((L(µ)− λI)X,H(µ)X)

= ‖(L(µ)− λI)X‖2 + ν2‖H(µ)X‖2 − 2να(H(µ)X,X).

Thus, if λ = imj and X is an eigenvector, then α = 0, ν‖H(µ)X‖ = 0 and X

is an eigenvector of L(µ) − imj I . From (a), this implies µ = 0 and, from (b), one
needs H(0)X �= 0, thus, ν = 0. � 

We shall need some information on the spectral behavior of L(µ):

Lemma 4.5. Assume (Hj ) holds, then, for small µ, one has the following.

(a) For any k ≥ 1, ker H(µ) ∩ ker(L(µ)− λj (µ)I)
k = {0}.

(b) If λ = λj (µ) is an eigenvalue of L(µ) so are −λ and ±λ̄, with the same
algebraic multiplicity.

(c) If iβ = λj (µ) is a simple eigenvalue of L(µ) with corresponding eigenvector
X, then (H(µ)X,X) �= 0.

(d) If iβ = λj (µ) is an eigenvalue of L(µ), with generalized eigenspace
ker(L(µ) − iβI )k , then H(µ) induces a non-degenerate quadratic form on
this eigenspace, with a well-defined signature σβ(µ).

Proof. If (a) is false for k = 1, then there are sequencesµn converging to 0, eigenvalues
λn converging to imj , eigenvectors Xn, with norm 1, and a subsequence converging
to some X, such that (L(µn)− λnI)Xn = 0, H(µn)Xn = 0. Taking limits, one will
get a contradiction to (Hj ). For k > 1, let X be such that (L(µ) − λI)kX = 0 and
set Y = (L(µ)− λI)nX, where n is the largest integer for which (L(µ)− λI)nX �=
0, hence n < k. Thus, (L(µ) − λI)Y = 0. If H(µ)X = 0, then H(µ)Y =
(−1)n(L(µ)T + λI)nH(µ)X = 0, from Lemma 4.4. Hence, from the case k = 1,
one has Y = 0, which results in a contradiction.
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For (b) one uses the relation H(µ)(L(µ) − λI)k = (−1)k(L(µ)T + λI)kH(µ).
Since L(µ) is real, if λ is an eigenvalue, so is λ̄, with the same algebraic multiplicity.
From the above relation, this is also the case for−λ (and−λ̄) as eigenvalue of L(µ)T ,
with eigenvector H(µ)X, non-zero because of (a), and hence for L(µ). Since H(µ)

is a one-to-one morphism from ker(L(µ)− λI)k into ker(L(µ)T + λI)k , the second
space is at least as large as the first.

Decompose orthogonally RN as V (µ)⊕V (µ)⊥, where V (µ) = ker H(µ). Since
H(µ) is symmetric, the spaceV (µ)⊥ is RangeH(µ). From the relationL(µ)T H(µ)+
H(µ)L(µ) = 0, one obtains, on this decomposition,

L(µ) =
(
A(µ) B(µ)

0 C(µ)

)
,

with C(µ)T H(µ) + H(µ)C(µ) = 0. Since H(µ) is invertible on V (µ)⊥, one has
C(µ) = −H(µ)−1C(µ)T H(µ), which implies that dim V (µ)⊥ is even. From (Hj ),
it follows that, if λ = λj (µ), then A(µ) − λI is invertible and, from the triangular
form of L(µ), one has

(L(µ)−λI)k =
(
(A(µ)− λI)k 0

0 I

)(
I 0
0 (C(µ)− λI)k

)(
I (A(µ)− λI)−kDk

0 I

)
,

that is, ker(L(µ)−λI)k is isomorphic to ker(C(µ)−λI)k . Furthermore, the relation
with H(µ) gives

H(µ)(C(µ)− λI)k = (−1)k(C(µ)T + λI)kH(µ),

with H(µ) invertible on this subspace. Thus, ker(C(µ)T +λI)k has the same dimen-
sion as ker(C(µ)− λI)k . This implies that ker(L(µ)− λI)k and ker(L(µ)T + λI)k

have the same dimension and that H(µ) is an isomorphism between them. The equal-
ity of the algebraic multiplicities follows from standard arguments.

For (c), if iβ is a simple eigenvalue of L(µ), with eigenvector X, then, from
(a),H(µ)X �= 0 and H(µ)X generates ker(L(µ)T + iβI ). If (H(µ)X,X) = 0, then
X would be orthogonal to H(µ)X, hence X would belong to Range(L(µ)− iβI ) and
the multiplicity of iβ would be greater than 1.

For (d), if k is the ascent of L(µ)− iβI , then one has the (non necessarily orthog-
onal) decomposition

CN = ker(L(µ)− iβI )k ⊕ Range(L(µ)− iβI )k.

Let P be the orthogonal projection on ker(L(µ) − iβI )k . Since H(µ) is an isomor-
phism from this last space onto ker(L(µ)T + iβI )k = (Range(L(µ)− iβI )k)⊥, then
PH(µ)P generates a symmetric bilinear form on ker(L(µ) − iβI )k . Furthermore,
if PH(µ)X = 0, for some X in this space, then (X,H(µ)Y ) = 0, for any Y in
this space and, from the above isomorphism, X is orthogonal to ker(L(µ)T + iβI )k ,
hence X belongs to Range(L(µ)− iβI )k , that is X = 0: hence the quadratic form is
non-degenerate. � 
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Definition 4.1. (a) The signature of a complex self adjoint matrix A, i.e., the number
of positive eigenvalues minus the number of negative eigenvalues (A may be singular)
will be denoted by σ(A).

(b) We shall denote, for µ �= 0, by σ±j (µ) the sum of the signatures of H on⋃
ker(L(µ)− iβj (µ))

k , for βj (µ) > mj and close to mj (for σ+j (µ)) and for βj (µ) <

mj and close to mj (for σ−j (µ)). Let σj (µ) = σ+j (µ)+ σ−j (µ).

Note that Hypothesis (Hj ) implies that σ±j (µ) are well defined forµ �= 0. We shall
prove below that, in fact, they remain constant provided µ does not change sign and
that σj (µ) = σj (0). Recall that Sylvester inertial law says that σ(A) is independent
of the basis.

In order to compute the Hopf bifurcation indices, we shall need the following
perturbation result

Lemma 4.6. (a) For each fixed µ, one may perturb L(µ) to L̃(µ) and H(µ) to H̃ (µ),
such that the relationship L(µ)T H(µ) + H(µ)L(µ) = 0 is preserved during the
perturbation and L̃(µ) has all its purely imaginary eigenvalues, close to imj , simple
and σj (H(µ)) = σj (H̃ (µ)).

(b) σj (µ) = σj (0) and σ±j (µ) are constant for µ �= 0.

Proof. From our previous considerations, it is enough to look at C(µ), such that

L(µ) =
(
A(µ) B(µ)

0 C(µ)

)
, on (ker H(µ))⊥. In order to lighten the notation, we shall

drop the µ dependence. Let iβ be an eigenvalue of C, close to some imj and let k be
the least integer such that V (µ)⊥ ∼= Cs , with s even, and

Cs = ker(C − iβI )k ⊕ Range(C − iβI )k.

Let P be the orthogonal projection onto ker(C − iβI )k and let

F = ik−1PH(C − iβI )k−1P = PHAk−1P.

It is easy to check thatHA = A∗H andF ∗ = F̄ T = F . Furthermore, ifFX = 0, then
H(C− iβI )k−1PX would be orthogonal to ker(C− iβI )k , i.e., in Range(CT + iβI )k ,
that is H(C − iβI )k−1PX = (CT + iβI )kY , for some Y . Apply CT + iβI to this
equality, use the anticommutativity for H and (C − iβI ) and the fact that PX is in
ker(C−βI)k , to conclude that (CT + iβI )k+1Y = 0. But, since ker(CT + iβI )k+1 =
ker(CT + iβI )k , by definition of the ascent, this implies that (CT + iβI )kY = 0, or
else, since H is an isomorphism, that (C − iβI )k−1PX = 0. Since ker(C − iβI )k−1

is strictly contained in ker(C − iβI )k , one concludes that F is not identically 0 and
that ker F = ker Ak−1.

Thus, there is a non-zeroX, in ker(C−iβI )k , and λ1 �= 0, such thatFX1 = λ1X1.
Normalize X1 in such a way that (FX1, X1) = η1 = Sign λ1. Let

Xj = ij−1(C − iβI )j−1X1 = Aj−1X1, j = 1, . . . , k.
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Then (HXj ,Xl) = η1 if l + j = k + 1 and 0 if l + j > k + 1. Define

Y1 = X1 + a2X2 + · · · + akXk

Yj = ij−1(C − iβI )j−1Y1 = Aj−1Y1, for j = 1, . . . , k,

where a2, . . . , ak are obtained by setting (HY1, Yj ) = 0, for j = 1, . . . , k − 1: since
Yj =∑

alA
j−1Xl =∑

alXj+l−1, one has

(HY1, Yj ) =
∑

l+m≤k−j+2

amal(HXm,Xj+l−1) = 2η1ak−j+1 + · · · ,

where the suspension dots correspond to indices less that k−j+1. From this triangular
form, it is clear that one may find a2, . . . , ak .

Since Yk = Xk �= 0 (from (HXk,X1) = η1), and Yj = AYj−1, it is standard
to see that {Y1, . . . , Yk} form a sub-basis of ker Ak and that A, on this basis, is in
Jordan form, with 0 on the diagonal and 1 on the lower diagonal. Furthermore,
(HYl, Yj ) = (HAl−1Y1, Yj ) = (HY1,A

l−1Yj ) = (HY1, Yj+l−1) = 0 if j + l ≤ k,
and, since Ym = 0 for m > k, this product is also 0 if j + l > k + 1. While,
(HY1, Yk) = ∑

al(HXl,Xk) = η1. Thus, on the {Yj } basis, the matrix H is 0
everywhere except on the antidiagonal, l + j = k + 1, where it is η1.

Repeat this process for each eigenvalue of F , then replace F by PHAk−2P , on
ker F , and so on. The result is a basis and a change of variables T for ker Ak , for
which A and H are in the above form. More precisely, if Yj = T ej , then J ≡ T −1AT

and Q = T ∗HT . Then, on ker Ak , one has

C = iβI − iT JT −1.

By repeating this Jordan process for all eigenvalues (not necessarily pure imagi-
nary) of C, one gets

C = T (9− iJ )T −1,

where J corresponds to the Jordan blocks and 9 is a diagonal matrix composed
with the eigenvalues of C. Let λ be such an eigenvalue, of algebraic multiplicity
k. Then, if X is in ker(C − λI)k , one has that T −1X is in ker(9 − iJ − λI)k ,
while HX is in ker(CT + λI)k = (Range(C + λ̄I )k)⊥, hence T ∗HX belongs to
(Range(9− iJ + λ̄I )k)⊥ = ker(9∗ + iJ T +λI)k . Thus, Q maps ker(9− iJ −λI)k

onto ker(9∗ + iJ T + λI)k , i.e., associating the generalized kernels of 9 for λ and
−λ̄ (they are the same if λ = iβ). Hence, if 9, on the direct sum of these kernels ,

is of the form diag(λI,−λ̄I ), then Q is of the form

(
0 A

A∗ 0

)
, assuming that λ is not

pure imaginary. From here, it is easy to see that Qi9 = (i9)∗Q. On the other hand,
since H(iC) = (iC)∗H , one has Q(i9+ J ) = ((i9)∗ + J T )Q. Thus, QJ = J TQ.

Now, take any real number γ and consider the self-adjoint matrix (on (ker H)⊥),
γH + iHC = H(γ I + iC). From Sylvester law, one has

σ(γH + iHC) = σ(Q(γ I + i9+ J )).
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Assume that γ �= β, for any iβ eigenvalue ofC. Then,Q(γ I+i9+J ) is invertible and
self-adjoint. Hence, any self-adjoint perturbation, which preserves the invertibility,
will also preserve the signature. An admissible perturbation is Q(−τJ ), for any τ .
Hence,

σ(γH + iHC) = σ(Q(γ I + i9))

=
∑
β∈R

Sign(γ − β)σβ(Q)+
∑
iλ �∈R

σλ,−λ̄(Q(γ I + i9)),

where σβ(Q) is the signature of Q on ker(i9+ J +βI)k , i.e., the signature of PHP

on ker(C − iβI )k , and σλ,−λ̄ corresponds to the pair of eigenvalues λ and −λ̄. But,
if (X, Y ) is an eigenvector of Q(γ I + i9) on this pair of eigenspaces, with real
eigenvalue ξ , then

ξX = (γ − iλ̄)AY, ξY = (γ + iλ)A∗X,

that is, ξ2X = ((γ − β)2 + α2)AA∗X, is λ = α + iβ, with α �= 0. Since Q is
invertible (as H on this space), on has that A∗X �= 0 and ξ �= 0, independently of γ .
Thus, this part of the signature is independent of γ .

Take then γ1 < γ2, with iγj not an eigenvalue of C, one obtains

σ(γ2H + iHC)− σ(γ1H + iHC) = 2
∑

γ1<β<γ2

σβ(Q).

Let us take ε > 0, so small that γjH+ iHC+εI is invertible, hence the signatures
are unchanged, and consider the invertible matrices γjH+iHL+εI , whose signature
is σ(γjH+iHC)+dim ker L. Then, the above difference is valid for γjH+iHL+εI

and for γj H̃ + iH̃ L̃+ εI if H̃ and L̃ are sufficiently close to H and L. In particular,∑
γ1<β<γ2

σβ(µ) is locally constant, provided iγj is not an eigenvalue of L(µ). Then,
choosing γ1 < mj < γ2, and γ1, γ2 close to mj , one gets that σj (µ) is constant for
small µ and σ±j (µ) remain constant provided µ keeps the same sign. This proves (b).

Now, recall that Q, on a Jordan block associated to iβ, is η1I
∗, where I ∗ is the

anti-diagonal. It is easy to see, by induction, that det(Q − λI) is (λ2 − η2
1)

m, if the
dimension of the block is 2m, or (λ2 − η2

1)
m(η1 − λ), if the dimension is 2m + 1.

Hence σ(Q) is 0, if the dimension of the block is even, and η1, if the dimension is
odd. This argument implies, for (a) to be true, that, for such a block, one will have no
imaginary eigenvalue for the perturbed problem, if the dimension is even, and only
one, if the dimension is odd. Note that, on such a block, Q2 = I .

LetK = diag(1, 2, . . . , m,m+1,m, . . . , 2, 1), if the block has dimension 2m+1,
or K = diag(1, 2, . . . , m,m, . . . , 2, 1), if the dimension is 2m. On this block, define
S̃ = QK . Then, S̃ is the anti-diagonal matrix with elements (1, 2, . . . , 2, 1) and
QK = KQ, that is S̃ is self-adjoint. Define S̃, on the generalized eigenspaces with
eigenvalue non pure imaginary, as 0 (also on ker H ) and let S = T ∗−1S̃T −1. Define,
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for ε small enough,

H̃ = H + εS, L̃ =
(
A B

0 (H + εS)−1HC

)
.

Then, ker H̃ = ker H, H̃ is self-adjoint and H̃ (iL̃) = (iL̃)∗H̃ . (Note that we are
not claiming that S is real. Since we are studying the winding number of complex
determinants, S may be complex self-adjoint).

Then, if λ is an eigenvalue of L̃, close to imj , one has det((H+εS)−1HC−λI) =
0, since A− imj I is invertible. Thus,

det(C − λI − λεH−1S) = det(9− iJ − λI − λεK) = 0.

Thus, either λ is a non pure imaginary eigenvalue of C or λ = iβ/(1 + εl), for
l = 1, . . . , m or m + 1 according to the parity of the dimension of K . Thus, the
Jordan block is split into m two-dimensional blocks and one single eigenvalue if the
dimension is odd. By choosing different sets of integers for different blocks, one may
assume that the Jordan blocks are at most two dimensional.

On such a block, one may take S̃ = −η1I and

9− iJ − λI − λεQ−1S̃ =
(

iβ − λ λε

−i + λε iβ − λ

)
,

with two eigenvalues, for ε > 0 small, off the imaginary axis, since β, being close to
mj , is positive. Thus, after the deformation, an even dimensional block will give rise
to eigenvalues off the imaginary axis, while an odd dimensional block gives a single
pure imaginary eigenvalue, below iβ. Then, the stability analysis of the signature will
complete the proof of the lemma. � 

In order to complete the set of hypothesis needed for the S1-index computation,
we shall assume one of the following two conditions:

(H0)
a) L(µ) is invertible for µ �= 0, small

b) ker H(0) ∩ ker L(0) = {0},

(H′
0)

There are ε0, ρ0 > 0, such that if L(µ)X + f (X,µ) = 0, for ‖X‖ ≤ 2ε0

and |µ| ≤ 2ρ0, then either X = 0, or |µ| < ρ0 and ∇V (X,µ) �= 0.

As in Proposition 4.4., (H0) is equivalent to the invertibility of L(µ) + νH(µ),
for (µ, ν) �= (0, 0) and small. Furthermore, its clear that (H0) implies (H′

0) which, in
turn, implies that if L(µ)X + f (X,µ) + ν∇V (X,µ) = 0, then, if ‖X‖ ≤ 2ε0 and
µ2 + ν2 ≤ 4ρ2

0 , either X = 0 or ν = 0 and |µ| < ρ0, that is, hypothesis (H2) of
Remark 4.3 is verified. We are then in the position of applying Corollary 4.2, where
d0 will be computed later.
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Proposition 4.5. Assume (H′
0) and (Hj ) hold for j = 1, . . . , s. Then the S1-degree of

(‖X‖2−ε2
0, X

′ −L(µ)X−f (X,µ)−∇V (X,µ)) on the set {‖X‖ ≤ 2ε0, µ
2+ν2 ≤

4ρ2
0 } is given by d0[FS1 ] +∑s

1 dj [Fmj
], where

dj = Index(L(ρ0)X + f (X, ρ0); 0)(σ+j (−ρ0)− σ+j (ρ0)),

with σ±j (ρ) are given in Definition 4.1.
If (H0) holds, then Index(L(ρ0)X + f (X, ρ0); 0) = Sign det L(ρ0).

Proof. From Theorem 4.1, one has to compute the winding number of det(L(µ) +
νH(µ)− imj I ), on the circle µ2 + ν2 = ρ2

0 . As in Proposition 4.1, this determinant
is
∏N

1 ak(µ, ν), where the eigenvalues ak(µ, ν) are chosen to be continuous and
counted according to their multiplicity. Since the winding number of the product is
the sum of the winding numbers of the factors, it is enough to look at each of them.
If ak(0, 0) �= 0, i.e., it corresponds to an eigenvalue λ of L(0) which is not imj ,
then a(µ, ν) will remain away from the origin and will not wind around 0: one may
then deform it to ak(0, 0) = λ and then to 1. On the other hand, if ak(0, 0) = 0
and ak(µ, ν) = α(µ, ν) + iβ(µ, ν), then it corresponds to an eigenvector X, with
H(µ)X �= 0 and ν‖H(µ)X‖2 = α(H(µ)X,X): see the proof of Proposition 4.4.
Thus, for ν �= 0, one gets α(µ, ν) �= 0 and, since it is continuous, it keeps the same
sign for all ν’s positive (or negative). If, for ν = 0, one has α(±ρ0, 0) �= 0, then
αk(µ, ν) stays on the same half complex plane and its winding number is 0.

Hence, ak(µ, ν) crosses the imaginary axis at most twice, for ν = 0 and µ =
±ρ0. Assuming one has performed the perturbation of Lemma 4.6, this implies that
ak(±ρ0, 0) is a simple eigenvalue and, by Lemma 4.5, one has (H(±ρ0)X,X) �= 0,
for the corresponding eigenvector. Thus, as ν crosses 0 from negative values to positive
values, α(µ, ν) will cross 0 in the same direction, if (HX,X) > 0, and in the other
direction, if (HX,X) < 0. Note that, in this case, (HX,X) keeps the same sign on
the whole loop, by using the continuity of X(µ), near µ = ±ρ0, which is true since
ak(±ρ0, 0) is simple.

Taking the orientation (µ, ν), the loop described by ak(µ, ν) will give a wind-
ing number equal to 0 if β(±ρ0, 0) have the same sign, and, otherwise, equal to
Sign (HX,X), ifβ(ρ0, 0) < 0 < β(−ρ0, 0), and to−Sign (HX,X), ifβ(−ρ0, 0) <
0 < β(ρ0, 0).

For µ = ±ρ0 and η = ±1, let n±(µ, η) be the number of imaginary eigenvalues
iλ of L(µ), close to imj , which are above imj , that is β(µ, 0) > 0 (for n+), or
below imj , that is β(µ, 0) < 0 (for n−), and which have the simple eigenvector X
with Sign (HX,X) = η. Hence, σ±j (µ) = n±(µ, 1) − n±(µ,−1). Let a±(η)
be the number of eigenvalues of L(µ), with Sign (HX,X) = η, which cross imj

from below to above as µ goes from −ρ0 to ρ0 (i.e., β(µ, ν) goes from negative
to positive), for a+(η), and in the inverse direction for a−(η). Then, then winding
number is a−(1)− a+(1)+ a+(−1)− a−(−1).

Let b±(η) be the number of eigenvalues, with Sign (HX,X) = η, which remain
above imj (i.e., with β(µ, ν) > 0), for b+, or below imj (i.e., with β(µ, ν) < 0),
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for b−. Then, one has the relations

n+(−ρ0, η) = a−(η)+ b+(η)
n−(−ρ0, η) = a+(η)+ b−(η)
n+(ρ0, η) = a+(η)+ b+(η)
n−(ρ0, η) = a−(η)+ b−(η).

Thus, a+(η)−a−(η) = n+(ρ0, η)−n+(−ρ0, η) = n−(−ρ0, η)−n−(ρ0, η). We
have proved that the winding number is σ+j (−ρ0)− σ+j (ρ0) = σ−j (ρ0)− σ−j (−ρ0).

� 

For instance, if L(µ) = (µ + λ0)L, with λ0 > 0 and ±imj/λ0 an eigenvalue of
L, then σ+j (−ρ0) = 0, σ+j (ρ0) = σj , the signature of H for imj/λ0.

Remark 4.9. Hypothesis (H′
0) implies that X = 0 is an isolated zero of L(µ)X +

f (X,µ) + ν∇V (X,µ), provided µ2 + ν2 = ρ2
0 , and with a constant index on the

loop. At first sight this hypothesis could seem awkward and a more elegant hypothesis
could have been to ask that L(µ)X + f (X,µ) and ∇V (X,µ) have 0 as an isolated
zero, for µ �= 0, for the first equation, and for any small µ, for ∇V (X,µ).

This happens, for instance, if H(0) is invertible and L(µ) is also invertible for
µ �= 0 (a stronger hypothesis than (H0)). But this new hypothesis implies that eitherN
is even or Index(L(ρ0)X+f (X, ρ0); 0) = 0, in which case dj = 0, for all j ’s. In fact,
forρ0, the mapsL(ρ0)X+f (X, ρ0) and∇V (X, ρ0)have a well-defined index at 0 (this
is not necessarily true for∇V in case (H′

0)holds). Furthermore, since∇V is orthogonal
to L(ρ0)X+f (X, ρ0), the index, at 0, of τ(L(ρ0)X+f (X, ρ0))± (1−τ)∇V (X, ρ0)

is well defined and constant. Then Index(L(ρ0)X+f (X, ρ0); 0) = Index(∇V ; 0) =
Index(−∇V ; 0) = (−1)N Index(∇ V ; 0).

In order to compute d0, assume that (H0) holds. Thus, according to Theorem 4.1,
d0 is the class ofL(µ)+νH(µ) in�1(GL(RN)) ∼= Z2 (since the change of orientation
Iα0 does not affect d0, we may assume that L(µ)+ νH(µ) has positive determinant
on the loop µ2 + ν2 = ρ2).

Decompose RN into ker H(0)⊕ RangeH(0) and write

L(µ)+ νH(µ) =
(
A+ νH1 B + νH2

D + νHT
2 C + νH

)
,

where H1(0) = H2(0) = D(0) = 0, and, from (H0), the matrices A(0) and H(0) are
invertible. The relation LTH +HL = 0, is then

H1A+H2D and HT
2 B +HC are skew symmetric,

HT
2 A+HD + BTH1 + (H2C)T = 0.

Note that, for ν �= 0, L(0)+ νH(0) is deformable to diag(A(0), C(0)+ νH(0))
and to diag(A(0), νH(0)). This implies that dim RangeH(0) is even (since the sign
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of det(L(µ)+νH(µ)) is positive on the loop) and that det A and det H have the same
sign, for µ small. Let H̃ = H − (A−1B)T H2, then, for µ small, H̃ is invertible
and the matrix A = diag(AT , H̃ ) is invertible and deformable to A(0) and then to I .
Consider the matrix

A(L(µ)+ νH(µ)) =
(
ATA+ νAT H1 AT B + νAT H2

H̃D + νH̃HT
2 H̃C + νH̃H

)
=
(
Ã B̃

D̃ C̃

)
.

The class of this matrix in�1(GL(RN)) is the class ofL+νH . Since Ã is invertible, for
(µ, ν) small, multiply B̃ and D̃ by cos τ and replace C̃ by C̃−sin2 τD̃Ã−1B̃: if (X, Y )

gives a zero of the deformation, then X = − cos τ Ã−1B̃Y and (C̃ − D̃Ã−1B̃)Y = 0,
hence Y = 0 since this last matrix is invertible on the loop. For τ = π/2, on obtains
the matrix

diag(Ã, C̃ − D̃Ã−1B̃) = diag(Ã, I ) diag(I, C̃ − D̃Ã−1B̃).

The matrix Ã is always invertible, for µ small, and deformable to I . Hence, the class
of L+ νH is the suspension of the class of C̃ − D̃Ã−1B̃.

Lemma 4.7. Under hypothesis (H0), the matrix C̃− D̃Ã−1B̃ = C+ νH 2 + νO(µ),
where C(µ) is skew-symmetric and invertible for µ �= 0.

Proof. The matrix C̃ − D̃Ã−1B̃ is, with H̃ = H − (A−1B)T H2, equal to

H̃C + νH̃H − (H̃D + νH̃HT
2 )(AT A+ νAT H1)

−1(AT B + νAT H1)

= H̃ (C −DA−1B)+ νH 2 + ν0(µ).

Using the identity HDA−1 = −(HT
2 + (A−1B)T AT H1A

−1 + (H2C)T A−1),
one obtains HC + HT

2 B + (A−1B)T (AT H1 + H2D)A−1B + (H2C)T A−1B −
(A−1B)T H2C + νH 2 +O(µ).

It is clear now that the first terms are skew symmetric and, since they are equal
to H̃ (C − DA−1B), they give a matrix C(µ), which is invertible for µ �= 0 (from
(H0), L(µ) is invertible for µ �= 0). � 

Now, recall that any invertible skew-symmetric matrix C can be put in real Jordan

form 9, via an orthogonal change of basis T , where 9 consists of blocks

(
0 βj
−βj 0

)
,

j = 1, . . . , m, with dim RangeH(0) = 2m: in fact, C2 is self-adjoint and negative
definite, hence with eigenvalues −β2

j and orthonormal eigenvectors X1, . . . , X2m. If
Yj is defined by CXj = βjYj , then CYj = −βjXj , and Yj is orthogonal to Xj , with
C2Yj = −β2

j Yj , that is,−β2
j is a double eigenvalue of C2. Of course, one may choose

all βj ’s to be positive, but then det T (which is ±1), may be negative. On the other
hand, one may insist in det T being positive, but then one may have to take one of the
βj ’s to be negative.
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Definition 4.2. The matrix C = T T 9T , with det T > 0, will define a positive com-
plex structure if all βj ’s are positive. Otherwise, if one βj has to be negative, then the
complex structure will be said to be negative.

Proposition 4.6. If (H0) holds, then the class of L(µ)+ νH(µ) will be non trivial if
and only if C(ρ) and C(−ρ) define complex structures of different signs.

Proof. We have seen that the class of L(µ) + νH(µ) is the class of C(µ) + νH 2 +
νO(µ). One may deform the last term to 0, since if, for some X �= 0, one has
a zero of the deformation, then, because (CX,X) = 0, one obtains ν(‖HX‖2 +
τ(0(µ)X,X)) = 0. For |µ| ≤ ρ, one has ‖HX‖2 ≥ C‖X‖2, hence one gets ν = 0
and C(µ)X = 0, for µ = ±ρ on the loop, something which is impossible. Since H 2

is positive definite, one may use the same sort of deformation to arrive at C(µ)+ νI .
Furthermore, one may replace C(µ) by C(τ, µ) defined as

(1 − τ)C(µ)+ τ(µ/ρ)2(C(ρ)+ C(−ρ))+ τ(µ/ρ)(C(ρ)− C(−ρ)).

In fact, the above matrix is skew-symmetric, hence, if C(τ, µ)X + νX = 0,
taking the scalar product with X, one has ν = 0 and, for µ = ±ρ, the condition
C(±ρ)X = 0, which is not possible, unless X = 0. For τ = 1, one may perform a
linear deformation to

C(ρ)+ C(−ρ)+ (µ/ρ)(C(ρ)− C(−ρ))+ νI.

Finally, since C(ρ) = T T 9(ρ)T , with det T > 0, one may deform T to I , keeping
the deformed matrix skew - symmetric, hence one may replace C(ρ) by 9(ρ) and this

last matrix by diag(J, . . . ,±J ), where J =
(

0 1
−1 0

)
, by deforming βj to 1, and with

±J according to the positive or negative complex structure for C(ρ). With a similar
argument at µ = −ρ, one obtains

diag(2J + νI, . . . ,±2(µ/ρ)J + νI),

where the last component is not present if the complex structures are the same. Since
2J + νI is deformable to I and since µJ + νI generates �1(GL(R2)), one obtains
the result. � 

An interesting particular case is the following

Corollary 4.3. Assume that (H0) holds, with the condition ‖L(µ)‖ ≥ C|µ|, then
[L(µ)+ νH(µ)] is non-trivial if and only if (dim ker L(0))/2 is odd.

Proof. The condition ‖L‖ ≥ C|µ|, which implies the invertibility of L, holds also for
AL, that is ‖AL(X, Y )‖2 ≥ C2µ2(‖X‖2 +‖Y‖2). In particular, for X = −A−1BY ,
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one has AL(X, Y ) = (0,CY ), that is ‖CY‖ ≥ C|µ|‖Y‖. Now, if one writes C, on
the orthogonal decomposition given by ker C0 ⊕ Range C0,

C = C0 + µC1(µ) =
(

C0 + µC1 µC2

−µCT
2 µC̃

)
,

one has that C0 = C(0) and C1(µ) are skew-symmetric, as well as C1 and C̃.
Repeating the above argument, one has that ‖µC̃‖ ≥ C|µ|, that is, C̃(0) is in-
vertible. Now, as we have done in the last proposition, one may deform C to
diag(I, µ(C̃ + µCT

2 (C0 + µC1)
−1C2)) and then, to diag(I, µC̃(0)). Deforming

C̃(0) to its Jordan form, the class of L + νH is the suspension of the class of
(µJ + νI, . . . ,±µJ + νI), that is (m/2)-times the Hopf map, if m is the dimen-
sion of C̃, i.e., of ker C0 (note that, since C̃+µCT

2 (C0+µC1)
−1C2 is invertible (here

for allµ’s) and skew-symmetric, this dimension is even). Now, since C0 = H(0)C(0),
one has ker C0 = ker C(0) = ker L(0). � 

Note that in general, i.e., if only one assumes (H0), the matrix C̃1 = C̃+µCT
2 (C0+

µC1)
−1C2, will be invertible for µ �= 0, but C̃(0) may have a non-trivial kernel.

Writing C̃1 = C̃(0) + µC2(µ), one may repeat the above argument, with a de-
composition on ker C̃(0) ⊕ Range C̃(0). On Range C̃(0), one will get a contribu-
tion of (dim Range C̃(0))/2 and, on ker C̃(0), a skew symmetric matrix µ2C̃2. On
Range C̃2(0), one will get a zero contribution (due to µ2), while, on ker C̃2(0), one has
to look at the third order terms. Thus, for smooth L(µ) and H(µ), one may compute
the homotopy class in terms of dimension of subspaces.

Remark 4.10. The reader should notice that, for this Hopf bifurcation, we are asking
that ∇V (0, µ) = 0, while in the case of non-stationary solutions (Example 2.8), the
condition was ∇V (X) �= 0. The reason is the following: from the orthogonality
condition g(X) · ∇V (X) = 0, one has, after linearization

Dg(X)T∇V (X)+H(X)g(X) = 0,

where H(X) is the Hessian of V (X). Thus, if ∇V (X) = 0 and one is in the natural
situation of an invertible H(X) (hence the point X is isolated in the set of zeros of
∇V ), one needs g(X) = 0, i.e., a stationary point. Now, if X belongs to an orbit of
solutions of the equation X′ = g(X), we have seen, in Example 2.8, that ∇V (X(t))

is either identically zero or never zero. Hence, under the hypothesis of a discrete set
of zeros of ∇V (X), one has that either X(t) is constant, i.e., stationary, or X(t) is
truly periodic with ∇V �= 0. On the other hand, if g(X) = 0 and ∇V (X) �= 0, then
dim ker Dg(X) > 0. For X = 0 and Dg(0, µ) = L(µ), this is incompatible with
(H0). This explains our hypotheses.

On the other hand, one may still study the bifurcation of periodic solutions, from
a set of stationary solutions, when ∇V (0, µ) �= 0. As seen above, this implies that
L(µ)T∇V (0, µ) = 0. Assume that dim ker L(0) = 1.
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Let RN = ker L(0)⊕ RangeLT (0) and write X = aX0 ⊕ Y , with L(0)X0 = 0.
Then, one may linearize the stationary equationg(X,µ)+ν∇V (X,µ) = F(a, Y, ν, µ)

and obtain
D(Y,ν)F (0, 0, 0, 0)(Z, η) = L(0)Z + η∇V (0, 0).

Since this is an isomorphism, the equation F(a, Y, ν, µ) = 0 has a unique local
solution Y (a, µ), ν(a, µ), with ν(a, µ) = 0, from the orthogonality. Furthermore,
Y (0, µ) = 0 and ker L(µ) is also one-dimensional, generated by X0 + Ya(0, µ).

Let X(a,µ) = aX0 + Y (a, µ) be this unique local stationary solution of
g(X,µ) = 0 and let A(a,µ) = DXg(X(a, µ), µ). Then, ker A(a,µ) is one-
dimensional and generated by X0 + Ya(a, µ), while, as seen above, ∇V (X(a, µ), µ)

generates ker A(a,µ)T .

Proposition 4.7. Assume g(0, µ) = 0 and ker DXg(0, 0) = {aX0}. Then, locally,

(a) g(X,µ) = 0 if and only if X = X(a,µ).

(b) If A(a,µ) = DXg(X(a, µ), µ) is such that inI − A(a,µ) is invertible for
all n > 0 and (a, µ) �= 0, then the S1-degree of the pair (‖Z‖1 − ε,X′(t) −
g(X(t), µ) − ν∇V (X(t), µ)), with respect to � = {(X(t) = X(a,µ) + Y +
Z(t), µ, ν) : ‖Z‖1 < 2ε, |µ| < 2ρ, |ν| < 2ε, |a| < 2ρ, ‖Y‖ < 2ε, where Y

is orthogonal to Xa and Z(t) has only non-zero modes} is well defined. (Here
‖ · ‖1 is the H 1-norm). This S1-degree is given by

d0 = 0, dn = ησn,

where σn is the winding number of det(A(a, µ) − inI ) and η is the sign of
det D(Y,ν)(g + ν∇V )(0, 0), with Y in RangeA(0, 0)T .

Proof. Part (a) has already been proved. For part (b), write X(t) = ∑
Xne

int =
X0 + Z(t) and, after linearizing at X(a,µ), the equation

X′ − A(a,µ)(X −X(a,µ))− ν∇V (X(a, µ), µ)

− νH(X(a, µ), µ)(X −X(a,µ))+ · · · = 0

is equivalent to the system

− A(a,µ)(X0 −X(a,µ))− ν∇V (X(a, µ), µ)

+ 0(ν(X0 −X(a,µ))+ ‖X(t)−X(a,µ)‖2
1) = 0

(in I − A(a,µ))Xn + 0(νXn + ‖X(t)−X(a,µ)‖2
1) = 0.

Since ker A(a,µ) is generated by Xa(a, µ), let X0 = aXa⊕Y , with Y orthogonal
to Xa . Then, X0 − X(a,µ) = Y + 0(a2). As before, A(a,µ)Y + ν∇V (X(a, µ))

is an isomorphism from RangeA(a,µ)T × R onto RangeA(a,µ) ⊕ ker A(a,µ)T

(since ∇V (X(a, µ)) generates ker A(a,µ)T ). Thus, one may solve uniquely for
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(Y (a, µ,Z), ν(a, µ,Z)) = 0(a2 + ‖Z(t)‖2
1). Note that, due to the orthogonality,

ν(a, µ,Z) = 0 for periodic solutions. Furthermore, if in is not an eigenvalue of
A(0, 0) = L(0), which is true for large n, one may solve these equations in terms
of the resonant modes, obtaining an H 1-bound for X(t). In particular, if one has a
zero of the differential equation in �, then ‖Y‖ and ν are of the order of ε2 and, if
a2 + µ2 ≥ ρ2, one will have ‖Z‖1 = 0(ε2), i.e., the S1-degree of the pair is well
defined.

As done many times, one may deform the pair to (‖Z‖1 − ε,−A(a,µ)Y −
ν∇V (a, µ), {(in I−A(a,µ))Xn}) and one may applyTheorem 4.1. SinceA(a,µ)Y+
ν∇V (a, µ) may be deformed to A(0, 0)Y +ν∇V (0, 0), which gives an invertible ma-
trix, one gets the result: the orientation factor (−1)N is, as before, absorbed in the
generator. � 

Remark 4.11 (Global bifurcation). Corollary 4.1. says that, if d0 or dj , in Proposi-
tions 4.5 and 4.6, are non-zero, then there is a continuum of solutions C, with X �≡ 0
on C, which is either unbounded in the space {X(t), µ, ν} or returns to some point
{0, µ1, ν1} with, in case of boundedness and a nice local behavior (i.e., (Hj ) and (H0)

hold), a sum of S1-indices equal to 0. Now, near {0, 0, 0}, one has good information
on the solution set and on C: for instance, if L(0) is invertible, there is no bifurcation
of stationary solutions and, near the bifurcation point, the solutions are truly periodic.

However, ifC contains a point (X(t), µ), withX(t) �≡ 0 and∇V (X,µ) = 0 (recall
that this vector is either identically zero or never zero on solutions of X′ = g(X,µ)),
then C will be unbounded in the ν-component. Since ν was introduced in an artificial
way, this is not a natural result. In order to avoid this situation, introduce the set

S = {(X(t), µ), with X(t) a periodic (or stationary)

solution of X′ = g(X,µ) and ∇V (X(t), µ) = 0}.
The conditions g(0, µ) = 0,∇V (0, µ) = 0, imply that {(0, µ)} ⊂ S. Comple-

ment the equationX′−g(X,µ)−ν∇V (X,µ)with the condition dist((X(t), µ); S)−ε,
where the distance is in the H 1-norm: S is compact on bounded sets in that norm.
Any solution in the complement of S will have ν = 0.

Now, if (Hj ) and either (H0) or (H′
0) hold, then, in a neighborhood of (0, 0), S is

just (0, µ): in fact, if, for some solution of X′ = g(X,µ), one has ∇V (X,µ) = 0,
then for the Fourier series, one has

(inI − L(µ))Xn − fn(X,µ) = 0

H(µ)Xn − kn(X,µ) = 0.

Hence, for any ν

(inI − L(µ)− νH(µ))Xn − fn − νkn = 0.

Taking ν = ρ, Proposition 4.4. implies that the linear part is invertible, for n �= 0,
and the non-linear part is of the order of ‖Z‖1‖X‖1, where X = X0 + Z(t). Hence,
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for ‖X‖1 small enough, one has Z(t) = 0 and X = X0 is a stationary solution of
g(X,µ) = 0. The same argument for n = 0, in case (H0) holds, or by hypothesis, if
(H′

0) holds, implies that X = 0, if |µ| < ρ.
Hence, near (0, 0), dist((X,µ); S) = ‖X‖1 and Propositions 4.5 and 4.6 are valid.

Thus, if one of the dj ’s is non-zero, the global branch will be unbounded, in X or µ,
or will meet a point of S, a stationary point if S ∩ {µ = µ0} is discrete. Further
computations of the S1-degrees, near S, are given in [IMV2], Remark 6.9.

Note that Remark 4.8 holds also here.

Remark 4.12 (First integrals and symmetries). If g(X,µ) and ∇V (X,µ) are equiv-
ariant with respect to a group �0, then one may repeat the considerations of Exam-
ple 4.3: the linearizations L(µ) and H(µ) will have a block diagonal structure and
the S1 × �0-degree will be given in terms of the spectral behavior of each of the
sub-matrices of in I − L(µ)− νH(µ), as in Proposition 4.2.

Remark 4.13 (Hamiltonian systems). Consider the system

dX

dt
= J∇V (X,µ), X in R2N, J =

(
0 −I

I 0

)
.

As pointed out in Remark 2.4, we have that V (X,µ) is a first integral and we may
either apply the orthogonal degree, as in Example 3.5, or consider the equations

X′ − (J − νI)∇V (X,µ) = 0,

or solutions of the equations

JX′ + ∇V (X,µ)+ νX′ = 0.

An important special case is when V (X,µ) = V (X)/(µ0 + µ), where µ0 + µ

stands for the frequency.

Assume that ∇V (0, µ) = 0. Let H(µ) be the Hessian of V at (0, µ). Suppose
that JH(0) has eigenvalues ±im1 ± . . . ,±ims , with 0 < m1 ≤ · · · ≤ ms .

Then, hypothesis (Hj ) is equivalent to asking that JH(µ)− imj I is invertible for
µ �= 0, µ close to 0 (this is always true if V (X,µ) = V (X)/(µ0 + µ)). Hypothesis
(H′

0) is verified provided X = 0 is an isolated zero of∇V (X,µ). For hypothesis (H0)

one needs the invertibility of H(0) (in this case d0 = 0).
Then Proposition 4.5 gives the bifurcation index in terms of σ+j (−ρ) − σ+j (ρ),

while Proposition 3.2 gives it in terms of Mj (−ρ)−Mj (ρ), where Mj (µ) is the Morse
number of imjJ + H(µ). The factor Index(J∇V (X, ρ); 0) = Index(∇V (X, ρ); 0)
is common to both formulations. The two formulae are the same: in fact, one
has (H + imjJ )JH + (JH)T (H + imjJ ) = 0 and H + imjJ is self-adjoint and
invertible, if µ �= 0. Thus, as in Lemma 4.5, H + imjJ maps ker(JH − λI)k into
ker(HJ − λI)k . Furthermore, if iβ is a simple eigenvalue of JH , with eigenvector
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Xβ , then (H + imjJ )Xβ = (β −mj)β
−1HXβ . In particular, on ker(JH − iβI ), the

signature of H + imjJ is

σβ(H + imj I ) = Sign(β −mj)β
−1σβ(H).

For a couple of eigenvalues, (λ,−λ̄), of JH one has that, as in the proof of

Lemma 4.6, the matrix H + imjJ has the form

(
0 A

A∗ 0

)
, with a zero signature.

Hence,
σ(H + imj I ) =

∑
β∈R

Sign(β −mj)β
−1σβ(H).

(Note that, since H(µ)+ imj I is invertible for µ �= 0, we don’t have to worry about
the kernel, as in Lemma 4.6). Thus, after perturbing JH(±ρ), so that they have simple
purely imaginary eigenvalues and using the fact that (HX,X) has a constant sign on
the loop µ2 + ν2 = ρ2, one obtains

σ(H(ρ)+ imj I )− σ(H(−ρ)+ imj I )

=
∑

(Sign(β(ρ)−mj)− Sign(β(−ρ)−mj))Sign(HX,X),

since only those β’s close to mj are involved. Hence, in terms of a±(η), defined in
the proof of Proposition 4.5, the difference is

2(a+(1)− a−(1)− a+(−1)+ a−(−1)) = 2(σ+j (ρ)− σ+j (−ρ)).

Since M(H + imj I ) = N − σ(H + imj I )/2, one gets that Mj (−ρ) − Mj (ρ) =
−(σ+j (−ρ)− σ+j (ρ)), the sign being again an orientation factor.

In case JH = HJ , one may see this equality in a more direct way: as in
Remark 3.5 (c), decompose C2N into two-dimensional subspaces, invariant under
J, 〈Xk, JXk〉, k = 1, . . . , N , corresponding to the eigenvalue λk of H . On that sub-

space, JH − iβI =
(−iβ −λk

λk −iβ

)
, with eigenvalues, if β = ±λk, 0 and −2iβ, that

is β is a simple eigenvalue, with (HX,X) = λk‖X‖2. Hence, if β > n and β = λk ,
the signature of H is 1, while it is −1 if β = −λk . Recalling that each λk is a double
eigenvalue of H , one has that 2σ+j (µ) is the number of λk’s larger than mj (but close
to mj ) minus the number of those less than−mj (but close to−mj ). That is, if a(n) is
the number of eigenvalues of H , less than n, as in Remark 3.5 (c), and [σ+j ] denotes

the jump σ+j (−ρ)− σ+j (ρ), one gets

2[σ+j ] = −[a(−mj)+ a(mj )] = −2[M].
Note that, if V (X,µ) = V (X)/(µ0 + µ), then H(µ) = H/(µ0 + µ), one has
σ+j (ρ) = 0, σ+j (−ρ) = σj the signature of H on ker(JH − imjµI)

k .
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Example 4.7 (Hopf bifurcation for equations with delays). As a last illustration of the
use of the equivariant degree, let us look at a (slightly) different context from ordi-
nary differential equations. Consider the problem of finding periodic solutions to the
system

dX

dτ
= g(λ,X(τ − r1), . . . , X(τ − rs)), X in RN,

which, after the scaling t = ντ , is equivalent to finding 2π -periodic solutions to

νX′(t) = g(λ,X(t − νr1), . . . , X(t − νrs)).

Here rj may be a fixed delay or may be taken as a parameter or even depend on X. The
problem is clearly S1-equivariant. If there is only one delay in g, then the n-th Fourier
coefficient of g(X(t − νr)) is e−inνrgn(X(t)), for a 2π -periodic X(t). In particular,
if g(λ, 0, . . . , 0) = 0 and Aj(λ) = DXj

g(λ, 0, . . . , 0), the problem is equivalent to
the system, for X(t) =∑

Xne
int ,

(inνI −
s∑
1

Aj(λ)e
−inνrj )Xn = fn(X), n ≥ 0.

The linear parts are called the indicial equations and it is not difficult to devise con-
ditions under which they have isolated singularities and non-zero winding numbers.

For instance, if N = 1 and the equation is

x′(τ ) = −λx(τ)− λf (x(τ − r)), f (0) = 0,

with f ′(0) = k > 1, the indicial equations are

(inν + λ+ λke−inνr )xn.

For λ > 0, the possible bifurcation points are such that ν = (ν0 + 2mπ)/(nr),
where m ≥ 0 and π/2 < ν0 < π is such that cos ν0 = −k−1, and λ = (ν0 +
2mπ)r−1(k2−1)−1/2. By linearizing the equation inν+λ+λke−inνr around one of
these points, it is immediate to see that the winding number, for the orientation (λ, ν),
is −1 if λ > 0 and 1 if λ < 0. Thus, one has bifurcation from each of these points (of
truly periodic solutions, if λ �= 0).

Assume xf (x) > 0 for x �= 0. This has several consequences:

(a) the only constant solution is x = 0 if λ �= 0 or λ = 0 and any constant.

(b) Any periodic solution for λ �= 0 must change sign (if of constant sign then it
would be monotone and non-periodic).

(c) No branch of solutions may go to λ = 0, with ‖x‖1 and periods bounded (that is
ν ≥ a > 0): in fact, if ‖xn‖1 is bounded, then there is a convergent subsequence,
in C0, to a solution, with λ = 0, i.e., a constant solution. If this constant is non-
zero, then nearby periodic solutions can not change sign, while, if the constant
is 0, then (x = 0, λ = 0) would be a bifurcation point, which would contradict
the indicial equations.
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Hence, the bifurcating branches must go to ∞ (in ‖x‖1, λ > 0, or periods).
If Cn,m is the branch bifurcating from ν = (ν0 + 2mπ)/(nr), λ = (ν0 +

2mπ)r−1(k2 − 1)−1/2, then, since if (ν, λ, x(t)) is solution this is also the case for
(αν, αλ, x(t)), one has that, on Cn,m, (ν, λ) = α(ν0, λ0), withα = −1+2mπν−1

0 and
(ν0, λ0) on Cn,0. Also, if z(t) = x(nt), then (ν/n)z′(t) = −λz(t)− λf (x(nt − νr)),
if x(t) is solution for (ν, λ). Thus, z(t) is solution for (ν/n, λ). This implies that
solutions on Cn,m are those of C1,m, rescaled as above. Thus, it is enough to study
one of these branches, for instance C1,0.

Now, if x(t) is a solution, for (ν, λ), let y(t) = x(t − νr), then

νy′(t) = −λy(t)− λf (x(t − 2νr)).

Assume that νr = lπ , then, from the 2π -periodicity of x(t), one has the system of
ordinary differential equations

νx′ = −λx − λf (y), νy′ = −λy − λf (x).

Suppose that, for some t0, (x(t0), y(t0)) = (a, b) holds with a �= b. Then one has
(x(t0 − νr), y(t0 − νr)) = (b, a), that is, if (a, b) is on one side of the diagonal in the
(x, y)-plane, then (b, a) is on the other side. But then, the path (x(t), y(t)) must cross
the diagonal at some point, that is, there is a τ , with x(τ) = y(τ). From the uniqueness
of the initial value problem for the system of O.D.E.’s, one has x(t) ≡ y(t), which
should be a 2π -periodic solution of νx′ = −λx − λf (x), something impossible in
dimension one, unless x(t) is constant and λ = 0. Thus, νr = lπ are forbidden
frequencies.

In particular, C1,1, which starts at ν = (ν0 + 2π)/r , with π
2 < ν0 < π , must

stay in the interval 2π < νr < 3π . Hence, for C1,0, one has that νr has to be in
(2π(1 + 2πν−1

0 )−1, 3π(1 + 2πν−1
0 )−1). Thus, the periods are bounded on C1,0.

If, in addition, f (x) is bounded by M , then, since any 2π -periodic solution must
have a zero, let x(τ) = 0 and write a solution of the equation as

x(t) = −λ

ν

∫ t

τ

f (x(s − νr))e−λ(t−s)/ν ds.

Thus, for t ≥ τ , one gets |x(t)| ≤ M and ν|x′(t)| ≤ λM . Thus, on C1,0, one has
‖x′‖1 ≤ K|λ| and C1,0 goes to infinity in λ.

Clearly, these conditions are rather particular, but we hope that the reader will be
able to study more general situations.

4.5 Bibliographical remarks

There is an uncountable number of applications of classical degree theory. For prob-
lems with symmetries, the current literature is more inclined toward variational meth-
ods or to generic situations, as in the books [Fi], [B], [GS]. For the case of equivariant
degrees, we refer to [KW] and the articles in the References.
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Section I is taken from [IV1], for the general case, and from [IV3] for the orthogonal
degree. The basic material of Section 2 comes from [IV2]. However some of the
examples are taken from [IMV2], [I], and earlier work. The notion of hyperbolicity,
which mimics the one for differential equations, was introduced in [IMV0]. The
treatment of autonomous differential equations and their periodic solutions is now a
standard application of Fourier series, as well as the period doubling phenomenon.
Chow and Mallet-Paret were the first to use the Fuller index in this context. Many
papers were published later on generalizing Fuller’s ideas.

The examples of differential equations with first integrals are taken from [IMV2].
A treatment with Fuller degree is due to Dancer and Toland. The special spectral
behavior of Remark 2.6 is similar to the one introduced by Fiedler.

The bulk of Section 3 comes from [IV3]. However, we invite the reader to compare
these results with the ones coming from variational methods (in case of gradients or
Hamiltonians) so that he may judge by himself the advantages and shortcomings of
this degree for orthogonal maps. For the case of S1-orthogonal maps, we refer also to
the papers by Rybicki.

The spring-pendulum was published in part in [I2]. Here, we have given complete
proofs of the local behavior of the singular Hill’s equation. We refer to the references
of this last paper for other special treatments of these systems.

The last section, essentially on Hopf bifurcation, is taken from [I0], [I], [IMV2]
and [IV2]. There is a vast literature on the classical Hopf bifurcation. Among the
first papers using topological tools, one has to mention [AY], [I0] and [CM-P]. The
examples of classical Hopf bifurcation are taken from [IMV0], while the case of first
integrals was treated in [IMV2]. Part of Lemma 4.6 is inspired in [GLR.] and in [DT2].
The example on retarded differential equations was taken, as a very special case of
the literature in this subject, from [M-P.N].
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Equivariant Matrices

The purpose of this appendix is to prove Theorems 5.2 and 5.3 of Chapter 1. Several
versions of these results are well known in the literature. However, most of them either
do not give such a precise description or are based on much more sophisticated tools.
The proof of the first result is inspired on the proof of Frobenius Theorem, as given in
Pontrjagin’s book [P].

Theorem A.1 (Cfr. Theorem 5.2 of Chapter 1). Let V be a finite dimensional irre-
ducible orthogonal representation, then exactly one of the following statements is
satisfied.

(a) Any equivariant linear map A is of the form A = µI , i.e., V is an absolutely
irreducible representation.

(b) There is only one equivariant map B, such that B2 = −I, BT + B = 0. Then,
any equivariant linear map A has the form A = µI + νB. In this case, V has
a complex structure for which A = (µ+ iν)I .

(c) There are preciselyB1, B2, B3 with the above properties. Then, BiBj = −BjBi

and B3 = B1B2. Moreover, V has a quaternionic structure and any equivariant
linear map can be written as A = µI + ν1B1 + ν2B2 + ν3B3 = qI , where
q = µ+ ν1i1 + ν2i2 + ν3i3 is in H.

Proof. Let C be the set of equivariant matrices from V into itself. Define D = {A ∈
C : A = kI } and F = {A ∈ C : A2 = −k2I, A + AT = 0}. It is clear that C and
D are linear subspaces and that the three sets are closed under transposition, since
γ T = γ−1.

Step (a). F is a linear subspace. In fact, if A ∈ F , then αA ∈ F . Also, if A1 and A2
are in F , then, from Corollary 5.1 (c) in Chapter 1, we get A1 +A2 = µI + νB, for
some B in F . However, A1A

T
2 + A2A

T
1 is equivariant and self-adjoint, hence, from

Schur’s lemma, it belongs to D , that is A1A2+A2A1 = kI . Similarly, BA1+A1B is
self-adjoint, hence equal to αI . On the other hand, kI = A1A2 + A2A1 = A1(µI +
νB −A1)+ (µI + νB −A1)A1 = 2µA1 + ναI + 2k2

1I , where A2
1 = −k2

1I . Hence,
2µA1 = (k− να− 2k2

1)I . Thus, if µ �= 0, we have A1 ∈ D ∩F = {0}, which is not
possible. This implies that µ = 0, A1 + A2 = νB is in F .



328 Appendix A Equivariant Matrices

Step (b). If not empty, F has dimension 1 or 3. Note first that if F = φ then, from
Corollary 5.1 (c) in Chapter 1, any A in C is in fact in D and this gives (a) of the
theorem. Furthermore, if F is one-dimensional, then any element A in F is of the
form αB, with B in F and B2 = −I .

Let B1, B2 in F be such that B2
1 = B2

2 = −I . Then, B1B2 is in C and as such
B1B2 = µI + νB, for some B in F , with B2 = −I . Multiplying by B1, one has
µB1 + B2 = −νB1B, and, from Step (a), one has that νB1B is in F .

If ν = 0, B2 = −µB1 and B2
2 = −µ2I = −I gives B2 = ±B1. If, on the other

hand, ν �= 0, then B1B is in F . Set B ′
1 = B1, B

′
2 = B and B ′

3 = B1B = B ′
1B

′
2. Then,

since B ′
3 belongs to F , one has that B ′T

3 + B ′
3 = 0 and B ′

3B
′T
3 = B1BBT BT

1 = I ,
hence B ′2

3 = −I . Furthermore, B ′
1B

′
2 = B ′

3 = −B ′T
3 = −B ′

2B
′
1, B

′
1B

′
3 = −B ′

2 =−B ′
3B

′
1 and B ′

3B
′
2 = −B ′

1 = −B ′
2B

′
3. Thus, the Bi’s, dropping the primes, satisfy the

anticommutativity properties of the theorem.
Now, these B1, B2, B3 are linearly independent in F : In fact, if λ1B1 + λ2B2 +

λ3B3 = 0, then, multiplying by B1 one has λ2B3 − λ3B1 = λ1I . But, from the
fact that F is a linear subspace, one gets that the left-hand side is in F and so λ1I

would be in F , which is impossible, unless λ1 = 0. A multiplication by B1 will give
λ2B2 = λ3I and λ2 = λ3 = 0, hence, Bi, i = 1, 2, 3 are linearly independent.

Finally, suppose that there is a B in F , with B2 = −I , which is not a linear
combination of B1, B2, B3. Then, as above, BjB = µjI + νj B̃j and, by taking
transposes, BBj = µjI − νj B̃j . Let, for some α �= 0, B̂ = α(B + µ1B1 + µ2B2 +
µ3B3). Then, B̂ is in F and it is easy to see that B̂2 = −α2(1 − µ2

1 − µ2
1 −

µ2
3)I = −k2I . Hence, either B̂2 = 0 and B̂ has a nontrivial kernel, in which case,

from Schur’s lemma, B̂ = 0 and B is a linear combination of B1, B2, B3, contrary
to the hypothesis; or, one may choose α such that k2 = 1 and B̂2 = −I . Now,
Bj B̂ = α(νj B̃j ± µkBl ± µlBk) = −B̂Bj , for k �= l �= j . Thus, Bj B̂ belongs to
F . Furthermore, (B1B̂)B3 = −(B̂B1)B3 = B̂B2, while B1(B̂B3) = −B1(B3B̂) =
B2B̂ = −B̂B2. That is B̂B2 = 0, which is not possible, since both are isomorphisms.
This proves that any B is a linear combination of B1, B2, B3 and finishes the proof of
step (b). Note that, because of the associativity of the product of matrices, there is no
equivalent to Cayley numbers.

It remains to make explicit the structure of V .

Step (c). Let B be in F such that B2 = −I , then there is a basis for V such that

B =
(

0 −I

I 0

)
and V has a complex structure such that any A in C has the form

A = λI , with λ in C. Note that, since (det B)2 = (−1)dim V , then dim V = n = 2m.
In fact, take e1 a unit vector, then, since B + BT = 0, Be1 is orthogonal to e1 and
also a unit vector. Choose e2 orthogonal to {e1, Be1}, then Be2 is orthogonal to
{e1, Be1, e2}, and so on…On the basis {e1, e2, . . . , em, Be1, Be2, . . . , Bem}, B has
the above form. Defining zj = xj + ixm+j and Z = X + iY , then V ∼= Cm.

If γ =
(
γ1 γ3
γ2 γ4

)
, then γB = Bγ implies that γ3 = −γ2 and γ4 = γ1. Thus,
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γ

(
X

Y

)
≡ γ̃ Z = (γ1 + iγ2)(X + iY ) and B

(
X

Y

)
≡ B̃Z = iI (X + iY ), where

B̃ = iI . Hence, if A is in F , with A = µI + νB = (µ + iν)I = λI , with λ in C.
This proves Part (b) of the theorem, in case F has dimension 1.

Step (d). If F has dimension 3, then V has a quaternionic structure and Part (c) of
the theorem holds.

In fact, take a unit vector e1, then (e1, B1e1, B2e1, B3e1) are orthogonal. Next,
take e2 orthogonal to that set. It is easy to see that the vectors (e2, B1e2, B2e2, B3e2)

are all orthogonal to the first set and among themselves, by using the relations of
anticommutation of the Bj ’s. This implies that dim V = 4m and, on the basis
{e1, . . . , em, B1e1, . . . , B1em, B2e1, . . . B2em, B3e1, . . . , B3em}, Bj has the form of
the Pauli matrices:

B1 =




0 −I 0 0
I 0 0 0
0 0 0 −I

0 0 I 0


 , B2 =




0 0 −I 0
0 0 0 I

I 0 0 0
0 −I 0 0


 , B3 =




0 0 0 −I

0 0 −I 0
0 I 0 0
I 0 0 0


 .

Then, if X = (X0, X1, X2, X3)
T is written as X̂ = X0 + i1X1 + i2X2 + i3X3, an

element of Hm, with i2
j = −1, ij ik + ikij = 0, i1i2 = i3, one has that BjX is written

as ij X̂. Furthermore, if γ is written as a (4m × 4m)-matrix (γkl), k, l = 0, . . . , 3,
then the relations γBj = Bjγ imply that

γ =



γ0 −γ1 −γ2 −γ3
γ1 γ0 γ3 −γ2
γ2 −γ3 γ0 γ1
γ3 γ2 −γ1 γ0




can be written as γ̂ = γ0+ i1γ1+ i2γ2+ i3γ3, acting on X̂ on the right: γX = X̂γ̂ =
(X0 + i1X1 + i2X2 + i3X3)(γ0 + i1γ1 + i2γ2 + i3γ3).

Then, any A in C may be written as A = qI , with q = µ+ ν1i1 + ν2I2 + ν3i3 in
H and I is the identity on Hm. Thus, AX = qX̂ and A(γX) = qγX = qX̂γ̂ , while
γAX = (AX)γ̂ = qX̂γ̂ . � 

One may give the general form of an equivariant linear map between finite dimen-
sional representations.

Theorem A.2 (Cfr. Theorem 5.3 of Chapter 1). Let V be decomposed as

i=I⊕
i=1

(V R

i )ni
j=J⊕
j=1

(V C

j )nj
l=L⊕
l=1

(V H

l )nl ,

whereV R

i are the absolutely irreducible representations of real dimensionmi repeated
ni times, V C

j are complex irreducible representations of complex dimension mj re-

peated nj times, while V H

l are quaternionic representations of dimension (over H) ml
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repeated nl times. Then, there are bases of V such that any equivariant matrix has a
block diagonal form

A =




AR

1
. . .

AR

1
AR

2
. . .

AR

2
. . .

AC

1
. . .

AC

1
. . .

AH

1
. . .

AH

1
. . .




,

whereAR

i are realni×ni matrices repeatedmi times,AC

j are complexnj×nj matrices,

repeated mj times and AH

l are nl × nl quaternionic matrices repeated ml times. On
the new basis, the equivariance of A and the action have the following form: γ is
block diagonal on each subspace corresponding to the repetition of the same matrix,
i.e., if Bn×n is repeated m times, on W corresponding to the same representation, then
γ = (γij I )1≤i,j≤m, with γij in K = R,C or H, and I the identity on Kn where the
product, for the quaternionic case, is on the right.

Proof. From the considerations of § 5 in Chapter 1, it is enough to consider A on
equivalent subrepresentations of V . Take then V = V1 ⊕ · · · ⊕ Vk , where Vj are
irreducible but with equivalent actions. Then, if γ̃ A = Aγ,A maps V into V and is
similar to a matrix Ã from (V1)

k into itself, such that γ Ã = Ãγ and γ̃ acts orthogonally
on V1. Note that the similarity depends only on the actions, not on A. Hence, assume
that there are bases in V and a norm such that γ is in O(V ) and has a diagonal form
diag(γ, . . . , γ ), since Vi are �-invariant.

Let m = dimK Vi , where K = R,C or H. Then, γ |Vi
can be written as above,

when considering the real matrix, or as γ̂ for the K-structure: Aij : Vi → Vj is
Aij = λij I , with λij in K and I the identity in Km, i, j = 1, . . . k, on the basis of
Theorem A.1.

Take a new basis for V by ordering the bases for V1, {e11, e12, . . . , e1m}, of
V2, {e21, e22, . . . , e2m}, . . . and of Vk , {ek1, ek2, . . . , ekm}, in the following way:
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{e11, e21, . . . , ek1, e12, e22, . . . , e2m, . . . , ekm}. It is easy to see that, on this new basis,
A has the form

A =

9 0

9

0 9


 ,

where 9 = (λij )1≤i,j≤k is repeated m times on the diagonal. On the other hand, if

γ : Vl → Vl has the form (γij )1≤i,j≤m, then on the new basis γ

∣∣∣
V
= (γij I )1≤i,j≤m,

where I is the identity in Kk . The relation γA = Aγ is maintained in the new basis:
in fact, if K is R or C, then γij is a scalar which commutes with 9. If K = H, then
the action is on the right and γ q has to be interpreted as q̂γ̂ (one may also go back to
the 4 × 4 real matrices, where γij is as above and commutes with q). � 



Appendix B

Periodic Solutions of Linear Systems

In this appendix we shall collect the results of Floquet theory needed in the book. Most
of these results are well known, however the presentation given here will be slightly
different.

Consider, in RN , the system

LX = d

dt
X − A(t)X

where A(t) is a continuous matrix, which is (2π/p)-periodic. The operator L is
a continuous operator from H 1(S1)N into L2(S1)N . In terms of Fourier series, if
X(t) =∑

Xne
int and A(t) =∑

Ame
imt , then A(t)X =∑

Cke
ikt , where

Ck =
∑

AlXk−l

corresponds to a convolution.
Let /(t) be the fundamental matrix associated to L, i.e.,

/′ = A/, /(0) = I,

(/(t) = eAt if A is constant).
Then, LX = Y if and only if

X(t) = /(t)X(0)+/(t)

∫ t

0
/−1(s)Y (s) ds.

Recall that the columns of /(t) are linearly independent solutions of LX = 0 and
that det /(t) = exp(

∫ t

0 trA(s) ds).
Hence, as an operator from H 1 into L2, the equation LX = Y will have a 2π -

periodic solution if and only if

(I −/(2π))X(0) = /(2π)
∫ 2π

0
/−1(s)Y (s) ds.

Lemma B.1. One has the following isomorphism from ker(L + µI) in H 1 onto
ker(/(2π) − e2πµI ), given by ker

(
d
dt
− A + µI

) = {X(t) = e−µt/(t)W , with
W ∈ ker(/(2π)− e2πµI)}.
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Proof. By direct differentiation, it is easy to see that e−µt/(t) is the fundamental
matrix for L+µI . Hence X(t) = e−µt/(t)X(0) belongs to ker(L+µI) if and only
if X(0) belongs to ker(e−2πµ/(2π)− I ). � 

In particular, the multiplicity of −µ as eigenvalue of L is equal to the multiplicity
of e2πµ as eigenvalue of /(2π). The number e2πµ is the Floquet multiplier of L, or
of the Poincaré return map /(2π).

Remark B.1. Since A(t) is (2π/p)-periodic, one has

/′(t + 2π

p
) = A(t + 2π

p
)/(t + 2π

p
) = A(t)/(t + 2π

p
),

hence /(t + 2π/p) is a fundamental matrix and, as such, one has

/(t + 2π

p
) = /(t)/(

2π

p
).

In particular, if p′ divides p, one has

/

(
2π

p′

)
= /

(
2π

p

)p/p′

.

Thus, the multiplicity of 0, as eigenvalue of L, is the sum of the multiplicities of the
eigenvalues of the Poincaré map of first return /

( 2π
p

)
, which are p’th roots of unity.

On the other hand, the elements of ker
(
/
( 2π

p

) − I
)

give
( 2π

p

)
-periodic solutions of

LX = 0.

The L2-adjoint of L is the operator

L∗ = −
(

d

dt
+ AT

)

which has the fundamental matrix 8(t) = /−1(t)T : since /−1/ = 1, one has
(/−1)′ = −/−1/′/−1 = −/−1A.

Then, LX = Y has a solution if and only if /(2π)
∫ 2π

0 /−1(s)Y (s)ds belongs to
Range(I −/(2π)), that is, if it is orthogonal, in RN , to all Z’s in ker(I −/(2π)T ) =
ker(/−1(2π)T − I ). Performing the scalar product in RN , one arrives at∫ 2π

0
Y (s)T /−1(s)T Zds = 0,

that is, Y (t) is L2-orthogonal to Z(t) = /−1(s)T Z, any element of ker(L∗). This
argument gives another proof of the fact that L is a Fredholm operator of index 0.

Assume now that A(t) is smooth enough, then
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Lemma B.2. ker(L+µI)α in H 1 and ker(/(2π)− e2πµI)α in RN are isomorphic.

In fact, ker
(
d
dt
− A + µI

)α = {X(t) = e−µt/(t)
∑α−1

0 Wk
tk

k! , with Wk uniquely
determined by W0,Wk ∈ ker(/(2π)− e2πµI)α−k}.

Proof. Let X(t) be in ker
(
d
dt
− A+ µI

)α and define

Y (t) = eµt/−1(t)X(t),

then, (L + µI)X = e−µt/(t)Y ′(t) and (L + µI)kX = e−µt/(t)Y (k)(t). Thus, if
(L+ µI)αX = 0, one has Y (α)(t) = 0 and

Y (t) =
α−1∑

0

Wl

tl

l! .

One needs that e−µt/(t)Y (k)(t) belong to the space of 2π -periodic functions for
k = 0, . . . , α − 1. If B−1 is the matrix e−2πµ/(2π), this requirement amounts to
solving the system

B−1
( α−1∑

l=k

Wl

(2π)l−k

(l − k)!
)
= Y (k)(0) = Wk.

Hence, one has the linear relations

(B − I )Wα−1 = 0

(B − I )Wα−2 = 2πWα−1

(B − I )W0 = 2πW1 + (2π)2

2! W2 + · · · + (2π)α−1

(α − 1)!Wα−1.

From here, one has that Wα−k belongs to ker(B − I )k and that, for k = 1, . . . , α,

(B − I )k−1Wα−k = (2π)k−1Wα−1.

One may view the last (α − 1)-equations as a linear system for W1, . . . ,Wα−1 in
terms of (B − I )W0. If this term is 0, then, from (B − I )α−1W0, one has, if α > 1,
that Wα−1 = 0, (B − I )k−2Wα−k = (2π)k−2Wα−2, that is, the same system with α

replaced by α− 1. But then, (B − I )α−2W0 leads, if α > 2, to Wα−2 = 0, and so on.
Thus, if (B − I )W0 = 0, one obtains that W1 = · · · = Wα−1 = 0. Thus implies that
the system for W1, . . . ,Wα−1 is invertible and these vectors are uniquely determined
by W0, in fact by (B − I )W0. � 

If A is constant, then e−µt/(t) = e(A−µ)t which will have 1 as eigenvalue if and
only if A has µ± in as eigenvalue. If A is taken in Jordan form, then on a Jordan
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block, A−µI = inI + J , where J is the upper diagonal. Then, on a block of size α,
one has

e(A−µ)t = eint
(
I + tJ + · · · + tα−1

(α − 1)!J
α−1

)
.

Furthermore, X(t) = e(A−µ)t
α−1∑

0
Wk

tk

k! , can be expressed as

X(t) = eint
[
W0 + t (W1 + JW0)+ t2

2! (W2 + 2JW1 +W0)+ · · ·

+ tk

k!
(
Wk + kJWk−1 + · · · +

(
k
l

)
J k−lWl + · · · + J kW0

)

+ tα−1

(α − 1)! (Wα−1 + · · · + Jα−1W0)
]
.

The requirement of periodicity determines W1, . . . ,Wα−1 in terms of W0. It is not
difficult, but tedious, to check that these are the same as the other set of conditions.
Then, one has

X(t) =
∑

Xne
int , with (inI − A+ µI)αnXn = 0, α = max αn,

a result which, of course, follows directly by looking at Fourier series.
If A is non-constant, then by complexifying A, one has that /(t) = P(t)eRt ,

where P(t) is 2π -periodic and R has, as eigenvalues, the Floquet exponents.
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