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Preface

Biological invasion is one of the most challenging and important issues in con-
temporary ecology. Patterns of species spread, rates of spread, the impact of
various biological and environmental factors and other related problems have
been under intensive study for a few decades. New effective tools and ap-
proaches have been developed, important work has been done and considerable
progress has been made towards better understanding of this phenomenon.

Although a lot of results regarding biological invasion were obtained through
field studies and analysis of field observations, recent advances could hardly
be possible without extensive use of mathematics, in particular, mathematical
modeling. The reason for this has its roots in the very nature of the problem.
A regular study based on manipulated field experiments is very difficult due
to the virtual impossibility of reproducing the environmental and initial con-
ditions. Laboratory experiments are often not effective due to inconsistence
of spatial scales. In these situations, mathematical modeling takes, to some
extent, the role that is normally played by experimental study in other natural
sciences.

It should also be mentioned that the issue of biological invasion has been an
inspiration for a few generations of mathematicians. Starting from classical
works by Fisher (1937) and Kolmogorov et al. (1937), this subject has been
fascinating ever since and eventually became one of the cornerstones for the
contemporary nonlinear science.

However, the whole understanding of the meaning and implication of math-
ematics in scientific studies has been changing recently. Due to tremendous
progress in computational technologies in the last two decades, many theo-
reticians working in various fields tended to consider computer experiment as
their main research tool. The whole concept of mathematical modeling was
reduced to numerical simulations and the role of rigorous mathematics has
often been underestimated. It must be noted that, although computer exper-
iment is a useful and powerful approach, it has a few serious drawbacks and
its actual capability is not as almighty as it is sometimes viewed. One of the
drawbacks is the impact of numerical/approximation error which is usually
very difficult to estimate and which, in applied numerical simulations, is prac-
tically never addressed so that its actual impact on simulation results in most
cases remains obscure. Meanwhile, there are examples when the approxima-
tion error changes results essentially, especially when the problem under study
is nonlinear. Another drawback is that, since even a very detailed simulation
study uses a finite number of parameter values, computer experiment alone



is not capable of providing full and complete information about the solution
dependence on the parameters. The information obtained numerically is more
meager the more parameters the problem depends on.

These difficulties never arise when the problem can be solved analytically.
It should be mentioned that, when a nonlinear problem is described by partial
differential equations (PDEs), the exact solution is usually a special solution,
i.e., the solution possessing certain symmetry and/or obtained for special
initial and boundary conditions. (Probably the most well-known example
of a special solution with an immediate application to biological invasion is
a traveling population front.) Remarkably, however, the meaning of such
solutions is not exhausted by a few special situations and appears much more
general due to initial conditions convergence which is often considered as a
manifestation of a universal principle of scaling.

Besides providing an immediate and complete description of system dy-
namics for a relevant class of initial conditions (apart from an early stage of
dynamics when the initial details can be significant), exact solutions can also
infer information about a larger family of related problems via application of
the comparison principle. Another useful application of exact solutions which
should not be forgotten is that they serve as a convenient tool for testing
complicated numerical algorithms and codes used in more specialized studies.

In this book, our main attention is given to the models based on nonlinear
PDEs, especially PDEs of diffusion-reaction type. One of the reasons why the
implication of exactly solvable nonlinear models in ecology has been underes-
timated is the widely spread opinion that such models are exceptionally rare.
This is not true: indeed, they are relatively rare but not at all exceptional.
Along with several ad hoc methods, there are some regular mathematical ap-
proaches that can be applied to obtain exact solutions of nonlinear PDEs.
One of the goals of this book is to provide a unified description of these meth-
ods in order to bring them into use by a wider community of theoreticians
working on species dispersal and biological invasion. Apart from the methods
and relevant examples, we also give a review of exactly solvable models (now
scattered over periodic literature) that can be useful for studying biological
invasion and species spread.

Although this book is mostly concerned with mathematical aspects of in-
vasive species spread, we never forget that there is nature standing behind.
Based on exactly solvable models, we make a new insight into a few issues
of significant current interest such as the impact of the Allee effect, the im-
pact of predation, the interplay between different modes of species dispersal,
etc. Thus, we expect that our book will be interesting and useful not only
to applied mathematicians but also to those biologists who are not scared
by differential equations. In order to make it intelligible to researchers from
different fields as well as to postgraduate students, we provide as many calcu-
lation details as possible. Also, an Appendix is added giving a brief review of
some background mathematics. The chapters that contain a somewhat more
complicated mathematics and can be skipped for the first reading are marked



with asterisk.
The book is organized as follows. In Chapter 1, we begin with providing

arguments to show why exactly solvable models are important. In particular,
we give a few examples when a straightforward numerical study of relevant
ecological problems can be misleading. We then give a brief review of basic
facts from population dynamics that should be taken into account when for-
mulating mathematical models of biological invasion. In Chapter 2, we give
an overview of several modeling approaches that have been developed and suc-
cessfully applied over the last two decades. We briefly discuss the biological
background behind different approaches in order to better understand their
applicability and try to reveal mathematical relation between different mod-
els. In Chapter 3, we describe a few methods that are used to construct exact
solutions of nonlinear diffusion-reaction equations and consider a few instruc-
tive examples. In Chapters 4 to 6, we consider several more specific ecological
problems described by exactly solvable models. In Chapter 7, we show how
the predictions of exactly solvable models can sometimes be extended beyond
their presumptions and what alternative analytical approaches are possible in
non-integrable cases. In Chapter 8, we demonstrate the usefulness of exactly
solvable models by means of applying them to a few particular cases of bi-
ological invasions. Finally, the last chapter gives some basic facts about the
mathematical tools used throughout the book.

This preface would not be complete if we did not mention those who have
greatly helped us in our work. We think that this is a wonderful opportu-
nity to express our sincere gratitude to the people who were our teachers
at different stages of our life and whose influence on our research cannot
be overestimated. We are especially thankful to Grigorii Barenblatt, Simon
Levin, Nanako Shigesada and Wally Wu who gave us timeless ideas about
the true standards of scientific study. We are very thankful to our colleagues
and friends who throughout all the years have collaborated with us, including
Horst Malchow, Rod Blackshaw, Ezio Venturino, Sasha Medvinsky, Zhen-
Shan Lin, Andrew Morozov, Frank Hilker and Igor Nazarov. Many thanks
are also due to Britta Daudert for her careful reading of the complete draft.
We are very grateful for the valuable support and patience of our families;
they understood and shared our joy in writing this book. Last but not least,
we are thankful to Sunil Nair, Publisher of Mathematics and Statistics, CRC
Press/Chapman & Hall, for inviting us to write this book and for his patience
and encouragement.

S.V.P. & B.L.L.
Moscow and Riverside
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Chapter 1

Introduction

1.1 Why exactly solvable models are important

Mathematical modeling has a very long history. From the golden age of
ancient Greece, through controversial medieval times, and up to the great
discoveries of the twentieth century, people have been fascinated by nature
and tried to conceive the ways it works by means of describing its complexity
with simple cogitable relations.

The progress in understanding nature has always been tightly related to
progresses in mathematics. Probably the most famous attempt to build a
mathematical model in the whole history of science, and also the one that
took the longest time, has been that related to the ancient problem about
Achilles and the turtle: whether a faster moving body can catch up with
a slower one, especially if we consider their motion in small time intervals.
Nowadays, the question may seem trivial but it had appeared impossible to
answer it properly until the mathematical theory of infinitesimal values was
developed by Isaac Newton and Gottfried von Leibniz.

The industrial revolution and considerable progress in engineering brought
to life a variety of much more complicated problems. Correspondingly, the-
ories and models were becoming more and more elaborated and that greatly
stimulated further advances in mathematics. In particular, since most of the
dynamical models used to be based on differential relations, advances in the
theory of differential equations were substantial and it became a mature sci-
ence with a comprehensive insight into its subject and a well-developed array
of powerful analytical tools.

Remarkably, a growing consciousness of the complexity of nature and a
general tendency for modeling approaches to become more and more compli-
cated did not eradicate the original craving for simplicity. Perhaps the highest
point achieved in this direction is the law of radioactive decay. Radioactiv-
ity is an extremely complicated phenomenon. Its full comprehension requires
quantum theory and nuclear physics; yet as far as we are concerned with the
“mean-field” behavior, it can be very well described by a onefold differential
equation.

In the middle of the last century, a general progress in science and education
resulted in a scientific revolution: apart from its traditional applications in en-

1



2 Exactly Solvable Models of Biological Invasion

gineering, physics and chemistry, mathematics started penetrating into other
fields such as biology, ecology and social sciences. In particular, from a rather
descriptive field of knowledge several decades ago, ecology has now grown to
a qualitative science where mathematics is used widely and successfully.

This process has been greatly enhanced by the emergence and spread of
computers. Tremendous recent progress in computer science and information
technologies has equipped ecologists with a new very powerful and convenient
research tool. Although an adequate ecological study must always be based
on the reality check such as field observations and experiments, results of com-
puter experiments have often proved to be very helpful in refining the goals
and approaches and in providing a deeper insight into the problems under
study. Several new modeling techniques have appeared that are essentially
based on computer simulations, e.g., coupled lattice maps, individual-based
modeling, etc. So strong is the belief in the power of computers that alterna-
tive analytical approaches are even regarded as outdated sometimes. There
is a growing number of researchers working in theoretical ecology and ecolog-
ical modeling who are simply not aware of existing research tools based on
rigorous mathematics.

However, the enthusiasm brought forward by the new research opportuni-
ties associated with modern computers can be rather misleading sometimes.
One essential drawback of the approach based on numerical simulations is
that, since every particular simulation run is done for particular parameter
values, computational experiments are not able to give a full and compre-
hensive account about the model or solution properties. Let us consider a
situation when a relevant solution behavior takes place in a narrow parameter
range. In case we do not have any a priori information regarding where this
range is possibly situated in the parameter space of the model, the chances to
find it eventually in the course of numerical experiments may be pretty low,
especially when the model contains several parameters. Moreover, a regular
study is thus changed, in some sense, into a “try and guess” approach and it
can hardly be acceptable as an appropriate way to conduct scientific research.

It should be mentioned that the situation when a given property may take
place in a narrow parameter range does not at all mean that this property
is not interesting or irrelevant. Ecosystems are complex self-organized units
and it is a big and largely open question why the parameter values are what
they actually are.

Another source of trouble is rooted in the approximation error. Usually, it
is small and can be neglected. However, the situation may be different in a
multi-scale problem where both “large” and “small” variables are important.
In such cases, the magnitude of the computational error is mainly determined
by calculation of larger values and the resulting error is sufficiently large to
blur the computational results for the smaller variables. One possible example
of this situation is immediately found in the patterns of species invasion. It
is well known that the rate of spread is in some cases related to the large-
distance asymptotics where the population density is vanishingly small, and
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it is substantially different for different types of solution decay (cf. Kot et
al., 1996; Sherratt and Marchant, 1996). The computational error is likely to
deform the solution behavior near the leading edge and thus to modify the
rate and the whole pattern of spread.

As a matter of fact, the impact of the approximation error can be even
more significant, not only distorting the system properties but changing them
essentially. In order to gain an insight into this possible pitfall, let us con-
sider a finite-difference approximation of the diffusion equation in one spatial
dimension:

∂u

∂t
=

∂

∂x

(
D

∂u

∂x

)
(1.1)

where x is space, t is time and u is the density of the diffusing substance. We
consider Eq. (1.1) in a domain 0 < x < L and for t > 0.

Choosing a homogeneous numerical grid in space and time, xi+1 = xi +
h, i = 0, . . . , N, x0 = 0, xN+1 = L and tk+1 = tk + τ, k = 0, 1, . . . , t0 = 0,
using then a simple explicit scheme so that

∂u

∂x
=

ui+1,k − uik

h
,

∂u

∂t
=

ui,k+1 − uik

τ
(1.2)

where uik = u(xi, tk), and assuming for simplicity that D is a constant coef-
ficient, Eq. (1.1) takes the form

ui,k+1 = uik +
(

Dτ

h2

)
(ui+1,k + ui−1,k − 2uik) (1.3)

which makes it possible to calculate the density on the next time-layer.
Now, to what extent is Eq. (1.3) equivalent to the original Eq. (1.1)? In

order to address this question, let us expand all variables contained in (1.3)
into the Taylor series in vicinity of (xi, tk). Then, after a little algebra, we
obtain: (

∂u

∂t

)
ik

+ τ

[
1
2

(
∂2u

∂t2

)
ik

+
1
6

(
∂3u

∂t3

)
ik

τ + . . .

]
(1.4)

= D

(
∂2u

∂x2

)
ik

+ Dh2

[
1
12

(
∂4u

∂x4

)
ik

+
1

360

(
∂6u

∂x6

)
ik

h2 + . . .

]
.

The expressions in square brackets include higher derivatives that are absent
in the original equation. Obviously, in the limiting case h → 0, τ → 0,
Eq. (1.4) approaches (1.1); however, for any fixed value of h and τ their
properties can be essentially different. That happens in the case of constant
diffusivity and, for D depending on space, time and/or density, discrepancy
between the two equations can be even greater.

As an instructive example, now we consider the following problem (Baren-
blatt et al., 1993). It is well known that the dynamics of marine ecosystems is
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to a large extent controlled by water temperature and thus the related issues
of heat and mass transfer in the upper productive ocean layer are of consider-
able interest. In a sea or ocean, the transport processes are mainly driven by
turbulence, and the coefficient of turbulent exchange appears to be a function
of the temperature gradient. In order to describe vertical temperature dis-
tribution, the following nonlinear diffusion equation was suggested by several
authors:

∂T

∂t
=

∂

∂x

[
φ

(
∂T

∂x

)]
(1.5)

where T is water temperature and φ is the absolute value of the temperature
flux. Analysis of experimental data indicates that φ depends on the temper-
ature gradient in a nonmonotonous way, tending to zero for small and large
∂T/∂x and reaching its maximum value for an intermediate value.

Equation (1.5) was studied numerically by several authors, e.g., see Pos-
mentier (1977) and Djumagazieva (1983), and a realistic step-like temperature
distribution was obtained. However, somewhat later it was shown analytically
by Höllig (1983) that Eq. (1.5) is ill-posed and the corresponding boundary
problem has an infinite number of solutions – contrary to the unique solution
actually obtained in numerical simulations.

The paradox was finally resolved by Barenblatt et al. (1993) who showed
that Eq. (1.5) is inadequate because it neglects the time of temperature flux
response to the transient temperature gradient. This time is indeed small
but not at all zero. They showed that a physically correct model of vertical
turbulent heat and mass transfer in a turbulent flow should contain one more
term accounting for the temperature flux relaxation:

∂T

∂t
=

∂

∂x

[
φ

(
∂T

∂x

)]
+ τ0

∂2

∂t∂x

[
ψ

(
∂T

∂x

)]
(1.6)

where τ0 is a characteristic relaxation time and ψ is a certain function. It
was then proved rigorously that the presence of the third-order derivative
makes the problem well-posed and Eq. (1.6) has a unique solution. Numerical
experiments confirmed that the solution properties are in a good agreement
with those of the temperature field observed in a real ocean.

Now, comparison between Eqs. (1.5) and (1.6) readily leads to understand-
ing how the “bad” equation (1.5) could be successfully solved numerically.
A finite-difference approximation of the diffusion equation includes higher
derivatives, cf. (1.4), and de facto regularization of the ill-posed problem was,
in fact, a purely numerical artifact.

Apparently, most of the difficulties described above can hardly ever arise
when a problem is solved analytically. In the rest of this book, we will show
how exact solutions can be obtained for nonlinear diffusion-reaction equations
used in mathematical ecology, reveal their main properties and show how they
contribute to study of species spread and biological invasion.
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1.2 Intra- and inter-species interactions and local popu-
lation dynamics

We begin with a brief introduction into the models of local population dy-
namics. Only as many details will be given as it is necessary for understanding
the rest of the book. For those who may be interested in getting more infor-
mation, there is extensive literature concerned with this and related issues,
e.g., see Kot (2001).

Populations of biological species rarely remain invariable. Typically, they
change with time due to birth and death of individuals they consist of. One
of the basic assumptions of theoretical population dynamics, which is in good
agreement with results of many laboratory experiments and field observations,
is that the rate of population growth is a function of the population density
u:

du

dt
= uf(u) = F (u) (1.7)

where f(u) is the per capita growth rate that can also depend on the popula-
tion density. Here the right-hand side is assumed to take into account both
population multiplication and natural mortality.

The properties of particular models depend on what assumptions are made
regarding function f (or, rather, what factors affecting the dynamics of a
given population are taken into account). The simplest approach assumes
that density-dependence is absent, i.e., f(u) = α = const; see Fig. 1.1. That
immediately results in unbounded exponential growth of the population. Al-
though it is apparently nonrealistic, if considered for any t, the growth close to
an exponential can be sometimes observed for real populations but only dur-
ing a relatively short time. As the population density increases, intraspecific
competition is gradually becoming more and more important which results
in a decrease of the per capita growth rate. For sufficiently large population
densities, the growth rate will likely stop, or even may become negative when
mortality prevails over population multiplication. It means that the growth
rate F (u) should possess the following properties:

F (0) = F (K) = 0, (1.8)

F (u) > 0 for 0 < u < K, F (u) < 0 for u > K, (1.9)

F ′(0) = α > 0, F ′(u) < α for u > 0 (1.10)

where prime denotes the derivative with respect to u. Here parameter α has
the meaning of the per capita population growth at small population density
and parameter K is the population carrying capacity so that for u = K the
population growth stops; see Fig. 1.2. Condition (1.10) thus ensures that the
per capita growth rate f reaches its maximum at u = 0.
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FIGURE 1.1: Population growth rate F (u) and per capita growth rate
f(u), (a) and (b) respectively, in the absence of density-dependence.

The above relations do not assume any specific functional parameterization.
Only very few results can be obtained in a general case and, to make a more
detailed study, we have to choose a particular form of F (or f). Perhaps the
most famous, and also the simplest model of population dynamics taking into
account the impact of the intraspecific competition, is the model of logistic
growth. This model assumes that the per capita growth rate decreases linearly
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FIGURE 1.2: A sketch of the population growth rate F (u) and per capita
growth rate f(u), (a) and (b) respectively, in the simplest case of density-
dependence (logistic growth) with K = 1.

with population density, i.e., f(u) = α(1 − u/K). Equation (1.7) now reads
as follows:

du

dt
= αu

(
1 − u

K

)
. (1.11)

Correspondingly, function F described by conditions (1.8–1.10) is sometimes
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FIGURE 1.3: A sketch of the population growth rate F (u) and per capita
growth rate f(u), (a) and (b) respectively, in the case of weak Allee effect.

referred to as a “generalized logistic growth.”
Note that conditions (1.8–1.10) imply that population density u can be

scaled to the population carrying capacity, u → ũ = u/K. For the new
variable ũ, Eq. (1.11) takes a somewhat more convenient form:

dũ

dt
= αũ(1 − ũ) . (1.12)
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FIGURE 1.4: A sketch of the population growth rate F (u) and per capita
growth rate f(u), (a) and (b) respectively, in the case of strong Allee effect.

According to the model of logistic growth, the per capita growth rate should
decrease monotonously with the population density. There is, however, an-
other type of density-dependence when the maximum per capita growth rate
is reached for a certain intermediate density; see Fig.1.3. This shift is called
the Allee effect and the corresponding population dynamics is called the Allee
dynamics (Allee, 1983; Dennis, 1989; Lewis and Kareiva, 1993). From a ge-
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ometrical aspect, due to the Allee effect the growth function F (u) becomes
concave in a vicinity of u = 0.

In theoretical studies, it appears convenient to distinguish between the
“weak” Allee effect, cf. Fig. 1.3, and the “strong” Allee effect, see Fig. 1.4,
when the population growth becomes negative for small population density.
A rather general description of the growth function F (u) in the case of the
strong Allee effect is as follows:

F (u) < 0 for 0 < u < uA and u > K, (1.13)
F (u) > 0 for uA < u < K. (1.14)

Here parameter uA corresponds to a certain threshold population density. In
more focused studies, the growth rate is often described by a cubic polynomial:

F (u) = ωu(u − uA)(K − u). (1.15)

Note that this parameterization actually makes it possible to include also the
weak Allee effect. Namely, assuming that uA can be negative (when it, of
course, does not have the meaning of population density any more), the Allee
effect is strong for 0 < uA < 1 and weak for −1 < uA ≤ 0. It is readily seen
that for uA ≤ −1 the Allee effect is absent.

As well as in the case of logistic growth, the population density can be
conveniently scaled to the carrying capacity; Eq. (1.7) then turns to

dũ

dt
= γũ(ũ − β)(1 − ũ) (1.16)

where ũ = u/K, β = uA/K and γ = K2ω.
The above equations arise when we are concerned with the dynamics of

a particular species. In ecological reality, however, the species interact with
each other and none of them can be considered separately. Correspondingly,
compared to the single-species models, the next level of model complexity
appears when we consider the dynamics of a two-species community:

du1

dt
= F (u1) + κ12R1(u1, u2) , (1.17)

du2

dt
= G(u2) + κ21R2(u1, u2) (1.18)

where u1 and u2 are the species densities, F (u1) and G(u2) describe the
multiplication and mortality of species 1 and 2, respectively, in the absence of
other species, positively defined functions R1 and R2 describe the inter-species
interaction and κ12, κ21 are coefficients.

System (1.17–1.18) is rather general and, as such, it accounts for a variety
of ecological situations. In particular, depending on the sign of coefficients
κ12 and κ21, it describes inter-species interactions of different type. While
κ12 = κ21 = −1 corresponds to species competition, for κ12 = κ21 = +1 it
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describes a mutualistic community. Note that, in a general case, functions
R1 and R2 must not necessarily coincide with each other, cf. “asymmetric
competition.” The case of κ12 and κ21 being of different sign corresponds
to a predator-prey system; considering species 1 as prey and species 2 as
predator and assuming that the predator cannot survive in the absence of
prey, Eqs. (1.17–1.18) take a more specific form:

du1

dt
= f(u1)u1 − r(u1)u1u2 , (1.19)

du2

dt
= κ21r(u1)u1u2 − g(u2)u2 (1.20)

where 0 < κ21 < 1 now has the meaning of food utilization coefficient and
function g gives the per capita predator mortality. Here the form of r(u1)
depends on the type of predator response to prey, e.g., Holling II or Holling
III.

Obviously, in general, two-species models contain more information about
the population dynamics than single-species ones. It should be mentioned,
however, that single-species models may also account for the impact of other
species through the choice of corresponding parameter values. For instance,
the impact of predation can be, to some extent, taken into account by means
of increased mortality rate, the impact of competition can be described by
means of choosing lower multiplication rate, etc.

1.3 Basic mechanisms of species transport

In real ecological populations, the population density is normally varying
not only in time but also in space. There are many reasons for that. Hetero-
geneity of a population spatial distribution can arise due to heterogeneity in
controlling factors, such as the growth rate and/or mortality, which results in
population density changing with different rates at different locations. Sim-
ilarly, it can be a result of spatially different initial conditions. It can arise
also due to the impact of spatially heterogeneous stochastic factors of either
environmental or demographic origin.

The above reasons are more related to the temporal dynamics of the pop-
ulations and, in fact, do not account for space explicitly. Another source of
the species’ spatial heterogeneity is found in the populations re-distribution
in space due to the transport of individuals. As well as growth, multiplica-
tion and mortality, it is a very general phenomenon with profound ecological
implication and the dynamics of any population is affected significantly by
transport processes. This remains true even when individuals of given species
are actually immobile, e.g., for plant species. In the latter case, spatial re-
distribution of the population takes place by means of seeds spreading.
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Apparently, the scenarios and mechanisms of species transport as well as
their implication can differ greatly from species to species and from case to
case. Among other things, these differences define the time-scale where the
impact of species transport on the population distribution can become im-
portant. For species with a pronounced ability for self-motion, like mammals,
birds and some insects, the population spatial distribution can change re-
markably during a relatively short interval falling in between two successive
generations, e.g., one year. On the contrary, for a tree species, a characteris-
tic re-distribution time should cover a few generations and can be as long as
decades or even centuries.

It should be mentioned that the impact of transport processes on the pop-
ulation distribution is ambilateral. Species transport can result in spatial
heterogeneity but it can also be caused by it. In particular, in the case of
random motion of individuals, a difference between the population density in
neighboring sites generates a population density flux directed toward the site
with lower density. The impact of behavioral traits specific to a given species,
such as an optimal foraging strategy, social or learning behavior, when indi-
vidual motion can hardly be regarded as random, is likely to modify the flux
intensity but, as far as both sites are equal in their “quality,” will not elim-
inate it. In this and similar cases, the transport processes tend to decrease
spatial heterogeneity rather than generate it.

In general, the mechanisms of species transport can be classified into a few
types. First, there is transport caused by environmental factors such as wind
for air-borne species or current for water-borne species. Considering by way of
example a strongly idealized case when all individuals of a given population
move with a constant speed A0, the population re-distribution in space is
described by the following equation:

∂u

∂t
+ A0

∂u

∂x
= 0 (1.21)

where A0 = |A0| and axis x is chosen in the direction of species motion.
Equation (1.21) has a solution describing a traveling wave propagating along
axis x with speed A0, i.e., u(x, t) = φ(ξ) where ξ = x − A0t and the wave
profile φ is determined by the initial conditions; see Fig. 1.5. Note that in
this section we do not take into account population growth and mortality. A
full consideration of the corresponding population dynamics will be done in
the next chapter. From the point of time-scale, Eq. (1.21) may correspond to
species transport in the between-generation time.

The second type is species transport due to self-motion of individuals. In-
dividual motion is usually intricate and is affected by a variety of environ-
mental and biological factors (Turchin, 1998). However, from the modeling
standpoint, the complexity of its description depends on how much informa-
tion we actually want to gain. While an individual path can indeed be very
complicated, an averaged “displacement” of a given individual may behave in
a much simpler way. A conceptual assumption that is usually made is that
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FIGURE 1.5: A sketch of a traveling population wave propagating with
constant speed A0. The solid curve shows the population density for t = 0; the
dashed-and-dotted curve shows the population density for a certain t = t1 > 0.
Note that the hump moves to the right without changing its shape.

it can be regarded as random (Skellam, 1951; Okubo, 1986); the population
dynamics is then described by the diffusion equation, cf. (1.1). (In this con-
text, the population spatial re-distribution due to random individual motion
is often referred to as “biodiffusion.”) Note that applicability of the diffusion
equation is also enhanced by the “vertical integration,” i.e., by the transition
from individual to population level, due to additional averaging over different
individual behavioral traits.

There are some cases, however, when individual motion is of completely
different type and can by no means be considered as random. One example
is given by species migration when species transport seems to be more ad-
equately described by Eq. (1.21) rather than by the diffusion equation. In
Section 2.1 we provide a more detailed consideration of different types of in-
dividual motion and in Section 4.1 we will reveal how the interplay between
the different types or modes of species transport may affect the pattern and
rate of biological invasion.

In a more general situation, species transport takes place due to a combi-
nation of environmental and biological factors. In particular, individuals of
a given species can be carried by the wind or current of fixed direction and
strength and also be involved in random dispersal either due to self-motion
or due to the impact of turbulent pulsations, cf. (Okubo, 1980). In this case,
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instead of Eq. (1.21) we have

∂u

∂t
+ A0

∂u

∂x
=

∂

∂x

(
D

∂u

∂x

)
(1.22)

where D quantifies either biodiffusion or turbulent diffusion, respectively.
Another mechanism of transport is originated in the impact of “vector”

species, e.g., in the case when plant seeds are borne away by birds or animals.
Its main features are determined by the properties of individual self-motion
of the vector species and, thus, the above arguments apply to this case as
well. This mechanism has been proved to enhance dispersal of some plant
species, although its importance is often regarded as insignificant compared
to wind-driven transport (but see Section 8.3).

Finally, species transport can be caused by some anthropogenic factors such
as trade, tourism, etc. From the modeling standpoint, this mechanism seems
to be the most complicated because it is obviously affected by various aspects
of human life and society.

Although all the mechanisms described above potentially lead to the species
spatial re-distribution, sometimes on a global scale, not all of them can lead
to species invasion or colonization. The factors that make a given mechanism
relevant to biological invasion as well as possible implication of different types
of species transport will be discussed in the next section.

1.4 Biological invasion: main facts and constituting ex-
amples

The term “biological invasion” is a common name for a variety of phenom-
ena related to introduction and spread of alien or exotic species, i.e., a species
that has not been present in a given ecosystem before it is brought in. Bi-
ological invasion usually has dramatic consequences for the native ecological
community. Invasion of alien species often results in virtual eradication of
some native species, and it is currently considered as one of the main reasons
for biodiversity loss all over the world. It often causes considerable damage
to agriculture (or to “aquaculture,” in case of marine ecosystems) and thus it
may result in substantial economic losses as well.

Biological invasion is a very frequent phenomenon and its frequency has
increased significantly over the last several decades, although not all cases
are documented equally well. A classical example is found in the spread of
muskrat (Ondatra zibethica) in Central Europe in the first half of the 20th
century; this case was later used by Skellam (1951) for developing one of the
first-ever mathematical approaches to modeling species spatial spread. The
muskrat was brought to Europe from North America for the purpose of fur-
breeding. In 1905, a few muskrats escaped from a farm near Prague. This
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small population started multiplying and increasing its range, and in a few
decades it spread over the whole continental Europe.

Another famous example of biological invasion is the spread of the gypsy
moth (Lymantria dispar) in North America. This insect is thought to have
been brought from France to a place near Boston by an amateur entomologist.
When it happened to escape around 1870, it established a local population
and eventually started spreading. In spite of a number of controlling mea-
sures introduced in the early 20th century, it has continued spreading ever
since and by 1990 the whole Northwest of the United States became heav-
ily infested (Liebhold et al., 1992). The resulting damage to agriculture and
corresponding economic losses were tremendous.

One of the latest cases is given by the introduction and spread of the zoo-
plankton species Mnemiopsis leidyi in the Black Sea (Vinogradov et al., 1989).
This species was accidentally brought by cargo ships from the Caribbean Sea
region and released with ballast waters near the port of Odessa around 1980.
The species successfully established a local population but its spatial spread
did not begin until mid-eighties. From spring 1988, however, the population
started growing and spreading at a very high rate and it invaded the whole
sea in just a few months. The consequences for the native fauna were catas-
trophic; in particular, a few commercial fish species were brought to the edge
of extinction.

Analysis of these and many other cases shows that biological invasion has
a few more or less clearly distinguishable stages. The first one is introduction
when a number of individuals of an exotic species is brought, accidentally
or deliberately, into a given ecosystem. The second stage is establishment
when the introduced species is “getting accustomed” to the new environment.
(Note that, at this stage, it is not enough just to have a number of adult
individuals who survived their introduction. An alien species can be regarded
as established only after offsprings are procreated in the new environment
and the population starts growing or, at least, stabilizes at a certain level.)
The third stage, in case the previous two have been successful, is related to
the species geographical spread when the species range grows steadily and
it invades new areas at the scale much larger than the place of its original
introduction.

Apparently, geographical spread of alien species is only possible if there
exists an adequate mechanism of species spatial re-distribution. Not every
mechanism of species transport can result in biological invasion. Remarkably,
the magnitude of the travel distance characteristic for a given type of transport
has very little to do with its relevance to species invasion. For instance,
recurrent long-distance migrations typical for many bird species usually take
place without changing species range: a flock of birds may travel a thousand
miles in order to spend winter in a warmer place and every next spring it
returns to exactly the same forest or pond to produce new offspring. On the
contrary, the everyday roundabout motion of individuals that takes place on
a much smaller scale can result in a gradual increase in the species range and
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thus make species invasion possible.
Also, the implication for species invasion is different for different types of

transport. While random self-motion of individuals and small-scale migrations
(cf. Chapter 4) lead to a gradual advance of the species’ range border, the
impact of tourism and trade is likely to result in new introductions far away
from the area already invaded.

Each stage of biological invasion has its own specific problems and requires
specific modeling approaches. In this book, we are mostly concerned with
the third and, to some extent, the second stage when the size of invasive
population becomes large enough to be adequately described in terms of the
population density and the spread can be described by diffusion-reaction equa-
tions.

It should be mentioned here that an increase in species range and corre-
sponding geographical spread occurs not only during biological invasion but
also during species colonization or recolonization. The biological background
of these phenomena is somewhat different and, in the latter cases, the intro-
duction and establishment stages may be not applicable. The geographical
spread, however, takes place due to essentially the same mechanisms and can
be studied using the same modeling techniques, e.g., see Lubina and Levin
(1988).

In general, biological invasion is a complex phenomenon and it has many
different aspects and implications. It is not our goal to give its comprehen-
sive description here; an interested reader can find more details in relevant
biological literature (Elton, 1958; Drake et al., 1989; for a more recent source
see Sakai et al., 2001). The mathematical background and a variety of model-
ing approaches is shown and discussed in much detail in the already-classical
books by Hengeveld (1989) and Shigesada and Kawasaki (1997). Some more
references will be given throughout this book.



Chapter 2

Models of biological invasion

In this chapter, we will briefly review the main mathematical approaches that
are used to describe biological invasions and species spread. Spatiotemporal
models of population dynamics arise when the trade-off is considered between
the change in population size or density due to the processes of birth and
death and its change due to emigration/immigration into a given site or into
a vicinity of certain position in space. There are, however, different ways to
describe this trade-off depending on peculiarities of ecological situation as well
as different features of population dynamics to be taken into account. This
results in a wide variety of relevant mathematical models ranging from fully
deterministic to purely stochastic, from single-species to multi-species, from
continuous to discrete, etc. Some of them are presented below.

2.1 Diffusion-reaction equations

Application of diffusion-reaction models to ecological problems is based on
the assumption that population dynamics is continuous in space and time and
thus can be described by continuous or even smooth functions. Apparently,
this approach fully neglects population discreteness at the level of individuals
and thus can only be applied to the processes going on a spatial scale much
larger than the size of a typical individual.

Let us consider how the population size changes inside a certain area Ω.
We assume that a given population is described by the population density u.
In a general case, u depends on the position r = (x, y) in space and time t so
that the population size inside Ω is given by

UΩ(t) =
∫ ∫

Ω

u(r, t)dr . (2.1)

There are two basically different mechanisms making the population size
vary with time: the one associated with local processes such as birth, death,
predation etc., and the other associated with the redistribution of the popu-
lation in space due to the motion of its individuals. Correspondingly, the rate
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of change of the population size is described by the following equation:

∂

∂t

∫ ∫
Ω

u(r, t)dr = −
∫

Γ

(Jk)ds +
∫ ∫

Ω

F (u(r, t))dr (2.2)

where J is the population density flux through the area boundary Γ, k is
the outward-pointed unit vector normal to the boundary and Jk is the scalar
product. The second term in the right-hand side allows for the local processes,
F (u) = f(u)u where f(u) is the per capita growth rate.

Taking into account that
∫

Γ

(Jk)ds =
∫ ∫

Ω

(∇J) dr , (2.3)

from (2.2), we obtain:

∂u(r, t)
∂t

= −∇J + F (u). (2.4)

In the case F (u) ≡ 0, Eq. (2.4) has the form of the conservation law; it means
that the total number of the individuals does not change with time unless the
processes of birth and death are taken into account.

The form of the flux J essentially depends on the properties of the motion.
In case the motion of the individuals can be regarded as random, cf. “random
walk” (Okubo, 1980), the flux is usually assumed to be proportional to the
population density gradient:

J = − D∇u(r, t) (2.5)

where D is diffusivity. In other fields of natural science, equation (2.5) is
known as the Fick law or the Fourier law. In this case, Eq. (2.4) takes the
form of a diffusion-reaction equation which is of common use in theoretical
studies (Britton, 1986; Murray, 1989; Holmes et al., 1994).

However, the motion of individuals cannot always be regarded as random.
Another widely observed dynamics is advection/migration, when the individ-
uals exhibit a correlated motion toward a certain direction. Assuming for the
sake of simplicity that at a given position all the individuals move with the
same speed A, we immediately obtain that J = Au(r, t). In a more general
case, when the correlated motion is combined with the random motion, the
population density flux is given by the following equation:

J = Au(r, t) − D∇u(r, t) . (2.6)

From (2.4) and (2.6), we obtain the following general advection-diffusion-
reaction equation of population dynamics:

∂u(r, t)
∂t

+ ∇(Au) = ∇ (D∇u) + f(u)u . (2.7)
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Here the diffusion coefficients D and the advection speed A may depend on
space, time and also on population density u.

The above derivation of Eq. (2.7) can be immediately extended onto the
case of a few interacting species. In this case, instead of a single equation, we
arrive at the system of advection-diffusion-reaction equations:

∂ui(r, t)
∂t

+ ∇(Aiui) = ∇ (Di∇ui) + fi(u1, . . . , un)ui, (2.8)

i = 1, . . . , n

where ui is the density of the ith species and the nonlinear functions fi de-
scribe the inter-species interactions. Here diffusivity is, in general, different for
different species. Also, the speed of advective transport can be species-specific
in case we take into account self-motion of individuals.

System (2.8) is very general and, as such, it can be expected to describe
a great variety of different situations in various natural systems. However,
from a practical point of view, a disadvantage of this model is that it is
mathematically very complicated. Its numerical solution is usually a difficult
problem, and analytical approaches are hardly possible at all except for a few
special cases.

Moreover, the idea to include as many details as possible, resulting in a
large number n of equations in the system, is not always justified biologi-
cally because complicated systems tend to be sensitive to parameter values
that are usually known only approximately. On the contrary, in many cases
it appears possible to make useful insights into the population dynamics of
invasive species without describing inter-species interactions in much detail,
i.e., using few-species models. A few ecologically meaningful examples will be
considered in Chapter 8. An apparent advantage of the few-species models is
that they can be more easily solved numerically and often treated analytically.

The simplest case is a single-species model, i.e., the one given by equation
(2.7). Although this model does not take into account the impact of other
species (but see the lines below Eq. (2.11)), it still takes into account several
different factors such as two types of motion, potential density-dependence,
environmental heterogeneity (in case D, A and/or other parameters depend
on space), etc. Depending on the nature of phenomenon under study, the
model (2.7) can be further minimized. In most of this book we neglect ad-
vection, its impact will be considered in Section 4.1. Also, it is often possible
to treat the diffusion coefficient as constant. Under these additional assump-
tions, we arrive at the following equation:

∂u(r, t)
∂t

= D∇2u + F (u) . (2.9)

Analogously, a similar reduction can be applied to the general advection-
diffusion-reaction system (2.8) as well.

Some conclusions about the solution properties for the above equation can
be obtained for functions F (u) of a rather general form; however, an exact
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solution is possible only when a specific parameterization is chosen. The
choice of F (u) is governed by biological reasons. For instance, in case the
population growth is subject to the Allee effect, a cubic polynomial can be an
appropriate parameterization; see (1.16). Equation (2.9) then takes a more
specific form:

∂u(r, t)
∂t

= D∇2u + γu(u − β)(1 − u) (2.10)

assuming that population density u is scaled by the population carrying ca-
pacity, cf. Section 1.2.

In the case that the Allee effect is absent, the population growth is often
described by the logistic function; correspondingly, equation (2.9) turns into

∂u(r, t)
∂t

= D∇2u + αu(1 − u) . (2.11)

Equation (2.11)) was first introduced by Fisher (1937); for that reason it is
called the Fisher equation.

Note that, although at first sight it may seem that Eq. (2.9) (or its particular
cases (2.10) and (2.11)) fully neglects the interaction of the given population
with other species, it is not really so. The term F (u) may include the im-
pact of other species in an implicit way, e.g., via additional mortality. Still,
this approach provides only meagre information about other species’ impact
on given population and gives no information at all about how other species
can be affected. A more comprehensive model should take other species into
account explicitly. In particular, a lot of important results and valuable in-
sights have been obtained from consideration of the two-species predator-prey
system:

∂u(r, t)
∂t

= D1∇2u + f(u)u − r(u)uv , (2.12)

∂v(r, t)
∂t

= D2∇2v + κr(u)uv − g(v)v (2.13)

where u, v are the densities of prey and predator, respectively, the term r(u)v
stands for predation, κ is the coefficient of food utilization and g(v) is the per
capita mortality rate of predator.

Throughout this book, most of our analysis will be restricted to the 1-D
case (but see Sections 4.2 and 8.1) when the corresponding equations read as
follows:

ut(x, t) = Duxx + F (u) (2.14)

for a single-species model, and

ut(x, t) = D1uxx + f(u)u − r(u)uv , (2.15)

vt(x, t) = D2vxx + κr(u)uv − g(v)v (2.16)
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FIGURE 2.1: A propagating population front described by a diffusion-
reaction equation.

for a predator-prey model where indices x and t denote the partial derivatives
with respect to x and t, respectively.

Regarding biological invasions, the spread of alien species usually takes
place via propagation of a population front separating the regions where the
invasive species is absent from the regions where it is present at a considerable
density. Therefore, the solutions that describe propagation of traveling waves
are of particular interest. The relevant solutions depend not on x and t
separately but on the special combination of space and time, u(x, t) = U(ξ)
where ξ = x− ct and c is the speed of the wave. In the single-species system,
obviously, they are solutions of the following equation:

D
d2U

dξ2
+ c

dU

dξ
+ F (U) = 0 . (2.17)

In an unbounded domain, propagation of a traveling front corresponds to
the following conditions at infinity:

U(−∞) = 1, U(∞) = 0 (2.18)

(or vice versa, depending on the direction of axis x).
For the growth function given by conditions either (1.8–1.10) or (1.13–1.14),

the only possible type of traveling wave described by Eq. (2.17) appears to
be a propagating front connecting the lower and the upper steady states, i.e.,
u = 0 and u = 1; see Fig. 2.1. The speed of the wave strongly depends on
the type of function F which, in its turn, is determined by biological factors.
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Assuming that the local population growth does not exhibit the Allee effect,
i.e., that F (u) is described by conditions (1.8–1.10), the following analytical
expression for the wave speed can be obtained:

c = 2 (Dα)1/2 (2.19)

where α = F ′(0), cf. (2.11). More rigorously, Eq. (2.19) gives the lowest
possible value of the wave speed (see Chapter 7 for more details); however,
it is this value that appears to be relevant to the population waves arising in
biological invasion.

The situation becomes essentially different when the population growth
is subject to the Allee effect. In this case, equation (2.19) does not apply.
Considerations of this issue (Volpert et al., 1994) show that the speed of the
wave depends on more details of the function F (u) than just its behavior at
small u. In fact, an exhaustive solution of this problem for a more or less
general case is still lacking; however, for a few special cases the equation for
the wave speed has been obtained. In particular, when the local population
growth is described by a cubic polynomial, cf. Eqs. (1.16) and (2.10), the
speed is given as follows:

c = c0 (Dγ)1/2 where c0 =
1 − 2β√

2
. (2.20)

Remarkably, depending on β, the direction of population front propagation
can be different and corresponds either to species invasion or to species retreat.

The question of primary importance for ecological applications is under
what conditions the wave of invading species can be blocked. For the single-
species model (2.14) or (2.17), this condition can be easily obtained. Wave
blocking means c = 0; correspondingly, from Eq. (2.17) we have:

D
d2U

dξ2
+ F (U) = 0 . (2.21)

Multiplying (2.21) by dU/dξ and integrating over space, we obtain:
∫ 1

0

F (U)dU = 0 (2.22)

(assuming, as above, that U is scaled to unity). A certain generalization of
condition (2.22) will be given in Section 5.2 (see also Chapter 7).

Note that condition (2.22) can hold only if the function F changes its sign
in the interval (0, 1). Apparently, this is not possible in the case when the
population growth is logistic (see (1.8–1.10)), but it appears possible in the
case when the population growth is damped by the strong Allee effect, i.e.,
when F (u) is negative for small u. In the latter case, the condition of wave
blocking has the clear geometrical interpretation that the areas above and
below the horizontal axis must be equal; see Fig. 2.2.
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FIGURE 2.2: Geometrical interpretation of the condition of wave blocking
in the population with the strong Allee effect: species invasion is stopped when
the shadowed areas above and below the horizontal axis are equal.

In the case of the strong Allee effect, in the parameter range where
∫

F (u)du
is close to zero, the speed of the wave was shown to be given as

c �
∫ 1

0

F (u)du , (2.23)

see Mikhailov (1990). This and similar results make it possible to refer to the
traveling fronts in the systems with and without Allee effect as “pushed” and
“pulled” waves, respectively: while in the case of logistic growth the speed of
the population wave depends on the system properties at the leading edge,
i.e., far in front of the front where the population density is small, in the case
of the Allee effect the speed of the wave depends on the properties of F for
intermediate and large population density, i.e., behind the front.

It should be mentioned that the above mechanism of wave blocking due
to the impact of the Allee effect appears to be the only one possible in the
“minimal” model (2.14). In more complicated diffusion-reaction models, wave
blocking appears possible as well due to the impact of other factors such as
environmental heterogeneity and impact of other species.
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2.2 Integral-difference models

Diffusion-reaction equations of population dynamics, although proved to
be very useful in many ecological applications, e.g., see Chapter 8, apparently
give an idealized picture of real population dynamics. In particular, a point
of criticism has been that, in diffusion-reaction models, the individuals move
in space and multiplicate at the same time. In reality, for many species these
stages can be clearly distinguished. For instance, re-distribution in space
(including also invasion/colonization phenomena) of a plant population takes
place due to seed or pollen dispersal which normally happens once per year.
Between the dispersal events, the population may grow but its individuals do
not move.

In an attempt to find a more realistic description, in particular, in order to
take into account the stage-separation, another type of mathematical model
was developed based on integral-difference equations. In this section we will
make a brief review of this approach and try to compare its predictive ability
with that of diffusion-reaction models. For the sake of equations’ simplicity, we
restrict our consideration to 1-D case and to population with non-overlapping
generations. We also assume that dispersal takes place in an infinite space
in order to neglect the impact of the area boundaries. More details and
some generalizations as well as further references can be obtained from Kot
et al. (1996), Neubert and Caswell (2000) and Wang et al. (2002).

Let us describe a given population with its density u which depends on time
t and position x. Function u(x, t) gives the population distribution over space
at time t. Then, the population density at time t+∆t, i.e., u(x, t+∆t), is the
result of the following two processes: the population growth described by the
growth function F(u) and redistribution in space due to offsprings’ dispersal.

The actual mathematical model depends on the succession of these pro-
cesses. Let T be the time between the two subsequent generations. Assuming
that the species first multiplicates then disperse, we arrive at the following
two-step model, i.e.,

ũ(x, t) = F(u(x, t)) (2.24)

for the multiplication stage, and

u(x, t + T ) =
∫ ∞

−∞
k(x, y)ũ(y, t)dy (2.25)

for the dispersal stage. Here k(x, y) is the dispersal kernel giving the proba-
bility density to find at position x an offspring released at position y.

Equations (2.24-2.25) can be combined together producing a single equa-
tion:

u(x, t + T ) =
∫ ∞

−∞
k(x, y)F(u(y, t))dy . (2.26)
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This equation, or its immediate generalizations, has been often used in applied
ecological studies, cf. Clark et al. (1998).

Now, let us note that we can assume as well that the species first disperse
and then reproduce. Then, we immediately arrive at the alternative two-step
model:

ũ(x, t) =
∫ ∞

−∞
k(x, y)u(y, t)dy (2.27)

for the dispersal stage, and

u(x, t + T ) = F(ũ(x, t)) (2.28)

for the multiplication stage. Again, we can combine the equations (2.27-2.28);
however, the resulting equation will be different:

u(x, t + T ) = F
(∫ ∞

−∞
k(x, y)ũ(y, t)dy

)
. (2.29)

From a biological point of view, equations (2.26) and (2.29) should be equiv-
alent because the actual succession of stages is only a subject of the choice of
the initial conditions. Assuming that, as it is usually the case in nature, the
system exhibits some kind of scaling so that the initial conditions are “for-
gotten” after a certain time, we arrive at the conclusion that u(x, t + ∆t) in
equations (2.26) and (2.29) should be the same, i.e.,

∫ ∞

−∞
k(x, y)F(u(y, t))dy = F

(∫ ∞

−∞
k(x, y)u(y, t)dy

)
. (2.30)

Equation (2.30) expresses a “stage-invariance” principle: the large-time dy-
namics of given population must not depend on which stage, dispersal or
multiplication has taken place first.

It is readily seen that it is only possible when F(u) is a linear function,
i.e., F(u) = R0u where R0 is the basic reproductive number giving an aver-
age number of offsprings produced by a single adult individual. Thus, in
a rigorous mathematical sense, the approach based on Eq. (2.26) is true
only when the density-dependent phenomena in population dynamics are
neglected. Although it is a serious restriction for its applications because
density-dependence often plays a crucial role, surprisingly, equation (2.26)
with F(u) = R0u gives a good estimate for the invasion speed. The matter
is that, in the case that an invasive species spreads in the form of a traveling
population wave, in the absence of the Allee effect the wave speed is deter-
mined by the population dynamics at the leading edge of the moving front
(Weinberger, 1982). At the edge of the front, the population density is small
and thus function F(u) can be linearized, F(u) � F ′(0)u.

For further analysis, we assume that the environment is homogeneous so
that dispersal probability depends on the distance between positions x and y
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rather than on both of them separately, i.e., k(x, y) = k(x − y). Then, in the
linear case, equation (2.26) takes a simpler form:

u(x, t + T ) = R0

∫ ∞

−∞
k(x − y)u(y, t)dy . (2.31)

A stationary wave (i.e., the traveling wave with a profile of a constant shape)
traveling with a speed c is a solution which exhibits invariance to translation,
i.e., in the case of (2.31), possesses the following property:

u(x, t + T ) = u(x − cT, t) . (2.32)

Since equation (2.31) is linear, we can look for its solution to be exponential,
i.e.,

u(x, t) = const · e−s(x−ct) (2.33)

where s > 0 (assuming that the invasive species spreads from left to right) is
a parameter giving the slope of the front.

Having substituted (2.33) into (2.31), we obtain:

e−sxescT = R0

∫ ∞

−∞
k(x − y)e−sydy . (2.34)

Introducing z = x − y, we arrive at the characteristic equation:

escT = R0M(s) where M(s) =
∫ ∞

−∞
k(z)eszdz . (2.35)

From (2.35), we immediately obtain the equation for the speed of the pop-
ulation wave:

c(s) =
1

sT
ln[R0M(s)] . (2.36)

It is readily seen that equation (2.36) has multiple solutions corresponding to
different s. Which value of speed is actually “chosen” by the traveling wave
depends on the initial spatial distribution of species density, in particular, on
its asymptotics for large x. However, biological invasion usually starts with
species local introduction so that before starting its geographical spread the
exotic species is present only inside a certain area. Correspondingly, relevant
initial conditions are described by functions of compact support. In this case,
it can be proved (Weinberger, 1982) that the wave propagates with the mini-
mum value given by equation (2.36). Thus, the relevant value of the invasion
speed is given by the following equation:

c0 = min
s

1
sT

ln[R0M(s)] . (2.37)
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The above analysis was based on the assumption that the moment-generating
function M(s) exists, at least, for certain positive values of s. That implies
that, for large |z|, k(z) decays exponentially or faster. In the case of “fat-
tailed” kernels when M(s) is infinite, a more refined analysis predicts that
the invasive species spreads with increasing speed; see Kot et al. (1996).

Based on the integro-difference equation (2.26), Kot et al. (1996) fulfilled
computer simulations of the spread of invasive species using the data of field
observations on Drosophila pseudoobscura. The dispersal kernel was chosen
to approximate the real data of the insects spread from a point release. They
tested a few parameterizations and found, among other results, that leptokur-
tic kernels (e.g., “back-to-back” exponential) tend to yield higher speed of
invasion than the standard Gaussian kernel. The model capability to give
higher speed of invasion was then interpreted as an essential advantage of the
integro-difference equations compared to other models.

It should be mentioned that, although from a biological point of view
integro-difference equations may look somewhat more realistic compared to
diffusion-reaction equations because of the separation between the dispersal
and multiplication stages (but see the “stage-invariance” principle above),
their better predictive ability seems to have been somewhat overestimated –
at least in the case when the dispersal kernel is not fat-tailed. In particular,
below we show that different speed of invasion for different dispersal kernels
can also be obtained for diffusion-reaction equations.

To address this issue, let us first try to reveal the relation between integral-
difference and diffusion-reaction equations. For the sake of simplicity, here we
focus on the dispersal stage and neglect species multiplication:

u(x, t + ∆t) =
∫ ∞

−∞
k(x − y)u(y, t)dy (2.38)

where ∆t is small compared to generation time T . Let z = x − y, then

u(x, t + ∆t) =
∫ ∞

−∞
k(z)u(x − z, t))dz (2.39)

=
∫ ∞

−∞
k(z)

[
u(x, t) − du

dz
· z +

d2u

dx2
· z2

2
− d3u

dx3
· z3

6
+ . . .

]
dz

assuming, for biological reasons, that u(x, t) is an analytical function and thus
can be expanded into a power series.

To get a step further, we also have to assume existence of all moments of
the dispersive kernel k(z), i.e.,

∫ ∞

−∞
znk(z)dz < ∞ , n = 1, 2, . . . . (2.40)

Obviously, conditions (2.40) are consistent with the earlier assumption about
existence of the moment-generating function M(s).
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Then, taking into account that∫ ∞

−∞
k(z)dz = 1 (2.41)

since k(z) gives the probability distribution, from (2.39) we obtain:

u(x, t + ∆t) = u(x, t)− < z >
du

dz
(2.42)

+
〈

z2

2

〉
d2u

dx2
−

〈
z3

6

〉
d3u

dx3
+ . . .

where 〈
zn

n!

〉
=

∫ ∞

−∞

zn

n!
k(z)dz . (2.43)

Assuming that there is no prevailing wind or current, the offspring disper-
sal forth and back must take place with equal probability; that means that
k(−z) = k(z) and all odd moments turn to zero. Then from (2.42) we obtain:

∆u =
〈

z2

2

〉
d2u

dx2
+

〈
z4

24

〉
d4u

dx4
+ . . . (2.44)

where ∆u = u(x, t + ∆t) − u(x, t) is the change in population density at
position x after time ∆t.

Since ∆u ≈ ut(x, t)∆t, equation (2.44) has a structure similar to the dif-
fusion equation. A formal distinction is that, although for many kernels the
higher moments can be expected to be small, equation (2.44) contains higher
derivatives and thus is not equivalent to the diffusion equation. Let us note,
however, that, in order to obtain equation (2.44), we did not take into account
that the dispersal kernel (more precisely, its width and amplitude) should de-
pend on ∆t. Clearly, the greater ∆t is, the more offsprings will be found at
larger distances from their parent. That means that the kernel’s width and
amplitude must be increasing and decreasing functions of ∆t, respectively.

In order to find out how the kernel’s width may depend on ∆t, we can make
use of dimension analysis. Since the kernel k is unknown and, moreover, it
is likely to be different for different species, the function k(x − y,∆t) should
depend on a dimensionless combination of variables and parameters rather
than on each of them separately. (Otherwise, what could it be, for instance,
logarithm of 1 meter?) Let us introduce an empirical value of species diffu-
sivity D so that

√
D gives the average distance travelled by the offsprings per

unit time from the point of their release. Since the dimension of D is L2T−1,
the combination ξ = (x − y)(D∆t)−1/2 is dimensionless. Then, the dispersal
kernel should have the following properties:

k(x − y,∆t) = Ak̃

(
x − y

2
√

D∆t

)
,

∫ ∞

−∞
k̃(ξ)dξ = 1 (2.45)
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where A is a coefficient and the coefficient 2 in the denominator is added for
convenience. To obtain A, we make use of (2.41):

A

∫ ∞

−∞
k̃

(
x − y

2
√

D∆t

)
dy = A(4D∆t)1/2

∫ ∞

−∞
k̃(ξ)dξ (2.46)

= A(4D∆t)1/2 = 1

so that A = (4D∆t)−1/2.

Correspondingly, what kind of dependence on ∆t will the coefficients <
zn/n! > have? From (2.46), we immediately obtain:

〈
z2n

(2n)!

〉
=

1
2
√

D∆t

∫ ∞

−∞

z2n

(2n)!
k̃

(
z

2
√

D∆t

)
dz (2.47)

=
(
2
√

D∆t
)2n

∫ ∞

−∞

ξ2n

(2n)!
k̃(ξ)dξ

= (4D∆t)n

〈
ξ2n

(2n)!

〉
∗
, n = 1, 2, . . .

where the brackets with asterisk denote an average with respect to the prob-
ability distribution function k̃ of the re-scaled argument ξ.

Now we return to equation (2.44). Since, during the dispersal stage, the
process of offsprings spread is more likely to happen in a continuous manner
than in a discrete one, we assume ∆t to be small. Form (2.44), we obtain:

∆u = u(x, t + ∆t) − u(x, t) = ut(x, t)∆t + o(∆t)

= 4D∆t

〈
ξ2

2

〉
∗
uxx + (4D∆t)2

〈
ξ4

24

〉
∗
uxxxx + . . . . (2.48)

Dividing Eq. (2.48) by ∆t and considering ∆t → 0, we obtain:

ut(x, t) =
[〈

2ξ2
〉
∗ D

]
uxx (2.49)

where all higher derivatives have now disappeared.
An important distinction of equation (2.49) from a usual diffusion equation

is that the diffusion coefficient in (2.48) contains the factor determined by
the properties of the kernel, i.e., < 2ξ2 >∗. Since the speed of invasion in
a single-species diffusion-reaction model is proportional to the square root of
the diffusion coefficient (e.g., see Eq. (2.19)), it may be expected that it will
be different for different kernels.

Indeed, it is straightforward to see that in the standard case of Gaussian
kernel, i.e., for

k̃(ξ) =
1√
π

exp(−ξ2) (2.50)
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this factor is equal to 1. However, in the case of leptokurtic kernel,

k̃(ξ) =
1
2

exp(−|ξ|) (2.51)

this factor is equal to 4. Comparison between these two cases leads to an
immediate conclusion that the speed of invasion must be two times greater
in the leptokurtic case than in the Gaussian case. This result is in excellent
agreement with Kot et al. (1996) where it was obtained based on the integro-
difference equation (2.26).

Thus, we can conclude that, in the case that all the moments exist (even
if the kernel is not Gaussian), the prediction of the invasion speed obtained
from the integro-difference equation is essentially the same as that obtained
from the diffusion-reaction equation. However, the models based on integro-
difference equations do provide a valuable extension to diffusion-reaction equa-
tions in the case of fat-tailed kernels, i.e., when some or all of the moments
are infinite, predicting population waves propagating with increasing speed.

2.3 Space-discrete models

The models considered in the previous sections are based on the assump-
tion that the factors affecting the population dynamics, such as the population
growth rate(s), mortality rate(s), diffusivity, etc., are homogeneous in space.
In its turn, this assumption is based on the hypothesis that the relevant envi-
ronmental properties are homogeneous as well. Apparently, this is not always
true and, although spatially homogeneous models often provide an adequate
description of invasive populations, in some cases environmental heterogeneity
cannot be neglected.

There are various ways to take environmental heterogeneity into account.
Probably the most straightforward one is simply to change constant param-
eters to relevant functions of position in space in the space-continuous equa-
tions. For instance, considering the carrying capacity K and/or the popu-
lation growth rates α and γ in Eqs. (2.10) and (2.11) as functions of space,
one takes into account the well-known ecological observation that population
habitats can be either favorable (large K, large α or γ) or unfavorable (small
K, small α or γ).

In nature a species often dwells in fragmented habitats with a “mosaic”
structure when favorable areas alternate with areas where given species cannot
survive (but probably can disperse through). For such cases, it is likely to be
more convenient to consider the population dynamics on a spatially-discrete
grid rather than in a continuous space with environmental properties described
by complicated functions.
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FIGURE 2.3: A sketch of an invasive population spreading through a one-
dimensional system of coupled discrete habitats.

For the sake of brevity, we restrict our consideration to the single-species
dynamics. We begin with a one-dimensional case. Let us consider a chain
of favorable sites, or habitats, numbered consecutively; see Fig. 2.3. The
sites are connected via dispersion of the individuals. The population size Ui

in the i-th habitat can change due to processes of local population growth
and mortality, and due to migration to/from other habitats. We assume
that dispersal has only short-distance mode so that migration takes place
only between the neighboring sites. We also make a usual assumption that
the inter-site population flux is proportional to the difference between the
corresponding population sizes. Thus, the equations describing population
functioning in a fragmented environment are as follows:

dUi

dt
= Ji,L + Ji,R + Fi(Ui) , i = 1, . . . , N (2.52)

where

Ji,L = Di,L (Ui−1 − Ui) , Ji,R = Di,R (Ui+1 − Ui) (2.53)

where Di,L, Di,R are the coefficients of diffusive coupling and N is the total
number of sites. Here functions Fi describing local growth and mortality can
be either identical or different depending on the habitats’ properties. In the
particular but ecologically important case of identical patches, Eqs. (2.52)
reduce to

dUi

dt
= D (Ui+1 + Ui−1 − 2Ui) + F (Ui) , i = 1, . . . , N, (2.54)
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where Di,L = Di,R = D.
Note that, even in the case that all functions Fi are identical, equations

(2.54) still describe population dynamics in an inhomogeneous “patchy” envi-
ronment. Although Eqs. (2.54) look somewhat similar to what is obtained
when a single-species diffusion-reaction equation is solved numerically by
finite-difference method, these approaches are not equivalent. A system of
finite-difference equations is expected to approximate a given space-continuous
diffusion-reaction equation in the limiting case when the grid-steps become
very small. (It means that, ideally, a diffusion-reaction equation should be
solved numerically on a succession of grids with decreasing grid-steps in or-
der to exclude numerical artifacts.) On the contrary, Eqs. (2.52–2.53) or
(2.54) does not contain space explicitly thus assuming that the site sizes and
inter-site distances remain finite. As a result, although the model based on
the space-discrete equations (2.54) is in a certain relation to the diffusion-
reaction model in a homogeneous environment, it predicts some new features
of invasive species dynamics. In particular, while in the case of strong inter-
site coupling the system (2.54) has traveling wave solutions describing the
invasion of alien species, in the case of weak coupling (but with finite D) the
system (2.54) predicts blocking of invasive species spread. The latter happens
in a parameter range where it cannot be immediately described by means of
the corresponding space-continuous model. Wave blocking in a space-discrete
system due to weak inter-site coupling was studied mathematically by Keener
(1987), Bressloff and Rowlands (1997), Fath (1998) and some others. Ecolog-
ical implications of this phenomenon were considered by Keitt et al. (2001).

The existence of traveling population fronts in the space-discrete system
can be demonstrated straightforwardly, at least for a certain specific choice of
F (U). Bressloff and Rowlands (1997) considered the following parameteriza-
tion

F (U) = ε
[(

1 − a

2

)
− U2

]
− aU

1 − U2
+ 2U (2.55)

where ε and a are certain parameters without any immediate biological mean-
ing, ε > 0, 0 ≤ a ≤ 2. It is not difficult to see that function (2.55) possesses
the following properties:

F (0) = F (Umin) = F (Umax) = 0 ,

F (U) < 0 for Umin < U < 0 , F (U) > 0 for 0 < U < Umax

(where Umin and Umax depend on a and ε) so that it describes the dynamics
similar to the one generated by the strong Allee effect, cf. (1.13–1.14).

Bressloff and Rowlands (1997) studied the system (2.54–2.55) and found
exact traveling wave solution:

Ui(t) = tanh b · tanh [b (ct − n) + s] (2.56)
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(in appropriately chosen dimensionless variables) where

tanh2 b = 1 − a

2
, (2.57)

s is an arbitrary constant and the speed of the wave c was found to be

c =
ε

b
tanh b . (2.58)

Unfortunately, the choice of F in the form (2.55) leads to the values of U to
be scaled between Umax > 0 and Umin < 0 so that U can be negative, and thus
the ecological meaning of solution (2.56) remains obscure. Also, to obtain the
exact solution (2.56), Bressloff and Rowlands (1997) had to assume that D = 1
which clearly reduce its usefulness. In spite of these apparent disadvantages of
their approach, the importance of this result is that it gives a mathematically
rigorous proof of traveling wave existence in a discrete environment, at least
for a special case.

Thus, propagation of traveling population waves is the phenomenon that
can be observed both in space-continuous models and in space-discrete models.
The property that makes a principal distinction between these approaches is
the parameter range where wave propagation is possible. In a single-species
diffusion-reaction system, traveling wave of invasion can be blocked or reversed
only in the case when the population is affected by the Allee effect. In this
case, the condition of propagation failure is given by the following inequality:

M =
∫ K

0

F (U)dU ≤ 0 (2.59)

where K is the population carrying capacity.
For a specific parameterization of the growth rate F (U), inequality (2.59)

gives restriction on the parameter values; in particular, in case of cubic poly-
nomial parameterization (see (2.10)), condition(2.59) is equivalent to β ≥ 0.5.
Moreover, since M < 0 actually corresponds to a reverse traveling wave, i.e.,
to the species retreat, the wave blocking occurs for the only value M = 0.
Dependence of the wave speed on species diffusivity is given by the simple
scaling relation c ∼ √

D so that for M �= 0 species invasion or retreat takes
place for any D > 0.

In contrast, in a space-discrete system the traveling wave of invasive species
can be blocked for M > 0 provided that inter-site diffusive coupling is suffi-
ciently small. The possibility of this effect can be seen from simple heuristic
arguments (Keitt et al., 2001). Let us consider a certain invasive species that
spreads over a system of identical coupled habitats, cf. Fig. 2.3. Without
any loss of generality, we assume that it spreads from left to right and it has
already invaded the first (i − 1) sites. Successful invasion over the i-th habi-
tat means that its population size will grow, i.e., dUi/dt > 0. That becomes
possible only when the negative impact of the Allee effect is overcome by a
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sufficiently strong population flux from the neighboring (i − 1)-th site. The
flux in question is given by the following equation:

Ji,L = D(Ui−1 − Ui) . (2.60)

The values of Ui and Ui−1 are unknown and thus the exact value of the
flux is unknown as well. However, its upper bound is obtained readily if we
take into account that the value of population size in the “already-invaded”
habitats cannot exceed the carrying capacity K and the population size in
“not-yet-invaded” habitats is nonnegative. Then, from (2.60) we immediately
obtain:

Ji,L < Jmax = DK . (2.61)

Evidently, a sufficient condition of invasive species blocking is given by

Jmax + min F (U) < 0 (2.62)

where the minimum value is taken over the range where the population growth
rate is negative, i.e., for 0 < U/K < β. Under this condition, the population
“source” due to the flux from the (i−1)-th site (more rigorously, its theoretical
maximum value) is weaker than the “sink” due to the Allee effect. It means
that dUi/dt appears to be negative in a certain range of the population density,
Ui will never grow above the survival threshold β and the alien population
fails to invade the i-th site.

Taking into account (2.61), from (2.62) we obtain that propagation of inva-
sive waves become impossible for the following values of the inter-site coupling:

D <
1
K

|min F (U)| . (2.63)

Note that, contrary to the space-continuous case where wave propaga-
tion/blocking depends on integral properties of the population growth rate,
in the space-discrete case the condition of propagation failure depends on the
details of the growth rate density-dependence in the intermediate range of
population density.

A relation similar to (2.63) can be obtained as well for blocking of retreat
population waves. In this case, the species retreats from the i-th site if, as a
result of the interplay between the local population growth and the inter-site
migrations, it appears that dUi/dt < 0. Thus, propagation of retreat waves
becomes impossible under the following sufficient condition:

−Jmax + max F (U) > 0 (2.64)

that is, for

D <
1
K

max F (U) , (2.65)
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where the maximum value is taken over the range where the population growth
rate is positive, i.e., for β < N/K < 1.

For parameter values satisfying both (2.63) and (2.65), propagation of nei-
ther invasive waves nor retreating waves is possible; thus, it corresponds to a
stationary population distribution over space. For instance, such a stationary
distribution may have the form of a standing interface separating invaded and
non-invaded areas.

For any specific parameterization of F (U), the critical relation between D
and β can be obtained explicitly. As an example, let us consider the piecewise
linear approximation:

F (U) = − αU for 0 ≤ U/K ≤ β ,

F (U) = α(K − U) for U/K > β ,

so that

min F (U) = − αβK and maxF (U) = α(1 − β)K . (2.66)

It is readily seen that, in the space-continuous system, the condition of
propagation failure M = 0 corresponds to β = 0.5 so that no invasion wave
is possible for β ≥ 0.5 and no retreat wave is possible for β ≤ 0.5. In the
corresponding space-discrete system, however, making use of relations (2.63)
and (2.65) we obtain that invasion wave is blocked for

D < αβ , 0 < β ≤ 0.5 (2.67)

and retreat wave is blocked for

D < α(1 − β) , 0.5 ≤ β < 1 . (2.68)

Relations (2.63) and (2.65) can be combined into a single condition of wave
blocking:

D

α
< β < 1 − D

α
. (2.69)

Note that inequalities (2.63) and (2.65) or (2.69) provide only a sufficient
condition of propagation failure which is the more exact the smaller D is. In
the case of piecewise linear growth function, a rigorous analysis appears to be
possible that lead to the following exact result (Fath, 1998): wave propagation
is blocked if

β− < β < β+ (2.70)

where

β± =
1
2

[
1 ±

(
1 +

4D

α

)−1/2
]

. (2.71)
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FIGURE 2.4: The structure of the parameter plane for the single-species
space-discrete model. Here dashed-and-dotted curves 3 and 4 show the bound-
ary of the domain where parameters correspond to invasion blocking; solid
lines 1 and 2 show the sufficient condition of invasion blocking obtained from
simple heuristic arguments.

Conditions (2.69) and (2.70–2.71) are shown in Fig. 2.4. Thus, instead of
the single value β = 0.5, we now have a range of values (between curves 3 and
4) where wave propagation is blocked.

Note that the symmetric shape of the invasion pinning domain in Fig. 2.4 is
a consequence of symmetric parameterization of the growth rate: it is readily
seen that the piecewise-linear function F (U) satisfies the following condition:

F (U, β) = − F (1 − U, 1 − β) . (2.72)

In an arbitrary case, the symmetry may be absent.
In conclusion, it should be mentioned that the discreteness of the system

manifests itself also for large values of inter-site coupling when the system
properties are intuitively expected to be close to the properties of the contin-
uous system. Considering the large D limit, Keener (1987) showed that the
speed of the wave is given by the following equation:

c = c0(D − D∗)1/2 (2.73)

where coefficient c0 is the same as in the equation for the wave speed in the
corresponding space-continuous system and D∗ is a certain constant. This
result has a clear biological meaning: environment fragmentation always leads
to lower rates of species invasion even in the case when each habitat is equally
favorable for population functioning and the inter-habitat coupling is strong.
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A 
B 

FIGURE 2.5: A sketch of an invasive population spreading through a two-
dimensional array of coupled discrete habitats. Here white spots and black
spots show “good” and “bad” habitats, respectively. Invasive species can
spread from site A to site B only in case there is a chain of “good” habitats
connecting A and B.

The above considerations were concerned with the 1-D case. In real ecosys-
tems, the spread of invasive species more often takes place in two spatial di-
mensions. Assuming that the invasion goes on in a fragmented environment,
the continuous space can be reduced to an ensemble of sites or habitats cou-
pled through species migration; see Fig. 2.5. Although this system does not
include space explicitly, some features of the sites’ relative position and/or
the properties of the “borders” separating them can be taken into account
by means of inclusion/exclusion of corresponding inter-site links. As a re-
sult, contrary to 1-D case, the configuration of the system may become very
complicated.

It hardly makes sense to talk about traveling waves in such a system, espe-
cially when the system has an irregular structure. Apparently, the patterns
of species spread in a 2-D space-discrete system are much more complicated.
It seems, however, that each event of the local invasion, i.e., from an i-th site
to the neighboring site(s), should follow the scenario qualitatively similar to
that considered above.

Let us consider the case when all the habitats are identical in their “quality,”
i.e., the population dynamics in each of them is described by the same function
F (U), and the intensity of diffusive coupling is the same for all pairs, Dij = D
for any i, j = 1, . . . , N . Consider the situation when the invasive species
has already occupied the i-th site but its neighbors remain virtually empty.
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Migration of species is going from site i simultaneously to all its neighbors
1, 2, . . . , ni; thus, the corresponding population flux is split to ni equal parts
so that instead of Eq. (2.61), we now have

Jmax =
1
ni

DK . (2.74)

Taking into account (2.62), an approximate condition that the invasive
species is blocked at the i-th site with ni neighbors is as follows:

1
ni

DK + min F (U) < 0 . (2.75)

Condition (2.75) can be readily generalized to the case when not all of the
neighboring sites are empty. Let mi be the number of the i-th site neighbors
that are invaded as well. Then the number of sites actually receiving the
population flux from the i-th site is (ni −mi) and, instead of (2.75), we arrive
at

1
ni − mi

DK + min F (U) < 0 . (2.76)

Note that in the case that the empty sites around the i-th habitat are not
connected to any other invaded site, inequality (2.75) provides a sufficient
condition of invasion blocking.

Another ecologically relevant problem arises in the case when the habitats
are not of equal “quality.” In practice, some of them are favorable for popula-
tion functioning, and thus can be invaded, while others are unfavorable. We
assume that unfavorable habitats are unfavorable enough so that they cannot
be invaded and remain empty; see Fig. 2.5. Thus, the invasive species can
spread through the favorite sites but cannot spread through the unfavorable
ones. A question of ecological importance is for what configuration(s) of the
system the alien species is blocked at some point and thus will not go through
the system from the site(s) of its original introduction. For a system with a
large number of sites when a statistical description is justified, this question
can be also re-formulated as for what concentration p of the “bad” sites the
alien species is going to be blocked and will not invade all favorable habitats.

Apparently, this problem is formally similar to the percolation problem and
thus some methods developed in the percolation theory can be applied, e.g.,
see Stauffer and Aharony (1992). It appears that, under some rather general
assumption, there exists a critical value of the bad sites’ concentration pc so
that for p < pc the alien species invades the whole domain while for p > pc it
is trapped inside a certain area. The exact value of pc depends on the system
geometry; in the case of a triangulated domain (when each site has exactly
three neighbors), pc = 0.5. Although direct ecological applications of this
approach are somewhat impeded by configuration-dependence of the critical
concentration, it can still be very helpful in understanding invasive species
dynamics under variable environmental conditions; examples can be found in
Petrovskii (1998) and Sander et al. (2002).
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2.4 Stochastic models

It is a widely recognized fact that the dynamics of ecological populations is
affected by numerous factors of a different nature. While some of the factors
or feedbacks can be considered as deterministic, such as predator population
response to prey density or algae response to sunlight intensity, others are
more likely to be stochastic, e.g., those related to fluctuations in the weather
conditions. Relative importance of deterministic and stochastic factors for
population dynamics is often not clear and the issue as a whole has been a
subject of intense discussions.

An observation that makes this issue even more controversial is that some-
times mathematical models based on deterministic and stochastic approaches
lead to very similar results; one example can be found in recent works by
Kawasaki et al. (1997) and Mimura et al. (2000). Moreover, in many cases
the models based on deterministic equations are successfully used to describe
the processes of a clearly stochastic nature; a classical example is given by the
diffusion equation. Although application of the diffusion equation is some-
what restricted by the underlying assumption that the density of diffusing
particles/individuals should be sufficiently high (in order to keep fluctuations
small), it was shown by Skellam (1951) that a random motion of a single in-
dividual can be also described by the diffusion equation as soon as we treat
its solution as the probability distribution function to locate the individual
around a given position in space.

Nevertheless, for the level of “intermediate complexity,” i.e., when there is
more than one individual but the population density is still low, fluctuations
in population density can be important and thus the diffusion approximation
may be not good enough. One rigorous theoretical approach applicable to
this case is based on multi-particle probability distribution functions and the
master equation. There is extensive literature concerned with this issue, e.g.,
see Horsthemke and Lefever (1984), Allen (2003) and references therein; for
the sake of brevity we do not go into details of this approach here.

For the situations when the probabilistic nature of population dynamics is
important, there is also a more straightforward modeling approach based on
cellular automata. According to this approach, the continuous space is mim-
icked by a space-discrete ensemble of sites, or “cells.” The cells are numbered
and each cell has an associated variable or variables. Let the state of the
i-th cell be described by ai(t) which may have different biological meaning
depending on the system being modelled and the purposes of modeling. For
instance, it can be the number of the individuals of a given species occupying
the site; alternatively, in case one site cannot be occupied by more than one
individual, it can describe the state of the individual, e.g., its age. Starting
from an initial condition, ai(0) = ai0, i = 1, . . . , N where N is the total
number of cells in the system, the state of the cells throughout the system is
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then updated simultaneously at discrete moments t1, t2, . . . according certain
prescribed rules. Applications of this approach to real-world ecological prob-
lems can be found in Higgins et al. (1996), Higgins and Richardson (1996)
and Cannas et al. (2003).

As an example, let us consider in some more details how the cellular au-
tomata model is applied to study an invasion of alien plant species. In this
case, it is reasonable to assume that a given site or cell cannot be occupied by
more than one individual (which apparently corresponds to the assumption
that the size of the sites is small enough). The state variable ai can then
conveniently be treated as the age of the individual in the i-th cell; ai = 0 in
case the cell is empty. The interval ∆t = tk+1−tk between the two consequent
moments when the cell variables are updated corresponds to the minimum re-
productive interval in the species’ life history, e.g., ∆t = 1 year. An occupied
cell is updated according to the following rule:

ai(tk+1) = ai(tk) + 1 with probability q , (2.77)
ai(tk+1) = 0 with probability 1 − q (2.78)

where q can be referred to as the annual survival probability and the value of
q is chosen based on biological reasons.

A site i that is empty at the moment tk−1 will be colonized at tk with
a certain colonization probability so that ai(tk) = 1 with probability pi(tk)
provided that ai(tk−1) = 0. Here, in case of a plant invasion, the colonization
probability pi(tk) depends on the number of seeds Si received by the site i at
the time tk. To calculate the number of seeds Si, one should count the seeds
received by the i-th cell from the rest of the cells in the system. Assuming
that speed of dispersion is spatially isotropic, the distribution generated by a
single individual is described by the density distribution function f(r) where
r =

√
x2 + y2 is the distance from a parent plant. The fraction of seeds Gij

received by the cell i coming from the individual located in the cell j is given
by

Gij ≈ Ωif(rij) (2.79)

where Ωi is the area of the i-th site and rij is the distance from the center of
cell i to the center of cell j, so that

Si =
∑
j �=i

Gij ≈ Ωi

⎛
⎝∑

j �=i

f(rij)

⎞
⎠ (2.80)

where the sum runs over all non-empty cells in the system.
Eqs. (2.77–2.80) are then used in computer simulations in order to study

invasion patterns subject to parameter values.
The above approach allows for the cases where the origin of stochasticity is

in population fluctuations that may be caused, for instance, by low population
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density. Alternatively, stochasticity in population dynamics can appear as a
result of environmental fluctuations or external forcing when certain parame-
ters, e.g., population growth rate and/or mortality, vary in space and time in
a stochastic manner. Such variation can be regarded as a “noise” and, after
making necessary assumptions about the noise properties, can be incorporated
into the model straightforwardly, cf. Steele and Henderson (1992b).

For instance, assuming that the species mortality is affected by white multi-
plicative noise, for a rather general model of population dynamics we obtain:

∂ui(r, t)
∂t

= ∇ (Di∇ui) + fi (u1, . . . , un) − µiuiξi(r, t), (2.81)

i = 1, . . . , n

where µi is the average mortality rate of the i-th species and n is the number
of species in the model. Here ξi(r, t) is a spatiotemporal white Gaussian noise,
i.e., a random Gaussian field with zero mean and delta correlation:

〈ξi(r, t)〉 = 0, 〈ξi(r1, t1) ξi(r2, t2)〉 = δ(r1 − r2) δ(t1 − t2), (2.82)
i = 1, . . . , n .

The model (2.81–2.82) has been used to study the interplay between deter-
ministic and stochastic factors in population dynamics. This interplay appears
to be highly nontrivial. It was recently shown by Malchow et al. (2002) that
there exists a critical level of noise in this system so that the system dynamics
is more driven by deterministic mechanisms when noise intensity is small but
becomes apparently stochastic for stronger noise, the change between different
types of dynamics taking place in a narrow transition region. Even in the su-
percritical case, when noise can change the system’s spatiotemporal dynamics
significantly, it was shown that intrinsic spatial scales of the system are still
controlled by deterministic mechanisms (Malchow et al., 2004).

The above results make it possible to distinguish between the cases when the
rate of spread of an invasive species is likely to be affected by environmental
noise and when the impact of stochastic factors is unlikely to be significant.
In the case that the noise intensity is not very high, the species invasion can
be expected to follow the pattern typical for deterministic systems, i.e., it
spreads over space through propagation of population front. The impact of
stochasticity is the more substantial the lower is the population density. The
population density of alien species is the lowest at the leading edge of the front.
In the absence of the Allee effect, the speed of the front is controlled by the
population dynamics at the leading edge (cf. Section 7.1), i.e., exactly where
stochasticity is expected to be important and thus the speed is likely to be
modified by the impact of noise. On the contrary, in the case when population
growth is damped by the Allee effect, the speed of invasion is determined by
the population dynamics behind the front, i.e., for intermediate and large
values of the population density, and thus it is unlikely to be affected by
stochastic factors.
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2.5 Concluding remarks

In this chapter, we have made a brief excursion into mathematical ap-
proaches and methods that are often used for modeling biological invasions.
By no means is our review exhaustive or complete. Complexity of ecosystem
dynamics together with progress in applied mathematics and computer tech-
nologies have brought to life a great variety of mathematical tools that are
used in contemporary mathematical ecology. Since this book is primarily con-
cerned with exact solutions of relevant models (which in most cases are based
on partial differential equations), we could hardly do more than to just outline
a few typical approaches in an attempt to provide some basic ideas how dif-
ferent manifestations of ecosystem complexity, e.g., continuity/discreteness or
determinism/stochasticity, can be possibly mimicked by mathematical mod-
els. A somewhat wider view on modeling biological invasion can be obtained
from Petrovskii and Malchow (2005).

It should be mentioned that, although the large number of available math-
ematical tools is certainly a positive factor enhancing theoretical studies, a
question may arise about consistency of different approaches. It often happens
that the mathematical model of given ecological phenomenon is chosen based
not on the specifics of the problem but more on personal preference or per-
sonal experience of the researcher(s) doing the research. In general, however,
this situation should not be necessarily regarded as negative: indeed, what
bad can be in people’s intention to use their qualification and experience in
order to accomplish the study more effectively? Different approaches often
lead to qualitatively similar results – as far as they are formulated and/or used
properly. For instance, it may seem at first glance that the space-continuous
models considered in Section 2.1 are not capable to catch the phenomenon
of wave blocking due to environment fragmentation described by the space-
discrete models, cf. equations (2.22) and (2.70–2.71), also (2.20) and (2.73).
This discrepancy, however, can be resolved immediately in case a sort of spa-
tial heterogeneity is incorporated into the diffusion-reaction models through
explicit space-dependence of corresponding parameters. The modified models
then exhibit properties qualitatively similar to those described by the space-
discrete approach; in particular, wave blocking and wave propagation slow-
down have been observed (Shigesada et al., 1986; Barenblatt et al., 1995;
Petrovskii, 1997, 1998; Kinezaki et al., 2003).

Similar arguments apply to the relation between the (advection-)diffusion-
reaction models and integral-difference models. Although the latter certainly
provides a more general description of species dispersal, their power seems
to be exaggerated. In particular, accelerating population waves of invasive
species can be described as well by diffusion-reaction models in case the
scale-dependence of the diffusion coefficient is taken into account (Petrovskii,
1999b). Such scale-dependence was shown to be a common property of the



Models of biological invasion 43

turbulence-driven dispersal (Okubo, 1980), no matter whether the species is
water-borne or air-borne.

The situation is somewhat more complicated when it concerns the duality
of ecosystem dynamics stemming from the interplay between deterministic
and stochastic factors. Although this problem is largely open, it seems that a
lot of confusion come from a simple misunderstanding of the origin of the “de-
terministic” models. Ecologists are sometimes too much impressed by seeing
irregular fluctuations in ecological data. Indeed, ecosystem dynamics is in-
trinsically stochastic; however, it is very well known that stochastic processes
are described by deterministic equations which are either integral equations
or, under certain additional assumptions, partial differential equations (Kol-
mogorov, 1931; also see Feller, 1971). Thus, it is, in fact, incorrect to treat the
models based on diffusion-reaction equations as “purely deterministic.” They
provide a mean-field description of stochastic processes; what they actually
do not take into account is fluctuations in population density. (It should be
mentioned that the magnitude of stochastic fluctuations can still be described
by a deterministic “fluctuation-dissipation relation,” e.g., see Haken (1983).)
That brings forward a more general issue about the limits of predictability in
ecosystem dynamics. It is a basic principle that it is impossible to predict the
exact time and magnitude of a particular stochastic fluctuation (as well as it
is impossible to predict the exact position of a quantum particle) and the idea
to reproduce every particular hump in given data by means of simulations is
weird. From this standpoint, the deterministic models provide us with nearly
as much predictive power as we can possibly have.

It should also be mentioned that deterministic models are not exhausted by
the advection-diffusion-reaction equations and integral-difference equations.
Diffusion approximation is essentially based on the assumption of individual’s
random walk; in case this assumption is relaxed, another type of PDE-based
model may appear. In particular, Holmes (1993) showed that, in the case
of a correlated random walk, population dynamics is described by the so-
called telegraph equations that predict much higher invasion rates compared
to diffusion-reaction models.

Besides the model capacity to describe a given ecological phenomenon, an-
other important feature is its solvability. Accounting for the fact that popula-
tion dynamics is usually nonlinear, a great majority of mathematical models
can only be used by means of computer simulations because existing analytical
approaches are often inadequate or insufficient. Since numerical study implies
particular parameter values, lack of analytical methods and relevant analyti-
cal solutions decrease generality of results and reduce their reliability. Ideally,
a theoretical study should combine numerical and analytical approaches, e.g.,
to be based on a mathematical model that can be solved analytically for a
certain special case. It has so happened that most of the analytical solutions
have been obtained for diffusion-reaction models. Those of them that are
likely to have application to modeling biological invasion will be revisited in
the next chapters.





Chapter 3

Basic methods and relevant
examples

In this chapter, we give a review of several methods and approaches often
used to construct exact solutions of nonlinear partial differential equations, in
particular, diffusion-reaction equations. Since a general theory is missing in
most cases, and its development certainly lies beyond the scope of this book,
it is more instructive to revisit them by means of considering how they can be
applied to particular cases rather than by giving a formal description. Also,
as it fully complies with the purposes of this book, we focus on the properties
of the obtained exact solutions. A question of particular interest is how the
speed of the traveling fronts depends on the parameter values.

The first of the revisited approaches, see Sections 3.1 and 3.2, is based on the
idea of Hopf (1950) that a successful change of variables can linearize the given
nonlinear equation. This method, although powerful in some cases, cf. “C-
integrable equations” (Calogero and Xioda, 1991), essentially depends on the
choice of the substitution form. We will consider a certain generalization to
the classical Cole–Hopf transformation and show how it works when applied
to diffusion-reaction equations.

Section 3.3 deals with the approach based on a direct linearization of the
nonlinearities contained in the equation(s) under study. In the case of diffu-
sion-reaction models, the source of nonlinearity is usually found in the density-
dependence of the population growth rate. The direct linearization method
assumes that the growth function can be approximated by a few straight lines
so that the original equation breaks into a system of linear PDEs.

Finally, we examine how nonlinear partial differential equations can possibly
be solved without linearization; see Sections 3.4 and 3.5. One typical approach
is based on using a relevant ansatz, i.e., a prescribed solution structure. This
method requires preliminary information regarding the form of the ansatz.
That can often be found in intrinsic symmetries of given equations. We will
consider a few instructive examples of this methods application and try to
give some ideas of how the solution structure can be foreseen.

45
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3.1 The Cole–Hopf transformation and the Burgers equa-
tion as a paradigm

The Burgers equation provides a simple model combining linear diffusion
with nonlinear transport:

ut − 2Auux = Duxx (3.1)

where u = u(x, t) is the state variable, x is the position in space, t is time,
A and D are parameters and the coefficient (−2) on the left-hand side is
introduced for convenience. In order to avoid ambiguousness, we assume that
A > 0; clearly, the case A < 0 corresponds to the change in the direction of
axis x.

Equation (3.1) is one of the most famous equations in nonlinear sciences.
Initially proposed as a model of turbulent flow (Burgers, 1948), it was later
applied to many other processes of different origin as well. In particular, it
has recently been applied to describe species dispersal in population dynam-
ics (Berezovskaya and Khlebopros, 1996; Berezovskaya and Karev, 1999) with
the right-hand side describing, as usual, the individual random motion and
the second term on the left-hand side accounting for density-dependent mi-
grations; see also Section 4.1. It should be mentioned, however, that since
Eq. (3.1) does not contain the “reaction” terms accounting for the local pro-
cesses such as birth, death, etc., its possible ecological applications are limited
to situations when population multiplication can be neglected.

There is extensive literature concerned with the Burgers equation and its
solutions; probably the most exhaustive source is Sachdev (1987). In this
section, we make only a brief review of its properties to the extent that makes
it useful for our subsequent analysis.

For studying general mathematical properties of Eq. (3.1), the coefficients
A and D are not important. By means of introducing dimensionless variables,

ũ =
u

U0
, t̃ =

(
A2U2

0

D

)
t, x̃ =

(
AU0

D

)
x,

where U0 is a certain characteristic value to be taken, for instance, from the
initial conditions u(x, 0) = u0(x), from Eq. (3.4) we arrive at

ut − 2uux = uxx (3.2)

(omitting tildes for notation simplicity).
In the early 50’s of the last century, Hopf (1950) and Cole (1951) indepen-

dently showed that the Burgers equation is equivalent to the linear diffusion
equation for a new variable U(x, t),

Ut = Uxx , (3.3)
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by means of the following transformation:

u(x, t) =
Ux

U
(3.4)

so that, for any solution U of equation (3.3), u given by (3.4) is a solution of
(3.2).

Indeed, substituting (3.4) into (3.2), we obtain
(

Uxt

U
− UxUt

U2

)
− 2

Ux

U

(
Uxx

U
− U2

x

U2

)
(3.5)

=
(

Uxxx

U
− 3

UxxUx

U2
+ 2

U3
x

U3

)

so that, after simple algebra, we arrive at

(Ut − Uxx)x

U
− Ux(Ut − Uxx)

U2
= 0 (3.6)

which, assuming that U > 0 for all x and t, is equivalent to (3.3).
Clearly, the reverse transformation is also possible:

U(x, t) = exp
( ∫

u(x, t)dx

)
. (3.7)

Relations (3.4) and (3.7) make it possible to write the general solution of
nonlinear equation (3.2) explicitly. Let us consider the initial-value problem
for Eq. (3.2) in an infinite domain, −∞ < x < ∞, with the initial condi-
tions being described by a certain function u0(x). By virtue of (3.7), the
corresponding initial conditions for Eq. (3.3) are

U(x, 0) = Φ(x) = exp
(∫ x

−∞
u0(ζ)dζ

)
. (3.8)

The solution of the diffusion equation with the initial condition (3.8) is then
given as

U(x, t) =
1√
4πt

∫ ∞

−∞
exp

(
− (x − y)2

4t

)
Φ(y)dy , (3.9)

cf. Appendix. Eqs. (3.4) and (3.9) provide the analytical solution of (3.2).
While the general solution given by (3.4), (3.8) and (3.9) describes the

evolution of the initial conditions, in the large-time asymptotics the Burgers
equation has solutions corresponding to traveling wave fronts. This is one of
its properties that make it relevant (to a certain extent, cf. the comments at
the beginning of this section) to biological invasion modeling.
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The existence of the traveling fronts can be shown straightforwardly. Let
us consider the following conditions at infinity:

u(x → −∞, t) = u− , u(x → ∞, t) = u+ . (3.10)

We look for a traveling wave solution of the Burgers equation, i.e., u(x, t) =
v(ξ) where ξ = x− ct, c being the speed of the wave. Eq. (3.2) takes the form

d2v

dξ2
+ 2v

dv

dξ
+ c

dv

dξ
= 0 . (3.11)

Let dv/dξ = φ(v) where φ(v) is an unknown function to be determined.
Since

d2v

dξ2
=

d

dξ
φ(v) =

dφ

dv

dv

dξ
= φ

dφ

dv
, (3.12)

from (3.11), we obtain:

dφ

dv
+ 2v + c = 0 (3.13)

(assuming that φ > 0) so that

φ(v) = − v2 − cv + C0 (3.14)

where C0 is the integration constant.
Now we can make use of the conditions at infinity. Evidently, (3.10) imply

that

dv(ξ → ±∞)
dξ

= 0 (3.15)

which means that φ(u−) = φ(u+) = 0. Thus, u− and u+ are the roots of the
square polynomial (3.14) so that

φ(v) = − (v − u−)(v − u+) . (3.16)

From comparison between (3.14) and (3.16), we obtain that C0 = −u−u+.
Moreover, we also obtain the equation for the wave speed:

c = − (u− + u+) (3.17)

or, in the original dimensional variables,

c = − (u− + u+) AU0 . (3.18)

Recalling that φ = dv/dξ, Eq. (3.16) is readily solved:

log
∣∣∣∣v − u+

v − u−

∣∣∣∣ = (u− − u+)(ξ − ξ0) , (3.19)
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FIGURE 3.1: Propagation of traveling population wave as given by the
exact solution (3.21) of the Burgers equation. Curves 1 to 4 show the wave
profiles at t = 0, t = 20, t = 40 and t = 60, respectively.

and finally we arrive at the following traveling wave solution:

u(x, t) = v(ξ) =
u+ + u− exp[(u− − u+)(ξ − ξ0)]

1 + exp[(u− − u+)(ξ − ξ0)]
, (3.20)

where the integration constant ξ0 quantifies the front position at t = 0.
Keeping in mind possible application of (3.20) to biological invasions, we

consider u− = 0, u+ = 1. In this case, (3.20) takes a somewhat simpler form:

u(x, t) = v(ξ) =
(
1 + exp−(ξ−ξ0)

)−1

. (3.21)

The corresponding value of the wave speed is c = −1.
Solution (3.21) is shown in Fig. 3.1. Here the direction of the front prop-

agation (shown by the arrow) is determined by the sign of coefficient A in
the original equation (3.1); indeed, the factor −2Au corresponds to the wave
speed A0 in Eq. (1.21) describing propagation of the simple wave. This can
also be seen from the formal derivation of the solution (3.20). Note that the
conditions at infinity affect the speed value but not its sign. This kind of
dependence of the wave speed on the problem parameters is essentially dif-
ferent from that observed for diffusion-reaction equations, cf. Section 2.1. In
the latter case, it is the direction of the wave propagation that is determined
by the conditions at infinity while its value is determined by the equation
coefficients, e.g., see Eq. (2.19). An interesting question thus arises about a
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possible outcome of the interplay between these two different mechanisms of
wave propagation. This problem will be considered in Section 4.1.

3.1.1 ∗ Exact solutions for a forced Burgers equation

The Burgers equation with a nontrivial right-hand side, that is

ut − 2uux − uxx = F (3.22)

where F is an external “force,” is usually called the forced Burgers equation.
In case Eq. (3.22) is applied to population dynamics, F is likely to depend
on u in a manner consistent with the features of the local population growth,
cf. Section 1.2, and may also depend on x and t as a result of, for instance,
environmental heterogeneity and transient weather conditions. The general
case F = F (x, t, u) is, however, very difficult to treat analytically and it is
unlikely that any solution can be obtained a closed form. Instead, we will
consider separately two cases, i.e., F = F (u) and F = F (x, t). In this section,
we will focus on the latter case; the case F = F (u) will be studied in detail in
Section 4.1. It must be mentioned that the biological meaning of Eq. (3.22)
with density-independent forcing is somewhat obscure and the contents of
this section should be regarded more as an example of linearization technique
rather than a model of immediate biological relevance.

It is readily seen that the Cole–Hopf substitution (3.4) transforms the forced
Burgers equation into a linear equation for the new variable U(x, t):

Ut − Uxx = U

∫ x

x0

F (ζ, t)dζ . (3.23)

In spite of the fact that Eq. (3.23) is linear, constructing its analytical solution
for an arbitrary function F (x, t) is a difficult problem. A general algorithm
for constructing a solution in the form of a series under some nonrestrictive
assumptions regarding F (x, t) was earlier developed by O.A.Oleinik with col-
laborators. However, the expressions appearing as a result of their method are
so cumbersome that they are of little practical use because it is hardly possi-
ble to investigate how the solution properties change with parameter values.
For that reason, instead of studying Eq. (3.23), we apply another approach
(Petrovskii, 1999a).

Stationary forcing. We begin with the case when the “force” F is sta-
tionary, i.e., does not depend on time. Instead of the classical substitution
(3.4), we consider its modification:

u =
Ux

U
+ k(x) , (3.24)

where k(x) is a certain function to be defined.
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Substituting (3.24) into (3.22), after some standard transformations we ob-
tain: (

Ut − 2kUx − Uxx

U

)
x

=
(

dk

dx
+ k2 + F (x) − C(t)

)
x

where C(t) is an arbitrary function of time (minus is chosen for convenience).
Further on, integrating over x we obtain:

Ut − 2kUx − Uxx =
(

dk

dx
+ k2 + ψ(x) − C(t)

)
U

where ψ is the antiderivative of F , i.e., dψ/dx = F (x).
Thus, if k(x) is a solution of the Riccati equation

dk

dx
+ k2 = − ψ(x) + C , (3.25)

then U(x, t) is a solution of the linear advection-diffusion equation:

Ut − 2kUx = Uxx . (3.26)

Here Eq. (3.25) may contain time only as a parameter, i.e., as the argument
of function C. Let us assume that C(t) = const. Then Eq. (3.25) coincides
with the forced Burgers equation integrated over space in the stationary case
ut ≡ 0. Thus, k is a stationary solution of (3.22) and the meaning of substi-
tution (3.24) becomes clear: Eq. (3.26) for the new state variable describes a
dynamical process going “on top” of the stationary background density k(x).

To solve the Riccati equation with the right-hand side of an arbitrary form
is not an easy problem and it does not always appear possible to construct
a solution in a closed form. Still, in some cases system (3.25–3.26) turns
out to be more convenient for obtaining biologically/physically meaningful
exact solutions of the forced Burgers equation than the approach based on
Eq. (3.23).

Let us try to look for a traveling wave solution of Eq. (3.26), i.e., assuming
U(x, t) = v(ξ) where ξ = x − y(t). Having substituted it into (3.26), we
obtain:

−
(

dy

dt
+ 2k(x)

)
dv

dξ
=

d2v

dξ2
. (3.27)

The transition to traveling wave coordinates is mathematically correct only
in the case that Eq. (3.27) contains x and t through the new variable ξ. It
immediately implies that dy/dt + 2k(x) = φ(ξ) where φ is a certain function.
Since x and ξ are related through a linear equation, see the definition of ξ,
this is only possible when k and φ are linear functions, i.e., k(x) = Bx + B1

and φ(ξ) = βξ + γ where B, B1, β, γ are parameters. For the linear k(x),
Eq. (3.25) is reduced to

B + (Bx + B1)2 = − ψ(x) + C
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and, differentiating it with respect to x, we obtain that F (x) = −2B(Bx +
B1). Note that we can let B1 = 0 without loss of generality by means of an
appropriate choice of coordinates, x → x − B1/B. Thus, the forced Burgers
equation has a traveling wave solution only if the forcing is linear with respect
to x, i.e., F (x) = −2B2x. Correspondingly, C = B and k(x) = Bx.

From Eq. (3.27), we obtain:

dy

dt
+ 2Bx = βξ + γ = β(x − y(t)) + γ

which can be written as

dy

dt
+ βy − γ = (β − 2B)x .

The last equation only makes sense in case both of its sides are equal to zero.
Therefore, β = 2B and

dy

dt
+ βy − γ = 0 . (3.28)

Under the natural assumption that ξ = x for t = 0, we obtain that y(0) = 0
and thus the solution of Eq. (3.28) is

y(t) = δ
(
1 − e−2Bt

)
where δ = γ/(2B).

Taking into account all that we know now about y and k, from (3.27) we
obtain:

− (2Bξ + γ)
dv

dξ
=

d2v

dξ2
.

Introducing p(ξ) = dv/dξ, the above equation is reduced to

dp

dξ
= − (2Bξ + γ)p

which is readily solved to yield the expression for p:

p ≡ dv

dξ
= const · exp

(−Bξ2 − γξ
)
. (3.29)

The case B < 0 is not biologically meaningful since in this case p(ξ) would
increase unboundedly for |x| → ∞. Therefore, we let B > 0. Then the
solution of Eq. (3.29) is:

v(ξ) = a + b
(
1 + erf

[
B1/2(ξ + δ)

])

where a and b are parameters determined by the initial conditions and erf(z)
is the error function.
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Coming back to initial variables x, t and U , we obtain:

U(x, t) = a + b
(
1 + erf

[
B1/2

(
x + δe−2Bt

)])
.

Finally, taking into account (3.24) we arrive at the following exact solution
of the Burgers equation with linear forcing:

u(x, t) = Bx +
exp

[
−B

(
x + δe−2Bt

)2
]

µ + [π/(4B)]1/2 erf
[
B1/2 (x + δe−2Bt)

] (3.30)

where µ = [π/(4B)]1/2(a + b)/b. Obviously, for |µ| > [π/(4B)]1/2 function
u(x, t) given by Eq. (3.30) is continuous for any x and t. It is readily seen
that solution (3.30) describes propagation of a dome-shaped asymmetric wave
along the background stationary profile k(x) = Bx. Here δ and µ are param-
eters determined by the initial conditions so that δ describes the position of
the wave at t = 0 and µ describes its amplitude.

Note that, due to the linearity of Eq. (3.26), a linear combination of its
solutions is also a solution. Therefore, a more general N -wave solution of the
Burgers equation with linear forcing has the following form:

u(x, t) = Bx (3.31)

+

∑N
i=1 εi exp

[
−B

(
x + δie

−2Bt
)2

]

µ + [π/(4B)]1/2 ∑N
i=1 εi erf

[
B1/2 (x + δie−2Bt)

] .

If the constants δi differ strongly enough, the solution (3.31) describes a set
of N individual waves which gradually approach the origin. An example is
shown in Fig. 3.2 where interaction and merging of three traveling humps
results, in the large-time limit, in formation of a stationary profile situated
around x = 0. Thus, Eq. (3.22) with stationary linear forcing describes wave
blocking due to the effect of forcing. In the case when constants δi are of the
same order, the individual waves are not distinguishable and solution (3.31)
describes the evolution of initial profile that may have a very complicated
form.

Transient forcing. In the case considered above, the right-hand side of
the forced Burgers equation depended only on coordinate x. In a more general
case, the forcing is not stationary and F = F (x, t). It is straightforward to
see that in this case transformation (3.24) also leads to linear equation (3.26)
where k now depends on x and t. However, the coupling equation is no longer
a Riccati equation but coincides with the original equation (3.22). Thus, in
the case of transient forcing, substitution (3.24) describes an “autotransfor-
mation” of the solutions so that if k(x, t) is a solution of the forced Burgers
equation with an arbitrary F then

u(x, t) =
Ux

U
+ k(x, t) (3.32)
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FIGURE 3.2: Evolution of a three-hump disturbance of the stationary
profile k(x) = Bx as given by the exact solution (3.31) of the forced Burgers
equation. Parameters are: δ1 = 40, δ2 = 25, δ3 = −30, ε1 = 0.000001, ε2 =
0.1, ε3 = 0.899999, B = 0.5 and µ = 1.2532957.

is another solution (corresponding to different initial conditions), provided
that U(x, t) is a solution of Eq. (3.26).

Relation (3.32) can be used to construct exact solutions of the forced Burg-
ers equation when F depends on time. As an example, let us consider the
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special case when forcing is decaying with time:

ut − 2uux − uxx = − ax

(t + t0)2
(3.33)

where a and t0 are parameters. In order to avoid singularities for t > 0, we
assume that t0 > 0.

It is readily seen that the function

k(x, t) =
bx

t + t0
(3.34)

is a solution of Eq. (3.33) if b+2b2 = a. The solutions of Eq. (3.33) may have
different properties depending on the sign of a and b. Since our goal here
is more to show how the autotransformation (3.32) can be used to generate
exact solutions of the Burgers equation with transient forcing rather than to
investigate it in all details, we restrict our consideration to the case a > 0.

The solution (3.34) by itself is unlikely to be of much interest because its
behavior is too simple. However, it can be used to construct other solutions
with more interesting properties. By virtue of (3.32), the function u = k +
(Ux/U) is also a solution in case U(x, t) is a solution of the following equation:

Ut − 2bx

t + t0
Ux = Uxx . (3.35)

The combination of x and t in which they appear in Eq. (3.35) gives us a
hint that it may be possible to look for a self-similar solution, i.e., in the form
u(x, t) = v(θ) where θ = xφ(t) and functions v and φ are to be determined.
Having substituted it into Eq. (3.35) we obtain:

(
xφ−2 dφ

dt
− 2bx

(t + t0)φ

)
dv

dθ
=

d2v

dθ2
.

The transition to self-similar variables is mathematically correct only in
case the expression in parentheses is a function of θ. In order to satisfy this
condition, we require that

φ−2 dφ

dt
= λφ ,

1
(t + t0)φ

= η−2φ (3.36)

where λ and η are certain constants.
From Eqs. (3.36), we immediately arrive at φ(t) = η(t + t0)−1/2, λ =

−0.5η−2. Letting θ(x, 0) = x, we obtain η = t
1/2
0 . Eq. (3.36) then takes the

following form:

− 2α2 θ
dv

dθ
=

d2v

dθ2
,
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where α2 = (b + 0.25)/t0. The last equation is solved easily to yield the
following solution:

v(θ) = A1erf(αθ) + A2 (3.37)

where A1 and A2 are parameters determined by the initial conditions. Taking
into account (3.32), we arrive at the following exact solution of Eq. (3.33):

u(x, t) =
bx

t + t0
+

2α√
π

(
t0

t + t0

)1/2 exp(−α2θ2)
κ + erf(αθ)

(3.38)

where κ = (A2/A1) and θ = x[t0/(t + t0)]1/2.
For |κ| > 1, the function given by (3.38) is continuous at all x and t > 0.

Exact solution (3.38) describes self-similar diffusion and decay of a dome-
shaped initial disturbance of the linear density distribution. Thus, the simple
“tentative” solution (3.34) was used, by means of autotransformation (3.32),
to generate a more interesting solution (3.38).

3.2 Further application of the Cole–Hopf transformation

In this section, we will consider a certain generalization of the linearization
technique provided by the Cole–Hopf transformation (3.4). The focus of our
consideration will be on the single-species model of population dynamics al-
lowing for the strong Allee effect, the growth rate being described by a cubic
polynomial; see Eq. (1.16).

After standard introduction of dimensionless variables, the equation under
study takes the following form:

ut = uxx − βu + (1 + β)u2 − u3 . (3.39)

It can be shown that Eq. (3.39) has an exact solution in the following form:

u(x, t) =
β exp(λ1ξ1) + exp(λ2ξ2)

1 + exp(λ1ξ1) + exp(λ2ξ2)
(3.40)

where ξi = x − nit + ξ0i, ni =
√

2(1 + β) − 3λi, i = 1, 2,

λ1 =
β√
2

, λ2 =
1√
2

, (3.41)

and ξ01, ξ02 are arbitrary constants.
There are different ways to arrive at (3.40). The simplest way to check that

it gives a solution to Eq. (3.39) is, of course, through straightforward substi-
tution. However, that gives no information regarding how the solution arises.
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Kawahara and Tanaka (1983) obtained (3.40) by using a formal perturbation
scheme. Later, it was shown by Danilov and Subochev (1991) that (3.40) can
be obtained by expanding the solution into exponential series.

In this section, however, we consider another approach which is somewhat
less laborious and can be applied to some other nonlinear models as well.
In particular, in Chapters 4 and 6 we apply the same approach to study
the interplay between diffusion and advection and the impact of inter-species
interactions.

Let us introduce a new variable w(x, t) defined by the following equation:

u(x, t) = µ
wx

w + σ
(3.42)

where µ �= 0 is a coefficient (the case µ = 0 would correspond to the trivial
solution u(x, t) ≡ 0) and σ is a constant. In so far we are, for biological
reasons, primarily interested in bounded solutions of Eq. (3.39), σ is included
into the denominator of (3.42) in order to avoid singularities. If we assume
that the function w is semi-bounded, i.e., there exists a certain w̄ that either
(i) w(x, t) ≤ w̄ or (ii) w(x, t) ≥ w̄ for ∀ x, t, then constant σ can have an
arbitrary value under the constraint σ < −w̄ or σ > −w̄ corresponding to the
cases (i) and (ii), respectively.

Substitution of (3.42) to (3.39) leads to the following equation:
[
(2 − µ2)w3

x

]
( w +σ)−3 (3.43)

+ wx [wt − 3wxx + (1 + β)µwx] (w + σ)−2

+ [wxxx − βwx − wxt] (w + σ)−1 = 0

which, since constant σ is (nearly) arbitrary and different powers of (w + σ)
are linearly independent, is equivalent to the following system:

wxt = wxxx − βwx , (3.44)
wt = 3wxx − (1 + β)µwx , (3.45)

µ = ±
√

2 . (3.46)

Without loss of generality, we choose plus in Eq. (3.46) (minus would cor-
respond to the change x → −x). Taking the partial derivative of Eq. (3.45)
with respect to x in order to eliminate wxt from Eq. (3.44), then from the
system (3.44–3.46) we arrive at

wxxx − 1 + β√
2

wxx +
β

2
wx = 0 , (3.47)

wt = 3wxx −
√

2(1 + β)wx . (3.48)

Therefore, as before with the Burgers equation, the Cole–Hopf transforma-
tion linearizes the diffusion-reaction equation (3.39). However, the transfor-
mation now leads to a system of two linear partial differential equations, not
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to a single one. Consistency of the system implies certain constraints on the
solution structure. As a result, in this case we are not able to obtain the
general solution. Instead, we are going to obtain a special solution describing
formation and propagation of a population front.

The solution of linear equation (3.47) has the following form:

w(x, t) = f0(t) + f1(t)eλ1x + f2(t)eλ2x (3.49)

where λ1,2 are the roots of the square polynomial:

λ2 − 1 + β√
2

λ +
β

2
= 0 (3.50)

and thus λ1,2 are given by (3.41).
To obtain functions f0,1,2, we substitute Eq. (3.49) into (3.48). That leads

to the following result:

f0(t) = C0 , fi(t) = Cie
γit (3.51)

where γi = 3λ2
i − √

2(1 + β)λi, i = 1, 2, and C0,1,2 are arbitrary constants.
Note that the form of w(x, t) defined by Eqs. (3.49–3.51) appears to be in
agreement with our earlier assumption about semi-boundedness of w; thus
our analysis has been consistent.

From (3.42), (3.49) and (3.51), we obtain:

u(x, t) =
√

2 [C1λ1 exp(λ1x + γ1t) + C2λ2 exp(λ2x + γ2t)]
(C0 + σ) + C1 exp(λ1x + γ1t) + C2 exp(λ2x + γ2t)

. (3.52)

Obviously, for u(x, t) to be positive, it is necessary that C0 + σ, C1 and C2

have the same sign, i.e., either C0 + σ > 0, C1,2 > 0 or C0 + σ < 0, C1,2 < 0.
Thus, introducing new constants as ξ0i = (1/λi) ln(Ci/[C0 + σ]), i = 1, 2 and
taking into account that

√
2λ1,2 = u1,2 (where u1 = β and u2 = 1 are the

steady states of the spatially homogeneous system), from Eq. (3.52) we finally
arrive at (3.40):

u(x, t) =
β exp(λ1ξ1) + exp(λ2ξ2)

1 + exp(λ1ξ1) + exp(λ2ξ2)
.

Note that, since u(x, t) must be nonnegative for any x and t, solution (3.40)
is valid only for β ≥ 0.

Clearly, solution (3.40) corresponds to the following conditions at infinity:
u(x → −∞, t) = 0, u(x → ∞, t) = 1. The spatial distribution of the pop-
ulation as given by (3.40) for different times is shown in Fig. 3.3. For t not
large, it describes a “decay” of the steady unstable state u = β through the
interaction of two traveling waves propagating towards each other.

Since λ1 < λ2, it is readily seen that, in the large-time limit (when the
transients die out, cf. curves 4 and 5 in Fig. 3.3) or for suitable values of
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FIGURE 3.3: Evolution of the population density according to the exact
solution (3.40) of Eq. (3.39): curves 1 to 4 for t = 0, t = 50, t = 100 and
t = 150, respectively, curve 5 for t = 750. The dotted lines show the steady
states. Parameters are: β = 0.25, φ1 = 120, φ2 = −100.

φ1, φ2, solution (3.40) reduces to

u(x, t) 	 exp(λ2ξ2)
1 + exp(λ2ξ2)

(3.53)

describing a traveling population front propagating with the speed n2 given
by the following equation:

n2 =
√

2(1 + β) − 3√
2

= − 1√
2
(1 − 2β) . (3.54)

Thus, the direction of the propagation can be either positive or negative:

n2 < 0 for β <
1
2

(the front propagates to the left), (3.55)

n2 > 0 for β >
1
2

(the front propagates to the right). (3.56)

Under condition (3.55) the front propagates to the region where the species
is absent, which corresponds to species invasion, cf. Fig. 3.3; under condition
(3.56) the front propagates to the region where the species is at its carrying
capacity, which corresponds to species retreat. Conditions (3.55–3.56) are in
full agreement with more general mathematical considerations, cf. (2.22–2.23).

In conclusion, we want to mention that, although solution (3.40) formally
corresponds to a specific initial condition (which is immediately obtained from
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(3.40) setting t = 0, cf. curve 1 in Fig. 3.3), it actually arises as a result of
convergence of initial conditions from a wide class; for more details see Ognev
et al. (1995).

3.3 Method of piecewise linear approximation

In the previous sections we saw that the Cole–Hopf transformation can
linearize some nonlinear partial differential equation and thus makes them
analytically solvable. Another approach that leads to exactly solvable models
by means of linearization is based on a heuristic idea that any smooth curve
can be approximated by a broken line. Concerning the single species model
(2.14), the source of nonlinearity is the term F (u) describing the population
growth rate. Having approximated F (u) with a broken line, e.g., see Fig. 3.4,
instead of one nonlinear equation (2.14) we obtain a few linear ones, each
of them describing the dynamics of given population in spatial domain(s)
where the population density lays within the corresponding range. At the
boundaries between the domains, the “local” solutions must match each other
in order to provide a global continuous solution. Although this approach may
seem somewhat naive from the mathematical point of view, in some cases it
produces reasonable results helping to understand the properties of relevant
traveling wave solutions.

Under the piecewise linear approximation, the number of the equations co-
incides with the number of the segments in the broken line. An attempt to use
a many-segment line in order to provide a better approximation of the non-
linear function F (u) normally results in a solution of very complicated form
that can hardly be of any practical use. Also, the amount and tediousness of
calculations increase dramatically. In contrast, as we are going to demonstrate
in this section, a coarse approximation with only a two- or three-segment line
can lead to solutions with biologically reasonable properties.

3.3.1 Exact solution for a population with logistic growth

The first known example of the piecewise linear approximation as applied
to diffusion-reaction equations was given by Jones and Sleeman (1983). Let
us consider the following equation of population dynamics:

ut(x, t) = uxx + F (u) (3.57)

(in appropriately chosen dimensionless variables). We are going to look for a
traveling wave solution of this equation assuming that the population exhibits
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FIGURE 3.4: An example of piecewise linear approximation of the popu-
lation growth rate.

logistic growth. Then, from (3.57) we obtain:

c
du

dξ
+

d2u

dξ2
+ F (u) = 0 where F (u) = u(1 − u) (3.58)

and c is the speed of the wave.
We consider the following approximation for the growth function:

F (u) = u for 0 ≤ u ≤ 1
2

(region A) , (3.59)

F (u) = 1 − u for
1
2
≤ u ≤ 1 (region B) . (3.60)

For convenience, we will refer to the region where u satisfies inequality (3.59)
as region A and we will refer to the region where u satisfies (3.60) as region
B.

The boundary conditions that correspond to traveling fronts should be the
carrying capacity at the one end and zero at the other end. Assuming without
a loss of generality that the invasive species spreads from left to right, we have
u(−∞) = 1 and u(∞) = 0.

In region A, Eq. (3.58) takes the following form:

c
du

dξ
+

d2u

dξ2
+ u = 0 (3.61)

where the eigenvalues are given by the following equation:

λ1,2 =
1
2

(
−c ±

√
c2 − 4

)
. (3.62)
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Correspondingly, in region B we have

c
du

dξ
+

d2u

dξ2
+ 1 − u = 0 (3.63)

with the following equation for the eigenvalues:

µ1,2 =
1
2

(
−c ±

√
c2 + 4

)
. (3.64)

Further analysis depends on whether c = 2 or c > 2. In the case c = 2,
in region A, both eigenvalues are negative and equal to −1. Correspondingly,
the solution has the following form:

u+(ξ) = A1 exp(−ξ) + B1ξ exp(−ξ) . (3.65)

In region B, the solution is:

u−(ξ) = 1 + A2 exp([−1 +
√

2]ξ) + B2 exp([−1 −
√

2]ξ) . (3.66)

Here the four constants A1, A2, B1 and B2 are to be determined. Note
that, due to the conditions at infinity chosen above, region B includes large
negative values of ξ. Taking into account that the solution must be bounded,
we immediately obtain that B2 = 0.

To obtain remaining constants, we take into account that at the boundary
between the regions the solutions u+(ξ) and u−(ξ) and their first derivative
must match each other so that

u+(ξ0) = u−(ξ0) , (3.67)

du+(ξ0)
dξ

=
du−(ξ0)

dξ
(3.68)

where ξ0 is given by

u(ξ0) =
1
2

, (3.69)

cf. Eqs. (3.59–3.60). In a general case, there can be more than one point with
the meaning of ξ0. However, for a diffusion-reaction equation with logistic
growth the monotonousness of the traveling fronts can be proved rigorously
(Zeldovich and Barenblatt, 1959).

Let us also mention that, since the original equation does not include ξ
explicitly, the solution must be invariant to translations. It means that the
value of ξ0 can be chosen arbitrary. For convenience, we let ξ0 = 0. Then,
from (3.67–3.69) we obtain that A1 = 1/2, A2 = −1/2 and B1 = (2 −√

2)/2,
so that the solution is:

u(ξ) =
1
2

exp(−ξ) +
(

1 − 1√
2

)
ξ exp(−ξ) (3.70)
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in region A (ξ > 0), and

u(ξ) = 1 − 1
2

exp([
√

2 − 1]ξ) (3.71)

in region B (ξ < 0).
In the case c > 2, all eigenvalues are different and the solution has the

following general form

u+(ξ) = A1 exp(λ1ξ) + B1 exp(λ2ξ) (3.72)

u−(ξ) = 1 + A2 exp(µ1ξ) + B2 exp(µ2ξ) (3.73)

in regions A and B, respectively. Applying the same procedure as above to find
the constants A1, A2, B1 and B2, after somewhat more laborious calculations
we arrive at the following solution:

u(ξ) =

(√
c2 − 4 + 2c −√

c2 + 4
)

4
√

c2 − 4
exp

(
−1

2
[c −

√
c2 − 4]ξ

)

+

(√
c2 − 4 − 2c +

√
c2 + 4

)
4
√

c2 − 4
exp

(
−1

2
[c +

√
c2 + 4]ξ

)
(3.74)

in region A (ξ > 0), and

u(ξ) = 1 − 1
2

exp
(
−1

2
[c −

√
c2 + 4]ξ

)
(3.75)

in region B (ξ < 0).
Figure 3.5 shows the traveling wave profiles obtained for c = 2 (solid curve

1) and for c = 2.5 (dashed-and-dotted curve 2). It is readily seen that lower
speed corresponds to steeper slope. This is in full agreement with the results
of more general considerations, cf. Murray (1989), Volpert et al. (1994). Let
us note that the case c = 2 is biologically more realistic: the initial conditions
of compact support typical for biological invasions always lead to traveling
waves propagating with the minimum possible speed. However, the fact which
is important for prospective applications is that the width of the transition
region does not differ much between these two cases. In particular, it means
that an exact solution obtained for a nonrealistic value of speed can be used
to approximate the real wave profile. Another example of that kind will be
considered in Section 3.4.1.

3.3.2 Exact solution for a population with a strong Allee
effect

Spatiotemporal dynamics of populations with the Allee effect has been at-
tracting a lot of attention recently. However, the origin of the Allee effect is
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FIGURE 3.5: Exact traveling wave solution of Eq. (3.57) with the growth
rate given by (3.59–3.60) obtained for c = 2 (solid curve 1) and c = 2.5
(dashed-and-dotted curve 2).

still understood rather poorly. Although a number of biological and environ-
mental factors have been identified as its possible source, e.g., see Courchamp
et al. (1999), the mechanistic theories are often lacking and that leaves many
questions open. In particular, it is not clear whether the impact of the Allee
effect exhibits itself for intermediate and large values of the population density
where the effect of intraspecific competition is essential. The answer to this
question affects the choice of the growth rate parameterization and thus, to a
certain extent, the properties of the model. For instance, the usual parame-
terization of the growth rate with a cubic polynomial assumes implicitly that
the impact of the Allee effect and that of intraspecific competition interfere
for intermediate values of population density. In contrast, we can assume that
this is not always true, and that there are two ranges: for small u only the
Allee effect is important and the impact of intraspecific competition can be
neglected, and for large u intraspecific competition is important but the Allee
effect can be neglected. We then assume that the transition zone between the
two ranges is narrow so that the properties of the growth rate experience a
“jump” from one type of density-dependence to the other. That may justify
the piecewise linear approximation (see Fig. 3.6), which makes some relevant
models exactly solvable.

According to the above arguments, let us consider the following approxi-
mation of the growth function:

F (u) = − αu + δθ(u − uA) (3.76)
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FIGURE 3.6: A sketch of piecewise linear approximation of the population
growth rate in case of the strong Allee effect.

where α is the rate of population decay at small population density, uA de-
scribes the position of the transition zone, δ is the magnitude of the “jump”
and θ(u) is the Heaviside function, i.e.,

θ(u) = 0 for u < 0 and θ(u) = 1 for u ≥ 0 . (3.77)

Formally, the single-species model (2.14) with (3.76) depends on four pa-
rameters D, α, δ and uA. However, introducing dimensionless variables

t′ = tα, x′ = x(α/D)1/2, u′ = uα/δ (3.78)

(where δ/α is the population carrying capacity so that F (δ/α) = 0) and
omitting primes for convenience, we arrive at the equation

ut = uxx − u + θ(u − β) (3.79)

which depends on a single parameter β = uAα/δ.
Correspondingly, the traveling front of invasive species arises as a solution

of the following equation:

c
du

dξ
+

d2u

dξ2
− u + θ(u − β) = 0 (3.80)

with the conditions at infinity as u(−∞) = 1 and u(∞) = 0.
Assuming that the wave profile is a monotonous function of ξ, the whole

space is split into two domains, i.e., region A where ξ > ξ0 and u < β, and
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region B where ξ < ξ0 and u > β. The marginal point ξ0 is defined by the
relation u(ξ0) = β.

In region A, from (3.80) we obtain:

d2u

dξ2
+ c

du

dξ
− u = 0 . (3.81)

The eigenvalues are given as

λ± =
1
2

(
−c ±

√
c2 + 4

)
(3.82)

where λ+ > 0 > λ−, and the solution has the following form:

u+(ξ) = A+ exp(λ+ξ) + B+ exp(λ−ξ) . (3.83)

Taking into account boundedness of the solution at infinity, we obtain A+ = 0.
In region B, (3.80) takes the form

d2u

dξ2
+ c

du

dξ
+ 1 − u = 0 . (3.84)

It is straightforward to check that in this case the eigenvalues are given
again by the same equation (3.82) so that the solution is:

u−(ξ) = 1 + A− exp(λ+ξ) + B− exp(λ−ξ) (3.85)

where B− = 0 from the condition of solution boundedness at infinity.
Thus, we arrive at:

u+(ξ) = B+ exp(λ−ξ) for ξ > 0, (3.86)

u−(ξ) = 1 + A− exp(λ+ξ) for ξ < 0. (3.87)

To obtain remaining constants and the speed of the wave, we have the
conditions of solution matching at the boundary between the regions:

u+(ξ0) = u−(ξ0) ,
du+(ξ0)

dξ
=

du−(ξ0)
dξ

(3.88)

where ξ0 is given by u(ξ0) = β.
From (3.88), we obtain:

B+ exp(λ−ξ0) = 1 + A− exp(λ+ξ0) (3.89)

and

λ−B+ exp(λ−ξ0) = λ+A− exp(λ+ξ0). (3.90)
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Accounting for the translation invariance of Eq. (3.80), ξ0 can be arbitrary.
Setting ξ0 = 0, we immediately obtain B+ = β and A− = β − 1. Thus, the
solution to (3.80) is

u+(ξ) = β exp(λ−ξ) (3.91)

for ξ > 0, and

u−(ξ) = 1 − (1 − β) exp(λ+ξ) (3.92)

for ξ < 0, where speed c is yet to be determined.
To obtain the speed, we have Eq. (3.90) which we have not used yet. With

other constants now known, it reads as follows:

λ−β = λ+(β − 1). (3.93)

From (3.93), after a little algebra we obtain:

c =
2z√

1 − z2
(3.94)

where z = 1 − 2β.
The plot of speed dependence on β is shown in Fig. 3.7. Thus, c = 0 for

β = 0.5 which is in full agreement with the results of a more general analysis,
cf. (2.22). This coincidence looks encouraging and it is plausible that, in spite
of the rather coarse approximation of the real growth function by means of
(3.76), the solution (3.91–3.92) with (3.94) provides a good approximation to
the traveling wave solution of the original equation in a certain parameter
range.

Surprisingly, the speed goes to infinity for β → 0 and for β → 1. Taking into
account the fact that the condition of wave blocking is given by the integral of
F (u) (see (2.22)), that seems rather counterintuitive because in both limiting
cases the integral remains finite. It should be also mentioned that, in the
case that growth function F (u) is described by a cubic polynomial, the speed
remains finite for all parameter values, cf. (2.20).

Let us note, however, that the appearance of infinite speed for β → 0
becomes intuitively clear as soon as we recall that, from biological reasons,
F (u) = uf(u) where f(u) is the per capita growth rate. Function f(u) cor-
responding to F (u) given by (3.76) is shown in Fig. 3.8. Thus, for β → 0,
the per capita growth rate tends to infinity for small u; naturally enough, it
results in the unboundedly increasing wave speed. Note that similar behav-
ior was also observed in another model where the per capita growth rate has
singularity at u = 0; see Section 4.2.

This simple heuristic analysis seems to bring an important message to a
more general theory of diffusion-reaction equations. The fact that, in a system
with the Allee effect, the wave blocking condition is given by integral relation
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FIGURE 3.7: The speed of traveling population front for different values
of threshold density β as given by the exact solution (3.91–3.92) of Eq. (3.79).

(2.22) inspired several authors to look for a general equation for the wave
speed in the following form:

c = φ(M) where M =
∫ 1

0

F (u)du. (3.95)

The above results indicate that this hypothesis is unlikely to be justified.
While for very small M this approach looks reasonable, cf. (2.23), in a wider
parameter range it will hardly suffice. For larger deviations of M from 0, the
details of function F (u) are likely to become important.

3.4 Exact solutions of a generalized Fisher equation

In this section, we will consider two other methods to obtain exact solutions
to diffusion-reaction equations using as an example the Fisher equation with
a generalized growth function:

ut(x, t) = uxx + u(1 − uq) (3.96)

(in dimensionless variables) where q > 0 is a parameter. For q = 1, Eq. (3.96)
coincides with the 1-D version of the “classical” Fisher equation given by
(2.11).
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FIGURE 3.8: Density-dependence of the per capita population growth rate
corresponding to piecewise linear approximation of F (u) in case of the strong
Allee effect.

3.4.1 Ansatz

In traveling wave variables, u(x, t) = U(ξ) where ξ = x−ct, the generalized
Fisher equation (3.96) reads as follows:

c
dU

dξ
+

d2U

dξ2
+ U(1 − Uq) = 0 . (3.97)

Having studied some asymptotic properties of Eq. (3.97) for q = 1, Murray
(1989) noticed that its solution can be expanded into a power series with
respect to 1/c where the main term is:

u(x, t) = U(ξ) =
1

1 + exp(ξ/c)
. (3.98)

That gives an idea that solutions in a more general case given by Eq. (3.97)
with q �= 1 may have a similar structure. Thus, we can introduce an ansatz,
i.e., to look for an exact traveling wave solution of the generalized Fisher
equation in a form inspired by (3.98).

To be more specific, we are going to look for a solution of (3.97) in the
following form:

U(ξ) =
1

(1 + exp(bξ))s
, (3.99)
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where positive constants b, s and the wave speed c are to be defined. Here
“to be defined” implies that the ansatz is a suitable one; otherwise constants
can not be obtained.

Having substituted (3.99) to (3.97), after standard transformations we ar-
rive at

1 +
[
s(s + 1)b2 − sb(b + c) + 1

]
exp(2bξ)

+ [2 − sb(b + c)] exp(bξ)

− [1 + exp(bξ)]2−sq = 0 . (3.100)

The idea of obtaining the constants is as follows: since different powers
of exp(bξ) are linearly independent, Eq. (3.100) holds if and only if the co-
efficients at each power of exp(bξ) are equal to zero. However, in order for
Eq. (3.100) not to be overdetermined, the last term must be “congenial” to
the others, i.e., it must not contain powers of exp(bξ) others than 0, 1 and 2.
That implies that 2 − sq = 2, 1 or 0 so that

sq = 0 , s =
1
q

or
2
q

, (3.101)

correspondingly.
Obviously, the first of these equations does not provide any suitable values

since both s and q must be positive. Let us consider sq = 1. From (3.100),
we then obtain:

1 − sb(b + c) = 0,
s(s + 1)b2 − sb(b + c) + 1 = 0

which gives s(s + 1)b2 = 0 and thus b = 0. This is of no use either since b
must be positive, cf. (3.99).

For the remaining case sq = 2, from (3.100) we obtain:

2 − sb(b + c) = 0,
s(s + 1)b2 − sb(b + c) + 1 = 0

which yields

b =
1√

s(s + 1)
, c =

2
sb

− b (3.102)

and, finally,

U(ξ) =
(
1 + ebξ

)−2/q
where b =

q√
2(2 + q)

(3.103)

where the speed of the wave is given as

c =
q + 4√
2(2 + q)

. (3.104)
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Equations (3.103–3.104) give an exact analytical solution of the generalized
Fisher equation (3.96).

Now, the question is whether solution (3.103–3.104) is fully relevant to
biological invasion. Note that the generalized growth function in Eq. (3.96) is
still of the type described by conditions (1.8–1.10) and thus the speed of the
population wave generated by finite initial conditions must be c = 2 for any
value of q. Instead, the speed c given by (3.104) is an increasing function of
q so that its minimum value c0 = 2 is reached for q = 0 and cq > 2 for any
q > 0. The waves with the speed larger than 2 can arise only in case of initial
conditions with special properties (see Section 7.2) and, as such, they are not
biologically realistic. Let us note, however, that for values q small enough the
speed predicted by (3.104) is actually very close to 2. For instance, for q = 1,
q = 2 and q = 3, we obtain, respectively:

c1 =
5√
6

≈ 2.04, c2 =
3√
2

≈ 2.12, c3 =
7√
10

≈ 2.21.

Thus, it can be expected that, at least for q = 1, solution (3.103) approx-
imates the “real” traveling front very well. Indeed, Fig. 3.9 shows the wave
profiles given by (3.103) for q = 1 (curve 1), q = 2 (curve 2) and q = 3 (curve
3) as well as the wave profile obtained by means of numerical solution of
the Fisher equation with finite initial conditions (dashed-and-dotted curve).
While the profiles obtained for q = 2 and q = 3 are somewhat steeper than the
front obtained numerically, the profile given by (3.103) for q = 1 is practically
indistinguishable from the “real” one.

In conclusion, we want to mention that our observation regarding the steep-
ness of the wave profiles increasing with the value of q does not contradict
to the conclusion that faster fronts cannot be steeper than slower ones (Mur-
ray, 1989). The latter result concerns the case when the fronts with different
speed arise in the same equation, i.e., for the same F (U). The profiles shown
in Fig. 3.9 correspond to different growth functions and thus the “speed-
steepness relation” simply does not apply. Moreover, the greater steepness
is not, actually, an artifact of the nonrealistic speed value but just a conse-
quence of the growth function properties: the profiles obtained in numerical
simulations with q = 2 and q = 3 (not shown here) appear to be very close to
the corresponding analytical solution.

3.4.2 ∗ The Ablowitz–Zeppetella method

The method used in the previous section to obtain the exact solution of the
generalized Fisher equation was essentially based on the idea that the solu-
tion should have a certain structure; see (3.99). As well as a suitable change
of variables, cf. Section 3.1, this approach appears very fruitful in analyti-
cal studies. A serious drawback, however, is that the underlying information
about the solution structure is often missing; in this situation, the successful
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choice of ansatz is mostly based on the intuition and experience of the re-
searcher. Since these valuable properties cannot always be guaranteed, there
is a need of complementary or alternative approaches. In this section, we will
show how an exact traveling wave solution for the Fisher equation can be
obtained without making the hypothesis (3.99).

The simple observation that lies at the background of this analysis is that
the Fisher equation written in the traveling wave coordinates,

d2U

dξ2
+ c

dU

dξ
+ U(1 − U) = 0 (3.105)

where c is the wave speed, when linearized around U = 0, has a solution in
the following form:

U(ξ) = Aeλ1ξ + Beλ2ξ (3.106)

where

λ1,2 =
1
2

(
−c ±

√
c2 − 4

)
(3.107)

if c > 2, and λ1,2 = −1 if c = 2.
The form of (3.106) reminds us of a more general fact that, in a certain

domain around a given steady state in the phase plane of a given nonlinear
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FIGURE 3.9: Exact traveling wave solution (3.103–3.104) of the general-
ized Fisher equation (3.96) obtained for different type of density-dependence
and thus corresponding to different value of speed: curve 1 for q = 1
(c = 2.04), curve 2 for q = 2 (c = 2.12) and curve 3 for q = 3 (c = 2.21). The
dashed-and-dotted curve shows numerical solution of Eq. (3.96) with q = 1
propagating with the minimum speed c = 2.
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ordinary differential equation of the second order, its solution can be expanded
into exponential series:

U(ξ) =
∑

m+n≥1

Anm exp[(mλ1 + nλ2)ξ] (3.108)

(cf. Lefschetz, 1963) where summation is done over all nonnegative whole
numbers m and n. Apparently, the right-hand side of Eq. (3.106) corresponds
to the first two terms of the sum (3.108).

Note that Eq. (3.105) has another steady state corresponding to U = 1 and
thus an expansion similar to (3.108) can be written as well in a domain around
(1, 0). Assuming that the two domains overlap, the most general approach
then would be to match the two series. However, due to the generality of the
solution in the form of (3.108), this approach would unlikely lead to a solution
in a closed form.

Alternatively, Ablowitz and Zeppetella (1979) tried to link Eq. (3.105) to a
class of integrable equations, i.e., nonlinear equations that can be solved explic-
itly. The main idea of their analysis is that some of the equation’s properties
can be different for different values of c. The property that is of particular in-
terest in this context is the so-called Painlevé property: an equation is said to
be of Painlevé type in case it possesses, if considered as a function of a complex
variable, only poles as “movable” (i.e., dependent on initial conditions) singu-
larities. There is considerable evidence that a nonlinear ordinary differential
equation is explicitly solvable if and only if it possesses the Painlevé property;
see Ablowitz et al. (1978), Weiss et al. (1983) and Newell et al. (1987) for
details and further reference.

Having done necessary calculations, Ablowitz and Zeppetella (1979) found
that, indeed, Eq. (3.105) is of Painlevé type for c = 5/

√
6 (assuming c to be

nonnegative). Using this value, from (3.107) we obtain that λ1 = −3/
√

6 and
λ2 = −2/

√
6 so that the expansion (3.108) takes the following form:

U(ξ) =
∞∑

n=2

An exp
(
− nξ√

6

)
. (3.109)

Having substituted (3.109) into Eq. (3.105), after equating the coefficients
of different powers of exp(−ξ/

√
6) we obtain that

An =
6

(n − 2)(n − 3)

n−2∑
j=2

AjAn−j , n ≥ 4 , (3.110)

while the coefficients A2 and A3 remain arbitrary. Different choice of A2 and
A3 generates different trajectories coming out of the steady state (0, 0) in
the phase plane of Eq. (3.105). Let us recall now that we are interested in
the solution with U(−∞) = 1, U(∞) = 0 so that the relevant values must
correspond to the trajectory arriving at (1, 0).
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Also, we expect that a successful choice of the coefficients should make it
possible to write the solution in a closed form. Letting A2 = 1 and A3 = −2,
from (3.110) we arrive at

An = (−1)n(n − 1), n ≥ 2 . (3.111)

Denoting, for convenience, exp(−ξ/
√

6) = y, from (3.109) and (3.111) we
then obtain

U =
∞∑

n=2

(−1)n(n − 1)yn = y2
∞∑

n=0

(−1)n(n + 1)yn . (3.112)

It is readily seen that the sum in the right-hand side of (3.112) gives the
power-series expansion of (1 + y)−2; thus, (3.112) takes the following form:

U =
y2

(1 + y)2
. (3.113)

Finally, coming back to original variables, we obtain the exact solution:

U(ξ) =
(
1 + ez/

√
6
)−2

. (3.114)

Apparently, solution (3.114) coincides with a more general solution (3.103)
in the particular case q = 1. Let us emphasize, however, that, contrary to
the previous method, in this section we did not use any a priori information
about the solution structure.

3.5 More about ansatz

We have already seen that probably the easiest and the fastest way to
obtain an exact solution is through using a relevant ansatz. In this section,
we are going to develop the ideas introduced in Section 3.4.1 and give two
more examples showing how ansatz is constructed and used in order to obtain
biologically relevant exact solutions of diffusion-reaction equations.

Let us consider a generalized Fisher equation in traveling wave coordinates,

d2U

dξ2
+ c

dU

dξ
+ F (U) = 0 (3.115)

(in dimensionless units), c being the wave speed. We choose the following
conditions at infinity: U(−∞) = 0, U(∞) = 1. Thus, species invasion corre-
sponds to the front propagating to the left, i.e., against axis x.
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By means of introducing a new variable, ψ(U) = dU/dξ (see Section 9.1),
Eq. (3.115) takes the form

ψ(U)
dψ

dU
+ cψ(U) + F (U) = 0 (3.116)

where ψ(U) must satisfy the following conditions:

ψ(0) = ψ(1) = 0. (3.117)

The solution of Eq. (3.116) depends on the properties of function F . Thus,
an appropriate form of ansatz can be sought “congenial” to the form of F (U).
In particular, let us consider the case when function F is a polynomial:

F (U) = U(a0 + a1U + . . . + ak−1U
k−1) (3.118)

where a0, . . . , ak are coefficients. That inspires an idea that ψ can be a poly-
nomial as well.

The first step is to find out what the power of the polynomial can be. In
order to do that, we substitute ψ = Um to (3.116–3.118) and try to match
the leading powers of U :

UmUm−1 − Um ∼ Uk . (3.119)

Since 2m − 1 > m for any m > 1, we can neglect the second term in the left-
hand side of (3.119). From (3.119) we then obtain that 2m − 1 = k. Thus,
the first conclusion we can make is that Eq. (3.116) with F(U) as (3.118) can
only have polynomial solutions if k is an odd number.

For biological reasons, it is rather unlikely that the growth rate depends on
the population density in a very complicated manner. Also, from the modeling
standpoint, intricate density-dependence can hardly ever be justified because
ecological data are usually of poor accuracy. Recalling the polynomial (3.118),
it means that either k should not be large or most of the coefficients a0, . . . , ak

are equal to zero.

Case A. Let us first consider the case k = 3; correspondingly,

F (U) = U(U − β)(1 − U) = − βU + (β + 1)U2 − U3, (3.120)

cf. (1.16), where parameter β is not necessarily positive now. Taking into
account (3.117), the relevant form of ansatz is

ψ = a(U − U2) (3.121)

where a is a coefficient to be determined. Substituting (3.121) to (3.116) and
matching different powers of U , we obtain the following system:

a2 + ca − β = 0,

−3a2 − ca + β + 1 = 0,
2a2 − 1 = 0.
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Here the last equation gives a = ±1/
√

2 where we choose plus since in our
case ψ = dU/dξ > 0 along the wave profile. The first and the second equations
appear to be identical and provide the value of the wave speed:

c = − 1√
2
(1 − 2β) (3.122)

which coincides with the result obtained earlier, cf. (2.20). The corresponding
exact solution arises as a solution of the equation

dU

dξ
=

1√
2
(U − U2) (3.123)

from which we readily obtain

U(ξ) =
exp(ξ/

√
2)

1 + exp(ξ/
√

2)
. (3.124)

Eq. (3.124) describes propagation of a traveling population front in the
single-species model where the population growth is described by a cubic
polynomial. Clearly, it gives the asymptotical solution to the “full” partial
differential equation (3.39) in the large-time limit, cf. (3.53) and (3.124). Let
us note, however, that (3.124) was obtained without any restriction on the
value of β. As a matter of fact, it does not contain β at all and the solution
depends on β only via the wave speed; see (3.122). As such, the solution
(3.124) is applicable to the dynamics of populations with the weak Allee effect,
−1 < β ≤ 0, and to populations without Allee effect, β ≤ −1.

In particular, for β = −1, (3.124) describes a traveling population front
propagating with the speed c = 3/

√
2. The corresponding growth function

is F (U) = U(1 − U2); thus, in this case (3.124) coincides with the solution
of the generalized Fisher equation obtained for q = 2, cf. (3.96) and (3.103–
3.104) (up to the change x → −x which correspond to the opposite choice of
conditions at infinity).

Case B. Let us now consider a more general case when the maximum
power of density-dependence in F (U) is 2m − 1 where m > 2. Following our
strong belief that an adequate ecological model should not be too complicated
(see also the comments above Eq. (3.120)), we assume that F (U) does not
actually include all powers of U between 1 and 2m − 1. More specifically, we
consider the following growth function:

F (U) = BU + AUm + κU2m−1 (3.125)

where A, B and κ are coefficients.
The maximum power in the polynomial ansatz ψ(U) is m; see (3.119). Let

us consider

ψ = a(U − Um) . (3.126)
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Although (3.126) is of a special form, it can be shown that the choice of
ansatz in the form of a general polynomial of power m does not provide any
new option compared to (3.126).

Substituting (3.126) into (3.116) with (3.125) and matching different powers
of U , we arrive at the following equations:

a2 + ca + B = 0, (3.127)
−(m + 1)a2 − ca + A = 0, (3.128)

ma2 + κ = 0. (3.129)

From the last equation, we get a2 = −κ/m; this means that our approach
is applicable only if κ < 0. Assuming that the population density U is scaled
to be between 0 and 1, we let κ = −1. Then, from Eq. (3.129) we obtain:

a = ± 1√
m

(3.130)

where we choose plus because dU/dξ must be positive due to our choice of
the conditions at infinity. The other two equations are now reduced to

c = −√
m

(
B +

1
m

)
, (3.131)

c = −√
m

(
(1 − A) +

1
m

)
. (3.132)

These equations are consistent only if A + B = 1. Choosing B as an
independent parameter, we obtain that the speed of the wave is

c = − 1√
m

(1 + Bm) . (3.133)

Respectively, the growth function (3.125) takes the form:

F (U) = BU + (1 − B)Um − U2m−1 . (3.134)

Since the properties of F (U) depend on parameter B, Eq. (3.115) with
(3.134) describes a variety of ecological situations. It is not difficult to see
that, for B ≥ 1, function F (U) is convex and thus corresponds to a population
without Allee effect. In this case, the wave speed is always negative which
indicates successful species invasion. For 0 ≤ B < 1, F (U) is not convex any
more but F remains positive for 0 < U < 1 which corresponds to the weak
Allee effect. Although the rate of spread is getting slower, the speed remains
negative which means species invasion: the impact of weak Allee effect can
slow it down but cannot block it. The range B < 0 corresponds to the strong
Allee effect when the growth rate becomes negative for 0 < U < B. In this
case, the speed changes its sign at B = −1/m so that invasion turns to retreat
for B < −1/m.
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FIGURE 3.10: Population growth rate in case of a higher-order density-
dependence, cf. (3.135): curves 1, 2 and 3 show F (U) for m = 2, m = 3 and
m = 4, respectively.

Apparently, function (3.134) provides a generalization of the usual param-
eterization of the Allee effect via a cubic polynomial to the case of a higher-
order density-dependence. The resemblance between (3.120) and (3.134) be-
comes even more obvious if we focus on the populations with the strong Allee
effect. In this case B < 0; then, introducing a new parameter β so that
B = −βm−1, the growth function (3.134) is written as

F (U) = U
(
Um−1 − βm−1

) (
1 − Um−1

)
. (3.135)

The one-parameter family of functions (3.135) is shown in Fig. 3.10 where
curves 1, 2 and 3 correspond to m = 2, m = 3 and m = 4, respectively.

The exact solution describing the wave profile arises from the equation

dU

dξ
=

1√
m

(U − Um) , (3.136)

cf. (3.126), which is equivalent to
∫

dU

U − Um
=

ξ − ξ0√
m

(3.137)

where ξ0 is the integration constant. In order to calculate the integral in the
left-hand side of (3.136), let us introduce a new variable y so that

y = Um−1, U = y1/(m−1).
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Correspondingly,
∫

dU

U − Um
=

1
m − 1

∫
dy

y(1 − y)
=

1
m − 1

log
∣∣∣∣ y

1 − y

∣∣∣∣ .

From (3.137), we then obtain

log
∣∣∣∣ y

1 − y

∣∣∣∣ =
m − 1√

m
(ξ − ξ0)

and, finally,

U(ξ) = exp
(

ξ√
m

)[
1 + exp

(
m − 1√

m
ξ

)]−1/(m−1)

, (3.138)

where, for convenience, we have included ξ0 into the definition of ξ. The
exact traveling wave solution (3.138) where the wave speed is given by (3.133)
provides an extension of the solution (3.124) with (3.122) to the case of higher-
order density-dependence, cf. (3.120) and (3.134–3.135).

Using the approach described in this section, it appears possible to find ex-
act traveling wave solutions also for a few somewhat more complicated cases,
e.g., when the growth function is a quintic polynomial with all powers of U
being present. However, the form of the exact solution appears rather cum-
bersome and, as such, not very instructive. Also, the biological implications of
this case are not clear; see the comments above Eq. (3.120). Thus, we will not
discuss it here; a relevant analysis can be found in Otwinowski et al. (1988)
and Benguria and Depassier (1994).





Chapter 4

Single-species models

In this chapter, we consider a few more exactly solvable models of popula-
tion dynamics relevant to biological invasion. Our purpose is to take into
account some features of biological invasion that have not been addressed
before and to further demonstrate that exactly solvable models make a valu-
able contribution to modeling and understanding species invasion. Trying to
keep the models “as simple as possible (but not simpler),” here we focus on
single-species models described by a single partial differential equation. To
obtain the exact solutions, we mostly use the methods already described in
the previous chapter, with some modifications where necessary.

When dealing with invasive species, a highly practical and theoretically
important problem is the identification of factors that can either decrease
or increase the rate of the species geographical spread. Although a number
of such factors has been revealed and studied, there are many issues that
are still poorly understood. In particular, the role of small-scale migrations is
not clear. Such migrations can appear as a result of certain density-dependent
behavioral responses, cf. “stratified diffusion” (Hengeveld, 1989). One obvious
way to account for the density-dependence of the species motility is through
considering density-dependent diffusion, i.e., changing the constant coefficient
D to a function D(u) in the corresponding diffusion-reaction equations. A few
models of that kind will be considered in Chapter 5. Alternatively, in Section
4.1 we consider an approach that treats variable species motility by means
of linking them to small-scale migrations. We consider the interplay between
advection, migration and diffusive spread hampered by the strong Allee effect
and show that the outcome of this interplay can be counterintuitive.

Geographical spread of invasive species typically takes place at a constant
rate, i.e., the corresponding population front propagates with a constant
speed. However, there also exists another pattern of spread when the front
propagates with an increasing speed. These patterns are sometimes referred
to as traveling and dispersive fronts, respectively, e.g., see Frantzen and van
den Bosch (2000). The origin of the dispersive fronts is often seen in the
fat-tailed dispersive kernels arising in the case of non-Gaussian diffusion; see
Kot et al. (1996) and also Section 2.2 of this book. The mechanistic models
explaining the nature of such kernels are still lacking, though, and that leaves
many questions open. In this situation, the search for alternative mechanisms
that can result in accelerating or dispersive waves becomes a challenging issue.

81
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In Section 4.2 we show that accelerating fronts may correspond to a transient
stage of species spread preceding the stage of constant-speed propagation. Re-
markably, in a finite-size domain (which is always the case in real ecosystems)
and for a sufficiently high population growth rate, the constant-speed stage
may never be achieved.

Invasion of exotic species starts with its introduction and local establish-
ment. Successful species establishment typically results in its geographical
spread (but see Petrovskii et al., 2005b) while unsuccessful one leads to species
extinction. Apart from many ecological and environmental factors that affect
the outcome of the establishment stage (see Sakai et al. (2001) for details),
there are purely dynamical aspects arising from the interplay between diffu-
sion, population growth and mortality, especially mortality at low population
densities. It seems intuitively clear that a large initial population size will
likely lead to species invasion while a small population size will more prob-
ably result in extinction. In Section 4.3 we give a mathematically rigorous
consideration of this problem and show that these two outcomes can be dis-
tinguished in terms of critical population density and/or critical radius of the
infested domain.

4.1 Impact of advection and migration

Standard models of population dynamics described by diffusion-reaction
equations are based on the assumption that the individual motion is random
and isotropic in space. There is, however, another type of dynamics when the
individuals exhibit a correlated motion towards a certain direction. The origin
of this motion can be different, and there are at least two apparently differ-
ent mechanisms resulting in the species transport. We will call “advection”
the correlated motion caused by purely environmental factors such as wind
in case of air-borne species or water current in case of water-borne species,
and we will call “migration” the transport caused by biological interactions.
Evidently, species transport due to the advection is density independent. As
for migration, there are certain indications that its “intensity,” i.e., either
the speed of individual motion or the number of migrating individuals, can
increase with the population density. To avoid ambiguousness, it should be
mentioned that here we are not interested in the periodical return migrations
which are typical for many bird and fish species. A point of interest is the mi-
gration occurring on a much smaller spatial scale when individuals or groups
of individuals of the given species move from the regions with high population
density towards the regions where the given species is either absent or exists at
low population density. Although these small-scale migrations are often inter-
preted in terms of random motion, cf. “stratified diffusion,” the phenomenon
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exhibits apparent spatial anisotropy. Interestingly, this mechanism of species
dispersion usually comes to operation when the population density becomes
sufficiently high.

Note that both random and correlated motion can result in blocking species
invasion or even in turning it into retreat. For the correlated motion, this
possibility is obvious: whether the species is actually invading or retreating
depends on the direction of advective transport. For the random motion,
i.e., diffusion, species retreat results from increasing Allee effect; see Sections
2.1 and 3.2.

In theoretical studies, the two types of motion, i.e., random or correlated,
are usually considered separately. In a real ecological community, however, the
individuals are likely involved in a combination of these two types of motion.
An issue of interest is the interplay between these two types of motion from
the standpoint of species invasion. In particular, can advection/migration
block the species spreading in the case when the invasion would otherwise
take place due to random motion?

Our analysis here is essentially based on the original paper by Petrovskii
and Li (2003). We assume that the given species is involved both in ran-
dom and correlated motion and consider the following 1-D model allowing for
advection/migration and diffusion:

∂u(x, t)
∂t

+
∂(Au)

∂x
= D

∂2u

∂x2
+ F (u) , (4.1)

cf. (2.7), where A is positive in the case that advection/migration is going in
the direction of axis x and negative otherwise.

We assume that the growth rate is damped by the Allee effect and choose
the cubic polynomial parameterization for F (u):

F (u) = ωu(u − uA)(K − u). (4.2)

For the speed of migration, we assume that it is given by

A = A0 + A1u (4.3)

where A0 and A1 are parameters, A0 is the speed of advection caused by
environmental factors, e.g., by wind or water current, and A1u is the speed
of migration due to biological mechanisms. For convenience, we will call
parameter A1 the per capita migration speed.

Introducing dimensionless variables,

ũ =
u

K
, t̃ = tωK2 , x̃ = x

√
ωK2

D
, (4.4)

and omitting tildes further on for notation simplicity, from (4.1–4.3), we ob-
tain:

ut + (a0 + a1u)ux = uxx − βu + (1 + β)u2 − u3 (4.5)
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where β = uA/K, a0 = A0K
−1(ωD)−1/2 and a1 = 2A1(ωD)−1/2 are dimen-

sionless parameters, and subscripts x and t stand for the partial derivatives
with respect to dimensionless space and time, respectively.

Eq. (4.5) is considered in the unbounded domain with the following condi-
tions at infinity:

u(x → −∞, t) = 0, u(x → +∞, t) = 1, (4.6)

i.e., invasion of alien species is going from right to left. Therefore, negative
a0, a1 correspond to advection/migration enhancing species invasion and pos-
itive a0, a1 correspond to advection/migration hampering species invasion or
enhancing species retreat.

An exact solution of Eq. (4.5) for a0 = a1 = 0 was obtained in Section 3.2
(see (3.40)) by means of using the generalized Cole-Hopf transformation. Now
we are going to apply the same method in order to obtain an exact solution of
the full advection-diffusion-reaction equation (4.5). We begin by considering
the cases of advection and migration separately, proceeding then to a general
case.

4.1.1 Advection

In the case that the speed of the species transport does not depend on the
population density, e.g., when drifting with the wind, the dynamics of the
population is described by the following equation:

ut + a0ux = uxx − βu + (1 + β)u2 − u3 . (4.7)

Considering traveling wave coordinates, (x, t) → (ξ, t) where ξ = x − a0t,
so that u = ũ(ξ, t), Eq. (4.7) turns to

ũt = ũξξ − βũ + (1 + β)ũ2 − ũ3 . (4.8)

Eq. (4.8) coincides with (3.39) and thus the exact solution (3.40) gives also
an exact solution of (4.8) with the obvious change x → ξ. In particular, in
the large-time limit, when the solution describes a single traveling population
front, it reads as follows:

u(x, t) = ũ(x − a0t, t) � exp{λ2 [x − (n2 + a0)t + φ2]}
1 + exp{λ2 [x − (n2 + a0)t + φ2]} (4.9)

where λ2 = 1/
√

2 and n2 = (1/
√

2)(2β−1). Clearly, n2+a0 is the speed of the
front so that n2 + a0 < 0 corresponds to the species invasion and n2 + a0 > 0
corresponds to the species retreat. Advection enhances the species invasion
if a0 < 0 and enhance the species retreat if a0 > 0. Thus, the species will
invade in spite of the counteracting impact of advection (e.g., cross-wind or
cross-current) in case n2 < − a0, i.e., for

2β − 1√
2

< − a0 (4.10)
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which is equivalent to

β <
1
2

(
1 −

√
2 a0

)
. (4.11)

Relation (4.11) has an intuitively clear meaning: the weaker the Allee effect
is for a given population, the higher is its capability for invasion. In case we
are restricted to the case of the strong Allee effect, β is positive while a0 can
be arbitrary. It means that a species affected by the strong Allee effect cannot
invade in case the cross-wind is sufficiently strong, a0 > 1/

√
2.

4.1.2 Density-dependent migration

Now we are going to consider the case when the density-independent advec-
tion caused by environmental factors is absent and migration takes place due
to biological mechanisms which are assumed to be density-dependent. Then
a0 = 0 and from (4.5) we arrive at the following equation:

ut + a1uux = uxx − βu + (1 + β)u2 − u3 . (4.12)

Eq. (4.12) differs from (3.39) and the exact solution (3.40) is not immediately
applicable. However, to obtain an exact solution of (4.12), we can try to make
use of the approach described in Section 3.2.

Let us consider a new variable p(x, t),

u(x, t) = ν
px

p + σ
, (4.13)

where ν is a coefficient and σ is a (nearly) arbitrary constant included in order
to avoid singularities, cf. Section 3.2 for details. Having substituted Eq. (4.13)
into (4.12), we arrive at the following system:

pxt = pxxx − βpx , (4.14)

pt = (3 + a1ν)pxx − (1 + β)νpx , (4.15)

ν =
1
2

(
a1 ±

√
a2
1 + 8

)
. (4.16)

Choosing plus in Eq. (4.16) without any loss of generality (minus would cor-
respond to the change a1 → −a1, x → −x) and excluding pxt from Eq. (4.14),
from (4.14–4.16) we obtain:

(2 + a1ν)pxxx − (1 + β)ν pxx + βpx = 0 , (4.17)

pt = (3 + a1ν)pxx − (1 + β)νpx . (4.18)

The solution of the linear equation (4.17) has the following form:

p(x, t) = g0(t) + g1(t)eω1x + g2(t)eω2x (4.19)
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where

ω1 =
β

ν
, ω2 =

1
ν

. (4.20)

Having substituted (4.19) into (4.18), we obtain:

g0(t) = B0 , gi(t) = Bie
δit (4.21)

where δi = (3+a1ν)ω2
i −(1+β)νωi, i = 1, 2 and B0,1,2 are arbitrary constants.

Considering Eq. (4.13) together with (4.19) and (4.21) and taking into ac-
count that coefficients B0 +σ, B1 and B2 must have the same sign in order to
provide positiveness of the solution, we arrive at the following exact solution
of Eq. (4.12):

u(x, t) =
β exp(ω1ψ1) + exp(ω2ψ2)

1 + exp(ω1ψ1) + exp(ω2ψ2)
(4.22)

where ψi = x − qit + ψi0, qi = (1 + β)ν − (3 + a1ν)ωi, i = 1, 2 and ψ01, ψ02

are arbitrary constants.
The structure of solution (4.22) is apparently similar to that of (3.40) and

it has similar properties. In particular, since ω1 < ω2, in the large-time limit
solution (4.22) describes a single traveling population front

u(x, t) � exp(ω2ψ2)
1 + exp(ω2ψ2)

(4.23)

propagating with the speed

q2 = (1 + β)ν − 3 + a1ν

ν
. (4.24)

From (4.24), after some standard transformations, we obtain

q2 = βν − 1
ν

(4.25)

where ν = 0.5(a1 +
√

a2
1 + 8) so that ν → +0 for a1 → −∞ and ν → +∞

for a1 → +∞. Equation (4.25) turns to q2 = 0.5a1 in the case when the
speed of diffusive spread is zero, i.e., for β = 0.5. Here we recall that, for
the choice of conditions at infinity as (4.6), a1 < 0 corresponds to migrations
enhancing invasion and a1 > 0 corresponds to migrations hampering invasion
(= enhancing species retreat).

A point of interest is how much the speed of invasion can be modified by
the impact of migration when β < 0.5. To address this issue, we consider the
“speed accretion,” i.e.,

∆q = q2 − (2β − 1)√
2

(4.26)
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FIGURE 4.1: The speed accretion ∆q acquired by the traveling population
front as a result of small-scale migrations is shown versus migration intensity
a1 and for different values of the threshold density, curve 1 for β = 0, curve 2
for β = 0.1, curve 3 for β = 0.2 and curve 4 for β = 0.5.

where the second term in the right-hand side gives the speed of invasion in the
nonmigration case, cf. (3.54). The value of ∆q versus migration intensity a1 is
shown in Fig. 4.1 for different β, curve 1 for β = 0, curve 2 for β = 0.1, curve
3 for β = 0.2 and curve 4 for β = 0.5. Negative values of the speed accretion
correspond to faster invasion. Note that for each of these curves the speed of
diffusive spread has a fixed value, i.e., 0.71, 0.57, 0.42 and 0, respectively. It
is readily seen that, already for a1 being on the order of −1, the speed of the
propagating front can be twice as high as it would be without migration.

Since the species spreads into the region with low population density (i.e.,
from right to left, see (4.6)) when q2 < 0, from relation (4.25) we readily
obtain the following condition of successful invasion:

β <
1
ν2

. (4.27)

In the case a1 = 0 (no migration), ν =
√

2 and (4.27) coincides with (3.55).
The critical relation β = ν−2 is shown in Fig. 4.2 by the solid curve. Thus, the
impact of small-scale migrations significantly affects the species’ capacity to
invasion. In the nonmigration case, the critical magnitude of the Allee effect
is given by β = 0.5 (shown by the dotted line) so that the species is invasive
only for β < 0.5. However, in the case that diffusive spread is supported
by migration, the species can remain invasive also for 0.5 < β < 1, cf. the
curvilinear triangle in the upper left-hand side of Fig. 4.2.
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FIGURE 4.2: A map in the parameter plane (a1, β) of the advection-
diffusion-reaction equation (4.12).

Note that, unlike the density-independent case, cf. (4.11), the right-hand
side of inequality (4.27) is always positive (which means that the solid curve
in Fig. 4.2 never touches the horizontal axis). Consequently, the interplay
between the diffusive spread and migration appears to be different. Even a
strong “counteractive” migration (corresponding to large positive a1) cannot
block the species invasion caused by the random dispersion of the individuals
in case the Allee effect (quantified by parameter β) is sufficiently small.

4.1.3 General case

In a general case, species transport takes place due to both density-dependent
and density-independent factors. The dynamics of a given population is then
described by full equation (4.5) where now a0 �= 0 and a1 �= 0. The results
of the two preceding sections immediately apply to this case leading to the
following exact solution:

u(x, t) =
β exp{ω1[x − (q1 + a0)t + ψ01]} + exp{ω2[x − (q2 + a0)t + ψ02]}

1 + exp{ω1[x − (q1 + a0)t + ψ01]} + exp{ω2[x − (q2 + a0)t + ψ02]}
where the notations are the same as in Eq. (4.22). Particularly, in the large-
time limit, this solution takes the following form describing propagation of a
population front:

u(x, t) � exp{ω2[x − (q2 + a0)t + ψ02]}
1 + exp{ω2[x − (q2 + a0)t + ψ02]} . (4.28)
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The condition of successful invasion now takes the form q2 < − a0 which,
after a little algebra, reads as follows:

β < r(ν, a0) =
1
ν2

− a0

ν
. (4.29)

It is readily seen that r ≥ 0 for ν ≤ 1/a0 and r is negative otherwise. Thus,
since β is assumed to be nonnegative, for any fixed β and ν inequality (4.29)
is violated in the case a0 is positive and sufficiently large. In agreement with
the results of Section 4.1.1, it means that the species invasion can always
be blocked or reversed in case of sufficiently strong counteractive advection
(such as cross-wind or cross-current) provided that the density-dependent
migrations are either absent or enhance the species retreat (which corresponds
to a1 ≥ 0 and ν ≥ √

2). However, another property of relation (4.29) is that,
for any fixed positive value of a0, however large it can be, inequality (4.29)
becomes true for sufficiently small ν. Small ν corresponds to large negative
a1, i.e., to the case when migration takes place towards the region where the
species is absent. It means that even strong counteractive advection cannot
stave off invasion of given alien species in case its diffusive spread is supported
by sufficiently intense small-scale migration.

Thus, the three considered mechanisms of species invasion, i.e., diffusive
spread, advection and density-dependent migration, create a certain hierar-
chy. When considered pairwise, advection appears to have a higher rank than
diffusive spread, and diffusive spread has a higher rank than migration. How-
ever, the hierarchy is broken if we consider a cooperative impact of different
processes: a joint rank of the two “junior” members of hierarchy, i.e., diffusive
spread plus migration, appears to be higher than that of advection.

4.2 Accelerating population waves

Population fronts described by the diffusion-reaction equations considered
above propagate with a constant speed, although the value of speed can be
affected by a variety of factors such as the type of density-dependence in the
population growth, impact of other types of species transport, etc. This is
congenial to what is typically observed in nature. However, there also can
be another scenario of species invasion when the front speed does not remain
the same but increases with time; some examples of field observations can be
found in the book by Shigesada and Kawasaki (1997). The fronts of that kind
are called accelerating or dispersive.

The first attempts that have been made to explain this phenomenon tended
to ascribe it to the impact of the “non-Gaussian” diffusion which can manifest
itself either via fat-tailed dispersive kernels in the corresponding integral-
difference equations (Kot et al., 1996) or via scale-dependence of the diffusion
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coefficient in the diffusion-reaction equations (Petrovskii, 1999b). Somewhat
later, however, it was shown that accelerating waves can arise as well in a
system with usual Gaussian diffusion as a result of prolonged impact of the
initial conditions (Petrovskii and Shigesada, 2001). Remarkably, the latter
study was done based on an exactly solvable model of population dynamics.

We assume that the alien population spreads in a homogeneous environment
and the initial species distribution exhibits radial symmetry. Then it can be
expected that the population density depends only on the distance from the
origin and the dynamics of the invading species is described by the following
equation:

∂u

∂t
= D

(
∂2u

∂r2
+

η

r

∂u

∂r

)
+ F (u) (4.30)

where r = (x2 + y2)1/2, 0 ≤ r < L and L is the radius of the overall area
accessible for invasion. In the most ecologically relevant case of cylindrical
symmetry η = 1; in a more general stuation, coefficient η can be equal to 0, 1
or 2 in the cases of planar, cylindrical and spherical symmetry, respectively.

Eq. (4.30) should be provided with the initial distribution of the species,
u(r, 0). The type of the initial condition depends on the nature of the prob-
lem under consideration. Concerning the problem of biological invasion, the
invasive species first appears in a small domain inside a given area. Mathe-
matically, it means that the function u(r, 0) should be chosen either finite or
“localized,” i.e., promptly decreasing to zero with an increase in the distance
from the center of the domain. In both cases, the behavior of the function
u(r, t) can be characterized by the typical radius l of the domain:

u(r, 0) = Φ(r; l) (4.31)

where function Φ promptly approaches zero when r/l � 1.
A proper choice of the dimensionless variables, i.e., in our case, the choice of

scales for the variables u, r and t, is an important point. As usual, we assume
that function F (u) allows for at least two stationary homogeneous states, i.e.,
F (0) = F (K) = 0, parameter K being the carrying capacity for the given
population. Since K serves as a natural scale for the species concentration u,
it is convenient to consider ũ = u/K. Then we can write F (u) = (K/τ)F̃ (ũ)
where parameter τ has the dimension of time and F̃ (ũ) is now dimensionless,
F̃ (0) = F̃ (1) = 0. Thus, from Eq. (4.30) we obtain:

∂ũ

∂t
= D

(
∂2ũ

∂r2
+

η

r

∂ũ

∂r

)
+

1
τ

F̃ (ũ) . (4.32)

Including the scaling factor 1/τ explicitly into Eq. (4.32) implies that func-
tion F̃ (ũ) is normalized, i.e., satisfies certain conditions. Generally, var-
ious biologically relevant constraints can be used. Here we suggest that
dF̃ (ũ = 0)/dũ = 1.
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The choice of the scale for position r is, to a large extent, determined by
the goals of the modeling. Generally, in the problem of the evolution of a
finite initial perturbation there are a few different length-scales: the (typical)
radius L of the whole domain, the typical radius l of the perturbation and the
“diffusive length” (Dτ)1/2. If one is interested in the large-time limit of the
system dynamics, when the perturbation has spread over the whole area and
the impact of the boundaries cannot be neglected, then the length L seems
to be a natural scale. In case of smaller but still large times when the effect
of the boundaries is not yet essential but the transients caused by particulars
of the initial conditions have already died out, cf. “intermediate asymptotics”
(Barenblatt and Zeldovich, 1971), the diffusive length is the most reasonable
choice. However, in case the early stages of the system evolution are of primary
interest when the influence of the initial conditions has not yet completely
disappeared, it seems that the characteristic length l of the initial perturbation
also can be taken as a suitable length-scale.

For reasons that will become clear later, here we are mainly concerned with
the early stages of the system dynamics. Therefore, we consider r̃ = rl−1

and t̃ = tDl−2. Then we arrive at the following problem containing now only
dimensionless values (tildes will be omitted hereafter):

∂u

∂t
=

(
∂2u

∂r2
+

η

r

∂u

∂r

)
+ f(u) (4.33)

and

u(r, 0) = Φ(r; 1) (4.34)

where f(u) = (1/γ)F (u) and γ = Dτl−2.
As an immediate generalization of logistic growth rate, we consider the

function f(u) belonging to the following family:

fγ(u) =
1
γ

u (1 − uγ) . (4.35)

Let us note that, for every particular case the value of the parameter γ is
fixed. However, in order to be able to compare different cases of invasion in
terms of Eq. (4.33), we consider the behavior of the solutions of the problem
(4.33–4.34) assuming that γ can take any positive value.

The family (4.35) has small-γ limit:

lim
γ→0

fγ(u) = u lim
γ→0

[
1
γ

(1 − uγ)
]

= f̄(u) (4.36)

where

f̄(u) = − u ln u (4.37)
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FIGURE 4.3: Population growth rate fγ(u) as given by (4.35) for γ = 1
(curve 1), γ = 0.2 (curve 2) and γ = 0.04 (curve 3); curve 4 shows the small-γ
asymptotics f̄(u), cf. (4.37) (with permission from Petrovskii and Shigesada,
2001).

where ln u ≡ loge u, e = 2.718 . . . . Note that, for all positive γ and u ≥ 0
(letting f̄(u) = 0 for u = 0),

fγ(u) ≤ f̄(u) . (4.38)

Simple relations (4.36–4.38) will appear to have an important meaning for
further consideration.

A few functions of the family (4.35), as well as asymptotics (4.37), are shown
in Fig. 4.3; curve 1 for γ = 1, curve 2 for γ = 0.2, curve 3 for γ = 0.04 and
curve 4 for f̄(u). One can see that, while for the values of γ on the order of
unity there is a significant discrepancy between fγ(u) and f̄(u), for γ smaller
than about 0.1 the plots of fγ(u) and f̄(u) lie very close to each other. Thus,
although the biological meaning of f̄(u) may seem to be somewhat obscure
because it implies an infinite per capita growth rate when the species density
u tends to zero, it provides a good approximation for the members of the
family (4.35). The smaller γ is the higher is the accuracy.

Investigation of the problem (4.33–4.34) will be performed based on an
exact solution of Eq. (4.33), which we introduce in the next section. Let us
note here that Eq. (4.33) is nonlinear and that makes it virtually impossible
to obtain its general solution, i.e., for an arbitrary u(r, 0). To be able to solve
Eq. (4.33) analytically, we have to make particular suggestions concerning the
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form of the initial conditions. Here we assume that

u(r, 0) = g0 exp

[
−

(
r

Rin

)2
]

(4.39)

where Rin and g0 are positive dimensionless parameters. Although function
(4.39) is not finite, we assume that its very fast decay for r → ∞ makes it ap-
propriate for description of the invasive species initial distribution, cf. Section
7.2.

Let us note that, at first glance, parameter Rin in Eq. (4.39) may seem
redundant because variable r is already scaled with the typical radius of the
initially invaded domain. In fact, this is not so. The problem is that the
definition of a “typical” radius usually involves uncertainty. For instance, the
initial radius l can be defined as the radius of the domain where the species
density exceeds a certain prescribed value u∗. However, in this case, l would
depend essentially on u∗ which, in its turn, may be known only approximately.
Thus it seems important to understand how the solution’s behavior can change
with respect to variation of the value of the typical radius.

Another point is that our choice of dimensionless variables when r̃ = r/l
is not the only possible one. Considering other scales for r and t (see the
paragraph below Eq. (4.32)), we would immediately arrive at the equations
similar to (4.33)–(4.34) but with different coefficients. Thus, in order to retain
mathematical generality in further considerations, we assume that the value
of Rin can be arbitrary.

4.2.1 Self-similar exact solution

Now we proceed to derive an exact solution to Eqs. (4.33–4.34). Let us try
to find a solution in the following special self-similar form:

u(r, t) = g(t)φ(ξ) where ξ =
r

R(t)
, (4.40)

where functions g(t) and R(t) are to be determined while φ(ξ) is fixed by
the choice of the initial conditions. The idea of further analysis is that a
suitable choice of the form of initial conditions, i.e., of function φ(ξ), can
make Eq. (4.33) solvable. Thus, Eq. (4.39) works as an ansatz.

Having substituted Eqs. (4.40) into Eq. (4.33), we arrive at the following
equation:

g

R2

d2φ

dξ2
+

(
gξ

R

dR

dt
+

η

ξ

g

R2

)
dφ

dξ
− φ

dg

dt
+ f(gφ) = 0 . (4.41)

Briefly, the method is as follows. Eq. (4.41) contains two unknown func-
tions, g and R. A suitable choice of function φ after substitution into Eq. (4.41)
“splits” the equation into two parts showing different functional dependence



94 Exactly Solvable Models of Biological Invasion

on ξ (e.g., containing different powers of ξ). When structured in this way, the
equation is equivalent to the system of two equations which can be used to
obtain g(t) and R(t).

Restricting our consideration to the case φ(ξ) = e−ξ2
(consistent with the

choice of initial condition in the form (4.39)), from Eq. (4.41) we obtain

g

R2

(
4ξ2 − 2

)
e−ξ2 − 2

(
gξ2

R

dR

dt
+

ηg

R2

)
e−ξ2

(4.42)

− dg

dt
e−ξ2

+ f
(
ge−ξ2

)
= 0.

Obviously, applicability of the approach depends on the form of the function
f . For biological reasons it would be interesting to consider a case when f(u)
belongs to the family (4.35). It is not difficult to recognize, however, that for
any fγ(u) Eq. (4.42) has only the trivial solution g(t) ≡ 0.

A nontrivial solution can be obtained if we do not strictly stick to immediate
biological reasons. Namely, let us consider f(u) = f̄(u); see Eq. (4.37). Having
substituted it into Eq. (4.42), after simple transformations we obtain the
following equation:(

4
g

R2
− 2

g

R

dR

dt
+ g

)
ξ2 (4.43)

−
(

2
g

R2
+ 2

ηg

R2
+

dg

dt
+ g ln g

)
= 0.

Since ξ2 and 1 are linearly independent, the coefficients of both must be
identically zero, so that from Eq. (4.43) we arrive at the following system for
the two unknown functions g and R:

dR

dt
=

R

2
+

2
R

, (4.44)

d ln g

dt
= − ln g − σ

R2
(4.45)

where σ = 2 + 2η.
Eqs. (4.44–4.45) are easily solved. Indeed, immediate integration of Eq. (4.44)

yields the following expression for R:

R(t) =
[(

4 + R2
in

)
et − 4

]1/2
, (4.46)

where R(t = 0) = Rin. Then, taking Eq. (4.45) together with Eq. (4.46),
after integration we obtain this expression for function g:

g(t) = exp
(

e−t ln g0 − e−t 2σ

4 + R2
in

ln
[
R(t)
Rin

])
(4.47)

where g0 = g(0). Thus, Eqs. (4.46), (4.47), taken together with (4.40), give
an exact self-similar solution for the problem (4.33), (4.37), (4.39). Evidently,



Single-species models 95

−20 −10 0 10 20
0

0.2

0.4

0.6

0.8

1

Space

P
op

ul
at

io
n 

D
en

si
ty

1 2 3 4 

FIGURE 4.4: The exact solution of Eq. (4.33) with f(u) = f̄(u) and the
initial condition (4.39). Parameters and further details are given in the text.

function g(t) gives the species concentration at the origin which, according
to our choice of function φ, coincides with the maximum population density,
or “amplitude,” of the species’ spatial distribution at every moment t. The
value of R(t) may be regarded as the radius of the region inhabited by the
invading species (see details below). Let us note that the solution (4.46–4.47)
describes 1-D, 2-D and 3-D cases depending on the value of coefficient σ.

The exact solution (4.40), (4.46–4.47) for the problem (4.33), (4.39) with
f(u) = f̄(u) is shown in Fig. 4.4 for parameters σ = 2, Rin = 1 and g0 = 1.1
for t = 0 (curve 1), t = 1 (curve 2), t = 2 (curve 3), t = 3 (curve 4) and
t = 4 (curve 5). Thus one can see that, as it is prescribed by Eq. (4.40),
the evolution of the species’ spatial distribution does not alter its form; the
temporal changes result only in changing the values of the amplitude g of the
distribution and the effective radius R of the inhabited domain.

While the behavior of function R(t) is rather simple, the evolution of the
amplitude g is somewhat more complicated, being determined by three pa-
rameters Rin, g0 and σ. The changes in the behavior of g(t) occurring with
variations of parameter values are illustrated in Figs. 4.5 to 4.7. Fig. 4.5 shows
function g(t) for σ = 2 and Rin = 1 and different values of the initial ampli-
tude g0 = 2.5 (curve 1), g0 = 1.0 (curve 2), g0 = 0.25 (curve 3) and g0 = 0.1
(curve 4). Fig. 4.6 exhibits function g(t) for σ = 2, g0 = 1 and for different
values of initial radius Rin = 2.0 (curve 1), Rin = 1.0 (curve 2), Rin = 0.4
(curve 3) and Rin = 0.1 (curve 4). Fig. 4.7 shows g(t) for g0 = Rin = 1 for
σ = 2 (curve 1), σ = 4 (curve 2) and σ = 6 (curve 3), i.e., for planar, cylindri-
cal and spherical cases, respectively. Thus one can see that, at least for not
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FIGURE 4.5: The amplitude g of the exact solution (4.40), (4.46) and
(4.47) versus time shown for σ = 2, Rin = 1 and different g0, curve 1 for
g0 = 2.5, curve 2 for g0 = 1, curve 3 for g0 = 0.25, curve 4 for g0 = 0.1.

very large values of initial radius Rin or initial amplitude g0, amplitude g(t)
typically shows nonmonotonic behavior, first falling down to its minimal value
and then gradually increasing to the asymptotical value g = 1 prescribed by
Eq. (4.33).

An important point is to understand the relation between the exact so-
lution (4.46–4.47) of Eq. (4.33) obtained for f(u) = f̄(u) and the solutions
corresponding to a more biologically reasonable case when the nonlinear term
in Eq. (4.33) is described by function fγ(u); see (4.35). Taking into account
relation (4.38) and applying the comparison principle for the solutions of non-
linear parabolic equations (see Section 7.4), it is readily seen that

uγ(r, t) ≤ u(r, t) = g(t)φ
(

r

R(t)

)
for any r, t ≥ 0 (4.48)

where uγ denotes the solution of Eq. (4.33) with f(u) = fγ(u) and the same
initial condition (4.39). Thus, functions (4.46) and (4.47) provide an upper
bound for, respectively, the radius and the amplitude of the spatial distribu-
tion of a population with the growth rate described by (4.35).

Relation (4.48), however, leaves open the question how close the solutions
u and uγ actually can be for different parameter values. In particular, it re-
mains unclear whether the radius of the invaded area as given by (4.46) can be
used to predict the rate of species invasion in the biologically meaningful case
f(u) = fγ(u). While the behavior of the amplitude g(t) shown by Figs. 4.5
to 4.7 looks reasonable, an exponential growth of radius R(t) is not realistic.
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FIGURE 4.6: The amplitude g(t) of the exact solution shown for σ =
2, g0 = 1 and different Rin: curve 1 for Rin = 2, curve 2 for Rin = 1, curve
3 for Rin = 0.4 and curve 4 for Rin = 0.1.
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FIGURE 4.7: The amplitude g(t) of the exact solution shown for Rin =
g0 = 1 and different dimensionality of the problem, curve 1 for 1-D case
(σ = 2), curve 2 for 2-D case (σ = 4) and curve 3 for 3-D case (σ = 6).
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Rigorous mathematical analysis (Kolmogorov et al., 1937) shows that, for
sufficiently large times, a population with the local growth rate described by
function fγ(u) with an arbitrary γ > 0 spreads over the area via propagation
of a stationary (= with constant speed and shape) traveling population wave;
it means that R(t) must increase linearly. On the other hand, taking into
account that f̄(u) provides a good estimate for function fγ(u) for sufficiently
small values of γ, one can expect that solution (4.46) may give a good ap-
proximation for the “realistic” solution at the stage preceding the stationary
wave propagation.

In order to address this issue, we are going to compare the exact solu-
tion (4.40), (4.46–4.47) with the results of numerical integration of Eq. (4.33)
obtained for f(u) = fγ(u) and the same initial condition (4.39).

Aiming to make the comparison more straightforward, here we admit a
definition of the radius of the inhabited (invaded) area that is different from
the standard one. Namely, according to the standard definition, cf. Shigesada
and Kawasaki (1997), the radius r∗ of invaded area at every moment t is given
by the following equation:

u(r∗, t) = u∗ (4.49)

where u∗ is a certain threshold density so that the species can hardly be
detected when u ≤ u∗. Alternatively, however, one can define the radius r̄
of the inhabited domain as a distance where the species density becomes M
times smaller than its maximal value, i.e.,

u(r̄, t)
u(0, t)

=
1
M

(4.50)

suggesting that the maximum of the species density is reached in the center of
the domain as it is in the case considered above. Here M > 1 is a parameter.
The latter definition seems to be convenient in the special case of self-similar
spreading of the population, cf. Eq. (4.40). It is readily seen that, in this
case, the area inside the circle of radius r̄(t) at every moment contains a
fixed fraction of the whole population. Particularly, for exact solution (4.40),
(4.46–4.47), r̄(t) = R(t) if we set M = e. For an arbitrary value of M ,
r̄(t) = R(t)

√
ln M . Note that, if u(0, t) tends to unity when t goes to infinity

(as it takes place for the solutions of the problem (4.33)–(4.35)), the definitions
(4.49) and (4.50) are apparently consistent for large time (considering M =
1/u∗).

It must be mentioned that, for an early stage of the invasion, the behavior of
r∗ and r̄(t) (or R(t) for a special case) can be different. Applying the standard
definition (4.49) to the exact self-similar solution given by Eqs. (4.40), (4.46–
4.47), we obtain:

u(r∗, t) = g(t) exp

[
−

(
r∗

R(t)

)2
]

= u∗ (4.51)
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FIGURE 4.8: The radius of invaded area obtained by numerical integration
of Eq. (4.33) with f(u) = fγ(u) for γ = 1 (curve 1), γ = 0.2 (curve 2) and
γ = 0.04 (curve 3); curve 4 shows the exact solution (4.46) (with permission
from Petrovskii and Shigesada, 2001).

so that

r∗(t) = R(t)
[
ln

g(t)
u∗

]1/2

. (4.52)

The radius r̄(t) defined according to Eq. (4.50) is given by the monotonically
increasing function (4.46) for any values of parameters Rin and M . The
behavior of r∗ calculated as (4.52) depends on the relation between the values
of u∗, Rin and g0. Particularly, since function g(t) can be nonmonotonic (see
Figs. 4.5 to 4.7), the behavior of r∗ can be also nonmonotonic at early stages
of the process.

Now, to run numerical simulations, we restrict ourselves to the 1-D case.
Let us begin with the radius R(t) of the invaded domain. Here and below,
the radius R of the invaded domain is determined according to Eq. (4.50)
with M = e. Fig. 4.8 shows the radius R versus time obtained numerically
for γ = 1 (curve 1), γ = 0.2 (curve 2) and γ = 0.04 (curve 3) as well as
the exact solution (4.46) (curve 4). It is readily seen that, for a certain
period of time at the beginning of the system evolution, the behavior of R(t)
given by (4.46) is practically indistinguishable from the results obtained for a
population with generalized logistic growth. The smaller γ is the longer is the
period of closeness between the solutions. This relation has a clear biological
meaning because parameter γ is proportional to the reproduction time τ of
the invasive species; see the line below Eq. (4.34). Thus, the higher is the
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species’ ability for reproduction, the more applicable is the exact solution
(4.40), (4.46–4.47) to describe the species invasion.

Contrary to R(t), the amplitude g(t) of the species concentration provided
by Eq. (4.47) is in a very good agreement with the results obtained for the case
f(u) = fγ(u) for large t; at earlier stages, the relation between the solutions
essentially depends on γ. Fig. 4.9 shows amplitude g versus time calculated
numerically for Rin = 1 for (a) g0 = 0.1 and (b) g0 = 1.2 for γ = 1 (curves 1)
and γ = 0.2 (curves 2); curves 3 show g(t) given by (4.47). Thus, whereas for
γ on the order of unity there may be a considerable discrepancy between the
exact and numerical solutions at the beginning of the process, cf. Fig. 4.9a, for
the values of γ less than about 0.2, Eq. (4.47) gives a good approximation for
the amplitude obtained in the “realistic” case f(u) = fγ(u) for any moment
of time.

It should be noted that, while in an unbounded domain the early stages
of the system evolution may probably be regarded as insignificant because of
their relatively short duration, the situation can be different in the case of
a domain of finite length. In such a case it may appear that the population
spread will never reach its constant-rate asymptote. For example, Fig. 4.10
shows the radius of the inhabited domain calculated numerically in the 1-D
case (curve 1) for parameters γ = 0.04, Rin = 1, g0 = 1.2 and the radius
of the overall domain L = 30. One can see that just at the time when the
system nearly reaches its traveling wave regime (i.e., for t ≈ 6), the impact
of the boundaries begins to prevail and the radius of the inhabited domain
promptly approaches its stationary asymptote R � L = 30. In this case
the total duration of “nontrivial” dynamics t � 6 while the asymptote (4.46)
(curve 2) gives a reasonable approximation for R(t) for t ≤ 4, i.e., a value
of the same order. Let us also mention that, in this example, the traveling
wave asymptote is hardly applicable to any period of the system evolution.
Although for the values of t between 5 and 6 the plot of R(t) (curve 1 in
Fig. 4.10) nearly looks as a straight line, a closer inspection shows that its
slope is still about 1.5 times smaller than it is predicted to be in case of the
traveling wave propagation, see Eq. (2.19).

We want to emphasize that Figs. 4.8 and 4.10 show the radius of invaded
area in dimensionless units. After being re-scaled back to original dimensional
units, t = 1 may correspond to as much as several months, or even years.
Indeed, taking D = 1 km2/year−1 (which is consistent with diffusivity of some
insect species) and assuming that the area inhabited prior to the beginning of
geographical spread is 1 km2, from the definition of dimensionless variables we
obtain l2/D = 1 year. A more specific example will be considered in Chapter
8.

In conclusion, we want to check whether the scenario of the accelerating
species spread considered above is robust, at least, qualitatively, to the defi-
nition of the radius of invaded area, cf. the standard definition (4.49) and the
modified definition (4.50). For this purpose, Fig. 4.10 also shows the plots of
r∗(t) obtained for u∗ = 0.02 (curve 3) and u∗ = 0.1 (curve 4); other parame-
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FIGURE 4.9: The maximum value of the population density obtained by
numerical integration of Eq. (4.33) with f(u) = fγ(u) for γ = 1 (curves 1)
and γ = 0.2 (curves 2); (a) and (b) correspond to g0 = 0.1 and g0 = 1.2,
respectively. Curves 3 show the exact solution (4.47).
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FIGURE 4.10: The radius of invaded area calculated in the case that
species spread takes place in a bounded domain. Curve 1 shows the radius
versus time obtained by numerical integration of Eq. (4.33) with f(u) = fγ(u)
for parameters γ = 0.04, Rin = 1 and g0 = 1.2; curve 2 shows the exact so-
lution (4.46). Curves 3 and 4 show the radius calculated according to the
alternative definition (4.51) for u∗ = 0.02 and u∗ = 0.1, respectively (with
permission from Petrovskii and Shigesada, 2001).

ters are the same. Thus, although in general r∗ can exhibit more complicated
behavior (e.g., for higher values of u∗ function r∗(t) can become nonmono-
tonic), both functions possess similar properties; particularly, both R(t) and
r∗ show apparent initial acceleration in the speed of invasion.

4.3 The problem of critical aggregation

Biological invasion typically begins with a local event when a number of
organisms of an alien species are introduced into a given ecosystem. Under
favorable conditions, the new population may begin to grow and spread onto
new areas which may eventually lead to its geographical spread, either via
population front propagation or in a more complicated manner. Not every
introduction of a new species leads to its geographical spread. The outcome of
the species introduction depends on a variety of factors such as environmental
conditions, availability of food or nutrients, presence/absence of natural ene-
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mies, species evolutionary traits, etc. It also depends on the initial population
size of the introduced species so that the larger the size is the higher are the
chances for the species’ “success.” The problem of distinguishing between the
cases when a local invasion leads to extinction of the introduced alien species
and when it leads to its geographical spread is called the problem of critical
aggregation.

A closer consideration of the latter issue, however, shows that this problem
is not so simple and the “success” of the introduction depends not just on the
initial population size but more on the shape and radius of the infested area
and the maximum population density inside. Indeed, it is readily accepted
that low population density is likely to lead to species extinction, e.g., as a
result of environmental/demographical stochasticity or due to the Allee effect
(May, 1972; Gilpin, 1972; Lewis and Kareiva, 1993; Courchamp et al., 1999).
Therefore, a large population size may result in species extinction in case
the population is spread over a large area so that the population density
appears to be very small. On the contrary, a smaller population size may
result in species persistence/invasion in case the population is concentrated
in a sufficiently small area.

Probably the first mathematical consideration of the problem of critical
aggregation was done by Kierstead and Slobodkin (1953) in application to
the dynamics of plankton patches in marine ecosystems. It has been ob-
served in many field studies that large patches and small patches behave in
a different way: while small patches tend to disappear, large patches tend to
grow. Kierstead and Slobodkin assumed that this behavior arises as a result
of the interplay between plankton multiplication and marine turbulence and
considered the following simple model:

ut(x, t) = Duxx + αu (4.53)

where α is the plankton growth rate and D is turbulent diffusivity. Here 0 <
x < L where L is the radius of the patch, and the environmental conditions
outside of the patch are assumed to be unfavorable for plankton growth so
that

u(0, t) = 0, u(L, t) = 0 (4.54)

and u(x, t) ≡ 0 for x < 0 and x > L.
The solution of problem (4.53–4.54) can be easily found applying the stan-

dard method of variables separation. Let us look for a solution of Eq. (4.53)
in the following form:

u(x, t) = ψ(t)φ(x) (4.55)

where ψ and φ are certain functions to be determined. Having substituted it
to (4.53), we obtain:

1
ψ

(
dψ

dt
− αψ

)
=

D

φ

d2φ

dx2
= − µ (4.56)
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where µ is a certain constant: indeed, since the left-hand side of Eq. (4.56)
depends on t but not on x, and the right-hand side depends on x but not on
t, they only can be constant.

From (4.56), we arrive at

D
d2φ

dx2
+ µφ = 0, (4.57)

dψ

dt
+ (µ − α)ψ = 0. (4.58)

Note that, due to the boundary conditions (4.54), φ(0) = φ(L) = 0. It
is straightforward to see that Eq. (4.57) does not have nontrivial solutions
satisfying these conditions for µ ≤ 0. In case µ > 0, the solution of Eq. (4.57)
is

φ(x) = A cos
(

x

√
µ

D

)
+ B sin

(
x

√
µ

D

)
, (4.59)

A and B are to be found. From φ(0) = 0 we obtain that A = 0, and from
φ(L) = 0 we obtain (assuming that B �= 0) that sin(L

√
µ/D) = 0, so that

µ = µn =
(πn

L

)2

D , n = 1, 2, . . . . (4.60)

Thus, for any µ = µn,

φ(x) = φn(x) = Bn sin
(πnx

L

)
. (4.61)

Correspondingly, the solution of Eq. (4.57) is

ψn(t) = Cne(α−µn)t. (4.62)

The product ψn(t)φn(x) gives a partial solution of (4.53). Since Eq. (4.53)
is linear, the sum of any of its partial solutions is also a solution. Therefore,
the general solution of (4.53) allowing for the boundary conditions (4.54) is:

u(x, t) =
∞∑

n=1

C̃ne(α−µn)t sin
(πnx

L

)
(4.63)

where the coefficients C̃n are determined by the initial conditions.
Remarkably, the behavior of the solution (4.63) is different for different

parameters α, D and L. Indeed, it is readily seen that for α < µ1 it decays
with time while for α > µ1 it exhibits an unbounded growth. The critical
radius of the patch is given by the equation α = µ1 so that

Lcr = π

√
D

α
. (4.64)
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The above considerations are immediately extended onto 2-D and 3-D cases
with cylindrical and spherical symmetry, respectively. The result remains
essentially the same, the only difference is a numerical coefficient on the order
of unity in Eq. (4.64). The unbounded growth predicted by the solution
(4.63) if L > Lcr is evidently an artifact of the assumption that the per capita
population growth α is not density-dependent; from the standpoint of real
populations it means that the population density should be small enough.

Although Eq. (4.64) was originally obtained for the dynamics of plankton
patches, since Eq. (4.53) is a general one (up to the assumption of the linear
population growth), it immediately applies to the problem of critical aggre-
gation. Thus, according to (4.64) the alien population is viable for L > Lcr

and it is prone to extinction for L < Lcr where L is the radius of the ini-
tially inhabited area. Note that, in spite of extreme simplicity of the model
(4.53), the dependence of Lcr on the species diffusivity and the per capita
population growth looks biologically reasonable: the higher is the growth rate
of the introduced population the smaller the initially inhabited area can be.
However, contrary to intuitive expectations, the critical radius given by (4.64)
does not depend on the initial population density. As well as the unbounded
growth of the population density, this is not an intrinsic property of the crit-
ical aggregation but just a consequence of the linear population growth. The
dependence of Lcr on the initial population density can be revealed by more
elaborate models; some of them are considered below.

4.3.1 Practical stability concept

An invaluable contribution from the Kierstead–Slobodkin model was that it
was the first to demonstrate the existence of the critical radius in the problem
of critical aggregation. However, due to its simplicity, there are many features
that it fails to catch. A more realistic approach to the problem is unlikely
possible without taking into account the density-dependence of the population
growth. In order to provide a more sound consideration, now we are going
to make use of the following single-species model allowing for the nonlinear
growth:

∂u

∂t
=

(
∂2u

∂r2
+

η

r

∂u

∂r

)
+ f(u) (4.65)

(in dimensionless variables) where η = 0, 1, 2 corresponds 1-D, 2-D and 3-D
cases, respectively. The initial species distribution is given as

u(r, 0) = Φ(r) (4.66)

where Φ(r) is a certain function.
It should be mentioned that, apart from its density-independence, the

Kierstead–Slobodkin model has another serious drawback. The point is that,
in the model (4.53–4.54), the radius L of the domain is fixed. Whether the
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FIGURE 4.11: Different types of density-dependence in the population
growth rate: curve 1 corresponds to a population affected by the strong Allee
effect and curve 2 shows growth rate described by function f̄(u); see (4.37).

population inside the initial “patch” appears to be viable or prone to extinc-
tion depends on relation between L and Lcr but L is actually prescribed by
the problem formulation, cf. (4.54). It seems that a more adequate approach
should consider the dynamics of the introduced population in an unbounded
domain and the critical radius of the invaded area should arise self-consistently
from solution properties.

In terms of the single-species model (4.65), the problem of critical aggre-
gation in an unbounded spatial domain appears most naturally in case the
population local growth rate becomes negative for small values of the popula-
tion density u, i.e., when f(u) = fc(u) where fc has the following properties:

fc(u) > 0 for ε < u < 1; fc(0) = fc(ε) = fc(1) = 0; (4.67)

fc(u) < 0 for 0 < u < ε and u > 1, (4.68)

e.g., see curve 1 in Fig. 4.11. This type of population dynamics may arise as
a result of the strong Allee effect (see Section 1.2); in that case ε = β. If, at
a certain moment t0, the maximal species density falls below the threshold
density ε, it obviously leads to population extinction.

On the contrary, for a population with nonnegative growth rate, e.g., see
(4.35), the state u ≡ 0 is a “repeller” and the condition maxu(r, t0) < ε will
never lead to the population extinction, however small the value of ε is. For
the special case f(u) = fγ(u), cf. (4.37), this type of behavior is demonstrated
by the exact solution (4.46), (4.47). Although at an early stage of the process
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the maximal species density g may fall to a small value (depending on the
parameter values, see Figs. 4.6 and 4.7), in the large-time limit g(t) always
approaches unity (cf. Figs. 4.5 to 4.7). The radius R(t) of the invaded area
grows monotonically and it means that any event of local invasion (e.g., de-
scribed by initial species distribution (4.39)) leads to a global invasion even
for very small values of Rin and g0.

However, it becomes possible to treat the problem of critical aggregation
in terms of a single-species model (4.65) with nonnegative growth rate as
well if we admit the “practical stability concept.” According to this concept,
the dynamics of a population leads to its extinction, if, at a certain time
moment t0, its maximal concentration falls below a certain small value, i.e.,
max u(r, t0) < ε. (Note that the population is assumed to go extinct even if
the rigorous solution of the problem implies that the population density will
actually be growing for t > t0.) Here a positive constant ε can be considered
as a biological or environmental characteristic for a given population and plays
the same role as the threshold density does for an Allee-type population.

Obviously, actual behavior of the species density is subject to the initial
conditions. Speaking generally, in terms of the problem (4.65)–(4.66) it means
that the issue of the population extinction/survival may depend on the details
of the species initial distribution Φ(r). Mathematical consideration of the
problem of critical aggregation in case of the initial condition of an arbitrary
form appears to be extremely difficult. In fact, we are not aware of any
rigorous result obtained for this problem. To make it treatable, we suggest
that the initial distribution is not an arbitrary function of r but belongs to a
certain family, so that different members of this family correspond to different
values of certain parameters. Specifically, in order to make use of the exact
self-similar solution obtained in Section 4.2.1, we consider the case when the
initial condition is given by

Φ(r) = g0 exp

[
−

(
r

Rin

)2
]

, (4.69)

cf. (4.39), where Rin and g0 are parameters. Since the solution of (4.65)
with (4.69) is known (see (4.40), (4.46) and (4.47)), the problem of predicting
extinction/survival of the invading species is now reduced to the problem of
finding corresponding relations between the radius and the amplitude of the
initially inhabited domain.

Let us mention here that the practical stability concept, originally intro-
duced from heuristic arguments, appears also as a result of strict mathemat-
ical consideration. Namely, it is obvious that, for sufficiently small u, any
function fc(u) with the properties (4.67–4.68) can be dominated by function
f̄(u) = −u ln u; see Fig. 4.11. More rigorously, it means that there exists a
certain U > ε so that fc ≤ f(u) for 0 ≤ u ≤ U . Let uc(r, t) be the solution of
Eq. (4.65) with the initial conditions given by (4.69) and the growth function
possessing the properties (4.67–4.68). Considering the problem (4.65) with
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(4.69) for g0 ≤ U and applying the comparison principle for the solutions
of nonlinear parabolic equations (see Section 7.4), we arrive at the following
relation:

uc(r, t) ≤ u(r, t) = g(t)e−ξ2
for any r, t ≥ 0 (4.70)

where ξ = r/R(t). If it happens that maxu(r, t0) = g(t0) < ε for a certain t0,
it means that the “real” population density falls below the survival threshold
as well and the population goes extinct.

Thus, in terms of exact solution (4.46–4.47) we can use the following con-
dition of the population extinction:

there exists such a moment t0 that g(t0) < ε (4.71)

where ε is a parameter, 0 < ε < 1. Taking into account (4.47), from (4.71) we
arrive at

ln g0 + et0 ln
(

1
ε

)
<

2σ

4 + R2
in

ln
[
R(t0)
Rin

]
(4.72)

where σ = 2 + 2η. Therefore, the species introduction described by (4.69)
leads to species extinction in case inequality (4.72) holds for a certain t0.
The critical relation g0 = gcr(Rin; a, σ, ε) between the problem parameters is
defined by the expression (4.72) when the inequality sign is changed to the
equality sign. While for a “subcritical” case g0 < gcr the invasion will be
unsuccessful and the invasive species goes extinct, for a “supercritical” case
g0 > gcr a local introduction can lead to species geographical spread.

Considering the properties of inequality (4.72), after a little algebra (details
are given below) we arrive at the following critical relation:

gcr ≡ ε for Rin ≥ R∗ (4.73)

and

gcr = exp
(

1
4 + R2

in

(ζ − 2σ ln Rin)
)

for Rin < R∗ (4.74)

where ζ = 2σ ln R∗ − σ + 4 ln ε and R∗ = (σ/ ln (1/ε)).
Particularly, for Rin � 1, Eq. (4.74) takes a simpler asymptotical form:

gcr � ζ̃ R
−σ/2
in (4.75)

where ζ̃ = exp(ζ/4).
Thus, equations (4.73) and (4.74) give the critical relation between the

maximum population density and the initially invaded domain, so that g0 <
gcr provides a sufficient condition for the population extinction. Fig. 4.12
shows the critical relation g0 = gcr(Rin) (logarithmic plot) obtained in 1-D
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FIGURE 4.12: The critical relation between the maximum population den-
sity and the radius of initially invaded domain obtained for different values of
the survival threshold ε, curve 1 for ε = 0.2, curve 2 for ε = 0.05 and curve 3
for ε = 0.01. Parameters from the domain below each of the curves 1, 2 and
3 correspond to species extinction; parameters from the domain above each
curve correspond to species invasion. Auxiliary curve 4 consists of the points
where different asymptotics matches; see details in the text (with permission
from Petrovskii and Shigesada, 2001).

case (σ = 2) for ε = 0.2 (curve 1), ε = 0.05 (curve 2) and ε = 0.01 (curve 3).
Auxiliary curve 4 consists of the points where the two branches of the critical
curve meet for different values of ε, cf. Eqs. (4.73) and (4.74).

An important point that we want to emphasize here is that, although the
critical density-radius relation (4.73–4.74) was obtained for the specific growth
function f̄(u) and for the specific initial condition (4.69), qualitatively, the
shape of the curves shown in Fig. 4.12 appears to be universal. Computer
experiments accomplished for other growth functions and other initial dis-
tributions lead to very similar results, i.e., to a curve exhibiting an infinite
growth for small Rin, approaching the horizontal line g0 = ε for large Rin,
and monotonously declining for intermediate values.

Derivation of Eqs. (4.73–4.74). Condition (4.72) does not immediately
allow one to distinguish between “subcritical” and “supercritical” parameters
Rin and g0 because t0 is unknown. Moreover, since Eq. (4.47) is rather com-
plicated, it does not seem possible to obtain an explicit expression for it. Let
us mention, however, that actually we do not need the value of t0 because the
only important point is whether such a moment exists or not. Considering the
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left-hand side and the right-hand side of (4.72) as two independent functions,

A(z) = ln g0 + ez ln
(

1
ε

)
and B(z) =

2σ

4 + R2
in

ln
[
R(z)
Rin

]
, (4.76)

the existence of the moment t0 (for given Rin, g0 and ε) means that, for some
values of the variable z, the plot of the function B(z) lies higher than the plot
of A(z). Taking into account (4.46), it is easy to see that, for large z, A(z) � ez

while B(z) � z (constant factors are omitted), i.e., A(z) increases faster than
B(z) for any value of parameters. Thus, the condition of the population
extinction A(z) < B(z) means that the plots of A(z) and B(z) have at least
one intersection point. Furthermore, it is readily seen that, while the plot of
A(z) is convex, the plot of B(z) is a concave curve. Different situations can be
then distinguished based on the relation between A(0), B(0) and A′(0), B′(0)
where the prime denotes the function’s derivative with respect to its argument.
Namely, if A′(0) > B′(0), an intersection point exists only if A(0) < B(0).
Taking Eq. (4.76) into account, we arrive at the following system:

A(0) = ln g0 + ln
(

1
ε

)
< B(0) = 0 , (4.77)

A′(0) = ln
(

1
ε

)
> B′(0) =

σ

R2
in

. (4.78)

That is, the invasive population goes extinct if g0 < gcr, where

gcr ≡ ε for Rin ≥ R∗ =
(

σ

ln(1/ε)

)1/2

.

However, the curves A(z) and B(z) can intersect as well in the opposite
case A′(0) < B′(0). Accounting for (4.46) and considering how the plot
of functions A(z) and B(z) changes with variations of parameters, it is not
difficult to show that an intersection point exists when g0 < gcr where the
critical relation is now defined by the following equation:

gcr = exp
(

1
4 + R2

in

(ζ − 2σ ln Rin)
)

for Rin < R∗

where ζ = 2σ ln R∗ − σ + 4 ln ε.
In conclusion, let us mention that the relation Rin = R∗ = (−σ/ ln ε)1/2

separating the two cases has a clear mathematical meaning. Namely, having
it written as ε = exp(−σ/R2

in) and substituting it into gcr = ε, we obtain:

g∗ = exp
(
− σ

R2
in

)
; (4.79)

see curve 4 in Fig. 4.12. Considering Eq. (4.47), it is not difficult to see
that g′(t = 0) > 0 when g0 < g∗ and g′(t = 0) < 0 otherwise. The form
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of Eqs. (4.44–4.45) evidently implies that if g′(t = 0) > 0 then g′(t) > 0
for any t > 0. Thus, in case g0 < g∗ the amplitude of the solution increases
monotonically and the invasive population can only go extinct if the condition
of the population extinction holds already at the beginning of the process,
g0 < ε.

4.3.2 ∗ The Wilhelmsson “blow-up” solution

As it has already been mentioned at the beginning of this chapter, there is
growing evidence that motility of some species can be density-dependent. In
Section 4.1 we made an attempt to account for this phenomenon by means of
considering small-scale migrations whose intensity depends on the population
density. An alternative approach is based on introducing density-dependence
into the species diffusivity. A few models with nonlinear diffusion describing
propagation of traveling population fronts will be considered in Chapter 5. In
this section, we are going to give an insight into the possible modifications
that diffusion density-dependence can bring to the problem of critical aggre-
gation. Our analysis will be based on the exactly solvable model developed
by Wilhelmsson (1988a,b).

We assume that the dynamics of the alien species is described by the fol-
lowing equation:

∂u(x, t)
∂t

=
∂

∂x

(
D(u)

∂u

∂x

)
− Au + Bup − kuq (4.80)

where A, B, k, p and q are certain positive parameters. Apparently, when
B is sufficiently large and 1 < p < q, the reaction term in (4.80) describes the
local growth of the population affected by the strong Allee effect. We also
assume that density-dependence of species diffusivity is described by a power
law so that D(u) = D0u

δ.
Introducing dimensionless variables in an obvious way, from (4.80) we ob-

tain:

ut(x, t) =
(
uδux

)
x
− u + up − κuq . (4.81)

The initial distribution of species is u(x, 0) = Φ(x) where Φ(x → ±∞) = 0,
cf. the comments below Eq. (4.39). The form of Φ which is “intrinsic” for this
problem will become clear later.

For arbitrary p, q and δ, Eq. (4.81) is unlikely to be analytically solvable.
To make it integrable, some simplifications are necessary. For this purpose,
we neglect the last term in the right-hand side so that (4.81) turns to

ut =
(
uδux

)
x
− u + up . (4.82)

The properties of Eqs. (4.81) and (4.82) are essentially different for large
population density because (4.82) does not possess the upper steady state
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FIGURE 4.13: Full (dashed-and-dotted curve) and reduced (solid curve)
parameterization of the population growth rate (see Eqs. (4.81) and (4.82),
respectively.)

any more (see Fig. 4.13). However, for the values of u on the order of the
threshold density the corresponding growth functions lie close to each other,
cf. the dashed-and-dot and solid curves in Fig. 4.13. This is exactly what
we need because, in case the radius of initially inhabited domain is not very
small, the critical value of the population density is expected to be on the
order of the survival threshold, e.g., see Fig. 4.12.

Moreover, it is readily seen that the growth function of (4.82) majorizes the
growth function of (4.81). Thus, by virtue of the comparison principle for the
solutions of nonlinear parabolic equations, cf. Section 7.4, solutions of (4.82)
provide an upper bound for solutions of (4.81).

Equation (4.82) can be further simplified if we additionally assume that
p = δ + 1. In this case, the linear term in the right-hand side of (4.82) can be
eliminated by a simple change of variables. Indeed, considering

u(x, t) = Ũ(x, t)e−t, (4.83)

from (4.82) we first arrive at

eδtŨt =
(
Ũ δŨx

)
x

+ Ũ δ+1 (4.84)

which immediately turns into

Uτ =
(
U δUx

)
x

+ U δ+1 (4.85)
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where U(x, τ) = Ũ(x, t(τ)), provided that the new variable τ satisfies the
following relation:

eδt d

dt
=

d

dτ
. (4.86)

Eq. (4.86) is equivalent to

dτ

dt
= e−δt (4.87)

which gives

τ(t) =
1
δ

(
1 − e−δt

)
(4.88)

assuming that τ(0) = 0. Note that, while the original variable t is defined
on (0,∞), the new variable τ is defined on a finite interval (0, 1/δ). This
observation will appear to have a crucial impact on the solution properties.

Now, let us look for a solution of Eq. (4.85) in the following form:

U(x, τ) = ψ(τ)φ(x). (4.89)

Having substituted (4.89) into (4.85), we obtain

ψ−(δ+1) dψ

dτ
=

1
φ

[
d

dx

(
φδ dφ

dx

)
+ φδ+1

]
= µ. (4.90)

As a result of the variable separations, the left-hand side of (4.90) formally
depends only on τ and the right-hand side depends only on x. That actually
means that each of them is equal to a certain constant which we have denoted
as µ.

Thus, Eq. (4.90) is equivalent to the following system:

dψ

dτ
= µψδ+1 , (4.91)

d

dx

(
φδ dφ

dx

)
+ φδ+1 − µφ = 0 . (4.92)

Equation Eq. (4.91) is readily solved:

ψ(τ) = [δµ(τ0 − τ)]−1/δ (4.93)

where τ0 is an integration constant defined, as usual, by the initial conditions.
To find a solution of Eq. (4.92) is a more difficult problem. Let us first note

that it can be written as follows:

d2z

dx2
+ pz − µpz1/p = 0 (4.94)
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where z = φp ; for convenience, we have re-introduced the notation δ +1 = p.
Considering dz/dx = w(z), Eq. (4.94) takes the form

w
dw

dz
= µpz1/p − pz (4.95)

which is easily integrated yielding

w(z) =
dz

dx
=

(
2µp2

p + 1
z1+1/p − pz2 + C

)1/2

. (4.96)

Introduction of an exotic species normally takes place locally; that means
that φ(x → ±∞) = 0. Correspondingly, dz/dx = 0 for x → ±∞. Then,
substituting w(0) = 0 into Eq. (4.96) we obtain that C = 0.

Evidently, in order to obtain the solution of Eq. (4.96) we must calculate
the following integral:

∫ [
z1+1/p

(
2µp2

p + 1
− pz1−1/p

)]−1/2

dz . (4.97)

Although at first sight it may seem rather scary, by means of the substitution
(

2µp2

p + 1
− pz1−1/p

)
= y2 , (4.98)

integral (4.97) is reduced to a standard one:

− 2
√

p

p − 1

∫ (
2µp2

p + 1
− y2

)−1/2

dz = (4.99)

− 2
√

p

p − 1
arcsin

(
y

√
p + 1
2µp2

)
.

Thus, from (4.96–4.99) we obtain

2
√

p

p − 1
arcsin

(
y

√
p + 1
2µp2

)
= C1 − x (4.100)

where C1 is another integration constant. Taking into account definition of
variables y and z, (4.100) turns to

φp−1(x) =
2µp

p + 1
cos2

[
(p − 1)
2
√

p
(C1 − x)

]
. (4.101)

Since the original equation does not contain x explicitly, its solution appears
to be invariant with respect to a shift along axis x. Therefore, constant
C1 defines where the maxima of φ(x) are situated. In case we assume, for
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convenience, that one of them is reached at x = 0, then C1 = 0 and we finally
arrive at the solution of Eq. (4.92):

φ(x) =
(

2µp

p + 1

)1/(p−1)

cos2/(p−1)

[
(p − 1)
2
√

p
x

]
. (4.102)

Coming back to original variables, from (4.83), (4.89), (4.93) and (4.102),
and also recalling that p = δ + 1, we obtain the solution of Eq. (4.82):

u(x, t) =
[

2(δ + 1)e−δt

δ(δ + 2)(τ0 − τ)

]1/δ

cos2/δ

(
δx

2
√

δ + 1

)
(4.103)

where τ(t) is given by (4.88).
Let us note that the function u(x, t) given by (4.103) is periodical in space

with period Λ = (2π/δ)
√

δ + 1 at any moment t, in particular, for t = 0.
Since biological invasion starts with a local event, a periodical function can
hardly be used to describe species introduction. However, we can construct a
single-hump solution by means of the following relations:

u(x, t) = A(t) cos2/δ
(πx

Λ

)
for |x| <

Λ
2

, (4.104)

u(x, t) ≡ 0 for |x| ≥ Λ
2

(4.105)

where

A(t) =
[

2(δ + 1)e−δt

δ(δ + 2)(τ0 − τ)

]1/δ

(4.106)

is the maximum population density.
It is readily seen that the solution (4.104–4.106) is a “blow-up” type of

solution because it turns to infinity at finite time t̄ when τ(t̄) = τ0. (More
about the blow-up solutions and their properties can be found in Samarskii et
al. (1987) and Bebernes and Eberly (1989).) Now, we recall that τ ∈ (0, 1/δ)
and whether the solution actually has the singularity or not depends on the
value of τ0. In case τ0 > 1/δ, the solution will never blow-up. In its turn, τ0

depends on the maximum population density in the initial spatial distribution
of the introduced species. Indeed, letting t = 0 from (4.106) we obtain:

τ0 =
2(δ + 1)
δ(δ + 2)

A−δ
0 (4.107)

where A0 = A(0). From the critical relation τ0 = 1/δ, we then immediately
arrive at the equation for the critical population density:

Acr =
(

2(δ + 1)
δ + 2

)1/δ

. (4.108)
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FIGURE 4.14: The critical initial profile of the population density (solid
curve) as given by (4.109–4.110). The profiles that lie above and below the
critical one, cf. the dashed-and-dotted curves, correspond to species invasion
and species extinction, respectively.

Thus, the initial species distribution u(x, 0) = Φ̂(x) where

Φ̂(x) = Acr cos2/δ
(πx

Λ

)
for |x| <

Λ
2

, (4.109)

Φ̂(x) ≡ 0 for |x| ≥ Λ
2

(4.110)

is a separatrix separating the solutions tending to zero (for A0 < Acr) from
the solutions tending to infinity (for A0 > Acr); see Fig. 4.14. Apparently,
the decaying solutions correspond to species extinction. As for the singular
solutions, their growth can be interpreted as the beginning of species spread,
especially if we take into account that their unboundedness is clearly a conse-
quence of our neglecting the term uq in the original equation (4.81). It should
be also mentioned that, since solutions of (4.82) majorize solutions of (4.81),
from the standpoint of the full Eq. (4.81), the condition Φ(x) ≤ Φ̂(x) is a
sufficient condition of alien species extinction.

In conclusion, we want to mention that, as well as in the Kierstead–Slobodkin
model, solution (4.104–4.106) describes the population dwelling in a finite do-
main. However, an important distinction is that in this case the length of the
domain appears as an intrinsic property of the solution, not being fixed by
the problem formulation. Formally, Eq. (4.82) is considered in an unbounded
space and the dynamical “confinement” of the alien population is a result of
the diffusion density-dependence.



Chapter 5

Density-dependent diffusion

In the previous chapters, our analysis was mostly focused on the cases when
species diffusivity is constant. There is, however, growing evidence that in
some ecological situations species motility can depend on the population den-
sity (Gurney and Nisbet, 1975; Hengeveld, 1989). There are different manifes-
tations of this phenomenon and different modeling approaches to take it into
account (Turchin, 1998; Ardity et al., 2001). Here we assume that density-
dependence of species motility can be adequately described by means of vari-
able diffusivity. Our goal is to investigate what changes density-dependent
diffusion can bring into the system dynamics.

In a single-species model, the effects of diffusivity dependence on the popu-
lation density can be taken into account by means of an immediate extension
of the basic equation, i.e.:

ut(x, t) = (D(u)ux)x + F (u) , (5.1)

cf. Section 2.1. Apparently, the solution properties depend on the form of
D(u). Inferences from ecological observations indicate that, in those cases
when the density-dependence takes place, D(u) is likely to be an increasing
function. In this chapter, we are going to give an insight into consequences of
diffusivity density-dependence by considering a few exactly solvable models
with different D(u) and F (u). Our consideration will be mostly based on
original works by Herrera et al. (1992) and Strier et al. (1996).

5.1 The Aronson–Newman solution and its generaliza-
tion

The following equation has been introduced by Gurney and Nisbet (1975,
1976) as the simplest model of a population with density-dependence motility:

ut(x, t) = (uux)x + u(1 − u) (5.2)

(in dimensionless variables). Invasion of an alien species corresponds to the
special choice of conditions at infinity:

u(x → −∞, t) = 0, u(x → ∞, t) = 1 (5.3)

117
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FIGURE 5.1: A “sharp” traveling population front described by exact so-
lution (5.4–5.5). Note that the population density gradient has a discontinuity
at the leading edge.

where we assume without any loss of generality that the invasive species
spreads from right to left.

Aronson (1980) and Newman (1980) considered independently the proper-
ties of Eq. (5.2) and showed that it has an exact solution describing a traveling
population front:

U(ξ) = 1 − exp
(
−ξ − ξ0√

2

)
for ξ ≥ ξ0 , (5.4)

U(ξ) = 0 for ξ < ξ0 (5.5)

where ξ = x − ct and c is the speed of the wave. The profile described by
(5.4–5.5) is shown in Fig. 5.1. The remarkable feature of this solution is that
the population density is greater than zero only in a semi-infinite interval, i.e.,
for ξ ≥ ξ0.

Note that the “leading edge” ξ = ξ0 is a singular point where the solution
first derivative has a discontinuity; for that reason, the wave described by (5.4–
5.5) is often referred to as a “sharp” front. Correspondingly, the derivative
dU/dξ does not exist at the leading edge and thus, strictly speaking, Eq. (5.2)
may not be applicable when ξ = ξ0. In a more rigorous sense, U(ξ) given
by (5.4–5.5) should be regarded as a “weak” solution, i.e., a solution of the
corresponding integral-differential equation (Herrera et al., 1992; for a more
general discussion see Volpert and Khudyaev, 1985). However, it still appears
possible to treat (5.4–5.5) in terms of Eq. (5.2) if we take into account that
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U(ξ) and the flux D(U)dU/dξ have no discontinuity at ξ = ξ0.
There are different ways to arrive at (5.4–5.5). Apparently, traveling fronts

arise as solutions to the following equation:

d

dξ

(
U

dU

dξ

)
+ c

dU

dξ
+ U(1 − U) = 0 . (5.6)

Since Eq. (5.6) does not contain variable ξ explicitly, its order can be re-
duced by means of introducing a new variable dU/dξ = ψ(U), cf. Section 9.1.
Equation (5.6) then takes the form

ψ
d

dU
(Uψ) + cψ + U(1 − U) = 0 . (5.7)

Aronson (1980) and Newman (1980) (see also (Murray, 1989) for a brief
review of their results) studied the phase plane (U,ψ) of Eq. (5.6) and found
that, for a certain value of c, there must exist a unique trajectory connecting
the equilibrium points (1, 0) and (0,−c). Assuming that the trajectory is
given by a straight line, ψ = −c(1−U), they then were able to find the speed
of the wave c and, eventually, to obtain the solution (5.4–5.5).

Here we use another way to arrive at (5.4–5.5) which is more consistent
with our previous analysis. Let us try to look for a solution of (5.7) in the
form of a polynomial of m-th order. To obtain possible values of m, we first
consider ψ ∼ Um. Having substituted it into the equation, we obtain:

U2m + U2m + Um + U − U2 = 0 (5.8)

where we have omitted the coefficients. Evidently, different powers of U match
each other only if m = 1. A general form of the first-order polynomial would
be ψ = α − AU (where α and A are certain coefficients) which we regard as
an ansatz. We then take into account that U = 1, ψ = 0 is an equilibrium
point (corresponding to the condition at ξ → ∞) so that ψ(1) = 0 and thus
A = α. Substituting ψ = α(1 − U) into (5.7), we obtain:

−α2U + α2(1 − U) + cU + U = 0 . (5.9)

Matching different powers of U , from (5.9) we arrive at

c = − α , α = ± 1√
2

. (5.10)

Here the choice of the sign for α must be consistent with the choice of con-
ditions at infinity. In the case of (5.3), U(ξ) is an increasing function so
that ψ = dU/dξ > 0 and α > 0. Thus, α = 1/

√
2. Correspondingly,

c = −1/
√

2 < 0 so that the front travels to the left.
To obtain the shape of the wave profile, we make use of the ansatz itself:

ψ =
dU

dξ
=

1 − U√
2

. (5.11)
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From (5.11), we immediately obtain:

U(ξ) = 1 − exp
(
−ξ − ξ0√

2

)
. (5.12)

Note that solution (5.12) by itself does not possess any clear biological meaning
because it is not nonnegative if considered on the whole line. Strictly speaking,
it makes sense only for ξ ≥ ξ0 where U ≥ 0. However, we recall that U(ξ) ≡ 0
is also a solution. Thus, a biologically meaningful solution can be obtained
by inosculating the two different branches. As it was mentioned above, this
corresponds to a weak solution; alternatively, we can consider Eq. (5.6) in two
semi-infinite domains and match different solutions at the interface ξ = ξ0 by
imposing the conditions of continuity on the population density and its flux.
From here, we arrive at (5.4–5.5).

A point of interest is the biological relevance of the Aranson–Newman so-
lution. One of the features of the diffusion-reaction equations with constant
diffusivity that they have often been criticized for is that they, actually, de-
scribe an infinite-speed propagation of the leading edge. Indeed, for initial
conditions of compact support at t = 0, they predict the population density
to be positive in the whole space for any t > 0, however small t is. This is
readily seen from the general solution of the diffusion equation (see Section
9.3) and is extended to the diffusion-reaction equation with a logistic growth
by virtue of the comparison principle. Although at large distances the den-
sity is exponentially small, theoretically speaking, the probability of catching
an individual of the invasive species appears to be greater than zero at any
position in space which is not realistic. On the contrary, Eq. (5.2) predicts
that, in front of the propagating population front, the invasive species is ab-
sent in the strict mathematical sense. It remains unclear, however, whether
this feature is a specific property of Eq. (5.2) with the diffusion coefficient
being proportional to the population density or a more general property of
density-dependent diffusion. This question is addressed below.

5.1.1 A general case

In this section, we consider how the Aronson–Newman solution can be gen-
eralized to take into account other cases of density-dependence. Specifically,
we consider the following equation:

ut(x, t) =
(
uδux

)
x

+ up − uk . (5.13)

For biological reasons, parameters p, k are positive, δ is nonnegative and
k > p in order to ensure stability of the upper steady state u = 1.

As above, we are interested in traveling wave solutions, i.e., solutions of the
equation

d

dξ

(
U δ dU

dξ

)
+ c

dU

dξ
+ Up − Uk = 0 (5.14)
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where U = U(ξ), ξ = x − ct and c is the speed of the wave. Since (5.14)
does not contain ξ explicitly, it is convenient to introduce a new variable
dU/dξ = ψ(U). Eq. (5.14) is then reduced to the following equation of the
first order:

ψ

(
U δ dψ

dU
+ δU δ−1ψ + c

)
+ Up

(
1 − Uk−p

)
= 0 . (5.15)

We will try to obtain exact solutions of (5.15) by means of introducing a
relevant ansatz. Note that our goal here is to obtain a generalization of the
Aranson–Newman solution to the case given by Eq. (5.14). Correspondingly,
we expect it to describe a sharp front, i.e., a profile of population density that
turns to zero with a finite derivative. Thus, a relevant choice of ansatz seems
to be

ψ(U) = α (1 − Um) (5.16)

(where α and m are to be defined) so that ψ(1) = 0 and ψ(0) = α �= 0 gives
the gradient of the wave profile at the leading edge; see Fig. 5.1.

Having substituted (5.16) into (5.15), after some transformations we obtain:

α (1 − Um)
[
c + αδU δ−1 − α(m + δ)Um+δ−1

]
(5.17)

+ Up
(
1 − Uk−p

)
= 0 .

The choice of the ansatz is appropriate if, after substitution of (5.16) into
(5.15), we are able to find all the coefficients by means of equating different
powers of U . However, since we actually have only two unknown values to be
determined in this way, i.e., α and c, the number of corresponding algebraic
equations must not be larger than two. In its turn, it means that the equation
can contain U only in two different powers. Evidently, for arbitrary p, k, δ
and m, Eq. (5.17) contains more than two powers. Therefore, we have to make
certain suggestions about parameter values in order to simplify the equation.
In particular, we notice that, if k − p = m, Eq. (5.17) takes a simpler form:

αc + α2δU δ−1 − α2(m + δ)Um+δ−1 + Up = 0 . (5.18)

For arbitrary p, δ and m, Eq. (5.18) still contains four different powers,
i.e., 0, δ− 1, m + δ− 1 and p. Here, the term (αc) can only be matched with
another one if either (i) δ − 1 = 0 or (ii) δ + m − 1 = 0.

Let us first consider (ii). In this case, Eq. (5.18) takes the form

α[c − α(m + δ)] + α2δU δ−1 + Up = 0 . (5.19)

It is readily seen that the only remaining step to be made is to let p = δ−1
in order to match the last two terms in the left-hand side of (5.19). However,
equating the coefficients, we then obtain α2δ + 1 = 0 which is impossible
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because both α and δ are nonnegative. Thus, case (ii) does not lead to a
solution.

In contrast, in the case δ = 1 we immediately obtain that m = p and
k = 2m. Matching different powers in Eq. (5.18), we arrive at the equation
for the speed of the wave:

c = − α , α = ± 1√
p + 1

(5.20)

where different signs for α correspond to different conditions at infinity, i.e.,
whether the invasive species spreads along axis x or against axis x. For the
conditions given by (5.3), U(ξ) must be an increasing function; therefore,
α > 0.

To obtain the wave profile, we have Eq. (5.16) which now reads as follows:

dU

dξ
=

1√
p + 1

(1 − Up) . (5.21)

For an arbitrary p, Eq. (5.21) does not lead to an explicit expression for
U(ξ). However, at least two cases when the solution can be obtained in a
closed form are easily identified. One of them is given by p = 1 (k = 2) when
(5.21) leads to the Aranson–Newman solution (5.4).

The second integrable case is given by p = 2 (k = 4). Correspondingly,
from (5.21) we obtain:

U(ξ) = tanh
(

ξ − ξ0√
3

)
. (5.22)

The right-hand side of (5.22) is nonnegative only for ξ ≥ ξ0; therefore, we
have to inosculate it with the trivial solution U(ξ) ≡ 0 in the same manner
as it was done for the Aranson–Newman solution:

U(ξ) = tanh
(

ξ − ξ0√
3

)
for ξ ≥ ξ0 , (5.23)

U(ξ) = 0 for ξ < ξ0 . (5.24)

Compared to the Aranson–Newman solution, exact solution (5.23–5.24)
covers a different case of density-dependence in the population growth when
the growth function F (u) is not convex. In biological terms, it corresponds
to a particular case of the weak Allee effect. As well as (5.4–5.5), the solution
(5.23–5.24) describes a sharp population front with the population density be-
ing greater than zero in a semi-infinite domain behind the leading edge ξ = ξ0.
Let us mention, however, that (5.23–5.24) has been obtained for diffusivity
density-dependence the same as in the original Eq. (5.6); thus, the question
of generality has yet remained open.

Remarkably, the above two cases are not the only ones when Eq. (5.14) has
an exact solution. In order to comprise other cases, we need to modify the
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form of ansatz. The ansatz (5.16) apparently implies that the slope of the
profile at the leading edge is finite, ψ(U = 0) = α. Theoretically speaking,
however, we cannot rule out existence of the sharp fronts with the profile
approaching zero with infinite slope, e.g., see Fig. 5.2a. To take this type of
wave into account, we consider the following generalization of (5.16):

ψ(U) = α

(
1

Uγ
− Um

)
(5.25)

where γ is another parameter to be determined. In case γ = 0, ansatz (5.25)
coincides with (5.16). In case γ < 0, ψ(0) = 0 which is a typical wave profile
behavior for density-independent diffusion. However, for γ > 0, it possesses
the required property, i.e., ψ = dU/dξ → ∞ when U → 0.

Having substituted (5.25) into Eq. (5.15), we obtain:

αU−γ (1 − Um+γ)
[
c + αδU δ−1 (U−γ − Um) − αUδ

(
γU−γ−1 + mUm−1

)]
+ Up

(
1 − Uk−p

)
= 0 . (5.26)

As above, in order to keep the system not overdetermined, we should some-
how decrease the number of different powers of U in Eq. (5.26). For that
purpose, we assume that m + γ = k − p; Eq. (5.26) is then reduced to

α
[
c + α(δ − γ)U δ−γ−1 − α(δ + m)U δ+m−1

]
+ Up+γ = 0 . (5.27)

A nontrivial solution is only possible when either (iii) δ − γ − 1 = 0 or (iv)
δ + m − 1 = 0. In the latter case, by means of matching different powers of
U , from (5.27) we arrive at the following system:

δ + m − 1 = 0, (5.28)
δ − γ − 1 = p + γ, (5.29)
m + γ = k − p (5.30)

which leads to p+m+2γ = 0. However, p > 0 and m and γ are nonnegative;
therefore, the system (5.28–5.30) is inconsistent.

In case (iii), instead of (5.28–5.30) we obtain the system

δ − γ − 1 = 0,

δ + m − 1 = p + γ,

m + γ = k − p

which is immediately solved:

γ = δ − 1, m = p, k = 2p + δ − 1. (5.31)

Correspondingly, for the coefficients we obtain

αc + α2(δ − γ) = 0 , (5.32)
−α2(δ + m) + 1 = 0 (5.33)
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FIGURE 5.2: (a) A “sharp” traveling front with infinite steepness at the
leading edge, cf. exact solution (5.36–5.37) for δ > 1; (b) a traveling front
with a smooth profile, cf. (5.36–5.37) for δ < 1.
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so that the speed of the wave is given as

c = − α , α =
1√

p + δ
(5.34)

where we have taken into account the conditions at infinity; see (5.3).
The wave profile is obtained from Eq. (5.25) which now reads as follows:

U δ−1dU

1 − Up+δ−1
=

dξ√
p + δ

. (5.35)

For arbitrary p and δ, Eq. (5.35) does not lead to a solution in a closed form.
However, at least in two cases an explicit exact solution can be found easily.

First, consider p = 1. By virtue of (5.31), k = δ + 1; thus, Eq. (5.14)
describes a population with a generalized logistic growth. Eq. (5.35) is then
readily solved leading to a generalization of the Aranson–Newman solution:

U(ξ) =
[
1 − exp

(
− ξ − ξ0√

δ + 1

)]1/δ

for ξ ≥ ξ0 , (5.36)

U(ξ) = 0 for ξ < ξ0 (5.37)

where we have taken into account that U(ξ) cannot be negative.
Depending on the value of δ, solution (5.36–5.37) has somewhat different

properties at the leading edge, i.e., in a vicinity of ξ = ξ0. Namely, for
δ = 1, it describes a sharp front with a finite gradient, cf. Fig. 5.1. For
δ > 1, it describes a sharp front with an infinite gradient (see Fig. 5.2a).
However, for δ < 1 the gradient of the population density at the leading
edge is zero (Fig. 5.2b). The latter case thus formally coincides with the case
of density-independent diffusion when dU/dξ → 0 for U → 0, cf. Chapter
3. Interestingly, in spite of this similarity, solution (5.36–5.37) is positively
defined not on the whole line but only in a semi-finite domain.

The second integrable case is obtained for p = δ + 1 (k = 3δ + 1). Since
δ > 0, the growth function F (u) is not convex; thus, it corresponds to a
population with a weak Allee effect. In this case, Eq. (5.35) has the following
solution:

U(ξ) =
[
tanh

(
ξ − ξ0√
2δ + 1

)]1/δ

for ξ ≥ ξ0 , (5.38)

U(ξ) = 0 for ξ < ξ0 . (5.39)

Clearly, the solution properties at the leading edge for different δ are the same
as for (5.36–5.37).

Thus, we have shown that semi-finiteness of traveling wave solutions is a
typical property of diffusion-reaction systems with density-dependent diffu-
sivity provided D(u) ∼ uδ. On the contrary, the “sharpness” of the traveling
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fronts is not an immanent property of nonlinear diffusion and is only ob-
served for δ ≥ 1. These conclusions are made based on the properties of exact
traveling wave solutions.

In conclusion to this section, we want to mention that, although we were
able to obtain exact solutions in a closed form only for a few special cases,
the equation for the speed of the traveling front (5.34) is available even when
solution is unknown. A question important for applications is what speed
of the front is actually observed. Although an analytical investigation of
this problem is largely absent [but see Sherratt and Marchant (1996) for an
example of asymptotical analysis], numerical experiments show that initial
conditions of compact support always relax to the front propagating with the
speed given by (5.34), cf. Herrera et al. (1992).

5.2 Stratified diffusion and the Allee effect

In the previous section we showed that introduction of density-dependence
into species diffusivity can essentially modify the pattern of species spread.
Interestingly, although the diffusivity was assumed to vanish when the pop-
ulation density tends to zero, the models considered above do not predict
a possibility of invasion blocking: the speed of the propagating population
front does not change its sign, cf. (5.34). The question that remains open is
whether this conclusion is a consequence of the particular parameterization of
diffusivity density-dependence as a power law, i.e., D(u) ∼ uδ, or it is a more
general result.

It appears that the condition of wave blocking for an invasive population
with density-dependent motility can be obtained for a rather general case.
Apparently, of primary interest are the traveling wave solutions of Eq. (5.1),
i.e., the solutions of the following equation:

d

dξ

(
D(U)

dU

dξ

)
+ c

dU

dξ
+ F (U) = 0 . (5.40)

Assuming that the invading species spreads from left to right, we set the
following conditions at infinity:

U(ξ) = K for ξ → −∞ , U(ξ) = 0 for ξ → +∞ (5.41)

where K is the population carrying capacity. Invasion corresponds to traveling
fronts with c > 0.

For the single-species model with D = const, the condition of wave block-
ing was considered in Section 2.1. Eq. (2.22) can be readily generalized to
the case of density dependent diffusivity. Indeed, multiplying Eq. (5.40) by
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D(U)dU/dξ and integrating over space, we arrive at

1
2

[(
D(U)

dU

dξ

)2
] ∞

−∞
+ c

∫ ∞

−∞
D(U)

(
dU

dξ

)2

dξ

−
∫ K

0

D(U)F (U)dU = 0 . (5.42)

By virtue of the conditions at infinity, dU/dξ = 0 for ξ → ±∞; therefore, the
first term on the left-hand side is equal to zero. Then, from (5.42) we obtain:

c =
∫ K

0

D(U)F (U)dU ·
[∫ ∞

−∞
D(U)

(
dU

dξ

)2

dξ

]−1

. (5.43)

Equation (5.43) cannot be used to calculate the speed in a general case
because the solution U(ξ) is unknown. However, it does give important infor-
mation regarding the sign of the wave speed. Since the integral in the square
brackets is positive, c = 0 means that

∫ K

0

D(U)F (U)dU = 0 . (5.44)

Obviously, this is possible only if F (U) changes its sign in the interval
(0,K). From a biological standpoint, the most interesting case of alternating-
sign F (U) corresponds to the strong Allee effect when the growth rate becomes
negative for small values of population density; see (1.13–1.14). Thus, inva-
sion can be blocked (c = 0) or turned to retreat (c < 0) only if the population
growth of the invasive species is damped by the strong Allee effect. Moreover,
Eqs. (5.43–5.44) clearly predict that diffusivity density-dependence can break
the “standard” condition of wave blocking,

∫ K

0
F (U)dU = 0, cf. (2.22). It can

be expected that, depending on whether D(U) is an increasing or decreasing
function, diffusion density-dependence either enhances species invasion or en-
hances species retreat, respectively. In order to address these issues in a more
quantitative way, below we will consider an exactly solvable model that takes
into account the Allee effect along with diffusivity density-dependence.

Note that the generalized Aronson–Newman model, cf. (5.13), gives a spe-
cial case of the density-dependence when the diffusivity tends to zero for
small population density. In a real ecological situation, it is more likely to
happen that it tends not to zero but to a certain relatively small value D0

(see Fig. 5.3). An appropriate parameterization could be as follows:

D = D0 + AUγ or D = D0 +
Uγ

Uγ + Aγ
(D1 − D0) (5.45)

where A and γ would be certain positive parameters. From the ecological
standpoint, these types of density-dependence correspond to the “stratified
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FIGURE 5.3: A sketch of diffusivity dependence on population density
(solid curve) in the case of “stratified diffusion.” The transition zone between
the low-diffusion and high-diffusion regions is situated around UD = 1; the
dashed-and-dotted line shows corresponding piecewise linear approximation.

diffusion” (Hengeveld, 1989; Shigesada and Kawasaki, 1997) when species dif-
fusivity increases along with its population density. From these two param-
eterizations, the second one looks biologically more reasonable taking into
account that species diffusivity is related to individual mobility which cannot
increase unboundedly.

However, we are not aware of any exactly solvable model where diffusivity
dependence on U is of the type (5.45) or qualitatively similar. Instead, another
approach can be applied. We assume that there are two ranges of the density-
dependence, namely, the range of small U where the characteristic value of
diffusivity is D0, and the range of large U where the characteristic value is
D1. We further assume that the transition region between these two ranges
is relatively narrow and situated around a certain population density UD (see
Fig. 5.3). The diffusivity density-dependence can then be parameterized as
follows:

D(U) = D0 for U < UD , D(U) = D1 for U ≥ UD (5.46)

or

D(U) = D0 + (D1 − D0)θ (U − UD) (5.47)

where

θ(z) = 0 for z < 0 and θ(z) = 1 for z ≥ 0 . (5.48)
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The above assumptions are still not sufficient to make equation (5.40) ex-
actly solvable. One way to make it integrable is by means of making additional
assumptions about the type of density-dependence in the population growth
rate. In particular, similarly to the above arguments, we assume that the
transition region between the range of small U where the Allee effect strongly
manifests itself and the range of large U where its impact is likely to be neg-
ligible is relatively narrow and situated at a certain density UA. Then the
growth rate can be parameterized as follows:

F (U) = − αU + δθ(U − UA) (5.49)

(cf. Section 3.3.2) where α and δ are positive parameters. Correspondingly,
F < 0 for 0 < U < UA and for U > δ/α and F < 0 for UA < U < δ/α, δ/α
being the carrying capacity.

Introducing dimensionless variables

t′ = tα, x′ = x(α/D0)1/2, U ′ = Uα/δ (5.50)

and omitting primes for convenience, we arrive at equation (5.40) where now

F (U) = − U + θ(U − β), (5.51)

D(U) = 1 + (ε − 1)θ (U − UD) (5.52)

where ε = D1/D0, β = UAα/δ and UD is re-scaled according to (5.50). The
problem thus depends on three parameters, i.e., β, UD and ε. The conditions
at infinity are given by (5.41) where now K = 1.

The existence of the two threshold values, i.e., β and UD, defines, in a
general case, three spatial regions according to how the population density
in each region compares with these thresholds; see Fig. 5.4. Namely, in the
region far to the left (region I), U > max(β, UD). In the region far to the right
(region III), U < min(β, UD). Correspondingly, in the intermediate region,
i.e., region II, we have min(β, UD) < U < max(β, UD). Region II disappears
in the marginal case β = UD.

An essential feature of the above model is that equation (5.40) with popula-
tion growth given by (5.51) and diffusivity given by (5.52) is linear in each of
the regions I, II and III. That makes possible to obtain its analytical solution
(Strier et al., 1996).

Apparently, in region I equation (5.40) takes the following form:

ε
d2U

dξ2
+ c

dU

dξ
+ (1 − U) = 0 (5.53)

and its biologically meaningful solution (i.e., bounded for ξ → −∞) is

U(ξ) = 1 + A1 exp(λ1ξ) (5.54)
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FIGURE 5.4: A sketch of the population density versus space in a traveling
population front. Spatial domains I, II and III are defined according to how
the population density compares with the two threshold values UD and β;
details are given in the text.

where

λ1 =
−c +

√
c2 + 4ε

2ε
. (5.55)

In region III, the equation takes the form

d2U

dξ2
+ c

dU

dξ
− U = 0 (5.56)

and the corresponding solution is

U(ξ) = A3 exp(λ3ξ) (5.57)

where

λ3 =
−c −√

c2 + 4
2

. (5.58)

In the intermediate region, the exact form of the equation depends on the
relation between β and UD. Combining both cases together, the solution takes
the following form:

U(ξ) = A−
2 exp(λ−

2 ξ) + A+
2 exp(λ+

2 ξ) + θ(UD − β) (5.59)
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where

λ±
2 =

−c ±√
c2 + 4Di

2Di
. (5.60)

Here the notation Di is introduced for convenience. The value of Di depends
on how β and UD compare so that Di = ε if β > UD and Di = 1 otherwise.

Constants A1, A3 and A±
2 can be found from the continuity condition at

the boundary between different regions, i.e., at the interface where solutions
(5.54), (5.57) and (5.59) must match each other. Since we are looking for a
solution of the second order differential equation, at the point ξβ where U = β
both the density and its first derivative must be continuous:

U(ξβ − 0) = U(ξβ + 0) ,
dU(ξβ − 0)

dξ
=

dU(ξβ + 0)
dξ

(5.61)

where the notations −0 and +0 correspond to the limiting values from the
left and from the right of ξβ , respectively.

Similarly, at the point ξD where U = UD we have:

U(ξD − 0) = U(ξD + 0) , (5.62)

D (U(ξD − 0))
dU(ξD − 0)

dξ
= D (U(ξD + 0))

dU(ξD + 0)
dξ

. (5.63)

Let us note that the critical coordinates ξβ and ξD are not known either.
To determine them, we can use their definition, i.e.,

U(ξβ) = β , U(ξD) = UD . (5.64)

Hereby, (5.61–5.64) give a system of six equations to be used to obtain seven
unknown variables A1, A3, A±

2 , ξβ , ξD and c. However, it is readily seen that,
since Eq. (5.40) does not contain ξ explicitly, it is invariant with respect to
translation. By virtue of translation symmetry, the solution actually depends
on the difference (ξβ − ξD) rather than on ξβ and ξD separately. It means
that one of the unknown coordinates ξβ and ξD can be either kept arbitrary
or set to a convenient value. Below we let ξD = 0.

Special case: β = UD. In a general case, calculations appear to be
rather cumbersome and tedious. However, if we assume that β = UD, the
problem is treated analytically much more easily. It should be mentioned
that, although this assumption may seem somewhat restrictive, actually, very
little is known about the value of UD in real ecological communities as well
as about the mechanisms underlying diffusion density-dependence in general.

In this case, the intermediate region disappears, and the solution matching
conditions leads to a system of only three equations, i.e.,

U(0 − 0) = U(0 + 0) , (5.65)

D(U(0 − 0))
dU(0 − 0)

dξ
= D(U(0 + 0))

dU(0 + 0)
dξ

, (5.66)
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and U(0) = β. From the first and the last of them, we immediately obtain
that A3 = β and A1 = β − 1; thus the exact solution is given by

U(ξ) = 1 − (1 − β) exp(λ1ξ) for ξ < 0 , (5.67)

U(ξ) = β exp(λ3ξ) for ξ > 0 (5.68)

where λ1 and λ3 are given by (5.55) and (5.58), respectively, and c is yet to
be determined.

To obtain the speed, we make use of Eq. (5.66) that now reads as follows:

ε(β − 1)λ1 = βλ3 . (5.69)

After some standard transformations, from (5.69) we obtain:

c =
[
(1 − β)2 − β2

ε

] [(
1 − β +

β

ε

)
(1 − β)β

]−1/2

. (5.70)

In the absence of density-dependence, i.e., for ε = 1, Eq. (5.70) coincides with
(3.94).

Figure 5.5 shows the speed c given by (5.70) versus β for different values of
ε, the solid curves from left to right correspond to ε = 0.2, 0.33, 1.0, 3.0 and
5.0 and the dashed-and-dotted curve shows the limiting case ε = ∞. While
the unbounded increase of c in vicinity of β = 0 and β = 1 is apparently
the artifact of the model (see the comments below Eq. (3.94)), in the inter-
mediate region the behavior of the curves looks biologically reasonable. One
interesting thing can be immediately inferred from the shape and position of
the curves. For the parameters that would result in wave blocking in the case
of constant diffusivity, i.e., for β = 0.5, there will be no blocking when the
diffusivity is given by the step function (5.52). In particular, the traveling
population front will still correspond to species invasion if higher population
density corresponds to higher diffusivity (ε > 1), and it will correspond to
species retreat otherwise (ε < 1). The larger ε is, the more invasive is the
alien species; in particular, in the large-ε limit (cf. the dashed curve) the
invasive species can only be blocked if β ≈ 1.

The exact solution given by (5.67), (5.68) and (5.70) is shown in Fig. 5.6
obtained for ε = 1 (solid curve), ε = 5 (dashed curve) and ε = 0.2 (dotted
curve). The Allee threshold β was set to a hypothetical value 0.3 so that
the corresponding values of speed are 0.87, 1.18 and 0.06, respectively. It is
readily seen that the shape of the wave profile appears to be rather sensitive to
the value of ε; in particular, the width of the front depends on ε significantly.
This is in a qualitative agreement with the results of field observations showing
that the width of the transition region increases considerably when the higher
motility mode is “turned on,” cf. Section 8.3.

General case. The above assumption about consilience of the two thresh-
olds does not allow to consider the impact of stratified diffusion separately
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FIGURE 5.5: The speed c of traveling population front versus threshold
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dotted curve shows the limiting case ε = ∞.
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ε = 5 (dashed curve) and ε = 0.2 (dotted curve).
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from the impact of the Allee effect. In order to address this issue, now we
have to proceed to the general case β �= UD. The system (5.61–5.64) is solved
differently depending on how β and UD compare; thus, two cases should be
considered.

Case a: β > UD. Taking into account that in this case λ1 = λ+
2 , from the

matching conditions (5.61–5.64), after laborious but standard transformations
we obtain the following equations for coefficients Ai:

A1 =
ελ−

2 λ+
2 (P − Q) + λ3(λ−

2 Q − λ+
2 P )

(λ−
2 − λ+

2 )(ελ+
2 − λ3)

, (5.71)

A+
2 =

λ+
2 P (ελ−

2 − λ3)
(λ−

2 − λ+
2 )(ελ+

2 − λ3)
, A−

2 =
λ+

2 P

λ+
2 − λ−

2

, (5.72)

A3 =
ελ+

2 P

ελ+
2 − λ3

(5.73)

where P = exp(−λ−
2 ξβ), Q = exp(−λ+

2 ξβ). The critical coordinate ξβ can
be immediately found from the relation u(ξD) = UD (recalling that ξD = 0)
which now reads as A3 = UD and can be explicitly written as follows:

exp(−λ−
2 ξβ) =

ελ+
2 − λ3

ελ+
2

UD . (5.74)

Finally, the equation for the wave speed takes the following form:

(
ελ+

2 − λ3

ελ+
2

UD

)λ+
2 /λ−

2

=
ελ−

2 − λ3

ε(λ−
2 − λ+

2 )(β − 1) + ελ−
2

UD (5.75)

where λ±
2 and λ3 are given by (5.60) and (5.58), respectively.

Case b: β < UD. Now, λ3 = λ−
2 and the coefficients are obtained as

follows:

A1 =
λ−

2 Q

ελ1 − λ−
2

, (5.76)

A+
2 =

λ−
2 Q

λ+
2 − λ−

2

, A−
2 =

λ−
2 Q[λ+

2 − ελ1]
(λ+

2 − λ−
2 )[ελ1 − λ−

2 ]
, (5.77)

A3 =
λ+

2 λ−
2 (P − Q) − ελ1(λ+

2 P − λ−
2 Q)

(λ+
2 − λ−

2 )[λ−
2 − ελ1]

. (5.78)

The value of ξβ is given as

exp(−λ+
2 ξβ) =

ελ1 − λ−
2

λ−
2

(UD − 1) . (5.79)
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FIGURE 5.7: The speed c of traveling population front versus stratification
threshold UD for ε = 10 and β = 0.3 (curve 1), β − 0.5 (curve 2), β = 0.8
(curve 3).

Correspondingly, the wave speed appears as a solution of the following
equation:

(
ελ1 − λ−

2

λ−
2

(UD − 1)
)λ−

2 /λ+
2

=
λ+

2 − ελ1

(λ+
2 − λ−

2 )β − λ+
2

(UD − 1) (5.80)

where λ1 is given by (5.55).

Equations (5.75) and (5.80) are transcendental and can only be solved nu-
merically. The stratified diffusion observed for natural populations indicates
that diffusivity tends to increase with the population density, cf. Hengeveld
(1989) and Shigesada and Kawasaki (1997); thus, for biological reasons we
focus on the case ε > 1. Specifically, we choose a hypothetical value ε = 10
and consider how the invasion speed changes with UD for a few selected values
of β. The results are shown in Fig. 5.7. An interesting and counterintuitive
feature is that the speed appears to depend on UD in a nonmonotonous way.
In particular, for β ≤ 0.5 (cf. curves 1 and 2), as UD decreases from unity
the invasion speed gradually increases and keeps increasing until UD = β.
Surprisingly, a further decrease in UD leads to a decrease in the speed. As a
result, although the value of speed obtained for UD = 0 is

√
ε times higher

than that obtained for UD = 1 (as it immediately follows from consideration
of corresponding populations with density-independent diffusivity), the curves
have a hump so that the maximum speed is reached for UD = β.





Chapter 6

Models of interacting populations

In the previous chapters, we have considered a variety of models taking into
account different features of the population dynamics of invasive species. How-
ever, one important factor, namely, the impact of inter-species interactions,
has not been addressed yet. Meanwhile, there is considerable evidence that
the impact of other species can significantly modify the rate and pattern of
exotic species spread. The problem is that the nonlinear models including
more than one dynamical variable are usually much more difficult for rigorous
mathematical analysis. In particular, only very few exact solutions are known
that possess a clear biological meaning. Two of them will be considered below.

The contents of this chapter are based on original papers by Feltham and
Chaplain (2000) and Petrovskii et al. (2005a). Exact solutions for a few
systems of PDEs were also found by Calogero and Xiaoda (1991); however,
since their solutions do not have immediate biological applications, we do not
recall their work here.

6.1 Exact solution for a diffusive predator-prey system

Predator-prey relations are among the most common ecological interactions.
Moreover, they are probably the most important for ecosystem functioning:
it is predation that provides the mechanism of biomass flow through the food
web and integrates separate species into a system. Remarkably, the whole
field of mathematical ecology began with a study of (spatially homogeneous)
population dynamics subject to predator-prey interaction, cf. the classical
works by Lotka (1925) and Volterra (1926).

According to a widely accepted approach (see Chapter 2 for details and
references), the spatiotemporal dynamics of a predator-prey system can be
described by the following equations:

∂u(x, t)
∂t

= D
∂2u

∂x2
+ f(u)u − r(u)uv , (6.1)

∂v(x, t)
∂t

= D
∂2v

∂x2
+ κr(u)uv − g(v)v (6.2)
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where u, v are the densities of prey and predator, respectively, at position x
and time t, the function f(u) is the per capita growth rate of the prey, the
term r(u)uv stands for predation, κ is the coefficient of food utilization, and
g(v) is the per capita mortality rate of the predator. Here, the first term on
the right-hand side of Eqs. (6.1–6.2) describes the spatial mixing caused either
by self-motion of individuals (Skellam, 1951; Okubo, 1980) or by properties
of the environment, e.g., for plankton communities the mixing is attributed
to turbulent diffusion (Okubo, 1980). D is the diffusion coefficient; in this
section, we assume it to be the same for prey and predator.

We want to mention here that, from the point of ecological applications,
the above assumption about equal species diffusivity is not very restrictive.
Although predator indeed often has higher diffusivity, a closer inspection of
population communities reveals many trophical relations where diffusivity of
prey and predator is of the same magnitude. One immediate example is
given by a plankton community where spatial mixing takes place mainly due
to turbulence which has the same impact on phyto- (prey) and zooplankton
(predator). In terrestrial ecosystems, examples may be given by lynx and
hare, wolf and deer, etc. In fact, predator’s success is often reached not due
to a faster motion but due to an optimal foraging strategy while its diffusivity
must not be necessarily higher than that of prey.

For different species, functions f, r and g can be of different types. Here
we assume that the prey dynamics is subject to the Allee effect so that its
per capita growth rate is not a monotonically decreasing function of the prey
density but possesses a local maximum. We will focus on the strong Allee
effect when the prey growth rate becomes negative for 0 < u < uA where uA

is a certain threshold density. In this case, the standard parameterization is
as follows:

f(u) = ω(u − uA)(K − u); (6.3)

see Section 1.2 for details and references.
Regarding the per capita predator mortality, we assume that it is described

by the following function:

g(v) = M + d0v
n (6.4)

where M, d0 and n are positive parameters. Function g(v) gives the so-
called “closure term” because it is supposed to not only describe the processes
going on inside the predator population such as natural (linear) mortality,
competition, possibly cannibalism, etc., but also virtually take into account
the impact of higher predators which are not included into the model explicitly
(Steele and Henderson, 1992a). Different authors consider various functional
forms for the closure term, particularly, different n, e.g., see Edwards and
Yool (2000) and references therein. It should be mentioned, however, that
the accuracy of ecological observations is usually rather low so that it is not
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often possible to give a reliable estimate of n. For the sake of analytical
tractability, we restrict our consideration to the case n = 2.

Finally, we assume that the predator shows a linear response to prey ac-
cording to the classical Lotka–Volterra model, i.e., r(u) = η = const. Then,
Eqs. (6.1–6.2) with (6.3), (6.4) take the following form:

∂u(x, t)
∂t

= D
∂2u

∂x2
+ ωu(u − uA)(K − u) − ηuv , (6.5)

∂v(x, t)
∂t

= D
∂2v

∂x2
+ κηuv − Mv − d0v

3 . (6.6)

Introducing dimensionless variables

ũ =
u

K
, ṽ =

ηv

ωK2
, x̃ = x

√
ωK2

D
, t̃ = tωK2 , (6.7)

and omitting tildes further on for notation simplicity, from Eqs. (6.5–6.6) we
obtain:

ut = uxx − βu + (β + 1)u2 − u3 − uv , (6.8)
vt = vxx + kuv − mv − δv3 (6.9)

where β = uAK−1, k = κη(ωK)−1, m = M(ωK2)−1, δ = d0ωK2η−2 are
positive dimensionless parameters, subscripts x and t stand for the partial
derivatives with respect to dimensionless space and time, respectively. We
consider Eqs. (6.8–6.9) in an infinite space, −∞ < x < ∞, and for t >
0. Functions u(x, t), v(x, t) are assumed to be bounded for x → ±∞. To
make the problem complete, Eqs. (6.8–6.9) should be provided with the initial
conditions u(x, 0) = u0(x) and v(x, 0) = v0(x); the form of u0(x), v0(x) will
be specified below.

In the previous chapters, we have seen that exact solutions of nonlinear
PDEs are usually ad hoc solutions obtained either for a specific form of non-
linearity or for certain restrictions on parameter values, although it is difficult
to say whether that stems from immaturity of contemporary theory of non-
linear partial differential equations or reflects certain intrinsic symmetries of
given PDEs. In the rest of this paper, for the sake of analytical tractability,
we assume the following relations between the equation parameters:

m = β , (6.10)

k +
1√
δ

= β + 1 . (6.11)

The origin and the meaning of constraints (6.10–6.11) will become clear later.
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FIGURE 6.1: Zero-isoclines for the predator-prey model (6.12–6.13). The
circles show the steady states of the system; numbering is explained in the
text.

6.1.1 ∗ Properties of the local system

Before proceeding to the analysis of system (6.8–6.9), we are going to give
a brief insight into the properties of the corresponding spatially homogeneous
system:

ut = − βu + (β + 1)u2 − u3 − uv , (6.12)
vt = kuv − mv − δv3 . (6.13)

The question of primary importance is the existence of steady states which, as
usual in the case of autonomous systems of second order, are given by the in-
tersection points of the zero-isoclines of the system (see Fig. 6.1). It is readily
seen that Eqs. (6.12–6.13) always have the trivial steady state (0, 0) corre-
sponding to species extinction and the two “prey only” states (β, 0), (1, 0).
As for the existence and the number of the steady states in the interior of
the first quadrant, i.e., in R2

+ = {(u, v) | u > 0, v > 0}, it is somewhat less
obvious. The following theorem addresses this issue.

Theorem 6.1. Let conditions (6.10–6.11) be satisfied and, additionally,
k > 2

√
m. Then the number of steady states of system (6.12–6.13) inside R2

+

depends on the sign of the following quantity:

h =
k√
δ
− m . (6.14)
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Namely, there are two steady states in the case h < 0 and three steady states
in the case h > 0.

Proof. Obviously, inside R2
+ the isoclines of the system (6.12–6.13) are

given by the following equations:

v = − β + (β + 1)u − u2 , (6.15)

u =
m

k
+

δ

k
v2 (6.16)

(see Fig. 6.1). For any steady state (ū, v̄), ū and v̄ are a solution of system
(6.15–6.16). Having substituted (6.15) into (6.16), we obtain the following
equation for ū

k

δ
ū − m

δ
= β2 − 2β(β + 1)ū (6.17)

+
(
2β + (β + 1)2

)
ū2 − 2(β + 1)ū3 + ū4

which, taking into account conditions (6.10–6.11), after standard although
tedious algebraic transformations can be written in the following form:

(
ū2 − kū + m

) [
ū2 −

(
k +

2√
δ

)
ū +

(
m +

1
δ

)]
= 0 . (6.18)

Thus, possible stationary values ū are given by

ū1,2 =
k

2
±

√(
k

2

)2

− m (6.19)

and

ū3,4 =
1
2

⎡
⎣

(
k +

2√
δ

)
±

√(
k +

2√
δ

)2

− 4
(

m +
1
δ

) ⎤
⎦ . (6.20)

It is readily seen that, under the assumptions of Theorem 6.1, all ūi > 0, i =
1, . . . , 4.

The corresponding stationary values v̄i can be obtained substituting Eqs.
(6.19) and (6.20) into (6.15). However, we use another approach which ap-
pears to be less cumbersome. Having substituted (6.16) to (6.15) and taking
into account (6.10–6.11), we obtain the equation for v̄ which, after transfor-
mations, can be written in the following form:

(
δv̄2 − k

√
δv̄ + m

) [
δv̄2 + k

√
δv̄ +

(
m − k√

δ

)]
= 0 . (6.21)

Thus, the stationary values v̄ are given by

v̄1,2 =
1√
δ

⎡
⎣k

2
±

√(
k

2

)2

− m

⎤
⎦ (6.22)
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and

v̄3,4 =
1√
δ

[
−k

2
±

√(
k2

4
− m

)
+

k√
δ

]
(6.23)

where plus and minus correspond to v̄3 and v̄4, respectively.
Under the assumptions of Theorem 6.1, v1,2 > 0 and v̄4 < 0. Thus, the

steady states (ū1, v̄1), (ū2, v̄2) lie inside R2
+ and (ū4, v̄4) lies outside R2

+. The
only remaining question is about the sign of v̄3 and the corresponding steady
state (ū3, v̄3).

Obviously, the following inequality

v̄3 =
1√
δ

[
−k

2
+

√(
k2

4
− m

)
+

k√
δ

]
> 0 (6.24)

is equivalent to

k√
δ
− m > 0 . (6.25)

Thus, the steady state (ū3, v̄3) lies inside R2
+ if inequality (6.25) is true and

outside R2
+ otherwise. That proves Theorem 6.1.

Another important point is the steady states’ stability. Taking into ac-
count that the stationary values ū, v̄ appear as the solutions of fourth-order
algebraic equations, a thorough investigation of this issue is very difficult.
However, due to the specifics of the exact solution which will be presented be-
low, for the goals of this paper it seems possible to restrict our consideration
to the stability of only two steady states, i.e., (0, 0) and (ū2, v̄2) where sub-
script “2” corresponds to plus in Eqs. (6.19) and (6.22). It is straightforward
to see that (0, 0) is always stable. As for (ū2, v̄2), a sufficient condition of its
stability is given by the following theorem.

Theorem 6.2. Let conditions (6.10–6.11) be satisfied and

k > 2

√
m +

1
4δ

. (6.26)

Then the steady state (ū2, v̄2) is stable.

Proof. The conclusion of the theorem nearly immediately follows from a
more general fact that a steady state is stable when it arises as an intersection
point of decreasing zero-isocline for prey (i.e., originated from the equation
for prey) and increasing zero-isocline for predator. In terms of system (6.12–
6.13), it means that (ū2, v̄2) is stable when it is situated on the right of the
hump of curve 1, cf. Fig. 6.1. Thus, all we need is to compare ū2 with the
position of the hump. Under conditions (6.10–6.11), ū2 is given by Eq. (6.19)
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and the maximum of the isocline for predator is situated at (β + 1)/2. Then,
taking into account (6.11), the steady state (ū2, v̄2) is stable for

k

2
+

√(
k

2

)2

− m >
1
2

(
k +

1√
δ

)
, (6.27)

which is equivalent to assumption (6.26). That proves the theorem.

6.1.2 Exact solution and its properties

The main result of this section is given by the following theorem:

Theorem 6.3. Under constraints (6.10–6.11) and k > 2
√

m, the system
(6.8–6.9) has the following exact solution:

u(x, t) =
ū1 exp(λ1ξ1) + ū2 exp(λ2ξ2)
1 + exp(λ1ξ1) + exp(λ2ξ2)

, (6.28)

v(x, t) =
v̄1 exp(λ1ξ1) + v̄2 exp(λ2ξ2)
1 + exp(λ1ξ1) + exp(λ2ξ2)

(6.29)

where ū1,2 and v̄1,2 are the steady states of the system (6.12–6.13) given by
Eqs. (6.19) and (6.22), respectively, ξ1 = x − n1t + φ1, ξ2 = x − n2t + φ2,

λ1,2 =
1

2
√

2

(
k ±

√
k2 − 4m

)
, ni =

√
2k − 3λi , i = 1, 2 , (6.30)

and φ1,2 are arbitrary constants.

Theorem 6.3 can be proved immediately substituting (6.28–6.29) into Eqs.
(6.8–6.9). A simple way to arrive at solution (6.28–6.29) is also shown below.
A formal approach based on an appropriate change of variables that leads to
(6.28–6.29) and also helps to understand the origin of the relations (6.10–6.11)
is given in the next section.

Since the solution (6.28–6.29) is expected to have a variety of ecologi-
cal/biological applications (some of them will be discussed in Chapter 8),
we are going to have a closer look at its properties. The form of (6.28–6.29)
suggests that it describes propagation of two waves traveling with the speeds
n1 and n2, correspondingly; see Fig. 6.2. Assuming, without any loss of gener-
ality, that λ1 < λ2 (i.e., choosing minus for λ1 and plus for λ2 in Eqs. (6.30)),
we immediately obtain that

n1 =
1

2
√

2

(
k + 3

√
k2 − 4m

)
, (6.31)

n2 =
1

2
√

2

(
k − 3

√
k2 − 4m

)
. (6.32)
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FIGURE 6.2: Exact solution (6.28–6.29) shown at equidistant moments,
from top to bottom, t = 0, t = 90, t = 180 and t = 270. Solid and
dashed curves show prey and predator density, respectively. Formation
of a population front (at the bottom) is preceded by a decay of unstable
spatially homogeneous distribution (at the top, middle). Parameters are:
m = β = 0.2, δ = 34, k = 1.03, φ1 = 30, φ2 = −30.

Obviously, n1 > n2 and n1 is always positive while n2 can be either positive
or negative depending on the parameter values:

n2 < 0 for k > 3
√

m

2
and n2 > 0 for k < 3

√
m

2
. (6.33)

In order to get an insight into the nature of the waves, let us consider the
case when, for certain x and t, λ1ξ1 � 1 or even λ1ξ1 � 1 while λ2ξ2 is
negative and large. For sufficiently small t, it can always be achieved by a
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proper choice of φ1 and φ2. Then, in this domain,

u(x, t) � ū1 exp(λ1ξ1)
1 + exp(λ1ξ1)

, v(x, t) � v̄1 exp(λ1ξ1)
1 + exp(λ1ξ1)

. (6.34)

Thus, the wave propagating with the speed n1 is a traveling front connecting
the steady states (0, 0) and (ū1, v̄1).

Owing to n1 > n2, at any fixed point x variable ξ1 decreases at a higher
rate than ξ2 and, regardless of the values of φ1 and φ2, for sufficiently large
time, the solution (6.28–6.29) can be approximated as follows:

u(x, t) � ū2 exp(λ2ξ2)
1 + exp(λ2ξ2)

, v(x, t) � v̄2 exp(λ2ξ2)
1 + exp(λ2ξ2)

. (6.35)

Therefore, in the large-time limit, the solution (6.28–6.29) describes a trav-
eling front connecting the states (0, 0) and (ū2, v̄2) and propagating with the
speed n2. Importantly, the direction of propagation depends on parameter
values, cf. (6.33) and see Figs. 6.3 and 6.4.

Curiously, the actual dynamics described by (6.28–6.29) is not exhausted
by the two traveling fronts propagating with speeds n1 and n2. Consider-
ing λ1ξ1 � 1, in the crossover region where λ1ξ1 and λ2ξ2 are of the same
magnitude we obtain from Eqs. (6.28–6.29):

u(x, t) � ū1 + ū2 exp(λ2ξ2 − λ1ξ1)
1 + exp(λ2ξ2 − λ1ξ1)

, (6.36)

v(x, t) � v̄1 + v̄2 exp(λ2ξ2 − λ1ξ1)
1 + exp(λ2ξ2 − λ1ξ1)

. (6.37)

Since

λ2ξ2 − λ1ξ1 = (λ2 − λ1)
(

x +
k√
2

t + φ

)
(6.38)

where φ = (λ2φ2 − λ1φ1)/(λ2 − λ1), the solution in the crossover region
apparently behaves as a traveling wave connecting the states (ū1, v̄1) and
(ū2, v̄2) and propagating with the speed −k/

√
2.

Thus, in general, the propagation of the traveling front (6.35) can be pre-
ceded by the propagation of the “partial” fronts (6.34) and (6.36–6.37) (see
Fig. 6.2). However, in the case that φ2 is significantly larger than φ1, the trav-
eling fronts (6.34) and (6.36–6.37) may be never seen explicitly and the exact
solution (6.28–6.29) is well approximated by (6.35) for any t > 0, cf. Figs. 6.3
and 6.4.

The initial conditions corresponding to the exact solution (6.28–6.29) can
be immediately obtained from (6.28–6.29) letting t = 0. An important point
is, however, that the meaning of solution (6.28–6.29) is not restricted to this
specific case. Numerical simulations of system (6.8–6.9) show that the profile
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FIGURE 6.3: Exact solution (6.28–6.29) shown at equidistant moments,
from top to bottom, t = 0, t = 400, t = 800 and t = 1200. Solid and
dashed curves show prey and predator density, respectively. Front propagation
corresponds to species invasion. Parameters are: m = β = 0.2, δ = 34, k =
1.03, φ1 = −20, φ2 = −10.

described by (6.28–6.29) actually appears as a result of convergence for initial
conditions from a wide class. Fig. 6.5 gives an example of such convergence
obtained in the case that the initial conditions for Eqs. (6.8–6.9) are chosen
as piecewise-constant functions, i.e., u(x, 0) = 0, v(x, 0) = 0 for x < 0 and
u(x, 0) = ū2, v(x, 0) = v̄2 for x > 0.

In the large-time limit, the solution describes a traveling front connecting
the state (0, 0) which is always stable to the state (ū2, v̄2) which is stable under
the assumptions of Theorem 6.2. It should be mentioned here that Theorem
6.2 gives only a sufficient condition of stability, not a necessary one. Although
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FIGURE 6.4: Exact solution (6.28–6.29) shown at equidistant moments,
from top to bottom, t = 0, t = 400, t = 800 and t = 1200. Solid and
dashed curves show prey and predator density, respectively. Front propagation
corresponds to species retreat. Parameters are: m = β = 0.2, δ = 12, k =
0.91, φ1 = −20, φ2 = −10.

we cannot prove stability of (ū2, v̄2) under less restrictive assumptions, the re-
sults of numerical solution of Eqs. (6.12–6.13) show that the actual range of
its stability is wider than the one given by Theorem 6.2. Also, the results of
numerical simulations show that the state (ū1, v̄1) is unstable in a wide range
of parameter values. These results on the steady states’ stability helps to bet-
ter understand the transient dynamics described by the solution (6.28–6.29)
at small times: the partial traveling fronts (6.34) and (6.36–6.37) propagating
toward each other correspond to a decay of the quasi-homogeneous species
distribution at the unstable level (ū1, v̄1) to the stable homogeneous distribu-



148 Exactly Solvable Models of Biological Invasion

−20 −10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

u

−20 −10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

u

−20 −10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

u

−20 −10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

x

u
t=0 

t=2 

t=20 

t=200 

FIGURE 6.5: Convergence of a piecewise constant initial species distribu-
tion to the traveling wave profile described by (6.28–6.29). Solid curve shows
the results of numerical integration of the system (6.8–6.9); dashed curve
shows the exact solution for parameters m = 0.2, δ = 12, k = 0.91, φ1 =
0, φ2 = 0.3. Only prey density is shown. Predator density exhibits similar
behavior.

tions at (0, 0) and (ū2, v̄2).
In conclusion to this section, let us have a closer look at the relations (6.10–

6.11) between the interaction parameters. In spite of their rather special form,
they can be given a clear ecological interpretation. Consider first (6.10). Both
β and m have the same meaning. They give linear per capita mortality rate
of prey and predator, respectively, in the case that all density-dependence
phenomena can be neglected, e.g., in the case of low population density.

To reveal the meaning of (6.11), let us look at the reaction terms in the
right-hand side of Eqs. (6.8–6.9) from the point of (bio)mass vertical flow
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through the food web. Parameter k then quantifies the mass flow from the
lower level (prey) to the upper level (predator) while δ quantifies the mass
flow from predator to the higher trophical levels that are virtually taken into
account by the last term in (6.9), cf. the lines after Eq. (6.4). Apparently, the
larger k is, the larger is the mass inflow, and the smaller δ is, the smaller is
the mass outflow. It means that the mass kept at the predator level can be
quantified by the expression (k + δ−ν) where ν is a positive parameter. On
the other hand, the actual biomass production at the prey level is described
by (β + 1)u2. Constraint (6.11) thus means that, up to the exact value of ν,
the rate of biomass production at the lower level must be consistent with the
rate of biomass assimilation at the upper level of this simple trophic web. It
may mean that there should be a certain similarity between the populations
of prey and predator regarding their response to vertical biomass flow.

Altogether, along with the assumption of equal diffusion coefficients and
equal mortality rates, it means that the exact solution (6.28–6.29) describes
the dynamics of a population system where prey and predator are in some
sense similar, e.g., belong to the same taxonomic group. Indeed, one can
observe that under constraints (6.10–6.11) variables u and v become propor-
tional to each other, v = u/

√
δ. The system (6.8–6.9) is then virtually reduced

to one equation:

ut = uxx − βu +
(

β + 1 − 1√
δ

)
u2 − u3 . (6.39)

Thus, solution (6.28–6.29) gives an extension of the Kawahara–Tanaka (1983)
solution to the case of a system of two interacting species. We want to em-
phasize, however, that this extension is nontrivial. In particular, the solution
(6.28–6.29) contains a new mechanism of invasion species blocking which is
impossible in the single-species case. Details of this mechanism and its eco-
logical relevance will be discussed in Section 8.2.

6.1.3 ∗ Formal derivation of the exact solution

The formal way to obtain the exact solution (6.28–6.29) is given by the
extension of the procedure described in Section 3.2 to the case of two diffusion-
reaction equations.

Let us introduce new variables z(x, t) and w(x, t) by means of the following
equations:

u(x, t) = µ
zx

z + w + σ
, v(x, t) = γ

wx

z + w + σ
(6.40)

where µ and γ are parameters, and σ is a constant included into the denomi-
nator of (6.40) in order to avoid singularities because, for biological reasons,
we are primarily interested in bounded solutions of system (6.8–6.9). If we re-
strict our analysis to the case that z+w is semi-bounded, i.e., either z+w ≥ c̄
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or z +w ≤ c̄ for ∀ x, t , then σ can have a nearly arbitrary value with the only
restriction σ > −c̄ or σ < −c̄, respectively.

Substitution of Eqs. (6.40) into (6.8) leads to the following equation:[
2µzx(zx + wx)2 − µ3z3

x

]
(z + w + σ)−3

+[µzx(zt + wt) − 2µzxx(zx + wx) − µzx(zxx + wxx)

+(β + 1)µ2z2
x − µγzxwx](z + w + σ)−2

+ [µzxxx + βµzx − µzxt] (z + w + σ)−1 = 0 . (6.41)

Since σ is (nearly) arbitrary and functions (z + w)j are linearly independent
for different j (except for the trivial case z + w ≡ const), Eq. (6.41) holds if
and only if the expressions in the square brackets equal zero identically. Thus,
after some obvious transformations we arrive at the following system:

0 = 2µzx

[
(zx + wx)2 − µ2

2
z2
x

]
, (6.42)

zt + wt = 2
zxx

zx
(zx + wx) + (zxx + wxx) − (β + 1)µzx + γwx , (6.43)

zxt = zxxx + βzx (6.44)

(assuming that zx 
= 0).
Similarly, substituting Eqs. (6.40) into (6.9) and assuming wx 
= 0, we

obtain the following equations:

0 = 2γwx

[
(zx + wx)2 − δµ2

2
w2

x

]
, (6.45)

zt + wt = 2
wxx

wx
(zx + wx) + (zxx + wxx) − kµzx , (6.46)

wxt = wxxx − mwx . (6.47)

The idea of the further analysis is that the system (6.42–6.47) is over-
determined and its consistency may only take place under certain constraints
on the parameter values. In particular, Eqs. (6.42) and (6.45) are equivalent
to

zx + wx = ± µ√
2
zx (6.48)

and

zx + wx = ±γ

√
δ

2
wx , (6.49)

correspondingly.
If we choose plus in both of the above equations, Eqs. (6.48–6.49) take the

form

wx = −
(

1 − µ√
2

)
zx (6.50)
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and

zx = −
(

1 − γ

√
δ

2

)
wx , (6.51)

respectively, which is consistent only in case of the following relation between
µ and γ:

(
1 − µ√

2

) (
1 − γ

√
δ

2

)
= 1 . (6.52)

Next, Eqs. (6.43) and (6.46) become equivalent when their right-hand sides
coincide. Taking into account (6.50–6.51), that leads to the following equation:

3√
2
µzxx −

[
(β + 1)µ + γ

(
1 − µ√

2

)]
zx

=
[
1 − (

√
2δγ + 1)

(
1 − µ√

2

)]
zxx − kµzx . (6.53)

Obviously, Eq. (6.53) becomes trivial under the following constraints on the
parameter values:

3√
2
µ = 1 − (

√
2δγ + 1)

(
1 − µ√

2

)
, (6.54)

kµ = (β + 1)µ + γ

(
1 − µ√

2

)
. (6.55)

It is readily seen that under condition (6.11) each of Eqs. (6.52), (6.54) and
(6.55) is equivalent to the following one:

γ

µ

(
1 − µ√

2

)
= − 1√

δ
. (6.56)

The system (6.42–6.47) is now reduced to only three equations:

zt + wt =
3√
2
µzxx −

[
(β + 1)µ + γ

(
1 − µ√

2

)]
zx , (6.57)

zxt = zxxx − βzx , (6.58)
wxt = wxxx − mwx . (6.59)

The number of equations still exceeds the number of variables. However,
under condition (6.10) Eqs. (6.58) and (6.59) become identical and the system
is reduced to only two equations.

Differentiating Eq. (6.57) with respect to x, substituting (6.58) and (6.59)
and taking into account (6.50–6.51) and (6.56), we obtain the following equa-
tion for z(x, t):

zxxx − k√
2
zxx +

m

2
zx = 0 . (6.60)
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Eq. (6.60) is linear and its general solution has the following form:

z(x, t) = f0(t) + f1(t)eλ1x + f2(t)eλ2x (6.61)

where the functions f0, f1, f2 still need to be determined and the eigenvalues
λ1,2 are the solutions of the following equation:

λ2 − k√
2
λ +

m

2
= 0 , (6.62)

so that

λ1,2 =
1

2
√

2

(
k ±

√
k2 − 4m

)
. (6.63)

Taking into account Eqs. (6.50) and (6.61), we obtain:

w(x, t) = g0(t) −
(

1 − µ√
2

) [
f1(t)eλ1x + f2(t)eλ2x

]
(6.64)

where g0(t) is a certain function.
To find the functions f0, f1, f2, g0, we substitute (6.61) and (6.64) into

Eq. (6.57):

df0

dt
+

dg0

dt
+

µ√
2

(
df1

dt
eλ1x +

df2

dt
eλ2x

)

=
3µ√

2

(
λ2

1

df1

dt
eλ1x + λ2

2

df2

dt
eλ2x

)
(6.65)

− kµ

(
λ1

df1

dt
eλ1x + λ2

df2

dt
eλ2x

)
.

Since λ1 
= λ2 (due to the assumption that k > 2
√

m), eλ1x and eλ2x are
linear independent functions of x. Thus, Eq. (6.65) holds for any x if and
only if functions f0, f1, f2, g0 give a solution of the system

df0

dt
+

dg0

dt
= 0 , (6.66)

df1

dt
=

(
3λ2

1 −
√

2 kλ1

)
f1 , (6.67)

df2

dt
=

(
3λ2

2 −
√

2 kλ2

)
f2 . (6.68)

From Eqs. (6.66–6.68), we obtain:

f0(t) + g0(t) = C0 , fi(t) = Cie
νit , i = 1, 2 (6.69)

where νi = 3λ2
i −

√
2 kλi and the constants C1,2 are determined by the initial

conditions.
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Note that function z + w, as defined by Eqs. (6.61), (6.64) and (6.69), is
semi-bounded which agrees with our earlier assumption, cf. the lines below
Eq. (6.40). Thus, our analysis has been consistent. Substituting (6.61), (6.64)
and (6.69) into Eqs. (6.40), we obtain the following solution of the diffusive
predator-prey system (6.8–6.9):

u(x, t) =
√

2
C̃1λ1 exp(λ1x + ν1t) + C̃2λ2 exp(λ2x + ν2t)
1 + C̃1 exp(λ1x + ν1t) + C̃2 exp(λ2x + ν2t)

, (6.70)

v(x, t) =

√
2
δ

C̃1λ1 exp(λ1x + ν1t) + C̃2λ2 exp(λ2x + ν2t)
1 + C̃1 exp(λ1x + ν1t) + C̃2 exp(λ2x + ν2t)

(6.71)

where C̃i = (µ/
√

2)(Ci/[C0 + σ]), i = 1, 2. Thus, relations (6.10–6.11) make
the system integrable at the cost of u and v being proportional to each other,
v = u/

√
δ.

It is not difficult to see that, to avoid singularities in the right-hand sides
of Eqs. (6.70-6.71), it is necessary that C̃1,2 > 0. Introducing new constants
as

φ1 =
1
λ1

ln C̃1 , φ2 =
1
λ2

ln C̃2 , (6.72)

and taking into account that ū1,2 =
√

2λ1,2, v̄1,2 =
√

2/δλ1,2 (cf. Eqs. (6.19),
(6.22) and (6.63)), the solution (6.70-6.71) takes the following form:

u(x, t) =
ū1 exp(λ1ξ1) + ū2 exp(λ2ξ2)
1 + exp(λ1ξ1) + exp(λ2ξ2)

,

v(x, t) =
v̄1 exp(λ1ξ1) + v̄2 exp(λ2ξ2)
1 + exp(λ1ξ1) + exp(λ2ξ2)

where

ξ1 = x − n1t + φ1 , ξ2 = x − n2t + φ2 ,

ni = − νi

λi
=

√
2k − 3λi , i = 1, 2 ,

and λ1,2 are given by Eq. (6.63).
In conclusion, it should be mentioned that, since Eqs. (6.8–6.9) are invariant

with respect to the transformation x → (−x), one can expect the existence of
the solution symmetrical to (6.28–6.29), i.e., with similar traveling waves but
propagating in opposite directions. Indeed, the procedure described above
leads to the solution with these properties if we choose minus in both of
Eqs. (6.48–6.49). It is readily seen that other options (i.e., plus in (6.48) and
minus in (6.49) or vice versa) lead to solutions of (6.8–6.9) which are not
nonnegative and, thus, do not seem to have a clear ecological meaning.
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6.2 Migration waves in a resource-consumer system

Predator-prey relation is a very important but, of course, not the only
possible type of ecological interactions. Another example of exactly solvable
model of interacting species is given by a simple resource-consumer system
considered by Feltham and Chaplain (2000). In their model, the population
of consumer species is assumed to move in space both through isotropic ran-
dom motion, i.e., diffusion, and with the preferred direction defined by the
resource gradient. In its turn, the resource can diffuse and is consumed by
the consumer. Aiming to make the model analytically tractable, one has to
neglect species multiplication: neither the consumer population nor resource
population grow with time. Biologically, it means that the period of time
described by this model falls between generations. For simplicity, we also
neglect the species’ natural mortality, assuming that the mortality rates are
low.

The corresponding system of equations is as follows:

∂n(x, t)
∂t

= Dn
∂2n

∂x2
− ∂

∂x

(
χ(a)n

∂a

∂x

)
, (6.73)

∂a(x, t)
∂t

= Da
∂2a

∂x2
− k(a)n (6.74)

where n(x, t) and a(x, t) give the density of consumer and resource, respec-
tively, at position x and time t. Apparently, due to their meaning, n(x, t) ≥ 0
and a(x, t) ≥ 0 for any x and t. Dn and Da are the diffusion coefficients
(assumed to be constant), k(a) is the grazing rate and χ(a) is the chemotactic
response function.

We consider the system dynamics in an infinite space with the following
conditions at infinity:

a(x → −∞, t) = 0, a(x → ∞, t) = a0 , (6.75)
n(x → ±∞, t) = 0 . (6.76)

Eqs. (6.73–6.74) must be also supplemented with the initial conditions, i.e.,
n(x, 0) = g(x), a(x, 0) = h(x). We do not specify the form of g(x) and h(x)
now; however, we assume that they are in agreement with the conditions at
infinity (6.75–6.76). Note that conditions (6.76) are consistent with the usual
assumption that, at the early stage of the system dynamics, the invasive
species is concentrated in a finite domain. Let us mention, however, that
model (6.73–6.74) is only partially relevant to biological invasion because it
does not take onto account population growth, cf. Section 1.4.

The system (6.73–6.74), although simple enough from the biological point
of view, is still difficult to treat analytically, at least, for an arbitrary k(a). In
real ecosystems, different species exhibit different types of trophic response.
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The most well known are the Holling types I, II and III; however, other types
are used as well (see Edwards and Yool (2000) for a brief review). For the
purposes of this section, we assume that k(a) = K = const for a > 0 and
k(a) = 0 for a = 0. Biologically, it corresponds to the limiting case of very
small values of the half-saturation constants in the Holling types II and III.

The system (6.73–6.74) was studied by Feltham and Chaplain (2000) using
perturbation methods. However, in order to make it exactly solvable, we have
to assume additionally that the resource is immovable, i.e., Da = 0. This
assumption is justified biologically if, for instance, we treat the consumer as
a herbivorous species and the resource as a plant species. In this case, the
system (6.73–6.74) takes the following form:

∂n(x, t)
∂t

= Dn
∂2n

∂x2
− ∂

∂x

(
χ(a)n

∂a

∂x

)
, (6.77)

∂a(x, t)
∂t

= −Kn . (6.78)

Let us look for a traveling wave solution, i.e., n(x, t) = ñ(ξ) where ξ = x−ct,
c being the speed of the wave. The system (6.77–6.78) is then reduced to

− c
dn(ξ)

dξ
=

d

dξ

(
Dn

dn

dξ
− χ(a)n

da

dξ

)
, (6.79)

c
da(ξ)
dξ

= Kn (6.80)

(omitting the tildes for notation simplicity).
Integrating (6.79) over space, we obtain

− cn = Dn
dn

dξ
− χ(a)n

da

dξ
+ C0 (6.81)

where C0 is the integration constant. Here C0 can be found from conditions at
infinity. Indeed, (6.75–6.76) apparently implies, except for some very special
cases that are not biologically realistic, that dn(ξ → ±∞)/dξ = 0 and da(ξ →
±∞)/dξ = 0; thus C0 = 0.

Taking n from (6.80) and substituting it into (6.81), we arrive at

− c
da

dξ
= Dn

d2a

dξ2
− χ(a)

(
da

dξ

)2

. (6.82)

Having divided Eq. (6.82) by da/dξ, its integration then leads to the fol-
lowing result:

− cξ = Dn log
∣∣∣∣da

dξ

∣∣∣∣ −
∫

χ(a)
da

dξ
dξ + C1 (6.83)

where C1 is a new constant and da/dξ 
= 0. Thus, we reduce our further
analysis to strictly monotonous profiles of the resource spatial distribution.
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From (6.83), we obtain the following equation:∣∣∣∣da

dξ

∣∣∣∣ = C̃1 exp
(
− c

Dn
ξ

)
exp

(
1

Dn

∫
χ(a)da

)
. (6.84)

Note that the redefined integration constant C̃1 > 0.
Since, by assumption, da/dξ 
= 0, taking into account (6.75) we obtain that

da/dξ > 0 for any ξ. Then |da/dξ| = da/dξ and the variables in (6.84) can
be separated:

exp
(
− 1

Dn

∫
χ(a)da

)
da = C̃1 exp

(
− c

Dn
ξ

)
dξ . (6.85)

The possibility to obtain an exact solution of the system (6.77–6.78) in a
closed form thus depends on the form of function χ(a): the left-hand side of
Eq. (6.85) must be integrable! Although the list of appropriate functions is
unlikely to be long, one or two examples can be provided easily. Namely, let
us consider

χ(a) =
χ0

a + a1
(6.86)

where χ0 and a1 are certain constants. A biological justification for this form
can be found in Sherratt (1994).

With (6.86), Eq. (6.85) takes the form

(a + a1)
−χ0/Dn da = C̃1 exp

(
− c

Dn
ξ

)
dξ . (6.87)

The rest of the analysis depends on the ratio χ0/Dn.

Special case: χ0/Dn = 1. From (6.87), we obtain

ln(a + a1) = σ − DnC̃1

c
exp

(
− c

Dn
ξ

)
(6.88)

(where σ is the second integration constant) and, finally,

a(ξ) = exp
(

σ − exp
[
− c

Dn
(ξ − ξ0)

])
− a1 (6.89)

where ξ0 = −(Dn/c) ln(C̃1Dn/c) is the initial “phase” of the wave.
It is readily seen that the boundary conditions (6.75) can only be satisfied

if c > 0, σ = ln a0 and a1 = 0. Thus, taking into account (6.80), we arrive at
the following exact solution:

a(ξ) = exp
(

log a0 − exp
[
− c

Dn
(ξ − ξ0)

])
, (6.90)

n(ξ) =
c2

DnK exp
[
− c

Dn
(ξ − ξ0)

]
(6.91)

· exp
(

log a0 − exp
[
− c

Dn
(ξ − ξ0)

])
. (6.92)
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FIGURE 6.6: Traveling wave in a resource-consumer system, cf. (6.77–
6.78). Exact solution (6.90–6.91) is shown at equidistant moments, from top
to bottom, t = 0, t = 15, t = 30 and t = 45. Solid and dashed curves show
consumer and resource density, respectively. Parameters are: Dn = χ0 =
1, a0 = 1, K = 0.45, c = 1.2 and ξ0 = −30.

Note that solution (6.90–6.91) does not contain arbitrary constants any more.
The constant ξ0 can be interpreted as the position of the traveling wave at
t = 0 and thus is defined by the initial conditions.

General case: χ0/Dn 
= 1. From (6.87), we obtain:

1
1 − (χ0/Dn)

· (a + a1)
1−(χ0/Dn) = σ − DnC̃1

c
exp

(
− c

Dn
ξ

)
(6.93)
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so that the expression for a is

a(ξ) =

(
σ̃ − DnC̃1

c

(
1 − χ0

Dn

)
exp

(
− c

Dn
ξ

))1/(1−χ0/Dn)

(6.94)

− a1

where σ̃ = (1 − (χ0/Dn))σ is a new constant.
Note that, for biological reasons, we are interested only in bounded solu-

tions. Apparently, solution (6.94) is bounded if and only if the exponent in
the right-hand side is negative, i.e., for χ0 > Dn. Taking that into account
and introducing the initial phase of the wave as

ξ̃0 = − Dn

c
ln

[
DnC̃1

c

(
χ0

Dn
− 1

)]
,

from (6.94), we obtain:

a(ξ) =
(

σ̃ + exp
[
− c

Dn
(ξ − ξ̃0)

])1/(1−χ0/Dn)

− a1 . (6.95)

Taking into account the conditions at infinity and the relation (6.80), which
results in a1 = 0, from (6.94) we finally obtain another exact traveling wave
solution of the system (6.77–6.78):

a(ξ) =
(

σ̃ + exp
[
− c

Dn
(ξ − ξ̃0)

])Dn/(Dn−χ0)

, (6.96)

n(ξ) = A exp
[
− c

Dn
(ξ − ξ̃0)

]
(6.97)

·
(

σ̃ + exp
[
− c

Dn
(ξ − ξ̃0)

])(χ0)/(Dn−χ0)

(6.98)

where

A =
c2

DnK
(

Dn

χ0 − Dn

)
(6.99)

is a coefficient,

σ̃ = a
1−(χ0/Dn)
0 (6.100)

and c > 0.

Fig. 6.6 shows the snapshots of the exact solution (6.90–6.91) obtained at
equidistant moments with the time-step ∆t = 15 for a hypothetical parameter
set c = 1.2, a0 = 1, K = 0.45, Dn = χ0 = 1 and ξ0 = −30. Thus, the solution
has an apparent biological meaning: it describes species migration along the
resource gradient. It is readily seen that the solution (6.96–6.97) possesses
similar properties; for the sake of brevity, we do not show it here.



Chapter 7

Some alternative and
complementary approaches

In the previous chapters, we have revisited a few methods that can be used
to obtain exact solutions of nonlinear diffusion-reaction equations, and gave
several examples of exactly solvable models. Some of the methods are rather
general, e.g., the method of piecewise-linear approximation, and their practical
application is only limited by the amount of tedious calculations to be made;
the others are ad hoc methods that are likely to be successful when applied
to a few particular cases of high biological relevance. As a whole, this set of
approaches and relevant examples provides, when applied properly, an efficient
tool for studying biological invasions.

Meanwhile, it must be mentioned that exactly solvable models give only a
relatively small part of all nonlinear models that arise in the studies of species
spread. A general observation regarding mathematical modeling is that the
less information a given method yields the wider is the class of problems it
can be applied to. Clearly, an exact solution gives exhaustive information
about the problem under study. In case the expectations are restricted to a
particular solution’s property, the class of analytically treatable models can
be much wider.

Regarding biological invasion, the quantity of primary importance is the
rate of species spread which, in the case of a traveling front propagation,
coincides with the front speed. The speed of the waves is important as well in
other traditional applications of diffusion-reaction models such as combustion
and flame propagation (Zeldovich and Barenblatt, 1959; Zeldovich et al., 1980;
Volpert et al., 1994), chemical engineering (Aris, 1975) and neurophysiology
(Scott, 1977); for a more general scope and a wider list of references see also
Britton (1986) and Grindrod (1996). For these reasons, considerable work has
been done and extensive literature has been published concerning the wave
speed in diffusion-reaction systems and the methods of its calculation.

Another problem concerns the traveling wave solutions themselves. Ap-
parently, reduction of PDE to ODE leaves aside a great majority of relevant
solutions of the original problem that do not possess the required symme-
try. However, a remarkable point is that traveling wave solutions often act
as “attractors” for initial conditions from a wide class. That brings forward
the issue of convergence to relevant traveling wave solution. Interestingly, it
appears to be tightly related to the speed of the wave propagation.

159
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As a whole, mathematics of biological invasion and species spread is a vast
scientific field. On the one side, it is rooted in a more general theory of
traveling waves in diffusion-reaction systems and, eventually, in the theory of
nonlinear partial differential equations. On the other side, it involves a lot
of knowledge from biology, ecology and environmental science which greatly
affect the background of the modeling approach, cf. Chapter 2. Thus, it would
be impossible to give a review of all relevant issues here. Instead, the goal of
this chapter is much more modest. Namely, we are going to briefly outline a
somewhat more general mathematical framework for the actual content of our
book, i.e., exactly solvable models. In particular, we consider what kind of
information about the species spread can be obtained in non-integrable cases.
Also, we will show how possible application of exactly solvable models can
sometimes be extended beyond their formal capacities.

7.1 Wave speed and the eigenvalue problem

In most parts of this book, our analysis has been based on the following
single-species model of population dynamics:

ut(x, t) = uxx + F (u) (7.1)

(in dimensionless variables). Due to the phenomenon of convergence, which
we address separately in the next section, application of Eq. (7.1) to biological
invasion can in many cases be reduced to consideration of its traveling wave
solutions, i.e., solutions of the equation

d2U

dξ2
+ c

dU

dξ
+ F (U) = 0 (7.2)

where U = U(ξ), ξ = x − ct and c is the wave speed.
Equation (7.2) describes the geographical spread of the invasive species

provided the conditions at infinity correspond to the equilibrium states of the
system, i.e., to the zeros of function F . For biological reasons, F (U) must
allow for at least two equilibrium states, F (0) = F (1) = 0. Then, assuming
here without any loss of generality that the alien species spreads along axis
x, the conditions are

U(ξ → −∞) = 1, U(ξ → ∞) = 0. (7.3)

In spite of the fact that Eq. (7.2) may at first glance look rather simple, it
is not possible to obtain a nontrivial closed-form solution of Eq. (7.2) for an
arbitrary F (U). However, even when an explicit solution is not available, it
is sometimes possible to obtain the wave speed.
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Equation (7.2) with (7.3) can be regarded as a nonlinear eigenvalue problem:
find all values of c for which Eq. (7.2) has a nonnegative solution satisfying
conditions (7.3). There are a few cases when this problem can be solved
rigorously. In particular, it was shown by Kolmogorov et al. (1937) in their
seminal paper that, for F described by conditions

F (u) > 0 for 0 < u < 1, F (u) < 0 for u > 1, (7.4)

F ′(0) = 1 > 0, F ′(u) < 1 for u > 0, (7.5)

cf. “generalized logistic growth,” the eigenvalue problem has a continuous
spectrum: for any c ≥ 2 there exists a solution with necessary properties.

For a function F with other features, the spectrum can be essentially dif-
ferent. For instance, in case F (u) possesses an intermediate zero, i.e., F (β) =
0, 0 < β < 1, so that

F (u) < 0 for 0 < u < β and u > 1 , (7.6)

F (u) > 0 for β < u < 1 (7.7)

(which corresponds to the strong Allee effect), the spectrum consists of a
single value c0. This result was originally obtained by Zeldovich (1948) in
connection to the flame propagation problem and was later generalized by
Aronson and Weinberger (1975, 1978).

The full consideration of the problem requires analysis of the global behavior
of the trajectories in the corresponding phase plane. However, one essential
difference between these two cases can be conceived by means of a simple linear
analysis. Let us consider the solution of Eq. (7.2) far in front of the front, i.e.,
where U � 1. Then the growth function can be linearized, F (U) ≈ F ′(0)U ,
and Eq. (7.2) takes the form

d2U

dξ2
+ c

dU

dξ
+ F ′(0)U = 0 (7.8)

assuming that F ′(0) �= 0.
Equation (7.8) is linear; therefore, its general solution is either

U(ξ) = C1e
λ1ξ + C2e

λ2ξ (7.9)

(if λ1 �= λ2) or

U(ξ) = (C1 + C2ξ) eλ1ξ (7.10)

(if λ1 = λ2) where C1,2 are arbitrary constants and λ1,2 are the solutions of
the following equation:

λ2 + cλ + F ′(0) = 0 (7.11)
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so that

λ1,2 =
1
2

(
−c ±

√
c2 − 4F ′(0)

)
. (7.12)

Since U is the population density, it cannot be negative; therefore, the
solution cannot oscillate around U = 0. Correspondingly, it means that λ1,2

must be real which is only possible for

c2 ≥ 4F ′(0). (7.13)

In case of the generalized logistic growth, from (7.13) we immediately obtain
the minimum possible value of the wave speed:

cmin = 2. (7.14)

Note that conditions (7.13–7.14) obtained in this way neither guarantee that
the solution of problem (7.2–7.3) exists for any c ≥ 2 nor that c = 2 is the exact
lower bound of the spectrum; the only conclusion that can actually be made is
that there can be no traveling wave solution for c < 2. Nevertheless, Eq. (7.14)
appears to coincide with the results of a more comprehensive analysis. Thus,
the wave speed is determined by the profile properties at the leading edge, i.e.,
far in front of the front. For that reason, traveling waves in the population
described by (7.2) with (7.4–7.5) are sometimes referred to as the “pulled”
waves, cf. Hadeler and Rothe (1975).

In case of the Allee effect, however, F ′(0) < 0 and inequality (7.13) only
leads to a trivial conclusion that c2 ≥ 0. The fact that linear analysis in
vicinity of U = 0 does not bring any information indicates that the wave
speed is determined not by the leading edge behavior but by the properties of
the wave profile inside the transition region. A similar inference can be also
made from consideration of wave blocking conditions, cf. (2.22) and (2.23).
The traveling waves of this type are called “pushed” waves.

Note that condition (7.13) does not actually say anything about the sign
of c, i.e., about the direction of wave propagation. It is readily seen from
Eq. (7.2) that the sign of c is fully determined by the properties of the growth
function F . Indeed, multiplying (7.2) by dU/dξ, integrating over space and
making use of (7.3), we obtain:

c

∫ ∞

−∞

(
dU

dξ

)2

dξ =
∫ 1

0

F (U)dU . (7.15)

Obviously, the sign of c coincides with the sign of the integral in the right-hand
side so that it can be different only in case F is an alternating-sign function.
As an immediate consequence, this means that the wave always propagates
towards the domain with low population density in case of the generalized
logistic growth but can propagate in either direction in case of the strong
Allee effect.
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The above results relate to the single-species model with linear diffusion.
Some generalization appears possible to the case of density-dependent diffusiv-
ity. In particular, for D(U) = U and F (U) = U(1−U), cf. Eq. (5.6), Sánchez-
Garduño and Maini (1994) showed that the corresponding eigenvalue problem
has a continuous spectrum as well, although the lower bound of the spectrum
is different. The traveling wave solution exists only for c ≥ cmin = 1/

√
2 so

that c = 1/
√

2 corresponds to the sharp front and c > 1/
√

2 corresponds to
the smooth fronts.

7.2 Convergence of the initial conditions

In a rigorous mathematical sense, the traveling wave solutions of diffusion-
reaction equation (7.1) arise for particular initial conditions, i.e., the condi-
tions describing the wave profile at the moment t = 0. In case of integrable
models, these conditions are immediately obtained by means of letting t = 0
in the exact solution expression. Remarkably, however, the meaning of the
traveling wave solution is not exhausted by this rather special case. There
are numerous results, cf. Volpert et al. (1994), showing that initial conditions
from a wide class exhibit convergence to a relevant traveling wave solution in
the large-time asymptotics.

From the standpoint of species invasion or colonization, the most biologi-
cally reasonable initial conditions to Eq. (7.1) are those that are described by
functions of either finite or semi-finite support. One of the most comprehen-
sive mathematical studies of population dynamics initiated by conditions of
that type was done by Kolmogorov et al. (1937). In particular, they consid-
ered the initial condition of “transitional” type:

u(x, 0) = 1 for x ≤ x0, u(x, 0) = 0 for x ≥ x0 + ∆, (7.16)

u(x, 0) = φ(x) ≥ 0 for x0 < x < x0 + ∆ (7.17)

where φ(x) is a certain function and ∆ is a parameter giving the width of
the transition region. Kolmogorov et al. (1937) showed that, for a population
with the local growth described as (7.4–7.5), conditions (7.16–7.17) always
converge to a traveling wave propagating with the minimum possible speed
c = cmin = 2.

The situation stays essentially the same in case of initial conditions of finite
support,

u(x, 0) = 0 for x ≤ x0 and x ≥ x0 + ∆, (7.18)

u(x, 0) = φ1(x) ≥ 0 for x0 < x < x0 + ∆, (7.19)

up to the apparent difference that evolution of (7.18–7.19) leads to formation
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of two traveling fronts propagating in opposite directions with speed c = ±2,
respectively.

We should recall here that the nonlinear eigenvalue problem (7.2–7.3) with
F (u) describing the generalized logistic growth has a solution for any c ≥ 2.
The question thus remains about the waves propagating with a speed larger
than cmin, i.e., what kind of initial conditions they may correspond to. Indeed,
it appears that the value of speed that is actually “chosen” by the traveling
population wave is determined by certain properties of the initial species dis-
tribution. Specifically, it was shown by Rothe (1978), see also McKean (1975)
and Larson (1978), that the speed depends on its large-distance asymptotical
behavior: assuming that it exhibits an exponential decay, i.e., u(x, 0) ∼ e−sx

for x → +∞, the wave speed is larger the smaller is s:

c = 2 if s ≥ 1 and c = s +
1
s

if s < 1. (7.20)

Note that, although initial conditions defined in an infinite domain are by
themselves not of much relevance to biological invasion, relation (7.20) is very
useful in the sense that it helps to understand what kind of function can be
possibly used to describe u(x, 0) for modeling purposes. In particular, it is
immediately seen that convergence to the wave propagating with the minimum
speed takes place when the initial conditions are described by the Gaussian
distribution, cf. Section 4.2.

The system dynamics with respect to initial conditions changes significantly
when the population growth is damped by the strong Allee effect so that F (u)
is not positively defined in interval (0, 1) any more, cf. (7.6–7.7). In this case,
the eigenvalue problem (7.2–7.3) has the only solution corresponding to a
certain c = c0. As a result, not only for the transitional initial conditions
(7.16–7.17), but also for a more general type,

u(x, 0) → 1 for x → −∞ and u(x, 0) → 0 for x → ∞, (7.21)

the solution of Eq. (7.1) always converges to a traveling wave propagating
with speed c0. Note that the sign of c0 can now be different depending on the
sign of

∫ 1

0
F (u)du; see the previous section.

In case of finite initial conditions, there can be two different dynamical
regimes depending on ∆ and Φ1 = max φ1(x) (cf. the problem of critical ag-
gregation, Section 4.3). This problem was first considered rigorously by Kanel
(1964). For a specific case φ1(x) ≡ 1, he showed that, provided

∫ 1

0
F (u)du > 0,

the initial distribution (7.18–7.19) converges to two traveling waves propagat-
ing in opposite directions in case ∆ is sufficiently large but it approaches zero
in case ∆ is sufficiently small.

We want to emphasize here that, in spite of considerable progress in mathe-
matics of diffusion-reaction systems (e.g., see Volpert et al. 1994), practically
useful algorithms helping to calculate the critical width and magnitude of the
initial distribution in a more or less general case are lacking and the problem
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of distinguishing between the two regimes in terms of the corresponding initial
conditions is largely open.

In conclusion to this section, we want to mention that, although the rate
of convergence is mainly determined by the properties of function F and, as
such, can be studied under rather general assumptions, cf. Larson (1978), the
characteristic time of convergence τc significantly depends on the particulars
of initial conditions and thus can vary greatly from case to case. A general
tendency is that this time is larger for the populations with the Allee effect
than for the populations with the generalized logistic growth; in particular,
τc → ∞ for ∆ → ∆cr. As a result, in a spatially-bounded system it may
happen that the time required by wave formation is on the same order or
larger than the time of wave propagation through the domain (Ognev et al.,
1995).

7.3 Convergence and the paradox of linearization

In order to get a deeper insight into convergence of initial conditions to a
traveling wave, in this section we consider an illustrative example that we call
the “paradox of linearization.” As above, we consider a single-species model
of population dynamics, cf. (7.1), with F (u) corresponding to the generalized
logistic growth. For the purposes of this section, it is more instructive to
consider the problem in the original (dimensional) variables so that F ′(0) =
α > 0. We assume that the initial species distribution is described by a
function of finite support defined in the domain situated around x = 0. We
restrict our consideration to population spreading along the axis x; its spread
against the axis x takes place in the same manner up to the change x → −x.

Clearly, at a position in space sufficiently far away from the place of the
initial distribution, the population density u is small and the equation can be
linearized:

ut(x, t) = Duxx + αu . (7.22)

It is readily seen that its solution is

u(x, t) � 1√
t

exp
(
− x2

4Dt
+ αt

)
(7.23)

(cf. Chapter 9) where we have omitted the constant coefficient for convenience.
On the other hand, in the large-time limit, finite initial conditions are known

to converge to a traveling wave. In front of the front, the density u(x, t) = U(ξ)
is small so that F (U) ≈ αU and the dynamics is again described by a linear
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differential equation but of essentially different type:

D
d2U

dξ2
+ c

dU

dξ
+ αU = 0 (7.24)

where ξ = x − ct. In case of a wave propagating with minimum speed (as it
always happens for finite initial conditions), the solution of Eq. (7.24) has the
following large-distance asymptotics:

u(x, t) = U(ξ) � ξ exp
(
−cmin

2D
ξ
)

(7.25)

omitting the constant coefficient and taking into account that cmin = 2
√

Dα,
cf. (7.10) and (7.12).

Now, we arrive at a paradox: for any fixed moment t, expressions (7.23)
and (7.25) give apparently different rates of solution decay, i.e., on the order
of exp(−x) for the traveling wave solution and on the order of exp(−x2) for
the original diffusion problem. We want to emphasize that, while (7.24) and
(7.25) are only relevant when t is sufficiently large, i.e., after the wave has
formed, application of Eq. (7.22) is not necessarily restricted to early stages
of the system dynamics and (7.23) is valid for any t provided the distance x
is large enough.

In order to resolve this seeming contradiction, we transform (7.23) as fol-
lows:

u(x, t) � exp
(
− x2

4Dt
+ αt − 1

2
ln t

)

= exp
(
− 1

4Dt
[x − c̃t][x + c̃t]

)
(7.26)

where

c̃ = 2
√

Dα

[
1 −

(
1
2α

)
ln t

t

]1/2

(7.27)

= cmin

[
1 −

(
1
2α

)
ln t

t

]1/2

.

Note that c̃(t) → cmin for t → ∞.
We then introduce a new variable, ξ̃ = x − c̃t. Correspondingly, Eq. (7.26)

takes the form

u(x, t) = Ũ(ξ̃, t) � exp

(
− c̃

2D
ξ̃ − ξ̃2

4Dt

)
. (7.28)

Expression (7.28) includes both of the asymptotics (7.23) and (7.25). Which
of them actually takes place depends on ξ̃ and t. Namely, Eq. (7.28) describes
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FIGURE 7.1: Population density versus space (semilogarithmic plot) in
a traveling population front as given by (7.28) (solid curve) for (a) t = 2
and (b) t = 100; curves 1 and 2 show exponential and Gaussian asymptotics,
respectively. Apparently, in the course of time the domain where Gaussian
asymptotics is applicable shrinks toward the leading edge.
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the exponential decay in case the second term in the parentheses is negligible
with respect to the first term,

c̃

2D
ξ̃ � ξ̃2

4Dt
, (7.29)

e.g., for sufficiently large t, and it describes the rate of decay as exp(−x2) in
the opposite case,

c̃

2D
ξ̃ � ξ̃2

4Dt
, (7.30)

e.g., for sufficiently large ξ̃. The change between the two different asymptotics
thus takes place for

c̃

2D
ξ̃ � ξ̃2

4Dt
, (7.31)

i.e., for

ξ̃∗ � 2c̃t (7.32)

so that on the left of ξ̃∗ the asymptotics is exponential (provided that the
density is small enough and the linear approximation is valid) while on the
right of ξ̃∗ it is of the Gaussian type; see Fig. 7.1. We want to emphasize
that, due to the nature of relations (7.29) and (7.30), ξ̃∗ gives not the exact
position but rather the order of magnitude where this change takes place.

Obviously, the “critical coordinate” ξ̃∗ moves along the wave profile toward
the leading edge so that the domain with the traveling wave-type asymptotics
grows with time. Expression (7.28) thus describes the approach of the initial
conditions to the traveling wave solution. Interestingly, it predicts a different
type of convergence for the wave speed and the wave profile: while the ap-
proach to the speed takes place with the same rate (1/t) ln t for both types of
the asymptotics, convergence to the wave profile takes place inhomogeneously
in space. Remarkably, the results of our heuristic analysis appear to be in
very good agreement with the results of a more rigorous analysis, cf. McKean
(1975) and Larson (1978).

7.4 Application of the comparison principle

Exact solutions of nonlinear partial differential equations are typically ob-
tained either for a specific form of nonlinearity or for particular initial con-
ditions. In more applied biological or ecological studies, this circumstance is
often mistaken for a reason to underestimate the meaning of exactly solvable
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models. An alternative theoretical tool is usually seen in extensive numerical
simulations; however, with all proper respect to potency of computer exper-
iment, simulations alone can hardly be an adequate substitute to a rigorous
mathematical study.

As a matter of fact, this foible of exact solutions can be turned to their
strength by means of the comparison principle. The formulation of this prin-
ciple can be slightly different; here we mainly stick to the one by Volpert and
Khudyaev (1985). A detailed consideration of related issues can be found in
Protter and Weinberger (1984).

Theorem 7.1. Let u1(r, t) and u2(r, t) are nonnegative solutions of the
equations

∂u1(r, t)
∂t

= D∇2u1 + F1(r, t, u1) , (7.33)

∂u2(r, t)
∂t

= D∇2u2 + F2(r, t, u2) (7.34)

for r ∈ Rn and t > 0, with the initial conditions

u1(r, 0) = φ1(r), u2(r, 0) = φ2(r), (7.35)

and the conditions at infinity as

u1,2(r, t) ≤ M < ∞ for |r| → ∞ , (7.36)

where M is a certain constant.
If the following conditions are satisfied:

φ1(r) ≤ φ2(r), F1(r, t, u) ≤ F2(r, t, u) , (7.37)

then u1(r, t) ≤ u2(r, t) for all r ∈ Rn and t > 0 .

The proof can be found in the above-mentioned book; for the sake of brevity,
we do not reproduce it here.

Now, how can Theorem 7.1 be used to facilitate application of exact solu-
tions to study biological invasion and species spread in a general case? Let
F1 be a realistic parameterization of the local growth rate of a given invasive
species, e.g., reconstructed from available biological data, and F2 is one of the
functions that makes the model exactly solvable. We assume that F1 ≤ F2

for all values of their arguments; see Fig. 7.2. In most cases, exactly solvable
models describe propagation of traveling waves in 1-D space so an appropriate
form of Eq. (7.34) is its one-dimensional reduction. In a more realistic 2-D
case, it corresponds to propagation of a plane wave along or against axis x.
The initial distribution of the invasive species is usually described by a func-
tion of compact support defined in a certain domain inside R2. Apparently,
such function can always be majorized by the two-dimensional extension of
the 1-D initial conditions corresponding to the traveling wave solution. Exact
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FIGURE 7.2: An example of relation between a “real” growth function
F1(u) (dashed-and-dotted curve) and a function F2(u) that makes the model
exactly solvable; details are given in the text.

solution u1(x, t) = U(x − ct) then gives an upper bound of the population
density of the invasive species and speed c gives an upper bound of the inva-
sion rate. Similar arguments can be applied to other types of exact solution
as well, cf. Sections 4.2 and 4.3.

Note that, due to generality of the theorem conditions, the approach de-
scribed above works as well when F1 depends explicitly on space and/or
time, e.g., as a result of environmental heterogeneity and seasonal or cli-
matic changes. However, the accuracy of the invasion rate estimate based on
a relevant exact solution is likely to be much lower in that case.



Chapter 8

Ecological examples and applications

There are many examples of successful application of rigorous mathematical
results to understanding and prediction of invasive species spread, e.g., see
Skellam (1951), Lubina and Levin (1988), Okubo et al. (1989), Andow et
al. (1990), Lewis and Kareiva (1993), Shigesada et al. (1995), Owen and Lewis
(2001), and also Shigesada and Kawasaki (1997) and the references therein.
In most cases, comparison between theory and data is based, directly or in-
directly, on the equation for the minimum speed of the population front of
the invasive species with logistic growth, i.e., c = 2

√
Dα (see Sections 2.1 and

7.1). Apparently, application of diffusion-reaction equations to biological in-
vasion is not exhausted by this relatively simple case. A question of particular
importance is what factors can possibly modify the front speed: either speed-
ing up or slowing down, or even blocking/reversing species invasion. A few
such factors have been addressed above by means of exactly solvable models;
see Sections 4.1, 4.2 and 6.1. In this chapter, we are going to confront the
mathematical results with some relevant ecological data in order to verify the
theoretical predictions and to further check the models’ capacities.

It must be mentioned that any instructive comparison between theory and
practice is only possible when both of them use the same quantities to de-
scribe the phenomenon under study. In case of biological invasion, the main
quantity used in field ecology is the range of the alien species while the main
quantity used in theoretical approaches is the radius R of invaded area. The
relation between these values is not always straightforward. First, most of
the analytically solvable models deal with one-dimensional systems while in
nature species spread usually takes place in two dimensions [but see Lubina
and Levin (1988) for an example of 1-D biological invasion]. Although the ra-
dially expanding front is expected to converge to the plane wave in the large-t
or large-R limit, the practical question concerning what R can be regarded as
large often brings a degree of uncertainty. Second, from the standpoint of real
ecosystems the definition of the invaded area radius itself can be ambiguous
as well. The matter is that, due to the impact of various factors, e.g., en-
vironmental heterogeneity, the border of the species range is rarely close to
a circle. Thus, calculation of the radius should either involve averaging over
different directions of species spread or using an alternative definition of the
area radius. This problem was addressed by several authors, e.g., see Skellam
(1951), Andow et al. (1990) and Shigesada and Kawasaki (1997).

171
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There are a lot of cases of species invasion where field data either are far
too incomplete or available in a form not suitable for immediate comparison
with theoretical predictions. Although working on these cases is a challenging
problem, it clearly lies beyond the scope of this book. Since here we are
primarily concerned with exactly solvable models, for comparison between
theory and data we have selected a few examples where the uncertainties
mentioned above were solved successfully. (Note that we are not going into
details of data analysis because it is out of the scope of this book; those who
are interested can find them in original publications cited in the text.) We
want to emphasize, however, that applicability and usefulness of the exactly
solvable models clearly reach far beyond these cases and more examples can
be given by more focused studies.

8.1 Invasion of Japanese beetle in the United States

Probably one of the most famous cases of biological invasion has been the
invasion of Japanese beetle in the United States in the first half of the twen-
tieth century. Although the exact date of its introduction is unknown, as
it is often happens with invasion of alien species, it is thought to have been
brought into the US around 1911 from Japan with some commercial plant
species. Having started its spread from a farm in New Jersey, this species
increased its range to about 50,000 km2 in less than thirty years and eventu-
ally spread over the whole eastern United States. The dynamics of invasion
during the first several years is shown in Fig. 8.1 and the population density
inside the infested area promptly reached very large values. The spread of this
pest resulted in a virtual wipeout of many plant species ranging from clover
to apple-tree, and the economic losses were tremendous. More details can be
found in Elton (1958).

Apart from the fact that the Japanese beetle invasion caused a severe dam-
age to agriculture and that it is well documented (which makes this case
suitable for analysis), there is a feature that makes this case especially inter-
esting for our purposes. Namely, although it may not be immediately seen
from Fig. 8.1, a closer inspection of the data shows that, during the first
decade of the invasion, the radius of the infested area was increasing with
accelerating speed; see Fig. 8.2 where asterisks show the averaged radius of
the invaded area versus time as it was obtained in field observations. As it has
already been mentioned above, the “standard” diffusion-reaction models seem
to predict a constant-rate spread and, as such, might be thought not capable
to account for this phenomenon. In this section, we will show that this is not
true and that front propagation at increasing speed is an intrinsic property of
diffusion-reaction models – at least at a certain stage of the species spread.
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FIGURE 8.1: Geographical spread of Japanese beetle in the United States
from the place of its original introduction. Alternating grey and black colors
show the areas invaded during successive time intervals (from United States
Bureau of Entomology and Plant Quarantine, 1941).

An attempt to explain the nature of accelerating waves has been made by
means of linking them to “non-Gaussian” diffusion when every single event
of dispersal follows not the normal distribution but a distribution with much
slower rate of decay at large distances (see Section 2.2). Mathematically, it
means that the models should be based on integral-difference equations, not
diffusion-reaction ones. Indeed, for some plant species this approach works
very well, cf. Clark et al. (1998). For insect species, however, the situation is
different. While in the case of seed or pollen spreading its fat-tailed dispersal
can be linked to the peculiarity of turbulent wind mixing, in the case of
insects, they are not just passively born by the wind. A mechanistic theory of
insects’ dispersal accounting for their ability to self-motion is lacking and the
existing data are usually of poor accuracy so that they can be easily fitted by
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FIGURE 8.2: Comparison between the exact solution (4.40), (4.46) and
(4.47) and the data on Japanese beetle range expansion. Asterisks show av-
eraged radius of the invaded area versus time as it was obtained in field ob-
servations. The solid lines show R(t) as given by (4.46) for different values
of parameter Rin, from left to right: Rin = 2.0, Rin = 1.0, Rin = 0.1. The
dashed-and-dotted line shows the results of numerical integration of Eq. (4.33)
with f(u) = fγ(u) for γ = 0.033 and the same values of Rin (with permission
from Petrovskii and Shigesada, 2001).

virtually any distribution (Kot et al., 1996). Moreover, in Section 2.2 we have
shown that the species spread at a speed higher than c = 2

√
Dα (which has

been observed for some insect species and is sometimes considered as a sign of
non-Gaussian diffusion) can still be described by diffusion-reaction equations.

Another explanation of biological invasion with increasing rates of species
range expansion can be provided if we assume that, in some cases, this regime
corresponds to an early stage of the invasion, before the stationary traveling
wave is formed. In Section 4.2.1 we showed (see Fig. 4.10) that, indeed, at the
beginning of invasion the population spreading can take place with increas-
ing speed. Moreover, when considering a population invasion in a bounded
domain, for certain parameter values it may happen that the constant-rate
stage is never reached.

It should be mentioned that one simple mechanism of species spread at
increasing speed is readily identified as soon as we take into account that
the spread of the invasive species normally takes place in two dimensions.
The speed ccyl of the front propagation in the case of cylindrical symmetry is
related to the speed c of the plane wave propagation by means of the following
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equation:

ccyl = c − D

R
(8.1)

(cf. Mikhailov, 1990) where R = R(t) is the radius of the invaded area. Since
ccyl = dR/dt, Eq. (8.1) is easily solved giving the area radius dependence on
time in an implicit way:

t =
1
c

[
(R − Rin) +

D

c
ln

(
cR − D

cRin − D

)]
(8.2)

where Rin = R(0) > D/c. It is not difficult to check that R(t) given by (8.2)
is a concave curve; therefore, it describes species spread with increasing speed.

However, a closer inspection of Eq. (8.2) shows that it gives a pattern of
spread different from that observed for Japanese beetle. While in the latter
case the species range is increasing gradually, what we have in case of Eq. (8.2)
looks more like a change between two constant-rate asymptotics with different
speed, one for small t,

R � Rin +
(

c − D

Rin

)
t (8.3)

and the other for large t,

R � const + ct . (8.4)

The area radius vs time as given by Eq. (8.2) along with asymptotics (8.3)
and (8.4) is shown in Fig. 8.3. (Note that the value of the constant in (8.4) is
unknown but it is the slope of the line that is important, not its exact posi-
tion.) Thus, although a qualitatively similar scenario of species invasion has
been observed for some avian invasion, e.g., for the invasion of the European
starling and the house finch in North America (Okubo, 1988; Shigesada and
Kawasaki, 1997), it is unlikely to be applicable to the Japanese beetle inva-
sion. Also, it must be mentioned that Eq. (8.1) was actually derived under
the assumption that the “width” of the population front, i.e., the transition
region between the densely populated areas (behind the front) and the areas
where the invasive species is still absent (in front of the front), is sufficiently
narrow. Apparently, this is not always the case; an alternative scenario is
given by a self-similar expansion when growth of the area is accompanied by
growth of the front width.

An exact self-similar solution describing the early stage of invasion has been
obtain in Section 4.2 based on the modified Fisher equation

∂u

∂t
=

(
∂2u

∂r2
+

η

r

∂u

∂r

)
+ f(u) (8.5)

(in dimensionless variables) where the generalized logistic population growth
f(u) = fγ(u) is changed to logarithmic growth f(u) = f̄(u); see (4.35) and
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FIGURE 8.3: Invasion at increasing rate due to the interplay between the
space dimension and the impact of the initial conditions. The solid curve gives
the radius R(t) of invaded area as given by (8.2); the dashed-and-dotted lines
show the small-time and the large-time asymptotics.

(4.37). According to the solution, the radius of the invaded area is given by
the following equation:

R(t) =
[(

4 + R2
in

)
et − 4

]1/2
, (8.6)

cf. (4.46) and also see (4.47) and (4.40). It was shown that, although for large
time it exhibits an unrealistic exponential growth, for small t the predicted
value of area radius complies very well with that obtained in the biologically
realistic case f = fγ .

Now, the point of interest is whether that exact solution is applicable to
Japanese beetle invasions. Note that (8.6) gives the radius versus time in
dimensionless variables; to calculate it in original dimensional variables, we
need to know the value of the scales for R and t. For that purpose, we first
need to estimate the values of parameters, i.e., diffusivity D and the radius
l of the originally invaded domain. Let us mention that, usually, obtaining
the value of diffusivity for a given species is a difficult problem, cf. Kareiva
(1983). In the case of the Japanese beetle spread, however, we can make use
of the fact that, during its later stage (i.e., 1925–41), the invasion took place
with a constant speed. Taking into account that for these years the radius
of the invaded area is already rather large (on the order of one hundred km),
the formula for the plane traveling wave speed seems to be applicable, i.e.,
c = 2

√
D/τ where τ is the characteristic time of population multiplication. It
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is readily seen from the data shown in Fig. 8.2 that the speed of the Japanese
beetle invasion during these years can be estimated as 5.5 km/year. Then,
assuming that τ ≈ 0.033 year, we arrive at D ≈ 0.25 km2/year. We want
to mention that we are not aware of any existing estimates of τ and D for
Japanese beetle; thus it seems impossible to check these values directly. It
should be noted, however, that the values of τ and D accepted above are
of the same order as the characteristic time and diffusivity for other insect
species.

In order to obtain the value of l, one needs to know details of the initial
distribution of an invasive species. This also brings a problem because in most
cases regular observations on species spread start not immediately from the
moment when the species is discovered in a new environment but only after a
certain time. This concerns the spreading of the Japanese beetle as well; the
data about its initial spatial distribution are somewhat contradictory (note
that here by the “initial distribution” we mean the distribution at the time
when the species is observed for the first time). Choosing l = 0.5 km (which
seems to be consistent with the rest of the data), the scaling factors for R and
t become 0.5 km and l2/D = 1 year correspondingly.

The last task is the choice of the value for parameter Rin. According to
its meaning, see the comments below Eq. (4.39), this parameter takes into
account not only details of the initial species distribution but also details of
the method of the field observations, particularly, the value of the threshold
density (i.e., the density below which the population cannot be detected).
The lack of information makes it impossible to obtain a reliable estimate for
Rin. Fortunately, the behavior of R(t) given by (8.6) appears to be rather
robust to variations of this parameter. Fig. 8.2 shows the radius of the area
invaded by Japanese beetle versus time calculated according to (8.6) for the
values of τ , D and l as chosen above and for three different values of Rin (solid
curves). Thus, exact solution (8.6) provides an apparently good description
of the early stage of the invasion.

Interestingly, prediction made by using Eq. (8.5) with a more realistic
growth function f(u) = fγ(u) (see (4.35)) appears to be in a worse agree-
ment with the data because it gives a much lower rate of the area growth.
The dashed-and-dotted line in Fig. 8.2 shows the numerical solution for the
problem (4.33), (4.35), (4.39) obtained for γ = 0.033 (in accordance with the
estimates for D, τ and l made above) and Rin = 1 (the solutions for the other
two values of Rin used in Fig. 8.2 are not shown because all the three curves
nearly coincide with each other).

In conclusion, we want to mention that the good agreement between the
theory and the observations is, to a certain extent, subject to the appropri-
ate choice of parameter values. Although small variations of the parameters
(within a few percent of the values used for Fig. 8.2) do not break the agree-
ment, for essentially different values the discrepancy between the solution (8.6)
and the field data may become significant. Also, the field data itself give rise
to some questions, e.g., about the discontinuity between the parts correspond-
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ing to the constant-rate and the increasing-rate stages of the Japanese beetle
spreading. This discontinuity may have been caused by a variety of reasons,
e.g., by a modification of the monitoring criteria. It can hardly be expected
that these complicated and rather obscure circumstances could be taken into
account in terms of our conceptual model. Still we think that a very good
coincidence between the theory and the field data shown in Fig. 8.2 can be
regarded as an indication that the exact solution obtained in Section 4.2 is
not just a mathematical toy but can have a variety of ecological applications.

8.2 Mount St. Helens recolonization and the impact of
predation

There is now considerable evidence coming both from empirical studies
and from theoretical research that predation can affect the invasion rate and
essentially modify the whole scenario of species spread (Dunbar, 1983, 1984;
Sherratt et al., 1995, 1997; Fagan and Bishop, 2000; Owen and Lewis, 2001;
Fagan et al., 2002; Petrovskii et al., 2002; Torchin et al., 2003). One of the
most refined examples of predation impact was recently obtained in the field
studies on vegetation recolonization patterns at Mount St. Helens, a volcano
situated in the state of Washington, USA. Its eruption in 1980 created a
vast area free from any plant or animal species and a large outer zone where
only very few of them survived in some scarce natural shelters. The primary
succession started soon after the eruption (del Moral and Wood, 1993) and has
been going up to date, and the area became a huge research site for studying
early ecosystem development.

Among the first species coming back to the area were lupines, Lupinus lep-
idus. This species has been attracting significant attention ever since in order
to better understand its ecophysiology and its contribution to soil formation
and successional dynamics, e.g., see Halvorson et al. (1992) and Braatne and
Bliss (1999). In particular, Fagan and Bishop (2000) studied the spatial as-
pects of lupine recolonization. They found that the species range had been
increasing linearly with time during the first several years before it turned to
a slowly decelerating regime which is described by a curve close to a straight
line but with a lower slope (see Fig. 8.4). Remarkably, the time of this change
in the range growth rate coincided with re-appearance of some herbivorous
species. Apparently, that made a solid ground for linking the slower growth
of lupine range to the impact of its consumers.

The proven relation between invasion rates and predation has yet left many
issues unclear. It is not fully clear how significant the effect of predation
can be, i.e., whether it can block species invasion or turn invasion into species
retreat. Although Fagan and Bishop (2000) estimated that there should be the
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FIGURE 8.4: Advance of the boundary of the lupine range in the course
of its recolonization over Mount St. Helens area (with permission from Fagan
and Bishop, 2000).

turning point in the lupine range growth, the accuracy of their prediction does
not seem to be high enough. It remains largely obscure what the biological
requisites for the impact of predation to occur are, i.e., whether it is a common
phenomenon or it takes place for a certain type of prey or predator. Finally,
it is not clear what is the minimum modeling framework which is necessary
to account for this phenomenon.

From the modeling perspective, it seems that the most natural approach
to describe predator-prey interaction should include at least two dynamical
variables. In case of a diffusion-reaction model, they would be prey density u
and predator density v and the model should include two equations, respec-
tively. However, it appears that a useful insight into the impact of predation
on the invasion rate can be done already in terms of a single-species model.

Let us consider the following equation:

ut(x, t) = Duxx + F (u) − σvu (8.7)

where the last term in the right-hand side accounts for predation. Appar-
ently, the model is incomplete and we should either add one more equation
or make certain simplifying assumptions about the predator density. Here we
assume that v = v0 = const. Note that, although this is, of course, a rather
restrictive assumption, it is not totally unrealistic. It may correspond to a
homogeneously distributed immobile slowly growing predator; for instance, a
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few species with similar properties can be identified in marine benthic ecosys-
tems.

The impact of predation then depends on the properties of the growth rate
function F (u). We distinguish between two qualitatively different cases, i.e.,
the case of logistic growth and the case of the strong Allee effect parameterized
by the square and cubic polynomials, respectively. It is readily seen that, in
both of these cases, predation slows down the spread of prey, although with
essentially different consequences for the population dynamics.

Namely, in the case of logistic growth, from (8.7) we obtain:

ut(x, t) = Duxx + αu
(
1 − uK−1

) − σv0u . (8.8)

Equation (8.8) can be written in a form identical to that of the absence of
predation:

ut(x, t) = Duxx + α̃u
(
1 − uK̃−1

)
(8.9)

where α̃ = α − σv0 and K̃ = K(1 − σv0/α). Therefore, the minimum value
of the traveling wave speed is c = 2

√
D(α − σv0) and, obviously, it decreases

as the intensity of predation increases, i.e., with an increase in v0 and/or σ.
Note that an increase in the predation intensity has also a “global” impact

on the population dynamics so that the carrying capacity decreases signifi-
cantly with an increase in σv0 (see Fig. 8.5). In particular, invasion blocking
is reached for σv0 = α and for these values K̃ = 0. Thus, in the case of
logistic growth invasion blocking is possible only by means of total wipeout
of the invasive species.

However, blocking and retreat of invasive species without its extirpation
appears to be possible if we assume that its growth is damped by the strong
Allee effect. In this case, Eq. (8.7) turns to

ut(x, t) = Duxx + ωu(u − uA)(K − u) − σv0u . (8.10)

In the absence of predator, the traveling population front propagates with the
speed

c =

√
Dω

2
·
(

1 − 2uA

K

)
; (8.11)

see Section 2.1.
Evidently, Eq. (8.10) can be written in the same form as in the absence of

predator, i.e., as

ut(x, t) = Duxx + ωu(u − ûA)(K̂ − u), (8.12)

where

ûA =
1
2

[
(K + uA) −

√
(K + uA)2 − 4

(
uAK +

σv0

ω

) ]
, (8.13)

K̂ =
1
2

[
(K + uA) +

√
(K + uA)2 − 4

(
uAK +

σv0

ω

) ]
. (8.14)
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FIGURE 8.5: A sketch of prey population response to an increase in pre-
dation in the absence of the Allee effect. Curves 1, 2 and 3 show the growth
rate versus population density for σv0 = 0, 0.1 and 0.5, respectively, cf. (8.8).
Other parameters are K = α = 1.

Since the growth function in Eq. (8.12) is still given by a cubic polynomial,
the equation (8.11) for the front speed is applicable subject to the change
uA → ûA, K → K̂. Any increase in predation intensity σv0 leads to an
increase in ûA and to a decrease in K̂ (see Fig. 8.6); therefore, it results in a
decrease in the invasion speed.

From c = 0 we obtain the condition of wave blocking as 2ûA = K̂ which,
after some algebra, takes the following form:

σv0 =
[
2
9
(1 + β)2 − β

]
ωK2 (8.15)

where β = uA/K. Predation will lead to retreat of the invasive species when
its intensity σv0 is higher than that given by (8.15). Note that blocking and
retreat of the invasive species now takes place without its global wipeout,
cf. Fig. 8.6. Although an increase in the predation intensity does result in
a decrease in the prey carrying capacity, it remains well above zero until it
suddenly disappears for ûA = K̂.

The critical relation given by Eq. (8.15) is shown in Fig. 8.7 by the thick
curve. We want to emphasize that, in the absence of predation, species retreat
occurs only for β > 0.5 and the whole domain on the left of the vertical
line β = 0.5 would correspond to species invasion. Thus, species retreat for
parameter values from the domain above the thick curve and on the left of the
vertical dotted line must be essentially attributed to the impact of predation.
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FIGURE 8.6: A sketch of prey population response to an increase in pre-
dation under the impact of strong Allee effect. Curves 1, 2 and 3 show the
growth rate versus population density for σv0 = 0, 0.1 and 0.2, respectively,
cf. (8.10). Other parameters are K = ω = 1, uA = 0.1.
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FIGURE 8.7: A map in the parameter plane (β, σv0) of the single-species
model (8.10) for K = ω = 1.



Ecological examples and applications 183

The above conclusions have been made based on the assumption that preda-
tor density remains homogeneous in space and does not change with time. Be-
sides the restrictions that this assumption imposes on the predator motility
and growth (see the comments below Eq. (8.7)), it also implies a more spe-
cific presumption regarding the type of the predator. Namely, let us notice
that v(x, t) = v0 = const actually means that the predator dwells all over the
domain, i.e., in the areas that are already occupied by the invading prey as
well as in the areas that are not yet invaded. The fact that the predator can
survive in the absence of the prey may be interpreted that it is a generalist
predator, i.e., it can feed on many different species. An alternative case is
given by a specialist predator when it can only feed on one particular species.
Apparently, the assumption v(x, t) = v0 = const is by no means applicable
to a specialist predator. In order to give this case a full consideration, we
have to analyze a predator-prey system consisting of two partial differential
equations. This will be done below; however, it seems that a certain insight
can still be made in terms of a single-species model.

For that purpose, we consider the case when the relation between the given
predator and its prey implies, in the large-time limit, their steady coexistence
at a certain equilibrium density, (u0, v0). We then assume that the ratio of
predator and prey densities remains constant during their approach to the
equilibrium, v(x, t)/u(x, t) = v0/u0 = 	. Correspondingly, Eq. (8.7) turns to

ut(x, t) = Duxx + F (u) − σ	u2 . (8.16)

In the spatial perspective, the assumption v = 	u means that both u(x, t) and
v(x, t) show the same rate of decay at the tail in front of the population front.
It should also be mentioned that, besides the case of a specialist predator, the
linear relation between the prey and predator densities may reflect the fact
that, in front of the front of invasive prey, there is no other species at all. The
latter situation directly applies to Mount St. Helens recolonization.

It is readily seen that, since the last term in (8.16) does not alter the per
capita population growth rate at small u, in the case of logistic growth pre-
dation by a specialist predator does not modify the rate of the prey invasion.
The situation is different for a population with the Allee effect. In this case,
instead of Eq. (8.10) we have

ut(x, t) = Duxx + ωu(u − uA)(K − u) − σ	u2 (8.17)

which can be written as

ut(x, t) = Duxx + ωu(u − ũA)(K̃ − u) (8.18)



184 Exactly Solvable Models of Biological Invasion

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

Threshold Density

P
re

da
tio

n 
In

te
ns

ity

Retreat 

Invasion 

FIGURE 8.8: A map in the parameter plane (β, 	σ) of the single-species
model (8.17) for K = ω = 1.

where

ũA =
1
2

[(
K + uA − σ	

ω

)
−

√(
K + uA − σ	

ω

)2

− 4uAK

]
, (8.19)

K̃ =
1
2

[(
K + uA − σ	

ω

)
+

√(
K + uA − σ	

ω

)2

− 4uAK

]
. (8.20)

From the condition of the wave blocking, i.e., 2ũA = K̃, we arrive at the
following critical relation between the parameters:

σ	 =

(
1 + β − 3

√
β

2

)
ωK (8.21)

where β = uA/K.
The relation (8.21) is shown in Fig. 8.8 by the thick curve. As well as in the

case of a generalist predator, the impact of specialist predator significantly
decreases the parameter domain allowing for species invasion. Since in the
absence of predator the whole area on the left of the vertical (dotted) line
β = 0.5 would correspond to invasion, species retreat that takes place for
parameters from above the thick curve is essentially the result of predation.

Now, we proceed to consideration of the predator impact in terms of the
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full predator-prey system:

ut(x, t) = D1uxx + F (u) − r(u)uv , (8.22)
vt(x, t) = D2vxx + κr(u)uv − g(v)v . (8.23)

System (8.22–8.23) was analyzed in application to species invasion by Owen
and Lewis (2001). They showed that, in the case that prey exhibits a general-
ized logistic growth, cf. (1.8–1.10), predation cannot slow down prey invasion.
This is consistent with the results of our analysis for v = 	u, i.e., in the case
of a specialist predator. They also showed that predation does slow down the
prey invasion if prey growth is damped by the Allee effect; however, for this
case their study was restricted to D1 � D2.

In order to address the situation when D1 and D2 are of the same order
(ecological relevance of this case is discussed in Section 6.1.2), we put D1 =
D2 = D and try to make use of the exact solution that has been obtained in
Section 6.1 for a particular case of (8.22–8.23):

ut = uxx − βu + (β + 1)u2 − u3 − uv , (8.24)
vt = vxx + kuv − mv − δv3 . (8.25)

It was shown that, under additional constraints imposed on parameter values,

m = β , k +
1√
δ

= β + 1 , (8.26)

Eqs. (8.24–8.25) have exact solution (6.28–6.29) which describes, in the large-
time limit, a traveling front propagating with the speed

n2 =
1

2
√

2

(
k − 3

√
k2 − 4m

)
. (8.27)

Remarkably, the direction of propagation of the population front can be
different, cf. (6.33). While in the case n2 < 0 the population front propa-
gates to the region with low population density which corresponds to species
invasion (for appropriately chosen conditions at infinity), in the case n2 > 0
the front propagates to the region with high population density and thus it
corresponds to species retreat. Moreover, the case n2 > 0 (see also (6.33))
actually corresponds to an interplay between two different mechanisms; each
of them can reverse the traveling front. One of these mechanisms is associated
with the Allee effect and the other is related to the impact of predation.

In order to distinguish between the two mechanisms, let us first mention
that under constraints (8.26) variables u and v become proportional to each
other, v = u/

√
δ, and system (6.8–6.9) is virtually reduced to one equation:

ut = uxx − βu +
(

β + 1 − 1√
δ

)
u2 − u3 . (8.28)
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We want to emphasize that the linear relation between the species densities
here is not an additional assumption; it arises as a consequence of the con-
straints (8.26) which have a clear biological meaning, cf. Section 6.1.2.

In the single-species model with the population growth described by a cubic
polynomial of a general form, the speed of the front propagation is given by
the following equation (Murray, 1993; Volpert et al., 1994):

n = − 1√
2

(s2 + s0 − 2s1) (8.29)

(in dimensionless variables) where s0 ≤ s1 ≤ s2 are the roots of the polynomial
and minus corresponds to the choice of the conditions at infinity as u(−∞, t) =
s0, u(+∞, t) = s2. In the prey-only limit of the system (8.24–8.25), i.e., in
the case v ≡ 0, we obtain:

n = − 1√
2

(1 − 2β) , (8.30)

so that the front propagates toward the region where u ≈ 0 for β < 0.5
(species invasion) and toward the region where u ≈ 1 for β > 0.5 (species
retreat); β = 0.5 corresponds to the front with zero speed. Note that β is a
dimensionless measure of the Allee effect; thus, an increased Allee effect can
turn invasion to retreat.

Now, what can change in the presence of predator, i.e., in case v 	= 0
identically? Having applied the comparison theorem for nonlinear parabolic
equations (cf. Section 7.4) to Eq. (6.8), it is readily seen that predation cannot
turn retreat back to invasion. However, the impact of predation can turn
invasion to retreat even when the invasion would be successful in the absence
of predator. In the predator-prey system (8.24–8.25), the “turning” relation
between the parameters is:

k = 3
√

m

2
, (8.31)

cf. (6.33), so that the values of k greater than the one given by Eq. (8.31)
correspond to species invasion. Smaller k corresponds to species retreat.

Allowing for relations (8.26), the condition of species retreat takes the fol-
lowing form:

1√
δ

> β + 1 − 3

√
β

2
. (8.32)

In the case β > 0.5, inequality (8.32) describes species retreat resulting
from a joint effect of two factors, i.e., increased Allee effect (large β) and the
impact of predation. Note that, as it can be seen from comparison between
(8.27) and (8.30), the speed of retreat appears to be higher in the presence
of predator. In the case β < 0.5, however, inequality (8.32) describes species
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retreat which must be essentially attributed to the impact of predation be-
cause in the absence of predator the condition β < 0.5 always leads to species
invasion.

Note that the right-hand side of relation (8.32) coincides, up to parameters
re-scaling, with the right-hand side of Eq. (8.21). This is not surprising be-
cause (8.21) is obtained under the assumption that the species densities are
linearly related. Parameter δ thus serves as a specific measure of predation
intensity, and relation (8.32) has a clear ecological interpretation: a weak
predator (= high predator mortality, large δ) makes prey invasion possible, a
strong predator (= low predator mortality, small δ) blocks invasion and turns
it into retreat, cf. the domains below and above the thick curve in Fig. 8.8.

Thus, we have shown by using different models that predation can have a di-
verse effect on species spread depending on the type of the density-dependence
in the invasive species growth (i.e., with or without the Allee effect), the type
of predator (generalist or specialist) and/or on some details of species spatial
distribution, i.e., whether prey invades into the area where the predator is
already established (which implies that it has an alternative source of food)
or the predator is only present behind the propagating front. In general, pre-
dation tends to decrease the rate of prey invasion but blocking and retreat can
only be possible if prey growth is damped by the Allee effect. Although we
cannot directly compare these theoretical results with the field data on Mount
St. Helens recolonization because of lack of important information about pa-
rameter values and the type of prey (lupines) growth, qualitatively, they seem
to be in a good agreement.

8.3 Stratified diffusion and rapid plant invasion

As it has been already mentioned a few times throughout this book, the
rates of geographical spread of invasive species sometimes appear to be signifi-
cantly higher than that predicted by the “classical” diffusion-reaction models.
In particular, higher rates of invasion and colonization have often been re-
ported for plant species based both on ongoing ecological observations and
on historical data; see Clark et al. (1998) for examples and further reference.
There have been several attempts to explain this phenomenon of “rapid inva-
sion” and to develop a theory and/or a modeling framework that would take
it into account. In particular, Kot et al. (1996) ascribed rapid plant migra-
tion to the impact of non-Gaussian diffusion. They showed that in case the
seed dispersal (mostly driven by wind) from a single parent plant is described
by a fat-tailed distribution function, then the invasion speed can exceed the
standard value c = 2

√
Dα significantly.

Although the theory by Kot et al. (1996) indeed provides a plausible ex-



188 Exactly Solvable Models of Biological Invasion

planation for rapid plant invasion, there remain some questions that have
not been properly addressed yet. The theory by Kot et al. (1996) is essen-
tially based on the assumption that the rate of the dispersal kernel decay in
the large-distance limit is slower than exp(−r2); however, whether the seed
dispersal is actually fat-tailed or not has never been proved by field observa-
tions. (Note that it is the asymptotical behavior that matters and thus any
particular set of data obtained at finite, albeit large, distances can hardly be
used as a proof.) Also, it seems that a purely mechanistic approach relating
the properties of the seed dispersal solely with peculiarities of turbulent wind
mixing somehow underestimates the importance of biological factors. If we
readily accept that the temporal dynamics of communities is to a large ex-
tent affected by inter-species interactions, then why do we neglect the spatial
aspect of these interactions?

Remarkably, there exists another example of invasion at a higher speed, a
phenomenon called “stratified diffusion” (Hengeveld, 1989; Shigesada et al.,
1995). Geographical spread of some avian species takes place by following a
two-phase scenario. At the beginning of the spread, the growth of the species
range occurs in accordance with usual local diffusion and is well described by
the standard diffusion-reaction models. At a later stage, however, the rate
of the range growth increases considerably and can be as much as several
times faster than that determined by the local diffusion. The spread at a
higher rate has been attributed to the “jump dispersal” when a group of
birds migrates and establishes a new colony far away from the main range.
The jump dispersal mode has been noticed for several bird and insect species
(Mundinger and Hope, 1982; Okubo, 1988; Liebhold et al., 1992; Sharov and
Liebhold, 1998). The fact that invasion at a higher speed takes place only
after some time after the beginning of geographical spread is regarded as a
consequence of density-dependence so that the jump mode is “turned on” only
when the population density within the species range grows high enough.

In this section, we make an attempt to explain rapid plant invasion by means
of linking it to the stratified diffusion. We will show that there may be an
intrinsic relation between these two phenomena and that the jump dispersal
of avian species may result in a significant increase in the rates of some plant
invasions. Mathematically, in order to describe the stratified diffusion we
use the exactly solvable model developed in Section 4.1 which relates it to
small-scale density-dependent migrations within the expanding population.

It should be mentioned that applicability of the diffusion-reaction equations
to population dynamics under the impact of stratified diffusion may be not
so obvious and must be justified. At first sight, it may seem that they are at
variance with ecological observations. The issue of concern is the structure
of the front, i.e., the transition region between the densely populated areas
(behind the front) and the areas where the invasive species is fully or virtually
absent (in front of the front). Diffusion-reaction equations normally predict
a gradual monotone change in population density in the direction across the
front. Instead, the transition region consists of an ensemble of colonies, or
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FIGURE 8.9: The structure of the transition zone between invaded (in-
fested) and uninvaded (uninfested) regions in the case that species spread is
affected by the stratified diffusion. Here b(x) sketches population density ver-
sus space through the transition zone according to the modified definition; see
details in the text (with permission from Sharov and Liebhold, 1998).

“patches,” of various shape and size. A typical situation is sketched in Fig. 8.9.
The population reaches a considerable density inside these patches and is
absent in the areas between the patches. Note that the density of the patches
themselves tends to decrease as the distance from the species’ main range
increases.

In order to resolve this seeming contradiction, let us recall the origin of
the diffusion equation and the presuppositions that create the framework for
its application, cf. Section 2.1. The whole idea of describing the dynamics
of given species in terms of its population density implies an averaging over
a certain area, or “window”. It is this averaging procedure that allow us
to describe the phenomenon of stochastic origin, i.e., diffusion, by means of
deterministic equations. The size or radius of the window must be small
enough in order to relate its position to a single point in space but it also
should be large enough to contain a sufficiently large number of individuals
of given species in order to exclude fluctuations of purely stochastic nature.
Now, we can apply a similar approach to the patchy distributed population.
Choosing the averaging window in the form of a narrow long stripe oriented
along the front, we arrive at the population density that exhibits a gradual
change in the direction across the front (cf. the thick line in Fig. 8.9), in the
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manner congenial to what is predicted by diffusion-reaction equations.
Our model is as follows. Let u(x, t) be the density of a plant species U . For

convenience, we regard U as a tree species, although this is not a principal
constraint. We consider the dynamics of species U in an infinite domain and
assume that density u has the following conditions at infinity:

u(x → −∞, t) = 0, u(x → ∞, t) = 1. (8.33)

Conditions (8.33) implies that the species range has a boundary situated at
a certain x̄. Species invasion or colonization takes place if, with each new
generation, x̄ moves to the left. Redistribution of species U in space takes
place due to dispersal of its seeds which, having neglected the impact of other
species, happens due to wind mixing (Okubo and Levin, 1989).

In practice, however, wind mixing is not the only mechanism of seeds dis-
persal. Seeds are eaten by animals and birds near the parent plant and, in
due time, are egested after being transported to a new place. Although some
of the seeds are likely to be destroyed by the process of digestion, others may
still retain their germinative ability.

Now, we consider an avian species V for which the seeds of species U is an
essential source of food. We denote the density of species V as v(x, t) and
consider the conditions at infinity the same as (8.33):

v(x → −∞, t) = 0, v(x → ∞, t) = 1. (8.34)

Apparently, the relation between the species U and V is of resource-consumer
or predator-prey type. A model providing the full mathematical description
of this system’s dynamics would consist of two equations, respectively. How-
ever, we can make use of the observation that higher density of resource (or
prey) often leads to a higher density of consumer (or predator). Since species
V feeds on species U , we assume that within the range of species U their
densities are linearly dependent:

v(x, t) = 	u(x, t). (8.35)

Note that this assumption does not necessarily mean that species V is a spe-
cialist consumer (cf. “specialist predator,” Section 8.2). Alternatively, it could
imply that species V dwells in a mono-species forest created by U and the fact
that V mostly feeds on U would simply reflect the lack of choice.

We then assume that species V exhibits two-mode dispersal, i.e., the short-
distance mode due to local diffusion and the long-distance mode due to mi-
gration. The colonies created by the groups of migrating birds are outside
of the main range of species U and thus relation (8.35) does not seem to be
applicable. However, we recall that, before migrating, the birds have been
feeding on the seeds of U and it is likely that some of them are transported
to the place where a new colony is formed. Moreover, the more birds have
migrated the more seeds are transported; thus, we assume that outside of the
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species U range the density of U and V are linearly dependent as well but
with a different coefficient:

u(x, t) =
1
	1

v(x, t). (8.36)

A more careful analysis of this population system would require the consid-
eration of different 	 and 	1. Here, in order to make an early insight into
the impact of the avian-based seed transport, we assume that 	 = 	1. The
system dynamics is then virtually described by a single variable v(x, t) and
by a single equation:

∂v(x, t)
∂t

+
∂(Av)

∂x
= D

∂2v

∂x2
+ F (v) , (8.37)

cf. (2.7), where A = A(v) must be a monotonously growing function in order
to take into account the fact that the migration intensity tends to increase as
the population density increases (Hengeveld, 1989). Although the properties
of Eq. (8.37) in a more general case remain to be investigated, for the case
of specific parameterization given by a linear function for A(v) and a cubic
polynomial for F (v), Eq. (8.37) has an exact solution describing propagation
of the population front (see Section 4.1). The speed of the front is shown to
be

q2 = βν − 1
ν

(8.38)

where ν = 0.5(a1 +
√

a2
1 + 8) and a1 is the migration intensity (in dimen-

sionless variables). Correspondingly, the speed accretion, i.e., the additional
speed that the front acquires due to species migration, is given as

∆q = q2 − (2β − 1)√
2

. (8.39)

It has then been shown that ∆q is a monotonously growing function of a1

so that, for a1 being on the order of unity or greater, the front speed q2 can
considerably exceed the speed observed in the no-migration case (see Fig. 4.1).

Now, what can be the value of a1 for an avian species exhibiting the jump
dispersal mode? According to its definition,

a1 =
2A1√
Dω

(8.40)

(see the lines below Eq. (4.5)). Let us notice that c =
√

DK2ω/2 is the speed
of invasion due to the usual diffusion-reaction mechanism (i.e., the short-
distance mode) in the case that the alien species is damped by the Allee
effect; see Eq. (2.20). Equation (8.40) then takes the form

a1 =
√

2
A1K

c
. (8.41)



192 Exactly Solvable Models of Biological Invasion

The value of c can be obtained directly from relevant ecological data, without
making separate estimates for D and ω. Field observations show that, typi-
cally, c lies between 3 and 12 km/year (Shigesada and Kawasaki, 1997); thus,
in order to proceed further we take a characteristic value c = 8 km/year.

Note that, due to the conditions imposed at infinity, cf. (8.34), we are
interested in the migration that goes against axis x, i.e., A1 < 0. To estimate
|A1|K, let us mention that, due to its biological meaning, it can be written
as follows:

|A1|K = Υc∗ (8.42)

where c∗ is the characteristic speed of bird’s travel and Υ is the proportion
of given avian population that exhibits the tendency to small-scale migra-
tion. Since the dynamics of avian populations is to a large extent affected
by seasonality, we assume that Υ applies to a fixed term of one year. Be-
cause the value of Υ is unknown, we consider a hypothetical value Υ = 0.001.
Then, assuming c∗ = 100 km/day, we obtain |A1|K = 100 · 365 · 0.001 = 36.5
km/year. Finally, taking into account the sign of A1, from (8.41), we arrive
at a1 ≈ −6.5.

The threshold density β is very difficult to estimate but it is likely to be
small, β � 1. The corresponding dependence of ∆q on a1 is then given by
curve 1 in Fig. 4.1. Therefore, we obtain that ∆q ≈ −2.8 while the speed in
the “no-migration” case is −0.71. Thus, the rate of species invasion under the
jump dispersal mode appears to be about five times higher compared to the
invasion speed caused by the local diffusion. Note that this estimate is in a
good agreement with field observations, cf. Shigesada and Kawasaki (1997),
p.13 to 18.

Since in our model the densities of species U and V are linearly related (see
(8.36)), fast expansion of the avian species range results in fast expansion of
the plant species range. The rate of plant invasion due to the seed dispersal
by wind normally varies between a few meters and a few dozen meters per
year; in case the seed dispersal is enhanced by the avian-based transport, it
can become many times higher. Moreover, our model actually predicts that
the rate of plant invasion will increase with time when the jump dispersal
mode of the corresponding avian species is turned on. Curiously, ecological
data indeed show that invasion of some plant species may be going at an
increasing rate.

In conclusion, we want to emphasize that the approach that we have used
here is a very simple one and is based on a few strong assumptions. A more
focused ecological study can and should be improved in many ways. The
estimate of invasion rate that we obtained above is tentative and may only
be applied to a specific ecological situation with caution. Apart from the
model improvements, in order to obtain a more solid estimate one should
possess more information about parameters β and Υ which is currently not
available. Yet we think that the insight that we have made here based on our
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conceptual model clearly demonstrates that avian-based seed dispersal can
change the pattern of plant invasion significantly and may be in some cases
responsible for the rapid plant migration.





Chapter 9

Appendix: Basic background
mathematics

9.1 Ordinary differential equations and their solutions

1. The equation

G̃

(
t, x(t),

dx(t)
dt

, . . . ,
dnx(t)

dtn

)
= 0, (9.1)

where G̃ is a certain function of (n + 1) arguments is called an ordinary dif-
ferential equation (ODE) of the n-th order. Any function x(t) that turns
Eq. (9.1) to identity is called its solution. A solution that can be expressed
via elementary or special functions is called a solution in a closed form. It is
not always possible. Differential equations that have closed form solutions are
often called integrable. In a more general case, a solution can be expressed via
expansion into a series, e.g., power series, but not via elementary or special
functions. Although a lot depends on the form of function G̃, a general obser-
vation is that the higher is the equation order the less likely it is integrable.

In case Eq. (9.1) can be written in the form

dnx(t)
dtn

= G

(
t, x(t),

dx(t)
dt

, . . . ,
dn−1x(t)

dtn−1

)
, (9.2)

it is called an ODE resolved with respect to the highest order derivative.

2. The following equation

dnx(t)
dtn

+ an−1
dn−1x(t)

dtn−1
+ . . . + a1

dx(t)
dt

+ a0x(t) + a = 0, (9.3)

where a, a0, a1, . . . , an−1 can depend on t but neither on x nor its derivatives,
is called a linear ODE of the n-th order. The main property of a linear ODE
is that the sum of any two of its solutions is also its solution.

In case a = 0 and all a0, a1, . . . , an−1 are constant coefficients, the general
solution of Eq. (9.3) can be written explicitly. It is readily seen that x̄(t) =
exp(λt) is a solution of (9.3) provided that λ is a solution of the following
algebraic equation:

λn + an−1λ
n−1 + . . . + a1λ + a0 = 0. (9.4)

195
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Solutions of Eq. (9.4) are called the eigenvalues of the ODE (9.3).
The form of the general solution depends on whether Eq. (9.4) has multiple

solutions or all the eigenvalues are different. Let us consider these two cases
separately.

(i) There are no multiple eigenvalues, i.e., if i �= k then λi �= λk, i, k =
1, . . . , n. In this case, the general solution has the form

x(t) = A1e
λ1t + A2e

λ2t + . . . + Aneλnt , (9.5)

where A1, A2, . . . , An are arbitrary constants.
(ii) Let the first m eigenvalues coincide and the rest of them be different,

i.e., λ1 = λ2 = . . . = λm = λ and λi �= λk for any i, k = m + 1, . . . , n. Then,
the general solution of Eq. (9.3) has the form

x(t) =
(
A1 + A2t + . . . + Amtm−1

)
eλt (9.6)

+ Am+1e
λm+1t + . . . + Aneλnt .

Cases (i) and (ii) can be readily extended to the general case when there
are a few multiple eigenvalues.

The solution (9.5) or (9.6) is general in the sense that it contains all pos-
sible solutions of Eq. (9.3) and each particular solution can be obtained by
choosing corresponding values of the constants A1, A2, . . . , An. To obtain
the constants Ai, Eq. (9.3) must be complemented with additional conditions
and/or constraints. Most typically (but not necessarily), they are the con-
ditions giving the value of variable x and its (n − 1) derivatives at a certain
t0:

x(t0) = x0,(
dx

dt

)
t=t0

= x
(1)
0 , (9.7)

. . . ,(
dn−1x

dtn−1

)
t=t0

= x
(n−1)
0 .

In case Eq. (9.3) is considered for t > t0, relations (9.7) are called the initial
conditions.

3. By means of introducing new variables,

x1(t) =
dx(t)

dt
, x2(t) =

d2x(t)
dt2

, . . . , xn−1(t) =
dn−1x(t)

dtn−1
, (9.8)

an ODE of the n-th order, cf. (9.2), is transformed to a system of n ordinary
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differential equations of the first order:

dx(t)
dt

= x1(t) ,

dx1(t)
dt

= x2(t) ,

. . . (9.9)
dxn−1(t)

dt
= G (t, x, x1, . . . , xn−1) .

In some cases, the system (9.9) appears to be more convenient for analysis and
understanding than the original equation (9.2) (see the next section). Note
that the reverse transformation is also possible and a system of ODEs of the
first order can be turned to a single high-order equation.

4. Since the models of mathematical ecology are usually based on nonlinear
differential equations of either first or second order, their integrability is an
issue of special interest. Below we briefly describe a few cases when the
corresponding ODEs are likely to have solutions in a closed form and also
give some hints regarding how those solutions can be found.

Remarkably, even in the simplest case of the first order equation,

dx(t)
dt

= g(t, x) , (9.10)

its solution cannot always be obtained in a closed form. Whether Eq. (9.10) is
integrable or not depends on its right-hand side. There are a few cases when
the solution can be found analytically. The most typical one is given by the
situation when the variables can be separated, i.e., g(t, x) = g1(t)g2(x). From
(9.10), we then obtain: ∫

dx

g2(x)
=

∫
g1(t)dt . (9.11)

In the case that the integrals are integrable, (9.11) leads to a solution of
Eq. (9.10), at least, in an implicit form.

5. In the case of a nonlinear ODE of the second order,

d2x(t)
dt2

= g̃

(
t, x,

dx

dt

)
, (9.12)

only relatively few cases can be solved in a closed form. Usually, these are the
cases where the original equation can be reduced, e.g., by means of introduc-
tion of a new variable, to an ODE of the first order.

One particular case which often appears to be integrable corresponds to the
situation when the equation does not contain x:

d2x(t)
dt2

= g

(
t,

dx

dt

)
. (9.13)
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Having introduced a new variable, dx/dt = p(t), from (9.13) we obtain:

dp(t)
dt

= g (t, p) . (9.14)

Integrability of Eq. (9.14) is then subject to the form of function g, cf. (9.10–
9.11).

Another case when the order can be reduced arises if the right-hand side of
Eq. (9.12) does not depend explicitly on the independent variable t:

d2x(t)
dt2

= g

(
x,

dx

dt

)
. (9.15)

Restricting the analysis to monotonous solutions, we can consider the deriva-
tive dx/dt as a function of x, i.e., dx/dt = ψ(x) where ψ is to be determined.
Then, instead of Eq. (9.15) we obtain

ψ
ψ(x)
dx

= g(x, ψ) . (9.16)

Eqs. (9.14) and (9.16) are of the first order and thus are more likely to be
integrable.

9.2 Phase plane and stability analysis

The following system of two ODEs of the first order,

dx(t)
dt

= f(x, y) ,
dy(t)
dt

= g(x, y) , (9.17)

where f and g are certain functions, is called an autonomous in case f and g
do not depend on variable t.

In an autonomous system, for each value of t the pair x(t), y(t) can be
conveniently interpreted as a point in the plane (x, y) which is called the phase
plane of the system (9.17). Solutions of the system then correspond to curves
or trajectories in the phase plane. Apparently, a solution of the system (9.17)
with the initial conditions x(0) = x0, y(0) = y0 corresponds to a trajectory
originating in the point (x0, y0). In a general case, when the right-hand side
of equations depends also on t, the properties of the system trajectories can
be very complicated. However, in the particular but important case of an
autonomous system (see (9.17)), the trajectories’ properties are somewhat
simpler and can be studied in much detail, e.g., see Lefschetz (1963). Below
we briefly recall those that can be helpful for understanding the content of
this book.
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The point (x̄, ȳ) in the phase plane of the system (9.17) is called a steady
state (also equilibrium state, equilibrium point) if

f(x̄, ȳ) = 0, g(x̄, ȳ) = 0. (9.18)

The set Ωε = {(x, y) : ([x − x̄]2 + [y − ȳ]2)1/2 < ε} where ε > 0 is called a
ε-vicinity of the point (x̄, ȳ).

A steady state (x̄, ȳ) is called asymptotically stable if there exists ε > 0 so
that any trajectory originating in the ε-vicinity of (x̄, ȳ) approaches the steady
state in the large-time limit.

A steady state (x̄, ȳ) is called unstable if, for any ε > 0, there exists (x0, y0) ∈
Ωε so that the trajectory originating in (x0, y0) will leave Ωε for sufficiently
large t.

Regarding their stability, the steady states of the autonomous system (9.17)
are classified into a few types. In order to arrive at this classification, we first
consider the linearized system corresponding to (9.17):

dX(t)
dt

= a11X + a12Y ,
dY (t)

dt
= a21X + a22Y (9.19)

where

a11 =
(

∂f

∂x

)
(x0,y0)

, a12 =
(

∂f

∂y

)
(x0,y0)

,

a21 =
(

∂g

∂x

)
(x0,y0)

, a22 =
(

∂g

∂y

)
(x0,y0)

and the deviations from the steady state, X = x − x̄ and Y = y − ȳ, are
assumed to be small.

The following equation gives the eigenvalues of the linearized system:

det(A − λE) = 0 (9.20)

where A = (aij) and E is the unit matrix.
The type of the steady state is defined according to the eigenvalue proper-

ties. Since (9.19) is a linear system, its solution is a linear combination of eλ1t

and eλ2t, cf. Section 9.1; thus, the steady state stability is subject to Reλ1,2.
The steady state (x̄, ȳ) is stable if Reλ1 < 0 and Reλ2 < 0 and it is unstable
if at least one of them is positive.

The details of trajectories’ behavior in vicinity of a steady state also can
be different depending on whether the eigenvalues are real or complex (see
Fig. 9.1). In case both of them are real and have different signs, e.g., λ1 <
0 < λ2, the steady sate is called a saddle; the corresponding field of trajecto-
ries is shown in Fig. 9.1a. In case both eigenvalues are real and have the same
sign, the steady state is called a node (see Fig. 9.1b). In case both eigenvalues
are complex, the steady state is called a focus (see Fig. 9.1c). Apparently,
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(a) (b) (c)

FIGURE 9.1: Examples of the phase plane structure in vicinity of (a)
saddle, (b) node and (c) focus

saddle is always unstable while node and focus can be either stable or un-
stable. A complete classification also includes the cases when one or both of
the eigenvalues are equal to zero; however, since these cases are structurally
unstable we do not address them here.

9.3 Diffusion equation

The following partial differential equation

ut = Duxx (9.21)

is usually called either the diffusion equation or the heat transfer equation
because it was originally introduced to described these phenomena. Since
diffusion is more congenial to species dispersal, in this book we always refer
to Eq. (9.21) as a diffusion equation. Hence, u(x, t) is the concentration of
diffusing substance and D is the diffusion coefficient. We restrict our consid-
erations to the case when Eq. (9.21) is defined in an unbounded space; thus,
we are interested in the solution of the initial-value problem.

Let the initial condition to Eq. (9.21) be described by the Dirac δ-function:

u(x, 0) = Gδ(x − x0) (9.22)

where

δ(x − x0) = 0 ∀ x �= x0 and δ(x − x0) = ∞ for x = x0 (9.23)
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FIGURE 9.2: Fundamental solution (9.25) of the diffusion equation shown
for t = 1 (curve 1), t = 3 (curve 2) and t = 5 (curve 3) for D = G = 1, x0 = 0.

and, in spite of the singularity at x = x0, function (9.23) is assumed to be
integrable:

∫ ∞

−∞
δ(x − x0)dx = 1. (9.24)

Clearly, from (9.22) we obtain that
∫ ∞
−∞ u(x, 0)dx = G so that G is the

total amount of the diffusing substance released at the moment t = 0 at the
position x0.

Equation (9.21) with the initial condition (9.22) has the following solution:

u(x, t) =
G√

4πDt
exp

(
− (x − x0)2

4Dt

)
. (9.25)

Solution (9.25) is shown in Fig. 9.2.
The special solution (9.25) is called the fundamental solution because the

solution of Eq. (9.21) with an arbitrary initial condition u(x, 0) = Φ(x) can
be written as

u(x, t) =
1√

4πDt

∫ ∞

−∞
exp

(
− (x − x0)2

4Dt

)
Φ(x0)dx0 . (9.26)

In order to better understand the properties of the diffusion equation and
its solutions, let us now consider in somewhat more detail two examples where
integration in (9.26) can be easily done.
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FIGURE 9.3: Solution (9.28) of the diffusion equation shown for t = 10
(curve 1), t = 110 (curve 2) and t = 210 (curve 3) for D = U0 = 1; dashed-
and-dotted line shows the initial conditions.

1. Semi-finite initial conditions. Consider

u(x, 0) = U0 for x ≤ 0 and u(x, 0) = 0 for x > 0. (9.27)

The corresponding solution of Eq. (9.21) is

u(x, t) =
U0

2

[
1 − erf

(
x√
4Dt

)]
, (9.28)

where erf(z) is the error function,

erf(z) =
2√
π

∫ z

0

e−y2
dy . (9.29)

Solution (9.28) is shown in Fig. 9.3. It describes a self-similar distention of
the boundary separating the domain where the diffusing substance is present
in very small concentration from the domain where the concentration is on
the order of U0.

2. Finite initial conditions. Consider

u(x, 0) = U0 for |x| ≤ ∆ and u(x, 0) = 0 for |x| > ∆. (9.30)

The corresponding solution of Eq. (9.21) has the following form:

u(x, t) =
U0

2

[
erf

(
x + ∆√

4Dt

)
− erf

(
x − ∆√

4Dt

)]
. (9.31)



Appendix: Basic background mathematics 203

−80 −40 0 40 80
0

0.2

0.4

0.6

0.8

1

Space

C
on

ce
nt

ra
tio

n
1 

2 

3 

FIGURE 9.4: Solution (9.31) of the diffusion equation shown for t = 2
(curve 1), t = 40 (curve 2) and t = 200 (curve 3) for D = U0 = 1, ∆ = 30;
dashed-and-dotted line shows the initial conditions.

Solution (9.31) is shown in Fig. 9.4. It is straightforward to see that its
properties appear to be a combination of those for the fundamental solution
and for (9.28). In case ∆ is small, the properties of (9.31) are close to (9.25). In
case ∆ is sufficiently large, at an early stage of the system dynamics, solution
(9.31) describes diffusion of the left-hand and right-hand boundaries in the
manner shown in Fig. 9.3. For larger time, it becomes similar to (9.25).

Note that the large-distance asymptotics of the solution (9.31) appears to
coincide with the fundamental solution (9.25). Indeed, considering ∆/x � 1,
we observe that (9.31) contains a small parameter:

x ± ∆√
4Dt

=
x√
4Dt

(
1 ± ∆

x

)
. (9.32)

Correspondingly, applying the Taylor series expansion and taking into account
(9.29), we obtain:

erf
(

x ± ∆√
4Dt

)
= erf

(
x√
4Dt

)
± 2√

π
exp

(
x2

4Dt

)
· x√

4Dt
· ∆

x
+ o

(
∆
x

)

≈ erf
(

x√
4Dt

)
± ∆√

πDt
exp

(
x2

4Dt

)
, (9.33)

where o(z) is the usual notation for the higher orders with respect to z. Sub-
stituting (9.33) to (9.31), we arrive at (9.25) where now x0 = 0 and G = U0∆.
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In conclusion, we want to mention that, for all three solutions (9.25), (9.28)
and (9.31), for any t > 0 the concentration appears to be positive at any
position in space. That means that small disturbances propagate with an
infinite speed. This is an essential artifact of the linear diffusion equation.
A finite speed can arise when the diffusion coefficient is density-dependent,
cf. Section 5.1.
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