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Preface to the Second Edition

Our textbook Mathematical Models in Population Biology and Epidemiology has
reached its first decade and in the process it has captured and maintained the interest
of a sufficient number of members of the computational, mathematical, modeling,
and theoretical biology communities that the writing of a revised, updated and ex-
tended edition has gained the support of Springer. The field was already immense
a decade ago when we took on the writing of this book, and our choices of what to
include in the book were somewhat arbitrary, namely those that satisfied our inter-
ests, philosophies, and egos. Today, the research in the topics closer to our interest
has grown so much that the writing of a book that heavily intersects with the field
of population biology is beyond the confines of a single volume. So following the
adage “why fix something that is not broken (even if old),” we have decided to
maintain the core of the first edition; correct some of the errors, typos, and confus-
ing paragraphs (while unknowingly introducing new ones);include a new chapter on
the spatiotemporal dynamics of populations and expand the sections that focus on
disease dynamics and control. We hope that this new edition is not only fatter but
also better.

The emergence and/or reemergence of infectious diseases such as SARS, tuber-
culosis, and influenza are used to justify our substantial expansions of the epidemi-
ology chapters (9 and 10). Further, this volume gives additional emphasis to the
study of models that capture the dynamics of single epidemic outbreaks, influenza
models, and parameter estimation.

Furthermore, a new chapter (8) is devoted to the study of the dynamics of spa-
tially structured populations. Specifically, we have introduced the basic diffusion,
reaction–diffusion, and metapopulation modeling frameworks as a primer for read-
ers interested in a central topic in mathematical biology. A substantial number of
additional exercises have been added, and the number of projects focused on biol-
ogy has been doubled in this edition.

As in all new efforts, we have here played the primary role of “collectors” of the
insights; questions and thoughts of many individuals, particularly current and for-
mer students and alumni of MTBI (Mathematical and Theoretical Biology Institute,
http://mtbi.asu.edu/). MTBIers have helped shape this book for the past 15 years,
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vi Preface to the Second Edition

in a variety of ways. For example, many problems and projects have been moti-
vated or have been adapted from the 144 technical reports generated over those 15
years, all collected in an accessible web site (http://mtbi.asu.edu/research/archive).
We would like to thank particularly the contributions of the following MTBIers, in-
cluding graduate students and faculty, Juan Aparicio, Leon Arriola, H. T. Banks,
Faina Berezovskaya, Naala Brewer, Erika Camacho, Reynaldo Castro, Gerardo
Chowell, Ariel Cintron-Arias, Maytee Cruz-Aponte, Mustafa Erdem, Arlene Evan-
gelista, Zhilan Feng, Jose Flores, Luis Gordillo, Christopher Kribs-Zaleta, Raquel
Lopez, Dori Luli, Emmanuel Morales, Romarie Morales, Ben Morin, Anuj Mubayi,
Miriam Nuno, Anarina Murillo, David Murillo, Dustin Padilla, Kehinde Salau,
Fabio Sanchez, Baojun Song, Karyn Sutton, Karen Rios-Soto, Ilyssa Summers,
Steve Tennenbaum, Griselle Torres-Garcia, Jose Vega, Xiaohong Wang, Steve Wirkus,
and Abdul-Aziz Yakubu. In addition, several individuals and colleagues found typos
or mistakes in the first edition. We want to thank Malay Banerjee, Eric Cytrynbaum,
Kathleen Dearing, Jonathan Dushoff, David Gerberry, Luis Gordillo, Jeff Moehlis,
Steve Krone, Simon Levin, Marcin Mersan, Joseph Mugisha,Mason Porter, Dan Ru-
bin, Hal Smith, V. P. Stokes, and Pauline van den Driessche for their keen eyesight
and the kindness used to inform us of these mishaps.

We thank Kamal Barley, who provided invaluable help in redrawing most of the
figures and constructing the index. Furthermore, we want to acknowledge particu-
larly Ben Morin, David Murillo, and Sunmi Lee for providing solutions to a large
number of problems. Our colleague Sergei Suslov and his students Jose Vega and
Raquel Lopez provided a substantial number of problems and projects that are now
incorporated in Chapter 8. In addition, David Kramer found many improvements as
a copyeditor, and Donna Chernyk, our editor at Springer, supplied a great deal of
help.

Some of the work of many of the people who had a part in the production of this
book has received support from the Department of Defence, MITACS (Mathemat-
ics of Information Technology and Complex Systems), the National Science Foun-
dation, NSERC (Natural Sciences and Engineering Research Council), the Sloan
Foundation, and the Offices of the Provost and President of Arizona State Univer-
sity.

Finally, we want to thank our families for their love and patience despite the fact
that we shamelessly used weekends and family times in this endeavor.

Vancouver, B.C., Canada Fred Brauer
Tempe, AZ, U.S.A. Carlos Castillo-Chavez
September 1, 2011.



Preface to the First Edition

This book is intended to inspire students in the biological sciences to incorporate
mathematics in their approach to science. We hope to show that mathematics has
genuine uses in biology by describing some models in population biology and the
mathematics that is useful in analyzing them, as well as some case studies represent-
ing actual, if somewhat idealized, situations. A secondary goal is to expose students
of mathematics to the process of modeling in the natural and social sciences.

A realistic background in mathematics for studying this book is a year of calcu-
lus, some background in elementary differential equations, and a little matrix theory.
The mathematical treatment is based less on techniques for obtaining explicit solu-
tions in “closed form”, to which students in elementary mathematics courses may be
accustomed, than on approximate and qualitative methods. The emphasis is on de-
scribing the mathematical results to be used and showing how to apply them, rather
than on detailed proofs of all results. References to where proofs may be found are
given. Our hope is that students in the biological sciences will cover enough math-
ematics in their first two years of university to make this book accessible in the
third or fourth year. Some review notes on the mathematics needed may be found at
http://www.cdm.yorku.ca/rev2.pdf.

For many problems, the use of a computer algebra system can give many insights
into the behavior of a model, especially for generating graphical representations of
solutions. Some of the exercises and projects in the book either require the use of
a computer algebra system or are simplified considerably by one. At this writing,
Maple, Matlab, and Mathematica are widely used systems; students should become
proficient in using at least one of them. In addition, the more specialized dynamical
systems program XPP or its Windows version WinPP is very useful for studying
dynamical systems and is especially valuable for differential–difference equations
and equations with time lags. This program, created by Bard Ermentrout, may be
downloaded from

http: //ftp.math.pitt.edu/pub/bardware/winpp.zip

The more elaborate version XPP may be run under Windows on an X-Windows
server and may be downloaded from
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viii Preface to the First Edition

http: //ftp.math.pitt.edu/pub/bardware/xpp4w32.zip

Matlab is also suitable for differential–difference equations and equations with
time lags.

There are some topics that in earlier times would have been appendices in this
book. These include some mathematical ideas such as Taylor approximation and
the elements of linear algebra, and also some programs for solving problems with
Maple, and WinPP. These topics, which we consider as the components of a virtual
appendix, and some detailed solutions to selected exercises will be found in the form
of PDF files at a future web site.

Answers to selected exercises are still given in the book as an appendix. Genuine
understanding of the material in the book requires working of exercises; this is not a
spectator sport. Answers in the back of the book are to be used to check your work,
not to lead you to the solution.

In addition to exercises, there are several more extended descriptions of models,
which call for readers to fill in some gaps. These are designated as Projects, and
they may be given as group assignments.

The book concentrates on population biology. One of the practical sides of pop-
ulation biology is resource management. Another aspect is the study of structured
population models. Mathematical epidemiology is an example, with populations
structured by disease status. The core of the book, which should be included in any
beginning modeling course, is Chapters 1, 2, 4, and the first five sections of Chap-
ter 5. These chapters cover elementary continuous and discrete models for single-
species populations and interacting populations. They include examples and exer-
cises that may be too simplistic for more experienced students, who may progress
through this material a little more rapidly than beginners. Chapters 9 and 10, on
mathematical epidemiology, are also on a relatively elementary level and may be
studied by students with relatively little background. Chapter 3, on continuous mod-
els with delays, Chapter 6, on harvesting and its implications in resource manage-
ment, Chapter 7, on population models with age structure, and Chapter 8, on popu-
lation models with spatial structure, as well as the later sections of Chapters 5 and
9, are more demanding mathematically. This material should probably be reserved
for students with more mathematical background and some experience in biology.

The bibliography includes not only the books and papers to which reference is
made in the text but also related works which pursue further some of the topics in
the book. The book is meant to be an introduction to the principles and practice of
mathematical modeling in the biological sciences, one which will start students on
a path; it is certainly not the last word on the subject.

Vancouver, B.C., Canada Fred Brauer
Ithaca, N.Y., U.S.A. Carlos Castillo-Chavez
December 30, 2000.
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Prologue: On Population Dynamics

As the world population exceeds the six billion mark, the question, “How many peo-
ple can the earth support and under what conditions?” becomes at least as pressing
as it was when Malthus (1798) posed it at the end of the eighteenth century in An
Essay on the Principle of Population.

The ability to support growing populations within existing economic systems
and environments has been one of the main concerns of societies throughout his-
tory. How Many People Can the Earth Support? is a recent book by J.E. Cohen
(1995), in which he tackles from historical and scientific perspectives possible re-
sponses to this question. Historical “solutions” to the question of overpopulation
have had as their basis two underlying assumptions: first, that under constant posi-
tive per capita rates of population growth a population increases exponentially, that
is, population “explosion” is observed; second, that resource limitations necessarily
limit or control the magnitude of such an explosion. The usefulness and validity
of both assumptions are naturally limited since the environment, often called the
“carrying capacity,” does not remain fixed. Per capita rates of population growth are
not fixed, but are functions of changing environments. A limiting factor in the de-
velopment of a useful (in both practical and theoretical terms) theory of population
dynamics lies in the inability of theoreticians to provide models and frameworks
with environmental plasticity. The environmental landscape in which we live is dy-
namic and often experiences dramatic shifts due to technological innovations (such
as birth control, disease, famine, carbon emissions, and war) that periodically al-
ter the bounds of what we think is possible. Cohen observes that population patterns
and hence “growth” rates depend on our scale of observation in both time and space.
By some scales, they are definitely not constant. For example, Cohen notes that in
the fourteenth century repeated waves of Black Death, a form of bubonic plague,
together with wars, heavy taxes, insurrections, and poor and sometimes malicious
governments, killed an estimated one third of the population living in India and
Iceland, and that the population of Meso-America fell by perhaps 80 or 90 percent
during the sixteenth century [pp. 38–41]. However, in spite of such sharp short-term
decreases, world population size has actually grown steadily since prehistoric times,
although not at a constant rate.

xvii
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Local human populations have exhibited wide fluctuations throughout time and
their growth may still be responding to environmental changes in modern times. Lo-
cal variability in population growth rates is high during wars, epidemics and famine.
It may be affected dramatically by advances in housing, agricultural practices, health
care, and so on. In retrospect, it is not surprising to see dramatic changes in the car-
rying capacity of the earth over time, because these changes are driven by strong en-
vironmental shifts and events that include: the effects of the global agricultural rev-
olution observed from the seventeenth through the nineteenth centuries; the public-
health transformation experienced over the last five decades via the widespread use
of antibiotics and the implementation of large-scale vaccination policies; and the
fertility revolution of the last four decades due to the global availability of birth–
control measures (sometimes having a dramatic impact on per capita birth rates,
as in China). Further, improvements in the economic state and declines in mortal-
ity from diseases in developing countries have often led to substantial declines in
the birth rate. Since it is no longer necessary for a family to have as many children
to ensure the survival of enough children to care for their parents in old age, such
improvements in the quality of life may lead to decreases in the rate of population
growth. Hence, predicting how many individuals the earth can support becomes a
rather complex problem with no simple answers, particularly when different defini-
tions of quality of life (e.g., Bangladesh as compared to Germany) are considered.

Questions and challenges raised by complex demographic processes may be ad-
dressed practically and conceptually through the use of mathematical models. Mod-
els may be particularly valuable when interactions with demographers, sociologists,
economists, and health experts are at the heart of the model-building process. Simple
models cannot by their own nature incorporate simultaneously many of the factors
described above. However, they often provide useful insights, as will be shown in the
following chapters, to help our understanding of complex processes. The usefulness
of simple models to predict is limited, and their use often may lead to misleading
results in the hands of “black box” users. Simple population models such as the
Malthus (exponential) and the Verhulst (logistic) models represent a natural starting
point in the study of demographic processes. Their main role here is to help in our
understanding of the dynamics of basic idealized demographic phenomena in the
social and natural sciences.

If the population of individuals at time t is denoted by x(t), then Malthus’s law
(1798) arises from the solution of the initial value problem

dx
dt

= rx, x(0) = x0,

where r = b−μ denotes the constant per capita growth rate of the population, that
is, the average per person number of offspring b less the per person average number
of deaths μ per unit of time, and x0 > 0 denotes the initial population size. Since
Δx denote the change in population from t to t +Δ , the dynamics are approximated
over a short time period by

Δx(t)≈ (births in (t, t +Δ))− (deaths in (t, t +Δ)),
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or under our simplistic modeling assumptionsby

Δx(t)≈ b x(t)Δ −μ x(t)Δ = (b−μ)x(t)Δ = rx(t)Δ .

In one of the most influential papers in history, a variant of this model was intro-
duced by Malthus in 1798. The assumption of a constant per capita growth rate leads
to the solution x(t) = x0ert , which predicts population explosion if r > 0, extinction
if r < 0, or no change if r = 0. This model may be useful in situations in which
the environment is not being taxed, the time scale of observation is small enough
to make it acceptable to assume that r remains nearly constant, resources appear
to be unlimited, and x0 is small. This is a reasonable model in estimating the rate
of growth of a parasite when first introduced into the bloodstream of an individual
(such as the malaria parasite), in the study of the rate of growth in the number of
new cases of infection at the beginning of an epidemic, in the estimation of the
rate of growth of a pest that has just invaded a field, in estimating the rate of de-
cay of the effect of a drug (antibiotic) in the bloodstream of an individual, or in
estimating the rates of extinction of endangered species. The model may be inade-
quate when the number of generations gets large enough for other factors, such as
density dependence, to come into play. The assumption of a constant r > 0 implies
that a generation not only replaces itself over its life span but also contributes to the
growth of its population generation after generation, while the assumption of a con-
stant r < 0 implies that generations do not contribute in a significant manner to the
future of a population, that is, generations are not capable of replacing themselves.
An alternative way of thinking about this demographic process is via the basic re-
productive number or ratio R0. This dimensionless quantity is used to represent
the average number of offspring produced by a “typical” member of the population
during its reproductive life when resources are unlimited which typically occurs
when x0 is small. Here R0 = b/μ , and if R0 > 1, the population will grow, while
if R0 < 1, the population will eventually become extinct. The case r = 0 or R0 = 1
represents stasis, that is, a situation in which each individual on average replaces
itself before it dies, and so the population size on average will not change. The case
r = 0 represents a transition from r < 0 to r > 0 (or from R0 < 1 to R0 > 1), that is,
from population decay to population explosion and vice versa. It is common to see
that as a parameter–here the per capita growth rate–crosses a “tipping” or “thresh-
old” value, the population dynamics change drastically from a situation in which we
have population extinction to that in which we observe population explosion (and
vice versa).

The acknowledgment of the existence of finite resources defined by the carrying
capacity of an ecosystem demands the introduction of models that cannot support
exponential growth indefinitely. The simplest version is obtained when it is assumed
that the per capita growth rate G depends on the size of the population. In mathe-
matical terms, we have the model

dx
dt

= xG(x), x(0) = x0.
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The most common example is provided by the logistic equation (introduced by
Verhulst (1838, 1845), in which G(x) is assumed to be a linear function, often
parametrized as

G(x) = r
(

1− x
K

)
.

The ideas embodied in the logistic model (exponential growth when x is small com-
pared to K; little change when x is near K) led biologists to the formulation of a
theory that characterizes environments in terms of those that “favor” r selection, the
exponential component of growth, versus those that “favor” K selection, where K is
a measure of its carrying capacity. Environments were classified as roughly belong-
ing to two types: those that favored growth versus those that did not (because they
were near their carrying capacity). The concept of r-K selection has been applied not
only to populations of individuals but also to populations of species (environments
in the r-phase can support additional species while environments in the K-phase
cannot; see for example [May (1974)].

In order to give demographic meaning to the definition of G(x), it is often con-
venient to redefine it as the sum of two functions,

G(x) =−μ(x)+β (x),

where μ(x) and β (x) denote the per capita mortality and fertility rates, respectively.
A constant per capita mortality rate μ may be appropriate in situations in which birth
and other processes respond rapidly to changes in the population dynamics while it
may not be appropriate when population death rates are affected by demographic
factors such as population density.

Thus limited growth may be obtained when the per capita birth rate decreases as
the population increases under the assumption of a constant per capita death rate.
The simplest mathematical form for a decreasing per capita birth rate is the linear
function

β (x) = a−bx,

which leads to a per capita growth rate

G(x) = β (x)−μ = (a−bx)−μ = (a−μ)−bx,

or
G(x) = (a−μ)

(
1− b

a−μ
x
)
,

which after renaming parameters

r = a−μ, K =
a−μ

b
,

takes on the familiar logistic form

G(x) = rx
(

1− x
K

)
.
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Malthus’s model and the logistic model describe the dynamics of populations
with overlapping generations, the kind that are best described using differential
equations. However, the dynamics of some populations may not be appropriately
described with differential equations. For example, salmon have an annual spawn-
ing season, and births take place at essentially the same time each year. Systems
with non-overlapping generations, like the salmon, are better described by discrete
(difference equation) models, the topic of Chapter 2.

Impact on biological growth rates is not always instantaneous. In fact, it is often
experienced after some delay (an egg stage duration, for example), and for these sit-
uations, the use of a time lag is often appropriate. The use of lags (or more generally,
distributed delays) leads to the study of differential–difference equation models, the
topic of Chapter 3.

The material in the first section will help the reader gain understanding of the
dynamics of single-species models. The material throughout the book should help
the modeler and scientist understand the value of working with simple analyzable
“realistic” models rather than with detailed “unsolvable” models.

Part I, therefore, focuses on the study of single-species models including those
commonly used to predict the growth of human and animal populations. Through a
dissection of the underlying assumptions behind each model, it is possible to deter-
mine its usefulness as well as its limitations. Hence, single-population models are
the building blocks for additional detail such as population structure, the subject of
Part III.

One dimensional models assume implicitly that population growth is affected
by intraspecies competition (competition such as for resources among members
of the same species) in its various forms, including contest and scramble com-
petition. Models with overlapping generations (here modeled via continuous-time
one-dimensional ordinary differential equations) exhibit simple dynamical behav-
ior, while models with discrete, nonoverlapping, generations, may exhibit complex
dynamics. Specific time predictions are nearly impossible even when plenty of data
is available, as is the case in the lake eutrophication example developed in Chapter
1. Nevertheless, one-dimensional models help clarify the world of possibilities once
the emphasis has been shifted from a desire to fit specific (quantitative) dynamics to
that of simply studying their qualitative behavior as parameters are varied. It should
be clear that because most models of Part I are parametrized via the use of biolog-
ically derived constants that come from a multi-dimensional parameter space, we
are in fact dealing with a world of possibilities with “simple” models. The spruce
budworm project of Chapter 1 provides a powerful example of this view and, con-
sequently, of the value of one-dimensional continuous-time systems.

Rich and complex dynamics are obtained in Part I, where the dynamics of
discrete-time models with nonoverlapping generations are discussed. Simple non-
linear models, such as the discrete logistic equation, generate complex dynamics,
including chaotic behavior. Hence, the view (dramatically set in a beautiful paper
by May, 1976) that complex dynamics are not necessarily the result of complex rules
of interaction makes a compelling and powerful argument for the search for “sim-
ple” explanations for the phenomena observed in biological systems.
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Part I focusses on the description and analysis of simple models, including differ-
ential, difference, and delay equations, which have played a useful role in theoretical
biology (see [May, (1974)]). Models of Part I do not incorporate age structure, nor
do they take into account gender-related factors, such as mating, which are often
central to the study of the life history of a population. In other words, single-species
models for homogeneously mixing populations can be used only to address limited
(albeit often important) life history questions. Part III looks at the role of population
structure and spatial heterogeneity on population dynamics in some depth.

Part II of this book looks at the dynamics that result from the interactions of pop-
ulations that would typically behave like those of Part I when in isolation. Mech-
anisms that drive multispecies interactions include competition, mutualism, and
predator–prey interactions. In Part II we often establish conditions for species co-
existence (both species survive) or for competitive exclusion (one species survives
but the other becomes extinct). The beginning of Chapter 4 is historical in nature,
focussing on the study of the Lotka–Volterra equations which provide the model
prototype of predator–prey interactions, and the chemostat, a laboratory biologi-
cal system used to cultivate bacteria and the subject of intense mathematical study
[Smith & Waltman (1995)]. These classical models motivate the introduction of
two-dimensional systems, where we reintroduce the ideas of stability and instabil-
ity (including oscillations) in two-dimensional continuous time systems. Chapter 5
focuses on species competition, predator–prey systems, and mutualism, with a brief
foray into the much more complicated situation in which more than two species
interact. Chapter 6 focuses on intervention and it intersects heavily with the field
known as bioeconomics (see [Clark (1990)] and references therein).

Chapters 2 and 3 begin to look at the role of population structure in rather sim-
ple settings. Specifically, in Chapter 2 we look at populations with two age classes,
while in Chapter 3 we consider age in various implicit forms. Individuals are al-
lowed to remain in each stage a variable amount of time; in other words, their history
plays a role. In this fashion, we are able to move away from models with no history
(exponentially distributed waiting times) to models in which the time spent in a par-
ticular state is variable. In Part III, we focus on population structure. We introduce
structure in two separate ways. In Chapter 7, basic generalizations that incorporate
age structure in the Malthus model in discrete and continuous time are introduced.
Chapter 7 focuses on the prototypes of age structured models: the (discrete) Leslie
and the (continuous) McKendrick–Von Foerster models. Chapter 8 incorporates spa-
tial structure, also in two separate ways. Metapopulations, or populations of popu-
lations, are viewed in terms of populations that have colonized different nonisolated
“patches” or municipalities connected by travel routes (networks with nodes denot-
ing local populations). They may be continuous models in each patch and discrete
in separation into patches. Local motion of individuals in a population is modeled
by diffusion processes, leading to partial differential equations.

Part IV is devoted to models for the spread of diseases, structuring populations
by their disease status. Chapters 9 and 10 classify individuals according to their
epidemiological status while incorporating additional heterogeneity through the in-
troduction of variables that measure the variability in an individual’s ability to fight
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infections. We introduce general waiting times in the context of epidemiologically
structured models

An additional objective of Parts III and IV is to provide an introduction to some
of the modeling and mathematical challenges faced in the field of structured popula-
tions [Webb (1985); Metz & Diekmann (1986); Diekmann & Heesterbeek (2000)].
References are provided for those interested in applications involving realistic bi-
ological models that have generated interesting mathematical questions and chal-
lenges. Discussing the analysis of these generalizations is beyond the scope of this
book. However, we hope that this book and the cited references provide a spring-
board to these topics.



     



Part I

Simple Single Species Models



Chapter 1

Continuous Population Models

1.1 Exponential Growth

In this chapter we look at a population in which all individuals develop indepen-
dently of one another while living in an unrestricted environment where no form
of competition is possible. If the initial population size is small then a stochastic
model is more appropriate, since the likelihood that the population becomes extinct
due to chance must be considered. Deterministic models often provide useful ways
of gaining sufficient understanding about the dynamics of populations whenever
they are large enough. Furthermore, perturbations to large populations at equilib-
rium often generate over short time scales independent individual responses, which
may be appropriately modeled by deterministic models. For example, the introduc-
tion of a single infected individual into a large disease-free population leads to the
generation of secondary cases of infection, propagating a disease. The environment
is free of interference competition, at least at the beginning of the outbreak, when a
large population of susceptibles provides a virtually unlimited supply of hosts. The
spread of disease in a large population of susceptibles may be thought of as an inva-
sion process generated by independent contacts between a huge pool of susceptibles
and a few infectious individuals.

The population density of a single species at time t will be denoted by x(t), where
it is assumed that x is everywhere differentiable, that is, x is a smooth function of t.
Although unrealistic since x(t) is an integer-valued function and thus not continu-
ous, for populations with a large number of members, the assumptions of continuity
and differentiability provide reasonable approximations. In many biological experi-
ments the population biomass, which one might expect to be more nearly described
by a smooth function than the population size, is often taken as the definition of x(t).

The rate of change of population density can be computed if the birth, death,
and migration rates are known. A closed population has, by definition, no migration
either into or out of the population. In this case, the population size changes only
through births and deaths and the rate of change of population size is simply the
birth rate minus the death rate. The formulation of a specific model requires explicit
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assumptions on the birth and death rates. Ideally, these assumptions are made with
the goal of addressing specific biological questions such as under what conditions
will interference competition (competition for hosts) and pathogen virulence lead to
host-pathogen long-term coexistence.

For microorganisms, which reproduce by splitting, it is reasonable to assume
that the rate of birth of new organisms is proportional to the number of organisms
present. In mathematical terms, this assumption may be expressed by saying that if
the population size at time t is x, then over a short time interval of duration h from
time t to time (t+h), the number of births is approximately bhx for some constant b,
the per capita birth rate. Similarly, we may assume that the number of deaths over
the same time interval is approximately μhx for some constant μ , the per capita
death rate. Hence, the net change in population size from time t to time (t + h),
which is x(t + h)− x(t), may be approximated by [(bh − μh)]x(t). The duration
h of the time interval must be short to ensure that the population size does not
change very much and thus that the numbers of births and deaths are approximately
proportional to x(t). We obtain the approximate equality

x(t +h)− x(t)≈ (b−μ)x(t)h. (1.1)

(The symbol ≈ is used to denote approximate equality in a sense that must be spec-
ified.) Division by h gives

x(t +h)− x(t)
h

≈ (b−μ)x, (1.2)

and passage to the limit as h → 0 gives

dx
dt

= (b−μ)x (1.3)

under the assumption that the function x(t) is differentiable. The approximate equal-
ity in (1.1) means that the difference between the two sides of (1.1) is so small that
the result of dividing this difference by h gives a quantity that approaches zero as
h → 0.

If the net growth rate is naturally defined as

r ≡ b−μ,

then another way of looking at this model is to observe that if the population size
at time t is x(t), then in the next tiny time interval of length h the net increase
in population size due to a single organism will be rh. Since all individuals are
independent (no competition in an unrestricted environment), the net increase in
population due to all x(t) organisms will be rhx(t), and thus we arrive again at the
differential equation

dx
dt

= rx. (1.4)
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This differential equation has the infinite family of solutions given by the one-
parameter family of functions x(t) = kert ; hence, this one parameter family gives
a solution of (1.4) for every choice of the constant k. The most convenient way to
impose a condition that will describe the population dynamics of a specific popula-
tion is by specifying the initial population size at time t = 0 as

x(0) = x0. (1.5)

This choice selects the solution, x(t) = x0ert . Condition (1.5) is called an initial
condition, and the problem consisting of the differential equation (1.4) together with
the initial condition (1.5) is called an initial value problem.

As pointed out above, the above initial value problem has the unique solution

x(t) = x0ert ,

where r > 0 (or equivalently b > μ) implies that the population size will grow un-
boundedly as t → ∞, while r < 0 (or b < μ) implies that the population size will
approach zero as t → ∞. An alternative interpretation can be reached using some of
the ideas discussed in detail in the appendix to this chapter. In the absence of births
(b = 0), the population is deplenished by deaths at the rate μ , and consequently, the
average life-span of a member of this population is 1/μ (see Section 1.7). If b > 0,
then the average number of offspring over the lifetime of an average individual un-
der Malthus’s model would be b/μ . If this ratio (usually referred to as the basic
reproductive number or ratio R0) is greater than one, then births exceed deaths and
the average number of offspring per person over her lifetime is greater than one, that
is, the population explodes; if this ratio is less than one, then deaths exceed births,
the average number of offspring per person is less than one, and the population dies
out.

The prediction that population size will grow exponentially under these condi-
tions was first stated by Malthus (1798). Malthus predicted disaster, because food
supplies could not possibly be increased to keep pace with population growth at
a constant positive per capita growth rate. Populations that grow exponentially at
first are commonly observed in nature. However, their growth rates usually tend to
decrease as population size increases. In fact, exponential growth or decay may be
considered typical temporary local behavior. In other words, populations dynamics
can usually be approximated by this simple model only for short periods of time;
that is, the dynamics of a population may be handled well locally with linear mod-
els. The assumption that the rate of growth of a population is proportional to its size
(linear assumption) is usually unrealistic on longer time scales. The next section
considers nonlinear assumptions on the rate of population growth rates, which lead
to quite different qualitative predictions.
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Exercises

We put an asterisk on exercises that may not be straightforward. This notation is
used throughout the text.

In Exercises 1 through 10, assume that the rate of change of population size is
proportional to population size.

1. Suppose the growth rate of a population is 0.7944 per member per day. Let the
population have 2 members on day zero. Find the population size at the end of
5 days.

2. Suppose a population has 100 members at t = 0 and 150 members at the end of
100 days. Find the population at the end of 150 days.

3. Suppose the growth rate of a given population is 0.21 per member per day. If
the population size on a particular day is 100, find the population size 7 days
later.

4∗. Suppose a population has 39 members at t = 8, and 60 members at t = 12.
What was the population size at t = 0?

5. Suppose a population has 24 members at t = 5, and 15 members at t = 15.
What was the population size at t = 0?

6. The population of the earth was about 5× 109 in 1986. Use an exponential
growth model with the rate of population increase of 2 percent per year ob-
served in 1986 to predict the population of the earth in the year 2000.

7. Bacteria are inoculated in a petri dish at a density of 10/ml. The bacterial den-
sity doubles in 20 hours. Assume that this situation is described by the differ-
ential equation

d
dt

x =Cx,

where x is the bacterial density and C is a constant.

a. Integrate this equation giving x as a function of time.
b. Find the value of C.
c. How long does it take for the density to increase to 8 times its original

value? To 10 times?

8. Suppose that a population has a constant growth rate r per member per unit
time and that the population size at time t = t0 is x0. Show that the population
size at time t is x0er(t−t0).

9. Suppose that a population has a growth rate of r per member in unit time,
with r > 0. Show that the time required for the population to double its initial
size (called the doubling time) is (log2)/r. [Note: We will always use “log” to
denote the natural logarithm.]

10. Suppose that a population has a growth rate of r per member per unit time with
r < 0. Show that the time required for the population to decrease to half its
initial size (called the half-life) is −(log2)/r.

11∗. Suppose that a population has a growth rate r(t), which depends on time, so
that population size x(t) is governed by the initial value problem
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dx
dt

= r(t)x, x(0) = x0.

Show that the population size at time t is given by

x(t) = x0e
∫ t

0 r(s)ds.

12∗. The method of least squares finds the “best” straight line y = ax+b through a
set of data points (x1,y1),(x2,y2), · · · ,(xn,yn) by choosing a and b to minimize

n

∑
i=1

(yi − (axi +b))2,

the sum of the squares of the vertical distances between the data and the line.
The solution is

a =
∑n

i=1(xi − x̄)(yi − ȳ)
∑n

i=1(xi − x̄)2 , b = ȳ−ax̄,

where

x̄ =
1
n

n

∑
i=1

xi, ȳ =
1
n

n

∑
i=1

yi.

Table 1.1 gives the census data of the United States from 1790 to 1990. Assume
that these data fit an exponential growth model x(t) = x0ert , or log x(t) =log
x0 + rt . Use the method of least squares on these data to estimate r. Hint: Here
log x(t) corresponds to y, and t corresponds to x.

Year Population

1790 3,900,000
1800 5,300,000
1810 7,200,000
1820 9,600,000
1830 12,900,000
1840 17,100,000
1850 23,100,000
1860 31,400,000
1870 38,600,000
1880 50,200,000
1890 62,900,000

Year Population

1900 76,000,000
1910 92,000,000
1920 105,700,000
1930 122,800,000
1940 131,700,000
1950 150,700,000
1960 179,000,000
1970 205,000,000
1980 226,500,000
1990 248,700,000

Table 1.1 US census data from 1790 to 1990.
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1.2 The Logistic Population Model

As before, x(t) denotes the size of a population at time t, and dx/dt or x′(t) the
rate of change of population size. We shall continue to assume that the population
growth rate depends only on the population’s size. Such an assumption appears to
be reasonable for simple organisms such as micro-organisms. For more complicated
organisms like plants, animals, or human beings this is obviously an oversimplifica-
tion since it ignores intra-species competition for resources as well as other signif-
icant factors, including age structure (the mortality rate may depend on age rather
than on population density, while the birth rate may depend on the adult population
size rather than on total population size). Furthermore, the possibility that birth or
death rates may be influenced by the size of populations that interact with the popu-
lation under study must also be considered (competition, predation, mutualism). We
shall consider the effects of some of these factors in later chapters.

Here we study models in which the growth rate depends only on population size,
because in spite of their shortcomings, these models do predict the qualitative be-
havior of many real populations. The per capita growth rate, or rate of growth per
member, is given by x′(t)/x(t), which we are assuming is a function of x(t). In the
previous section it was assumed that the total growth rate was proportional to pop-
ulation size (a linear model), or equivalently, we took a constant per capita growth
rate. In this section total growth rates that decrease as population size increases are
considered.

The simplest population model in which the per capita growth rate is a decreasing
function of population size is λ −ax. This assumption leads to the logistic differen-
tial equation

x′ = x(λ −ax),

first introduced by Verhulst (1838) and later studied further by R. Pearl and L. J.
Reed (1920). This equation is commonly written in the form

x′ = rx
(

1− x
K

)
, (1.6)

with parameters r = λ , K = λ/a. The parameters r and K, assumed positive, may
then be given biological significance. It is observed that x′ ≈ rx when x is small, and
that x′ = 0 when x is near K. In other words, when x is small the population experi-
ences exponential growth, while when x is near K the population hardly changes.

Separation of variables allows us to rewrite equation (1.6) as∫ dx
x(K − x)

=
r
K

∫
dt,

while using partial fractions, giving

1
x(K − x)

=
1
K

(
1
x
+

1
K − x

)
,
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allows us to integrate it:

r
K

t + c =
∫ dx

x(K − x)
=

1
K

(∫ dx
x
+
∫ dx

K − x

)
=

1
K

(
logx− log(K − x)

)
,

where c is the constant of integration.
If the population size at time t = 0 is x0, substitution of the initial condition

x(0) = x0 gives

c =
1
K

(
logx0 − log(K − x0)

)
.

We now have

1
K

(
logx− log(K − x)

)
=

r
K

t +
1
K

(
logx0 − log(K − x0)

)
,

log
(

x
K − x

)
= rt + log

x0

K − x0
,

log
x(K − x0)

x0(K − x)
= rt

x(K − x0)

x0(K − x)
= ert .

Further algebraic simplification gives

x(K − x0) = x0(K − x)ert = Kx0ert − xx0ert

x
(
K − x0 + x0ert) = Kx0ert

and finally

x(t) =
Kx0ert

K − x0 + x0ert =
Kx0

x0 +(K − x0)e−rt . (1.7)

The above solution is valid only if 0 < x0 < K, so that the logarithms obtained in
the integration are defined. To obtain the solution without this restriction, our inte-
gration should have given logarithms of absolute values. Nevertheless, the formula
(1.7) for the solution of the logistic equation is valid for all x0, as could be verified
by a more careful analysis.

The expression (1.7) for the solution of the logistic initial value problem shows
that the population size x(t) approaches the limit K as t → ∞ if x0 > 0. The value K
is called the carrying capacity of the population, because it represents the popula-
tion size that available resources can continue to support. The value r is called the
intrinsic growth rate, because it represents the per capita growth rate achieved if the
population size were small enough to ensure negligible resource limitations. The lo-
gistic model predicts rapid initial growth for 0 < x0 < K, then a decrease in growth
rate as time passes so that the size of the population approaches a limit (Figure 1.1).
This behavior is in agreement with the observed behavior of many populations, and
for this reason, the logistic model is often used as a means of describing population
size.
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x

t

K

Fig. 1.1 Solution of the logistic equation.

Example 1. Census data for the population of the United States in millions fit the
function

x(t) =
265

1+69e−0.03t

reasonably well, with the year 1790 taken as t = 0. We may compare this with (1.7)
in the form

x(t) =
K

1+
(

K−x0
x0

)
e−rt

to see that this expression is a solution of the logistic model with K = 265, r = 0.03.
If we use this logistic model to describe the population of the United States we
would predict a carrying capacity of 265,000,000, and a 1990 census total of
226,300,000. (In fact, the population size found in the 1990 census was approxi-
mately 250,000,000.) The data from Table 1.1 plotted together with this solution are
shown in Figure 1.2.

It is possible to give a derivation of the logistic model based on a specific as-
sumption about the resources on which a population depends. Let C denote the
concentration of nutrients and assume that the per capita growth rate r is propor-
tional to C, that is, r = aC for some constant a. Assume also that we begin with a
fixed concentration C(0) of nutrients and that the consumption of a unit of nutrient
produces b units of population size. Then population size is governed by

x′ = aCx (1.8)

with
1
b

x′ =−C′. (1.9)

Integration of (1.9) with respect to t gives

C =−1
b

x+K,
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Fig. 1.2 US population size.

and substitution of x = x0, C =C(0) for t = 0 enables us to calculate the constant of
integration K as

K =C(0)+
x0

b
.

Now (1.8) becomes

x′ = ax
(

K − 1
b

x
)
= aKx

(
1− x

bK

)
,

and this is the logistic differential equation with intrinsic growth rate aK and carry-
ing capacity bK. The reader should observe that the intrinsic growth rate depends
on the initial concentration of nutrients, but the carrying capacity depends only on
the rate of conversion of nutrients into population (this derivation was taken from
Edelstein-Keshet (1988)).

Exercises

1. Suppose a population satisfies a logistic model with r = 0.4, K = 100, x(0) = 5.
Find the population size for t = 10.

2. Suppose a population satisfies a logistic model with carrying capacity 100 and
that the population size is 10 when t = 0 and 20 when t = 1. Find the intrinsic
growth rate.

3. The Pacific halibut fishery is modeled by the logistic equation with carrying
capacity 80.5×106, measured in kilograms, and intrinsic growth rate 0.71 per
year. If the initial biomass is one-fourth the carrying capacity, find the biomass
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one year later and the time required for the biomass to grow to half the carrying
capacity.

4. Use a logistic model with an assumed carrying capacity of 100× 109, an ob-
served population of 5 × 109 in 1986, and an observed rate of growth of 2
percent per year when population size is 5× 109 to predict the population of
the earth in the year 2000.

5∗. Show that for a population that satisfies the logistic model, the maximum rate
of growth of population size is rK/4, attained when population size is K/2.

6∗. Show that for every choice of the constant c, the function

x =
K

1+ ce−rt

is a solution of the logistic differential equation.
7∗. Suppose a population satisfies a differential equation having the form of the

logistic equation but with an intrinsic growth rate that depends on t:

x′ = r(t)x
(

1− x
K

)
, x(0) = x0.

Show that the solution is

x(t) =
Kx0

x0 +(K − x0)e−
∫ t

0 r(s)ds
.

[Hint: Since there is an existence and uniqueness theorem that says that the ini-
tial value problem has exactly one solution, verification that the given function
satisfies the differential equation and initial condition suffices to show that it is
the solution. It is not necessary to “solve” the initial value problem and derive
this solution.]

8. The subfield of biology that deals with the “comparative growth rates of differ-
ent biological quantities” is called allometry. Let x(t) denote the growth rate of
the biological quantity 1 and y(t) the growth rate of the biological quantity 2.
Assume that both per capita growth rates are proportional:

1
y

dy
dt

= α
1
x

dx
dt

. (1.10)

Show that the following allometric law follows, that is,

y = Kxα ,

where K is a constant.
9∗. Metabolic rate (MR) is defined as the rate of heat production per unit time. The

food energy required while resting and fasting (the basal metabolic rate) over a
window of time T is given by

MR×T.
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It is suggested that
MR = ρS,

where S is the surface area of the body and, according to the allometric law,

MR = kW α ,

where W is the body weight.

a. Show that for a spherical cow,

MR = ksW 2/3.

b. What would the relationship be for a cubical cow, i.e., is α the same as for
a spherical cow and what is the relation between ks and kc?

10. We have a starving animal and assume that its loss of weight is proportional to
its metabolic rate, say

dW
dt

=−μMR.

a. Assume that MR = 1
3W

3
4 and set μ = 1. Find the body weight of a 25 kg

animal t days after it stops eating.
b. If death from starvation occurs after an animal has burned off 50% (law of

Chossat) of its body substance, how long does it take for an animal to die
given the scenario above?

1.3 The Logistic Equation in Epidemiology

The logistic equation is most often associated with the study of the dynamics of
a population under density-dependent birth or death rates. However, it also arises
naturally in the study of epidemiological systems (as was first shown by Hethcote
(1976)). A more thorough description of mathematical models in epidemiology may
be found in Chapter 9, but some epidemiological examples will be introduced in ear-
lier chapters. In this section a model for the transmission dynamics of gonorrhea in
a homosexually active population is derived. S(t) denotes all sexually active nonin-
fected individuals, and I(t) denotes all sexually active infected (assumed infective)
individuals with N(t) = S(t)+ I(t) the total population size. It is assumed that new
sexually active individuals arrive at the rate μN(t) and that none of them are in-
fected; that individuals also leave the sexually active class at the rate μN(t) and that
individuals leave the infective class by recovery, with return to the susceptible class,
at the rate γI(t).

With these assumptions, we arrive at the following model:
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dS
dt

= μN(t)−B(S, I)−μS+ γI,

dI
dt

= B(S, I)− (μ + γ)I,

where B(S, I) denotes the incidence rate, that is, the number of new cases of infection
per unit time. Obviously, B(S,0) = B(0, I) = B(0,0) = 0, that is, if there are no
susceptibles or infected or both, then there should be no new cases of infection.
Hence, it is plausible to assume

B(S, I) ∝ SI.

If we let c (assumed to be constant) denote the average number of sexual partners per
individual per unit time and φ (assumed constant) the average number of contacts
per partner, then φcS(t) denotes the total number of contacts per unit time of all
susceptible individuals at time t. If all individuals mix at random (homogeneous
mixing), then the number of sexual contacts per unit time between susceptibles will
be

φcS(t)
S(t)
N(t)

,

where N(t) = S(t)+ I(t), while the number of sexual contacts per unit time between
susceptibles and infectives will then be

φcS(t)
I(t)
N(t)

,

and consequently,

B(S, I) ∝ φcS(t)
I(t)
N(t)

.

In addition, we assume that only a fraction q (0 ≤ q ≤ 1) of these contacts develop
into new cases of infection. Defining the transmission rate as β = qφc, we arrive at
the following expression for the incidence rate in a randomly mixing population:

B(S, I) = βS(t)
I(t)
N(t)

.

The model becomes

dS
dt

= μN(t)−βS(t)
I(t)
N(t)

−μS+ γI, (1.11)

dI
dt

= βS(t)
I(t)
N(t)

− (μ + γ)I,

with N = S+ I, and initial conditions S(0) = S0 > 0, I(0) = I0 > 0.
Since

d
dt
(S+ I) =

d
dt

N(t) = 0,



1.3 The Logistic Equation in Epidemiology 15

the birth rate equals the death rate and the total population size is constant. The
substitution

S(t) = N − I(t),

where N is a constant, reduces the solution of the system (1.11) to the solution of
the single differential equation

dI
dt

= β
(
N − I(t)

) I
N
− (μ + γ)I(t), (1.12)

or
dI
dt

= β I
(

1− I
N

)
− (μ + γ)I(t),

or
dI
dt

= (β − (μ + γ))I

(
1− I

N
(
1− μ+γ

β
))

or
dI
dt

= β
(

1− 1
R0

)
I

(
1− I

N
(
1− 1

R0

)),

where R0 = β/(μ + γ).
The definitions r = β

(
1−1/R0

)
and K = N

(
1−1/R0

)
reveal the logistic form

dI
dt

= rI
(

1− I
K

)
.

Hence if R0 > 1 then r > 0, K > 0, and I → K (which is less than N). If R0 < 1,
then r < 0, K < 0, and I → 0 (see Exercise 1 below). Of course, K < 0 makes
no biological sense. Therefore we conclude that a positive (endemic) equilibrium
I∞ > 0 exists and it is approached by solutions if and only if R0 > 1; otherwise the
only biological equilibrium is I∞ = 0, which is approached by solutions if R0 ≤ 1
but not if R0 > 1.

Exercises

1. Show that if r < 0 and K < 0, every solution of the logistic equation with
x(0)≥ 0 approaches zero as t → ∞.

2∗. Consider the system

dS
dt

= Λ −βS(t)
I(t)
N(t)

−μS+ γI, (1.13)

dI
dt

= βS(t)
I(t)
N(t)

− (μ + γ)I,
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where Λ denotes the total recruitment rate, assumed constant.

a. Look at dN/dt = d(S+ I)/dt and solve the resulting differential equation
for N, obtaining N(t) = K − (

K −N(0)
)
e−μt . This shows that the system

is equivalent to the solution of the single nonautonomous differential equa-
tion

dI
dt

= β (N(t)− I)
I

N(t)
− (μ + γ)I, (1.14)

where
N(t) = K − (

K −N(0)
)
e−μt , (1.15)

with K = Λ/μ .
b. Show that N(t)→ K as t → ∞.
c. Choose K = 1000, 1/μ = 10 years, and two initial population sizes, N(0)=

1,200 and N(0) = 700. Using a differential equation solver, find I(10),
I(20), and I(50) using values of the parameters that give R0 > 1.

d. If we look at the right side of equation (1.14) and let t →∞ and replace S(t)
by K− I, then we arrive formally at the following “asymptotic” differential
equation:

dI
dt

= β (K − I)
I
K
− (μ + γ)I(t), (1.16)

where
K ≡ Λ

μ
= lim

t→∞
N(t).

Here, without justification, S(t) has been replaced by K − I, and hence
equation (1.16) and Equation (1.12) are not the same. However, recent
work [Castillo-Chavez and Thieme (1995)] has shown that these equations
have the same qualitative dynamics. Compare the values found in (c) with
those found using the limiting equation (1.16) numerically.

3∗. Consider the following SIS epidemic model with variable population size (birth
rate is different from death rate):

dS
dt

= bN −βS
I
N
+ γI −μS

dI
dt

= βS
I
N
− (γ +μ)I.

a. Check that
dN
dt

= rN,

where r = (b−μ), and that consequently, N(t) = N(0)ert .
b. Rescale the above system by introducing the new variables

x(t) =
S(t)
N(t)

y(t) =
I(t)
N(t)

.
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Note that
dx
dt

=
1
N

dS
dt

− S
N2

dN
dt

and that x(t)+ y(t) = 1 for all t.
c. Verify that

dy
dt

=
(
β − (γ +b)

)
y

⎛⎝1− y

1− (γ+b)
β

⎞⎠ .

d. Let R0 = β/(γ +b). Can you interpret R0? What is the qualitative behavior
of the above equation?

e. What is the meaning in terms of the original variables S and I as y → 0 and
y → y∗ ∈ (0,1).

1.4 Qualitative Analysis

When using the logistic model in practice, one normally assumes that a population
is indeed described by a logistic model and then attempts to choose the parameters r
and K and the initial population size x0 to give the best fit with experimental data. It
is important to remember that the values of r,K, and x0 are therefore subject to error.
However, errors in r and x0 do not affect our prediction of the ultimate population
size K. The property that a small change in the initial size x0 of a solution has only
a small effect on the behavior of the solution as t → ∞ is called stability of the
solution. We will require stability of any solution to which we ascribe biological
significance; if a small disturbance can cause a large change in the solution it is
unreasonable to consider the solution meaningful.

It is also important to remember that the logistic model is an assumed form,
not a consequence of a fundamental law. We will want to consider larger classes
of models and examine properties that are valid for these larger classes rather than
those properties that depend on the specifics of the logistic model. A property that
holds for a large class of models is said to be robust, to indicate that it is more likely,
in some sense, to have biological significance.

The information that we derived about the behavior of solutions of the logis-
tic model was obtained from the explicit solution by separation of variables. If we
wish to search for robust properties we must learn to deduce properties of solutions
from the differential equation directly, without depending on analytic expressions
for solutions.

The derivative of a solution x(t) at a point (t,x(t)) is the right side of the logistic
equation

dx
dt

= rx
(

1− x
K

)
.

This is positive if 0 < x < K, zero if x = 0 or x = K, and negative if x < 0 or
x > K. Thus, a solution x(t) is an increasing function of t when 0 < x(t) < K and
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a decreasing function of t when x(t) > K. (We ignore the case x(t) < 0 because
it has no biological significance.) The constants x ≡ 0 and x ≡ K are solutions.
Differentiation of the logistic equation with respect to t gives

d2x
dt2 =

d
dx

(
rx
(

1− x
K

))dx
dt

= r
(

1− 2x
K

)dx
dt

= r2x
(

1− 2x
K

)(
1− x

K

)
.

From this we deduce that (d2x)/(dt2) changes sign as x crosses the horizontal line
x = K/2 and thus that a solution that crosses this line has an inflection point at the
crossing. The solution curves must be as shown in Figure 1.3.

Fig. 1.3 Solution curves of the logistic equation.

If x(t) < K for some t, then the graph of x(t) cannot cross the line x = K (to
see this, we must use the uniqueness of solutions; if the graph did cross the line
x = K there would be two solutions passing through the point of crossing, and this
is impossible) and is increasing for all t. Thus, x(t) tends to a limit as t → ∞, but
the only possible limits are values of x for which the right side of the differential
equation is zero, namely x = 0 or x = K. Since solutions near x = 0 tend away from
x = 0, they cannot approach zero, but must tend to K as t →∞. A solution x(t) that is
above K decreases for all t and by a similar argument must tend to K as t →∞. Thus,
we see that every nonnegative solution except the constant solution x ≡ 0 tends to
K as t → ∞, and we have obtained this information without explicitly solving the
differential equation. The method we have used may be adapted to more general
first-order differential equations.

We will consider autonomous first order differential equations, that is, equations
of the form

x′ = f (x), (1.17)

in which the right side does not contain the independent variable t. Sometimes we
will write the equation in the form
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x′ = xr(x), (1.18)

with r(x) representing the per capita growth rate. We define an equilibrium of the
differential equation (1.17) to be a value x∞ such that f (x∞) = 0. An equilibrium
corresponds to a constant solution x(t)≡ x∞ of the differential equation.

If x(t) is a solution of a differential equation x′ = f (x) that tends to a limit as
t → ∞ then it is not difficult to show that its limiting value must be an equilibrium.
In fact, for a first-order differential equation, every solution must either tend to an
equilibrium as t → ∞ or be unbounded. However, not every equilibrium is a limit of
nonconstant solutions. For example, the only solution of the logistic equation that
tends to zero as t → ∞ is the identically zero solution.

In order to describe the behavior of solutions near an equilibrium, we introduce
the process of linearization. If x∞ is an equilibrium of the differential equation
x′ = f (x), so that f (x∞) = 0, we make the change of variable u(t) = x(t)− x∞,
representing deviation of the solution from the equilibrium value. Substitution gives

u′(t) = f
(
x∞ +u(t)

)
,

and application of Taylor’s theorem gives

u′(t) = f (x∞)+ f ′(x∞)u(t)+
f ′(c)
2!

(
u(t)

)2

for some c between x∞ and x∞+u(t). We use f(x∞)=0 and write h(u)=( f ′(c)/2!)u2.
Then we may rewrite the differential equation x′ = f (x) in the equivalent form

u′ = f ′(x∞)u+h(u).

The function h(u) is small for small |u| in the sense that h(u)/u → 0 as u → 0; more
precisely, for every ε > 0 there exists δ > 0 such that |h(u)|< ε|u| whenever |u|< δ .
The linearization of the differential equation at the equilibrium x∞ is defined to be
the linear homogeneous differential equation

v′ = f ′(x∞)v, (1.19)

obtained by neglecting the higher-order term h(u) in u′ = f ′(x∞)u+ h(u). The im-
portance of the linearization lies in the fact that the behavior of its solutions is easy
to analyze, and this behavior also describes the behavior of solutions of the original
equation (1.17) near the equilibrium.

Theorem 1.1. If all solutions of the linearization (1.19) at an equilibrium x∞ tend
to zero as t → ∞, then all solutions of (1.17) with x(0) sufficiently close to x∞ tend
to the equilibrium x∞ as t → ∞.

We have stated the theorem in a form that generalizes readily to results for sys-
tems of differential equations, as well as to results to be given later, when equations
with delay are discussed. In the specific situation covered in Theorem 1.1 the condi-
tion that all solutions of the linearization tend to zero is f ′(x∞)< 0. For an equilib-
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rium x∞ with f ′(x∞)< 0 we must have f (x)> 0 for x < x∞ and f (x)< 0 for x > x∞
if x is sufficiently close to x∞. Thus, the direction field is as shown in Figure 1.4.

Fig. 1.4 Direction fields of the autonomous equation.

A solution with x(0)> x∞ is monotone decreasing but bounded below by x∞, and
therefore tends to a limit as t → ∞. Since the only possible limits of solutions are
equilibria, such a solution must tend to x∞ (if there are no other equilibria between
x(0) and x∞). By a similar argument a solution with x(0)< x∞ increases monotoni-
cally to x∞ if there is no other equilibrium between x(0) and x∞. Thus, all solutions
with x(0) sufficiently close to x∞ approach x∞ as t → ∞. Indeed, for first-order dif-
ferential equations we can be more precise: If x∞ is an equilibrium with f ′(x∞)< 0,
then every solution whose initial value x(0) is between x∞ and the next equilibrium,
in either direction, must tend to x∞ as t → ∞.

An equilibrium x∞ is said to be stable if for every ε > 0 there exists δ > 0 such
that |x(0)−x∞|< δ implies |x(t)−x∞|< ε for all t > 0. It is implicit in this definition
that the existence of the solution x(t) is required for 0 ≤ t < ∞. An equilibrium x∞
is said to be asymptotically stable if it is stable and if in addition, |x(0)− x∞| < δ
implies

lim
t→∞

x(t) = x∞.

Thus, stability means roughly that a small change in initial value produces only a
small effect on the solution, and this condition is a natural requirement for an equi-
librium to be biologically meaningful. It is possible for systems to have equilibria
for which all solutions starting near the equilibrium tend toward the equilibrium but
only after traveling away from the equilibrium. Such an equilibrium would not be
stable, but our definition of asymptotic stability requires stability in order to exclude
this possibility. In biological applications we will ordinarily require asymptotic sta-
bility rather than stability, both because asymptotic stability can be determined
from the linearization, while stability cannot, and because an asymptotically stable
equilibrium is not disturbed greatly by a perturbation of the differential equation.
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In terms of asymptotic stability we may restate Theorem 1.1 and a corresponding
instability result proved in the same way as follows:

Corollary 1.1. An equilibrium x∞ of (1.17) with f ′(x∞)< 0 is asymptotically stable,
while an equilibrium x∞ with f ′(x∞)> 0 is unstable.

Actually, this result can be proved by an examination of the direction field with-
out making use of the linearization. We introduce the linearization approach here
because it is essential for the generalizations of Theorem 1.1 in later chapters.

We have already mentioned the logistic model, with r(x) = r
(
1− x/K

)
, as an

example. Other examples that have been used in population models include

r(x) = r log
K
x
, [Gompertz (1825)]

r(x) =
r(K − x)
K +ax

, [F. Smith (1963)]

r(x) = r
(

1−
( x

K

)θ
)
, [Ayala, Gilpin, and Ehrenfeld (1973)]

r(x) = re1−x/K −d. [Nisbet and Gurney (1982)]

In using a model of this type to study a population problem one would assume a
particular form for r(x), conduct experiments, and fit the resulting data to this form
to estimate the parameters of the model, and then compare other observations with
the predictions of the model to judge its validity.

Every autonomous differential equation of the form x′ = f (x) or x′ = xr(x) has
separable variables and thus can in principle be solved by integration. The reader
should observe that for each of the above examples, the necessary integration is
sufficiently complicated to make a qualitative approach attractive.

If in the model
x′ = xr(x) (1.18)

the function r(x) is nonnegative and decreasing for 0 ≤ x ≤ K, then it is said to be
a compensation model. If the per capita growth rate r(x) is increasing for small x,
the model is said to be a depensation model. If the per capita growth rate is actually
negative for small x, then the model is said to be a critical depensation model. While
compensation models are the ones most commonly examined, both depensation and
critical depensation models arise in fishery studies.

A compensation model is characterized by the conditions

r(x)≥ 0, r′(x)≤ 0 for 0 ≤ x ≤ K.

For a depensation model we assume

r(x) ≥ 0, r′′(x)≤ 0 for 0 ≤ x ≤ K,

r′(x) > 0 for 0 < x < K∗,
r′(x) < 0 for K∗ < x < K.
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Thus, r(x) achieves a maximum at K∗, and since

lim
x→0

r(x) = lim
x→0

f (x)/x = f ′(0),

it follows that f ′(0)< r(K∗). Thus, the line joining the origin to the point (K∗, f (K∗))
on the growth curve y = f (x), which has slope r(K∗), lies above the tangent to the
growth curve at the origin. Further, since

f ′(x) = xr′(x)+ r(x), f ′′(x) = xr′′(x)+2r′(x),

we have f ′′(0) = 2r′(0)≥ 0 and

f ′′(K∗) = K∗r′′(K∗)+2r′(K∗) = K∗r′′(K∗)< 0.

This shows that the growth curve has an inflection point to the left of K∗.
For a critical depensation model we assume

f (x)< 0 for 0 < x < K0,

f (x)≥ 0 for K0 ≤ x ≤ K.

Under this assumption it is not difficult to show that the equation x′ = f (x) has
three equilibria–an unstable equilibrium at K0 and asymptotically stable equilibria
at 0 and K. Then if the initial population size is below K0, the population will die
out. As we will see in the next section, in the case of critical depensation hunt-
ing may drive a population to extinction by bringing the population size below the
critical level K0, and this trend to extinction will not be reversed if hunting ceases.
The extinction through hunting of the passenger pigeon in the nineteenth and early
twentieth centuries from an original population of 7 billion may have been an exam-
ple of critical depensation. This property is sometimes called the Allee effect [Allee
(1931)].

In the three cases of compensation, depensation, and critical depensation the
growth curve has the different forms shown in Figure 1.5.

In all of these models we have been assuming tacitly that the function f (x) on the
right side of the differential equation is exact. Any realistic study would recognize
that the model can be at best an approximation, and that instead of x′ = f (x) we
should really be studying a differential equation of the form

dy
dt

= f (y)+h(y),

in which the term h(y) represents the error made in the assumption of the specific
form f (y). It is in the nature of h(y) that it cannot be known explicitly. Thus, instead
of looking for explicit formulas for solutions of y′ = f (y)+h(y), we must be satis-
fied with qualitative information about the solutions for a given class of functions
h(y). It is possible to establish the following result, which justifies our interest in
asymptotically stable equilibria of the model x′ = f (x).
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Fig. 1.5 Growth curves for the cases of compensation, depensation and critical depensation.

Theorem 1.2. Let x∞ be an asymptotically stable equilibrium of x′ = f (x) with
f ′(x∞)< 0. Then

(i) If h(y)/(y− x∞)→ 0 as y → x∞, and if |y(0)− x∞| is sufficiently small, the so-
lution y(t) of y′ = f (y)+h(y) tends to x∞ as t → ∞, i.e., x∞ is an asymptotically
stable equilibrium of y′ = f (y)+h(y).

(ii) If |h(y)| ≤ A for all y and A is sufficiently small, and if |y(0)− x(0)| is suf-
ficiently small, then |y(t)− x(t)| ≤ (KA)/|| f ′(x∞)| for some constant K, i.e.,
solutions of y′ = f (y)+h(y) are close to x∞ for all large t.

The essential content of Theorem 1.2 is that a perturbation h(y) that tends to zero
more rapidly than (y− x∞) as y → x∞ has no effect on the existence and asymptotic
stability of an equilibrium, while a bounded perturbation has at worst a bounded
effect on solutions. Thus conclusions drawn from analysis of the model x′ = f (x)
are valid in a sense for a large class of more refined models.

Although we will not cite Theorem 1.2 or its analogues for difference equa-
tions, differential–difference equations, or systems of differential equations explic-
itly, these are the results that justify our focus on asymptotically stable equilibria of
biological models. The proofs of the theoretical results cited in this section may be
found in books on the qualitative theory of differential equations, [Brauer and Nohel
(1989); Hurewicz (1958); Sánchez (1979); Waltman (1986)].

The description of interacting species will require systems of differential equa-
tions. The use of vector–matrix notation and the methods of linear algebra will make
it possible to develop the theory of equilibria and asymptotic stability in a form anal-
ogous to what we have described here. The central result is the analogue of Theorem
1.1 in its form stated originally–that if all solutions of the linearization at an equi-
librium tend to zero, then the equilibrium is asymptotically stable.
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Exercises

In each of Exercises 1 through 5, find all equilibria and determine which are asymp-
totically stable.

1. x′ = rx
(
1− x/K

)
.

2. x′ = rx log K
x .

3. x′ = rx(K−x)
K+ax .

4. x′ = rx
(

1− ( x
K

)θ
)

(0 < θ < 1).

5. x′ = x
(
re1−x/K −d

)
.

6. a. A population is governed by the differential equation

x′ = x(e3−x −1).

Find all equilibria and determine their stability.
b. A fraction p (0 < p < 1) of the population in part (a) is removed in unit

time, so that the population size is governed by the differential equation

x′ = x(e3−x −1)− px.

For what values of p is there an asymptotically stable positive equilibrium?
7. For which initial values y(0) does the solution y(t) of the differential equation

y′ = y
(
2y− e−y)

approach zero as t → ∞?
8∗. Let the concentration of a substance in a cell be C and the concentration outside

the cell be Γ . Assume that the substance enters the cell by diffusion at a rate
βC. This would give a differential equation

C′ = βC(Γ −C).

Now include an absorption term to give a differential equation

C′ = βC(Γ −C)− C
1+C

,

where β is a constant.

a. Find the equilibria of this model and determine their stability.
b. Compare the behavior of this model as t → ∞ with the behavior of the

model without absorption.

9. For the following equations compute the equilibrium points and analyze their
local stability using linearization.

a. p′(t) = β p(t)(1− p(t))−ep(t), where β and e are positive constants. Con-
sider the cases β/e > 1 and β/e < 1. Sketch a graph of the solution.
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b. p′(t) = ap(t)e−kp(t)/p0 −mp(t), where a, k, m, and p0 are positive con-
stants.

10. Discuss the model

x′ = rx
(

1− x
K

)( x
K0

−1
)
,

where 0 < K0 < K. Find all limits of solutions with x(0)> 0 as t → ∞ and find
the set of initial values corresponding to each limit.

11∗. a. By sketching direction fields determine whether the equilibrium x = 0 of
the differential equation x′ = x3 is asymptotically stable or unstable.

b. By sketching direction fields determine whether the equilibrium x = 0 of
the differential equation x′ =−x3 is asymptotically stable or unstable.

c. Is an equilibrium x∞ of a differential equation x′ = f (x) with f (x∞) = 0,
f ′(x∞) = 0, f ′′(x∞) = 0, f ′′′(x∞)< 0 asymptotically stable or unstable?

12∗. Let g(x) be a function such that g(K) = 0 and g(x) > 0 for 0 < x < K and
suppose 0 < x0 < K.

a. Show that the function x(t) defined implicitly by the relation∫ x(t)

x0

du
ug(u)

= t (1.20)

is a solution of the initial value problem x′ = xg(x), x(0) = x0. [Remark:
This solution is obtained by separation of variables.]

b. Show that the integral on the left side of (1.20) is negative if x(t) < x0
and positive if x(t) > x0, and deduce that the solution of the initial value
problem must satisfy x(t)> x0 for t > 0.

c. Show that as t → ∞, the integral on the left side of (1.20) becomes un-
bounded. Deduce that g

(
x(t)

)→ 0, hence x(t)→ K.

13∗. Populations of the North American spruce budworm have been modeled as-
suming that in the absence of predation the population would follow the logis-
tic equation but that the population is subject to predation by birds [Ludwig,
Jones, and Holling (1978)]. The resulting model is

x′ = xp(x)− xq(x)

with
p(x) = r

(
1− x

K

)
, q(x) =

cx
x2 +A2 .

a. Show that for a differential equation x′ = xp(x)− xq(x), the equilibrium
x= 0 is asymptotically stable if p(0)< q(0) and that an equilibrium x∞ > 0
is asymptotically stable if p′(x∞)< q′(x∞).

b. By sketching the graphs of p(x) and q(x) for different values of r show
that the system has either one positive equilibrium that is asymptotically
stable, or three positive equilibria of which two are asymptotically stable
and one is unstable. [You may ignore the value of r for which equilibria
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coalesce and there is a transition between one and three equilibria. It will
be convenient to use a computer algebra system for making these sketches.]

14∗. For the differential equation
x′ = f (x)

with f (0) = 0, f (x) < 0 (0 < x < K0), f (K0) = 0, f (x) > 0 (K0 < x < K),
f (K) = 0, f (x)< 0 (x > K) (critical depensation), show that the equilibria at 0
and K are asymptotically stable and that the equilibrium at K0 is unstable.

15. Imagine a small herd of cows in a field of modest size. The following example
shows how the initial condition (the state of the field) might affect the final
outcome. R.M. May (1974) developed a theoretical model to describe the dy-
namics of the amount of vegetation V :

dV
dt

= G(V )−Hc(V ), (1.21)

where G(V ) = rV (1−V/K) describes the growth of vegetation, r and K are
positive constants; c(V ) = βV 2/

(
V 2

0 +V 2
)

is the consumption of vegetation
per cow, β and V0 are constants; H is the number of cows in the herd.
Choose r = 1/3, K = 25, β = 0.1, and V0 = 3.

(1) Graph the functions G(V ) and Hc(V ) for different herd sizes: H = 10,20,30.
What conclusions can you draw by examining these graphs?

(2) For the same parameter values as in part (a), graph dV/dt versus V . Use
these graphs to determine all possible steady states of (1.21) and their sta-
bility for each value of H.

1.5 Harvesting in Population Models

We wish to study the effect on a population model of the removal of members of the
population at a specified rate. If a population modeled by a differential equation

x′ = f (x)

is subject to a harvest at a rate of h(t) members per unit time for some given function
h(t) then the harvested population is modeled by the differential equation

x′ = f (x)−h(t).

1.5.1 Constant-Yield Harvesting

If the function h(t) is a constant H, so that members are removed at the constant
rate of H per unit time the model is
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x′ = f (x)−H.

This type of harvesting is called constant-rate or constant yield harvesting. It arises
when a quota is specified (for example, through permits, as in deer hunting seasons
in many states, or by agreement as sometimes occurs in whaling).

If the population is governed by a logistic equation, the model with harvesting is

dx
dt

= rx
(

1− x
K

)
−H, (1.22)

and equilibria of (1.22) may be found by solving the quadratic equation rx
(
1 −

x/K
)−H = 0, or x2 −Kx+KH/r = 0. There are two equilibria,

xL =
K −

√
K2 − 4HK

r

2
, and xU =

K +
√

K2 − 4HK
r

2
,

provided K2 − 4HK/r ≥ 0, or H ≤ rK/4. If H > rK/4, both roots are complex,
x′(t)< 0 for all x, and every solution crashes, hitting zero in finite time. If a solution
reaches zero in finite time, we consider the system to have collapsed. If 0 ≤ H <
rK/4, there are two equilibria: xL, which increases from 0 to K/2 as H increases
from 0 to rK/4, and xU , which decreases from K to K/2 as H increases. The stability
of an equilibrium x∞ of x′ = F(x)−H requires F ′(x∞) < 0, which for the logistic
model means x∞ >K/2. Thus, xL is always unstable and xU is always asymptotically
stable. When H increases to the critical value Hc = rK/4, there is a discontinuity in
the behavior of the system–the two equilibria coalesce and annihilate each other. For
H <Hc the population size tends to an equilibrium size that approaches K/2 as H →
Hc (provided the initial population size is at least xL), but for H > Hc the population
size reaches zero in finite time for all initial population sizes (Figure 1.6). Such a
discontinuity is called a (mathematical) catastrophe; the biological implications are
catastrophic to the species being modeled [Brauer and Sánchez (1975)].

Fig. 1.6 Behavior of solutions subject to constant-yield harvesting.

For a general model x′ = f (x)−H equilibria are found by solving f (x)−H = 0,
that is, by finding values x∞ of x for which the growth curve y = f (x) and the harvest
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curve y = H (a horizontal line) intersect. An equilibrium x∞ is asymptotically stable
if
(

f (x)−H
)′

x=x∞
= f ′(x∞) < 0, that is, if at such an intersection the growth curve

crosses the harvest curve from above to below as x increases (Figure 1.7).

Fig. 1.7 Intersections of the growth curve with the line of constant-yield harvesting.

From Figure 1.7 it is clear that if H > max f (x), there is no equilibrium, and the
critical harvest rate Hc at which two equilibria coalesce and disappear is max f (x).

1.5.2 Constant-Effort Harvesting

If the function h(t) is a linear function of population size h(t) = Ex(t), the model is

x′ = f (x)−Ex.

This type of harvesting is called proportional or constant-effort harvesting. It arises
in the modeling of fisheries, where it is often assumed that x, the number of fish
caught per unit time, is proportional to E, the effort expended in fishing. This fishing
effort may be measured, for example, by the number of boats fishing at a given time.
The assumption that the catch is proportional to effort may be questioned on the
grounds that more effort per fish caught may be necessary if the fish population is
very small, but it appears to be a reasonable hypothesis for many actual fisheries.

If the population is governed by a logistic model, the harvested model is

dx
dt

= rx
(

1− x
K

)
−Ex,

and there are two equilibria, one at x = 0 and one obtained by solving r
(
1 −

x/K
)−E = 0, which we denote by x∞(E) = K(r −E)/r, provided 0 ≤ E ≤ r. It

is easy to verify that the equilibrium at x = 0 is unstable and the equilibrium at
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x∞(E) is asymptotically stable for 0 ≤ E ≤ r. As the effort increases from zero
to r, the equilibrium decreases from K to zero. For a given effort E the yield is
Ex∞(E) = KE −KE2/r. This yield attains a maximum value of rK/4 for E = r/2,
with x∞(E) = K/2; increasing the effort beyond r/2 is counterproductive in that it
decreases the yield.

For a general model x′ = f (x)−Ex the equilibria are found by solving f (x)−
Ex = 0, that is by finding values x∞(E) of x for which the growth curve y = f (x)
and the harvest curve y = Ex intersect. An equilibrium is asymptotically stable if(

f (x)−Ex
)′

x=x∞
= f ′(x∞)−E < 0,

that is, if at such an intersection the growth curve crosses the harvest curve from
above to below as x increases. If f (0) = 0, then x = 0 is an equilibrium that is
unstable unless x = 0 is the only equilibrium.

y

y=F(x)

x
u

s

s
x

yy=Emaxx

y=Ex

xoo

y=Ex

y=F(x)

Fig. 1.8 Intersections of the growth curve and the line of constant-effort harvesting.

For a given effort E the yield is Y = Ex∞(E) = F(x∞), and the maximum yield
is maxF(x), obtained with E = Emax chosen so that the line y = Ex passes through
the maximum of F(x).

The yield–effort curve is the graph of yield against effort. In the case of compen-
sation the yield increases as effort increases to a maximum, called the maximum sus-
tainable yield (MSY ), and then decreases continuously to zero, reaching zero when
E = f ′(0). However, in the case of depensation there is a critical effort E∗ = r(K∗)
for which the yield drops to zero discontinuously (Figure 1.9). The same happens
with critical depensation, but in critical depensation there is the additional property
that, if the effort is large enough the population size may fall below K0 and then be
drawn to the asymptotically stable equilibrium at zero.

Exercises

1. A population of sandhill cranes (Grus canadiensis) has been modeled by a lo-
gistic equation with carrying capacity of 194,600 members and intrinsic growth
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Fig. 1.9 Yield effort curve.

rate 0.0987 year−1. Find the critical harvest rate for which constant-yield har-
vesting will drive the population to extinction, and find the equilibrium popu-
lation size under constant-yield harvesting of 3000 birds per year.

2. Suppose a population governed by a Gompertz model

x′ = rx log
K
x

[Gompertz (1825)] is subjected to constant-yield harvesting. Find the critical
harvest rate in terms of the parameters r and K.

3. If the sandhill crane population of Exercise 1 is modeled by a Gompertz equa-
tion with the same carrying capacity and intrinsic growth rate, what would be
the critical harvest rate?

4. Suppose a population governed by a logistic equation with carrying capacity
K, intrinsic growth rate r, and initial size K is subjected to constant-effort har-
vesting. By solving the initial value problem

x′ = rx
(

1− x
K

)
−Ex, x(0) = K,

analytically, determine the population size x(t) and verify that if E ≤ r then

lim
t→∞

x(t) = K
(
1−E/r

)
,

while if E > r,
lim
t→∞

x(t) = 0.

5. Find the maximum sustainable yield for a population governed by a Gompertz
model and subjected to harvesting (either constant-yield or constant-effort).

6. Find the maximum sustainable yield for a population governed by the model

x′ =
rx(K − x)

K +ax

[F.E. Smith (1963)] and subjected to harvesting.
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7. Find the maximum sustainable yield for a population governed by the model

x′ = rxe(1−x/K)−dx

[Nisbet and Gurney (1982)] and subjected to havesting.
8∗. Show that the maximum sustainable yield under constant-effort harvesting is

equal to the maximum yield under constant yield-harvesting.

1.6 Eutrophication of a Lake: A Case Study

A lake is a very complicated ecosystem. A full model for a lake would need to take
into account its dimensions, depth, and temperature, the concentrations of a variety
of organic and inorganic materials in the lake, the kinds and quantities of vegetation
in the lake, and the variety of fish and other animal life in the lake. A lake may
be oligotrophic, a state characterized by low inputs of nutrients and levels of plant
production and relatively clear water. On the other hand, a lake may be eutrophic,
a state characterized by high nutrient input and plant production, murky water, and
toxicity. Avoidance or reversal of eutrophication has benefits, both aesthetic and
commercial.

Ultimately, eutrophication is caused by excessive inputs of nutrients as a by-
product of agriculture, forestry, or urban development. The primary cause of eu-
trophication is usually excessive inputs of phosphorus, mainly due to runoff from
agricultural and urban lands. Phosphorus accumulates in sediment and recycles from
sediment to water, and the phosphorus input from this recycling may be a larger con-
tribution than the phosphorus flow into the lake from outside. We shall describe a
very simple model which displays many of the behaviors observed in real lakes.
This model [Carpenter, Ludwig, and Brock (1999)] focuses on the phosphorus con-
centration in the lake and is given by the single differential equation

d p
dt

= L− sp+ r
pq

mq + pq . (1.23)

Here p is the amount of phosphorus in the water. The rate of input of phosphorus
from the watershed is L. The rate of loss of phosphorus from sedimentation, outflow,
and absorption by consumers or plants is assumed to be proportional to the amount
of phosphorus present and is given by sp. Study of limnological mechanisms suggest
that the recycling rate is a sigmoid

rpq

mq + pq .

Here the exponent q (q ≥ 2) describes the steepness of this function at its inflection
point. The value of q may range from 20 for a shallow warm lake to 2 for a deep
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cold lake. The parameter r is the maximum recycling rate of phosphorus and m is
the concentration of phosphorus at which recycling is half its maximum rate.

An equilibrium of the equation (1.23) is an intersection of the curve

Q = L+ r
pq

mq + pq , (1.24)

representing phosphorus input and the line

Q = sp, (1.25)

representing phosphorus outflow. Because the line (1.25) starts at zero when p = 0
and is unbounded while the curve (1.24) has a nonnegative value L when p= 0 and is
bounded as p → ∞, there is at least one equilibrium. There may be as many as three
equilibria. A “typical” situation is that of a small value of L and an oligotrophic
equilibrium; with a large value of L there is a eutrophic equilibrium; and with an
intermediate value of L there are three equilibria: an oligotrophic equilibrium, a
eutrophic equilibrium, and an intermediate unstable equilibrium that separates the
domains of attraction of the other two equilibria.

The challenge of water quality management is to control a lake that is at a eu-
trophic equilibrium and move it to an oligotrophic equilibrium. Sometimes this may
be accomplished by reducing the external phosphorus input. However, in some lakes
reducing external input alone cannot reverse eutrophication due to the amount of re-
cycling. In order to improve the water quality of such a lake additional methods
of intervention to decrease recycling or increase sedimentation would be needed.
Whether such additional methods are feasible depends on the properties of the lake.

We shall consider only what can be accomplished by reducing phosphorus input.
In terms of the model (1.23), we locate equilibria as intersections of the curve (1.24)
and the line (1.25). Decreasing the external phosphorus input corresponds to moving
the curve (1.24) down. In Figure 1.10 there is a eutrophic equilibrium for large L
and an oligotrophic equilibrium for small L, while for intermediate values of L both
equilibria are present.

In order to manage the lake to the oligotrophic equilibrium when both olig-
otrophic and eutrophic equilibria are present it is necessary to bring the phosphorus
concentration below the unstable equilibrium. This may require additional interven-
tion methods. In Figure 1.11 there is an input level for which the eutrophic and
unstable equilibria coalesce and for which line and curve are tangent.

When L is reduced below this critical level only the oligotrophic equilibrium
remains. The equilibrium jumps to this level and the eutrophication of the lake is
reversed. This equilibrium jump is known as hysteresis, and a lake displaying this
property is said to be hysteretic.

The minimum phosphorus input to a lake is determined by factors such as soil
chemistry, and this minimum input may not be low enough to move a hysteretic lake
out of its eutrophic equilibrium. Even if a hysteretic lake could be moved to the olig-
otrophic equilibrium, changes in conditions may increase the minimum attainable
phosphorus input and lead to eutrophication.
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Fig. 1.10 Two eutrophic equilibria.

Fig. 1.11 Coalescence of eutrophic equilibria.

A hysteretic lake that is at its oligotropic equilibrium, if disturbed by a large in-
put of phosphorus (even a single input and not a change in the normal input), may
be moved to a state that is in the domain of attraction of the eutrophic equilibrium.
Thus, it may switch rather rapidly from an oligotrophic state to a eutrophic state, and
this switch may be quite difficult to reverse. Sudden shifts in the state of an ecosys-
tem can lead to severe consequences. One much-studied example is the collapse of
a fishery due to a shift that does not appear to influence the fishery.

If the slope of the line (1.25) is greater than the maximum slope of the curve
(1.24) the system (1.23) has only an oligotrophic equilibrium (Figure 1.12). In this
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case the lake resists eutrophication, and a large input of phosphorus can be absorbed
without significant harm. Such a lake is said to be reversible.

Fig. 1.12

On the other hand, it is possible that even for the minimum possible phosphorus
input the line (1.25) is below the curve (1.24) for small p, and the system (1.23) has
only a eutrophic equilibrium (Figure 1.13). Such a lake is said to be irreversible;
it is not possible to bring it to an oligotrophic equilibrium by reducing the input of
phosphorus.

Fig. 1.13 No oligotrophic equilihbrium.
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Roughly speaking, a lake is reversible if the slope s of the line (1.25), represent-
ing the rate of loss of phosphorus, is sufficently large. If s is sufficiently small, a
lake is irreversible, and intermediate values of s correspond to hysteretic lakes. The
classification of a lake will depend both on s and on the minimum achievable input
L.

One of the most studied lakes in the world is Lake Mendota, which abuts the
campus of the University of Wisconsin–Madison. Detailed measurements of phos-
phorus input and phosphorus mass have been recorded there for more than 20 years,
and estimates have been made of the parameters s, r, m, and q in equation (1.23)
[Carpenter, Brock, and Ludwig(1999)], namely

s = 0.817/year, (1.26)
r = 731,000 kg/year,

m = 116,000 kg,
q = 7.88

Unfortunately, there is a great deal of uncertainty in these estimates, with a 100-
fold range for m and a 10-fold range for r. This means that an estimate of the state
of the lake based on these parameters and the model (1.23) ranges from reversible to
irreversible. Thus, even with this much experimental data there is much uncertainty
about the lake’s potential response to management.

Let us imagine that the parameter values given by (1.26) are correct and then use
the model (1.23) to analyze the state of the lake. It is convenient to rescale the model
by setting

p = mx

to give

m
dx
dt

= L− smx+ r
mqxq

mq +mqxq = L− smx+ r
xq

1+ xq .

The equilibrium condition becomes

L− smx+ r
xq

1+ xq = 0.

We set
L = ra, s =

rb
m
,

to make the equilibrium condition

a+
xq

1+ xq = bx. (1.27)

Thus, we attempt to determine the state of the lake by finding the intersections of
the curve y = a+ xq/(1+ xq) and the line y = bx.

The model to which we have reduced (1.23) is
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x′ =
r
m

(
a−bx+

xq

1+ xq

)
. (1.28)

The rate r/m affects the dynamics of the system, particularly the rate of approach
to equilibrium but not the location or stability of equilibria. Equilibria depend on the
three dimensionless parameters a, b, q. We may think of b and q as properties of the
lake being studied (although some management methods may be able to change b)
and a as a control parameter. We should note that uncertainty in the measurement of
r and m translates into even greater uncertainty in the value of their ratio and thus
into the value of b.

If we use the parameter values for Lake Mendota given by (1.26), we obtain b =
0.130. The minimum feasible phosphorus input rate is 3800 kg/year, corresponding
to a value a = 3800/731,000 = 0.0052. With these values of a and b, and q = 7.88,
we may plot the curve y = a+ xq/(1+ xq) and the line y = bx using a computer
algebra system such as Maple or Mathematica to see that there are three equilibria.
If is helpful to zoom in on the portion of the graphs for small x to identify the
oligotrophic and unstable equilibria, as well as the overall structure (Figures 1.14,
1.15).

Fig. 1.14 Lake Mendota.

We may estimate these equilibrium values as 0.04, 0.75, and 7.73. These corre-
spond to phosphorus values of 4640 kg (oligotrophic equilibrium), 87,000 kg (un-
stable equilibrium), and 897,000 kg (eutrophic equilibrium), respectively. The lake
is currently at an equilibrium of 57,000 kg, which corresponds to x = 0.49. This is
less than the unstable equilibrium of the system with minimum phosphorus input,
and thus it is in the domain of attraction of the oligotrophic equilibrium. This indi-
cates that the lake is hysteretic, but could be moved to an oligotrophic equilibrium.
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Fig. 1.15 Lake Mendota closeup.

However, in the real world of substantial uncertanty about parameter values (not to
mention model simplifications) it is not possible to draw an unequivocal conclusion.

Activities such as agriculture, forestry, and urban development that produce ex-
cessive nutrient inputs into a lake and lead to eutrophication have direct economic
benefits. There is a tradeoff between these benefits and the costs from damage to the
lake. The various interested groups, including farmers, foresters, developers, and en-
vironmental activists, are likely to have different estimates of the overall profits and
losses of an activity. For each estimate one could formulate an economic optimiza-
tion model, but there are also political questions involved in the decision of which
model to use. As with any political question there are substantial opportunities for
misunderstanding or misinterpretation of models and data.

Exercises

1. Suppose the values of s, r, and m obtained for Lake Mendota are correct, but a
huge error has been made in the estimate of q, so that actually q = 2. What is
the state of the lake and can it be brought to an oligotrophic equilibrium?

2. Suppose the values of s and q obtained for Lake Mendota are correct but the
actual values of m and r are m = 100,000 kg and r = 800,000 kg/year. What is
the state of the lake and can it be saved?

3. Suppose the parameter values obtained for Lake Mendota are correct. A devel-
oper makes a one-time dump of 40,000 kg of phosphorus. What is the effect on
the lake?
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4. Suppose the parameter values obtained for Lake Mendota are correct. A new
development raises the minimum phosphorus input to 8000 kg per year. What
is the effect on the lake?

1.7 Appendix: Parameters in Biological Systems

A challenge in mathematical biology is to develop models that incorporate param-
eters with biological meaning. Models are used to address specific biological ques-
tions whose “answers” must be provided in biological terms. The exponential distri-
bution plays an important role. In this section its usefulness is illustrated in a variety
of settings.

Consider a death process. Let the constant μ denote the per capita death rate of a
population. Then its dynamics are modeled by the equation

dN(t)
dt

=−μN(t), 0 ≤ μ < ∞, N(0) = N0,

where N(t) denotes the population size at time t. Hence,

N(t)
N0

= e−μt , for t ≥ 0,

that is, e−μt denotes the proportion of individuals who were alive at time t = 0
and who are still alive at time t = t or, in probabilistic language, e−μt denotes the
probability of a person being alive at time t ≥ 0 given that he was alive at time t = 0.

Consequently,

F(t) =

{
1− e−μt for t ≥ 0,
0 for t < 0,

gives the proportion of individuals who have died in [0, t), or in probabilistic lingo,
F(t) denotes the probability of dying in the time interval [0, t). F(t) is a probability
distribution, that is, F(t) satisfies the properties

(i) F(t)≥ 0,
(ii) limt→−∞ F(t) = 0,

(iii) limt→∞ F(t) = 1.

In fact F(t) is the exponential cumulative probability distribution or exponential
cumulative distribution function.

Probability distributions are often associated with random variables, that is, vari-
ables that take a value or a set of values with some probability. If we let X denote the
time to death of an individual, then it is reasonable to assume that such a time is a
random event and that X takes on the values [0,∞) with some probability. Therefore
X is a continuous random variable.



1.7 Appendix: Parameters in Biological Systems 39

Modeling the time to death X with an exponential probability distribution is
equivalent to the following probability statement:

Prob[X ≤ t]≡ F(t) =

{
1− e−μt for t ≥ 0,
0 otherwise.

From the above expression we recover the probability density associated with F(t)
after we observe that

Prob[t < X ≤ t +Δ ]≈ F(t +Δ)−F(t)

or, approximately, when Δ is small, that

Prob[t < X ≤ t +Δ ]≈ Δ

(
lim
Δ→0

(
F(t +Δ)−F(t)

Δ

))
= Δ f (t),

where f (t) = dF/dt is the probability density function of X . It satisfies the proper-
ties

(i) f (t)≥ 0,

(ii)
∫ ∞

−∞
f (t) = 1,

(iii) Prob[t < X ≤ t +Δ ] =
∫ t+Δ

t
f (e)de ≈ f (t)Δ .

Therefore, when F(t) denotes the exponential distribution,

f (t) = F ′(t) =

{
μe−μt for t ≥ 0,
0 otherwise,

and
Prob[dying in (t, t +Δ)]≈ μe−μtΔ .

Furthermore, the average time before death, or the life expectancy, is given by the
mean or expected value of X , that is

E[X ]≡
∫ ∞

−∞
t f (t)dt,

where

f (t) =

{
μe−μt for t ≥ 0,
0 otherwise.

Using E[X ] =
∫ ∞

0 te−μtdt, after we integrate by parts we find that

E[X ] =
1
μ
.



40 1 Continuous Population Models

We can do a little more, and Bayes’s theorem is useful in this respect. If A and B
are two probabilistic events then

Prob[A|B] · · ·Prob[B]≡ Prob
[
A∩B

]
,

or in words, “The probability of the event A given that B has occurred times the
probability of the event B equals the probability of the simultaneous occurrence of
A and B”.

If we let B = {X > t}, that is, the event that the time to death is greater than t;
and A = {X ≤ t +Δ}, that is, the event time to death is less than or equal to t +Δ ,
then the probability that one dies before t +Δ given that one was alive at time t is
computed as follows:

Prob[X ≤ t +Δ |X > t] ·Prob[X > t] = Prob[t < X ≤ t +Δ ],

or

Prob[X ≤ t +Δ |X > t] =
Prob[t < X ≤ t +Δ ]

Prob[X > t]
,

or

Prob[X ≤ t +Δ |X > t]≈ f (t)Δ
1−F(t)

.

In the case of the exponential distribution,

Prob[X ≤ t +Δ |X > t]≈ μe−μtΔ
e−μt = μΔ .

We note that Prob[X ≤ t +Δ |X > t] is independent of time and approximately pro-
portional to the length Δ of the time interval. This is why the constant of propor-
tionality μ is referred to as the “probability of dying per unit time”(0 ≤ μ < ∞).

Example 1. In our study of the logistic equation with harvesting we found that

dN
dt

= rN
(

1− N
K

)
−αN.

Hence 1/α is the average time before being harvested, while when N is small com-
pared to K, we have that

dN
dt

≈ rN

with
N(t) = N0ert , 0 ≤ t < t0,

with t0 and N0 sufficiently small. Hence, r denotes the “intrinsic” growth rate, that
is, the per capita growth rate in the absence of (interference) competition.

If we define
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R0 =
r
α

= (intrinsic growth rate)× (average time before death),

then when α = r or R0 = 1, we see that

dN
dt

= − r
K

N2,

dN
N2 = − r

K
dt,∫ N(t)

N0

N−2 dN = − r
K

t,

1
N0

− 1
N(t)

= − r
K

t,

N(t) =
1

1
N0

+ r
K t

→ 0 as t → ∞,

while when R0 �= 1, we have that

dN
dt

= r
(

1− 1
R0

)
N

(
1− N

K
(
1− 1

R0

))

and
N(t)→ K∗ = K

(
1− 1

R0

)
> 0

as t → ∞ when R0 > 1, while N(t)→ 0, the only biological equilibrium, as t → ∞
when R0 ≤ 1.

Consequently, R0 denotes the number of descendants of the initial small (com-
pared to K) population N0 of founders. If R0 > 1, then N(t) grows and establishes
itself at the level K∗ = K∗(R0), while if R0 ≤ 1, then N(t)→ 0, and the population
becomes extinct.

In the epidemiological (SIS) model for the transmission dynamics of gonorrhea
in a homosexually active population (Section 1.3) we concluded that the dynamics
were governed by the single equation

dI
dt

= β I
(

1− I
K

)
−αI,

where β = qφc denoted the transmission coefficient and α the treatment or recovery
rate.

We observe that

R0 =
β
α

= (effective contacts)× (effective infective period).

Hence,

R0 > 1 ⇒ I(t)→ K
(

1− 1
R0

)
> 0 as t → ∞,
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while
R0 ≤ 1 ⇒ I(t)→ 0 as t → ∞.

Hence, if the number of secondary infections (descendents) generated by the small
(when compared to K) initial population of infectives is greater than one, then there
is an epidemic: I(t) grows initially, and the disease establishes itself; in fact, I(t)→
K∗ = K (1−1/R0) as t → ∞, while if R0 ≤ 1, then I(t) → 0 as t → ∞, and the
disease dies out.

Exercises

1. Show that

f (t) =

{
1

b−a for a ≤ t ≤ b,a < b,
0 otherwise,

is a probability density. Compute its mean value and its associated cumulative
distribution.

2. Show that

f (t) =

{
0.005e−0.005t for a ≤ t ≤ ∞,

0 otherwise,

is a probability density. Compute its mean value as well as Prob[X < 5],
Prob[X ≤ 5], Prob[2 < X < 7], Prob[X > 8], and compute its cumulative dis-
tribution. What is Prob[X ≤ 7.001|X > 7]? What is Prob[X ≤ 8|X > 7]?

3. Suppose that a disease has two stages, a low infective stage and a high infective
stage. Suppose that we begin with I1(0) = I0 > 0 individuals at time t = 0 all
in stage 1 and that their disease progression from low to high to no disease is
modeled by

dI1

dt
=−α1I1,

dI2

dt
= α1I1 −α2I2,

where 1/α1 denotes the average time in stage one and 1/α2 denotes the average
time in stage two (before total recovery). What is the average infective period?
What is the probability density associated with the times as infective?

1.8 Project: The Spruce Budworm

The spruce budworm is an insect that lives in the spruce and fir forests of eastern
Canada and the northeastern United States. Normally, the spruce budworm exists in
low numbers in these forests, kept in check by birds. However, every 40 years or
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so there is an outbreak of these pests and their numbers can defoliate and damage
most of the fir trees in a forest in about 4 years. The trees (if they are not killed) can
replace their foliage in about 7 to 10 years and their life span is about 100 to 150
years. The budworms, on the other hand, live for only a few months and can increase
their numbers five-fold in the course of a summer. Also, since the birds do not feed
exclusively on budworms, their numbers are for the most part independent of the
budworm population [Yodzis (1989); Strogatz (1994)]. D. Ludwig, D.D. Jones, and
C.S. Holling (1978) proposed the following model of the forest budworm system:

dN
dt

= RN
(

1− N
K

)
−BP

(
N2

A2 +N2

)
. (1.29)

The first term on the right-hand side is just logistic growth for the spruce budworm
population, N is the density of the budworms. R is the maximum growth rate of the
spruce budworm population, K is the carrying capacity of the forest (here we can
assume that it is directly proportional to the leaf biomass).

The second term is a functional response of the predator birds times the number
of predators P, B is the maximum predation rate of an individual bird (on average),
and A is the budworm population when the predation rate is at half the maximum.

Part 1

1. The forest biomass is directly proportional to K, which in this model is con-
stant. Give a reasonable rationale for this, i.e., what assumptions do you think
Ludwig et al. used to justify this.

2. The predator (bird) population is also taken as a constant. Explain.

Part 2

1. In order to more easily analyze the model we first nondimensionalize it. We can
write without loss of generality the following dynamically equivalent equation:

dx
dt

= rx
(

1− x
k

)
−
(

x2

1+ x2

)
. (1.30)

Notice that we now have to deal with only two parameters. Also, all the pa-
rameters and variables are dimensionless, which means that we have to know
only relative values of things rather than absolute values, which may depend
on the scale of measurement and other factors. What are the appropriate trans-
formations of the variables N and t such that the model has only the two pa-
rameters r and k, and what are r and k in terms of the original parameters
(R,K,A,B, and P)?

2. Interpret in general terms (in the sense of “something relative to something
else”) the rescaled variables x and t and parameters r and k. [Hint: What has
“disappeared” from the functional response?]

Part 3
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1. What is the equilibrium that always exists?
2. Find the other equilibria graphically by plotting on the same graph

f (x) =
x

1+ x2 and g(x) = r
(

1− x
k

)
.

Show one example of each qualitatively different situation. Try 0 < x < 25.
3. Show the stability of the equilibria found in Part (2) by plotting ẋ/x3/4 versus

x/x3/4 and drawing (by hand is OK) arrows along the x-axis showing movement
toward or away from the equilibrium points. (Dividing both the x- and y-axis
by x3/4 will rescale so that the picture is clearer).

4. What is the minimum value of r and the maximum value of k for which it is
impossible to have three nontrivial equilibria? You can find them analytically
or graphically (to two decimal places).

Part 4

1. Below is a plot (Figure 1.16) of the nontrivial equilibria x∗ versus k. Draw a
few vectors for Δx on both sides of the curve. This curve is called a bifurca-
tion curve. A bifurcation is a point in parameter space where equilibria appear,
disappear, or change stability, and the bifurcation curve indicates the parameter
values for which a change may occur.

Fig. 1.16 Spruce budworm model bifurcation curve.

2. Indicate where the curve represents the set of stable and unstable equilibria.
(You should be able to do this using Part (1) without any calculations.)

3. Assume that the population tends to stay at equilibrium but that k (essentially
the amount of leaf biomass) will drift up for low stable x∗ and will drift down
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for high stable x∗. Show what happens to the population over time on the graph
and explain.

Part 5

1. Compute and plot the bifurcation curves for this equation. This can be done
most easily in parametric form with r = r(x) and k = k(x). You can see this
easily by looking at your graph in Part 2. There are two conditions for the
bifurcations,

a. x is at an equilibrium, i.e., dx/dτ = 0 ⇒ f (x) = g(x), and
b. g(x) is tangent to f (x), or (d/dx)g(x) = (d/dx) f (x).

You should get two equations, one for r(x) and the other for k(x), which will
define two separate curves in the (r,k)-plane (remember to restrict the ranges
of r and k to positive values). Plot the curves in the (r,k)-plane and label the
different regions with number of equilibria and whether they are “outbreak’, “
refuge”, or “bistable.”

2. The point where the two curves intersect and disappear is called the cusp. Cal-
culate its coordinates.

1.9 Project: Estimating the Population of the United States.

Table 1.1 in Exercise 3, Section 1.1, gives census data for the United States from
1790 to 1990. In this project, we will explore the question of fitting these data to a
logistic model.

Method I: We may rewrite the solution(1.7) of the logistic model as

K − x
x

=
K − x0

x0
e−rt ,

or taking natural logarithms,

log
K − x

x
= log

K − x0

x0
− rt. (1.31)

Question 1
Derive the relation (1.31) from (1.7)

Thus, if we plot log K−x
x against t, we should obtain a straight line. However, there

is a problem: We do not know the value of K. We may try to avoid this problem by
estimating K by eye from the graph of the data points (t,x). If we obtain similar
curves when we fit the data to a logistic curve for several different values of K,
so that our results are not very sensitive to changes in K, then we may have some
confidence in these results.
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Question 2
For each of the values K = 200,K = 250,K = 300, use the data of Table 1.1 to plot
log K−x

x as a function of t.

Question 3
For each of the values K = 200,K = 250,K = 300, use the method of least squares
(Exercise 3, Section1.1) to estimate the slope −r and the intercept log K−x0

x0
.

Question 4
For each of the values K = 200,K = 250,K = 300, use the results obtained in Ques-
tion 3 to give a function describing the population size, and use this function to
predict the result of the year 2000 census.

Method II: From the logistic model, we have

x′

x
= r

(
1− x

K

)
,

Thus if we plot x′(t)
x(t) as a function of x, we should obtain a straight line with x− inter-

cept K and slope −r
K . The problem here is that our data describe x, not x′. However,

we can use the data to estimate x′. If xi and xi+1 are two consecutive measurements
taken with a time interval h, we may approximate x′i by xi+1−xi

h . Actually, the approx-
imation xi+1−xi−1

2h is an approximation to x′i which is significantly more accurate.

Question 5
Use the data of Table 1.1 to estimate x′i and then plot x′i

xi
against xi.

Question 6
Use the method of least squares to estimate r and K, and use your result to predict
the result of the year 2000 census.

In Question 6 you should find that the data points lie quite close to your straight
line up to 1940 but not for 1950 and later.

Question 7
Using only the data from 1950 on, estimate x′i and plot x′i

xi
against xi. Then use the

method of least squares to estimate r and K, and use your result to predict the result
of the year 2000 census.

Question 8
What reasons might there be for the apparent jump in carrying capacity between
1940 and 1950?

Over the past 150 years, immigration to the United States has varied considerably
from year to year but has averaged more than 150,000 per year. The logistic model
does not include any immigration.
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Question 9
Suggest a modification of the logistic model that would include immigration. What
would you expect to be the effect of this modification on the estimate of carrying
capacity that would be obtained using the same data?

Question 10
Taking into account all that you have done in this project, what is your best guess
for the result of the year 2000 census?



Chapter 2

Discrete Population Models

2.1 Introduction: Linear Models

In this chapter we shall consider populations with a fixed interval between gener-
ations or possibly a fixed interval between measurements. Thus, we shall describe
population size by a sequence {xn}, with x0 denoting the initial population size, x1
the population size at the next generation (at time t1), x2 the population size at the
second generation (at time t2), and so on. The underlying assumption will always be
that population size at each stage is determined by the population sizes in past gen-
erations, but that intermediate population sizes between generations are not needed.
Usually the time interval between generations is taken to be a constant.

For example, suppose the population changes only through births and deaths, so
that xn+1 − xn is the number of births minus the number of deaths over the time
interval from tn to tn+1. Suppose further that the birth and death rates are constants
b and d, respectively (that is, if the population size is x then there are bx births and
dx deaths in that generation). Then

xn+1 − xn = (b−d)xn,

or
xn+1 = xn +(b−d)xn = (1+b−d)xn.

We let r = 1+b−d and obtain the linear homogeneous difference equation

xn+1 = rxn.

This together with the prescribed initial population size x0 determines the population
size in each generation. By a solution of the difference equation xn+1 = rxn with
initial value x0 we mean a sequence {xn} such that xn+1 = rxn for n = 0,1,2, . . .,
with x0 as prescribed.

It is easy to solve the difference equation xn+1 = rxn algebraically. We begin by
observing that x1 = rx0, x2 = rx1 = r2x0, x3 = rx2 = r3x0, and then we guess (and
prove by induction) that the unique solution is xn = rnx0 (n = 0,1,2, . . .). It follows

, .  and 
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that if |r|< 1, then xn → 0 as n → ∞, while if |r|> 1, then xn grows unboundedly as
n→∞. More precisely, if 0≤ r < 1, xn decreases monotonically to zero; if −1< r <
0, xn oscillates, alternating between positive and negative values, but tends to zero;
if r > 1, xn increases to +∞; if r < −1,xn oscillates unboundedly. Negative values
of xn for this difference equation have no biological meaning, but we soon will
consider difference equations in which the unknown is a deviation from equilibrium
(which may be either positive or negative) rather than a population size. For this
reason we have used the difference equation xn+1 = rxn as our first example, even
though a more plausible model for a real population might be

xn+1 =

{
rxn for xn > 0,
0 for xn ≤ 0,

which says that the population becomes extinct once it becomes zero in any gener-
ation. This will occur if and only if r ≤ 0. The model xn+1 = rxn also arises under
the assumption that all members of each generation die, but there is a constant birth
rate b to form the next generation. In this case d = 1, so that r = b. We may form
a different model by allowing migration and assuming a constant migration rate
β per generation, with positive β denoting immigration and negative β denoting
emigration. This leads to the linear inhomogeneous difference equation

xn+1 = rxn +β ,

which may also be solved iteratively,

x1 = rx0 +β ,

x2 = rx1 +β = r(rx0 +β )+β = r2x0 + rβ +β ,

x3 = rx2 +β = r(r2x0 + rβ +β )+β = r3x0 + r2β + rβ +β
...

Again we may guess, and then prove by induction, that

xn = rnx0 +β (rn−1 + rn−2 + . . .+ r+1)

= rnx0 +
β (1− rn)

1− r
=
(

x0 − β
1− r

)
rn +

β
1− r

.

If r > 1, then xn grows unboundedly for β > −(r − 1)x0, but xn reaches zero
if β < −(r − 1)x0; thus sufficiently large emigration will wipe out a population
that would otherwise grow unboundedly. If 0 < r < 1, then xn tends to the limit
β/(1− r) > 0 for β > 0, while xn reaches zero for β < 0. Thus, immigration may
produce survival of a population that would otherwise become extinct.

The assumption of a constant growth rate independent of population size is un-
likely to be reasonable for real populations except possibly while the population size
is small enough not to be subject to the effects of overcrowding. Various nonlinear
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difference equation models have been proposed as more realistic. For example, the
difference equations

xn+1 =
rxn

xn +A
[Verhulst (1845)]

and

xn+1 =
rx2

n

x2
n +A

have been suggested as descriptions of populations that die out completely in each
generation and have birth rates that saturate for large population sizes. The differ-
ence equations

xn+1 = xn + rxn

(
1− xn

K

)
and xn+1 = rxn

(
1− xn

K

)
,

both called the logistic difference equation, and essentially equivalent, describe pop-
ulations with growth rates that decrease to zero as the population grows large. Nei-
ther should be taken too seriously for large population sizes since xn+1 becomes
negative if xn is too large. Another form, which could with some justification also
be called the logistic equation, is

xn+1 = xner
(

1−xn/K
)
.

Here the growth rate decreases to zero as xn → ∞, but xn+1 cannot become negative.
Other difference equations, which have in fact been used as models to try to fit field
data, are

xx+1 = rxn(1+αxn)
−β [Hassell (1975)]

and

xn+1 =

{
rεβ x1−β

n for xn > ε
rxn for xn < ε.

It should be recognized that none of these models is derived from actual population
growth laws. Rather, they are attempts to give quantitative expression to rough qual-
itative ideas about the biological laws governing the population. For this reason, we
should be skeptical of the biological significance of any deduction from a specific
model that holds only for that model. Our goal should be to formulate principles
that are robust, that is, valid for a large class of models (ideally for all models that
embody some set of qualitative hypotheses). In Section 2.5 we will describe some
difference equation models that have been used to model fish populations and that
are based on biological assumptions. Such models give some insight into the types
of qualitative hypotheses that may be realistic.
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Exercises

1. Find the solution of the difference equation xn+1 =
1
2 xn, x0 = 2.

2. Find the solution of the difference equation xn+1 =
1
2 xn +1, x0 = 2.

3. Find by calculating recursively the solution of the second-order difference
equation xn+2 =

1
2 xn, x0 = 1, x1 =−1.

4. Consider the second order difference equation

xn+2 −3xn+1 +2xn = 0.

a. Show that the general solution to the equation is of the form

xn = A1 +2nA2,

where A1 and A2 are any constants.
b. Suppose that x0 and x1 are given. Then A1 and A2 must satisfy the system

of equations

A1 +A2 = x0,

A1 +2A2 = x1.

c. From the general solution, solve for the specific solution with initial con-
ditions x0 = 10 and x1 = 20.

5. Find by calculating recursively the solution of the second-order difference
equation xn+2 = rxn, x0 = 1, x1 =−1.

6. Find the general form of the solution of the difference equation

xn+1 = c− xn

with c arbitrary for an arbitrary initial value x0 = a.
7. Consider the model

xn+1 = rxn

(
1− xn

K

)
, r > 0.

a. Show that xn+1 < 0 if and only if xn > K.
b. Show that xn+1 > K is possible with 0 < xn < K only for r > 4.
c. What conditions on x0 are necessary and sufficient to guarantee xn > 0 for

n = 1,2,3, . . .?

8. Find the general form of the solution of the difference equation

xn+1 = 1− xn

for an arbitrary initial value x0 = a.
9∗. The solution of the difference equation xn+2 = xn + xn+1, x0 = 0, x1 = 1 is

called the Fibonacci sequence (originally formulated by Leonardo Fibonacci
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(1202) to describe the number of pairs of rabbits under the hypothesis that
each pair of rabbits reproduces only at age one month and age two months and
produces exactly one pair of offspring on each of these two occasions, with all
rabbits living exactly two months).

a. Calculate the first eight terms of the Fibonacci sequence.
b. Suppose it can be shown that the ratio of successive terms xn+1/xn of the

Fibonacci sequence tends to a limit τ as n → ∞. Show that τ = 1
τ +1.

c. Deduce that τ = 1+
√

5
2 .

10∗. For a general, not necessarily linear, first-order difference equation

xn+1 = f (xn),

show that if a solution {xn} approaches a limit x∞ as n → ∞, then the limit x∞
must satisfy the equation

x∞ = f (x∞).

2.2 Graphical Solution of Difference Equations

There is a way of solving difference equations graphically, called the cobwebbing
method, which we illustrate for the simple linear homogeneous example xn+1 = rxn.
We begin by drawing the reproduction curve y = rx in the (x,y)-plane. Then we
mark x0, go vertically to the reproduction curve, and from there horizontally to the
line y = x at the point (x1,x1). Then we go vertically to the reproduction curve and
from there horizontally to the line y= x at the point (x2,x2), and so on. There are four
separate cases: r > 1, 0 < r < 1, −1 < r < 0, and r <−1, corresponding to different
relative positions of the reproduction curve y = rx and the line y = x. In each case,
the graphical solution illustrates the behavior already obtained analytically (Figure
2.1).

The cobwebbing method can be applied to any difference equation of the form
xn+1 = f (xn) using the reproduction curve y = f (x) and the line y = x; it gives
information about the behavior of solutions. This is particularly useful for difference
equations whose analytic solution is complicated. We give two more illustrative
examples.

Example 1. (Verhulst equation) For the equation

xn+1 =
rxn

xn +A
,

the reproduction curve is y = rx/(x+A). Its slope is given by dy/dx = rA/(x+A)2,
which has the value r/A at x = 0. This means that we must distinguish the cases
r < A, for which the line y = x lies below the reproduction curve, and r > A, for
which the line y = x intersects the reproduction curve (Figure 2.2).
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Fig. 2.1 Cobwebbing for a linear difference equation.

Fig. 2.2 Cobwebbing for the Verhulst equation

If r > A, every solution, regardless of the initial value x0, tends to the limit x∞ =
r−A where the line y = x and the reproduction curve y = rx/(x+A) intersect. If
r < A, every solution tends to the limit zero.

Example 2. For the equation

xn+1 =
rx2

n

x2
n +A

,

the reproduction curve is y = rx2/(x2 +A), which intersects the line y = x at x = 0
and at x = (r±√

r2 −4A)/2. Thus for r > 2
√

A there are three real intersections,
and for r < 2

√
A the only real intersection is at x = 0 (Figure 2.3).

If r > 2
√

A, all solutions with x0 < (r−√
r2 −4A)/2 tend to zero, and solutions

with x0 > (r−√
r2 −4A)/2 tend to the limit x∞ = (r+

√
r2 −4A)/2. If r < 2

√
A,
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Fig. 2.3 Cobwebbing for model with Allee effect.

all solutions tend to the limit zero. This model attempts to describe populations that
collapse if their initial size is too small but survive if their initial size is large enough.
This is analogous to the critical depensation model, or Allee effect , described for
continuous population models in Section 1.4.

Exercises

1. Use the cobwebbing method to sketch the first few terms of the solution of

xn+1 = xn + xn(1− xn), x0 =
1
2
.

2. Use the cobwebbing method to sketch the first few terms of the solution of

xn+1 = xn +2.2xn(1− xn), x0 =
1
2
.

3. Use the cobwebbing method to sketch the first few terms of the solution of

xn+1 = xn +3xn(1− xn), x0 =
1
2
.

4. Consider the difference equation

xn+1 =

{
x1/2

n for xn >
1
4 ,

2xn for xn <
1
4 .

Sketch the solutions for several different choices of x0 between zero and one.
5. [Kaplan & Glass (1995)] Assume that the density of flies in a swamp is de-

scribed by the equation
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xn+1 = Rxn − R
2000

x2
n.

Consider three values of R, where one value of R comes from each of the fol-
lowing ranges:
(1) 1 ≤ R < 3,
(2) 3 ≤ R < 3.449,
(3) 3.57 ≤ R < 4.
For each value of R graph xn+1 as a function of xn. Using the cobwebbing
method, follow xn for several generations. Describe the qualitative behavior
found for R = 2.

2.3 Equilibrium Analysis

In the examples of the preceeding section we observed a tendency for solutions to
approach a limit that is the x-coordinate of an intersection of the reproduction curve
and the line y = x. Such a value of x is a constant solution of the difference equation.
This motivates the following definition of equilibrium of a difference equation:

xn+1 = f (xn). (2.1)

Definition 2.1. An equilibrium of a difference equation (2.1) is a value x∞ such that
x∞ = f (x∞), so that xn = x∞ (n = 0,1,2, . . .) is a constant solution of the difference
equation.

In order to describe the behavior of solutions near an equilibrium, we introduce
the process of linearization just as we did in Section 1.4 for first-order differential
equations. If x∞ is an equilibrium of the difference equation xn+1 = f (xn), so that
x∞ = f (x∞), we make the change of variable un = xn − x∞ (n = 0,1,2, . . .). Thus un
represents deviation from the equilibrium value. Substitution gives

x∞ +un+1 = f (x∞ +un),

and application of Taylor’s theorem gives

x∞ +un+1 = f (x∞ +un) = f (x∞)+ f ′(x∞)un +
f ′′(cn)

2!
u2

n

for some cn between x∞ and x∞+un. We write h(un) = f ′′(cn)u2
n/2! and use the rela-

tion x∞ = f (x∞) to form the difference equation equivalent to the original difference
equation (2.1),

un+1 = f ′(x∞)un +h(un). (2.2)

The function h(u) is small for u, small in the sense that
∣∣h(u)/u

∣∣→ 0 as |u| → 0;
more precisely, for every ε > 0 there exists δ > 0 such that |h(u)|< ε|u| whenever
|u|< δ . The linearization of the difference equation xn+1 = f (xn) at the equilibrium
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x∞ is defined to be the linear homogeneous difference equation

vn+1 = f ′(x∞)vn, (2.3)

obtained by neglecting the higher-order term h(un) in (2.2). The importance of the
linearization lies in the fact that the behavior of its solutions describes the behavior
of solutions of the original equation (2.1) near the equilibrium. The behavior of
solutions of the linearization has been described completely in Section 2.1. The
following result explains the significance of the linearization at an equilibrium.

Theorem 2.1. If all solutions of the linearization (2.3) at an equilibrium x∞ tend to
zero as n → ∞, then all solutions of (2.1) with x0 sufficiently close to x∞ tend to the
equilibrium x∞ as n → ∞.

Proof. For convenience we write ρ = | f ′(x∞)|. The assumption that all solutions
of the linearization tend to zero is equivalent to ρ < 1. Now choose ε > 0 so that
ρ +ε < 1. The difference equation xn+1 = f (xn) is equivalent to un+1 = f ′(x∞)un +
h(un). Then

|un+1| ≤ | f ′(x∞)||un|+ |h(un)|< ρ|un|+ ε|un|
provided |un| < δ , where δ is determined by the condition that |h(u)| < ε|u| for
|u|< δ . Thus, |un+1| ≤ (ρ +ε)|un| provided |un|< δ . If |u0|< δ , it is easy to show
by induction that |un+1|< δ for n = 0,1,2, . . . . This establishes |un+1| ≤ (ρ +ε)|un|
for n = 0,1,2, . . . . Now it is easy to show, again by induction, that

|un| ≤ (ρ + ε)n|u0|, n = 0,1,2, . . . .

Since ρ + ε < 1, it follows that un → 0, and thus that xn → x∞ as n → ∞.

In Section 2.1 we observed that if | f ′(x∞)| < 1, then the solutions of vn+1 =
f ′(x∞)vn all tend to zero, and further that this approach is monotone if 0 < f ′(x∞)<
1 and oscillatory if −1 < f ′(x∞) < 0. It is possible to refine Theorem 2.1 to show
that the approach to an equilibrium x∞ of xn+1 = f (xn) is monotone if 0< f ′(x∞)< 1
and oscillatory if −1 < f ′(x∞)< 0. That this is true is suggested by the cobwebbing
method (Figure 2.4).

Fig. 2.4 Stability of equilibrium.
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The content of Theorem 2.1 is that an equilibrium x∞ with | f ′(x∞)| < 1 has the
property that every solution with x0 close enough to x∞ remains close to x∞ and
tends to x∞ as n → ∞. This property is called asymptotic stability of the equilibrium
x∞. The condition f ′(x∞) < 1 means that the curve y = f (x) crosses the line y = x
from above to below as x increases, while the condition f ′(x∞)>−1 means that the
curve y= f (x) cannot be too steep at the crossing. If | f ′(x∞)|> 1, it is not difficult to
show that except for the constant solution xn = x∞ (n = 0,1,2, . . .), solutions cannot
remain close to x∞. This property is called instability of the equilibrium x∞. An
unstable equilibrium has no biological significance, since any deviation, however
small, is enough to force solutions away.

We emphasize that Theorem 2.1 applies to solutions whose initial value x0 is
close enough to the equilibrium x∞. This is because the nonlinear term h(un) in
the difference equation un+1 = f ′(x∞)un +h(un) is small enough to have an almost
negligible effect on the solution only near the equilibrium x∞. Theorem 2.1 gives
no explicit method of computing how close to x∞ is close enough for the solution
with a given initial value to tend to x∞. Often this can be seen in practice using
the cobwebbing method of constructing solutions graphically, as we have shown in
Section 2.2. Proofs of the theorems in this section may be found in such books as
[Elaydi (1996)] and [Sandefur(1990)].

Example 1. For the logistic difference equation

xn+1 = xn + rxn

(
1− xn

K

)
with f (x)= (1+r)x−rx2/K and f ′(x)= (1+r)−2rx/K, it is easy to find equilibria
by solving the quadratic equation x = x+ rx

(
1− x/K

)
and obtaining the roots x =

0 and x = K. Since f ′(0) = 1+ r, the equilibrium x = 0 is asymptotically stable
if −1 < 1 + r < 1, or −2 < r < 0. Since r > 0 in applications, this means that
the equilibrium x = 0 is unstable. Since f ′(K) = 1− r, the equilibrium x = K is
asymptotically stable if 0 < r < 2. It is not difficult to show that for 0 < r < 2,
every solution tends to the equilibrium K. If r > 2, the equilibrium x = K is unstable
and there is no asymptotically stable equilibrium to which solutions can tend. In the
following section, we shall explore the behavior of solutions if r > 2 in more detail.

The logistic difference equation is sometimes presented in the form

xn+1 = rxn

(
1− xn

K

)
.

The study of the equation in this form is quite similar to the previous discussion;
there is an equilibrium at x = 0 that is asymptotically stable if r < 1, in which case
every solution tends to zero, and an equilibrium at x = K

(
1−1/r

)
that is asymptot-

ically stable if 1 < r < 3, in which case every solution tends to K
(
1− 1/r

)
, and if

r > 3 there is no asymptotically stable equilibrium.

Example 2. For the Verhulst equation
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xn+1 =
rxn

xn +A
,

we have f (x) = rx/(x+A); f ′(x) = rA/(x+A)2. The solution of x = rx/(x+A)
gives two roots, x = 0 and x = r −A. Thus, if r < A the only equilibrium corre-
sponding to a nonnegative population size is x = 0. Since f ′(0) = r/A < 1, this
equilibrium is asymptotically stable and every solution tends to zero. If r > A there
are two equilibria, x = 0, and x = x∞ = r−A. Since f ′(0) = r/A > 1, the equilib-
rium at x = 0 is unstable. Since f ′(x∞) = A/r < 1, the equilibrium x∞ is asymptot-
ically stable. We have seen in Section 2.2 (graphically) that in fact every solution
approaches x∞, that is, that the equilibrium x∞ is globally asymptotically stable.

Exercises

In Exercises 1 through 9 find each equilibrium of the given difference equation and
determine whether it is asymptotically stable or unstable.

1. xn+1 =
rx2

n
x2

n+A (r and A are nonnegative).

2. xn+1 = xner
(

1−xn/K
)
.

3. xn+1 = rxn(1+αxn)
−β .

4. xn+1 =

{
x1/2

n for xn >
1
4 ,

2xn for xn <
1
4 .

5. xn+1 =
2xn

1+xn
.

6. xn+1 = xn logxn.

7. xn+1 =
(

1
αxb

n

)
(λxn).

8. xn+1 = xn exp(r(1− xn
K )).

9. xn+1 =
λxn

(1+axn)b .

10. a. A population is governed by the difference equation

xn+1 = xne3−xn .

Show that all equilibria are unstable.
b. The population of part (a) is to be stabilized by removing a fraction p

(0 < p < 1) of the population in each time period after all births and deaths
have taken place, to give the model

xn+1 = (1− p)xne3−(1−p)xn .

For what values of p does the population have an asymptotically stable
positive equilibrium?
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11. a. In the Fibonacci equation (see Exercise 9, Section 2.1) xn+2 = xn + xn+1,
make the change of variable un = xn+1/xn and obtain the transformed dif-
ference equation un+1 = 1+1/un.

b. Find all equilibria of the transformed difference equation of part (a) and
determine which are asymptotically stable.

12. a. Find the nonnegative equilibria of a population governed by

xn+1 =
3x2

n

x2
n +2

and check for stability.
b. Suppose a fraction a is removed from the population in each generation, so

that the model becomes

xn+1 =
3x2

n

x2
n +2

−axn.

For what values of a is there a stable equilibrium only at x = 0?
13. [Kaplan & Glass (1995)] The following equation plays a role in the analysis

of nonlinear models of gene and neural networks:

xn+1 =
αxn

1+βxn
,

where α and β are positive numbers and xn ≥ 0.

a. Algebraically determine the fixed points. For each fixed point give the
range of α and β for which it exists, indicate whether the fixed point is
stable or unstable, and state whether the dynamics in the neighborhood of
the fixed point are monotonic or oscillatory. For parts (b) and (c) assume
α = β = 1.

b. Sketch the graph of xn+1 as a function of xn. Graphically iterate the equa-
tion starting from the initial condition x0 = 10. What happens as the num-
ber of iterates approaches ∞?

c. Algebraically determine xn+2 as a function of xn, and xn+3 as a function of
xn. Based on these computations what is the algebraic expression for xn+k
as a function of xn? What is the behavior of xn+k as k → ∞? This should
agree with what you found in part (b).

14. Consider the following pair of difference equations:

xn+1 = f (n,xn),

yn+1 = g(n,yn),

where f and g are nonnegative functions defined on [0,∞). Assume that
f (n,xn)≤ g(n,xn) for each nonnegative integer n and each nonnegative xn and
g(n,y(n)) is nondecreasing with respect to the second argument yn. Prove that
if {xn}n≥0 is a solution of the first equation and {yn}n≥0 is a solution of the
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second equation with x0 ≤ y0 , then xn ≤ yn for all n = 0,1,2,3, . . . .

15. Consider the single-species discrete-time population model

xn+1 = xneβ 1−xn
1+xn

where xn ≥ 0 is the nonnegative population density in generation n, and the pos-
itive constant β is greater than 4. Let {x1,x2} be a 2-cycle of this model, where
x1 > 0, x2 > 0 and x1 �= x2. Decide whether the 2-cycle {x1,x2} is asymptoti-
cally stable. Explain.

2.4 Period-Doubling and Chaotic Behavior

For the logistic difference equation

xn+1 = xn + rxn

(
1− xn

K

)
,

we have seen that the equilibrium x∞ = K is asymptotically stable for 0 < r < 2.
How do solutions behave if r > 2? We may think of r as a parameter that may be
varied, and as r passes through the value 2, there must be a fundamental change in
the behavior of solutions. While there is an equilibrium of K for all r, every solution
tends to this equilibrium if 0< r < 2, but no solution other than the constant solution
xn = K (n = 0,1,2, . . .) tends to this equilibrium if r > 2. What happens when r
increases past 2 is that a solution of period 2 appears. By this we mean that there
are two values, x+ and x−, with f (x+) = x−, f (x−) = x+ such that the alternating
sequence x+,x−,x+, . . . is a solution of the difference equation.

To establish the existence of this periodic solution, we take

f (x) = x+ rx
(

1− x
K

)
= (1+ r)x− r

K
x2

and define

f2(x) = f
(

f (x)
)
= (1+ r) f (x)− r

K

(
f (x)

)2

= (1+ r)2x− r(1+ r)
K

x2 − r
K

(
(1+ r)x− r

K
x2
)2

= (1+ r)2x− r(1+ r)(2+ r)
K

x2 +
2r2

K2 (1+ r)x3 − r3

K3 x4.

We now look for equilibria of the second-order difference equation

xn+2 = f2(xn).
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Such equilibria give solutions of period 2 for the original difference equation xn+1 =
f (xn). These equilibria are solutions of the fourth-degree polynomial equation

x = (1+ r)2x− r(r+1)(r+2)
K

x2 +
2r2(1+ r)

K2 x3 − r3

K3 x4,

giving

x
(

r3
( x

K

)3 −2r2(1+ r)
( x

K

)2
+ r(r+1)(r+2)

( x
K

)
− r(r+2)

)
= 0

or

x
(( x

K

)
−1

)(
r2
( x

K

)2 − r(r+2)
( x

K

)
+(r+2)

)
= 0.

There are four roots, namely x = 0, x = K, and the roots x+,x− of the quadratic
equation r2

(
x/K

)2 − r(r+2)
(
x/K

)
+(r+2) = 0. Thus

x+ =
(r+2)+

√
r2 −4

2r
K, x− =

(r+2)−√
r2 −4

2r
K,

and these roots are real if r ≥ 2. We also have

f (x+) = (1+ r)x+− r
K

x2
+

= (r+1)
r+2

2r
K +(r+1)

√
r2 −4
2r

K

− r
K

K2

4r2

(
(r+2)2 + r2 −4+2(r+2)

√
r2 −4

)
2r
K

f (x+) = (r+1)(r+2)+(r+1)
√

r2 −4

−1
2

(
r2 +4r+4+ r2 −4+2(r+2)

√
r2 −4

)
= (r+2)−

√
r2 −4 =

2r
K

x−.

Thus f (x+) = x− , and since f2(x+) = f
(

f (x+)
)
= x+, we have f (x−) = x+. We

have now shown that if r > 2, there is a periodic solution of period 2 of xn+1 = f (xn)
given by xn = x+ (if n is odd), xn = x− (if n is even).

In order to test the stability of this periodic solution, we must compute f ′2(x+),
which may be done by starting with

f2(x)− x = −rx
(( x

K

)
−1

)(
r2
( x

K

)2 − r(r+2)
( x

K

)
+(r+2)

)
= r

(
x− x2

K

)(
r2
( x

K

)2 − r(r+2)
( x

K

)
+(r+2)

)
.
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Differentiation (using the product rule) gives

f ′2(x)−1 = r
(

1− 2x
K

)(
r2
( x

K

)2 − r(r+2)
( x

K

)
+(r+2)

)
+r

(
x− x2

K

)(
2r

x
K2 − r(r+2)

K

)
.

Since r2
(
x+/K

)2 − r(r+2)
(
x+/K

)
r(r+2) = 0, we have

f ′2(x+)−1 = r
(

x+− x2
+

K

)(
2r

x+
K2 − −r(r+2)

K

)
=

r(r+2)+ r
√

r2 −4
2

(
1− (r+2)+

√
r2 −4

2r

)√
r2 −4

=
1
4

(
(r+2)+

√
r2 −4

)(
(r−2)−

√
r2 −4

)√
r2 −4

= 4− r2.

We now have f ′2(x+) = 5− r2. If we accept the theorem that a constant solution
xn = x̄ (n= 1,2, . . .) of the second-order difference equation xn+2 = f2(xn) is asymp-
totically stable if | f ′2(x̄)|< 1, a theorem analogous to the one established in Section
2.3 for first-order difference equations (which will be described further in Exercises
2 and 3 below), then we see that this periodic solution is asymptotically stable if
−1 < 5− r2 < 1, or 2 < r <

√
6 = 2.449. Thus, if 2 < r < 2.449, there is a solution

of period 2 to which every solution of xn+1 = f (xn) tends.
For r >

√
6, the solution of period 2 is unstable, but it can be shown that a solution

of period 4 appears and that this solution is asymptotically stable if
√

6 < r < 2.544.
When it becomes unstable, a solution of period 8 appears, which is asymptotically
stable for 2.544 < r < 2.564. This period-doubling phenomenon continues until
r = 2.570, when periodic solutions whose periods are not powers of 2 begin to
appear, but these solutions are unstable. In addition, for many values of r > 2.570
solutions are aperiodic , that is, they never settle down to either an equilibrium or a
periodic orbit [Strogatz (1994)]. It is possible to show analytically that a solution of
period 3 appears when r =

√
8= 2.828 [Saha and Strogatz (1995)]. For r >

√
8 there

is a periodic solution of period k for every integer k, but different initial values give
different solutions. There are also solutions whose behavior is apparently random;
such solutions are called chaotic (see Figure 2.5, a bifurcation diagram generated
by a program in (the virtual) Appendix C). The existence of a solution of period 3
implies chaotic behavior [Li and Yorke (1975)].

These facts, whose proofs require a close examination of the properties of contin-
uous functions and fixed points of iterates of continuous functions, are not restricted
to the logistic difference equation. It is a remarkably robust fact that for every differ-
ence equation xn+1 = r f (xn) with f (x) a function increasing to a unique maximum
and then decreasing, the period-doubling phenomenon and the onset of chaos occur.
In fact, if rn is the value of r for which the asymptotically stable solution of period
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Fig. 2.5 Bifurcation diagram

2n appears, then

lim
n→∞

rn+1− rn

rn+2− rn+1
= 4.6692016 . . . ,

the Feigenbaum constant. For the logistic equation, r1 = 2.000, r2 = 2.449, r3 =
2.544, and (r2− r1)/(r3− r2) = 4.73; usually the limiting value is approached very
rapidly. This says that the period-doubling values of r occur closer and closer to-
gether [Feigenbaum (1980)].

From a biological point of view, these results are also remarkable. One interpre-
tation is that even very simple models can produce apparently unpredictable behav-
ior and this suggests the possibility that the governing laws may be relatively simple
and therefore discoverable [May (1976)]. There do appear to be experimental obser-
vations supporting the possibility of chaotic behavior [Gurney, Blythe, and Nisbet
(1980)]. On the other hand, the fact that such simple models lead to unpredictable
results suggests that experimental results and observations may not be repeatable.
This suggests that one should focus on the range of values of r in which the behav-
ior is predictable and in the chaotic ranges look for properties of solutions, such as
upper and lower bounds, that are verifiable.

For models of the form xn+1 = r f (xn) with f (x) a bounded monotone increasing
functions, such as the Verhulst equation

xn+1 =
rxn

xn +A
,

it is easy to verify that since r f (x) is bounded while x is not, there is a largest equi-
librium x∞ at which y = r f (x) crosses the line y = x from above to below. This
implies 0 < r f ′(x∞)< 1, and shows that the equilibrium x∞ is asymptotically stable;
in fact solutions approach x∞ monotonically. Thus, there is no possibility of period-
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doubling or chaotic behavior, or even of stable oscillations. This fact is also robust
in that it is valid for all bounded increasing recruitment functions f (x). The biolog-
ical significance of the difference between recruitment functions that are monotone
increasing and recruitment functions that rise to a maximum and then fall involves
the nature of the intraspecies competition for resources. Recruitment functions with
a maximum correspond to scramble competition, in which resources are divided
among all members and excessive population sizes reduce the survival rate, while
monotone recruitment functions correspond to contest competition, in which some
members obtain enough resources for survival, while others do not and die as a
result. We now have a legitimate example of a biological assumption leading to
qualitative predictions of behavior that might be experimentally observable.

Exercises

1. For what value of r does a solution of period 2 appear for the difference equa-
tion

xn+1 = rxne1−xn?

2. Let {x+,x−} be a solution of period 2 of the difference equation

xn+1 = f (xn).

Show that both x+ and x1 are equilibria of the second-order difference equation

xn+2 = f
(

f (xn)
)
.

3. Define a new index k = n/2 for n even and the iterated function

f2(x) = f
(

f (x)
)
.

Show that x+ and x− from Exercise 2 are equilibria of the first order difference
equation

xk+1 = f2(xk).

[Remark: Exercise 3 together with Theorem 2.1 of Section 2.3 shows that an
equilibrium x∗ of the second order equation xn+2 = f2(xn) is asymptotically
stable if | f ′2(x∗)| < 1. Exercise 8 below gives another stability criterion for
the asymptotic stability of a solution of period 2 of the difference equation
xn+1 = f (xn).]

4. [Kaplan & Glass(1995)] Consider an ecological system described by the finite
difference equation

xn+1 =Cx2
n(2− xn), for 0 ≤ xn ≤ 2,
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where xn is the population density in year n and C is a positive constant that we
assume is equal to 25/16.

a. Sketch the graph of the right hand side of this equation. Indicate the max-
ima, minima, and inflection points.

b. Determine the fixed points of this system.
c. Determine the stability at each fixed point and describe the dynamics in a

neighborhood of the fixed points.
d. In a brief sentence or two describe the expected dynamics starting from

initial values of x0 = 1/3 and also x0 = 1 in the limit as n→∞. In particular,
comment on the possibility that the population may go to extinction or to
chaotic dynamics in the limit n → ∞.

5. [Kaplan and Glass(1995)] The following finite difference equation has been
considered as a mathematical model for a periodically stimulated biological
oscillator [Bélair and Glass (1983)].

φn+1 =

{
6φn −12φ 2

n for 0 ≤ φn < 0.5,
12φ 2

n −18φn +7 for 0.5 ≤ φn ≤ 1.

a. Sketch φn+1 as a function of φn for 0 ≤ φn ≤ 1. Be sure to show all maxima
and minima and compute the values of φn+1 at these extreme points.

b. Compute all fixed points. What are the qualitative dynamics in a neighbor-
hood of each fixed point?

c. If you have done part (a) right, you should be able to find a cycle of period
2. What is this cycle? Show it on your sketch.

6. For the logistic difference equation xn+1 = xn + rxn(1− xn/K) with r > 2,
show that

0 < x− < x∞ < x+ < K.

7∗. a. Let {x+,x−} be a solution of period 2 of the difference equation xn+1 =
f (xn). Use the chain rule of calculus to show that if f2(x) = f

(
f (x)

)
, then

f ′2(x+) =
d
dx

f
(

f (x)
)∣∣∣∣

x=x+
= f ′(x−) f ′(x+).

b. Deduce from part (a) that the solution of period 2 is asymptotically stable
if

| f ′(x−)| · | f ′(x+)|< 1.

8. [Kaplan and Glass (1995)] The finite difference equation

xn+1 = 0.5+α sin(2πxn), 0 ≤ x < 1,

where 0 ≤ α < 0.5, has been used as a mathematical model for periodic stim-
ulation of biological oscillators .
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a. There is one steady state. Determine this steady state and its stability as a
function of α .

b. Sketch xn+1 as a function of xn for α = 0.25. Be sure to indicate all max-
ima, minima, and inflection points.

c. For α = 0.25 there is a stable orbit of priod 2. What is it?

9∗. For what value of r does a solution of period 2 appear for the difference equa-
tion

xn+1 = rxne1−xn?

Hint: Let f (x) be the right-hand side function, i.e., f (x) = rxe1−x. Find the con-
dition for r under which f

(
f (x)

)
has fixed points. If you find that the condition

is r > e, you will find the solution.
10. The population of a species is described by the finite difference equation

xn+1 = axn exp(−xn) for xn ≥ 0,

where a is a positive constant.

a. Determine the fixed points.
b. Evaluate the stability of the fixed points.
c. For what value of a is there a period-doubling bifurcation (using the con-

clusion of the previous exercise).
d. For what values of a will the population become extinct starting from any

initial condition?

11. The objective of this problem is to get you to read and think about some of the
work on difference-equation models in population biology. Read [May (1976)].
Write a summary that deals with critical ideas, methods, and presentation in
that article. The questions you might wish to answer are these:

a. What is the main focus of this article? Is a particular question being ad-
dressed?

b. Do the mathematical models help illuminate the topics? If so, in what
ways?

c. Are there alternative methods or approaches that might have been suitable
for answering the questions the author addressed?

2.5 Discrete–Time Metered Models

In many populations there is a recruitment cycle in which the population size at
each stage is a function of the population size at the previous stage, but the form of
this function is determined by a continuous birth and death process. In this case the
population size is given by a difference equation

xn+1 = f (xn)
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describing what may be called the long-term dynamics of the model. The function
f (x) is constructed from assumptions on births and deaths occurring continuously in
the intervals between stages and incorporates the short-term dynamics of the model.
Such models are called metered models. As difference equations they may be ana-
lyzed by the methods of this chapter. What is new in this section is the use of models
of the type considered in Chapter 1 to establish specific forms for the reproductive
curve y = f (x). In many fish populations there is an annual birth process, with the
number of births depending on the adult population size at the time, followed by a
continuous death rate until the next birth cycle, at which time the survivors make up
the adult population. Such populations lend themselves naturally to metered models.

To describe the general form of a metered model, we let xn be the size of the
adult population at the nth stage. Suppose this parent stock gives rise to Bn young
and the survivors of this class at time T (often one year for fish populations) are
the xn+1 adults at the next stage. More generally, we may assume that there are Rn
surviving recruits of whom Hn are harvested with the remainder Rn −Hn forming
the adult population xn+1 at the next stage. This parent stock xn+1 is often called the
escapement by fishery biologists. This description assumes that none of the adults’
xn parents survive to the next stage, but it is not difficult to relax this restriction. It
also assumes that harvesting occurs just before the reproductive stage.

We shall assume constant fertility, that is, that the number of births Bn is propor-
tional to the number of adults xn, that is,

Bn = αxn.

We also assume that between birth times there is a per capita death rate that is a
function of the number of survivors from the Bn newborn members. This means that
if there are z(t) survivors at time t then there is a function φ(z) (the per capita death
rate) such that

dz
dt

=−zφ(z).

Then the recruitment Rn is the value for t = T of the solution of the initial value
problem

dz
dt

=−zφ(z), z(0) = Bn = αxn. (2.4)

Formally, we can solve by separation of variables, obtaining∫ Rn

αxn

dz
zφ(z)

=−T.

The function f in the metered model xn+1 = f (xn) is given implicitly by the relation∫ f (xn)

αxn

dz
zφ(z)

=−T.

Under harvesting, the model is
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xn+1 = Rn −Hn = f (xn)−Hn,

with the same function f .

Example 1. (The Beverton and Holt stock recruitment model) In some bottom-
feeding fish populations, including the North Atlantic plaice and haddock studied
by Beverton and Holt (1957), recruitment appears to be essentially unaffected by
fishing, and this is true over a wide range of fishing effort. These species have very
high fertility rates and very low survivorship to adulthood. The Beverton and Holt
model assumes a linear per capita mortality rate, so that the differential equation
describing survivorship has the form

dz
dt

=−z(μ1 +μ2z),

with μ1 and μ2 positive constants. Explicit solution of the initial value problem (2.4)
leads to a recruitment function of the form

Rn =
axn

1+bxn
,

where a and b are positive constants related to μ1 and μ2. In fact, the same form is
valid if μ1 and μ2 are arbitrary nonnegative functions of t. This leads to the Beverton
and Holt metered model

xn+1 =
axn

1+bxn
.

The reader should observe that this is equivalent to the Verhulst model

xn+1 =
rxn

xn +A

described earlier with a = r/A, b = 1/A. As we have seen for the Verhulst equation,
there is an asymptotically stable positive equilibrium only if r > A , or equivalently
if a > 1.

Example 2. (The Ricker stock recruitment model) It was observed by Ricker (1954,
1958) that some species of fish, including salmon, habitually cannibalize their eggs
and young. The Ricker model assumes a per capita death rate proportional to the
initial size of the young population. Then the survivorship differential equation has
the form

dz
dt

=−zBn =−αxnz, z(0) = αxn.

This has the solution
z = αxne−αxnt

and therefore
Rn = αxne−αT xn ,

which we write
Rn = αxne−βxn
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by letting β = αT. This leads to the Ricker metered model

xn+1 = αxne−βxn .

Exercises

1. a. Show that the Ricker model xn+1 = αxne−βxn has an equilibrium x = 0 and
a positive equilibrium x∞ = logα/β if α > 1.

b. Determine the range of values of the parameter α for which each of these
equilibria is asymptotically stable.

2. In the Beverton and Holt model

xn+1 =
axn

1+bxn
,

determine the constants a and b in terms of α and T if the survivorship differ-
ential equation is

dz
dt

=−dz2.

(Or μ1 = 0,μ2 = d.)
3. Analyze the behavior of the continuous analogue of the metered Ricker model,

dx
dt

= αxe−βx − x,

and compare with the behavior of the metered model.
4. Analyze the behavior of the continuous analogue of the metered Beverton and

Holt model
dx
dt

=
ax

1+bx
− x.

2.6 A Two-Age Group Model and Delayed Recruitment

Suppose we are interested in studying a population that in the nth generation con-
tains xn immature members and yn adult members, with a birth rate depending on
the number of adult members and a transition rate from immature to adult members
depending on the number of immature members. If the birth rate is α and the rate
of transition is β , we are led to a system of two difference equations,

xn+1 = αyn

yn+1 = βxn,
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assuming no survival of adult members to the next generation. Graphical methods
of solving this system are cumbersome, but the method of analytic solution is easy.
Iteration gives x1 = αy0, y1 = βx0; x2 = αy1 = αβx0, y2 = βx1 = αβy0, x3 =
αy2 = α2βy0, y3 = βx2 = αβ 2x0. The pattern becomes apparent if we introduce
vector–matrix notation. Define the two-dimensional column vector

zn =

(
xn
yn

)
and the reproduction matrix

A =

(
0 α
β 0

)
.

Then the system can be written

zn+1 = Azn,

and now iterative solution gives

zn = Anz0,

where An is the nth power of the matrix A. More generally, we could assume a
nonlinear birth function B(y) and a nonlinear mortality function D(y), that is, a
nonlinear system

xn+1 = B(yn)

yn+1 = αxn −D(yn).

An equilibrium of this system is a solution (x∞,y∞) of the system x∞ = B(y∞), y∞ =
αx∞ −D(y∞). We may linearize about the equilibrium and examine the asymptotic
stability of the equilibrium by studying the linearized system

un+1 = B′(y∞)vn,

vn+1 = αun −D′(y∞)vn,

with coefficient matrix

A =

(
0 B′(y∞)
α −D′(y∞)

)
.

Such a study requires the machinery of linear algebra, which we shall not undertake
here. Models with a larger number of age groups are also natural and their study
leads to systems of difference equations each with dimension equal to the number
of age groups. Again, the use of linear algebra is essential. In order to study a two-
age group model such as

xn+1 = B(yn), yn+1 = αxn −D(yn),
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without being forced to use linear algebra, we may eliminate by substituting B(yn−1)
for xn in the second equation. We then obtain a single second-order difference equa-
tion

yn+1 = αB(yn−1)−D(yn),

using the relation xn+1 = B(yn) to determine xn once this second-order equation has
been solved. An equilibrium of this second order equation is a value y∞ such that

y∞ = αB(y∞)−D(y∞).

The linearization at the equilibrium is the second-order linear homogeneous differ-
ence equation

un+1 = αB′(y∞)un−1 −D′(y∞)un.

In order to study the stability of an equilibrium of a difference equation of order
higher than one, we first state the following linearization theorem without proof.

Theorem 2.2. If x∞ is an equilibrium of the difference equation

xn+k = f (xn+k−1,xn+k−2, . . . ,xn+1,xn)

of order k, so that
x∞ = f (x∞,x∞, . . . ,x∞),

the equilibrium is asymptotically stable if all solutions of the linearization at the
equilibrium

un+k =
k

∑
j=1

a jun+k− j

(with a j = f j(x∞,x∞, . . . ,x∞) and f j denoting the partial derivative with respect to
the jth variable) tend to zero.

In order to determine whether all solutions of a linear difference equation tend
to zero, we look for solutions of the form xn = λ nx0 and obtain a characteristic
equation–a polynomial equation of degree k–for λ . For the difference equation
un+k = ∑k

j=1 a jun+k− j, this characteristic equation is λ n+k = ∑k
j=1 a jλ n+k− j, or

λ k −
k

∑
j=1

a jλ k− j = 0.

If the roots of this characteristic equation, say λ1,λ2, . . . ,λk, are distinct, then every
solution of the difference equation un+k = ∑k

j=1 a jun+k− j is a linear combination of
λ n

1 ,λ
n
2 , . . . ,λ

n
k . If the characteristic equation has multiple roots, then there are also

terms λ n
j logλ j, but in any case the condition that all solutions of a linear homo-

geneous difference equation tend to zero is that all roots λ j of the characteristic
equation satisfy |λ j|< 1.
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Combination of this information about the solutions of linear difference equa-
tions with Theorem 2.2 gives the following extension of Theorem 2.1 of Section
2.3.

Theorem 2.3. Let x∞ be an equilibrium of the following difference equation of order
k:

xn+k = f (xn+k−1,xn+k−2, . . . ,xn+1,xn).

If all roots of the characteristic equation

λ k −
k

∑
j=1

f j(x∞,x∞, . . . ,x∞)λ k− j = 0

of the linearization at this equilibrium satisfy |λ | < 1, then the equilibrium x∞ is
asymptotically stable.

For a first-order difference equation xn+1 = f (xn) the characteristic equation is
λ − f ′(x∞) = 0, and thus the condition for asymptotic stability is | f ′(x∞)| < 1, as
given in Theorem 2.1 of Section 2.3. For the equilibrium x+ of the second order
difference equation

xn+2 = f2(xn)

considered in Section 2.4 the characteristic equation is λ 2 − f ′2(x+) = 0, with
roots λ = ±√| f ′2(x+)| or λ = ±i

√| f ′2(x+)|, depending on whether f ′2(x+) > 0
or f ′2(x+) < 0. In either case the condition for asymptotic stability is | f ′2(x+)| < 1,
a fact used without proof in Section 2.4.

The results developed in Theorem 2.3 would enable us to study the delayed re-
cruitment model yn+1 = αB(yn−1)−D(yn) formulated at the beginning of this sec-
tion. However, we shall instead consider the model

xn+1 = axn +F(xn−τ),

which is often used to study whale populations. Here xn represents the adult breed-
ing population, a (0 ≤ a ≤ 1) the survival coefficient, and F(xn−τ) the recruitment
to the adult stage with a delay of τ years. Equilibrium population size is obtained
by solving

x∞ = ax∞ +F(x∞),

or F(x∞) = (1− a)x∞ = Mx∞, where M = 1− a is the annual mortality rate. More
generally, we could consider a model of the form xn+1 = G(xn) + F(xn−τ) with
equilibrium population size determined from x∞ = G(x∞) + F(x∞). To study the
stability of equilibrium, we linearize about the equilibrium by setting xn = un + x∞
and neglecting higher order terms, obtaining

un+1 = aun +F ′(x∞)un−τ .

We let b = F ′(x∞) to write this in the form

un+1 = aun +bun−τ .
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The characteristic equation is

λ τ+1 −aλ τ −b = 0,

and asymptotic stability of equilibrium requires |λ |< 1 for all roots of this equation.
If τ = 0, the characteristic equation is λ − a− b = 0 and the stability condition

is |a+b|< 1, or −1−a < b < 1−a.
If τ = 1, the characteristic equation is λ 2 −aλ −b = 0,which has roots

λ = a±
√

a2 +4b
2

.

If a2 + 4b ≥ 0, these roots are real, and the condition |λ | < 1 is equivalent to a+√
a2 +4b < 2 and a−√

a2 +4b >−2. These conditions give
√

a2 +4b < 2−a and√
a2 +4b < 2+ a. Since 2− a ≤ 2+ a, we have the single condition

√
a2 +4b <

2−a, or b < 1−a. If a2 +4b < 0, the roots are complex and |λ |2 = a2/4+(−a2 −
4b)4=−b. Since b< 0, we must have −1< b< 0. Combining the cases a2+4b< 0
and a2 + 4b ≥ 0, we see that for τ = 1, the equilibrium x∞ is asymptotically stable
if −1 < b < 1−a.

For values of τ > 1, the stability condition is more difficult to analyze, but it is
possible to establish the following result [Levin and May (1976)].

Theorem 2.4. There is a function zτ(a) ≤ −1+ a with zτ(a) ↗ −1+ a as τ → ∞
such that the equilibrium x∞ is asymptotically stable if

zτ(a)< b < 1−a.

We have shown that z0(a) = −1− a, z1(a) = −1. Since zτ(a) < −1+ a for all
τ, the equilibrium is certainly asymptotically stable if −1+a < b < 1−a, or |b|<
1−a.

The population of the Antarctic fin whale has been studied using this model with
F(x) = rx

(
1−x/K

)
, r = 0.12, a= 0.96, k = 600,000, β = 5. The equilibrium pop-

ulation size is given by rx∞(1− x∞/K) = (1− a)x∞, or x∞ = K
(
1− (1− a)/r

)
. If

we use M = 1−a, we have x∞ = K(1−M/r). Since F ′(x) = 4−2rx/K, F ′(x∞) =
2M− r. The equilibrium is certainly asymptotically stable if |2M− r|< 1−a = M,
or M < r < 3M. With K = 600,000, M = 0.04, r = 0.12, this condition is not sat-
isfied, since r = 3M. However, since zτ(a) is actually less than −1+a, the stability
condition is satisfied.

Discrete single-species models do not involve merely first-order difference equa-
tions. As we have seen, age-class models lead to systems of difference equations and
delayed-recruitment models lead to higher-order difference equations. For a unified
treatment, we would have to show how to write a difference equation of order k as
a system of k first-order difference equations, and then use vector–matrix notation
and methods of linear algebra to develop the theory of equilibria and asymptotic
stability.
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Exercises

1. Convert the system of difference equations

xn+1 = 2yn, yn+1 = 3xn

to a second-order difference equation and find the first three terms of the solu-
tion with x0 = y0 = 1.

2. Solve the second order difference equation

xn+2 − xn = 0

with x0 = 1,x1 =−1.
3. Solve the second-order difference equation

xn+2 + xn = 0

with x0 = 1,x1 =−1.

The Jury criterion states that the eigenvalues of a 2×2 matrix M have magni-
tude less than one if and only if |tr(M)|< det(M)+1 < 2. Use it in problems
4 and 5.

4. Assume that the population (P) of a parasite and that of its host population (H)
are modeled by the difference equations

Pt+1 = αHt
(
1− e−aPt

)
,

Ht+1 = αHte−aPt ,

where α,a are positive.

a. Calculate the equilibrium population sizes and show that they are positive
only if α > 1.

b. Use the Jury criterion to show that if α > 1, then the equilibrium is unsta-
ble. Hint: The following relation holds:

α
α −1

lnα > 1 for all α > 1.

5∗. Determine all equilibria and the stability of each equilibrium for the system

xn+1 = axne−byn ,

yn+1 = cxn(1− e−byn).

(This system is known as the Nicholson and Bailey model (1935) for a host–
parasite system; xn denotes the number of hosts and yn the number of parasites.)

6. One of the common discrete-time models for the growth of a single species is
the Pielou logistic equation
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xn+1 =
αxn

1+βxn
,

where xn ≥ 0 is the size of the population at generation n, α > 1, and β > 0.
If we assume that there is a delay of time period 1 in the response of growth
rate per individual to density change, we obtain the delay difference equation
model

xn+1 =
αxn

1+βxn−1
.

Determine the stability of all the nonnegative fixed points of this equation.

2.7 Systems of Two Difference Equations

In Section 2.6, we examined a system of two difference equations by reducing it to
a single second order difference equation. In Section 2.8 we shall examine a system
that cannot be reduced to a single equation of higher order. In this section, we shall
outline the main results of the analysis of stability of an equilibrium of a system of
two first-order difference equations.

We begin with a system of two difference equations,

xn+1 = f (xn,yn), (2.5)
yn+1 = g(xn,yn).

An equilibrium of the system (2.5) is a solution (x∞,y∞) of the system

f (x,y) = x, g(x,y) = y.

Generally, f (x,y) = x and g(x,y) = y are represented by curves in the (x,y)-plane,
and an equilibrium is an intersection of the two curves. If (x∞,y∞) is an equilibrium
of (2.5), then the system (2.5) has a constant solution xn = x∞, yn = y∞ (n= 1,2, . . .).

The description of the behavior of solutions near an equilibrium parallels the de-
scription given in Section 2.3 for a single first-order difference equation. If (x∞,y∞)
is an equilibrium of the system (2.5), we make the change of variables un = xn−x∞,
vn = yn − y∞ (n = 0,1,2, . . .), so that (un,vn) represents deviation from the equilib-
rium. We then have the system

un+1 = f (x∞ +un,y∞ + vn)− x∞ = f (x∞ +un,y∞ + vn)− f (x∞,y∞) (2.6)
vn+1 = g(x∞ +un,y∞ + vn)− y∞ = g(x∞ +un,y∞ + vn)−g(x∞,y∞).

If we use Taylor’s theorem to approximate the functions f (x∞ +un,y∞ + vn) and
g(x∞ +un,y∞ +vn) by their linear terms and neglect the remainder terms, we obtain
a linear system
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un+1 = fx(x∞,y∞)un + fy(x∞,y∞)vn, (2.7)
vn+1 = gx(x∞,y∞)un +gy(x∞,y∞)vn.

called the linearization of the system (2.5) at the equilibrium (x∞,y∞), which ap-
proximates the system (2.5) near the equilibrium. The analogue of Theorem 2.1,
Section 2.3, which explains the significance of the linearization at an equilibrium, is
valid.

Theorem 2.5. If all solutions of the linearization (2.7) of the system (2.5) at an
equilibrium (x∞,y∞) tend to zero as n → ∞, then all solutions of (2.7) with x0 and
y0 sufficiently close to x∞ and y∞ respectively tend to the equilibrium (x∞,y∞) as
n → ∞.

The proof is more complicated than that given in Section 2.3 for n = 1, and we
shall omit it.

The next problem is to determine conditions under which all solutions of the
linear system (2.7) approach zero. The idea behind the solution of this problem,
although there are some technical complications, is to look for solutions of the form
un = u0λ n, vn = v0λ n and then determine conditions under which all values of λ
for which this is possible satisfy

∣∣λ ∣∣ < 1. (Recall that if
∣∣λ ∣∣ < 1, then λ n → 0 as

n → ∞.) The basic fact is that all solutions of the linear system (2.7) approach zero
if all roots of the characteristic equation

λ 2 − trA(x∞,y∞)λ +detA(x∞,y∞) = 0

satisfy |λ |< 1. Here, trA and detA are the trace and determinant of the 2×2 matrix

A(x∞,y∞) =

(
fx(x∞,y∞) fy(x∞,y∞)
gx(x∞,y∞) gy(x∞,y∞)

)
.

This characteristic equation may also be written as a determinant, namely as

det
(

A(x∞,y∞)−λ I
)
= 0, (2.8)

where

I =
(

1 0
0 1

)
,

the identity matrix. It arises from the condition that

A(x∞,y∞)

(
u
v

)
= λ

(
u
v

)
has a nontrivial solution for the vector (

u
v

)
.
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In this vector–matrix form, the stability result generalizes to systems of arbitrary
order.

Theorem 2.6. If all roots of the characteristic equation (2.8) at an equilibrium sat-
isfy

∣∣λ ∣∣< 1, then all solutions of the system (2.5) with initial values sufficiently close
to an equilibrium approach the equilibrium.

A proof of this result may be found in books that explore the theory of difference
equations, such as Elaydi (1996) and Sandefur (1990).

The characteristic equation for a system of k difference equations at an equilib-
rium is a polynomial equation of degree k. Conditions are known under which all
roots of a polynomial equation have absolute value less than 1. These conditions
were originally derived to analyze some economic models[Samuelson (1941)]. For
a quadratic equation

f (λ ) = λ 2 +a1λ +a2 = 0, (2.9)

both roots satisfy
∣∣λ ∣∣< 1 if and only if

1+a1 +a2 > 0, 1−a1 +a2 > 0, 1+a2 > 0.

These three conditions can be combined and written as

0 <
∣∣a1

∣∣< a2 +1 < 2, (2.10)

which is the Jury criterion (Exercise 3, Section 2.6).
To establish the Jury criterion, we begin by noting that f (λ )→+∞ as λ →∞ and

λ →−∞. If f (−1)< 0, there is a root less than −1, and if f (1)< 0 there is a root
greater than 1. Further, the product of the roots of (2.9) is a2; thus we must have∣∣a2

∣∣ < 1, f (−1) > 0, f (1) > 0 in order to have all roots of (2.9) satisfy
∣∣λ ∣∣ < 1.

We may rewrite these conditions as −1 < a2 < 1, or 0 < a2 + 1 < 2, f (−1) =
1− a1 + a2 > 0, f (1) = 1+ a1 + a2 > 0. The conditions f (−1) > 0 and f (1) > 0
may be combined to give

−(1+a2)< a1 < 1+a2,

or
∣∣a1

∣∣< 1+a2. Thus, in order to have the roots of (2.9) satisfy
∣∣λ ∣∣< 1, the condi-

tions in (2.10) must be satisfied.
To prove that the conditions in (2.10) imply that the roots of (2.9) satisfy

∣∣λ ∣∣< 1,
we consider first the case that the roots of (2.9) are complex conjugate. In this case,
both roots have the same absolute value, and

∣∣a2
∣∣< 1 implies that this absolute value

is less than 1. If the roots of (2.9) are real and f (−1)> 0, f (1)> 0, then either both
roots are less than −1 (contradicted by

∣∣a2
∣∣ < 1), or both roots are greater than 1

(contradicted by
∣∣a2

∣∣< 1), or both roots are between −1 and 1. Thus the conditions
in (2.10) imply that both roots satisfy

∣∣λ ∣∣< 1, and the Jury criterion is established.
In the next section, we will examine a system of three first order-difference equa-

tions. It can be shown that the conditions under which the roots of a cubic equation

λ 3 +a1λ 2 +a2λ +a3 = 0
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satisfy
∣∣λ ∣∣< 1 are

1+a1 +a2 +a3 > 0, 1−a1 +a2 −a3 > 0, (2.11)

3+a1 −a2 −3a3 > 0, 1+a1a3 −a2 −a2
3 > 0

[Samuelson (1941)]. We will make use of this result.

Exercises

1. Find all equilibria of the system

xn+1 = B(yn),

yn+1 = αxn −D(yn),

treated as a single second-order difference equation in Section 2.6, and estab-
lish conditions for their stability.

2. For the delayed-recruitment model

xn+1 = axn +F(xn−r),

with 0 ≤ a ≤ 1, considered in Section 2.6, the characteristic equation at an
equilibrium x∞, that is, a solution of F(x∞) = (1−a)x∞, is

λ r+1 −aλ r −F ′(x∞) = 0.

Determine the conditions on a and F ′(x∞) for stability of equilibrium if r = 2
and write them in the form

zr(a)< F ′(x∞)< 1−a,

i.e., determine the function zr(a).
3. Consider the two-dimensional system

xn+1 =
αyn

1+(xn)2 ,

yn+1 =
βxn

1+(yn)2 ,

where α and β are positive constants. If α2 < 1 and β 2 < 1, prove that the ori-
gin (0,0) is globally asymptotically stable. [Global asymptotic stability means
that every solution approaches the origin, not just solutions starting close to the
origin.]

4. Consider the single-species, age-structured population model
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xn+1 = yn exp(r−axn − yn)

yn+1 = xn,

where xn ≥ 0, yn ≥ 0, and the constants a, r are positive. Show that all the
solutions are bounded. Interpret your result.

2.8 Oscillation in Flour Beetle Populations: A Case Study

Some recent experimental studies of flour beetles (Tribolium castaneum) have in-
dicated a possibility of behavior in the laboratory that appears to be chaotic [R.F.
Costantino, R.A. Desharnais, J.M. Cushing, B. Dennis, (1997), (1995)]. We shall
describe and attempt to analyze a model for such behavior, taking note of the prop-
erties of the life cycle of the flour beetle.

The life cycle consists of larval and pupal stages, each lasting approximately
two weeks, followed by an adult stage. Both larvae and adults are cannibalistic,
consuming eggs and thus reducing larval recruitment. In addition, there is adult
cannibalism of pupae. We take two weeks as the unit of time and formulate a discrete
model describing the larval population L, pupal population P, and adult population
A at two-week intervals.

If there were no cannibalism, we could begin with a linear model

Ln+1 = bAn,

Pn+1 = (1−μL)Ln,

An+1 = (1−μP)Pn +(1−μA)An,

where b is the larval recruitment rate per adult in unit time, and μL, μP, μA are
the death rates in the respective stages. However, in practice, μP = 0 since there is
no pupal mortality except for cannibalism. We assume that cannibalistic acts occur
randomly as the organisms move through the container of flour that forms their
environment. This suggests a metered model with cannibalism rates proportional
to the original size of the group being cannibalized, as in the Ricker fish model
(Section 2.5). We are led to a model

Ln+1 = bAne−cEAAne−cELLn ,

Pn+1 = (1−μL)Ln, (2.12)

An+1 = Pne−cPAAn +(1−μA)An,

with “cannibalism coefficients” cEA, cEL, cPA. The fractions e−cEAAn and e−cELLn are
the probabilities that an egg is not eaten in the presence of An adults and Ln larvae
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through the larval stage. The fraction e−cPAAn is the survival probability of a pupa
through the pupal stage in the presence of An adults.

Equilibria of our basic model (2.12) are solutions (L,P,A) of the system of equa-
tions

LecELL = bAe−cEAA,

P = (1−μL)L, (2.13)

μAecPAA = P.

This system has a solution (0,0,0) corresponding to extinction and also has a
solution with L > 0, P > 0, A > 0 corresponding to survival for some sets of param-
eter values. We are unable to find this survival equilibrium analytically, but we may
solve numerically for a given choice of parameters.

We may rewrite the equilibrium conditions by eliminating P as

(1−μL)L = μAAecPAA,

LecELL = bAe−cEAA.

Division of the second equation by the first gives

ecELL =
b(1−μL)

μA
e−(cEA+cPA)A. (2.14)

The left side of (2.14) increases with L and is greater than one for all positive L,
while the right side of (2.14) decreases with A and is between b(1− μL/)μA and
zero. Thus, if the quantity θ , defined by

θ =
b(1−μL)

μA
, (2.15)

is less than one, there cannot be a solution of (2.14) and thus there cannot be a
survival equilibrium. On the other hand, if θ is greater then one, the equation (2.14)
represents a straight line from (0, logθ/cEL) to (logθ/(cEA + cPA),0) in the (A,L)-
plane. An equilibrium is an intersection of this line with the curve (1 − μL)L =
μAecPAA, which starts from the origin and grows as A increases. Thus if θ > 1, there
is always a survival equilibrium.

Some experiments have been carried out with flour beetle populations and fit to
the model (2.12) with the parameter values b = 7, cEA = cEL = 0.01, cPA = 0.005,
μL = 0.2, μA = 0.01 [Costantino, Desharnais, Cushing, and Dennis (1997), (1995)].
Since experimental data are inevitably noisy, it is not possible to determine param-
eters exactly, but it is possible to obtain a confidence interval for the parameters.
We take these values as a baseline and then compare the model with the experiment
when some of the parameters are manipulated. For example, we may remove (har-
vest) some adults at each census and thus set μA arbitrarily. In real life outside the
laboratory, adult mortality may be changed by spraying with a pesticide. It is also
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possible to manipulate the cannibalism coefficient cPA by changing the supply of
food; increasing the food supply reduces the rate of cannibalism of pupae by adults.

With the parameter values given above, we find θ = 560, and there is a survival
equilibrium L = 36, P = 29, A = 398, as well as the extinction equilibrium L = 0,
P = 0, A = 0. In order to determine the stability of these equilibria, we must com-
pute the matrix of partial derivatives at an equilibrium and form the characteristic
equation as in Section 2.7.

At an equilibrium (L,P,A) this matrix is⎛⎝−cELbAe−cEAAe−cELL 0 be−cELLe−cEAA(1− cEAA)
1−μL 0 0

0 e−cPAA 1−μA − cPAPe−cPAA

⎞⎠ . (2.16)

At the extinction equilibrium (0,0,0), it reduces to⎛⎝ 0 0 b
1−μL 0 0

0 1 1−μA

⎞⎠ .

The characteristic equation at (0,0,0) is (after some manipulation of signs)

det

⎛⎝ −λ 0 b
1−μL −λ 0

0 1 1−μA −λ

⎞⎠= λ 2(λ − (1−μA)
)−b(1−μL) = 0,

or λ 3 − (1−μA)λ 2 −b(1−μL) = 0. Thus, it has the form λ 3 +a1λ 2 +a2λ +a3 =
0 with a1 = −(1− μA), a2 = 0, a3 = −b(1− μL). The conditions for asymptotic
stability ((2.11), Section 2.7) are

1+a1 +a2 +a3 > 0, 1−a1 +a2 −a3 > 0, (2.17)

3+a1 −a2 −3a3 > 0, 1+a1a3 −a2 −a2
3 > 0,

and these become

μA −b(1−μL)> 0,
2−μA +b(1−μL)> 0,

3− (1−μA)+3b(1−μL)> 0,

1+b(1−μL)(1−μA)−b2(1−μL)
2 > 0.

Because 0 ≤ μA ≤ 1, 0 ≤ μL ≤ 1, the second and third of these conditions are sat-
isfied automatically. The first condition is satisfied if and only if μA > b(1− μL),
which is equivalent to θ < 1.

The last condition, (
b(1−μL)

)2 −b(1−μL)(1−μA)< 1,
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is satisfied as well, since(
b(1−μL)

)2 −b(1−μL)(1−μA)< μ2
A −b(1−μL)(1−μA)< μ2

A < 1.

Thus, the extinction equilibrium is asymptotically stable if and only if θ < 1, that
is, if and only if the extinction equilibrium is the only equilibrium.

At a survival equilibrium we may use the equilibrium conditions (2.13) to sim-
plify the coefficient matrix (2.16) to⎛⎝−cELL 0 L

A − cEAL
1−μL 0 0

0 ecPAA 1−μA −μAcPAA

⎞⎠ .

In this case, the characteristic equation is

λ
(
λ + cELL

)(
λ − (1−μA −μAcPAA)

)−(
L
A
− cEAL

)(
1−μL

)
e−cPAA = 0,

or

λ 3 +
(
cELL+μAcPAA− (1−μA)

)
λ 2

−cELL(1−μA)λ −
(

L
A
− cEAL

)(
1−μL

)
e−cPAA = 0,

that is, a cubic equation λ 3 +a1λ 2 +a2λ +a3 = 0 with coefficients

a1 = cEL +μAAcPA − (1−μA),

a2 =−cELL(1−μA), (2.18)

a3 =−
(

L
A
− cEAL

)
(1−μL)e−cPAA.

We are unable to analyze the stability of the survival equilibrium in general, but
for a particular choice of parameters b, cEA, cEL, cPA, μL, μA we can calculate the
survival equilibrium (L,P,A) numerically and then use the values given by (2.18) to
check the stability condition (2.17).

With the baseline parameters b = 7, cEA = cEL = 0.01, cPA = 0.005, μL = 0.2,
μA = 0.01, the survival equilibrium is (36,29,398), and we find from (2.18) that
a1 =−0.61, a2 =−0.36, a3 = 0.43. The stability conditions (2.17) are satisfied, and
thus the survival equilibrium is asymptotically stable. This agrees with experimental
observations. However, this does not validate the model, since the parameter values
were chosen to fit the experimental data.

To obtain some validation of the basic model, we must manipulate some of the
parameter values and see whether experimental observations still agree with model
predictions. Thus, we set μA = 0.96, cPA = 0.5 by harvesting adults and reducing
the flour supply. With these parameter values, the model predicts a survival equilib-
rium (12,10,3), and (2.18) gives a1 = 1.52, a2 =−0.005, a3 =−0.69 in the cubic
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characteristic equation. Now the stability condition 1+ a1a3 − a2 − a2
3 > 0 is vio-

lated, and our model predicts instability of the survival equilibrium. A more detailed
study of the model indicates that with μA = 0.96, the dynamics are very sensitive to
changes in the cannibalism rate cPA. For cPA = 0.5 there is a solution of period 3 and
a chaotic attractor, while for cPA = 0.55 there are two attractors and a solution of pe-
riod 8. Experimental observations indicate chaotic behavior, but it is not possible to
be specific about the nature of the dynamics. Nevertheless, this does indicate some
validity for the model and supplies what appears to be genuinely chaotic behavior
in the laboratory.

Another way in which it is possible to perturb the model is to introduce periodic
forcing by varying the volume of flour. Experiments indicate that cannibalism rates
are inversely proportional to flour volume. Thus we may assume

cEL =
kEL

V
, cEA =

kEA

V
, cPA =

kPA

V
,

where V is the volume of flour. We make flow volume oscillate with period 2 and
amplitude αV0 about a mean V0, so that Vn =V0

(
1+α(−1)n

)
. Then the cannibalism

coefficients at stage n are

cEL =
kEL

V0
(
1+α(−1)n

) , cEA =
kEA

V0
(
1+α(−1)n

) , cPA =
kPA

V0
(
1+α(−1)n

) .
If we let cEL, cEA, cPA denote the cannibalism coefficients in the average flour

volume, cEL = kEL/V0, cEA = kEA/V0, cPA = kPA/V0, we obtain the periodic model

Ln+1 = bAn exp
(
−cELLn + cEAAn

1+α(−1)n

)
,

Pn+1 = (1−μL)Ln, (2.19)

An+1 = Pn exp
(
− cPAAn

1+α(−1)n

)
+(1−μA)An.

This model has an extinction equilibrium (0,0,0), which may be shown to be
asymptotically stable if θ < 1. If θ > 1, there is a solution of period 2 that is asymp-
totically stable if θ is close to 1, but for larger values of θ the dynamics may be
chaotic. In addition, population sizes are considerably larger than in the unforced
case, and this is borne out by experiment.

There are two important lessons that may be drawn from this model. The first
is that trying to control a pest population by removing adults may have unintended
consequences such as large fluctuations in the pest population size. The second is
that periodic variation in the environment may produce substantial increases in pop-
ulation size.

The analysis of the model (2.12) becomes considerably simpler if we neglect
cannibalism of eggs by larvae. Mathematically, this means taking cEL = 0. The
recruitment of larvae at equilibrium is then changed from bAne−cEAAne−cELLn to
bAne−cEAAn . In order to make the parameter values correspond, we should replace
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b by be−cELL∗ , where cEL is the original cannibalism coefficient and L∗ is the equi-
librium larval population. With our baseline parameters this would mean replacing
b = 7 by b∗ = 7e−0.36 = 4.88. We will not carry out the analysis of this reduced
model

Ln+1 = b∗AnecEAan ,

Pn+1 = (1−μL)Ln, (2.20)

An+1 = Pne−cPAAn +(1−μA)An,

but will indicate it in a sequence of exercises.

Exercises

1. a. Show that the survival equilibrium of (2.20) has

A =
1

cEA + cPA
logθ ,

and once A has been calculated,

L = b∗Ae−cEAA, P = b∗(1−μL)Ae−cEAA.

b. Calculate the equilibrium population sizes for the parameter values b∗ =
4.88, cEA = 0.01, μL = 0.2, and (i) μA = 0.81, cPA = 0.005, (ii) μA = 0.96,
cPA = 0.5.

2. Show that the extinction equilibrium of the model (2.20) is asymptotically sta-
ble if and only if θ < 1.

3. Show that at a survival equilibrium of (2.20) the characteristic equation is a
cubic polynomial with

a1 = μAcPAA− (1−μA),

a2 = 0,

a3 =−
(

L
A
− cEAL

)
(1−μL)e−cPAA.

4. Show that with parameter values b∗ = 4.88, cEA = 0.01, μL = 0.2, the survival
equilibrium of (2.20) is asymptotically stable if μA = 0.01, cPA = 0.005, and
unstable if μA = 0.96, cPA = 0.5.

5. Run simulations to compare the behaviors of the models (2.12) and (2.20) with
the two sets of parameter values used in this section and a variety of initial
values.

6. Show that it is possible to eliminate L and P from the model (2.20) and obtain
a single third-order difference equation,
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An+3 = b∗(1−μL)Ane−cEAAne−cPAAn+2 +(1−μA)An+2.

2.9 Project: A Discrete SIS Epidemic Model

In this project we outline of analysis of an SIS (susceptible infective suceptible)
discrete epidemic model in a human population with variable size. The SIS model
is given by the system

Sn+1 = f (Tn)+Snπ(n,n+1)h(In)+ Inπ(n,n+1)[1−ξ (n,n+1)],
In+1 = Snπ(n,n+1)[1−h(In)]+ Inπ(n,n+1)ξ (n,n+1)ζ (n,n+1),

with

Tn = Sn + In = f (Tn)+Tnπ(n,n+1)+ Inπ(n,n+1)[ζ (n,n+1)−1],

where π(n,n+1), ξ (n,n+1), ζ (n,n+1) are assumed to be constants with α,μ,σ
positive constants, that is,

1−π(n,n+1) = 1− e−μ

is the probability of death due to natural causes,

1−ξ (n,n+1) = 1− e−σ

is the probability of recovering,

1−ζ (n,n+1) = 1− e−ρ

is the probability of death due to infection,

h(In) = e−αIn

is the probability of not becoming infected, and f (Tn) is the birth or immigration
rate (two cases). In this project we take ρ = 0, that is, the disease is not fatal.

The model assumes that the time step is one generation; from generation n to
n + 1, infections occur before deaths; there are no infected offspring, that is, all
newborns or recruits enter into the susceptible class; in the case of nonconstant re-
cruitment, if there are no people, then there are no births, that is, f (0) = 0; if there
are too many people, then there are not enough resources to sustain further repro-
duction, that is, limTn→∞ f (Tn) = 0; the probability of not becoming infected when
there are no people is one, that is, h(0) = 1; the probability of not becoming infected
as the number of infected increases is a strictly decreasing function, h′(In) < 0; as
the number of infected people increases, the probability of not becoming infected
goes to zero, that is, limIn→∞ h(In) = 0.
Case A. Assume a constant recruitment rate, that is, let
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f (Tn) = Λ > 0,

where Λ is a constant (immigration rate).

1. Show that the model becomes:

Sn+1 = Λ +Sn e−μ e−αIn + Ine−μ [1− e−σ ] (2.21)
In+1 = Sne−μ [1− e−αIn ]+ Ine−μ e−σ ,

with

Tn+1 = Λ +Tne−μ .

2. Show that

Tn = e−μn
(

T0 − Λ
1− e−μ

)
+

Λ
1− e−μ

and that
lim
n→∞

Tn =
Λ

1− e−μ ≡ T∞.

3. Set T0 = T∞ (initial population size). This simply means that the population
starts at its asymptotic limit, that is, the population is at a demographic equilib-
rium. Now substitute Sn by Sn = T∞ − In into (2.21) and show that

In+1 = (T∞ − In)e−μ [1− e−αIn ]+ Ine−(μ+σ). (2.22)

4. Show that I∗ = 0 is a fixed point of (2.22) and also show that the basic repro-
ductive number is

R0 =
αT∞e−μ

1− e−(μ+σ)
.

5. Explain the biological meaning of R0.
6. Show that if R0 < 1, then I∗ = 0 is a global attractor of u(In).
7. Show that if R0 > 1, then the disease-free equilibrium is unstable.
8. Show that there exists a unique fixed point I∗ > 0 of v(In) for R0 > 1.

Case B. Assume a nonconstant recruitment rate of Ricker type, that is, let

f (Tn) = βTne−γTn .

Then

Sn+1 = βTne−γTn +Sne−αIne−μ + e−μ [1− e−σ ]In,

In+1 = Sne−μ [1− e−αIn ]+ Ine−μ e−σ , (2.23)

Tn+1 = Sn+1 + In+1 = βTne−γTn +Tne−μ

where β = maximal birth rate/person/generation
Let Rd = β/(1− e−μ).
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1. Show that if Rd < 1, then there is no positive fixed point.
2. Show that if Rd > 1, then there exist two fixed points, T ′

∞ = 0 and T 2
∞ > 0.

3. Show that if 1 < Rd < e2/(1−e−μ ), then T 2
∞ is locally stable.

4. What is the biological interpretation of Rd? Assume that (2.23) can be “re-
duced” to a single “equivalent” limiting equation

In+1 = (T∞ − In)e−μ(1− e−αIn)+ Ine−μ e−σ (2.24)

when 1 < Rd < e2/(1−e−μ ) and where T 2
∞ = 1

γ log(Rd).
5. Show that the basic reproductive number is

R0 =
αe−μ 1

γ logRd

1− e−(μ+σ)
.

6. Show that T 2
∞ is a global attractor if R0 < 1. Show that if R0 > 1, then the

endemic equilibrium of (2.24) is a global attractor.
7. Simulate the full system (2.23) in the region 1 < Rd < e2/(1−e−μ ), where T∞

is a fixed point, and in the regions Rd > e2/(1−e−μ ), where period-doubling
bifurcation occurs on the route to chaos. Does the demography drive the disease
dynamics?

References: Castillo-Chavez and Yakubu (2000b, 2000c, 2000d), Barrera, Cintron-
Arias, Davidenko, Denogean, and Franco (2000).

2.10 Project: A Discrete-Time Two-Sex Pair-Formation Model

1. Consider the following discrete-time two-sex pair-formation model:

x(t +1) = (βxμxμy +(1−μy)μx +(1−σ)μxμy)p(t)

+μxx(t)G(x(t),y(t), p(t)),

y(t +1) = (βyμyμx +(1−μx)μy +(1−σ)μxμy)p(t)

+μyy(t)H(x(t),y(t), p(t)),

p(t +1) = σ μxμy p(t)+μxx(t)(1−G(x(t),y(t), p(t))),

where the functions G : [0,∞)× [0,∞)× [0,∞)→ [0,1] and H : [0,∞)× [0,∞)×
[0,∞)→ [0,1] denote the state-dependent probability functions and satisfy the
equation

μxx(t)(1−G(x(t),y(t), p(t))) = μyy(t)(1−H(x(t),y(t), p(t)))

and where βx,βy,μx,μy, and σ are constants in the interval [0,1].
(a) Given that
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G(x(t),y(t), p(t)) =
p(t)

y(t)+ p(t)
,

where (x(t),y(t), p(t)) belong to the set Ω , where

Ω :=
{
(x(t),y(t), p(t)) | 0 ≤ x(t)

y(t)
≤ μy

μx(1−G(x(t),y(t), p(t)))

}
find

H(x(t),y(t), p(t)).

(b) For the given function in (a) find the marriage function φ : [0,∞)× [0,∞)×
[0,∞)→ [0,1] that satisfies the equation

φ(x(t),y(t), p(t))≡ μxx(t)(1−G(x(t),y(t), p(t)))

= μyy(t)(1−H(x(t),y(t), p(t))).

(c) Show that the marriage function in (b) satisfies the following properties for
all (x(t),y(t), p(t)) ∈ Ω and the constant k ∈ [0,∞):

(i)
φ(x(t),y(t), p(t))≥ 0,

(ii)
φ(kx(t),ky(t),kp(t)) = kφ(x(t),y(t), p(t)),

(iii)
φ(x(t),0, p(t)) = φ(0,y(t), p(t)) = 0.

(d) If βx = βy = μx = μy = σ , use the marriage function in (b) to solve the
following equation for the characteristic equation λ = λ ∗ :

−σ μxμy +λ = φ
(

βxμxμy

λ −μx
−1,

βyμyμx

λ −μy
−1,1

)
,

where
βxμxμy

λ −μx
−1 > 0 and

βyμyμx

λ −μy
−1 > 0.

2. Use the marriage function in (b) with ε = 0 and βx = βy = μx = μy = σ to find
a positive fixed point [ξ0,η0,1] ∈ Ω of the following system (if one exists):

ξ (t +1) =
βxμxμy +μx +μxξ (t)

σ μxμy +φ(ξ (t),η(t),1)
−1,

η(t +1) =
βyμxμy +μy +μyη(t)

σ μxμy +φ(ξ (t),η(t),1)
−1,

ς(t +1) = 1.
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3. Use the Jury test to find values of σ (if any exist) for which the fixed point
[ξ0,η0,1] is stable.

References: Castillo-Chavez and Yakubu (2000e, 2000f).



Chapter 3

Continuous Single-Species Population

Models with Delays

3.1 Introduction

Up to now in our study of continuous population models we have been assuming
that x′(t), the growth rate of population size at time t, depends only on x(t), the pop-
ulation size at the same time t. However, there are situations in which the growth
rate does not respond instantaneously to changes in population size. One of the first
models incorporating a delay was proposed by Volterra (1926) to take into account
the delay in response of a population’s death rate to changes in population density
caused by an accumulation of pollutants in the past. Other causes of response delays
that have been mentioned in the biological literature include differences in resource
consumption with respect to age structure, migration and diffusion of populations,
gestation and maturation periods, delays in behavioral response to environmental
changes, and dependence of a population on a food supply that requires time to re-
cover from grazing. In deriving a mathematical model to reflect a particular biolog-
ical delay mechanism, one must consider carefully how this mechanism affects the
growth rate. One approach to modeling delays that has been used is formulation of
a discrete model (or difference equation) and consideration of the delay in the time
between steps. While this is appropriate for populations with a discrete reproduc-
tion cycle, such as many fish populations, it does not accurately model populations
with continuous growth and time lags. The metered models studied in Section 2.5
allow for a continuous death process but involve a discrete reproduction stage. To
describe populations with a continuous reproduction stage we will need to introduce
more general classes of models involving differential–difference equations or, even
more generally, integro-differential equations. We will consider models in which
the per capita growth rate x′(t)/x(t) at time t is a function of the population size
x(t −T ), that is, at T time units previous) and also models with distributed delay
in which the per capita growth rate is an integral over the past. In addition, we will
examine models in which the birth rate at time t is a function of past population size,
either at a single time (t −T ) or an integral over the past history, and the death rate
is a function of the population size at time t. Different biological mechanisms may

OI 10.1007/978-1-4614-1686-9_ ,
© Springer Science+Business Media, LLC 2012
Texts in Applied Mathematics 40, D

91
3
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lead to either of these types of models; the two types are not equivalent, although
their mathematical analyses follow similar paths.

The assumption of a fixed delay T will lead to a differential–difference equation
of the form x′(t) = f

(
x(t),x(t−T )

)
. For such an equation one must prescribe initial

data for a time interval of length T rather than merely an initial value x(0). In other
words, one specifies a function x0(t) for −T ≤ t ≤ 0 and then requires the initial
condition x(t) = x0(t) for −T ≤ t ≤ 0. The assumption of a distributed delay will
lead to an integrodifferential equation of the form

x′(t) =
∫ t

−∞
f
(
x(t),x(s)

)
p(t − s)ds =

∫ ∞

0
f
(
x(t),x(t −u)

)
p(u)du

for which one must prescribe initial data on −∞ ≤ t ≤ 0. More precisely, if p(u)≡ 0
for u ≥U one must prescribe initial data on −U ≤ t ≤ 0.

Analytic solutions, even for the simplest differential–difference equations, are in
general hopeless. For example, suppose we try to solve the equation x′(t)=−αx(t−
1), α constant with x(t) = ε ≥ 0 for −1 ≤ t ≤ 0. Then x′(t) = −αε for 0 ≤ t ≤ 1,
which gives x(t) = ε −αεt for 0 ≤ t ≤ 1, and x(1) = ε(1−α). We could use x(t) =
ε(1 − αt) for 0 ≤ t ≤ 1 to obtain x′(t) = −αε[1 − α(t − 1)] for 1 ≤ t ≤ 2 and
then integrate to find x(t) for 1 ≤ t ≤ 2. This technique is feasible in principle, but
the analytic form of the solution tends to become more and more complicated as we
proceed. For this reason, we will concentrate on other ways of attempting to describe
solutions. In this example, if α < 1, then x(1)≥ 0. If α > 1, then x(1)< 0, and we
can see that x′(t) will become positive, suggesting that the solution will oscillate.
In fact, if 0 ≤ α ≤ 1/e, x(t) remains positive for all t and decreases monotonically
to zero. If 1/e ≤ α ≤ π/2, x(t) oscillates but tends to zero as t → ∞, while if α >
π/2, x(t) oscillates but does not tend to zero, tending instead to a periodic solution.
Some additional properties of the solution are established in the exercises below.

Because of the impossibility of obtaining explicit analytic solutions of equations
with delays, we will concentrate on qualitative analysis. In Chapters 1 and 2 we
obtained some qualitative results for the behavior of solutions of differential equa-
tions and difference equations. Even though explicit solution was possible in some
cases, the qualitative approach enabled us to obtain information about a larger class
of problems. For differential–difference equations the qualitative approach follows
a similar line, but there are additional technical problems.

Another way of obtaining information about solutions employed in Chapters 1
and 2 was to use a computer algebra system to solve problems numerically and
graph the solutions. We will use this approach for differential–difference equations
as well, but there are difficulties. A program in Mathematica for solving differential–
difference equations is given in (virtual) Appendix C, but it is somewhat cumber-
some. Two programs in Maple given in Appendix C are somewhat less cumbersome
but run extremely slowly. For differential–difference equations, Matlab and the dy-
namical systems program XPP, or its Windows analogue WinPP (whose acquisition
is described in the preface to this book), are considerably more efficient. The so-
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lution graphs in this chapter were obtained using WinPP. For example, Figure 3.1
shows the graph of the solution of x′(t) =−x(t −1), with x(t) = 1 for −1 ≤ t ≤ 0.

Fig. 3.1 Solution of x′(t) =−x(t −1).

Exercises

In Exercises 1 through 5, consider the differential–difference equation x′(t) =
−αx(t −1) with initial data x(t)≡ 1 for −1 ≤ t ≤ 0.

1. Show that x′(t) ≡ 0 for t < 0 but x′(t) ≡ −α for 0 ≤ t ≤ 1, so that x′(t) is
discontinuous at t = 0.

2. Find the solution for 1 ≤ t ≤ 2 and show that x(2) = 1
2 (α

2 −4α +2).
3. Show that x′(t) approaches the limit −α as t approaches 1 through values

greater than 1, so that x′(t) is continuous at t = 1.
4. Use a computer algebra system to sketch the solutions with α = 0.3 and α = 4.

5∗. Show that x′′(t) is discontinuous at t = 1.

3.2 Models with Delay in Per Capita Growth Rates

If we assume that the per capita growth rate x′(t)/x(t) is a function of x(t − T ),
as might be appropriate for example in modeling a population whose food supply
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requires a time T to recover from grazing, causing the food supply at time t to
depend on the population size at time (t −T ), we are led to a model of the form

x′(t) = x(t)g
(
x(t −T )

)
,

a differential–difference equation. For example, the delay logistic equation is

x′(t) = rx(t)
(

1− x(t −T )
K

)
. (3.1)

This equation was introduced by Hutchinson (1948) to describe the dynamics of
animal populations. More generally, we could assume a delay distributed over time.
If the probability that the delay is between u and u+Δu is approximately p(u)Δu,
where p(u) is a nonnegative function with

∫ ∞
0 p(u)du = 1 then we are led to the

integrodifferential equation

x′(t) = x(t)
∫ ∞

0
g
(
x(t −u)

)
p(u)du,

which is transformed by the change of variable t −u = s to the equivalent form

x′(t) = x(t)
∫ t

−∞
g
(
x(s)

)
p(t − s)ds.

The average time delay will then be
∫ ∞

0 up(u)du. One form of continuous delay
frequently used in population models is

p(u) =
u

T 2 e−u/T ,

for which it is not difficult to verify that
∫ ∞

0 p(u)du = 1,
∫ ∞

0 up(u)du = 2T , and p(u)
has a maximum for u = T (see Exercises 3, 4 below).

Because the analytic solution of differential–difference equations of the form
x′(t) = x(t)g

(
x(t −T )

)
is not possible in general, we attempt instead to describe the

behavior of solutions in terms of equilibria and asymptotic stability just as we did
for differential equations in Chapter 1 and for difference equations in Chapter 2.

Definition 3.1. An equilibrium of the differential–difference equation

x′(t) = x(t)g
(
x(t −T )

)
(3.2)

is a value x∞ such that x∞g(x∞) = 0, so that x(t) ≡ x∞ is a constant solution of the
differential–difference equation.

Observe that the form of the differential–difference equation (3.2) implies that
x = 0 is always an equilibrium. The delay logistic equation has two equilibria,
x = 0 and x = K, just as does the (undelayed) logistic differential equation x′(t) =
rx(t)

(
1− x(t)/K

)
, which is the case T = 0 of the delay logistic equation (3.1). For

the differential equation x′ = xg(x), which is the case T = 0 of the differential–
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difference equation x′(t) = x(t)g
(
x(t−T )

)
, an equilibrium x∞ is asymptotically sta-

ble if and only if (
xg(x)

)′∣∣
x=x∞

= x∞g′(x∞)+g(x∞)< 0,

so that the equilibrium x = 0 is asymptotically stable if g(0) < 0 and an equi-
librium x∞ > 0 is asymptotically stable if g′(x∞) < 0 (because g(x∞) = 0). The
asymptotic stability of an equilibrium x∞ of the differential-difference equation
x′(t) = x(t)g

(
x(t −T )

)
requires

(
xg(x)

)′∣∣
x=x∞

< 0 and an additional condition. In
order to describe the additional condition required, we proceed much as we did in
Chapter 1 for differential equations. We begin by linearizing about the equilibrium
x∞ with the aid of Taylor’s theorem. That is, we let u(t) = x(t)− x∞ and obtain the
equivalent differential–difference equation

u′(t) =
(
x∞ +u(t)

)
g
(
x∞ +u(t −T )

)
=
(
x∞ +u(t)

)(
g(x∞)+g′(x∞)u(t −T )+

g′′(c)
2!

u(t −T )2
)

= x∞g(x∞)+g(x∞)u(t)+ x∞g′(x∞)u(t −T )+h
(
u(t),u(t −T )

)
= g(x∞)u(t)+ x∞g′(x∞)u(t −T )+h

(
u(t),u(t −T )

)
,

where c is between x∞ and x∞ +u(t −T ) and

h
(
u(t),u(t −T )

)
= g′(x∞)u(t)u(t −T )+ x∞

g′′(c)
2!

u(t −T )2

is “small” when u(s) is small for t−T ≤ s ≤ t. The linearization of the differential–
difference equation x′(t) = x(t)g

(
x(t −T )

)
is defined to be the linear differential–

difference equation

v′(t) = g(x∞)v(t)+ x∞g′(x∞)v(t −T ), (3.3)

obtained by neglecting higher-order terms collected as h
(
u(t),u(t−T )

)
. Just as with

differential equations and difference equations, the importance of the linearization
lies in the fact that the behavior of its solutions describes the behavior of solutions
of the original equation x′(t) = x(t)g

(
x(t −T )

)
near the equilibrium. The original

equation is equivalent to

u′(t) = g(x∞)u(t)+ x∞g′(x∞)u(t −T )+h
(
u(t),u(t −T )

)
,

and h is small in the sense that for every ε > 0 there exists δ > 0 such that |h(y,z)|<
ε(|y|+ |z|) whenever |y|< δ , |z|< δ . The following result, which we state without
proof, is valid. A proof may be found in Bellman and Cooke (1963).

Theorem 3.1. If all solutions of the linearization

v′(t) = g(x∞)v(t)+ x∞g′(x∞)v(t −T )
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at an equilibrium x∞ tend to zero as t → ∞, then every solution x(t) of x′(t) =
x(t)g

(
x(t −T )

)
with |x(t)− x∞| sufficiently small for −T ≤ t ≤ 0 tends to the equi-

librium x∞ as t → ∞.

For the equilibrium x = 0, the linearization is v′(t) = g(0)v(t). Since g(0)> 0 for
most models of this type, the equilibrium x = 0 is unstable. For an equilibrium x∞ >
0, g(x∞) = 0 and the linearization is v′(t) = x∞g′(x∞)v(t − T ). The delay logistic
equation (3.1), for example, has linearization v′(t) = −rv(t −T ) at the equilibrium
x∞ = K, since g(x) = r

(
1− x/K

)
, g′(x) =−r/K, and thus x∞g′(x∞) =−r. In order

to determine whether all solutions of a linear differential–difference equation

v′(t) = bv(t −T ) (3.4)

tend to zero as t → ∞, we look for the condition on the parameter λ (possibly com-
plex) that v(t) = ceλ t be a solution (c �= 0). Substitution of v(t) = ceλ t into (3.4)
gives

cλeλ t = bceλ (t−T ) = bceλ te−λT .

Since eλ t �= 0, we may divide both sides by ceλ t , obtaining

λ = be−λT . (3.5)

This is a transcendental equation for λ having infinitely many roots. A basic result,
which we shall state without proof, is that if all roots of the characteristic equation
(3.5) have negative real part, then all solutions of the differential–difference equation
(3.4) tend to zero as t → ∞. This result is analogous to the corresponding result for
differential equations (Section 1.1); a proof may be found in Bellman and Cooke
(1963). However, it is much more difficult to analyze the transcendental equation
(3.5) in the delay case. The undelayed case is the special case T = 0 of (3.4) for
which the characteristic equation becomes λ = b and the condition that all roots
have negative real part is b < 0. For the delay case, with T > 0, it is possible to show
that the condition that all roots of the characteristic equation (3.5) have negative real
part is

0 <−bT <
π
2
. (3.6)

This was first established by Hayes (1950). The condition (3.6) requires b < 0, and
in addition, that the time lag T not be too large. If the condition (3.6) is violated,
the characteristic equation (3.5) has complex roots with real part zero if −bT = π/2
and positive real part if −bT > π/2. The appearance of roots λ = iy with real part
zero when −bT = π/2 is reflected in the differential–difference equation (3.4) by
the appearance of periodic solutions of the form v(t) = ceiyt , or v(t) = ccosyt in real
form. Combining this analysis with Theorem 3.1, we see that an equilibrium x∞ > 0
of the differential–difference equation x′(t) = x(t)g

(
x(t −T )

)
is asymptotically sta-

ble if 0<−x∞g′(x∞)T < π/2. For the delay logistic equation this stability condition
is 0 < rT < π/2. Thus, in addition to the stability condition

(
xg(x)

)′∣∣
x=x∞

< 0 for
stability of equilibrium for ordinary differential equations, we have an additional
requirement that the delay T be sufficiently small.
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A graphic display ofa solution is often helpful for obtaining insights into the
behavior of a solution, even if the graph does not prove results. For example, Figure
3.2 displays the solution of the delay logistic equation (3.1) with r = 1,K = 2,T = 1,
and x(t) = 1 for −1 ≤ t ≤ 0.

Fig. 3.2 Solution of the delay logistic equation.

Exercises

1. Show that the equilibrium x=K of the delay logistic equation is asymptotically
stable if 0 ≤ rT < π

2 .
2. Show that the equilibrium x = K of the differential–difference equation

x′(t) = rx(t) log
( K

x(t −T )

)
is asymptotically stable if 0 ≤ rT < π

2 .
3. Show that the function

p(u) =
ue−u/T

T 2

has a maximum for u = T.
4. With the aid of integration by parts show that
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0
p(u)du = 1 and

∫ ∞

0
up(u)du = 2T

for the function p(u) of Exercise 3.
5. Use a computer algebra system to display the solutions of

x′(t) = rx(t)
(

1− x(t −1)
)

with r = 1, r = 2, r = 3.
6∗. Find all equilibria of the differential–difference equation

x′(t) = rx(t)
(

1− x(t −T )
K

)
−H.

7∗. Find the characteristic equation at each equilibrium of the differential–difference
equation of Exercise 5.

3.3 Delayed-Recruitment Models

If R is the rate at which new members are recruited into a population and D is the
mortality rate, then we have

x′(t) = R−D.

We will consider models in which x(t) represents the number of adult members and
there is a fixed age T at which members mature and are recruited into the popu-
lation. If preadult mortality depends only on age, there is a constant probability of
survival to adulthood. If the birth rate at a given time depends only on the adult
population size at that time, then the recruitment rate at time t is a function of the
population size at time (t−T ). If the death rate at a given time also depends only on
the adult population size at that time, then the death rate at time t is a function of the
population size at time t. Thus, under the above hypotheses, we have a population
model of the form

x′(t) = R
(
x(t −T )

)−D
(
x(t)

)
. (3.7)

We will assume that the function D(x) is a monotone function, with D(0) = 0 and
limx→∞ D(x) = ∞. With regard to the function R(x), we will consider two different
types of recruitment function corresponding to different types of competition for re-
sources among either adults or preadults. Under scramble competition the available
resources are partitioned equally among all individuals. The birth rate is zero when
the population size is zero and will also tend to zero for large population sizes, with
some maximum birth rate occurring at an intermediate population size. Under con-
test competition a certain number of individuals can be maintained at the expense of
the others. The birth rate then increases with population size but is bounded as the
population size becomes large. Thus, we make one of the following sets of hypothe-
ses on the recruitment function R(x) : (1)R(0) = 0,(2)R increases to a unique maxi-
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mum value ρ for x = ξ and then decreases to zero as x → ∞ (scramble competition),
(3) R(0) = 0, R′(x)> 0 for 0 < x < ∞, and limx→∞ R(x) = ρ (contest competition).
We may also admit the possibility of an Allee effect by allowing R(x) < D(x) on
some interval 0 < x < α, with R(α) = D(α), R′(α) > D′(α). We will carry out
an equilibrium analysis, following the kind of approach we have used in several
settings previously. However, we shall first state some results relating the possible
range of population size to the initial data; proofs may be found in Brauer (1986).

Theorem 3.2. Define M by the condition

D(M) = ρ = max
0≤x≤∞

R(x).

Then, if the initial data satisfy 0 ≤ x(t)≤ M for −T ≤ t ≤ 0, the solution x(t) of the
differential–difference equation (3.7) satisfies 0 ≤ x(t)≤ M.

For studying the possibility of extinction of a population, it is useful to have a
criterion for which the population size has a positive lower bound.

Theorem 3.3. In the case of scramble competition, define m by the condition

D(m) = R(M).

If M > ξ , and if the initial data satisfy 0 < m ≤ x(t)≤ M for −T ≤ t ≤ 0, then the
solution x(t) of (3.7) satisfies m ≤ x(t)≤ M for t ≥ 0.

This lower-bound result does not cover the possibility of an Allee effect, con-
test competition, or scramble competition with M ≤ ξ . For differential–difference
equation models, unlike differential equation models, it is possible for the popula-
tion size to drop to zero without signifying extinction because there may be juvenile
members present who will mature into adult members. Extinction is guaranteed,
however, if the population size remains zero for a time interval of length T. The
start of the qualitative analysis of the delayed-recruitment model (3.7) follows our
standard pattern.

Definition 3.2. An equilibrium of the differential–difference equation

x′(t) = R
(
x(t −T )

)−D
(
x(t)

)
is a value x∞ such that R(x∞) = D(x∞), an intersection of the recruitment curve
y = R(x) and the mortality curve y = D(x).

The linearization at an equilibrium, obtained in the usual way by letting u =
x− x∞, substituting, expanding by Taylor’s theorem, and neglecting higher-order
terms, is

u′(t) =−D′(x∞)u(t)+R′(x∞)u(t −T ). (3.8)

The following result, analogous to Theorem 3.1 of the preceding section, whose
proof may be found in Bellman and Cooke (1963), is valid.
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Theorem 3.4. If all solutions of the linearization (3.8) at an equilibrium x∞ tend to
zero as t → ∞, then every solution x(t) of the differential–difference equation (3.7)
with |x(t)− x∞| sufficiently small for −T ≤ t ≤ 0 tends to the equilibrium x∞ as
t → ∞.

In order to describe the behavior of solutions of the linearization, we must study
a problem more general than that considered in the preceding section, namely the
behavior of solutions of the linear differential–difference equation

u′(t) = au(t)+bu(t −T ). (3.9)

(In the preceding section, we considered the special case a = 0.) We look for solu-
tions of the form u(t) = ceλ t and obtain the characteristic equation λ = a+be−λT .
In order that all solutions of u′(t) = au(t) + bu(t − T ) tend to zero as t → ∞, all
solutions of the characteristic equation must have negative real part. It is possible to
prove the following result [Hayes (1950)].

Theorem 3.5. Let p = aT, q = bT . Then all solutions of (3.9) tend to zero as t → ∞
if

p <−q < psecz =
z

sinz
,

where z is the solution in (0,π) of z = p tanz if p �= 0, and z = π/2, so that z/sinz =
π/2 if p = 0.

In fact, if p < −q < ep−1, the convergence of solutions to zero is ultimately
monotone , while if p < ep−1 <−q < psecz, the convergence of solutions is oscil-
latory. In particular, if p < −q < −p, all solutions tend to zero as t → ∞ for every
value of T . The stability region for (3.9) in the (p,q)-parameter plane is shown in
Figure 3.3.

For the delayed-recruitment model x′(t) = R
(
x(t −T )

)−D
(
x(t)

)
, the lineariza-

tion is
u′(t) =−D′(x∞)u(t)+R′(x∞)u(t −T ),

and we have p = −D′(x∞)T < 0, q = R′(x∞)T. Combining Theorems 3.4 and 3.5,
we obtain the following conclusions (Figure 3.3):

1. At an equilibrium x∞ with R′(x∞)> 0, or q> 0, we have exponential asymptotic
stability if p<−q, or D′(x∞)>R′(x∞) and exponential instability if p>−q, or
D′(x∞)< R′(x∞). (This covers contest competition; scramble competition with
M < ξ , so that x∞ < ξ , the lowest equilibrium when there is an Allee effect;
and the case D(x)> R(x) for all x > 0, so that x = 0 is the only equilibrium. In
particular, there can be no oscillation in these situations.)

2. At an equilibrium x∞ with R′(x∞) < 0, or q < 0, asymptotic stability can be
either exponential or oscillatory. There is numerical evidence to indicate that in
case of instability there may be periodic solutions, period-doubling, and even-
tually chaotic behavior, as is the case for difference equations.

3. An equilibrium x∞ with |R′(x∞)| < D′(x∞) is asymptotically stable for all T,
0 ≤ T < ∞. This property is known as absolute stability.
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Fig. 3.3 Stability regions for u′(t) = pu(t)+qu(t −T ).

In fact, it is possible to establish the stronger result of Cooke and van den Driessche
(1986):

Theorem 3.6. For an equilibrium x∞ of the differential–difference equation (3.7),
one of the following three possibilities must occur:

i. The equilibrium x∞ is asymptotically stable for all values of T, 0 ≤ T < ∞
(absolute stability).

ii. The equilibrium x∞ is asymptotically stable for T less than some value T ∗ and
unstable for T greater than T ∗.

iii. The equilibrium x∞ is unstable for every T ≥ 0.

Theorem 3.6 implies that increasing the time lag cannot stabilize an equilibrium
that is unstable when the time lag is small, but can destabilize an equilibrium that is
stable when the time lag is small.

In contest competition, since D(x) → ∞ while R(x) is bounded as x → ∞,
there must be a largest equilibrium that is asymptotically stable, indeed exponen-
tially asymptotically stable. The smallest asymptotically stable equilibrium (if there
should be more than one) serves effectively as a positive lower bound for solutions.
In scramble competition with M < ξ , there is an exponentially asymptotically stable
equilibrium x∞ < ξ , which serves as an effective positive lower bound. When there
is an Allee effect with smallest equilibrium α, solutions with initial data less than α
tend monotonically to zero, but solutions with initial data greater than α are forced
upward, and α serves as a lower bound. If D(x) > R(x) for all x > 0, there is no
positive lower bound for solutions; indeed, all solutions tend to the exponentially
asymptotically stable equilibrium x = 0.

Example 1. Consider the recruitment function
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Fig. 3.4 Equilibrium possibilities.

R(x) = rxe−x/A

and the mortality function D(x) = dx. Then R(x) has a maximum of rA/e attained
when x = A. Thus, the model

x′(t) = rx(t −T )e−x(t−T )/A −dx(t) (3.10)

represents scramble competition. There is always an equilibrium at x = 0 and there
is a positive equilibrium x∞ given by re−x∞/A = d, or x∞ = A logr/d, if and only if
r > d. Then R′(x) = re−x/A

(
1− x/A

)
and D′(x) = d, so that R′(0) = r, D′(0) = d,

and R′(x∞) = d(1− x∞/A) = d
(
1− logr/d

)
, D′(x∞) = d. Theorem 3.5 shows that

the equilibrium x = 0 is asymptotically stable if and only if r < d, that is, if and only
if there is no positive equilibrium. If r > d, so that the equilibrium x = 0 is unstable,
we may analyze the stability of the equilibrium x∞ > 0 by applying Theorem 3.5
with p = −D′(x∞)T = −dT, q = R′(x∞)T = dT

(
1− logr/d

)
. We can deduce that

the equilibrium x∞ is absolutely stable if −1 < 1− x∞/A < 1, which reduces to
log(r/d)< 2 or r < de2. More generally, the equilibrium x∞ is asymptotically stable
if

−dT <−dT
(

1− log
r
d

)
<−dT secz, (3.11)

where z =−dT tanz. The condition (3.11) reduces to

1 > 1− log
r
d
> secz,
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or
0 < log

r
d
< 1− secz.

This implies that a large ratio r/d tends to make for instability, at least for large
values of T. Figure 3.5 shows the solution of the differential–difference equation
x′(t) = 10x(t −1)e−x(t−1)− x(t) with x(t) = 1 for −1 ≤ t ≤ 0.

Fig. 3.5 Solution of x′(t) = 10x(t −1)e−x(t−1)− x(t).

Exercises

1. Find all equilibria of

x′(t) =
rx(t −T )

x(t −T )+A
−dx(t)

and determine the values of T for which they are asymptotically stable. Use a
computer algebra system to graph some solutions for A = 1, r = 2, d = 1.

2. Find all equilibria of

x′(t) =
r[x(t −T )]2(

x(t −T )
)2

+A2
−dx(t)
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and determine the values of T for which they are asymptotically stable. Use a
computer algebra system to graph some solutions for A = 1, r = 2, d = 1.

3∗. (i) A population is governed by the delayed-recruitment model

x′(t) = x(t −T )e3−x(t−T )− x(t).

Find all equilibria and determine their stability.
(ii) A fraction p (0 < p < 1) of the population in part (a) is removed per unit

time, so that the population is modeled by

x′(t) = x(t −T )e3−x(t−T )− x(t)− px(t).

Find the relation between the removal fraction p and the largest delay T
for which there is an asymptotically stable positive equilibrium.

(iii) Use a computer algebra stystem to graph solutions with T = 1 for p =
0.2, p = 0.5, p = 0.8.

4. Use a computer algebra system to graph solutions of the differential–difference
equation x′(t) = rx(t −1)e−x(t−1)− x(t) with r = 2, r = 10.

3.4 Models with Distributed Delay

In Section 3.2 we suggested that the model x′(t) = x(t)g
(
x(t − T )

)
with the per

capita growth rate depending on population size with delay T might be generalized
to the form

x′(t) = x(t)
∫ ∞

0
g
(
x(t − s)

)
p(s)ds,

describing a distributed delay. Here p(s)Δs represents the probability of a delay
between s and s+Δs, so that

∫ ∞
0 p(s)ds= 1. The average delay is then, by definition,∫ ∞

0 sp(s)ds. An equilibrium of the integro-differential equation

x′(t) = x(t)
∫ ∞

0
g[x(t − s)]p(s)ds

is a value x∞ such that

x∞

∫ ∞

0
g(x∞)p(s)ds = x∞g(x∞) = 0,

so that x = 0 is an equilibrium and equilibria x∞ > 0 are given by g(x∞) = 0. To
linearize about an equilibrium x∞, we let u(t) = x(t)− x∞, so that

u′(t) =
(
x∞ +u(t)

)∫ ∞

0
g
(
x∞ +u(t − s)

)
p(s)ds,

and expand using Taylor’s theorem, obtaining
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u′(t) =
(
x∞ +u(t)

)∫ ∞

0

(
g(x∞)+g′(x∞)u(t − s)+ · · ·)p(s)ds

=
(
x∞ +u(t)

)(
g(x∞)+g′(x∞)

∫ ∞

0
u(t − s)p(s)ds+ · · ·

)
= x∞g(x∞)+g(x∞)u(t)+ x∞g′(x∞)

∫ ∞

0
u(t − s)p(s)ds+ · · · ,

where all quadratic and higher-order terms in u have been suppressed. The lineariza-
tion at the equilibrium is thus

v′(t) = g(x∞)v(t)+ x∞g′(x∞)
∫ ∞

0
v(t − s)p(s)ds.

As with other types of equations we have studied, such as differential equations,
difference equations, and differential–difference equations, the behavior of solutions
near an equilibrium is described by the behavior of solutions of the linearization at
the equilibrium for integrodifferential equations. Therefore, we are led to study the
linear integrodifferential equation

v′(t) = av(t)+b
∫ ∞

0
v(t − s)p(s)ds

with p(s)≥ 0 for 0 ≤ s < ∞ and
∫ ∞

0 p(s)ds = 1. In the special case we are consider-
ing, a= g(x∞) and b= x∞g′(x∞), so that either a= 0 (if x∞ > 0) or b= 0 (if x∞ = 0),
but we shall consider the general case in which both a and b may be different from
zero because it will arise later. It is possible to prove that solutions tend to zero as
t →∞ if b> 0 and a+b< 0; or if b< 0, a+b< 0, and the average delay

∫ ∞
0 sp(s)ds

is small enough; but that solutions cannot tend to zero if a+ b ≥ 0. The necessary
(but not sufficient) stability condition a+ b < 0 is in fact the necessary and suffi-
cient condition for asymptotic stability in the undelayed case, corresponding to an
ordinary differential equation x′ = xg(x) with linearization

v′ =
(
xg(x)

)′∣∣
x=x∞

v =
(
g(x∞)+ x∞g′(x∞)

)
v = (a+b)v.

To study the behavior of solutions of

v′(t) = av(t)+b
∫ ∞

0
v(t − s)p(s)ds

for a specific kernel p(s), we look for solutions v(t) = ceλ t and construct a charac-
teristic equation, obtaining

λceλ t = aceλ t +b
∫ ∞

0
ceλ (t−s)p(s)ds,

λ = a+b
∫ ∞

0
e−λ s p(s)ds = a+bL{p(λ )},
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where L{p(λ} denotes the Laplace transform of the function p evaluated at λ . We
will consider two specific choices of p, both normalized so that

∫ ∞
0 p(s)ds = 1 and∫ ∞

0 sp(s)ds = T, making use of the formulas∫ ∞

0
e−αsds =

1
α
,

∫ ∞

0
se−αsds =

1
α2 ,

∫ ∞

0
s2e−αsds =

2
α3 .

Our first example is p1(s) = 4/T 2se−2s/T , with p1(t) vanishing at zero, rising to a
maximum at s = T/2, and then falling off exponentially. We have

L{p1(λ )}=
∫ ∞

0
e−λ s p1(s)ds =

4
T 2

∫ ∞

0
se−(λ+ 2

T )sds

=
4

T 2
1(

λ + 2
T

)2 =
4

T 2λ 2 +4T λ +4
.

The characteristic equation is

a+
4b

λ 2T 2 +4T λ +4
= λ ,

or

λ 3 +
(4T −aT 2

T 2

)
λ 2 +

(4−4aT
T 2

)
λ − 4a+4b

T 2 = 0.

Our problem now is that we need conditions on the coefficients of a polynomial
equation that ensure that all roots have negative real part. This is provided by the
Routh–Hurwitz conditions, which for a cubic equation λ 3 +αλ 2 +βλ + γ = 0 say
that all roots have negative real part if and only if α > 0, γ > 0, αβ > γ. Here,
α = 4−aT

T ,β = 4−4aT
T 2 ,γ =− 4(a+b)

T 2 , and the stability conditions are a+b < 0, aT <

4, −bt < (2− aT )2. Now take a = g(x∞), b = x∞g′(x∞). If x∞ = 0, so that b = 0,
these conditions reduce to g(x∞) < 0, which is satisfied in population models only
if there is an Allee effect. If x∞ > 0 so that a = 0 the stability conditions reduce
to 0 < −x∞g′(x∞)T < 4, quite similar to the single-delay case, where the stability
condition was 0 <−x∞g′(x∞)T < π/2.

Our second example is p2(s) = 1/Te−s/T with p2, decreasing exponentially from
1/T to zero, rather than rising to a maximum like p1(s). We have

L{p2(λ )}=
∫ ∞

0
e−λ s p2(s)ds =

1
T

∫ ∞

0
e−( 1

T +λ )sds =
1

λT +1
,

and the characteristic equation is a+ b
λT+1 = λ , or λ 2 + 1−aT

T 2 λ − a+b
T 2 = 0. The sta-

bility condition that both roots of this quadratic equation have negative real part is
1−aT > 0, −(a+b)> 0. Now take a = g(x∞), b = x∞g′(x∞); if x∞ = 0, these con-
ditions reduce to g(x∞)< 0, which is not satisfied. If x∞ > 0, the stability condition
is just g′(x∞)< 0, since a = 0, exactly as if there were no delay; there is no require-
ment that the average delay not be too large. The point is that with distributed delay
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each delay kernel must be examined in its own right. It is not true that increasing
the average delay always destroys stability.

Delayed recruitment populations with variable maturation ages can also be de-
scribed by integrodifferential equations, now of the form

x′(t) =
∫ ∞

0

1
π

B
(
x(t − s)

)
p(s)ds−D

(
x(t)

)
.

Here B
(
x(t − s)

)
is the number born at time (t − s), reaching age s at time t; p(s)Δs

is the fraction of those members who reach maturity, doing so at age s to s+Δs; π is
the ratio of the number of members who reach maturity to the number born, so that
p(s)Δs/π is the fraction of members born who reach maturity at age s to s+Δs;
and D

(
x(t)

)
is the number dying at time t. An equilibrium of this integrodifferential

equation is a solution x∞ of the equation

D(x∞) =
1
π

B(x∞)
∫ ∞

0
p(s)ds =

1
π

B(x∞).

The by-now familiar process yields the form of the linearization at an equilibrium
as

v′(t) =−D′(x∞)v(t)+
1
π

B′(x∞)
∫ ∞

0
v(t − s)p(s)ds.

This is of the form
v′(t) = av(t)+b

∫ ∞

0
v(t − s)p(s)ds,

with characteristic equation λ = a+b
∫ ∞

0 e−λ s p(s)ds already described. As before, it
can be shown that the equilibrium is asymptotically stable if (1/π)B′(x∞)< D′(x∞)
and B′(x∞)> 0 or B′(x∞)< 0 and

∫ ∞
0 sp(s)ds is small enough, but further informa-

tion depends on the form of p(s).

Exercises

1. Find all equilibria of

x′(t) =
1
π

∫ ∞

0

rx(t − s)
x(t − s)+A

p(s)ds−dx(t)

and determine the values of T for which they are asymptotically stable if

(i)

p(s) =
4se−2s/T

T 2 ,

(ii)

p(s) =
e−s/T

T
.
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.

2. Find all equilibria of

x′(t) =
1
π

∫ ∞

0

r
(
x(t − s)

)2(
x(t − s)

)2
+A2

p(s)ds−dx(t)

and determine the values of T for which they are asymptotically stable for each
of the choices of p(s) in Exercise 1.

3. Find all equilibria of

x′(t) =
1
π

∫ ∞

0
rx(t − s)e−x(t−s)p(s)ds−dx(t),

and determine the value of T for which they are asymptotically stable for each
of the choices of p(s) in Exercise 1.

3.5 Harvesting in Delayed Recruitment Models

In Section 1.4 we investigated the effect of harvesting on a continuous population
model. Here we wish to study whether a continuous model with a time lag, such
as a delayed-recruitment model of the type introduced in Section 3.3, responds to
harvesting in the same way as a model without a time lag. Thus we could consider
a population model

x′(t) = R
(
x(t −T )

)−D
(
x(t)

)−Ex(t) (3.12)

to model constant-effort harvesting, or a model

x′(t) = R
(
x(t −T )

)−D
(
x(t)

)−H (3.13)

to model constant-yield harvesting.

3.5.1 Constant-Effort Harvesting

The analysis of the constant-effort harvesting model (3.12) is exactly the same as
the analysis of the unharvested model with the mortality function D(x) replaced
by D(x)+Ex. Rather than carrying out the analysis in the general case, we examine
only the special case R(x)= rxe−x/A, D(x)= dx considered as an example in Section
3.3. By following the analysis of this example we can see that the equilibrium x = 0
is asymptotically stable if and only if r < d+E, or E > r−d. If 0 ≤ E < r−d, there
is a positive equilibrium x∞ that is absolutely stable if r < (d+E)e2, or E > r/e2−d.
In general, increasing the effort tends to stabilize the equilibrium, but too high an
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effort will wipe out the population. If r > de2, so that the stability of the positive
equilibrium depends on the delay T, then increasing the harvest effort tends to stabi-
lize the equilibrium, but increasing the delay tends to destabilize it. The maximum
sustainable yield is found exactly as for the undelayed model in Section 1.5, but the
introduction of a time lag into the model raises the possibility of instability of the
equilibrium corresponding to the maximum sustainable yield. For the special case
R(x) = rxe−x/A, D(x) = dx, the maximum sustainable yield is achieved when the
mortality–harvest curve y = (d +E)x passes through the maximum point

(
A,rA/e

)
of the recruitment curve y = rxe−x/A. This requires rA

e = (d +E)A, or E = r/e−d.
Since r/e− d > r/e2 − d, the equilibrium corresponding to maximum sustainable
yield is actually absolutely stable. The behavior of more general compensation mod-
els under constant-effort harvesting is similar to the above special case. We shall not
explore the more complicated situation for depensation models.

3.5.2 Constant-Yield Harvesting

The model (3.13) must be modified slightly in order to rule out the possibility that
x′(t) < 0 when x(t) = 0, since negative population sizes have no biological signifi-
cance. To be realistic (and also to avoid important errors in carrying out numerical
approximations), we should specify the model by

x′(t) =

{
R
(
x(t −T )

)−D
(
x(t)

)−H for x(t)≥ 0,
max{R

(
x(t −T )

)−D
(
x(t)

)−H,0} for x(t) = 0.
(3.14)

Because of the time lag, it is possible for x(t) to reach zero without the collapse of
the system; even if the adult population is wiped out, there may still be immature
members who will reach the adult stage. Of course, if x(t) = 0 on a time interval
of length T , there is no possibility of regeneration of the adult population, and we
shall consider the population to have become extinct. Under the hypotheses made in
Section 3.3 on the recruitment function R(x) and the mortality function D(x), it is
possible to show that the bounds on solutions obtained in Section 3.3 are also valid
for the constant-yield harvesting model (3.14). An equilibrium of the model (3.14)
is defined to be a value x∞ for which

R(x∞) = D(x∞)+H,

which is the abscissa of an intersection of the recruitment curve y = R(x) and
the mortality–harvesting curve y = D(x)+H. We may sometimes use the notation
x∞(H) to emphasize the dependence on H. The effect of increasing the harvest rate
H is to move the mortality–harvesting curve upward. For sufficiently large H, the
mortality–harvesting curve is above the recruitment curve, and there are no equilib-
ria. It is possible to prove that if the model (3.14) has no equilibrium x∞ > 0, then
every solution tends to zero as t → ∞ if H = 0 and reaches zero in finite time and
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remains at zero if H > 0. There is a critical harvest rate Hc such that there is an
equilibrium x∞(H)> 0 if H < Hc but there is no equilibrium x∞(H) if H > Hc (Fig-
ure 3.6). When H = Hc the recruitment curve y = R(x) and the mortality–harvesting
curve y = D(x)+H are tangent at x∞(Hc).

Fig. 3.6 Equilibria under harvesting.

The linearization of (3.14) at an equilibrium x∞ is

u′(t) =−D′(x∞)u(t)+R′(x∞)u(t −T ),

which is exactly the same as in the case of no harvesting studied in Section 3.3.
The same analysis of the characteristic equation as that in Section 3.3 leads to the
following conclusions:

(i) An equilibrium x∞ with |R′(x∞)|< D′(x∞) is absolutely stable.
(ii) An equilibrium x∞ with −R′(x∞) > D′(x∞) > 0 is asymptotically stable for

small T and unstable for large T .
(iii) An equilibrium x∞ with R′(x∞)> D′(x∞)> 0 is unstable for all T.

These conclusions are valid provided R(x) and D(x) satisfy the hypotheses of
Section 3.3, namely

D(0) = 0, D′(x)≥ 0, lim
x→∞

D(x) = +∞,

and either

R(0) = 0, R′(x)≥ 0for x ≤ ξ , R′(x)≤ 0for x ≥ ξ , lim
x→∞

R(x) = 0

or
R(0) = 0, R′(x)≥ 0for0 ≤ x < ∞, lim

x→∞
R(x) = r < ∞.

Under these hypotheses, D(x) > R(x) for large x, and this implies that if there are
any positive equilibria, there must be a largest equilibrium x∞ for which D′(x∞) >
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R′(x∞), and this equilibrium must be asymptotically stable at least for sufficiently
small T. Because

R′(x∞(Hc)) = D′(x∞(Hc))> 0

the equilibrium x∞(H) must be absolutely stable when H is close to Hc. Thus, the
effect of harvesting is to stabilize a population system, even one that may behave
chaotically without harvesting. However, overharvesting can lead to catastrophe and
the wiping out of the population. Figure 3.7 shows the solution of the differential–
difference equation x′(t)= 10x(t−1)e−x(t−1)−x(t)−2 with x(t)= 1 for −1≤ t ≤ 0.
The effect of harvesting becomes clear when Figure 3.7 is compared to Figure 3.5.

Fig. 3.7 Solution of x′(t) = 10x(t −1)e−x(t−1)− x(t)−2.

Exercises

1. A population under harvesting is governed by the delayed-recruitment model

x′(t) = x(t −T )e3−x(t−T )− x(t)−H.

Find the relation between the harvesting rate H and the largest delay T for
which there is an asymptotically stable positive equilibrium. Use a computer
algebra system to graph the solutions with T = 1 and with H = 1, H = 5, H =
10.

2. Find the critical harvest rate Hc for the model

x′(t) = rx(t −T )e−x(t−T )/A −dx(t)−H.
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3∗. For the general model

x′(t) = R
(
x(t −T )

)−D
(
x(t)

)−Ex(t),

show that the equilibrium x = 0 is unstable if 0 ≤ E < R′(0)−D′(0), and ab-
solutely stable if E > R′(0)−D′(0).

3.6 Nicholson’s Blowflies: A Case Study

In 1954, A.J. Nicholson conducted some experiments on the Australian sheep
blowfly (Lucillia cuprina) in which he observed oscillations of large amplitude in
the population size. In these experiments the population was controlled by a single
factor, either the rate at which food was supplied to the adult population (in which
case the adult population showed oscillations with almost discrete generations and
there was a pattern of breeding activity with periods of essentially zero reproduc-
tion alternating with relatively long bursts of continuous reproductive activity) or the
rate at which food was supplied to the larvae (in which case each burst of reproduc-
tive activity showed two clearly discrete generations, and this reproductive activity
occurred in alternate population cycles). It is reasonable to ascribe the pattern of os-
cillations to some kind of delay mechanism appearing in the per capita growth rate
as described in Section 3.2 or in the recruitment rate as described in Section 3.3.
Which mechanism is more plausible as an explanation for the oscillations? Suppose
we attempt to use the delay logistic equation

x′(t) = rx(t)
(

1− x(t −T )
K

)
to describe this population, as proposed by May (1974). It is convenient to rescale
the model in terms of dimensionless variables. We first let x = Ky to transform
the model to y′(t) = ry(t)

(
1− y(t − T )

)
. Then we make the change of indepen-

dent variable t = T s and let y(t) = z(s), so that y(t − T ) = z(s− 1) and y′(t) =
(dy/ds)(ds/dt) = (1/T )z′(s) to obtain the dimensionless form

z′(s) = (rT )z(s)
(
1− z(s−1)

)
containing a single free parameter rT. For this differential–difference equation there
is an equilibrium of z = 1, and the linearization at this equilibrium is

u′(s) =−rTu(s−1).

We know that the equilibrium z = 1 is asymptotically stable if rT < π/2 and that
there is a stable periodic solution if rT > π/2. Numerical simulation for rT > π/2
indicates relationships among the value of the parameter rT, the ratio of maximum
to minimum population size, and the period of the periodic solution. From the ob-
served ratio of maximum to minimum population size, May estimated rT ≈ 2.1,
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which implies a period of 4.54 in dimensionless units, or 4.54T in days. Then he
deduced from the observed period that the time delay was approximately 9 days,
compared to the experimentally observed larva-to-adult maturation time of 11 days.
From these data, he concluded that the agreement between observation and the
rather crude model used was sufficiently good to indicate that delay in the per capita
growth rate might explain the observed behavior.

In 1980, May’s calculations were reexamined by W.S.C. Gurney, S. P. Blythe,
and R.M. Nisbet (1980). They observed a maximum to minimum ratio of popu-
lation sizes in Nicholson’s adult-food-limited experiment (the only one for which
May made calculations) of 36± 17, which would imply 1.880 < rT < 2.035 (the
maximum to minimum population size ratio is difficult to measure accurately, but
rT is not very sensitive to changes in this ratio), and that the period of oscillations
in the solution is between 4.26T and 4.47T. The fact that the observed period was
38.1± 1.5 days implies that the delay T must be between 36/4.47 = 8.2 days and
39.6/4.26 = 9.3 days. This is really not very close to the observed delay, for Nichol-
son observed an egg to reproductive maturity time of between 14.3 and 15.6 days,
and since our model describes adult population size this is the appropriate delay.
The data also give an independent verification of this delay, since there are clear
bursts of reproduction preceding each adult population peak by 14.8± 0.4 days.
Since egg-to-adult survival is high (approximately 90 percent) and constant in the
adult-food-limited experiments, this lag should be the same as the delay T . The
discrepancy between a predicted delay of 8.2 to 9.3 days and the observed delay
of 14.3 to 15.6 days indicates that the phenomenon observed cannot be explained
satisfactorily by use of the delay logistic equation as a model.

A more general model of the form

x′(t) = x(t)g
(
x(t −T )

)
would be no more satisfactory than the delay logistic equation, because lineariza-
tion about a positive equilibrium would produce the same linearized equation with
the same parameters. Thus we conclude that delay in per capita growth rates does
not explain the observed behavior, and we are led to search for a more satisfactory
model. In fitting data to experiments, more accurate measurements often indicate
discrepancies not disclosed by rough measurements. In searching for a model, we
will continue to assume that the oscillations are the result of some delay mecha-
nism. While our model will be somewhat more complicated than the delay logistic
equation, we would like to have only a small number of controlling parameters. A
model with only one controlling parameter in dimensionless variables will always
have a linearization about equilibrium either of the form z′(s) = az(s), whose so-
lutions are exponential functions, or of the form z′(s) = bz(s− 1), which has been
tried and found wanting in our examination of the delay logistic equation. Thus we
must expect at least two controlling parameters in a satisfactory model. Because the
time required for eggs to mature to adults appears to be related to the oscillatory
behavior, it is natural to consider a delayed recruitment model of the form
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x′(t) = R
(
x(t −T )

)−D
(
x(t)

)
,

in which T is the maturation time, R(x) is the number of eggs produced per unit
time when the adult population size is x multiplied by the probability of survival to
adulthood, and D(x) is the number of adults dying per unit time when the population
size is x. Data about egg production, survival to adulthood, and death rates suggest
use of the functions

R(x) = rxe−x/A, D(x) = dx,

to give the model
x′(t) = rx(t −T )e−x(t−T )/A −dx(t), (3.15)

both for adult-food-limited and for larva-food-limited studies, even though the egg
production rates and survival probabilities have different forms in the two cases.
The changes of variable x = Ay, t = T s, with the definition y(t) = z(s) transforms
the model to the dimensionless form

z′(s) = (rT )z(s−1)e−z(s−1)− (dT )z(s), (3.16)

having two controlling parameters rT and dT . We will assume r > d to allow the
possibility of a positive equilibrium z∞ obtained by solving rTe−z = dT, so that
z∞ = log(r/d)> 0. The linearization about the equilibrium z∞ is

u′(s) = dT
(

1− log
r
d

)
z(s−1)−dT z(s),

and we can describe conditions for the stability of the equilibrium z∞ in terms of
the values of rT and dT . In fact, we can plot in the (dT,rT )-plane the regions
of exponential asymptotic stability, oscillatory asymptotic stability, and instability
with a stable periodic solution, much as we plotted these regions in the (aT,bT )
plane for the equation u′(t) = au(t) + bu(t − T ) in Section 3.3. With the aid of
numerical simulations we can go further: In the region of instability we can plot the
contours along which the ratio of maximum to minumum population size is constant
and the contours along which the ratio of period of the solution to delay is constant.
The confidence limits for these two observable quantities give four contours that
define a confidence region in the (dT,rT )-plane and thus estimate rT and dT. The
estimates used earlier (36±17 and 4.6±0.1, respectively) lead us to the estimates
rT = 150±70, dT = 2.9±0.5.

We may also estimate r and d independently. During the portion of each cycle
when the population size is approaching its minimum, the rate of adult recruitment
is close to zero. Thus, on these intervals the model is essentially z′(s) = −dz(s),
and z(s) behaves like ce−ds. If we plot logz against s on these intervals, then d is
the negative of the slope of the “best straight line” in these plots; this procedure
leads to the estimate d = 0.27±0.025, dT = 4.0±0.5, which does not quite agree
with the model prediction but at least does not disagree violently. No doubt it would
be possible to fudge the data to give agreement. We may estimate r from the fact
that the maximum rate of egg production multiplied by the constant survival proba-
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bility divided by the population size at maximum production is r/e (the maximum
value of the function rxe−x attained for x = 1). From observation of production rates
we estimate 7.4 < r < 14, 100 < rT < 160, and this is quite compatible with the
model estimate 80 < rT < 220. We conclude that the delayed-recruitment model
is a plausible description and may use the model to make further predictions about
the behavior of the population. Not only do we obtain population oscillations very
similar to those observed experimentally, but we also deduce a pattern of breed-
ing activity with bursts of continuous activity alternating with periods of essentially
zero reproduction. If we fit the same model to the observed data for the larva-food-
limited experiments, we obtain rT = 170 ± 50, dT = 5.5 ± 1.6 for one run and
rT = 380± 250, dT = 4.7± 0.7 for a second. Both give separate bursts of repro-
duction with two clearly discrete generations, different from the prediction of the
same model for the adult food-limited experiment but in accordance with the ob-
served differences between the two experiments. This reinforces our acceptance of
the model. There is another possible explanation in both models, namely that there
is in fact an asymptotically stable equilibrium that is approached (possibly very
slowly) in an oscillatory manner. However, for the delay logistic model, if this were
the case, the period of oscillation could not be less than 4T for any value of the
controlling parameter rT, and this is quite incompatible with observation. For the
delayed-recruitment model the asymptotic stability hypothesis leads to the estimates
rT = 23.5±4.5,dT = 30±0.7 for the controlling parameters. The estimate for rT
is radically different from the independent estimate, and thus we may reject this
explanation for either model. Figure 3.8 shows the solution of the delayed recruit-
ment model with the parameter values r = 10,d = 0.2, T = 15 and with x(t) = 1 for
−1 ≤ t ≤ 0, which are close to our estimates for the adult food-limited experiment.

When we transformed the delayed-recruitment model (3.15) to the dimensionless
form (3.16) we were following a procedure that is often useful in constructing and
analyzing models. In (3.15) the population size x is measured in number of mem-
bers or in biomass, and the time t is measured in units of time. Let us suppose that
x is measured in grams and t is measured in days. Then x′(t) is measured in gram
day−1. Each term of the equation (3.15) must be measured in the same units. Since
both x and A are population sizes measured in grams, the quotient x/A is dimen-
sionless. This means that a change in units of mass will not alter the value of x/A.
Then e−x(t−T )/A is also dimensionless. Since x′(t) is measured in gram day−1, each
term on the right side of (3.15) must also have these dimensions. Since z is mea-
sured in grams, the coefficients r and d must have units of days−1. The change of
dependent variable x = Ay gives a new variable y, which is dimensionless; y mea-
sures population size in units of size A. Similarly, the change of independent variable
t = T s gives a dimensionless variable s measuring time in units of size T. The model
(3.16) is equivalent to (3.15) but is in terms of dimensionless independent and de-
pendent variables. It involves two parameters rT and dT , which are dimensionless.
The original model (3.15) contained four parameters, r,d,T,A. In general, for every
reduction from a variable to a dimensionless variable we may expect to remove one
parameter. The dimensionless form (3.16) is more convenient than the form (3.15)
for fitting data because its parameters are no longer coupled together.
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Fig. 3.8 Behavior of the delay-recruitment model.

3.7 Project: A Model for Blood Cell Populations

Many physiological systems normally display predictable patterns, either remaining
almost constant or having regular oscillations. There are diseases, called dynamical
diseases, that are marked by changes in these patterns such as changes in the nature
of the oscillations. One area in which dynamical diseases have been observed ex-
perimentally is the blood system. Some forms of anemia and leukemia have been
identified as dynamical diseases. A physiological change may cause a change in
parameters of a model, which can alter the qualitative nature of the solutions.

Most types of blood cells are formed from primitive stem cells in the bone mar-
row, a development process that takes about six days. The cell-production process
is not well understood, but it appears that the production rate should be small for
small density levels and should increase to a maximum and then decrease to zero as
cell density increases. One form, which has been used successfully in fitting experi-
mental data [Mackey and Glass (1977); Glass and Mackey (1979), (1988)] is that if
the cell density is y, the production rate has the form

p(y) =
bθ ny

θ n + yn ,

with positive constants b, θ , n > 1.
In addition, there is a steady elimination process whose rate depends on the type

of cell. For granulocytes (a type of white blood cell) the cell destruction rate is
about 10 percent per day. We assume that the elimination rate has the form cy. If
there were no time lag in the production of cells, we would model the process by
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the differential equation

y′ = p(y)− cy =
bθ ny

θ n + yn − cy. (3.17)

Question 1
Show that the change of variable y = uθ transforms (3.17) to the differential equa-
tion

u′ =
bu

1+un − cu. (3.18)

This means that θ can be eliminated from the model by choosing θ as the unit of
measurement for blood-cell density.

Question 2
Find all equilibria of (3.18) and determine which are asymptotically stable and
which are unstable. (You will need to distinguish between the cases b> c and b< c.)

Question 3
Use a computer algebra system to graph some solutions of (3.18) with the parameter
values

c = 0.1 day−1, b = 0.2 day−1, n = 10

(which are appropriate for granulocytes in healthy humans).
You should recognize that the model (3.18) cannot produce irregular behavior for

any choice of the parameters b and c, and thus cannot explain dynamical disease. In
fact, it cannot even produce regular oscillations. By overlooking the time lag in the
production process, we have lost an essential feature of the system. This suggests
using a differential–difference equation model

u′(t) =
bu(t − τ)

1+[u(t − τ)]n
− cu(t), (3.19)

with a delay τ corresponding to the cell-development process.

Question 4
Find all equilibria of (3.19), and show that the equilibrium u = 0 is asymptotically
stable if b < c and unstable if b > c.

While it would be possible to obtain a stability criterion for the positive equilib-
rium of (3.19) if b > c, this is quite complicated technically. Instead, we will use a
computer algebra system to learn about the behavior of solutions; we may use the
resources mentioned in Section 3.1.
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Question 5
Use the parameter values

c = 0.1 day−1, b = 0.2 day−1, n = 10, τ = 6 days

and sketch some solutions of (3.19).

In chronic myelogeneous leukemia, it is thought that the production time of blood
cells increases, and that this may lead to irregular behavior.

Question 6
Use the parameter values

c = 0.1 day−1, b = 0.2 day−1, n = 10, τ = 20 days

and sketch some solutions of (3.19).

In order to avoid the complications that arise in the analysis of differential–
difference equations, one might try to use a difference equation model to incorporate
a time lag. If the production and elimination process occurred at discrete intervals,
we might try to use a model

uk+1 = uk +
βuk

1+un
k
−ξ uk = (1−ξ )uk +

βuk

1+un
k
. (3.20)

Now the production delay τ corresponds to one time unit in the difference equation
(3.20).

Question 7
Show that to make (3.20) correspond to the differential–difference equation (3.19),
we should take β = τb. Show also that we should take ξ = 1−(1−c)τ . (Elimination
of a fraction c per day gives a remainder of (1− c)τ after τ days.)

Question 8
Find all equilibria for (3.20) and obtain conditions in terms of β , ξ , and n for their
asymptotic stability.

Question 9
Determine whether the positive equilibrium of (3.20) is asymptotically stable for the
parameter values corresponding to

c = 0.1 day−1, b = 0.2 day−1, n = 10, τ = 6 day

and also for the parameter values corresponding to

c = 0.1 day−1, b = 0.2 day−1, n = 10, τ = 20 day.
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Use a computer algebra system to sketch some solutions for each of these sets of
parameter values, and compare with the sketches obtained in Questions 5 and 6.

3.8 Project: Some Epidemic Models

We formulate several epidemic models for which the infective period has a fixed
length T and for which new infections occur at a rate βSI (mass action), where S is
the number of susceptible individuals and I is the number of infective individuals.
There are no disease deaths, and the total population size is a constant N. Then I
satisfies the equation

I′(t) = βS(t)I(t)−βS(T −T )I(t −T );

a more convenient form for this equation is

I(t) =
∫ t

t−T
βS(x)I(x)dx. (3.21)

We consider the following possibilities;

1. Infective individuals recover with no immunity against reinfection. These indi-
viduals return to the susceptible class. Then S = N − I, and the model consists
of the single equation (3.21) with S replaced by (N − I).

2. Infective individuals all die of the disease, and the model is given by the equa-
tion (3.21) together with

S′ =−βSI. (3.22)

3. Infective individuals all recover and go into a removed class R. The model
is given by the equations (3.21), (3.22), together with a third equation for R,
namely

R′(t) = βS(t −T )I(t −T ). (3.23)

For each of these three different scenarios, determine the asymptotic behavior of
the model and compare the behaviors of the three models. Be careful; there may be
some cases in which this depends on the values of the parameters β ,T .

3.9 Project: A Neuron Interaction Model

There is a coupling of particular pairs of neurons in recurrent synaptic feedback in
the vertebrate nervous system. Neuron 1 sends an action potential down its axon,
which branches so that one neighbor connects with a near neighbor, neuron 2. Some
of the synapses of neuron 2 impinge on neuron 1 and may either excite or inhibit it.
We give a model of this [Plant (1981)] based on the Fitzhugh–Nagumo equations.
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These describe the time dependence of the action potential v(t). There is also an in-
activation variable w(t) necessary to bring the membrane potential back to a resting
value after the action potential is stimulated. The equations contain a feedback term
depending on the deviation of v from v0 at an earlier time and have the form

v′(t) = v− v3

3
+w+m[v(t −T )− v0], (3.24)

w′(t) = r(v+a−bw), (3.25)

where v0 satisfies
v3

0
3
− v0

(
1
b
+1

)
− a

b
= 0.

In the original model without delay, the relaxation time of v(t) is of order 1/br, and
we assume that T exceeds the typical relaxation time 1/br. The equations linearized
about (v0,w0) are

x′(t) = (1− v2
0)(x(t)− y(t)+mx(t −T ), (3.26)

y′(t) = r[x(t)−by(t)]. (3.27)

Our goal is to demonstrate that there can be oscillatory solutions for both excitatory
(m > 0) and inhibitory (m < 0) feedback.

1. Obtain the equations satisfied by v0,w0 when a = 0.8, b = 0.7, r = 0.08.
2. Obtain the characteristic equation for T = 0.
3. Show that the equation

v3
0

3
− v0(

1
b
+1)− a

b
= 0

with the given values of a,b,r has one negative root and estimate its value.
4. Obtain the characteristic equation for T > 0 and show that if T > 1/rb, there

is a positive real root if m exceeds a certain positive value m0. [This shows that
any crossing with T > 1/rb cannot mean a stability change unless m < m0.]
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Chapter 4

Introduction and Mathematical Preliminaries

4.1 The Lotka–Volterra Equations

In the 1920’s Vito Volterra was asked whether it would be possible to explain
the fluctuations that had been observed in the fish population of the Adriatic sea–
fluctuations that were of great concern to fishermen in times of low fish populations.
Volterra (1926) constructed the model that has become known as the Lotka-Volterra
model (because A.J. Lotka (1925) constructed a similar model in a different con-
text about the same time), based on the assumptions that fish and sharks were in a
predator–prey relationship.

Here is a description of the model suggested by Volterra. Let x(t) be the number
of fish and y(t) the number of sharks at time t. We assume that the plankton, which
is the food supply for the fish, is unlimited, and thus that the per capita growth rate
of the fish population in the absence of sharks would be constant. Thus, if there
were no sharks the fish population would satisfy a differential equation of the form
dx/dt = λx. The sharks, on the other hand, depend on fish as their food supply,
and we assume that if there were no fish, the sharks would have a constant per
capita death rate; thus, in the absence of fish, the shark population would satisfy a
differential equation of the form dy/dt =−μy. We assume that the presence of fish
increases the shark growth rate, changing the per capita shark growth rate from −μ
to −μ + cx. The presence of sharks reduces the fish population, changing the per
capita fish growth rate from λ to λ −by. This gives the Lotka–Volterra equations

dx
dt

= x(λ −by),
dy
dt

= y(−μ + cx). (4.1)

We cannot solve this system of equations analytically, but we can obtain some in-
formation about the behavior of its solutions. Instead of trying to solve for x and y
as functions of t, we eliminate t and look for the relation between x and y. In ge-
ometric terms, we study the (x,y) phase plane. We look for orbits, or trajectories
of solutions (that is, curves in the phase plane representing the functional relation
between x and y with the time t as the parameter). We may eliminate t from the
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Lotka–Volterra equations by division:

dy/dt
dx/dt

=
dy
dx

=
y(−μ + cx)
x(λ −by)

.

We may solve this differential equation by separation of variables:∫ −μ + cx
x

dx =
∫ λ −by

y
dy,

−μ logx+ cx = λ logy−by+h,

where h is a constant of integration, or

−μ logx−λ logy+ cx+by = h.

The minimum value of the function

V (x,y) =−μ logx−λ logy+ cx+by

is obtained by setting ∂V/∂x = 0, ∂V/∂y = 0. Then c − μ/x = 0,b − λ/y = 0,
or x = μ/c, y = λ/b. This is an equilibrium of the Lotka–Volterra system (i.e., a
constant solution x ≡ μ/c = x∞, y ≡ λ/b = y∞), which may also be described by
the equation

V (x∞,y∞) = h0 = −μ logx∞ −λ logy∞ + cx∞ +by∞

= −μ log
μ
c
−λ log

λ
b
+μ +λ .

Every orbit of the system is given implicitly by an equation V (x,y) = h for some
constant h ≥ h0, which is determined by the initial conditions. We make the change
of variable x = x∞ +u = μ/c+u, y = y∞ + v = λ/b+ v, obtaining

V (x,y) =−μ log
(μ

c
+u

)
−λ log

(λ
b
+ v

)
+ c

(μ
c
+u

)
+b

(λ
b
+ v

)
= h.

We observe that
log

(μ
c
+u

)
= log

μ
c
+ log

(
1+

cu
μ

)
,

and if h− h0 is small, we may use the approximation log(1+ x) ≈ x− x2/2 to ap-
proximate this expression by

log
μ
c
+

cu
μ

− c2u2

μ2 .

Similarly, we may approximate log(λ/b+ v) by logλ/b+ bv/λ − b2v2/λ 2. Then
the orbits V (x,y) = h are appproximated by
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−μ log
μ
c
− cu+

c2

μ
u2 −λ log

λ
b
−bv+

b2

λ
v2 +μ + cu+λ +bv = h,

or
c2

μ
u2 +

b2

λ
v2 = h+μ log

μ
c
+λ log

λ
b
−μ −λ = h−h0,

which represents an ellipse (if h > h0 ) with the equilibrium (x∞,y∞) as its center.
This shows that for h− h0 small and positive, the orbits are closed curves around
the equilibrium; since the solutions run around closed orbits, they must be periodic.
Thus the Lotka–Volterra model predicts the fluctuations that had been observed ex-
perimentally. It is possible to show that the period of oscillation is approximately
2π/λ μ, and it is easy to see from the phase portrait that the maximum prey popula-
tion comes one quarter of a cycle before the maximum predator population (Figure
4.1).

Fig. 4.1

The Lotka–Volterra model represented one of the triumphs of early attempts at
mathematical modeling in population biology. However, it turns out that there are
serious flaws in the model. Any attempt at refinement by introducing self-limiting
terms in the per capita growth rates such as in the logistic equation for single popu-
lations will lead to qualitatively different behavior of the solutions, orbits that spiral
in toward the equilibrium rather than periodic orbits. The price of refinement of the
model is loss of agreement with observation. In order to construct a model that pre-
dicts periodic solutions, we will have to assume nonlinear per capita growth rates
for the two species.

Example 1. Describe the orbits of the system

x′ = y, y′ =−x

Solution. If we consider y as a function of x, we have
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ydy =−

∫
xdx

y2

2
=−x2

2
+ c.

Thus every orbit is a circle x2 + y2 = 2c with center at the origin. Alternatively, we
may define the function V (x,y) = x2 + y2 and calculate

d
dt

V [x(t),y(t)] = 2x
dx
dt

+2y
dy
dt

= 2xy−2xy = 0

to see that V (x,y) = x2 + y2 is constant on every orbit.

Exercises

In each of Exercises 1 through 4, describe the orbits of the given system.

1. x′ = xy2, y′ = yx3.
2. x′ = e−y, y′ = ex.
3. x′ = siny, y′ = x.
4. x′ = xey, y′ = xye−x.
5. Show that the orbits of the Lotka–Volterra system (4.1) are traversed in a

counterclockwise direction as t increases. [Hint: For a point on the orbit with
λ/b,x > μ/c we have x′ = 0 and y′ > 0. Thus, at this point x is a maxmum and
y is increasing.]

4.2 The Chemostat

A chemostat is a piece of laboratory apparatus used to cultivate bacteria. It consists
of a reservoir containing a nutrient, a culture vessel in which the bacteria are culti-
vated, and an output receptacle. Nutrient is pumped from the reservoir to the culture
vessel at a constant rate, and the bacteria are collected in the receptacle by pumping
the contents of the culture vessel out at the same constant rate. The process is called
a continuous culture of bacteria, in contrast to a batch culture, in which a fixed
quantity of nutrient is supplied and bacteria are harvested after a growth period. We
wish to describe the behavior of the chemostat by modeling the number of bacteria
and the nutrient concentration in the culture vessel, and we shall sketch the classi-
cal theory of the simple chemostat due to Novick and Szilard (1950) and Monod
(1950). We will obtain a model for two interacting populations that describes a lab-
oratory realization of a very simple lake. More complicated chemostats, in which
two or more cultures are introduced, give multispecies models representing more
complicated real-world situations. We let y represent the number of bacteria and C
the concentration of nutrient in the chemostat, both functions of t. Let V be the vol-
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ume of the chemostat and Q the rate of flow into the chemostat from the nutrient
reservoir and also the rate of flow out from the chemostat. The fixed concentration
of nutrient in the reservoir is a constant C(0). We assume that the average per capita
bacterial birth rate is a function r(C) of the nutrient concentration and that the rate of
nutrient consumption of an individual bacterium is proportional to r(C), say αr(C).
Then the rate of change of population size is the birth rate r(C)y of bacteria minus
the outflow rate Qy/V. It is convenient to let q = Q/V, so that this outflow rate be-
comes qy. The rate of change of nutrient volume is the replenishment rate QC(0)

minus the outflow rate QC minus the consumption rate αr(C)y. This gives the pair
of differential equations

dy
dt

= r(C)y−qy,

d(CV )

dt
= Q

(
C(0)−C

)−αr(C)y.

We divide the second equation by the constant V and let β = α/V to give the system

y′ = r(C)y−qy, (4.2)

C′ = q
(
C(0)−C

)−β r(C)y.

The system (4.2) describes the chemostat, but we must still make some plausible
assumptions on the dependence of the bacterial birth rate (or equivalently the nu-
trient consumption rate) on the nutrient concentration C. It is reasonable to assume
that the function r(C) is zero if C = 0 and that it saturates (approaches a limit) when
C becomes large. The simplest function with these properties is

r(C) =
aC

C+A
,

where a and A are constants, and this was the choice originally made by Monod.
The explicit chomostat model is now

y′ =
aCy

C+A
−qy, (4.3)

C′ = q
(
C(0)−C

)− βaCy
C+A

,

where a,A,q, and β are constants. Of these constants, q depends on the flow rate
and thus can be adjusted. We may inquire whether it is possible to adjust the flow
rate or other parameters in the system so that the chemostat will settle down to an
equilibrium. If the flow rate is too large, the whole culture will be washed out; a
more interesting equilibrium state would involve both bacteria and nutrient in the
culture. Because the system (4.3) cannot be solved analytically, we will have to
study it by qualitative methods. This will be done in Section 5.2. The qualitative
study of systems of differential equations is much more complicated than the study
of a single differential equation. In the remainder of this chapter, we shall describe



128 4 Introduction and Mathematical Preliminaries

some useful qualitative results for systems of differential equations, especially for
systems of two differential equations for which much more precise results are true
than are valid for systems of more than two differential equations. For the most part,
we shall state results without proof. Proofs may be found in books on the qualitative
theory of differential equations, for example [Brauer and Nohel (1989), Hurewicz
(1958), Sánchez (l979), and Waltman (1986)].

4.3 Equilibria and Linearization

One of the main tools in studying continuous models for two interacting populations
is linearization at equilibria, just as for models for single species. However, since
linearization results can give information only about behavior of solutions near an
equilibrium, they will not enable us to examine such questions as the existence of
periodic orbits. As might be expected from our discussion of the Lotka–Volterra
model, we will want to consider periodic orbits when we study predator–prey sys-
tems in Chapter 5, and at that time it will be necessary to make use of some global
results not related to linearization. Here we shall describe the main results on lin-
earization for two-dimensional systems. The basic fact is the analogue of the result
established for one-dimensional systems (or first-order equations), namely that the
behavior of solutions near an equilibrium is determined by the behavior of solutions
of the linearization at the equilibrium. Since there is a variety of possible behaviors
of solutions of the linearization, we will also have to carry out a classification of
equilibria according to the behavior of solutions at the equilibrium.

We will consider populations of two interacting species with population sizes
x(t) and y(t) respectively. As in our study of continuous single species models, we
will assume that x(t) and y(t) are continuously differentiable functions of t whose
derivatives are functions of the two population sizes at the same time. Thus, our
models will be systems of two first order differential equations,

x′ = F(x,y), y′ = G(x,y). (4.4)

As in our study of single-species models, the assumptions that lead to this form ne-
glect many factors of importance in many real populations, but the model is a useful
first step and may model some real populations quite well. An equilibrium is a so-
lution (x∞,y∞) of the pair of equations F(x∞,y∞) = 0, G(x∞,y∞) = 0. Thus an equi-
librium is a constant solution of the system of differential equations. Geometrically,
an equilibrium is a point in the phase plane that is the orbit of a constant solution. If
(x∞,y∞) is an equilibrium, we make the change of variables u = x− x∞, v = y− y∞,
obtaining the system

u′ = F(x∞ +u,y∞ + v),

v′ = G(x∞ +u,y∞ + v).
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Using Taylor’s theorem for functions of two variables, we may write

F(x∞ +u,y∞ + v) = F(x∞,y∞)+Fx(x∞,y∞)u+Fy(x∞,y∞)v+h1,

G(x∞ +u,y∞ + v) = G(x∞,y∞)+Gx(x∞,y∞)u+Gy(x∞,y∞)v+h2,

where h1 and h2 are functions that are small for small u,v in the sense that

lim
u→0
v→0

h1(u,v)√
u2 + v2

= lim
u→0
v→0

h2(u,v)√
u2 + v2

= 0.

The linearization of the system, obtained by using

F(x∞,y∞) = 0, G(x∞,y∞) = 0,

and neglecting the higher-order terms h1(u,v) and h2(u,v), is defined to be the two-
dimensional linear system

u′ = Fx(x∞,y∞)u+Fy(x∞,y∞)v, (4.5)
v′ = Gx(x∞,y∞)u+Gy(x∞,y∞)v.

The coefficient matrix of the system (4.5),[
Fx(x∞,y∞) Fy(x∞,y∞)
Gx(x∞,y∞) Gy(x∞,y∞)

]
,

is called the community matrix of the system at the equilibrium (x∞,y∞). It describes
the effect of the size of each species on the growth rate of itself and the other species
at equilibrium. Frequently we shall write a system in the form

x′ = x f (x,y), y′ = yg(x,y), (4.6)

so that f (x,y) and g(x,y) are the per capita growth rates of the two species. The
community matrix at equilibrium then has the form[

x∞ fx(x∞,y∞)+ f (x∞,y∞) x∞ fy(x∞,y∞)
y∞gx(x∞,y∞) y∞gy(x∞,y∞)+g(x∞,y∞)

]
.

There are four distinct kinds of possible equilibria, as follows:

(i) (0,0), with community matrix[
f (0,0) 0

0 g(0,0)

]
.

(ii) (K,0) with K > 0, (K,0) = 0, having community matrix[
K fx(K,0) K fy(K,0)

0 g(K,0)

]
.
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(iii) (0,M) with M > 0, g(0,M) = 0, having community matrix[
f (0,M) 0

Mgx(0,M) Mgy(0,M)

]
.

(iv) (x∞,y∞) with x∞ > 0, y∞ > 0, f (x∞,y∞) = 0, g(x∞,y∞) = 0, having community
matrix [

x∞ fx(x∞,y∞) x∞ fy(x∞,y∞)
y∞gx(x∞,y∞) y∞gy(x∞,y∞)

]
.

We should remark that since from a biological point of view, only nonnegative pop-
ulation sizes are of interest, we consider only equilibria having nonnegative coordi-
nates and we are concerned with only the first quadrant of the phase plane. In the
case (iv) of coexistence of the two species, the terms fx(x∞,y∞) and gy(x∞,y∞) in
the community matrix are self-regulating terms that are normally nonpositive.

The terms fy(x∞,y∞) and gx(x∞,y∞) are interaction terms. There are three possi-
ble sign combinations, which we shall study separately. If both interaction terms are
negative, the two species are said to be in competition. If there is one positive and
one negative interaction term, the species are said to be in a predator–prey relation.
Such systems include herbivore–vegetationsystems, in which we may be interested
mainly in the herbivore species but include its food supply in the model for greater
realism. The simple chemostat modeled in the previous section is an example of this
type. A system in which both interaction terms are positive is called mutualistic. We
will consider each of these types of interaction in Chapter 5.

An equilibrium (x∞,y∞) is said to be stable if every solution (x(t),y(t)) with
(x(0),y(0)) sufficiently close to the equilibrium remains close to the equilibrium for
all t ≥ 0. An equilibrium (x∞,y∞) is said to be asymptotically stable if it is stable
and if, in addition, solutions with (x(0),y(0)) sufficiently close to the equilibrium
tend to the equilibrium as t → ∞. These definitions are the natural analogues of the
definitions given previously for first-order equations. The analogue of the lineariza-
tion theorem is also true, although the proof is more complicated; we shall state it
without proof.

Theorem 4.1. If (x∞,y∞) is an equilibrium of the system (4.4) and if all solutions of
the linearization at the equilibrium (4.5) tend to zero as t → ∞, then the equilibrium
(x∞,y∞) is asymptotically stable.

It might appear that stability of an equilibrium is a natural requirement for biological
meaning, but we shall require asymptotic stability because of the following pertur-
bation result, analogous to a result given for single-species models, which we state
without proof.

Theorem 4.2. Under the hypotheses of Theorem 4.1:

(i) If
P(x,y)(

(x− x∞)2 +(y− y∞)2
)1/2
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and
Q(x,y)(

(x− x∞)2 +(y− y∞)2
)1/2

tend to zero as (x,y)→ (x∞,y∞), then solutions of the perturbed system

x′ = F(x,y)+P(x,y), y′ = G(x,y)+Q(x,y)

starting close enough to (x∞,y∞) tend to (x∞,y∞) as t → ∞.
(ii) If |P(x,y)| ≤ A, |Q(x,y)| ≤ A for all y and A sufficiently small, then solutions

of the perturbed system remain within KA, for some constant K, of solutions of
the unperturbed system x′ = F(x,y), y′ = G(x,y) for t ≥ 0.

The content of Theorem 4.2 is that an asymptotically stable equilibrium has bio-
logical significance, being relatively insensitive to both changes in initial population
size and small additional forces.

Example 1. Find the linearization at each equilibrium of the Lotka–Volterra system
(4.1)
Solution. The equilibria are the solutions of x(λ − by) = 0,y(−μ + cx) = 0. Be-
cause the partial derivatives of the functions on the right side of the system are,
respectively,

∂
∂x

[x(λ −by)] = λ −by,
∂
∂y

[x(λ −by)] =−bx,

∂
∂x

[y(−μ + cx)] = cy,
∂
∂y

[y(−μ + cx)] =−μ + cx,

the linearization at an equilibrium (x∞,y∞) is

u′ = (λ −by∞)u−bx∞v, v′ = cy∞u+(−μ + cx∞)v

One equilibrium is (0,0) with linearization

u′ = λu, v′ =−μv.

A second equilibrium, obtained by solving λ −by = 0, −μ +cx = 0, is (μ/c,λ/b).
The linearization at this equilibrium is

u′ =−bμ
c

v, v′ =
cλ
b

u.
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Exercises

In Exercises 1 through 8, find the linearization of each given system at each equilib-
rium

1. x′ = x− y, y′ = x+ y−2.
2. x′ = y, y′ = x+ y−1.
3. x′ = y+1, y′ = x2 + y.
4. x′ = y2 −8x, y′ = x−2.
5. x′ = e−y, y′ = e−x.
6. x′ = siny, y′ = 2x.
7. x′ = x(λ −ax−by), y′ = y(μ − cx−dy).
8. x′ = x(λ −ax+by), y′ = y(μ + cx−dy).
9. The following two-dimensional nonlinear ordinary differential equation has

been proposed as a model for cell differentiation:

dx
dt

= y− x, (4.7)

dy
dt

=
5x2

4+ x2 − y.

(i) Sketch the curves y = x and y = 5x2/(4+ x2) = 0 in the positive quadrant
of the (x,y)−plane.

(ii) Determine the equilibrium points.
(iii) Linearize the system of differential equations (4.7) at each equilibrium

point.
(iv) Determine the local stability of each positive equilibrium point and classify

the equilibrium points.
(v) Use a computer algebra system to find the numerical solution of system

(4.7), with initial points (1.1,1.2) and (4.5,3.9), respectively, and plot your
solution.

10. [Eldestein-Keshet (1988)] In this problem we shall examine a plant–herbivore
model. Let q represent the chemical state of the plant with q low meaning that
the plant is toxic and q high meaning that it is good as a food source for the
herbivore. Therefore, q is an index of plant quality for the herbivore. Suppose
that plant quality is enhanced when herbivory is low or moderate and declines
when herbivory is high. Assume that herbivores are small immobile insects
with density I. Suppose further that their growth rate depends on the quality of
food that they consume. The model equations are

dq
dt

= k1 − k2qI(I − I0), (4.8)

dI
dt

= k3I
(

1− k4I
q

)
.
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(i) Explain the equations, and suggest possible meanings for k1, k2, k3, k4, and
I0.

(ii) Show that the equations can be written in the following dimensionless
form:

dx
dτ

= 1− kxy(y−1), (4.9)

dy
dτ

= αy
(

1− y
x

)
.

Determine k and α in terms of the original parameters.
(iii) Show that there is only one equilibrium.
(iv) Determine its stability.

11. Let S, I, and R represent the densities of individuals subject to a disease who
are susceptible, infective, and recovered respectively. Suppose that recovered
individuals can become susceptible again after some time. The model equations
are as follows:

dS
dt

= −βS
I
N
+ γR,

dI
dt

= βS
I
N
−νI,

dR
dt

= νI − γR,

where N = S+ I +R, and β , γ , and ν are the infection, loss of immunity, and
recovery rates, respectively.

(i) Reduce this model to a two-dimensional system of equations.
(ii) Find the equilibrium points. Is there a disease-free equilibrium (an equi-

librium with I = 0)? Is there an endemic equilibrium (an equilibrium with
I > 0)?

(iii) Determine the local stability of each of the equilibrium points found in (b).

12. Let S(t) be the number of susceptible individuals at time t, I(t) the number
of infective individuals at time t, V (t) the number of vaccinated or recovered
individuals at time t, and N(t) = S(t)+ I(t)+V (t).
Consider the model

S′(t) = μN −βS
I
N
−μS,

I′(t) = βS
I
N
− (μ + γ)I, (4.10)

V ′(t) = γI −μV,
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where μ is the per capita death rate, γ is the per capita recovery rate, β = pc
with c the average number of contacts per unit time, and p is the probability of
transmission per contact by a susceptible with an infective individual.

(i) Find the basic reproductive number R0.
(ii) Find the equilibria.

(iii) Compute the stability of each equilibria.

Note that the birth rate (also known as recruitment rate) μN into the susceptible
class is constant. Why?

13. Consider the model (4.10) but change the recruitment rate from the constant
μN to the constant Λ . This means that a certain fixed number of individuals
join or arrive into the susceptible class per unit time. The model becomes

S′(t) = Λ −βS
I
N
−μS,

I′(t) = βS
I
N
− (μ + γ)I, (4.11)

R′(t) = γI −μR,

where N(t) = S(t)+ I(t)+R(t).

(i) What are the units of Λ , βSI/N, μ , γ , β , μS?
(ii) Find the equation satisfied by N(t) = S(t)+ I(t)+R(t).

(iii) Solve the equation for N(t) and observe that the population size for this
model is not constant.

(iv) Show that N(t)→ Λ/μ as t → ∞.
(v) Let K = Λ/μ . Consider the limiting system

S′(t) = Λ −βS
I
K
−μS,

I′(t) = βS
I
K
− (μ + γ)I, (4.12)

R′(t) = γI −μR.

To study the dynamics of this limiting system, it is enough to consider the
first two equations since R(t) = K −S(t)− I(t).
(i). Find R0

(ii). Find all equilibria.
(iii). Make a stability analysis of the equilibria.

Some recent results in dynamical systems guarantee that the limiting system
and the original system have the same qualitative dynamics [Castillo-Chavez
and Thieme (1995)].

14. Consider the model with vaccination
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S′(t) = μN −βS
I
N
− (μ +φ)S,

I′(t) = βS
I
N
− (μ + γ)I, (4.13)

V ′(t) = γI +φS−μV.

Here V(t) denotes the number of vaccinated or recovered members at time t.

(i) dN/dt = 0. What does this imply?
(ii) Discuss why it suffices to study the first two equations.

(iii) Compute R0(φ). What is the value of R0(0)? Compare R0(φ) with R0(0).
(iv) Compute the equilibria.
(v) Do the stability analysis for the disease-free equilibrium.

15. If vaccination strategies are incorporated for newborns, we consider that not
all new births are susceptible. Suppose that the vaccination rate per capita is p;
then a newborn becomes vaccinated with probability p. The modified model is
of the new form

dS
dt

= (1− p)μN −βS
I
N
−μS = f1,

dI
dt

= βS
I
N
− (μ + γ)I = f2, (4.14)

dV
dt

= pμN + γI −μV = f3.

(i) What is the Jacobian matrix of differential equation (4.14) at the disease-
free equilibrium points?

(ii) Find the corresponding eigenvalues of the matrix above.
(iii) Find the basic reproductive numbers (R0). Compare R0 in model (4.10)

with that in model (4.14).
(iv) Study the stability of the disease-free equilibrium points of the model

(4.14).

4.4 Qualitative Behavior of Solutions of Linear Systems

In the previous section we reduced the analysis of the stability of an equilibrium
(x∞,y∞) of a system of differential equations

x′ = F(x,y), y′ = G(x,y)

to the determination of the behavior of solutions of the linearization at the equilib-
rium
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u′ = Fx(x∞,y∞)u+Fy(x∞,y∞)v, (4.15)
v′ = Gx(x∞,y∞)u+Gy(x∞,y∞)v.

Next we shall analyze the various possibilities for the behavior of solutions of
the two-dimensional linear homogeneous system with constant coefficients

x′ = ax+by, (4.16)
y′ = cx+dy,

where a,b,c, and d are constants, in order that we might describe the behavior of
solutions of the linearization at an equilibrium. We will then be able to state some
refinements of Theorem 4.1 of Section 4.3 that give more specific information about
the behavior of solutions near an equilibrium as determined by the community ma-
trix at the equilibrium. We will assume throughout that ad − bc �= 0. This implies
that the origin is the only equilibrium of the system (4.16). If this system is the
linearization at an equilibrium (x∞,y∞) of a nonlinear system (4.15), then this equi-
librium is isolated, meaning that there is a disc centered at (x∞,y∞) containing no
other equilibrium of the nonlinear system. It is convenient to use vector-matrix no-
tation: We let x denote the column vector

[ x
y
]
, x′ the column vector

[ x′
y′
]
, and A the

2×2 matrix [
a b
c d

]
.

Then, using the properties of matrix multiplication, we may rewrite the linear system
x′ = ax+by, y′ = cx+dy in the form

x′ = Ax.

A linear change of variable x = Pu, with P a nonsingular 2 × 2 matrix, (which
represents a rotation of the axes and a change of scale along the axes) transforms
the system to Pu′ = APu, or

u′ = P−1APu = Bu.

This is of the same type as the original system x′ =Ax, and its coefficient matrix B=
P−1AP is similar to A. If we can solve for u, we can then reconstruct x = Pu, and in
fact the qualitative properties of solutions for u are preserved in this reconstruction.
Thus, we may describe the various possible phase portraits of x′ = Ax by listing the
various possible canonical forms of A under similarity and constructing the phase
portrait for each possibility.

Theorem 4.3. The matrix

A =

[
a b
c d

]
,

with detA = ad −bc �= 0, is similar under a real transformation to one of
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(i)
[

λ 0
0 μ

]
, λ > μ > 0 or λ < μ < 0.

(ii)
[

λ 0
0 λ

]
, λ > 0 or λ < 0.

(iii)
[

λ 1
0 λ

]
, λ > 0 or λ < 0.

(iv)
[

λ 0
0 μ

]
, λ > 0 > μ

(v)
[

0 β
−β 0

]
, β �= 0.

(vi)
[

α β
−β α

]
, α > 0, β �= 0 or α < 0, β �= 0.

This theorem will be proved in Section 4.6, the appendix to this chapter.
We now describe the phase portraits for each of these cases in turn.

Case (i). The transformed system is u′ = λu, v′ = μv, with solution u = u0eλ t , v =
v0eμt . If λ < μ < 0 then u and v both tend to zero as t →∞ and v/u= v0e(μ−λ )t/u0 →
+∞. Thus, every orbit tends to the origin with infinite slope (except if v0 = 0, in
which case the orbit is on the u-axis), and the phase portrait is as shown in Figure
4.2. If λ > μ > 0 the portrait is the same, except that the arrows are reversed.

Fig. 4.2 Case i of Theorem 4.3.

Case (ii). The system is u′ = λu, v′ = λv, with solution u = u0eλ t , v = v0eλ t . If
λ < 0 both u and v tend to zero as t → ∞ and v/u = v0/u0. Thus every orbit is a
straight line going to the origin, and all slopes as the orbit approaches the origin are
possible. The phase portrait is as shown in Figure 4.3. If λ > 0, the portrait is the
same except that the arrows are reversed.

Case (iii). The system is u′ = λu+v, v′ = λv. The solution of the second equation is
v = v0eλ t , and substitution into the first equation gives the first-order linear equation
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Fig. 4.3 Case ii of Theorem 4.3.

u′ = λu+ v0eλ t whose solution is u = (u0 + v0t)eλ t . If λ < 0, both u and v tend to
zero as t → ∞, and v/u = v0/(u0 + v0t) tends to zero unless v0 = 0, in which case
the orbit is the u- axis. Because u = (u0 + v0t)eλ t , wehavedu/dt =

(
(u0λ + v0)+

λv0t
)
eλ t , and therefore du/dt = 0 when t =−(v0 +u0λ )/λv0. Thus except for the

orbits on the u-axis, every orbit has a maximum or minimum u-value and then turns
back toward the origin. The phase portrait is as shown in Figure 4.4. If λ > 0, the
portrait is the same except that the arrows are reversed.

Fig. 4.4 Case iii of Theorem 4.3.

Case (iv). The solution is u = u0eλ t , v = v0eμt just as in Case (i), but now u is
unbounded and v → 0 as t → ∞, unless u0 = 0, in which case the orbit is on the
v-axis. The phase portrait is as shown in Figure 4.5.

Case (v). The system is u′ = βv, v′ = −βu. Then u′′ = βv′ = −β 2u and u =
Acosβ t+Bsinβ t for some A,B. Thus v= u′/β =−Asinβ t+Bcosβ t and u2+v2 =
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Fig. 4.5 Case iv of Theorem 4.3.

A2 +B2. Every orbit is a circle, clockwise if β > 0 and counterclockwise if β < 0.
The phase portrait for β > 0 is as shown in Figure 4.6.

Fig. 4.6 Case v of Theorem 4.3.

Case (vi). The system is u′ = αu+ βv, v′ = −βu+αv. We make the change of
variables u = eαt p, v = eαtq, so that u′ = αeαt p+eαt p′, v′ = αeαtq+eαtq′ reduces
the system to p′ = βq, q′ = −β p, which has been solved in Case (v). Thus, u =
eαt(Acosβ t +Bsinβ t), v = eαt(−Asinβ t +Bcosβ t), and u2 +v2 = e2αt(A2 +B2).
If α < 0, u2 + v2 decreases exponentially, and the orbits are spirals inward to the
origin, clockwise if β > 0 and counterclockwise if β < 0. The phase portrait is as
shown in Figure 4.7. If α > 0, the portraits are the same except that the arrows are
reversed.

These six cases may be classified as being of four distinct types. In Cases (i), (ii),
and (iii) all orbits approach the origin as t → +∞ (or as t →−∞ depending on the
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Fig. 4.7 Case vi of Theorem 4.3.

signs of λ and μ) with a limiting direction, and the origin is said to be a node of the
system. In Case (iv), only two orbits approach the origin as t →+∞ or as t →−∞,
and all other orbits move away from the origin. In this case the origin is said to be
a saddle point. In Case (vi) every orbit winds around the origin in the sense that
its angular argument tends to +∞ or to −∞, and the origin is said to be a vortex,
spiral point, or focus. In Case (v), every orbit is periodic; in this case the origin is
said to be a center. According to Theorem 4.3, asymptotic stability of the origin
for the linearization implies asymptotic stability of an equilibrium of a nonlinear
system. In addition, instability of the origin for the linearization implies instability
of an equilibrium of a nonlinear system. The asymptotic stability or instability of the
origin for a linear system is determined by the eigenvalues of the matrix A, defined
to be the roots of the characteristic equation

det(A−λ I) = det
[

a−λ b
c d −λ

]
= (a−λ )(d −λ )−bc

= λ 2 − (a+d)λ +(ad −bc) = 0.

The sum of the eigenvalues is the trace of the matrix A, namely a + d, and the
product of the eigenvalues is the determinant of the matrix A, namely ad − bc. A
similarity transformation preserves the trace and determinant and therefore does not
change the eigenvalues. Thus, the eigenvalues of A are λ ,μ in Cases (i) and (iv); λ
(a double eigenvalue ) in Cases (ii) and (iii); the complex conjugates ±iβ in Case
(v); and α ± iβ in Case (vi). Examination of the phase portraits in the various cases
shows that the origin is asymptotically stable in Case (i) if λ < μ < 0; in Cases
(ii) and (iii) if λ < 0; and in Case (vi) if α < 0. Similarly the origin is unstable
in Case (i) if λ > μ > 0; in Cases (ii) and (iii) if λ > 0; in Case (iv); and in Case
(vi) if α > 0. The origin is stable but not asymptotically stable in Case (v) (center).
A simpler description is that the origin is asymptotically stable if both eigenvalues
have negative real part and unstable if at least one eigenvalue has positive real part.
If both eigenvalues have real part zero, the origin is stable but not asymptotically
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stable. Our assumption that ad−bc= detA �= 0 rules out the possibility that λ = 0 is
an eigenvalue; thus, eigenvalues with real part zero can occur only if the eigenvalues
are pure imaginary, as in Case (v).

Combining this analysis with the linearization result (4.1), we have the following
result:

Theorem 4.4. If (x∞,y∞) is an equilibrium of the system (4.15) and if all eigenvalues
of the coefficient matrix of the linearization at this equilibrium have negative real
part, specifically if

trA(x∞,y∞) = Fx(x∞,y∞)+Gy(x∞,y∞)< 0,
detA(x∞,y∞) = Fx(x∞,y∞)Gy(x∞,y∞)−Fy(x∞,y∞)Gx(x∞,y∞)> 0,

then the equilibrium (x∞,y∞) is asymptotically stable.

We can be more specific about the nature of the orbits near an equilibrium. In terms
of the elements of the matrix A, we may characterize the cases as follows, using the
remark that the eigenvalues are complex if and only if

Δ = (a+d)2 −4(ad −bc) = (a−d)2 +4bc < 0.

1. If detA = ad −bc < 0, the origin is a saddle point.
2. If detA > 0 and trA = a+d < 0, the origin is asymptotically stable, a node if

Δ ≥ 0 and a spiral point if Δ < 0.
3. If detA > 0 and trA > 0, the origin is unstable, a node if Δ ≥ 0 and a spiral

point of Δ > 0.
4. If detA > 0 and trA = 0, the origin is a center.

It is possible to show that in general, the phase portrait of a nonlinear system at
an equilibrium is similar to the phase portrait of the linearization at the equilibrium,
except possibly if the linearization has a center. This is true under the assumption
that the functions F(x,y) and G(x,y) in the system (4.15) are smooth enough that
Taylor’s theorem is applicable, so that the terms neglected in the linearization pro-
cess are of higher order. If the linearization at an equilibrium has a node, then the
equilibrium of the nonlinear system is also a node, defined to mean that every orbit
tends to the equilibrium (either as t → ∞ or as t → −∞) with a limiting direction.
If the linearization at an equilibrium has a spiral point, then the equilibrium of the
nonlinear system is also a spiral point, defined to mean that every orbit tends to the
equilibrium (either as t → ∞ or as t →−∞) with its angular variable becoming in-
finite. If the linearization at an equilibrium has a saddle point, then the equilibrium
of the nonlinear system is also a saddle point. A saddle point is defined by the char-
acterization that there is a curve through the equilibrium such that orbits starting on
this curve tend to the equilibrium but orbits starting off this curve cannot stay near
the equilibrium. An equivalent formulation is that there are two orbits tending to the
equilibrium as t →+∞ and two orbits tending away from the equilibrium, or tending
to the equilibrium as t → −∞. These orbits are called separatrices; the two orbits
tending to the saddle point are the stable separatrices, while the two orbits tending
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away from the saddle point are the unstable separatrices. Other orbits appear like
hyperbolas (Figure 4.8).

Fig. 4.8 Separatrices at a saddle point.

A center is defined to be an equilibrium for which there is an infinite sequence
of periodic orbits around the equilibrium with the orbits approaching this equilib-
rium. If the linearization at an equilibrium has a center then the equilibrium of the
nonlinear system may be a center, but is not necessarily a center: It could be an
asymptotically stable spiral point or an unstable spiral point.

Example 1. If we linearize the Lotka–Volterra system x′ = x(λ −by), y′ = y(−μ +
cx) about the equilibrium (x∞,y∞), with x∞ = μ/c, y∞ = λ/b we obtain the system

u′ = −μb
c

v,

v′ =
λc
b

u,

with coefficient matrix

A =

[
0 − μb

c
λc
b 0

]
with trace zero and determinant λ μ > 0. Thus the linearization has a center. To
solve the linearization we write

u′′ = −μb
c

v′ =−λ μu,

v′′ =
λc
b

u′ =−λ μv,

from which we see that both u and v are periodic with frequency
√

λ μ , period
2π/λ μ. We have shown in the preceding section that all solutions of the Lotka–
Volterra system near the equilibrium are periodic and thus that the equilibrium is a
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center, but study of the linearization is not enough to show this. The addition of a
small perturbation to the Lotka–Volterra model could change the center to a spiral
point, one that may be either asymptotically stable or unstable. Because the Lotka–
Volterra model is so sensitive to perturbations, it is not really suitable as a population
model. When we examine predator–prey systems in more detail we will attempt to
refine the model.

Example 2. Determine whether each equilibrium of the system

x′ = y, y′ = 2(x2 −1)y− x,

is asymptotically stable or unstable.
Solution. The equilibria are the solutions of y = 0,2(x2 −1)y− x = 0, and thus the
only equilibrium is (0,0). The community matrix at (x∞,y∞) is(

0 1
4x∞y∞ −1 2(x∞

2 −1)

)
,

and thus the community matrix at (0,0) is(
0 1
−1 −2

)
,

with trace −2 < 0 and the determinant 1 > 0. Thus the equilibrium (0,0) is asymp-
totically stable.

Example 3. Determine the asymptotic stability or instability of each equilibrium of
the Lotka–Volterra system (4.1).
Solution. We have seen in Example 1, Section 4.3, that at the equilibrium (0,0) the
community matrix is (

λ 0
0 −μ

)
.

Since this has negative determinant, (0,0) is unstable. The community matrix at the
equilibrium (μ/c,λ/b) is (

0 − bμ
c

cλ
b 0

)
with trace zero. Thus Theorem 4.4 does not settle the question. However, as we
have seen in Section 4.1, orbits of the system neither move away from the equi-
librium nor approach it. Thus, this equilibrium is neither asymptotically stable nor
unstable. [Such an equilibrium is sometimes said to be neutrally stable.]
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Exercises

In Exercises 1 through 6, for each equilibrium of the given system determine
whether the equilibrium is asymptotically stable or unstable:

1. x′ = x− y, y′ = x+ y−2 (see Exercise 1, Section 4.3).
2. x′ = y, y′ = x+ y−1 (see Exercise 2, Section 4.3).
3. x′ = y+1, y′ = x2 + y (see Exercise 3, Section 4.3).
4. x′ = y2 −8x, y′ = x−2 (see Exercise 4 section 4.3.)
5. x′ = e−y, y′ = e−x (see Exercise 5, Section 4.3).
6. x′ = siny, y′ = 2x (see Exercise 6, Section 4.3).

7.∗ Determine the behavior of orbits of the system

x′ = x(λ −ax−by)
y′ = y(μ − cx−dy).

8.∗ Determine the behavior of orbits of the system

x′ = x(2− x)− xy
x+1

,

y′ =
xy

x+1
− y.

9.∗ Determine the behavior of orbits of the system

x′ = x(λ −ax−by),

y′ = y(−μ + cx).

10.∗ Consider the system

x′ = y,

y′ = −x− y3.

(i) Show that (0,0) is the only equilibrium.
(ii) Show that the function V (x,y) = x2 + y2 decreases along every orbit and

tends to zero, showing that (0,0) is asymptotically stable.

11. [Kaplan & Glass(1995)] A chemotherapeutic agent is being used to treat an
intracranial tumor. Let x be the number of molecules of the agent in the blood
and y the number of molecules that have crossed the blood–brain barrier. When
t = 0 we have x = N and y = 0. The dynamics are described by the differential
equations



4.4 Qualitative Behavior of Solutions of Linear Systems 145

d
dt

x = α(y− x)− γx,

d
dt

y = −α(y− x).

(i) Show that if γ is much larger than α , the roots of the characteristic equation
are approximately −γ and −α .

(ii) Use the result from part (i) to replace the x equation by dx/dt = −γx and
solve the equation for y as a function of time for α = 10−3 hr−1 and γ = 1
hr−1.

(iii) For the values of α and γ in part (ii) compute the time when y is a maxi-
mum. What is the approximate value of y at this time?

12. [Kaplan & Glass(1995)] Limpets and seaweed live in a tide pool. The dynamics
of this system are given by the differential equations

ds
dt

= s− s2 − sl,

dl
dt

= sl − l
2
− l2, l ≥ 0,s ≥ 0,

where the densities of seaweed and limpets are given by s and l, respectively.

(i) Determine all equilibria of this system.
(ii) For each nonzero equilibrium determined in part (a), evaluate the stability

and classify it as a node, focus, or saddle point.
(iii) Sketch the flows in the phase plane.
(iv) What will the dynamics be in the limit as t → ∞ for initial conditions

(i) s(0) = 0, l(0) = 0?
(ii) s(0) = 0, l(0) = 15?
(iii) s(0) = 2, l(0) = 0?
(iv) s(0) = 2, l(0) = 15?

13. The following system of differential equation is an SIR model for infectious
diseases (with vital dynamics):

dS
dt

= −βSI +μ −μS+θR,

dI
dt

= βSI − γI −μI,

R = 1−S− I,

with S(0) = S0, I(0) = I0, R(0) = R0, where S = S(t) is the fraction of suscep-
tible individuals at time t, I = I(t) is the fraction of infective individuals at time
t, and R = R(t) is the fraction of recovered individuals, μ is the per capita birth
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and death rate, γ and θ are the rates at which individuals leave the infective
and recovered classes, respectively. The basic reproductive number (the num-
ber of secondary cases produced by one infective individual in a population of
susceptibles) in this case is given by the formula σ = β/(μ + γ).

(i) Choose μ = 0.0001, γ = 0.2, θ = 0.02, β = 0.15. Then σ < 1. Use a
computer algebra system to observe that the disease dies out as time goes
to infinity.

(ii) Increase β to β = 0.4, then σ > 1.
(i) Plot I(t) versus time for initial values S0 = 0.2, I0 = 0.8, R0 = 0.
(ii) Plot I(t) versus S(t) for the following initial conditions (on one graph)
and explain the biological meaning suggested by the graph.

S0 = 0.2, I0 = 0.8, R0 = 0;
S0 = 0.4, I0 = 0.6, R0 = 0;
S0 = 0.6, I0 = 0.4, R0 = 0;
S0 = 0.8, I0 = 0.2, R0 = 0.

14. Discuss the qualitative behavior of the following epidemiological models (SIR
and SIS without vital dynamics):

(i)

dS
dt

= −βS
I
N
+ γI,

dI
dt

= βS
I
N
− γI,

N = S+ I.

(ii)

dS
dt

= −βS
I
N
,

dI
dt

= βS
I
N
− γI,

dR
dt

= γ, I

N = S+ I +R.

15. [May (1981)] A modification of the logistic equation describing two species
interacting mutualistically results in the model

dx
dt

= rx
(

1− x
K1 +ay

)
,

dy
dt

= ry
(

1− y
K2 +bx

)
,
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with a, b, K1, K2 positive constants. Show that the equilibrium populations are
positive if ab < 1 and that if this condition is satisfied, then the equilibrium is
locally asymptotically stable.

16. Sketch the phase-plane behavior of the following systems of ordinary differen-
tial equations and classify the stability of the equilibrium point (0,0).

(i)

dx
dt

= 3x−2y,

dy
dt

= 4x+ y.

(ii)

dx
dt

= 5x+2y,

dy
dt

= −13x−5y.

(iii)

dx
dt

= −x− y,

dy
dt

=
8
5

x− y.

17. We are going to study an ecological system consisting of two species. The
relationship between the two species is one of three kinds: a predator–prey sys-
tem, a competitive system, or a mutualistic system depending on the the nature
of the interactions between species. We will use the Lotka–Volterra model to
study the system. Let x(t) and y(t) be the population sizes (or densities) at t for
the two populations. The key assumption in the Lotka–Volterra model is that
the per capita growth rate for each population is a linear function of population
sizes. We write the ordinary differential equation model for the system

1
x(t)

dx
dt

= rx +a11x+a12y, (4.17)

1
y(t)

dy
dt

= ry +a21x+a22y,

where rx, ry, and the ai j are constants.
Let rx = ry = 1, a11 = a22 = −1, and a12 = a21 = −1/2 in the model (4.17).
The specific model is
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1
x(t)

dx
dt

= 1− x− y
2
,

1
y(t)

dy
dt

= 1− x
2
− y.

Identify the system and make a guess about the fate of population sizes.
18. Consider the system of differential equations

dx
dt

= xy− y,

dy
dt

= xy− x.

(i) Compute the equilibria.
(ii) Linearize the equations around each of the equilibria found in part (a).

Write the Jacobian matrix and the linear system approximation for each
case.

(iii) Draw the phase portrait of each linearized system.

19. Consider the system of differential equations

dx
dt

= xy− y

dy
dt

= xy− x.

(i) Compute the equilibria.
(ii) Linearize the equations around each of the equilibria found in part (a).

Write the Jacobian matrix and the linear system approximation for each
case.

(iii) Draw the phase portrait of each linearized system.

4.5 Periodic Solutions and Limit Cycles

In the preceding section we analyzed the behavior of solutions starting near an equi-
librium. When we studied this question for first-order differential equations this in-
formation was enough to describe the behavior of all solutions, since every solution
was either unbounded or tended to an equilibrium. However, for two-dimensional
systems there are other possibilities, and our results are valid only locally. We must
consider what can happen to a solution that does not begin near an equilibrium; in
particular, we will want to examine the behavior of solutions of systems that have no
asymptotically stable equilibrium. Such systems can arise as models for predator–
prey systems. We wish to study the behavior of solutions of a two-dimensional sys-
tem
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x′ = F(x,y), (4.18)
y′ = G(x,y),

by studying the phase portrait in the phase plane. Let (x(t),y(t)) be a solution that
is bounded as t → ∞. The positive semiorbit C+ of this solution is defined to be
the set of points (x(t),y(t)) for t ≥ 0 in the (x,y) plane. The limit set L(C+) of the
semiorbit is defined to be the set of all points (x̄, ȳ) such that there is a sequence
of times tn → ∞ with x(tn) → x̄,y(tn) → ȳ as n → ∞. For example, if the solution
(x(t),y(t)) tends to an equilibrium (x∞,y∞) as t → ∞, then the limit set consists of
the equilibrium (x∞,y∞). If (x(t),y(t)) is a periodic solution, so that the semiorbit
C+ is a closed curve, then the limit set L(C+) consists of all points of the semiorbit
C+. It is not difficult to show that the limit set of a bounded semiorbit is a closed,
bounded, connected set. An invariant set for the system (4.18) is a set of points in
the plane that contains the positive semiorbit through every point of the set. Thus,
for example, an equilibrium is an invariant set, and a closed orbit corresponding
to a periodic solution is an invariant set. It is possible to prove, making use of the
continuous dependence of solutions of differential equations on initial conditions,
that the limit set of a bounded semiorbit is an invariant set.

The results stated above are valid for autonomous systems of differential equa-
tions in all dimensions but in two dimensions, more detailed information on the
structure of limit sets is available. The reasons for this involve the topological prop-
erties of the plane, especially the Jordan curve theorem, which states that a simple
closed curve in the plane divides the plane into two disjoint regions, which is not
valid in more than two dimensions. The fundamental result on the behavior in the
large of solutions of autonomous systems in the plane is the Poincaré–Bendixson
theorem [Poincaré (1881, 1882, 1885, 1886); Bendixson (1901)], which states that
if C+ is a bounded semiorbit whose limit set L(C+) contains no equilibrium points,
then either C+ is a periodic orbit and L(C+) = C+, or L(C+) is a periodic orbit,
called a limit cycle, which C+ approaches spirally (either from inside or outside).
We shall not go into the proof, which may be found in many books on differential
equations; a particularly readable elementary source is the book by W. Hurewicz
(1958).

The properties of limit sets enable us to describe limit sets that do contain equi-
librium points. For example, a limit set may consist of a single equilibrium point
to which the orbit tends. If a limit set contains a single equilibrium point but con-
tains other points as well, then it must consist of the equilibrium point together with
an orbit running from the equilibrium point to itself in order to be connected and
invariant. Thus, the equilibrium must be a saddle point and the limit set must be a
separatrix that runs from the saddle point to itself as t runs from −∞ to +∞ (Figure
4.9).

If a limit set contains more than one equilibrium, then it must also contain orbits
joining these equilibria. In essence we can say that a bounded solution tends either
to an equilibrium or to a limit cycle, overlooking such “unlikely coincidences” as
the possibility of a separatrix running from a saddle point to itself. Thus, if we
can show that for a given system all solutions are bounded but that there are no
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Fig. 4.9 A separatrix.

asymptotically stable equilibrium points, we can deduce that there must be at least
one periodic orbit. This situation will arise in our study of predator–prey systems. If
there is only one periodic orbit, then it must be globally asymptotically stable in the
sense that every orbit tends to it. If there is more than one periodic orbit, each must
be asymptotically stable from at least one side: orbits may spiral toward it from the
inside, from the outside, or both.

In situations in which we know that there is a periodic solution, it may be pos-
sible to use the concept of the index of a simple closed curve and the index of an
equilibrium to help locate the periodic solution. An autonomous system of differ-
ential equations (4.18) defines a vector field by associating with each point (x,y)
a vector with components (F(x,y),G(x,y)). A solution of the system has its orbit
tangent to this vector field at every point. For any simple, i.e., not self-intersecting,
closed curve S we define the index of S with respect to the system to be 1/2π times
the change in the angle of the vector (F,G) as the curve is traversed once in the
positive (counterclockwise) direction. Thus, if S is a periodic orbit, it is easy to see
that the index of S is +1 (Figure 4.10).

S

(F,G)

Fig. 4.10 Index of a periodic orbit.
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Theorem 4.5. The index of a simple closed curve S whose interior contains no equi-
librium points is zero.

Proof (Outline of proof). Write S as a sum of small simple closed curves, with can-
cellation of all interior portions of their boundaries (Figure 4.11). Over a sufficiently

Fig. 4.11 Subdivision of a simple closed curve.

small simple closed curve, the angle of the vector (F,G) cannot change by as much
as 2π, by continuity of the vector field. Thus, the index of every sufficiently small
simple closed curve is zero. Since the index of S is the sum of the indices of the small
curves, the index of S must be zero. The hypothesis that the interior of S contains no
equilibrium points is needed to deduce that the vector field is continuous.

An immediate consequence of Theorem 4.5 is that a periodic orbit must contain
an equilibrium in its interior. Another consequence is that it is possible to give an
unambiguous definition of the index of an equilibrium point. Let P be an equilibrium
point and let S be a simple closed curve around P, but whose interior does not
contain any other equilibrium points. If S̄ is another simple closed curve around P
inside S (and thus not containing any other equilibrium points in its interior), the
simple closed curve formed by going around S counterclockwise, straight in to S̄,
clockwise, and then back out to S is a simple closed curve whose interior contains
no equilibrium and that therefore has index zero (Figure 4.12).

On the other hand, the index of this curve is the index of S minus the index of S̄;
thus S and S̄ have the same index. Therefore, we define the index of an equilibrium
point P to be the index of any simple closed curve whose interior contains P but
contains no other equilibrium. This definition is independent of the choice of curve.
For any simple closed curve the index of the curve is equal to the sum of the indices
of all equilibria in the interior of the curve. The index of an isolated equilibrium
is either +1 or −1, with a saddle point having index −1 and all other equilibria
having index +1. To demonstrate this, we would first show that the vector field
(F(x,y),G(x,y)) near an equilibrium (which may be assumed to be at the origin)
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P

S

S
-

Fig. 4.12

may be replaced by its linear part, (ax+by,cx+dy) because for a sufficiently small
curve the vectors (F(x,y),G(x,y)) and (ax+by, cx+dy) must have directions sim-
ilar enough that their indices must be the same. The remainder of the proof consists
in an examination of each type of equilibrium (see, for example, Figure 4.13).

Fig. 4.13

We now deduce that the number of equilibria that are not saddle points minus
the number of saddle points in the interior of a periodic orbit is one. In particular,
if a system has several equilibria all but one of which are saddle points, then any
periodic orbit must go around the equilibrium that is not a saddle point but cannot
go around any saddle point.

We conclude this section by giving some criteria implying that there cannot be a
periodic orbit in a given region. Such results are of interest in situations in which we
know that there is an asymptotically stable equilibrium and wish to conclude that all
orbits tend to it. We shall make use of Green’s theorem in the plane.

Theorem 4.6 (Green). Let D be a simple connected region in the plane with bound-
ary C, and suppose that P(x,y) and Q(x,y) are continuously differentiable in the
closure of D. Then
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D

∫ (
Qx(x,y)−Py(x,y)

)
dA =

∫
c

(
P(x,y)dx+Q(x,y)dy

)
.

Theorem 4.7 (Bendixson (1901)). Suppose that Fx(x,y)+Gy(x,y) is either strictly
positive or strictly negative in a simply connected region D. Then there is no periodic
orbit of x′ = F(x,y), y′ = G(x,y) in D.

Proof. Suppose that C is a closed orbit in D corresponding to a periodic solution
(x(t),y(t)) with period T, and let Ω be the interior of C. We apply Green’s theorem
with Q(x,y) = F(x,y), P(x,y) =−G(x,y), obtaining∫

Ω

∫ (
Fx(x,y)+Gy(x,y)

)
dA =

∫
c

(−G(x,y)dx+F(x,y)dy
)

=
∫ T

0

(− y′(t)x′(t)+ x′(t)y′(t)
)
dt = 0.

But the left side cannot be zero, and we have a contradiction. Thus there can be no
perodic orbit in D.

A useful generalization of Bendixson’s theorem is obtained by application of
Green’s theorem with

Q(x,y) = β (x,y)F(x,y), P(x,y) =−β (x,y)G(x,y)

for some function β (x,y) that is continuously differentiable in D.

Theorem 4.8 (Dulac (1934)). Let β (x,y) be continuously differentiable and sup-
pose that

∂
∂x

(
β (x,y)F(x,y)

)
+

∂
∂y

(
β (x,y)G(x,y)

)
is either strictly positive or strictly negative in a simply connected region D. Then
there is no periodic orbit of x′ = F(x,y), y′ = G(x,y) in D.

In the following chapter, we shall be studying models for populations of two inter-
acting species of the form

x′ = x f (x,y,)

y′ = yg(x,y).

We may apply Dulac’s criterion with β (x,y) = 1/xy, F(x,y) = x f (x,y), G(x,y) =
yg(x,y), so that

∂
∂x

(βF)+
∂
∂y

(βG) =
∂
∂x

(1
y

f
)
+

∂
∂y

(1
x

g
)
=

fx(x,y)
y

+
gy(x,y)

x
.

This gives the following result, which will apply to our models for species in com-
petition and for mutualism, but not to predator–prey models.
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Theorem 4.9. Suppose fx(x,y) < 0, gy(x,y) < 0 for x > 0, y > 0. Then there is no
periodic orbit of the system x′ = x f (x,y), y′ = yg(x,y) in the interior of the first
quadrant of the phase plane.

Example 1. Determine the qualitative behavior of solutions of the system

x′ = x
(

1− x
30

)
− xy

x+10
,

y′ = y
(

x
x+10

− 1
3

)
.

Solution. Equilibria are solutions of the pair of equations

x
(

1− x
30

)
− xy

x+10
= 0

y
(

x
x+10

− 1
3

)
= 0.

There is an equilibrium, (0,0). If y = 0 the first equation gives x = 0 or x = 30,
and thus there is a second equilibrium, (30,0). If x �= 0, y �= 0, we must solve 1−
x/30 = y/(x+10),x/(x+10) = 1/3, which gives a third equilibrium (5,12.5). The
community matrix at (0,0) is [

1 0
0 −1/3,

]
and this equilibrium is unstable because the determinant is negative. The community
matrix at (30,0) is [−1 −3/4

0 5/12

]
and this equilibrium is also unstable because the determinant is negative. The com-
munity matrix at (5,12.5) is (

1/9 −1/3
5/9 0

)
with positive trace, and (5,12.5) is also unstable. If we add the two equations of the
model we obtain (x+ y)′ = x(1− x/30)− y/3. Thus (x+ y) is decreasing except in
the bounded region y/3 < x(1− x/30). In order that an orbit may be unbounded,
we must have x+ y unbounded. However, this is impossible, since x+ y is decreas-
ing whenever x+ y is large. Thus every orbit of the system is bounded. Since all
equilibria are unstable, the Poincaré–Bendixson theorem implies that there must be
a periodic orbit (around (5,12.5)) to which every orbit tends as t → ∞.

Example 2. Determine the behavior as t → ∞ of solutions in the first quadrant of
the system
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x′ = x(100−4x−2y),

y′ = y(60− x− y).

Solution. There are equilibria at (0,0), (25,0), and (0,60). There is no equilibrium
within x > 0,y > 0, because such an equilibrium would be found by solving 4x+
2y = 100,x+ y = 60, and subtraction of twice the first equation from the second
equation gives 2x =−20. The equilibria (0,0) and (25,0) are unstable because their
community matrices are, respectively,[

100 0
0 60

]
and [−100 −50

0 35

)
.

The equilibrium (0,60) is asymptotically stable because it has community matrix(−20 0
−60 −60

]
.

In order to show that every orbit approaches (0,60), we must show that there are no
periodic orbits. This follows from Dulac’s criterion with β (x,y) = 1/xy, because

∂
∂x

(
100−4x−2y

y

)
+

∂
∂y

(
60− x− y

x

)
=−4

y
− 1

x
< 0.

Exercises

In each of Exercises 1 through 10, determine the qualitative behavior of solutions of
the given system.

1. x′ = 3x(1− x
20 )− xy

x+10 , y′ = y( x
x+10 − 1

2 ).

2. x′ = x(1− x
40 )− 2xy

x+15 , y′ = 3y( 2x
x+15 − 6

5 ).

3. x′ = 3x(1− x
20 )− xy

x+10 , y′ = y( x
x+10 − 1

6 ).

4. x′ = x(1− x
40 )− 2xy

x+15 , y′ = 3y( 2x
x+15 − 1

2 ).

5. x′ = 3x(1− x
20 )− xy

x+20 , y′ = y( x
x+10 − 3

4 ).

6. x′ = x(1− x
40 )− 2xy

x+15 , y′ = 3y( 2x
x+15 − 8

5 ).
7. x′ = x(80− x− y), y′ = y(120− x−3y).
8. x′ = x(60−3x− y), y′ = y(75−4x− y).
9. x′ = x(40− x− y), y′ = y(90− x−2y).

10. x′ = x(80−3x−2y), y′ = y(80− x− y).
11.∗ Show that the equilibrium (x∞,y∞) with x∞ > 0, y∞ > 0 of the system
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x′ = rx
(

1− x
K

)
− axy

x+A
,

y′ = sy
(

ax
x+A

− aJ
J+A

)
,

is unstable if K > A+2J and asymptotically stable if J < K < A+2J.
12.∗ Determine the behavior as t → ∞ of solutions of the system

x′ = rx
(

1− x
K +ay

)
− axy

x+A
,

y′ = sy
(

1− y
M+bx

)
,

with a,b,K,M,r,s positive constants. (Warning: The behavior if ab < 1 is dif-
ferent from the behavior if ab > 1.)

13. [Kaplan & Glass(1995)] A theoretical model for mutual inhibition is

d
dt

x = f (x) =

( 1
2

)n( 1
2

)n
+ yn

− x,

d
dt

y = g(x) =

( 1
2

)n( 1
2

)n
+ xn

− y,

where x and y are positive variables and n is a positive constant greater than one.
There is a steady state at x∗ = y∗ = 1/2. Discuss the bifurcation and sketch the
flows in the (x,y)-plane as n varies.

14. Consider the system

x′ = x(ax+by),

y′ = y(cx+dy).

(i) Show that every trajectory with x(0) ≥ 0, y(0) ≥ 0 satisfies x(t) ≥ 0,
y(t) ≥ 0 for all t ≥ 0 (i.e., trajectories starting in the first quadrant remain
in the first quadrant forever).

(ii) Use the Dulac criterion with β (x,y) = 1/xy to show that there are no peri-
odic orbits if ad > 0.

4.6 Appendix: Canonical Forms of 2×2 Matrices

In Section 4.4 we stated a theorem giving the possible real canonical forms of a real
2× 2 matrix. This theorem identified six different cases relating both to the form
of the matrix and to the signs of its eigenvalues. If only different canonical forms
concern us, the cases reduce to three. Theorem 4.3 of Section 4.4 is a consequence
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of the following result from linear algebra, whose proof requires an understanding
of linear independence, eigenvalues, and eigenvectors but nothing more advanced.
We include the proof because most linear algebra texts use a more general approach
than ours, one that does require more advanced understanding.

Theorem 4.10. If A =

[
a b
c d

]
is a real 2× 2 matrix with detA = ad − bc �= 0 then

there is a real nonsingular 2×2 matrix P such that P−1AP is one of the following:

(i).
[λ 0

0 μ
]
, λ �= 0, μ �= 0, (Cases (i), (ii), (iv) of Theorem 4.3)

(ii).
[λ 0

0 λ
]
, λ �= 0, (Case (iii) of Theorem 4.3)

(iii).
[ α β
−β α

]
, β �= 0. (Cases (v), (vi) of Theorem 4.3)

Proof. First, consider the case that A has two linearly independent eigenvectors u,v
corresponding to the eigenvalues λ ,μ , respectively (λ = μ is permitted). Recall
that an eigenvalue of a matrix A is a value of λ such that the linear homogeneous
algebraic system Au = λu has a nontrivial solution and an eigenvector is a corre-
sponding solution vector; λ is an eigenvalue if and only if det(A−λ I) = 0. Let P
be the matrix whose columns are u and v, P = (u,v). Since u and v are linearly
independent, P is nonsingular. We now have

P−1AP = P−1(Au ,Av
)
= P−1(λu ,λv

)
.

Since P−1P = I =
[

1 0
0 1

]
, P−1u is the first column of I, namely

[
1
0

]
, and P−1v is the

second column of I, namely
[

0
1

]
. Thus

P−1AP = P−1(λu λv
)
=

[
λ 0
0 μ

]
.

Second, if λ is a double eigenvalue but there is only one linearly independent
corresponding eigenvector, take v to be any nonzero vector that is not an eigenvector,
and let u = Av−λv �= 0. If c1u+ c2v = 0 with c1 and c2 not both zero, then c1 and
c2 must both be different from zero because u and v are both different from zero.
Then c1(Av−λv)+c2v = 0, which implies Av =

(
λ −c2v/c1). But then λ −c2/c1

is an eigenvalue, contradicting the assumption that λ is the only eigenvalue. This
shows that c1 = c2 = 0, and thus that u and v are linearly independent. If w is any
eigenvector we may write w = au+bv with a �= 0, because u and v span R2 and v

is not an eigenvector. Then we have

0 = Aw−λw = a(Au−λu)+b(Av−λv)

= a(Au−λu)+bu = a
(

Au−
(

λ − b
a

)
u

)
.

This would mean that λ − b/a is an eigenvalue, but since λ is the only eigenvalue
b= 0 and therefore u is an eigenvector. We now take P=

(
u v

)
, nonsingular because

u and v are linearly independent, and calculate
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P−1AP = P−1(Au Av
)
= P−1(λu u+λv

)
= λP−1(u v

)
+P−1(0 u

)
= λ I +

[
0 1
0 0

]
=

[
λ 1
0 λ

]
.

Third, if there is a pair of complex conjugate eigenvalues α ± iβ , with β �= 0,
let u+ iv be an eigenvector corresponding to the eigenvalue α + iβ , with u and v

real. If v = 0 then Au = (α + iβ )u, which is impossible because the left side is real
and the right side is not; therefore, v �= 0. A similar argument shows that u �= 0.
If c1u+ c2v = 0, with c1 �= 0, c2 �= 0, we replace u by −c2v/c1 in A(u+ cv) =
(α + iβ )(u+ iv), obtaining A

(− c2/c1 + i
)
v = (α + iβ )

(− c2
c1
+ i

)
v, or A = v =

(α + iβ )v. Then v would be a real eigenvector, which is not possible, and therefore
u and v are linearly independent. We now define the nonsingular matrix P =

(
u v

)
,

and P−1AP = P−1
(
Au Av

)
. From A(u + iv) = (α + iβ )(u + iv) = (αu − βv) +

i(βu+αv) we have
Au = αu−βv, Av = βu+αv,

and thus

P−1AP−1(Au Av
)
= P−1(αu−βv βu+αv

)
= αP−1(u v

)
+βP−1(−v u

)
= αI +β

[
0 1
−1 0

]
=

[
α β
−β α

]
.

We have now covered all the cases and have completed the proof of the theorem and
of Theorem 4.3 as well.

4.7 Project: A Model for Giving Up Smoking

1. Let S(t) denote the number of smokers in high school at time t; P(t) the num-
ber of potential smokers at time t; Q(t) the number of smokers who quit per-
manently.

c : average number of contacts per unit time
q : probability of becoming a smoker given that a P has a contact with a

smoker
1
μ

: average time in the high school system

1
γ

: average time as a smoker

N(t) : population size at time t,

β = qc. The model is



dP
dt

= μN −βP
S
N
−μP,

dS
dt

= βP
S
N
− (μ + γ)S,

dQ
dt

= γS−μQ.

(i) Show that N(t) is a constant.
(ii) Explain each term and coefficient in the model.

(iii) What are the assumptions of the model?
(iv) Give the units of μ , β , and γ .
(v) Give a criterion for invasion in terms of a basic reproductive number R0.

(vi) Show that R0 is a nondimensional quantity.
(vii) Find all equilibria.

(viii) Study the stability of these equilibria.
(ix) Introduce the variables

x =
P
N
, y =

S
N
, z =

Q
N

and write the system in terms of x, y, and z. Do you gain any understanding?
(x) Alter the model by just one simple modification to make it more realistic.

(x∗) Perform some computer simulations to verify your stability results.

References: Castillo-Garsow, Jordan-Salivia, Rodriguez-Herrera (2000).

4.8 Project: A Model for Retraining of

Workers by their Peers

Suppose we have a system with the following classes of worker at time t:

R(t) : reluctant workers
P(t) : positive workers

M(t) : master workers
U(t) : unchangeable (negative) workers
I(t) : inactive workers

Assume that N(t) = R(t)+P(t)+M(t)+U(t)+ I(t) and that the total number of
workers is constant, that is, N(t) = K for all t.

The model is
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dP
dt

= qK −βP
M
K

+δR−μP,

dR
dt

= (1−q)K − (δ +μ)R−αR,

dM
dt

= βP
M
K

− (γ +μ)M,

dU
dt

=−μU +αR,

dI
dt

= γM−μI,

where q, β , δ , μ, and α are constants and 0 ≤ q ≤ 1.

1. Interpret the parameters.
2. Under what conditions will retraining of workers succeed?
3. Will every worker be retrained (e.g., become an M) over the long run?
4. What is the impact of changing 0≤ q≤ 1, 0< γ <∞, and 0< δ <∞? (Compute

R0 and look at the role of these parameters.)
5. Look at the stability of the simplest equilibrium.
6. Do we have a nontrivial equilibrium? Use simulations to guess its stability.
7. What are your conclusions from this model?

4.9 Project: A Continuous Two-Sex Population Model

The two-sex population model of this project begins from a population of males
and females that select their partners more or less at random. Individuals are either
single or in temporarily monogamous heterosexual relationships. The recruitment
and death per capita rates are constant but gender specific, while the divorce or
separation constant per pair rate is assumed to be gender independent.

Definition of Variables and Parameters

State variables are denoted by the lowercase letters x, y, and p. Here x(t) denotes
single males at time t; y(t) denotes single females at time t; and p(t) denotes pairs
or married couples at time t. Hence, the total population equals x + y+ 2p. The
constants βx and βy denote per capita birth or recruitment rates of females and males,
respectively. Furthermore, the constants μx and μy denote the per capita death rates,
while σ gives the constant per couple separation rate.

Using these variables and definitions, we arrive at the following two-sex model
[Keyfitz (1949); Kendall (1949); Fredrickson (1971); McFarland (1972)]:
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ẋ = (βx +μy +σ)p−μxx−ϕ(x,y),
ẏ = (βy +μx +σ)p−μyy−ϕ(x,y),
ṗ =−(μx +μy +σ)p+ϕ(x,y).

(4.19)

The population of singles increases because of recruitment, death of a partner, or
divorce. The population of singles decreases because of death or marriage. The rate
of marriage is definitely a nonlinear process. Here it is assumed that it depends only
on the population of singles. It is modeled by a nonlinear function ϕ(x,y) called the
marriage or mating function. Hence, ϕ(x,y)/x is the per capita marriage rate for
males and ϕ(x,y)/y is the per capita marriage rate for females.

The function ϕ(x,y) is nonlinear, defined for x,y ≥ 0, and it is commonly as-
sumed to have the following properties [Keyfitz (1949); Kendall (1949); Fredrick-
son (1971); McFarland (1972)]:

1. ϕ(x,0) = ϕ(0,y) = 0 for all x, y ≥ 0, and ϕ(x,y)≥ 0.
2. ϕ(αx,αy) = αϕ(x,y) for α ≥ 0, that is, it is homogeneous of degree one. In

other words, if there are x male singles and y female singles, then there are
ϕ(x,y) marriages per unit of time, while if there are αx male singles and αy
female singles, then there are αϕ(x,y) marriages per unit of time.

3. If the number of single males and females increases, then the total number of
marriages also increases.

Examples of ϕ’s. (Generalized means)

ϕ(a,b) = ρ(θxα +(1−θ)yα)1/α

for
α ≥ 0, 0 ≤ θ ≤ 1, ρ > 0.

Special cases:

ϕ(x,y) = ρ
xy

θx+(1−θ)y
harmonic mean (α =−1),

ϕ(x,y) = ρxθ y1−θ geometric mean (α → 0,)
ϕ(x,y) = ρ min{x,y} min function (α → ∞).

This model was proposed by D.G. Kendall (1949), N. Keyfitz (1949), A.G.
Fredrickson (1971), and D.McFarland (1972), but a complete mathematical analysis
was only recently completed by K.P. Hadeler, R. Waldstätter, and A. Wörz-Busekros
(1988).

(a) Show that this model does not have (in general) time-independent steady states,
that is, constant solutions.
Hint: Suppose such a steady state exists and show that it must then satisfy

(βx −μx)p−μxx = 0,
(βy −μy)p−μyy = 0.
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Then substitute the values for x and y in the p-equation of system (4.19). You
should arrive at the condition

(μx +μy +σ)p = ϕ
(

βx −μx

μx
,

βy −μy

μy

)
p. (4.20)

Hence, the parameters of the model have to satisfy equation (4.20). What do
you conclude from this?

(b) Since steady states are not generic, we look for exponential solutions, that is,
for solutions of the form ceλ t .
Look for solutions of the form (why is λ the same?)

x = x̄eλ t ,

y = ȳeλ t ,

p = p̄eλ t ,

that is, substitute the above candidates for exponential solutions in the original
system (4.19) to arrive at the following nonlinear eigenvalue problem:

(βx +μy +σ)p̄− (μx +λ )x̄ = ϕ(x̄, ȳ,)
(βy +μx +σ)p̄− (μy +λ )ȳ = ϕ(x̄, ȳ),
(μx +μy +σ +λ )p̄ = ϕ(x̄, ȳ).

(4.21)

(c) Show that the above nonlinear eigenvalue problem has the trivial solutions

(1,0,0) with λ =−μx,

(0,1,0) with λ =−μy,

and interpret them.
(d) Look for nontrivial solutions. In fact, show that such solutions exist if and only

if there exists a λ such that

μx +μy +σ +λ = ϕ
(

x̄
p̄
,

ȳ
p̄

)
,

or, by substituting x̄/p̄, ȳ/ p̄, show that such solutions exist if they satisfy the
following nonlinear relationship:

μx +μy +σ +λ = ϕ
(

βx

μx +λ
−1,

βy

μy +λ
−1

)
. (4.22)

Hence, we are looking for nonzero λ ’s that satisfy (4.22). The equation (4.22)
is called the characteristic equation of this two-sex population.

(e) Assume that
βx −μx −λ

μx +λ
> 0,

βy −μy +λ
μy +λ

> 0,
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Set λ = max(−μx,−μy). Then μx + λ > 0 and μy + λ > 0 for λ > λ . Set
λ̄ =min(βx−μx,βy−μy). Then βx−μx−λ > 0 and βy−μy−λ > 0 for λ < λ̄ .
Hence λ < λ < λ̄ (if it exists). Justify the above assumptions and definitions.
Show that if λ > λ̄ , then there is no solution, while if λ < λ̄ then there is a
solution. In fact, show that if K is defined as

K = ϕ ·
(

βx

μx +λ
−1,

βy

μy +λ
−1

)
≤ ∞,

where the possibility that K = ∞ cannot be disregarded; this case must also be
studied.
Then equation (4.22) has a unique solution if and only if

K > μx +μy +σ +λ .

(f) Get a more detailed existence condition by cleverly expanding ϕ(x,y) in a Tay-
lor series (keeping just the first-order terms), that is, by using the fact that it is
a homogeneous function of degree one and then letting y → ∞ we have that

ϕ(x,y) = xϕ
(

1,
y
x

)
= x

[
ϕ(1,0)+ϕy(1,0)

y
x

]
= yϕy(1,0).

Hence,
ϕ(x,y)≈ yϕy(1,0) as x → ∞,
ϕ(x,y)≈ xϕx(1,0) as y → ∞.

Show that if λ =−μx, then as x → ∞,

ϕ
(

βx

μx +λ
−1,

βy

μy +λ
−1

)
≈
[

βy

μy −μx
−1

]
ϕy(1,0).

Show that if λ =−μy, then as y → ∞,

ϕ
(

βx

μx +λ
−1,

βy

μy +λ
−1

)
≈
[

βx

μy −μx
−1

]
ϕx(1,0).

Hence,

K =

⎧⎨⎩
βy−μy+μx

μy−μx
ϕy(1,0) for λ =−μx,

βx−μy+μx
μy−μx

ϕx(1,0) for λ =−μy.

Finally, verify that the conditions for the existence of nontrivial exponential
solutions is

μx > μy − βyϕy(1,0)
μy +σ +ϕy(1,0)

,

μy > μx − βxϕx(1,0)
μx +σ +ϕx(1,0)

.
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(g) Look at the proportions of each group (single males, single females, and pairs)
and think of how one may study the stability of the exponential solutions that
you have just shown to exist.

References: Castillo-Chavez and Huang (1995), Castillo-Chavez, Huang, and Li
(1996), Castillo-Chavez and Hsu Schmitz (1993), Castillo-Chavez, Shyu, Rubin,
and Umbauch (1992). (1992).



Chapter 5

Continuous Models for Two Interacting

Populations

5.1 Species in Competition

In this chapter we will consider populations of two interacting species with pop-
ulation sizes x(t) and y(t), respectively, modeled by a system of two first order
differential equations:

x′ = F(x,y), (5.1)
y′ = G(x,y).

There are different kinds of biological interaction represented mathematically by
different signs for the rates of change of the growth rates F(x,y) and G(x,y) with
respect to the population sizes x and y. We begin with the case of species in com-
petition, perhaps competing for the same nutrient resource. Competition means that
an increase in the size of either population tends to decrease the growth rate of the
other population, so that

Fy(x,y)< 0, Gx(x,y)< 0. (5.2)

We also assume that an increase in the size of either population tends to inhibit the
growth rate of that population, so that if x and y are not too close to zero,

Fx(x,y)< 0, Gy(x,y)< 0. (5.3)

The classical experimental result on species in competition is the principle of com-
petitive exclusion of G.F. Gause (1934), that two species competing for the same re-
source cannot coexist. The experimental evidence is somewhat equivocal, and there
is considerable doubt about the universality of the principle.

We will discuss primarily models in which the per capita growth rates are linear
of the form

OI 10.1007/978-1-4614-1686-9_ ,
© Springer Science+Business Media, LLC 2012
Texts in Applied Mathematics 40, D

165
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x′ = x(λ −ax−by), (5.4)
y′ = y(μ − cx−dy),

where λ ,μ,a,b,c,d are positive constants, but we will also indicate extensions to
models with nonlinear growth rates.

For competition models with linear per capita growth rates, there are four equi-
libria, as follows:

I. (0,0), with community matrix [
λ 0
0 μ

]
,

necessarily an unstable node.
II. (K,0), with K = λ/a . The community matrix is[−λ − bλ

a
0 μ − cλ

a

]
,

with trace 1
a (aμ −aλ − cλ ) and determinant λ

a (cλ −aμ).
III. (0,M), with M = μ

d . The community matrix is[
λ − bμ

d 0
− μc

d −μ

]
,

with trace 1
d (dλ −dμ −bμ) and determinant μ

d (bμ −dλ ).
IV. (x∞,y∞), with x∞ > 0, y∞ > 0, ax∞ +by∞ = λ , cx∞ +dy∞ = μ , or

x∞ =
dλ −bμ
ad −bc

, y∞ =
aμ − cλ
ad −bc

.

The community matrix is [−ax∞ −bx∞
−cy∞ −dy∞

]
,

with trace −ax∞ −dy∞ < 0 and determinant x∞y∞(ad −bc).

We will distinguish four cases, corresponding to the four possible sign combina-
tions for bμ − dλ and aμ − cλ , but ignoring the possibilities bμ − dλ = 0 (which
would give x∞ = 0) and aμ − cλ = 0 (which would give y∞ = 0). An equilib-
rium (K,0) or (0,M) describes a situation in which one species survives but the
other species loses the struggle for existence and becomes extinct. An equilibrium
(x∞,y∞) with x∞ > 0,y∞ > 0 describes coexistence of the two species.

Because
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Δ = (−ax∞ −dy∞)
2 −4(ad −bc)x∞y∞

= a2x2
∞ +2adx∞y∞ +d2y2

∞ −4adx∞y∞ +4bcx∞y∞

= a2x2
∞ −2adx∞y∞ +d2y2

∞ +4bcx∞y∞

= (ax∞ −dy∞)
2 +4bcx∞y∞ > 0,

and because it is easy to verify that Δ ≥ 0 for equilibria with either or both species
absent, it is not possible for the system to have a spiral point or a center.

Case 1. dλ −bμ > 0, aμ −cλ > 0. In this case d/b > μ/λ > c/a, and ad−bc > 0.
Thus, there is an equilibrium (x∞,y∞) in the first quadrant of the phase plane. Be-
cause the determinant of the community matrix is positive while the trace is nega-
tive, this equilibrium is asymptotically stable and must be an asymptotically stable
node. Since the community matrices for the equilibrium (K,0) and (0,M) both have
negative determinants, these equilibria are saddle points. The phase portrait is as
shown in Figure 5.1: In this figure and in the other figures in the section, the symbol←↓ means that orbits are directed downward and to the left, etc. Equilibria are la-
beled •, with �S indicating that the equilibrium is asymptotically stable. In this case,
every orbit tends to (x∞,y∞) as t → ∞, indicating coexistence of the two species for
all initial population sizes.

Fig. 5.1 Coexistence

Case 2. cλ −aμ > 0,bμ −dλ > 0. In this case c/a > μ/λ > d/b, and ad−bc < 0.
Again, there is an equilibrium (x∞,y∞) in the first quadrant, but because the de-
terminant of the community matrix is negative, this equilibrium is a saddle point.
The equilibria (K,0) and (0,M) are both asymptotically stable nodes because their
community matrices have positive determinant and negative trace.
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Fig. 5.2 Survival depending on initial state.

These separatrices divide the first quadrant into two regions, one containing ini-
tial points for which orbits tend to (K,0), and the other containing initial points for
which orbits tend to (0,M). In this case, coexistence of the two species is impos-
sible, and one species will always win the competition for survival. The winner of
this competition is determined by the initial population sizes. Although coexistence
would be the result of initial population sizes on the separatrices, this possibility is
too sensitive to disturbances to be biologically meaningful.

Case 3. cλ −aμ > 0,dλ −bμ > 0. In this case there is no equilibrium in the interior
of the first quadrant. It is easy to verify by examination of the community matrices
that the equilibrium at (K,0) is an asymptotically stable node, while the equilibrium
at (0,M) is a saddle point (Figure 5.3).

All orbits tend to (K,0) as t → ∞, corresponding to extinction of the y species
and survival of the x species for all initial population sizes.

Case 4. aμ − cλ > 0,bμ − dλ > 0. Again, there is no equilibrium in the interior
of the first quadrant. It is again easy to determine the stability of the equilibria on
the axes. Now (K,0) is a saddle point, while (0,M) is an asymptotically stable node
(Figure 5.4). All orbits tend to (0,M) as t → ∞, corresponding to extinction of the x
species and survival of the y species for all initial population sizes.

The numbers K and M are the respective carrying capacities of the x and y
species, the equilibrium population size that each species would reach in the ab-
sence of the other species. Sometimes, competition between species is described as
“qualified” or “unqualified,” according to the inhibiting effect of each species on
the other. We will say that the competition is unqualified if x∞/K + y∞/M ≤ 1, that
is, if competition tends to reduce the total population size (where the carrying ca-
pacities are the units of population size). This is intended to describe a situation in
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Fig. 5.3 Survival of x-species.

y

x
ax+by=λ

cx+dy=μ

s

Fig. 5.4 Survival of y-species.

which both species depend on a common source of food and the competition makes
survival more difficult for both species. Because

x∞ =
dλ −bμ
ad −bc

, y∞ =
aμ − cλ
ad −bc

,

the condition x∞/K + y∞/M ≤ 1 is equivalent to

a
λ

dλ −bμ
ad −bc

+
d
μ

aμ − cλ
ad −bc

≤ 1,
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which is equivalent to

aμ(dλ −bμ)+dλ (aμ − cλ )≤ (ad −bc)λ μ.

If ad−bc > 0, this reduces to abμ2 − (ad+bc)λ μ +cdλ 2 ≥ 0, or (cλ −aμ)(dλ −
bμ) ≥ 0. Thus, the system is in Case 3 or 4. If ad − bc < 0 the inequalities are re-
versed, so that (cλ −aμ)(dλ −bμ)< 0, which shows that the system is in Case 2.
This shows that the assumption of unqualified competition rules out the possibility
of coexistence of the two species (Case 1). The principle of competitive exclusion,
originally formulated by Gause in 1934 on the basis of experimental evidence, states
that coexistence under unqualified competition is impossible. We have shown that
the principle of competitive exclusion is a consequence of the assumption of lin-
ear per capita growth rates. The principle itself is quite controversial; there is ex-
perimental evidence suggesting that coexistence under unqualified competition is
possible. Our argument shows only that the principle of competitive exclusion is
a consequence of the specific model hypothesized, not that the principle has bio-
logical validity. It is important to remember that if a mathematical model predicts
behavior that contradicts valid observations, one must conclude that there is a flaw
in the model.

The condition x∞/K + y∞/M ≤ 1 of unqualified competition says geometrically
that the equilibrium (x∞,y∞) lies below the line x/K + y/M = 1 joining the equilib-
ria (K,0) and (0,M). The condition that the equilibrium (x∞,y∞) is asymptotically
stable is that the crossing of the curves x′ = 0 and y′ = 0 at (x∞,y∞) must be as in
Figure 5.5.

Fig. 5.5 Coexistence slope relation.

It may be seen by looking at the phase portraits in Cases 1 and 2 that if the
isoclines x′ = 0 and y′ = 0 are straight lines, these two conditions are incompatible.
However, it is possible to construct models of the form x′ = x f (x,y), y′ = yg(x,y)
for species in competition for which coexistence and unqualified competition are
compatible. An example of such a model, that has been proposed [Ayala, Gilpin,
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and Ehrenfeld (1973)] is

x′ = λx
(

1−
( x

K1

)θ1 − b
λ

y
)
,

y′ = μy
(

1−
( y

K2

)θ2 − c
μ

x
)
.

In describing two species in competition by a model of the form

x′ = x f (x,y,)

y′ = yg(x,y),

it is reasonable to assume that fx(x,y)< 0 and gy(x,y)< 0 for x > 0, y > 0, and also
that fy(x,y)< 0, gx(x,y)< 0 for x > 0, y > 0. This assumption says that an increase
in the population size of either species reduces the growth rate of the population size
of both species. In order to locate equilibria, we examine the isoclines of the two
species, namely the curves f (x,y) = 0 and g(x,y) = 0, respectively. Just as in the
case of linear per capita growth rates, there are four types of equilibria: (I) (0,0);
(II) (K,0), where K now is defined by f (K,0) = 0; (III) (0,M), where M now is
defined by g(0,M) = 0; (IV) (x∞,y∞), with x∞ > 0, y∞ > 0, where f (x∞,y∞) = 0,
g(x∞,y∞) = 0.

At an intersection (x∞,y∞) of the isoclines f (x,y) = 0 and g(x,y) = 0, the
slope of the x isocline is − fx(x∞,y∞)/ fy(x∞,y∞), and the slope of the y-isocline
is −gx(x∞,y∞)/gy(x∞,y∞). Because of the hypothesis fx < 0, fy < 0, gx < 0, gy < 0,
each of these slopes is negative. The condition that the slope of the x isocline is less
(more negative) than the slope of the y isocline is

− fx(x∞,y∞)

fy(x∞,y∞)
<−gx(x∞,y∞)

gy(x∞,y∞)
,

or
fx(x∞,y∞)gy(x∞,y∞)− fy(x∞,y∞)gx(x∞,y∞)> 0.

The community matrix at the equilibrium is[
x∞ fx(x∞,y∞) x∞ fy(x∞,y∞)
y∞gx(x∞,y∞) y∞gy(x∞,y∞)

]
,

with trace
x∞ fx(x∞,y∞)+ y∞gy(x∞,y∞)< 0,

and determinant

x∞y∞
(

fx(x∞,y∞)gy(x∞,y∞)− fy(x∞,y∞)gx(x∞,y∞)
)
.

Thus the determinant is positive, so that the equilibrium is asymptotically stable,
if and only if the slope of the x-isocline is less than the slope of the y-isocline;
otherwise the equilibrium is a saddle point. There are four cases, exactly as for
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linear per capita growth rates, except that the isoclines are no longer necessarily
straight lines. Otherwise, all the analysis carries over to this more general situation.
Isoclines that are concave upward allow the possibility of an equilibrium below the
line x/K + y/M = 1, so that the competition is unqualified. Such an equilibrium
may be either asymptotically stable or unstable (Figure 5.6). Thus, the principle of
competitive exclusion is not a consequence of these more general hypotheses.

y

K
x

M

Fig. 5.6 Coexistence equilibrium.

Every orbit of a system x′ = x f (x,y), y′ = yg(x,y) for which f (x,y) < 0 when
x > K, and g(x,y) < 0 when y > M must be bounded because x and y must both
be decreasing functions of t for x and y, respectively, large enough. According to
the Poincaré–Bendixson theorem , every orbit then must tend either to an equilib-
rium or to a limit cycle. For competition models with fx(x,y) < 0,gy(x,y) < 0 for
x > 0,y > 0, we have seen in Section 4.5 that the Dulac criterion rules out the pos-
sibility of periodic solutions. Therefore every orbit must tend to an equilibrium, and
by analyzing the nature of each equilibrium we have actually described the global
behavior of solutions, not merely the behavior of solutions starting near an equilib-
rium.

Example 1. Determine the outcome of a competition modeled by the system

x′ = x(100−4x− y),

y′ = y(60− x−2y).

Solution: A coexistence equilibrium is found by solving the system

4x+ y = 100,
x+2y = 60
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By eliminating one of the variables, we can obtain the equilibrium (20,20). The
community matrix at an equilibrium (x∞,y∞) is[−4x∞ −y∞

−x∞ −2y∞

]
,

which in this case is [−80 −20
−20 −40

]
,

with negative trace and positive determinant. Thus, the coexistence equilibrium is
asymptotically stable and every orbit approaches this equilibrium. The two species
coexist.

Exercises

In each of Exercises 1 through 4, determine the outcome of the competition modeled
by the given system.

1. x′ = x(80− x− y), y′ = y(120− x−3y) [see Exercise 7, Section 4.5].
2. x′ = x(60−3x− y), y′ = y(75−4x− y) [see Exercise 8, Section 4.5].
3. x′ = x(40− x− y), y′ = y(90− x−2y) [see Exercise 9, Section 4.5].
4. x′ = x(80−3x−2y), y′ = y(80− x− y) [see Exercise 10, Section 4.5].
5. What is the outcome of a competition modeled by the system

x′ = x(2− x− x2 − y)
y′ = y(16−2x− x2 − y)?

6.∗ What is the outcome of a competition modelled by the system

x′ = x(80− x− y),

y′ = y(120− x−3y−2y2)?

5.2 Predator–Prey Systems

We have already discussed the Lotka–Volterra system

x′ = x(λ −by), y′ = y(−μ + cx), (5.5)

which unrealistically predicts population oscillations that have been observed in real
populations (see Section 4.1). The reason for describing this prediction as “unreal-
istic” is that the model is extremely sensitive to perturbations. A change in initial
population size would produce a change to a different periodic orbit, while the ad-
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dition of a perturbing term to the system of differential equations could produce the
same type of change or could produce a qualitative change in the behavior of orbits,
which might either spiral in to an equilibrium or spiral out from an equilibrium.

Let us try to construct a more realistic model by assuming that in the absence
of predators, the prey species would obey a logistic model. This would suggest a
system

x′ = x(λ −ax−by), y′ = y(−μ + cx). (5.6)

There are two possible direction fields, depending on the sign of cλ −aμ , as shown
in Figure 5.7.

Fig. 5.7 Predator–prey model alternatives.

The community matrix at the interior equilibrium (x∞,y∞) (if there is one) is[−ax∞ −bx∞
cy∞ 0

]
,

with determinant bcx∞y∞ > 0 and trace −ax∞ < 0; thus (x∞,y∞) is asymptotically
stable. The equilibrium (x∞,y∞) may be a spiral point, so that oscillations are pos-
sible, but only damped oscillations. The Dulac criterion shows that there cannot be
a periodic orbit. It is easy to verify that if cλ −aμ > 0 the equilibrium (λ/a,0) is a
saddle point, while if cλ −aμ < 0, the equilibrium (λ/a,0) is an asymptotically sta-
ble node. Thus in each case, there is exactly one asymptotically stable equilibrium
to which every orbit tends.

Another plausible modification of the Lotka–Volterra system is

x′ = x(λ −ax−by), y′ = y(μ + cx−dy), (5.7)
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with μ allowed to be either positive or negative. The direction field is as in Figure
5.8.

S

S

Fig. 5.8 Coexistence of predators and prey.

(We shall omit the cases in which there is no interior equilibrium, but the reader
may easily sketch these also.) At the interior equilibrium (x∞,y∞) the community
matrix is [−ax∞ −bx∞

cy∞ −dy∞

]
,

with determinant (ad +bc)x∞y∞ > 0 and trace −ax−dy < 0; therefore, (x∞,y∞) is
asymptotically stable. Again, damped oscillations are possible but there cannot be a
periodic orbit.

In order to obtain a possibility of periodic orbits without the extreme sensitivity
of the Lotka–Volterra model, we must assume nonlinear per capita growth rates. We
consider models of the form

x′ = x f (x)− xyφ(x), (5.8)
y′ = y(cxφ(x)− e).

In the absence of predators (y ≡ 0), this model would reduce to x′ = x f (x). Thus,
x f (x) represents the growth rate of the prey species by itself. The term xyφ(x) is
called the predator functional response; xφ(x) is the number of prey consumed
per predator in unit time. The constant c is the conversion efficiency of prey into
predator food, and the term cxyφ(x) is called the predator numerical response. The
constant e is the predator mortality rate. Models of the form (5.8) are known as
Rosenzweig–MacArthur models, having been proposed by M.L. Rosenzweig and
R.H. MacArthur (1963).
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In (5.8) it is reasonable to assume

φ(x)≥ 0, φ ′(x)≤ 0, [xφ(x)]′ ≥ 0, (5.9)

and that xφ(x) is bounded as x → ∞. These assumptions express the idea that, as
prey population increases, the consumption rate of prey per predator increases but
that the fraction of the total prey population consumed per predator decreases. Some
explicit forms for the predator functional response that have been used are

xφ(x) =
αx

x+A
[Holling (1965)],

xφ(x) = a(1− e−cx) [Ivlev (1961)],
xφ(x) = axq (q < 1) [Rosenzweig (1971)].

In order to study the system (5.8), we plot the isoclines, which are the curves in
the (x,y)-plane, or phase plane, along which x′ = 0 and y′ = 0. These curves should
properly be called nullclines. The predator isocline is cxφ(x) = e, which is a vertical
straight line. To plot the prey isocline y = f (x)/φ(x), we proceed as follows: Sketch
the graph of x f (x) and of yixφ(x) for a sequence of values yi. If yixφ(x) intersects
x f (x) for x = xi, then (xi,yi) is a point on the prey isocline. The prey isocline may
then be sketched by projecting to another graph in the (x,y)-plane (Figure 5.9).

Fig. 5.9 Prey isocline.

Observe that the prey isocline may have a maximum if the graph of xφ(x) is con-
cave down, so that yixφ(x) and x f (x) may intersect in more than one point for some
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values of yi. There are, in fact, biological reasons for expecting the prey isocline to
have a maximum [Rosenzweig (1969)]. It is reasonable for the function xφ(x) to
increase with x but approach a maximum when the number of prey is large. As the
prey population increases it should be able to survive in the face of an increase in
the predator population because of this saturation, but when the prey population gets
still larger, self-limiting effects tend to take over to bring the prey isocline down. It
is possible to incorporate an Allee effect, in which the prey population is required
to maintain a minimum size for survival, by having the prey isocline intersect the
x-axis at two points (Figure 5.10).

Fig. 5.10 Allee effect.

The Lotka–Volterra model (5.5) and the refinements (5.6), (5.7) with linear per
capita growth rates, do not allow any bending of the isoclines. Also, the refinements
(5.6), (5.7) satisfy fx(x,y)< 0, gy(x,y)≤ 0 in the first quadrant of the phase plane.
Thus, by the Dulac criterion they cannot have periodic orbits.

For a Rosenzweig–MacArthur model (5.8) with an equilibrium (x∞,y∞) given by
x∞φ(x∞) = e/c, y∞ = f (x∞)/φ(x∞) = c f (x∞)/e, the community matrix at equilib-
rium is [

x∞ f ′(x∞)− x∞y∞φ ′(x∞) −x∞φ(x∞)
cy∞[xφ(x)]′x∞ 0

]
,

whose determinant is cx∞y∞φ(x∞)[xφ(x)]′x∞ > 0, and whose trace is x∞
(

f ′(x∞)−
y∞φ ′(x∞)

)
.

The slope of the prey isocline at the equilibrium is

φ(x∞) f ′(x∞)− f (x∞)φ ′(x∞)(
φ(x∞)

)2 =
f ′(x∞)− y∞φ ′(x∞)

φ(x)
,
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which has the same sign as the trace of the community matrix. Thus, the equilibrium
is asymptotically stable if the prey isocline has negative slope at equilibrium and
unstable if the prey isocline has positive slope at equilibrium (Figure 5.11).

Asymptotically stable Unstable
(K,0)

x

y

x

y

( oo oox ,y )

( oo oox ,y )

(K,0)

Fig. 5.11

No orbit can cross either the positive x axis or the positive y axis. An orbit starting
on the y-axis tends to the origin, while an orbit starting on the x-axis tends to the
equilibrium on the positive x-axis. Every orbit starting in the interior of the first
quadrant, if bounded, remains in the interior of the first quadrant and must, by the
Poincaré–Bendixson theorem , tend to the equilibrium (x∞,y∞) or to the equilibrium
(K,0) on the positive x-axis or to a limit cycle around the equilibrium (x∞,y∞). We
will prove shortly in a more general setting that every orbit must remain bounded.
If there is no equilibrium (x∞,y∞), that is, if cφ(K) < e, where f (K) = 0, then the
equilibrium (K,0) is asymptotically stable and every orbit tends to it (Figure 5.12).

If the prey isocline has negative slope at (x∞,y∞), then (x∞,y∞) is asymptotically
stable and every orbit tends to it; (K,0) is a saddle point (Figure 5.13). If the prey
isocline has positive slope at (x∞,y∞), then (x∞,y∞) is unstable and there must be a
limit cycle around (x∞,y∞) to which every orbit tends (Figure 5.14). We ignore the
pathological (and very sensitive to perturbations) possibility of an infinite sequence
of periodic orbits around (x∞,y∞) and assume that there can be only a single limit
cycle. Then every orbit spirals either outward or inward to this limit cycle. Thus we
have a more plausible model than the original Lotka–Volterra model to explain the
observed periodic behavior.
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Fig. 5.12
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Fig. 5.13 Saddle point.

Another classical example of interacting populations in which oscillations have
been observed is the data collected by the Hudson’s Bay Company in Canada during
the period 1821-1940 on furs of the snowshoe hare (Lepus Americanus) and Cana-
dian lynx (Lynx Canadiensis) brought to the company by trappers. Table 5.1 shows
some data for the period 1848 to 1907, with the hare data estimated from the data
shown in graph form in [MacLulich (1937)] and the lynx data taken from [Elton and
Nicholson (1942)], and with population numbers given in thousands. In each case,
the data wre obtained by analyzing a variety of reports. This data is also depicted in
Figure 5.15 in the phase (hare–lynx) plane.
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Year Hares Lynx

1848 21 44
1849 12 20
1850 24 9
1851 50 5
1852 80 5
1853 80 6
1854 90 11
1855 69 23
1856 80 32
1857 93 34
1858 72 23
1859 27 15
1860 14 7
1861 16 4
1862 38 5
1863 5 5
1864 153 16
1865 145 36
1866 106 77
1867 46 68
1868 23 37
1869 2 16
1870 4 8
1871 8 5
1872 7 7
1873 60 11
1874 46 19
1875 50 31
1876 103 43
1877 87 27

Year Hares Lynx

1878 68 18
1879 17 15
1880 10 9
1881 17 8
1882 16 8
1883 15 27
1884 46 52
1885 55 74
1886 137 79
1887 137 34
1888 95 19
1889 37 12
1890 22 8
1891 50 9
1892 54 13
1893 65 20
1894 60 37
1895 81 56
1896 95 39
1897 56 27
1898 18 15
1899 5 4
1900 2 6
1901 15 9
1902 2 19
1903 6 36
1904 45 59
1905 50 61
1906 58 39
1907 20 10

Table 5.1 Hare and Lynx population sizes.

There are many problems with this data as a measure of population sizes. One
problem is that trapping data may not accurately describe the total population sizes,
and another problem is the varying delays between catching animals and bringing
their skins to a trading post. For example, it is pointed out in [Elton & Nicholson
(1942)] that the data in [MacLulich (1937)] should be shifted forward by a year. In
the earlier studies, it was found that the population sizes of hares, lynx, and also
several other species, fluctuated in time with a period of approximately 10 years.
The lynx oscillations were ascribed to the fact that hare is the main food for lynx.
However, the relation was not viewed as a predator–prey interaction until the sys-
tems view was introduced into theoretical ecology, notably in the text by Odum
(1953), which was the first to display the lynx and hare data in the same graph.
This appears to be another example of a predator–prey system with the oscillations
being explained as a limit cycle. However, a graph of the hare and lynx popula-
tions in the hare (prey)–lynx (predator) plane shows orbits going clockwise in some
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Fig. 5.14 Limit cycle.
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Fig. 5.15 The hare-lynx phase plane

cycles, whereas the limit cycle predicted by a Rosenzweig–MacArthur model is al-
ways counterclockwise. This does not show that hares eat lynx [Gilpin (1973)]! It
indicates that something is wrong with the model. Various suggestions have been
made to explain the anomaly. One possibility is that the numbers of animals of the
two species caught are not necessarily proportional to the actual population sizes.
The trappers should be viewed as predators who choose which type of animal to
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pursue rather than as external experimenters who measure population size. Lynx are
useful for their fur, which is more valuable than rabbit fur, but rabbits are also useful
as food for trappers. Thus, when rabbits are abundant and food is plentiful, hunters
can conveniently pursue both hares and lynx, since lynx tend to go where there are
rabbits. When rabbits are scarce, trappers must concentrate on rabbits for food and
therefore will catch fewer lynx. An important lesson to be learned is that population
models outside the laboratory are seldom simple and comprehensive, while experi-
mental data are also subject to substantial errors. Predictions of qualitative behavior
may be possible, but quantitative data are unreliable, especially over long periods of
time.

There is an even more basic flaw in the predator–prey model as an explanation
for the lynx-hare cycle: Hare population size oscillates even in the absence of lynx,
probably due to climatic variations and to epidemics that recur, killing most of the
hares. Also, hares could have other predators. A two-species predator–prey model,
whether of Lotka–Volterra or Rosenzweig–MacArthur type cannot exhibit oscilla-
tions when only one species is present.

Example 1. In Section 4.2 we formulated the model for the simple chemostat

C′ = q(C(0)−C)− βaCy
C+A

, (5.10)

y′ =
aCy

C+A
−qy,

with a,A,q, and β constants. This is a Rosenzweig–MacArthur model with the nu-
trient concentration C playing the role of the prey population and the bacteria pop-
ulation size y playing the role of the predator population. In the model (5.8) we
have

x f (x) = q(C(0)−C),

xφ(x) =
βaC

C+A
,

c =
1
β
,

e = q.

For (5.10), the prey isocline is the curve

y =
q(C+A)(C(0)−C)

aβC
,

which is unbounded as C → 0, and it is not difficult to verify that dy/dC < 0 at
every point on the prey isocline, and that the prey isocline meets the C-axis for
C = C(0), while the predator isocline is the line C = Aq/(a− q). Because the prey
isocline is monotone decreasing, an intersection of the two isoclines with C > 0,
y > 0 is asymptotically stable. There are two possibilities for this behavior. Either
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the two isoclines do not intersect, and the only equilibrium is (C(0),0), which is
asymptotically stable, or there is an asymptotically stable equilibrium with C > 0,
y > 0, and the equilibrium (C(0),0) is unstable, as in Figure 5.16.

Fig. 5.16 Chemostat equilibrium possibilities.

The condition that the chemostat have an equilibrium with a positive bacteria
population is

C(0) >
Aq

a−q
.

In terms of the parameter q, which depends on the flow rate and is thus adjustable,
this coexistence condition is

q <
aC(0)

A+C(0) .

Example 2. Determine the qualitative behavior of a predator–prey system mod-
eled by

x′ = x
(

1− x
30

)
− xy

x+10
,

y′ = y
(

x
x+10

− 1
3

)
.

Solution. We have studied this system in Example 1, Section 4.5, and have shown
that every orbit approaches a periodic orbit around the (unstable) equilibrium (5,
12.5). Thus the two species coexist with oscillations.
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Example 3. Determine the equilibrium behavior of a predator–prey system mod-
eled by

x′ = x
(

1− x
30

)
− xy

x+10
,

y′ = y
(

x
x+10

− 3
5

)
.

Solution. Equilibria are solutions of the pair of equations

x
(

1− x
30

− y
x+10

)
= 0, y

(
x

x+10
− 3

5

)
= 0.

There is an equilibrium (0,0), and if y = 0 we must have x = 30. There is a
coexistence equilibrium obtained by solving

x
x+10

− 3
5
= 0, 1− x

30
− y

x+10
= 0.

The first of these equations gives x = 15, and then the second equation gives y =
12.5. Thus, there are three equilibria: (0,0),(30,0), and (15,12.5). The community
matrix at an equilibrium (x∞,y∞) is[

1− x∞
15 − 10y∞

(x∞+10)2 − x∞
x∞+10

10y∞
(x∞+10)2

x∞
x∞+10 − 3

5

]
.

At (0,0), the community matrix is [
1 0
0 − 3

5

]
.

and thus (0,0) is unstable. At (30,0) the community matrix is[−1 − 3
4

0 3
20

]
.

Since the determinant of this matrix is negative, (30,0) is also unstable. The com-
munity matrix at (15,12.5) is [− 1

5 − 3
5

1
5 0

]
with negative trace and positive determinant. Thus (15,12.5) is asymptotically sta-
ble, and in fact, every orbit approaches this equilibrium.
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Exercises

In each of Exercises 1 through 6, determine the outcome of the predator–prey rela-
tionship modeled by the given system

1. x′ = 3x(1− x
20 )− xy

x+10 , y′ = y( x
x+10 − 1

2 ) [see Exercise 1, Section 4.5].
2. x′ = x(1− x

40 )− 2xy
x+15 , y′ = 3y( 2x

x+15 − 6
5 ) [see Exercise 2, Section 4.5].

3. x′ = 3x(1− x
20 )− xy

x+10 , y′ = y( x
x+10 − 1

6 ) [see Exercise 3, Section 4.5].
4. x′ = x(1− x

40 )− 2xy
x+15 , y′ = 3y( 2x

x+15 − 1
2 ) [see Exercise 4, Section 4.5].

5. x′ = 3x(1− x
20 )− xy

x+20 , y′ = y( x
x+10 − 3

4 ) [see Exercise 5, Section 4.5].
6. x′ = x(1− x

40 )− 2xy
x+15 , y′ = 3y( 2x

x+15 − 8
5 ) [see Exercise 6, Section 4.5].

7. Show that the equilibrium (x∞,y∞) with x∞ > 0, y∞ > 0 of the predator–prey
system modeled by

x′ = rx
(

1− x
K

)
− axy

x+A
,

y′ = sy
(

ax
x+A

− aJ
J+A

)
,

is unstable if K > A+ 2J, and asymptotically stable if J < K < A+ 2J [see
Exercise 11, Section 4.5].

8. Use a computer algebra system to plot the hare and lynx populations given in
Table 5.1 as functions of time separately but in the same graph.

9. Use a computer algebra system to plot the hare and lynx data given in Table 5.1
over some time intervals of 10–12 years in the phase plane.

5.3 Laboratory Populations: Two Case Studies

Such ideas as competitive exclusion and oscillations in predator–prey systems have
been suggested by real-world observations, but the data is never completely un-
equivocal. There are too many factors that are ignored in simple models for a close
fit between model and data. For example, it is rare for a population system to involve
only two species without any interaction with other species. However, laboratory ex-
periments may allow more control and give better opportunities to test the validity
of models. In this section, we describe two experiments conducted by G. F. Gause
(1934a, 1934b), one on two species in competition and one on a predator–prey sys-
tem.

The possibility of competitive exclusion is illustrated by some experiments con-
ducted by Gause (1934a) on Paramecium aurelia and Paramecium caudatum (two
kinds of protozoa). First, Gause measured the population sizes of each separately
and fit the results to logistic models. Then he measured the sizes of the two popula-
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tions together. The results are shown in Table 5.2, with time measured in days and
population sizes measured in numbers of individuals per 0.5 cc.

Competition
Time P. aurelia P. caudatum P. aurelia P. caudatum

0 2 2 2 2
1 3 5 4 8
2 29 22 29 20
3 92 16 66 25
4 173 39 141 24
5 210 52 162 -
6 210 54 219 -
7 240 47 153 -
8 - 50 162 21
9 - 26 150 15
10 240 69 175 12
11 219 51 260 9
12 255 57 276 12
13 252 70 285 6
14 270 53 225 9
15 240 59 222 3
16 249 57 220 0

Table 5.2 Paramecium population sizes.

For comparison of the population sizes of the two species, the volumes are used
rather than the numbers of individuals. Because P. caudatum has larger volume than
P. aurelia, the volume of P. caudatum is taken as the unit and the number of P.
aurelia is multiplied by 0.39. The general shape of the individual growth curves
looks rather like logistic growth, although there appear to be oscillations around the
carrying capacity, which are probably caused by small variations in temperature and
the composition of the growth medium. Gause therefore fit the single-species data
to logistic models. We use slightly different values for the parameters from those
obtained by Gause in order to fit his data better. We use intrinsic growth rate 1.12
and carrying capacity 95 for P. aurelia and intrinsic growth rate 0.84 and carrying
capacity 60 for P. caudatum. Figure 5.17 shows the data and model curve for P.
aurelia and Figure 5.18 shows the data and model curve for P. caudatum.

The data for the mixed populations, shown as a phase portrait in Figure 5.19,
indicates clearly a P. caudatum population dying out and a P. aurelia population ap-
proaching its single-species carrying capacity. We may fit the data to a model of
the form (5.4) with x the density of P. aurelia and y the density of P. caudatum and
parameter values λ = 1.12, μ = 0.84, a = 1.12/95, d = 0.84/60, and b and c to
be determined. By comparing the conversion of food to biomass for each species,
Gause estimated values for b = 1.8103/105, c = 0.4846/64 in the initial stages, but
he considered these parameters to be functions of time. In the model (5.4), these
coefficients are constants, and a reasonable fit with the data is obtained with the
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Fig. 5.17 P. aurelia.
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Fig. 5.18 P. caudatum.

parameter values b = (1.55)(1.12)/95, c = (0.65)(0.84/60. Using these parame-
ter values, we may calculate that cλ −aμ > 0,dλ −bμ > 0. This suggests that the
system is in what we called Case 3 in Section 5.1, and thus that P. aurelia should sur-
vive and P. caudatum should become extinct. The behavior of the model (5.4) agrees
quite well with the experimental data but the approach to extinction of P. caudatum
is considerably slower than the experimental data indicates. The experiment is con-
sistent with the principle of competitive exclusion. More elaborate experiments have
been carried out [Park (1948)], and these also support the principle of competitive
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Fig. 5.19 P. aurelium and P. caudatum in competition

exclusion. However, other experiments, such as those reported in [Ayala, Gilpin,
and Ehrenfeld (1973)] cast doubt on the universality of the principle.

In the real world, there are many situations in which species avoid competition
by using somewhat different food supplies or by searching for food in different
locations. This suggests that the principle of competitive exclusion may be broadly
applicable but that species may arrange to coexist in spite of it.

Another set of experiments performed by Gause (1934a, 1934b) involved Parame-
cium aurelia (protozoa) and Saccharomyces exiguus (a yeast on which the protozoa
feed). Gause obtained the data given in Table 5.3, with time measured in days. Be-
cause the original data was displayed only in a graph, the population sizes are esti-
mates read from the graph.

A phase portrait display of this data is shown in Figure 5.20. The phase portrait
looks more like a limit cycle than a Lotka–Volterra model, as there is some decrease
in amplitude from the initial state, and Gause recognized that the Lotka–Volterra
model was not a perfect fit. However, if we try to fit the data to a Lotka–Volterra
model (5.5), we may use the estimates λ = 0.65,μ = 0.32 obtained by Gause. In
order to estimate the other two parameters b and c, we may use the fact that in
the Lotka–Volterra model the center of the closed orbits is the equilibrium point
(μ/c,λ/b) and then we may use the values b = 0.0108 and c = 0.0058 obtained by
estimating that the equilibrium point is (55,60). Perhaps a model of Rosenzweig-
MacArthur type would give a better fit, but to fit data to such a model is a much
more difficult matter.

Some of Gause’s experiments led to neither coexistence in equilibrium nor co-
existence with oscillations of the predator and prey species. Instead, the predators
consumed all the prey and then died from lack of food. This problem also arose in
more elaborate experiments conducted by Huffaker (1958); in some cases the sys-
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Time S. exiguus P. aurelia

0 155 90
1 40 175
2 20 120
3 10 60
4 25 10
5 55 20
6 120 15
7 110 55
8 50 130
9 20 70
10 15 30
11 20 15
13 70 20
15 135 30
16 135 80
17 50 170
18 15 90
19 20 30

Table 5.3 Predator–prey population sizes.
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Fig. 5.20 S. exiguus and P. aurelia phase portrait.

tem went through a few cycles and then collapsed. In experiments on predator–prey
systems, it may be necessary to perturb the system by providing a refuge for prey or
allowing some immigration to make coexistence possible.
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Exercises

1. Use a computer algebra system to plot solutions of the system (5.4) with the
parameters derived here and initial data x(0) = 2, y(0) = 2.

2. Use a computer algebra system to plot solutions of the system (5.5) with the
parameters derived here and an initial point on the periodic orbit indicated by
Figure 5.20.

5.4 Kolmogorov Models

Two-species models whose per capita growth rates are functions of the population
size are described generally by models of the form

x′ = x f (x,y), (5.11)
y′ = yg(x,y),

sometimes called Kolmogorov models. We model predator–prey behavior by the
following assumptions:

(i) fy(x,y)< 0, gx(x,y)> 0, gy(x,y)≤ 0.
(ii) For some (prey carrying capacity) K > 0, f (K,0) = 0 and f (x,y)< 0 if x > K;

for some (minimum prey population to support predators) J > 0, g(J,0) = 0.

Because gx(x,y)> 0, gy(x,y)≤ 0, the predator isocline g(x,y) = 0 slopes upward to
the right from (J,0) (or is vertical if gy(x,y) = 0), as in the Rosenzweig–MacArthur
model). The interpretation of a condition gy(x,y) ≡ 0 is that the predators do not
interfere with one another in searching for prey. The Rosenzweig–MacArthur model
is a special case of the Kolmogorov model with f (x,y) = f (x)− yφ(x),g(x,y) =
cxφ(x)− e. Then fy(x,y) =−φ(x)< 0, gx(x,y) = [xφ(x)]′ > 0, K is determined by
f (K) = 0, and J by cJφ(J) = e. An example of a Kolmogorov model that is not a
Rosenzweig–MacArthur model is the Leslie model (1948) with a predator “carrying
capacity” proportional to prey population size, that is,

g(x,y) = b
(

1− y
ax

)
.

Theorem 5.1. Under the hypotheses (i), (ii) above, every solution of a Kolmogorov
model with x(0)> 0, y(0)> 0 remains bounded for 0 ≤ t < ∞.

Proof. The proof of this theorem is quite difficult and may be omitted without
seriously affecting comprehension. Since x′(t) < 0 whenever x > K, it is impos-
sible to have x(t) → ∞. A solution would become unbounded only if y(t) → ∞
in the region where x′ < 0 or f (x,y) < 0, and y′ > 0 or g(x,y) > 0. Pick a con-
stant α > 0 and choose any x0 > K, y0 above the maximum height of the curve
f (x,y) = −α . Let (x(t),y(t)) be the solution with x(0) = x0, y(0) = y0. We will
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show that this solution crosses g(x,y) = 0 and enters the region where x′ < 0,
y′ < 0, and thus is not unbounded. Any solution with x(0) < x0,y(0) < y0 must
also remain bounded because it cannot cross the orbit of (x(t),y(t)). So long
as this orbit remains in the region in which x′ < 0, y′ > 0, (x(t),y(t)) remains
above the curve f (x,y) = −α , and therefore we have f (x(t),y(t)) ≤ −α . Also,
(d/dt)g(x(t),y(t)) = gx(x(t),y(t))x′(t)+ gy(x(t),y(t))y′(t) ≤ 0, since gx(x,y) > 0,
x′ < 0, gy(x,y) ≤ 0, y′ > 0. Thus, g(x(t),y(t)) ≤ g(x0,y0) for t ≥ 0. We now let
β = g(x0,y0)/α > 0 and define V (x,y) = xβ y. Then

d
dt

V (x(t),y(t)) = βxβ−1yx′(t)+ xβ y′(t)

= βxβ−1yx f (x,y)+ xβ yg(x,y)

= xβ y
(

f (x,y)+g(x,y)
)

≤ xβ y
(−βα +g(x0,y0)

)≤ 0.

Thus V (x(t),y(t)) is a decreasing function, and V (x(t),y(t)) ≤ V (x0,y0) for t ≥ 0.
We now have

y(t)≤ xβ
0 y0

[x(t)]β
≤
(x0

J

)β
y0

in the region x ≥ J, which contains the region where x′ < 0, y′ > 0. Thus the solution
(x(t),y(t)) cannot have y(t)→ ∞ but must proceed to the region where x′ < 0, y′ < 0
and remain bounded.

An immediate consequence of Theorem 5.1, together with the Poincare–Bendixson´
theorem, is the theorem of Kolmogorov (1936): Every orbit of a predator–prey sys-
tem of Kolmogorov type tends either to a stable equilibrium or to a stable limit cycle
as t → ∞ . We may now return to the problem of explaining the periodic oscillations
that originally led to the Lotka–Volterra model (Section 4.1) and that suggest that
a predator–prey model with nonlinear per capita growth rates is a more suitable
description.

Models of Kolmogorov type are the most general models for situations in which
the per capita growth rate of each species depends only on the population sizes
of both species. The effect of the factors x and y in the equations for x′ and y′,
respectively, is to ensure that neither species generates spontaneously; an orbit for
which x = 0 at some time must remain on the y-axis of the phase plane for all later
times. We are also assured that every orbit starting in the first quadrant (x > 0,y> 0)
of the phase plane remains in the first quadrant.

5.5 Mutualism

There are situations in which the interaction of two species is mutually beneficial,
for example, plant-pollinator systems. The interaction may be facultative, mean-
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ing that the two species could survive separately, or obligatory, meaning that each
species will become extinct without the assistance of the other.

If we model a mutualistic system by a pair of differential equations with linear
per capita growth rates

x′ = x(λ −ax+by),

y′ = y(μ + cx−dy),

the mutualism of the interaction is modeled by the positive nature of the interaction
terms cx and by. In a facultative interaction, the constants λ and μ are positive,
while in an obligatory relation the constants λ and μ are negative. In each type of
interaction there are two possibilities, depending on the relationship between the
slope a/b of the x isocline and the slope c/d of the y-isocline (Figure 5.21). If
ad > bc, the mutualistic effects are smaller than the self-limiting terms in the per
capita growth rates, and the slope of the x-isocline is greater than the slope of the
y-isocline.

Fig. 5.21 Types of mutualism.

In both facultative and obligatory interactions, if ad < bc there is a region of
the phase plane in which solutions become unbounded, and this suggests that either
we must restrict models of this form by requiring ad > bc, or we must consider
models with nonlinear per capita growth rates. For models with linear per capita
growth rates and ad > bc, it is easy to verify that in the facultative case the only
asymptotically stable equilibrium is the intersection (x∞,y∞) of the lines ax−by =
λ , −cx+dy= μ with x∞ > 0,y∞ > 0, and every orbit tends to this equilibrium. In the
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obligatory case, the only asymptotically stable equilibrium is the origin, and every
orbit tends to the origin. Thus, in the obligatory case neither species survives. While
our model may be acceptable in the facultative case, it is clear that the possibility of
obligatory mutualism is not described by this model. If we consider the obligatory
case with ad < bc, there is an equilibrium (x∞,y∞) with x∞ > 0, y∞ > 0, which may
be shown to be a saddle point whose stable separatrices separate the phase plane into
a region of mutual extinction and a region of unbounded growth. Such a separation
is plausible biologically, but we must alter the model so as to rule out the possibility
of unbounded growth in order to give a more realistic model.

We shall describe a model of Kolmogorov type to describe mutualistic systems,
either facultative or obligatory, and show how general hypotheses that are biologi-
cally reasonable lead to qualitative predictions about the behavior of solutions. We
assume a model of the form

x′ = x f (x,y),

y′ = yg(x,y).

To describe the mutualistic effect of the y species on the x species, we assume

fx(x,y)< 0, fy(x,y)≥ 0,

for x ≥ 0,y ≥ 0. The case fy(x,y)≡ 0 is known as commensalism. Under commen-
salism the population size of the x species is independent of the population size
of the y species. Our treatment will include the possibility of commensalism, but
obviously we will not assume that the model is commensal for both species.

Because fx(x,y) < 0, the x-isocline f (x,y) = 0 may be written in the form x =
φ(y)≥ 0 with φ ′(y)≥ 0 on some interval α ≤ y < ∞. If α = 0 and φ(0) = K > 0 so
that f (K,0) = 0, the x species is facultative and K is the carrying capacity. If α > 0
or α = 0 but φ(0) = 0, the x species is obligatory. In this case the x species would
die out in the absence of the y species.

We assume also that
φ(∞) = K∗ < ∞,

so that the mutualistic effect of the y population cannot be so strong as to allow the
x species population size to become unbounded. Since φ is an increasing function,
K∗ ≥ K; the number K∗ may be viewed as an increased carrying capacity for the x
species produced by the mutualistic effect of the y species. Specifically, we assume

gx(x,y)≥ 0, gy(x,y)< 0,

for x ≥ 0,y ≥ 0, so that the y isocline g(x,y) = 0 may be written in the form y =
ψ(x)≥ 0 with ψ ′(x)≥ 0 for β ≤ x < ∞ (β ≥ 0). The y species is facultative if β = 0
and ψ(0) =M > 0, so that g(0,M) = 0. If β > 0 or β = 0 but ψ(0) = 0, the y species
is obligatory. We also assume

ψ(∞) = M∗ < ∞.
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At an interior equilibrium (x∞,y∞), the community matrix is[
x∞ fx(x∞,y∞) x∞ fy(x∞,y∞)
y∞gx(x∞,y∞) y∞gy(x∞,y∞)

]
,

with trace
x∞ fx(x∞,y∞)+ y∞gy(x∞,y∞)< 0

and determinant

x∞y∞
(

fx(x∞,y∞)gy(x∞,y∞)− fy(x∞,y∞)gx(x∞,y∞)
)
,

which is positive if and only if the crossing of the isoclines at (x∞,y∞) is such that
the x-isocline is above the y-isocline to the right of x∞. Also the quantity Δ satisfies

Δ =
(
x∞ fx(x∞,y∞)− y∞gy(x∞,y∞)

)2
+4x∞y∞ fy(x∞,y∞)gx(x∞,y∞)≥ 0.

Thus, the equilibrium (x∞,y∞) is either a saddle point or an asymptotically stable
node, depending on the crossing of the isoclines. If we assume that the isoclines
are not tangent at any equilibrium, then interior equilibria must alternate between
saddle points and asymptotically stable nodes. The stable separatrices at a saddle
point separate the domains of attractions of the adjacent nodes.

Because the x-isocline approaches the vertical line x = K∗ asymptotically and
the y-isocline approaches the horizontal line y = M∗ asymptotically, there must be
a “last” equilibrium–the one with the largest values of x and y,–and this equilibrium
must be an asymptotically stable node. Also, if the y-isocline is above the x-isocline
for small x, there must be at least one interior equilibrium.

We can now describe the qualitative behavior of mutualistic systems of Kol-
mogorov type for both facultative and obligatory interactions. In the accompanying
figures we will use (SP) to describe a saddle point, (U) to designate an unstable
node, and (AS) to designate an asymptotically stable node.
Case I. Both species facultative. In this case f (K,0) = 0, g(0,M) = 0, and f (0,0)>
0. Thus, the origin is an unstable node and (K,0),(0,M) are saddle points. Since
the y-isocline is above the x-isocline for small x, the first interior equilibrium is an
asymptotically stable node, and since the last equilibrium is an asymptotically stable
node, there must be an odd number (at least one) of interior equilibria. Every orbit
starting in the interior of the first quadrant tends to an interior node (Figure 5.22).
Case II. Both species obligatory. In this case the x-isocline meets the y-axis at (0,α)
and the y-isocline meets the x-axis at (β ,0). Since f (0,0)< 0, g(0,0)< 0, the origin
is an asymptotically stable node. Since the x-isocline is above the y-isocline for
small x, the first interior equilibrium is a saddle point. Thus there is an even number,
possibly zero, of interior equilibria. If there are two interior equilibria, the first one is
a saddle point whose stable separatrices separate the region of initial states for which
orbits tend to the origin (extinction of both species) from the region of initial states
for which orbits tend to the asymptotically stable interior node (coexistence) (Figure
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Fig. 5.22 Both species facultative.

5.23). If there is no interior equilibrium, the origin is an asymptotically stable node
and all orbits tend to the origin (extinction of both species) (Figure 5.24).

Fig. 5.23 Coexistence.

Which of the two situations occurs depends on the parameters of the model.
Changes in external conditions may alter the parameters of the system and cause a
transition from one state to another. Thus coexistence may be destroyed, either by
such a transition or by a perturbation that moves an orbit across the separatrix into
the extinction region.
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Fig. 5.24 Extinction.

Case III. Facultative–obligatory mutualism. We take the x-species to be obligatory,
so that the x-isocline meets the y-axis at (0,α), and the y-species to be facultative,
so that the y-isocline meets the y-axis at (0,M). There are two distinct subcases,
depending on the relative sizes of α and M, but in each of these subcases, f (0,0)<
0, g(0,0)> 0, and the origin is a saddle point.

If α > M, then f (0,M) < 0, and (0,M) is an asymptotically stable node. Since
the x-isocline is above the y-isocline for small x, the first interior equilibrium is a
saddle point. As in the obligatory–obligatory case (Case II), there must be an even
number (possibly zero) of interior equilibria. If there are two interior equilibria, the
first is a saddle point whose stable separatrices separate the region of initial states for
which orbits tend to the node (0,M) (extinction of the x species) from the region of
initial states for which orbits tend to the interior stable node (coexistence) (Figure
5.25). If there are no interior equilibria all orbits tend to the node (0,M) (Figure
5.26).

If α < M, then f (0,M) > 0, and (0,M) is a saddle point. Since the y-isocline is
above the x-isocline for small x, the first interior equilibrium is an asymptotically
stable node. As in the facultative–facultative case (Case I) there must be an odd num-
ber of interior equilibria, and every orbit starting in the interior of the first quadrant
of the phase plane must tend to an asymptotically stable interior node (Figure 5.27).

We now have a general description of what a two-species mutualistic model
should be and how its solutions should behave. There have been relatively few at-
tempts to suggest explicit models for mutualism, possibly because experimental data
to fit a model are difficult to obtain. While in the model we have proposed both iso-
clines be curved, all the results that we have deduced on behavior of solutions would
remain true if one of the isoclines were a straight line.

Some forms that have been used include:
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Fig. 5.25 Coexistence.

Fig. 5.26 Stable node.

f (x,y) =
a1y

1+b1x
− c,

g(x,y) = d2(K − y)+
a2x

1+b2x

[Soberon and DelRio (1981)],

f (x,y) = r
(

1− x
K
(
1− ex(1−y/M)

)),
g(x,y) = s

(
1− y

L
(
1− ey(1−x/N)

)) [Dean (1983)].

If we think of a logistic model with parameters r and K, we could use
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Fig. 5.27 Stable node.

f (x,y) = r
(

1− x(y+A)
KA+K∗y

)
to model enhancement of K, or

f (x,y) =
( rA+ r∗y

y+A

)(
1− x

K

)
to model enhancement of r, or

f (x,y) =
( rA+ r∗y

y+A

)(
1− x(y+B)

KB+K∗y

)
to model simultaneous enhancement of r and K through mutualism, with similar
forms for g(x,y).

Exercises

In Exercises 1 through 4, find all equilibria of the given mutualistic system and
determine their stability. Are there any unbounded orbits?

1. x′ = x(−20− x+2y), y′ = y(−50+ x− y).
2. x′ = x(−20− x+2y), y′ = y(−50+ x− y).
3. x′ = x(y/(1+ x)−1), y′ = y(10− y+ x/(1+ y)).
4. x′ = x(1− x/10) · ((2y+1)/(1+ y)), y′ = y(1− y/20).

5.∗ Determine the behavior as t → ∞ of solutions of the system
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x′ = rx
(

1− x
K +ay

)
, y′ = sy(1− y

M+bx
)

with a, b, K, M, r, and s positive constants. [see Exercise 12, Section 4.5].
[Warning: The behavior if ab < 1 is different from the behavior if ab > 1].

5.6 The Spruce Budworm: A Case Study

The spruce budworm is an insect that inhabits spruce and fir trees in eastern North
America. In most years it is relatively scarce, but it exhibits outbreaks in which the
population grows by a factor of as much as 1000. In an outbreak year, budworms
may devour the new needles produced by an evergreen forest, ultimately killing
80 percent of the mature trees in the forest. Such outbreaks may destroy forests.
When the food supply is destroyed (this may take 7 to 14 years from the start of
the outbreak) the budworm population declines rapidly to a low level, and the forest
may then begin to recover. We have described a simple model for the budworm
population in Exercise 13, Section 1.4 and Project 1.1. Here we will recall this
model and refine it to incorporate the forest as well. The dynamics of the spruce
budworm proceed on a much faster time scale than the dynamics of the forest, and
our model will incorporate two time scales. The process is to begin with the fast
(budworm) variable, assuming that the slow (forest) variables remain constant. The
next step is to formulate a slow-variable model and analyze it in order to decide how
to refine the fast variable model to incorporate dependence of its parameters on the
slow variables. This will allow us to simulate outbreaks caused by a change in the
behavior of the fast -variable system caused by parameter changes. Our description
is based on the paper [Ludwig, Jones, and Holling (1978)].

We let B denote the spruce budworm population size and assume the fast variable
model

B′ = rB

(
1− B

KB

)
−β

B2

α2 +β 2 . (5.12)

This is the model of Exercise 13, Section 1.4, with different notation. Here rB is the
intrinsic growth rate and KB is the carrying capacity in a logistic growth model. In
addition, there is predation by birds and parasites that saturates for high budworm
populations at a level β , and α is the budworm population at which predation is half
the maximum. The model involves the four parameters rB, KB, β , α . Later, when
we incorporate the slow variables, we will allow KB and α to depend on these slow
variables.

It is convenient to scale equation (5.12) to reduce the number of parameters. We
use α as the unit of budworm population size and introduce u = B/α as a new
dependent variable. This transforms (5.12) to the equation

αu′ = rBuα
(

1− αu
KB

)
−β

u2

1+u2 ,
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or
α
β

u′ = rB
α
β

u
(

a− αu
KB

)
− u2

1+u2 .

Now we define the new parameters

R =
α
β
, Q =

KB

α
,

and rewrite the differential equation as

α
β

u′ = Ru
(

1− u
Q

)
− u2

1+u2 . (5.13)

Equilibria of (5.13) are u = 0 and the intersections of the line y = R(1− u/Q) and
the curve y = u/(1+ u2). It will turn out that during an outbreak Q remains nearly
constant but R may vary considerably. Thus, in order to understand the dynamics we
will need to investigate how the equilibria depend on R. The curve y = u/(1+ u2)
starts at the origin, increases to a maximum at (1,1/2), and then decreases with an
inflection point at (

√
3,
√

3/4), and approaches zero as u → ∞. The line y = R(1−
u/Q) passes through the points (0,R) and (Q,0) in the (u,y)-plane. A “typical”
situation is as shown in Figure 5.28.

Fig. 5.28 Equilibria of fast-variable model.

There are four equilibria: an unstable equilibrium at u = 0, two asymptotically
stable equilibria u− and u+, separated by an unstable equilibrium u = uc. The do-
main of attraction of the small equilibrium u− is the interval (0,uc), and the domain
of attraction of the small equilibrium u+ is the interval (uc,∞). If R increases until
u− and uc coalesce, as in Figure 5.29, then only the equilibrium u+ remains. Thus,
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if a system is in equilibrium at u− and R is increased, there could be a jump to
u+. Conversely, if R is decreased until u+ and uc coalesce, as in Figure 5.30, then
only the equilibrium u− remains. Thus, if a system is in equilibrium at u+ and R is
decreased, there could be a crash to u−.

Fig. 5.29 Coalescence of equilibria.

Fig. 5.30 Coalescence of equilibria.

We think of the parameter R as representing the resources of the forest supply
as food for budworms, and the equilbria u− and u+ as corresponding to budworm
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limitation by predators and food supply, respectively. As forest conditions improve,
budworm growth exceeds control by predators and there is an outbreak. If this out-
break destroys the forest, the predators may regain control and cause a budworm
crash. The outbreak and crash will generally occur at different population levels.

In order to build in the possibility of forest destruction, we need to form a model
to describe the state of the forest assuming a fixed budworm population. We will use
as forest variables the total surface area of branches S and a variable E, which may
be viewed as an energy reserve, to describe the foliage and health of the trees. We
choose a logistic form for the equation governing S,

S′ = rSS
(

1− SKE

KSE

)
. (5.14)

The factor KE/E is included because S may decrease under stress through the
death of branches or whole trees. Normally, however, E will be close to its carrying
capacity KE and S will approach its carrying capacity KS. We assume that the energy
reserve E also satisfies an equation of logistic type

E ′ = rEE
(

1− E
KE

)
− p

B
S
. (5.15)

The term pB/S describes the stress on the trees excited by budworm consumption
of foliage. Since B has units of number of budworms per acre and S has units of
branch surface area per acre, B/S is the number of budworms per unit of branch
surface area.

The next step is to determine the qualitative behavior of the slow-variable system
(5.14), (5.15), treating B as constant, by analyzing its equilibria. The equilibrium
conditions are S = 0 or S = KS

kE
E together with

S =
pBKE

rE

1
E(KE −E)

. (5.16)

The curve (5.16) has vertical asymptotes at E = 0 and E =KE and has a minimum
when E = KE/2. Equilibria are intersections of this curve and the line S = EKS/KE
through the origin with positive slope. If B is small, there are two equilibria (Figure
5.31), while if B is large, as during a budworm outbreak, the curve (5.16) is elevated
and there are no equilibria (Figure 5.32).

We may see from the flow arrows that in Figure 5.31, the equilibrium on the
left is a saddle point and the equilibrium on the right is asymptotically stable. The
stable separatrices at the saddle point divide the plane into the domain of attraction
of the stable equilibrium (to the right of the separatrices) and the region for which
E →−∞ (to the left of the separatrices). (In our model, E ′ < 0 when E = 0, and this
is unrealistic; later we shall describe how to modify the model to make E ′ = 0 when
E = 0 and allow the forest to recycle.)

When the budworm population is small enough that Figure 5.31 describes the
slow-time situation, S and E increase slowly toward the stable equilibrium. As B
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Fig. 5.31 Two equilibria.

Fig. 5.32 No equilibrium.

increases, the curve (5.16) rises, causing the equilibrium values of S and E to de-
crease somewhat, indicating a deterioration of the health of the forest. When there
is a catastrophic outbreak of budworms, the equilibria coalesce and disappear, shift-
ing the situation to that of Figure 5.32. Then the forest collapses. There is another
possibility: The budworm population level, though high, may be held down enough
to avoid collapse of the forest. This is called “perpetual outbreak” and has been
observed as a consequence of the spraying done to try to control the budworm.

We now have two separate models for budworm and forest. In order to combine
them into one model, we need to reconsider the two models by coupling the param-
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eters appropriately. We would expect rB, the intrinsic growth rate of the budworm
population, to be independent of the forest parameters, but the carrying capacity
should be proportional to the foliage surface area S. Thus, we replace KB by a new
parameter K with

KB = KS.

The maximum predation rate β is not affected by the forest state, but the budworm
population level α at which predation is half its maximum rate will also increase
proportionally to S; as S increases predators will have to search for more foliage,
and a higher budworm population can be supported at the same predation rate. Thus,
we replace α by a new parameter α ′ with α = α ′S. We now have a coupled model

B′ = rBB
(

1− B
KS

)
−β

B2

(α ′S)2 +B2
,

S′ = rSS
(

1− S
KS

KE

E

)
, (5.17)

E ′ = rEE
(

1− E
KE

)
−P

B
S
.

The parameters R and Q introduced in the analysis of (5.12) now become

R =
α ′rB

β
S, Q =

K
α
.

Q remains constant but R increases proportionally to S as S increases. As a young
forest matures, S increases, and the consequent increase in R in the analysis of the
fast variable will lead to a budworm outbreak. Whether there will be perpetual out-
break or forest collapse depends on parameter values.

Appropriate values for the parameters of the model (5.17) have been estimated
[Ludwig, Jones, & Holling (1978)], first on the basis of general knowledge of the
biology of the situation and then in more refinement from an extensive field study
of the forests of New Brunswick. These studies led to the following choices for
parameter values:

rB = 1.52, K = 335, β = 43,200,
α ′ = 1.11, rS = 0.095, KS = 25,440,
KE = 1.0, rE = 0.92, p = 0.00195.

These led to the values R = 3.91× 10−5S, Q = 302. We could then use these
parameter values in (5.17) to simulate the behavior of the spruce budworm-forest
system, and we would find outbreak followed by collapse of the forest. This con-
forms to observed behavior in part, but does not exhibit the cycles of budworm
outbreak, forest collapse, and budworm collapse, followed by forest regeneration.
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This shortcoming of our model is reflected in the fact that E, a variable meant to
describe a general status and considered to vary from zero to one, may become neg-
ative. We may improve the model in an ecological sense by observing that budworm
carrying capacity should depend on E as well as S and by incorporating dependence
on E in the stress due to defoliation by budworms. We replace KB = KS by

KB = KS
E2

E2 +T 2
E
,

where TE is a constant threshold value. The quantity E2/(E2 +T 2
E ) is near one in a

healthy forest but decreases sharply as E → 0. We also replace the stress term pB/S
by

p
B
S

E2

T 2
E +E2 .

This means that the stress term will decrease rapidly as the forest collapses. The
refined model would be

B′ = rBB
(

1− B
KS

E2 +T 2
E

E2

)
−β

B2

(α ′S)2 +B2
,

S′ = rSS
(

1− S
KS

KE

E

)
, (5.18)

E ′ = rEE
(

1− E
KE

)
−P

B
S

E2

E2 +T 2
E
.

With suitably chosen TE , this model will behave like the model (5.17) except that
when B, S, and E are small it will allow regeneration of the forest and a new cycle.

The models (5.17) and (5.18) give a qualitative picture similar to what has been
observed. For short term predictions and actual forest management it may be prefer-
able to use a more detailed model that does not attempt to describe a whole forest
by two variables. Such a model would not be analytically tractable but could be
used for numerical simulations. However, there are, necessarily, approximations in
the model and errors in the parameters, which could give accumulating errors in a
simulation. Thus, such a model is best suited for short-term predictions. Our less-
detailed model is better suited for explaining why things happen.
References: Arreola, Mijares-Bernal, Ortiz-Navarro, and Saenz (2000) have looked
at the effects of insecticides on a two-dimensional version of the above model that
supports oscillations. They show that insecticides can increase the frequency of
these oscillations, a situation that in the long run may not be good for the trees.
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5.7 The Community Matrix

In this chapter, we are concerned primarily with models for two interacting species.
However, in most real-life situations there are more than two species involved.
For example, the spruce budworm model considered in Section 5.5 involves three
species. In the remainder of this chapter, we shall give a very brief sketch of how
one may use two-species models (competition, predator–prey, and mutualism) as
building blocks to study some larger systems. In general, the study of multispecies
models is very complicated, and we shall confine ourselves to some remarks about
their general structure and two three-species examples.

If x1,x2, . . . ,xn represent the population sizes of n different interacting species in
a system for which it is assumed that the growth rate of each population size at any
time depends only on the various population sizes at that time, then the system is
modeled by an autonomous system of n first-order differential equations

x′1 = F1(x1,x2, . . . ,xn),
x′2 = F2(x1,x2, . . . ,xn),

...
...

x′n = Fn(x1,x2, . . . ,xn).

(5.19)

We are interested only in nonnegative population sizes. Since it is biologically rea-
sonable to require that no species can generate spontaneously, it is reasonable to
require that a solution for which some x j is zero at any time should continue to have
x j = 0 for all time. Thus, it is natural to write the system (5.19) in the Kolmogorov
form

x′1 = x1r1(x1,x2, . . . ,xn),
x′2 = x2r2(x1,x2, . . . ,xn),

...
...

x′n = xnrn(x1,x2, . . . ,xn).

(5.20)

Exactly as for single-species models (Chapter 1) and two-species models (Chapter
4) we define an equilibrium of the system (5.19) to be a solution (ξ1,ξ2, . . . ,ξn) of
the system of equations

F1(ξ1,ξ2, . . . ,ξn) = 0,
F2(ξ1,ξ2, . . . ,ξn) = 0,

...
...

Fn(ξ1,ξ2, . . . ,ξn) = 0.

(5.21)

An equilibrium is a constant solution of the system of differential equations (5.19).
The linearization of the system (5.19) at an equilibrium (ξ1,ξ2, . . . ,ξn) is defined to
be the linear system of differential equations
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u′1 =
∂F1

∂x1
(ξ1, . . . ,ξn)u1 +

∂F1

∂x2
(ξ1, · · · ,ξn)u2 + . . .+

∂F1

∂xn
(ξ1, · · · ,ξn)un,

u′2 =
∂F2

∂x1
(ξ1, · · · ,ξn)u1 +

∂F2

∂x2
(ξ1, · · · ,ξn)u2 + . . .+

∂F2

∂xn
(ξ1, · · · ,ξn)un,

...
...

u′n =
∂Fn

∂x1
(ξ1, · · · ,ξn)u1 +

∂Fn

∂x2
(ξ1, · · · ,ξn)u2 + . . .+

∂Fn

∂xn
(ξ1, · · · ,ξn)un.

It is convenient to use vector–matrix notation to define x to be the column
vector with components (x1, . . . ,xn), ξ to be the column vector with components
(ξ1, . . . ,ξn), u to be the column vector with components (u1,. . .,un), F(x) to be the
column vector function with components (F1(x1, . . . ,xn),. . ., Fn(x1, . . . ,xn)), and A

to be the matrix with element

∂Fi

∂x j
(ξ1, . . . ,ξn)

in the i th row, j th column. Then the system (5.19) can be written in the vector form

x′ = F(x). (5.22)

An equilibrium is a vector ξ satisfying

F(ξ ) = 0, (5.23)

and the linearization of the system (5.19) or (5.22) at an equilibrium is the linear
system

u′ = Au. (5.24)

The matrix

A =

(
∂Fi

∂x j
(ξ1, . . . ,ξn)

)
is called the community matrix of the system (5.19) or (5.22) at the equilibrium ξ .

There is a general theorem, analogous to Theorem 4.1, Section 4.3, that says that
an equilibrium of the system (5.22) is asymptotically stable if all solutions of the
linearization at this equilibrium tend to zero as t → ∞, while an equilibrium ξ is
unstable if the linearization has any solution that grows exponentially. It is also true
that all solutions of the linearization tend to zero if all roots of the characteristic
equation

det(A−λ I) = 0 (5.25)

have negative real part and that there are solutions of the linearization that grow
exponentially if the characteristic equation (5.25) has any roots with positive real
part. The roots of the characteristic equation (5.25) are the eigenvalues of the matrix
A. The characteristic equation has the property that its roots are the values of λ such
that the linearization at the equilibrium has a solution eλ tc for some constant column
vector c.
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Thus, the stability of an equilibrium ξ can be determined from the eigenvalues
of the community matrix at the equilibrium.

Theorem 5.2. If all eigenvalues of the community matrix of a system (5.19) or (5.22)
at an equilibrium ξ have negative real part then the equilibrium is asymptotically
stable.

This is the generalization to n dimensions of Theorem 4.4 for two-dimensional
systems, but we no longer have such a simple set of conditions on the trace and
determinant of the community matrix to determine the stability of an equilibrium.

The characteristic equation for an n-dimensional system is a polynomial equation
of degree n for which it may be difficult or impossible to find all roots explicitly.
There is, however, a general criterion for determining whether all roots of a polyno-
mial equation have negative real part known as the Routh–Hurwitz criterion. This
gives conditions on the coefficients of a polynomial equation

λ n +a1λ n−1 +a2λ n−2 + · · ·+an−1λ +an = 0

under which all roots have negative real part. For n = 2, the Routh–Hurwitz condi-
tions are

a1 > 0, a2 > 0

(equivalent to the conditions that the trace of the matrix A be negative and the de-
terminant of the matrix A be positive). For n = 3, the Routh–Hurwitz conditions
are

a3 > 0, a1 > 0, a1a2 > a3.

For n = 4, the Routh–Hurwitz conditions are

a4 > 0, a2 > 0, a1 > 0, a3(a1a2 −a3)> a2
1a4.

For a polynomial of degree n, there are n conditions. While the Routh–Hurwitz
criterion may be useful on occasion, it is complicated to apply in problems of many
dimensions.

For autonomous systems of two differential equations, the Poincaré–Bendixson
theorem (Section 4.5) makes it possible to analyze the qualitative behavior of a
system under very general conditions. Essentially, we know that a bounded orbit
must approach either an equilibrium point or a limit cycle. For autonomous systems
of more than two differential equations, a much greater range of behavior is possible.
An example is the Lorenz equation

x′ = σ(y− x),

y′ = rx− y− xz,

z′ = xy−bz,

with σ ,r, and b three positive parameters. This equation, which arose originally as a
highly simplified model of fluid convection in a meteorological system, can exhibit
chaotic behavior for some ranges of the parameters [Lorenz (1963)].
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There is some biological evidence to suggest that complicated population sys-
tems have a tendency to be more stable than simple systems. For example, a preda-
tor species that can switch between different prey species for its food supply may be
less sensitive to disturbances than if it were dependent on a single food supply. On
the other hand, removal of one species can lead to a collapse of population systems;
an example was observed in which the removal of one species from a 15-species sys-
tem led to its collapse to an 8-species system in less than two years [Paine (1966)].
The relationship between stability and complexity in population systems, a question
raised by May (1974), is not well understood. One aspect of this question that can
provide some useful information is the vulnerability of a system to invasion by a
new species (Section 5.9).

5.8 The Nature of Interactions Between Species

If we model a two-species interaction by a system of Kolmogorov type

x′ = x f (x,y),
y′ = yg(x,y), (5.26)

it may appear reasonable to require

fx(x,y)< 0, gy(x,y)< 0, (5.27)

to express the idea that each species tends to limit its own growth. However, the
condition (5.27) is not satisfied for all x > 0,y > 0 in the standard predator–prey
models; we should require only that each species tend to limit its own growth if the
other species is not present. The assumption fx(x,y) < 0 is sometimes replaced by
the requirement

x fx(x,y)+ y fy(x,y)< 0

for x > 0, y > 0 [Kolmogorov (1936)], which is satisfied by models of Rosenzweig–
MacArthur type. Another approach [Bulmer(1976)] is to require fx(x,0) < 0 to-
gether with a condition modeling the idea that predators increase only through the
consumption and conversion of prey, such as

yg(x,y)≤ αx
(

f (x,0)− f (x,y)
)−μy

for some positive constants α,μ .
In order to separate the growth rates in the system (5.26) into self-limiting and

interaction terms, we write (5.26) in the form

x′ = x f (x,0)+ x
(

f (x,y)− f (x,0)
)
,

y′ = yg(0,y)+ y
(
g(x,y)−g(0,y)

)
.

(5.28)

We then require that the respective single-species dynamics be self-limiting,
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fx(x,0)< 0, gy(0,y)< 0, (5.29)

except that we will permit a species that is dependent on the interaction for survival
(predator or obligate mutualist) to have, for example, gy(0,y) = 0. This would mean
that g(0,y) is a constant, and we would require this constant to be negative so that
y(t) → 0 as t → ∞ in the absence of the x species. We may then characterize the
interaction as predator–prey, competitive, or mutualistic, depending on the signs of

∂
∂y

(
f (x,y)− f (x,0)

)
= fy(x,y),

∂
∂x

(
g(x,y)−g(0,y)

)
= gx(x,y).

The terms x
(

f (x,y)− f (x,0)
)

and y
(
g(x,y)−g(0,y)

)
represent the interaction terms

in (5.28). Thus, the system (5.26) or (5.28) is a predator–prey system if

fy(x,y)< 0, gx(x,y)> 0,

a competitive system if

fy(x,y)< 0, gx(x,y)< 0,

and a mutualistic system if

fy(x,y)> 0, gx(x,y)> 0.

If we attempt to decompose a three-species Kolmogorov model

x′ = x f (x,y,z),
y′ = yg(x,y,z),
z′ = zh(x,y,z),

(5.30)

into self-limiting terms and two-species interaction terms, we may write the first
equation of (5.30) as either

x′ = x f (x,0,0)+ x
(

f (x,y,0)− f (x,0,0)
)
+ x

(
f (x,y,z)− f (x,y,0)

)
or

x′ = x f (x,0,0)+ x
(

f (x,y,z)− f (x,0,z)
)
+ x

(
f (x,0,z,)− f (x,0,0)

)
.

In characterizing the x-y interaction we would consider the sign of the partial deriva-
tive with respect to y of the effect of y on the per capita growth rate of x, which would
be either

∂
∂y

(
f (x,y,0)− f (x,0,0)

)
= fy(x,y,0)

or
∂
∂y

(
f (x,y,z)− f (x,0,z)

)
= fy(x,y,z),
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and these do not necessarily have the same sign.
Consider, for example, a population system consisting of two competing species

x and y and a third species z acting as a predator on both. We may model such a
system in more specific form by a system of Rosenzweig–MacArthur type:

x′ = rx f (x,y)− xzφ(x,y,)
y′ = syg(x,y)− yzψ(x,y),
z′ = z

(
λxφ(x,y)−μyψ(x,y)− c

)
.

(5.31)

This is of the form (5.30) with

f (x,y,z) = r f (x,y)− zψ(x,y),

g(x,y,z) = sg(x,y)− zψ(x,y),

h(x,y,z) = λxφ(x,y)+μyψ(x,y)− c,

so that
fy(x,y,0) = r fy(x,y), fy(x,y,z) = r fy(x,y)− zφy(x,y).

We model the competition between x and y by the assumptions

fy(x,y)< 0, gx(x,y)< 0.

If φ(x,y) and ψ(x,y) are increasing functions of the ratios x/(x+ y) and y/(x+ y),
respectively, then z is a predator that switches between x and y and φy(x,y) <
0,ψx(x,y) < 0. This would imply that fy(x,y,0) < 0 but fy(x,y,z) > 0 for suffi-
ciently large z. The same kind of sign change would occur for the partial derivative
with respect to x of the effect of x on the per capita growth rate of y. If we try
to describe the x-y interaction in this three-species model in terms of the signs of
fy(x,y,z) and gx(x,y,z) in analogy to the two-species model, we would be led to say
that this interaction is competitive when few predators are present, and mutualistic
in the presence of many predators, with an intermediate stage in which the interac-
tion is predator–prey. Such an interpretation suggests that the interpretation of the
interaction between two species in a three-species model is more complicated. Pre-
sumably, a proper interpretation should be in terms of the signs of fy(x,y,0) and
gx(x,y,0) together with some additional conditions whose form is not clear. For
this reason, systems of more than two species are usually modeled by systems of
differential equations less general than a Kolmogorov model. Frequently, a system
of Lotka–Volterra type is used to give some indication of the type of behavior one
might expect, even though the Lotka–Volterra model is a specific form not neces-
sarily representative of general behavior, as we have seen for two-species models.
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5.9 Invading Species and Coexistence

In analyzing population systems with more than two species there are many different
cases that must be considered. For three species, even if we eliminate mutualism
from consideration, there are six different cases: (i) three species in competition,
(ii) one predator and two competing prey, (iii) two predators with a common prey,
(iv) a prey whose predator is the prey of a higher-level predator, (v) two species
in competition and a third species that is the prey of one of them, (vi) two species
in competition and a third species that is a predator of one of them. Since general
Kolmogorov-type models are not suitable for distinguishing these types, as we have
seen in Section 5.7, each case must be analyzed separately.

A simplification that may be helpful is to ask for less information. Rather than
trying to describe the qualitative behavior of a system completely, we might try to
determine only the survival or extinction of each species. From a biological point
of view, this may be the most significant aspect of the problem. A species with
population size x(t) is said to be persistent [Freedman and Waltman (1984)] if

lim
t→∞

infx(t)> 0

provided x(0) > 0. Persistence, however, does not ensure survival of a species in a
biological sense. Examples have been given of three-species systems that oscillate
wildly so that each population size repeatedly comes arbitrarily close to zero (at
which time a small perturbation could drive the population size to zero) and then
recovers [Armstrong and McGehee (1980); May and Leonard (1975)]. A more real-
istic requirement would be uniform persistence [Butler and Waltman (1986)] or per-
manent coexistence [Hofbauer (1981)], a positive lower bound for population size.
Conditions have been given, usually involving the behavior of lower-dimensional
systems, under which persistence implies uniform persistence [Butler, Freedman,
and Waltman (1986); Butler and Waltman (1986)]. We shall examine only persis-
tence, avoiding the more delicate problem of uniform persistence.

In order to obtain some insight into the behavior of multispecies systems it may
be helpful to consider the effect on an n-species system of introducing another
species to give an (n+ 1)-species system. This additional species may be viewed
biologically as an invading species disrupting an existing population system. Such
situations have been observed in nature. For example, in systems consisting of two
species in competition that are the prey of a common predator (to be examined in
more detail later) the introduction of an alternative prey may lead to the extinction
of the original prey [Holt (1977)]. Such a situation may also be viewed as the intro-
duction of a predator into a system of coexisting competing species, leading to the
exclusion of one of the prey species [Poole (1974); Dodson (1974); Holt (1977)].

We consider an n-species model
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x′1 = x1F1(x1,x2, . . . ,xn,0),
x′2 = x2F2(x1,x2, . . . ,xn,0),

...
...

x′n = xnFn(x1,x2, . . . ,xn,0),

(5.32)

with an equilibrium (x̄1, x̄2, . . . , x̄n) and having community matrix A at this equilib-
rium. We also consider the (n+1)-species model

x′1 = x1F1(x1,x2, . . . ,xn,y),
x′2 = x2F2(x1,x2, . . . ,xn,y),

...
...

x′n = xnFn(x1,x2, . . . ,xn,y),
y′ = yG(x1,x2, . . . ,xn,y),

(5.33)

representing the introduction of an invading species y into the n-species system. The
(n+1)-species system (5.33) has an equilibrium (x̄1, x̄2, . . . , x̄n,0), and the commu-
nity matrix at this equilibrium is⎡⎢⎢⎢⎢⎢⎢⎣

A

x̄1
∂F1
∂y (x̄1, x̄2, . . . , x̄n,0)

x̄2
∂F2
∂y (x̄1, x̄2, . . . , x̄n,0)

...
x̄n

∂Fn
∂y (x̄1, x̄2, . . . , x̄n,0)

0 G(x̄1, x̄2, . . . , x̄n,0)

⎤⎥⎥⎥⎥⎥⎥⎦ .

The eigenvalues of this matrix are the eigenvalues of A together with G(x̄1, x̄2, . . . , x̄n,0).
We assume that the equilibrium (x̄1, x̄2, . . ., x̄n,0) of the n-species model (5.32)

is asymptotically stable, and thus that the eigenvalues of A have negative real part.
Then if G(x̄1, x̄2, . . . , x̄n,0) < 0 the equilibrium (x̄1, x̄2, . . . , x̄n,0) of the (n + 1)-
species system (5.33) is also asymptotically stable, and orbits starting near this
equilibrium, corresponding to the introduction of a small number of members of
the invading species, tend to this equilibrium. Thus, the invading species fails to
survive.

On the other hand, if G(x̄1, x̄2, . . . , x̄n,0)> 0, the equilibrium (x̄1, x̄2, . . ., x̄n,0) of
(5.33) is unstable, because the community matrix at this equilibrium has one positive
eigenvalue. The hyperplane y = 0 is the stable manifold, but orbits starting near the
equilibrium with y(0)> 0 tend away from the stable manifold. This does not ensure
survival of the invading species because the orbit could tend to another equilibrium
on y = 0. However, if the per capita growth rate G(x̄1, x̄2, . . . , x̄n,0) of the invading
species is positive at every asymptotically stable equilibrium (x̄1, x̄2, . . . , x̄n,0) of
the n-species system (5.32) then the invading species survives. In this case, we will
say that y is a survivor species. A survivor species is persistent, but as we have
pointed out, it may not survive in the biological sense unless it is actually uniformly
persistent.
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In addition to using the idea of survivor species to model the effect of introducing
an invading species into an existing population system, we may also try to analyze
the behavior of an (n+1)-species system by considering each species in turn as an
invader of the system consisting of the remaining n species. The basic result is that
there is coexistence of the (n+1)-species system for all initial states if and only if
every species is a survivor species. Two examples for n = 1 may be illuminating.

(i) Consider two species in competition with an unstable equilibrium, so that either
species may win the competition depending on the initial state (Figure 5.33).
Neither species is a survivor; the existence of an equilibrium with both species
present is not sufficient to ensure coexistence.

Fig. 5.33 Unstable coexistence equilibrium.

(ii) Consider a predator–prey system with an Allee effect for the prey. There is
coexistence for some but not all initial states, but neither species is a survivor
species (the predator species is a survivor at one prey equilibrium but not at the
other) (Figure 5.34).

5.10 Example: A Predator and Two Competing Prey

As an example we shall now apply the ideas of Section 5.8 to a three species system
consisting of a predator species z and two prey species x and y in competition with
each other. Phenomena that have been observed for such systems include predator-
induced exclusion of one of the prey species [Poole (1974); Dodson (1974); Holt
(1977)], exclusion of prey by alternative prey [Holt (1977)], and predator-induced
coexistence [Oaten and Murdoch (1975); Paine (1966)].
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Fig. 5.34 Coexistence for some initial states.

In the Kolmogorov model

x′ = x f (x,y,z),
y′ = yg(x,y,z),
z′ = zh(x,y,z),

(5.34)

we define the numbers J1,K1,L1,J2,K2,L2 by

f (K1,0,0) = 0, f (0,L2,0) = 0,
g(0,K2,0) = 0, f (L1,0,0) = 0,
h(J1,0,0) = 0, h(0,J2,0) = 0.

Thus, K1 is the natural x population size in the absence of the other two species,
J1 is the minimum x population size that allows z to survive in the absence of y,
and L1 is the maximum x population size that allows y to survive unconditionally
(for all initial states) in the absence of z. The numbers K2,J2,L2 have analogous
interpretations for the y population size. We may also define these quantities for the
more explicit Rosenzweig–MacArthur model.

x′ = rx f (x,y)− xzφ(x,y),
y′ = syg(x,y)− yzψ(x,y),
z′ = z

(
λxφ(x,y)+μyψ(x,y)− c

)
.

(5.35)

Before looking at the conditions for each species to be a survivor we must recall
the properties of the three two-species subsystems.

(i) If K1 <L1 and K2 <L2, then x and y coexist unconditionally (written x∼ y) with
equilibrium (x̄, ȳ,0). If K1 > L1 and K2 < L2, we have the bistable case (x⊕ y)
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with two possible equilibria, (K1,0,0) and (0,K2,0). If K1 > L1 and K2 < L2,
then x always wins the competition (x � y) with equilibrium (K1,0,0).

(ii) If J1 < K1, then x and z coexist (x ∼ y) with equilibrium (x∗,0,z∗). If J1 > K1,
then only x survives (x � z) with equilibrium (K1,0,0).

(iii) If J2 < K2, then y ∼ z, with equilibrium (0,y∗,z∗). If J2 > K2, then y � z, with
equilibrium (0,K2,0).

The survivor conditions for (5.34) are as follows:

x is a survivor if
{

f (0,y∗,z∗)> 0
f (0,K2,0)> 0 or K2 < L2

(y ∼ z),
(y � z),

y is a survivor if
{

g(x∗,0,z∗1)> 0
g(K1,0,0)> 0 or K1 < L1

(x ∼ z),
(x � z),

z is a survivor if

⎧⎪⎪⎨⎪⎪⎩
h(x̄, ȳ,0)> 0,
h(K1,0,0)> 0,h(0,K2,0)> 0,
K1 < J1,K2 > J2,
h(K1,0,0)> 0 or K1 > J1

(x ∼ z)

(x⊕ y)
(x � y).

For the Rosenzweig–MacArthur model (5.35) some of these conditions may be de-
scribed more explicitly. For example, if y∼ z, we have y∗= J2, z∗2 = sg(0,J2)/ψ(0,J2),
and thus x is a survivor if r f (0,J2)ψ(0,J2)−sg(0,J2)φ(0,J2)> 0. Similarly, if x∼ z,
y is a survivor if −r f (J1,0)ψ(J1,0)+ sg(J1,0)φ(J1,0)> 0.

Next we use these conditions to determine whether our model will support
the possibility of predator-induced exclusion, which in our terminology would
be x ∼ y but x not a survivor species. The assumption that x ∼ y is equivalent
to K1 < L1 and K2 < L2. If y ∼ y so that J2 < K2, the condition that x not
be a survivor is f (0,y∗,z∗) < 0. In the Rosenzweig–MacArthur model, y∗ = J2
and z∗2 = sg(0,J2)/ψ(0,J2), so that this condition becomes r f (0,J2)ψ(0,J2)−
sg(0,J2)ψ(0,J2) < 0. Since J2 < L2 < K2, we have f (0,J2) > 0 and g(0,J2) > 0.
Thus if s/r is sufficiently large, x is not a survivor. If y � z, so that J2 > K2, the
condition for x to be a survivor is K2 < L2, which is satisfied. Thus, it is possible
to have x ∼ y,y ∼ z with x not a survivor, which can be viewed as predator-induced
exclusion. It may also be viewed as exclusion of the prey x by the alternative prey.

A more complicated analysis is needed to examine the possibility of predator-
induced coexistence. In our terminology this means that x and y do not coexist un-
conditionally, either x � y or x⊕ y, but all three species are survivors. Let us begin
with the possibilities when x � y or x⊕ y, but all three species are survivors. Let us
begin with the possibilities when x � y or L1 < K1 and K2 < L2.

(i) If x ∼ z and y � z, or J1 < K1 and J2 > K2, then x and z are survivors, and y is
a survivor if g(x∗,0,z∗1) > 0, which is possible if J1 < L1. In the Rosenzweig-
MacArthur case y will be a survivor if J1 < L1 and s/r are large.

(ii) If x ∼ y,y ∼ z, or J1 < K1 and J2 < K2, z is a survivor, while x is a survivor
if f (0,y∗,z∗2) > 0, and y is a survivor if g(x∗,0,z∗1) > 0. In the Rosenzweig–
MacArthur case x is a survivor if s/r is small enough, and y is a survivor if s/r
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is large enough. Thus, either or both competitors may survive, but for both to
be survivors two conditions that may be incompatible must be satisfied.

(iii) If x � z, y � z, or J1 > K1 and J2 > K2, x is a survivor but y and z are not
survivors.

(iv) If x � z, y ∼ z, or J1 > K1 and J2 > K2, x is a survivor if f (0,y∗z∗2) > 0 but y
and z are not survivors.

From this we conclude that predator-induced coexistence is impossible if x � y and
x � z, but is possible if x � y,x ∼ z,y � z, and may be possible if x � y,x ∼ z,y ∼ z.
Further, if x ∼ z,y ∼ z,x � y, it is possible for the predator to reverse the outcome
of the competition.

If x⊕ y, we have K2 > L2 in place of K2 < L2. In this case x cannot be a survivor
if x ∼ z,y � z, or if x � z,y � z but otherwise the results are the same. The only
case in which both x and y can be survivors is the case x⊕ y,x ∼ z, and the survivor
conditions for x and y could be incompatible. In the Lotka–Volterra model, f (x,y) =
1−x/K1−y/L2,g(x,y) = 1−xL1−y/K2,φ(x,y) = c/λJ1,ψ(x,y) = c/μJ2, it is not
difficult to show that the two survivor conditions are indeed incompatible.

Three-species coexistence is not possible in the bi-stable case [Hutson and Vick-
ers (1983)]. However, with more complicated predator response terms it is possible
to give examples in which three-species coexistence may or may not be possible,
depending on the parameters of the model.

The possibilities of predator-induced exclusion of one of the prey species and
predator-induced coexistence are both supported by the Rosenzweig–MacArthur
model (5.35). This both vindicates the Rosenzweig-MacArthur model as an approx-
imation to biological reality and illustrates the use of the survivor species idea to
study three-dimensional systems.

5.11 Example: Two Predators Competing for Prey

We discussed the principle of competitive exclusion of Gause (1934) in Section 5.1.
There we analyzed a two-dimensional model for species in competition, without
going into detail as to the nature of the competition. The principle of competitive
exclusion is sometimes formulated as saying that it is not possible for n species to
coexist when competing for fewer than n different resources as food supply. If we
consider the resources as prey species, the simplest case would be two species each
acting as predator on a third species. Let us consider a three-species Rosenzweig–
MacArthur model

x′ = s f (x)− xy1φ1(x)− xy2φ2(x),
y′1 = y1

(
c1xφ1(x)− e1

)
,

y′2 = y2
(
c1xφ2(x)− e2

)
,

(5.36)

to describe such a situation. Here x is the population size of the common prey
species, and y1 and y2 are the population sizes of the competing predator species.
For three-species coexistence to be possible, the two-species systems describing x
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and y1 in the absence of y2, and x and y2 in the absence of y1, must both admit
coexistence. The x-y1 system model is

x′ = x f (x)− xy1φ1(x) and y′1 = y1
(
c1xφ1(x)− e1

)
, (5.37)

and coexistence requires an equilibrium with

x = J1, where c1J1φ1(J1) = e1 (5.38)

and y1 = f (J1)/φ1(J1). Then y2, considered as an invading species, is a survivor
species if

c2J1φ2(J1)> e2. (5.39)

Similarly, the x-y2 system

x′ = x f (x)− xy2φ2(x) and y′2 = y2
(
c2xφ2(x)− e2

)
(5.40)

has an equilibrium with x = J2, where

c2J2φ2(J2)> e2 (5.41)

and y2 = f (J2)/φ2(J2). Then y1 is a survivor species if

c1J2φ1(J2)> e1. (5.42)

Because of the standard assumption that the predator functional responses xφ1(x)
and xφ2(x) are increasing functions, the relationships (5.38) and (5.42) imply J2 >
J1, while the relationships (5.39) and (5.41) imply J1 > J2. Thus, y1 and y2 cannot
both be survivor species, and this at least suggests the possibility that y1 and y2
cannot coexist.

However, an example has been constructed by R.A. Armstrong and R. McGehee
(1980) of a system of the form (5.36) that does admit coexistence. The construction
is indirect and quite complicated, and it is not known whether the asymptotically
stable orbit of the example is periodic or a recurrent orbit that is not periodic. In any
case, the example violates the competitive exclusion principle.

5.12 Project: A Simple Neuron Model

Neurons are cells in the body that transmit information to the brain and the body
by amplifying an incoming stimulus (electrical charge input) and transmitting it
to neighboring neurons, then turning off to be ready for the next stimulus. Neu-
rons have fast and slow mechanisms to open ion channels in response to electrical
charges. The key quantities are the concentrations of sodium ions and potassium
ions (both positively charged). A resting neuron has an excess of potassium and
a deficit of sodium and a negative resting potential (an excess of negative ions).
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Neurons use changes of sodium and potassium ions across the cell membrane to
amplify and transmit information. Voltage-gated channels exist for each kind of
ion, which open and close in response to voltage differences, which are closed in a
resting neuron. When a burst of positive charge enters the cell, making the potential
less negative, the voltage-gated sodium channels open. Since there is an excess of
sodium ions outside the cell, more sodium ions enter, increasing the potential until it
eventually becomes positive. Next a slow mechanism acts to block the voltage-gated
sodium channels, and another slow process begins to open voltage-gated potassium
channels. Both of these diminish the buildup of positive charge by blocking sodium
ions from entering and by allowing excess potassium ions to leave. When the po-
tential decreases to or below the resting potential these slow mechanisms turn off,
and then the process can start over. If the electrical excitation reaches a sufficiently
high level, called an action potential , the neuron fires and transmits the excitations
to other neurons.

In order to describe a simple model for this process, we let the potential be v,
scaled so that v= 0 is the resting potential. We let v= a be the potential above which
the neuron fires and v = 1 the potential at which sodium channels open (0 < a < 1).
A model of the form

v′ =−v(v−a)(v−1)

with asymptotically stable equilibria at v = 0 and v = 1 and unstable equilibrium at
v = a would explain part of the observed behavior. If the initial potential is above
a, the potential increases to one and if the initial potential is below a, it decreases
to zero. Thus, the model allows the signal amplification of the neuron but stops at
v = 1. We must also build in a blocking mechanism.

Let w denote the strength of the blocking mechanism with w = 0 (turned off)
when v = 0. As v approaches one, the blocking mechanism becomes stronger but
remains bounded, and we assume an equation of the form

w′ = ε(v−ξ w)

with a limiting value v/ξ for w if v is fixed. If v = 0, then w → 0, and if v = 1,
w → 1/ξ (the maximum strength of the blocking mechanism). The parameter ε
influences the rate of approach to equilibrium but does not affect the equilibrium
value. We use a small value of ε to indicate a slow-acting mechanism.

In order to formulate a model that includes both v and w, we must also take
account of the effect of the blocking mechanism on v. The model we shall examine
is the two-dimensional system

v′ =−v(v−a)(v−1)−w

w′ = ε(v−ξ w)
(5.43)

known as the Fitzhugh–Nagumo system. [Fitzhugh (1961); Nagumo, Arimato, &
Yoshizawa (1962)] It is a simplification of the four-dimensional Hodgkin-Huxley
model proposed in the early 1950s by Sir Alan Hodgkin and Sir Andrew Huxley
[Hodgkin and Huxley (1952)], for which they received the 1963 Nobel Prize in
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Physiology and Medicine, and which is still being used in the study of neurons and
other kinds of cells. Excitable systems occur in a large variety of biological systems,
and the Fitzhugh–Nagumo and Hodgkin–Huxley models are prototypical models of
excitable systems.

Question 1
Show that the only equilibrium of the Fitzhugh–Nagumo system (5.43) is v = 0,
w = 0, and that this equilibrium is asymptotically stable.

Question 2
Use a computer algebra system to draw the orbit of the system (5.43) with a = 0.3,
ξ = 1, ε = 0.01 and a starting point (v0,0) with v0 > a, say v0 = 0.4. You should
observe that v grows quickly and then returns to zero. You should also note that after
the neuron fires and the potential drops, it overshoots zero (this can also be observed
experimentally).

Another experiment gives the cell a constant input of positive ions instead of
a single pulse. If we apply a constant electrical current J, we add J to the rate of
change of potential (taking units of current so that one unit of current raises the
potential by one unit in unit time). Thus, we replace the system (5.43) by

v′ =−v(v−a)(v−1)−w+ J,

w′ = ε(v−ξ w).
(5.44)

Question 3
Show that increasing J moves the equilibrium from (0,0) into the first quadrant of
the (v,w)-plane. Show that this equilibrium is asymptotically stable for small values
of J but becomes unstable for larger values of J.

Question 4
Use a computer algebra system to experiment with different values of J, taking
a = 0.3, ξ = 1, ε = 0.01, and find a value for which the system (5.44) has a periodic
orbit.

Question 5
Use a computer algebra system to graph v as a function of t for the periodic orbit
found in Question 4. You should observe a “bursting” behavior, with potential rising
close to one and dropping below zero (similar to observations in real neurons).

Question 6
Add a periodic term to the equation for u in the model and experiment using a
computer algebra system with different amplitudes and periods to see the effects on
the behavior of the model.
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5.13 Project: A Plant–Herbivore Model

This project is taken from Edelstein-Keshet (1988).
Assume that a population of herbivores of density y causes changesin the vege-

tation on which it preys. An internal variable x reflects some physical or chemical
property of the plant, which undergo changes in response to herbivory. We refer to
this attribute as the plant quality of the vegetation and assume that it may in turn
affect the fitness or survivorship of the herbivores. If this happens in a graded, con-
tinuous interaction, plant quality may be modeled by a system

x′ = f (x,y0, y′ = yg(x,y).

1. In one case, the function f (x,y) is assumed to be

f (x,y) = x(1− x)[α(1− y)+ x], 0 ≤ x ≤ 1.

Sketch this as a function of x and reason that plant quality x always remains in
the interval (0,1) if x(0) is in this interval. Show that plant quality may either
increase or decrease, depending on the initial value of x and the population of
herbivores. For a given herbivore popultion density ŷ, what is the “break-even”
point (the level of x for which the rate of change of x is zero?

2. It is assumed that the herbivore population undergoes logistic growth with re-
productive rate β and a carrying capacity that is directly proportional to current
plant quality. What is the function g?

3. Draw the nullclines of the system you have obtained. (There is more than one
possibilty, depending on the parameter values.

4. Find the direction of motion along all nullclines obtained in part (c).
5. Show that there is a particular configuration with a set in the (x,y) plane that

“traps” trajectories.
6. Define γ = α/(αK − 1). Interpret the meaning of this parameter. Show that

(γ,Kγ) is a steady state of your equations, and locate it on your phase plot.
Find the other steady state.

7. Show that (γ,Kγ) is a saddle point if γ > 1 and a focusfocus if γ < 1.
8. Now show that as β decreases from large to small values, the steady state for

γ < 1 undergoes a transition from a stable focus to an unstable focus.
9. Use the results you have obtained to comment on the existence of periodic

solutions. Interpret your answer in biological terms.

[Reference: Edelstein-Keshet (1988)]



Chapter 6

Harvesting in wo-species odels

6.1 Harvesting of Species in Competition

The topics in this chapter are part of the subject of natural resource management and
bioeconomics. This is an important subject that is developing rapidly. The classical
reference is the book by Clark (1990), where additional references may be found.

In Section 1.5 we examined the effects of both constant-yield harvesting and
constant-effort harvesting on single-species populations modeled by an ordinary dif-
ferential equation. In this section we shall study the effects of harvesting one of a
pair of interacting species in competition.

In studying models for competition between two species (Section 5.1), we began
by assuming linear per capita growth rates, obtaining a system

x′ = x(λ −ax−by), (6.1)
y′ = y(μ − cx−dy).

We observed that there are four cases depending on the relationship between the x-
isocline ax+by= λ , on which x′ = 0 and the y-isocline cx+dy= μ , on which y′ = 0.
These cases may be depicted graphically in Figure 6.1, with equilibria marked × and
asymptotically stable equilibria marked •.

We will consider only the harvesting of one of the two species, say the xspecies.
For constant-effort harvesting, the model would be

x′ = x(λ −ax−by)−Ex,

y′ = y(μ − cx−dy).

This is the same as the unharvested model but with λ replaced by λ −E, or with
the x-isocline moved parallel to itself toward the origin. It has boundary equilibria
(K(E),0) and (0,M) with M = μ

d and K(E) = λ
a+E . Examination of the four cases

shows that it is possible by harvesting to change Case 1 to Case 4 (coexistence to
x-extinction), Case 2 to Case 4 (survival of either species alone to x-extinction),
or Case 3 to Case 1 or Case 2 and then to Case 4 (y-extinction to x-extinction via
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Fig. 6.1 Species in compettion cases.

coexistence). If the growth rates are not linear, the same type of argument can be
used to see how the isoclines move under harvesting and to obtain the same results,
all of which are in accordance with our intuition.

With constant-yield harvesting, the model is

x′ = x(λ −ax−by)−H,y′ = y(μ − cx−dy).

The x-isocline, instead of being the pair of lines x = 0, ax+by = λ , is now the curve
x(λ − ax− by) = H, which is a hyperbola having the lines x = 0 and ax+ by = λ
as asymptotes and which moves away from these asymptotes as H increases. The
effect of harvesting on the system can be depicted graphically by sketching these
hyperbolas; the results are somewhat different in the four cases.

Case 1, the asymptotically stable (coexistence) equilibrium moves up and to the
left and the saddle point moves from (0,M) down and to the right (see Figure 6.2).
The stable separatrices at this saddle point move from the y-axis into the first quad-
rant, and divide this quadrant into a coexistence region (initial states that tend to
the asymptotically stable equilibrium) and a region for which the x-species becomes
extinct in finite time. Since x = 0 is not a solution of the harvested system, it is
possible for orbits to cross the y-axis, corresponding to extinction of the x species in
finite time. As the hyperbola moves down, the saddle point and asymptotically sta-
ble equilibrium coalesce and disappear, producing a catastrophe. For harvest rates
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larger than the critical rate at which this coalescence occurs, the x species becomes
extinct in finite time for all initial states.

y

x
x’=0

y’=0

Fig. 6.2 Case 1.

Case 2, the asymptotically stable equilibrium at (K,0) moves to the left along
the x-axis and the asymptotically stable equilibrium at (0,M) moves into the second
quadrant, corresponding to extinction of the x species in finite time (see Figure 6.3).
The saddle point at (x∞,y∞) moves down and to the right, remaining a saddle point,
and its stable separatrices divide the first quadrant into a region of x-extinction in
finite time and a region of ultimate y-extinction. As the hyperbola moves down with
increasing H, the equilibrium at (x∞,y∞) coalesces either with the equilibrium at
(0,0) or the equilibrium at (K,0) and disappears; then the two remaining equilibria
on the x-axis coalesce and disappear. The second coalescence signifies x-extinction
for all initial states.

Case 3, the asymptotically stable equilibrium moves from (K,0) along the x-
axis. If ad−bc > 0, when the hyperbola meets the line cx+dy = μ this equilibrium
moves into the interior of the first quadrant, giving coexistence (see Figure 6.4(A)).
The other equilibrium is a saddle point whose stable separatrices give a division into
a coexistence region and a region of extinction of the x-species in finite time (see
Figure 6.4(B)). When the two equilibria coalesce and disappear, we have extinction
of the xspecies in finite time for all initial states.

Case 4, the asymptotically stable equilibrium moves from (0,M) into the second
quadrant, giving extinction of the x species in finite time for all initial states (see
Figure 6.5).

If we do not assume that the per capita growth rates are linear, but instead require
only a model of Kolmogorov type,

x′ = x f (x,y), y′ = yg(x,y),



226 6 Harvesting in two-species models

y

x
x’=0

y’=0

Fig. 6.3 Case 2.
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x
x’=0

y’=0

y

x
x’=0
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(A) (B)

Fig. 6.4 Case 3.

with fx(x,y) < 0, fy(x,y) < 0,gx(x,y) < 0,gy(x,y) < 0 for x > 0,y > 0, then the
isoclines are curves with negative slope but are not necessarily straight lines. The
x-isocline under constant-yield harvesting is no longer necessarily a hyperbola, but
it does approach the line x = 0 and the curve f (x,y) = 0 asymptotically. The same
cases as those described for linear growth rates may occur, and the qualitative re-
sponses to harvesting are the same.

Example 1: Determine the response of the system



6.1 Harvesting of Species in Competition 227

y

x

x’=0 y’=0

Fig. 6.5 Case 4.

x′ = x(100−4x− y),

y′ = y(60− x−2y),

to constant-effort harvesting of the x species.

Solution: With no harvesting, there is an asymptotically stable equilibrium at
(20,20) [Example 1, Section 5.1]. A harvested system has the form

x′ = x
[
(100−E)−4x− y

]
,

y′ = y(60− x−2y).

Equilibria are given by the pair of equations

4x+ y = 100−E, x+2y = 60,

and elimination gives the solution

x = 20− 2
7

E, y = 20+
E
7
.

When E = 70, x reaches zero, and y = 30. Thus harvesting decreases the x-
population size and increases the y-population size, eventually moving coexistence
to x-extinction.

Example 2: Determine the response of the system

x′ = x(100−4x− y),

y′ = y(60− x−2y),
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to constant-yield harvesting of the x species.

Solution: With no harvesting, there is an asymptotically stable equilibrium at
(20,20) [Example 1, Section 5.1]. A harvested system has the form

x′ = x(100−4x− y)−H,

y′ = y(60− x−2y).

Equilibria are given by the pair of equations

x(100−4x− y) = H, x+2y = 60.

Replacing x by 60−2y in the first of these equations, we obtain a quadratic equation
for y

(60−2y)
[
100−4(60−2y)−2y

]
= H,

14(y−30)(y−20)+H = 0,

14y2 −700y+(8400+H) = 0.

The roots of this equation may be found using the quadratic formula:

y = 25± 1
2

√
100− 2H

7 .

For H = 0, these roots are y = 20 (which gives x = 20) and y = 30 (which gives
x = 0). There is an asymptotically stable equilibrium at (20,20) and a saddle point
at (0,30). As H increases, these equilibria move along the line x+ 2y = 60 until
they coalesce at (10,25) for H = 350.

Exercises

In each of Exercises 1–4, determine the response of the system to constant-effort
harvesting of the x species.

1. x′ = x(80− x− y), y′ = y(120− x−3y) [cf. Exercise 1, Section 5.1].
2. x′ = x(60−3x− y), y′ = y(75−4x− y) [cf. Exercise 2, Section 5.1].
3. x′ = x(40− x− y), y′ = y(90− x−2y) [cf. Exercise 3, Section 5.1].
4. x′ = x(80−3x−2y), y′ = y(80− x− y) [cf. Exercise 4, Section 5.1].

In each of Exercises 5-8, determine the response of the system to constant-yield
harvesting of the x species.

5. x′ = x(80− x− y), y′ = y(120− x−3y) [cf. Exercise 1, Section 5.1].
6. x′ = x(60−3x− y), y′ = y(75−4x− y) [cf. Exercise 2, Section 5.1].
7. x′ = x(40− x− y), y′ = y(90− x−2y) [cf. Exercise 3, Section 5.1].
8. x′ = x(80−3x−2y), y′ = y(80− x− y) [cf. Exercise 4, Section 5.1].
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6.2 Harvesting of Predator–Prey Systems

Predator–prey systems are most commonly used to describe the interaction of a
species with its food supply. In other words, the primary interest is in the predator
population size, and the prey population size is of interest only because of its effect
on the predator growth rate. A predator–prey model may be viewed as a refinement
of a single-species model through more realistic description of the limitations on the
growth rate imposed by resource limitations. Thus we will study only the harvesting
of predators. It would be possible, however, to use an analogous approach to study
the harvesting of prey and this would be appropriate in an examination of the extent
to which one can control a population by tampering with its food supply.

Constant-effort harvesting: For a system modeled by

x′ = x f (x)− xyφ(x), y′ = y(cxφ(x)− e),

(Rosenzweig–MacArthur model), the harvested system is modeled by

x′ = x f (x)− yxφ(x), y′ = y(cxφ(x)− e−E).

The effect of harvesting is to move the predator isocline x = J, where cJφ(J) = e,
to the right. This applies to the more general (Kolmogorov type) model

x′ = x f (x,y), y′ = y(g(x)−E),

with the predator per capita growth rate independent of predator population size. If
the prey isocline y = f (x)

φ(x) (as in the Rosenzweig–MacArthur model) or f (x,y) =
0 (as in the Kolmogorov model) is concave downwards and has a maximum, an
equilibrium that is unstable for E = 0 is stabilized by harvesting as the harvested
predator isocline moves past the maximum of the prey isocline (see Figure 6.6).

For a given model, the effort that maximizes yield may be calculated by solving

d
dE

(Ey∞) = E
dy∞

dE
+ y∞ = 0

for E and then calculating Ey∞(E) for this value of E. Alternatively, one would
proceed as follows for a Kolmogorov model. For a given effort E, the equilibrium
conditions are f

(
x∞(E),y∞(E)

)
= 0, g

(
x∞(E)

)
= E, and the yield is Ey∞(E) =

y∞(E)g
(
x∞(E)

)
. The maximum yield is thus the maximum of the function yg(x)

subject to the constraint f (x,y) = 0. So long as E < cKφ(K)− e, where f (K) = 0
(Rosenzweig–MacArthur model) or E < g(K), where f (K,0) = 0 (Kolmogorov
model), y∞(E) > 0 and the equilibrium depends continuously on E. For E ≥
cKφ(K)−e or E ≥ g(K) in the respective models, we have y∞(E) = 0, correspond-
ing to the ultimate extinction of predators.

Constant-yield harvesting: For a Rosenzweig–MacArthur model the harvested
system is

x′ = x f (x)− xyφ(x), y′ = y(cxφ(x)− e)−H.
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Fig. 6.6 Stabilization under harvesting.

The predator isocline cxφ(x) = e is replaced by the curve y(cxφ(x)− e) = H to
the right of cxφ(x) = e and having cxφ(x) = e as a vertical asymptote (since
cxφ(x)− e → 0 as y → ∞) and a horizontal asymptote y = H

c limx→∞ xφ(x)−e (since

y → H
c limx→∞ xφ(x)−e as x → ∞). It is no more difficult to study the more general sys-

tem
x′ = x f (x,y), y′ = yg(x),

or indeed the general Kolmogorov model

x′ = x f (x,y), y′ = yg(x,y),

with harvested system

x′ = x f (x,y), y′ = yg(x,y)−H,

in which fy(x,y)< 0,gx(x,y)> 0,gy(x,y)≤ 0, f (K,0) = 0,g(J,0) = 0; we will usu-
ally think in terms of the special case where g is independent of y. As H increases,
the “hyperbola-like” curve y(cxφ(x)−e) = H or yg(x,y) = H moves away from the
line x = J or the curve g(x,y) = 0 and upward to the right.

It intersects the prey isocline f (x,y) = 0 at two points: (x∞(H),y∞(H) coming
from (x∞,y∞) when H = 0, and

(
ξ (H),y(H)

)
coming from (K,0) when H = 0

(Figure 6.7). As H increases, these two equilibria move together, coalesce, and dis-
appear. The value of H for which they coalesce is the value for which the level curve
yg(x,y) =H of the function yg(x,y) is tangent to the prey isocline. This is the largest
value of the function yg(x,y) attained on the curve f (x,y) = 0; we define

Hc = max
f (x,y)=0

yg(x,y).
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Fig. 6.7 Two equilibria.

Then for H > Hc there are no equilibria in the first quadrant (Figure 6.8).
If H > 0, then y′ < 0 on the x-axis. This means that solutions can reach and cross

the x-axis in finite time (predator extinction). Indeed, if H > Hc, this occurs for all
solutions, independent of initial values.

y

x

yg(x,y)=

f(x,y)=0

Fig. 6.8 No equilibrium.

It is possible to prove that no solution can be unbounded; the proof is similar to
the proof in the case H = 0 but the details are more complicated. Thus a solution
either tends to an equilibrium, or tends to a limit cycle, or reaches the x-axis in finite
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time. If a solution reaches the x-axis in finite time, we consider the system to have
collapsed.

To study the stability of any equilibrium (x0,y0) we look at the community matrix

A(x0,y0) =

(
x0 fx(x0,y0) x0 fy(x0,y0)
y0gx(x0,y0) g(x0,y0)+ y0gy(x0,y0)

)
.

If detA(x0,y0) < 0, then (x0,y0) is a saddle point and if detA(x0,y0) > 0, then
(x0,y0) is a node or spiral point that is unstable if trA(x0,y0) > 0 and asymptoti-
cally stable if trA(x0,y0)< 0.

The slope of the prey isocline f (x,y) = 0 at (x0,y0) is − fx(x0,y0)
fy(x0,y0)

, and the slope of

the (harvested) predator isocline yg(x,y) = H at (x0,y0) is − y0gx(x0,y0)
y0gy(x0,y0)+g(x0,y0)

. If we
assume g(x0,y0)+ y0gy(x0,y0)≥ 0, which is certainly true if g(x,y) is independent
of y, and use the hypothesis fy(x0,y0)< 0, we see that the slope of the prey isocline
is less than the slope of the predator isocline if and only if fx(ygy +g)< ygx fy, or

y0
(

fx(x0,y0)gy(x0,y0)− fy(x0,y0)gx(x0,y0)
)
+g(x0,y0) fx(x0,y0)< 0.

Because

detA(x0,y0) = x0y0
(

fx(x0,y0)gy(x0,y0)− fy(x0,y0)gx(x0,y0)
)
+g(x0,y0) fx(x0,y0),

(x0,y0) is a saddle point if and only if the slope of the prey isocline at (x0,y0) is
less than the slope of the predator isocline at (x0,y0). Thus

(
ξ (H),y(H)

)
is a saddle

point and
(
x∞(H),y∞(H)

)
is not a saddle point. If

(
x∞(H),y∞(H)

)
is asymptotically

stable, some orbits tend to it, and if
(
x∞(H),y∞(H)

)
is unstable, then either there

is a limit cycle to which some orbits tend, or every orbit reaches the x-axis in finite
time. We define the region of coexistence to be the set of initial population sizes(
x(0),y(0)

)
for which the orbit tends either to the equilibrium

(
x∞(H),y∞(H)

)
or to

a limit cycle around this equilibrium as E → ∞. We know that if H = 0, the region
of coexistence is the whole first quadrant of the x-y plane. If H > 0, the region
of coexistence is smaller and depends on the separating orbits at the saddle point(
ξ (H),η(H)

)
. There is one stable separatrix in the region x′ < 0,y′ > 0, and there

is one unstable separatrix in the region x′ > 0,y′ < 0 (Figure 6.9).
There are two possible cases for the other two separatrices:

“Good case”:There is a stable separatrix running from x→+∞ around
(
x∞(H),y∞(H)

)
to
(
ξ(H),η(H)

)
and an unstable separatrix running from

(
ξ(H),η(H)

)
to
(
x∞(H),y∞(H)

)
or a limit cycle around

(
x∞(H),y∞(H)

)
. The coexistence region is bounded by the

two stable separatrices, and orbits starting in this region tend to
(
x∞(H),y∞(H)

)
or

to a limit cycle around
(
[x∞(H),y∞(H)

)
(Figure 6.10).

“Bad case”: There is a stable separatrix running from the equilibrium
(
x∞(H),y∞(H)

)
or from a periodic solution around

(
x∞(H),y∞(H)

)
and an unstable separatrix

around
(
x∞(H),y∞(H)

)
and then down to the x-axis. Either there is no coexistence

region at all, or there is an unstable periodic orbit around the asymptotically sta-
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yg(x,y)=H

f(x,y)=0

Fig. 6.9 Stable and unstable separatrices.

y

x

yg(x,y)=H

f(x,y)=0

Fig. 6.10 “Good case”.

ble equilibrium
(
x∞(H),y∞(H)

)
and the coexistence region is the interior of this

periodic orbit (Figure 6.11).
It is possible to have a transition from the “good” to the “bad” case as H in-

creases. If this occurs, then at the transition there must be a homoclinic orbit from
saddle point to saddle point (Figure 6.12).

For H = 0, the system must be in the “good” case since the unstable separatrix at
(K,0) cannot return to the x-axis and must therefore go to (x∞,y∞) or to a limit cycle
around (x∞,y∞). Since the orbits depend continuously on the system, the system
must be in the “good” case if H is sufficiently small.
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x

y y

x

Fig. 6.11 “Bad case”.

y

x

Fig. 6.12 Homoclinic orbit.

For H close to Hc we can decide whether the system is in the “good” or “bad”
case by looking at the local stability of the equilibrium

(
x∞(H), y∞(H)

)
, as is shown

by the following theorem.

Theorem 6.1. Suppose that trA
(
x∞(Hc),y∞(Hc)

) �= 0. Then for H < Hc but H suffi-
ciently close to Hc, the system is in the “good” case if

(
x∞(Hc),y∞(Hc)

)
is asymp-

totically stable, that is, if trA
(
x∞(Hc), y∞(Hc )

)
< 0. and it is in the “bad” case if(

x∞(Hc),y∞(Hc)
)

is unstable, that is. if trA
(
x∞(Hc),y∞(Hc)

)
> 0.
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Proof. The proof depends on the fact that for H close to Hc there must be a (full)
orbit connecting

(
x∞(H),y∞(H)

)
and

(
ξ (H),η(H)

)
as t runs from −∞ to +∞. This

implies that there cannot be a closed orbit around
(
x∞(H),y∞(H)

)
and thus rules

out the “good” unstable and “bad” asymptotically stable cases.
The details of the proof of the existence of a connecting orbit may be omitted

without serious loss. To prove the existence of a connecting orbit, we proceed as
follows. For H < Hc but H sufficiently close to Hc, the continuity of trA(x0,y0) in
(x0,y0) and of

(
x∞(H),y∞(H)

)
in H implies that trA

(
x∞(H),y∞(H)

) �= 0. Again by
continuity, there is a neighborhood of

(
x∞(H),y∞(H)

)
in which trA(x,y) �= 0. We

take a point C on f (x,y) = 0 above
(
x∞(H),y∞(H)

)
but close to

(
x∞(H),y∞(H)

)
and

construct the orbit of x′ = x f (x,y),y′ = yg(x,y)−H backward in time until it meets
yg(x,y) = H in a point B. We may assume that B is close to

(
x∞(H),y∞(H)

)
, for if it

is not we can take a point B′ on yg(x,y) = H close to
(
x∞(H),y∞(H)

)
and construct

the orbit forward in time until it meets f (x,y) = 0 closer to
(
x∞(H),y∞(H)

)
than C,

and use B′ and C′ in place of B and C. Now continue the orbit through B backward
in time to a point A below and to the right of the saddle point

(
ξ (H),η(H)

)
and

above the curve yg(x,y) = H. This is possible unless the orbit meets f (x,y) = 0
between

(
x∞(H),y∞(H)

)
and

(
ξ (H),η(H)

)
, in which case we choose H larger so

that
(
ξ (H),η(H)

)
moves up to the point on f (x,y) = 0 where the orbit meets it;

increasing H reduces y′, and since x′ < 0, this flattens the orbit and moves the in-
tersection of the orbit with f (x,y) = 0 down below

(
ξ (H),η(H)

)
. Thus we may

assume that A is below and to the right of the saddle point. By an argument simi-
lar to that used to show that B may be assumed close to

(
x∞(H),y∞(H)

)
, we may

assume that A is close to
(
ξ (H),η(H)

)
. Now draw a vertical line through C and a

horizontal line through A, meeting in D. For H sufficiently close to Hc, the points(
x∞(H),y∞(H)

)
and

(
ξ (H),η(H)

)
are close together, and we may assume that in

the region N bounded by the arc ABC, the vertical line segment CD, and the hori-
zontal line segment DA, we have trA(x,y) �= 0. By the Bendixson criterion there can
be no closed orbit contained in N , and no homoclinic orbit from the saddle point(
ξ (H),η(H)

)
contained in N (Figure 6.13).

By the Poincaré–Bendixson theorem, a nonconstant orbit that remains in N
for −∞ < t < ∞ must have the equilibrium

(
x∞(H),y∞(H)

)
and the saddle point(

ξ (H),η(H)
)

as its limiting sets for t → ±∞ and must therefore be a connecting
orbit. Thus if there is no connecting orbit, then every orbit starting in N must leave
N . We know that one of the unstable separatrices at the saddle point leaves N
(downward). If the other one also leaves N as t → ∞, it must do so across the line
segment DA. But then there is an asymptotically stable separatrix at the saddle point
between these two unstable separatrices that cannot leave N as t →−∞ because it
could leave N only across the line segment DA and such a crossing would be in the
wrong direction. Thus there must be a separatrix that remains in N for −∞< t <∞,
and this is the desired connecting orbit. We have now established Theorem 6.1.

The value Hc is the maximum harvest rate for which coexistence is possible.
However, if the system is in the “bad” case (unstable) at Hc, there must in fact be a
value H∗ <Hc such that coexistence is possible only for H ≤H∗. Then H∗ is the true
maximum harvest rate. The value Hc may be calculated by looking for equilibria,
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Fig. 6.13 No homoclinic orbit.

but to find H∗ it is necessary to compute orbits near the saddle point and determine
whether as t → ∞ they are unbounded (“good”) or go to

(
x∞(H),y∞(H)

)
(“bad”).

Example 1: Consider the model of Rosenzweig–MacArthur type

x′ = rx
(

1− x
K

)
− cxy

x+A
, (6.2)

y′ = sy
( x

x+A
− J

J+A

)
−H =

sA
J+A

· x− J
x+A

−H, (6.3)

in which the prey satisfies a logistic equation in the absence of predators and cx
x+A is

the predator functional response–the rate at which predators remove prey. Here, A
represents a prey population level at which the predators’ attack capability begins to
saturate, K is the equilibrium population size for prey in the absence of predators,
and J is the prey population size in equilibrium with predators without harvesting.
For this model we may calculate that

x∞(H) =
1
2

(
(K + J)−

√
(K − J)2 − 4K(J+A)

rsA
H
)
,

y∞(H) =
r
K

(
x∞(H)+A

)(
K − x∞(H)

)
.

In particular, x∞(0) = J and x∞(Hc) =
1
2 (K + J), with Hc =

rsA(K−J)2

4K(J+A) . An equilib-
rium at

(
x∞(H),y∞(H)

)
is asymptotically stable if and only if

sAK
(
x∞(H)− J

)
< rx∞(H)(J+A)(2x∞(H)+A−K).



6.3 Intermittent Harvesting of Predator–Prey Systems 237

For example, if A = 10, J = 20, K = 40, c = 1, r = 1, s = 1, we have Hc = 0.833.
Calculation shows that the equilibrium is asymptotically stable for 0 ≤ H < Hc,
and numerical simulation of orbits shows that the system is in the “good” case for
0 ≤ H < Hc.

If A = 10, J = 20, K = 40, c = 1, r = 1, s = 7, we have Hc = 5.833. Calculation
shows that the equilibrium is asymptotically stable for 0 ≤ H < 5.185, and simula-
tion shows a transition from “good” to “bad” case at H = 5.185. Thus H∗ = 5.185,
the effective maximum harvest.

If A = 10, J = 20, K = 45, c = 1, r = 1, s = 5, we have Hc = 5.787. Calculation
shows that the equilibrium is asymptotically stable if 0 ≤ H < 3.704 or 5.556 <
H < Hc. Thus if 3.704 < H < 5.556 there is an asymptotically stable limit cycle;
otherwise, there is an asymptotically stable equilibrium.

If A = 10, J = 20, K = 60, c = 1, r = 2, s = 1, we have Hc = 4.444. Calculation
shows that the equilibrium is unstable for 0 ≤ H < 2.322, and asymptotically stable
for 2.322 < H < Hc. Thus there is an asymptotically stable limit cycle for small H
that disappears when H = 2.322 and is replaced by an asymptotically stable equi-
librium.

A final example is A = 10, J = 20, K = 60, c = 1, r = 1, s = 4, for which Hc =
8.889. Calculation shows that the equilibrium is unstable for all H and simulation
indicates a transition from “good” to “bad” cases for H = 0.785. Thus there is an
asymptotically stable limit cycle for 0 ≤ H < 0.785 and predator extinction for all
harvest rates greater than H∗ = 0.785. Observe that the true maximum harvest rate is
much less than the critical harvest rate Hc, which can be calculated from equilibrium
analysis.

Exercises

In each of Exercises 1–5, find the critical harvest rate of the system (6.2) with the
given parameter values, find the range of harvest rates for which there is an asymp-
totically stable equilibrium, and carry out numerical simulations using a computer
algebra system to describe the behavior of the system.

1. A = 10, J = 20, K = 40, c = 1, r = 1, s = 1.
2. A = 10, J = 20, K = 40, c = 1, r = 1, s = 7.
3. A = 10, J = 20, K = 45, c = 1, r = 1, s = 5.
4. A = 10, J = 20, K = 60, c = 1, r = 2, s = 1.
5. A = 10, J = 20, K = 60, c = 1, r = 1, s = 4.

6.3 Intermittent Harvesting of Predator–Prey Systems

The harvesting of predators in a predator–prey system at a rate u that may depend
on time is modeled by the system
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x′ = x f (x,y), y′ = yg(x,y)−u(t).

Let us assume that the harvest rate is constrained by a condition 0 ≤ u(t)≤ H. Our
goal is to determine a harvesting policy, or choice of u as a function of t, that will
maximize the long-term average yield from harvesting,

Y = lim
t→∞

1
t

∫ t

0
u(τ)dτ,

but we will also require that u be chosen in such a way as to avoid the collapse of
the system by demanding that x(t)> 0, y(t)> 0 for 0 ≤ t < ∞.

The problem that we have formulated is an optimal control problem with an
objective function Y [u] that is linear in the control variable. It is an immediate con-
sequence of the general theory of , specifically the Pontryagin maximum principle
[Pontryagin, et al, (1962)] that the optimal control must be a “bang-bang” control,
that is, a control that switches between the values u = 0 and u = H, possibly com-
bined with some time intervals on which the control is “singular.”

If an optimal control makes only a finite number of switches between the values
u = 0 and u = H, then we must have u = H for all large t, and this implies that the
yield Y is equal to H. As we have seen in the preceding section, there is a value
Hc = max f (x,y)=0 yg(x,y) with the property that if H > Hc, then every solution of
x′ = x f (x,y),y′ = yg(x,y)−H reaches the x-axis in finite time. Thus an optimal
control can make a finite number of switches only if H ≤ Hc. Even for H < Hc,
the system may collapse if it is in the “bad” case, which occurs if its equilibrium is
unstable as H → Hc, and then there is a value H∗ < Hc such that the system actually
collapses for H > H∗. If the equilibrium is asymptotically stable as H → Hc then for
every H < Hc it is possible to bring the solution of x′ = x f (x,y),y′ = yg(x,y)−u(t)
into the set of initial conditions for which the solution of x′ = x f (x,y),y′ = yg(x,y)−
H tends to the equilibrium by making a finite number of switches between u= 0 and
u = H. Thus for such a system we can obtain a yield H for every H ≤ Hc with a
finite number of switches.

In considering controls with an infinite number of switches between u = 0 and
u = H, it would be desirable for practical applications to have a reasonably simple
criterion for determining switching points. One very simple control strategy would
be to assign upper and lower thresholds yU and yL for predator population size, start
the system at t = 0 with y= yL and u= 0, and switch from u= 0 to u=H whenever y
increases through yU and switch from u = H to u = 0 whenever y decreases through
yL. This procedure is safe, in the sense that it prevents predator extinction. Numerical
simulations indicate that it is always possible to choose the parameters H, yU , and yL
so as to make the yields Y arbitrarily close to Hc, even for systems that are unstable
at Hc and therefore collapse for smaller yields under constant yield harvesting. For
such systems there is a tendency for the orbit to approach a periodic orbit with two
switch points per cycle (Figure 6.14).

There may be an interval of values of H for given yU and yL on which the behav-
ior is more complicated, with period-doubling indicated by periodic orbits having
four or eight switch points per cycle, and apparent chaotic behavior (Figure 6.15).
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Fig. 6.14 Periodic orbit with switching.

Such behavior appears to occur only for H < Hc and with yields that are not close
to optimal.

Fig. 6.15 Multiple switch points.

It is possible to prove that if the functions f (x,y) and g(x,y) satisfy some ad-
ditional concavity conditions (always satisfied by Rosenzweig–MacArthur models
and by Kolmogorov models with g(x,y) independent of y and f (x,y) linear in y),
then if the control that maximizes the yield gives either a periodic solution of the
controlled system or a solution that tends to an equilibrium, then the yield cannot be
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greater than Hc for any H. If H < Hc, it is clear that the yield cannot be greater than
Hc. For H > Hc it appears plausible that optimal controls lead to periodic orbits and
therefore that the yield cannot be greater than Hc.

If no bound u(t)≤ H is imposed on the harvest rate, then the analogue of a bang-
bang control that switches between the value u = 0 and the maximum permissible
value of u would be an instantaneous harvest. We may model this procedure by
setting an upper threshold yU and a lower threshold yL and considering only the
unharvested system x′ = x f (x,y), y′ = yg(x,y); whenever y(t) reaches yU we remove
(yU − yL) predators to make y(t) = yL and restart the system with the same x-value.

Another instantaneous harvesting policy that occurs more commonly in practice
is to set a fixed “closed season” of length T at the end of which the predator pop-
ulation is harvested instantaneously down to a set escapement level yL. These two
policies are equivalent mathematically; the only difference is that in the first, yU and
yL are assigned and T is to be determined, while in the second, yL and T are assigned
and yU is determined from the orbit. Another equivalent variant would assign T and
(yU − yL) with yL or yU to be determined from the orbit. In practice, there may be
a very short hunting season and a relatively long closed season, and instantaneous
harvesting approximates this procedure.

For instantaneous harvesting, the following convergence result holds.

Theorem 6.2. Let the value yL be small enough that the line y = yL and the curve
f (x,y) = 0 intersect. If yU > yL is sufficiently close to yL, then the instantaneous
harvesting procedure converges to a periodic orbit consisting of a solution of x′ =
x f (x,y),y′ = yg(x,y) from a point (x0,yL) to a point (x0,yU ) and a vertical line
segment from (x0,yU ) to (x0,yL) (see Figure 6.16).

Proof. The unharvested system has a unique equilibrium P∞ in the interior of the
first quadrant which may be asymptotically stable or unstable, and a saddle point
S(K,0). There is a full orbit from S to P∞ or to a limit cycle around P∞ for −∞ < t <
∞. Let x̂ be the minimum value of x on this orbit and let Q be the point (x̂,yL), R the
point (K,yL) (Figure 6.17).

For any solution
(
x(t),y(t)

)
, if x(0) < xL,y(0) = yL, then x(t) > x(0) for 0 <

t < ∞, and if x(0) > K,y(0) = yL, then x(t) < x(0) for 0 < t < ∞. The verification
of these facts depends on the observation that no other orbit can cross the orbit
from S to P∞ or a limit cycle around P∞. It now follows that for each T > 0 there
is an x0 with x̂ < x0 < K such that if x(0) = x0,y(0) = yL, then x(T ) = x(0) = x0.
Further, the policy of starting the system at a point (x∗,yL) at t = 0, letting it run
to
(
x(T ),y(T )

)
, and then harvesting y(T )− yL predators to bring the system to the

point
(
x(T ),yL

)
will bring x(T ) closer to x0 than x∗ is. Thus repetition of the process

must give convergence to a periodic orbit starting at (x0,yL), following the orbit
of the system to

(
x0,y(T )

)
at time T , and then going vertically to (x0,yL). The

procedure of setting yU = y(T ) rather than specifying T gives the same periodic
orbit, which then determines T , provided yU is close enough to yL that the orbit
starting at (x0,yL) reaches the horizontal line y = yU . This completes the proof of
the theorem.
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Fig. 6.16 Instantaneous harvesting.

Fig. 6.17 Instantaneous harvesting.

The yield Y under instantaneous harvesting is given by Y = yU−yL
T . Since the

solution of the controlled system is periodic, it follows from the results cited earlier
in this section that this yield is at most Hc. Obviously, it is possible to make the
yield arbitrarily close to Hc by making T very small and arranging that the orbit lie
very close to

(
x∞(Hc),y∞(Hc)

)
so that y(t)g

(
x(t),y(t)

)
is very close to Hc for all
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points of the orbit. Since the yield is the average of y′(t) = y(t)g
(
x(t),y(t)

)
over

0 ≤ t ≤ T , this yield is close to Hc. Of more interest is the fact that numerical
simulations indicate that yields arbitrarily close to Hc can always be obtained for a
range of values of T not confined to very small values. This is true in the “bad” case,
in which such yields cannot be achieved by constant-yield harvesting.

The material in this section is from [Brauer & Soudack (1979)], where additional
discussion may be found.

Exercises

1. Consider the system

x′ = x
(

1− x
60

)
− xy

x+10
,

y′ = 4y
( x

x+10
− 2

3

)
=

4y(x−20)
3(x+10)

.

We will choose yL = 5, T = 4. Use a computer algebra system to simulate this
system with x(0)= 40, y(0)= 5 for 0≤ t ≤ 4. After recording the instantaneous
harvest y(4)−5, restart with initial values (x(4),5) at t = 4 and run for 4 ≤ t ≤
8. Repeat this process several times and estimate the average instantaneous
harvest.

6.4 Some Economic Aspects of Harvesting

The incorporation of economic considerations into resource-harvesting models
leads to a rather new subject, bioeconomics. We shall only scratch the surface of
this subject, considering some simple fisheries models and introducing the idea of
an optimal control problem and illustrating the use of the maximum principle of
Pontryagin (1962). For further exploration of bioeconomics, we refer the reader to
the standard text reference by Clark (1990).

Let us consider a model for an open-access fishery, that is, a fishery in which
the exploitation of resources is completely uncontrolled. Our model will be an ide-
alization, but in practice, fisheries are usually relatively unregulated. However, the
abuses of open access exploitation have led to the imposition of regulations in some
instances.

We consider a fish population that is governed by a first-order differential equa-
tion,

y′ = F(y),

and which is subjected to constant-effort harvesting, so that the model becomes
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y′ = F(y)−Ey. (6.4)

The yield, or harvest in unit time, is

Y (E) = Ey.

Corresponding to an effort E there is an equilibrium population size y∞ = y∞(E)
given by

F(y∞) = Ey∞

for 0 ≤ E ≤ E∗ = F ′(0). As we have seen in Section 1.5, we may plot Y (E) as a
function of E to obtain the yield–effort curve (Figure 6.18).

y

Z Y

E

z=Ey

z=F(y)

MSY

E

y

*E

oo

Fig. 6.18 The yield–effort curve.

In Figure 6.18, the yield–effort curve is shown for a compensation model, rising
continuously to a maximum, called the maximum sustainable yield (MSY) and then
decreasing continuously to zero for E = E∗. Recall from Section 1.5, however, that
for a depensation model there may be a critical effort E∗ at which the yield drops to
zero discontinuously.

Example 1: For logistic growth, F(y) = ry
(
1− y

K

)
we have

F (y∞(E)) = ry∞(E)
[

1− y∞(E)
K

]
= Ey∞(E),

r
[

1− y∞(E)
K

]
= E,

y∞(E) = K
(

1− E
r

)
.
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Thus

Y (E) = Ey∞(E) = KE
(

1− E
r

)
.

The maximum sustainable yield (MSY) is obtained by solving dY
dE = 0, giving

EMSY = r
2 , y(EMSY ) =

K
2 , and Y (EMSY ) =

rK
4 .

Example 2: For the Ricker model F(y) = rye−ay, we have

re−ay∞(E) = E,

which leads to
y∞(E) =

1
a

log
r
E

and Y (E) =
E
a

log
r
E
.

Then
Y ′(E) =

E
a

log
r
E
− 1

a
,

and maximum sustainable yield is obtained when E log r
E = 1, which gives Y (EMSY )=

1
a .

To incorporate the economic aspects of a harvesting model we must attach a
revenue from the sale of this fish or other item being harvested as well as a cost
to carry out the harvesting. The simplest assumptions would be that the cost C of
fishing is proportional to the effort,

C = cE,

and that the price does not depend on the supply of fish available to sell, so that the
revenue R is a constant multiple of the quantity harvested,

R = pY (E).

This would give a sustainable economic rent, meaning a profit per unit time that can
be maintained indefinitely, of

R−C = rY (E)− cE.

More generally, economic models may assume a functional relation, known as a
demand curve, between the unit selling price p and the quantity Y available for
sale. It would be reasonable to assume that p is a nonincreasing function of Y , or
equivalently, that Y is a nonincreasing function of p.

A basic (but considerably oversimplified) principle is that in an open access fish-
ery the effort tends to approach an equilibrium effort E∞, called the bionomic equi-
librium effort, at which the sustainable economic rent is zero. The argument is that
at the bionomic equilibrium, R = C, and that R > C if E < E∞, R < C if E > E∞.
If E > E∞, then R < C, and sustainable economic rent is negative. This means that
some fisheries are losing money and therefore drop out of the market, thus decreas-
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ing the total effort. If E < E∞, then R > C, and fishing is profitable, encouraging
new fishers to join the market and increase the total effort. Thus there should be a
tendency to approach the bionomic equilibrium, although we should recognize that
the delay that represents the time needed to respond to the state of the market could
produce oscillations around the equilibrium (Figure 6.19).

Fig. 6.19 Bionomic equilibrium.

There are many oversimplifications in this bionomic equilibrium principle. For
example, the cost of fishing should also include the loss from not undertaking some
alternative activity (opportunity cost), which in practice might be the most important
component of fishing cost. If opportunity cost is included in the total cost, then the
fishers who remain in an open access fishery would tend to be those with the poorest
alternate economic opportunities.

Bionomic equilibrium is a situation in which there is economic overfishing, be-
cause a fishery that would produce positive economic rent if fishing effort were
decreased is producing zero economic rent. Another possibility is biological over-
fishing, where E∞ > EMSY and thus the sustainable yield and equilibrium population
size are smaller than they would be if the effort were decreased.

Example 1: Consider the logistic model

y′ = ry
(

l − y
K

)
−Ey,

with R = py∞(E) and C = cE. At equilibrium, y∞ = K
r (r−E), R = pKE

r (r−E), and
C = cE. Then the bionomic equilibrium E∞ is determined from

pKE
r

(r−E) = cE,
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which gives
pK(r−E) = rc and r−E =

rc
pK

,

so that

E∞ = r− rc
pK

= r
(

1− c
pK

)
.

The corresponding equilibrium population size is

y∞ = K
(

1− E∞

r

)
= K

[
1−

(
1− c

pK

)]
=

c
p
.

Thus if c
p > K, there is no exploitation at the bionomic equilibrium. If c

p < K
2 , there

is biological overfishing at bionomic equilibrium, but so long as p > 0, we do not
have biological extinction at bionomic equilibrium. The bionomic equilibrium de-
pends upon the cost–price ratio c

p as well on the biological parameters r,K. In fact,
under the assumptions of constant unit price p and constant cost c of unit effort,
the equilibrium population size at bionomic equilibrium is equal to the cost–price
ratio, and the harvesting effort at bionomic equilibrium may he found by simply
calculating the effort that leads to this equilibrium population size.

Exercises

1. The model for fisheries
dx
dt

= a−bx

was proposed by Schoener in 1973. Determine the equation of the yield–effort
curve and explain its peculiar feature.

2. Find xMSY (density of maximum sustainable yield ) and F(xMSY ) (the maximum
sustainable yield) for the Gompertz law of population growth:

dx
dt

= rx log
(

K
x

)
.

Also sketch the yield–effort curve. What is E∗(effort at MSY)?
3. Find xmax (density of maximum sustainable yield) and F(xmax) (the maximum

sustainable yield) for a population governed by the equation

dx
dt

= rxe−x −dx

with r > d.
4. What happens to the yield in a population governed by the equation

dx
dt

= rxe−x −dx
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with r < d?
5. Show that if a population is governed by the equation

dx
dt

= r
√

x,

there is no maximum sustainable yield.

6.5 Optimization of Harvesting Returns

Consider an open-access fishery that is in bionomic equilibrium with biological
overfishing. Let us suppose that we try to regulate this fishery by reducing the har-
vesting effort in order to increase the yield. The immediate effect of reducing effort
is to reduce the yield, but the long-term effect will be to increase the yield by in-
creasing the equilibrium population level. We would like to determine the optimal
trade-off between current and future harvesting revenue. In order to do this we must
take into account the time value of money because of interest. Since the quantity
that we shall study is the present value of all future harvest rents, we shall do this
by using a discount rate δ , and since we are studying a continuous model, we shall
assume that this discount rate is compounded continuously.

When we speak of a discount rate δ , we mean that the present value of an amount
that would have value 1 at a time t units in the future is (1−δ )t . Normally the time
unit is one year. If the discount is compounded K times per year, we use a discount
rate of δ

K per discount period. Then t years would be tK discount periods, and the
present value of an amount 1 at a time t units in the future would be

(
1− δ

K

)tK . By
continuous compounding, we mean that the present value would be the limit of this
quantity as K → ∞. Because

lim
K→∞

(
1− δ

K

)Kt

= e−δ t ,

the effect of a continuously compounded discount rate δ would be to introduce a
factor e−δ t for a rent at time t years in the future.

We now generalize the model (6.4) slightly by assuming that the harvest at time
t is proportional to the effort E as before, but is not necessarily proportional to the
population size y(t). Thus we write the harvest at time t as

h(t) = EG{y(t)}, (6.5)

where G(y) is a nonnegative, nondecreasing function of y. We continue to assume a
constant unit price p and a constant cost c of unit effort. Then the unit harvest cost
when the population level is y is a function c(y) given by

c(y) =
c

G(y)
. (6.6)
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An input of effort EΔ t from time t to time t +Δ t produces a harvest EG{y(t)}Δ t,
which produces a revenue of pEG{y(t)}Δ t at a cost of cEΔ t. Thus the net revenue
is

pEG{y(t)}Δ t − cEΔ t = [p− c{y(t)}]h(t)Δ t, (6.7)

making use of (6.5) and (6.6). The present value of all future harvesting effort is
thus

P =
∫ ∞

0
e−δ t [p− c{y(t)}]h(t)dt. (6.8)

Note that we must use a positive discount rate δ , since otherwise the infinite integral
in (6.8) would diverge. lf we choose to use a finite time horizon by considering only
the harvesting effort until time T , then we would replace (6.8) by

P =
∫ T

0
e−δ t [p− c{y(t)}]h(t)dt. (6.9)

With a finite time horizon we could choose to disregard the time value of money by
taking δ = 0 without introducing any problems with divergence of the integral.

The optimal control problem that we wish to solve is to choose the harvest rate
function that will maximize the integral (6.8) subject to the state equation

y′ = F(y)−h(t) = F{y(t)}−EG{y(t)} (6.10)

and the constraints y(t)≥ 0 (because a realistic model requires a nonnegative popu-
lation level) and 0 ≤ h(t)≤ hmax (because a fishery always has a maximum harvest-
ing capability).

The solution of this optimal control problem, which we shall justify later, is that
we should first choose the equilibrium population level y∗ as the solution of the
equation

F ′(y)− c′(y)F(y)
p− c(y)

= δ ,

or equivalently,
d
dy

[F(y){p− c(y)}] = δ [p− c(y)]. (6.11)

We then choose the effort E so that

h = EG(y∗) = F(y∗).

This still leaves open the question of the optimal way to reach this optimal equi-
librium population level y∗. The answer to this question is that we should use the
harvest rate h∗(t) at time t that drives y(t) to y∗ as rapidly as possible,

h∗(t) =

⎧⎨⎩
hmax (y > y∗),

F(y∗) (y = y∗),
0 (y < y∗).
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This type of control, taking the extreme values 0 and hmax and switching when
y = y∗, is called a bang-bang control . It may appear to be an extreme policy in
practice, since it involves closing down a fishery completely, possibly for a long
period. Such a policy is a consequence of the assumed linear dependence on E. In
the next section we shall consider a nonlinear control problem for which the optimal
control is less extreme.

At equilibrium of the fishery model (6.10), F(y) = h. Thus the sustainable eco-
nomic rent at y is equal to

ρ(y) = [p− c(y)]F(y).

With this definition of ρ(y), we may write the optimizing condition (6.11) as

ρ ′(y) = δ [p− c(y)]. (6.12)

A marginal decrease of Δy in y gives an immediate rent of [p−c(y)]Δy and decrease
in sustained rent

Δ p ≈ ρ ′(y)Δy

with a present value of ∫ ∞

0
e−δ tρ ′(y)Δydt =

1
δ

ρ ′(y)Δy.

Thus for the optimal solution, the marginal immediate gain is equal to the present
value of the marginal future loss.

From (6.6) and the assumption that G(y) is a nondecreasing function of y, it
follows that c(y) is nonincreasing, and p− c(y) is nondecreasing. If ρ ′(y) is a de-
creasing function, the equation (6.12) has a unique solution (Figure 6.20).

The significance of δ = 0 is that we should maximize the sustained economic
rent, that is, we should maximize ρ by setting ρ ′(y) = 0. The corresponding pop-
ulation level is y0. If we let δ → ∞, we set zero value on future revenues and set
p− c(y) = 0 (no sustainable rent). The corresponding population level is y∞. Here
y0 is defined by ρ ′(y) = 0 and y∞ by c(y∞) = p; we have y∞ < y∗ < y0.

The process described above is for a harvest h(t) = EG{y(t)}, which is not nec-
essarily proportional to population size. In the special case h(t) = Ey(t) that we
considered earlier, (6.6) implies c(y) = c

y , and this is used in the determination of
y∗. Once y∗ has been determined, it is easy to calculate F(y∗) and thus to determine
the switching point in h∗(t).

Example 1: Consider a logistic model with constant-effort harvest, so that

F(y) = ry
(

1− y
K

)
, G(Y ) = y, c(y) =

c
y
.

The condition (6.12) becomes
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y
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Fig. 6.20 Unique optimal equilibrium.

r
d
dy

[
y
(

p− c
y

)(
1− y

K

)]
= δ

(
p− c

y

)
,

r
d
dy

[
y
(

p− c
y

)
− p

K
y2 +

c
K

y
]
= δ

(
p− c

y

)
,

2rpy2 + y(δ pK − rpK − rc)−δcK = 0.

This is a quadratic equation having one positive root and one negative root, and we
take y∗ to be the positive root,

y∗ =
K
4

⎡⎣( c
pK

+1− δ
r

)
+

{(
c

pK
+1− δ

r

)2

+
8cδ
prK

} 1
2
⎤⎦ .

For zero discount, δ = 0, we obtain y0 =
K
2

(
c

pK +1
)

, and since y∞ = c
p , we have

y0 =
1
2
(y∞ +K) =

1
2

y∞ + yMSY > yMSY .

Thus we do not have biological overfishing if δ = 0. However, increasing δ will
decrease y∗ from y0. An extreme case is y∞ = 0, when flshing has zero cost, and
then

y∗ =
K
2

(
1− δ

r

)
< yMSY .

If the bionomic growth ratio δ
r exceeds 1, then y∗ = 0, and the optimal harvest policy

leads to the most rapid possible extinction of the resource. The interpretation is that
if the discount rate δ is greater than the intrinsic growth rate r, the fisher should cash
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in the resources as quickly as possible. This optimal fishing policy may of course
not be considered ideal by those with concerns other than the economic rent of the
fishery.

Exercise

1. For a population governed by the Gompertz law of population growth

dx
dt

= rx log
(K

x

)
find the bioeconomic equilibrium for a constant price p and a cost cE with c
constant. Show that there is biological overfishing if c

p < K
e , but no biological

extinction at bioeconomic equilibrium.

6.6 Justification of the Optimization Result

In the preceding section we stated a result that we used to provide the solution of an
optimization problem. In this section we shall justify this result. In fact, we consider
the more general

J[u] =
∫ t ′

t0
[ f0(t,y(t))+g0(t,y(t))u(t)]dt, (6.13)

subject to a state equation

y′ = f1(t,y)+g1(t,y)u, (6.14)

with given values y(t0) = y0, y(t1) = y1, and with the control u(t) chosen from an
admissible set of functions that are piecewise continuous and satisfy

um ≤ u(t)≤ uM.

The problem considered in Section 6.6 was the special case

f0(t,y) = 0, g0(t,y) = e−δ t [p− c(y)],

f1(t,y) = F(y), g1(t,y) =−1,
u(t) = h(t).

However, in this problem we did not impose a terminal condition y(t1) = y1; the
terminal condition is essentially replaced by the requirement that y(t) approach an
equilibrium as t → ∞.
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We begin the solution by solving the state equation (6.14) for u and substituting
the result into (6.13), obtaining a form∫ t ′

t0
[G(t,y)+H(t,y)y′]dt (6.15)

to be maximized under constraints

A(y, t)≤ y′(t)≤ B(y, t). (6.16)

Theorem 6.3. Let y*(t) be the unique solution of

∂G
∂y

=
∂H
∂ t

(6.17)

and suppose

∂G
∂y

≤ ∂H
∂ t

if y < y∗(t)

∂G
∂y

≥ ∂H
∂ t

if y > y∗(t).

Then the optimal solution is the “closest possible trajectory to y∗(t)”, defined as
follows:

(i) If y0 > y∗(t0), y(t) uses the fastest possible descent y′ = A(y, t), y(t0) = y0 until
y∗(t) is reached.

(ii) If y0 < y∗(t0), y(t) uses the fastest possible ascent y′ = B(y, t), y(t0) = y0 until
y∗(t) is reached.

Similarly, if y1 �= y∗(t1), use the same scheme backward from t1, until y∗(t) is
reached. Between these two points where y∗(t) is reached, say ta when y(t) start-
ing at t0 reaches y∗(t) aud tb when y(t) ending at t1 reaches y∗(t), take y(t) = y∗(t)
[Figure 6.21].

Proof. We write the objective functional as a line integral∫ t1

t0
[G(t,y)+H(t,y)y′]dt =

∫
C
(Gdt +Hdy),

where C is the curve y = y(t), t0 ≤ t ≤ t1. Suppose y(t) is the claimed optimal
trajectory and y1(t) is an arbitrary admissible curve from (t0,y0) to (t1,y1). Because
of the constraint (6.16) satisfied by y1(t), we must have y1(t) ≤ y(t) at least for
t0 ≤ t ≤ ta. Suppose y1(t)< y(t) on t0 < t < tR, y1(tR) = y(tR). Then∫ tR

t0
[G(t,y)+H(t,y)y′]dt −

∫ tR

t0
[G(t,y)+H(t,y)y′]dt =

∫
Γ
(Gdt +Hdy), (6.18)

where Γ is the closed curve PRS as shown in Figure 6.22.
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By Green’s theorem in the plane, this is equal to∫
A

∫ (
∂G
∂y

− ∂H
∂ t

)
dydt,

where A is the region in the interior of the curve Γ . Since this region lies below y∗(t),
∂G
∂y ≥ ∂H

∂ t in A, the integral (6.18) is nonnegative. This shows that y(t) does better
than y1(t) in optimizing on the interval t0 ≤ t ≤ tR, and a similar argument shows
the optimality from tR to t1. This completes the proof of the theorem. In fact, we
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have established the stronger result that an optimal path must be optimal on every
subinterval.

In the problem considered in Section 6.5, we used

u = h = F(y)− y′,

J[h] =
∫ ∞

0
e−δ t [p− c{y(t)}][F{y(t)}− y′(t)]dt,

so that

G(t,y) = e−δ t [p− c(y)]F(y),

H(t,y) = −e−δ t [p− c(y)].

Then equation (6.17) becomes

e−δ t d
dt
[{p− c(y)}F(y)] = δe−δ t [p− c(y)],

which is the same as equation (6.4) of Section 6.5, which we solved to determine
the final value y∗.

If in the problem of Section 6.5 we had used a finite time horizon T instead
of trying to optimize over 0 ≤ t < ∞ and had specified a terminal condition for
y(T ), the theorem of this section would imply that it would be necessary to leave
the path y∗(t) before T and use a bang-bang control. Obviously, h = 0 would not
be optimal, because h = hmax for t near T would provide a positive contribution to
the present value. The “horizon effect” of rapid resource depletion for t near T is
an artificial consequence of the finite time horizon. The practical effect of this can
be eliminated by taking a sufficiently remote horizon (letting T → ∞). In nonlinear
models, such as will be considered in the next section, horizon effects typically tend
to zero exponentially for finite t as T → ∞ and are effectively eliminated by taking
T large.

6.7 A Nonlinear Optimization Problem

In this section we consider a model

y′ = F(y)−h(t), y(0) = y0, y(T ) = yT , (6.19)

on a finite interval for which the revenue is not a linear funetion of h. In most real
market situations the price p is not a constant but depends on the supply h; it is
reasonable to assume that p(h) is a nonincreasing function of h. The revenue R(h) =
hp(h) is then not proportional to h. We will assume that the function R(h) has the
properties
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R(h)> 0, R′(h)≥ 0, R′′(h)≤ 0.

We will neglect the cost of harvesting, but an approach similar to the one we employ
could treat a more general situation that does include harvesting cost. The objective
function now is

J[h] =
∫ T

0
e−δ tR(h)dt. (6.20)

The nonlinearity in h implies that the direct line integral approach used in the pre-
ceding section cannot be used. In its stead, we use the maximum principle of Pon-
tryagin (1962).

The Pontryagin maximum principle deals with the general control problem of
maximizing an objective functional

J[u] =
∫ T

0
g[t,y(t),u(t)]dt, (6.21)

where u(t) is chosen from some class of admissible controls u on 0 ≤ t ≤ T , with a
state equation

y′(t) = f [t,y(t),u(t)], y(0) = y0. (6.22)

In addition, the control u must also be such that the response y(t) satisfies the termi-
nal condition

y(T ) = yt . (6.23)

We define the Hamiltonian

H [t,y(t),u(t),λ (t)] = g[t,y(t),u(t)]+λ (t) f [t,y(t),u(t)], (6.24)

where λ is an unknown function called the adjoint variable. The maximum principle
says that if u is the optimal control and y the corresponding response, then there is
an adjoint variable λ such that

dλ
dt

=−∂H

∂y
=−∂g

∂y
−λ

∂ f
∂y

(6.25)

and the optimal control maximizes the value of the Hamiltonian over all admissible
controls for each t, that is,

H [t,y(t),u(t),λ (t)] = max
u∈U

H [t,y(t),u(t),λ (t)]. (6.26)

If the optimal control is in the interior of the control interval, that is, if the control
constraints are not binding, then this maximization statement is

∂H

∂u
= 0. (6.27)
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In general, we have three functions y(t), u(t), and λ (t) to determine, and three
equations, namely the state equation (6.22), the adjoint equation (6.25), and the
maximum statement (6.26) or (6.27) can be used for their determination.

For the linear problem solved in Section 6.5 of maximizing∫ ∞

0
e−δ t [p− c(y)]h(t)dt

with the state equation
y′ = F(y)−h(t),

we have
g(t,y,h) = e−δ t [p− c(y)]h, f (t,y,h) = F(y)−h(t),

in (6.21) and (6.22). Then (6.24) gives the Hamiltonian

H [t,y,h,λ ] = e−δ t [p− c(y)]h(t)+λ (t)[F(y)−h(t)],

and the adjoint equation (6.25) is

dλ
dt

=−c′(y)h(t)e−δ t +λF ′(y). (6.28)

If the constraints are not binding, that is, if we can maximize by taking ∂H
∂u = 0

without being concerned that the resulting u will not be an admissible control, the
maximum condition (6.27) gives

e−δ t [p− c(y)]−δ (t) = 0,

or
λ (t) = e−δ t [p− c(y)]. (6.29)

Substituting the expression (6.29) into the adjoint equation (6.28), we have

−δe−δ t [p− c(y)] = c′(y)he−δ t −λF ′(y) (6.30)

= c′(y)F(y)e−δ t − e−δ t [p− c(y)]F ′(y),

or

F ′(y)− c′(y)F(y)
p− c(y)

= δ ,

which is the solution obtained in Section 6.5. Note that we in effect set an equilib-
rium value terminal condition when we replaced h by F(y) in (6.30).

In order to examine the situation in which the constraints are binding, we look at
the linear problem of maximizing

J[u] =
∫ b1

t0
[ f0{t,y(t)}+g0{t,y(t)}u(t)]dt (6.31)
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subject to a state equation
y′ = F(y)−u(t), (6.32)

with y(t0) = y0, y(t1) = y1, and the control constraints

um ≤ u(t)≤ uM. (6.33)

This problem is the special case f1(t,y) =F(y), y1(t,y) =−1 of problem (6.5), (6.6)
in Section 6.6, which was analyzed there by the use of line integrals and Green’s
theorem. For this problem, the Hamiltonian is

H [t,y,u,λ ] = f0(t,y)+g0(t,y)u+λ (t)[F(y)−u]

= f0(t,y)+λ (t)F(y)+u[g0(t,y)−λ (t)].

We let
σ(t) = g0{t,y(t)}−λ (t). (6.34)

Since H is linear in u, it is clear that in order to maximize H we must take u = uM
if σ(t) > 0 and u = um if σ(t) < 0. This is a bang-bang control and σ is called the
switching function. When the switching function vanishes, H is independent of u.
Thus binding constraints lead to bang-bang controls.

A singular case arises if σ ≡ 0 on an interval. To determine the corresponding
singular control, we write σ ′(t) = 0, or

∂g0

∂ t
+

∂g0

∂y
dy
dt

− dλ
dt

= 0.

From the state equation (6.32) and the adjoint equation (6.25) in the form

dλ
dt

=− ∂
∂y

( f0 +g0u)−λ
∂
∂y

(F −u)

we have
∂g0

∂ t
+

∂g0

∂y
(F −u)+

∂ f0

∂y
+u

∂g0

∂y
+λ

∂F
∂y

= 0.

From (6.34) and the switching condition σ(t) = 0, this is equivalent to

−∂g0

∂ t
= F

∂g0

∂y
+

∂ f0

∂y
+g0

∂F
∂y

. (6.35)

In Section 6.6 we used the state equation to write the integral∫ t1

t0
[ f0{t,y(t)}+g0{t,y(t)}u(t)]dt

in the form ∫ t1

t0
[G(t,y)+H(t,y)y′]dt,
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and here we have

f0(t,y)+g0(t,y)u = f0(t,y)+g0(t,y)[F(y)− y′]
= f0(t,y)+g0(t,y)F(y)− y′g0(t,y).

Thus

G(t,y) = f0(t,y)+g0(t,y)F(y),

H(t,y) = g0(t,y)

and we have

∂G
∂ t

=
∂ f0

∂y
+g0

∂F
∂y

+F
∂g0

∂y
,

∂H
∂ t

= −∂g0

∂ t
.

Now (6.35) is equivalent to
∂H
∂ t

=−∂G
∂y

,

which was the equation in Section 6.6 that was solved to obtain the function y∗(t).
The content of the maximum principle is that for this problem the optimal control is
a combination of bang-bang and singular controls.

The optimization problem (6.19) and (6.20) formulated at the beginning of this
section is not linear in h, and the method used in Section 6.6 cannot be applied. Here
we are forced to use the maximum principle. The Hamiltonian is

H (t,y,u,λ ) = e−δ tR(u)+λ (t)[F(y)−u].

If the control constraints are not binding, the maximum equation is

∂H

∂u
= e−δ tR′(u)−λ (t) = 0,

or
λ (t) = e−δ tR′{u(t)}. (6.36)

The adjoint equation is

dy
dt

=−∂H

∂y
=−λ (t)F ′(y) =−e−δ tR′{u(t)}F ′(y).

From (6.36) we obtain

dλ
dt

= e−δ t
[

R′′(u)
du
dt

−δR′(u)
]
,

and combination with the adjoint equation gives
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R′′(u)
du
dt

−δR′(u) =−R′(u)F ′(y).

We now have a two-dimensional autonomous system for the response y and the
control u, namely

y′ = F(y)−u, (6.37)

u′ =
R′(u)
R′′(u)

[δ −F ′(y)]. (6.38)

It is reasonable to assume that the revenue function R(u) satisfies R(u)> 0, R′(u)≥
0, and R′′(u)< 0.

The y-isocline of the system (6.37) is the curve u = F(y), and the u-isocline is
the vertical line F ′(y) = δ . There is a unique equilibrium (y∗,u∗) given by

u∗ = F(y∗), F ′(y∗) = δ ,

and we may verify that this equilibrium is a saddle point, and that the separatrices
and phase portrait are as shown in Figure 6.23

Fig. 6.23 Phase portrait with separatrices.

As in the linear problem of Section 6.5, there is an optimal equilibrium solution
y = y∗, u = u∗. However, the optimal approach to equilibrium now is not a bang-
bang control as in the linear case. The optimal trajectory must start on the line y= y0
at time t = 0 and terminate on the line y = yT at time t = T . Since (y∗,u∗) is an
equilibrium, the velocity along a trajectory near (y∗,u∗) is small. The closer an orbit
is to the separatrices, the longer is the time taken to go from y0 to yT . Thus for small
T , the trajectory will be far from the saddle point, and for large T , the trajectory
will be close to the saddle point. For each point on y = y0 there is a trajectory going

y

u

(y*,u*)

u=F(y)

F'(y)=δ
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to the line y = yT , and the optimal trajectory is the one taking the required time T
(Figure 6.24).

y

u

y*
0
yT

y

(y*,u*)

Fig. 6.24 Optimal trajectory.

As the time horizon T goes to infinity, the terminal condition drops out and the
optimal trajectory is simply the part of the separatrix from y = y0 to (y∗,u∗). The
optimal approach is more gradual than the bang-bang approach of the linear model.
This reflects the dependence of prices on the harvest, which one would expect to
cause more gradual changes in the optimal harvest rate.

6.8 Economic Interpretation of the Maximum Principle

We now give an interpretation of the maximum principle in economic terms. The
computations that lead to this interpretation actually can be refined to give a proof
of the maximum principle under the assumption that all functions involved are suf-
ficiently smooth (twice differentiable). However, in practice the functions are not
necessarily this smooth, as we have seen with bang-bang controls, and the general
proof of the maximum principle is much more difficult. For a full proof, we refer
the reader to the books of Pontryagin et al. (1962) and Lee & Markus (1968).

We consider the problem of maximizing

J[u] =
∫ t1

t0
g[s,y(s),u(s)]ds (6.39)

subject to a state equation
y′ = f (t,y,u) (6.40)
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with initial and terminal conditions

y(t0) = y0 and y(t1) = y1. (6.41)

We view the terminal point (t1,y1) as fixed but treat the initial point (t0,y0) as vari-
able, assuming that an optimal control u∗(t) exists for all initial points (t0,y0) under
consideration. For each initial point we define the function

w(t0,y0) = J[u∗] = maxJ[u]. (6.42)

This function w(t0,y0) in economic problems represents the present value of the
stock level y0 at time t0 under the assumption that an optimal exploitation policy
will be used for t0 ≤ t ≤ t1. Thus w(t0,y0) is the value of the capital asset y0 at time
t0 with a given time horizon t1. Because the optimal policy must he optimal at each
point of the interval t0 ≤ t ≤ t1, we must have

w(t0,y0) =
∫ t

t0
g[s,y∗(s),u∗(s)]ds+u[t,y∗(t)] (6.43)

for every t. Differentiation of (6.42) with respect to t gives

d
dt

w[t,y∗(t)] =
∂w
∂ t

[t,y∗(t)]+
∂w
∂y

[t,y∗(t)]
dy
dt

(6.44)

=
∂w
∂ t

[t,y∗(t)]+
∂w
∂y

[t,y∗(t)] f [t,y∗(t),u∗(t)]

= −g[t,y∗(t),u∗(t)].

If we define

λ (t) =
∂w
∂y

[t,y∗(t)] (6.45)

and the Hamiltonian

H [t,y,u,λ ] = g(t,y,u)+λ f (t,y,u), (6.46)

the maximum principle implies that

H [t,y∗(t),u∗(t),λ (t)] = max
u

H [t,y,u,λ ]. (6.47)

The function G(t,y,u) defined by

G(t,y,u) =
∂w
∂ t

(t,y)+
∂w
∂y

(t,y) f (t,y,u)+g(t,y,u) (6.48)

has the property that
G(t,y∗(t),u∗(t)) = 0 (6.49)
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because of (6.44). It is possible to show, by an argument that involves considering
the effect of varying the control u in (6.43), that

G(t,y,u)≤ 0 (6.50)

for all (t,y,u). From (6.48) and (6.49) we see that G(t,y,u) is maximized by the
choice y = y∗(t), u = u∗(t). In particular, if we fix y = y∗(t), then G(t,y∗(t),u)
is maximized by the choice u = u∗(t), and if we fix u = u∗(t) then G(t,y,u∗(t)) is
maximized by the choice y= y∗(t). As an alternative to this maximization argument,
we could use the maximum principle to show that G(t,y,u) is maximized by the
choice u = u∗(t), since

H [t,y∗(t),u,λ ] = g(t,y∗(t),u)+λ f (t,y∗(t),u)

= g(t,y∗(t),u)+
∂w
∂y

(t,y∗(t)) f (t,y∗(t),u)

= G(t,y∗(t),u)− ∂w
∂ t

(t,y∗(t))

by (6.45), (6.46), and (6.48); maximization of G(t,y∗(t),u) is equivalent to maxi-
mization of H [t,y∗(t),u,λ ].

Now we fix u = u∗(t) and use the fact that G(t,y∗(t),u) attains its maximum
value when y = y∗(t). If G is differentiable, we must have

∂G
∂y

(t,y∗(t),u∗(t)) = 0. (6.51)

Differentiation of (6.48) shows that (6.51) implies

∂ 2w
∂y2 f +

∂w
∂y

∂ f
∂y

+
∂ 2w
∂y∂ t

+
∂g
∂y

= 0, (6.52)

with all functions being evaluated for y = y∗(t), u = u∗(t). Differentiation of (6.45)
gives

dλ
dt

=
∂ 2w
∂y2

dy
dt

f +
∂ 2w
∂ t∂y

=
∂ 2w
∂y2 f +

∂ 2w
∂ t∂y

. (6.53)

Combination of (6.52) and (6.53) gives

dλ
dt

+
∂w
∂y

∂ f
∂y

+
∂g
∂y

= 0,

or
dλ
dt

=−λ
∂ f
∂y

− ∂g
∂y

=−∂H

∂y
, (6.54)

which is the adjoint equation.
The above calculation shows that we may interpret the adjoint variable λ in the

maximum principle as being given by the expression (6.45). Since w(t,y) repre-
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sents the value of the capital asset y at time t, the adjoint variable λ represents the
marginal value of this capital asset at time t. Reduction of the capital by one unit
would reduce the value by approximately λ ; for this reason λ (t) is called the shadow
price of the asset.

The Hamiltonian is the sum of two terms, each of which can be interpreted as
a flow of values. The term g(t,y,u) is the flow of revenues obtained from resource
harvesting with the objective functional (6.39). The quantity f (t,y,u) is the flow of
investment in capital,

dy
dt

= f (t,y,u).

The value of this investment flow is the flow multiplied by the shadow price λ (t).
Thus, the Hamiltonian represents the rate of increase of total assets, both accu-
mulated dividends and capital assets. The maximum principle says that an optimal
control must maximize the rate of increase of total assets, but we must know the
shadow price in order to determine the optimal control. In effect, the maximum prin-
ciple reduces the optimal control problem to the question of determining the shadow
price. Unfortunately, the analytical determination of the shadow price in practice is
a formidable problem, and it is often impossible to obtain an exact expression for
the shadow price.

The adjoint equation (6.51) says that the rate of depreciation of capital − dλ
dt

consists of two parts, the marginal flow to accumulated dividends and the marginal
flow to capital assets. Along the optimal path, this rate of depreciation must be
equal to the sum of these marginal flows, ∂g

∂y and λ ∂ f
∂y , respectively. The economic

literature usually speaks of a current shadow price λ̃ (t) = eδ tλ (t), rather than the
discounted shadow price λ (t) and of the current-value Hamiltonian

H̃ = eδ tH .

In these terms the adjoint equation dλ
dt =− ∂H

∂y becomes dλ̃
dt = δ λ̃ − ∂H̃

∂y .

6.9 Project: A Harvesting Model

Consider a predator–prey system described by the model

y′ = ry
(

1− y
K

)
− ayz

y+A

z′ = sz
(

1− z
by

)
,

where r,s,a,b,K are positive constants. Suppose the predator (z) species is harvested
at a constant rate H.

1. Find the coexistence equilibrium of the unharvested system.
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2. Show that under harvesting the equilibrium lies on a parabola opening down-
wards and passing through the points (−A,0),(K,0).

3. Show that for H > 0, the equilibrium (y,z) satisfies z < by.
4. Is it possible to drive the predator population to zero by harvesting? If so, what

is the smallest harvest rate that achieves this?

6.10 Project: Harvesting of Two Species

Consider a predator–prey system given by the pair of equations

x′ = x f (x,y), (6.55)
y′ = yg(x),

with
fx(x,y)< 0, gx(x,y)> 0, f (K,0) = 0, g(J,0) = 0.

Assume constant-yield harvesting of both species, to give a model

x′ = x f (x,y)−Hx, (6.56)
y′ = yg(x)−Hy.

Carry out as much as possible of the analogue to the theory of Section 6.2 for har-
vesting of only the predator species. Instead of a single critical harvest, you should
expect to find a curve

h[Hx,Hy] = 0

of critical harvest rates.



Part III

Structured Population Models



Chapter 7

Models for Populations with Age Structure

7.1 Linear Discrete Models

In the preceding chapters we studied mainly models in which all members were
alike, so that birth and death rates depended on total population size. However, we
gave a few examples of populations with two classes of members and a birth rate that
depended on the size of only one of the two classes, for discrete models in Section
2.6 and for continuous models in Section 3.3. These are examples of structured
populations. In this chapter we shall study models for populations structured by
age. In practice, animal populations are often measured by size with age structure
used as an approximation to size structure. The study of age-structured models is
considerably simpler than the study of general size-structured models, primarily
because age increases linearly with the passage of time while the linkage of size
with time may be less predictable. Age-structured models may be either discrete or
continuous. We begin with linear models, for which total population size generally
either increases or decreases exponentially over time.

First, we will consider a discrete model, for a population that is divided into a
finite number of age classes labeled from zero to m, and will describe this population
by giving the number of members in each class at a sequence of times. Thus, we let
ρ j,n be the number of members in the jth class at the nth time ( j = 0,1, . . . ,m; n =
0,1,2, . . .). We will assume that the length of time spent in each age class is the
same and that this length of time is equal to the interval between measurements
of population size. Thus, ρ j,n+1, the number of members in the jth age class at
the (n+ 1)st time, is equal to ρ j−1,n, the number of members in the ( j − 1)st age
class at the nth time minus the number of members of this age cohort who die
before entering the next age class. We will assume that the probability of survival
from one age class to the next depends only on age, that is, that there are constants
p0, p1, . . . , pm−1 such that

ρ1,n+1 = p0ρ0,n, ρ2,n+1 = p1ρ1,n, . . . , ρm,n+1 = pm−1ρm−1,n,
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for n = 0,1,2, . . .. Thus, p j is the probability that a member of the jth age class sur-
vives to the ( j+1)st age class ( j = 0,1,2, . . . ,m−1); it is assumed that no member
survives beyond the mth age class.

All recruitment of new members into the population is assumed to come from a
birth process, with fecundity depending only on age. Thus, we assume that there are
constants β0,β1, . . . ,βm such that

ρ0,n+1 = β0ρ0,n +β1ρ1,n + · · ·+βmρm,n.

The fecundities of the various age classes need not all be different from zero.
We now have a population model described by a system of (m+1) linear differ-

ence equations

ρ0,n+1 = β0ρ0,n +β1ρ1,n + · · ·+βmρm,n,

ρ1,n+1 = p0ρ0,n,

ρ2,n+1 = p1ρ1,n,

...
...

ρm,n+1 = pm−1ρm−1,n,

to which we must add an initial condition and specify ρ0,0,ρ1,0, . . . ,ρm,0. We assume
that the survival probabilities p0, p1, . . . , pm−1 are positive and that the fecundity
coefficients β0,β1, . . . ,βm are nonnegative and not all zero. This population model
is usually known as the Leslie matrix model, formulated in 1945, although similar
forms appeared in earlier work of H. Bernardelli (1941) and E.G. Lewis (1942).
The Leslie model may be written in vector–matrix form. We define the (m+ 1)-
dimensional column vector

ρn =

⎡⎢⎢⎢⎣
ρ0,n
ρ1,n

...
ρm,n

⎤⎥⎥⎥⎦
and the Leslie matrix

A =

⎡⎢⎢⎢⎢⎢⎣
β0 β1 β2 . . . βm−1 βm
p0 0 0 . . . 0 0
0 p1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . pm−1 0

⎤⎥⎥⎥⎥⎥⎦ .

Then the model consists of the vector difference equation

ρn+1 = Aρn,

together with the specification of the initial vector ρ0. It is easy to solve this differ-
ence equation by induction and obtain the solution
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ρn = Anρ0.

This formal solution is of little use without an understanding of the nature of the
matrix An for a given Leslie matrix A; such an understanding requires knowledge of
the eigenvalues and eigenvectors of the matrix A.

In the simplest case, in which the (m + 1)× (m + 1) matrix A has (m + 1)
linearly independent eigenvectors v0,v1, . . . ,vm corresponding to the eigenvalues
λ0,λ1, . . . ,λm, respectively, we may expand

ρn =
m

∑
j=0

c j,nv j,

because v0,v1, . . . ,vm span the space Rm+1 of (m+1)-dimensional vectors with real
components. Then

ρn+1 =
m

∑
j=0

c j,n+1v j = Aρn =
m

∑
j=0

c j,nAv j =
m

∑
j=0

c j,nλ jv j,

and therefore
m

∑
j=0

(c j,n+1 − c j,nλ j)v j = 0.

Because the vectors v0,v1, . . . ,vm are linearly independent, c j,n+1 = λ jc j,n for j =
0,1, . . . ,m; n = 0,1,2, . . ., and this implies c j,n = λ n

j c j,0 for j = 0,1, . . . ,m; n =
0,1,2, . . .. Now we may write

ρn =
m

∑
j=0

c j,0λ n
j v j, n = 0,1,2, . . . .

We now suppose that the eigenvalues can be arranged in decreasing order, or at least
that λ0 is a real simple eigenvalue that is dominant in the sense that |λ j| < λ0 for
j = 1,2, . . . ,m. Then we may write

ρn = c0,0λ n
0 v0 +un,

where λ−n
0 un → 0 as n → ∞. In other words, ρn is λ n

0 multiplied by an eigenvector
of A corresponding to λ0 plus terms that are negligible compared to this term as
n → ∞. We define

Pn =
m

∑
j=0

ρ j,n (total population at time n),

Bn =
m

∑
j=0

β jρ j,n = ρ0,n+1 (births into population at time n).

Then we have



270 7 Models for Populations with Age Structure

Pn = c0,0λ n
0

m

∑
j=0

v0, j +
m

∑
j=0

un, j,

and
ρn

Pn
=

c0,0v0 +λ−n
0 un

c0,0 ∑m
j=0 v0, j +λ−n

0 ∑m
j=0 un, j

.

Because λ−n
0 un → 0 as n → ∞, we have

ρn

Pn
∼ v0

∑m
j=0 v0, j

.

Thus, the fraction of the population in each age class approaches a limit, and these
limits are proportional to the components of the eigenvector v0. Thus, there is a
stable age distribution .

If the matrix A does not have (m+1) linearly independent eigenvectors, the above
reasoning must be modified, but we can still show that if there is a real simple
dominant eigenvalue λ0 with corresponding eigenvector v0, then

ρn = cλ n
0 v0 +un

with limn→∞ λ−n
0 un = 0. This suffices to show that there is a stable age distribution.

Of course, the result makes no sense biologically unless every component of the
eigenvector v0 is positive.

By examining the particular form of the Leslie matrix, we may show that the
characteristic equation is

λ m+1 −β0π0λ m −β1π1λ m−1 −·· ·−βmπm = 0,

where π0 = 1,π1 = p0,π2 = p0 p1, . . . ,πm = p0 p1 · · · pm−1. Thus, π j > 0 is the prob-
ability of survival from birth to entry into the jth age class. Division by λ m+1 gives
the equivalent characteristic equation

m

∑
j=0

β jπ jλ−( j+1) = 1.

Because ∑m
j=0 β jπ jλ−( j+1) is unbounded as λ → 0+, tends to zero as λ → ∞, and is

monotone decreasing, there is a unique positive real root λ0. If v0 is the correspond-
ing eigenvector, with components (v0,v1, . . . ,vm), we may again use the form of the
Leslie matrix to write the equations

β0v0 +β1v1 + . . .+βmvm = λ0v0,

p0v0 = λ0v1,

p1v1 = λ0v2,

pm−1vm−1 = λ0vm.
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If we take v0 = 1, then from these equations we obtain

v1 =
p0

λ0
=

π1

λ0
,

v2 =
p1v1

λ0
=

p0 p1

λ 2
0

=
π2

λ 2
0
,

...
vm =

pm−1vm−1

λ0
=

p0 · · · pm−1

λ m
0

=
πm

λ m
0
.

Thus, the components of v0 are proportional to π j/λ j
0 ( j = 0,1, . . . ,m), and these

are the proportions in the stable age distribution, obviously positive. If λ0 >
1, or equivalently if ∑m

j=0 β jπ j > 1 (because then the value of λ that makes

∑m
j=0 π jβ jλ

−( j+1)
j = 1 must be greater than one), the total population size grows

like λ n
0 . If ∑m

j=0 β jπ j < 1, so that λ0 < 1, the total population size decreases like λ n
0 .

If ∑m
j=0 β jπ j = 1, so that λ0 = 1, the total population size remains constant. In each

case the proportion of the population in each age class tends to a limit.
While we have shown that for the Leslie matrix model there is a unique real

simple eigenvalue λ0 with a corresponding eigenvector whose components are all
positive, we have not shown that this eigenvalue is dominant. In fact, additional
conditions are needed to ensure the dominance of the eigenvalue λ0. The following
algebraic result, known as the Perron–Frobenius theorem, is of some assistance.

Theorem 7.1. Let A be a matrix all of whose elements are non–negative, and such
that for some positive integer k every element of the matrix Ak is positive. Then A
has a simple positive eigenvalue λ0 with a corresponding eigenvector having all
components positive, and |λ j|< λ0 for every other eigenvalue λ j .

The conclusions of the classical Perron–Frobenius theorem are exactly what we
need, but the hypothesis is unsuitable for our purposes. Fortunately, it is possible to
show that for a Leslie matrix model with two consecutive β j different from zero,
some power of the matrix has all elements positive, and thus the conclusion of the
Perron–Frobenius theorem holds. Under these conditions we have as n → ∞,

ρn ∼ cλ n
0 v0,

ρn ∼ c
m

∑
j=0

λ n
0

π j

λ j
0

= cλ n
0

m

∑
l=0

π j

λ j
0

,

so that Pn ∼ cλ n
0 if λ0 > 1, but Pn ∼ cπmλ n−m

0 if λ0 < 1 and

Bn = c
m

∑
j=0

λ n
0

π j

λ j
0

∼ c
m

∑
j=0

β jλ n
0

π j

λ j
0

= cλ n+1
0

m

∑
j=0

β j
π j

λ j+1
0

= c0λ n+1
0 ,

because ∑m
j=0 β j

π j

λ j+1
0

= 1.
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There are age-structured populations for which the Perron–Frobenius result does
not hold. The simplest example of a two-stage model with immature (nonreproduc-
ing) members and adults, which we have already encountered in our discussion of
delayed-recruitment models, corresponds to a Leslie matrix of the form

A =

[
0 β
ρ 0

]
having two eigenvalues of equal absolute value and opposite sign.

If λ = reiθ is a complex eigenvalue then λ n = rneinθ = rn cosnθ + irn sinnθ .
Corresponding to the pair of complex conjugate eigenvalues re±iθ there is a pair
of real solutions of the difference equation containing terms rn cosnθ and rn sinnθ
representing oscillations. If the absolute value r of this pair of eigenvalues is as
large as λ0, then these terms cannot be neglected in the asymptotic expression for
the solution vector ρn. An extreme case arises if the fertility is concentrated in a
single age class, so that the birth rate might be periodic in time. A periodic age
structure is known as a Bernardelli population wave . Such population waves have
been observed in human populations. A simple example is given by the 3×3 Leslie
matrix

A =

⎡⎣ 0 0 β2
p0 0 0
0 p1 0

⎤⎦
with characteristic equation λ 3 − β2 p0 p1 = 0. This equation has three roots, one
real and positive and two nonreal, all having the same absolute value. The three
cube roots of 1 are − 1

2 + i
√

3
2 , − 1

2 − i
√

3
2 , and 1. Letting w = − 1

2 − i
√

3
2 , we have

w2 = − 1
2 + i

√
3

2 , and w3 = 1. Then the eigenvalues are 3
√

β2 p0 p1w, 3
√

β2 p0 p1w2,
and 3

√
β2 p0 p1.

Exercises

In Exercises 1 through 4, for the given Leslie matrix find the dominant eigenvalue
(if there is one), the corresponding eigenvectors and the stable age distribution.

1. A =

⎡⎣ 0 1 1
2
3 0 0
0 1

3 0

⎤⎦ .

2. A =

[
0 1
1
2 0

]
.

3. A =

⎡⎣ 1 2 1
1
2 0 0
0 1

2 0

⎤⎦ .
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4. A =

⎡⎣1 0 1
1 0 0
0 1

2 0

⎤⎦ .

5. A population starts with 100 members of age zero. Assume that each member
of age zero produces one offspring and that 2/3 survive to age one. All mem-
bers of age one produce 3 offspring and then die. Find the corresponding Leslie
matrix, its dominant eigenvalue, and a corresponding eigenvector. Describe the
stable age distribution and the asymptotic behavior of the population.

6. Consider the Leslie matrix ⎡⎣ 0 0 1
1
2 0 0
0 1

3 0

⎤⎦
[Bernardelli (1941)] describing an organism that matures in 2 years, repro-
duces, and then dies. Begin with an initial population with 100 members in
each class and find the population densities for 5 time intervals.

7.2 Linear Continuous Models

It was a physician, Lt. Col. A.G. McKendric,k who first introduced age structure
into the dynamics of a one-sex population [McKendrick (1926)]. The McKendrick
model assumes that the female population can be described by a function of two
variables: age and time. Let ρ(a, t) denote the density of individuals of age a at
time t; that is, the number of individuals with ages between a and a+Δa at time
t is approximately ρ(a, t)Δa. Then the total population at time t is approximately
∑a ρ(a, t)Δa, whose “limit as Δa → 0” is

∫ ∞
0 ρ(a, t)da, and we define the total pop-

ulation
P(t) =

∫ ∞

0
ρ(a, t)da.

In practice, it is reasonable to expect that ρ(a, t) = 0 for all sufficiently large a, so
that this integral is not necessarily an infinite integral.

Age and time are related. For the cohort of members of the population born at
the same time, say c,da/dt = 1, and a = t −c. More generally, if a represents some
physiological measure such as size, then da/dt = g(a). The cohort born at c has size
ρ(0,c). It proceeds along the characteristic a = t − c and is altered only by deaths,
since no new members can join the cohort. If da/dt = g(a), the characteristics are
the solution curves of

da
dt

= g(a).

We will assume that members leave the population only through death, and that
there is an age-dependent death rate μ(a). This means that over the time interval
from t to t +Δ t a fraction μ(a)Δ t of the members with ages between a and a+Δa
at time t die. At time t there are ρ(a, t)Δa individuals with ages between a and
a+Δa. Between the times t and t +Δ t the number of deaths from this age cohort



274 7 Models for Populations with Age Structure

is ρ(a, t)Δaμ(a)Δ t, and the remainder survive, having ages between a+Δ t and
a+Δ t +Δa at time t +Δ t. Thus,

ρ(a+Δ t, t +Δ t)Δa ≈ ρ(a, t)Δa−ρ(a, t)μ(a)ΔaΔ t.

Division by ΔaΔ t gives

ρ(a+Δ t, t +Δ t)−ρ(a, t)
Δ t

+μ(a)ρ(a, t)≈ 0.

We then let Δ t → 0. If ρ(a, t) is a differentiable function of a and t we have

lim
Δ t→0

ρ(a+Δ t, t +Δ t)−ρ(a, t)
Δ t

= lim
Δ t→0

ρ(a+Δ t, t +Δ t)−ρ(a, t +Δ t)
Δ t

+ lim
Δ t→0

ρ(a, t +Δ t)−ρ(a, t)
Δ t

= lim
Δ t→0

(
ρa(a, t +Δ t)+ρt(a, t)

)
= ρa(a, t)+ρt(a, t).

Thus we obtain the McKendrick equation (1926)

ρa(a, t)+ρt(a, t)+μ(a)ρ(a, t) = 0. (7.1)

This equation is also known as the von Foerster equation (1959), because the
same equation arises in cellular biology. The function μ(a) ≥ 0 is called the mor-
tality function or death modulus. If y(α) is the number of individuals starting at age
a who survive to age α , then

y(α +Δα)− y(α)≈−μ(α)y(α)Δα.

If we divide by Δα and let Δα → 0, we obtain y′(α) =−μ(α)y(α), and this implies
y(a2) = y(a1)e−

∫ a2
a1 μ(α)dα . Thus the probability that an individual of age a1 will

survive to age a2 is e−
∫ a2

a1 μ(α)dα . In particular,

π(a) = e−
∫ a

0 μ(α)dα

is the probability of survival from birth to age a.
Next, we assume that the birth process is governed by a function β (a) called the

birth modulus; that is, that β (a)Δ t is the number of offspring produced by members
with ages between a and a+Δa in the time interval from t to t +Δ t. Thus, the total
number of births between time t and time t+Δ t is Δ t ∑β (a)ρ(a, t)Δa, which “tends
as Δa → 0” to Δ t

∫ ∞
0 β (a)ρ(a, t)da. Since this quantity must also be ρ(0, t)Δ t, we

obtain the renewal condition

B(t) = ρ(0, t) =
∫ ∞

0
β (a)ρ(a, t)da.



7.3 The Method of Characteristics 275

Observe that if we know B(t), then we can calculate ρ(a, t) as the number of births
at time t−a multiplied by the survival fraction to age a plus the number of survivors
from the initial population born before time t −a and surviving to time t. The upper
triangle of the first quadrant of the (a, t) plane represents members of the population
who were already alive at time t = 0.

In order to complete the model, we must specify an initial age distribution (at
time zero)

ρ(a,0) = ϕ(a).

Then the full model consists of a partial differential equation and two auxiliary
conditions, one of which is an integral condition The full model is

ρa(a, t)+ρt(a, t)+μ(a)ρ(a, t) = 0, (7.2)

ρ(0, t) =
∫ ∞

0
β (a)ρ(a, t)da,

ρ(a,0) = φ(a).

This is analogous to the discrete Leslie model: The function β (a) corresponds to the
sequence β0,β1, . . . ,βm; the function μ(a) corresponds to the values p0, p1, . . . , pm−1
(more precisely, e−

∫ a
0 μ(α)dα corresponds to the sequence of survival probabilities

π1, . . . ,πm). The solution of the model (7.2) is carried out using the method of char-
acteristics.

7.3 The Method of Characteristics

In order to transform the problem (7.2) into a more manageable form, we will inte-
grate along characteristics of the partial differential equation. The characteristics are
the lines t = a+ c. Their importance lies in the fact that the value of the function ρ
at a point (a, t) is determined by the values of ρ on the characteristic through (a, t)
because a member of the population of age a at time t must have been of age a−α
at time t −α for every α ≥ 0 such that α ≤ a and α ≤ t. In other words, the points
on a given characteristic t = a+ c all correspond to the same age cohort.

If t ≥ a, then ρ(a, t) is just the number of survivors to age a of the ρ(0, t − a)
members born at time (t − a). Since the fraction surviving to age a is π(a), we
have ρ(a, t) = ρ(0, t − a)π(a) if t ≥ a. If t < a, then ρ(a, t) is just the number of
survivors to age a of the φ(a− t) members who were of age (a− t) at time zero.
Since the fraction surviving from age (a− t) to age a is π(a)/π(a− t), we have
ρ(a, t) = φ(a− t)π(a)/π(a− t) if t < a. Thus

ρ(a, t) =

{
ρ(0, t −a)π(a) for t ≥ a,
φ(a− t)π(a)/π(a− t) for t < a.

(7.3)

In terms of μ , we may write this as
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ρ(a, t) =

{
ρ(0, t −a)e−

∫ a
0 μ(α)dα for t ≥ a,

φ(a− t)e−
∫ a

a−t μ(α)dα for t < a.

We have defined the function B(t) representing the number of births in unit time t,
by

B(t) = ρ(0, t).

Then the original problem is

ρa(a, t)+ρt(a, t)+μ(a)ρ(a, t) = 0,

B(t) =
∫ ∞

0
β (a)ρ(a, t)da,

ρ(a,0) = φ(a).

and we have obtained the representation

ρ(a, t) =

{
B(t −a)e−

∫ a
0 μ(α)dα for t ≥ a,

φ(a− t)e−
∫ a

a−t μ(α)dα for t < a.
i

We let ψ(t) be the rate of births from members who were present in the popula-
tion at time zero. From (7.1) and (7.3) we have

ρ(0, t) =
∫ ∞

0
β (a)ρ(a, t)da

=
∫ t

0
β (a)ρ(a, t)da+

∫ ∞

t
β (a)ρ(a, t)da

=
∫ t

0
β (a)ρ(0, t −a)e−

∫ a
0 μ(α)dα da+

∫ ∞

t
β (a)φ(a− t)e−

∫ a
a−t μ(α)dα da

=
∫ t

0
β (a)e−

∫ a
0 μ(α)dα B(t −a)da+

∫ ∞

t
β (a)φ(a− t)e−

∫ a
a−t μ(α)dα da.

Thus, we may evaluate ψ in terms of the birth and death moduli and the initial age
distribution

ψ(t) =
∫ ∞

t
β (a)φ(a− t)e−

∫ a
a−t μ(α)dα da

=
∫ ∞

0
β (t + s)φ(s)e−

∫ s+t
s μ(α)dα ds.

(7.4)

We also write π(a) = e−
∫ a

0 μ(α)dα , and we see that B(t) is a solution of the re-
newal equation

B(t) = ψ(t)+
∫ t

0
β (a)π(a)B(t −a)da,

a linear Volterra integral equation of convolution type with kernel β (a)π(a). Con-
versely, if B(t) is a solution of the renewal equation, then we have a solution of the
original problem given by
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ρ(a, t) =

{
B(t −a)e−

∫ a
0 μ(α)dα = B(t −a)π(a) for t ≥ a,

φ(a− t)e−
∫ a

a−t μ(α)dα for t < a.

The problem that now faces us is to describe the behavior of solutions of the
renewal equation under the assumptions that φ(t) → 0 as t → ∞, and, in fact,∫ ∞

0 φ(t)dt < ∞ and R =
∫ ∞

0 β (a)π(a)da < ∞. The number R is the expected number
of offspring for each individual over a lifetime, being the sum over all ages a of
probability of survival to age a multiplied by the number of offspring at age a.

One approach to this problem [Feller (1941)] involves taking Laplace transforms
and using the convolution property to obtain

B̂(p) = Φ̂(p)+ F̂(p)B̂(p),

or

B̂(p) =
Φ̂(p)

1− F̂(p)
,

where B̂ is the Laplace transform of B, Φ̂ is the Laplace transform of φ , and F̂ is the
Laplace transform of βπ , that is,

F̂(p) =
∫ ∞

0
β (a)π(a)e−pada.

Then
F̂(0) =

∫ ∞

0
β (a)π(a)da = R, lim

p→∞
F̂(p) = 0,

and F̂(p) is a monotone decreasing function of p. Thus there is a unique real solution
p0 of F̂(p) = 1, which is positive if R > 1, zero if R = 1, and negative if R < 1. For
every complex p = α + iγ we have

F̂(p) = F̂(α + iγ) =
∫ ∞

0
β (a)π(a)e−(α+iγ)ada

=
∫ ∞

0
β (a)π(a)e−αa(cosγa− isinγa)da,

ℜF̂(α + iγ) =
∫ ∞

0
β (a)π(a)e−αa cosγada.

If α ≥ p0 and β �= 0, we obtain

|ℜF̂(α + iγ)|<
∫ ∞

0
β (a)π(a)e−αada ≤

∫ ∞

0
β (a)π(a)e−p0ada = 1,

and thus p0 is a dominant root of the characteristic equation F̂(p) = 1. From this
it is possible to conclude that B̂(p) is equal to the sum of two terms, one of which
has the form B/(p− p0) for some constant B and the other of which is analytic for
ℜp ≥ p0. From this it is possible to deduce that
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B(t) = Bep0t +E(t),

where |E(t)| ≤ ce(p0−ε)t as t → ∞. From the representation of ρ(a, t) in terms of
B(t) we obtain

ρ(a, t) = Bep0(t−a)π(a)+E(t −a),

and from P(t) =
∫ ∞

0 ρ(a, t)da we obtain

P(t) = Pep0t +E(t)

for some constant P. In each of these expressions, E(t) represents a function that
grows no faster than e(p0−ε)t as t → ∞.

A stable age distribution (or persistent age distribution) is defined to be a solu-
tion ρ(a, t) of the form ρ(a, t) = A(a)T (t). We may shift a constant factor between
A(a) and T (t) and thus assume

∫ ∞
0 A(a)da = 1; then we have

P(t) =
∫ ∞

0
ρ(a, t)da = T (t)

∫ ∞

0
A(a)da = T (t).

Thus ρ(a, t) = P(t)A(a), and in a stable age distribution the proportion ρ(a, t)/P(t)
of age a is A(a), independent of time.

Substitution of the form ρ(a, t) = A(a)P(t) into the McKendrick equation (7.1)
gives

A′(a)P(t)+A(a)P′(t)+μ(a)A(a)P(t) = 0,

or

−μ(a)− A′(a)
A(a)

=
P′(t)
P(t)

.

Here primes denote derivatives with respect to the appropriate variable. Because the
left side of this equation is a function of a only, while the right side is a function of t
only, each side must be equal to a constant p0 (as yet undetermined). Thus we have
two separate ordinary differential equations:

P′(t)− p0P(t) = 0,

with solution
P(t) = P(0)ep0t ,

and
A′(a)+(μ(a)+ p0)A(a) = 0,

with solution

A(a) = A(0)e−p0ae−
∫ a

0 μ(α)dα = A(0)e−p0aπ(a).

To satisfy the renewal condition ρ(0, t) =
∫ ∞

0 β (a)ρ(a, t)da we must have

P(t)A(0) =
∫ ∞

0
β (a)A(a)P(t)da = P(t)

∫ ∞

0
β (a)A(0)e−p0aπ(a)da
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or ∫ ∞

0
β (a)π(a)e−p0ada = 1,

which is known as the Lotka-Sharpe equation [Lotka and Sharpe (1911)] for p0.
As we have already remarked, this has a unique real root, which is positive if R =∫ ∞

0 β (a)π(a)da > 1, zero if R = 1, and negative if R < 1. In a stable age distribution,

ρ(a, t) = cep0te−p0aπ(a) = cep0(t−a)π(a),

and the content of our analysis of the renewal equation earlier is that asymptotically
(as t → ∞) every age distribution tends to a stable age distribution. The Lotka-
Sharpe equation is the analogue of the equation ∑m

j=0 β jπ jλ
−( j+1)
0 = 1 obtained in

the discrete case, and the result that every age distribution tends to a stable age
distribution is the analogue of the result that in the discrete case ρn ∼ cλ n

0 v0.
If R = 1 then the total population size P(t) is constant,

ρ(a, t) = Bπ(a),

and the birth rate is also a constant,

B(t) =
∫ ∞

0
β (a)P(0)A(0)π(a)da = P(0)A(0)

∫ ∞

0
β (a)π(a)da = P(0)A(0).

In this case we have an equilibrium age distribution. It is easy to see that, conversely,
if the total population size is constant then the birth rate is also constant and ρ(a, t)
is independent of t.

Example 1. In the “genesis” model we assume φ(a) = δ (a), the Dirac delta func-
tion with δ (a) = 0 for a �= 0,

∫ ∞
0 δ (a)da = 1. Thus the initial population is all at age

zero. Let us assume also that the birth modulus β (a) and the death modulus μ(a)
are both constants, β and μ , respectively. Then the renewal equation takes the form

B(t) = φ(t)+
∫ t

0
βe−

∫ a
0 μdα B(t −a)da,

with
ψ(t) =

∫ ∞

0
βφ(s)e−

∫ s+t
s μdα ds =

∫ ∞

0
δ (s)e−μtds = βe−μt .

Also
βe−

∫ a
0 μdα = βe−μa.

Thus, B(t) satisfies
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B(t) = βe−μt +β
∫ t

0
e−μaB(t −a)da

= βe−μt +β
∫ t

0
e−μ(t−s)B(s)ds

= βe−μt +βe−μt
∫ t

0
eμsB(s)ds.

Differentiation gives

B′(t) = −μβe−μt +βe−μteμtB(t)−β μe−μt
∫ t

0
eμsB(s)ds

= −μ
(

βe−μt +βe−μt
∫ t

0
eμsB(s)ds

)
+βB(t)

= −μB(t)+βB(t) = (β −μ)B(t).

From the renewal equation with t = 0 we see that B(0) = β . Now B′(t) = (β −
μ)B(t), B(0) = β implies B(t) = βe(β−μ)t , and this gives the age distribution func-
tion

ρ(a, t) =

{
βe(β−μ)(t−a)−μa for t ≥ a,
δ (a− t)e−μt for t < a.

The total population size is

P(t) =
∫ ∞

0
ρ(a, t)da =

∫ t

0
ρ(a, t)da+

∫ ∞

t
ρ(a, t)da

=
∫ 0

t
βe(β−μ)te−βada+

∫ ∞

t
δ (a− t)e−μtda

= βe(β−μ)t
∫ t

0
e−βada+ e−μt

= e(β−μ)t(1− e−β t)+ e−μt = e(β−μ)t .

Exercises

1. Consider a model with β and μ constant and the initial age distribution φ(a)
arbitrary.

(i) Show that ψ(t) = βe−μt ∫ ∞
0 φ(s)ds.

(ii) Obtain an integral equation for B(t).
(iii) Show by differentiation of the integral equation obtained in part (i) that

B′(t) = (β −μ)B(t), B(0) = β
∫ ∞

0
φ(s)ds.

(iv) Solve for B(t).
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(v) What can you say about the total population size as t → ∞?

2.∗ Consider a model with φ(a) arbitrary, μ constant, and β (a) = βe−μa.

(i) Show that ψ(t) = β
∫ ∞

0 e−μsφ(s)ds.
(ii) Show that B(t) satisfies the initial value problem

B′(t) = (β −2μ)B(t), B(0) = β
∫ ∞

0
e−μsφ(s) ds.

(iii) Solve the initial value problem obtained in part (ii) to find that

B(t) = βe−(β−2μ)t
∫ ∞

0
e−μsφ(s)ds.

3.∗ Consider a model with μ constant and an arbitrary initial age distribution φ(a)
for which β (a) = 0 if a ≤ T and β (a) is a constant β if a > T . Show that the
integral equation satisfied by B(t) for t > T is

B(t) = βe−μt
∫ ∞

0
φ(s)ds+βe−μt

∫ t−T

0
eμsB(s)ds

and deduce that B(t) satisfies the differential–difference equation

B′(t) = βe−μT B(t −T )−μB(t).

4. Suppose that a constant b can be found such that

ρ(0, t) = b
∫ ∞

0
ρ(a, t)da ≡ bP(t),

and that nobody lives forever (that is, there is a maximal life span). Obtain an
integral equation for P(t).

7.4 Nonlinear Continuous Models

In the previous section, the birth and death rates were linear, and this implies that
total population size grows exponentially, dies out exponentially, or remains con-
stant. In studying models without age structure, we considered situations in which
populations have a carrying capacity that is approached as t → ∞. In order to al-
low this possibility for age-structured models we must assume some nonlinearity.
We now consider the possibility of birth and death moduli of the form β (a,P(t))
and μ(a,P(t)), depending on total population size. A variant, which can be devel-
oped by analogous methods, would be to allow the birth modulus (and possibly also
the death modulus) to depend on ρ(a, t), the number of members in the same age
cohort. We will consider only the continuous case, because the methods of linear al-
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gebra used to treat the linear discrete case have no direct adaptation to the nonlinear
discrete model.

If the birth and death moduli are allowed to depend on total population size the
description of the model must include the definition of P(t). Thus, the full model is
now

ρa(a, t)+ρt(a, t)+μ(a,P(t))ρ(a, t) = 0

B(t) = ρ(0, t) =
∫ ∞

0
β (a,P(t))ρ(a, t)da (7.5)

P(t) =
∫ ∞

0
ρ(a, t)da

ρ(a,0) = φ(a).

We can transform the problem just as in the linear case by integrating along
characteristics. If we define

μ∗(α) = μ(α,P(t −a+α)),

the same calculations give

ρ(a, t) =

{
B(t −a)e−

∫ a
0 μ∗(α)dα for t ≥ a,

φ(a− t)e−
∫ a

a−t μ∗(α)dα for t < a.
(7.6)

When we substitute these expressions into (7.5) and (7.6), we obtain a pair of
functional equations for B(t) and P(t), whose solution gives an explicit solution for
ρ(a, t), namely

B(t) = b(t)+
∫ t

0
β (a,P(t))e−

∫ a
0 μ∗(α)dα B(t −a)da,

P(t) = p(t)+
∫ t

0
e−

∫ a
0 μ∗(α)dα B(t −a)da,

where

μ∗(α) = μ(α,P(t −a+α)),

b(t) =
∫ ∞

t
β (a,P(t))φ(a− t)e−

∫ a
a−t μ∗(α)dα da,

p(t) =
∫ ∞

t
φ(a− t)e−

∫ a
a−t μ∗(α)dα da.

It is reasonable to assume that
∫ ∞

0 φ(a)da<∞ and that the functions β (a,P),μ(a,P)
are continuous and nonnegative; under these hypotheses it is easy to verify that
b(t) and p(t) are continuous and nonnegative and tend to zero as t → ∞, and that
b(0) > 0, p(0) > 0. Without additional assumptions it is not necessarily true that
the pair of functional equations has a solution for 0 ≤ t < ∞, but it is possible to



7.4 Nonlinear Continuous Models 283

prove that if supa≥0,P≥0 β (a,P)< ∞, then there is a unique continuous nonnegative
solution on 0 ≤ t < ∞. This model is due to M.L. Gurtin and R.C. MacCamy (1974).

A solution ρ(a, t) that is independent of t is called an equilibrium age distribu-
tion. If ρ(a, t) = ρ(a) is an equilibrium age distribution then both P(t) =

∫ ∞
0 ρ(a)da

and B(t) =
∫ ∞

0 β (a,P(t))ρ(a)da are constant. Conversely, if P(t) and B(t) are con-
stant then ρ(a, t) is independent of t and thus is an equilibrium age distribution.

If ρ(a) is an equilibrium age distribution, the McKendrick equation becomes an
ordinary differential equation ρ ′(a)+μ(a,P)ρ(a) = 0, with initial condition ρ(0) =
B, whose solution is

ρ(a) = Be−
∫ a

0 μ(α,P)dα .

If we define
π(a,P) = e−

∫ a
0 μ(α,P)dα (7.7)

the probability of survival from birth to age a when the population size is the con-
stant P, then

ρ(a) = Bπ(a,P).

From P =
∫ ∞

0 ρ(a)da we obtain

P = B
∫ ∞

0
π(a)da,

and from B =
∫ ∞

0 β (a,P)ρ(a)da, we obtain

P = B
∫ ∞

0
β (a,P)π(a,P)da.

Thus, for an equilibrium age distribution with birth rate B and population size P, P
must satisfy the equation

R(P) =
∫ ∞

0
β (a,P)π(a,P)da = 1,

and then B is given by

B =
P∫ ∞

0 π(a,P)da
.

Then 1/
∫ ∞

0 π(a,P)da is the average life expectancy and the equilibrium age distri-
bution is ρ(a) = Bπ(a,P). The quantity R(P), called the reproductive number, is the
expected number of offspring that an individual has over its lifetime when the total
population size is P.

Example 1. Suppose that β is independent of age and is a function of P only. Then

B(t) =
∫ ∞

0
β (P(t))ρ(a, t)da = β (P(t))

∫ ∞

0
ρ(a, t)da = P(t)β (P(t)), (7.8)
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and the problem is reduced to a single functional equation for P(t) together with
this explicit formula for B(t). If we define g(P) = Pβ (P), the equation for P(t) is

P(t) = p(t)+
∫ t

0
e−

∫ a
0 μ∗(α)dα g(P(t −a))da.

Example 2. Suppose that β is independent of age and in addition that μ is in-
dependent of population size and is a function of age only. Then, instead of
μ∗(α) = μ(α,P(t −a+α)), we have μ(α), and the equation for P(t) is a Volterra
integral equation called the nonlinear renewal equation,

P(t) = p(t)+
∫ t

0
e−

∫ a
0 μ(α)dα g(P(t −a))da = p(t)+

∫ t

0
π(α)g(P(t −a))da. (7.9)

In order to analyze (7.9), we first apply a theorem of Levin and Shea (1972)
stating that the asymptotic behavior of (7.9) is the same as that of the limit equation

P(t) =
∫ ∞

0
π(α)g(P(t −a))da =

∫ t

−∞
π(t −u)g(P(u))da. (7.10)

In other words, the particular choice

p(t) =
∫ ∞

t
g(P(t −a))π(a)da

of initial function is general in the sense that the behavior of (7.9) is the same for all
initial functions that tend to zero.

It is possible to prove [Londen (1974)] that every bounded solution of (7.10)
approaches a limit P∞ as t → ∞ with

P∞ = g(P∞)
∫ ∞

0
π(a)da.

or
β (P∞)

∫ ∞

0
π(a)da = 1.

If we differentiate the integral equation after writing∫ t

0
π(a)g(P(t −a))da =

∫ t

0
π(t − τ)g(P(τ))dτ

and using the relationship

d
dt

∫ t

0
π(t − τ)g(P(τ))dτ = π(0)g(P(t))+

∫ t

0
π ′(t − τ)g(P(τ))dτ

= π(0)g(P(t))+
∫ t

0
π ′(a)g(P(t −a))da,



7.4 Nonlinear Continuous Models 285

we obtain the integrodifferential equation

P′(t) = p′(t)+π(0)g(P(t))+
∫ t

0
g(P(t −a))π ′(a)da,

whose linearization about the equilibrium P∞ is

u′(t) = π(0)g′(P∞)u(t)+g′(P∞)
∫ t

0
u(t −a)π ′(a)da.

We recall that for the linear integrodifferential equation u′(t) = αu(t)+β
∫ t

0 u(t −
a)k(a)da with

∫ ∞
0 k(a)da= 1 if α+β ≥ 0 then solutions do not tend to zero (Section

3.4). Here α = π(0)g′(P∞),

k(a) =
π ′(a)∫ ∞

0 π ′(a)da
=

π ′(a)
π(0)

,

so that β = g′(P∞)
∫ ∞

0 π ′(a)da = −g(P∞)π(0) and α + β = 0. Thus, the “equilib-
rium” P∞ of the nonlinear renewal equation cannot be asymptotically stable. How-
ever, it can be shown [Brauer (1976, 1987b)] that if g′(P∞)

∫ ∞
0 π(a)da < 1, the equi-

librium P∞ is stable in a weaker sense, namely that small disturbances do not alter
the solution very much, while if g′(P∞)

∫ ∞
0 π(a)da > 1, solutions tend away from

P∞. Thus, the condition g′(P∞)
∫ ∞

0 π(a)da < 1 is necessary for the limit P∞ to be
meaningful biologically. Since

g′(P∞) = β (P∞)+P∞β ′(P∞)

and β (P∞)
∫ ∞

0 π(a)da = 1, this condition is equivalent to β ′(P∞)< 0.
For age-structured populations with μ a function of age only and β a function of

population size only, we have shown that every solution tends to an equilibrium age
distribution, and we have

lim
t→∞

P(t) = P∞, lim
t→∞

B(t) = P∞β (P∞),

while
ρ(a, t) = B(t −a)π(a)∼ P∞β (P∞)π(a).

Such models are more realistic than models described by ordinary differential equa-
tions in which age dependence is ignored completely. However, the assumption that
mortality is independent of population size is quite unrealistic, especially in popu-
lations whose members compete for resources.

In the special case of a constant death rate

π(a) = e−μa,

differentiation of the equation (7.10) gives

P′(t) = g(P(t))−μP(t),
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an ordinary differential model with a density-dependent birth rate.
The nonlinear renewal equation (7.9) as a model for a population with a birth

rate depending only on total population size and a death rate depending only on age
can be constructed directly, without starting from an age-structured model. If the
number of births in unit time when total population size is P is B = g(P) = Pβ (P),
and the fraction of the population surviving to age a is π(a), then the number of
members born at time (t − a) and having age between a and a+Δa at time t is
approximately π(a)g(P(ta))Δa. Thus, the total population size P(t) at time t is the
sum of two terms. The first term p(t) represents the number of members born before
the time t = 0 and still surviving at time t, and the second term

∫ t
0 π(a)g(P(t−a))da

represents the number of members born between time zero and time t and surviving
to time t. This explains the model (7.9).

We may proceed in the other direction to derive the age distribution from the
nonlinear renewal equation (7.9) under the assumptions that the birth rate depends
on total population size and the death rate depends on age. From the relations (7.1),
(7.2), and (7.3) we have, for t ≥ a,

ρ(a, t) = B(t −a)π(a) = ¶(t −a)β (P(t −a))π(a) = g(P(t −a))π(a).

Example 3. Suppose that μ is independent of age and is a function of P only. Then
the McKendrick equation is

ρa(a, t)+ρt(a, t)+μ(P(t))ρ(a, t) = 0.

We integrate with respect to a from zero to ∞ and assume lima→∞ ρ(a, t) = 0. Then∫ ∞

0
ρa(a, t)da = ρ(a, t)

∣∣∣a=∞

a=0
=−ρ(0, t) =−B(t),∫ ∞

0
ρt(a, t)da =

d
dt

∫ ∞

0
ρ(a, t)da = P′(t),

and ∫ ∞

0
μ(P(t))ρ(a, t)da = μ(P(t))

∫ ∞

0
ρ(a, t)da = P(t)μ(P(t)).

Thus, the problem can be reformulated as a functional equation for P(t) together
with an ordinary differential equation P′+μ(P)P = B. We now assume in addition
that β is independent of population size and is a function of age only. Then the
system takes the form

P′(t)+P(t)μ(P(t)) = B(t)

B(t) = b(t)+
∫ t

0
β (a)e−

∫ a
0 μ∗(α)dα B(t −a)da,

with
μ∗(α) = μ(P(t −a+α)).
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It is convenient to make a change of variables and write∫ a

0
μ∗(α)dα =

∫ a

0
μ(P(t −a+α))dα =

∫ t

t−a
μ(P(u))du,

so that
B(t) = b(t)+

∫ t

0
β (a)e−

∫ t
t−a μ(P(u))duB(t −a)da.

Now we let

B∗(t) = B(t)e
∫ t

0 μ(P(u))du, P∗(t) = P(t)e
∫ t

0 μ(P(u))du

and substitute, obtaining the system

B∗(t) = b∗(t)+
∫ t

0
β (a)B∗(t −a)da,

P∗′(t) = B∗(t),

with
b∗(t) =

∫ ∞

t
β (a)φ(a− t)da.

If we search for stable age distributions by substituting ρ(a, t) = A(a)P(t) into
the McKendrick equation, we obtain

−A′(a)
A(a)

=
P′(t)
P(t)

+μ(P(t)),

and see as before that each side of this equation must be a constant p0. Thus, A′(a)+
p0A(a) = 0, which gives A(a) = A(0)e−p0a, and P′(t)+P(t)μ(P(t)) = p0P(t). The
renewal condition

ρ(0, t) =
∫ ∞

0
β (a)ρ(a, t)da

gives

P(t)A(0) =
∫ ∞

0
β (a)P(t)A(0)e−p0ada,

which implies ∫ ∞

0
β (a)e−p0ada = 1.

In the linear theory we showed that every solution approaches a stable age distri-
bution. A similar but weaker result is true in the nonlinear case. By the use of the
Laplace transform and the equation for B∗(t), we can show that B∗(t) ∼ cep0t as
t → ∞ and because P∗′(t) = B∗(t) we have P∗(t) ∼ cep0t/p0 (unless p0 = 0). We
now obtain ρ(a, t)∼ A(a)Q(t),B(t)∼ p0Q(t) as t → ∞, where

Q(t) =
c
p0

ep0t−∫ t
0 μ(P(u))du.
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This differs from the result in the linear case because Q(t) does not in general satisfy
the differential equation y′+ yμ(y) = p0y and thus A(a)Q(t) is not a solution of the
model. It is, however, true that Q(t)/P(t)→ 1 as t → ∞.

Exercises

1.∗ Assume that μ is independent of age and is a function of P only. Assume also
that lima→∞ ρ(a, t) = 0. Integrate (7.5) with respect to a from zero to ∞ and
deduce that

P′(t) = B(t)−P(t)μ(P(t)).

2.∗ Assume that μ is a function of P only and that β (a,P) = β0e−αa, with β0 and α
positive constants. Multiply (7.5) by e−αa and integrate with respect to a from
zero to ∞ and deduce that

B′(t) =
[
β0 −α −μ(P(t))

]
B(t).

3.∗ Exercises 1 and 2 show that if μ is a function of P only and β (a,P) = β0e−αa,
then the model (7.5) is equivalent to the system of ordinary differential equa-
tions

P′ = B−Pμ(P),
B′ =

[
β0 −α −μ(P)

]
B.

(i) Show that P = 0, B = 0 is an equilibrium that is asymptotically stable if
and only if β0 −α < μ(0).

(ii) Show that there is an equilibrium (P∞,B∞) with μ(P∞) = β0 −α and B∞ =
P∞μ(P∞) = (β0 −α)P∞.

(iii) Show that the equilibrium (P∞,B∞) is asymptotically stable if and only if
α −β0 < P∞μ ′(P∞), μ ′(P∞)> 0.

7.5 Models with Discrete Age Groups

Under certain conditions, the age-structured partial differential equation model (7.5)
can be reduced to a system of ordinary differential equations [Hethcote (1997), Li
and Hallam (1988), Tudor (1985)].

Partition the age interval into a finite number n of subintervals [a0,a1), [a1,a2),
. . ., [an−1,an), where a0 = 0 and an ≤ ∞. Denote the number of individuals with
ages in interval [ai−1,ai] by Hi(t), so that Hi(t) =

∫ ai
ai−1

ρ(t,a)da, i = 1, . . . ,n. Then
integrating the partial differential equation in (7.5) from a0 to a1, we have



7.5 Models with Discrete Age Groups 289

dH1(t)
dt

+ρ(t,a1)−ρ(t,a0)+
∫ a1

a0

μ(a,P)ρ(t,a)da = 0. (7.11)

Assume that individuals with ages in each interval have the same vital rates such
that β (a,P) = βi, μ(a,P) = μi, for a in [ai−1,ai], i = 1, . . . ,n. Here βi and μi are
age-independent, but may be density-dependent. Then, in the age interval [0,a1], we
have

ρ(t,0) =
n

∑
1

βi Hi(t),
∫ a1

a0

μ ρ(t,a)da = μ1 H1(t),

which leads to
dH1

dt
=

n

∑
1

βi Hi − (m1 +μ1)H1. (7.12)

Here m1 is the progression rate from groups 1 to 2, defined by m1 = ρ(t,a1)/H1(t),
and we assume it is time-independent.

Integrating the partial differential equation in (7.5) from ai−1 to ai for 2 ≤ i ≤ ∞,
we have

dHi

dt
= mi−1 Hi−1 − (mi +μi)Hi, i = 2, . . . ,n, (7.13)

where mi is the age progression rate from groups i to i+1, and we let mn = 0. Then
the system in (7.5) is reduced to a system of n ordinary differential equations.

We provide a simple example to demonstrate how the discrete age group model
described by equations (7.12) and (7.13) can be applied to populations and infec-
tious diseases.

Example 1. A two-age-group population model. There are many means by which
individuals of a species might compete for resources and by which intraspecific
competition might express itself. Organisms that do not undergo such radical
changes during their life cycles (e.g., birds, mammals, most reptiles, fishes, and
hemimetabolous insects such as aphids, true bugs, and grasshoppers) can experi-
ence considerable competition between juveniles and adults for common resources.
Intraspecific competition can also occur to organisms with simple life cycles. The
well-studied flour beetles of genus Tribolium, whose adult and larval stages uti-
lize food resources in common, provide a case in point [Costantino and Desharnais
(1991)].

Let J(t) and A(t) denote the densities of juveniles and adults at time t, respec-
tively. Using the model in (7.12) and (7.13), with n = 2, we have the two-age-group
model

J′(t) = β (J,A)A− (m(J,A)+μ1(J,A))J,
A′(t) = m(J,A)J−μ2(J,A)A,

(7.14)

where ′ denotes d/dt, β is the birth rate of adults, μi, i = 1,2, are death rates for
juveniles and adults, respectively, and m is the age progression rate.

Models similar to (7.14) have been studied intensively. Readers are referred to
[Cushing and Li (1991), Gurney and Nisbet (1998), Kostova and Li (1996), Kos-
tova, Li and Friedman (1999), Nisbet and Onyiah (1994), Thieme (2003), Tschumy
(1982)].
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7.6 Project: Ordinary Differential Equations with Age Structure

Begin with the age-structured population model (7.2). We divide the population
into n age groups defined by the age intervals, [ai−1,ai] for i = 1, ...,n, where 0 =
a0 < a1 < .. . < an−1 < an = ∞. For each age interval, assume that the birth and
death moduli are constants, i.e., β (a) = βi and μ(a) = μi. Assume also that the
population has reached an equilibrium age distribution with exponential growth, so
that ρ(a, t) = eqtA(a). Let

ρi(t) =
∫ ai

ai−1

ρ(a, t)da = eqt
∫ ai

ai−1

A(a)da = eqtPi,

where ρi(t) is the number of individuals in the age bracket [ai−1,ai] and Pi is the
size of the ith age group at time 0.

1. Substitute ρ(a, t) into the McKendrick equation (7.1) to obtain an ordinary
differential equation for A(a),

A′(a) =−[μ(a)+q]A(a).

2. Find the solution on the interval [ai−1,ai] given by

A(a) = A(ai−1)exp [−(μi +q)(a−ai−1)].

3. Define the constants ci by

ci =
A(ai)

Pi
,

and obtain the system of ordinary differential equations

dN1

dt
= ∑n

j=1 f jPj − [c1 +μ1]ρ1,

dNi

dt
= ci−1ρi−1 − (ci +μi)ρi,2 ≤ i ≤ n−1,

dNn

dt
= cin−1ρn−1 −μ1ρn.

(7.15)

7.7 Project: Nonlinear Age Structured Population Growth

The limit equation of the nonlinear renewal equation is

P(t) =
∫ ∞

0
π(a)g(P(t −a))da.

Suppose we accept as fact that if p(t)→ 0 as t → ∞, then the asymptotic behavior
of the nonlinear renewal equation is the same as that of the limit equation.
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1. Show that if the solution P(t) of the limit equation has a limit P∞ as t → ∞, then

P∞ = g(P∞)
∫ ∞

0
π(a)da.

2. Find the integral equation that is the linearization of the limit equation about its
equilibrium.

3. Find the characteristic equation of the linearization (i.e., the condition on the
parameter λ that the linearization has a solution that is a constant multiple of
eλ t .

4. Show that all roots of this characteristic equation have negative real part if

g′(P∞)
∫ ∞

0
π(a)da < 1.

7.8 Project: A Size Structured Population Model

Suppose that a population is structured by size (or some other physiological quan-
tity) m and that the size of an individual grows at a rate g(m) depending only on the
size. Suppose that there is a size-dependent mortality rate θ(m) and a size-dependent
fecundity rate ϕ(m). Formulate a model analogous to the McKendrick age - struc-
tured population model, that is, assume that individuals grow larger or die and that
those who survive may reproduce.



Chapter 8

Models for Populations with Spatial Structure

8.1 Introduction

Populations may be structured by spatial location. There are two common different
ways to include spatial location in a population. One way is by means of metapop-
ulations, that is, populations of populations, with links between them such as a col-
lection of towns and cities connected by a transportation network. The air transport
subnetwork includes connecting links between distant communities, and we may
study the dynamics of populations of different cities as a function of the flow of
people between them and their own local dynamics in this framework. A metapop-
ulation may be divided into patches, with each patch corresponding to a separate
location. The corresponding models may be systems of ordinary differential equa-
tions, with the population size of each species in each patch as a variable. Thus
metapopulation models are often systems of ordinary differential equations of high
dimension. Some basic references are Hanski (1999), Hanski and Gilpin (1997),
Levin, Powell and Steele (1993), Neuhauser (2001).

A second way of including spatial dependence in a population is to allow mo-
tion of individuals in the population, describing the population size as a function
of time and spatial location under some specific assumptions on the nature of the
motion of individuals. Since population size is now a function of more than one
variable (a time variable and a number of spatial variables, the number depending
on the dimension of the space in which individuals move), this approach will lead to
partial differential equation models. These equations are often of reaction-diffusion
type, with a reaction term corresponding to the (local) population dynamics and a
diffusion term describing the motion of individuals in space.

OI 10.1007/978-1-4614-1686-9_ ,
© Springer Science+Business Media, LLC 2012
Texts in Applied Mathematics 40, D
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8.2 Some Simple Examples of Metapopulation Models

Insect populations have been observed that become extinct in some locations but
persist globally because of recolonization from other locations [Andrewartha and
Birch (1954)]. An early metapopulation model [Levins (1969)] considered a pop-
ulation divided among distinct patches that are either occupied or vacant. It is ex-
pressed in terms of the fraction p(t) of patches occupied at time t. The assumptions
are that there is a colonization or recolonization rate c and an extinction rate e as-
sociated with each patch, and that the rate at which vacant patches are occupied is
proportional to the fraction p of occupied patches and the fraction (1− p) of vacant
patches. Thus p satisfies the differential equation

p′ = cp(1− p)− ep. (8.1)

It is easy to verify that if c < e, the only equilibrium of equation (8.1) is p = 0,
and that this equilibrium is asymptotically stable. If c > e, the equilibrium p = 0 is
unstable, but there is an asymptotically stable equilibrium

p = 1− e
c
> 0.

The model (8.1) is an occupancy model that assumes that the colonization rate in
a patch depends only on the fraction of occupied patches, not on any properties
of individual patches. In addition, it ignores the local population dynamics of each
patch. A more detailed description would describe the population dynamics of each
patch and would include travel of individuals between patches. We will restrict our-
selves to metapopulations containing only a single species, but it would be natural
to extend to competing species or predator–prey metapopulations.

As a very simple example, consider two populations in separate patches gov-
erned by logistic equations with the same intrinsic growth rate but different carrying
capacities,

y′1 = ry1

(
1− y1

K1

)
(8.2)

y′2 = ry2

(
1− y2

K2

)
.

If there is no interaction between the two populations, the two equations of (8.2)
can be solved separately, and it is easy to show that there is an asymptotically stable
equilibrium y1 = K1, y2 = K2.

Now let us add the assumption that there is a proportional travel rate a from the
first patch to the second patch to give a simple metapopulation model
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y′1 = ry1

(
1− y1

K1

)
−ay1, (8.3)

y′2 = ry2

(
1− y2

K2

)
+ay1.

In order to describe the behavior of the model (8.3), we need to find equilibria of the
system and analyze their stability. Equilibria are solutions of the pair of equations

ry1

(
1− y1

K1

)
−ay1 = 0,

ry2

(
1− y2

K2

)
+ay1 = 0.

One possibility from the first of these equations is that y1 = 0, and then the second
equation implies either y2 = 0 or y2 = K2. A second possibility is

y1 = K1

(
1− a

r

)
, (8.4)

provided r > a. This implies

ry2

(
1− a

r

)
+ay1 = 0,

which can be solved for y2. Note that this solution satisfies y2 > K2.
To determine the stability of an equilibrium, we form the matrix of the lineariza-

tion of (8.3) at an equilibrium (y1,y2), namely⎡⎣r
(

1− 2y1
K1

)
−a 0

a r(
(

1− 2y2
K2

)⎤⎦ .

The eigenvalues of this matrix are the diagonal elements. At the equilibrium (0,0)
these are r − a,r, and therefore this equilibrium is unstable. At the equilibrium
(0,K2) these are r−a,−r. Thus this equilibrium is asymptotically stable if and only
if r < a. At the equilibrium with both population sizes positive, the eigenvalues are
both negative if and only if the element in the first row, first column is negative. The
equilibrium is asymptotically stable because the equilibrium, which exists if r > a,
satisfies

y1 >
K1

2

(
1− a

r

)
.

Thus the model (8.3) has one asymptotically stable equilibrium, namely (0,K2) if
r < a, and an equilibrium (y1,y2) with y1 > 0, y2 > 0 if r > a.

The analysis of a model like (8.3) but with travel between patches in both direc-
tions such as
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y′1 = ry1

(
1− y1

K1

)
−a1y1 +a2y2, (8.5)

y′2 = ry2

(
1− y2

K2

)
+a1y1 −a2y2,

may be carried out in a similar manner, but the algebra is more complicated.

Exercises

1. Consider a metapopulation model in which the patches are islands and there is
also a mainland with a large population that has a negligible risk of extinction,

p′ = m(1− p)+ cp(1− p)− ep.

Find the biologically meaningful equilibria and analyze their stability.
2. For the model (8.3) find the value of y2 for the equilibrium when r > a.
3. Carry out the analysis of the model (8.5) with travel between patches, find-

ing equilibria and determining their stability for all nonnegative values of the
parameters r,a1,a2.

4. [Britton (2002)] Consider a generalization of the model (8.1) in which there
is a fraction p0 of uninhabitable patches as well as a fraction p1 of occupied
patches and a fraction p2 of habitable but uninhabited patches, with a rate λ of
creation of habitable but uninhabited patches, a colonization rate c, a rate d of
population extinction, and a rate e of patch destruction [Keymer et al. (2000)].
The corresponding model is

p′0 = e(p1 + p2)−λ p0,

p′1 = cp1 p2 − (d + e)p1,

p′2 = λ p0 − cp1 p2 +d p1 − ep2.

(i) Reduce the model to a two - dimensional system by letting p0 = 1− p1 −
p2.

(ii) Show that the reduced system has two equilibria with p2 > 0, one of which
has p1 = 0 and one of which has p1 �= 0.

(iii) Find the threshold quantity depending on the model parameters that dis-
tinguishes which of these two equilibria is asymptotically stable, and in-
terpret this quantity ecologically. [Hint: Begin by finding the condition for
the asymptotic stability of the equilibrium with p1 = 0.]
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8.3 A General Metapopulation Model

A metapopulation model may be regarded abstractly as a graph. We think of each
population patch as a vertex of the graph, and each travel route between two patches
as an edge of the graph. Since travel may be in either direction, the graph is bi–
directional. The population of a patch is said to have direct access to another patch if
there is a route linking the two patches. If there is a sequence of more than one route
to another patch, the population is said to have indirect access to the second patch.
For simplicity, we will always assume that a metapopulation is fully connected, that
is, that there is a route linking every pair of patches.

Consider a metapopulation with n patches. It is convenient to define an ordering
P1,P2, . . . ,Pn of the patches, and then we define the connection matrix to be the
matrix C whose ( j, i) element is 1 if Pi has direct access to Pj and zero if Pi does
not have direct access to Pj. Our description of a metapopulation model will include
a movement matrix that combines the connection matrix with a description of the
intensity of the connection.

Let Ni be a function of t denoting the number of individuals in patch i at time t.
Then we may write a metapopulation model as the system of n differential equations

N′
i = fi(Ni)+

n

∑
j=1

mi jNj −
n

∑
j=1

m jiNi. (8.6)

Here, fi describes the population dynamics within the patch Pi, the term ∑n
j=1 mi jNj

describes the inflow of individuals into the patch Pi from other patches, and the term
−∑n

j=1 m jiNi describes the outflow of individuals from the patch Pi to other patches.
It is assumed here that mii = 0 for i = 1,2, · · · ,n, since there is no travel assumed
within a patch. If we write

mii =−
n

∑
j=1, j �=i

m ji,

we may rewrite (8.6) as

N′
i = fi(Ni)+

n

∑
j=1

mi jNj.

In vector form, this becomes

N′ = f (N)+MN. (8.7)

Here N is the (column) vector with components (N1,N2, . . . ,Nn) and M is the matrix⎡⎢⎢⎢⎣
−∑n

j=1, j �=1 m j1 m12 · · · m1n

m21 −∑n
j=1, j �=2 m j2 · · · m2n

...
... · · · ...

mn1 mn2 · · · −∑n
j=1, j �=n m jn

⎤⎥⎥⎥⎦ .
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The sum of the elements of each column of M is zero, and it is possible to show,
using some advanced results from matrix theory, that M has zero as an eigenvalue
and all eigenvalues have nonpositive real part. If there are no internal dynamics in
each patch, or if the population in each patch approaches an equilibrium, then the
migration component, the solution of the linear system

N′ = MN,

approaches a limiting value. Over a short time interval, it may be reasonable to ne-
glect the internal population dynamics in each patch and consider only the migration
component of the dynamics.

Example 1. Consider a metapopulation with two patches and no internal patch dy-
namics. The corresponding movement matrix is[−m21 m12

m21 −m12

]
,

and the governing model is the two-dimensional linear system

N′
1 = −m21N1 +m12N2,

N′
2 = m21N1 −m12N2.

Since (N1 +N2)
′ = 0, the total population size is a constant K; we may let N2 =

K −N1 to reduce the system to a single first-order linear differential equation

N′
1 =−m21N1 +m12(K −N1) = m12K − (m12 +m21)N1.

The solution of this equation is

N1(t) = N1(0)+
Km12

m12 +m21
(1− e−(m12+m21)t),

with limit as t → ∞
N1(∞) = N1(0)+

Km12

m12 +m21
.

Then

N2(t) = K −N1(t) = K −N1(0)− Km12

m12 +m21
(1− e−(m12+m21)t)

= N2(0)− Km12

m12 +m21
(1− e−(m12+m21)t),

with limit as t → ∞
N2(∞) = N2(0)− Km12

m12 +m21
.
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Exercises

1. For a two-patch model with no internal patch dynamics in which the only travel
is from patch 1 to patch 2 find the limiting population sizes for the two patches.

2. Consider an n patch model with no internal patch dynamics in which the only
travel is from patch i to patch i+ 1(i = 1,2, . . . ,n− 1. Find the limiting popu-
lation size of each patch.

8.4 A Metapopulation Model with Residence and Travel

In the previous section we formulated a metapopulation model for individuals who
travel between patches, but do not necessarily have a home patch. Travel by humans
follows a different pattern. Normally, each person has a home patch and may visit
other patches but tends to return home. A description of such populations must
distinguish between residents of a patch and residents of a different patch who are
visiting.

Let Ni(t) be the number of residents of the patch Pi who are present in their home
patch at time t, and let Ni j(t) be the number of residents of the patch Pi who are
visiting the patch Pj at time t. Residents of Pi travel to other patches at a per capita
rate σi, and the probability that a trip is to Pj is νi j, with νii = 0 and ∑n

j=1 νi j = 1.
Persons who travel from Pi to Pj return to Pi at a rate ρi j, with ρii = 0.Then the travel
pattern of individuals satisfies the equations

N′
ii =

n

∑
j=1

ρi jNi j −σiNi j, (8.8)

N′
i j = σiνi jNii−ρi jNi j.

At equilibrium, since νii = 0,

Ni j =
σiνi j

ρi j
Nii, (8.9)

∑
j �=i

Ni j = ∑
j �=i

σiνi j

ρi j
Ni j = Niiσi

n

∑
j=1

νi j

ρi j
. (8.10)

Let Ni be the total number of residents of Pi, a constant if we ignore internal
patch dynamics and consider only the mobility pattern. Then Ni = Nii +∑ j �=i Ni j,
and combining this with (8.9), we obtain

Ni = σiNii

n

∑
j=1

νi j

ρi j
+Nii = NiiΓi,

where
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Γi = 1+σi

n

∑
j=1

νi j

ρi j
.

Thus
Nii =

Ni

Γi
, Ni j = Ni

σiνi j

ρi jΓi
( j �= i). (8.11)

The expressions (8.11) give the fraction of residents of a patch who are present in
each patch at equilibrium.

There are some special cases of the general expressions (8.11) that represent
different patterns. For example, the assumption of instantaneous return home (ρi j →
0 for each i, j) gives the quilibrium population sizes Nii = Ni,Ni j = 0( j �= i), and in
the limit all members of the population are in their home patch. The same is true if
σ → ∞, corresponding to the assumption of infinite waiting time between trips, or
equivalently, no travel.

If everyone returns home at the same rate, ρi j = ρ for all i, j, we obtain

Nii = Ni

(
ρ

ρ +σi

)
, Ni j = Ni

(
σiνi j

ρ +σi

)
( j �= i).

If visitors tend to stay at their destination permanently, corresponding to ρi j → 0
for all i, j, we have a migration model. In this case, the model (8.8) can be solved
explicitly to give

Nii(t) = Nie−σit ,

so that Nii(t) → 0. The equilibrium value of Ni j is νi jNi because ν ii = 0 and
∑n

j=1 νi j = 1. At equilibrium, the original inhabitants of a patch are distributed
among the other patches, and the number in each patch is determined by the dis-
tribution of visitors νi j.

Example 1. Consider a residency metapopulation with two patches and no internal
patch dynamics. Then, since ν12 = ν21 = 1, the corresponding model is

N′
11 = ρ12N12 −σ1N11,

N′
12 = σ1N11 −ρ12N12, (8.12)

N′
21 = σ2N22 −ρ21N21,

N′
22 = ρ21N21 −σ2N22.

Since
(N11 +N12)

′ = (N21 +N22)
′ = 0,

the numbers of residents of the two patches patch are constants K1,K2 respectively.
Thus

N12 = K1 −N11, N21 = K2 −N22,

and we may reduce (8.12) to a two-dimensional linear system
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N′
11 = ρ12K1 − (ρ12 +σ1)N11, (8.13)

N′
22 = ρ21K2 − (ρ21 +σ2)N22.

The equilibrium of this system is

N11 =
ρ12

ρ12 +σ1
K1, N12 =

σ1

ρ12 +σ1
K1,

N21 =
σ2

ρ21 +σ2
K2, N22 =

ρ21

ρ21 +σ2
K2.

Alternative formulations of mobility metapopulation models in the context of
disease transmission may be found in [Castillo-Chavez, Song, and Zhang (2003),
Khan, Arino, et al. (2009),Rios-Soto, Song, and Castillo-Chavez (2011)].

Exercises

1. Consider two populations with the same birth and death rates in two patches,
with proportional travel rates in both directions, given by a system

y′1 = Λ −μy1 −σ1y1 +σ2y2,

y′2 = Λ −μy2 −σ2y2 +σ1y1.

(i) Find all biologically meaningful equilibria and analyze their stability.
(ii) Suppose the travel rate σ2 is kept fixed but σ1 →∞. What is the equilibrium

state to which the system tends?

2. Suppose that the environment in patch 2 in the previous exercise is poor, so that
there is an increased death rate, giving a model

y′1 = Λ −μy1 −σ1y1 +σ2y2,

y′2 = Λ − (μ +d)y2 −σ2y2 +σ1y1.

(i) Find all biologically meaningful equilibria and analyze their stability.
(ii) Suppose the additional death rate d tends to +∞. What is the equilibrium

state to which the system tends?

8.5 The Diffusion Equation

Partial differential equations arise in situations in which an unknown function de-
pends on more than one variable. Many applications of mathematics in the physical
and biological sciences involve partial differential equations, and there is a great
variety of techniques for obtaining information about the behavior of solutions.
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An example of a partial differential equation arising in a biological context comes
from a population that may depend continuously on both time and location in space.
Let us begin by considering the motion of particles. Here, by a particle we might
mean an individual cell, a member of a population, or any object of a set in whose
spatial distibution as a function of time we are interested.

Our approach is to take a small region of space and to form a balance equation
that says that the rate of change of the number of particles in the region is equal to
the rate at which particles flow out of the region minus the rate at which particles
flow into the region plus the rate of creation of particles in the region.

We shall confine ourselves mainly to the case in which the dependence is with
respect to a single space coordinate. Let us think of a tube whose cross section has
constant area A, and let x denote the distance along the tube from some arbitrary
starting point x = 0. We assume that the tube is a bounded region described by the
inequalities 0 ≤ x ≤ L. In a later section we will describe the analogous problem for
a population that may move in a two-dimensional planar region.

Let u(x, t) be the concentration of particles (number per unit volume) at location
x at time t, meaning that in the portion of the tube between x and x+ h, with vol-
ume Ah, the number of particles is approximately Ahu(x, t). By “approximately” we
mean that if h is small, the error in this approximation Ahu(x, t) is smaller than a
constant multiple of h2.

We let J(x, t) be the flux of particles at location x at time t, by which we mean
the time rate of the number of particles crossing a unit area in the positive direction.
For every x0 the net rate of flow into the region between x0 and x0 +h is AJ(x0, t)−
AJ(x0 +h, t). We let Q(x0, t,u) be the net growth rate per unit length at location x0
at time t, representing births and deaths.

We have a balance relation on the interval x0 ≤ x ≤ x0 + h, expressing the fact
that the rate of change of population size at time t in this interval is equal to the
growth rate of population in this interval plus the net flux, so that

hAut(x0, t) = hAQ(x0, t,u)−A[J(x0 +h, t)− J(x0, t)]. (8.14)

If we divide (8.14) by Ah and then take the limit as h→ 0, we obtain the conservation
law

ut(x0, t) = Q(x0, t,u)− ∂J
∂x

(x0, t),

valid for all t at every point x0. Since x0 is arbitrary, this relation holds at every point,
and we have the equation

ut(x, t) = Q(x, t,u)− ∂J
∂x

(x, t) (8.15)

We now specialize, temporarily, to the case in which there is no net growth rate
in the interior of the tube, so that Q(x, t) = 0 for all t ≥ 0, 0 ≤ L. In order to ob-
tain a model which describes the population density u(x, t), we must make some
assumption that relates the rate of change of flux density ∂J

∂x and the population
density u(x, t). If the motion is random, then Fick’s law says that the flux due to
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random motion is approximately proportional to the rate of change of particle con-
centration, that is, that J is proportional to ux. If population density decreases as x
increases (ux < 0), we would expect J > 0, so that J and ux have opposite sign, and
thus

J =−Dux,

with D a constant called the diffusivity or diffusion coefficient. More generally, D
could be a function of the location x, but we shall confine our attention to constant
diffusivity. Equation (8.15) then becomes a second order-partial differential equa-
tion

ut(x, t) = Duxx(x, t). (8.16)

The equation (8.16) is called the heat or diffusion equation.
An alternative derivation of the diffusion equation using random walks may be

found in [Levin (1986)], an excellent introduction that highlights connections to
biology.

In addition to the partial differential equation (8.16) we need to impose additional
conditions to give a problem with a unique solution. It is possible to establish the
following result.

Theorem: The diffusion equation (8.16) has a unique solution for 0 ≤ x ≤ L,0 ≤
t < ∞, with a specified initial condition u(x,0) = f (x) for 0 ≤ x ≤ L and with spec-
ified boundary conditions for x = 0 and x = L. These boundary conditions may
specify the value of u or the value of the partial derivative ux for x = 0 and x = L.

This theorem tells us that a suitable problem consists of the diffusion equation
together with an initial condition (a condition for t = 0) and boundary conditions
(conditions for x = 0,x = L). Such a problem is called an initial boundary value
problem.

Problems in an infinite tube defined by −∞ < x < ∞ for which no boundary
conditions are required, or a semi-infinite tube 0 ≤ x < ∞ for which a boundary
condition is required only at x = 0, will also be considered. In each case there is a
unique bounded solution for a specified initial condition u(x,0) = f (x) for ∞ ≤ x <
∞ or u(x,0) = f (x) for 0 ≤ x < ∞.

A boundary condition specifying that the solution must vanish at a boundary
(called an absorbing boundary) may be taken to say that an individual leaving the
region must die immediately or can never return. This is an idealization, but we may
think of a large region with u= 0 far enough away. A boundary condition specifying
that the partial derivative of the solution must vanish at the boundary may be taken
to say that the population is confined to the region and there is no flow across the
boundary.

There are several types of initial condition that may arise. One possibility is that
particles are absent initially, u(x,0) = 0, and enter through the boundary. A second
possibility is that particles are inserted at a single point x0,u(x,0) = u0δ (x− x0).
Here, δ (x) denotes the delta “function”, which is zero except for x = 0 and infinite
at x = 0 in such a way that ∫ ∞

−∞
δ (x)dx = 1, (8.17)
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and if f is any continuous function, then∫ ∞

−∞
δ (x−ξ ) f (ξ )dx = f (x). (8.18)

Obviously, this “function” is not a proper function, but if it is used in calculations
using only the properties (8.17) and (8.18), it can actually lead to correct and use-
ful results. A third kind of initial condition would be to specify a constant initial
concentration, u(x,0) = u0 for 0 ≤ x ≤ L.

Exercises

1. Suppose that the diffusivity is a function of population density, D=D(u). Show
that the partial differential equation (8.16) is replaced by

ut = D(u)uxx +D′(u)(ux)
2.

8.6 Solution by Separation of Variables

In this section we will obtain solutions of some initial boundary value problems for
the diffusion equation (8.16) that will be needed in applications in later sections. We
use the method of separation of variables, which is used for solving many second
order partial differential equations. It is not the same as the method of separation of
variables for solving first order ordinary differential equations.

Example 1. Find a solution of the diffusion equation (8.16) for 0≤ x≤ L, 0≤ t <∞,
subject to the boundary conditions

u(0, t) = u(L, t) = 0 (8.19)

and the initial condition

u(x,0) = f (x), 0 ≤ x ≤ L (8.20)

with f a given smooth function.
Solution: We look for a solution of the form

u(x, t) = X(x)T (t), (8.21)

where X(x) is a smooth function defined for 0 ≤ x ≤ L and T (t) is a smooth function
defined for t ≥ 0. From (8.21) we have

ut(x, t) = X(x)T ′(t), ux(x, t) = X ′(x)T (t), uxx(x, t) = X ′′(x)T (t),
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with the primes denoting ordinary derivatives. We substitute these expressions into
(8.16), and see that (8.21) satisfies (8.16) if and only if

X(x)T ′(t) = DX ′′(x)T (t), 0 ≤ x ≤ L, t ≥ 0. (8.22)

Since we are looking for nonzero solutions, neither X(x) nor T (t) can be identically
zero. We may divide (8.22) by DX(t)T (t) to obtain the separated form

T ′(t)
DT (t)

=
X ′′(x)
X(x)

, (8.23)

for those values of t for which T (t) �= 0 and those values of x for which X(x) �= 0.
The left side of (8.23) depends only on t and the right side of (8.23) depends only on
x. Since these expressions must be equal for all values of x and t, each side of (8.23)
must be equal to a constant, which we call k for the moment. Thus (8.23) implies
the two relations

X ′′(x)
X(x)

=
T ′(t)
DT (t)

= k

or equivalently, the pair of ordinary differential equations

X ′′(x)− kX(x) = 0,
T ′(t)− kDT (t) = 0.

Because every solution of the second of these has the form T (t) = cekDt and because
we want solutions to be bounded as functions of t we require the constant k to be
negative or zero. Therefore we replace k by −λ 2, where λ ≥ 0, to give the pair of
ordinary differential equations

X ′′(x)+λ 2X(x) = 0 (8.24)
T ′(t)+Dλ 2T (t) = 0.

The next step is to use the boundary conditions (8.19) to determine all possible
values of λ that are compatible with the problem (8.16), (8.19). Substitution of the
assumed form (8.21) into the boundary conditions (8.19) gives

u(0, t) = X(0)T (t) = 0,
u(L, t) = X(L)T (t) = 0.

Since T (t) is not identically zero, we must have

X(0) = 0, X(L) = 0. (8.25)

Every solution of the first differential equation in (8.24) has the form
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X(x) = A+Bx (λ = 0)
or

X(x) = Acosλx+Bsinλx (λ > 0).

If λ = 0, then (8.25) implies A = 0, A+BL = 0, so that A = B = 0 and X(x) is
identically zero. Thus we must have λ > 0, and every solution of the first differential
equation in (8.24) has the form

X(x) = Acosλx+Bsinλx.

Now (8.25) implies A = 0 and BsinλL = 0. We must have B �= 0, since otherwise
X(x) would be identically zero. In order to have BsinλL = 0 we must have sinλL =
0 or λL = nπ with n a positive integer. We obtain a sequence of admissible values,
called eigenvalues, λn =

nπ
L (n = 1,2, . . .) and corresponding solutions

Xn(x) = Bn sin
nπx

L
.

For each eigenvalue λn there is a corresponding solution Tn(t)of T ′(t)+λ 2
n DT (t) = 0,

namely Tn(t) = e−D( nπ
L )2t , leading to a solution

un(x, t) = Xn(t)Tn(t) = Bne−D( nπ
L )2t sin

nπx
L

of the diffusion equation (8.16) and the boundary conditions (8.19).
It remains to try to satisfy the initial condition (8.20). In order to do this, we

take a sum of solutions un(x, t) for each positive integer n, also a solution of (8.16),
(8.19) because (8.16) is a linear partial differential equation, and try to choose the
coefficients Bn to satisfy (8.20). We have

u(x, t) =
∞

∑
n=1

Bne−D( nπ
L )2t sin

nπx
L

,

u(x,0) =
∞

∑
n=1

Bn sin
nπx

L
(0 ≤ x ≤ L).

Thus our problem is to choose Bn (n = 1,2, . . .) so that

f (x) =
∞

∑
n=1

Bn sin
nπx

L
(0 ≤ x ≤ L). (8.26)

If this is possible, we may multiply both sides of (8.26) by sin kπx
L and integrate from

0 to L to obtain ∫ L

0
f (x)sin

kπx
L

dx =
∞

∑
n=1

Bn

∫ L

0
sin

kπx
L

sin
nπx

L
dx. (8.27)
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Here, we are assuming also that we may interchange the order of the summation and
integration on the right side of (8.27). Since

∫ L

0
sin

kπx
L

sin
nπx

L
dx =

{
0 (k �= n),
L
2 (k = n),

(8.27) reduces to ∫ L

0
f (x)sin

kπx
L

dx =
L
2

Bk,

or

Bk =
2
L

∫ L

0
f (x)sin

kπx
L

dx. (8.28)

Then

f (x) =
2
L

∞

∑
n=1

(∫ L

0
f (ξ )sin

ηπξ
L

dξ
)

sin
ηπx

L
(8.29)

and

u(x, t) =
2
L

∞

∑
n=1

e−D( nπ
L )2t

(∫ L

0
f (ξ )sin

nπξ
L

dξ
)

sin
ηπx

L
(8.30)

is the solution of (8.16), (8.19), (8.20).
The series (8.29) is called the Fourier sine series expansion of f (x) on the interval

0 ≤ x ≤ L and the expressions in (8.28) are called the Fourier coefficients. There is
a remarkable theorem stating that if f (x) is a reasonably well behaved function
(specifically, if f (x) and f ′(x) are piecewise continuous) on 0 ≤ x ≤ L, then the
Fourier series of f (x) converges to f (x) at every point of continuity of f (x). At a
point of discontinuity of f (x) the Fourier series of f (x) converges to the average
of the two one-sided limits of f (x) at this point of discontinuity. This means that
the series (8.30) is a genuine solution of the initial boundary value problem (8.16),
(8.19), (8.20). We may write the solution (8.30) in the form

u(x, t) =
∫ L

0
K(x,ξ , t) f (ξ )dξ

with kernel

K(x,ξ , t) =
2
L

∞

∑
n=1

e−( nπ
L )2Dt sin

nπx
L

sin
nπξ

L
.

Example 2. Find a solution of the diffusion equation (8.16) for 0 ≤ x ≤ L, 0 ≤ t < ∞
subject to the boundary conditions

ux(0, t) = ux(L, t) = 0 (8.31)

and the initial condition (8.20).
Solution: The separation of variables proceeds exactly as in Example 1 up to the
point of examining the boundary conditions. These become
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ux(0, t) = X ′(0)T (t), ux(L, t) = X ′(L)T (t) = 0,

from which we obtain
X ′(0) = 0, X ′(L) = 0. (8.32)

Every solution of the differential equation X ′′(x)+λ 2X(t) = 0 has the form

X(x) = A+Bx (λ = 0)
or

X(x) = Acosλx+Bsinλx (λ > 0).

If λ = 0, (8.32) implies B = 0, giving the solution X0(x) = A0. If λ > 0, X ′(0) = 0
implies B = 0, and X ′(0) = 0 then implies sinλL = 0, or λL = nπ with n a pos-
itive integer. We obtain a sequence of eigenvalues λn = ( nπ

L )2 (n = 1,2, . . .) and
corresponding solutions

Xn(x) = An cos
nπx

L
.

For each eigenvalue λn there is a corresponding solution Tn(t) = e−( nπ
L )2Dt of T ′(t)+

λ 2
n DT (t) = 0, leading to a solution

un(x, t) = Xn(x)Tn(t) = Bne−D( nπ
L )2t cos

nπx
L

of the diffusion equation (8.16) and the boundary conditions (8.31).
In order to satisfy the initial condition (8.20) as well, we take a sum of solutions

un(x, t) for each nonnegative integer n. We have

u(x, t) = A0 +
∞

∑
n=1

Ane−D( nπ
L )2t cos

nπx
L

,

u(x,0) = A0 +
∞

∑
n=1

An cos
nπx

L
= f (x) (0 ≤ x ≤ L).

Integration and use of the relation∫ L

0
cos

nπx
L

dx = 0 (n = 1,2, . . .)

gives
∫ L

0 f (x)dx = LA0. Multiplication by cos kπx
L and integration gives, with the aid

of ∫ L

0
cos

kπx
L

cos
nπx

L
dx =

{
0 (k �= n),
L
2 (k = n),

the result

An =
2
L

∫ L

0
f (x)cos

nπx
L

dx.
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Then we have

f (x) =
1
L

∫ L

0
f (x)dx+

2
L

∞

∑
n=1

(∫ L

0
f (ξ )cosnπξ dξ

)
cos

nπx
L

(8.33)

and

u(x, t) =
1
L

∫ L

0
f (s)dx+

2
L

∞

∑
n=1

e−D( nπ
L )2t

(∫ L

0
f (ξ )cosnπξ dξ

)
cos

nπx
L

. (8.34)

The Fourier cosine series (8.33) converges to f (x) if f (x) is a piecewise smooth
function and then (8.34) gives a genuine solution of the initial boundary value prob-
lem (8.16), (8.31), (8.20). Just as in Example 1, we may write this solution in an
integral form, but now the kernel has the form

K(x,ξ , t) =
1
L
+

2
L

∞

∑
n=1

e−( nπ
L )2Dt cos

nπξ
L

cos
nπξ

L
.

Example 3. Find a solution of the diffusion equation (8.16) for 0 ≤ x ≤ L, 0 ≤ t < ∞
subject to the boundary conditions

u(0, t) = ux(L, t) = 0 (8.35)

and the initial condition u(x,0) = u0δ (x− x0).
Solution: The separation of variables proceeds exactly as in Example 1 up to the
point of examining the boundary conditions. These become

u(0, t) = X(0)T (t) = 0, ux(L, t) = X ′(L)T (t) = 0,

from which we obtain
X(0) = 0, X ′(L) = 0. (8.36)

Every solution of the differential equation X ′′(x)+λ 2X(t) = 0 has the form

X(x) = A+Bx (λ = 0)
or

X(x) = Acosλx+Bsinλx (λ > 0).

If λ = 0, (8.36) implies A= 0, and there is no non-trivial solution. If λ > 0, X(0) = 0
implies A = 0, and X ′(L) = 0 then implies cosλL = 0, or

√
λL =

(2n+1)π
2

.

We obtain a sequence of eigenvalues
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λn =

[
(2n+1)π

2L

]2

and corresponding solutions

Xn(x) = Bn sin(λnx).

For each eigenvalue λn there is a corresponding solution Tn(t) = e−λnDt of T ′(t)+
λ 2

n DT (t) = 0, leading to a solution

un(x, t) = Xn(x)Tn(t) = Ane−D (2n+1)π
2L

2
t sin

(
(2n+1)π

2L
x
)

of the diffusion equation (8.16) and the boundary conditions (8.35).
In order to satisfy the initial condition as well, we take a sum of solutions un(x, t)

for each nonnegative integer n. We have

u(x, t) =
∞

∑
n=1

Bne−D(λn)
2t sin(λnx),

u(x,0) =
∞

∑
n=1

Bn sin(λnx) = f (x) (0 ≤ x ≤ L).

Multiplication by sin(λkx) and integration gives, with the aid of

∫ L

0
sin(λkx)sin(λnx)dx =

{
0 (k �= n)
L
2 (k = n),

the result

Bn = 2Lu0

∫ L

0
δ (x− x0)sin(λnx)dx =

2
L

u0 sin(λnx0).

Then we have

f (x) =
2
L

u0

∞

∑
n=1

sin(λnx0)sin(λnx) (8.37)

and

u(x, t) =
2
L

u0

∞

∑
n=1

e−Dλ 2
n t sin(λnx)sin(λnx0) (8.38)

=
2
L

u0

∞

∑
n=1

e−D
[
(2n+1)π

2L

]
t sin

([
(2n+1)π

2L

]
x
)

sin
(
[
(2n+1)π

2L
]2x0

)
.

The Fourier sine series (8.37) converges to f (x) if f (x) is a piecewise smooth func-
tion and then (8.38) gives a genuine solution of the initial boundary value problem.

Example 4. Find the solution of the diffusion equation (8.16), the initial condition
(8.20), and the inhomogeneous boundary conditions
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u(0, t) = u1, u(L, t) = u2. (8.39)

Solution: The solution (8.30) obtained in Example 1 is a transient, that is, a function
that approaches zero as t → ∞. Here, we would not expect the solution to be a pure
transient. Accordingly, we try to find a solution of the form

u(x, t) = v(x)+w(x, t)

where w(x, t) is a transient solution obtained as in Example 1 and v(x) is a steady-
state solution independent of time. Both the steady state solution v(x) and the tran-
sient solution must satisfy the diffusion equation. Thus v′′(x) = 0 for 0 < x < L,
so that v(x) = c1 + c2x. We require v(x) to satisfy the boundary conditions (8.39),
giving v(0) = c1 = u1 and v(L) = c1 +c2L = u2, or c1 = u1, c2 =

u2−u1
L . The steady

state solution is
v(x) = u1 +

u2 −u1

L
x.

The transient solution w(x, t) satisfies the diffusion equation (8.16) and the homo-
geneous boundary conditions (8.19). The initial condition (8.20) becomes

u(x,0) = v(x)+w(x,0) = f (x)

or
w(x,0) = f (x)− v(x) = f (x)−u1 − u2 −u1

L
x.

We now see that the transient solution w(x, t) may be obtained just as in Example
1 using the Fourier sine series expansion of f (x)−u1 − u2−u1

L x. If we carry out the
expansion, we obtain the solution

u(x, t = u1+
u2 −u1

L
x+

2
L

∞

∑
n=1

(∫ L

0

[
f (s)−

{
u1 +

u2 −u1

L
s
}]

sin
nπs
L

ds
)

sin
nπx

L
.

Example 5. Find the solution of the diffusion equation (8.16), the initial condition
(8.20) and the periodic boundary conditions

u(L, t) = u(−L, t), ux(L, t) = ux(−L, t), (8.40)

in the region −L ≤ x ≤ L, 0 ≤ t < ∞.
Solution: The separation of variables proceeds as in Example 1, leading to boundary
conditions

u(L, t) = X(L)T (t) = u(−L, t) = X(−L)T (t),

ux(L, t) = X ′(L)T (t) = ux(−L, t) = X ′(−L),T (t),

giving
x(L) = X(−L), X ′(L) = X ′(−L).
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If λ = 0, we have X(x) = A + Bx, X ′(x) = B. The periodicity conditions give
A+BL = A−BL or B = 0, so that X0(x) = A. If λ > 0, the solution has the form
X(x) = Acosλ x+Bsinλx, X ′(x) = −Aλ sinλx+Bλ cosλx. The periodicity con-
ditions give

AcosL+BsinλL = AcosλL−BsinλL

Aλ sinλL+Bλ cosλL = −Aλ sinλL+Bλ cosλL.

from which we have
BsinλL = 0, Aλ sinλL = 0

Since A and B cannot both be zero, it follows that sinλL = 0. We now have a se-
quence of eigenvalues λn = ( nπ

L )2 (n = 1,2, . . .) and corresponding solutions

Xn(x) = An cos
nπx

L
+Bn sin

nπx
L

.

For each eigenvalue λn with n > 0 there is a corresponding solution Tn(t) of
T ′(t) + λ 2

n DT (t) = 0, namely Tn(t) = e−( nπ
L )2Dt , leading to a solution of the par-

tial differential equation (8.16) and the boundary conditions (8.40)

un(x, t) = Xn(x)Tn(t) = e−D( nπ
L )2t [An cos

nπx
L

+Bn sin
nπx

L
]

For λ = 0 there is a constant solution u0(x, t) = A0.
To satisfy the initial condition (8.20) we need the full Fourier series expansion

of f (x) on the interval −L ≤ x ≤ L

f (x) = A0 +
∞

∑
n=1

[
An cos

nπx
L

+Bn sin
nπx

L

]
. (8.41)

In order to calculate the coefficients in this series, we proceed much as in Examples
1 and 2, multiplying (8.41) by cos kπx

L and by sin kπx
L and integrating from −L to L,

using the relations

∫ L

−L
sin

kπx
L

sin
nπy

L
dx =

{
0 (k �= n),
L (k = n),∫ L

−L
cos

kπx
L

cos
nπy

L
dx =

{
0 (k �= n),
L (k = n),∫ L

−L
sin

nπx
L

cos
nπy

L
= 0,∫ L

−L
1dx = 2L.

We obtain
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A0 =
2
L

∫ L

−L
f (x)dx,

An =
1
L

∫ L

−L
f (x)cos

nπx
L

dx,

Bn =
1
L

∫ L

−L
f (x)sin

nπx
L

dx.

We now have the full Fourier series expansion

f (x) =
2
L

∫ L

−L
f (ξ )dξ

+
1
L

∞

∑
n=1

[
cos

nπx
L

∫ L

−L
f (ξ )cos

nπξ
L

dξ + sin
nπξ

L

∫ L

−L
f (ξ )sin

nπξ
L

dξ

]
.

We may use the trigonometric identity

cos
nπy

L
cos

nπξ
L

+ sin
nπy

L
sin

nπξ
L

= cos
nπ
L
(x−ξ )

to write this as

f (x) =
2
L

∫ L

−L
f (ξ )dξ +

1
L

∞

∑
n=1

∫ L

−l
f (ξ )cos

nπ
L
(x−ξ )dξ .

This gives the solution

u(x, t) =
2
L

∫ L

−L
f (ξ )dξ +

1
L

∞

∑
n=1

e−D( nπ
L )2t

∫ L

−L
f (ξ )cos

nπ(x−ξ )
L

dξ . (8.42)

This solution may be written in the form

u(x, t) =
∫ L

−L
K(x−ξ , t) f (ξ )dξ

with kernel

K(x, t) =
2
L
+

1
L

∞

∑
n=1

e−D( nπ
L )2t cos

nπx
L

.

Exercises

In Exercises 1–4, find separable solutions of the diffusion equation for 0 ≤ x ≤ L,
0 ≤ t < ∞, satisfying the given boundary conditions:

1. u(0, t) = 0, ux(L, t) = 0.
2. ux(0, t) = 0, u(L, t) = 0.
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3. ux(0, t)−βu(0, t) = 0, u(L, t) = 0, [β > 0].
4. ux(0, t)−βu(0, t) = 0, ux(L, t)+ γu(L, t) = 0,

: (β > 0,γ > 0].

In Exercises 5–10 find the solution of the diffusion equation satisfying the given
boundary and initial conditions

5. u(0, t) = 0, ux(L, t) = 0, u(x,0) = x.
6. ux(0, t) = 0, u(L, t) = 0, u(x,0) = x.
7. u(0, t) = 0, ux(L, t) = 0, u(x,0) = f (x).
8. ux(0, t) = 0, u(L, t) = 0, u(x,0) = f (x).
9. u(0, t) = u1, ux(L, t) = 0, u(x,0) = f (x).

10. ux(0, t) = 0, u(L, t) = u2, u(x,0) = f (x).
11. For the diffusion equation on 0 ≤ x ≤ L, 0 ≤ t < ∞, with the boundary con-

ditions u(0, t) = 0, ux(L, t) + αu(L, t), and α > 0, show that the separated
solutions are u(x, t) = Bne−Dλnt sinλn x, with eigenvalues λn determined by
α tanλL =−λ .

12. Find the solution of the diffusion equation on 0 ≤ x ≤ L, 0 ≤ t < ∞, with
boundary conditions u(0, t) = 0, u(L, t) = 0, and initial condition u(x,0) =
u0δ (x− L

2 ), corresponding to a point release at the midpoint of the tube.

13. Show that u(x, t) = u0[1+cos πx
L e−D( π2

L2 )t ] is a solution of the diffusion equation
on 0 ≤ x ≤ L, 0 ≤ t < ∞ with boundary conditions ux(0, t) = 0, ux(L, t) = 0.
What is the initial value u(x,0)?

14. Find the separated solutions of the diffusion equation for 0 ≤ x ≤ L, 0 ≤ t < ∞,
that satisfy the boundary conditions ux(0, t) = αu(0, t), ux(L, t)+αu(L, t) = 0,
where α > 0.

8.7 Solutions in Unbounded Regions

In the previous section we applied the method of separation of variables to prob-
lems in finite x-regions 0 ≤ x ≤ L or −L ≤ x ≤ L. The boundary conditions gave
a sequence of values for the separation constant, and this led to a sequence of so-
lutions of the diffusion equation together with the boundary conditions. We then
formed a sum of these solutions and were able to use the Fourier series of the initial
function to determine coefficients to make this sum satisfy the initial condition as
well.

For the diffusion equation in the region −∞ < x < ∞, 0 ≤ t < ∞, there are no
longer any boundary conditions. This means that there are no restrictions on the
separation constant. The analogue of the sum used for a finite x-interval will be an
integral over the parameter λ . In order to satisfy an initial condition u(x,0) = f (x)
for −∞ < x < ∞, we will need an integral analogue of the Fourier series expansion.
There is such an analogue, called the Fourier integral, which we will use without
proof. The solutions that we obtain in this section will be integral representations,
and we may use the rules for differentiation of integrals to verify that they are in fact
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solutions. The reader who is willing to accept these integral representations without
motivation (although, of course, not without verification) may omit the derivation
using the Fourier integral.

The Fourier integral representation that we need is

f (x) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
f (ξ )cosλ (x−ξ )dξ dλ . (8.43)

Another way to describe this would be to define

A(λ ) =
1

2π

∫ ∞

−∞
f (ξ )cosλξ dξ , (8.44)

B(λ ) =
1

2π

∫ ∞

−∞
f (ξ )sinλξ dξ ,

and then write
f (x) =

∫ ∞

−∞
[A(λ )cosλx+B(λ )sinλx] dx. (8.45)

To see that (8.44) and (8.45) are equivalent to (8.43) we calculate∫ ∞

−∞
[A(λ )cosλx+B(λ )sinλx] dx

=
∫ ∞

−∞

[
1

2π

∫ ∞

−∞
{ f (ξ )cosλξ cosλx+ f (ξ )sinλξ sinλx}dξ

]
dx

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
f (ξ )cosλ (x−ξ )dξ dλ .

It is possible to prove that the expansion (8.43) is valid if f (x) is piecewise differ-
entiable on −∞ < x < ∞ and the infinite integral

∫ ∞
−∞ | f (x)|dx converges.

We now consider the problem on −∞ < x < ∞, 0 ≤ t < ∞, consisting of the
diffusion equation (8.16) and the initial condition (8.20) on −∞ < x < ∞. The
usual separation of variables procedure leads to solutions u(x, t) = X(x)T (t) =
[A(λ )cosλx + B(λ )sinλx]e−Dλ 2t for every λ , −∞ < λ < ∞. In order to satisfy
the initial condition, we form the “sum”

u(x, t) =
∫ ∞

−∞
e−Dλ 2t [A(λ )cosλx+B(λ )sinλx] dλ

with

u(x,0) = f (x) =
∫ ∞

−∞
[A(λ )cosλx+B(λ )sinλx] dλ .

Then A(λ ) and B(λ ) are given by (8.44), and f (x) is given by (8.45). Thus we have
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u(x, t) =
1

2π

∫ ∞

−∞
e−Dλ 2t

[∫ ∞

−∞
f (ξ )cosλ (x−ξ )dξ

]
dλ (8.46)

=
1

2π

∫ ∞

−∞
f (ξ )

[∫ ∞

−∞
e−Dλ 2t cosλ (x−ξ )dλ

]
dξ .

In order to evaluate the inner integral in (8.46) we use the formula∫ ∞

−∞
e−ax2

cosbxdx =
√

π
a

e−
b2
4a , (8.47)

valid for a > 0, with a = Dt, b = x−ξ , to give

u(x, t) =
1

2π

∫ ∞

−∞
f (ξ )

√
π
Dt

e−
(x−ξ )2

4Dt dξ =
1√

4πDt

∫ ∞

−∞
e−

(x−ξ )2
4Dt f (ξ )dξ . (8.48)

We may write (8.48) in the form

u(x, t) =
∫ ∞

−∞
K(x−ξ , t) f (ξ )dξ (8.49)

with
K(x, t) =

1√
4πDt

e−
x2

4Dt . (8.50)

The function K(x, t) has the property that∫ ∞

−∞
K(x, t)dx = 1,

since ∫ ∞

−∞
e−ax2

dx =
√

π
a

(a > 0).

If x �= 0, we have

K(x,0) = lim
t→0

K(x, t) = lim
t→0

1√
4πDt

e−
x2

4Dt = lim
s→∞

√
s√

4πD
e−

x2
4D s = 0.

However, if x = 0, limt→0 K(x,0) is infinite. This indicates that K(x,0) = δ (x).
To show that K(x, t) is a solution of the diffusion equation, we use the rules for

derivatives of integrals and the chain rule to calculate
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Kt(x, t) =
1√

4πD

(
−1

2
t−3/2e−

x2
4Dt

)
+

1√
4πD

(
t−1/2e−

x2
4Dt

x2

4Dt2

)
=

1√
4πDt

e−
x2

4Dt

(
x2

4Dt2 − 1
2t

)
,

Kx(x, t) = − 1√
4πDt

e−
x2

4Dt
1

2Dt
+

1√
4πDt

x
2Dt

e−
x2

4Dt
x

2Dt

=
1

4πDt
e−

x2
4Dt

(
x2

4D2t2 − 1
2Dt

)
,

Kxx(x, t) = − 1√
4πDt

e−
x2

4Dt
1

2Dt
+

1√
4πDt

x
2Dt

e−
x2

4Dt
x

2Dt

=
1√

4πDt
e−

x2
4Dt

(
x2

4D2t2 − 1
2Dt

)
=

1
D

Kt(x, t).

We have now established that the function K(x, t) is the solution of the diffusion
equation on −∞ < x < ∞, 0 ≤ t < ∞ that satisfies the initial condition u(x,0) = δ (x).
It is called the fundamental solution of the diffusion equation for this region because
it has the property that for an arbitrary initial function f (x), the solution of the
diffusion equation that satisfies the initial condition u(x,0) = f (x) is given by (8.49).
It is easy to see, using the rules for differentiation of integrals and the fact that
K(x, t) satisfies the diffusion equation, that the function u(x, t) defined by (8.49) is
a solution of the diffusion equation. In addition,

u(x,0) =
∫ ∞

−∞
K(x−ξ ,0) f (ξ )dξ = f (x),

using the property (8.18) of the delta function. Thus knowledge of the fundamental
solution for −∞ < x < ∞, 0 ≤ t < ∞ enables us to solve the initial value problem in
this region for any initial function.

Example 1. Solve the initial value problem

ut = Duxx +au, u(x,0) = f (x),

for −∞ < x < ∞, 0 ≤ t < ∞.
Solution: We make the change of dependent variable u(x, t) = eatv(x, t). Since

ut(x, t) = eatvt(x, t)+aeatv(x, t),

uxx(x, t) = eatvxx(x, t),

the partial differential equation reduces to

eatvt(x, t)+aeatv(x, t) = Deatvxx(x, t)+aeatv(x, t),

or
vt(x, t) = Dvxx(x, t). (8.51)
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The solution of the partial differential equation (8.51) together with the initial con-
dition v(x,0) = u(x,0) = f (x) is, by (8.48),

v(x, t) =
1√

4πDt

∫ ∞

−∞
e−

(x−ξ )2
4Dt f (ξ )dξ .

Thus the solution of the problem is

u(x, t) =
eat

√
4πDt

∫ ∞

−∞
e−

(x−ξ )2
4Dt f (ξ )dξ .

In particular, the solution with initial condition u(x,0) = u0δ (x), corresponding to
an initial release of u0 members at x = 0, is

u(x, t) =
1√

4πDt
e
(

at− x2
4Dt

)
.

Another type of unbounded region is 0 ≤ x < ∞, 0 ≤ t < ∞, corresponding to a
semi-infinite tube beginning at x = 0. For the diffusion equation in this region it is
appropriate to assign a boundary condition such as u(0, t) = 0 or ux(0, t) = 0 for
0 ≤ t < ∞ at x = 0, and an initial condition u(x,0) = f (x) for 0 ≤ x < ∞. In order to
solve the initial boundary value problem consisting of the diffusion equation (8.16)
and the boundary condition

u(0, t) = 0, 0 ≤ t < ∞, (8.52)

with the initial condition

u(x,0) = f (x), 0 ≤ x < ∞, (8.53)

we will need to make use of the Fourier sine integral representation. This represen-
tation is

f (x) =
2
π

∫ ∞

0
sinλx

(∫ ∞

0
f (ξ )sinλξ dξ

)
dλ ,

or
f (x) =

∫ ∞

0
B(λ )sinλxdλ ,

where
B(λ ) =

2
π

∫ ∞

0
f (ξ )sinλξ dξ , (8.54)

and it is valid for every piecewise differentiable function f (x) on 0 ≤ x < ∞ for
which the infinite integral

∫ ∞
0 | f (ξ )|dξ converges.

The process of separation of variables for the diffusion equation (8.16) together
with the boundary condition (8.52) leads to solutions

u(x, t) = X(x)T (t) = B(λ )sinλxe−Dλ 2t
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for every λ , 0 < λ < ∞. In order to satisfy the initial condition (8.53) we form the
“sum”

u(x, t) =
∫ ∞

−∞
e−Dλ 2tB(λ )sinλxdλ

with
u(x,0) = f (x) =

∫ ∞

−∞
B(λ )sinλxdx.

Then B(λ ) is given by (8.54) and f (x) is given by (8.54). Thus we have

u(x, t) = 2
π
∫ ∞

0 e−Dλ 2t (
∫ ∞

0 f (ξ )sinλξ dξ )sinλxdλ

= 2
π
∫ ∞

0 f (ξ )
(∫ ∞

0 eDλ 2t sinλxsinλξ dλ
)

dξ . (8.55)

In order to evaluate the inner integral in (8.55), we use the trigonometric identity

sinλxsinλξ =
1
2
[cosλ (x−ξ )− cosλ (x+ξ ]

and the integration formula∫ ∞

0
e−ax2

cosbxdx =
1
2

√
π
a

e−
b2
4a ,

analogous to (8.47), to obtain∫ ∞

0
e−Dλ 2t sinλxsinλξ dλ

=
1
2

∫ ∞

0
e−Dλ 2t cosλ (x−ξ )dλ − 1

2

∫ ∞

0
e−Dλ 2t cosλ (x+ξ )dλ

=
1
4

√
π
Dt

(
e−

(x−ξ )2
4Dt − e−

(x+ξ )2
4Dt

)
.

Then we have

u(x, t) =
2
π

1
4

√
π
Dt

∫ ∞

0
f (ξ )

(
e−

(x−ξ )2
4Dt − e−

(x+ξ )2
4Dt

)
dξ

=
1

2
√

πDt

∫ ∞

0
f (ξ )

(
e−

(x−ξ )2
4Dt − e−

(x+ξ )2
4Dt

)
dξ . (8.56)

Example 2. Find the solution of the diffusion equation (8.16), the boundary con-
dition (8.52), and the initial condition (8.53) with a constant initial distribution
f (x) = u0 (0 ≤ x < ∞).
Solution: The representation (8.56) gives the solution
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u(x, t) =
u0

2
√

πDt

∫ ∞

0

(
e−

(x−ξ )2
4Dt − e−

(x+ξ )2
4Dt

)
dξ

The changes of variable x−ξ =−z
√

4Dt in the first integral and x+ξ = z
√

4Dt in
the second integral reduces this to

u(x, t) =
u0

2
√

πDt

√
4Dt

[∫ ∞

− x√
4Dt

e−z2
dz−

∫ ∞

x√
4Dt

e−z2
dz

]

=
u0√
πDt

[∫ ∞

− x√
4Dt

e−z2
dz−

∫ ∞

x√
4Dt

e−z2
dz

]

=
u0√

π

∫ x√
4Dt

− x√
4Dt

e−z2
dz =

2u0√
π

∫ x√
4Dt

0
e−z2

dz. (8.57)

The integral in (8.57) cannot be evaluated analytically but has been tabulated. The
error function er f (x) is defined by

er f (x) =
2√
π

∫ x

0
e−z2

dz,

and we may write the solution (8.57) as

u(x, t) = u0 er f
(

x√
4Dt

)
.

It should be noted that the initial function in this example does not satisfy the
requirement of the Fourier sine integral representation that

∫ ∞
0 | f (x)|dx converge.

Nevertheless, it may be verified that (8.57) is actually a solution of the given prob-
lem.

Example 3. Find the solution of the diffusion equation (8.16), the boundary condi-
tion

u(0, t) = u0 (0 ≤ t < ∞),

and the initial condition

u(x,0) = 0 (0 ≤ x < ∞).

Solution: Let u0(x) = u0 be the steady-state solution, satisfying u0(0, t) = u0,
u0(x,0) = u0. Then the desired solution u(x, t) may be written

u(x, t) = u0(x)+ v(x, t),

where v(x, t) satisfies the boundary condition v(0, t) = 0 and the initial condition
v(x,0) = −u0. Then v(x, t) is just the solution obtained in Example 2 with u0 re-
placed by −u0, namely
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v(x, t) =−u0 er f
x√
4Dt

,

and the desired solution is

u(x, t) = u0

[
1− er f

(
x√
4Dt

)]
.

Exercises

1. Verify that u(x, t) = u0[1− er f ( x√
4Dt

)] satisfies the diffusion equation.
2. Find the solution of the diffusion equation on −∞ < x < ∞, 0 ≤ t < ∞ such that

u(x,0) =

⎧⎪⎨⎪⎩
0 (x < a),
u0 (a ≤ x ≤ b),
0 (x > b).

3. Find the solution of the diffusion equation on −∞ < x < ∞ such that

u(x,0) =

{
u0 (x < 0),
0 (x > 0).

4. Find the solution of the diffusion equation on 0 ≤ x < ∞, 0 ≤ t < ∞ such that
u(0, t) = 0 and

u(x,0) =

{
1 (0 ≤ x ≤ L),
0 (x > L).

8.8 Linear Reaction–Diffusion Equations

If there is a creation term Q(x, t,u) �= 0 in the partial differential equation (8.15) and
the flux is diffusive, then (8.15) becomes

ut(x, t) = Duxx(x, t)+Q(x, t,u). (8.58)

The equation (8.58) is called a reaction–diffusion equation; the term Q(x, t,u) rep-
resents reactions such as the birth and death of population members, while the term
Duxx(x, t) represents diffusion of the population in space. In addition to the equation
(8.58), the model may require initial conditions at t = 0 and/or boundary condi-
tions at x = 0 and x = L. For example, if we do not allow individuals to cross the
boundaries at x = 0 and x = L, we would impose the boundary conditions
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ux(t,0) = 0, ux(L,0) = 0. (8.59)

In general, problems consisting of a partial differential equation (8.58) together with
the boundary condition (8.59) cannot be solved explicitly, but it is sometimes possi-
ble to state results about the qualitative nature of the solutions.

In this section we shall describe some properties of solutions of reaction–
diffusion equations when the creation term Q(x, t,u) is a linear function of the pop-
ulation density u. One of the first applications of equations of reaction–diffusion
type to a population model was the work of Skellam (1951) on the dispersal of a
population that grows exponentially, so that f (u) = au. We consider the release of a
population with u0 members at time t = 0 from the location x = 0, governed by the
equation

ut(x, t) = Duxx(x, t)+au(x, t) (8.60)

with initial condition u(x,0) = δ (x). It is possible to solve this problem analytically,
as we have seen in Example 1 of the preceding section obtaining

u(x, t) =
u0

2
√

πDt
e
(

at− x2
4Dt

)
. (8.61)

We may deduce from the solution (8.60) that the population spreads with an
asymptotic speed 2

√
aD. To see this, we write the level curves of the solution given

by (8.61) in the form
u0

2
√

πDt
e
(

at− x2
4Dt

)
= c.

Taking natural logarithms of both sides of this equation, we have

x2

t2 = 4aD− 4D
t

log
(

c
u0

√
4πDt

)
,

Since
lim
t→∞

4D
t

log(
c
u0

√
4πDt = lim

t→∞

4D
t
[log

c
u0

+
1
2

log(4πDt)] = 0

we have limt→∞
x2

t2 = 4aD. Thus as t → ∞,x ≈ 2
√

aDt. This shows that the popula-
tion spreads out from the origin with asymptotic velocity 2

√
aDt.

The same partial differential equation was studied on the interval 0 ≤ x ≤ L by
Kierstad & Slobodkin (1953) with absorbing boundary conditions

u(0, t) = u(L, t) = 0. (8.62)

The problem (8.60), (8.62) has been solved by separation of variables in Example
1, Section 8.6, where we obtained the separable solutions

e
(

a− n2π2D
L2

)
t sin(nπx/L).
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The most general solution is a superposition of such solutions, a sum over n of
terms of this form. The population grows only if, at least for some n, there is a
positive exponent. In other words, growth of the population requires a > π2D/L2,
or L> π

√
D/a. Thus a positive population size can be maintained in the region only

if the region is large enough. If the diffusion is rapid enough that individuals leave
the region before reproducing, the population will tend to die out. This suggests
a possible explanation for the phenomenon of populations that are distributed in
discrete patches, namely that survival is possible only in sufficiently large regions.
There are other possible explanations that have been advanced, such as the idea of
diffusive instability with diffusion tending to destabilize a population which would
tend to an asymptotically stable equilibrium in the absence of diffusion.

Exercises

1. Solve the initial value problem

ut = Duxx +g(t), u(x,0) = f (x),

where g(t) is a given function of t, for −∞ < x < ∞, 0 ≤ t < ∞. [Hint: Begin
by making a change of variable u(x, t) = v(x, t)+ h(t) with the function h(t)
chosen to reduce the problem as in Example 1, Section 8.6.]

8.9 Nonlinear Reaction–Diffusion Equations

In this section we shall consider reaction–diffusion equations containing a nonlinear
growth rate g(u) with g(0) = g(K) = 0 and g(u)> 0 for 0 < u < K. Thus, we shall
consider the equation

ut(x, t) = Duxx(x, t)+g(u). (8.63)

We begin by looking for solutions u(t) that are independent of x. Then uxx = 0
and the equation (8.63) reduces to the ordinary differential equation

u′ = g(u). (8.64)

The total population size is 1
L
∫ L

0 u(x, t)dx, and if u is independent of x, this reduces
to u(t). Thus we have an ordinary differential equation model for the total popula-
tion size of the type studied in Chapter 1. As we know, every bounded solution of
(8.64) approaches the equilibrium K as t → ∞. In order to show that this equilibrium
solution is asymptotically stable in the sense that solutions of (8.63) whose initial
total population size is sufficiently close to K approach it as t → ∞, we linearize
about the equilibrium K, obtaining a linearized equation of the form (8.60) with
a = g′(K) < 0. From the fundamental solution (8.61) we see that every solution of
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this linearization approaches zero as t → ∞, and this proves the asymptotic stabil-
ity of the equilibrium K. However, we must remember that this asymptotic stability
refers only to solutions starting close enough to the equilibrium and does not rule
out the possibility of other kinds of solution.

We next consider the possibility of patterns in space, that is, solutions that are
independent of t. Then ut = 0, and the equation (8.63) reduces to the second-order
ordinary differential equation

Du′′+g(u) = 0.

The equivalent first-order system is u′ = v, v′ = −g(u)/D with equilibria at (0,0)
and (K,0). The matrix of the linearization at an equilibrium x∞ is[

0 1
−g′(u∞) 0

]
. (8.65)

Since g′(0) > 0, the equilibrium (0,0) is a center, and the equilibrium (K,0) is a
saddle point for (8.65). By an analysis of the trajectories of (8.65) it is possible to
show that all nonconstant solutions are unstable and thus that no pattern is biologi-
cally realistic. For reaction–diffusion systems governing interacting populations in
more than one space dimension, the variety of possible behaviors is great, and stable
patterns can occur.

Nonlinear reaction–diffusion equations may have traveling wave solutions. A
wave is a function of the form u(x, t) = U(x− ct) for some constant c. The rea-
son for the description of such a function as a wave is that if x− ct is constant,
thenu is constant, and this implies a motion in the direction of increasing x with
velocity c. If u(x, t) is a wave, then ux(x, t) =U ′(x− ct), uxx(x, t) =U ′′(x− ct), and
ut(x, t) = (−c)U ′(x− ct). Thus for such a wave to be a solution of (8.63), we must
have

−cU ′(x− ct) = g[U(x− ct)]+DU ′′(x− ct).

If we let z = x− ct, then the function U(z) must satisfy the following second order
ordinary differential equation in z:

DU ′′+ cU ′+g(U) = 0.

The equivalent system is

U ′ =V,V ′ =−g(U)

D
− c

V
D
, (8.66)

whose equilibria are solutions of the pair of equations V = 0, ,g(U) = 0. Thus
the equilibria of (8.66) are (0,0) and (K,0). The matrix of the linearization at an
equilibrium(U∞,0) is [

0 1

− g′(U∞ )

D − c
D

]
.
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Since g′(K) < 0, it is easy to see that (K,0) is a saddle point. The equilibrium
at (0,0) is asymptotically stable, a node if c2 > 4Dg′(0) and a spiral point if
c2 < 4Dg′(0). By studying the phase portrait of the system it is possible to show
that there is an orbit starting at the saddle point as z →−∞ that tends to the equilib-
rium at (0,0) as z → ∞ if the equilibrium at (0,0) is a node, that is, if c2 > 4Dg′(0).
This orbit corresponds to a wave traveling to the right. Every other orbit of the sys-
tem (8.66) either has U unbounded as z → −∞ or as z → ∞ or includes negative
values of U . Such orbits are not reasonable biologically; only the connecting orbit
is acceptable for representing a wave. In fact, for the connecting orbit, U remains
between 0 and K. For the system (8.66) the independent variable z represents dis-
tance along the wave, and the independent variables U and V represent population
density and rate of change of population density in space respectively (Figure 8.1).

Fig. 8.1 A connecting orbit.

Example 1. Consider a logistic population growth model with diffusion,

ut(x, t) = Duxx(x, t)+ ru(x, t)
(

1− u(x, t)
K

)
. (8.67)

The same partial differential equation occurs as the Fisher equation for the spatial
distribution of an advantageous gene. This example fits the general framework above
exactly, and we may deduce that there are traveling wave solutions.

Because of the requirement that the equilibrium (0,0) must be a node in order
to have a connecting orbit, the minimum velocity for a traveling-wave solution is
c∗ = 2

√
g′(0)D. It is possible to show that in some cases every solution behaves as

t → ∞ like a wave of the form U(x− x0 − c∗t) for some x0.
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8.9.1 Two-Species Interactions

Let us consider a system of two interacting populations as discussed in Chapter 3,
either a predator–prey system or two species in competition, with both populations
diffusing in a one-dimensional space, possibly with different diffusivities. Such a
system is governed by a system of two reaction–diffusion equations, of the form

ut(x, t) = D1uxx(x, t)+F(u,v), (8.68)
vt(x, t) = D2vxx(x, t)+G(u,v).

Suppose that there is a spatially uniform steady state, that is, an equilibrium (u∞,v∞)
of the system of ordinary differential equations

u′ = F(u,v), (8.69)
v′ = G(u,v).

If we linearize about this equilibrium, we obtain a linear reaction–diffusion system
of the form

ut(x, t) = D1uxx(x, t)+au+bv, (8.70)
vt(x, t) = D2vxx(x, t)+ cu+dv.

We look for separated solutions of (8.70) in the form

u(x, t) =U(x)T (t), v(x, t) =V (x)T (t).

We obtain

UT ′ = D1U ′′T +aUT +bV T, V T ′ = d2V ′′T + cUT +dV T,

or
T ′

T
= D1

U ′′

U
+a+b

V
U

= d2
V ′′

V
+ c

U
V

+d = λ ,

with separation constant λ . Now we have T ′ = λT , and we look for solutions of the
pair of equations

D1U ′′+(a−λ )U +bV = 0, (8.71)
D2V ′′+ cU +(d −λ )V = 0,

of the form

U = c1 cos px+ c2 sin px, V = c3 cos px+ c4 sin px.

When we substitute this form into the system (8.71), we obtain the equations
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D1[−c1 p2 cos px− c2 p2 sin px]+ (a−λ )c1 cos px+(a−λ )c2 sin px

+bc3 cos px+bc4 sin px = 0, (8.72)
D2[−C3 p2 cos px− c4 p2 sin px]+ cc1 cos px+ cc2 sin px+(d −λ )c3 cos px

+(d −λ )c4 sin px = 0.

Since (8.72) must hold for all x, the coefficients of cospx and sinpx must vanish.
This leads to the four equations

(a−λ − p2D1)c1 +bc3 = 0,
(a−λ − p2D1)c2 +bc4 = 0,
cc1 +(d −λ − p2D2)c3 = 0,
(d −λ − p2D2)c4 + cc2 = 0.

These four equations are satisfied with c1,c2,c3,c4 not all zero if the two equations

(a−λ − p2D1)c1 +bc3 = 0, (8.73)
cc1 +(d −λ − p2D2)c3 = 0,

have a solution with c1 and c3 not both zero. The condition for this is that the deter-
minant of the matrix [

a− p2D1 −λ b
c d − p2D2 −λ

]
be zero. This is equivalent to the statement that λ is an eigenvalue of the matrix[

a− p2D1 b
c d − p2D2

]
. (8.74)

One question that arises for the system (8.68) is diffusive instability, meaning
that the equilibrium (u∞,v∞) is asymptotically stable for the system of ordinary
differential equations (8.69) but unstable for the system with diffusion (8.68). The
asymptotic stability of this equilibrium for (8.69) is determined by the matrix

A =

[
a b
c d

]
,

and this equilibrium is asymptotically stable for (8.69) if and only if

a+d < 0, ad −bc > 0, (8.75)

and is asymptotically stable for (8.68) if and only if the eigenvalues of the matrix
(8.74) have negative real part for some value of p, or

a+d − p2(D1 +D2)< 0, (a− p2D1)(d − p2D2)−bc > 0. (8.76)
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If a + d < 0, then a + d − p2(D1 + D2) < 0. Thus diffusive instability would
require that ad −bc > 0 but (a− p2D1)(d − p2D2)−bc < 0, or

H(p2) = (a− p2D1)(d − p2D2)−bc

= D1D2 p4 − (D1d +D2a)p2 +(ad −bc)< 0.

Since ad −bc > 0, to have H(p2)< 0 it is necessary that

D1d +D2a > 0.

If D1 = D2, this would contradict a+d < 0; thus diffusive instability requires D1 �=
D2. The minimum value of H(p2) as a function of p is attained for

p2 =
D1d +D2a

2D1D2

and is

ad −bc− (D1d +D2a)2

4D1D2
.

If p can be chosen to make this quantity negative, diffusive instability is possible.
Thus diffusive instability is possible if and only if

ad −bc <
(D1d +D2a)2

4D1D2
.

Because diffusive instability requires D1d +D2a > 0, we may write the necessary
and sufficient conditions for diffusive instability as

a+d < 0, ad −bc > 0, aD2 +dD1 >
√

D1D2(ad −bc). (8.77)

If ad > 0, then the condition a+d < 0 implies a< 0,d < 0. But then D1d+D2a<
0, which would contradict H(p2)< 0. Thus diffusive instability requires ad < 0, and
then ad −bc > 0 implies bc < 0.

We may assume, with no loss of generality, that a > 0, and then d < 0. Since
bc < 0, the matrix A has one of the two forms

(i)
[
+ −
+ −

]
, (ii)

[
+ +
− −

]
.

The species u is an activator , since it promotes an increase in its population size,
while species v is an inhibitor, since it inhibits its own rate of growth. In case (i),
an increase in u leads to an increase in both species, while an increase in v leads
to a decrease in both species (activator–inhibitor). In case (ii), an increase in either
species leads to an increase in u and a decrease in v (positive feedback). If we define

τ1 =
1
a
, τ2 =

1
|d| =−1

d
,
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then (8.77) implies √
D1τ1 <

√
D2τ2.

The quantities
√

D1τ1,
√

D2τ2 have the dimensions of distance, and are called the
ranges of activation and inhibition respectively. Thus diffusive instability requires
that the range of inhibition be greater than the range of activation.

If the two species are in a predator–prey relationship, then it is possible to have
a > 0,b < 0,c > 0,d < 0, and thus diffusive instability is possible. If the interaction
between the two species is competitive, then, as we have seen in Section 5.3, a <
0,b < 0,c < 0,d < 0, and thus diffusive instability is not possible. In fact, if a <
0,b < 0,c < 0,d < 0, it would be possible to have ad−bc < 0 (instability for (8.64))
but H(p2)> 0 for all p (asymptotic stability for (8.68)). In general, diffusion tends to
have a stabilizing effect. Diffusive instability requires very specific conditions on the
coefficients.In particular, diffusive instability requires that the diffusion coefficients
be unequal.

Exercises

1. [Allen (2007)] Consider a single-species population model on a line segment
0 ≤ x ≤ L that would have an asymptotically stable equilibrium K if there
were no diffusion , whose population size y(x, t) is described by the reaction–
diffusion equation

yt = f (y)+Dyxx

with boundary conditions

∂y
∂x

(0, t) =
∂y
∂x

(L, t) = 0.

Since the equilibrium K without diffusion is assumed asymptotically stable,
f ′(K)< 0.

(i) Show that the linearization of the model at the equilibrium y = K is

ut = f ′(K)u+Duxx.

(ii) Look for solutions of the linearization with the form

u(x, t) = eσt cos(kx),

a reasonable form, since the linearization without diffusion has exponential
solutions and the boundary conditions imply that these are cosines. Show
that for every such solution the real part of σ is negative. [This shows that
diffusive instability is not possible for a single-species model.]

‘
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8.10 Diffusion in Two Dimensions

In Section 8.4 we described the motion of a population that depends on both time
and location in space with the restriction that the space be one-dimensional. It is
natural to try to extend this description to a two-dimensional space.

Our approach is to take a small plane rectangle and to form a balance equation
that says that the rate of change of the number of particles in the rectangle is equal to
the rate at which particles flow out of the rectangle minus the rate at which particles
flow into the rectangle plus the rate of creation of particles in the rectangle.

We think of a rectangle defined by inequalities x0 ≤ x ≤ x0 +h, y0 ≤ y ≤ y0 + k.
Let u(x,y, t) be the concentration of population members (number per unit area)
at location (x0,y0) at time t, meaning that in the rectangle x0 ≤ x ≤ x0 + h,
y0 ≤ y ≤ y0 + k, the number of members is approximately hku(x,y, t). By “ap-
proximately” we mean that if h and k are small, the error in this approximation
hku(x,y, t) is smaller than a constant multiple of h2 + k2. The flux J(x,y, t) in two
dimensions must be described as a vector, which we may do by giving its hori-
zontal (in the x-direction) component J1(x,y, t) and its vertical (in the y-direction)
component J2(x,y, t). The net horizontal flow out of the rectangle x0 ≤ x ≤ x0 + h,
y0 ≤ y ≤ y0 + k is k[J1(x0,y0, t)− J1(x0 + h,y0, t)], and the net vertical flow out of
this rectangle is h[J2(x0,y0, t)− J2(x0,y0 + k, t)]. If there are no births or deaths in
the rectangle, we have a balance equation for the rectangle expressing the fact that
the rate of change of population size at time t is equal to the net flux, so that

hkut(x0,y0, t) = −k[J1(x0 +h,y0, t)− J1(x0,y0, t)] (8.78)
−h[J2(x0,y0 + k, , t)− J2(x0,y0, t)].

If we divide (8.78) by hk and then take the limit as h → 0,k → 0, we obtain the
conservation law

ut(x0,y0, t) =−
[

∂J1

∂x
(x0,y0, t)+

∂J2

∂y
(x0,y0, t)

]
,

valid for all t at every point (x0,y0. Since x0 and y0 are arbitrary, this relation holds
at every point, and we have the equation

ut(x,y, t) =−
[

∂J1

∂x
(x,y, t)+

∂J2

∂y
(x,y, t)

]
. (8.79)

In vector language, the quantity ∂J1
∂x (x,y, t)+

∂J2
∂y (x,y, t) is called the divergence of

the vector J(x,y,t) and is denoted by div J.
Just as in one dimension we must make some assumption that relates the rate of

change of flux density ∂J1
∂x + ∂J2

∂y and the population density u(x,y, t). If the motion
is random, then Fick’s law says that the flux due to random motion is approximately
proportional to the rate of change of particle concentration, that is, that J1 is propor-
tional to ux and J2 is proportional to uy with the same constant of proportionality.
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This leads to
J1 =−Dux, J2 =−Duy

with D a constant called the diffusivity or diffusion coefficient. (We restrict our
attention to constant diffusivity.) Then equation (8.79) then becomes a second order
partial differential equation

ut(x,y, t) = D[
∂ux(x,y, t)

∂x
+

∂uy(x,y, t)
∂y

] = D[uxx(x,y, t)+uyy(x,y, t)]. (8.80)

Equation (8.80) is called the heat or diffusion equation in two space dimensions.
The quantity uxx(x,y, t)+uyy(x,y, t) is called the Laplacian of the function u(x,y, t)
and is often written �2u. In addition to the partial differential equation (8.80) we
need to impose additional conditions to give a problem with a unique solution. It
is possible to establish a result analogous to the existence and uniqueness theorem
stated in Section 4.4 for the diffusion equation in one space dimension, namely
that the equation (8.80) has a unique solution in every region in the plane with a
piecewise smooth boundary with a specified boundary condition giving the value
of the solution or its normal derivative at every point of the boundary and with a
specified initial condition.

If the given region is a rectangle, it is possible to use the method of separation
of variables to find solutions analytically. The process is more complicated than
in one space dimension because one must first separate the time variable from the
two space variables and then separate the two space variables. For nonrectangular
regions it may be possible to use a coordinate system in which the boundary takes a
convenient form. For example, a region bounded by a circle with center at the origin
may be described in polar coordinates (r,θ) with boundary r = r0. The diffusion
equation may be transformed into the appropriate coordinate system, and it may be
possible to carry out separation of variables in this coordinate system. In general,
separation of variables in more than two variables is very complicated technically,
and we shall not explore this subject here.

Another complication that arises in two dimensions for the diffusion equation
is that there are many possible steady-state solutions. In one space dimension, a
steady-state solution is a solution of the ordinary differential equation u′′ = 0 and
must be a linear function. In two dimensions, a steady-state solution is a solution of
the Laplace equation

uxx(x,y, t)+uyy(x,y, t) =�2u = 0.

The Laplace equation has many solutions. In fact, there is a unique solution of the
Laplace equation for every given boundary condition. The Laplace equation may be
solved by separation of variables in some coordinate systems.

If there are creation terms as well as flux, we obtain a reaction–diffusion equation
in two space dimensions, of the form

ut(x,y, t) = D[uxx(x,y, t)+uyy(x,y, t)]+g(u(x,y, t)) =�2u+g(u) = 0.
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Reaction–diffusion equations in two space dimensions may exhibit all the possi-
ble behaviors that we found in one space dimension. More complicated behavior is
possible, including stable patterns, periodic wave trains, and spiral waves. These be-
haviors have been exhibited experimentally in some situations. There are are many
open problems in the mathematical study of the asymptotic behavior of solutions of
reaction–diffusion equations, especially in more than one space dimension and for
systems of more than one equation.

More general models may be appropriate in some situations. Diffusion may vary
in different directions, and for models of diffusion in aquatic systems it may be
necessary to incorporate an advection term in the partial differential equations to
describe the water current velocity.

Reaction diffusion models arise in a variety of other biological situations, includ-
ing the spread of a favorable allele in genetics, spatial pattern formation in develop-
mental biology, nerve action potentials, and autocatalytic chemical reactions. The
study of reaction–diffusion models in biology is a new and rapidly developing field;
we have barely scratched the surface here.

8.11 Project: Cats and Birds in Space

This project is based on the MTBI report Gambino et al. (2007).
Consider the mean field approximation to a group of interacting populations on

a bounded lattice, which can be written as

ṗ0 = μ1 p1 +μ2 p2 +μ3 p3 +nu2(1−η2)p2 p1 +nu3(1−η31)p3 p1

+nu3(1−η32)p3 p2 − (φ1 p1 +φ2 p2 +φ3 p3)p0,

ṗ1 = φ1 p1 p0 − (μ1 +ν2 p2 +ν3 p3)p1,

ṗ2 = φ2 p2 p0 +ν2η2 p1 p2 − (μ2 +ν3 p3)p1,

ṗ3 = φ3 p2 p0 −μ3 p3 +ν3η31 p3 p1,

where p0 represents the proportion of empty sites on the lattice and pi represents
the proportion of sites occupied by site i (i ∈ {1,2,3}).

The system of equations describes a predator–prey relationship between three
populations. p1 represents the prey population, p2 represents the mesopredator pop-
ulation that prey solely on p1, and p3 represents the superpredator population that
preys on both p1 and p2. A description of the parameters is given below:

1. Interpret all the parameters (which we assume to be positive) and discuss the
relationships that exist between the interacting populations.

2. Show that the dynamics of the above system can be studied with just the equa-
tions of motion for p1, p2, and p3. (Hint: Add the derivatives.)

3. Using the reduced model from part b., derive the species-free and single species
equilibria and interpret the conditions for the existence of each equilibrium.
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Parameters Description
φi Intrinsic birth rate of species i
μi Death rate of species i
νi Foraging rate for species i (i ∈ {2,3})
η2 Probability that successful mesopredator predation leads to birth
η3i Probability that successful superpredator predation on species i

leads to birth (i ∈ {1,2})

4. Derive and interpret necessary conditions for stability of each equilibrium
found above. (Hint: Compute the Jacobian and evaluate it at each equilibrium.)

8.12 Project: The Cable Equation

This project is based on the MTBI report Foster et al. (2010).
Neurons are excitable cells that communicate with other neurons by receiving

and sending electrical signals. High levels of voltage are essential to propagating
a signal and are most often transmitted along the dendritic branches of a neuron.
A neural network is often described as a collection of long cylindrical cables that
propagate electrical signals, and cable theory has been applied to measure voltages
in the cell membrane, where the cable equation is

λ 2 ∂ 2V
∂x2 = τ

∂V
∂ t

+V.

To derive the cable equation, assume that the current travels through a long and
cylindrical cable that is uniform in diameter. The voltage (V ) is the difference be-
tween the interior and exterior voltage, as a deviation from resting value and a rest-
ing membrane battery (V =Vi−Ve−Er). While the interior voltage is dependent on
space, x, and time, t, neither the exterior voltage nor the resting membrane battery
is. Intracellular current, ii, travels from left to right as x increases, and intracellular
resistance per unit length, ri, is constant (see Figure 8.2).

1. Use Ohm’s law (I = V
R ) to describe the relationship between the change in volt-

age across some length of the cable (Δx) and ii. (Hint: the change in voltage
can be written as Δx and the resistance is the product of the per unit length
resistance and the unit of length, Δx. Take the limit as Δx gets small.)

2. Use Kirchhoff’s current law (inet = iin − iout ) to describe the relationship be-
tween the interior current ii and the axial or membrane current im (Hint: if the
net current is conserved, then the change in current, Δ ii should be balanced by
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Fig. 8.2 Schematic for the dendrite as a cable. Current comes in from the left and travels a distance
x+Δx, losing current through the membrane as it travels, but adhering to Kirchhoff’s current law.

the membrane current across the entire length increment, imΔx.)

3. Express the per unit length membrane current density im as a sum of the parallel
capacitative and conductive currents. (Hint: use the current-voltage formulation
(I =C dV

dt ) for the capacitance and Ohm’s law for the conductance.)

4. Combine the first three results to derive the cable equation. What do the dimen-
sionless quantities λ and τ equal in this derivation? (Hint: take the derivative
of a) with respect to x.)

5. How could you modify the cable equation to represent the change in voltage
along a dendritic branch?

Consider a passive cable for a very long dendrite with constant current I injected
at position x = 0. Assume that the cable is a uniform semi-infinite circular cylinder
(0 ≤ x ≤ ∞). The cable equation is given by:

λ 2 ∂ 2V
∂x2 = τ ∂V

∂ t + V ,

where λ is a resistance constant and τ a time constant. Write down the boundary
conditions. Assume that the potential (voltage) V and Vx are bounded as x→∞. Find
the steady-state solution V (x).

Consider a passive cable of finite length (0 ≤ x ≤ L). Assume when the nerve is
at rest that V (x) = 0. At t = 0, a steady current of Iapp is injected into the right end of
the cable, and the left end of the cable is sealed to current flow (i.e., Ix(0) = 0). Find
the steady-state value of the potential V at the sealed end assuming unit resistance
(i.e., I(t,x) =V (t,x)).
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8.13 Project: Some Equations of Diffusion Type

Problem 1 Show that the nonautonomous and inhomogeneous diffusion-type
equation

∂u
∂ t

= a(t)
∂ 2u
∂x2 − (g(t)− c(t)x)

∂u
∂x

+
(−b(t)x2 + f (t)x+d (t)

)
u, (8.81)

where a,b,c,d, f ,g are suitable functions of time t only, can be reduced to the stan-
dard autonomous form

∂v
∂τ

=
∂ 2v
∂ξ 2 (8.82)

with the help of the substitution [Suazo et al. (2011a)]

u(x, t) =
1√
μ (t)

eα(t)x2+δ (t)x+κ(t)v(ξ ,τ) , (8.83)

ξ = β (t)x+ ε (t) , τ = γ (t) .

Here, μ,α,β ,γ,δ ,ε,κ are functions of t that satisfy

μ ′

2μ
+2aα +d = 0, (8.84)

and

dα
dt

+b−2cα −4aα2 = 0,

dβ
dt

− (c+4aα)β = 0,

dγ
dt

−aβ 2 = 0, (8.85)

dδ
dt

− (c+4aα)δ = f −2α,

dε
dt

+(g−2aδ )β = 0,

dκ
dt

+gδ −aδ 2 = 0.

(The first equation of (8.85) is called the Riccati nonlinear differential equation
[Watson (1944)] and we shall refer to the system (8.85) as a Riccati-type system.)

Problem 2 Show that the substitution (8.83) reduces the nonlinear Riccati
equation to the second-order linear equation

μ ′′ − τ (t)μ ′ −4σ (t)μ = 0, (8.86)
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where

τ (t) =
a′

a
+2c−4d, σ (t) = ab+ cd −d2 +

d
2

(
a′

a
− d′

d

)
, (8.87)

which we refer to as a characteristic equation [Suazo et al. (2011a)].

Problem 3 Show that the diffusion-type equation (8.81) has a particular solu-
tion of the form

u =
1√
μ (t)

eα(t)x2+β (t)xy+γ(t)y2+δ (t)x+ε(t)y+κ(t), (8.88)

provided that the time-dependent functions μ,α,β ,γ,δ ,ε,κ satisfy the Riccati-type
system (10.29), (8.85) [Suazo et al. (2011a)].

Problem 4 Use the superposition principle in order to solve (formally) the
Cauchy initial value problem for the diffusion-type equation (8.81) subject to initial
data u(x,0) = ϕ (x) on the entire real line −∞ < x < ∞ in an integral form

u(x, t) =
∫ ∞

−∞
K0 (x,y, t) ϕ (x)dy (8.89)

with the fundamental solution (heat kernel) [Suazo et al. (2011a)]

K0 (x,y, t) =
1√

2πμ0 (t)
eα0(t)x2+β0(t)xy+γ0(t)y2+δ0(t)x+ε0(t)y+κ0(t), (8.90)

where the particular solution of the Riccati-type system (8.83), (8.85) is given by
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α0 (t) = − 1
4a(t)

μ ′
0 (t)

μ0 (t)
− d (t)

2a(t)
,

β0 (t) =
h(t)
μ0 (t)

, h(t) = exp
(∫ t

0
(c(s)−2d (s)) ds

)
,

γ0 (t) =
d (0)
2a(0)

− a(t)h2 (t)
μ0 (t)μ ′

0 (t)
−4

∫ t

0

a(s)σ (s)h(s)(
μ ′

0 (s)
)2 ds

=
d (0)
2a(0)

− 1
2μ1 (0)

μ1 (t)
μ0 (t)

(8.91)

δ0 (t) =
h(t)
μ0 (t)

∫ t

0

[(
f (s)+

d (s)
a(s)

g(s)
)

μ0 (s)+
g(s)

2a(s)
μ ′

0 (s)
]

ds
h(s)

,

ε0 (t) = −2a(t)h(t)
μ ′

0 (t)
δ0 (t)−8

∫ t

0

a(s)σ (s)h(s)(
μ ′

0 (s)
)2 (μ0 (s)δ0 (s)) ds

+2
∫ t

0

a(s)h(s)
μ ′

0 (s)

[
f (s)+

d (s)
a(s)

g(s)
]

ds,

κ0 (t) = −a(t)μ0 (t)
μ ′

0 (t)
δ 2

0 (t)−4
∫ t

0

a(s)σ (s)(
μ ′

0 (s)
)2 (μ0 (s)δ0 (s))

2 ds

+2
∫ t

0

a(s)
μ ′

0 (s)
(μ0 (s)δ0 (s))

[
f (s)+

d (s)
a(s)

g(s)
]

ds,

with δ (0) = g(0)/(2a(0)) , ε (0) =−δ (0) , κ (0) = 0. Here, μ0 and μ1are the so-
called standard solutions of the characteristic equation (8.86) subject to the initial
data

μ0 (0) = 0, μ ′
0 (0) = 2a(0) �= 0, μ1 (0) �= 0, μ ′

1 (0) = 0. (8.92)

(See Problem 7 below for the corresponding asymptotics.)

Problem 5 Show that the Riccati-type system (10.29), (8.85) has the (general)
solution [Suazo et al. (2011b)]

mu(t) = −2μ (0)μ0 (t)(α (0)+ γ0 (t)) ,

α (t) = α0 (t)− β 2
0 (t)

4(α (0)+ γ0 (t))
, (8.93)

β (t) = − β (0)β0 (t)
2(α (0)+ γ0 (t))

,

γ (t) = γ (0)− β 2 (0)
4(α (0)+ γ0 (t))

,

and
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δ (t) = δ0 (t)− β0 (t)(δ (0)+ ε0 (t))
2(α (0)+ γ0 (t))

,

ε (t) = ε (0)− β (0)(δ (0)+ ε0 (t))
2(α (0)+ γ0 (t))

, (8.94)

κ (t) = κ (0)+κ0 (t)− (δ (0)+ ε0 (t))
2

4(α (0)+ γ0 (t))
,

in terms of the coefficients of the fundamental solution (8.91) subject to arbitrary
initial data μ (0) ,α (0) ,β (0) ,γ (0) ,δ (0) ,ε (0) ,κ (0) .
Hint: Use (8.88)–(8.90) and the elementary integral∫ ∞

−∞
e−ay2+2bydy =

√
π
a

eb2/a, a > 0. (8.95)

Problem 6 Use the transformation (8.83) with the standard heat kernel

K0 (ξ ,η ,τ) =
1√

4π (τ − τ0)
exp

[
− (ξ −η)2

4(τ − τ0)

]
(8.96)

for the diffusion equation (8.82), and (8.93), (8.94) in order to derive the fundamen-
tal solution (8.90) for the diffusion-type equation (8.81) [Suazo et al. (2011b)].

Problem 7 Show that the solution (8.93), (8.94) implies [Suazo et al. (2011a)]

μ0 =
2μ

μ (0)β 2 (0)
(γ − γ (0)) ,

α0 = α0 (t)− β 2

4(γ − γ (0))
,

β0 =
β (0)β

2(γ − γ (0))
,

γ0 = −α (0)− β 2 (0)
4(γ − γ (0)) ,

and

δ0 = δ − β (ε − ε (0))
2(γ − γ (0)) ,

ε0 = −δ (0)+
β (0)(ε − ε (0))

2(γ − γ (0)) ,

κ0 = κ −κ (0)− (ε − ε (0))2

4(γ − γ (0)) ,

and use this representation in order to derive the asymptotics
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α0 (t) = − 1
4a(0) t

− c(0)
4a(0)

+
a′ (0)

8a2 (0)
+O (t) ,

β0 (t) =
1

2a(0) t
− a′ (0)

4a2 (0)
+O (t) ,

γ0 (t) = − 1
4a(0) t

+
c(0)

4a(0)
+

a′ (0)
8a2 (0)

+O (t) , (8.97)

δ0 (t) =
g(0)

2a(0)
+O (t) , ε0 (t) =− g(0)

2a(0)
+O (t) ,

κ0 (t) = O (t) ,

as t → 0+. Use these formulas in order to establish the asymptotics of the funda-
mental solution (8.90),

K0 (x,y, t)∼ 1√
4πa(0) t

exp

[
− (x− y)2

4a(0) t

]
(8.98)

× exp
[

a′ (0)
8a2 (0)

(x− y)2 − c(0)
4a(0)

(
x2 − y2)]exp

[
g(0)

2a(0)
(x− y)

]
.

(Here, f ∼ g as t → 0+ if limt→0+ ( f/g) = 1.)

Problem 8 Check by a direct substitution that (8.93), (8.94) satisfy the Riccati-
type system (10.29), (8.85). Use the asymptotics (8.97) in order to verify the conti-
nuity with respect to initial data [Suazo et al. (2011a)]

lim
t→0+

μ (t) = μ (0) , lim
t→0+

α (t) = α (0) , etc. (8.99)

This transformation property allows us to find a solution of the initial value prob-
lem in terms of the fundamental solution and may be referred to as a nonlinear
superposition principle for the Riccati-type system).

Problem 9 The nonlinear equation

∂v
∂ t

+a(t)
(

v
∂v
∂x

− ∂ 2v
∂x2

)
− c(t)

(
x

∂v
∂x

+ v
)
+g(t)

∂v
∂x

= 2(2b(t)x− f (t)) ,

(8.100)
when a = 1 and b = c = f = g = 0, is known as Burgers’ equation. (We shall refer
to (8.100) as a nonautonomous Burgers-type equation.) Verify that [Suazo et al.
(2011a)]

vt +a(vvx − vxx)+(g− cx)vx − cv+2( f −2bx) =−2
(

ut −Qu
u

)
x

if
v =−2

ux

u
(The Cole–Hopf transformation) (8.101)
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and
Qu = auxx − (g− cx)ux +

(
d + f x−bx2)u

(a, b, c, d, f , g are functions of t only). The substitution (8.101) turns the nonlinear
Burgers-type equation (8.100) into the diffusion-type equation (8.81). Show that the
solution of the Cauchy initial value problem can be represented as

v(x, t) =−2
∂
∂x

ln
[∫ ∞

−∞
K0 (x,y, t)exp

(
−1

2

∫ y

−∞
v(z,0) dz

)
dy
]
,

where the heat kernel is given by (8.90), for suitable initial data v(z,0) on R.
Now we consider from a united viewpoint several elementary diffusion-type

equations (8.81) that are important in applications.

Problem 10 Show that for the standard diffusion equation

∂u
∂ t

= a
∂ 2u
∂x2 , a = constant > 0, (8.102)

the heat kernel is given by

K (x,y, t) =
1√

4πat
exp

(
− (x− y)2

4at

)
, t > 0. (8.103)

(See [Cannon (1984)] and references therein for a detailed investigation of the clas-
sical one-dimensional heat equation.)

Problem 11 In the mathematical description of the nerve cell. a dendritic
branch is typically modeled using the cylindrical cable equation [Jack, Noble, &
Tsien (1983)]

τ
∂u
∂ t

= λ 2 ∂ 2u
∂x2 , τ = constant > 0. (8.104)

Show that the fundamental solution on R is given by

K0 (x,y, t) =
√

τet/τ
√

4πλ 2t
exp

[
−τ (x− y)2

4λ 2t

]
, t > 0. (8.105)

Problem 12 Show that the fundamental solution of the Fokker–Planck equation

∂u
∂ t

=
∂ 2u
∂x2 + x

∂u
∂x

+u (8.106)

on R is given by [Suazo et al. (2011a)]

K0 (x,y, t) =
1√

2π (1− e−2t)
exp

[
− (x− e−ty)2

2(1− e−2t)

]
, t > 0. (8.107)
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Here,

lim
t→0+

K0 (x,y, t) =
e−x2/2
√

2π
, y = constant. (8.108)

Problem 13 Equation

∂u
∂ t

= a
∂ 2u
∂x2 +(g− kx)

∂u
∂x

, a,k > 0, g ≥ 0, (8.109)

corresponds to the heat equation with linear drift when g = 0 [Miller (1977)].
In stochastic differential equations this equation corresponds to the Kolmogorov
forward equation for the regular Ornstein–Uhlenbeck process [Craddock (2009)].
Show that the fundamental solution is given by

K0 (x,y, t)=

√
kekt/2√

4πasinh(kt)
exp

[
−
(
k
(
xe−kt/2 − yekt/2

)
+2gsinh(kt/2)

)2

4ak sinh(kt)

]
, t >0.

See [Craddock (2009), Suazo, Suslov, Vega-Guzmán (2010)] for more details.
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Disease Transmission Models



Chapter 9

Epidemic Models

9.1 Introduction to Epidemic Models

Communicable diseases such as measles, influenza, and tuberculosis are a fact of
life. We will be concerned with both epidemics, which are sudden outbreaks of a
disease, and endemic situations, in which a disease is always present. The AIDS
epidemic, the recent SARS epidemic, recurring influenza pandemics, and outbursts
of diseases such as the Ebola virus are events of concern and interest to many peo-
ple. The prevalence and effects of many diseases in less-developed countries are
probably not as well known but may be of even more importance. Every year mil-
lions, of people die of measles, respiratory infections, diarrhea, and other diseases
that are easily treated and not considered dangerous in the Western world. Diseases
such as malaria, typhus, cholera, schistosomiasis, and sleeping sickness are endemic
in many parts of the world. The effects of high disease mortality on mean life span
and of disease debilitation and mortality on the economy in afflicted countries are
considerable.

We give a brief introduction to the modeling of epidemics; more thorough de-
scriptions may be found in such references as [Anderson & May (1991), Diekmann
& Heesterbeek (2000)]. This chapter will describe models for epidemics, and the
next chapter will deal with models for endemic situations, but we begin with some
general ideas about disease transmission.

The idea of invisible living creatures as agents of disease goes back at least to
the writings of Aristotle (384 BC–322 BC). It developed as a theory in the sixteenth
century. The existence of microorganisms was demonstrated by van Leeuwenhoek
(1632–1723) with the aid of the first microscopes. The first expression of the germ
theory of disease by Jacob Henle (1809–1885) came in 1840 and was developed by
Robert Koch (1843–1910), Joseph Lister (1827–1912), and Louis Pasteur (1822–
1875) in the latter part of the nineteenth century and the early part of the twentie/th
century.

The mechanism of transmission of infections is now known for most diseases.
Generally, diseases transmitted by viral agents, such as influenza, measles, rubella
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(German measles), and chicken pox, confer immunity against reinfection, while dis-
eases transmitted by bacteria , such as tuberculosis, meningitis, and gonorrhea, con-
fer no immunity against reinfection. Other human diseases, such as malaria, are
transmitted not directly from human to human but by vectors, agents (usually in-
sects) that are infected by humans and who then transmit the disease to humans.
There are also diseases such as West Nile virus, that are transmitted back and forth
between animals and vectors. Heterosexual transmission of HIV/AIDS is also a vec-
tor process in which transmission goes back and forth between males and females.

We will focus on the transmission dynamics of an infection from individual to
individual in a population, but many of the same ideas arise in transmission of a
genetic characteristic, such as gender, race, genetic diseases, a cultural “character-
istic,” such as language or religion, an addictive activity, such as drug use, and the
gain or loss of information communicated through gossip, rumors, and so on.

Similarly, many of the ideas arise also with different characterizations of what
is meant by an individual, including the types of cells in the study of disease dy-
namics of the immune system. In the study of Chagas disease, a “house” (infested
houses may correspond to “infected” individuals) may be chosen as an epidemio-
logical unit; in tuberculosis, a household or community or a group of strongly linked
individuals (“cluster”) may be the chosen unit.

An epidemic, which acts on a short temporal scale, may be described as a sudden
outbreak of a disease that infects a substantial portion of the population in a region
before it disappears. Epidemics usually leave many members untouched. Often these
attacks recur with intervals of several years between outbreaks, possibly diminishing
in severity as populations develop some immunity. This is an important aspect of the
connection between epidemics and disease evolution.

The historian W.H. McNeill argues, especially in his book Plagues and Peoples
(1976), that the spread of communicable diseases frequently has been an important
influence in history. For example, there was a sharp population increase throughout
the world in the eighteenth century; the population of China increased from 150
million in 1760 to 313 million in 1794, and the population of Europe increased
from 118 million in 1700 to 187 million in 1800. There were many factors involved
in this increase, including changes in marriage age and technological improvements
leading to increased food supplies, but these factors are not sufficient to explain
the increase. Demographic studies indicate that a satisfactory explanation requires
recognition of a decrease in the mortality caused by periodic epidemic infections.
This decrease came about partly through improvements in medicine, but a more
important influence was probably the fact that more people developed immunities
against infection as increased travel intensified the circulation and cocirculation of
diseases.

There are many biblical references to diseases as historical influences. The Book
of Exodus describes the plagues that were brought down upon Egypt in the time
of Moses. Another example is the decision of Sennacherib, the king of Assyria, to
abandon his attempt to capture Jerusalem about 700 BC because of the illness of
his soldiers (Isaiah 37, 36-38), and there are several other biblical descriptions of
epidemic outbreaks.
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The fall of empires has been attributed directly or indirectly to epidemic dis-
eases. In the second century AD, the so-called Antonine plagues (possibly measles

nomic hardships leading to disintegration of the empire because of disorganization,
which facilitated invasions of barbarians. The Han Empire in China collapsed in the
third century AD after a very similar sequence of events. The defeat of a population
of millions of Aztecs by Cortez and his 600 followers can be explained, in part,
by a smallpox epidemic that devastated the Aztecs but had almost no effect on the
invading Spaniards, thanks to their built-in immunities. The Aztecs were not only
weakened by disease but also confounded by what they interpreted as a divine force
favoring the invaders. Smallpox then spread southward to the Incas in Peru and was
an important factor in the success of Pizarro’s invasion a few years later. smallpox
was followed by other diseases such as measles and diphtheria imported from Eu-
rope to North America. In some regions, the indigenous populations were reduced
to one-tenth of their previous levels by these diseases: Between 1519 and 1530 the
Indian population of Mexico was reduced from 30 million to 3 million.

The Black Death (probably bubonic plague) spread from Asia throughout Europe
in several waves during the fourteenth century, beginning in 1346, and is estimated
to have caused the death of as much as one-third of the population of Europe be-
tween 1346 and 1350. The disease recurred regularly in various parts of Europe
for more than 300 years, notably as the Great Plague of London of 1665–1666. It
then gradually withdrew from Europe. Since the plague struck some regions harshly
while avoiding others, it had a profound effect on political and economic devel-
opments in medieval times. In the last bubonic plague epidemic in France (1720–
1722), half the population of Marseilles, 60 percent of the population in nearby
Toulon, 44 per cent of the population of Arles, and 30 percent of the population
of Aix and Avignon died, but the epidemic did not spread beyond Provence. Ex-
pansions and interpretations of these historical remarks may be found in McNeill
(1976), which was our primary source on the history of the spread and effects of
diseases.

The above examples depict the sudden dramatic impact that diseases have had on
the demography of human populations via disease-induced mortality. In considering
the combined role of diseases, war, and natural disasters on mortality rates, one may
conclude that historically humans who are more likely to survive and reproduce have
either a good immune system, a propensity to avoid war and disasters, or, nowadays,
excellent medical care and/or health insurance.

Descriptions of epidemics in ancient and medieval times frequently used the term
“plague” because of a general belief that epidemics represented divine retribution
for sinful living. More recently, some have described AIDS as punishment for sin-
ful activities. Such views have often hampered or delayed attempts to control this
modern epidemic.

There are many questions of interest to public health physicians confronted with
a possible epidemic. For example, how severe will an epidemic be? This question
may be interpreted in a variety of ways. For example, how many individuals will
be affected and require treatment? What is the maximum number of people needing

and) invaded the Roman Empire, causing drastic population reductions and eco-
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care at any particular time? How long will the epidemic last? How much good would
quarantine of victims do in reducing the severity of the epidemic?

Scientific experiments usually are designed to obtain information and to test hy-
potheses. Experiments in epidemiology with controls are often difficult or impossi-
ble to design, and even if it is possible to arrange an experiment, there are serious
ethical questions involved in withholding treatment from a control group. Some-
times data may be obtained after the fact from reports of epidemics or of endemic
disease levels, but the data may be incomplete or inaccurate. In addition, data may
contain enough irregularities to raise serious questions of interpretation, such as
whether there is evidence of chaotic behavior [Ellner, Gallant, and Theiler (1995)].
Hence, parameter estimation and model fitting are very difficult. These issues raise
the question whether mathematical modeling in epidemiology is of value.

Mathematical modeling in epidemiology provides understanding of the underly-
ing mechanisms that influence the spread of disease, and in the process, it suggests
control strategies. In fact, models often identify behaviors that are unclear in experi-
mental data–often because data are nonreproducible and the number of data points is
limited and subject to errors in measurement. For example, one of the fundamental
results in mathematical epidemiology is that most mathematical epidemic models,
including those that include a high degree of heterogeneity, usually exhibit “thresh-
old” behavior, which in epidemiological terms can be stated as follows: If the aver-
age number of secondary infections caused by an average infective is less than one,
a disease will die out, while if it exceeds one there will be an epidemic. This broad
principle, consistent with observations and quantified via epidemiological models,
has been used routinely to estimate the effectiveness of vaccination policies and the
likelihood that a disease may be eliminated or eradicated. Hence, even if it is not
possible to verify hypotheses accurately, agreement with hypotheses of a qualitative
nature is often valuable. Expressions for the basic reproductive number for HIV in
various populations is being used to test the possible effectiveness of vaccines that
may provide temporary protection by reducing either HIV-infectiousness or suscep-
tibility to HIV. Models are used to estimate how widespread a vaccination plan must
be to prevent or reduce the spread of HIV.

In the mathematical modeling of disease transmission, as in most other areas of
mathematical modeling, there is always a trade-off between simple models, which
omit most details and are designed only to highlight general qualitative behavior,
and detailed models, usually designed for specific situations including short-term
quantitative predictions. Detailed models are generally difficult or impossible to
solve analytically and hence their usefulness for theoretical purposes is limited, al-
though their strategic value may be high. For public health professionals, who are
faced with the need to make recommendations for strategies to deal with a specific
situation, simple models are inadequate and numerical simulation of detailed models
is necessary. In this chapter, we concentrate on simple models in order to establish
broad principles. Furthermore, these simple models have additional value since they
are the building blocks of models that include detailed structure. A specific goal
is to compare the dynamics of simple and slightly more detailed models primarily
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to see whether slightly different assumptions can lead to significant differences in
qualitative behavior.

Many of the early developments in the mathematical modeling of communicable
diseases are due to public health physicians. The first known result in mathematical
epidemiology is a defense of the practice of inoculation against smallpox in 1760 by

over three generations) who had been trained as a physician. The first contributions
to modern mathematical epidemiology are due to P.D. En’ko between 1873 and
1894 [Dietz (1988)], and the foundations of the entire approach to epidemiology
based on compartmental models were laid by public health physicians such as Sir
R.A. Ross, W.H. Hamer, A.G. McKendrick, and W.O. Kermack between 1900 and
1935, along with important contributions from a statistical perspective by J. Brown-
lee. A particularly instructive example is the work of Ross on malaria. Dr. Ross
was awarded the second Nobel Prize in Medicine for his demonstration of the dy-
namics of the transmission of malaria between mosquitoes and humans. Although
his work received immediate acceptance in the medical community, his conclusion
that malaria could be controlled by controlling mosquitoes was dismissed on the
grounds that it would be impossible to rid a region of mosquitoes completely and
that in any case, mosquitoes would soon reinvade the region. After Ross formu-
lated a mathematical model that predicted that malaria outbreaks could be avoided
if the mosquito population could be reduced below a critical threshold level, field
trials supported his conclusions and led to sometimes brilliant successes in malaria
control. Unfortunately, the Garki project provides a dramatic counterexample. This
project worked to eradicate malaria from a region temporarily. However, people
who have recovered from an attack of malaria have a temporary immunity against
reinfection. Thus elimination of malaria from a region leaves the inhabitants of this
region without immunity when the campaign ends, and the result can be a serious
outbreak of malaria.

We formulate our descriptions as compartmental models, with the population un-
der study being divided into compartments and with assumptions about the nature
and time rate of transfer from one compartment to another. Diseases that confer im-
munity have a different compartmental structure from diseases without immunity
and from diseases transmitted by vectors. The rates of transfer between compart-
ments are expressed mathematically as derivatives with respect to time of the sizes
of the compartments, and as a result our models are formulated initially as differ-
ential equations. Models in which the rates of transfer depend on the sizes of com-
partments over the past as well as at the instant of transfer lead to more general
types of functional equations, such as differential–difference equations and integral
equations.

In this chapter we describe models for epidemics, acting on a sufficiently rapid
time scale that demographic effects, such as births, natural deaths, immigration into
and emigration out of a population may be ignored. In the next chapter we will
describe models in which demographic effects are included.

Daniel Bernouilli, a member of a famous family of mathematicians (eight spread
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9.2 The Simple Kermack–McKendrick Epidemic Model

Throughout history, epidemics have had major effects on the course of events. For
example, the Black Death, now identified as probably having been the bubonic
plague which had actually invaded Europe as early as the sixth century, spread from
Asia throughout Europe in several waves during the fourteenth century, beginning in
1346, and is estimated to have caused the death of as much as one third of the popu-
lation of Europe between 1346 and 1350. The disease recurred regularly in various
parts of Europe for more than 300 years, notably as the Great Plague of London of
1665–1666. It then gradually withdrew from Europe.

More than 15% of the population of London died in the Great Plague (1665–
1666). It appeared quite suddenly, grew in intensity, and then disappeared, leaving
part of the population untouched. One of the early triumphs of mathematical epi-
demiology was the formulation of a simple model by Kermack and McKendrick
(1927) whose predictions are very similar to this behavior, observed in countless
epidemics. The Kermack–McKendrick model is a compartmental model based on
relatively simple assumptions on the rates of flow between different classes of mem-
bers of the population.

In order to model such an epidemic we divide the population being studied into
three classes labeled S, I, and R. We let S(t) denote the number of individuals who
are susceptible to the disease, that is, who are not (yet) infected at time t. I(t) de-
notes the number of infected individuals, assumed infectious and able to spread the
disease by contact with susceptibles. R(t) denotes the number of individuals who
have been infected and then removed from the possibility of being infected again or
of spreading infection. Removal is carried out through isolation from the rest of the
population, through immunization against infection, through recovery from the dis-
ease with full immunity against reinfection, or through death caused by the disease.
These characterizations of removed members are different from an epidemiological
perspective but are often equivalent from a modeling point of view that takes into
account only the state of an individual with respect to the disease.

We will use the terminology SIR to describe a disease that confers immunity
against reinfection, to indicate that the passage of individuals is from the suscep-
tible class S to the infective class I to the removed class R. Epidemics are usually
diseases of this type. We would use the terminology SIS to describe a disease with
no immunity against re-infection, to indicate that the passage of individuals is from
the susceptible class to the infective class and then back to the susceptible class.
Usually, diseases caused by a virus are of SIR type, while diseases caused by bacte-
ria are of SIS type.

In addition to the basic distinction between diseases for which recovery confers
immunity against reinfection and diseases for which recovered members are suscep-
tible to reinfection, and the intermediate possibility of temporary immunity signified
by a model of SIRS type, more complicated compartmental structure is possible. For
example, there are SEIR and SEIS models, with an exposed period between being
infected and becoming infective.
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When there are only a few infected members, the start of a disease outbreak de-
pends on random contacts between small numbers of individuals. In the next section
we will use this to describe an approach to the study of the beginning of a disease
outbreak by means of branching processes, but we begin with a description of de-
terministic compartmental models.

The independent variable in our compartmental models is the time t, and the
rates of transfer between compartments are expressed mathematically as derivatives
with respect to time of the sizes of the compartments, and as a result our models are
formulated initially as differential equations.

We are assuming that the epidemic process is deterministic, that is, that the be-
havior of a population is determined completely by its history and by the rules that
describe the model. In formulating models in terms of the derivatives of the sizes of
each compartment we are also assuming that the number of members in a compart-
ment is a differentiable function of time. This assumption is plausible once a disease
outbreak has become established but is not valid at the beginning of a disease out-
break when there are only a few infectives. In the next section we will describe a
different approach for the initial stage of a disease outbreak.

The basic compartmental models to describe the transmission of communicable
diseases are contained in a sequence of three papers by W.O. Kermack and A.G.
McKendrick in 1927, 1932, and 1933. The first of these papers described epidemic
models. What is often called the Kermack–McKendrick epidemic model is actually
a special case of the general model introduced in this paper. The general model
included dependence on age of infection, that is, the time since becoming infected,
and can be used to provide a unified approach to compartmental epidemic models.

The special case of the model proposed by Kermack and McKendrick in 1927,
which is the starting point for our study of epidemic models, is

S′ = −βSI,

I′ = βSI −αI, (9.1)
R′ = αI .

A flow chart is shown in Figure 9.1. It is based on the following assumptions:

Fig. 9.1 Flow chart for the SIR model.

(i) An average member of the population makes contact sufficient to transmit in-
fection with βN others per unit time, where N represents total population size
(mass action incidence).
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(ii) Infectives leave the infective class at rate αI per unit time.
(iii) There is no entry into or departure from the population, except possibly through

death from the disease.
(iv) There are no disease deaths, and the total population size is a constant N.

According to (i), since the probability that a random contact by an infective is
with a susceptible, who can then transmit infection, is S/N, the number of new in-
fections in unit time per infective is (βN)(S/N), giving a rate of new infections
(βN)(S/N)I = βSI. Alternatively, we may argue that for a contact by a suscep-
tible the probability that this contact is with an infective is I/N and thus the rate
of new infections per susceptible is (βN)(I/N), giving a rate of new infections
(βN)(I/N)S = βSI. Note that both approaches give the same rate of new infec-
tions; in models with more complicated compartmental structure one may be more
appropriate than the other.

We need not give an algebraic expression for N, since it cancels out of the final
model, but we should note that for an SIR disease model, N = S+ I +R. Later, we
will allow the possibility that some infectives recover while others die of the disease.
The hypothesis (iii) really says that the time scale of the disease is much faster than
the time scale of births and deaths, so that demographic effects on the population
may be ignored. An alternative view is that we are interested only in studying the
dynamics of a single epidemic outbreak.

The assumption (ii) requires a fuller mathematical explanation, since the assump-
tion of a recovery rate proportional to the number of infectives has no clear epidemi-
ological meaning. We consider the “cohort” of members who were all infected at
one time and let u(s) denote the number of these who are still infective s time units
after having been infected. If a fraction α of these leave the infective class in unit
time, then

u′ =−αu ,

and the solution of this elementary differential equation is

u(s) = u(0)e−αs .

Thus, the fraction of infectives remaining infective s time units after having become
infective is e−αs, so that the length of the infective period is distributed exponentially
with mean

∫ ∞
0 e−αsds = 1/α , and this is what (ii) really assumes. If we assume,

instead of (ii), that the fraction of infectives remaining infective a time τ after having
become infective is P(τ), the second equation of (9.1) would be replaced by the
integral equation

I(t) = I0(t)+
∫ ∞

0
βS(t − τ)I(t − τ)P(τ)dτ,

where I0(t) represents the members of the population who were infective at time
t = 0 and are still infective at time t.

The assumptions of a rate of contacts proportional to population size N with
constant of proportionality β and of an exponentially distributed recovery rate are
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unrealistically simple. More general models can be constructed and analyzed, but
our goal here is to show what may be deduced from extremely simple models. It
will turn out that that many more realistic models exhibit very similar qualitative
behaviors.

In our model R is determined once S and I are known, and we can drop the R
equation from our model, leaving the system of two equations

S′ = −βSI, (9.2)
I′ = (βS−α)I ,

together with initial conditions

S(0) = S0, I(0) = I0, S0 + I0 = N.

We think of introducing a small number of infectives into a population of suscep-
tibles and ask whether there will be an epidemic. We remark that the model makes
sense only so long as S(t) and I(t) remain nonnegative. Thus if either S(t) or I(t)
reaches zero, we consider the system to have terminated. We observe that S′ < 0 for
all t and I′ > 0 if and only if S > α/β . Thus I increases so long as S > α/β , but
since S decreases for all t, I ultimately decreases and approaches zero. If S0 <α/β , I
decreases to zero (no epidemic), while if S0 > α/β , I first increases to a maximum
attained when S = α/β and then decreases to zero (epidemic).

The quantity βS0/α is a threshold quantity, called the basic reproduction num-
ber [Heesterbeek (1996)] and denoted by R0, which determines whether there is an
epidemict. If R0 < 1, the infection dies out, while if R0 > 1, there is an epidemic.
The definition of the basic reproduction number R0 is that it is the number of sec-
ondary infections caused by a single infective introduced into a wholly susceptible
population of size N ≈ S0 over the course of the infection of this single infective.
In this situation, an infective makes βN contacts in unit time, all of which are with
susceptibles and thus produce new infections, and the mean infective period is 1/α;
thus the basic reproduction number is actually βN/α rather than βS0/α . Another
way to view this apparent discrepancy is to consider two ways in which an epidemic
may begin. One way is an epidemic started by a member of the population being
studied, for example by returning from travel with an infection acquired away from
home. In this case we would have I0 > 0,S0 + I0 = N. A second way is for an epi-
demic to be started by a visitor from outside the population. In this case, we would
have S0 = N.

Since (9.2) is a two-dimensional autonomous system of differential equations,
the natural approach would be to find equilibria and linearize about each equilibrium
to determine its stability. However, since every point with I = 0 is an equilibrium,
the system (9.2) has a line of equilibria, and this approach is not applicable (the
linearization matrix at each equilibrium has a zero eigenvalue).

Fortunately, there is an alternative approach that enables us to analyze the system
(9.2). The sum of the two equations of (9.2) is

(S+ I)′ =−αI.
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Thus S + I is a nonnegative smooth decreasing function and therefore tends to a
limit as t → ∞. Also, it is not difficult to prove that the derivative of a nonnegative
smooth decreasing function must tend to zero, and this shows that

I∞ = lim
t→∞

I(t) = 0.

Thus S+ I has limit S∞.
Integration of the sum of the two equations of (9.2) from 0 to ∞ gives

α
∫ ∞

0
(S(t)+ I(t))dt = S0 + I0 −S∞ = N −S∞.

Division of the first equation of (9.2) by S and integration from 0 to ∞ gives

log
S0

S∞
= β

∫ ∞

0
I(t)dt =

β
α
[N −S∞] = R0

[
1− S∞

N

]
. (9.3)

Equation (9.3) is called the final size relation. It gives a relationship between the
basic reproduction number and the size of the epidemic. Note that the final size of
the epidemic, the number of members of the population who are infected over the
course of the epidemic, is N−S∞. This is often described in terms of the attack rate
(1−S∞/N). [Technically, the attack rate should be called an attack ratio, since it is
dimensionless and is not a rate.]

The final size relation (9.3) can be generalized to epidemic models with more
complicated compartmental structure than the simple SIR model (9.2), including
models with exposed periods, treatment models, and models including quarantine of
suspected individuals and isolation of diagnosed infectives. The original Kermack–
McKendrick model (1927) included dependence on the time since becoming in-
fected (age of infection), and this includes such models.

Integration of the first equation of (9.2) from 0 to t gives

log
S0

S(t)
= β

∫ t

0
I(t)dt =

β
α
[N −S(t)− I(t)],

and this leads to the form

I(t)+S(t)− α
β

logS(t) = N − α
β

logS0. (9.4)

This implicit relation between S and I describes the orbits of solutions of (9.2) in
the (S, I) plane.

In addition, since the right side of (9.3) is finite, the left side is also finite, and
this shows that S∞ > 0. The final size relation (9.3) is valid for a large variety of
epidemic models, as we shall see in later sections.

It is not difficult to prove that there is a unique solution of the final size relation
(9.3). To see this, we define the function
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g(x) = log
S0

x
−R0

[
1− x

N

]
.

Fig. 9.2 The function g(x).

Then, as shown in Figure 9.2,

g(0+)> 0, g(N)< 0,

and g′(x)< 0 if and only if

0 < x <
N
R0

.

If R0 ≤ 1,g(x) is monotone decreasing from a positive value at x = 0+ to a negative
value at x = N. Thus there is a unique zero S∞ of g(x) with S∞ < N.

If R0 > 1,g(x) is monotone decreasing from a positive value at x = 0+ to a
minimum at x = N/R0 and then increases to a negative value at x = N0. Thus there
is a unique zero S∞ of g(x) with

S∞ <
N
R0

.

In fact,

g
(

S0

R0

)
= logR0 −R0 +

S0

N
≤ logR0 −R0 +1.

Since logR0 < R0 −1 for R0 > 0, we actually have

g
(

S0

R0

)
< 0,

and
S∞ <

S0

R0
.
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It is generally difficult to estimate the contact rate β , which depends on the par-
ticular disease being studied but may also depend on social and behavioral factors.
The quantities S0 and S∞ may be estimated by serological studies (measurements of
immune responses in blood samples) before and after an epidemic, and from these
data the basic reproduction number R0 may be estimated using (9.3). This estimate,
however, is a retrospective one, which can be derived only after the epidemic has
run its course.

The maximum number of infectives at any time is the number of infectives when
the derivative of I is zero, that is, when S = α/β . This maximum is given by

Imax = S0 + I0 − α
β

logS0 − α
β
+

α
β

log
α
β
, (9.5)

obtained by substituting S = α/β , I = Imax into (9.4).

Example 1. A study of Yale University freshmen [Evans (1982), reported by Het-
hcote(1989)] described an influenza epidemic with S0 = 0.911, S∞ = 0.513. Here
we are measuring the number of susceptibles as a fraction of the total population
size, or using the population size K as the unit of size. Substitution into the final
size relation gives the estimate β/α = 1.18 and R0 = 1.18. Since we know that τ
is approximately 3 days for influenza, we see that β is approximately 0.48 contacts
per day per member of the population.

Example 2. (The Great Plague in Eyam) The village of Eyam near Sheffield, Eng-
land, suffered an outbreak of bubonic plague in 1665–1666 the source of which is
generally believed to be the Great Plague of London. The Eyam plague was survived
by only 83 of an initial population of 350 persons. Since detailed records were pre-
served and the community was persuaded to quarantine itself to try to prevent the
spread of disease to other communities, the disease in Eyam has been used as a case
study for modeling [Raggett (1982)]. Detailed examination of the data indicates that
there were actually two outbreaks, of which the first was relatively mild. Thus we
shall try to fit the model (9.2) over the period from mid-May to mid-October 1666,
measuring time in months with an initial population of 7 infectives and 254 suscep-
tibles, and a final population of 83. Raggett (1982) gives values of susceptibles and
infectives in Eyam on various dates, beginning with S(0) = 254, I(0) = 7, shown in
Table 9.1.

The final size relation with S0 = 254, I0 = 7, S∞ = 83 gives β/α = 6.54×10−3,
α/β = 153. The infective period was 11 days, or 0.3667 month, so that α = 2.73.
Then β = 0.0178. The relation (9.5) gives an estimate of 30.4 for the maximum
number of infectives. We use the values obtained here for the parameters β and τ
in the model (9.2) for simulations of both the phase plane, here the (S, I)-plane, and
for graphs of S and I as functions of t (Figures 9.3, 9.4, 9.5). Figure 9.6 plots these
data points together with the phase portrait given in Figure 9.3 for the model (9.2).

The actual data for the Eyam epidemic are remarkably close to the predictions
of this very simple model. However, the model is really too good to be true. Our
model assumes that infection is transmitted directly between people. While this is
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Date (1666) Susceptibles Infectives

July 3/4 235 14.5
July 19 201 22
August 3/4 153.5 29
August 19 121 21
September 3/4 108 8
September 19 97 8
October 4/5 Unknown Unknown
October 20 83 0

Table 9.1 Eyam Plague data.
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Fig. 9.3 The S-I plane.

possible, bubonic plague is transmitted mainly by rat fleas. When an infected rat is
bitten by a flea, the flea becomes extremely hungry and bites the host rat repeat-
edly, spreading the infection in the rat. When the host rat dies, its fleas move on to
other rats, spreading the disease further. As the number of available rats decreases,
the fleas move to human hosts, and this is how plague starts in a human population
(although the second phase of the epidemic may have been the pneumonic form of
bubonic plague, which can be spread from person to person). One of the main rea-
sons for the spread of plague from Asia into Europe was the passage of many trading
ships; in medieval times ships were invariably infested with rats. An accurate model
of plague transmission would have to include flea and rat populations, as well as
movement in space. Such a model would be extremely complicated, and its predic-
tions might well not be any closer to observations than our simple unrealistic model.
Very recent study of the data from Eyam suggests that the rat population may not
have been large enough to support the epidemic and human to human transmission
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Fig. 9.5 I as a function of t.

was also a factor. Raggett (1982) also used a stochastic model to fit the data, but the
fit was rather poorer than the fit for the simple deterministic model(9.2).

In the village of Eyam the rector persuaded the entire community to quarantine
itself to prevent the spread of disease to other communities. One effect of this pol-
icy was to increase the infection rate in the village by keeping fleas, rats, and people
in close contact with one another, and the mortality rate from bubonic plague was
much higher in Eyam than in London. Further, the quarantine could do nothing to
prevent the travel of rats and thus did little to prevent the spread of disease to other
communities. One message this suggests to mathematical modelers is that control
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Fig. 9.6 The S-I plane, model and data.

strategies based on false models may be harmful, and it is essential to distinguish be-
tween assumptions that simplify but do not alter the predicted effects substantially,
and wrong assumptions that make an important difference.

In order to prevent the occurrence of an epidemic if infectives are introduced
into a population, it is necessary to reduce the basic reproductive number R0 below
one. This may sometimes be achieved by immunization, which has the effect of
transferring members of the population from the susceptible class to the removed
class and thus of reducing S(0). If a fraction p of the population is successfully
immunized, the effect is to replace S(0) by S(0)(1 − p), and thus to reduce the
basic reproductive number to βS(0)(1− p)/α . The requirement βS(0)(1− p)/α <
1 gives 1− p < α/βS(0), or

p > 1− α
βS(0)

= 1− 1
R0

.

A large basic reproductive number means that the fraction that must be immunized
to prevent the spread of infection is large. This relation is connected to the idea of
herd immunity, which we shall introduce in the next chapter.

Initially, the number of infectives grows exponentially because the equation for
I may be approximated by

I′ = (βN −α)I

and the initial growth rate is

r = βN −α = α(R0 −1) .

This initial growth rate r may be determined experimentally when an epidemic be-
gins. Then since N and α may be measured, β may be calculated as
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β =
r+α

N
.

However, because of incomplete data and underreporting of cases, this estimate may
not be very accurate. This inaccuracy is even more pronounced for an outbreak of
a previously unknown disease, where early cases are likely to be misdiagnosed.
Because of the final size relation, estimation of β or R0 is an important question
that has been studied by a variety of approaches.

There are serious shortcomings in the simple Kermack–McKendrick model as
a description of the beginning of a disease outbreak, and a very different kind of
model is required.

Exercises

1. The same survey of Yale students described in Example 1 reported that 91.1
percent were susceptible to influenza at the beginning of the year and 51.4
percent were susceptible at the end of the year. Estimate the basic reproductive
number β/α and decide whether there was an epidemic.

2. What fraction of Yale students in Exercise 1 would have had to be immunized
to prevent an epidemic?

3. What was the maximum number of Yale students in Exercises 1 and 2 suffering
from influenza at any time?

4. An influenza epidemic was reported at an English boarding school in 1978 that
spread to 512 of the 763 students. Estimate the basic reproductive number β/α .

5. What fraction of the boarding school students in Exercise 4 would have had to
be immunized to prevent an epidemic?

6. What was the maximum number of boarding school students in Exercises 4 and
5 suffering from influenza at any time?

7. A disease is introduced by two visitors into a town with 1200 inhabitants. An
average infective is in contact with 0.4 inhabitants per day. The average du-
ration of the infective period is 6 days, and recovered infectives are immune
against reinfection. How many inhabitants would have to be immunized to
avoid an epidemic?

8. Consider a disease with β = 1/3000, 1/α = 6 days in a population of 1200
members. Suppose the disease conferred immunity on recovered infectives.
How many members would have to be immunized to avoid an epidemic?

9. A disease begins to spread in a population of 800. The infective period has an
average duration of 14 days and the average infective is in contact with 0.1
persons per day. What is the basic reproductive number? To what level must
the average rate of contact be reduced so that the disease will die out?

10. European fox rabies is estimated to have a transmission coefficient β of 80 km2

years/fox and an average infective period of 5 days. There is a critical carrying
capacity Kc measured in foxes per km2, such that in regions with fox density
less than Kc, rabies tends to die out, while in regions with fox density greater
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than Kc, rabies tends to persist. Estimate Kc. [Remark: It has been suggested
in Great Britain that hunting to reduce the density of foxes below the critical
carrying capacity would be a way to control the spread of rabies.]

11. A large English estate has a population of foxes with a density of 1.3 foxes/km2.
A large fox hunt is planned to reduce the fox population enough to prevent an
outbreak of rabies. Assuming that the contact number β/α is 1 km2/fox, find
what fraction of the fox population must be caught.

12. Following a complaint from the SPCA, organizers decide to replace the fox
hunt of Exercise 1 by a mass inoculation of foxes for rabies. What fraction of
the fox population must be inoculated to prevent a rabies outbreak?

13. What actually occurs on the estate of these exercises is that 10 percent of the
foxes are killed and 15 percent are inoculated. Is there danger of a rabies out-
break.

14. Here is another approach to the analysis of the SIR model (9.2).

(i) Divide the two equations of the model to give

I′

S′
=

dI
dS

=
(βS−α)I
−βSI

=−1+
α
βS

.

(ii) Integrate to find the orbits in the (S, I)-plane,

I =−S+
α
β

logS+ c ,

with c an arbitrary constant of integration.
(iii) Define the function

V (S, I) = S+ I − α
β

logS

and show that each orbit is given implicitly by the equation V (S, I) = c for
some choice of the constant c.

(iv) Show that no orbit reaches the I-axis and deduce that S∞ = limt→∞ S(t)> 0,
which implies that part of the population escapes infection.

9.3 A Branching-Process Disease-Outbreak Model

The Kermack–McKendrick compartmental epidemic model assumes that the sizes
of the compartments are large enough that the mixing of members is homogeneous,
or at least that there is homogeneous mixing in each subgroup if the population is
stratified by activity levels. However, at the beginning of a disease outbreak, there
is a very small number of infective individuals, and the transmission of infection
is a stochastic event depending on the pattern of contacts between members of the
population; a description should take this pattern into account.
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Our approach will be to give a stochastic-branching process description of the
beginning of a disease outbreak to be applied as long as the number of infectives
remains small, distinguishing a (minor) disease outbreak confined to this stage from
a (major) epidemic, which occurs if the number of infectives begins to grow at an
exponential rate. Once an epidemic has started, we may switch to a deterministic
compartmental model, arguing that in a major epidemic, contacts would tend to be
more homogeneously distributed. Implicitly, we are thinking of an infinite popula-
tion, and by a major epidemic we mean a situation in which a nonzero fraction of
the population is infected, and by a minor outbreak we mean a situation in which the
infected population may grow but remains a negligible fraction of the population.

There is an important difference between the behavior of branching process mod-
els and the behavior of models of Kermack–McKendrick type, namely, as we shall
see in this section that for a stochastic disease outbreak model if R0 < 1, the proba-
bility that the infection will die out is 1, but if R0 > 1, there is a positive probability
that the infection will increase initially but will produce only a minor outbreak and
will die out before triggering a major epidemic.

We describe the network of contacts between individuals by a graph with mem-
bers of the population represented by vertices and with contacts between individu-
als represented by edges. The study of graphs originated with the abstract theory of
Erdős and Rényi of the 1950s and 1960s [Erdős and Rényi (1959, 1960, 1961)]. It
has become important in many areas of application, including social contacts and
computer networks, as well as the spread of communicable diseases. We will think
of networks as bidirectional, with disease transmission possible in either direction
along an edge.

An edge is a contact between vertices that can transmit infection. The number of
edges of a graph at a vertex is called the degree of the vertex. The degree distribution
of a graph is {pk}, where pk is the fraction of vertices having degree k. The degree
distribution is fundamental in the description of the spread of disease.

We think of a small number of infectives in a population of susceptibles large
enough that in the initial stage, we may neglect the decrease in the size of the sus-
ceptible population. Our development begins along the lines of that of [Diekmann
and Heesterbeek (2000)] and then develops along the lines of [Callaway, Newman,
Strogatz, and Watts (2000), Newman (2002), Newman, Strogatz, and Watts (2002)].
We assume that the infectives make contacts independently of one another and let pk
denote the probability that the number of contacts by a randomly chosen individual
is exactly k, with ∑∞

k=0 pk = 1. In other words, {pk} is the degree distribution of the
vertices of the graph corresponding to the population network. For the moment, we
assume that every contact leads to an infection, but we will relax this assumption
later.

It is convenient to define the probability generating function

G0(z) =
∞

∑
k=0

pkzk.
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Since ∑∞
k=0 pk = 1, this power series converges for 0 ≤ z ≤ 1, and may be differen-

tiated term by term. Thus

pk =
G(k)

0 (0)
k!

, k = 0,1,2, . . . .

It is easy to verify that the generating function has the properties

G0(0) = p0, G0(1) = 1, G′
0(z)> 0, G′′

0(z)> 0.

The mean degree, which we denote by 〈k〉 or z1, is

〈k > 〉=
∞

∑
k=1

kpk = G′
0(1).

More generally, we define the moments

〈k j〉=
∞

∑
k=1

k j pk, j = 1,2, . . .∞.

When a disease is introduced into a network, we think of it as starting at a vertex
(patient zero) that transmits infection to every individual to whom this individual is
connected, that is, along every edge of the graph from the vertex corresponding to
this individual. We may think of this individual as being inside the population, as
when a member of a population returns from travel after being infected, or as being
outside the population, as when someone visits a population and brings an infection.
For transmission of disease after this initial contact we need to use the excess degree
of a vertex. If we follow an edge to a vertex, the excess degree of this vertex is one
less than the degree. We use the excess degree because infection cannot be trans-
mitted back along the edge whence it came. The probability of reaching a vertex of
degree k, or excess degree (k−1), by following a random edge is proportional to k,
and thus the probability that a vertex at the end of a random edge has excess degree
(k−1) is a constant multiple of kpk with the constant chosen to make the sum over
k of the probabilities equal to 1. Then the probability that a vertex has excess degree
(k−1) is

qk−1 =
kpk

〈k〉 .

This leads to a generating function G1(z) for the excess degree,

G1(z) =
∞

∑
k=1

qk−1zk−1 =
∞

∑
k=1

kpk

〈k〉 zk−1 =
1
〈k〉G′

0(z),

and the mean excess degree, which we denote by 〈ke〉, is
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〈ke〉 = 1
〈k〉

∞

∑
k=1

k(k−1)pk

=
1
〈k〉

∞

∑
k=1

k2 pk − 1
〈k〉

∞

∑
k=1

kpk

=
〈k2〉
〈k〉 −1 = G′

1(1).

We let R0 = G′
1(1), the mean excess degree. This is the mean number of secondary

cases infected by patient zero and is the basic reproduction number as usually de-
fined; the threshold for an epidemic is determined by R0. The quantity 〈ke〉= G′

1(1)
is sometimes written in the form

〈ke〉= G′
1(1) =

z2

z1
,

where z2 = ∑∞
k=1 k(k− 1)pk = 〈k2〉− 〈k〉 is the mean number of second neighbors

of a random vertex.
Our next goal is to calculate the probability that the infection will die out and will

not develop into a major epidemic, proceeding in two steps. First we find the prob-
ability that a secondary infected vertex (a vertex that has been infected by another
vertex in the population) will not spark a major epidemic.

Suppose that the secondary infected vertex has excess degree j. We let zn denote
the probability that this infection dies out within the next n generations. For the
infection to die out in n generations, each of the j secondary infections coming
from the initial secondary infected vertex must die out in (n− 1) generations. The
probability of this is zn−1 for each secondary infection, and the probability that
all secondary infections will die out in (n− 1) generations is z j

n−1. Now zn is the
sum over j of these probabilities, weighted by the probability q j of j secondary
infections. Thus

zn =
∞

∑
j=0

q jz
j
n−1 = G1(zn−1).

Since G1(z) is an increasing function, the sequence zn is an increasing sequence
and has a limit z∞, which is the probability that this infection will die out eventually.
Then z∞ is the limit as n → ∞ of the solution of the difference equation

zn = G1(zn−1), z0 = 0.

Thus z∞ must be an equilibrium of this difference equation, that is, a solution of z =
G1(z). Let w be the smallest positive solution of z = G1(z). Then, because G1(z) is
an increasing function of z, z ≤ G1(z)≤ G1(w) = w for 0 ≤ z ≤ w. Since z0 = 0 < w
and zn−1 ≤ w implies

zn = G1(zn−1)≤ G1(w) = w,

it follows by induction that
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zn ≤ w, n = 0,1, . . . ∞.

From this we deduce that
z∞ = w.

The equation G1(z) = z has a root z = 1, since G1(1) = 1. Because the function
G1(z)− z has a positive second derivative, its derivative G′

1(z)−1 is increasing and
can have at most one zero. This implies that the equation G1(z) = z has at most two
roots in 0 ≤ z ≤ 1. If R0 < 1, the function G1(z)− z has a negative first derivative

G′
1(z)−1 ≤ G′

1(1)−1 = R0 −1 < 0,

and the equation G1(z) = z has only one root, namely z = 1. On the other hand, if
R0 > 1, the function G1(z)− z is positive for z = 0 and negative near z = 1 since it
is zero at z = 1, and its derivative is positive for z < 1 and z near 1. Thus in this case
the equation G1(z) = z has a second root z∞ < 1.

This root z∞ is the probability that an infection transmitted along one of the edges
at the initial secondary vertex will die out, and this probability is independent of the
excess degree of the initial secondary vertex. It is also the probability that an infec-
tion originating outside the population, such as an infection brought from outside
into the population under study, will die out.

Next, we calculate the probability that an infection originating at a primary in-
fected vertex, such as an infection introduced by a visitor from outside the popula-
tion under study, will die out. The probability that the disease outbreak will die out
eventually is the sum over k of the probabilities that the initial infection in a vertex
of degree k will die out, weighted by the degree distribution {pk} of the original
infection, and this is

∞

∑
k=0

pkzk
∞ = G0(z∞).

To summarize this analysis, we see that if R0 < 1, the probability that the in-
fection will die out is 1. On the other hand, if R0 > 1, there is a solution z∞ < 1
of

G1(z) = z,

and there is a probability 1−G0(z∞)> 0 that the infection will persist, and will lead
to an epidemic. However, there is a positive probability G0(z∞) that the infection
will increase initially but will produce only a minor outbreak and will die out before
triggering a major epidemic. This distinction between a minor outbreak and a major
epidemic, and the result that if R0 > 1 there may be only a minor outbreak and
not a major epidemic, are aspects of stochastic models not reflected in deterministic
models.

If contacts between members of the population are random, corresponding to the
assumption of mass action in the transmission of disease, then the probabilities pk
are given by the Poisson distribution
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pk =
e−cck

k!

for some constant c [Brauer, van den Driessche, and Wu (2008), pp. 142–143]. The
generating function for the Poisson distribution is ec(z−1). Then G1(z) = G0(z), and
R0 = c, so that

G1(z) = G0(z) = eR0(z−1).

The commonly observed situation that most infectives do not pass on infection
but there are a few “superspreading events” [Riley et al. (2003)] corresponds to a
probability distribution that is quite different from a Poisson distribution, and could
give a quite different probability that an epidemic will occur. For example, if R0 =
2.5, the assumption of a Poisson distribution gives z∞ = 0.107 and G0(z∞) = 0.107,
so that the probability of an epidemic is 0.893. The assumption that nine out of ten
infectives do not transmit infection while the tenth transmits 25 infections gives

G0(z) = (z25 +9)/10, G1(z) = z24, z∞ = 0, G0(z∞) = 0.9,

from which we see that the probability of an epidemic is 0.1. Another example,
possibly more realistic, is to assume that a fraction (1− p) of the population fol-
lows a Poisson distribution with constant r, while the remaining fraction p consists
of superspreaders each of whom makes L contacts. This would give a generating
function

G0(z) = (1− p)er(z−1) + pzL,

G1(z) =
r(1− p)er(z−1) + pLzL−1

r(1− p)+ pL
,

and

R0 =
r2(1− p)+ pL(L−1)

r(1− p)+ pL
.

For example, if r = 2.2, L = 10, p = 0.01, numerical simulation gives

R0 = 2.5, z∞ = 0.146,

so that the probability of an epidemic is 0.849.
These examples demonstrate that the probability of a major epidemic depends

strongly on the nature of the contact network. Simulations suggest that for a given
value of the basic reproduction number, the Poisson distribution is the one with the
maximum probability of a major epidemic.

It has been observed that in many situations there is a small number of long-range
connections in the graph, allowing rapid spread of infection. There is a high degree
of clustering (some vertices with many edges), and there are short path lengths. Such
a situation may arise if a disease is spread to a distant location by an air traveler.
This type of network is called a small-world network. Long range connections in a
network can increase the likelihood of an epidemic dramatically.
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These examples indicate that the probability of an epidemic depends strongly
on the contact network at the beginning of a disease outbreak. We will not explore
network models further here, but we point out that this is an actively developing
field of science. Some basic references are [Newman (2003, Strogatz (2001)].

9.3.1 Transmissibility

Contacts do not necessarily transmit infection. For each contact between individuals
of whom one has been infected and the other is susceptible, there is a probability
that infection will actually be transmitted. This probability depends on such fac-
tors as the closeness of the contact, the infectivity of the member who has been
infected, and the susceptibility of the susceptible member. We assume that there is
a mean probability T , called the transmissibility, of transmission of infection. The
transmissibility depends on the rate of contacts, the probability that a contact will
transmit infection, the duration time of the infection, and the susceptibility. The de-
velopment in Section 9.2 assumed that all contacts transmit infection, that is, that
T = 1.

In this section, we will continue to assume that there is a network describing the
contacts between members of the population whose degree distribution is given by
the generating function G0(z), but we will assume in addition that there is a mean
transmissibility T .

When disease begins in a network, it spreads to some of the vertices of the net-
work. Edges that are infected during a disease outbreak are called occupied, and the
size of the disease outbreak is the cluster of vertices connected to the initial vertex
by a continuous chain of occupied edges.

The probability that exactly m infections are transmitted by an infective vertex of
degree k is (

k
m

)
T m(1−T )k−m.

We define Γ0(z,T )to be the generating function for the distribution of the number
of occupied edges attached to a randomly chosen vertex, which is the same as the
distribution of the infections transmitted by a randomly chosen individual for any
(fixed) transmissibility T . Then

Γ0(z,T ) =
∞

∑
m=0

[
∞

∑
k=m

pk

(
k
m

)
T m(1−T )(k−m)

]
zm

=
∞

∑
k=0

pk

[
k

∑
m=0

(
k
m

)
(zT )m(1−T )(k−m)

]
(9.6)

=
∞

∑
k=0

pk[zT +(1−T )]k = G0(1+(z−1)T ).
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In this calculation we have used the binomial theorem to see that

k

∑
m=0

(
k
m

)
(zT )m(1−T )(k−m) = [zT +(1−T )]k.

Note that

Γ0(0,T ) = G0(1−T ), Γ0(1,T ) = G0(1) = 1, Γ ′
0 (z,T ) = T G′

0(1+(z−1)T ).

For secondary infections we need the generating function Γ1(z,T ) for the distri-
bution of occupied edges leaving a vertex reached by following a randomly chosen
edge. This is obtained from the excess degree distribution in the same way,

Γ1(z,T ) = G1(1+(z−1)T )

and

Γ1(0,T ) = G1(1−T ), Γ1(1,T ) = G1(1) = 1, Γ ′
1 (z,T ) = T G′

1(1+(z−1)T ).

The basic reproduction number is now

R0 = Γ ′
1 (1,T ) = T G′

1(1).

The calculation of the probability that the infection will die out and will not
develop into a major epidemic follows the same lines as the argument for T = 1.
The result is that if R0 = T G′

1(1)< 1, the probability that the infection will die out
is 1. If R0 > 1, there is a solution z∞(T )< 1 of

Γ1(z,T ) = z,

and a probability 1−Γ0(z∞(T ),T )> 0 that the infection will persist, and will lead to
an epidemic. However, there is a positive probability Γ1(z∞(T ),T ) that the infection
will increase initially but will produce only a minor outbreak and will die out before
triggering a major epidemic.

Another interpretation of the basic reproduction number is that there is a critical
transmissibility Tc defined by

TcG′
1(1) = 1.

In other words, the critical transmissibility is the transmissibility that makes the
basic reproduction number equal to 1. If the mean transmissibility can be decreased
below the critical transmissibility, then an epidemic can be prevented.

The measures used to try to control an epidemic may include contact interven-
tions, that is, measures affecting the network such as avoidance of public gatherings
and rearrangement of the patterns of interaction between caregivers and patients in a
hospital, and transmission interventions such as careful hand washing or face masks
to decrease the probability that a contact will lead to disease transmission.
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Exercises

In each exercise, assume that the transmissibility is 1.

1. Show that it is not possible for a major epidemic to develop unless at least one
member of the contact network has degree at least 3.

2. What is the probability of a major epidemic if every member of the contact
network has degree 3.

3. Consider a truncated Poisson distribution, with

pk =

{
e−cck

k! , k ≤ 10,
0, k > 10.

Estimate (numerically) the probability of a major epidemic if c = 1.5.
4. Show that the probability generating function for an exponential distribution,

given by
pk = (1− e−1/r)e−k/r,)

is

G0(z) =
1− e−1/r

1− ze−1/r .

5. A power law distribution is given by

pk =Ck−α .

For what values of α is it possible to normalize this (i.e., choose C to make
∑ pk = 1?

9.4 Network and Compartmental Epidemic Models

Compartmental models for epidemics are not suitable for describing the beginning
of a disease outbreak because they assume that all members of a population are
equally likely to make contact with a very small number of infectives. Thus, as we
have seen in the preceding section, stochastic branching process models are better
descriptions of the beginning of an epidemic. They allow the possibility that even if
a disease outbreak has a reproduction number greater than 1, it may be only a minor
outbreak and may not develop into a major epidemic. One possible approach to a
more realistic description of an epidemic would be to use a branching process model
initially and then make a transition to a compartmental model when the epidemic has
become established and there are enough infectives that mass action mixing in the
population is a reasonable approximation. Another approach would be to continue
to use a network model throughout the course of the epidemic. In this section we
shall indicate how a compartmental approach and a network approach are related.
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The development is taken from Volz (2008), Miller (2010), and Miller and Volz
(2011).

We assume that there is a known static configuration model (CM) network in
which the probability that a node u has degree ku is P(ku)). We let G0(z) denote the
probability generating function of the degree distribution,

G0(z) =
∞

∑
k=0

pkzk,

with mean degree 〈〉>= G′
0(1).

The per-edge from an infected node is assumed to be β , and it is assumed that
infected nodes recover at a rate α . We use an edge-based compartmental model
because the probability that a random neighbor is infected is not necessarily the
same as the probability that a random individual is infected. We let S(t) denote the
fraction of nodes that are susceptible at time t, I(t) the fraction of nodes that are
infective at time t, and R(t) the fraction of nodes that are recovered at time t. It is
easy to write an equation for R′, the rate at which infectives recover. If we know
S(t), we can find I(t), because a decrease in S gives a corresponding increase in I.
Since

S(t)+ I(t)+R(t) = 1,

we need only find the probability that a randomly selected node is susceptible.
We assume that the hazard of infection for a susceptible node u is proportional

to the degree ku of the node. Each contact is represented by an edge of the network
joining u to a neighboring node. We let ϕI denote the probability that this neighbor
is infective. Then the per-edge hazard of infection is

λE = βϕI .

Assuming that edges are independent, u’s hazard of infection at time t is

λu(t) = kuλE(t) = kuβϕI(t).

Consider a randomly selected node u and let θ(t) be the probability that a random
neighbor has not transmitted infection to u. Then the probability that u is susceptible
is θ ku . Averaging over all nodes, we see that the probability that a random node u is
susceptible is

S(t) =
∞

∑
k=0

P(k)[θ(t)]k = G0(θ(t)). (9.7)

We break θ into three parts,

θ = ϕS +ϕI +ϕR,

with ϕS the probability that a random neighbor v of u is susceptible, ϕI the probabil-
ity that a random neighbor v of u is infective but has not transmitted infection to u,
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and ϕR the probability that a random neighbor v has recovered without transmitting
infection to u. Then the probability that v has transmitted infection to u is 1−θ .

Since infected neighbors recover at rate α , the flux from ϕI to ϕR is αϕI . Thus

ϕ ′
R = αϕI .

It is easy to see from this that
R′ = αI. (9.8)

Since edges from infected neighbors transmit infection at rate β , the flux from
ϕI to (1−θ) is βϕI . Thus

θ ′ =−βϕI . (9.9)

To obtain ϕ ′
I we need the flux into and out of the ϕI compartment. The incoming flux

from ϕS results from infection of the neighbor. The outgoing flux to ϕR corresponds
to recovery of the neighbor without having transmitted infection, and the outgoing
flux to (1−θ) corresponds to transmission without recovery. The total outgoing flux
is (α +β )ϕI .

To determine the flux from ϕS to ϕI , we need the rate at which a neighbor changes
from susceptible to infective. Consider a random neighbor v of u; the probability that
v has degree k iskp(k)/〈k〉. Since there are (k− 1) neighbors of v that could have
infected v, the probability that v is susceptible is θ k−1. Averaging over all k, we see
that the probability that a random neighbor v of u is susceptible is

ϕS =
∞

∑
k=0

kp(k)
〈k〉 θ k−1 =

G′
0(θ)

G′
0(1)

. (9.10)

To calculate ϕR, we note that the flux from ϕI to ϕR and the flux from ϕI to (1−θ)
are proportional with proportionality constant α/β . Since both ϕR and (1−θ) start
at zero,

ϕR =
α
β
(1−θ). (9.11)

Now, using (9.9), (9.10), (9.11), and

ϕI = θ −ϕS −ϕR,

we obtain

θ ′ =−βϕI =−βθ +βϕS +βϕR =−βθ +β
G′

0(θ)
G′

0(1)
+α(1−θ). (9.12)

We now have a dynamic model consisting of equations (9.12), (9.7), (9.8), and
S+ I +R = 1. We wish to show a relationship between this set of equations and the
simple Kermack–McKendrick compartmental model (9.2). In order to accomplish
this, we need only show under what conditions we would have S′ =−βSI.

Differentiating (9.7) and using (9.9), we obtain
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S′ = G′
0(θ)θ

′ =−G′
0(θ)βϕI .

Consider a large population with N members, each making C ≤ N − 1 contacts, so
that

S = θC, G′
0(θ) =

CS
θ

S′(θ),

and
S′ =−βCS

ϕI

θ
.

We now let C → ∞ (which implies N → ∞) in such a way that

β̂ = βC

remains constant. Then
S′ =−β̂

ϕI

θ
.

We will now show that ϕI

θ
≈ 1,

and this will yield the desired approximation

S′ =−β̂SI. (9.13)

The probability that an edge to a randomly chosen node has not transmitted in-
fection is θ (assuming that the given target node cannot transmit infection), and
the probability that in addition it is connected to an infected node is ϕI . Because
β̂ = βC is constant and therefore bounded as C grows, only a fraction no greater
than a constant multiple of I/C of edges to the target node may have transmitted
infection from a node that is still infected. For large values of C,ϕI is approximately
I. Similarly, θ is approximately 1 as C → ∞. Thus ϕI/θ ≈ I as C → ∞. This gives
the desired approximate equation for S. The result remains valid if all degrees are
close to the average degree as the average degree grows.

The edge-based compartmental modeling approach that we have used can be
generalized in several ways. For example, heterogeneity of mixing can be included.
In general, one would expect that early infections would be in individuals having
more contacts, and thus that an epidemic would develop more rapidly than a mass
action compartmental model would predict. When contact duration is significant,
as would be the case in sexually transmitted diseases, an individual with a contact
would play no further role in disease transmission until a new contact is made, and
this can be incorporated in a network model.

The network approach to disease modeling is a rapidly developing field of study,
and there will undoubtedly be fundamental developments in our understanding of
the modeling of disease transmission. Some useful references are [Bansal, Read,
Pourbohloul, and Meyers (2010), Meyers (2007), Meyers et al. (2006), Meyers et
al. (2005), Newman(2001), Newman (2002), Newman, Strogatz, and Watts (2001),
Strogatz (2001)].
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In the remainder of this chapter, we assume that we are in an epidemic situation
following a disease outbreak that has been modeled initially by a branching process.
Thus we return to the study of compartmental models.

9.5 More Complicated Epidemic Models

We have established that the simple Kermack–McKendrick epidemic model (9.2)
has the following basic properties:

1. There is a basic reproduction number R0 such that if R0 < 1, the disease dies
out while if R0 > 1, there is an epidemic.

2. The number of infectives always approaches zero and the number of suscepti-
bles always approaches a positive limit as t → ∞.

3. There is a relationship between the reproduction number and the final size of
the epidemic, which is an equality if there are no disease deaths.

In fact, these properties hold for epidemic models with more complicated com-
partmental structure. We will describe some common epidemic models as examples.

9.5.1 Exposed Periods

In many infectious diseases there is an exposed period after the transmission of in-
fection from susceptibles to potentially infective members but before these potential
infectives develop symptoms and can transmit infection. To incorporate an exposed
period with mean exposed period 1/κ , we add an exposed class E and use compart-
ments S,E, I,R and total population size N = S+E + I +R to give a generalization
of the epidemic model (9.2)

S′ = −βSI,

E ′ = βSI −κE, (9.14)
I′ = κE −αI.

A flow chart is shown in Figure 9.7.

Fig. 9.7 Flow chart for the SEIR model.
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The analysis of this model is the same as the analysis of (9.2), but with I replaced
by E + I. That is, instead of using the number of infectives as one of the variables,
we use the total number of infected members, whether or not they are capable of
transmitting infection.

In some diseases there is some infectivity during the exposed period. This may
be modeled by assuming infectivity reduced by a factor ε during the exposed period.
A calculation of the rate of new infections per susceptible leads to a model

S′ = −βS(I + εE),

E ′ = βS(I + εE)−κE, (9.15)
I′ = κE −αI .

We take initial conditions

S(0) = S0, E(0) = E0, I(0) = I0.

For this model,

R0 =
βN
α

+ ε
βN
κ

.

Integration of the sum of the equations of (9.14) from 0 to ∞ gives

N −S∞ = α
∫ ∞

0
I(s)ds.

Integration of the third equation of (9.15) gives

κ
∫ ∞

0
E(s)ds = α

∫ ∞

0
I(s)ds− I0,

and division of the first equation of (9.15) by S followed by integration from 0 to ∞
gives

log
S0

S∞
=

∫ ∞

0
β [I(s)+ εE(s)ds

= β
∫ ∞

0
[I(s)+ εE(s)ds

= β
[
ε +

κ
α

]∫ ∞

0
E(s)ds− εβ I0

κ

= R0

[
1− S∞

N

]
− εβ I0

κ
.

In this final size relation there is an initial term β I0/α , caused by the assumption
that there are individuals infected originally who are beyond the exposed stage in
which they would have had some infectivity. In order to obtain a final size relation
without such an initial term it is necessary to assume I(0) = 0, that initial infectives
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are in the first stage in which they can transmit infection. If I(0) = 0, the final size
relation has the form (9.3).

9.5.2 Treatment Models

One form of treatment that is possible for some diseases is vaccination to protect
against infection before the beginning of an epidemic. For example, this approach
is commonly used for protection against annual influenza outbreaks. A simple way
to model this would be to reduce the total population size by the fraction of the
population protected against infection.

In reality, such inoculations are only partly effective, decreasing the rate of in-
fection and also decreasing infectivity if a vaccinated person does become infected.
This may be modeled by dividing the population into two groups with different
model parameters, which would require some assumptions about the mixing be-
tween the two groups. This is not difficult, but we will not explore this direction
here.

If there is a treatment for infection once a person has been infected, this may be
modeled by supposing that a fraction γ per unit time of infectives is selected for
treatment, and that treatment reduces infectivity by a fraction δ . Suppose that the
rate of removal from the treated class is η . This leads to the SITR model, where T
is the treatment class, given by

S′ = −βS[I +δT ],

I′ = βS[I +δT ]− (α + γ), I (9.16)
T ′ = γI −ηT.

A flow chart is shown in Figure 9.8.
It is not difficult to prove, much as was done for the model (9.2), that

S∞ = lim
t→∞

S(t)> 0, lim
t→∞

I(t) = lim
t→∞

T (t) = 0.

In order to calculate the basic reproduction number, we may argue that an infec-
tive in a totally susceptible population causes βN new infections in unit time, and
the mean time spent in the infective compartment is 1/(α + γ). In addition, a frac-
tion γ/(α + γ) of infectives are treated. While in the treatment stage the number of
new infections caused in unit time is δβN, and the mean time in the treatment class
is 1/η . Thus R0 is

R0 =
βN

α + γ
+

γ
α + γ

δβN
η

. (9.17)

It is also possible to establish the final size relation (9.3) by means very similar
to those used for the simple model (9.2). We integrate the first equation of (9.16) to
obtain
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Fig. 9.8 Flow chart for the SITR model.

log
S0

S∞
=
∫ ∞

0
β [I(t)+δT (t)]dt = β

∫ ∞

0
[I(t)+δT (t)]dt.

Integration of the third equation of (9.16) gives

γ
∫ ∞

0
I(t)dt = η

∫ ∞

0
T (t)dt.

Integration of the sum of the first two equations of (9.16) gives

N −S∞ = (α + γ)
∫ ∞

0
I(t)dt.

Combination of these three equations and (9.17) gives (9.3).

9.5.3 An Influenza Model

In some diseases, such as influenza, at the end of a stage individuals may proceed
to one of two stages. There is a latent period after which a fraction p of latent
individuals L proceeds to an infective stage I, while the remaining fraction (1− p)
proceeds to an asymptomatic stage A, with infectivity reduced by a factor δ and a
different period 1/η . The influenza model of [Arino et al. (2006, 2007)] is

S′ = −βS[I +δA],

L′ = βS[I +δA]−κL, (9.18)
I′ = pκL−αI,

A′ = (1− p)κL−ηA,
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and

R0 = βN
[

p
α
+

δ (1− p)
η

]
.

A flow chart is shown in Figure 9.9.

Fig. 9.9 Influenza model flowchart.

The same approach used in earlier examples leads to the same final size relation
(9.3).

The model (9.18) is an example of a differential infectivity model. In such mod-
els, also used in the study of HIV/AIDS [Hyman, Li and Stanley (1999)], individ-
uals enter a specific group when they become infected and stay in that group over
the course of the infection. Different groups may have different parameter values.
For example, for influenza infective and asymptomatic members may have different
infectivities and different periods of stay in the respective stages.

9.5.4 A Quarantine-Isolation Model

For an outbreak of a new disease, where no vaccine is available, isolation of diag-
nosed infectives and quarantine of people who are suspected of having been infected
(usually by tracing of contacts of diagnosed infectives) are the only control measures
available. We formulate a model to describe the course of an epidemic, originally
introduced for modeling the SARS epidemic of 2002-20033 [Gumel et al. (2004)],
when control measures are begun under the followingassumptions:

1. Exposed members may be infective with infectivity reduced by a factor εE ,
0 ≤ εE < 1.

2. Exposed members who are not isolated become infective at rate κE .
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3. We introduce a class Q of quarantined members and a class J of isolated (hos-
pitalized) members, and exposed members are quarantined at a proportional
rate γQ in unit time (in practice, a quarantine will also be applied to many sus-
ceptibles, but we ignore this in the model). Quarantine is not perfect, but it
reduces the contact rate by a factor εQ. The effect of this assumption is that
some susceptibles make fewer contacts than the model assumes.

4. Infectives are diagnosed at a proportional rate γJ per unit time and isolated.
Isolation is imperfect, and there may be transmission of disease by isolated
members, with an infectivity factor of εJ .

5. Quarantined members are monitored, and when they develop symptoms at rate
κQ they are isolated immediately.

6. Infectives leave the infective class at rate αI and isolated members leave the
isolated class at rate αJ .

These assumptions lead to the SEQIJR model [Gumel et al. (2004)]:

S′ = −βS[εEE + εEεQQ+ I + εJJ],

E ′ = βS[εEE + εEεQQ+ I + εJJ]− (κE + γQ)E,

Q′ = γQE −κJQ, (9.19)
I′ = κEE − (αI + γJ)I,

J′ = κQQ+ γJI −αJJ .

The model before control measures are begun is the special case

γQ = γJ = κQ = αJ = 0, Q = J = 0

of (9.19). It is the same as (9.15).
A flow chart is shown in Figure 9.10.

Fig. 9.10 Flow chart for the SEQIJR model.
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We define the control reproduction number Rc to be the number of secondary
infections caused by a single infective in a population consisting essentially only of
susceptibles with the control measures in place. It is analogous to the basic repro-
duction number, but instead of describing the very beginning of the disease outbreak
it describes the beginning of the recognition of the epidemic. The basic reproduction
number is the value of the control reproduction number with

γQ = γJ = κQ = αJ = 0 .

We have already calculated R0 for (9.15), and we may calculate Rc in the same
way but using the full model with quarantined and isolated classes. We obtain

Rc =
εEβN

D1
+

βNκE

D1D2
+

εQεEβNγQ

D1κQ
+

εJβNκEγJ

αJD1D2
+

εJβNγQ

αJD1
,

where D1 = γQ +κE ,D2 = γJ +αI .
Each term of Rc has an epidemiological interpretation. The mean duration in E

is 1/D1 with contact rate εEβ , giving a contribution to Rc of εEβN/D1. A fraction
κE/D1 goes from E to I, with contact rate β and mean duration 1/D2, giving a
contribution of βNκE/D1D2. A fraction γQ/D1 goes from E to Q, with contact
rate εEεQβ and mean duration 1/κQ, giving a contribution of εEεQβNγQ/D1κQ. A
fraction κEγJ/D1D2 goes from E to I to J, with a contact rate of εJβ and a mean
duration of 1/αJ , giving a contribution of εJβNκEγJ/αJD1D2. Finally, a fraction
γQ/D1 goes from E to Q to J with a contact rate of εJβ and a mean duration of 1/αJ ,
giving a contribution of εJβNγQ/D1αJ . The sum of these individual contributions
gives Rc.

In the model (9.19) the parameters γQ and γJ are control parameters, which may
be chosen in the attempt to manage the epidemic. The parameters εQ and εJ de-
pend on the strictness of the quarantine and isolation processes and are thus also
control measures in a sense. The other parameters of the model are specific to the
disease being studied. While they are not variable, their measurements are subject
to experimental error.

The linearization of (9.19) at the disease-free equilibrium (N,0,0,0,0) has matrix⎡⎢⎢⎣
εEβN − (κE + γQ) εEεQβ βN εJβN

γQ −κQ 0 0
κE 0 −(αI + γJ) 0
0 κQ γJ −αJ

⎤⎥⎥⎦ .

The corresponding characteristic equation is a fourth-degree polynomial equation
whose leading coefficient is 1 and whose constant term is a positive constant multi-
ple of 1−Rc, thus positive if Rc < 1 and negative if Rc > 1. If Rc > 1, there is a
positive eigenvalue, corresponding to an initial exponential growth rate of solutions
of (9.19). If Rc < 1, it is possible to show that all eigenvalues of the coefficient ma-
trix have negative real part, and thus solutions of (9.19) die out exponentially [van
den Driessche and Watmough (2002)].
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In order to show that analogues of the relation (9.3) and S∞ > 0 derived for the
model (9.2) are valid for the management model (9.19), we begin by integrating the
equations for S+E,Q, I,J, of (9.19) with respect to t from t = 0 to t = ∞, using the
initial conditions

S(0)+E(0) = N(0) = N, Q(0) = I(0) = J(0) = 0 .

We continue by integrating the equation for S, and then an argument similar to the
one used for (9.2) but technically more complicated may be used to show that S∞ > 0
for the treatment model (9.19) and also to establish the final size relation

log
S0

S∞
= Rc

[
1− S∞

N

]
.

Thus the asymptotic behavior of the management model (9.19) is the same as that
of the simpler model (9.2).

In the various compartmental models that we have studied, there are significant
common features. This suggests that compartmental models can be put into a more
general framework. In fact, this general framework is the age of infection epidemic
model originally introduced by Kermack and McKendrick in 1927. However, we
will not explore this generalization here.

Exercises

1. Compare the qualitative behaviors of the models

S′ =−βSI, I′ = βSI −αI,

and
S′ =−βSI, E ′ = βSI −κE, I′ = κE −αI,

with

β = 1/3000, α = 1/6, κ = 1/2, S(0) = 999, I(0) = 1.

These models represent an SIR epidemic model and an SEIR epidemic model
respectively with a mean infective period of 6 days and a mean exposed pe-
riod of 2 days. Do numerical simulations to decide whether the exposed period
affects the behavior of the model noticeably.

2. Consider three basic epidemic models–the simple SIR model,

S′ = −βSI,

I′ = βSI −αI,

the SEIR model with some infectivity in the exposed period,
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S′ = −βS(I + εE),

E ′ = βS(I + εE)−κE,

I′ = κE −αI,

and the SIR model with treatment,

S′ = −βS(I +δT ),

I′ = βS(I +δT )− (α +ϕ)I,
T ′ = ϕI −ηT.

Use the parameter values

β =
1

3000
, α =

1
4
, ε =

1
2
, κ =

1
2
, δ =

1
2
, η =

1
4
, ϕ = 1,

and the initial values

S(0) = 995, E(0) = 0, I(0) = 5, T (0) = 0.

For each model,

(i) Calculate the reproduction number and the epidemic size.
(ii) Do some numerical simulations to obtain the epidemic size by determining

the change in S, the maximum number of infectives by measuring I, and
the duration of the epidemic.

If you feel really ambitious, formulate and analyze an SEIR model with infec-
tivity in the exposed period and treatment.

3. Consider an SIR model in which a fraction θ of infectives is isolated in a per-
fectly quarantined class Q with standard incidence (meaning that individuals
make a contacts in unit time of which a fraction I/(N−Q) are infective), given
by the system

S′ = −aS
I

N −Q
,

I′ = aS
I

N −Q
− (θ +α)I,

Q′ = θ I − γQ,

R′ = αI + γQ.

(i) Find the equilibria.
(ii) Find the basic reproduction number R0.

(iii) For influenza-like parameters, take α = 0.5,θ = 1,2,4,γ = 0.4, and R0 =
2.5, sketch the phase plane of the system and observe what is happening.
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4. Isolation/quarantine is a complicated process because we don’t live in a per-
fect world. In hospitals, patients may inadvertently or deliberately break from
isolation and in the process have casual contacts with others including medical
personnel and visitors. Taking this into account, we are led to the model

S′ = −aS
[I +ρτQ]

N −σQ
,

I′ = aS
[I +ρτQ]

N −σQ
− (θ +α)I,

Q′ = θ I − γQ,

R′ = αI + γQ.

(i) Determine all the parameters in the system and define each parameter.
(ii) Show that the population is constant.

(iii) Find all equilibria.
(iv) Find the reproductive number R0.
(v) Describe the asymptotic behavior of the model, including its dependence

on the basic reproduction number.

5. Formulate a model analogous to (9.16) for which treatment is not started imme-
diately, but begins at time τ > 0. Can you say anything about the dependence
of the reproduction number on τ?

9.6 An SIR Model with a General Infectious Period Distribution

In the simple model (9.2) studied in Section 9.2 we have assumed that the infective
period is exponentially distributed. Now let us consider an SIR epidemic model in
a population of constant size N with mass action incidence in which P(τ) is the
fraction of individuals who are still infective a time τ after having become infected.
The model is

S′ = −βS(t)I(t), (9.20)

I(t) = I0(t)+
∫ t

0
[−S′(t − τ)]P(τ)dτ.

Here, I0(t) is the number of individuals who were infective initially at t = 0 who
are still infective at time t. Then

I0(t)≤ (N −S0)P(t),

because if all initial infectives were newly infected we would have equality in this
relation, and if some initial infectives had been infected before the starting time
t = 0, they would recover earlier.
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We assume that P(τ) is a nonnegative, nonincreasing function with P(0) = 1.
We assume also that the mean infective period

∫ ∞
0 P(τ)dτ is finite. Since a single

infective causes βN new infections in unit time and
∫ ∞

0 P(τ)dτ is the mean infective
period, it is easy to calculate

R0 = βN
∫ ∞

0
P(s)ds.

Since S is a nonnegative decreasing function, it follows as for (9.2) that S(t)
deceases to a limit S∞ as t → ∞, but we must proceed differently to show that I(t)→
0. This will follow if we can prove that

∫ t
0 I(s)ds is bounded as t → ∞. We have∫ t

0
I(s)ds =

∫ t

0
I0(τ)ds+

∫ t

0

∫ s

0
[−S′(s− τ)]P(τ)dτds

≤ (N −S0)
∫ t

0
P(τ)dτ +

∫ t

0

∫ t

τ
[−S′(s− τ)]dsP(τ)dτ

≤ (N −S0)
∫ t

0
P(τ)ds+

∫ t

0
S0 −S(t − τ)]P(τ)dτ

≤ N
∫ t

0
P(τ)dτ.

Since
∫ ∞

0 P(τ)dτ is assumed to be finite, it follows that
∫ t

0 I(s)ds is bounded, and
thence that I(t)→ 0.

Now integration of the first equation in (9.20) from 0 to ∞ gives

log
S0

S∞
= β

∫ ∞

0
I(τ)dτ < ∞,

and this shows that S∞ > 0.
If all initially infected individuals are newly infected, so that I0(t)= (N−S0)P(t),

integration of the second equation of (9.20) gives∫ ∞

0
I(s)ds =

∫ ∞

0
I0(s)ds+

∫ ∞

0

∫ s

0
[−S′(s− τ)]P(τ)dτds

= (N −S0)
∫ ∞

0
P(τ)dτ +

∫ ∞

0

∫ ∞

τ
[−S′(t − τ)]dsP(τ)dτ

= (N −S0)
∫ ∞

0
P(τ)dτ +

∫ ∞

0
[S0 −S∞]P(τ)dτ

= (N −S∞)
∫ ∞

0
P(τ)dτ

= R0

[
1− S∞

N

]
,

and this is the final size relation, identical to (9.3). If there are individuals who were
infected before time t = 0, a positive term
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(N −S0)
∫ ∞

0
P(t)dt −

∫ ∞

0
I0(t)dt

must be subtracted from the right side of this equation.
The generalization to arbitrary infectious periods in this section is a component

of the age of infection epidemic model of Kermack and McKendrick (1927), which
also incorporates general compartmental structures. The examples of this section
and the previous section are all special cases of the age of infection model.

Exercises

1. Formulate a description of the model (9.20) with an infective period of fixed
length σ and calculate its basic reproduction number.

9.7 The Age of Infection Epidemic Model

The general epidemic model described by Kermack and McKendrick (1927) in-
cluded a dependence of infectivity on the time since becoming infected (age of in-
fection). We let S(t) denote the number of susceptibles at time t and let ϕ(t) be the
total infectivity at time t, defined as the sum of products of the number of infected
members with each infection age and the mean infectivity for that infection age. We
assume that on average, members of the population make a constant number a of
contacts in unit time. We let B(τ) be the fraction of infected members remaining
infected at infection age τ and let π(τ) with 0 ≤ π(τ)≤ 1 be the mean infectivity at
infection age τ . Then we let

A(τ) = π(τ)B(τ),

the mean infectivity of members of the population with infection age τ . We assume
that there are no disease deaths, so that the total population size is a constant N.

The age of infection epidemic model is

S′ = −βSϕ,

ϕ(t) = ϕ0(t)+
∫ t

0
βS(t − τ)ϕ(t − τ)A(τ)dτ (9.21)

= ϕ0(t)+
∫ t

0
[−S′(t − τ)]A(τ)dτ.

The basic reproduction number is

R0 = βN
∫ ∞

0
A(τ)dτ.
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We write

−S′(t)
S(t)

= βϕ0(t)+β
∫ t

0
[−S′(t − τ)]A(τ)dτ.

Integration with respect to t from 0 to ∞ gives

log
S0

S∞
= β

∫ ∞

0
ϕ0(t)dt +β

∫ ∞

0

∫ t

0
[−S′(t − τ)]A(τ)dτdt

= β
∫ ∞

0
ϕ0(t)dt +β

∫ ∞

0
A(τ)

∫ ∞

τ
[−S′(t − τ)]dtdτ

= β
∫ ∞

0
ϕ0(t)dt +[S0 −S∞]

∫ ∞

0
A(τ)dτ (9.22)

= β [N −S∞]
∫ ∞

0
A(τ)dτ +β

∫ ∞

0
[ϕ0(t)− (N −S0)A(τ)dτ

= R0

[
1− S∞

N

]
−β

∫ ∞

0
[(N −S0)A(t)−ϕ0(t)]dt.

Here, ϕ0(t) is the total infectivity of the initial infectives when they reach age of
infection t. If all initial infectives have infection age zero at t = 0, then ϕ0(t) =
[N −S0]A(t), and ∫ ∞

0
[ϕ0(t)− (N −S0)A(t)]dt = 0.

Then (9.22) takes the form

log
S0

S∞
= R0

(
1− S∞

N

)
, (9.23)

and this is the general final size relation. If there are initial infectives with infection
age greater than zero, let u(τ) be the fraction of these individuals with infection age
τ,

∫ ∞
0 u(τ)dτ = 1. At time t these individuals have infection age t + τ and mean

infectivity A(t + τ). Thus

ϕ0(t) = (N −S∞)
∫ ∞

0
u(τ)A(t + τ)dτ,

and ∫ ∞

0
ϕ0(t)dt = (N −S∞)

∫ ∞

0

∫ ∞

0
u(τ)A(t + τ)dτdt

= (N −S∞)
∫ ∞

0
u(τ)

[∫ ∞

τ
A(v)dv

]
dτ

= (N −S∞)
∫ ∞

0
A(v)

[∫ v

0
u(τ)dτ

]
dv]

≤ (N −S∞)
∫ ∞

0
A(v)dv,

since
∫ v

0 u(τ)dτ ≤ 1.
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Thus, the initial term satisfies∫ ∞

0
[(N −S0)A(t)−ϕ0(t)]dt ≥ 0.

The final size relation is sometimes presented in the form

log
S0

S∞
= R0

(
1− S∞

S0

)
; (9.24)

see, for example [Arino et al. (2007), Heffernan, Smith?, and Wahl (2005)]. Without
the initial term this form would represent the final size relation for an epidemic
started by someone outside the population under study, so that S0 = N, I0 = 0.

Example 1. The SEIR model (9.15) can be viewed as an age of infection model
with ϕ = εE + I. To use the age of infection interpretation, we need to determine
the kernel A(τ) in order to calculate its integral. We let u(τ) be the fraction of
infected members with infection age τ who are not yet infective and v(τ) the fraction
of infected members who are infective. Then the rate at which members become
infective at infection age τ is κu(τ), and we have

u′(τ) = −κu(τ), u(0) = 1,
v′(τ) = κu(τ)−αv(τ), v(0) = 0.

The solution of this system is

u(τ) = e−κτ , v(τ) =
κ

κ −α
[e−ατ − e−κτ ].

Thus we have
A(τ) = εe−κτ +

κ
κ −α

[e−ατ − e−κτ ],

and it is easy to calculate ∫ ∞

0
A(τ)dτ =

1
α
+

ε
κ
.

This gives the same value for R0 as was calculated directly.

The age of infection model also includes the possibility of disease stages with
distributions that are not exponential [Feng (2007), Feng, Xu, and Zhao (2007)].

Example 2. Consider an SEIR model in which the exposed stage has an exponential
distribution but the infective stage has a period distribution given by a function P,

S′ = −βSI,

E ′ = βSI −κE, (9.25)

I(t) =
∫ t

0
κE(s)P(t − s)ds,
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with initial conditions

S(0) = S0, E(0) = E0, I(0) = 0.

If we define u(τ),v(τ) as in Example 1, we again obtain u(τ) = e−κτ , and v satisfies

A(τ) = v(τ) =
∫ τ

0
κu(s)P(τ − s)ds =

∫ τ

0
κe−κsP(τ − s)ds.

Now, ∫ ∞

0
A(τ)dτ =

∫ ∞

0

∫ τ

0
κe−κsP(τ − s)dsdτ

=
∫ ∞

0

[∫ ∞

s
P(τ − s)dτ

]
κe−κsds

=
∫ ∞

0

[∫ ∞

0
P(u)du

]
κe−κsds

=
∫ ∞

0
P(u)du.

For period distributions that are not exponential, it is possible to calculate∫ ∞

0
A(τ)dτ

without having to calculate the function A(τ) explicitly.

Example 3. Consider an SEIR model in which the exposed period has a distribution
given by a function Q and the infective period has a distribution given by a function
P. Then

S′ = −βSI,

E(t) = E0Q(t)+
∫ t

0
[−S′(s)]Q(t − s)ds.

In order to obtain an equation for I, we differentiate the equation for E, obtaining

E ′(t) = E0Q′(t)−S′(t)+E0

∫ t

0
[−S′(s)]Q′(t − s)ds.

Thus the input to I at time t is

E0Q′(t)+E0

∫ t

0
[−S′(s)]Q′(t − s)ds,

and

I(t) = E0

∫ t

0
Q′(u)P(t −u)du+E0

∫ t

0
[−S′(s)]Q′(u− s)dsP(t −u)du.
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The first term in this expression may be written as I0(t), and the second term may
be simplified, using interchange of the order of integration in the iterated integral,
to yield∫ t

0

∫ u

0
[−S′(s)]Q′(u− s)dsP(t −u)du =

∫ t

0

∫ t

s
Q′(u− s)duP(t −u)[−S′(s)]ds.

If we define

A(t − s) =
∫ t

s
Q′(u− s)P(t −u)du =

∫ t−s

0
Q′(t − s− v)P(v)dv,

we obtain
I(t) = I0(t)+

∫ t

0
[−S′(s)]A(t − s)ds.

Then the model is

S′ = −βSI, (9.26)

E(t) = E0Q(t)+
∫ t

0
[−S′(s)]Q(t − s)ds,

I(t) = I0(t)+
∫ t

0
[−S′(s)]A(t − s)ds,

which is in age of infection form with ϕ = I, and we have an explicit expression for
A(τ).

Exercises

1. Interpret the models (9.16), (9.18), and (9.19) introduced earlier as age of infec-
tion models and use this interpretation to calculate their reproduction numbers.

2. Calculate the basic reproduction number for the model (9.26) but with infectiv-
ity in the exposed class having a reduction factor ε .

9.8 Models with Disease Deaths

The assumption in the model (9.2) of a rate of contacts per infective that is propor-
tional to population size N, called mass action incidence or bilinear incidence, was
used in all the early epidemic models. However, it is quite unrealistic, except pos-
sibly in the early stages of an epidemic in a population of moderate size. It is more
realistic to assume a contact rate that is a nonincreasing function of total population
size. For example, a situation in which the number of contacts per infective in unit
time is constant, called standard incidence, is a more accurate description for sexu-
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ally transmitted diseases. If there are no disease deaths, so that the total population
size remains constant, such a distinction is unnecessary.

We generalize the model (9.2) by dropping assumption (iv) and replacing as-
sumption (i) by the assumption that an average member of the population makes
C(N) contacts in unit time with C′(N) ≥ 0 [Castillo-Chavez, Cooke, Huang, and
Levin (1989a), Dietz (1982)], and we define

β (N) =
C(N)

N
.

It is reasonable to assume β ′(N)≤ 0 to express the idea of saturation in the number
of contacts. Then mass action incidence corresponds to the choice C(N) = βN, and
standard incidence corresponds to the choice C(N) = λ . The assumptions C(N) =
Nβ (N), C′(N)≥ 0 imply that

β (N)+Nβ ′(N)≥ 0 . (9.27)

Some epidemic models [Dietz (1982)] have used a Michaelis–Menten type of
interaction of the form

C(N) =
aN

1+bN
.

Another form based on a mechanistic derivation for pair formation [Heesterbeek
and Metz (1993] leads to an expression of the form

C(N) =
aN

1+bN +
√

1+2bN
.

Data for diseases transmitted by contact in cities of moderate size [Mena-Lorca and
Hethcote (1992)] suggests that data fit the assumption of the form

C(N) = λNa

with a = 0.05 quite well. All of these forms satisfy the conditions C′(N) ≥ 0,
β ′(N)≤ 0.

Because the total population size is now present in the model, we must include an
equation for total population size in the model. This forces us to make a distinction
between members of the population who die of the disease and members of the pop-
ulation who recover with immunity against reinfection. We assume that a fraction
f of the αI members leaving the infective class at time t recover and the remaining
fraction (1− f ) die of disease. We use S, I, and N as variables, with N = S+ I +R.
We now obtain a three-dimensional model

S′ = −β (N)SI,

I′ = β (N)SI −αI, (9.28)
N′ = −(1− f )αI .
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Since N is now a decreasing function, we define N(0) = N0 = S0 + I0. We also
have the equation R′ = − f αI, but we need not include it in the model, since R is
determined when S, I, and N are known. We should note that if f = 1, the total
population size remains equal to the constant N, and the model (9.28) reduces to the
simpler model (9.2) with β replaced by the constant β (N0).

We wish to show that the model (9.28) has the same qualitative behavior as the
model (9.2), namely that there is a basic reproduction number that distinguishes
between disappearance of the disease and an epidemic outbreak, and that some
members of the population are left untouched when the epidemic passes. These
two properties are the central features of all epidemic models.

For the model (9.28) the basic reproduction number is given by

R0 =
N0β (N0)

α

because a single infective introduced into a wholly susceptible population makes
C(N0) = N0β (N0) contacts in unit time, all of which are with susceptibles and thus
produce new infections, and the mean infective period is 1/α.

We assume that β (0) is finite, thus ruling out standard incidence (standard inci-
dence does not appear to be realistic if the total population N approaches zero, and
it would be more natural to assume that C(N) grows linearly with N for small N). If
we let t → ∞ in the sum of the first two equations of (9.28), we obtain

α
∫ ∞

0
I(s)ds = S0 + I0 −S∞ = N −S∞.

The first equation of (9.28) may be written as

−S′(t)
S(t)

= β (N(t))I(t).

Since
β (N)≥ β (N0),

integration from 0 to ∞ gives

log
S0

S∞
=
∫ ∞

0
β (N(t))I(t)dt ≥ β (N0)

∫ ∞

0
I(t)dt =

β (N0)(N0 −S∞)

αN0
.

We now obtain a final size inequality

log
S0

S∞
=
∫ ∞

0
β (N(t))I(t)dt ≥ β (N0)

∫ ∞

0
I(t)dt = R0

[
1− S∞

N0

]
.

If the disease death rate is small, the final size inequality is an approximate equality.
It is not difficult to show that N(t) ≥ f N0, and then a similar calculation using

the inequality β (N)≤ β ( f N0)< ∞ shows that



9.9 A Vaccination Model 391

log
S0

S∞
≤ β ( f N0)

∫ ∞

0
I(t)dt,

from which we may deduce that S∞ > 0.

Exercises

1. For the model (9.28) show that the final total population size is given by

N∞ = f N0 +(1− f )S∞.

9.9 A Vaccination Model

To cope with annual seasonal influenza epidemics there is a program of vaccination
before the “flu” season begins. Each year, a vaccine is produced aimed at protecting
against the three influenza strains considered most dangerous for the coming season.
We formulate a model to add vaccination to the simple SIR model (9.2) under the
assumption that vaccination reduces susceptibility (the probability of infection if a
contact with an infected member of the population is made).

We consider a population of total size N and assume that a fraction γ of this
population is vaccinated prior to a disease outbreak. Thus we have a subpopulation
of size NU = (1− γ)N of unvaccinated members and a subpopulation of size NV =
γN of vaccinated members. We assume that vaccinated members have susceptibility
to infection reduced by a factor σ , 0 ≤ σ ≤ 1, with σ = 0 describing a perfectly
effective vaccine and σ = 1 describing a vaccine that has no effect. We assume also
that vaccinated individuals who are infected have infectivity reduced by a factor δ
and may also have a recovery rate αV that is different from the recovery rate of
infected unvaccinated individuals αU .

We let SU ,SV , IU , IV denote the number of unvaccinated susceptibles, the number
of vaccinated susceptibles, the number of unvaccinated infectives, and the number
of vaccianted infectives respectively.

The resulting model is

S′U = −βSU (IU +δ IV ),

S′V = −σβSV (IU +δ IV ), (9.29)
I′U = βSU (IU +δ IV )−αU IU ,

I′V = σβSV (IU +δ IV )−αV IV .

The initial conditions prescribe SU (0),SV (0), IU (0), IV (0), with

SU (0)+ IU (0) = NU , SV (0)+ IV (0) = NV .
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Since the infection now is beginning in a population that is not fully susceptible,
we speak of the control reproduction number Rc rather than the basic reproduction
number. However, as we will soon see, calculation of the control reproduction num-
ber will require a more general definition and a considerable amount of technical
computation. The computation method is applicable to both basic and control re-
production numbers. We will use the term reproduction number to denote either a
basic reproduction number or a control reproduction number. We are able to obtain
final size relations without knowledge of the reproduction number, but these final
size relations do contain information about the reproduction number, and more.

Since SU and SV are decreasing nonnegative functions they have limits SU (∞)
and SV (∞) respectively as t → ∞. The sum of the equations for SU and IU in (9.29)
is

(SU + IU )′ =−αU IU ,

from which we conclude, just as in the analysis of (9.2), that IU (t) → 0 as t → ∞,
and that

α
∫ ∞

0
IU (t)dt = NU −SU (∞). (9.30)

Similarly, using the sum of the equations for SV and IV , we see that IV (t) → 0 as
t → ∞, and that

α
∫ ∞

0
IV (t)dt = NV −SV (∞). (9.31)

Integration of the equation for SU in (9.29) and use of (??) gives

log
SU (0)
SU (∞)

= β [
∫ ∞

0
IU (t)dt +δ

∫ ∞

0
IV (t)dt] (9.32)

=
βNU

α

[
1− SU (∞)

NU

]
+

δβNV

α

[
1− SV (∞)

NV

]
.

A similar calculation using the equation for SV gives

log
SV (0)
SV (∞)

=
σβNU

α

[
1− SU (∞)

NU

]
+

δσβNV

α

[
1− SV (∞)

NV

]
. (9.33)

This pair of equations (9.32), (9.33) are the final size relations. They make it possible
to calculate SU (∞),SV (∞) if the parameters of the model are known.

It is convenient to define the matrix

K =

[
K11 K12
K21 K22

]
=

[
βNU
αU

δβNV
αV

σβNU
αU

δσβNV
αV

]
.

Then the final size relations (9.32), (9.33) may be written
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log
SU (0)
SU (∞)

= K11

[
1− SU (∞)

NU

]
+K12

[
1− SV (∞)

NV

]
, (9.34)

log
SV (0)
SV (∞)

= K21

[
1− SU (∞)

NU

]
+K22

[
1− SV (∞)

NV

]
.

The matrix K is closely related to the reproduction number. In the next section we
describe a general method for calculating reproduction numbers that will involve
this matrix.

Exercises

1. Suppose we want to model the spread of influenza in a city using an SLIAR
model (susceptible-latent-infectious-asympotmatic-recovered, respectively). Then
our system of equation would be

S′ = −β (I +δA)S,

L′ = β (I +δA)S−κL,

I′ = pκL− γI,

A′ = (1− p)κL−ηA,

R′ = ηA+ γI,

where β is the transmission coefficient, δ is the reduced transmissibility factor
from asymptomatic contacts, κ is the rate of disease progression from the la-
tent class, p is the proportion of individuals that are clinically diagnosed, η is
the recovery rate from the asymptomatic class, γ is the recovery rate from the
infectious (clinically diagnosed) class, and N is the total population size.

(i) Add a vaccination class to the model. Assume that the vaccine imparts
partial protection until it becomes fully effective. Is the population of the
new system constant? Are there any endemic equilibria?

(ii) Vary the vaccination rate from 0.2 to 0.8 and determine how the number
of infected individuals changes compared with the model without vaccina-
tion. Does vaccination prevent the outbreak?

9.10 The Next Generation Matrix

Up to this point, we have calculated reproduction numbers by following the sec-
ondary cases caused by a single infective introduced into a population. However, if
there are subpopulations with different susceptibilities to infection, as in the vac-
cination model introduced in Section 9.9, it is necessary to follow the secondary
infections in the subpopulations separately, and this approach will not yield the re-
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production number. It is necessary to give a more general approach to the meaning
of the reproduction number, and this is done through the next generation matrix
[Diekmann and Heesterbeek (2000), Diekmann, Heesterbeek, and Metz (1990), van
den Driessche and Watmough (2002)]. The underlying idea is that we must calculate
the matrix whose (i, j) entry is the number of secondary infections caused in com-
partment i by an infected individual in compartment j. The procedure applies both
to epidemic models, as studied in this chapter, and to models with demographics for
endemic diseases, to be studied in the next chapter.

In a compartmental disease transmission model we sort individuals into compart-
ments based on a single, discrete state variable. A compartment is called a disease
compartment if the individuals therein are infected. Note that this use of the term
disease is broader than the clinical definition and includes stages of infection such
as exposed stages in which infected individuals are not necessarily infective. Sup-
pose there are n disease compartments and m nondisease compartments, and let
x ∈ Rn and y ∈ Rm be the subpopulations in each of these compartments. Further,
we denote by Fi the rate at which secondary infections increase the i− th disease
compartment and by Vi the rate at which disease progression, death, and recovery
decrease the i− th compartment. The compartmental model can then be written in
the form

x′i = Fi(x,y)−Vi(x,y) , i = 1, . . . ,n, (9.35)
y′j = g j(x,y) , j = 1, . . . ,m.

Note that the decomposition of the dynamics into F and V and the designation
of compartments as infected or uninfected may not be unique; different decompo-
sitions correspond to different epidemiological interpretations of the model. The
definitions of F and V used here differ slightly from those in [van den Driessche
and Watmough (2002)].

The derivation of the basic reproduction number is based on the linearization
of the ODE model about a disease-free equilibrium. For an epidemic model with
a line of equilibria, it is customary to use the equilibrium with all members of the
population susceptible. We assume:

• Fi(0,y) = 0 and Vi(0,y) = 0 for all y ≥ 0 and i = 1, . . . ,n.
• The disease-free system y′ = g(0,y) has a unique equilibrium that is asymp-

totically stable, that is, all solutions with initial conditions of the form (0,y)
approach a point (0,yo) as t → ∞. We refer to this point as the disease-free
equilibrium.

The first assumption says that all new infections are secondary infections arising
from infected hosts; there is no immigration of individuals into the disease compart-
ments. It ensures that the disease-free set, which consists of all points of the form
(0,y), is invariant. That is, any solution with no infected individuals at some point
in time will be free of infection for all time. The second assumption ensures that
the disease-free equilibrium is also an equilibrium of the full system. The unique-
ness of the disease-free equilibrium in the second assumption is required for models
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with demographics, to be studied in the next chapter. Although it is not satisfied
in epidemic models, the specification of a specific disease-free equilibrium with all
memebers of the population susceptible is sufficient to validate the results.

Next, we assume:

• Fi(x,y)≥ 0 for all nonnegative x and y and i = 1, . . . ,n.
• Vi(x,y)≤ 0 whenever xi = 0, i = 1, . . . ,n.
• ∑n

i=1 Vi(x,y)≥ 0 for all nonnegative x and y.

The reasons for these assumptions are that the function F represents new infec-
tions and cannot be negative, each component Vi represents a net outflow from com-
partment i and must be negative (inflow only) whenever the compartment is empty,
and the sum ∑n

i=1 Vi(x,y) represents the total outflow from all infected compart-
ments. Terms in the model leading to increases in ∑n

i=1 xi are assumed to represent
secondary infections and therefore belong in F .

Suppose that a single infected person is introduced into a population originally
free of disease. The initial ability of the disease to spread through the population is
determined by an examination of the linearization of (9.35) about the disease-free
equilibrium (0,y0). It is easy to see that the assumption Fi(0,y) = 0,Vi(0,y) = 0
implies

∂Fi

∂y j
(0,yo) =

∂Vi

∂y j
(0,yo) = 0

for every pair (i, j). This implies that the linearized equations for the disease com-
partments x are decoupled from the remaining equations and can be written as

x′ = (F −V )x, (9.36)

where F and V are the n×n matrices with entries

F =
∂Fi

∂x j
(0,yo) and V =

∂Vi

∂x j
(0,yo).

Because of the assumption that the disease-free system y′ = g(0,y) has a unique
asymptotically stable equilibrium, the linear stability of the system (9.35) is com-
pletely determined by the linear stability of the matrix (F −V ) in (9.36).

The number of secondary infections produced by a single infected individual can
be expressed as the product of the expected duration of the infectious period and
the rate at which secondary infections occur. For the general model with n disease
compartments, these are computed for each compartment for a hypothetical index
case. The expected time the index case spends in each compartment is given by
the integral

∫ ∞
0 φ(t,x0) dt, where φ(t,x0) is the solution of (9.36) with F = 0 (no

secondary infections) and nonnegative initial conditions x0 representing an infected
index case:

x′ =−V x, x(0) = x0. (9.37)

In effect, this solution shows the path of the index case through the disease com-
partments from the initial exposure through to death or recovery with the i − th
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component of ϕ(t,x0) interpreted as the probability that the index case (introduced
at time t = 0) is in disease state i at time t. The solution of (9.37) is φ(t,x0) = e−V tx0,
where the exponential of a matrix is defined by the Taylor series

eA = I +A+
A2

2
+

A3

3!
+ · · ·+ Ak

k!
+ · · · .

This series converges for all t (see, for example, [Hirsch and Smale (1974)]. Thus∫ ∞
0 ϕ(t,x0)dt = V−1x0, and the (i, j) entry of the matrix V−1 can be interpreted

as the expected time an individual initially introduced into disease compartment j
spends in disease compartment i.

The (i, j) entry of the matrix F is the rate at which secondary infections are
produced in compartment i by an index case in compartment j. Hence, the expected
number of secondary infections produced by the index case is given by∫ ∞

0
Fe−V tx0 dt = FV−1x0.

Following Diekmann and Heesterbeek (2000), the matrix K = FV−1 is referred to
as the next generation matrix for the system at the disease-free equilibrium. The
(i, j) entry of K is the expected number of secondary infections in compartment i
produced by individuals initially in compartment j, assuming, of course, that the
environment experienced by the individual remains homogeneous for the duration
of its infection.

Shortly, we will describe some results from matrix theory that imply that the ma-
trix KL =FV−1, called the next generation matrix with small domain, is nonnegative
and therefore has a nonnegative eigenvalue, R0 = ρ(FV−1), such that there are no
other eigenvalues of K with modulus greater than R0 and there is a nonnegative
eigenvector ω associated with R0 [Berman and Plemmons (1970), Theorem 1.3.2].
This eigenvector is in a sense the distribution of infected individuals that produces
the greatest number R0 of secondary infections per generation. Thus, R0 and the
associated eigenvector ω suitably define a “typical” infective, and the basic repro-
duction number can be rigorously defined as the spectral radius of the matrix KL.
The spectral radius of a matrix KL, denoted by ρ(KL), is the maximum of the moduli
of the eigenvalues of KL. If KL is irreducible, then R0 is a simple eigenvalue of KL
and is strictly larger in modulus than all other eigenvalues of KL. However, if KL is
reducible, which is often the case for diseases with multiple strains, then KL may
have several positive real eigenvectors corresponding to reproduction numbers for
each competing strain of the disease.

We have interpreted the reproduction number for a disease as the number of sec-
ondary infections produced by an infected individual in a population of susceptible
individuals. If the reproduction number R0 = ρ(FV−1) is consistent with the dif-
ferential equation model, then it should follow that the disease-free equilibrium is
asymptotically stable if R0 < 1 and unstable if R0 > 1.

This is shown through a sequence of lemmas.
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The spectral bound (or abscissa) of a matrix A is the maximum real part of all
eigenvalues of A. If each entry of a matrix T is nonnegative, we write T ≥ 0 and
refer to T as a nonnegative matrix. A matrix of the form A = sI −B, with B ≥ 0, is
said to have the Z sign pattern. These are matrices whose off-diagonal entries are
negative or zero. If in addition, s ≥ ρ(B), then A is called an M-matrix. Note that in
this section, I denotes an identity matrix, not a population of infectious individuals.
The following lemma is a standard result from [Berman and Plemmons (1970)].

Lemma 9.1. If A has the Z sign pattern, then A−1 ≥ 0 if and only if A is a nonsin-
gular M-matrix.

The assumptions we have made imply that each entry of F is nonnegative and
that the off-diagonal entries of V are negative or zero. Thus V has the Z sign pattern.
Also, the column sums of V are positive or zero, which, together with the Z sign
pattern, implies that V is a (possibly singular) M-matrix [Berman and Plemmons
(1970), condition M35 of Theorem 6.2.3]. In what follows, it is assumed that V
is nonsingular. In this case, V−1 ≥ 0, by Lemma 9.1. Hence, KL = FV−1 is also
nonnegative.

Lemma 9.2. If F is nonnegative and V is a nonsingular M-matrix, then R0 =
ρ(FV−1)< 1 if and only if all eigenvalues of (F −V ) have negative real parts.

Proof. Suppose F ≥ 0 and V is a nonsingular M-matrix. By Lemma 9.1, V−1 ≥
0. Thus, (I −FV−1) has the Z sign pattern, and by Lemma 1, (I −FV−1)−1 ≥ 0
if and only if ρ(FV−1) < 1. From the equalities (V −F)−1 = V−1(I −FV−1)−1

and V (V −F)−1 = I +F(V −F)−1, it follows that (V −F)−1 ≥ 0 if and only if
(I −FV−1)−1 ≥ 0. Finally, (V −F) has the Z sign pattern, so by Lemma 9.1, (V −
F)−1 ≥ 0 if and only if (V −F) is a nonsingular M-matrix. Since the eigenvalues of
a nonsingular M-matrix all have positive real parts, this completes the proof. ��
Theorem 9.1. Consider the disease transmission model given by (9.35). The disease-
free equilibrium of (9.35) is locally asymptotically stable if R0 < 1, but unstable if
R0 > 1.

Proof. Let F and V be as defined as above, and let J21 and J22 be the matrices of
partial derivatives of g with respect to x and y evaluated at the disease-free equilib-
rium. The Jacobian matrix for the linearization of the system about the disease-free
equilibrium has the block structure

J =

[
F −V 0

J21 J22

]
.

The disease-free equilibrium is locally asymptotically stable if the eigenvalues of the
Jacobian matrix all have negative real parts. Since the eigenvalues of J are those of
(F−V ) and J22, and the latter all have negative real parts by assumption, the disease-
free equilibrium is locally asymptotically stable if all eigenvalues of (F −V ) have
negative real parts. By the assumptions on F and V , F is nonnegative and V is a
nonsingular M-matrix. Hence, by Lemma 2 all eigenvalues of (F−V ) have negative
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real parts if and only if ρ(FV−1)< 1. It follows that the disease-free equilibrium is
locally asymptotically stable if R0 = ρ(FV−1)< 1.

Instability for R0 > 1 can be established by a continuity argument. If R0 ≤ 1,
then for any ε > 0, ((1+ε)I−FV−1) is a nonsingular M-matrix and by Lemma 9.1,
((1+ ε)I −FV−1)−1 ≥ 0. By Lemma 9.2, all eigenvalues of ((1+ ε)V −F) have
positive real parts. Since ε > 0 is arbitrary, and eigenvalues are continuous functions
of the entries of the matrix, it follows that all eigenvalues of (V −F) have nonnega-
tive real parts. To reverse the argument, suppose all the eigenvalues of (V −F) have
nonnegative real parts. For any positive ε , (V + εI −F) is a nonsingular M-matrix,
and by Lemma 9.2, ρ(F(V + εI)−1)< 1. Again, since ε > 0 is arbitrary, it follows
that ρ(FV−1)≤ 1. Thus, (F −V ) has at least one eigenvalue with positive real part
if and only if ρ(FV−1) > 1, and the disease-free equilibrium is unstable whenever
R0 > 1.

These results validate the extension of the definition of the reproduction number
to more general situations. In the vaccination model (9.29) of the previous section
we calculated a pair of final size relations that contained the elements of a matrix K.
This matrix is precisely the next generation matrix with large domain KL = FV−1

that has been introduced in this section.

Example 1. Consider the SEIR model with infectivity in the exposed stage,

S′ = −βS(I + εE),

E ′ = βS(I + εE)−κE, (9.38)
I′ = κE −αI,

R′ = αI.

Here the disease states are E and I,

F =

[
εEβN + IβN

0

]
,

and

F =

⎡⎢⎢⎣
εβN βN

0 0

⎤⎥⎥⎦ , V =

⎡⎢⎢⎣
κ 0

−κ α

⎤⎥⎥⎦ , V−1 =

⎡⎢⎢⎣
1
κ 0

1
α

1
α

⎤⎥⎥⎦ .

Then we may calculate

KL = FV−1 =

⎡⎢⎢⎣
εβN

κ + βN
α

βN
α

0 0

⎤⎥⎥⎦ .

Since FV−1 has rank 1, it has only one nonzero eigenvalue, and since the trace of
the matrix is equal to the sum of the eigenvalues, it is easy to see that
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R0 =
εβN

κ
+

βN
α

,

the element in the first row and first column of FV−1. If all new infections are in a
single compartment, as is the case here, the basic reproduction number is the trace
of the matrix FV−1.

In general, it is possible to reduce the size of the next generation matrix to the
number of states at infection [Diekmann and Heesterbeek (2000)]. The states at
infection are those disease states in which there can be new infections. Suppose that
there are n disease states and k states at infection with k < n. Then we may define an
auxiliary n×k matrix E in which each column corresponds to a state at infection and
has 1 in the corresponding row and 0 elsewhere. Then the next generation matrix is
the k× k matrix

K = ET KLE.

It is easy to show, using the fact that EET KL = KL, that the n×n matrix KL and the
k× k matrix K have the same nonzero eigenvalues and therefore the same spectral
radius. Construction of the next generation matrix that has lower dimension than the
next generation matrix with large domain may simplify the calculation of the basic
reproduction number.

In Example 1 above, the only disease state at infection is E, the matrix A is[
1
0

]
,

and the next generation matrix K is the 1×1 matrix

K =
[

εβN
κ + βN

α

]
.

Example 2. Consider the vaccination model (9.29). The disease states are IU and
IV . Then

F =

[
βNU (IU +δ IV )
σβNV (IU +δ IV

]
,

and

F =

⎡⎢⎢⎣
βNU δβNU

σβNV σδβNV

⎤⎥⎥⎦ V =

⎡⎢⎢⎣
αU 0

0 αV

⎤⎥⎥⎦ .

It is easy to see that the next generation matrix with large domain is the matrix K
calculated in Section 3.3. Since each disease state is a disease state at infection,
the next generation matrix is K, the same as the next generation matrix with large
domain. As in Example 1, the determinant of K is zero and K has rank 1. Thus the
control reproduction number is the trace of K,
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Rc =
βNU

αU
+

δσNV

αV
.

The next two examples include demographics (births and deaths).

Example 3. (A multi-strain model of gonorrhea) The following example comes
from Lima and Torres (1997). The system of equations is

ds
dt

= ρ −μS(t)− cλ1S(t)I1(t)
N(t)

− cλ2S(t)I2(t)
N(t)

+(1− p)γ1I1(t)+ γ2I2(t),

dI1

dt
=

cλ1S(t)I1(t)
N(t)

− (μ + γ1)I1(t),

dI2

dt
=

cλ2S(t)I2(t)
N(t)

− (μ + γ2)I2(t)+ pγ1I1(t),

where S is the susceptible class, I1 is the class infected with strain 1, and I2 is the
class of individuals infected with a mutated strain. The “birth” rate of the population
is ρ , μ is the natural mortality rate, c is the probability of successful contact, λi is
the of strain i, γi is the recovery rate of strain i, and p is the proportion of the original
infected population that become infected by the mutated strain.

The disease-free equilibrium for this model is [S=N, I1 = 0, I2 = 0]. Next we will
reorder our variables:

[ dI1
dt

dI2
dt

]T
and note that we need only the infected classes to

calculate R0. Then the new infection terms are cλ1S(t)I1(t)
N(t) in the dI1

dt equation and
cλ2S(t)I2(t)

N(t) in the dI2
dt equation, pγ1I1(t) enter the I2 class, but only after they have

been infected with strain 1. Then

F =

[ cλ1S(t)I1(t)
N(t)

cλ2S(t)I2(t)
N(t)

]
and V =

[
(μ + γ1)I1(t)

(μ + γ2)I2(t)− pγ1I1(t)

]
.

Since we have only two infected classes, n = 2, and our Jacobian matrices are

F =

[ cλ1S(t)
N(t) 0

0 cλ2S(t)
N(t)

]∣∣∣∣∣
DFE

=

[
cλ1 0
0 cλ2

]

V =

[
μ + γ1 0
−pγ1 μ + γ2

]∣∣∣∣
DFE

=

[
μ + γ1 0
−pγ1 μ + γ2

]
.

Then we can calculate the inverse of V,

V−1 =

[
1

μ+γ1
0

pγ1
(μ+γ1)(μ+γ2)

1
μ+γ2

]
,

and
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FV−1 =

[
cγ1

μ+γ1
0

cγ2 pγ1
(μ+γ1)(μ+γ2)

cγ2
μ+γ2

]
.

To calculate the spectral radius of FV−1 we find the eigenvalues of the matrix:

ρ(FV−1) = max
{

cλ1

μ + γ1
,

cλ2

μ + γ2

}
.

We often call R1 =
cλ1

μ+γ1
the reproductive number for strain 1 and R2 =

cλ2
μ+γ2

the
reproductive number for strain 2. Then the basic reproductive number is

R0 = max[R1,R2].

Example 4. (A three population model of West Nile virus) The following example
comes from Chowell-Puente et al. (2004b). The system of equations is

S′M = μMNM −βHSMb
NH

NM

PHNM

NH +NB

IH

NH
−βBSMb

NB

NM

PBNM

NH +NB

IB

NB
−SMμM,

I′M = βHSMb
NH

NM

PHNM

NH +NB

IH

NH
+βBSMb

NB

NM

PBNM

NH +NB

IB

NB
− IMμM,

S′B = Λ −βMSBb
NM

NB

NB

NH +NB

IM

NM
−SBμB,

I′B = βMSBb
NM

NB

NB

NH +NB

IM

NM
− IBμB,

S′H = μHNH −βMSHb
NM

NH

NH

NH +NB

IM

NM
−SH μH ,

I′H = βMSHb
NM

NH

NH

NH +NB

IM

NM
− (μ +θ)IH ,

R′
H = θ IH −μHRH ,

where Si refers to the susceptible class of species i, and Ii refers to the infected
class of species i for i = M,B,H, mosquitoes, birds, and humans, respectively. Then
Pi is the mosquito biting preference for species i, μi is the natural mortality rate
of species i, b is the number of bites per mosquito per unit time, θ is the human
recovery rate, βM is the transmission probability from mosquito to host per bite, βB
is the transmission probability from birds to mosquito, and βH is the transmission
probability from humans to mosquito.

The disease-free equilibrium for this model is [SM = NM, IM = 0,SB = Λ
μB
, IB =

0,SH = NH , IH = 0,RH = 0]. Next we will reorder our variables

[IM, IB, IH ,SM,SB,SH ,RH ]

and again note that we need only the infected classes. Then the new infections enter
our F vector as
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F =

⎡⎢⎣βHSMb NH
NM

PH NM
NH+NB

IH
NH

+βBSMb NB
NM

PBNM
NH+NB

IB
NB

βMSBb NM
NB

NB
NH+NB

IM
NM

βMSHb NM
NH

NH
NH+NB

IM
NM

⎤⎥⎦ ,

and our V vector is the remaining terms,

V =

⎡⎣ IMμM
IBμB

(μ +θ)IH

⎤⎦ .

Then our Jacobian matrices are

F|DFE =

⎡⎢⎢⎢⎢⎣
0 βBbPBNM

NH+ Λ
μB

βH bPH NM
NH+ Λ

μB
βMbΛ

μB(NH+ Λ
μB

0 0
βMbNH
NH+ Λ

μB

0 0

⎤⎥⎥⎥⎥⎦ ,

V|DFE =

⎡⎣ μM 0 0
0 μB 0
0 0 μH +θ

⎤⎦ ,

and

V−1 =

⎡⎢⎣
1

μM
0 0

0 1
μB

0
0 0 1

μH+θ

⎤⎥⎦ ,

FV−1 =

⎡⎢⎢⎢⎢⎣
0 βBbPBNM

(NH+ Λ
μB

)μB

βH bPH NM
(NH+ Λ

μB
)(μH+θ)

βMbΛ
μB(NH+ Λ

μBμM

0 0
βMbNH

NH+ Λ
μBμM

0 0

⎤⎥⎥⎥⎥⎦ ,

from which we calculate the eigenvalues and determine that the spectral radius is

R0 =

√√√√ bNH
Λ
μB

+NH

βM

μM

bPHNM
Λ
μB

+NH

βH

μH +θ
+

b Λ
μB

Λ
μB

+NH

βM

μM

bPBNM
Λ
μB

+NH

βB

μB

We have described the next generation matrix method for continuous models.
There is an analogous theory for discrete systems, described in [Allen and van den
Driessche (2008)].
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9.10.1 A Global Asymptotic Stability Result

There are some situations in which R0 < 1 in which it is possible to show that the
asymptotic stability of the disease - free equilibrium is global, that is, all solutions
approach the disease - free equilibrium, not only those with initial values sufficiently
close to this equilibrium.

We will say that a vector is nonnegative if each of its components is nonnegative,
and that a matrix is nonnegative if each of its entries is non - negative. We rewrite
the system (9.35) as

x′ = −Ax− f̂ (x,y), (9.39)
y′j = g j(x,y) , j = 1, . . . ,m.

If R0 < 1, we have shown that the disease - free equilibrium is asymptotically stable,
and that −A =−(F −V ) is a non - singular M - matrix.

Theorem 9.2 (Castillo-Chavez, Feng, and Huang (2002)). If −A is a nonsingular
M-matrix and f̂ ≥ 0, if the assumptions on the model (9.35) made earlier in this
section are satisfied, and if R0 < 1, then the disease-free equilibrium of (9.39) is
globally asymptotically stable.

Proof. The variation of constants formula for the first equation of (9.39) gives

x(t) = e−tAx(0)−
∫ t

0
e−(t−s)A f̂ (x(s),y(s))ds.

It can be shown that e−tA ≥ 0 if −A is an M-matrix, because

−A = B− sI

with B ≥ 0,
e−tA = etBe−stI = etBe−st I = etBe−st ,

and etB ≥ 0, since B ≥ 0. This, together with the assumption that f̂ ≥ 0, implies that

0 ≤ x(t)≤ e−tAx(0),

and since e−tAx(0)→ 0 as t → ∞ it follows that x(t)→ 0 as t → ∞.

There are examples to show that the disease-free equilibrium may not be globally
asymptotically stable if the condition f̂ ≥ 0 is not satisfied.

Exercises

1. For each of the models (9.16), (9.18), and (9.19) use the next generation ap-
proach to calculate their reproduction numbers.
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2. Use the next generation approach to calculate the basic reproduction number
for the model (9.26) but with infectivity in the exposed class having a reduction
factor ε .

3. Formulate an SEITR model and calculate its reproduction number.
4. For each of the examples in this section determine whether the disease-free

equilibrium is globally asymptotically stable when R0 < 1.

9.11 Directions for Generalization

A fundamental assumption in the model (9.2) is homogeneous mixing, that all in-
dividuals are equivalent in contacts. A more realistic approach would include sepa-
ration of the population into subgroups with differences in behavior. For example,
in many childhood diseases the contacts that transmit infection depend on the ages
of the individuals, and a model should include a description of the rate of contact
between individuals of different ages. Other heterogeneities that may be important
include activity levels of different groups and spatial distribution of populations.
Network models may be formulated to include heterogeneity of mixing, or more
complicated compartmental models can be developed.

An important question that should be kept in mind in the formulation of epidemic
models is the extent to which the fundamental properties of the simple model (9.2)
carry over to more elaborate models.

An epidemic model for a disease in which recovery from infection brings only
temporary immunity cannot be described by the models of this chapter because of
the flow of new susceptibles into the population. This effectively includes demo-
graphics in the model, and such models will be described in the next chapter.

Many of the important underlying ideas of mathematical epidemiology arose in
the study of malaria begun by Sir R.A. Ross (1911). Malaria is one example of a
disease with vector transmission, the infection being transmitted back and forth be-
tween vectors (mosquitoes) and hosts (humans). Other vector diseases include West
Nile virus and HIV with heterosexual transmission. Vector transmitted diseases re-
quire models that include both vectors and hosts.

9.12 Some Warnings

An actual epidemic differs considerably from the idealized models (9.2) and (9.28).
Some notable differences are these:

1. When it is realized that an epidemic has begun, individuals are likely to modify
their behavior by avoiding crowds to reduce their contacts and by being more
careful about hygiene to reduce the risk that a contact will produce infection.

2. If a vaccine is available for the disease that has broken out, public health mea-
sures will include vaccination of part of the population. Various vaccination
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strategies are possible, including vaccination of health care workers and other
first line responders to the epidemic, vaccination of members of the popula-
tion who have been in contact with diagnosed infectives, and vaccination of
members of the population who live in close proximity to diagnosed infectives.

3. Isolation may be imperfect; in-hospital transmission of infection was a major
problem in the SARS epidemic.

4. In the SARS epidemic of 2002–2003, in-hospital transmission of disease from
patients to health care workers or visitors because of imperfect isolation ac-
counted for many of the cases. This points to an essential heterogeneity in dis-
ease transmission that must be included whenever there is any risk of such
transmission.

9.13 Project: Discrete Epidemic Models

The discrete analogue of the continuous-time epidemic model (9.2) is

S j+1 = S jG j,

I j+1 = S j
(
1−G j

)
+σ I j, (9.40)

G j = e−β I j/N , j = 1,2, . . . ,

where S j and I j denote the numbers of susceptible and infective individuals at time j,
respectively, G j is the probability that a susceptible individual at time j will remain
susceptible to time j+1, and σ = e−α is the probability that an infected individual
at time j will remain infected to time j+ 1. Assume that the initial conditions are
S(0) = S0 > 0, I(0) = I0 > 0, and S0 + I0 = N.
Exercise 1. Consider the system (9.40).

(a) Show that the sequence {S j + I j} has a limit

S∞ + I∞ = lim
j→∞

(S j + I j).

.
(b) Show that

I∞ = lim
j→∞

I j = 0.

(c) Show that

log
S0

S∞
= β

∞

∑
m=0

Im

N
.

(d) Show that

log
S0

S∞
= R0

[
1− S∞

N

]
,

with R0 =
β

1−σ .
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Next, consider the case that there are k infected stages and there is treatment in
some stages, with treatment rates that can be different in different stages. Assume
that selection of members for treatment occurs only at the beginning of a stage.
Let I(i)j and T (i)

j denote the numbers of infected and treated individuals respectively
in stage i (i = 1,2, . . . ,k) at time j. Let σ I

i denote the probability that an infected
individual in the I(i) stage continues on to the next stage, either treated or untreated,
and let σT

i denote the probability that an individual in the T (i) stage continues on to
the next treated stage. In addition, of the members leaving an infected stage I(i), a
fraction pi enters treatment in T (i+1), while the remaining fraction qi continues to
I(i+1). Let mi denote the fraction of infected members who go through the stage I(i),
and ni the fraction of infected members who go through the stage T (i). Then,

m1 = q1, m2 = q1q2, . . . , mk = q1q2 · · ·qk,
n1 = p1, n2 = p1 +q1 p2, . . . , nk = p1 +q1 p2 + . . .+q1q2 · · ·qk−1 pk.

The discrete system with treatment is

S j+1 = S jG j,

I(1)j+1 = q1S j(1−G j)+σ I
1I(1)j ,

T (1)
j+1 = p1S j(1−G j)+σT

1 T (1)
j (9.41)

I(i)j+1 = qi(1−σ I
i−1)I

(i−1)
j +σ I

i ηiI
(i)
j ,

T (i)
j+1 = pi(1−σ I

i−1)I
(i−1)
j +(1−σT

i−1)T
(i−1)
j +σT

i T (i)
j ,

[i = 2, . . . ,k, j ≥ 0], with

G j = e−β ∑k
i=1

(
εiI

(i)
j /N+δiT

(i)
j /N

)
,

where εi is the relative infectivity of untreated individuals at stage i and δi is the
relative infectivity of treated individuals at stage i. Consider the initial conditions

I(1)0 (0) = q1I0, T (1)
0 (0) = p1I0, I(i)0 (0) = T (i)

0 (0) = 0, i ≥ 2, S0 + I0 = N.

Exercise 2. Consider the system (9.41). Show that

log
S0

S∞
= Rc

[
1− S∞

N

]
, (9.42)

with

Rc = β
k

∑
i=1

[ εimi

1−σ I
i
+

δini

1−σT
i

]
.

Hint. Equation (9.42) can be proved by showing the following equalities first:
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log
S0

S∞
= β

k

∑
i=1

⎡⎣εi

∞

∑
j=1

I(i)j

N
+δi

∞

∑
j=1

T (i)
j

N

⎤⎦ ,

mi(N −S∞) = (1−σ I
i )

∞

∑
j=0

I(i)j , i ≥ 2,

ni(N −S∞)

1−σT
i

=
∞

∑
j=0

T (i)
j , i ≥ 2.

[References: Feng (2007), Feng, Xu, & Zhao (2007).]

9.14 Project: Fitting Data for an Influenza Model

Consider an SIR model (9.2) with basic reproduction number 1.5.

1. Describe the qualitative changes in (S, I,R) as a function of time for different
values of β and α with β ∈ {0.0001,0.0002, . . . ,0.0009}, for the initial condi-
tion (S, I,R) = (106,1,0).

2. Discuss the result of part (a) in terms of the basic reproductive number (what is
β/γ?). Use a specific disease such as influenza to provide simple interpretations
for the different time courses of the disease for the different choices of β and
γ .

3. Repeat the steps in part (a) for values of R0 ∈ {1.75,2,2.5}, and for each value
of R0, choose the best pair of values (β ,α) that fits the slope before the first
peak in the data found in the table for reported H1N1 influenza cases in México
below. (Hint: normalize the data so that the peak is 1, and then multiply the data
by the size of the peak in the simulations.)

9.15 Project: Social Interactions

Suppose we have a system with multiple classes of mathematical biology teachers
(MBT) at time t. The classes roughly capture the MBT individual attitudes toward
learning new stuff. “Reluctant” means the class of MBTs that come into the door as
new hires without a disposition to learn new stuff; the positive class corresponds to
those who join the MBTs with the right attitude; and the rest of the classes should
be self-explanatory.
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Day Cases Day Cases Day Cases Day Cases Day Cases Day Cases
75 2 95 4 115 318 135 83 155 152 175 328
76 1 96 11 116 399 136 75 156 138 176 298
77 3 97 5 117 412 137 87 157 159 177 335
78 2 98 7 118 305 138 98 158 186 178 330
79 3 99 4 119 282 139 71 159 222 179 375
80 3 100 4 120 227 140 73 160 204 180 366
81 4 101 4 121 212 141 78 161 257 181 291
82 4 102 11 122 187 142 67 162 208 182 251
83 5 103 17 123 212 143 68 163 198 183 215
84 7 104 26 124 237 144 69 164 193 184 242
85 3 105 20 125 231 145 65 165 243 185 223
86 1 106 12 126 237 146 85 166 231 186 317
87 2 107 26 127 176 147 55 167 225 187 305
88 5 108 33 128 167 148 67 168 239 188 228
89 7 109 44 129 139 149 75 169 219 189 251
90 4 110 107 130 142 150 71 170 199 190 207
91 10 111 114 131 162 151 97 171 215 191 159
92 11 112 155 132 138 152 168 172 309 192 155
93 13 113 227 133 117 153 126 173 346 193 214
94 4 114 280 134 100 154 148 174 332 194 237

Table 9.2 Reported casec for H1N1-pandemic in Mexico.

R(t) : reluctant MBTs
P(t) : positive MBTs

M(t) : masterful MBTs
U(t) : unchangeable (that is, negative) MBTs
I(t) : inactive MBTs

Assume that N(t) = R(t)+P(t)+M(t)+U(t)+ I(t) and that the total number of
MBTs is constant, that is, N(t) = K

μ for all t, where K is a constant. The model is

dP
dt

= qK −βP
M
K

+δR−μP,

dR
dt

= (1−q)K − (δ +μ)R−αR,

dM
dt

= βP
M
K

− (γ +μ)M,

dU
dt

=−μU +αR,

dI
dt

= γM−μI,

where q, β , δ , μ , γ , and α are constants and 0 ≤ q ≤ 1.

1. Interpret the parameters.
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2. Look at the stability of the simplest equilibrium (your choice).
3. From ℜ0, discuss what would be the impact of changing parameters q, γ , and

δ .
4. What are your conclusions from this model?



Chapter 10

Models for Endemic Diseases

10.1 A Model for Diseases with No Immunity

We have been studying SIR models, in which the transitions are from susceptible to
infective to removed, with the removal coming through recovery with full immunity
(as in measles) or through death from the disease (as in plague, rabies, and many
other animal diseases). Another type of model is an SIS model in which infectives
return to the susceptible class on recovery because the disease confers no immu-
nity against reinfection. Such models are appropriate for most diseases transmitted
by bacterial or helminth agents , and most sexually transmitted diseases (including
gonorrhea, but not such diseases as AIDS, from which there is no recovery). One
important way in which SIS models differ from SIR models is that in the former
there is a continuing flow of new susceptibles, namely recovered infectives. Later in
this chapter we will study models that include demographic effects, namely births
and deaths, another way in which a continuing flow of new susceptibles may arise.

The simplest SIS model, due to Kermack and McKendrick (1932), is

S′ = −βSI + γI, (10.1)
I′ = βSI − γI.

This differs from the SIR model only in that the recovered members return to the
class S at a rate γI instead of passing to the class R. The total population S+ I is a
constant, since (S+ I)′ = 0. We call this constant N; sometimes population size is
measured using K as the unit, so that the total population size is one. We may reduce
the model to a single differential equation by replacing S by N − I to give the single
differential equation

I′ = β I(N − I)− γI = (βN − γ)I −β I2 = (βN − γ)I

(
1− I

N − γ
β

)
. (10.2)

Since (10.2) is a logistic differential equation of the form
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I′ = rI
(

1− I
K

)
,

with r = βN−γ and with K =N−γ/β , our qualitative result tells us that if βN−γ <
0 or βN/γ < 1, then all solutions of the model (10.2) with nonnegative initial values
except the constant solution I = K −β/γ approach the limit zero as t → ∞, while
if βK/γ > 1, then all solutions with nonnegative initial values except the constant
solution I = 0 approach the limit K−γ/β > 0 as t →∞. Thus there is always a single
limiting value for I, but the value of the quantity βK/γ determines which limiting
value is approached, regardless of the initial state of the disease. In epidemiological
terms this says that if the quantity βK/γ is less than one, the infection dies out in the
sense that the number of infectives approaches zero. For this reason the equilibrium
I = 0, which corresponds to S = K, is called the disease-free equilibrium. On the
other hand, if the quantity βK/γ exceeds one, the infection persists. The equilibrium
I = K − γ/β , which corresponds to S = γ/β , is called an endemic equilibrium.

As we have seen in epidemic models, the dimensionless quantity βK/γ is called
the basic reproduction number or contact number for the disease, and it is usually
denoted by R0. In studying an infectious disease, the determination of the basic
reproduction number is invariably a vital first step. The value one for the basic re-
production number defines a threshold at which the course of the infection changes
between disappearance and persistence. Since βK is the number of contacts made
by an average infective per unit time and 1/γ is the mean infective period, R0 rep-
resents the average number of secondary infections caused by each infective over
the course of the infection. Thus, it is intuitively clear that if R0 < 1, the infec-
tion should die out, while if R0 > 1, the infection should establish itself. In more
highly structured models than the simple one we have developed here, the calcu-
lation of the basic reproduction number may be much more complicated, but the
essential concept remains, that of the basic reproduction number as the number of
secondary infections caused by an average infective over the course of the disease.
However, there is a difference from the behavior of epidemic models. Here, the ba-
sic reproduction number determines whether the infection establishes itself or dies
out, whereas in the SIR epidemic model the basic reproduction number determines
whether there will be an epidemic.

We were able to reduce the system of two differential equations (10.1) to the
single equation (10.2) because of the assumption that the total population S+ I is
constant. If there are deaths due to the disease, this assumption is violated, and it
would be necessary to use a two-dimensional system as a model. We shall consider
this in a more general context in the next section.

A model for a disease from which infectives recover with no immunity against
reinfection and that includes births and deaths is

S′ = Λ(N)−β (N)SI −μS+ f αI, (10.3)
I′ = β (N)SI −αI −μI,
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describing a population with a density-dependent birth rate Λ(N) per unit time, a
proportional death rate μ in each class, and a rate α of departure from the infective
class through recovery or disease death and with a fraction f of infectives recovering
with no immunity against reinfection. In this model, if f < 1, the total population
size is not constant, and K represents a carrying capacity, or maximum possible
population size, rather than a constant population size.

It is easy to verify that

R0 =
Kβ (K)

μ +α
.

If we add the two equations of (10.11) and use N = S+ I, we obtain

N′ = Λ(N)−μN − (1− f )αI.

We will carry out the analysis of the SIS model only in the special case f = 1, so
that N is the constant K. The system (10.11) is asymptotically autonomous and its
asymptotic behavior is the same as that of the single differential equation

I′ = β (K)I(K − I)− (α +μ)I , (10.4)

where S has been replaced by K − I. But (10.4) is a logistic equation that is eas-
ily solved analytically by separation of variables or qualitatively by an equilibrium
analysis. We find that I → 0 if Kβ (K)< (μ +α), or R0 < 1 and I → I∞ > 0 with

I∞ = K − μ +α
β (K)

= K
(

1− 1
R0

)
if Kβ (K)> (μ +α) or R0 > 1.

The endemic equilibrium, which exists if R0 > 1, is always asymptotically sta-
ble. If R0 < 1, the system has only the disease-free equilibrium and this equilibrium
is asymptotically stable. The verification of these properties remains valid if there
are no births and deaths. This suggests that a requirement for the existence of an
endemic equilibrium is a flow of new susceptibles either through recovery without
immunity against reinfection or through births.

Exercises

1. Modify the SIS model (10.1) to the situation in which there are two competing
strains of the same disease, generating two infective classes I1, I2 under the as-
sumption that coinfections are not possible. Does the model predict coexistence
of the two strains or competitive exclusion?

2.∗ A communicable disease from which infectives do not recover may be modeled
by the pair of differential equations

S′ =−βSI, I′ = βSI.
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Show that in a population of fixed size K such a disease will eventually spread
to the entire population.

3.∗ Consider a disease spread by carriers who transmit the disease without exhibit-
ing symptoms themselves. Let C(t) be the number of carriers and suppose that
carriers are identified and isolated from contact with others at a constant per
capita rate α , so that C′ =−αC. The rate at which susceptibles become infected
is proportional to the number of carriers and to the number of susceptibles, so
that S′ = −βSC. Let C0 and S0 be the numbers of carriers and susceptibles,
respectively, at time t = 0.

(i) Determine the number of carriers at time t from the first equation.
(ii) Substitute the solution to part (i) into the second equation and determine

the number of susceptibles at time t.
(iii) Find limt→∞ S(t), the number of members of the population who escape

the disease.

4.∗ Consider a population of fixed size K in which a rumor is being spread by word
of mouth. Let y(t) be the number of people who have heard the rumor at time
t and assume that everyone who has heard the rumor passes it on to r others in
unit time. Thus, from time t to time (t+h). the rumor is passed on hry(t) times,
but a fraction y(t)/K of the people who hear it have already heard it, and thus
there are only hry(t)

(
K−y(t)

K

)
people who hear the rumor for the first time. Use

these assumptions to obtain an expression for y(t +h)− y(t), divide by h, and
take the limit as h → 0 to obtain a differential equation satisfied by y(t).

5. At 9 AM one person in a village of 100 inhabitants starts a rumor. Suppose that
everyone who hears the rumor tells one other person per hour. Using the model
of the previous exercise, determine how long it will take until half the village
has heard the rumor.

6.∗ If a fraction λ of the population susceptible to a disease that provides immunity
against reinfection moves out of the region of an epidemic, the situation may
be modeled by a system

S′ =−βSI −λS, I′ = βSI −αI.

Show that both S and I approach zero as t → ∞.

10.2 The SIR Model with Births and Deaths

Epidemics that sweep through a population attract much attention and arouse a great
deal of concern. We have omitted births and deaths in our description of epidemic
models because the time scale of an epidemic is generally much shorter than the
demographic time scale. In effect, we have used a time scale on which the number
of births and deaths in unit time is negligible.
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However, there are diseases that are endemic in many parts of the world and that
cause millions of deaths each year. To model a disease that may be endemic we need
to think on a longer time scale and include births and deaths. A reference describing
the properties of many endemic diseases is Anderson and May (1991). For diseases
that are endemic in some region, public health physicians would like to be able to
estimate the number of infectives at a given time as well as the rate at which new
infections arise. The effects of quarantine or vaccination in reducing the number
of victims are of importance, just as in the treatment of epidemics. In addition, the
possibility of defeating the endemic nature of the disease and thus controlling or
even eradicating the disease in a population is worthy of study.

A model of Kermack and McKendrick (1932) includes births in the susceptible
class proportional to total population size and a death rate in each class proportional
to the number of members in the class. This model allows the total population size
to grow exponentially or die out exponentially if the birth and death rates are un-
equal. It is applicable to such questions as whether a disease will control the size
of a population that would otherwise grow exponentially. We shall return to this
topic, which is important in the study of many diseases in less-developed countries
with high birth rates. To formulate a model in which total population size remains
bounded we could follow the approach suggested by Hethcote (1976) in which the
total population size K is held constant by making birth and death rates equal. Such
a model is

S′ = −βSI +μ(K −S),

I′ = βSI − γI −μI,

R′ = γI −μR .

Because S+ I +R = K, we can view R as determined when S and I are known and
consider the two-dimensional system

S′ = −βSI +μ(K −S),

I′ = βSI − γI −μI .

We shall examine a slightly more general SIR model with births and deaths for
a disease that may be fatal to some infectives. For such a disease, the class R of
removed members should contain only recovered members, not members removed
by death from the disease. It is not possible to assume that the total population size
remains constant if there are deaths due to disease; a plausible model for a disease
that may be fatal to some infectives must allow the total population to vary in time.
The simplest assumption to allow this is a constant birth rate Λ , but in fact the
analysis is quite similar if the birth rate is a function Λ(N) of total population size
N.

Let us analyze the model
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S′ = Λ −βSI −μS,

I′ = βSI −μI −αI, (10.5)
N′ = Λ − (1− f )αI −μN ,

where N = S+ I +R, with a mass action contact rate, a constant number of births
Λ per unit time, a proportional natural death rate μ in each class, and a rate of
recovery or disease death α of infectives with a fraction f of infectives recovering
with immunity against reinfection. In this model, if f = 1 the total population size
approaches a limit K = Λ/μ . Then K is the carrying capacity of the population. If
f < 1, the total population size is not constant, and K again represents a carrying
capacity or maximum possible population size, rather than a population size. We
view the first two equations as determining S and I, and then consider the third
equation as determining N once S and I are known. This is possible because N does
not enter into the first two equations. Instead of using N as the third variable in this
model we could have used R, and the same reduction would have been possible.

If the birth or recruitment rate Λ(N) is a function of total population size, then in
the absence of disease the total population size N satisfies the differential equation

N′ = Λ(N)−μN .

The carrying capacity is the limiting population size K, satisfying

Λ(K) = μK, Λ ′(K)< μ .

The condition Λ ′(K)< μ ensures the asymptotic stability of the equilibrium popu-
lation size K. It is reasonable to assume that K is the only positive equilibrium, so
that

Λ(N)> μN

for 0 ≤ N ≤ K. For most population models,

Λ(0) = 0, Λ ′′(N)≤ 0 .

However, if Λ(N) represents recruitment into a behavioral class, as would be natural
for models of sexually transmitted diseases, it would be plausible to have Λ(0)> 0,
or even to consider Λ(N) to be a constant function. If Λ(0) = 0, we require Λ ′(0)>
μ , because if this requirement is not satisfied, there is no positive equilibrium and
the population would die out even in the absence of disease.

We have used a mass action contact rate for simplicity, even though a more gen-
eral contact rate would give a more accurate model, just as in the epidemics consid-
ered in the preceding section. With a general contact rate and a density-dependent
birth rate we would have a model

S′ = Λ(N)−β (N)SI −μS,

I′ = β (N)SI −μI −αI, (10.6)
N′ = Λ(N)− (1− f )αI −μN.
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If f = 1, so that there are no disease deaths, the equation for N is

N′ = Λ(N)−μN ,

so that N(t) approaches a limiting population size K. The theory of asymptotically
autonomous systems [Castillo-Chavez and Thieme (1993), Markus (1956), Thieme
(1994), Thieme and Castillo-Chavez (1993)] implies that if N has a constant limit
then the system is equivalent to the system in which N is replaced by this limit. Then
the system (10.6) is the same as the system (10.5) with β replaced by the constant
β (K) and N by K, and Λ(N) replaced by the constant Λ(K) = μK.

We shall analyze the model (10.5) qualitatively. In view of the remark above,
our analysis will also apply to the more general model (10.6) if there are no disease
deaths. Analysis of the system (10.6) with f < 1 is much more difficult. We will
confine our study of (10.6) to a description without details.

The first stage of the analysis is to note that the model (10.5) is a properly posed
problem. That is, since S′ ≥ 0 if S = 0 and I′ ≥ 0 if I = 0, we have S ≥ 0, I ≥ 0
for t ≥ 0, and since N′ ≤ 0 if N = K, we have N ≤ K for t ≥ 0. Thus the solution
always remains in the biologically realistic region S ≥ 0, I ≥ 0, 0 ≤ N ≤ K if it starts
in this region. By rights, we should verify such conditions whenever we analyze a
mathematical model, but in practice this step is frequently overlooked.

Our approach will be to identify equilibria (constant solutions) and then to deter-
mine the asymptotic stability of each equilibrium. Asymptotic stability of an equi-
librium means that a solution starting sufficiently close to the equilibrium remains
close to the equilibrium and approaches the equilibrium as t → ∞, while instabil-
ity of the equilibrium means that there are solutions starting arbitrarily close to the
equilibrium that do not approach it. To find equilibria (S∞, I∞) we set the right side
of each of the two equations equal to zero. The second of the resulting algebraic
equations factors, giving two alternatives. The first alternative is I∞ = 0, which will
give a disease-free equilibrium, and the second alternative is βS∞ = μ +α , which
will give an endemic equilibrium, provided that βS∞ = μ +α < βK. If I∞ = 0 the
other equation gives S∞ = K = Λ/μ . For the endemic equilibrium the first equation
gives

I∞ =
Λ

μ +α
− μ

β
. (10.7)

We linearize about an equilibrium (S∞, I∞) by letting y = S−S∞, z = I − I∞, writing
the system in terms of the new variables y and z and retaining only the linear terms
in a Taylor expansion. We obtain a system of two linear differential equations,

y′ = −(β I∞ +μ)y−βS∞z,

z′ = β I∞y+(βS∞ −μ −α)z .

The coefficient matrix of this linear system is[−β I∞ −μ −βS∞
β I∞ βS∞ −μ −α

]
.
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We then look for solutions whose components are constant multiples of eλ t ; this
means that λ must be an eigenvalue of the coefficient matrix. The condition that all
solutions of the linearization at an equilibrium tend to zero as t → ∞ is that the real
part of every eigenvalue of this coefficient matrix be negative. At the disease-free
equilibrium the matrix is [−μ −βK

0 βK −μ −α

]
,

which has eigenvalues −μ and βK − μ −α . Thus, the disease-free equilibrium is
asymptotically stable if βK < μ +α and unstable if βK > μ +α . Note that this
condition for instability of the disease-free equilibrium is the same as the condition
for the existence of an endemic equilibrium.

In general, the condition that the eigenvalues of a 2× 2 matrix have negative
real part is that the determinant be positive and the trace (the sum of the diagonal
elements) be negative. Since βS∞ = μ +α at an endemic equilibrium, the matrix of
the linearization at an endemic equilibrium is[−β I∞ −μ −βS∞

β I∞ 0

]
, (10.8)

and this matrix has positive determinant and negative trace. Thus, the endemic equi-
librium, if there is one, is always asymptotically stable. If the quantity

R0 =
βK

μ +α
=

K
S∞

(10.9)

is less than one, the system has only the disease-free equilibrium, and this equilib-
rium is asymptotically stable. In fact, it is not difficult to prove that this asymptotic
stability is global, that is, that every solution approaches the disease-free equilib-
rium. If the quantity R0 is greater than one then the disease-free equilibrium is un-
stable, but there is an endemic equilibrium that is asymptotically stable. Again, the
quantity R0 is the basic reproduction number. It depends on the particular disease
(determining the parameter α) and on the rate of contacts, which may depend on
the population density in the community being studied. The disease model exhibits
a threshold behavior: If the basic reproduction number is less than one, the disease
will die out, but if the basic reproduction number is greater than one, the disease
will be endemic. Just as for the epidemic models of Chapter 1, the basic repro-
duction number is the number of secondary infections caused by a single infective
introduced into a wholly susceptible population, because the number of contacts per
infective in unit time is βK, and the mean infective period (corrected for natural
mortality) is 1/(μ +α).

There are two aspects of the analysis of the model (10.6) that are more com-
plicated than the analysis of (10.5). The first is in the study of equilibria. Because
of the dependence of Λ(N) and β (N) on N, it is necessary to use two of the equi-
librium conditions to solve for S and I in terms of N and then substitute into the
third condition to obtain an equation for N. Then by comparing the two sides of this
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equation for N = 0 and N = K it is possible to show that there must be an endemic
equilibrium value of N between 0 and K.

The second complication is in the stability analysis. Since (10.6) is a three-
dimensional system that cannot be reduced to a two-dimensional system, the coeffi-
cient matrix of its linearization at an equilibrium is a 3×3 matrix, and the resulting
characteristic equation is a cubic polynomial equation of the form

λ 3 +a1λ 2 +a2λ +a3 = 0 .

The Routh–Hurwitz conditions

a1 > 0, a1a2 > a3 > 0

are necessary and sufficient conditions for all roots of the characteristic equation to
have negative real part. A technically complicated calculation is needed to verify
that these conditions are satisfied at an endemic equilibrium for the model (10.6).

The asymptotic stability of the endemic equilibrium means that the compartment
sizes approach a steady state. If the equilibrium had been unstable, there would
have been a possibility of sustained oscillations. Oscillations in a disease model
mean fluctuations in the number of cases to be expected, and if the oscillations have
long period, that could also mean that experimental data for a short period would be
quite unreliable as a predictor of the future. Epidemiological models that incorporate
additional factors may exhibit oscillations. A variety of such situations is described
in [Hethcote and Levin (1989), Hethcote, Stech, and van den Driessche (1981)].

The epidemic models of the previous chapter also exhibited a threshold behavior
of a slightly different kind. For these models, which were SIR models without births
or natural deaths, the threshold distinguished between a dying out of the disease and
an epidemic, or short-term spread of disease.

From the third equation of (10.5) we obtain

N′ = Λ −μN − (1− f )αI ,

where N = S+ I +R. From this we see that at the endemic equilibrium, N = K −
(1− f )αI/μ , and the reduction in the population size from the carrying capacity K
is

(1− f )
α
μ

I∞ = (1− f )
[

αK
μ +α

− α
β

]
.

The parameter α in the SIR model may be considered as describing the pathogenic-
ity of the disease. If α is large, it is less likely that R0 > 1. If α is small, then the
total population size at the endemic equilibrium is close to the carrying capacity K
of the population. Thus, the maximum population decrease caused by disease will
be for diseases of intermediate pathogenicity.

Numerical simulations indicate that the approach to endemic equilibrium for an
SIR model is like a rapid and severe epidemic if the epidemiological and demo-
graphic time scales are very different. The same happens in the SIS model. If there
are few disease deaths, the number of infectives at endemic equilibrium may be
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substantial, and there may be damped oscillations of large amplitude about the en-
demic equilibrium. For both the SIR and SIS models we may write the differential
equation for I as

I′ = I[β (N)S− (μ +α)] = β (N)I[S−S∞] ,

which implies that whenever S exceeds its endemic equilibrium value S∞, I is in-
creasing, and epidemic-like behavior is possible. If R0 < 1 and S < K, it follows
that I′ < 0, and thus I is decreasing. Thus, if R0 < 1, I cannot increase and no
epidemic can occur.

Next, we will turn to some applications of SIR and SIS models.

10.3 Some Applications

10.3.1 Herd Immunity

In order to prevent a disease from becoming endemic it is necessary to reduce the
basic reproduction number R0 below one. This may sometimes be achieved by im-
munization. If a fraction p of the Λ newborn members per unit time of the popula-
tion is successfully immunized, the effect is to replace K by K(1− p), and thus to
reduce the basic reproduction number to R0(1− p). The requirement R0(1− p)< 1
gives 1− p < 1/R0, or

p > 1− 1
R0

.

A population is said to have herd immunity if a large enough fraction has been
immunized to ensure that the disease cannot become endemic. The only disease
for which this has actually been achieved worldwide is smallpox, for which R0 is
approximately 5, so that 80 percent immunization does provide herd immunity.

For measles, epidemiological data in the United States indicate that R0 for rural
populations ranges from 5.4 to 6.3, requiring vaccination of 81.5 percent to 84.1
percent of the population. In urban areas R0 ranges from 8.3 to 13.0, requiring
vaccination of 88.0 percent to 92.3 percent of the population. In Great Britain, R0
ranges from 12.5 to 16.3, requiring vaccination of 92 percent to 94 percent of the
population. The measles vaccine is not always effective, and vaccination campaigns
are never able to reach everyone. As a result, herd immunity against measles has not
been achieved (and probably never can be). Since smallpox is viewed as more seri-
ous and requires a lower percentage of the population be immunized, herd immunity
was attainable for smallpox. In fact, smallpox has been eliminated; the last known
case was in Somalia in 1977, and the virus is maintained now only in laboratories.
The eradication of smallpox was actually more difficult than expected, because high
vaccination rates were achieved in some countries but not everywhere, and the dis-
ease persisted in some countries. The eradication of smallpox was possible only
after an intensive campaign for worldwide vaccination [Hethcote (1978)].
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10.3.2 Age at Infection

In order to calculate the basic reproduction number R0 for a disease, we need to
know the values of the contact rate β and the parameters μ,K, and α . The param-
eters μ,K, and α can usually be measured experimentally, but the contact rate β is
difficult to determine directly. There is an indirect means of estimating R0 in terms
of the life expectancy and the mean age at infection that enables us to avoid having
to estimate the contact rate. In this calculation, we will assume that β is constant,
but we will also indicate the modifications needed when β is a function of total
population size N. The calculation assumes exponentially distributed life spans and
infective periods. In fact, the result is valid so long as the life span is exponentially
distributed, but if the life span is not exponentially distributed, the result could be
quite different.

Consider the “age cohort” of members of a population born at some time t0 and
let a be the age of members of this cohort. If y(a) represents the fraction of members
of the cohort who survive to age (at least) a, then the assumption that a fraction μ
of the population dies per unit time means that y′(a) =−μy(a). Since y(0) = 1, we
may solve this first order initial value problem to obtain y(a) = e−μa. The fraction
dying at (exactly) age a is −y′(a) = μy(a). The mean life span is the average age
at death, which is

∫ ∞
0 a[−y′(a)]da, and if we integrate by parts, we find that this life

expectancy is∫ ∞

0
[−ay′(a)]da = [−ay(a)]∞0 +

∫ ∞

0
y(a)da =

∫ ∞

0
y(a)da .

Since y(a) = e−μa, this reduces to 1/μ . The life expectancy is often denoted by L,
so that we may write

L =
1
μ

.

The rate at which surviving susceptible members of the population become in-
fected at age a and time t0 + a is β I(t0 + a). Thus, if z(a) is the fraction of the age
cohort alive and still susceptible at age a, z′(a) =−[μ +β I(t0+a)]z(a). Solution of
this linear first-order differential equation gives

z(a) = e−[μa+
∫ a

0 β I(t0+b)db] = y(a)e−
∫ a

0 β I(t0+b)db .

The mean length of time in the susceptible class for members who may become
infected, as opposed to dying while still susceptible, is∫ ∞

0
e−

∫ a
0 β I(t0+b)dbda ,

and this is the mean age at which members become infected. If the system is at
an equilibrium I∞, this integral may be evaluated, and the mean age at infection ,
denoted by A, is given by



422 10 Models for Endemic Diseases

A =
∫ ∞

0
e−β I∞a da =

1
β I∞

.

For our model the endemic equilibrium is

I∞ =
μK

μ +α
− μ

β
,

and this implies
L
A
=

β I∞

μ
= R0 −1 . (10.10)

This relation is very useful in estimating basic reproduction numbers. For example,
in some urban communities in England and Wales between 1956 and 1969 the av-
erage age of contracting measles was 4.8 years. If life expectancy is assumed to be
70 years, this indicates R0 = 15.6.

The derivation of A = 1/β I∞ is obtained from considering surviving susceptible
members at each age. This is the value that would be obtained from data giving the
fraction of susceptibles at each age. However, if average age at infection has the nor-
mal meaning of average age at which those people who become infected do become
infected, then the calculation would be different. The susceptible population at age
a is a fraction e−(μ+β I∞) of the number of newborn members, and the incidence
of new infections is β I∞e−(μ+β I∞). This would lead to an average age at infection
A∗ = 1/(μ +β I∞) and the relation L/A∗= R0.

If β is a function β (N) of total population size, the relation (10.10) becomes

R0 =
β (K)

β (N)

[
1+

L
A

]
.

If disease mortality does not have a large effect on total population size, in particular
if there is no disease mortality, this relation is very close to (10.10).

The relation between age at infection and basic reproduction number indicates
that measures such as inoculations, which reduce R0, will increase the average age
at infection. For diseases such as rubella (German measles), whose effects may be
much more serious in adults than in children, this indicates a danger that must be
taken into account: While inoculation of children will decrease the number of cases
of illness, it will tend to increase the danger to those who are not inoculated or for
whom the inoculation is not successful. Nevertheless, the number of infections in
older people will be reduced, although the fraction of cases that are in older people
will increase.

10.3.3 The Interepidemic Period

Many common childhood diseases, such as measles, whooping cough, chicken pox,
diphtheria, and rubella, exhibit variations from year to year in the number of cases.
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These fluctuations are frequently regular oscillations, suggesting that the solutions
of a model might be periodic. This does not agree with the predictions of the model
we have been using in this section; however, it would not be inconsistent with solu-
tions of the characteristic equation, which are complex conjugate with small nega-
tive real part corresponding to lightly damped oscillations approaching the endemic
equilibrium. Such behavior would look like recurring epidemics. If the eigenval-
ues of the matrix of the linearization at an endemic equilibrium are −u± iv, where
i2 = −1, then the solutions of the linearization are of the form Be−ut cos(vt + c),
with decreasing “amplitude” Be−ut and “period” 2π

v .
For the model (10.5) we recall from (10.7) that at the endemic equilibrium we

have
β I∞ +μ = μR0, βS∞ = μ + γ +α,

and from (10.8), the matrix of the linearization is[ −μR0 −(μ + γ +α)
μ(R0 −1) 0

]
.

The eigenvalues are the roots of the quadratic equation

λ 2 +μR0λ +μ(R0 −1)(μ + γ +α) = 0,

which are

λ =
−μR0 ±

√
μ2R0

2 −4μ(R0 −1)(μ + γ +α)

2
.

If the mean infective period 1/(γ + α) is much shorter than the mean life span
1/μ , we may neglect the terms that are quadratic in μ . Thus, the eigenvalues are
approximately

−μR0 ±
√−4μ(R0 −1)(γ +α)

2
,

and these are complex with imaginary part
√

μ(R0 −1)(γ +α). This indicates os-
cillations with period approximately

2π√
μ(R0 −1)(γ +α)

.

We use the relation μ(R0−1) = μL/A and the mean infective period τ = 1/(γ +α)
to see that the interepidemic period T is approximately 2π

√
Aτ . Thus, for exam-

ple, for recurring outbreaks of measles with an infective period of 2 weeks or 1/26
year, in a population with a life expectancy of 70 years with R0 estimated as 15, we
would expect outbreaks spaced 2.76 years apart. Also, since the “amplitude” at time
t is e−μR0t/2, the maximum displacement from equilibrium is multiplied by a fac-
tor e−(15)(2.76)/140 = 0.744 over each cycle. In fact, many observations of measles
outbreaks indicate less damping of the oscillations, suggesting that there may be
additional influences that are not included in our simple model. To explain oscil-
lations about the endemic equilibrium, a more complicated model is needed. One
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possible generalization would be to assume seasonal variations in the contact rate.
This is a reasonable supposition for a childhood disease most commonly transmit-
ted through school contacts, especially in winter in cold climates. Note, however,
that data from observations are never as smooth as model predictions and models
are inevitably gross simplifications of reality that cannot account for random vari-
ations in the variables. It may be difficult to judge from experimental data whether
an oscillation is damped or persistent.

10.3.4 “Epidemic” Approach to Endemic Equilibrium

In the model (10.5), the demographic time scale described by the birth and natural
death rates μK and μ and the epidemiological time scale described by the rate (α +
γ) of departure from the infective class may differ substantially. Think, for example,
of a natural death rate μ = 1/75, corresponding to a human life expectancy of 75
years, and epidemiological parameters α = 0 and γ = 25, describing a disease from
which all infectives recover after a mean infective period of 1/25 year, or two weeks.
Suppose we consider a carrying capacity K = 1000 and take β = 0.1, indicating that
an average infective makes (0.1)(1000) = 100 contacts per year. Then R0 = 4.00,
and at the endemic equilibrium we have S∞ = 250.13, I∞ = 0.40, R∞ = 749.47. This
equilibrium is globally asymptotically stable and is approached from every initial
state.

However, if we take S(0) = 999, I(0) = 1, R(0) = 0, simulating the introduction
of a single infective into a susceptible population, and solve the system numerically,
we find that the number of infectives rises sharply to a maximum of 400 and then
decreases to almost zero in a period of 0.4 year, or about 5 months. In this time
interval the susceptible population decreases to 22 and then begins to increase, while
the removed (recovered and immune against reinfection) population increases to
almost 1000 and then begins a gradual decrease. The size of this initial “epidemic”
could not have been predicted from our qualitative analysis of the system (10.5). On
the other hand, since μ is small compared to the other parameters of the model, we
might consider neglecting μ , replacing it by zero in the model. If we do this, the
model reduces to the simple Kermack–McKendrick epidemic model (without births
and deaths) of Section 9.2.

If we follow the model (10.5) over a longer time interval, we find that the sus-
ceptible population grows to 450 after 46 years, then drops to 120 during a small
epidemic with a maximum of 18 infectives, and exhibits widely spaced epidemics
decreasing in size. It takes a very long time before the system comes close to the
endemic equilibrium and remains close to it. The large initial epidemic conforms
to what has often been observed in practice when an infection is introduced into a
population with no immunity, such as the smallpox inflicted on the Aztecs by the
invasion of Cortez.
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If we use the model (10.5) with the same values of β , K, and μ , but take α = 25,
γ = 0 to describe a disease fatal to all infectives, we obtain very similar results. Now
the total population is S+ I, which decreases from an initial size of 1000 to a min-
imum of 22 and then gradually increases and eventually approaches its equilibrium
size of 250.53. Thus, the disease reduces the total population size to one-fourth of
its original value, suggesting that infectious diseases may have large effects on pop-
ulation size. This is true even for populations that would grow rapidly in the absence
of infection, as we shall see in the next section.

10.3.5 The SIS Model with Births and Deaths

In order to describe a model for a disease from which infectives recover with immu-
nity against reinfection and that includes births and deaths as in the model (10.5),
we may modify the model (10.5) by removing the equation for R′ and moving the
term αI describing the rate of recovery from infection to the equation for S′. This
gives the model

S′ = −βSI +μ(K −S)+αI, (10.11)
I′ = βSI −αI −μI − γI,

describing a population with a constant number of births μK per unit time, a pro-
portional death rate μ in each class, and a fraction γ of infectives dying from infec-
tion and a fraction α of infectives recovering with no immunity against reinfection.
In this model, if γ > 0, the total population size is not constant and K represents
a carrying capacity, or maximum possible population size, rather than a constant
population size. The analysis of the model (10.11) is very similar to that of the SIR
model (10.5), except that there is no equation for R′ to be eliminated.

The only difference is the additional term αI in the equation for S′, and this
does not change any of the qualitative results. As in the SIR model we have a basic
reproductive number

R0 =
βK

μ + γ +α
=

K
S∞

,

and if R0 < 1, the disease-free equilibrium S = K, I = 0 is asymptotically stable,
while if R0 > 1, there is an endemic equilibrium (S∞, I∞) with βS∞ = μ + γ +α
and I∞ given by (10.7), which is asymptotically stable. There are, however, differ-
ences that are not disclosed by the qualitative analysis. If the epidemiological and
demographic time scales are very different, for the SIR model we observed that the
approach to endemic equilibrium is like a rapid and severe epidemic. The same hap-
pens in the SIS model, especially if there is a significant number of deaths due to
disease. If there are few disease deaths, the number of infectives at endemic equi-
librium may be substantial, and there may be oscillations of large amplitude about
the endemic equilibrium.

For both the SIR and SIS models we may write the differential equation for I as
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I′ = I
[
βS− (μ +α + γ)

]
= β I[S−S∞],

which implies that whenever S exceeds its endemic equilibrium value, I is increas-
ing, and epidemic-like behavior is possible. If R0 < 1 and S < K, it follows that
I′ < 0, and thus I is decreasing. Thus, if R0 < 1 I cannot increase and no epidemic
can occur.

Exercise

1. Recurrent outbreaks of measles and other childhood diseases have previously
been explained by an interaction between intrinsic epidemiological forces gen-
erating dampened oscillations and seasonal and/or stochastic excitation. The
following model shows that isolation or quarantine (i.e., sick individuals stay
at home and have a reduced infective impact) can create self-sustained oscilla-
tions.
In the model considered here the population is divided into susceptibles (S), in-
fectives (I), isolated or quarantined individuals (Q), and recovered individuals
(R), for whom permanent immunity is assumed. Let N denote the total popu-
lation, and let A = S+ I +R denote the active (nonisolated) individuals. The
model takes the form

dS
dt

= μN −μS−σS
I
A
,

dI
dt

=−(μ + γ)I +σS
I
A
,

dQ
dt

=−(μ +ξ )Q+ γI,

dR
dt

=−μR+ξ Q,

A = S+ I +R.

(10.12)

All newborns are assumed to be susceptible. μ is the per capita mortality rate,
σ is the per capita infection rate of an average susceptible individual provided
everybody else is infected, γ is the rate at which individuals leave the infective
class, and ξ is the rate at which individuals leave the isolated class; all are
positive constants.

(i) Show that the total population size N is constant.
(ii) Give the meanings of 1/μ , 1/γ , 1/ξ and their units.

(iii) Rescale the model by: τ = σt,u = S/A,y = I/A,q = Q/A,z = R/A. Rear-
range your new model as follows:

ẏ = y(1−ν −θ − y− z+θy− (ν +ζ )q)
q̇ = (1+q)(θy− (ν +ζ )q)
ż = ζ q−νz+ z(θy− (ν +ζ )q).

(10.13)
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Express the new parameters in terms of the old parameters. Check that all
the new parameters and variables are dimensionless.

(iv) Study the stability of the equilibrium point (0,0,0) and derive a basic re-
productive number R0.

(v) Use a computer algebra system to demonstrate that (10.13) has periodic
trajectories. Use the parameter values ν = 0.0002, θ = 0.0156, and ξ close
to θ 2(1−θ). You also need to choose proper initial values.

10.4 Temporary Immunity

In the SIR models that we have studied, it has been assumed that the immunity
received by recovery from the disease is permanent. This is not always true, since
there may be a gradual loss of immunity with time. In addition, there are often
mutations in a virus, and as a result the active disease strain is sufficiently different
from the strain from which an individual has recovered, that the immunity received
may wane.

Temporary immunity may be described by an SIRS model in which a rate of
transfer from R to S is added to an SIR model. For simplicity, we confine our at-
tention to epidemic models, without including births, natural deaths, and disease
deaths, but the analysis of models including births and deaths would lead to the
same conclusions. Thus we begin with a model

S′ = −βSI +θR,

I′ = βSI −αI,

R′ = αI −θR,

with a proportional rate θ of loss of immunity.
Since N′ = (S+ I +R)′ = 0, the total population size N is constant, and we may

replace R by N −S− I and reduce the model to a two-dimensional system

S′ = −βSI +θ(N −S− I),

I′ = βSI −αI. (10.14)

Equilibria are solutions of the system

βSI +θS+θ I = θN,

αI +θS+θ I = θN,

and there is a disease-free equilibrium S = α/β , I = 0. If R0 = βN/α > 1, there is
also an endemic equilibrium with

βS = α, (α +θ)I = θ(N −S).
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The matrix of the linearization of (10.14) at an equilibrium (S, I) is

A =

[−(β I +θ) −(βS+θ)
β I βS−α

]
.

At the disease-free equilibrium, A has the sign structure[− −
+ βN −α

]
.

This matrix has negative trace and positive determinant if and only if βN < α , or
R0 < 1. At an endemic equilibrium, the matrix has sign structure[− −

+ 0

]
.

and thus always has negative trace and positive determinant. We see from this that
as in other models studied in this chapter, the disease-free equilibrium is asymp-
totically stable if and only if the basic reproducton number is less than 1 and the
endemic equilibrium, which exists if and only if the basic reproduction number ex-
ceeds 1, is always asymptotically stable. However, it is possible for a different SIRS
model to have quite different behavior.

We consider an SIRS model, that assumes a constant period of temporary immu-
nity following recovery from the infection in place of an exponentially distributed
period of temporary immunity. It will turn out that the endemic equilibrium for this
model may be unstable, thus giving an example of a generalization that leads to new
possibilities for the behavior of a model.

We add the assumption that there is a temporary immunity period of fixed length
ω , after which recovered infectives revert to the susceptible class. The resulting
model is described by the system

S′(t) = −βS(t)I(t)+αI(t −ω),

I′(t) = βS(t)I(t)−αI(t),

R′(t) = αI(t)−αI(t −ω).

Since N = S+ I +R is constant, we may discard the equation for R and use a
two-dimensional model

S′(t) = −βS(t)I(t)+αI(t −ω), (10.15)
I′(t) = βS(t)I(t)−αI(t).

Equilibria are given by I = 0 or βS = α . There is a disease-free equilibrium S = N,
I = 0. There is also an endemic equilibrium for which βS = α . However, the two
equations for S and I give only a single equilibrium condition. To determine the
endemic equilibrium (S∞, I∞) we must write the equation for R in the integrated
form
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R(t) =
∫ t

t−ω
αI(x)dx

to give R∞ = ωαI∞. We also have βS∞ = α , and from S∞ + I∞ +R∞ = N we obtain

β I∞ =
βN −α
1+ωα

.

The characteristic equation at an equilibrium is the condition that the lineariza-
tion at the equilibrium have a solution whose components are constant multiples of
eλ t . In the ordinary differential equation case this is just the equation that determines
the eigenvalues of the coefficient matrix, a polynomial equation, but in the general
case it is a transcendental equation. The result on which our analysis depends is
that an equilibrium is asymptotically stable if all roots of the characteristic equa-
tion have negative real part, or equivalently that the characteristic equation have
no roots with real part greater than or equal to zero.

To linearize about an equilibrium (S∞, I∞) of (10.15) we substitute

S(t) = S∞ +u(t), I(t) = I∞ + v(t),

and neglect the quadratic term, giving the linearization

u′(t) = −β I∞u(t)−βS∞v(t)+αv(t −ω),

v′(t) = β I∞u(t)+βS∞v(t)−αv(t).

The characteristic equation is the condition on λ that this linearization have a
solution

u(t) = u0eλ t , v(t) = v0eλ t ,

and this is

(β I∞ +λ )u0 +(βS∞ −αe−λω) = 0,
β I∞u0 +(βS∞ −α −λ ) = 0,

or

det
[

λ +β I∞ βS∞ −αeλω

β I∞ βS∞ −α −λ

]
.

This reduces to

βαI∞
1− e−ωλ

λ
=−[λ +βS∞ +β I∞ −α]. (10.16)

At the disease-free equilibrium S∞ = N, I∞ = 0, this reduces to a linear equation
with a single root λ = βN −α , which is negative if and only if R0 = βN/α < 1.

We think of ω and N as fixed and consider β and α as parameters. If α = 0, the
equation (10.16) is linear and its only root is −β I∞ < 0. Thus, there is a region in
the (β , α) parameter space containing the β -axis in which all roots of (10.16) have
negative real part. In order to find how large this stability region is we make use
of the fact that the roots of (10.16) depend continuously on β and α . A root can
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move into the right half-plane only by passing through the value zero or by crossing
the imaginary axis as β and α vary. Thus, the stability region contains the β -axis
and extends into the plane until there is a root λ = 0 or until there is a pair of pure
imaginary roots λ =±iy with y > 0. Since the left side of (10.16) is positive and the
right side of (10.16) is negative for real λ ≥ 0, there can not be a root λ = 0.

The condition that there is a root λ = iy is

αβ I∞
1− e−iωα

iy
=−(β I∞ + iy), (10.17)

and separation into real and imaginary parts gives the pair of equations

α
sinωy

y
=−1, αβ I∞

1− cosωy
y

= y. (10.18)

To satisfy the first condition it is necessary to have ωα > 1, since |sin ωy| ≤ |ωy|
for all y. This implies, in particular, that the endemic equilibrium is asymptotically
stable if ωα < 1. In addition, it is necessary to have sin ωy < 0. There is an infinite
sequence of intervals on which sin ωy < 0, the first being π < ωy < 2π . For each of
these intervals the equations (10.18) define a curve in the (β , α) plane parametrically
with y as parameter. The region in the plane below the first of these curves is the
region of asymptotic stability, that is, the set of values of β and α for which the
endemic equilibrium is asymptotically stable. This curve is shown for ω = 1, N = 1
in Figure 10.1. Since R0 = β/α > 1, only the portion of the (β ,α) plane below the
line γ = β is relevant.

Fig. 10.1 Region of asymptotic stability for endemic equilibria (ω = 1, N = 1).
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The new feature of the model of this section is that the endemic equilibrium is
not asymptotically stable for all parameter values. What is the behavior of the model
if the parameters are such that the endemic equilibrium is unstable? A plausible
suggestion is that since the loss of stability corresponds to a root λ = iy of the
characteristic equation, there are solutions of the model behaving like the real part of
eiyt , that is, there are periodic solutions. This is exactly what does happen according
to a very general result called the Hopf bifurcation theorem, which says that when
roots of the characteristic equation cross the imaginary axis a stable periodic orbit
arises.

From an epidemiological point of view, periodic behavior is unpleasant. It im-
plies fluctuations in the number of infectives, which makes it difficult to allocate
resources for treatment. It is also possible for oscillations to have a long period. This
means that if data are measured over only a small time interval the actual behavior
may not be displayed. Thus, the identification of situations in which an endemic
equilibrium is unstable is an important problem.

Exercises

1. Verify that the basic reproduction number of the SIRS model (10.14) is βN/α .
2. Verify that the basic reproduction number of the model (10.15) is βN/α .
3. If we add vaccination that reduces susceptibility by a factor σ at a rate ϕ to the

model (10.14), we obtain a system

S′ = −βSI −ϕS+θR,

V ′ = ϕS−σβV I, (10.19)
I′ = βSI +σβV I −αI,

R′ = αI −θR.

Determine the basic reproduction number of the model (10.19) and find all
endemic equilibria.

10.5 Diseases as Population Control

Many parts of the world experienced very rapid population growth in the eighteenth
century. The population of Europe increased from 118 million in 1700 to 187 mil-
lion in 1800. In the same time period, the population of Great Britain increased from
5.8 million to 9.15 million, and the population of China increased from 150 million
to 313 million [McNeill (1976)]. The population of the English colonies in North
America grew much more rapidly than this, aided by substantial immigration from
England, but the native population, which had been reduced to one-tenth of their
previous size by disease following the early encounters with Europeans and Euro-
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pean diseases, grew even more rapidly. While some of these population increases
may be explained by improvements in agriculture and food production, it appears
that an even more important factor was the decrease in the death rate due to dis-
eases. Disease death rates dropped sharply in the eighteenth century, partly from
better understanding of the links between illness and sanitation and partly because
the recurring invasions of bubonic plague subsided, perhaps due to reduced suscep-
tibility. One plausible explanation for these population increases is that the bubonic
plague invasions served to control the population size, and when this control was
removed, the population size increased rapidly.

In developing countries it is quite common to have high birth rates and high
disease death rates. In fact, when disease death rates are reduced by improvements
in health care and sanitation, it is common for birth rates to decline as well, as
families no longer need to have as many children to ensure that enough children
survive to take care of the older generations. Again, it is plausible to assume that
population size would grow exponentially in the absence of disease but is controlled
by disease mortality.

The SIR model with births and deaths of Kermack and McKendrick (1932) in-
cludes births in the susceptible class proportional to population size and a natural
death rate in each class proportional to the size of the class. Let us analyze a model
of this type with birth rate r and a natural death rate μ < r. For simplicity we assume
that the disease is fatal to all infectives with disease death rate α , so that there is no
removed class and the total population size is N = S+ I. Our model is

S′ = r(S+ I)−βSI −μS (10.20)
I′ = βSI − (μ +α)I .

From the second equation we see that equilibria are given by either I = 0 or βS =
μ +α . If I = 0, the first equilibrium equation is rS = μS, which implies S = 0, since
r > μ . It is easy to see that the equilibrium (0,0) is unstable. What actually would
happen if I = 0 is that the susceptible population would grow exponentially with
exponent r−μ > 0. If βS = μ +α , the first equilibrium condition gives

r
μ +α

β
+ rI − (μ +α)I − μ(μ +α)

β
= 0 ,

which leads to

(α +μ − r)I =
(r−μ)(μ +α)

β
.

Thus, there is an endemic equilibrium, provided r < α + μ , and it is possible to
show by linearizing about this equilibrium that it is asymptotically stable. On the
other hand, if r > α +μ , there is no positive equilibrium value for I. In this case we
may add the two differential equations of the model to give

N′ = (r−μ)N −αI ≥ (r−μ)N −αN = (r−μ −α)N,
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and from this we may deduce that N grows exponentially. For this model either
we have an asymptotically stable endemic equilibrium or population size grows
exponentially. In the case of exponential population growth, we may have either
vanishing of the infection or an exponentially growing number of infectives.

If only susceptibles contribute to the birth rate, as may be expected if the dis-
ease is sufficiently debilitating, the behaviour of the model is quite different. Let us
consider the model

S′ = rS−βSI −μS = S(r−μ −β I), (10.21)
I′ = βSI − (μ +α)I = I(βS−μ −α),

which has the same form as the Lotka–Volterra predator–prey model of popula-
tion dynamics. This system has two equilibria, obtained by setting the right sides
of each of the equations equal to zero, namely (0,0) and an endemic equilibrium
((μ +α)/β ,(r−μ)/β ). It turns out that the qualitative analysis approach we have
been using is not helpful, since the equilibrium (0,0) is unstable and the eigenval-
ues of the coefficient matrix at the endemic equilibrium have real part zero. In this
case, the behavior of the linearization does not necessarily carry over to the full sys-
tem. However, we can obtain information about the behaviour of the system by a
method that begins with the elementary approach of separation of variables for first-
order differential equations. We begin by taking the quotient of the two differential
equations and using the relation

I′

S′
=

dI
dS

to obtain the separable first-order differential equation

dI
dS

=
I(βS−μ −α)

S(r−β I)
.

Separation of variables gives∫ ( r
I
−β

)
dI =

∫ (
β − μ +α

S

)
dS .

Integration gives the relation

β (S+ I)− r log I − (μ +α) logS = c,

where c is a constant of integration. This relation shows that the quantity

V (S, I) = β (S+ I)− r log I − (μ +α) logS

is constant on each orbit (path of a solution in the (S, I) plane). Each of these orbits
is a closed curve corresponding to a periodic solution.

This model is the same as the simple epidemic model of Section 9.2 except for
the birth and death terms, and in many examples the time scale of the disease is
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much faster than the time scale of the demographic process. We may view the model
as describing an epidemic initially, leaving a susceptible population small enough
that infection cannot establish itself. Then there is a steady population growth until
the number of susceptibles is large enough for an epidemic to recur. During this
growth stage the infective population is very small, and random effects may wipe
out the infection, but the immigration of a small number of infectives will eventu-
ally restart the process. As a result, we would expect recurrent epidemics. In fact,
bubonic plague epidemics did recur in Europe for several hundred years. If we mod-
ify the demographic part of the model to assume limited population growth rather
than exponential growth in the absence of disease, the effect would be to give be-
havior like that of the model studied in the previous section, with an endemic equi-
librium that is approached slowly in an oscillatory manner if R0 > 1.

Exercises

1. Consider the model (10.21).

(i) Show that there are always two equilibria, an extinction equilibrium (0,0)
and a coexistence equilibrium with

βS = μ +α, β I = r−μ.

(ii) Show that both equilibria are unstable, in fact saddle points.

10.6 Parameter Estimation: Ordinary Least Squares

10.6.1 Connecting Models to Data

This book is concerned primarily with theoretical models for natural phenomena.
Such models necessarily contain parameters whose values must be estimated in or-
der to make it possible to compare model predictions with real-life data. The chal-
lenges of connecting models and data and the validation of models are critically
important in science. In fact, one of the first recorded modeling contributions in the
field of epidemiology was that of Daniel Bernoulli (1766), which focused on the
increase in the average life expectancy generated by elimination of a lethal disease,
a study related directly to data on a single smallpox outbreak, an intellectual con-
tribution that has been analyzed in detail and expanded by Dietz and Heesterbeeck
(2002).

In 2004 Sally Blower observed that

In the current debate concerning whether the United States population should be vaccinated
against smallpox (in order to prepare for a possible terrorist attack) critics of mass vacci-
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nation have argued that the risks associated with widespread usage of the current smallpox
vaccine would outweigh the potential benefits. Over 200 years ago, opponents of smallpox
variolation in the 18th century used the same arguments. They argued that: (i) inoculation
was risky because artificial smallpox could cause mortality, and (ii) inoculation programs
could increase the transmission of smallpox (because individuals inoculated with artificial
smallpox could transmit smallpox). Bernoulli used mathematical reasoning to counter both
arguments.

[ibid, page 285]. She further observes that as we do today, for example,

Bernoulli conducted a [rudimentary] form of sensitivity analysis by changing assumptions
and parameter values and then presenting a series of analyses. In Bernoulli’s first series
of calculations he assumed that 100% of newborns would be inoculated, that inoculation
would induce complete immunity to infection by the wild-type strains of smallpox, and that
inoculation would carry no risks. Under these assumptions he calculated that an individual’s
expectation of life at birth would increase from 26 years 7 months to 29 years 9 months.
Bernoulli then repeated his calculations including the assumption that one individual out of
every 200 inoculated individuals would die as the result of artificial smallpox.

[ibid, 286-287]. Blower concludes that:

It is not clear how influential Bernoulli’s paper was in influencing public health policy, but
it remains a classic paper as it was the first known mathematical analysis that was used to
try to influence public health policy.

[ibid, 287].
Efforts to connect models to data increased dramatically with the onset of the

HIV epidemic, with emphasis on the estimation of the incubation period distribu-
tion for HIV (“back calculation”) in efforts to estimate the number of individuals
with asymptomatic HIV infections [Anderson et al. (1989), Bailey (1988), Brook-
meyer and Gail (1988), Cox and Medley (1989), Hyman and Stanley (1988), Isham
(1989), Lagakos et al. (1988), Medley et al. (1987), Wilkie (1989), Castillo-Chavez
(1989)]. Additional efforts to connect models to data for the purposes of forecasting
and assisting public health decisions gained additional impetus with the emergence
of SARS in 2002 [Chowell et al. 2003, Chowell et al. (2004a), Bettencourt et al.
(2007, 2006), Gumel et al. (2004)] and the threat of bioterrorism after the tragic
events of September 11, 2001 in the United States [Banks and Castillo-Chavez
(2003), and Zeng et al. (2011)]. More recently, seasonal and pandemic influenza
have been important drivers of the theory giving rise to a large number of articles
such as [Nishiura et al. (2009, 2010, 2011)]. Three volumes with a large number of
contributions that involve connecting models to data include[Gumel et al. (2006),
Chowell et al. (2009), and Castillo-Chavez and Chowell (2011)]. Methods that con-
nect statistical theory and dynamical systems have been refined to improve our abil-
ity to connect model and epidemiological data [Ortiz et al. (2011), Sutton et al.
(2010a, 2010b, 2008), Cintron-Arias et al. (2008), Shim et al. (2006)]. Next, we
outline the “essentials” of the most typical parameter estimation approach, ordinary
least squares (OLS) estimation, in the context of the classical S− IR epidemiological
model.
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10.6.2 Ordinary Least Squares (OLS) Estimation

The formulation of the standard ordinary least squares formulation usually involves
two models: mathematical and statistical. The mathematical model used here is a
compartmental mathematical model, which is given in terms of a nonlinear system
of ordinary differential equations involving a parameter vector θ . Specifically, we
have

dx
dt

= g(x(t;θ);θ), (10.22)

where x(t;θ) ∈ R
n denotes the state variable vector at time t and θ ∈ R

p denotes
the parameter vector.

The statistical model linked to the process generated by the dynamical system
is formulated under the assumption that the model output and associated random
deviations (measurement error) are captured by the random variables

Yj = z(t j;θ0)+E j for j = 1, . . . ,n, (10.23)

where z(t j;θ0) denotes the output of the mathematical model. Usually the model
output is a functional of the state variable vector, that is, z(t;θ) = F (x(t;θ)), and
in equation (10.23) the model output is evaluated at θ = θ0, the “true” parameter
vector. The random variables E j model the random deviations away from z(t,θ0)
and are assumed to satisfy

1. E j’s are independent and identically distributed random variables;
2. E[E j] = 0 for every j;
3. var(E j) = σ2

0 < ∞, for every j.

The ordinary least squares problem arises from efforts to minimize [Yj − z(t j;θ)]2

over the set of parameter vectors θ constrained by a prespecified feasible region,
here denoted by Θ . The minimizer is a random variable, called the estimator θOLS
and given in this context by

θOLS = argminθ∈Θ

n

∑
j=1

[Yj − z(t j;θ)]2 . (10.24)

The usefulness of the estimator θOLS derives from its statistical properties. A
classical asymptotic result, in the spirit of a central limit theorem, establishes that for
n sufficiently large, this estimator has a p-multivariate normal sampling distribution.
In other words,

θOLS ∼ Np(θ0,Σ0),

where Σ0 = n−1σ2
0 Ω−1

0 and Ω0 = limn→∞
1
n χ(θ0)

T χ(θ0), provided this limit exists
and the matrix Ω0 is nonsingular. The p× p matrix Σ0 is the covariance matrix of the
θOLS estimator, while the matrix χ(θ0) is n× p and is called the sensitivity matrix,
with its (i, j) entry defined by
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χi j(θ) =
∂ z(ti;θ)

∂θ j
, 1 ≤ i ≤ n, 1 ≤ j ≤ p.

[Banks and Tran (2009)]. The theoretical quantities θ0, σ2
0 , and Σ0 are in general

unknown. In practice, one has only the data associated with a single realization yi
of the observation process Yi (for i = 1, . . . ,n) and has no option but to solve the
minimization problem, that is, the computation of an estimate for θ̂OLS under these
conditions. That is, we carry out the following minimization process:

θ̂OLS = argminθ∈Θ

n

∑
j=1

[y j − z(t j;θ)]2 .

The estimate obtained is then used to approximate the error assuming constant vari-
ance σ2

0 via the approximation

σ2
0 ≈ σ̂2

OLS =
1

n− p

n

∑
j=1

[
y j − z(t j; θ̂OLS)

]2
.

The covariance matrix Σ0 can also be approximated using θ̂OLS and σ̂2
OLS as follows:

Σ0 ≈ Σ̂OLS = σ̂2
OLS

[
χ(θ̂OLS)

T χ(θ̂OLS)
]−1

.

We proceed to apply the above OLS methodology to a well-known compartmen-
tal model and an influenza data set. In 1978, an outbreak of influenza was reported in
a boarding school for boys in the United Kingdom [Communicable Disease Surveil-
lance Centre (1978)]. The single outbreak is modeled using the classical SIR com-
partmental model given by the following set of nonlinear differential equations:

dS
dt

= −βS
I
N
,

dI
dt

= βS
I
N
− γI,

dR
dt

= γI,

N = S(t)+ I(t)+R(t),

S(0) = S0,

I(0) = I0.

The dataset reported in [Communicable Disease Surveillance Centre (1978)] cor-
responds to the prevalence of influenza, and therefore, the output in this case is
modeled by

z(t;θ) = I(t;θ),

from which the statistical model for the observation process becomes

Yj = I(t j;θ0)+E j for j = 1, . . . ,n. (10.25)
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In this case, it was reported that N = 763, and so the conditions at the start of
this outbreak can be assumed to be S0 = 762 and I0 = 1. The parameter vector to
be estimated involves the transmission coefficient β and the recovery rate γ , that is,
θ = (β ,γ). The data set in [Communicable Disease Surveillance Centre (1978)] is
denoted by yi for i = 1, . . . ,12, and it is used to compute

θ̂OLS = argminθ∈Θ

12

∑
j=1

[y j − z(t j;θ)]2 .

The minimization leads to an estimate of θ = (β ,γ). The minimization can be
carried out in multiple ways. There are in fact several optimization algorithms
(for example, Nelder–Mead simplex), and, for example, the computing software
Matlab (Mathworks, Inc) includes the following appropriate optimization routines
fminsearch, fmincon,
lsqcurvefit, lsqnonlin.

Fig. 10.2 Prevalence of an influenza outbreak in a boarding school for boys, UK [Communicable
Disease Surveillance Centre (1978)]. Total population size, N = 763, initial number of susceptible,
S0 = 762, and initial number of infectives, I0 = 1. Parameter estimates with one standard error:
β̂ = 1.6682±0.0294 (days−1), γ̂ = 0.4417±0.0177 (days−1).

Figure 10.2 displays the prevalence data (circles) and the best fit solution I(t; θ̂OLS)
(solid curve) versus time generated by the solution of the dynamical system and the
optimization process. The results look “good”, but the uncertainty in the estimation
can be quantified, and here is where statistical theory comes in [Banks and Tran
(2009)]. One way of quantifying uncertainty requires the computation of Σ̂OLS. In
this illustration the sensitivities (entries of Σ̂OLS) are defined as
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∂ z
∂β

(t j;θ) =
∂ I
∂β

(t j;θ),

∂ z
∂γ

(t j;θ) =
∂ I
∂γ

(t j;θ).

Numerical values are computed by solving

d
dt

x(t) = g(x(t; θ̂); θ̂),

d
dt

φ(t) =
∂g
∂x

φ(t)+
∂g
∂θ

,

where φ(t) = ∂x
∂θ (t;θ),

∂g
∂x

=

⎡⎢⎢⎢⎢⎣
−β̂ I

N −β̂ S
N 0

β̂ I
N β̂ S

N − γ̂ 0

0 γ̂ 0

⎤⎥⎥⎥⎥⎦ ,

and

∂g
∂θ

=

⎡⎢⎢⎢⎢⎣
−S I

N 0

S I
N −I

0 I

⎤⎥⎥⎥⎥⎦ .

In this case (influenza data), the OLS estimation of the covariance matrix is

Σ̂OLS = σ̂2 [χ(θ̂OLS)
T χ(θ̂OLS)

]−1
=

⎡⎣0.8615×10−3 0.1946×10−3

0.1946×10−3 0.3140×10−3

⎤⎦ ,

with the standard errors calculated by taking the square root of the diagonal entries
in Σ̂OLS. The estimates, within one standard error, are therefore given by

β̂ = 1.6682±0.0294 (days−1)

and
γ̂ = 0.4417±0.0177 (days−1).

Estimation can go further. For example, it is often important to estimate the ef-
fective reproductive number R(t), defined by the expression

R(t)≡ R(t;θ) =
β
γ

S(t;θ)
N

.
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In order to estimate R(t), we rewrite the equation for the infective population
(10.25) as follows:

dI
dt

= γ(R(t)−1)I.

Here, R(t) = S
N R0 is the effective reproduction number and R0 = β/γ is the basic

reproductive number). We have R(t)≤ R0, with the upper bound, the basic repro-
ductive number, being achieved only when the entire population is susceptible.

Days Cases
3 25
4 75
5 228
6 297
7 259
8 235
9 192
10 126
11 71
12 28
13 9
14 7

Table 10.1 Influenza prevalence, 1978 UK Boarding School.

Here, R(t) is defined as the product of the transmission rate and the average in-
fectious period, that is, the effective reproductive number gives the average number
of secondary infections caused by a single infective individual, at a given suscepti-
ble fraction. The prevalence of infection increases or decreases according to whether
R0(t) is greater than or less than one. Since there is no replenishment of the sus-
ceptible population in this model, R0(t) decreases over the course of an outbreak as
susceptible individuals become infected.

Using θ̂OLS we can compute the relevant point-estimate (without uncertainty
bounds) curve given by

R(t; θ̂OLS) =
β̂
γ̂

S(t; θ̂OLS)

N
.

Figure 10.3 displays R(t; θ̂OLS) versus time t.
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Fig. 10.3 Effective reproductive number R(t; θ̂OLS) versus time t. This curve is a point-estimate
curve calculated using the estimate θ̂OLS = (β̂ , γ̂).

10.7 Possible Extensions

As we have seen, in a large variety of models, the behavior when R0 < 1 is different
from the behavior when R0 > 1. More precisely, as R0 increases through 1 there
is an exchange of stability between the disease-free equilibrium and the endemic
equilibrium (which is negative as well as unstable and thus biologically meaningless
if R0 < 1). There is a bifurcation, or change in equilibrium behavior, at R0 = 1,
but the equilibrium infective population size depends continuously on R0. Such
a transition is called a forward, or transcritical, bifurcation. It is also possible, as
we have seen in an SIRS model, that the endemic equilibrium for R0 > 1 may be
unstable, depending on the distribution of infective periods.

However, it would be a serious mistake to assume that this normal situation is
universal. It has been noted [Dushoff, Huang and Castillo-Chavez(1998), Hadeler
and Castillo-Chavez (1995), Hadeler and van den Driessche (1997), Kribs-Zaleta
and Velasco-Hernandez (2000)] that in epidemic models with multiple groups and
asymmetry between groups or multiple interaction mechanisms, it is possible to
have a very different bifurcation behavior at R0 = 1. There may be multiple positive
endemic equilibria for values of R0 < 1. Typically, there is an interval of values of
R0 on which there are two asymptotically stable equilibria, one disease-free and
one endemic, and an unstable endemic equilibrium between them. Such a situation
is called a backward bifurcation at R0 = 1.

The qualitative behavior of an epidemic system with a backward bifurcation dif-
fers from that of a system with a forward bifurcation in at least three important ways.
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If there is a forward bifurcation at R0 = 1, it is not possible for a disease to invade a
population if R0 < 1, because the system will return to the disease-free equilibrium
I = 0 if some infectives are introduced into the population. On the other hand, if
there is a backward bifurcation at R0 = 1 and enough infectives are introduced into
the population to put the initial state of the system above the unstable endemic equi-
librium with R0 < 1, the system will approach the asymptotically stable endemic
equilibrium.

Other differences are observed if the parameters of the system change to pro-
duce a change in R0. With a forward bifurcation at R0 = 1 the equilibrium infective
population remains zero so long as R0 < 1 and then increases continuously as R0
increases. With a backward bifurcation at R0 = 1, the equilibrium infective popula-
tion size also remains zero so long as R0 < 1 but then jumps to the positive endemic
equilibrium as R0 increases through 1. In the other direction, if a disease is being
controlled by means that decrease R0, it is sufficient to decrease R0 to 1 if there is
a forward bifurcation at R0 = 1, but it is necessary to bring R0 well below 1 if there
is a backward bifurcation.

We have been assuming homogeneous mixing of members of the population be-
ing studied, and this is certainly unrealistically simple. Members of the population
may differ, for example, in rate of contact or in location. In the study of sexually
transmitted diseases, differences in activity levels are important aspects. Contact
rates may be age-dependent, and this would suggest the use of age-structured mod-
els. Spatial dependence may take two forms, the local diffusion of members of the
population, which would lead to partial differential equations of reaction–diffusion
types, and travel between communities, which would lead to patch or metapopula-
tion models.

Models incorporating one or more of these kinds of heterogeneity can be devel-
oped and analyzed. Inevitably, their analysis involves more structure, equations, and
parameters, as well as more sophisticated mathematical methods.

There are other modes of transmission of communicable diseases that can be de-
scribed by compartmental models. Some infections can be transmitted vertically, for
example, from mother to daughter prior to birth [Busenberg and Cooke (1993)]. An-
other form is transmission by a vector. For example, malaria is transmitted back and
forth between humans and mosquitoes. Thus an infected mosquito may bite a hu-
man and thus infect the human. An uninfected mosquito may bite an infected human
and become infected, but infection is not transmitted directly from human to human
or from mosquito to mosquito [Ross (1911). Sexually transmitted diseases that are
transmitted by heterosexual contact are also examples of vector transmission, with
male and females playing the roles of the two species.
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10.8 Project: Pulse Vaccination

Consider an SIR model eqrefeqsec8a41. For measles, typical parameter choices are
μ = 0.02, β = 1800, α = 100, K = 1 (to normalize carrying capacity to 1) [Engbert
and Drepper (1984)].

Question 1.
Show that for these parameter choices R0 ≈ 18 and to achieve herd immunity would
require vaccination of about 95 percent of the susceptible population.

In practice, it is not possible to vaccinate 95 percent of a population because not
all members of the population would come to be vaccinated and not all vaccinations
are successful. One way to avoid recurring outbreaks of disease is “pulse vaccina-
tion” [Agur, Mazor, Anderson, and Danon (1993), Shulgin, Stone, and Agur (1998),
Stone, Shulgin, and Agur (2000)]. The basic idea behind pulse vaccination is to vac-
cinate a given fraction p of the susceptible population at intervals of time T with T
(depending on p) chosen to ensure that the number of infectives remains small and
approaches zero. In this project we will give two approaches to the calculation of a
suitable function T (p).

The first approach depends on the observation that I decreases so long as S<Γ <
(μ +γ)/β . We begin by vaccinating pΓ members, beginning with S(0) = (1− p)Γ .
From (8.7),

S′ = μK −μS−βSI ≥ μK −μS.

Then S(t) is greater than the solution of the initial value problem

S′ = μK −μS, S(0) = (1− p)Γ .

Question 2.
Solve this initial value problem and show that the solution obeys

S(t)< Γ f or0 ≤ t <
1
μ

log
K − (1− p)Γ

K −Γ
.

Thus a suitable choice for T (p) is

T (p) =
1
μ

log
K − (1− p)Γ

K −Γ
=

1
μ

log
[

1+
pΓ

K −Γ

]
.

Calculate T (p) for p = m/10 (m = 1,2, . . . ,10).

The second approach is more sophisticated. Start with I = 0, S′ = μK − μS.
We let tn = nT (n = 0,1,2, . . . ) and run the system for 0 ≤ t ≤ t1 = T . Then we
let S1 = (1− p)S(t1). We then repeat, i.e., for t1 ≤ t ≤ t2, S(t) is the solution of
S′ = μK−μS, S(t1) = S1, and S2 = (1− p)S1. We obtain a sequence Sn in this way.
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Question 3.
Show that

Sn+1 = (1− p)K(1− e−μT )+(1− p)Sne−μT

and for tn ≤ t ≤ tn+1,

S(t) = K
[
1− e−μ(t−tn)

]
+Sne−μ(t−tn).

Question 4.
Show that the solution is periodic if

Sn+1 = Sn = S∗ (n = 0,1,2, . . .)

with

S∗ = K
[

1− peμT

eμT − (1− p)

]
and that the periodic solution is

S(t) =

⎧⎪⎪⎨⎪⎪⎩
K
[
1− peμT

eμT−(1−p)e−μ(t−tn)
]

f or tn ≤ t ≤ tn+1,

S∗ f or t = tn1 ,

I(t) = 0.

It is possible to show by linearizing about this periodic solution that the periodic
solution is asymptotically stable if

1
T

∫ T

0
S(t)dt <

μ +ξ
β

.

If this condition is satisfied, the infective population will remain close to zero.

Question 5.
Show that this stability condition reduces to

K(μT − p)(eμT −1)+ pKμT
μT [eμ − (1− p)]

<
μ +ξ

β
.

Question 6.
Use a computer algebra system to graph T (p), where T is defined implicitly by

K(μT − p)(eμT −1)+ pKμT
μT [eμ − (1− p)]

=
μ +ξ

β
.



10.9 Project: A Model with Competing Disease Strains 445

Compare this expression for T with the one obtained earlier in Question 2 in this
project. A larger estimate for a safe value of T would save money by allowing less
frequent vaccination pulses.

10.9 Project: A Model with Competing Disease Strains

We model a general discrete-time SIS model with two competing strains in a popu-
lation with discrete and nonoverlapping generations. This model arises from a par-
ticular discretization in time of the corresponding SIS continuous-time stochastic
model for two competing strains.

State variables

Sn population of susceptible individuals in generation n
I1
n population of infected individuals with strain 1 in generation n

I2
n population of infected individuals with strain 2 in generation n

Tn total population in generation n
f recruitment function

Parameters

μ per capita natural death rate
γi per capita recovery rate for strain i
αi per capita infection rate for strain i

Construction of the model equations: The model assumes that (i) the disease is
not fatal; (ii) all recruits are susceptible and the recruitment function depends only
on Tn; (iii) there are no coinfections; (iv) death, infections, and recoveries are mod-
eled as Poisson processes with rates μ,αi,γi (i = 1,2); (v) the time step is measured
in generations; (vi) the populations change only because of “births” (given by the
recruitment function), deaths, recovery, and infection of a susceptible individual for
each strain; (vii) individuals recover but do not develop permanent or temporary
immunity, that is, they immediately become susceptible again.
By assumption we have that the probability of k successful encounters is a Poisson
distribution, which in general has the form p(k) = e−β β k/k!, where β is the param-
eter of the Poisson distribution. In our context, only one success is necessary. There-
fore, when there are no successful encounters, the expression p(0) = e−β represents
the probability that a given event does not occur. For example, the probability that a
susceptible individual does not become infective is Prob(not being infected by strain
i) = e−αiIi

n , and, Prob(not recovering from strain i) = e−γiIi
n . Hence, Prob(not being

infected)= Prob(not being infected by strain 1)Prob(not being infected by strain 2)
= e−α1I1

n e−α2I2
n .



446 10 Models for Endemic Diseases

Now the probability that a susceptible does become infected is given by 1−
e−αiIi

n . Then, Prob(infected by strain i) = Prob(infected). Prob(infected by strain i |
infected) =(1− e−(α1I1

n+α2I2
n )) αiIi

n
α1I1

n+α2I2
n

.

(a) Using the above discussion, show that the dynamics are governed by the system

Sn+1 = f (Tn)+Sne−µ e−(α1I1
n+α2I2

n )+ I1
n e−µ(1− e−γ1)+ I2

n e−µ
(
1− e−γ2

)
,

(10.26)
I1
n+1 =

α1SnI1
n

α1I1
n +α2I2

n
e−µ(1− e−(α1I1

n+α2I2
n ))+ I1

n e−µ e−γ1 ,

I2
n+1 =

α2SnI2
n

α1I1
n +α2I2

n
e−µ(1− e−(α1I1

n+α2I2
n ))+ I2

n e−µ e−γ2 .

(b) Show that
Tn+1 = f (Tn)+Tne−µ ,

where
Tn = Sn + I1

n + I2
n . (10.27)

This equation is called the demographic equation. It describes the total popu-
lation dynamics.

(c) If we set I1
n+1 = I2

n+1 = 0, then model (10.26) reduces to the demographic model

Tn+1 = f (Tn)+Tne−µ .

Check that this is the case.
(d) Study the disease dynamics at a demographic equilibrium, that is, at a point

where T∞ = T∞e−µ + f (T∞). Substitute Sn = T∞− In
1− I2

n where T∞ is a stable
demographic equilibrium, that is, assume T0 = T∞ to get the following equa-
tions:

I1
n+1 =

α1I1
n

α1I1
n +α2I2

n
(T∞− I1

n − I2
n )e
−µ

(
1− e−(α1I1

n+α2I2
n )
)
+ I1

n e−µ e−γ1 ,

(10.28)

I2
n+1 =

α2I2
n

α1I1
n +α2I2

n
(T∞− I1

n − I2
n )e
−µ

(
1− e−(α1I1

n+α2I2
n )
)
+ I2

n e−µ e−γ2 .

System (10.28) describes the dynamics of a population infected with the two
strains at a demographic equilibrium.
Show that in system (10.28), if R1 = e−µ T∞α1

1−e−(µ+γ1)
< 1 and R2 = e−µ T∞α2

1−e−(µ+γ2)
< 1,

then the equilibrium point (0,0) is asymptotically stable.
(e) Interpret biologically the numbers Ri, i = 1,2.
(f) Consider f (Tn) = Λ , where Λ is a constant. Show that

Tn+1 = Λ +Tne−µ

and that
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T∞ =
Λ

1− e−μ .

(g) Consider f (Tn) = rTn(1−Tn)/k), and show that in this case the total population
dynamic is given by,

Tn+1 = rTn

(
1− Tn

k

)
+Tne−μ

and that the fixed points are

Tn
∗ = 0, Tn

∗∗ =
k(r+ e−μ −1)

r
,

whenever r+ e−μ > 1.
(h) Assume that one of the strains is missing, that is, let Ii

n = 0 for either i = 1 or
2. Equation (10.28) reduces to

In+1 = (T∞ − In)e−μ(1− eα1In)+ Ine−(μ+γ).

Establish necesary and sufficient conditions for the stability and/or instability
of boundary equilibria for the system (10.28). Compare your results with sim-
ulations of the system (10.28) and of the full system (10.26).

(i) Does the system (10.28) have endemic (I∗1 > 0, I∗2 > 0) equilibria?
(j) Simulate the full system (10.26) when the demographic equation is in the pe-

riod doubling regime. What are your conclusions?

References: Perez-Velazquez (2000) and Castillo-Chavez, Huang, and Li (1996a,
1997). (2000).

10.10 Project: An Epidemic Model in Two Patches

Consider the following SIS model with dispersion between two patches, Patch 1
and Patch 2, where in Patch i ∈ {1,2} at generation t, Si(t) denotes the population
of susceptible individuals; Ii(t) denotes the population of infecteds assumed infec-
tious; Ti(t) ≡ Si(t)+ Ii(t) denotes the total population size. The constant dispersion
coefficients DS and DI measure the probability of dispersion by the susceptible and
infective individuals, respectively. Observe that we are using a different notation
from what we have used elsewhere, writing variables as a function of t rather than
using a subscript for the independent variable in order to avoid needing double sub-
scripts:

S1(t +1) = (1−DS)S̃1(t)+DSS̃2(t),
I1(t +1) = (1−DI)Ĩ1(t)+DIĨ2(t),
S2(t +1) = DSS̃1(t)+(1−DS)S̃2(t),
I2(t +1) = DIĨ1(t)+(1−DI)Ĩ2(t),
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where

S̃i(t) = fi(Ti(t))+ γiSi(t)exp(
−αiIi(t)

Ti(t)
)+ γiIi(t)(1−σi),

Ĩi(t) = γi(1− exp(
−αiIi(t)

Ti(t)
))Si(t)+ γiσiIi(t)

and
0 ≤ γi,σi,αi,DS,DI ≤ 1.

Let
fi(Ti(t)) = Ti(t)exp(ri −Ti(t)),

where ri is a positive constant.
(a)Using computer explorations, determine whether it is possible to have a glob-

ally stable disease-free equilibrium on a patch (without dispersal) where the full
system with dispersal has a stable endemic equilibrium. Do you have a conjecture?
(b) Using computer explorations determine whether it is possible to have a glob-
ally stable endemic equilibrium on a patch (without dispersal) where the full system
with dispersal has a stable disease-free equilibrium. Do you have a conjecture?
References: Gonzalez, Sanchez and Saenz (2000), Arreola, Crossa, and Velasco
(2000), Castillo-Chavez and Yakubu (2000a, 2000c).

10.11 Project: Population Growth and Epidemics

When one tries to fit epidemiological data over a long time interval to a model, it
is necessary to include births and deaths in the population. Throughout the book
we have considered population models with birth and death rates that are constant
in time. However, population growth often may be fit better by assuming a linear
population model with a time-dependent growth rate, even though this does not
have a model-based interpretation. There could be many reasons for variations in
birth and death rates; we could not quantify the variations even if we knew all of
the reasons. Let r(t) = dN

dt /N denote the time-dependent per capita growth rate. To
estimate r(t) from linear interpolation of census data, proceed as follows:

1. Let Ni and Ni+1 be the consecutive census measurements of population size
taken at times ti and ti+1 respectively. Let ΔN = Ni+1 −Ni, Δ t = ti+1 − ti, and
δN = N(t +δ t)−N(t).

2. If ti ≤ t ≤ ti+1, ΔN
Δ t = δN

δ t , then we make the estimate r(t)≈ ΔN
Δ tN(t) .

3. A better approximation is obtained by replacing N(t) by N(t + δ t/2). Why?
Show that in this case, r(t)≈ ( δ t

2 + N(t)Δ t
ΔN )−1.

Question 1.
Use the data of Table 10.2 to estimate the growth rate r(t) for the population of the
USA.
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Fig. 10.4 Observed death rate (•) and the best fit obtained with the function (10.29).

1700 250,888 1800 5,308,483 1900 75,994,575
1710 331,711 1810 7,239,881 1910 91,972,266
1720 466,185 1820 9,638,453 1920 105,710,620
1730 629,445 1830 12,866,020 1930 122,775,046
1740 905,563 1840 17,069,453 1940 131,669,275
1750 1,170,760 1850 23,192,876 1950 151,325,798
1760 1,593,625 1860 31,443,321 1960 179,323,175
1770 2,148,076 1870 39,818,449 1970 203,302,031
1780 2,780,369 1880 50,155,783 1980 226,542,199
1790 3,929,214 1890 62,947,714 1990 248,718,301

– – – – 2000 274,634,000

Table 10.2 Population data growth for the USA

Figure 10.4 shows the time evolution of the USA mortality rate. This mortality
rate is fit well by

μ = μ0 +
μ0 −μ f

1+ e(t−t ′1/2)/Δ ′ (10.29)

with μ0 = 0.01948, μ f = 0.008771, t ′1/2 = 1912, and Δ ′ = 16.61. Then the “effective
birth rate” b(t) is defined as the real birth rate plus the immigration rate.

Question 2.
Estimate b(t) using r(t) = b(t)−μ(t), with r(t) found in Question 1.

Consider an SEIR disease transmission model. We assume that:
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(a) An average infective individual produces β new infections per unit of time
when all contacts are with susceptibles but that otherwise, this rate is reduced
by the ratio S/N.

(b) Individuals in the exposed class E progress to the infective class at the per
capita rate k.

(c) There is no disease-induced mortality or permanent immunity, and there is a
mean infective period of 1/γ .

We define γ = r+μ . The model becomes:

dS
dt

= bN −μS−βS
I
N
,

dE
dt

= βS
I
N
− (k+μ)E, (10.30)

dI
dt

= kE − (r+μ)I,

dR
dt

= rI −μR..

Question 3.

(a) Show that the mean number of secondary infections (belonging to the exposed
class) produced by one infective individual in a population of susceptibles is
Q0 = β/γ .

(b) Assuming that k and μ are time-independent, show that R0 is given by Q0 f ,
where f = k/(k+μ). What is the epidemiological interpretation of Q0 f ?

The usual measure of the severity of an epidemic is the incidence of infective
cases. The incidence of infective cases is defined as the number of new infective
individuals per year. If we take one year as the unit of time, the incidence of infec-
tive cases is given approximately by kE. The incidence rate of infective cases per
100,000 population is given approximately by 105kE/N.

Tuberculosis (TB) is an example of a disease with an exposed (noninfective)
stage. Infective individuals are called active TB cases. Estimated incidence of active
TB in the USA was in a growing phase until around 1900 and then experienced a
subsequent decline. The incidence rate of active TB exhibited a declining trend from
1850 (See Table 10.3 and Figure 10.5). The proportion of exposed individuals who
survive the latency period and become infective is f = k

k+μ . The number f will be
used as a measure of the risk of developing active TB by exposed individuals.

Question 4.
Assume that mortality varies according to the expression (10.29), and that the value
of b found in Question 2 is used. Set γ = 1 years−1 and β = 10 years −1, both
constant through time. Simulate TB epidemics starting in 1700 assuming constant
values for f . Can you reproduce the observed trends (Table 10.3)?
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Fig. 10.5 Incidence of active TB

Year Incidence rate Incidence Year Incidence rate Incidence
1953 53 84304 1976 15 32105
1954 49.3 79775 1977 13.9 30145
1955 46.9 77368 1978 13.1 28521
1956 41.6 69895 1979 12.6 27769
1957 39.2 67149 1980 12.3 27749
1958 36.5 63534 1981 11.9 27337
1959 32.5 57535 1982 11 25520
1960 30.8 55494 1983 10.2 23846
1961 29.4 53726 1984 9.4 22255
1962 28.7 53315 1985 9.3 22201
1963 28.7 54042 1986 9.4 22768
1964 26.6 50874 1987 9.3 22517
1965 25.3 49016 1988 9.1 22436
1966 24.4 47767 1989 9.5 23495
1967 23.1 45647 1990 10.3 25701
1969 19.4 39120 1992 10.5 26673
1970 18.3 37137 1993 9.8 25287
1971 17.1 35217 1994 9.4 24361
1972 15.8 32882 1995 8.7 22860
1973 14.8 30998 1996 8 21337
1974 14.2 30122 1997 7.4 19885
1975 15.9 33989 1998 6.8 18361

Table 10.3 Reported incidence and incidence rate (per 100,000 population) of active TB.

It is not possible to obtain a good fit of the data of Table 10.3 to the model (10.30).
It is necessary to use a refinement of the model that includes time-dependence in the
parameters, and the next step is to describe such a model. The risk of progression
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to active TB depends strongly on the standard of living. An indirect measure of the
standard of living can be obtained from the life expectancy at birth. The observed
life expectancy for the USA is approximated well by the sigmoid shape function

τ = τ f +
(τ0 − τ f )

1+ exp[(t − t1/2)/Δ ]
, (10.31)

shown in Figure 10.6. Here τ0 and τ f are asymptotic values for life expectancy;
t1/2 = 1921.3 is the time by which life expectancy reaches the value (τ0 + τ f )/2;
and Δ = 18.445 determines the width of the sigmoid.

Fig. 10.6 Observed average life expectancy at birth (•) and its best fit (continuous line) using
expression (10.31).

Assume that the risk f varies exactly like life expectancy, that is, assume that f
is given by

f (t) = f f +
( fi − f f )

1+ exp[(t − t1/2)/Δ ]
. (10.32)

We refine the model (10.30) by replacing the parameter k by the variable ex-
pression μ f (t)/(1 − f (t) and k + μ by μ/(1 − f (t), obtained from the relation
f = k/(k + μ). Since the time scale of the disease is much faster than the demo-
graphic time scale, the recovery rate r is approximately equal to γ . This gives the
model
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dS
dt

= b(t)N −μ(t)S−βS
I
N
,

dE
dt

= βS
I
N
− μ(t)

1− f (t)
E, (10.33)

dI
dt

=
μ(t) f (t)
1− f (t)

E − γI,

dR
dt

= γI −μ(t)R..

Question 5.
Simulate TB epidemics starting in 1700 using the model (10.33) with γ = 1 years−1

and β = 10 years−1, both constant, and with μ(t) given by (10.29) and f (t) given by
(10.32). Find values of f0 and f f for which an accurate reproduction of the observed
TB trends (Table 10.3) is achieved.

References: Aparicio, Capurro, and Castillo-Chavez (2000a, 2000b, 2001a, 2001d);
U.S. Bureau of the Census (1975, 1980, 1991, 1999); Castillo-Chavez and Feng
(1997, 1998a, 1998b); Feng, Castillo-Chavez, and Capurro (2000); Feng, Huang,
and Castillo-Chavez (2001).

10.12 Project: Estimating Parameters for Leishmaniasis

Leishmaniasis is a vector-borne disease caused by a protozoan parasites and trans-
mitted by the bite of certain species of sand fly (referred as “vector”). Leishmaniasis
is found in many tropical and subtropical countries. The most serious and potentially
fatal, if left untreated, form of leishmaniasis is a “visceral” form. The Indian state
of Bihar is one of the major foci of visceral leishmaniasis (VL) in the world.

Two mathematical models of the spread of VL in Bihar are shown in Figure 10.7.
The models (variables defined in Table 10.12) incorporate the possibility that indi-
viduals seek treatment at private (T ) or public (G) health facilities. The treatment of
individuals at private health facilities results in underreporting of cases and deaths
in the state, since private practitioners are not required by law to report cases and
deaths. Reported-incidence and -mortality data for 2003 can be used to obtain esti-
mates of model-dependent underreporting levels (1− p). Moreover, the transmission
coefficients (β in Model I and λh and λv in Model II) are also unknown for this dis-
ease.

Model I can be written as
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S′(t) =μN −βS(t)
I(t)
N

−μS(t),

I′(t) =βS(t)
I(t)
N

− (η +μ)I(t),

G′(t) =pηI(t)− (α1 +μ)G(t),

T ′(t) =(1− p)ηI(t)− (α2 +μ)T (t),
R′(t) =α1G(t)+α2T (t)−μR(t).

The reproduction number for Model I is

RI
c =

β
μ +η

.

Aim 1: Estimate parameter(s) p and β . The incidence-underreporting level is then
given by (1− p)×100%.
Aim 2: Use these estimated parameters to estimate the controlled (since treatment
modifies the infectious period) reproduction number (Rc).

In Model II, the rate of infection for susceptible humans is modeled by Fh(t) =
λh

Z(t)
Nv(t)

with λh ≡ mCβhv. Here, m is the per capita average number of sand flies
(assumed constant), C is the mean rate of bites per sand fly, βhv is the transmission
“probability” per bite from an infectious sand fly, and Z

Nv
is the proportion of infec-

tious sand flies in the vector population. The proportion of bites of susceptible sand
flies on infectious humans is modeled by I

Nh
, that is, sand flies bite the host popu-

lation at random. The infection rate of susceptible sand flies is Fv(t) = λv
I(t)

Nh(t)
with

λv =Cβvh where βvh is the transmission “probability” per infectious human bite by
a susceptible sand fly.

Model II is given by

S′(t) = Λ −λhS(t)
Z(t)
Nv(t)

−μhS(t), X ′(t) = μvNv −λvX(t)
Ih(t)
Nh(t)

−μvX(t),

I′(t) = λhS(t)
Z(t)
Nv(t)

− (δ1 +η +μh)I(t), Z′(t) = λvX(t)
Ih(t)
Nh(t)

−μvZ(t),

G′(t) = pηI(t)− (δ2 +α1 +μh)G(t),

T ′(t) = (1− p)ηI(t)− (δ2 +α2 +μh)T (t),

R′(t) = α1G(t)+α2T (t)−μhR(t),

In Model II, the rate of infection for susceptible humans can be modeled by
Fh(t) = λh

Z(t)
Nv(t)

(see Table 10.12 for definitions) with λh ≡ mCβhv. Here, m is the
per capita average number of sand flies (assumed constant), C is the mean rate of
bites per sand fly, βhv is the transmission “probability” per bite from an infectious
sand fly, and Z

Nv
is the proportion of infectious sand flies in the vector population.

The proportion of bites of susceptible sand flies on infectious humans is modeled
by I

Nh
, that is, sand flies bite the host population at random. The infection rate of

susceptible sand flies is Fv(t) = λv
I(t)

Nh(t)
with λv = Cβvh where βvh is the transmis-
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sion “probability” per infectious human bite by a susceptible sand fly. Even though
we consider a systematic sub-representation of λh and λv, we do not estimate their
underrepresentation parameters. That is, we estimate transmission coefficients λh
and λv as a lumped parameters and do not estimate m, C βhv and βvh explicitly. The
reproduction number for Model II is

RII
c =

√(
λv

μh +δ1 +η

)(
λh

μv

)
.

Estimates of the controlled (since treatment modifies the infectious period) repro-
duction number (Rc) and the proportion of reported cases (p) are generated from
the models. Berkeley Madonna or Matlab (built-in routine lsqcurvefit) curve-fitting
tools can be used to estimate model parameters. As an example, parameters esti-
mates for Model I are shown in Table 10.12. The “best” fit of the model to the cu-
mulative number of reported cases (official data; Table 10.12) using a least squares
fitting procedure is used to generate the unknown parameter estimates. However, for
Model II, multiple data (cases and deaths) can be used to estimate parameters.

Fig. 10.7 Flow chart: Arrows in Model II indicate interactions between vector (sand fly) and host
(human) populations.
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Variable Definition

S Number of human susceptibles
I Number of infected humans
G Number of humans undergoing treatment at public health facilities
G Number of humans undergoing treatment at private health facilities
R Number of recovered individuals
Nh Total population of humans
X Number of susceptible vectors
Z Number of infected vectors
Nv Total vector population size

Table 10.4 Model variables.

Para. Definition Point estimate Ref.

β Transmission coefficient 0.002 /month Estimated
p Proportion of infected 0.24 Estimated

using public health clinics
μ Natural mortality 0.00138 / month Census, 2001
η Treatment per capita rate 0.25 / month Sud et al., 2004
α1 Per capita recovery rate 1.32 / month Mubayi et al., 2010

for G class individuals
α2 Per capita recovery rate 0.65 / month Mubayi et al., 2010

for T class individuals
Λ Human susceptibles recruitment rate 7224 people/month Mubayi et al., 2010
δ1 Disease related mortality in class I (38.5%) Zerpa et al., 2003
δ2 Disease related mortality in treatment (10%) Bora, (1999)

(G and T) classes
μh (μv) Natural mortality per capita rate 0.00138 (2.13) /month Mubayi et al., (2010)

in humans (vectors)
λh (λv) Transmission coefficients 2.1 (1.5) / month Estimated

for humans (vectors)

Table 10.5 Parameters of the models.

In the models, the cumulative reported cases from time t0 to t are given by

C(t) =
∫ t

t0
pηI(τ)dτ ≈C(tk) =

k

∑
n=1

pηIn

where k ∈ {1,2, . . . ,12}, representing 12 months. Corresponding estimates of C(tk)
(i.e., C̃k) can be found from the data given in Table 10.12. Hence, the estimation
problem, for example in the case of Model I, is then to find optimal values (β̂ and
p̂) of β and p such that

(β̂ , p̂) = min
(β ,p)

12

∑
k=1

[C(tk)−C̃k]
2.
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Time Incidence rate VL mortality rate

per 10,000 individuals a per 10,000 infectedb

Jan-03 0.0638 0.0008
Feb-03 0.1022 0.0007
Mar-03 0.1233 0.0031
Apr-03 0.1595 0.0009
May-03 0.1054 0.0020
Jun-03 0.1235 0.0022
Jul-03 0.1585 0.0013
Aug-03 0.2028 0.0034
Sep-03 0.1567 0.0032
Oct-03 0.1460 0.0021
Nov-03 0.1289 0.0009
Dec-03 0.1453 0.0010

Table 10.6 2003 Visceral leishmanias reported data from Indian state of Bihar.

aThis rate is computed by dividing the number of new cases occurring in a particular month by the 2003 population of
Bihar (2003 population of Bihar was 86,396,255) and then multiplying the resultant number by 10,000.
bThis rate is computed by dividing the number of deaths occurring in a particular month by the 2003 population of Bihar
(2003 population of Bihar was 86,396,255), and then multiplying the resultant number by 10,000.

Similarly, if mortality data (D̃k, k ∈ {1,2, . . . ,12}) are to be used then the cumu-
lative number of deaths from the model is given by

D(t) =
∫ t

t0
δ2G(τ)dτ ≈ D(tk) =

k

∑
n=1

δ2Gn.

Assignment:

1. Use Model II and incidence data in Table 10.12 to estimate λh, λv, δ1, and p.
2. Compute underreporting incidence levels and estimate RII

c using model esti-
mates from step (1).

3. Repeat the first two steps using both data sets (i.e., incidence and mortality data
sets in Table 10.12).

References: Bora (1999), Census of India (2001), Desjeux (2004), Mubayi et al
(2010), Murray et al.(2005), Sud (2004), Zerpa (2003).

10.13 Project: Invasive Pneumococcal Disease Surveillance Data

We consider for this example invasive diseases (in contrast to respiratory infec-
tions including the common ear infection) caused by the bacterium Streptococcus
pneumoniae. These most notably include pneumonia, meningitis, and bacteremia. S.
pneumoniae, or the pneumococcus, is commonly part of the normal flora of healthy
individuals, and is spread through casual contacts via respiratory droplets. Colo-
nization of the nasopharyngeal region is asymptomatic and typically reversed in a
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couple of weeks (it lasts longer in older, younger, and other immunocompromised
individuals). A successful infection occurs only in the event that pneumococci are
able to spread to and colonize another part of the body, such as the lungs, ear, or
blood, etc.

While there are some vaccines routinely used against these infections, it is a
lively research area with many open questions. Of the vaccines available, the older
one protect against infection only, leaving the colonization phase unaffected, and
targets the 23 most common of the over 90 serotypes (analogous to strains of a
virus). The somewhat inefficient protection it provides to juvenile and older indi-
viduals is not permanent, and children, one of the most affected groups, are unre-
sponsive to the vaccine. Another vaccine, targeting seven common serotypes, is very
effective against invasive infection, particularly in children, and may provide pro-
tection against colonization. However, whether this aspect of protection is beneficial
is under investigation, since it may also provide selective pressure for previously
uncommon, yet more invasive, serotypes not targeted by the vaccine. A model of
these dynamics was developed in [Sutton, Banks, and Castillo-Chavez (2008)], and
is discussed here. See this paper and references therein for more information on the
epidemiology of these infections and vaccines developed to target them.

A schematic of pneumococcal infection dynamics including vaccination is shown
in Figure 10.8. The model equations are given by

dS
dt

= λ −βS
E +EV + I + IV

N
+αE + γI −φS+ρSV −μS,

dE
dt

= βS
E +EV + I + IV

N
−αE − lκ(t)E −φE +ρEV −μE,

dSV

dt
= φS− εβSV

E +EV + I + IV
N

+αEV + γIV −ρSV −μSV , (10.34)

dEV

dt
= εβSV

E +EV + I + IV
N

−αEV +φE −ρEV −δκ(t)EV −μEV ,

dI
dt

= lκ(t)E − (γ +η +μ)I,

dIV
dt

= δκ(t)EV − (γ +η +μ)IV ,

where the infection rate κ(t) is the oscillatory function κ(t) = κ0{1+κ1 cos[ω(t −
τ)]}.

1. Give interpretations for the parameters φ , ρ , ε , and δ .
The simplified model excluding vaccination is given by



10.13 Project: Invasive Pneumococcal Disease Surveillance Data 459

Fig. 10.8 Pneumococcal infection dynamics with vaccination.

dS
dt

= Λ −βS
E + I

N
+αE + γI − (φ +μ)S,

dE
dt

= βS
E + I

N
− (αE +κ(t)+μ)E, (10.35)

dI
dt

= κ(t)E − (γ +η +μ)I.

2. Show that the reproductive number for the model without vaccination is R0 =
β

α+κ+μ + κ
α+κ+μ

β
γ+η+μ . Give an interpretation.

The total population in the model is not constant, with case fatality rate η > 0,
as is clear by considering the equation dN

dt = λ − μN −η(I + IV ), where N =
S+E + SV +EV + I + IV . But in the absence of infection, the total population
N(t) approaches λ

μ .
3. Rescale the (full) model equations so that the state variables

X(t) = (S(t),E(t),SV (t),EV (t), I(t), IV (t))T

now represent proportions of the total population,

x(t) = (s(t),e(t),sv(t),ev(t), i(t), iv(t))T .

Hint: dx
dt �= 1

N
dX
dt , since N(t) �= N constant.

4. Show that the proportions of population unvaccinated and vaccinated are
ρ+μ

ρ+μ+φ and φ
ρ+μ+φ , respectively.
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Many model parameters are not usually available in typical sources such as
census data, as is usually the case with epidemiological models, and further are
not directly measurable from surveillance data. However, to study prevention
strategies, such as vaccination, in a specific population, we need to know all
parameter values. In [Sutton, Banks, and Castillo-Chavez (2008)], the authors
used surveillance data collected by the Australian government, available at [Na-
tional Notifiable Diseases, Roche et al. (2004), Roche et al. (2006), Roche et
al. (2007], and used a least squares approach to estimate pertinent parameters.
In the simplest case, if one has only one type of observation d j at times t j,
where j ∈ [1, . . . ,n], that is representative of model quantities f (t j), we can ob-
tain estimates to model parameters θ̂ (commonly θ is a vector of all desired
parameters) by minimizing the objective functional

θ̂ = argmin
θ∈Θ

n

∑
j=1

(d j − f (t j))
2 . (10.36)

In the above, Θ is the space of all possible values the model parameters may
take, or the feasible parameter space. For more information on how the surveil-
lance data were handled with the full model including vaccination, see [Sutton,
Banks, and Castillo - Chavez (2008)], and for a discussion of the mathemat-
ical and statistical aspects of parameter estimation and model comparison as
techniques in the field of inverse problems, see [Banks et al. (2009)].

5. Determine the form of f (t j) if the data d j are the number of infections in a pop-
ulation at a given time t j. What is the form of f (t j) if the data d j are reported
as the number of cases reported during a given time interval t j−1 to t j?

Below is a sample Matlab program to estimate parameters θ = (β ,γ)T from
“data” (data were actually generated from a forward solution of the model run
with the true parameters) in which the number of infections during a week is
reported for 14 weeks.
The code below fits the sample case notification data using a basic SIR model

Ṡ =−βSI,

İ = βSI − γI,

Ṙ = γI,

using the initial guess (0.00202,0.0022)T for parameters (β ,γ)T . The data here
are without any noise, or error. That is, these data were calculated from solu-
tions of the above SIR model exactly. Of course, there is always some error
in actual data, since even a very good model is only an approximation of the
epidemiological/physical processes occurring that generate the observations.
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clear all
tic;

data = [2.4788; 8.4667; 27.4354; 75.6336; 140.4773; 137.2901; 71.5112; 25.5687; 7.8727;
2.3170; 0.6729; 0.1954; 0.0567; 0.0165]; % enter data

n = numel(data);
t wndow= (0:n)’; %n+1 time points
IC = [500, 1, 0, 0];

%% setting initial model parameter values and ranges %%%
theta0 = [0.0018; 0.0022];
lb = [0.0005; 0.0005];
ub = [0.01; 0.01];
theta hat = theta0;
%anonymous function to be able to pass additional arguments to the
%objective functional
anonym = @(theta hat,t wndow)obj fcn(theta hat,t wndow,n,IC);

options=optimset(’Display’,’off’,’TolFun’,1e-24,’TolX’,1e-24,’LargeScale’,’on’);

% calculating estimated parameters theta hat
[ theta hat ]= lsqcurvefit(anonym,theta hat,t wndow,data,lb,ub,options);
%model solution with estimated parameters
[t z h]=ode45(@simple SIR,t wndow,IC,[],theta hat);
% calculating new infections as predicted by the ’fitted’ model
% solution with estimated parameters
model = z h(2:n+1,4)-z h(1:n,4);
t data = 1:numel(data);
figure(1);
plot(t data,model,t data,data,’.’)
title(’Model fit to weekly cases reported’)
xlabel(’t (weeks)’)
ylabel(’Cases’)

fprintf(’The estimated parameters are beta = %d and gamma = %d’,theta hat(1),theta hat(2))
function f=simple SIR(t,y,theta)
f=zeros(4,1);
f(1)=-theta(1)∗y(1)∗y(2);
f(2)=theta(1)∗y(1)∗y(2) - theta(2)∗y(2);
f(3)=theta(2)∗y(2); f(4) = theta(1)∗y(1)∗y(2);
function F=obj fcn(p,t,n,IC)
[t,z] =ode45(@simple SIR,t,IC,[],p);
F = zeros(n,1); F(1:n) = z(2:n+1,4)-z(1:n,4);

6. After running the sample code to estimate the parameter values from the “noise-
less” data, use it to estimate the same parameters, starting from the same initial
guess (0.00202,0.0022)T , using the data sets below with an increasing amount
of error (1%, 5%, 10%) in the observations. Interpret your results for the pa-
rameter estimates as the observational error in the data increases. It may be that
one parameter is more reliably estimated from these data than the other. If that
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is the case, suggest what type of data may be more informative for that param-
eter.
Case notification data to be used to estimate parameters using a simple SIR
model, with noise added as denoted in the column headings below:

1% error 5% error 10% error
2.7341 3.0036 3.6188
8.3935 7.0609 9.5840

27.3911 29.0218 24.3466
76.1656 73.5853 75.5263
140.9805 138.5686 139.8885
137.7963 135.8446 139.5319
71.7510 66.2536 75.4156
25.1375 28.1372 29.5304
8.1290 8.4535 4.7884
2.8993 0.9690 2.5933
0.8475 3.1198 0
0.5649 0 0
0.3163 0 0.0322

0 0 5.4901

7. Adapt the sample code to estimate parameters θ = (β ,κ0,κ1)
T with the two

sets of monthly case notifications:

Jan 95 104 Jan 113 169
Feb 93 127 Feb 86 99
Mar 120 77 Mar 85 84
Apr 167 183 Apr 112 125
May 221 227 May 158 154
Jun 267 242 Jun 211 209
Jul 293 284 Jul 258 286

Aug 292 297 Aug 284 311
Sep 291 329 Sep 284 311
Oct 262 329 Oct 257 270
Nov 214 266 Nov 212 189
Dec 160 134 Dec 158 172

Use the full model (including vaccination) for pneumococcal disease dynamics.
The other parameter values and initial conditions needed are given in the table
below.
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α 1.3555 S(0) 16,576,528
ω π

6 E(0) 2,453,326
τ 8 SV (0) 435,002
l 0.05 EV (0) 64,380
γ 1 I(0) 33
η 0.0787 IV (0) 5
λ 25,000
μ 0.0003
φ 0.0007579
ρ 0.02741
ε 0.953
δ 0.53551

8. In 2005, the studied population was prescribed a new vaccine nationally, the
long-term effects of which were not clear at the time. Vaccine companies pub-
lish estimates of the efficacy of released vaccines, but these may vary depending
on the ability of the immunized population to mount a response to them. The
effect of this vaccine on the colonization susceptibility was unclear. Estimate
the vaccine efficacies ε,δ from the data below, assuming unchanged loss of
protection ρ and an increased vaccination rate of φ = 0.007984. Data of type
d1 are monthly reported cases of (total) infections, and type d2 are vaccinated
cases. Use the state variable values from the end (last time point) of the “best
fit” solution to the answer to the previous question as initial conditions.

d1 d1 d2 d2

Jan 68 134 Jan 11 61
Feb 107 119 Feb 24 52
Mar 35 180 Mar 30 101
Apr 159 230 Apr 34 105
May 206 319 May 65 174
Jun 226 437 Jun 79 220
Jul 291 486 Jul 122 259

Aug 326 494 Aug 112 268
Sep 389 441 Sep 114 237
Oct 326 325 Oct 104 209
Nov 169 287 Nov 58 159
Dec 222 233 Dec 88 125

9. The reproductive number for the full model with vaccination Rφ is given by
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Rφ =
β s0(ρ +α +δκ +μ +φ)+ εβ s0

v(ρ +φ +α +κμ)

(φ +α +κ +μ)(ρ +α +δκ +μ)−φρ

+
β s0κ(ρ +α +δκ +μ +δφ)+ εβ s0

v(κρ +δκ(φ +α +κ +μ))
(γ +η +μ)[(φ +α +κ +μ)(ρ +α +δκ +μ)−φρ]

,

(10.37)

where κ ≈ κ0 and s0 and s0
v are the proportions of the population unvaccinated

and vaccinated, respectively, at the disease-free equilibrium. With the vaccine
efficacy parameters just obtained, what can be said about the possibility of
effectively vaccinating this population against IPD with the given vaccines?

References: Banks et al. (2009), National Notifiable Diseases Surveillance Sys-
tem, Roche et al. (2004), Roche et al. (2006), Roche et al. (2007), Sutton, Banks and
Castillo-Chavez (2008).



Epilogue

On Mathematical and Theoretical Biology

This book attempts to bridge the gap between mathematics and population bi-
ology. It is intended to show students of biology how to apply mathematics to the
study of some questions of importance to population biology and to introduce mod-
eling in the natural sciences to students of mathematics. It may also be used as a
reference on mathematical methods for working biological scientists.

For the most part, we have given little description of the background of the sub-
ject, and we urge the reader to explore the history of population ecology in such
sources as Kingsland (1985). We also suggest exploring Real and Brown (1991), a
collection of 40 classic papers in ecology over the period 1887 to 1974.

Naturally, there are many topics in the mathematics of population biology that
have been omitted from this book. An important omission involves the use of
stochastic models. In any real-life situation there are random effects. If population
sizes are large, these effects are often small enough to be ignored, but when popula-
tion sizes are small, then their use is essential. Some references for such models are
Durrett and Levin (1994), Nisbet and Gurney (1982), Pollard (1973), and Renshaw
(1991).

There is also no consideration of structured models that take into account nonlin-
ear birth, death, and infection processes. Some references in this area are Castillo-
Chavez (1987), Diekmann and Metz (1986), Gurney and Nisbet (1998), Gurtin and
McCamy (1974)], and Hoppensteadt (1975).

There has been a great deal of work in the mathematical theory of epidemics; see
for example [Anderson and May (1991), Brauer, van den Driessche, and Wu (2008),
Castillo-Chavez (1989), Castillo-Chavez, Blower, van den Driessche, Kirschner, and
Yakubu (2001a, 2001b), Diekmann and Heesterbeek (2000), Diekmann, Heester-
beek, and Metz (1990), Hadeler (1989a, 1989b, 1992, 1993), Murray (1989),
Thieme (2003), and Thieme and Castillo-Chavez (1989, 1993)] for a few of the
directions of current interest.

Because both of us are currently interested in the study of disease dynamics we
have emphasized epidemiological systems throughout the book. In fact, we are plan-
ning to write a book on the subject that will go well beyond the introduction in
Chapters 9 and 10 of this book. Mathematical and theoretical epidemiology have
experienced a great deal of growth over the last two decades due to the emergence
and reemergence of diseases like tuberculosis and AIDS, and epidemic disease out-
breaks such as SARS (2002–2003), recurring threats of avian influenza, and the
H1N1 influenza pandemic of 2009. In our discussion of disease dynamics we have
shown our biases. We have focused on the impact at the population (organizational)
level and have ignored the outstanding research that is being carried out in im-
munology. Fortunately, many of the techniques we have illustrated in the context
of population dynamics and epidemiology are also of use in population genetics,

OI 10.1007/978-1-4614-1686-9,
© Springer Science+Business Media, LLC 2012
Texts in Applied Mathematics 40, D
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mathematical physiology, immunology, and other areas of biology. A relatively new
development in the modeling of disease transmission has been the study of net-
works; see for example, [Newman (2002, 2003), and Strogatz (2001)]. This subject
is developing rapidly, and promises to be one of the key areas of mathematical epi-
demiology.

In this book little has been said about evolution, units of selection, levels of ag-
gregation, and scales (temporal or spatial). Consideration of these factors in the
study of population biology and epidemiology is critical. In the study of a disease
such as influenza, multiple scales come into play. We have fast (disease dynamics),
slow (host demography), and super slow (evolution of cross immunity) time scales.
Influenza spreads locally (as in schools) and globally. Influenza epidemic waves
move across cities, countries, and continents. Locally they are driven by age struc-
ture in contact rates and by public transportation, while globally they may be driven
by train or airplane flow. We hope that the mathematical techniques and modeling
approaches of this book will be useful for the interdisciplinary groups of scientists
working on the types of challenges posed by influenza epidemics.

We may summarize our goals by saying that if our book facilitates communica-
tion between biologists and mathematicians, then we will feel that we have made a
contribution to science.



Answers to Selected Exercises

Chapter 1

Section 1.1

1. 106.
3. 435.
5. 30.
7. (i) x = 10ect .

(ii) c = 0.0347.
(iii) 60 hours, 66.4 hours.

Section 1.2

1. 75.
3. 9.758×107 kg, 1.547 years.

9b For spherical cow, MR = kW 3/2; for cubical cow, MR = kcW 3/2 with k =
kcπ/61/3.

10 (a) W = (−t/12+12.57)4 (b) About 24 days.

Section 1.4

1. x = 0 unstable, x = K asymptotically stable (if r > 0, K > 0).
3. x = 0 unstable, x = K asymptotically stable (if r > 0, K > 0).
5. x = 0 unstable, x = K

(
1+ log r

d

)
asymptotically stable (if r > 0, K > 0).

7. All values of y(0) less than the solution of e−y = 2y.

467
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9. (i) If e > β , equilibrium 0 is asymptotically stable and equilibrium 1− e
β < 0

is unstable. If e < β , equilibrium 0 is unstable and equilibrium 1− e
β > 0

is asymptotically stable.
(ii) The only equilibrium is 0, asymptotically stable if a > 0 and unstable if

a > 0.
11. (i) Unstable.

(ii) Asymptotically stable.
(iii) Asymptotically stable.

15. For H = 10, there is one equilibrium (V ≈ 22); for H = 20, there are two
equilibria (V ≈ 16,V ≈ 2); for H = 30, there is only one equilibrium (V ≈ 1).
A large herd depletes vegetation discontinuously.

Section 1.5

1. Critical harvest rate 4800, equilibrium with harvest of 3000 per year is 156,900.
3. 7066
5. rK

e .
7. Maximum yield is the value of rxe1− x

K −dx, with x defined by re1− x
K
[
1− x

K

]
=

d; cannot be evaluated explicitly.

Section 1.6

1. Lake would be eutrophic.
3. Dump would move lake from current equilibrium past unstable equilibrium to

eutrophic equilibrium.

Section 1.7

1. (i) Mean is b2−a2

2 .
(ii) Cumulative distribution function is

f (t) =

⎧⎪⎨⎪⎩
0, if t ≤ a,
t−a
b−a if a < t < b,
1, t ≥ b.

3. Mean is α1+α2
α1α2

. Probability density function is α1α2
α1+α2

(e−α1t − e−α2t). If α1 =

α2 = α , probability density function is α2te−αt .
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Chapter 2

Section 2.1

1. xn = 21−n.
3. x2n =

1
2n , x2n+1 =− 1

2n .
5. x2n = rn, x2n+1 =−rn.
9. 0,1,1,2,3,5,8,13.

Section 2.2

1. Figure 10.9.

Fig. 10.9

3. Figure 10.10.

Fig. 10.10

5. xn approaches 1000 if R = 2.
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Section 2.3

1. If r2−4A < 0, the only equilibrium is 0 (asymptotically stable). If r2−4A ≥ 0,

equilibria are 0, r+
√

r2−4A
2 (asymptotically stable) and r−

√
r2−4A
2 (unstable).

3. x = 0 (stable if r < 1), x = 1
α

(
r

1
β −1

)
, asymptotically stable if

(
r

1
β −1

)
(β −

2)< 2.
5. x = 0 (unstable), x = 1 (asymptotically stable).
7. (b) p < 1− 1

e = 0.632.
9. (i) x = 0, x = 2 asymptotically stable, x = 1 unstable.

(ii)
√

9
8 −1 = 0.06 < a < 1.

14. x = 1
2 is asymptotically stable if 0 ≤ α < 1

2π . Periodic orbit for α = 1
4 is{ 1

4 ,
3
4 ,

1
4 , . . .

}
.

15. x= 0 (asymptotically stable if a< 1). x= loga (asymptotically stable if 1< a<
e2. Period doubling bifurcation appears when a = e2. Population goes extinct
if a < 1.

Section 2.4

1. r = e.
5. Fixed points 0, 5

2 ,
7
12 ,1 all unstable. Cycle of period 2 with initial value 1

4 .
9. r = e.

Section 2.5

1. x = 0 is asymptotically stable for 0 < α < 1, x = logα
β is asymptotically stable

for 1 < α < e2.
3. x = 0 is asymptotically stable for 1 < α < 1, x = logα

β is asymptotically stable
for α > 1.

Section 2.6

1. xn+1 = 6xn; (2,3), (6,6), (12,18).
3. (-1,1,1,-1,-1,1,1, . . . ).
5. (0,0) and

(
a

a−1
loga
bc , 1

b loga
)

[if a > 1], both unstable.
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Section 2.7

1. Equilibria are solutions of y = αB(y)−D(y), with x given by B(y). Asymptotic
stability conditions are |D′(y)|< 1−αB′(y), −αB′(y)< 1.

Section 2.8

1. (i) A = 104.85, L = 179.32, P = 143.46.
(ii) A = 2.75, L = 13.06, P = 10.45.

Chapter 3

Section 3.2

6. x =
K±

√
K2− 4KH

r
2 .

Section 3.3

1. x = 0 asymptotically stable for all T if r < dA. x = r−Ad
d , asymptotically stable

for all T if r > dA.
3. (i) x = 0 is unstable for all T , x = 3 is asymptotically stable if secz < −2,

where z =−T tanz.
(ii) x = 0 is unstable for all T , x = 3− log(1+ p) is asymptotically stable if

log(1+ p)−2 > secz, where z =−(1+ p)T tanz.

Section 3.4

1. x = 0 asymptotically stable for all T if r < πAd, x = r
πd −A asymptotically

stable for all T if r > πAd [for both parts (a) and (b)].
3. x = 0 asymptotically stable for all T if r < πd. x = log r

πd , existing only if
r > πd, asymptotically stable for all T .
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Section 3.5

1. Positive equilibrium x∞ is asymptotically stable for all T if it exists, which
happens if H < maxx

(
e3−x −1

)
= 6.45.

Chapter 4

Section 4.3

1. u′ = u− v,v′ = u+ v at (1,1).
3. u′ = v,v′ = 2u+ v at (1,−1) and u′ = v,v′ =−2u+ v at (−1,1).
5. No equilibrium.
7. u′ = λu,v′ = μv at (0,0), u′ = −ax∞u − by∞v,v′ = −cx∞u − dy∞v at x∞ =

dλ−bμ
ad−bc ,y∞ = aμ−cλ

ad−bc .
9. (0,0) with community matrix

[−1 1
0 −1

]
, asymptotically stable. (1,1) with com-

munity matrix
[−1 1

8
5 −1

]
, unstable. (4,4) with community matrix

[−1 1
2
5 −1

]
, asymp-

totically stable.
11. (i) S′ =−βSI

N + γ(N − I −S) I′ = βSI
N − γI [N constant].

(ii) Disease-free equilibrium S = N, I = 0 is asymptotically stable if β < ν .
Endemic equilibrium with βS = νN is asymptotically stable if it exists
(β > ν).

13. (i) Λ -people/time, β ,μ , and γ-1/time.
(ii) N′ = Λ −μN.

(iii) N(t) = Λ
μ (1− e−μt)+N(0)e−μt .

(v) R0 =
β

μ+γ , equilibrium S = K, I = 0 is asymptotically stable if R0 < 1 and

equilibrium S = μ+γ
β is asymptotically stable if R0 > 1.

15. (a)
[−μ −β

0 β−(μ+γ) 0
0 γ −μ

]
, with eigenvalues −μ , −μ , β − (μ + γ).

(c) R0 =
β

μ+γ , same as for (4.9).
(d) Disease-free equilibrium is asymptotically stable if R0 < 1.

Section 4.4

1. (1,1) unstable.
3. (−1,−1) unstable, (1,1) unstable.
5. No equilibrium.
7. Orbits depend on values of the parameters; solution is given in Section 5.1.
9. Orbits depend on the values of the parameters; solution is given in Section 5.2.
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11. (b) y ≈ αN
γ−α (e−αt − e−γt).

(c) y ≈ N
1000 for t = 6.915.

17. Competitive system; all solutions approach
( 2

3 ,
2
3

)
.

19. (0,0) has matrix
[−0 −1
−1 −0

]
, (saddle point). (1,1) has matrix

[
1 0
0 1

]
(unstable node).

Section 4.5

1. There are three equilibria (0,0), (20,0), and (10,30). All of them are unstable.
There is a stable limit cycle around (10,30). Two species coexist with oscilla-
tion.

3. There are three equilibria (0,0), (20,0), and (2,32.4). All of them are unstable.
There is a stable limit cycle around (2,42.4). Two species coexist with oscilla-
tion.

5. There are two equilibria (0,0), (20,0); (20,0) is asymptotically stable. Thus
the predator species goes to extinction.

7. The equilibrium (60,20) is asymptotically stable and all trajectories approach
it. Two species coexist.

9. The equilibrium(0,45) is asymptotically stable and all trajectories approach it.
The x-species goes to extinction and the y-species wins the competition.

11. The equilibrium (0,16) is asymptotically stable and all trajectories approach it.
The x-species goes to extinction and the y-species wins the competition.

13. If n < 8, steady state is an asymptotically stable, a spiral point if n <
√

48 and
a node if

√
48 < n < 8. If n > 8, steady state is a saddle point.

Chapter 5

Section 5.1

1. The equilibrium (60,20) is asymptotically stable and all trajectories approach
it. Two species coexist.

3. The equilibrium(0,45) is asymptotically stable and all trajectories approach it.
The x-species goes to extinction and the y-species wins the competition.
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5. The equilibrium (0,16) is asymptotically stable and all trajectories approach it.
The x-species goes to extinction and the y-species wins the competition.

Section 5.2

1. There are three equilibria (0,0), (20,0), and (10,30). All of them are unstable.
There is a stable limit cycle around (10,30). Two species coexist with oscilla-
tion.

3. There are three equilibria (0,0), (20,0), and (2,32.4). All of them are unstable.
There is a stable limit cycle around (2,42.4). Two species coexist with oscilla-
tion.

5. There are two equilibria (0,0), (20,0). (20,0) is asymptotically stable. Thus
the predator species goes to extinction.

Section 5.3

1. Figure 10.11.

Fig. 10.11
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Section 5.5

1. There are two equilibria (0,0) and (120,70). The first is unstable and the sec-
ond is asymptotically stable.

3. There are three equilibria (0,0), (0,10), and (4+
√

34,5+
√

34). The first two
are unstable and the third is asymptotically stable.

5. There are three equilibria (0,0), (0,M), and (K,0). They are all unstable.
If ab ≥ 1, orbits are unbounded. If ab < 1, a stable equilibrium (x∞,y∞) =(

K+aM
1−ab , Mb+K

1−ab

)
appears and all trajectories approach this equilibrium.

Chapter 6

Section 6.1

1. When E = 0, the equilibrium (x∞,y∞) = (60,20) is asymptotically stable and
thus the two species coexist. When E > 0, the stable equilibria are on the line
x+ y = 80, and when E = 120, it coalesces to (0,80). Therefore, harvesting
decreases the x-species size and increases the y-species, and eventually moves
coexistence to x-extinction.

3. Without harvesting, the x-species goes to extinction and the y-species wins the
competition. Harvesting the x-species will speed up extinction of the x-species.

5. Four equilibria O1 = (40+
√

402 −H,0), O2 = (40−√
402 −H,0),

O3=(60+
√

602−6H
2 ,40−60+

√
602−6H
6 )andO4=

(
60−

√
602−6H
2 ,40− 60−

√
602−6H
6

)
.

O1 and O2 are always unstable; O4 is unstable and O3 is stable. With harvesting
of the x-species, as H increases O3 and O4 move along the line x+ 3y = 120
until they coalesce when H = 60, resulting in coexistence at (30,30).

7. There is no equilibrium with positive population sizes. The x-species becomes
extinct in finite time.
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Section 6.2

1. Hc = H∗ = 5
6 .

3. Hc = 5.787, H∗
1 = 3.7037, H∗

2 = 5.5556. H must be in the interval(0,H∗
1 ) or in

the interval (H∗
2 ,Hc).

5. Hc = 8.8889. Trace of community matrix is positive, meaning that equilibrium
is unstable. There exists a stable limit cycle.

Section 6.3

1. If we repeat the process 5 times, the estimated average instantaneous harvest
is 34.5526. If we repeat the process 10 times, the estimated average instan-
taneous harvest is 34.2373. If we repeat the process 15 times, the estimated
average instantaneous harvest is 34.1638. If we repeat the process 100 times,
the estimated average instantaneous harvest is 34.0324. If we repeat the process
500 times, the estimated average instantaneous harvest is 34.0318.

Section 6.4

1. Y (E) = aE
E+b , always less than a and approaches a as E → ∞. However, maxi-

mum fish population size is a
b . Thus the yield cannot exceed a

b .
3. EMSY is the unique solution of the equation log( r

d+E )− E
d+E = 0 for E in the

interval (0,r−d). The maximum sustainable yield Y (EMSY ) =
E2

MSY
d+EMSY

.

Section 6.5

1. F(y) = ry log K
y , h = Ey, C(y) = c

y ; y∗ is the unique solution to the equation
rp log K

y − (δ + r)(p− c
y ) = 0. If K

e < c
p , y∗ < K

e = yMSY , implying overfishing.



Answers to Selected Exercises 477

Chapter 7

Section 7.1

1. λ0 = 0.9491, v0 = [0.8021,0.4534,0.1979],
stable age distribution [0.5131,0.3604,0.1226].

3. λ0 = 1.6826, v0 = [0.9552,0.2838,0.0843],
stable age distribution [0.7281,0.2145,0.0637].

5. Leslie matrix is

A =

[
1 3

2/3 0

]
,

λ0 = 2, v0 = [0.9487,0.3162], the stable age distribution is [0.75,0.25]. The
total population Pn ≈ c2n when n is large.

Section 7.3

1(d). B(t) =
(

β
∫ ∞

0 φ(s)ds
)

e(β−μ)t .

4. P(t) = ϕ0(a)
π(a+t)

π(a) +
∫ t

0 P(t −a)π(a)da.

Chapter 8

Section 8.2

4. p′1 = cp1 p2 − (d + e)p1, p′2 = λ +(d −λ )p1 − (e+λ )p2 − cp1 p2.
Equilibria are (0,λ/(e+λ )),(λ/(λ + e)−λ (d + e)/c,0).

(i)(ii) Threshold quantity is
cλ

(e+λ )(d + e)
.

Section 8.4

2. Unique equilibrium
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y1 =
μ +d +2σ1

(μ +d)(μ +σ1)+μσ2
Λ , y2 =

μ +2σ1

(μ +d)(μ +σ1)+μσ2
Λ ,

asymptotically stable.

Section 8.6

1. un(x, t) = Bne−D(
2(n−1)π

2L )2t sin 2(n−1)π
2L x.

u(x, t) = ∑∞
n=1 Bne−D(

2(n−1)π
2L )2t sin 2(n−1)π

2L x.
3. un(x, t) = (An cosλnx+Bn sinλnx)e−D(λn)

2t

where λn are roots of β tanλL =−λ ,
u(x, t) = A0 +∑∞

n=1(Ancosλnx+Bnsinλnx)e−D(λn)
2t ,

u(x,0) = f (x) = A0 +∑∞
n=1(An cosλnx+Bn sinλnx).

5. From Problem 1, u(x, t) = ∑∞
n=1 Bne−D(

2(n−1)π
2L )2t sin 2(n−1)π

2L x, u(x,0) = x =

∑∞
n=1 Bn sin 2(n−1)π

2L x,Bn =
∫ L

0 xsin 2(n−1)π
2L xdx = 8L

2(n−1)π .

7. un(x, t)=Bne−D(
2(n−1)π

2L )2tsin 2(n−1)π
2L x,u(x, t)=∑∞

n=1Bne−D(
2(n−1)π

2L )2tsin 2(n−1)π
2L x,

u(x,0) = f (x) = ∑∞
n=1 Bnsin 2(n−1)π

2L x, Bn =
∫ L

0 f (x)sin 2(n−1)π
2L xdx

9. Let u(x, t) = v(x) + w(x, t) where v(x) = c1 + c2x with v(0) = c1 = u1 and
v′(0) = c2 = 0. Therefore, v(x) = u1 and u(x,0) = v(0)+w(x,0) = f (x), lead-
ing to w(x,0) = f (x)− u1. Now, w(x, t) is a solution to Problem 1; w(x, t) =

∑∞
n=1 Bne−D(

2(n−1)π
2L )2t sin 2(n−1)π

2L x, Bn =
∫ L

0 ( f (x)−u1)sin 2(n−1)π
2L xdx.

11. X(x) = Acosλx+Bsinλx with X(0) = 0 and X ′(L) =−αX(L)
Xn(x) = Bnsinλnx where λn are roots of αtanλL = −λ . Therefore, u(x, t) =
∑∞

n=1 Bn sinλnxe−D(λn)
2t .

13. u(x,0) = u0 +u0 cos πx
L .

Section 8.7

3. u(x, t) =
∫ ∞

0 u0
1√

4Dπt
e−

|x−y|2
4Dt dy.

Section 8.8

1. u(x, t) =
∫ ∞
−∞ f (y) 1√

4Dπt
e−

|x−y|2
4Dt dy+

∫ ∞
0 g(s) 1√

4Dπ(t−s)
e−

|x|2
4D(t−s) ds.
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Chapter 9

Section 9.2

1. 1.4416.
3. 2.827%.
5. 17.56%.
7. 58.33%.

10. 0.9125 f oxes/km2.
11. 23.1%.
13. No.

Section 9.3

3. Epidemic probability is 0.583.

Section 9.6

1. S′(t) =−βS(t)I(t), I′(t) = I′0(t)+βS(t)I(t)−βS(t −σ)I(t −σ).

Section 9.9

1. (i) Model

Ṡ = −β (I +δA)S−νS,

Ṡv = −εβ (I +δA)Sv +νS−φSv,

Ṗ = φSv,

L̇ = β (I +δA)S+ εβ (I +δA)Sv −κL,

İ = pκL− γI,

Ȧ = (1− p)κL−ηA

Ṙ = ηA+ γI,

where Sv is the vaccinated class, P is the protected class, ν is the vaccination
rate, and φ is the rate of advancement to protection from vaccination. Yes, the
population is constant. No, there are no endemic equilibria. This can be seen
since S tends to zero, causing Sv to tend toward zero, causing L to tend to zero,
which ultimately causes I to tend to zero as t goes to infinity.
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(ii) As the vaccination rate is increased, the number of infected individuals will
decrease. Yes, vaccination can prevent an outbreak.

Section 9.10

3. Model

Ṡ = −β (I +δT )S,

Ė = β (I +δT )S−κE,

İ = κE − (α + γ)I,
Ṫ = γI −ηT,

Ṙ = ηT +αI.

Then

R0 =
βN

α + γ
.

Chapter 10

Section 10.1

3. (i) C =C0e−αt . (ii) S0e
βC0

α (e−αt−1). (iii) limt→∞ S(t) = S0e−
β
α C0 .

5. About 4 1/2 hours.

Section 10.3

1. (i) Check dN
dt = 0. (ii) 1

μ average life span; 1
γ average infectious period; 1

ξ aver-
age quarantine period. Their units are the same, namely time. (iii)ν = μ

σ ,θ =
γ
σ ,ζ = ξ

σ . (iv) R0 = σ
μ+γ , R0 ≤ 1, (0,0,0) is asymptotically stable. R0 > 1,

(0,0,0) is unstable.

Section 10.4

3. There is a disease-free equilibrium S = 0, V = N, I = 0. To find endemic equi-
libria, substitute
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S+
αI

ϕ +β I
, σβV =

αϕ
ϕ +β I

,

into
(α +θ)I +θS+θV = θN

to obtain a quadratic equation for I that may have either one positive root or
two positive roots.



References

483

1. Adler, F., L. Smith, and C. Castillo-Chavez (1989) A distributed delay model for the local
population dynamics of a parasitoid-host system, Mathematical Approaches to Ecological
and Environmental Problem Solving (Castillo-Chavez C., S. A. Levin, and C. Shoemaker,
eds.)Lecture Notes in Biomathematics 81, Springer-Verlag, Berlin, Heidelberg, New York,
London, Paris, Tokyo, Hong Kong, pp. 152-62.

2. Agur,Z.L., G. Mazor, R. Anderson, and Y. Danon (1993) Pulse mass measles vaccination
across age cohorts, Proc. Nat. Acad. Sci., 90:11698-11702.

3. Allee, W.C. (1931) The Social Life of Animals, Heinemann, London.
4. Anderson, R.M. (1974) Mathematical models of host-helminth parasite interactions. In: Eco-

logical Stability, (M. B. Usher and M. H. Williamson,eds.), Chapman and Hall, London.pp.
43-69.

5. Anderson, R.M., ed.(1982) Population Dynamics of Infectious Diseases: Theory and Appli-
cations, Chapman and Hall, London-New York.

6. Anderson, R.M., D. R. Cox, and H. C. Hillier (1989) Epidemiological and statistical aspects
of the AIDS epidemic: introduction, Phil. Trans. Roy. Soc. Lond. B 325:39-44.

7. Anderson,R.M., H.C. Jackson, R.M. May, and A.M. Smith (1981) Population dynamics of
fox rabies in Europe, Nature, 289:765-771.

8. Anderson, R.M. and R.M. May (1982) Co-evolution of host and parasites, Parasitology,
85:411-426.

9. Anderson, R.M. and R.M. May (1983) Vaccination against rubella and measles: Quantitative
investigations of different policies, J. Hygiene, 90:259-325.

10. Anderson, R.M. and R.M. May (1991) Infectious Diseases of Humans, Oxford Science Pub-
lications, Oxford.

11. Andrewartha, H.G. and L.C. Birch (1954) The Distribution and Abundance of Animals, Univ.
of Chicago Press, Chicago.

12. Aparicio, J.P., A. Capurro, and C. Castillo-Chavez (2000a) Markers of disease evolution: the
case of tuberculosis, J. Theor. Biol., 215: 227–238.

13. Aparicio, J.P., A. Capurro, and C. Castillo-Chavez (2000b) On the rise and fall of tuberculo-
sis. Department of Biometrics, Cornell University, Technical Report Series, BU-1503-M.

14. Aparicio J.P., A.F. Capurro, and C. Castillo-Chavez (2000b) On the fall and rise of tubercu-
losis. Department of Biometrics, Cornell University, Technical Report Series, BU-1477-M.

15. Aparicio J.P., A. Capurro, and C. Castillo-Chavez (2001a). Frequency Dependent Risk of
Infection and the Spread of Infectious Diseases. In: Mathematical Approaches for Emerg-
ing and Reemerging Infectious Diseases : Models, Methods and Theory, Edited by Castillo-
Chavez, C. with S. Blower, P. van den Driessche, D. Kirschner, and A.A. Yakubu, Springer-
Verlag (2002), pp. 341–350.

16. Aparicio, J.P., A. Capurro, and C. Castillo-Chavez (2001b) On the long-term dynamics and
re-emergence of tuberculosis. In: Mathematical Approaches for Emerging and Reemerging



484 References

Infectious Diseases: Models, Methods and Theory, Edited by Castillo-Chavez, C. with S.
Blower, P. van den Driessche, D. Kirschner, and A.A. Yakubu, Springer-Verlag, (2002) pp.
351–360.

17. Arino, J., F. Brauer, P. van den Driessche, J. Watmough and J. Wu (2007) A final size relation
for epidemic models, Math. Biosc. & Eng. 4: 159–176.

18. Arino, J., F. Brauer, P. van den Driessche, J. Watmough and J. Wu (2006) Simple models for
containment of a pandemic, J. Roy. Soc. Interface, 3: 453–457.

19. Armstrong, R.A. and R. McGehee (1980) Competitive exclusion, Amer. Naturalist, 115:151-
170.

20. Aron, J.L. and R.M. May (1982) The population dynamics of malaria. In: Population Dy-
namics of Infectious Disease, R.M. Anderson, ed., 139-179, Chapman and Hall, London.

21. Arreola R., A. Crossa, and M.C. Velasco (2000) Discrete-time SEIS models with exogenous
re-infection and dispersal between two Patches, Department of Biometrics, Cornell Univer-
sity, Technical Report Series, BU-1533-M.

22. Arriola P., I. Mijares-Bernal, J.A. Ortiz-Navarro, H. Campus, and R.A. Senz (2000) Dy-
namics of the spruce budworm population under the action of predation and insecticides,
Department of Biometrics, Cornell University, Technical Report Series, BU-1417-M.

23. Ayala, F.J., M.E. Gilpin, and J.G. Ehrenfeld (1973) Competition between species: Theorical
models and experimental tests, Theoretical Pop. Biol., 4:331-356.

24. Bailey, N.T.J. (1975) The Mathematical Theory of Infectious Diseases and Its Applications,
Griffin, London.

25. Bailey, N.T.J. (1988) Statistical problems in the modelling and prediction of HIV/AIDS,
Aust. J. Stat. 3OA:41-55.

26. Banks H.T. and C. Castillo-Chavez (eds.) (2003) Bioterrorism: Mathematical Modeling Ap-
plications in Homeland Security. SIAM Series Frontiers in Applied Mathematics 28.
bibitemBanks2009 Banks, H.T., M. Davidian, J. R. Samuels, Jr., and K. L. Sutton (2009), An
inverse problem statistical methodology summary, in Mathematical and Statistical Estima-
tion Approaches in Epidemiology, (G. Chowell, C. Castillo-Chavez, J.M. Hyman, and Luis
Bettencourt, eds.), Springer, Berlin Heidelberg New York: 249-302.

27. Banks, H.T. and H.T. Tran (2009), Mathematical and Experimental Modeling of Physical
and Biological Processes, CRC Press, Boca Raton.

28. Bansal, S., J. Read, B. Pourbohloul, and L.A. Meyers (2010) The dynamic nature of contact
networks in infectious disease epidemiology, J. Biol. Dyn., 4: 478–489.

29. Barbour, A.D. (1978) Macdonald’s model and the transmission of bilharzia, Trans. Roy. Soc.
Trop. Med. Hygiene,72:6-15.

30. Barrera J.H., A. Cintron-Arias, N. Davidenko, L.R. Denogean, and S.R. Franco-Gonzalez
(2000) Dynamics of a two-dimensional discrete-time SIS model, Department of Biometrics,
Cornell University, Technical Report Series, BU-1518-M.

31. Bélair, J. and L. Glass (1983) Self similarity in periodically forced oscillators, Phys. Lett.,
96A:113-116.

32. Beck, K. (1984) Co-evolution: Mathematical aspects of host-parasite interactions, J. Math.
Biol., 19:63-77.

33. Bellman, R.E. and K.L. Cooke (1963) Differential-Difference Equations, Academic Press,
New York.
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R0, see basic reproductive number

absorption, 24, 31
action potential, 119, 120, 219
activator, 328
adjoint variable, 255, 262, 263
age at infection, 421, 422
age distribution

stable, 270–273, 278, 279, 287
persistent, 278

age group, 289
age of infection, 351, 384
age progression rate, 289
age structure, 288
age-structured population, 79
agriculture, 31, 37, 432
AIDS, 345–347, 377, 411
Allee effect, 22, 55
allele, 332
analytic expressions, 17
Antarctic fin whale, 74
antibiotic, xiv
Antonine plagues, 347
aperiodic, see periodic
Assyria, 346
asymptotic stability, 20, see stability
asymptotic velocity, 322
attack rate, 354
autocatalytic reaction, 332
autonomous, 18
Aztecs, 347, 424

backward bifurcation, 441
bacteria, xviii, 346, 350
bacteria agents, 411
balance equation, 302, 330
bang-bang, see control

control, 238
basic reproduction number, 353, 368, 412, 418
basic reproductive number, xv, 5
Bayes’s theorem, 40
Bendixson theorem, 152
Bernardelli population wave, 272
Bernouilli, 349
Beverton-Holt model, 69
bifurcation

backward, 441
period-doubling, 88
Hopf, 431

bifurcation curve, 44
biomass, 3
bionomic equilibrium, 244
birth, 432
birth control, xiii
birth cycle, 68
birth modulus, 274
birth rate, 8, 134, 289

per capita, xiv, 4
births, 349, 411, 413
bistable, 45
Black Death, see bubonic plague
blood cells, 116
blood sample, 356
blood stream, xv
blood–brain barrier, 144
boundary condition, 303
branching process, 351, 362, 373
bubonic plague, xiii, 347, 356, 432, 434
Burgers equation, 339

cable equation, 333, 334
cannibalism, 80, 81
canonical form, 156
capacitance, 334
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capital asset, 261, 263
carriers, 414
carrying capacity, xiv, xv, 9, 413
catastrophe, 27, 224
catastrophic outbreak, 203
Cauchy initial value problem, 336, 340
census, 7, 10, 81, 448
center, 140, 167, 188
Chagas, 346
chaos, 63
chaotic behavior, 61, 65
characteristic equation, 140
characteristic equation, 72, 96, 336, 379, 419
chemostat, 183
chicken pox, 346, 422
cholera, 345
closed season, 240
cluster, 346, 367
coalescence, 33, 201, 225
cobwebbing method, 53
coexistence, xviii, 130, 218, 224
cohort, 273, 352
collapse, 55
colonization, 294
commensalism, 193
communicable disease, 345, 413, 442
community matrix, 129, 206, 207, 232
compartment

infected, 395
uninfected, 394

compartmental model, 349, 442
compensation, 21
competing disease strains, 445
competition

contest, 65
intraspecies, 65
scramble, 65, 98
unqualified, 168

competitive exclusion, xviii, 165, 170
complex dynamics, xvii
compounding, 247
computer algebra system, see Maple, see

Mathematica
configuration model, 370
connecting orbit, 235, 325
connection matrix, 297
constraint, 229
contact, 367, 368, 412
contact intervention, 368
contact rate, 416
contest competition, 98
control

bang-bang, 238, 249
optimal, 238

control group, 348
control reproduction number, 379, 392
control,optimal, 238
convolution, 276
Cortez, see Aztecs
critical depensation, 21
critical harvest rate, 28, 237
critical transmissibility, 368
culture, 126

batch, 126
continuous, 126

cumulative distribution, 38
current shadow price, 263
cusp, 45

data, 419, 431, 434
death modulus, 274
death rate, see mortality rate

per capita, 4
debilitating, 345, 433
degree, 362, 367
degree distribution, 362, 367
delay, xvii, 19
delay logistic equation, 94
delta function, 317
demand curve, 244
demographic, 346, 394, 400
demographic equation, 446
demographic equilibrium, 87, 446
demographic process, xv
dendritic branch, 333, 340
density dependence, 289
Density-dependent, 413, 416
depensation model, 21
destabilization, 101, 323
determinant, 140
deterministic model, see model
diarrhea, 345
difference equation

differential, 105
linear, 72
linear homogeneous, 49
nonlinear, 51

differential equation
autonomous, 21
linear homogeneous, 19
nonautonomous, 16

differential infectivity, 377
differential–difference equation, 349
differential–difference equations, 118
diffusion, 24, 91, 293, 442
diffusion coefficient, 303, 331
diffusion equation, 301
diffusive instability, 327
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diffusivity, 303, 331
dimensionless, xv, 36, 112
direction field, 20
discount rate, 247
discrete, viii
discrete generations, 112
disease

fatal, 425, 432
disease evolution, 346
disease mortality, 432
disease outbreak, 367
disease transmission, 301, 348, 405
dispersal, 448
distributed

delay, xvii, 91
divergence, 330
divorce, 160
doubling time, 6
drug use, 346
Dulac criterion, 172

Ebola virus, 345
economic models, 78, 244
economic optimization, 37
edge, 368
effort, 29
eigenvalue, 140, 295, 306

complex, 272
dominant, 273
double, 140

eigenvector, 156
elimination, 349, 434
emigration, 50
endangered species, xv
endemic, 133
energy reserve, 202
English boarding school, 360
environmental activists, 37
environmental landscape, xiii
epidemic, v, xv, 346
epidemiology, viii
equilibrium, 19

age distribution, 279, 283, 285, 290
bionomic, 244
endemic, 133
eutrophic, 32
isolated, 136
monotone, 57
oligotrophia, 32
oscillatory, 57
stable, 150

equilibrium analysis, 56, 413
eradication, 420
escapement, 68

eutrophic equilibrium, 32
eutrophication, 31
excess

degree, 363
excitable cell, 333
exponential distribution, 40, 369
exponential growth, xvi
exposed period, 373
extinction, xv
extinction rate, 294
Eyam, 356

family
one-parameter, 5

fecundity, 268
Feigenbaum constant, 64
fertility, 68, 272
Fibonacci sequence, 52
Ficks law, 302, 330
final size relation, 354, 374, 392
finite time horizon, 248
fishery, 11, 21, 33, 68, 242, 244, see harvesting

collapse, 33
open access, 242

FitzHughh–Nagumo system, 219
fleas, 357
flour beetles, 80, 289
flow, 350, 404, 411
fluid convection, 209
flux, 302, 330
focus, 140
foliage, 43, 202
foraging rate, 333
forcing

periodic, 84
forest, 199
forestry, 31
Fourier integral, 314, 315
Fourier series, 307, 314

full, 313
Fourier sine integral, 318, 320
Fourier sine series, 307, 310, 311
fox rabies, 360
functional equation, 286
functional response

predator, 43, 175, 176
functional response predator, 236
fundamental solution, 317, 338, 339

Garki project, 349
gender, xviii, 160, 346
gene, 60, 279
generating function, 367
generations
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nonoverlapping, xvii
overlapping, xvii

genesis model, 279
genetic, 346
genetic disease, 346
global behavior, 172
globally asymptotically stable, 150
gonorrhea, 13, 41, 346, 400, 411
granulocytes, 116
graph, 297

bi–directional, 297
graphic solution, vii, 53, 58
grazing, 91, 94
Great Plague, 347, 356
Green’s theorem, 253
growth curve, 22
growth rate, xiv

delayed, 93
intrinsic, 11
per capita, 8

haddock, 69
half-life, 6
halibut fishery, 11
Hamiltonian, 255
Han empire, 347
harvesting

constant effort, 27, 28
constant rate, 27
instantaneous, 240
proportional, 28

hazard of infection, 370
health care, xiv, 405, 432
heat equation, 340, 341
heat kernel, 336, 338
helminth agents, 411
herbivore, 130, 221
herd immunity, 359, 420
heterogeneity, xviii, 372, 442
heterosexual, 346, 404, 442
HIV/AIDS, 346, 377
home patch, 299, 300
homoclinic, 233
homosexual, 13, 41
Hopf

bifurcation, 431
host, 3, 466
Hudson’s Bay Company, 179
hunting, 22, 240, 361
hyperbola, 141, 224
hysteresis, 32

immature members, 70, 109
immigration, 46, 50, 189, 349, 394

immune response, 356
immunity

herd, 359, 420
temporary, 349, 350, 427, 428, 445

immunization, 350, 359, 420
Incas, 347
infected, 346, 367
infected edge, 367
infection

secondary, 42
infectiousness, 348
infective, 13
infective period distribution, 441
infectivity variable, 374
inflection point, 18
influenza, 345, 376, 437
inhibitor, 328
initial age distribution, 275
initial boundary value problem, 303
initial condition, 5
initial data, 190
initial value problem, 5
inoculation, 349, 422
instability, xviii
integral equation, 276, 284, 349
integro-different ial equation, 91
interaction, 368

facultative, 192
multispecies, xviii
obligatory, 192
terms, 130

interepidemic period, 422
internal patch dynamics, 298, 299
interpolation, 448
intra-specific competition, 289
intracellular current, 333
intracranial tumor, 144
intraspecific competition, 289
intrinsic growth rate, see growth rate
invading species, 212
invariant set, 148
Invasive pneumococcal disease, 457
ion channel, 218
island, 296
isocline, 170

predator, 176
prey, 176

isolation, 350, 426
iterate, 60, 63

Jordan curve theorem, 149
Jury criterion, 75, 78
juveniles, 289, 458
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Kermack-McKendrick model, 350
Kolmogorov forward equation, 341
Kolmogorov model, 190
Kolmogorov theorem, 191

lags, see delay
lake

eutrophic, xvii
eutrophication, xvii
irreversible, 35
oligotrophies, 31
reversible, 34

Laplace equation, 331
Laplace transform, 106, 277, 287
Laplacian, 331
larva, 80, 112
least squares, 7
Leishmaniasis, 453
Leslie matrix, 268
Leslie model, 190
life expectancy, 421
life span

average, 5, 345, 423
budworm, 43
generation, xv
tree, 43

limit set, 148
limiting system, 134
limnological mechanisms, 31
limpet, 145
linearization, 19, 56
logistic (differential) equation, xvi
logistic difference equation, 58
Lorenz equations, 208
Lotka–Volterra equations, 123
Lotka-Sharpe equation, 279
lynx,Canadian, 179

M-matrix, 397
macroparasite, 492
major epidemic, 362, 368
malaria, xv, 345, 442
Malthus, xiii, see also population model, 5
management model, 380
Maple, vii, 36
marginal value, 263
marriage function, 89
mass action incidence, 351, 388
Mathematica, vii, 36, see Maple, 92
mating function, see also marriage function, 89
Matlab, vii
matrix, 417, 418
maximum sustainable yield(MSY), 243
McKendrick equation, 274

mean field approximation, 332
mean transmissibility, 367
measles, 345, 347
measurement, 43
membrane battery, 333
metapopulation, 293, 297
metered model, 68
microorganisms, 4, 345
migration rate, see emigration
minimum velocity, 325
minor outbreak, 365, 368
mixing

homogeneous, xviii, 14, 361, 442
mobility, 299, 301
model, vii, see also population model

Rosenzweig–MacArthur, 175
Beverton-Holt, 69
compartmental, 349, 442
depensation, 21
deterministic, 358
differential infectivity, 377
economic, 78, 244
genesis, 279
Kermack-McKendrick, 350, 354
Kolmogorov, 190
Leslie, 190
Leslie matrix, 268
metered, 68
multispecies, 126
neuron, 218
Nicholson’s blowflies, 112
Nicholson-Bailey, 75
Ricker, 69
stochastic, 465

model fitting, 348
modeling assumptions, xv, see specific model
modulus,birth/death, 274
monotone

convergence, 100
decrease, 20, 182, 270, 355

mortality, 345, 418
mortality function,see modulus, death

modulus, 71
mortality rate, xvi, 401
mortality-harvesting curve, 109
mosquitoes, 349, 401, 404, 442
motion of particles, 302
multispecies model, 126
mutated strain, 400
mutual inhibition, 156
mutualism, xviii, 192

natural death, 349, 419, 427
neighbor, 364, 371
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network, 367, 368
neural network, 60, 333
neuron, 333
neuron model, 218
newborn, 68, 86, 422, 426, 435

vaccination, 135
next generation matrix, 394, 396
Nicholson’s blowflies model, 112
Nicholson-Bailey model, 75
node, 139, 325, 370, 372
nonlinear, 323
North Atlantic plaice, 69
nullcline, 176
numerical simulation, 112, 205, 237, 380
nutrients, 10, 126

objective function, 238, 460
observation, xiii
occupancy model, 294
occupied edge, 367, 368
Ohms law, 333, 334
optimal, see control

equilibrium population, 248
optimal control, 238
optimization, 251, 438
orbit, 123
Ordinary Least Squares, 434, 436
Ornstein - Uhlenbeck process, 341
oscillation, 65, 80, 173, 174, 180, 185, 205,

245, 272
outbreak, 202, 346, 351, 465
overfishing, 246
overharvesting, 111
overpopulation, xiii

Paramecium, 185, 186
aurelia, 185, 188
caudatum, 185

parameter estimation, 348, 434, 460
parasite, xv, 75, 199, 453

helminth agents, 411
partial differential equation, 288, 293, 301, 302

linear, 306
partition, 288
partner, 14, 160
passenger pigeon, 22
patches, xviii, 293, 294, 323, 447
pathogen, 4, 419
pattern in space, 324
per capita, xiii, see asobirth, death, growth

rates, xiii
birth rate, xiv, 4
death rate, 4
growth rate, 8

period-doubling, 63, 100, 238
period-doubling bifurcation, 88
periodic orbits, 125, 155, 240
periodic solution, 61, 148, 150, 221, 232
periodic wave train, 332
perpetual outbreak, 203
Perron-Frobenius theorem, 271
persistence, 212
persistent

age distribution, 278
perturbation, 3, 20, 142, 173, 195, 212
pest, xv
petri dish, 6
phase plane, 123
phase portrait, 125
phosphorus, 31
pigeon, see passenger
plague, 346, 411, see also bubonic plague
Poincaré–Bendixson theorem, 149, 172, 178
pollinator, 191
pollutants, 91
Pontryagin maximum principle, 238
population

decay, xv
density, xvi, 3, 61, 418
dynamics, xiii, 465
explosion, xv
model

exponential, xiv, see also Malthus
logistic, xiv

population control, 431
positive feedback, 328
positive semiorbit, 148
predation, 8, 43, 199, 333
predator functional response, 176
predator numerical response, 175
predator–prey, 123, 229, 294, 329, 433
predator-induced coexistence, 214
predator-induced exclusion, 216
predator-prey, xviii, 173
prediction, 5
probability, 38, 299, 367, 368
probability density, 39
probability distribution, 38
protozoa, see Paramecium
public health, 347, 348, 404, 415, 435
pulse vaccination, 443

qualitative
analysis, 17, 92, 424
behavior, xvii, 8, 135
dynamics, 16, 134
prediction, 5, 65, 193

quality of life, xiv
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quantitative prediction, 348
quarantine, 348, 354, 377, 415, 426

random contact, 351
random motion, 303, 330
rat, 357
rate of transfer, 349, 427
reaction–diffusion equation, 321, 329
recolonization, 294
recovery, 350, 395, 404, 411, 413, 445
recruitment, 16, see also birth cycle

cycle, 67
delayed, 70, 98
function, 65

recursive calculation, 52
recycling, 31

forest, 205
phosphorus, 32
rate, 31

refuge, 45, 189
reinfection, 119, 346, 350, 411
removed, 350, 411, 415
renewal condition, 274
renewal equation, 276

nonlinear, 284
reproduction matrix, 71
reproductive

curve, 68
life, xv
number, see basic reproductive

resource limitations, xiii, 9, see also
competition, harvesting, 229

resources, 289
respiratory infection, 345, 457
response delay, 91
Riccati equation, 335
Ricker model, 69
robust, 17, 51
Rosenzweig–MacArthur model, 175
Routh-Hurwitz

conditions, 208
Routh-Hurwitz conditions, 106, 419
rubella, 345, 422
rumor, 346, 414
runoff, 31

Saccharomyces exiguus, 188
saddle point, 139, 141
salmon, xvii, 69
sandhill crane, 29
SARS, 345, 435
schistosomiasis, 345
second order, 52

difference equation, 76

partial differential equations, 304
secondary infection, 348, 412
sedimentation, 31
selection, 406, 466
self-limiting, 125, 177
self-regulating, 130
semiorbit, 148

bounded, 148
positive, 148

Sennacherib, 346
separation of variables, 8, 68, 124, 304, 413
separatrix, 149
SEQIJR model, 378
sequence, 49
serological study, 356
sexually transmitted disease, 389, 411
shadow price, 263
shark, 123
Sharpe, 279
sigmoid function, 31, 452
singular control, 257, 258
SIR model, 351, 407, 411, 419
SIS model, 411, 425, 445, 447
SITR model, 375
sleeping sickness, 345
smallpox, 347, 420, 434
smoking, 158
snowshoe hare, 179
social interaction, 407
Spaniards, 347
spatial location, 293
spiral point, 141
spiral wave, 332
spruce budworm, xvii, 25, 199, 204, 206
stability, 17

absolute, 100
asymptotic, 23, 58
exponential, 114
neutral, 143
oscillatory, 114

stable
age distribution, 270–273, 278, 279, 287

stable age distribution, see age distribution
stable pattern, 324, 332
standard incidence, 388
standardized solution, 337
stasis, xv
stochastic, 3, 341, 358, 426
stock recruit, 69
stress, 202
superposition principle, 336
surveillance data, 460
survival, 168

equilibrium, 65, 81
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probability, 80
survivor species, 213, 217
survivorship, 69
susceptibility, 348, 367, 431
sustainable economic rent, 244
switch point, 238
switching function, 257

Taylor approximation, viii, see Taylor’s
theorem

Taylor’s theorem, 19, 76, 95, 129, 141
terminal condition, 251
threshold, xv, 296, 348, 418
tide pool, 145
time scale of

births and deaths, 352
disease, 352
observation, xv

tipping point, xv
trajectories, 123
trajectory, 156
transformation property, 339
transient, 311
transition, 26, 195, 369, 441
transmissibility, 367, 368
transmission, 367, 368
transmission intervention, 368
transmission rate, 14, 440
transportation network, 293
travel between patches, 295, 296, 299
treatment model, 354, 375
tube, 302

infinite, 303
semi-infinite, 303

tuberculosis, 345
tumor, see intracranial
typhus, 345

uncertainty, 35, 438

unchangeable, 159
underreporting, 360, 453
uniform persistence, 212
uninhabitable patch, 296
uniqueness, 12

of solutions, 18
unstable, 21, 58, 433

vaccination, xiv, 134, 348, 415
pulse, 443

variable maturation, 107
vector, 346, 404, 442, 455
vector field, 150
vector transmission, 404, 442
vector-matrix notation, 23, 71, 74, 136, 207
vegetation, 26, 130, 221
Verhulst, xvi

difference equation, 51
vertex, 362–365, 367, 368
vertical transmission, 442
viral agent, 345
virus, 420, 458
Voltorra, see also Lotka-Volterra
Von Foerster equation, 274
vortex, 139

wave traveling, 325
West Nile virus, 346, 404
WinPP, vii, viii, 92, 93
worker, 159

inactive, 159
master, 159
positive, 159
reluctant, 159

XPP, vii, viii, 92

Yield, 29
yield effort curve, 29
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