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Preface

The goal of this book is to give some answers to the following general question: How,
and to which extent can we simulate numerically the long time behavior of Hamil-
tonian partial differential equations typically arising in many application fields such
as quantum mechanics or wave propagations phenomena. Starting from numerical
examples, these notes try to provide a relatively complete analysis of the case of the
Schrodinger equation in a simple setting (periodic boundary conditions, polynomial
nonlinearities) approximated by splitting methods. The objective of this book is to
analyze the possible stability and instability phenomena induced by space and time
discretizations, and to provide rigorous mathematical explanations for them.

The results presented here originate from many collaborations done in the last
4 years. In particular, Chapter VI is largely inspired by joint works with Arnaud De-
bussche and Guillaume Dujardin. Chapter VII only exists because of several years
of common work with Benoit Grébert. The final results of Chapter VII have been
obtained with Rémi Carles. I am happy to warmly thank all of them for their con-
tribution to the present analysis. Many parts of these notes have also taken benefit
of many discussions and interactions with several mathematicians before and during
my stay at ETH: Dario Bambusi, David Cohen, Ludwig Gauckler, Pierre Germain,
Vasile Gradinaru, Ernst Hairer, Ralph Hiptmair, Thomas Kappeler, Peter Kauf, Chris-
tian Lubich, Eric Paturel, Katharina Schratz, Christoph Schwab and Julia Schweitzer.
My sincere thanks go to all of them.

This book contains the notes of a graduate course (Nachdiplom Vorlesung) held
at ETH Ziirich in the spring semester 2010 and I would like to thank the FIM (For-
schungsinstitut fiir Mathematik) for its hospitality during my stay at ETH, as well
as all the members of the SAM (Seminar for applied mathematics) for their warm
welcome. My grateful thanks also go to the participants to my lecture in Ziirich.
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I Introduction

The goal of this lecture is to give some results in the geometric numerical integration
theory of linear and semi-linear Hamiltonian partial differential equations (PDEs).
This means that we will study the ability of numerical schemes to reproduce qual-
itative properties of Hamiltonian PDEs over long time periods, properties such as
preservation of the Hamiltonian, or energy exchanges between the eigenmodes of
a solution. Rather than setting this study in a general abstract framework (as for in-
stance in [15]), we will focus on linear and nonlinear Schrodinger equations, typically
with polynomial nonlinearity. The results presented in these lecture notes follow the
lines of [12] for the linear case, and [15] for the nonlinear case. The final Chapter VII
gives a picture of the possible instabilities induced by numerical discretization — and
ways to prevent them.

Before tackling the infinite dimensional case, we recall that many works exist
in the finite dimensional case (ordinary differential equations): see [26] and [34]. We
will discuss them in Chapter II. Relevant results concerning PDEs were obtained more
recently, and using different techniques: see [9], [12], [13], [17], [18], [20], [21]. We
will discuss these references throughout the text.

In this first chapter, we would like to show by numerical examples some nice or
pathological behaviors observed in simulations obtained by using splitting schemes
naturally induced by decomposition between the kinetic and potential parts. Such
schemes are very easy to implement and for this reason, widely used in practical
simulations (see for instance [3], [4], [30], [31] and the references therein). They also
preserve the symplectic structure and the L? norm of the solution. For these reasons,
we will restrict our analysis to such splitting methods, but consider many different
situations: semi-discrete, implicit-explicit and fully discrete schemes.

1 Schrodinger equation
Let us consider the cubic nonlinear Schrédinger equation
P0u(t, x)=—Au(t,x) + V(x)u(t, x) + Aut, x)Put, x), u©,x)=u(x) (1)

where u(¢, x) is the wave function depending on the time ¢ € R. We assume here
periodic boundary conditions, which means that the space variable x belongs to the
d-dimensional torus T¢ = (R/27Z)%. The function V(x) is a real interaction poten-
tial function, and the operator A = Z?: 1 Bii is the Laplace operator. The constant A
is a real parameter. As initial condition, we impose that the function u(z, x) at time

t = 0is equal to a given function u°.
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Such equations arise in many applications such as quantum dynamics and non-
linear optics. We refer to [36] for modeling aspects, and to [8] for the mathematical
theory. The cubic nonlinearity arises in particular in the simulation of Bose—Einstein
condensates (see for instance [3], [4]) while the case where A = 0 constitutes the clas-
sical linear Schrodinger equation associated with a typical interaction potential V' (x).

Equation (I.1) is a Hamiltonian partial differential equation (PDE) possessing
strong conservation properties. In quantum mechanics, the quantity |u(z, x)|* rep-
resents the probability density of finding the system in state x at time ¢, which is
reflected by preservation of the L? norm: For any solution u(z, x) we have

2 1 2
It = sz [, 1P = .01,

Note that for concrete applications, many physical constants are present in equa-
tion (I.1) depending on the mass of the particle or the Planck constant. Here we con-
sider a normalized version of the Schrodinger equation and address the question of
its numerical approximation in relation with its Hamiltonian structure only. Specific
algorithms for the semi-classical regime can be found for instance in [14] and [30].
Results concerning the case of the Gross—Pitaevskii associated with the harmonic
oscillator, i.e. when V(x) = x? and x € R, can be also found in [3], [4], [19].

With the equation (I.1) is associated the Hamiltonian energy defined for any func-
tion u by the formula

H(u,u) =

[, (9 + v + Fucol ) ax.

Q2m)4 Jpa

where |Vu|?> = Z?Zl |0x, u|?. This energy is preserved throughout the solution: for
all times ¢ € R where the solution is defined and sufficiently smooth, we have

H(u(r), u(t)) = H(u(0),u(0)).
Note that this energy can be split into

H(u,u) =T(u,u)+ P(u,u), 1.2)
where

- o 1 2
T = o [ 19u0)

is the kinetic energy of the system and

_ 1 A
PaLT) = g /T VP + 5 (o)

is the potential energy.



2 Numerical schemes 3

The goal of this lecture is to analyze the qualitative properties of numerical
schemes applied to (I.1) and to discuss their long time behavior. In particular, we will
try to show that in some situations, numerical method can or cannot reproduce phys-
ical properties of the Schrodinger equation, such as conservation of energy, stability
of solitary waves, energy exchanges between modes, and preservation of regularity
over long time periods.

2 Numerical schemes

One of the easiest ways to derive numerical schemes for (I.1) is to split the system ac-
cording to the decomposition (I.2). For ease of presentation, we will mainly consider
the case where d = 1.

2.1 Free Schrodinger equation. Let us consider the system
i0u(t,x) = —Au(t,x), u(0,x) = u’(x), 1.3)

set on the one-dimensional torus T. To solve this system, we consider the Fourier
transform (&, (¢))qez of u(z, x) defined by

S 1 [ .
(u(t,x))g = &E4(1) := 2—/ u(t,x)e'**dx, a€Z,
T Jo
and we plug the decomposition

u(t,x) =) Elt)e'™

ac’z

into (I.3). Owing to the fact that ma = ia&,, we see that (I.3) is equivalent to the
collection of ordinary differential equations

YaeZ, i%ga(t)=a2$a(t), £.(0) = .

where £ are the Fourier coefficients of the initial function u°. The solution of this
equation can be written explicitly &, () = e’ “252 . Hence in Fourier variables, the
solution of the free Schrédinger equation can be computed exactly. Note that we have
for all ¢, |£,(t)| = |£4(0)|. This means that the regularity of u°, measured by the
decay of the Fourier coefficients &, (¢) with respect to |a/, is preserved by the flow of
the kinetic part. We denote the solution of (I.3) by

u(t) = o7 (u°)

as the exact flow of the Hamiltonian PDE associated with the Hamiltonian 7.
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2.2 Potential part. Let us now consider the system
i0au(t, x) = V(x)u(t, x) + Au(t, x)Pu(t, x),  u(0,x) =u°, (1.4)

In this equation, we observe that x can be considered as a parameter (there is no
derivative in x). Moreover, as V' is real, the complex conjugate (¢, x) satisfies the
equation

—i01(t, x) = V(x)i(t, x) + Au(z, x) %z, x),
hence we see that for all 7, we have for all x,

O Ju(t, x)|? = u(t, x)0,4(t, x) + w(t, x)du(t, x)
= (V(x) + )L|u(t,x)|2) Gu(t, x)u(t,x) —iu(t, x)u(t, x))
= O7

which means that the solution of (1.4) preserves the modulus of u°(x) for all fixed
x € T: we have for all ¢, |u(t,x)| = [u°(x)|. As an immediate consequence, the
exact solution of (I.4) is given by

u(t,x) = exp (—itV(x) —itd|u’(x)[*) u’(x).
We denote this solution by

u(t) = ¢p (u’).

2.3 Splitting schemes. The previous paragraphs showed that we can solve exactly
the Hamiltonian equations associated with the kinetic energy 7T (u,u#) and with the
potential energy P (u, i) appearing in the decomposition (I.2). Splitting schemes are
based on this property: they consist in solving alternatively the free Schrodinger equa-
tion and the potential part. Denoting by ¢7. p the exact flow defining the solution of
the equation (I.1) (we will give a precise definition of this flow in Chapter III), then
for a small time step t > 0, this leads to building the approximation

$Tip 9T OQp, (L5)

known as the Lie splitting method. For a time t = nt, the solution is then approxi-
mated by

u(nt) ~u" = (pf o pp)" W°).

We will see later that this approximation is actually convergent in the following sense:
if the solution u(#, -) = u(¢) of (I.1) remains smooth in an interval [0, 7], then we
have

Vnr €[0,T], [u(nt)—u*|,, < C(T,u)t. (1.6)
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Here smooth means that the Fourier coefficients satisfy some decay properties uni-
formly in time and the constant C(7,u) depends on the final time 7" and on a pri-
ori bounds on derivatives of the exact solution u(¢). Such a result is related to the
Baker—Campbell-Hausdorff (BCH) formula which states that the error made in the
approximation (I.5) is small and depends on the commutator between the two Hamil-
tonians 7" and P. In Chapter II, we will present a proof of this BCH formula, while
convergence results are presented in Chapter IV.
Another approximation, known as the Strang splitting scheme, is given by

2 2
Prip ~ 0y 0k o, (L7)

and it can be proved that this approximation is of order 2, which means that the error
in (1.6) is O (z?) provided the solution u(¢) remains smooth enough. More generally,
high order splitting schemes can be constructed, but each time, their approximation
properties rely on the a priori assumption that the solution remains smooth over the
(finite) time interval considered (see for instance [27]).

Natural questions then arise: do these schemes preserve the energy over a long
time? Do they preserve the regularity of the initial value over a long time? Are they
stable? Do they correctly reproduce possible nonlinear exchanges between the modes
£,(t)? These questions constitute central questions of geometric numerical integra-
tion theory whose general aim is the study of the qualitative behavior of numerical
schemes over a long time (see the classical references [26] and [34]). Note that since
splitting schemes are built from exact solutions of Hamiltonian PDEs, they are natu-
rally symplectic, something that is known to be fundamental to ensure the good be-
havior of numerical schemes applied to Hamiltonian ordinary differential equations.

Indeed, in the finite dimensional situation, a fundamental result known as back-
ward error analysis shows that the numerical trajectory given by a symplectic inte-
grator applied to a Hamiltonian ODE (almost) coincides with the exact solution of
a modified Hamiltonian system over an extremely long time. This result implies in
particular the existence of a modified energy preserved throughout the numerical so-
lution, which turns out to be close to the original one. Before studying the case of
Hamiltonian PDEs, we will consider extensively the finite dimensional situation in
Chapter II, following the classical references in the field [5], [25], [26], [33], [34].

2.4 Practical implementation. To implement the previous splitting schemes, we
define the grid x, = 2mwa/K where K is an integer, and a € BX belongs to a finite
set BK C 7 depending on the parity of K:

k. | {=P.....P—1} if K=2P iseven,

B™ =1 —p.... Py if K=2P+1 isodd.

(1.8)

Note that in any case, fBX = K, and that the points x,, @ € BX are made of
K equidistant points in the interval [—, r]. The discrete Fourier transform is defined
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as the mapping Fx : BX — BX such that for all v = (v,) € BX witha € BX,

T 1 —2i
(Fxv), = T Z e Zmab/Kvb.
beBK

Its inverse is given by

(‘?’Vlglv)az Z ezinab/Kvb'
beBK

This Fourier transform entails many advantages. In particular, we can verify that
VK Fx is a unitary transformation, and moreover, it can be easily computed us-
ing the Fast Fourier Transform algorithm, requiring a number of operations of order
O(K log K) instead of @ (K?) as a naive approach would indicate.

The practical implementation of the (abstract) splitting method

u(nt) ~u" = (¢f o go},)n u®

then consists in the approximation of the function U X" (x) at each time step, evalu-
ated at the grid points by the collection of numbers vf’", b € BX such that

K’ ~ ~
vy " " (xp) > u(nT,xp) .

Hence we see that K and t represent the space and time discretization parameters
respectively.
The algorithm to compute the numbers v f "+ from the collection of numbers

vf’” then reads:

1. Calculate the approximation

K.,n+1/2 . . K.n
v, = exp (—er(xb) —ith |y,

o o),

2. Take the Fourier transform

gKnt1/2 _ (.’FKUK’"+1/2> . aeBK.
a

3. Compute the solution of the free Schrodinger equation in Fourier variables

K, 1 K, 1/2
sa n+ Sa n+1/ )

= exp (—ita?)
4. Take the inverse Fourier transform

K.n+1 _ —1eK,n+1 K
v, "= (F e, b e BE.
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We can also interpret this algorithm as a splitting method for a finite dimensional
system of the form

i%éf =a*X + 0% (¢%), a e B, (L.9)

where QX (£) is a nonlinear potential depending on K and on the Fourier coefficients
K a e BX, given roughly speaking by QX = Fx o P o Fi' where P is the
potential part in (I.1) evaluated at the grid points. In terms of Fourier coefficients,
ok can be viewed as a polynomial in the (large but) finite number of parameters SaK

and Sf, a € BX,
In Chapter IV, we will show that the previous scheme is convergent in the fol-

lowing sense: The trigonometric polynomial function UX"(x) = Y, . px Ef Telax

associated with the discrete Fourier coefficients Sf’" defined above, constitutes an
approximation of the exact solution u(¢, x) at time ¢, = nt < T, and we have the
estimate

Vi =nt <T. HUK’"(x) - u(zn,x)) g SCTw@+K™),  (L10)

where s is given by the a priori regularity of the exact solution u(z, x) over the time
interval [0, T'].

Note that in the previous formula, the error is measured in the £' functional space
associated with the norm

ull,, = > JEal. if u(x) =) £ €',

ac’Z a€’l

and called the Wiener algebra. This choice is driven by the simplicity of polyno-
mial manipulations when acting on £!. In these notes, £'-based function spaces will
constitute our main framework, though a similar analysis could be performed using
standard Sobolev spaces H® for s sufficiently large.

In the following, we will sometimes interpret the previous fully discretized algo-
rithm as an (abstract) splitting method applied to a Hamiltonian PDE of the form

idu = %ﬁ(—rA)u + 0K ), (L.11)

where § is a cut-off function such that 8(x) = x for |x| < cfl and B(x) = O for |x| >
cfl where the constant cfl corresponds to a Courant—Friedrich-Lewy (CFL) condition,
see [10]. In the practical implementation described above, we have cfl = tK?/4
corresponding to the time step T multiplied by the greatest eigenvalue of the discrete
Laplace operator. In this situation, the potential QX will be assumed to satisfy bounds
independent of K, and the analysis can then be made by only considering (I.11) with
a given CFL number and a fixed polynomial potential 9 = QX. This will be our
abstract framework.
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2.5 Semi-implicit schemes. As they are explicit schemes, splitting methods have
the big advantage of their simplicity of implementation and their relatively low nu-
merical cost. However, as we will see later, these schemes require often a strong CFL
condition to be efficient. Even in the linear case (A = 0 in (I.1)) they can lead to in-
stabilities due to numerical resonance problems. The use of implicit or semi-implicit
schemes often allows us to attenuate, if not avoid, these problems.

Let us consider a general semi-linear equation

i0iu = —Au + Q(u),

where Q is polynomial in u and u. The midpoint approximation scheme is defined as
the map u” — u"*! such that

un+1_un un+1+un un+1+un
— = A ——— —).
S (=) e (%)

It turns out that this map is symplectic, but its practical computation requires solving
a large nonlinear implicit problem at each time step.

An alternative consists in a combination of the splitting approach described above
with an approximation of the solution of the free-linear Schrodinger by the midpoint
method. Actually when Q = 0 in the previous equation, we can write down explicitly

1+itA/2
W = Rz apt = (LEEAZY (L12)
1—itA/2
where this last expression is well defined in Fourier variables by the formula
1 —ita?/2
n+1 n
=|——F——= , €, 1.13
a (1+ita2/2)é" ¢ (@13)

where £/ are the Fourier coefficients of #” on the torus T. Note that this expression is
explicit in the Fourier space. In a more general situation one has to rely on a linearly
implicit equation to determine u” ! in (I.14) at each step.

Instead of considering fully explicit splitting of the form (I.5), we can also con-
sider semi-implicit schemes of the form

¢r+p = R(itA) 0 gp. (1.14)

Such an algorithm can be viewed as the standard splitting scheme (I.5), where we
replace the exact flow @7 by its approximation by the midpoint rule. Note that as
the implicit midpoint is an order 2 scheme, such a numerical scheme will remain of
order 1, which means that such an approximation will remain convergent for smooth
solutions over finite time.

Before going on, let us mention that we can again interpret the previous implicit-
explicit splitting method as a classical splitting method applied to a modified Hamil-
tonian PDE of the form (I.11). Indeed, for real number x, we have

L4
7 tix = exp (2i arctan(x)) .
—ix
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Hence the relation (I.13) can be written
E't! = exp (—2i arctan (va®/2)) £

In an equivalent formulation, we can write R(itA) = exp(—2i arctan(t A/2)), which
means that the midpoint rule applied to the free Schrodinger equation is equivalent to
the exact solution at time 7 of the equation

T

idyu(t,x) = %a.rctan (—%)u(l,x). (1.15)

We thus see that an implicit-explicit scheme can be again viewed as a standard
splitting method applied to a modified equation of the form (I.11) where B(x) =
% arctan(x/2). Note the striking fact that the arctan function acts here as a regular-
ized CFL condition: the high frequencies in equation (I.15) are smoothed, and the
linear operator is now a (large but) bounded operator.

3 Examples

We now give various numerical examples of qualitative behavior of the previous
schemes applied to (I.1).

3.1 Solitary waves. Let us consider the equation

i0,u(t,x) = —0xxu(t, x) — [u(t, x)|Pu(t, x), u(t, x)=u’,

set on the real line, x € R, and for which there exists the particular family of solutions

u(t,x) = p(x —ct — xp) exp (i (%c(x —ct —Xxp) + 00)) exp (i (a + %cz) t) ,

where «, ¢, x( and 6 are real parameters, and where

V2a
cosh(/ax)

These solutions are called solitons or solitary waves, and they are stable in the sense
that if the initial data is close to such a solution, it will remain close to this family of
solutions over arbitrary long time periods. This is called the orbital stability (we refer
to [8] and the reference therein).

Here, we aim at approximating the very particular solution corresponding to @ =
1,c =0,xp =0and 6y = 0, i.e. the solution

ﬁeit
cosh(x)’

p(x) =

u(t,x) =
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We first consider the standard Strang splitting method (1.7). As space discretiza-
tion, we introduce a large window [—m/L, /L] where L is a small parameter, and
use the spectral discretization method described in the previous section. This is jus-
tified because the solution we aim at simulating is exponentially decreasing with re-
spect to |x| and the approximation on the large windows will be correct for a small
number L. In this scaled situation the CFL number is given by

2
cfl = zL? (g) . (1.16)

We take K = 256, L = 0.11 and 7 = 0.1 (cfl = 19.8), ¢ = 0.05 (cfl = 9.9) and
7 =0.01 (cfl = 1.9).
In Figure 1.1, we plot the evolution of the discrete approximation of the energy

Hu. i) = /R B 3 (o)

throughout the numerical solution, with respect to time. We see that in the two cases
cfl = 19.8 and cfl = 9.9, there is a serious drift, while in the case cfl = 1.9, we
observe a good preservation of energy.

In Figure 1.2, we plot the absolute value of the numerical solution |u"(x)|. In
the case where cfl = 19.8 we observe a deterioration at time ¢t = 300 where the
regularity of the initial solution seems to be lost. The bottom figure is obtained with
a CFL number cfl = 1.9 and we observe that the numerical solution is particularly
stable. The profile of solution is almost the same as for the initial solution. This picture
is drawn at time ¢ = 10000.

To have a better understanding of the phenomenon, we plot the evolution of the
actions associated with the numerical solution, i.e. the Fourier coefficients |&,(¢)|?
for a € Z. In Figure 1.3, we plot the evolution of these actions in logarithmic scale

in the case where cfl = 19.8. Since the function is regular, there is an exponential
3 : : : :
2+
>
(<]
g 1r .
c
L
0
- . . . .
0 200 400 600 800 1000
Time

Figure I.1. Evolution of energy for the Strang splitting with cfl = 19.8, 9.9 and 1.9.
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Figure 1.2. |u’(x)| for the Lie splitting with cfl = 19.8 at time = 300 (top) and cfl = 1.9 at
time ¢ = 10000 (bottom).
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Figure 1.3. Evolution of the actions for the Lie splitting with cfl = 19.8.
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decay of the actions with respect to k, and the high modes are plotted at the bottom of
the figure while the low modes are up. We observe that there are unexpected energy
exchanges with the high modes: there is an energy leak from the low modes to the
high modes producing a loss in the regularity of the solution.

Log10 of the actions
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Time

Figure 1.4. Evolution of the actions for the Lie splitting with cfl = 1.9.

1.5 T T T T T

—-20 -10 0 10 20

X

2 2f -

kel

©

(]

[0]

£ 0f 4

°

o

>

S -2

0 200 400 600 800 1000

Time

Figure 1.5. Implicit-explicit integrator with cfl = 19.8. Profile at # = 1000 (top) and evolution
of the actions (bottom).
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This phenomenon does not appear in the case where cfl = 1.9, as shown in Fig-
ure [.4: the regularity of the solution expressed by the arithmetic decay of the actions
in logarithmic scale is preserved over a very long time.

Now we repeat the same computations but with the implicit-explicit integra-
tor (I.14). In Figure 1.5 we plot both the evolution of the actions and the absolute
value of the numerical solution at time ¢+ = 1000 by using a CFL condition of order
cfl = 19.8. Note that the results obtained are comparable to the classical splitting with
cfl = 1.9. In particular, we observe no deterioration of the regularity of the solution,
and no energy drift.

3.2 Linear equations. The previous section showed that preservation of energy and
long time behavior of the numerical solution are linked with the CFL number used in
the simulation. To understand this phenomenon, we now consider the linear equation

10au(t, x) = —0xxu(t,x) — V(X u(t,x), u(t,x)=u’,

with periodic boundary conditions (x € T) and where V' (x) and the initial solution
are analytic. More precisely, we take

2
— 0 _
V(x) = cos(x) + cos(6x) and u" = 7 cos()”

In Figure 1.6, we plot the maximal deviation of the energy

1
Hu i) = 5 /T 195 () — Vo) () P,

between t = 0 and ¢ = 30. For a fixed time step 7, we define a numerical solution u”
fromt = 0tot = 30 (and hence nt < T = 30). With this discrete solution in hand,
we compute the maximal energy deviation

E(r):= max |H®u")— Hu")|.
n, nt €(0,30)

We repeat this computation for time steps t running from 0.01 to 0.1. We take K =
128 in this situation, so that the CFL condition runs from cfl = 40 to 400. Note
that the final time + = 30 cannot be considered as a very long time (it is of order
t™!), however we are interested here in the behavior of the mapping t +— E(7) to
have a better understanding on the possible existence of a modified energy for the
numerical scheme, particularly for large CFL numbers.

In Figure 1.6, we plot the function t +— E(t) for the explicit splitting (I.5) (top)
and the same result for the implicit-explicit integrator (bottom).

What we observe is that the function E(t) is not regular in 7 in the case of the
Lie splitting while it seems to be smoother for the implicit-explicit integrator. More
precisely, in the case of the Strang splitting, for some specific values of the step size,
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Figure 1.6. Energy deviation as function of a time step for a Lie splitting (top) and the implicit-
explicit scheme (bottom).

there is a drift in energy, while outside these pathological situations, the energy seems
to be better preserved. Such particular time steps are called resonant step sizes.

To have a better view of the effect of these resonant step sizes, let us again plot
the evolution of the actions in the case where the potential is small:

3 0 2
V(ix) = 0.015 ~Zsin(o) and u (x) = T cos)’
This smallness assumption on the potential attenuates the effect of the non diagonal
(in Fourier variables) operator V: We thus expect for the exact solution a long time
preservation of the smoothness of the initial data.
In Figure 1.7, we plot the evolution of the actions |£,(¢)|? in logarithmic scale. We
use step sizes:

2
T = o ~0.1963... (top) and 7 =0.2 (bottom). L.17)
What we observe is that in the case of a resonant step size, the regularity of the initial
solution is lost, while it is preserved for a non resonant step size. Note that the non
resonant step size is very close to the resonant one. Later, we will explain that all step
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Figure 1.7. Evolution of the actions (linear case) for a Lie splitting with resonant step size (top)
and non resonant step size (bottom).

sizes of the form 27/ (a® —b?) for two integers a and b are resonant. Moreover, when
the time step is non resonant, we can actually show preservation of the regularity of
the solution over a very long time, which in turn ensures preservation of energy even
if the CFL number is large. We will however not prove this rigorously here, and refer
to [13].

For explicit schemes with CFL condition, or implicit explicit integrators, such
resonance effects do not appear. Let us explain this quickly: resonant step sizes can
be shown to be such that there exist integers @, b with a £ £b and £ # 0 such that

t(a? — b*) ~ 2nt.
We easily see that if a CFL condition is imposed with cfl < 27, then we will have

|t(a®* — b?)| < cfl < 27 and the previous relation can never be satisfied. In the
situation above, the CFL condition is large, so that resonant step sizes are indeed
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present. However the set of resonant step sizes can be proved to be very small, which
explains the top figure 1.6.

Now in the case of implicit-explicit integrators, the resonance condition reads
(see (I.15))

2 arctan(ra?/2) — 2 arctan(th?/2) ~ 27l

and as the arctan function is bounded by 7/2, such a relation can never be satisfied
for any step size t! As we will see in Chapter V, this property ensures the existence of
a modified energy associated with the implicit-explicit integrator, which is preserved
along the numerical flow. This explains the regularity of the function t +— E(7)
observed on the bottom in Figure I.6.

3.3 NLS in dimension 1: resonances and aliasing. We now consider the Schro-
dinger equation with a cubic nonlinearity and without potential (i.e. V' = 0 in (1.4)).
To measure the balanced effects between the linear and nonlinear parts, we introduce
a scaling factor, and consider initial data to (I.4) that are small, i.e. of order § where
8 — 0is a small parameter.

After a scaling of the solution, it is equivalent to study the family of nonlinear
Schrodinger equations

i00u(t, x) = —0xxu(t,x) + elu(t, x)Put,x), u(,x)=u’~1 (1.18)

where ¢ = 8% > 0 is a small parameter, and x € T the one-dimensional torus.

In dimension 1, this equation has the very nice property of being integrable,
see [37], which implies in particular that it possesses an infinite number of invari-
ants preserved throughout the exact solution. In particular, it can be shown that the
actions |£,(¢)|? of u(t, x) satisfy the preservation property

VaeZ, &0 —16(0)| < Ce, (1.19)

for all time ¢+ > 0. In Chapter VII, and without considering the integrable nature of
the equation, we will show this result for a long time of order t < ¢~! using a simple
averaging argument.

A natural question in geometric integration theory is this: Does the discrete nu-
merical approximation £ X" defined above satisfy the same preservation property? As
we will see now, there are two sources of possible instabilities: one coming from the
choice of the step size, and the other coming from the number K of grid points.

In a first simulation, we first consider the initial data

1

0y —
ui(x) = 2 — cos(x)

and take ¢ = 0.01 in (I.18), and K = 512 grid points.



3 Examples 17

We make two simulations with this initial data, and the same number of grid
points: one with the step size T = 0.09, and the other with the step size

1

In Figure 1.8, we plot the evolution of the fully discrete actions |$§ (#)]? in log-
arithmic scale, as in the previous section. We observe that for t = 0.09, there is
preservation of the actions over a long time, as expected from (I.19). But this preser-
vation property is broken by the use of the resonant step size (1.20). As we will see in
Chapter VI, such a step size impedes the existence of a modified energy preserved by
the fully discrete solution. We will however show that if the CFL number (1.16) is suf-
ficiently but reasonably small (of order ~ 1), such a situation cannot occur, avoiding
the possible use of a resonant step size (as in the linear case described above).

Let us now consider instabilities coming from the number of grid points K. In the
next example, we perform a simulation with ¢ = 0.01, a step size 7 = 1072, and the

Log10 of the actions
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Figure 1.8. Evolution of the actions in dimension 1 for resonant and non resonant step sizes.



18 I Introduction
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Figure 1.9. Evolution of the actions in dimension 1 for K = 31 grid points.

initial value
u®(x) = 2sin(10x) — 0.5 ¢ 7*.

Note that this initial value involves only the frequencies =10 and 7. We make two
simulations: one with K = 31 grid points, and the other one with K = 34 points.
In Figure 1.9, we plot the evolution of the actions |$‘{< "2 both in standard and loga-
rithmic scale for K = 31. We observe a very good preservation of the actions, as ex-
pected from (I.19). In Figure .10, we use K = 34 and we observe exchanges between
the actions. However, in this specific situation, a more careful analysis of the evolu-
tion of the actions show that there are only exchanges between symmetric frequencies,
ie., |€4(1)> and |£_q(2)|? for a € BK, and the super actions |EX"
fact preserved.

As we will see in Chapter VII, the persistence of (I.19) after space discretization
holds only if K is a prime number (note that K = 31 is prime). In the situation where
K /2 is a prime number, we can only show the long time preservation of the super
actions defined above (this corresponds to Figure .10 with K = 34 = 2 x 17).
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Figure 1.10. Evolution of the actions in dimension 1 for K = 34 grid points.

In all other cases, nonlinear exchanges can always be observed. For example we
perform another simulation with 7 = 0.001, K = 30 = 2 x 3 x 5, ¢ = 0.05%, and

u%(x) = 0.9 cos(—=5x) + sin(14x) + 1.1 exp(—10ix) + 1.2 cos(—11x).  (L.21)

We plot the evolution of the actions in logarithmic norm in Figure I.11 both for K =
30 (top) and the prime number K = 31 (bottom). We observe that for K = 30 the
dynamics of the actions is very complicated, while the preservation of the actions
holds for K = 31 and the same step size and initial data.

In Chapter VII, we will show that the quadruplet of frequencies (—5,14, —10, —11)
are non trivial frequencies belonging to the numerical resonance modulus associated
with the modified energy of the numerical scheme. Note that in this situation, the step
size is small enough to ensure the existence of the modified energy (the CFL number
is of order 0.3), but the instability comes from the internal dynamics of this modified
system and in particular the problem of aliasing.

3.4 Energy cascades in dimension 2. As a final example, we consider the same
equation as before, but in dimension 2:

iu = —Au + elul*u, xeT?, (1.22)
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Figure I.11. Evolution of the actions for K = 30 (top) and K = 31 (bottom).

and we take as initial data
u(0,x) =1+ 2cos(xy) + 2cos(xy). (1.23)

As we will see in Chapter VII, the particular geometric configuration of the five modes
associated with the initial data (I.23) makes possible energy exchanges between the
Fourier modes of the exact solution. Following the methods used in [7] we will actu-
ally give some rigorous and explicit lower bounds for high modes, showing that some
energy is actually transferred from low to high modes, in a time depending on the size
of the high mode. Such a phenomenon is called an energy cascade and constitutes an
interesting nonlinear test case for numerical schemes applied to (1.22).
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Figure 1.13. Explicit scheme, T = 0.1, grid 128 x 128.

Such a phenomenon is linked with analysis of the (nonlinear) resonance relation
la|®> + |b|> = |c|* — |d|* = 0 appearing for some quadruplet (a,b,c,d) € T? sat-
isfyinga + b — ¢ —d = 0. Actually we will prove that such a relation is satisfied
when (a, b, ¢, d) forms an affine rectangle in Z?, allowing energy exchanges between
modes in such a configuration.

The reproduction of these energy exchanges by numerical simulation is not guar-
anteed in general. We give in Figure .12 a numerical example with ¢ = 0.0158.



22 I Introduction

This simulation is made using an explicit splitting scheme with step size T =
0.001 and a 128 x 128 grid. We plot the evolution of the logarithms of the Fourier
modes log |£,(¢)| for a = (0,n), with n = 0,...,15. We observe the energy ex-
changes between the modes.

log10 of the modes

165 500 1000 1500 2000 2500 3000 3500 4000
Time
0 : : : : : : :
2k
4t .

log10 of the modes
|
3 &

-14 |., I

1 n 1l sl L i 1 L s Marwiud
-160 500 1000 1500 2000 2500 3000 3500 4000
Time

Figure I.14. Implicit-explicit integrator, T = 0.1 and v = 0.05.
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Repeating the same experiment but with 7 = 0.1 and the explicit splitting scheme
defined above, we observe that the energy exchanges are correctly reproduced (see
Figure 1.13).

Now we do the same simulation, but with the implicit-explicit integrator defined
above, where the linear part is integrated using the midpoint rule. We observe in
Figure .14 that the energy exchanges are not correctly reproduced, even for a smaller
time step 7 = 0.05.

The reason is again that the frequencies of the underlying operator associated with
the implicit-explicit splitting scheme are slightly changed (see (I.12)), making the res-
onance relations |a |+ |b|?> —|c¢|>—|d |* = 0, appearing for some a, b, ¢ and d in Z¢,
destroyed by the numerical scheme. As these relations determine the energy trans-
fers, the implicit-explicit cannot reproduce the energy cascade unless a very small
time step is used.

4 Objectives

The main goal of this work is to give precise mathematical formulations of the nu-
merical phenomena observed in the previous sections. In particular we will prove the
existence of a modified energy for splitting schemes applied to very general linear
and nonlinear situations, under some restrictions on the CFL number used. Using
this modified energy, we will be able to make a resonance analysis in some specific
situations.

We will first analyze in detail the finite dimensional situation. In this case, the
results given by backward error analysis show that the numerical solution obtained
by a symplectic integrator applied to a Hamiltonian system (almost) coincides with
the exact solution of a modified Hamiltonian system, over an extremely long time.
As we will only consider splitting methods, we will prove this result in Chapter II in
this specific framework. This will be the occasion to introduce several tools that will
be used later in the infinite dimensional case, such as the Baker—Campbell-Hausdorff
formula and some Hamiltonian formalism.

We will then focus on Hamiltonian PDEs, first by defining symplectic flows in
infinite dimension (Chapter III) and by considering semi-discrete flows after space
discretization. We will also recall some global existence results for the nonlinear
Schrodinger equation with defocusing nonlinearity, or for small initial data.

In Chapter I'V, we will consider the approximation properties of splitting methods
over finite time. This will lead us to state and prove convergence results in the case of
semi-discrete and fully discrete numerical flows. In other words, we prove (1.10) for
approximations of smooth solutions over finite time.

In Chapter V and VI, we will then give some backward error analysis results in
the case of linear and cubic nonlinear Schrodinger equations. More precisely, we will
show that under some CFL condition, the numerical methods almost coincides at each
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time step with the exact solution of a modified Hamiltonian PDE of the form (I.11).
We show that there exists a modified Hamiltonian H such that the following holds:

l¢p 0 07 ) = of )|, < CnTVH, (1.24)

where the error is estimated in the Wiener algebra ¢!, and where Cy depends on
the size of the function u in £!. This result is valid for the explicit Lie splitting, as
well as for the implicit-explicit splitting scheme, and can be also derived for fully
discrete algorithms. The exponent N in the small error term @ (¥ *+') made at each
step depends in general on the CFL condition.

It is important to note that the error in (I.24) is measured in the same Banach
space used to bound the solution a priori. Using this result and a bootstrap argument,
we prove the almost global existence of the numerical solution in A for small fully
discrete initial data of the nonlinear Schrodinger equation in one dimension of space.
This is due to the fact that in dimension 1, the £! norm in estimate (1.24) can be
replaced by the Sobolev norm H'!, and that the modified Hamiltonian H, controls
the H' norm of (small) fully discrete solutions.

With this modified energy H; in hand, we will then give in Chapter VII an in-
troduction to long time analysis, and compare the one and two-dimensional cases.
We will analyze the resonances of the nonlinear equation, their consequences on the
long time behavior of the solution (preservation of the actions, energy cascade), and
discuss the persistence of these qualitative properties in numerical discretizations.
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In this chapter, we consider Hamiltonian ordinary differential equations and show that
splitting schemes can be expressed as exact flows of modified Hamiltonian systems,
up to very small errors. We refer to [26], [34] for more general and extensive results
in the same direction.

The proof relies on the Baker—Campbell-Hausdorff formula involving commuta-
tors of the two Hamiltonian vector fields associated with the splitting method. Such
a tool will be fundamental for later applications to Hamiltonian PDEs.

In the following presentation, we give a polynomial version of backward error
analysis: this means that the small error made above is of order Cy /v where 7 is
the small time discretization step size. Here, N is arbitrary, but the constant Cy de-
pends on N (see for instance [24]). In other words, we consider the result in the sense
of asymptotic expansions in powers of t. In the case where the Hamiltonian func-
tion is analytic, a careful estimation of the constant Cy can be performed and the
small error term can be optimized to obtain an exponentially small term of the form
exp(—1/(ct)) for some positive constant ¢, where the optimal N is taken of order
1/7. We refer to [5], [25], [26, Chapter IX] and [33] for the highly technical proof of
these exponential estimates.

1 Hamiltonian ODEs

1.1 Definitions and basic properties. We consider Hamiltonian ordinary differen-
tial systems of the form

y=Xnu(y):=J"'VH(), (IL1)

where y = (p,q) € R¥, H : R?? — R is the Hamiltonian of the system, and where

(0 I
J = (—Id O) (IL.2)
is the canonical symplectic matrix satisfying JT = —J = J~'. The operator V
represents the derivative with respectto y = (p1,..., pa,.q1,---,44), and thus the

system (II.1) can also be written

o ot

lii = __(p’Q)v q'i =

q), i=1,....d.
o api(p q)
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By analogy with the PDE case, we will assume that the Hamiltonian H can be split
into H = T + P, and we will only consider the long time behavior of splitting
methods built from this decomposition. Similar studies of more a general class of
schemes can be found in the classical references [26], [34].

Many physical problems in classical mechanics possess a Hamiltonian structure.
In particular, this is the case for all systems satisfying Newton’s equations

_9U

. i=1,....d,
8qi(q) i

migi =

where U(q) is the potential function and m; the mass of the particle associated with
the coordinates ¢g;. Such a system can be written

_ P
]
mij

) ) aU
qi pi = _B_(Q)’
qi

which is a Hamiltonian system associated with the energy
d

2
H(p.q) = Y 3=+ Ulg) =: T(p) + P(@), (I13)

i=1

where we denote by T the kinetic energy of the system and P the potential energy.
Note that in this situation, as we will see below, we can calculate the exact solutions of
the Hamiltonian system associated with the Hamiltonian 7'(p) and P(g) respectively,
which makes splitting methods very easy and cheap to implement.

We now give some basic properties of Hamiltonian systems of the form (IL.1).
In the following, we denote by <p’H the flow of the system (II.1), i.e. the mapping

¢t R?@ — R such that ¢Y% (y) = y and for all 7,

d
39u () = Xu (¢ () =J7'VH (¢} (). (IL4)

We will always assume that ¢?; is defined for all 7 > 0, all y € R4 and is smooth.
This is guaranteed for example when H is smooth and when the solution remains
bounded.

With the matrix J defined in (IL.2) is associated the symplectic form w : R?¢ x
R?? — R such that

wE.n) =£"Jn.
Definition I1.1. A matrix A of size 2d is symplectic if it satisfies
ATJA=1J.

A differentiable nonlinear mapping ¢ : R4 — R4 js said to be symplectic if. for all
y € R* | the Jacobian matrix d,0(y) is symplectic.
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An easy consequence of the chain rule yields the following:

Proposition IL2. Assume that ¢ and W are smooth symplectic mappings from R*¢
to itself, then ¢ o\ is again symplectic.

One of the major properties of the flow of a Hamiltonian system is given by the
following result:

Proposition IL.3. Let ¢l be the flow associated with the Hamiltonian system (I1.1).
Then for all t, the mapping y + ¢y (y) is symplectic and preserves energy in the

sense that for allt > 0 and y € R2d , we have

H (¢ (y)) = H(). (IL5)

Proof. Taking the derivative of (I1.4), we see that

d _
anw%(y) = J7'V?H (ol () - 9y (¥)

where V2 H is the Hessian (symmetric) matrix of H . This shows that (forgetting the
dependence in y)

d _ _
= ((ay¢;,)TJay¢;,) = (3y¢%y)" (vzH (@) T T T +J7 V2 H ((p}l)> 3,0k

dr
= ()" (~V2H (o) + V2H (¢})) 0,0 = 0

as we have that J~7J = —1I, and because the Hessian matrix is symmetric. As for
t =0, (p% (y) = y, we conclude that for all time ¢, we have

(3yehy)" Joyely = J (IL6)

which means that the flow is symplectic.
The energy preservation (I1.5) is an easy consequence of the fact that the matrix J is
skew-symmetric. |

Note that a consequence of the symplecticity of the flow is volume preservation:
taking the determinant of (I1.6) yields

Vi>0, VyeR¥, |detd,pl(y)]=1

which means that for all integrable functions f : R24 — R2? we have

Vi >0 /de f (e () dy = /de S(y)dy.
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1.2 Expansion of the flow. Let H, K : R*¥ — R be two smooth functions. We
define the Poisson bracket of H and K by the formula

OH 0K 0H 0K
H,K!=VHTJVK = — ). 1.7
{ b= Z (apz dqi  0qi 3pi) (a7

We easily see that we have { H, K} = —{K, H} and for three functions H, K and G,
the Jacobi identity

{H.{G.K}} +{G.{K.H}} + {K.{H.G}} = 0. (IL8)

Now let N be an integer, and G : R2? — RN be a smooth function with compo-
nents G; for j = 1,..., N. We will mainly consider the cases N = 1 (Hamiltonian
functions) or N = 2d (vector fields).

We define the Lie derivative £ g associated with H by the following formula: for
any function G : R*? — R¥, £ ;7[G] is a function from R?¢ to RY with components

(£u[G); =VHTJTVG,; = {H,G,}.

This Lie operator expresses the derivative in the direction given by X g in the sense
that we have

%G (¢%) = £a[G] (o) - (IL9)
Note that taking G = Id : R?¢ — R?? the identity function yields
Lalld] = Xg
Moreover, for two functions H and K, we calculate using (II.8) that we have
[£H, Lx]=LrgoLlx —Lx oLy = Liu Ky (IL.10)

Now let us consider the flow go’H. Formally for a fixed y € R4 we can write
down the Taylor expansion around ¢t = 0,

t*F dkeot ()

kl k
k>0 dr t=0

P () =

But the successive derivatives of the flow with respect to ¢ are easily expressed in
terms of the Lie derivative: we have <p(1){ =1Id = :ﬁ(}I[Id],

do’y
dr

and by induction for all k > 1,

= Xu (¢) = £u(ld] (¢Y) .

dk<p’H

= £k 11d] (%) -
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Hence we can write at least formally

k
ol = Z F;glfq [1d] = exp(t £ 7)[1d].
k>0~

Example IL4. In the case of a quadratic Hamiltonian of the form H(y) = yT Ay
where AT = A is a symmetric matrix, then we have for all k > 0 that éC’;{[Id] =

(J~'A)*. In this case, we have @', (y) = exp(tJ "' A)y where the exp function is the
classical matrix exponential defined as a convergent series.

More generally, the convergence of this series holds for an analytic function H.
Here we will consider that the previous equality holds in the sense of asymptotic
expansions:

Proposition IL5. Assume that H is € over R?? and let M be fixed. Then there
exists ty such that for all N, there exists a constant Cy satisfying the following: for
all y with ||y|| < M and all t < ty, we have

N ok
t

$u() = ) L) < CneV
k>0 "

Proof. As H is smooth, it is clear that for all y, the mapping ¢ (qu (y) is smooth,
and we have by using a Taylor expansion

t = ik k =Y v s
O =Y EuMd) = | =Ly ] (¢ () ds.
k=0 ! 0 :
Now by standard arguments there exists ¢y such that, for all y with ||y| < M, and
forall s < 1y, we have Hga}, (») H <2M.As éﬁ%“ is made of multiple derivatives of

H, we see that (s, y) $Z+1[Id]((p;1(y)) is bounded for s € (0,7) and || y|| < M.
This shows the result. |

Remark IL6. The norm ||-| considered above can be any norm on R??. As all the
norms are equivalent in finite dimension, a particular choice does not affect the final
result. The situation is of course totally different in infinite dimension, where the
norms will be defined on infinite dimensional functional spaces.

2 Numerical integrators

We give here a rough but convenient definition of a numerical integrator and its
corresponding order of approximation. A numerical flow is defined as a mapping
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@7 : R2 — R gych that for small 7, we have @7 ~ @ up to a small error
O (zP*!) where p is the order of the integrator. More precisely:

Definition IL7. Assume that H € €®(R?? R). A numerical integrator ® of order
p € N associated with the Hamiltonian system (11.1) is a mapping from R*? to itself
such that for all M > 0, there exist constants 1y, L, C > 0 such that for all T < 1,
x,y € R with ||y|| < M and ||x|| < M we have

lof () =T ()| = (1 + Loy [lx = y|| + CPTh (L11)

The numerical integrator @ is said to be symplectic if for all T, the mapping ®7 :
R — R js symplectic.

According to Proposition I1.5, setting x = y yields that the asymptotic expansion
around t = 0 of an integrator @*(x) of given order p should coincide with the Taylor
expansion of the exact flow ¢z, (x) up to the order p included. Now if this is the case,
we have for ||y|| < M,

o () — @7 (x) = o () — ey (x) + oy (x) — D7 (x),

which yields (I.11) where L is the Lipschitz constant of X g over the compact set

Wiyl =2M3.
Let us now consider splitting methods applied to a Hamiltonian system with H =

T + P, and assume that we can compute the exact solution of the Hamiltonian systems
associated with the Hamiltonian functions 7" and P. Using Proposition 1.5, we can
write in the sense of asymptotic expansions that

o =1d+ Xy + %zii%,[ld] + 0.
But this implies
¢rogp =Id+ X7 + tXp + O(7?)
=1d+ Xy + O(7?),
and we easily conclude that the Lie splitting method
Pl := @1 ° Pp
is a numerical method of order 1. By similar calculations we can show that

2 2
b = 90;/ °@r O(p;/
is a numerical method of order 2.
The symplecticity of a method is not straightforward, and we refer to [26] for
extensive analysis of the conditions on the coefficients of general numerical methods
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to construct symplectic integrators. For example we can show that the midpoint rule
defined as the mapping y"+! = ®%(y") such that

= ey (2
is a symplectic mapping. Note that the mapping y"*! = ®7(y") is well defined on
bounded domains if 7 is small enough.

In the following, we will only consider splitting methods applied to a Hamiltonian
functions that can be decomposed into H = T + P. In the case where the flows
@7 and ¢} can be calculated explicitly, then the splitting schemes will always be
symplectic as compositions of symplectic maps. If this is not the case, we can apply
a symplectic method to each part (for example the midpoint rule) and hence still
obtain symplectic maps. For this reason the implicit-explicit integrators discussed in
Chapter I are symplectic numerical integrators.

With this definition of local order, we obtain the following classical global result:

Proposition I1.8. Let @ be a numerical integrator of order p applied to the smooth
Hamiltonian system (11.1). Let y° € R and let t, > 0. Assume that forallt €
(0. 1), ¢y (»°) is well defined and let B = sup{ |’ (y°)| |# € (0.24)}. Then there
exist constants 1y and C such that, if T < 1y and if y" is the sequence defined by
induction by setting y" ! = @T(y™), n > 0, then we have

Vi =nt < ty, H(p}l (yo) —y" “ < Cr?.

Proof. We apply (IL.11) with M = 2B. We set y(t) = ¢l y%) and t, = nt. Of
course we have Hyon < M. Now forn > 1, assume that “y"_l | < M. Then we can

write using (1 + Lt) < eL7:
1y @) = y" | = 0k 7 (ta-) = @7 (") | < Ce?* ™ ||y (tar) — "7 -
Using the fact that y(#)) = y°, then as long as ||y"| < M and nt < t., we have

[y (ta) — y"|| < Cnel"*zPt! < (Ctyel™) ¢?.

Now this relation implies that if 7( satisfies (C t*e“*)r(f’ < B, we have ||y"*]| <
2B = M for nt < t,. This finishes the proof. [ |

3 Backward analysis for splitting methods

3.1 Setting of the problem. We now assume that H = T + P can be split into
two parts for which we are able to compute the corresponding exact flows. In the case
where the Hamiltonian can be split into H(p,q) = T(p) + P(q) as in (IL.3), this is
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actually the case: the solution of the Hamiltonian system y(¢) = ¢%. (»°) associated
with T starting in y° = (p°, ¢°) satisfies y(¢) = (p(1),¢(t)) with p(t) = p° and
q(t) = ¢° +13,T(p") while the solution associated with P is given by ¢(¢) = ¢°
and p(1) = p® — 194 P(q").

Let us for example consider the Lie splitting method @* := ¢}, o ¢7. The back-
ward error analysis problem consists in searching for a Hamiltonian Z(t) such that

(pIZ(r) = ¢p oYr (IL.12)

at least in the sense of asymptotic expansion in powers of t. If such a function Z(t)
can be constructed, the numerical trajectory can then be interpreted as the exact solu-
tion of the modified Hamiltonian %Z (7) evaluated at the discrete times nt: we have
for all n,

(¢ 0 9p)" = 020y = P2ioe-
In particular such a relation implies that Z(7) is a conserved quantity along the nu-
merical trajectory. Of course, as (II.12) holds in the sense of asymptotic expansions,
a small error is made at each step, but this error is of order Cy ¥ for any given N as
long as the numerical trajectory remains bounded, and hence the conservation of the
modified energy Z(t) holds over a very long time.
The equation (II.12) can be written (note the reverse order of 7" and P)

exp (£z(r)) = exp (tLr) oexp (tLp) (I1.13)

and we see that the construction of Z(7) relies on the Baker—Campbell-Hausdorff
formula (see [2], [28]). As such formal calculations are central in our analysis of
splitting methods in finite and infinite dimension, we give here a complete proof of
this formula.

3.2 Baker—-Campbell-Hausdorff formula. We consider here only the case of ma-
trices, but in essence the result holds in the sense of formal series. This formula thus
turns out to be valid for more general linear operators.

Lemma I1.9. Let A and Z be two square matrices, then we have
Uk
exp(Z)Aexp(~Z) = exp(adz)A = » 2z A (11.14)
k>0
where for two square matrices A and B we have

adyB = [A, B] = AB — BA.

Proof. Let us consider the mapping s > U(s) = exp(sZ)A exp(—sZ). We easily see
by induction that for all k > 1,
dcu

d—k(s) = exp(sZ)ady, A exp(—sZ)
S
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and therefore (I1.14) corresponds to the Taylor series of U(s) around s = 0 evaluated
at s = 1. The convergence of the series is clear considering the relation

lada Bl <2 A] ||B]

for any subordinate matrix norm. |

The second result gives an expression of the derivative of the exponential:

Lemma I1.10. Let t — Z(t) be a differentiable mapping from R to the space of
square matrices. Then we have

9 exp(Z(1)) = [(eXp (adz@) — 1) dz (t)} exp (Z(1)), (IL15)

dr ad Z(t) dr

where

exp(adz) —1 Z 1 X

ad’,.
ady = (k+ 1) z

Proof. Let us consider

U(s,t) = (% exp (sZ(t))) exp(—sZ(1)).

We calculate directly that

iU(s,l‘) = (SZ(I) exp (sZ(t))) exp (—sZ(t))
as dr

— (% exp (sZ(t))) Z(t)exp(—sZ(t))

dz dz
_ d:’) +[Z@t), U(s, 1)] = % +adz(yU(s.1).

Using the Duhamel formula, this shows that
S
U(s,1) = exp (sadz) U0, 1) + / exp ((s — 0)adz()) Z'(t)do.
0
As U(0,1) = 0, we have (after doing a change of variable 0 +> 1 — ¢ in the formula)

1
U(l,t) = [ exp (0 adz()) Z'(t)do,
0

which gives the result. |
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The final lemma gives the inverse formula for the derivative of the exponential:

Lemma I1.11. Let By be the Bernoulli numbers defined by the formula

Z Bk k
= Z X, (11.16)
e? —1 i=o k!

for any complex number z such that |z| < 2. Let Z be a square matrix of norm
|Z|| < 2m. Then we have

dz) —1\" B
(M) = —kadl%. (11.17)
adz k>0 k!

The proof of this lemma is clear. With these preparations, we can prove the Baker—
Campbell-Hausdorff (BCH) formula:

Theorem I1.12. Let A and B two square matrices. Then there exists ty sufficiently
small and a smooth mapping t — Z(t) for |t| < ty, and such that for all t € (0, ty)
we have

exp(Z(t)) = exp(tA) exp(tB). (I1.18)
Moreover, Z(t) satisfies the differential equation

B
Z'(t)=A+B+[Z(1). B+ Y k—"‘ad’;(,)(A +B), Z0)=0. (L19)
k>1

Proof. Taking the derivative of (II.18) with respect to ¢ yields, using the previous
Lemmas

[(%) Z’(t)i| exp(Z(t)) = Aexp(tA)exp(tB) + exp(tA) exp(tB) B,
Z(t)

whence

(M) Z'(t) = A+ exp (Z(1)) B exp (= Z(1))
adz ()
= A +exp(adz(?)) B.

Now we have

1
exp(adz)B =B + ) ﬁad’g (adz B)
k>0 ’

+1)

dz)—1
_p @D By,
adz
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Hence we have

[(M) (Z'(r) - adzB)} —A+B

adz(,)

which yields (II.19). The existence of Z then follows from standard ODE arguments.
Note that the convergence of the series in the right-hand side is guaranteed as long as
|Z(¢)|| < 2m which, as Z(0) = 0, holds for small ¢ > 0. |

3.3 Recursive equations. Let us now go back to equation (II.13) and the decompo-
sition H = T + P. By applying the previous calculations, we find that the operator
&L 7(¢) has to satisfy (at least formally) for 7 € (0, 7) the equation

d By
Eéﬁz(,) =fr+Lp+ [cfz(t),cfp] + Z k—!adi%z(t) (Er+ Lp).
k>1

But using the identification (I1.10), we see that this formula is equivalent' to a similar
equation at the level of the Hamiltonian functions:

d B
GZ0O) =T+ P +1{Z@). P} + 3 k—"‘ad’g(,)(T +P), (I1.20)
k>1
where this time

adg K = {H, K}
with { -, - } the Poisson brackets of two functions defined in (II.7). Here, Z = Z (¢, y)
is a function depending on the space variable y = (p,q) and the time 7. Hence

equation (I1.20) can be seen as a nonlinear transport equation.

Now the big difference with the linear matrix case is that there is a priori no hope
for this differential equation to have a solution Z(¢) on a small interval (0, 7). Indeed,
we cannot find a norm on nonlinear Hamiltonian functions satisfying ||[{H, K}|| <

C ||H| ||K| for a uniform constant C independent on H and K. This is due to the
presence of derivatives in the Poisson brackets. Hence the infinite series in (I1.20) is
in general divergent.

Note however that this is possible in the class of quadratic Hamiltonians of the
form H = yT Ay for some symmetric matrix A. In this situation the Poisson bracket
of two quadratic Hamiltonians remains quadratic and hence can always be identified
with a symmetric matrix. This corresponds to the linear case.

Going back to the general case of nonlinear Hamiltonian functions, equation
(I.20) can be solved in the sense of formal series in powers of ¢ and hence as T
and P are assumed to be smooth, in the sense of asymptotic expansions in powers of
the small parameter 7. Let us make the formal Ansatz

Z@)=)Y 1'Zs. Zy=0. (11.21)
£>0

"The equivalence between &£ g7 and H holds up to an integration constant that we fix to 0.
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We first observe that
adz(,) = Z teadze .
£>0
Hence we have that
k
adiy =) 1" Y, adz, cadg,

n>0 4t le=n
and by identifying the powers of ¢, the collection of Hamiltonian functions Z,, n > 1
has to satisfy the induction formula: for all n > 0,

n+1)Zyy1 =T + P)+{Z,, P}

By
+y o Y adg, ---adg, (T + P),
k>1 4t l=n

where 82 is the Kronecker symbol. As Z; = 0, in the previous sum, the indices £ j
in the sum are all greater than 1. Hence k cannot be greater than 7, and moreover we
have £; < n —k + 1forall j. The previous formula can thus be written:

n
B
() Zur = 8 (THPYHZa P+ Y 20 D adg, --adz, (T+P).

k=0 "l +~+Lx=n
I<tj<n—k+1

(I1.22)

For n = 0, this formula yields
Z, =T+ P. (I1.23)
For n > 1, if we assume that Z,,..., Z, are given, we note that the right-hand

side of (II.22) is a linear combination of Poisson brackets of the Hamiltonians Z,,
{ < n containing a finite number of terms. By induction this shows the existence of
functions Z; such that the formal series (I1.21) satisfies (II.20). Note moreover that
all the Z; are made of multiple derivatives of the Hamiltonian functions 7" and P.

Roughly speaking, this means that for a fixed N, we can construct the Hamiltonian
ZN(@) =«(T + P) + Z?:z £ Z,, which will satisfy (I1.20) up to a small error of
order @(r") with a constant depending on N . This result constitutes a “polynomial”
version of backward error analysis:

Theorem 11.13. Assume that T and P are smooth Hamiltonian functions and H =
T + P.Let N € Nand M > 0 and 1o be fixed. Then there exist constants C
depending on M, N and 1o such that for all T < 1, there exists a smooth modified
Hamiltonian HYN such that for all y € R*® with ||y|| < M we have

‘H (»)—HY (y)‘ < Cr, (11.24)

and

|

¢y (V) —¢p 090%(y)H <V
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Proof. For all t > 0and N € N, we define the function

ZN@) = i tz
= 12

=1

where the Z; are given by the recursive formula (I1.22), and we set HTN = %Z N (7).
The expression (11.23) shows that for ||y|| < M and 7 < 1y,

N
HY ) =HO)| = Y 7'zl <o [ &7 s 1zl || = e
k=2 L=2 Iyl <M

and this shows (I1.24).
Let us now consider the expression

RN (t,y) := exp (L zn () [1d](y) — exp(tL7) o exp(t L p)[1d](y)

in the sense of formal series in powers of ¢.

By construction of the functions Zy, the relations (I1.22) are satisfied forn = 0, ...,
N — 1 (the term Zy 1 is not present). This means that the derivative of RY (¢, y)
is a formal series with vanishing coefficients up to the order ¢V included. After in-
tegration, we thus obtain RV (¢, y) = @) in the sense of formal series. Using
now Proposition I1.5, we thus see that for a fixed y, the coefficients of the Taylor
expansion of the function

V(1Y) = 0f, () — ¢p © 97 (¥)

vanish up to the order N + 1. Using a Taylor formula applied to 7V (¢, y) for t €
(0, 79) then yields the result. [ |

The following corollary shows the preservation of energy over a long time:

Corollary IL.14. Let y° € R*, M and N > 0 be fixed. Then there exists Ty such
that the following holds: for all Tt < 7o, let HTIv be the Hamiltonian defined in the
previous theorem, and let y" be the sequence defined by y"*' = ¢% 0L (y"), n > 0.
Assume that for all n > 0, we have ||y"|| < M. Then we have

‘HIN o"-HY (yo)‘ < CntVH!, (I1.25)
where C depends on M and N . In particular, we have that
|H (") —H (') <ct. for n<oV (11.26)

for some constant ¢ depending on N and M.
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Proof. For n € N, we have
HY (") = HY (5" = HY (¢} 0 0F ™) = HY (")
= HY (¢p 0 o7 ") = HY (0% ™)
where we used the preservation of the Hamiltonian HTN by the exact flow (p;I N

Now as for all n we have || y"|| < M, we can always assume that 7 is such that

‘ < 2M . We deduce that

‘HTN ") —HY ")

05w ")

<| sup HVHTN(y)H )
Iyl <3M
T<17

< C.L,N-H

Oy ") =¢poer ")

for some constant C depending on M and N (as tg does). This shows (II.25) by
induction. The second equation is a consequence of (I1.24) which implies that for all
n we have

H ™M= H ()| <|H " - HY 67
+|HY (%) = 1 (29)]

§C(t+ntN+1)§2Ct for nft_N,

+[HY oM - BY ()]

for some constant C. [ |

Remark II.15. Note that a similar analysis can be performed for the Strang splitting

90;/ 2o @7 © (p;/ * The only difference is that (I1.24) can be replaced by

HY (y) - H(y)| < C7?

for another modified energy H IN . The reason is that the Strang splitting is an integra-
tor of order 2 which means that the modified Hamiltonian determined by the BCH
formula coincides with H up to the order (z3) (or equivalently that Z, = 0 in the
previous construction). Hence the preservation of energy as expressed by (I1.26) can
be improved to O (7?).

So far we have proved that in the finite dimensional case, splitting methods do
preserve energy over a very long time, up to some small constant decaying with the
step size t, see (I1.26). This important result has been used in [26, Chap. X] to prove
the stability of symplectic numerical methods applied to integrable systems, using
perturbation theory. We will not give more details here, and refer to [26], [34] for
more general results on symplectic integrators.



III Infinite dimensional and semi-discrete
Hamiltonian flow

In this chapter, we define the solutions of a class of nonlinear Schrédinger equations
with polynomial nonlinearities. We consider the case where the equation is set on the
torus T¢ with d > 1. Let us consider a nonlinear Schrodinger equation (abbreviated
as NLS in the following) of the form

i0u = —Au + Q(u, ii). (IIL1)

The first problem we face in studying such a partial differential equation is that the
right-hand side does not act on L? or any Sobolev space H*. If for example u € H*
with s > 0, then Au € H*~? and we cannot apply the standard fixed point argument
to define a solution. However, as mentioned in Chapter I, we can always define the
flow ¢} = e''4 of the free Schrodinger equation i d;u = —Au in a Fourier space:
in dimension d, if &,(¢) are the Fourier coefficients of the solution u(¢) = e'4u(0),
then we have &,(¢) = eitlal? £,(0) (here a = (a', a?) € 2% and |a|* = (a')* +

-+ (a%)?). Hence we see that ¢/’ is an lsometry of the Sobolev spaces H®. The
solution of (III.1) is then defined using Duhamel’s formula

u(t) =" u’ + f =94 6 O (u(s), i1(s))ds,

to which we can now apply a fixed point procedure. Such a solution is called a mild
solution of (II.1) and we will only consider such solutions in the following.

Another problem coming into play is the presence of the nonlinearity Q. To deal
with these terms, we will not use the classical Sobolev spaces, but Banach spaces
based on the space of functions with integrable Fourier coefficients, called a Wiener
algebra. In such spaces, we will show that the right-hand sides will always be locally
Lipschitz, so that we can easily derive some existence results.

We then discuss some global existence results in dimension d = 1, in the case
where the nonlinearity is defocusing (which means that the polynomial Hamiltonian
associated with Q is non negative) and in the case of small initial data.

All the present analysis will be made by discussing the Hamiltonian structure of
the equation (IIL.1).

To conclude this chapter, we consider the space discretization of nonlinear Schrod-
inger equations with polynomial nonlinearity using pseudo-spectral collocation meth-
ods, as mentioned in the introduction. Because of the presence of aliasing problems,
this makes the bounds for the existence time a priori depend on the discretization pa-
rameter (the number of points K on the torus). However, we show that we can obtain
explicit bounds that will help later to prove results for fully discrete schemes under
CFL condition.
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1 NLS in Fourier space

Let us consider the cubic Schrédinger equation,
i0u(t,x) = —Au(t,x) + |u(t, x)|*u(t, x) (I1.2)

set on the d-dimensional torus T¢ = (R/27Z)¢. We can decompose u(z, x) at least
formally in Fourier series

u(t.x) = Y La(0)e*, (IIL3)
aczd
where for a = (al,...,ad) € 7% and x = (x1,...,xq) € T9, we seta - x =

a'x; + -+ axy. Plugging this decomposition into (II1.2) yields
ik F =" a4+ Y T et eI, (0E, (1), (1)
aczd aecz4 ai,az,az €74

where Ea (¢) denote the derivative with respect to the time ¢, and where |a|?> = (a')> +
.-+ (a?)?. By identifying the components in the Fourier basis, we thus see that (II1.2)
is formally equivalent to the collection of coupled ordinary differential equations

Vaez?, &) =lalt ) + Z Ear (&4, (D43 (1), (I1L.4)

a=a|—ax+taz

where the last sum holds for all triplets (a1, a», a3) € (Zd )} suchthata = a;—ar+as.
Let us now consider the (normalized) Hamiltonian associated with (II1.2):

i} 1 1
H(u, i) = W/w (|Vu(x)|2 + E|u(x)|4) dx.

Plugging the decomposition (II1.3) into this expression, this energy can be written in
terms of £ = (§4)4eza € cz,

HEEH = Y

abezd

& )d[ (ia)(—ib)e' @D ¥g, £ dx

1 . o o
Z /1;‘1 el(a1+a2 1=b) xéalgazghgbzdx

- )

1
2

ay,az,by,by EZd

Z | |Sa|2 + 5 Z Ealganglgbz‘ (II1.5)

ezd ai+a,—bi—by=0

Considering &, and 7, := Sa as independent variables, we thus see that the system
(IT.1) can be written

VYaeZl, §£,()= —igﬂ(é, .
Na

where we identify the function u with the collection (&;), ¢ 74 -
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We see that at least formally, the cubic nonlinear Schrédinger equation can be
embedded into a class of Hamiltonian equations of the form

oH

%, (&.m, (I1L.6)

Vaezd, éa(t)z—igTH(s,n) and  #a(t) = i

where H(,n) is a polynomial in the collection § = (&;),cz¢ € CZ’ and n =

(a)geza € C*.

Let us now consider an initial value (£°,7°) € CZ! x (CZd, and assume that for
alla € 74, €9 = 719. Then using the expression (IIL.5) of the Hamiltonian associated
with the NLS equation, we see that for all a, we have &,(t) = 7),(¢) throughout the
solution of the previous system. In other words, the collection (&, 1) actually corre-
sponds to a function u through the identification

u() = Y £, and d(x) = Y nee 0, (IIL7)

aezd aezd

In the following, we will only consider Hamiltonian systems satisfying this property,
and we say such Hamiltonians are real, and we will give some examples below.

Remark ITL.1. The system (II1.6) is a complex Hamiltonian system. The connexion

with the finite dimensional case can be made as follows: Along a solution satisfying
& = 1, we can also define the real variables p, and g, given by

! . c_
Ea—ﬁ(l’a'FlCIa) and Sa—ﬁ(l’a iqa) -

Then the system (II1.6) is equivalent to the system

pa :__(qvp) aEZdv
9qa

) oH

qa = a (q7 p)v ae Zdﬂ
Pa

which is an infinite (real) Hamiltonian system in the sense of the previous chapter.

Now consider a more general case where the Hamiltonian function is given by

H(u,u) =

) /Td (IVu(x)* + P (u(x), i(x))) dx

where P is a polynomial in u and # such that for all u, P(u, u) € R. The correspond-
ing PDE is written
i0iu = —Au + Q(u,u), (IIL.8)
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where

Q(M,L_l) = 82P(M,7/_l)

is a polynomial in u# and u. Typical examples are obtained by considering nonlinear-
ities of the form P(u,i) = O’AT|M|20+2 for A € R and ¢ € N, for which we have

O = Alu|*°u. We can verify that such a Hamiltonian is real in the sense defined
above.

Now consider the decomposition P(u,u) = Y ;_, Px(u, ) where each Py is
a homogeneous polynomial in (u, u) of degree k. We can write

Pe(uit) = Y apquPitd,
pta=k

where a4 are complex coefficients satisfying the condition

Vp.q, apg=ayp (I11.9)

ensuring the fact that Py are real.
Now plugging again the decomposition (II1.7) into the Hamiltonian associated
with Py, we obtain that

1 _
o7 [, Pelto. i ds
p q
! . "
a7 X | X wer] [  me
M pta=k aezd bezd
= Y > bar -+ Ea Ty
pta=k  ait-+ap—bi—w—bg=0

Here the summation in the right-hand side is made over the set of indices
(dl, e ,ap,bl, ce ,bq) S (Zd)p—l—q

satisfying the zero momentum conditiona; +---+a, —by —---— by = 0.

Hence in Fourier variables, the Hamiltonian P can be viewed as a polynomial in
the variables & and 7. Note that the condition (II1.9) ensures the fact that P is real, i.e.
that the Hamiltonian system (II1.6) associated with P degenerates into two copies of
the same system when the initial value satisfies the condition § = 7.

2 Function spaces

As explained in the previous section, we work in the complex Fourier variables z =
(&,n) € CZ x CZ’. More precisely, we introduce the set Z = Z¢ x {£1} and the
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variables z € C% such that

— d & it =1,
Vj=(a,d) eZ x{£l}, Z]—{ e if §=—1.
Moreover, we define the absolute value |z;| for j = (a,6) by |z;| = |§,|if 6 =1

and |z;| = |n,| if § = —1. Similarly, for j = (a,8) € Z¢ x {£1}, we set |j| =
max(1, |al).
Finally, for s > 0, we define the following norm:

Izl = D 171z (I1L.10)
jeZ
Note that in terms of & and 7, this norm can be written

Izl = Y max(L, |al)® (I£al + Inal).

aezd

and in the case where 1 = £, this norm is 2 Y aeza max(l, |a])’|&,].
We define the Banach space

0= {z e C?| |z, < +oo}.

Now let z = (§,n) € £! with § = 7, and u the associated complex function defined
by (I11.7). Then we say that, by abuse of notation, u € £}. In the case where s = 0,
this space is called Wiener algebra, and we denote it simply by ¢! := Z(l). With this
identification, u € £} with s € N if and only 9%u € €' for [k| = 0,...,s.

We will also consider the classical Sobolev norms, for s > 0,

1/2

-2 2
Izl = | 22 i1z

jeZ

and the space

N

2= {z e C*| |zl < +oo} - H° (']I‘d>,
where
H (Td) - {u(x) |9Fu e L? (’]I‘d>, k| = O,...,s}.

The identification between the Fourier coefficients and the function space is made by
using the Fourier transform which is an isometry. The big difference is that K? are now
Hilbert spaces. However, to deal with polynomial nonlinearities, the spaces £} will be
much more convenient. These spaces are imbricated via the following relation:
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Proposition ITI1.2. Let s and s' be such that s' — s > d /2. Then we have
0 c el (IIL.11)
and there exists a constant C such that for all z,

Izl = Mzl = Cllzll 2, - (IL.12)

Proof. Let z € Eg/. We have, using the Cauchy—Schwartz inequality,

Izl = D LiPlzil= D L1z

jeZ jEeZ
1/2 1/2
1287 12 - 12(s—s
<| >zl DS = Clzly
jEeZ jeZ g

owing to the fact that the series in the right-hand side is convergent for s —s’ < —d /2.
Now assume that z € £, then we have in particular that for all j € Z, |j|*|z;| <
Izl o1 - Hence we have

£}

2 ) 2 . 2
Izl = D i1z < Nzl Do 1illzi1 = lzlly, - n

jEeZ jeZ

3 Polynomials and vector fields

Let r € N be given. For a collection of indices j = (ji,..., jr) € Z", we define
the momentum M(j) by the following formula: if foralli = 1,...,r we have j; =
(ai,8;) € Z we set

,
M) =) aid;. (I11.13)
i=1
Moreover, for such a multi-index, we set

Zj =Zj ... Zj.

Note that such a term mixes the &, and the 1, depending on the signs of the §;.
For example in the nonlinear term of the Hamiltonian (II1.5), the sum is made over
indices j; = (ay, 1), j» = (az, 1), j3 = (b1,—1) and j; = (b2, —1) and involves the
monomials &4, &4,7p, b, The relation a; + a» — by — b, = 0 is then equivalent to
M1, jas J3, Ja) = 0.

For r € N, we define the following set of indices:

y = 1{j € Z'| M(j) = 0}. (IL.14)
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Moreover, for j = (a,8) € Z, we set j = (a,—6), and for a multi-index j =

(Jise-osjr)yweset j = (ji, ..., jr)-
We now give a definition of the polynomial nonlinearities that we consider:

Definition I11.3. We say that a polynomial Hamiltonian P € Py if P is of degree k,
has a zero of order at least 2 in z = 0, and if

* P contains only monomials ajzj having zero momentum, i.e. such that M(j) =0
when aj # 0 and thus P formally reads

k

Pz)=) Y ajzj (111.15)

{=2jedy
with the relation a j = aj ensuring the fact that P is real.

 The coefficients aj are bounded, i.e. satisfy
Ve=2,...k, Vj:(jl,...,jg)EJg, |aj|§C.

In the following, we set
k

IPIl =" sup lajl. (IL16)
(=27 €t

Definition II1.4. We say that P € 8Py if P € P has coefficients aj such that
aj # 0 implies that j contains the same numbers of positive and negative indices:

g{i|ji = (ai, +)}=t{i | ji = (a;,—1)}. (IL.17)

In other words, P contains only monomials with the same numbers of & and n;. Note
that this implies that k is even.

Example IIL.5. In the cubic nonlinearity associated with the Hamiltonian

1
S /T @l

the corresponding polynomial in Fourier variables is given by

P(u,u) =

P(z) = P(&,n) = Yo &b
ki+ks—41—£,=0
= Z Ajij2jajsZ 22 j3% ja

M(j1,725735J4) =0
with the relation
1 if 8§ =86=1 and & =268 =-1,

a = i
J17273]4 { 0 otherwise

Of course we have in this case ||P|| = 1 and P € §%.
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With such a polynomial we associate its gradient

apP
]/ jez

We then define the Hamiltonian vector fields X p (z) by the formula

0P

—i 3 if 6=1,
_ Na
Viez, (Xp(2); =(VP(2); = ap
i@ lf 8 == —1

Note that here J is an infinite dimensional symplectic operator similar to the one
studied in the previous chapter, but with a multiplication by the complex number i.
Actually, for two functions F' and G, the Poisson Bracket is (formally) defined as

IF 0G  9F 9G

F.G}=VFTJVG =i — .
{ } anZ:d aga 377a 37}a 3§a

(IIL18)

Hence with a given Hamiltonian polynomial P € $%, we associate the Hamilto-
nian system

z=Xp(2)

which can be written in the form (I11.6).

All the previous calculations were formal. The following proposition will show
that for polynomials with bounded norm, they actually make sense on the spaces £}.
This is the most technical result of this chapter, but it is essential for the construction
of the modified Hamiltonian in Chapter VI.

Proposition I11.6. Let k > 2 and s > 0 and let P € Pi. Then we have P €
€L, C)and Xp € €°(LL,L]). Moreover we have the estimates

s s

P < 2| ( max 1 ) (I1L.19)
n S

=2,...,

and

Vel Xp@)l, =2kk-1)°|P]| ||z||4( rpaxk_znznZ;Y). (I11.20)

n=1l,..,

Moreover, for z and y in £ we have

1Xp@) = Xl = 4kt = 0° 120 (| _max (11, 120,) ) = ol
(IL.21)

yeens
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Eventually, for P € Py and Q € Py, then {P,Q} € Pri¢—n and we have the
estimate

I{P. Q3 <2kL | P [Q] - (111.22)
Ifnow P € 8P and Q € 8P, then {P, Q} € 8Py 10—

Proof. Assume that P is given by (III.15), and denote by P; the homogeneous com-
ponent of degree i of P, i.e.,

Pi(z) = Z ajzj, i =2,... k.
JEed;

We have for all z and using the definition of || P;[| = sup; ¢4, laj|,

i i
[P @) = 1P Izl = 1 2il 21l -

The first inequality (II1.19) is then a consequence of the fact that

k
1P =" lIP] - (II1.23)

i=2

Now let j = (a, €) € Z be fixed. The derivative of a given monomial z; = z;, ---z;,
with respect to z; vanishes exceptif j C j. Assume for instance that j = j;. Then

the zero momentum condition implies that M (1, ..., ji—1) = —€a and we can write
s [OP ] s
JT [ = I >, ViRETREEE-TanE (I11.24)
J

JEZITI, M(j)=—ea

Now in this formula, for a fixed multi-index j, the zero momentum condition implies
that
I Qi+ o) < G =D max |l (111.25)

S

Therefore, after summing in a and € we get

[Xpi@ly <26 = 0701 30 _max Lkl
jezi—

C. i —2
<2i(i =1’ | Pill |1zl Izl (1L.26)

which yields (II1.20) after summing ini = 2, ..., k.
Note that this implies that

oP(z)

IVPE) e = sup
Zj

jeZ

< 1Xp()ll,y < o0
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which shows that VP € €(£!, C) and hence P isin €! (¢}, C).
Now for z and y in £! we have, with the previous notation,

<> P

qgezZ

K
|71 P

oP; oP;
gj(z) - gj()’)

L 9P
| g v+ =02tz = vl
0 0Zj0zZgq

But we have, for fixed j = (¢,a) and g = (b,§) in Z, and for all u € £},

aP;
aZjan(u)

<i|Pi > gy -
Jj ezi—Z,,M(j)=—ea—8b

J1°

In the previous sum, we necessarily have that M (j, j,q) = 0, and hence

i—2
1< Qi+ + Lol + gD < G = Dl TT Linl*-

n=1

Letu(t) =ty + (1 —t)z; we have for all ¢ € [0, 1], with the previous estimates,

1 8Pl . o . 1
[ o] <=1l 12 [ 3

JeZi—2, M(j)=—ca—5b
X | jilP g )]+ i =2l fuj, _, (2)]dt.

I

Multiplying by (z4 — y4) and summing in k and j, we obtain

0,21 = X, 0y = 406 = 071l ([ oy o) 1=,
Hence we obtain the result after summing in 7, using the fact that
ey + (1= 1)zl < max(lyll, . 120 ,).
Note that the previous calculations show that for all z € ¢!,
VXp(z) € €Ly, £

and this implies that X p is in €' (€}, £}). The fact that the Hamiltonian P and the
vector field X p are € can be verified using similar calculations.

Assume now that P and Q are homogeneous polynomials of degrees k and £ re-
spectively and with coefficients ag, k € Jy and bg, £ € J;. It is clear that { P, O} is
amonomial of degree k + £ —2 satisfying the zero momentum condition. Furthermore
writing

PO} = > c¢jzj,
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c¢j is expressed as a sum of coefficients axby for which there exists an a € Z and
€ € {£1} such that

(a,e) Ck edy and (a,—€) C{L €y,
and such that if for instance (a, €) = k; and (a, —€) = {;, we necessarily have

Koy oo ks los e lg) =

Hence for a given j, the zero momentum condition on k and on £ determines the
value of ea which in turn determines two possible values of (¢, a) (as a € Z4).
This proves (I11.22) for monomials. If

k 14
P=)"P and Q=) 0;

i=2 j=2
where P; and Q; are homogeneous polynomials of degree i and j respectively, then

we have

k+L-2

P= % ) (PO}

n=2 i+j—-2=n

Hence by definition of ||P| (see (III.16)) and the fact that all the polynomials

{P;, Q;} in the sum are homogeneous of degree i 4+ j — 2, we have by the previous
calculations

k+€-2 k+0-2
Pl= > > oy =2 > > djilel]es)
n=2 i+j—2=n n=2 i+j—-2=n

k L
<2kt (Y Upl || X el | =2kenrinel,

i=2 j=2

where we used (I11.23) for the last equality.
The last assertion, as well as the fact that the Poisson bracket of two real Hamiltonians
is real, follow immediately from the definition of the Poisson bracket. |

4 Local existence of the flow

We are now prepared to define the flow of a Hamiltonian PDE of the form (IIL.8)
with a polynomial nonlinearity Q (1, #) = d, P (u, u). So far we have shown how this
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PDE can be interpreted as an infinite dimensional Hamiltonian system involving the
coefficients z = (&, n) and the Hamiltonian function

H(z) =T(z) + P(z2),

where P € P, and where T is the Hamiltonian associated with the Laplace operator.
This one is defined by

T(z)=TEn) = ) lalEana, (II1.27)

aezd

compare (II1.5): When z € ¢2 = H'(T) or z € £} C ¢3, and when z is real which
means z = (€, n) with £ = 7, we have

— 1 2
TG = g [, IVuods,

where u(x) = ", c ya £q €17,
The Hamiltonian system (II1.6) associated with the function H(z) then reads

: . . OP
Ed =—l|a|2§a—lan (Svn)7 aEZdv
ap ¢ (I11.28)
ha = ilafng +iz—(@E. ). aeLl,
0&,
and corresponds to the nonlinear Schrédinger equation
idu = —Au + 0, P(u,u) (II1.29)

where 0, P(u, ) = i X p(z) after the identification between u and z.

Note that the vector field X7(z) acts from E; to E;_z and hence the flow of the
previous Hamiltonian equation cannot be defined by a direct use of the Cauchy Lip-
schitz Theorem in a Banach space. However, as mentioned in the introduction, the
flow of T, ¢%.(z) can always be defined: it is given by the formula

1) =exp (—it|al?) &2, a €74,
z2(t) = (@), n(0) = ¢7 (§°.n°) . where salt p(, aF)
Na(t) =exp(lt|a|2) n, a ez

In particular, we observe that the flow of T acts as a rotation in the Fourier coeffi-
cients. Hence we have for all time 7 > QO and all z € £ ;

ler @] ¢y = lzlly - (I11.30)
Instead of considering the equation

:=Xp(z) = Xr(2)+ Xp(2), with z(0) = z°,
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we reformulate it using Duhamel’s formula as

t
Vi>0 z(t)= ¢§~(ZO) + / @5 %o Xp(z(s))ds, (IIL.31)
0

in which all the terms are now well defined in £!. A €' function z(¢) solution of the
previous system is called a mild solution of the Hamiltonian system (III.28). Note
that such a formulation expressed in terms of the function u(¢) = u(z, x) solution of
(II1.29) can be written

t
u(t) = e 4u’ + [ =945, P (u(s), u(s)) ds.
0
In the following, for a given number M, we define the open ball
BS, = {z el Iz, <M } (11.32)

Theorem IIL.7. Let P € Py for some givenk € N, M > 0 and s > 0. Then there
exists ty and for all |t| < t. a mapping ¢y : B3, — £} of class €' and such that
forallz® € BS,, z(t) = (pfq (2°) is the unique mild solution in £ of the Hamiltonian
system (I11.28). If moreover z° = (£°, £%) is real, then . (2°) is real for |t| < ts.

Proof. Let us fix z° € Bj, and t > 0, and let us consider the Banach space & =
€0([—1,1],£}) equipped with the norm

¥ (llg = sup [y (@), -

o €[—t,f]

The mapping

(TY0) = () + /0 % 0 Xp(¥(0)) do

defines an mapping 7 : & +— &. This is a consequence of (II1.30) and Proposition
II1.6. Now consider the function

(2.7 3 1t = ¥O(t) = 97 (2°).
Note that as ¢ is an isometry, we have that for all t € [—7,7], ¥°(r) € B}, and

yleé.
Let > 0, and consider the ball in &, centered in ¥° and with radius 7:

B (y) = ()81 v -9l = ).
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Note that if ¥ € B, (¥°), we have for all € [, 1], lv®ll,, <M +n=<2Mif

we assume that 7 < M. Then for such ¥, using estimate (III.ZSO), we see that for all
t €[—t,1],

lz]
0O =00l < [ 2= 121w, (_mos, IO, o

n=1,...,

< 2tlk(k = 1)° | P|| 2M max (1, (2M)k_2> < Ci,

where C depends on k, M, || P|| and s. A similar calculation for r € [, 0] shows
that

|79 —v°le =t

Hence for 7 < n/C, the mapping T maps B, (¥°) into itself. Now consider y' and
¥?in B, (). Using (II1.21) we see that there exists a constant L depending on M,
| P, s and k such that

|79 =79 g siL]v' = v*[-

Hence for 7 < 1/(2L), the mapping 7 is a contraction mapping from B, (¥°) to
itself. Taking ¢« = min(n/C, 1/(2L)), the fixed point theorem then ensures the ex-
istence and uniqueness of a solution z(t), t € [—t«, t«], satisfying Tz = z which
means that z is a mild solution of (II1.28). The properties of z(¢) =: go’H (z%) are then
easily verified by using Proposition III.6. |

Remark IIL8. Note that a mild solution in £/ is also a mild solution in £2 = H*(T?),
owing to (II1.12). However the converse is not true: a mild solution in E? is a mild
solution in £}, only if s —s" > d /2.

With this definition of the flow, we get the following:

Corollary IIL9. Assume that z°

t € [0, t«]. Then we have

€ {; is real, and that ¢'; (2°) is well defined for

H (¢l (2°) = H (%), for 1€][0,4]. (I11.33)

Proof. Using Theorem II1.7, the flow ¢’ (zo) is well defined for sufficiently small # in
the space {]. Let K € N. We define the projection operator [Tk : {1 > £] such that

zj if |jl =K,
Vjez, (Ilgz);= 0 if 1> K
if |j| > K.
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It is clear that for all z € £], we have ||HKZ||Zl < ||Z||€1 and | [1gz — Z||€1 — 0 when
1 1 1

K — +400. Let us consider the Hamiltonian HX := T+ P o [Tk, and 7K = Mgz,
It is clear that for all K, we can define a solution in E} of (II1.28) associated with the
Hamiltonian H X and with initial value z(5). As | P o [Tk || < || P]|, we can always
assume that this solution is well defined for ¢ € [0, tgx] with g > t.. Moreover, as T
is diagonal in Fourier, we easily see that for all ¢, [Tk o go;{ (25 = 90;{ £ (25,
Hence the flow 90;{ x 1s finite dimensional. We deduce that for all 7 € [0, /x| we have

A (e () = 8 (4).

Now this relation holds for all K and all ¢ € [0, t,]. Hence by letting K — +o00, and
as ¢4, (z%) € £] C {3, we can prove that the relation (II1.33) holds true. [ |

5 Cases of global existence

In the rest of this chapter, we will consider the case where d = 1. The global exis-
tence results given below use in a crucial manner the preservation of energy. Hence
we need to consider solutions in E% = H'(T). In the previous section, we have seen
that if the initial data z° is in £}, there exists a local solution in ¢] and hence in £3.
However in Corollary I11.9 we used the fact that the flow 90;{ x Was converging to-
wards ¢f, in ¢!, which is a consequence of Proposition II.6. Hence to derive the
energy preservation of a solution in £2, we need to make the assumption that the non-
linearity X p acts on £2, which will be the case for standard polynomials in dimen-
sion 1.

The first result concerns the case where the nonlinearity has a positive sign. In this
situation the solutions are global in {2 = H'(T).

Proposition II1.10. Let us consider the Hamiltonian system (111.28) with a nonlin-
earity satisfying Xp € €'((3,£3). Assume moreover that for all real z € {3, we
have

|P(2)| = 0.
Let z° = (§°,n°) € £3 be real. Then the flow . (2°) exists in €2 for all time t € R.

Proof. Let us first note that with the assumption on the nonlinearity X p, we can define
amild solution ¢/, (z°) of (I11.28) in £2 = H'(T). Moreover, in this situation, we can
show that (II1.33) holds by using the same kind of proof. Now as P > 0 and using
the fact that H (¢, (z%)) € R because z° is real, we obtain

loiz ()72 = 27 (¢l (=°) < 2H (¢ly () = 2H () < +oc.

By standard arguments, this shows the solution is global in E%. |
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Remark III.11. If the initial data is in K% and the nonlinearity acts on £2, then the
previous result shows that the solution is global in €3 and hence in ¢! := £} is the
one-dimensional case.

Note that in dimension 1, the condition that X p € €'(£3, £2) will be satisfied for
polynomials in (u, #). This is a consequence of the following:

Lemma IIL.12. There exists a constant C such that for allu and v € H'(T) we have
el gicey < € el gy 120 1y -

Proof. First, we note that if u(x) = Y, & €'%* we have that u(x) € €(T,R) with
the estimate

el oo < 12l < €2l = € Ntl

where z = (&, n) and for some constant ¢ given by the inclusions (II1.11). Hence we
immediately obtain that ||uv|| 2 =2 [lu]]
Moreover, we have

-

0y (UV) = VU + Udxv

and hence by integration, [|xuv)l| . < vl o lull ,, + Il o 0]l ;, which
yields the result. |

Example II1.13. On the one-dimensional torus, the defocusing cubic nonlinear
Schrodinger equation

i0u = —Au + AMul*u

with A > 0 has global solutions in H !(T). The nonlinearity is here
_ 1 A 4 5
Pu,u)=— [ zu(x)|"dx >0, VYuedl.

2 T 2

We conclude this section by giving another case of global existence: In dimen-
sion 1 and when the initial data is small enoughin H!(T) = €3. In the next statement,
we say that P € % has a zero of order m at the origin z = 0, with m > 1, if P
involves only monomials z; with j € 4, with r > m. In other words, the compo-
nents of order 0, 1, ..., m—1 in the decomposition of P in homogeneous polynomials
vanish.

Proposition II1.14. Let us consider the Hamiltonian system (111.28) with a polyno-
mial P € Py having a zero of order at least 3 at the origin z = 0. Then there exists
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& > 0 such that for real z° € £3 = H'(T) with HZO “ p =6 the flow @', (2°) exists in
1
02 = HY(T) for all time t € R and satisfies
VieR, oy (20)], <2e (II1.34)
1

Proof. The hypothesis on P and equation (II1.19) imply that for all z € K% with
Il < 1,

n 3 3/2
P@l= Pl max (1215) =€ Jzl}, < CTE

2

by definition of T'(z) = 2 and for some constant C. Hence we have for all
1

z € {2 with Izl < 1,
1

izl
T(2) (1 - CT(z)1/2> < H(z) < T(2) (1 n CT(z)l/Z) .

Letz(t) = (qu (z%). For all time ¢ where the flow is well defined in E% and remains of
norm smaller than 1, we can write

T @) (1-CTEe)'?) < HE) = H () < T (&) (1+¢7(9)"").

Assume that ”zo ” 2 = & Then we have T(z% < %82, and we have
1
H() =T () (1+C7()") <&

provided %8 < 1. This shows that for all time ¢ such that ||z(z)]| s =L
1

T (2(1)) (1 —CT (z(t))1/2> < ¢
Now assume that 7(z(¢)) < 2> < 1, we can write
T (z(1)) < &+ CT (z(1))** < 262,

provided C232¢ < 1. By classical arguments, this shows that for all ¢, we have
T(z(t)) < 2¢* and z(¢) is well defined in £7 for all time 7 € R and satisfies (I11.34).
|

Example II1.15. The previous theorem holds true for polynomial nonlinearities of
the form

2

for any A € R, and in particular for the cubic nonlinear Schrodinger equation. Note
that the e given by the previous proof is not very small in general (of order 1/A in the
case where 0 = 1).

1 A
P (u,ii) = —/ ——|u|*° 2 dx,
rTo+1



56 III Infinite dimensional and semi-discrete flow
6 Semi-discrete flow

Following the example in the introductory chapter, we consider now a space dis-
cretization of the previous class of semi-linear Schrodinger equations. However, we
will restrict the presentation to the cubic case. Similarly, we will only consider the
case where the dimension d = 1. Note however that the results below can be easily
extended to higher dimensions and other polynomial nonlinearities.

Let K be an integer. We define the set (see (I.8))

BK {—-P,...,P -1} if K=2P iseven, (IIL35)
| {—P,....P} if K=2P+1 isodd. '

With this set is associated the grid x, = 27a/K witha € BX made of K equidistant
points in the interval [, 7r]. Recall that the discrete Fourier transform is defined as
the mapping Fx : CX — CX such that for all a € BX,

1 . .
(?Kv)a = ? Z e—21nab/Kvb and (‘(FIEIU)a — Z eZlnab/Kvb.
beBK beBK
(I11.36)

Let us now consider the cubic nonlinear Schrodinger equation
i0u(t,x) = —Au(t,x) + Au(t, x)|Pu(t, x),  u(0,x) =u’x),

where A € R and x € T. We consider the pseudo-spectral collation method defined
as follows: Find a trigonometric polynomial

UK(@.x) = Y ™ EX@)

aeBK

such that for all b € BX, the equation

2
10, UK (t.x3) = —AUK (£, x3) + A ‘UK (t,xb)‘ UK (t.xp),
UK (0,xp) = u (x). (I1.37)

is satisfied for all time 7. For a fixed b € BK , we calculate that

2 .
\UK(t,xb)\ UKy = Y Kok mekpel@—ata),

ai,ar,as € BK

where nf = §f . In particular, we get fora € BX,

(?K (\UK ([,xb)‘z Uk (t,xb)))

1 .
- E Z Z alf(t)nfz(t) g([)elxb(ﬂl—az-i-@_a)'

be BK al,ag,a3eBK
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But for a fixed d € BX, we calculate that for even and odd K,

Zﬂibd) {1 if d:mK, m € Z,

1 idxp 1 (

— e == exp

K,EK KEK K 0 if d#£mK, meZ
(II1.38)

Hence we have

(7 (o e vEem)) =X X ook

meZay—ay+az—a=mK

Using this formula, and taking the discrete Fourier transform of the expression
(I1.37), we get the following equation for the Fourier coefficients £X (¢):

Vae BX, it =a6K+2 )" > EEnEEX. (111.39)

meZa=a,—a;+az+mkK

Note that in the last sum, we have (@, a»,a3) € (BX)? and hence as « € BX, we
verify that we cannot have |m| > 2. We recognize here a Hamiltonian PDE of the
form studied above, with a Hamiltonian of the form

HK(SJI) =754+ PK .= Z azgana‘i‘% Z §a18asNas Nay-
ae BK a)+a;—a3—as=mK
a; € BK im| <1

(IIL.40)
We thus see that the only difference with the continuous case, is that the zero momen-
tum condition is not satisfied, but is replaced by a zero momentum modulo K. This
is a typical problem of aliasing. Fortunately in the case where P is a polynomial, the
possible values for m in the equation above will always be bounded. This defines the
class of discretized polynomials below.

Of course, the local existence of the solution of equation (II1.39) is guaranteed by
the finite dimensional Cauchy—Lipschitz Theorem, but we can also view this equa-
tion as posed on a finite dimensional subspace (of dimension K) of the Banach spaces
£} or 2. The following results extend Proposition IIL.6 to the case of a polynomial
Hamiltonian of the form above. It will be used later to prove the existence of a modi-
fied energy for fully discrete splitting schemes applied to NLS.

We define the set of signed indices

8% ={j =(a.8) e BX x{x1}} c Z. (II1.41)
For r € Nand m € Z we define the following set of indices (compare (I11.14))
K = {j e (85) | M) = mK}.

We extend now the notion of polynomial given by Definition I11.3:
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Definition II1.16. Let K € N, K > 1. We say that a discrete polynomial Hamiltonian
PK ¢ f/’ka if PX is of degree k, has a zero of order at least 3 in z = 0, and if

o PK iswritten
k
Py =>" > > a}z (111.42)
5=2|m|SPjeJl{<.m
j
are bounded, i.e. satisfy

with the relation a™ = a

J
e The coefficients aT
Ve=2.....k. ¥Yim|<p. Yj=(....j0€df,. ldfI=<C.

The norm H Pk “ is defined as
k p
HPKH =2, > sup |af|. (111.43)
£=2 __pJEJZm

Echoing Definition II1.4, we define:

Definition I11.17. We say that P € § {Pka if P e f/’ka has coefficients aj such that

aj # 0 implies that j contains the same numbers of positive and negative indices,
i.e. satisfies (I11.17).

The next proposition corresponds to the extension of Proposition II1.6 for s = 0:

Proposition IIL18. Letk > 2, p e Nand K € N, K > 1 and let PX € J),gfp. Then
we have PX € €®((',C) and X px € €® (L', L"). Moreover we have the estimates

1PK(2)| < HPKH ( max ||z||Zl) (1L.44)
and
Vzel', [Xpx()l, <2k HPKH Iz, (n:lI???{k—2||Z||Zl) . (IIL45)

Moreover, for z and y in ') we have

X px() — Xpx()l, <4k [PE] ( max (1171205 ) 1 =yl

(I11.46)
Eventually, for PX € § , and 0K ey o then {(PK 0Ky c g and we

k+£ 2,p+q
have the estimate

H{PK, QK}H <2(p + )kt HPKH HQKH : (I11.47)
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Proof. As in the proof of Proposition I11.6, we denote by P; K the homogeneous com-
ponent of degree i of PX, and involving only coefficients 0f momentum mK, i.e.,

K m .
Pl,m(z): Z ajzj, i=2,...,k.
jedk,

The first inequality (II1.19) is then a consequence of the definition of the norm of
H Pk ” by using similar arguments as in the proof of Proposition III.6.

Now let j = (a,€) € BK x {£1} C Z be fixed. As for (I11.24), we have

H H > |21+ 2ji ] - (IIL.48)
jezi~!
M(j)=—€ea+mK

82]

Therefore, after summing in a and € we get
. . i—1
g =2 |PEL Szl =2 | PR T )
Jj eZi—1

|

which yields (I11.45) after summing in i = 2,..., k and m. Note that a similar esti-

mate in the Banach space £! would involve terms of order K*: the equation (II1.25) is

true only when the zero momentum condition is fulfilled.

The equations (I11.46) and (I11.47) can be proved similarly and are left to the reader.
|

Hence the collocation space discretization of a nonlinear Schrodinger equation
with polynomial nonlinearity leads to consider discrete Hamiltonian functions of the
form

HX =T1% + pX (II1.50)

where TX = Y _px a’€.1, and PX € J’K for some constants k and p, and
hence satisfying the bounds independent on K glven by the above proposition. Note
the the discretization of the cubic nonlinear Schrédinger equation described above
can be written in the previous form, with k = 4 and p = 1. Note moreover that such
a Hamiltonian leaves the space

AK = {zo = Eana) |Ea=1a=0 if a¢ BX}~CcXxcX s

invariant by the flow, and that 7 X is the restriction of 7' on the subspace #4X.

Using the previous proposition, we thus see that if the norms of the polynomi-
als PX are uniformly bounded, we can prove the existence of a mild solution to the
system (I11.50) viewed as a finite dynamical system embedded in £', for times inde-
pendent of K. In the next chapter, we will use this fact to prove the convergence of the
semi-discrete flow towards the exact flow, over finite time intervals and for smooth
solutions.
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In this chapter, we still consider semi-linear Schrodinger equations of the form
i0iu =—Au+ Q(u,u) (Iv.1)

with polynomial Hamiltonian nonlinearity Q. We prove that under the hypothesis that
the exact solution remains smooth on a finite interval, then the splitting methods are
convergent. Such a result can be found in [31] for the cubic NLS. We then extend
this result to more general splitting methods where the linear operator is smoothed in
high frequencies either with the help of an implicit integrator, or directly using more
general filter functions as in (I.11).

In Section 4, we consider the case where the equation (IV.1) is discretized in space
by a pseudo-spectral collocation method as described in the end of the previous chap-
ter. We conclude in Section 5 with the case of fully discrete systems discretized both
in space and time, and show the convergence of the fully discrete splitting method
over finite time, under the assumption that the exact solution is smooth. Though rel-
atively standard from the point of view of numerical analysis, such results for fully
discrete schemes are difficult to find in the existing literature (see however in [19] in
the case of the Gross—Pitaevskii equation, and [29] in the linear case).

1 Splitting methods and Lie derivatives

As in the previous chapter, we associate with (IV.1) an infinite dimensional Hamil-
tonian system in the variable z = (&, 1) made of the Fourier coefficients of u =
Y pezd Ea€® ¥ and it = Y, cza Nae” ¢, With the notation of the previous chap-
ter, we consider a Hamiltonian system associated with a Hamiltonian function of the
form

H(z) =T(z) + P(2).

where T(2) = Y, c 7a |a|*£an4 is the Hamiltonian associated with the Laplace op-
erator, and P € $, k > 3 is a polynomial Hamiltonian. Note that we could also
consider a quadratic Hamiltonian of the form 7'(z) = ), ¢ ya ®aana With frequen-
cies w, satisfying the bound w, < C|a|*>. This would allow us to consider a more
general splitting scheme based on a decomposition between the linear and nonlinear
parts of the Hamiltonian PDE.

The splitting methods we consider are based on the following approximation, for
a small time step t:

$H =~ 91 0 Pp (IV.2)
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known as the Lie splitting method. The higher order symmetric approximation

i ~ 97> 0 9 o i (IV.3)
is known as the Strang splitting approximation. Note that we can also consider the
same methods where we exchange the role of 7" and P. This does not affect the
results of this chapter.

As in the finite dimensional case, we define the Lie derivative as follows (for the
notations, see the previous chapter):

Definition IV.1. Let g € € (¢!, C) and H a Hamiltonian; we define the Lie deriva-
tive £ g [g] by the formula

g . 0H dg  0H 0g
Lulgl= ) Xu)jz— =1 T a o T o = gl
H Z H)j aZJ aEXZ:d 8Ea aﬂa aT]a aga

jeZ

LetY e €®WUL LY withY = (Y;); ez, then we set
s> s J7]
(LulYD; = {H,Yj}, Jj €Z.

As in the finite dimensional case we have, for two Hamiltonians functions H
and G

[£u. Ll =Lypofc—LcoLy = L{u,G)-

The following result will be used to define the asymptotic expansion of the solution
of (IV.1), provided it fulfills some regularity assumptions.

Proposition IV.2. Let s, s’ > 0 with s’ > s. Assume that Y € €L}, £1). Then

s/ s

LrlY]€€® by ,.4y) and £p[Y]€ €™ (L. Ly).

s/

Proof. Recall that P € £ and assume that Y = (Y;);ez € €'(£},.£}). For all
z €L}, wehave VY (z) € €(¢},.£}), and the Lie derivative can be written

Lp[Y](z) = VY(2) - Xp(2).

Hence the fact that X p(z) € £}, for z € £}, (see (I11.20)) shows that £ p[Y](z) € {;.
Now for the Hamiltonian 7, to obtain that X7(z) € £},, we need that z € £}, spasT
acts as the multiplication by |a|? in each component.

The result follows by a similar argument repeated on the successive derivatives of
Lp[Y]and £7[Y]. |

Let us consider the flow go’H (z) which is defined as the solution in £ of the equa-
tion

20 =)+ [ 60 o X (@) do (ava4)
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It is easy to verify that if z(r) € £! 4, forz € [0, £,], then z(¢) satisfies the equation
Z(0) = Xr(z0) + Xp () in L,

for t € [0,14]. Now if z() € £! for all s > 0, we can consider the Taylor expansion

around ¢ = 0 as in the finite dimensional situation:

t*F dket, (z)

k! k '
k>0 d t=0

o () =
and we can write at least formally

k
t
ol = Z F:C’;{[Id] =exp (L) [1d].
k>0
With these calculations and the previous proposition, we get the following (compare
Proposition IL.5).

Proposition IV.3. Let M be fixed, and let z(t) = 9051 (2) be a mild solution of (IV.4)

in Eé. Assume that z € BISVI+ N2 Then there exists to such that for all N € N, there
exists a constant C such that for all t € [0, ty], we have
N tk
k N +1
V(@)= Y L@, < CveV
k=0

Proof. Recall that By, is defined in (II1.32) as the ball of radius M in ¢}, By assump-
tion, and using the results of the previous chapter, there exists 7y such that for all
t €[0,1)], ¢4 (z) € By Aj; 2N+2 Now using Proposition IV.2, we have by induction
that

Vk >0, £k ee® (!, ..

The result is then obtained as in the finite dimensional case, using a Taylor expansion.
|

The previous proposition shows that if the solution is smooth enough, the repre-
sentation of the flow as an exponential makes sense. If such an assumption is relevant
over a small time interval for smooth initial value, this is in general not fair over long
time intervals.

2 Convergence of the Lie splitting methods

Let us begin with the following

Lemma IV.4. Let s > 0, and M be given. Then there exist constants L and ty such
that for all T < 7o, and all z and y in Bj,, we have

|

05 0 9p(2) = pF o 9p My < eIz =yl - (IV.5)
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Proof. For y € By, and ¢ € (0, 7), we have

t
Pp(y) =y +/ Xp (¢3(y))do.
0

As P is a polynomial of degree k, equation (I11.20) of Proposition II1.6 shows that
for y € B},

t
leb ()], < M+ 2Kk = 1)* [P /0 AT (nzgnaxk_ziw‘;a(y)\@)da
Hence as long as H(p% (») Hé < 2M for o € (0,t) we have the estimate

leb 0y = M +2Mk(k = 1)* || P|| max (1, (2M)k—2) . (IV.6)

This shows that for t < 1y where 7¢ is small enough (depending on M, k and s), we
have 93 (y) € Bj),.
As @7 is a linear isometry, we have

R AGRIEIHA] RS DAGRIA] HE

Hence using Proposition I11.6 and the fact that ¢% (z) and % (y) are bounded by 2M
in £!, we obtain

t
lep )= 0b @l = Iy =zl +L [ 630 =5 o

where L is the Lipschitz constant of P over Bj,, given by Proposition IIL6, see
equation (II1.21). We conclude by using the Gronwall Lemma. [ |

We now give the following local error result:

Proposition IV.5. Let s > 0, and assume that z € B}s‘;—z for some M > 0. Then
there exist Ty and a constant C such that for all T < 1), we have

leh(2) = oF 09 ()] 4 < €72 (IV.7)

Before proving this result, let us show how the argument used in the finite di-
mensional case studied in Chapter II can easily be adapted to the present situation,
provided the a priori regularity of z is K; 44 andnot £ ; ., as stated in the result above.

Indeed, under the hypothesis z € E; 44> then forall o < v < 75 where 19 is
sufficiently small, we can assume that % (z) and ¢$(z) are in B ;,;4. Using Propo-

sition IV.3, we can write

o (2) =z +t€y[ld](z) + /0 (t — o)éﬁ%q[ld] (90}’1 (z)) do

=z 4 7 (L[] + Zp[d]) 2) + O (z7) .
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where the rest is bounded by Ct? in £! because ¢4 (2) € Ls 4 for all . Similarly,
we have

or(z) =z + tLr[ld](z) + /0 (t — o)éﬁzT[Id] (go% (z)) do,

and hence
05 0 0b(2) = ¢5(2) + T2r[1d] (95 () + O (72).
Now we have
0p(2) = z + tLpld(2) + O5 (7).,

and by definition of the Lie derivative
Lr(1d] ((p} (Z)) = Lr[ld](z) + / LpLr(ld] (QD‘I’J (Z)) do.
0
Hence

oF 0 9p(2) = z + T (Lrld](2) + Lp[d](2) + Os (¢2),

which proves the result, but under the assumption that z € £ ; 4 4- The goal is now to
show that the result still holds when z € £ ; 4, only.

Proof of Proposition IV.5. As z € BISM“LZ, and as go}, 1s well defined on E; 1o the
same argument as before based on the estimate (IV.6) shows that there exists 7y such
that for all z € Blsl,;r2 and all 0 < 79, we have ¢$(z) € B;A“,;Z. As ¢ is an isometry,
the same holds for ¢ o ¢} (z) with T < 7.

Let us start with the formula defining the mild solution ¢ (2):

T
V) = i@+ [ e Xe ()

By definition of the flow ¢}, (z), we have

T

b =2+ [ Xe (b
As ¢ is linear, we thus have
T
v ovh() = i)+ [ eRXr (dp)ar

We define

di(z) = ¢ (2) — @1 0 9p(2).
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As @1 is inversible, the previous calculations show that

ortde(z) = /0 o7 Xp (04(2) — Xp (¢ (2)) dr
= [Moit oo = Xp our!) (o) a

+/O Xp (pr' ¢ (2) — Xp (¢p(2)) dt
=: rrl(z) + rrz(z).

As ¢! (z) and ¢’ () remain in the ball B5,,, we have using Proposition IIL.6 of the
previous chapter,

| Xp (70l () = Xp (05 (D) ;1 = C o7’ ¢t () — @b @) 1 -
for some constant C depending on M. But we have
or' 01 (2) = 95 (2) = o1 o (¢ly — 979p) (2) = 97" di (2).

As ¢k is an isometry, we get

T
2, =c [ 1de, o
N 0 N
Let us consider now y € £ ; 4> and define

f@6,9) =97 o Xp(y) = Xp o' ().
We have f(0,y) =0, and

a
V1.9) = 5 0 Xro Xp() + 21101 (6 (). (VS

Note that we calculate

U 0.9) = —X7 0 Xp(y) + 7L p[d](y)

ot
=—LpEr[ld](y) + LrLp[d](y)
= Lyr p3[1d](y),

which means that the error term is driven by the commutator between H and P.
Now it is clear that we have

X < .
IXr 0l < Il
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Hence using (II1.20) we get that for all y € B) 1[,; 2and all ¢ € [0, 7], we have

af
HW p=C (||y||£§+2) ,

for some constant C depending on M. But we have

()

| B T B T t %
rl) = /0 £ (1.0 () dt = /O /O L (0.44(2)) dod.

Hence we get for all z € B};" 2,
el <.

for some constant ¢ depending on M . Gathering the estimates on r!(z) and r2(z), we
thus get for all T < 7,

T
4y, = e +C [ a1, o
S 0 S

and the Gronwall Lemma then yields the result. |

Proposition 1V.6. Let z° ¢ K;+2, M > 0 and t. > 0. Assume that for all t €
(0.14), @Yy (2%) is well defined in Ei_,_z and remains in the ball BJS\;‘ 2. Then there
exist constants C and 1o such that for 0 < v < 7o, if z" is the sequence defined by
induction:

Zn+1 — (,0;‘ 090;)(271), n> O,
then we have

Vi=nt <t., |¢h")-2" Hel <Crt.

Proof. Setting z(t) = ¢l (z%) and t, = nt, we have for n > 0,

|2 @) =274y < 0k ) = 0F 0 0h )],
+ o7 o 0p (tn)) =97 0 0p ()] 1 -
By assumption, for all  such thatnt <z, z(¢,) is in a ball Blsl,;L 2. Hence Proposition
I'V.5 shows that

|0k 2 (@) = 9F 0 0 (z (@), = C2?
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for some constant C depending only on M and s. Using (IV.5), we see that there
exists a constant L such that

[¢F 0 9p (2 (@) = 0F 0 0p (2] < €7 Iz (ta) = 2"

as long as z"" € By, (while z(tn) € BSJrz C B3y
Using the fact that z(to) = 70, then as long asnt <tyandz" € BZSM, we have

Iz () = 2"l = Cnel™'t? < (Ctyee™™) 1.

This shows that for 7y sufficiently small, we have z" € B3, —and hence the previous
estimate — for nt < f.. This concludes the proof. [ |

Remark IV.7. A similar result holds for the Strang splitting method (IV.3). Indeed
we can show the local error estimate

2 2
H() — 7" 09 0]

when z remains bounded in B]s\,[+4. This shows that the Strang splitting is of (global)
order 2 for smooth functions. We do not give the details here.

3 Filtered splitting schemes

The standard Lie—Trotter splitting methods for PDEs associated with the Hamiltonian
T + P consists in replacing the flow generated by H = T + P during the time t
(the small time step) by the composition of the flows generated by 7" and P during
the same time, namely

propp =exp(tLp)oexp(tLr)[Id].

As explained in the introduction, it turns out that it is convenient to consider more
general splitting methods that induce smoothing effects to the high frequencies of the
linear part. Thus we replace the linear operator t£7 by a more general Hamiltonian
operator associated with a Hamiltonian Ay.

More precisely let §(x) be a real function, possibly depending on the step size ¢ and
satisfying B(0) = 0 and B(x) =~ x for small x. We define the diagonal operator X 4,
by the relation

Vji=(a.8) eZ (Xa(2); =8B (tlal’)z, aVv.9)
In other words, the system Z = X 4,(z) can be written fora € 74 (compare (I11.28))

éa =—ip (T|a|2) a, and 1) =ip (T|a|2) Na>
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and for real z = (£, £) associated with a function u(x) = > sezd Ea €9, we can
rewrite this equation in shorter form,

idiu = B(—tA)u.
Fora € 74, we set A, = B(r|a|?). The Hamiltonian associated with X 4, is given by

Ao(z) = o) = D Aabaa- (IV.10)

aczd

In the following, we consider the splitting methods
¢powy, and @y 0¢h. (V.11

where ¢} is the exact flow associated with the Hamiltonian P, and where <p1140 is
defined by the relation

Vj=(ad)eZ, ((pilo(z))j =exp(—idiqy) z;

which is the flow of the Hamiltonian Ay given by (IV.10) at time 1 (recall that the
step size 7 is included in the definition of the eigenvalues A, of A;). Note that 901140
can also be viewed as the time t flow of the equation

i0;u = %ﬂ(—rA)u, (Iv.12)

that can be viewed as a regularization of the linear free Schrodinger equation i d,u =
—Au. Hence ¢ 20 is a regularization of the exact flow ¢7.
In these notes, we will mainly consider two cases:

(i) The case where B(x) = x which corresponds to the case 49 = t T, i.e. ¢ ilo =
@7 and the spitting method (IV.11) coincides with (IV.2).

(ii) The case where B(x) = 2arctan(x/2) corresponding to the implicit-explicit
integrator introduced in the introduction (see also [1], [35]).
The second case corresponds to the approximation of the system

£, = —ila|?t,, and 7, =ilal*pe. a €29,

by the midpoint rule. Starting from a given point (£2, 79), the midpoint rule applied
to the first equation of the previous system is defined by the implicit relation

$+$)

51 = 82— ilap (5

Owing to the classical relation
+ix

1
Vx € R, — = exp (2i arctan(x)),
1 —ix




3 Filtered splitting schemes 69

we can write

1—it|al?/2
1 0 : 2 0
=\—F= = exp (—2i arctan 2 .
b1 = (T ) & = exp (2 arctan(elal/2)
We easily see that a similar relation holds for 1}, and we eventually observe that we
can interpret the numerical approximation (£}, n}) as the exact flow at time ¢ = 1, of
the Hamiltonian A defined by (see formula (IV.10))

Ao(2) = Ao(§.m) = ) 2arctan(c|al’/2) Sana. (IV.13)

aczd

Remarkably, the previous calculations show the following: We can do backward error
analysis for the midpoint rule applied to the free-linear Schrédinger equation, which
can be interpreted at the flow at time 7 of the modified system (IV.12) with B(x) =
2 arctan(x/2).

Finally, we allow the possibility of making a cut-off in high frequencies, that is to
consider

B) = xlycq(x). or B(x) = 2arctan(x/2)Ly < (x)

where ¢y is a given number (the CFL number). In the case of a fully discrete system,
this number will be naturally determined by the highest mode in the space discretized
system, but we will also consider such a high frequency cut-off in the abstract formu-
lation. This will make possible the construction of the modified energy of Chapter VI
in an abstract framework.

To analyze the convergence of the filtered splitting methods (IV.11), we only have
to evaluate the difference between ¢, and <p1140, and combine it with the estimate of
the previous section. For the implicit-explicit integrator based on the midpoint rule,
we have the following result:

Proposition IV.8. Let s > 0, and assume that z € B]s\,;r4 for some M > 0. Let Ay
be defined by (IV.13) the quadratic Hamiltonian associated with the filter function
B(x) = 2arctan(x/2). Then there exist 1y and a constant C such that for all T < 7y,
we have

|0 (2) =94y 0 05 ()] < C* (IV.14)

Proof. For all x € R, we have

2

Ty
arctan(x) — x = — dy.
2 /0 T+

Fora € 74, this yields

2 tlal?/2 2
2 arctan tlal —tla)? = —2/ y—dy.
2 0 1 +—y2
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Let y € [0,2]; it is clear that for all y € R,

Y
< vy
T+y2 =7
Hence we have for all a € Z4 s
7:|a|2 tlal?/2
‘2 arctan( > ) —tla)?| < 2/ yrdy < Ct7*a| T2, Iv.15)
0

for some constant C independent of a. Hence, owing to the fact that |e'* — | <
|x — y| for real x and y,

|exp (—ir|a|2) —exp (—2i arctan(r|a|2/2))| < CoV a7+,
Hence we get for all z,

_ ol y+1
H(p}(z) gvo(z) “6} <Crt ||z||€i+2y+2. (IV.16)

Combining the results of the previous Section, we get: There exists 7y such that for
T <1, 9% (2) € BS;;*. Using thus (IV.16) with y = 1, we obtain

|0 0 0b(2) =0, 0 0p (D), = C*.

The equation (IV.7) then yields the result. [ |

In [15], different other choices for the filter function B(x) are studied. In particular
the cases where

x4+ x2/tY
1+ x/tv + x2/7%

B(x) = t¥arctan (t"x), and PB(x) =

for 1 > v > 0. These functions induce a slightly stronger smoothing in the high
frequencies which helps the construction of the modified energy made in Chapter VI,
but requires more regularity of the initial solution to obtain convergence results over
finite time. We refer to [15] for an extensive discussion of these generalized cases. In
the rest of this book, we will only focus on the two cases (i) and (ii) described above.

Remark IV.9. The previous proposition, in combination with the proof of Proposi-
tion IV.6, show the convergence of the implicit-explicit splitting scheme associated
with the filter function 8(x) = 2 arctan(x/2). Note that the smoothness required for
the exact solution is higher than for the exact splitting scheme: s + 4 for the implicit-
explicit integrator instead of s 4 2 for the exact splitting, to obtain the convergence
inl.
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4 Space approximation

With the same kind of technics as the ones used in Section 2, we would like to prove
now the convergence of the semi-discrete flow — as defined in the last section of
Chapter III — towards the exact solution go’H (z). As for the splitting methods studied
above, we need some smoothness assumption for the exact solution to obtain the
convergence estimates. As in the end of Chapter I1I, we only consider the case where
the dimension d = 1.

Let P € Py for some k > 3, and let PKa family of discrete Hamiltonian in the
space {Pk{{p (see Definition I11.16). Here p is a fixed integer. We recall that for a fixed

K, PK acts on the finite dimensional space AKX defined in (II1.51) and made of
sequences z; with j € BX (see (I11.41)) the finite set of indices (a, ) € BK x {£1}
where BX depends on the parity of K, and is defined in (IIL.35). Of course we have
AKX C £} for all 5. We make the following assumptions:

Hypothesis IV.10. There exists a constant Cy such that
VK €N, HPKH <G| P| (IV.17)
where the first norm is defined in (111.43) and the second is the norm (111.16). More-

over, if we denote by

k

k
P(Z)=Z Z ajzj, and PK(Z)=Z Z Z aizj (IV.18)

(=2 jezt t=2m|<p je(BK)
M(@G)=0 M) =mK

the expressions of P(z) and PX(z) in terms of their coefficients (see (111.42)), then
we have

Ve=2,.. . .k je(B85) = d)=a. (IV.19)

In other words, the coefficients of PX corresponding to the indices with zero momen-
tum coincide with the coefficients of P.

Example IV.11. In the case of the semi-discrete equation (I11.39) obtained after space
discretization of the cubic nonlinear Schrédinger equation, and with the definition of
the norm, the previous estimate (IV.17) holds with the constant Cy = 3 in dimension
1. We also easily see that the second condition (IV.19) is satisfied.

Lemma IV.12. Assume that the polynomial P and the family PX, K € N satisfy the
hypothesis V.10, and let s > 0. Assume that ||z || o = M, then we have

IXp(z) = Xpx(2)], = CK™, (IV.20)

where the constant C only depends on M, k, p and s.
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Proof. Let PZKm denote the component of degree £ associated with the index m # 0
in the decomposition (IV.18). We thus can write

P(z) - PX(2) = 0K (2) - 0% (o)

k k
=Y > ajzj—Yy. Y PE. (IV.21)
£=2jezt\(BK) t=2Im|<p
M(j)=0 m#0

Using the same calculation as for equation (I11.48) we have for j = (a,€) € 8%,

’

K
EEHPZ,mH E : |Zj1"'zjz-1
j E(BK)Z—I
M(j)=—€ea+mK

but now in the decomposition, we have m # 0 and hence by definition of BX, we
have | —ae + mK| > K /2. Thus we easily see that there is always an index j; such
that | j; | > %. The previous equation thus yields

BPZI,(m K .8 . s
el L B D e pr R T
/ j (@K1 -
M(j)=—€ea+mK
S 1 B DR VL AR VL
je(BrBK)Z—l

M(j)=—€ea+mK

Therefore, after summing in a and € we get (compare (I11.49))

%2, @)

o < (4€)S+IK—S

K -1
Pﬁ,m H ”Z”Z§ ’

and this shows with the notation (IV.21) thatHXQZK (2) ) , = CK=* under the as-
sumption z € B3/, and with a constant C dependingon £, p, s and M.

Considering now QIK (z), we observe that for a multi-index j € Z\(BX)¢, there
exists at least one index j; such that |j;| > K/4. We conclude as before that

H XQIK (2) )el < CK™*, which finishes the proof. [ |

Let us now consider an initial data function u°(x) = Y, £2¢79*. We denote by
£K0 = (£K) ,cpx € CX the complex number defined by

£K0 = 771 o diag (uo(xb)) ,
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which represent the initial data after discrete Fourier transform. Using the aliasing
formula (I11.38), we have

1 .
Ef,o — E Z e—labeO(xb)

beBK
1 e
=< 2 2T =Y f ke (IV.22)
beBKcelZ meZ

Denoting by X0 the vector zK:0 = (£K0,£K:0) e CK x CX, the equation above
shows that zK:0 e ¢! satisfies “ZK’O “zl < Hzo “131 where 20 = (£°,£%) € C% x C% is

associated with the function u°.

Lemma IV.13. With the previous notation, then if z° € £} we have

|20~ %], < ek~ 2] v23)

Proof. Recall that Sf ¥ is a finite dimensional vector with indices in BX. We have

|2 =% =2 Y 2 3 Y Il
a¢ BK acBKmeZ
m+#0

In the first term of the right-hand side of the previous equation, we have for the first
|a| > |K/2 — 1| and hence there exists a constant C such that

C
Y gl == X lallgdl = CK™ |2,

a¢ BK a¢ BK

For the second term, we observe that the indices @ + m K with |m| > 1 and a € BXK
satisfy |a + mK| > K /2 and we conclude with a similar estimate. |

We are now ready to prove the following

Proposition IV.14. Let s and M be fixed, and z° € L.. Assume that z(t) = oy (2%
is well defined for t € (0,t«) and remains in a ball Bj,. Let K0 the discrete initial
data defined by (IV.22), and let zK (1) := ¢;{K(2K’O) be the solution of the (finite
dimensional) Hamiltonian system associated with the discrete Hamiltonian HX =
TK + PK where TX =Y, . p& |a|*€ana and where the family PX, K € N satisfies
the Hypothesis IV.10. Then there exist constants C and K depending on M, s and t,
such that for K > K,

Vi € (0,1,), Hz(t) —zK(z))

o < CK™. (IV.24)
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Proof. By definition, the exact flow z (1) = ¢/, (z) satisfies, for t € (0, 1),

z(t) = ¢k (2°) + /0 o5 %0 Xp (z(0)) do.

Using the fact that for z € AX (see (II1.51)) we have TX(z) = T(z), the flow 90qu
satisfies

K@) = ¢ (250 + / 957 0 Xpx (2% (0)) do.
0

Hence we obtain, using the fact that (p’T is a linear isometry of £,

R R T /0 IXp(:(0) ~ Xpr (@) do

t
+/
0

Now using (I11.46), we see that as long as ZK(t) € BSM the ball of radius 2M in {1,
then we can write with (IV.20) and the previous lemma

Hz(t) —zK(z))

Xp(z(0)) — Xpx(z5(0))

)131 do.

Vi € (0,10), Hz(r) — 2K (p)

)Zl <C K™ + /Ot G Hz(o) —zK(o)) o

where C; depends on t, and M and C; on H Pk H which is bounded independently
of K. Using Gronwall’s lemma, we get

Vi € (0, 1), Hz(t) —zK(z))

o S CIK P eCn

and we conclude using the same bootstrap argument as before: As long as zX(¢) €
BgM the previous estimate holds, and hence if K > K is sufficiently large, we have
HZK(I)HK1 <2M fort € (0, ). This shows (IV.24). |

S Fully discrete splitting method

We consider now a full discretization of a Hamiltonian PDE associated with a Hamil-
tonian of the form H(z) = T(z) + P(z) as studied before. The numerical solution
is obtained using a time discretization of the semi-discrete flow (qu « by a splitting

method, where HX = TX 4 PK is a discrete approximation of H, as in the previous
section.

We prove the convergence in £! of the fully discrete numerical solution towards
the exact solution, provided the exact solution remains bounded in £ ; with s > 2 (i.e.
at least 2 derivatives in the Wiener algebra). The goal will be here to obtain explicit
bounds in term of the discretization parameter T and K.
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Lemma IV.15. Let z° € Q-',-z» M > 0 and ts > 0. Assume that for all t € (0, ty),

(pfq (2°) is well defined in E; 4 and remains in the ball B]s\,[+2. Then there exist con-
stants C and ty such that for t < 1o, if z" is the sequence defined by

" =gl oph(z"), n=0,... t/1, (IV.25)
then we have

Vit < iy, ||Z”||1Zé <2M.

Proof. This is a straightforward Corollary of Proposition I'V.6. |

Lemma IV.16. Letk € N, s > 0, P € P and PX, K > 0 a collection of Hamil-
tonians satisfying Hypothesis IV.10. Let M > 0 and z € {; such that z € B},. Then
there exists constants C and vy such that for T < 1y we have

l¢5(2) — 9ok (2], < CTK~™.

Proof. For t € (0,7), we set z(t) = ¢%(z) and zK(1) = ¢k (2). We have by
definition

z(t) =z +/ Xp(z(0))do
0

and a similar formula for zX (). Hence we can write

o=

< /Ot [Xp(2(0)) = Xpx (z(0))l, do

t
+/
0

Now we can assume that 7o is small enough to have z(0) € B3, for o € (0, 10).
Using (IV.20), this shows that

IXp(z(0)) = Xpx(z(0))], = CK™*

EOEER0! Xp((0) = Xpx (K ()

)41 do

Xpr((0) = Xpr (K ()]

o do. (IV.26)

with a constant C uniform in o € (0, 7).

To deal with the term (IV.26), we observe that the relation (I11.46) ensures that X px
is Lipschitz on bounded sets of £! with a constant independent of K. This implies
that we can assume that zX (o) € Bgl for o € (0, 19), and that there exists a constant
L such that for all 7 € (0, 7),

Hz(l) —ZK(I)) o <CtK™ + /Ot L HZ(U) —ZK(O’))

o do.

This shows the result. [ ]
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Theorem IV.17. Let k € N, s > 0, P € P, and PX, K > 0 a collection of
Hamiltonians satisfying Hypothesis 1V.10.

Let 20 € K;_,_Z, M > 0 and t, > 0. Assume that for all t € (0,14), % (2°) is well
defined in ¢ ; 12 and remains in the ball B;j 2. Then there exist constants C , Ko and
1o such that for all T < vy and K > K, the sequence zKn defined by induction:

ZKn+l — 1K OPpx (ZK’”) , n=0,...,1/1,
with initial value zX° defined as in (IV.22) satisfies

Vit =nt < Iy, Hz(t)—zK’” <C((+K™).

Al

Proof. Let z" be the sequence defined by (IV.25). Using Lemma IV.15, we have z" €
BS,, foralln < t,/7.

Kn+1 _ T

As T leaves invariant the space AX, we have that for all n, z o1 ©
Pk (zKm), while 2" T! = @I 0 9% (z"). Hence we calculate that
‘ - ZK’n+1 ’41 = HQDE)(Zn) - QDFJK(ZKJ’) 0
< Jep ) = ehx 5+ |ehr M =0 CEM 4

Using Lemma IV.16 the first term in this equation is bounded by CtK .
To deal with the second term, we observe that as long as HZK n H . < 2M, we have

where L is the Lipschitz constant of PX over the ball of radius 2M in £!. Note that
L is actually independent of K using (II1.46).
Hence as long as HZK’” Hzl < 2M we can write

K L K
9px (") —@p )|y S e 2" =20,

Zn+1 _ZK,n+1) . < CtK™$ +eLr P _ZK,n .-
By induction we obtain
o ZK,n . < C[*eLt*(K—S + HZO _ ZK,O) 51) < C*K_S

where C, depends on #, C and L. For K > K sufficiently large, this shows that the
previous relation holds for nt < t.. We conclude by gathering this estimate with the
result of Proposition I'V.6. |



V Modified energy in the linear case

In this chapter, we consider the linear Schrodinger equation
i0u(t,x) = —Au(t,x) + V(x)u(t,x), u0,x)=u’(x), (V.1)

set on the d-dimensional torus T¢ , with initial condition #° and smooth potential
function V(x) € R. We consider splitting methods induced by the natural decom-
position between the kinetic energy represented by the Laplace operator —A and the
potential energy associated with V'(x). Such schemes are convergent in the sense of
the previous chapter: they yield convergent approximations over finite time intervals
if the exact solution is smooth. We will not give the details here, as the analysis is
similar to the one performed in Chapter IV, but we refer to [29] for a complete anal-
ysis.

In this chapter, we prove backward error analysis results in the sense of Chapter II:
we construct a modified energy for the numerical scheme and prove that the numerical
flow can be interpreted as the exact flow of this modified energy. Such a result holds
true without any further assumption in the case of implicit-explicit integrators where
the solution of the free Schrodinger equation is approximated by the midpoint rule.
For the classical splitting scheme, the existence of a modified energy relies on the use
of a CFL condition. The presentation here roughly follows the lines of [12].

We then consider the case of fully discrete splitting schemes and show the ex-
istence of a modified energy under a CFL condition. Using the preservation of this
modified energy, we then give some long time control of the regularity of the numer-
ical solution.

1 Operators, flow and splitting methods

In this section, we would like to introduce a specific framework to perform the anal-
ysis of the linear case. In contrast to the nonlinear case, the Hamiltonian functions
associated with linear equations are always quadratic in (u,u). But as the poten-
tial depends on x, the zero momentum condition is not satisfied. To deal with these
quadratic Hamiltonians and the associated operators, we introduce here some opera-
tor spaces in which we will be able to construct the modified energy.

1.1 Operators. In the linear situation, the Hamiltonian function associated with the
previous equation is quadratic in (u,u#) : The Hamiltonian function H = T + P is
written

Hu.i) = (2%)‘1 /T V)2 + V) ()] dx.
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As in the previous chapters, we decompose v and u in Fourier series with the notation

u(x) = Z £,'% and a(x) = Z Na €197,

aezd aezd

Then if V(x) = Y, cya Va €', we have

Hu,@)= Y lalana+ Y. Vakala

aezd aj—ax;+az;=0
= Y laP&na+ Y. Vasbolla:
aezd abezd
where we recall that |a|?> = (a')2 +---+ (a%)*ifa = (a',...,a%) € Z¢. In Fourier

variables, the linear equation (V.1) can be written using the formalism of the previous
chapters

oH
g

iba = laPea+ Y Vaosbp = ——(E ).

bezd

We observe here that in the equation above, the term depending on the potential
does not satisfy the zero momentum condition as in the nonlinear case (see (II1.14)).
Hence in our framework, we cannot see the linear situation as a particular case of
the nonlinear PDEs studied above, where the nonlinearity does not depend on Xx.
However, if V' is smooth, the term V,,_; decays with respect to the momentum a — b.
A similar property holds for nonlinear Hamiltonians depending smoothly on x. Note
that we could have considered a very general situation encompassing both the linear
and nonlinear cases, but this would have led to many more technical difficulties (see
Proposition III.6 where only the zero momentum case is studied).

To measure the decay of the operators with respect to the diagonal level |b — a|,
we introduce the following operator norm:

Definition V.1. An operator A is an element A = (Aup) 4 peya acting as a linear

) . d
map in the Fourier space C*" . For o > 1 we define the norm

4], = Sull))|Aab| (I +la—>]%).
a,

We say that A is symmetric if Agp = Apa, and we write
Lo ={A = (Aap)gpega symmetric [[|A]  <ooj.

With a real function W(x) we associate the operator W = (Wyp), peza With
components W,;, = W,_; where W, denotes the Fourier coefficient of W associated
with a € Z¢. Thus the operator (W) a.beza acting in the Fourier space corresponds
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to multiplication by W and we see that if the function W belongs to the Sobolev
space H® for some s > 0, then the operator W € £;. Note moreover that with this
identification, ||W||a < oo with o > d implies that ||W||Loo < 00.

Let A € £, be a (symmetric) operator. Then we set

WAl = Y & Aaply € R.

a,bezd
We thus see that the Hamiltonian energy H (u, 1) can be written
Hu,u) = (ul — A —V]u).
Finally, for two operators A and B, we set
ad4(B) = AB — BA,
where the product of two operators is defined by the formula

VYa,beZ% (AB)a = Z AgeBep.

cezd

Lemma V.2. Assume that o« > d. There exists a constant Cy, such that for all opera-
tors A and B,

IAB], < Co |41l IIBI,, -
Proof. We have fora, b € 74,

[(AB)ap| (1 +la —bI%) < (14 |a—b|*) Y |Aacl|Bes|

cezd

14 |a— b

<Al [IB .

<14 1B, 2. G ema T e=5®
cezd

As the function x — x% is convex for x > 0, we have
l+ja—b*<14+(a—c|+lc=b)* <2 ' +]a—c|*+1+|c—b|Y.

Hence we have

1 1
AB) (1 —b|%) <2*7'||A4|| |IB
|(AB)ap|(1 + |a —b|%) = 1All, 181, XZ:d(1+|c—b|“+l+|a—cl°‘)
CcE

and this shows the result, the condition & > d ensuring the convergence of the series.
|
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Lemma V.3. Let « > d. There exists a constant My such that for all symmetric
operators B and for all u € L?, we have

2
[(u|Blu)| = Me || BIl , llull -
Proof. We have

|(u|Blu)| <) |Bap||éal |60l

a,b

1
<1Bll, > g =g el

a,b

1 2

<|BIl, > m@ﬂ ,
a,b

after using the formula [£,|§5| < 5(164|* + |£?). This yields the result. [

1.2 Linear flow. When VV = 0, we can define the solution of the free Schrodinger
equation as the flow 7. of the previous chapter. Here we denote this flow as exp(izA)
defined in Fourier series by the formula

Va e Z9, £,(t) = exp(—it|a]*)&4(0)

ifu(t) = Y epa Ea(t)e'®* = exp(it A)u(0). Equipped with the previous lemmas,
we can prove the existence and uniqueness of global mild solutions to the linear
equation (V.1).

Theorem V.4. Assume that V € £, with o > d, and assume that u® € L*. Then
there exists a unique solution u(t, x) in L? satisfying for all t € R,
t
u(t, x) = e u’(x) + / DAY (x)u(o, x) do.

0
Proof. The argument is the same as in the proof of Theorem III.7. The key here is that
the mapping

u(x) = V(x)u(x)

is globally Lipschitz from L? to itself, which is a consequence of the fact that for
oa>d,V eL>®. [ ]

In the following, we denote this solution by

u(t,x) = exp(it(A —V)u'(x).
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1.3 Splitting methods. Note that as V' is real, the solution of the potential equation
i0u(t,x) = V(x)u(t,x), u,x)=u’x),
is directly given by the formula
Vx e T, u(t,x) = exp(—itV(x)u’(x).

The splitting methods studied in the previous chapter can be written, for a small time
step T > 0,

exp(iT(A—V)) = exp(—itV) exp(—ido) = ¢}, 0 @y, . (V.2)

where Ay = B(—tA) is the operator associated with a filter function 8 (see (IV.9)
and (IV.11)). In terms of Fourier coefficients, we have for all a € Z4, Eé =
exp(—iB(z|al*))&0. As in the previous chapter we will mainly consider the cases
where

B(x) = 2arctan(x/D)Ly<q, and A(x) = xlizq,

where ¢y is a given CFL number (possibly infinite).

Note that we have Ay € £, for all @ > 0 without restriction on ¢, in the case
of the implicit-explicit integrator, and as soon as ¢y < oo in the case of the classical
splitting.

2 Formal series

Following the principle of backward error analysis, we try to find an operator Z (1)
in some £, space such that

exp(—itV)exp(—iAy) = exp(—iZ(1)).

To do this, the standard method inspired by the finite dimensional case consists in
expanding this expression in powers of t and determining Z(t) by solving a differ-
ential equation obtained by the use of BCH-like formulas (see (II.19)). However the
successive derivatives of 49 = —p(tA) with respect to t yield unbounded operators,
which makes such an equation ill-posed on &£,,.

To remedy this difficulty, the strategy is the following: we consider the operator A4
as fixed, and we search for a function t — Z () taking values in some £,, space, such
that Z(0) = Ap and

vVt €[0,t], exp(—itV)exp(—idy) = exp(—iZ(t)). (V.3)

If such an operator can be found, then setting # = 7 in the previous equation will
yield the result.
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Taking the derivative of the expression (V.3) with respect to ¢, we obtain using
(I1.15),

exp (ad—_; —1\ dZ@
—iVexp(—itV)exp(—idy) = —i p( iZ(t)) (1)
ad—iz() dr

:| exp(—iZ(1)).
Hence using (I1.17), Z(t) has to satisfy the differential equation
By
Z') =Y F(—1)kadjfz(,)(V). (V.4)

k>0

Recall that here, the By are the Bernoulli numbers defined by the relation (I1.16).
We define the formal series
Z@) =Y 1z,

£>0
where
Zy:= Ao =—B(r4)
is the diagonal operator with coefficients
Aa = (A0)aa = B(zlal?), (V.5)

and where Z, £ > 1, are unknown operators.
Plugging this expression into (V.4) we find

k
_ By .
Yotz = |- > ttadg, | (V)
£>1 k>0 £>0
By .
=y 'y k—!(—z)k Y. adg, ---adg, (V).
>0 k>0 b+t =L

Identifying the coefficients in the formal series in powers of ¢, we find the induction
formula:

B .
YOz (€ DZe =) DF YT adg,, eadz, (V). (V)
k>0 b+l =4

Note that we easily show by induction that if they are defined, then for all £, Z; is
symmetric. For £ = 1, this equation yields

B
Zy= ) o CFadf (). (V.7)
k>0

Note that the main difference with the finite dimensional situation is that the “first”
term in the expansion is given by an infinite series and that it depends on the small
parameter t through the operator Zy = Ay. The key to controlling this term is to
estimate the norm of the operator ady4, .
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3 Analytic estimates

Lemma V.5. Let Ay be the diagonal operator with eigenvalues A, = B(t|a|?), and
assume that
VaeZ 0<A,<m. (V.8)

Let W = (Wyp) 4.p e 74 be an operator in £y for some o > 1. Then we have
lada, W1, <7 |W]_ . (V.9)
Proof. Fora, b € 74 we have, as Ay is diagonal,
(adaW)ap = (Aa — Ap) Wap.
Hence we have for all a, b € 74,
|(adag W) 3| < 7| Wa|

and this shows the result. [ ]

Remark V.6. The condition (V.8) will be fulfilled as soon as
Vx>0, 0<pB(x)<m.

In the case where A is associated with the filter function f(x) = 2arctan(x/2),
this condition is automatically satisfied. In the case where § is of the form f(x) =
x1x <, with a CFL number ¢y, then this condition will be fulfilled as soon as ¢y < .

We are now ready to prove the main result of this chapter:

Theorem V.7. Let « > d, and assume that ||V||a < 00. Assume that the eigenval-
ues Ag of the operator Ag satisfy the hypothesis (V.8). Then there exist ty > 0 and
a constant C such that for all T € (0, 1p), there exists a symmetric operator S(t) such
that
exp(itV)exp(—idy) = exp(—itS(7)).
Moreover we have
1
§@) =-—B(d) +V(x) + W(7)
where V(t) and W(t) satisfy,

2
Vol, =c Vi, ad [W@l,=CIVI,, (V.10)
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and where moreover V() is given by the convergent series in Lo
Vo) = V Be (_iyeadt (v V.11
(0) =V + ) o) adf (), (V.11)
k>1

where the By are the Bernoulli numbers.

Proof. Recall that the power series (I1.16) defining the Bernoulli numbers has a radius
of convergence equal to 2.
Let us consider the equation (V.7). Using (V.9), we see that

| B |
1Zull, =WVl X2 57 <Clv, (V.12)
k>0

is bounded. In terms of the components of the operator Z;, we calculate using the
expression of ad 4, that

i(a — Ap)
P expli(hg —Ap) — 1

Note that for any bounded operator A and B, we always have

(Zl)ab = Va

(V.13)

lada(B)Il, <2Cq |IA]l B,
where Cy is given by Lemma V.2. We define now the following numbers:
fo=m and §@ =2Cy|Z¢,, for £=1.
Using (V.6) and Lemma V.5, we see that we have the estimates

| B |

1
VE=1, —C+ D <V, D = Y.
2C, o k!
k>0 b4+l =t

Now for any p such that 7 < p < 2m, using Cauchy estimates, there exists a con-
stant M such that for all k, | Bx| < k!Mp~*. Hence we can write

1 _
YOz 1, S+ Do MV, Y 0™ 3 b
o k>0 b4+l =4

Let {(¢) be the formal series {(1) = 4., t*¢,. Multiplying the previous equation
by t% and summing over £ > 0, we find

1 —k k _ ;
3G F O =MWV, ) ot O" = MV, 757
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Let n(t) be the solution of the differential equation:

1
(1) =2MCqy |V, T=0)/p’ n(0) = .

Taking p = 2, we see that for 1 < ——2=—— the solution can be written
gp=3n/2, = BMCaIVI

3 1 8
=—[1—/=——M 1%
) 2( a- e ||ar),

and defines an analytic function of . Expanding n(t) = 3 ;5 ot t1¢, we see that the
coefficients satisfy the relations n9p = 7 and

1 —
VO 1 o e =MV, Y07 D0 g
* k>0 O+l =L
with p = 37” By induction, this shows that {; < ny. Moreover, for all z € C with

, we have that the coefficients ¢, are positive,

o o 37T
DGt = Y el =2z < ndlzh < -
£=0 =0

Using Cauchy estimates, we see that

4
© 48MC,
190 _ 3w ( 8MC IIVIIa) v

< T
2l = BMCL IV

18(2)] =

]
vez 1z = EQ T 20, 0 4G, -

The theorem is now proved by setting

V(t)=2,, and W(r)=— Z =2z,

£>2
. . . /1 1_
which defines a convergent power series for || < 79 = MO TV CallVT " The esti
mate (V.10) on V(1) is then an easy consequence of (V.12). The estimate (V.10) on
W(7) is obtained from (V.14). |

4 Properties of the modified equation

The following result shows that S(7) given by the previous result defines a “modified”
energy when applied to smooth functions.

Proposition V.8. Ler v € [0, 1], and suppose that Ay is associated with the filter
function B(x) = 2arctan(x/2). Assume that u € H't"(T¢), then we have for t €
(0, 70),
2
[(lS@)u) = (ul = A+ VIu)| < C”|lully, 4, (V.15)
where C depends onv and V.
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Proof. Using (IV.15), we have for all a € Z4,

2 tlal? )
—arctan | —— | — |a|
T 2

This shows that for all v,

2 tlal?/2
< ;/0 yYdy < Ct”|a|? T2,

2
<Ct vl sy - (V.16)

(v| — %arctan (%) [v) — (v] — Alv)

Now we have

By :
WIV(@)lv) = (Vo) = 3 | - wl(=) adl, (V)]v).
k>1
Recall that Ay = —2 arctan (%) is a positive operator. As v € [0, 1], the operators

Ab’ and A(l)_" are hence well defined, and for an operator W we have in terms of the
coefficients of the operators

2 1—v
(A(l)_"W)ab = (2 arctan (%)) Wap.

Hence we have forall « > 1,
| W, <7 w|, and |WATV| <=V W],

Now using Lemma V.3 and the fact that A, is symmetric, we have for all v and all
operators W,

[(wlada W)l < (48w, + [Wab™],) [48v] 2 v,
<2 W, A3 L ol

Hence we have

|Br| &, ’
IVl = VI =2 3 Sk Vi, [4gv] . Dol
k>1

<CVIl, [Abv] vl .-

As for all y > 0 the relation arctan(y) < y holds, we have HAE)’
and hence

v =22 ol

[(wV(@)) = V)] < CIIVI, T vl g V1], -
Finally, we have using (V.10) that

2 2
[WIW@I) = CIVI T lvll,-
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Summing the previous inequalities with y = v in (V.16) we have that
2
(WIS@v) = (o] = A+ V)| = € (Joll e + 100 g 10112

for a constant C depending on V' and v. As ||v||qu < ||v||H1+U for v e [0, 1] this
yields the result. |

The next result shows the conservation of the modified energy S(t) along the
(semi-discrete) numerical solution associated with the splitting propagator. As a con-
sequence, we give a regularity bound for the numerical solution over arbitrary long
time periods.

Corollary V.9. Assume that u® € L*(T%) and t € (0, 1) given in Theorem V.7. For
alln > 1, we define

u" = (exp(—itV)exp(—idg))" u°.
Then for all n > 0 we have the preservation of the modified energy:
W"|S(@)u") = (u’[S(0) ). (V.17)

If moreover u® € H' and Ay is associated with B(x) = 2arctan(x/2), then there
exists a constant Cy depending on V and o such that for alln € N,

1
Do laPIEP = > P = ol (V.18)
lal<1/y7 lal>1/4/T

where £ ,a € 74 are the Fourier coefficients of the function u.

Proof. Let us first note that as S(t) commutes with exp(—i t S (7)) we have for all v,

{exp(=izS())v]S(D)[exp(—izS(2))v) = (v]exp(itS(2))S(r) exp(—iTS(7))[v)
= (v[S(D)|v).

and this shows (V.17) by induction.

Using the fact that V' is symmetric, we have for all n, ||u”|| = Hu Hence,

0
s
using Lemma V.3, we can write for all v € L2,

1 A
(v|S(7)|v) = —(v| — 2 arctan (%) [v) + (v|V(7) + TW(1)|v),
T
whence using (V.10), Lemma V.3 and the fact that A is a positive operator,

1 TA 2
(IS0 = + (o] = 2arctan (5 ) o) = € V1 ol

T
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Hence using (V.17) we have that for all n,

1 TA 2
(] = 2aretan (52) ) < IS + € IV, 171
2
< (OISO +C VI [

Using (V.15) with v = 0, we find that there exists a constant such that for all n,
1 TA 2
;(u”|—2arctan(7) [u")y < Co HuOHH1 . (V.19)
Now we have for all x > 0,

1 1 1 2
X > 3 — arctan x > arctan (5) and x < 3 — arctanx > ?x (V.20)

Applying this inequality to (V.19) by considering the set of frequencies 7|a|*> < 1 and
tl|a|?> > 1 then yields the result. [ |

This last result shows that H' estimates are preserved over arbitrary long time
periods only for “low” modes |a| < 1/4/T whereas the remaining high frequencies
part is small in L2,

Remark V.10. The previous results extend to the splitting scheme
exp(—itAp)exp(—itV)
and to the Strang splitting
exp(—itV/2) exp(—iAp) exp(—itV/2). (V.21)

Note that in this last situation, the fact that the method is of order 2 allows us to take
v € [0,2] in (V.15).

The previous result shows long time bounds for the regularity of the solution,
measured in the norm (V.18), and in the case of the implicit-explicit integrator. In the
case where the high frequencies are cut by the use of a CFL restriction with number
co, the L? norm of the high modes cannot be controlled as the operator A is not
positive anymore in the high modes. However, in the case of a fully discrete system,
where cp is naturally defined by the number of modes in the discretization, no high
modes are present, and we do not need to control them. In this case, we can prove the
preservation of the H ' norm of the fully discrete solution. This is the goal of the next
section.
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5 Fully discrete splitting method

We now consider a full discretization of the previous splitting schemes, using the
pseudo-spectral method described in the previous chapters. For simplicity of notation,
we consider only the case where the dimension d = 1.

Let K be an integer. As in Section 6 of Chapter III, we define the grid x, =
2ma/ K made of K equidistant points in the interval [—, ], with € BX defined
in (II1.35). With this grid is associated the discrete Fourier transform (II1.36).

As in the nonlinear case (see Section 6 of Chapter III), we search for a trigono-
metric polynomial

UK@x)= )" &80
aeBK
such that for all b € BX the equation
i3, UX(t,xp) = —AUK(t,xp) + V()UK (1, x3),  UK(0, x5) = u’(xp),

is satisfied for all time ¢ (compare (II1.37) for the nonlinear case).
In terms of the vector £X(¢) := (Sf (1)), < px constructed with the coefficients
of the polynomial UX | we see that we can write the previous equation as

i7g €5 = F'DXER () + vEF R @),
where DX and VX are the K-dimensional diagonal matrices given by:
DX = diag(a®), and VX =diag(V(x,)). a € BX.

Hence after taking the inverse of the Fourier transform, we see that the vector £X(¢)
satisfies the linear system of differential equation (of dimension K)

i£X() = DXeX (1) + WwEER (1), (V.22)
where
Wk = g vEFe,
and with initial condition £X(0) = Fx odiag(u’(x)). Note that as VK Fkis unitary,
the matrix WX is symmetric.

Let us consider a standard splitting method applied to this equation. It can be
written as the numerical scheme

gEn 1 = exp(—itDX) o exp(—i tWK)gKon

= exp(—itDK) oFko exp(—itVK) o ?IEIEK’"

acting on CX, which corresponds to the numerical scheme defined in Chapter I.
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Note that the computational cost of this method is relatively low: As the matri-
ces DX and VX are diagonal, the evaluation of the exponentials is cheap, while the
evaluation of the Fourier transforms g and 5 ! can be easily made using the Fast
Fourier Transform (FFT) algorithm.

To obtain backward error analysis as in the previous section with bounds inde-
pendent of the spectral parameter K, we consider DX and WX as operators acting
on C” and leaving invariant the space {§, € CZ|¢§, = Oifa ¢ BX}. To apply the
previous result, we need two ingredients:

« We can consider that tDX = A§ = —p(rA) where B(x) = xL < with the
CFL number ¢ naturally defined as ¢y = 1K?/4. We can also consider the case of
implicit-explicit integrator, i.e., f(x) = 2 arctan(x/2)1 y <¢,.

+ The operator WX is a finite dimensional matrix operator satisfying
wk =0, if a¢BX or b¢BK

Hence it is clear that WX belongs to all the space £4, & > 0, but with a norm
depending a priori on K.

The key to applying Theorem V.7 is to estimate the norm of WX,

Proposition V.11. Assume that V(x) defines an operator V,p € Ly for a > 1. For
all K > 1, let WK = (Walg)a,bez be the operator defined by

WK = Fx o (diag(V(xp))) o F'.
Then for all K and for all v > 0, we have that WK e £.,, and satisfies
WX, = a1V, (V.23)
for some constant depending on a only.

Proof. We calculate directly that for a, b € BK , we have
1 .
WE =g X Vet
jeBK

With this (finite dimensional) operator, we can naturally associate an operator acting
on CZ, by setting Wallf =0 whena ¢ BX orb ¢ BX. By decomposing the function
V in the Fourier basis, we obtain for a, b € BK s

Wj,f:% T Y Peianboon Z@w—b% T e

jeBKceL der jeBK
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Using formula (II1.38), we obtain

K N
Wab = Z Va—b+mk-
meZ
Assuming that V € £, we thus have

1
wE| < v .
Wapl <1 ||°‘n;21+|a—b+mK|“

We thus obtain as |a —b| < K — 1,

l+|a—>bl’
l4+|a—b+mK|*®

A+la=b"y WX =1vII, >
meZz

1+ |K]¥
<, > m
1+la—b+mK|
mezZ

1+ KV
< ||V||QZ—1+|p|a,
DPEZ

which yields the result. |

Remark V.12. The bound (V.23) is sharp in the sense that we cannot obtain a bound
independent of K for v > 0. This is due to the aliasing problem. To see this, take K
even,m = —1,a = K/2—1and b = —K/2 in the previous sum.

With this result, we are now ready to prove the following result for the fully dis-
crete splitting method applied to the linear Schrédinger equation.

Theorem V.13. Consider the linear equation (V.1) on the one-dimensional torus T".
Let a > 1, and assume that ||V||a < 00. Let K be a given number, and consider the
approximation (V.22) of (V.1) by collocation method in the Fourier basis.

Let A(§< be the diagonal operator with eigenvalues Af = 1a’ or Af =
2arctan(ta?/2), a € BX. Assume that the two following conditions are satisfied:

0<AK <7 and tcuK¥ <1 (V.24)

for some v > 1, where 1y, given by Theorem V.7, depends only on V, and where c, is
the constant appearing in (V.23).
Then there exists a symmetric matrix SX (t) such that

exp— (itW¥X) oexp (—iAf) = exp (-itSX (1)),
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satisfying for all T € (0, 1),
SK@) = AKX + vE(0)
where VX (1) satisfy,
¥, =c
for some constant C depending on ||V || o, but noton K.

Proof. Let Ay be the diagonal operator associated with the eigenvalues A, defined by

5 _%Af if aeBK,
a 0 if a¢ BX.
The bound on the eigenvalues AX ensures that A4, satisfies the condition of Theo-
rem V.7.
As WX satisfy the bound (V.23), the same arguments as in the proof of Theorem V.7
show that the coefficients of the formal series Y #¢Z ZK constructed from the potential

wk satisfy the bounds (compare (V.14)),

)4
HZK 3 (48Mcaca1<” v ||a)
e .

<
v = 4G,

b4

This shows that the series ) ttz EK is convergent in £,, under the condition ¢y KV <
79 defined in the proof of Theorem V.7. The result is then obtained using the same
arguments.

Note that by construction the operators Z eK are matrix operators acting on the sub-
space spanned by the indices ¢ € BX. This can be verified from the fact that the
bracket of two operators acting on the same subspace defines an operator on this
subspace. |

Let us comment on the condition (V.24). In the case of the standard splitting
method, it can be written (using the fact that all the frequencies in BX are smaller
than K2/4),

tK> <47 and K" <C

for some constant C depending on || V||a. As the condition on v is only v > 1, we
thus see that the second condition will be automatically satisfied for K sufficiently
large.

In the case of the implicit-explicit midpoint rule, the first condition A, < 7 is
always satisfied. Concerning the second condition, as v can be arbitrarily close to 1
(of course with a possible deterioration of the constant) it can be viewed as a softer
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CFL condition than the one expected from the asymptotic eigenvalues of the operator.
Roughly speaking, we can say that the use of an implicit-explicit scheme thus allows
us to replace a CFL condition of the form 7 K? < ¢ by a milder one 7K < ¢ to obtain
a modified energy.

Using the modified energy constructed in the previous theorem, we can prove
along time H' bound for the fully discrete solution:

Corollary V.14. With the notation of the previous Theorem, let u® € £} C H'(T),
and let (Sf’o)a < gk = Fgodiag(u®(xp)) be the vector defined by the Formula (1V.22).
Let £51 (1) = (Ef")a < pk be the sequence in cB* defined by the formula

EXnHT = exp (—itWX) oexp (—iAF) £57, n>0.

Assume that T and K satisfy the condition tK 2 < Ag. Then there exists a constant C
independent of K such that

vnz0, Y laf ek

aeBK

e

:

m SCIG. (v2s)

Proof. The condition 1K? < 4 ensures that the condition (V.24) is always satisfied
(both in the case of the standard and implicit-explicit scheme). Moreover, the preser-
vation of the modified energy SX (7) given by the previous theorem combined with
the proof of (V.18) easily show that

vnz0, 3 laf [ek"

a€BK

el

2
H!

for some constant C independent on K and %0 this is due to the fact that no high
modes are present in the fully discrete version of (V.18) (as TK? < 41).
To prove the last estimate, we use (IV.22) and obtain for alla € B K

sf,o‘ = Y1l 8kl = [0y = D lal Jg3)

mez ac’

|a|

Hence

lexo = 2 el |l < o], X la

acBK acBK

= H”O“e{ Z Z |a||‘§2+mK|

acBKmelL

< [l 2 1ot g8l = 1l -

beZ

K.,0
a

and this concludes the proof. |
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6 Resonance analysis

In the construction made in the above sections, the first term of the modified energy
is given by (see (V.13))

i(Aa - Ab)

(Zl)ab = Vap exp(i()ta — Ab)) 1

and b in Z¢, the term A, — A;, belongs to the interval [—7, 7] and hence avoids the
poles +27.

In the case of the implicit-explicit integrator with f(x) = 2 arctan(x/2), we al-
ways have A, < 7, and thus we can observe that the function t > Z(7) is continuous
in 7. This explains the absence of numerical resonances, as shown on the bottom of
Figure 1.6.

Now in the case of the standard splitting scheme with S(x) = x, we see that
resonances appear for some values of the time step t such that there exist @, b and k
such that

where a,b € Z¢, and A, = B(t|a|?). The hypothesis A, < 7 implies that for all a

t(lal® = |b|*) ~ 27k, (V.26)

in which case the term Z; above is not well defined. This makes the function
7 > Z(7) not well defined beyond the CFL regime t|a|?> < 2. However, as shown
in Figure 1.6, these singularities seem to appear for very specific values of 7. Such
a phenomenon is called resonance effect, and a step-size t satisfying (V.26) is called
resonant. When the step-size is not resonant, we remark that the modified energy Z
is still well defined, and hence we expect that the numerical scheme is stable.

As we will see below, such resonance relation is not generic, in the sense that very
few step-sizes t are resonant, and satisfy (V.26). Said differently, a step-size 7 chosen
randomly in an interval [0, tp] has many chances to be non resonant, and hence to
yield a stable long time integration of the equation.

The goal of this last section is to quantify this fact. To do this, let us consider the
following non resonance condition:

VnelZ, n#0,

1— itn
‘—e (V.27)

nf””

If such a diophantine relation is satisfied, long time results can be obtained for classi-
cal splitting methods applied to the linear Schrodinger equation with small potential,
see [13].

Here we will not give details about this result, but show that such a relation is
generic. As the method is standard in resonance analysis, we give here a complete
proof of the following proposition (see also [26]):

Proposition V.15. Let y > 0 and v > 1 be fixed, and let
Z(to;y,v) = {1 € (0, 19)|T does not satisfy (V.27)}.
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Then we have

meas Z(tp) < Cyrg
for some constant C independent of y and v. As a consequence for a fixed v > 1, the
set of T € (0, ©o) for which there exists y such that (V.27) is of full measure in (0, 7).
Proof. Assume that t does not satisfy (V.27). Then there exists k € Z\{0} such that
T
~ kP
Now for this k, there exists £ such that |kt —27{| < 7, and hence as for x € [, 7]
we have |1 — e'*| > %|x|, we get

‘1 _eifk

20k | 2wt

. 2
‘l—e”k > —|kt —2nl] > — |t
T b4 k

But as |kt — 27{| < 7, we have for this £ the bound
2n|l| < 7w + |k|o.

Hence 7 is in the set Z (1) if there exists k # 0 and £ such that

2\k| 2l YT
—_— < —
s k |7 |k
or
2l YT
[ :
k|~ 2kt

Note that if £ = 0 in the previous inequality, we must have
b4 big
14 < Ty
k[ +1 D)
which contradicts y < 2/m. Hence £ is submitted to the restriction

1kl
L #0, d [ << .
20 and =5+ 50

and we note that there are at most |kﬂﬂ such £ for a given k. Hence we have

| YT
meas Z(to; y, v) < Z Z 20k|v+1
K701y <)+ W

{40

klto myTo
52 2k !

=
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The last statement follows from the fact that
meas ﬂ Z(to;y,v) = 0. ]
y>0

This result partly explains the top Figure 1.6: the set of resonant step-sizes is very
small and generically, we can hope that the energy is well preserved. However, the
complete analysis has only be performed for small potential, see [13].
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In this chapter, we go back to the nonlinear case. For simplicity, we will only consider
the case of the cubic nonlinear Schrodinger equation

i0,u = —Au + AMul*u, (VL.1)

set on the one-dimensional torus T, but the results are valid in more general cases,
where the nonlinearity is polynomial and the equation set is on a torus of arbitrary
dimension d. We refer to [15] for a more general analysis.

Following the idea of Chapter V concerning the linear case, we consider splitting
methods of the form

1 T ~ T
Pa,°¥p =¥H-

where Ay is a filtered Laplace operator smoothed in the high frequencies, and where
P is the nonlinear part of (VI.1). We have proved in Chapter IV that such schemes
are convergent over finite time intervals, provided the exact solution is smooth. Here,
we prove the existence of a modified Hamiltonian H such that

04, 0 0p =9 +0O0EN), (VI.2)

where the degree of precision N depends on a bound for the operator Ay. Note that
in our situation, the operator Ag is bounded but not small (as would be the case in
the finite dimensional case): typically its norm behaves like B(tK?/4) where B is
the filter function, and K the number of grid points in the underlying pseudo-spectral
collocation method, as described in previous chapters. Hence we see that the precision
level N can be viewed as depending on the CFL number.

Such a backward error analysis result is valid in the Wiener algebra £': the rela-
tion (VI.2) is valid in £!, and the constant error depends on a priori bounds of the
numerical solution in the same Banach algebra. Hence as long as the numerical so-
lution remains in £!, the energy H. is preserved along the numerical solution. Using
this property in the case of fully discretized numerical schemes, we prove by a boot-
strap argument an almost global existence result for small discrete initial data, which
constitutes a fully discrete version of the global existence result stated in Chapter 111
(Proposition I11.14).

Such a result extends to more general situations where the Hamiltonian function
is of the form (with the notation of the previous chapters)

H(z)=T(z)+ P(2)

where 7(z) = ), c7a Wa€ana and P € Py, with ry > 3, and where the frequencies
satisfy the bound w, < C|a|?>. We refer to [15] for detailed proofs.
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1 Recursive equations

In this section we explain the mechanism of construction of the modified energy. As
we will see, the formalism turns out to be the same as in the previous chapter, except
that the bracket of two operators has to be replaced by the Poisson bracket between
two polynomial Hamiltonians. For simplicity, we consider only the splitting method
@p © 901140' The splitting method 901140 o ¢p can be treated similarly. Note that the long
time behavior of these two methods are the same, as we have foralln > 1,

(ph, 00p)" =l o (b oph)"  owh.

Here, recall that Ay is a diagonal operator obtained by smoothing the frequencies
with a filter function B: The operator A is written (see (IV.9))

Ao =Y Aakana. with A =B(za), a €

a€’

As before, we will mainly consider the cases where 8(x) = x, f(x) = 2 arctan(x/2),
possibly in combination with the use of a CFL condition.
With the notation of the previous chapters, the Hamiltonian P is given by

A A
P(&.n) = E/Twn“dx = Emg_dzosasbncnd, (V1.3)

with the usual notation u(x) = Y, ;& €'“* and n, = £,. This is the polynomial
Hamiltonian associated with the cubic nonlinearity (VI.1).

Following the strategy developed in the previous chapter in the linear case, we
look for a real Hamiltonian polynomial function Z(t) := Z(t; &, n) such that for all
t < 17 we have

PP 00U, = P2y (VL4)

and such that Z(0) = Ay. With the notation of Chapter III, we can write for a given
Hamiltonian K,

ox = exp(Lx)[Id]. (VL5)
Differentiating the exponential map we calculate, as in Chapter II, that

d 1 1
E‘pZ(t) = Xo@) ° ¥z

where (at least formally) the differential operator associated with Q(z) is given by

1 K
Low = 2 Gapiidese (£20).
k>0
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with
Adg,(Ln) = [L£4. LH]

the commutator of two vector fields. As the vector fields are Hamiltonian, we have
for two Hamiltonian functions 4 and H,

[£4. LH] = Lia,m}-
Hence we obtain the formal series equation for Q:
1
JOEDY mad’g(t)z/(z), (VL6)
k>0 ’

where Z’(t) denotes the derivative with respect to ¢ of the Hamiltonian function Z(¢),
and where for two Hamiltonian functions K and G,

adg (G) = {K,G}.
Therefore taking the derivative of (VI.4), we obtain
Xpoghopy =Xou o 90120)
and hence the equation to be satisfied by Z(¢) reads:
> ;adé(t)Z’(t) = P. (VL7)
= (k+1)!

So formally, using the results in Chapter I, equation (V1.7) is equivalent to the formal
series equation

ACEDY 12950 P (VL8)
k>0

Remark VI.1. Equation (VI.8) is formally the same as equation (V.4) in the previous
chapter. Note that in the case of quadratic Hamiltonians, then the Poisson bracket of
two Hamiltonian is again a quadratic Hamiltonian associated with an operator given
by the bracket of two linear operators. In this situation, (V1.8) and (V.4) are equivalent.

Plugging an Ansatz expansion Z(t) = ZZZO t£Z, into this equation, we get
Zy= Apand forn >0

By
(n+DZnsr =) ¢ > adz, ---adz, P. (VL9)

k>0 " L+ +Lg=n

In the following, we will show that this formula allows us to construct the terms Z,
up to a level N depending in general on a CFL condition imposed on the system.
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2 Construction of the modified energy

2.1 First terms. Let us write down the formula (V1.9) for n = 0. We obtain

Z = k—!ad WP (VL10)
k>0

Recall that here we consider a class of polynomials of the form (III.15), where for
a given £, Jy is the set of multi-indices in Z = Z? x {£1} with zero momentum
(see (III.14)). To calculate the first term Z; defined above (and further the other terms
in the development), we use the following result:

Lemma VI1.2. Let r > 2 and assume that
Q) = ) ajzj,
JEdr

is a homogeneous polynomial of degree r, and let Ao(z) = Y, cy AabaNa for z =
(&, 1), then we have

adgy(Q) = Y iA(j)ajzj
Jjedy

where for a multi-index j = (ji....,j,) with ji = (a;.8;) € Z¢ x {1}, for
i=1,...,r, weset

A(J) = 81Aq, + -+ 6+ g,
In particular, we have
Bk k iA(j)
_ad = —_—AaiZj.
Z 1 Ao § : : Y 1T
= k! ot exp(iA(j)) —1

Proof. This is just a calculation made from the expression of the Poisson bracket of
two Hamiltonians. |

Remark VI.3. According to the definition I11.4 of polynomials containing the same
number of £’s and n’s, we see that if Q € 85, then we also have ad4,(Q) € §F;.

With the expression (VI.3) of the polynomial P associated with the NLS equation
(VI.1), we obtain using (VI.10) that the first term of the modified equation is given
by
iAabcd

Zy =3 . §apNena. (VL1D)
a+b_CZ:_d:0exp(zAabcd)—l o

with  Agped = Aa +Ap — Ac — Ag4.
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We see that to be well defined, we need to avoid configurations such that A p.q >~
2xm for some m € Z, m # 0. Let us examine this condition in the two main cases
of applications: First when 8(x) = x, we have

Agbed = ‘E(az—l—bz—cz—dz).

Note that in the example of the introduction, we have precisely made a simulation
with a resonant step-size t such that Agp.q = 27, see equation (1.20). More pre-
cisely, we have takena = 0, b = 12, ¢ = 5and d = 7. Figure 1.8 shows the instabil-
ities observed for the numerical solution in this case. It corresponds to a singularity
in the first term Z; defined above. To avoid such a situation, we have to impose the
fact that Agpc4 is never a multiple of 2. This condition can be interpreted as a non
resonance condition on the step size 7.
Let us assume that a CFL condition is imposed, i.e. that

B(x) = Xl x<c (x),

where ¢y is the CFL number. In this situation, we have A, = 0 if Ta? > ¢,. Hence
taking into account the positivity of the eigenvalues, we have for all a, b, ¢ and d
inZ,

|Aabcd| < 2c¢p.

This shows that the term Z is well defined as soon as ¢y < 7. Now if we consider
the case where B(x) = 2arctan(x/2), we can perform a similar analysis, and the
previous condition yields

| Agpea| < 4arctan (cj/2) < 2,

for all ¢y. Hence we see that for all ¢y, we can construct the first term of the modified
energy. In other words, there is no restriction on the CFL number when using the
implicit-explicit scheme (at least to construct the first term).

Let us now write down the formula (VI.9) for n = 1. The second term Z, satisfies

k—1
1 By 11—

Zo=3 ) oy D adiadzady TP
k>0 =~ m=0

Using Proposition I11.6, the first thing to note is that Z, is a homogeneous polynomial
of degree 6, and made of monomials of the form

gal $a2$a3 Nb,Mby Mbs

in other words, Z, € §%%. In order to give a meaning to Z,, we will see that we need
now a condition on the form |A(j)| < 27 for multi-indices j of degree 6 satisfying
the symmetry condition (II.17). As expected, this requires a stronger CFL condition,
even in the case of the implicit-explicit integrator.
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2.2 Iterative construction. The following proposition gives a condition to con-
struct the terms Z,, defined by (V1.9) up to some fixed level n = N.

Proposition VI.4. Let N > 0 be fixed, and let P be the Hamiltonian (V1.3). Assume
that the eigenvalues A, of the operator Ay satisfy

_ | B(xa®) if ta’=co,
Ag = { 0 if ta®> co (VL.12)
where B(x) = x or B(x) = 2 arctan(x/2) and ¢y > 0.
Assume that cq satisfies the condition
2
< B! : VL13
co<p N1 ( )

Then for n < N we can define homogeneous symmetric polynomials Z,, € 8 Pon42
satisfying the equations (V1.9) up to the order n, and such that || Z,|| < +oo.

Proof. Let 84,, be the set of multi-indices j = (i, ..., j,) satisfying the symmetry
condition (II1.17). In other words, for all j € &d,, the number of &, and 5, is the
same in the monomial z ;. Using the definition of A(j ) and the condition (VI.13), we
see that there exists § > 0 such that

Vn<2N +2 Vje8d, |AG) <2m-—38. (VL14)

Using Lemma V1.2, this condition implies that for any homogeneous polynomial
0 € 8P, withr < 2N + 2, we have the estimate

ladz, QI = 27 —8) Q] - (VL15)

Under this assumption, we easily see that Z; satisfies |Z;|| < cs || P| for some
constant cg.

Assume now that the Z, are constructed for 0 < k < n,n > 1 and are such that Z;
is a homogeneous symmetric polynomial of degree 2k + 2. Formally Z,, 1, is defined
as a series

Zn-H = ﬁ %Ak,
k>0
where
Ay= ) adg, ---adg, P.
b+ +L=n

Let us prove that this series converges absolutely. In the previous sum, we separate
the number of indices j for which £; = 0. For them, we can use (VI.15). Only for
the other indices, we will use the estimates of Proposition I11.6 by taking into account
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that the right-hand side is a sum of terms that are all real polynomials of degree
€y +---+4€x)2+4 =2(m+ 1) 4+ 2 and hence the inequality of Proposition III.6 is
only used with polynomials of order less than 4(n + 1). Thus we write for k > n,

Ikl s= | D, adz, --adz,, P
bi++Ll=n
" k! 2 — §)k - ~
=D IR e D DENCE S e ) EA R A 1]
i=1 Zl+2<+e()i:n
]>

Qr =8k k"> Y+ DTG Ze, | i Ze, | 1P

i=14 4+ =n
Zj >0

IA

and thus ) - %Ak converges and Z, ; is well defined up ton + 1 < N. This
shows the result. |

3 Backward error analysis result
For s > 0, we recall that

By = {z e tillzl, = M|
and we will use the notation By = BR,I.

Theorem VLS. Let N > 1, s > 0 and My > 1 be fixed. Then there exist constants
19 and Cy depending on s, ||P||, My and N such that the following holds: For all
T < 19 such that the eigenvalues A, of the operator Ay defined by (V1.12) with ¢

satisfying (V1.13), there exists a real Hamiltonian polynomial H, € 8PN+, such
that for all M < My and z € B3, we have

lep o0, (2) — ok ()| o= CyMPN I N+L (VL16)

S
Moreover; for z € BM we have

‘H,(z) - Hr(l)(z)‘ < CytM® (VL17)
where
1 A iAabea
HY(z) = —A = ave VI.18
T (2) Z . abana + 3 Z exp (i Agpod) — lgagbncnd ( )

ac’ a+b—c—d=0

with the notation (VI.11).
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Proof. We define the real Hamiltonian H, = ZNT(T), where

N
ZN(t) = Z ' Z;,
j=0
and where, for j = 0,--- , N, the polynomials Z; are defined in Proposition VI.4.
By definition, Zx (¢)(z) is a polynomial of order 2N + 2 and using Proposition V1.4
we get

N
1Zv)l = 3 125 < oo
j=0

Thus Zy € 55)21\]4_2.
Now, as for all j, Z; is a homogeneous polynomial of order 2 4 2, we have, using
Proposition I11.6 and Proposition V1.4 that for z € By, with M < My and j > 1,

X2, , <2 sup  zlk ) < Dy |5 MM < m(cy)
Ly 1 Ly

k=2,..,2j+

where the constants D ; are given by Proposition III.6. Note that the constant C; de-
pendson P, s, N and Mj. On the other hand we have using Lemma VI.2 and (VI.14),

1X2,2)ll,y <27 |12l < 27M.

Hence, for ¢ < (2C;)~" we have

N
1X2y0©@)] g <27TM + M > (G < @r+ )M < 8M. (VL19)
ji=1

Therefore by a classical bootstrap argument, the time 1 flow CDEN () Maps Bj, into
B3, provided that 1 < (2Cy)~.
On the other hand, <p1140 is an isometry of £} and hence maps Bj, into itself, while
using again Proposition II1.6, we see that ¢’ maps B3, into B§y aslongast < C .
where C, depends on || P ||, My and s. We then define

T :=min{2C)~". G '} (V1.20)

and we assume in the sequel that 0 < ¢ < T in such a way that all the flows remain
in the ball Bgyy.

Letu(t) = ¢} o ¢y (2) — (plzN (1y(2) and denote by Q () the Hamiltonian defined
by

1
ON(1) =) ——ady \Zy ().
kXZ%)(k—H)! ZN@OTN
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By construction (see (VI1.6)), the following relation holds: Fort < T given in (V1.20),
the Hamiltonian Q y (1) € € (¢}, C) satisfies for z € B3,

d
T92n () = Xoy® © 92, ()- (VI21)

Using this result, we have

d
LU =Xpo 9p 0 04,(2) = X0y 1) © 0z (0 ()-

Asu(0) =0, we get fort < T given in (VI1.20),

t
)y, = [ X005 004~ Yo 2001 (2)] 4 00
and hence
t
Ol = [ [Xe 0050 = Xowor 0 Py )] o 0o
t
+ /0 Xpoghogh ()= Xpogh o)) M do.

Therefore fort < T,

t t
lu@)ll i < [ sup | Xp(2) — Xop0)(2)] 1 do + Lp / lu(o)ll,; do
s 0 z€Boy s 0 s
(V1.22)
where using equation (II1.21) in Proposition I11.6, we can take

Lp =412 P| (9My)*.

So itremains to estimate sup, ¢, ,, H Xp(z) = Xoym(2) H o forz € Boppandt < T.
Now by definition of Q x (¢) we have ‘

Zy@) =Y g, QN (),
k=0

where the right-hand side actually defines a convergent series by the argument used
in the proof of Proposition VI.4. By construction (cf. Section 3), we have

> B
> Hadh (O (1)~ P) = OGN
k=0~

in the sense of real Hamiltonians in the space ©>° (£, C). Taking the inverse of the
series, we see

ON()—P =) 1"K, (V1.23)

n>N
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where we have the explicit expressions

1

Ky = E (m+1)§ T § adz, ---adz, Zm+1. (V1.24)
{+m=n k>0 b+l =4
m<N eij

Estimates similar to the one in the proof of Proposition V1.4 lead to

¢ . . — §)k—i)
1Kl < D" m+1) Y 32 n+1)" Y il e

m<N
x> bl Za] i | Ze s | 6 Ze | 1 Zm il
Gttty =L
0<{; <N

where § is given by (VI.15). Hence, after summing in k,

£ (3 i
[Knll = Ci Z (m+1)2%

L+m=n i=0
m<N

D S PN R PN VAP NPT

b4+l =t
0<£j <N

for some constant C; depending on §. Using the estimates in Proposition V1.4, we see
that there exist a constant Cs depending on N such that

IKall < C2H1

As K, is a polynomial of order 2n + 2 < 4n, we deduce from the previous estimate
and Proposition II1.6 that, for z € Bg Mo

Xk, (D), = 24m)* I CE I OM)> L
Using (V1.23) and the previous bound, we get

[Xonw @ = Xp@)|y = D " 1Xx, )l
) n>N )
< Z tn2(4n)s+lc3n+l(9M)2n+l
n>N
< C5M2N+ltN

for t < C4 and for some constant Cs, with C4 and Cs depending on ||P||, s, 6, My
and N.
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Let us set
w0 = (Mo, N, 8,5, || P||) := min {(2c1)—1 LGy (OMp) 4, C;l} .

For t < 79, inserting the last estimate in (VI.22) we get
t
Ol = MG+ Ly [ o)y 0
s 0 5

and this leads to

”u([)Helv < tN+1M2N+lC6

for some constant Cg depending on 8, s || P ||, My and N. This implies (VI.16) defin-
ing H, = Z.(t)/t fort < 1.
The second assertion of the theorem is just a calculus defining

1
H{Y = ~Zo+Z1.

Using the previous bounds and the first inequality in Proposition I11.6, we then calcu-
late that for z € By,

N
|He(2) - HP () = Y7z,
ji=2
which yields the result. |

We conclude this section by giving explicitly the CFL condition (VI.13) required
to obtain a given precision V! in the previous theorem. The numbers given in
Table VI.1 are given by the function 87! (A%—f_l)

Nt B(x) =x | B(x) = 2arctan(x/2)

2 3.14 00

3 2.10 3.46
T 1.57 2.00
s 1.27 1.45
° 1.05 1.15
T’ 0.90 0.96
78 0.80 0.83
1 0.70 0.73
!0 0.63 0.65

Table VI.1. CFL conditions for cubic NLS
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Note that in the case of a general polynomial nonlinear term in (VI.1), the previous
theorem remains true, but the CFL condition depends on the degree of the polynomial.
We refer to [15] for a complete analysis.

The previous construction allows us to prove the preservation of the modified
energy over a long time depending on N:

Corollary VI.6. Under the hypothesis of the previous theorem, let z° = (£°, é 0 el
and the sequence z" defined by

n+

" =ghogl (z"). n =0, (V1.25)

for t < tg. Assume that for all n, the numerical solution z"* remains in a ball Bys of
2 fora given M < M. Then there exists a constant ¢ such that,

H.(z") = H.(z") + O (M2N+1) . for nt<ct V.

Proof. As all the Hamiltonian functions considered are real (and in fact homogeneous
symmetric polynomials), we have for all n, z" = (§",£"), i.e. z" is real. Hence for
all n, H;(z") e R.

We use the notation of the previous theorem and we notice that H,(z) is a conserved
quantity by the flow generated by H.. Therefore we have

He (") = He(z") = He (¢p © 04, (z") = He (¢}, ()
and hence
|He (") = H (2")] < ( sup IIVHr(Z)Ileoo) lep o 0, ") = 0F, )| -
z € By,
Now using (VI.19) and the fact that z”* € Bjs, we obtain for all n,
|H1: (Zn+1) _ HT(Z")| < 4JTCNM2N+1‘EN+1,

and hence
|H (") — H, (2°)] < (no)e ™' MPN H1N (VL.26)

for some constant c¢. This implies the result. |

4 Fully discrete scheme

In this section, we consider the case of fully discrete approximations of the solution
u(t, x) of the cubic NLS equation (VI.1), obtained by splitting methods. Let us re-
call that the discrete Hamiltonian associated with the cubic nonlinear Schrodinger
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equation is given by (see (I11.40))

A
HX(E ) =T5 + PX .= Z a*ana + ) Z §ar6a2Mas Ny

aeBK aj+ay—ay—as=mkK
a;j € BK |m|<1

(V1.27)
where we recall that BX is the finite set of indices defined in (II1.35).
Note that with the notation of Chapter III, we have (see Definition II1.16),

PRepK and |PK| =3

Moreover, PX is homogeneous of degree 4, and symmetric in (£, ): with the defi-
nition (II1.17) we have PX ¢ § ?4{{1. In particular the condition (IV.17) is satisfied
(with Cy = 3).

Recall moreover that the exact flows of PX, TX and HX preserve the space (see
(II1.51))

AK =1z, = (Eana) [Ea=10a=0 if a¢ BX} L.
In this section, we consider the fully discrete splitting method
1 ~
(P;K % AK = ¢;IK
where A is a diagonal operator

Ao= ) Aabatla. with A4 =p(ra’). a €l

aeBK

with B(x) = x or B(x) = 2arctan(x/2). Note that here the natural CFL number is
given by co = TK?/4, as all the frequencies of the linear operator are smaller than
K/2.

We see that we can follow the same strategy as in Section 1: We seek a modified
Hamiltonian ZX (1) = Aé( + erK + IZZZK + --- such that for all # < 7, we have

QO;JK ° 901140K = galzK(t)-

As before, the equations for the Hamiltonian functions Z f are given by (compare
(V1.28)).

By
CESWVANESY o > ady g --adyx rk. (VL.28)

k>0 " Li+-+Lg=n
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The following proposition is the extension of Proposition V1.4 to this fully discrete
case:

Proposition VI.7. Let N > 0 be fixed, and let PX be the Hamiltonian (V1.27).
Assume that T and K satisfy the condition

2
K% < 487! . VI.29
TKT<4p (N—|—1) (V129)

Thenforn < N we can define homogeneous symmetric polynomials ZX € 8 ‘7)2Ln 123n
satisfying the equations (V1.9) up to the order n, and such that there exist constants
C, < oo independent of K, and such that H Zf “ < Cy.

Proof. The proof is very similar to the proof of Proposition VI.4. The condition
(VI.29) corresponds to the CFL regime (VI.13). The fact that the norms of the poly-
nomials Zf are independent of K is a consequence of the estimate (I11.47) of Propo-
sition III.18. |

The following result is the fully discrete version of the backward error analysis
Theorem VI.5. Recall that we have AX C ¢!, and that Bys denotes the ball of ra-
dius M in ¢!,

Theorem VL8. Let N > 1 and My > 1 be fixed, and PX the family of Hamilto-
nian functions (V1.27) depending on K. Then there exist constants ty and Cy de-
pending on My and N such that the following holds: For all t < t9 and K > 1
satisfying the CFL condition (V1.29), there exists a real Hamiltonian polynomial
HTK € 8PaN 23N such that for all M < My and zK ¢ AKX N By, we have

[o5x 0 0l (75) = 05k (5) |4 = CumN 1N+, (VL30)
Moreover, for K e AK N B we have
HE(5) = HEO (K)| = cyem® (VL31)
where
1 A iAgped
HrK’(l)(Z) = Z ;,3 (Taz) EaNa + 5 Z ox (iAa < ) — ISaEbncnd,
ae BK a+b—c—d=mK P abed

(@b.c.d)e (BK)" Im| <1
(V1.32)

where we recall that Agpeq = ra + Ap — Ae — Ag with Ay = B(ta?), a € BX.

Proof. The proof of this theorem is straightforward using the proof developed in the
previous Section. The key argument is that the constants appearing in the control of
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the Hamiltonian polynomials Z;, j = 1,..., N, do not depend on K by the result of
Proposition III.18. |

As in the linear case, the specificity of the fully discrete case with CFL is that the
Hamiltonian

1
Z ;,B(Twa)fa Na

aeBK

controls the H' norm of zK € AKX In particular, we get the following result:

Proposition VI.9. Under the hypothesis of the previous theorem, there exists a con-
stant ¢_depending on N, My and 7o such that the following holds: Let ZKn =
(K EKM) be the sequence defined by

Kn+1 _ 1t 1 K.,n
z = $pr OV K (=*")

with initial value z5° € AKX and where © < 19 and K satisfy the CFL condi-

tion (V1.29). Assume that for all K and all n, we have zKn e By with M <
min(M, 1). Then for all nt < ct™N, we have

1 1
Y BEaP)IER P = Y —BElaP)ES P < Mt (VI33)

acBK acBK

for some constant C independent of K.

Proof. The proof is the same as the proof of Corollary VI.6: we first can prove (com-
pare (V1.26)) that for all n,

‘HIK (z") - HEK (20)‘ < (n)e MV 1IN

where H IK is defined in Theorem VI.8, and for some constant ¢ independent of M, t
and n. But this shows that

K = HEE)| < a2V

for nt < ct~N. Using estimates on the homogeneous polynomials Z j of degree
2j + 2, we obtain that (VI.33) holds with an error of the form

(9(M4+M6++M2N+1):(9(M4)

provided that M < 1 (and N > 2). [ ]
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In particular, we get the following corollary, which is the fully discrete version of
the global existence result of Proposition II1.14:

Corollary VI.10. Under the assumption of Theorem VI.8, there exist &y such that the
following holds: For all ¢ < gy, K > 1 and t < 1y satisfying (V1.29), let UK0(x) =
> yenk E80e X and assume that

H Ko K.0

a

| o = — .

4

Then if UK (x) = > 4ecBK Sf’"ei“ X is the function obtained after n iterations of
the splitting method ¢ 114 k © 95k, we have
0

Age

—N K,n
Vnt <ct™ ", HU g =

for some constants ¢ and A independent of K.

Proof. We set for all n > 0, zKn = (gKn gKny ¢ AK Recall that there exists
a constant C such that for all z € AKX, we have (see (I11.12))

lzll,, <C ||Z||e% . (V1.34)

Il 41
Hence we have that zK% € Bc,. Let us set M = Ae, where the constant A will be
defined later. We can always assume that M < 1 < M, in Theorem VIL.8, and that
A>C.

As long as z

Z %ﬁ(f|a|2)‘(SK’n)a‘2§C1M4—}— Z %ﬁ(f|a|2)‘(%—K,o)a2

Kn e By andnt < etV the preservation relation (VI.33) implies that

acBK aeBK
< At + &, (VL35)
for some constants C; independent of K. Here, we used the fact that 8(x) < x for all
x > 0, and that f’o o =&
1

Now for all @ € BX, using equation (VI.29), we have ta® < 487! (2n/N + 1), and

hence there exists Bg < 1 such that, using the fact that for all a € BX, B(ra?) >

Bota®. Using (V1.35), we get the following: as long as zX" € By andnt < ct™V,

we have

2 1 1
< —C A% + —¢°

H vt Bo Bo

1 1 .,
m =gy 2 R |,

and hence using (VI1.34),

2 C? ia Cr,
< —Cl A" + —¢”.
=By Bo

=
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. 2 . .
Taking A such that A? = 2‘% > (2, there exists gy such that for & < g, the previous
relation yields

HZK,n < A2 = M2

2
Al

This implies that for all nt < Cy N,
yields (as we have C > 1 in (VI1.34))

iZK’” Hzl < M, and the relation (VI1.35)

2

HUK,n o SAZEZ

and this finishes the proof. |



VII Introduction to long time analysis

In this chapter, we still consider the cubic nonlinear Schrédinger equation
i0u = —Au + Aulu, (VILI)

on the torus T¢ withd = 1 ord = 2, and we will assume that the initial condition is
small, i.e. that (0, x) is of order § > 0 in £, with § — 0 a small parameter. We are
interested in the behavior of the solution with respect to §. By making the change of
unknown u + u /8, and by setting ¢ = §2, we see that it is equivalent to consider the
family of equations

i0u = —Au+ erlulPu, u0,x)=u’x)~1, (VIL.2)

where & — 0 is a small parameter and u” is fixed and independent of . Here we will
assume that A € {£1}.

As we shall see below, this equation is resonant because all the frequencies of
the linear operator —A are integers. In contrast, when the linear operator is slightly
perturbed, and of the form u + —A + V x u for some potential 1/, then for a large
class of potential V', the frequencies become non resonant, and many results exist
concerning the long time behavior of the corresponding solution u(¢, x). Note that
the fact that V' acts as a convolution and not as a multiplication allows us to calculate
explicitly the spectrum of the operator —A + V* which turns out to be diagonal in
the Fourier basis. Such a model has become popular to analyze resonances effects
and the long time behavior of (VI.1), see for instance [6], [11], [16], [22] and the
references therein. Typically, for a generic potential V' making the frequencies non
resonant, it can be shown that the preservation of the action — see (I.19) — holds for
a very long time or order ¢,&¢~" for all r (with a constant ¢, depending on r) or even
exponentially large when the solution is analytic.

Here, we will only consider the case where V' = 0, and show that the situation
differs significantly between the dimension 1 or 2. In the sequel, we will not give
results for very long times (of order ™ for any r), but only for times of order s™!.
We will then discuss the behaviors of fully discrete numerical solutions over this time
scale.

In a first step, we will consider the case of the dimension 1, and we will prove
that no significant energy exchanges between the modes &, a € Z can be observed:
the actions |£,|> of the solution are almost preserved, see (I.19), over a long time
t < e~!. The situation is very different in dimension 2, where it can be proved that
there is an energy cascade transferring energy from the low modes to arbitrary high
modes (see Figure .12 and [7]). In these two situations, we will then analyze the long
time behavior of the fully discrete solutions obtained by the splitting schemes studied
in the previous chapters. The main tool will be the modified energy constructed above.
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1 Resonant system

The goal of this Section is to show that the understanding of the qualitative behavior
of the solution of (VII.2) relies on the analysis of a resonant system driving the energy

exchanges between the modes, at least in the time scale t < gL

1.1 An approximation result. With the notation of Chapter III, equation (VII.2)
can be written

Eo = —ilalta—ieh Y Encka, (VIL3)
a=b—c+d
Na = i|a|2na +iel Z Nb&cNa.
a=b—c+d

The next result shows that over the time scale @ (¢~!) the solution of the previous
system is well represented by the superposition of the solution of the linear flow and
the solution of a resonant system. This is a relatively standard result. We refer to [7]
for a discussion on more general approaches and references.

Proposition VIL1. Ler 20 = (£°,£%) € (. There exist constants gy, Cand T > 0
such that for all e < gy and fort € 0, T/¢), there exists z(t) = (£(t), £(¢)) a solution
to (VI1.3) with z(0) = z°. Moreover, we have

2

aezd

£a(t) — e—""“'zyam)\ <Cs (VIL4)

where y(t) = (ya(t))gega is the solution of the system

Va = —ik > VoTeVd (VIL5)
a=b—c+d
lal* =15 —|c|* +|d|?
with initial value y(0) = £°, and fort € [0, T].
Proof. We define Y (¢) by
Ya(t) = e1Fe, ().
We calculate that Y (¢) satisfies the equation

Yo=—iek Y V¥ Yge !acva
a=b—c+d
where Q2,050 = |a|* + |c|> — |b|* — |d|?, or equivalently

t
Yo(t) =) —ieh > /YbYche_”'Qadeds.
a=b—c+d"”"
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By making a change of time 0 = et, we define y(0) = Y(0/¢) = Y (¢). This function
satisfies

a=b—c+d
— 5"~ Z / Y5()7e)ya()ds + Ra(y,e)
a=b—c+

o 2ok el b iar

where

Ray.e) = =it ), / Y5 (5)Fe(s)ya(s)e ™ Pacrads.

=b—c+d
-Qacbd #0

Assume that ||y(o)]|| a = M for o € [0, T]. Then we have from the previous equation

that H %y(a) Hzl < TM? for o € [0, T]. Using an integration by parts, we thus see
that

0 =it R4 d
Ray.e)=er Y (fo e G077l s

=b—c+d
e—iggacbd ’
_ [—yb(s)irc(S)Yd (S)} )

Rucpa #0
S2acbd 0

and hence as §2,.pq # 0 implies |§2,.p4| > 1, we see that
IR(y.&)ll,, <eC(M) (VIL6)

where the constant C depends on M.

Now let T be such that there exists a solution y (o) to the equation (VIL.5) on the
time interval o € [0, T']. Such a time is given by Proposition II1.6. In particular, there
exists M such that ||y(cr)||€1 <M/2foro €[0,T].

We define the vector field F by the relation

Fa(§) = —iA > Epécka. (VIL7)

a=b—c+d

laf? = b —|cf? +[dP?

We have by definition

Valo) = £ + / Fa(y(s)) ds
0
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for o € [0, T'], and moreover

Ya(0) = £ + / Fa(y(s)) ds + R(y. ¢).
0

Using the fact that F is Lipschitz on the bounded sets of £!, we see that there exists
a constant L such that as long as ||y (o) ”Zl < M, we can write using (VIL.6)

19@) = 7@l =L [ 156) =5(5)l 1 ds + £ COM),

Using the Gronwall Lemma, we first see that if ¢ < gy is small enough, we have
||y(0)||£1 < M for all times o € [0, T'] and moreover,

”y(U)_YOTNU1f§C8

where C depends on 7' and M. Going back to the original time ¢t = o/¢ then yields
the result. |

1.2 The resonance modulus. We consider the resonant system (VIL.5) associated
with the vector field F, defined in (VIL.7). First, we note that this equation is again
a Hamiltonian equation associated with the Hamiltonian

p
ZEm =3 > Eabpnena.- (VILS)

a+b=c+d
lal?> + 61> =|c|* +|d?

To understand the qualitative behavior of y(¢), we are led to study the resonant set
K ={a,b,c,d €eZ%|a+b—c—d =0, and |a|>+|b|>—|c|*—|d|* = 0}, (VIL9)

which drives the energy exchanges between the frequencies in the dynamical sys-
tem (VIL.5). The following lemma describes the geometric structure of this set of
frequencies:

Lemma VIL2. A quadruplet (a,b,c,d) € Z¢ is in X precisely when the endpoints
of the vectors a, b, c, d form four corners of a non-degenerate rectangle with a and b
opposing each other, or when this quadruplet corresponds to one of the two following
degenerate cases: (a = c¢,b =d), or (a =d,b = ¢).

Proof. Using the first relation, we obtain |a + b|*> = |c +d|*>, and hencea-b = c-d.
Then we calculate that
(a—d)y-(b—d)=a-b—d-(a+b—d)
=—d-(a+b—c—-d)=0,
which implies the statement. |

Note that in dimension 1, only the second part of this lemma is applicable. We will
first study this situation for the continuous, semi-discrete and fully discrete solutions.
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2 The one-dimensional case

2.1 Long time preservation of the actions. As seen from Lemma VII.2, the reso-
nant Hamiltonian Z defined by (VII.8) does not contain many terms in dimension 1:
only monomials £,&,7.n4 such that (¢ = ¢,b = d), or (a = d,b = c¢). We thus
have explicitly

A
z=3 Y42 ) L (VIL10)
ac’l a,beZ
a#b

which means that it depends only on the actions

I,(2) == Eana, a € Z. (VIL11)
Note that for real z = (£, ) and in any dimension d, we have that I,(z) = |€,*.
Thus this term represents the energy of the mode corresponding to a € Z¢ in the
function u(x) = ), cya Ea'*™.
In view of (VII.10), we have ford = 1,

YaeZ, {I,,Z}=0,

which means that for all @ € Z the actions I,(y(t)) are constant along the solution
Va(t) of (VILS). As a consequence, we get the following result, which is valid only
in dimension 1.

Theorem VIL3. Let 20 = (£°,£%) € {'. There exist constants &, CandT >0
such that for all e < ey andt € [0,T/¢], there exists z(t) = (£(¢),&(t)) a solution
to (VIL3) with z(0) = z°. Moreover, we have for all t < T /e,

> alz(1)) = 1a(z(0))| < Ce. (VIL12)

ac’

Proof. Using (VIL.4) and (VILS5), there exists M such that forall e < eyandt < T/e,
we have ||z(t)||£1 < M. For a € Z, we can write

[a(2(1)) — 1a(2(0))]
=< Ha(z()) = La(y()] + [La(y(@)) = La(y(0))[ + [1a(¥(0)) — La(2(0))].

In the right-hand side of this equation, we have used the previous remarks that
1,(y(t)) = 1,(¥(0)) for all ¢t < T/e, so the second term cancels. Moreover, the
third term vanishes, as y(0) = z(0). For the first term, we first note that for alla € Z,

1,(y(t)) = 1,(J(t)) where y(¢) is defined by y,(¢) = e‘”'“'zya(t), a € Z. Hence
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as z(¢) and y(¢) remain bounded by M in £!, we easily obtain

Y Ha(z(t) = La(y(O)] < Y 2M|ya(t) — Ja(t)| < 2MCe

ac’ ac’Z

using (VII.4). This yields the result up to a slight modification of the constant C. H

The previous result shows the almost preservation of the actions over a time of or-
der ¢!, Note that this time is larger than the one given by standard a priori estimates
applied to (VIL.2).

This result holds in the very specific case of the resonant cubic nonlinear Schrod-
inger equation in dimension 1. We will see later that this result is no longer true in
dimension 2. Moreover, it is important to mention that the preservation result (VII.12)
holds true for much longer times using the integrability of NLS in dimension 1
(see [37]) and the existence of a global change of variable putting the system into
an integrable form preserving some modified actions (see [23]).

We will not give more details, but will rather discuss the ability of numeri-
cal schemes to reproduce the qualitative behavior described by the preservation re-
sult (VIL.12).

2.2 Aliasing and numerical resonances in dimension one. As we have seen in
Chapter III, the semi-discrete Hamiltonian obtained by Fourier pseudo-spectral
method applied to (VII.2) is given by (see (I11.40))

A
HEEm = ) laPana+5 3. Eafpiena.
aeBK a+b—c—d=mK

a; € BK |Im| <1

where BX is the discrete set of frequencies defined by (II1.35). The solution zX () =
(£X(1), 7% (1)) to the corresponding Hamiltonian system satisfies the equation (com-
pare (VIL.3)), foralla € BK,

8 =—ilaPEX —iex Y gakel, (VIL13)
a=b—c+d+mK
m=-—1,0,1
e =ilaPnf +ish Y nfEsa
a=b—c+d+mK
m=-—1,0,1

We see that we can perform the same analysis as before, using the method of Propo-
sition VII.1. We get the following semi-discrete approximation result:

Proposition VIL4. Let Cy > 0 be a constant. There exist constants &y, C and T > 0
such that for all ¢ < ey all K > 1 and all z%° = (£59, £K.9) such that HZK’0| a =
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Co, there exists for t € [0, T /€] a solution zX (1) = (X(1), EX(1)) to (VIL.13) with
z(0) = zK0. Moreover, we have

2

aeBK

X (1) — e_i”“'zyf(st)‘ <Ce, (VIL14)

where yX(t) = ( yf (t)) geza is the solution of the semi-discrete resonant system

yK =—_ix > vEyKy K (VIL15)
a=b—c+d+mK
m=-—1,0,1
jal? = b2 = |cl* +1d]?

with initial value y%(0) = £5°, and fort € [0, T).

The proof of this proposition is actually exactly the same as the proof of Proposi-
tion VIL1, using the fact that £! estimates are the same with or without the aliasing
relation between the frequencies.

We see that the main difference with the continuous problem studied in the previ-
ous section is that we have to consider the discrete resonant set defined by

KX ={(a.b.c.d) € (BX)|a* + |b]* — |c|*—|d]* =0 and
a+b—c—d=mK, me{0,£1}}.

As we will see in the lemma below, this discrete resonant set is more complicated
than for the continuous case, and depends on the arithmetic nature of the integer K.

Lemma VILS. The following holds:

(i) Assume that K > 3 is a prime number. Then XX contains only terms such that
a=dandb =c,orb=d anda = c.

(ii) Assume that K /2 > 3 is a prime number. Then XX contains only terms such

thata = d and b = ¢, or b = d and a = ¢, and the terms such that a = —d
and b = —c, ora = —c and b = —d, under the constrainta + b = mK /2,
m = =+1.

Proof. Calculating modulo K, we see from the first relation that
la +b]*> = |c +d[* moduloK,

and hence 2ab = 2c¢d modulo K. Using the same calculation as in the proof of
Lemma VII.2, we see that we must have

2a—d)(b—d)=0 moduloK. (VIL16)

(i) Assume that K is prime, then the previous relation implies thata = d orb = d
modulo K. But as the indices are in BK = {—=P,...,P}where K = 2P + 1,
we must have @ = d or b = d. This shows the first part of the lemma.
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(i) To prove the second, let us write K = 2P with P prime. In this situation, we
have BK = {—P,..., P — 1}. The relation (VIL.16) implies now that a = d
or b = d modulo P. Hence we can have for instance a = d + 6P with § €
{0, £1}. In this situation, we havea +b —c —d = 2mP = b —c + P, which
impliesb = c+ (2m—§)P.1f § = 0, wehavea = d and b = ¢ 4+ 2m P which
is possible only for m = 0 (as b and ¢ are in BX).

When § = +1, we must have for the same reason m = §, and b = ¢ + mP and
a=d+ mP.
This implies that a*> = d? + 2ma P — P? and b*> = ¢ 4+ 2mcP + P? and hence

a’+b*—c?—d*=2mP(a+c¢)=0.

But this shows that @ + ¢ = 0, and hence a = —c. From this relation, we easily
deduce thata + b = mP,and b = —a + mP = —d. The other cases are treated
similarly.

Conversely, we easily verify that all the pointsa = —c and b = —d ora = —d and
b = —c under the constrainta + b = mP are all in XX, [ |

The following result constitutes a semi-discrete version of Theorem VIL.3. It is
a consequence of the previous lemma and of the approximation result given by Propo-
sition VIIL.4:

Theorem VIL6. Let Cy > 0 be a constant. There exist constants gy, C and T > 0
such that for all ¢ < gy, all K > 1 and all K0 — (SK’O, EK’O) such that HZK’O Hzl <

Co, there exists zK (1) = (EX(1), EX(1)) a solution to (VI1.13) for t € [0, T/&] with
zK(0) = zK0. Moreover, we have the following preservation properties: for all t <
T/e,

(i) If K is a prime number, then

2

aeBK

Lo (X (0) = I (% (0))‘ <Cs (VIL17)
(ii) If K = 2P and P is a prime number, then

>

a=0

Ja (Z5()) = Ju (5 (0))‘ <Cs, (VIL18)

where foralla = 0,..., P, Jo(2) = 1,(2) + [_4(2).

Proof. The first part is a consequence of Lemma VIL.5 and Proposition VIIL.4, using
the same technique as in the proof of Proposition VIL.3.

To prove the second part, we note that the Hamiltonian associated with the semi-
discrete resonant system (VIL.15) in the case K = 2P and P is prime is written,
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using the previous lemma,

ACOEES DRSS RS DR I

ac’ a#b a,be BK me{£1}
a+b=mK/2

(VIL.19)
Hence, we see that the semi-discrete resonant Hamiltonian does not commute with
the actions. However, it commutes with the super actions J, = I, + 4, fora €
{0, ..., K/2}. To see this, we calculate

a,6an-a} = Ua,6an—-a} + {1-a,8al-a}
= —Eal—a +N-aba = 0.

The equation (VII.18) is then easily shown using the fact that J, is constant along the
flow of (VIIL.15). [ ]

Note that the preservation of the super actions J, yields the preservation of the
actions in the case where the initial data #°(x) is odd or even, i.e. satisfy u%(—x) =
u°(x) or u®(—x) = —u’(x). Actually such a property is carried to the exact solution
u(t, x) for all time, as well as for the semi-discrete solution, as can be easily verified.
But in such a situation, we have |1, (x)|*> = I, = [u_q(x)|> = I_4.

In more general situations, nonlinear instabilities can be observed. The example
given in the introduction (see equation (I.21)) is constructed by noticing that when
K =30 =2x3 x5, we have (-5, 14, —10, —11) belonging to XX (form = 1).

2.3 Fully discrete schemes. We now consider the case of fully discrete solutions
obtained by splitting schemes. Actually, the results of the previous chapter show that
the discrete dynamics obtained by a fully discrete splitting method can be interpreted
as the exact flow of the modified Hamiltonian H IK given by Theorem V.8, up to an
error of order O (V') where N depends on the CFL number.

In the following, we will only consider the case of the “standard” splitting, for
which the filter function g is the identity. In this case, the modified Hamiltonian can
be written (see equation (V1.32) with Agpeq = t(a® + b* — c* — d?))

e
HEEm = ) laPbana + = (VIL.20)
aeBK
1T82qpbcd 2.6
X p Eabpnena + 0O (e°z
a+b—;d =mK exp(l T‘Qade) -1 ! ‘ ( )
(a,b,c,d) e (BK)* |m| <1

where we recall that 2,4 = a®> + b> —c? — d?. Note that in the construction of the
modified energy, as the polynomial P is of order || P| =~ ¢, we easily see that for all
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n, |Z,| ~ &". Hence, the estimate (V1.30) is written here as

if HZK H . < M and ¢ is smaller than some fixed &y. Using the expression of the

Hamiltonian (VIL.20), we see that we can perform a similar analysis as before for the

exact flow (p;I « - In particular, as the difference between the first two terms H ,K 1 (see
T

(VI.31)) of HTK and the full Hamiltonian HTK is of order &> for bounded z, a result
similar to Proposition VII.4 and Theorem VIIL.6 can be derived. However, the proof
is more complicated than in the semi-discrete case, and requires some preliminary
results.

< CNM2N+18N+1.L,N+1 (VH21)

Opr 09l (5) = ok (5] 4

Lemma VIL.7. Let M be a fixed number. Then there exists a constant C depending
on M such that for all & the following holds: Assume that K is prime, and fora € BX,
let us define

A it
G, n) i= =5 Re > SRy —Tiebenena | (VIL22)
a=-b+c+d+mK P abed

Im| <1
Rabea #0

where Qupeq = a>+b>*—c?—d?, and let 250 = (59 nK-0) be such that HZK’O Hzl <
M. Let us define z%! = 90;{,{ (z%9). Then we have

2

aeBK

15 (50 = 15 (K0)| = cee

where for all ¢ and all a € BX,
1:(2) = 14(2) + €Gq(2). (VIL.23)

Proof. For t € (0,1), let zZK(1) = (quK(zK’O) = (£X(1), EX(1)) be the solution of

the modified Hamiltonian system (VII.20). We can write for all a € BK,

EX = —ilaPEf —iea
1T82apcd EKeKsK 2vK (¢K EK
X Z ex (lT.Q )_ISbEch+EXa (S 75 )
a=—b|+c|+1d+m1< p abed
m| <

where X X (z) is a Hamiltonian vector field that is bounded for bounded z € £!. With
the notation of the previous chapter, the Hamiltonian function associated with the
vector field XK is (Z, 4+ --- + Zn) /2.
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Following the proof of Proposition VII.1, we define ¥ X (¢) by
YX@) =" eX @), a e BX.

Using the same method as in the proof of Proposition VII.4, we calculate that
IaK(t) = I,(Y%(1)) satisfies the equation

, its2 [ .
IaK([) — _Relier Z — (itgabcd) — lYaKYbKYCKYdYe—thabcd
a=—b+ctd+mk P abed
Im|<1

+ XK (K

where XX is a polynomial vector field in ¥ X, bounded in £' if Y X is in £'.
Hence, if we assume that H YX@) H o = M, then there exists a constant C(M) such
that for ¢ € [0, 7],

~ 1T82abcd
1X(t) = 1X(0) —Re | ieA 3 782
a=_b+c+d=mKeXp(lf~Qabcd)_1
Im| <1

t
x / VXV KyKyKe—isQaveags | 4 RK (1, v K)
0

where

|RE@.Y5)|, = canee. (VIL24)
Now let us define

iT S
G0 =Ca ¥ () = —Re |2 3 . EREREREK |
a=_b+c+d=mKeXp(lT~Qabcd) -1
Im|<1
-Qabcd 7é0

The previous estimate combined with an integration by parts, and the fact that K is
prime (see Lemma VII.5) shows that

1X@) +eGE(x) = 1X(0) + eGX(0) + RE (z, Y X)

where | Rq(t, Y X) ”el < Ce&?r if €X(0) € Byy. This shows the result. [
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Theorem VIL8. Let N and M > 0 be fixed. There exists a constant C, T, 1y and &,
such that for all ¢ < gy, the following holds: For all prime integer K and all T such
that the CFL condition

81
N +1

holds (compare (V1.29)), let zX0 = (SK 0 EK ) be such that “ZK OH , < M/4, and
foralln € N, let

TK? <

Kn+1._ 1 1 K,n
z = Ppr Pk (=)

be the fully discrete numerical solution obtained by the splitting methods applied to
the semi-discretized Hamiltonian

A
PREem == Y bnena and ANE = Y thane.

a+b—c—d=mK ae BK
Im| <1

Then we have

2

aeBK

m.|'ﬂ

1, (ZK’") -1, (ZK’O)‘ <Cs, for nt <

If K = 2P with P prime, the same results hold true for the super actions J,
I, + 1,

Proof. Using the previous result, combined with (VIL.21), we easily see that as long

as zK" is in By, we have the estimate

Z ‘(I“(ZKJhLl) + EGa(ZK’n+1)) - (Ia (ZK’n) +¢eGg (ZK’n))‘

aeBK

<Cét+e Y ‘ Kt — g, (ga;{TK (ZK’”)>‘

aeBK
S C(82T+C8N+2TN+1),

where the constant C depends on M. Hence if we assume that HZK 0 H . < M/4, we

obtain that ), I} (z%9) < M/2if ¢ < g sufficiently small (see (VII.23)). Now
using the previous estimate, we have that as long as HZK o <M,

2

a€BK

e

Koy _ Ij(ZK’O)‘ < (n1)C (2 + N 2N

But this shows that for

nt < Tgr = —min (8_1,8_N_1‘L'_N)

C

’
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and HZK’" Hel < M, we have

2

aeBK

1 (57) = 12 (%) <

But this shows that there exists a constant C depending on M such that as long as
2K isin By and nt < Ts r,

2

aeBK

Lo (57) = 14 (%) = ce.

But for ¢ sufficiently small, this proves that zKnisin B m for all n such that nt <
Te.. This proves the result, as N > 1 and t < 19, so that T, , = C~'e™! for g
sufficiently small. |

Note that this result explains the behavior observed in Figures 1.9, .10 and I.11 in
the introduction.

3 The case of dimension two

3.1 Energy cascades. We consider now the case of the Schrodinger equation (VIIL.1)
set on a two-dimensional torus T2. In this situation, Proposition VII.1 applies, and
the analysis of the long time qualitative behavior of the solution u(¢) of (VIL.1)
can be made through analysis of the resonant system (VIIL.5). The main difference
with the one-dimensional case is that the frequencies can now interact in this reso-
nant system, provided they are geometrically distributed on corners of rectangles (see
Lemma VII.2). Using this, we can prove the following result (see [7]):

Theorem VILY. Let d > 2, and u® € C*°(T?) given by
u’(x) = 14 2cosx; + 2cos x».
For A € {£1}, the following holds. There exist gy, T,Cy,C > 0 and a family

(ca)aewn,, with cq # 0 for all a, such that for 0 < ¢ < g, (VI.1) has a unique
solution u(t,x) =Y, c ya §a(1)e'?* € C([0,T/e]; L"), and:

Va € Ny, V1 €[0,T/el,  |€a (1) — ca(en)® 7| < (Coen) " + C,

where the set Ny is given by

Ny = {(0, £27), (£27,0), (£27, £27), (F27, +£27), p € N}. (VIL25)
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Arbitrarily high modes appear with equal intensity along a cascade of time layers:

1
Vy €]0, 1], VO < 7 Ya >0, 3Fe; €]0,8], Ve €]0,¢],

—2 >
§a el—v/(aP—1)

8y
I.

=

1 0
Va € Ny, |a|<a(log—) ,
e

This theorem shows that for some high modes a € N satisfying |a| < « (log %)0’
the action /,(¢) of the solution of (VIIL.1) with initial data u°(x;, x,) = 1 +2cos x| +
2 cos X, satisfies

L.(ta) > ce”,

for some time 7, increasing with |a|. This is very different from (VII.12), and shows
the possibility of energy transfer from low to high modes

In the following, we will not give a complete prove of this theorem, and refer
to [7] for the details. However, we would like to give a hint and explain the reason
making this initial data produce an energy cascade.

To do this, we now turn to the analysis of the resonant system (VIL.5). The main
remark for the forthcoming analysis is that new modes can be generated by nonlinear
interaction: we may have y, # 0 even though £0 = 0 in the system (VIL5).

Recall that nonlinear interactions in the resonant system are created from frequen-
cies lying on rectangles, according to VII.2. Let us introduce the set of initial modes:

Jo=1{aeZ?| £ #0}.

In view of (VIL.5), modes which appear after one iteration of Lemma VII.2 are given
by:

Ji={aeZ\Jy| ya(0) #0}.

One may also think of J; in terms of Picard iteration. Plugging the initial modes (from
Jo) into the nonlinear Duhamel’s term and passing to the limit ¢ — 0, J; corresponds
to the new modes resulting from this manipulation. More generally, modes appearing
after k iterations exactly are characterized by:

k—1 dk
Je=1a e\ JJe| S7va0) #0p.
{=0
‘We now consider the initial datum
u0(x) =14 2cosx; +2cosxy = 1+ e 4 7% 4 ¥ 4 7% (VIL26)
The corresponding set of initial modes is given by

JO = {(Ov O)v (1’ O)v (_17 0)7 (07 l)v (07 _1)}
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It is represented on the following figure:

o

After one iteration of Lemma VII.2, four points appear:

Jl = {(17 1)7 (17 _1)’ (_17 _1)’ (_17 1)}7

as plotted below.

o8

The next two steps are described geometrically:

I IItII

As suggested by these illustrations, we can prove by induction:

Lemma VIL10. Ler p € N.

o The set of relevant modes after 2p iterations is the square of length 2P whose
diagonals are parallel to the axes:

2p
NCP = | ) Jp = {(ar.a0) | |a1| + |aa| < 27}
=0
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o The set of relevant modes after 2 p + 1 iterations is the square of length 2! whose
sides are parallel to the axes:
2p+1
NCPED = | ] J = {(a1.a2) | max(|ay|.|aa]) < 27}
=0

After an infinite number of iterations, the whole lattice Z? is generated:

¥ =72
k=0
Among these sets, our interest will focus on extremal modes: for p € N,
NEP = {(ar.a2) € {(0.£27), (£27.0)}} .
NEPHD = ((a, a5) € {(£2P, £2P), (F2P, £2P)}}.

These sets correspond to the edges of the squares obtained successively by iteration
of Lemma VII.2 on Jy. The set N, defined in Theorem VII.9 corresponds to

Ne = | VP
k=0

The important property associated to these extremal points is that they are generated
in a unique fashion:

Lemma VIL11. Letn = 1, and a € J\/*("). There exists a unique pair (b,c) €
NO=D 5 N =D such that a is generated by the interaction of the modes 0, b and
¢, up to the permutation of b and c. More precisely, b and c are extremal points

generated at the previous step: b, c € J\/*(n_l).

Note however that points in ,N*(") are generated in a non-unique fashion by the
interaction of modes in Z<. For instance, (1, 1) € J; is generated after one step only
by the interaction of (0,0), (1,0) and (0, 1). On the other hand, we see that after
two iterations, (1, 1) is fed also by the interaction of the other three points in *(1),
(—=1,1), (=1,—1) and (1, —1). After three iterations, there are even more three-wave
interactions affecting (1, 1).

The method to prove Theorem VIL.9 is to show that we can compute the first non-
zero term in the Taylor expansion of solution y,, () of (VIL.5) at¢ = 0, form € N,.

Letn > landa € J\/*("). Note that since we have considered initial coefficients
which are all equal to 1 — see (VII.26) — and because of the symmetry in (VIL.5), the
coefficients y, () do not depend on a € ,N,f”) but only on 7.

Hence we have

1o da(n)ya 0+ e +1 1(1 ~ e)a(n) dom + y,
a(n)! dret a(m)! Jo drem+1

for some «(n) € N still to be determined.

ya(l) = (61)do,
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The second term can be controlled, and is order 121 In fact, by analyticity of
the function ¢ — y,(¢), we can show that there exists Cy > 0 independent of a and n
such that

[oz(n)-i-l 1 N dot(n)-i—ly
_ _ (n) a
() =~ o /0(1 6 T (01)df

satisfies
Ira(t)] < (Cot)*™+1. (VIL27)
We refer to [7] for the details. Next, we write
Ya(t) = c(m)t®™ + r, (1), (VIL.28)

and we determine c(n) and «(n) thanks to the iterative approach analyzed in the
previous paragraph. In view of Lemma VII.11, we have

i).’a — 2AC(1’Z _ 1)2t2a(n—1) +0 <t2a(n—1)+1) ’

where the factor 2 accounts for the fact that the vectors b and ¢ can be exchanged in
Lemma VII.11. We infer the relations:

an)=2a(n—-1)+1 ; «a(0)=0.

_1)2
c(n) = —m% L c(0) =1
We first derive
an)=2"—1.
We can then compute, c(1) = —2i A, and forn > 1:
n ok n1_
ctntl)=i n+(121)2k=02n+1_k =1 nJrl(z)L)2 21"+1—k'
ko1 (25— 1) k=1 (261

We can then infer the first estimate of Theorem VIIL.9: by Proposition VII.1, there
exists C independent of @ and ¢ such that for 0 < ¢ < g,

T
§a(t) = ya(et)| < Ce, Ot < —.
€

We notice that since for a € :/V*("), la] = 2"/?, regardless of the parity of 1, we have
a(n) = |j|> = 1. For j € N, we then use (VIL.28) and (VIL.27), and the estimate
follows, with ¢; = c(n).
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To prove the last estimate of Theorem VII.9, we must examine more closely the
behavior of ¢(n). In [7], it is proved that for all n > 1, we have

le(n)| = 272"

We can now gather all the estimates together:

£ ()] = [en) )"

1 8[ zn_l 2}1
> | = — (Cpet)” —Ce

— (Coet)* ™M+ _Ce

2\ 2
1 (er\* ! "
> 2 (%) (1 —(2Cy)? 8[) _Cs. (VIL29)
To conclude, we simply consider ¢ such that
2 —1
et 2
el = gV Sf = — —
( 5 ) =¢g’, thatist = T yjam (VIL.30)

Hence for the time ¢ given in (VIL.30), since a(n) = |a|*> — 1, we have

(200" et = (2Cy)\F e/l =D

y 1
exp (|a|210g(2C0) — AP log (g)) .

Assuming the spectral localization

1 0
la| < « (log —) ,
€
we get for ¢ small enough

" ) 1\2° y 1\ —2¢
2Cy)" et <expla”|log—] log(2Cy) — log — .
e €

o2
The argument of the exponential goes to —oo as ¢ — 0 provided that

1
y >0 and 9<Z,

in which case we have 1 — (2Co)*'et > 3/4 for ¢ sufficiently small. Inequal-
ity (VIL.29) then yields the result, owing to the fact that C&? is negligible compared
toe¥ when0 <y < 1.

Finally, we note that the choice (VII.30) is consistent with et € [0, T'] for ¢ < &,
for some gy > 0 uniform in a satisfying the above spectral localization, since

1-26
g/em — o~atm tE < exp (—lz (log l) ) —0.
o )

e—0
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3.2 Simulating energy cascades. The energy cascade described above can be seen
in Figure [.12 where the step-size t is very small, and the number of modes K suf-
ficiently large. However, as seen in Figure .13 and I.14, the correct reproduction of
the energy exchanges is not guaranteed in the case of implicit schemes.

Actually, the results of Chapter VI remain valid in the two-dimensional case. Con-
sidering the numerical fully discrete solution obtained from a scheme of the form

@5k © ¢l x where

AKE M = Y Aabana

a€BK

where BX is a (two-dimensional) finite subset of indices, and where A, = B(t|a|?),
it can be shown that a result similar to Theorem V1.8 can be proven, with a modified
Hamiltonian of the form

K _ 1 2 ﬁ
HE (& m) —agK —B(rlaP)eana + -

iAac
XY g tEabmens +0(2)

eiAabcd —
a+b—c—d=mK
mezZ2, |m|<1

where Agpeq = Aa + Ap — Ae — Ag.
Hence we see that we can perform a similar analysis as in Proposition VII.1 for
instance, but the corresponding resonance modulus will be

{(a.bc.d)eZ?|la+b—c—d=mK, meZ’
and Ay +Ap —Ac— Ay :0}.

We thus see that except the case where B(x) = x, this resonance modulus does
not satisfy Lemma VII.2 in general, and the numerical solution will be unable to
reproduce correctly the energy exchanges. This is particularly the case for implicit-
explicit schemes based on the filter function 8(x) = 2 arctan(x/2). Note however
that if 7 is sufficiently small, then we have A, = t|a|*> + O(7?) at least for the low
frequencies, and we thus expect that, at least for them, the energy exchanges will be
correctly reproduced.

By using similar technics as developed in the previous section, it is possible to
prove that Theorem VIL.9 can be extended to the situation where B(x) = x. We do
not give the details here. Note that as the phenomena is a propagation of energy to
high frequencies, there is no aliasing problem until the frequencies of order K /2 are
reached by the cascade.
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