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Getting going

Objective

The objective of this chapter is to enable you to

• use some simple MATLAB commands from the Command Window.

1.1 Introduction

MATLAB is a powerful computing system for handling the calculations involved in scientific and engi-
neering problems. The name MATLAB stands for MATrix LABoratory, because the system was designed
to make matrix computations particularly easy. If you don’t know what a matrix is, don’t worry—we
will look at them in detail later. For the moment we can forget about them.

This book assumes that you have never used a computer before to do the sort of scientific calculations
that MATLAB handles. You will however need to be able to find your way around a computer keyboard
and the operating system running on your computer (e.g. Windows or UNIX). The only other computer-
related skill you will need is some very basic text editing.

One of the many things you will like about MATLAB (and which distinguishes it from many other
computer programming systems, such as C++ and Java) is that you can use it interactively. This means you
type some commands at the special MATLAB prompt, and get the answers immediately. The problems
solved in this way can be very simple, like finding a square root, or they can be much more complicated,
like finding the solution of a system of differential equations. The point is that you have to enter only
one or two commands, and you get the answers at once. MATLAB does most of the work for you.

In the rest of this Chapter we will look at some simple examples for you to try out. Don’t bother about
understanding exactly what is happening. The understanding will come in later chapters when we look
at the details.

1.2 Using MATLAB

In order to use MATLAB it must either be installed on your computer, or you must have access to a
network where it is available. Throughout this book the latest version of MATLAB at the time of writing
is assumed—Version 6.1 (Release 12.1).
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Figure 1.1 The MATLAB desktop

To start MATLAB from Windows, double-click the MATLAB icon on your Windows desktop. To
start it from a UNIX platform, type matlab at the operating system prompt. When MATLAB starts,
the MATLAB desktop opens as shown in Figure 1.1. The window in the desktop that concerns us for
this chapter is the Command Window, where the special � prompt appears. This prompt means that
MATLAB is waiting for a command. You can quit MATLAB at any time with one of the following:

• Click on the close box in the top right corner of the MATLAB desktop.
• Select Exit MATLAB from the desktop File menu.
• Enter quit or exit at the Command Window prompt.

Once you have started MATLAB try the following exercises in the Command Window. If necessary,
make the Command Window active by clicking anywhere inside its border.

1. First let’s see if MATLAB is any good at arithmetic.

(a) Type 2+3 after the � prompt, followed by Enter, i.e. press the Enter key, indicated by <Enter>
below:

� 2+3 <Enter>

Commands are only carried out when you press Enter.
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(b) If MATLAB got that right, try 2*3, i.e.

� 2*3 <Enter>

What about 1/2 and 2^3? Can you figure out what the symbols *, / and ^ mean?

• You can edit a MATLAB command before pressing Enter by using various combinations
of the Backspace, Left-arrow, Right-arrow and Del keys.

• The line with the � prompt is called the command line.
• You can select (and edit) previous commands you have entered using Up-arrow and Down-

arrow. But remember to press Enter to get the command carried out. This helpful feature
is called command line editing.

• MATLAB has a useful editing feature called smart recall. Just type the first few characters
of the command you want to recall, e.g. type the characters 2* and press the Up-arrow
key—this recalls the most recent command starting with 2*.

(c) How do you think MATLAB would handle 0/1 and 1/0? Try it.
MATLAB is sensible about errors. It warns you in case you didn’t realize you were dividing by
zero, but still gives the answer Inf. If you insist on using ∞ in a calculation, type the symbol
Inf (short for infinity), e.g. try 13+Inf and 29/Inf.

(d) Another special value that you may meet is NaN, which stands for Not-a-Number. It is the
answer to calculations like 0/0.

2. Now for some algebra.
(a) Enter the command (in programming jargon a statement) a = 2, i.e. the MATLAB command

line should look like this:

� a = 2 <Enter>

a is called a variable. This statement assigns the value of 2 to a. (Note that this value is displayed
immediately after the statement is executed.) Now try entering the statement a = a + 7 fol-
lowed on a new line by a = a * 10. Do you agree with the final value of a?

(b) Now enter the statement

b = 3; <Enter>

Can you see the effect of the semi-colon (;)? It prevents the value of b from being displayed.
However, b still has the value 3 as you can see simply by entering its name without a semi-colon
at the prompt.

(c) Assign any values you like to two variables x and y. Now see if you can in a single statement
assign the sum of x and y to a third variable z.

3. MATLAB has most of the usual mathematical functions that you will find on your calculator, like
sin, cos, log (meaning the natural logarithm), as well as a lot more.
(a) Find

√
π with the command sqrt(pi). The answer should be 1.7725. Note that MATLAB

knows the value of pi, because it is one of MATLAB’s very many built-in functions.
(b) Trigonometric functions like sin(x) expect the argument x to be in radians. Multiply degrees

by π/180 to get radians. For example, use MATLAB to calculate sin(90◦). The answer should
be 1, i.e. sin(90*pi/180).

(c) The exponential function ex is computed in MATLAB as exp(x). Use this information to find
e and 1/e (2.7183 and 0.3679).

4. MATLAB has a lot of general functions. Try date and calendar for starters.
5. MATLAB also has a number of commands, such as clc (for clear command window). help is

another command you will use a lot (see below). The difference between functions and commands
is that functions usually return with a value, e.g. the date, while commands tend to change the
environment in some way, e.g. by clearing the screen, or saving some statements to disk.
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6. Variables such as a and b above are called scalars; they are single-valued. MATLAB also handles
vectors (generally referred to in MATLAB as arrays), which are the key to many powerful features
of the language. The easiest way of defining a vector where the elements (components) increase by
the same amount is with a statement like

� x = 0 : 10;

Enter it. That’s a colon (:) between the 0 and the 10. There’s no need to leave a space on either
side of it, but it makes it more readable. Enter x to check that x is a vector now.

(a) The really cool thing about MATLAB is that other vectors can now be defined in terms of our
vector x. Try

� y = 2 * x

and

� z = sin(x)

(no semi-colons).
(b) All you have to do to draw the graph of sin(x) is to enter the command

� plot(x, sin(x))

(or simply plot(x, z) if you defined z correctly). The graph appears in a separate figure
window (see Figure 1.2). You can select the Command Window or figure windows by clicking
anywhere inside them, or you can use the Windows pull-down menus in any of these windows.

(c) The graph looks rather crude, because more points need to be plotted between 0 and 10. To fix
this, make the vector x go up in steps of 0.1 instead of 1 like this:

� x = 0 : 0.1 : 10;

When there are three numbers separated by two colons in this way, the middle number is the
increment. Now enter plot(x, sin(x)) to get a much neater graph.
You can put a grid on the graph to make it easier to read with

� plot(x, sin(x)), grid

(d) If you want to see more cycles of the sine graph just use command-line editing to change
sin(x) to sin(2*x).

(e) Try drawing the graph of tan(x) over the same domain. You may find aspects of your graph
surprising. A more accurate version is presented in Chapter 5.

(f) Another useful Command Window editing feature is tab completion: type the first few letters
of a MATLAB name and then press the Tab key. If the name is unique, it is automatically
completed. If the name is not unique, press the Tab a second time to see all the possibilities.
Try this feature out, e.g. by typing ta at the command line followed by Tab twice.

7. If you’re into linear equations, you can solve two simultaneous equations very easily, e.g.

x + 2y = 4,

2x − y = 3.
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Figure 1.2 A figure window

All you have to do is type the following commands (exactly as they are)

� a = [1 2; 2 -1];
� b = [4; 3];
� x = a\b

which result in

x =
2
1

i.e. x = 2, y = 1.
8. If you want a spectacular sample of what MATLAB has to offer, try demo at the command line.

Alternatively, double-click Demos in the Launch Pad. (If you can’t see Demos, click on the + next
to the MATLAB item in the Launch Pad to expand it.)
For a listing of demonstration programs by category try help demos.
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9. MATLAB has a very useful ‘help’ system, which we look at in more detail in Chapter 2. For the
moment type help at the command line to see all the categories on which you can get help. E.g.
type help elfun to see all MATLAB’s elementary mathematical functions.
lookfor enables you to search for a particular string in the help text of functions, e.g.
lookfor eigenvalue displays all the functions relating to eigenvalues.

10. MATLAB has all sorts of other goodies. For example, you can generate magic squares, e.g.
magic(10), where the rows, columns and the main diagonal all add up to the same value. Try it.
In general, an n × n magic square has a row and column sum of n(n2 + 1)/2.
You can even get a contour plot of the elements of a magic square. MATLAB pretends that the
entries in the square are heights above sea level of points on a map, and draws the contour lines.
contour(magic(22)) looks rather nice.

11. If you want to see the famous Mexican hat shown in Figure 1.3, enter the following four lines (be
careful not to make any typing errors):

� [x y ] = meshgrid(-8 : 0.5 : 8);
� r = sqrt(x.^2 + y.^2) + eps;
� z = sin(r) ./ r;
� mesh(z);

Try surf(z) to generate a faceted (tiled) view of the surface.
surfc(z) or meshc(z) draws a 2-D contour plot under the surface.
The command

�surf(z), shading flat

produces a rather nice picture by removing the grid lines.
12. If your PC has a speaker you could try

load handel
sound(y,Fs)

for a snatch of Handel’s Hallelujah Chorus.
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For some different sounds you can try loading chirp, gong, laughter, splat and train. You
have to run sound(y,Fs) for each one.

13. If you want to see a view of the Earth from space, try

load earth
image(X); colormap(map)
axis image

14. Finally, if you’re really bored, try why. Why not?

1.3 Website

Source code for most of the examples and solutions to exercises in this book can be downloaded from
its website at www.bh.com/companions/essentialmatlab

Summary

• MATLAB is a matrix-based computer system designed to assist in scientific and engineering
problem solving.

• To use MATLAB, you enter commands and statements on the command line in the Command
Window. They are carried out immediately.

• quit or exit terminates MATLAB.
• clc clears the Command Window.
• help and lookfor provide help.
• plot draws an x-y graph in a figure window.
• grid draws grid lines on a graph.

Exercise

1.1 Give values to variables a and b on the command line, e.g. a = 3 and b = 5.
Write some statements to find the sum, difference, product and quotient of a and b.

Solutions to many of the exercises are in Appendix E.
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MATLAB fundamentals

Objectives

The objectives of this chapter are to introduce you to some of the fundamentals of MATLAB pro-
gramming, including:

• various MATLAB desktop and editing features;
• variables, operators and expressions;
• vectors (arrays);
• basic input and output;
• repetition (for);
• decisions (if).

By now you will probably be wanting to use MATLAB to solve problems of your own. In this chapter
we will look in detail at how to write MATLAB statements to solve simple problems. There are two
essential requirements for successful MATLAB programming:

• You need to learn the exact rules for writing MATLAB statements.
• You need to develop a logical plan of attack for solving particular problems.

This chapter is devoted mainly to the first requirement: learning some basic MATLAB rules. Computer
programming is a precise science (some would say it is also an art); you have to enter statements
in precisely the right way. If you don’t, you will get rubbish. There is a saying among computer
programmers:

Garbage in, garbage out.

If you give MATLAB a garbage instruction, you will get a garbage result.
Once you have mastered the basic rules in this chapter, you can go on to more interesting and substantial

problems. But first we need a quick tour of the MATLAB desktop.

10
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2.1 The MATLAB desktop

The default MATLAB desktop is shown in Figure 1.1. It should immediately be stressed that MATLAB
has an extremely useful online Help system. If you are serious about learning MATLAB you should make
it your business to work through the various Help features, starting with the section on the desktop.

To get into the Help browser, either expand the MATLAB item in the Launch Pad and click on Help,
or click on the help button (?) in the desktop toolbar, or select the Help menu in any tool. Having
opened the Help browser, select the Contents tab in the Help Navigator pane on the left. To get to the
desktop section expand successively the MATLAB, Getting Started and Development Environment
items. MATLAB Desktop is listed under the latter. When you’ve looked at the Desktop item you should
go on to Desktop Tools. (If you mess up your desktop and want to get back to the default, select the
View -> Desktop Layout -> Default menu item.)

The desktop contains a number of tools . We have already used the Command Window. On the left is
the Launch Pad, which shares a ‘docking’ position with the Workspace browser (underneath the Launch
Pad in the default). Use the tabs to switch between the Launch Pad and the Workspace browser. Below
the Launch Pad you will find the Command History, sharing with the Current Directory browser.

You can resize any of these windows in the usual way. A window can be moved out of the MATLAB
desktop by undocking it. Do this either by clicking on the arrow in the window’s title bar, or by making
the window active (click anywhere inside it) and then selecting Undock from the View menu.

To dock a tool window that is outside the MATLAB desktop (i.e. to move it back into the desktop)
select Dock from its View menu.

You can group desktop windows so that they occupy the same space in the MATLAB desktop. Access
to the individual windows is then by means of their tabs. To group windows in this way drag the title bar
of one window on top of the title bar of the other window. The outline of the window you’re dragging
overlays the target window, and the bottom of the outline includes a tab. The Status bar informs you to
Release the mouse button to tab-dock these windows. If you release the mouse the
windows are duly tab-docked in the outlined position.

There are six predefined MATLAB desktop configurations, which you can select from the View ->
Desktop Layout menu.

2.2 Programs

In Chapter 1 we saw some simple examples of how to use MATLAB, by entering single commands
or statements at the MATLAB prompt. However, you might want to solve problems which MATLAB
can’t do in one line, like finding the roots of a quadratic equation (and taking all the special cases into
account). A collection of statements to solve such a problem is called a program . In this section we look
at the mechanics of writing and running two short programs, without bothering too much about how they
work—explanations will follow in the rest of the chapter.

Cut and paste

Suppose you want to draw the graph of e−0.2x sin(x) over the domain 0 to 6π , as shown in Figure 2.1.
The Windows environment lends itself to nifty cut and paste editing, which you would do well to master.
Proceed as follows.

From the MATLAB desktop select File -> New -> M-file, or click the new file button on the desktop
toolbar. This action opens an Untitled window in the Editor/Debugger. You can regard this for the time
being as a ‘scratch pad’ in which to write programs. Now type the following two lines in the Editor,
exactly as they appear here:

x = 0 : pi/20 : 6 * pi;
plot(x, exp(-0.2*x) .* sin(x), ’r’),grid

Incidentally, that is a dot (full stop, period) in front of the second * in the second line—explanation
later! The additional argument ’r’ for plot will draw a red graph, just to be different.
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Figure 2.1 e−0.2x sin (x)

Next, move the mouse pointer (which now looks like a very thin capital I) to the left of the x in the
first line. Keep the left mouse button down while moving the mouse pointer to the end of the second
line. This process is called dragging . Both lines should be highlighted at this stage, probably in blue, to
indicate that they have been selected .

Select the Edit menu in the Editor window, and click on Copy (or just use the keyboard shortcut
Ctrl+C). This action copies the highlighted text to the Windows clipboard , assuming that your operating
system is Windows.

Now go back to the Command Window. Make sure the cursor is positioned at the � prompt (click
there if necessary). Select the Edit menu, and click on Paste (or use the Ctrl+V shortcut). The contents
of the clipboard will be copied into the Command Window. To execute the two lines in the program,
press Enter. The graph should appear in a figure window.

This process, from highlighting (selecting) text in the Editor, to copying it into the Command Window,
is called ‘cut and paste’ (more correctly ‘copy and paste’ here, since the original text is copied from the
Editor, rather than being cut from it). It’s well worth practising until you have it right.

If you need to correct the program, go back to the Editor, click at the position of the error (this
moves the insertion point to the right place), make the correction, and cut and paste again. Alternatively,
you can use command-line editing to correct mistakes. As yet another alternative, you can paste from
the Command History window (which incidentally goes back over many previous sessions). To select
multiple lines in the Command History window keep Ctrl down while you click.

If you prefer, you can enter multiple lines directly in the Command Window. To prevent the whole
group from running until you have entered the last line use Shift+Enter or Ctrl+Enter after each line
until the last. Then press Enter to run all the lines.

As another example, suppose you have $1000 saved in the bank. Interest is compounded at the rate
of 9 per cent per year. What will your bank balance be after one year? Now, if you want to write a
MATLAB program to find your new balance, you must be able to do the problem yourself in principle.
Even with a relatively simple problem like this, it often helps first to write down a rough structure plan:

1. Get the data (initial balance and interest rate) into MATLAB.
2. Calculate the interest (9 per cent of $1000, i.e. $90).
3. Add the interest to the balance ($90 + $1000, i.e. $1090).
4. Display the new balance.
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Go back to the Editor. To clear out any previous text, select it as usual by dragging (or use Ctrl+A),
and press the Del key. By the way, to de-select highlighted text, click anywhere outside the selection
area. Enter the following program, and then cut and paste it to the Command Window.

balance = 1000;
rate = 0.09;
interest = rate * balance;
balance = balance + interest;
disp( ’New balance:’ );
disp( balance );

When you press Enter to run it, you should get the following output in the Command Window:

New balance:
1090

Saving a program: script files

We have seen how to cut and paste between the Editor and the Command Window in order to write and
run MATLAB programs. Obviously you need to save the program if you want to use it again later.

To save the contents of the Editor, select File -> Save from the Editor menubar. A Save file as:
dialogue box appears. Select a directory and enter a file name, which must have the extension .m, in
the File name: box, e.g. junk.m. Click on Save. The Editor window now has the title junk.m. If you
make subsequent changes to junk.m in the Editor, an asterisk appears next to its name at the top of
the Editor until you save the changes.

A MATLAB program saved from the Editor (or any ASCII text editor) with the extension .m is called
a script file, or simply a script . (MATLAB function files also have the extension .m. MATLAB therefore
refers to both script and function files generally as M-files .) The special significance of a script file is
that, if you enter its name at the command-line prompt, MATLAB carries out each statement in the script
file as if it were entered at the prompt.

The rules for script file names are the same as those for MATLAB variable names (see below in
Section 2.3).

As an example, save the compound interest program above in a script file under the name compint.m.
Then simply enter the name

compint

at the prompt in the Command Window. The statements in compint.m will be carried out exactly
as if you had pasted them into the Command Window. You have effectively created a new MATLAB
command, viz. compint.

A script file may be listed in the Command Window with the command type, e.g.

type compint

(the extension .m may be omitted).
Script files provide a useful way of managing large programs which you do not necessarily want to

paste into the Command Window every time you run them.

Current directory

When you run a script, you have to make sure that MATLAB’s current directory (indicated in the Current
Directory field on the right of the desktop toolbar) is set to the directory in which the script is saved. To
change the current directory type the path for the new current directory in the Current Directory field,
or select a directory from the drop-down list of previous working directories, or click on the browse
button (...) to select a new directory.
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The current directory may also be changed in this way from the Current Directory browser in the
desktop.

You can change the current directory from the command line with cd command, e.g.

cd \mystuff

The command cd by itself returns the name of the current directory.

Recommended way to run a script: from the Current Directory browser

A handy way to run a script is as follows. Select the file in the Current Directory browser. Right-click
it. The context menu appears (context menus are a general feature of the desktop). Select Run from the
context menu. The results appear in the Command Window. If you want to edit the script, select Open
from the context menu.

To specify the types of files shown in the Current Directory Browser, use View -> Current Directory
Filter. For example, you may wish to see only M-files. Alternatively, you can right-click the column
title in the Current Directory browser and use the context menu.

You can sort the files in the Current Directory browser by clicking the title of the file column. A click
‘toggles’ the sort, i.e. from ascending to descending order or vice versa.

Note that the Help portion of an M-file appears in the pane at the bottom of the Current Directory
browser. Try this out some M-files in one of the MATLAB directories, e.g. \toolbox\matlab\elmat.
A one-line description of the M-file appears in the right-most column of the Current Directory browser
(you may need to enlarge the browser to see all the columns).

How a program works

We will now discuss in detail how the compound interest program works.
The MATLAB system is technically called an interpreter (as opposed to a compiler). This means

that each statement presented to the command line is translated (interpreted) into language the computer
understands better, and then immediately carried out.

A fundamental concept in MATLAB is how numbers are stored in the computer’s random access
memory (RAM). If a MATLAB statement needs to store a number, space in the RAM is set aside for it.
You can think of this part of the memory as a bank of boxes or memory locations , each of which can
hold only one number at a time. These memory locations are referred to by symbolic names in MATLAB
statements. So the statement

balance = 1000

allocates the number 1000 to the memory location named balance. Since the contents of balance
may be changed during a session it is called a variable.

The statements in our program are therefore interpreted by MATLAB as follows:

1. Put the number 1000 into variable balance.
2. Put the number 0.09 into variable rate.
3. Multiply the contents of rate by the contents of balance and put the answer in interest.
4. Add the contents of balance to the contents of interest and put the answer in balance.
5. Display (in the Command Window) the message given in single quotes.
6. Display the contents of balance.

In hardly seems necessary to stress this, but these interpreted statements are carried out in order from
the top down. When the program has finished running, the variables used will have the following values:

balance : 1090
interest : 90
rate : 0.09
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Note that the original value of balance (1000) is lost.
Try the following exercises:

1. Run the program as it stands.
2. Change the first statement in the program to read

balance = 2000;

Make sure that you understand what happens now when the program runs.
3. Leave out the line

balance = balance + interest;

and re-run. Can you explain what happens?
4. Try to rewrite the program so that the original value of balance is not lost.

A number of questions have probably occurred to you by now, such as

• What names may be used for variables?
• How can numbers be represented?
• What happens if a statement won’t fit on one line?
• How can we organize the output more neatly?

These questions will be answered shortly. However, before we write any more complete programs there
are some additional basic concepts which need to be introduced.

2.3 Variables and the workspace

Variables

Variables are fundamental to programming. In a sense, the art of programming is

getting the right values in the right variables at the right time.

A variable name (like balance) must comply with the following two rules:

1. It may consist only of the letters a–z, the digits 0–9 and the underscore (_ ).
2. It must start with a letter.

A variable name may be as long as you like, but MATLAB only remembers the first 31 characters.

Examples of valid variable names: r2d2 pay_day

Examples of invalid names (why?): pay-day 2a name$ _2a

A variable is created simply by assigning a value to it, at the command line, or in a program, e.g.

a = 98

If you attempt to refer to a non-existent variable you will get the error message

??? Undefined function or variable ...

The official MATLAB documentation refers to all variables as arrays , whether they are single-valued
(scalars) or multi-valued (vectors or matrices).
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Case sensitivity

MATLAB is case-sensitive, which means it distinguishes between upper- and lowercase letters. So
balance, BALANCE and BaLance are three different variables.

Many programmers write variable names in lowercase except for the first letter of the second and
subsequent words, if the name consists of more than one word run together. This style is known as
camel caps , the uppercase letters looking like a camel’s humps (with a bit of imagination). For example,
camelCaps, milleniumBug, dayOfTheWeek. Other programmers prefer to separate words with
underscores.

Command and function names are also case-sensitive. However, note that when you use the command-
line help, function names are given in capitals, e.g. CLC, solely to emphasize them. You must not use
capitals when running functions and commands.

The workspace

Another fundamental concept in MATLAB is the workspace. Enter the command clear, and then run
the compound interest program again. Now enter the command who. You should see a list of variables
as follows:

Your variables are:

balance interest rate

All the variables you create during a session remain in the workspace until you clear them. You can
use or change their values at any stage during the session.

The command who lists the names of all the variables in your workspace.
The function ans returns the value of the last expression evaluated but not assigned to a variable.
The command whos lists the size of each variable as well:

Name Size Bytes Class

balance 1x1 8 double array
interest 1x1 8 double array
rate 1x1 8 double array

Each variable here occupies eight bytes of storage. A byte is the amount of computer memory required
for one character (if you are interested, one byte is the same as eight bits).

These variables each have a size of ‘1-by-1’, because they are scalars , as opposed to vectors or
matrices (although as mentioned above MATLAB regards them all as 1-by-1 arrays).
double means that the variable holds numeric values as double-precision floating point (see Sec-

tion 2.6).
The command clear removes all variables from the workspace.
A particular variable can be removed from the workspace, e.g. clear rate .
More than one variable can also be cleared, e.g. clear rate balance (separate the variable

names with spaces, not commas! ).
When you run a program, any variables created by it remain in the workspace after it has run. This

means that existing variables with the same names get overwritten.
The Workspace Browser in the desktop provides a handy visual representation of the workspace. You

can view and even change the values of workspace variables with the Array Editor. To activate the Array
Editor click on a variable in the Workspace Browser, or right-click to get the more general context menu.
Note from the context menu that you can draw graphs of workspace variables in various ways.
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Adding commonly used constants to the workspace

If you often use the same physical or mathematical constants in your MATLAB sessions, you can save
them in an M-file and run it at the start of a session. For example, the following statements could be
saved in myconst.m:

g = 9.8; % acceleration due to gravity
avo = 6.023e23; % Avogadro’s number
e = 2.718281828459045; % base of natural log
pi_4 = pi / 4;
log10e = log10( e );
bar_to_kP = 101.325; % atmospheres to kiloPascals

If you run myconst at the start of a session these six variables will be part of the workspace and will
be available for the rest of the session, or until you clear them.

2.4 Arrays: vectors and matrices

As mentioned earlier, the name MATLAB stands for MATrix LABoratory because MATLAB has been
designed to work with matrices . A matrix is a rectangular object (e.g. a table) consisting of rows and
columns. We will postpone most of the details of proper matrices and how MATLAB works with them
until Chapter 6.

A vector is a special type of matrix, having only one row, or one column. Vectors are also called
lists or arrays in other programming languages. If you haven’t come across vectors officially yet, don’t
worry—just think of them as lists of numbers.

MATLAB handles vectors and matrices in the same way, but since vectors are easier to think about
than matrices, we will look at them first. This will enhance your understanding and appreciation of
many other aspects of MATLAB. As mentioned above, MATLAB refers to scalars, vectors and matrices
generally as arrays. We will also use the term array generally, with vector and matrix referring to their
1-D and 2-D forms.

Initializing vectors: explicit lists

To get going, try the following short exercises on the command line. (You won’t need reminding about
the command prompt � any more, so it will no longer appear unless the context absolutely demands it.)

1. Enter a statement like

x = [1 3 0 -1 5]

Can you see that you have created a vector (list) with five elements? (Make sure to leave out the
semi-colon so that you can see the list.)

2. Enter the command disp(x) to see how MATLAB displays a vector.
3. Enter the command whos (or look in the Workspace browser). Under the heading Size you will

see that x is 1-by-5, which means 1 row and 5 columns. You will also see that the total number of
elements is 5.

4. You can put commas instead of spaces between vector elements if you like. Try this:

a = [5,6,7]

5. Don’t forget the commas (or spaces) between elements, otherwise you could end up with something
quite different, e.g.

x = [130-15]

What do you think this gives?
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6. You can use one vector in a list for another one, e.g. type in the following:

a = [1 2 3];
b = [4 5];
c = [a -b];

Can you work out what c will look like before displaying it?
7. And what about this?

a = [1 3 7];
a = [a 0 -1];

8. Enter the following

x = [ ]

and then note in the Workspace browser that the size of x is given as 0-by-0 because x is empty .
This means x is defined, and can be used where an array is appropriate without causing an error;
however, it has no size or value.
Making x empty is not the same as saying x = 0 (x has size 1-by-1), or clear x (which
removes x from the workspace, making it undefined).
An empty array may be used to remove elements from an array (see below on Subscripts).

These are all examples of the explicit list method of initializing vectors. Remember the following
important rules:

1. Elements in the list must be enclosed in square not round brackets.
2. Elements in the list must be separated either by spaces or by commas .

Initializing vectors: the colon operator
A vector can also be generated (initialized) with the colon operator , as we have seen. Enter the following
statements:

x = 1:10

(elements are the integers 1, 2, . . . , 10);

x = 1:0.5:4

(elements are the values 1, 1.5, . . . , 4 in increments of 0.5—note that if the colons separate three values,
the middle value is the increment);

x = 10:-1:1

(elements are the integers 10, 9, . . . , 1, since the increment is negative);

x = 1:2:6

(elements are 1, 3, 5; note that when the increment is positive but not equal to 1, the last element is not
allowed to exceed the value after the second colon);

x = 0:-2:-5
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(elements are 0,−2,−4; note that when the increment is negative but not equal to −1, the last element
is not allowed to be less than the value after the second colon);

x = 1:0

(a complicated way of generating an empty vector!).

linspace

The function linspace can be used to initialize a vector of equally spaced values, e.g.

linspace(0, pi/2, 10)

creates a vector of 10 equally spaced points from 0 to π/2 (inclusive).

Transposing vectors

All these vectors are row vectors . Each has one row and several columns. To generate the column vectors
that are often needed in mathematics, you need to transpose such vectors, i.e. you need to interchange
their rows and columns. This is done with the single quote, or apostrophe (’), which is the nearest
MATLAB can get to the mathematical dash (′) that is often used to indicate the transpose.

Enter x = 1:5 and then enter x’ to display the transpose of x. Note that x itself remains a row
vector.

Or you can create a column vector directly:

y = [1 4 8 0 -1]’

Subscripts

We can refer to particular elements of a vector by means of subscripts . Try the following:

1. Enter r = rand(1,7)
This gives you a row vector of seven random numbers .

2. Now enter r(3)
This will display the third element of r. The number 3 is the subscript .

3. Now enter r(2:4)
This should give you the second, third and fourth elements.

4. What about r(1:2:7)?
5. And r([1 7 2 6])?
6. You can use an empty vector to remove elements from a vector, e.g.

r([1 7 2]) = [ ]

will remove elements 1, 7 and 2.

To summarize:

A subscript is indicated inside round brackets.
A subscript may be a scalar or a vector.
In MATLAB subscripts always start at 1.
Fractional subscripts are always rounded down, e.g. x(1.9) refers to element x(1).
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Matrices

A matrix may be thought of as a table consisting of rows and columns. You create a matrix just as you
do a vector, except that a semi-colon is used to indicate the end of a row, e.g. the statement

a = [1 2 3; 4 5 6]

results in

a =
1 2 3
4 5 6

A matrix may be transposed, e.g. with a initialized as above, the statement a’ results in

a =
1 4
2 5
3 6

A matrix can be constructed from column vectors of the same length. The statements

x = 0:30:180;
table = [x’ sin(x*pi/180)’]

result in

table =
0 0

30.0000 0.5000
60.0000 0.8660
90.0000 1.0000

120.0000 0.8660
150.0000 0.5000
180.0000 0.0000

Capturing output

You can use cut and paste techniques to tidy up the output from MATLAB statements, if this is necessary
for some sort of presentation. Generate the table of angles and sines as shown above. Select all seven
rows of numerical output in the Command Window. Copy the selected output to the Editor. You can
then edit the output, e.g. by inserting text headings above each column (this is easier than trying to get
headings to line up over the columns with a disp statement). The edited output can in turn be pasted
into a report, or printed as it is (the File menu has a number of printing options).

Another way of capturing output is with the diary command. The command

diary filename

copies everything that subsequently appears in the Command Window to the text file filename. You
can then edit the resulting file with any text editor (including the MATLAB Editor). Stop recording the
session with

diary off

Note that diary appends material to an existing file, i.e. adds it on at the end.
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Figure 2.2 Distance-time graph of stone thrown vertically upward

2.5 Vertical motion under gravity

If a stone is thrown vertically upward with an initial speed u, its vertical displacement s after a time
t has elapsed is given by the formula s = ut − gt2/2, where g is the acceleration due to gravity. Air
resistance has been ignored. We would like to compute the value of s over a period of about 12.3 seconds
at intervals of 0.1 seconds, and to plot the distance-time graph over this period, as shown in Figure 2.2.
The structure plan for this problem is as follows:

1. Assign the data (g, u and t) to MATLAB variables.
2. Calculate the value of s according to the formula.
3. Plot the graph of s against t .
4. Stop.

This plan may seem trivial to you, and a waste of time writing down. Yet you would be surprised how
many beginners, preferring to rush straight to the computer, start with step 2 instead of step 1. It is well
worth developing the mental discipline of structure-planning your program first. You could even use cut
and paste to plan as follows:

1. Type the structure plan into the Editor.
2. Paste a second copy of the plan directly below the first.
3. Translate each line in the second copy into a MATLAB statement, or statements (add % comments

as in the example below).
4. Finally, paste all the translated MATLAB statements into the Command Window, and run them.
5. If necessary, go back to the Editor to make corrections, and re-paste the corrected statements to the

Command Window (or save.

You might like to try this as an exercise, before looking at the final program, which is as follows:

% Vertical motion under gravity
g = 9.8; % acceleration due to gravity
u = 60; % initial velocity (metres/sec)
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t = 0 : 0.1 : 12.3; % time in seconds
s = u * t - g / 2 * t .^ 2; % vertical displacement in metres

plot(t, s), title( ’Vertical motion under gravity’ ), ...
xlabel( ’time’ ), ylabel( ’vertical displacement’ ), grid

disp( [t’ s’] ) % display a table

The graphical output is shown in Figure 2.2.
Note the following points:

1. Anything in a line following the percentage symbol % is ignored by MATLAB and may be used as
a comment (description).

2. The statement t = 0 : 0.1 : 12.3 sets up a vector.
3. The formula for s is evaluated for every element of the vector t, making another vector.
4. The expression t.^2 squares each element in t. This is called an array operation, and is different

to squaring the vector itself, which is a matrix operation, as we shall see later.
5. More than one statement can be entered on the same line if the statements are separated by commas.
6. A statement or group of statements can be continued to the next line with an ellipsis of three or

more dots ...
7. The statement disp([t’ s’]) first transposes the row vectors t and s into columns, and con-

structs a matrix from these two columns, which is then displayed.

You might want to save the program under a helpful name, like throw.m if you think you might
come back to it. In that case, it would be worth keeping the structure plan as part of the file; just insert
% symbols in front of each line of the structure plan. This way, the structure plan reminds you what the
program does when you look at it again after some months.

Note that you can use the context menu in the Editor to Comment/Uncomment a block of selected
text.

2.6 Operators, expressions and statements

Any program worth its salt actually does something. What it basically does is to evaluate expressions ,
such as

u*t - g/2*t.^2

and to execute (carry out) statements, such as

balance = balance + interest

MATLAB has been described as ‘an expression based language. It interprets and evaluates typed expres-
sions.’ Expressions are constructed from a variety of things, such as numbers, variables, and operators.
First we need to look at numbers.

Numbers

Numbers can be represented in MATLAB in the usual decimal form (fixed point), with an optional
decimal point, e.g.

1.2345 -123 .0001

A number may also be represented in scientific notation, e.g. 1.2345 × 109 may be represented in
MATLAB as 1.2345e9. This is also called floating point notation. The number has two parts: the
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mantissa, which may have an optional decimal point (1.2345 in this example) and the exponent (9),
which must be an integer (signed or unsigned). Mantissa and exponent must be separated by the letter e
(or E). The mantissa is multiplied by the power of 10 indicated by the exponent.

Note that the following is not scientific notation: 1.2345*10^9. It is actually an expression involving
two arithmetic operations (* and ^) and therefore more time consuming. It’s also rather uncool. You
should try to avoid it.

Use scientific notation if the numbers are very small or very large, since there’s less chance of making
a mistake, e.g. represent 0.000000001 as 1e-9.

On computers using standard floating point arithmetic, numbers are represented to approximately 16
significant decimal digits. The relative accuracy of numbers is given by the function eps, which is
defined as the distance between 1.0 and the next largest floating point number. Enter eps to see its value
on your computer.

The range of numbers is roughly ±10−308 to ±10308. Precise values for your computer are returned
by the MATLAB functions realmin and realmax.

Exercises

Enter the following numbers at the command prompt in scientific notation (answers are below):

1.234 × 105, − 8.765 × 10−4, 10−15, − 1012.

(1.234e5, -8.765e-4, 1e-15, -1e12)

Data types

MATLAB has 14 fundamental data types (or classes). The default numeric data type is double-precision;
all MATLAB computations are done in double-precision.

MATLAB also supports signed and unsigned integer types and single-precision floating point, by
means of functions such as int8, uint8, single, etc. However, before mathematical operations can
be performed on such data types they must first be converted to double-precision using the double
function.

Look up data types[2] in the online Help index for more information.

Arithmetic operators

The evaluation of expressions is achieved by means of arithmetic operators . The arithmetic operations
on two scalar constants or variables are shown in Table 2.1. Operators operate on operands (a and b
in the table.)

Table 2.1 Arithmetic operations between
two scalars

Operation Algebraic form MATLAB

Addition a + b a + b
Subtraction a − b a - b
Multiplication a × b a * b
Right division a/b a / b
Left division b/a a \ b

Power ab a ^ b
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Table 2.2 Precedence of arithmetic operations

Precedence Operator

1 Parentheses (round brackets)
2 Power, left to right
3 Multiplication and division, left to right
4 Addition and subtraction, left to right

Left division seems a little curious: divide the right operand by the left operand. For scalar operands
the expressions 1/3 and 3\1 have the same numerical value (a colleague of mine speaks the latter as
‘3 under 1’). However, matrix left division has an entirely different meaning, as we shall see later.

Precedence of operators

Several operations may be combined in one expression, e.g. g * t ^ 2. MATLAB has strict rules
about which operations are performed first in such cases; these are called precedence rules. The prece-
dence rules for the operators in Table 2.1 are shown in Table 2.2. Note that parentheses (round brackets)
have the highest precedence. Note also the difference between round and square brackets. Round brackets
are used to alter the precedence of operators, and to denote subscripts, while square brackets are used to
create vectors.

When operators in an expression have the same precedence the operations are carried out from left to
right. So a / b * c is evaluated as (a / b) * c and not as a / (b * c) .

Exercises

1. Evaluate the following MATLAB expressions yourself before checking the answers in MATLAB:

1 + 2 * 3
4 / 2 * 2
1+2 / 4
1 + 2\4
2*2 ^ 3
2 * 3 \ 3
2 ^ (1 + 2)/3
1/2e-1

2. Use MATLAB to evaluate the following expressions. Answers are in brackets.

(a)
1

2 × 3
(0.1667)

(b) 22×3 (64)

(c) 1.5 × 10−4 + 2.5 × 10−2 (0.0252; use scientific notation)

The colon operator

The colon operator has a lower precedence than + as the following shows:

1+1:5

The addition is carried out first, and then a vector with elements 2, . . . , 5 is initialized.
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You may be surprised at the following:

1+[1:5]

Were you? The value 1 is added to each element of the vector 1:5. In this context, the addition is
called an array operation, because it operates on each element of the vector (array). Array operations
are discussed below.

See Appendix B for a complete list of MATLAB operators and their precedences.

The transpose operator

The transpose operator has the highest precedence. Try

1:5’

5 is transposed first (into itself since it is a scalar!), and then a row vector is formed. Use square brackets
if you want to transpose the whole vector:

[1:5]’

Arithmetic operations on arrays

Enter the following statements at the command line:

a = [2 4 8];
b = [3 2 2];
a .* b
a ./ b

MATLAB has four further arithmetic operators, shown in Table 2.3. These operators work on correspond-
ing elements of arrays with equal dimensions. The operations are sometimes called array operations , or
element-by-element operations because the operations are performed element by element. For example,
a .* b results in the following vector (sometimes called the array product):

[a(1)*b(1) a(2)*b(2) a(3)*b(3)]

i.e. [6 8 10].
You will have seen that a ./ b gives element-by-element division.
Now try [2 3 4] .^ [4 3 1] . The ith element of the first vector is raised to the power of the

ith element of the second vector.
The period (dot) is necessary for the array operations of multiplication, division and exponentia-

tion, because these operations are defined differently for matrices; the operation is then called a matrix
operation (see Chapter 6).

With a and b as defined above, try a + b and a - b . For addition and subtraction, array
operations and matrix operations are the same, so we don’t need the period to distinguish between them.

Table 2.3 Arithmetic operators that
operate element-by-element on arrays

Operator Description

.* Multiplication

./ Right division

.\ Left division

.^ Power
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When array operations are applied to two vectors, they must both be the same size.
Array operations also apply to operations between a scalar and a non-scalar. Check this with
3 .* a and a .^ 2 . This property is called scalar expansion. Multiplication and division oper-

ations between scalars and non-scalars can be written with or without the period, i.e. if a is a vector,
3 .* a is the same as 3 * a .
A common application of element-by-element multiplication is in finding the scalar product (also

called the dot product) of two vectors x and y, which is defined as

x · y =
∑
i

xiyi .

The MATLAB function sum(z) finds the sum of the elements of the vector z, so the statement
sum(a .* b) will find the scalar product of a and b (30 for a and b defined above).

Exercises

Use MATLAB array operations to do the following:

1. Add 1 to each element of the vector [2 3 -1].
2. Multiply each element of the vector [1 4 8] by 3.
3. Find the array product of the two vectors [1 2 3] and [0 -1 1]. (Answer: [0 -2 3])
4. Square each element of the vector [2 3 1].

Expressions

An expression is a formula consisting of variables, numbers, operators, and function names. An expression
is evaluated when you enter it at the MATLAB prompt, e.g. evaluate 2π as follows:

2 * pi

MATLAB’s response is:

ans =
6.2832

Note that MATLAB uses the function ans (which stands for answer) to return the last expression to be
evaluated but not assigned to a variable.

If an expression is terminated with a semi-colon (;) its value is not displayed, although it is still
returned by ans.

Statements

MATLAB statements are frequently of the form

variable = expression

e.g.

s = u * t - g / 2 * t .^ 2;

This is an example of an assignment statement, because the value of the expression on the right is
assigned to the variable (s) on the left . Assignment always works in this direction.
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Note that the object on the left-hand side of the assignment must be a variable name. A common
mistake is to get the statement the wrong way round, like

a + b = c

Basically any line that you enter in the Command Window or in a program, which MATLAB accepts,
is a statement, so a statement could be an assignment, a command, or simply an expression, e.g.

x = 29; % assignment
clear % command
pi/2 % expression

This naming convention is in keeping with most other programming languages and serves to emphasize
the different types of statements that are found in programming. However, the MATLAB documentation
tends to refer to all of these as ‘functions’.

As we have seen, a semi-colon at the end of an assignment or expression suppresses any output. This
is useful for suppressing irritating output of intermediate results (or large matrices).

A statement which is too long to fit onto one line may be continued to the next line with an ellipsis
of at least three dots, e.g.

x = 3 * 4 - 8 ....
/ 2 ^ 2;

Statements on the same line may be separated by commas (output not suppressed) or semi-colons
(output suppressed), e.g.

a = 2; b = 3, c = 4;

Note that the commas and semi-colons are not technically part of the statements; they are separators .
Statements may involve array operations, in which case the variable on the left-hand side may become

a vector or matrix.

Statements, commands and functions

The distinction between MATLAB statements , commands and functions can be a little fuzzy, since all
can be entered on the command line. However, it is helpful to think of commands as changing the
general environment in some way, e.g. load, save, and clear. Statements do the sort of thing we
usually associate with programming, such as evaluating expressions and carrying out assignments, making
decisions (if), and repeating (for). Functions return with calculated values or perform some operation
on data, e.g. sin, plot.

Vectorization of formulae

With array operations you can easily evaluate a formula repeatedly for a whole lot of data. This is one of
MATLAB’s most useful and powerful features, and you should always be looking for ways of exploiting it.

As an example, consider the calculation of compound interest. An amount of money A invested over
a period of n years with an annual interest rate of r grows to an amount A(1 + r)n. Suppose we want
to calculate final balances for investments of $750, $1000, $3000, $5000 and $11 999, over 10 years,
with an interest rate of 9 per cent. The following program (comp.m) uses array operations on a vector
of initial investments to do this.

format bank
A = [750 1000 3000 5000 11999];
r = 0.09;
n = 10;
B = A * (1 + r) ^ n;
disp( [A’ B’] )
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Output:

750.00 1775.52
1000.00 2367.36
3000.00 7102.09
5000.00 11836.82

11999.00 28406.00

Note:

1. In the statement B = A * (1 + r) ^ n , the expression (1 + r) ^ n is evaluated first,
because exponentiation has a higher precedence than multiplication.

2. After that each element of the vector A is multiplied by the scalar (1 + r) ^ n (scalar expan-
sion).

3. The operator * may be used instead of .* because the multiplication is between a scalar and a
non-scalar (although .* would not cause an error because a scalar is a special case of an array).

4. A table is displayed, with columns given by the transposes of A and B.

This process is called vectorization of a formula.
See if you can adjust the program comp.m to find the balances for a single amount A ($1000) over

periods of 1, 5, 10, 15 and 20 years. Hint: use a vector for n: [1 5 10 15 20].

Danger!

I have seen quite a few beginners make the following mistake. Run the comp.m program, and then enter
the statement

A(1+r)^n

at the prompt. The output is an unexpected warning followed by a scalar:

Warning: Subscript indices must be integer values.
ans =
5.6314e+028

Any ideas?
Well, the basic error is that the multiplication symbol * has been left out after the A. However,

MATLAB still obligingly gives a result! This is because round brackets after the A signify an element of
a vector, in this case element number 1+r, which rounds down to 1, since r has the value 0.09 (fractional
subscripts are always rounded down). A(1) has the value 750, so MATLAB obediently calculates 75010.

The curious thing is that the same wrong answer is given even if A is a scalar, e.g. A = 750, because
MATLAB treats a scalar as an array with one element (as whos demonstrates).

The moral is that you should develop the official MATLAB mindset of regarding all variables as ‘arrays’.

Exercises

1. Evaluate the following MATLAB expressions yourself (don’t use MATLAB to help!). Answers
are in brackets.

2 / 2 * 3 (3)
2 / 3 ^ 2 (2/9)
(2 / 3) ^ 2 (4/9)
2 + 3 * 4 - 4 (10)
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2 ^ 2 * 3 / 4 + 3 (6)
2 ^ (2 * 3) / (4 + 3) (64/7)
2 * 3 + 4 (10)
2 ^ 3 ^ 2 (64)
-4 ^ 2 (−16; ^ has higher precedence than -)

2. Use MATLAB to evaluate the following expressions. Answers are in brackets again.

(a)
√

2 (1.4142; use sqrt or ^0.5)

(b)
3 + 4

5 + 6
(0.6364; use brackets)

(c) the sum of 5 and 3 divided by their product (0.5333)

(d) 232
(512)

(e) the square of 2π (39.4784; use pi)
(f) 2π2 (19.7392)
(g) 1/

√
2π (0.3989)

(h)
1

2
√
π

(0.2821)

(i) the cube root of the product of 2.3 and 4.5 (2.1793)

(j)
1 − 2

3+2

1 + 2
3−2

(0.2)

(k) 1000(1 + 0.15/12)60 (2107.2, e.g. $1000 deposited for 5 years at 15 per cent per year,
with the interest compounded monthly)

(l) (0.0000123 + 5.678 × 10−3)× 0.4567 × 10−4 (2.5988 × 10−7; use scientific notation,
e.g. 1.23e-5 . . . ; do not use ^ )

3. Try to avoid using unnecessary brackets in an expression. Can you spot the errors in the following
expression (test your corrected version with MATLAB):

(2(3+4)/(5*(6+1))^2

The MATLAB Editor has two useful ways of dealing with the problem of ‘unbalanced delimiters’
(which you should know about if you have been working through Help!):
• When you type a closing delimiter, i.e. a right ), ] or }, its matching opening delimiter

is briefly highlighted. So if you don’t see the highlighting when you type a right delimiter
you immediately know you’ve got one too many.

• When you position the cursor anywhere inside a pair of delimiters and select Text ->
Balance Delimiters (or press Ctrl+B) the characters inside the pair of delimiters are
highlighted.

4. Set up a vector n with elements 1, 2, 3, 4, 5. Use MATLAB array operations on the vector n to
set up the following four vectors, each with five elements:
(a) 2, 4, 6, 8, 10
(b) 1/2, 1, 3/2, 2, 5/2
(c) 1, 1/2, 1/3, 1/4, 1/5
(d) 1, 1/22, 1/32, 1/42, 1/52

5. Suppose a and b are defined as follows:

a = [2 -1 5 0];
b = [3 2 -1 4];
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Evaluate by hand the vector c in the following statements. Check your answers with MATLAB.
(a) c = a - b;
(b) c = b + a - 3;
(c) c = 2 * a + a .^ b;
(d) c = b ./ a;
(e) c = b .\ a;
(f) c = a .^ b;
(g) c = 2.^b+a;
(h) c = 2*b/3.*a;
(i) c = b*2.*a;

6. Water freezes at 32◦ and boils at 212◦ on the Fahrenheit scale. If C and F are Celsius and
Fahrenheit temperatures, the formula

F = 9C/5 + 32

converts from Celsius to Fahrenheit.
Use the MATLAB command line to convert a temperature of 37◦ C (normal human temperature)
to Fahrenheit (98.6◦).

7. Engineers often have to convert from one unit of measurement to another; this can be tricky
sometimes. You need to think through the process carefully.
For example, convert 5 acres to hectares, given that an acre is 4840 square yards, a yard is 36
inches, an inch is 2.54 cm, and a hectare is 10000 m2. The best approach is to develop a formula
to convert x acres to hectares. You can do this as follows.

one square yard = (36 × 2.54)2 cm2

so one acre = 4840 × (36 × 2.54)2 cm2

= 0.4047 × 108 cm2

= 0.4047 hectares
so x acres = 0.4047x hectares

Once you’ve got the formula (but not until you’ve got the formula!), MATLAB can do the rest:

x = 5; % acres
h = 0.4047 * x; % hectares
disp( h )

Develop formulae for the following conversions, and use some MATLAB statements to find the
answers, which are in brackets.
(a) Convert 22 yards (an imperial cricket pitch) to metres. (20.117 metres)
(b) One pound (weight) = 454 grams. Convert 75 kilograms to pounds. (165.20 pounds)
(c) One day in March 1995, when the SA rand was still worth something, rates of exchange

were: one pound sterling = 5.63 SA rand, and one SA rand = 0.279 US dollars. Convert
100 US dollars to pounds sterling. (63.66 pounds)

(d) Convert 49 metres/second (terminal velocity for a falling person-shaped object) to km/hour.
(176.4 km/hour)

(e) One atmosphere pressure = 14.7 pounds per square inch (psi) = 101.325 kilo Pascals (kPa).
Convert 40 psi to kPa. (275.71 kPa)

(f) One calorie = 4.184 joules. Convert 6.25 kilojoules to calories. (1.494 kilocalories)
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2.7 Output

There are two straightforward ways of getting output from MATLAB:

1. by entering a variable name, assignment or expression on the command line, without a semi-colon;
2. with the disp statement, e.g. disp( x ).

disp

The general form of disp for a numeric variable is

disp( variable )

When you use disp, the variable name is not displayed, and you don’t get a line feed before the
value is displayed, as you do when you enter a variable name on the command line without a semi-colon.
disp generally gives a neater display.

You can also use disp to display a message enclosed in single quotes (called a string). Single quotes
which are part of the message must be repeated, e.g.

disp( ’Pilate said, ’’What is truth?’’’ );

To display a message and a numeric value on the same line use the following trick:

x = 2;
disp( [’The answer is ’, num2str(x)] );

The output should be

The answer is 2

Square brackets create a vector, as we have seen. We want to display a string (i.e. a message in single
quotes). But all the components of a MATLAB array must either be numbers or strings (unless you use
a cell array—see Chapter 13). So we convert the number x to its string representation with the function
num2str; read this as ‘num to string’. Alternatively, use cut and paste to insert the string into the output
in the Notepad.

You can display more than one number on a line as follows:

disp( [x y z] )

The square brackets create a vector with three elements, which are all displayed.
The command more on enables paging of output. This is very useful when displaying large matrices,

e.g. rand(100000,7). See help more for details. If you forget to switch on more before displaying
a huge matrix you can always stop the display with Ctrl+Break or Ctrl+C.

format

The word format refers to how something is laid out: in this case MATLAB output.
To begin with, MATLAB has the following two basic output rules:

1. It always attempts to display integers (whole numbers) exactly. However, if the integer is too large,
it is displayed in scientific notation with five significant digits, e.g. 1234567890 is displayed as
1.2346e+009 (i.e. 1.2346 × 109).
Check this by first entering 123456789 at the command line, and then 1234567890.
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2. Numbers with decimal parts are displayed with four significant digits. If the value x is in the range
0.001 < x ≤ 1000 it is displayed in fixed point form, otherwise scientific (floating point) notation is
used, in which case the mantissa is between 1 and 9.9999, e.g. 1000.1 is displayed as 1.0001e+003.
Check this by entering following numbers at the prompt (on separate lines): 0.0011, 0.0009, 1/3, 5/3,
2999/3, 3001/3

This is what is called the default format, i.e. what normally happens. However, you can change from
the default with variations on the format command, as follows.

If you want values displayed in scientific notation (floating point form) whatever their size, enter the
command

format short e

All output from subsequent disp statements will be in scientific notation with five significant digits,
until the next format command is issued. Enter this command and check it with the following values:
0.0123456, 1.23456, 123.456 (all on separate lines).

If you want more accurate output, you can use format long e . This also gives scientific notation,
but with 15 significant digits. Try it out on 1/7.

Use format long to get fixed point notation with 15 significant digits, e.g. try 100/7 and pi.
If you’re not sure of the order of magnitude of your output you can try format short g or
format long g . The g stands for ‘general’. MATLAB decides in each case whether to use fixed

or floating point.
Use format bank for financial calculations; you get fixed point with two decimal digits (for the

cents). Try it on 10000/7.
Suppress irritating line-feeds with format compact which gives a more compact looking display.

format loose reverts to the more airy display.
Use format hex to get hexadecimal display.
Use format rat to display a number as a rational approximation (ratio of two integers), e.g.

pi is displayed as 355/113, a pleasant change from the tired old 22/7. Please note that even this is an
approximation! Try out format rat on

√
2 and e (exp(1)).

The symbols + , - and a space are displayed for positive, negative and zero elements of a vector
or matrix after the command format +. In certain applications this is a convenient way of displaying
matrices.

The command format by itself reverts to the default format.
You can always try help format if you’re confused!
You can also set the various format options by selecting File -> Preferences from the Command

Window. The Command Window Preferences dialogue box opens. Set your format preferences in the
Text display box. Note that you can specify a host of preferences for all the MATLAB tools in this way
(File -> Preferences from the tool window). MATLAB automatically saves your preferences for use in
later sessions.

Scale factors

Enter the following commands (MATLAB’s response is also shown).

� format compact
� x = [1e3 1 1e-4]
x =
1.0e+003 *
1.0000 0.0010 0.0000

With format short (the default) and format long a common scale factor is applied to
the whole vector if its elements are very large, very small, or differ greatly in magnitude. In this example,
the common scale factor is 1000, so the elements displayed must all be multiplied by this factor to get
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their proper value, e.g. for the second element 1.0e+003 * 0.0010 gives 1. Taking a factor of
1000 out of the third element (1e-4) leaves 1e-7, which is represented by 0.0000 since only four
decimal digits are displayed.

If you don’t want a scale factor try format bank or format short e :

� format bank
� x
x =

1000.00 1.00 0.00
� format short e
� x
x =
1.0000e+003 1.0000e+000 1.0000e-004

2.8 Repeating with for

So far we have seen how to get data into a program, how to do arithmetic, and how to get some answers
out. In this section we look at a new feature: repetition. This is implemented by the extremely powerful
for construct. We will first look at some examples of its use, followed by explanations.

For starters, enter the following group of statements on the command line. Enter the command
format compact first to make the output neater:

for i = 1:5, disp(i), end

Now change it slightly to

for i = 1:3, disp(i), end

And what about

for i = 1:0, disp(i), end

Can you see what’s happening? The disp statement is repeated five times, three times, and not at all.

Square rooting with Newton

The square root x of any positive number a may be found using only the arithmetic operations of addition,
subtraction and division, with Newton’s method . This is an iterative (repetitive) procedure that refines an
initial guess.

The structure plan of the algorithm to find the square root, and the program with sample output for
a = 2 is as follows. Run it.

1. Initialize a
2. Initialize x to a/2
3. Repeat 6 times (say)

Replace x by (x + a/x)/2
Display x

4. Stop.

Here is the program:

a = 2;
x = a/2;
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for i = 1:6
x = (x + a / x) / 2;
disp( x )

end

disp( ’Matlab’’s value: ’ )
disp( sqrt(2) )

Output (after selecting format long):

Enter number to be square-rooted: 2
1.50000000000000
1.41666666666667
1.41421568627451
1.41421356237469
1.41421356237310
1.41421356237310

Matlab’s value:
1.41421356237310

The value of x converges to a limit, which is
√
a. Note that it is identical to the value returned by

MATLAB’s sqrt function. Most computers and calculators use a similar method internally to compute
square roots and other standard mathematical functions.

The general form of Newton’s method is presented in Chapter 10 (with a derivation in Chapter 19).

Factorials!

Run the following program to generate a list of n and n! (spoken as ‘n factorial’, or ‘n shriek’) where

n! = 1 × 2 × 3 × . . .× (n− 1)× n.

n = 10;
fact = 1;

for k = 1:n
fact = k * fact;
disp( [k fact] )

end

Do an experiment to find largest value of n for which MATLAB can find n factorial (you’d better
leave out the disp statement!).

Limit of a sequence

for loops are ideal for computing successive members of a sequence (as in Newton’s method above).
The following example also highlights a problem that sometimes occurs when computing a limit. Consider
the sequence

xn = an/n!, n = 1, 2, 3, . . .

where a is any constant, and n! is the factorial function defined above. The question is: what is the limit
of this sequence as n gets indefinitely large? Let’s take the case a = 10. If we try to compute xn directly
we could get into trouble, because n! gets large very rapidly as n increases, and numerical overflow could
occur. However, the situation is neatly transformed if we spot that xn is related to xn−1 as follows:

xn = axn−1/n.
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There are no numerical problems now. The following program computes xn for a = 10, and increasing
values of n. Run it.

a = 10;
x = 1;
k = 20; % number of terms

for n = 1:k
x = a * x / n;
disp( [n x] )

end

The basic for construct

In general the most common form of the for loop (for use in a program, not on the command line) is

for index = j:k
statements

end

or

for index = j:m:k
statements

end

Note the following points carefully:

1. j:k is a vector with elements j, j + 1, j + 2, . . . , k.
2. j:m:k is a vector with elements j, j +m, j + 2m, . . . , such that the last element does not exceed

k if m > 0, or is not less than k if m < 0.
3. index must be a variable. Each time through the loop it will contain the next element of the vector

j:k or j:m:k, and for each of these values statements (which may be one or more statement) are
carried out.
If the for construct has the form

for k = first:increment:last

then the number of times the loop is executed may be calculated from the following equation:

floor

(
last− first

increment

)
+ 1

where the MATLAB function floor(x) rounds x down towards −∞. This value is called the
iteration count , or trip count . If the iteration count is negative, the loop is not executed.
For example, the statement for i = 1:2:6 has an iteration count of

floor

(
6 − 1

2

)
+ 1 = floor

(
5

2

)
+ 1 = 3.

So i will take the values 1, 3, 5.
4. On completion of the for loop the index contains the last value used.
5. If the vector j:k or j:m:k is empty, statements are not executed, and control passes to the statement

following the end statement.
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6. The index does not have to appear explicitly in statements . It is basically a counter. In fact, if
the index does appear explicitly in statements , the for can often be vectorized (see below). The
examples with disp at the beginning of this section were for the purposes of illustration only;
strictly, it would be more efficient to say (without the word for)

i = 1:5; disp( i’ )

Can you see the difference?
7. It is good ‘programming style’ to indent (tabulate) the statements inside a for loop. You may

have noticed that the Editor does this for your automatically. This feature is called smart indenting .
Indenting preferences may be set from the Editor/Debugger’s File -> Preferences menu. Expand the
Editor/Debugger item in the Preferences menu and select the Keyboard & Indenting Preferences
dialogue box. Note also that a block of highlighted text may be (un)indented with the Editor’s Text
menu.
You will also have noticed that the Editor implements syntax highlighting . Keywords are in one
colour, strings in another, and so on. You can customize the syntax highlighting colour scheme in
the Editor/Debugger Font & Colors Preferences dialogue box. Click on Set Colors in the Colors
box (with Syntax highlighting checked).

for in a single line

If you insist on using for in a single line, here is the general form:

for index = j:k, statements, end

or

for index = j:m:k, statements, end

Note:

1. Don’t forget the commas (semi-colons will also do if appropriate). If you leave them out you will
get an error message.

2. Again, statements can be one or more statements, separated by commas or semi-colons.
3. If you leave out end, MATLAB will wait for you to enter it. Nothing will happen until you do so.

More general for

A more general form of for is

for index = v

where v is any vector. The index moves through each element of the vector in turn. This provides a neat
way of processing each item in a list. For an example see Exercise 2.22 at the end of the chapter.

The most general form of the for loop will be discussed in Chapter 6. when we look at matrices in
more detail.

Avoid for loops by vectorizing!

There are situations where a for loop is essential, as in the examples in this section so far. However,
the way MATLAB has been designed, for loops tend to be inefficient in terms of computing time. If
you have written a for loop which involves the index of the loop in an expression, it may be possible
to vectorize the expression, making use of array operations where necessary, as the following examples
show.
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Suppose you want to evaluate
1 00 000∑
n=1

n

(and can’t remember the formula for the sum!) Here’s how to do it with a for loop (run the program,
which also times how long it takes):

t0 = clock;
s = 0;
for n = 1:100000

s = s + n;
end;
etime(clock, t0)

The MATLAB function clock returns a six-element vector with the current date and time in the format
year, month, day, hour, minute, seconds. So t0 records when the calculation starts.

The function etime returns the time in seconds elapsed between its two arguments, which must be
vectors as returned by clock. On my Pentium II, it returns about 3.35 seconds, which is the total time
for this calculation. (If you have a slower PC, it could take longer.)

Now try to vectorize this calculation (before looking at the solution). Here it is:

t0 = clock;
n = 1:100000;
s = sum( n );
etime(clock, t0)

This way takes only 0.06 seconds on the same PC—more than 50 times faster.
There is a neater way of monitoring the time taken to interpret MATLAB statements: the tic and

toc function (see below).
Now suppose you want to evaluate

1 00 000∑
n=1

1

n2
.

Here’s the for loop version:

tic
s = 0;
for n = 1:100000
s = s + 1/n^2;

end;
toc

This takes about 6 seconds on my PC. Once again, try to vectorize the sum:

tic
n = 1:100000;
s = sum( 1./n.^2 );
toc

My PC gives a time of about 0.05 seconds for the vectorized version—more than 100 times faster!
Series with alternating signs are a little more challenging. This series sums to ln(2) (the natural

logarithm of 2):

1 − 1

2
+ 1

3
− 1

4
+ 1

5
− · · ·
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Here’s how to find the sum of the first 999 terms with a for loop (note how to handle the alternating
sign):

sign = -1;
s = 0;

for n = 1:999
sign = -sign;
s = s + sign / n;

end;

Try it. You should get 0.6926. MATLAB’s log(2) gives 0.6931. Not bad.
The vectorized version is as follows:

n = 1:2:999;
s = sum( 1./n - 1./(n+1) )

If you time the two versions, you will again find that the vectorized form is many times faster.
MATLAB’s functions naturally exploit vectorization wherever possible. For example, prod(1:n)

will find n! much faster than the code at the beginning of this section (for large values of n).

A common mistake: for less loops!

A very common mistake is to omit the word for from a for loop. Instead of reporting an error,
MATLAB obligingly creates a vector, and executes the statements in the ‘loop’ only once. For example,
run the program for square-rooting with Newton’s method, leaving out the word for, i.e.

a = 2;
x = a/2;

i = 1:6 % no for now
x = (x + a / x) / 2;
disp( x )

end

Can you explain the output? Check with whos that you have created a vector i.
Note that the end statement by itself is perfectly legal, although it does precisely nothing.

Exercises

Write MATLAB programs to find the following sums (a) with for loops, and (b) by vectorization.
Time both versions in each case.

1. 12 + 22 + 32 + · · · + 1 0002. (sum is 333 833 500)

2. 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− · · · − 1

1003
(sum is 0.7849—converges slowly to π /4)

3. Sum the left-hand side of the series

1

12 · 32
+ 1

32 · 52
+ 1

52 · 72
+ · · · = π2 − 8

16
. (sum is 0.1169, with 500 terms)



MATLAB fundamentals 39

2.9 Decisions

The MATLAB function rand generates a random number in the range 0–1. Enter the following two
statements at the command line:

r = rand
if r > 0.5 disp( ’greater indeed’ ), end

MATLAB should only display the message greater indeed if r is in fact greater than 0.5 (check
by displaying r).

Repeat a few times—cut and paste from the Command History window (make sure that a new r is
generated each time).

As a slightly different but related exercise, enter the following logical expression on the command
line:

2 > 0

Now enter the logical expression -1 > 0. MATLAB gives a value of 1 to a logical expression which
is true, and 0 to one which is false.

The one-line if statement

In the example above MATLAB has to make a decision: whether or not r is greater than 0.5. The if
construct, which is fundamental to all computing languages, is the basis of such decision-making.

The simplest form of if in a single line is

if condition statement, end

Note the following points carefully:

1. condition is usually a logical expression, i.e. an expression containing a relational operator , and
which is either true or false. The relational operators are shown in Table 2.4.
MATLAB allows you to use an arithmetic expression for condition. If the expression evaluates to 0
it is regarded as false; any other value is true. This is not generally recommended; the if statement
is easier (for you or a reader of your code) to understand if condition is a logical expression.

2. If condition is true, statement is executed, but if condition is false, nothing happens.
3. condition may be a vector or matrix, in which case it is true only if all its elements are non-zero. A

single zero element in a vector or matrix renders it false.

Here are some more examples of logical expressions involving relational operators, with their meanings
in brackets:

b^2 < 4*a*c (b2 < 4ac)
x >= 0 (x ≥ 0)

Table 2.4 Relational operators

Relational operator Meaning

< less than
<= less than or equal
== equal
~= not equal
> greater than
>= greater than or equal
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a ~= 0 (a �= 0)
b^2 == 4*a*c (b2 = 4ac)

Remember to use the double equal sign (==) when testing for equality, e.g.

if x == 0 disp( ’x equals zero’ ), end

Exercises

The following statements all assign logical expressions to the variable x. See if you can correctly
determine the value of x in each case before checking your answer with MATLAB.

x = 3 > 2
x = 2 > 3
x = -4 <= -3
x = 1 < 1
x = 2 ~= 2
x = 3 == 3
x = 0 < 0.5 < 1

Did you get the second-last one right? 3 == 3 is a logical expression which is true, since 3 is
undoubtedly equal to 3. The value 1 (for true) is therefore assigned to x.
And what about the last one? As a mathematical inequality,

0 < 0.5 < 1

is undoubtedly true. However, as a MATLAB expression, the lefthand < is evaluated first, i.e.
0 < 0.5 , giving 1 (true). Then the righthand operation is performed, i.e. 1 < 1 giving 0

(false). Makes you think, doesn’t it?

The if-else construct
Try the following exercises:

1. Enter the two lines

x = 2;
if x < 0 disp( ’neg’ ), else disp( ’non-neg’ ), end

Did you get the message non-neg?
2. Now change the value of x to −1, and execute the if again.

Did you get the message neg this time?
3. Now try

if 79 disp( ’true’ ), else disp( ’false’ ), end

Did you get true? Try some other values instead of 79, including 0 and some negative values.
4. Most banks offer differential interest rates. Suppose the rate is 9 per cent if the amount in your

savings account is less than $5000, but 12 per cent otherwise. The Random Bank goes one step
further, and gives you a random amount in your account to start with! Run the following program a
few times:

bal = 10000 * rand;

if bal < 5000
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rate = 0.09;
else
rate = 0.12;

end

newbal = bal + rate * bal;
disp( ’New balance after interest compounded is:’ )
format bank
disp( newbal )

Display the values of bal and rate each time from the command line to check that MATLAB has
chosen the correct interest rate.

The basic form of if-else for use in a program file is

if condition
statementsA

else
statementsB

end

Note:

1. statementsA and statementsB represent one or more statements.
2. If condition is true, statementsA are executed, but if condition is false, statementsB are executed.

This is essentially how you force MATLAB to choose between two alternatives.
3. The else part is optional.

The one-line if-else statement

The simplest general form of if-else for use on one line is

if condition statementA, else statementB, end

Note:

1. Commas (or semi-colons) are essential between the various clauses.
2. The else part is optional.
3. Don’t forget end, or MATLAB will wait forever.

elseif

Suppose the Random Bank now offers 9 per cent interest on balances of less than $5000, 12 per cent
for balances of $5000 or more but less than $10 000, and 15 per cent for balances of $10 000 or more.
The following program calculates a customer’s new balance after one year according to this scheme:

bal = 15000 * rand;

if bal < 5000
rate = 0.09;

elseif bal < 10000
rate = 0.12;

else
rate = 0.15;

end
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newbal = bal + rate * bal;
format bank
disp( ’New balance is:’ )
disp( newbal )

Run the program a few times, and once again, display the values of bal and rate each time to convince
yourself that MATLAB has chosen the correct interest rate.

In general, the elseif clause is used as follows:

if condition1
statementsA

elseif condition2
statementsB

elseif condition3
statementsC

...
else

statementsE
end

This is sometimes called an elseif ladder . It works as follows:

1. condition1 is tested. If it is true, statementsA are executed; MATLAB then moves to the next
statement after end.

2. If condition1 is false, MATLAB checks condition2 . If it is true, statementsB are executed, followed
by the statement after end.

3. In this way, all the conditions are tested until a true condition is found. As soon as a true condition
is found, no further elseifs are examined, and MATLAB jumps off the ladder.

4. If none of the conditions is true, statementsE after else are executed.
5. You should arrange the logic so that not more than one of the conditions is true.
6. There can be any number of elseifs, but at most one else.
7. elseif must be written as one word.
8. It is good programming style to indent each group of statements as shown.

Logical operators

More complicated logical expressions can be constructed using the three logical operators & (and),
| (or), ~ (not). For example, the quadratic equation

ax2 + bx + c = 0

has equal roots, given by −b/(2a), provided that b2 − 4ac = 0 and a �= 0 (Figure 2.3). This translates
to the following MATLAB statements:

if (b^2 - 4*a*c == 0) & (a ~= 0)
x = -b / (2*a);

end

Note the double equal sign in the test for equality.
See Chapter 5 for more on logical operators.

Multiple ifs versus elseif

You could have written the Random Bank program as follows:
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Figure 2.3 A quadratic function with equal roots

bal = 15000 * rand;

if bal < 5000
rate = 0.09;

end
if bal >= 5000 & bal < 10000

rate = 0.12;
end
if bal >= 10000

rate = 0.15;
end

newbal = bal + rate * bal;
format bank
disp( ’New balance is’ )
disp( newbal )

However, this is inefficient since each of the three conditions is always tested, even if the first one is
true. In the earlier elseif version, MATLAB jumps off the elseif ladder as soon as it finds a true
condition. This could save a lot of computing time (and is easier to read) if the if construct is in a loop
which is repeated often.

Using this form, instead of the elseif ladder, you can make the following common mistake:

if bal < 5000
rate = 0.09;

end
if bal < 10000

rate = 0.12;
end
if bal >= 10000

rate = 0.15;
end
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Can you see why you get the wrong answer (1120 instead of 1090) if bal has the value 1000? When
designing the logic you need to make sure that one and only one of the conditions will be true at any
one time.

Another mistake I have seen students frequently make is to replace the second if with something like

if 5000 < bal < 10000
rate = 0.12;

end

which is compelling as we saw above. However, whatever the value of bal is this condition will always
be true. Can you see why?

Nested ifs

An if construct can contain further ifs, and so on. This is called nesting , and should not be confused
with the elseif ladder. You have to be rather careful with the elses. In general, else belongs to the
most recent if which has not been ended. The correct positioning of end is therefore very important,
as the next example demonstrates.

Suppose you want to compute the solution of a quadratic equation. You may want to check whether
a = 0, to prevent a division by zero. Your program could contain the following nested ifs:

...
d = b^2 - 4*a*c;
if a ~= 0
if d < 0

disp( ’Complex roots’ )
else

x1 = (-b + sqrt( d )) / (2*a);
x2 = (-b - sqrt( d )) / (2*a);

end % first end <<<<<<<<<<<<
end

The else belongs to the second if by default, as intended.
Now move the first end up as follows:

d = b^2 - 4*a*c;
if a ~= 0
if d < 0

disp( ’Complex roots’ )
end % first end moved up now <<<<<<<<<<<<
else

x1 = (-b + sqrt( d )) / (2*a);
x2 = (-b - sqrt( d )) / (2*a);

end

The end which has been moved now closes the second if. The result is that else belongs to the first
if instead of to the second one. Division by zero is therefore guaranteed, instead of prevented!

Vectorizing ifs?

You may be wondering if for statements enclosing ifs can be vectorized. The answer is yes, by courtesy
of logical arrays . Discussion of this rather interesting topic is postponed to Chapter 5.
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switch

The switch statement executes certain statements based on the value of a variable or expression. In
this example it is used to decide whether a random integer is 1, 2 or 3 (see Rolling dice in Chapter 5
for an explanation of this use of rand):

d = floor(3*rand) + 1
switch d
case 1

disp( ’That’’s a 1!’ );
case 2

disp( ’That’’s a 2!’ );
otherwise

disp( ’Must be 3!’ );
end

Multiple expressions can be handled in a single case statement by enclosing the case expression in
a cell array (see Chapter 13):

d = floor(10*rand);
switch d
case {2, 4, 6, 8}

disp( ’Even’ );
case {1, 3, 5, 7, 9}

disp( ’Odd’ );
otherwise

disp( ’Zero’ );
end

2.10 Complex numbers

If you are not familiar with complex numbers, you can safely omit this section.
It’s very easy to handle complex numbers in MATLAB. The special values i and j stand for

√−1.
Try sqrt(-1) to see how MATLAB represents complex numbers.
i may be used to assign complex values, e.g.

z = 2 + 3*i

represents the complex number 2+3i (real part 2, imaginary part 3). You can also input a complex value
like this, e.g. enter

2 + 3*i

in response to the input prompt (remember, no semi-colon). The imaginary part of a complex number
may also be entered without an asterisk, e.g. 3i.

All the arithmetic operators (and most functions) work with complex numbers, e.g. sqrt(2 + 3*i),
exp(i*pi).

There are some functions that are specific to complex numbers. If z is a complex number real(z),
imag(z), conj(z) and abs(z) all have the obvious meanings.

A complex number may be represented in polar co-ordinates, i.e.

z = reiθ .

angle(z) returns θ between −π and π , i.e. it returns atan2(imag(z), real(z)). abs(z)
returns the magnitude r .
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Since eiθ gives the unit circle in polars, complex numbers provide a neat way of plotting a circle. Try
the following:

circle = exp( 2*i*[1:360]*pi/360 );
plot(circle)
axis(’equal’)

Note:

• If y is complex, the statement plot(y) is equivalent to

plot(real(y), imag(y))

• The statement axis(’equal’) is necessary to make circles look round; it changes what is known
as the aspect ratio of the monitor. axis(’normal’) gives the default aspect ratio.

If you are using complex numbers, be careful not to use i or j for other variables; the new values
will replace the value of

√−1, and will cause nasty problems!
For complex matrices, the operations ’ and .’ behave differently. The ’ operator is the

complex conjugate transpose, meaning rows and columns are interchanged, and signs of imaginary parts
are changed. The .’ operator, on the other hand, does a pure transpose without taking the complex
conjugate. To see this, set up a complex matrix a with the statement

a = [1+i 2+2i; 3+3i 4+4i]

which results in

a =
1.0000 + 1.0000i 2.0000 + 2.0000i
3.0000 + 3.0000i 4.0000 + 4.0000i

The statement

a’

then results in the complex conjugate transpose

ans =
1.0000 - 1.0000i 3.0000 - 3.0000i
2.0000 - 2.0000i 4.0000 - 4.0000i

whereas the statement

a.’

results in the pure transpose

ans =
1.0000 + 1.0000i 3.0000 + 3.0000i
2.0000 + 2.0000i 4.0000 + 4.0000i

2.11 More on input and output

This section is not strictly ‘essential’ MATLAB; you can skip it and come back to it at a later stage if
you want to.
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fprintf

If you are the sort of person who likes to control exactly what your output looks like, then this section
is for you. Otherwise you can happily stay with disp, format and cut-and-paste.

The fprintf statement is much more flexible (and therefore more complicated!) than disp. For
example, it allows you to mix strings and numbers freely on the same line, and to control the format
(e.g. number of decimal places) completely. As an example, change your compound interest program of
Section 2.2 to look as follows:

balance = 12345;
rate = 0.09;
interest = rate * balance;
balance = balance + interest;
fprintf( ’Interest rate: %6.3f New balance: %8.2f\n’, ...

rate, balance );

Run it. Your output should look like this:

Interest rate: 0.090 New balance: 13456.05

The most common form of fprintf is

fprintf( ’format string’, list of variables )

Note:

1. format string may contain a message. It may also contain format specifiers of the form %e, %f or
%g, which control how the variables listed are embedded in the format string.

2. In the case of the e and f specifiers, the field width and number of decimal places or significant
digits may be specified immediately after the %, as the next two examples show.

• %8.3f means fixed point over 8 columns altogether (including the decimal point and a possible
minus sign), with 3 decimal places (spaces are filled in from the left if necessary). Use 0 if you
don’t want any decimal places, e.g. %6.0f. Use leading zeros if you want leading zeros in the
output, e.g. %03.0f.

• %12.2e means scientific notation over 12 columns altogether (including the decimal point, a
possible minus sign, and five for the exponent), with 2 digits in the mantissa after the decimal
point (the mantissa is always adjusted to be not less than 1).

3. The g specifier is mixed, and leaves it up to MATLAB to decide exactly what format to use. This
is a good one to use if you can’t be bothered to count decimal places carefully, and/or aren’t sure
of the approximate magnitude of your result.

4. In the case of a vector, the sequence of format specifiers is repeated until all the elements have been
displayed.

5. The format string in fprintf may also contain escape codes such as \n (line feed), \t (horizontal
tab), \b (backspace) and \f (form feed).

C programmers will no doubt feel very much at home here! For more details see fprintf in the
online Help.

Output to a disk file with fprintf

Output may be sent to a disk file with fprintf. The output is appended , i.e. added on at the end of
the file.
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The general form is

fprintf( ’filename’, ’format string’, list of variables )

e.g.

fprintf( ’myfile’, ’%g’, x )

sends the value of x to the disk file myfile.

General file I/O

MATLAB has a useful set of file I/O functions, such as fopen, fread, fwrite, fseek, etc., which
are discussed in Chapter 16.

Saving and loading data

All or part of the workspace can be saved to a disk file and loaded back in a later session with the save
and load commands. See Chapter 16 for details on these and other ways of importing and exporting
MATLAB data.

2.12 Odds ’n ends

Variables, functions and scripts with the same name

Enter the command rand. You will get a random number; in fact, a different one each time you enter
the command. Now enter the statement

rand = 13;

The name rand now represents a variable with the value 13 (check with whos). The random num-
ber generator rand has been hidden by the variable of the same name, and is unavailable until you
clear rand . A script file can also get hidden like this.
When you type a name at the command-line prompt, say goo, the MATLAB interpreter goes through

the following steps:

1. Looks for goo as a variable.
2. Looks for goo as a built-in function, like sin or pi.
3. Looks in the current directory for a script file called goo.m.

I have seen students accidentally hiding scripts in this way during hands-on tests—it is a traumatic
experience! If you are worried that there might be a MATLAB function goo lurking around to hide
your script of the same name, first try help goo. If you get the message goo.m not found
there you’re safe.

4. Looks (in order) in the directories specified by MATLAB’s search path for a script file called goo.m.
Use File -> Set Path to view and change MATLAB’s search path.

To unhide a hidden goo type clear goo .

The input statement

Rewrite the script file compint.m carefully so that it looks exactly like this, and remember to save it:

balance = input( ’Enter bank balance: ’ );
rate = input( ’Enter interest rate: ’ );
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interest = rate * balance;
balance = balance + interest;
format bank
disp( ’New balance:’ );
disp( balance );

Enter the script file name at the prompt, and enter values of 1000 and 0.15 for the balance and interest
rate respectively when asked to, so that your Command Window contains the following lines:

� compint

Enter bank balance: 1000

Enter interest rate: 0.15
New balance:

1150.00

The input statement provides a more flexible way of getting data into a program than by assignment
statements which need to be edited each time the data must be changed. It allows you to enter data while
a script is running .

The general form of the input statement is:

variable = input( ’prompt’ );

Note:

1. prompt is a message which prompts the user for the value(s) to be entered. It must be enclosed in
apostrophes (single quotes).

2. A semi-colon at the end of the input statement will prevent the value entered from being imme-
diately echoed on the screen.

3. You wouldn’t normally use input from the command line, since you really shouldn’t need to
prompt yourself in command-line mode!

4. Vectors and matrices may also be entered with input, as long as you remember to enclose the
elements in square brackets.

5. You can enter an expression in response to the prompt, e.g. a + b (as long as a and b have
been defined) or rand(5). When entering an expression in this way don’t include a semi-colon (it
is not part of the expression).

Exercises

1. Rewrite the solutions to a few of the unit conversion problems in Section 2.6 using input
statements in script files.

2. Rewrite the program comp.m in Vectorization of formulae at the end of Section 2.6 to input
the initial investment vector.
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Shelling out to the operating system

You can shell out of MATLAB to the operating system by prefacing an operating system command with
an exclamation mark (bang). For example, suppose you suddenly need to reset the system time during a
MATLAB session. You can do this from the Command Window with the command

!time

(under Windows).
Shelling out is achieved without quitting the current MATLAB session.

More Help functions

By now you should be finding your way around the online Help. Here are some alternative command-line
ways of getting help.

doc function displays the reference page for function in the Help browser, providing syntax, a description,
examples and links to related functions.

helpwin displays in the Help browser a list of all functions, with links to M-file help for each function.

2.13 Programming style

Programs that are written any old how, while they may do what is required, can be difficult to follow
when read a few months later, in order to correct or update them (and programs that are worth writing
will need to be maintained in this way).

Some programmers delight in writing terse and obscure code; there is at least one annual compe-
tition for the most incomprehensible C program. A large body of responsible programmers, however,
believe it is extremely important to develop the art of writing programs which are well laid out, with
all the logic clearly described. Serious programmers therefore pay a fair amount of attention to what
is called programming style, in order to make their programs clearer and more readable both to them-
selves, and to other potential users. You may find this irritating, if you are starting to program for
the first time, because you will naturally be impatient to get on with the job. But a little extra atten-
tion to your program layout will pay enormous dividends in the long run, especially when it comes to
debugging.

Some hints on how to improve your programming style are given below.

• You should make liberal use of comments, both at the beginning of a script, to describe briefly
what it does and any special methods that may have been used, and also throughout the coding to
introduce different logical sections.

• The meaning of each variable should be described briefly in a comment when it is initialized. You
should describe variables systematically, e.g. in alphabetical order.

• Blank lines should be freely used to separate sections of coding (e.g. before and after loop structures).
• Coding inside structures (fors, ifs, whiles) should be indented (tabulated) a few columns to

make them stand out.
• Blanks should be used in expressions to make them more readable, e.g. on either side of operators

and equal signs.
However, blanks may be omitted in places in complicated expressions, where this may make the
logic clearer.
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Summary

• The MATLAB desktop consists of a number of tools: the Command Window, the Launch Pad,
the Workspace browser, the Current Directory browser and the Command History window.

• MATLAB has a comprehensive online Help system, accessed from the Launch Pad, the help
button in the desktop toolbar, or the Help menu in any tool.

• A MATLAB program can be written in the Editor and cut and pasted to the Command Window.
• A script file is a text file (created by the MATLAB Editor, or any other text editor) containing a

collection of MATLAB statements, i.e. a program.
The statements are carried out when the script file name is entered at the prompt in the Command
Window.
A script file name must have the .m extension. Script files are therefore also called M-files.

• The recommended way to run a script is from the Current Directory browser. The output from
the script will then appear in the Command Window.

• A variable name consists only of letters, digits and underscores, and must start with a letter. Only
the first 31 characters are significant. MATLAB is case-sensistive by default.
All variables created during a session remain in the workspace, until removed with clear.
The command who lists the variables in the workspace. whos also gives their sizes.

• MATLAB refers to all variables as arrays , whether they are scalars (single-valued arrays), vectors
(1-D arrays) or matrices (2-D arrays).

• MATLAB names are case-sensitive.
• The Workspace browser in the desktop provides a handy visual representation of the workspace.

Clicking a variable in the Workspace browser invokes the Array Editor which may be used to
view and change variable values.

• Vectors and matrices are entered in square brackets. Elements are separated by spaces or commas.
Rows are separated by semi-colons.
The colon operator is used to generate vectors with elements increasing (decreasing) by regular
increments (decrements).
Vectors are row vectors by default. Use the apostrophe transpose operator (’) to change a row
vector into a column vector.

• An element of a vector is referred to by a subscript in round brackets.
A subscript may itself be a vector.
Subscripts always start at 1, and are rounded down if non-integer.

• The diary command copies everything that subsequently appears in the Command Window to
the specified text file until the command diary off is given.

• Statements on the same line may be separated by commas or semi-colons.
• A statement may be continued to the next line with an ellipsis of at least three dots.
• Numbers may be represented in fixed point decimal notation or in floating point scientific notation.
• MATLAB has 14 data types. The default numeric type is double-precision. All mathematical

operations are carried out in double-precision.
• The six arithmetic operators for scalars are + - * \ / ^ . They operate according to

rules of precedence. Brackets have the highest precedence.
• An expression is a rule for evaluating a formula using numbers, operators, variables and functions.

A semi-colon after an expression suppresses display of its value.
• Array operations are element-by-element operations between vectors, or between scalars and

vectors.
The array operations of multiplication, right and left division, and exponentiation are indicated
by .* ./ .\ .^ to distinguish them from the matrix operations of the same name.
Array operations may be used to evaluate a formula repeatedly for some or all of the elements of
a vector. This is called vectorization of the formula.

• disp is used to output (display) numbers and strings.
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num2str is useful with disp for displaying strings and numbers on the same line.
The format command controls the way output is displayed. Format may also be set by File ->
Preferences -> Command Window Preferences.

• When vectors are displayed, a common scale factor is used if the elements are very large, very
small, or differ greatly in magnitude.

• The for statement is used to repeat a group of statements a fixed number of times.
If the index of a for statement is used in the expression being repeated, the expression can often
be vectorized, saving a great deal of computing time.

• tic and toc may be used as a stopwatch.
• Logical expressions have the value true (1) or false (0) and are constructed with the six relational

operators > >= < <= == ~= .
Any expression which evaluates to zero is regarded as false. Any other value is true.
More complicated logical expressions can be formed from other logical expressions using the
logical operators & (and), | (or), ~ (not).

• if-else executes different groups of statements according to whether a logical expression is
true or false.
The elseif ladder is a good way to choose between a number of options, only one of which
should be true at a time.

• switch enables choices to be made between discrete cases of a variable or expression.
• A string is a collection of characters enclosed in single quotes (apostrophes).
• Complex numbers may be represented using the special variables i and j, which stand for the

unit imaginary number
√−1.

• fprintf is used to control output format more precisely.
• save and load are used to export and import data.
• The input statement, with a prompt, is used to prompt the user for input from the keyboard

while a script is executing.
• MATLAB first checks whether a name is a variable, then a built-in function, then a script. Use

clear to unhide a function or script if necessary.
• Operating system commands can be executed from the MATLAB prompt by typing an exclamation

mark in front of them, e.g. !copy. This is called shelling out.
• Attention should be paid to programming style when writing scripts.

Exercises

2.1 Decide which of the following numbers are not acceptable in MATLAB, and state why not:
(a) 9,87 (b) .0 (c) 25.82 (d) -356231
(e) 3.57*e2 (f) 3.57e2.1 (g) 3.57e+2 (h) 3,57e-2

2.2 State, giving reasons, which of the following are not valid MATLAB variable names:
(a) a2 (b) a.2 (c) 2a (d) ’a’one
(e) aone (f) _x_1 (g) miXedUp (h) pay day
(i) inf (j) Pay_Day (k) min*2 (l) what

2.3 Translate the following expressions into MATLAB:

(a) p + w

u

(b) p + w

u+ v
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(c)
p + w

u+v
p + w

u−v
(d) x1/2

(e) yy+z
(f) xy

z

(g) (xy)z

(h) x − x3/3! + x5/5!
2.4 Translate the following into MATLAB statements:

(a) Add 1 to the value of i and store the result in i.
(b) Cube i, add j to this, and store the result in i.
(c) Set g equal to the larger of the two variables e and f.
(d) If d is greater than zero, set x equal to minus b.
(e) Divide the sum of a and b by the product of c and d, and store the result in x.

2.5 What’s wrong with the following MATLAB statements?
(a) n + 1 = n;
(b) Fahrenheit temp = 9*C/5 + 32;
(c) 2 = x;

2.6 Write a program to calculate x, where

x = −b + √
b2 − 4ac

2a

and a = 2, b = −10, c = 12 (Answer 3.0)
2.7 There are eight pints in a gallon, and 1.76 pints in a litre. The volume of a tank is given as 2

gallons and 4 pints. Write a script which inputs this volume in gallons and pints and converts
it to litres. (Answer: 11.36 litres)

2.8 Write a program to calculate petrol consumption. It should assign the distance travelled (in
kilometres) and the amount of petrol used (in litres) and compute the consumption in km/litre
as well as in the more usual form of litres per 100 km. Write some helpful headings, so that
your output looks something like this:

Distance Litres used km/L L/100km

528 46.23 11.42 8.76

2.9 Write some statements in MATLAB which will exchange the contents of two variables a and
b, using only one additional variable t.

2.10 Try Exercise 2.9 without using any additional variables!
2.11 If C and F are Celsius and Fahrenheit temperatures respectively, the formula for conversion

from Celsius to Fahrenheit is F = 9C/5 + 32.
(a) Write a script which will ask you for the Celsius temperature and display the equivalent

Fahrenheit one with some sort of comment, e.g.

The Fahrenheit temperature is: ...

Try it out on the following Celsius temperatures (answers in brackets): 0 (32), 100 (212),
−40 (−40!), 37 (normal human temperature: 98.6).

(b) Change the script to use vectors and array operations to compute and display the Fahren-
heit equivalent of Celsius temperatures ranging from 20◦ to 30◦ in steps of 1◦, in two
columns with a heading, e.g.
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Celsius Fahrenheit
20.00 68.00
21.00 69.80
...

30.00 86.00

2.12 Generate a table of conversions from degrees (first column) to radians (second column). Degrees
should go from 0◦ to 360◦ in steps of 10◦. Recall that π radians = 180◦.

2.13 Set up a matrix (table) with degrees in the first column from 0 to 360 in steps of 30, sines in
the second column, and cosines in the third column.
Now try to add tangents in the fourth column. Can you figure out what’s going on? Try some
variations of the format command.

2.14 Write some statements that display a list of integers from 10 to 20 inclusive, each with its
square root next to it.

2.15 Write a single statement to find and display the sum of the successive even integers 2, 4, . . . ,
200. (Answer: 10 100)

2.16 Ten students in a class write a test. The marks are out of 10. All the marks are entered in a
MATLAB vector marks. Write a statement to find and display the average mark. Try it on the
following marks:

5 8 0 10 3 8 5 7 9 4 (Answer: 5.9)

Hint: use the function mean .
2.17 What are the values of x and a after the following statements have been executed?

a = 0;
i = 1;
x = 0;
a = a + i;
x = x + i / a;
a = a + i;
x = x + i / a;
a = a + i;
x = x + i / a;
a = a + i;
x = x + i / a;

2.18 Rewrite the statements in Exercise 2.17 more economically by using a for loop. Can you do
even better by vectorizing the code?

2.19 (a) Work out by hand the output of the following script for n = 4:
n = input( ’Number of terms? ’ );
s = 0;

for k = 1:n
s = s + 1 / (k ^ 2);

end;

disp(sqrt(6 * s))

If you run this script for larger and larger values of n you will find that the output
approaches a well-known limit. Can you figure out what it is?

(b) Rewrite the script using vectors and array operations.
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2.20 Work through the following script by hand. Draw up a table of the values of i, j and m to
show how their values change while the script executes. Check your answers by running the
script.

v = [3 1 5];
i = 1;

for j = v
i = i + 1;
if i == 3

i = i + 2;
m = i + j;

end
end

2.21 The steady-state current I flowing in a circuit that contains a resistance R = 5, capacitance
C = 10, and inductance L = 4 in series is given by

I = E√
R2 + (2πωL− 1

2πωC )
2

where E = 2 and ω = 2 are the input voltage and angular frequency respectively. Compute
the value of I . (Answer: 0.0396)

2.22 The electricity accounts of residents in a very small town are calculated as follows:
• if 500 units or less are used the cost is 2 cents per unit;
• if more than 500, but not more than 1000 units are used, the cost is $10 for the first 500

units, and then 5 cents for every unit in excess of 500;
• if more than 1000 units are used, the cost is $35 for the first 1000 units plus 10 cents

for every unit in excess of 1000;
• in addition, a basic service fee of $5 is charged, no matter how much electricity is used.

Write a program which enters the following five consumptions into a vector, and uses a for
loop to calculate and display the total charge for each one: 200, 500, 700, 1000, 1500. (Answers:
$9, $15, $25, $40, $90)

2.23 Suppose you deposit $50 per month in a bank account every month for a year. Every month,
after the deposit has been made, interest at the rate of 1 per cent is added to the balance, e.g.
after one month, the balance is $50.50, and after two months it is $101.51.
Write a program to compute and print the balance each month for a year. Arrange the output
to look something like this:

MONTH MONTH-END BALANCE

1 50.50
2 101.51
3 153.02
...

12 640.47

2.24 If you invest $1000 for one year at an interest rate of 12 per cent, the return is $1120 at the
end of the year. But if interest is compounded at the rate of 1 per cent monthly (i.e. 1/12 of
the annual rate), you get slightly more interest because it is compounded. Write a program
which uses a for loop to compute the balance after a year of compounding interest in this
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way. The answer should be $1126.83. Evaluate the formula for this result separately as a check:
1000 × 1.0112.

2.25 A plumber opens a savings account with $1 00 000 at the beginning of January. He then makes
a deposit of $1000 at the end of each month for the next 12 months (starting at the end of
January). Interest is calculated and added to his account at the end of each month (before the
$1000 deposit is made). The monthly interest rate depends on the amount A in his account at
the time when interest is calculated, in the following way:

A ≤ 1 10 000 : 1 per cent
1 10 000 < A ≤ 1 25 000 : 1.5 per cent

A > 1 25 000 : 2 per cent

Write a program which displays, for each of the 12 months, under suitable headings, the situation
at the end of the month as follows: the number of the month, the interest rate, the amount of
interest and the new balance. (Answer: values in the last row of output should be 12, 0.02,
2534.58, 130263.78).

2.26 It has been suggested that the population of the United States may be modelled by the formula

P(t) = 19 72 73 000

1 + e−0.03134(t−1913.25)

where t is the date in years. Write a program to compute and display the population every ten
years from 1790 to 2000.
Try to plot a graph of the population against time as well (Figure 7.14, accompanying Exercise
7.1 in Chapter 7, shows this graph compared with actual data).
Use your program to find out if the population ever reaches a ‘steady state’, i.e. whether it
stops changing.

2.27 A mortgage bond (loan) of amount L is obtained to buy a house. The interest rate r is 15 per
cent (0.15) p.a. The fixed monthly payment P which will pay off the bond exactly over N
years is given by the formula

P = rL(1 + r/12)12N

12[(1 + r/12)12N − 1]
.

(a) Write a program to compute and print P if N = 20 years, and the bond is for $50000.
You should get $658,39.

(b) It’s interesting to see how the payment P changes with the period N over which you
pay the loan. Run the program for different values of N (use input). See if you can
find a value of N for which the payment is less than $625.

(c) Now go back to having N fixed at 20 years, and examine the effect of different interest
rates. You should see that raising the interest rate by 1 per cent (0.01) increases the
monthly payment by about $37.

2.28 It’s useful to be able to work out how the period of a bond repayment changes if you increase
or decrease your monthly payment P . The formula for the number of years N to repay the loan
is given by

N = ln( P
P−rL/12 )

12 ln(1 + r/12)
.

(a) Write a new program to compute this formula. Use the built-in function log for the
natural logarithm ln. How long will it take to pay off the loan of $50 000 at $800 a
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month if the interest remains at 15 per cent? (Answer: 10.2 years—nearly twice as fast
as when paying $658 a month!)

(b) Use your program to find out by trial-and-error the smallest monthly payment that can
be made to pay the loan off—this side of eternity. Hint: recall that it is not possible to
find the logarithm of a negative number, so P must not be less than rL/12.
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Developing algorithms

Objective

The objective of this chapter is to introduce you to:

• the concept of a structure plan (pseudo-code) as a means of designing the logic of a program.

The examples we have seen so far have been very simple logically, since we have been concentrating
on the technical aspects of writing MATLAB statements correctly. However, real problems are far more
complex. To program successfully we need to understand a problem thoroughly, and to break it down
into its most fundamental logical stages. In other words, we have to develop a systematic procedure
or algorithm , for solving the problem. There are a number of methods which assist in this process of
algorithm development. In this chapter we look at one such approach—structure plans , which we have
already met briefly.

3.1 Structure plans

A structure plan is an example of what is called pseudo-code, i.e. statements in fairly plain English
describing how to solve a problem. You don’t have to be an expert in any particular computer language
to understand pseudo-code. A structure plan may be written at a number of levels, each of increasing
complexity, as the logical structure of the program is developed.

Suppose we want to write a script to convert a temperature on the Fahrenheit scale (where water
freezes and boils at 32◦ and 212◦ respectively) to the more familiar Celsius centigrade scale. A first-level
structure plan might be a simple statement of the problem:

1. Initialize Fahrenheit temperature
2. Calculate and display Celsius temperature
3. Stop.

Step 1 is pretty straight forward, but step 2 needs elaborating, so the second-level plan could be something
like this:

1. Initialize Fahrenheit temperature (F )
2. Calculate Celsius temperature (C) as follows:

2.1. Subtract 32 from F and multiply by 5/9

58



Developing algorithms 59

1. Start
2. Input data (a, b, c)
3. If a = 0 then

If b = 0 then
If c = 0 then

Display ‘Solution indeterminate’
else

Display ‘There is no solution’
else

x = −c/b
Display x (only one root: equation is linear)

else if b2 < 4ac then
Display ‘Complex roots’

else if b2 = 4ac then
x = −b/(2a)
Display x (equal roots)

else
x1 = (−b + √

b2 − 4ac)/(2a)

x2 = (−b − √
b2 − 4ac)/(2a)

Display x1, x2
4. Stop.

Figure 3.1 Quadratic equation structure plan

3. Display the value of C
4. Stop.

There are no hard and fast rules about how to write structure plans. The essential point is to cultivate
the mental discipline of getting the logic of a problem clear before attempting to write the program. The
‘top down’ approach of structure plans means that the overall structure of a program is clearly thought
out before you have to worry about the details of syntax (coding), and this reduces the number of errors
enormously.

Quadratic equation

When you were at school you probably solved hundreds of quadratic equations of the form

ax2 + bx + c = 0.

A structure plan of the complete algorithm for finding the solution(s) x, given any values of a, b and c,
is shown in Figure 3.1. Figure 3.2 shows the graph of a quadratic equation with real unequal roots.

When you come to writing the program, you can type the structure plan into the MATLAB Editor,
as described in Chapter 2. Use cut and paste to make another copy of the plan below the first one, and
translate the second copy into MATLAB statements. If it’s a good structure plan, it should translate line
for line. Then comment out the original structure plan with Text -> Comment, so you can save it with
the program.
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Figure 3.2 Graph of a quadratic equation with real unequal roots indicated by o

3.2 Structured programming with functions

Many examples later in this book will get rather involved. More advanced programs like these should
be structured by means of your own function M-files . These are are dealt with in detail in Chapter
10. A function M-file is a type of script file (i.e. a file with an extension of .m) which you can ‘call’
interactively, or from other scripts, in specific ways.

The ‘main’ script itself will then look very much like a first-level structure plan of the problem.
For example, the quadratic equation problem may be structure-planned at the first level as follows:

1. Input the data
2. Find and display the solution(s)
3. Stop.

Using a function file quad.m to do the dirty work, this could be translated directly into the following
MATLAB script:

a = input( ’Enter coefficients: ’ );
x = quad(a);

(The details of how to code this particular problem are left as an exercise in Chapter 10.)

Summary

• An algorithm is a systematic logical procedure for solving a problem.
• An algorithm must be developed for a problem before it can be coded.
• A structure plan is a representation of an algorithm in pseudo-code.
• A function M-file is a type of script file designed to handle a particular task, and which may be

activated (invoked) whenever needed.
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Exercises

The problems in these exercises should all be structure-planned, before being written up as MATLAB
programs (where appropriate).

3.1 The structure plan in this example defines a geometric construction. Carry out the plan by
sketching the construction:

1. Draw two perpendicular x- and y-axes
2. Draw the points A (10, 0) and B (0, 1)
3. While A does not coicide with the origin repeat:

Draw a straight line joining A and B
Move A one unit to the left along the x-axis
Move B one unit up on the y-axis

4. Stop.

3.2 Consider the following structure plan, where M and N represent MATLAB variables:

1. Set M = 44 and N = 28
2. While M not equal to N repeat:

While M > N repeat:
Replace value of M by M − N

While N > M repeat:
Replace value of N by N − M

3. Display M
4. Stop.

(a) Work through the structure plan, sketching the contents of M and N during execution.
Give the output.

(b) Repeat (a) for M = 14 and N = 24.
(c) What general arithmetic procedure does the algorithm carry out (try more values of M

and N if necessary)?
3.3 Write a program to convert a Fahrenheit temperature to Celsius. Test it on the data in Exer-

cise 2.11 (where the reverse conversion is done).
3.4 Write a script which inputs any two numbers (which may be equal) and displays the larger one

with a suitable message, or if they are equal, displays a message to that effect.
3.5 Write a script for the general solution of the quadratic equation ax2 + bx + c = 0. Use the

structure plan in Figure 3.1. Your script should be able to handle all possible values of the data
a, b, and c. Try it out on the following values of a, b and c:
(a) 1, 1, 1 (complex roots);
(b) 2, 4, 2 (equal roots of −1.0);
(c) 2, 2, −12 (roots of 2.0 and −3.0).
The structure plan in Figure 3.1 is for programming languages which cannot handle complex
numbers. MATLAB however can. Adjust your script so that it can also find complex roots. Test
it on case (a) above; the roots are −0.5 ± 0.866i.

3.6 Develop a structure plan for the solution of two simultaneous linear equations (i.e. the equations
of two straight lines). Your algorithm must be able to handle all possible situations, viz. lines
which are intersecting, parallel, or co-incident. Write a program to implement your algorithm,
and test it on some equations for which you know the solutions, e.g.

x + y = 3

2x − y = 3



62 Essential MATLAB for Scientists and Engineers

(x = 2, y = 1). Hint: begin by deriving an algebraic formula for the solution of the system

ax + by = c

dx + ey = f.

The program should input the coefficients a, b, c, d, e and f .
We will see in Chapter 18 that MATLAB has a very elegant way of solving systems of equations
directly, using matrix algebra. But it is good for the development of your programming skills to
do it the long way, as in this exercise.
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MATLAB functions

Objective

The objective of this chapter is to enable you to:

• become familiar with some of the more common MATLAB functions.

So far you should be able to write a MATLAB program which inputs data, performs simple arithmetic
operations on the data, perhaps involving loops and decisions, and displays the results of the computation
in a comprehensible form. However, more interesting problems in science and engineering are likely to
involve special mathematical functions like sines, cosines, logarithms, etc. MATLAB comes with a large
collection of such functions; we have seen some of them already. This chapter introduces you to the
more common ones.

4.1 Projectile motion

We want to write a script to compute the position (x and y co-ordinates) and the velocity (magnitude
and direction) of a projectile, given t , the time since launch, u, the launch velocity, a, the initial angle
of launch (in degrees), and g, the acceleration due to gravity.

The horizontal and vertical displacements are given by the formulae

x = ut cos(a), y = ut sin(a) − gt2/2.

The velocity has magnitude V such that V =
√

V 2
x + V 2

y , where its horizontal and vertical components,
Vx and Vy , are given by

Vx = u cos(a), Vy = u sin(a) − gt,

and V makes an angle θ with the ground such that tan(θ) = Vy/Vx. The script is:

d = input( ’Angle of projection in degrees: ’ );
t = input( ’Time in flight: ’ );
a = d * pi / 180; % convert to radians
u = 60; % launch velocity
g = 9.8;
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Figure 4.1 Projectile trajectory

x = u * t * cos(a); % horizontal displacement
y = u * t * sin(a) - 0.5 * g * t ^ 2; % vertical displacement
vx = u * cos(a); % horizontal velocity
vy = u * sin(a) - g * t; % vertical velocity
V = sqrt( vx^2 + vy^2 ); % resultant velocity
th = 180 / pi * atan2( vy, vx ); % direction at time t
disp( [’x: ’ num2str(x) ’ y: ’ num2str(y)] );
disp( [’V: ’ num2str(V) ’ th: ’ num2str(th)] );

If you run this script with values of 45 and 6 for d and t respectively, you will get the following output:

x: 254.6 y: 78.16
V: 45.48 th: -21.1

You can see from the negative value of θ that the projectile is coming down. Figure 4.1 shows the
trajectory of the projectile for the first 6 seconds.

Note the important difference between the functions atan2 (used here) and atan. The function
atan2(vy, vx) returns the arctangent (inverse tangent) of vy/vx in the range −π to π , depending
on the signs of vx and vy. However, atan(vy/vx) returns the arctangent of vy/vx in the range
−π/2 to π/2, which is restricted to the first and fourth quadrants.

If, for example, you use atan instead of atan2 in the above script for a launch angle of 135◦
(projectile moving to the left), you will get an incorrect answer of 21.1◦ for θ instead of the correct one
of −158.9◦.

The argument of a function may be an appropriate MATLAB expression, including another function.
So V could have been computed directly as follows:

V = sqrt( (u * cos(a))^2 + (u * sin(a) - g * t)^2 );

Angles for the trigonometric functions must be expressed in radians, and are returned in radians where
appropriate. To convert degrees to radians, multiply the angle in degrees by π/180, where π is the
well-known transcendental number 3.14159 26535 8979. . . , represented by the MATLAB function pi.
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4.2 Some common functions

Tables of MATLAB functions and commands appear in Appendix C. A short list of some of the more
common ones follows. Use helpwin at the command line to see a list of categories of functions, with
links to descriptions of the functions. Alternatively, go to the Contents listing in the Help Navigator
(the left pane in the Help browser), and expand successively MATLAB, Reference, MATLAB Function
Reference where you can choose either Functions by Category, or Alphabetical List of Functions.

Note that if the argument of a function is an array, the function is applied element by element to all
the values in the array, e.g.

sqrt([1 2 3 4])

returns

1.0000 1.4142 1.7321 2.0000

abs(x)
absolute value of x.

acos(x)
arc cosine (inverse cosine) of x between 0 and π .

acosh(x)
inverse hyperbolic cosine of x, i.e. ln(x + √

x2 − 1).

asin(x)
arc sine (inverse sine) of x between −π/2 and π/2.

asinh(x)
inverse hyperbolic sine of x, i.e. ln(x + √

x2 + 1).

atan(x)
arc tangent of x between −π/2 and π/2.

atan2(y, x)
arc tangent of y/x between −π and π .

atanh(x)

inverse hyperbolic tangent of x, i.e.
1

2
ln

(
1 + x

1 − x

)
.

ceil(x)
smallest integer which exceeds x, i.e. rounds up to nearest integer, e.g. ceil(-3.9) returns -3,
ceil(3.9) returns 4.
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clock
time and date in a six-element vector, e.g. the statements

t = clock;
fprintf( ’ %02.0f:%02.0f:%02.0f\n’, t(4), t(5), t(6) );

result in 14:09:03. Note how the hours, minutes and seconds are left-filled with zeros if
necessary.

cos(x)
cosine of x.

cosh(x)

hyperbolic cosine of x, i.e.
ex + e−x

2
(see Figure 4.2).

cot(x)
cotangent of x.

csc(x)
cosecant of x.

cumsum(x)
cumulative sum of the elements of x, e.g. cumsum(1:4) returns [1 3 6 10].
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Figure 4.2 The (a) exponential, (b) hyperbolic sine and (c) hyperbolic cosine functions
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date
date in a string in dd-mmm-yyyy format, e.g. 02-Feb-2001, which is thankfully Y2K compliant!
The version of MATLAB used in the first edition of this book returned only the last two digits of
the year: 11-Jul-97.

exp(x)
value of the exponential function ex (see Figure 4.2).

fix(x)
rounds to the nearest integer towards zero, e.g. fix(-3.9) returns -3, fix(3.9) returns 3.

floor(x)
largest integer not exceeding x, i.e. rounds down to nearest integer, e.g. floor(-3.9) returns
-4, floor(3.9) returns 3.

length(x)
number of elements of vector x.

log(x)
natural logarithm of x.

log10(x)
base 10 logarithm of x.

max(x)
maximum element of vector x.

mean(x)
mean value of elements of vector x.

min(x)
minimum element of vector x.

pow2(x)
2x .

prod(x)
product of the elements of x.

rand
pseudo-random number in the interval [0, 1). The value returned is pseudo-random rather than truly
random in the sense that there is an algorithm that determines rand from the initial ‘seed’. The
same seed will generate the same ‘random’ sequence. See Chapter 17 for how to seed rand.
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realmax
largest positive floating point number on your computer.

realmin
smallest positive floating point number on your computer.

rem(x, y)
remainder when x is divided by y, e.g. rem(19, 5) returns 4 (5 goes 3 times into 19, remainder
4).

Strictly, rem(x, y) returns x - y * n where n = fix(x/y) is the integer nearest to
x/y. This shows how negative and/or non-integer arguments are handled.

fix and rem are useful for converting smaller units to larger ones, e.g. inches to feet and inches
(one foot = 12 inches). The following statements convert 40 inches this way:

feet = fix(40/12)
inches = rem(40, 12)

round(x)
rounds to the integer nearest to x, e.g. round(4.49) returns 4, round(4.5) returns 5.

sec(x)
secant of x.

sign(x)
returns -1, 0 or 1 depending on whether x is negative, zero or positive.

sin(x)
sine of x.

sinh(x)

hyperbolic sine of x, i.e.
ex − e−x

2
(see Figure 4.2).

size(a)
number of rows and columns of matrix a.

sort(x)
sorts elements of vector x into ascending order (by columns if x is a matrix).

sqrt(x)
square root of x. Handles negative or complex values.

sum(x)
sum of elements of vector x.
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tan(x)
tangent of x.

tanh(x)
hyperbolic tangent of x.

tic, toc
execution time of code between these two functions is displayed.

Summary

• MATLAB functions may be used to perform a variety of mathematical, trigonometric and other
operations.

Exercises

4.1 Write some MATLAB statements which will:
(a) find the length C of the hypotenuse of a right-angle triangle in terms of the lengths A

and B of the other two sides;
(b) find the length C of a side of a triangle given the lengths A and B of the other two sides

and the size in degrees of the included angle θ , using the cosine rule:

C2 = A2 + B2 − 2AB cos(θ).

4.2 Translate the following formulae into MATLAB expressions:

(a) ln(x + x2 + a2)
(b) [e3t + t2 sin(4t)] cos2(3t)
(c) 4 tan−1(1) (inverse tangent)
(d) sec2(x) + cot(y)

(e) cot−1(|x/a|) (use MATLAB’s inverse cotangent)
4.3 There are 39.37 inches in a metre, 12 inches in a foot, and three feet in a yard. Write a script

to input a length in metres (which may have a decimal part) and convert it to yards, feet and
inches. (Check: 3.51 metres converts to 3 yds 2 ft 6.19 in.)

4.4 A sphere of mass m1 impinges obliquely on a stationary sphere of mass m2, the direction of the
blow making an angle α with the line of motion of the impinging sphere. If the coefficient of
restitution is e it can be shown that the impinging sphere is deflected through an angle β such
that

tan(β) = m2(1 + e) tan(α)

m1 − em2 + (m1 + m2) tan2(α)

Write a script to input values of m1, m2, e, and α (in degrees) and to compute the angle β in
degrees.

4.5 Section 2.8 has a program for computing the members of the sequence
xn = an/n!. The program displays every member xn computed. Adjust it to display only every
10th value of xn.
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Hint: the expression rem(n, 10) will be zero only when n is an exact multiple of 10.
Use this in an if statement to display every tenth value of xn.

4.6 To convert the variable mins minutes into hours and minutes you would use fix(mins/60)
to find the whole number of hours, and rem(mins, 60) to find the number of minutes left
over. Write a script which inputs a number of minutes and converts it to hours and minutes.
Now write a script to convert seconds into hours, minutes and seconds. Try out your script on
10 000 seconds, which should convert to 2 hours 46 minutes and 40 seconds.

4.7 Design an algorithm (i.e. write the structure plan) for a machine which must give the correct
amount of change from a $100 note for any purchase costing less than $100. The plan must
specify the number and type of all notes and coins in the change, and should in all cases give
as few notes and coins as possible. (If you are not familiar with dollars and cents, use your own
monetary system.)

4.8 A uniform beam is freely hinged at its ends x = 0 and x = L, so that the ends are at the same
level. It carries a uniformly distributed load of W per unit length, and there is a tension T along
the x-axis. The deflection y of the beam a distance x from one end is given by

y = WEI

T 2

[
cosh[a(L/2 − x)]

cosh(aL/2)
− 1

]
+ Wx(L − x)

2T
,

where a2 = T/EI , E being the Young’s modulus of the beam, and I is the moment of inertia
of a cross-section of the beam. The beam is 10 m long, the tension is 1 000 N, the load 100
N/m, and EI is 104.
Write a script to compute and plot a graph of the deflection y against x (MATLAB has a cosh
function).
To make the graph look realistic you will have to override MATLAB’s automatic axis scaling
with the statement

axis( [xmin xmax ymin ymax] )

after the plot statement, where xmin etc. have appropriate values.
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Logical vectors

Objectives

The objectives of this chapter are to enable you to

• understand logical operators more fully

and to introduce you to:

• logical vectors and how to use them effectively in a number of applications;
• logical functions

This chapter introduces a most powerful and elegant feature, which is unique to MATLAB: logical
vectors . The topic is so important that it deserves a chapter of its own.

Try these exercises on the command line:

1. Enter the following statements:

r = 1;
r <= 0.5 % no semi-colon

If you correctly left out the semi-colon after the second statement you will have noticed that it
returned the value 0.

2. Now enter the expression r >= 0.5 (again, no semi-colon). It should return the value 1.
We saw in Chapter 2 that a logical expression in MATLAB involving only scalars returns a value
of 0 if it is FALSE, and 1 if it is TRUE.

3. Enter the following statements:
r = 1:5;
r <= 3

Now the logical expression r <= 3 (where r is a vector) returns a vector :

1 1 1 0 0

Can you see how to interpret this result? For each element of r for which r <= 3 is true, 1 is
returned; otherwise 0 is returned.
Now enter r == 4. Can you see why 0 0 0 1 0 is returned?
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When a vector is involved in a logical expression, the comparison is carried out element by element (as
in an arithmetic operation). If the comparison is true for a particular element of the vector, the resulting
vector, which is called a logical vector , has a 1 in the corresponding position; otherwise it has a 0. The
same applies to logical expressions involving matrices. (Logical vectors were called 0-1 vectors in Version
4. Version 4 code involving 0-1 vectors will not run under Version 6 in certain circumstances—see below
in Section 5.3.)

You can also compare vectors with vectors in logical expressions. Enter the following statements:

a = 1:5;
b = [0 2 3 5 6];
a == b % no semi-colon!

The logical expression a == b returns the logical vector

0 1 1 0 0

because it is evaluated element by element, i.e. a(1) is compared with b(1), a(2) with b(2), etc.

5.1 Examples

Discontinuous graphs

One very useful application of logical vectors is in plotting discontinuities. The following script plots
the graph, shown in Figure 5.1, defined by

y(x) =
{

sin(x) (sin(x) > 0)
0 (sin(x) ≤ 0)

over the range 0 to 3π :

x = 0 : pi/20 : 3 * pi;
y = sin(x);
y = y .* (y > 0); % set negative values of sin(x) to zero
plot(x, y)
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Figure 5.1 A discontinuous graph using logical vectors
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The expression y > 0 returns a logical vector with 1’s where sin(x) is positive, and 0’s otherwise.
Element-by-element multiplication by y with .* then picks out the positive elements of y.

Avoiding division by zero

Suppose you want to plot the graph of sin(x)/x over the range −4π to 4π . The most convenient way
to set up a vector of the x co-ordinates is

x = -4*pi : pi / 20 : 4*pi;

But then when you try

y = sin(x) ./ x;

you get the Divide by zero warning, because one of the elements of x is exactly zero. A neat
way around this problem is to use a logical vector to replace the zero with eps. This MATLAB function
returns the difference between 1.0 and the next largest number which can be represented in MATLAB,
i.e. approximately 2.2e-16. Here is how to do it:

x = x + (x == 0)*eps;

The expression x == 0 returns a logical vector with a single 1 for the element of x which is zero,
and so eps is added only to that element. The following script plots the graph correctly—without a
missing segment at x = 0 (see Figure 5.2).

x = -4*pi : pi/20 : 4*pi;
x = x + (x == 0)*eps; % adjust x = 0 to x = eps
y = sin(x) ./ x;
plot(x, y)

When x has the value eps, the value of sin(eps)/eps has the correct limiting value of 1 (check it),
instead of NaN (Not-a-Number) resulting from a division by zero.
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Figure 5.2 sin(x)/x
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Figure 5.3 Variations on tan(x)

Avoiding infinity

The following script attempts to plot tan(x) over the range −3π/2 to 3π/2. If you are not too hot at trig
graphs, perhaps you should sketch the graph roughly with pen and paper before you run the script!

x = -3/2*pi : pi/100 : 3/2*pi;
y = tan(x);
plot(x, y)

The MATLAB plot—Figure 5.3(a)—should look nothing like your sketch. The problem is that tan(x)
approaches ±∞ at odd multiples of π/2. The scale on the MATLAB plot is therefore very large (about
1015), making it impossible to see the structure of the graph anywhere else.

If you add the statement

y = y .* (abs(y) < 1e10); % remove the big ones

just before the plot statement you’ll get a much nicer graph, as shown in Figure 5.3(b). The expression
abs(y) < 1e10 returns a logical vector which is zero only at the asymptotes. The graph thus

goes through zero at these points, which incidentally draws nearly vertical asymptotes for you. These
‘asymptotes’ become more vertical as the increment in x becomes smaller.

Counting random numbers

The function rand returns a (pseudo-)random number in the interval [0, 1); rand(1, n) returns a
row vector of n such numbers.

Try the following exercises on the command line:

1. Set up a vector r with seven random elements (leave out the semi-colon so that you can see its
elements):

r = rand(1,7) % no semi-colon

Check that the logical expression r < 0.5 gives the correct logical vector.
2. Using the function sum on the logical expression r < 0.5 will effectively count how many

elements of r are less than 0.5. Try it, and check your answer against the values displayed for r:

sum( r < 0.5 )

3. Now use a similar statement to count how many elements of r are greater than or equal to 0.5 (the
two answers should add up to 7, shouldn’t they?).
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4. Since rand generates uniformly distributed random numbers, you would expect the number of
random numbers which are less than 0.5 to get closer and closer to half the total number as more
and more are generated.
Generate a vector of a few thousand random numbers (suppress display with a semi-colon this time)
and use a logical vector to count how many are less than 0.5.
Repeat a few times with a new set of random numbers each time. Because the numbers are random,
you should never get quite the same answer each time.

Doing this problem without logical vectors is a little more involved. Here is the program:

tic % start
a = 0; % number >= 0.5
b = 0; % number < 0.5

for n = 1:5000
r = rand; % generate one number per loop
if r >= 0.5

a = a + 1;
else

b = b + 1;
end;

end;

t = toc; % finish
disp( [’less than 0.5: ’ num2str(a)] )
disp( [’time: ’ num2str(t)] )

It also takes a lot longer. Compare times for the two methods on your computer.

Rolling dice

When a fair dice is rolled, the number uppermost is equally likely to be any integer from 1 to 6.
So if rand is a random number in the range [0, 1), 6 * rand will be in the range [0, 6), and
6 * rand + 1 will be in the range [1, 7), i.e. between 1 and 6.9999. Discarding the decimal part

of this expression with floor gives an integer in the required range. Try the following exercises:

1. Generate a vector d of 20 random integers in the range 1 to 6:

d = floor(6 * rand(1, 20)) + 1

2. Count the number of ‘sixes’ thrown by summing the elements of the logical vector d == 6.
3. Verify your result by displaying d.
4. Estimate the probability of throwing a six by dividing the number of sixes thrown by 20. Using

random numbers like this to mimic a real situation based on chance is called simulation.
5. Repeat with more random numbers in the vector d. The more you have, the closer the proportion of

sixes gets to the theoretical expected value of 0.1667, i.e. 1/6.
6. Can you see why it would be incorrect to use round instead of floor? The problem is that round

rounds in both directions, whereas floor rounds everything down.

5.2 Logical operators

We saw briefly in Chapter 2 that logical expressions can be constructed not only from the six relational
operators, but also from the three logical operators shown in Table 5.1. Table 5.2 shows the effects of
these operators on the general logical expressions lex1 and lex2 .
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Table 5.1 Logical operators

Operator Meaning

~ NOT
& AND
| OR

Table 5.2 Truth table (T = true; F = false)

lex1 lex2 ~lex1 lex1 & lex2 lex1 | lex2 xor(lex1, lex2)

F F T F F F
F T T F T T
T F F F T T
T T F T T F

The OR operator (|) is technically an inclusive OR, because it is true when either or both of its
operands are true. MATLAB also has an exclusive OR function xor(a, b) which is 1 (true) only
when either but not both of a and b is 1 (Table 5.2).

MATLAB also has a number of functions that perform bitwise logical operations. See Help on ops.
The precedence levels of the logical operators, among others, are shown in Table 5.3. As usual,

precedences may be overridden with brackets, e.g.

~ 0 & 0

returns 0 (false), whereas

~ (0 & 0)

returns 1 (true). Some more examples:

(b * b == 4 * a * c) & (a ~= 0)
(final >= 60) & (final < 70)
(a ~= 0) | (b ~= 0) | (c != 0)
~((a == 0) & (b == 0) & (c == 0))

It is never wrong to use brackets to make the logic clearer, even if they are syntactically unnecessary.
Incidentally, the last two expressions above are logically equivalent, and are false only when a = b =

c = 0. It makes you think, doesn’t it?

Operator precedence

You may accidentally enter an expression like

2 > 1 & 0

(try it) and be surprised because MATLAB (a) accepts it, and (b) returns a value of 0 (false).
(a) is surprising because 2 > 1 & 0 doesn’t appear to make sense. If you have got this far you

deserve to be let into a secret. MATLAB is based on the notorious language C, which allows you to mix
different types of operators in this way (Pascal, for example, would never allow such flexibility!).

(b) is surprising because we instinctively feel that & should have the higher precedence.
1 & 0 evaluates to 0, so 2 > 0 should evaluate to 1 instead of 0. The explanation is due partly to
the resolution of surprise (a). MATLAB groups its operators in a rather curious and non-intuitive way.
The complete operator precedence is given in Table 5.3 (reproduced for ease of reference in Appendix B).
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Table 5.3 Operator precedence (see Help on
operator precedence)

Precedence Operators

1. ( )
2. ^ .^ ’ .’ (pure transpose)
3. + (unary plus) - (unary minus) ~ (NOT)
4. * / \ .* ./ .\
5. + (addition) - (subtraction)
6. :
7. > < >= <= == ~=
8. & (AND)
9. | (OR)

(Recall that the transpose operator ’ performs a complex conjugate transpose on complex data; the
dot-transpose operator .’ performs a ‘pure’ transpose without taking the complex conjugate.) Brackets
always have the highest precedence.

Danger

I have seen quite a few students incorrectly convert the mathematical inequality 0 < r < 1, say, into the
MATLAB expression

0 < r < 1

Once again, the first time I saw this I was surprised that MATLAB did not report an error. Again, the
answer is that MATLAB doesn’t really mind how you mix up operators in an expression. It simply
churns through the expression according to its rules (which may not be what you expect).

Suppose r has the value 0.5. Mathematically, the inequality is true for this value of r since it lies in
the required range. However, the expression 0 < r < 1 is evaluated as 0. This is because the left
hand operation (0 < 0.5) is first evaluated to 1 (true), followed by 1 < 1 which is false.

Inequalities like this should rather be coded as

(0 < r) & (r < 1)

The brackets are not strictly necessary (see Table 5.3) but they certainly help to clarify the logic.

Logical operators and vectors

The logical operators can also operate on vectors (of the same size), returning logical vectors, e.g.

~(~[1 2 0 -4 0])

replaces all the non-zeros by 1’s, and leaves the 0’s untouched. Try it.
Note that brackets must be used to separate the two ~’s. Most operators may not appear directly next

to each other (e.g. + ~ ); if necessary separate them with brackets.
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The script in Section 5.1 that avoids division by zero has the critical statement

x = x + (x == 0)*eps;

This is equivalent to

x = x + (~x)*eps;

Try it, and make sure you understand how it works.

Exercises

Work out the results of the following expressions before checking them at the command line:

a = [-1 0 3];
b = [0 3 1];
~a
a & b
a | b
xor(a, b)
a > 0 & b > 0
a > 0 | b > 0
~ a > 0
a + (~ b)
a > ~ b
~ a > b
~ (a > b)

5.3 Subscripting with logical vectors

We saw briefly in Chapter 2 that elements of a vector may be referenced with subscripts, and that the
subscripts themselves may be vectors, e.g.

a = [-2 0 1 5 9];
a([5 1 3])

returns

9 -2 1

i.e. the fifth, first and third elements of a. In general, if x and v are vectors, where v has n elements,
then x(v) means

[x(v(1)), x(v(2)), ..., x(v(n))]

Now with a as defined above, see what

a(logical([0 1 0 1 0]))

returns. The function logical(v) returns a logical vector, with elements which are 1 or 0 according as
the elements of v are non-zero or 0. (In Version 4 the logical function was not necessary here—you
could use a ‘0-1’ vector directly as a subscript.)
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A logical vector v may be a subscript of another vector x.
Only the elements of x corresponding to I's in v are returned.

Figure 5.4 Logical vector subscripts

Figure 5.4 summarizes the rules for the use of a logical vector as a subscript. So the statement above
returns

0 5

i.e. the second and fourth elements of a, corresponding to the 1’s in logical([0 1 0 1 0]).
What will

a(logical([1 1 1 0 0]))

return? And what about a(logical([0 0 0 0 0]))?
Logical vector subscripts provide an elegant way of removing certain elements from a vector, e.g.

a = a(a > 0)

removes all the non-positive elements from a, because a > 0 returns the logical vector [0 0 1 1 1]. We
can verify incidentally that the expression a > 0 is a logical vector, because the statement

islogical(a > 0)

returns 1. However, the numeric vector [0 0 1 1 1] is not a logical vector; the statement

islogical([0 0 1 1 1])

returns 0.

5.4 Logical functions

MATLAB has a number of useful logical functions that operate on scalars, vectors and matrices. Examples
are given in the following list (where x is a vector unless otherwise stated). See Help on logical
functions. (The functions are defined slightly differently for matrix arguments—see Chapter 6 or
Help.)

any(x) returns the scalar 1 (true) if any element of x is non-zero (true).

all(x) returns the scalar 1 if all the elements of x are non-zero.

exist(’a’) returns 1 if a is a workspace variable. For other possible return values see help. Note
that a must be enclosed in apostrophes.

find(x) returns a vector containing the subscripts of the non-zero (true) elements of x, so for example,

a = a( find(a) )

removes all the zero elements from a! Try it.
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Another use of find is in finding the subscripts of the largest (or smallest) elements in a vector,
when there is more than one. Enter the following:

x = [8 1 -4 8 6];
find(x >= max(x))

This returns the vector [1 4], which are the subscripts of the largest element (8). It works
because the logical expression x >= max(x) returns a logical vector with 1’s only at the
positions of the largest elements.

isempty(x) returns 1 if x is an empty array and 0 otherwise. An empty array has a size of 0-by-0.

isinf(x) returns 1’s for the elements of x which are +Inf or −Inf, and 0’s otherwise.

isnan(x) returns 1’s where the elements of x are NaN and 0’s otherwise. This function may be used
to remove NaNs from a set of data. This situation could arise while you are collecting statistics;
missing or unavailable values can be temporarily represented by NaNs. However, if you do any
calculations involving the NaNs, they propagate through intermediate calculations to the final result.
To avoid this, the NaNs in a vector may be removed with a statement like

x(isnan(x)) = [ ]

MATLAB has a number of other logical functions starting with the characters is. See is* in the
Help index for the complete list.

Using any and all

Because any and all with vector arguments return scalars, they are particularly useful in if statements.
For example,

if all(a >= 1)
do something

end

means ‘if all the elements of the vector a are greater than or equal to 1, then do something’.
Recall from Chapter 2 that a vector condition in an if statement is true only if all its elements are

non-zero. So if you want to execute statement below when two vectors a and b are equal (i.e. the same)
you could say

if a == b
statement

end

since if considers the logical vector returned by a == b true only if every element is a 1.
If, on the other hand, you want to execute statement specifically when the vectors a and b are not

equal, the temptation is to say
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if a ~= b % wrong wrong wrong!!!
statement

end

However this will not work, since statement will only execute if each of the corresponding elements of
a and b differ. This is where any comes in:

if any(a ~= b) % right right right!!!
statement

end

This does what is required since any(a ~= b) returns the scalar 1 if any element of a differs from
the corresponding element of b.

5.5 Logical vectors instead of elseif ladders

Those of us who grew up on more conventional programming languages in the last century may find it
difficult to think in terms of using logical vectors when solving general problems. It’s a nice challenge
whenever writing a program to ask yourself whether you can possibly use logical vectors. They are
almost always faster than other methods, although often not as clear to read later. You must decide when
it’s important for you to use logical vectors. But it’s a very good programming exercise to force yourself
to use them whenever possible! The following example illustrates these points by first solving a problem
conventionally, and then with logical vectors.

It has been said that there are two unpleasant and unavoidable facts of life: death and income tax. A
very simplified version of how income tax is calculated could be based on the following table:

Taxable income Tax payable

$10 000 or less 10 per cent of taxable income
between $10 000 and $20 000 $1000 + 20 per cent of amount by which

taxable income exceeds $10 000
more than $20 000 $3000 + 50 per cent of amount by which

taxable income exceeds $20 000

The tax payable on a taxable income of $30 000, for example, is

$3000 + 50 per cent of ($30 000 − $20 000), i.e. $8000.

We would like to calculate the income tax on the following taxable incomes (in dollars): 5000, 10 000,
15 000, 30 000 and 50 000.

The conventional way to program this problem is to set up a vector with the taxable incomes as
elements and to use a loop with an elseif ladder to process each element, as follows:

% Income tax the old-fashioned way

inc = [5000 10000 15000 30000 50000];

for ti = inc

if ti < 10000
tax = 0.1 * ti;

elseif ti < 20000
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tax = 1000 + 0.2 * (ti - 10000);
else

tax = 3000 + 0.5 * (ti - 20000);
end;

disp( [ti tax] )
end;

Here is the output, suitably edited (note that the amount of tax paid changes continuously between tax
‘brackets’—each category of tax is called a bracket):

Taxable income Income tax

5000.00 500.00
10000.00 1000.00
15000.00 2000.00
30000.00 8000.00
50000.00 18000.00

Now here is the logical way:

% Income tax the logical way

inc = [5000 10000 15000 30000 50000];

tax = 0.1 * inc .* (inc <= 10000);
tax = tax + (inc > 10000 & inc <= 20000) ...

.* (0.2 * (inc-10000) + 1000);
tax = tax + (inc > 20000) .* (0.5 * (inc-20000) + 3000);

disp( [inc’ tax’] );

To understand how it works, it may help to enter the statements on the command line. Start by entering
the vector inc as given. Now enter

inc <= 10000

which should give the logical vector [1 1 0 0 0]. Next enter

inc .* (inc <= 10000)

which should give the vector [5000 10000 0 0 0]. This has successfully selected only the
incomes in the first bracket. The tax for these incomes is then calculated with

tax = 0.1 * inc .* (inc <= 10000)

which returns [500 1000 0 0 0].
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Now for the second tax bracket. Enter the expression

inc > 10000 & inc <= 20000

which returns the logical vector [0 0 1 0 0], since there is only one income in this bracket.
Now enter

0.2 * (inc-10000) + 1000

This returns [0 1000 2000 5000 9000]. Only the third entry is correct. Multiplying this
vector by the logical vector just obtained blots out the other entries, giving [0 0 2000 0 0].
The result can be safely added to the vector tax since it will not affect the first two entries already
there.

I am sure you will agree that the logical vector solution is more interesting than the conventional one!

Summary

• When a relational and/or logical operator operates on a vector expression, the operation is carried
out element by element. The result is a logical vector consisting of 0’s (FALSE) and 1’s (TRUE).

• A vector may be subscripted with a logical vector of the same size. Only the elements corre-
sponding to the 1’s in the logical vector are returned.

• When one of the logical operators (~ & |) operates on an expression any non-zero value in
an operand is regarded as TRUE; zero is regarded as FALSE. A logical vector is returned.

• Arithmetic, relational and logical operators may appear in the same expression. Great care must
be taken in observing the correct operator precedence in such situations.

• Vectors in a logical expression must all be the same size.
• If a logical expression is a vector or a matrix, it is considered true in an if statement only if all

its elements are non-zero.
• Brackets are needed to separate certain juxtaposed (adjacent) operators.
• The logical functions any and all return scalars when taking vector arguments, and are conse-

quently useful in if statements.
• Logical vectors may often be used instead of the more conventional elseif ladder. This provides

faster more elegant code, but requires more ingenuity and the code may be less clear to read
later on.

Exercises

5.1 Determine the values of the following expressions yourself before checking your answers using
MATLAB. You may need to consult Table 5.3.
(a) 1 & -1
(b) 13 & ~(-6)
(c) 0 < -2|0
(d) ~[1 0 2] * 3
(e) 0 <= 0.2 <= 0.4
(f) 5 > 4 > 3
(g) 2 > 3 & 1



84 Essential MATLAB for Scientists and Engineers

5.2 Given that a = [1 0 2] and b = [0 2 2] determine the values of the following expres-
sions. Check your answers with MATLAB.
(a) a ~= b
(b) a < b
(c) a < b < a
(d) a < b < b
(e) a | (~a)
(f) b & (~b)
(g) a(~(~b))
(h) a = b == a (determine final value of a)

5.3 Write some MATLAB statements on the command line which use logical vectors to count how
many elements of a vector x are negative, zero or positive. Check that they work, e.g. with the
vector

[-4 0 5 -3 0 3 7 -1 6]
5.4 The Receiver of Revenue (Internal Revenue Service) decides to change the tax table used in

Section 5.5 slightly by introducing an extra tax bracket and changing the tax-rate in the third
bracket, as follows:

Taxable income Tax payable

$10 000 or less 10 per cent of taxable income
between $10 000 and $20 000 $1000 + 20 per cent of amount by which

taxable income exceeds $10 000
between $20 000 and $40 000 $3000 + 30 per cent of amount by which

taxable income exceeds $20 000
more than $40 000 $9000 + 50 per cent of amount by which

taxable income exceeds $40 000

Amend the logical vector script to handle this table, and test it on the following list of incomes
(dollars): 5000, 10 000, 15 000, 22 000, 30 000, 38 000 and 50 000.

5.5 A certain company offers seven annual salary levels (dollars): 12 000, 15 000, 18 000, 24 000,
35 000, 50 000 and 70 000. The number of employees paid at each level are, respectively: 3000,
2500, 1500, 1000, 400, 100 and 25. Write some statements at the command line to find the
following:
(a) The average salary level . Use mean. (Answer: 32 000)
(b) The number of employees above and below this average salary level. Use logical vectors

to find which salary levels are above and below the average level. Multiply these logical
vectors element by element with the employee vector, and sum the result.
(Answer: 525 above, 8000 below)

(c) The average salary earned by an individual in the company (i.e. the total annual salary
bill divided by the total number of employees). (Answer: 17 038.12).

5.6 Write some statements on the command line to remove the largest element(s) from a vector. Try
it out on x = [1 2 5 0 5]. The idea is to end up with [1 2 0] in x. Use find and the
empty vector [ ].

5.7 The electricity accounts of residents in a very small rural community are calculated as follows:
• if 500 units or less are used the cost is 2 cents per unit;
• if more than 500, but not more than 1000 units are used, the cost is $10 for the first 500

units, and then 5 cents for every unit in excess of 500;
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• if more than 1000 units are used, the cost is $35 for the first 1000 units plus 10 cents for
every unit in excess of 1000;

• in addition, a basic service fee of $5 is charged, no matter how much electricity is used.
The five residents use the following amounts (units) of electricity in a certain month: 200, 500,
700, 1000 and 1500. Write a program which uses logical vectors to calculate how much they
must pay. Display the results in two columns: one for the electricity used in each case, and one
for amount owed. (Answers: $9, $15, $25, $40, $90)
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Matrices

Objectives

The objectives of this chapter are to introduce you to

• ways of creating and manipulating matrices;
• matrix operations.

As we have already seen, the name MATLAB stands for MATrix LABoratory, because the MATLAB
system is designed specially to work with data arranged in the form of matrices (2-D arrays). The word
‘matrix’ has two distinct meanings in this chapter:

1. an arrangement of data in rows and columns, e.g. a table;
2. a mathematical object, for which particular mathematical operations are defined, e.g. ‘matrix’ mul-

tiplication.

We begin this chapter by looking at matrices in the first sense, summarizing and extending what we
learnt about them in Chapter 2. We then go on to look briefly at the mathematical operations on matrices.
In Chapter 18 we will see how these operations can be applied in a number of widely differing areas,
such as systems of linear equations, population dynamics, and Markov processes.

6.1 Some basics

A concrete example

A ready-mix concrete company has three factories (S1, S2 and S3) which must supply three building
sites (D1, D2 and D3). The costs, in some suitable currency, of transporting a load of concrete from any
factory to any site are given by the following cost table:

D1 D2 D3

S1 3 12 10
S2 17 18 35
S3 7 10 24

86
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The factories can supply 4, 12 and 8 loads per day respectively, and the sites require 10, 9 and 5 loads
per day respectively. The real problem is to find the cheapest way to satisfy the demands at the sites,
but we are not considering that here.

Suppose the factory manager proposes the following transportation scheme (each entry represents the
number of loads of concrete to be transported along that particular route):

D1 D2 D3

S1 4 0 0
S2 6 6 0
S3 0 3 5

This sort of scheme is called a solution to the transportation problem. The cost table (and the solution)
can then be represented by tables C and X, say, where cij is the entry in row i and column j of the cost
table, with a similar convention for X.

To compute the cost of the above solution, each entry in the solution table must be multiplied by
the corresponding entry in the cost table. (This operation is not to be confused with the mathematical
operation of matrix multiplication, which is discussed later.) We therefore want to calculate

3 × 4 + 12 × 0 + . . . + 24 × 5.

To do this calculation in MATLAB, enter C and X as matrices from the command line, with a
semi-colon at the end of each row:

c = [3 12 10; 17 18 35; 7 10 24];
x = [4 0 0; 6 6 0; 0 3 5];

and then find the array product of c and x:

total = c .* x

which gives

12 0 0
102 108 0
0 30 120

The command

sum(total)

then returns a vector where each element is the sum of each column of total:

114 138 120

Summing this in turn, i.e. sum(sum( total )), gives the final answer of 372.

Creating matrices

As we saw above, use a semi-colon to indicate the end of a row when entering a matrix. Bigger matrices
can be constructed from smaller ones, e.g. the statements

a = [1 2; 3 4];
x = [5 6];
a = [a; x]
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result in

a =
1 2
3 4
5 6

Instead of a semi-colon, you can use a line-feed (Enter) to indicate the end of a row.

Subscripts

Individual elements of a matrix are referenced with two subscripts, the first for the row, and the second
for the column, e.g. a(3,2) for a above returns 6.

Alternatively, and less commonly, a single subscript may be used. In this case you can think of the
matrix as being ‘unwound’ column by column. So a(5) for the above example returns 4.

If you refer to a subscript which is out of range, e.g. a(3,3) for a above, you will get an error
message. However, if you assign a value to an element with a subscript which is out of range the matrix
is enlarged to accommodate the new element. For example, the assignment

a(3,3) = 7

will add a third column to a with 0’s everywhere except at a(3,3).

Transpose

The statements

a = [1:3; 4:6]
b = a’

result in

a =
1 2 3
4 5 6

b =
1 4
2 5
3 6

The transpose operator ’ (apostrophe) turns rows into columns and vice versa.

The colon operator

• The colon operator is extremely powerful, and provides for very efficient ways of handling matrices,
e.g. if a is the matrix

a =
1 2 3
4 5 6
7 8 9
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the statement

a(2:3,1:2)

results in

4 5
7 8

(returns second and third rows, first and second columns), the statement

a(3,:)

results in

7 8 9

(returns third row), and the statement

a(1:2,2:3) = ones(2)

results in

a =
1 1 1
4 1 1
7 8 9

(first and second rows and columns replaced by a square matrix of 1’s).
Essentially, what is happening in the above examples is that the colon operator is being used to
create vector subscripts. However, a colon by itself in place of a subscript denotes all the elements
of the corresponding row or column. So a(3,:) means all elements in the third row.
This feature may be used, for example, to construct tables. Suppose we want a table trig of the
sines and cosines of the angles 0◦ to 180◦ in steps of 30◦. The following statements achieve this:

x = [0:30:180]’;
trig(:,1) = x;
trig(:,2) = sin(pi/180*x);
trig(:,3) = cos(pi/180*x);

• You can use vector subscripts to get more complicated effects, e.g.

a(:,[1 3]) = b(:,[4 2])

replaces the first and third columns of a by the fourth and second columns of b (a and b must have
the same number of rows).

• The colon operator is ideal for the sort of row operations performed in Gauss reduction, for example.
If a is the matrix

a =
1 -1 2
2 1 -1
3 0 1
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the statement

a(2,:) = a(2,:) - a(2,1)*a(1,:)

subtracts the first row multiplied by the first element in the second row from the second row,
resulting in

a =
1 -1 2
0 3 -5
3 0 1

(the idea being to get a zero immediately underneath a(1,1)).
• The keyword end refers to the last row or column of an array. For example, if r is a row vector,

the statement

sum(r(3:end))

returns the sum of all the elements of r from the third one to the last one.
• The colon operator may also be used as a single subscript, in which case it behaves differently if

it is on the right-hand or left-hand side of an assignment. On the right-hand side of an assignment,
a(:) gives all the elements of a strung out by columns in one long column vector, e.g. if

a =
1 2
3 4

the statement

b = a(:)

results in

b =
1
3
2
4

However, on the left-hand side of an assignment, a(:) reshapes a matrix. a must already exist.
Then a(:) denotes a matrix with the same dimensions (shape) as a, but with new contents taken
from the right-hand side. In other words, the matrix on the right-hand side is reshaped into the shape
of a on the left-hand side. Some examples may help. If

b =
1 2 3
4 5 6

and

a =
0 0
0 0
0 0



Matrices 91

the statement

a(:) = b

results in

a =
1 5
4 3
2 6

(the contents of b are strung out into one long column and then fed into a by columns). As another
example, the statement

a(:) = 1:6

(with a as above) results in

a =
1 4
2 5
3 6

Reshaping can also be done with the reshape function. See help.
Whether the colon operator appears on the right- or left-hand side of an assignment, the matrices or
submatrices on each side of the assignment have the same shape (except in the special case below).

• As a special case, a single colon subscript may be used to replace all the elements of a matrix with
a scalar, e.g.

a(:) = -1

Duplicating rows and columns: tiling

Sometimes it is useful to generate a matrix where all the rows or columns are the same. This can be
done with the repmat function as follows. If a is the row vector

a =
1 2 3

the statement

repmat(a, [3 1])

results in

ans =
1 2 3
1 2 3
1 2 3

In help’s inimitable phraseology, this statement produces a 3-by-1 ‘tiling’ of copies of a. You can think
of a as a ‘strip’ of three tiles stuck to self-adhesive backing. The above statement tiles a floor with three
rows and one column of such a strip of tiles.

There is an alternative syntax for repmat:

repmat(a, 3, 1)

An interesting example of this process appears at the end of this section in the loan repayment problem.
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Deleting rows and columns

Use the colon operator and the empty array to delete entire rows or columns. For example,

a(:,2) = [ ]

deletes the second column of a.
You can’t delete a single element from a matrix while keeping it a matrix, so a statement like

a(1,2) = [ ]

results in an error. However, using the single subscript notation you can delete a sequence of elements
from a matrix and reshape the remaining elements into a row vector. For example, if

a =
1 2 3
4 5 6
7 8 9

the statement

a(2:2:6) = [ ]

results in

a =
1 7 5 3 6 9

Get it? (First unwind a by columns, then remove elements 2, 4 and 6.)
You can use logical vectors to extract a selection of rows or columns from a matrix. For example, if

a is the original 3-by-3 matrix defined above, the statement

a(:, logical([1 0 1]))

results in

ans =
1 3
4 6
7 9

(first and third columns extracted). The same effect is achieved with

a(:, [1 3])

Elementary matrices

There is a group of functions to generate ‘elementary’ matrices which are used in a number of applications.
See help elmat.

For example, the functions zeros, ones and rand generate matrices of 1’s, 0’s and random numbers
respectively. With a single argument n, they generate n × n (square) matrices. With two arguments n
and m they generate n × m matrices. (For very large matrices repmat is usually faster than ones and
zeros.)
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The function eye(n) generates an n×n identity matrix, i.e. a matrix with 1’s on the main ‘diagonal’,
and 0’s everywhere else, e.g. the statement

eye(3)

results in

ans =
1 0 0
0 1 0
0 0 1

(The original version of MATLAB could not use the more obvious name I for the identity since it did
not distinguish between upper- and lowercase letters and i was the natural choice for the imaginary unit
number.)

As an example, eye may be used to construct a tridiagonal matrix as follows. The statements

a = 2 * eye(5);
a(1:4, 2:5) = a(1:4, 2:5) - eye(4);
a(2:5, 1:4) = a(2:5, 1:4) - eye(4)

result in

a =
2 -1 0 0 0
-1 2 -1 0 0
0 -1 2 -1 0
0 0 -1 2 -1
0 0 0 -1 2

Incidentally, if you work with large tridiagonal matrices, you should have a look at the sparse matrix
facilities available in MATLAB (see Chapter 18).

Specialized matrices

pascal(n) generates a Pascal matrix of order n. Technically, this is a symmetric positive definite
matrix with entries made up from Pascal’s triangle, e.g.

pascal(4)

results in

ans =
1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

magic(n) generates an n × n magic square.

MATLAB has a number of other functions which generate special matrices, such as gallery,
hadamard, hankel, hilb, toeplitz, vander, etc. See help elmat.
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Using MATLAB functions with matrices

When a MATLAB mathematical or trigonometric function has a matrix argument, the function operates
on every element of the matrix, as you would expect.

However, many of the other MATLAB functions operate on matrices column by column, e.g. if

a =
1 0 1
1 1 1
0 0 1

the statement

all(a)

results in

ans =
0 0 1

For each column of a where all the elements are true (non-zero) all returns 1, otherwise it returns 0.
all therefore returns a logical vector when it takes a matrix argument. To test if all the elements of a
are true, use all twice. In this example, the statement

all(all(a))

returns 0 because some of the elements of a are 0. On the other hand the statement

any(a)

returns

ans =
1 1 1

because each column of a has at least one non-zero element, and any(any(a)) returns 1, since a
itself has at least one non-zero element.

If you are not sure whether a particular function operates columnwise or element by element on
matrices, you can always request help.

Manipulating matrices

Here are some functions for manipulating matrices. See help for details.

diag extracts or creates a diagonal.

fliplr flips from left to right.

flipud flips from top to bottom.

rot90 rotates.

tril extracts the lower triangular part, e.g. the statement

tril(pascal(4))
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results in

ans =
1 0 0 0
1 2 0 0
1 3 6 0
1 4 10 20

triu extracts the upper triangular part.

Array (element-by-element) operations on matrices

The array operations discussed in Chapter 2 all apply to matrices as well as vectors. For example, if a
is a matrix, a * 2 multiplies each element of a by 2, and if

a =
1 2 3
4 5 6

the statement

a .^ 2

results in

ans =
1 4 9
16 25 36

Matrices and for

If

a =
1 2 3
4 5 6
7 8 9

the statements

for v = a
disp(v’)

end

result in

1 4 7
2 5 8
3 6 9

What happens in this most general form of the for statement is that the index v takes on the value of
each column of the matrix expression a in turn. This provides a neat way of processing all the columns
of a matrix. You can do the same with the rows if you transpose a, e.g. the statements

for v = a’
disp(v’)

end

display the rows of a one at a time. Get it?
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Visualization of matrices

Matrices can be visualized graphically in MATLAB. This subject is discussed briefly in Chapter 7, with
illustrations.

Vectorizing nested fors: loan repayment tables

If a regular fixed payment P is made n times a year to repay a loan of amount A over a period of k
years, where the nominal annual interest rate is r , P is given by

P = rA(1 + r/n)nk

n[(1 + r/n)nk − 1]
.

We would like to generate a table of repayments for a loan of $1 000 over 15, 20 or 25 years, at interest
rates that vary from 10% to 20% per annum, in steps of 1%. Since P is directly proportional to A in the
above formula, the repayments of a loan of any amount can be found by simple proportion from such a
table.

The conventional way of handling this is with ‘nested’ fors. The fprintf statements are necessary
in order to get the output for each interest rate on the same line (see Section 2.11):

A = 1000; % amount borrowed
n = 12; % number of payments per year

for r = 0.1 : 0.01 : 0.2
fprintf( ’%4.0f%’, 100 * r );
for k = 15 : 5 : 25

temp = (1 + r/n) ^ (n*k);
P = r * A * temp / n / (temp - 1);
fprintf( ’%10.2f’, P );

end;
fprintf( ’\n’ ); % new line

end;

Some sample output (with headings edited in):

rate % 15 yrs 20 yrs 25 yrs

10 10.75 9.65 9.09
11 11.37 10.32 9.80
...
19 16.83 16.21 15.98
20 17.56 16.99 16.78

However, we saw in Chapter 2 that for loops can often be vectorized, saving a lot of computing time
(and also providing an interesting intellectual challenge!). The inner loop can easily be vectorized; the
following code uses only one for:

...
for r = 0.1 : 0.01 : 0.2
k = 15 : 5 : 25;
temp = (1 + r/n) .^ (n*k);
P = r * A * temp / n ./ (temp - 1);
disp( [100 * r, P] );

end;

Note the use of the array operators.
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The really tough challenge, however, is to vectorize the outer loop as well. We want a table with 11
rows and 3 columns. Start by assigning values to A and n (from the command line):

A = 1000;
n = 12;

Then generate a column vector for the interest rates:

r = [0.1:0.01:0.2]’

Now change this into a table with 3 columns each equal to r:

r = repmat(r, [1 3])

The matrix r should look like this:

0.10 0.10 0.10
0.11 0.11 0.11
...
0.19 0.19 0.19
0.20 0.20 0.20

Now do a similar thing for the repayment periods k. Generate the row vector

k = 15:5:25

and expand it into a table with 11 rows each equal to k:

k = repmat(k, [11 1])

This should give you

15 20 25
15 20 25
...
15 20 25
15 20 25

The formula for P is a little complicated, so let’s do it in two steps:

temp = (1 + r/n) .^ (n * k);
P = r * A .* temp / n ./ (temp - 1)

Finally, you should get this for P:

10.75 9.65 9.09
11.37 10.32 9.80
...
16.83 16.21 15.98
17.56 16.99 16.78

This works, because of the way the tables r and k have been constructed, and because the MATLAB
array operations are performed element by element. For example, when the calculation is made for P in
row 2 and column 1, the array operations pick out row 2 of r (all 0.11) and column 1 of k (all 15),
giving the correct value for P (11.37).

The nested for way might be easier to program, but this way is certainly more interesting (and quicker
to execute).
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Multi-dimensional arrays

MATLAB arrays can have more than two dimensions. For example, suppose you create the matrix

a = [1:2; 3:4]

You can add a third dimension to a with

a(:,:,2) = [5:6; 7:8]

MATLAB responds with

a(:,:,1) =
1 2
3 4

a(:,:,2) =
5 6
7 8

It helps to think of the 3-D array a as a series of ‘pages’, with a matrix on each page. The third dimension
of a numbers the pages. This is analogous to a spreadsheet with multiple sheets: each sheet contains a
table (matrix).

You can get into hyperpages with higher dimensions if you like!
See help datatypes for a list of special multi-dimensional array functions.

6.2 Matrix operations

We have seen that array operations are performed element by element on matrices. However, matrix oper-
ations, which are fundamental to MATLAB, are defined differently in certain cases, in the mathematical
sense.

Matrix addition and subtraction are defined in the same way as the equivalent array operations, i.e.
element by element. Matrix multiplication, however, is quite different.

Matrix multiplication

Matrix multiplication is probably the most important matrix operation. It is used widely in such areas
as network theory, solution of linear systems of equations, transformation of co-ordinate systems, and
population modelling, to name but a very few. The rules for multiplying matrices look a little weird if
you’ve never seen them before, but will be justified by the applications that follow.

When two matrices A and B are multiplied together in this sense, their product is a third matrix C.
The operation is written as

C = AB,

and the general element cij of C is formed by taking the scalar product of the ith row of A with the
j th column of B. (The scalar product of two vectors x and y is x1y1 + x2y2 + . . ., where xi and yi are
the components of the vectors.)

It follows that A and B can only be successfully multiplied (in that order) if the number of columns
in A is the same as the number of rows in B.

The general definition of matrix multiplication is as follows: If A is a n × m matrix and B is a m × p
matrix, their product C will be a n × p matrix such that the general element cij of C is given by

cij =
m∑

k=1

aik bkj .
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Note that in general AB is not equal to BA (matrix multiplication is not commutative).
Example: [

1 2
3 4

]
×

[
5 6
0 −1

]
=

[
5 4

15 14

]

Since a vector is simply a one-dimensional matrix, the definition of matrix multiplication given above
also applies when a vector is multiplied by an appropriate matrix, e.g.[

1 2
3 4

]
×

[
2
3

]
=

[
8

18

]
.

The operator * is used for matrix multiplication, as you may have guessed. For example, if

a =
1 2
3 4

and

b =
5 6
0 -1

the statement

c = a * b

results in

c =
5 4
15 14

Note the important difference between the array operation a .* b (evaluate by hand and check
with MATLAB) and the matrix operation a * b.

To multiply a matrix by a vector in that order, the vector must be a column vector. So if

b = [2 3]’

the statement

c = a * b

results in

c =
8
18

Matrix exponentiation

The matrix operation A2 means A × A, where A must be a square matrix. The operator ^ is used for
matrix exponentiation, e.g. if

a =
1 2
3 4
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the statement

a ^ 2

results in

ans =
7 10
15 22

which is the same as a * a (try it).
Again, note the difference between the array operation a .^ 2 (evaluate by hand and check with

MATLAB) and the matrix operation a ^ 2.

6.3 Other matrix functions

Here are some of MATLAB’s more advanced matrix functions.

det determinant.

eig eigenvalue decomposition.

expm matrix exponential, i.e. eA, where A is a matrix. The matrix exponential may be used to evaluate
analytical solutions of linear ordinary differential equations with constant coefficients.

inv inverse.

lu LU factorization (into lower and upper triangular matrices).

qr orthogonal factorization.

svd singular value decomposition.

Summary

• A matrix is a 2-D array. Elements may be referenced in the conventional way with two subscripts.
Alternatively, one subscript may be used, in which case the matrix is ‘unwound’ by columns.

• The colon operator may be used to represent all the rows or columns of a matrix, and also as a
single subscript.

• The keyword end refers to the last row or column of a matrix.
• Use repmat to duplicate rows or columns of a matrix.
• Use the empty array [ ] to delete rows or columns of a matrix.
• Arrays may have more than two dimensions. In the case of a 3-D array the third subscript may

be thought of as numbering pages, where each page contains a matrix defined by the first two
subscripts.

• The matrix operations of multiplication and exponentiation are implemented with the matrix
operators * and ^ .
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Exercise

6.1 Set up any 3 × 3 matrix a. Write some command-line statements to perform the following
operations on a:
(a) interchange columns 2 and 3;
(b) add a fourth column (of 0’s);
(c) insert a row of 1’s as the new second row of a (i.e. move the current second and third

rows down);
(d) remove the second column.
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Introduction to graphics

Objective

The objective of this chapter is to introduce you to

• MATLAB’s high-level 2-D and 3-D plotting facilities.

A picture, it is said, is worth a thousand words. MATLAB has a powerful graphics system for presenting
and visualizing data, which is reasonably easy to use. (Most of the figures in this book have been
generated by MATLAB.)

This chapter introduces MATLAB’s high-level 2-D and 3-D plotting facilities. Low-level features, such
as handle graphics, are discussed later in Chapter 14.

It should be stressed that the treatment of graphics in this chapter is of necessity brief, and intended to
give you a glimpse of the richness and power of MATLAB graphics. For the full treatment, you should
consult help on the functions mentioned in this chapter, as well as the comprehensive list of graphics
functions in the online Help, under MATLAB: Reference: MATLAB Function Reference: Functions
by Category: Graphics.

7.1 Basic 2-D graphs

Graphs (in 2-D) are drawn with the plot statement. In its simplest form, it takes a single vec-
tor argument as in plot(y). In this case the elements of y are plotted against their indexes, e.g.
plot(rand(1, 20)) plots 20 random numbers against the integers 1–20, joining successive points
with straight lines, as in Figure 7.1(a). If y is a matrix, its columns are plotted against element indexes.

Axes are automatically scaled and drawn to include the minimum and maximum data points.
Probably the most common form of plot is plot(x, y) where x and y are vectors of the same

length, e.g.

x = 0:pi/40:4*pi;
plot(x, sin(x))

In this case, the co-ordinates of the ith point are xi , yi . This form of plot has been used widely in
earlier chapters.

102
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Figure 7.1 Examples of plot

Straight-line graphs are drawn by giving the x and y co-ordinates of the end-points in two vectors. For
example, to draw a line between the point with cartesian co-ordinates (0, 1) and (4, 3) use the statement

plot([0 4], [1 3])

i.e. [0 4] contains the x co-ordinates of the two points, and [1 3] contains their y co-ordinates.
MATLAB has a set of ‘easy-to-use’ plotting commands, all starting with the string ‘ez’. The easy-to-use

form of plot is ezplot, e.g.

ezplot(’tan(x)’)

Exercises

1. Draw lines joining the following points: (0, 1), (4, 3), (2, 0) and (5, −2).
2. See if you can draw a ‘house’ similar to the one depicted in Figure 7.1(b).

Labels

Graphs may be labelled with the following statements:

gtext(’text’)
writes a string (’text’) in the graph window. gtext puts a cross-hair in the graph window and
waits for a mouse button or keyboard key to be pressed. The cross-hair can be positioned with the
mouse or the arrow keys. For example,

gtext( ’X marks the spot’ )

Go on—try it!

Text may also be placed on a graph interactively with Tools -> Edit Plot from the figure window.
See Chapter 14.

grid
adds/removes grid lines to/from the current graph. The grid state may be toggled.
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text(x, y, ’text’)
writes text in the graphics window at the point specified by x and y.

If x and y are vectors, the text is written at each point. If the text is an indexed list, successive
points are labelled with corresponding rows of the text.

title(’text’)
writes the text as a title on top of the graph.

xlabel(’horizontal’)
labels the x-axis.

ylabel(’vertical’)
labels the y-axis.

Multiple plots on the same axes

There are at least three ways of drawing multiple plots on the same set of axes (which may however be
rescaled if the new data falls outside the range of the previous data).

1. The easiest way is simply to use hold to keep the current plot on the axes. All subsequent plots are
added to the axes until hold is released, either with hold off , or just hold, which toggles
the hold state.

2. The second way is to use plot with multiple arguments, e.g.

plot(x1, y1, x2, y2, x3, y3, ... )

plots the (vector) pairs (x1, y1), (x2, y2), etc. The advantage of this method is that the vector pairs
may have different lengths. MATLAB automatically selects a different colour for each pair.
If you are plotting two graphs on the same axes you may find plotyy useful—it allows you to
have independent y-axis labels on the left and the right, e.g.

plotyy(x,sin(x), x, 10*cos(x))

(for x suitably defined).
3. The third way is to use the form

plot(x, y)

where x and y may both be matrices, or where one may be a vector and one a matrix.
If one of x or y is a matrix and the other is a vector, the rows or columns of the matrix are plotted
against the vector, using a different colour for each. Rows or columns of the matrix are selected
depending on which have the same number of elements as the vector. If the matrix is square, columns
are used.
If x and y are both matrices of the same size, the columns of x are plotted against the columns of y.
If x is not specified, as in plot(y), where y is a matrix, the columns of y are plotted against the
row index.
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Line styles, markers and colour

Line styles, markers and colours may be selected for a graph with a string argument to plot, e.g.

plot(x, y, ’--’)

joins the plotted points with dashed lines, whereas

plot(x, y, ’o’)

draws circles at the data points with no lines joining them. You can specify all three properties, e.g.

plot(x,sin(x), x, cos(x), ’om--’)

plots sin(x) in the default style and colour and cos(x) with circles joined with dashes in magenta. The
available colours are denoted by the symbols c, m, y, k, r, g, b, w. You can have fun trying to figure
out what they mean, or you can use help plot to see the full range of possible symbols.

Axis limits

Whenever you draw a graph with MATLAB it automatically scales the axis limits to fit the data. You
can override this with

axis( [xmin, xmax, ymin, ymax] )

which sets the scaling on the current plot, i.e. draw the graph first, then reset the axis limits.
If you want to specify one of the minimum or maximum of a set of axis limits, but want MATLAB

to autoscale the other, use Inf or -Inf for the autoscaled limit.
You can return to the default of automatic axis scaling with

axis auto

The statement

v = axis

returns the current axis scaling in the vector v.
Scaling is frozen at the current limits with

axis manual

so that if hold is turned on, subsequent plots will use the same limits.
If you draw a circle, e.g. with the statements

x = 0:pi/40:2*pi;
plot(sin(x), cos(x))

the circle probably won’t appear round, especially if you resize the figure window. The command

axis equal

makes unit increments along the x- and y-axis the same physical length on the monitor, so that circles
always appear round. The effect is undone with axis normal.

You can turn axis labelling and tick marks off with axis off, and back on again with axis on.
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Subplot(2,2,1) Subplot(2,2,2)

Subplot(2,2,3) Subplot(2,2,4)
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Figure 7.2 Four subplots: rotations of a 3-D surface

axes and axis?

You and I might be forgiven for thinking that the word ‘axes’ denotes the plural of ‘axis’, which it does
indeed in common English usage. However, in MATLAB the word ‘axes’ refers to a particular graphics
object , which includes not only the x-axis and y-axis and their tick marks and labels, but also everything
drawn on those particular axes: the actual graphs and any text included in the figure. Axes objects are
discussed in more detail in Chapter 14.

Multiple plots in a figure: subplot

You can show a number of plots in the same figure window with the subplot function. It looks a little
curious at first, but it’s quite easy to get the hang of it. The statement

subplot(m, n, p)

divides the figure window into m × n small sets of axes, and selects the pth set for the current plot
(numbered by row from the left of the top row). For example, the following statements produce the four
plots shown in Figure 7.2 (details of 3-D plotting are discussed in Section 7.2).

[x, y] = meshgrid(-3:0.3:3);
z = x .* exp(-x.^2 - y.^2);
subplot(2,2,1)
mesh(z),title(’subplot(2,2,1)’)
subplot(2,2,2)
mesh(z)
view(-37.5,70),title(’subplot(2,2,2)’)
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subplot(2,2,3)
mesh(z)
view(37.5,-10),title(’subplot(2,2,3)’)
subplot(2,2,4)
mesh(z)
view(0,0),title(’subplot(2,2,4)’)

The command subplot(1,1,1) goes back to a single set of axes in the figure.

figure, clf and cla

figure(h), where h is an integer, creates a new figure window, or makes figure h the current figure.
Subsequent plots are drawn in the current figure. h is called the handle of the figure. Handle graphics is
discussed further in Chapter 14.
clf clears the current figure window. It also resets all properties associated with the axes, such as the

hold state and the axis state.
cla deletes all plots and text from the current axes, i.e. leaves only the x- and y-axes and their

associated information.

Graphical input

The command

[x, y] = ginput

allows you to select an unlimited number of points from the current graph using a mouse or arrow keys.
A movable cross-hair appears on the graph. Clicking saves its co-ordinates in x(i) and y(i). Pressing
Enter terminates the input. See Chapter 19 for an example which involves selecting points in a figure
and fitting a curve to them.

The command

[x, y] = ginput(n)

works like ginput except that you must select exactly n points.
See help for further information.

Logarithmic plots

The command

semilogy(x, y)

plots y with a log10 scale and x with a linear scale. For example, the statements

x = 0:0.01:4;
semilogy(x, exp(x)), grid

produce the graph in Figure 7.3. Equal increments along the y-axis represent multiples of powers of 10.
So, starting from the bottom, the grid lines are drawn at 1, 2, 3, . . . , 10, 20, 30 . . . , 100, . . . . Incidentally,
the graph of ex on these axes is a straight line, because the equation y = ex transforms into a linear
equation when you take logs of both sides.

See also semilogx and loglog.
x and y may be vectors and/or matrices, just as in plot.
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Figure 7.3 A logarithmic plot

Exercise

Draw graphs of x2, x3, x4 and ex2
over the interval 0 ≤ x ≤ 4, using semilogy.

Polar plots
The point (x, y) in cartesian co-ordinates is represented by the point (θ, r) in polar co-ordinates, where

x = r cos(θ),

y = r sin(θ),

and θ varies between 0 and 2π radians (360◦).
The command

polar(theta, r)

generates a polar plot of the points with angles in theta and magnitudes in r.
As an example, the statements

x = 0:pi/40:2*pi;
polar(x, sin(2*x)),grid

produce the plot shown in Figure 7.4.

Plotting rapidly changing mathematical functions: fplot
In all the graphing examples so far, the x co-ordinates of the points plotted have been incremented
uniformly, e.g. x = 0:0.01:4 . If the function being plotted changes very rapidly in some places,
this can be inefficient, and can even give a misleading graph.

For example, the statements

x = 0.01:0.001:0.1;
plot(x, sin(1./x))
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Figure 7.5 y = sin(1/x)

produce the graph shown in Figure 7.5(a). But if the x increments are reduced to 0.0001, we get the
graph in Figure 7.5(b) instead. For x < 0.04, the two graphs look quite different.

MATLAB has a function called fplot which uses a more elegant approach. Whereas the above
method evaluates sin(1/x) at equally spaced intervals, fplot evaluates it more frequently over regions
where it changes more rapidly. Here’s how to use it:

fplot(’sin(1/x)’, [0.01 0.1]) % no, 1./x not needed!

The property editor

The most general way of editing a graph is by using the Property Editor, e.g. Edit -> Figure Properties
from the figure window. This topic is discussed briefly in Chapter 14.
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7.2 3-D plots

MATLAB has a variety of functions for displaying and visualizing data in 3-D, either as lines in 3-D,
or as various types of surfaces. This section provides a brief overview.

plot3
The function plot3 is the 3-D version of plot. The command

plot3(x, y, z)

draws a 2-D projection of a line in 3-D through the points whose co-ordinates are the elements of the
vectors x, y and z. For example, the command

plot3(rand(1,10), rand(1,10), rand(1,10))

generates 10 random points in 3-D space, and joins them with lines, as shown in Figure 7.6(a).
As another example, the statements

t = 0:pi/50:10*pi;
plot3(exp(-0.02*t).*sin(t), exp(-0.02*t).*cos(t),t), ...
xlabel(’x-axis’), ylabel(’y-axis’), zlabel(’z-axis’)

produce the inwardly spiralling helix shown in Figure 7.6(b). Note the orientation of the x-, y- and
z-axes, and in particular that the z-axis may be labelled with zlabel.

Animated 3-D plots with comet3
The function comet3 is similar to plot3 except that it draws with a moving ‘comet head’. Use comet3
to animate the helix in Figure 7.6(b). No prizes for guessing the name of the 2-D version.

Mesh surfaces
In Chapter 1 we saw how to draw the Mexican hat (Figure 1.3):

[x y ] = meshgrid(-8 : 0.5 : 8);
r = sqrt(x.^2 + y.^2) + eps;
z = sin(r) ./ r;

This drawing is an example of a mesh surface.
To see how such surface is drawn, let’s take a simpler example, say z = x2 − y2. The surface we are

after is the one generated by the values of z as we move around the x-y plane. Let’s restrict ourselves
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to part of the first quadrant of this plane, given by

0 ≤ x ≤ 5, 0 ≤ y ≤ 5.

The first step is to set up the grid in the x-y plane over which the surface is to be plotted. You can use
the MATLAB function meshgrid to do it, as follows:

[x y] = meshgrid(0:5);

This statement sets up two matrices, x and y. (Functions, such as meshgrid, which return more than
one ‘output argument’, are discussed in detail in Chapter 10. However, you don’t need to know the
details in order to be able to use it here.)

The two matrices in this example are:

x =
0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5
0 1 2 3 4 5

y =
0 0 0 0 0 0
1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
4 4 4 4 4 4
5 5 5 5 5 5

The effect of this is that the columns of the matrix x as it is displayed hold the x co-ordinates of the
points in the grid, while the rows of the display of y hold the y co-ordinates. Recalling the way MATLAB
array operations are defined, element by element, this means that the statement

z = x.^2 - y.^2

will correctly generate the surface points:

z =
0 1 4 9 16 25
-1 0 3 8 15 24
-4 -3 0 5 12 21
-9 -8 -5 0 7 16

-16 -15 -12 -7 0 9
-25 -24 -21 -16 -9 0

For example, at the grid point (5, 2), z has the value 52 − 22 = 21. Incidentally, you don’t need to
worry about the exact relationship between grid co-ordinates and matrix subscripts; this is taken care of
by meshgrid.

The statement mesh(z) then plots the surface (Figure 7.7), with mesh lines connecting the points in
the surface that lie above grid points.

Note that mesh(z) shows the row and column indices (subscripts) of the matrix z on the x and y
axes. If you want to see proper values on the x and y axes use mesh(x,y,z). This applies to many
of the other 3-D plotting functions.
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Figure 7.7 The surface z = x2 − y2

The function mesh draws a surface as a ‘wire frame’. An alternative visualization is provided by
surf, which generates a faceted view of the surface (in colour), i.e. the wire frame is covered with
small tiles.

See help for variations on mesh and surf.

Exercises

1. Draw the surface shown in Figure 7.7 with a finer mesh (of 0.25 units in each direction), using

[x y] = meshgrid(0:0.25:5);

(the number of mesh points in each direction is 21).
2. The initial heat distribution over a steel plate is given by the function

u(x, y) = 80y2e−x2−0.3y2
.

Plot the surface u over the grid defined by

−2.1 ≤ x ≤ 2.1, − 6 ≤ y ≤ 6,

where the grid width is 0.15 in both directions. You should get the plot shown in Figure 7.8.

Contour plots

If you managed to draw the plot in Figure 7.8, try the command

contour(u)

You should get a contour plot of the heat distribution, as shown in Figure 7.9(a), i.e. the isothermals
(lines of equal temperature). Here’s the code:
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Figure 7.9 Contour plots

[x y] = meshgrid(-2.1:0.15:2.1, -6:0.15:6); % x- y-grids different
u = 80 * y.^2 .* exp(-x.^2 - 0.3*y.^2);
contour(u)

The function contour can take a second input variable. It can be a scalar specifying how many
contour levels to plot, or it can be a vector specifying the values at which to plot the contour levels.

You can get a 3-D contour plot with contour3, as shown in Figure 7.9(b).
Contour levels may be labelled with clabel (see help).
A 3-D contour plot may be drawn under a surface with meshc or surfc. For example, the statements

[x y] = meshgrid(-2:.2:2);
z = x .* exp(-x.^2 - y.^2);
meshc(z)

produce the graph in Figure 7.10(a).

Cropping a surface with NaNs

If a matrix for a surface plot contains NaNs, these elements are not plotted. This enables you to cut away
(crop) parts of a surface. For example, the statements
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Figure 7.10 (a) meshc; (b) cropping a surface

[x y] = meshgrid(-2:.2:2, -2:.2:2);
z = x .* exp(-x.^2 - y.^2);
c = z; % preserve the original surface
c(1:11,1:21) = nan*c(1:11,1:21);
mesh(c), xlabel(’x-axis’), ylabel(’y-axis’)

produce the graph in Figure 7.10(b).

Visualizing vector fields

The function quiver draws little arrows to indicate a gradient or other vector field. Although it produces
a 2-D plot, it’s often used in conjunction with contour, which is why it’s described briefly here.

As an example, consider the scalar function of two variables V = x2 +y. The gradient of V is defined
as the vector field

∇V =
(

∂V

∂x
,
∂V

∂y

)

= (2x, 1).

The following statements draw arrows indicating the direction of ∇V at points in the x-y plane (see
Figure 7.11):

[x y] = meshgrid(-2:.2:2, -2:.2:2);
V = x.^2 + y;
dx = 2*x;
dy = dx; % dy same size as dx
dy(:,:) = 1; % now dy is same size as dx but all 1’s
contour(x, y, V), hold on
quiver(x, y, dx, dy), hold off

The ‘contour’ lines indicate families of level surfaces ; the gradient at any point is perpendicular to the
level surface which passes through that point. The vectors x and y are needed in the call to contour
to specify the axes for the contour plot.

An additional optional argument for quiver specifies the length of the arrows. See help.
If you can’t (or don’t want to) differentiate V , you can use the gradient function to estimate the

derivative:

[dx dy] = gradient(V, 0.2, 0.2);

The values 0.2 are the increments in the x and y directions used in the approximation.
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Visualization of matrices

The mesh function can also be used to ‘visualize’ a matrix. The following statements generate the plot
in Figure 7.12:

a = zeros(30,30);
a(:,15) = 0.2*ones(30,1);
a(7,:) = 0.1*ones(1,30);
a(15,15) = 1;
mesh(a)

The matrix a is 30×30. The element in the middle—a(15,15)—is 1, all the elements in row 7 are 0.1,
and all the remaining elements in column 15 are 0.2. mesh(a) then interprets the rows and columns of
a as an x-y co-ordinate grid, with the values a(i,j) forming the mesh surface above the points (i, j).

The function spy is useful for visualizing sparse matrices.
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Rotation of 3-D graphs
The view function enables you to specify the angle from which you view a 3-D graph. To see it in
operation, run the following program, which rotates the visualized matrix in Figure 7.12:

a = zeros(30,30);
a(:,15) = 0.2*ones(30,1);
a(7,:) = 0.1*ones(1,30);
a(15,15) = 1;
el = 30;
for az = -37.5:15:-37.5+360
mesh(a), view(az, el)
pause(0.5)

end

The function view takes two arguments. The first one, az in this example, is called the azimuth or
polar angle in the x-y plane (in degrees). az rotates the viewpoint (you) about the z-axis—i.e. about
the ‘pinnacle’ at (15,15) in Figure 7.12—in a counter-clockwise direction. The default value of az is
−37.5◦. The program therefore rotates you in a counter-clockwise direction about the z-axis in 15◦ steps
starting at the default position.

The second argument of view is the vertical elevation el (in degrees). This is the angle a line from
the viewpoint makes with the x-y plane. A value of 90◦ for el means you are directly overhead. Positive
values of the elevation mean you are above the x-y plane; negative values mean you are below it. The
default value of el is 30◦.

The command pause(n) suspends execution for n seconds.
You can rotate a 3-D figure interactively as follows. Click the Rotate 3-D button in the figure toolbar

(first button from the right). Click on the axes and an outline of the figure appears to help you visualize
the rotation. Drag the mouse in the direction you want to rotate. When you release the mouse button the
rotated figure is redrawn.

Exercise

Rewrite the above program to change the elevation gradually, keeping the azimuth fixed at its default.

Other cool graphics functions
Here are more examples of interesting graphics functions. With each function a sample script and graph
is shown. The list is by no means exhaustive and is meant to whet your appetite for more! You are
encouraged to consult the list of graphics functions in the online MATLAB FUNCTION REFERENCE.
Each entry has excellent examples.

Note that the MATLAB function peaks generates a sample surface (see under meshz below).
For reference purposes the figures below are all considered part of Figure 7.13. Some figures have

been edited to render colours in gray-scale.

(a) area

x = 0:0.1:1.5;
area(x’, [x.^2’ ...

exp(x)’ exp(x.^2)’])
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(b) bar

x = 0:pi/20:pi;
bar(x,sin(x))
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(c) compass

z = eig(randn(10));
compass(z)
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(d) errorbar

x = 0:0.1:1;
errorbar(x,exp(-x),...

0.5*rand(1,length(x)),’d’)
∗

∗

1.5

1

0.5

0
−0.5 0 0.5 1 1.5

(e) ezcontourf

ezcontourf(’x^2-y^2’)
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(f) feather

th = 0:pi/16:pi;
z = exp((-0.5+2i)*th);
feather(z)
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(g) fill

t = 0:pi/20:2*pi;
fill(cos(t),sin(t),’k’, ...

0.9*cos(t),0.9*sin(t),’y’), ...
axis square
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t = 0:pi/20:4*pi;
fill(t,sin(t),’g’)
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(h) hist

x = -20:120;
y = 50+20*randn(1,100000);
hist(y,x)
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(i) meshz

[x y] = meshgrid(-3:0.1:3);
z = peaks(x,y);
meshz(z)
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(j) pie

pie(rand(1,10))
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(k) ribbon

[x y ] = meshgrid(-8 : 1 : 8);
r = sqrt(x.^2 + y.^2) + eps;
z = sin(r) ./ r;
ribbon(z)
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t = 0:pi/40:4*pi;
y1 = sin(t);
y2 = exp(-0.2*t).*sin(2*t);
y = [y1; y2];
ribbon(t’, y’, 0.1)
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(l) stairs

x = 0:pi/40:pi;
stairs(x,sin(x))
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(m) stem3

t = 0:pi/50:2*pi;
r = exp(-0.05*t);
stem3(r.*sin(t), r.*cos(t),t)
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(n) waterfall

[x y] = meshgrid(-2:0.1:2);
z = x.*exp(-x.^2-y.^2);
waterfall(z)
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Summary

• 2-D plots are drawn with the plot statement.
• There is a set of easy-to-use plotters called ez*.
• Graphs may be labelled with grid, text, title, xlabel, ylabel, etc.
• Multiple plots may be drawn on the same axes in a number of ways.
• Line styles, markers and colour may be varied.
• Axis limits may be set explicitly.
• In MATLAB the word ‘axes’ refers to the graphics object in which the x and y axis and their

labels, plots and text annotations are drawn.
• A number of axes may be drawn in the same figure with subplot.
• Co-ordinates of points in a figure may be selected with ginput.
• semilogx, semilogy and loglog are used to plot on log10 scales.
• The polar command plots in polar co-ordinates.
• fplot provides a handy way of plotting mathematical functions.
• plot3 draws lines in 3-D.
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• comet3 animates a 3-D plot.
• A 3-D surface may be plotted with mesh.
• A 3-D plot may be rotated with view or with the Rotate 3-D tool in the figure window.
• mesh may also be used to visualize a matrix.
• contour and countour3 draws contour levels in 2-D and 3-D respectively.
• 3-D surfaces may be cropped.
• For a complete list of graphics functions consult the online Help in MATLAB Function Refer-

ence: Functions by Category: Graphics.

Exercises

7.1 Draw a graph of the population of the USA from 1790 to 2000, using the (logistic) model

P(t) = 19 72 73 000

1 + e−0.03134(t−1913.25)

where t is the date in years.
Actual data (in 1000s) for every decade from 1790 to 1950 are as follows: 3929, 5308, 7240,
9638, 12 866, 17 069, 23 192, 31 443, 38 558, 50 156, 62 948, 75 995, 91 972, 1 05 711, 1 22 775,
1 31 669, 1 50 697. Superimpose this data on the graph of P(t). Plot the data as discrete circles
(i.e. do not join them with lines) as shown in Figure 7.14.

7.2 The Spiral of Archimedes (Figure 7.15) may be represented in polar co-ordinates by the equation

r = aθ,

where a is some constant. (The shells of a class of animals called nummulites grow in this way.)
Write some command-line statements to draw the spiral for some values of a.

7.3 Another type of spiral is the logarithmic spiral (Figure 7.15), which describes the growth of
shells of animals like the periwinkle and the nautilus. Its equation in polar co-ordinates is

r = aqθ ,

where a > 0, q > 1. Draw this spiral.
7.4 The arrangement of seeds in a sunflower head (and other flowers, like daisies) follows a fixed

mathematical pattern. The nth seed is at position

r = √
n,

with angular co-ordinate πdn/180 radians, where d is the constant angle of divergence (in
degrees) between any two successive seeds, i.e. between the nth and (n + 1)th seeds. A perfect
sunflower head (Figure 7.16) is generated by d = 137.51◦. Write a program to plot the seeds;
use a circle (o) for each seed. A remarkable feature of this model is that the angle d must be
exact to get proper sunflowers. Experiment with some different values, e.g. 137.45◦ (spokes,
from fairly far out), 137.65◦ (spokes all the way), 137.92◦ (Catherine wheels).

7.5 The equation of an ellipse in polar co-ordinates is given by

r = a(1 − e2)/(1 − e cos θ),

where a is the semi-major axis and e is the eccentricity, if one focus is at the origin, and the
semi-major axis lies on the x-axis.
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Figure 7.15 Spirals

Halley’s Comet, which visited us in 1985/6, moves in an elliptical orbit about the Sun (at one
focus) with a semi-major axis of 17.9 A.U. (A.U. stands for Astronomical Unit, which is the
mean distance of the Earth from the Sun: 149.6 million km.) The eccentricity of the orbit is
0.967276. Write a program which draws the orbit of Halley’s Comet and the Earth (assume the
Earth is circular).

7.6 A very interesting iterative relationship that has been studied a lot recently is defined by

yk+1 = ryk(1 − yk)

(this is a discrete form of the well-known logistic model ). Given y0 and r , successive yk’s may
be computed very easily, e.g. if y0 = 0.2 and r = 1, then y1 = 0.16, y2 = 0.1334, and so on.
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Figure 7.16 A perfect sunflower?

This formula is often used to model population growth in cases where the growth is not unlimited,
but is restricted by shortage of food, living area, etc.
yk exhibits fascinating behaviour, known as mathematical chaos , for values of r between 3 and
4 (independent of y0). Write a program which plots yk against k (as individual points).
Values of r that give particularly interesting graphs are 3.3, 3.5, 3.5668, 3.575, 3.5766, 3.738,
3.8287, and many more that can be found by patient exploration.

7.7 A rather beautiful fractal picture can be drawn by plotting the points (xk , yk) generated by the
following difference equations

xk+1 = yk(1 + sin 0.7xk) − 1.2
√|xk|,

yk+1 = 0.21 − xk,

starting with x0 = y0 = 0. Write a program to draw the picture (plot individual points; do not
join them).
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Loops

Objectives

The objectives of this chapter are to enable you to learn to

• code determinate loops with for;
• code indeterminate loops with while.

In Chapter 2 we introduced the powerful for statement, which is used to repeat a block of statements
a fixed number of times. This type of structure, where the number of repetitions must be determined in
advance, is sometimes called determinate repetition. However, it often happens that the condition to end
a loop is only satisfied during the execution of the loop itself . Such a structure is called indeterminate.
This chapter is mainly about indeterminate loops, but to emphasize the difference between the two types
of repetition we will first look at some more examples of for loops.

8.1 Determinate repetition with for

Binomial coefficient

The binomial coefficient is widely used in mathematics and statistics. It is defined as the number of ways
of choosing r objects out of n without regard to order, and is given by

(
n
r

)
= n!

r!(n− r)! . (8.1)

If this form is used, the factorials can get very big, causing an overflow. But a little thought reveals we
can simplify Equation (8.1) as follows:

(
n
r

)
= n(n− 1)(n− 2) · · · (n− r + 1)

r!
, (8.2)

e.g.

(
10

3

)
= 10!

3! × 7!
= 10 × 9 × 8

1 × 2 × 3
.

124
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Using Equation (8.2) is computationally much more efficient:

ncr = 1;
n = ...
r = ...

for k = 1:r
ncr = ncr * (n - k + 1) / k;

end

disp( ncr )

The binomial coefficient is sometimes pronounced ‘n-see-r’. Work through the program by hand with
some sample values.

Update processes

Many problems in science and engineering involve modelling a process where the main variable is
repeatedly updated over a period of time. Here is an example of such an update process .

A can of orange juice at temperature 25◦ C is placed in a fridge, where the ambient temperature F is
10◦ C. We want to find out how the temperature of the orange juice changes over a period of time. A
standard way of approaching this type of problem is to break the time period up into a number of small
steps, each of length dt . If Ti is the temperature at the beginning of step i, we can use the following
model to get Ti+1 from Ti :

Ti+1 = Ti −K dt (Ti − F), (8.3)

where K is a constant parameter depending on the insulating properties of the can, and the thermal
properties of orange juice. Assume that units are chosen so that time is in minutes.

The following script implements this scheme. To make the solution more general, take the starting
time as a, and the end time as b. If dt is very small, it will be inconvenient to have output displayed
after every step, so the script also asks you for the output interval opint. This is the time (in minutes)
between successive rows of output. It checks that this interval is an integer multiple of dt . Try the script
with some sample values, e.g. dt = 0.2 minutes and opint = 5 minutes (these are the values used for
the output below).

K = 0.05;
F = 10;
a = 0; % start time
b = 100; % end time
time = a; % initialize time
T = 25; % initialize temperature
load train % prepare to blow the whistle
dt = input( ’dt: ’ );
opint = input( ’output interval (minutes): ’ );
if opint/dt ~= fix(opint/dt)
sound(y, Fs) % blow the whistle!
disp( ’output interval is not a multiple of dt!’ );
break

end

clc
format bank
disp( ’ Time Temperature’ );
disp( [time T] ) % display initial values
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for time = a+dt : dt : b
T = T - K * dt * (T - F);
if abs(rem(time, opint)) < 1e-6 % practically zero!

disp( [time T] )
end

end

Output:

Time Temperature
0 25.00

5.00 21.67
...

95.00 10.13
100.00 10.10

Note:

1. The function rem is used to display the results every opint minutes: when time is an integer
multiple of opint its remainder when divided by opint should be zero. However, due to rounding
error, the remainder is not always exactly zero. It is therefore better to test whether its absolute value
is less than some very small value. (Rounding error is discussed in Chapter 9).

2. While this is probably the most obvious way of writing the script, we cannot easily plot the graph
of temperature against time this way, since time and T are scalars which are repeatedly updated.
To plot the graph they both need to be vectors (see Chapter 11).

3. Note how sound is implemented. See help audio for other interesting sounds supplied by
MATLAB.

4. In case you are wondering how I got the headings in the right place, I’ll let you into the secret. Run
the script without a heading but with the numerical output as you want it. Then simply paste the
disp statement with the headings into the command window and edit it until the headings fall in
the right place. Paste the final version of the disp statement into the script.

5. Note the use of break to stop the script prematurely if the user gives bad input. See below for
more general use of break.

Nested fors

As we saw in Chapter 6 (Vectorizing nested fors), for loops can be nested inside each other. The
main point to note is that the index of the inner for moves faster.

8.2 Indeterminate repetition with while

Determinate loops all have in common the fact that you can work out in principle exactly how many
repetitions are required before the loop starts . But in the next example, there is no way in principle of
working out the number of repeats, so a different structure is needed.

A guessing game

The problem is easy to state. MATLAB ‘thinks’ of an integer between 1 and 10 (i.e. generates one at
random). You have to guess it. If your guess is too high or too low, the script must say so. If your guess
is correct, a message of congratulations must be displayed.

A little more thought is required here, so a structure plan might be helpful:

1. Generate random integer
2. Ask user for guess
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3. While guess is wrong:
If guess is too low

Tell her it is too low
Otherwise

Tell her it is too high
Ask user for new guess

4. Polite congratulations
5. Stop.

Here is the script:

matnum = floor(10 * rand + 1);
guess = input( ’Your guess please: ’ );
load splat

while guess ~= matnum
sound(y, Fs)

if guess > matnum
disp( ’Too high’ )

else
disp( ’Too low’ )

end;

guess = input( ’Your next guess please: ’ );
end

disp( ’At last!’ )
load handel
sound(y, Fs) % hallelujah!

Try it out a few times. Note that the while loop repeats as long as matnum is not equal to guess.
There is no way in principle of knowing how many loops will be needed before the user guesses correctly.
The problem is truly indeterminate.

Note that guess has to be input in two places: firstly to get the while loop going, and secondly
during the execution of the while.

The while statement

In general the while statement looks like this:
while condition

statements
end

The while construct repeats statements WHILE its condition remains true. The condition therefore is
the condition to repeat once again. The condition is tested each time BEFORE statements are repeated.
Since the condition is evaluated before statements are executed, it is possible to arrange for statements
not to be executed at all under certain circumstances. Clearly, condition must depend on statements in
some way, otherwise the loop will never end.

Recall that a vector condition is considered true only if all its elements are non-zero.
The command-line form of while is:

while condition statements, end
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Doubling time of an investment

Suppose we have invested some money which draws 10 per cent interest per year, compounded. We would
like to know how long it takes for the investment to double. More specifically, we want a statement of
the account each year, until the balance has doubled. The English statement of the problem hints heavily
that we should use an indeterminate loop with the following structure plan:

1. Initialize balance, year, interest rate
2. Display headings
3. Repeat

Update balance according to interest rate
Display year, balance

until balance exceeds twice original balance
4. Stop.

A program to implement this plan would be

a = 1000;
r = 0.1;
bal = a;
year = 0;
disp( ’Year Balance’ )

while bal < 2 * a
bal = bal + r * bal;
year = year + 1;
disp( [year bal] )

end

Note that the more natural phrase in the structure plan ‘until balance exceeds twice original balance’
must be coded as

while bal < 2 * a ...

This condition is checked each time before another loop is made. Repetition occurs only if the condition
is true. Here’s some output (for an opening balance of $1000):

Year Balance

1 1100.00
2 1210.00
3 1331.00
4 1464.10
5 1610.51
6 1771.56
7 1948.72
8 2143.59

Note that when the last loop has been completed, the condition to repeat is false for the first time,
since the new balance ($2143.59) is more than $2000. Note also that a determinate for loop cannot
be used here because we don’t know how many loops are going to be needed until after the script has
run (although in this particular example perhaps you could work out in advance how many repeats are
needed?).

If you want to write the new balance only while it is less than $2000, all that has to be done is to
move the statement

disp( [year bal] )

until it is the first statement in the while loop. Note that the initial balance of $1000 is displayed now.
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Prime numbers

Many people are obsessed with prime numbers, and most books on programming have to include an
algorithm to test if a given number is prime. So here’s mine.

A number is prime if it is not an exact multiple of any other number except itself and 1, i.e. if it has
no factors except itself and 1. The easiest plan of attack then is as follows. Suppose P is the number to
be tested. See if any numbers N can be found that divide into P without remainder. If there are none,
P is prime. Which numbers N should we try? Well, we can speed things up by restricting P to odd
numbers, so we only have to try odd divisors N . When do we stop testing? When N = P ? No, we can
stop a lot sooner. In fact, we can stop once N reaches

√
P , since if there is a factor greater than

√
P

there must be a corresponding one less than
√
P , which we would have found. And where do we start?

Well, since N = 1 will be a factor of any P , we should start at N = 3. The structure plan is as follows:

1. Input P
2. Initialize N to 3
3. Find remainder R when P is divided by N
4. While R 	= 0 and N <

√
P repeat:

Increase N by 2
Find R when P is divided by N

5. If R 	= 0 then
P is prime

Else
P is not prime

6. Stop.

Note that there may be no repeats—R might be zero the first time. Note also that there are two conditions
under which the loop may stop. Consequently, an if is required after completion of the loop to determine
which condition stopped it.

See if you can write the script. Then try it out on the following numbers: 4058879 (not prime),
193707721 (prime) and 2147483647 (prime). If such things interest you, the largest known prime number
at the time of writing was 26972593 −1 (discovered in June 1999). It has 2098960 digits and would occupy
about 70 pages if it was printed in a newspaper. Obviously our algorithm cannot test such a large number,
since it’s unimaginably greater than the largest number which can be represented by MATLAB. Ways of
testing such huge numbers for primality are described in D.E. Knuth, The Art of Computer Programming.
Volume 2: Seminumerical Algorithms (Addison-Wesley, 1981). This particular whopper was found by the
GIMPS (Great Internet Mersenne Prime Search). See http://www.utm.edu/research/primes/largest.html for
more information on the largest known primes.

Projectile trajectory

In Chapter 4 we considered the flight of a projectile, given the usual equations of motion (assuming no
air resistance). We would like to know now when and where it will hit the ground. Although this problem
can be solved with a determinate loop (if you know enough applied mathematics), it is of interest also to
see how to solve it with an indeterminate while loop. The idea is to calculate the trajectory repeatedly
with increasing time, while the vertical displacement (y) remains positive. Here’s the script:

dt = 0.1;
g = 9.8;
u = 60;
ang = input( ’Launch angle in degrees: ’ );
ang = ang * pi / 180; % convert to radians
x = 0; y = 0; t = 0; % for starters
more(15)

while y >= 0



130 Essential MATLAB for Scientists and Engineers

disp( [t x y] );
t = t + dt;
y = u * sin(ang) * t - g * t^2 / 2;
x = u * cos(ang) * t;

end

The command more(n) gives you n lines of output before pausing. This is called paging . To get
another single line of output press Enter. To get the next page of n lines press the spacebar. To quit the
script press q.

Try the script for some different launch angles. Can you find the launch angle which gives the maximum
horizontal range (x)? What launch angle keeps it in the air for the longest time?

Note that when the loop finally ends, the value of y will be negative (check this by displaying y).
However, the position of the disp statement ensures that only positive values of y are displayed. If for
some reason you need to record the last value of t, say, before y becomes negative, you will need an
if statement inside the while, e.g.

if y >= 0
tmax = t;

end

Change the script so that it displays the last time for which y was positive (tmax), after the while
loop has ended.

Now suppose we want to plot the trajectory, as shown in Figure 8.1. Note in particular how the
trajectory stops above the x-axis. We need to use vectors now. Here is the script:

dt = 0.1;
g = 9.8;
u = 60;
ang = input( ’Launch angle in degrees: ’ );
ang = ang * pi / 180; % convert to radians
xp = zeros(1); yp = zeros(1); % initialize
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Figure 8.1 Projectile trajectory
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y = 0; t = 0;
i = 1; % initial vector subscript

while y >= 0
t = t + dt;
i = i + 1;
y = u * sin(ang) * t - g * t^2 / 2;
if y >= 0

xp(i) = u * cos(ang) * t;
yp(i) = y;

end
end

plot(xp, yp),grid

Note that the function zeros is used to initialize the vectors. This also clears any vector of the same
name hanging around in the workspace from previous runs.

Note also the use of an if inside the while loop to ensure that only co-ordinates of points above
the ground are added to the vectors xp and yp.

If you want the last point above the ground to be closer to the ground, try a smaller value of dt, e.g.
0.01.

break and continue

Any loop structure you are likely to encounter in scientific programming can be coded with either
‘pure’ for or while loops, as illustrated by the examples in this chapter. However, as a concession to
intellectual laziness I feel obliged to mention in passing the break and continue statements.

If there are a number of different conditions to stop a while loop you may be tempted to use a
for with the number of repetitions set to some accepted cut-off value (or even Inf) but enclosing if
statements which break out of the for when the various conditions are met. Why is this not regarded
as the best programming style? The reason is simply that when you read the code months later you will
have to wade through the whole loop to find all the conditions to end it, rather than see them all paraded
at the start of the loop in the while clause.

If you are going to insist on using break you will have to look it up in help for yourself!
The continue statement is somewhat less virulent than break . . .

Menus

Try the following program, which sets up a menu window, as in Figure 8.2:

Figure 8.2 A menu window
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k = 0;

while k ~= 3
k = menu( ’Click on your option’, ’Do this’, ...

’Do that’, ’Quit’ );
if k == 1

disp( ’Do this ... press any key to continue ...’ )
pause

elseif k == 2
disp( ’Do that ... press any key to continue ...’ )
pause

end

end;

Note:

1. The menu function enables you to set up a menu of choices for a user.
2. menu takes only string arguments. The first one is the title of the menu. The second and subsequent

strings are the choices available to the user.
3. The value returned by menu (k here) numbers the user’s choices.
4. Since one has no idea how many choices the user will make, menu is properly enclosed in an

indeterminate while loop. The loop continues to present the menu until the last option (in this
example) is selected.

5. You can design much more sophisticated menu-driven applications with the MATLAB GUIDE
(Graphical User Interface Development Environment). See Chapter 15.

Summary

• A for statement should be used to program a determinate loop, where the number of repeats is
known (in principle) before the loop is encountered. This situation is characterized by the general
structure plan:

Repeat N times:
Block of statements to be repeated

where N is known or computed before the loop is encountered for the first time, and is not
changed by the block.

• A while statement should be used to program an indeterminate repeat structure, where the exact
number of repeats is not known in advance. Another way of saying this is that these statements
should be used whenever the truth value of the condition for repeating is changed in the body of
the loop. This situation is characterized by the following structure plan:

While condition is true repeat:
statements to be repeated (reset truth value of condition).

Note that condition is the condition to repeat.
• The statements in a while construct may sometimes never be executed.
• Loops may be nested to any depth.
• The menu statement inside a while loop may be used to present a user with a menu of choices.
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Exercises

8.1 A person deposits $1000 in a bank. Interest is compounded monthly at the rate of 1 per cent per
month. Write a program which will compute the monthly balance, but write it only annually
for 10 years (use nested for loops, with the outer loop for 10 years, and the inner loop for 12
months). Note that after 10 years, the balance is $3300.39, whereas if interest had been com-
pounded annually at the rate of 12 per cent per year the balance would only have been $3105.85.
See if you can vectorize your solution.

8.2 There are many formulae for computing π (the ratio of a circle’s circumference to its diameter).
The simplest is

π

4
= 1 − 1/3 + 1/5 − 1/7 + 1/9 − . . . (8.4)

which comes from putting x = 1 in the series

arctan x = x − x
3

3
+ x

5

5
− x

7

7
+ x

9

9
− . . . (8.5)

(a) Write a program to compute π using Equation (8.4). Use as many terms in the series
as your computer will reasonably allow (start modestly, with 100 terms, say, and re-run
your program with more and more each time). You should find that the series converges
very slowly, i.e. it takes a lot of terms to get fairly close to π .

(b) Rearranging the series speeds up the convergence:

π

8
= 1

1 × 3
+ 1

5 × 7
+ 1

9 × 11
. . .

Write a program to compute π using this series instead. You should find that you need
fewer terms to reach the same level of accuracy that you got in (a).

(c) One of the fastest series for π is

π

4
= 6 arctan

1

8
+ 2 arctan

1

57
+ arctan

1

239
.

Use this formula to compute π . Don’t use the MATLAB function atan to compute the
arctangents, since that would be cheating. Rather use Equation (8.5).

(d) Can you vectorize any of your solutions (if you haven’t already)?
8.3 The following method of computing π is due to Archimedes:

1. Let A = 1 and N = 6
2. Repeat 10 times, say:

Replace N by 2N
Replace A by [2 − √

(4 −A2)]1/2

Let L = NA/2
Let U = L/√1 − A2/2
Let P = (U + L)/2 (estimate of π)
Let E = (U − L)/2 (estimate of error)
Print N , P , E

3. Stop.

Write a program to implement the algorithm.
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8.4 Write a program to compute a table of the function

f (x) = x sin

[
π(1 + 20x)

2

]

over the (closed) interval [−1, 1] using increments in x of (a) 0.2 (b) 0.1 and (c) 0.01.
Use your tables to sketch graphs of f (x) for the three cases (by hand), and observe that the
tables for (a) and (b) give totally the wrong picture of f (x).
Get your program to draw the graph of f (x) for the three cases, superimposed.

8.5 The transcendental number e (2.71828182845904 . . . ) can be shown to be the limit of

(1 + x)1/x
as x tends to zero (from above). Write a program which shows how this expression converges
to e as x gets closer and closer to zero.

8.6 A square wave of period T may be defined by the function

f (t) =
{

1 (0 < t < T )
−1 (−T < t < 0).

The Fourier series for f (t) is given by

F(t) = 4

π

∞∑
k=0

1

2k + 1
sin

[
(2k + 1)πt

T

]
.

It is of interest to know how many terms are needed for a good approximation to this infinite
sum. Taking T = 1, write a program to compute and plot the sum to n terms of the series for t
from −1.1 to 1.1 in steps of 0.01, say. Run the program for different values of n, e.g. 1, 3, 6, etc.
Superimpose plots of F(t) against t for a few values of n.
On each side of a discontinuity a Fourier series exhibits peculiar oscillatory behaviour known
as the Gibbs phenomenon. Figure 8.3 shows this clearly for the above series with n = 20 (and
increments in t of 0.01). The phenomenon is much sharper for n = 200 and t increments of 0.001.

8.7 If an amount of money A is invested for k years at a nominal annual interest rate r (expressed
as a decimal fraction), the value V of the investment after k years is given by

V = A(1 + r/n)nk
where n is the number of compounding periods per year. Write a program to compute V as
n gets larger and larger, i.e. as the compounding periods become more and more frequent,
like monthly, daily, hourly, etc. Take A = 1000, r = 4 per cent and k = 10 years. You should
observe that your output gradually approaches a limit. Hint: use a for loop which doubles n
each time, starting with n = 1.
Also compute the value of the formula Aerk for the same values of A, r and k (use the MAT-
LAB function exp), and compare this value with the values of V computed above. What do you
conclude?

8.8 Write a program to compute the sum of the series 12 + 22 + 32 . . . such that the sum is as large as
possible without exceeding 1000. The program should display how many terms are used in the sum.

8.9 One of the programs in Section 8.2 shows that an amount of $1000 will double in eight years
with an interest rate of 10 per cent. Using the same interest rate, run the program with initial
balances of $500, $2000 and $10000 (say) to see how long they all take to double. The results
may surprise you.

8.10 Write a program to implement the structure plan of Exercise 3.2.
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Figure 8.3 Fourier series: Gibbs phenomenon

8.11 Use the Taylor series

cos x = 1 − x
2

2!
+ x

4

4!
− x

6

6!
+ . . .

to write a program to compute cos x correct to four decimal places (x is in radians). See how
many terms are needed to get 4-figure agreement with the MATLAB function cos. Don’t make
x too large; that could cause rounding error.

8.12 A student borrows $10 000 to buy a used car. Interest on her loan is compounded at the rate
of 2 per cent per month while the outstanding balance of the loan is more than $5000, and at
1 per cent per month otherwise. She pays back $300 every month, except for the last month,
when the repayment must be less than $300. She pays at the end of the month, after the interest
on the balance has been compounded. The first repayment is made one month after the loan is
paid out. Write a program which displays a monthly statement of the balance (after the monthly
payment has been made), the final payment, and the month of the final payment.

8.13 A projectile, the equations of motion of which are given in Chapter 4, is launched from the
point O with an initial velocity of 60 m/s at an angle of 50◦ to the horizontal. Write a pro-
gram which computes and displays the time in the air, and horizontal and vertical displacement
from the point O every 0.5 seconds, as long as the projectile remains above a horizontal plane
through O.

8.14 When a resistor (R), capacitor (C) and battery (V ) are connected in series, a charge Q builds
up on the capacitor according to the formula

Q(t) = CV (1 − e−t/RC)
if there is no charge on the capacitor at time t = 0. The problem is to monitor the charge on the
capacitor every 0.1 seconds in order to detect when it reaches a level of 8 units of charge, given
that V = 9, R = 4 and C = 1. Write a program which displays the time and charge every 0.1 sec-
onds until the charge first exceeds 8 units (i.e. the last charge displayed must exceed 8). Once you
have done this, rewrite the program to display the charge only while it is strictly less than 8 units.

8.15 Adapt your program for the prime number algorithm in Section 8.2 to find all the prime factors
of a given number (even or odd).
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Errors and pitfalls

Objective

The objective of this chapter is to enable you to

• recognize and avoid different sorts of errors and pitfalls.

Even experienced programmers seldom get programs to run correctly the first time. In computer jargon,
an error in a program is called a bug . The story is that a hapless moth short-circuited two thermionic
valves in one of the earliest computers. This primeval (charcoaled) ‘bug’ took days to find. The process
of detecting and correcting such errors is therefore called debugging . There are a number of different
types of errors and pitfalls, some of which are peculiar to MATLAB, and some of which may occur
when programming in any language. These are discussed briefly in this chapter.

9.1 Syntax errors

Syntax errors are typing errors in MATLAB statements (e.g. plog instead of plot). They are the
most frequent type of error, and are fatal : MATLAB stops execution and displays an error message.
Since MATLAB is not even remotely as intelligent as you are, the messages can sometimes be rather
unhelpful—even misleading. A few common examples are given below.

")" expected, "end of line" found.
This is generated in response to something like

2*(1+3

What could possibly be more helpful than that?
You also get this message, quite properly, after something like

disp([’the answer is ’ num2str(2)]

because the closing right parenthesis has been omitted. However, if you omit the closing square
bracket instead, you get the somewhat unhelpful ";" expected, ")" found.

136
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"end" expected, "End of Input" found.
This seems pretty obvious, and usually is. But you also get it after the following

x = input( ’x: ’ );
if x < 0

disp( ’negative’ )
else if x == 0

disp( ’zero’ )
else

disp( ’positive’ )
end

where end is not missing. The actual error is that else if has been typed as two words
instead of one, as required in an elseif ladder. The effect of this is to open a new (nested) if
statement as part of the else. This naturally requires its own end. In fact, adding an extra end
at the end will suppress the error message, but may not give you what you expected (see Nested
ifs in Chapter 2).

Error using ==> * Inner matrix dimensions must agree.
This is generated for example by

[1 2 3] * [4 5 6]

since matrix multiplication cannot be applied to two row vectors. Presumably the array operation
.* was intended. You get a similar message after something like

[1 2 3] + [4 5]

because the vectors don’t have the same number of elements.

Missing operator, comma, or semi-colon.
This is a very common message. It is generated, for example, by the following statement:

if x < 0 disp(’negative’) end

(as long as x is defined) because there is no comma after the disp statement, or after

2(1+3)

because * (say) was left out after the 2.
But it can be misleading. For example, it occurs after the statement

2x = 3

(perhaps you meant to type x2 for a variable name). Maybe MATLAB thought you were trying to
evaluate a logical expression like 2*x == 3 in which case two operators were omitted. Who
knows?
You also get it after the following statement, which a BASIC programmer might try:

name$ = ’Joe’
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Expected a variable, function, or constant, found ...
This message occurs, quite naturally, after something like

x =

(you simply forgot to complete the statement) or

y = sin()

(you left out the argument of sin).
But you get the misleading variation Missing variable or function with

disp( "Hi there" )

or

king = "Henry VIII"

(for using double instead of single quotes).
There are a large number of possible syntax errors—you will probably have discovered a good few

yourself. With experience you will gradually become more adept at spotting your mistakes.

lasterr

The function lasterr returns the last error message generated.

9.2 Pitfalls and surprises

Incompatible vector sizes

Consider the following statements:

x = 0:pi/20:3*pi;
y = sin(x);
x = 0:pi/40:3*pi;
plot(x,y)

You’ll get the error message

Error using ==> plot
Vectors must be the same lengths.

because you forgot to recalculate y after reducing the x increments. whos reveals the problem:

x 1x121 ...
y 1x61 ...

Name hiding

Recall that a workspace variable ‘hides’ a script or function of the same name. The only way to access
such a script or function is to clear the offending variable from the workspace.

Furthermore, a MATLAB function hides a script of the same name, e.g. create a script called why.m
that displays some junk message, and then type why at the command line.

If you are worried that a variable or script which you are thinking of creating, say blob, may be a
MATLAB function, try help blob first.
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Other pitfalls for the unwary

It may be a good idea to work through the following sections in Chapter 2 again: Vectorization of
formulae: Danger! and A common mistake: forless loops!.

You might wonder why MATLAB is used at all, since it appears to have so many ways of catching
you out. There are two responses to this. Firstly, other languages have different pitfalls. Secondly, the
fact that powerful motor cars can kill people has never been accepted as an excuse for not owning or
driving one. You simply have to learn the rules of the road and drive carefully to avoid accidents.

9.3 Errors in logic

These are errors in the actual algorithm you are using to solve a problem, and are the most difficult to
find; the program runs, but gives the wrong answers! It’s even worse if you don’t realize the answers
are wrong. The following tips might help you to check out the logic.

• Try to run the program for some special cases where you know the answers.
• If you don’t know any exact answers, try to use your insight into the problem to check whether the

answers seem to be of the right order of magnitude.
• Try working through the program by hand (or use MATLAB’s excellent interactive debugging

facilities—see Chapter 10) to see if you can spot where things start going wrong.

9.4 Rounding error

At times, as we have seen, a program will give numerical answers which we know are wrong. This can
also be due to rounding error , which results from the finite precision available on the computer, i.e. eight
bytes per variable, instead of an infinite number.

Run the following program:

x = 0.1;
while x ~= 0.2
x = x + 0.001;
fprintf( ’%g %g\n’, x, x - 0.2 )

end

You will find that you need to crash the program to stop it, i.e. with Ctrl-break on a PC. The variable
x never has the value 0.2 exactly, because of rounding error. In fact, x misses 0.2 by about 8.3 × 10−17,
as can be seen from displaying the value of x - 0.2. It would be better to replace the while clause
with

while x <= 0.2

or, even better, with

while abs(x - 0.2) > 1e-6

In general, it is always better to test for ‘equality’ of two non-integer expressions as follows:

if abs((a-b)/a) < 1e-6 disp( ’a practically equals b’ ), end

or

if abs((a-b)/b) < 1e-6 ...
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Note that this equality test is based on the relative difference between a and b, rather than on the
absolute difference.

Rounding error may sometimes be reduced by a mathematical re-arrangement of a formula. Recall yet
again the common or garden quadratic equation

ax2 + bx + c = 0,

with solutions

x1 = (−b +
√

b2 − 4ac)/(2a),

x2 = (−b −
√

b2 − 4ac)/(2a).

Taking a = 1, b = −107 and c = 0.001 gives x1 = 107 and x2 = 0. The second root is expressed
as the difference between two nearly equal numbers, and considerable significance is lost. However, as
you no doubt remember, the product of the two roots is given by c/a. The second root can therefore be
expressed as (c/a)/x1. Using this form gives x2 = 10−10, which is more accurate.

9.5 Trapping and generating errors

The functions eval and lasterr may be used to trap errors when a user is trying to input a valid MAT-
LAB expression. See Chapter 12 for an example involving these functions in a try/catch structure,
which may be used to recover gracefully from an error (i.e. without the script crashing).

The error statement displays an error message and returns control to the keyboard. For example,
a program to compute the roots of the quadratic equation given above could have the following code
segment to prevent division by zero:

if (a == 0)
error( ’if a = 0 equation is not a quadratic, dum-dum!’ )

end

Summary

• Syntax errors are mistakes in the construction of MATLAB statements.
• Logical errors are errors in the algorithm used to solve a problem.
• Rounding error occurs because a computer can store numbers only to a finite accuracy.

Exercises

9.1 The Newton quotient
f (x + h) − f (x)

h

may be used to estimate the first derivative f ′(x) of a function f (x), if h is ‘small’. Write a
program to compute the Newton quotient for the function

f (x) = x2
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at the point x = 2 (the exact answer is 4) for values of h starting at 1, and decreasing by a factor
of 10 each time (use a for loop). The effect of rounding error becomes apparent when h gets
‘too small’, i.e. less than about 10−12.

9.2 The solution of the set of simultaneous equations

ax + by = c

dx + ey = f

(Exercise 3.6) is given by

x = (ce − bf )/(ae − bd),

y = (af − cd)/(ae − bd).

If (ae−bd) is small, rounding error may cause quite large inaccuracies in the solution. Consider
the system

0.2038x + 0.1218y = 0.2014,

0.4071x + 0.2436y = 0.4038.

Show that with four-figure floating point arithmetic the solution obtained is x = −1, y = 3. This
level of accuracy may be simulated in the solution of Ex. 3.6 with some statements like

ae = floor( a * e * 1e4 ) / 1e4

and appropriate changes in the coding. The exact solution, obtained without rounding, is x = −2,
y = 5. If the coefficients in the equations are themselves subject to experimental error, the
‘solution’ of this system using limited accuracy is totally meaningless.
MATLAB can of course solve linear equations directly, as we shall see in Chapter 18.
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Function M-files

Objective

The objective of this chapter is to enable you to

• represent your own functions with inline objects and function M-files.

We have already seen that MATLAB has a number of built-in (compiled) functions, e.g. sin, sqrt,
sum. You can verify that they are built-in by attempting to type them. Try type sin for example.
MATLAB also has some functions in the form of function M-files , e.g. fzero, why. You can see what’s
in them with type, e.g. type why.

MATLAB enables you to create your own function M-files. A function M-file is similar to a script file
in that it also has a .m extension. However, a function M-file differs from a script file in that a function
M-file communicates with the MATLAB workspace only through specially designated input and output
arguments .

Functions are indispensable when it comes to breaking a problem down into manageable logical pieces.
Short mathematical functions may be written as one-line inline objects .
This chapter outlines how to write your own functions, and also introduces MATLAB’s interactive

debugging facilities.

10.1 Some examples

Inline objects: harmonic oscillators

If two coupled harmonic oscillators, e.g. two masses connected with a spring on a very smooth table,
are considered as a single system, the output of the system as a function of time t could be given by
something like

h(t) = cos(8t) + cos(9t). (10.1)

You can represent h(t) at the command line by creating an inline object as follows:

h = inline( ’cos(8*t) + cos(9*t)’ );

142
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Figure 10.1 cos(8t) + cos(9t)

Now write some MATLAB statements in the Command Window which use your function h to draw the
graph in Figure 10.1 e.g.

x = 0 : pi/40 : 6*pi;
plot(x, h(x)), grid

Note:

• The variable t in the inline definition of h is the input argument . It is essentially a ‘dummy’
variable, and serves only to provide input to the function from the outside world. You can use any
variable name here; it doesn’t have to be the same as the one used when you invoke (use) the
function.

• You can create functions of more than one argument with inline. For example,

f = inline( ’x.^2 + y.^2’, ’x’, ’y’ );
f(1, 2)
ans =

5

Function M-files: Newton’s method again

Newton’s method may be used to solve a general equation f (x) = 0 by repeating the assignment

x becomes x − f (x)

f ′(x)
,

where f ′(x) (i.e. df/dx) is the first derivative of f (x) (see Chapter 19 for a derivation). The process
continues until successive approximations to x are close enough.

Suppose that f (x) = x3 + x − 3, i.e. we want to solve the equation x3 + x − 3 = 0 (another way
of stating the problem is to say we want to find the zero of f (x)). We have to be able to differentiate
f (x). That’s quite easy here: f ′(x) = 3x2 + 1. We could write inline objects for both f (x) and f ′(x),
but for this example we will use function M-files instead.

Use the Editor to create and save (in the current MATLAB directory) the function file f.m as follows:

function y = f(x)
y = x^3 + x - 3;

Then create and save another function file df.m:

function y = df(x)
y = 3*x^2 + 1;
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Now write a separate script file, newtgen.m (in the same directory), which will stop either when the
relative error in x is less than 10−8, or after 20 steps, say:

% Newton’s method in general
% exclude zero roots!

steps = 0; % iteration counter
x = input( ’Initial guess: ’ ); % estimate of root
re = 1e-8; % required relative error
myrel = 1;

while myrel > re & (steps < 20)
xold = x;
x = x - f(x)/df(x);
steps = steps + 1;
disp( [x f(x)] )
myrel = abs((x-xold)/x);

end;

if myrel <= re
disp( ’Zero found at’ )
disp( x )

else
disp( ’Zero NOT found’ )

end;

Note that there are two conditions that will stop the while loop: convergence, or the completion of
20 steps. Otherwise the script could run indefinitely.

Here is a sample run (with format long e), starting with x = 1:

Initial guess: 1
1.250000000000000e+000 2.031250000000000e-001
1.214285714285714e+000 4.737609329445558e-003
1.213412175782825e+000 2.779086666571118e-006
1.213411662762407e+000 9.583445148564351e-013
1.213411662762230e+000 -4.440892098500626e-016

Zero found at
1.213411662762230e+000

Note:

• The variable y in the function files f.m and df.m is the output argument . It is a dummy variable,
and defines how output will be sent back to the outside world.

By the way, you realize of course that you can use your own functions from the command line, don’t
you? For example,

� f(2)

should return 7 with f.m defined as above.

10.2 Basic rules

Try the following more general example, which returns the mean (avg) and standard deviation
(stdev) of the values in the vector x. Although there are two MATLAB functions to do this
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(mean and std), it is useful to have them combined into one. Write a function file stats.m:

function [avg, stdev] = stats( x ) % function definition line
% STATS Mean and standard deviation % H1 line
% Returns mean (avg) and standard % Help text
% deviation (stdev) of the data in the
% vector x, using Matlab functions

avg = mean(x); % function body
stdev = std(x);

Now test it in the Command Window with some random numbers, e.g.

r = rand(100,1);
[a, s] = stats(r);

Note the following points about function M-files in general:

• General form of a function
A function M-file name.m has the following general form:

function [ outarg1, outarg2, . . . ] = name( inarg1, inarg2, . . . )
% comments to be displayed with help
...
outarg1 = ... ;

outarg2 = ... ;
...

• function keyword
The function file must start with the keyword function (in the function definition line).

• Input and output arguments
The input and output arguments (inarg1 , outarg1 , etc.) are ‘dummy’ variables, and serve only
to define the function’s means of communication with the workspace. Other variable names may
therefore be used in their place when the function is called (referenced).
You can think of the actual input arguments being copied into the dummy input arguments when the
function is called. So when stats(r) is called in the above example, the actual input argument r
is copied into the input argument x in the function file. When the function returns (i.e. execution of
it is completed) the dummy output arguments avg and std in the function file are copied into the
actual output arguments a and s.

• Multiple output arguments
If there is more than one output argument, the output arguments must be separated by commas and
enclosed in square brackets in the function definition line, as shown.
However, when a function is called with more than one output argument, the actual output arguments
may be separated by commas or spaces.
If there is only one output argument square brackets are not necessary.

• Naming convention for functions
Function names must follow the MATLAB rules for variable names.
If the filename and the function definition line name are different, the internal name is ignored.

• Help text
When you type help function_name, MATLAB displays the comment lines that appear between
the function definition line and the first non-comment (executable or blank) line.
The first comment line is called the H1 line. The lookfor function searches on and displays only
the H1 line. The H1 lines of all M-files in a directory are displayed under the Description column
of the Desktop Current Directory browser.
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You can make help text for an entire directory by creating a file with the name Contents.m that
resides in the directory. This file must contain only comment lines. The contents of Contents.m
is displayed with the command

help directory_name

If a directory does not have a Contents.m file, this command displays the H1 line of each M-file
in the directory.

• Local variables: scope
Any variables defined inside a function are inaccessible outside the function. Such variables are
called local variables—they exist only inside the function, which has its own workspace separate
from the base workspace of variables defined in the Command Window.
This means that if you use a variable as a loop index, say, inside a function, it will not clash with a
variable of the same name in the workspace or in another function.
You can think of the scope of a variable as the range of lines over which the variable is accessible.

• Global variables
Variables which are defined in the base workspace are not normally accessible inside functions, i.e.
their scope is restricted to the workspace itself, unless they have been declared global, e.g.

global PLINK PLONK

If several functions, and possibly the base workspace, all declare particular variables as global, then
they all share single copies of those variables. MATLAB recommends that global variables be typed
in capital letters, to remind you that they are global.
The function isglobal(A) returns 1 if A is global, and 0 otherwise.
The command who global gives a list of global variables.
Use clear global to make all variables non-global, or clear PLINK to make PLINK
non-global.

• Persistent variables
A variable in a function may be declared persistent. Local variables normally cease to exist
when a function returns. Persistent variables, however, remain in existence between function calls.
A persistent variable is initialized to the empty array.
In the following example, the persistent variable count is used to count how many times the function
test is called:

function test
persistent count
if isempty(count)

count = 1
else

count = count + 1
end

Persistent variables remain in memory until the M-file is cleared or changed, e.g.

clear test

The function mlock inside an M-file prevents the M-file from being cleared. A locked M-file is
unlocked with munlock. The function mislocked indicates whether an M-file can be cleared or
not.
The Help entry on persistent declares confidently: ‘It is an error to declare a variable persistent
if a variable with the same name exists in the current workspace.’ However, this is definitely not the
case at the time of writing (I tried it!).
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• Functions that do not return values
You might want to write a function that doesn’t return values (such functions are called procedures
or subroutines in languages like Pascal and Fortran, and void in C++ and Java). In that case you
simply omit the output argument(s) and the equal sign in the function definition line. For example,
the following function will display n asterisks:

function stars(n)
asteriks = char(abs(’*’)*ones(1,n));
disp( asteriks )

See Chapter 12 for an explanation of how it works.
Write such a function file (stars.m), and test it out, e.g. stars(13) should produce 13 asterisks.

• Vector arguments
It should come as no surprise that input and output arguments may be vectors, e.g. the following
function generates a vector of n random rolls of a die:

function d = dice( n )
d = floor( 6 * rand(1, n) + 1 );

When an output argument is a vector, it is initialized each time the function is called, any previous
elements being cleared. Its size at any moment is therefore determined by the most recent call of the
function. For example, suppose the function test.m is defined as

function a = test
a(3) = 92;

Then if b is defined in the base workspace as

b =
1 2 3 4 5 6

the statement

b = test

results in

b =
0 0 92

• How function arguments are passed
If a function changes the value of any of its input arguments, the change is not reflected in the actual
input argument on return to the workspace (unless the function is called with the same input and
output argument—see below). For the technically minded, input arguments appear to be passed by
value.
You might think that passing a large matrix as an input argument by value is wasteful of memory,
and you would be correct. However, the designers of MATLAB were aware of this, and so an input
argument is only passed by value if a function modifies it (although the modification is not reflected
on return). If a function does not modify an input argument it is passed by reference.
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• Simulated pass by reference
A function may be called with the same actual input and output argument. For example, the following
function prune.m removes all the zero elements from its input argument:

function y = prune(x)
y = x(x ~= 0);

(if you can’t figure out why, refer to Subscripting with logical vectors in Chapter 5).
You can use it to remove all the zero elements of the vector x as follows:

x = prune(x)

• Checking the number of function arguments
A function may be called with all, some, or none of its input arguments. If called with no arguments,
the parentheses must be omitted. You may not use more input arguments than appear in its definition.
The same applies to output arguments—you may specify all, some, or none of them when you use the
function. If you call a function with no output arguments, the value of the first one in the definition
is returned.
There are times when a function may need to know how many input/output arguments are used on
a particular call. In that case, the functions nargin and nargout can be used to determine the
number of actual input and output arguments. For example,

function y = foo(a, b, c);
disp( nargin );
...

will display the number of input arguments present on each call of foo.
• Passing a variable number of arguments

The functions varargin and varargout allow you to call a function with any number of input
or output arguments. Since this facility involves packing arguments into a cell array , discussion of
it is deferred to Chapter 13.

Subfunctions

A function M-file may contain the code for more than one function. The first function in a file is the
primary function, and is the one invoked with the M-file name. Additional functions in the file are called
subfunctions , and are visible only to the primary function and to other subfunctions.

Each subfunction begins with its own function definition line. Subfunctions follow each other in any
order after the primary function.

Private functions

A private function is a function residing in a subdirectory with the name private. Private functions
are visible only to functions in the parent directory. See Help for more details.

P-code files

The first time a function is called during a MATLAB session it is parsed (‘compiled’) into pseudocode and
stored in memory to obviate the need for it to be parsed again during the current session. The pseudocode
remains in memory until you clear it with clear function_name (see Help for all the possibilities with
clear).



Function M-files 149

You can use the pcode function to save the parsed version of an M-file for use in later MATLAB
sessions, or by users from whom you want to hide your algorithms. For example, the command

pcode stats

parses stats.m and stores the resulting pseudocode in the file named stats.p.
MATLAB is very efficient at parsing so producing your own P-code files seldom makes much of a

speed difference, except in the case of large GUI applications where many M-files have to be parsed
before the application surfaces.

Improving M-file performance with the profiler
The MATLAB Profiler enables you to see where the bottlenecks in your programs are, e.g. which func-
tions are consuming most of the time. With this information you can often redesign programs to be more
efficient. See Using MATLAB: Development Environment: Improving M-File Performance - the
Profiler.

10.3 Function handles

Our script file newtgen.m in Section 10.1 solves the equation f (x) = 0, where f (x) is defined in the
function file with the specific name f.m. This is restrictive because to solve a different equation f.m
has to be edited first. To make newtgen even more general, it can be rewritten as a function M-file
itself, with a handle to f.m as an input argument. This process is made possible by the built-in function
feval, and the concept of a function handle, which we now examine.

Try the following on the command line:

fhandle = @sqrt;
feval(fhandle, 9)
feval(fhandle, 25)

Can you see that feval(fhandle, x) is the same as sqrt(x)? The statement

fhandle = @sqrt

creates a handle to the function sqrt. The handle provides a way of referring to the function, for
example in a list of input arguments to another function. A MATLAB function handle is similar to a
pointer in C++, although more general.

If you have still got a function file f.m defined for f (x) = x3 + x − 3, verify that

feval(@f, 2)

for example, returns the same value as f(2).

• In general, the first argument of feval is a handle to the function to be evaluated in terms of the
subsequent arguments of feval.

You can use feval inside a function to evaluate another function whose handle is passed as an
argument. as we will see now. As an example, we would like to rewrite our newtgen script as a
function newtfun, to be called as follows,

[x f conv] = newtfun( fh, dfh, x0 )

where fh and dfh are handles for the M-files containing f (x) and f ′(x) respectively, and x0
is the initial guess. The outputs are the zero, the function value at the zero, and an argument
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conv to indicate whether or not the process has converged. The complete M-file newtfun.m is as
follows:

function [x, f, conv] = newtfun(fh, dfh, x0)
% NEWTON Uses Newton’s method to solve f(x) = 0.
% fh is handle to f(x), dfh is handle to f’(x).
% Initial guess is x0.
% Returns final value of x, f(x), and
% conv (1 = convergence, 0 = divergence)

steps = 0; % iteration counter
x = x0;
re = 1e-8; % required relative error
myrel = 1;

while myrel > re & (steps < 20)
xold = x;
x = x - feval(fh, x)/feval(dfh, x);
steps = steps + 1;
disp( [x feval(fh, x)] )
myrel = abs((x-xold)/x);

end;

if myrel <= re
conv = 1;

else
conv = 0;

end;

f = feval(fh, x);

Try it out. Verify that you can call newtfun with less than three output variables. Also check
help newton.

A function handle gives you more than just a reference to the function. See Using MATLAB: Pro-
gramming and Data Types: Function Handles.

Functions, such as feval, fplot, newtfun, etc. which take function handles as arguments are
referred to by MATLAB as function functions , as opposed to functions which take numeric arrays as
arguments.

Use of a function handle to evaluate a function supersedes the earlier use of feval where a string
containing the function’s name was passed as an argument.

10.4 Command/function duality

In the earliest versions of MATLAB there was a clear distinction between commands like

clear
save junk x y z
whos

and functions like

sin(x)
plot(x, y)
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If commands had any arguments they had to be separated by blanks with no brackets. Commands altered
the environment, but didn’t return results. New commands could not be created with M-files.

From Version 4 onwards commands and functions are ‘duals’, in that commands are considered to be
functions taking string arguments. So

axis off

is the same as

axis( ’off’ )

Other examples are

disp Error!
hold(’on’)

This duality makes it possible to generate command arguments with string manipulations, and also to
create new commands with M-files.

10.5 Function name resolution

Remember that a variable in the workspace can ‘hide’ a built-in function of the same name, and a built-in
function can hide an M-file.

Specifically, when MATLAB encounters a name it resolves it in the following steps:

1. Checks if the name is a variable.
2. Checks if the name is a subfunction of the calling function.
3. Checks if the name is a private function.
4. Checks if the name is in the directories specified by MATLAB’s search path.

MATLAB therefore always tries to use a name as a variable first, before trying to use it as a script or
function.

10.6 Debugging M-files

Run-time errors (as opposed to syntax errors) which occur inside function M-files are often hard to
fix, because the function workspace is lost when the error forces a return to the base workspace. The
Editor/Debugger enables you to get inside a function while it is running, to see what’s going wrong.

Debugging a script
To see how to debug interactively, let’s first try the script newtgen.m in Section 10.3. Go through the
following steps.

• Open newtgen.m with the MATLAB Editor/Debugger. (Incidentally, have you found out that you
can run the Editor directly from the command line, e.g. with edit newtgen).
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You will have noticed that the lines in the Editor window are numbered. You can generate
these line numbers from the command line for reference purposes with the command dbtype:

dbtype newtgen

1 % Newton’s method in general
2 % exclude zero roots!
3
4 steps = 0; % iteration counter
5 x = input( ’Initial guess: ’ ); % estimate of root
6 re = 1e-8; % required relative error
7 myrel = 1;
8
9 while myrel > re & (steps < 20)

xold = x;
11 x = x - f(x)/df(x);
12 steps = steps + 1;
13 disp( [x f(x)] )
14 myrel = abs((x-xold)/x);
15 end;
16
17 if myrel <= re
18 disp( ’Zero found at’ )
19 disp( x )
20 else
21 disp( ’Zero NOT found’ )
22 end;

• To get into Debug mode you need to set a breakpoint just before where you think the problem might
be. Alternatively, if you just want to ‘step through’ a script line by line, set a breakpoint at the first
executable statement. The column to the right of the line numbers is called the breakpoint alley . You
can only set breakpoints at executable statements—these are indicated by dashes in the breakpoint
alley.
Set a breakpoint at line 4 (steps = 0;) by clicking in the breakpoint alley. You can remove a
breakpoint by clicking on the breakpoint icon, or using the Editor’s Breakpoints menu (this menu
also allows you to specify stopping conditions). You can also set/clear breakpoints on the current
line with the set/clear breakpoint button on the toolbar.

• Having set your breakpoints, run the script in the Editor by clicking the run button in the toolbar,
or with Debug -> Run (F5).
You can also run the script from the command line.

• When the script starts to run, there are two things in particular to notice.
First, the symbol K appears to left of the command-line prompt to remind you that MATLAB is in
debug mode.
Second, a green arrow appears just to the right of the breakpoint in the Editor. The arrow indicates
the next statement which is about to be executed.

• Now step through the script with Debug -> Step (F10). Note when line 5 is executed you need to
enter the value of x at the command line.

• When you get to line 11 (x = x - f(x)/df(x);) in this way, use Debug -> Step In (F11)
and the Debugger will take you into the functions f.m and df.m.

• Continue with F10. Note that output appears in the Command Window as each disp statement is
executed.

• There are a number of ways of examining variable values in debug mode:

1. Position the cursor to the left of the variable in the Editor. Its current value appears in a box—this
is called a datatip.
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2. Type the name of the variable in the Command Window.
3. Use the Array Editor: open the Workspace browser and double-click a variable. If you arrange

your windows carefully you can watch the value of a variable change in the Array Editor while
you step through a program.
Note that you can view variables only in the current workspace. The Editor has a Stack field to
the right of the toolbar where you can select the workspace. For example, if you have stepped
into f.m the current workspace is shown as f. At this point you can view variables in the
newtgen workspace by selecting newtgen in the Stack field.

You can use the Array Editor or the command line to change the value of a variable. You can then
continue to see how the script performs with the new value.

• Another useful debugging feature is Debug -> Go Until Cursor. This enables you to continue
running the script to the line where you’ve positioned the cursor.

• To quit debugging click the exit debug mode button in the Editor/Debugger toolbar, or select Debug
-> Exit Debug Mode.
If you forget to quit debugging you won’t be able to get rid of the K prompt on the command line!

Debugging a function

You can’t run a function directly in the Editor/Debugger—you have to set a breakpoint in the function
and run it from the command line. Let’s use newtfun.m as an example.

• Open newtfun.m in the Editor/Debugger.
• Set a breakpoint at line 8 (steps = 0;).
• In the Command Window set up function handles for f and df and call newtfun:

fhand = @f;
dfhand = @df;
[x f conv] = newtfun(fhand, dfhand, 10)

• Note that MATLAB goes into debug mode and takes you to the breakpoint in newtfun. Now you
can continue debugging as before.

Debugging may also be done from the command line with the debug functions. See help debug.

10.7 Recursion

Many (mathematical) functions are defined recursively , i.e. in terms of simpler cases of themselves, e.g.
the factorial function may be defined recursively as

n! = n × (n − 1)!

as long as 1! is defined as 1. MATLAB allows functions to call themselves; this process is called
recursion. The factorial function may be written recursively in an M-file fact.m like this:

function y = fact(n)
% FACT Recursive definition of n!

if n > 1
y = n * fact(n-1);

else
y = 1;

end;
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Recursive functions are usually written in this way: an if statement handles the general recursive
definition; the else part handles the special case (n = 1).

Although recursion appears deceptively simple, it is an advanced topic, as the following experiment
demonstrates. Insert the statement disp(n) into the definition of fact immediately above the if
statement, and run fact(5) from the command line. The effect is what you might expect: the integers
5 to 1 in descending order. Now move disp(n) to below the if statement, and see what happens. The
result is the integers 1 to 5 in ascending order now, which is rather surprising.

In the first case, the value of n is displayed each time fact is called, and the output is obvious enough.
However, there is the world of difference between a recursive function being called , and executed . In
the second case, the disp statement is only executed after the if has finished executing. And when is
that exactly? Well, when the initial call to fact takes place, n has the value 5, so the first statement in
the if is invoked. However, the value of fact(4) is not known at this stage, so a copy is made of
all the statements in the function which will need to be executed once the value of fact(4) is known.
The reference to fact(4) makes fact call itself, this time with a value of 4 for n. Again, the first
statement in the if is invoked, and MATLAB discovers that it doesn’t know the value of fact(3)
this time. So another (different) copy is made of all the statements that will have to be executed once
the value of fact(3) is known. And so each time fact is called, separate copies are made of all the
statements yet to be executed . Finally, MATLAB joyfully finds a value of n (1) for which it actually
knows the value of fact, so it can at last begin to execute (in reverse order) the pile of statements
which have been damming up inside the memory.

This discussion illustrates the point that recursion should be treated with respect. While it is perfectly
in order to use it in a example like this, it can chew up huge amounts of computer memory and time.

Summary

• Good structured programming requires real problem-solving programs to be broken down into
function M-files.

• The name of a function in the function definition line should be the same as the name of the
M-file under which it is saved. The M-file must have the extension .m.

• A function may have input and output arguments, which are usually its only way of communicating
with the workspace. Input/output arguments are dummy variables (placeholders).

• Comment lines up to the first non-comment line in a function are displayed when help is
requested for the function.

• Variables defined inside a function are local variables and are inaccessible outside the function.
• Variables in the workspace are inaccessible inside a function unless they have been declared

global.
• A function does not have to have any output arguments.
• Input arguments have the appearance of being passed by value to a function. This means that

changes made to an input argument inside a function are not reflected in the actual input argument
when the function returns.

• A function may be called with fewer than its full number of input/output arguments.
• The functions nargin and nargout indicate how many input and output arguments are used

on a particular function call.
• Variables declared persistent inside a function retain their values between calls to the function.
• Subfunctions in an M-file are accessible only to the primary function and to other subfunctions

in the same M-file.
• Private functions are functions residing in a sub-directory named private and are accessible

only to functions in the parent directory.
• Functions may be parsed (compiled) with the pcode function. The resulting code has the extension

.p and is called a P-code file.
• The Profiler enables you to find out where your programs spend most of their time.
• A handle for a function is created with @.
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A function may be represented by its handle. In particular the handle may be passed as an argument
to another function.

• feval evaluates a function whose handle is passed to it as an argument.
• MATLAB first tries to use a name as a variable, then as a built-in function, and finally as one of

the various types of function.
• Command/function duality means that new commands can be created with function M-files, and

that command arguments may be generated with string manipulations.
• The Editor/Debugger enables you to work through a script or function line-by-line in debug mode,

examining and changing variables on the way.
• A function may call itself. This feature is called recursion.

Exercises

10.1 Change the function stars of Section 10.2 to a function pretty so that it will draw a line
of any specified character. The character to be used must be passed as an additional input
(string) argument, e.g. pretty(6, ’$’) should draw six dollar symbols.

10.2 Write a script newquot.m which uses the Newton quotient [f (x + h) − f (x)]/h to estimate
the first derivative of f (x) = x3 at x = 1, using successively smaller values of h: 1, 10−1,
10−2, etc. Use a function M-file for f (x).
Rewrite newquot as a function M-file able to take a handle for f (x) as an input argument.

10.3 Write and test a function double(x) which doubles its input argument, i.e. the statement
x = double(x) should double the value in x.

10.4 Write and test a function swop(x, y) which will exchange the values of its two input
arguments.

10.5 Write your own MATLAB function to compute the exponential function directly from the
Taylor series:

ex = 1 + x + x2

2!
+ x3

3!
+ . . .

The series should end when the last term is less than 10−6. Test your function against the
built-in function exp, but be careful not to make x too large—this could cause rounding error.

10.6 If a random variable X is distributed normally with zero mean and unit standard deviation,
the probability that 0 ≤ X ≤ x is given by the standard normal function �(x). This is usually
looked up in tables, but it may be approximated as follows:

�(x) = 0.5 − r(at + bt2 + ct3),

where a = 0.4361836, b = −0.1201676, c = 0.937298, r = exp(−0.5x2)/
√

2π , and
t = 1/(1 + 0.3326x).
Write a function to compute �(x), and use it in a program to write out its values for 0 ≤ x ≤ 4
in steps of 0.1. Check: �(1) = 0.3413.

10.7 Write a function

function [x1, x2, flag] = quad( a, b, c )

which computes the roots of the quadratic equation ax2 + bx + c = 0. The input arguments
a, b and c (which may take any values) are the coefficients of the quadratic, and x1, x2 are
the two roots (if they exist), which may be equal. See Figure 3.1 in Chapter 3 for the structure
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plan. The output argument flag must return the following values, according to the number
and type of roots:

0: no solution (a = b = 0, c 
= 0);
1: one real root (a = 0, b 
= 0, so the root is −c/b);
2: two real or complex roots (which could be equal if they are real);

99: any x is a solution (a = b = c = 0).

Test your function on the data in Exercise 3.5.
10.8 The Fibonacci numbers are generated by the sequence

1, 1, 2, 3, 5, 8, 13, . . .

Can you work out what the next term is? Write a recursive function f(n) to compute the
Fibonacci numbers F0 to F20, using the relationship

Fn = Fn−1 + Fn−2,

given that F0 = F1 = 1.
10.9 The first three Legendre polynomials are P0(x) = 1, P1(x) = x, and

P2(x) = (3x2 − 1)/2. There is a general recurrence formula for Legendre polynomials, by
which they are defined recursively:

(n + 1)Pn+1(x) − (2n + 1)xPn(x) + nPn−1(x) = 0.

Define a recursive function p(n,x) to generate Legendre polynomials, given the form of P0
and P1. Use your function to compute p(2,x) for a few values of x, and compare your
results with those using the analytic form of P2(x) given above.



Part II

More Advanced Topics
and Applications

Part I has been concerned with those aspects of MATLAB which you need in order to get to grips
with the essentials of MATLAB and of scientific programming. Part II contains a mixture of interesting
applications and more advanced topics which don’t really fall under the heading of ‘essentials’.
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Vectors as arrays: working
with subscripts

Objective

The objective of this chapter is to enable you to

• solve problems which involve working carefully with array subscripts.

In MATLAB an array is just another name for a vector. So why have a whole chapter on arrays, when
we have already been using vectors for most of the book? It is helpful to talk about arrays (as opposed to
vectors) when we are concerned with handling individual elements by means of their subscripts, rather
than with the vector as a whole.

In this chapter we look at a number of problems which are best solved by treating vectors as arrays,
usually with the help of for loops.

11.1 Update processes

In Chapter 8 (Update processes) we considered the problem of calculating the temperature of orange
juice (OJ) in a can as it cools in a fridge. This is an example of an update process , where the main variable
is repeatedly updated over a period of time. We now examine how to solve this problem more generally.

The OJ is initially at temperature 25◦ C when it is placed in the fridge, where the ambient temperature
F is 10◦. The standard way to solve such an update process is to break the time period up into a number
of small steps, each of length dt . If Ti is the temperature at the beginning of step i, we can get Ti+1
from Ti as follows:

Ti+1 = Ti − K dt (Ti − F), (11.1)

where K is a physical constant, and units are chosen so that time is in minutes.

Unit time steps

We first solve the problem using a unit time step, i.e. dt = 1. The simplest way is to use scalars for the
time and the temperature, as we saw in Chapter 8 (although we didn’t use a unit time step there):

K = 0.05;
F = 10;
T = 25; % initial temperature of OJ

159
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for time = 1:100 % time in minutes
T = T - K * (T - F); % dt = 1
if rem(time, 5) == 0

disp( [time T] )
end

end;

Note the use of rem to display the results every 5 minutes: when time is an integer multiple of 5 its
remainder when divided by 5 will be zero.

While this is undoubtedly the easiest way of writing the script, we cannot easily plot the graph of
temperature against time. In order to do that, time and T must be vectors. The index of the for loop
must be used as the subscript of each element of T. Here’s the script (update1.m):

K = 0.05;
F = 10;
time = 0:100; % initialize vector time
T = zeros(1,101); % pre-allocate vector T
T(1) = 25; % initial temperature of OJ

for i = 1:100 % time in minutes
T(i+1) = T(i) - K * (T(i) - F); % construct T

end;

disp([ time(1:5:101)’ T(1:5:101)’ ]); % display results
plot(time, T), grid % every 5 mins

See Figure 11.1 for typical graphs.
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Note:

• The statement time = 0:100 sets up a (row) vector for time where time(1) has the value 0
minutes, and time(101) has the value 100 minutes. This is necessary because the first subscript
of a MATLAB vector must be 1.

• The statement T = zeros(1,101) sets up a corresponding (row) vector for the temperature,
with every element initialized to zero (again there must be 101 elements, because the first element
is for the temperature at time zero). This process is called pre-allocation. It serves two important
purposes.

(a) Firstly, it clears a vector of the same name left over from a previous run. This could cause a
conflict when attempting to display or plot T against time, if the vectors have different sizes.
To see this, run update1 as it stands. It should work perfectly. Now suppose you decide to do
the calculations over a shorter time period, say 50 minutes. Remove the zeros statement, and
make the following additional two changes and re-run the script (but don’t clear the workspace):

time = 0:50; % initialize vector time
...

for i = 1:50 % time in minutes

This time you get an error message:

??? Error using ==> plot
Vectors must be the same lengths.

whos will reveal that time is correctly 51-by-1, but T is still 101-by-1. The plot command
naturally requires these vectors to have the same lengths.
The problem is that, while the operation 0:50 redefines time correctly, the for loop does not
have the same effect on T. Since T is being updated element by element, the unused elements
from 51 to 101 from the previous run are left untouched in the workspace. Pre-allocation of the
correct number of elements to T with zeros avoids this problem.

(b) Secondly, although the script will work without the zeros statement, as we have seen, it will
be much slower , since then T has to be redimensioned during each repeat of the for loop, in
order to make space for a new element each time.
It’s extremely instructive to do an experiment using a vector size of 10000 elements, say, i.e.

time = 0:9999; % initialize vector time
T = zeros(1,10000); % pre-allocate vector T
...
for i = 1:10000
...

(and comment out the disp and plot statements, since these will obscure the issue). My
Pentium II takes 0.99 seconds to run the script with pre-allocation of T, but 13.19 seconds to
run without pre-allocation—more than 10 times longer. This could be a critical consideration in
a script which does a lot of such element-by-element processing.

• The first element of T is set to the initial temperature of the OJ. This is the temperature at time zero.
• The for loop computes the values for T(2), . . . , T(101).

This arrangement ensures that temperature T(i) corresponds to time(i).
• The colon operator is used to display the results at 5-minute intervals.
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Non-unit time steps
It’s not always appropriate and/or accurate enough to take dt = 1 in Equation (11.1). There is a standard
way of generating the solution vector in MATLAB, given (almost) any value of dt . We introduce a more
general notation to do this.

Call the initial time a, and the final time b. If we want time steps of length dt , the number m of such
steps will be

m = (b − a)/dt.

The time at the end of step i will therefore be a + i dt .
The following script, update2.m, implements this scheme. It has some additional features. It prompts

you for a value of dt , and checks that this value gives an integer number of steps m. It also asks you
for the output interval opint (the intervals in minutes at which the results are displayed in table form)
and checks that this interval is an integer multiple of dt . Try the script with same sample values, e.g.
dt = 0.4 and opint = 4.

K = 0.05;
F = 10;
a = 0; % initial time
b = 100; % final time
load train
dt = input( ’dt: ’ );
opint = input( ’output interval (minutes): ’ );
if opint/dt ~= fix(opint/dt)
sound(y, Fs)
disp( ’output interval is not a multiple of dt!’ )
break

end;

m = (b - a) / dt; % m steps of length dt
if fix(m) ~= m % make sure m is integer
sound(y, Fs)
disp( ’m is not an integer - try again!’ );
break

end;

T = zeros(1,m+1); % pre-allocate (m+1) elements
time = a:dt:b;
T(1) = 25; % initial temperature

for i = 1:m
T(i+1) = T(i) - K * dt * (T(i) - F);

end;

disp( [time(1:opint/dt:m+1)’ T(1:opint/dt:m+1)’] )
plot(time, T),grid

Note:

• The vectors T and time must each have m + 1 elements, because there are m time steps, and we
need an extra element for the initial value of each vector.

• The expression opint/dt gives the index increment for displaying the results, e.g. dt = 0.1 and
opint = 0.5 displays every (0.5/0.1)th element, i.e. every 5th element.
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Using a function

The really cool way of solving this problem is to write a function to do it. This makes it a lot easier
to generate a table of results for different values of dt , say, using the function from the command line.
Here is update2.m rewritten as a function cooler.m:

function [time, T, m] = cooler( a, b, K, F, dt, T0 )

m = (b - a) / dt; % m steps of length dt
if fix(m) ~= m % make sure m is integer
disp( ’m is not an integer - try again!’ );
break

end;

T = zeros(1,m+1); % pre-allocate
time = a:dt:b;
T(1) = T0; % initial temperature

for i = 1:m
T(i+1) = T(i) - K * dt * (T(i) - F);

end;

Suppose you want to display a table of temperatures against time at 5 minute intervals, using dt = 1
and dt = 0.1. Here is how to do it (in the Command Window):

dt = 1;
[t T m] = cooler(0, 100, 0.05, 10, dt, 25);
table(:,1) = t(1:5/dt:m+1)’;
table(:,2) = T(1:5/dt:m+1)’;
dt = 0.1;
[t T m] = cooler(0, 100, 0.05, 10, dt, 25);
table(:,3) = T(1:5/dt:m+1)’;
format bank
disp(table)

Output:

0 25.00 25.00
5.00 21.61 21.67
10.00 18.98 19.09
...

100.00 10.09 10.10

Note:

• The advantage of using a function which generates a vector output variable is that even if you
forget to pre-allocate the vector inside the function (with zeros) MATLAB automatically clears
any previous versions of the output vector before returning from the function.

• The variable table is a two-dimensional array (or matrix). Recall that the colon operator may be
used to indicate all elements of a matrix in a row or column. So table(:,1) means the elements
in every row and column 1, i.e. the entire first column. The vectors t and T are row vectors, so they
must be transposed before being inserted into columns 1 and 2 of table.
The third column of table is inserted in a similar way.

• The results in the third column (for dt = 0.1) will be more accurate.
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Exact solution

This cooling problem has an exact mathematical solution. The temperature T (t) at time t is given by the
formula

T (t) = F + (T0 − F)e−Kt , (11.2)

where T0 is the initial temperature. You can insert values for this exact solution into a fourth column of
table, by vectorizing the formula, as follows:

tab(:,4) = 10 + (T(1)-10)*exp(-0.05 * t(1:5/dt:m+1)’);

The enlarged table should look something like this:

0 25.00 25.00 25.00
5.00 21.61 21.67 21.68
10.00 18.98 19.09 19.10
...

Note that the numerical solution generated by Equation (11.1) gets more accurate as dt gets smaller. That
is because Equation (11.2) (the exact solution) is derived from Equation (11.1) in the limit as dt → 0.

Exercise

To complete the analysis of the cooling problem, you may like to superimpose graphs for different
values of K and draw them in different colours. It would also be useful to label each graph at some
convenient place, e.g. with the label ’K = 0.08’. The command

gtext( ’text’ )

causes an arrow to appear on the graphics screen. You can position the arrow with a mouse or the
arrow keys. When you click (or press Enter), the specified text appears at that point.
The function gtext takes a string argument. If you want to label with a variable numeric value, use
sprintf to convert a number into a string. It works just like fprintf, except that the output goes
into a string variable, e.g.

gtext( sprintf(’K = %5.3f’, K) )

• Draw some graphs, on the same set of axes, for different values of K , in different colours, and
label them. Figure 11.1 shows what to aim for.
Also superimpose the exact solution, given by Equation (11.2).

Plots can also be labelled interactively in plot editing mode or with the Properties Editor.

11.2 Frequencies, bar charts and histograms

A random walk

Imagine an ant walking along a straight line, e.g. the x-axis. She starts at x = 40. She moves in steps
of one unit along the line. Each step is to the left or the right with equal probability. We would like a
visual representation of how much time she spends at each position.

Start by running the following script, ant.m:

f = zeros(1,100);
x = 40;
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for i = 1:1000
r = rand;
if r >= 0.5

x = x + 1;
else

x = x - 1;
end
f(x) = f(x) + 1;

end

Now enter the statement bar(f) in the Command Window. You should get a graph which is similar to
the one in Figure 11.2.

Note:

• The function rand returns a random number in the range 0–1. If it’s greater than 0.5, the ant moves
right (x = x + 1), otherwise she moves left
(x = x - 1).

• The vector f has 100 elements, initially all zero. We define f(x) as the number of times the ant
lands at position x. Suppose her first step is to the right, so x has the value 41. The statement

f(x) = f(x) + 1

then increases the value of f(41) to 1, meaning that she has been there once. When she next
wanders past this value of x, f(41) will be increased to 2, meaning she’s been there twice.
When I ran this script, the final value of f(41) was 33—the number of times the ant was there.

• f(x) is called a frequency distribution , and the graph obtained from bar(f) is called a bar graph.
Each element of f is represented by a vertical bar of proportional height. See also help bar.

• The script ant.m simulates the random movement of the ant. If you re-run it, you will get a
different bar graph, because rand will generate a different sequence of random numbers. Simulation
is discussed more fully in Chapter 17.

Histograms

Another helpful way of representing data is with a histogram .
As an example, suppose 12 students write a test and obtain the following marks (expressed as per-

centages), which are assigned to the vector m:

0 25 29 35 50 55 55 59 72 75 95 100

The statement hist(m) will draw a histogram. Try it. The histogram shows the distribution of marks
in 10 ‘bins’ (categories) which are equally spaced between the minimum (0) and maximum (100) marks
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in the set of data. The number of bins (10 by default) can be specified by a second argument, e.g.
hist(m, 25).

To generate the frequences plotted by hist use the following form (which does not actually draw the
histogram):

[n x] = hist(m)

n is a vector containing the frequences, viz.

1 0 2 1 0 4 0 2 0 1 1

For example, there is one mark in the first bin (0–9), none in the second (10–19), two in the third, etc.
The second output vector x contains the midpoints of the bins, such that bar(x, n) plots the

histogram. See Help for more details.
Note the subtle difference between a histogram and a bar graph. The values plotted by hist are

computed from the distribution of values in a vector, whereas bar generates a bar graph directly from
the values themselves.

11.3 Sorting

One of the standard applications of arrays is sorting a list of numbers into, say, ascending order. Although
MATLAB has its own sorting function (sort), you may be interested in how sorting algorithms actually
work.

Bubble Sort

The basic idea is that the unsorted list is assigned to a vector. The numbers are then ordered by a process
which essentially passes through the vector many times, swopping consecutive elements that are in the
wrong order, until all the elements are in the right order. Such a process is called a Bubble Sort, because
the smaller numbers rise to the top of the list, like bubbles of air in water. (In fact, in the version shown
below, the largest number will ‘sink’ to the bottom of the list after the first pass, which really makes
it a ‘Lead Ball’ sort.) There are many other methods of sorting, such as the Quick Sort, which may be
found in most textbooks on computer science. These are generally more efficient than the Bubble Sort,
but its advantage is that it is by far the easiest method to program. A structure plan for the Bubble Sort
is as follows:

1. Input the list X
2. Set N to the length of X
3. Repeat N − 1 times with counter K:

Repeat N − K times with counter J :
If Xj > Xj+1 then

Swop the contents of Xj and Xj+1
4. Stop since the list X is now sorted.

As an example, consider a list of five numbers: 27, 13, 9, 5 and 3. They are initially input into the
vector X. Part of MATLAB’s memory for this problem is sketched in Table 11.1. Each column shows
the list during each pass . A stroke in a row indicates a change in that variable during the pass as the
script works down the list. The number of tests (Xj > Xj+1?) made on each pass is also shown in the
table. Work through the table by hand with the structure plan until you understand how the algorithm
works.

Sorting algorithms are compared by calculating the number of tests (comparisons) they carry out, since
this takes up most of the execution time during the sort. On the Kth pass of the Bubble Sort there are
exactly N − K tests, so the total number of tests is

1 + 2 + 3 + · · · + (N − 1) = N(N − 1)/2
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Table 11.1 Memory during a Bubble Sort

1st pass 2nd pass 3rd pass 4th pass

X1: 27/13 13/9 9/5 5/3
X2: 13/27/9 9/13/5 5/9/3 3/5
X3: 9/27/5 5/13/3 3/9 9
X4: 5/27/3 3/13 13 13
X5: 3/27 27 27 27

4 tests 3 tests 2 tests 1 test

(approximately N2/2 for large N). For a list of five numbers there are therefore 10 tests, but for
10 numbers there are 45 tests. The computer time needed goes up as the square of the length of
the list.

The function M-file bubble.m below departs slightly from the structure plan above, which will make
N − 1 passes, even if the list is sorted before the last pass . Since most real lists are partially sorted, it
makes sense to check after each pass if any swops were made. If none were, the list must be sorted, so
unnecessary (and therefore time-wasting) tests can be eliminated. In the function, the variable sorted
is used to detect when the list is sorted, and the outer loop is coded instead as a non-deterministic while
loop. Here it is:

function y = bubble( x )
n = length(x);
sorted = 0; % flag to detect when sorted
k = 0; % count the passes

while ~sorted
sorted = 1; % they could be sorted
k = k + 1; % another pass
for j = 1:n-k % fewer tests on each pass

if x(j) > x(j+1) % are they in order?
temp = x(j); % no ...
x(j) = x(j+1);
x(j+1) = temp;
sorted = 0; % a swop was made

end
end

end;

y = x;

You can test it on the command line to sort say 20 random numbers as follows:

r = rand(1,20);
r = bubble( r );

Note how bubble changes its input vector.
On my PC bubble takes 1.81 seconds to sort 200 random numbers, but 7.31 seconds to sort

400 numbers. This is consistent with the theoretical result obtained above.
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MATLAB’s sort

The built-in MATLAB function sort returns two output arguments: the sorted list (in ascending order)
and a vector containing the indexes used in the sort, i.e. the positions of the sorted numbers in the original
list. If the random numbers

r = 0.4175 0.6868 0.5890 0.9304 0.8462

are sorted with the command

[y,i] = sort(r)

the output variables are

y = 0.4175 0.5890 0.6868 0.8462 0.9304
i = 1 3 2 5 4

For example, the index of the second largest number (0.5890) is 3, which is its subscript in the original
unsorted list r.

As a matter of fact, the built-in functions max and min also return second output variables giving
indexes.

MATLAB’s sort is very fast. My PC takes 2.36 seconds to sort a list of one million random numbers!
This is because (a) a Quick Sort is used, and (b) the script has been compiled as a built-in function; this
makes for faster code.

Summary

• Although an array in MATLAB is just another name for a vector, it is helpful sometimes to think
of vectors as arrays of subscripted elements, rather than as single entities.

• zeros pre-allocates a vector, initializing every element to zero. This is quicker than redimen-
sioning a vector element-by-element in a for loop. It also clears a vector of the same name from
the workspace, avoiding a possible size conflict.

• A function should be used to set up a vector generated by an update process. The vector should
be returned as an output variable. This will automatically clear a vector of the same name from
the workspace, even if it is not pre-allocated inside the function.

• bar draws a bar graph of frequency distributions.
• hist draws a histogram of frequency distributions according to a specified number of bins.
• sort returns a list sorted into ascending order, and the indexes used in the sort.

Exercises

11.1 In a model of bacteria growth, time is broken up into a number of small steps each of length
dt hours. If we define Ni as the number of bacteria present at the beginning of step i, we can
get Ni+1 from Ni as follows:

Ni+1 = Ni + r dt Ni,

where r is the growth rate per hour. At time t = 0 there are 1000 bacteria.
Write a script to generate a vector N containing the bacteria numbers from time t = 0 to 12
hours, given r = 0.1 and dt = 1 hour.
Construct a matrix bact with 12 rows and two columns, with the time in hours in the first
column, and the bacteria numbers N in the second column.



Vectors as arrays: working with subscripts 169

Now run the script with dt = 0.5, and place the bacteria numbers, at hourly intervals, in the
third column of bact.
The exact number of bacteria at time t hours is given by the formula

N(t) = 1000 ert .

Use this formula to put the exact number of bacteria, also at hourly intervals, into the fourth
column of bact.
Your results, with format bank , should be like this:

0 1000.00 1000.00 1000.00
1.00 1100.00 1102.50 1105.17
2.00 1210.00 1215.51 1221.40
...

12.00 3138.43 3225.10 3320.12

11.2 Write a program which finds the mean of the elements of an array, and the element of the array
furthest in absolute value from the mean, e.g. if the array elements are

-4, 0, 5, -1, 10, 3, 4, 1, 2, 4

the element 10 is furthest from the mean.
11.3 Write a script which generates a list of five random numbers, and then removes them from the

list one at a time in ascending order, displaying the shortened list each time one number is
removed.

11.4 Develop a structure plan to find and display all the prime numbers less than 1000 (1 and 2 are
regarded as primes, and will probably have to be dealt with separately). Write the script. Hint:
use an array to store the primes as they are found.
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Arrays of characters: strings

Objective

The objective of this chapter is to introduce you to

• strings and facilities for handling them.

A string in MATLAB is a collection of characters enclosed in apostrophes (single quotes). In this chapter
we look at strings (also sometimes referred to as text) in a little more detail.

12.1 Basic concepts

Assignment

Strings may be assigned to variables by enclosing them in apostrophes:

s = ’Hi there’;

If an apostrophe is to be included in the string it must be repeated:

s = ’o’’clock’;

Input

Strings may be entered in response to the input statement in two ways:

1. You can enclose the string in apostrophes when you enter it, or
2. you can use an additional argument ’s’ with input, in which case you must not use apostrophes

when entering the string, e.g.

� name = input( ’Enter your surname: ’, ’s’ );
Enter your surname: O’Reilly

170
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Strings are arrays

A MATLAB string is actually an array with each element representing one character in the string. For
example, if

s = ’Napoleon’

whos reveals that s is 1-by-8. The statement

s(8:-1:1)

will therefore display the string ‘Napoleon’ backwards.
If a string must contain an apostrophe, the apostrophe must be repeated when entering the string.

However, only one apostrophe is actually stored in the string. For example, in

name = ’M’’kombe’

name(3) is ‘k’.
You can exploit the vector nature of strings in a number of ways, e.g. to find and/or remove certain

characters. The following code will remove all the blanks from the string s.

s = ’Twas brillig and the slithy toves’;
nonblanks = s ~= ’ ’;
s(nonblanks)

nonblanks is a logical vector with 0’s corresponding to the positions of the blanks in s. Using
nonblanks as a subscript then removes the blanks (Subscripting with logical vectors, Chapter 5).

Concatenation of strings

Because strings are vectors, they may be concatenated (joined) with square brackets, e.g.

king = ’Henry’;
king = [king, ’ VIII’]

ASCII codes, double and char

A MATLAB character is represented internally by a 16-bit numerical value. The character codes start at
1; the first 127 such codes are the ASCII codes. For example, the ASCII codes for the letters ‘A’ to ‘Z’
are the consecutive integers from 65 to 90, while the codes for ‘a’ to ‘z’ run from 97 to 122. (Appendix
D gives all the ASCII codes.)

You can see the ASCII codes for a string with double, e.g.

double(’Napoleon’)

returns

78 97 112 111 108 101 111 110
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Conversely, char returns a string from the ASCII codes, e.g.

char(65:70)

returns

ABCDEF

You can use char and double to generate rows of identical characters, e.g.

x = char(ones(4,20)*double(’#’))

gives

####################
####################
####################
####################

Can you see why? The function ones(4,20) generates 4 rows and 20 columns of 1’s. Multiplying by
double(’#’) replaces all the 1’s with the ASCII code for # (whatever that is), and char converts
the ASCII codes back to text.

If a character variable is involved in an arithmetic expression, MATLAB uses the ASCII code of the
character in the calculation, e.g. if

s = ’a’

the expression s + 1 returns 98, since the ASCII code for ‘a’ is 97.
Array operations can be performed on strings. For example, if s is a string of letters, the expression

char(s+1) returns each letter in the string advanced by one place in the alphabet.
The relationship between characters and their ASCII codes means you can do neat things like this:

alpha = double(’a’):double(’z’)

Can you see what the result will be?

fprintfing strings

Strings may be displayed with fprintf using the %s format specifier. They can be right- or left-justified,
and truncated, e.g. the statements

fprintf( ’%8sVIII\n’, ’Henry’ )
fprintf( ’%-8sVIII\n’, ’Henry’ )
fprintf( ’%.3sVIII\n’, ’Henry’ )

result in (the boxes indicate spaces)

���HenryVIII
Henry���VIII
HenVIII

To display single characters with fprintf use the %c format specifier.
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Comparing strings

Try out the following statements:

s1 = ’ann’;
s2 = ’ban’;
s1 < s2

You should get the logical vector

1 0 0

because the logical expression s1 < s2 compares the ASCII codes of the two strings element by
element (the strings must have the same length). This is the basis of alphabetical sorting.

The function strcmp(s1, s2) compares the two strings s1 and s2, returning 1 if they are identical,
and 0 otherwise. (The strings do not have to be the same length.)

Other string functions

blanks
generates a string of blanks.

deblank
removes trailing blanks from a string.

int2str, num2str
convert their numeric arguments to strings. These functions are handy for labelling graphs with
text which includes variable numeric values.

ischar
returns 1 if its argument is a string, and 0 otherwise.

lower, upper
convert strings to lower- and uppercase respectively.

sprintf
works like fprintf, except that it returns a string according to the format specification, e.g.

s = sprintf( ’Value of K: %g’, K )

returns the string Value of K: 0.015’ in s if K has the value 0.015.
See help matlab\strfun for a complete list of string-handling functions.

12.2 Two-dimensional strings

You can create a two-dimensional character array in the same way as you would a matrix, except that
each row must have the same length; if necessary pad the shorter strings with blanks on the right. For
example,

nameAndAddress = [’Adam B Carr ’; ’21 Barkly Ave’; ’Discovery ’]
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results in

nameAndAddress =

Adam B Carr
21 Barkly Ave
Discovery

An easier way to create two-dimensional strings is to use the char function which automatically pads
the shorter strings for you:

nameAndAddress = char(’Adam B Carr’, ’21 Barkly Ave’, ’Discovery’)

Remember that if you use single-subscript notation the array is referenced by column, so

nameAndAddress(1:3)

returns

A2D

(the first letter of each row).

12.3 eval and text macros

If a MATLAB expression is ‘encoded’ as a string in a variable t, say, the function eval(t) causes the
expression in t to be evaluated. (Strictly, the string is interpreted .) This is called a text macro facility.
For example, if the assignment

s = ’x = -b/(2*a);’

is made, eval(s) makes MATLAB interpret the text in s as the statement

x = -b/(2*a);

which is then carried out with the current values of a, b and c.
Another use of eval could be as a ‘user-friendly’ way of inputting a function from the Command

Window. Consider the following script:

f = input( ’Enter function (of x) to be plotted: ’, ’s’ );
x = 0:0.01:10;
plot(x, eval(f)),grid

Here’s how the command line looks after you enter the function:

� Enter function (of x) to be plotted: exp(-0.5*x) .* sin(x)

Use of the second argument ’s’ for input means that you don’t need to enclose the text in quotes.
Whatever expression you enter will be plotted, as long as it’s a function of x.

Note that you should use feval (Chapter 10: Function handles) rather than eval whenever possible,
since feval is faster and code using it can be compiled with the MATLAB compiler.
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Error trapping with eval and lasterr

The use of eval to evaluate an expression which is input by a user can misfire if the user enters an
invalid expression; the script grinds to a halt. However, eval together with the function lasterr
enables you to trap and correct errors like this without the script crashing.

The function eval can take a second (string) argument, representing an expression to be executed if
an error is encountered in the first argument. This is demonstrated below with lasterr, which Matlab
sets to the error message corresponding to the last error encountered. lasterr can also be set to any
string value. See help for more details.

As an example, the script below will continue running until you enter a valid expression.

lasterr(’1’); % true (not empty)
while ~isempty(lasterr)
lasterr(’’); % false (empty)
f = input( ’Enter expression: ’, ’s’ );
f = [f ’;’]; % suppress display when evaluated
eval(f, ’disp(’’Dum-dum!’’)’); % trap error and display message
if ~isempty(lasterr)
lasterr
fprintf( ’Please try again!\n’ )

end
end

(note the use of double apostrophes in the second (string) argument of eval).

eval with try...catch

I am indebted to Dean Redelinghuys and Grant Grobbelaar for the following example, which provides
an alternative way of dealing with errors generated by eval.

The user is invited to define variables in the workspace by typing them in. The user’s input is evaluated
by eval. If an invalid assignment is entered, the script would normally crash. However, if an error occurs
in the try clause of a try...catch statement, control is transferred to the catch clause, which deals
with the error. The try...catch statement is embedded in a while loop which perseveres until the
user eventually enters a valid assignment statement!

stopflag = 0;
while ~stopflag

clc; % Clear the screen!
disp(’Your variables are:’)
whos
a = input(’Enter Variable definition or empty to quit: ’,’s’);
if isempty(a),
stopflag = 1;

else
try
eval([a ’;’]); % Force no output to command window!

catch
disp(’Invalid variable assignment statement. The error was:’);
disp([’ ’, lasterr]);
disp(’Press a key to continue’);
pause

end
end;

end
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Summary

• A MATLAB string (of text) is an array, where each element represents one character in the string.
• Since a string is usually enclosed in apostrophes (single quotes), if the apostrophe itself is to be

included in the string, it must be repeated.
• Strings may be concatenated (joined) with square brackets.
• Characters are represented by the numerical ASCII codes.

double returns the ASCII codes for the characters in a string.
char returns the string represented by the ASCII codes in an array.

• When strings (of equal length) are compared in a logical expression, the ASCII codes of the two
strings are compared element by element, resulting in a logical array.

• char may be used to create two-dimensional character arrays.
• eval interprets its string argument as a MATLAB statement. This is the basis for text macros in

MATLAB.
eval can be used with lasterr and try...catch to trap and correct errors.

Exercises

12.1 Write a function deblank(s) which removes all the blanks from the string s.
12.2 Write a function toupper(s) which translates the lowercase letters in the string s to upper-

case.
12.3 Write a function ispalin(s) which returns 1 if the string s is a palindrome, or 0 if it is

not. A palindrome is a sentence which reads the same backwards as forwards, such as

Reward a Toyota drawer

(someone who draws Toyotas, presumably), or Napoleon’s classic lament,

Able was I ere I saw Elba

Assume there is no punctuation, remove all the blanks first, and convert all letters to lowercase,
say.

12.4 A formula, called Zeller’s Congruence, may be used to compute the day of the week, given the
date (within a certain range of dates). The formula is

f = 1 + ([2.6m − 0.2] + k + y + [y/4] + [c/4] − 2c) modulo 7,

where the square brackets denote the integer part, modulo 7 means the remainder when divided
by 7, and
• m is the month number, with January and February taken as months 11 and 12 of the

preceding year, so March is then month 1, and December month 10;
• k is the day of the month;
• c is the century number;
• y is the year in the century;
• f = 1 means Sunday, 2 means Monday, etc.

For example, 23rd August 1963 is represented by m = 6, k = 23, c = 19, y = 63; 1st January
1800 is represented by m = 11, k = 1, c = 17, y = 99.
Write a function dayofweek(d) which takes the date in the form of a vector d = [dd mm
yyyy] (e.g. [9 3 2001] for 9 March 2001) and returns the day of the week (in words) on
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which it falls. Test your program on some known dates, like today’s date, or your birthday, or
7 December 1941 (Pearl Harbour Sunday). Hint: use a 2-D array of characters for the days of
the week.
The formula will not work if you go too far back. Shakespeare and Cervantes both died on 23
April 1616. Shakespeare died on a Tuesday, but Cervantes died on a Saturday! This is because
England had not yet adopted the Gregorian calendar and was consequently ten days behind the
rest of the world. The formula will also not work if you go too far forward.

12.5 Write a script which will input a number in binary code (e.g. 1100—no blanks between the
digits) and write its decimal value (12 in this case). Hint: Input the number as a string, and
make use of the fact that the string is an array.

12.6 Write a function rightfill(s, n) which fills the string s with blanks from the right until
its total length is n characters. If s is longer than n characters, it must be truncated.

12.7 Write a function alphacomp(str1, str2) which returns 1 if the string str1 is ahead of
str2 alphabetically, and 0 otherwise.
The function should work even if the strings are not of equal length.
If you are feeling energetic, you might like to use alphacomp as the basis for sorting a list
of words alphabetically.
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Advanced data structures

Objectives

The objectives of this chapter are to introduce you to

• structures,
• cells and cell arrays.

13.1 Structures

Up to now we have seen arrays with only one type of element—all numeric, or all character. A MATLAB
structure allows you to put different kinds of data in its various fields. For example, we can create a
structure called student with one field for a student’s name,

student.name = ’Thandi Mangwane’;

a second field for her student ID number,

student.id = ’MNGTHA003’;

and a third field for all her marks to date,

student.marks = [36 49 74];

To see the whole structure, enter its name:

student

student =
name: ’Thandi Mangwane’

id: ’MNGTHA003’
marks: [36 49 74]
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Here’s how to access her second mark:

student.marks(2)
ans =

49

Note the use of the dot to separate the structure name from its fields when creating it and when accessing
its fields.

To add further elements to the structure, use subscripts after the structure name:

student(2).name = ’Charles Wilson’
student(2).id = ’WLSCHA007’
student(2).marks = [49 98]

(the original student, Thandi Mangwane, is now accessed as student(1)). Note that field sizes do not
have to conform across elements of a structure array: student(1).marks has three elements, while
student(2).marks has only two elements.

The student structure now has size 1-by-2: it has two elements, each element being a student
with three fields. Once a structure has more than one element MATLAB does not display the contents
of each field when you type the structure name at the command line. Instead, it gives the following
summary:

student

student =
1x2 struct array with fields:

name
id
marks

You can also use fieldnames(student) to get this information.
A structure array can be preallocated with the struct function. See Help.
A structure field can contain any kind of data, even another structure—why ever not? Thus we can

create a structure course of courses taken by students, where one field is the name of the course,
and another field is a student structure with information on all the students taking that particular
course:

course.name = ’MTH101’;
course.class = student;
course

course =
name: ’MTH101’
class: [1x2 struct]

We can set up a second element of course for a different class of students:

course(2).name = ’PHY102’;
course(2).class = ...

To see all the courses:

course(1:2).name
ans =
MTH101
ans =
PHY102
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To see all the students in a particular course:

course(1).class(1:2).name
ans =
Thandi Mangwane
ans =
Charles Wilson

There is a curious function called deal which ‘deals inputs to outputs’. You can use it to generate
‘comma-separated variable lists’ from structure fields:

[name1, name2] = deal(course(1).class(1:2).name);

(but you don’t actually need the commas here . . . ).
You can use the rmfield function to remove fields from a structure.

13.2 Cell arrays

A cell is the most general data object in MATLAB. A cell may be thought of as a ‘data container’,
which can contain any type of data: numeric arrays, strings, structures, or cells. An array of cells (and
they almost always occur in arrays) is called a cell array . While you might think a cell sounds the same
as a structure, a cell is more general, and there are also notational differences (which are confusing!).

Assigning data to cell arrays

There are a number of ways of assigning data to cell arrays.

• Cell indexing:

c(1,1) = {rand(3)};
c(1,2) = {char(’Bongani’, ’Thandeka’)};
c(2,1) = {13};
c(2,2) = {student};

c =
[3x3 double] [2x8 char ]
[ 13] [1x2 struct]

(assuming that the structure student created above still exists). Here the round brackets on the
lefthand side of the assignments refer in the normal way to the elements of the cell array. What
is different are the curly braces on the right. Curly braces indicate the contents of a cell; on the
righthand side of an assignment they are technically cell array constructors (remember that each
element of this array is a cell).
So read the first statement as

‘Construct a cell containing rand(3) and assign the cell to element 1,1 of the cell array c.’

• Content indexing:

c{1,1} = rand(3);
c{1,2} = char(’Bongani’, ’Thandeka’);
c{2,1} = 13;
c{2,2} = student;



Advanced data structures 181

Here the curly braces on the left indicate the contents of the cell element at that particular location.
So read the first statement as

‘The contents of the cell at location 1,1 becomes rand(3).’

• You can use the curly braces to construct an entire cell array in one statement:

b = {[1:5], rand(2); student, char(’Jason’, ’Amy’)}
b =

[1x5 double] [2x2 double]
[1x2 struct] [2x5 char ]

A cell may contain another cell array; nested curly braces may be used to create nested cell arrays.
• The cell function enables you to preallocate empty cell arrays, e.g.

a = cell(3,2) % empty 3-by-2 cell array
a =

[] []
[] []
[] []

You can then use assignment statements to fill the cells, e.g.

a(2,2) = {magic(3)}

Note: if you already have a numeric array with a certain name, don’t try to create a cell array of the
same name by assignment without first clearing the numeric array. If you don’t clear the numeric array,
MATLAB will generate an error (it will think you are trying to mix cell and numeric syntaxes).

Accessing data in cell arrays

You can access cell contents using content indexing (curly braces):

r = c{1,1}
r =

0.4447 0.9218 0.4057
0.6154 0.7382 0.9355
0.7919 0.1763 0.9169

To access a subset of a cell’s contents you can concatenate curly braces and round brackets if necessary:

rnum = c{1,1}(2,3)
rnum =

0.9355

Here the curly braces (content indexing) indicate the contents of the cell array element c(1,1), which is
a 3-by-3 numeric matrix. The subscripts (2,3) then indicate the appropriate element within the matrix.

Curly braces may be concatenated to access nested cell arrays.

Using cell arrays

Cell arrays come into their own when you need to access (different types of) data as ‘comma-separated
variable lists’, as the next example demonstrates.

The functions varargin and varargout, which allow a function to have any number of input or
output arguments, are none other than cell arrays. The function testvar has a variable number of input
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arguments, which are doubled into the variable number of output arguments (assuming that the number
of output arguments does not exceed the number of input arguments):

function [varargout] = testvar(varargin)

for i = 1:length(varargin)
x(i) = varargin{i}; % unpack the input args

end

for i = 1:nargout % how many output arguments?
varargout{i} = 2*x(i); % pack up the output args

end

Command line:

[a b c] = testvar(1, 2, 3, 4)
a =

2
b =

4
c =

6

When a function is called with the input argument varargin MATLAB automatically packs the list
of corresponding input arguments into a cell array. You then simply unpack the cell array inside the
function using the curly brace content indexing. You similarly pack up the output arguments into the cell
array varargout.

Note that, should your function have some compulsory input and output arguments, varargin and
varargout must appear at the end of their respective argument lists.

MATLAB has a discussion on when to use cell arrays in the section Organizing Data in Cell Arrays,
to be found in Using MATLAB: Programming and Data Types: Structures and Cell Arrays.

Displaying and visualizing cell arrays

The function celldisp recursively displays the contents of a cell array.
The function cellplot draws a visualization of a cell array. Figure 13.1 depicts the contents of the

cell array c, created above. Non-empty array elements are shaded.

13.3 Classes and objects

You’d have to be living face down in a moon crater not to have heard about object-oriented
programming. Tom Swan.

Object-oriented programming is an exceptionally bad idea which could only have originated
in California. Edsger Dijkstra.

MATLAB, along with most other modern programming languages, espouses the cause of object-oriented
programming, and has all the usual paraphernalia associated with this paradigm: classes, objects, encap-
sulation, inheritance, operator overloading, etc., etc.

Object-oriented programming is a subject which requires an entire book to do justice to it. If you
want to learn about the concepts, there are many excellent books on the subject. If you want to see
how MATLAB implements object-oriented programming, consult the online Help: Using MATLAB:
Programming and Data Types: MATLAB Classes and Objects.
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13

Figure 13.1 Result of cellplot(c)

Summary

• A MATLAB structure allows you to store different types of data in its various fields.
• Arrays of structures may be created.
• A cell is the most general data object in MATLAB, and can store any type of data.
• An array of cells is called a cell array—each cell in the array can store different types of data,

including other cell arrays.
• A cell array is constructed with curly braces {}.
• The contents of cell in a cell array is accessed with content indexing (curly braces).
• Cell elements in a cell array are accessed in the usual way with round brackets (cell indexing).
• Arguments of functions using a variable number of arguments are packed into cell arrays.
• The function cellplot gives a visualization of a cell array.
• MATLAB implements object-oriented programming.
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More graphics

Objectives

The objectives of this chapter are to introduce you to

• Handle Graphics;
• editing plots;
• animation;
• saving and exporting graphs;
• colour, lighting and the camera.

14.1 Handle Graphics

The richness and power of MATLAB graphics is made possible by its Handle Graphics objects . There
is a very helpful section devoted to Handle Graphics in the online documentation Using MATLAB:
Graphics. What follows is of necessity a brief summary of its main features.

Handle Graphics objects are the basic elements used in MATLAB graphics. The objects are arranged
in a parent-child inheritance structure as shown in Figure 14.1. For example, Line and Text objects are
children of Axes objects. This is probably the most common parent-child relationship. Axes objects define
a region in a figure window and orient their children within this region. The actual plots in an Axes
object are Line objects. The axis labels and any text annotations are Text objects. It is important to be
aware of this parent-child hierarchy when you want to manipulate graphics objects using their handles.

Well, what exactly is the handle of a graphics object? Whenever MATLAB creates a graphics objects
it automatically creates a handle to that object. You can get the handle of the object using a function
that explicitly returns the handle of a graphics object, or you can create the handle explicitly when you
draw the graphics object. The handle itself has a floating point representation, but its actual value need
not concern you. What is more important is to save its name and then to use the handle to change or
manipulate your graphics object.

The root object is the only object whose handle is 0. There is only one root object, created by MATLAB
at startup. All other objects are its descendants, as you can see in Figure 14.1.

Getting handles

Here’s how to get handles:

184
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• • •

• • •

Root

Figure

Axes

Line Surface Text

Figure 14.1 Parent-child relationships of Handle Graphics objects (from top to bottom)

• The functions that draw graphics objects can also be used to return the handle of the object drawn, e.g.

x = 0:pi/20:2*pi;
hsin = plot(x, sin(x))
hold on
hx = xlabel(’x’)

hsin is the handle of the Line object (the sine graph), and hx is the handle of the Text object (the
x axis label) in the current Axes object.
The command

figure(h)

where h is an integer, creates a new figure, or makes figure h the current figure. h is the handle of
the figure object.

• There are three functions that return the handle of particular graphics objects:
gcf gets the handle of the current figure, e.g.

hf = gcf;

gca gets the handle of the current axes.
gco gets the handle of the current graphics object, which is the last graphics object created or

clicked on. For example, draw the sine graph above and get its handle hsin. Click on the
graph in the figure window. Then enter the command

ho = gco

in the Command Window. ho should be set to the handle of the sine graph (it should have the
same numeric value as hsin).

Graphics object properties and how to change them

Once you have the handle of a graphics object you can use it to change the properties of that object. As
an example, draw a sine graph and get its handle, as demonstrated above:

x = 0:pi/20:2*pi;
hsin = plot(x, sin(x))
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Now suppose you want to make the graph much thicker. Enter the following command:

set(hsin, ’linewidth’, 4);

You should get a nice fat sine curve!
linewidth is just one of the many properties of our graphics object. To see all the property names

of an object and their current values use get(h) where h is the object’s handle. In the case of our sine
graph:

get(hsin)
Color = [0 0 1]
EraseMode = normal
LineStyle = -
LineWidth = [4]
Marker = none
MarkerSize = [6]
MarkerEdgeColor = auto
MarkerFaceColor = none
XData = [ (1 by 41) double array]
YData = [ (1 by 41) double array]
ZData = []

BeingDeleted = off
ButtonDownFcn =
Children = []
Clipping = on
CreateFcn =
DeleteFcn =
BusyAction = queue
HandleVisibility = on
HitTest = on
Interruptible = on
Parent = [100.001]
Selected = off
SelectionHighlight = on
Tag =
Type = line
UIContextMenu = []
UserData = []
Visible = on

You can change any property value with the set function:

set(handle, ‘PropertyName’, PropertyValue)

The command set(handle) lists all the possible property values (where appropriate).
You can get an object’s handle and change its properties all in the same breath. For example,

set(gcf, ’visible’, ’off’)

makes the current figure invisible (without closing it—i.e. it’s still ‘there’). No prizes for guessing how
to make it visible again . . .

Property names are not case-sensitive, and you can abbreviate them to as few letters as make them
unique. For example, you can abbreviate the type property to ty:
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get(hsin,’ty’)
ans =
line

(helpful if you don’t know what type of objects you are dealing with!).
The different types of graphics objects don’t all have the same set of properties, although there are

some properties which are common to all graphics objects, such as children, parent, type, etc.

A vector of handles

If a graphics object has a number of children the get command used with the children property
returns a vector of the children’s handles. Sorting out the handles is then quite fun, and demonstrates
why you need to be aware of the parent-child relationships!

As an example, plot a continuous sine graph and an exponentially decaying sine graph marked with
o’s in the same figure:

x = 0:pi/20:4*pi;
plot(x, sin(x))
hold on
plot(x, exp(-0.1*x).*sin(x), ’o’)
hold off

Now enter the command

hkids = get(gca,’child’)

You will see that a vector of handles with two elements is returned. The question is, which handle
belongs to which plot? The answer is that the handles of children of the axes are returned in the reverse
order in which they are created , i.e. hkids(1) is the handle of the exponentially decaying graph, while
hkids(2) is the handle of the sine graph. So now let’s change the markers on the decaying graph, and
make the sine graph much bolder:

set(hkids(1), ’marker’, ’*’)
set(hkids(2), ’linew’, 4)

You should get the plots shown in Figure 14.2.
If you are desperate and don’t know the handles of any of your graphics objects you can use the

findobj function to get the handle of an object with a property value that uniquely identifies it. In the
original version of the plots in Figure 14.2 the decaying plot can be identified by its marker property:

hdecay = findobj(’marker’, ’o’ )

Graphics object creation functions

Each of the graphics objects shown in Figure 14.1 (except the root object) has a corresponding creation
function, named after the object it creates. See help for details.

Parenting

By default, all graphics objects are created in the current figure. However, you can specify the parent of
an object when you create it. For example,

axes(’Parent’, figure_handle, ... )

creates an axes in the figure with handle figure_handle. You can also move an object from one parent
to another by redefining its parent property:

set(gca, ’Parent’, figure_handle)
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Figure 14.2 Result of manipulating a figure using the handles of axes children

Positioning figures

At startup MATLAB determines the default position and size of the figure window, according to the size
of your computer screen. You can change this by setting the Position property of the figure object.

Before you tamper with the figure’s Position property you need to know the dimensions of your
screen—this is one of the root object’s properties. For example,

get(0, ’screensize’)
ans =

1 1 800 600

i.e. my screen is 800 by 600 pixels. The units of Screensize are pixels by defaults. You can (naturally)
change the units by setting the root’s Units property. For example,

set(0, ’units’, ’normalized’)

normalizes the width and height of the screen to 1. This is useful when you are writing an M-file which
is to be run on different computer systems.

Having sorted out the size of your screen, you can then fiddle with the figure Position property,
which is defined as a vector

[left bottom width height]

left and bottom define the position of the first addressable pixel in the lower left corner of the
window, specified with respect to the lower left corner of the screen. width and height define the
size of the interior of the window (excluding the window border).

You can normalize the figure’s Unit property as well as the root’s Unit property. You can then
position figures absolutely, without reference to variations in screen size. For example, the following
code normalizes units and creates two figures in the upper half of the screen:

set(0, ’units’, ’normalized’)
h1 = figure(’units’, ’normalized’, ’visible’, ’off’)
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h2 = figure(’units’, ’normalized’, ’visible’, ’off’)
set(h1, ’position’, [0.05 0.5 0.45 0.35], ’visible’, ’on’)
set(h2, ’position’, [0.53 0.5 0.45 0.35], ’visible’, ’on’)

Note that the Visible property is first set to off to avoid the figures being drawn in the default position
when they are created. They are only drawn when their positions have been redefined. Alternatively you
can do everything when the figures are created:

h1 = figure(’un’, ’normalized’, ’pos’, [0.05 0.5 0.45 0.35])

14.2 Editing plots

There are a number of ways of editing plots.

Plot edit mode

To see how this works draw a graph, e.g. the friendly old sine. There are several ways to activiate plot
edit mode:

• Select Tools -> Edit Plot in the figure window.
• Click on the Edit Plot selection button in the figure window toolbar (arrow pointing roughly north-

west).
• Run the plotedit command in the Command Window.

When a figure is in plot edit mode the toolbar selection button is highlighted. Once you are in plot edit
mode select an object by clicking on it. Selection handles will appear on the selected object.

As an exercise, get the sine graph into plot edit mode and try the following:

• Select the graph (click on it). Selection handles should appear.
• Right click on the selected object (the graph). A context menu appears.
• Use the context menu to change the graph’s line style and colour.
• Use the Insert menu to insert a legend (although this makes more sense where you have multiple

plots in the figure).
• Insert a text box inside the figure close to the graph as follows. Click on the Insert Text selection

button in the toolbar (the capital A). The cursor changes shape to indicate that it is in text insertion
mode. Move the insertion point until it touches the graph somewhere and click. A text box appears.
Enter some text in it.
You can use a subset of TEX characters and commands in text objects. For example, the text xk

in Figure 19.1 was produced with the string {\itx_k}. See the entry Text property under
String[1] in the online Help for a list of a available TEX characters and commands.

• Having labelled the graph you can change the format of the labels. Select the label and right-click.
Change the font size and font style.

• Play around with the Insert Arrow and Insert Line selection buttons on the toolbar to see if you can
insert lines and arrows on the graph.

To exit plot edit mode, click the selection button or uncheck the Edit Plot option on the Tools menu.

Property Editor

The Property Editor is more general than plot edit mode. It enables you to change object properties
interactively, rather than with the set function. It is ideal for preparing presentation graphics.

There are numerous ways of starting the Property Editor (you may already have stumbled onto some):
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• If plot edit mode is enabled you can:

– Double-click on an object.
– Right-click on an object and select Properties from the context menu.

• Select Figure Properties, Axes Properties or Current Object Properties from the figure Edit
menu.

• Run the propedit command on the command line.

To experiment with the Property Editor it will be useful to have multiple plots in a figure:

x = 0:pi/20:2*pi;
hsin = plot(x,sin(x))
hold on
hcos = plot(x,cos(x))
hold off

Start the Property Editor and work through the following exercises:

• The navigation bar at the top of the Property Editor (labelled Edit Properties for:) identifies the
object being edited. Click on the down arrow at the right of the navigation bar to see all the objects
in the figure. You will notice that there are two line objects. Immediately we are faced with the
problem of identifying the two line objects in our figure. The answer is to give each of them tags
by setting their Tag properties.
Go back to the figure and select the sine graph. Back in the Property Editor the navigation bar
indicates you are editing one of the line objects. You will see three tabs below the navigation bar:
Data, Style and Info. Click the Info tab, and enter a label in the Tag box, e.g. sine. Press Enter.
The tag sine immediately appears next to the selected line object in the navigation bar.
Give the cosine graph a tag as well (start by selecting the other line object).

• Select the sine graph. This time select the Style tab and go beserk changing its colour, line style,
line width and markers.

• Now select the axes object. Use the Labels tab to insert some axis labels. Use the Scale tab to
change the y axis limits, for example.
Note that if you were editing a 3-D plot you would be able to use the Viewpoint tab to change the
viewing angle and to set various camera properties.

Have fun!

14.3 Animation

There are three facilities for animation in MATLAB:

• The comet and comet3 functions can be used to draw comet plots, as we mentioned briefly in
Chapter 7.

• The getframe function may be used to generate ‘movie frames’ from a sequence of graphs. The
movie function can then be used to play back the movie a specified number of times.
The MATLAB online documention has the following script in Using MATLAB: Graphics: Creating
Specialized Plots: Animation. It generates 16 frames from the Fast Fourier Transforms of complex
matrices:

for k = 1:16
plot(fft(eye(k+16)))
axis equal
M(k) = getframe;

end
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Now play it back, say five times:

movie(M, 5)

You can specify the speed of the playback, among other things. See help.
• The most versatile (and satisfying) way of creating animations is by using the Handle Graphics

facilities. Two examples follow.

Animation with Handle Graphics
For starters, run the following script, which should show the marker o tracing out a sine curve, leaving
a trail behind it:

% animated sine graph
x = 0;
y = 0;
dx = pi/40;
p = plot(x, y, ’o’, ’EraseMode’, ’none’); % ’xor’ shows only current point

% ’ none’ shows all points
axis([0 20*pi -2 2])

for x = dx:dx:20*pi;
x = x + dx;
y = sin(x);
set(p, ’XData’, x, ’YData’, y)
drawnow

end

Note:

• The statement

p = plot(x, y, ’o’, ’EraseMode’, ’none’);

achieves a number of things. It plots the first point of the graph. It saves the handle p of the plot for
further reference. And it specifies that the Erasemode property is none, i.e. the object must not
be erased when it is drawn again. To achieve complete animation, set this property to xor—try it
now. Then the object is erased each time it is redrawn (in a slightly different position), creating the
classic animation effect.

• The statement

set(p, ’XData’, x, ’YData’, y)

sets the x and y data values of the object p to the new values generated in the for loop, and
‘redraws’ the object. However, it is not drawn on the screen immediately—it joins the ‘event queue’,
where it waits until it is flushed out.

• Finally, the drawnow function flushes the event queue and draws the object on the screen so that
we can see the fruit of our labours.
As help drawnow will reveal, there are four events that flush the event queue:

– a return to the MATLAB prompt—this is how you have seen all the graphs you’ve drawn up to
now;

– hitting a pause statement;
– executing a getframe command;
– executing a drawnow command.
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For example, you could make the marker move in a more stately fashion by replacing drawnow
with pause(0.05)—that’s 0.05 seconds.

The next example is based on one in the Animation section of the MATLAB documentation. It involves
chaotic motion described by a system of three non-linear differential equations having a ‘strange attractor’
(known as the Lorenz strange attractor). The system can be written as

dy

dt
= Ay,

where y(t) is a vector with three components, and A is a matrix depending on y:

A(y) =
[ −8/3 0 y(2)

0 −10 10
−y(2) 28 −1

]
.

The following script solves the system approximately using Euler’s method (a more accurate numerical
solution is discussed in Chapter 19), and shows the solution orbiting about two different attractors without
settling into a steady orbit about either. Figure 14.3 shows the situation after a few thousand points have
been plotted.

A = [ -8/3 0 0; 0 -10 10; 0 28 -1 ];
y = [35 -10 -7]’;
h = 0.01;
p = plot3(y(1), y(2), y(3), ’o’, ...

’erasemode’, ’none’, ’markersize’, 2);
axis([0 50 -25 25 -25 25])
hold on
i = 1;
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Figure 14.3 The Lorenz strange attractor
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while 1
A(1,3) = y(2);
A(3,1) = -y(2);
ydot = A*y;
y = y + h*ydot;
% Change colour occasionally
if rem(i,500) == 0

set(p, ’color’, [rand, rand, rand])
end
% Change co-ordinates
set(p, ’XData’, y(1), ’YData’, y(2), ’ZData’, y(3))
drawnow
i=i+1;

end

If all the points are all plotted in the same colour you eventually wouldn’t be able to see the new points
generated: a large area of the screen would be filled with the drawing colour. The colour is therefore set
randomly after every 500 points are plotted.

14.4 Colour etc.

Colormaps

MATLAB graphics can generate a rich variety of colours. You may be wondering how.
The following script shows a view of the Earth from space:

load earth
image(X); colormap(map)
axis image

(axis image is the same as axis equal except that the plot box fits tightly around the data). For
a variation use hot as the argument of colormap instead of map.

The matrix X loaded from earth is 257-by-250. Each of the elements of X is an integer in the range
1–64. For example, here is a 3-by-3 submatrix of X (somewhere in north-east Africa):

X(39:41,100:102)
ans =

14 15 14
10 16 10
10 10 10

The colormap function generates by default a 64-by-3 matrix with elements in the range 0–1. The
values in the three columns represent the intensities of the red, green and blue (RGB) video components
respectively. Each row of this matrix therefore defines a particular colour by specifying its RGB com-
ponents. The image function maps each element of its argument to a row in the colormap to find the
colour of that element. For example, X(40,101) has the value 16. Row 16 of the colormap has the
three values

0.6784 0.3216 0.1922

(reddish) as you can easily verify with the statements

cm = colormap(map);
cm(16,:)
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(The map colormap is also loaded from earth.) These values of RGB specify the colour of the pixel
40 from the top and 101 from the left in the figure. Incidentally, you can use the statement

[xp yp] = ginput

to get the co-ordinates of a point in the figure (crosshairs appears in the figure; click on the point whose
co-ordinates you want). Clicking on the point in north-east Africa results in

xp =
101.8289 % from the left (column of X)

yp =
40.7032 % from the top (row of X)

Note that xp and yp correspond to the columns and rows of X respectively (imagine the matrix X
superimposed on the figure).

There are a number of functions provided by MATLAB which generate colormaps, e.g. jet (the
default), bone, flag, prism. See help graph3d for a complete list.

You can sample the various colormaps quite nicely with the following statement, which shows 64
vertical strips, each in a different colour:

image(1:64),colormap(prism)

Or why not generate some random colours?

randmap(:,1) = rand(64,1);
randmap(:,2) = rand(64,1);
randmap(:,3) = rand(64,1);
image(1:64);colormap(randmap)

The function colorbar displays the current colormap vertically or horizontally in the figure with
your graph, indicating how the 64 colours are mapped. Try it with the image of the Earth.

Note that 64 is the default length of a colormap. The functions that generate colormaps have an optional
parameter specifying the length of the colormap.

Colour of surface plots

When you draw a surface plot with a single matrix argument, e.g. surf(z), the argument z specifies
both the height of the surface and the colour. As an example use the function peaks which generates
a surface with a couple of peaks and valleys:

z = peaks;
surf(z), colormap(jet), colorbar

The colorbar indicates that the minimum element of z (somewhat less than −6) is mapped to row 1 of
the colormap (R = 0, G = 0, B = 0.5625), whereas the maximum element (about 8) is mapped to row
64 (R = 0.5625, G = 0, B = 0).

You can specify the colour with a second argument the same size as the first:

z = peaks(16); % generates a 16-by-16 mesh
c = rand(16);
surf(z, c), colormap(prism)

Here the surface is tiled with a random pattern of 16-by-16 colours from the prism colormap.
In this form of surf each element of c is used to determine the colour of the point in the corresponding

element of z. By default MATLAB uses a process called scaled mapping to map from an element of z (or
c) to the colour in the colormap. The details of the scaling are determined by the caxis command. For
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further details see help caxis or the section Coloring Mesh and Surface Plots in Using MATLAB:
3-D Visualization: Creating 3-D Graphs.

You can exploit the facility to specify colour in order to emphasize properties of the surface. The
following example is given in the MATLAB documentation:

z = peaks(40);
c = del2(z);
surf(z, c)
colormap hot

The function del2 computes the discrete Laplacian of a surface—the Laplacian is related to the curvature
of the surface. Creating a colour array from the Laplacian means that regions with similar curvature will
be drawn in the same colour. Compare the surface obtained this way with that produced by the statement

surf(P), colormap(hot)

In the second case regions with similar heights about the x-y plane have the same colour.
Alternative forms of surf (and related surface functions) are:

surf(x, y, z) % colour determined by z
surf(x, y, z, c) % colour determined by c

Truecolor

The technique of colouring by means of a colormap is called indexed colouring—a surface is coloured
by assigning each data point an index (row) in the colour map. The Truecolor technique colours a surface
using explicitly specified RGB triplets. Here is another example from the MATLAB documentation (it
also demonstrates the use of a multi-dimensional array):

z = peaks(25);
c(:,:,1) = rand(25);
c(:,:,2) = rand(25);
c(:,:,3) = rand(25);
surf(z, c)

The three ‘pages’ of c (indicated by its third subscript) specify the values of RGB respectively to be
used to colour the point in z whose subscripts are the same as the first two subscripts in c. For example,
the RGB values for the colour of the point z(5,13) are given by c(5,13,1), c(5,13,2) and
c(5,13,3) respectively.

14.5 Lighting and camera

MATLAB uses lighting to add realism to graphics, e.g. illuminating a surface by shining light on it from
a certain angle. Here are two examples from the MATLAB documentation. Have a look at them.

z = peaks(25);
c(:,:,1) = rand(25);
c(:,:,2) = rand(25);
c(:,:,3) = rand(25);
surf(z,c,’facecolor’,’interp’,’facelighting’,’phong’,...

’edgecolor’,’none’)
camlight right

The possibilities for the facelighting property of the surface object are none, flat (uniform colour
across each facet), gouraud or phong. The last two are the names of lighting algorithms. Phong lighting
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generally produces better results, but takes longer to render than Gouraud lighting. Remember that you
can see all a surface object’s properties by creating the object with a handle and using get on the
object’s handle.

This one’s quite stunning:

[x y ] = meshgrid(-8 : 0.5 : 8);
r = sqrt(x.^2 + y.^2) + eps;
z = sin(r) ./ r;
surf(x,y,z,’facecolor’,’interp’,’edgecolor’,’none’, ...

’facelighting’,’phong’)
colormap jet
daspect([5 5 1])
axis tight
view(-50, 30)
camlight left

For more information on lighting and the camera see the sections Lighting as a Visualization Tool
and Defining the View in Using MATLAB: 3-D Visualization.

14.6 Saving, printing and exporting graphs

Saving and opening figure files
You can save a figure generated during a MATLAB session so that you can open it in a subsequent
session. Such a file has the .fig extension.

• Select Save from the figure window File menu.
• Make sure the Save as type is .fig.

To open a figure file select Open from the File menu.

Printing a graph
You can print everything inside a figure window frame, including axis labels and annotations:

• To print a figure select Print from the figure window File menu.
• If you have a black and white printer, coloured lines and text are ‘dithered to gray’ which may not

print very clearly in some cases. In that case select Page Setup from the figure File menu. Select
the Lines and Text tab and click on the Black and white option for Convert solid coloured lines
to:.

Exporting a graph
A figure may be exported in one of a number of graphics formats if you want to import it into another
application, such as a text processor. You can also export it to the Windows clipboard and paste it from
there into an application.

To export to the clipboard:

• Select Copy Figure from the figure window’s Edit menu (this action copies to the clipboard).
• Before you copy to the clipboard you may need to adjust the figure’s settings. You can do this by

selecting Preferences from the figure’s File menu. This action opens the Preferences panel, from
which you can select Figure Copy Template Preferences and Copy Options Preferences to adjust
the figure’s settings.
You may also have to adjust further settings with Page Setup from the figure’s File menu.
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To export a figure to a file in a specific graphics format:

• Select Export from the figure’s File menu. This action invokes the Export dialogue box.
• Select a graphics format from the Save as type list, e.g. EMF (enhanced metafiles), JPEG, etc. You

may need to experiment to find the best format for the target application you have in mind.
For example, to insert a figure into a Word document, I find it much easier first to save it in EMF
or JPEG format and then to insert the graphics file into the Word document, rather than to go the
clipboard route (there are more settings to adjust that way).

For further details consult the section Basic Printing and Exporting in Using MATLAB: Graphics.

Summary

• MATLAB graphics objects are arranged in a parent-child hierarchy.
• A handle may be attached to a graphics object at creation; the handle may be used to manipulate

the graphics object.
• If h is the handle of a graphics object, get(h) returns all the current values of the object’s

properties. set(h) shows you all the possible values of the properties.
• The functions gcf, gca and gco return the handles of various graphics objects.
• Use set to change the properties of a graphics object.
• A graph may be edited to a limited extent in plot edit mode, selected from the figure window

(Tools -> Edit Plot). More general editing can be done with the Property Editor (Edit -> Figure
Properties from the figure window).

• The most versatile way to create animations is by using the Handle Graphics facilities. Other
techniques involve comet plots and movies.

• Indexed colouring may be done with colormaps.
• Graphs saved to .fig files may be opened in subsequent MATLAB sessions.
• Graphs may be exported to the Windows clipboard, or to files in a variety of graphics formats.
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Graphical User Interfaces (GUIs)

Objectives

The objectives of this chapter are to introduce you to the basic concepts involved in writing your own
graphical user interfaces, including:

• figure files;
• application M-files;
• callback functions.

The script files we have written so far in this book have had no interaction with the user, except by
means of the occasional input statement. Modern users, however, have grown accustomed to more
sophisticated interaction with programs, by means of windows containing menus, buttons, drop-down
lists, etc. This way of interacting with a program is called a graphical user interface, or GUI for short
(pronounced ‘gooey’), as opposed to a text user interface by means of command-line based input
statements.

The MATLAB online documentation has a detailed description of how to write GUIs in MATLAB,
to be found in Using MATLAB: Creating Graphical User Interfaces. This chapter presents a few
examples illustrating the basic concepts. A more detailed example, of a GUI to drive an ODE solver, is
to be found in Chapter 19. It is expected that you will study the MATLAB documentation to fill in all
the nuts and bolts yourself.

I spent a day or two reading MATLAB’s documentation in order to write the GUIs in this chapter and
Chapter 19. I have seldom had such fun programming!

15.1 Basic structure of a GUI

• MATLAB has a facility called GUIDE (Graphical User Interface Development Environment) for
creating and implementing GUIs. You start it from the command line with the command guide.

• The guide command opens an untitled figure which contains all the GUI tools needed to create
and lay out the GUI components (e.g. push buttons, menus, radio buttons, popup menus, axes, etc.).
These components are called uicontrols in MATLAB (for user interface controls).

• GUIDE generates two files that save and launch the GUI: a FIG-file and an application M-file.
• The FIG-file contains a complete description of the GUI figure, i.e. whatever uicontrols and axes are

needed for your graphical interface.

198
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• The application M-file (the file you run to launch the GUI) contains the functions required to
launch and control the GUI. The application M-file does not contain the code that lays out the
GUI components; this information is saved in the FIG-file.
The GUI is controlled largely by means callback functions , which are subfunctions in the application
M-file.

• Callback functions are written by you and determine what action is taken when you interact with a
GUI component, e.g. click a button. GUIDE generates a callback function prototype for each GUI
component you create. You then use the Editor to fill in the details.

15.2 A first example: getting the time

For our first example we will create a GUI with a single push button. When you click the button the
current time should appear on the button (Figure 15.1). Go through the following steps:

• Run guide from the command line. This action opens the Layout Editor (Figure 15.2).
• We want to place a push button in the layout area. Select the push button icon in the component

palette to the left of the layout area. The cursor changes to a cross. You can use the cross either
to select the position of the top-left corner of the button (in which it has the default size), or you
can set the size of the button by clicking and dragging the cursor to the bottom-right corner of the
button.
A button imaginatively names Push Button appears in the layout area.

Figure 15.1 Click the button to see the time
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Figure 15.2 GUIDE Layout Editor

• Select the push button (click on it). Right-click for its context menu and select Inspect Properties.
Use the Property Inspector to change the button’s String property to Time. The text on the button
in the layout area will change to Time.
Note that the Tag property of the button is set to pushbutton1. This is the name GUIDE will
use for the button’s callback function when it generates the application M-file in a few minutes. If
you want to use a more meaningful name when creating a GUI which may have many such buttons,
now is the time to change the tag.
If you change a component’s tag after generating the application M-file you have to change its
callback function name by hand (and all references to the callback). You also have to change the
name of the callback function in the component’s Callback property. For example, suppose you
have generated an application M-file with the name myapp.m, with a push button having the tag
pushbutton1. The push button’s Callback property will be something like

myapp(’mybutton_Callback’,gcbo,[],guidata(gcbo))

If you want to change the tag of the push button to Open, say, you will need to change its Callback
property to

myapp(’Open_Callback’,gcbo,[],guidata(gcbo))

• Back in the Layout Editor select your button again and right-click for the context menu. Select Edit
Callback.
A dialog box appears for you to save your FIG-file. Choose a directory and give a filename of
time.fig—make sure that the .fig extension is used.
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GUIDE now generates the application M-file (time.m), which the Editor opens for you at the place
where you now have to insert the code for whatever action you want when the Time button is
clicked:

function varargout = pushbutton1_Callback(h, eventdata, ...
handles, varargin)

% Stub for Callback of the uicontrol handles.pushbutton1.
disp(’pushbutton1 Callback not implemented yet.’)

Note that the callback’s name is pushbutton1_Callback where pushbutton1 is the button’s
Tag property.
Note also that the statement

disp(’pushbutton1 Callback not implemented yet.’)

is automatically generated for you.
• If you are impatient to see what your GUI looks like at this stage click the Activate Figure button

at the right-hand end of the Layout Editor toolbar. An untitled window should appear with a Time
button in it. Click the Time button—the message

pushbutton1 Callback not implemented yet

should appear in the Command Window.
• Now go back to the (M-file) Editor to change the pushbutton1_Callback function. Insert the

following lines of code, which are explained below:

% get time
d = clock;
% convert time to string
time = sprintf( ’%02.0f:%02.0f:%02.0f’,d(4),d(5),d(6));
% change the String property of pushbutton1
set(gcbo,’String’,time)

The function clock returns the date and time as a six-component vector in the format

[year month day hour minute seconds]

The sprintf statement converts the time into a string time in the usual format, e.g. 15:05:59
• The last statement is the most important one as it is the basis of the button’s action:

set(gcbo,’String’,time)

It is the button’s String property which is displayed on the button in the GUI. It is therefore this
property which we want to change to the current time when it is clicked.
The command gcbo stands for ‘get callback object’, and returns the handle of the current callback
object, i.e. the most recently activated uicontrol. In this case the current callback object is the button
itself (it could have been some other GUI component). The set statement then changes the String
property of the callback object to the string time which we have created.
Easy!

• Save the application M-file and return to the Layout Editor. For completeness give the entire figure
a name. Do this by right-clicking anywhere in the layout area outside the Time button. The context
menu appears. Select Property Inspector. This time the Property Inspector is looking at the figure’s
properties (instead of the push button’s properties) as indicated at the top of its window. Change the
Name property to something suitable (like Time).
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• Finally, click Activate Figure again in the Layout Editor. Your GUI should now appear in a window
entitled Time. When you click the button the current time should appear on the button.

• If you want to run your GUI from the command line, enter the application M-file name.

Exercise

You may have noticed that graphics objects have a Visible property. See if you can write a GUI
with a single button which disappears when you click on it! This exercise reminds me of a project my
engineering friends had when I was a first-year student. They had to design a black box with a switch on
the outside. When it was switched on a lid opened, and a hand came out of the box to switch if off . . .

15.3 Newton again

Our next example is a GUI version of Newton’s method to find a square root: you enter the number to
be square-rooted, press the Start button, and some iterations appear on the GUI (Figure 15.3).

We will use the following uicontrols from the component palette in the Layout Editor:

• a static text control to display the instruction Enter number to square root and press
Start: (static text is not interactive, so no callback function is generated for it);

• an edit text control for the user to enter the number to be square-rooted;
• a push button to start Newton’s method;
• a static text control for the output, which will consist of several iterations.

You can of course send the output to the command line with disp.
• We will also make the GUI window resizeable (did you notice that you couldn’t resize the Time

window in the previous example?).

Proceed as follows:

• Run guide from the command line. When the Layout Editor starts right-click anywhere in the
layout area to get the figure’s Property Inspector and set the figure’s Name property to Newton.

• Now let’s first make the GUI resizeable. Select Tools in the Layout Editor’s toolbar and then Appli-
cation Options. There are three Resize behavior options: Non-resizable (the default), Proportional
and User-specified. Select Proportional. Note that under Proportional when you resize the window
the GUI components are also resized, although the font size of labels does not resize.

Figure 15.3 Square-rooting with Newton
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• Place a static text control for the instruction to the user in the layout area. Note that you can use the
Alignment Tool in the Layout Editor toolbar to align controls accurately if you wish. You can also
use the Snap to Grid option in the Layout menu. If Snap to Grid is checked then any object which
is moved to within nine pixels of a grid line jumps to that line. You can change the grid spacing
with Layout -> Grid and Rulers -> Grid size.
Use the Property Inspector to change the static text control’s String property to Enter number
to square root and press Start:

• Place an edit text control on the layout area for the user to input the number to be square-rooted. Set
its String property to blank. Note that you don’t need to activate the Property Inspector for each
control. Once the Property Inspector has been started it switches to whichever object you select in
the layout area. The tag of this component will be edit1 since no other edit text components have
been created.

• Activate the figure at this stage (use the Activate Figure button in the Layout Editor toolbar), and
save it under the name Newton.fig. The application M-file should open in the Editor. Go to the
edit1_Callback subfunction and remove the statement

disp(’edit1 Callback not implemented yet.’)

No further coding is required in this subfunction since action is to be initiated by the Start button.
Remember to remove this disp statement from each callback subfunction as you work through the
code.

• Insert another static text control in the layout area, for the output of Newton’s method. Make
it long enough for six or seven iterations. Set its String property to Output and its
HorizontalAlignment to left (so that output will be left-justified).
Make a note of its tag, which should be text2 (text1 being the tag of the other static text control).

• Place a push button in the layout area. Set its String property to Start. Its tag should be
pushbutton1.

• Activate the figure again so that the application M-file gets updated. We now have to program the
pushbutton1_Callback subfunction to

• get the number to be square-rooted from the edit text control;
• run Newton’s method to estimate the square root of this number;
• put the output of several iterations of Newton’s method in the Output static text control.
• clear the edit text control in readiness for the next number to be entered by the user.

These actions are achieved by the following code, which is explained below:

function varargout = pushbutton1_Callback(h, eventdata, ...
handles, varargin)

% Stub for Callback of the uicontrol handles.pushbutton1.

a = str2num(get(handles.edit1,’String’));
x = a; % initial guess

for i = 1:8
x = (x + a/x)/2;
str(i) = {sprintf(’%g’,x)};

end

set(handles.edit1,’String’,’’);
set(handles.text2,’String’,str);
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If you have read the helpful comments generated in the application M-file you will have seen that
the input argument handles is a structure containing handles of components in the GUI, using
their tags as fieldnames. This mechanism enables the various components to communicate with each
other in the callback subfunctions. This is why it is not a good idea to change a tag after its callback
subfunction has been generated; you would then need to change the name of the callback function
as well as any references to its handle.
When you type anything into an edit text control, its String property is automatically set to
whatever you type. The first statement

a = str2num(get(handles.edit1,’String’));

uses the handle of the edit text control to get its String property (assuming it to have been correctly
entered—note that we not trying to catch any user errors here). The str2num function converts this
string to the number a.
A for loop then goes through eight iterations of Newton’s method to estimate the square root of a.
The variable x in the loop contains the current estimate. sprintf converts the value of x to a
string using the g (general) format code. The resulting string is stored in the ith element of a cell
array str. Note the use of curly braces to construct the cell array. This use of a cell array is the
easiest way to put multiple lines of text into an array for sending to the text2 static text.
The statement

set(handles.edit1,’String’,’’);

clears the display in the edit text control.
Finally, the statement

set(handles.text2,’String’,str);

sets the String property of the text2 static text control to the cell array containing the output.
• Save your work and activate the figure again to test it.

15.4 Axes on a GUI

This example demonstrates how to plot graphs in axes on a GUI. We want a button to draw the graph,
one to toggle the grid on and off, and one to clear the axes (Figure 15.4). The only new feature in this
example is how to plot in axes which are part of the GUI. We address this issue first.

• Open a new figure in the GUIDE Layout Editor. Right-click anywhere in the layout area to open
the figure’s Property Inspector. Note that the figure has a HandleVisibility property which is
set to off by default. This prevents any drawing in the figure. For example, you would probably
not want plot statements issued at the command-line to be drawn on the GUI. However, you can’t
at the moment draw on the GUI from within the GUI either! The answer is to set the figure’s
HandleVisibility property to callback. This allows any GUI component to plot graphs on
axes which are part of the GUI, while still protecting the GUI from being drawn all over from the
command line.

• Place an axes component on the GUI. Its HandleVisibility should be on.
• Place a push button (tag pushbutton1) on the GUI and change its String property to Plot.

Save the figure (if you have not already) under the name Plotter and generate the application
M-file. Edit the push button’s callback subfunction to draw any graph, e.g. sin(x).

• Place pushbutton2 on the GUI to toggle the grid and put the command grid in its callback
subfunction.

• Put pushbutton3 on the GUI with the command cla to clear the axes.
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Figure 15.4 Axes on a GUI

• Save and re-activate the figure. Test it out. Change the figure’s HandleVisibility back to off,
activate the figure, and see what happens.
Note that the figure object has a IntegerHandle property set to off. This means that even if
HandleVisibility is on you can’t plot on the axes from the command line (or another GUI)
because a figure needs an integer handle in order to be accessed. If you want to be able to draw all
over your GUI from the command line just set the figure’s IntegerHandle to on.

15.5 Adding colour to a button

The final example in this chapter shows you how to add an image to a button.

• Create a GUI with a single push button in it.
• Set the button’s Units property to pixels.
• Expand the button’s Position property and set width to 100 and height to 50.
• Insert the following code in the button’s callback subfunction:

a(:,:,1) = rand*ones(50,100);
a(:,:,2) = rand*ones(50,100);
a(:,:,3) = rand*ones(50,100);
set(h,’CData’,a);

• The matrix a defines a truecolor image the same size as the push button, with each pixel in the
image the same (random) colour.
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The third dimension of a sets the RGB video intensities. If, for example, you would prefer the button
to be a random shade of green, say, try

a(:,:,1) = zeros(50,100);
a(:,:,2) = rand*ones(50,100);
a(:,:,3) = zeros(50,100);

• The input argument h of the callback subfunction is the callback object’s handle (obtained from
gcbo).

• An image may also be added to a toggle button control.

An important issue which hasn’t been dealt with yet is how to implement global application-defined
data which can be shared amongst the callback subfunctions. This is discussed in Chapter 19 (A GUI
ODE solver: Driver).

Summary

• GUIs are designed and implemented by MATLAB’s GUIDE facility.
• The guide command starts the Layout Editor, which is used to design GUIs.
• GUIDE generates a FIG-file, which contains the GUI design, and an application M-file, which

contains the code necessary to launch and control the GUI.
• You launch the GUI by running its application M-file.
• Many GUI components have callback subfunctions in the application M-file where you write the

code to specify the components’ actions.
• You use the Property Inspector to set a GUI component’s properties at the design stage.
• The handles of all GUI components are fields in the handles structure in the application M-

file. These handles are available to all callback subfunctions and enable you to find and change
components’ properties.
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Importing and exporting data

Objectives

The objectives of this chapter are to introduce you briefly to ways of importing and exporting data
in and out of the MATLAB workspace using

• the load and save commands;
• the Import Wizard;
• low-level file I/O functions.

When you get into serious programming you will often need to store data on a disk. The process of
moving data between MATLAB and disk files is called importing (from disk files) and exporting (to disk
files). Data are saved in disk files in one of two formats: text or binary. In text format, data values are
ASCII codes, and can be viewed in any text editor. In binary format, data values are not ASCII codes
and cannot be viewed in a text editor. Binary format is more efficient in terms of storage space required.
This chapter provides a brief summary of the main ways in which MATLAB imports and exports data.
For full details consult Using MATLAB: Development Environment: Importing and Exporting Data.

16.1 The load and save commands

If you want to save data between MATLAB sessions the save and load commands are probably the
best ones to use.

Exporting text (ASCII) data

To export (save) the array

A =
1 2 3
4 5 6

207
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in ‘delimited’ ASCII format in the file myData.txt use the command

save myData.txt A -ascii

If you view myData.txt in a text editor (or type it in the Command Window) it looks like this:

1.0000000e+000 2.0000000e+000 3.0000000e+000
4.0000000e+000 5.0000000e+000 6.0000000e+000

Delimiters are the characters used to separate the data values in the file—spaces by default. You can tabs
instead of spaces by specifying the -tabs qualifier instead of -ascii.

If you save character arrays (strings) in this way, the ASCII codes of the characters are written to
the file.

Importing text (ASCII) data

The load command is the reverse of save, but has a curious twist. If the array A has been saved in
myData.txt as above the command

load myData.txt

creates a variable in the workspace with the same name as the file, minus the extension , i.e. myData. If
you don’t want the filename as the variable name (who would?) use the functional form of the command,
e.g.

A = load(’myData.txt’)

Data imported in this way doesn’t have to be created by MATLAB. You can create it in a text editor,
or it could be created by any other program that exports data in ASCII format.

Exporting binary data

The command

save filename x y z

saves the variables x, y and z in the file filename.mat in MATLAB proprietary binary format, i.e. such
a MAT-file can only be used by MATLAB.

If no variables are listed the entire workspace is saved.
The extension .mat is the default—you can specify a different extension.
See help for all the save options.

Importing binary data

The command

load filename

loads all the variables from filename.mat into the workspace.
See help for all the load options.

16.2 The Import Wizard

The MATLAB Import Wizard is the easiest way of importing data into the workspace during an interactive
session.
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Importing ASCII data

Use the Import Wizard to import ASCII data as follows:

• Start the Import Wizard by selecting Import Data on the MATLAB File menu. You can also use
uiimport on the command line to start it.
A list of files appears in a dialogue box. Open the file you want to import.

• Select the delimiter used in the text file (if necessary). Click Next.
• Select the variables you want to import. By default the Import Wizard puts all the numeric data in

one variable and all the text data in other variables, but you can choose other options.
• Click Finish to import the data into the selected variables.

Importing binary data

To import binary data with the Import Wizard, start it in the same way as when importing text data.
When the file opens the Import Wizard attempts to process its contents and creates variables depending
on the type of data in the file. Check the variables you want to import and click Finish to create the
selected variables.

You can, for example, import data from an Excel spreadsheet in this way. If the data are numeric
with row and column headers, the Import Wizard imports the numeric data into a numeric array and the
headers into a cell array. Neat isn’t it?

16.3 Low-level file I/O functions

MATLAB has a set of low-level file I/O (input/output) functions based on the I/O functions of the ANSI
Standard C Library. You would typically use these functions to access binary data written by C or Java
programs, for example, or to access a database which is too large to be loaded into the workspace in its
entirety.

C programmers should note that the MATLAB file I/O commands are not all identical to their C
counterparts. For example, fread is ‘vectorized’, i.e. it reads until it encounters a text string or the end
of file.

Files can be accessed with these functions in text or binary mode. In binary mode you can think of
the file as a long continuous stream of bytes, which are your responsibility to interpret correctly. Files
opened in binary mode can be accessed ‘randomly’, i.e. you can specify at which particular byte you
want to start reading or writing.

The short programs which follow show how to create a file in binary mode, how to read it, and how
to change it. Explanations of new features follow each program. You will need to consult the online
documentation and help to see the wide range of options available for these I/O functions.

Writing binary data

The example we are going to use has a wide variety of applications. We want to set up a database of
records , each record consisting of information about individuals (clients, customers, students). In this
example each record will have a student’s name and one mark. (The term ‘record’ has no particular
significance in MATLAB, as it does, for example, in Pascal. It is used here as a convenient way of
thinking of the basic unit in a database.)

The following program (writer.m) invites you to enter any number of names and marks from the
command line, and writes them as binary data to a file. To terminate the process just hit Enter for the
next name.

namelen = 10; % 10 bytes for name
fid = fopen(’marks.bin’, ’w’); % open for write only
str = ’?’; % not empty to start
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while ~isempty(str)
str = input( ’Enter name: ’, ’s’ );
if ~isempty(str)

if length(str) > namelen
name = str(1:namelen); %only first ten chars allowed

else
name = str;
name(length(str)+1:namelen) = ’ ’; %pad with blanks if

...too short
end
fwrite(fid, name);
mark = input( ’Enter mark: ’ );
fwrite(fid, mark, ’float’); % 4 bytes for mark

end
end

fclose(fid);

Note:

• The statement

fid = fopen(’marks.bin’, ’w’);

creates a file marks.bin for writing only. If the file is successfully opened fopen returns a non-
negative integer called the file identifier (fid) which can be passed to other I/O functions to access
the opened file. If fopen fails (e.g. if you try to open a non-existent file for reading) it returns -1
to fid and assigns an error message to an optional second output argument.
The second argument ’w’ of fopen is the permission string and specifies the kind of access to the
file you require, e.g. ’r’ for read only, ’w’ for write only, ’r+’ for both reading and writing, etc.
See help fopen for all the possible permission strings.

• The while loop continues asking for names until an empty string is entered (str must therefore
be non-empty initially).

• Each name written to the file must be the same length (otherwise you won’t know where each record
begins when it comes to changing them). The if statement ensures that each name has exactly 10
characters (namelen) no matter how many characters are entered (the number 10 is arbitrary of
course!).

• The first fwrite statement

fwrite(fid, name);

writes all the characters in name to the file (one byte each).
• The second fwrite statement

fwrite(fid, mark, ’float’);

writes mark to the file. The third (optional) argument (precision) specifies both the number
of bits written for mark and how these bits will be interpreted in an equivalent fread statement.
’float’ means single-precision numeric (usually 32 bits—4 bytes—although this value is hardware
dependent). The default for this argument is ’uchar’—unsigned characters (one byte).

• The statement

fclose(fid);

closes the file (returning 0 if the operation succeeds). Although MATLAB automatically closes all
files when you exit from MATLAB it is good practice to close files explicitly with fclose when
you have finished using them.
You can close all files with fclose(’all’)
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Reading binary data

The next program (reader.m) reads the file written with writer.m above and displays each record:

namelen = 10; % 10 bytes for name
fid = fopen(’marks.bin’, ’r’);

while ~feof(fid)
str = fread(fid,namelen);
name = char(str’);
mark = fread(fid, 1, ’float’);
fprintf(’%s %4.0f\n’, name, mark)

end

fclose(fid);

Note:

• The file is opened for read only (’r’).
• The function feof(fid) returns 1 if the end of the specified file has been reached, and 0 otherwise.
• The first fread statement reads the next namelen (10) bytes from the file into the variable str.

When the name was written by fwrite the ASCII codes of the characters were actually written to
the file. Therefore the char function is needed to convert the codes back to characters. Furthermore
the bytes being read are interpreted as entries in a column matrix; str must be transposed if you
want to display the name is the usual horizontal format.

• The second fread statement specifies that one value (the number of values is given by the second
argument) is to be read in float precision (four bytes). You could, for example, read an entire
array of 78 float numbers with

a = fread(fid, 78, ’float’);

Changing binary data

To demonstrate how to change records in a file we assume for simplicity that you will only want to
change a student’s mark, and not the name. The program below (changer.m) asks which record to
change, displays the current name and mark in that record, asks for the corrected mark, and overwrites
the original mark in that record.

namelen = 10; % 10 bytes for name
reclen = namelen + 4;
fid = fopen(’marks.bin’, ’r+’); % open for read and write

rec = input( ’Which record do you want to change? ’ );
fpos = (rec-1)*reclen; % file position indicator
fseek(fid, fpos, ’bof’); % move file position indicator
str = fread(fid,namelen); % read the name
name = char(str’);
mark = fread(fid, 1, ’float’); % read the mark
fprintf(’%s %4.0f\n’, name, mark)

mark = input(’Enter corrected mark: ’); % new mark
fseek(fid, -4, ’cof’); % go back 4 bytes to start of mark
fwrite(fid, mark, ’float’); % overwrite mark
fprintf( ’Mark updated’ );

fclose(fid);
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Note:

• The file is opened for reading and writing (’r+’).
• When a file is opened with fopen MATLAB maintains a file position indicator . The position in the

file where MATLAB will begin the next operation on the file (reading or writing) is one byte beyond
the file position indicator.
fpos calculates the value of the file position indicator in order to commence reading the record
number rec.

• The fseek function moves the file position indicator. Its second argument specifies where in the
file to move the file position indicator, relative to an origin given by the third argument. Possible
origins are ’bof’ (beginning of file), ’cof’ (current position in file) or ’eof’ (end of file).
In this example, the records are 14 bytes long (10 for the name, four for the mark). If we wanted to
update the second record, say, we would use

fseek(fid, 14, ’bof’);

which moves the file position indicator to byte 14 from the beginning of the file, ready to start
accessing at byte 15, which is the beginning of the second record.
fseek returns 0 (successful) or -1 (unsuccessful).
Incidentally, if you get lost in the file you can always used ftell to find out where you are!

• The fread statement, which reads the mark to be changed, automatically advances the file position
indicator by four bytes (the number of bytes required float precision). In order to overwrite the
mark, we therefore have to move the file position indicator back four bytes from its current position,
The statement

fseek(fid, -4, ’cof’);

achieves this.
• The fwrite statement then overwrites the mark.

Note that the programs above don’t have any error trapping devices, for example, preventing you from
reading from a non-existent file, or preventing you from overwriting a record that isn’t there. It is left to
you to fill in these sort of details.

Exercise

If you are feeling enthusiastic, why not dress these programs up with a GUI, for example:
• a Next button to display the next record (start at the first record) on the GUI in a static text

component;
• a Previous button to display the previous record;
• a Change button to change the current record;
• an edit text component in which to enter the new mark.
See Chapter 19 (A GUI ODE solver: Driver) for how best to share data between GUI subfunctions
(global data handling).

16.4 Other import/export functions

Other import/export functions, with differing degrees of flexibility and ease of use, include csvread,
csvwrite, dlmread, dlmwrite, fgets, fprintf (which has an optional argument to specify a
file), fscanf, textread, xlsread. You know where to look for the details!
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Finally, recall that the diary command can also be used to export small arrays as text data, although
you will need to edit out extraneous text.

Summary

• Data can be saved to disk files in text (ASCII) format or in binary format.
• load and save can be used to import/export both text and binary data (the latter in the form of

MAT-files).
• The Import Wizard provides an easy way of importing both text and binary data.
• MATLAB’s low-level I/O functions such as fread and fwrite provide random access to binary

files.
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Simulation

Objective

The objective of this chapter is to introduce you to

• simulation of real-life events.

Simulation is an area of application where computers have come into their own. A simulation is a
computer experiment which mirrors some aspect of the real world that appears to be based on ran-
dom processes, or is too complicated to understand properly. (Whether events can be really random
is actually a philosophical or theological question.) Some examples are: radio-active decay, rolling
dice, bacteria division and traffic flow. The essence of a simulation program is that the programmer
is unable to predict beforehand exactly what the outcome of the program will be, which is true to
the event being simulated. For example, when you spin a coin, you do not know for sure what the
result will be.

17.1 Random number generation

Random events are easily simulated in MATLAB with the function rand, which we have briefly encoun-
tered already. By default, rand returns a uniformly distributed pseudo-random number in the range
0 ≤ rand < 1. (A computer cannot generate truly random numbers, but they can be practically unpre-
dictable.) rand can also generate row or column vectors, e.g. rand(1,5) returns a row vector of five
random numbers (1 row, 5 column) as shown:

0.9501 0.2311 0.6068 0.4860 0.8913

If you generate more random numbers during the same MATLAB session, you will get a different
sequence each time, as you would expect. However, each time you start a MATLAB session, the random
number sequence begins at the same place (0.9501), and continues in the same way. This is not true to
life, as every gambler knows. To produce a different sequence each time you start a session, rand can
be initially seeded in a different way each time you start.

214
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Seeding rand

The random number generator rand can be seeded with the statement

rand(’state’, n)

where n is any integer. (By default, n is set to 0 when a MATLAB session starts.) This is useful if you
want to generate the same random sequence every time a script runs, e.g. in order to debug it properly.
Note that this statement does not generate any random numbers; it only initializes the generator.

However, you can also arrange for n to be different each time you start MATLAB by using the system
time. The function clock returns the date and time in a six-element vector with seconds to two decimal
places, so the expression sum(100*clock) never has the same value (well, hardly ever). You can use
it to seed rand as follows:

� rand(’state’, sum(100*clock))
� rand(1,7)
ans =
0.3637 0.2736 0.9910 0.3550 0.8501 0.0911 0.4493

� rand(’state’, sum(100*clock))
� rand(1,7)
ans =
0.9309 0.2064 0.7707 0.7644 0.2286 0.7722 0.5315

Theoretically rand can generate over 21492 numbers before repeating itself.
If you are upgrading from MATLAB Version 4 you can use the MATLAB 4 generator with

rand(’seed’, n).

17.2 Spinning coins

When a fair (unbiased) coin is spun, the probability of getting heads or tails is 0.5 (50%). Since a value
returned by rand is equally likely to anywhere in the interval [0, 1) we can represent heads, say, with
a value less than 0.5, and tails otherwise.

Suppose an experiment calls for a coin to be spun 50 times, and the results recorded. In real life you
may need to repeat such an experiment a number of times; this is where computer simulation is handy.
The following script simulates spinning a coin 50 times:

for i = 1:50
r = rand;
if r < 0.5

fprintf( ’H’ )
else

fprintf( ’T’ )
end

end
fprintf( ’\n’ ) % newline

Here is the output from two sample runs:

THHTTHHHHTTTTTHTHTTTHHTHTTTHHTTTTHTTHHTHHHHHHTTHTT
THTHHHTHTHHTTHTHTTTHHTTTTTTTHHHTTTHTHHTHHHHTTHTHTT

Note that it should be impossible in principle to tell from the output alone whether the experiment was
simulated or real (if the random number generator is sufficiently random).
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Can you see why it would be wrong to code the if part of the coin simulation like this:

if rand < 0.5 fprintf( ’H’ ), end
if rand >= 0.5 fprintf( ’T’ ), end

The basic principle is that rand should be called only once for each ‘event’ being simulated. Here the
single event is spinning a coin, but rand is called twice. Also, since two different random numbers are
generated, it is quite possible that both logical expressions will be true, in which case ‘H’ and ‘T’ will
both be displayed for the same coin!

Exercise 17.1 invites you to do this problem more efficiently with 0-1 vectors instead of a for loop.

17.3 Rolling dice

When a fair dice is rolled, the number uppermost is equally likely to be any integer from 1 to 6. We saw
in Counting random numbers (Chapter 5) how to use rand to simulate this. The following statement
generates a vector with 10 random integers in the range 1–6:

d = floor( 6 * rand(1,10) + 1 )

Here are the results of two such simulations:

2 1 5 5 6 3 4 5 1 1
4 5 1 3 1 3 5 4 6 6

We can do statistics on our simulated experiment, just as if it were a real one. For example, we could
estimate the mean of the number obtained when the dice is rolled 100 times, and the probability of
getting a six, say.

17.4 Bacteria division

If a fair coin is spun, or a fair dice is rolled, the different events (e.g. getting ‘heads’, or a 6) happen
with equal likelihood. Suppose, however, that a certain type of bacteria divides (into two) in a given time
interval with a probability of 0.75 (75%), and that if it does not divide, it dies. Since a value generated
by rand is equally likely to be anywhere between 0 and 1, the chances of it being less than 0.75 are
precisely 75%. We can therefore simulate this situation as follows:

r = rand;
if r < 0.75
disp( ’I am now we’ )

else
disp( ’I am no more’ )

end

Again, the basic principle is that one random number should be generated for each event being
simulated. The single event here is the bacterium’s life history over the time interval.

17.5 A random walk

A seriously short-sighted sailor has lost his contact lenses returning from a symphony concert, and has
to negotiate a jetty to get to his ship. The jetty is 50 paces long and 20 wide. He is in the middle of the
jetty at the quay-end, pointing toward the ship. Suppose at every step he has a 60% chance of stumbling
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blindly toward the ship, but a 20% chance of lurching to the left or right (he manages to be always
facing the ship). If he reaches the ship-end of the jetty, he is hauled aboard by waiting mates.

The problem is to simulate his progress along the jetty, and to estimate his chances of getting to the
ship without falling into the sea. To do this correctly, we must simulate one random walk along the jetty,
find out whether or not he reaches the ship, and then repeat this simulation 1000 times, say (if we have
a fast enough computer!). The proportion of simulations that end with the sailor safely in the ship will
be an estimate of his chances of making it to the ship. For a given walk we assume that if he has not
either reached the ship or fallen into the sea after, say, 10000 steps, he dies of thirst on the jetty.

To represent the jetty, we set up co-ordinates so that the x-axis runs along the middle of the jetty with
the origin at the quay-end. x and y are measured in steps. The sailor starts his walk at the origin each
time. The structure plan and script are as follows:

1. Initialize variables, including number of walks n
2. Repeat n simulated walks down the jetty:

Start at the quay-end of the jetty
While still on the jetty and still alive repeat:

Get a random number R for the next step
If R < 0.6 then

Move forward (to the ship)
Else if R < 0.8 then

Move port (left)
Else

Move starboard
If he got to the ship then

Count that walk as a success
3. Compute and print estimated probability of reaching the ship
4. Stop.

% random walk
n = input( ’Number of walks: ’ );
nsafe = 0; % number of times he makes it

for i = 1:n
steps = 0; % each new walk ...
x = 0; % ... starts at the origin
y = 0;

while x <= 50 & abs(y) <= 10 & steps < 1000
steps = steps + 1; % that’s another step
r = rand; % random number for that step
if r < 0.6 % which way did he go?
x = x + 1; % maybe forward ...

elseif r < 0.8
y = y + 1; % ... or to port ...

else
y = y - 1; % ... or to starboard

end;
end;

if x > 50
nsafe = nsafe + 1; % he actually made it this time!

end;

end;
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prob = 100 * nsafe / n;
disp( prob );

A sample run of 100 walks took about 1.7 seconds on my Celeron, and gave an 93% probability of
reaching the ship.

You can speed up the script by about 20% if you generate a vector of 1 000 random numbers, say, at
the start of each walk (with r = rand(1,1000);) and then reference elements of the vector in the
while loop, e.g.

if r(steps) < 0.6 ...

17.6 Traffic flow

A major application of simulation is in modelling the traffic flow in large cities, in order to test different
traffic light patterns before inflicting them on the real traffic. In this example we look at a very small
part of the problem: how to simulate the flow of a single line of traffic through one set of traffic lights.
We make the following assumptions (you can make additional or different ones if like):

1. Traffic travels straight, without turning.
2. The probability of a car arriving at the lights in a particular second is independent of what happened

during the previous second. This is called a Poisson process . This probability (call it p) may be
estimated by watching cars at the intersection and monitoring their arrival pattern. In this simulation
we take p = 0.3.

3. When the lights are green, assume the cars move through at a steady rate of, say, eight every ten
seconds.

4. In the simulation, we will take the basic time period to be ten seconds, so we want a display showing
the length of the queue of traffic (if any) at the lights every ten seconds.

5. We will set the lights red or green for variable multiples of ten seconds.

The situation is modelled with a script file traffic.m which calls three function files: go.m,
stop.m, and prq.m. Because the function files need access to a number of base workspace variables
created by traffic.m, these variables are declared global in traffic.m, and in all three function
files.

In this example the lights are red for 40 seconds (red = 4) and green for 20 seconds (green = 2).
The simulation runs for 240 seconds (n = 24).

The script, traffic.m, is as follows:

clc
clear % clear out any previous garbage!
global CARS GTIMER GREEN LIGHTS RED RTIMER T

CARS = 0; % number of cars in queue
GTIMER = 0; % timer for green lights
GREEN = 2; % period lights are green
LIGHTS = ’R’; % colour of lights
n = 48; % number of 10-sec periods
p = 0.3; % probability of a car arriving
RED = 4; % period lights are red
RTIMER = 0; % timer for red lights

for T = 1:n % for each 10-sec period

r = rand(1,10); % 10 seconds means 10 random numbers
CARS = CARS + sum(r < p); % cars arriving in 10 seconds
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if LIGHTS == ’G’
go % handles green lights

else
stop % handles red lights

end;

end;

The function files go.m, stop.m and prq.m (all separate M-files) are as follows:

% ----------------------------------------------------------
function go
global CARS GTIMER GREEN LIGHTS
GTIMER = GTIMER + 1; % advance green timer
CARS = CARS - 8; % let 8 cars through

if CARS < 0 % ... there may have been < 8
CARS = 0;

end;

prq; % display queue of cars

if GTIMER == GREEN % check if lights need to change
LIGHTS = ’R’;
GTIMER = 0;

end;

% ----------------------------------------------------------
function stop
global LIGHTS RED RTIMER
RTIMER = RTIMER + 1; % advance red timer
prq; % display queue of cars

if RTIMER == RED % check if lights must be changed
LIGHTS = ’G’;
RTIMER = 0;

end;

% ----------------------------------------------------------
function prq
global CARS LIGHTS T
fprintf( ’%3.0f ’, T ); % display period number

if LIGHTS == ’R’ % display colour of lights
fprintf( ’R ’ );

else
fprintf( ’G ’ );

end;

for i = 1:CARS % display * for each car
fprintf( ’*’ );

end;

fprintf( ’\n’ ) % new line
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Typical output looks like this:

1 R ****
2 R ********
3 R ***********
4 R **************
5 G **********
6 G *****
7 R ********
8 R *************
9 R ****************
10 R *******************
11 G **************
12 G **********
13 R **************
14 R *****************
15 R ********************
16 R ************************
17 G **********************
18 G ****************
19 R ******************
20 R **********************
21 R ************************
22 R ******************************
23 G **************************
24 G ***********************

From this particular run it seems that a traffic jam is building up, although more and longer runs are
needed to see if this is really so. In that case, one can experiment with different periods for red and green
lights in order to get an acceptable traffic pattern before setting the real lights to that cycle. Of course,
we can get closer to reality by considering two-way traffic, and allowing cars to turn in both directions,
and occasionally to break down, but this program gives the basic ideas.

17.7 Normal (Gaussian) random numbers

The function randn generates Gaussian or normal random numbers (as opposed to uniform) with a
mean (µ) of 0 and a variance (σ 2) of 1.

• Generate 100 normal random numbers r with randn(1,100) and draw their histogram. Use the
functions mean(r) and std(r) to find their mean and standard deviation (σ ).

• Repeat with 1000 random numbers. The mean and standard deviation should be closer to 0 and 1
this time.

The functions rand and randn have separate generators, each with its own seed.

Summary

• A simulation is a computer program written to mimic a real-life situation which is apparently
based on chance.

• The pseudo-random number generator rand returns uniformly distributed random numbers in the
range [0, 1), and is the basis of the simulations discussed in this chapter.
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• randn generates normally distributed (Gaussian) random numbers.
• rand(’state’, n) enables the user to seed rand with any integer n. A seed may be obtained

from clock, which returns the system clock time.
randn may be seeded (independently) in a similar way.

• Each independent event being simulated requires one and only one random number.

Exercises

17.1 Write some statements to simulate spinning a coin 50 times using 0-1 vectors instead of a
for loop. Hints: generate a vector of 50 random numbers, set up 0-1 vectors to represent the
heads and tails, and use double and char to display them as a string of Hs and Ts.

17.2 In a game of Bingo the numbers 1 to 99 are drawn at random from a bag. Write a script to
simulate the draw of the numbers (each number can be drawn only once), printing them ten
to a line.

17.3 Generate some strings of 80 random alphabetic letters (lowercase only). For fun, see how
many real words, if any, you can find in the strings.

17.4 A random number generator can be used to estimate π as follows (such a method is called
a Monte Carlo method). Write a script which generates random points in a square with
sides of length 2, say, and which counts what proportion of these points falls inside the
circle of unit radius that fits exactly into the square. This proportion will be the ratio of
the area of the circle to that of the square. Hence estimate π . (This is not a very efficient
method, as you will see from the number of points required to get even a rough approxima-
tion.)

17.5 Write a script to simulate the progress of the short-sighted student in Chapter 18 (Markov
Processes). Start him at a given intersection, and generate a random number to decide whether
he moves toward the internet cafe or home, according to the probabilities in the transition
matrix. For each simulated walk, record whether he ends up at home or in the cafe. Repeat
a large number of times. The proportion of walks that end up in either place should approach
the limiting probabilities computed using the Markov model described in Chapter 18. Hint:
if the random number is less than 2/3 he moves toward the cafe (unless he is already at
home or in the cafe, in which case that random walk ends), otherwise he moves toward
home.

17.6 The aim of this exercise is to simulate bacteria growth.
Suppose that a certain type of bacteria divides or dies according to the following assump-
tions:
(a) during a fixed time interval, called a generation, a single bacterium divides into two

identical replicas with probability p;
(b) if it does not divide during that interval, it dies;
(c) the offspring (called daughters) will divide or die during the next generation, indepen-

dently of the past history (there may well be no offspring, in which case the colony
becomes extinct).

Start with a single individual and write a script which simulates a number of genera-
tions. Take p = 0.75. The number of generations which you can simulate will depend
on your computer system. Carry out a large number (e.g. 100) of such simulations. The
probability of ultimate extinction, p(E), may be estimated as the proportion of simula-
tions that end in extinction. You can also estimate the mean size of the nth generation
from a large number of simulations. Compare your estimate with the theoretical mean
of (2p)n.
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Statistical theory shows that the expected value of the extinction probability p(E) is the smaller
of 1, and (1 − p)/p. So for p = 0.75, p(E) is expected to be 1/3. But for p ≤ 0.5, p(E) is
expected to be 1, which means that extinction is certain (a rather unexpected result). You can
use your script to test this theory by running it for different values of p, and estimating p(E)
in each case.

17.7 I am indebted to a colleague, Gordon Kass, for suggesting this problem.
Dribblefire Jets Inc. make two types of aeroplane, the two-engined DFII, and the four-
engined DFIV. The engines are terrible and fail with probability 0.5 on a standard flight
(the engines fail independently of each other). The manufacturers claim that the planes
can fly if at least half of their engines are working, i.e. the DFII will crash only if
both its engines fail, while the DFIV will crash if all four, or if any three engines
fail.
You have been commissioned by the Civil Aviation Board to ascertain which of the
two models is less likely to crash. Since parachutes are expensive, the cheapest (and
safest!) way to do this is to simulate a large number of flights of each model. For exam-
ple, two calls of Math.random could represent one standard DFII flight: if both ran-
dom numbers are less than 0.5, that flight crashes, otherwise it doesn’t. Write a script
which simulates a large number of flights of both models, and estimates the probabil-
ity of a crash in each case. If you can run enough simulations, you may get a sur-
prising result. (Incidentally, the probability of n engines failing on a given flight is
given by the binomial distribution, but you do not need to use this fact in the simula-
tion.)

17.8 Two players, A and B, play a game called Eights . They take it in turns to choose a
number 1, 2 or 3, which may not be the same as the last number chosen (so if A
starts with 2, B may only choose 1 or 3 at the next move). A starts, and may choose
any of the three numbers for the first move. After each move, the number chosen is
added to a common running total. If the total reaches 8 exactly, the player whose turn
it was wins the game. If a player causes the total to go over 8, the other player wins.
For example, suppose A starts with 1 (total 1), B chooses 2 (total 3), A chooses 1
(total 4) and B chooses 2 (total 6). A would like to play 2 now, to win, but he can’t
because B cunningly played it on the last move, so A chooses 1 (total 7). This is even
smarter, because B is forced to play 2 or 3, making the total go over 8 and thereby los-
ing.
Write a script to simulate each player’s chances of winning, if they always play at ran-
dom.

17.9 If r is a normal random number with mean 0 and variance 1 (as generated by randn), it
can be transformed into a random number X with mean µ and standard deviation σ by the
relation

X = σr + µ.

In an experiment a Geiger counter is used to count the radio-active emissions of cobalt 60
over a 10-second period. After a large number of such readings are taken, the count rate
is estimated to be normally distributed with a mean of 460 and a standard deviation of
20.
• Simulate such an experiment 200 times by generating 200 random numbers with this

mean and standard deviation. Plot the histogram (use 10 bins).
• Repeat a few times to note how the histogram changes each time.

17.10 Radio-active carbon 11 has a decay-rate k of 0.0338 per minute, i.e. a particular C11 atom has
a 3.38% chance of decaying in any one minute.
Suppose we start with 100 such atoms. We would like to simulate their fate over a period
of 100 minutes, say. We want to end up with a bar graph showing how many atoms remain
undecayed after 1, 2, . . . , 100 minutes.
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Figure 17.1 Radio-active decay of carbon 11: simulated and theoretical

We need to simulate when each of the 100 atoms decays. This can be done, for each atom,
by generating a random number r for each of the 100 minutes, until either r > k (that
atom decays), or the 100 minutes is up. If the atom decayed at time t < 100, increment
the frequency distribution f (t) by 1. f (t) will be the number of atoms decaying at time t
minutes.
Now convert the number f (t) decaying each minute to the number R(t) remaining each
minute. If there are n atoms to start with, after one minute, the number R(1) remaining will
be n − f (1), since f (1) is the number decaying during the first minute. The number R(2)
remaining after two minutes will be n − f (1) − f (2). In general, the number remaining after
t minutes will be (in MATLAB notation)

R(t) = n - sum( f(1:t) )

Write a script to compute R(t) and plot its bar graph. Superimpose on the bar graph the
theoretical result, which is

R(t) = 100 exp−kt .

Typical results are shown in Figure 17.1.
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More matrices

Objectives

The objectives of this chapter are to demonstrate the use of matrices in a number of application areas,
including

• population dynamics
• Markov processes
• linear equations

and to introduce

• MATLAB’s sparse matrix facilities.

18.1 Leslie matrices: population growth

Our first application of matrices is in population dynamics.
Suppose we want to model the growth of a population of rabbits, in the sense that given their number

at some moment, we would like to estimate the size of the population in a few years’ time. One approach
is to divide the rabbit population up into a number of age classes, where the members of each age class
are one time unit older than the members of the previous class, the time unit being whatever is convenient
for the population being studied (days, months, etc.).

If Xi is the size of the ith age class, we define a survival factor Pi as the proportion of the ith class
that survive to the (i+1)th age class, i.e. the proportion that ‘graduate’. Fi is defined as the mean fertility
of the ith class. This is the mean number of newborn individuals expected to be produced during one
time interval by each member of the ith class at the beginning of the interval (only females count in
biological modelling, since there are always enough males to go round!).

Suppose for our modified rabbit model we have three age classes, with X1, X2 and X3 members
respectively. We will call them young, middle-aged and old-aged for convenience. We will take our time
unit as one month, so X1 is the number that were born during the current month, and which will be
considered as youngsters at the end of the month. X2 is the number of middle-aged rabbits at the end
of the month, and X3 the number of oldsters. Suppose the youngsters cannot reproduce, so that F1 = 0.
Suppose the fertility rate for middle-aged rabbits is 9, so F2 = 9, while for oldsters F3 = 12. The
probability of survival from youth to middle-age is one third, so P1 = 1/3, while no less than half the

224
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middle-aged rabbits live to become oldsters, so P2 = 0.5 (we are assuming for the sake of illustration
that all old-aged rabbits die at the end of the month—this can be corrected easily). With this information
we can quite easily compute the changing population structure month by month, as long as we have the
population breakdown to start with.

If we now denote the current month by t , and next month by (t + 1), we can refer to this month’s
youngsters as X1(t), and to next month’s as X1(t +1), with similar notation for the other two age classes.
We can then write a scheme for updating the population from month t to month (t + 1) as follows:

X1(t + 1) = F2X2(t) + F3X3(t),

X2(t + 1) = P1X1(t),

X3(t + 1) = P2X2(t).

We now define a population vector X(t), with three components, X1(t), X2(t), and X3(t), representing
the three age classes of the rabbit population in month t . The above three equations can then be rewritten
as [

X1
X2
X3

]

(t+1)

=
[

0 F2 F3
P1 0 0
0 P2 0

]
×

[
X1
X2
X3

]

t

where the subscript at the bottom of the vectors indicates the month. We can write this even more
concisely as the matrix equation

X(t + 1) = L X(t), (18.1)

where L is the matrix [
0 9 12

1/3 0 0
0 1/2 0

]

in this particular case. L is called a Leslie matrix . A population model can always be written in the form
of Equation (18.1) if the concepts of age classes, fertility, and survival factors, as outlined above, are
used.

Now that we have established a matrix representation for our model, we can easily write a script using
matrix multiplication and repeated application of Equation (18.1):

X(t + 2) = L X(t + 1),

X(t + 3) = L X(t + 2), etc.

We will assume to start with that we have one old (female) rabbit, and no others, so X1 = X2 = 0,
and X3 = 1. Here is the script:

% Leslie matrix population model
n = 3;
L = zeros(n); % all elements set to zero
L(1,2) = 9;
L(1,3) = 12;
L(2,1) = 1/3;
L(3,2) = 0.5;
x = [0 0 1]’; % remember x must be a column vector!

for t = 1:24
x = L * x;
disp( [t x’ sum(x)] ) % x’ is a row

end
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The output, over a period of 24 months (after some editing), is:

Month Young Middle Old Total

1 12 0 0 12
2 0 4 0 4
3 36 0 2 38
4 24 12 0 36
5 108 8 6 122

...
22 11184720 1864164 466020 13514904
23 22369716 3728240 932082 27030038
24 44739144 7456572 1864120 54059836

It so happens that there are no ‘fractional’ rabbits in this example. If there are any, they should be
kept, and not rounded (and certainly not truncated). They occur because the fertility rates and survival
probabilities are averages.

If you look carefully at the output you may spot that after some months the total population doubles
every month. This factor is called the growth factor , and is a property of the particular Leslie matrix
being used (for those who know about such things, it’s the dominant eigenvalue of the matrix). The
growth factor is 2 in this example, but if the values in the Leslie matrix are changed, the long-term
growth factor changes too (try it and see).

Figure 18.1 shows how the total rabbit population grows over the first 15 months. To draw this graph
yourself, insert the line

p(t) = sum(x);
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Figure 18.1 Total rabbit population over 15 months
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in the for loop after the statement x = L * x;, and run the program again. The vector p will contain
the total population at the end of each month. Then enter the commands

plot(1:15, p(1:15)), xlabel(’months’), ylabel(’rabbits’)
hold, plot(1:15, p(1:15),’o’)

The graph demonstrates exponential growth. If you plot the population over the full 24-month period,
you will see that the graph gets much steeper. This is a feature of exponential growth.

You probably didn’t spot that the numbers in the three age classes tend to a limiting ratio of 24:4:1.
This can be demonstrated very clearly if you run the model with an initial population structure having
this limiting ratio. The limiting ratio is called the stable age distribution of the population, and again it
is a property of the Leslie matrix (in fact, it is the eigenvector belonging to the dominant eigenvalue of
the matrix). Different population matrices lead to different stable age distributions.

The interesting point about this is that a given Leslie matrix always eventually gets a population into
the same stable age distribution, which increases eventually by the same growth factor each month, no
matter what the initial population breakdown is . For example, if you run the above model with any other
initial population, it will always eventually get into a stable age distribution of 24:4:1 with a growth
factor of 2 (try it and see).

See help eig if you’re interested in using MATLAB to compute eigenvalues and eigenvectors.

18.2 Markov processes

Often a process that we wish to model may be represented by a number of possible discrete (i.e.
discontinuous) states that describe the outcome of the process. For example, if we are spinning a coin,
then the outcome is adequately represented by the two states ‘heads’ and ‘tails’ (and nothing in between).
If the process is random, as it is with spinning coins, there is a certain probability of being in any of the
states at a given moment, and also a probability of changing from one state to another. If the probability
of moving from one state to another depends on the present state only, and not on any previous state,
the process is called a Markov chain. The progress of the myopic sailor in Chapter 17 is an example of
such a process. Markov chains are used widely in such diverse fields as biology and business decision
making, to name just two areas.

A random walk

This example is a variation on the random walk simulation of Chapter 17. A street has six intersections.
A short-sighted student wanders down the street. His home is at intersection 1, and his favourite internet
cafe at intersection 6. At each intersection other than his home or the cafe he moves in the direction of
the cafe with probability 2/3, and in the direction of his home with probability 1/3. In other words, he
is twice as likely to move towards the cafe as towards his home. He never wanders down a side street.
If he reaches his home or the cafe, he disappears into them, never to re-appear (when he disappears we
say in Markov jargon that he has been absorbed ).

We would like to know: what are the chances of him ending up at home or in the cafe, if he starts at a
given corner (other than home or the cafe, obviously)? He can clearly be in one of six states, with respect
to his random walk, which can be labelled by the intersection number, where state 1 means Home and
state 6 means Cafe. We can represent the probabilities of being in these states by a six-component state
vector X(t), where Xi(t) is the probability of him being at intersection i at moment t . The components
of X(t) must sum to 1, since he has to be in one of these states.

We can express this Markov process with the following transition probability matrix , P, where the
rows represent the next state (i.e. corner), and the columns represent the present state:
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Home 2 3 4 5 Cafe

Home 1 1/3 0 0 0 0
2 0 0 1/3 0 0 0
3 0 2/3 0 1/3 0 0
4 0 0 2/3 0 1/3 0
5 0 0 0 2/3 0 0

Cafe 0 0 0 0 2/3 1

The entries for Home-Home and Cafe-Cafe are both 1 because he stays there with certainty.
Using the probability matrix P we can work out his chances of being, say, at intersection 3 at moment

(t + 1) as
X3(t + 1) = 2/3X2(t) + 1/3X4(t).

To get to 3, he must have been at either 2 or 4, and his chances of moving from there are 2/3 and 1/3
respectively.

Mathematically, this is identical to the Leslie matrix problem. We can therefore form the new state
vector from the old one each time with a matrix equation:

X(t + 1) = P X(t).

If we suppose the student starts at intersection 2, the initial probabilities will be (0; 1; 0; 0; 0; 0). The
Leslie matrix script may be adapted with very few changes to generate future states:

n = 6;
P = zeros(n); % all elements set to zero

for i = 3:6
P(i,i-1) = 2/3;
P(i-2,i-1) = 1/3;

end

P(1,1) = 1;
P(6,6) = 1;
x = [0 1 0 0 0 0]’; % remember x must be a column vector!

for t = 1:50
x = P * x;
disp( [t x’] )

end

Edited output:

Time Home 2 3 4 5 Cafe

1 0.3333 0 0.6667 0 0 0
2 0.3333 0.2222 0 0.4444 0 0
3 0.4074 0 0.2963 0 0.2963 0
4 0.4074 0.0988 0 0.2963 0 0.1975
5 0.4403 0 0.1646 0 0.1975 0.1975
6 0.4403 0.0549 0 0.1756 0 0.3292
7 0.4586 0 0.0951 0 0.1171 0.3292
8 0.4586 0.0317 0 0.1024 0 0.4073

...
20 0.4829 0.0012 0 0.0040 0 0.5119
...
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40 0.4839 0.0000 0 0.0000 0 0.5161
...
50 0.4839 0.0000 0 0.0000 0 0.5161

By running the program for long enough, we soon find the limiting probabilities: he ends up at home
about 48% of the time, and at the cafe about 52% of the time. Perhaps this is a little surprising; from the
transition probabilities, we might have expected him to get to the cafe rather more easily. It just goes to
show that you should never trust your intuition when it comes to statistics!

Note that the Markov chain approach is not a simulation: one gets the theoretical probabilities each
time (this can all be done mathematically, without a computer). But it is interesting to confirm the limiting
probabilities by simulating the student’s progress, using a random number generator (see Exercise 17.5
at the end of Chapter 17).

18.3 Linear equations

A problem that often arises in scientific applications is the solution of a system of linear equations, e.g.

3x + 2y − z = 10 (18.2)

−x + 3y + 2z = 5 (18.3)

x − y − z = −1. (18.4)

MATLAB was designed to solve a system like this directly and very easily, as we shall now see.
If we define the matrix A as

A =
[

3 2 −1
−1 3 2

1 −1 −1

]
,

and the vectors x and b as

x =
[

x
y
z

]
, b =

[
10
5

−1

]
,

we can write the above system of three equations in matrix form as
[

3 2 −1
−1 3 2

1 −1 −1

][
x
y
z

]
=

[
10
5

−1

]
,

or even more concisely as the single matrix equation

Ax = b. (18.5)

The solution may then be written as
x = A−1b, (18.6)

where A−1 is the matrix inverse of A (i.e. the matrix which when multiplied by A gives the identity
matrix I).

MATLAB’s solution

To see how MATLAB solves this system, first recall that the left division operator \ may be used on
scalars, i.e. a \ b is the same as b / a if a and b are scalars. However, it can also be used on
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vectors and matrices, in order to solve linear equations. Enter the following statements on the command
line to solve Equations (18.2)–(18.4):

A = [3 2 -1; -1 3 2; 1 -1 -1];
b = [10 5 -1]’;
x = A \ b

This should result in

x =
-2.0000
5.0000

-6.0000

In terms of our notation, this means that the solution is x = −2, y = 5, z = −6.
You can think of the matrix operation A \ b as ‘b divided by A’, or as ‘the inverse of A multiplied

by b’, which is essentially what Equation (18.6) means. A colleague of mine reads this operation as ‘A
under b’, which you may also find helpful.

You may be tempted to implement Equation (18.6) in MATLAB as follows:

x = inv(A) * b

since the function inv finds a matrix inverse directly. However, A \ b is actually more accurate and
efficient, since it uses Gauss elimination, and therefore requires fewer flops (floating point operations),
e.g. with a random 30 × 30 system a \ b needs 24051 flops, whereas inv(a) * b needs
59850—more than twice as many. (In case you’re wondering where I got the number of flops from with
such authority, earlier versions of MATLAB had a function flops which counted the number of flops.
In Version 6 this is no longer practical since the algorithms have been changed.)

The residual

Whenever we solve a system of linear equations numerically we need to have some idea of how accurate
the solution is. The first thing to check is the residual , defined as

r = A*x - b

where x is the result of the operation x = A \ b . Theoretically the residual r should be zero,
since the expression A * x is supposed to be equal to b, according to Equation (18.5), which is the
equation we are trying to solve. In our example here the residual is (check it)

r =
1.0e-015 *

0
0.8882
0.6661

This seems pretty conclusive: all the elements of the residual are less than 10−15 in absolute value.
Unfortunately, there may still be problems lurking beneath the surface, as we shall see shortly.

We will, however, first look at a situation where the residual turns out to be far from zero.

Over-determined systems

When we have more equations than unknowns, the system is called over-determined , e.g.

x − y = 0

y = 2

x = 1.
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Surprisingly, perhaps, MATLAB gives a solution to such a system. If

A = [1 -1; 0 1; 1 0];
b = [0 2 1]’;

the statement

x = A \ b

results in

x =
1.3333
1.6667

The residual r = A*x - b is now

r =
-0.3333
-0.3333
0.3333

What happens in this case is that MATLAB produces the least squares best fit . This is the value of x
which makes the magnitude of r, i.e.

√
r(1)2 + r(2)2 + r(3)3,

as small as possible. You can compute this quantity (0.5774) with sqrt(r’ * r) or
sqrt(sum(r .* r)).

There is a nice example of fitting a decaying exponential function to data with a least squares fit in Using
MATLAB: Mathematics: Matrices and Linear Algebra: Solving Linear Equations: Overdetermined
Systems.

Under-determined systems

If there are fewer equations than unknowns, the system is called under-determined . In this case there are
an infinite number of solutions; MATLAB will find one which has zeros for some of the unknowns.

The equations in such a system are the constraints in a linear programming problem.

Ill conditioning

Sometimes the coefficients of a system of equations are the results of an experiment, and may be subject
to error. We need in that case to know how sensitive the solution is to the experimental errors. As an
example, consider the system

10x + 7y + 8z + 7w = 32

7x + 5y + 6z + 5w = 23

8x + 6y + 10z + 9w = 33

7x + 5y + 9z + 10w = 31

Use matrix left division to show that the solution is x = y = z = w = 1. The residual is exactly zero
(check it), and all seems well.

However, if we change the right-hand side constants to 32.1, 22.9, 32.9 and 31.1, the ‘solution’ is now
given by x = 6, y = −7.2, z = 2.9, w = −0.1. The residual is very small.
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A system like this is called ill-conditioned , meaning that a small change in the coefficients leads to a
large change in the solution. The MATLAB function rcond returns the condition estimator , which tests
for ill conditioning. If A is the coefficient matrix, rcond(A) will be close to zero if A is ill-conditioned,
but close to 1 if it is well-conditioned. In this example, the condition estimator is about 2 × 10−4, which
is pretty close to zero.

Some authors suggest the rule of thumb that a matrix is ill-conditioned if its determinant is small
compared to the entries in the matrix. In this case the determinant of A is 1 (check with the function
det) which is about an order of magnitude smaller than most of its entries.

Matrix division

Here is a brief technical summary of matrix division.
Matrix left division, A\B, is defined whenever B has as many rows as A. This corresponds formally

to inv(A)*B although the result is obtained without computing the inverse explicitly. In general,

x = A \ B

is a solution to the system of equations defined by Ax = B.
If A is square, matrix left division is done using Gauss elimination.
If A is not square the over- or under-determined equations are solved in the least squares sense. The

result is a m × n matrix X, where m is the number of columns of A and n is the number of columns of
B.

Matrix right division, B/A, is defined in terms of matrix left division such that B/A is the same as
(A’\B’)’. So with a and b defined as for Equations (18.2)–(18.4), this means that

x = (b’/a’)’

gives the same solution, doesn’t it? Try it, and make sure you can see why.
Sometimes the least squares solutions computed by \ or / for over- or under-determined systems can

cause surprises, since you can legally divide one vector by another. For example, if

a = [1 2];
b = [3 4];

the statement

a / b

results in

ans =
0.4400

This is because a/b is the same as (b’\a’)’, which is formally the solution of b′ x′ = a′. The result
is a scalar, since a’ and b’ each have one column, and is the least squares solution of

(
3
4

)
x =

(
1
2

)
.

With this under your belt, can you explain why

a \ b



More matrices 233

gives

ans =
0 0

1.5000 2.0000

(try writing the equations out in full)?
A complete discussion of the algorithms used in solving simultaneous linear equations may be found in

the online documentation under MATLAB: Reference: MATLAB Function Reference: Alphabetical
List of Functions: Arithmetic Operators + - * / \ ^ ’.

18.4 Sparse matrices

Matrices can sometimes get very large, with thousands of entries. Very large matrices can occupy huge
amounts of memory, and processing them can take up a lot of computer time. For example, a system
of n simultaneous linear equations requires n2 matrix entries, and the computing time to solve them is
proportional to n3.

However, some matrices have relatively few non-zero entries. Such matrices are called sparse as
opposed to full . The father of modern numerical linear algebra, J.H. Wilkinson, has remarked that a
matrix is sparse if ‘it has enough zeros that it pays to take advantage of them’. MATLAB has facilities
for exploiting sparsity, which have the potential for saving huge amounts of memory and processing
time. For example, the matrix representation of a certain type of partial differential equation (a 5-point
Laplacian) on a square 64 × 64 grid is a 4096 × 4096 element matrix with 20224 non-zero elements.
The sparse form of this matrix in MATLAB occupies only 250 kB of memory, whereas the full version
of the same matrix would occupy 128 MB, which is way beyond the limits of most desktop computers.
The solution of the system Ax = b using sparse techniques is about 4000 times faster than solving the
full case, i.e. 10 seconds instead of 12 hours!

In this section (which you can safely skip, if you want to) we will look briefly at how to create sparse
matrices in MATLAB. For a full description of sparse matrix techniques consult Using MATLAB:
Mathematics: Sparse Matrices.

First an example, then an explanation. The transition probability matrix for the random walk problem
in Section 18.2 is a good candidate for sparse representation. Only ten of its 36 elements are non-zero.
Since the non-zeros appear only on the diagonal and the sub- and super-diagonals, a matrix representing
more intersections would be even sparser. For example, a 100 × 100 representation of the same problem
would have only 198 non-zero entries, i.e. 1.98%.

To represent a sparse matrix all that MATLAB needs to record are the non-zero entries with their row
and column indices. This is done with the sparse function. The transition matrix of Section 18.2 can
be set up as a sparse matrix with the statements

n = 6;
P = sparse(1, 1, 1, n, n);
P = P + sparse(n, n, 1, n, n);
P = P + sparse(1:n-2, 2:n-1, 1/3, n, n);
P = P + sparse(3:n, 2:n-1, 2/3, n, n)

which result in (with format rat)

P =

(1,1) 1
(1,2) 1/3
(3,2) 2/3
(2,3) 1/3
(4,3) 2/3
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(3,4) 1/3
(5,4) 2/3
(4,5) 1/3
(6,5) 2/3
(6,6) 1

Each line of the display of a sparse matrix gives a non-zero entry with its row and column, e.g. 2/3 in
row 3 and column 2. To display a sparse matrix in full form, use the function

full(P)

which results in

ans =
1 1/3 0 0 0 0
0 0 1/3 0 0 0
0 2/3 0 1/3 0 0
0 0 2/3 0 1/3 0
0 0 0 2/3 0 0
0 0 0 0 2/3 1

(also with format rat).
The form of the sparse function used here is

sparse(rows, cols, entries, m, n)

This generates an m×n sparse matrix with non-zero entries having subscripts (rows, cols) (which
may be vectors), e.g. the statement

sparse(1:n-2, 2:n-1, 1/3, n, n);

(with n = 6 ) creates a 6 × 6 sparse matrix with 4 non-zero elements, being 1/3’s in rows 1–4 and
columns 2–5 (most of the super-diagonal). Note that repeated use of sparse produces a number of
6 × 6 matrices, which must be added together to give the final form. Sparsity is therefore preserved by
operations on sparse matrices. See help for more details of sparse.

It’s quite easy to test the efficiency of sparse matrices. Construct a (full) identity matrix

a = eye(1000);

It takes about 27.5 seconds on my Celeron to compute a^2. However, a is an ideal candidate for being
represented as a sparse matrix, since only 1000 of its one million elements are non-zero. It is represented
in sparse form as

s = sparse(1:1000, 1:1000, 1, 1000, 1000);

It only takes about 0.05 seconds to compute s^2—more than 500 times faster!
The function full(a) returns the full form of the sparse matrix a (without changing the

sparse representation of a itself). Conversely, sparse(a) returns the sparse form of the full
matrix a.

The function spy provides a neat visualization of sparse matrices. Try it on P. Then enlarge P to
about 50 × 50, and spy it.
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Summary

• The matrix left division operator \ is used for solving systems of linear equations directly.
Because the matrix division operators \ and / can produce surprising least squares solution, you
should always compute the residual when solving a system of equations.

• If you work with large matrices with relatively few non-zero entries you should consider using
MATLAB’s sparse matrix facilities.

Exercises

18.1 Compute the limiting probabilities for the student in Section 18.2 when he starts at each of the
remaining intersections in turn, and confirm that the closer he starts to the cafe, the more likely
he is to end up there.
Compute P^50 directly. Can you see the limiting probabilities in the first row?

18.2 Solve the equations

2x − y + z = 4

x + y + z = 3

3x − y − z = 1

using the left division operator. Check your solution by computing the residual. Also compute
the determinant (det) and the condition estimator (rcond). What do you conclude?

18.3 This problem, suggested by R.V. Andree, demonstrates ill conditioning (where small changes
in the coefficients cause large changes in the solution). Use the left division operator to show
that the solution of the system

x + 5.000y = 17.0

1.5x + 7.501y = 25.503

is x = 2, y = 3. Compute the residual.
Now change the term on the right-hand side of the second equation to 25.501, a change of
about one part in 12000, and find the new solution and the residual. The solution is completely
different. Also try changing this term to 25.502, 25.504, etc. If the coefficients are subject
to experimental errors, the solution is clearly meaningless. Use rcond to find the condition
estimator and det to compute the determinant. Do these values confirm ill conditioning?
Another way to anticipate ill conditioning is to perform a sensitivity analysis on the coefficients:
change them all in turn by the same small percentage, and observe what effect this has on the
solution.

18.4 Use sparse to represent the Leslie matrix in Section 18.1. Test your representation by pro-
jecting the rabbit population over 24 months.

18.5 If you are familiar with Gauss reduction it is an excellent programming exercise to code a
Gauss reduction directly with operations on the rows of the augmented coefficient matrix. See
if you can write a function

x = mygauss(a, b)

to solve the general system Ax = b. Skillful use of the colon operator in the row operations
can reduce the code to a few lines!
Test it on A and b with random entries, and on the systems in Section 18.3 and Exercise 18.2.
Check your solutions with left division.
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Introduction to numerical
methods

Objective

The objectives of this chapter are to introduce numerical methods for

• solving equations;
• evaluating definite integrals;
• solving systems of ordinary differential equations;
• solving a parabolic partial differential equation.

A major scientific use of computers is in finding numerical solutions to mathematical problems which have
no analytical solutions (i.e. solutions which may be written down in terms of polynomials and standard
mathematical functions). In this chapter we look briefly at some areas where numerical methods have
been highly developed, e.g. solving non-linear equations, evaluating integrals, and solving differential
equations.

19.1 Equations

In this section we consider how to solve equations in one unknown numerically. The usual way of
expressing the problem is to say that we want to solve the equation f (x) = 0, i.e. we want to find its
root (or roots). This process is also described as finding the zeros of f (x). There is no general method
for finding roots analytically for an arbitrary f (x).

Newton’s method

Newton’s method is perhaps the easiest numerical method to implement for solving equations, and was
introduced briefly in earlier chapters. It is an iterative method, meaning that it repeatedly attempts to
improve an estimate of the root. If xk is an approximation to the root, we can relate it to the next
approximation xk+1 using the right-angle triangle in Figure 19.1:

f ′(xk) = f (xk) − 0

xk − xk+1
,

236
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f (xk)

f ′(xk)

xk +1 xk

Root

Figure 19.1 Newton’s method

where f ′(x) is df/dx. Solving for xk+1 gives

xk+1 = xk − f (xk)

f ′(xk)
.

A structure plan to implement Newton’s method is:

1. Input starting value x0 and required relative error e
2. While relative error |(xk − xk−1)/xk| ≥ e repeat up to k = 20, say:

xk+1 = xk − f (xk)/f
′(xk)

Print xk+1 and f (xk+1)
3. Stop.

It is necessary to limit step 2 since the process may not converge.
A script using Newton’s method (without the subscript notation) to solve the equation x3 + x − 3 = 0

is given in Chapter 10. If you run it you will see that the values of x converge rapidly to the root.
As an exercise, try running the script with different starting values of x0 to see whether the algorithm

always converges.
If you have a sense of history, use Newton’s method to find a root of x3 − 2x − 5 = 0. This is the

example used when the algorithm was first presented to the French Academy.
Also try finding a non-zero root of 2x = tan(x), using Newton’s method. You might have some trouble

with this one. If you do, you will have discovered the one serious problem with Newton’s method: it
converges to a root only if the starting guess is ‘close enough’. Since ‘close enough’ depends on the
nature of f (x) and on the root, one can obviously get into difficulties here. The only remedy is some
intelligent trial-and-error work on the initial guess—this is made considerably easier by sketching f (x)
or plotting it with MATLAB (see Figure 19.2).

If Newton’s method fails to find a root, the Bisection method, discussed below, can be used.

Complex roots

Newton’s method can also find complex roots, but only if the starting guess is complex. Use the script
in Chapter 10 to find a complex root of x2 + x + 1 = 0. Start with a complex value of 1 + i say,
for x. Using this starting value for x gives the following output (if you replace disp( [x f(x)] )
in the script with disp( x )):

0.0769 + 0.6154i
-0.5156 + 0.6320i
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Figure 19.2 f(x) = 2x − tan(x)

-0.4932 + 0.9090i
-0.4997 + 0.8670i
-0.5000 + 0.8660i
-0.5000 + 0.8660i
Zero found

Since complex roots occur in complex conjugate pairs, the other root is −0.5 − 0.866i.

The Bisection method

Consider again the problem of solving the equation f (x) = 0, where

f (x) = x3 + x − 3.

We attempt to find by inspection, or trial-and-error, two values of x, call them xL and xR , such that f (xL)
and f (xR) have different signs, i.e. f (xL)f (xR) < 0. If we can find two such values, the root must lie
somewhere in the interval between them, since f (x) changes sign on this interval (see Figure 19.3). In
this example, xL = 1 and xR = 2 will do, since f (1) = −1 and f (2) = 7. In the Bisection method, we
estimate the root by xM , where xM is the midpoint of the interval [xL, xR], i.e.

xM = (xL + xR)/2. (19.1)

Then if f (xM) has the same sign as f (xL), as drawn in the figure, the root clearly lies between xM and
xR . We must then redefine the left-hand end of the interval as having the value of xM , i.e. we let the
new value of xL be xM . Otherwise, if f (xM) and f (xL) have different signs, we let the new value of
xR be xM , since the root must lie between xL and xM in that case. Having redefined xL or xR , as the
case may be, we bisect the new interval again according to Equation (19.1) and repeat the process until
the distance between xL and xR is as small as we please.

The neat thing about this method is that, before starting, we can calculate how many bisections are
needed to obtain a certain accuracy, given initial values of xL and xR . Suppose we start with xL = a,
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xM xR

f (x )

xL

Figure 19.3 The Bisection method

and xR = b. After the first bisection the worst possible error (E1) in xM is E1 = |a − b|/2, since we are
estimating the root as being at the midpoint of the interval [a, b]. The worst that can happen is that the
root is actually at xL or xR , in which case the error is E1. Carrying on like this, after n bisections the
worst possible error En is given by En = |a − b|/2n. If we want to be sure that this is less than some
specified error E, we must see to it that n satisfies the inequality |a − b|/2n < E, i.e.

n >
log(|a − b|/E)

log(2)
(19.2)

Since n is the number of bisections, it must be an integer. The smallest integer n that exceeds the right-
hand side of Inequality (19.2) will do as the maximum number of bisections required to guarantee the
given accuracy E.

The following scheme may be used to program the Bisection method. It will work for any function
f (x) that changes sign (in either direction) between the two values a and b, which must be found
beforehand by the user.

1. Input a, b and E
2. Initialize xL and xR

3. Compute maximum bisections n from Inequality (19.2)
4. Repeat n times:

Compute xM according to Equation (19.1)
If f (xL)f (xM) > 0 then

Let xL = xM

otherwise
Let xR = xM

5. Display root xM

6. Stop.

We have assumed that the procedure will not find the root exactly; the chances of this happening with
real variables are infinitesimal.

The main advantage of the Bisection method is that it is guaranteed to find a root if you can find
two starting values for xL and xR between which the function changes sign. You can also compute in
advance the number of bisections needed to attain a given accuracy. Compared to Newton’s method it
is inefficient. Successive bisections do not necessarily move closer to the root, as usually happens with
Newton’s method. In fact, it is interesting to compare the two methods on the same function to see
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how many more steps the Bisection method requires than Newton’s method. For example, to solve the
equation x3 + x − 3 = 0, the Bisection method takes 21 steps to reach the same accuracy as Newton’s
in five steps.

fzero

The MATLAB function fzero(@f, a) finds the zero nearest to the value a of the function f repre-
sented by the function f.m.

Use it to find a zero of x3 + x − 3.
fzero doesn’t appear to be able to find complex roots.

roots

The MATLAB function M-file roots(c) finds all the roots (zeros) of the polynomial with coefficients
in the vector c. See help for details.

Use it to find a zero of x3 + x − 3.

19.2 Integration

Although most ‘respectable’ mathematical functions can be differentiated analytically, the same cannot
be said for integration. There are no general rules for integrating, as there are for differentiating. For
example, the indefinite integral of a function as simple as e−x2

cannot be found analytically. We therefore
need numerical methods for evaluating integrals.

This is actually quite easy, and depends on the fact that the definite integral of a function f (x) between
the limits x = a and x = b is equal to the area under f (x) bounded by the x-axis and the two vertical
lines x = a and x = b. So all numerical methods for integrating simply involve more or less ingenious
ways of estimating the area under f (x).

The Trapezoidal rule

The Trapezoidal (or Trapezium) rule is fairly simple to program. The area under f (x) is divided into
vertical panels each of width h, called the step-length. If there are n such panels, then nh = b − a, i.e.
n = (b − a)/h. If we join the points where successive panels cut f (x), we can estimate the area under
f (x) as the sum of the area of the resulting trapezia (see Figure 19.4). If we call this approximation to

xi

f (x)

xi+1

h

Figure 19.4 The Trapezoidal rule
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the integral S, then

S = h

2

[
f (a) + f (b) + 2

n−1∑
i=1

f (xi)

]
, (19.3)

where xi = a + ih. Equation (19.3) is the Trapezoidal rule, and provides an estimate for the integral
∫ b

a

f (x) dx.

Here is a function to implement the Trapezoidal rule:

function y = trap( fn, a, b, h )
n = (b-a)/h;
x = a + [1:n-1]*h;
y = sum(feval(fn, x));
y = h/2*(feval(fn, a) + feval(fn, b) + 2*y);

Note:

1. Since the summation in the rule is implemented with a vectorized formula rather than a for loop
(to save time), the function to be integrated must use array operators where appropriate in its M-file
implementation.

2. The user must choose h in such a way that the number of steps n will be an integer—a check for
this could be built in.

As an exercise, integrate f (x) = x3 between the limits 0 and 4 (remember to write x.^3 in the
function M-file). Call trap as follows:

s = trap(@f, 0, 4, h);

With h = 0.1, the estimate is 64.04, and with h = 0.01 it is 64.0004 (the exact integral is 64). You will
find that as h gets smaller, the estimate gets more accurate.

This example assumes that f (x) is a continuous function which may be evaluated at any x. In practice,
the function could be defined at discrete points supplied as results of an experiment. For example, the
speed of an object v(t) might be measured every so many seconds, and one might want to estimate the
distance travelled as the area under the speed-time graph. In this case, trap would have to be changed
by replacing fn with a vector of function values. This is left as an exercise for the curious. Alternatively,
you can use the MATLAB function interp1 to interpolate the data. See help.

Simpson’s rule

Simpson’s rule is a method of numerical integration which is a good deal more accurate than the
Trapezoidal rule, and should always be used before you try anything fancier. It also divides the area
under the function to be integrated, f (x), into vertical strips, but instead of joining the points f (xi) with
straight lines, every set of three such successive points is fitted with a parabola. To ensure that there are
always an even number of panels, the step-length h is usually chosen so that there are 2n panels, i.e.
n = (b − a)/(2h).

Using the same notation as above, Simpson’s rule estimates the integral as

S = h

3

[
f (a) + f (b) + 2

n−1∑
i=1

f (x2i ) + 4
n∑

i=1

f (x2i−1)

]
. (19.4)

Coding this formula into a function M-file is left as an exercise.



242 Essential MATLAB for Scientists and Engineers

If you try Simpson’s rule on f (x) = x3 between any limits, you will find rather surprisingly, that
it gives the same result as the exact mathematical solution. This is a nice extra benefit of the rule: it
integrates cubic polynomials exactly (which can be proved).

quad

Not surprisingly, MATLAB has a function quad to carry out numerical integration, or quadrature as it
is also called. See help.

You may think there is no point in developing our own function files to handle these numerical
procedures when MATLAB has its own. If you have got this far, you should be curious enough to want
to know how they work, rather than treating them simply as ‘black boxes’.

19.3 Numerical differentiation

The Newton quotient for a function f (x) is given by

f (x + h) − f (x)

h
, (19.5)

where h is ‘small’. As h tends to zero, this quotient approaches the first derivative, df/dx. The Newton
quotient may therefore be used to estimate a derivative numerically. It is a useful exercise to do this with
a few functions for which you know the derivatives. This way you can see how small you can make h
before rounding errors cause problems. Such errors arise because expression (19.5) involves subtracting
two terms that eventually become equal when the limit of the computer’s accuracy is reached.

As an example, the following script uses the Newton quotient to estimate f ′(x) for f (x) = x2 (which
must be supplied as a function file f.m) at x = 2, for smaller and smaller values of h (the exact
answer is 4).

h = 1;
x = 2;
format short e
for i = 1:20
nq = (f(x+h) - f(x))/h;
disp( [h nq] )
h = h / 10;

end

Output:

1 5
1.0000e-001 4.1000e+000
1.0000e-002 4.0100e+000
1.0000e-003 4.0010e+000
1.0000e-004 4.0001e+000
1.0000e-005 4.0000e+000
1.0000e-006 4.0000e+000
1.0000e-007 4.0000e+000
1.0000e-008 4.0000e+000
1.0000e-009 4.0000e+000
1.0000e-010 4.0000e+000
1.0000e-011 4.0000e+000
1.0000e-012 4.0004e+000
1.0000e-013 3.9968e+000
1.0000e-014 4.0856e+000
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1.0000e-015 3.5527e+000
1.0000e-016 0
...

The results show that the best h for this particular problem is about 10−8. But for h much smaller than
this the estimate becomes totally unreliable.

Generally, the best h for a given problem can only be found by trial and error. Finding it can be a
non-trivial exercise. This problem does not arise with numerical integration, because numbers are added
to find the area, not subtracted.

diff

If x is a row or column vector

[x(1) x(2) ... x(n)]

then the MATLAB function diff(x) returns a vector of differences between adjacent elements:

[x(2)-x(1) x(3)-x(2) ... x(n)-x(n-1)]

The output vector is one element shorter than the input vector.
In certain problems, diff is helpful in finding approximate derivatives, e.g. if x contains displacements

of an object every h seconds, diff(x)/h will be its speed.

19.4 First-order differential equations

The most interesting situations in real life that we may want to model, or represent quantitatively, are
usually those in which the variables change in time (e.g. biological, electrical or mechanical systems). If
the changes are continuous, the system can often be represented with equations involving the derivatives
of the dependent variables. Such equations are called differential equations. The main aim of a lot of
modelling is to be able to write down a set of differential equations (DEs) that describe the system being
studied as accurately as possible. Very few DEs can be solved analytically, so once again, numerical
methods are required. We will consider the simplest method of numerical solution in this section: Euler’s
method (Euler rhymes with ‘boiler’). We also consider briefly how to improve it.

Euler’s method

In general we want to solve a first-order DE (strictly an ordinary—ODE) of the form

dy/dx = f (x, y), y(0) given.

Euler’s method for solving this DE numerically consists of replacing dy/dx with its Newton quotient,
so that the DE becomes

y(x + h) − y(x)

h
= f (x, y).

After a slight rearrangement of terms, we get

y(x + h) = y(x) + hf (x, y). (19.6)

Solving a DE numerically is such an important and common problem in science and engineering that it
is worth introducing some general notation at this point. Suppose we want to integrate the DE over the
interval x = a (a = 0 usually) to x = b. We break this interval up into m steps of length h, so

m = (b − a)/h
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(this is the same as the notation used in the update process of Chapter 11, except that dt used there has
been replaced by the more general h here).

For consistency with MATLAB’s subscript notation, if we define yi as y(xi) (the Euler estimate at
the beginning of step i), where xi = (i − 1)h, then yi+1 = y(x + h), at the end of step i. We can then
replace Equation (19.6) by the iterative scheme

yi+1 = yi + hf (xi, yi), (19.7)

where y1 = y(0). Recall from Chapter 11 that this notation enables us to generate a vector y which we
can then plot. Note also the striking similarity between Equation (19.7) and the equation in Chapter 11
representing an update process. This similarity is no coincidence. Update processes are typically modelled
by DEs, and Euler’s method provides an approximate solution for such DEs.

Example: bacteria growth

Suppose a colony of 1000 bacteria is multiplying at the rate of r = 0.8 per hour per individual (i.e.
an individual produces an average of 0.8 offspring every hour). How many bacteria are there after 10
hours? Assuming that the colony grows continuously and without restriction, we can model this growth
with the DE

dN/dt = rN, N(0) = 1000, (19.8)

where N(t) is the population size at time t . This process is called exponential growth. Equation (19.8)
may be solved analytically to give the well-known formula for exponential growth:

N(t) = N(0)ert .

To solve Equation (19.8) numerically, we apply Euler’s algorithm to it to get

Ni+1 = Ni + rhNi, (19.9)

where the initial value N1 = 1000.
It is very easy to program Euler’s method. The following script implements Equation (19.9), taking

h = 0.5. It also computes the exact solution for comparison.

h = 0.5;
r = 0.8;
a = 0;
b = 10;
m = (b - a) / h;
N = zeros(1, m+1);
N(1) = 1000;
t = a:h:b;

for i = 1:m
N(i+1) = N(i) + r * h * N(i);

end

Nex = N(1) * exp(r * t);
format bank
disp( [t’ N’ Nex’] )

plot(t, N ), xlabel( ’Hours’ ), ylabel( ’Bacteria’ )
hold on
plot(t, Nex ), hold off
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Table 19.1 Bacteria growth

Time Euler Predictor- Exact
(hours) Corrector

0.0 1000 1000 1000
0.5 1400 1480 1492
1.0 1960 2190 2226
1.5 2744 3242 3320
2.0 3842 4798 4953
. . .

5.0 28925 50422 54598
. . .

8.0 217795 529892 601845
. . .

10.0 836683 2542344 2980958
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Figure 19.5 Bacteria growth: (a) Euler’s method; (b) the exact solution

Results are shown in Table 19.1, and also in Figure 19.5. The Euler solution is not too good. In fact,
the error gets worse at each step, and after 10 hours of bacteria time it is about 72 per cent. The numerical
solution will improve if we make h smaller, but there will always be some value of t where the error
exceeds some acceptable limit.

In some cases, Euler’s method performs better than it does here, but there are other numerical methods
which always do better than Euler. Two of them are discussed below. More sophisticated methods may
be found in most textbooks on numerical analysis. However, Euler’s method may always be used as a
first approximation as long as you realize that errors may arise.
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Alternative subscript notation

Equation 19.9 is an example of a finite difference scheme. The conventional finite difference notation is
for the initial value to be represented by N0, i.e. with subscript i = 0. Ni is then the estimate at the
end of step i. If you want the MATLAB subscripts in the Euler solution to be the same as the finite
difference subscripts, the initial value N0 must be represented by the MATLAB scalar N0, and you have
to compute N(1) separately, before the for loop starts. You also have to display or plot the initial
values separately since they will no longer be included in the MATLAB vectors t, N and Nex (which
now have m instead of m + 1 elements). Here is a complete script to generate the Euler solution using
finite difference subscripts:

h = 0.5;
r = 0.8;
a = 0;
b = 10;
m = (b - a) / h;
N = zeros(1, m); % one less element now
N0 = 1000;
N(1) = N0 + r*h*N0; % no longer ’self-starting’

for i = 2:m
N(i) = N(i-1) + r * h * N(i-1); %finite difference notation

end

t = a+h:h:b; % exclude initial time = a
Nex = N0 * exp(r * t);
disp( [a N0 N0] ) % display initial values separately
disp( [t’ N’ Nex’] )

plot(a, N0) % plot initial values separately
hold on
plot(t, N ), xlabel( ’Hours’ ), ylabel( ’Bacteria’ )
plot(t, Nex ), hold off

A predictor-corrector method

One improvement on the numerical solution of the first-order DE

dy/dx = f (x, y), y(0) given,

is as follows. The Euler approximation, which we are going to denote by an asterisk, is given by

y∗
i+1 = yi + hf (xi, yi) (19.10)

But this formula favours the old value of y in computing f (xi, yi) on the right-hand side. Surely it would
be better to say

y∗
i+1 = yi + h[f (xi+1, y

∗
i+1) + f (xi, yi)]/2, (19.11)

where xi+1 = xi + h, since this also involves the new value y∗
i+1 in computing f on the right-hand

side? The problem of course is that y∗
i+1 is as yet unknown, so we can’t use it on the right-hand side

of Equation (19.11). But we could use Euler to estimate (predict) y∗
i+1 from Equation (19.10) and then

use Equation (19.11) to correct the prediction by computing a better version of y∗
i+1, which we will call

yi+1. So the full procedure is:

Repeat as many times as required:
Use Euler to predict: y∗

i+1 = yi + hf (xi, yi)

Then correct y∗
i+1 to: yi+1 = yi + h[f (xi+1, y

∗
i+1) + f (xi, yi)]/2.
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This is called a predictor-corrector method. The script above can easily be adapted to this problem. The
relevant lines of code are:

for i = 1:m % m steps of length dt
ne(i+1) = ne(i) + r * h * ne(i);
np = nc(i) + r * h * nc(i);
nc(i+1) = nc(i) + r * h * (np + nc(i))/2;
disp( [t(i+1) ne(i+1) nc(i+1) nex(i+1)] )

end;

ne stands for the ‘straight’ (uncorrected) Euler solution, np is the Euler predictor (since this is an
intermediate result a vector is not needed for np), and nc is the corrector. The worst error is now only
15 per cent. This is much better than the uncorrected Euler solution, although there is still room for
improvement.

19.5 Linear ordinary differential equations (LODEs)

Linear ODEs with constant coefficients may be solved analytically in terms of matrix exponentials , which
are represented in MATLAB by the function expm. For an example see Using MATLAB: Mathematics:
Matrices and Linear Algebra: Matrix Powers and Exponentials.

19.6 Runge–Kutta methods

There are a variety of algorithms, under the general name of Runge–Kutta, which can be used to integrate
systems of ODEs. The formulae involved are rather complicated; they can be found in most books on
numerical analysis.

However, as you may have guessed, MATLAB has plenty of ODE solvers, which are discussed in
Using MATLAB: Mathematics: Differential Equations. Among them are ode23 (second/third order)
and ode45 (fourth/fifth order), which implement Runge–Kutta methods. (The order of a numerical
method is the power of h (i.e. dt) in the leading error term. Since h is generally very small, the higher
the power, the smaller the error). We will demonstrate the use of ode23 and ode45 here, first with a
single first-order DE, and then with systems of such equations.

A single differential equation

Here’s how to use ode23 to solve the bacteria growth problem, Equation (19.8):

dN/dt = rN, N(0) = 1000.

1. Start by writing a function file for the right-hand side of the DE to be solved. The function must
have input variables t and N in this case (i.e. independent and dependent variables of the DE), in
that order, e.g. create the function file f.m as follows:

function y = f(t, Nr)
y = 0.8 * Nr;

2. Now enter the following statements in the Command Window:

a = 0;
b = 10;
n0 = 1000;
[t, Nr] = ode23(@f, [a:0.5:b], n0);
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3. Note the input arguments of ode23:
@f: a handle for the function f, which contains the right-hand side of the DE;
[a:0.5:b]: a vector (tspan) specifying the range of integration. If tspan has two elements
([a b]) the solver returns the solution evaluated at every integration step (the solver chooses
the integration steps and may vary them). This form would be suitable for plotting. However,
if you want to display the solution at regular time intervals, as we want to here, use the form
of tspan with three elements as above. The solution is then returned evaluated at each time in
tspan. The accuracy of the solution is not affected by the form of tspan used.
n0: the initial value of the solution N .

4. The output arguments are two vectors: the solutions Nr at times t. After 10 hours ode23 gives a
value of 2961338 bacteria. From the exact solution in Table 19.1 we see that the error here is only
0.7 per cent.

If the solutions you get from ode23 are not accurate enough, you can request greater accuracy with
an additional optional argument. See help.

If you need still more accurate numerical solutions, you can use ode45 instead. It gives a final value
for the bacteria of 2981290—an error of about 0.01%.

Systems of differential equations: chaos

The reason that weather prediction is so difficult and forecasts are so erratic is no longer thought to be the
complexity of the system but the nature of the DEs modelling it. These DEs belong to a class referred to
as chaotic. Such equations will produce wildly different results when their initial conditions are changed
infinitesimally. In other words, accurate weather prediction depends crucially on the accuracy of the
measurements of the initial conditions.

Edward Lorenz, a research meteorologist, discovered this phenomenon in 1961. Although his original
equations are far too complex to consider here, the following much simpler system has the same essential
chaotic features:

dx/dt = 10(y − x), (19.12)

dy/dt = −xz + 28x − y, (19.13)

dz/dt = xy − 8z/3. (19.14)

This system of DEs may be solved very easily with the MATLAB ODE solvers. The idea is to solve the
DEs with certain initial conditions, plot the solution, then change the initial conditions very slightly, and
superimpose the new solution over the old one to see how much it has changed.

We begin by solving the system with the initial conditions x(0) = −2, y(0) = −3.5 and z(0) = 21.

1. Write a function file lorenz.m to represent the right-hand sides of the system as follows:

function f = lorenz(t, x)
f = zeros(3,1);
f(1) = 10 * (x(2) - x(1));
f(2) = -x(1) * x(3) + 28 * x(1) - x(2);
f(3) = x(1) * x(2) - 8 * x(3) / 3;

The three elements of the MATLAB vector x, i.e. x(1), x(2) and x(3), represent the three
dependent scalar variables x, y and z respectively. The elements of the vector f represent the right-
hand sides of the three DEs. When a vector is returned by such a DE function it must be a column
vector, hence the statement

f = zeros(3,1);



Introduction to numerical methods 249

2. Now use the following commands to solve the system from t = 0 to t = 10, say:

x0 = [-2 -3.5 21]; % initial values in a vector
[t, x] = ode45(@lorenz, [0 10], x0);
plot(t,x)

Note that we are use ode45 now, since it is more accurate. (If you aren’t using a Pentiun it will
take quite a few seconds for the integration to be completed.)
You will see three graphs, for x, y and z (in different colours).

3. It’s easier to see the effect of changing the initial values if there is only one graph in the figure to
start with. It is in fact best to plot the solution y(t) on its own.
The MATLAB solution x is actually a matrix with three columns (as you can see from whos). The
solution y(t) that we want will be the second column, so to plot it by itself use the command

plot(t,x(:,2),’g’)

Then keep the graph on the axes with the command hold.

Now we can see the effect of changing the initial values. Let’s just change the initial value of x(0),
from −2 to −2.04—that’s a change of only 2 per cent, and in only one of the three initial values. The
following commands will do this, solve the DEs, and plot the new graph of y(t) (in a different colour):

x0 = [-2.04 -3.5 21];
[t, x] = ode45(@lorenz, [0 10], x0);
plot(t,x(:,2),’r’)

You should see (Figure 19.6) that the two graphs are practically indistinguishable until t is about 1.5. The
discrepancy grows quite gradually, until t reaches about 6, when the solutions suddenly and shockingly
flip over in opposite directions. As t increases further, the new solution bears no resemblance to the
old one.

Now solve the system (19.12)–(19.14) with the original initial values using ode23 this time:

x0 = [-2 -3.5 21];
[t,x] = ode23(@lorenz, [0 10], x0);

Plot the graph of y(t) only—x(:,2)—and then superimpose the ode45 solution with the same initial
values (in a different colour).

A strange thing happens—the solutions begin to deviate wildly for t > 1.5! The initial conditions are
the same—the only difference is the order of the Runge–Kutta method.

Finally solve the system with ode23s and superimpose the solution. (The s stands for ‘stiff’. For a
stiff DE, solutions can change on a time scale that is very short compared to the interval of integration.)
The ode45 and ode23s solutions only start to diverge at t > 5.
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Figure 19.6 Chaos?
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The explanation is that ode23, ode23s and ode45 all have numerical inaccuracies (if one could
compare them with the exact solution—which incidentally can’t be found). However, the numerical
inaccuracies are different in the three cases. This difference has the same effect as starting the numerical
solution with very slightly different initial values.

How do we ever know when we have the ‘right’ numerical solution? Well, we don’t—the best we can
do is increase the accuracy of the numerical method until no further wild changes occur over the interval
of interest. So in our example we can only be pretty sure of the solution for t < 5 (using ode23s or
ode45). If that’s not good enough, you have to find a more accurate DE solver.

So beware: ‘chaotic’ DEs are very tricky to solve!
Incidentally, if you want to see the famous ‘butterfly’ picture of chaos, just plot x against z as time

increases (the resulting graph is called a a phase plane plot). The following command will do the trick:

plot(x(:,1), x(:,3))

What you will see is a static 2-D projection of the trajectory , i.e. the solution developing in time. Demos
in the MATLAB Launch Pad include an example which enables you to see the trajectory evolving
dynamically in 3-D (Demos: Graphics: Lorenz attractor animation).

Passing additional parameters to an ODE solver

In the above examples of the MATLAB ODE solvers the coefficients in the right-hand sides of the DEs
(e.g. the value 28 in Equation (19.13)) have all been constants. In a real modelling situation, you will
most likely want to change such coefficients frequently. To avoid having to edit the function files each
time you want to change a coefficient, you can pass the coefficients as additional parameters to the
ODE solver, which in turn passes them to the DE function. To see how this may be done, consider the
Lotka-Volterra predator-prey model:

dx/dt = px − qxy (19.15)

dy/dt = rxy − sy, (19.16)

where x(t) and y(t) are the prey and predator population sizes at time t , and p, q, r and s are biologically
determined parameters. For this example, we take p = 0.4, q = 0.04, r = 0.02, s = 2, x(0) = 105 and
y(0) = 8.

First, write a function M-file, volterra.m as follows:

function f = volterra(t, x, p, q, r, s)
f = zeros(2,1);
f(1) = p*x(1) - q*x(1)*x(2);
f(2) = r*x(1)*x(2) - s*x(2);

Then enter the following statements in the Command Window, which generate the characteristically
oscillating graphs in Figure 19.7:

p = 0.4; q = 0.04; r = 0.02; s = 2;
[t,x] = ode23(@volterra,[0 10],[105; 8],[],p,q,r,s);
plot(t, x)

Note:

• The additional parameters (p, q, r and s) have to follow the fourth input argument (options—see
help) of the ODE solver. If no options have been set (as in our case), use [] as a placeholder for
the options parameter.

You can now change the coefficients from the Command Window and get a new solution, without
editing the function file.
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Figure 19.7 Lotka-Volterra model: (a) predator; (b) prey

19.7 A GUI ODE solver: Driver

This section describes a GUI called Driver, which provides a user-friendly framework for using ODE
solvers such as ode45 on systems of ODEs. We first discuss how to use Driver, and then how it works.

The code for the relevant Driver callback subfunctions is given below. You can therefore either
reconstruct Driver yourself from the code and description of the GUI, or you can download the FIG- and
application M-files (driver.fig and driver.m) from the website.

How to use Driver

To describe how to use Driver, we will take the predator-prey model of Section 19.6 as an example,
although it should be stressed that Driver is quite general—you can use it to run any such model.
Figure 19.8 shows the Driver GUI for the Lotka-Volterra model.

1. Driver starts by loading a MAT-file (called the Driver reference file) with the data for the model. For
the time being you have to create this MAT-file yourself. You should therefore clear the workspace,
so that when you have created the necessary variables you can save them to the MAT-file.
(A more sophisticated version of Driver—Driver2?—which you are encouraged to develop, would
create the MAT-file for you, by inviting you to enter the required information at the command line.)
Create arrays (in the strict MATLAB sense!) with the following names in the workspace (the names
are compulsory; values given here are for the predator-prey model):

nvars = 2: number of ‘model’ variables, e.g. x and y in the predator-prey model, or prey and
pred as we shall soon call them. nvars will generally be the same as the number of ODEs
in the system.

nparms = 4: number of ‘model’ parameters, i.e. constants in the system of ODEs (p, q, r and s
in our example).

time = 0: initial value of time for a particular run.



252 Essential MATLAB for Scientists and Engineers

Figure 19.8 Driver GUI for the Lotka-Volterra predator-prey model

dt = 0.1: time interval at which solution is required (but not necessarily displayed—see opint
below).

runtim = 200: number of points at which solution is required. The obvious name of runtime
can’t be used since it conflicts in some mysterious way with the MATLAB Runtime Server
(which I discovered to my cost).
time, dt and runtim all appear in the tspan argument of ode45 in driver.m as

[time:dt:time+dt*runtim]

opint = 1: (output interval) the time intervals at which solutions will be displayed in the Com-
mand Window. For example, if the units of time in the predator-prey model are days, opint
= 1 means the solution will be displayed in the Command Window once a day for 20 days,
given the values of runtim and dt above, whereas the solution will be available for plotting
at intervals of dt days (making a fairly smooth graph).

vars: a structure array containing the user-friendly names, initial values (inval) and final values
(finval) of the nvars model variables. For our example, set up vars as follows:

vars(1).name = ’prey’;
vars(1).inval = 105;
vars(1).finval = 0;
vars(2).name = ’pred’;
vars(2).inval = 8;
vars(2).finval = 0;

The finval fields are set by Driver at the end of a run.

parms: a structure array containing the user-friendly names and values of the nparms model
parameters. For our example, set up parms as follows:

parms(1).name = ’p’;
parms(1).val = 0.4;
parms(2).name = ’q’;
parms(2).val = 0.04;
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parms(3).name = ’r’;
parms(3).val = 0.02;
parms(4).name = ’s’;
parms(4).val = 2;

When you have created all these variables and structures save them as a MAT-file under some
meaningful name, such as lotka.mat.
Note:

• The constant nvars above refers to the number of variables in the model DEs, and does not
include the additional compulsory ‘Driver’ variable time. On the Driver GUI, however, the
term ‘variable’ refers to the model variables as well as time.

• Similarly the constant nparms does not include the compulsory Driver parameters runtim,
dt and opint, although on the GUI the term ‘parameter’ refers to both these parameters and
the model parameters in the system of DEs.

2. The next step is to create the function file with the right-hand sides of the DEs for ode45 to call.
The name of the function file must be the same as the name of the MAT-file containing the data—in
this case lotka.m. The dbtype command is used to list lotka.m here, for ease of reference:

1 function dxdt = lotka(t,x,nvars,parms)
2 dxdt = zeros(nvars,1);
3
4 %user-friendly names for parameters:
5 p = parms(1).val;
6 q = parms(2).val;
7 r = parms(3).val;
8 s = parms(4).val;
9
10 %user-friendly names for variables:
11 prey = x(1);
12 pred = x(2);
13
14 %user-friendly names in the model:
15 dxdt(1) = p*prey - q*pred*prey;
16 dxdt(2) = r*pred*prey - s*pred;

Note:

• The argument parms which is passed to lotka from Driver is precisely the structure array set
up in the reference file (lotka.mat). You as the user then have to write lines 5 to 8 to create
simple variables with meaningful names from parms.

• Driver is organized so that the argument x is a vector with the current values of the model
variables. You have to write lines 11 and 12 to create simple variables with meaningful names
from x.

• Finally, supply the right-hand sides of your DEs in lines 15 and 16. Note how much easier it
is to use the local variables with meaningful names here rather than the formal Driver names,
which would yield the somewhat clumsy (and less meaningful) code:

dxdt(1) = parms(1).val*x(1) - parms(2)*x(1)*x(2);
dxdt(2) = parms(3).val*x(1)*x(2) - parms(4.).val*x(2);

In a larger model, with 20 or 30 equations, keeping track of all the names would be very difficult!
• There is nothing to prevent your souped-up Driver2 from generating lines 1–14 of lotka.m

since all the information there can be obtained from the MAT-file! All the user has to supply
are the DEs.

3. Now you are ready to run Driver with your model.
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• Start Driver by entering driver at the command line. When the GUI has started, enter the
MAT-file name (lotka) in the edit box under the text MAT file to load (and press Enter).
The variable and parameter names and values appear in the listboxes.

• Click Run to run the model for runtim steps of dt. Output appears in the Command Window
at intervals of opint. The first column is time. Values of prey and pred appear in columns
2 and 3. The output is as follows for the values given at the end of Section 19.6, with dt = 1
and runtim = 200:

0 105.0000 8.0000
1.0000 110.9439 9.4755
2.0000 108.3855 11.6764
3.0000 98.7195 12.6119
4.0000 90.6982 11.2609
5.0000 90.0769 9.1571
6.0000 95.9259 7.8931
7.0000 104.7476 7.9414
8.0000 110.9949 9.3887
9.0000 108.7550 11.6282
10.0000 99.0544 12.6616
11.0000 90.7837 11.3400
12.0000 89.9039 9.2143
13.0000 95.6202 7.9046
14.0000 104.4730 7.9021
15.0000 110.9790 9.3083
16.0000 109.0560 11.5752
17.0000 99.4139 12.6732
18.0000 91.0107 11.4083
19.0000 89.8191 9.2900
20.0000 95.3288 7.9370

• To plot results, first select variables in the Select to plot listbox (press Ctrl while clicking
to make multiple selections).
If time is selected, the other variables (as many as you like) are plotted against time.
If time is not selected, the first two variables selected are plotted against each other (phase
plane trajectory).
After selecting which variables to plot click Plot.
Note: you must first click Run to generate a solution before you can Plot.

• To change a parameter value or the initial value of a variable select a single parameter or
variable in one of the Select to change listboxes. When you have made your selection a
New value edit box appears below the listbox.
Enter the new value and press Enter. The new value should be reflected in the listbox.

How Driver works

Code (with line numbers) for the parts of the Driver application M-file discussed in this section appears
at the end of the section.

• Central to Driver is how to share the data in the reference file (lotka.mat in our example) with
the various callback subfunctions. Global data such as this needs to be attached as fields to the
handles structure. As we saw in Chapter 15, the handles structure contains handles to the GUI
components, using their tags as fieldnames.
In Driver, the edit control below the static text MAT file to load has the tag loadfile. Its
callback, which we now discuss briefly, starts at line 198 in the code below. This subfunction creates
a structure DriverRef to which all the data from the MAT-file are attached as fields. DriverRef
in turn is attached to the handles structure as a field.



Introduction to numerical methods 255

When you enter the MAT-file to be loaded, its name is returned by the get statement in line 201 and
assigned to the filename field of DriverRef. The MAT-file is then loaded (using the functional
form of load) in line 202.
Lines 203–210 attach all the loaded MAT-file variables and structures to handles.DriverRef.
Line 211 creates an empty array results in which to store the solution generated by ode45 (in
the run callback).
Line 212 is extremely important:

guidata(h, handles) % update handles structure

If you make any changes to the handles structure you must use guidata to save these changes.
In line 214 a local structure DriverRef is created from handles.DriverRef for ease of
reference.

• The listbox for variables to select for changing has the tag listvars. A listbox displays the items
defined in its String property, which can be a cell array of strings. Lines 217–221 construct a cell
array with the names and values of the model variables and the additional variable time. Line 222
updates the listbox’s String property.
Lines 224–229 construct a cell array of variable names only for the listbox (with tag listplot)
which displays the variables to select for plotting.
Lines 231–240 construct the list of parameters for the listparms listbox.

• Multiple selections must be allowed in the listbox which selects variables to plot (listplot). To
enable multiple selections its Max and Min properties must be such that

Max - Min > 1

• You will notice if you run the Driver GUI that the first item in each listbox is initially highlighted.
The MATLAB documentation confidently declares that if you don’t want any items highlighted
initially (which would be appropriate here) you must set the listbox’s Value property to empty,
[ ]. I obediently did so, but this action immediately generated an error message (Release 12), and
caused MATLAB to crash when I subsequently attempted to open Driver with GUIDE. This bug is
being fixed for the next release.

• When you select a variable or parameter to change, the listbox callback subfunctions make visible
the edit boxes and static text beneath the respective listboxes (lines 121–130)

• The edit box with tag editvar handles changes to the values of variables. Its callback subfunction
starts in line 133.
The Value property of the listvars listbox contains the index into the list of strings (or cell
array) that corresponds to the selected variable (line 136).
Lines 139–143 decide which variable is to be changed and get its new value from the String
property of editvars (i.e. the current callback object).
Line 145 empties the edit box and makes it and its associated static text invisible.
Don’t forget to update the handles structure after making changes (line 148)!
Lines 151–159 rewrite the list of variables to reflect the change made.

• Lines 162–195 similarly handle changes to parameters. The indexing is a little more complicated
here because of the additional parameters runtim, dt and opint.

• The Run button’s callback is in lines 69–95.
Lines 74–76 copy the initial values of the model variables into the matrix x0.
Lines 83 and 84 are particularly important. The name of the function M-file defining the right-
hand sides of the DEs is the same as the MAT-file name. The MAT-file name has been read into
DriverRef.filename. Line 83 constructs a string consisting of the file name preceded by the
symbol @. Line 84 creates a handle to the file name by evaluating this string expression. This handle
(fname) is used in line 85 to pass the associated function M-file name to ode45.
ode45 returns the solutions to [t,x] in line 85. The solutions are copied into the finval fields
of the model variables and also into the matrix results, which is displayed in line 90.

• The callback subfunction for the Plot button is in lines 98–118.
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When multiple selections are made in a listbox a vector of indices is returned by the Value property
(line 100).
The if statement decides whether you want to plot variables against time, or against each other (phase
plane trajectory), and does the plotting. Note that the plots are labelled with the variables’ names.

Future development of Driver

Possible improvements to Driver have already been mentioned above. You might also like to consider
the following if you are suitably inspired.

• A Carry On button which integrates the DEs for runtim steps from the current values finval
of the variables, rather than their initial values.

• A dialogue box for loading the MAT-file. The present version requires the MAT-file to be in the
same directory as Driver, which is restrictive.

• No attempt is made to trap user errors, such as giving the wrong name for the MAT-file, selecting
only one variable to plot, etc.

Listing of the Driver application M-file
1 function varargout = Driver(varargin)
2 % DRIVER Application M-file for Driver.fig
3 % FIG = DRIVER launch Driver GUI.
4 % DRIVER(’callback_name’, ...) invoke the named callback.
5
6 % Last Modified by GUIDE v2.0 04-May-2001 16:24:12
7
8 if nargin == 0 % LAUNCH GUI
9
10 fig = openfig(mfilename,’reuse’);
11
12 % Use system color scheme for figure:
13 set(fig,’Color’,get(0,’defaultUicontrolBackgroundColor’));
14
15 % Generate a structure of handles to pass to callbacks, and store it.
16 handles = guihandles(fig);
17 guidata(fig, handles);
18
19 if nargout > 0
20 varargout{1} = fig;
21 end
22
23 elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK
24
25 try
26 [varargout{1:nargout}] = feval(varargin{:}); % FEVAL switchyard
27 catch
28 disp(lasterr);
29 end
30
31 end
...
68 % -----------------------------------------------------------------
69 function varargout = run_Callback(h, eventdata, handles, varargin)
70 % Stub for Callback of the uicontrol handles.run.
71 % get current Driver reference info
72 DriverRef = handles.DriverRef;
73
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74 for i = 1:DriverRef.nvars
75 x0(i,1) = DriverRef.vars(i).inval;
76 end
77
78 time = DriverRef.time;
79 dt = DriverRef.dt;
80 runtim = DriverRef.runtim;
81 opint = DriverRef.opint;
82 name = DriverRef.filename;
83 fname = strcat( ’@’, DriverRef.filename );
84 fname = eval(fname); % create handle to filename
85 [t,x] = ode45(fname,[time:dt:time+dt*runtim],x0,[], ...
86 DriverRef.nvars,DriverRef.parms);
87 for i = 1:DriverRef.nvars
88 DriverRef.vars(i).finval = x(end,i); %finval not used at the moment
89 end
90 [t(1:opint/dt:end),x(1:opint/dt:end,:)] % display results in Command Window
91 DriverRef.results = [t,x];
92
93 %update Driver reference info
94 handles.DriverRef = DriverRef;
95 guidata(h, handles) % update handles structure
96
97 % -----------------------------------------------------------------
98 function varargout = plot_Callback(h, eventdata, handles, varargin)
99 % Stub for Callback of the uicontrol handles.plot.
100 v = get(handles.listplot,’Value’);
101 %assume if they want to plot against time it is the first variable selected:
102 DriverRef = handles.DriverRef;
103 if v(1) == 1 % plot remaining selection against time:
104 hold on
105 xlabel(’time’)
106 for i = 2:length(v)
107 plot(DriverRef.results(:,1), DriverRef.results(:,v(i)));
108 text(DriverRef.results(end,1), DriverRef.results(end,v(i)), ...
109 DriverRef.vars(v(i)-1).name)
110 end
111 else %assume only two variables selected: plot trajectory in 2D
112 hold on
113 plot(DriverRef.results(:,v(1)), DriverRef.results(:,v(2)));
114 xlabel(DriverRef.vars(v(1)-1).name)
115 ylabel(DriverRef.vars(v(2)-1).name)
116 end
117
118 hold off
119
120 % -----------------------------------------------------------------
121 function varargout = listvars_Callback(h, eventdata, handles, varargin)
122 % Stub for Callback of the uicontrol handles.listvars.
123 set(handles.editvar,’Visible’,’on’)
124 set(handles.editvartext,’Visible’,’on’)
125
126 % -----------------------------------------------------------------
127 function varargout = listparms_Callback(h, eventdata, handles, varargin)
128 % Stub for Callback of the uicontrol handles.listparms.
129 set(handles.editpar,’Visible’,’on’)
130 set(handles.editpartext,’Visible’,’on’)
131
132 % -----------------------------------------------------------------
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133 function varargout = editvar_Callback(h, eventdata, handles, varargin)
134 % Stub for Callback of the uicontrol handles.editvar.
135 % get index of var to change
136 i = get(handles.listvars,’Value’);
137
138 % change its value
139 if i == 1
140 handles.DriverRef.time = str2num(get(gcbo,’String’));
141 else
142 handles.DriverRef.vars(i-1).inval = str2num(get(gcbo,’String’));
143 end
144 % clear the box (for next time) and make it invisible again ...
145 set(gcbo,’String’,’’,’Visible’,’off’)
146 set(handles.editvartext,’Visible’,’off’)
147
148 guidata(h, handles) % update handles structure to reflect change
149
150 %update listbox
151 DriverRef = handles.DriverRef;
152
153 str(1) = {sprintf(’%s %g’, ’time’, DriverRef.time)};
154
155 for i = 1:DriverRef.nvars
156 str(i+1) = {sprintf(’%s %g’, DriverRef.vars(i).name,...
157 DriverRef.vars(i).inval)};
158 end
159 set(handles.listvars,’String’,str);
160
161 % -----------------------------------------------------------------
162 function varargout = editpar_Callback(h, eventdata, handles, varargin)
163 % Stub for Callback of the uicontrol handles.editpar.
164 % get index of parm to change
165 i = get(handles.listparms,’Value’);
166
167 % change its value
168 if i == 1
169 handles.DriverRef.runtim = str2num(get(gcbo,’String’));
170 elseif i == handles.DriverRef.nparms+2
171 handles.DriverRef.dt = str2num(get(gcbo,’String’));
172 elseif i == handles.DriverRef.nparms+3
173 handles.DriverRef.opint = str2num(get(gcbo,’String’));
174 else
175 handles.DriverRef.parms(i-1).val = str2num(get(gcbo,’String’));
176 end
177 % clear the box (for next time) and make it invisible again ...
178 set(gcbo,’String’,’’,’Visible’,’off’)
179 set(handles.editpartext,’Visible’,’off’)
180
181 guidata(h, handles) % update handles structure to reflect change
182
183 %update listbox
184 DriverRef = handles.DriverRef;
185
186 str(1) = {sprintf(’%s %g’, ’runtime’, DriverRef.runtim)};
187
188 for i = 1:DriverRef.nparms
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189 str(i+1) = {sprintf(’%s %g’, DriverRef.parms(i).name,...
190 DriverRef.parms(i).val)};
191 end
192
193 str(DriverRef.nparms+2) = {sprintf(’%s %g’, ’dt’, DriverRef.dt)};
194 str(DriverRef.nparms+3) = {sprintf(’%s %g’, ’opint’, DriverRef.opint)};
195 set(handles.listparms,’String’,str);
196
197 % -----------------------------------------------------------------
198 function varargout = loadfile_Callback(h, eventdata, handles, varargin)
199 % Stub for Callback of the uicontrol handles.loadfile.
200 % load Driver data (ref file) from MAT file
201 handles.DriverRef.filename = get(gcbo,’String’); % Mat file name
202 load(handles.DriverRef.filename)
203 handles.DriverRef.time = time;
204 handles.DriverRef.dt = dt;
205 handles.DriverRef.nvars = nvars;
206 handles.DriverRef.nparms = nparms;
207 handles.DriverRef.parms = parms;
208 handles.DriverRef.vars = vars;
209 handles.DriverRef.runtim = runtim; % cant use ’runtime’!
210 handles.DriverRef.opint = opint;
211 handles.DriverRef.results = []; % results generated by run
212 guidata(h, handles) % update handles structure
213
214 DriverRef = handles.DriverRef;
215
216 %list of var names and initial values for listvars
217 str(1) = {sprintf(’%s %g’, ’time’, DriverRef.time)};
218 for i = 1:DriverRef.nvars
219 str(i+1) = {sprintf(’%s %g’, DriverRef.vars(i).name,...
220 DriverRef.vars(i).inval)};
221 end
222 set(handles.listvars,’String’,str);
223
224 %list of var names for listplot
225 str(1) = {’time’};
226 for i = 1:DriverRef.nvars
227 str(i+1) = {DriverRef.vars(i).name};
228 end
229 set(handles.listplot,’String’,str);
230
231 %list of param names for listparms
232 str(1) = {sprintf(’%s %g’, ’runtim’, DriverRef.runtim)};
233 for i = 1:DriverRef.nparms
234 str(i+1) = {sprintf(’%s %g’, DriverRef.parms(i).name,...
235 DriverRef.parms(i).val)};
236 end
237
238 str(DriverRef.nparms+2) = {sprintf(’%s %g’, ’dt’, DriverRef.dt)};
239 str(DriverRef.nparms+3) = {sprintf(’%s %g’, ’opint’, DriverRef.opint)};
240 set(handles.listparms,’String’,str);
241
242 % -----------------------------------------------------------------
243 function varargout = listplot_Callback(h, eventdata, handles, varargin)
244 % Stub for Callback of the uicontrol handles.listplot.
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19.8 A partial differential equation

The numerical solution of partial differential equations (PDEs) is a vast subject, which is beyond the
scope of this book. However, a class of PDEs called parabolic often lead to solutions in terms of sparse
matrices, which were mentioned briefly in Chapter 18. One such example is considered in this section.

Heat conduction

The conduction of heat along a thin uniform rod may be modelled by the partial differential equation

∂u

∂t
= ∂2u

∂x2
, (19.17)

where u(x, t) is the temperature distribution a distance x from one end of the rod at time t , and assuming
that no heat is lost from the rod along its length.

Half the battle in solving PDEs is mastering the notation. We set up a rectangular grid, with step-
lengths of h and k in the x and t directions respectively. A general point on the grid has co-ordinates
xi = ih, yj = jk. A concise notation for u(x, t) at xi , yj is then simply ui,j .

Truncated Taylor series may then be used to approximate the PDE by a finite difference scheme. The
left-hand side of Equation (19.17) is usually approximated by a forward difference:

∂u

∂t
= ui,j+1 − ui,j

k

One way of approximating the right-hand side of Equation (19.17) is by the scheme

∂2u

∂x2
= ui+1,j − 2ui,j + ui−1,j

h2
. (19.18)

This leads to a scheme, which although easy to compute, is only conditionally stable.
If however we replace the right-hand side of the scheme in Equation (19.18) by the mean of the finite

difference approximation on the j th and (j + 1)th time rows, we get (after a certain amount of algebra!)
the following scheme for Equation (19.17):

−rui−1,j+1 + (2 + 2r)ui,j+1 − rui+1,j+1 = rui−1,j + (2 − 2r)ui,j + rui+1,j , (19.19)

where r = k/h2. This is known as the Crank-Nicolson implicit method, since it involves the solution of
a system of simultaneous equations, as we shall see.

To illustrate the method numerically, let’s suppose that the rod has a length of 1 unit, and that its ends
are in contact with blocks of ice, i.e. the boundary conditions are

u(0, t) = u(1, t) = 0. (19.20)

Suppose also that the initial temperature (initial condition) is

u(x, 0) =
{

2x, 0 ≤ x ≤ 1/2,
2(1 − x), 1/2 ≤ x ≤ 1. (19.21)

(this situation could come about by heating the centre of the rod for a long time, with the ends kept in
contact with the ice, removing the heat source at time t = 0.) This particular problem has symmetry
about the line x = 1/2; we exploit this now in finding the solution.

If we take h = 0.1 and k = 0.01, we will have r = 1, and Equation (19.19) becomes

−ui−1,j+1 + 4ui,j+1 − ui+1,j+1 = ui−1,j + ui+1,j . (19.22)
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Putting j = 0 in Equation (19.22) generates the following set of equations for the unknowns ui,1 (i.e.
after one time step k) up to the midpoint of the rod, which is represented by i = 5, i.e. x = ih = 0.5.
The subscript j = 1 has been dropped for clarity:

0 + 4u1 − u2 = 0 + 0.4

−u1 + 4u2 − u3 = 0.2 + 0.6

−u2 + 4u3 − u4 = 0.4 + 0.8

−u3 + 4u4 − u5 = 0.6 + 1.0

−u4 + 4u5 − u6 = 0.8 + 0.8.

Symmetry then allows us to replace u6 in the last equation by u4. These equations can be written in
matrix form as 


4 −1 0 0 0

−1 4 −1 0 0
0 −1 4 −1 0
0 0 −1 4 −1
0 0 0 −2 4







u1
u2
u3
u4
u5


 =




0.4
0.8
1.2
1.6
1.6


 . (19.23)

The matrix (A) on the left of Equations (19.23) is known as a tridiagonal matrix. Having solved for the
ui,1 we can then put j = 1 in Equation (19.22) and proceed to solve for the ui,2, and so on. The system
(19.23) can of course be solved directly in MATLAB with the left division operator. In the script below,
the general form of Equations (19.23) is taken as

Av = g. (19.24)

Care needs to be taken when constructing the matrix A. The following notation is often used:

A =




b1 c1
a2 b2 c2

a3 b3 c3
. . .
an−1 bn−1 cn−1

an bn


 .

A is an example of a sparse matrix (see Chapter 6).
The script below implements the general Crank-Nicolson scheme of Equation (19.19) to solve this

particular problem over 10 time steps of k = 0.01. The step-length is specified by h = 1/(2n) because
of symmetry. r is therefore not restricted to the value 1, although it takes this value here. The script
exploits the sparsity of A by using the sparse function.

format compact
n = 5;
k = 0.01;
h = 1 / (2 * n); % symmetry assumed
r = k / h ^ 2;

% set up the (sparse) matrix A
b = sparse(1:n, 1:n, 2+2*r, n, n); % b(1) .. b(n)
c = sparse(1:n-1, 2:n, -r, n, n); % c(1) .. c(n-1)
a = sparse(2:n, 1:n-1, -r, n, n); % a(2) ..
A = a + b + c;
A(n, n-1) = -2 * r; % symmetry: a(n)
full(A) %
disp(’ ’)
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u0 = 0; % boundary condition (Eq 19.20)
u = 2*h*[1:n] % initial conditions (Eq 19.21)
u(n+1) = u(n-1); % symmetry
disp([0 u(1:n)])

for t = k*[1:10]
g = r * ([u0 u(1:n-1)] + u(2:n+1)) ...

+ (2 - 2 * r) * u(1:n); % Eq 19.19
v = A\g’; % Eq 19.24
disp([t v’])
u(1:n) = v;
u(n+1) = u(n-1); % symmetry

end

Note:

• to preserve consistency between the formal subscripts of Equation (19.19) etc. and MATLAB sub-
scripts, u0 (the boundary value) is represented by the scalar u0.

In the following output the first column is time, and subsequent columns are the solutions at intervals
of h along the rod:

0 0.2000 0.4000 0.6000 0.8000 1.0000
0.0100 0.1989 0.3956 0.5834 0.7381 0.7691
0.0200 0.1936 0.3789 0.5397 0.6461 0.6921

...
0.1000 0.0948 0.1803 0.2482 0.2918 0.3069

MATLAB has some built-in PDE solvers. See Using MATLAB: Mathematics: Differential Equa-
tions: Partial Differential Equations.

19.9 Other numerical methods

The ODEs considered earlier in this chapter are all initial value problems. For boundary value problem
solvers, see Using MATLAB: Mathematics: Differential Equations: Boundary Value Problems for
ODEs.

MATLAB has a large number of functions for handling other numerical procedures, such as curve fit-
ting, correlation, interpolation, minimization, filtering and convolution, and (fast) Fourier transforms. Con-
sult Using MATLAB: Mathematics: Polynomials and Interpolation and Data Analysis and Statistics.

Here’s an example of curve fitting. The following script enables you to plot data points interactively.
When you have finished plotting points (signified when the x coordinates of your last two points differ
by less than 2 in absolute value) a cubic polynomial is fitted and drawn (see Figure 19.9).

% Interactive script to fit a cubic to data points

clf
hold on
axis([0 100 0 100]);

diff = 10;
xold = 68;
i = 0;
xp = zeros(1); % data points
yp = zeros(1);
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Figure 19.9 A cubic polynomial fit

while diff > 2
[a b] = ginput(1);
diff = abs(a - xold);
if diff > 2

i = i + 1;
xp(i) = a;
yp(i) = b;
xold = a;
plot(a, b, ’ok’)

end
end

p = polyfit(xp, yp, 3 );
x = 0:0.1:xp(length(xp));
y= p(1)*x.^3 + p(2)*x.^2 + p(3)*x + p(4);
plot(x,y), title( ’cubic polynomial fit’), ...

ylabel(’y(x)’), xlabel(’x’)
hold off

Polynomial fitting may also be done interactively in a figure window, with Tools -> Basic Fitting.

Summary

• A numerical method is an approximate computer method for solving a mathematical problem
which often has no analytical solution.

• A numerical method is subject to two distinct types of error: rounding error in the computer
solution, and truncation error , where an infinite mathematical process, like taking a limit, is
approximated by a finite process.

• MATLAB has a large number of useful functions for handling numerical methods.
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Exercises

19.1 Use Newton’s method in a script to solve the following (you may have to experiment a bit
with the starting values). Check all your answers with fzero. Check the answers involving
polynomial equations with roots.
Hint: use fplot to get an idea of where the roots are, e.g.

fplot(’x^3-8*x^2+17*x-10’, [0 3])

The Zoom feature also helps. In the figure window select the Zoom In button (magnifying
glass) and click on the part of the graph you want to magnify.

(a) x4 − x = 10 (two real roots and two complex roots)
(b) e−x = sin x (infinitely many roots)
(c) x3 − 8x2 + 17x − 10 = 0 (three real roots)
(d) log x = cos x

(e) x4 − 5x3 − 12x2 + 76x − 79 = 0 (four real roots)
19.2 Use the Bisection method to find the square root of 2, taking 1 and 2 as initial values of xL

and xR . Continue bisecting until the maximum error is less than 0.05 (use Inequality (19.2)
of Section 19.1 to determine how many bisections are needed).

19.3 Use the Trapezoidal rule to evaluate
∫ 4

0 x2dx, using a step-length of h = 1.
19.4 A human population of 1000 at time t = 0 grows at a rate given by

dN/dt = aN,

where a = 0.025 per person per year. Use Euler’s method to project the population over the
next 30 years, working in steps of (a) h = 2 years, (b) h = 1 year and (c) h = 0.5 years.
Compare your answers with the exact mathematical solution.

19.5 Write a function file euler.m which starts with the line

function [t, n] = euler(a, b, dt)

and which uses Euler’s method to solve the bacteria growth DE (19.8). Use it in a script to
compare the Euler solutions for dt = 0.5 and 0.05 with the exact solution. Try to get your
output looking like this:

time dt = 0.5 dt = 0.05 exact

0 1000.00 1000.00 1000.00
0.50 1400.00 1480.24 1491.82
1.00 1960.00 2191.12 2225.54
...

5.00 28925.47 50504.95 54598.15

19.6 The basic equation for modelling radio-active decay is

dx/dt = −rx,

where x is the amount of the radio-active substance at time t , and r is the decay rate.
Some radio-active substances decay into other radio-active substances, which in turn also
decay. For example, Strontium 92 (r1 = 0.256 per hr) decays into Yttrium 92 (r2 = 0.127
per hr), which in turn decays into Zirconium. Write down a pair of differential equations for
Strontium and Yttrium to describe what is happening.
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Starting at t = 0 with 5 × 1026 atoms of Strontium 92 and none of Yttrium, use the Runge–
Kutta method (ode23) to solve the equations up to t = 8 hours in steps of 1/3 hr. Also use
Euler’s method for the same problem, and compare your results.

19.7 The springbok (a species of small buck, not rugby players!) population x(t) in the Kruger
National Park in South Africa may be modelled by the equation

dx/dt = (r − bx sin at)x,

where r , b, and a are constants. Write a program which reads values for r , b, and a, and
initial values for x and t , and which uses Euler’s method to compute the impala population
at monthly intervals over a period of two years.

19.8 The luminous efficiency (ratio of the energy in the visible spectrum to the total energy) of a
black body radiator may be expressed as a percentage by the formula

E = 64.77T −4
∫ 7×10−5

4×10−5
x−5(e1.432/T x − 1)−1dx,

where T is the absolute temperature in degrees Kelvin, x is the wavelength in cm, and the
range of integration is over the visible spectrum.
Write a general function simp(fn, a, b, h) to implement Simpson’s rule as given in
Equation (19.4).
Taking T = 3500◦K, use simp to compute E, firstly with 10 intervals (n = 5), and then with
20 intervals (n = 10), and compare your results.
(Answers: 14.512725% for n = 5; 14.512667% for n = 10)

19.9 Van der Pol’s equation is a second-order non-linear differential equation which may be
expressed as two first-order equations as follows:

dx1/dt = x2

dx2/dt = ε(1 − x2
1)x2 − b2x1.
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Figure 19.10 A trajectory of Van der Pol’s equation
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The solution of this system has a stable limit cycle, which means that if you plot the phase
trajectory of the solution (the plot of x1 against x2) starting at any point in the positive x1-x2
plane, it always moves continuously into the same closed loop. Use ode23 to solve this
system numerically, for x1(0) = 0, and x2(0) = 1. Draw some phase trajectories for b = 1
and ε ranging between 0.01 and 1.0. Figure 19.10 shows you what to expect.
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Syntax quick reference

This appendix gives examples of the most commonly used MATLAB syntax in this book.

A.1 Expressions

x = 2 ^ (2 * 3) / 4;
x = A \ b; % solution of linear equations
a == 0 & b < 0 % a equals 0 AND b less than 0
a ~= 4 | b > 0 % a not equal to 4 OR b greater than 0

A.2 Function M-files

function y = f(x) % save as f.m
% comment for help

function [out1, out2] = plonk(in1, in2, in3) % save as plonk.m
% Three input arguments, two outputs
...

function junk % no input/output arguments; save as junk.m

[t, x] = ode45(@lorenz, [0 10], x0); % function handle with @

A.3 Graphics

plot(x, y), grid % plots vector y against vector x on a grid

plot(x, y, ’b--’) % plots a blue dashed line

plot(x, y, ’go’) % plots green circles

plot(y) % if y is a vector plots elements against row numbers
% if y is a matrix, plots columns against row numbers

plot(x1, y1, x2, y2) % plots y1 against x1 and
y2 against x2 on same graph
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semilogy(x, y) % uses a log10 scale for y

polar(theta, r) % generates a polar plot

A.4 if and switch

if condition
statement % executed if condition true

end;

if condition
statement1 % executed if condition true

else
statement2 % executed if condition false

end;

if a == 0 % test for equality
x = -c / b;

else
x = -b / (2*a);

end;

if condition1 % jumps off ladder at first true condition
statement1

elseif condition2 % elseif one word!
statement2

elseif condition3
statement3

...
else
statementE

end;

if condition statement1, else statement2, end % command line

switch lower(expr) % expr is string or scalar
case {’linear’,’bilinear’}
disp(’Method is linear’)

case ’cubic’
disp(’Method is cubic’)

case ’nearest’
disp(’Method is nearest’)

otherwise
disp(’Unknown method.’)

end

A.5 for and while

for i = 1:n % repeats statements n times
statements

end;
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for i = 1:3:8 % i takes values 1, 4, 7
...

end;

for i = 5:-2:0 % i takes values 5, 3, 1
...

end;

for i = v % index i takes on each element of vector v
statements

end;

for v = a % index v takes on each column of matrix a
statements

end;

for i = 1:n, statements, end % command line version

try,
statements,

catch,
statements,

end

while condition % repeats statements while condition is true
statements

end;

while condition statements, end % command line version

A.6 Input/output

disp( x )

disp( ’Hello there’ )

disp([a b]) % two scalars on one line

disp([x’ y’]) % two columns (vectors x and y
must be same length)

disp( [’The answer is ’, num2str(x)] )

fprintf( ’\n’ ) % new line

fprintf( ’%5.1f\n’, 1.23 ) % **1.2

fprintf( ’%12.2e\n’, 0.123 ) % ***1.23e-001

fprintf( ’%4.0f and %7.2f\n’, 12.34, -5.6789 )
% **12 and **-5.68

fprintf( ’Answers are: %g %g\n’, x, y ) % matlab decides on format
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fprintf( ’%10s\n’, str ) % left-justified string

x = input( ’Enter value of x: ’ )

name = input( ’Enter your name without apostrophes: ’, ’s’ )

A.7 load/save

load filename % retrieves all variables
from binary file filename.mat

load x.dat % imports matrix x from ASCII file x.dat
save filename x y z % saves x y and z in filename.mat
save % saves all workspace variables

in matlab.mat
save filename x /ascii % saves x in filename (as ASCII file)

A.8 Vectors and matrices

a(3,:) % third row

a(:,2) % second column

v(1:2:9) % every second element from 1 to 9

v([2 4 5]) = [ ] % removes second, fourth and fifth elements

v(logical([0 1 0 1 0])) % second and fourth elements only

v’ % transpose
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Operators

Table B.1 Operator precedence (see Help on operator
precedence)

Precedence Operators

1. ( )
2. ^ .^ ’ .’ (pure transpose)
3. + (unary plus) - (unary minus) ~ (NOT)
4. * / \ .* ./ .\
5. + (addition) - (subtraction)
6. :
7. > < >= <= == ~=
8. & (AND)
9. | (OR)
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Command and function
quick reference

This appendix is not exhaustive; it lists most of the MATLAB commands and functions used in the text,
as well as a few more.

For a complete list by category (with links to detailed descriptions) see the online documentation
MATLAB: Reference: MATLAB Function Reference: Functions by Category.

The command help by itself displays a list of all the function categories (each in its own directory):

matlab\general - General purpose commands.
matlab\ops - Operators and special characters.
matlab\lang - Programming language constructs.
matlab\elmat - Elementary matrices and matrix manipulation.
matlab\elfun - Elementary math functions.
matlab\specfun - Specialized math functions.
matlab\matfun - Matrix functions - numerical linear algebra.
matlab\datafun - Data analysis and Fourier transforms.
matlab\audio - Audio support.
matlab\polyfun - Interpolation and polynomials.
matlab\funfun - Function functions and ODE solvers.
matlab\sparfun - Sparse matrices.
matlab\graph2d - Two dimensional graphs.
matlab\graph3d - Three dimensional graphs.
matlab\specgraph - Specialized graphs.
matlab\graphics - Handle Graphics.
matlab\uitools - Graphical user interface tools.
matlab\strfun - Character strings.
matlab\iofun - File input/output.
matlab\timefun - Time and dates.
matlab\datatypes - Data types and structures.
matlab\verctrl - Version control.
matlab\winfun - Windows Operating System Interface Files
(DDE/ActiveX)
matlab\demos - Examples and demonstrations.
toolbox\local - Preferences.
MATLABR12\work - (No table of contents file)

For more help on directory/topic, type "help topic".
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C.1 General purpose commands

Managing commands
demo Run demos
help Online help
helpwin Display categories of functions with links to each category
lookfor Keyword search through help entries
type List M-file
what Directory listing of M- and MAT-files
which Locate functions and files

Managing variables and the workspace
clear Clear variables and functions from memory
disp Display matrix or text
length Length of a vector
load Retrieve variables from disk
save Save workspace variables to disk
size Array dimensions
who, whos List variables in the workspace

Files and the operating system
beep Produce a beep sound
cd Change current working directory
delete Delete file
diary Save text of MATLAB session
dir Directory listing
edit Edit an M-file
! Execute operating system command

Controlling the Command Window
clc Clear Command Window
echo Echo commands in script
format Set output format for disp
home Send cursor home
more Control paged output

Starting and quitting MATLAB
exit Terminate MATLAB
quit Terminate MATLAB
startup M-file executed when MATLAB starts

C.2 Logical functions

all True if all elements of vector are true (non-zero)
any True if any element of vector is true
exist Check if variable or file exists
find Find indices of non-zero elements
is* Detect various states
logical Convert numeric values to logical
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C.3 Language constructs and debugging

MATLAB as a programming language
error Display error message
eval Interpret string containing MATLAB expression
feval Function evaluation
for Repeat statements a specific number of times
global Define global variable
if Conditionally execute statements
persistent Define persistent variable
switch Switch among several cases
try Begin try block
while Repeat statements conditionally

Interactive input
input Prompt user for input
keyboard Invoke keyboard as a script file
menu Generate menu of choices for user input
pause Wait for user response

C.4 Matrices and matrix manipulation

Elementary matrices
eye Identity matrix
linspace Vector with linearly spaced elements
ones Matrix of ones
rand Uniformly distributed random numbers and arrays
randn Normally distributed random numbers and arrays
zeros Matrix of zeros
: (colon) Vector with regularly spaced elements

Special variables and constants
ans Most recent answer
eps Floating point relative accuracy
i or j

√−1
Inf Infinity
NaN Not-a-Number
nargin, nargout Number of actual function arguments
pi 3.14159 26535 897 . . .
realmax Largest positive floating point number
realmin Smallest positive floating point number
varargin, varargout Pass or return variable numbers of arguments

Time and date
calendar Calendar
clock Wall clock (complete date and time)
date You’d never guess
etime Elapsed time
tic, toc Stopwatch
weekday Day of the week
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Matrix manipulation
cat Concatenate arrays
diag Create or extract diagonal
fliplr Flip in left/right direction
flipud Flip in up/down direction
repmat Replicate and tile an array
reshape Change shape
rot90 Rotate 90◦
tril Extract lower tridiagonal part
triu Extract upper tridiagonal part

Specialized matrices
gallery Test matrices
hilb Hilbert matrix
magic Magic square
pascal Pascal matrix
wilkinson Wilkinson’s eigenvalue test matrix

C.5 Mathematical functions

abs Absolute value
acos, acosh Inverse cosine and inverse hyperbolic cosine
acot, acoth Inverse cotangent and inverse hyperbolic cotangent
acsc, acsch Inverse cosecant and inverse hyperbolic cosecant
angle Phase angle
asec, asech Inverse secant and inverse hyperbolic secant
asin, asinh Inverse sine and inverse hyperbolic sine
atan, atanh Inverse tangent (two quadrant) and inverse hyperbolic tangent
atan2 Inverse tangent (four quadrant)
bessel Bessel function
ceil Round up
conj Complex conjugate
cos, cosh Cosine and hyperbolic cosine
cot, coth Cotangent and hyperbolic cotangent
csc, csch Cosecant and hyperbolic cosecant
erf Error function
exp Exponential
fix Round toward zero
floor Round down
gamma Gamma function
imag Imaginary part
log Natural logarithm
log2 Dissect floating point numbers into exponent and mantissa
log10 Common logarithm
mod Modulus (signed remainder after division)
rat Rational approximation
real Real part
rem Remainder after division
round Round toward nearest integer
sec, sech Secant and hyperbolic secant
sign Signum function
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sin, sinh Sine and hyperbolic sine
sqrt Square root
tan, tanh Tangent and hyperbolic tangent

C.6 Matrix functions

det Determinant
eig Eigenvalues and eigenvectors
expm Matrix exponential
inv Matrix inverse
poly Characteristic polynomial
rank Number of linearly independent rows or columns
rcond Condition estimator
trace Sum of diagonal elements
{}\ and / Linear equation solution

C.7 Data analysis

cumprod Cumulative product
cumsum Cumulative sum
diff Difference function
fft One-dimensional fast Fourier transform
max Largest element
mean Average value of elements
median Median value of elements
min Smallest element
prod Product of elements
sort Sort into ascending order
std Standard deviation
sum Sum of elements
trapz Trapezoidal rule for numerical integration

C.8 Polynomial functions

polyfit Fit polynomial to data
polyval Evaluate polynomial
roots Find polynomial roots

C.9 Function functions

bvp4c Solve two-point boundary value problems for ODEs
fmin Minimize function of one variable
fmins Minimize function of several variables
fzero Find zero of function of one variable
ode23, ode23s, ode45 Solve initial value problems for ODEs
quad Numerical integration

C.10 Sparse matrix functions

full Convert sparse matrix to full matrix
sparse Construct sparse matrix from non-zeros and subscripts
spy Visualize sparse matrix
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C.11 Character string functions

char characters from ASCII codes
double ASCII codes of characters
lower Convert string to lower case
sprintf Write formatted data to a string
str2mat String to matrix conversion
strcat String concatenation
strcmp Compare strings
upper Convert string to upper case

C.12 File I/O functions

fclose Close one or more open files
feof Test for end-of-file
fopen Open file or obtain information about open files
fprintf Write formatted data to file
fread Read binary data from file
fscanf Read formatted data from file
fseek Set file position indicator
ftell Get file position indicator
fwrite Write binary data to file

C.13 Graphics

2-D
bar Bar graph
grid Grid lines
hist Histogram plot
loglog Log-log scale plot
plot Linear plot
polar Polar co-ordinate plot
semilogx Semi-log scale plot
semilogy Semi-log scale plot
text Text annotation
title Graph title
xlabel X-axis label
ylabel Y-axis label
zoom Zoom in and out on a 2-D plot

3-D
clabel Contour plot elevation labels
comet3 Animated 3-D plot
contour Contour plot in 2-D
contour3 Contour plot in 3-D
mesh 3-D mesh surface
meshc 3-D mesh surface with contour plot
meshgrid X and Y arrays for 3-D plots
plot3 Line plot in 3-D
quiver Quiver plot
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surf Shaded surface
surfl Shaded surface with lighting
view Rotation of 3-D figure
zlabel Z-axis label

General
axes Create axes object
axis Control axis scaling and appearance
cla Clear axes
clf Clear current figure
colorbar Display color bar (color scale)
colormap Set the color look-up table (list of colormaps)
drawnow Complete any pending drawing
figure Create figure (graph) windows
fplot Plot a function
gca Get current axes handle
gcf Get current figure handle
gco Return handle of current graphics object
get Get graphics object properties
ginput Graphical input from a mouse or cursor
gtext Mouse placement of text
set Set graphics object properties
subplot Create axes in tiled positions



Appendix D

ASCII character codes

Code Char Code Char Code Char Code Char Code Char

0 (null) 26 52 4 78 N 104 h
1 27 53 5 79 O 105 i
2 28 54 6 80 P 106 j
3 29 55 7 81 Q 107 k
4 30 56 8 82 R 108 l
5 31 57 9 83 S 109 m
6 32 (blank) 58 : 84 T 110 n
7 33 ! 59 ; 85 U

V
111 o

8 34 '' 60 < 86 112 p
9 35 # 61 = 87 W 113 q
10 36 $ 62 > 88 X 114 r
11 37 % 63 ? 89 Y 115 s
12 38 & 64 @ 90 Z 116 t
13 39 ’ 65 A 91 [ 117 u
14 40 ( 66 B 92 \ 118 v
15 41 ) 67 C 93 ] 119 w
16 42 68 D 94 ^ 120 x
17 43 +

∗
69 E 95 - 121 y

18 44 , 70 F 96 ‘ 122 z
19 !! 45 – 71 G 97 a 123 {
20 ¶ 46 · 72 H 98 b 124 |
21 § 47 / 73 I 99 c 125 }
22 — 48 0 74 J 100 d 126 ~
23 49 1 75 K 101 e 127 ∆
24 50 2 76 L 102 f
25 51 3 77 M 103 g

♥♥
♦♦

•

↑
↓

↔
↔
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Solutions to selected exercises

Chapter 1
1.1 a = 3;

b = 5;
sum = a + b;
difference = a - b;
product = a * b;
quotient = a / b;

Chapter 2
2.1 (a) comma should be replaced by decimal point

(e) asterisk should be omitted
(f) exponent must be integer
(h) comma should be replaced by decimal point

2.2 (b) decimal point not allowed
(c) first character must be a letter
(d) quotes not allowed
(h) blanks not allowed
(i) allowed but not recommended!
(k) asterisk not allowed
(l) allowed but not recommended!

2.3 (a) p + w/u
(b) p + w/(u + v)
(c) (p + w/(u+v))/(p + w/(u-v))
(d) sqrt(x)
(e) y^(y+z)
(f) x^(y^z)
(g) (x^y)^z
(h) x - x^3/(3*2) + x^5/(5*4*3*2)

2.4 (a) i = i + 1
(b) i = i^3 + j
(c) if e > f

g = e
else
g = f

end
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(d) if d > 0
x = -b

end
(e) x = (a + b)/(c * d)

2.5 (a) expression not allowed on left-hand side
(b) left-hand side must be valid variable name
(c) ditto

2.6 a = 2;
b = -10;
c = 12;
x = (-b + sqrt(b ^ 2 - 4 * a * c)) / (2 * a)

2.7 gallons = input(’Enter gallons: ’);
pints = input(’Enter pints: ’);
pints = pints + 8 * gallons;
litres = pints / 1.76

2.8 distance = 528;
litres = 46.23;
kml = distance / litres;
l100km = 100 / kml;
disp( ’Distance Litres used km/L L/100km’ );
disp( [distance litres kml l100km] );

2.9 t = a;
a = b;
b = t;

2.10 a = [a b]; % make ’a’ into a vector
b = a(1);
a(1) = [];

2.11 (a) c = input(’Enter Celsius temperature: ’);
f = 9 * c / 5 + 32;
disp( [’The Fahrenheit temperature is: ’ num2str(f)] );

(b) c = 20 : 30;
f = 9 * c / 5 + 32;
format bank;
disp(’ Celsius Fahrenheit’);
disp([c’ f’]);

2.12 degrees = 0 : 10 : 360;
radians = degrees / 180 * pi;
format bank;
disp(’ Degrees Radians’);
disp([degrees’ radians’]);

2.13 degrees = 0 : 30 : 360;
radians = degrees / 180 * pi;
sines = sin(radians);
cosines = cos(radians);
tans = tan(radians);
table = [degrees’ sines’ cosines’ tans’]

2.14 for int = 10 : 20
disp( [int sqrt(int)] );

end
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2.15 sum(2 : 2 : 200)

2.16 m = [5 8 0 10 3 8 5 7 9 4];
disp( mean(m) )

2.17 x = 2.0833, a = 4.

2.18 % With for loop
i = 1;
x = 0;
for a = i : i : 4
x = x + i / a;

end

% With vectors
i = 1;
a = i : i : 4;
x = i ./ a;
sum(x)

2.19 (b) n = input(’Number of terms? ’);
k = 1 : n;
s = 1 ./ (k .^ 2);
disp(sqrt(6 * sum(s)))

2.21 r = 5;
c = 10;
l = 4;
e = 2;
w = 2;
i = e / sqrt(r ^ 2 + (2 * pi * w * l - 1 / (2 * pi * w * c)) ^ 2)

2.22 con = [200 500 700 1000 1500];
for units = con
if units <= 500
cost = 0.02 * units;

elseif units <= 1000
cost = 10 + 0.05 * (units - 500);

else
cost = 35 + 0.1 * (units - 1000);

end
charge = 5 + cost;
disp( charge )

end

2.24 money = 1000;
for month = 1 : 12
money = money * 1.01;

end

2.26 t = 1790 : 10 : 2000;
p = 197273000 ./ (1 + exp(-0.03134 * (t - 1913.25)));
disp([t’ p’]);
pause;
plot(t,p);

2.27 (a) r = 0.15;
l = 50000;
n = 20;
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p = r * l * (1 + r / 12) ^ (12 * n) / ...
(12 * ((1 + r / 12) ^ (12 * n) - 1))

2.28 (a) r = 0.15;
l = 50000;
p = 800;
n = log(p / (p - r * l / 12)) / (12 * log(1 + r / 12))

Chapter 3
3.1 You should get a picture of tangents to a curve.

3.2 (a) 4 (b) 2
(c) The algorithm (attributed to Euclid) finds the HCF (Highest Common Factor) of two

numbers by using the fact that the HCF divides exactly into the difference between
the two numbers, and that if the numbers are equal, they are equal to their HCF.

3.3 f = input(’Enter Fahrenheit temperature: ’);
c = 5 / 9 * (f - 32);
disp( [’The Celsius temperature is: ’ num2str(c)] );

3.4 a = input(’Enter first number: ’);
b = input(’Enter second number: ’);
if a < b
disp( [ num2str(b) ’ is larger.’] );

elseif a > b
disp( [ num2str(a) ’ is larger.’] );

else
disp( ’Numbers are equal.’ );

end

3.6 1. Input a, b, c, d, e, f
2. u = ae − db, v = ec − bf
3. If u = 0 and v = 0 then

Lines coincide
Otherwise if u = 0 and v �= 0 then

Lines are parallel
Otherwise

x = v/u, y = (af − dc)/u
Print x, y

4. Stop.

a = input(’Enter a: ’);
b = input(’Enter b: ’);
c = input(’Enter c: ’);
d = input(’Enter d: ’);
e = input(’Enter e: ’);
f = input(’Enter f: ’);
u = a * e - b * d;
v = c * e - b * f;
if u == 0
if v == 0
disp(’Lines coincide.’);

else
disp(’Lines are parallel.’);

end
else
x = v / u;
y = (a * f - d * c) / u;
disp( [x y] );

end
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Chapter 4
4.2 (a) log(x + x ^ 2 + a ^ 2)

(b) (exp(3 * t) + t ^ 2 * sin(4 * t)) * (cos(3 * t)) ^ 2
(c) 4 * atan(1)
(d) sec(x)^2 + cot(x)
(e) atan(a / x)

4.3 m = input(’Enter length in metres: ’);
inches = m * 39.37;
feet = fix(inches / 12);
inches = rem(inches, 12);
yards = fix(feet / 3);
feet = rem(feet, 3);
disp( [yards feet inches] );

4.5 a = 10;
x = 1;
k = input(’How many terms do you want? ’);
for n = 1 : k
x = a * x / n;
if rem(n, 10) == 0
disp( [n x] );

end
end

4.6 secs = input(’Enter seconds: ’);
mins = fix(secs / 60);
secs = rem(secs, 60);
hours = fix(mins / 60);
mins = rem(mins, 60);
disp( [hours mins secs] );

Chapter 5
5.2 (a) 1 1 0

(b) 0 1 0
(c) 1 0 1
(d) 0 1 1
(e) 1 1 1
(f) 0 0 0
(g) 0 2
(h) 0 0 1

5.3 neg = sum(x < 0);
pos = sum(x > 0);
zero = sum(x == 0);

5.7 units = [200 500 700 1000 1500];
cost = 10 * (units > 500) + 25 * (units > 1000) + 5;
cost = cost + 0.02 * (units <= 500) .* units;
cost = cost + 0.05 * (units > 500 & units <= 1000) .* (units - 500);
cost = cost + 0.1 * (units > 1000) .* (units - 1000);

Chapter 7
7.1 t = 1790:2000;

P = 197273000 ./ (1+exp(-0.03134*(t-1913.25)));
plot(t, P), hold, xlabel(’Year’), ylabel(’Population size’)
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census = [3929 5308 7240 9638 12866 17069 23192 31443 38558 ...
50156 62948 75995 91972 105711 122775 131669 150697];

census = 1000 * census;
plot(1790:10:1950, census, ’o’), hold off

7.2 a = 2;
q = 1.25;
th = 0:pi/40:5*pi;
subplot(2,2,1)
plot(a*th.*cos(th), a*th.*sin(th)), ...

title(’(a) Archimedes’) % or use polar
subplot(2,2,2)
plot(a/2*q.^th.*cos(th), a/2*q.^th.*sin(th)), ...

title(’(b) Logarithmic’) % or use polar

7.4 n=1:1000;
d = 137.51;
th = pi*d*n/180;
r = sqrt(n);
plot(r.*cos(th), r.*sin(th), ’o’)

7.6 y(1) = 0.2;
r = 3.738;
for k = 1:600
y(k+1) = r*y(k)*(1 - y(k));

end
plot(y, ’.w’)

Chapter 8
8.1 balance = 1000;

for years = 1 : 10
for months = 1 : 12

balance = balance * 1.01;
end
disp( [years balance] );

end

8.2 (a) terms = 100;
pi = 0;
sign = 1;
for n = 1 : terms

pi = pi + sign * 4 / (2 * n - 1);
sign = sign * (-1);

end

(b) terms = 100;
pi = 0;
for n = 1 : terms

pi = pi + 8 / ((4 * n - 3) * (4 * n - 1));
end

8.3 a = 1;
n = 6;
for i = 1 : 10

n = 2 * n;
a = sqrt(2 - sqrt(4 - a * a));
l = n * a / 2;
u = l / sqrt(1 - a * a / 2);
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p = (u + l) / 2;
e = (u - l) / 2;
disp( [n, p, e] );

end

8.5 x = 0.1;
for i = 1 : 7

e = (1 + x) ^ (1 / x);
disp( [x, e] );
x = x / 10;

end

8.6 n =6;
T = 1;
i = 0;
for t = 0:0.1:1

i = i + 1;
F(i) = 0;
for k = 0 : n
F(i) = F(i) + 1 / (2 * k + 1) * sin((2 * k + 1) * pi * t / T);

end
F(i) = F(i) * 4 / pi;

end
t = 0:0.1:1;
disp( [t’ F’] )
plot(t, F)

8.8 sum = 0;
terms = 0;
while (sum + terms) <= 100

terms = terms + 1;
sum = sum + terms;

end
disp( [terms, sum] );

8.10 m = 44;
n = 28;
while m ~= n

while m > n
m = m - n;

end
while n > m
n = n - m;

end
end
disp(m);

Chapter 9
9.1 x = 2;

h = 10;
for i = 1 : 20

h = h / 10;
dx = ((x + h) ^ 2 - x * x) / h;
disp( [h, dx] );

end
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Chapter 10
10.1 function pretty(n, ch)

line = char(double(ch)*ones(1,n));
disp(line)

10.2 function newquot(fn)
x = 1;
h = 1;
for i = 1 : 10

df = (feval(fn, x + h) - feval(fn, x)) / h;
disp( [h, df] );
h = h / 10;

end

10.3 function y = double(x)
y = x * 2;

10.4 function [xout, yout] = swop(x, y)
xout = y;
yout = x;

10.6 % Script file
for i = 0 : 0.1 : 4

disp( [i, phi(i)] );
end

% Function file phi.m
function y = phi(x)
a = 0.4361836;
b = -0.1201676;
c = 0.937298;
r = exp(-0.5 * x * x) / sqrt(2 * pi);
t = 1 / (1 + 0.3326 * x);
y = 0.5 - r * (a * t + b * t * t + c * t ^ 3);

10.8 function y = f(n)
if n > 1

y = f(n - 1) + f(n - 2);
else

y = 1;
end

Chapter 11
11.3 r = rand(1,5);

disp(r)

for i = 1:5
[y, j] = min(r);
r(j) = [ ];
disp(r)

end

Chapter 12
12.1 function t = deblank(s)

t = s(s ~= ’ ’);
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12.2 function t = toupper(s)
for i = 1 : length(s)

if double(s(i)) > 96 & double(s(i)) < 123
temp(i) = s(i) - 32;

else
temp(i) = s(i);

end
end
t = char(temp);

12.3 function y = ispalin(s)
y = 1;
s = s(s ~= ’ ’);
for i = 1 : length(s)

if s(i) < 91
s(i) = s(i) + 32;

end
end
for i = 1 : floor(length(s) / 2)

if s(i) ~= s(length(s) - i + 1)
y = 0;

end
end

12.4 function day = dayofweek(d)
k = d(1);
m = d(2) - 2;
if m < 1

m = m + 12;
d(3) = d(3) - 1;

end
c = floor(d(3) / 100);
y = d(3) - c * 100;
f1 = fix(2.6 * m - 0.2) + k + y + fix(y / 4) + fix(c / 4) - 2 * c;
f = 1 + rem(f1, 7);
if f < 0

f = 7 + f;
end
daylist = char(’Sunday’, ’Monday’, ’Tuesday’, ’Wednesday’, ...

’Thursday’, ’Friday’, ’Saturday’);
day = daylist(f, 1:9);

12.5 bin = input(’Enter binary number: ’, ’s’);
bin = bin == ’1’;
dec = 0;
inc = 0;
for i = length(bin) : -1 : 1

dec = dec + 2 ^ inc * bin(i);
inc = inc + 1;

end
disp(dec);

12.6 function t = rightfill(s, n)
if length(s) > n

s(n + 1 : length(s)) = [ ];
else

for i = length(s) + 1 : n
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s(i) = ’ ’;
end

end
t = s;

Chapter 17
17.1 heads = rand(1, 50) < 0.5;

tails = ~heads;
heads = heads * double(’H’);
tails = tails * double(’T’);
coins = char(heads + tails)

17.2 bingo = 1 : 99;
for i = 1 : 99
temp = bingo(i);
swop = floor(rand * 99 + 1);
bingo(i) = bingo(swop);
bingo(swop) = temp;

end
for i = 1 : 10 : 81
disp(bingo(i : i + 9))

end
disp(bingo(91 : 99))

17.4 circle = 0;
square = 1000;
for i = 1 : square
x = 2 * rand - 1;
y = 2 * rand - 1;
if (x * x + y * y) < 1
circle = circle + 1;

end
end
disp( circle / square * 4 );

Chapter 18
18.5 function x = mygauss(a, b)

n = length(a);

a(:,n+1) = b;

for k = 1:n
a(k,:) = a(k,:)/a(k,k); % pivot element must be 1

for i = 1:n
if i ~= k

a(i,:) = a(i,:) - a(i,k) * a(k,:);
end

end

end

% solution is in column n+1 of a:
x = a(:,n+1);
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Chapter 19
19.1 (a) Real roots at 1.856 and −1.697, complex roots at −0.0791 ± 1.780i.

(b) 0.589, 3.096, 6.285, . . . (roots get closer to multiples of π ).
(c) 1, 2, 5.
(d) 1.303
(e) −3.997, 4.988, 2.241, 1.768.

19.2 Successive bisections are: 1.5, 1.25, 1.375, 1.4375 and 1.40625. The exact answer is
1.414214..., so the last bisection is within the required error.

19.3 22 (exact answer is 21.3333).

19.4 After 30 years the exact answer is 2 117 (1000 ert ).

19.6 The differential equations to be solved are

dS/dt = −r1S,

dY/dt = r1S − r2Y.

The exact solution after 8 hours is S = 6.450 × 1025 and Y = 2.312 × 1026.

19.8 function s = simp(f, a, b, h)
x1 = a + 2 * h : 2 * h : b - 2 * h;
sum1 = sum(feval(f, x1));
x2 = a + h : 2 * h : b - h;
sum2 = sum(feval(f, x2));
s = h / 3 * (feval(f, a) + feval(f, b) + 2 * sum1 + 4 * sum2);

With 10 intervals (n = 5), the luminous efficiency is 14.512725%. With 20 intervals it
is 14.512667%. These results justify the use of 10 intervals in any further computations
involving this problem. This is a standard way of testing the accuracy of a numerical
method: halve the step-length and see how much the solution changes.

19.9 % Command Window
beta = 1;
ep = 0.5;
[t, x] = ode45(@vdpol, [0 20], [0; 1], [], beta, ep);
plot(x(:,1), x(:,2))

% Function file vdpol.m
function f = vdpol(t, x, b, ep)
f = zeros(2,1);
f(1) = x(2);
f(2) = ep * (1 - x(1)^2) * x(2) - b^2 * x(1);
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%, 22
%e format specifier, 47
%f format specifier, 47
%g format specifier, 47
&, 75
’, 77, 88
.’, 77
.*, 25
./, 25
.^, 25
:, 6, 88
;, 5, 27
~, 75
π , 5

estimation of, 221
0-1 vector, 78
3-D plot, 110

abs, 45, 65
acos, 65
acosh, 65
algorithm, 58
all, 79, 94

example, 80
AND, 75
angle, 45
animation, 190

comet3, 110
ans, 16, 26
any, 79

example, 80
apostrophe, 88

included in string, 170
area, 116
argument

input, 143
input, pass by reference, 147
input, pass by value, 147

arithmetic operator, 23

array, 6, 15, 159
2-D, 86
cell, 180
multi-dimensional, 98
string, 171

Array Editor, 16
array operation, 25, 95
ASCII code, 171
asin, 65
asinh, 65
aspect ratio, 46
assignment statement, 5, 26
atan, 64, 65
atan2, 45, 64, 65
atanh, 65
axis, 105

equal, 46
normal, 46

axis limits, 105
azimuth, 116

bacteria division, 216
bacteria growth, 221, 244
balance delimiters, 29
bar, 117
bar graph, 165
base workspace, 146
best fit, 231
binary to decimal conversion, 177
binomial coefficient, 124
Bisection method, 238
bit, 16
bitwise logical operations, 76
blanks, 173
break, 126, 131
breakpoint, 152
Bubble Sort, 166
bug, 136
byte, 16
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calendar, 5
camel caps, 16
cartesian co-ordinates, 108
case, 45
case sensitivity, 16
catch, 140
ceil, 65
cell, 180, 181
cell array, 180
celldisp, 182
cellplot, 182
Cervantes, 177
chaos, 123, 192, 248

butterfly, 250
trajectory, 250

char, 172
cla, 107
clc, 5
clear, 16
clear M-file, 146
clf, 107
clipboard, 12
clock, 37, 66, 201
colon operator, 6, 18, 88

initialization, 18
precedence, 24

colorbar, 194
colormap, 193
colour, 105
comet3, 110
command, 27
command line, 5
command line editing, 5
Command Window, 4
command/function duality, 150
comment, 22
compass, 117
compiler, 14
complex conjugate transpose, 46
complex numbers, 45
concatenation of strings, 171
condition estimator, 232
conj, 45
Contents.m, 146
context menu, 14
continuation of statement, 22, 27
continue, 131
contour, 112
contour plot, 8
contour3, 113
conversion, binary to decimal, 177
cos, 66
cosh, 66
cot, 66
Crank-Nicolson method, 260
csc, 66
cumsum, 66
current directory, 13
Current Directory browser, 14

curve fitting, 263
cut and paste, 12

data types, 23
date, 5, 67
deal, 180
deblank, 173
Debugger, 151
debugging, 136
degrees to radians, 5
del2, 195
delimiter highlighting, 29
demo, 7
desktop, 11

default, 11
det, 100
determinate repetition, 124
diag, 94
diary, 20, 213
dice, 75
diff, 243
differential equation, 243
disp, 31

scale factor, 32
division, matrix, 232
docking, 11
dot product, 26
dot-transpose operator, 77
double, 23
double-precision, 23
doubling time of an investment, 128
drawnow, 191
Driver, 251

editing a plot, 189
eig, 100
eigenvalue, 226
eigenvector, 227
element-by-element operation, 25
ellipse, equation of, 121
ellipsis, 22, 27
elseif, 42
empty, 18

array, 80
end, 38, 90
end of file, 211
eps, 73
error

fatal, 136
logical, 139
rounding, 139
run-time, 151
statement, 140
syntax, 136
trapping, 175

errorbar, 117
escape code, 47
etime, 37
Euler’s method, 243
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eval, error trapping, 175
exclusive OR, 76
exist, 79
exp, 67
explicit list, initializing vectors, 18
expm, 100, 247
exponent, 23
exponential fit, 231
exponential growth, 244
exponential matrix, 247
exporting ASCII data, save, 207
exporting binary data, save, 208
expression, 22–24, 26

ans, 26
display suppressed, 26
evaluation, 174
logical, 39, 75
response to input, 49

eye, 93
ezcontourf, 117

factorial, 34
false, 71
feather, 118
feof, 211
feval, 149
Fibonacci numbers, 156
field, 178
fieldnames, 179
figure, 6, 107
figure window, 6, 106
file I/O functions, 48
file identifier, 210
fill, 118
find, 79
findobj, 187
finite difference scheme, 246, 260
fix, 67
fixed point, 22, 32
fliplr, 94
flipud, 94
floating point, 22, 32
floor, 35, 67
fopen, 210
for, 35

command line version, 36
common error, 38
index, 35
iteration count, 35
more general, 36
most general form, 95
nested, 96, 126
replaced by vectorization, 36
used for determinate loop, 132

format, 31, 32
format specifiers, 47
formula, vectorization, 28
Fourier series, 134
fplot, 109

fprintf, 47
escape code, 47
string, 172

fractal, 123
fread, 211
frequency distribution, 165
fseek, 212
ftell, 212
full, 234
full matrix, 233
function, 27, 145

handle for passing as argument, 149
help, 145
MATLAB Function Reference, 65
name resolution, 151
P-code file, 148
private, 148
subfunction, 148

function functions, 150
function M-file, 142
function/command duality, 150
fzero, 240

Gauss reduction, 235
Gaussian random number, 220
gca, 185
gcbo, 201
gcf, 185
gco, 185
get, 186
Gibbs phenomenon, 134
ginput, 107
global, 146
gradient, 114
graph, 6
graphical user interface, 198
graphics

2-D, 102
3-D, 110
3-D rotation, 116
axis limits, 105
contour plot, 112
cropping a surface, 113
easy-to-use commands, 103
editing a plot, 189
line type, 105
logarithmic plot, 107
mesh surface, 110
multiple plots, 104, 106
on GUI, 204
plotting symbol, 105
polar co-ordinates, 108
rapidly changing functions, 108
saving, 196
vector field, 114

grid, on graph 103
gtext, 103, 164
guessing game, 126
GUI, 198
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GUI (cont.)
handles structure, 204
plotting graph on, 204

guide, 198

H1 line, 145
Halley’s comet, 122
Handle Graphics objects, 184
handle

function, 149
graphics object, 184

handles structure in a GUI, 204
Help, 11
help, 8
Help browser, 11
Help Navigator, 65
help for a function, 145
helpwin, 65
hexadecimal, 32
hidden name, 48, 138, 151
hist, 118
histogram, 165
hold, 104

i, 45
I/O functions, 48
identity matrix, 93
if, 39

command line version, 39
elseif, 42
nested, 44
vectorized with logical vector, 81

if-else, 41
command line, 41

ill conditioning, 232, 235
imag, 45
Import Wizard, 208
importing ASCII data, load, 208
importing binary data, load, 208
importing data, Import Wizard, 208
inclusive OR, 76
indeterminate repetition, 124, 126
index of for, 35
Inf, 5
infinity, 5
initialization, colon operator, 18

explicit list, 18
inline object, 142
input, 49

argument, 143
string, 170
vector, 49

input argument 143
int2str, 173
interpolation, 241
interpreter, 14
inv, 100
ischar, 173
isempty, 80

isglobal, 146
isinf, 80
isnan, 80
isothermal, 112
iteration count, 35

j, 45

Knuth, 129

lasterr, 138
error trapping, 175

Launch Pad, 7, 11
least squares, 231
left division, 24, 229, 232
Legendre polynomial, 156
length, 67
Leslie matrix, 225
lighting, 195
limit of sequence, 34
line numbers, 152
line style, 105
linear equations

over-determined, 230
residual, 230
solution, 229
under-determined, 231

linspace, 19
list, sorting, 166
load, 48, 208
LODE, 247
log, 67
log10, 67
logarithmic plot, 107
logarithmic spiral, 121
logical error, 139
logical expression, 39, 71, 75

vector, 72
logical function, 79
logical operator, 42, 75

precedence, 76
logical vector, 72

subscripting with, 78
loglog, 107
lookfor, 8, 145
loop

determinate, 124
indeterminate, 126

Lorenz, 248
Lotka-Volterra model, 250
lower, 173
lu, 100

M-file, 13
function, 142
function passed as argument, 149

macro, 174
magic square, 8, 93
mantissa, 23, 32
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marker, 105
Markov chain, 227
matrix, 17, 20, 86

array operation, 95
creating, 87
deleting rows and columns, 92
division, 232
duplicating rows and columns, 91
enlarging, 88
exponential, 247
exponentiation, 99
full, 233
Leslie, 225
multiplication, 98
operation, 25, 98
plot, 102
sparse, 233
subscript, 88
transpose, 20, 88
visualization, 115

max, 67, 168
mean, 67
menu, 131
mesh, 111
mesh surface, 110
meshc, 113
meshgrid, 111
meshz, 119
Mexican hat, 8
min, 67, 168
mlock, 146
Monte Carlo estimation of π , 221
more, 31, 130
multi-dimensional array, 98
multiple lines in Command Window, 12
multiple plots, 106

on same axes, 104
munlock, 146

name hiding, 138, 151
NaN, 5
nargin, 148
nargout, 148
nested fors, 96, 126
nested ifs, 44
Newton quotient, 140, 155, 242
Newton’s method, 33

in general, 236
normally distributed random number, 220
NOT, 75
not-a-number, 5
num2str, 31, 173
number, 22
numerical differentiation, 242
numerical integration, 240
numerical method, 236

Bisection method, 238
differential equation, 243
differentiation, 242

Euler’s method, 243
integration, 240
Newton quotient, 242
Newton’s method, 236
partial differential equation, 260
predictor-corrector, 246
Runge-Kutta method, 247
Simpson’s rule, 241
solution of equations, 236
Trapezoidal rule, 240

numerical solution
differential equations, 243
equations, 236

object, 182
Handle Graphics, 184

object-oriented programming, 182
ones, 92, 172
operand, 23
operating system, shelling out to, 50
operation

array, 25
element-by element, 25
matrix, 98

operator precedence, complete list, 77, 271
operator

arithmetic, 23
colon, 88
dot-transpose, 77
left division, 229
logical, 42, 75
precedence, 24, 76
relational, 39
separate with brackets, 77
transpose, 77

OR, 75
exclusive, 76

output, 31
paging, 31
suppressed with semi-colon, 27
to a file with fprintf, 47

output argument, 144
over-determined system, 230

P-code file, 148
paging output, 31, 130
palindrome, 176
partial differential equation, 260
pascal, 93
pause, 116
pcode, 149
peaks, 116
persistent variable, 146
pi, 5
pie, 119
pitfall, 138
plot, 6, 102

3-D version, 110
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plot (cont.)
logarithmic scale, 107
polar co-ordinates, 108

plot edit mode, 189
plot3, 110
plotedit, 189
plotyy, 104
Poisson process, 218
polar, 108
polar co-ordinates, 108
polynomial fitting, 263
pow2, 67
pre-allocation, 161
precedence, 76

arithmetic operators, 24
colon operator, 24
logical operator, 76
of operators, complete list, 77, 271
transpose, 25

predator-prey model, 250
predictor-corrector method, 246
Preferences, 32
prime number

generation, 169
largest known, 129
test, 129

private function, 148
prod, 67
Profiler, 149
program, 11
programming style, 50
projectile motion, 63
projectile trajectory, 129
Property Editor, 109
pseudo-code, 58
pseudo-random number, 67

qr, 100
quad, 242
quadratic equation, 59

structure plan, 59
quadrature, 242
quiver, 114
quote in string, 31

radio-active decay, 222
RAM, 14
rand, 67, 74, 92, 214

seeding, 215
uniform, 214

randn, 220
random access memory, 14
random number, 19, 74

counting, 74
generation, 214
normal, 220
uniform, 214

random walk, 165, 216, 227

rat, 32
real, 45
realmax, 23, 68
realmin, 23, 68
recall, smart, 5
recursion, 153
redimensioning, 161
reference, pass by, 147
relational operator, 39
relative accuracy, 23
rem, 68
removing elements of an array, 19, 79
repmat, 91
reshape, 91
reshaping a matrix, 90
residual, 230
ribbon, 119
right division, 232
rmfield, 180
rolling dice, 75, 216
root of an equation, 236
roots, 240
rot90, 94
round, 68
rounding error, 139, 242
run-time error, 151
Runge-Kutta method, 247

save, 48, 207, 208
saving a file, 13
saving a graph, 196
scalar, 6

expansion, 26
product, 26

scientific notation, 22
display, 32

scope, 146
script file, 13

hidden by variable of same name, 48
recommended way to run, 14

search path, 48
sec, 68
seeding rand, 215
semi-colon, 5
semilogx, 107
semilogy, 107
sensitivity analysis, 235
separator, 27
series for π , 133
set, 186
Shakespeare, 177
shelling out to the operating system, 50
sign, 68
Simpson’s rule, 241
simulation, 75, 165

bacteria division, 216
bacteria growth, 221
game of eights, 222
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π , estimation of, 221
radio-active decay, 222
random walk, 216, 229
rolling a die, 216
spinning coins, 215
traffic flow, 218

sin, 68
single-precision, 23
sinh, 68
size, 16, 68
smart indenting, 36
smart recall, 5
sort, 68, 166, 168
sort, bubble, 166
sound, 126
sparse, 233, 234, 261
sparse matrix, 233, 261
spinning coins, 215
spiral

Archimedes, 121
logarithmic, 121

sprintf, 164, 173
spy, 115, 234
sqrt, 5, 68
stable age distribution, 227
stairs, 120
statement, 5, 27

assignment, 26
continuation, 27

stem3, 120
strcmp, 173
string, 31, 170

array of characters, 171
ASCII code, 171
comparison, 173
concatenation, 171
containing quote, 31
fprintf, 172
including apostrophe, 170
input, 170
two-dimensional, 173

struct, 179
structure, 178
structure plan, 12, 58

quadratic equation, 59
structured programming, 60
style, 50
subfunction, 148
subplot, 106
subscript, 19, 88

logical vectors, 78
out of range, 88
vector, 78

subscripting with logical vectors, 78
sum, 68
sunflower head, 121
surf, 112
surfc, 113

svd, 100
switch, 45
syntax error, 136
syntax highlighting, 36

tab completion, 6
tan, 69
tanh, 69
Taylor series, exponential, 155
TEX characters, 189
text label on graph, 104
text macro, 174
tic, 37, 69
tiling, 91
title, 104
toc, 37, 69
top down programming, 59
traffic flow, 218
transpose, 19, 20, 77, 88

complex conjugate, 46
precedence, 25

Trapezoidal rule, 240
tridiagonal matrix, 261
tril, 94
triu, 95
true, 71
truecolor, 195
truncation error, 263
try/catch, 140, 175
type, 13

uicontrols, 198
under-determined system, 231
undocking, 11
unhiding a name, 48
uniformly distributed random number, 214
update process, 159
upper, 173

value, pass by, 147
Van der Pol’s equation, 265
varargin, 148, 181
varargout, 181
variable, 5, 14, 15

global, 146
hides script of same name, 48
persistent, 146
scope, 146
string, 170
termed arrays by MATLAB, 15

vector, 6, 17
0-1, 78
colon operator, 18
explicit list, 17
incompatible sizes, 138
input, 49
pre-allocation, 161
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vector, (cont.)
redimensioning, 161
removing element, 79
scalar product, 26
subscript, 19, 78
transpose, 19

vectorization, 28
instead of for, 36

view, 116
visualization of matrix, 115

waterfall 120
website, 9
while, 127

command line form, 127
used for indeterminate loop, 132
vector condition, 127

who, 16

whos, 16
why, 9
workspace, 16

base, 146
function, 146

Workspace browser, 11, 16

xlabel, 104
xor, 76

ylabel, 104

Zeller’s congruence, 176
zero of a function, 236
zeros, 92
zlabel, 110
zoom, 264
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