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new chapters on quantum chemical, molecular mechanical and hybrid potential
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Preface to the first edition

The reason that I have written this book is simple. It is the book that I would have
liked to have had when I was learning how to carry out simulations of complex
molecular systems. There was certainly no lack of information about the theory
behind the simulations but this was widely dispersed in the literature and I often
discovered it only long after I needed it. Equally frustrating, the programs to
which I had access were often poorly documented, sometimes not at all, and so
they were difficult to use unless the people who had written them were available
and preferably in the office next door! The situation has improved somewhat since
then (the 1980s) with the publication of some excellent monographs but these are
primarily directed at simple systems, such as liquids or Lennard-Jones fluids, and
do not address many of the problems that are specific to larger molecules.

My goal has been to provide a practical introduction to the simulation of
molecules using molecular mechanical potentials. After reading the book, readers
should have a reasonably complete understanding of how such simulations are
performed, how the programs that perform them work and, most importantly, how
the example programs presented in the text can be tailored to perform other types
of calculation. The book is an introduction aimed at advanced undergraduates,
graduate students and confirmed researchers who are newcomers to the field. It
does not purport to cover comprehensively the entire range of molecular simulation
techniques, a task that would be difficult in 300 or so pages. Instead, I have tried to
highlight some of the basic tasks that can be done with molecular simulations and
to indicate some of the many exciting developments which are occurring in this
rapidly evolving field. I have chosen the references which I have put in carefully
as I did not want to burden the text with too much information. Inevitably such a
choice is subjective and I apologise in advance to those workers whose work or
part of whose work I did not explicitly acknowledge.

There are many people who directly or indirectly have helped to make this
book possible and whom I would like to thank. They are: my early teachers in the
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x Preface to the first edition

field of computational chemistry, Nicholas Handy at Cambridge and Ian Hillier
at Manchester; Martin Karplus and all the members of his group at Harvard (too
numerous to mention!) during the period 1985–9 who introduced me to molecular
dynamics simulations and molecular mechanics calculations; Bernie Brooks and
Rich Pastor, at the NIH and FDA, respectively, whose lively discussion and help
greatly improved my understanding of the simulations I was doing; and all the
members of my laboratory at the IBS, past and present, Patricia Amara, Dominique
Bicout, Celine Bret, Laurent David, Lars Hemmingsen, Konrad Hinsen, David
Jourand, Flavien Proust, Olivier Roche and Aline Thomas. Finally, special thanks
go to Patricia Amara and to Dick Wade at the IBS for comments on the manuscript,
to Simon Capelin and the staff of Cambridge University Press for their guidance
with the production of the book, to the Commissariat à l’Energie Atomique and
the Centre National de la Recherche Scientifique for financial support and to my
wife, Laurence, and to my sons, Mathieu and Jeremy, for their patience.

Martin J. Field
Grenoble, 1998



Preface to the second edition

This edition of A Practical Introduction has two major differences from the
previous one. The first is a discussion of quantum chemical and hybrid potential
methods for calculating the potential energies of molecular systems. Quantum
chemical approaches are more costly than molecular mechanical techniques but
are, in principle, more ‘exact’ and greatly extend the types of phenomena that
can be studied with the other algorithms described in the book. The second
difference is the replacement of Fortran 90 by Python as the language in which
the Dynamo module library and the book’s computer programs are written. This
change was aimed to make the library more accessible and easier to use. As
well as these major changes, there have been many minor modifications, some of
which I wanted to make myself but many that were inspired by the suggestions
of readers of the first edition.

Once again, I would like to acknowledge my collaborators at the Institut de
Biologie Structurale in Grenoble and elsewhere for their comments and feed-
back. Special thanks go to all members, past and present, of the Laboratoire de
Dynamique Moléculaire at the IBS, to Konrad Hinsen at the Centre de Biophysique
Moléculaire in Orléans and to Troy Wymore at the Pittsburgh Supercomputing
Center. I would also like to thank Michelle Carey, Anna Littlewood and the staff
of Cambridge University Press for their help during the preparation of this edition,
Johny Sebastian from TechBooks for answers to my many LATEX questions, and,
of course, my family for their support.

Martin J. Field
Grenoble, 2006
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Preliminaries

1.1 Introduction

The aim of this book is to give a practical introduction to performing simulations
of molecular systems. This is accomplished by summarizing the theory underlying
the various types of simulation method and providing a programming library,
called pDynamo, which can be used to perform the calculations that are described.
The style of the book is pragmatic. Each chapter, in general, contains some theory
about related simulation topics together with descriptions of example programs
that illustrate their use. Suggestions for further work (or exercises) are listed at
the end.

By the end of the book, readers should have a good idea of how to simulate
molecular systems as well as some of the difficulties that are involved. The
pDynamo library should also be a reasonably convenient starting point for those
wanting to write programs to study the systems they are interested in. The fact
that users have to write their own programs to do their simulations has advantages
and disadvantages. The major advantage is flexibility. Many molecular modeling
programs come with interfaces that supply only a limited range of options. In
contrast, the simulation algorithms in pDynamo can be combined arbitrarily and
much of the data generated by the program is available for analysis. The drawback
is that the programs have to be written – a task that many readers may not be
familiar with or have little inclination to do themselves. However, those who
fall into the latter category are urged to read on. pDynamo has been designed
to be easy to use and should be accessible to everyone even if they have only a
minimum amount of computing experience.

This chapter explains some essential background information about the pro-
gramming style in which pDynamo and the example programs are written. Details
of how to obtain the library for implementation on specific machines are left to
the appendices.

1



2 Preliminaries

1.2 Python

All the example programs in this book and much of the programming library
are written in the programming language Python. The rest of the library, which
most readers will never need to look at, consists of code for which computational
efficiency is paramount and is written in C. The reasons for the choice of Python
were threefold. First, it is a powerful and modern programming language that
is fun to use! Unlike languages such as C and Fortran, it is an interpreted
language, which means that programs can be run immediately without going
through separate compilation and linking steps. Second, Python is open-source
software that is free and runs under a wide variety of operating systems and, third,
there is a very active development community that is continually enhancing the
language and adding to its capabilities.

Most computer languages are easiest to learn by example and Python is no
exception. The following, simple program illustrates several basic features of the
language:

1 """Example 0."""
2
3 import math
4
5 # . Define a squaring function.
6 def Square ( x ):
7 return x**2
8
9 # . Create a list of integers.
10 values = range ( 10 )
11
12 # . Loop over the integers.
13 for i in values:
14 x = float ( i )
15 print "%5d%10.5f%10.5f%10.5f" \

% ( i, x, math.sqrt ( x ), Square ( x ) )

Line 1 is the program’s documentation string which, in principle, should give
a concise description of what the program is supposed to do. All the
examples in this book, however, have documentation strings of the type
"""Example n.""" to save space and to avoid duplicating the expla-
nations that occur in the text.

Lines 2, 4, 8 and 11 are blank and are ignored.
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Line 3 makes the standard Python module math accessible to the program. Python
itself and programs written using Python – including pDynamo – consist
of modules which must be explicitly imported if their contents are to be
used.

The import statement has a number of different forms and the one
shown is the simplest. With this form, module items are accessed by
prefixing the item’s name with the module name, followed by a dot (.)
character. Thus, the function sqrt from the module math, which is used
on line 15 of the program, is accessed as math.sqrt. An alternative
form, which is sometimes preferable, is from math import sqrt.
This makes it possible to refer to the function sqrt by its name only
without the math. prefix.

Lines 5, 9 and 12 are comments which are included to make the program easier
to understand. Python ignores all characters from the hash character (#)
until the end of the line.

Lines 6–7 define a very simple Python function. Functions are named collections
of instructions that can be called or invoked at different points in a
program. They behave similarly in Python to functions in other languages,
such as C and Fortran.

Line 6 is the function definition line. It starts with the word def which
tells Python that a function definition is coming and terminates with a
colon (:). The second word on the line, Square, is the name that we are
giving to the function and this is followed by the function’s arguments
which appear in parentheses. Arguments are variables that the function
needs in order to work. Here there is only one, x, but there can be many
more.

The function definition line is followed by the body of the function. This
would normally consist of several lines but here there is only one, line 7.
Python is unusual among programming languages in that the lines in the
function body are determined by line indentation. In other languages, such
blocks of code are delimited by specific characters, such as the matching
braces {� � �} of C or the FUNCTION � � � END FUNCTION keywords of
Fortran 90. The number of spaces to indent by is arbitrary – in this book
it is always four – but all lines must be indented by the same amount
and instructions after the end of the function must return to the original
indentation level.

Line 7 is very simple. The second part of the line contains the expression
x**2 which computes the square of the function’s argument x. The **
symbol denotes the power operator and so the expression tells Python
to raise x to the power of 2. The first part of the line is the keyword
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return which says that the result of the squaring calculation is to be
returned to the place from which the function was called.

Line 10 is the first executable line of the example and illustrates several more
features of the Python language – built-in functions, sequence types and
variable assignment. range is one of Python’s built-in functions and
is always available whenever the Python interpreter is invoked. It pro-
duces a sequence of integers, in this case ten of them, starting with
the value 0 and finishing with the value 9. Python, like C, but unlike
Fortran, starts counting from zero and not from one. The integers are
returned as a list which is one of Python’s built-in sequence data types
and is one of the things that makes Python so attractive to use. Finally
the list of integers is assigned to a variable with the name values.
Python differs from many languages in that variables do not need to
be declared as being of a particular type. In C, for example, an integer
variable would have to be declared with a statement such as “int i
;” before it could be used. These declarative statements do not exist in
Python and so values can be assigned arbitrarily to refer to any data
type.

Line 13 shows one of the forms of iteration in Python. The statement takes the
list referred to by values and assigns each of its elements to the variable
i in turn. The iteration stops when the end of the list is reached. The
lines over which iteration is to occur are determined by line identation in
exactly the same way as those in the body of a function.

Line 14 is the first line of the loop specified by the for construct in line 13. It
takes the integer referred to by the variable i, converts it to a floating-
point number using the built-in function float and then assigns it to the
variable x.

Line 15 is printed as two lines in the text, due to the restricted page width, but
it is logically a single statement. The presence of the backslash character
(\) at the end of the line indicates to Python that the subsequent line is
to be treated as a continuation of the current one.

The statement prints the values of i and of x, the square root of x, which
is calculated by invoking the function sqrt from the module math,
and the square of x, calculated using the previously defined function
Square. These items are grouped together at the end of the line in a
tuple. Tuples, like lists, are one of Python’s built-in sequence data types
and are constructed by enclosing the items that are to be in the tuple in
parentheses. Tuples differ from lists, though, in that they are immutable,
which means that their contents cannot be changed once they have been
created.
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The style in which the quantities are printed is determined by the
formatting string, which is enclosed in double quotes "". This is placed
after the print keyword and is separated from the tuple of items to
be printed by the % character. Python employs a syntax for formatting
operations that is very similar to that of the C language. Output fields start
with a % character and so, in this example, there are four output fields in
the string, one for each of the items to be printed. The first output field is
%5d, which says that an integer, coded for by the letter d, is to be printed
in a field 5 characters wide. The remaining fields are identical and have
the form %10.5f. They are for the output of floating-point numbers (f)
in fields 10 characters wide but with 5 of these characters occurring after
the decimal point.

It is not, of course, possible to master a language from a single, short program
but readers should gain in expertise and come to appreciate more fully the capa-
bilities of the language as they work through the examples and exercises in the
book. One of the great advantages of Python for learning is that it can be used
interactively and so it is quick and easy to write simple programs to test whether
one really understands what the language is doing.

1.3 Object-oriented programming

Python admits various programming styles but all the modules in pDynamo are
written using an object-oriented approach in which the basic unit of programming
is the class. A class encapsulates the notion of an object, such as a file or a
molecule, and groups together the data or attributes needed to describe the object
and the functions or methods that are required to manipulate it. Classes are used
by instantiating them so that, for example, a program for modeling the molecules
methanol and water would create two instances of the class molecule, one to
represent methanol and one water.

There are other important aspects of object-oriented programming that
pDynamo employs but which will only be alluded to briefly, if at all, later on.
Two of these are inheritance and polymorphism. Inheritance is the mechanism
by which a new class is defined in terms of an existing one. For example,
a class for manipulating organic molecules could be derived from a more
general class for molecules. The new class would inherit all the attributes
and methods defined by its parent class but would also have attributes and
methods specific for organic molecules. Polymorphism is related to inheritance
and is the ability to redefine methods for derived classes. Thus, the general
molecule class could have a method for chemical reactions but this would
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be overridden in the organic molecule class because the rules for implement-
ing reactions for organic molecules are different from those of the general
case.

It is time to consider a simple, hypothetical example. Suppose there were a
class hierachy designed for writing to text files. The base class would be a general
class, TextFileWriter, and there would be a subclass, DataFileWriter,
designed for writing either a specific type of data or data in a specific format.
The base class has the following (partial) specification:

1 class TextFileWriter ( object ):
2 """The base class for objects that write to text files."""
3
4 def __init__ ( self, filename ):
5 """Instance initializer from |filename|."""
6 self.name = filename
7 ... other initialization here ...
8
9 def Close ( self ):
10 """Close the file."""
11 ... contents here ...

Line 1 says that a class of name TextFileWriter is being defined and that
it is subclassed from the class object which is the base class for all
Python objects.

Line 2 is the documentation string for the class.
Lines 4 to 7 define a special method, _ _init_ _, that is called when an instance

of a class is created.
The method has two arguments. The first, self, denotes the instance

of the class that is calling the method (hence the name self). Python
requires that this argument appears in the specification of all instance
methods in a class but that it should not be present when a method is
actually invoked. We shall see examples of this later in the section. The
second argument, filename, gives the name of the file to which data
are to be written.

The body of the method, line 6 onwards, would be used to perform
various ‘start-up’ operations on the newly created instance. This could
include the initialization of various attributes that the instance may need
and the setting up of the necessary data structures for writing to a file
with the given name. The only operation that we show explicitly is on line
6 because it illustrates how an attribute of an instance can be defined –
in this case, the attribute, name, of the instance self that points to the
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name of the file. The dot-notation identifies the attribute as belonging to
the instance and is employed when accessing an attribute as well as for
its definition.

Lines 9 to 11 define a method, Close, that would be called when writing to the
file has terminated.

The subclass is specified as follows:

1 class DataFileWriter ( TextFileWriter ):
2 """A class for writing data to a text file."""
3
4 def WriteData ( self, data ):
5 """Write |data| to the file."""
6 ... contents here ...

Line 1 defines DataFileWriter as a subclass of TextFileWriter.
Lines 4 to 6 define a method, WriteData, that would be called to write the

argument data to the file.

The methods _ _init_ _ and Close are absent from the specification
of the subclass, which means that they are inherited from the parent class,
TextFileWriter, and behave in an identical fashion.

Once the classes and its methods have been defined, data could be writ-
ten to a file of the class DataFileWriter with the following series of
commands:

1 datafile = DataFileWriter ( "myfile.dat" )
2 datafile.WriteData ( data )
3 datafile.Close ( )
4 print "Data written to the file", datafile.name

Line 1 creates an instance of the class DataFileWriter that is called
datafile. The instance is produced using the name of the class
followed by parentheses that contain the arguments, excluding self,
that are to be passed to the class’s _ _init_ _ method. In this case
there is a single argument, "myfile.dat", which is a character string
that contains the name of the file to be written. In the rest of this book,
we shall refer to statements in which instances of a class are generated
using the class name as constructors.

Line 2 calls the WriteData method of the instance with the data to be written.
Methods of an instance are most usually invoked using the dot-notation.
This is similar to the way in which the attributes of an instance are
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accessed but with the difference that the method’s arguments appear
in parentheses after the method name. As discussed above, the self
argument that occurs in the specification of the method is absent.

Line 3 closes the file as writing to the file has terminated. The Close method
takes no arguments but parentheses are still required.

Line 4 prints a short informational message. This version of the print statement
is simpler than that used previously in that no formatting information is
present. Instead, Python chooses suitable defaults for the way in which
the string "Data written to the file" and the name attribute of
datafile are written.

Although the class notation is very elegant, it can be a little cumbersome to
use. This is why, for many classes, pDynamo supplies ‘helper’ functions that
provide a shorthand way of using the class without having to explicitly instantiate
it. An appropriate helper function for the class DataFileWriter would simply
be one that ‘wraps’ the four-line program given previously. It would have the
form:

def DataFile_Write ( filename, data ):
"""Write |data| to the data file with name |filename|."""
datafile = DataFileWriter ( filename )
datafile.WriteData ( data )
datafile.Close ( )
print "Data written to the file", datafile.name

and would be used as follows

DataFile_Write ( "myfile.dat", data )

1.4 The pDynamo library

Like many large Python libraries, pDynamo is hierarchically organized into pack-
ages and modules. A package is a named collection of modules that are put
together because they perform logically related tasks, whereas a module is a
collection of Python classes, functions and other instructions that are grouped
in a single Python file. As we saw in the example program of Section 1.2,
modules from a library can be used in Python programs by importing them
with the import keyword. The same syntax is possible with packages, so the



1.5 Notation and units 9

statement import mypackage would make the contents of the package called
mypackage accessible.

pDynamo consists of three principal packages. The first and most fundamental
package is pCore. It contains modules implementing various basic data structures
and algorithms that are independent of molecular applications. The second package
is pDynamo, which has modules for representing and manipulating molecular
systems and for performing molecular simulation. The third package is pBabel,
which has modules that read and write information for chemical systems in various
formats. The packages are arranged hierarchically because pBabel depends upon
both pDynamo and pCore, pDynamo upon pCore, but not pBabel, and
pCore upon neither.

The purpose of this book is not to provide a detailed description of each of the
pDynamo packages. Instead, only a subset of pDynamo’s classes and functions
will be introduced as needed. Some, whose behaviour and construction are deemed
important for the arguments being pursued in the text, will be described in detail,
whereas others will be mentioned only in passing. A summary of all the items
from the pDynamo library appearing in the book is given in Appendix 1, whereas
full documentation will be found online with the library’s source code and the
book’s example programs.

1.5 Notation and units

To finish, a few general points about the notation and units used in this book
and the program library will be made. In the text, all program listings and the
definitions of classes, methods, functions and variables have been represented by
using characters in typewriter style, e.g. molecule. For other symbols, normal
typed letters are used for scalar quantities whereas bold face italic letters are
employed for vectors and bold face roman for matrices. Lower case letters have
generally been taken to represent the properties of individual atoms whereas upper
case letters represent the properties of a group of atoms or, more usually, the
entire system. Lower case roman subscripts normally refer to atoms, upper case
roman subscripts to entire structures and Greek subscripts to other quantities, such
as the Cartesian components of a vector or quantum chemical basis functions.
The more common symbols are listed in Tables 1.1, 1.2 and 1.3.

The units of most of the quantities either employed or calculated by pDynamo
are specified in Table 1.4. All the quantum chemical algorithms use atomic
units internally although little input or output is done in them. Nevertheless, for
completeness, Table 1.5 lists some quantities in atomic units and their pDynamo
equivalents.
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Table 1.1 Symbols that denote quantities for atoms or for the entire system

Symbol Description

Atomic quantities
�i Isotropic dipole polarizability for atom i
�i Mass-weighted first derivatives of potential energy
ai (≡ r̈ i) Acceleration of atom i
f i Force on atom i
gi First derivatives of potential energy

with respect to coordinates of atom i
hij Second derivatives of potential energy with respect to

coordinates of atoms i and j
mi Mass of atom i
pi Momentum vector for atom i
qi Vector of mass-weighted Cartesian coordinates for atom i
qi Partial charge for atom i
r i Vector of Cartesian coordinates, �xi� yi� zi�, for atom i
rij Distance between two atoms i and j
si Vector of Cartesian fractional coordinates for atom i
vi (≡ ṙ i) Velocity vector for atom i
wi Weighting factor for atom i
xi x Cartesian coordinate of atom i
yi y Cartesian coordinate of atom i
zi z Cartesian coordinate of atom i

System quantities
� Dipole-moment vector
�IJ Root mean square coordinate deviation between structures I and J
A 3N -dimensional vector of atom accelerations
D 3N -dimensional coordinate displacement vector
F 3N -dimensional vector of atom forces
G 3N -dimensional vector of first derivatives
GRMS Root mean square (RMS) gradient
H (3N ×3N )-dimensional matrix of second derivatives

of system
� Inertia matrix
M 3N ×3N diagonal atomic mass matrix
O System observable or property
P 3N -dimensional vector of atom momenta
Q Charge
R 3N -dimensional vector of atom coordinates
Rc Centre of charge, geometry or mass
S 3N -dimensional vector of atom fractional coordinates
V 3N -dimensional vector of atom velocities
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Table 1.2 Quantum chemical symbols (Chapters 4 and 6)

Symbol Description

General symbols
�, � Electron spin-up and spin-down functions
	a Energy of orbital a
	ab Lagrange multiplier for orbitals a and b

 Basis function exponent
� Basis function
� Angular momentum function
 Charge or electron density
� Electron spin function (either � or �)
� One-electron space orbital
� Slater determinant
� Wavefunction
AI Configuration interaction coefficient for state I
c�a Molecular orbital coefficient for basis function � and orbital a
C Matrix of molecular orbital coefficients
E Energy of a stationary state
F, F�� Fock matrix and one of its elements
H, H�� One-electron matrix and one of its elements
�̂ Quantum mechanical Hamiltonian
�̂ Quantum mechanical kinetic energy operator
M Number of electrons
na Occupancy of orbital a
Nb Number of basis functions
P, P�� Density matrix and one of its elements
Qlm Multipole moment
S, S�� Overlap matrix and one of its elements
Slm Real spherical harmonic function
�̂ Quantum mechanical potential energy operator
W, W�� Energy-weighted density matrix and one of its elements
Z Nuclear charge

Subscripts and superscripts
�, �, �, � Basis functions
a, b, c Orbitals
e, el Electronic
eff Effective
i, j Quantum chemical atoms
m Molecular mechanical atom
MM Molecular mechanical
n Nuclear
nn Nuclear–nuclear
QC Quantum chemical
s, t Electrons
t Total (electronic plus nuclear)
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Table 1.3 Miscellaneous symbols

Symbol Description

Matrix and vector operations
ȧ First time derivative of a vector
ä Second time derivative of a vector
â Normalized vector, a/a, where a = �a�
aT Transpose of vector a
�A� Determinant of matrix A
aTb Dot or scalar product of two vectors
abT Outer product of two vectors
a∧b Cross or vector product

Other symbols
A Helmholtz free energy
	 Dielectric constant for system
	0 Permittivity of vacuum
� Constraint condition
�, � Spherical polar angles
E Total energy of system
G Gibbs free energy
H Enthalpy
� Classical Hamiltonian for system
� Kinetic energy for a system
kB Boltzmann’s constant
L Length of side of cubic box
N Number of atoms in system
Ndf Number of degrees of freedom in system
No Number of observables
p Parameter
p Parameter vector
P Pressure
� Instantaneous pressure
R Molar gas constant
S Entropy
t Time
T Temperature
� Instantaneous temperature
U Internal energy
U Proper or improper rotation matrix
� Potential energy of system
V Volume of a system
Z Partition function
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Table 1.4 The units employed by the pDynamo library

Quantity Name Symbol SI equivalent

Angle (input and output) Degrees � ≡ �/180 rad
Angle (internally) Radians rad
Charge Elementary charge e � 1�602×10−19 C
Dipole Debyes D � 3�336×10−30 C m
Energy Kilojoules per mole kJ mol−1 � 1�066×10−21 J
Frequency Wavenumbers cm−1 � 2�998×1010 Hz

Terahertz THz 1012 Hz
Length Ångströms Å ≡ 10−10 m
Mass Atomic mass units a.m.u. � 1�661×10−27 kg
Pressure Atmospheres atm ≡ 1�013250×105 Pa
Temperature Kelvins K
Time Picoseconds ps ≡ 10−12 s
Velocity Ångströms per picosecond Å ps−1 ≡ 102 m s−1

Volume Ångströms cubed Å3 ≡ 10−30 m3

Table 1.5 Atomic units and their pDynamo equivalents

Quantity Name Symbol pDynamo equivalent

Angular momentum Dirac’s constant � � 6�351×10−2 kJ mol−1 ps
Charge Elementary charge e ≡ 1 e
Dipole ea0 � 2�541 D
Energy Hartrees Eh � 2625�5 kJ mol−1

Length Bohrs a0 � 0�529 Å
Mass Electron rest mass me � 5�486×10−4 a.m.u.
Time �/Eh � 2�419×10−5 ps
Velocity a0Eh/� � 2�188×104 Å ps−1



2

Chemical models and representations

2.1 Introduction

Models and representations are crucial in all areas of science. They are employed
whenever one thinks about an object or a phenomenon and whenever one wants
to interpret or to predict how it is going to behave. Models need not be unique.
In fact, it is normal to have multiple representations of varying complexity and
to choose the one that is most appropriate given the circumstances.

The same is true when thinking about chemical and molecular systems. Represen-
tations encompass the traditional chemical ones that employ atoms and bonds, and
also span the range from the very fundamental, in which a molecule is considered as
a collection of nuclei and electrons, through to the highly abstract, in which a mole-
cule is treated as a chemical graph. Several of these are illustrated in Figure 2.1.

The purpose of this chapter is twofold. First, we introduce the way in which
pDynamo represents and manipulates molecular systems. Of course, we can only
start to discuss these topics here as pDynamo has a diversity of approaches that
will take the rest of the book to explain. Second, we describe several common
molecular representations that are used in modeling and simulation studies and
show how pDynamo can transform between them.

2.2 The System class

System is the central class of the pDynamo program and it will be used directly
or indirectly in most of the examples in this book. Its purpose is to gather together
the data that are required to represent, to model and to simulate a molecular system.
The fundamental data in a system are the sequence of atoms that it contains. For
various reasons, systems were designed to be immutable with respect to their
atom composition. This means that once a system exists the atoms it contains
and their order cannot be modified. These changes can be effected but only by
creating a new system, independent of the old one, with the desired composition.

14
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Fig. 2.1. Different representations of the molecule formaldehyde. Clockwise
from top left: electron cloud and (oversized) nuclei; a chemical formula; a
two-dimensional model; a three-dimensional ball and stick model; a three-
dimensional space filling model; a chemical graph.

The System class is an extensive one and so only a few of its methods and
attributes will be described here. More will be introduced later on in the book as
they are needed. The definition of the class that will suffice for the moment is as
follows:

Class System

A class to represent a molecular system.

Constructor

Construct an instance of the System class given some atom data.

Usage: new = System ( atoms )
atoms is a sequence that defines the atoms in the system. In the only case

that we shall consider, atoms is a Python list containing the atomic
numbers of the system’s atoms.

new is the new instance of System.
Remarks: It will rarely be necessary to use the constructor directly as new

instances of Systemwill most often be obtained by alternative routes.

Method Summary

Output a summary of the system.

Usage: system.Summary ( )
system is an instance of System.
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Attributes

atoms is an instance of the class AtomContainer and contains
the sequence of atoms in the system. Each atom in the con-
tainer is represented by an instance of the class Atom.

coordinates3 contains the Cartesian x, y and z coordinates for each atom
in the system. The coordinates and their manipulation will
be described in more detail in the next chapter.

label is a string containing the name or a short description of the
system.

The operation of summarizing is a common one that it is often useful to do on
other pDynamo objects. As a result, many pDynamo classes have a method called
Summary, all of which have similar characteristics to that described above. There
are a number of other operations, similar to summarizing, that work on a range
of pDynamo classes and which we shall require later in this book. Three of these
are cloning, merging and pruning which, unlike summarizing, are implemented
via helper functions:

Function Clone

Create a new instance of an object by duplicating an existing one.

Usage: new = Clone ( old )
old is the old instance.
new is the new instance.
Remarks: Cloning creates a new copy of the old instance so that removal of

either instance will not affect the other. The existing instance is
unchanged. This function works with all pDynamo classes.

Function MergeByAtom

Create a new instance of a class by merging existing instances of the class.

Usage: new = MergeByAtom ( old1, old2, ... )
old1, etc. are the old instances.
new is the new, larger instance.
Remarks: Merging by atom is like cloning in that an instance is produced that

is independent of the instances from which it is created. It is less
general, however, in that merging only makes sense for classes that
have some concept of an atom, such as System. For classes for
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which this is not the case, no merging will be done. The order of
merging is significant as the old instances are merged in the order
in which they are passed to the function.

Function PruneByAtom

Create a new instance of a class by pruning atoms from an existing instance of
the class.

Usage: new = PruneByAtom ( old, selection )
old is the old instance.
selection specifies the atoms that are to be kept in the pruning process. Most

usually this argument is an instance of the class Selection
that contains the indices of the atoms to be retained.

new is the new, smaller instance.
Remarks: Pruning by atom is similar to merging in that only classes with

the notion of an atom can be pruned.

2.3 Example 1

The first example is designed to illustrate some of the basic capabilities of the
class System. It is:

1 """Example 1."""
2
3 from Definitions import *
4
5 # . Create a water molecule.
6 water = System ( [ 8, 1, 1 ] )
7 water.label = "Water"
8 water.Summary ( )
9
10 # . Create a water dimer.
11 waterdimer = MergeByAtom ( water, water )
12 waterdimer.label = "Water Dimer"
13 waterdimer.Summary ( )
14
15 # . Create a hydroxyl.
16 oh = Selection ( [ 0, 1 ] )
17 hydroxyl = PruneByAtom ( water, oh )
18 hydroxyl.label = "Hydroxyl"
19 hydroxyl.Summary ( )
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Line 3 The program starts by importing all quantities from the module
Definitions. This module was designed especially for the exam-
ples in this book and serves two purposes. First, it defines various
variables that are needed by some of the example programs. Mostly
these are strings that give the location of data files. Second, it imports
from the pDynamo packages, pCore, pDynamo and pBabel, all the
classes, functions and variables that the examples use. The use of a
module in this fashion is a convenience as it means that definitions
that otherwise would straddle several lines can be replaced by a single
statement.

In this example, the definitions that are required are the ones that import
the classes Selection and System and the functions MergeByAtom
and PruneByAtom.

Line 6 creates an instance of the class System and assigns it to the variable
water. The argument to System is a list that contains the atomic
numbers of the atoms in the molecule – one oxygen and two hydrogens.
Note the use of square brackets which is the syntax that Python uses to
construct a list object.

Line 11 creates a second instance of the class System by merging water with
itself. The instance pointed to by water remains unchanged as the
function MergeByAtom duplicates all the instance data.

Line 16 creates an instance of the class Selection whose purpose is to define
the atoms that will be kept in the pruning operation of the following line.
The argument to the Selection constructor is a list containing the
indices of the oxygen atom and the first hydrogen atom in water. These
are 0 and 1, respectively, remembering that Python starts counting from
zero.

Line 17 produces a hydroxyl group from water by using the PruneByAtom
function and the Selection instance defined on the previous line.

Lines 7, 12 and 18 give labels to the systems that have been created.

Lines 8, 13 and 19 print summaries of the systems. The information printed is
minimal as only the systems’ atoms and labels have been defined.

2.4 Common molecular representations

The aim of this section is to explore a selection of the more common formats used
for representing molecular species. The choice was made to show the variety of
representations that exist but it is by no means exhaustive because of the many
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different formats currently employed. All the formats described here are text-
based so that they are human-readable. Most are also file-based in that they store
their data in text files with either one or several molecular representations per file.
Formats readable only by machine – binary formats – are also available and these
will be more efficient if many or large molecular data sets are to be processed.

2.4.1 XYZ format

The XYZ format is one of the simplest and one of the most widely used. An
example for water is:

1 3
2 Water - XYZ format.
3 O 0.00 0.00 0.0
4 H 0.58 0.75 0.0
5 H 0.58 -0.75 0.0

Line 1 lists the number of atoms in the molecule.
Line 2 contains a title. If there is no title the line is left blank.
Lines 3–5 are the lines that contain the atom data. The number of lines should

equal the number given at the top of the file. Each line lists the elemental
symbol or the atomic number of the atom and three floating-point numbers
corresponding to its x, y and z coordinates.

An important point about XYZ format is that it is free format, not fixed format.
In fixed format, tokens, either words or numbers, have to be placed in particular
columns. In addition, floating-point numbers often have to be written with a
certain number of figures after the decimal point. In contrast, there is no restriction
on how tokens are written in free format as long as they can be distinguished
from each other – usually by separating them with spaces. Most modern formats
are free format.

2.4.2 MOL format

The MOL format is a fixed format and was introduced and is maintained by the
company MDL Information Systems. An example for water is:

1 Water - MOL format.
2
3
4 3 2 0 0 0 0 0 0 0 0 0
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5 0.0000 0.0000 0.0000 O 0 0 0 0 0 0
6 0.5800 0.7500 0.0000 H 0 0 0 0 0 0
7 0.5800 -0.7500 0.0000 H 0 0 0 0 0 0
8 1 2 1 0 0 0
9 1 3 1 0 0 0
10 M END

The MOL format consists of two parts. Lines 1–3 constitute the header block
whereas lines 4–10 define the connection table for the molecule.

Line 1 contains a title.
Lines 2–3 have been left blank although in the complete specification of the MOL

format these lines may contain other, optional, information that we do
not need here.

Line 4 defines various integer counters and options necessary for specification
of the connection table. In all there are 11 fields each of which is three
characters wide. The integers within each field are right-justified and the
maximum integer that a field can hold is 999. In Python syntax the line
format would be written 11 * "%3d". The first two counters are the only
ones that are needed in our example and they give the number of atom
lines and the number of bond lines in the connection table, respectively.
The remaining counters can be safely ignored although they should be
present.

Lines 5–7 are the atom lines, each of which has a Python format of 3 *
"%10.4f" + " %-3s%2d" + 5 * "%3d". The first three fields hold
the x, y and z coordinates for the atom. Each coordinate field is 10
characters wide and contains a right-justified, floating-point number
with four figures after the decimal point. The fourth field is the atom’s
elemental symbol and it is placed, left-justified, in columns 32–34 of the
line. The remaining fields are integers whose values we do not need here.

Lines 8–9 are the bond lines with Python formats of6*"%3d". The first two fields
give the integer indices of the atoms that are involved in the bond. Unlike in
Python, counting starts at one, so that the first atom in the molecule has an
indexof1.The third fieldspecifies the typeofbond.Avalueof1corresponds
to a single bond whereas values of 2, 3 and 4 indicate double, triple and
aromatic bonds, respectively. Thus, line 8 says that there is a single bond
between the first and second atoms in the molecule.

Line 10 terminates the file.

The MOL format specification allows the storage of multiple molecule defi-
nitions in the same file. This is done by concatenating the individual definitions
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and separating them with a line containing the characters $$$$. MOL files of
this type are called structure-data or SD files.

2.4.3 PDB format

Protein Data Bank or PDB format was designed for storing the structures of protein
and nucleic acid polymers determined by experimental X-ray crystallographic
and nuclear magnetic resonance (NMR) techniques. These structures are normally
very complicated and involve thousands of atoms. Consider, as an example, the
protein myoglobin which is illustrated schematically in Figure 2.2. The protein has
a single chain comprising about 150 amino acids and a haem group. Both in vivo
and in the crystal from which the structure is determined, the protein is bathed in
a solution of water and counter-ions. The great majority of these molecules will
not be in the experimentally determined structure but, nevertheless, a few solvent
molecules are often present.

To cope with molecular systems of this complexity, the PDB format has a hier-
archical classification scheme that consists of chains, residues and atoms. A chain
is a single contiguous peptide, protein or nucleic acid strand and each chain in
the system is given a unique, single-character name. A chain is itself subdivided
into residues so that peptide and protein chains consist of sequences of amino acid
residues, whereas nucleic acid chains comprise nucleotide residues. Each residue
is identified by a three-character name and also by a code, most usually an inte-
ger, that gives its position in the sequence. Finally, residues are divided into atoms
with each atom in the residue having a unique name of, at most, four characters.

Water Protein Chain

Haem

Fig. 2.2. A schematic of a protein, myoglobin.
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The classification is actually slightly more complicated than this because
residues can be of two types. First of all there are standard residues which com-
prise the twenty or so amino acids that occur in proteins and the five or six
nucleotides that occur in ribo- and deoxyribo-nucleic acids. All other residues
are non-standard or hetero-atom residues. Standard residues consist of standard
atoms, or just atoms, whereas hetero-atom residues consist of hetero-atoms. Most
residues in chains will be standard residues but there can be hetero-atom residues
as well. In the case of myoglobin, for example, there will be a hetero-atom residue,
representing a haem, in the protein chain. Most hetero-atom residues are, in fact,
not classified into chains at all, but are lumped together into what can be con-
sidered as an unnamed ‘hetero-atom chain’. These hetero-atom declarations are
usually the last part of a system’s specification and, most commonly, comprise
solvent and counter-ion molecules.

The PDB format, like the MOL format, is a fixed format. Each line is a
separate record and contains data of a particular type. The type of record is
identified by the first few (usually six) characters of the line. The full PDB
specification is a comprehensive one as it defines many records devoted to details
of the experimental techniques used for determining the structure of the system
in the file. These are unnecessary in many modeling studies and so are normally
omitted.

The following illustrates a PDB file for water using the residue and atom names
for the molecule that are defined in the PDB specification:

1 TITLE WATER - PDB FORMAT.

2 AUTHOR GENERATED BY PDYNAMO 1.3

3 HETATM 1 O HOH 1 0.000 0.000 0.000 0.00 0.00 O

4 HETATM 2 1H HOH 1 0.580 0.750 0.000 0.00 0.00 H

5 HETATM 3 2H HOH 1 0.580 -0.750 0.000 0.00 0.00 H

6 CONECT 1 2 3

7 MASTER 0 0 0 0 0 0 0 0 3 0 1 0

8 END

Line 1 contains a title. The first five characters of the line, TITLE, identify the
type of line. The title itself, which is an arbitrary sequence of characters,
starts in column 11 and can continue up to column 70.

Line 2 is of a similar format to line 1 except that it specifies the author of the
file. In this case, it is version 1�3 of the pDynamo program.

Lines 3–5 are the lines that contain the atom coordinate data. These records are
hetero-atom records because water is not one of the standard amino acid or
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nucleic acid residues that qualify for atom status. Nevertheless, HETATM
and ATOM records have the same format except for the initial record
identifier. In the example here, the following fields are present on each
line:

Columns 7–11 contain the serial number of the atom – i.e. the order of
the atom in the molecular sequence.

Columns 13–16 hold the atom name. In PDB format, each atom in a
residue has a unique name which can consist of, at most, four
characters. Atom names start in column 13 if the name is four
characters long or if the atom is a hydrogen whose name starts
with an integer. Otherwise, the name starts in column 14.

Columns 18–20 identify the name of the residue. HOH is the standard
PDB name for water.

Columns 23–26 contain the residue sequence number which is the number
that indicates the order of the residue in the system defined in the
file. In this case, there is only a single residue in the file and so
this number is 1.

Columns 31–54 hold the x, y and z coordinates for the atom in ångströms.
The format of the numbers in the field is 3 * "%8.3f".

Columns 55–66 define two floating-point numbers in 2 * "%6.2f" for-
mat. They can be ignored here as they pertain to experiment-
specific information.

Columns 77–78 contain the element symbol which is right-justified.

Line 6 is a record that identifies the connections in the system. The integer in
columns 7–11 denotes the serial number of the first atom in the bond and
the integers in columns 12–16 and 17–21 the serial numbers of the atoms
to which it is bound. Thus, in this case, there are two bonds, between the
oxygen and each hydrogen. Note that in contrast to MOL format there is
no way of specifying the type of covalent bond that is present.

As well as the fields shown explicitly in line 6, there are extra fields
in the record which can be used to specify additional covalent bonds and
also hydrogen bonds and salt-bridge interactions.

Line 7 is the MASTER record. It is used for book-keeping and contains the
numbers of particular types of record in the file. There are 12 counters
in all. They start in column 11 and each occupies five spaces. In the
case of water, all counters are zero except for the one in columns 51–55
which indicates the number of ATOM and HETATM records and the one
in columns 61–65 which gives the number of CONECT records.

Line 8 denotes the end of the file.
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2.4.4 CML format

Chemical markup language (CML) is a format based on extensible markup
language (XML). XML is a language that is similar in many respects to hypertext
markup language (HTML) and with which many readers will be familiar as being
the language employed for writing web pages. The goals of XML and HTML,
however, are different. HTML was designed for formatting text documents, much
like a word processor, whereas XML was designed to provide a framework for
organizing and representing arbitrary data. XML is not used directly. Instead,
markup languages (MLs) are defined in terms of the XML specification to repre-
sent data coming from a particular domain.

CML is an ML that was developed for chemical applications by P. Murray-
Rust, H. Rzepa and their collaborators. It comes in several flavours and is capable
of representing a wide range of chemical data. The following example illustrates
a CML file for water. It has been simplified somewhat by removing lines not
directly concerned with the molecule and its atom and bond definitions.

1 <molecule title="Water - CML format.">
2 <atomArray>
3 <atom id="a1" elementType="O" x3="0" y3="0" z3="0"/>
4 <atom id="a2" elementType="H" x3="0.58" y3="0.75" z3="0"/>
5 <atom id="a3" elementType="H" x3="0.58" y3="-0.75" z3="0"/>
6 </atomArray>
7 <bondArray>
8 <bond atomRefs2="a1 a2" order="1"/>
9 <bond atomRefs2="a1 a3" order="1"/>
10 </bondArray>
11 </molecule>

Lines 1 and 11 mark the beginning and the end of the molecule specification. In
XML all data are expressed in terms of elements, so molecule is the
CML element that represents a molecule. The beginning and the end of the
element are given by start and end tags – lines 1 and 11, respectively – and
the elements in between are its child elements. A starting tag is enclosed
in angular brackets <� � �> whereas an end tag is enclosed by </� � �>. An
element can be empty, in which case it is written as <� � �/>. In contrast to
the MOL and PDB formats, XML-based formats are free format because
the starting and stopping points of data blocks are explicitly indicated by
the tag syntax.

Start tags and empty tags can contain attributes which are named
properties of the element. Thus, title is an attribute of the molecule
element and has the value "Water - CML format.".
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Lines 2–6 define the atoms in the molecule. The atoms are grouped together in an
atomArray element and are specified individually by atom elements.
The atom elements are empty but they have attributes that give the atom’s
identifier, id, its elemental type, elementType, and its coordinates in
three dimensions, x3, y3 and z3.

Lines 7–10 define the bonds in the molecule using a syntax that is very similar to
that of the atoms. The attributes of the bond elements are atomRefs2
which lists the identifiers of the two atoms in the bond and order which
gives the bond order. A bond order of 1 indicates a single bond.

CML is not the only markup language that pDynamo supports. Two others are
pDynamoML and HTML. pDynamoML is pDynamo’s own ML and it is used
for reading and writing pDynamo objects to and from external files. These, by
convention, are called XPK files. All pDynamo classes can be written to and
from XPK files. In contrast, HTML is used when writing the output of pDynamo
programs, thereby allowing the results of a calculation or a simulation to be viewed
as a web page. Output in HTML format is achieved by using instances of an
HTML-subclass of the LogFileWriter class that we shall meet in Section 3.4.

2.4.5 SMILES format

The SMILES (Simplified Molecular Input Line Entry System) format is an elegant
and powerful one but it is different from the formats discussed previously because
it aims to provide a way of compactly representing the composition of a molecular
species as a string of characters. The architect of the format was D. Weininger
and it is now maintained by the company Daylight Chemical Information
Systems.

The full SMILES specification allows the representation of any molecular
species and can describe such things as isotopic composition, isomerism and chi-
rality. However, for many chemical species, and for the purposes of the examples
in this book, the following subset of SMILES rules is sufficient:

• All atoms are represented by their elemental symbols enclosed in square brackets.
Thus, [C] represents a carbon atom and [Fe] an iron atom.

• Hydrogens that are bound to an atom and the atom’s nominal charge are specified
inside the atom’s square brackets. So, a hydroxide ion is written as [OH-] and a
ferrous ion as [Fe+2].

• The square brackets of atoms within the organic subset – B, C, N, O, F, P, S, Cl, Br
and I – can be omitted if these atoms are uncharged and have standard valence – 1 for
F, Cl, Br and I, 2 for O and S, 3 for B, N and P and 4 for C. Any empty valences that
these atoms may have are assumed to be filled by bonding to hydrogen. This means
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that the one-character SMILES C, N and O stand for methane, CH4, ammonia, NH3,
and water, H2O, respectively.

• Atoms adjacent to each other in a SMILES are bonded together. In the absence of
a specific character, a single bond is assumed. Otherwise, the type of bond can be
explicitly given using the symbols -, = and # for single, double and triple bonds,
respectively. Therefore, CC and C-C both represent ethane (C2H6), C=O and O=C
formaldehyde (H2CO) and C#C ethyne (C2H2).

Another useful symbol of this type, which we shall require later on, is the dot (.).
It indicates that there is no bond or, in SMILES terminology, a disconnection. This
means, for example, that O.O represents two water molecules.

• Branching in a structure is indicated by parentheses, so the SMILES CC(=O)O and
NC(C)C(=O)O are those for ethanoic acid and for the amino acid alanine, respectively.

• Ring closures are indicated by pairs of matching digits. A SMILES for cyclohexane
is C1CCCCC1 as the two ‘ones’ indicate that the first and sixth carbons are bonded
together. In contrast, the SMILES C1CCCC1C stands for methylcyclopentane as the
first and fifth carbons are bonded together and the sixth carbon is outside the ring.

• The atoms of some elements, notably C, N and O, can be specified as being aromatic if
their symbols are written in lower case. Aromatic atoms are always part of rings and they
have less free valences for bonding to hydrogen than non-aromatic atoms because they
donate electrons to the �-systems of which they are a part. Aromaticity is determined
using Hückel’s rule so that a ring, or a combination of fused rings, is taken to be aromatic
if its constituent atoms donate 4n + 2 electrons to the �-system, where n is a positive
integer. Of course, an aromatic set of rings must consist uniquely of aromatic atoms.

The definition of aromaticity is one of the more complicated aspects of SMILES,
but for carbon it is relatively straightforward as each carbon can donate one electron to
an aromatic system and has one less valence available for bonding to hydrogen. Valid
aromatic SMILES are c1ccccc1 for benzene, c1cc2ccccc2cc1 for naphthalene
and c1c[cH-]cc1 for the cyclopentadienyl anion. An invalid aromatic SMILES is
c1ccc1 because the ring contains only four donated electrons, not the minimal six
that would be needed.

It will quickly become apparent as readers try out SMILES for themselves
that many different representations of the same chemical species are possible. In
many applications, though, it is advantageous or even necessary to have a single
representation of a species. Consider, for example, how much easier it is to search
databases of molecules if each molecule has a unique identifier. An extension to
SMILES, called unique SMILES, permits just this.

A project with aims that are, in many respects, similar to those of unique
SMILES is the IUPAC (International Union of Pure and Applied Chemistry)
chemical identifier or InChI project. This work was underway at the time of
writing this book and so no details will be given here. It is probable, however,
that InChI will be widely adopted in the future.
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2.5 Example 2

pDynamo is capable of interpreting all the molecular representations outlined in
the previous section and also a number of others. For the CML, MOL, PDB and
XYZ formats, pDynamo defines separate classes for reading and writing data to
external files. These classes are constructed in very much the same way as the
example given in Section 1.3. Use of the classes directly allows fine control over
how data are read from or written to a file but, for normal usage, it is simpler to
employ the helper functions that pDynamo provides. There are two basic functions
for each format, one for reading and one for writing. For the XYZ case they are:

Function XYZFile_ToSystem

Read a system from a file in XYZ format.

Usage: system = XYZFile_ToSystem ( filename )
filename is the name of the file to be read.
system is a new instance of the class System created using the data on

the file.

Function XYZFile_FromSystem

Write a system to a file in XYZ format.

Usage: XYZFile_FromSystem ( filename, system )
filename is the name of the file to be written.
system is the system to be written.

The functions for the other formats are identical except that their names are
changed accordingly.

SMILES stores its data in a string, unlike the other representations which use
a file. Nevertheless, the basic way in which pDynamo handles the formats is
similar. There are classes for reading and writing SMILES to and from strings
and two helper functions that circumvent direct use of the SMILES classes. The
helper function definitions are:

Function SMILES_ToSystem

Convert a SMILES into a system.

Usage: system = SMILES_ToSystem ( smiles )
smiles is a string containing the SMILES.
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system is a new instance of the class System decoded from the SMILES
string.

Function SMILES_FromSystem

Generate a SMILES representation of a system.

Usage: smiles = SMILES_FromSystem ( system )
system is the system whose SMILES is to be generated.
smiles is a string containing the SMILES.

It is convenient at this stage to introduce two functions that read and write
XPK files, as files in XPK format are employed quite extensively in this book.
The function definitions are:

Function XMLPickle

Write Python objects in XPK format to a file.

Usage: XMLPickle ( filename, objects )
filename is the name of the file to which data are to be written.
objects are the objects to be stored. They will be written to the file in the

same fashion as they are passed to the function.

Function XMLUnpickle

Read Python objects from a file in XPK format.

Usage: objects = XMLUnpickle ( filename )
filename is the name of the file to be read.
objects are the Python objects stored on the file. They are reconstructed in

the same way as they were written to the file.

We illustrate the use of some of these functions with a small molecule,
N-methyl-alanyl-acetamide, which is shown in Figure 2.3. It is also referred to
as blocked alanine (bALA) or as the alanine dipeptide. bALA is often used in
modeling studies because it is relatively small but still sufficiently complex that it
displays interesting behaviour. It has two peptide-like bonds, which are the bonds
that link the consecutive amino acids in a protein, and so it is often employed as
a model of protein systems. bALA has a number of distinct conformations and
we shall meet several of them in the course of the book. In this example, though,
we require only the C7 equatorial (C7eq) conformation.
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Fig. 2.3. N-Methyl-alanyl-acetamide.

The aim of the example in this section is to make use of the functions defined
above. The program creates different representations of the bALA molecule by
reading files in various formats and by converting a SMILES string. Summaries
of each of the representations are then printed. The program is:

1 """Example 2."""
2
3 from Definitions import *
4
5 # . Initialize a list to contain the molecules.
6 molecules = []
7
8 # . Read all molecules.
9 molecules.append ( \

MOLFile_ToSystem ( os.path.join ( molpath, "bala_c7eq.mol" ) ) )
10 molecules.append ( \

PDBFile_ToSystem ( os.path.join ( pdbpath, "bala_c7eq.pdb" ) ) )
11 molecules.append ( \

XYZFile_ToSystem ( os.path.join ( xyzpath, "bala_c7eq.xyz" ) ) )
12
13 # . Generate a molecule from a SMILES string.
14 molecules.append ( SMILES_ToSystem ( "CC(=O)NC(C)C(=O)NC" ) )
15
16 # . Print summaries of the molecules.
17 for molecule in molecules:
18 molecule.Summary ( )

Line 3 imports items from the module Definitions. In this case, definitions
of the four ToSystem functions are required as well as those for the
variables molpath, pdbpath and xyzpath which indicate where the
data files of different format are located.
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Line 6 defines an empty Python list called molecules which will be used to
hold the different molecular representations.

Lines 9–11 read three different files each of which contains a representation of the
bALA molecule. The files are read using the helper functions discussed
earlier in the section and each file returns a new instance of the class
System. These instances are added directly to the list molecules using
the append method of the Python list class.

The files to be read are stored in directories whose names are given
by the variables molpath, pdbpath and xyzpath in the module
Definitions. The names of the individual data files are joined to
the names of the directories using the function join from the standard
Python module os.path. The reason for this is that different computer
operating systems use different conventions for file names but join will
use the convention that is correct for the machine upon which the program
is running.

Line 14 generates a fourth representation of the bALA molecule by converting
an appropriate SMILES string.

Lines 17–18 iterate over the molecules in the list molecules and print a sum-
mary of each one.

Exercises

2.1 Taking Example 2 as reference, read and write molecular species in different
formats. What happens when one starts and finishes with a particular format
but in between passes through formats of other kinds? Are the beginning and
ending representations the same? Is information conserved?

2.2 Experiment with the SMILES language. Try, for example, writing aromatic
and non-aromatic SMILES for various molecules (e.g. toluene). What happens
when systems created from these representations are transformed into PDB
or MOL format?
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Coordinates and coordinate manipulations

3.1 Introduction

In the last chapter we explored various ways of specifying the composition of a
molecular system. Many of these representations contained not only information
about the number and type of atoms in the system but also the atoms’ coordinates,
which are an essential element for most molecular simulation studies. Given the
nature of the system’s atoms and their coordinates the molecular structure of
the system is known and it is possible to deduce information about the system’s
physical properties and its chemistry. The generation of sets of coordinates for
particular systems is the major goal of a number of important experimental
techniques, including X-ray crystallography and NMR spectroscopy, and there
are data banks, such as the PDB and the Cambridge Structural Database (CSD),
that act as repositories for the coordinate sets of molecular systems obtained by
such methods.

There are several alternative coordinate systems that can be used to define the
atom positions. For the most part in this book, Cartesian coordinates are employed.
These give the absolute position of an atom in three-dimensional space in terms of
its x, y and z coordinates. Other schemes include crystallographic coordinates in
which the atom positions are given in a coordinate system that is based upon the
crystallographic symmetry of the system and internal coordinates that define the
position of an atom by its position relative to a number of other atoms (usually three).

The aim of this chapter is to describe the various ways in which coordinates
can be analysed and manipulated. Because numerous analyses can be performed
on a set of coordinates, only a sampling of some of the more common ones will
be covered here.

3.2 Connectivity

One of the most important properties that a chemical system possesses is the
number and type of bonds between its atoms. A rigorous determination of the
bonding pattern would require an analysis of the electron density of a system

31
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or of its geometry, in combination with a database of chemical information that
has the bonding behaviours of each element in different molecular environments.
Once the bonding arrangement is known, it is straightforward to determine other
aspects of the connectivity of a system, such as its bond angles and its torsion or
dihedral angles.

In this section the bonding pattern of a system is not determined using a database
or the electron density, although this will be done in later chapters. Instead a less
rigorous approach is adopted that is based upon a simple search of the distances
between atoms and produces a list of probable bonds.

If r i is the three-dimensional vector containing the x, y and z Cartesian co-
ordinates of atom i, then the distance, rij , between two atoms, i and j, can be
written as

rij = ∣
∣r i − rj

∣
∣

=
√

�xi −xj�
2 + �yi −yj�

2 + �zi − zj�
2 (3.1)

The algorithm for finding bonds works by calculating the distances between two
atoms in a system and then checking to see whether they are less than a certain
maximum bonding distance apart. The bonding distance is determined as the sum of
radii that are typical ‘bonding’ radii for each element and a safety factor, which is an
empirical parameter that can be set by the user. The bonding radii are also empirical
parameters that have been derived from the covalent, van der Waals and ionic radii
for the elements and have been shown to give reasonable results in this application.

The simplest implementation of the algorithm would calculate the distances
between all possible pairs of atoms and perform the distance comparison for each
pair. This is sufficient for systems with small numbers of particles but becomes
prohibitively expensive as the number increases. To see this, assume that the
system contains N atoms. The number of possible pairs of atoms in the system
can then be calculated with the following procedure. The first atom can pair with
all the atoms from atom 2 to atom N giving N − 1 pairs. The second atom can
pair with atom 1 and with the atoms from atom 3 to atom N . However, the pair
with atom 1 has already been counted so only the pairs with atoms 3 to N are
new ones. The procedure can be continued for all the atoms up until atom N ,
which contributes no new pairs. The total number of pairs, Npair, is thus

Npair = �N −1�+ �N −2�+· · ·+1+0

=
N
∑

i=1

�N − i�

= 1
2

N�N −1� (3.2)
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This says that the number of pairs is approximately equal to the square of the
number of particles. To denote this it is common to use the notation Npair � O�N 2�,
which means that Npair is of the order of the square of N . The reason for the
expense of the search for large N should now be apparent because the number of
distances to be calculated increases roughly as the square of N . So, for a small
system of 100 atoms the number of pairs is O�104�, whereas for a system 100
times larger (10 000 atoms) the number of pairs is O�108� or 104 times greater.

The problem of how the effort needed for an algorithm scales with increas-
ing size is ubiquitous in all areas of computational science, not only molecular
modeling, and it is one that we shall meet repeatedly. The aim when designing
any algorithm is to develop one with as low a scaling behaviour as possible and
ideally with linear scaling, O�N�, or less.

There are several possible approaches that can be used to achieve linear scaling
for the bond-finding algorithm. The one that we use is as follows.

(i) Determine a bounding box for the system which is the smallest rectangular box that
will enclose every atom. As most molecular systems have relatively homogeneous
distributions of atoms, the volume of a bounding box will scale linearly with the
number of atoms in the system.

This step takes O�N� operations as it entails finding the minimum and maximum
values of the Cartesian coordinates of the atoms in each of the x, y and z directions.

(ii) Create a grid that fills the bounding box. This is done by choosing an origin for the
grid, such as the lower left-hand corner or the centre of the bounding box, and a grid
spacing in each direction. If ro is the position of the grid origin and �x, �y and �z are
the grid spacings, the position of a grid point in the box is given by ro +(i�x� j�y� k�z

)

where i, j and k are integers that label the grid point.
This step scales as O�N� because the number of grid points is proportional to the

volume of the bounding box and, hence, to the system size. In practice the cost is much
less because the coordinates of the grid points need never be explicitly calculated and
can be determined, if required, directly from the previous formula.

(iii) Assign atoms to grid points by finding the grid point that falls nearest to the atom.
This step scales as O�N� because finding the nearest grid point takes only a small,
constant number of arithmetic operations per atom.

(iv) Construct the bond lists for the atoms using a two-step procedure. First, a list of
potential bonding partners is obtained for each atom by searching over neighbouring
grid points that are in bonding range and, second, the list of potential partners is
refined by calculating the distances between the atoms on the list and accepting only
those that are close enough.

This step is the most expensive in the algorithm but it too is linear scaling. This
is because the number of neighbouring points over which it is necessary to search
is approximately constant for each atom – it depends only on the bonding range, a
quantity that is independent of system size. It should now be clear why the grid was
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constructed. Its purpose is to provide a way in which atoms within a particular volume
of space can be rapidly identified.

Although this algorithm is a linear scaling one, it will be less efficient than the
straightforward O�N 2� distance search for small systems (such as bALA) because
there is an overhead cost associated with the initial grid-construction steps of the
algorithm. This illustrates another important principle of algorithm design – that
for differently sized systems different algorithms will be optimal. This is shown
schematically in Figure 3.1. Although a particular algorithm, algorithm 1, may
exhibit worse scaling properties with system size than does another algorithm,
algorithm 2, the extra overhead costs associated with algorithm 2 make it less
efficient for smaller systems. It is only when a certain critical system size is
reached that algorithm 2 will, in fact, become faster.

Once the bonds in a system are known, the generation of other connectivity-
related information is possible. In particular, it is straightforward to obtain lists of
the bond angles and dihedral angles using algorithms whose costs scale linearly
with system size. The System class contains methods that generate the connec-
tivity and also attributes that hold the bond, angle and dihedral information. Their
definitions are:

Class System

Connectivity methods and attributes.

Method BondsFromCoordinates

Construct the bonds for a system using a distance-search algorithm.

Algorithm 2

Algorithm 1

System Size

A
lg

or
ith

m
 C

os
t

Fig. 3.1. The scaling properties of two algorithms, 1 and 2, versus the system’s size.
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Usage: system.BondsFromCoordinates ( safety = 0.45 )
safety defines a distance that is added to the sum of the atomic bonding

radii when determining whether two atoms are bound. This argu-
ment is a keyword argument as opposed to the positional arguments
that we have met up to now. Keyword arguments have three distin-
guishing features: (i) they occur after any positional argument in an
argument list; (ii) they are passed into a function or method using the
keyword = value syntax; and (iii) they are optional and, if absent,
will be assigned a default value that is specified in the function or
method definition. In this case, the default value for the argument
safety is 0.45.

system is the instance of System for which the bonds are to be generated.
Remarks: The method employs standard, elemental radii to determine bond-

ing distances between atoms and uses coordinates from the
coordinates3 attribute of system to perform the search. The
bonds generated by the method are stored in the bonds attribute of
the instance. The method also automatically generates other connec-
tivity information, including angles and dihedrals, once the bonds
are known.

Attributes

bonds are the bonds in the system.
angles are the angles in the system.
dihedrals are the dihedrals in the system.
Remarks: These attributes contain lists of instances of the Bond, Angle

and Dihedral classes that will be defined in the next section.

3.3 Internal coordinates

The lists of bonds, angles and dihedrals are a start in the analysis of a system’s
chemical structure but they define only its overall connectivity, which will be the
same for all systems in the same chemical state. To investigate differences between
the structures of systems with identical connectivities it is important to calculate
the values of their internal coordinates. The three principal internal coordinates are
bond lengths, bond angles and dihedral angles, which are illustrated in Figure 3.2.

The distance between two atoms has already been defined in Equation (3.1).
The angle, �ijk, subtended by three atoms i, j and k is calculated from

�ijk = arccos
(

r̂T
ij r̂kj

)

(3.3)
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Fig. 3.2. The three principal types of internal coordinate.

where the difference vectors are defined as

r ij = r i − rj (3.4)

and the hat over a vector indicates that it is normalized, i.e. r̂ = r/r .
The definition of a dihedral angle, �ijkl, is slightly more ambiguous because

several exist. The one used here is

�ijkl = ± arccos
(

âTb̂
)

(3.5)

where the vectors a and b are defined as

a = r ij − �rT
ij r̂kj�rkj (3.6)

b = r lk − �rT
lkr̂kj�rkj (3.7)

The sign of the dihedral (i.e. whether to use + or − in Equation (3.5)) is the
same as the sign of the scalar quantity, −rT

ij�rkj ∧ r lk�. A dihedral angle of 0�
indicates that all the atoms are in the same plane in a cis conformation, whereas
angles of 180� or −180� mean that the atoms are coplanar in a trans conformation.

pDynamo stores information about bonds, angles and dihedrals in specific
classes. A minimal definition that is sufficient for the purposes of this book is as
follows:
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Class Bond

A class to represent a chemical bond.

Attributes

i is the index of the first atom in the bond.
j is the index of the second atom in the bond.

Class Angle

A class to represent a bond angle.

Attributes

i is the index of the first atom in the angle.
j is the index of the second atom in the angle.
k is the index of the third atom in the angle.

Class Dihedral

A class to represent a dihedral or torsion angle.

Attributes

i is the index of the first atom in the dihedral.
j is the index of the second atom in the dihedral.
k is the index of the third atom in the dihedral.
l is the index of the fourth atom in the dihedral.

The three-dimensional Cartesian coordinates of a molecular system are stored
in instances of the Coordinates3 class. An initial definition which includes
methods for determining distances, angles and dihedral angles is:

Class Coordinates3

A class for holding sets of Cartesian coordinates in three dimensions.

Method Angle

Calculate an angle given the indices of three points.
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Usage: angle = coordinates3.Angle ( i, j, k )
i, j, k are the indices of the points in the angle.
coordinates3 is the instance of Coordinates3 for which the angle is to

be calculated.
angle is the value of the calculated angle in degrees.

Method Dihedral

Calculate a dihedral given the indices of four points.

Usage: dihedral = coordinates3.Dihedral ( i, j,
k, l )

i, j, k, l are the indices of the points in the dihedral.
coordinates3 is the instance of Coordinates3 for which the dihedral is

to be calculated.
dihedral is the value of the calculated dihedral in degrees.

Method Distance

Calculate a distance given the indices of two points.

Usage: distance = coordinates3.Distance ( i, j )
i, j are the indices of the points in the distance.
coordinates3 is the instance of Coordinates3 for which the distance is

to be calculated.
distance is the value of the calculated distance in the same units as

those of the coordinates (usually ångströms).

3.4 Example 3

The example program in this section uses the classes and methods described in
Sections 3.2 and 3.3 to analyse the structure of blocked alanine. The program is:

1 """Example 3."""
2
3 from Definitions import *
4
5 # . Read in a system.
6 molecule = XYZFile_ToSystem ( \

os.path.join ( xyzpath, "bala_c7eq.xyz" ) )
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7 molecule.Summary ( )
8
9 # . Define a table for the results.
10 table = logfile.GetTable ( columns = [ 15, 15 ] )
11 table.Start ( )
12 table.Title ( "Bond Analysis" )
13 table.Heading ( "Safety Factor" )
14 table.Heading ( "Bonds Found" )
15
16 # . Loop over the buffer sizes.
17 for i in range ( 21 ):
18 safety = 0.1 * float ( i )
19 molecule.BondsFromCoordinates ( safety = safety )
20 table.Entry ( "%4.1f" % ( safety, ) )
21 table.Entry ( ‘len ( molecule.bonds )‘, )
22
23 # . Finish up the table.
24 table.Stop ( )
25
26 # . Generate the bonds with the default safety factor.
27 molecule.BondsFromCoordinates ( safety = 0.5 )
28 molecule.Summary ( )
29
30 # . Print the bonds.
31 table = logfile.GetTable ( columns = 4 * [ 5, 5, 10 ] )
32 table.Start ( )
33 table.Title ( "Bond Lengths (Angstroms)" )
34 for bond in molecule.bonds:
35 table.Entry ( ‘bond.i‘ )
36 table.Entry ( ‘bond.j‘ )
37 table.Entry ( "%6.3f" % ( molecule.coordinates3.Distance \

( bond.i, bond.j ), ) )
38 table.Stop ( )
39
40 # . Print the angles.
41 table = logfile.GetTable ( columns = 3 * [ 5, 5, 5, 10 ] )
42 table.Start ( )
43 table.Title ( "Angles (Degrees)" )
44 for angle in molecule.angles:
45 table.Entry ( ‘angle.i‘ )
46 table.Entry ( ‘angle.j‘ )
47 table.Entry ( ‘angle.k‘ )
48 table.Entry ( "%6.1f" % ( molecule.coordinates3.Angle \

( angle.i, angle.j, angle.k ), ) )
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49 table.Stop ( )
50
51 # . Print the dihedrals.
52 table = logfile.GetTable ( columns = 4 * [ 5, 5, 5, 5, 10 ] )
53 table.Start ( )
54 table.Title ( "Dihedrals (Degrees)" )
55 for dihedral in molecule.dihedrals:
56 table.Entry ( ‘dihedral.i‘ )
57 table.Entry ( ‘dihedral.j‘ )
58 table.Entry ( ‘dihedral.k‘ )
59 table.Entry ( ‘dihedral.l‘ )
60 table.Entry ( "%6.1f" % ( molecule.coordinates3.Dihedral \

( dihedral.i, dihedral.j, \
dihedral.k, dihedral.l ), ) )

61 table.Stop ( )

There are two parts to this program. In the first part (lines 1–24), bonds are
generated using the algorithm of Section 3.2 with different values of the safety
factor. In the second part (lines 26–61), the connectivity for the molecule is
generated with a ‘reasonable’ value of the safety factor and the values of the
internal coordinates printed out.

Lines 6–7 create molecule whose connectivity is to be analysed.
Line 10 defines a table to which the results of the first part of the program

will be output. In the pDynamo library, the Python print keyword is
never used directly. Instead all output is handled through instances of
subclasses of the class LogFileWriter. One of the principal reasons
why this is done is that it allows output to occur in different formats
depending upon the subclass of LogFileWriter that is being used.
Thus, for example, output can occur in regular text format by using
the class TextLogFileWriter or in HTML format using the class
XHTMLLogFileWriter. In this book, all output is to the object
logfile which is an instance of the TextLogFileWriter class.
logfile is predefined by the pDynamo library and is the default
destination for output if no other instance of LogFileWriter is
specified.

Line 10 uses the GetTable method of logfile to create table
which is an instance of the TextTable class. The argument to the
method defines the number of columns and their widths – in this case,
two columns each 15 characters wide.

Lines 11–14 activate writing to the table and output a title and the headings for
each column.



3.5 Miscellaneous transformations 41

Lines 17–21 generate bonds for molecule using the BondsFrom
Coordinates method and values of the safety factor that range in 0.1
Å increments from 0 to 2 Å. From the output file (which is not given here)
it will be seen that the number of bonds is constant (at 21) with safety
factors from 0.2 to 0.8 Å. With smaller values the number of bonds is less
and with larger values it is bigger. This is typical behaviour for systems
(with well-defined coordinate sets!) that contain primarily non-metal
atoms – a safety factor of about 0.5 Å is usually a good compromise
value.

Output of the results is performed using the Entry method of
table which takes a single, string argument. Line 20 outputs the
value of the safety factor and line 21 the number of bonds. The latter
is obtained by using the Python built-in function len which returns
the length of the bonds attribute of molecule as an integer. Python
then permits a string representation of the integer (or indeed of any
object) to be obtained by enclosing the whole expression in backward
quotes ‘ � � �‘.

Line 24 comes after the loop and terminates writing to the table.
Lines 27–28 regenerate the connectivity for molecule with a value of 0.5 Å for

the safety factor.
Lines 31–38 print the bond distances for molecule to a table. The way in which

output is done is very similar to that in lines 10–21 except that the table
has 12 columns and no column headings.

Line 34 loops over the bonds in molecule.bonds by extracting
them one by one as instances of the Bond class. The indices of the atoms
in the bond are then output to the table in lines 35–36 and the bond
distance in line 37. The bond distance is calculated using the Distance
method of the coordinates3 attribute of molecule.

Lines 41–49 print a table of bond angles for molecule.
Lines 52–61 print a table of dihedral angles for molecule.

3.5 Miscellaneous transformations

The previous sections presented analyses that involve the positions of atoms
relative to each other. Often, however, it is useful to be able to manipulate the
Cartesian coordinates themselves, either for part or the whole of a system. This
section presents a number of simple transformations of this type and provides a
necessary preliminary to the more complex operations of the next section.

The most fundamental and probably the most useful transformations are those
that rotate and translate the atom coordinates. A translation of a coordinate is
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effected by adding a vector that specifies the translation, t, to the coordinate
vectors of the atoms, i.e.

r ′
i = r i + t (3.8)

where the prime denotes a modified coordinate. A rotation involves the multipli-
cation of the coordinate vector of each atom by a 3×3 matrix, U, which specifies
the rotation:

r ′
i = Ur i (3.9)

Rotation matrices are orthogonal matrices, which means that the inverse of the
matrix is also its transpose, i.e. UTU = I, where I is the identity matrix. If the
matrix has a determinant of 1 (�U� = 1), the rotation is said to be a proper rotation
and the handedness of the coordinate system is preserved. If the matrix has a
determinant of −1 (�U� = −1), the rotation is an improper rotation and involves
a mirror reflection or an inversion and can lead to changes in the stereochemistry
of the system.

In many cases a coordinate set for a system will be centred and oriented
arbitrarily. It is often useful to be able to remove these effects and to orient the
system in a systematic fashion. A standard way to centre a system is to translate
it so that it is centred at the origin. The position vector of the centre of a system,
Rc, is defined by

Rc =
∑N

i=1 wir i
∑N

i=1 wi

(3.10)

where wi are weights associated with each particle. For the centre of mass,
these are the atomic masses, but it is possible to employ other values. For
example, if the weights are all equal to 1 then the centre of geometry is cal-
culated, whereas if the weights are the elemental nuclear charges, it is the
centre of charge that is obtained. To centre a system at the origin it is neces-
sary to calculate Rc and translate the coordinates of all atoms by −Rc (using
Equation (3.8)).

To orient a system in a systematic fashion it is common to use a principal
axis transformation that rotates it so that the off-diagonal elements of its inertia
matrix are zero. The inertia matrix, � , is a 3×3 matrix that is defined as

� =
N
∑

i=1

wi

(

r2
i I − r ir

T
i

)

(3.11)

where I is the 3×3 identity matrix. The inertia matrix is symmetric, which means
that it is equal to its own transpose, i.e. � = �T . This can be seen explicitly by
writing out the individual components of the matrix, such as
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�xx =
N
∑

i=1

wi

(

r2
i −x2

i

)

�xy = −
N
∑

i=1

wixiyi

= �yx (3.12)

As before, the weights for the system can be the masses for each atom or other
values depending upon the property that is being studied.

The moments of inertia and the principal axes of the system are the eigenvalues,
�	, and eigenvectors, e	, of the inertia matrix. They satisfy the following equation

�e	 = �	e	 	 = 1� 2 or 3 (3.13)

and are obtained by diagonalizing the inertia matrix. More details concerning
eigenvalues and eigenvectors can be found in Section A2.1. The inertia matrix
and the moments of inertia are important properties because they help characterize
the behaviour of a system under rotational motion.

The principal axis transformation is the one that makes the inertia matrix
diagonal and converts all the diagonal elements of the matrix to the moments of
inertia. This is achieved by rotating the coordinates of the atoms of the system
with a rotation matrix, U, which is equal to the transpose of the matrix of
eigenvectors:

U = �e1�e2�e3�
T (3.14)

All the transformations discussed above are implemented as methods of the
Coordinates3 class. Their definitions are:

Class Coordinates3

Methods for transforming coordinates.

Method Center

Determine a centre for the coordinates.

Usage: center = coordinates3.Center ( )
coordinates3 is the instance of Coordinates3 for which the centre is

to be calculated.
center is an instance of the class Vector3 that contains the

coordinates of the centre.
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Method InertiaMatrix

Determine the inertia matrix for the coordinates.

Usage: matrix = coordinates3.InertiaMatrix ( )
coordinates3 is an instance of Coordinates3.
matrix is an instance of the class Matrix33 that contains the matrix

of inertia.

Method Rotate

Rotate the coordinates given a rotation matrix.

Usage: coordinates3.Rotate ( rotation )
coordinates3 is an instance of Coordinates3.
rotation is an instance of the class Matrix33 that contains a rotation

matrix.

Method ToPrincipalAxes

Perform a principal axis transformation on a set of coordinates.

Usage: coordinates3.ToPrincipalAxes ( )
coordinates3 is an instance of Coordinates3.

Method Translate

Translate the coordinates given a translation.

Usage: coordinates3.Translate ( translation )
coordinates3 is an instance of Coordinates3.
translation is an instance of the class Vector3 that contains a

translation.

Method TranslateToCenter

Translate a set of coordinates to its centre.

Usage: coordinates3.TranslateToCenter ( )
coordinates3 is an instance of Coordinates3.

All the methods listed above can take a keyword argument selection. If
the argument is present, it must be an instance of the Selection class and
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it specifies the subset of coordinates upon which the particular transformation
is to be effected. If the argument is absent, all coordinates will be transformed.
In addition, all methods, except Rotate and Translate, have a keyword
argument weights for defining the coordinate weights, wi. If absent, values
of 1 are assumed for each weight, whereas, if present, the argument must be a
vector of floating-point numbers with the same length as the coordinate array. In
pDynamo, vectors of this type are implemented with the class Vector. Weights
arrays can be constructed explicitly using the methods of the Vector class but
more usually they will be obtained using the methods of other classes. One of the
more useful of these is given in the example in Section 3.7.

3.6 Superimposing structures

The transformations introduced in the previous section modified a single set of
coordinates. In many cases, though, it is necessary to compare the structures
defined by two or more sets of coordinates. It is possible, of course, to compare
two structures by comparing the values of their internal coordinates. This gives
useful information but can be cumbersome when the system and, hence, the
number of internal coordinates are large. A simpler and widely used measure of
the difference between two structures, I and J, is the RMS coordinate deviation,

IJ. It provides a quicker, albeit cruder, measure insofar as it is a single number.
It is defined as


IJ =
√
√
√
√

∑N
i=1 wi

(

r I
i − rJ

i

)2

∑N
i=1 wi

(3.15)

where the superscripts I and J refer to the coordinates of the first and second
structures, respectively.

A moment’s consideration shows that the RMS coordinate deviation will not
be a useful measure for the comparison of structures unless the coordinate sets are
somehow oriented with respect to each other. It is evident, for example, that if one
set has undergone a translation with respect to the other then the RMS coordinate
deviation can take any value. A possible solution is to orient the two sets of
coordinates separately using a principal axis transformation and then calculate the
RMS coordinate deviation between them. This can provide a satisfactory measure
of comparison in some circumstances. However, a better method is to choose one
set of coordinates as a reference structure and then find the transformation that
superimposes the other coordinate set upon it.

There are various methods for superimposing structures. One of the original
ones was developed by W. Kabsch but a more recent one that uses quaternions
has been proposed by G. Kneller. The algorithm works by initially translating
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the coordinate set of the structure to be moved so that it has the same centre as
the reference set. The first structure is then rotated so that its RMS coordinate
deviation from the reference structure is as small as possible. If U is the rotation
matrix that operates upon the first structure, the RMS coordinate deviation between
it and the reference structure is a function of U and is written as


2
IJ�U� ∝

N
∑

i=1

wi

(

r I
i −UrJ

i

)2
(3.16)

The U that produces the smallest deviation is found by minimizing the value of
Equation (3.16) with respect to various parameters that define the rotation matrix.
In the quaternion algorithm, the rotation matrix is expressed in terms of four
parameters q0, q1, q2 and q3 as follows:

U =
⎛

⎜
⎝

q2
0 +q2

1 −q2
2 −q2

3 2�−q0q3 +q1q2� 2�q0q2 +q1q3�

2�q0q3 +q1q2� q2
0 −q2

1 +q2
2 −q2

3 2�−q0q1 +q2q3�

2�−q0q2 +q1q3� 2�q0q1 +q2q3� q2
0 −q2

1 −q2
2 +q2

3

⎞

⎟
⎠ (3.17)

The matrix defined in Equation (3.17) automatically defines an orthogonal matrix
as long as the quaternion parameters satisfy the expression q2

0 + q2
1 + q2

2 + q2
3 = 1.

TheminimizationofEquation(3.16) isdoneusingstandardminimizationapproaches
and the normalization condition is imposed using the method of Lagrange multi-
pliers. Further examples of minimization problems can be found in Sections 4.5
and 7.3, whereas Lagrange multipliers are discussed more fully in Section A2.2.

The calculation of the RMS coordinate deviation and the superposition of two
coordinate sets are handled by two methods of the class Coordinates3. Their
definitions are:

Class Coordinates3

Methods for determining the RMS deviation between coordinates sets and for
their superposition.

Method RMSDeviation

Determine the RMS deviation between two sets of coordinates.

Usage: rmsd = coordinates3.RMSDeviation(
reference )

coordinates3 is an instance of Coordinates3.
reference is a reference set of coordinates with respect to which the RMS

deviation is to be calculated. It must be of the same size as the
instance calling the method.



3.7 Example 4 47

rmsd is a floating-point number containing the value of the RMS deviation.
Remarks: Both sets of coordinates are unchanged after the operation.

Method Superimpose

Superimpose a set of coordinates onto a reference set.

Usage: coordinates3.Superimpose ( reference )
coordinates3 is an instance of Coordinates3.
reference is a reference set of coordinates with respect to which the

instance that calls the method will be reoriented.
Remarks: The quaternion algorithm is used by this method.

Both of these methods have keyword arguments selection and weights
that behave identically to those of the methods described in Section 3.5.

3.7 Example 4

The program in this section illustrates the use of the transformation and superim-
position methods. It is:

1 """Example 4."""
2
3 from Definitions import *
4
5 # . Define the list of structures.
6 xyzfiles = [ "bala_alpha.xyz", "bala_c5.xyz", \

"bala_c7ax.xyz", "bala_c7eq.xyz" ]
7
8 # . Define a molecule.
9 xyzfile = xyzfiles.pop ( )
10 molecule = XYZFile_ToSystem ( os.path.join ( xyzpath, xyzfile ) )
11 molecule.Summary ( )
12
13 # . Translate the system to its center of mass.
14 masses = molecule.atoms.GetItemAttributes ( "mass" )
15 molecule.coordinates3.TranslateToCenter ( weights = masses )
16
17 # . Calculate and print the inertia matrix before reorientation.
18 inertia = molecule.coordinates3.InertiaMatrix ( weights = masses )
19 inertia.Print ( title = "Inertia Matrix Before Reorientation" )
20
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21 # . Transform to principal axes.
22 molecule.coordinates3.ToPrincipalAxes ( weights = masses )
23
24 # . Calculate and print the inertia matrix after reorientation.
25 inertia = molecule.coordinates3.InertiaMatrix ( weights = masses )
26 inertia.Print ( title = "Inertia Matrix After Reorientation" )
27
28 # . Define a table for the results.
29 table = logfile.GetTable ( columns = [ 20, 10, 10 ] )
30 table.Start ( )
31 table.Title ( "RMS Coordinate Deviations" )
32 table.Heading ( "Structure" )
33 table.Heading ( "Before" )
34 table.Heading ( "After" )
35
36 # . Loop over the remaining structures.
37 for xyzfile in xyzfiles:
38 crd3 = XYZFile_ToCoordinates3 ( \

os.path.join ( xyzpath, xyzfile ) )
39 rms0 = crd3.RMSDeviation ( molecule.coordinates3, \

weights = masses )
40 crd3.Superimpose ( molecule.coordinates3, weights = masses )
41 rms1 = crd3.RMSDeviation ( molecule.coordinates3, \

weights = masses )
42 table.Entry ( xyzfile[0:-4], alignment = "l" )
43 table.Entry ( "%.2f" % ( rms0, ) )
44 table.Entry ( "%.2f" % ( rms1, ) )
45
46 # . Finish up the table.
47 table.Stop ( )

The example consists of two halves. In the first part, lines 1–26, a single set
of coordinates is manipulated using the transformation methods, whereas in the
second part, line 28 onwards, additional coordinate sets are read and superimposed
onto a reference set.

Line 6 defines a list with the names of files in XYZ format that contain the
structures to be analysed.

Lines 9–11 create an instance of System from the XYZ file "bALA_C7eq.xyz".
Line 9 uses the Python list method pop to define the name of the XYZ
file to be read. The method removes the last element of the list and
assigns it to the variable xyzfile. As the element is removed, the
length of the list is reduced by one.
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Line 14 generates a vector of weights that contains the masses of the atoms in
the system. The method that is used is GetItemAttributes from the
AtomContainer class. It takes a single argument which is the name of
the attribute to extract for each atom. In this case it is "mass" but other
names are possible, including "atomicnumber".

Line 15 moves the system to its centre of mass.
Lines 18–26 determine and print the system’s inertia matrix before and after a

principal axis transformation. The matrix will, in general, have non-zero
values for all its components before the transformation but afterwards
it should be diagonal. The printing is done with the Print method of
inertia which is an instance of the Matrix33 class.

Lines 29–34 set up the table that is to be used to output the results of the subse-
quent analysis.

Line 37 loops over the XYZ files that remain in the list xyzfiles.
Line 38 employs the helper function XYZFile_ToCoordinates3 of the

XYZFileReader class to read the coordinates from the XYZ file that
is currently being iterated over. This function behaves similarly to the
function XYZFile_ToSystem except that only the coordinates in the
file are returned and not a full system. Other file-reader classes, such as
MOLFileReader and PDBFileReader, have equivalent functions.

Lines 39–41 calculate the RMS deviations between the coordinates in crd3 and
the reference set in molecule. The calculation is done before and after
superimposing the two sets.

Lines 42–44 output the results. The xyzfile[0:-4] syntax in line 42 means
that the last four characters of the string xyzfile are not output to the
table. These are not needed as they correspond to the string ".xyz".
Likewise, the keyword argument alignment in the call to the method
Entry means that the text is to be output left-justified in the column.
The default is to right-justify it.

Line 47 terminates table writing.

Exercises

3.1 A property of a molecule closely related to its moments of inertia is its radius
of gyration, Rgyr, which is defined as

Rgyr =
√
∑N

i=1 wi �r i −Rc�
2

∑N
i=1 wi

(E3.1)
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where Rc is the centre of the molecule calculated with the same weights as
those used for the calculation of Rgyr. Write a function that calculates this
quantity and use it to analyse the molecules examined in Example 4.

3.2 Stereochemistry is an important branch of chemistry. Part of the way in
which the stereochemistry of a molecule is described is based upon the Cahn–
Ingold–Prelog notation. In this system, knowledge of the connectivity of the
atoms in a molecule together with their coordinates, atomic numbers and
masses is sufficient to label a molecule’s stereocentres. Write a method to
identify the number and types of a molecule’s stereocentres and apply it to
the structures of the blocked alanine molecules appearing in the text. Are the
alanyl groups of these structures in their R or S forms?



4

Quantum chemical models

4.1 Introduction

In the last chapter we dealt with how to manipulate a set of coordinates and
how to compare the structures defined by two sets of coordinates. This is useful
for distinguishing between two different structures but it gives little indication
regarding which structure is the more probable; i.e. which structure is most likely
to be found experimentally. To do this, it is necessary to be able to evaluate the
intrinsic stability of a structure, which is determined by its potential energy. The
differences between the energies of different structures, their relative energies,
will then determine which structure is the more stable and, hence, which structure
is most likely to be observed.

This chapter starts off by giving an overview of the various strategies that are
available for calculating the potential energy of molecular systems and then goes
on to describe a specific class of techniques based upon the application of the
theory of quantum mechanics to chemical systems.

4.2 The Born–Oppenheimer approximation

Quantum mechanics was developed during the first decades of the twentieth
century as a result of shortcomings in the existing classical mechanics and, as
far as is known, it is adequate to explain all atomic and molecular phenomena.
In an oft-quoted, but nevertheless pertinent, remark, P. A. M. Dirac, one of the
founders of quantum mechanics, said in 1929:

The underlying physical laws necessary for the mathematical theory of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty is only
that the exact application of these laws leads to equations much too complicated to be
soluble. It therefore becomes desirable that approximate practical methods of applying
quantum mechanics should be developed, which can lead to an explanation of the main
features of complex atomic systems without too much computation.

51
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One of the equations that Dirac was talking about and which, in principle,
determines the complete behaviour of a (non-relativistic) molecular system is the
time-dependent Schrödinger equation. It has the form

�̂� = i�
��

�t
(4.1)

In this equation, �̂ is what is known as the Hamiltonian operator which operates
on the wavefunction for the system denoted by � . The other symbols are the
imaginary number, i, Dirac’s constant, �, which is Planck’s constant, h, divided
by 2�, and the time, t.

A little further qualitative explanation of some of these terms is necessary.
In general, the wavefunction, � , is a function of the position coordinates of all
the particles in the system, the time and some specifically quantum mechanical
variables that determine each particle’s spin. It is the wavefunction that gives com-
plete information about the system and is the goal when solving Equation (4.1).
The wavefunction is important because its square is the probability density dis-
tribution for the particles in the system. To make this clearer, consider a system
consisting of one particle that is constrained to move in one dimension. Then the
wavefunction is a function of two variables, the position coordinate, x, and the
time, t (for convenience spin is ignored) – this dependence is written as ��x� t�.
The probability that the particle will be found in the range x to x+�x, where �x

is a small number, at a time t is ���x� t��2 �x. In quantum mechanics this is the
best that can be done – it is possible to know only the probability that a particle
will have certain values for its variables – unlike classical mechanics, in which,
in principle, values for a particle’s variables can be defined precisely.

The wavefunction is important but its behaviour is determined by the
Hamiltonian operator of the system. This operator will consist of a sum of
two other operators – the kinetic energy operator, �̂ , and the potential energy
operator, �̂ . The former determines the kinetic energy of the system, which is
the energy due to ‘movement’ of the particles, and the latter the energy due to
interactions between the particles and with their environment.

In certain cases the system can exist in what is called a stationary state in which
its wavefunction and, thus, its particles’ probability distribution do not change
with time. For stationary states the time-dependent equation (Equation (4.1))
reduces to a simpler form, the time-independent Schrödinger equation:

�̂� = E� (4.2)

where E is the energy of the stationary state which is a constant.
For atomic and molecular systems, there are essentially two types of particles –

electrons and the atomic nuclei. The latter will differ in their mass and their
charge depending upon the element and its isotope. These classes of particles have
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greatly disparate masses. As an example, the lightest nucleus – that for hydrogen
which consists of a single proton – has a mass about 1836 times greater than that
of an electron. These very different masses will cause the electrons and the nuclei
to have very different motions and this means that, to a good approximation, their
dynamics can be treated separately. This is the basis of the Born–Oppenheimer
approximation. It leads to the following procedure. The first step is to tackle the
electronic problem by solving the electronic Schrödinger equation for a specific
set of nuclear variables. That is, the nuclear coordinates are regarded as fixed and
the wavefunction that is determined gives the electronic distribution only. The
energy for which this equation is solved is no longer a constant but is a function of
the nuclear positions. The second stage is to treat the nuclear dynamics by using
the energy obtained from the solution of the electronic problem as an effective
potential for the interaction of the nuclei.

The electronic equation is

�̂el�el = Eel�r1� r2� 	 	 	 � rN ��el (4.3)

where the Hamiltonian is the same as that in Equation (4.2) except that the
kinetic energy operator for the nuclei has been omitted and the wavefunction, �el,
gives the distribution of electrons only. Because the nuclei have been fixed the
wavefunction and the energy, Eel, both depend parametrically upon the nuclear
coordinates, 
r i�, and so for each different configuration or structure there will
be a different electronic distribution and a different electronic energy.

The electronic energy, Eel, is the energy that will be of primary interest to us.
Because it is a function of the positions of all the nuclei in the system it is a
multidimensional function that will often have a very complex form. This function
defines the potential energy surface for the system and it is this that determines
the effective interactions between the nuclei and, hence, the system’s structure
and dynamics.

4.3 Strategies for obtaining energies on a potential energy surface

One of the most important problems when performing molecular simulations is
how to obtain accurate values for the electronic energy of a system as a function
of its nuclear coordinates. Various strategies are possible.

The most fundamental approach is to attempt to calculate the energies from first
principles by solving the electronic Schrödinger equation (Equation (4.3)) for the
electronic energy at each nuclear configuration. Many methods for doing this are
available but most are based upon one of the following theories – density functional
theory, molecular orbital theory, quantum Monte Carlo theory or valence bond
theory. All these theories are first principles or ab initio, in the sense that they
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attempt to solve Equation (4.3) with as few assumptions as possible. Although
ab initio methods can give very accurate results in many circumstances they are
computationally expensive and so cheaper alternatives have been developed.

One way of making progress is to drop the restriction of performing first-
principles calculations and seek ways of simplifying the ab initio methods outlined
above. These so-called semi-empirical methods have the same overall formalism
as that of the ab initio methods but they approximate time-consuming parts of
the calculation. As approximations have been introduced, these methods must
be calibrated to ensure that the results they produce are meaningful. This often
means that the values of the various empirical parameters in the methods have
to be chosen so that the results of the calculations agree with experimental data
or with the results of accurate ab initio calculations. Semi-empirical versions of
many ab initio methods exist. Together the ab initio and semi-empirical methods
constitute the class of quantum chemical (QC) approaches.

A second and even cheaper alternative is to employ an entirely empirical
potential energy function. This consists in choosing an analytic form for the
function that is to represent the potential energy surface for the system and
then, like the semi-empirical QC methods, parametrizing the function so that the
energies it produces agree with experimental data or with the results of accurate
quantum mechanical calculations. Very many different types of empirical energy
function have been devised. Some are designed for the description of a single
system. For example, studies of simple reactions such as H2 + H → H + H2

often use surfaces of special forms. For studies on larger molecules more general
functions have been developed and it is these that we shall discuss in Chapter 5.
Methods that combine elements of both quantum chemical and empirical potential
energy function calculations will be the subject of Chapter 6.

4.4 Molecular orbital methods

Molecular orbital (MO) and density functional theory (DFT) based methods are the
most popular ab initio approaches for performing quantum chemical calculations.
For a long time, MO methods dominated quantum chemistry but they have slowly
been giving way to DFT approaches since the beginning of the 1990s. This is
because DFT methods have approximately the same computational expense as
the cheapest MO methods but can give results that are more reliable for many
phenomena. Despite this, we describe only MO methods here because semi-
empirical methods, based upon MO theory, are the only ones that we shall employ
in the examples in this book. Nevertheless, DFT methods share similarities with
MO methods, both in their formulation and in the way that they are implemented
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for calculating the potential energy of a molecular system, and so much of what
is said will be applicable to the DFT case.

MO methods express the wavefunction of a particular electronic state of a
system as

�el =∑

I

AI�I (4.4)

Here AI are expansion coefficients, normally called configuration interaction (CI)
coefficients, and the �I are Slater determinants comprising products of M one-
electron, orthonormal spin-orbitals where M is the number of electrons in the
system. The �I are written as matrix determinants because electrons are fermions
whose wavefunctions must be antisymmetric with respect to particle exchange
and determinants automatically have this property. A Slater determinant for M

electrons is
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(4.5)

where ��� is a spin-orbital and ���a �1� indicates that the ath spin-orbital is
occupied by electron 1. Expansion of the Slater determinant leads to a sum of
M! terms each of which consists of a product of M spin-orbitals. To see this,
consider the case of two electrons for which a �I is

�I �1� 2� = 1√
2
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2


���a �1� ���b �2�− ���a �2� ���b �1�� (4.6)

The spin-orbitals, themselves, are the product of a spin function, � , and a space-
orbital, . Electrons have a spin of one-half and the spin function can take one of
two values, � or �, corresponding to spins of +1/2 (spin-up) or of −1/2 (spin-
down), respectively. In contrast, space-orbitals are usually expanded in terms of
basis functions taken from a basis set. If we suppose that there are Nb functions
in the set and that these functions are denoted �� (with � in the range 1 to Nb),
a space-orbital expansion can be written as

a �r� =
Nb∑

�=1

c�a���r� (4.7)

In this equation, the c�a are the molecular orbital coefficients. In general, both
they and the CI coefficients will be complex but in this book, for simplicity, we
shall take them to be real.
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In MO methods, the spin-orbitals are orthonormal, which means that the overlap
is zero between different spin-orbitals and one between identical orbitals. The
spin functions � and � are orthonormal by construction whereas the space-orbitals
must satisfy an orthonormality constraint. Denoting the constraint between space-
orbitals a and b as �ab gives

�ab =
∫

r
a �r�b �r� dr −�ab (4.8)

=∑

�

c�a

∑

�

c�b

∫

r
�� �r��� �r� dr −�ab (4.9)

=∑

��

c�ac�bS�� −�ab (4.10)

Here �ab is the Kronecker delta, which takes a value of one if a = b and zero
otherwise, S�� is the element of the overlap matrix between the basis functions
�� and �� and the integrations in Equations (4.8) and (4.9) are performed over all
space. The condition of orthonormality on the space-orbitals limits the number of
independent orbitals that can be formed from a given basis set. Thus, if there are
Nb functions in the set, the maximum number of independent orbitals derivable
from the set will also be Nb.

To perform an MO calculation, it is necessary to choose a basis set and the form
that the expansion in Equation (4.4) is to take. Once this has been done, the CI
and MO coefficients of Equations (4.4) and (4.7), respectively, are the quantities
that remain to be determined. In Hartree–Fock (HF) theory, which is the simplest
MO method, the expansion of Equation (4.4) consists of only a small number
of determinants – normally one, in fact – and the values of the CI coefficients
are fixed. This leaves the MO coefficients, which are found using a variational
procedure that will be detailed below. More elaborate approaches include the CI
methods in which only the CI coefficients are allowed to vary and the values of
the MO coefficients are fixed, having been taken, usually, from a previous HF
calculation. The most general MO methods are multiconfigurational methods in
which the CI and MO coefficients are varied simultaneously. It is also possible to
determine wavefunctions non-variationally. One example is methods based upon
Møller–Plesset perturbation theory which, like CI methods, are employed most
often to improve upon a previously determined HF wavefunction.

4.5 The Hartree–Fock approximation

The simplest HF wavefunctions consist of a single determinant and there are
two principal types. There are spin-restricted HF (RHF) wavefunctions, in which
a single set of orthonormal space-orbitals is used for electrons of both � and
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� spin, and spin-unrestricted HF (UHF) wavefunctions in which there are two
distinct sets of space-orbitals, one for the electrons of � spin and another for
those of � spin. The orbitals within each set are orthonormal but there are no
such conditions between the orbitals of different sets. The commonest single-
determinant RHF wavefunctions are closed-shell wavefunctions in which each
space-orbital that is occupied has two electrons, one of � spin and one of � spin.
These wavefunctions, by construction, have no unpaired electrons and so always
correspond to singlet states or, equivalently, to states with a spin multiplicity of
one. By contrast, single-determinant RHF wavefunctions, with unpaired � and �

electrons, and UHF wavefunctions are suitable for describing open-shell states
which have multiplicities of two (doublet), three (triplet), four (quartet) and so
on.

In this book, we consider only closed-shell RHF and UHF approaches as these
will be sufficient for our needs. The wavefunctions of these methods are deter-
mined with very similar procedures but we shall concentrate upon the closed-shell
RHF case because the formulae are less cumbersome. To find a HF wavefunc-
tion, use is made of the variational principle which states that the energy of an
approximate wavefunction, obtained by solving Equation (4.3), is always an upper
bound to the energy of the exact wavefunction. This implies that the optimum
HF wavefunction can be found by determining the values of the MO coefficients
that give the lowest electronic energy. Practically this is done by minimizing
the expression for the electronic energy of the HF wavefunction with respect to
values of the MO coefficients, but making sure that the coefficients obey the
orthonormality constraints of Equation (4.10).

An expression for the electronic energy of a system can be obtained by re-
arranging Equation (4.3) and is

� =
∫

r1
dr1

∫

r2
dr2 	 	 	

∫

rM
drM��r1� r2� 	 	 	 � rM��̂el��r1� r2� 	 	 	 � rM�

∫

r1
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∫

r2
dr2 	 	 	

∫

rM
drM ���r1� r2� 	 	 	 � rM��2 (4.11)

where � is the HF wavefunction and we have replaced Eel by � as the latter
is the symbol that we shall use, henceforth, to denote the potential energy of a
system, no matter how it is obtained.

In atomic units, the electronic Hamiltonian, in its most basic version, has the
form

�̂el = −1
2

∑

s

�2
s −∑

si

Zi

rsi

+∑
st

1
rst

+∑
ij

ZiZj

rij

(4.12)

Here the subscripts s and t and i and j refer to electrons and nuclei, respectively,
Z is a nuclear charge and rxy is the distance between particles x and y. The first
term on the right-hand side of the equation is the operator describing the kinetic
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energy of the electrons, whereas the remaining terms account for the electrostatic
interactions between the charges of the various subgroups of particles. Thus, the
second term is the electron–nuclear attraction, the third term the electron–electron
repulsion and the fourth term the nuclear–nuclear repulsion. This latter term,
which we shall denote by the symbol �nn, is a constant for a given arrangement
of the nuclei (or atoms) because it is independent of the electronic coordinates.

Substitution of the expressions for a single-determinant HF wavefunction, Equa-
tion (4.5), and the electronic Hamiltonian, Equation (4.12), into Equation (4.11)
enables the electronic energy to be written as a function of the MO coefficients
that define the wavefunction. The derivation is straightforward, although long,
and particular care must be taken in properly accounting for each of the M!
terms in the determinantal expansion. The final expression, for a closed-shell RHF
wavefunction, is compactly written as

� = 1
2

∑

��

P��

{

H�� +F��

}+�nn (4.13)

where the sum is a double sum over all the basis functions in the basis set and
P��, H�� and F�� are elements of the density matrix, the one-electron matrix and
the Fock matrix, respectively. The density matrix elements are quadratic functions
of the MO coefficients and are

P�� =∑

a

nac�ac�a (4.14)

= 2
∑

a occupied

c�ac�a (4.15)

In Equation (4.14) the sum is over all MOs in the system and na are the orbital
occupancies. For a closed-shell RHF wavefunction, orbitals are either occupied
with an occupancy of two or unoccupied with an occupancy of zero and so the
sum reduces to one over occupied orbitals only, as in Equation (4.15).

The elements of the one-electron matrix consist of integrals of the basis func-
tions over the terms in the electronic Hamiltonian that depend upon the coordinates
of one electron only. These are the electron kinetic energy and the electron–nuclear
attraction terms. The full expression for H�� is

H�� =
∫

r
���r�

{

−1
2

�2 −∑
i

Zi

�r − r i�

}

���r�dr (4.16)

The expression for the Fock matrix is more complicated and is

F�� = H�� +∑
��

P��

[

�������− 1
2

�������

]

(4.17)
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The first term on the right-hand side is the one-electron part of the Fock matrix
whereas the remaining term is a sum of products of density matrix elements and
two-electron integrals. The latter arise from the electron–electron repulsion terms
of the electronic Hamiltonian. They are six-dimensional because they depend
upon the coordinates of two electrons and take the form

������� =
∫

r1

dr1���r1����r1�
∫

r2

dr2
���r2����r2�

�r1 − r2�
(4.18)

The two-electron integrals enter into the expression for the Fock matrix in two
distinct ways. The first two-electron term on the right-hand side of Equation (4.17)
is the Coulomb portion of the matrix and corresponds to the electrostatic inter-
action between different parts of the electron distribution. It takes the standard
form that would be expected from the classical theory of electromagnetism. By
contrast, the second two-electron term is purely quantum mechanical in origin and
is called the exchange term. It arises from the antisymmetrization requirement on
the electronic wavefunction.

The minimization of the electronic energy, subject to the orthogonalization
constraints on the orbitals, can be performed in a similar way to that of Sec-
tion 3.6, using the method of Lagrange multipliers. The procedure is a little more
complicated in this case because there are multiple constraints, one for each pair
of orbitals in the system, and so there are multiple multipliers, one for each con-
straint. Denoting the Lagrange multiplier for the constraint between orbitals a and
b as �ab, the equations to be satisfied by the optimum MO coefficients are

�

�c�a

[

� −∑
bc

�bc�bc

]

= 0 ∀ ��a (4.19)

�bc = 0 ∀ b� c (4.20)

In these equations, the subscripts a, b and c are orbital indices and the sum in
Equation (4.19) is a double one over all pairs of orbitals.

The derivatives in Equation (4.19) can be obtained by differentiating Equations
(4.13) and (4.10), respectively. This is straightforward to do, although a little
tedious, as long as it is noted that the matrices F and S and the matrix defined by
the Lagrange multipliers, �bc, are all symmetric. The final results are

��

�c�a

= 4
∑

�

F��c�a (4.21)

�

�c�a

∑

bc

�bc�bc = 2
∑

b

�ab

∑

�

S��c�b (4.22)
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The derivative expressions from Equations (4.21) and (4.22) can now be sub-
stituted into Equation (4.19). In matrix-vector form the result is

Fca =∑

b

(
1
2

�ab

)

Scb ∀ a (4.23)

where ca and cb are the Nb-dimensional vectors of MO coefficients for orbitals a

and b, respectively.
Equation (4.23) is reminiscent of the eigenvalue equation that we met in

Section 3.5, although it is more complicated due to the presence of the sum over
orbitals and of the overlap matrix S on its right-hand side. The equation can, how-
ever, be simplified by considering transformations that rotate the set of occupied
MOs amongst themselves. Suppose that there are Nocc occupied orbitals and that
we write them as a matrix, C, in which each column corresponds to an orbital, as
follows:

C = (

c1c2 · · ·cNocc−1cNocc

)

(4.24)

A set of transformed orbitals, C′, can be produced by multiplying the original
matrix by an orthogonal matrix, U, that describes the rotation:

C′ = CU (4.25)

The rotation matrix will have dimensions, Nocc ×Nocc, and, because it is orthog-
onal, the orthonormality of the original orbitals will be preserved.

The interest of transformations of this type is that many quantities, such as the
density matrix, the Fock matrix and the electronic energy, are invariant to them.
As an example, let us take the RHF density matrix, expressed in terms of the
transformed orbitals, and show that it is identical to that expressed in terms of
the original set. In matrix-vector notation, the argument runs as follows:

P′ = 2C′�C′�T

= 2�CU��CU�T

= 2CUUTCT

= 2CCT

= P (4.26)

It should be emphasized that this result only holds if the transformed orbitals have
the same occupancy. Thus, it applies to the occupied orbitals of closed-shell RHF
wavefunctions and, separately, to the occupied orbitals of � and � spin in the
UHF case.

This property of invariance of quantities to rotations amongst the occupied
orbitals means that we have significant freedom in choosing which set of orbitals
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to find as long as it spans the occupied space. In particular, we can choose the set
that simplifies Equation (4.23) by rendering the matrix of Lagrange multipliers
for the occupied orbitals diagonal. Doing this, and at the same time absorbing
the factor of a half into the definition of the new multipliers, �a, gives the final
expression that the optimized orbitals must obey:

Fca = �aSca ∀ a (4.27)

This equation is called the Roothaan–Hall equation, named after C. C. J. Roothaan
and G. G. Hall who proposed it in the 1950s.

4.5.1 Solving the Roothaan–Hall equation

The Roothaan–Hall equation, Equation (4.27), is a generalized eigenvalue equa-
tion and can be diagonalized to obtain the orbital vectors, ca, and the Lagrange
multipliers or orbital energies, �a. The procedure for doing this is described in
Section A2.1. Diagonalization, however, is not sufficient to solve for the optimum
orbitals as the Fock matrix (Equation (4.17)) is itself a function of the density
matrix and, hence, the orbital coefficients, ca.

A range of methods have been developed for solving this equation. The
approach that we employ in this book is called the self-consistent field (SCF)
procedure and is the one that has traditionally been used in the quantum chemistry
community. Nevertheless, other methods may be more appropriate or efficient for
certain applications, such as when treating systems with many atoms or crystalline
solids.

The SCF procedure is an iterative one and, in the spin-restricted case, would
typically consist of the following steps:

(i) Define the quantities that are needed for the HF calculation and, in particular:

(a) The elemental composition of the system that is to be studied.
(b) A set of atomic coordinates at which the calculation is to be performed.
(c) The charge and spin multiplicity for the system. These will determine how many

� and � spin electrons there are and whether a closed-shell RHF or a UHF
description is appropriate.

(d) A basis set.

(ii) Calculate and store items that will be required in the subsequent procedure. These
include the overlap and one-electron matrices, S and H, and the two-electron integrals,
�������. For large systems, it often proves impossible to store the two-electron inte-
grals, simply because there are too many of them. In such cases, they are recalculated
each time they are required.
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(iii) Guess a starting density matrix, P. A crude approach is to take P to be zero, which
means that the Fock matrix built in the first SCF iteration will be equal to the one-
electron matrix. A more sophisticated estimate is obtained by building P from the
densities of the isolated atoms.

(iv) Construct the Fock matrix using the current value of the density matrix and the
appropriate integrals and other quantities. Those integrals that were not precalculated
and stored in Step (ii) have to be recalculated.

(v) Diagonalize the new Fock matrix to obtain orbital energies and vectors. This step will
yield a set of up to Nb vectors.

(vi) Build a new density matrix from the orbital vectors obtained in Step (v) using
Equation (4.15). It is normal, although not obligatory, to choose the orbitals of lowest
energy as those that are occupied.

(vii) Decide whether the SCF procedure has converged. This can be done in a number of
ways but a common one is to check how different the new density matrix is from
the one of the previous cycle. If this difference is too big the iterations are continued
by returning to Step (iv). Otherwise the iterations are stopped and the SCF procedure
terminates.

A similar procedure to this one is followed in a spin-unrestricted calculation.
The major difference is that there are two sets of orbitals to determine, one for
each spin, and each set of orbitals has its own associated quantities. This means,
for example, that there will be two density matrices, P� and P�, and two Fock
matrices, F� and F�.

The SCF method described above will often fail to converge. This can either
be because convergence is occurring but it is so slow that it will not take a
reasonable number of steps or because the procedure is oscillating and will never
converge no matter how many steps are taken. In practice, therefore, it is normal
to augment the procedure with methods that enhance or stabilize convergence. A
number of such methods exist but most use, in one way or another, information
from previous steps to help guide the construction of the density and/or Fock
matrices at the current step. Even so, none of the methods in use is foolproof
and convergence can often be a problem, particularly for systems, such as those
that contain transition metals, for which the differences in energies between the
highest occupied orbitals and the lowest unoccupied orbitals are very small.

4.5.2 Basis sets

The choice of basis set is crucial in determining the precision of the results
of a quantum chemical calculation. The three most common types of function
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used in basis sets are Slater or exponential functions, Gaussian functions and
plane-waves. They have the following forms

�Slater
� �r� ∝ ��r� exp�−�r� (4.28)

�Gaussian
� �r� ∝ ��r� exp�−�r2� (4.29)

�plane-wave
� �r� ∝ exp�−ikTr� (4.30)

Slaters and Gaussians are localized functions in that they are centred about a
particular point in space. Normally they are placed upon the atomic nuclei so
that the r in Equations (4.28) and (4.29) would be replaced by r − r i, where
r i are the atomic coordinates of the ith atom. The � in these equations are the
basis functions’ exponents whereas the � �r − r i� are functions that determine
the angular behaviour of the basis functions, i.e. whether they behave as s or
p or d orbitals and so on. In contrast to the atom-centred Slater and Gaussian
functions, plane-waves are delocalized, periodic functions that spread over all
space. They are complex by definition and are characterized by the value of their
wavevector, k.

These functions have different advantages and disadvantages. The orbitals of
hydrogen, and related one-electron cations, are Slater functions and so these
functions probably provide the most compact description of the wavefunctions of
atomic and molecular systems in terms of one-electron functions. Unfortunately,
many of the integrals involving Slater functions are difficult to evaluate and this
has limited their use in quantum chemical applications. By contrast, Gaussians
are much more amenable to manipulation although they provide a less accurate
description of the wavefunction near to and far from the nucleus. Plane-waves,
like Gaussians, are also very easy to manipulate but, as they are delocalized,
they are very poor at representing the wavefunction near the atomic nuclei where
the electron density is at its highest. In addition, they are almost never used for
HF calculations due to difficulties associated with evaluating the two-electron
exchange term. Plane-wave basis sets are especially well adapted for treating
periodic systems, such as crystals, with DFT methods that do not have exchange-
like terms.

Gaussians were first introduced into quantum chemistry by S. F. Boys in
1950. Since then, a huge variety of Gaussian basis sets have been developed
and calibrated for molecular calculations. Many of the most widely used were
proposed by one of the pioneers of computational quantum chemistry, J. A. Pople,
and his collaborators. The trade-off when devising a basis set is between the
potential improvements in accuracy when additional functions are added and the
extra computational expense that a larger basis set incurs. This is why a range
of basis sets are commonly used in any particular study. One starts with a small
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basis set to explore the system and to obtain an idea of how it behaves and then
one uses basis sets of increasing size to get results of higher precision.

The nomenclature used to describe Gaussian basis sets is as diverse as the
basis sets themselves but a basic categorization can be made using the � (‘zeta’)
notation. A single-� or minimal basis set has one basis function for each core and
valence atomic orbital. Thus a hydrogen atom would have one function in its basis
set corresponding to its 1s orbital whereas a carbon would have five functions
corresponding to its 1s, 2s and three 2p orbitals. Minimal basis set descriptions
are not very precise and so most serious studies would start with double-� basis
sets in which there are two basis functions per atomic orbital. More accurate
calculations require triple-� and quadrupule-� basis sets or higher.

The basic basis sets are often supplemented with additional functions. Two
examples are diffuse functions and polarization functions. Diffuse functions are
functions with small exponents that are found necessary to describe the more
extended charge distributions in anionic systems. They are usually of s or p type.
In contrast, polarization functions have exponents similar to those of the other,
valence functions in the basis set but they are of higher angular momentum.
Thus, for example, hydrogen would have polarization functions of p-type whereas
the second and third row elements would have functions of d-type. Polarization
functions are essential for the correct description of hypervalent bonding, such as
occurs for phosphorus and sulphur, but they benefit calculations on many other
systems as well.

Two clarifications need to be made concerning the form of Gaussian basis
sets. The first is that, in practice, many functions in a Gaussian basis set are not
single functions, as in Equation (4.29), but rather fixed linear combinations, or
contractions, of several functions

�Gaussian
� �r� ∝ ��r�

∑

u

du exp�−�ur2� (4.31)

In this equation, the individual Gaussian functions are denoted primitives and the
du, contraction coefficients. Contraction is most common for core atomic orbitals
and is done so that a function based upon Gaussians can more closely approximate
the ‘correct’ exponential-like behaviour that a basis function should have near the
atomic nucleus.

The second clarification concerns the form of the angular function, �, in Equa-
tion (4.31). Two alternative forms are in routine use and these can be summarized
as

�
Spherical
l �r� ��� = rlSlm ���� m = −l� 	 	 	 � 0� 	 	 	 � l (4.32)

�Cartesian
l �x� y� z� = xlxylyzlz (4.33)
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In these equations l is a positive or zero integer that denotes the angular-
momentum character of the function. Values of 0, 1, 2, 3 and 4 indicate s, p, d, f
and g functions, respectively. Equation (4.32) is a representation based upon the
real spherical harmonics, Slm. These are functions of the spherical polar angles �

and  and for each value of l, there are 2l+1 different functions corresponding to
the allowed values of m. In contrast, Equation (4.33) is a Cartesian representation
in which lx, ly and lz are all possible combinations of positive or zero integers
such that lx + ly + lz = l. The two representations are equivalent for s and p
functions but diverge thereafter. For example, the Cartesian representation of a d
orbital will have six different components in contrast to the spherical harmonic’s
five, whereas the f orbital representations will have ten and seven components,
respectively. The difference is due to contamination in the Cartesian represen-
tation with functions of lower angular momentum. Thus, a Cartesian d function
is equivalent to a spherical harmonic s and d, and a Cartesian f function to a
spherical harmonic p and f.

4.5.3 Scaling

There are two principal computational bottlenecks in a HF calculation. The first
is the evaluation of the two-electron integrals and their use in the construction of
the Fock matrix required at each SCF iteration. From Equation (4.18) it can be
seen that, formally, the number of two-electron integrals scales as O�N 4

b �. As the
number of basis functions required to describe a system scales roughly with the
number of electrons and, hence, the number of atoms, the number of integrals
scales approximately as O�N 4�. This scaling is very unfavourable as it implies,
for example, that a calculation on a system twice as big will take 16 times as
long, whereas one on a system ten times as big will take 10 000 times as long!

It is not quite as bad as this. With localized basis functions, such as Gaussians,
which are almost invariably used for HF calculations, it can be shown that the
scaling should ultimately become ∼O�N 2� as the size of the system increases.
This is because integrals involving functions that are centred on three or four
widely separated atoms will have negligible values and so need not be evaluated.
In practice, it requires quite large systems to attain this behaviour and so scalings
of ∼O�N 3�, or slightly less, are more commonly observed.

The second bottleneck concerns the manipulation of the matrices, such as F,
P and S, in terms of which HF theory is formulated. The most expensive matrix
operations that are required are matrix multiplication and diagonalization, both of
which scale as the cube of the matrix dimension. As the largest HF matrices have
dimension ∼Nb, these operations scale as O�N 3

b � ∼ O�N 3�. In spite of this scaling,



66 Quantum chemical models

very efficient computational implementations of most matrix operations exist and
so it is normally the time for Fock matrix construction that predominates.

Although we do not make use of any of them in this book, methods with
improved scaling properties are available for both of the bottlenecks mentioned
above. Thus, ∼O�N� algorithms have been devised for the construction of both the
Coulomb and the exchange portions of the Fock matrix. We shall discuss some of
the principles behind equivalent fast Coulomb methods in Section 10.8. Likewise,
linear-scaling methods are known that enable the optimum MO coefficients or
density matrix to be found and which serve as alternatives to the SCF procedure of
Section 4.5.1. Several strategies are employed by these latter algorithms to achieve
their speed-up, including: (i) the reformulation of the QC procedure in terms of
density matrices, instead of orbitals, which permits the costly diagonalization of
the Fock matrix to be avoided; and (ii) the exploitation of the fact that, for large
systems, the density and other matrices required in a QC calculation become
sparse. This means that a significant fraction of the matrix elements have very
small or zero values and so operations, such as matrix multiplication, can be
performed more rapidly.

4.5.4 Semi-empirical methods

Semi-empirical methods are an important complement to ab initio techniques.
Although they can be considered to be more ‘approximate’ than their ab initio
counterparts, they are normally much faster and so can be applied to systems or
processes that it would not otherwise be possible to investigate with QC methods.
It would be difficult to give a comprehensive overview of semi-empirical methods
because a huge diversity of schemes, derived from different ab initio theories, have
been developed. As a result, we shall restrict our discussion to the methods that
we employ in this book and which are probably the most popular semi-empirical
methods currently in use by the quantum chemistry community.

These methods are called modified neglect of diatomic overlap (MNDO) meth-
ods and were first introduced by M. J. S. Dewar and W. Thiel in the 1970s. Since
then, newer versions of the MNDO methods have been developed, both by the
original authors and by other workers, most notably J. J. P. Stewart. The MNDO
approaches are MO-based and calculations are usually performed within the HF
framework. The methods use minimal basis sets consisting of Slater functions
and only the valence electrons are treated explicitly, the core electrons being
merged into the nuclei of their respective atoms. This means, for example, that
both carbon and silicon atoms have four electrons and ‘nuclear’ charges of +4
whereas oxygen and sulphur have six electrons and ‘nuclear’ charges of +6.
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The principal approximation made by the MNDO methods in the electronic
part of the calculation is the neglect of diatomic differential overlap (NDDO),
which was first employed by Pople and co-workers in the 1960s. It states that
integrals involving overlap between basis functions on different atoms are zero
and has the consequence of greatly decreasing the number of integrals that have
to be evaluated. Thus, the overlap matrix S reduces to the identity matrix I and
the number of two-electron integrals becomes O�N 2� instead of the formal O�N 4�

of ab initio methods.
Further simplifications are obtained by evaluating the remaining integrals using

empirical expressions and not with the formulae in Equations (4.16) and (4.18)
that would be appropriate for Slater basis functions. The ‘nuclear’–’nuclear’ or
core–core repulsion terms are likewise calculated with empirical formulae and not
using the analytic expression given in Equation (4.12). It would be inappropriate
to list here the formulae that are used for the evaluation of the integrals and other
terms. It is important to note, though, that they require parameters which depend
upon the elemental types of the atoms involved in the interaction and that, in all,
approximately 10–20 parameters per element are needed to perform a calculation
with any of the MNDO methods. Discussion of the types of procedure necessary
to obtain these parameters will be left until Section 5.5.

The use of the NDDO approximation, and the other simplifications, makes
calculations with MNDO methods much less expensive than ab initio ones. In
particular, Fock matrix construction is no longer the most costly part of the
computation due to the reduced number of two-electron integrals. Instead, the
O�N 3� matrix operations, especially diagonalization of the Fock matrix, are rate-
limiting unless some of the specialized techniques mentioned at the end of the
last section are employed.

4.6 Analysis of the charge density

Many properties of a system can be obtained from the QC procedures described
in this chapter, not just the potential energy. One of the more useful of these is
the total charge density whose analysis often constitutes a routine part of a QC
study. The aim of this section is to summarize some of the simpler analyses that
can be performed on this density although readers should bear in mind that a
whole range of analyses of varying sophistication exist.

The total charge density of the system is defined as the sum of the charge
densities due to the electrons and to the nuclei. It can be written as

�t�r� = �e�r�+�n�r� (4.34)
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where � denotes a charge density and the subscripts t, e and n stand for total,
electron and nuclear, respectively.

An expression for the electron charge density is obtained by integrating the
square of the wavefunction over all electronic coordinates, bar one. Remembering
that electrons have a charge of minus one, the appropriate equations are

�e �r� = −
∫

r2

dr2

∫

r3

dr3 	 	 	
∫

rM

drM ���r� r2� 	 	 	 rM��2

= −∑
��

P�����r����r� (4.35)

Equation (4.35) says that �e can be written as a sum of products of basis functions
multiplied by density matrix elements. This derivation is valid for any wavefunc-
tion as long as the density matrix is appropriately defined. For closed-shell RHF
wavefunctions the density matrix elements are given by Equation (4.15), whereas
for UHF wavefunctions they would be given by the sum of the elements coming
from the density matrices of � and � spin.

The electron charge density, �e, is a smoothly varying function that spreads over
a wide region of space. By contrast, the nuclear density, �n, is zero everywhere
except at the atomic nuclei. This type of discrete behaviour can be expressed
using the Dirac delta function, �, which is a function that is non-zero only when
its argument is zero and whose integral over all space is one. With this notation
the nuclear density is

�n�r� =∑

i

Zi��r − r i� (4.36)

The total charge density, �t, is a complicated function of the space coordinate,
r , and analyses seek to determine quantities that somehow make its interpretation
easier. One such set of quantities is the multipole moments of a charge distribution.
They provide a convenient, hierarchical representation of how a distribution will
interact with another, non-overlapping charge distribution or an external electric
field and are important because some of them are accessible experimentally and
so can be compared to calculated values.

The definition of a multipole moment requires the specification of a point
in space, Rc, about which the multipole is calculated and it makes use of the
spherical harmonic functions that we met in Section 4.5.2. The equation is

Qlm =
∫

dr�t�r�Slm���� �r −Rc�l (4.37)

where the integration is over all space and � and  are the spherical polar angles
about the point Rc. The first few terms in the series are given names so that the
l = 0 term is the monopole and the subsequent terms are the dipole (l = 1), the
quadrupole (l = 2), the octupole (l = 3) and the hexadecapole (l = 4), respectively.
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The first two multipoles of the total charge density, �t, are straightforwardly
evaluated. The monopole expression reduces to an integral over the charge dis-
tribution because S00 is a constant

Q00 =
∫

dr�t�r� (4.38)

This integral is simply the total charge of the system. The dipole moment consists
of three terms and can be written as a vector denoted �

� =
∫

dr�t�r��r −Rc� (4.39)

The total charge is always independent of the multipole origin, Rc, whereas the
dipole moment will only be independent if the system’s total charge is zero.

A second type of analysis is the evaluation of atomic charge populations. Its
aim is the estimation of effective charges for the atoms in a system by partitioning
the charge density between them. Two aspects of charge population analyses
should be emphasized. First, a unique way of effecting this analysis does not
exist. Clearly the nuclear charge belongs to its atom but a choice has to be made
of how to divide the electron density in an arbitrary region of space between
atoms. Second, atomic charges, unlike multipole moments, cannot be measured
experimentally and so they are mostly useful for interpretative purposes.

Many recipes for calculating atomic charges exist, but probably the most
widespread is one due to R. S. Mulliken, although it only works for basis sets
consisting of atom-centred functions, such as Gaussians. Consider the integral of
the expression for the electron charge density which, using Equation (4.35), is

∫

dr�e�r� = −∑
�

∑

�

P��S�� (4.40)

= Qe (4.41)

This expression relates the total electronic charge, Qe, to a sum of ‘charge-like’
terms of the form P��S��, each of which only involves a pair of basis functions.
As the basis functions are atom-centred, the Mulliken analysis supposes that each
term can be split between the atoms upon which the functions are centred and
that, in the absence of any other information, the most unbiased splitting occurs
when half of the term is given to each atom.

It takes a little juggling, but the expression for the Mulliken charge, qi, on atom
i, including the nuclear charge, is

qi = Zi −
∑

�∈i

∑

�

P��S�� (4.42)

where the first sum is over basis functions, �, centred on atom i and the second
sum is over all basis functions no matter to which atom they belong. Mulliken



70 Quantum chemical models

charges are simple to calculate but they are notoriously fickle because charges for
identical atoms can change substantially if calculations are repeated with different
basis sets.

For spin-unrestricted methods it is often useful to be able to identify the atoms
upon which there are differences in the populations of electrons with � and �

spin. This is easily done within the Mulliken scheme by replacing the total charge
density by the spin density, which is just the difference in the densities of the �

and � electrons, i.e. ��
e −�

�
e .

4.7 Example 5

In this book, all QC calculations will be done with semi-empirical methods
of the MNDO-type. Within pDynamo, these are specified using the class
QCModelMNDO whose definition is:

Class QCModelMNDO

A class to represent an MNDO-type semi-empirical QC model.

Constructor

Construct an instance of QCModelMNDO.

Usage: new = QCModelMNDO ( method )
method is a string that indicates the method to use. Possible values are

"am1", "mndo" and "pm3". This argument can be left out, in
which case the AM1 method is chosen.

new is the new instance of QCModelMNDO.
Remarks: MNDO methods have not been parametrized for some elements,

including many of the transition metals. An error will occur if an
attempt is made to perform calculations on systems with these atoms.

Attributes

label is a string containing the name or a short description of
the model.

QSPINRESTRICTED is a Boolean that indicates whether the model is spin-
restricted or spin-unrestricted. Booleans are Python vari-
ables that can take only two values, either True or
False.
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To specify the charge and the spin multiplicity of the system another class,
ElectronicState, is required. Its specification is:

Class ElectronicState

A class to represent the electronic state of a system.

Constructor

Generate an instance of ElectronicState with a given charge and spin
multiplicity.

Usage:
new = ElectronicState ( charge = 0,

multiplicity = 1 )
charge is a keyword integer argument that gives the total charge of

the system.
multiplicity is a keyword argument that defines the spin multiplicity

of the system. It can either be a positive integer or be one
of the strings "singlet", "doublet", "triplet",
"quartet", "quintet", "sextet" or "septet".
These correspond to integer multiplicities of 1–7, respec-
tively.

new is the new instance of ElectronicState.

A QC model and an electronic state must be assigned to an instance of the
System class if a QC energy is to be calculated. These and other related tasks
are performed using the following extensions to the System class:

Class System

QC-related methods and attributes.

Method AtomicCharges

Calculate the atomic charges for a system using a Mulliken population analysis.

Usage: charges = system.AtomicCharges ( )
system is the instance of System for which the charges are to be deter-

mined.
charges are the calculated atomic charges returned as an instance of

Vector.
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Method DefineQCModel

Assign a QC model to a system.

Usage: system.DefineQCModel ( qcmodel )
qcmodel is the QC model which is to be used for calculating the QC energy

for the system.
system is the instance of System for which the QC model is being defined.

Method DipoleMoment

Calculate the dipole moment for a system.

Usage: dipole = system.DipoleMoment ( )
system is the instance of System for which the dipole is to be determined.
dipole is the dipole moment returned as an instance of the class Vector3.
Remarks: The dipole is calculated at the centre of geometry of the system.

Method Energy

Calculate the potential energy for a system.

Usage: energy = system.Energy ( log = logfile )
log is an instance of LogFileWriter to which output about the energy

calculation is to occur. By default this will be to logfile which
is predefined by the pDynamo library. Output can be suppressed
entirely by setting this argument to None.

system is the instance of System for which the energy is to be determined.
energy is the calculated potential energy.
Remarks: The energy is calculated for the structure defined in the system’s

coordinates3 attribute.

Attributes

electronicstate is the electronic state for the system. It is usual to define
it by direct assignment with an instance of the class
ElectronicState. This attribute is not used directly
in any of the examples in this book because all the
systems that we study are singlet states of zero charge.
This is the default state for a system if none is explicitly
given.
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Example 5 employs some of the QC capabilities of pDynamo by calculating
the potential energy and various electronic properties for a water molecule with
three different semi-empirical methods. The program is:

1 """Example 5."""
2
3 from Definitions import *
4
5 # . Define the energy models.
6 energymodels = [ QCModelMNDO ( "am1" ), \

QCModelMNDO ( "mndo" ), \
QCModelMNDO ( "pm3" ) ]

7
8 # . Get the filename.
9 filename = os.path.join ( xyzpath, "water.xyz" )
10
11 # . Loop over the energy models.
12 results = []
13 for model in energymodels:
14 molecule = XYZFile_ToSystem ( filename )
15 molecule.DefineQCModel ( model )
16 molecule.Summary ( )
17 energy = molecule.Energy ( )
18 charges = molecule.AtomicCharges ( )
19 dipole = molecule.DipoleMoment ( )
20 results.append ( ( model.label, energy, charges, \

dipole.Norm2 ( ) ) )
21
22 # . Output the results.
23 table = logfile.GetTable ( columns = [ 10, 20, 20, 20, 20, 20 ] )
24 table.Start ( )
25 table.Title ( "Energy Model Results for Water" )
26 table.Heading ( "Model" )
27 table.Heading ( "Energy" )
28 table.Heading ( "Charges", columnspan = 3 )
29 table.Heading ( "Dipole" )
30 for ( label, energy, charges, dipole ) in results:
31 table.Entry ( label )
32 table.Entry ( "%.1f" % ( energy, ) )
33 for charge in charges: table.Entry ( "%.3f" % ( charge, ) )
34 table.Entry ( "%.3f" % ( dipole, ) )
35 table.Stop ( )

Line 6 creates a list, energymodels, with the three different QC models that
are to be tested.
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Line 12 defines an empty list, results, that will be used to store quantities that
are calculated with the QC models.

Lines 13–20 loop over the QC models in the list energymodels. At each
iteration, an instance of a water molecule is created (line 14), its QC
model defined (line 15) and some properties calculated (lines 17–19).
Note that the energy must be calculated before the other analyses because
it is during the energy calculation that the wavefunction and, hence, the
electron density for the system are determined.

The results of the calculations for each model are appended, as a tuple,
to the list results on line 20. Only the magnitude of the dipole is saved
and not its individual components. This is done with the method Norm2
of the class Vector3.

Lines 23–35 output the results as a table. The syntax is similar to what we have
met before except for Line 30. This shows how the tuple of quantities
stored for each QC model can be unpacked and the elements assigned
directly to the variables label, energy, charges and dipole.

4.8 Derivatives of the potential energy

Up to now the potential energy of a system and how it is calculated has been the
centre of attention but, in many applications, it is equally or even more important
to know the values of derivatives of the energy with respect to certain parameters.
In such cases, it is crucial that the derivatives of the energy be calculable in
as efficient a manner as the energy itself. A useful property of all the ways of
determining the potential energy that are discussed in this book is that most of
the derivatives we require can be calculated analytically, which means that it is
possible to derive explicit formulae for the derivatives by direct differentiation.

The alternative to analytically calculated derivatives is derivatives that are
calculated numerically. One particularly common and reasonably effective way of
calculating numerical derivatives is to use a central-step finite-difference method.
If � is the potential energy of a system and p is the parameter with respect to
which the derivative is required, the first derivative is approximated as

�� �p�

�p
∼ � �p+�p�−� �p−�p�

2 �p
(4.43)

where �p is a small change in the parameter value. When calculating the derivative
with respect to p, only the value of p is changed and the values of all the other
parameters in the function are kept constant.

Analytically calculated derivatives have a number of advantages over those
that are numerically calculated. First, they are almost always more accurate.
Analytic derivatives will be accurate to machine precision whereas the accuracy
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of numerical ones will depend to a large extent on the values of the finite steps
(�p) taken in the numerical algorithm. Second, analytic derivatives are usually
much less expensive, especially when the number of derivatives to be calculated
is large.

Several different types of derivative of the energy are useful, but by far the
most common are the derivatives of the energy with respect to the positions
of the atoms. The first derivatives or gradients are employed most extensively
throughout this book, although the second derivatives are also necessary in certain
applications. Because the potential energy is dependent upon all the coordinates
of the atoms in a system, there will be 3N first derivatives of the energy with
respect to the coordinates, i.e.
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The second derivatives of the energy with respect to the coordinates of two
atoms, i and j, are
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Whereas the first derivatives can be considered to form a vector of dimension
3N , the second derivatives of the energy with respect to the coordinates form a
3N ×3N matrix. Owing to the properties of differentiation, the second-derivative
matrix is symmetric and only 3N × �3N +1�/2 components of the matrix will be
different. This means that the second derivatives involving the coordinates of the
i and j particles will be the same, no matter in which order the differentiation
is performed; i.e. �2�/�xi �yj = �2�/�yj �xi. If the particles are the same (i = j)
then, of course, the symmetric nature of the second derivatives is immediately
apparent. The second-derivative matrix is often called the Hessian.

4.8.1 Quantum chemical derivatives

To make the discussion above concrete, let us consider how to calculate deriva-
tives for QC algorithms. We shall focus on the HF method but the reasoning is
analogous for other approaches. The potential energy of a system described within
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the closed-shell RHF approximation is given by Equation (4.13). Differentiating
with respect to an atomic coordinate, xi, gives
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Getting to Equation (4.47) from (4.46) requires a little manipulation. In particular,
the elements of the Fock matrix, F��, need to be expanded, using Equation (4.17),
and differentiated individually. Some of them can subsequently be recombined,
after a permutation of basis-function indices, to give the second term on the
right-hand side of Equation (4.47). Although the details of the differentiation have
been omitted, the important point is that the final expression has three terms.
The first involves derivatives of elements of the one-electron matrix, H��, and
of two-electron integrals, �������, multiplied by elements of the density matrix,
P��, whereas the third is the derivative of the nuclear repulsion energy. These
terms can be calculated analytically because the one- and two-electron integrals
and the nuclear repulsion energy are known functions of the atomic positions and
so their derivatives can be determined explicitly.

The second term, by contrast, is more complicated as it involves the derivatives
of density matrix elements multiplied by elements of the Fock matrix. Although
the density matrix is not an explicit function of the atomic positions, it depends
implicitly upon them because it and the electronic wavefunction change, and
must be redetermined, when the nuclei move. This term can be simplified by
expressing the density matrix in terms of molecular orbitals, Equation (4.15), and
then employing the Roothaan–Hall equation, Equation (4.27), as follows:
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Equation (4.49) is obtained from Equation (4.48) by interchanging the indices �

and � and using the fact that the Fock matrix is symmetric.
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Equation (4.50) still involves derivatives of the molecular orbital coefficients
but it can be reduced further by using the orthonormality condition for the molec-
ular orbitals, Equation (4.10). Differentiation of this condition for the orbital a

gives
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Rearranging this expression and substituting into Equation (4.50) gives
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where the energy-weighted density matrix has been defined as

W�� = −2
∑

a

�ac�ac�a (4.55)

Expression (4.54), like the first and third terms on the right-hand side of Equa-
tion (4.47), can be evaluated analytically as it involves derivatives of the overlap
integrals, which are explicit functions of the atomic positions.

The term in Equation (4.54) is often named the Pulay term after P. Pulay
who was one of the first workers to derive derivative expressions within the
HF approximation. Terms of this type are of general occurrence and are not
limited to quantum chemical methods. They arise whenever one has an expression
that is a function both of a set of independent variables (the atomic positions
for the QC case) and of a set of variables (the density matrix elements or MO
coefficients) that depends implicitly upon the independent set, either as a result
of an optimization process or in some other way. Note that the Pulay term will
be zero if the overlap matrix is set to the identity matrix, either because the basis
functions are orthogonal (as occurs for plane-waves) or because it is assumed to
be so (as in the MNDO semi-empirical methods).

Expressions for the second, and higher, derivatives may be obtained by further
differentiation but the resulting formulae are much more complicated and so
will not be given here. In addition, starting with the second derivatives, it is
not possible to avoid the calculation of the derivatives of the density matrix
elements (or molecular orbital coefficients) and so these must be determined
explicitly. For HF methods this is done using the coupled perturbed HF (CPHF)
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algorithm. The calculation of many other molecular properties, not only the second
derivatives of the energy with respect to the atomic positions, also requires the
derivatives of the density or wavefunction and so makes use of coupled perturbed
methods.

4.9 Example 6

The majority of the simulation algorithms to be described in this book modify
the structure or the geometry of a system using information that is obtained by
the calculation of the potential energy and, usually, its derivatives with respect
to a set of geometrical variables. Many of the algorithms, however, are general
in that they can act upon any function that depends upon a set of variables.
To take advantage of this generality, simulation algorithms in pDynamo are
written so that they work upon instances of a class called ObjectFunction.
This class is then subclassed so as to create object functions of the appropriate
type.
SystemGeometryObjectFunction is the subclass of ObjectFunction

that provides the interface between the simulation algorithms and instances of
the class System. It defines the potential energy of a system as the function
to be manipulated and the variables as those that determine the system’s struc-
ture – usually its Cartesian coordinates. SystemGeometryObjectFunction
need rarely be used directly because pDynamo’s simulation algorithms provide
helper functions that should suffice for most routine purposes. Nevertheless,
a very basic outline of the class is introduced here because it is required in
Example 6.

Class SystemGeometryObjectFunction

A class used to create an object function of a system’s potential energy. The
variables are those that define the geometry of the system – in this case the
Cartesian coordinates.

Constructor

Construct an instance of SystemGeometryObjectFunction given a system.

Usage: new = SystemGeometryObjectFunction ( system )
system is the instance of System for which the object function is to be

defined. The system must have a valid set of coordinates and a defined
energy model.

new is the new instance of SystemGeometryObjectFunction.
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Method TestGradients

Calculate gradients for the function analytically and numerically, using a central-
step finite-difference algorithm. After calculation, the differences between the two
sets of gradients are compared and printed.

Usage: of.TestGradients ( delta = 1.0e-4 )
delta is a keyword argument that gives the step length for the numerical

derivative calculation. If the argument is absent, a value of 10−4 Å is
assumed. This is usually a good compromise value, although, to be
certain, it is often necessary to try several values for the step size to
see how the values of the derivatives change.

of is the instance of SystemGeometryObjectFunction for which
the gradients are to be calculated.

Remarks: This method is usually used for testing purposes so as to ensure that
the analytical derivatives of a function have been correctly imple-
mented.

Example 6 is straightforward. It employs the class and its methods described
above and has as its goal the comparison of the analytically and numerically
calculated first derivatives of the potential energy with respect to the system’s
Cartesian coordinates.

1 """Example 6."""
2
3 from Definitions import *
4
5 # . Generate the molecule.
6 molecule = XYZFile_ToSystem ( \

os.path.join ( xyzpath, "bala_c7eq.xyz" ) )
7 molecule.DefineQCModel ( QCModelMNDO ( ) )
8 molecule.Summary ( )
9
10 # . Create an object function for the molecule.
11 of = SystemGeometryObjectFunction ( molecule )
12
13 # . Test the gradients.
14 of.TestGradients ( )

Lines 6–8 define the system that is to be studied and its energy model. They
resemble closely the equivalent lines of Example 5.

Line 11 creates an object function for the molecule.
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Line 14 does the comparison of the analytical and numerical gradients and prints
out the results. Typically the biggest differences between components of
the two sets of derivatives are ∼10−4 kJ mol−1 Å−1.

Exercises

4.1 Taking the program of Example 5 as a model, calculate the energy and multi-
poles of different molecules with different QC methods. How do the results
differ? Can one compare the results with values obtained from experiment
and, if so, how?

4.2 Calculate the energies and properties of a molecule using the same QC
approximation but at different molecular geometries. A good example is to
consider a simple molecule, such as molecular hydrogen, H2, or ethane, C2H6,
and determine the potential energy curves for dissociation of the molecule
into two fragments. How does the energy change as a function of the distance
between the two fragments? Do the dissociated fragments have a radical
character or are they cationic or anionic? How do the results change on going
from a spin-restricted to a spin-unrestricted model?
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Molecular mechanics

5.1 Introduction

In the last chapter we discussed quantum chemical methods for calculating the
potential energy of a system whereas in this chapter we present an alternative
class of approaches, those that use empirical energy functions. To start, though, a
point of notation will be clarified. Several different terms are employed to denote
empirical energy functions in the literature and, no doubt, inadvertently, in this
book. Common terms, which all refer to the same thing, include empirical energy
function, potential energy function, empirical potential and force field. The use of
empirical potentials to study molecular conformations is often termed molecular
mechanics (MM).

Some of the earliest empirical potentials were derived by vibrational spectros-
copists interested in interpreting their spectra (this was, in fact, the origin of the
term ‘force field’), but the type of empirical potential that is described here was
developed at the end of the 1960s and the beginning of the 1970s. Two prominent
proponents of this approach were S. Lifson and N. Allinger. These types of force
field are usually designed for studying conformations of molecules close to their
equilibrium positions and so would be inappropriate for studying processes, such
as chemical reactions, in which this is not the case.

5.2 Typical empirical energy functions

This section presents the general form of the empirical energy functions that are
used in molecular simulations. A diversity exists, because the form of an empirical
potential function is, to some extent, arbitrary, but most functions have two
categories of terms that deal with the bonding and the non-bonding interactions
between atoms, respectively. These will be discussed separately.

81
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5.2.1 Bonding terms

The bonding energy terms are those that help define the bonding or covalent
structure of the molecule, i.e. its local shape. In a typical, simple force field, the
bonding or covalent energy, �cov, will consist of a sum of terms for the bond,
angle, dihedral (or torsion) and out-of-plane distortion (or improper dihedral)
energies:

�cov = �bond +�angle +�dihedral +�improper (5.1)

The bond energy is often taken to have a harmonic form:

�bond = ∑

bonds

1
2

kb�b−b0�
2 (5.2)

where kb is the force constant for the bond, b is the actual bond length in the
structure between the two atoms defining the bond and b0 is the equilibrium
distance for the bond. The sum runs over all the bonds that have been defined
in the system. Because the energy is harmonic in form (see Figure 5.1) it means
that the energy of the bond will increase steadily without limit as it is distorted
from its equilibrium value, b0.

Harmonic terms are sufficient for many studies, but sometimes it is important
to have a form for the bond energy that permits dissociation. An example would
be if a reaction were being studied. One form that does this is the Morse potential
which is shown in Figure 5.2. The Morse energy, �Morse, is given by

�Morse = ∑

bonds

D �exp�−a�b−b0��−1�2 −D (5.3)

b

b0

�
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nd

Fig. 5.1. The harmonic bond energy term.



5.2 Typical empirical energy functions 83

D

b0

b

�
M

or
se

Fig. 5.2. The Morse function bond energy term.

where the two new parameters are D, which is the dissociation energy of the
bond, and a, which determines the width of the potential well.

The angle energy term is designed to imitate how the energy of a bond angle
changes when it is distorted away from its equilibrium position. Like the bond
energy term it too is often taken to be harmonic:

�angle = ∑

angles

1
2

k��� −�0�
2 (5.4)

The extra parameters are similar to those of the bond energy – k� is the force
constant for the angle and �0 is its equilibrium value. The sum runs over all the
angles in the system and each angle is defined in the same way as described in
Section 3.3.

The third type of bonding term is the term that describes how the energy of
a molecule changes as it undergoes a rotation about one of its bonds, i.e. the
dihedral or torsion energy for the system. In contrast to the bond and angle terms a
harmonic form for the dihedral energy is not usually appropriate. This is because,
for many dihedral angles in molecules, the whole range of angles from 0� to 360�
can be accessible with not too large differences in energy. Such effects can be
reproduced with a periodic function that is continuous throughout the complete
range of possible angles (see Figure 5.3). The dihedral energy can then be written
as

�dihedral = ∑

dihedrals

1
2

Vn�1+ cos�n	−
�� (5.5)

Once again the sum is over all the dihedrals that are defined in the system and
the form of the dihedral angle is the same as that given in Equation (3.5). In the
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Fig. 5.3. A dihedral angle energy term with a periodicity of 3.

formula, n is the periodicity of the angle (which determines how many peaks and
wells there are in the potential), 
 is the phase of the angle and Vn is the force
constant. Often 
 is restricted to taking the values 0� or 180�, in which case it
is only the sign of the cosine term in the expression that will change. It is to be
noted that the periodicity of each term in the sum can change depending upon
the type of dihedral and that values of n from 1 to 6 are most commonly used. It
is also worth remarking that, in many force fields, multiple terms with different
periodicities are used for some dihedral angles. Thus, it may be that a single term
with a periodicity of 3, for example, is unable to reproduce accurately the change
in energy during a torsional motion and terms with other periodicities will be
added.

The fourth term in the sum in Equation (5.1) is a more complicated one that
describes the energy of out-of-plane motions. It is often necessary for planar
groups, such as sp2 hybridized carbons in carbonyl groups and in aromatic systems,
because it is found that use of dihedral terms alone is not sufficient to maintain
the planarity of these groups during calculations. A common way to avoid this
problem is to define an improper dihedral angle, which differs from the proper
dihedral angle in that the atoms which define the dihedral angle, i–j–k–l, are
not directly bonded to each other. The calculation of the angle, however, remains
exactly the same. An example is shown in Figure 5.4. With this definition of an
improper dihedral angle, which we denote by �, some force fields use the same
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Fig. 5.4. The arrangement of atoms in an improper dihedral angle.

form for the energy as that in Equation (5.5), i.e.

�improper = ∑

impropers

1
2

Vn�1+ cos�n�−
�� (5.6)

while others employ a harmonic form:

�improper = ∑

impropers

1
2

k���−�0�
2 (5.7)

where k� and �0 are the force constant for the energy term and the equilibrium
value of the improper dihedral angle, respectively. The improper dihedral angle,
�, is not the only variable that is used to define the distortion due to out-of-plane
motions. Another common one is the angle between one of the bonds to the
central atom and the plane defined by the central atom and the other two atoms
(e.g. the bond i–k and the plane jkl in Figure 5.4).

The four terms mentioned above are the only bonding terms that we shall
consider, although other types can be encountered in some force fields. In general,
the extra terms are added to obtain better agreement with experimental data
(especially vibrational spectra) but they increase the complexity of the force field
and the number of parameters that need to be obtained. Extra terms that are
sometimes added include bond and angle terms of the same form as Equations
(5.2) and (5.4) except that the terms are no longer harmonic – linear, cubic and
quartic terms are possible. Other types sometimes seen are cross-terms that couple
distortions in different internal coordinates. For example, a bond/angle cross-term
could be proportional to �b−b0��� −�0�.

5.2.2 Non-bonding terms

The bonding energy terms help to define the covalent energy of a molecule.
The non-bonding terms describe the interactions between the atoms of different
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molecules or between atoms that are not directly bonded together in the same
molecule. These interactions help to determine the overall conformation of a
molecular system.

The non-bonding interactions arise from the interactions between the electronic
distributions surrounding different atoms. The theory of intermolecular interac-
tions is well developed and leads to the identification of a number of important
types of interaction. At short range the interactions are primarily repulsive due to
the interactions between the electron clouds and to the purely quantum mechan-
ical effect of exchange repulsion, which arises when the two clouds are pushed
together. At long ranges there are several important classes of interaction. The
first are the electrostatic interactions that arise from the interaction of the charge
distributions (including the nuclei) about each molecule or portion of a molecule.
Second are the dispersion interactions that are produced by correlated fluctuations
in the charge distributions of the two groups. Finally, there are induced or polar-
ization interactions that are caused by the distortion of the charge distribution of
a molecule as it interacts with neighbouring groups.

The non-bonding terms in an empirical force field attempt to reproduce all these
types of interaction. Here we shall consider a non-bonding energy consisting of
the sum of three terms:

�nb = �elect +�LJ +�polar (5.8)

The electrostatic energy, �elect, mimics the energy arising from the electrostatic
interactions between two charge distributions. As we saw in the last chapter,
charge distributions, and the electrostatic energies arising from them, can be
quite easily evaluated using quantum chemical methods. The aim with force
fields though is different. We seek models for the charge distribution that are
simple enough to allow fast calculation of the electrostatic energy but sufficiently
accurate that the major effects due to the interaction are reproduced. The simplest
representation of a charge distribution and the one that is most widely used is one
in which a fractional charge is assigned to each atom. This is the total nett charge
of the atom obtained as the sum of the nuclear charge and the charge in the part
of the electron cloud that surrounds it. The electrostatic energy is calculated as

�elect = 1
4�0

∑

ij pairs

qiqj

rij

(5.9)

where qi and qj are the fractional charges on atoms i and j and rij is the distance
between the two particles. The terms in the prefactor are 1/ �4�0�, which is the
standard term when calculating electrostatic interactions in the MKSA (metre,
kilogram, second, ampere) system of units, and , which is the dielectric constant
that will have the value 1 when the system is in vacuum. The sum in Equation
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(5.9) runs over all pairs of atoms for which an electrostatic interaction is to be
calculated. Note that the fractional charges on the atoms are constants and do not
change during a calculation.

It is possible to define other representations of the charge distribution. For
example, instead of fractional charges at the atoms’ centres (i.e. on the nuclei),
charges could be assigned off-centre along bonds or higher moments, such as
dipoles, could be used. Such representations are not usually favoured because
they are more complex and more expensive than the simple point-charge model
and they have not been shown to give proportionately better results.

The second term in Equation (5.8) is the Lennard-Jones energy which mimics
the long-range dispersion interactions and the short-range repulsive interactions.
It has the form

�LJ = ∑

ij pairs

Aij

r12
ij

− Bij

r6
ij

(5.10)

where Aij and Bij are positive constants whose values depend upon the types of
the atoms, i and j, and the sum is over all pairs of atoms for which the interaction
is to be calculated.

The shape of the Lennard-Jones potential is plotted in Figure 5.5. The repulsive
part of the curve is produced by the 1/r12

ij term and the attractive part by 1/r6
ij .

The inverse sixth power form of the attraction arises naturally from the theory of
dispersion interactions. The choice of an inverse twelfth power for the repulsion
is less well founded and other forms for the repulsion have been used, including
other inverse powers, such as eight and ten, and an exponential form that leads
to the so-called Buckingham potential. Most simple force fields seem to use the
Lennard-Jones form.

To complete the specification of the Lennard-Jones energy it is necessary to
have a recipe for determining the parameters Aij and Bij . These are usually defined
in terms of the depth of the Lennard-Jones well, �ij , and either the distance at
which the energy of the interaction is zero, sij , or the position of the bottom of the
well, �ij (see Figure 5.5). With these parameters the Lennard-Jones interaction

between atoms i and j, � ij
LJ, takes the form

� ij
LJ = 4�ij

⎡

⎣
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sij

rij

)12

−
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sij
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)6
⎤
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= �ij
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⎤

⎦ (5.12)

where �6
ij = 2s6

ij .
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Fig. 5.5. The Lennard-Jones energy for a pair of atoms.

Although each of the parameters, �ij , sij and �ij , depends formally on two
atoms, it is normal to specify a set of combination rules so that they can be
defined from the parameters for single atoms. It is usual to use the geometrical
mean as a combination rule for the well depths:

�ij =√
�ii�jj (5.13)

For the distance parameters both arithmetical and geometrical mean
combination rules are common. For the �ij parameter, for example, we have
either

�ij =√
�ii�jj (5.14)

or

�ij = 1
2

(

�ii +�jj

)

(5.15)

The third type of non-bonding energy term considered in this section is the
polarization energy. In contrast to the previous two terms, the electrostatic and
Lennard-Jones energies, this energy term is not a standard term in many force
fields and it will not be used in any of the calculations in this book. However,
it is instructive to introduce it here for a number of reasons. First, polarization
interactions are important in many systems. Second, the nature of the polarization
energy term is very different from that of the other force field terms that have
been discussed and resembles, in many respects, the quantum chemical terms that
were discussed in Chapter 4. Third, it is a term that will be increasingly used in
future molecular modeling studies.
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As mentioned above, the polarization energy arises from the fact that the charge
distribution of a group or molecule is distorted by interactions with its neighbours.
In the point-charge model of electrostatic interactions (Equation (5.9)) the charges
assigned to atoms are constants and so the charge distribution of the molecule
is constant for a given nuclear configuration irrespective of its environment. To
model changes in the charge distribution of a molecule a number of techniques
have been developed, but one of the more common ones is to let each atom
be polarizable by giving it an isotropic dipole polarizability. This means that,
in the presence of an electric field produced by the charge distribution of the
environment, a dipole moment is induced on the atom that is proportional in size
and parallel to the field at the atom. If the polarizability for an atom i is denoted
by �i and the field at the atom by Ei (it is a vector quantity) then the dipole
induced at the atom, �i, is

�i = �iEi (5.16)

The polarizability model we use here is isotropic because �i is a scalar quantity.
For an anisotropic model it would be a 3×3 matrix, which means that the atom
could be more polarizable in some directions (such as along a bond) than in
others. The polarizability is called a dipole polarizability because the field induces
a dipole at the atom. In more complicated versions of the theory the electric field
(or its derivatives) can induce different effects in the charge distribution.

The field at each atom is produced by the sum of the fields due to the charges,
E

q
i , and the induced dipoles, E

�
i , on the other atoms. These fields have the form

E
q
i = 1

4�0

N
∑

j �=i=1

qjr ij

r3
ij

(5.17)

E
�
i = 1

4�0

N
∑

j �=i=1

Tij�j (5.18)

where Tij is a 3×3 matrix that is given by

Tij = −�i

r ij

r3
ij

= 1

r5
ij

⎛
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3x2
ij − r2
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3yijxij 3y2
ij − r2

ij 3yijzij

3zijxij 3zijyij 3z2
ij − r2

ij

⎞

⎟
⎠ (5.19)

It is now possible to substitute the equations for the fields, Equations (5.17)
and (5.18), into the equation for the dipole, Equation (5.16). From the form for
the field due to the induced dipoles, it is evident that the dipole on atom i depends
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upon the induced dipoles of all the other atoms. To make the dependence more
explicit it is possible to combine the N equations for the dipoles on each atom
into a single equation leading, after a little manipulation, to

A� = B (5.20)

� and B are both vectors of 3N components with the forms

� =

⎛

⎜
⎜
⎜
⎝
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�2
���
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⎞

⎟
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⎠
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2

���
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(5.21)

A is a 3N ×3N matrix that can be taken to consist of N 2 3×3 submatrices, aij:

A =

⎛

⎜
⎜
⎜
⎝

a11 a12 � � � a1N

a21 a22 � � � a2N
���

���
���

���

aN1 aN2 � � � aNN

⎞

⎟
⎟
⎟
⎠

(5.22)

The diagonal matrices and the off-diagonal matrices have different forms:

aii =
⎛

⎝

1 0 0
0 1 0
0 0 1

⎞

⎠ aij = − 1
4�0

�iTij (5.23)

Equation (5.20) defines a set of 3N linear equations that can be solved to obtain
the induced dipoles, �i, on each atom. Once these are known the polarization
energy can be computed. It is

�polar = −1
2

N
∑

i=1

�T
i E

q
i (5.24)

This energy arises from the sum of three contributions. There is the energy due
to the interaction of the induced dipoles in the system, ���, the energy due to
the interaction of the induced dipoles with the permanent charges, ��q, and an
energy (which is positive) that arises because it costs a certain amount to produce
the induced dipoles, �induced. Their expressions are

��� = −1
2

N
∑

i=1

�T
i E

�
i (5.25)

��q = −
N
∑

i=1

�T
i E

q
i (5.26)
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�induced = 1
2

N
∑

i=1

�T
i Ei (5.27)

The fact that there is a set of linear equations to solve (Equation (5.20)) marks
the major difference between the calculation of the previous force field energy
terms that have been mentioned and the calculation of the polarization energy.
The electrostatic and Lennard-Jones energies are what are known as pairwise
additive. Each interaction can be calculated separately and is independent of the
others. For the polarization energy this is not the case, in that the magnitude of
the induced dipole on each atom depends upon the induced dipoles of all the other
atoms and so the dipoles for all the atoms must be calculated before the energy.
The polarization energy is a type of many-body term.

The other distinguishing feature of the calculation of the polarization energy
is its expense. The calculations of the electrostatic and Lennard-Jones energies
as written above both involve O�N 2� operations. In contrast, the calculation of
�polar is more expensive because the solution of the 3N linear equations, which
is the most time-consuming part of the calculation, formally scales as O�N 3�.

For the bonding energy terms, the bond energies are pairwise additive while
the remaining terms are, strictly speaking, many-body terms because they depend
on either three or four atoms (for the angles and the proper and improper dihedral
energies, respectively). The number of each of these four types of terms is, how-
ever, roughly proportional to the number of atoms, so the expense of calculating
them is only about O�N�.

It is, therefore, the calculation of the non-bonding energies – the electrostatic,
Lennard-Jones and polarization terms – that is the most expensive part of an MM
energy calculation. In the next few chapters the simple, O�N 2� method for the
calculation of the electrostatic and Lennard-Jones energies will be employed, but,
as alluded to in Sections 3.2 and 4.5.3, there are ways of reducing the cost of
an O�N 2� calculation to more manageable proportions. This is a very important
topic whose discussion will be left until a later chapter.

There is one additional point that needs elaborating for the calculation of
the electrostatic, Lennard-Jones and polarization energies. This concerns which
interactions between particles are to be included in the sums for the electrostatic
and Lennard-Jones energies (Equations (5.9) and (5.10), respectively) or for the
calculation of the fields in the case of the polarization energy (Equations (5.17)
and (5.18)). For particles that are far from each other there is little problem and
the interactions can be calculated as described above. For particles that are bonded
together or are separated by only a few bonds there are two problems. First,
the non-bonding interactions between them are large because their interparticle
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1-2
1-3

1-4

Fig. 5.6. Examples of 1–2, 1–3 and 1–4 non-bonding exclusions for a hydrogen
atom in an ethane molecule.

separations are small and, second, there will also be bonding terms (bonds, angles,
dihedrals, etc.) between such atoms.

This dilemma is resolved by introducing the concept of non-bonding exclusions
(see Figure 5.6). Non-bonding interactions are calculated only for particles that
are not involved in direct bonding interactions. For particles that are bonded
or separated by only a few bonds, the non-bonding interactions between them
are not calculated and it is the bonding terms that determine their energy of
interaction. This avoids the problems of having very large interaction energies and
of the overcounting that would result if both types of interaction were included.
If both bonding and non-bonding terms between atoms close to each other were
to be calculated then the analytic forms of the interactions described above would
probably need to be significantly modified.

The number and type of non-bonding exclusions used depend on the force
field. It is typical to exclude interactions between atoms that are directly bonded
together (the so-called 1–2 interactions) and those that are separated by two bonds
(1–3 interactions). The treatment of interactions between atoms separated by
three bonds (1–4 interactions) is the most variable. In some force fields they are
excluded, in others they are included and in yet other cases they will be included
but either the interactions will be scaled by some factor or special 1–4 sets of
charges or Lennard-Jones parameters will be used. The reason for the different
treatment of 1–4 interactions is that it is the combination of the dihedral angle
bonding terms and the 1–4 electrostatic and Lennard-Jones terms that determines
the barriers to rotation about bonds.

To close this section it is worth mentioning that, as was the case for the bonding
energy terms, other types of non-bonding term are employed in some force fields.
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These include alternatives to the explicit forms of the electrostatic and Lennard-
Jones interactions mentioned above and also other terms. An important example
included in some force fields is an energy introduced to mimic hydrogen bonding.
Various forms for this energy have been used but this term is often omitted
because the combination of electrostatic and dispersion/repulsion interactions is
sufficient to reproduce the hydrogen-bonding interaction to the required precision.

5.3 Calculating a molecular mechanics energy

In the last section we introduced in a general way some of the concepts that
underlie the design of many molecular mechanics force fields. In this section we
define the force field that will be used in this book and show how molecular
mechanics energies can be calculated for a given system with the pDynamo
library.

5.3.1 The OPLS all-atom force field

Many force fields exist for performing simulations of molecular systems, a partial
list of which is given in the references. Some are fairly intricate and designed
for highly accurate calculations of smaller molecules (such as the MM2, MM3
and MM4 force fields developed by N. Allinger and co-workers) whereas others,
such as those devised for the simulation of biomacromolecules, are simpler and
resemble the ‘typical’ force field that was discussed in the last section. For a
number of reasons, primarily because it is widely used and a large variety of
parameters for it have been published in the literature, the programs in this book
employ the all-atom version of the optimized potentials for liquid simulations force
field (OPLS-AA) that has been developed by W. Jorgensen and his collaborators.
This is a force field of the simpler type which has been applied to a wide range of
systems, including biomacromolecules, such as proteins and nucleic acids, organic
liquids and solutes in solution. It should be emphasized that, although the specific
energies or properties for a system that are calculated with this force field may
differ from those obtained using other force fields, the general principles of the
calculations that we perform are completely independent of the specific choice of
the force field that has been made.

The exact analytic form of the force field is repeated here for convenience.
The total potential energy of the system, � , is the sum of bond, angle, torsion,
improper torsion and non-bonding terms. The expressions for the bond and angle
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energies are the same as those in Equations (5.2) and (5.4) except that the factor
of one-half has been omitted, i.e.

�bond = ∑

bonds

kb�b−b0�
2 (5.28)

�angle = ∑

angles

k��� −�0�
2 (5.29)

The dihedral energy is similar to that in (5.5). For each dihedral, three terms
in the Fourier expansion are included with periodicities of 1, 2 and 3. The phase
of each of the terms is 0� for periodicities 1 and 3 and 180� for periodicity 2.
This gives the following expression in the most general case in which none of the
Fourier coefficients, Vn, is zero:

�dihedral = ∑

dihedrals

V1

2
�1+ cos 	�+ V2

2
�1− cos 2	�+ V3

2
�1+ cos 3	� (5.30)

The improper dihedral energy, �improper, has the same form as the dihedral energy
except that the dihedral angles, 	, are replaced by improper ones, �.

The non-bonding energy, �nb, consists of the sum of electrostatic and Lennard-
Jones terms with the form

�nb = ∑

ij pairs

⎧

⎨

⎩

qiqj

4�0rij

+4�ij

⎡

⎣

(

sij

rij

)12

−
(

sij

rij

)6
⎤

⎦

⎫

⎬

⎭
fij (5.31)

The variable fij is a weighting factor for the interactions. For 1–2 and 1–3
interactions it has the value 0 and so these interactions are excluded from the
sum. For the 1–4 interactions the value is 1

2 and for all other interactions its
value is 1. The OPLS-AA force field uses geometrical combination rules for the
Lennard-Jones parameters �ij and sij .

A final point about the origin of some of the parameters in the OPLS-AA force
field should be made. In their work Jorgensen and co-workers concentrated on the
optimization of the non-bonding and torsional parameters. The bond, bond angle
and improper dihedral angle parameters were taken mostly from the AMBER
force field developed by P. Kollman and his group and, to a lesser extent, from
the CHARMM force field developed by M. Karplus and his collaborators.

5.3.2 Example force field representations

A quick glance at the equations describing the molecular mechanics energy func-
tion and its constituent terms shows that there are many quantities that need to be
defined before the energy of a system can be calculated. These include the number
of terms of each type, the atoms involved in each energy term and the values of
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Table 5.1 The TIP3P water model

2 atom types
Frequency Name qi sii �ii

(e) (Å) (kJ mol−1)

1 OW −0�834 3�15 0�64
2 HW 0�417 0�0 0�0

3 bond terms
Frequency Types kb b0

(kJ mol−1 Å−2) (Å)

2 OW–HW 2215�85 0�9572
1 HW–HW 160�04 1�5139

1 angle term
Frequency Types k� �0

(kJ mol−1 rad−2) (�)

1 HW–OW–HW 142�47 104�52

their parameters. As examples of the way in which systems are represented with
the OPLS-AA force field, we shall consider in detail two small molecules, water
and bALA.

Several different models of water have been developed within the OPLS-AA
framework but the one that we shall employ is called TIP3P, details of which are
given in Table 5.1. The first part of the table lists the atom types in the molecule.
Some explanation is needed here. In principle, if the energy function being used
were completely accurate, the only property needed in order to identify an atom
for the calculation of an energy would be its element type. In practice, because
the empirical energy functions in use are not sufficiently flexible in this regard, it
is necessary to define different types of atom that correspond to the same element.
Thus, for example, a hydrogen bound to an oxygen atom will be defined to be of a
type different from a hydrogen bound to an aliphatic carbon and the two types will
have different parameters associated with them. Similarly, aliphatic carbons will
have different types from aromatic carbons and carbonyl carbons. In the water
case, atom typing is straightforward and there is one type for oxygen, OW, and
one for hydrogen, HW. The non-bonding parameters for the types are also shown
in the table using the same symbols as occur in Equation (5.31). It is to be noted
that the charges are such that the molecule is neutral and that only the oxygen
atom will have Lennard-Jones interactions because the sii and �ii parameters for
HW are zero.
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The next sections in the table list the bonding terms in the model along with
their parameters. There are no dihedral terms for water and so only bond and
angle terms occur. In total there are four bonding terms, three of which – the two
OW–HW bonds and the HW–OW–HW angle – correspond to terms that arise
from the covalent structure of the molecule. The remaining term is a bond that
has been defined between the two hydrogens. Such ‘unchemical’ bonds (and other
terms) are not uncommon in force field models of molecules and are included so
as to obtain better calculated properties.

The second example is more complicated and concerns the molecule bALA.
Table 5.2 provides a summary of some aspects of the OPLS-AA model. As
before, the table starts by listing the atom types in the system, of which there
are six. In addition to the single types for nitrogen and oxygen, OPLS uses two
types for carbon (C for a carbonyl sp2 carbon and CT for an sp3 carbon) and two
types for hydrogen (H for a hydrogen attached to a nitrogen and HC for a
hydrogen attached to an sp3 carbon). The identification of which atoms have
which types should be straightforward by referring to Figure 2.3. The Lennard-
Jones parameters for the types are not given in the table but these will, in general,
be different for each type. The charges are, however, listed. For bALA, these are
constant for each type, with the exception of atoms of CT type. For these atoms,
the charges are such that the overall charges of the chemical groups in which the
atoms occur are neutral. Thus, the side-chain and C-terminal methyl carbon atoms
have charges of −0�18, the C� atom has a charge of 0�14 and the N-terminal
methyl carbon has a charge of 0�02.

The bonding terms are listed after the atom types and, in this case, there are
terms for each type that appears in Equation (5.1). The choice of which bonding
terms to include is based upon the covalent structure of the molecule and, so
unlike the TIP3P model, there are no ‘unchemical’ entries in the table. In the
bALA molecule there are 21 covalent bonds and so there are 21 bonding terms,
one per covalent bond. Likewise, from these 21 bonds it is possible to generate
36 bond angles and so there are 36 angle terms, one per bond angle. There are
7 different types of bonding term and 13 types of angle term which are defined
with respect to the atom types that take part in the interaction. In contrast to the
bond and angle terms, dihedral terms are present for only 21 of the 41 possible
dihedral angles that occur in the molecule. This is because the force constants,
V1, V2 and V3 in Equation (5.30), for the dihedral terms applicable to the 20
remaining dihedrals are all zero and so they are excluded from the model. There
are 4 improper terms, one of which is present for each of the four sp2-hybridized
atoms in the molecule. In all, there are 11 different types of dihedral term and 2
types of improper term.
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Table 5.2 The OPLS-AA representation of the bALA molecule

6 atom types
Frequency Name Description Charge (e)

2 H Amide hydrogen 0�30
10 HC Aliphatic hydrogen 0�06
2 C Amide carbon 0�50
4 CT Aliphatic carbon —
2 N Amide nitrogen −0�50
2 O Amide oxygen −0�50

21 bond terms
Frequency Types

2 C – CT
2 C – O
2 C – N
10 CT – HC
1 CT – CT
2 CT – N
2 H – N

36 angle terms
Frequency Types

2 CT – C – O
2 CT – C – N
2 N – C – O
9 HC – CT – HC
4 HC – CT – C
4 HC – CT – N
4 HC – CT – CT
1 C – CT – CT
1 C – CT – N
1 CT – CT – N
2 C – N – CT
2 C – N – H
2 CT – N – H

21 dihedral terms
Frequency Types

1 N – C – CT – CT
1 N – C – CT – N
2 CT – C – N – CT
2 CT – C – N – H
2 O – C – N – CT
2 O – C – N – H
3 C – CT – CT – HC
3 HC – CT – CT – HC
3 HC – CT – CT – N
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Table 5.2 (cont.)

21 dihedral terms (cont.)
Frequency Types

1 C – CT – N – C
1 CT – CT – N – C

4 improper terms
Frequency Type of Central Atom

2 C
2 N

5.3.3 Generating the MM representation

It will be apparent from the examples in the last section that the MM representa-
tions of even relatively simple molecules can be quite complicated. Indeed, setting
up the force field terms for a system can often be one of the most frustrating and
time-consuming parts of a simulation study! Because of this, efforts have been
made in pDynamo to make this process as automatic and painless as possible.
The procedure that is adopted is as follows.

(i) Define the system for which the MM representation is being created. The definition
should comprise the elemental type of the system’s atoms and a full connectivity that
includes the type (i.e. whether it is single, double, etc.) as well as the number of its
covalent bonds. The easiest way of doing this is to generate the system from a file or
representation that has this information. There are three representations that we met in
Section 2.4 that satisfy this criterion. They are the CML, MOL and SMILES formats,
although the latter has the disadvantage that it does not contain atomic coordinates
and so these have to be input in some other fashion.

It is also possible to employ files in PDB format. This format has a section in
which bonds between atoms can be listed (although it is often missing in practice)
but nowhere can the bond types be given. However, the PDB organization keeps
a library of all standard and non-standard residues that occur in files deposited
in the PDB and the definitions in this library contain this information. pDynamo
has its own version of the residue library which can be accessed when PDB files
are read and from which the full connectivity for a system can be generated. This
is done with a Boolean keyword argument QUSERESIDUELIBRARY to the func-
tion PDBFile_ToSystem. If the argument is True, data for the residues occur-
ring in the PDB file are extracted from the library, assuming that the appropri-
ate entries exist. If they do not an error is raised. If the argument has the value
False or is absent (the default) no cross-referencing against the PDB residue library
is done.
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(ii) Classify the atoms in the system according to their MM type. This is done via a
hierarchical sequence of rules which identify the types of atoms or groups of atoms
according to their chemical environments. The rules are applied in turn to each of the
atoms in the system until matches for all atoms have been found.

The rules themselves are of varying complexity, with those that are more spe-
cific occurring before those that are more general in the hierarchy. The simplest
rules may only identify the types of single atoms. Using the notation of the last
section, an example is: if the atom is an oxygen and possesses two single bonds
to hydrogens, the atom’s type is OW. The obvious corollary is a subsequent rule
that says: if the atom is a hydrogen with a single bond to an atom of type OW,
the atom’s type is HW. More complicated rules identify the types of several atoms
at once. Thus, a rule to identify peptide bonds could be: if there is a tetravalent
carbon with single bonds to another carbon and to nitrogen and a double bond to
oxygen, and the attached nitrogen is trivalent with additional single bonds to hydro-
gen and to a third carbon, the types of the first carbon, its attached oxygen, its
attached nitrogen and the hydrogen attached to the nitrogen are C, O, N and H,
respectively.

(iii) Assign bonding and non-bonding parameters according to the types of the atoms. The
choice of which bonding terms to include in the representation is, for the most part,
based upon the connectivity of the system although, in certain cases, such as for the
TIP3P model of water, extra bonding terms will be added.

Clearly, the feasibility of the above procedure depends upon the existence of
a set of rules for atom typing and of lists of accompanying bonding and non-
bonding parameters. In pDynamo, all the definitions for particular classes of
systems are collected together in single files which can be accessed as appropriate.
These files, and all others that contain parameter data or definitions, are stored
in a subdirectory, called parameters, that is part of the pDynamo package.
It is possible for users to generate their own MM definitions if the pre-existing
definitions are not sufficient but the details of how to do so will not be given here
as the process is rather lengthy.

MM force fields are represented in pDynamo with instances of subclasses of
the class MMModel. The appropriate subclass for the OPLS-AA force field is
MMModelOPLS which has the following definition:

Class MMModelOPLS

A class to represent an OPLS-AA MM model.

Constructor

Construct an instance of MMModelOPLS.
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Usage: new = MMModelOPLS ( datafile )
datafile is a string with the name of the file that contains the appropri-

ate OPLS-AA atom type and parameter definitions. The name
refers to one of the files in the opls section of pDynamo’s
parameters directory. In this book, the following parameter sets
are employed: "booksmallexamples" which is sufficient for
all small-molecule examples; "lennardjones" which is used
for the example in Section 9.7; and "protein" which is valid
for simple proteins.

new is the new instance of MMModelOPLS.

The calculation of the non-bonding part of the MM energy requires instances of
subclasses of the class NBModel. A distinct non-bonding (NB) class is necessary
because the non-bonding energy can be evaluated in a number of different ways,
even for a single MM model. We shall meet several of these alternatives later,
but, for the moment, we employ an algorithm in which the full interaction is
determined using straightforward O�N 2� summation. The appropriate class is
NBModelFull:

Class NBModelFull

A class to calculate non-bonding interactions with a simple O�N 2� summation
algorithm.

Constructor

Construct an instance of the NBModelFull class.

Usage: new = NBModelFull ( )
new is the new instance of NBModelFull.

MM and NB models are assigned to a system in a similar way as QC models
(see Section 4.7). The appropriate methods from the System class are

Class System

MM and NB model-related methods.

Method DefineMMModel

Assign an MM model to a system.

Usage: system.DefineMMModel ( mmmodel )
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mmmodel is the MM model that is to be used for calculating the MM energy
of the system.

system is the instance of System for which the MM model is being defined.
Remarks: This method constructs the MM representation for the system using

the definitions it contains. It both types the atoms in the system and
assigns parameters to the bonding and non-bonding terms. For the
method to work, system must have a fully defined connectivity,
including bonds, angles and dihedrals. An error will occur if this is
not the case or if system contains atom types or parameters that
are not covered by the definitions in mmmodel.

Method DefineNBModel

Assign an NB model to a system.

Usage: system.DefineNBModel ( nbmodel )
nbmodel is the NB model that is to be used for calculating the non-bonding

energy for the system.
system is the instance of System for which the NB model is being defined.
Remarks: This method should only be called for a system after its MM model

has been set up via a call to DefineMMModel. Only the bonding
portion of the MM energy will be calculated if a system has no NB
model.

5.4 Example 7

The example in this section makes use of some of the MM and NB model features
described in the preceding section. Much of the syntax is similar to Examples 4
and 5 (Sections 3.7 and 4.7, respectively) because the program treats the same
set of conformations of the bALA molecule as Example 4 and calculates similar
quantities as Example 5 for each conformation.

The program is:

1 """Example 7."""
2
3 from Definitions import *
4
5 # . Define the list of structures.
6 xyzfiles = [ "bala_alpha.xyz", "bala_c5.xyz", \

"bala_c7ax.xyz", "bala_c7eq.xyz" ]
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7
8 # . Define the MM and NB models.
9 mmmodel = MMModelOPLS ( "booksmallexamples" )
10 nbmodel = NBModelFull ( )
11
12 # . Generate the molecule.
13 molecule = MOLFile_ToSystem ( \

os.path.join ( molpath, "bala_c7eq.mol" ) )
14 molecule.DefineMMModel ( mmmodel )
15 molecule.DefineNBModel ( nbmodel )
16 molecule.Summary ( )
17
18 # . Loop over the structures in the xyz files.
19 results = []
20 for xyzfile in xyzfiles:
21 molecule.coordinates3 = XYZFile_ToCoordinates3 ( \

os.path.join ( xyzpath, xyzfile ) )
22 energy = molecule.Energy ( )
23 dipole = molecule.DipoleMoment ( )
24 results.append ( ( xyzfile[5:-4], energy, dipole.Norm2 ( ) ) )
25
26 # . Output the results.
27 table = logfile.GetTable ( columns = [ 20, 20, 20 ] )
28 table.Start ( )
29 table.Title ( "Energy Model Results for bALA" )
30 table.Heading ( "Conformation" )
31 table.Heading ( "Energy" )
32 table.Heading ( "Dipole" )
33 for ( label, energy, dipole ) in results:
34 table.Entry ( label )
35 table.Entry ( "%.1f" % ( energy, ) )
36 table.Entry ( "%.3f" % ( dipole, ) )
37 table.Stop ( )

The major differences with the previous examples concern the definition of the
MM and NB models. These are:

Lines 9–10 create instances of the classes MMModelOPLS and NBModelFull.
The MM model is defined so that it employs data from the parameter set
"booksmallexamples" when constructing the MM potential energy
function for the system.

Line 14 defines the MM model for the bALA system to be that in mmmodel.
This method sets up the OPLS potential energy function for the molecule
using the parameters from the set "booksmallexamples".
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Line 15 assigns an NB model to the system. Note that it is called after the
definition of the system’s MM model.

5.5 Parametrizing potential energy functions

By the end of this book we will have spent much time presenting a wide range
of algorithms for performing simulations of molecular systems and how to apply
them correctly. No matter how good our simulation techniques are though, the
usefulness of the results produced will be heavily dependent upon how accurately
the potential energy function reproduces the potential energy surface of the system
being studied. In other words, the quality of parametrization of the energy function
is crucial to the results that we obtain.

Parametrization is an essential part of the development of all the methods that
we discuss in this book for the calculation of the potential energy. This applies to
the Gaussian basis sets used in ab initio QC calculations, the parameters employed
for the evaluation of integrals and core–core terms in MNDO-type semi-empirical
QC methods, and the parameters of the various terms in MM force fields. The
way in which all these energy functions are parametrized is similar and, in broad
outline, as follows.

(i) Gather a set of reference data that correspond to the physical and chemical properties
of systems of the type for which the energy function is to be parametrized. The data
values can come from either experiment or accurate ab initio QC calculations and must
pertain to properties that can be computed with the energy function and an appropriate
simulation methodology. It is essential that the number and variety of reference data
be sufficient to provide an adequate test of the parametrized potential energy function.
Examples of the types of data that can be used are: structures determined experimen-
tally using techniques such as X-ray crystallography, microwave spectroscopy and
electron diffraction; vibrational frequencies from infrared and Raman spectroscopy;
ionization potentials; electrostatic properties such as dipole moments; physical proper-
ties such as densities; and thermodynamic quantities such as enthalpies of formation,
enthalpies of vaporization and heat capacities. We shall meet how to calculate many
of these properties in later chapters.

(ii) Separate the data into a training set and a test or validation set.
(iii) Guess a set of starting values for the parameters that are to be found.
(iv) Refine the values of the parameters using the following procedure.

(a) Calculate the properties of the systems in the training set using the energy function
and the current parameter values.

(b) Determine the agreement between the calculated and reference data and stop the
parameter refinement if this is judged to be adequate.

(c) Modify the values of the parameters and go back to step (iv) (a). This step will
involve checking the new values of the parameters to ensure that they remain
chemically and physically reasonable. Thus, for example, the radius of an atom
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is of the order of 1 Å and so values for Lennard-Jones radius parameters should
be of roughly the same magnitude. Likewise, the maximum stabilization to be
expected from a van der Waals interaction is a few kJ mol−1, which will limit, in
turn, the size of the Lennard-Jones well-depth parameters.

There are various ways in which parameter refinement can be accomplished but a
popular one is to choose a non-linear least squares algorithm, in which a function,
� , of the following form is minimized with respect to the parameter values:

� �p� =
No∑

I=1

wI�O
calc
I �p�−Oref

I �2 (5.32)

In this equation, p is the vector of parameter values, No is the number of observables
(i.e. the number of reference data), wI are observable weights and Ocalc

I and Oref
I are

the calculated and reference values of the observables, respectively.
(v) Calculate the properties of the systems in the validation set with the fitted parameter

values and compare the results with the reference values. This step is a crucial one
and serves to determine how transferable the parameters are to properties and systems
against which they were not fitted.

The parametrization of all but the simplest energy functions is a complex
process that can be a long and time-consuming business. Normally it is impractical
to try to optimize all the parameters against all the available experimental data
simultaneously so the problem must be broken down into smaller pieces. How
this is done varies greatly but a number of strategies are possible. One is to
focus upon a subset of ‘core’ systems and parametrize the energy function for
these first. Once this has been achieved, the parametrization can be extended
to other species assuming that the parameters for the core species remain fixed.
When developing semi-empirical QC methods, for example, it is common to start
with molecules that contain the elements C, H, N and O before continuing on to
compounds of other elements. Similarly, the parametrization of MM force fields
often proceeds in a stepwise fashion. Hydrocarbons are considered first, followed
by the parametrization of groups of increasing complexity such as alcohols,
amines, carbonyls and so on.

A second strategy that can be adopted is to try to avoid the parametrization
of certain parameters altogether. One approach of this type is the calculation of
the partial charges on the atoms in an MM force field using a QC method. This
is done in a number of force fields, including AMBER. Due to the vagaries of
the Mulliken population analysis, other schemes are preferred, most notably one
in which the charges are obtained by fitting them so that they reproduce the
electrostatic potential (ESP) calculated at various points around the molecule.
The advantage of calculating the charges in this way is that it decouples their
determination from that of the remainder of the force field parameters, but its
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disadvantage is that the charge parameters are no longer transferable and must be
recalculated using ESP data for each different type of molecule. By contrast, in
other force fields, such as OPLS-AA, charges are parametrized but some degree
of transferability is assumed and so they are derived, insofar as it is possible,
such that the same charges can be used for the same chemical group in different
environments.

A last point needs to be emphasized before ending, which is that the final
result of any parametrization procedure will inevitably be a compromise. This is
both because of the difficulties of the parametrization process itself and because
the approximations inherent in the formulation of the energy function will limit
the precision that can be achieved and the type of observational data that can be
reproduced.

5.6 Soft constraints

To conclude this chapter we make a brief aside and introduce a subject, together
with related pDynamo classes and methods, that will not be needed immediately
but will prove essential later. In previous chapters, we have already met instances
in which it was necessary to impose constraints upon the values of some of the
variables that were intrinsic to the problem under discussion. One example was the
normalization condition for the quaternion parameters in Section 3.6 and another
the orthonormality constraints placed upon the molecular orbital coefficients in
Section 4.4. Both of these are examples of hard- or rigid-constraint methods
in which the constraint equations are satisfied ‘exactly’ (to within a specified
numerical precision). A second class of constraint methods also exists that employ
soft constraints. These methods are cruder and only attempt to approximately
satisfy the constraint conditions.

In molecular simulations it is often valuable to be able to constrain the values
of particular geometrical variables. A few types of geometrical constraint are
straightforward to implement with hard-constraint methods but, in the general
case, the imposition of hard constraints can be difficult, requiring special methods
or significant reformulations of the simulation algorithms that are being employed.
We shall come across some of these techniques in Section 11.8. By contrast, soft
constraints, although less precise, are very simple to implement and to apply.

Soft constraints are conveniently implemented by adding extra MM-like terms
to the potential energy function. These give low energies when the geometrical
variables are close to the desired values and progressively higher energies as the
values deviate further. The form of the soft-constraint energy is arbitrary but the
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ones that we employ in this book are all of piecewise harmonic form as follows:

�sc =

⎧

⎪⎨

⎪⎩

ksc �v−vlow�2 v < vlow

0 vlow ≤ v ≤ vhigh

ksc

(

v−vhigh

)2
v > vhigh

(5.33)

In this equation, v is the value of the geometrical variable being constrained and
�sc and ksc are the constraint’s potential energy and force constant, respectively.
The parameters vlow and vhigh determine the range over which the constraint
energy is zero. If vlow = vhigh�= v0�, Equation (5.33) becomes a regular harmonic
function of the type illustrated in Figure 5.1.

Due to their diversity, use of soft constraints in pDynamo requires a number
of different classes. The first group specify the form of the soft-constraint energy
function and have the definitions:

Class SoftConstraintEnergyModelHarmonicRange

A class to represent an energy function of the form given by Equation (5.33).

Constructor

Construct an instance of SoftConstraintEnergyModelHarmonicRange.

Usage:
new = SoftConstraintEnergyModelHarmonicRange (

vlow, vhigh, fc )
vlow is the value of vlow.
vhigh is the value of vhigh.
fc is the force constant, ksc.
new is the new instance of

SoftConstraintEnergyModelHarmonicRange.

Class SoftConstraintEnergyModelHarmonic

A class to represent a harmonic energy function. This is a special case of Equa-
tion (5.33) in which vlow = vhigh.

Constructor

Construct an instance of SoftConstraintEnergyModelHarmonic.

Usage: new = SoftConstraintEnergyModelHarmonic ( v0, fc )
v0 is the equilibrium value of the variable v.
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fc is the force constant, ksc.
new is the new instance of SoftConstraintEnergyModelHarmonic.

The second group of classes define the geometrical variable that is to be con-
strained along with the constraint’s energy model. These classes are all subclasses
of the class SoftConstraint with the simplest being one that constrains the
distance between two atoms. Its definition is:

Class SoftConstraintDistance

A class for constraining the distance between two atoms.

Constructor

Construct an instance of SoftConstraintDistance.

Usage:
new = SoftConstraintDistance ( atom1, atom2,

energymodel )
atom1 is the index of the first atom in the constraint.
atom2 is the index of the second atom in the constraint.
energymodel is the energy model to use for the constraint. It should be an

instance of one of the SoftConstraintEnergyModel classes.
new is the new instance of SoftConstraintDistance.

Similar classes exist for constraining the angle between three atoms or
the dihedral angle between four atoms. These have the same specification as
SoftConstraintDistance except that their names are changed appropri-
ately – Angle or Dihedral instead of Distance – and that their constructors
require three (for an angle) or four (for a dihedral) atom arguments.

The classes above apply constraints that are functions of atom coordinates only.
It is also possible to have constraints that involve other geometrical objects, such
as points, lines or planes. The only one of this type that we shall require is a tether
constraint that limits the position of a particle to a particular region of space. It is
implemented as follows:

Class SoftConstraintTether

A class for constraining the position of an atom about an absolute position in
space.

Constructor

Construct an instance of SoftConstraintTether.
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Usage:
new = SoftConstraintTether (atom, point,

energymodel)
atom is the index of the atom to be tethered.
point is an instance of the class Vector3 that holds the Cartesian coordi-

nates of the point about which the atom is to be tethered.
energymodel is the energy model to use for the constraint. It should be an

instance of one of the SoftConstraintEnergyModel classes.
new is the new instance of SoftConstraintTether.
Remarks: The variable that is being constrained is v = �r i − r0�, where r i is the

position of atom i and r0 is the position of the reference point.

To be used and assigned to a system, soft constraints must be gathered together
in an instance of the class SoftConstraintContainer. This class behaves
very like a dictionary which is another of Python’s built-in sequence types.
Dictionaries are unlike lists and tuples in that access to the items they contain is
done by an item’s unique key and not by the integer index that gives its order
in the sequence. In this case, the container keys are strings that give the names
of the constraints and the items are instances of the class SoftConstraint.
We shall see how to add and remove constraints to and from a container with a
dictionary-like syntax in Sections 9.7 and 11.7, but for the moment a sufficient
definition of the class is:

Class SoftConstraintContainer

A container class that holds soft constraints. This class behaves like a
Python dictionary whose keys are strings and whose items are instances of
SoftConstraint.

Constructor

Construct an instance of SoftConstraintContainer.

Usage: new = SoftConstraintContainer ( )
new is the new instance of SoftConstraintContainer.
Remarks: The container is empty when it is created.

Finally, soft constraints are assigned to a system with a method similar to those
for assigning QC, MM and NB energy models. The extension to the System
class is:

Class System

Soft constraint-related methods.
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Method DefineSoftConstraints

Assign soft constraints to a system.

Usage: system.DefineSoftConstraints (constraints)
constraints is an instance of SoftConstraintContainer that con-

tains the constraints to be added to the system. This argument
can also take the value None, in which case all existing soft
constraints on the system are removed.

system is the instance of System for which the soft constraints are
being defined.

Exercises

5.1 Derive an expression for the derivatives of the polarization energy, Equa-
tion (5.24), with respect to the atomic coordinates. Relate the result to the
discussion of Section 4.8.1.

5.2 Repeat the calculation of the energy using the example in Section 5.4 but
for other systems of interest. The pDynamo library includes MOL and PDB
coordinate files for miscellaneous molecules so these can be used if necessary.
In addition, the library provides parameter sets that are appropriate for certain
classes of systems. Are these sets sufficient? If not, which parameters are
missing and for which groups?

5.3 The parameter set "booksmallexamples" contains definitions for water
and also sodium and chloride ions. Using this set, determine the energies
of some water–water and water–ion complexes. In each case the geometry
of the water molecules can be kept fixed, but the relative orientation of the
molecules or molecule and ion can be altered. Devise a search procedure
to investigate automatically and systematically a range of configurations for
the complexes. What is the shape of the potential energy surface for the
system? What are the most stable configurations for the interaction of a
water molecule with the sodium cation, the chloride anion and another water
molecule? The energy of interaction between the molecules is, of course,
due to non-bonding terms only. What are the relative contributions of the
electrostatic and Lennard-Jones terms for each of the three complexes?
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Hybrid potentials

6.1 Introduction

The last two chapters considered two distinct classes of methods for calculating
the potential energy of a system. Chapter 4 discussed QC techniques. These are,
in principle, the most ‘exact’ methods but they are expensive and so are limited to
studying systems with relatively small numbers of atoms. MM approaches were
introduced in Chapter 5. These represent the interactions between particles in a
simpler way than do QC methods and so are more rapid and, hence, applicable
to much larger systems. They have the disadvantage, though, of being unsuitable
for treating some processes, notably chemical reactions. Hybrid potentials, which
are described in this chapter, seek to overcome some of the limitations of QC and
MM methods by putting them together.

6.2 Combining QC and MM potentials

Although a hybrid potential is, in principle, any method that employs different
potentials to treat a system, either spatially or temporally, the potentials we focus
upon in this chapter use a combination of QC and MM techniques. These methods
are also known as QC/MM or QM/MM potentials. The first potential of this type
was developed in the 1970s by A. Warshel and M. Levitt who were studying the
mechanism of the chemical reaction catalyzed by the enyzme lysozyme. Enzymes
are proteins that can greatly accelerate the rate of certain chemical reactions.
How they achieve this is still a matter of active research but the reaction itself
occurs when the substrate species are bound close together in a specific part of the
enzyme called the active site. The full system of enzyme, solvent and substrates
was clearly too large to study by QC methods (especially in the 1970s!) so what
Warshel and Levitt did was to treat a small number of atoms, comprising the
substrates and active site region of the protein, with a semi-empirical QC potential
and the, much larger, remainder of the system with a force field method. After

110
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QC
MM

Interactions

Fig. 6.1. Partitioning a system between QC and MM regions.

this initial work there was a lull in the application of QC/MM methods until the
beginning of the 1990s, since when their use has mushroomed. This renewed
interest was spurred, in large part, by the increase in computer power, and also by
a number of technical developments in the potentials themselves. Notable amongst
these were contributions by U. C. Singh and P. A. Kollman and by M. J. Field,
P. A. Bash and M. Karplus.

There are many variants of QC/MM potentials, some of which we shall mention
later in the section, but the schemes that we outline here divide a system into
two regions, one QC and one MM. QC/MM methods are especially useful for
studying chemical reactions in large systems, such as in enzymes or in solvents or
on surfaces, and so, in these cases, the QC region will contain the reactive atoms.
In studies where reactions are not being investigated, it may be that it is desired
to have a QC description of a portion of the system, either because certain atoms
should be treated at a higher level of precision or because they are not adequately
represented by the MM potentials that are being used. A schematic of partitioning
is shown in Figure 6.1.

How a hybrid potential is formulated depends upon the QC and MM methods
that it employs. For the MO QC methods and pairwise-additive force fields that
we use in this book, a formulation in terms of an effective Hamiltonian, �̂eff , is
convenient. When there are two regions, �̂eff consists of a sum of three terms, one
for the QC region, one for the MM region and one for the interactions between
the two:

�̂eff = �̂QC +�̂MM +�̂QC/MM (6.1)
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In this equation, the Hamiltonian for the QC region, �̂QC, takes the form that is
appropriate for the QC method. Likewise, the Hamiltonian for the MM region,
�̂MM, will be identical to that of the MM method but, as the ones that we employ
do not contain any operators, this term reduces to the normal potential energy for
the MM atoms, �MM.

The crucial part of a QC/MM method, therefore, lies in how the interaction
Hamiltonian, �̂QC/MM, is expressed. If we restrict ourselves, for the moment, to
cases in which there are only non-bonding interactions between the atoms of the
QC and MM regions, a representation, compatible with the force fields we are
using, consists of a sum of electrostatic and Lennard-Jones terms. The equation is

�̂QC/MM = −∑
sm

qm

rsm

+∑
im

Ziqm

rim

+∑
im

{

Aim

r12
im

− Bim

r6
im

}

(6.2)

where the subscripts s, i and m refer to electrons, QC nuclei and MM atoms,
respectively. The first and second terms on the right-hand side of this equation are
the electrostatic interactions between the partial charges, qm, of the MM atoms
and the electrons and nuclei of the QC region, respectively, whereas the last term
is the Lennard-Jones interaction between the MM and QC atoms. Only the first
term is an operator as it contains the coordinates of the electrons. The remaining
terms are constants, for a given set of atomic coordinates, like the MM energy.

Once the effective Hamiltonian for the system has been defined, the appropriate
time-independent Schrödinger equation can be solved:

�̂eff� = �� (6.3)

Here � is the wavefunction for the electrons on the QC atoms and � is the
potential energy of the full QC/MM system.

For a HF calculation, solution of Equation (6.3) gives rise to the Roothaan–Hall
equation (Equation (4.27)) as normal, with the exception that there are extra terms
in the one-electron matrix that arise due to the electrostatic interaction between
the electrons and MM atoms. These terms are added directly to the one-electron
matrix elements of Equation (4.16) and take the form

HQC/MM
�� =

∫

r
���r�

{

∑

m

−qm

�r − rm�

}

���r� dr (6.4)

The fact that the one-electron matrix has been altered means that the wavefunction
and, hence, the electron density will be adapted to the electrostatic environment
in which the QC atoms are embedded.
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After solution, the potential energy of the full system, like the effective Hamil-
tonian, can be expressed as the sum of three terms

� = �QC +�MM +�QC/MM (6.5)

The first term is the QC energy, and is the same as that given in Equation (4.13),
the second term is the MM energy and the third is the QC/MM interaction energy.
The latter has the same form as does Equation (6.2) but with the first term on
the right-hand side replaced by the expression

∑

�� P��H
QC/MM
�� . The derivatives

of � with respect to the atomic coordinates are straightforward to determine
because all terms are fully differentiable except for those terms involving density
matrix derivatives and these can be evaluated using the procedure described in
Section 4.8.1.

The scheme outlined above is the one that we shall use in this book but it is far
from unique. Many alternative methods follow the same general framework but
differ in how they treat the QC/MM coupling or how many regions they partition
the system into. Thus, for example, some schemes have extra terms, such as MM
polarization, in Equation (6.2), whereas others divide the system into three or
more regions consisting of various mixes of ab initio and semi-empirical QC
methods and MM potentials.

There are also schemes that are quite different in their formulation. Extreme exam-
ples are potentials that treat the �-electron, single-bond structure of a system with
an empirical energy function and the delocalized 	-electron structure with a QC
technique. Other approaches, which have gained some popularity, are the ‘layered’
ONIOM methods first developed by F. Maseras and K. Morokuma. As an example,
suppose, as before, that we have a system which we wish to treat with QC and MM
potentials. ONIOM works by considering two systems, the first is the full (or real )
system and the second is a model system that comprises the atoms in the QC region
but excludes all others. The energy of the real system is then approximated as

� = �model
QC −�model

MM +� real
MM (6.6)

where �model
QC and �model

MM are the QC and MM energies of the model system,

respectively, and � real
MM is the MM energy of the real system.

There are clearly major differences between this approach and the one that we
shall use. One is that the energy of the atoms in the QC region is calculated three
times, twice as part of the model system and once as part of the real system,
and that, to avoid overcounting, the MM energy of the model system must be
subtracted in the final expression. Another difference is that, at least for the
simpler ONIOM methods, the interactions between the atoms in the QC region
and those exterior to it are only calculated with the MM potential because the
model system excludes the surrounding atoms.
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Hybrid potentials, no matter what scheme is used, resolve some of the problems
associated with pure QC and pure MM potentials. They are not without shortcom-
ings of their own, however, many of which relate to how the atoms in a system
are divided between the different regions. One limitation is that the identities
of the atoms in each region are fixed during a calculation. This is apparent, for
example, when studying chemical reactions in which potentially reactive species
diffuse or otherwise move out of the QC region and are replaced by unreactive
MM species. Some schemes have been developed that can change the partition-
ing during the course of a simulation but none is, as yet, very general. Another
limitation arises from the relatively small number of atoms that it is possible to
put in the QC region. This requires that the process being studied with the QC
potential be localized. Some, such as many chemical reactions, are, but others,
such as electron transfer which can occur over large distances, are not.

6.3 Example 8

Hybrid potential models in pDynamo are specified using a combination of the MM
and QC model classes that we have already met. The only additional element that
is needed is an extra keyword argument, called qcselection, to the method
DefineQCModel of the class System. This argument should be an instance
of the class Selection and indicates the indices of the atoms that are to be
treated quantum chemically. As we saw in Example 5 of Section 4.7, absence of
the argument implies that all atoms will be in the QC region.

The following example shows how to combine the various models.

1 """Example 8."""
2
3 from Definitions import *
4
5 # . Define the MM, NB and QC models.
6 mmmodel = MMModelOPLS ( "booksmallexamples" )
7 nbmodel = NBModelFull ( )
8 qcmodel = QCModelMNDO ( )
9
10 # . Define the molecule.
11 molecule = MOLFile_ToSystem ( \

os.path.join ( molpath, "waterdimer_cs.mol" ) )

12
13 # . Define the selection for the first molecule.
14 firstwater = Selection ( [ 0, 1, 2 ] )
15
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16 # . Define the energy model.
17 molecule.DefineMMModel ( mmmodel )
18 molecule.DefineQCModel ( qcmodel, qcselection = firstwater )
19 molecule.DefineNBModel ( nbmodel )
20 molecule.Summary ( )
21
22 # . Calculate an energy.
23 molecule.Energy ( )

Lines 6–8 create instances of the MM, NB and QC models that will be used for
the hybrid potential calculation.

Line 11 defines an instance molecule of System that represents a water dimer.
The structure on the file is illustrated in Figure 6.2. It has Cs symmetry
and corresponds (approximately) to the dimer’s most stable configuration.

Line 14 creates a selection that contains the indices of the atoms of the first water
in the dimer.

Lines 17–19 define the hybrid potential energy model for the system in the
order MM, QC and then NB. The atoms of the first water in the
dimer are specified as being in the QC region by passing the selection
firstwater as the keyword argument qcselection on line 18. It
is important to note that pDynamo requires that an MM representation
of the full system exist before a hybrid potential for the system can be
specified. This is why the call to DefineMMModel precedes that to
DefineQCModel.

Line 23 calculates the potential energy of the system using the combined QC/MM
hybrid potential.

Fig. 6.2. The water dimer studied in Example 8. One molecule is treated with
a QC potential and the other with an MM potential.
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6.4 Covalent bonds between QC and MM atoms

So far, in this chapter, we have only considered examples in which there are
non-bonding interactions between the atoms of the QC and MM regions. But what
happens if there are covalent bonds as well? This is a common occurrence when
studying systems composed of large molecules because, in these cases, it is often
necessary to split a molecule between the different regions.

The treatment of covalent bonds between QC and MM atoms requires special
methods. To make the discussion concrete, consider a molecule that contains,
somewhere, a single bond between two sp3-hybridized carbon atoms. The atoms
each have four valence electrons and four single bonds to neighbouring atoms. To
a good approximation, each atom can be viewed as having four hybrid orbitals,
one of which participates in each single bond and to each of which an atom
donates one electron. This is illustrated in Figure 6.3. Now suppose that the
molecule is partitioned at this bond, with one atom being in the QC region and
the other in the MM region. As MM atoms do not have electrons or orbitals, this
leaves the hybrid orbital of the QC atom that points towards the MM atom with
a single, unpaired electron. The presence of this ‘dangling’ or ‘unsatisfied’ bond
makes the system radical in character and radicals have very different electronic
structures from those in which there are no unpaired electrons.

The electronic problem of dangling bonds is perhaps the most crucial one that
methods for handling bonds across the boundary of the QC and MM regions

Fig. 6.3. The sp3 hybrid orbitals of the carbon atoms in the ethane molecule. The
molecule is in a staggered conformation which obscures one of the hydrogens
and one of the hybrid orbitals for the carbon on the right. The image shows the
electronic densities due to the orbitals, not the orbitals themselves.
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must be able to tackle, but it is not the only one as they must also ensure that
the partitioned system behaves structurally and energetically as much as possible
like the unpartitioned one. A variety of methods have been developed to treat
QC–MM bonds. Most fall into three classes depending upon how they solve the
dangling-bond problem:

(i) Methods that employ hybrid orbitals, or other more general types of localized orbital.
In one variant of these schemes, hybrid orbitals are generated for the QC atom of the
broken QC–MM bond, one of which is forced to point towards the MM atom. All
the hybrid orbitals of the QC atom enter into the QC calculation but the form of the
orbital pointing towards the MM atom is fixed and it is constrained to be occupied
by one electron. The presence of this fixed orbital satisfies the extra valence of the
QC atom but the QC–MM bond itself must be represented by an MM bond term.

In other variants of hybrid-orbital approaches, hybrid orbitals are placed on the
MM atom of the broken QC–MM bond and enter into the QC calculation. This means,
in principle, that there is no need for an MM term to represent the broken bond as
its properties are reproduced by the QC part of the hybrid potential. Some methods
build a single orbital on the MM atom that points towards the QC atom and it is this
orbital whose form and occupancy are fixed during the QC calculation. Others build
the full complement of hybrid orbitals for the MM atom and constrain the form and
occupancy of all of them during the QC calculation, except the one that points to the
QC atom.

A hybrid-orbital method was first used by Warshel and Levitt in their hybrid
potential work but other contributions, in the context of more modern hybrid potentials,
have been made, among others, by the groups of R. Friesner, of J. Gao and of
J.-L. Rivail. The methods in this class are, in many ways, the most elegant of those
discussed here but they suffer from the disadvantage that they can entail significant
modifications of the algorithms required for performing a QC calculation. This is due
to the fact that hybrid and localized orbitals are normally not orthogonal, unlike the
orbitals around which most standard QC methods are constructed.

(ii) Methods that use a univalent capping atom of fictitious elemental type to replace the
MM atom of the broken QC–MM bond in the QC calculation. The position of the
capping atom is taken to be the same as that of the MM atom and no MM bond term
is normally necessary as the properties of the bond arise from the QC calculation.
Examples of fictitious elements include those that are hydrogen-like, with one valence
electron, and those that are halogen-like, with seven valence electrons. These methods
have the advantage that they require no modification of standard QC algorithms but
the disadvantage that fictitious elements have to be conceived for each different type
of broken QC–MM bond so that the properties of the respective bonds are correctly
reproduced.

(iii) Methods that introduce an extra, univalent atom into the system for each covalent
bond between QC and MM atoms. These dummy or link atoms serve to replace the
MM atom in the QC calculation and ensure that the QC atoms of the broken bonds
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have no unsatisfied valencies. Link atoms are usually hydrogens and, unlike capping
atoms, are not assumed to have the same position as the MM atoms that they represent.
Instead they are placed along the bond between the QC and MM atoms at a suitable
distance away from the QC atom. The bond itself must be treated with an MM bond
term. Although addition of extra atoms into a system is rather inelegant, link-atom
methods are probably the easiest to develop and implement and, as such, have been
the most widely used in hybrid potential simulation studies.

It should be emphasized that all the methods described above require a careful
balancing of the QC and MM contributions to the full potential so that the
properties of the partitioned system are correctly described. Thus, each method
will have a recipe detailing which MM bonding and non-bonding terms in the
region around the QC–MM bonds should be omitted and which included, and
whether or not the parameters, and even the analytic forms, of these MM terms
remain the same as in the unpartitioned case or need to be modified in some
way. These recipes will have been derived by performing calculations on a set of
test systems with known properties and then refining the ingredients of the recipe
until the desired agreement between known and calculated properties is reached.

pDynamo employs a link-atom method, a schematic of which is shown in
Figure 6.4. The method has been aimed to be as simple as possible thereby
minimizing the changes needed to the individual QC and MM potentials and the
number of new terms and parameters that have to be introduced. Link atoms are
added for every covalent bond that occurs between atoms of the QC and MM

QC MM

Boundary
Atom

�� �

b��

Fig. 6.4. The link-atom scheme illustrated by its application to ethanol.
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regions. They are not treated as independent atoms but are considered to be part
of the MM atoms of the QC–MM bonds. These combined link and MM atoms
are called boundary atoms. Link atoms are hydrogens with one electron whose
coordinates are constructed automatically whenever they are needed, most notably
when the potential energy of the system is evaluated. If � denotes the link atom
and � and � the QC and MM atoms of the QC–MM bond, respectively, the
position of a link atom is determined as

r� = r� +b�Q

r� − r�
�r� − r�� (6.7)

In this equation, b�Q is the distance between the link atom, �, and its QC partner,
�. Distance b�Q can be a constant whose value depends upon the identity of
the atom �, typically ∼ 1Å, or it can be a more complicated function of various
quantities pertaining to the atoms � and � .

The link atoms, 
��, replace the atoms 
�� in the QC calculation which is
otherwise carried out as normal. As far as the MM portion of the hybrid potential
calculation is concerned, link atoms do not enter in at all because they have no
associated MM parameters, even those for Lennard-Jones terms. As for the other
interactions, the MM bond term between the atoms � and � is calculated, as
are any MM bond, angle or dihedral energy terms that include at least one other
MM atom in addition to the atom � . Lennard-Jones interactions between QC
and MM atoms are calculated in the way that is normal for the force field that is
being used. Thus, in the OPLS-AA case, 1–2 and 1–3 interactions are excluded
and 1–4 interactions are scaled.

Of all the QC/MM interactions, the link-atom method is most sensitive to the
electrostatic interactions. A general recipe to handle these interactions for all types
of QC and MM potentials is still an active area of research and so only a summary
of some possible approaches will be given here. Readers should refer to the online
pDynamo documentation for full details of the current implementation. In some
schemes all interactions are included fully but this often induces instabilities that
arise principally from the very short-range and, hence, strong interaction within
the boundary atom itself, i.e. between � and � . One solution to this is simply
to omit this interaction, although this can lead to unwanted distortions of the
electron density around the link atom due to the fact that the electrons are unduly
attracted or repelled by the charges of the MM atoms that are covalently bound to
� . More balanced approaches modify the partial charge on � , and sometimes
those of its MM neighbours, for the calculation of all the electrostatic interactions,
both MM/MM and QC/MM, that involve these atoms. Most drastically this is
done by zeroing the charges of these atoms. A gentler method is to replace
the point �-function charge distribution on each of these atoms by smeared
charge distributions, often Gaussians, which are spread over a finite, but small
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region of space. This spreading has the effect of reducing the strength of the
electrostatic interactions involving these distributions at short range whilst leaving
them unchanged at long range.

We conclude this section with a few general remarks about the use of link
atoms in pDynamo. First, the link-atom method is designed to work only for cases
in which partitioning of a molecule results in single bonds being broken, so do not
expect reliable results if link atoms are put in the middle of aromatic or conjugated
groups! Link atoms can be placed along any single bond but those between sp3-
hybridized atoms, ideally carbons, are best because this helps to minimize the
perturbation to the electronic structure of the QC region. Second, care must be
taken when partitioning a molecule that the MM portion has the desired, usually
zero or integer, total charge. This can be troublesome when using some MM
potentials but it is straightforwardly achieved with the OPLS-AA force field as
most chemical groups, such as aliphatic CH2 and CH3 groups, are parametrized
so that they have zero or integral charge. Partitioning should therefore occur at
the boundaries of these groups. Finally, it is desirable when performing a hybrid-
potential study to test different partitionings of a molecule to see how sensitive
the results are. If this is not possible, or if in doubt, a general rule of thumb is to
use the biggest QC region that is feasible.

6.5 Example 9

The example in this section shows how to split a molecule between QC and MM
regions. No extra syntax is needed to perform the calculation because pDynamo
detects the presence of covalent bonds between atoms of the QC and MM regions
automatically. Whenever the method DefineQCModel is called, a check is done
to see whether there are bonds across the boundary between the two regions and,
if so, the appropriate number of boundary atoms are flagged.

The program is:

1 """Example 9."""
2
3 from Definitions import *
4
5 # . Define the MM, NB and QC models.
6 mmmodel = MMModelOPLS ( "booksmallexamples" )
7 nbmodel = NBModelFull ( )
8 qcmodel = QCModelMNDO ( )
9
10 # . Define the molecule.
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11 molecule = MOLFile_ToSystem ( \
os.path.join ( molpath, "bala_c7eq.mol" ) )

12
13 # . Define the selection for the first molecule.
14 methylgroup = Selection ( [ 10, 11, 12, 13 ] )
15
16 # . Define the energy model.
17 molecule.DefineMMModel ( mmmodel )
18 molecule.DefineQCModel ( qcmodel, qcselection = methylgroup )
19 molecule.DefineNBModel ( nbmodel )
20 molecule.Summary ( )
21
22 # . Calculate an energy.
23 molecule.Energy ( )

The program is nearly identical to that of Section 6.3. The system that is treated
is bALA, instead of the water dimer, and the atoms in the QC region are those
of the methyl group sidechain of the alanyl moiety. The indices of these atoms
are 10–13 and are contained in the selection methylgroup which is passed to
the method DefineQCModel on line 18. This method detects the presence of
a single covalent bond between the QC and MM regions and identifies the C

atom of the molecule as being a boundary atom.

Exercises

6.1 Using Example 8 as a reference, calculate the binding energy of the water
dimer using QC, MM and QC/MM models. In the latter case, try partitionings
in which first one and then the other water molecule is in the QC region.
How different are the results? Note that the binding energy is defined as the
energy of the dimer minus the sum of the energies of the isolated monomers.

6.2 Choose a molecule or series of molecules that can be partitioned between QC
and MM regions in different ways. Suitable examples are long-chain alcohols
and amines. Investigate how changing the partitioning changes the values of
particular properties and, if possible, relate these values to the pure QC and
pure MM values. Properties that can be tested include atomic charges and
dipole moments. If the molecules can be protonated or deprotonated, check
how the energy required for removal or addition of a proton changes with the
energy model.
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Finding stationary points and reaction paths on
potential energy surfaces

7.1 Introduction

In the last three chapters we have discussed how to calculate the potential energy,
and some of its derivatives, for a single geometry of the atoms in a system.
Although the calculation of an energy for one or a small number of configura-
tions may sometimes be necessary, it can give only limited information about a
system’s properties. To investigate the latter more thoroughly it is necessary to
identify interesting or important regions on the system’s potential energy surface
and develop ways in which they can be explored. Methods to do this will be
investigated in this chapter.

7.2 Exploring potential energy surfaces

The function that represents a system’s potential energy surface is a multidimen-
sional function of the positions of all the system’s atoms. It is this surface that
determines, in large part, the behaviour and the properties of the system. A little
reflection shows that the number of configurations or geometries available to a
system with more than a few atoms is enormous. A simple example should make
this clear. Take a diatomic molecule or, more generally, any system comprising
two atoms in vacuum. The geometry of such a molecule is completely determined
by specifying the distance between the two atoms and so the potential energy sur-
face is a function of only one geometrical variable. It is easy to search the entire
potential energy surface for this system. Start with a small interatomic distance,
calculate the energy, increase the distance by a certain amount and then repeat
the procedure. In this way we can obtain a picture similar to those in Figures 5.1,
5.2 and 5.5.

Consider next a three-atom system, such as a molecule of water, for which
there are three independent geometrical parameters. These can be specified, for
example, as the three interatomic distances or by two distances and an angle. If the
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atoms are collinear then there will be only two independent variables. In either
case, the potential energy surface can again be explored, although substantially
more calculations will be required. To see this, suppose that n values of each
independent parameter are required in the search. It will be necessary to calculate
n2 energies for the linear system and n3 energies in the general case. If n takes
the value 10 – a reasonable number – then 100 and 1000 energy calculations will
be needed, respectively. The extension of this argument to larger systems shows
that to search a potential energy surface in this simplistic fashion for a system
with m geometrical parameters requires nm energy calculations – a prohibitively
large number except for small values of m and n.

One problem with the simplistic search scheme outlined above is that it is very
wasteful, in that most of the configurations for which the energy will be calculated
will not be chemically reasonable. Their energies will be too high, either because
some atoms will be much too close and overlap or because some atoms that
should be bonded together will be too far apart. Important configurations will be
those that have a low energy and so it is for these that we would like to look
in any search procedure that we adopt. To make this criterion more precise, we
normally search for points on the surface that are minima, i.e. points that have the
lowest energy on a particular part of a potential energy surface. A minimum is
characterized by the property that any small changes in the geometry of a system
that is at a minimum will lead to an increase in energy. Minima and the regions
of the potential energy surface around them correspond, roughly speaking, to the
stable states in which a system will normally be found.

Minima are an example of stationary points on a potential energy surface.
Stationary points are defined as points for which the first derivatives of the energy
with respect to the geometrical parameters are zero. For the special case in which
the Cartesian coordinates of the atoms are the geometrical parameters, we have
the condition

G = d�

dR
= 0 (7.1)

To distinguish between different types of stationary points, a second condition,
which uses the second derivatives of the energy with respect to the geometrical
parameters, is needed. The condition states that the stationary points of a potential
energy surface can be classified into different types depending upon the number
of negative eigenvalues that its second derivative matrix possesses. If there are
no negative eigenvalues then the point is a minimum, if there is one negative
eigenvalue then the point is a first-order saddle point (more usually shortened to
just saddle point) and if there are n negative eigenvalues the point is an nth-order
saddle point.
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As we have seen before, the eigenvalues of a matrix are determined by diag-
onalizing it. If H denotes the second-derivative matrix, the eigenvalue equation it
obeys is

Hei = �iei (7.2)

where �i is the ith eigenvalue and ei its associated eigenvector. If Cartesian
coordinates are used, the matrix H will have a dimension 3N × 3N , where N

is the number of atoms, and so there will be 3N eigenvalues and eigenvec-
tors. As the matrix H is symmetric, the eigenvalues are guaranteed to be real
(either negative or positive, but not complex) and the eigenvectors will form an
orthonormal set.

Physically, if a stationary point has a negative eigenvalue it means that a small
(or, to be exact, an infinitesimal) displacement of the geometry of the system along
the direction defined by the eigenvector corresponding to the negative eigenvalue
will lead to a reduction in the system’s energy. Equally, a small displacement
along the eigenvector of a positive eigenvalue will lead to an increase in energy.
Thus, a minimum has no negative eigenvalues and so all displacements increase
the energy, whereas for an nth-order saddle point there will be n displacements
that decrease the energy and 3N −n displacements that increase it. If an eigenvalue
has a value of zero then a small displacement along its eigenvector results in no
change in energy.

Minima are not the only stationary points on the surface that are of interest,
although they are probably the most important. We are also often interested
in searching for first-order saddle points. The reason for this is illustrated in
Figure 7.1, which shows a model potential energy surface. This surface has
three minima and two (first-order) saddle points. As stated above, each minimum
corresponds to a stable state of the system but, if there is a reaction or the system
undergoes a conformational change, the system will move from one stable state
and, hence, minimum to another. Looking at Figure 7.1 it can be seen that there
are many possible reaction paths that join different minima. Remembering that a
system will spend most of its time in low-energy regions of a surface, it is easily
seen that the paths with the lowest energy pass through the saddle points. In other
words, the first-order saddle point is the point of highest energy along the reaction
path of lowest energy that joins two minima. Thus, the location of saddle points is
important when studying reactions and transitions between different geometrical
configurations in molecular systems.

Now that we have a specific mathematical criterion for the identification of
points on the surface in which we are interested it is possible to formulate
algorithms to search for such points. In this chapter, we shall discuss a few of
these that all have the common property that they are local search algorithms.
That is they start at a given geometrical configuration of the system and then



7.2 Exploring potential energy surfaces 125

Fig. 7.1. A contour plot of the Müller–Brown two-parameter model potential
energy surface. The darker the shading the larger the function’s value. The
minima are located in the three regions of lightest shading and the approximate
positions of the two saddle points are indicated by asterisks.

look for a stationary point that is in the vicinity of this starting geometry. This
is a useful approach but it does have drawbacks because we may be interested
in finding the minimum, for example, which has the lowest energy on the entire
potential energy surface. The algorithms given here will not usually be useful in
this case and so-called global search algorithms will be required. We shall return
to this subject later.

To see that local search algorithms will not always be useful when searching
for the global minimum (or the near-global minimum) we can look at particular
classes of systems for which the number of minima either is known or can be
estimated. One such class that is widely used as a test case for optimization
algorithms is the Lennard-Jones clusters. These are groups of a given number
of identical atoms that interact solely via Lennard-Jones terms (Equation (5.10))
and that act as models of clusters of rare-gas atoms, such as argon. For small
numbers of atoms it is possible to enumerate or find all the minima. For larger
numbers of atoms it is necessary to estimate the number. The numbers of minima
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Table 7.1 Numbers of minima and the lowest energies of some Lennard-Jones clusters

Number of atoms Number of minima Lowest energy
(reduced units)

8 8 −19�822
9 18 −24�113
10 57 −28�420
11 145 −32�765
12 366 −37�967
13 988 −44�327
14 2 617 −47�845
15 6 923 −52�323
16 18 316 −56�816
17 48 458 −61�318
18 1�28×105 −66�531
19 3�39×105 −72�660

and the energies of the global minima for the clusters consisting of 8–19 atoms
are given in Table 7.1. The energies are reported in reduced units, which means
that they have been calculated assuming that the well depths and the atom radii
in the Lennard-Jones energy term both take the value of 1. It can be seen that
the number of minima for the system increases very rapidly with the number of
atoms. In fact the number of minima increases, to a reasonable approximation, as
the exponential of the number of atoms in the cluster, i.e. as exp�N�. This should
give some idea of the difficulty of finding the global minimum for a system such
as a protein, which consists of 1000 atoms or more!

7.3 Locating minima

The location of a minimum on a potential energy surface is an example of a well-
studied mathematical problem – that of the minimization of a multidimensional
function. There is a large number of standard methods available for performing
such a task, but the choice of the best method for a particular problem is determined
by such factors as the nature of the function to be minimized, whether and which
derivatives are available, and the number of variables.

A description of local optimization methods will not be undertaken here as the
details are rather lengthy and good expositions are available in texts on numerical
techniques. Instead, we classify optimization algorithms by the type of derivatives
that they use. We mention four types.
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(i) No derivatives. These algorithms make use of function (or, in our case, energy) values
only. An example of these algorithms would be the simplex method and the crude
search algorithm discussed in the last section.

(ii) First derivatives. These algorithms use the values of the energy and its first derivatives.
Examples include conjugate gradient and steepest descent methods.

(iii) First and exact second derivatives. These algorithms use energy values and the
first and second derivatives. Examples are the exact Newton and Newton–Raphson
methods.

(iv) First and approximate second derivatives. These algorithms use energy values and
the exact first derivatives of the energy. They also use approximations to the second-
derivative matrix, either to the full matrix or to the derivatives in a subspace of
the geometrical parameters. Methods of this type include the quasi-Newton, reduced
basis-set Newton and truncated Newton algorithms.

As a rule, the algorithms that use derivative information are more efficient at
finding minima. For this reason and because the derivatives of the energy are
readily calculated, methods that use derivatives are more commonly employed
for molecular problems. In most cases, it is likely that the exact Newton algo-
rithms would require the least number of energy and derivative evaluations,
but there are three factors that can limit the use of second-derivative methods.
These are:

(i) The second-derivative matrix uses a lot of storage space. For N atoms there are
3N�3N +1�/2 � O�N 2� elements, which is often too much space when there are more
than a few hundred atoms in the system. First-derivative methods require storage that
scales as O�N�.

(ii) Most algorithms that use second derivatives require that the eigenvalues and eigenvec-
tors of the matrix be found and, because the diagonalization of a matrix is an operation
that scales as O�N 3�, this becomes difficult or impossible when there is a large number
of atoms. The computational cost associated with handling the first-derivative vector
scales as only O�N�.

(iii) The second derivatives can be significantly more expensive to calculate than the
energy and first derivatives. This is true for QC methods and for MM methods that
contain non-pairwise additive terms, such as those employing polarization terms of
the type discussed in Section 5.2.2. By contrast, the cost of calculating the second
derivatives when using the simple, pairwise-additive MM potentials described in
Chapter 5 is comparable to and has the same scaling behaviour as that required for
the calculation of the energy and first derivatives.

To summarize, for systems with small numbers of atoms, exact or quasi-Newton
methods can be used and are likely to be the most efficient. The only methods
practicable for systems with large numbers of atoms are those that use the first
derivatives, such as conjugate gradient algorithms, or a reduced set of approximate
second derivatives.
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In this section we present a conjugate gradient approach for minimizing the
energy of the system. It is a good general-purpose algorithm that is appropri-
ate even for very large systems. The function implementing the algorithm is
ConjugateGradientMinimize_SystemGeometry and its definition is:

Function ConjugateGradientMinimize_SystemGeometry

Minimize the geometry of a system using a first-derivative conjugate gradient
algorithm.

Usage:

ConjugateGradientMinimize_SystemGeometry (
system,
logfrequency = 1,
maximumiterations = 50,
rmsgradienttolerance = 0.001 )

system is the system whose geometry is to be minimized.
logfrequency specifies the frequency at which information about the mini-

mization procedure is printed to the log file. A negative or zero value
means that no printing is done.

maximumiterations is the number of iterations of the conjugate gradient
algorithm to perform. All optimization algorithms are iterative, in that
they start with a given set of variables and then refine those variables
in successive steps. This argument defines the maximum number of
iterations or steps that are to be performed during the minimization.
If a minimum is found in fewer steps then the minimization will
exit, otherwise it will stop when maximumiterations have been
performed.

rmsgradienttolerance is the parameter that determines the convergence
criterion for termination of the minimization process. A large variety
of convergence criteria are in use but this one refers to a condition on
the value of the RMS gradient of the energy, GRMS, which is defined
as follows:

GRMS =
√
√
√
√

1
3N

N
∑

i=1

gT
i gi (7.3)

At a stationary point, of course, the gradient vector is zero. In actual
calculations the gradient vector will rarely, if ever, be able to attain
this value at the end of an optimization and so some finite value
for the RMS gradient is employed to indicate that a stationary point
has been reached. If the value of the RMS gradient falls below
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the value given by rmsgradienttolerance at any step then
the optimization is assumed to have converged and the algorithm
stops.

Remarks: The variables that are minimized in this function are the system’s
Cartesian coordinates in its coordinates3 attribute. When the
function exits, either because convergence has been achieved or the
number of iterations has been exhausted, this attribute will contain
the coordinates of the point with the lowest energy that was found
during the minimization procedure.

7.4 Example 10

To illustrate the use of the minimization function we present a program for the
optimization of the blocked alanine molecule, bALA:

1 """Example 10."""
2
3 from Definitions import *
4
5 # . Define the molecule and its QC model.
6 molecule = XYZFile_ToSystem ( \

os.path.join ( xyzpath, "bala_c7eq.xyz" ) )

7 molecule.DefineQCModel ( QCModelMNDO ( "am1" ) )
8 molecule.Summary ( )
9
10 # . Save a copy of the starting coordinates.
11 coordinates3 = Clone ( molecule.coordinates3 )
12
13 # . Determine the starting energy.
14 estart = molecule.Energy ( )
15
16 # . Optimization.
17 ConjugateGradientMinimize_SystemGeometry ( molecule, \

logfrequency = 100, \
maximumiterations = 2000, \
rmsgradienttolerance = 0.001 )

18
19 # . Determine the final energy.
20 estop = molecule.Energy ( )
21
22 # . Determine the RMS coordinate deviation between the structures.
23 masses = molecule.atoms.GetItemAttributes ( "mass" )
24 coordinates3.Superimpose ( molecule.coordinates3, \
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weights = masses )
25 rms = coordinates3.RMSDeviation ( molecule.coordinates3, \

weights = masses )
26
27 # . Print the results.
28 table = logfile.GetTable ( columns = [ 30, 30 ] )
29 table.Start ( )
30 table.Title ( "Minimization Results" )
31 table.Entry ( "Energy Change", alignment = "l" )
32 table.Entry ( "%20.4f" % ( estop - estart, ) )
33 table.Entry ( "RMS Coordinate Deviation", alignment = "l" )
34 table.Entry ( "%20.4f" % ( rms, ) )
35 table.Stop ( )

Lines 6–8 define the molecule and its energy model.
Line 11 creates a copy of the starting coordinates for later use by cloning the

coordinates3 attribute of molecule.
Line 14 calculates the energy of the molecule at the initial configuration.
Line 17 minimizes the geometry of the molecule using the conjugate gradient

method. A maximum of 2000 iterations is requested with details about
the minimization to be printed at 100-iteration intervals.

Line 20 determines the molecule’s energy at the final geometry.
Lines 23–25 calculate the mass-weighted RMS coordinate deviation between the

unoptimized and optimized structures. This provides a crude measure of
how much the structure has altered as a result of the minimization process.

Lines 28–35 print out the results of the calculation. In this case, the minimization
performs about 500 iterations before the convergence criterion on the
RMS gradient (10−3 kJ mol−1 Å−1) is satisfied, resulting in a total
reduction in energy between the two configurations of ∼40 kJ mol−1. The
RMS coordinate deviation between the two structures is about 0�1 Å.

7.5 Locating saddle points

Whereas algorithms for the location of minima have been the subject of intense
research by mathematicians, algorithms for the location of saddle points have
been studied much less widely. As a result, many of these algorithms have
been developed by chemists and other researchers directly interested in looking
at potential energy surfaces. The location of saddle points is usually a much
more demanding task than the location of minima. The main reason for this
is intuitive. When searching for a minimum one always wants to reduce the
value of the energy, so one can choose to go in any direction that gives this
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result. When looking for saddle points, however, one is trying to find a point
that is a maximum in one direction but a minimum in all the others and so the
algorithm has to perform a delicate balancing act between the two conflicting types
of search.

A wide range of saddle-point-location algorithms has been proposed. In this
section we shall discuss a mode-following algorithm developed by J. Baker, which
is widely used and appears to be one of the most efficient methods available.
It uses both first- and second-derivative information and so its application is
restricted to relatively small systems, although this is a limitation of most saddle-
point-location subroutines. In principle, whenever a stationary point has been
obtained by an algorithm for the location of minima or saddle points, the only
way to verify that the point is of the type required is to determine how many
negative eigenvalues there are in the second-derivative matrix. This is especially
desirable for saddle points due to the difficulties with saddle-point searches but
less so for minima because the algorithms for the location of minima are more
robust. When treating large systems for which the second-derivative matrix cannot
be diagonalized due to computational constraints it is generally assumed that the
stationary point obtained is a minimum. Saddle-point searches in these cases are
very difficult.

To understand the theory behind Baker’s algorithm we consider a point on the
potential energy surface of the system with coordinates R0. We then approximate
the energy, � , of neighbouring points on the surface using a Taylor series. If
the coordinates of the displaced point on the surface are R, where R = R0 +D

and D is a displacement vector, then the Taylor series to second order in the
displacements is

� �R� = � �R0�+GTD+ 1
2

DTHD+· · · (7.4)

where G is the vector of first derivatives and H is the matrix of second derivatives,
both of which are evaluated at the point R0. To find the displacement vector, D,
which minimizes the energy of this expression, we differentiate Equation (7.4)
with respect to D to obtain d�/dD, set the result to zero and solve to get

D = −H−1G (7.5)

This is the Newton–Raphson (NR) step. The inverse of H can be written in terms
of the eigenvalues and eigenvectors of H, in which case Equation (7.5) becomes

D = −∑
i

eT
i G

�i

ei (7.6)
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The NR step is structured so that it will minimize along the eigenvectors
or modes with positive eigenvalues and maximize along modes with negative
eigenvalues. Thus, it will tend to optimize to structures that have the same number
of negative eigenvalues or curvature as the original structure. If the starting
structure is of the correct curvature, the NR step is a good one to take, but, in
the general case, the NR step must be modified so that structures with the desired
curvature can be obtained.

The required modification, developed by C. Cerjan and W. Miller and by
J. Simons and his co-workers, is a simple one and involves altering the denom-
inator of Equation (7.6) by adding parameters, �i, which shift the values of the
eigenvalues:

D = −∑
i

eT
i G

�i −�i

ei (7.7)

Normally, only two different shift parameters are used – one for the modes along
which a minimization is to be done and another along which there is to be a
maximization. In the special case of searching for a minimum, only the first of
these will be required. There are several prescriptions for choosing the values of
the shift parameters, which need not concern us here. The important point is that,
with an appropriate choice, it is possible to force a search along a particular mode
opposite to that in which it would normally go. For example, when searching
for a minimum the shift parameter would be negative and have a value less
than that of the smallest eigenvalue. This would ensure that the denominators
in Equation (7.7) are always positive and so a minimization occurs along all
the modes. When the optimization reaches a region of the correct curvature the
value of the shift parameter can be reduced. For a saddle-point search there
will be one mode along which there is a maximization and for which the shift
parameter will be such that the denominator for that mode in Equation (7.7)
will be negative. This means that it is possible to start at a minimum on the
potential energy surface and ‘walk’ up one of the modes until a saddle point is
reached.

The definition of the function that implements Baker’s algorithm in pDynamo
is as follows.

Function BakerOptimize_SystemGeometry

Optimize the geometry of a system using Baker’s algorithm.
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Usage:

BakerOptimize_SystemGeometry (
system,
followmode = 1,
logfrequency = 1,
maximumiterations = 50,
QMINIMIZE = False,
rmsgradienttolerance = 0.001 )

system is the system whose geometry is to be optimized.
followmode is an integer that specifies, for a saddle-point search, the mode

along which the maximization is to be performed. If no value
is given then the mode chosen is automatically the one with the
lowest eigenvalue. The mode-following option is most useful
when starting out from a minimum. In that case all the eigenval-
ues are positive. Often it turns out that walking up the ‘softest’
mode (the lowest eigenvalue mode) will lead to a saddle point.
This is not always true and so it is sometimes useful to search
in other directions.

QMINIMIZE is a Boolean argument that specifies whether a minimum or a
saddle point is to be searched for. The default is a saddle-point
search.

Remarks: The remaining arguments have the same behaviour as those of
ConjugateGradientMinimize_SystemGeometry in
Section 7.3.

There are two technical points that can be made about the implementation of
the algorithm. First of all, the full second-derivative matrix is required at each
iteration. In principle, this could be calculated afresh each time it is needed but
it is wasteful for QC energy models for which the evaluation of the second
derivatives is expensive. Instead, the matrix is calculated once at the begin-
ning of the calculation and then updated using the values of the gradient vector
calculated at the current point. Although the updated matrix is only an approx-
imation to the true second-derivative matrix, it is usually sufficiently accurate
to allow a saddle point to be found and results in a much faster algorithm.
In the case of molecular mechanics energy functions, it is the time required
for the diagonalization of the second-derivative matrix that limits the applica-
tion of the method, not the time required for the calculation of the second
derivatives, and so evaluation of the second-derivative matrix at each step is
feasible.

The second technical point concerns the use of Cartesian coordinates. From the
arguments at the beginning of the chapter it will be remembered that one parameter
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completely defines the geometry for a two-atom system, three parameters for a
three-atom system and so on but, for a two-atom system, there are six Cartesian
coordinates and for a three-atom system there are nine. This means that the
set of Cartesian coordinates contains too many variables and is redundant. The
redundancies, in fact, are related to the overall translational and rotational motions
which the entire system can undergo. For first-derivative algorithms these motions
are unimportant. For algorithms that use second derivatives it is necessary to
modify the second-derivative matrix so that they are removed. This is done by
pDynamo’s Baker algorithm but a more detailed discussion of this point will be
left to the next chapter.

7.6 Example 11

To illustrate the Baker algorithm we choose to study the molecule cyclohexane,
which undergoes a well-known transition between different conformational forms.
In this example we start with the chair form of the molecule and look for a saddle
point that leads to another conformer.

The program is very similar to that of Example 10 in Section 7.4 and is

1 """Example 11."""
2
3 from Definitions import *
4
5 # . Define the molecule and its QC model.
6 molecule = XYZFile_ToSystem ( \

os.path.join ( xyzpath, "cyclohexane_chair.xyz" ) )

7 molecule.DefineQCModel ( QCModelMNDO ( "am1" ) )
8 molecule.Summary ( )
9
10 # . Determine the starting energy.
11 estart = molecule.Energy ( )
12
13 # . Optimization.
14 BakerSaddleOptimize_SystemGeometry ( molecule, \

logfrequency = 100, \
maximumiterations = 2000, \
rmsgradienttolerance = 0.001 )

15
16 # . Determine the final energy.
17 estop = molecule.Energy ( )
18
19 # . Print the energy change.
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20 logfile.Paragraph ( "Energy change after search = %20.4f\n" % \
( estop - estart, ) )

21
22 # . Save the coordinates.
23 molecule.label = "Cyclohexane saddle conformation."
24 XYZFile_FromSystem ( os.path.join ( scratchpath, \

"cyclohexane_saddle.xyz" ), molecule )

Lines 6–8 define the molecule and its energy model. The coordinates in the XYZ
file correspond to the chair conformation of cyclohexane.

Line 11 calculates the energy of the molecule at the initial configuration.
Line 14 searches for a saddle point using the Baker algorithm by following the

mode with the lowest eigenvalue.
Line 17 determines the energy of the molecule at the final configuration.
Line 20 prints out the energy difference between the chair and saddle point con-

formations. The algorithm finds a saddle point and requires about 40
steps to reach convergence. The structures of the chair conformer and the
saddle point found in the search are shown in Figure 7.2 together with
those of the boat and twist-boat conformers of cyclohexane.

Lines 23–24 save the optimized coordinates of the saddle point in XYZ format.
The name of the directory used for storing the file is in scratchpath
which is where all files written by the examples in this book are put.

Chair Boat

Twist-Boat Saddle

Fig. 7.2. The structures of the chair, boat and twist-boat conformers of cyclo-
hexane and the saddle-point structure found in Example 11.
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7.7 Following reaction paths

A reaction, which can involve either the breaking and forming of bonds or a
change in the conformation of a molecule, may be defined in terms of the minima
on the potential energy surface and the saddle points that lie between them.
The minima comprise the reactant and product configurations and any stable
intermediate states. In principle, knowledge of the minima and saddle points is
sufficient to give a detailed picture of the mechanism of the transition. In practice,
though, it is often useful to be able to generate points intermediate between the
minima and saddle points so that the geometrical and other changes occurring
during the transition can be analysed in greater detail.

Although the stationary points on the potential energy surface have a unique
definition, there is no single definition of a reaction path. It is not even necessary,
as we shall see later, to define it so that it goes through the minima and saddle
points that correspond to the transition being studied. The definition that we shall
adopt in this section is that of the steepest descent reaction path (SDRP), which
is probably the one in most common use, at least for the study of reactions in
systems with small numbers of atoms. K. Fukui was one of the earliest proponents
of this definition, although he called it the intrinsic reaction coordinate (IRC).

The SDRP is usually defined in terms of mass-weighted Cartesian coordinates,
although unweighted coordinates can also be used. If r i is the coordinate vector
of atom i and mi its mass, the mass-weighted coordinate, qi, is

qi = √
mir i (7.8)

The mass-weighted gradient of the energy for an atom, � i, is defined in a similar
way in terms of the unweighted gradient, gi:

� i = gi√
mi

(7.9)

It is normal to introduce a parameter, s, that denotes the distance along the reaction
path. If we do this the coordinates of the atoms in the structures along the path
are also functions of s and the SDRP can be formally described by the differential
equation

dqi�s�

ds
= ± � i

√
∑N

i=1 �2
i

(7.10)

where the plus sign refers to a path going up from a minimum and the minus sign
to one descending from a saddle point. Mathematically what this equation means
is that the reaction path at any point follows the direction of the mass-weighted
gradient, which is equivalent to the direction of steepest descent.
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Practically, the easiest way to generate structures on a reaction path and the
one that will be used here, is to start at a saddle point and to take a series of
finite steps in the direction of descent. If the current structure that has just been
generated is denoted by the index �, the coordinates of the next structure are
calculated from

q�+1
i = q�

i −
⎛

⎜
⎝

��
i

√
∑N

i=1 ���
i �2

⎞

⎟
⎠�s (7.11)

where �s is a small step to be taken down the path. This algorithm works
reasonably well if the step size is small. Even with small step sizes, though, the
path generated will have a tendency to oscillate about the true path and it will not
end up exactly at the minimum, although it should terminate in its vicinity. Other
more sophisticated algorithms have been developed to generate smoother reaction
paths. These often start off with a step similar to that given in Equation (7.11)
but then try to refine the point using line-search or constrained minimization
techniques. We do not present an implementation of one of these techniques here,
although an alternative method for calculating smooth reaction paths is described
at the end of the chapter.

The only problem with the definition of the path in Equation (7.10) is that
it does not hold at a stationary point. At these points the gradient is zero and
the denominator on the right-hand side of the equation is undefined. Therefore,
when starting at a saddle point, a different type of starting step must be cho-
sen. This is done by calculating the eigenvector of the (mass-weighted) second-
derivative matrix at the saddle point that corresponds to the mode with the
negative frequency. This mode produces a reduction in energy of the system and
so points downhill when the system is displaced along it away from the stationary
point. Thus, the step taken from a saddle point is the one that goes along this
mode (in either the plus or the minus direction because there are two downhill
directions).

The algorithm described above has been implemented as the function
SteepestDescentPath_SystemGeometry. It has the following definition:

Function SteepestDescentPath_SystemGeometry

Generate a reaction path for a system.

SteepestDescentPath_SystemGeometry (
system,
functionstep = 2.0,
logfrequency = 1,
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Usage: maximumiterations = 50,
pathstep = 0.025,
QMASSWEIGHTING = False,
savefrequency = 0,
trajectory = trajectory)

system is the system for whose geometry a reaction path is to be calculated.
functionstep is the parameter which determines the size of the initial

step away from the saddle point. It specifies the approximate
reduction in energy required as a result of the step and is
calculated using the formula

√−2 	E/�−, where 	E is the
value of functionstep and �− is the value of the negative
eigenvalue.

pathstep is the value of �s to be taken for the steepest-descent steps. The
units are

√
a�m�u� Å if mass-weighting is used and Å otherwise.

QMASSWEIGHTING is a Boolean argument indicating whether mass-weighted
coordinates are to be used.

savefrequency specifies the frequency with which to write out calculated
structures to an external file for subsequent analysis. If the fre-
quency is less than unity or greater than maximumiterations
no structures are written out. When structures are saved the
initial structure for the steepest descent procedure is also
saved.

trajectory is a trajectory object to which the structures are to be saved.
We shall encounter trajectories many times in this book but fuller
discussions will be postponed to Section 7.9 and to Chapter 9 when
we consider how to analyse trajectory data.

Remarks: The remaining arguments have the same behaviour as those in
ConjugateGradientMinimize_SystemGeometry.

The function generates a sequence of structures using Equation (7.11).
It automatically checks whether the input configuration is a saddle point
and, if so, the path is generated in both directions. If not, a single-sided
path is generated by following the gradient vector down from the starting
point.

A final point can be made about the use of this algorithm. Having found a
saddle-point structure (using the algorithm of the previous section, for exam-
ple) it is not uncommon not to know to which minima it leads (either one or
both)! In this case, the reaction-path-following algorithm can be used to identify
them.
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7.8 Example 12

In this section we illustrate the use of the reaction-path-following algorithm by
tracing out the path from the saddle point for cyclohexane calculated in the
previous example. The program is:

1 """Example 12."""
2
3 from Definitions import *
4
5 # . Define the molecule and its QC model.
6 molecule = XYZFile_ToSystem ( \

os.path.join ( scratchpath, "cyclohexane_saddle.xyz" ) )
7 molecule.DefineQCModel ( QCModelMNDO ( "am1" ) )
8 molecule.Summary ( )
9
10 # . Calculate an energy.
11 molecule.Energy ( )
12
13 # . Create an output trajectory.
14 trajectory = SystemGeometryTrajectory ( \

os.path.join ( scratchpath, "cyclohexane_sdpath.trj" ), \
molecule, mode = "w" )

15
16 # . Optimization.
17 SteepestDescentPath_SystemGeometry ( molecule, \

functionstep = 2.0, \
logfrequency = 10, \
maximumiterations = 400, \
pathstep = 0.025, \
QMASSWEIGHTING = True, \
savefrequency = 10, \
trajectory = trajectory )

18

Lines 6–11 define the molecule and its energy model and calculate its energy at
the saddle point.

Line 14 defines an instance of the SystemGeometryTrajectory class which
will be used to store the reaction path structures. We shall introduce this
class in the next section.

Line 17 generates the reaction path. It is calculated with 400 structures at sep-
arations of 0.025

√
a�m�u� Å and the initial step is such that there will

be a drop in energy of approximately 2 kJ mol−1 on displacement from
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the saddle point. The details about the path points are printed every ten
steps and structures are written to the trajectory every tenth step, giving
41 structures to be written out in all.

The path generated by this example leads to the chair form of cyclohexane in
one direction and to the twist-boat form in the other direction. Four hundred steps
suffice to bring the path down into regions of the potential energy surface that
correspond to the two different conformers, although the structures generated are
relatively far from the exact ones and the path tends to meander around them. The
parameters employed here give reasonable results for cyclohexane but for other
systems it is advisable to try other values to see which produce the best paths.

7.9 Determining complete reaction paths

In Section 7.7 we saw how to calculate reaction paths when a saddle-point structure
was available. However, as indicated in Section 7.5, the calculation of saddle-point
structures, using methods that require second derivatives, is much more difficult
for large systems and alternative approaches for determining reaction paths are
needed. The development of algorithms for such calculations is an area of active
research and a range of competing methods have been proposed. We shall discuss
one of the earlier, and one of the more elegant, methods of this type which was
developed by R. Elber and co-workers in the early 1990s. It may no longer be the
most efficient algorithm that exists but it illustrates well the principles involved
in this general class of methods.

A different approach from that of the algorithms discussed in the previous
sections of this chapter is taken. Instead of locating saddle points, the method
attempts to generate a discretized version of the reaction path that consists of a
sequence of intermediate structures lying between reactants and products. It does
this by first generating a chain of structures to represent the path and then refining
the chain by minimizing an object function, � , with respect to the coordinates
of all the chain structures simultaneously. Clearly the form of the object function
is the crux of the algorithm because it must be designed so that the structures
that result from its minimization lie on the required reaction path. Elber and
co-workers chose a function consisting of two terms, one a sum of the potential
energies of the chain structures, and the other a set of constraint conditions that
limit how the structures are arranged with respect to each other. The form is

� =
M
∑

I=1

�I +�
M
∑

I=0

�dI
I+1 −�d��2 + �

�

M−1
∑

I=0

exp

[

−�

(
dI
I+2

�d�
)2
]

(7.12)

where �I is the energy of the Ith structure, dI
J is the distance between two
structures I and J , �d� is the average distance between neighbouring structures



7.9 Determining complete reaction paths 141

and �, � and � are constants. The number of structures in the chain is M +2. The
reactant’s structure is labelled 0, the product’s structure M +1 and the intermediate
structures by values ranging from 1 to M . The distances between structures are
defined as

dI
J = �RI −RJ � (7.13)

where RI is the 3N -dimensional vector containing the coordinates of the atoms
of structure I . The average distance between neighbouring structures is

�d� = 1
M +1

M
∑

I=0

dI
I+1 (7.14)

If the system contains N atoms, the object function, � , is a function of 3NM

variables (note that the coordinates of the reactant and product structures are not
optimized). The first constraint term in the function (the � term) is a term that
keeps adjacent structures roughly the same distance apart. The second term (the �

term) keeps structures separated by one other structure. This avoids the problem of
having the chain collapse or fold back on itself during the optimization procedure.
Once the object function has been defined, the algorithm works by minimizing
the function with respect to all the atomic coordinates, using a standard technique,
until the convergence criteria have been satisfied.

There is one extra complication, which arises due to the fact that we are using
Cartesian coordinates to define the atom positions in each structure. We discussed
the same problem at the end of Section 7.5 and it concerns the translational
and rotational degrees of freedom of the structures. Once the structures in the
chain to be minimized have been defined it is normal to reorient each of them
with respect to a reference structure so that the distances, dI
J , between the
structures are minimized. The quaternion technique discussed in Section 3.6 is
appropriate for the reorientation because minimization of the distance between
structures is equivalent to minimization of their RMS coordinate deviation. During
the subsequent optimization, the structures must not be allowed to rotate or to
translate with respect to each other so that the calculation of the distances between
structures using Equation (7.13) remains valid. A full discussion of this point and
the way in which it is treated will be left until the next chapter.

The above algorithm was called the self-avoiding walk (SAW) method
by Elber and co-workers and so it has been implemented as a function
SAWOptimize_SystemGeometry with the following definition:

Function SAWOptimize_SystemGeometry

Generate a reaction path for a system using a self-avoiding walk optimization.
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Usage:

SAWOptimize_SystemGeometry (
system,
trajectory,
gamma = 100.0,
kappa = 2.0,
rho = 5000.0,
logfrequency = 1,
maximumiterations = 50,
rmsgradienttolerance = 0.001 )

system is the system for which a reaction path is to be calculated.
trajectory is a trajectory object that contains the structures along the path

that are to be optimized. The structures in the trajectory will
change as the optimization proceeds.

gamma, kappa, rho are the parameters that enter into the expression for the
SAW object function (Equation (7.12)).

Remarks: The remaining arguments have the same behaviour as those in
ConjugateGradientMinimize_SystemGeometry. In
fact, the implementation of the chain optimization uses exactly
the same conjugate-gradient-minimization procedure.

Trajectories are required by many algorithms in this book, including the SAW
algorithm and the reaction path methods of Section 7.7. Various types of trajectory
exist, depending upon the data that are to be stored on them, but we shall mostly
use the one that stores a system’s coordinates and other geometrical information.
This is implemented by the SystemGeometryTrajectory class which has
the following definition:

Class SystemGeometryTrajectory

A class to handle trajectories that contain the geometrical data for a system.

Constructor

Construct an instance of SystemGeometryTrajectory from a filename.

Usage:

new = SystemGeometryTrajectory (
filename,
system,
mode = None )

filename is the name of the file that will contain the trajectory.
system is the instance of System that is to be associated with the trajectory.
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mode specifies how the trajectory or, more specifically, the file containing
the trajectory is to be accessed. This argument can take several pos-
sible values but we shall meet two, "r" and "w". The former applies
to trajectories that already exist as it means ‘read’. It implies that a
trajectory can be read, but should not be written to. By contrast, the
latter means ‘write’ and implies that the trajectory can be written to,
whether it already exists or not. If the argument mode is absent, the
default is to choose the value "r" for trajectories that already exist
and the value "w" for those that do not.

new is the new instance of SystemGeometryTrajectory. It will be
empty.

Constructor LinearlyInterpolate

Construct an instance of SystemGeometryTrajectory by linearly inter-
polating between two end-point structures.

Usage:
new = SystemGeometryTrajectory.LinearlyInterpolate (

filename, system, nframes,
startframe, stopframe )

filename is the name of the file that will contain the trajectory.
system is the system for which the trajectory is to be written.
nframes is the number of frames or structures to be put on the trajectory.

This number must be at least three as the starting and stopping
structures are automatically stored on the trajectory, leaving one
structure to be determined by linear interpolation.

startframe is the first frame to be put on the trajectory. It must be an instance
of the class Coordinates3.

stopframe is the last frame to be put on the trajectory. It must be an instance
of the class Coordinates3.

new is the new instance of SystemGeometryTrajectory which
will contain nframes structures.

Remarks: The determination of the structures to be put on the trajectory is
accomplished by first orienting the stopframe structure onto
the startframe structure and then using linear interpolation
to obtain the intermediate structures. Employing the notation of
the beginning of this section, the coordinates of the Ith structure
would be constructed as

RI = R0 + I

M +1

(

RM+1 −R0

)

(7.15)
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After construction, all the structures, including startframe
and stopframe, are written to the trajectory file.

This method is an example of a class method in Python
because it is invoked using the name of the class instead of
the name of the instance of the class. The method is clas-
sified as a constructor because it returns a new instance of
SystemGeometryTrajectory.

Method LinearlyExpand

Expand a trajectory by inserting linearly interpolated structures between existing
structures.

Usage: trajectory.LinearlyExpand ( ninsert )
ninsert is the number of structures to insert between each existing

structure in the trajectory. If there are M + 2 structures in the
existing chain and ninsert takes the value n, there will be
M + 2 + n�M + 1� structures after expansion. The coordinates
of the inserted structures are calculated by linearly interpolating
between the coordinates of adjacent pairs of structures using a
formula similar to that of Equation (7.15).

trajectory is the instance of SystemGeometryTrajectory that is to
be expanded.

7.10 Example 13

We test the self-avoiding walk algorithm by applying it to the calculation of the
reaction path for the transition between the chair and the twist-boat conformations
of cyclohexane. Although the algorithm was designed for use on large systems it
is equally applicable, as we shall see, to small systems.

The program is:

1 """Example 13."""
2
3 from Definitions import *
4
5 # . Define the molecule and its QC model.
6 molecule = XYZFile_ToSystem ( \

os.path.join ( xyzpath, "cyclohexane_chair.xyz" ) )

7 molecule.DefineQCModel ( QCModelMNDO ( "am1" ) )



7.10 Example 13 145

8 molecule.Summary ( )
9
10 # . Assign the reactant and product coordinates.
11 reactants = Clone ( molecule.coordinates3 )
12 products = XYZFile_ToCoordinates3 ( \

os.path.join ( xyzpath, "cyclohexane_twistboat.xyz" ) )
13
14 # . Create a starting trajectory.
15 trajectory = SystemGeometryTrajectory.LinearlyInterpolate ( \

os.path.join ( scratchpath, "cyclohexane_sawpath.trj" ), \
molecule, 11, reactants, products )

16
17 # . Optimization.
18 SAWOptimize_SystemGeometry ( molecule, \

trajectory, \
gamma = 1000.0, \
maximumiterations = 200 )

Lines 6–8 define the molecule and its energy model.
Line 11 creates a clone of the coordinates3 attribute of molecule. This

contains the chair conformation of cyclohexane and will be taken as the
starting structure of the SAW path.
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Fig. 7.3. A plot of the energies of the structures along the transition pathway
between the chair and twist-boat forms of the cyclohexane molecule calculated
using the SAW algorithm.
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Line 12 reads in the coordinates of the twist-boat form of cyclohexane which will
be used as the final structure of the SAW path.

Line 15 creates a trajectory containing 11 structures that are linearly interpolated
between cyclohexane’s chair and twist-boat conformations. The structures
on the trajectory will serve as the starting point for the SAW optimization.

Line 18 generates a SAW path. The results are plotted in Figure 7.3, which
shows the energies of the structures along the path. The seventh structure
in the chain is within about 0.1 kJ mol−1 of the saddle-point structure
optimized in Example 11. The convergence criteria for the optimization
were satisfied after about 90 cycles, i.e. after 9×90 energy and derivative
calculations, which is approximately twice as many as the number required
by the path-tracing algorithm of Section 7.8.

Exercises

7.1 The blocked alanine molecule has a number of different minimum energy
structures. Try to find some of these minima using the starting coordinate
files that are provided. Use various minimization algorithms and, in all cases,
a reasonably stringent criterion on the value of the RMS gradient tolerance
(say a value of, at least, 10−3 kJ mol−1 Å−1). Once some minima have been
located, find the pathways that connect them, either by searching for saddle
points and then using the reaction-path-tracing algorithm or by using the
SAW method directly between two minima. Finally, construct a schematic
potential energy surface for the molecule, illustrating the various minima, the
saddle points and the reaction paths connecting them. How does the repre-
sentation of the molecule’s potential energy surface change with the energy
model?

7.2 Another way of investigating the structure of bALA’s potential energy surface
is to optimize the molecule’s structure with its  and � dihedral angles fixed
at particular values. Devise a program that does this by constraining  and
� during an optimization with a set of soft-constraint energy terms. Terms
of the appropriate type were described in Section 5.6. Ensure that enough
optimizations are performed so that the full range of both angles (−180 to
180�) is explored. Plot the resulting optimized energies as a function of the
angles using a contour plot similar to that of Figure 7.1. How does this surface
compare with the one that was obtained in the previous example?

7.3 Using the Baker algorithm, search for a saddle-point structure starting from
the twist-boat form of cyclohexane. Is this saddle point the same as that
obtained when starting from the chair form of cyclohexane? If not, to which
reaction path does it correspond? Try to follow different modes, other than
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the lowest one, to see the different structures that are produced. Also try to
characterize more fully the boat and twist-boat conformers of the molecule
and the reaction paths that lead between them. Are the boat and twist-boat
forms both minima on the potential energy surface?
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Normal mode analysis

8.1 Introduction

A characterization of stationary points on a system’s potential energy surface
provides structural and energetic information about its stable states and about
possible pathways for transitions between them. But can we get more? In par-
ticular, can we use our knowledge about these local regions to obtain dynamical
and thermodynamic information about the system? The most accurate way to do
this is to use methods such as molecular dynamics and Monte Carlo simulations,
which will be covered in later chapters. However, there is a useful intermediate
technique, normal mode analysis, which we shall now discuss, which can give an
idea about the dynamics of a system in the neighbourhood of a stationary point.
We shall also see how this information, together with other data, can be used to
estimate various thermodynamic quantities.

8.2 Calculation of the normal modes

We have already met some of the concepts that underlie normal mode analysis.
The method relies on being able to write an expansion of the potential energy
of a system about any configuration in terms of a Taylor series. If R0 is the
coordinate vector of a reference structure and R = R0 +D is the coordinate vector
of a structure displaced by a small amount, D, the Taylor series, up to terms of
second order, is

� �R� = � �R0�+GTD+ 1
2

DTHD+· · · (8.1)

where the first-derivative vector of the energy, G, and the second-derivative
matrix, H, are determined at the reference structure, R0.
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By definition, the gradient vector is zero at a stationary point. If the reference
structure, R0, is taken to be a stationary point, Equation (8.1) can be simplified.
Neglecting terms after second order gives

�� �D� = � �R�−� �R0� = 1
2

DTHD (8.2)

This equation says that the change in energy on displacement from a stationary
point is a quadratic function of the displacement. This is called the harmonic
approximation and is valid when the displacements involved are small and the
terms of higher order in D can be ignored. If these terms are not small then
anharmonic theories that include them are needed.

The important point about the expression for the change in energy in Equa-
tion (8.2) is that we can solve analytically for the dynamics of a system subject to
such a potential. Both classical and quantum mechanical solutions are possible,
although we shall restrict ourselves to a classical description. In this case, we can
use Newton’s laws to describe the motion of the atoms in the system. For each
atom we have an equation of the form

f i = miai (8.3)

where f i is the force on the atom, mi is its mass and ai is its acceleration. The
force on an atom is defined as the negative of the first derivative of the potential
energy with respect to the position vector of the atom:

f i = − ��

�r i

= −gi (8.4)

whereas the acceleration is the second time derivative of the atom’s position
vector:

ai = d2r i

dt2
= r̈ i (8.5)

Equation (8.3) can be rewritten for the full system as

F = MA (8.6)

where F and A are the 3N -dimensional vectors of forces and accelerations for
the atoms in the system and M is a 3N× 3N diagonal matrix that contains the
masses of the atoms and is of the form

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

m1 0 0 0 · · · 0
0 m1 0 0 · · · 0
0 0 m1 0 · · · 0
0 0 0 m2 · · · 0
���

���
���

���
���

���

0 0 0 0 · · · mN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(8.7)
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Let us apply these equations to the case in which the potential energy of the
system is given by Equation (8.2). First we note that the vector representing
the configuration of the system, R, can be replaced by the displacement vector,
D, because R0 is a reference structure and so is constant. The forces on the
atoms in the system are thus obtained by differentiating the energy expression of
Equation (8.2) with respect to the displacement for that atom, giving

M
d2D

dt2
= −HD (8.8)

This equation is a second-order differential equation that can be solved exactly.
The solutions are of the form

D = � cos��t +�� (8.9)

where the vector � and the scalars � and � are to be determined. After substitution
of this expression into Equation (8.8) and cancelling out of the cosine factors, the
equation becomes

H� = �2M� (8.10)

It is normal to rewrite this equation by using mass-weighted Cartesian coordinates
so that the dependence on the mass matrix, M, is removed from the right-hand side.
This can be done by introducing the inverse square root of the mass matrix, M− 1

2 ,
which is equal to the diagonal matrix of the inverse square roots of the atomic
masses. With this matrix, after some rearrangement, Equation (8.10) becomes

�M− 1
2 HM− 1

2 ��M
1
2�� = �2�M

1
2�� (8.11)

or

H′�′ = 	�′ (8.12)

where

H′ = M− 1
2 HM− 1

2 (8.13)

�′ = M
1
2� (8.14)

	 = �2 (8.15)

Equation (8.12) is a secular equation for the mass-weighted second-derivative
matrix and can be solved to obtain the eigenvalues, 	, and the eigenvectors, �′.
Because the matrix has dimensions 3N×3N there will be 3N different solutions,
each of which represents an independent displacement that the system can make.
These displacements are called the normal modes. Associated with each mode is
a frequency that is the square root of the mode’s eigenvalue. As stated before, the
eigenvalues of a symmetric matrix are all real, so the frequencies associated with
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each mode can be real (for a positive eigenvalue) or imaginary (for a negative
eigenvalue). The motion produced by each mode with a positive eigenvalue is a
simple oscillation at a characteristic frequency.

Because the normal modes are independent, the most general solution for the
displacement vector, D, is a linear combination of all the modes:

D = M− 1
2

3N
∑

k=1


k�
′
k cos��kt +�k� (8.16)

where the 
k are linear expansion coefficients and the �k are arbitrary phases.
Both of these sets of parameters are determined by imposing additional constraints
on the solution, such as specifying initial conditions for the motion of the atoms.

The expression for the potential energy can be rewritten in terms of the normal
mode vectors by substituting the expression for the displacement, Equation (8.16),
into Equation (8.2). Remembering the fact that the various eigenvectors are
orthonormal gives

�� = 1
2

3N
∑

k=1


2
k�

2
k cos2��kt +�k� (8.17)

The analysis above is important because it provides detailed information about
the dynamics of a system around a stationary point. For minima, it is often true
that the frequencies of motion, �k, can be obtained experimentally, most notably
by using vibrational infrared spectroscopy, so a direct link between experiment
and theory can be made.

The harmonic normal mode analysis discussed above is an important tool
but there are other related techniques that are sometimes used, especially when
analysing spectroscopic data. For example, in some cases the harmonic analysis
outlined above is not sufficiently precise and so extra third- and fourth-order
terms are included in Equation (8.2). These terms are obviously more onerous to
calculate insofar as they involve the third and fourth derivatives of the energy with
respect to the atomic positions. There are also other derivatives that it is possible
to relate to experimental data. One of the simpler of these is the derivatives of
the dipole moment whose squares are related to the infrared intensities of the
vibrational motions of a molecule. The intensities for each vibrational mode are
proportional to the square of the dipole derivative vectors projected onto the
normal mode vectors. Writing the intensity of the kth mode as �k, we have

�k ∝ ∑


=x�y�z

(

�T
k

��


�R

)2

(8.18)
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Two functions have been provided in pDynamo for carrying out a normal mode
analysis of a system. One performs the analysis and the other allows inspection
of the calculated frequencies and normal mode vectors. Their definitions are:

Function NormalModes_SystemGeometry

Perform a normal mode analysis for a system.

Usage:
NormalModes_SystemGeometry ( system,

log = logfile,
modify = None )

system is the system for which a normal mode analysis is to be performed.
log is the log file to which output is to occur. By default, some infor-

mation about the normal mode analysis, including the calculated
frequencies, is printed.

modify is an optional string argument that specifies various modifications
that can be performed on the second-derivative matrix before the
normal mode analysis is carried out. These options are explained in
more detail at the end of the following section.

Remarks: This function first calculates the second-derivative matrix and then
performs the normal mode analysis. The second-derivative matrix,
the frequencies and the normal mode vectors are stored in system
for subsequent analysis but they are kept only as long as the geometry
of the system remains unchanged.

Function NormalModesPrint_SystemGeometry

Print the normal mode frequencies and vectors for a system.

Usage:

NormalModesPrint_SystemGeometry ( system,
log = logfile,
modes = None,
selection = None )

system is the system for which a normal mode analysis has recently been
performed.

log is the log file to which output is to occur.
modes specifies the indices of the modes that are to be printed. All

modes are printed if the argument is absent.
selection gives the indices of the atoms for which the elements of the

normal mode vectors are to be printed. The vector elements for
all atoms are printed by default.
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Remarks: The arguments modes and selection are usually instances of
the class Selection.

8.3 Rotational and translational modes

We have already mentioned several times that the set of Cartesian coordinates
is redundant. This is because, in general, only 3N−6 parameters are needed to
determine completely the geometry of a molecule with N atoms, but there are
3N Cartesian coordinates. The difference between the two representations is that
the Cartesian set has six extra degrees of freedom that define the position and the
orientation of the system in space.

For a system in vacuum, which category comprises all those we have looked
at so far, the position and orientation of the system are unimportant because its
potential energy and other properties will be invariant with respect to rotations
and translations applied to the system as a whole. If, however, there is a preferred
direction in space, due to the presence of an external field (such as an electric
field) or some other environment, the system’s absolute position and orientation
in space will be important and its properties will no longer be invariant with
respect to rotations and translations.

In those cases in which the absolute position and orientation of a system are
not of interest, it is possible to remove the redundancy inherent to the Cartesian
description by defining six constraint conditions that are functions of the coord-
inates and reduce the number of degrees of freedom available to the system to
3N −6. There are several forms for the constraints but the most commonly used is
the Eckart conditions which relate the coordinates of the atoms in a system, r i, to
their values in a reference structure, r0

i . The Eckart condition on the translational
motion is

N
∑

i=1

mi�r i − r0
i � = 0 (8.19)

and that on the rotational motion is

N
∑

i=1

mir i ∧ �r0
i − r i� =

N
∑

i=1

mir i ∧ r0
i = 0 (8.20)

These constraints are derived by considering the dynamics of the atoms in the
system when they are displaced away from their positions in the reference struc-
ture. First a Hamiltonian that describes the dynamics is defined and then it is
manipulated so that the motions due to the rotations and translations of the entire
system are separated out from those due to its internal vibrations. It turns out that
it is possible to separate off completely the translational motion if the condition
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of Equation (8.19) is satisfied. The rotational and vibrational motions, however,
cannot be completely separated but their coupling can be reduced by requiring
that Equation (8.20) holds.

The derivation described above is a general one in that the overall rotational and
translational motions of one structure with respect to another can be constrained
if Equations (8.19) and (8.20) are obeyed. We came across such an example
when discussing the self-avoiding walk algorithm for calculating reaction paths
in Section 7.9. There we saw that it was important to prevent rotational and
translational motions of the structures along the chain during the optimization
process. The Eckart conditions provide a means of doing this. The idea is to select
one of the initial structures along the path as the reference structure and then to
ensure that all the other structures along the path obey a set of Eckart conditions
with respect to the reference at each iteration in the subsequent optimization.

This procedure is straightforward to implement. The reason is that the con-
straints in Equations (8.19) and (8.20) are linear functions of the coordinates of
the atoms in the non-reference structure (note that the coordinates of the refer-
ence structure are treated as constants) and so their derivatives with respect to
the coordinates will be constants. This allows us to project out of the gradient
vector for each structure at each iteration the contributions that lie in the subspace
spanned by the constraint derivative vectors. If we denote the gradient vector for
a structure, I, as GI and the orthogonalized constraint derivative vectors as �


(
 = 1� 6), the modified gradient vector G′
I, has the form

G′
I = GI −

6
∑


=1

(

�T

GI

�T

�


)

�
 (8.21)

The modified gradients can now be used in the optimization process as normal
but, because of the projection, they will not produce displacements that induce
rotations and translations.

Let us now return to the vibrational problem. The invariance of the potential
energy of a system with respect to rotations and translations is manifested in a
normal mode analysis at a stationary point by the presence of six modes with
zero frequencies. Three of these modes correspond to translations and three to
rotations. It can be seen from Equation (8.17) that a displacement along the mode
leaves the potential energy of the system unchanged if the frequency of a mode
is zero.

The forms for the vectors of the rotational and translational modes can be
derived from the Eckart conditions. To do this properly, though, requires that
the formulae in Equations (8.19) and (8.20) be re-expressed in mass-weighted
coordinates because these are the natural coordinates to use when dealing with
eigenvectors of the mass-weighted Hessian matrix (see Equation (8.12)). If we
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take the Eckart condition for translation along the x axis as an example, we can
write the part of the condition that depends upon the non-reference structure as

N
∑

i=1

mixi =
N
∑

i=1

√
miq

x
i (8.22)

where qx
i is the mass-weighted x coordinate for atom i defined in Equation (7.8).

Equation (8.22) can be re-expressed in vector form as � T
xQ, where Q is the

3N -dimensional vector of mass-weighted Cartesian coordinates for the system
and �x is the mode vector for translation in the x direction. The latter has the
form

�x ∝ M
1
2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
0
0
1
0
0
���

1
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(8.23)

That this vector is equivalent to a translation of the whole system may be con-
firmed by replacing �′ by the expression for �x in Equation (8.16).

The remaining vectors for translation and those for rotation are constructed in
the same fashion. The translation vectors, �y and �z, have the same form as �x

except they have non-zero elements for their y and z components, respectively.
The vector for rotation about the x axis, �x, is

�x ∝ M
1
2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
−z1

y1

0
−z2

y2
���

0
−zN

yN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(8.24)

The �y and �z modes are similar but with the arrangements �z� 0�−x� and
�−y� x� 0� for each atom, respectively.
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There are circumstances under which it is important to be able to manipulate
the rotational and translational modes that arise from a Hessian matrix. One such
case is when normal mode analyses are done at points that are not stationary.
In these instances, the arguments of Section 8.2 are invalid because the gradient
vector is not zero and there will no longer be six zero eigenvalues but only the
three that correspond to translational motion. A second case is when performing
optimizations with algorithms that employ second-derivative information, such
as the Baker algorithm discussed in Section 7.5. It is obviously uninteresting
to search along the modes that rotate or translate the entire system and so it is
preferable to have some means of removing them from the optimization process.

We shall mention two methods that can be used to modify the Hessian matrix.
The first technique, which is used in the Baker algorithm, changes the eigenvalues
of the rotational and translational modes. To do this for the translation in the
x direction, for example, requires adding a term to the mass-weighted Hessian
matrix as follows:

H′ → H′ +	� x�
T
x (8.25)

where 	 is the new (usually large) value for the mode’s eigenvalue.
In the second technique a projection matrix, P, is defined with the form

P = I −�x�
T
x −�y�

T
y −�z�

T
z −�x�

T
x −�y�

T
y −�z�

T
z (8.26)

and the Hessian matrix is modified as follows:

H′ → PH′P (8.27)

In contrast to the first technique, this method guarantees that the six translational
and rotational modes will have zero eigenvalues even if the normal mode analysis
is to be carried out away from a stationary point.

Both these techniques have been implemented for use in a normal mode
analysis. They are invoked by the optional argument modify of the function
NormalModes_SystemGeometry described in the last section. If modify
is set to the string, "raise", the technique of Equation (8.25) is used and the
eigenvalues of rotational and translational modes are increased to very large val-
ues. If it is "project", Equation (8.27) is used instead. If the modify option is
not used the second-derivative matrix is left unchanged.

8.4 Generating normal mode trajectories

The motion of the atoms in the system within the harmonic approximation is
given by the solution for the displacement vector of Equation (8.16). To complete
the determination of the solution the parameters 
k and �k remain to be specified.
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The values of the phases, �k, are arbitrary and do not alter the general behaviour
of the dynamics, but the values of the linear expansion coefficients, 
k, affect the
relative importance of each mode in the displacement.

These parameters can be characterized more precisely by investigating the total
energy of the system. Up to now, when we have discussed energies, we have been
concerned exclusively with the value of the potential energy. The total energy
of a system is the sum of the potential energy and its kinetic energy, which is
the energy that arises due to the motions of the atoms in the system. In classical
mechanics, the kinetic energy, � , has the form

� = 1
2

N
∑

i=1

miv
2
i (8.28)

where vi is the velocity of the atom and is equal to the first time derivative of the
atom position, i.e.

vi = dr i

dt
= ṙ i (8.29)

Using these definitions, we can write down the total energy of the system
within the harmonic approximation as a function of the displacement vector, D.
It is

E = 1
2

Ḋ
T

MḊ+ 1
2

DTHD (8.30)

The atoms’ velocities can be obtained by differentiating Equation (8.16) with
respect to time. Doing this, substituting into the above equation and simplifying
produces the final result for the total energy:

E = 1
2

3N
∑

k=1


2
k�

2
k (8.31)

To identify the 
k we can make use of a result from statistical thermodynamics
which says that, at equilibrium, the total energy of a system of independent
harmonic oscillators will be equal to the number of oscillators multiplied by kBT ,
where kB is Boltzmann’s constant and T is the absolute temperature. To apply this
result to Equation (8.31), we equate the energy contributed by each oscillator to
kBT , giving 
k =√

2kBT/�k. Thus, the size of the amplitude of each mode will
be inversely proportional to its frequency. The lower the frequency, the larger the
amplitude of the motion. It is important to note that the above analysis is invalid
for modes with zero or imaginary frequencies, for which other arguments have to
be used.

With this result we can now investigate the motion due to a particular mode at
a given temperature. This is done with the following function:
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Function NormalModesTrajectory_SystemGeometry

Calculate a trajectory corresponding to a normal mode of a system.

NormalModesTrajectory_SystemGeometry (

Usage:

system,
trajectory,
cycles = 10,
frames = 21,
mode = 1,
temperature = 300.0)

system is an instance of System. It must recently have undergone a
normal mode analysis.

trajectory is the trajectory object to which structures are to be written.
cycles specifies for how many complete vibrational cycles structures

should be calculated.
frames gives the number of frames to generate for each cycle.
mode is the index of the mode for which the trajectory is to be gen-

erated. A simple check on the frequency of the mode is made.
If the absolute value of the frequency is too small then the
function returns without doing a calculation. If the frequency
is imaginary, but with a magnitude that is large enough, a tra-
jectory will be generated making the assumption that the mode
has a real frequency. This is, of course, physically invalid but
is done so that at least the displacements generated by the
mode can be studied or visualized.

temperature is the temperature, in kelvins, at which the trajectory is to be
calculated.

Remarks: The total number of coordinate sets stored on the trajectory
will be the product of cycles and frames.

8.5 Example 14

The example in this section calculates the normal modes for the chair form of
cyclohexane that was introduced in the last chapter. The program is

1 """Example 14."""
2
3 from Definitions import *
4
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5 # . Define the molecule and its QC model.
6 molecule = XYZFile_ToSystem ( \

os.path.join ( xyzpath, "cyclohexane_chair.xyz" ) )
7 molecule.DefineQCModel ( QCModelMNDO ( "am1" ) )
8 molecule.Summary ( )
9
10 # . Calculate the normal modes.
11 NormalModes_SystemGeometry ( molecule, modify = "project" )
12
13 # . Create an output trajectory.
14 trajectory = SystemGeometryTrajectory ( \

os.path.join ( scratchpath, "cyclohexane_chair_mode7.trj" ), \
molecule, mode = "w" )

15
16 # . Generate a trajectory for one of the modes.
17 NormalModesTrajectory_SystemGeometry ( molecule, \

trajectory, \
mode = 7, \
cycles = 10, \
frames = 21, \
temperature = 600.0 )

Lines 6–8 define the molecule and its energy model.
Line 11 performs the normal mode analysis. The function calculates the second-

derivative matrix and then carries out the analysis after it has projected
out the motions corresponding to the rotational and translational degrees
of freedom from the second-derivative matrix.

Lines 14–17 generate a trajectory for the mode with the lowest non-zero frequency
at a temperature of 600 K. The trajectory contains 10 cycles, each of
which has 21 frames, giving 210 frames in total.

The frequencies arising as a result of this calculation and for exactly equivalent
ones on the twist-boat and saddle-point structures of cyclohexane are shown in
Figure 8.1. Some of the modes for the chair conformer are degenerate, which
means that there are two (or more in the general case) modes with exactly
the same frequency. This normally arises because the structure has a particular
symmetry.

The imaginary mode for the saddle-point structure is illustrated in Figure 8.2.
The arrows on the atoms give the direction and the magnitude of the displacement
induced by the mode. It can be seen that the mode induces displacements that
lead to the chair and boat structures, respectively.
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Fig. 8.1. Histograms of the normal mode frequencies for the chair, twist-boat
and saddle-point structures of cyclohexane. The width of each histogram bin is
60 cm−1. The imaginary frequency for the saddle-point structure, which is not
shown, has a value of 183i cm−1.
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Fig. 8.2. Atomic displacements generated by the normal mode with the imag-
inary frequency for the saddle-point structure of cyclohexane. Only the largest
displacements are shown for clarity.

8.6 Calculation of thermodynamic quantities

One of the principal aims of doing molecular simulations is to be able to com-
pare the results of the calculations with those obtained from experiment. We have
already met one way in which this can be done in this chapter – we can calculate
the vibrational frequencies for a system. In this section we consider an additional
approach for obtaining macroscopic properties from the atomic properties that we
calculate when we do a simulation. To do this we use some well-known results
from statistical thermodynamics, which is the branch of physics that links the micro-
scopic and the macroscopic worlds. It is impractical in the space that we have here
to provide any but the most cursory overview of this subject but a brief descrip-
tion is provided, whose principal purpose will be to define precisely the quantities
that are calculated by the pDynamo function that is to be introduced later.

There are both quantum and classical formulations of statistical mechanics, but,
in the quantum case, the theory is developed in terms of the various quantum
states that the system can occupy. A fundamental quantity in the theory is the
partition function, z, which can be regarded as a measure of the effective number
of states that are accessible to the system. Its expression is

z =∑

i

e−i/�kBT� (8.32)

where the sum runs over all the different states of the system, each of which has an
energy, i. To make progress in calculating the partition function from molecular
quantities it is necessary to make some approximations. One of the most useful
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is to hypothesize that the energy for a state can be written as a sum of energies,
each of which comes from a different property of the system. In particular, it
can be assumed that the state energy is the sum of electronic, nuclear, rotational,
translational and vibrational energies, i.e.

i = elec
i + nucl

i + rot
i + trans

i + vib
i (8.33)

where the superscripts refer to electronic, nuclear, rotational, translational and
vibrational terms, respectively. This separation of the state energies into different
terms and, in particular, the separation of the rotational and vibrational energies
of the system is called the rigid-rotor, harmonic oscillator approximation.

Within the rigid-rotor, harmonic oscillator approximation the partition function
for a molecule can be written as a product of the partition functions pertaining to
the different types of energy. Thus, the total partition function is

z = zelecznuclzrotztranszvib (8.34)

This partition function is for a single molecule. The partition function, Z, for a
collection of Nmol molecules will be equal to the product of the partition functions
of the individual molecules, zNmol , if the molecules are distinguishable (as in a
solid) or equal to zNmol/Nmol! if the molecules are indistinguishable (as in a gas).

To calculate the electronic and nuclear partition functions the values of the
electronic and nuclear energy levels are required. For most cases in which we
will be interested we can assume that it is only the electronic and nuclear lowest-
energy or ground states that are important, the remaining excited states being so
much higher in energy that their contribution to the total partition function will
be negligible. Thus, these terms can be considered to have values of 1.

The other three components of the total partition function can be readily calcu-
lated, either exactly, for the case of the vibrational function, or by approximating
the sum over states by an integral for the rotational and translational functions.
The results are

zrot =
√

�

�2

(
8�2�AkBT

h2

)(
8�2�BkBT

h2

)(
8�2�CkBT

h2

)

(8.35)

ztrans =
(

2�MTkBT

h2

)3
2

V (8.36)

zvib =
3N−6
∏

i=1

exp �−h�i/�2kBT��

1− exp �−h�i/�kBT��
(8.37)

In these equations, �A, �B and �C are the moments of inertia of the system, MT is
its total mass, V is the volume it occupies and h is Planck’s constant. � is what
is known as the symmetry number of the molecule. For a molecule without any
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symmetry its value is 1. For molecules at minima that have symmetry, it is the
number of different ways the molecule can be rotated into configurations that are
indistinguishable from the original configuration.

The expressions for the rotational and vibrational partition functions need to
be modified when the molecule is linear. The upper limit of the sum in Equa-
tion (8.37) becomes 3N −5 and Equation (8.35) must be replaced by

zrot = 8�2�AkBT

h2�
(8.38)

since a linear molecule has only one unique moment of inertia, �A. For atomic
systems the rotational and vibrational partition functions have a value of 1.

The partition function can be related to thermodynamic quantities using standard
relations from statistical thermodynamics. For an ideal gas, which is the case in
which we are interested, the equations are

U = RT 2
(

� ln z

�T

)

V

(8.39)

S = R ln z+RT

(
� ln z

�T

)

V

− R ln Nav +R (8.40)

A = U −TS (8.41)

H = U +PV (8.42)

G = H −TS (8.43)

CV =
(

�U

�T

)

V

(8.44)

CP =
(

�H

�T

)

P

(8.45)

PV = RT (8.46)

where U is the internal energy, S is the entropy, A is the Helmholtz free energy,
H is the enthalpy, G is the Gibbs free energy and CV and CP are the heat
capacities at constant volume and pressure, respectively. P, T and V denote the
pressure, temperature and volume of the system. R is the molar gas constant and
is equal to the product of Avogadro’s constant, Nav, and Boltzmann’s constant,
kB. The subscripts on the brackets surrounding the partial derivatives indicate that
these quantities are assumed to be constant for the differentiation.

The values of these quantities can be determined experimentally in many cases
and it is found that the rigid-rotor, harmonic oscillator approximation often gives
values that are in good agreement with experiment. It is also possible to com-
bine the values for several structures to calculate equilibrium constants and rate
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constants. For example, if we consider the equilibrium between two states of a
system, A and B,

A
Keq
� B (8.47)

the equilibrium constant (at constant pressure), Keq, can be written as

Keq = exp
[

−
(

GB −GA

RT

)]

(8.48)

where GA and GB are the Gibbs free energies of states A and B, respectively.
To calculate rate constants for a reaction it is possible to use transition state

theory. In its simplest version, this theory assumes that there is an activated
complex or transition state structure that is in thermodynamic equilibrium with
the reactant molecules and is transformed into products. If A‡ is this complex,
the reaction can be written as

A
K‡

� A‡ k′
→ products (8.49)

The rate for this process, kf , is then written as

kf = k′K‡ = kBT

h
exp

[

−
(

GA‡ −GA

RT

)]

(8.50)

where the factor kBT/h gives the rate at which the activated complex goes to
products and the exponential factor is the equilibrium constant for the equilibrium
between the activated complex and reactants. It is normal to equate the activated
complex structure to the saddle-point structure on the reaction path between
reactants and products. In these cases, the imaginary frequency of the saddle
point is omitted from the calculation of the vibrational partition function of
Equation (8.37).

Note that, for the determination both of the equilibrium and of the rate constants
in Equations (8.48) and (8.50), the free energy values are calculated with respect
to the same reference value on the potential energy surface. In other words, the
differences between the free energy values include the difference in potential
energy between the two structures in addition to the terms depending directly
upon the partition function.

To calculate the thermodynamic quantities defined in Equations (8.39)–(8.46),
a function has been provided, ThermodynamicsRRHO_SystemGeometry,
with the definition:

Function ThermodynamicsRRHO_SystemGeometry

Calculate some thermodynamic quantities for a system within the rigid-rotor,
harmonic oscillator approximation.
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results = ThermodynamicsRRHO_SystemGeometry (

Usage:

system,
pressure = 1.0,
symmetrynumber = 1,
temperature = 300.0 )

system is an instance of System.
pressure is the pressure, in atmospheres. It is used to determine the vol-

ume of the system from Equation (8.46), the value of which is
needed for the calculation of the translational partition function in
Equation (8.36).

symmetrynumber is the symmetry number of the system.
temperature is the temperature, in kelvins.
results is a dictionary that holds the results of the calculation. The dictionary

keys are the names of the quantities calculated and include
"Enthalpy", "Entropy", "Gibbs Free Energy", "Helm-
holtz Free Energy" and "Internal Energy". The units
for A, G, H and U are kJ mol−1 and those for CP , CV and S are
kJ mol−1 K−1.

Remarks: The function requires the vibrational frequencies and so system
should have undergone a recent normal mode analysis. It should
also be noted that, for this function to return sensible values, the
system should be at a stationary point because the calculation of
the vibrational partition function leaves out the six (five for a linear
system) frequencies with the lowest absolute magnitudes as well as
any imaginary frequencies.

8.7 Example 15

We can use the function presented in the last section to calculate the ther-
modynamic quantities for the chair and twist-boat forms of cyclohexane at a
series of temperatures and then to determine the equilibrium constant for the
process

Chair � Twist-boat (8.51)

The program is:

1 """Example 15."""
2
3 from Definitions import *
4
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5 # . Methods.
6 def FreeEnergies ( filename, temperatures, symmetrynumber = 1 ):
7 """Calculate the potential energy for a system and its
8 Gibbs free energies at several temperatures."""
9
10 # . Define the molecule and its QC model.
11 molecule = XYZFile_ToSystem ( \

os.path.join ( xyzpath, filename + ".xyz" ) )

12 molecule.DefineQCModel ( QCModelMNDO ( "am1" ) )
13 molecule.Summary ( )
14
15 # . Calculate the energy and normal modes.
16 e = molecule.Energy ( )
17 NormalModes_SystemGeometry ( molecule, modify = "project" )
18
19 # . Loop over the temperatures.
20 g = []
21 for T in temperatures:
22 tdics = ThermodynamicsRRHO_SystemGeometry ( molecule, \

pressure = 1.0, \
symmetrynumber = symmetrynumber, \
temperature = T )

23 g.append ( tdics["Gibbs Free Energy"] )
24
25 # . Return the energies.
26 return ( e, g )
27
28 # . Create a sequence of temperatures.
29 temperatures = [ 100.0 * i for i in range ( 1, 11 ) ]
30
31 # . Get the energies for the boat and chair structures.
32 ( eb, gboat ) = FreeEnergies ( "cyclohexane_twistboat", \

temperatures, symmetrynumber = 4 )

33 ( ec, gchair ) = FreeEnergies ( "cyclohexane_chair", \

temperatures, symmetrynumber = 6 )

34 deltae = ( eb - ec )
35
36 # . Output the equilibrium constants.
37 table = logfile.GetTable ( columns = [ 25, 25 ] )
38 table.Start ( )
39 table.Title ( "Equilibrium Constants (Chair -> Twist Boat)" )
40 table.Heading ( "Temperature" )
41 table.Heading ( "Log K" )
42 for ( T, gc, gb ) in zip ( temperatures, gchair, gboat ):
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43 RT = ( CONSTANT_MOLAR_GAS * T ) / 1000.0
44 log10K = math.log10 ( math.e ) * ( - ( gb-gc+deltae ) / RT )
45 table.Entry ( "%.4f" % ( T, ) )
46 table.Entry ( "%.6g" % ( log10K, ) )
47 table.Stop ( )

Line 6 starts the definition of a function whose purpose is to calculate the poten-
tial energy of a system and its Gibbs free energies at a series of tempera-
tures. The arguments to the function are filename which gives the name
of the XYZ file used for the definition of the system, temperatures
which is a list of temperature values and symmetrynumber which
specifies the symmetry number to be employed for the calculation of the
free energy.

Lines 11–13 define the system and its energy model.
Lines 16–17 calculate the potential energy and perform a normal mode analysis

for the system. The potential energy is stored as the variable e.
Lines 20–23 generate a list of Gibbs free energies, g, one for each of the temper-

atures in the argument temperatures. The loop is rather wasteful as
all thermodynamical quantities are evaluated even though only the Gibbs
free energy is required.

Line 26 returns the calculated quantities, e and g.
Line 29 starts the main body of the program by creating a list of ten temperature

values in the range 100–1000 K in 100 K increments.
Lines 32–33 calculate the potential and Gibbs free energies for the chair and

twist-boat forms of cyclohexane using the function defined on lines 6–26.
The chair form of cyclohexane has point group symmetry, D3d, so its
symmetry number is 6 whereas the symmetry number of the twist-boat
structure is 4 because it has D2 symmetry.

Line 34 determines the difference in the potential energies between the two con-
formations of cyclohexane.

Lines 37–41 set up the table for output of the equilibrium constants as a function
of temperature.

Line 42 starts a loop over the lists of temperature and free energy values. The
Python built-in function zip is employed which ensures that, at each
iteration, a temperature and its corresponding chair and twist-boat free
energies are extracted.

Line 43 calculates the product of the temperature, T , and the molar gas constant,
R, in kJ mol−1. Many constants are predefined in the pDynamo library.
The gas constant is stored as CONSTANT_MOLAR_GAS and has units of
J mol−1 K−1.
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Fig. 8.3. A plot of the equilibrium constant for the equilibrium between the
chair and twist-boat forms of cyclohexane as a function of temperature.

Line 44 calculates the logarithm to base 10 of the equilibrium constant. The
equilibrium constant itself is defined as

Keq = exp
[

−
(

Gtwist-boat −Gchair

RT

)]

(8.52)

noting that the free energy difference must be corrected for the differ-
ence, deltae, in the potential energy between the two structures. Two
items from the module math are employed on this line – math.log10
which calculates the logarithm and math.e which is the mathematical
constant e.

The results of the calculation are displayed in Figure 8.3. As expected, the
equilibrium constant for the two species increases with the temperature. It should
be remarked that the results of these calculations are somewhat fictitious and have
been presented for illustrative purposes only. In particular, note that this molecule
liquefies at about 350 K and so the gas-phase equilibrium constants below this
will be unattainable experimentally.

Exercises

8.1 Calculate the rate constants for the interconversion of the chair and twist-boat
forms of cyclohexane using the transition state theory expression given in
Equation (8.50). The program should be similar to that of Section 8.7 except
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that a third normal mode calculation needs to be done for the saddle-point
structure. Calculate both the forwards and the reverse rate constants.

8.2 The results of a normal mode analysis depend upon the masses of the atoms.
Thus, if different isotopes are used for atoms, the frequencies of vibration
will shift. These isotope effects can be an important analytic tool for the
investigation of the mechanisms of reactions. Choose a molecule, such as
cyclohexane, and investigate the effect of using different isotopes (exchanging
H for D, for example) on the vibrational frequencies of each structure and
the values of the equilibrium and rate constants.
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Molecular dynamics simulations I

9.1 Introduction

We saw in Chapter 7 how it was possible to explore relatively small parts of a
potential energy surface and in Chapter 8 how to use some of this information to
obtain approximate dynamical and thermodynamic information about a system.
These methods, though, are local – they consider only a limited portion of the
potential energy surface and the dynamics of the system within it. It is possible
to go beyond these ‘static’ approximations to study the dynamics of a system
directly. Some of these techniques will be introduced in the present chapter.

9.2 Molecular dynamics

As we discussed in Chapter 4, complete knowledge of the behaviour of a system
can be obtained, in principle, by solving its time-dependent Schrödinger equation
(Equation (4.1)), which governs the dynamics of all the particles in the system,
both electrons and nuclei. To progress in the solution of this equation we intro-
duced the Born–Oppenheimer approximation, which allows the electronic and the
nuclear problems to be treated separately. This separation leads to the concept of a
potential energy surface, which is the effective potential that the nuclei experience
once the electronic problem has been solved. In principle, it is possible to study
the dynamics of the nuclei under the influence of the effective electronic potential
using an equivalent equation to Equation (4.1) but for the nuclei only. This can
be done for systems consisting of a very small number of particles but proves
impractical otherwise.

Fortunately, whereas it is difficult or impossible to study the dynamics of the
system quantum mechanically, a classical dynamical study is relatively straight-
forward and provides much useful information. Although they constitute an
approximation to the real dynamics, classical dynamical simulation techniques are
believed to provide accurate descriptions in many cases. They do, however, omit

170
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a number of effects that can be important in certain circumstances. For example,
they may fail in the treatment of the dynamics of light particles (especially hydro-
gen), for which quantum mechanical tunneling effects can be important, and they
do not include zero-point motion, which is the vibrational motion that all quantum
mechanical systems undergo even at the absolute zero of temperature (0 K).

There are various formulations for the classical dynamical analysis of a system
but we adopt the description that starts off by defining the classical Hamiltonian,
� , for the system. This is the sum of kinetic and potential energy terms and can
be written as

� �pi� r i� =
N
∑

i=1

1
2mi

p2
i +� �r i� (9.1)

where pi is the momentum of particle i and � is the potential (in our case
obtained by QC, MM or QC/MM techniques). The Hamiltonian is a function of
6N independent variables, the 3N particle momenta and the 3N particle positions.

It is possible to derive equations of motion for the variables from Equation (9.1)
using Hamilton’s equations, which are

ṗi = −��

�r i

= − ��

�r i

= f i (9.2)

ṙ i = ��

�pi

= pi

mi

(9.3)

These equations are first-order differential equations. A second-order differential
equation can be obtained by noting from Equation (9.3) that the momentum of
a particle is equal to the product of the mass of the particle and its velocity (the
time derivative of its position). Substitution of this expression, Equation (9.3),
into Equation (9.2) gives Newton’s equation of motion for the particle:

mir̈ i = f i (9.4)

To study the dynamics of a system, or to perform a molecular dynamics simu-
lation, the equations of motion (either Equations (9.2) and (9.3) or Equation (9.4))
must be solved for each particle. This is an example of a well-studied mathemat-
ical problem, that of the integration of a set of ordinary differential equations,
for which a large variety of algorithms exist. The choice of algorithm depends
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upon the exact nature of the equations of motion and the accuracy of the solu-
tion required, but the great majority of algorithms are initial value algorithms,
which means that they start off with initial values for the particles’ positions and
momenta (or velocities) and integrate the equations for a specific length of time.

For very-high-accuracy solutions of the equations of motion it is usually advan-
tageous to solve the system of first-order differential equations for each particle
(Equations (9.2) and (9.3)). Suitable algorithms are the predictor–corrector inte-
grators and the method due to R. Burlisch and J. Stoer. Owing to the special form
of Newton’s equation, it turns out that it is more efficient for normal use to solve
the set of second-order differential equations directly (Equation (9.4)). Methods
for solving these equations, such as Stoermer’s rule, have been known for a long
time, but they are generally called Verlet methods after L. Verlet, who was one
of the first people to apply them to molecular simulations.

The standard Verlet method is easy to derive. If, at a time t, the positions of
the atoms in the system are R�t�, then the positions of the atoms at a time t +�

can be obtained from a Taylor expansion in terms of the timestep, �, and the
positions and their derivatives at time t. The expansion is

R�t +�� = R�t�+�Ṙ�t�+ �2

2
R̈�t�+O��3� (9.5)

Similarly, the positions at a time t −� are obtained from the expansion

R�t −�� = R�t�−�Ṙ�t�+ �2

2
R̈�t�−O��3� (9.6)

Adding these equations and rearranging gives an expression for the positions
of the particles at t +� in terms of the positions and forces on the particles at
earlier times:

R�t +�� = 2R�t�−R�t −��+�2R̈�t�+O��4�

� 2R�t�−R�t −��+�2M−1F�t� (9.7)

where on going from the first to the second equation we have made use of
Newton’s equations for the particles (Equation (9.4)).

Subtracting Equation (9.6) from Equation (9.5) gives an equation for the vel-
ocities of the particles, V , at the current time, t:

V �t� = Ṙ�t�

� 1
2�

�R�t +��−R�t −��� (9.8)

Equations (9.7) and (9.8) are sufficient to integrate the equations of motion
but they are slightly inconvenient. This is because the velocities at time t are
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available only once the positions at time t + � have been calculated, which
means that, at the start of the simulation, i.e. when t = 0, it is necessary to use
another formula. A slight modification of these equations produces an algorithm
called the velocity Verlet method that avoids these problems and can be shown to
produce results that are equivalent to those of the standard Verlet method. The
equations are

R�t +�� = R�t�+�V �t�+ �2

2
M−1F�t� (9.9)

V �t +�� = V �t�+ �

2
M−1�F�t�+F�t +��� (9.10)

It should be noted that a wide variety of Verlet-type algorithms are in use,
including the so-called leapfrog methods, which calculate the positions on the
full step (i.e. at t + �) and the velocities on the half step (i.e. at t + �/2). We
shall use the velocity Verlet algorithm in this chapter because it will be sufficient
for our needs, but in other situations one of the other algorithms may be more
appropriate.

It is important to be able to check the accuracy of any integration algorithm.
Some of the more useful measures of the precision of a simulation are the
conservation conditions on certain properties of the system, notably the momen-
tum, angular momentum and the energy. The total momentum, � , and angular
momentum, �, of a system are defined as

� =
N
∑

i=1

pi (9.11)

� =
N
∑

i=1

r i ∧pi (9.12)

It is straightforward to show that the total energy of a system described
by a classical Hamiltonian that is independent of time, such as the one given
in Equation (9.1), is conserved or constant. This can be done by differentiating
Equation (9.1) with respect to time and then substituting the expressions for
Hamilton’s equations of motion (Equations (9.2) and (9.3)) to show that the total
derivative is zero. This means that throughout the simulation the total energy
should be the same as the energy at the beginning. Of course, this will not exactly
be so, but the size of the deviations in the total energy or the drift away from its
initial value will give a measure of the precision of the integration algorithm. The
conservation conditions for the momentum and angular momentum can be derived
in a similar way by differentiating Equations (9.11) and (9.12). On doing this it
can be seen that there will be conservation of momentum and angular momentum
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if there is no nett force,
∑N

i=1 f i, or torque,
∑N

i=1 r i ∧f i, on the system, respec-
tively. This will be the case for a system in vacuum but it will not necessarily
hold if the system experiences some exterior influence due to an external field,
for example.

Having defined the algorithm for the integration of the equations of motion it is
straightforward to devise a scheme to perform a molecular dynamics simulation.
The one that we shall use is as follows:

(i) Define the composition of the system, including the number and type of atoms, their
masses and their interaction potential.

(ii) Assign initial values (t = 0) to the particles’ positions, R, and velocities, V .
(iii) Define the timestep, �, for the integration and the number of integration steps (i.e. the

duration of the simulation).
(iv) Perform the simulation. Initially the positions and the velocities of the particles are

known, but the forces at t = 0 must be calculated. At subsequent integration steps do
the following:

(a) Calculate the positions at the current step t +� using Equation (9.9).
(b) Calculate the forces at t +�.
(c) Calculate the velocities at t +� using Equation (9.10).
(d) Do any analysis that is required with the positions and velocities at the current

step t+�. This can include the calculation and the printing of intermediate results
or the storage of the position and velocity data on an external file to create a
molecular dynamics trajectory.

(e) Increment the time by the timestep.

(v) Analyse the results.

There are a number of issues raised by this scheme that need elaboration. The
first is how to choose the value of the timestep. In general, we would like a timestep
that is as large as possible so that the simulation is as long as possible, but not so
large that the accuracy of the integration procedure is jeopardized. The factor that
normally limits the upper size of the timestep is the nature of the highest frequency
motions in the system. In organic molecules, these are typically motions involving
hydrogen (because it is light) and include, for example, the stretching associated
with the vibrations of carbon–hydrogen bonds. To integrate accurately over these
motions the timestep needs to be small with respect to the period of the vibration. So,
for example, if the highest frequency vibrations have values of around 3000 cm−1,
their characteristic timescales will be of the order of a few femtoseconds (1 fs =
10−15 s), which means that the timestep will need to be less than this. In practice,
values of about 1 fs are found to be the largest reasonable for systems possessing
these types of motion when Verlet algorithms are employed.

The second point that needs discussion is how to determine the initial values
of the velocities for the atoms (we shall assume that a starting set of coordi-
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nates is available). One of the most convenient ways is to choose the velocities
so that the system will have a particular temperature at the start of the simulation.
From statistical thermodynamics it is known that the velocities of the atoms in
a classical system are distributed according to the Maxwell–Boltzmann distribu-
tion. This says that, if the temperature of the system is T , the probability of
each component of the velocity of the ith atom having a value between v and
v+dv is

f�v� dv =
√

mi

2�kBT
exp

(

− mi

2kBT
v2
)

dv (9.13)

The values of the velocities of the atoms can be assigned by treating them
as independent Gaussian random variables drawn from the distribution defined
in Equation (9.13) which has a mean value of zero and a standard deviation of
√

kBT/mi. If this is done the temperature of the system will not be exactly T

because the values are assigned randomly, but it is easy to scale the velocities
obtained in this way uniformly so that the instantaneous temperature of the system
does correspond to the value desired. There is a well-known result from statistical
thermodynamics that relates the average of the kinetic energy of the system to
the temperature. It is

T = 2
NdfkB

��� (9.14)

The average in this equation is a thermodynamic, ensemble average that must be
done over all the configurations that are accessible to the system. An instantaneous
temperature, � , can be defined using the same equation but by removing the
average. Thus

� = 2
NdfkB

� (9.15)

This expression allows the instantaneous temperature to be defined exactly once
the initial velocity values have been chosen.

The quantity Ndf in Equations (9.14) and (9.15) is the number of degrees of
freedom accessible to the system. As we saw in Section 8.3, the number of
internal degrees of freedom that a molecule has is 3N −6 (3N −5 if the molecule
is linear). Classically, as can be deduced from Equation (9.14), each degree
of freedom contributes on average kBT/2 to the kinetic energy. The remaining
degrees of freedom, six for non-linear and five for linear molecules, correspond to
the overall rotational and translational degrees of freedom for the system. These
will contribute to the kinetic energy – the translational motion giving an overall
momentum to the system and the rotational motion an angular momentum. When
assigning velocities, it is possible not only to scale the velocities such that the
correct instantaneous temperature is obtained, but also to ensure that the overall
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translational and rotational motions are removed. If this is done, the number
of degrees of freedom used in the equation for the temperature will be 3N − 6
(or 3N −5) whereas, if the overall translational and rotational motions are left in,
the number of degrees of freedom will be 3N . In any case, for large systems the
difference between the two will normally be small.

During a simulation it is often useful to be able to control the temperature of
the system. This is particularly so during the initial stages of a simulation study
and can be done straightforwardly by scaling the velocities to obtain the required
instantaneous temperature after they have been calculated in step (iv)(c) of the
molecular dynamics scheme outlined above. This scaling procedure is simple,
although not entirely rigorous, and more sophisticated temperature control schemes
that perturb the dynamics of the system less will be discussed in a later chapter.

A function has been provided to perform molecular dynamics simulations using
the velocity Verlet algorithm. It has the following definition:

Function VelocityVerletDynamics_SystemGeometry

Perform a molecular dynamics simulation with the velocity Verlet algorithm.

VelocityVerletDynamics_SystemGeometry (
system,
logfrequency = 1,
rng = None,
steps = 1000,
temperature = None,

Usage: temperaturescalefrequency = 0,
temperaturescaleoption = None,
temperaturestart = None,
temperaturestop = None,
timestep = 0.001,
trajectories = None )

system is the system whose dynamics is to be simulated.
logfrequency is the frequency at which data concerning the simulation are

to be printed. The default is to print at every step.
rng defines an instance of a random number generator

which is employed when assigning velocities from the
Maxwell–Boltzmann distribution to the atoms. This argu-
ment is redundant if no assignment is needed. The advantage
of supplying one’s own generator is that it can be prepared
in a given state which means that the same velocities and,
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hence, dynamics trajectories will be produced if the program
is run more than once. If rng is not defined, and velocities
are to be assigned, the function creates an instance of a
generator in an arbitrary state.

steps is the number of simulation steps.
temperature gives the temperature at which the simulation is to be run.

This argument is required both for the initial assignment of
velocities and to specify the target temperature if the constant
temperature scaling option is being used.

temperaturescalefrequency is the frequency at which temperature scal-
ing is to be carried out.

temperaturescaleoption is the argument that specifies which temper-
ature scaling option to use. The default is to do no scal-
ing. Otherwise allowed options are: "constant" which
maintains the temperature constant throughout the simula-
tion at the value specified by the argument temperature;
"linear" which changes the temperature linearly from
"temperaturestart" to "temperaturestop" dur-
ing the simulation; and "exponential" which is simi-
lar to the "linear" option except that the temperature is
changed exponentially.

temperaturestart gives the starting temperature for exponential or linear
temperature scaling.

temperaturestop gives the stopping temperature for exponential or linear
temperature scaling.

timestep is the value of the timestep in picoseconds (1 ps is equivalent
to 10−12 s or 1000 fs). The total length of the simulation will
be steps × timestep ps.

trajectories defines trajectory objects to which data are to be written dur-
ing the simulation. The only means of analysing data from
a molecular dynamics simulation is by storing intermediate
information in a trajectory and performing the analysis sepa-
rately afterwards. trajectories is a combination of the
savefrequency and trajectory arguments that we
have met for the functions described in Sections 7.7, 7.9 and
8.4. It should be a sequence consisting of pairs of items, the
first a trajectory object and the second an integer that gives
the frequency at which data are to be saved to the trajectory.
The reason for allowing multiple trajectories in this way is so
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that data of different types, such as coordinates, velocities
and energy values, can be obtained from the same simulation.

The assignment and handling of velocities for the simulated system is
done automatically by the velocity Verlet function. Instances of the class
System have an attribute which stores the atomic velocities. If, on entry to
VelocityVerletDynamics_SystemGeometry, this attribute does not
exist, the function generates velocities at the temperature specified by the
argument temperature (for no or constant temperature scaling) or by the
argument temperaturestart (for linear or exponential scaling). Velocities
are assigned to the atoms from a Maxwell–Boltzmann distribution at the desired
temperature with, if appropriate, removal of rotational and translational motion.
If the instance of System already has velocities, due, for example, to a previous
call to the velocity Verlet function, these will be employed instead to start the
simulation and no new velocities will be assigned.

9.3 Example 16

In this section we illustrate the use of the velocity Verlet dynamics function by
performing a short simulation on the blocked alanine molecule. The program is:

1 """Example 16."""
2
3 from Definitions import *
4
5 # . Define the energy models.
6 mmmodel = MMModelOPLS ( "booksmallexamples" )
7 nbmodel = NBModelFull ( )
8
9 # . Generate the molecule.
10 molecule = MOLFile_ToSystem ( \

os.path.join ( molpath, "bala_c7eq.mol" ) )

11 molecule.DefineMMModel ( mmmodel )
12 molecule.DefineNBModel ( nbmodel )
13 molecule.Summary ( )
14 molecule.Energy ( )
15
16 # . Optimization.
17 ConjugateGradientMinimize_SystemGeometry ( \

molecule, \
maximumiterations = 2000, \
logfrequency = 100, \
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rmsgradienttolerance = 0.1 )
18
19 # . Define a random number generator in a given state.
20 rng = Random ( )
21 rng.seed ( 175189 )
22
23 # . Heating.
24 VelocityVerletDynamics_SystemGeometry ( \

molecule, \
logfrequency = 100, \
rng = rng, \
steps = 1000, \
timestep = 0.001, \
temperaturescalefrequency = 100, \
temperaturescaleoption = "linear", \
temperaturestart = 10.0, \
temperaturestop = 300.0 )

25
26 # . Equilibration.
27 VelocityVerletDynamics_SystemGeometry ( \

molecule, \
logfrequency = 500, \
steps = 5000, \
timestep = 0.001, \
temperaturescalefrequency = 100, \
temperaturescaleoption = "constant", \
temperature = 300.0 )

28
29 # . Data-collection.
30 trajectory = SystemGeometryTrajectory ( \

os.path.join ( scratchpath, "bala_c7eq.trj" ), \
molecule, mode = "w" )

31 VelocityVerletDynamics_SystemGeometry ( \
molecule, \
logfrequency = 500, \
steps = 10000, \
timestep = 0.001, \
trajectories = [ ( trajectory, 100 ) ] )

Lines 6–14 define the bALA molecule and its OPLS MM energy model and
calculate the energy at the starting configuration.

Line 17 optimizes the molecule’s coordinates so that the RMS gradient for the
system is not too high. This is standard procedure before starting a molec-
ular dynamics simulation study because the integration algorithm can
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become unstable if the forces on some of the atoms are large due to strain
in the molecule or unfavourable non-bonding contacts.

Lines 20–21 create an instance of Python’s default random number generator
class, Random, and set its state by calling the instance’s seed method
with an arbitrary integer argument.

Lines 24–31 perform the dynamics simulation with three separate calls to the func-
tion VelocityVerletDynamics_SystemGeometry. The timestep
for each call is 1 fs (10−3 ps). Each call does a different phase of a dynamics
calculation. In the heating phase on line 24, the temperature of the system
is increased from an initial value of 10 K to a final value of 300 K. In the
equilibration phase on line 27, the temperature of the system is maintained
constant at 300 K. In the data-collection phase on line 31, no temperature
modification is performed. The random number generator instance, rng,
created on line 20, is only needed for the first call to the velocity Verlet
function as this is the only one in which velocities are assigned.

The heating and equilibration phases of the dynamics are done to
prepare the system for the data-collection phase and are necessary to
ensure that the kinetic energy in the system is partitioned roughly equally
between all the available degrees of freedom. For a small system, such
as blocked alanine, a heating period of 1 ps and then an equilibration
period of 5 ps (1000 and 5000 steps, respectively) are probably adequate.
For larger systems longer periods will be necessary. The scaling of the
velocities in the heating and equilibration phases is done at 100-step
intervals and is performed so that the temperature of the system increases
linearly between 10 and 300 K in the heating phase but stays constant
at 300 K in the equilibration phase. For the data-collection stage, 10 ps
of dynamics is performed and the coordinates for the molecule are saved
at 100-step intervals (i.e. every 0�1 ps) in the trajectory object which is
defined on line 30. No velocity modification is done during this phase.

In all three calls information about the dynamics is printed out at
reasonable intervals just to check that there are no anomalies in the
integration. The information consists of the total energy, the kinetic and
potential energies and the temperature of the system. In addition, at the end
of the simulation the averages and the RMS deviations of these quantities
from their averages for the complete run are printed. These values are
especially useful when no velocity modification has been done because
the average total energy and its RMS deviation will give an indication of
how well the energy was conserved during the simulation.

The values of the energies and temperature from the data-collection phase of
the simulation are plotted in Figures 9.1 and 9.2, respectively. The total energy
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Fig. 9.1. A plot of the kinetic, potential and total energies of the bALA system
during the data-collection phase of the dynamics of Example 16. Kinetic energy,
dashed line; potential energy, dash–dot line; total energy, solid line.
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Fig. 9.2. A plot of the temperature of the bALA system during the data-
collection phase of the dynamics of Example 16.
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is reasonably well conserved with an RMS deviation for the entire simulation of
about 0�2 kJ mol−1. Owing to the fact that the total energy is conserved, there
is a constant transfer of energy between the kinetic and the potential degrees
of freedom. This can be seen to have a significant effect on the value of the
instantaneous temperature, which overall has an average of about 293 K but varies
in the range 220–390 K.

9.4 Trajectory analysis

We have seen how to generate trajectories of coordinate data for a system from
a molecular dynamics simulation. A crucial part of most simulation studies is
the analysis of these trajectories, either because we want to use the data to
calculate properties of the system that can be related to those observable experi-
mentally, or for some other reason. In this section only some very simple analy-
ses of trajectory data are described. More advanced techniques will be left to
Section 11.2.

At the most basic level, the analysis of a dynamics trajectory consists of
calculating a property for each frame of the trajectory and seeing how it changes
as a function of time. The sequence of data created in this way is called a time
series for the property. Direct inspection of time-series data can be useful, for
example, to chemists wanting a qualitative view of the change in the structural or
other properties of a system. Usually, though, a more rigorous analysis needs to
be undertaken if meaningful conclusions are to be extracted.

Here we consider two of the most useful statistical quantities that can be
calculated from simulation data. These are averages and fluctuations. If � is the
property under consideration, �n is the nth value of the property in the time
series and nt is the total number of elements in the series, the average of the
property is

��� = 1
nt

nt∑

n=1

�n (9.16)

and the fluctuation is

��	��2� = ��� −����2� (9.17)

= ��2�−���2 (9.18)

The importance of these two types of function is that, when they are calculated
for specific properties, they can be related to experimentally observable quantities
for the system. The formulae which link the two – the microscopic calculated
data and the macroscopic observable data – are all derivable from statistical
thermodynamics. We shall discuss this aspect in more detail in a later chapter,
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but we have already met one such relation in Equation (9.14), which equates the
temperature of the system to the average of its kinetic energy.

The straightforward statistical analyses presented in this section are imple-
mented in pDynamo with the class Statistics. Instances of this class take a
sequence of floating-point data and return many of the data’s standard statistical
quantities as instance attributes. The class definition is:

Class Statistics

A class to perform statistical analyses of a sequence of floating-point data.

Constructor

Construct an instance of the Statistics class given some floating-point data.

Usage: new = Statistics ( data )
data is a sequence of floating-point data. This argument is often a Python

list but other sequence types, such as Vector, are also acceptable.
new is the new instance of Statistics.

Method Count

Count the number of data elements with a particular value.

Usage: n = statistics.Count ( value, tolerance = 0.0 )
value is the value whose frequency in the data set is to be determined.
tolerance is a tolerance that indicates how far data elements can be

away from the target value before they are considered unequal.
A data element datum is taken to be equal to value if
�datum−value� ≤ tolerance. The default value for
tolerance is zero which means that only ‘exact’ matches
will be counted.

statistics is the instance of Statistics for which counting is to be
performed.

n is the number of occurrences.

Attributes

maximum is the maximum value in the data set.
mean is the mean of the data.
minimum is the minimum value in the data set.
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size is the number of data elements.
standarddeviation is the standard deviation of the data determined as

the square root of the variance.
sum is the sum of the data.
variance is the variance of the data. This quantity is equivalent

to the fluctuation of Equation (9.18).

Some of the more routine or sophisticated analyses of trajectory data in
pDynamo employ special functions, some of which will be introduced in later
chapters. However, in this chapter we shall restrict ourselves to the case in
which the data in a frame of a trajectory are restored to the instance of System
associated with the trajectory. This is done by extending the definition of the
class SystemGeometryTrajectory that was introduced in Section 7.9 with
another method whose definition is:

Class SystemGeometryTrajectory

Methods for extracting trajectory data.

Method RestoreOwnerData

Restore the data from a frame of the trajectory to the instance of System
associated with the trajectory.

Usage: QOK = trajectory.RestoreOwnerData ( )
trajectory is the instance of SystemGeometryTrajectory from

which data are being transferred.
QOK is a Boolean variable that takes the value True if data from the

frame were successfully transferred but False if there were no
more frames on the trajectory.

Remarks: The trajectory object has a counter, initially set to zero, that indi-
cates the position of the current frame and which is incremented
every time a frame is read.

9.5 Example 17

In this section we perform an analysis of a molecular dynamics trajectory using
the trajectory file that was generated in Example 16 of Section 9.3. The program
calculates the values of two of the dihedral angles, 
 and �, in the blocked alanine
molecule for each frame of the molecular dynamics trajectory and is:
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1 """Example 17."""
2
3 from Definitions import *
4
5 # . Read the molecule definition.
6 molecule = MOLFile_ToSystem ( \

os.path.join ( molpath, "bala_c7eq.mol" ) )
7 molecule.Summary ( )
8
9 # . Define the trajectory.
10 trajectory = SystemGeometryTrajectory ( \

os.path.join ( scratchpath, "bala_c7eq.trj" ), \
molecule, mode = "r" )

11
12 # . Loop over the frames in the trajectory.
13 phi = []
14 psi = []
15 while trajectory.RestoreOwnerData ( ):
16 phi.append ( molecule.coordinates3.Dihedral ( 4, 6, 8, 14 ) )
17 psi.append ( molecule.coordinates3.Dihedral ( 6, 8, 14, 16 ) )
18
19 # . Set up the statistics calculation.
20 phistatistics = Statistics ( phi )
21 psistatistics = Statistics ( psi )
22
23 # . Output the results.
24 table = logfile.GetTable ( columns = [ 20, 20, 20 ] )
25 table.Start ( )
26 table.Title ( "Phi/Psi Angles" )
27 table.Heading ( "Frame" )
28 table.Heading ( "Phi" )
29 table.Heading ( "Psi" )
30 for ( i, ( h, s ) ) in enumerate ( zip ( phi, psi ) ):
31 table.Entry ( ‘i‘ )
32 table.Entry ( "%.2f" % ( h, ) )
33 table.Entry ( "%.2f" % ( s, ) )
34 table.Entry ( "Mean:", alignment = "l" )
35 table.Entry ( "%.2f" % ( phistatistics.mean, ) )
36 table.Entry ( "%.2f" % ( psistatistics.mean, ) )
37 table.Entry ( "Standard Deviation:", alignment = "l" )
38 table.Entry ( "%.2f" % ( phistatistics.standarddeviation, ) )
39 table.Entry ( "%.2f" % ( psistatistics.standarddeviation, ) )
40 table.Stop ( )
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Lines 6–7 define the bALA molecule that was simulated in Example 16. No
energy model is specified as no energies are to be calculated in this
program.

Line 10 creates a trajectory object for the trajectory file generated in Example 16.
Lines 13–14 initialize lists that will hold the 
 and � angles for each frame in

the trajectory.
Line 15 uses a Python while statement to restore the data on the trajectory to

molecule one frame at a time. The only data restored in this case are
the coordinates3 attribute of molecule. The loop stops when there
are no more data on the trajectory.

Lines 16–17 calculate the 
 and � angles for the current frame using the method
Dihedral from the Coordinates3 class. The arguments to the meth-
ods give the indices of the atoms that define the 
 and � angles.

Lines 20–21 create instances of the class Statistics that will be used to
analyse the 
 and � angle data.

Lines 24–33 output the values of the 
 and � angles for each frame in the
trajectory to a table. The loop on line 30 uses a combination of the Python
built-in functions enumerate and zip to return an integer that gives
the current loop index and pairs of 
 and � values.

Lines 34–40 terminate the table by printing out the means and standard deviations
of the 
 and � angles generated during the simulation.

The results of this program for the dihedrals are plotted in Figure 9.3. Each
point in the plot represents a single point along the trajectory and gives the values
of both dihedrals. In this example the range of angles sampled is relatively small
because of the limited length of the trajectory.

In Figure 9.4 the RMS coordinate deviations between the starting structure for
bALA and the subsequent structures in the trajectory are shown. Each structure
has been oriented using the methods discussed in Section 3.6 so as to minimize
the value of the RMS deviation. The average value of the coordinate deviation is
about 0.4 Å but there are deviations from this average of up to 0.2 Å along the
trajectory.

As a final point in this section we note that the framework developed for
trajectory analysis in this section is a general one and can be used to analyse
trajectories generated in other applications. We have already met two of these,
for normal modes (Section 8.4) and for reaction paths (Sections 7.7 and 7.9).

9.6 Simulated annealing

We leave for a moment the use of molecular dynamics simulation as a tool for
the investigation of the equilibrium and dynamical properties of a system and



9.6 Simulated annealing 187

φ (°)

ψ 
(°

)

360270180900

360

270

180

90

0

Fig. 9.3. A plot of the values of the 
 and � angles as functions of time for the
simulation of bALA of Example 16.
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High Temperature

Cooling

Fig. 9.5. A schematic diagram of a simulated annealing calculation on a poten-
tial energy surface.

discuss its application in another context. In Chapter 7, algorithms for exploring
the potential energy surface of a system were discussed. These algorithms had in
common the fact that they were local and searched the region of the surface in the
neighbourhood of the starting configuration. Such procedures are useful in many
cases but in other applications knowledge of the global minimum or near-global
minima is required, for which local search algorithms are inappropriate.

Because of their practical importance, global optimization algorithms have been
the subject of intense research and several global search strategies have been
developed. One of the earliest and still one of the most useful is the method of
simulated annealing, which was introduced by S. Kirkpatrick, C. D. Gelatt and
M. P. Vecchi during the early 1980s. This method is based upon the correspon-
dence between a statistical mechanical system and an optimization problem in
which a minimum of a function that depends on many parameters is to be found.

The essential idea behind simulated annealing and the fact that distinguishes it
from local optimization algorithms is the consideration of the temperature of the
system. When a system has a non-zero temperature its total energy is no longer
just the potential energy because there is a kinetic energy component too. An
image of this is shown in Figure 9.5, in which the addition of the temperature
‘lifts’ the system off the potential energy surface and makes a much larger number
of configurations accessible. The higher the temperature the larger the number
of configurations that are accessible because the system has energy to surmount
larger barriers.

A simulated annealing calculation proceeds by giving the system a high tem-
perature, allowing it to equilibrate and then cooling until the system has been
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annealed to the potential energy surface, i.e. until the temperature is zero.
The way in which the cooling is done, the cooling schedule, determines the effec-
tiveness of the simulated annealing method. In general, the cooling needs to be
done slowly so that the system can thoroughly explore the potential energy sur-
face and avoid becoming trapped in regions of high potential energy. Of course,
there is no guarantee that this will not happen, but it is known from statistical
mechanics that the probability that a particular configuration will be favoured is
proportional to its Boltzmann factor, exp �−�/�kBT�, where � is the potential
energy of the configuration. Thus, the lower the potential energy of the config-
uration the more probable it is. The optimal cooling schedule cannot be found
in most problems of interest and so the choice of schedule is to some extent a
matter of experimentation. Fortunately, even relatively crude schedules can give
good results.

Molecular dynamics methods, because they employ a temperature, can be used
for simulated annealing optimization calculations and it is this approach that
we shall illustrate in the next example. It should be noted, though, that Monte
Carlo algorithms, which are discussed later, are equally viable for simulated
annealing calculations. In fact, it was with these that the first simulated annealing
applications were performed.

9.7 Example 18

As an example of a simulated annealing calculation we consider Lennard-Jones
clusters of size 13. There are two reasons for this. First, it is relatively easy
to obtain the global minimum for the bALA molecule using local minimization
techniques (try it and see!) so this does not represent a particularly interesting test
case. Second, the Lennard-Jones clusters, as mentioned in Section 7.2, represent
something of a benchmark for the evaluation of global optimization methods for
molecular systems.

The program is one of the most complicated that we shall meet in this book.
What it does is to generate 100 structures for the cluster and then optimize each
of them in two different ways, first by a local conjugate-gradient minimization
procedure and, second, using a simulated annealing protocol. The energies of the
two sets of optimized structures are compared and printed at the end.

1 """Example 18."""

2
3 from Definitions import *

4
5 # . Define various parameters.
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6 CLUSTERSIZE = 3.0

7 ENERGYTOLERANCE = 0.01

8 FORCECONSTANT = 5.0

9 NTRIALS = 100

10
11 # . Set up the system.

12 cluster = MOLFile_ToSystem ( os.path.join ( molpath, "argon13.mol" ) )

13 cluster.DefineMMModel ( MMModelOPLS ( "lennardjones" ) )

14 cluster.DefineNBModel ( NBModelFull ( ) )

15 cluster.Summary ( )

16
17 # . Define tether constraints for each atom.

18 origin = Vector3 ( value = 0.0 )

19 tetherenergymodel = SoftConstraintEnergyModelHarmonicRange ( 0.0, \

0.5 * CLUSTERSIZE, FORCECONSTANT )

20 tethers = SoftConstraintContainer ( )

21 for i in range ( len ( cluster.atoms ) ):

22 tethers[‘i‘] = SoftConstraintTether ( i, origin, tetherenergymodel )

23
24 # . Initialize the random number generator.

25 rng = Random ( )

26
27 # . Initialize lists to keep energies.

28 pe0 = []

29 pe1 = []

30 pe2 = []

31 pe3 = []

32
33 # . Loop over the trials.

34 for i in range ( NTRIALS ):

35
36 # . Reset the cluster coordinates and cluster constraints.

37 cluster.coordinates3 = MOLFile_ToCoordinates3 ( \

os.path.join ( molpath, "argon13.mol" ) )

38 cluster.DefineSoftConstraints ( tethers )

39
40 # . Initialize some variables for the trial.

41 rng.seed ( 957612 + i )

42 tstart = 300.0 * ( rng.random ( ) + 1.0 )

43
44 # . Do a short dynamics to generate a new structure.

45 VelocityVerletDynamics_SystemGeometry ( cluster, \

log = None, \

rng = rng, \
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steps = 10000, \

timestep = 0.001, \

temperaturescalefrequency = 100, \

temperaturescaleoption = "constant", \

temperaturestart = tstart )

46
47 # . Save the starting coordinates and energy.

48 temporary3 = Clone ( cluster.coordinates3 )

49 cluster.DefineSoftConstraints ( None )

50 pe0.append ( cluster.Energy ( log = None ) )

51
52 # . Minimization.

53 cluster.DefineSoftConstraints ( tethers )

54 ConjugateGradientMinimize_SystemGeometry ( cluster, \

log = None, \

maximumiterations = 10000, \

rmsgradienttolerance = 1.0e-4 )

55 cluster.DefineSoftConstraints ( None )

56 ConjugateGradientMinimize_SystemGeometry ( cluster, \

log = None, \

maximumiterations = 10000, \

rmsgradienttolerance = 1.0e-4 )

57 pe1.append ( cluster.Energy ( log = None ) )

58
59 # . Simulated annealing from the starting coordinates.

60 cluster.coordinates3 = temporary3

61 cluster.DefineSoftConstraints ( tethers )

62 VelocityVerletDynamics_SystemGeometry ( cluster, \

log = None, \

steps = 40000, \

timestep = 0.001, \

temperaturescalefrequency = 10, \

temperaturescaleoption = "exponential", \

temperaturestart = tstart, \

temperaturestop = tstart * math.exp ( - 10.0 ) )

63 cluster.DefineSoftConstraints ( None )

64 pe2.append ( cluster.Energy ( log = None ) )

65
66 # . Minimization of the annealed structure.

67 ConjugateGradientMinimize_SystemGeometry ( cluster, \

log = None, \

maximumiterations = 10000, \

rmsgradienttolerance = 1.0e-4 )

68 pe3.append ( cluster.Energy ( log = None ) )

69
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70 # . Prepare the energies for statistics.

71 stpe1 = Statistics ( pe1 )

72 stpe2 = Statistics ( pe2 )

73 stpe3 = Statistics ( pe3 )

74
75 # . Output the results.

76 table = logfile.GetTable ( columns = [ 10, 20, 20, 20, 20 ] )

77 table.Start ( )

78 table.Title ( "Optimization Results" )

79 table.Heading ( "Attempt" )

80 table.Heading ( "Initial Energy" )

81 table.Heading ( "Minimized Energy" )

82 table.Heading ( "Annealed Energy" )

83 table.Heading ( "Final Energy" )

84 for i in range ( NTRIALS ):

85 table.Entry ( ‘i‘ )

86 table.Entry ( "%20.3f" % ( pe0[i], ) )

87 table.Entry ( "%20.3f" % ( pe1[i], ) )

88 table.Entry ( "%20.3f" % ( pe2[i], ) )

89 table.Entry ( "%20.3f" % ( pe3[i], ) )

90 table.Entry ( "Minimum Energies:", alignment = "l", columnspan = 2 )

91 table.Entry ( "%20.3f" % ( stpe1.minimum, ) )

92 table.Entry ( "%20.3f" % ( stpe2.minimum, ) )

93 table.Entry ( "%20.3f" % ( stpe3.minimum, ) )

94 table.Entry ( "Frequencies:", alignment = "l", columnspan = 2 )

95 table.Entry ( ‘stpe1.Count ( stpe1.minimum, tolerance = ENERGYTOLERANCE )‘ )

96 table.Entry ( ‘stpe2.Count ( stpe2.minimum, tolerance = ENERGYTOLERANCE )‘ )

97 table.Entry ( ‘stpe3.Count ( stpe3.minimum, tolerance = ENERGYTOLERANCE )‘ )

98 table.Stop ( )

Lines 6–9 set the values of various parameters for use later in the program.
Lines 12–15 define the cluster and its energy model. To construct a system,

pDynamo requires an elemental type for each of its atoms and so, for the
purposes of this program, the cluster is taken to consist of 13 argon atoms.
However, to enable comparison between the cluster energies calculated
by the program and those listed in Table 7.1, the Lennard-Jones radius
and well depth parameters in the OPLS file "lennardjones" are both
defined as 1.

Lines 18–22 create a set of tether constraints for each of the atoms in the cluster
(see Section 5.6). These are employed in parts of the optimization process
to ensure that the atoms stay together in the same region of space and
do not split up into smaller clusters. The tether energy model is such
that the particles are constrained only if they are further than 0.5 *
CLUSTERSIZE or 1.5 Å away from the origin.
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Lines 25–31 create an instance of Python’s random number generator and initial-
ize some lists that will hold potential energy values.

Line 34 starts the loop in which structures will be locally and globally optimized.
In all 100 trials are performed.

Lines 37–45 prepare a starting structure for the subsequent optimizations by car-
rying out a short molecular dynamics simulation with tether constraints
on the atoms and with "constant" temperature scaling. The same
structure (from the file "argon13.mol") is always used as input to the
simulation but the temperature of the simulation, tstart, and the state
of the random number generator, rng, are different.

Line 48 clones the starting coordinates for later use.
Lines 49–50 evaluate and save the energy of the starting, unoptimized cluster

structure in the absence of constraints.
Lines 53–57 locally optimize the cluster structure using a conjugate-gradient algo-

rithm, first in the presence and then in the absence of constraints.
Lines 60–64 perform the simulated annealing calculation starting with the same

structure (from temporary3) as the local optimization. The molecular
dynamics simulation employs an exponential cooling schedule.

Lines 67–68 further refine the annealed structure using a local optimization
method. This is typical practice because the annealed structures will not
usually be minima on the potential energy surface, although they will
often be in regions of low potential energy.

Lines 71–98 analyse and output the results of the optimizations. For each trial,
the energies of the starting, the locally optimized, the annealed and the
optimized-annealed structures are printed out. The output terminates with
the lowest energy found for each set of structures and the number of times
that it occurs.

It is important to emphasize that multiple trials, with different starting condi-
tions, are essential when doing simulated annealing if low-energy structures are to
be obtained. The global minimum will certainly not be found in one attempt! For
the 13-atom cluster studied in this example, the global minimum has an energy of
−44�327 reduced units (see Table 7.1). If Example 18 is run several times (with
different initial states for the random number generator), the simulated annealing
method finds the global minimum approximately 40% of the time which is about
twice as often as the local optimization technique.

Exercises

9.1 In Example 16 a timestep of 1 fs was used to integrate the dynamics equa-
tions. Repeat the simulations using different timesteps, but for the same total
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simulation time to see how the results change. Is energy conservation sub-
stantially better with a shorter timestep? How do the values of the dihedral
angles change? Are there better ways of comparing the different trajectories?

9.2 Do several long simulations of bALA starting from different structures and
repeat the analysis of the 
 and � angles of Section 9.5. How do the 
–
� maps compare with the schematic potential energy surface for bALA of
Exercise 7.1?

9.3 The simulated annealing calculations in Example 18 were done with a
Lennard-Jones cluster of 13 atoms. Repeat the calculations with other clus-
ter sizes and using different annealing schemes. In particular try the ‘magic
number’ clusters with sizes of 19, 55 and 147. Does the simulated annealing
procedure stay as efficient as the size of the cluster increases? One property
of interest in cluster studies is the value of the energies of the states which
are less stable than the ground state. How do these spectra of cluster ener-
gies compare when obtained with local optimization and simulated annealing
approaches?
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More on non-bonding interactions

10.1 Introduction

Up until now we have encountered a variety of standard techniques for the
simulation of molecular systems. All the systems we have looked at, however, have
been in vacuum and we have not, as yet, considered any extended condensed phase
systems such as liquids, solvated molecules or crystals. This is because special
techniques are needed to evaluate the non-bonding interactions in such systems.
In the present chapter we introduce methods for determining these interactions
which will allow us to treat some condensed phase problems. For simplicity we
focus upon MM energy functions but similar principles are applicable to QC and
hybrid potential energy models.

10.2 Cutoff methods for the calculation of non-bonding interactions

As we discussed in detail in Section 5.2.2, the non-bonding energy for a molecular
system with the types of MM force fields that we are using can be written as
a sum of electrostatic and Lennard-Jones contributions. The expression for the
energy, �nb, is

�nb = ∑

ij pairs

(

qiqj

4��0�rij

+ Aij

r12
ij

− Bij

r6
ij

)

(10.1)

The crucial aspect of this equation is that the sum runs over all pairs of inter-
acting atoms in the system. These comprise all possible pairs of atoms except
those 1–2, 1–3 and (possibly) 1–4 interactions that are specifically excluded. In
all the simulations we have done to date we have used instances of the class
NBModelFull that evaluate the non-bonding energy in the simplest way pos-
sible, by calculating the interaction for all pairs of atoms explicitly. Because the
number of pairs increases as O�N 2�, where N is the number of atoms in the
system, the calculation of the non-bonding energy using this technique rapidly

195
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becomes unmanageable. In particular, it becomes difficult or impossible to use
for condensed phase systems.

To overcome this problem and to increase the efficiency of the non-bonding
energy evaluation, a number of different techniques of varying sophistication can
be used. They can be broadly divided into two categories – those that attempt
to evaluate Equation (10.1) exactly (or, at least, to within a certain estimated
precision) and those that modify the form of the expression for the non-bonding
interaction in some way so that it is more readily evaluated. We shall first discuss
the latter, approximate methods because, although they are less rigorous, they
are easily implemented and they have been extensively employed for condensed
phase simulations. We shall return to the more exact methods at the end of the
chapter.

The principal problem with the non-bonding energy is the long-range elec-
trostatic interaction which decays as the reciprocal of the distance between the
atoms. The long-range nature of the interaction means that many pairs have to
be included in the sum of Equation (10.1) to obtain a non-bonding energy of a
given precision. The most widely used approximate methods for the evaluation
of the non-bonding energy overcome the long-range nature of the electrostatic
interaction by modifying its form so that the interactions between atoms are zero
after some finite distance. These are the cutoff or truncation methods. The fact
that the interactions are truncated means that the complexity of the calculation
is formally reduced from O�N 2� to O�N�. That this is so can be seen by the
following argument. Suppose that a spherical truncation scheme is used and the
cutoff distance for the interaction is rc. Then each atom within the system will
interact with all the atoms within a volume of 4�r3

c /3. If the mean number density
of atoms within the system is �, the total number of interactions for the system
will be 4�r3

c �N/3 or ∝ N . Obviously the cost of the calculation will depend upon
the size of the cutoff. The trick is to use as small a cutoff as possible while still
providing an adequate treatment of the non-bonding interactions.

There are several subtleties that have to be addressed when using cutoff
schemes. The first is that of how the truncation is to be effected. The easiest way
is to use an abrupt truncation and simply ignore all interactions that are beyond
the cutoff distance. This is equivalent to multiplying each term in the non-bonding
energy expression (Equation (10.1)) by a truncation function, S�r�, of the form

S�r� =
{

1 r ≤ rc

0 r > rc

(10.2)

The problem with this type of truncation is that the energy and its derivatives are
no longer continuous functions of the atomic coordinates and that there will be
jumps in the energy during a minimization or a dynamics simulation as atoms



10.2 Cutoff methods 197

move in and out of each other’s cutoff distance. These can disrupt a minimization
process or lead to unwanted effects (such as heating) in a dynamics simulation.

An alternative to abrupt truncation is to use a smoothing function, S�r�, that
tapers the interaction continuously to zero at a given distance. Many smoothing
functions have been proposed. One example is a switch function that is cubic in
the square of the interaction distance, r2:

S�r� =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

1 r ≤ ron

�r2
off−r2�

2
�r2

off+2r2−3r2
on�

�r2
off−r2

on�
3 ron < r ≤ roff

0 r > roff

(10.3)

It has the property that the interaction is not modified for distances less than
an inner cutoff distance, ron, and is smoothed to zero at the outer cutoff, roff .
The function is constructed so that its first derivative is continuous in the full
range r ≤ roff , which is necessary if problems in minimizations and in dynamics
simulations are to be avoided. The second derivatives, though, are discontinuous.

A second example of a smoothing function is a shift function:

S�r� =

⎧

⎪⎨

⎪⎩

[

1−
(

r
rc

)2
]2

r ≤ rc

0 r > rc

(10.4)

Like the switch function, the shift function has continuous first derivatives but,
unlike the switch function, it relies on just one cutoff distance and it modifies the
form of the interaction throughout its entire range.

Graphs of these functions and their first and second derivatives are illustrated
in Figures 10.1, 10.2 and 10.3, respectively. In Figure 10.4, the products of the
smoothing functions and a Coulomb interaction between two unit positive charges
are shown. The first derivatives of these interactions are plotted in Figure 10.5. It
can be seen that the use of truncation techniques can introduce radical differences
in the form of the interaction potential.

The second problem that needs to be addressed is that of how the truncation
or smoothing function is to be employed. The simplest way is to apply the
smoothing procedure to each interaction separately. This means that, for each
pair of atoms, ij, the smoothing function is calculated and the interaction for that
pair is the product of the function and the pair’s non-bonding energy, S�rij��

ij
nb.

This is adequate for uncharged systems, in which there are only Lennard-Jones
interactions, or for systems with small charges but, for charged systems, an atom-
based truncation scheme can lead to a problem that is colloquially known as
splitting of the dipoles. For such systems group-based truncation schemes can
provide better behaviour. In these methods atoms are partitioned into groups and
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Fig. 10.1. Plots of various truncation functions, S�r�, as functions of distance.
Direct truncation, solid line; switch function, long-dash line; shift function, short-
dash line. The values of the cutoffs are rc = roff = 10 Å and ron = 6 Å.
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Fig. 10.2. Plots of the first derivatives of the switch and shift truncation func-
tions displayed in Figure 10.1.
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Fig. 10.3. Plots of the second derivatives of the switch and shift truncation
functions displayed in Figure 10.1.
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Fig. 10.4. The Coulomb interaction between two unit positive charges as a
function of distance and as modified by the application of the switch and shift
truncation functions. Full interaction, solid line; switched interaction, long-dash
line; shifted interaction, short-dash line.
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Fig. 10.5. The derivatives of the Coulomb interactions displayed in Figure 10.4.

the non-bonding interactions between all the atoms of two groups are calculated
in full. The full group–group interaction energy is then multiplied by a single
truncation or smoothing function that is calculated using a characteristic distance
between the two sets of atoms such as, for example, the distance between their
centres of geometry.

To illustrate the dipole-splitting problem, consider the interaction between an
ion with a unit charge and a simple point-charge model for a water molecule. The
water molecule is neutral overall but has a dipole moment with a value of, say, �.
The energy of the interaction between the charge and the dipole is proportional
to the charge, the dipole and the inverse of the distance between the two species
squared. Thus, the interaction decays more rapidly with distance than does a
charge–charge interaction. Now, within a simple point-charge model, the water
dipole can be represented by charges of −2q on the oxygen and +q on each of
the hydrogens and so the charge–dipole interaction will be represented by three
charge–charge interactions. To reproduce this interaction accurately it is necessary
to include all these interactions fully within the calculation. It is also important to
note that each charge–charge interaction is of a larger magnitude and is of longer
range than the total charge–dipole interaction. Thus, if a cutoff model that splits
these interactions is used (if, for example, two of the interactions are within the
cutoff and one is not) large distortions in the energy and forces are likely to take
place. Of course, these effects will be reduced if a smoothing function is employed
rather than straight truncation but they will persist nevertheless. Although the



10.2 Cutoff methods 201

dipole-splitting effect was illustrated with a charge–dipole interaction, it occurs
generally. For example, the interaction of two water molecules is a dipole–dipole
interaction that scales as the inverse cube of the distance between the dipoles.
Thus, splitting of the dipoles in this case could lead to larger errors than those for
the charge–dipole interaction.

The final point to be tackled in connection with cutoff schemes is that of how
to evaluate which interactions are within the cutoff and which are not. After
all, determining the distances between all atom pairs in order to find which to
calculate and which not is exactly the operation that we are trying to avoid!
Clearly, a procedure similar to that outlined in Section 3.2 for the estimation of a
system’s bonds would be appropriate because it scales as O�N�. In principle, such
a method could be employed for determining the interactions afresh each time
an energy calculation is performed. In practice, though, it is observed that it is
normally more efficient to use the method intermittently by creating a temporary
list of non-bonding interactions that is valid for several energy calculations. This
list is generated using a cutoff distance, the list cutoff, rlist, that is greater than the
interaction cutoff, rc or roff . This means that the list will contain more interactions
than are necessary for a single energy calculation, but it also means that the list
does not need to be regenerated every time an energy is required. This is done
only when the atoms have moved by an amount of the order of rlist−rc or rlist−roff

so that the current list is invalidated.
Of the many possible truncation schemes that exist, the method that will be

used in this work for the evaluation of the non-bonding interactions is one that
has been described by P. Steinbach and B. R. Brooks and is called the atom-based
force-switching truncation scheme. In this method it is not the interaction energy
that is truncated directly, but its first derivative (and, hence, its force). Thus, if
ftrue�r� is the force between two particles, the modified force, f�r�, has the form

f�r� = S�r�ftrue�r� (10.5)

For the electrostatic interactions, Steinbach and Brooks used the same switching
function as that in Equation (10.3). Because this function has continuous first
derivatives, it implies that the second derivatives of the energy will be continuous
throughout the range of the modified interaction as well. The potential energy of
each interaction is obtained by integrating Equation (10.5). If � �r� is the modified
interaction and �true the true interaction (≡ c/r), one has

� �r� =

⎧

⎪⎨

⎪⎩

�true + 8c
�

[

r2
onr

2
off�roff − ron�− 1

5 �r5
off − r5

on�
]

r ≤ ron

c
[

A
(

1
r
− 1

roff

)

+B�roff − r�+C�r3
off − r3�+D�r5

off − r5�
]

ron < r ≤ roff

0 r > roff

(10.6)
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where the following constants have been defined:

� = �r2
off − r2

on�3

A = r4
off�r

2
off −3r2

on�

�

B = 6r2
onr2

off

�

C = −r2
off + r2

on

�

D = 2
5�

For the Lennard-Jones interactions, a simpler truncation function is used. This
does not ensure continuity of the second derivatives of the energy but this is
deemed acceptable because the magnitudes of the Lennard-Jones terms are so
much smaller. If the form of each part of the Lennard-Jones interaction is c/rn	

where n = 6 or 12, the modified interaction energy is

� �r� =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

�true − c
�ronroff �

n/2 r ≤ ron

cr
n/2
off

r
n/2
off −r

n/2
on

[
(1

r

)n/2 −
(

1
roff

)n/2
]2

ron < r ≤ roff

0 r > roff

(10.7)

It can be seen, in both cases, that the interaction energies at less than the inner
cutoff distance, ron, are unaltered except that a constant which ensures that the
potential is continuous at r = ron has been added. The interaction energy of two
unit charges given by the scheme of Equation (10.6) and its derivative are plotted
in Figures 10.6 and 10.7, respectively. Evidently the forces are only slightly
distorted.

Steinbach and Brooks found that this scheme was one of the most effective
for calculating non-bonding interactions – i.e. it reproduced well the results of
calculations in which the full non-bonding interaction was calculated – as long as
a reasonably long inner cutoff distance and a broad switching region were used
(the latter to minimize the dipole-splitting effect). They suggested that minimum
values of 8 and 12 Å were suitable for the inner and outer cutoffs, respectively.
The method, although atom-based, was found to give results that were as good as
or better than those from group-based methods even for highly charged systems.

The method of calculating the non-bonding interaction energy described above
has been implemented in the class, NBModelABFS. This class is interchangeable
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Fig. 10.6. The Coulomb interaction between two unit positive charges as a
function of distance and as modified by the application of the force-switching
function. Full interaction, solid line; force-switched interaction, dashed line. The
values of the cutoffs are roff = 10 Å and ron = 6 Å and the constant c = 1.
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with the class NBModelFull which was described in Section 5.3.3 and behaves
in a similar fashion. Its definition is:

Class NBModelABFS

A class to calculate non-bonding interactions within an atom-based force-
switching approximation.

Constructor

Construct an instance of the NBModelABFS class.

Usage: new = NBModelABFS ( )
new is the new instance of NBModelABFS.

Method SetOptions

Define the values of the cutoffs to be used in the calculation of the non-bonding
interactions and in the generation of the non-bonding interaction lists.

Usage:
nbmodel.SetOptions ( innercutoff = 8.0,

outercutoff = 12.0,
listcutoff = 13.5 )

innercutoff is the value of the inner cutoff, ron.
outercutoff is the value of the outer cutoff, roff .
listcutoff is the value of the list cutoff, rlist.
nbmodel is an instance of NBModelABFS.

Instances of this class generate the atom non-bonding interaction lists auto-
matically and store them internally using a procedure similar to that described in
Section 3.2. The list is generated when an energy is first required and subsequently
when any atom has moved by more than half the difference between the cutoff
distance used to generate the non-bonding energy interaction list (rlist) and the
outer cutoff distance (roff ). This ensures that the list is always up to date. If the
cutoff distances are set correctly, the update procedure is done only once every
10–20 energy calculations. A value for the list cutoff of 1–2 Å greater than the
outer cutoff distance should give a reasonable update frequency. List generation
and calculation of the energy both scale as O�N� for a given cutoff distance.

To finish this section we emphasize a couple of general points. First, it is the
electrostatic interactions that cause the biggest problems because of their long
range and large size. The effects of truncation on the Lennard-Jones energies and
forces are less crucial, although they can still be sizeable. The second point is
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that no truncation method is ideal. The one that has been chosen here should give
reasonable results in many cases, if it is properly used, but there will be others
that will give results that are as valid in particular circumstances. According to
Steinbach and Brooks, the most important lesson is that the cutoff should be as
large as possible. The differences among the best alternative truncation methods
are then less significant.

10.3 Example 19

To illustrate how the use of a truncation method can alter the calculation of the
energy of a system it is interesting to calculate the energy for a large system
using different cutoff schemes. The example program in this section does this for
a small protein, crambin.

The program is:

1 """Example 19."""
2
3 from Definitions import *
4
5 # . Define various parameters.
6 BUFFER = 4.0
7 CINCREMENT = 1.0
8 CSTART = 0.0
9 NENERGIES = 40
10
11 # . Define the energy models.
12 mmmodel = MMModelOPLS ( "protein" )
13 nbfull = NBModelFull ( )
14 nbabfs = NBModelABFS ( )
15
16 # . Set up the system.
17 molecule = PDBFile_ToSystem ( \

os.path.join ( pdbpath, "crambin.pdb" ), \
QUSERESIDUELIBRARY = True )

18 molecule.DefineMMModel ( mmmodel )
19 molecule.DefineNBModel ( nbfull )
20 molecule.Summary ( )
21
22 # . Get the energy with a full model.
23 ef = molecule.Energy ( log = None )
24
25 # . Reset the NB model for the molecule.
26 molecule.DefineNBModel ( nbabfs )
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27
28 # . Initialize the cutoff.
29 cut = CSTART
30
31 # . Output the energy difference for each cutoff.
32 table = logfile.GetTable ( columns = [ 20, 20 ] )
33 table.Start ( )
34 table.Title ( "Cutoff/Full Energy Difference" )
35 table.Heading ( "Inner Cutoff" )
36 table.Heading ( "Difference" )
37 for i in range ( NENERGIES ):
38 cut += CINCREMENT
39 nbabfs.SetOptions ( innercutoff = cut, \

outercutoff = cut + BUFFER, \
listcutoff = cut + BUFFER )

40 et = molecule.Energy ( log = None )
41 table.Entry ( "%.1f" % ( cut, ) )
42 table.Entry ( "%.4f" % ( et - ef, ) )
43 table.Stop ( )

Lines 6–9 set the values of various quantities that are used later in the program.
Line 12 defines an instance of an OPLS MM energy model with the "protein"

parameter set.
Lines 13–14 define instances of the two different NB energy models that we have

encountered so far.
Lines 17–20 create an instance of System for the protein. On line 17 the option

QUSERESIDUELIBRARY to PDBFile_ToSystem is set so that the
complete connectivity is generated for the molecule. As discussed in
Section 5.3.3, this is needed in order to properly define the MM energy
model.

Line 23 calculates and stores the potential energy for the protein with the full NB
energy model.

Line 26 replaces the full NB energy model for the protein with the cutoff one.
Line 29 initializes the variable cut. This is the value of the inner cutoff, ron,

with which the cutoff non-bonding energies are to be calculated.
Lines 32–36 start the table that will be used for output of the energies.
Line 37 is the first line of the loop over cutoff distances. In this example energies

will be calculated at 40 different cutoff distances.
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Lines 38–39 increment cut by 1.0 Å and use it to define the new cutoffs in the
non-bonding energy model. In all cases the outer cutoff is 4.0 Å greater
than the inner cutoff.

Line 40 calculates the potential energy of the molecule, including the non-bonding
energy terms with the current values of the cutoffs.

Lines 41–42 print the inner cutoff value and the difference between the full, ef,
and cutoff, et, potential energies.

To illustrate the results of this example, the electrostatic energies as a function
of the cutoff distance, roff , are shown in Figure 10.8. Also shown are the energies
produced with straight truncation (when the inner cutoff distance in Example
19 has the same value as the outer cutoff, i.e. ron = roff ). The importance of a
smoothing region is clear insofar as the energy tends smoothly to its limiting value
if one is employed and oscillates wildly otherwise. This is a manifestation of the
dipole-splitting problem. The effect of straight truncation is much less marked
for the Lennard-Jones energies, which are shown in Figure 10.9. The number of
non-bonding interaction pairs is plotted versus the cutoff distance in Figure 10.10.
Above 32 Å all the possible interactions between atoms within the protein are
included in the energy calculation.
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Fig. 10.8. The electrostatic energies as a function of the cutoff distance, roff .
With a smoothing region, solid line; straight truncation, dotted line.
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10.4 Including an environment

One of the most interesting and important applications of molecular simulations
is the study of systems in the condensed phase. After all, it is in the condensed
phase that the great majority of chemical and biochemical processes occur. Unlike
the systems that we have been studying up to now, condensed phase systems are
effectively infinite in extent. It is obviously impractical to try to simulate such
systems directly because, no matter how large and fast the computer, the limits of
its computational ability would be attained very rapidly! Currently, the only really
feasible way of simulating condensed phase systems at an atomic level is to select
a small part of the system to study in detail – for example, a small volume of a
liquid or a crystal or a single solvated protein molecule – and then use methods
that imitate the effect of the remainder of the system or the environment. The fact
that an infinite system is being studied by using a finite one means, of necessity,
that there are limitations to the types of process that can be studied. It is evident,
for example, that one needs to be careful about drawing conclusions for properties
of a system that have length scales larger than the size of the finite simulation
system. However, if these concerns are borne in mind, simulation approaches can
be powerful tools for investigating processes in the condensed phase.

There is a wide range of approximations in use to model the environment of a
system and we shall discuss only a few. Probably the most widely used model and
arguably the most reliable, if not the cheapest, is the method of periodic boundary
conditions (PBCs). In this technique, a complete condensed phase system is
modeled as an infinitely and periodically repeated series of copies of a small,
but representative, part of the full system (see Figure 10.11). The assumption of
periodicity immediately makes the simulation of such a system tractable because
equivalent atoms in each of the copies behave identically and so do not need
to be treated distinctly during a simulation. Because of its importance the PBC
method is the one that we shall use and it will be described in more detail in the
remaining sections of this chapter.

The PBC method works well in many cases but it has some drawbacks. First,
an order is imposed that would not normally be present because the system
is assumed to be periodic. This can lead to artefactual results for structural
and dynamical properties obtained from simulation. Second, the method is often
expensive, especially for large molecules. To see this, consider a large molecule,
such as a protein, in solution (see, for example, Figure 2.2). It takes only a little
reflection to realize that, to immerse the molecule fully in the solvent, a volume
of solvent much larger than that of the molecule itself will be required. This adds
considerably to the size of the system and means that most of the time during
a simulation will be spent dealing with the solvent rather than with the solvated
molecule which is the object of principal interest.
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L

Fig. 10.11. An example of the PBC approximation in two dimensions in which
the central, square, shaded box of side L is replicated in both dimensions.

As a result of the limitations of the PBC method, alternative techniques have
been sought. One series of methods has been developed primarily to mimic
effects of solvent on molecules. These implicit solvent methods replace the explicit
description of the solvent molecules of the PBC approach by simpler models. It is
usual to use different strategies to model the electrostatic and non-polar (Lennard-
Jones) interactions between the solute and the solvent because these interactions
are different in nature.

For the electrostatic interactions a common approach is to use a reaction field
model in which the solvent is replaced by a medium that has a dielectric constant
that is appropriate to the solvent being modeled. The solute is assumed to be
located in a cavity (of a different dielectric – often unity) within the continuum.
The solute’s charge distribution polarizes the solvent which in turn acts back
upon the solute’s charges with a reaction field. In this model the energy of the
interaction between the solute and solvent is determined by first solving the
Poisson–Boltzmann equation for the electric potential, 
, in the system. This
equation has the form

�T���
�− ��2 sinh 
+4�� = 0 (10.8)
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where � is the dielectric constant, � is the Debye–Hückel parameter, which
is related to the type and concentration of ions in the solution, and � is the
charge distribution in the system. It is to be noted that all these parameters, as
well as the potential, are functions of position. If the � function is everywhere
zero the Poisson–Boltzmann equation reduces to the Poisson equation. Once the
potential has been obtained, the total electrostatic energy for the system, �el, can
be calculated. For a simple point-charge model of the solute’s charge distribution
and for the case in which the potential is small (so that the sinh 
 term in
Equation (10.8) can be linearized to 
) this is

�el = 1
2

N
∑

i=1

qi
�r i� (10.9)

Although the solution to the Poisson–Boltzmann equation appears to give good
results for solvation energies, it is expensive to solve. As a result it has been
employed almost exclusively to calculate the potentials and the energies of single
structures and not in minimization or molecular dynamics calculations.

For these longer types of calculations other more approximate, ad hoc methods
have been developed. The simplest include models that reduce the charges on
charged groups to account for the screening of charges by the solvent and the
use of a dielectric constant other than unity in the calculation of the electrostatic
interactions (Equation (10.1)). This can be a constant with a larger value or it can
be a function of the distance between the particles. Thus, for example a distance-
dependent dielectric function, ��r� ∝ r, has often been used in the simulation of
biomacromolecules. These methods are, however, of dubious accuracy and are
better avoided if viable alternatives are available. More precise methods, albeit still
approximate, are based upon the Born expression for the electrostatic solvation
energy of a charged sphere in a medium of a different dielectric constant. This
energy, GBorn, is

GBorn ∝ q2

2a

(
1
�o

− 1
�i

)

(10.10)

where q is the charge on the sphere, a is its radius and �i and �o are the dielectric
constants inside and outside the sphere, respectively. To account for interactions
between charged spheres, Equation (10.10) can be generalized to

Gsolv ∝
(

1
�o

− 1
�i

) N
∑

i=1

N
∑

j=1

qiqj

f�rij	 ai	 aj�
(10.11)

where f�rij	 ai	 aj� is a function such that f →1/rij as rij →� (i.e. when the
spheres are very far apart and do not overlap) and f →ai or aj as rij →0 (i.e.
when the spheres coalesce). The accuracy of the representation depends upon
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the form of the function chosen for f and upon the way in which the effective
Born radii, ai, are calculated. These will obviously be different depending upon
whether the atom is completely buried in the interior of a molecule (and so has
no exposure to solvent) or is at the surface.

The continuum dielectric models and their equivalents account for the electro-
static interactions between solute and solvent. To treat the non-polar interactions
(dispersion and repulsion) other models are necessary. The commonest is the sur-
face free energy description, which relates the interaction energy to the accessible
surface area of the molecule. Like the Born model, it has been used mostly for
solvation studies. The non-polar energy, �np, is

�np =
N
∑

i=1

�iAi (10.12)

where Ai is the surface area of atom i that is accessible to solvent and �i

is a constant that depends upon the chemical type of the atom and must be
parametrized to reproduce the non-polar surface free energy. At the present time
the combination of generalized Born and solvent-accessible surface area models
probably provides the most accurate and cost-effective implicit solvation models
for molecular simulations. One of the more widely used MM models of this type
is the one developed by W. C. Still and co-workers.

An alternative class of methods mixes elements of explicit and implicit models.
These methods will be more reliable than purely continuum approaches when a
correct description of the interaction between solute and solvent depends upon
the solvent’s molecular structure. Examples of these methods include the various
boundary approximations which select a small, often spherical, region of the
system of interest and treat that with an atomic level model. The remainder of the
system is removed and replaced by a boundary potential. In the simplest cases
the potential can be neglected or it can be a hard wall, but in more sophisticated
algorithms it will have a form that accounts for non-polar interactions as well as
reaction-field-type terms. Taking the solvation of a solute as an example again,
the solute molecule would be placed at the centre of the sphere, surrounded with a
few shells of solvent molecules and then the boundary potential would be placed
outside this. These methods can reduce quite substantially the time required for a
simulation with explicit solvent molecules, but the choice of boundary potential
is not always evident and can significantly affect the results obtained.

10.5 Periodic boundary conditions

In the PBC approximation an infinite system is constructed by periodically repli-
cating a finite system. For the infinite system to be continuous, the finite system
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must be of a sufficiently regular shape that it can fill space when it is copied.
The most common option, by far, in three dimensions is to use finite systems
that are cubic. Also common are orthorhombic boxes whose angles are all right
angles but whose sides are of different lengths. Other shapes that are possible
are triclinic, hexagonal, truncated octahedral and various sorts of dodecahedral
boxes. These shapes are geometrically more complicated but they can be required
when studying certain types of system, such as crystals.

In pDynamo, use of the PBC approximation first of all requires that the type
of periodic box and its shape be defined. The presence of periodicity imposes a
symmetry on a system (in this case translational symmetry) and so these operations
are handled by various symmetry-related classes. Although we do not make use
of symmetry in this book, other than its role in PBC simulations, a system’s
symmetry properties are fundamental and rank in importance with, for example,
details of its atomic composition.

A range of box shapes are permitted in pDynamo which are all implemented
as subclasses of the class CrystalClass. The only one that we shall need is
one for a cubic box, CrystalClassCubic, whose definition is:

Class CrystalClassCubic

A class to represent cubic translational symmetry.

Constructor

Construct an instance of CrystalClassCubic.

Usage: new = CrystalClassCubic ( )
new is the new instance of CrystalClassCubic.

Several extensions of the System class are needed for symmetry handling. A
limited definition of these extensions that is sufficient for the examples in this
book is:

Class System

Symmetry-related methods and attributes.

Method DefineSymmetry

Define the symmetry properties of a system.
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Usage: system.DefineSymmetry(crystalclass = None,
a = None)

crystalclass defines the system’s crystal class. It must be an instance of
CrystalClass or None.

a is a floating-point number that gives the length of the side of
a cubic box. The edges of the box will be along the Cartesian
axes.

system is the instance of System for which symmetry is being
defined.

Remarks: The definition given above is only appropriate for assignment
of cubic symmetry. A much more extensive set of keywords
is available for other symmetries.

Attributes

symmetry contains the part of the system’s symmetry definition that is inde-
pendent of physical variables that specify such quantities as box
size. For a cubic system, this attribute would include an instance of
CrystalClassCubic.

symmetryparameters holds the lengths, angles and other variables needed
to complete the symmetry definition. For a cubic system, this attribute
would consist of the length of the box side.

Remarks: The role of these two attributes resembles, in many ways, the roles
played by the attributes that define the connectivity for a system, par-
ticularly atoms and bonds, and its coordinates, coordinates3.
The former encapsulate a conceptual model of the system whereas
the latter permit its physical realization in three-dimensional space.

Once a symmetry has been assigned to a system, all simulations are performed
in the normal way. No extra classes, method calls or keywords are needed as
pDynamo automatically detects that symmetry is present and adjusts its algorithms
accordingly. The largest difference between vacuum (or non-PBC) and PBC
calculations arises in the evaluation of the non-bonding interaction energy. If
we focus, for the moment, upon the truncation method implemented in the class
NBModelABFS, extra work arises because atoms in the central box no longer
interact just amongst themselves but also with atoms of the neighbouring boxes
or images that are within cutoff range.

As in the vacuum case, the NBModelABFS class employs a two-step procedure
to determine these extra interactions. The first step is to generate lists of potential
non-bonding interactions between image and central box atoms. This is done with
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the cutoff, rlist, and involves a preliminary search to locate all images that are
within the cutoff distance of the central box before the atom-pair lists themselves
are created. The second step is to evaluate the interaction energies between the
images and central box using the atom lists and the interaction cutoff, roff . As
before, the use of two cutoffs, rlist and roff , ensures that the non-bonding image
lists need not be re-created every time an energy is calculated but only when the
atoms have moved by a distance of the order of rlist−roff .

To finish this section, we note that a common approximation that is made
when combining truncation methods with PBCs is the minimum image convention.
The major assumption of this convention is that a particle will interact with, at
most, the nearest copy of another particle in the system. This makes the method
relatively inexpensive and easy to implement but it means that the cutoff distance
for truncation of the non-bonding interactions must be less than or equal to half the
length of the side of the periodic box. This imposes a serious (lower) limit to the
size of the system that can be studied especially if a reasonable non-bonding cutoff
is desired. Because of these disadvantages, the class NBModelABFS does not
employ the minimum image convention but the more general strategy described
above in which there is no restriction upon how many images the atoms of the
central box can interact with.

10.6 Example 20

As an example of a simulation with PBCs, we study a liquid system consisting
of a cubic box of 216 (≡63) water molecules. The program is:

1 """Example 20."""
2
3 from Definitions import *
4
5 # . Define the box side (in Angstroms).
6 BOXSIDE = 18.641
7
8 # . Define the MM and NB models.
9 mmmodel = MMModelOPLS ( "booksmallexamples" )
10 nbmodel = NBModelABFS ( )
11
12 # . Generate the solvent.
13 solvent = MOLFile_ToSystem ( \

os.path.join ( molpath, "water216_cubicbox.mol" ) )

14 solvent.DefineSymmetry ( crystalclass = CrystalClassCubic ( ), \

a = BOXSIDE )
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15 solvent.DefineMMModel ( mmmodel )
16 solvent.DefineNBModel ( nbmodel )
17 solvent.Summary ( )
18
19 # . Save the system for later use.
20 XMLPickle ( \

os.path.join ( scratchpath, "water216_cubicbox.xpk" ), \
solvent )

21
22 # . Define a random number generator in a given state.
23 rng = Random ( )
24 rng.seed ( 491831 )
25
26 # . Equilibration.
27 VelocityVerletDynamics_SystemGeometry (

solvent, \
logfrequency = 500, \
rng = rng, \
steps = 5000, \
timestep = 0.001, \
temperaturescalefrequency = 100, \
temperaturescaleoption = "constant", \
temperaturestart = 300.0 )

28
29 # . Data-collection.
30 trajectory = SystemGeometryTrajectory ( \

os.path.join ( scratchpath, "water216_cubicbox.trj" ), \
solvent, mode = "w" )

31 VelocityVerletDynamics_SystemGeometry (
solvent, \
logfrequency = 500, \
steps = 10000, \
timestep = 0.001, \
trajectories = [ ( trajectory, 50 ) ] )

This program is very similar to that of Example 16 of Section 9.3. Major
differences and other points to note are as follows:

Lines 13–14 define the cubic system of 216 water molecules. Line 14 assigns
the symmetry to the system and sets the dimension of the box to be the
variable BOXSIDE. The value of 18.641 Å on line 6 gives a volume for
the system that is consistent with the experimental value for the density
of water at 300 K which is about 996 kg m−3.

The use of this combination of two commands to define a system with
translational symmetry has been done primarily for illustrative purposes.
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In practice, it will be more usual to read a file in a format that includes all
the necessary data, including the symmetry definition. Standard formats
that fall into this category include the PDB format described in Sec-
tion 2.4.3. Another convenient alternative is to employ files in pDynamo’s
XPK format. Ways in which XPK files can be generated for periodic
systems are detailed in Appendix 3.

Line 20 saves the complete definition of the system to an XPK file. This will be
needed by the examples in later chapters.

Line 27 performs a short dynamics to equilibrate the system. In this program no
minimization or heating is performed because the coordinates in the MOL
file correspond to a system that has already been partially equilibrated (in
a previous molecular dynamics simulation).

Line 30 creates a trajectory object in which geometrical data about the sys-
tem will be saved. As the system now has symmetry this will include
not only atomic coordinates but also the variable from the attribute
symmetryparameters that determines the size of the cubic box.

Line 31 performs a 10 ps dynamics simulation. Data are saved to the trajectory
every 50 steps, making 201 frames in total. A fuller discussion of ways
in which trajectories like this can be analysed will be left to the next
chapter.

The most notable thing about this program will become apparent only when it
is executed. Up to now the examples we have considered have needed relatively
low resources in terms of memory or CPU time. In contrast, this program per-
forms a simulation of 648 atoms and at each timestep about 3×105 non-bonding
interactions are processed. It demands a lot more time than the previous examples,
although it should run in a few hours on a reasonably fast personal computer or
workstation.

10.7 Ewald summation techniques

In the previous sections we discussed methods for the calculation of non-bonding
interactions that truncate the interactions beyond a certain cutoff distance. This
is an approximation that could (and does!) have important consequences for the
behaviour of a system during a molecular simulation. It would obviously be better
to have methods that allow the non-bonding interactions to be calculated fully
for a periodic system. Such approximations exist, one class of which is called
Ewald lattice summation techniques in honour of one of their originators. These
methods were originally developed for studying such systems as ionic crystals, but
algorithmic advances in the 1990s (see the next section) have meant that they are
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now routinely applied for simulations of periodic molecular and macromolecular
systems.

The derivation of the Ewald summation formulae involves a number of sub-
tleties and so only a brief description will be presented here to give a flavour of
what is required. The literature on Ewald and related techniques is large, but the
exposition below mostly follows that due to D. E. Williams. Consider a periodic
atomic system within which the particles interact with a potential of the form
�i�j/r

p
ij . This is appropriate for the Coulomb interaction and both for the repul-

sive and for the dispersive parts of the Lennard-Jones interaction if geometrical
mean combination rules are used. The non-bonding interaction energy of a single
box of the periodic system will be the sum of the interactions between the atoms
within the box and between its atoms and those of all the remaining boxes. The
expression for this sum, Sp, is

Sp = 1
2

′
∑

n

∑

i

∑

j

�i�j

�r i − rj + tn�p
(10.13)

where the sums over n, i and j indicate summations over all periodic boxes
(including n = 0, the central box), the atoms in box n and the atoms in the
central box, respectively. The prime on the summation over boxes means that the
self-interaction (i.e. with i = j and n = 0) is omitted because this is divergent.
The vector tn is the vector that indicates the displacement between the interacting
boxes. If the sides of the boxes are along the Cartesian axes it will have the form
�nxa	nyb	nzc�, where nx, ny and nz are the integer components of the vector n

and a, b and c are the lengths of the box in the directions of the x, y and z axes,
respectively. For a cubic box a = b = c.

The trick common to the Ewald summation techniques is to employ a conver-
gence function, 
�r�, to split the sum given in Equation (10.13) into two parts.
This function has the property that it decays rapidly to zero as r increases and
takes the value 1 for r = 0. Using it, the sum Sp can be rewritten as

Sp = S�1�
p +S�2�

p (10.14)

S�1�
p = 1
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�i�j
�rnij�
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p
nij

(10.15)

S�2�
p = 1

2

′
∑

nij

�i�j

(

1−
�rnij�
)

r
p
nij

(10.16)

where the shorthand rnij has been used to denote �ri − rj + tn�. Because of the

properties of the convergence function the sum S
�1�
p involves only short-range

interactions and so it can be calculated using techniques similar to those described
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in Section 10.5. The cost of this summation scales as O�N� where N is the number
of atoms in the central box. The second sum involves long-range interactions but
it can be evaluated if its Fourier transform is taken and the sum performed in
reciprocal space. Details of this transformation will not be given here but the
final form of the expression depends crucially upon the form chosen for 
. It is
usual to follow a suggestion of B. R. A. Nijboer and F. W. De Wette and use


�r� = ��p/2	 �2r2�

��p/2�
(10.17)

where � is an arbitrary parameter, and ��x� and ��x	 y� are the complete and
incomplete gamma functions, respectively:

��x� =
∫ �

0
tx−1 exp�−t� dt (10.18)

��x	 y� =
∫ �

y
tx−1 exp�−t� dt (10.19)

The sums Sp for p > 3 are absolutely convergent, which means that they
converge no matter what the values of � and no matter in which order the
summation is done. Using the form for 
 given in Equation (10.17) for p = 6
results in an expression that is suitable for the evaluation of the dispersive part of
the Lennard-Jones interaction. It is

S6 = 1
2

′
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nij

�i�j

r6
nij

[

1+ ��rnij�
2 + ��rnij�
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]
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+ �
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�2
i (10.20)

In this equation, V is the volume of a periodic box (V = abc) and erfc is the
complementary error function (erfc�x� = �� 1

2 	 x2�/
√

�). The second summation
is over a set of vectors, k, which are called the reciprocal space vectors or the
k vectors. For an orthorhombic box with the box sides along the Cartesian axes,
they take the form k = 2��nx/a	ny/b	nz/c�. This sum will be rapidly convergent
as k (=�k�) increases in size due to the presence of the exp and erfc terms.

The sums Sp for p ≤ 3 are only conditionally convergent, which means that the
value of the sum can depend upon the way in which the summation is done. In
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addition, the sum will not converge at all unless the condition
∑

i �i=0 is satisfied.
For the Coulomb interaction this implies that the simulation box must have no
nett charge. The derivation of the summation formula is more complicated in this
case, but it is

S1 = 1
2

′
∑

nij

�i�j erfc�rnij�

rnij

+ 2�

V
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=0
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+ J��� (10.21)

It is to be noted that the sum over the k vectors in this expression explicitly
excludes the k = 0 term because this term is divergent. There is also an extra term
in the sum, J���, often called the surface correction term, which is a function of
the dipole moment, �, of the periodic box. It turns out, when deriving this term,
that it is necessary to specify various macroscopic boundary conditions for the
ensemble of periodic boxes for which the electrostatic energy is being computed.
In particular, the shape of the macroscopic crystal and the dielectric constant of
the medium surrounding the crystal are important. If the medium has an infinite
dielectric constant the term disappears, which corresponds to tin-foil boundary
conditions. For a spherical crystal in vacuum (with a dielectric constant of 1) the
expression is

J��� = 2�

3V
���2 (10.22)

where the box’s dipole-moment vector is

� =
N
∑

i=1

�ir i (10.23)

The first three terms on the right-hand sides of the expressions for the energies
in Equations (10.20) and (10.21) are often called the real space, the reciprocal
space and the self-energy terms, respectively. The derivatives of all these terms
with respect to the atomic positions are straightforward to determine by direct
differentiation.

There is an extra complication that is not apparent in the formulae for
the non-bonding energies given in Equations (10.20) and (10.21). Both these
formulae apply to the case in which all the interactions between particles
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are calculated. As we have seen, this is not the case for empirical force
fields, which often exclude certain interactions, notably those between bonded
atoms. For these excluded interactions (the 1–2, 1–3 and sometimes the 1–4
terms) it is necessary to calculate their energies using the normal expressions
(i.e. without the convergence functions) and subtract them from the sums in
Equations (10.20) and (10.21). Care should also be taken to ensure that the
1–4 interactions are treated properly, for these are not always fully excluded
but sometimes only partially so (such as with the OPLS force field used in
this book).

To calculate the non-bonding interaction energy for a periodic system using
the Ewald algorithm, we introduce a third NB model class NBModelEwald. It
has the same structure as the other classes that calculate the non-bonding energy
and, hence, can be used interchangeably with them. The major difference is that
additional keywords can be supplied to the method SetOptions. The class
definition is:

Class NBModelEwald

A class to calculate non-bonding interactions with an Ewald summation technique.

Constructor

Construct an instance of the NBModelEwald class.

Usage: new = NBModelEwald ( )
new is the new instance of NBModelEwald.

Method SetOptions

Define the values of various options necessary for the Ewald algorithm.

nbmodel.SetOptions ( innercutoff = 8.0,

Usage:

kappa = 0.2,
listcutoff = 13.5,
nmaximum = 0,
outercutoff = 12.0,
QTINFOIL = True )

kappa is an argument that sets the value of the parameter � to be used
in the Ewald summation procedure (see Equation (10.17)).

nmaximum gives the maximum and minimum values of the components
of the vector, n, to use in the calculation of the k vectors.
nmaximum can be an integer in which case this value will be
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applied to all three dimensions or it can be a sequence of three
integers that give the limits for each dimension separately.
Supposing that the value of nmaximum for a given dimension
is nmax, the k-vector sum in this dimension would run from
−nmax to +nmax and include 2nmax +1 terms.

QTINFOIL is a Boolean that determines whether or not tin-foil bound-
ary conditions are to be used in the calculation of the elec-
trostatic interactions. This implies that the surface term of
Equation (10.22) is not calculated if the argument is True but
is included if the argument is False.

nbmodel is an instance of NBModelEwald.
Remarks: The keywords that set the values of the various cutoffs are the

same as for the class NBModelABFS and behave similarly.
listcutoff and outercutoff are only employed for the
evaluation of the short-range sums (S�1�

p in Equation (10.15))
whereas innercutoff is also required for those parts of
the Lennard-Jones potential that are being calculated with a
truncation approximation.

Two points should be made about the implementation of the Ewald method
by this class. First, the electrostatic interactions are always calculated using an
Ewald technique (Equation (10.21)). The dispersive part of the Lennard-Jones
interactions will also be calculated by the Ewald method (Equation (10.20)) if
geometric combination rules are used for the atomic radii (as in the OPLS force
field). Otherwise, these will be calculated using a truncation approximation. The
interactions due to the repulsive, r−12, part of the Lennard-Jones potential are
always calculated using a truncation approximation as it assumes, which should
be reasonable in most cases, that the value of the interaction cutoff, roff , is large
enough (> 10 Å) that all the interactions that are left out in this way will be
negligible in size.

Second, the precision and speed of the Ewald algorithm depend upon a careful
balancing of the parameters �, roff and nmax. A large value of � reduces the number
of real space interactions but means that the number of reciprocal space terms
that need to be evaluated should be increased to obtain equivalent accuracy in the
energy and forces. Likewise a small value of � increases the number of real space
terms but permits a decrease in the size of the reciprocal space summation. It is
possible to show, although we do not do so here, that the Ewald algorithm scales
as O�N 3/2� if the optimal set of parameters is chosen so as to have calculated
energies of a given precision.
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10.8 Fast methods for the evaluation of non-bonding interactions

Owing to the importance of the non-bonding interactions, especially the long-
range electrostatic interactions, much research has gone into algorithms that can
be used to evaluate these terms exactly in as efficient a way as possible. The
aim is to obtain methods that scale linearly with the size of the system, i.e.
as O�N �, rather than as the O�N 2� of the direct summation techniques or the
O�N 3/2� of the Ewald methods. Such methods are not used in this book but
they are becoming standard for many types of molecular simulation. We consider
algorithms of two widely used classes of technique below. Most, although not all,
of them exist in versions that can handle interactions involving both discrete and
continuous charge distributions. The former are normally easier to implement and
are appropriate for use with MM energy functions whereas the latter are necessary
for QC potentials.

The fast multipole methods rely on the fact that the electrostatic potential at
long distance due to a charge distribution can be well approximated as a limited
multipole expansion, i.e. as a charge, dipole, quadrupole, octupole, etc. Thus,
instead of calculating the electrostatic interaction between distant charge distribu-
tions directly, it can be approximated to within a certain precision as an interaction
between their respective multipoles. Algorithms using this principle divide space
into a hierarchy of cells of different sizes within each of which the multipole
expansions due to the charge distributions are evaluated. The interactions between
cells that are near to each other are calculated directly whereas those that are at
longer range are determined using the multipole approximation. L. F. Greengard
and V. Rokhlin were the first to do systematic work upon these approaches and it
was they who developed an algorithm, appropriate for both vacuum and periodic
systems, that scales as O�N �. These methods are quite complex to implement
because they require a judicious grouping of cells when calculating the long-
range interactions to ensure that linear scaling is preserved. Nevertheless, they
are employed for simulations both with MM and with ab initio QC potentials.

The second class of techniques is the fast Ewald methods that work for periodic
systems. The gain in efficiency arises from the evaluation of the long-range
interactions as the short-range terms are handled in the same way as in the original
Ewald method. Although details vary, a typical scheme for treatment of the long-
range energy involves the following steps: (i) a grid or mesh is introduced into
the simulation box; (ii) a representation of the charge distribution in the box is
created on the grid; (iii) the electrostatic potential at each mesh point is calculated
by solving the Poisson equation either in reciprocal space with a fast Fourier
transform (FFT) technique or in real space, often with a multigrid method; (iv)
the potentials on the atoms are generated from the mesh point values; and (v) the
energy is calculated from the potentials on the atoms using an expression such
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as that in Equation (10.9). The efficiency of the algorithm arises from step (iii)
as solution of the Poisson equation scales as O�n ln n� for FFT and as O�n� for
multigrid solvers where n is the number of mesh points. This number is, in turn,
proportional to the number of atoms in the system, N , for a given mesh size.
One of the most popular fast Ewald methods is the particle mesh Ewald method
introduced by T. Darden, D. York and L. Pedersen. Currently, it appears to be
the method of choice for the simulation with MM potentials of condensed phase
molecular systems consisting of 104–105 particles.

Exercises

10.1 In Section 10.3 the non-bonding energies were calculated as a function of the
cutoff distance for the non-bonding interactions. Perform a similar analysis
but look at properties other than energies. For example, how do the minimized
structures of a molecule change as the cutoff distance is increased and how
are the forms of the normal modes altered? Is the cutoff approximation a
reasonable one?

10.2 Repeat the simulation of Example 20 but this time using the other NB energy
models. What happens when the class NBModelFull is used and why? With
the Ewald technique, try different combinations of parameters (�, roff and
nmax) to see how the values of the non-bonding interaction energy change.
Which set of values permits the most efficient (i.e. fastest) simulation time
for a given precision in the energy?
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Molecular dynamics simulations II

11.1 Introduction

In Chapter 9 we saw how to perform molecular dynamics simulations, although
they were not very sophisticated because there was no means of including the
effect of the environment. Ways of overcoming this limitation were introduced
in the last chapter, in which we discussed methods for calculating the energy
and its derivatives for a system within the PBC approximation. As an example,
a molecular dynamics simulation for a periodically replicated cubic box of water
molecules was performed. Here, we shall start by describing in more detail the
type of information that can be computed from molecular dynamics trajectories
and also by indicating how the quality of that information can be assessed. Later
we shall talk about more advanced molecular dynamics techniques including those
that allow simulations to be carried out in various thermodynamic ensembles and
those that permit the calculation of free energies.

11.2 Analysis of molecular dynamics trajectories

We have seen how to generate trajectories of data for a system, either in vacuum
or with an environment, with the molecular dynamics technique. The point of
performing a simulation is, of course, that we want to use these data to calculate
some interesting quantities, preferably those which can be compared with experi-
mentally measured ones. The aim of this section is to give a brief overview of
some of the techniques that can be used to analyse molecular dynamics trajectories
and some of the types of quantities that can be calculated.

In Section 9.4 we defined a time series for a property as a sequence of values for
the property obtained from successive frames of a molecular dynamics trajectory.
Of the many possible statistical quantities that can be calculated from a time
series, we shall focus on three types. These are averages and fluctuations, which
we met in Section 9.4, and time correlation functions. Let � be the property,
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�n the nth value of the property in the time series and nt the total number of
elements in the series. The average of the property, denoted by ���, is

��� = 1
nt

nt∑

n=1

�n (11.1)

The fluctuation is the average of the square of the deviation of the property from
its average. If the deviation is denoted by �� = � −���, the fluctuation is

�����2� = ��2�−���2

= 1
nt

nt∑

n=1

�2
n −���2 (11.2)

The RMS deviation of the property, denoted ����, is the square root of the
fluctuation, i.e. �2��� = �����2�.

The method of calculation of the averages and fluctuations of a time series is
immediately obvious by inspection of Equations (11.1) and (11.2). The calculation
of correlation functions is more complicated because they are functions of time.
The autocorrelation function for the property � is denoted by ��� �t� and has
the expression

��� �t� = ����t� ���0��
= ���t���0��−���2 (11.3)

It is common to normalize the function by dividing it by the fluctuation of the
property. The normalized function, �̂�� �t�, is

�̂�� �t� = ��� �t�/�2��� (11.4)

A cross-correlation function for two different properties, � and �, can be
defined as

����t� = ����t� ���0��
= ���t���0��−������ (11.5)

It can be normalized in the same way as the autocorrelation function by dividing
it by the product of the RMS deviations of properties � and �, i.e. by ��������.

Calculation of a correlation function relies upon the fact that it obeys the
stationarity condition:

���t���0�� = ���� + t������ (11.6)
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which implies that, for a given time, t, products ��� + t�����, for all possible
values of �, will contribute to the average used to calculate ��� �t�. For the
autocorrelation function, this translates into a discretized equation of the form

���tn���0�� = 1
nmax

nmax∑

i=1

�i�i+n (11.7)

where tn is the time corresponding to the interval between n elements in the time
series and nmax = nt −n is the number of intervals used to calculate the average.
Note that, if n = 0, the expression reduces to that for the fluctuation given in
Equation (11.2), as it should. Note too that, as n gets large, nmax becomes small,
so that for n � nt there are very few intervals that can be used for the calculation.
In practice, this means that, for large n, the values of the calculated correlation
function are unreliable because there are not enough products contributing to the
average to get a statistically significant result.

The importance of these three statistical quantities is that they are necessary
for many of the formulae, derivable from statistical mechanics, that allow the
microscopic properties calculated from a simulation and the macroscopic quan-
tities that can be obtained experimentally to be linked. We have already come
across some of these formulae, notably the one equating the temperature of the
system to the average of its kinetic energy (Equation (9.14)) and those that permit
the calculation of some thermodynamic quantities for a molecule within the rigid-
rotor, harmonic oscillator approximation (Section 8.6). Another important relation
involving an average, which we shall discuss in detail in Section 11.4, allows the
pressure for a condensed phase system to be obtained from a simulation. Exam-
ples of expressions involving fluctuations are those that relate the specific heats
(either at constant volume or at constant pressure) to fluctuations in the potential
and kinetic energies. Time correlation functions are important because they are
fundamental to the derivation of formulae that permit transport coefficients for a
system to be calculated. Examples include the diffusion coefficient, the bulk and
shear viscosities and the thermal conductivity.

We shall consider the formulae for two properties in detail because these will
be calculated in the example program of the next section. The first property is the
diffusion coefficient for a species i, Di, which is proportional to the time integral
of its velocity autocorrelation function:

Di = 1
3

∫ �

0
dt �vT

i �t�vi�0�� (11.8)

This equation can be integrated by parts to give the following expression which
is valid at long times, t:

6tDi = ��r i�t�− r i�0��2� (11.9)
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Equation (11.9) is an example of an Einstein relation for a transport coefficient.
The average on the right-hand side of Equation (11.9) is closely related to that
of a time correlation function and it can be calculated in a very similar fashion.
The only difference is that, instead of taking the average of the product of the
property at two different times as in Equation (11.7), the averaging is performed
over the square of the difference of the property at the two times.

The second property is the pair distribution function or the radial distribution
function, which is important in the theory of simple fluids (gases and liquids)
because many thermodynamic quantities can be determined from it. The function,
often denoted g�r�, can be thought of as a measure of the structure in a system
because it gives the probability of finding a pair of particles a distance r apart,
relative to the probability that would be expected for a random distribution with
the same density. In practice g�r� is not calculated for single values of the distance
r, but for discrete intervals with a width of, say, �r. Denoting the value of the
radial distribution function in the range �r� r + �r	 as g�r + 1

2 �r� (which is the
mid-point of the interval), one has

g

(

r + 1
2

�r

)

= nsim��r� r +�r	�

nrandom��r� r +�r	�
(11.10)

where the functions n give the average number of particles whose distances from a
given particle lie within the range �r� r +�r	 and the subscripts ‘sim’ and ‘random’
denote the simulation and the random values, respectively. The expression for
nrandom is

nrandom��r� r +�r	� = 4
N

3V
��r +�r�3 − r3	 (11.11)

where N is the number of particles for which g�r� is to be calculated and V is the
system’s volume. To determine nsim it is necessary that all the distances between
particles be calculated for each frame in the trajectory and a histogram kept that
records the number of distances that fall within any particular range �r� r +�r	.
The value of nsim is then equal to the number of distances found for the interval
from the histogram divided by the number of frames in the trajectory, nf , and by
N . The division by nf gives the average number of distances per frame and that
by N the average number of distances per particle.

A crucial part of any simulation study is how to estimate the accuracy of the
results that have been obtained. Errors can be introduced at several stages. At the
most basic level, they arise when a model is chosen to describe the system. We
know, for example, that using semi-empirical QC or MM potentials to calculate
energies and the assumption that atoms are classical particles for the dynamics
are approximations that will affect the generality of the simulation methodology.
There is not much we can do about these errors except improve the physical basis
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of the model. At the next level, errors arise due to the way in which the model
we have chosen is applied. Examples include whether the truncation scheme for
the determination of the non-bonding interactions is adequate, whether the size of
the central box for a PBC simulation is large enough that the effects of imposing
periodicity are unimportant and whether the starting configuration of the system
(the atomic positions and velocities) has been sufficiently well prepared. These
types of errors are characterized by the fact that, for a given model, it is possible
to investigate them by changing some of the parameters of the simulation and then
repeating the study to see how the results change. In practice, how well this can be
done will depend upon the type of system being studied. It will often be feasible to
determine systematically the importance of these effects for a system comprising
relatively few atoms or simple molecules, but it can be difficult if the system is
so large that each simulation is expensive or if the system is a complicated one
containing, for example, flexible molecules with multiple conformations.

A third type of errors is statistical errors, which occur in any quantity that is
calculated from a simulation of finite length. The problem is to estimate how close
the quantities that have been calculated from the simulation are to the values that
would have been obtained from a simulation of infinite length. A related question,
although one that is more difficult to answer, is that we would like to determine,
if possible, the minimum length of a simulation that is necessary to obtain results
of a given precision. A great variety of sophisticated statistical techniques is
available for such estimates, although we shall not deal with any of them in this
book. Instead, we shall limit ourselves to a number of very basic points. First,
it is always a good idea to monitor the values of averages and fluctuations as a
simulation proceeds to see whether they converge to a limiting value. It is also
usually necessary to repeat the simulation several times, with different starting
configurations, to see whether the same limiting values are obtained. Second, for
quantities that depend on some variable, such as time correlation functions and
radial distribution functions, the curves obtained should be smooth. Any roughness
indicates that not enough data have been used in their determination. Finally, a
useful approximate rule of thumb is that the length of simulation, t, required to
obtain sufficient data for the calculation of a particular property, � , must be much
longer than the correlation time, �� , associated with that property, i.e. t � �� .
This rule comes from the fact that many correlation functions have an exponential
form, i.e. ��� �t� ∝ exp�−t/�� �, where the exponent of the exponential is the
inverse of the correlation time. For short times, t � �� , the value of � is correlated
to its initial value and so will not contribute independently to the average or
fluctuation. To do so, the simulation needs to be several periods of length ��
long so that several independent blocks of � values have been generated. It
should be noted that by no means all correlation functions decay exponentially
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and that some decay very slowly at long times. They are said to have long-time
tails. The calculation of the correlation functions for such properties can be a
computationally demanding task.

To finish the discussion on errors we summarize by emphasizing that it can
take data generated from several or even many long simulations to obtain results
to within a reasonable precision. Even then, readers should be warned that great
care must always be exercised when interpreting the significance of the results of
any numerical simulation!

Two functions and an extension to the class Statistics that can help in
performing some of the analyses described above are introduced in this section.
The function definitions are:

Function RadialDistributionFunction

Calculate the radial distribution function from a trajectory using Equation (11.10).

RadialDistributionFunction ( trajectory,

Usage:

selection1, selection2,
bins = 100,
log = logfile,
maximumr = None )

trajectory is the instance of SystemGeometryTrajectory to be
analysed.

selection1 and selection2 are optional positional arguments that give
the indices of the atoms for which the radial distribution is to be
determined. They should be instances of the class Selection.
If two selections are present, the radial distribution function
is determined between the sets of selected atoms. If one is
present, the function is calculated for the selected atoms only,
whereas the absence of any selection means the function will
be calculated for all atoms.

bins is the number of intervals or bins to use in the calculation of
the function.

log is the instance of LogFileWriter to which the function will
be written.

maximumr is the maximum value of the distance for which the function
is to be evaluated. All interparticle distances greater than this
are discarded. The width of each bin (equivalent to �r in Equa-
tion (11.10)) is the value of this argument divided by the number
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of bins. If the argument is absent a suitable value will be esti-
mated.

Remarks: The function only works if the system whose trajectory is being
analysed has translational symmetry, in which case the interpar-
ticle distances are determined using the minimum image con-
vention. For a given pair of particles, this is the smallest distance
that exists between any two of their images in the extended sys-
tem. This condition means that the largest value of maximumr
that is reasonable is half the length of the simulation box.

Function SelfDiffusionFunction

Calculate the self-diffusion function for a set of particles from a trajectory using
the Einstein relation of Equation (11.9).

SelfDiffusionFunction (

Usage:

trajectory, selection,
log = logfile,
maximumtime = None )

selection is an optional positional argument that gives the indices of
the atoms for which the function of Equation (11.9) is to
be calculated. If multiple atoms are selected, the functions of
Equation (11.9) are evaluated for each atom and then averaged.
Absence of the argument leads to all atoms being selected.

maximumtime is the maximum time difference for which the Einstein relation
function is to be calculated. The maximum value of this argu-
ment is determined by the duration of the data stored on the
trajectory.

Remarks: The remaining arguments to the function are similar to those of
RadialDistributionFunction.

Correlation functions can be determined with methods in the Statistics
class. Their use requires that the pertinent data first be extracted from a trajectory
and then assigned to a Statistics instance. The method definitions are:

Class Statistics

Methods for calculating correlation functions.
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Method AutoCorrelation

Calculate an autocorrelation function.

acf = statistics.AutoCorrelation (

Usage:
maximuminterval = None,
QNORMALIZED = True )

maximuminterval is an integer that specifies the maximum interval for
which the autocorrelation is to be determined. The minimum
value of this argument is zero and the maximum value is n−1
where n is the length of the data. Absence of this argument
or a value of None implies that the autocorrelation will be
determined for all possible n−1 intervals.

QNORMALIZED is a Boolean that specifies whether or not the autocorrelation is
to be normalized.

statistics is the instance of Statistics for which the autocorrelation
is being calculated.

acf is the autocorrelation function returned as an instance of
Vector. The length of acf will be one more than the
maximum interval for which it has been evaluated.

Remarks: This method assumes that the interval between successive data
elements is constant and will not give sensible results otherwise.

Method CrossCorrelation

Calculate a cross-correlation function.

ccf = statistics.CrossCorrelation (

Usage:
other,
maximuminterval = None,
QNORMALIZED = True )

other is an instance of Statistics that contains the data against
which the cross-correlation is to be evaluated.

statistics is the instance of Statistics for which the cross-correlation
is being calculated.

ccf is the cross-correlation function returned as an instance of
Vector.

Remarks: The remaining arguments of this method behave similarly to
those of the method AutoCorrelation. The maximum
interval for which the cross-correlation can be calculated will
be one less than the minimum number of data elements in
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statistics or other. To give sensible results, data in
these two instances must have the same origin and have been
generated using the same (constant) interval.

Determination of a correlation function using an expression that is directly based
upon Equation (11.7) will scale as O�nc�2nt − nc�� � O�ncnt�, where nt is the
number of elements in the time series and nc is the number of elements for which
the autocorrelation function is to be calculated. This implies that the time required
for evaluation of the full function is O�n2

t �. It turns out, however, that a much
more efficient algorithm can be formulated that employs FFT techniques and that
scales as O�nt ln nt�. No details will be given here, but the methods described
above will use the faster algorithm when appropriate. Similar remarks apply to the
self-diffusion function of Equation (11.9) as its computation can be formulated in
terms of correlation functions.

11.3 Example 21

The example program presented in this section is a simple one that illustrates
the use of two of the functions described in the last section for analysing the
molecular dynamics trajectory that was generated in Example 20 of Section 10.6.
The program is:

1 """Example 21."""
2
3 from Definitions import *
4
5 # . Read the system definition.
6 solvent = XMLUnpickle ( \

os.path.join ( scratchpath, "water216_cubicbox.xpk" ) )

7 solvent.Summary ( )
8
9 # . Select all oxygens.
10 indices = []
11 for ( i, atom ) in enumerate ( solvent.atoms ):
12 if atom.atomicnumber == 8: indices.append ( i )
13 oxygens = Selection ( indices )
14
15 # . Analyse the trajectory data.
16 trajectory = SystemGeometryTrajectory ( \

os.path.join ( scratchpath, "water216_cubicbox.trj" ), \
solvent, mode = "r" )

17
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18 # . Self-diffusion function.
19 SelfDiffusionFunction ( trajectory, oxygens )
20
21 # . Radial distribution function.
22 RadialDistributionFunction ( trajectory, oxygens )

Line 6 reads in the system definition from the XPK file that was created in
Example 20.

Lines 10–13 create an instance of Selection that contains the indices of all
the oxygens in the system.

Line 16 defines the trajectory object for the data that are to be analysed. These
data were generated in Example 20.

Lines 19 and 22 calculate the self-diffusion and radial distribution functions for
the oxygens in the system using the trajectory data. The results are printed
to pDynamo’s default log file.

Plots of the simulation results are shown in Figures 11.1 and 11.2. The value of
the diffusion coefficient can be calculated from the slope of the line in Figure 11.1
at large times, giving a value of 0.43 Å2 ps−1 or 4.3 × 10−9 m2 s−1, which
is large relative to the experimental value of 2.3 × 10−9 m2 s−1 at 25 �C. To
verify this result fully, a similar analysis would have to be carried out on a longer
trajectory to ensure that the function plotted in Figure 11.1 had indeed reached
its limiting value at long times.

Time (ps)

1 3
(r

(t
) −

 r(
0)

)2
(Å

2 )

543210

5

4

3

2

1

0

Fig. 11.1. The function 1
3��r�t� − r�0��2� calculated for the oxygen atoms

of the water molecules using the molecular dynamics trajectory generated in
Example 20.
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Fig. 11.2. The radial distribution function calculated for the oxygen atoms
of the water molecules using the molecular dynamics trajectory generated in
Example 20.

The radial distribution function of Figure 11.2 reproduces reasonably closely
the experimental neutron and X-ray results, although the experimental curve has
a lower first peak and has more pronounced oscillations at longer range. The fact
that gOO�r� = 0 for r ≤ 2�4 Å indicates that the probability of finding two oxygens
at these distances apart is negligible whereas the presence of oscillations after this
implies that the water molecules are preferentially located in particular regions
that correspond to the various ‘coordination’ shells in the liquid. The structure in
the first coordination shell is especially marked.

11.4 Temperature and pressure control in molecular dynamics simulations

Three of the example programs described up to now have involved molecular
dynamics simulations. The general procedure when doing a simulation has been
to assign velocities to the atoms in the system at a low temperature, heat the
system up to the temperature desired during the course of a short simulation and
then equilibrate it at this temperature for another short period before starting the
simulation for which a trajectory is to be generated. In the heating and equilibration
phases of the simulations described previously, the temperature of the system was
set to the required value by the simple, ad hoc procedure of scaling the velocities
of all the atoms every few steps. When no temperature modification is done, we
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have seen that one measure of the accuracy of the integration of the equations
of motion for the particles is that the total energy for the system is conserved.
In thermodynamic terms, the simulations are said to have been performed in the
microcanonical or NVE ensemble. In other words, the number of particles, the
volume and the energy of the system are constants.

Molecular dynamics simulations within the microcanonical ensemble are the
easiest to perform, but, if the aim of our simulations is to mimic the conditions
under which systems are investigated experimentally, the microcanonical ensem-
ble is not necessarily the most appropriate. In particular, it is common to do
experiments under conditions in which the ambient temperature and/or pressure
are constants. The thermodynamic ensembles that correspond to such conditions
are the canonical or NVT ensemble, the isothermal–isobaric or NPT ensemble
and the isobaric–isoenthalpic or NPH ensemble, respectively.

Before we go on to discuss methods that allow molecular dynamics simulations
to be performed for these ensembles, we shall introduce an algorithm developed
by H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. Di Nola
and J. R. Haak for the control of the temperature and pressure in a molecular
dynamics simulation. It should be emphasized that this algorithm does not generate
trajectories drawn from the NVT, NPT or NPH ensembles, although the results
need not be too different in particular cases. The reason that we use it here is
that it is simple, robust and widely used. It also acts as an introduction to certain
concepts that will be needed in the discussion of the more precise algorithms that
are to be mentioned later.

An essential idea behind the method is that the system that we want to simulate
is, in fact, not isolated but interacts, or is coupled, with an external bath. Let us
consider temperature control first. Remember that, in a simulation in the micro-
canonical ensemble, the energy remains constant and the temperature fluctuates.
A coupling to an external system means that energy can be transferred into and
out of the system that we are simulating and so its energy will fluctuate. It is this
transfer, properly formulated, that allows the algorithm to control the temperature.

Berendsen et al. proposed the following modification of the equation of motion
for the velocities of the atoms, V , to accomplish the coupling:

V̇ = M−1F + 1
2�T

(
TB

�
−1

)

V (11.12)

where TB is the reference temperature, which is the temperature of the external
thermal bath, � is the instantaneous temperature defined in Equation (9.15) and
�T is a coupling constant (with units of time). The extra term added to the
equations of motion acts like a frictional force. When the actual temperature of the
system is higher than the desired temperature, the force is negative. This results
in the motions of the atoms being damped and the kinetic energy and, hence,
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the temperature being reduced. If the temperature is too low, the reverse happens
because the frictional force is positive and energy is supplied to the system. The
coupling constant, �T , determines the strength of the coupling to the external bath.
For large values of �T the coupling is weak and the temperature of the system
will be steered only slowly towards the temperature of the bath. For small values
the coupling is stronger and the dynamics of the system will be more strongly
perturbed.

The principles behind the control of pressure are similar to those for the control
of temperature. The major difference is that the control of pressure manifests itself
as a modification of the equation of motion for the coordinates and the volume of
the system, V . Note that, because volume changes are involved, simulations that
control the pressure only make sense in the condensed phase. The pressure-control
equations of motion proposed by Berendsen et al. are

Ṙ = V − �

3�P

�PB −��R (11.13)

V̇ = − �

�P

�PB −��V (11.14)

where PB is the reference pressure and � is the instantaneous pressure. The
parameters � and �P are the isothermal compressibility of the system, which has
units of inverse pressure, and the pressure coupling constant, which has units of
time. It is the ratio of these two parameters, �/�P , that determines the size of
the coupling of the system to the external pressure bath. Equations (11.13) and
(11.14) behave in a similar way to Equation (11.12). If the actual pressure is less
than the desired pressure the system contracts whereas if the actual pressure is
too large the system expands.

An instantaneous pressure can be defined in the same way as an instanta-
neous temperature. Thus, the thermodynamic pressure, P, is the average of the
instantaneous pressure:

P = ��� (11.15)

The expression for the thermodynamic pressure, P, in the canonical ensemble is

P = −
(

A

V

)

T

(11.16)

where A is the Helmholtz free energy and V is the volume. It can be shown that
this is equivalent to

P = 1
3V

�2� +�� (11.17)
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where � and � are the kinetic energy and (instantaneous) virial for the system,
respectively. The latter is proportional to the derivative of the potential energy,
	 , with respect to the volume:

� = −3V
	

V
(11.18)

More explicit expressions for the virial can be derived for particular forms of the
potential energy (for example, functions consisting of pairwise interactions) but,
in the general case, it is better to evaluate it directly from Equation (11.18).

The above formulae are valid only for an isotropic system in which the pressure
acts equally no matter what the direction. In the general case of an anisotropic
system, the pressure is written as a tensor, �. This tensor, which has nine com-
ponents, is sometimes known as the stress tensor. Its form is

� =
⎛

⎝

�xx �xy �xz

�yx �yy �yz

�zx �zy �zz

⎞

⎠ (11.19)

The pressure in the isotropic case is given by one-third of the trace of the stress
tensor:

� = 1
3

(

�xx +�yy +�zz

)

(11.20)

It is possible to generalize Equations (11.13)–(11.18) so that simulations can be
performed with all components of the stress tensor. This results in the shape of
the simulation box changing as well as its size. Such techniques are particularly
useful for studying crystals and other solids in which there are changes of phase.

Berendsen et al. formulated their algorithm with a leapfrog version of the Verlet
dynamics integrator and so the function that implements this technique has the
following definition:

Function LeapFrogDynamics_SystemGeometry

Perform a molecular dynamics simulation with a leapfrog Verlet algorithm.
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Usage:

LeapFrogDynamics_SystemGeometry (
system,
logfrequency = 1,
pressure = 1.0,
pressurecoupling = 2000.0,
rng = None,
steps = 1000,
temperature = 300.0,
temperaturecoupling = 0.1,
timestep = 0.001,
trajectories = None )

pressure is the value of the reference pressure, PB, in atmospheres.
pressurecoupling gives the value of the ratio �P/� in Equations (11.13)

and (11.14) in units of ps atm. Pressure control is deacti-
vated if the system is not a periodic one or if this argument
is set to zero or to None.

temperature is the value of the reference pressure, TB, in kelvins.
temperaturecoupling is the value of the temperature coupling constant,

�T , from Equation (11.12) in picoseconds. Temperature
control is deactivated by setting this argument to zero or to
None.

Remarks: The remaining arguments behave like those of the function
VelocityVerletDynamics_SystemGeometry
described in Section 9.2.

The implementation of the algorithm is straightforward. The essential difference
from a standard dynamics algorithm is that, at appropriate points in the integration,
the velocities, coordinates and box size are scaled by factors determined by
Equations (11.12)–(11.14). For temperature control the velocity scale factor, �T , is

�T =
√

1+ �

�T

(
TB

�
−1

)

(11.21)

while for pressure control the coordinate scale factor, �P , is

�P = 3

√

1− ��

�P

�PB −�� (11.22)

The volume is scaled by the factor �3
P . In both equations, � is the timestep for

the integration of the equations of motion.
The algorithm described above is the one that we shall use in this book. As

already remarked, though, it does not generate trajectories in the NVT, NPT or
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NPH ensembles (depending upon whether temperature and/or pressure control
is being used). There are methods that do this but before we describe some of
them it is important to define exactly what is meant by generating trajectories in
an appropriate ensemble. To do this we need the probability density distribution
functions for the various ensembles. These are crucial to the theory of statistical
thermodynamics because they can be used to calculate the properties of any
equilibrium system. Thus, if the probability density distribution function in a
particular ensemble is �, the average of a property, � , can be written as an integral:

��� =
∫

d� �������� (11.23)

where � are the ensemble variables which will include the coordinates and
momenta of the particles and d� indicates the volume element for a multidimen-
sional integration over these variables.

The probability density is easiest to define for the microcanonical ensemble. If
we suppose that the energy in the ensemble has a value E, then the probability of
a configuration that does not have this energy will be zero for, by definition, the
energy is a constant in the ensemble. Hence, the probability of a configuration that
has this energy will be simply the reciprocal of the total number of states with an
energy E. Mathematically, the number of states with an energy E must be written
as an integral over the phase space of the system because the system’s coordinates,
R, and momenta, P, are continuous variables. Taking this into account, the
probability density for the microcanonical ensemble, �NVE, is

�NVE = ��
 �P�R�−E�
∫

dP dR��
 �P�R�−E�
(11.24)

where 
 is the Hamiltonian for the system and the Dirac delta functions have
the effect of selecting only those configurations with total energy E.

In the canonical ensemble, it is the thermodynamic temperature that is constant
and the energy fluctuates. The probability density is written as

�NVT = exp�−
 �P�R�/�kBT�	
∫

dP dR exp�−
 �P�R�/�kBT�	
(11.25)

where kB is Boltzmann’s constant and T is the temperature. Note that this equation
is a statement of the familiar Boltzmann distribution law which says that the prob-
ability of a configuration is proportional to its Boltzmann factor, exp�−
/�kBT�	.

In the isobaric–isothermal ensemble the density function is similar to the canon-
ical function but the volume of the system is also a variable:

�NPT = exp�−�
 �P�R�+PV�/�kBT�	
∫

dP dR dV exp�−�
 �P�R�+PV�/�kBT�	
(11.26)
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What we would like is a molecular dynamics method that generates configura-
tions that are representative either of the canonical or of the isobaric–isothermal
ensembles, i.e. one that generates states with a probability distribution appropriate
for the ensemble. Many methods that do this have been proposed and we shall
only briefly mention a few of them here. As was implicit with the Berendsen
algorithm, it is usual to divide the methods into those that keep the temperature
constant and those that maintain the pressure. Simulations in the NPT ensemble
are then performed by combining algorithms for each type of control separately.

We consider constant-temperature algorithms for molecular dynamics simula-
tions first. One technique was originally proposed by S. Nosé and later extended
by W. G. Hoover and by G. J. Martyna, M. L. Klein and M. E. Tuckerman. The
basis of the method is to introduce an extra, thermostating degree of freedom that
represents the external thermal bath to which the system is coupled. In the original
Nosé–Hoover algorithm, there is a single bath coordinate, �, and an associated
momentum, p�, in addition to the atomic coordinates and momenta. The modified
equations of motion for the combined or extended system are

Ṙ = M−1P (11.27)

Ṗ = F�R�− p�

Q
P (11.28)

�̇ = p�

Q
(11.29)

ṗ� = PTM−1P −NdfkBT (11.30)

where Ndf is the number of coordinate degrees of freedom. The parameter Q

is the ‘mass’ of the thermostat (with units of mass times length squared) which
determines the size of the coupling. A good choice of Q is crucial. Large values
result in equations that approximate Newton’s equations (and, hence, a constant-
energy simulation), whereas small values produce large couplings and, as Nosé
showed, lead to dynamics with poor equilibration. Physically, the momentum
variable, p�, in Equation (11.28) acts like a friction coefficient. When its value
is positive, the kinetic energy of the system is damped, and, when the value is
negative, it is increased. The value of p� is determined by Equation (11.30) whose
right-hand side is proportional to the difference between the actual temperature
and the desired temperature. If the current temperature is too high, energy is
removed from the system because the friction coefficient increases, whereas the
reverse happens if the temperature is too low.

To perform a constant-temperature simulation, these equations are integrated in
the normal way (with the extra two degrees of freedom). Like calculations in the
microcanonical ensemble, it is important to be able to verify the precision of the
simulation by monitoring conserved quantities. In the microcanonical ensemble
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it is the energy defined by the classical Hamiltonian (Equation (9.1)) which is
perhaps the most important. The equivalent in the Nosé–Hoover algorithm is
defined by the Hamiltonian, 
NH:


NH = 1
2

PTM−1P +	 �R�+ p2
�

2Q
+NdfkBT� (11.31)

Nosé and Hoover showed that the system of Equations (11.27)–(11.30) pro-
duced trajectories of atomic coordinates and momenta drawn from a canonical
distribution. It was observed, however, that in some cases the control of temper-
ature was inadequate or poor. This led Martyna et al. to propose adding more
thermostating degrees of freedom by introducing a ‘chain’ of thermostats. Their
equations were

Ṙ = M−1P (11.32)

Ṗ = F�R�− p�1

Q1
P (11.33)

�̇i = p�i

Qi

∀ i = 1� � � � �M (11.34)

˙p�1
= PTM−1P −NdfkBT −p�1

p�2

Q2
(11.35)

˙p�j
=

p2
�j−1

Qj−1
−kBT −p�j

p�j+1

Qj+1
∀ j = 2� � � � �M −1 (11.36)

˙p�M
= p2

�M−1

QM−1
−kBT (11.37)

where M is the total number of thermostats. Note that it is possible to formulate
equivalent equations for the case in which there are several different chains, each
of which is coupled to a different part of the system.

Nosé–Hoover thermostating is not the only way in which the temperature can
be controlled. An early algorithm was developed by H. C. Andersen, who sug-
gested that, at intervals during a normal simulation, the velocities of a randomly
chosen particle or molecule could be reassigned from a Maxwell–Boltzmann dis-
tribution. This is equivalent to the particle ‘colliding’ with one of the particles
in a heat bath. The algorithm produces trajectories in the canonical ensemble
but, because of the reassignment of velocities, they are discontinuous. A related
approach, which is both elegant and widely used, is one in which a stochastic
analogue of Newton’s equation of motion, the Langevin equation, is employed to
describe the dynamics of a particle interacting with a thermal bath. The Langevin
equation has two extra force terms arising from this interaction – a random force
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that buffets the particle about and a frictional force, proportional to the particle’s
velocity, that dissipates excess kinetic energy. Another method that is based upon
a different concept is one in which the kinetic energy and, hence, the tempera-
ture, are constrained to be constant at each step. The modification of Newton’s
equations that achieves this is straightforward and uses Gauss’s principle of least
constraint. The problem with this technique is that the coordinate configurations
produced are drawn from a canonical ensemble, but the momentum configurations
are not.

There is a smaller variety of algorithms for performing constant-pressure molec-
ular dynamics simulations. The most common types are extended system algo-
rithms, although algorithms based upon Gauss’s principle of least constraint have
also been developed. All methods change the volume of the simulation box.

One of the first extended system algorithms to be proposed was that of
Andersen, who introduced the volume of the simulation box, V , as an additional
dynamical variable. His equations are

Ṙ = M−1P + 1
3

V̇

V
R (11.38)

Ṗ = F�R�− 1
3

V̇

V
P (11.39)

V̈ = 1
W

�� −PB� (11.40)

where W is the ‘mass’ of the volume or barostat degree of freedom with units
of mass times length to the fourth power. The Hamiltonian corresponding to this
system of equations, 
A, is conserved and is


A = 
 + 1
2

WV̇ 2 +PBV (11.41)

Andersen showed that these equations generate trajectories consistent with the
isobaric–isoenthalpic (NPH) ensemble. Hoover later modified them by adding
thermostat variables of the types found in Equations (11.27)–(11.30) so that the
NPT ensemble could be sampled. More recent improvements to these algorithms
have been suggested by Martyna and co-workers.

All the constant-pressure algorithms described above can be generalized to
allow the shape as well as the size of the simulation box to change during
the course of a simulation. In these cases extra degrees of freedom must be
introduced, which correspond to the position vectors of the sides of the box and
add considerably to the complexity of the equations. M. Parrinello and A. Rahman
and Nosé and Klein did early work to adapt Andersen’s equations for simulations
of this sort.
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11.5 Example 22

To illustrate the pressure and temperature coupling algorithm implemented in the
function LeapFrogDynamics_SystemGeometry, we perform a simulation
of water. The program is:

1 """Example 22."""
2
3 from Definitions import *
4
5 # . Read the system definition.
6 solvent = XMLUnpickle ( \

os.path.join ( scratchpath, "water216_cubicbox.xpk" ) )
7 solvent.Summary ( )
8
9 # . Define a random number generator in a given state.
10 rng = Random ( )
11 rng.seed ( 917133 )
12
13 # . Equilibration.
14 LeapFrogDynamics_SystemGeometry ( solvent, \

logfrequency = 500, \
pressure = 1.0, \
pressurecoupling = 2000.0, \
rng = rng, \
steps = 5000, \
temperature = 300.0, \
temperaturecoupling = 0.1, \
timestep = 0.001 )

15
16 # . Data-collection.
17 trajectory = SystemGeometryTrajectory ( \

os.path.join ( scratchpath, "water216_cubicbox_cpt.trj" ), \
solvent, mode = "w" )

18 LeapFrogDynamics_SystemGeometry ( solvent, \
logfrequency = 500, \
pressure = 1.0, \
pressurecoupling = 2000.0, \
steps = 10000, \
temperature = 300.0, \
temperaturecoupling = 0.1, \
timestep = 0.001, \
trajectories = [ ( trajectory, 50 ) ] )

The program is very similar to that of Example 20 of Section 10.6. The major
difference is that the leapfrog algorithm is being used instead of the velocity
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Verlet technique. As before there is an initial equilibration of 5 ps (line 14)
followed by a data-collection phase of 10 ps (line 18). Both are performed with
pressure and temperature control at a reference pressure of 1 atm and a reference
temperature of 300 K. The temperature coupling constant is 0.1 ps while the
pressure coupling constant is 2000 ps atm, which corresponds to having values
of � and �P from Equations (11.13) and (11.14) of 5 × 10−5 atm−1 and 0.1 ps,
respectively. The values of 0.1 ps for the parameters �P and �T are the minimum
values recommended by Berendsen et al.

The simulation above produces results for the static and dynamical properties
of water that do not differ markedly from the simulation performed within the
microcanonical ensemble in Example 20. Likewise, the values for the averages
of the temperature are very similar for the two simulations, although the average
from the simulation with the Berendsen algorithm is almost exactly 300 K (as it
should be). In both cases the RMS deviations of the temperature are small, with
values of 3–4 K.

In contrast, the pressure exhibits much greater fluctuations. The instantaneous
pressure as a function of time from the simulation is plotted in Figure 11.3.
Although the average at the end of the simulation is of the order of 1 atm, the
instantaneous pressure can deviate by several hundred atmospheres from this. The
volume as a function of time is shown in Figure 11.4. The changes here are also
quite marked.
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Fig. 11.3. The instantaneous pressure as a function of time from the simulation
of Example 22.
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Fig. 11.4. The volume as a function of time from the simulation of Example 22.

11.6 Calculating free energies: umbrella sampling

In Section 8.6 we saw how it was possible to estimate various thermodynamic
quantities for a gas-phase system within the rigid-rotor, harmonic oscillator
approximation. This approximation, although it can give useful results, is limited
in that it relies on data from a very limited part of the potential energy surface,
namely a stationary point. Molecular dynamics techniques, because they explore
the phase space more fully, can be used to determine thermodynamic quantities
more rigorously. In this section, we introduce this topic by considering a method
that can be employed to calculate the free energies of certain types of processes
either in the gas or in condensed phases. Additional techniques for the calculation
of free energies will be left to Section 12.5.

In what follows we shall limit the discussion to the canonical ensemble, although
the arguments generalize to the isobaric–isothermal case. In classical statistical
thermodynamics the partition function, ZNVT, for a system of N indistinguishable
particles at constant temperature and volume is

ZNVT = 1
h3N N !

∫

dP
∫

dR exp�−
 �P�R�/�kBT�	 (11.42)

For Hamiltonians of the form given in Equation (9.1), it is possible to perform
the integration over the momentum variables, leaving an integral, called the
configuration integral, of the position coordinates only. The probability density
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distribution function of Equation (11.25) can be expressed in terms of the partition
function as

�NVT = 1
h3N N !

exp�−
 �P�R�/�kBT�	

ZNVT
(11.43)

Once the partition function and the density distribution function are known, the
thermodynamic quantities for the system can be determined. Thus, for example,
the Helmholtz free energy, A, is given by

A = −kBT ln ZNVT (11.44)

It is probably not evident from this expression how the free energy for a system
can be calculated from a simulation but we can, with a little manipulation, rewrite
the partition function of Equation (11.42) as an ensemble average of the form
found in Equation (11.23). The argument is as follows:

ZNVT ∝
∫

dR exp �−	/�kBT�	

∝
∫

dR exp �−	/�kBT�	
∫

dR exp �−	/�kBT�	 exp �	/�kBT�	

×
∫

dR exp �−	/�kBT�	 exp �	/�kBT�	

∝ 1
�exp �	/�kBT�	� (11.45)

In this derivation we have neglected the integrals over the atomic momenta, which
can be treated separately. In the second step we note that the integral introduced
in the numerator and denominator reduces to

∫

dR which evaluates to a constant
equal to V N , where V is the volume of the system and N is the number of
particles.

It might be thought that a possible way to determine the free energy is to
perform a molecular dynamics simulation, evaluate the average �exp �	/�kBT�	�
along the trajectory and thus calculate the partition function and hence the free
energy. However, this approach turns out to be impractical because it is extremely
difficult to get reliable values for the average. The reason is that the simulation will
preferentially sample configurations with large negative potential energies because
these are the configurations that have a higher probability. The configurations that
contribute significantly to the average, though, will be those with large potential
energies because their factors, exp�	/�kBT�	, will be large.

Although the problem of adequate sampling may be especially acute when we
are trying to calculate free energies and related thermodynamic properties, it must
be borne in mind generally whenever any average is being calculated from a
simulation. Several strategies are employed for tackling this problem. One is to
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use techniques that enhance sampling either for the phase space as a whole or in
certain regions of it during a simulation. It is one of these methods that we shall
discuss in more detail in the remainder of the section. Another approach is to be
less ambitious and define quantities that can be calculated without encountering
the same convergence problems. These techniques will be left to Section 12.5.

One way to enhance sampling in a particular region of phase space is the
method of umbrella sampling, which was suggested by J. P. Valleau and G. M.
Torrie. In this technique a positive biasing function, ��R�, is introduced and the
ensemble average for a property, � , becomes

��� =
∫

dR��R� exp �−	 �R�/�kBT�	
∫

dR exp �−	 �R�/�kBT�	

=
∫

dR ���R�/��R����R� exp �−	 �R�/�kBT�	
∫

dR��R� exp �−	 �R�/�kBT�	

×
∫

dR��R� exp �−	 �R�/�kBT�	
∫

dR �1/��R����R� exp �−	 �R�/�kBT�	

= ���R�/��R��biased

�1/��R��biased
(11.46)

In the derivation of this equation, it has been assumed that the property is inde-
pendent of the atomic momenta and so the integrals concerning them cancel out.
The notation �· · · �biased indicates an ensemble average determined with the biased
distribution function, �biased:

�biased = ��R� exp �−	 �R�/�kBT�	
∫

dR��R� exp �−	 �R�/�kBT�	
(11.47)

Equation (11.46) states that the ensemble average for a property can be rewritten
as the ratio of the averages of the properties ��R�/��R� and 1/��R� calculated
within the biased ensemble. It is easier to see what this means if we write an
expression for the biasing function, ��R�, in terms of an umbrella potential, 	umb:

��R� = exp �−	umb�R�/�kBT�	 (11.48)

With this definition, the distribution function of Equation (11.47) corresponds
to that of a system whose Hamiltonian has been modified by adding to it an
extra term, 	umb. Ensemble averages in the biased ensemble are calculated by
performing molecular dynamics simulations for the system with the modified
Hamiltonian and then the results for the normal, unbiased ensemble are obtained
by applying the formula of Equation (11.46).

In this section we shall apply the technique of umbrella sampling to the cal-
culation of a particular type of free energy, the potential of mean force (PMF),
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which is central to many statistical thermodynamics theories. It is, for example,
required in some versions of transition-state theory to calculate the rate of reaction
between two different states of a system.

The PMF can be obtained as a function of one or more of the system’s
degrees of freedom, although for clarity we shall restrict our attention to the
unidimensional case. This degree of freedom, �, can be a simple function of the
Cartesian coordinates of the atoms, such as a distance or an angle, or it can take a
more complicated form depending upon the process being studied. The expression
for the PMF is the same as that for a free energy (Equation (11.44)) except that the
averaging is done over all degrees of freedom apart from the one corresponding
to the variable, �. Let us denote �0 as the value of the degree of freedom, �, for
which the PMF is being calculated and ��R� as the function which relates � to
the atomic coordinates, R. The PMF, ���0�, can then be written as

���0� = c−kBT ln
(∫

dR ����R�−�0� exp �−	 �R�/�kBT�	
)

(11.49)

In this equation, the parts of the partition function, such as the prefactor and the
integrals over the atomic momenta, that are independent of � have been separated
off into the arbitrary constant, c. The removal of the degree of freedom, �, from
the averaging procedure is ensured by the Dirac delta function, which selects only
those combinations of the atomic coordinates, R, that give the reference value of
the PMF coordinate, �0.

Although Equation (11.49) illustrates the connection between the PMF and
Equation (11.44), it is more usual to write the PMF in terms of the ensemble
average of the probability distribution function of the coordinate, ����0��, which
has the expression

����0�� =
∫

dR ����R�−�0� exp �−	 �R�/�kBT�	
∫

dR exp �−	 �R�/�kBT�	
(11.50)

The PMF is then

���0� = c′ −kBT ln����0�� (11.51)

where c′ is another arbitrary constant.
In principle, the average, ����0��, can be calculated by performing a simulation

in the canonical ensemble and then constructing a histogram of the frequencies
of occurrence of the different values of the variable �0 along the trajectory, using
a similar technique to that for the calculation of the radial distribution function
of Section 11.2. In practice, though, this will normally not be a feasible approach
because of the difficulties of sampling sufficiently the various configurations that
are accessible to the system.
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One way to tackle this problem is to use umbrella sampling. The difficulty with
this method, however, is that we need to choose a form for the umbrella poten-
tial, 	umb, that allows efficient sampling throughout the range of the variable,
�0, that we are studying. The optimum choice of this potential, or the biasing
function, requires a knowledge of the distribution function that we are trying
to find which is, of course, unknown beforehand. The solution is to perform a
series of calculations, instead of one, with umbrella potentials that concentrate the
sampling in different, but overlapping, regions of phase space. The trajectories
for each simulation or window are then used to calculate a series of biased distri-
bution functions, in the form of histograms, which are pieced together to obtain
a distribution function that is valid for the complete range of the coordinate, �0.

The form of the umbrella potential that restricts sampling to a limited range of
values of �0 is arbitrary but a common choice, and the one that we shall make, is
a harmonic form, i.e.

	umb��0� = kumb��0 −�ref�
2 (11.52)

where kumb is the force constant for the potential and �ref is the reference value
of the coordinate whose value is changed at each window.

The reconstruction of the full distribution function from the separate distribu-
tions for each window is the crucial step in an umbrella sampling calculation.
An efficient procedure for doing this is the weighted histogram analysis method
(WHAM) which was developed by S. Kumar and co-workers from a technique
originally due to A. M. Ferrenberg and R. H. Swendsen. The WHAM method
aims to construct an optimal estimate for the average distribution function in
the unbiased ensemble, ����0��, from the biased distribution functions for each
window. Suppose that there are Nw windows, each of which has an umbrella
potential, 	�

umb, and an associated biased distribution function, ����0���
biased. The

unbiased distribution functions for each window are determined by applying the
arguments used in the derivation of Equation (11.46) to the expression for the
distribution function in Equation (11.50). The result is

����0���
biased = exp

[−	�
umb��0�/�kBT�

] ����0���
unbiased

�exp
[−	�

umb��0�/�kBT�
]�unbiased

(11.53)

Note that the unbiased distribution functions would be equivalent to the full
distribution function if the form of the umbrella potential allowed a complete
sampling of the range of the coordinate, �0. Because this is not the case, the
unbiased distributions are likely to provide useful information only for values of
�0 around the reference value of the coordinate, ��

ref , for each window.
Kumar et al. supposed that the full distribution function could be written as a

weighted sum of the unbiased window distribution functions and then derived an
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expression for the weights that minimized the statistical error in the estimate of
the function. The equation for the distribution is

����0�� =
Nw∑

�=1

����0���
unbiased

⎧

⎨

⎩

n� exp
[−�	�

umb��0�−��/�kBT�
]

∑Nw
�=1 n� exp

[

−�	�
umb��0�−��/�kBT�

]

⎫

⎬

⎭

(11.54)
where n� is the number of independent data points employed for the generation
of the distribution function for a window and � is a window free energy that is
related to the denominator of Equation (11.53) by the following expression:

exp �−�/�kBT�	 = �exp
[−	�

umb��0�/�kBT�
]�unbiased (11.55)

Equation (11.54) can be rewritten in terms of the biased distribution functions
using Equation (11.53) as

����0�� =
∑Nw

�=1 n�����0���
biased

∑Nw
�=1 n� exp

[

−�	�
umb��0�−��/�kBT�

] (11.56)

To complete the derivation an estimate of the constants, �, is needed. These can
be determined from Equation (11.55) using the expression for the full distribution
function given in Equation (11.56), i.e.

exp �−�/�kBT�	 =
∫

d�0 ����0�� exp
[−	�

umb��0�/�kBT�
]

(11.57)

Equations (11.56) and (11.57) provide the means of calculating the average
distribution function, ����0��, and, hence, the PMF from a set of window dis-
tribution functions. The equations must be solved iteratively because both the
distribution function, ����0��, and the Nw free energies, �, are unknown initially.
The procedure is to start by guessing a set of values for the free energies of each
window (usually zero) and, with these, calculate ����0�� for the complete range
of �0 from Equation (11.56). This estimate of the distribution function is then used
to determine the window free energies from Equation (11.57) and the process is
repeated until the values both of ����0�� and of the set of � no longer change.
Experience has shown that this procedure is stable but that accurate results will
be obtained only if the histograms corresponding to neighbouring distribution
functions overlap to a reasonable extent.

The first requirement when carrying out molecular dynamics–umbrella sam-
pling calculations using the scheme presented above is a way of specifying the
umbrella potentials, 	�

umb. In pDynamo, this is conveniently done using the var-
ious subclasses of SoftConstraint discussed in Section 5.6. The second
requirement is that the values of �0 and of 	�

umb��0� that are sampled during
the window simulations need to be saved. This is achieved with a new class
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called SystemSoftConstraintTrajectory. Instances of this class behave
exactly as those of SystemGeometryTrajectory except that data concern-
ing soft constraints are written instead of geometrical data. The third requirement
is that the WHAM equations, Equations (11.56) and (11.57), need to be solved
for the PMF given the window data. A function suitable for this task is:

Function WHAMEquationSolver

Solve the WHAM equations given a set of soft-constraint trajectories.

WHAMEquationSolver (

Usage:

trajectories,
bins = 100,
log = logfile,
temperature = 300.0 )

trajectories is a list of SystemSoftConstraintTrajectory
instances containing the umbrella potential data.

bins specifies the number of bins to use in the calculation of the
unbiased distribution function and PMF. The function works
by first scanning the range of values that are spanned by the
umbrella function variable and then dividing this range into
bins divisions of equal width for construction of the data
histograms.

log is the instance of LogFileWriter to which the results
will be written.

temperature is the temperature at which the PMF is to be calculated.
This is usually the temperature at which the simulations were
performed.

In this book we only consider examples in which a single umbrella potential is
applied during a simulation. However, PMFs can be calculated that are functions
of more than one variable and the WHAM procedure generalizes straightforwardly
to these cases.

11.7 Examples 23 and 24

In this section, the potential of mean force between two conformations of the
bALA molecule in vacuum is computed. The reaction coordinate is chosen as
the distance between the carbonyl oxygen of the N-terminal acetyl group and the
amide hydrogen of the C-terminal N-methyl group. At short distances there is an
intramolecular hydrogen bond but this is broken as the distance increases.
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There are two example programs. The first performs the molecular dynamics
simulations to generate the umbrella sampling data for a series of windows and
the second uses these data to calculate the PMF by solving the WHAM equations.
The first program is:

1 """Example 23."""
2
3 from Definitions import *
4
5 # . Define some parameters.
6 DINCREMENT = 1.0
7 DMINIMUM = 1.5
8 DNAME = "dOH"
9 FORCECONSTANT = 20.0
10 NWINDOWS = 5
11
12 # . Define the atom indices.
13 OXYGEN = 5
14 HYDROGEN = 17
15
16 # . Define the MM and NB models.
17 mmmodel = MMModelOPLS ( "booksmallexamples" )
18 nbmodel = NBModelFull ( )
19
20 # . Generate the molecule.
21 molecule = MOLFile_ToSystem ( \

os.path.join ( molpath, "bala_c7eq.mol" ) )
22 molecule.DefineMMModel ( mmmodel )
23 molecule.DefineNBModel ( nbmodel )
24 molecule.Summary ( )
25
26 # . Read in the starting coordinates.
27 molecule.coordinates3 = XYZFile_ToCoordinates3 ( \

os.path.join ( xyzpath, "bala_1pt5.xyz" ) )
28
29 # . Define a constraint container and assign it to the system.
30 constraints = SoftConstraintContainer ( )
31 molecule.DefineSoftConstraints ( constraints )
32
33 # . Save the molecule definition.
34 XMLPickle ( \

os.path.join ( scratchpath, "bala_example23.xpk" ), \
molecule )

35
36 # . Define a random number generator.
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37 rng = Random ( )
38
39 # . Loop over the values of the distance.
40 for i in range ( NWINDOWS ):
41
42 # . Reset the random number generator.
43 rng.seed ( 291731 + i )
44
45 # . Calculate the new constraint distance.
46 distance = DINCREMENT * float ( i ) + DMINIMUM
47
48 # . Define a new constraint.
49 scmodel = SoftConstraintEnergyModelHarmonic ( distance, \

FORCECONSTANT )
50 constraint = SoftConstraintDistance ( OXYGEN, HYDROGEN, \

scmodel )
51 constraints[DNAME] = constraint
52
53 # . Equilibration.
54 LeapFrogDynamics_SystemGeometry ( molecule, \

logfrequency = 1000, \
rng = rng, \
steps = 50000, \
temperature = 300.0, \
temperaturecoupling = 0.1, \
timestep = 0.001 )

55
56 # . Data-collection.
57 trajectory = SystemSoftConstraintTrajectory ( \

os.path.join ( scratchpath, "bala_window" + ‘i‘ + ".trj" ), \
molecule, mode = "w" )

58 LeapFrogDynamics_SystemGeometry ( molecule, \
logfrequency = 1000, \
steps = 100000, \
temperature = 300.0, \
temperaturecoupling = 0.1, \
timestep = 0.001, \
trajectories = [ ( trajectory, 1 ) ] )

Lines 6–14 set the values of various parameters that will be needed later in the
program.

Lines 17–24 define the system corresponding to the bALA molecule. Note that
the molecule is small enough that the NBModelFull NB model is
appropriate.
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Line 27 reads in a set of starting coordinates for the simulations. These coordinates
correspond to a minimum-energy structure for the bALA molecule in
which the distance between the N-terminal carbonyl oxygen and the C-
terminal amide hydrogen is constrained to be 1.5 Å. The constraint was
imposed by geometry optimizing the molecule with a soft constraint on
the O–H distance.

Lines 30–31 create an empty soft constraint container and assign it to the system.
Line 34 saves the molecule definition in an XPK file for use in Example 24.
Line 40 starts the loop within which the window simulations are performed.
Lines 46–50 create the soft constraint that will be applied to the O–H distance for

the window. The definitions for each window are the same except that
the equilibrium distances change, going from 1.5 to 5.5 Å in increments
of 1 Å. The constraint force constant has a value of 20 kJ mol−1 Å−2 and
has been chosen because it gives good results for this application. The
aim is to have values that enable the full range of O–H distances covered
by each window (in this case, about 0.5 Å either side of the equilibrium
distance) to be adequately sampled and to have some, but not too much,
overlap with the sampling of adjacent windows.

In practice suitable force constants are most often chosen by trial and
error. A few, short simulations are done with guess values and then the
values are adjusted upwards if the sampled range is too great or down-
wards if it is too small. One of the advantages of umbrella sampling
simulations is that no data are wasted. If it appears after several sim-
ulations that sampling is lacking in some areas of the constraint space,
additional simulations targeting these areas can be done with appropriate
constraints and the new data added to the old.

Line 51 assigns the new constraint to the system’s constraint container with the
name "dOH". At the same time, any existing constraints of the same
name are replaced.

It should be remarked here that the same name must be used for the
constraint for each window. This is because it is by name that data
are identified as belonging to equivalent constraints when the window
trajectories are analysed by the WHAM function.

Line 54 performs a constant-temperature simulation to equilibrate the system with
the new constraint. There is no heating phase as this is less critical for
this size of system when the Berendsen algorithm is employed.

Line 57 creates a trajectory object to store the soft-constraint data.
Line 58 carries out the data-collection dynamics, also at constant temperature.

Soft-constraint data – in this case, the constraint O–H distance and its
energy – are written to the trajectory at every step.
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The second program is much more straightforward and is:

1 """Example 24."""
2
3 from Definitions import *
4
5 # . Read the molecule definition.
6 molecule = XMLUnpickle ( \

os.path.join ( scratchpath, "bala_example23.xpk" ) )
7
8 # . Get the list of trajectory file names.
9 filenames = glob.glob (

os.path.join ( scratchpath, "bala_window*.trj" ) )
10
11 # . Create the list of trajectory objects.
12 trajectories = []
13 for filename in filenames:
14 trajectories.append ( SystemSoftConstraintTrajectory ( \

filename, molecule, mode = "r" ) )
15
16 # . Calculate the PMF.
17 WHAMEquationSolver ( trajectories, \

bins = 100, \
temperature = 300.0 )

Line 6 reads in the system definition from the XPK file that was created in
Example 23.

Line 9 uses the glob function from Python’s glob module to create a list of
all trajectory file names that are to be analysed. The asterisk (*) in the
file name is matched against any character or set of characters so all
names starting with "bala_window" and finishing with ".trj" in
the directory scratchpath will be returned.

Lines 12–14 create a list of instances of soft-constraint trajectory objects from the
list of trajectory file names.

Line 17 employs WHAMEquationSolver to determine the PMF from the tra-
jectory data.

The results of these calculations are shown in Figures 11.5 and 11.6. Figure 11.5
shows a histogram analysis of the O—H distance data generated for the windows
of the umbrella sampling calculation. Each distribution is relatively smooth and
there is a large overlap between the adjacent curves. The corresponding PMF is
shown in Figure 11.6 as the solid line. The more stable minimum is at an O—H
distance of about 2.1 Å whereas the second minimum has an energy 3 kJ mol−1
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Fig. 11.5. The distribution of O—H distances for each window of the umbrella
sampling simulation of Example 23.
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Fig. 11.6. The energy profiles for the bALA molecule as a function of the O—H
distance. The PMF calculated with Examples 23 and 24 is shown as a solid line.
The profile calculated using energy minimization is given by the dotted line and
the PMF determined using 17 windows, instead of 5, is the dashed line.
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higher and is at a distance of 5 Å. This means that the hydrogen-bonded structure
is the more stable. The barrier to the interconversion of the two forms is about
6 kJ mol−1 starting from the hydrogen-bonded form. Note that the minima in the
PMF correspond closely to the configurations of highest probability in Figure 11.5.

Also plotted in Figure 11.6 are two more curves. There is another PMF (the
dashed line) calculated using the same basic procedure as above but with 17
windows at intervals of 0.25 Å and a larger force constant for the umbrella
potential of 30 kJ mol−1 Å−2. Each window simulation was run for 50 ps. It can
be seen that the curves for the PMF are in close agreement. The second curve (the
dotted line) plots the energy profile that results if the O—H distance is constrained
at certain values (using soft constraints) and the structure geometry optimized. The
differences between the PMFs and the profile obtained from energy minimization
are quite large. The minima are in roughly the same place but the energy of the
more unstable minimum is over twice as large at about 6 kJ mol−1.

11.8 Speeding up simulations

We conclude our presentation of molecular dynamics techniques by giving a brief
overview of approaches that are designed to increase the speed and efficiency of
simulations (the necessity for which readers will no doubt have become aware!).
We can divide these approaches into three (somewhat arbitrary) categories, namely
those that modify a system’s potential energy surface, those that modify its
dynamics, and alternative dynamics algorithms.

We have already met an example of the first category. In umbrella sampling,
biases are added to the potential energy function to permit sampling in those
regions of phase space that would not otherwise be sampled. The effect of the
biases is then corrected for when the simulation data are analysed to compute
quantities in the appropriate, unbiased thermodynamic ensemble.

Techniques in the second category alter the dynamics of a system by removing
or suppressing its high-frequency motions which permits a larger timestep to be
employed when integrating its equations of motion. A very simple, if crude, way
of doing this is to increase the mass of all the light atoms, especially hydrogens,
in the system. This will radically change the system’s dynamic properties but this
is irrelevant when, for example, the simulations are being performed to calculate
thermodynamic averages.

More sophisticated techniques identify the degrees of freedom that are responsi-
ble for the high-frequency motions and deal with them directly. The most general
way of doing this, in principle, is to define a new set of independent geometrical
variables, called generalized coordinates, in terms of which the dynamics of the
system can be formulated. The number of such coordinates will be 3N (3N −6 if
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the rotational and translational degrees of freedom are removed) minus the num-
ber of high-frequency motions, Nc. The drawback of this approach, though, is that
the generalized coordinates are, except in the simplest of cases, highly non-trivial
functions of the Cartesian coordinates. This gives rise to two difficulties. First, the
formulae that involve them are invariably more complicated to handle (we shall
see an example of this in Section 12.3 of the next chapter) and, second, quantities
that involve them, such as their potential energy derivatives, are more expensive
to evaluate. For these reasons, generalized coordinates have been employed less
widely than Cartesian coordinates in molecular dynamics simulations.

Another approach to the problem is to retain Cartesian coordinates as the
variables but constrain the degrees of freedom generating the high-frequency
motions using the method of Lagrange multipliers. Suppose that we have a set of
constraints that are functions of the coordinates of the atoms only (and perhaps
the time). Such constraints are called holonomic and can be written as

�k�R� = 0 ∀ k = 1� � � � �Nc (11.58)

The dynamics of a system change in the presence of the constraints. From classical
mechanics, the modified equations of motion are

MR̈ = −	

R
−

Nc∑

k=1

�k

�k

R
(11.59)

The first term on the right-hand side of the equation corresponds to the forces
arising from the potential whereas the second term is the force due to the con-
straints. The variables �k are the Lagrange multipliers which are a function of
time and have values chosen to ensure that the constraints of Equation (11.58)
are satisfied at all points along the trajectory. It is worth pointing out here that
the constraint forces contribute terms that need to be included when calculating
certain properties of a system. These include its virial (or pressure) and its free
energy.

The way in which these equations are solved varies depending upon the numer-
ical method chosen to integrate the equations of motion. If the standard Verlet
algorithm is being used, the first step would be to obtain the unconstrained posi-
tions for each atom, R′�t+��, using the formula in Equation (9.7) and the forces
arising from the potential, 	 . Note that it is assumed that the previous points
along the trajectory satisfy the constraint conditions. The positions for the atoms
that satisfy the constraints, R�t +��, are then written as

R�t +�� = R′�t +��−�2M−1
Nc∑

k=1

�k

�k

R
(11.60)
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and satisfy the conditions

�k�R�t +��� = 0 ∀ k = 1� � � � �Nc (11.61)

Substitution of Equation (11.60) into Equation (11.61) gives a set of Nc equa-
tions for the Nc unknown Lagrange multipliers, �k, which can be solved fairly
straightforwardly by a variety of iterative techniques. These methods are often
quite efficient, converging in a small number of steps, but they can have a limited
radius of convergence for certain types of constraint, which means that they will
not work if the unconstrained atom positions deviate too much from their target
values.

One of the earliest applications of the above techniques was the SHAKE algo-
rithm developed by J. P. Ryckaert, G. Ciccotti and H. J. C. Berendsen. SHAKE,
and other algorithms like it, is most commonly used for fixing bond lengths
in a simulation, especially those involving hydrogens, in which cases timesteps
of 2 fs can be routinely employed. The methods can also be used for other
types of constraint, such as bond angles, although studies have shown that fix-
ing these types of degree of freedom can significantly alter the dynamics of the
system.

The last category of approach that we mention in this section is alternative
dynamics algorithms, prominent examples of which are the multiple timestep
integration schemes. The rationale underlying these methods is that timesteps of
different lengths are employed to integrate the forces arising from different parts
of the potential energy function. Short timesteps are required for the integration
of the force terms that give rise to the high-frequency motions whereas longer
timesteps can be used to integrate the force terms that change more slowly.
Efficiency will be enhanced as long as the short-timestep forces are cheap to
evaluate and the expensive long-timestep forces can be calculated less often than
in the equivalent single timestep integration schemes.

Although methods of this type existed before, it was the work of M. Tuckerman,
B. J. Berne and G. J. Martyna in the early 1990s that permitted the develop-
ment of consistent and robust multiple timestep integrators. Since then, methods
of this type have become quite widely used for simulations with MM poten-
tials. Although details vary, the covalent and short-range non-bonding forces,
especially the repulsive part of the Lennard-Jones potential, change most rapidly
and so are integrated with shorter timesteps, typically 0.5–2 ps. By contrast,
the long-range non-bonding forces, which are the most expensive to evaluate,
change more slowly and are integrated with longer timesteps, often in the range
4–8 ps. Versions of these algorithms have also been developed for use in con-
junction with QC potentials but principally for DFT methods with plane-wave
basis sets.
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Exercises

11.1 The diffusion coefficient for an atom or molecule can be calculated from
the integral of the velocity autocorrelation function (Equation (11.8)). Do
this calculation for the water box system used in Example 22. This will
require: (i) repeating the molecular dynamics simulation so that a trajec-
tory containing the velocities is generated. This can be done with the class
SystemVelocityTrajectory; (ii) calculating the correlation functions
and their integrals for each of the oxygens in the system; and (iii) averaging
the resulting values. How do the results for the diffusion coefficients compare
with those obtained in Example 21? By looking at the form of the velocity
autocorrelation function estimate the length of a simulation that is needed to
calculate this property – is 10 ps reasonable, is a longer simulation needed or
would a shorter simulation be adequate?

11.2 Repeat the constant-pressure and -temperature calculations for water using
different sets of coupling parameters, both smaller and larger than 0.1 ps. How
do the static and dynamic quantities calculated from the simulation differ
from each other and from those calculated in the microcanonical ensemble
and at constant volume and constant temperature?

11.3 Calculate a PMF for a problem different from that of Examples 23 and
24. Possible examples include the determination of a PMF as a function
of an internal torsion angle of a molecule (such as butane) or a PMF as a
function of the distance between two atoms or molecules (to simulate an
association or dissociation). Do the calculation in vacuum and, if possible,
in solution. Note that these calculations will be much more expensive! Is it
possible to estimate how accurate the results are? pDynamo also includes
other algorithms for performing constant-temperature simulations. Try one of
these, such as LangevinDynamics_SystemGeometry, instead of the
leapfrog method. Are the calculations more efficient?
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Monte Carlo simulations

12.1 Introduction

In the previous chapters a variety of techniques for the simulation of molecular
systems have been covered. These have included methods such as energy mini-
mization and reaction-path-finding algorithms, which explore a relatively limited
portion of the potential energy surface of a system, and the molecular dynamics
method, which makes accessible a much larger region of the potential energy
surface and with which time-dependent events and properties can be studied. The
ability of molecular dynamics simulations to sample a large region of the phase
space of the system is important, as we have seen, for locating global potential
energy minima and for calculating thermodynamic quantities.

There is an alternative technique, the Monte Carlo method, that is distinct
from the molecular dynamics method but can also sample the phase space of
the system and, hence, is appropriate for calculating thermodynamic quantities or
for performing simulated annealing calculations. Unlike the molecular dynamics
method it cannot be used to study time-dependent properties but it does have
other features that are advantageous in some circumstances.

12.2 The Metropolis Monte Carlo method

Consider the integral, � , of a function, f�x�, over a region �a� b�:

� =
∫ b

a
f�x� dx (12.1)

A normal way to estimate the integral, for well-behaved functions, would be to
divide the region �a� b� into n equally spaced slices, each of width � = �b−a�/n

and then use a standard integration formula of the type

� � �
n
∑

i=0

wif�a+ i�� (12.2)

262
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where the wi are weights whose values depend upon the formula being used. For
the well-known Euler formula these would be 1 except at the end points, where
they would be 1

2 .
The basis of the Monte Carlo approach is to realize that, instead of using

a regular discretization of the integration variable, as in Equation (12.2), it is
possible to use a stochastic method in which the values of the integration variable
are chosen randomly. Let n denote the number of trials and xi (with i = 1�…� n)
the values of the integration variable that are chosen at random from a uniform
distribution with values between a and b. The integral can be evaluated as

� � �
n
∑

i=1

f�xi� (12.3)

where, as before, � = �b −a�/n, but this time it represents the average distance
between integration points rather than the exact distance.

This formula works reasonably well for functions whose values do not change
too much from one place to another in the integration range. For functions whose
values vary greatly or are peaked in certain areas, the formula in Equation (12.3)
will be inefficient because the values of the function at many of the randomly
chosen integration points will contribute negligibly to the integral. In these cases,
it is more useful to be able to choose values of x that are concentrated in areas in
which the function will be large. To do this the integral of Equation (12.1) can
be rewritten as

� =
∫ b

a

(
f�x�

��x�

)

��x� dx (12.4)

where ��x� is a probability density function that is large where it is thought that
the function will be large. The integral can now be approximated by choosing
values of the integration variable randomly from the function ��x� in the range
�a� b�, instead of from the uniform distribution, and averaging over the values of
f�xi�/��xi� that are obtained, i.e.

� � 1
n

n
∑

i=1

f�xi�

��xi�
(12.5)

That this formula is the same as Equation (12.3) in the case of a uniform dis-
tribution follows because the probability distribution function for the uniform
distribution is 1/�b−a�. The use of a function � in this way to enhance sampling
in certain regions of space is known as importance sampling.

The stochastic method outlined above cannot usually compete with numerical
methods of the type given in Equation (12.2) if there is a small number of integra-
tion variables. However, the number of function evaluations required by simple
discretization schemes for the estimation of an integral becomes prohibitively
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large as the number of dimensions, Ndim, increases. To see this, suppose that
n points are chosen for the discretization in each direction, then the number of
function evaluations required is nNdim . It is in these cases that stochastic methods
are often the only realistic approaches for tackling the problem.

As we have already seen in Section 11.6, the integrals that are of interest in
thermodynamics are almost always multidimensional. As an example, consider a
property, � , of the system that is a function of the 3N coordinates of the atoms,
R, only. The average of the property in the canonical ensemble is then the ratio
of two multidimensional integrals:

��� =
∫

dR��R� exp �−� �R�/�kBT��
∫

dR exp �−� �R�/�kBT��
(12.6)

where � is the potential energy of the system. This equation can be rewritten
in a form reminiscent of Equation (12.4) by employing the probability density
distribution function for the canonical ensemble, �NVT. Thus

��� =
∫

dR��R��NVT�R� (12.7)

If, somehow (and this is the difficult part!), it is possible to choose configurations
for the system drawn from the function, �NVT, then the average, ���, can be
calculated using a formula analogous to Equation (12.5), i.e.

��� � 1
n

n
∑

I=1

��RI � (12.8)

where n is the number of configurations generated in the simulation and RI is a
vector of the coordinates of the atoms at each configuration. Owing to the presence
of the exponential in the Boltzmann factor, it is crucial to employ importance
sampling for these integrals because, for most properties, only the configurations
of lowest potential energy will contribute significantly.

The Monte Carlo method for integration was formalized in the late 1940s by
N. Metropolis, J. von Neumann and S. Ulam whereas the extension for generating
configurations drawn from a canonical distribution was introduced by Metropolis
and co-workers in the early 1950s to study atomic systems. In outline, it is as
follows:

(i) Choose an initial configuration for the system, R0, and calculate its potential energy,
�0. Set I = 0.

(ii) Generate, at random, a new configuration for the system, RJ , from the current
configuration. How to generate the new configuration is unimportant for the moment
and will be discussed in detail later. Metropolis et al. used a recipe in which the
probability, pIJ , of generating a state J from a state I was equal to the probability,
pJI , of generating the state I from state J . They also insisted that the method should
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allow, in principle, every state to be accessible from all other possible states, if not
as a result of a single change, then as a result of a sequence of changes.

(iii) Calculate the potential energy of the new state, �J .
(iv) If the difference in the potential energies of the two states, �J −�I , is less than zero,

choose state J as the new configuration, i.e. set RJ to RI+1.
(v) If �J −�I > 0 fetch a random number from a uniform distribution in the range �0� 1�.

If the number is less than exp �−��J −�I �/�kBT�� accept the new configuration,
otherwise reject it and keep the old one.

(vi) Accumulate any averages that are required using Equation (12.8) and the new
configuration, RI+1. Note that, even if the ‘new’ configuration is the same as the
old one, it still must be re-used if proper averages are to be obtained.

(vii) Increment I to I + 1 and return to step (ii) for as many steps as are desired in the
simulation.

The above scheme is an ingenious one because it avoids any explicit reference
to the configuration integral or to the partition function for the system. It is pos-
sible to prove rigorously that the scheme generates configurations drawn from a
canonical ensemble using the theory of Markov chains, because technically what
the Metropolis algorithm does is to produce a Markov chain of configurations
with the limiting distribution of the canonical ensemble. However, in their paper,
Metropolis et al. argued as follows. Suppose that there exists an ensemble of iden-
tical systems in various states and that nI is the number of systems in the ensemble
in state I . Consider two states, I and J with �I > �J . During a simulation of the
entire ensemble using the Metropolis algorithm, the nett transformation of states
I to states J will be pIJ nI and of states J to I , pJI nJ exp �−��I −�J �/�kBT��.
Thus, the nett flow from states J to states I will be

pJI nJ exp �−��I −�J �/�kBT��−pIJ nI = pIJ 	nJ exp �−��I −�J �/�kBT��−nI


(12.9)

because it has been assumed that pIJ = pJI . After sufficiently many configurations
the nett flow and, hence, the term in brackets will tend to zero, so

nI

nJ

� exp�−�I/�kBT��

exp�−�J /�kBT��
(12.10)

This is exactly what we are seeking because Equation (12.10) gives the ratios of
the populations of two states in the canonical ensemble. As an aside, it should now
be clear why the calculation of correct averages requires that ‘old’ configurations
be re-used. If this were not the case, it would mean that every time a configuration
was rejected and a system was left in its original state it would be eliminated
from the ensemble.

There is a further point worth discussing about the Metropolis scheme. The
condition on the method of generation of new configurations that all states be
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accessible from all others (see step (ii)) means that the full phase space of the
system can, in principle, be explored. This property, which is called ergodicity,
is important because the values of any properties calculated from a simulation
are likely to be significantly in error if the method becomes trapped in a small
region of phase space. Of course, even if a method is theoretically ergodic, little
is implied about how long a simulation needs to be or how many configurations
need to be sampled to obtain averages to within a given precision.

The Metropolis Monte Carlo method has the great advantage that it can
be easily extended to generate chains of configurations from other ensembles.
W. W. Wood first showed how this could be done in the isothermal–isobaric
(NPT) ensemble. In this ensemble the average of a property, analogous to the
average in the NVT ensemble of Equation (12.6), is

��� =
∫

dR dV ��R�V� exp�−�� �R�+PV�/�kBT��
∫

dR dV exp�−�� �R�+PV�/�kBT��
(12.11)

where V is the volume of the system and P is the pressure. It is to be noted
that in these integrals the coordinates of the atoms, R, and the volume are not
independent variables. To ensure a correct derivation, as Wood showed, it is
necessary to transform the absolute coordinates of the atoms, R, to fractional
atomic coordinates, S. For a cubic box of side L, R = LS and the volume
element for the integral dV dR becomes dV dS V N where V = L3. Putting the V N

factor into the exponential gives a probability density distribution function, �NPT,
for the ensemble which is proportional to exp �−�� +PV�/�kBT�+N ln V�. The
procedure for performing a Monte Carlo simulation in the NPT ensemble can
now be formulated and it turns out to be identical to that for simulations in the
NVT ensemble except for the following differences:

(i) When generating new configurations, the fractional coordinates of the atoms and the
volume of the system are changed instead of just the atomic coordinates.

(ii) The criterion for accepting a configuration is no longer based on the difference
between the potential energies of the old and new configurations but on the difference
between the quantities in the exponential of �NPT, i.e. on �J −�I + P�VJ − VI� −
NkBT ln�VJ/VI�, which reduces to the difference of potential energies when VI = VJ .
With this new quantity the Metropolis tests are applied in exactly the same way as
before.

12.3 Monte Carlo simulations of molecules

The Metropolis algorithm, although it was the first of a number of Monte Carlo
algorithms to have been developed, is still the most successful and widely used
Monte Carlo method for the simulation of molecular systems. The Monte Carlo
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technique itself has a number of features that can make it preferable to the
molecular dynamics method in some circumstances. These include the following:

(i) Only the energy is required whereas molecular dynamics methods require the forces.
(ii) It is easy to perform simulations in the NVT and NPT ensembles whereas to do so

with molecular dynamics simulations requires more complicated techniques.
(iii) It is straightforward to ‘constrain’ various degrees of freedom in the system. As we

shall see below, this is done by keeping these degrees of freedom fixed when new
configurations for the system are generated.

(iv) In principle, very different configurations of a system can be sampled during a
Monte Carlo simulation if efficient schemes for the construction of new states can
be devised. In the molecular dynamics method the prescription for the generation
of new states is inherent to the formulation and is determined by the integration of
the equations of motion of the atoms. The difference between successive structures,
which is governed by the timestep, is small and so it can take very long simulations to
probe very different regions of the system’s phase space. Likewise, it may be difficult
or even impossible to explore certain regions of phase space if the intervening energy
barriers are large.

The last advantage of the Monte Carlo technique is also its disadvantage
because recipes to generate new configurations for the system must be conceived.
It happens that this is relatively simple for systems composed of atoms or of small
molecules. For large, flexible molecules it has proved more difficult to come up
with an efficient method and so the application of the Monte Carlo technique in
these cases has been relatively limited (with the caveat that an atomic model of
the molecule is being used – the Monte Carlo method has been employed widely
for polymer studies with simplified molecular models).

Because of the added complexity in dealing with large molecules, the appli-
cations of the Monte Carlo method in this book will be more limited than those
of the molecular dynamics methods that have already been described. The latter
can be used to study almost any molecular system with certain limitations, such
as those that are due to the applicability of the energy function (whether QC,
MM or QC/MM). For Monte Carlo simulations, however, we shall consider sys-
tems composed of atoms or of small, rigid molecules and that have MM energy
models only.

With these restrictions, there are three types of change that have to be considered
in order to generate new configurations for a system. These are translations and
rotations of the molecules and changes in the volume of the simulation box. How
we deal with each of these types of moves is arbitrary but the ways described
below are commonly found and are the ones that we shall employ.

Translations are the easiest to deal with. Figure 12.1 shows schematically how
this is done. Suppose that there is a cube, of side 2 �t, centred at the centre of
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2 δt

Fig. 12.1. A schematic diagram of how a molecule is translated in a Monte
Carlo simulation. The two-dimensional representation is easily generalized to
three dimensions.

mass of the molecule. To translate the molecule, choose a vector of three random
numbers, u, uniformly in the range �−1� 1� and then translate the molecule by
�t u. This type of move satisfies both of the conditions for the generation of
new configurations outlined in step (ii) of the Metropolis scheme. First of all,
the translation of a molecule from one centre (‘state’), I , to another, J , will have
the same probability as the translation from J to I because the selection of the
translation is independent of direction and is uniform within the cube. Second, all
states (or molecule centres) will be accessible from all others because a molecule
can be translated in a single move to ‘any’ position within its cube (limited by
the precision of the computer) and, hence, after a succession of moves, to any
position in the simulation box.

The length of a possible translation is governed by the parameter �t. It is obvious
that, if �t is large, there will be a high probability that the atoms of two molecules
will overlap, making the molecules possess a large, positive interaction energy
due to the repulsive part of the Lennard-Jones potential. Such configurations are
likely to be rejected by the Metropolis criterion for deciding whether to accept
new states. If the parameter �t is small then the probability of accepting the
state will be high but it will take a long time for the configuration space of the
system to be sampled effectively. The aim, therefore, is to choose a value of �t

that is as large as possible while giving a reasonable acceptance ratio for new
configurations. No comprehensive study seems to have been done to decide what
the best value of this ratio is – indeed, it is likely to depend on the nature of the
system being studied – but most workers appear to prefer values of the order of
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50%. Although the exact value of �t required to attain a certain acceptance ratio
might not be known in advance it is straightforward to modify the value of �t in
the course of a simulation so that the desired acceptance ratio is approached. This
can be done by scaling �t by a small amount every few steps, up if the acceptance
ratio is too high and down if it is too small.

Until now no mention of whether all or, if not, which molecules are to be
moved during the generation of new states has been made. Because the Metropolis
scheme imposes no constraints of its own per se, we are free to move one molecule
at a time, several molecules or all of them at once, whichever gives the most
efficient scheme for sampling the phase space of the system. Once again, no
comprehensive study of which method is best appears to have been done, but
the preferred choice in the literature and, incidentally, the one that Metropolis
et al. used in their original work, is the one in which only a single molecule is
moved at a time. The molecule to be moved can be chosen either at random or by
cycling through all the molecules in a given order. It should be noted that it is not
necessary to recalculate the complete energy of a system that is described with a
pairwise additive potential if only a single molecule is moved – it is necessary to
recalculate only the energy of interaction between the moved molecule and the
rest of the system. The difference in potential energies between the old and new
states required for the Metropolis test is then simply the difference between the
moved molecule’s interaction energies in the old and new states. This makes the
cost of n single-molecule moves of the same order as the cost of a move in which
n molecules are moved at the same time.

Single-molecule moves or moves in which all the molecules are translated
at once are appropriate for homogeneous systems but it may be preferable to
use other schemes for other systems. Consider, for example, the simulation of a
solute molecule in a solvent. In this case, it may be more efficient to move the
solute molecule more often than the solvent molecules and to move those solvent
molecules that are closer to the solute more frequently than solvent molecules
that are further away. Several such preferential sampling schemes have been
developed but they require a modification of the normal Metropolis procedure
and will not be discussed further here.

It is common to rotate a molecule at the same time as it is translated when
a new configuration is generated, although some subtleties arise in effecting the
rotation. This is because the argument presented in Section 12.2 to justify the
Metropolis scheme stated that it led to the correct ratio of the populations of
two states (Equation (12.10)). This is true for Cartesian coordinates and for other
coordinate systems whose volume elements are independent of the values of the
current coordinates. To see this notice that the probabilities of states I and J

are proportional to exp�−�I/�kBT�� dR and exp�−�J /�kBT�� dR, respectively.
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The volume elements in both cases are dR and so cancel out when the ratio of
probabilities is taken. For a general set of coordinates, the cancellation does not
occur and the implementation of the Metropolis algorithm must be modified.

Many sets of coordinates that specify orientation, such as the Euler angles, do
not have volume elements that will be the same for two states. It is feasible to alter
the Metropolis scheme to use such coordinates but it is also possible to select an
appropriate set of coordinates that leaves the Metropolis scheme unchanged. One
such set, the set that will be used below, involves choosing one of the Cartesian
axes, x, y or z, at random and then rotating the molecule about this axis by a
random angle chosen in the range, �−������, where the parameter �� plays
exactly the same role for the rotation as �t does when translating a molecule.
If we suppose that the centre of mass of the molecule is chosen as the origin
of the rotation, then the new coordinates of the atoms, r ′

i, in a molecule will be
generated from the old ones, r i, using the following transformation:

r ′
i = U�r i −Rc�+Rc (12.12)

Here Rc is the centre of mass of the molecule and U is the rotation matrix, which
for a rotation about the x axis by an angle, �, will have the form

Ux =
⎛

⎝

1 0 0
0 cos � sin �

0 − sin � cos �

⎞

⎠ (12.13)

Because rotational and translational moves are often performed together, it is best
if the values of the parameters �� and �t are compatible so that the rotational
space and the translational space available to the molecules are sampled with
roughly the same efficiency.

The final type of move is a volume move that is required for Monte Carlo
simulations in the NPT ensemble. It is possible to combine moves in which
molecules are translated and rotated with those in which the volume is changed
simultaneously. A commoner strategy, though, is to intersperse moves in which
only the volume is changed with moves in which only molecule rotations and
translations are performed. A volume change can be done in exactly the same
way as a rotation or a translation. A random number, , in the range �−1� 1� is
generated and the volume of the system is changed by �V , where �V is the
maximum change in the volume that is allowed in any single move. Once a new
value for the volume has been selected, it is necessary to change the coordinates
of all the atoms in the simulation box in an appropriate manner. Note that, if
this were not done, an increase in volume would lead to cavities forming at the
boundaries of the simulation box, whereas a decrease in volume would lead to
overlap of molecules in the same regions. For a system composed of atoms, the
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coordinates of the atoms are changed such that their fractional coordinates, S,
remain the same. Thus, for a cubic box, the coordinates of the atoms in the new
configuration, R′, are generated by scaling the coordinates of the atoms in the
old configuration, R, by the ratio of the new to the old box lengths, L′/L. Such
a scaling for a molecular system, in which molecules are supposed to be rigid,
will not work because it will lead to changes in their internal geometries. In this
case, the same scaling factor is applied instead to the coordinates of the centres of
mass of each molecule. Thus, the molecule as a whole is moved but its internal
geometry is left unchanged. The transformation relating the new, r ′

i, and old, r i,
coordinates for an atom is then

r ′
i = r i +

(
L′

L
−1

)

Rc (12.14)

The value of the parameter determining the size of the volume moves, �V , can be
adjusted during the simulation in exactly the same way as for the rotational and
translational move parameters so that the desired acceptance ratio is obtained.

It is feasible to vary the internal geometry of a molecule in a Monte Carlo
simulation. The simplest way, which leaves the Metropolis scheme described
above unchanged, is to move the atoms by a small amount. This is easy to do
but it suffers from the same disadvantage as the molecular dynamics technique in
that the geometry of the molecule will probably change by only a small amount,
so it may take many moves, or may even be impossible, for the system to exit
from its local region of phase space and explore neighbouring configurations.

A more attractive method, in principle, which allows larger conformational
changes and, thus, a more efficient exploration of the phase space of a system,
is to alter the internal coordinates and, in particular, the dihedral angles of the
molecule directly. The problem with this approach is the one alluded to earlier
in the discussion of the rotational moves of molecules, namely that a set of
generalized coordinates, Q, must now be used instead of Cartesian coordinates.
It is possible to express integrals of the type given in Equation (12.6) in terms of
the generalized coordinates, but the equation that results is the following:

��� =
∫

dQ��Q�
√�J� exp�−� �Q�/�kBT��

∫

dQ
√�J� exp�−� �Q�/�kBT��

(12.15)

where J is a matrix whose elements are related to the transformation between the
two sets of coordinates:

J�� =
N
∑

i=1

mi

(
�r i

�Q�

)T �r i

�Q�

(12.16)

Here Q� and Q� are components of the generalized coordinate vector, Q. It is

the square root of the determinant of the matrix,
√�J�, that causes the problem
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because its value, in general, will be dependent upon the conformation and so must
be correctly accounted for in the Metropolis procedure. For simple molecules, the
determinant is relatively straightforward to evaluate but for larger molecules it
is much more complicated and it is this that has limited the application of the
Monte Carlo technique to these types of systems. Having said all this, it should
be noted that some workers have done Monte Carlo simulations with a ‘normal’
Metropolis algorithm in which some of the internal degrees of freedom of the
molecules are altered. The assumption is that the errors introduced by the neglect
of terms like those involving the matrix J in Equation (12.16) are small.

The implementation and the use of the Monte Carlo methods in this chapter owe
much to the work of W. Jorgensen and co-workers, who have been some of the
principal exponents of the Monte Carlo method for the simulation of condensed
phase systems. Indeed, the OPLS-AA force field that was chosen for the examples
in this book was developed and tested extensively with the aid of Monte Carlo
simulations.

A new class and three new functions are introduced in this chapter to do Monte
Carlo simulations. They are NBModelMonteCarlo, which is a non-bonding
model class for Monte Carlo calculations, MonteCarlo_SystemGeometry,
which is a function for performing the simulations, and two ancillary functions
that are useful for analysis and are required by Example 26 at the end of the
chapter. In keeping with the complexities of devising an algorithm for large
molecules mentioned above, pDynamo’s Monte Carlo procedure works uniquely
on isolates. An isolate is a group of atoms (or a single atom) that have bonds
between each other but with no other atoms outside their group. The internal
geometry of each isolate is rigid and only its relative orientation and position can
be changed. No check is done on the geometry of the isolates and so it is up to
the user to ensure beforehand that all isolates of the same type have the same
values for their internal coordinates.

Because of the focus on isolates, the potential energy of a system in a Monte
Carlo simulation is due solely to non-bonding terms – no internal terms contribute.
The energy calculated by the class NBModelMonteCarlo is a sum of all
the non-bonding interaction energies (electrostatic and Lennard-Jones) between
isolates. If Niso is the number of isolates, I and J denote different isolates and i

and j the atoms in those isolates, the energy can be written as

�MC =
Niso∑

I=2

I−1
∑

J=1

S�RIJ �

⎧

⎨

⎩

∑

i∈I

∑

j∈J

qiqj

4��0�rij

+4�ij

⎡

⎣

(

sij

rij

)12

−
(

sij

rij

)6
⎤

⎦

⎫

⎬

⎭
(12.17)

The function S�RIJ � is a non-bonding truncation function like those discussed in
Section 10.2, except that it is a function of the distance between the centres of
mass of each isolate, RIJ . This means that all the individual interactions between
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two isolates will be scaled by the same amount. The form of the function that is
used is the same as that chosen by Jorgensen and his co-workers in much of their
work and is

S�r� =

⎧

⎪⎪⎨

⎪⎪⎩

1 r < rL
(

r2
U−r2

r2
U−r2

L

)

rL ≤ r < rU

0 r ≥ rU

(12.18)

where rU and rL are upper and lower cutoff distances, respectively.
There are two significant differences between the classes NBModel-

MonteCarlo and NBModelABFS. The first is that the truncation function,
S�RIJ �, unlike the one used by the class NBModelABFS, does not have con-
tinuous first derivatives because the Monte Carlo method makes no use of the
derivatives. It is, however, a good idea to have some smoothing to avoid artefacts
that arise when similar configurations of a system have very different energies
because some isolates happen to lie within the truncation distance and some do
not. This will be especially important for systems composed of isolates which
have a non-zero charge. The second difference is that NBModelMonteCarlo
treats systems with periodic symmetry using the minimum image convention,
which means that the upper cutoff distance, rU, must be less than or equal to half
the length of the periodic box.

The definition of the class is very similar to those of the other NB model
classes. The major difference is in the arguments to the method SetOptions.
These are now:

Class NBModelMonteCarlo

A class to calculate non-bonding interactions during a Monte Carlo simulation.

Method SetOptions

Define the values of the cutoffs to be used in the calculation of the non-bonding
interactions.

Usage:
nbmodel.SetOptions ( cutoff = 8.5,

smooth = 0.5 )

cutoff is the value of the upper cutoff, rU.
smooth is the value of the difference between the upper and lower cutoffs,

rU − rL.
nbmodel is an instance of NBModelMonteCarlo.
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The definition of the function that performs the simulations is:

Function MonteCarlo_SystemGeometry

Perform a simulation with the Metropolis Monte Carlo algorithm.

Usage:

MonteCarlo_SystemGeometry (
system,
acceptanceratio = 0.4,
adjustfrequency = 1000,
blocks = 10,
logfrequency = 1,
moves = 10000,
pressure = 1.0,
rng = None,
rotation = 15.0,
temperature = 300.0,
trajectories = None,
volumechange = 400.0,
volumefrequency = 500 )

system is the system to be simulated.
acceptanceratio is a floating-point number indicating the acceptance ratio

that it is desired to achieve in the Monte Carlo simulation.
The default value is 0�4 (i.e. 40%).

adjustfrequency is an integer argument that specifies the move frequency
at which the maximum values for changing the volume of the
simulation box and for rotating and translating a molecule
are to be adjusted. Each time these parameters are checked
they are scaled by 0�95 if the current acceptance ratio is less
than the desired value or by 1�05 if it is greater than the
desired value. Note that the box and molecule move param-
eters (rotation and translation) are scaled independently. The
default value for this argument is 1000.

blocks is the number of blocks of Monte Carlo moves to perform.
logfrequency is the frequency, in terms of blocks, at which data concerning

the simulation are to be printed. The default is to print after
each block.

moves gives the number of Monte Carlo moves to perform per
block.
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pressure gives the value of the pressure in atmospheres for the simu-
lation. The default value is 1 atm.

rng defines the random number generator for the simulation. The
function will create one itself if this argument is absent.

rotation is the maximum allowable rotation of a molecule in degrees
about the x, y or z axis that is to be made during a molecule’s
move. The rotation will be chosen uniformly in the range
�−rotation�rotation�. The default rotation is 15
.

temperature is the argument specifying the simulation temperature in
kelvins and has a default value of 300 K.

trajectories specifies the trajectory objects, and their save frequencies,
that are to be used for storing information during the simula-
tion. This argument behaves identically to its equivalents in
the functions employed for performing molecular dynamics
simulations.

translation is the maximum allowable translation of a molecule in
ångströms along each coordinate axis during a molecule’s
move. It is applied in the same way as the rotation
argument and has a default value of 0�15 Å.

volumechange is the maximum allowable value in Å3 by which the volume
of the simulation box can be changed during a volume move.
The volume change will be selected uniformly in the range
�−volumechange�volumechange�. The default value
is 400 Å3.

volumefrequency is an integer argument giving the frequency at which vol-
ume, as opposed to molecule, moves are to be attempted. The
default value of the argument is 500, which means that simu-
lations will automatically be performed in the NPT ensemble.
To generate results appropriate for the NVT ensemble this
parameter must be set to 0.

Remarks: The maximum allowable rotations, translations and volume
changes will fluctuate during a simulation if a non-zero
adjustfrequency has been specified. In these cases, the
values of the arguments rotation, translation and
volumechange only apply to the first few Monte Carlo
moves of the simulation.

The total number of Monte Carlo moves in a simulation is given by the prod-
uct blocks × moves. The reason for using blocks of moves in a simulation
rather than just specifying a total number of moves is primarily for convenience,
for it allows the progress of a simulation to be monitored closely by looking
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at the evolution of the averages of various properties for each block. Also, as
mentioned in Section 11.2 when we discussed the analysis of molecular dynamics
trajectories, the division of a simulation into statistically independent blocks pro-
vides a more accurate measure of the convergence of the values of any calculated
quantities.

Two additional functions are described in this section. One of these is
MonteCarlo_IsolateInteractionEnergy, which returns the energy
of interaction between an isolate and the rest of the system, and the other is
MonteCarlo_ScaleIsolateInteractionParameters, which scales
the parameters in the MM energy function for an isolate. Their definitions
are:

Methods

[Function MonteCarlo_IsolateInteractionEnergy] Calculate the
interaction energy between an isolate and the rest of the system.

Usage:
energy = MonteCarlo_IsolateInteractionEnergy (

system,isolate )
system is the system for which the interaction energy is to be calcu-

lated.
isolate is an integer giving the index of the isolate in the system.
energy is the interaction energy.

Function MonteCarlo_ScaleIsolateInteractionParameters

Scale the parameters for an isolate that are used in the calculation of its interaction
energy with the rest of the system.

Usage:

MonteCarlo_ScaleIsolateInteractionParameters (
system, isolate,
chargescale = 1.0,
epsilonscale = 1.0,
sigmascale = 1.0 )

system is the system containing the isolate.
isolate is an integer giving the index of the isolate whose parameters

are to be scaled.
chargescale is the scaling factor for charges (the qi in Equation (12.17)).
epsilonscale is the scaling factor for Lennard-Jones well-depths (the �ij

in Equation (12.17)).
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sigmascale is the scaling factor for Lennard-Jones radii (the sij in
Equation (12.17)).

12.4 Example 25

The program in this section uses the class and the simulation function described
above to perform a Monte Carlo simulation of a small solute, methane, in water.
The program is a simple one and is:

1 """Example 25."""
2
3 from Definitions import *
4
5 # . Read in the system.
6 solution = XMLUnpickle ( \

os.path.join ( xpkpath, "ch4_water215_cubicbox_mc.xpk" ) )
7 solution.Summary ( )
8
9 # . Define a random number generator.
10 rng = Random ( )
11 rng.seed ( 899311 )
12
13 # . Do a Monte Carlo simulation.
14 trajectory = SystemGeometryTrajectory ( \

os.path.join ( scratchpath, "ch4_water215_cubicbox_mc.trj" ), \
solution, mode = "w" )

15 MonteCarlo_SystemGeometry ( solution, \
blocks = 20, \
moves = 100000, \
rng = rng, \
trajectories = [ ( trajectory, 100 ) ] )

Line 6 reads the XPK file that defines the system that is to be simulated. There are
several ways in which solvated systems can be generated but this one was
prepared using techniques very similar to those described in Section A3.2.
The system itself comprises a methane molecule solvated in a cubic box
of 215 water molecules. The energy model consists of the OPLS-AA
force field along with the Monte Carlo NB model described above. The
cutoff length for interaction is 8�5 Å and all intermolecular interactions
falling between 8�0 Å and 8�5 Å are ‘smoothed’ using the function defined
in Equation (12.18). Because the dimension of the simulation box is
about 18�8 Å this cutoff value is small enough that the minimum image
convention can be applied throughout the simulation.
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The file also contains the atomic coordinates for the system which
have been equilibrated by means of a previous Monte Carlo simulation.
Because rigid molecules are being used in the simulations, the geometries
of all the water molecules are the same with H—O bond distances of
0�9572 Å and H—O—H bond angles of 104�52
. The methane molecule
has tetrahedral symmetry, with C—H bond lengths of 1�090 Å and H—
C—H bond angles of 109�47
. These geometries were chosen because
they are close to those observed experimentally and they also correspond
to those that would result by optimizing the geometries of a single methane
or water molecule in vacuum with the OPLS-AA force field.

Line 14 defines the trajectory object that is to be used for saving coordinate data
during the Monte Carlo simulation.

Line 15 performs a Monte Carlo simulation of 2 ×106 steps in 20 blocks of 105

steps. Configurations are saved every 100 configurations on the trajectory
giving 20 001 configurations in all for later analysis. The default parame-
ters are used for all the remaining options, which means that the simulation
is done in the NPT ensemble at a pressure of 1 atm and a temperature
of 300 K. Volume moves are performed every 500 moves. The desired
acceptance ratio is 40% and the move sizes are adjusted every 1000 moves
so that this ratio is approached.

Simulations of methane and other small alkanes in water have proved popular
because they provide simple models for investigating effects such as hydropho-
bicity, which are necessary for understanding the solvation of more complicated
molecules such as lipids and proteins. Insights into the solvation of these molecules
can be obtained by analysing the structure of the solvent around the solute and
the energy of interaction between the solute and the solvent.

The determination of radial distribution functions for the solute and solvent
atoms gives preliminary information about the structure of the solute around the
solvent. This can be done in exactly the same way as for the molecular dynamics
simulation of water in Section 11.3. Figure 12.2 shows the radial distribution
function for the carbon of the methane and the oxygens of the water molecules.
The function peaks at 3�7 Å with a height of about 1�8, then falls to a minimum
at 5�4 Å before tending to a value of 1. It is to be noted that the curve is much
rougher than the radial distribution function of Figure 11.2, which is due to the
more limited set of data that is available for its calculation.

The number of neighbours, nn�r�, may be determined by integrating the radial
distribution function using the following formula:

nn�r� = 4�NO

V

∫ r

0
s2g�s� ds (12.19)
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Fig. 12.2. The radial distribution function, gCO�r�, calculated from the trajectory
generated by the program of Example 25.
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Fig. 12.3. The neighbour function, nn�r�, calculated from the radial distribution
function gCO�r�.

where NO is the number of oxygens in the simulation box and V is the average
box volume. The values produced are shown in Figure 12.3. The number of water
molecules in the first solvation shell of the methane molecule may be estimated
by taking the value of the neighbour function at 5�4 Å, which is the distance
corresponding to the first trough in the radial distribution function. The value is
approximately 21.
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Fig. 12.4. The average energy of interaction between methane and the sur-
rounding water molecules as a function of cutoff distance calculated from the
trajectory generated by the program of Example 25.

The trajectory can also be analysed for the energetics of interaction between the
solute and solvent. Figure 12.4 shows the average energy of interaction between
methane and the water as a function of distance calculated from the same trajectory
as the radial distribution function. The energy is zero up to about 2�5 Å and is
then positive due to short-range repulsive interactions. At about 3�4 Å it becomes
negative as the attractive interactions dominate and the value decreases, rapidly
at first and then more slowly. At the cutoff distance, the interaction energy is
approximately −13 kJ mol−1. At 5�4 Å, which is the limit of the first solvation
shell, the interaction energy is about −10 kJ mol−1, which shows that the water
molecules in the first solvation shell contribute the bulk of the interaction energy
in the model. Because there are about 21 molecules in the shell the interaction
energy per solvent molecule is about −0�48 kJ mol−1.

12.5 Calculating free energies: statistical perturbation theory

In Section 11.6, we saw how to calculate the potential of mean force for processes
in gas and condensed phase systems using the umbrella sampling technique. This
is by no means the only method that is available for calculating free energies and
in this section we broach other algorithms for tackling this problem. We shall
limit our discussion to the free energy because this is the quantity that is critical
for the interpretation of many chemical and physical phenomena. Methods for the
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calculation of other thermodynamic properties, such as the entropy, exist but they
can be more difficult to apply.

Recall that the Helmholtz free energy for a system is written as

A = −kBT ln ZNVT (12.20)

where the partition function, ZNVT, has the form

ZNVT = 1
h3N N !

∫

dP
∫

dR exp �−� �P�R�/�kBT�� (12.21)

and � is the Hamiltonian for the system. In principle, it might be possible to
calculate this quantity directly from a simulation but, as noted in Section 11.6,
this proves impossible in practice because extremely long simulation times are
required in order to obtain results of acceptable accuracy. This problem was
solved with the umbrella sampling method by using a biasing function to restrict
a simulation to a certain, smaller region of configuration space that could be
sampled adequately. If the property being calculated, which in our case was a
PMF, required sampling from a larger region of space, this was achieved by
carrying out simulations with slightly different biasing functions and collating the
results for each simulation afterwards.

In this section, we consider alternative approaches for overcoming the sampling
problem. They are distinct from the umbrella sampling method, but, like it, they
work by restricting the region of phase space that need be sampled in a simulation.
The way this is done is to compute the differences between the free energies
of two very similar systems rather than the absolute free energy for a system
given by Equation (12.20). We introduce two classes of methods to calculate
free-energy differences in this section. They are the thermodynamic integration
and thermodynamic or statistical perturbation methods. The perturbation methods
will be described first.

The free-energy difference between two states, I and J , of a system with
partition functions ZI and ZJ , respectively, is

�AI→J = AJ −AI

= −kBT ln
(

ZJ

ZI

)

(12.22)

To simplify the derivation a little we suppose that the kinetic energy parts of the
Hamiltonians are the same (i.e. the numbers and the masses of the particles are
identical) and that only the potential energy terms, �I and �J , differ. The kinetic
energy terms in the equation cancel out and we are left with

�AI→J = −kBT ln

∫

dR exp �−�J �R�/�kBT��
∫

dR exp �−�I �R�/�kBT��
(12.23)
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It is possible to rearrange this equation and express the free-energy difference as
an average over an ensemble of configurations for the state, I . To do this, we
add and subtract terms involving the potential energy of state I to the exponential
in the numerator of Equation (12.23) and then notice that the resulting equation
resembles Equations (12.6)–(12.8). Denoting the probability density function for
state I �I and the ensemble average with respect to configurations of the state I

�� � ��I gives

�AI→J = −kBT ln

∫

dR exp �−��J �R�−�I �R��/�kBT�� exp �−�I �R�/�kBT��
∫

dR exp �−�I �R�/�kBT��

= −kBT ln
∫

dR�I�R� exp �−��J �R�−�I �R��/�kBT��

= −kBT ln�exp �−��J �R�−�I �R��/�kBT���I (12.24)

Equation (12.24) is the main formula for statistical perturbation theory. It states
that the difference in free energy between two states, I and J , can be calculated by
generating a trajectory for state I (using either a molecular dynamics or a Monte
Carlo technique) and calculating the average of the exponential of the difference
between the potential energies of states I and J for each configuration divided by
kBT .

The average in Equation (12.24) will not converge very rapidly unless the
differences between the energies of the two states I and J are very small (of the
order of kBT ). In actual applications this will not normally be the case, so it is
usual to break the problem down into smaller pieces. To do this, we introduce a
new Hamiltonian that is a function of a coupling or perturbation parameter, �.
This Hamiltonian, � �P�R���, is such that, when � = 0 or 1, it is equal to the
Hamiltonians of the end states, �I and �J , but at other values it defines a series
of intermediate states for the transition between I and J .

Many different coupling schemes have been used to define the intermedi-
ate states. Probably the simplest is a coupling scheme that interpolates linearly
between the two states:

� �P�R��� = �1−���I �P�R�−��J �P�R� (12.25)

More complicated coupling schemes have been proposed and may be advanta-
geous in some cases. For example, a straightforward extension of Equation (12.25)
gives a non-linear scheme:

� �P�R��� = �1−��n�I �P�R�−�n�J �P�R� (12.26)

In other formulations, it is not the Hamiltonians that are scaled directly but
parameters in the energy function. Thus, for example, a parameter, p, from an
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MM energy function in an intermediate state could be written as a linear function
of �, i.e.

p� = �1−��pI −�pJ (12.27)

Such coupling can, of course, lead to a very complicated functional dependence
of the energy of the system on the coupling parameter, �.

Once the new Hamiltonian has been defined, the free-energy difference between
two intermediate states with different values of the perturbation parameter, �i and
�j , can be calculated. Assuming, as before, that the kinetic energy terms cancel
out, the difference is

�Ai→j = Aj −Ai

= −kBT ln�exp
[−�� �R��j�−� �R��i��/�kBT�

]��i
(12.28)

The total free-energy difference is, then, the sum of the individual free-energy
differences between the intermediate states on going from state I to state J :

�AI→J =
Nw∑

i=0

�Ai→�i+1� (12.29)

where Nw is the total number of intermediate states or windows and the states
i = 0 and i = Nw +1 refer to the end states, I and J , respectively.

Up to now, we have focused on the free-energy difference, AJ −AI . An expres-
sion for the difference in the reverse direction, AI − AJ , can be obtained from
Equation (12.24) by interchanging the states I and J . The values of the two dif-
ferences should be equal in magnitude and opposite in sign but the relationship
between the perturbation formulae is not so straightforward. In one case, the
ensemble average is for a trajectory generated for state I and in the other it is
for state J . The fact that the same quantity can be calculated in two independent
ways provides a very useful check on the accuracy of a statistical perturbation
theory calculation. If the difference between the changes in free energy for the
forwards and backwards perturbations (or the hysteresis of the simulation) is
large then the sampling in the simulation has been inadequate and the runs need
to be longer or carried out with more intermediate states. It should be noted that
it is unnecessary to perform two distinct sets of simulations to obtain the two
free-energy differences. This is because the trajectory generated by the simulation
of an intermediate state, i, can be used to determine simultaneously the free-
energy differences for the windows in the forwards direction, i → i + 1, and in
the backwards direction, i → i−1.

So far the discussion has been a little abstract and it may be unclear to some
readers exactly what form the perturbation from one state to another can take
in real applications. Perhaps the most important point to note is that one of the
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major advantages of this technique (as well as the thermodynamic integration
method to be discussed below) is that the perturbation does not have to corres-
pond to a physically realizable process. Consider the example studied using the
umbrella sampling technique in Section 11.7, in which the free-energy profile
was calculated for the bALA molecule as a function of one of the intramolecular
hydrogen-bonding distances, but this time for the same process in a solvent. If
the perturbation technique were applied to this problem, it would be physically
most reasonable (and it might also be most efficient) to define the intermediate
states as structures having a particular value of the distance. It is also possible,
though, to employ one of the coupling formulae, either Equation (12.25) or
Equation (12.26), in which case the intermediate states would correspond to a
weighted superposition of the two end states. Suppose that the linear coupling
formula were used. This would mean that both structures would be present in the
simulation but their interactions with the solvent (and their internal interactions)
would be scaled by 1 − � and �, respectively. There would be no interactions
between the solute molecules.

Because physically realizable changes do not have to be studied, it is possible
to calculate the free-energy differences between ‘states’ of a system in which the
number and the type of atoms are altered. These types of changes are sometimes
called alchemical perturbations. Thus, for example, the relative hydration free
energies of two different solute molecules can be calculated by performing a
simulation in which one solute molecule is transformed into another. As we shall
see in the next section, we can also obtain absolute free energies of hydration
if a solute is made to vanish entirely during a simulation (i.e. the two states
of the system correspond to those with the solute molecule present and with it
absent). Another common application is the calculation of the relative stability of
binding of two different ligand molecules to another molecule, such as a protein.
In this case, the transformation would be effected by simulating the transformation
between the two ligand molecules as they are bound to the host molecule.

One of the most important aids in the formulation of problems that involve the
calculation of free-energy differences is the concept of a thermodynamic cycle.
Let us take as an example the process of calculating the relative binding affinities
of two ligands, A and B, to a host molecule, H. The thermodynamic cycle for
this is

�AAH

H +A −→ HA
�AAB ↓ ↓ �AAHBH

H +B −→ HB
�ABH

(12.30)
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There are four free-energy contributions to the cycle, the free energies of binding
of the ligands to the host in solution, �AAH and �ABH, the free energy for
the conversion of the two ligand molecules in solution, �AAB, and that for the
conversion between the two ligand complexes, �AAHBH. Because the free energy
is a thermodynamic state function this means that any free-energy difference
depends only upon the nature of the end states and is independent of the path over
which the change occurs. Thus, the sum of the individual free energies around
the thermodynamic cycle is zero and so

�AAH +�AAHBH −�ABH −�AAB = 0 (12.31)

The relative binding affinity of the two ligands is determined by the difference
�AAH − �ABH. For some problems it may be possible to calculate these terms
directly, although, according to Equation (12.31), the same difference can also be
written as �AAB −�AAHBH. In many cases, it is easier to compute the free-energy
differences for the unphysical conversion of the ligands (in solution and bound
to the host) than it is to compute those for the physical process of each ligand
binding to the host. Thermodynamic cycles of this sort can be formulated for
many other problems of interest.

The other class of methods that we shall mention here is the thermodynamic
integration methods. These also calculate the differences between the free energies
of two states of a system and employ the same coupling parameter approach
as the thermodynamic perturbation theory methods. Instead of Equation (12.22),
however, they rely on the following identity:

�AI→J =
∫ 1

0
d�

�A

��
(12.32)

Determination of the derivatives of the free energy is straightforward. Making use
of Equations (12.20) and (12.21) and the fact that the Hamiltonian depends upon
the coupling parameter, �, gives

�AI→J =
∫ 1

0
d�

〈
��

��

〉

�

(12.33)

The derivative of the Hamiltonian with respect to the perturbation parameter is
easily evaluated once the coupling scheme has been defined. The integral itself
is determined by performing simulations to calculate the ensemble average in
the integrand at various values of � and then applying a standard numerical
integration technique to the values that result. With thermodynamic integration
methods there is no equivalent of forwards and backwards perturbations because
the ensemble averages depend upon only one value of �. Instead, the precision of
the calculations can be judged by estimating the error arising in the calculation
of each of the ensemble averages.
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We have briefly reviewed some of the principles behind the thermodynamic
perturbation and thermodynamic integration methods for the calculation of free-
energy differences. It has not been possible in the space available here to describe
the many variations of each of these techniques that exist or any alternative
methods that may be better for certain problems. It should be borne in mind
though, when calculating free-energy differences, that the choice of the most
appropriate method and coupling scheme need not be at all obvious and that it will
be necessary to experiment to obtain the best approach. Whatever the method,
extreme care should be taken to ensure that enough simulations are done and
done for long enough that the results are of the precision that is desired. Free-
energy calculations of all sorts are notorious for providing pitfalls for the unwary
user!

12.6 Example 26

The problem addressed by the program in this section is the estimation of the free
energy of water using statistical perturbation theory. The free energy is determined
by taking a box of water molecules and incrementally making one of them vanish.
The transformation is effected in two steps. In the first the charges on the atoms
in a single water molecule are made to disappear and in the second the Lennard-
Jones parameters for the oxygen are gradually reduced to zero (the Lennard-Jones
parameters for the hydrogens are already zero). In each case, the parameter values
are changed by linearly scaling them with the perturbation parameter, �, and
performing several simulations with values for � between 0 and 1. In the step
in which the charges are made to disappear, 21 simulations are performed, with
increments in � of 0�05. In the second step, in which the Lennard-Jones parameters
are removed, 11 simulations are done and the change in � at each step is 0�1.

The program for the step in which the charges are reduced to zero is:

1 """Example 26."""

2
3 from Definitions import *

4
5 # . Set some parameters.

6 NAME = "example26.trj"

7 NLAMBDAS = 21

8 SOLUTE = 0

9 TEMPERATURE = 300.0

10 DLAMBDA = 1.0 / float ( NLAMBDAS - 1 )

11 RT = CONSTANT_MOLAR_GAS * TEMPERATURE / 1000.0

12
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13 # . Read in the system.

14 solution = XMLUnpickle ( \

os.path.join ( xpkpath, "water216_cubicbox_mc.xpk" ) )

15 solution.Summary ( )

16
17 # . Define a random number generator.

18 rng = Random ( )

19
20 # . Initialize the dictionary that will hold the free energy values.

21 dg = {}

22
23 # . Perform simulations at different coupling constants.

24 for i in range ( NLAMBDAS - 1, -1, -1 ):

25
26 # . Reset the random number generator.

27 rng.seed ( 622199 + i )

28
29 # . Get the value of the coupling parameter.

30 LAMBDA = float ( i ) * DLAMBDA

31
32 # . Scale the solute’s charge parameters.

33 MonteCarlo_ScaleIsolateInteractionParameters ( \

solution, SOLUTE, chargescale = LAMBDA )

34
35 # . Equilibration.

36 MonteCarlo_SystemGeometry ( solution, \

blocks = 10, \

moves = 100000, \

rng = rng, \

temperature = TEMPERATURE )

37
38 # . Data-collection.

39 mcdata = SystemGeometryTrajectory ( \

os.path.join ( scratchpath, NAME ), \

solution, mode = "w" )

40 MonteCarlo_SystemGeometry ( solution, \

blocks = 20, \

moves = 100000, \

rng = rng, \

temperature = TEMPERATURE, \

trajectories = [ ( mcdata, 100 ) ] )

41
42 # . Define a trajectory object for reading.

43 mcdata = SystemGeometryTrajectory ( \
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os.path.join ( scratchpath, NAME ), \

solution, mode = "r" )

44
45 # . Initialize the accumulators.

46 gb = gf = 0.0

47
48 # . Loop over the frames in the trajectory.

49 while mcdata.RestoreOwnerData ( ):

50
51 # . Get the interaction energy at i.

52 MonteCarlo_ScaleIsolateInteractionParameters ( solution, SOLUTE, \

chargescale = LAMBDA )

53 ei = MonteCarlo_IsolateInteractionEnergy ( solution, SOLUTE )

54
55 # . Calculate the energy at i-1.

56 if i > 0:

57 MonteCarlo_ScaleIsolateInteractionParameters ( solution, SOLUTE, \

chargescale = LAMBDA - DLAMBDA )

58 ej = MonteCarlo_IsolateInteractionEnergy ( solution, SOLUTE )

59 gb += math.exp ( - ( ej - ei ) / RT )

60
61 # . Calculate the energy at i+1.

62 if i < ( NLAMBDAS - 1 ):

63 MonteCarlo_ScaleIsolateInteractionParameters ( solution, SOLUTE, \

chargescale = LAMBDA + DLAMBDA )

64 ej = MonteCarlo_IsolateInteractionEnergy ( solution, SOLUTE )

65 gf += math.exp ( - ( ej - ei ) / RT )

66
67 # . Scale and save the values.

68 gb /= float ( len ( mcdata ) )

69 gf /= float ( len ( mcdata ) )

70 if i > 0: dg[(i,i-1)] = - RT * math.log ( gb )

71 if i < ( NLAMBDAS - 1 ): dg[(i,i+1)] = - RT * math.log ( gf )

72
73 # . Output the results.

74 table = logfile.GetTable ( columns = [ 12, 12, 16, 16, 16 ] )

75 table.Start ( )

76 table.Title ( "Calculated Free Energies" )

77 table.Heading ( "Lambda I" )

78 table.Heading ( "Lambda J" )

79 table.Heading ( "dG (I->J)" )

80 table.Heading ( "dG (I<-J)" )

81 table.Heading ( "dG (average)" )

82 dgijtot = dgjitot = 0.0

83 for j in range ( NLAMBDAS - 2, -1, -1 ):
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84 i = j + 1

85 dgij = dg[(i,j)]

86 dgji = dg[(j,i)]

87 dgijtot += dgij

88 dgjitot += dgji

89 table.Entry ( "%12.4f" % ( float ( i ) * DLAMBDA, ) )

90 table.Entry ( "%12.4f" % ( float ( j ) * DLAMBDA, ) )

91 table.Entry ( "%16.4e" % ( dgij, ) )

92 table.Entry ( "%16.4e" % ( dgji, ) )

93 table.Entry ( "%16.4e" % ( 0.5 * ( dgij - dgji ), ) )

94 table.Entry ( "Total:", alignment = "l", columnspan = 2 )

95 table.Entry ( "%20.3f" % ( dgijtot, ) )

96 table.Entry ( "%20.3f" % ( dgjitot, ) )

97 table.Entry ( "%20.3f" % ( 0.5 * ( dgijtot - dgjitot ), ) )

98 table.Stop ( )

Lines 6–11 define various parameters that will be needed by the program. These
include the number of different values of � to simulate, NLAMBDAS, the
index of the water molecule that will be made to disappear, SOLUTE,
and the temperature at which the simulations are to be performed,
TEMPERATURE.

Line 14 reads the XPK file that defines the system that is to be simulated. This is
a box of 216 water molecules prepared so that the internal geometries of
all the water molecules are identical and, hence, suitable for Monte Carlo
simulation. Ways in which solvent boxes of this type can be generated
are described in Section A3.1.

Line 21 creates a Python dictionary that will be employed for storing the free-
energy results.

Lines 24–30 start the loop over different values of �. The loop is arranged so that
the simulations at � = 1 are carried out first and those at � = 0 last.

Line 33 sets the scale factor for the charges of the water molecule that is being
made to disappear.

Lines 36–40 perform two Monte Carlo simulations, the first to equilibrate the sys-
tem with the modified energy function and the second for data collection.
In all, 40 001 structures are saved for later analysis.

Line 43 creates a trajectory object that is appropriate for reading the data generated
in the previous Monte Carlo simulation.

Lines 49–65 loop over each of the configurations stored in the trajectory in turn
and calculate the interaction energy between the water molecule being
removed and the remaining molecules in the system. In the most gen-
eral case (i.e. when � is not equal to zero or to unity), the interaction
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energy is calculated for three different sets of parameters, which are those
of the previous, the current and the subsequent simulations. Denoting
these energies �i−1, �i and �i+1, respectively, the free energies in the
backwards, �Gi−1←i, and forwards, �Gi→i+1, directions are calculated
as

�Gi−1←i = −RT ln
〈

exp
(

−��i−1 −�i�

RT

)〉

�i

(12.34)

�Gi→i+1 = −RT ln
〈

exp
(

−��i+1 −�i�

RT

)〉

�i

(12.35)

Lines 68–71 terminate calculation of the free energies for the window. This is
done by dividing the accumulated energy terms by the number of frames
in the trajectory and applying the formula of Equation (12.28) to the
resulting average.

Lines 74–98 output the results of the calculation. The free energies for each
window in the forwards and backwards directions are printed as well as
the average values. Output terminates with the free-energy changes for
the complete transformation.

The program for performing the second step in which the Lennard-Jones param-
eters of the oxygen are reduced to zero is essentially the same as the program
given above. The major differences lie in the number of simulations performed
and the arguments that are passed to the function that scales the disappearing water
molecule’s interaction parameters. Reasonable results are obtained by carrying
out 11 simulations and scaling both the �ij and sij parameters of the disappearing
water molecule by �. It should be remembered that the charge scaling factor is
always zero for this part of the calculation.

Free-energy values obtained from these programs as functions of the per-
turbation parameter are shown in Tables 12.1 and 12.2. There is reasonable
agreement between the free-energy differences calculated in the forwards and
backwards directions. The total free energies for the step in which the charges
are removed differ by less than 0�2 kJ mol−1 while there is a difference of
about 1�8 kJ mol−1 between the values for the second step. The charges make
the biggest contribution to the free-energy change and the charge and Lennard-
Jones terms have opposite contributions – the removal of the electrostatic inter-
actions between a water molecule and its neighbours requires energy whereas
the removal of the Lennard-Jones interactions is favourable. The average of
the forwards and backwards total free-energy changes from the simulations is
25�6 kJ mol−1, which is in good agreement with the experimental value of
26�5 kJ mol−1 (at 25 
C).
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Table 12.1 The free-energy change as a function of the perturbation parameter,
�, for the first step of the statistical perturbation calculation of Example 26 in
which the electrostatic interactions between a single water molecule and the
remainder of the molecules in the system are eliminated. Energies are in kJ

mol−1.

�i �j �Gi→j �Gi←j �Gaverage

1.00 0.95 4.73 −4�22 −4�48
0.95 0.90 3.74 −3�99 −3�87
0.90 0.85 3.70 −3�86 −3�78
0.85 0.80 3.57 −3�34 −3�45
0.80 0.75 2.99 −3�17 −3�08
0.75 0.70 2.76 −2�63 −2�69
0.70 0.65 2.40 −2�42 −2�41
0.65 0.60 2.11 −1�93 −2�02
0.60 0.55 1.66 −1�66 −1�66
0.55 0.50 1.42 −1�52 −1�47
0.50 0.45 1.32 −1�47 −1�40
0.45 0.40 1.30 −1�13 −1�22
0.40 0.35 0.96 −1�06 −1�01
0.35 0.30 0.89 −0�58 −0�74
0.30 0.25 0.45 −0�61 −0�53
0.25 0.20 0.46 −0�56 −0�51
0.20 0.15 0.45 −0�43 −0�44
0.15 0.10 0.30 −0�32 −0�31
0.10 0.05 0.18 −0�28 −0�23
0.05 0.00 0.15 −0�10 −0�12
Total 35.55 −35�27 −35�41

Finally we note that, in both these programs, the whole perturbation is carried
out at once. In a real study it is more likely that the perturbation would be broken
up into several different jobs so that the results of one calculation could be verified
before those of the next were begun.

Exercises

12.1 Analyse in more detail the trajectory generated in the program described in
Section 12.4.

(a) Write a program to calculate the average of the energies of interaction between
methane and the surrounding water molecules. In addition to reproducing the
data in Figure 12.4, determine the relative importance of the electrostatic and the
Lennard-Jones contributions to the interaction. How does the size of these inter-
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Table 12.2 The free-energy change as a function of the perturbation parameter,
�, for the second step of the statistical perturbation calculation of Example 26

in which the Lennard-Jones interactions between a single, chargeless water
molecule and the remainder of the molecules in the system are eliminated.

Energies are in kJ mol−1.

�i �j �Gi→j �Gi←j �Gaverage

1.0 0.9 −0�73 1.25 0.99
0.9 0.8 −1�85 2.21 2.02
0.8 0.7 −1�70 1.31 1.50
0.7 0.6 −1�11 1.21 1.16
0.6 0.5 −1�17 1.18 1.18
0.5 0.4 −0�74 1.43 1.09
0.4 0.3 −0�81 0.95 0.88
0.3 0.2 −0�56 0.63 0.60
0.2 0.1 −0�01 0.34 0.17
0.1 0.0 −0�22 0.16 0.19
Total −8�90 10.70 9.78

actions compare with, for example, the interactions between two water molecules
in solution?

(b) What is the structure of the water about the methane molecule? For example, are
there hydrogen bonds?

(c) Estimate the size of the effect of the truncation of the intermolecular interactions
on the values of the electrostatic and Lennard-Jones energies.

12.2 The programs in Section 12.6 calculated the free energy of a water molecule
in water. Do similar calculations using the same programs to calculate the
free energies of hydration of other small solutes, such as methane (see Sec-
tion 12.4) and the chloride anion. A good strategy in both cases is to trans-
form the solute molecules into the Lennard-Jones particle that acted as an
intermediate in the calculations of Section 12.6. Try various approaches for
changing the parameters. Which are the most effective? Note that, for the
negatively charged chloride anion, a correction that accounts for the neglect
of the electrostatic interactions beyond the cutoff distance will have to be
made in order to obtain reasonable agreement with experimental values. Try
using the Born expression of Equation (10.10) to estimate the size of this
effect.

Another point to investigate concerns the formula for the calculation of
the free-energy differences. Example 26 employed Equation (12.28) for the
forwards and backwards transformations and averaged the two values, but
other approaches have been proposed. One of these is the simple overlap
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sampling method which is based on the following expression:

�Ai→j = −kBT ln

{ �exp�−�� �R��j�−� �R��i��/�2kBT����i

�exp�+�� �R��j�−� �R��i��/�2kBT����j

}

(12.36)

Modify Example 26 to use this equation. How do the results compare?



Appendix 1

The pDynamo library

The algorithms and capabilities of the pDynamo library discussed in this book
represent only a portion of those that are available. The choice of which to include
has been highly subjective and, due to space restrictions and the perseverance of
the author (!), relatively small. The topics that I most regret omitting or skimping
upon include density functional theory, the calculation of surfaces and volumes,
continuum methods for including solvation effects, non-equilibrium methods,
especially those for the determination of free energies, and enhanced methods,
such as transition path sampling, for the investigation of chemical reactions and
other rare events. In any case, readers are encouraged to investigate these and
alternative methods themselves, for many of the techniques presented in the book
are the subject of active research and are undergoing continual improvement.

pDynamo itself and the example programs described in the text are available on
the World Wide Web. At the time of publication, the appropriate addresses were
www.ibs.fr and www.pdynamo.org. The websites give full details about how to
download, install and use the library and the types of machines upon which it has
been tested.

For convenience, we include here tables of the methods and attributes of the
System class and of the other classes and functions that were encountered in
the book along with the section in which they were first described or in which
significant new capabilities were introduced. These are in Tables A1.1, A1.2 and
A1.3, respectively. The System class is, in many ways, the central class of the
library although it has several other important features which could not be treated
in the text.

294
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Table A1.1 The pDynamo System class

Name Section

Attributes

angles 3.2
atoms 2.2
bonds 3.2
coordinates3 2.2
dihedrals 3.2
electronicstate 4.7
symmetry 10.5
symmetryparameters 10.5

Methods

AtomicCharges 4.7
BondsFromCoordinates 3.2
DefineMMModel 5.3.3
DefineNBModel 5.3.3
DefineQCModel 4.7, 6.3
DefineSoftConstraints 5.6
DefineSymmetry 10.5
DipoleMoment 4.7
Energy 4.7
Summary 2.2

Table A1.2 pDynamo classes

Name Section

pBabel

CMLFileReader, CMLFileWriter 2.5
MOLFileReader, MOLFileWriter 2.5
PDBFileReader, PDBFileWriter 2.5
SMILESReader, SMILESWriter 2.5
SystemGeometryTrajectory 7.9, 9.4
SystemSoftConstraintTrajectory 11.6
SystemVelocityTrajectory Exercise 11.1
XYZFileReader, XYZFileWriter 2.5

pCore

Coordinates3 3.3, 3.5, 3.6
LogFileWriter 2.4.4, 3.4
Matrix33 3.5, 3.7
ObjectFunction 4.9



296 The pDynamo library

Table A1.2 (cont.)

Name Section

Selection 2.3
Statistics 9.4, 11.2
TextLogFileWriter 3.4
TextTable 3.4
Vector 3.5
Vector3 3.5, 4.7
XHTMLLogFileWriter 3.4

pDynamo

Angle 3.3
Atom 2.2
AtomContainer 2.2, 3.7
Bond 3.3
CrystalClass 10.5
CrystalClassCubic 10.5
Dihedral 3.3
ElectronicState 4.7
MMModel 5.3.3
MMModelOPLS 5.3.3
NBModel 5.3.3
NBModelABFS 10.2
NBModelEwald 10.7
NBModelFull 5.3.3
NBModelMonteCarlo 12.3
QCModel 4.7
QCModelMNDO 4.7
SoftConstraint 5.6
SoftConstraintContainer 5.6, 9.7, 11.7
SoftConstraintDistance 5.6
SoftConstraintEnergyModel 5.6
SoftConstraintEnergyModelHarmonic 5.6
SoftConstraintEnergyModelHarmonicRange 5.6
SoftConstraintTether 5.6
System 2.2, 3.2, 4.7, 5.3.3, 5.6, 10.5
SystemGeometryObjectFunction 4.9
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Table A1.3 pDynamo functions

Name Section

BakerOptimize_SystemGeometry 7.5
BuildCubicSolventBox A3.1
Clone 2.2
CMLFile_FromSystem 2.5
CMLFile_ToCoordinates3 3.7
CMLFile_ToSystem 2.5
ConjugateGradientMinimize_SystemGeometry 7.3
LangevinDynamics_SystemGeometry Exercise 11.3
LeapFrogDynamics_SystemGeometry 11.4
MergeByAtom 2.2
MOLFile_FromSystem 2.5
MOLFile_ToCoordinates3 3.7
MOLFile_ToSystem 2.5
MonteCarlo_IsolateInteractionEnergy 12.3
MonteCarlo_ScaleIsolateInteractionParameters 12.3
MonteCarlo_SystemGeometry 12.3
NormalModesPrint_SystemGeometry 8.2
NormalModesTrajectory_SystemGeometry 8.4
NormalModes_SystemGeometry 8.2
PDBFile_FromSystem 2.5
PDBFile_ToCoordinates3 3.7
PDBFile_ToSystem 2.5, 5.3.3
PruneByAtom 2.2
RadialDistributionFunction 11.2
SAWOptimize_SystemGeometry 7.9
SMILES_FromSystem 2.5
SMILES_ToSystem 2.5
SelfDiffusionFunction 11.2
SolvateSystemBySuperposition A3.2
SteepestDescentPath_SystemGeometry 7.7
ThermodynamicsRRHO_SystemGeometry 8.6
VelocityVerletDynamics_SystemGeometry 9.2
WHAMEquationSolver 11.6
XMLPickle 2.5
XMLUnpickle 2.5
XYZFile_FromSystem 2.5
XYZFile_ToCoordinates3 3.7
XYZFile_ToSystem 2.5
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Mathematical appendix

A2.1 The eigenvalues and eigenvectors of a matrix

The eigenvalues, �, and eigenvectors, v, of an N ×N matrix, A, are defined by
the following equation:

Av = �v (A2.1)

A can be any type of square matrix but we shall restrict our discussion to
symmetric matrices because these encompass all the examples that are required
in the book. Symmetric matrices are those for which the elements are all real and
whose transpose equals itself, i.e. AT = A.

The eigenvalues of a matrix are determined by solving its characteristic or
secular equation. This is

�A−�I� = 0 (A2.2)

where I is the N × N identity matrix and the double straight lines denote the
determinant. Expanding the determinant gives an N th order polynomial whose N

roots are the eigenvalues �.
The eigenvalues and eigenvectors of symmetric matrices have some important

properties. One of these is that the eigenvalues are real, either negative, zero
or positive, but not complex. Another is that the eigenvectors, which are also
real, form an orthonormal set, which means that different eigenvectors have zero
overlap or a zero dot product, i.e.

vT
i vj = 0 i �= j (A2.3)

Eigenvectors with different eigenvalues are automatically mutually orthogonal,
whereas those with identical eigenvalues can always be chosen to be so.

The orthogonality property of the eigenvectors implies that an orthogonal
matrix, V, may be constructed whose columns are the (normalized) eigenvectors.
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This matrix may then be employed to diagonalize the original matrix, A, as
follows:

VTAV = � (A2.4)

where � is a diagonal matrix with the eigenvalues, �i, as its diagonal elements.
Transformations of the type in Equation (A2.4) form the basis of most numerical

techniques for solving Equation (A2.1). Although a full diagonalization requires
a knowledge of a matrix’s eigenvectors, it proves relatively straightforward to
come up with orthogonal matrices that make the matrix ‘more’ diagonal. Repeated
application of these matrices then permits a complete transformation to diagonal
form and the eigenvalues and eigenvectors of the matrix to be found. Matrix
diagonalization algorithms of this sort are standard parts of numerical libraries
and very efficient implementations exist. Their cost scales as O�N 3� with matrix
dimension N .

More complicated versions of Equation (A2.1) exist. An example of one of
these generalized eigenvalue equations is

Av = �Bv (A2.5)

in which B, as well as A, is a symmetric matrix. There are a number of strategies
for solving problems of this type but one, which is employed by the quantum
chemical algorithms of Section 4.5.1, proceeds by generating a matrix, X, such
that

XTBX = I (A2.6)

Equation (A2.5) may then be rearranged into the simpler form

A′v′ = �v′ (A2.7)

in which

A′ = XTAX (A2.8)

v′ = X−1v (A2.9)

Solution occurs by transforming A to A′ using Equation (A2.8), diagonalizing
A′ to obtain the eigenvalues and the modified eigenvectors, v′, and then back-
transforming the latter to the desired eigenvectors by multiplying the v′ by X.

The success of this approach relies on the ability to construct a suitable trans-
formation matrix, X, from B. This is so in the quantum chemical case because the
matrix B is positive-definite, which means that all of its eigenvalues are positive.
There are a number of definitions of X in use but one, which is applicable when
none of the eigenvalues of B are very close to zero, is

X ≡ B− 1
2 = V�− 1

2 VT (A2.10)



300 Mathematical appendix

In this equation, V is the matrix of the eigenvectors of B, not A (!), and �− 1
2

is a diagonal matrix whose diagonal elements are the inverse square roots of the
eigenvalues of B.

A2.2 The method of Lagrange multipliers

A common mathematical problem is the minimization (or maximization) of the
value of a function, � , with respect to the function’s variables, v. That maximiza-
tion and minimization are equivalent is apparent if � �v� is replaced by −� �v�.
Often a minimization is required that puts no restrictions on the values of the
variables. For these unconstrained cases, many standard minimization procedures
exist, some of which are described in Chapter 7.

A related problem is the minimization of a function, but this time subject to a
series of constraint conditions. These are also functions of the variables, v, and
may be expressed as

�k �v� = 0 ∀ k = 1� � � � �Nc (A2.11)

It should be emphasized that the constraint conditions need to be compatible. It is
easy to come up with sets of constraints that cannot be satisfied simultaneously!

Assuming that the constraints are independent, their number, Nc, must be less
than the number of variables, Nv, which means that the space in which the
minimization is to be done has dimension Nv −Nc. A strategy that is sometimes
possible is to devise a new set of Nv − Nc independent variables, v′, from the
original ones that incorporate the constraint behaviour. The function, � �v′�, can
then be minimized in the usual way. In practice, however, this approach is often
not feasible because the forms of the constraint conditions do not permit the
required manipulations.

An alternative approach is the method of Lagrange multipliers which proceeds
by defining a new �Nv +Nc�-dimensional function, �, that is a function of the
original variables, v, and of Nc new variables, �k:

�
(

v��1� � � � � �Nc

)= � �v�−
Nc∑

k=1

�k�k �v� (A2.12)

This function is then minimized, in an unconstrained fashion, with respect to the
original and new variables. Performing the differentiation with respect to v and
the �k gives the following set of �Nv +Nc� equations that must be solved:

��

�v
= ��

�v
−

Nc∑

k=1

�k

��k

�v

= 0 (A2.13)
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��

��k

= �k

= 0 ∀ k = 1� � � � �Nc (A2.14)

Equation (A2.14) is clearly a restatement of the original constraint conditions of
Equation (A2.11).

Although it may not be obvious, the unconstrained minimization of � is equiv-
alent to the constrained minimization of � . To get an idea of why this is so,
consider a reference point in variable space, v0, and an infinitesimal displacement
away from it, �. The value of the kth constraint condition at the displaced point,
v0 +�, can be approximated using a Taylor expansion about the reference point
as follows:

�k �v0 +�� ≈ �k �v0�+�T ��k

�v

∣
∣
∣
∣
v0

(A2.15)

If the reference point obeys the constraint condition, the first term on the right-
hand side of Equation (A2.15) is zero, and implies that the displaced point
will itself only satisfy the constraint when the displacement is orthogonal to the
constraint’s derivative vector. We can now make use of this result by interpreting
Equation (A2.13) which says that, at a stationary point, the components of the
derivative of � with respect to v are zero in the space orthogonal to the derivatives
of the constraint conditions. This means that optimization can occur in the part
of variable space that does not violate the constraints, i.e. those parts that are
orthogonal to the ��k/�v, but not in those parts that do, i.e. those parts that are
spanned by the ��k/�v.



Appendix 3

Solvent boxes and solvated molecules

In the last few chapters of the book, we concentrated on studying systems with
periodic boundary conditions. These systems corresponded either to pure solvent
or to simple solutes immersed in solvent. In the examples, it was assumed that
a partially or fully equilibrated solvent or solvated system was available for the
simulations that we performed but we did not describe how they could be obtained
in the first place. This omission is rectified here by considering two example
programs that can carry out these tasks.

A3.1 Example 27

It should be stated initially that there is no unique way of creating solvent boxes.
The method adopted here works well for the examples given in this book but it
need not be the most efficient or the most appropriate if, for example, non-cubic
boxes are required.

A simple way of building an approximate solvent box that is cubic in shape
is to construct a regular cubic lattice and centre solvent molecules on the lattice
points. The lattice should contain at least as many points as the number of solvent
molecules and the spacing between lattice points should be large enough that
neighbouring molecules do not overlap. In pDynamo, this procedure is imple-
mented in the function BuildCubicSolventBox whose definition is:

Function BuildCubicSolventBox

Build a cubic box of solvent molecules.

Usage:
solvent = BuildCubicSolventBox (

molecule, nmolecules )
molecule is an instance of System containing a single solvent molecule.

The operations performed by the function are purely geometric
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and so the only information that it requires are the molecule’s
atom composition and its coordinates.

nmolecules is the number of molecules to put in the box. This number will
often, although need not, be an exact cube.

solvent is an instance of System corresponding to the cubic solvent
box.

The steps employed by the function are: (i) determine a size, h, for the solvent
molecule. This is done by finding the box of smallest dimension that will enclose
the molecule taking into account the fact that the molecule’s atoms have finite
radii; (ii) construct a regular cubic lattice with spacing h that contains, at the
minimum, nmolecules points; (iii) place molecules on the lattice points. These
sites are chosen at random unless nmolecules is an exact cube in which case
all sites are filled; and (iv) randomly rotate the coordinates of each molecule on
the lattice points.

A program that uses this function is:

1 """Example 27."""
2
3 from Definitions import *
4
5 # . Define some parameters.
6 MOLECULENAME = "water"
7 NLINEAR = 6
8 NMOLECULES = NLINEAR**3
9
10 # . Define the MM and NB models.
11 mmmodel = MMModelOPLS ( "booksmallexamples" )
12 nbmodel = NBModelMonteCarlo ( )
13
14 # . Define the solvent molecule.
15 molecule = MOLFile_ToSystem ( \

os.path.join ( molpath, MOLECULENAME + ".mol" ) )

16 molecule.Summary ( )
17
18 # . Build the cubic system.
19 solvent = BuildCubicSolventBox ( molecule, NMOLECULES )
20 solvent.DefineMMModel ( mmmodel )
21 solvent.DefineNBModel ( nbmodel )
22 solvent.Summary ( )
23
24 # . Do Monte Carlo simulations to equilibrate the system.
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25 MonteCarlo_SystemGeometry ( solvent, \
blocks = 5, \
moves = 100000, \
pressure = 1000.0 )

26 MonteCarlo_SystemGeometry ( solvent, \
blocks = 10, \
moves = 100000 )

27
28 # . Calculate and print the final density.
29 mass = sum ( solvent.atoms.GetItemAttributes ( "mass" ) )
30 volume = solvent.symmetryparameters.volume
31 density = ( mass / volume ) * ( UNITS_MASS_AMU_TO_KG * 1.0e+30 )
32 logfile.Paragraph ( \

"Solvent density = %.2f kg mˆ-3." % ( density, ) )
33
34 # . Save the system.
35 XMLPickle ( os.path.join ( xpkpath, \

MOLECULENAME + ‘NMOLECULES‘ + "_cubicbox_mc.xpk" ), \
solvent )

Lines 6–8 define some parameters that are needed by the program.
Line 15 reads in the definition of the solvent molecule, in this case water.
Lines 19–22 create a water box with 216 (≡ 63) molecules and assign to it appro-

priate MM and NB energy models.
Lines 25–26 perform two Monte Carlo simulations at constant temperature

and pressure to equilibrate the system. This is essential to ensure
that the regular lattice geometry of the starting structure is dis-
rupted and that cavities due to empty sites are removed. The function
BuildCubicSolventBox is conservative and so the system it builds
will normally have a volume substantially greater than that required.
Hence, a simulation is first done at higher pressure to rapidly reduce the
box size before equilibration at the desired pressure is carried out.

It is to be noted that the solvent molecules in the system generated by the
function BuildCubicSolventBox have identical internal geometries
and so are suitable for simulation with the Monte Carlo technique. If it
is desired to have a water box for molecular dynamics simulation, these
statements can be replaced by ones to an appropriate function, such as
LeapFrogDynamics_SystemGeometry.

Lines 29–32 calculate and print the density of the system resulting from the Monte
Carlo calculation in units of kg m−3. This serves as a rapid check on how
well the system has been constructed. For water, the experimental value
at 300 K is about 996 kg m−3.

Line 35 saves the prepared system as an XPK file.
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Programs similar to this one were employed to generate the water boxes simu-
lated in Examples 20, 22 and 26 of Sections 10.6, 11.3 and 12.6, respectively.

A3.2 Example 28

The last section outlined a method for the construction of solvent boxes. A
complementary task concerns the production of the coordinates of condensed
phase systems containing a mixture of molecules, such as, for example, a solute
molecule in solvent. Just as for the problem addressed in the last section, there
is no unique way of doing this. A possible approach would be to adapt the
BuildCubicSolventBox function to handle molecules of different types.
Another method, which is the one we adopt here, is to overlay the solvent box
onto the solute molecule and then delete solvent molecules that overlap with any
of the solute molecule’s atoms. In pDynamo a function that can do this is:

Function SolvateSystemBySuperposition

Solvate a system by superimposing it upon a solvent box and removing all
overlapping solvent molecules.

Usage:
solution = SolvateSystemBySuperposition (

solute, solvent )
solute is an instance of System defining the solute.
solvent is an instance of System containing the solvent box.
solution is an instance of System with the solvated system.

The operation of this function is purely geometric. It first centres the solute
and the solvent box at the origin and then determines which atoms of solvent
molecules overlap with those of the solute. This is done by assigning suitable
elemental radii to the atoms of each of the systems. Finally, the solvated system
is created by merging the solute system with those solvent molecules that have
no overlap with the solute.

The example program in this section creates a solvated methane system equiva-
lent to that simulated in Example 25 of Section 12.4. The program uses the water
box that was produced by Example 27 and an appropriate definition for methane
and is:

1 """Example 28."""
2
3 from Definitions import *



306 Solvent boxes and solvated molecules

4
5 # . Define the MM and NB models.
6 mmmodel = MMModelOPLS ( "booksmallexamples" )
7 nbmodel = NBModelMonteCarlo ( )
8
9 # . Define the solute molecule.
10 solute = MOLFile_ToSystem ( \

os.path.join ( molpath, "methane.mol" ) )
11 solute.Summary ( )
12
13 # . Define the solvent box.
14 solvent = XMLUnpickle ( \

os.path.join ( xpkpath, "water216_cubicbox_mc.xpk" ) )
15
16 # . Create the solvated system.
17 solution = SolvateSystemBySuperposition ( solute, solvent )
18 solution.label = "Methane in Water."
19 solution.DefineMMModel ( mmmodel )
20 solution.DefineNBModel ( nbmodel )
21 solution.Summary ( )
22
23 # . Do a Monte Carlo calculation to equilibrate the system.
24 MonteCarlo_SystemGeometry ( solution, \
25 blocks = 10, \
26 moves = 100000 )
27
28 # . Save the system.
29 XMLPickle ( \

os.path.join ( xpkpath, "ch4_water215_cubicbox_mc.xpk" ), \
solution )

The structure of this program is similar to that of Example 27 and so it will not
be described in detail. Line 17 is the one on which the solvated methane system
is produced. In this case, only a single water molecule overlaps with the methane
and so the resulting system comprises methane and 215 water molecules. Like-
wise, system construction is followed by Monte Carlo (or molecular dynamics)
simulation at constant temperature and pressure. As before this is essential so as
to remove cavities caused by the removal of solvent molecules and to ensure that
the solvent structure fully adapts itself to the solute.
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Most pDynamo modules concerned with reading and writing molecular representations
are in pDynamo’s pBabel package. This package was named in homage to a very
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atoms by neutron crystallography on fully deuterated myoglobin’. Proc. Natl. Acad.
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Some force fields have been developed with the aim of covering all elements. Probably
the most widely used is UFF (the ‘Universal Force Field’):

5.14 A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard III and W. M. Skiff. ‘UFF,
a full periodic table force field for molecular mechanics and molecular dynamics
simulations’. J. Am. Chem. Soc. 114, 10024–35, 1992.

A nice overview of force fields for simulations of proteins is

5.15 J. W. Ponder and D. A. Case. ‘Force fields for protein simulation’. Adv. Prot. Chem.
66, 27–85, 2003.

A useful reference for readers interested in the modeling of coordination compounds
(which is a separate topic in its own right) is

5.16 P. Norrby and P. Brandt. ‘Deriving force field parameters for coordination com-
plexes’. Coord. Chem. Rev. 212, 79–109, 2001.

Parametrization

Much information about the parametrization of Gaussian basis sets, semi-empirical QC
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Some early Monte Carlo studies on water and methane were performed by Owicki and
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Example 22

A paper detailing free-energy simulations of water, methane and the chloride anion is

12.18 W. L. Jorgensen, J. F. Blake and J. K. Buckner. ‘Free energy of TIP4P water and
the free energies of hydration of CH4 and Cl− from statistical perturbation theory’.
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Exercise 12.2
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reverse free-energy perturbation averages’. J. Chem. Phys. 118, 2977–84, 2003.

An earlier seminal article upon which this later work is based is

12.20 C. H. Bennett. ‘Efficient estimation of free energy differences from Monte Carlo
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anisotropic dipole 89
isotropic dipole 89

potential energy; see energy
potential energy functions 81ff., 313–14; see also

parametrization
AMBER 94, 104, 313
CHARMM 94, 313
MM2, MM3, MM4 93, 313
MMFF94 313
OPLS, OPLS-AA 93ff., 120, 272, 313, 324
UFF 313

potential energy surface 53, 310
curvature 132
exploration of 122–6, 315–16
model 124–5
walking on 132

potential of mean force; see free energy
predictor–corrector integrator 172
preferential sampling 269, 325
pressure 163

control; see molecular dynamics simulation
fluctuations 245
instantaneous 237
isotropic system 238
reference 237

principal axes 43; see also transformation
probability density distribution; see ensemble
protein data bank 21, 31

atom 21
chain 21

connection 23
format 21, 27, 98, 109, 309

record 22
hetero-atom 22
residue 21

library 98
non-standard 22
standard 22

protein 21, 93; see also crambin; enzyme;
lysozyme; myoglobin

Pulay term; see Hartree–Fock theory,
derivatives

Python, programming language 2–8, 307
built-in functions 4
comments 3
documentation string 2
formatting string 4–5
function 3; see also function
import statement 3, 8
iteration 4
module 2–3
package 8
return statement 3
sequence types 4; see also dictionary; list; tuple
variable assignment 4

QC / MM potential; see hybrid potential
QM / MM potential; see hybrid potential
quantum chemical approaches 54ff.

linear scaling 66, 311
quantum mechanics 51–3, 310
quantum Monte Carlo theory 53
quantum state 161
quaternion 45–6, 105, 141, 309

radial distribution function 228, 230–1
methane in water 278, 279
neighbour function 278–9
water 235

radius of convergence 260
radius of gyration 49
Raman spectroscopy 103
random force 242–3
random number

Gaussian distribution 175
generator 176
initialization of seed 180

rare events 294
rate constant 163–4
RATTLE algorithm 323
reaction field models 210–12
reaction path 124, 136, 140, 317; see also

self-avoiding walk algorithm
intrinsic reaction coordinate 136, 317
steepest descent 136–40

real space term; see Ewald summation techniques
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real spherical harmonics; see spherical harmonics
reciprocal space 219; see also vector
reciprocal space term; see Ewald summation

techniques
reduced units 126, 192
rigid-rotor, harmonic oscillator approximation

162–3, 227, 240
root mean square coordinate deviation 45–7, 141,

186–7
root mean square deviation; see statistical analysis
Roothaan–Hall equation 61, 112, 310
rotation; see transformation
rotational motion 134, 153–4, 176, 318; see also

degree of freedom; normal mode

saddle point 123ff.; see also stationary point
location of 130–5, 316
transition state 164

sampling, of configuration space 247–8, 250, 325
enhancing 248

scaling; see algorithms
Schrödinger equation

electronic 53
time-dependent 52, 170
time-independent 52, 112

screening, non-bonding interactions 211
secular equation 298
self-avoiding walk algorithm 140–2, 144–6, 154,

317
self-consistent field procedure 61–2
self-energy term; see Ewald summation techniques
semi-empirical quantum chemical methods 54, 104,

311
SHAKE algorithm 260, 323
shift function; see non-bonding interactions
simple overlap sampling 292–3, 326
simplex method 127
simulated annealing 186–9, 318–19
Slater determinant 55
SMILES format 25–6, 27–8, 98, 309

branching 26
disconnection 26
ring closure 26
unique 26

smoothing function; see non-bonding interactions
sodium cation 109
solvation

energy 211–12
of molecules 302, 305–6
shells 235, 278–80

solvent
bath 21
boxes, construction of 302–5
explicit models 210, 212
implicit models 210–12, 320

solvent-accessible surface area 212, 320

specific heat; see heat capacity
spherical harmonics 65, 68
spin 52

multiplicity 57
spin-orbital; see orbital
splitting of the dipoles 197–200, 202, 207
stationary point 123ff., 148–51; see also minimum;

saddle point
stationary state 52
statistical analysis; see also errors

average 182, 225–6, 321
fluctuation 182, 225–6, 321
root mean square deviation 154, 226
standard deviation 184
use of blocks of data 229, 275–6
variance 184

statistical mechanics 157, 161, 175, 182, 188, 227,
246, 249, 318, 321

statistical perturbation methods; see thermodynamic
perturbation methods

statistical thermodynamics; see statistical mechanics
steepest descent method 127
steepest descent reaction path; see reaction path
stereocentre, molecular 50
stereochemistry 50, 310
Stoermer’s rule 172
stress tensor 238
structures

chain of 140–1, 154
distance between 141
experimental 103
molecular 31, 35
stability of 51

superposition; see transformation
surface correction term; see Ewald summation

techniques
surface free energy 212, 320
switch function; see non-bonding interactions
symmetry

of a system 213–14; see also periodic boundary
conditions

number 162, 167

Taylor expansion 131, 148, 172, 301
temperature

absolute 157, 163
control; see molecular dynamics simulation
fluctuations 245
in simulated annealing 188
instantaneous 175, 236
reference 236

thermal conductivity 227
thermodynamic cycle 284–5
thermodynamic integration 281, 285
thermodynamic perturbation methods 280ff., 325–6
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thermodynamic quantities 161–5, 318; see also
ensemble

thermostat; see degree of freedom
time, CPU 217
time correlation functions 225–7, 231–3, 321

auto 226
cross 226
exponential form 229
long-time tails 230
normalization 226
stationary 226–7

time series 182, 225
timestep, molecular dynamics 172, 177, 193–4

increasing size of 258, 260
limits on 174

tin-foil boundary conditions; see Ewald summation
techniques

torque 174
torsion angle; see dihedral angle
trajectory 138, 142, 252, 261

analysis 182–3, 184–6, 225–33,
321–2

extracting data 184
frame 143
object 138, 158, 177, 275

transformation 41–49, 309
improper rotation 42
principal axis 42–3
proper rotation 42
superposition 45–9, 141, 309
translation 42

transition path sampling 294
transition state

structure 164
theory 164, 168–9, 249

translation; see transformation
translational motion 134, 153–4, 176, 318; see also

degree of freedom; normal mode
transport coefficients 227
truncation, non-bonding; see non-bonding

interactions
tunneling, quantum mechanical 171
tuple, Python 4
two-electron integrals 59

umbrella potential 248ff.
harmonic 250

umbrella sampling 248–58, 280, 323
biasing function 248, 281

units 9
atomic 9, 13
pDynamo 13

updating formula; see Hessian

valence bond theory 53
variational principle 56, 57
vector

displacement 131, 148–51
normal mode 150
orthonormal 298
reciprocal space or k vector 219

velocity; see atom; molecular dynamics
simulation

velocity autocorrelation function
227, 261

Verlet integrator 172–3, 259–60,
318

leapfrog 173, 238
velocity Verlet 173, 176, 318

vibrational frequencies 103;
see also normal modes

vibrational motion 151, 153, 318
high frequency 174, 258–60

virial, instantaneous 238
viscosity

bulk 227
shear 227

volume 163, 237–8
fluctuations 246

water 18, 19, 20, 22, 24
box, construction of 302–5
complexes with ions 109, 200
dimer 109, 114–15, 201
free energy of 286–91, 326
molecular dynamics 215–17,

244–6
Monte Carlo calculations 325
quantum chemical energy 73–4
TIP3P model 95–6, 313
trajectory analysis 233–5

wavefunction 52, 112
closed-shell 57
electronic 53, 55
open-shell 57
spin-restricted 56
spin-unrestricted 57

weighted histogram analysis method 250ff., 323
window, free-energy calculations 250ff., 283ff.
World Wide Web 294

X-ray crystallography 21, 31, 103
XML; see extensible markup language
XPK format 25, 28, 217
XYZ format 19, 27

zero-point motion 171
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