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PREFACE

The challenges that healthcare and pharmaceutical industries are facing 
demand improvements in various aspects, from scientific research to clinical 
practice. To solve these problems and improve the quality of care, it is urgent 
to translate the scientific findings from biomedicine into better clinical 
procedures and results. Because information and knowledge are the major 
contents in such translational process, novel bioinformatics methodologies 
such as data integration and knowledge discovery across various domains 
become critical. As an interdisciplinary field itself, translational bioinformat-
ics provides a special opportunity for overcoming the barriers and obstacles 
among knowledge domains and clinical branches, and between basic sci-
ence and clinical bedside practice.

This book provides an introduction and overview of translational bio-
informatics and systems biology approaches in support of the development 
of personalized, systems, and dynamical medicine. The first part of the book 
introduces and discusses some basic concepts and tools. The second part 
describes the resources, methods, and applications for finding effective bio-
markers and understanding disease complexity. The third part of the book 
focuses on the translational bioinformatics and systems biology method-
ologies in drug discovery and clinical applications, including inflammation, 
cardiovascular diseases (CVDs), cancer, aging, and age-associated diseases.

Specifically, the applications of systems biology and translational bio-
informatics may contribute to the development of systems and dynamical 
medicine with the predictive, preventive, personalized, and participatory (P4) 
features (see Chapter 2). For the practice of translational bioinformatics, one 
of the first steps would be to get the necessary resources. Various tools are 
available for supporting “omics” studies in systems biology (see Chapter 3).  
Some of the important steps are data integration, data standardization, data 
mining, knowledge discovery, and decision support (see Chapter 4).

An essential component of personalized medicine is useful biomarkers 
for quantified and more precise diagnosis and prognosis (see Chapter 5). 
Proteomics and metabolomics studies are essential in systems biology. The 
analyses of data from these studies may promote the accuracy, sensitivity, and 
throughput for biomarker identification because the proteome represents 
the functional actors in a cell (see Chapter 6). The dynamical properties in 
the diseases need to be addressed with the shifting targets at various levels 
during various stages for better therapies (see Chapter 7).
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Such approaches would enable the detection and prediction of disease 
progression and drug responses for improving the safety, utilization, and effects 
among new and existing drugs, such as the strategies in drug repositioning 
and drug combinations (see Chapter 8). Translational bioinformatics meth-
ods can help identify systems-based biomarkers to address the complexity 
in the inflammation-associated disease classifiers and patient stratifications 
(see Chapter 9). Computational systems biology strategies have been proven 
useful for drug repositioning in the treatment of CVDs (see Chapter 10).  
The identification of systems-based and dynamical biomarkers represent-
ing the evolving processes in cancer development may help support can-
cer precision medicine (see Chapter 11). Translational bioinformatics may 
also enhance the understanding in the systems biology of aging with the 
simulation of the dynamics of biological systems in the aging processes (see 
Chapter 12).

The integrative and multidisciplinary approaches in the book may be 
helpful for bridging the gaps among different knowledge domains. This 
book intends to provide a state-of-the-art and integrative view. By cover-
ing topics from basic concepts to novel methodologies, this book can be 
used by biomedical students, scientific experts, and health professionals at 
all levels.

Users may include those who are interested in genetics, genomics, pro-
teomics, bioinformatics, systems biology, bioengineering, biochemistry, 
molecular biology, cell biology, physiology, pathology, microbiology, phar-
macology, toxicology, neuroscience, immunology, drug discovery and devel-
opment, and various branches in clinical medicine.

I would like to thank the editors for their support in this exciting project.

Qing Yan, MD, PhD
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CHAPTER ONE

Introduction: Translational 
Bioinformatics and Personalized 
Medicine
 

1.1  CURRENT CHALLENGES IN BIOMEDICINE

 The tremendous challenges that healthcare and the pharmaceutical 
industries are facing demand improvements in various aspects, from sci-
entific research to clinical practice. A few examples of these challenges are 
the rapidly rising costs of clinical care and the growing expenses in drug 
research and development.

On the other hand, fewer new drugs are being approved by the US 
Food and Drug Administration, with an increasing rate of high-profile drug 
withdrawals (Caskey, 2007). In the meantime, the high incidence of adverse 
drug reactions (ADRs) has become so severe that ADRs are one of the 
leading causes of morbidity and mortality although many of them are pre-
ventable (Ross et al., 2007; Yan, 2011).

Improvements in both scientific and technical aspects are needed to 
overcome the obstacles and meet the challenges. Considering the scientific 
aspect, the reductionist drug discovery methods featuring “one-size-fits-all” 
and single target have been found to contribute to various ADRs (Yan, 
2011). These conventional approaches ignore differences between individu-
als and the interrelationships among drugs, humans, and the environment at 
various system levels.

In the technological aspect, the gaps in multidisciplinary communica-
tions and collaborations have made it difficult to translate the scientific dis-
coveries into more efficient and effective clinical outcomes. In addition, 
the inadequacies of standardization in the physician ordering systems have 
led to numerous clinical mistakes and adverse events (Yan, 2010). Another 
computational challenge related to systems medicine is the integration and 
analysis of voluminous datasets for identifying patient and disease subtypes 
(Saqi et al., 2016).
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In the scientific aspect, an important factor behind the challenges and 
obstacles is the conventional healthcare model that is reductionism based 
and disease centered (Ray, 2004). Such models originating from the late 
19th century emphasize the linear bonds between clinical symptoms 
and pathological detections regarding diseases, diagnosis, and therapeutic 
approaches (Loscalzo and Barabasi, 2011). On the basis of the reductionist 
philosophies rather than the complex and nonlinear systems in reality, these 
simple models are no longer applicable with the novel discoveries in func-
tional genomics and systems biology.

Specifically, approaches such as high-throughput (HTP) technologies 
and understandings in proteomics, metabolomics, epigenomics, and interac-
tomics have revealed the interrelationships among the components at differ-
ent system levels (see Chapter 3). Such novel findings request revolutionary 
improvements in healthcare practice. The novel direction in response to 
these demands should be heading toward the integrative paradigm that is 
human centered and individual based (Yan, 2008a).

This change of gear is not possible without scientific and technologi-
cal support. However, the current situation is that many of the scientific 
discoveries just stay in the scientific laboratories but cannot benefic clin-
ical practice (Yan, 2010). Although there have been significant scientific 
advancements, thorough understandings, accurate diagnosis, and effective 
therapies are still needed for most of the complex diseases.

To solve these problems and improve the quality of care, it is urgent not 
only to improve but also to translate the scientific findings in biomedicine 
into better clinical procedures and results (Yan, 2011). The term “transla-
tion” here emphasizes the bidirectional flow of information and knowledge 
between the “bench” side of the basic scientific research and the “bedside” 
of clinical performance.

Because information and knowledge are the major contents in such 
translational process, novel bioinformatics methodologies such as data man-
agement and knowledge discovery across various domains become criti-
cal (see Chapter 4). These approaches would also enable better strategies 
for drug discovery, development, and administration with lower costs and 
higher efficiencies.

By addressing the challenges in personalized medicine, translational 
bioinformatics provides the opportunities and detailed strategies not only 
for the management and analyses of biomedical data but also for the promo-
tion of proactive and participatory health (Overby and Tarczy-Hornoch, 
2013). Translational bioinformatics can serve as the pivotal “vehicle” to 
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integrate various emerging disciplines including pharmacogenomics 
and systems biology toward the advancement of personalized, preven-
tive, predictive, and participatory (P4) medicine (Hood and Flores, 2012;  
also see Chapter 2). This chapter will provide an introduction and exten-
sive discussion of this “vehicle.”

1.2  TRANSLATIONAL BIOINFORMATICS AS THE 
“VEHICLE” TOWARD PERSONALIZED MEDICINE

1.2.1  The Demand
The advancements in the emerging fields of pharmacogenomics and 
systems biology may contribute to the development of personalized and 
systems medicine (Yan, 2008b). As discussed above, this objective is dif-
ficult to accomplish without the translational processes bringing the 
scientific breakthroughs into clinical practices and results. Such trans-
lational processes rely on bioinformatics methodologies as the critical 
“vehicles.”

For example, studies in systems biology using technologies such as HTP 
have generated tremendous amounts of data from both laboratories and 
clinics. The exponential growth of these data brings both hope and chal-
lenges in the storage, management, and analysis to make them ultimately 
useful for scientific discoveries and disease treatment.

Specifically, conventional information systems do not have the ability to 
manage and analyze such sizes of data with diversified data types and varied 
data sources. The high levels of discrepancies make it very difficult to digest 
and transform them into applicable information and knowledge to enrich 
both scientific understandings and clinical performances.

Another issue is the ineffective information workflow in the clinical and 
laboratory settings that have become the obstacles for data sharing and out-
come analyses. The conventional information systems can no longer sup-
port the current need for data management, data mining, and knowledge 
discovery (Greenes, 2003).

The information technology itself needs improvements to catch up with 
the rapidly growing scientific advancements. For instance, at this time most 
of the experimental and clinical research data are sitting in unconnected 
servers or stored in different noncompatible databases (Wang et al., 2009). It 
is very difficult to access or share these data by scientists and clinicians from 
different groups at different locations. The inefficient communication may 
block the necessary collaborations across different knowledge domains. The 
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multidisciplinary cooperation is essential for the development of personal-
ized and systems medicine.

In these situations, methods in translational informatics become 
extremely important to provide the connections between the “bench” stud-
ies and the “bedside” practices. The necessary support from translational 
bioinformatics would allow for the integration of information and knowl-
edge across multiple domains to decode and apply pharmacogenomics and 
systems biology discoveries into personalized and systems medicine.

It is critical to have comprehensive informatics platforms to support data 
analysis and visualization for the translational purposes. Via the integration 
and mining of large patient datasets, systems medicine would enable novel 
insights into the taxonomy of health and diseases to support personalized 
intervention schemes (Saqi et al., 2016; also see Chapter 4).

In summary, these challenges, obstacles, and demands have indicated that 
improvements are needed both scientifically and technically to address the 
translational steps linking both clinical and laboratory settings. For instance, 
in the technical aspect, a centralized data warehouse system and the cloud 
computing technology may be helpful for relieving certain problems. With 
the integration of scientific and technical improvements, methods in trans-
lational bioinformatics may enable more efficient data management and 
workflow to support better data analysis and decision making in both labo-
ratories and clinics (see Chapter 4).

1.2.2  The Concept
As an independent field, bioinformatics has a history of only a few decades. 
On the basis of the integrative approaches combining computational meth-
odologies, scientific analysis, and mathematical models, bioinformatics has 
become indispensable for biomedical studies (Yan, 2003).

Translational bioinformatics may serve as a key subarea of the larger field 
of “translational medicine” to improve the practice of biomedicine scientifi-
cally and clinically including both predictability and outcomes (Day et al., 
2009). Translational medicine is an emerging field that combines multiple 
disciplines and processes to transform biomedical findings into clinical care.

To meet the challenges discussed above, this rapidly advancing discipline 
is critical to take the role for improving information flow and communica-
tions among multiple domains including various scientific areas and clinical 
branches. In addition to the supporting role, it may also serve as the major 
player for novel scientific findings and drug discovery by constructing new 
models and theories.
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Specifically, the new methodologies in translational bioinformatics need 
to work on these tasks scientifically and technically to support the develop-
ment of personalized and systems medicine:
	•	 	more	efficient	data	storage,	management,	and	sharing;
	•	 	better	data	integration	and	data	mining;
	•	 	more	effective	information	flow	and	workflow;
	•	 	knowledge	discovery	and	decision	support	in	various	settings;
	•	 	patient	profiling	and	patient	subgroup	classification;
	•	 	dynamical	analyses	of	both	experimental	and	clinical	data;	and
	•	 	the	establishment	of	systems-based	models	at	various	levels	with	predic-

tive and preventive functions.
As an interdisciplinary field itself, translational bioinformatics provides 

a special opportunity for overcoming the barriers and obstacles among 
knowledge domains, clinical branches, scientific findings, and clinical bed-
side practices. Such efforts rely on the integration of computational biology, 
bioinformatics, health and medical informatics, genomics and proteomics, 
systems biology, and various branches in clinical medicine. It may also con-
tribute to the outcome analyses of different intervention methods among 
different groups of population.

A prominent feature of the development of translational bioinformatics 
is its evolvement and growth from the simple and rudimentary analysis of 
molecules such as genes into the complex methodology emphasizing sys-
tems biology. As an immediate application, translational bioinformatics has 
been suggested to improve our understanding of the Human Genome proj-
ect that may lead to innovative interventions for complex diseases (Sarkar, 
2010).

While large-scale biological data can become useful for clinical care, the 
growing applications of electronic health records (EHRs) may also serve 
as the valuable suppliers for functional genomics and pharmacogenomics 
studies. The investigation of genomic data in clinical medicine may bring 
novel categories of knowledge into the conventional medicine that were 
previously unavailable. The deep analysis of the copious clinical data would 
in turn prompt scientific and drug discoveries.

The improved translational processes would enable the applications of 
genomic technologies for personalized drug repurposing (Denny, 2014; also 
see Chapter 8). Developments in translational bioinformatics would enable 
novel algorithms and predictive models for understanding the large-scale 
datasets and the functional roles of pathways in pathology to support the 
clinical translation toward personalized medicine (Dauchel and Lecroq, 2016).
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1.2.3  The Benefits
An important benefit of translational bioinformatics is the integration of 
experimental and clinical data streams into more efficient workflow and 
effective management of resources and expenses. Such improvement would 
enable better data accessibility, sharing, and exchanging in scientific and 
clinical settings (Suh et al., 2009). Methods including EHRs and compre-
hensive knowledge representation would help overcome domain barriers to 
facilitate collaborations among different groups (Yan, 2010).

The comprehensive approaches in translational bioinformatics may 
relieve the interoperability issues that have been troubling the biomedical 
community. Specifically, the enactment and application of data standards 
would be essential in the translational procedure. The standardization 
in the computational systems would be crucial for reducing the errors 
and risks in every step of clinical practice, from physician prescription 
to drug administration. Such implementations would not only help pro-
mote patient satisfaction but also save costs during various phases of 
health care.

As discussed earlier, a critical obstacle challenging the pharmaceutical 
industry and healthcare community is the size of scientific and clinical 
data that is increasing quickly during every step of drug design, discovery, 
and development (Buchan et al., 2011). With the help from translational 
bioinformatics, these originally unorganized data can be transformed 
into precious scientific mines for finding patterns and building predictive 
models.

The tools of computational biology and health informatics may sup-
port the key decision-making procedures from drug development to 
clinical diagnosis. The novel translational bioinformatics methodologies 
would allow for the identification of improved drug targets, drug devel-
opment pipelines, and reduced adverse reactions, with better quality of 
care.

In summary, these approaches would significantly reduce and prevent 
adverse events, which is essential for developing safer and personalized 
medicine. A remarkable benefit of translational bioinformatics is the deci-
sion support methodologies that would empower both scientists and cli-
nicians to build personalized profiles and predictive models to bring the 
right interventions to the right patients (Yan, 2010). These methods would 
be effective for reducing treatment resistance and adverse reactions. With 
improved communications, more groups in different disciplines can be 
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involved to make better decisions toward more precise diagnosis and opti-
mized therapeutic outcomes.

1.3  THE GOALS AND MISSIONS

 An important task of translational bioinformatics to support person-
alized medicine is to construct predictive models for disease progression 
and treatment responses. This task needs to be addressed from the scientific 
aspect and the informatics (or technological) aspect (Yan, 2010).

Regarding the scientific aspect, translational bioinformatics can work on 
the improvement of the understanding of complex mechanisms underly-
ing health and diseases. The embracement of the emerging areas, such as 
complexity theories and systems biology, would empower both biomedical 
scientists and health professionals to develop more comprehensive diagnos-
tic methods and integrative interventions.

Specifically, various “omics” scientific branches such as transcriptomics 
and methods such as HTP technologies can be applied to construct patients’ 
biomarker profiles containing various genetic, pathological, and psychologi-
cal markers in the interrelated networks (Yan, 2011, 2014). Such compre-
hensive profiles would contribute to the classification of patient subgroups 
as well as more integrative, reliable and predictive models for diagnosis and 
prognosis.

Studies in pharmacogenomics and systems biology can become the main 
support for the scientific aspect of translational bioinformatics with their 
coverage across various domains, including proteomics, pathology, pharma-
cology, and clinical medicine (Yan, 2008a,b; also see Chapter 2). Approaches 
in translational bioinformatics would enable the information flow to over-
come the domain barriers with the transformation of unorganized data into 
actionable knowledge. The integrative applications of HTP technologies, 
systems biology, and EHRs may lead to a paradigm progress in both clinical 
care and biomedical sciences (Tenenbaum, 2016).

As a result, the knowledge integration and discovery would improve our 
understanding of the key issues including the structure–function relations, 
genes–drugs–environment networks, and genotype–phenotype correla-
tions (Yan, 2008b). A more comprehensive insight into the systemic inter-
relationships would better explain the dynamical processes and reactions at 
various system levels. Such more holistic views would be pivotal to more 
precise diagnosis and therapeutics.
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For instance, genetic variations in human kinases have been associated 
with different illnesses from metabolic disorders to cancers (Lahiry et al., 
2010). The understanding of the correlations between structural altera-
tions and the dysfunctions of the kinases as well as pathogenesis may con-
tribute to the findings of more effective drug targets for different diseases. 
Translational bioinformatics projects such as “The Cancer Genome Atlas” 
and the “cBioPortal for Cancer Genomics” would promote the translation 
of cancer biology and genomics into better clinical applications (Sirintrapun 
et al., 2016; also see Chapter 11).

In the technological and informatics aspect, methods such as workflow 
integration, data mining, and decision support would be critical for sup-
porting better communications and predictive models (Yan, 2010). These 
approaches would enable the enactment of standards, which lead to the pre-
vention of errors and adverse events, to promote the quality of health care. 
The following chapters will provide more detailed discussions from these 
different aspects in translational bioinformatics for supporting personalized 
and systems medicine.

REFERENCES
Buchan, N.S., Rajpal, D.K., Webster, Y., Alatorre, C., Gudivada, R.C., Zheng, C., Sanseau, 

P., et al., 2011. The role of translational bioinformatics in drug discovery. Drug Discov. 
Today 16 (9–10), 426–434.

Caskey, C.T., 2007. The drug development crisis: efficiency and safety. Annu. Rev. Med. 58, 
1–16.

Dauchel, H., Lecroq, T., 2016. Findings from the section on bioinformatics and translational 
informatics. Yearb. Med. Inf. 207–210.

Day, M., Rutkowski, J.L., Feuerstein, G.Z., 2009. Translational medicine–a paradigm shift in 
modern drug discovery and development: the role of biomarkers. Adv. Exp. Med. Biol. 
655, 1–12.

Denny, J.C., 2014. Surveying recent themes in translational bioinformatics: big data 
in EHRs, omics for drugs, and personal genomics. Yearb. Med. Inf. 9, 199–205. 
http://dx.doi.org/10.15265/IY-2014-0015.

Greenes, R.A., 2003. Decision support at the point of care: challenges in knowledge repre-
sentation, management, and patient-specific access. Adv. Dent. Res. 17, 69–73.

Hood, L., Flores, M., 2012. A personal view on systems medicine and the emergence of pro-
active P4 medicine: predictive, preventive, personalized and participatory. N. Biotechnol. 
29, 613–624.

Lahiry, P., Torkamani, A., Schork, N.J., Hegele, R.A., 2010. Kinase mutations in human dis-
ease: interpreting genotype-phenotype relationships. Nat. Rev. Genet. 11 (1), 60–74.

Loscalzo, J., Barabasi, A.-L., 2011. Systems biology and the future of medicine. Wiley 
Interdiscip. Rev. Syst. Biol. Med. 3 (6), 619–627.

Overby, C.L., Tarczy-Hornoch, P., 2013. Personalized medicine: challenges and opportunities 
for translational bioinformatics. Per. Med. 10, 453–462.

Ray, O., 2004. The revolutionary health science of psychoendoneuroimmunology: a new 
paradigm for understanding health and treating illness. Ann. N.Y. Acad. Sci. 1032, 35–51.

http://dx.doi.org/10.15265/IY-2014-0015


Introduction 11

Ross, C.J.D., Carleton, B., Warn, D.G., Stenton, S.B., Rassekh, S.R., Hayden, M.R., 2007. 
Genotypic approaches to therapy in children: a national active surveillance network 
(GATC) to study the pharmacogenomics of severe adverse drug reactions in children. 
Ann. N.Y. Acad. Sci. 1110, 177–192.

Saqi, M., Pellet, J., Roznovat, I., Mazein, A., Ballereau, S., De Meulder, B., Auffray, C., 2016. 
Systems medicine: the future of medical genomics, healthcare, and wellness. Methods Mol. 
Biol. (Clifton N.J.) 1386, 43–60. http://dx.doi.org/10.1007/978-1-4939-3283-2_3.

Sarkar, I.N., 2010. Biomedical informatics and translational medicine. J. Transl. Med. 8, 22.
Sirintrapun, S.J., Zehir, A., Syed, A., Gao, J., Schultz, N., Cheng, D.T., 2016. Translational 

bioinformatics and clinical research (biomedical) informatics. Clin. Lab. Med. 36 (1), 
153–181. http://dx.doi.org/10.1016/j.cll.2015.09.013.

Suh, K.S., Remache, Y.K., Patel, J.S., Chen, S.H., Haystrand, R., Ford, P., Shaikh, A.M., et al., 
2009. Informatics-guided procurement of patient samples for biomarker discovery proj-
ects in cancer research. Cell Tissue Bank. 10 (1), 43–48.

Tenenbaum, J.D., 2016. Translational bioinformatics: past, present, and future. Genom. 
Proteom. Bioinform. 14 (1), 31–41. http://dx.doi.org/10.1016/j.gpb.2016.01.003.

Wang, X., Liu, L., Fackenthal, J., Cummings, S., Olopade, O.I., Hope, K., Silverstein, J.C., 
et al., 2009. Translational integrity and continuity: personalized biomedical data integra-
tion. J. Biomed. Inform. 42 (1), 100–112.

Yan, Q., 2003. Bioinformatics and data integration in membrane transporter studies. Methods 
Mol. Biol. (Clifton N.J.) 227, 37–60.

Yan, Q., 2008a. Pharmacogenomics in drug discovery and development. Preface. Methods 
Mol. Biol. (Clifton N.J.) 448, v–vii.

Yan, Q., 2008b. The integration of personalized and systems medicine: bioinformatics sup-
port for pharmacogenomics and drug discovery. Methods Mol. Biol. (Clifton N.J.) 448, 
1–19.

Yan, Q., 2010. Translational bioinformatics and systems biology approaches for personalized 
medicine. Methods Mol. Biol. (Clifton N.J.) 662, 167–178.

Yan, Q., 2011. Toward the integration of personalized and systems medicine: challenges, 
opportunities and approaches. Per. Med. 8, 1–4.

Yan, Q., 2014. From pharmacogenomics and systems biology to personalized care: a frame-
work of systems and dynamical medicine. Methods. Mol. Biol. (Clifton, NJ) 1175, 3–17.

http://dx.doi.org/10.1007/978-1-4939-3283-2_3
http://dx.doi.org/10.1016/j.cll.2015.09.013
http://dx.doi.org/10.1016/j.gpb.2016.01.003


Translational Bioinformatics and Systems Biology Methods for Personalized Medicine
ISBN 978-0-12-804328-8
http://dx.doi.org/10.1016/B978-0-12-804328-8.00002-4 13

Copyright © 2017 Elsevier Inc.
All rights reserved.

CHAPTER TWO

Systems and Dynamical Medicine: 
The Roles of Translational 
Bioinformatics
 

2.1  THE INTEGRATION OF PHARMACOGENOMICS AND 
SYSTEMS BIOLOGY

 The emerging fields of pharmacogenomics and systems biology may 
enable fundamental advancements and serve as the scientific basis that can 
be translated into personalized and systems medicine (Yan, 2008a,b, 2014). 
The rapidly developing discipline of pharmacogenomics may enrich our 
knowledge in genomics for understanding the individual variances in 
response to medications and vaccines (Yan, 2008a,b).

With the understanding of the genetic discrepancies and genomic pools, 
pharmacogenomics may provide promising discoveries for the prediction of 
disease predispositions and treatment outcomes (Meyer, 2004). Such find-
ings would be critical for the prevention of disease progression and adverse 
reactions for the optimal therapies and reduced costs.

However, the focus of pharmacogenomics is not just to identify sin-
gle nucleotide polymorphisms or isolated disease markers. Genes are 
always interacting with other components in the complex networks 
rather than carrying out solitary performances. The interacting compo-
nents in the complex network include other molecules and chemicals 
such as drugs, vaccines, and various environmental elements. Therefore, 
the integration of pharmacogenomics and systems biology is essential 
for the relevant scientific discoveries to be translated into systems and 
personalized medicine (Yan, 2011b).

Focusing on the interrelationships at various system levels and scales, 
systems biology provides a comprehensive view of health and diseases. The 
multiple dimensions cover both spatial and temporal aspects, including those 
from molecular to cellular and organ levels, as well as the scales from sec-
onds and minutes to days and months (Yan, 2010; also see Chapter 7). Such 
perceptive would enable the integration of information about genotypes, 
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phenotypes, environment, and dynamics to improve conceptual studies and 
clinical practice (Sarkar et al., 2011).

By linking structural concepts with functional and dynamical behav-
iors of biomedical systems, studies in systems biology are undertaking the 
mission to understand the interactions and networks as a whole, rather 
than isolated components. The holistic approaches would contribute to the 
thorough understanding of the malfunctions of the human system and the 
“root” of diseases on the individual basis (Yan, 2011b). In summary, the 
combination of both pharmacogenomics and systems biology is needed 
to pave the scientific ground toward the clinical practice of personalized, 
systems, and dynamical medicine (Yan, 2014).

2.2  TRANSLATIONAL BIOINFORMATICS, 
PERSONALIZED AND SYSTEMS MEDICINE

 Systems biology and systems medicine may address the complete 
pathological processes from disease onsets to progressions with the high-
light of the overall pathway kinetics (Ayers and Day, 2015). Such strategies 
may help elucidate the dynamical interactive networks in the course of 
medical conditions for finding clinical targets toward more precise diagnosis 
and therapeutics. With the investigation of fundamental network biology, 
targeted proteomics may be linked to the phenotypic conditions to support 
more advanced biomarker discovery and validation for complex diseases 
such as cardiovascular disease and cancer (Ebhardt et al., 2015).

To achieve these goals, the scientific efforts would need strong support from 
advanced technologies. Challenges still need to be met for the efficient analysis 
of data from high-throughput technologies, chromatography, mass spectrom-
etry, and nuclear magnetic resonance. The application of translational bioinfor-
matics would promote the advancement of systems biology by incorporating 
the data from studies of genomes, proteomes, transcriptomes, metabolomes, and 
epigenomes (Auffray et al., 2009; also see Chapter 3).

Translational bioinformatics approaches such as data integration and 
mining can be applied to understand the complex datasets from both pop-
ulation groups and individuals (see Chapter 4). Such approaches would 
enable the understanding of both structural and functional interrelation-
ships for better biomarkers and therapeutic target selections (see Chapters 
5 and 6). These methods would be critical for systems biology to overcome 
the data obstacles and make major advancements in the comprehensive 
understanding of health and illnesses.



Systems and Dynamical Medicine 15

With the integration of pharmacogenomics and systems biology, an 
important advancement may be achieved as the potential revolution in 
biomedicine, that is, the transformation from the conventional reduction-
ism-grounded and disease-centered biomedical framework to a dynamical 
systems-established and human-centered model (Yan, 2011a).

Many properties of pharmacogenomics and systems biology may serve 
as the scientific root for the development of personalized and systems medi-
cine. One of such properties is the multidisciplinary connections that would 
enable a large-scale interpretation of health and diseases across different 
knowledge domains (Yan, 2008b). These multiple domains contain the 
biological aspects, including proteomics and physiology, as well as clinical 
medical aspects, such as epidemiology and internal medicine.

Translational bioinformatics also has a pivotal role enabling quantitative 
assessments, mathematical analyses, and predictive models. These features 
would allow for across-the-board models monitoring the information flow 
in various knowledge domains. Such models would be helpful for under-
standing the dynamics in the complex adaptive systems (CASs) in various 
states of health and illnesses. As shown in Fig. 2.1, the essential features of 

Figure 2.1 The modeling of complex adaptive systems (CASs) for systems and dynamical  
medicine.
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CASs contain the concepts of emergence, adaptation, self-organization, and 
nonlinearity (Chaffee and McNeill, 2007).

The understanding of these features of CASs would be critical for 
making the revolutionary advancements toward personalized and systems 
medicine. The elucidation of the complex interconnections and dynamical 
networks in the human system is the key for constructing predictive and 
preventive models for better diagnosis and interventions.

2.3  THE BASIC CONCEPTS OF THE COMPLEX “WHOLE 
BODY SYSTEM”

2.3.1  Emergence and Interaction Patterns: Human-
Centered Medicine

As one of the most basic concepts of the CASs, emergence is a key character-
istic of complex systems. An important perception of a holistic system is that 
“the whole is greater than the sum of its parts” (Yan, 2010). In a complex bio-
medical system, the actions or signs are the collective consequences or effects 
evolving or “emerging” from the interconnections and dynamical interac-
tions across various scales (Chaffee and McNeill, 2007; Iris, 2008). The ele-
ments or entities are referred to as the acting “agents” of the complex systems. 
An important task of systems biology is to elucidate these interrelationships, 
interactions, and the dynamical processes in the coevolution of the agents.

Conventional reductionist models cannot explain or predict such fea-
tures on the basis of single components or separated and static segments. 
For instance, the overall cellular phenotypes are the emergent results arising 
from the overall nonlinear interrelationships among a network of microen-
vironmental elements (Dinicola et al., 2011), such as the communications 
between the mitochondria and nucleus. Another example is the occurrence 
of systemic inflammation as the consequence of various feedbacks and 
pathways including the microbiota–gut–brain axis, rather than the product 
of isolated cytokines (see Chapter 9).

Systems biology studies would help identify the patterns of interre-
lationships for the better understanding of the features of emergence in 
health and diseases. Specifically, it is often observed that different arrange-
ments of agents such as drugs may reach the same consequences or effects, 
but the similar grouping of agents may still have different results in different 
patients (Sturmberg and Martin, 2013). Such phenomena emphasize the 
decisive roles of the functional interactions instead of the isolated structural 
components for individualized therapies.
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The understanding of the concept of emergence and the underlying 
mechanisms is critical for making revolutionary progress in systems and 
personalized medicine that is quite different from the conventional reduc-
tionist paths. As an example, although cancer has been considered as one 
type of the disease, the underlying mechanisms have referred to different 
arrays of genetic variations and pathways in different tissues and organs 
among various patients (Bleeker et al., 2009). Such discrepancies request for 
personalized treatments at different stages.

In another example, although different patients may have different ill-
nesses, such as obesity, type 2 diabetes, and heart diseases, they may have 
the common cause such as the similar lifestyle and unhealthy dietary hab-
its. Studies have confirmed that chronic inflammation may be the shared 
mechanism among the different chronic disorders such as diabetes, cardio-
vascular diseases, kidney problems, Alzheimer’s disease, and cancer (Manabe, 
2011; also see Chapter 9). Recent discoveries have revealed that many 
apparently unrelated illnesses may be responsive to the same treatment such 
as IL 1β neutralization, including gout, type 2 diabetes, heart failure, and 
cancer (Dinarello, 2011).

Such elucidations may change the conventional strategies of “one drug  
for one disease”. Instead, personalized and systems medicine would consider 
the “whole human body system” as the illness “root”. With this change 
of concept, the same type of disease needs different therapies for different 
patients based on the varied etiology and stages. However, if different ill-
nesses have the similar mechanisms, e.g., shared inflammatory pathways, the 
similar interventions may be applied to different patients.

Such strategies would enable the transformation or evolution from 
the disease-centered medicine to human-centered health care. In addi-
tion, the similar treatments can be designed for different illnesses with the 
shared mechanisms by expanding the administration from the currently 
available drugs. Such drug repositioning approaches would be cost effec-
tive because they would enable more efficient applications of the existed 
drugs, saving the expenses for both basic research and clinical treatments 
(see Chapter 8).

2.3.2  Adaptation and Coevolution: The Dynamical Processes
In addition to emergence, “adaptation” is also a basic concept of CASs 
(Chaffee and McNeill, 2007). A remarkable feature of CASs is that they 
have the ability of adaption to environmental changes and stresses. Under 
novel conditions, the agents of the CASs may adapt and evolve. Same as 
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health, disease is also always in dynamical conditions. The dynamical activi-
ties of diseases are manifested as the progressive signs during different stages 
of the disease development. Such changes represent the evolvement that the 
“whole body system” is in the process of adapting to the alterations in the 
environment. The signs of such “adaptation” at various disease stages reflect 
the ongoing dynamical communications in the organism that cannot be 
assessed with a single clinical factor or separated causes (Heng, 2008).

For example, the processes of adaptation can be detected in many 
illnesses such as coronary artery disease, chronic obstructive airway prob-
lems, and rheumatoid arthritis (Sturmberg and Martin, 2013). The condi-
tions of dynamical coevolution may be a feature of the relevant activities 
such as those shown in disease progression. Because each of the interact-
ing “agents” such as the signaling pathways may be changing or evolving 
in such adaptive processes, different dynamics and signs may emerge in 
subsystems.

Specifically, drug resistance (e.g., against multiple drugs) is one of the 
most significant problems in treating various illnesses, especially infectious 
diseases and cancers (Avner et al., 2012). Such problems can be addressed 
with the understanding of the “adaptive” activities in CASs. That is, the 
pathogenic adaptation may be the underlying mechanism accounting for 
such obstacles.

The concept of adaptation is very useful for overcoming the drug resis-
tance obstacles by applying different treatment strategies at different time 
points or stages for even the same patient or patients with the same diseases. 
This is also a key point for the practice of personalized medicine. As a com-
mon feature of CASs, the processes of adaptation can be targeted in both 
chronic diseases, including cancer, and acute diseases, such as viral infections, 
to improve the treatment effects.

2.3.3  Self-Organization and Feedback Loops: The Robust 
Networks

To have a better understanding of how the CASs work in health and dis-
eases, the concepts of self-organization and robustness are also essential. The 
functions of CASs rely on multidirectional interactions and positive and 
negative feedback loops at different levels or scales. However, these mecha-
nisms can function themselves and do not need outside guidance or higher 
level instructions (Chaffee and McNeill, 2007; Iris, 2008).

To illustrate such features, some well-known examples in biological 
organisms are the maintenance of the homeostasis of water, body tempera-
ture, blood pressure, and blood glucose. In the healthy state, various levels 
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of robustness can be observed in response to environmental changes such as 
seasonal alterations. Even in the disease conditions, the pathogenic mecha-
nisms may develop certain robustness against drug therapies (Kitano, 2007).

The elucidation of these features of the living CASs is especially mean-
ingful for the development of personalized medicine. That is, the purpose of 
treatments can now focus on the correction and “tuning” of the abnormal 
status back to the normal healthy condition, rather than just “winning” the 
battle of diseases by killing the pathogens or relevant cells.

Use infectious diseases as an example. The features of CASs exist in 
both hosts and pathogens, and the host–pathogen interactions should be 
the essential treatment targets, but not the bacteria or viruses alone as in 
the conventional medicine. These features decide that simple methods for 
eliminating the bacteria or viruses using antibiotics would result in drug 
resistance and various side effects.

To solve the problems, interventions targeting the dynamical host–
pathogen interactions are more appropriate. Such interventions should be 
comprehensive to tackle the positive and negative feedback loops and the 
dynamical pathways. Various factors and conditions should be considered, 
including the relative constancy resulted from self-organization and robust-
ness, as well as the elasticity from adaptation.

On the basis of such understanding, an emphasis of the treatment tar-
gets can be put on multiple inflammatory pathways during different stages 
involving both host and pathogenic molecules, but no longer just simply 
the pathogens. Such a “switch of the gear” allows for the transformation of 
disease-centered medicine to human-centered care.

More importantly, the feedback loops should have the crucial roles in 
the potential targets as they provide the dynamical connections among the 
interactive elements such as proteins, drugs, behaviors, and environment at 
different system levels. The understanding of such structure–function and 
genotype–phenotype associations at various levels would be pivotal for 
more precise diagnosis and treatment (Yan, 2008b).

Specifically, structural and functional variations at the molecular level 
and protein–drug interactions may have further influences on the networks 
and pathways at the cellular and system levels (Yan, 2012). Meanwhile, the 
communal consequences from the “emergent” features arising from these 
interactions can be shown as clinical signs and manifestations, disease activi-
ties, as well as treatment responses at the organismal level. The comprehen-
sion of such complex interrelationships at various system levels may provide 
more integrative methods for the early prediction, detection, diagnosis, and 
prevention of diseases.
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Furthermore, the interactions at each level may not just be apparent 
signs but also have real biophysical and biochemical impacts on other lev-
els. The higher level activities may affect the lower level processes and vice 
versa. For instance, stress including sunburn at the environmental level may 
result in DNA damages among skin cells with alterations at both molecular 
and cellular levels.

Therefore, a more complete model would be needed to detect the 
interactions not just within the same level, such as the protein–protein 
communications, but also between and across various levels, such as the 
genes–cells–environment correlations (Qu et al., 2011). A more systemic view  
would be possible by embracing the across-level feedback loops and pathways 
including the genotype–phenotype correlations at different temporal and 
spatial scales (see Chapter 7). Systems biology models based on such holistic 
views would revolutionize both biological research and medical practice from 
isolated symptoms to systems-based biomarkers, from the failed “one-drug-
fits-all” method to personalized and more effective care (Yan, 2008a,b).

2.3.4  Nonlinearity and Dynamical Pathophysiology
In addition to the concepts discussed previously, a prominent feature of 
CASs is that proportional reactions or consequences may not be achieved 
from the original stimulus. Meanwhile, the system may show high sen-
sitivities to the initial condition with the potential occurrence of enor-
mous alterations (Chaffee and McNeill, 2007). Such phenomena are called 
“nonlinearity”.

The feature of nonlinearity can be observed in many clinical condi-
tions, demonstrating the importance of understanding such concepts in 
the human CASs. A well-known example is that in chemotherapy of can-
cers, therapeutic results cannot be improved just by increasing the dosages 
because the dosage–outcome relationships are not linear (Leyvraz et al., 
2008). It is often seen that initial chemotherapies can be effective in shrink-
ing the sizes of tumors. However, continuous and higher dosages may also 
cause the generation of secondary tumors (Mittra, 2007). Another example 
is in cardiac electrophysiology. Nonlinearities have been associated with the 
cardiac arrhythmogenesis with critical roles in maintaining cardiac rhythms 
(Krogh-Madsen and Christini, 2012).

For the achievement of personalized medicine, it is essential to develop pre-
vention and treatment strategies based on individualized medications, dosages, 
intensities, timing, and frequencies at different phases of the diseases, that is, “to 
bring the right interventions to the right people with the right dosages and 
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intensities at the right time” (Yan, 2014). These goals cannot be accomplished 
without incorporating the features of CASs especially the effects of nonlinearity.

CASs are open systems interacting constantly with the environment. 
This is also true for the human body that communicates with both natu-
ral and social surroundings continually. Substantial alterations may occur 
quickly from the nonlinear human–environment connections (Sturmberg 
and Martin, 2013). Various CASs factors may be involved in such processes 
in addition to nonlinearity, including timing, dynamics, adaptation, as well 
as feedback loops.

For instance, seasonal changes have been closely associated with vari-
ous infectious diseases including influenza. Different host–pathogen–envi-
ronment interactions and pathways are involved. Social incidents including 
attacks and battles may lead to serious psychological complications includ-
ing posttraumatic stress disorder. Preventive strategies in personalized and 
systems medicine need to incorporate these nonlinear biopsychosocial and 
environmental factors.

The previous examples also indicate that a remarkable feature of CASs is 
the dynamical variations in the flow of substances, energy, and information 
across various temporal scales and spatial levels (see Chapter 7). It is pivotal 
to discern these features because health and illnesses have dynamical and 
adaptive routes rather than stagnant or inactive conditions. The understand-
ing of normal physiology relies on such properties of nonlinear dynamics. 
Similarly, the perceptions of the pathophysiology of diseases also depend on 
the detections of the dynamical changes (Buchman, 2004).

As an example in cardiology, the sinus rhythm needs to be detected 
for the regularly recurring dynamics, and atrial fibrillation can be assessed 
for the irregularly recurring dynamics (Chay and Rinzel, 1985). Effective 
diagnostic and treatment strategies need to detect the constantly changing 
physiological and pathological factors in the same patient at different time 
points, as well as among different patients during certain periods. Based on 
the comprehensive models incorporating these factors, systems and dynam-
ical medicine can be developed for the optimal outcomes.

2.4  SYSTEMS AND DYNAMICAL MEDICINE WITH P4 
FEATURES

 As illustrated in Fig. 2.1, the applications of systems biology and 
translational bioinformatics may contribute to the development of systems 
and dynamical medicine with the predictive, preventive, personalized, and 



Translational Bioinformatics and Systems Biology Methods for Personalized Medicine22

participatory (P4) features (Younesi and Hofmann-Apitius, 2013; Hood and 
Flores, 2012). Systems-based and dynamical models focusing on the features 
of CASs may provide the revolutionary resolutions to overcome both theo-
retical and practical obstacles in conventional medicine.

For instance, the conventional therapeutic guidelines for  colorectal 
cancer put emphasis on clinical characteristics including cancer stages and 
grades. However, comprehensive and robust biomarkers would be more 
useful by addressing driver mutations, signaling proteins,  microRNAs, as 
well as long noncoding RNAs (Castagnino et al., 2016). Integrative models 
and profiles embracing the signaling networks with dynamical predictions 
may help identify drug combination priorities and reduce the number of 
drugs to be examined for better clinical  outcomes (see Chapter 8).

The systems-based dynamical approaches would empower both sci-
entists and clinicians to find better therapeutic targets for various types 
of complex diseases at different stages. An important step in such efforts 
would be the discovery of systems-based and dynamical biomarkers for the 
timely alerts for presymptomatic diagnosis and prognosis to support the 
prediction and prevention of diseases during various phases (Bengoechea, 
2012; also see Chapter 5). Such biomarkers would be helpful for decreas-
ing the risks for disease occurrence and disability, which is the key for pre-
ventive medicine in at-risk populations (Younesi and Hofmann-Apitius, 
2013). These strategies may be particularly useful for chronic and com-
plex illnesses, including cancer and Alzheimer’s disease. More detailed dis-
cussions on systems-based and dynamical biomarkers will be available in 
Chapters 5–12.

Moreover, the detection of the alterations across various spatial levels 
and temporal scales may allow for the finding of the evolving treatment 
targets in personalized medicine (see Chapter 7). More precise and robust 
biomarkers can be applied for disease stratification and patient subgroups 
identification for more individualized interventions.

Furthermore, the elucidation of the complex human–drug interactions 
would enable the prediction of therapeutic responses to reduce adverse 
reactions and to improve clinical results. The systems-based and dynamical 
disease predictive models can be built by analyzing various “omics” data 
for the transformation from after-disease reactive interventions to proactive 
care. Such models would allow for the changes from disease-centered to 
human-centered care to promote the involvement of individuals to achieve 
the objective of participatory medicine.
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CHAPTER THREE

Translational Bioinformatics 
Support for “Omics” Studies: 
Methods and Resources
 

3.1  INTRODUCTION

 As discussed in Chapters 1 and 2, the tremendous amount of data 
from both experimental and clinical studies and the complexity in bio-
medical systems are referring to the key role of translational bioinformatics. 
Translational bioinformatics is indispensable for the integration of various 
knowledge domains in pharmacogenomics and systems biology for the 
translation of basic research into personalized, systems, and dynamical medi-
cine (Yan, 2010; also see Chapters 1 and 2).

Translational bioinformatics may help to overcome the barriers between 
the “omics” domains in systems biology and provide the interpretation for 
the results from high-throughput (HTP) analyses. These applications are 
critical for the establishment of patients’ profiles and subgroups in personal-
ized medicine (Yan, 2012).

Specifically, approaches such as data integration and data mining are 
not only useful for knowledge discovery (KD) (see Chapter 4) but can also 
contribute to the construction of predictive models by addressing the com-
plex adaptive features of the biomedical systems and dynamical pathways 
for more effective disease prevention and treatment (see Chapter 2). These 
methods are essential for the elucidation of the complex activities and pro-
cesses in health and diseases across various spatial levels and temporal scales 
(see Chapter 7).

In addition to preventive and therapeutic strategies, translational bioin-
formatics may also enable the identification of more precise and robust bio-
markers to improve diagnosis and prognosis (see Chapter 5). Applications in 
translational bioinformatics may improve the efficacy in almost every step 
of biomedical research and clinical practice to empower both scientists and 
clinicians for the practice of human-centered systems and dynamical medi-
cine (see Chapters 1 and 2).
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Specifically, the integration of various “omics” analyses (e.g., pro-
teomics and transcriptomics) with clinical data assessments in both 
biological and healthcare informatics may especially be helpful for under-
standing across-level associations. Such associations are pivotal for the 
establishment of systems medicine, especially the  gene–drug–environment  
interactions and genotype–phenotype relations (Yan, 2010; also see 
Chapter 2). Detailed resources, tools, and approaches of translational bio-
informatics for these purposes will be discussed in the subsequent sections 
in this chapter.

In addition, data integration approaches may connect laboratory and 
clinical data streams to support better workflow and collaborations in both 
research and clinical settings (Suh et al., 2009). Methods including data 
mining and electronic health records (EHRs) may promote more powerful 
decision support for drug design and therapeutic strategies to enable the 
right prevention and treatment to the right patients at the right time (Yan, 
2010; also see Chapter 2). Translational bioinformatics needs to combine 
both bioinformatics and health informatics methods to lower the healthcare 
costs, risks, and adverse reactions. These integrative and decision support 
methods will be discussed in more detail in Chapter 4.

3.2  BIOINFORMATICS METHODS AND RESOURCES 
FOR “OMICS” STUDIES

 For the practice of translational bioinformatics, one of the first steps 
would be to get the necessary resources. Many resources and tools can 
be applied for the development of systems and dynamical medicine (see 
Chapters 1 and 2). Some of the databases and tools are listed in Tables 3.1–
3.4. With more and more works in the areas, such kind of lists are always 
growing.

As illustrated in Fig. 3.1, various tools are available for supporting “omics” 
studies in systems biology (Halberg et al., 2007), including:
	•	 	genomics;
	•	 	proteomics;
	•	 	epigenomics;
	•	 	transcriptomics;
	•	 	metabolomics;
	•	 	lipidomics;
	•	 	pharmacogenomics;	and
	•	 	chronomics.
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Specifically, genomics and proteomics are essential for understanding 
the structure–function associations at the molecular level. Various sources 
provide such information; many of them are comprehensive platforms with 
cross-database search engines (see the URLs in Table 3.1). These resources 
include:
	•	 	National	 Center	 for	 Biotechnology	 Information	 (NCBI):	 provides	

access	 to	 databases	 about	 DNA,	 RNA,	 proteins,	 domains,	 structures,	
expression, maps, variations, etc.;

	•	 	Ensembl:	 a	 genome	 browser	 for	 comparative	 genomics,	 expression,	
sequence variations, multiple alignments, regulatory functions, diseases, 
etc.;

	•	 	ExPASy:	 a	 resource	 portal	 that	 provide	 information	 about	 genomics,	
proteomics, structure analysis, systems biology, evolutionary biology, 
population genetics, transcriptomics, glycomics, medicinal chemistry, 
etc.;

	•	 	Uniprot:	a	central	repository	of	protein	sequences	and	functions.
Based	 on	 the	 genetics	 databases,	 analyses	 can	 be	 performed	 for	

sequence similarities, structures, motifs, patterns, phylogenetic trees, func-
tions, interactions, and evolutionary changes. As listed in Table 3.1, these 
tools include:

Figure 3.1 Translational bioinformatics for “Omics” studies to support systems and 
dynamical medicine.
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Table 3.1 Bioinformatics Resources and Tools for “Omics” Studies
Tools Web URLs Contents

ArrayExpress http://www.ebi.ac.uk/
arrayexpress/

Gene expressions

Biomarkers	and	Systems	
Medicine	(BSM)

http://pharmtao.com/
health/category/
systems-medicine/
biomarkers-systems-
medicine/

Biomarkers

BLAST http://blast.ncbi.nlm.nih.
gov/Blast.cgi

Sequence similarities

Cancer Proteomics 
Database

http://cancerproteomics.
uio.no/

Cancer proteomics

CLUSTAL http://www.clustal.org/ Sequence alignments
Cytoscape http://www.cytoscape.org Complex networks
dbSNP http://www.ncbi.nlm.nih.

gov/projects/SNP/
Single nucleotide 

polymorphisms
Ensembl http://uswest.ensembl.

org/index.html
Genomics

ExPASy http://expasy.org/ Bioinformatics
Gene Expression 

Omnibus (GEO)
http://www.ncbi.nlm.nih.

gov/geo/
Gene expressions

The Human Metabolome 
Database	(HMDB)

http://www.hmdb.ca/ Small molecule 
metabolites

Human Protein Atlas 
(HPA)

http://www.proteinatlas.
org/

Protein expressions

The Human Protein 
Reference Database 
(HPRD)

http://www.hprd.org/ Pathways and proteins

IntAct http://www.ebi.ac.uk/
intact/

Molecular interactions

isoMETLIN https://isometlin.scripps.
edu/

Metabolomics

Kyoto Encyclopedia of 
Genes and Genomes 
(KEGG)

http://www.genome.jp/
kegg/pathway.html

Pathways

LipidHome http://www.ebi.ac.uk/
apweiler-srv/lipidhome

Lipidomics

LIPID MAPS Lipidomics 
Gateway

http://www.lipidmaps.
org/

Lipidomics

MIPS http://mips.helmholtz-
muenchen.de/proj/ppi/

Protein–protein 
interactions

MitoMiner http://mitominer.
mrc-mbu.cam.ac.uk/
release-4.0/begin.do

Mitochondrial 
proteomics

http://www.ebi.ac.uk/arrayexpress/
http://www.ebi.ac.uk/arrayexpress/
http://pharmtao.com/health/category/systems-medicine/biomarkers-systems-medicine/
http://pharmtao.com/health/category/systems-medicine/biomarkers-systems-medicine/
http://pharmtao.com/health/category/systems-medicine/biomarkers-systems-medicine/
http://pharmtao.com/health/category/systems-medicine/biomarkers-systems-medicine/
http://pharmtao.com/health/category/systems-medicine/biomarkers-systems-medicine/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://cancerproteomics.uio.no/
http://cancerproteomics.uio.no/
http://www.clustal.org/
http://www.cytoscape.org/
http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.ncbi.nlm.nih.gov/projects/SNP/
http://uswest.ensembl.org/index.html
http://uswest.ensembl.org/index.html
http://expasy.org/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.hmdb.ca/
http://www.proteinatlas.org/
http://www.proteinatlas.org/
http://www.hprd.org/
http://www.ebi.ac.uk/intact/
http://www.ebi.ac.uk/intact/
https://isometlin.scripps.edu/
https://isometlin.scripps.edu/
http://www.genome.jp/kegg/pathway.html
http://www.genome.jp/kegg/pathway.html
http://www.ebi.ac.uk/apweiler-srv/lipidhome
http://www.ebi.ac.uk/apweiler-srv/lipidhome
http://www.lipidmaps.org/
http://www.lipidmaps.org/
http://mips.helmholtz-muenchen.de/proj/ppi/
http://mips.helmholtz-muenchen.de/proj/ppi/
http://mitominer.mrc-mbu.cam.ac.uk/release-4.0/begin.do
http://mitominer.mrc-mbu.cam.ac.uk/release-4.0/begin.do
http://mitominer.mrc-mbu.cam.ac.uk/release-4.0/begin.do
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	•	 	BLAST	(Altschul et al., 1990): similarities among nucleotide or protein 
sequences;

	•	 	PROSITE	 (Sigrist et al., 2010): protein domains, families, functional 
sites, patterns, and profiles;

	•	 	CLUSTAL	(Larkin et al., 2007): multiple alignments of nucleic acid and 
protein sequences; and

	•	 	The	Protein	Data	Bank	(PDB)	(Rose et al., 2011): structures of proteins 
and nucleic acids for searching and visualizing.
The assessment of genetic variances such as single nucleotide poly-

morphisms	(SNPs)	is	particularly	useful	for	pharmacogenomics	studies	to	
examine and predict individual variations in drug responses for personal-
ized medicine. Databases and sources (see Table 3.1) can be used for such 
purposes including the following:
	•	 	dbSNP	(Sherry et al., 2001): sequence variations and
	•	 	The	1000	Genomes	Project	(1000 Genomes Project Consortium et al., 

2015): human genetic variations and diseases.
For	 instance,	 in	 the	examination	of	SNP	array	data	 from	the	 samples	

of esophageal cancer, bioinformatics segmentation algorithm was found 
to be useful (Bandla	et	al.,	2012). The assessment revealed genomic vari-
ances with different frequencies from the data samples of both esophageal 

Tools Web URLs Contents

National	Center	for	
Biotechnology	
Information	(NCBI)

http://www.ncbi.nlm.nih.
gov/

A cross-database search 
engine

The	Protein	Data	Bank	
(PDB)

http://www.wwpdb.org/ Protein structures

PROSITE http://prosite.expasy.org/ Protein families
Reactome http://www.reactome.

org/
Pathways

RNA-Seq	Atlas http://medicalgenomics.
org/rna_seq_atlas

Gene expressions

Small Molecule Pathway 
Database	(SMPDB)

http://smpdb.ca/ Human small  
molecule pathways

The 1000 Genomes 
Project

http://
www.1000genomes.
org/

Sequence variations

The Human Variome 
Project

http://www.humanvari-
omeproject.org/

Genetic variations and 
health

UniProt http://www.uniprot.org/ Proteins

Table 3.1 Bioinformatics Resources and Tools for “Omics” Studies—cont’d

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://www.wwpdb.org/
http://prosite.expasy.org/
http://www.reactome.org/
http://www.reactome.org/
http://medicalgenomics.org/rna_seq_atlas
http://medicalgenomics.org/rna_seq_atlas
http://smpdb.ca/
http://www.1000genomes.org/
http://www.1000genomes.org/
http://www.1000genomes.org/
http://www.humanvariomeproject.org/
http://www.humanvariomeproject.org/
http://www.uniprot.org/
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adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC). 
The study suggested that histology-specific therapeutic agents would be 
helpful for the different types of esophageal cancer.

In addition to the structure–function correlations, systems biology 
studies also emphasize the cellular pathways and interactions among dif-
ferent components. In recent years, more and more databases and sources 
are becoming available for such analysis (see Table 3.1), and here are some 
examples:
	•	 	Kyoto	Encyclopedia	of	Genes	and	Genomes	(KEGG)	(Kanehisa et al., 

2006): pathway maps for the interactions and networks about cellular 
processes and human diseases;

	•	 	Reactome	(Croft et al., 2011): a pathway database for visualization and 
analysis;

	•	 	The	 Human	 Protein	 Reference	 Database	 (HPRD)	 (Keshava et al., 
2009): a database of protein–protein interactions;

	•	 	IntAct:	a	database	about	molecular	interactions;
	•	 	The	 MIPS	 Mammalian	 Protein–Protein	 Interaction	 Database	 (Pagel 

et al., 2005): about protein–protein interactions; and
	•	 	The	Small	Molecule	Pathway	Database	(SMPDB)	(Jewison et al., 2014): 

human small molecule pathways including metabolic, drug action, and 
metabolic disease pathways.
Furthermore, the genome-wide association studies (GWAS) and HTP 

technologies have been used widely for pharmacogenomics and other 
“omics” studies (e.g., proteomic, lipidomics, and metabolomics). Some 
examples of the “omics” resources (see Table 3.1) are:
	•	 	Gene	 Expression	 Omnibus	 (GEO)	 (Barrett	 and	 Edgar,	 2006): gene 

expression profiles and functional genomics data;
	•	 	ArrayExpress:	functional	genomics	data	from	HTP	experiments;
	•	 	RNA-Seq	Atlas	(Krupp et al., 2012): gene expression profiles from next-

generation sequencing;
	•	 	The	Human	Protein	Atlas	 (HPA)	 (Uhlen et al., 2010): a tissue-based 

map for proteomic analysis;
	•	 	Cancer	Proteomics	database	(Arntzen et al., 2015): a database about can-

cer proteomics;
	•	 	MitoMiner	(Smith and Robinson, 2016): a database for mitochondrial 

proteomics;
	•	 	isoMETLIN	 (Cho et al., 2014): a database about isotope-based 

metabolomics;
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	•	 	The	Human	Metabolome	Database	(HMDB)	(Wishart et al., 2009): a 
database of small molecule metabolites for metabolomics and biomarker 
analyses;

	•	 	LipidHome	(Foster et al., 2013): a database to support HTP mass spec-
trometry lipidomics;

	•	 	The	LIPID	MAPS	Lipidomics	Gateway	(Fahy et al., 2007): a database of 
lipid-related genes and proteins for lipidomics studies; and

	•	 	Biomarkers	and	Systems	Medicine	 (BSM,	2016): a collection of tools 
and databases about biomarkers to support the development of systems 
medicine.

3.3  BIOINFORMATICS METHODS AND RESOURCES 
FOR EPIGENOMICS AND MICRORNA STUDIES

 Recent development in epigenomics has shown that mechanisms 
such	as	DNA	methylation	may	be	critical	for	the	elucidation	of	complex	
pathogenesis of the illnesses including cancer (Baek	et	al.,	2013). Abnormal 
DNA	 methylation	 changes	 have	 been	 associated	 with	 various	 neurode-
velopmental and neuropsychiatric disorders including schizophrenia and 
depression (Xin et al., 2012).

Many platforms and tools are becoming available for the disease-related 
epigenomics studies. Here are some examples (also see Table 3.2):
	•	 	DBCAT	(DataBase	of	CpG	Islands	and	Analytical	Tools)	(Kuo et al., 2011): 

a	database	for	the	analysis	of	DNA	methylation	profiles	in	human	cancer;
	•	 	Cancer	Methylome	 System	 (CMS)	 (Gu et al., 2013): a platform and 

viewer for differential methylation analysis about genome-wide meth-
ylation of tumors;

	•	 	MethylomeDB	 (Xin et al., 2012): a database of genome-wide brain 
DNA	methylation	profiles	for	the	analyses	of	neuropsychiatric	disorders;

	•	 	NGSmethDB	(Hackenberg et al., 2011): a database and maps for studies 
of high-quality methylomes and differential methylation;

	•	 	EPITRANS	 (Cho et al., 2013): an epigenomics database about gene 
expression changes and epigenetic modification for the analyses of epig-
enome and transcriptome data; and

	•	 	EpiExplorer	(Halachev et al., 2012): a web tool for analyzing epigenome 
data sets.
As	 small	 non-coding	 RNAs,	 microRNAs	 (miRNAs)	 have	 the	 key	

roles in various biological activities including energy and lipid metabolism. 
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Studies	of	miRNAs	would	contribute	to	the	better	understanding	of	many	
complex disorders such as diabetes and cancer (Pescador et al., 2013). They 
are	 important	messenger	RNA	 (mRNA)	 regulators	with	 unique	 disease	
expression signature profiles (Sandhu and Maddock, 2014). These features 
have	indicated	that	miRNAs	can	be	useful	biomarkers.

Many	bioinformatics	databases	and	tools	about	miRNA	are	becoming	
available in recent years. Here are some examples of such resources (also see 
Table 3.2):
	•	 	The	miRBase	database	(Kozomara and Griffiths-Jones, 2013): a search-

able	miRNA	database	containing	annotations	and	miRNA	sequences;
	•	 	miRGate	(Andrés-León et al., 2015):	human,	mouse,	and	rat	miRNA–

mRNA	targets;

Table 3.2 Bioinformatics Resources and Tools for Epigenomics and MicroRNA Studies
Tools Web URLs Contents

DBCAT http://dbcat.cgm.ntu.edu.tw/ Methylation profiles in 
cancers

CMS http://cbbiweb.uthscsa.edu/
KMethylomes/

Cancer methylome

EpiExplorer http://epiexplorer.mpi-inf.
mpg.de/

Epigenomic analyses

EPITRANS http://epitrans.org/
EPITRANS/Service

Epigenetics and 
transcriptomics

MethylomeDB http://www.neuroepigenom-
ics.org/methylomedb/

Brain	DNA	methylation	
profiles

microRNA.org http://www.microrna.org MicroRNA	expressions
miRBase http://www.mirbase.org MicroRNA	database
miRDB http://mirdb.org/miRDB MicroRNA	target	

predictions
miRGate http://mirgate.bioinfo.cnio.es/

miRGate/
Human, mouse, and rat 

microRNA–messenger	
RNA	targets

miRNAMap	2.0 http://mirnamap.mbc.nctu.
edu.tw

MicroRNA,	genomic	
maps

miRò2 http://microrna.osumc.edu/
miro/

The inference of 
microRNA	associations

miRTarBase http://mirtarbase.mbc.nctu.
edu.tw

MicroRNA-target	
interactions

miRWalk2.0 http://zmf.umm.uni- 
heidelberg.de/apps/ 
zmf/mirwalk2/

MicroRNA-target	
interactions

NGSmethDB http://bioinfo2.ugr.es/
NGSmethDB/index.php

DNA	methylation

http://dbcat.cgm.ntu.edu.tw/
http://cbbiweb.uthscsa.edu/KMethylomes/
http://cbbiweb.uthscsa.edu/KMethylomes/
http://epiexplorer.mpi-inf.mpg.de/
http://epiexplorer.mpi-inf.mpg.de/
http://epitrans.org/EPITRANS/Service
http://epitrans.org/EPITRANS/Service
http://www.neuroepigenomics.org/methylomedb/
http://www.neuroepigenomics.org/methylomedb/
http://www.microrna.org/
http://www.mirbase.org/
http://mirdb.org/miRDB/
http://mirgate.bioinfo.cnio.es/miRGate/
http://mirgate.bioinfo.cnio.es/miRGate/
http://mirnamap.mbc.nctu.edu.tw/
http://mirnamap.mbc.nctu.edu.tw/
http://microrna.osumc.edu/miro/
http://microrna.osumc.edu/miro/
http://mirtarbase.mbc.nctu.edu.tw/
http://mirtarbase.mbc.nctu.edu.tw/
http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/
http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/
http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/
http://bioinfo2.ugr.es/NGSmethDB/index.php
http://bioinfo2.ugr.es/NGSmethDB/index.php
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	•	 	miRTarBase	(Chou et al., 2016):	a	database	about	miRNA-target	inter-
actions that have been validated by experiments including microarray 
and next-generation sequencing;

	•	 	The	microRNA.org	site	(Betel	et	al.,	2008):	a	platform	about	miRNA	
target predictions and expression profiles;

	•	 	The	miRNAMap	2.0	(Hsu	et	al.,	2008):	genomic	maps	of	miRNAs	and	
target genes in various species; and

	•	 	miRDB	 (Wong and Wang, 2015): a database and analytical tool for 
miRNA	target	prediction	and	functional	annotations	for	various	species.

3.4  BIOINFORMATICS SUPPORT FOR THE STUDIES OF 
DISEASE PHENOTYPES AND DRUG RESPONSES

	 Based	 on	 the	 various	 “omics”	 studies,	 a	 pivotal	 investigation	 for	
translational bioinformatics and systems biology is to elucidate the geno-
type–phenotype and gene–drug correlations including symptoms and drug 
responses. Some resources helpful for such purposes are listed in the follow-
ing (also see Table 3.3 and Fig. 3.1). More resources and methods about spe-
cific conditions and diseases such as inflammation, cardiovascular diseases, 
cancer, and aging can be found in Chapters 9–12.
	•	 	Online	Mendelian	Inheritance	in	Man	(OMIM)	(Hamosh et al., 2005): 

a database of human genes, phenotypes, and disorders;
	•	 	Gentrepid	(George et al., 2006): a platform for candidate disease gene 

prediction;
	•	 	The	Database	of	Genotypes	and	Phenotypes	(dbGaP):	a	database	about	

the genotype–phenotype interactions in humans;
	•	 	PhenoScanner	(Staley et al., 2016): a database about human genotype–

phenotype correlations;
	•	 	The	Human	Genome	Epidemiology	Network	(HuGENet):	a	resource	

about public health genomics and epidemiology; and
	•	 	ClinicalTrials.gov:	a	database	about	clinical	studies.

In addition, factors including nutrients and drugs are essential in 
understanding the genotype–phenotype interactions for personalized 
medicine. Some general resources are listed in the following (also see 
Table 3.3). More resources about drug discovery and development can be 
found in Chapter	8.
	•	 	National	Health	and	Nutrition	Examination	Survey	(NHANES):	a	pro-

gram about the health and nutritional conditions including assessments 
from interviews and physical examinations;

	•	 	DrugBank	(Wishart et al., 2006): a database about drugs and drug targets;
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	•	 	Drug	 Interaction	 Database	 (DIDB)	 program:	 a	 platform	 about	 drug	
development and drug–drug interactions;

	•	 	The	Drugs@FDA:	a	platform	about	FDA-approved	drugs	that	can	be	
searched by drug names and ingredients;

	•	 	ChEMBL:	a	platform	about	drug	ligands,	compounds,	targets,	and	assays;
	•	 	The	FDA	Adverse	Event	Reporting	System	(FAERS):	a	database	about	

reported adverse events and medication errors associated with drugs and 
therapeutic biologic products;

Table 3.3 Bioinformatics Resources and Tools for the Studies of Disease Phenotypes 
and Drug Responses
Tools Web URLs Contents

ChEMBL https://www.ebi.ac.uk/
chembl/

Drug-like small molecules

ClinicalTrials.gov http://clinicaltrials.gov/ Clinical trials
dbGaP http://www.ncbi.nlm.nih.

gov/gap
Genotype–phenotype 

interactions
Drug Interaction 

Database	(DIDB)
http://www.druginteraction-

info.org/
Drug interactions

DrugBank http://www.drugbank.ca Drugs and targets
Drugs@FDA	

Database
https://www.accessdata.fda.

gov/scripts/cder/drug-
satfda/index.cfm

Drugs

FDA Adverse 
Event Reporting 
System (FAERS)

http://www.fda.gov/Drugs/ 
GuidanceCompliance 
RegulatoryInformation/
Surveillance/AdverseDrug 
Effects/default.htm

Adverse events and medi-
cation error reports

Gentrepid http://www.gentrepid.org/ Genetic disorders
HuGENet http://www.cdc.gov/genom-

ics/hugenet/default.htm
Genetic variations

MedWatch http://www.fda.gov/Safety/
MedWatch/

FDA safety information

NHANES http://www.cdc.gov/nchs/
nhanes.htm

Health and nutritional 
status

Online Mendelian 
Inheritance in 
Man (OMIM)

http://www.ncbi.nlm.nih.
gov/omim

Human genes and diseases

PhenoScanner http://www.phenoscan-
ner.medschl.cam.ac.uk/
phenoscanner

Human genotype–pheno-
type correlations

SIDER	(EMBL) http://sideeffects.embl.de Adverse drug reactions

https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chembl/
http://clinicaltrials.gov/
http://www.ncbi.nlm.nih.gov/gap
http://www.ncbi.nlm.nih.gov/gap
http://www.druginteractioninfo.org/
http://www.druginteractioninfo.org/
http://www.drugbank.ca/
https://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm
https://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm
https://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm
http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/default.htm
http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/default.htm
http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/default.htm
http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/default.htm
http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/default.htm
http://www.gentrepid.org/
http://www.cdc.gov/genomics/hugenet/default.htm
http://www.cdc.gov/genomics/hugenet/default.htm
http://www.fda.gov/Safety/MedWatch/
http://www.fda.gov/Safety/MedWatch/
http://www.cdc.gov/nchs/nhanes.htm
http://www.cdc.gov/nchs/nhanes.htm
http://www.ncbi.nlm.nih.gov/omim
http://www.ncbi.nlm.nih.gov/omim
http://www.phenoscanner.medschl.cam.ac.uk/phenoscanner
http://www.phenoscanner.medschl.cam.ac.uk/phenoscanner
http://www.phenoscanner.medschl.cam.ac.uk/phenoscanner
http://sideeffects.embl.de/
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	•	 	MedWatch:	an	FDA	reporting	program	about	safety	and	adverse	events;
	•	 	SIDER:	a	resource	about	marketed	medicines,	adverse	drug	reactions,	

side effects, and drug targets.

3.5  BIOINFORMATICS SUPPORT FOR THE 
SPATIOTEMPORAL STUDIES TOWARD DYNAMICAL 
MEDICINE

 As discussed in Chapters 1 and 2, systems and dynamical studies across 
various spatial levels and temporal scales are fundamental for the development 
of systems and dynamical medicine. Translational bioinformatics methods are 
especially important for such efforts. As shown below, from molecular to cel-
lular levels, from tissues to organs, many resources can be applied for studying 
genomic and proteomic dynamics (also see Table 3.4). More resources and 
methods about biomedical dynamics can be found in Chapter 7.
	•	 	Systems	 Science	 of	 Biological	 Dynamics	 database	 (SSBD)	 (Tohsato 

et al., 2016): a database of spatiotemporal dynamics in biology;
	•	 	Dynameomics	(Van der Kamp et al., 2010): a database about molecular 

dynamics simulation including protein folding;
	•	 	The	Kahn	Dynamic	Proteomics	(Frenkel-Morgenstern et al., 2010): a 

resource about the dynamics of proteins in living human cells including 
the position and amounts;

	•	 	CHARMM-GUI	 (Jo et al., 2007): a platform for the simulations of 
molecular dynamics and mechanics;

	•	 	CellFinder	(Stachelscheid et al., 2013): a platform about gene and pro-
tein expression profiles, phenotypes, development, and images associated 
with cell types;

	•	 	Arena3D	(Secrier et al., 2012): a visualization resource about time-driven 
phenotypic variances including the networks and dynamic processes;

	•	 	MitoGenesisDB	(Gelly et al., 2011): a database about the dynamics and 
biogenesis of mitochondrial protein formation;

	•	 	EUCLIS	(EUCLock	Information	System)	(Batista	et	al.,	2007): a plat-
form about circadian rhythms and chronobiology;

	•	 	The	Allen	Brain	Atlas	(Sunkin et al., 2013): a spatiotemporal data portal 
for	studying	the	central	nervous	system	(CNS)	including	gene	expres-
sion data and cell types;

	•	 	The	Brain	Transcriptome	Database	(BrainTx)	(Sato	et	al.,	2008): a data-
base about the visualization and analysis of transcriptome data about the 
stages and states of the brain;
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	•	 	The	Eurexpress	(Diez-Roux et al., 2011): a database about the transcrip-
tome map of the mouse embryo;

	•	 	EpiScanGIS	 (Reinhardt	 et	 al.,	 2008): a surveillance and geographical 
information system in Germany about the timely information and dis-
tribution of meningococcal disease; and

	•	 	VectorMap	(Kelly et al., 2015): a program that provides disease maps and 
distribution models about arthropod disease vector species.

Table 3.4 Bioinformatics Resources and Tools for Molecular Dynamics and 
Spatiotemporal Studies
Tools Web URLs Contents

Allen	Brain	Atlas http://www.brain-map.
org

Central nervous system 
spatiotemporal maps

Arena3D http://arena3d.org Time-driven phenotypic 
differences

CellFinder http://cellfinder.org Cell types in complex 
systems

CHARMM-GUI http://www.charmm-
gui.org/

Macromolecular dynamics

Dynameomics http://www.
dynameomics.org

Protein dynamics

EpiScanGIS http://www.episcangis.
org

Spatiotemporal clusters of 
diseases

EUCLIS http://www.bioinfo.
mpg.de/euclis/

Circadian systems biology

Eurexpress http://www.eurexpress.
org

Transcriptome in the 
mouse embryo

MitoGenesisDB http://www.
dsimb.inserm.fr/
dsimb_tools/mitgene/

Spatiotemporal dynamics 
of mitochondria

Systems Science of 
Biological	Dynamics	
(SSBD)

http://ssbd.qbic.riken.
jp/

Quantitative data and 
microscopy images

The	Brain	Transcriptome	
Database	(BrainTx)

http://www.cdtdb.neu-
roinf.jp/CDT/Top.jsp

Spatiotemporal gene 
expressions in mouse 
brains

The Kahn Dynamic 
Proteomics Database

http://www.weizmann.
ac.il/mcb/UriAlon/
DynamProt/

Protein dynamics

VectorMap http://vectormap.si.edu/ Disease maps and dis-
tribution models for 
arthropod disease vector 
species

http://www.brain-map.org/
http://www.brain-map.org/
http://arena3d.org/
http://cellfinder.org/
http://www.charmm-gui.org/
http://www.charmm-gui.org/
http://www.dynameomics.org/
http://www.dynameomics.org/
http://www.episcangis.org/
http://www.episcangis.org/
http://www.bioinfo.mpg.de/euclis/
http://www.bioinfo.mpg.de/euclis/
http://www.eurexpress.org/
http://www.eurexpress.org/
http://www.dsimb.inserm.fr/dsimb_tools/mitgene/
http://www.dsimb.inserm.fr/dsimb_tools/mitgene/
http://www.dsimb.inserm.fr/dsimb_tools/mitgene/
http://ssbd.qbic.riken.jp/
http://ssbd.qbic.riken.jp/
http://www.cdtdb.neuroinf.jp/CDT/Top.jsp
http://www.cdtdb.neuroinf.jp/CDT/Top.jsp
http://www.weizmann.ac.il/mcb/UriAlon/DynamProt/
http://www.weizmann.ac.il/mcb/UriAlon/DynamProt/
http://www.weizmann.ac.il/mcb/UriAlon/DynamProt/
http://vectormap.si.edu/
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3.6  CONCLUSION

 In conclusion, the integration of bioinformatics and healthcare infor-
matics is indispensable for the translation of systems biology and phar-
macogenomics into personalized and systems dynamical medicine. These 
approaches are also the key to the identification of the spatiotemporal pat-
terns such as the time-series assessments of the correlations between genetic 
structural variations and functional changes including drug responses.

It is essential to understand the cross talks among various systems lev-
els and temporal scales including the genotype–phenotype correlations for 
finding systems-based biomarkers and for the classification of patient sub-
groups at different disease phases (see Chapters 1, 2, and 5). The systems-
based and dynamical profiling may enable the discovery of more useful 
prognostic biomarkers and more effective preventive strategies.

Methods in translational bioinformatics such as data integration and 
data mining may empower the decision support efforts in both research 
and clinical settings (see Chapter 4). These approaches may improve the 
decision-making activities via more convenient communication and infor-
mation access. They may promote KD and predictive modeling toward the 
optimal diagnosis and treatments.
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CHAPTER FOUR

Data Integration, Data Mining, 
and Decision Support in 
Biomedical Informatics
 

4.1  INTRODUCTION: DATA AND WORKFLOW 
INTEGRATION IN TRANSLATIONAL 
BIOINFORMATICS

 In biomedical studies especially systems biology, a significant challenge 
comes from the heterogeneous data sets about the complex systems and 
relevant diseases (Dreher et al., 2012). The integration of the various data 
sets such as those from molecular, clinical, and imaging studies into coher-
ent models may help elucidate the dynamic and heterogeneous properties 
of the complex diseases and validate robust biomarkers. Such integrative 
strategies would pave the ground toward the advancement of personalized 
medicine.

Many tools and approaches can be applied in translational bioinformatics 
to support the translation of scientific discoveries into better clinical results. 
As illustrated in Fig. 4.1, some of the important steps are data integration, 
data standardization, data mining, knowledge discovery (KD), and decision 
support. These methods are useful for both basic analyses, such as genomic 
studies, and clinical practice, such as electronic health records (EHRs).

The large volumes of data sets from both laboratory experiments and 
clinical trials may be valuable resources for the development of personal-
ized and systems medicine. However, these data need to be well managed 
before they can be stored, shared, retrieved, and analyzed. Various reasons 
may complicate the data management processes, such as limited time and 
budgets, different resources and backgrounds, and knowledge domain bar-
riers among researchers and clinicians.

To overcome the obstacles for more efficient data management in trans-
lational bioinformatics, strategies for data integration are essential (Brazhnik 
and Jones, 2007). Besides data integration, the diversity and heterogeneity in 
clinical and research environments demand workflow integration to enable 
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better decision support. Such steps are fundamental for further data mining 
and KD, especially for biomarker identifications and pattern recognitions 
to enable the construction of predictive models (Yan, 2010a). The better 
data exchanging and management may also help improve time and financial 
effectiveness.

The advantages of data integration have been demonstrated by various 
real-world applications. For example, a methodological integration frame-
work was used to integrate data from different genome-wide sources and 
multiple tiers of biological regulation (Daemen et al., 2009). The data came 
from various “omics” studies including genomics, proteomics, transcrip-
tomics, and epigenomics (see Chapter 3). The clinical data sets included 
samples from rectal cancer and prostate cancer patients. The integration 
processes enhanced the predictive power of clinical decision support mod-
els and allowed for better clinical outcomes. Such integrative strategies have 
demonstrated that they can be very useful for cost-efficient purposes and 
personalized therapies.

Such methods are critical for the translational research in systems biology. 
For instance, complex data from high-throughput (HTP) approaches, such 
as microarray tests, do not have any meaning without large-scale integra-
tion to identify the shared pathways in different cancer types (Dawany et al., 

Figure 4.1 Translational bioinformatics methods for systems and dynamical medicine.
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2011). The gene names, sample sizes, and data types may be varied in dif-
ferent experiments and different studies. Such discrepancies may complicate 
the analyses including gene expressions in different cancer tissues. These dif-
ficulties make the data integration step indispensable.

An example of the solution was using data normalization methods for 
managing the microarray data from more than 80 laboratories with more 
than 4000 samples and more than 10 cancer tissue types (Dawany et al., 
2011). The integration step resulted in the organized lists of genes for each 
cancer type as the potential biomarkers including various kinases and tran-
scription factors.

Such real-world examples have demonstrated both usages and benefits 
of the data integration approaches. In another example of multiple sclerosis, 
data integration and systems biology strategies were found to enhance the 
efforts for biomarker discovery based on various system levels in the com-
plex hierarchy of humans (Villoslada and Baranzini, 2012). More of such 
practical examples in various diseases can be found in Chapters 9–12.

4.2  APPROACHES OF DATA AND WORKFLOW 
INTEGRATION

4.2.1  The Basic Data Integration Steps
As discussed previously, data integration can be applied in several steps start-
ing from the recognition, gathering, and selection of various data sources 
(Yan, 2010a,b). These resources should meet the objectives from project 
requirement analyses. The data from various sources can then be col-
lected, stored, cleaned, corrected, and updated for removing possible errors. 
Any inconsistencies in the data should also be fixed to organize the data. 
Common values should be combined. The representation formats or styles 
of the data can be changed and amended before they can be distributed and 
analyzed.

Most importantly, the data standardization is essential in all these steps 
including using the standards for data types, terms, names, and values. Some 
examples of commonly used standards for bioinformatics and healthcare 
informatics are available in Tables 4.1 and 4.2 of this chapter, as well as in 
Chapter 3.

These steps in data integration provide the transformational and evolu-
tionary power toward KD and decision support in later stages. Biomedical 
data usually have problems including redundancies and discrepancies. 
These problems may lead to misperception and mistakes. The healthcare 
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and bioinformatics standards can be applied as references to clean up such 
errors. For example, the genetic nomenclature source Gene Ontology (GO) 
can be used for unifying gene names (see Table 4.1).

In addition, the combination of different data from various resources 
including databases and software tools can be one of the first steps in data 
integration. A practical strategy is using a shared web-based infrastructure 
to gather and link data and information, such as databases, data warehouses, 
portals, and various integrative frameworks.

Recent techniques such as XML- and Wiki-based data integration 
methods may also facilitate the efforts for indexing, querying, and mining 
of heterogeneous data sets (Dreher et al., 2012). The cloud computing tech-
nology may provide powerful support for storing and accessing data. These 
approaches can facilitate better data sharing among different knowledge 
domains and different physical locations. The integrative platforms can also 
improve the workflow efficiencies in both laboratory and clinical depart-
ments with the potential benefits of saving costs.

Table 4.1 Bioinformatics Standards and Resources
Tools Web URLs Contents

Data Integration Platform 
for Systems Biology 
Collaborations (DIPSBC)

http://dipsbc.molgen.
mpg.de/foswiki/
DIPSBC/WebHome

Data integration for 
systems biology

Electronic Medical 
Records and Genomics 
(eMERGE)

https://www.
mc.vanderbilt.edu/
victr/dcc/projects/acc/
index.php/Main_Page

Electronic medi-
cal records and 
genomics

Gene Ontology (GO) http://www.geneontol-
ogy.org/

Gene ontology

HUGO Gene 
Nomenclature 
Committee (HGNC)

http://www.genenames.
org/

Gene nomenclature

Integrative Modeling 
Platform (IMP)

https://integrativemodel-
ing.org/

Genome structural 
analyses via data 
integration

Personal Genome Project http://www.personalge-
nomes.org/

Personal genomes

Systems Biology Markup 
Language (SBML)

http://sbml.org/
Main_Page

Biological process 
modeling

NCI Center for Biomedical 
Informatics and 
Information Technology 
(CBIIT)

https://cbiit.nci.nih.gov/ Cancer studies

http://dipsbc.molgen.mpg.de/foswiki/DIPSBC/WebHome
http://dipsbc.molgen.mpg.de/foswiki/DIPSBC/WebHome
http://dipsbc.molgen.mpg.de/foswiki/DIPSBC/WebHome
https://www.mc.vanderbilt.edu/victr/dcc/projects/acc/index.php/Main_Page
https://www.mc.vanderbilt.edu/victr/dcc/projects/acc/index.php/Main_Page
https://www.mc.vanderbilt.edu/victr/dcc/projects/acc/index.php/Main_Page
https://www.mc.vanderbilt.edu/victr/dcc/projects/acc/index.php/Main_Page
http://www.geneontology.org/
http://www.geneontology.org/
http://www.genenames.org/
http://www.genenames.org/
https://integrativemodeling.org/
https://integrativemodeling.org/
http://www.personalgenomes.org/
http://www.personalgenomes.org/
http://sbml.org/Main_Page
http://sbml.org/Main_Page
https://cbiit.nci.nih.gov/
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For instance, to support the research about the gene expression pat-
terns of the fruit fly Drosophila melanogaster, an integrative platform was 
constructed for functional genomics analyses (Miles et al., 2010). The effort 
merged Semantic Web Standards and Web 2.0 design patterns to facilitate 
more convenient access and searching functions for the comparison of the 
expression data from various sources. Ontology and data mapping strategies 
were critical in the data integration processes.

Table 4.2 Health Informatics Standards and Resources
Tools Web URLs Contents

Digital Imaging and 
Communications in 
Medicine (DICOM)

http://medical.nema.org/ Medical imaging data 
standards

Genetic Information 
Nondiscrimination Act 
(GINA)

http://www.genome.
gov/24519851

Genetic information 
nondiscrimination 
act

The Health Insurance 
Portability and 
Accountability Act of 
1996 (HIPAA) and 
the Patient Safety and 
Quality Improvement 
Act of 2005 (PSQIA)

http://www.hhs.gov/
ocr/privacy/

Patient privacy, safety, 
security rules

Health Level Seven 
International (HL7)

http://www.hl7.org/ Health information sys-
tems interoperability

International Classification 
of Diseases (ICD)

http://www.who.int/
classifications/icd/en/

Disease classifications

Logical Observation 
Identifiers Names and 
Codes (LOINC)

http://loinc.org/ Laboratory observations

Medical Dictionary for 
Regulatory Activities 
(MedDRA)

http://www.meddra.org/ Medical terminology 
for adverse events

RxNorm https://www.nlm.nih.
gov/research/umls/
rxnorm/

Drug terminologies

Systematized 
Nomenclature of 
Medicine–Clinical 
Terms (SNOMED-CT)

http://www.nlm.nih.
gov/research/umls/
Snomed/snomed_
main.html

Clinical terminology

Unified Medical Language 
System (UMLS)

http://www.nlm.nih.
gov/research/umls/

Medical terminology 
integration

http://medical.nema.org/
http://www.genome.gov/24519851
http://www.genome.gov/24519851
http://www.hhs.gov/ocr/privacy/
http://www.hhs.gov/ocr/privacy/
http://www.hl7.org/
http://www.who.int/classifications/icd/en/
http://www.who.int/classifications/icd/en/
http://loinc.org/
http://www.meddra.org/
https://www.nlm.nih.gov/research/umls/rxnorm/
https://www.nlm.nih.gov/research/umls/rxnorm/
https://www.nlm.nih.gov/research/umls/rxnorm/
http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html
http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html
http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html
http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html
http://www.nlm.nih.gov/research/umls/
http://www.nlm.nih.gov/research/umls/
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In addition to genomics data, data integration approaches have also been 
proven useful in the management of tissue banking data from biospecimens 
in different groups (Amin et al., 2010). Translational bioinformatics methods 
were applied to support the studies of cancer by using standardized annota-
tions and data modeling for better data access from a wide range of clinical 
information systems.

An integrative platform was built to support queries about organ-specific 
biorepositories (Amin et al., 2010). The data architecture combined various 
resources such as the Specialized Programs of Research Excellence (SPORE) 
Head and Neck Neoplasm Database. Such integrative framework demon-
strated the usefulness of bioinformatics strategies to support more effective 
translational efforts and collaboration.

As another example about depression, systems biology integration of 
proteomic data and functional enrichment analyses showed the impor-
tance of the immune, neurotrophic, and glutamatergic signaling pathways 
(Carboni et al., 2016). Methods of data integration included the network 
analysis of the proteomic data. Various resources were used for the data 
integration processes, including the databases of IntAct, HRPD, and GO for 
biological terms and pathways (see Chapter 3 and the next section of this 
chapter). More of such data integration examples in different diseases can 
be found in Chapters 9–12.

4.2.2  Bioinformatics and Health Informatics Resources  
for Standardization

For more effective decision support in both clinical and experimental envi-
ronment involving various knowledge domains, standardization is the key 
solution for interoperability problems. Both bioinformatics and healthcare 
informatics resources are needed for the standardization step in transla-
tional medicine, as some of the examples listed in Tables 4.1 and 4.2 and 
in Chapter 3. Such standards are pivotal for the development of EHRs and 
clinical decision support systems (CDSSs).

Here are some examples that can be applied as the genetic nomenclature 
references (also see Table 4.1):
	•	 	GO:	the	ontology,	concepts,	and	annotations	of	genes	and	functions;
	•	 	HUGO	Gene	Nomenclature	Committee	(HGNC):	symbols	and	names	

of	genes;	and
	•	 	NCI	Center	 for	Biomedical	 Informatics	and	Information	Technology	

(CBIIT): a program to support studies in cancer informatics.
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Here are some example systems that can be applied as the clinical termi-
nology references (also see Table 4.2):
	•	 	Systematized	Nomenclature	of	Medicine—Clinical	Terms	(SNOMED	

CT): standards about clinical health information to solve interoperability 
issues;

	•	 	International	Classification	of	Diseases	(ICD):	a	standard	about	diseases	
and	disease	patterns	for	clinical	data	and	billing;

	•	 	Logical	 Observation	 Identifiers	 Names and Codes (LOINC): a code 
system with universal identifiers for organizing laboratory data from 
tests,	measurements,	and	observations;

	•	 	Digital	Imaging	and	Communications	in	Medicine	(DICOM):	the	stan-
dard	for	clinical	imaging	data;

	•	 	Unified	Medical	Language	System	(UMLS):	a	reference	platform	for	the	
integration	of	terminologies,	classifications,	and	coding	standards;

	•	 	Health	Level	Seven	International	(HL7):	a	platform	for	the	integration	
and	sharing	of	electronic	health	information	for	medical	practice;

	•	 	Medical	Dictionary	 for	Regulatory	Activities	 (MedDRA):	 a	platform	
about standardized medical terminology and regulatory information for 
medical	products;	and

	•	 	RxNorm:	a	system	about	drug	vocabularies	and	normalized	names	for	
clinical drugs used in drug management and interaction programs.

4.2.3  The Integration of Biological and Medical Informatics
To meet the goals of translational bioinformatics, the integration of biological 
and medical informatics would be needed (see Chapter 1). Such combination 
would facilitate the sharing of both genomics and clinical data and address the 
genotype–phenotype correlations to support personalized medicine. Some 
efforts have already been made for such purposes (see Table 4.1), such as:
	•	 	eMERGE	(Electronic	Medical	Records	and	Genomics):	a	combination	

of DNA information with electronic medical record (EMR) systems for 
genomic	medicine;

	•	 	Personal	Genome	Project:	an	effort	to	share	genomic,	health,	and	trait	
data;

	•	 	Systems	Biology	Markup	Language	 (SBML):	 a	platform	 for	bioinfor-
matics modeling of biological processes including metabolism and sig-
naling	pathways;

	•	 	Data	Integration	Platform	for	Systems	Biology	Collaborations	(DIPSBC) 
(Dreher et al., 2012):	data	integration	for	systems	biology;	and
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	•	 	Integrative	Modeling	Platform	(IMP)	(Baù and Marti-Renom, 2012): 
genome structural analyses via data integration.
Furthermore, such integration of bioinformatics and healthcare infor-

matics in CDSSs may face ethical, legal, privacy, and societal issues that 
should be addressed. Mutual efforts and cooperation from the societies of 
both bioinformatics and healthcare informatics are necessary. Here are some 
examples of the available efforts (see Table 4.2):
	•	 	Genetic	Information	Nondiscrimination	Act	(GINA):	to	protect	peo-

ple from discrimination based on genetic information, including health 
coverage	and	employment;

	•	 	The	 Health	 Insurance	 Portability	 and	 Accountability	 Act	 of	 1996	
(HIPAA) privacy and security rules and the Patient Safety and Quality 
Improvement Act of 2005 (PSQIA) patient safety rule: rights and rules 
about health information, which need to be complied by biomedical 
informatics systems including EHRs.

4.3  DATA MINING AND KNOWLEDGE DISCOVERY IN 
TRANSLATIONAL BIOINFORMATICS

 As discussed previously, the data integration processes including 
cleaning, correcting, and standardization can transform unorganized data 
into usable information. Based on such data management, data mining 
approaches can be applied for KD such as finding patterns and correlations. 
This is a comprehensive process and a life cycle starting from requirement 
and domain analyses, through data integration, management, and data min-
ing to support better decision making (see Fig. 4.1).

This is an iterative and interactive cycle that feedback from each step 
can be used to make improvements in the previous steps of the evolving life 
cycle. The ultimate goal is to promote decision support and knowledge rep-
resentation to build predictive systems biology models that can be translated 
into better diagnosis and interventions in systems medicine (Yan, 2010a,b;	
also see Chapter 1).

Many real-world examples have proven the effectiveness of such life 
cycles in translational bioinformatics. For example, the KD methods were 
used in analyzing the reports from the World Health Organization (WHO) 
Adverse Drug Reaction (ADR) database (Bate et al., 2008). The informat-
ics approaches were found useful for addressing the unpredicted ADRs for 
further review and for the examination of complex data sets from patient 
records.
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In another example, a web-based integrative platform was constructed for 
the analysis of gene expression profiles with searching tools (Krupp et al., 2012). 
The comprehensive platform has connections to other resources, microarray 
profiles, signaling networks, and gene ontologies. These functions can facili-
tate data mining efforts such as comparing tissue-specific expression profiles to 
identify patterns.

The correlations between genotypic changes and tissue phenotypes are 
good examples for the across-level analyses in systems biology. Furthermore, 
semantic web technologies can be utilized to manage pharmacogenomics 
discoveries to support drug discovery and medical decision making as the 
essential function of CDSSs (Samwald et al., 2012).

Various data mining approaches are available for translational bioinfor-
matics, such as data clustering, decision trees, Bayesian networks, genetic 
algorithms, and artificial neural networks (ANNs) (Yan, 2010a,b). Such 
strategies can help identify biomarkers, correlations, and patterns to support 
diagnosis, drug design, and treatment selections.

For instance, decision trees can be used for the investigation of 
protein–protein interactions in systems biology (Vallabhajosyula and  
Raval, 2010). Supervised classification methods have been found  
helpful for assessing microarray expression profiles for functional analy-
ses and categorizing proteins to support predictive models (Brun et al., 
2003).

Considering the conditions of inflammation, the mechanism underlying 
many diseases, the applications of the data modeling methods would be help-
ful (see Chapter 9). For instance, dynamic mathematical modeling methods 
such as agent-based modeling (ABM) and equation-based modeling (EBM) 
have been suggested (Vodovotz and An, 2010). Immunoinformatics pro-
grams can also be utilized for the investigations of the structure–function 
correlations of the immune system (Yan, 2010c).

Statistical analysis methods such as Bayesian networks have also been 
useful. In an evaluation of gene expression data in various time series, 
Gaussian Bayesian networks were applied together with reverse engineer-
ing regulatory networks for assessing the multidimensional data for building 
systems biology models (Grzegorczyk, 2010).

For better querying, knowledge representation, and pattern recognition, 
approaches including text mining and natural language processing (NLP) 
may be applied (Cohen and Hersh, 2005). NLP strategies have been found 
especially helpful for clinical narratives, text preprocessing, named entity 
recognition (NER), as well as the abstraction and finding of correlations 
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(Demner-Fushman et al., 2009). These can be applied for decision support 
in translational efforts in a wide range of areas such as scientific, administra-
tive, and social issues.

To support dynamical assessments including chronobiology studies, data 
mining strategies can be applied to identify spatiotemporal patterns and 
correlations to build dependency models (Lopes et al., 2013). For instance, 
ABM has been found helpful for modeling nonlinear complexity across dif-
ferent system levels from cells to societies (Kaul and Ventikos, 2013).

In an examination of the circadian-associated gene expression patterns of 
the lung transcriptome, various data mining and translational bioinformat-
ics methods were used including BLAST, MATLAB, and clustering algo-
rithms (Sukumaran et al., 2011). The rhythmic patterns discovered using 
these strategies may contribute to systemic understanding of the dynamics 
of lung diseases and drug responses.

In the studies of breast cancer, ANN was applied for the dynamic ther-
mal analysis (Salhab et al., 2006). An agent-based model was found useful 
for detecting mammary ductal epithelium dynamics to support the better 
understanding of both molecular and cellular pathogenesis (Chapa et al., 
2013). More of such examples are available in Chapters 9–12.

4.4  CONCLUSION: DECISION SUPPORT IN 
TRANSLATIONAL BIOINFORMATICS

 As discussed previously, an important task in translational bioinfor-
matics and systems biology is the investigation of the genotype–phenotype 
correlations by integrating genomic data with EMRs. Such multilevel strat-
egies based on the information of genes, cells, drugs, interactions, and func-
tional annotations are critical for decision support toward better diagnosis, 
prognosis, and personalized interventions (Peleg and Tu, 2006).

The term “decision support” refers to a broad meaning from data man-
agement to data mining, from diagnostic decisions to patient-centered 
clinical options (Peleg and Tu, 2006). Decision support is the key element 
of translational bioinformatics, from better data access to communication, 
from better drug design to treatment recommendations. It is the necessary 
step to bring the “right knowledge to the right people in the right form at 
the right time” (Yan, 2010a,b,c).

The integration and modeling of data and workflow are critical for 
effective decision support. Such purposes can also be achieved with the 
application of a standard object-oriented modeling tool Unified Modeling 
Language (UML) (Peleg	and	Tu,	2006;	Yan,	2010b). UML can be especially 
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useful in the life cycle for CDSS requirement analysis, system design, and 
implementation.

A practical example is the modeling of the clinical trial workflow using 
UML. The applications of UML diagrams, especially the activity diagram, 
were found helpful for modeling the clinical trials domain to support inter-
national sites in rheumatology and oncology for comparative investigations 
(de Carvalho et al., 2010). Such modeling strategies allowed for the trans-
lational processes of moving the paper notes to digital records to facilitate 
both nursing and administrative procedures.

In conclusion, the strategies of real-time data collection, mining, and 
predictive modeling would enable the integration of the health monitor-
ing data elements with the EHRs to support the better applications by 
healthcare providers (Shameer et al., 2016). The combination of popula-
tion-scale biomedical and clinical data may allow for grouping patients for 
proactive health promotion and tracking the disease trajectories. These are 
critical elements in clinical decision making, wellness care, and personal-
ized medicine.
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CHAPTER FIVE

Applying Translational 
Bioinformatics for Biomarker 
Discovery
 

5.1  INTRODUCTION: CONCEPTS AND APPROACHES
5.1.1  The Basic Concepts and Types of Biomarkers

The discovery of biomarkers has become one of the major tasks in biomedi-
cal research. The identification of effective biomarkers has been suggested as 
one of the biggest challenges but also the essential factor for the successful 
rates of translational medicine (Wehling, 2008; Fu et al., 2010). In recent 
years, the finding of predictive and prognostic biomarkers has become one 
of the quickest developing areas.

An essential component of personalized medicine is useful biomarkers 
for quantified and more precise diagnosis and prognosis. They are also piv-
otal for discovering effective drug targets and choosing the optimal inter-
ventions. Biomarkers are objectively measured and assessed indicators of 
normal physiological activities, pathological conditions, as well as treatment 
responses (Yan, 2011). Biomarkers such as those involved in metabolomics 
can be tested in various samples including saliva, blood, and urine.

Biomarkers have been proven useful for the investigation of various ill-
nesses including cancer, cardiovascular diseases, neurological diseases, respi-
ratory diseases, and autoimmune diseases (Aich et al., 2009; Emerson et al., 
2009; Chia et al., 2008; Knudsen et al., 2008; Ozkisacik et al., 2006). For 
example, in atherosclerotic disease, the novel local plaque biomarkers were 
applied for supporting the prediction of adverse reactions, the classification 
of patient subgroups, and personalized choices for more effective interven-
tions (Hurks et al., 2009).

Biomarkers can be used to characterize the attributes of diseases. 
Dynamical biomarkers may describe the conditions of the disease during 
certain periods at specific time points. They may also be applied to track 
the stages and severities of diseases during their progression. In addition to 
diagnosis, prognosis, disease profiling, and classification, biomarkers can be 
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very useful for early disease detections for the prediction and prevention 
of disease risks. They may have pivotal roles in almost every step of transla-
tional medicine, from research design to drug discovery and development, 
from optimized treatment to outcome assessment.

Biomarkers have been grouped according to their applications 
(Biomarkers Definitions Working Group, 2001; Vasan, 2006; Markman and 
Tabernero, 2013). As summarized in Table 5.1, “antecedent biomarkers” are 
usually used to recognize the risks of disease development. The inexpensive 
“screening biomarkers” can be applied in the screening for subclinical dis-
orders and prediction with high sensitivity and specificity.

The tests for “diagnostic biomarkers” need to be easy to run in clinical 
practice to make them useful in the identification and diagnosis of illnesses. 
To describe and classify the severities of different illnesses, the “staging bio-
markers” can be used. To detect the disease recurrence and the therapeutic 
responses, and to predict the disease development and progression, “prog-
nostic biomarkers” can be used. With high sensitivity and specificity, these 
biomarkers may reflect intraindividual variations and clinical outcomes for 
the assessment of treatment efficacy.

Table 5.1 A Summary of Different Types of Biomarkers
Biomarker Application Types Applications and Features

Antecedent biomarkers Identification of the disease risks
As surrogate endpoints Prediction of the clinical benefits, outcomes, and 

therapeutic effectiveness
Diagnostic biomarkers Disease diagnosis and easy to run in the clinic
PD biomarkers Indications of drug effects, mechanisms of action 

(MOA), and optimal biologic dose (OBD)
Predictive biomarkers Prediction of the therapeutic efficacy for the 

selection of personalized treatment to avoid 
adverse events

Prognostic biomarkers Prediction of the disease progression and  
therapeutic responses with high sensitivity  
and specificity, highlighting intraindividual 
variations and clinical outcomes

Resistance biomarkers Identification of primary and acquired drug 
resistance

Screening biomarkers Screening for subclinical illnesses with high 
sensitivity and specificity, useful for prediction, 
usually inexpensive

Staging biomarkers For classifying the disease severity
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Certain biomarkers may serve as surrogate endpoints for the prediction 
of clinical advantages, outcomes, safety, and therapeutic effectiveness. These 
biomarkers can be identified based on epidemiological, treatment, patho-
physiological, or other clinical evidences. Their applications may replace 
the clinical endpoints. Here the clinical endpoints refer to the variables 
that manifest the feelings, functions, or outcomes of patients (Biomarkers 
Definitions Working Group, 2001).

In addition, “pharmacodynamic (PD) biomarkers” may represent the 
drug effects such as molecular and functional influences before and after 
an intervention to identify the changes from the baseline. They can be very 
useful for the examination of molecular and cellular effects, as well as the 
mechanisms of action (MOA) of the drugs. They may also be applied for the 
pharmacokinetics (PK)/PD modeling of dosages and schedules to achieve 
the optimal biologic dose (OBD).

For the practice of personalized medicine, the “predictive biomarkers” 
can be especially helpful to predict the therapeutic efficacy to improve 
the selection of individualized treatment, to reduce adverse reactions, and 
to accomplish the optimized results. The type of “resistance biomarkers” 
may be used to indicate both primary and acquired drug resistance (see 
Table 5.1).

5.1.2  Steps and Pipelines of Biomarker Discovery
For biomarker discovery, a series of steps may be applied (Chau et al., 2008; 
Vilar and Tabernero, 2013; Markman and Tabernero, 2013; Biomarkers 
Definitions Working Group, 2001). These steps include:
	•	 	discovery,
	•	 	qualification,
	•	 	verification,
	•	 	research	assay	optimization,
	•	 	clinical	validation,	and
	•	 	commercialization.

Specifically, the “qualification” step is an integrative process for mapping 
a biomarker to a biological state with the setup of a surrogate endpoint 
exhibiting the linkages between the last steps of the discovery and the veri-
fication steps. The “validation” steps emphasize the assay optimization and 
clinical validation. These steps may be used to assess the operations of a test 
for the optimal analytical processes to support the formation of precise and 
reproducible biomarkers for clinical utilizations.
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To support systems biology–based studies, different levels of biomark-
ers can be detected using different techniques (Markman and Tabernero, 
2013). For example, sequencing techniques, gene expression studies, and 
high-throughput (HTP) microarrays can be applied for biomarkers at the 
molecular level including DNAs and RNAs.

Proteomics, crystallography, and immunohistochemistry techniques 
can be used to detect proteins and peptides as biomarkers (Markman and 
Tabernero, 2013). Cytogenetics approaches can be used to examine chro-
mosomes. For the detection of physiological composite endpoints, imaging 
techniques can be applied including positron emission tomography (PET) 
scans and dynamic magnetic resonance imaging.

5.1.3  The Clinical Values of Biomarkers
To make biomarkers useful to be applied in clinical environments, some 
requirements need to be met including the reliability and measurability. 
Useful biomarkers should be specific and sensitive with predicative properties 
for the stratification of disease risks and classification of patient subgroups.

To support personalized and systems medicine (see Chapter 1), the iden-
tification of accurate and robust biomarkers is necessary for the early diag-
nosis and prognosis of complex diseases. Many factors can affect the clinical 
values of biomarkers (Vasan, 2006; Deeks and Altman, 2004), including:
	•	 	simplicity	of	analyses:	so	that	they	can	be	used	by	clinicians,
	•	 	sensitivity:	 the	 capacity	 of	 a	 test	 to	 identify	 specific	 conditions	when	

they are really existed,
	•	 	specificity:	 the	capacity	of	a	 test	 to	exclude	 the	 specific	conditions	 in	

those who do not have the illness,
	•	 	accuracy:	having	high	sensitivity	and	specificity	at	certain	cut	points,
	•	 	reproducibility:	the	assay	results	are	repeatable	and	reproducible,
	•	 	predictive	value:	the	capacity	of	a	test	for	the	prediction	of	the	true	posi-

tives or true negatives as expected,
	•	 	interpretative	capacity:	the	capacity	to	explain	the	clinical	outcomes,	and
	•	 	the	likelihood	ratio:	the	integration	of	information	about	the	sensitiv-

ity and specificity, and the indication of the influence of the positive or 
negative results on the likelihood of having the disease.
Furthermore, the properties of complexity in diseases usually cannot be 

fully represented by one single biomarker or a few isolated biomarkers. To 
elucidate the comprehensive dysfunctions in the regulatory pathways and 
networks, systems-based biomarkers identified using multiparameter exam-
inations are needed to assist more precise and effective diagnosis, prognosis, 
and interventions.
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5.2  CHALLENGES AND TRANSLATIONAL 
BIOINFORMATICS METHODS FOR BIOMARKER 
DISCOVERY

 As discussed earlier, biomarkers are critical for diagnosis, prognosis, 
disease profiling, drug discovery, and outcome assessment in personalized 
medicine. However, the pathological and treatment complexity as well as 
the dynamical changes in diseases make it very challenging to discover and 
validate useful biomarkers. Single and isolated biomolecules are insufficient 
to illustrate the composite biomedical functions as multiple interactions 
should be considered in the same disease phenotype (see Chapters 1 and 2).

Conventional approaches including symptom checklists have been inef-
fective for identifying appropriate biomarkers to characterize the multifac-
eted pathophysiological conditions, disease phases, and disease heterogeneity. 
Too much complexity and unknown may be the reasons for inefficient 
“trial-and-error” endeavors, time-consuming and high-cost experiments 
for identifying new drugs (Wierling et al., 2015).

For instance, although pathology type immunohistochemical markers 
are commonly utilized, their basic mechanisms and clinical indications are 
still unclear to be thoroughly applied in clinical pathology (Abu-Asab et al., 
2011). In addition to representing the usual properties of an illness, bio-
markers should also be able to discern the disease subtypes and the ranges 
of the disease heterogeneity.

To overcome the conceptual and practical obstacles in biomarker identi-
fication, systems biology methods incorporating translational bioinformatics 
and various “omics” strategies may help (see Chapter 3). Approaches such 
as data modeling may improve the systemic profiling of disease subtypes. As 
illustrated in Fig. 5.1, such approaches may address the complex factors at 
different systems levels from genetic polymorphisms to etiological diversi-
ties and environmental impacts (also see Chapters 2 and 7).

The systems biology-based biomarkers may be defined by focusing on the 
interactions among molecules, cells, tissues, organs, populations, and the micro- 
and macroenvironment (see Fig. 5.1). Biomarkers with dynamical features may 
help differentiate normal states from diseases during different phases and the 
divergences among individuals for patient classifications and subgroups.

Systems-based biomarkers may improve the selection and validation of 
drug targets and PD studies (Day et al., 2009). In addition to genetic bio-
markers, other indicators beyond the molecular level such as imaging mark-
ers should also be included to characterize the overall pathophysiological 
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conditions (Aich et al., 2009). Biomarkers based on cellular pathway-driven 
assessments have been suggested to be useful for monitoring disease activi-
ties such as those in cancer and cardiovascular disease (Azuaje et al., 2011).

Data integration is critical in biomarker discovery  (see Chapter 4). For 
example, in the integration and analyses of microRNA (miRNA) databases 
such as miRWalk (see Chapter 3) and using combinatorial target predic-
tion algorithms, some potential urinary exosomal miRNA biomarkers were 
identified for diabetic nephropathy (Eissa et al., 2016). The integrative bioin-
formatics methods have been found to be successful for detecting potential 
prognostic biomarkers for clear cell renal cell carcinoma. With the com-
prehensive pathway analysis, the modeling of interaction networks, and the 
integration of publicly available data sets including those from microRNA 
and protein expression profiles, three factors were revealed as possible bio-
markers including AHR, GRHL2, and KIAA0101 (Butz et al., 2014).

The applications of data integration have been proven to be very use-
ful for finding potential biomarkers for bortezomib resistance in multiple 
myeloma (Fall et al., 2014). The integration of large patient databases, the 
profiling of whole transcriptome, and the establishment of laboratory-based 

Figure 5.1 Biomarkers at different systems levels for systems and dynamical medicine.
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models may revolutionize the processes for identifying rational drug tar-
gets tracking therapeutic responses. By applying bioinformatics tools for the 
assessment of nuclear magnetic resonance (NMR) metabolomics, diagnostic, 
prognostic, and predictive biomarkers may be discovered for the translation 
into early preventions and interventions (Puchades-Carrasco et al., 2016).

Decision support in biomarker discovery is one of the key tasks in 
translational bioinformatics (Azuaje et al., 2011; also see Chapter 4). Such 
strategies would enable the integration and mining of large and diversified 
data sets for finding novel associations to improve the predictive repro-
ducibility. For instance, a translational bioinformatics method was applied 
to analyze data from formalin-fixed paraffin-embedded tissue microarrays 
(Sharaf et al., 2011). Correlations were identified among fatty acid–binding 
protein-1  (FABP-1), pancreatic adenocarcinoma (PaC), and PaC-associated 
diabetes. These newly identified correlations were suggested as potential 
useful biomarkers in gastroenterology.

In another example, parsimony phylogenetic analysis has been suggested 
appropriate for disease hierarchical classification (Abu-Asab et al., 2011). 
Using this method, the common expressions or mutations are defined in the 
term of “synapomorphies” to support biomarker discovery. A “synapomor-
phy” indicates a commonly derived property that may distinguish a certain 
group from other organisms. The data mining strategies such as parsimo-
nious clustering can be applied for constructing the “omics” profiles for 
further systems-based studies.

More importantly, the modeling of interacting components and com-
plex interrelationships would enable companion diagnostics and novel 
treatment strategies (Caberlotto and Lauria, 2015). Companion diagnostic 
methods may get information on the safety and effectiveness of treatment 
agents including drugs by applying medical devices.

In the cases of musculoskeletal disorders such as rheumatoid arthritis, 
the complex and multifactorial features may complicate patient-specific 
therapies (Gibson et al., 2015). These obstacles have led to low effective-
ness and failed therapeutic outcomes. Systems and dynamical biomarkers 
based on the integration of proteomics may help to tackle the difficulties 
by effective examinations of joint impairments, autoimmune status, and dis-
ease development. Strategies of “companion diagnostics” may be helpful for 
promoting such biomarker discovery, drug selections, and treatment results. 
Such assessments can be used as powerful decision support approaches for 
individualized interventions.
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5.3  FINDING ROBUST BIOMARKERS FOR SYSTEMS 
AND DYNAMICAL MEDICINE

 Translational bioinformatics and systems biology methods such as 
supervised machine learning and HTP data mining can be especially useful 
for the discovery of robust biomarkers in complex diseases such as the host–
pathogen interaction networks (Dix et al., 2016). By viewing the complex 
systems as a whole, the identification of putative biomarkers would be possible 
for multidimensional diagnosis and therapeutic decision support (see Chapters 
2 and 4). The network modeling would help to identify putative drug targets.

More accurate and robust biomarkers may be useful for addressing 
multiple factors in systems and dynamical medicine. These factors include 
genomic and epigenetic variations, functional changes, the structure– 
function and genotype–phenotype correlations across spatial levels, the eti-
ologic diversity across temporal scales, and environmental effects (Filiou and 
Turck, 2011; also see Fig. 5.1). Specifically, the alterations at the cellular lev-
els may be assessed quantitatively via high content phenotypic tests includ-
ing the profiling of altered transcriptome or proteome in the whole cell 
(Dunn et al., 2010). The establishment of the profiles of molecules, peptides, 
polynucleotides, and pathways may help to identify the perturbing factors 
as the systems-based biomarkers.

Biomarkers based on predictive modeling may represent both spatial 
status and temporal phases of illnesses (see Chapter 7). For example, bio-
markers highlighting the temporal evolving processes may promote the 
understanding of the occurrence and development of the clinical manifes-
tations in Alzheimer’s disease (Jack et al., 2013). According to the dynamical 
models, the temporal factors rather than the symptom severities are more 
suitable for indicating the disease development among different patients.

The HTP technologies have been proven useful for the dynamical exami-
nations and across-scale assessments about the systems-based genotype–pheno-
type correlations with time-series tests (Chen et al., 2012). As the deteriorations 
in complex diseases usually happen suddenly at a tipping point featuring an 
imminent bifurcation, early warning signs need to be detected at this pivotal 
point. The genome-wide expression profiling based on such approaches may 
reveal disease onset and progression for defining the next-generation biomark-
ers (Wang et al., 2013). The strategies such as the “virtual patient” models may 
emphasize the comprehensive interactions with the virtualization of potential 
drug targets for personalized medicine (Wierling et al., 2015).
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Specifically, the dynamical network biomarkers (DNBs) can be identi-
fied from the HTP gene expression data (Chen et al., 2012). The tissue- 
specific molecules in the DNBs can be assessed from the normal status to the 
disease condition within the whole organism (Li et al., 2014). Such strate-
gies would improve early diagnosis and more precise prognosis. Dynamical 
methods such as the modeling of clonal evolution of biomarkers may pro-
vide immediate detection of cancers for better clinical management (Li 
et al., 2011). A series of robust biomarkers would promote the prediction of 
cancer development with the stratification of patient subgroups for timely 
and individualized treatment.

Such dynamical approaches can address the deep impacts of the tem-
poral factors on the human organs including both structural and functional 
interactions (Pantelis et al., 2005; Rapoport et al., 2005; Iris, 2008). At the 
molecular level, gene expression alterations are associated with the func-
tional evolutions over time such as the aging processes (Pearce et al., 2007; 
Shames et al., 2007; also see Chapter 12). These spatiotemporal alterations 
are influential in all of the human systems especially the central nervous 
system (Shen et al., 2006; Popesco et al., 2007; Iris, 2008).

In summary, robust biomarkers may help to identify such dynamical and 
complex alterations because the functional status at one time point may be 
distinct from another time point. For instance, the elucidation of network 
dynamics may be the key in the studies of prion disease and drug-induced 
liver injury (Wang et al., 2010). Methods such as in vitro experimental per-
turbation and systems biology modeling may help to explore the conditions 
of the complex networks. New and more effective drug targets can be iden-
tified for the management of these dynamical conditions to prevent disease 
development. These strategies may promote the development of systems 
and dynamical medicine.
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CHAPTER SIX

Biomarkers From Systems Biology 
and “Omics” Studies: Applications 
and Examples
 

6.1  PROTEOMIC AND METABOLOMIC PATHWAYS AND 
BIOMARKERS

 Proteomics and metabolomics studies are essential in systems biology 
(see Chapter 3). The analyses of data from these studies may promote the 
accuracy, sensitivity, and throughput for biomarker identification because 
the proteome represents the functional actors in a cell. The integrative anal-
yses at the proteome level may contribute to the systemic profiling to sup-
port the systems-based discovery of biomarkers (Pitteri and Hanash, 2010).

For instance, gender-specific cytokine pathways have been identified as 
the potential biomarkers and drug targets for individualized cancer ther-
apy (Berghella et al., 2016; also see Chapter 11). Such biomarkers may be 
applied for stratifying the patients for adjuvant therapies during the early 
stages of cancer as well as those subgroups during the advanced pathological 
stages. The interrelationships among the cytokine pathways associated with 
the disease progression have been proposed for personalized interventions 
for cancers.

High-throughput (HTP) technologies such as protein microarrays can 
be useful for proteomic studies to support translational medicine with the 
integration of scientific studies and bedside practice. Different kinds of pro-
tein microarrays can be utilized for the examinations of smaller peptides, 
antibodies, and the whole proteomes (Tu et al., 2014). Such integrative 
approaches may enable the parallel assessments for the large-scale evalua-
tions of the complex protein–protein–drug interactions and antigen–anti-
body interactions. As an example, such strategies were proven useful for the 
finding of systems-grounded biomarkers based on the profiling of live cell 
surface glycan (Tu et al., 2014).

Different activations of signaling pathways associated with various cell 
actions have been suggested as mechanism-based robust biomarkers for the 
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establishment of predictive frameworks about drug sensitivities (Amadoz et al., 
2015). In the case of cancer, various cell lines can be utilized as the model system 
for identifying proteomic biomarkers. For instance, the profiling of plasma pro-
teomes has been suggested to improve the detection of the protein alterations 
between normal and breast cancer tissues (Zhang and Chen, 2010). Such com-
parisons and tracking of alterations at the proteomic levels may be especially 
helpful for identifying systems-based robust biomarkers (see Chapters 5 and 11).

Various translational bioinformatics methods can be applied for the 
identification and validation of biomarkers, including the statistics and per-
mutation approaches, pathway and functional modeling, and cross-valida-
tion of multiple analyses (see Chapter 5). For instance, data mining of the 
proteomics data set from the plasma samples of breast cancer patients and 
healthy controls successfully identified 254 abnormally expressed proteins 
(Zhang and Chen, 2010). The combination of bioinformatics and experi-
mental tests showed 25 proteins and their associated pathways as the poten-
tial biomarkers, such as those related to coagulation cascades and actin 
cytoskeleton. Using gene ontology annotations, correlations have also been 
confirmed with metabolic mechanisms, proteolysis, and acute inflamma-
tion. Moreover, the cross-validation indicated strong connections in the 
pathway–protein matrix. In the following section, some examples of the 
pathways as potential biomarkers will be discussed.

6.2  PATHWAYS AS POTENTIAL BIOMARKERS: 
EXAMPLES

 Table 6.1 shows some examples of the potential pathway-based bio-
markers for various diseases. A more complete and updated list can be found 
at the site of Biomarkers and Systems Medicine (BSM, 2016). For example, 
the nuclear factor kappa B (NF-κB) signaling pathway has critical roles in 
many diseases such as age-associated diseases and AIDS-associated Burkitt 
lymphoma (Balistreri et al., 2013; Ramos et al., 2012). As the potential bio-
marker, NF-κB signaling pathway activators have been suggested as the 
therapeutic targets for aging and age-associated diseases.

The phosphoinositide 3-kinase (PI3K) pathway has been related to 
head and neck squamous cell carcinoma (HNSCC), breast cancer, prostate 
cancer, and pediatric ependymoma (Lui et al., 2013; Kremer et al., 2006; 
Rogers et al., 2013) (see Table 6.1). The PI3K/AKT/mTOR pathways may 
have significant roles for breast cancer targets and biomarkers (Paplomata 
and O’Regan, 2014).
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Table 6.1 Examples of Potential Pathway Biomarkers in Various Diseases
Potential Biomarkers Associated Diseases References

EGFR pathways CRC Pierobon et al. (2009)
Glial tumors Comincini et al. (2009)
Localized squamous laryngeal 

carcinoma
Dionysopoulos et al. 

(2013)
Pancreatic cancer Boeck et al. (2013)
Skin rash in metastatic breast 

cancer treated with erlotinib
Tan et al. (2008)

Synovial sarcoma Teng et al. (2011)
IGF signaling 

pathways
Human sarcomas treatment Lin et al. (2013)
Invasive breast cancer Lawlor et al. (2009)
Metastatic breast cancer treated 

with cetuximab
Huang et al. (2012)

NSCLC Shersher et al. (2011)
mTOR signaling 

pathways
ccRCC; nonmetastatic kidney 

cancer
Darwish et al. (2013)

HNSCC Clark et al. (2010)
Renal cell carcinoma, after 

radical nephrectomy
Nishikawa et al. (2014)

NF-κB signaling path-
ways and activators

Aging and age-associated 
diseases

Balistreri et al. (2013)

AIDS-associated BL Ramos et al. (2012)
Diffuse large B-cell lymphoma Thompson et al. (2011)

PI3K/AKT/mTOR 
pathways

HNSCC Lui et al. (2013)
Pediatric ependymoma Rogers et al. (2013)
Prostate cancer Kremer et al. (2006)

TNF pathways Depression, SSRI treatment 
responses

Powell et al. (2013)

WNT/β-catenin 
pathways

Advanced epithelial ovarian 
cancer

Bodnar et al. (2014)

Cellular replicative senescence Binet et al. (2009)
CRC Ting et al. (2013)
Epithelial ovarian cancer Dai et al. (2011)
Glioblastoma (brain tumor) Zhu et al. (2013)
IBD-associated colorectal 

carcinogenesis
Claessen et al. (2010)

Juvenile nasopharyngeal 
angiofibroma

Ponti et al. (2008)

BL, Burkitt lymphoma; ccRCC, clear cell renal cell carcinoma; CRC, colorectal cancer; EGFR, epi-
dermal growth factor receptor; HNSCC, head and neck squamous cell carcinoma; IBD, inflammatory 
bowel disease; IGF, insulin-like growth factor; mTOR, mammalian target of rapamycin; NSCLC, non–
small cell lung cancer; PI3K, phosphoinositide 3-kinase; SSRI, selective serotonin reuptake inhibitor; 
TNF, tumor necrosis factor.
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The mammalian target of rapamycin (mTOR) pathways have been asso-
ciated with clear cell renal cell carcinoma (RCC) and HNSCC (Darwish 
et al., 2013; Clark et al., 2010). They have been suggested as the potential 
biomarkers for the prediction of disease recurrence after radical nephrec-
tomy for nonmetastatic RCC, as well as for diagnosis and therapeutic 
responses of lung cancer (Darwish et al., 2013; Nishikawa et al., 2014) (see 
Table 6.1).

The insulin-like growth factor (IGF) signaling pathway may be the 
potential biomarkers for human sarcomas treatment (Lin et al., 2013). The 
IGF signaling and the plasminogen activating system may be the poten-
tial prognostic and predictive biomarkers for invasive breast cancer (Lawlor 
et al., 2009). The HTP proteomics profiling of secretomes may be helpful 
for such identification. This pathway may also be used for the detection of 
tumor progression and analysis of patient outcomes in non–small cell lung 
cancer (NSCLC) (Shersher et al., 2011) (see Table 6.1).

Genes associated with the epidermal growth factor receptor (EGFR) 
pathway have been suggested as the potential biomarkers for the differential 
diagnosis of high-grade gliomas and the prognosis of NSCLC and synovial 
sarcoma (Comincini et al., 2009; Teng et al., 2011). The EGFR pathway has 
also been proposed to be the potential prognostic or predictive biomarkers 
for pancreatic cancer (Boeck et al., 2013) (see Table 6.1).

In addition, members of the EGFR and COX2 signaling pathways may 
be the potential prognostic biomarkers for the prediction of occult metasta-
sis in colorectal cancer (Pierobon et al., 2009). Multiple pathways including 
EGFR, cyclin D1, and Akt/mTOR pathways may be the potential prog-
nostic markers for localized squamous laryngeal carcinoma (Dionysopoulos 
et al., 2013) (see Table 6.1).

Genes associated with the WNT pathway, angiogenetic and hormonal 
factors have been associated with juvenile nasopharyngeal angiofibroma 
(Ponti et al., 2008). The DNA methylation at promoter CpG islands associ-
ated with the WNT pathway has been suggested as the potential predictive 
biomarkers of patient progression-free survival in epithelial ovarian cancer 
(EOC) (Dai et al., 2011).

The WNT/β-catenin pathway and E-cadherin have also been related 
to advanced epithelial ovarian cancer (AEOC) and inflammatory bowel 
disease (IBD)–associated colorectal carcinogenesis as a potential prognos-
tic biomarker (Bodnar et al., 2014; Claessen et al., 2010). The moesin and 
CD44 have important roles in the activation of the WNT/β-catenin path-
way. They have been suggested as the potential progression biomarkers for 
glioblastoma (brain tumor) (Zhu et al., 2013) (see Table 6.1). WNT16B may 
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regulate p53 and the PI3K/AKT pathway activity and has been suggested 
as a biomarker for the cellular replicative senescence (Binet et al., 2009) (see 
Table 6.1).

The tumor necrosis factor (TNF) and targets in the inflammatory cyto-
kine pathway have been associated with depression and the responses to the 
selective serotonin reuptake inhibitor (SSRI) antidepressant escitalopram. 
They have been suggested as the potential predictive biomarkers for the 
treatment responses (Powell et al., 2013) (see Table 6.1).

6.3  POTENTIAL MICRORNA BIOMARKERS AND 
EXAMPLES

 In addition to proteomic and pathway biomarkers, extracellular 
microRNAs (miRNAs) have been suggested as promising biomarkers. For 
instance, the application of miRNAs as the noninvasive detector and bio-
markers for disease progression and treatment responses was considered use-
ful for Duchenne muscular dystrophy (Roberts et al., 2013). The profiling 
of serum miRNAs and the extracellular miRNA markers may represent the 
dose-responsive restoration following dystrophin rescue.

Furthermore, the dynamical expression patterns were detected in extra-
cellular dystrophy-associated miRNAs (dystromiRs) that may character-
ize the progression of muscle pathology. The serum dystromiR levels were 
related to experimentally induced skeletal muscle injury, the expression of 
the myogenic miR-206, as well as the myogenic transcription factor myo-
genin (Roberts et al., 2013). These examinations have demonstrated that 
extracellular miRNAs may be used as dynamical biomarkers for the regen-
erative conditions of the musculature to support the exploration of patho-
physiological mechanisms in skeletal muscles.

Table 6.2 lists some examples of miRNAs as the potential biomarkers for 
various diseases. A more complete and updated list can be found at the site 
of Biomarkers and Systems Medicine (BSM, 2016). For instance, the upreg-
ulation of miR-494, miR-1973, and miR-21 may be the potential disease 
response biomarkers for classical Hodgkin lymphoma (Jones et al., 2014). 
Keratin-18 and miRNA-122 complement alanine aminotransferase have 
been suggested as the predictive and safety biomarkers for drug-induced 
liver injury (Thulin et al., 2014) (see Table 6.2).

In addition, miR-31, miR-206, miR-424, and miR-146a may be the 
potential diagnostic biomarkers for IBD (Lin et al., 2014). MiR-21, miR-
106b, miR-17, miR-18a, and miR-20a may be the potential diagnostic and/
or prognostic biomarkers for gastric cancer (Wang et al., 2013). Upregulated 
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members of the miR-200 family and the downregulation of miR-100 may 
be used as the potential biomarkers for the early diagnosis of EOC (Chen 
et al., 2013) (see Table 6.2).

As shown in these examples, multiple miRNAs and associated networks 
are usually found useful as potential biomarkers. For instance, the serum 
miRNA profiles including miR-17, miR-18a, and miR-20a as well as the 
key regulatory genes of cell proliferation, apoptosis, and regulatory net-
works may be the possible diagnostic biomarkers for retinoblastoma (Beta 
et al., 2013) (see Table 6.2).

Urinary miRNAs, miR-618 and miR-650, have been considered prom-
ising as the screening biomarkers for the early detection of hepatitis C virus 
(HCV)–associated hepatocellular carcinoma (Abdalla and Haj-Ahmad, 
2012). Higher levels of the serum-based miR-1254 and miR-574-5p may 
be used as the potential biomarkers for the early diagnosis of NSCLC (Foss 
et al., 2011) (see Table 6.2).

The combinations of different molecules may be especially helpful. 
For example, a panel of 10 protein-coding genes and two miRNA genes 
including CCNG2, NOTCH3, miR-519d, and miR-647 were suggested as 
the potential prognostic biomarkers for the biochemical recurrence among 
prostate cancer patients after radical prostatectomy. They have been found 
useful for differentiating patients with and without biochemical recurrence 
(Long et al., 2011) (see Table 6.2).

6.4  DYNAMICAL CIRCADIAN BIOMARKERS AND 
CHRONOTHERAPY

 As discussed previously, biomarkers may have broad and significant 
impacts on the translation of the pathological studies into clinical practice. 
The discovery of specific dynamical biomarkers may not only enable the 
classification of patients into different clinical and therapeutic subgroups but 
also help with precise diagnosis, prevention, and therapies during different 
stages of diseases (see Chapters 1, 2, and 9–12). To meet these objectives, it is 
essential to find biomarkers that represent disease progress and evolvement 
timely to be used for drug target discovery and the prediction of disease 
states and treatment responses.

Table 6.3 shows some examples of potential biomarkers associated 
with temporal changes. A more complete and updated list can be found at 
the site of Biomarkers and Systems Medicine (BSM, 2016). For example, 
circadian patterns have been identified in the salivary levels of melatonin 
and cortisol. The daily profiles of melatonin and cortisol have been related 
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Table 6.2 Examples of Potential miRNA Biomarkers in Various Diseases
Associated Diseases Potential Biomarkers References

Blood stasis syndrome 
in unstable angina

MiR-146b-5p, miR-199a-5p, 
CALR, and TP53

Wang and Yu (2013)

Classical Hodgkin 
lymphoma

MiR-494, miR-1973 and 
miR-21

Jones et al. (2014)

Chronic lymphocytic 
leukemia

Circulating miR-20a Moussay et al. (2011)

Drug-induced liver 
injury

M65 and microRNA-122 Thulin et al. (2014)

Eosinophilic 
esophagitis

Esophageal miRNAs miR-146a, 
miR-146b, and miR-223

Lu et al. (2012)

Epithelial ovarian 
cancer

MiR-200a, miR-200b, miR-
200c, and miR-141; miR-100

Chen et al. (2013)

Gastric cancer MiR-21, miR-106b, miR-17, 
miR-18a and miR-20a

Wang et al. (2013)

Hepatitis C virus–
associated HCC

MiR-618, miR-650 Abdalla and Haj-
Ahmad (2012)

HCCs, surgically 
resected

MicroRNA-221, 
microRNA-222, 
microRNA-21, and 
microRNA-155

Yoon et al. (2011)

Inflammatory bowel 
disease (ulcerative 
colitis, Crohn’s 
disease)

MiR-31, miR-206, miR-424, 
and miR-146a

Lin et al. (2014)

Diffuse large B-cell 
lymphoma

MiR-24 Culpin et al. (2013)

Lung cancer, malig-
nant solitary pul-
monary nodules

MiR-21 and miR-210, 
miR-486-5p

Shen et al. (2011)

Multiple sclerosis Let-7g and miR-150 Martinelli-Boneschi 
et al. (2012)

NSCLC Serum-based miR-1254 and 
miR-574-5p

Foss et al. (2011)

Ovarian cancer Serum miR-132, miR-26a, let-
7b, and miR-145

Chung et al. (2013)

Primary breast cancer MiR-92a and miR-21 Si et al. (2013)
Prostate cancer 10 protein-coding genes and 2 

miRNA genes (RAD23B, 
FBP1, TNFRSF1A, CCNG2, 
NOTCH3, ETV1, BID, SIM2, 
LETMD1, ANXA1, miR-
519d, and miR-647)

Long et al. (2011)

Retinoblastoma MiR-17, miR-18a, miR-20a, 
and regulatory genes of cell 
proliferation, apoptosis

Beta et al. (2013)

HCC, hepatocellular carcinoma; NSCLC, Non–small cell lung cancer.



Translational Bioinformatics and Systems Biology Methods for Personalized Medicine74

to metabolic syndrome components. The altered patterns may be used as 
the potential biomarkers for the metabolic and homeostatic disturbances 
in blood pressure, glucose, and plasma lipids regulations (Corbalán-Tutau 
et al., 2014).

The diurnal serum levels of cortisol and inflammatory markers such as 
soluble TNF-β and soluble vascular adhesion molecule-1 (sVCAM-1) have 
been associated with multiple sclerosis (MS). The circadian patterns of the 
relevant inflammatory serum parameters have been suggested as the poten-
tial biomarkers for patients with MS (Wipfler et al., 2013) (see Table 6.3).

In addition, abnormal quantitative and qualitative circadian patterns and 
circadian genes have been detected using various methods such as polysom-
nography and blood melatonin monitoring. These circadian patterns may 
indicate the trait and altered physiological functions. They may be applied 
as the potential dynamical biomarkers for bipolar disorders (Milhiet et al., 
2011) (see Table 6.3).

Studies in chronobiology have discovered that genes involved in cir-
cadian rhythms are the critical components of the pathways related to cell 
proliferation, cell cycles, and apoptosis (Zhu et al., 2005). The alterations in 
circadian genes may lead to tumorigenesis and cancer development, such 
as neuronal PAS domain protein 2 (NPAS2) (Yi et al., 2010). A missense 
polymorphism in NPAS2 (Ala394Thr) may be involved in the higher risks 
of tumors such as breast cancer (see Table 6.3). These factors have been sug-
gested as possible prognostic biomarkers. In another example, the structural 
variations in the circadian gene Period3 (PER3) have been considered as 
the potential biomarkers for breast cancer among young women (Zhu et al., 
2005; also see Table 6.3).

The skin surface temperature rhythms have been proposed as the prom-
ising circadian biomarkers for personalized chronotherapeutics among 
cancer patients (Scully et al., 2011). The timing of anticancer medica-
tion administration based on the circadian rhythms has been proven to 
promote the treatment tolerability up to fivefold and double the treat-
ment efficacy (see Table 6.3). Multiple skin temperature locations may be 
necessary to decide the accurate circadian stage and the individualized 
chronotherapeutic plans.



Biomarkers From Systems Biology and “Omics” Studies 75

REFERENCES
Abdalla, M.A., Haj-Ahmad, Y., 2012. Promising candidate urinary microRNA biomarkers 

for the early detection of hepatocellular carcinoma among high-risk hepatitis C virus 
Egyptian patients. J. Cancer 3, 19–31.

Amadoz, A., Sebastian-Leon, P., Vidal, E., Salavert, F., Dopazo, J., 2015. Using activation status 
of signaling pathways as mechanism-based biomarkers to predict drug sensitivity. Sci. 
Rep. 5, 18494.

Balistreri, C.R., Candore, G., Accardi, G., Colonna-Romano, G., Lio, D., 2013. NF-κB path-
way activators as potential ageing biomarkers: targets for new therapeutic strategies. 
Immun. Ageing 10, 24.

Berghella, A.M., Contasta, I., Lattanzio, R., Di Gregorio, G., Campitelli, I., Marino, S., 
Liberatore, L.L., Navarra, L., Caterino, G., Mongelli, A., et al., 2016. The role of gender-
specific cytokine pathways as drug targets and gender-specific biomarkers in personal-
ized cancer therapy. Curr. Drug Targets.

Beta, M., Venkatesan, N., Vasudevan, M., Vetrivel, U., Khetan, V., Krishnakumar, S., 2013. 
Identification and insilico analysis of retinoblastoma serum microRNA profile and gene 
targets towards prediction of novel serum biomarkers. Bioinform. Biol. Insights 7, 21–34.

Binet, R., Ythier, D., Robles, A.I., Collado, M., Larrieu, D., Fonti, C., Brambilla, E., Brambilla, 
C., Serrano, M., Harris, C.C., et al., 2009. WNT16B is a new marker of cellular senes-
cence that regulates p53 activity and the phosphoinositide 3-kinase/AKT pathway. 
Cancer Res. 69, 9183–9191.

Bodnar, L., Stanczak, A., Cierniak, S., Smoter, M., Cichowicz, M., Kozlowski, W., Szczylik, C., 
Wieczorek, M., Lamparska-Przybysz, M., 2014. Wnt/β-catenin pathway as a potential 
prognostic and predictive marker in patients with advanced ovarian cancer. J. Ovarian 
Res. 7, 16.

Table 6.3 Examples of Potential Dynamical Biomarkers in Various Diseases
Associated Diseases/
Conditions Potential Biomarkers References

Bipolar disorders Circadian disturbances and 
abnormal blood melato-
nin levels; circadian genes

Milhiet et al. (2011)

Breast cancer NPAS2 and other circadian 
genes; a polymorphism 
in NPAS2 (Ala394Thr)

Yi et al. (2010)

Breast cancer in young 
women

PER3 structural variations Zhu et al. (2005)

Cancer; personalized 
chronotherapeutics

Skin surface temperature 
rhythms

Scully et al. (2011)

Metabolic syndrome 
including disturbances in 
blood pressure, glucose, 
and lipid regulations

Salivary melatonin and cor-
tisol circadian patterns

Corbalán-Tutau et al. 
(2014)

Multiple sclerosis Diurnal patterns in cortisol 
and inflammatory mark-
ers including sTNF-β, 
sTNF-R1, sTNF-2, 
sVCAM-1, sICAM-1

Wipfler et al. (2013)



Translational Bioinformatics and Systems Biology Methods for Personalized Medicine76

Boeck, S., Jung, A., Laubender, R.P., Neumann, J., Egg, R., Goritschan, C., Vehling-Kaiser, 
U., Winkelmann, C., Fischer von Weikersthal, L., Clemens, M.R., et al., 2013. EGFR 
pathway biomarkers in erlotinib-treated patients with advanced pancreatic cancer: trans-
lational results from the randomised, crossover phase 3 trial AIO-PK0104. Br. J. Cancer 
108, 469–476.

BSM, 2016. Biomarkers and Systems Medicine. http://pharmtao.com/health/category/
systems-medicine/biomarkers-systems-medicine.

Chen, Y., Zhang, L., Hao, Q., 2013. Candidate microRNA biomarkers in human epithelial 
ovarian cancer: systematic review profiling studies and experimental validation. Cancer 
Cell Int. 13, 86.

Chung, Y.-W., Bae, H.-S., Song, J.-Y., Lee, J.K., Lee, N.W., Kim, T., Lee, K., 2013. Detection 
of microRNA as novel biomarkers of epithelial ovarian cancer from the serum of ovar-
ian cancer patients. Int. J. Gynecol. Cancer 23, 673–679.

Claessen, M.M.H., Schipper, M.E.I., Oldenburg, B., Siersema, P.D., Offerhaus, G.J.A., 
Vleggaar, F.P., 2010. WNT-pathway activation in IBD-associated colorectal carcinogen-
esis: potential biomarkers for colonic surveillance. Cell. Oncol. 32, 303–310.

Clark, C., Shah, S., Herman-Ferdinandez, L., Ekshyyan, O., Abreo, F., Rong, X., McLarty, 
J., Lurie, A., Milligan, E.J., Nathan, C.-A.O., 2010. Teasing out the best molecular 
marker in the AKT/mTOR pathway in head and neck squamous cell cancer patients. 
Laryngoscope 120, 1159–1165.

Comincini, S., Paolillo, M., Barbieri, G., Palumbo, S., Sbalchiero, E., Azzalin, A., Russo, M.A., 
Schinelli, S., 2009. Gene expression analysis of an EGFR indirectly related pathway 
identified PTEN and MMP9 as reliable diagnostic markers for human glial tumor speci-
mens. J. Biomed. Biotechnol. 2009, 924565.

Corbalán-Tutau, D., Madrid, J.A., Nicolás, F., Garaulet, M., 2014. Daily profile in two circa-
dian markers “melatonin and cortisol” and associations with metabolic syndrome com-
ponents. Physiol. Behav. 123, 231–235.

Culpin, R.E., Sieniawski, M., Proctor, S.J., Menon, G., Mainou-Fowler, T., 2013. MicroRNAs 
are suitable for assessment as biomarkers from formalin-fixed paraffin-embedded tissue, 
and miR-24 represents an appropriate reference microRNA for diffuse large B-cell 
lymphoma studies. J. Clin. Pathol. 66, 249–252.

Dai, W., Teodoridis, J.M., Zeller, C., Graham, J., Hersey, J., Flanagan, J.M., Stronach, E., Millan, 
D.W., Siddiqui, N., Paul, J., et al., 2011. Systematic CpG islands methylation profiling of 
genes in the wnt pathway in epithelial ovarian cancer identifies biomarkers of progres-
sion-free survival. Clin. Cancer Res. 17, 4052–4062.

Darwish, O.M., Kapur, P., Youssef, R.F., Bagrodia, A., Belsante, M., Alhalabi, F., Sagalowsky, 
A.I., Lotan, Y., Margulis, V., 2013. Cumulative number of altered biomarkers in mam-
malian target of rapamycin pathway is an independent predictor of outcome in patients 
with clear cell renal cell carcinoma. Urology 81, 581–586.

Dionysopoulos, D., Pavlakis, K., Kotoula, V., Fountzilas, E., Markou, K., Karasmanis, I., 
Angouridakis, N., Nikolaou, A., Kalogeras, K.T., Fountzilas, G., 2013. Cyclin D1, EGFR, 
and Akt/mTOR pathway. Potential prognostic markers in localized laryngeal squamous 
cell carcinoma. Strahlenther. Onkol. 189, 202–214.

Foss, K.M., Sima, C., Ugolini, D., Neri, M., Allen, K.E., Weiss, G.J., 2011. miR-1254 and 
miR-574-5p: serum-based microRNA biomarkers for early-stage non-small cell lung 
cancer. J. Thorac. Oncol. 6, 482–488.

Huang, F., Xu, L.-A., Khambata-Ford, S., 2012. Correlation between gene expression of 
IGF-1R pathway markers and cetuximab benefit in metastatic colorectal cancer. Clin. 
Cancer Res. 18, 1156–1166.

Jones, K., Nourse, J.P., Keane, C., Bhatnagar, A., Gandhi, M.K., 2014. Plasma microRNA 
are disease response biomarkers in classical Hodgkin lymphoma. Clin. Cancer Res. 20, 
253–264.

http://pharmtao.com/health/category/systems-medicine/biomarkers-systems-medicine
http://pharmtao.com/health/category/systems-medicine/biomarkers-systems-medicine


Biomarkers From Systems Biology and “Omics” Studies 77

Kremer, C.L., Klein, R.R., Mendelson, J., Browne, W., Samadzedeh, L.K., Vanpatten, K., 
Highstrom, L., Pestano, G.A., Nagle, R.B., 2006. Expression of mTOR signaling path-
way markers in prostate cancer progression. The Prostate 66, 1203–1212.

Lawlor, K., Nazarian, A., Lacomis, L., Tempst, P., Villanueva, J., 2009. Pathway-based bio-
marker search by high-throughput proteomics profiling of secretomes. J. Proteome Res. 
8, 1489–1503.

Lin, F., Shen, Z., Xu, X., Hu, B.-B., Meerani, S., Tang, L.-N., Zheng, S.-E., Sun, Y.-J., Min, 
D.-L., Yao, Y., 2013. Evaluation of the expression and role of IGF pathway biomarkers in 
human sarcomas. Int. J. Immunopathol. Pharmacol. 26, 169–177.

Lin, J., Welker, N.C., Zhao, Z., Li, Y., Zhang, J., Reuss, S.A., Zhang, X., Lee, H., Liu, Y., 
Bronner, M.P., 2014. Novel specific microRNA biomarkers in idiopathic inflammatory 
bowel disease unrelated to disease activity. Mod. Pathol. 27, 602–608.

Long, Q., Johnson, B.A., Osunkoya, A.O., Lai, Y.-H., Zhou, W., Abramovitz, M., Xia, M., 
Bouzyk, M.B., Nam, R.K., Sugar, L., et al., 2011. Protein-coding and microRNA bio-
markers of recurrence of prostate cancer following radical prostatectomy. Am. J. Pathol. 
 179, 46–54.

Lu, T.X., Sherrill, J.D., Wen, T., Plassard, A.J., Besse, J.A., Abonia, J.P., Franciosi, J.P., Putnam, 
P.E., Eby, M., Martin, L.J., et al., 2012. MicroRNA signature in patients with eosino-
philic esophagitis, reversibility with glucocorticoids, and assessment as disease biomark-
ers. J. Allergy Clin. Immunol. 129, 1064–1075 e9.

Lui, V.W.Y., Hedberg, M.L., Li, H., Vangara, B.S., Pendleton, K., Zeng, Y., Lu, Y., Zhang, Q., 
Du, Y., Gilbert, B.R., et al., 2013. Frequent mutation of the PI3K pathway in head and 
neck cancer defines predictive biomarkers. Cancer Discov. 3, 761–769.

Martinelli-Boneschi, F., Fenoglio, C., Brambilla, P., Sorosina, M., Giacalone, G., Esposito, 
F., Serpente, M., Cantoni, C., Ridolfi, E., Rodegher, M., et al., 2012. MicroRNA and 
mRNA expression profile screening in multiple sclerosis patients to unravel novel 
pathogenic steps and identify potential biomarkers. Neurosci. Lett. 508, 4–8.

Milhiet, V., Etain, B., Boudebesse, C., Bellivier, F., 2011. Circadian biomarkers, circadian genes 
and bipolar disorders. J. Physiol. Paris 105, 183–189.

Moussay, E., Wang, K., Cho, J.-H., van Moer, K., Pierson, S., Paggetti, J., Nazarov, P.V., Palissot, 
V., Hood, L.E., Berchem, G., et al., 2011. MicroRNA as biomarkers and regulators in 
B-cell chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. U. S. A. 108, 6573–6578.

Nishikawa, M., Miyake, H., Harada, K., Fujisawa, M., 2014. Expression of molecular markers 
associated with the mammalian target of rapamycin pathway in nonmetastatic renal cell 
carcinoma: effect on prognostic outcomes following radical nephrectomy. Urol. Oncol. 
32, 49 e15–e21.

Paplomata, E., O’Regan, R., 2014. The PI3K/AKT/mTOR pathway in breast cancer: tar-
gets, trials and biomarkers. Ther. Adv. Med. Oncol. 6, 154–166.

Pierobon, M., Calvert, V., Belluco, C., Garaci, E., Deng, J., Lise, M., Nitti, D., Mammano, E., 
De Marchi, F., Liotta, L., et al., 2009. Multiplexed cell signaling analysis of metastatic and 
nonmetastatic colorectal cancer reveals COX2-EGFR signaling activation as a potential 
prognostic pathway biomarker. Clin. Colorectal Cancer 8, 110–117.

Pitteri, S., Hanash, S., 2010. A systems approach to the proteomic identification of novel 
cancer biomarkers. Dis. Markers 28, 233–239.

Ponti, G., Losi, L., Pellacani, G., Rossi, G.B., Presutti, L., Mattioli, F., Villari, D., Wannesson, 
L., Alicandri Ciufelli, M., Izzo, P., et al., 2008. Wnt pathway, angiogenetic and hormonal 
markers in sporadic and familial adenomatous polyposis-associated juvenile nasopharyn-
geal angiofibromas (JNA). Appl. Immunohistochem. Mol. Morphol. 16, 173–178.

Powell, T.R., Schalkwyk, L.C., Heffernan, A.L., Breen, G., Lawrence, T., Price, T., Farmer, 
A.E., Aitchison, K.J., Craig, I.W., Danese, A., et al., 2013. Tumor necrosis factor and its 
targets in the inflammatory cytokine pathway are identified as putative transcriptomic 
biomarkers for escitalopram response. Eur. Neuropsychopharmacol. 23, 1105–1114.



Translational Bioinformatics and Systems Biology Methods for Personalized Medicine78

Ramos, J.-C., Sin, S.-H., Staudt, M.R., Roy, D., Vahrson, W., Dezube, B.J., Harrington, W., 
Dittmer, D.P., 2012. Nuclear factor kappa B pathway associated biomarkers in AIDS 
defining malignancies. Int. J. Cancer 130, 2728–2733.

Roberts, T.C., Godfrey, C., McClorey, G., Vader, P., Briggs, D., Gardiner, C., Aoki, Y., Sargent, I., 
Morgan, J.E., Wood, M.J., 2013. Extracellular microRNAs are dynamic non-vesicular bio-
markers of muscle turnover. Nucleic Acids Res. 41, 9500–9513.

Rogers, H.A., Mayne, C., Chapman, R.J., Kilday, J.-P., Coyle, B., Grundy, R.G., 2013. 
PI3K pathway activation provides a novel therapeutic target for pediatric ependy-
moma and is an independent marker of progression-free survival. Clin. Cancer Res. 19,  
6450–6460.

Scully, C.G., Karaboué, A., Liu, W.-M., Meyer, J., Innominato, P.F., Chon, K.H., Gorbach, 
A.M., Lévi, F., 2011. Skin surface temperature rhythms as potential circadian biomarkers 
for personalized chronotherapeutics in cancer patients. Interface Focus 1, 48–60.

Shen, J., Liu, Z., Todd, N.W., Zhang, H., Liao, J., Yu, L., Guarnera, M.A., Li, R., Cai, L., Zhan, 
M., et al., 2011. Diagnosis of lung cancer in individuals with solitary pulmonary nodules 
by plasma microRNA biomarkers. BMC Cancer 11, 374.

Shersher, D.D., Vercillo, M.S., Fhied, C., Basu, S., Rouhi, O., Mahon, B., Coon, J.S., Warren, 
W.H., Faber, L.P., Hong, E., et al., 2011. Biomarkers of the insulin-like growth fac-
tor pathway predict progression and outcome in lung cancer. Ann. Thorac. Surg. 92, 
1805–1811, discussion 1811.

Si, H., Sun, X., Chen, Y., Cao, Y., Chen, S., Wang, H., Hu, C., 2013. Circulating microRNA-
92a and microRNA-21 as novel minimally invasive biomarkers for primary breast can-
cer. J. Cancer Res. Clin. Oncol. 139, 223–229.

Tan, A.R., Steinberg, S.M., Parr, A.L., Nguyen, D., Yang, S.X., 2008. Markers in the epider-
mal growth factor receptor pathway and skin toxicity during erlotinib treatment. Ann. 
Oncol. 19, 185–190.

Teng, H.-W., Wang, H.-W., Chen, W.-M., Chao, T.-C., Hsieh, Y.-Y., Hsih, C.-H., Tzeng, 
C.-H., Chen, P.C.-H., Yen, C.-C., 2011. Prevalence and prognostic influence of 
genomic changes of EGFR pathway markers in synovial sarcoma. J. Surg. Oncol. 103,  
773–781.

Thompson, R.C., Herscovitch, M., Zhao, I., Ford, T.J., Gilmore, T.D., 2011. NF-kappaB 
down-regulates expression of the B-lymphoma marker CD10 through a miR-155/
PU.1 pathway. J. Biol. Chem. 286, 1675–1682.

Thulin, P., Nordahl, G., Gry, M., Yimer, G., Aklillu, E., Makonnen, E., Aderaye, G., Lindquist, 
L., Mattsson, C.M., Ekblom, B., et al., 2014. Keratin-18 and microRNA-122 comple-
ment alanine aminotransferase as novel safety biomarkers for drug-induced liver injury 
in two human cohorts. Liver Int. 34, 367–378.

Ting, W.-C., Chen, L.-M., Pao, J.-B., Yang, Y.-P., You, B.-J., Chang, T.-Y., Lan, Y.-H., 
Lee, H.-Z., Bao, B.-Y., 2013. Common genetic variants in Wnt signaling path-
way genes as potential prognostic biomarkers for colorectal cancer. PLoS One 8,  
e56196.

Tu, S., Jiang, H.W., Liu, C.X., Zhou, S.M., Tao, S.C., 2014. Protein microarrays for studies of 
drug mechanisms and biomarker discovery in the era of systems biology. Curr. Pharm. 
Des. 20, 49–55.

Wang, J., Yu, G., 2013. A systems biology approach to characterize biomarkers for blood stasis 
syndrome of unstable angina patients by integrating microRNA and messenger RNA 
expression profiling. Evid. Based Complement. Altern. Med. 2013, 510208.

Wang, J.-L., Hu, Y., Kong, X., Wang, Z.-H., Chen, H.-Y., Xu, J., Fang, J.-Y., 2013. Candidate 
microRNA biomarkers in human gastric cancer: a systematic review and validation 
study. PLoS One 8, e73683.

Wipfler, P., Heikkinen, A., Harrer, A., Pilz, G., Kunz, A., Golaszewski, S.M., Reuss, R., 
Oschmann, P., Kraus, J., 2013. Circadian rhythmicity of inflammatory serum parameters: a 
neglected issue in the search of biomarkers in multiple sclerosis. J. Neurol. 260, 221–227.



Biomarkers From Systems Biology and “Omics” Studies 79

Yi, C., Mu, L., de la Longrais, I.A.R., Sochirca, O., Arisio, R., Yu, H., Hoffman, A.E., Zhu, Y., 
Katsaro, D., 2010. The circadian gene NPAS2 is a novel prognostic biomarker for breast 
cancer. Breast Cancer Res. Treat. 120, 663–669.

Yoon, S.O., Chun, S.-M., Han, E.H., Choi, J., Jang, S.J., Koh, S.A., Hwang, S., Yu, E., 2011. 
Deregulated expression of microRNA-221 with the potential for prognostic biomarkers 
in surgically resected hepatocellular carcinoma. Hum. Pathol. 42, 1391–1400.

Zhang, F., Chen, J.Y., 2010. Discovery of pathway biomarkers from coupled proteomics and 
systems biology methods. BMC Genom. (Suppl. 2), S12.

Zhu, X., Morales, F.C., Agarwal, N.K., Dogruluk, T., Gagea, M., Georgescu, M.-
M., 2013. Moesin is a glioma progression marker that induces proliferation and 
Wnt/β-catenin pathway activation via interaction with CD44. Cancer Res. 73,  
1142–1155.

Zhu, Y., Brown, H.N., Zhang, Y., Stevens, R.G., Zheng, T., 2005. Period3 structural variation: 
a circadian biomarker associated with breast cancer in young women. Cancer Epidemiol. 
Biomark. Prev. 14, 268–270.



Translational Bioinformatics and Systems Biology Methods for Personalized Medicine
ISBN 978-0-12-804328-8
http://dx.doi.org/10.1016/B978-0-12-804328-8.00007-3 81

Copyright © 2017 Elsevier Inc.
All rights reserved.

CHAPTER SEVEN

Understanding Dynamical 
Diseases: Translational 
Bioinformatics Approaches
 

7.1  SPATIAL COMPLEXITY IN SYSTEMS BIOLOGY

 As discussed in Chapters 1 and 2, the translation of pharmacogenom-
ics and systems biology into personalized and systems medicine relies on 
the understanding of the complexity and dynamics in living systems. As 
illustrated in Fig. 7.1, such complexity can be dissected into the spatial and 
temporal dimensions to facilitate the translation. It is critical to examine and 
model the spatial dynamics at multiple length and time scales for under-
standing the complex biological systems and disease processes.

Considering the spatial dimension, the profiling for systems medicine 
should incorporate the information from different spatial levels includ-
ing molecular, cellular, organ, psychosocial, and environmental interactions 
(Klann and Koeppl, 2012). Data and information for such systemic pro-
files may come from dynamical and integrative explorations based on the 
detections in various levels including nanotechnology and high-throughput 
(HTP) studies, biochemistry and biophysics analyses, as well as imaging and 
physiological assessments.

To elucidate the complexity at the molecular level, emphasis can be put 
on not only the genetic variations and polymorphisms but also the pro-
tein–protein interactions, as well as the real-time expression profiles (Huang 
and Wikswo, 2006). For the insights of the complexity at the cellular level, 
the measurements of cellular compartmentalization, dynamical protein 
complexes, and cellular network communications would be helpful. As an 
example, abnormal redox organization is one of the essential factors of dis-
eases. The understanding of the redox compartmentalization in the process 
of cellular stress can be critical for revealing dynamical structure–function 
interactions to promote more effective preventive and therapeutic strategies 
(Jones and Go, 2010).
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Considering the spatial sizes, genes and proteins may be analyzed at 
the nanometer scale, and cellular organelles such as mitochondria may be 
examined at the micrometer scale (Huang and Wikswo, 2006). Animal or 
human tissues can be assessed at the millimeter scale, whereas the structures 
and functions of organs can be measured at the centimeter scale. In addi-
tion, the pathophysiology of the whole organisms may be detected at the 
meter level. Such systemic examinations may incorporate different physical 
parameters such as temperature, pressure, currents, and motions.

Another pivotal point for the systems-based analyses is to overcome the 
gaps and obstacles between various levels and scales. Multidimensional link-
ages including the genotype–phenotype associations would help to explain 
the collective “emergent” features of the hierarchical complexity to provide 
a more systemic view for medical practice (see Chapter 2). The connections 
of the dynamics and networks between different levels or scales are the key 
for the translation of pathophysiological mechanisms into better diagnostic 
biomarkers and therapeutic targets.

The heart is used as an example, which has dynamical activities at mul-
tiple scales during cardiac excitation. At the sub-millisecond or millisecond 
scales, the open and close of single ion channels can be detected (Qu et al., 
2011). At the level of the whole cell, the collective activities of thousands 
of ion channels lead to an action potential. At the level of the whole heart 
and at the time scale of seconds, the electric impulses are shown as the 

Figure 7.1 Spatial and temporal dimensions in systems and dynamical medicine.
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synchronous contractions of the cardiac ventricles (Qu et al., 2011). Such 
collective activities can be recorded by the electrocardiogram.

Furthermore, at the centimeter level, the stability of the cardiac rhythms 
may be related to the propagation of wave fronts (Wilders and Jongsma, 
1993). At the nanometer level, such processes may be associated with the 
activities of the ion channels and gap junctions. To have a more complete 
view of the cardiac activities, the comprehensive level and scale transcend-
ing perceptions are necessary to elucidate the spatiotemporal complexity in 
health and diseases.

7.2  TEMPORAL COMPLEXITY IN SYSTEMS BIOLOGY

 As mentioned in Chapter 2, pharmacogenomics emphasizes the 
variances in human genomics, pathophysiology, and therapeutic reactions. 
Many factors may be involved in such individual variances, including both 
spatial and temporal differences. In conventional studies many efforts have 
been made to detect the spatial changes. However, the temporal changes 
have often been ignored in basic research or clinical observations.

For instance, until now epidemiologic investigations of illnesses have 
been mostly about the “average” spatial models such as the factors of loca-
tions and racial groups. However, in recent years the spatiotemporal risk 
factors have received more and more attentions (Zhang et al., 2011).

Such improvements have profound translational meanings because vari-
ous systems such as the central nervous system are deeply affected by tem-
poral factors such as the circadian rhythms (Iris, 2008; Kopec and Carew, 
2013; Gulsuner et al., 2013). In many cases, the biophysical and biochemical 
activities may be decided by the temporal or chronological elements. The 
structure–function correlations and activities at certain time points may be 
distinctive from those at other time points.

For example, the activities in the aging process are shown as evolution-
ary and progressive changes in which the temporal factors are essential (see 
Chapter 12). These changes can be observed at various spatial levels includ-
ing different physiological activities, cell cycles, and motility, as well as gene 
expression patterns during different ages (Manor and Lipsitz, 2013; Jonker 
et al., 2013; Zykovich et al., 2013).

As shown in Fig. 7.1, nonlinear examinations based on time series may 
lead to more accurate modeling of the complexity and dynamics across dif-
ferent spatial levels. For the temporal investigations, the time scales range from 
nanoseconds to minutes, from days to months, and from seasons to decades.
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The activities of the ion channels can be used as an example. Their gat-
ing events may be detected at the temporal scale of microseconds (Huang 
and Wikswo, 2006). Moving up through the spatial level, the depolariza-
tion of the heart may be assessed at the temporal scale of milliseconds. 
Furthermore, the stability of the cardiac cycles may be evaluated at the tem-
poral scale of seconds. The longevity and the aging processes of the whole 
organism may be observed at the temporal scale of gigaseconds.

As shown in these examples, the detailed physiological and pathological 
activities need to be observed within different rhythms and cycles to under-
stand their systemic complexity and dynamics. Considering the cycles, those 
having 24-h patterns are called circadian rhythms. The cycles longer than 
1 day or 24 h are in the range of infradian rhythms (Halberg et al., 2009; 
Lopes et al., 2013). The menstrual cycle is an example. Those with cycling 
patterns shorter than a day or 24 h are in the range of ultradian rhythms. 
Many physiological activities are within this range, including the neuron 
firing rates and heartbeat rhythms.

Among these cycles, the circadian rhythm has been relatively thoroughly 
covered in recent biomedical research (Lopes et al., 2013). The studies in 
circadian systems biology showed that disturbances in the circadian timing 
system may lead to molecular dysfunctions and serious pathologies such as 
cancer (Fuhr et al., 2015; also see Chapter 6). The interactive networks among 
the clock genes are essential in numerous molecular and cellular processes.

Furthermore, other types of cycles of patterns also deserve more atten-
tion. Besides these natural cycles or frequencies including biological and 
environmental patterns, the social cycles and events may have significant 
impacts on psychological or physiological health, including the cycles of 
weekly workdays, holiday stress, and the cycles of school years.

To connect the spatial and temporal factors, the temporal cycles may be 
studied in a wide range of spatial levels. As an example, the cyclic dynamic 
patterns have been detected in gene expressions in cell cycles and altered 
cellular redox conditions (Klevecz et al., 2008). The cell cycles have been 
suggested as an evolving process as proven by the genome-wide fluctuations 
observed at the transcript and protein levels.

In addition, the spatiotemporal dynamics and oscillations are the promi-
nent features in mitochondrial physiology. These properties have been 
detected at various levels including transmembrane potentials, heart exci-
tation waves, neural dynamics, cognition, working memory, and activities 
of bacteria (Qu et al., 2011; Kurz et al., 2010; Schultze-Kraft et al., 2011; 
Stephane et al., 2012; Lenz and Søgaard-Andersen, 2011).
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The illustration of the temporal patterns and cyclic activities may enrich 
the understanding of the spatial properties. The description of the com-
munal or “emergent” features across various spatiotemporal levels and scales 
would enable a more systemic and dynamic view (see Fig. 7.1; also see 
Chapter 2).

For instance, the spatiotemporal profiles can be established for various 
growth factor (GF) signaling in the process of memory formation (Kopec 
and Carew, 2013). Such comprehensive profiles of the interactive GF sig-
naling networks may facilitate the modeling of the behavioral and struc-
tural plasticity to support more precise diagnosis and treatments for relevant 
diseases.

In summary, translational bioinformatics and systems biology strategies 
may integrate the HTP techniques, experimental explorations, and compu-
tational models to predict the outcomes of the disturbed networks and the 
pathologies at various system levels. The integrative and interdisciplinary 
methods would allow for chronotherapies and the restoration of the power-
ful timing system in many complex diseases.

7.3  PROFILING OF DYNAMICAL DISEASES FOR 
SYSTEMS AND DYNAMICAL MEDICINE

 As discussed earlier, the profiling of spatiotemporal patterns across 
various levels and scales from cells to organs and from seconds to days 
would allow for the translation of systems biology into systems and dynam-
ical medicine. More integrative and personalized care would be possible 
by focusing on the systemic and dynamical changes with the elucidation 
of the nonlinearity and interrelationships of the complexity in health and 
diseases.

The emphasis on the term of “systems” in medicine would help to 
avoid the side effects caused by the drugs with single targets. The prac-
tice of “dynamical medicine” would embrace both of the spatial and 
temporal factors to understand the evolvement of health and diseases to 
improve the precision, prediction, and prevention in personalized medi-
cine (see Chapter 2).

Mitochondria can be used as an example at the cellular level. The non-
linear dynamical activities of mitochondria have been associated with the 
energy homeostasis in liver cells (Ramanujan and Herman, 2007). The dys-
functions in these processes may be associated with aging and various ill-
nesses including cardiovascular and metabolic diseases.
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The heart can be used as an example at the organ level. The profiling 
of the nonlinear dynamics of heart rates may help address the complex 
elements for the diagnosis and therapy of relevant diseases. These elements 
include circadian patterns, the age factor, and the interactions with the 
autonomic nervous system (Vandeput et al., 2012).

The human nervous system is another example. It is composed of “a 
hierarchy of oscillatory processes” (Milton and Black, 1995). These dynami-
cal activities interact extensively with various organs and systems, and have 
profound and bidirectional effects. The immune system is a good example 
(see Chapter 9).

The term “dynamical diseases” refers to the features of abnormal dynam-
ical complexity and patterns in various disorders. The investigations of the 
features of dynamical diseases would elucidate the alterations and dysfunc-
tions in the dynamics of the human body. Translational research of nonlinear 
dynamics may bring novel insights into the systems medicine of health and 
diseases.

The definition and focus on dynamical diseases may help in tracking the 
processes and patterns in which the symptoms appear and disappear over 
time with chaotic features (Bond and Guastello, 2013). The description of 
the dynamical and temporal patterns would enable the insight into the trig-
gers for symptoms as well as the evolvement and progression of the disease 
processes as a whole (see Chapters 1 and 2).

Such studies may embrace the concepts in nonlinear dynamics including 
the stability and bifurcations of attractors (Glass, 2015). These features have 
been assessed in many diseases including depression, epilepsy, schizophrenia, 
substance abuse, Parkinson’s disease, age-associated diseases, and hyperpara-
thyroidism (Pezard et al., 1996; Schmid, 1991; an der Heiden, 2006; Lopes 
da Silva et al., 2003; Warren et al., 2003; Schiff, 2010; Edelstein-Keshet et al., 
2001; Harms et al., 1992; also see Chapters 11 and 12).

For example, depression has been found to be featured with oscillating 
conditions in physiological and psychological aspects. Such patterns can be 
better described using the nonlinear parameters for the complex dynam-
ics and networks (Tretter et al., 2011). In the case of obesity, the diurnal 
cortisol levels may be associated with the disorder in a nonlinear pattern 
(Kumari et al., 2010). In cancer, microRNA studies have identified the 
dynamical features and their close relationships with cell cycle regulations 
(Stahlhut Espinosa and Slack, 2006; also see Chapter 11). As a dynamical dis-
ease, chronic lymphocytic leukemia has been related to problems in B-cell 
cycles (Damle et al., 2010).
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These facts demonstrate that “everything oscillates” (Klevecz et al., 
2008) at various levels from genes to cells, from mitochondria to memory. 
The dynamical properties have been identified in all diseases, which should 
also be addressed in more accurate diagnosis and better targeted therapies. 
Systemic profiling and dynamical modeling need to emphasize the non-
linear time series discoveries, the rhythmic patterns, and the feedback net-
works to promote personalized medicine (Belair et al., 1995).

For instance, the complex temporal patterns related to biomarkers and 
symptoms have been studied in lung diseases including asthma (Frey et al., 
2011). In psychiatric symptoms, the modeling of dynamical patterns may 
reflect the systematic variabilities (Odgers et al., 2009). In prostate cancer 
cells, the molecular elements that are involved in the treatment sensitivity 
and resistance have been featured with certain dynamical conditions and 
phases during the disease progression (Shaffer and Scher, 2003).

These evidences have indicated that the dynamical properties in the 
diseases need to be addressed with shifting targets at various levels including 
molecules and cellular networks during various stages for better therapies 
(see Chapter 8). In addition, the rhythmic and dynamical patterns of the 
diseases request efficient follow-ups to block the possible recurrence. For 
example, certain methods have been suggested for the prevention of recur-
rence among patients with depression (Pezard et al., 1996). These strategies 
would allow for the translation of dynamical systems biology into systems 
and dynamical medicine.

7.4  TRANSLATIONAL BIOINFORMATICS METHODS 
FOR STUDYING DYNAMICAL DISEASES

 In addition to those discussed in Chapters 3 and 4, many databases 
and bioinformatics resources have been constructed to support trans-
lational studies in spatiotemporal dynamics. For example, the Systems 
Science of Biological Dynamics database (SSBD) (http://ssbd.qbic.
riken.jp) is a database that can be applied for the analyses of quantitative 
data about spatiotemporal dynamics of biological phenomena (Tohsato 
et al., 2016).

SuperFly (http://superfly.crg.eu) provides an integrative platform for 
the examination of quantified spatiotemporal patterns in gene expressions 
in early dipteran embryos (Cicin-Sain et al., 2015). The Brain Transcriptome 
Database (BrainTx) (http://www.cdtdb.brain.riken.jp) may facilitate the 
profiling of spatiotemporal patterns in brain gene expressions (Sato et al., 

http://ssbd.qbic.riken.jp
http://ssbd.qbic.riken.jp
http://superfly.crg.eu
http://www.cdtdb.brain.riken.jp
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2008). It may support the visualization and assessment of transcriptome 
data associated with the development, function, and dysfunction phases and 
conditions of the brain.

Table 7.1 lists some examples of the translational bioinformatics and 
systems biology methods for the studies of dynamical diseases. The concept 
of “dynamical diseases” can be especially valuable for neuropsychiatry. The 
affective disorders show fluctuating state variables at both psychological and 
biological levels (Tretter et al., 2011). Data analyses at these systems levels 
have indicated the quasichaotic periodicity features of nonlinear dynamic 
systems. The systems-based approaches also address the inter- and intracel-
lular networks and the dynamic cortisol regulation.

Such methodologies demonstrate that extremely complex diseases can 
be approached from analyzing simple nonlinear interactions among a few 
parameters. For instance, the theory of nonlinear dynamical systems was 
applied for the study of schizophrenia (an der Heiden, 2006). The study 
highlighted the feature of nonlinearity that the gradual changes of a sin-
gle parameter (e.g., neurotransmitter dopamine, and serotonin) can lead 
to completely different types of behavior of the entire system (also see 
Chapter 2).

A mathematical model could be used to illustrate the activities of dopa-
mine, including the excitatory–inhibitory circuits in the cortex, and the 
negative feedback loop among thalamus, prefrontal cortex, and striatum (an 
der Heiden, 2006). The models and concepts could represent the different 
patterns and the features of bifurcation, periodicities, and chaotic activities 
of dopamine. Here “bifurcation” refers to the phase transitions and the tran-
sitions between the different conditions.

In the case of depression, mathematical models with dynamical indica-
tors can be applied to describe the brain activities with lower dynamical 
complexity in depressive patients (Pezard et al., 1996). Such analysis may 
differentiate patients with first episode from recurrent patients by highlight-
ing their varied dynamical treatment responses. Such findings address the 
need for clinical follow-ups and certain interventions to prevent and treat 
the recurrence.

In obsessive–compulsive disorder (OCD), nonlinear regression param-
eters and dynamical studies may be helpful for the analysis of the intermit-
tent outbursts of ritual behaviors (Bond and Guastello, 2013; also see Table 
7.1). OCDs have shown a low-dimensional deterministic structure with 
significant rank order correlations. Such assessments may be used to under-
stand the symptom severity and family reactions.
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Table 7.1 Examples of Translational Bioinformatics and Systems Biology Methods for 
the Studies of Dynamical Diseases

Dynamical Diseases
Translational Bioinformatics 
Methods References

Affective disorders, 
e.g., depression

	•	 	Fluctuating	state	variables	on	
psychological and biological 
levels

	•	 	Quasichaotic	periodicity	of	non-
linear dynamic systems

	•	 	Inter-	and	intracellular	networks

Tretter et al. (2011)

Colorectal cancer 	•	 	Immune	cells	interactions
	•	 	Dynamical	tumor	

microenvironment

Grizzi et al. (2013)

Depression 	•	 	Mathematical	models	with	
dynamical indicators

	•	 	Dynamical	complexity	of	brain	
activities

	•	 	Dynamical	treatment	response	
differences between first episode 
and recurrent patients

Pezard et al. (1996)

Epilepsy 	•	 	Spatiotemporal	assessments	for	
the interactions in epileptic 
brain networks

Dickten et al. 
(2016)

Epilepsy 	•	 	The	mathematics	of	nonlinear	
systems

	•	 	Attractors	about	the	trajecto-
ries with the initial status and 
outcomes

	•	 	Computational	models	of	neu-
ronal networks for the simula-
tions of neurophysiologic signals

Lopes da Silva 
et al. (2003)

Migraine 	•	 	Network	studies
	•	 	Mathematical	modeling

Dahlem (2013)

Obsessive–compulsive 
disorder

	•	 	Nonlinear	regression	parameters
	•	 	Rank	order	correlations

Bond and 
Guastello (2013)

Parkinson’s disease 	•	 	Control	theory
	•	 	Computational	neuroscience
	•	 	Basal	ganglia	computational	

models

Schiff (2010)

Parkinson’s disease 	•	 	Systemic	variables
	•	 	Models	for	negative	feedbacks
	•	 	Interactions	between	the	central	

and peripheral loops, and other 
systemic signals

Beuter and 
Vasilakos (1995)

Continued



Translational Bioinformatics and Systems Biology Methods for Personalized Medicine90

The clinical observations of the time series of daily alcohol consump-
tions have pointed to the nonlinearity of substance abuse (Warren et al., 
2003; also see Table 7.1). The chaos theory and nonlinear dynamics have 
been used to study this dynamical disease. The nonlinear model was found 
to be more accurate than a linear model. Such models would be more useful 
for the treatment of substance abuse and keeping sobriety.

Parkinson’s disease is another example that is featured with short-term 
fluctuations in tremor. Other systemic variables include respiration and 
blood pressure (Beuter and Vasilakos, 1995). The model may address the 
negative feedback and the transient events, the interactions between the 
central and peripheral loops, and the interactions between the control loops 
and other systemic signals (see Table 7.1).

Such studies would emphasize the systemic variables and signals for rep-
resenting the pathological features. In addition, the applications of control 
theory and computational neuroscience may help to build basal ganglia 
computational models (Schiff, 2010; also see Table 7.1). Such efforts may 
help in tracking observations.

Epilepsy is also a dynamical disease (Lopes da Silva et al., 2003). The 
concepts of the nonlinear systems such as the attractors may describe the 
trajectories with the initial status and outcomes. The computational models 
of neuronal networks have been found to be useful for the simulations of 
neurophysiologic signals (see Table 7.1). These analyses may identify the 

Dynamical Diseases
Translational Bioinformatics 
Methods References

Schizophrenia 	•	 	Theory	of	nonlinear	dynamical	
systems

	•	 	A	mathematical	model
	•	 	A	negative	feedback	loop	

between thalamus, prefrontal 
cortex, and striatum

	•	 	Analyses	of	patterns,	bifurca-
tion, periodicities, and chaotic 
activities

an der Heiden 
(2006)

Substance abuse 	•	 	Chaos	theory	and	nonlinear	
dynamics

	•	 	Nonlinearity	in	a	time	series	of	
daily alcohol consumption

Warren et al. 
(2003)

Table 7.1 Examples of Translational Bioinformatics and Systems Biology Methods for 
the Studies of Dynamical Diseases—cont’d
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EEG features before limbic seizures and the transition into paroxysmal epi-
leptic activities.

In addition, the spatiotemporal assessments for the complex dynamics 
may help to describe the strength and direction of the interactions in the 
evolving large-scale epileptic brain networks (Dickten et al., 2016). The 
network theory may be useful for the illustration of both structure and 
function of epileptic networks. Such analyses can help to promote personal-
ized diagnosis, treatment, and management.

Migraine is basically deemed as a dynamical disease where linear models 
have been found insufficient (Dahlem, 2013; also see Table 7.1). Minimally 
invasive and noninvasive neuromodulation techniques have been suggested 
for the potential solutions. The dynamical network studies may help to ana-
lyze the migraine generator region in the brainstem and facilitate math-
ematical modeling. The profiling of the migraine generator networks and 
spreading depression dynamics may be useful for identifying the neuro-
modulation targets in episodic migraine.

Colorectal cancer (CRC) is a multistep dynamical disease that may 
evolve over years through benign and malignant conditions, from single 
crypt lesions to malignant carcinoma with the possibilities for metastasis 
(Grizzi et al., 2013). Dynamical studies may help to understand the com-
plex interactions among immune cells in the tumor microenvironment. The 
tumor stromal cells may also affect the growth and invasiveness of can-
cer cells in the dynamic tumor microenvironment. Such studies may help 
to understand the roles of both innate and adaptive immune cells in the 
local progression and metastasis. The dynamical features may contribute to 
the prognosis of CRC. More discussions in these aspects can be found in 
Chapter 11.

In summary, with the emphasis on the complex adaptive systems (CASs) 
and nonlinear dynamical features, systemic and dynamical profiling and 
modeling may help to solve the conceptual and technical difficulties. Such 
translational strategies may help to elucidate the disease complexity with 
the identification of various subtypes at various progressive phases (Hood 
and Flores, 2012). The identifications of alterations across various spatio-
temporal levels and scales may improve the discovery of shifting treatment 
targets for individualized and timely interventions in personalized medicine 
(see Fig. 7.1). Dynamical and robust biomarkers may have critical roles in 
the stratification of disease subtypes and patient subgroups for optimized 
prevention and interventions.
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CHAPTER EIGHT

Translational Bioinformatics 
Methods for Drug Discovery and 
Development
 

8.1  CHALLENGES IN DRUG DISCOVERY AND 
POTENTIAL SOLUTIONS FROM PROFILING 
INTERACTOMES

 An important application of systems biology and translational bioin-
formatics approaches is the discovery and development of novel and more 
effective drugs for complex diseases. The strategies of conventional drug 
discovery focus on the phenotypic and drug target screens and methods 
based on ligands and chemical structures (Prathipati and Mizuguchi, 2016). 
However, the reductionist views of “one-drug-fits-all” and “one gene–one 
disease–one drug” have led to the high toxicity, high rates of adverse events, 
and low effectiveness of many existing drugs.

Systems biology methods have been suggested to be useful for the iden-
tification and prediction of adverse drug reactions (ADRs). Conventional 
approaches such as clinical trials postmarket surveillance have drawbacks 
and limitations such as small sample size, biased analyses, with insufficient 
clinical evidences (Boland et al., 2016). The recent development in func-
tional genomics and high-throughput (HTP) analyses may help in meeting 
the challenges by bringing better methodologies into the drug design pro-
cesses (Prathipati and Mizuguchi, 2016).

As shown in Fig. 8.1, the establishment of systems-based profiles may 
reveal the comprehensive interactive networks and feedback loops for a better 
understanding of the efficacy and toxicity of different drugs. Specifically, the 
integration of different frameworks, resources, and multidimensional exami-
nations would enable the modeling of the interrelationships among cellular 
networks, pathophysiological factors, and drug components. The applications 
of both experimental and computational methods in systems biology would 
allow for retrospective and prospective assessments for finding more effective 
and personalized medications (Prathipati and Mizuguchi, 2016).
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Genes and proteins are performing in interactive networks and com-
municate multidirectionally with various cellular components. Such com-
plex protein–protein interaction networks are defined as “interactomes” 
(Chautard et al., 2009). Systems biology strategies including HTP technolo-
gies and translational bioinformatics analyses of the multiparametric data 
sets can help to elucidate these interactomes to support more efficient drug 
targeting and development (see Fig. 8.1). Such strategies have been found 
to be useful for revealing interactive patterns in complex diseases including 
neurodegenerative diseases (NDs) (Vlasblom et al., 2014).

At the cellular level, the systems biology approaches based on high con-
tent screens would enable the examinations and detailed descriptions of the 
cellular alterations (Dunn et al., 2010). These descriptions can be integrated 
in transcriptomic and proteomic profiles, as well as the associations with 
phenotypic illnesses and drug reactions (see Chapter 3). Different levels of 
interactions and networks need to be integrated in the “interactomes” and 
systems-based profiles, from molecular genome to proteasome, from cellular 
mitochondrion to the whole organisms (Chautard et al., 2009).

For instance, the analyses of the dynamical activities and functions of 
the pivotal cellular organelle mitochondria may contribute to the better 
understanding of pathophysiological processes. The abnormal activities of 

Figure 8.1 Translational bioinformatics and systems biology methods for systems-
based drug discovery and personalized medicine.
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mitochondria have been associated with many illnesses such as cancer, car-
diovascular diseases, metabolic disorders, and NDs (Vlasblom et al., 2014). 
These properties would make the mitochondrial interactomes valuable for 
modeling the dynamical cellular networks and interactions. Such integra-
tive models based on mitochondrial systems biology would contribute to 
the discovery of more comprehensive drug targets for NDs and other mito-
chondria-associated disorders.

In summary, translational bioinformatics has a critical role in analyzing 
such multifactorial, multiscale, and multidimensional data for the under-
standing and modeling of the complex networks and interactions. Various 
approaches can be used including principal component analysis (PCA) to 
reveal the complex patterns of the interrelationships (Dunn et al., 2010). 
The functional illustration of the cellular networks and systemic intercon-
nections would allow for more efficient drug designs that go beyond the 
conventional approaches based on single molecules/targets to avoid the side 
effects and ADRs.

8.2  THE “TRANSLATIONAL” SIDE AND THE 
“BIOINFORMATICS” SIDE

 As discussed earlier, approaches based on systems biology and trans-
lational bioinformatics such as the HTP methods and multilevel analyses 
of large data sets may help to construct the profiles for “interactomes” for 
finding novel drug targets. Such comprehensive drug targets would con-
tribute to the better efficacy and lower expenses in the current costly drug 
development process (Vandamme et al., 2014; also see Fig. 8.1).

From the translational bioinformatics point of view, certain difficulties 
have to be overcome to promote more efficient drug discovery. One of such 
obstacles is the management and integration of various data types from the 
systems biology studies of multiple levels/scales (see Chapters 4 and 7).

For example, different entities and attributes need to be covered including 
various drugs and drug types, diseases and disease subtypes, and patients and 
patient subgroups. Another key component that has often been ignored is 
the interrelationships among these complex entities and attributes (Prathipati 
and Mizuguchi, 2016). Furthermore, more comprehensive data models, more 
effective data mining, and more efficient decision support tools need to be 
addressed to improve the current translational bioinformatics efforts.

Considering the “translational” side, the systems biology approaches can 
be addressed in the drug discovery efforts by embracing the network-based 
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models with focuses on the molecular and cellular interactions that can be 
applied as the possible drug targets. This systems-based strategy may help with 
faster target validation and decreased attrition rates (Vandamme et al., 2014).

Such systems-based models and frameworks may be especially helpful 
for the discovery of multidrug treatments and drug combinations (see Fig. 
8.1). By repositioning currently available drugs with the identification of 
patient subgroups, new combinations of existing drugs may promote the 
treatment efficacy and reduce the skyrocketing healthcare expenses.

Drug repositioning is the application of available drugs for treating con-
ditions different from the original treatment purposes (Setoain et al., 2015). 
It is a very useful drug discovery tool that enables a quicker and inexpensive 
development process. Translational bioinformatics approaches can provide 
a dashboard to support repositioning hypotheses, to analyze transcriptomic 
data, and to identify biological associations between drugs and diseases. This 
is also the key step toward personalized medicine (see Fig. 8.1).

Complex disorders including cancer and cardiovascular diseases may 
benefit significantly from such systems-based models emphasizing the net-
work interactions in the processes of cellular migration, proliferation, and 
drug resistance. By addressing mutations and escape pathways from multiple 
angles, drug combinations may be quite effective for solving the issues of 
drug resistance in these complex diseases (Ryall and Tan, 2015).

As an emerging interdisciplinary area, systems pharmacology may inte-
grate chemical biology and heterogeneous data sources for the prediction 
of ADRs in individuals, groups, and global populations. The systems-based 
frameworks may embrace various data elements including diet and comor-
bidities for more accurate predictions (Boland et al., 2016).

Considering the “bioinformatics” side, a major task is to manage the huge 
amounts of the possible drug combinations and interactions (see Fig. 8.1). 
The benefits of bioinformatics strategies include the reduction of the search-
ing space and time to promote the effectiveness of the time-consuming tests 
(Ryall and Tan, 2015). The combinations of systems biology modeling, HTP 
technologies, and translational bioinformatics strategies would facilitate bet-
ter screening and decision-making for drug combinations.

In summary, systems biology and bioinformatics methodologies would 
embrace the multilevel modeling of functional genomics and signaling path-
ways (Ryall and Tan, 2015). Approaches including statistical association-based 
models would be useful for finding network-based biomarkers and “inter-
actome” signatures for potential targets. These strategies may also enable 
computer-aided drug design and polypharmacology (Wathieu et al., 2016).  
The integration of the “translational” and “bioinformatics” aspects would 
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enable the HTP screening processes for more efficient recognition of the 
optimal drug repositioning and combinations for personalized medicine 
(see Fig. 8.1).

8.3  TRANSLATIONAL BIOINFORMATICS RESOURCES 
FOR DRUG DISCOVERY AND DEVELOPMENT

 In addition to the resources discussed in Chapter 3, Table 8.1 lists 
some databases and bioinformatics resources that can be useful for transla-
tional studies in drug discovery and development. For instance, integrated 
database for ADMET and adverse effect predictive modeling (IDAAPM) is 
a comprehensive database about the absorption, distribution, metabolism, 
excretion, toxicity (ADMET), and adverse effects of drugs. It provides pre-
dictive modeling with the analysis of FDA drug data (Legehar et al., 2016).

The drug-minded protein interaction database (DrumPID) can be used to 
support target analysis and drug discovery (Kunz et al., 2016). CREDO collects 
data about structural interactomics to support drug development (Schreyer 
and Blundell, 2013). Protein–Drug Interaction Database (PDID) is a database 
about protein–drug interactions in the human proteome (Wang et al., 2016). 
ONRLDB is a manually curated database about ligands for orphan nuclear 
receptors that can be used for drug design (Nanduri et al., 2015).

The Mutations and Drugs Portal (MDP) is a platform connecting drug 
response data with genomic information (Taccioli et al., 2015). Virtually Aligned 
Matched Molecular Pairs Including Receptor Environment (VAMMPIRE) 
is a database about matched molecular pairs to support structure-based drug 
design and optimization (Weber et al., 2013; also see Table 8.1).

CancerDR is a database about cancer drug resistance (Kumar et al., 
2013). ChEMBL is a large-scale bioactivity database that can be used to 
facilitate drug design (Gaulton et al., 2012). The Metabolism and Transport 
Drug Interaction Database is a platform to support the assessment of 
drug interaction evaluations (Hachad et al., 2010). PROMISCUOUS is 
a database that can be applied for network-based drug repositioning (von 
Eichborn et al., 2011; also see Table 8.1).

8.4  TRANSLATIONAL BIOINFORMATICS METHODS 
FOR DRUG DISCOVERY AND DEVELOPMENT

 Most of the therapeutic strategies target the late stages in the patho-
logical process with low predictive values and effective rates (Readhead 
and Dudley, 2013). However, the novel messages from studies on genomic 
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Table 8.1 Translational Bioinformatics Resources for Drug Discovery and Development
Databases/Tools Web URL Contents References

CancerDR http://crdd.osdd.
net/raghava/
cancerdr

Cancer drug 
resistance

Kumar et al. 
(2013)

ChEMBL https://www.ebi.
ac.uk/chembldb

A bioactivity 
database

Gaulton et al. 
(2012)

CREDO http://marid.bioc.
cam.ac.uk/
credo

Interactomics for 
drug discovery

Schreyer and 
Blundell 
(2013)

DrumPID http://drumpid.
bioapps.biozen-
trum.uni-wuer-
zburg.de

Target analysis Kunz et al. 
(2016)

IDAAPM http://idaapm.
helsinki.fi

ADMET and 
adverse effects 
with predictive 
modeling

Legehar et al. 
(2016)

Mutations and 
Drugs Portal 
(MDP)

http://mdp.uni-
more.it/

Linking drug 
response data 
to genomic 
information

Taccioli et al. 
(2015)

ONRLDB http://www.
onrldb.org

Validated ligands for 
orphan nuclear 
receptors

Nanduri et al. 
(2015)

Protein–Drug 
Interaction 
Database 
(PDID)

http://biomine.
ece.ualberta.ca/
PDID

Protein–drug inter-
actions in the 
human proteome

Wang et al. 
(2016)

PROMISCUOUS http://bioinfor-
matics.charite.
de/promiscuous

Network-
based drug 
repositioning

von Eichborn 
et al. (2011)

The Metabolism 
and Transport 
Drug 
Interaction 
Database

http://www.
druginterac-
tioninfo.org

Drug interaction 
evaluation

Hachad et al. 
(2010)

VAMMPIRE http://vammpire.
pharmchem.
uni-frankfurt.de

Structure-based 
drug design and 
optimization

Weber et al. 
(2013)

ADMET, absorption, distribution, metabolism, excretion, toxicity; IDAAPM, integrated database for 
ADMET and adverse effect predictive modeling.

http://crdd.osdd.net/raghava/cancerdr
http://crdd.osdd.net/raghava/cancerdr
http://crdd.osdd.net/raghava/cancerdr
https://www.ebi.ac.uk/chembldb
https://www.ebi.ac.uk/chembldb
http://marid.bioc.cam.ac.uk/credo
http://marid.bioc.cam.ac.uk/credo
http://marid.bioc.cam.ac.uk/credo
http://drumpid.bioapps.biozentrum.uni-wuerzburg.de
http://drumpid.bioapps.biozentrum.uni-wuerzburg.de
http://drumpid.bioapps.biozentrum.uni-wuerzburg.de
http://drumpid.bioapps.biozentrum.uni-wuerzburg.de
http://idaapm.helsinki.fi/
http://idaapm.helsinki.fi/
http://mdp.unimore.it/
http://mdp.unimore.it/
http://www.onrldb.org/
http://www.onrldb.org/
http://biomine.ece.ualberta.ca/PDID
http://biomine.ece.ualberta.ca/PDID
http://biomine.ece.ualberta.ca/PDID
http://bioinformatics.charite.de/promiscuous
http://bioinformatics.charite.de/promiscuous
http://bioinformatics.charite.de/promiscuous
http://www.druginteractioninfo.org/
http://www.druginteractioninfo.org/
http://www.druginteractioninfo.org/
http://vammpire.pharmchem.uni-frankfurt.de
http://vammpire.pharmchem.uni-frankfurt.de
http://vammpire.pharmchem.uni-frankfurt.de
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and environmental interactions would enable more accurate and preventive 
strategies. Translational bioinformatics may have a pivotal role in this process 
by bridging the gap between the research data and clinical drug discovery 
toward the intent of personalized medicine.

Translational bioinformatics can provide powerful support for orga-
nizing and mining the data for network modeling, disease classification, 
biomarker discovery, and drug targeting and repositioning (see Fig. 8.1). 
Specifically, multiscale network disease models with high predictive values 
can be developed with the integration of information about gene expres-
sion, clinical traits, and other parameters. Causal network inference methods 
can be applied to identify the “key drivers” of pathology and the precise 
biomarker candidates of the etiology of diseases (Readhead and Dudley, 
2013).

Note that in computational drug design and translational bioinformatics, 
data integration is especially important for the understanding of data from 
HTP technologies and studies on proteomics and transcriptomics (Seoane 
et al., 2013; also see Chapter 3). Data integration would allow for the access 
and queries to heterogeneous data sources (see Chapter 4). Approaches 
including federated databases, data warehouses, and semantic technology 
would facilitate information retrieval, clinical diagnosis, and drug discovery.

As translational medical strategies are gaining momentum in the bio-
medical society, translational bioinformatics may help to overcome the chal-
lenges in the pharmaceutical industry (Buchan et al., 2011). Table 8.2 shows 
some recent examples of translational bioinformatics methods for drug dis-
covery and development.

For instance, integrative analyses were performed about the methylated 
genes associated with drug resistance in ovarian cancer (Yan et al., 2016; 
also see Table 8.2). Comprehensive bioinformatics examinations empha-
sized protein interactions, biological process enrichment, and annotations. 
The study showed a direct interaction between the phosphatase and tensin 
(PTEN) homolog gene and most of the other genes, pointing to the major 
regulatory roles of PTEN among these genes. The study highlighted the 
significance of the methylated genes in the regulation of resistant ovarian 
cancer. Such findings may be helpful for the prognosis of ovarian cancer.

Another example is about the off-label drug selections among tri-
ple negative breast cancer (TNBC) patients (Cheng et al., 2016; also 
see Table 8.2). A personalized medicine knowledge base was established 
with the integration of cancer drugs, drug target databases, and knowl-
edge sources to support target selections. The analysis was performed 



Translational Bioinformatics and Systems Biology Methods for Personalized Medicine104

Table 8.2 Examples of Translational Bioinformatics Methods for Drug Discovery and 
Development

Associated Conditions
Translational Bioinformatics 
Methods References

Anti-HIV/AIDS drugs 
and drug resistance

	•	 	Analysis	of	protein	
residues with digital signal 
processing

	•	 	A	drug	resistance	calculator

Nwankwo and Seker 
(2010)

Drug abuse and 
neuro-AIDS

	•	 	Databases	to	analyze	
molecular relationships

	•	 	A	public	domain	database

Shapshak et al. (2006)

Drug discovery and 
repositioning for IBD 
and autoimmune 
diseases

	•	 	HTP	computations	for	
large-scale data, genes and 
microRNAs

	•	 	Clinically	relevant	gene-
level profiling

Clark et al. (2012)

Drug repositioning 	•	 	Analysis	of	transcriptomic	
data for drug–disease 
relationships

Setoain et al. (2015)

Drug repositioning in 
organ transplantation

	•	 	Meta-analyses	of	genomic	
data and drugs

	•	 	Finding	redundant	molec-
ular pathways

	•	 	Profiling	of	microarray	data	
sets

Roedder et al. (2013)

Drug resistance in the 
treatment of ovarian 
cancer

	•	 	Analysis	of	the	methylated	
genes associated with drug 
resistance

	•	 	Analyses	of	protein	
interactions

	•	 	Biological	process	
enrichment

Yan et al. (2016)

Drug targets for 
osteoporosis

	•	 	Gene	expression	profiles	
from GEO

	•	 	Functional	pathway	
enrichment

	•	 	GO	and	dysfunctional	
pathways

	•	 	The	connectivity	map

Yu et al. (2013)

HCV drug discovery 	•	 	A	knowledge	discovery	
system for literature mining

	•	 	Integration	of	the	
dictionary-based filtering 
and gene mention tagger

Seoud (2011)
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about TNBC patient data in the Cancer Genome Altar. A bioinformatics 
method was developed for cancer drugs selection by incorporating per-
sonal molecular profile data such as copy number variations, mutations, 
and gene expressions. The study identified some additional targets that 
had not been fully examined in the TNBC, such as Gamma-Glutamyl 
Hydrolase and Protein Tyrosine Kinase 6. Such translational bioinformat-
ics approaches and knowledge bases may support the development of 
cancer precision medicine, including the off-label cancer drug applica-
tions in clinics.

In a study about drug targets for osteoporosis, the gene expression pro-
files of osteoporosis were constructed from the data in Gene Expression 
Omnibus (Yu et al., 2013; also see Table 8.2). The differentially expressed 
genes (DEGs) were analyzed using classical t-test method. The functional 
pathway enrichment analyses were applied to find the dysregulated gene 
ontology categories and dysfunctional pathways. The connectivity map was 
established to find compounds that induced inverse gene alterations. The 
study found that DEGs were enriched in nine pathways including the mito-
gen activated protein kinase (MAPK) signaling pathway. In addition, san-
guinarine was found as a potential therapeutic drug candidate.

Associated Conditions
Translational Bioinformatics 
Methods References

Glycomics and drug 
targets

	•	 	Data	integration
	•	 	Public	databases	for	gly-

come informatics, e.g., 
KEGG

	•	 	Tree-based	models	and	
algorithms for glycan 
structure data

Aoki-Kinoshita and 
Kanehisa (2006)

Off-label drug selection 
for TNBC

	•	 	The	integration	of	data-
bases of cancer drugs and 
drug targets

	•	 	Analysis	of	the	TNBC	
patient data

	•	 	Analysis	of	personal	
molecular profiles

Cheng et al. (2016)

GEO, Gene Expression Omnibus; GO, gene ontology; HCV, Hepatitis C Virus; HTP, high-through-
put; IBD, inflammatory bowel disease; KEGG, Kyoto Encyclopedia of Genes and Genomes; TNBC, 
triple negative breast cancer.

Table 8.2 Examples of Translational Bioinformatics Methods for Drug Discovery and 
Development—cont’d
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Translational bioinformatics approaches have also been found to be 
useful for the reposition of FDA-approved drugs in organ transplantation 
(Roedder et al., 2013; also see Table 8.2). The meta-analyses of genomic 
data and drug databases and a bioinformatics approach were applied for 
finding redundant molecular pathways. For example, significant enrichment 
was revealed for the IL-17 pathway. The methods included the analyses and 
profiling of microarray data sets from human renal allograft biopsies. These 
methods allow for a drug repositioning approach by using available drugs, 
which would lower the costs (see Fig. 8.1).

For inflammatory bowel disease (IBD) and other autoimmune diseases, 
translational bioinformatics methods may also contribute to drug discovery 
and repositioning of existing drugs (Clark et al., 2012; also see Table 8.2). 
Using bioinformatics tools and HTP computations for large-scale data, gene 
and microRNA biomarkers could be identified. The clinically relevant gene-
level profiling of IBD subtypes and their association with autoimmune diseases 
may help to discover drug candidates for repositioning. The highly expressed 
IBD genes may become drug targets for gastrointestinal cancers, viral infec-
tions, and autoimmunity diseases including rheumatoid arthritis and asthma.

In the study for Hepatitis C Virus (HCV) drug discovery, a bioinformat-
ics knowledge discovery system called BioHCVKD was established for lit-
erature mining and annotation of relevant HCV information (Seoud, 2011; 
also see Table 8.2). It integrated the dictionary-based filtering and condi-
tional random field–based gene mention tagger. It was supported by the 
Abstract Insertion module and the Protein Insertion module. It may help 
to identify proteins, ligands, and active residues to support drug discovery.

In the assessment of anti-HIV/AIDS drugs and drug resistance, a sig-
nal processing-based bioinformatics method was applied for the examina-
tion of protein residues using digital signal processing techniques including 
informational spectrum method (ISM) (Nwankwo and Seker, 2010; also see 
Table 8.2). The methods integrated ISM, protein sequence information, and 
other relevant information. The digital approach to assess drug resistance 
can be used in other drug resistance studies to establish a computer-aided 
drug resistance calculator.

To study drug abuse and Neuro-AIDS, databases can be established to 
analyze the molecular relationships (Shapshak et al., 2006; also see Table 
8.2). The investigation of gene expression interactions may help to explain 
the significance and complexity of the problems. The robust database sys-
tems may contain large data sets and serve as a public domain database for a 
shared platform to query, deposit, and review information.
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In the analyses of glycans and diseases, translational bioinformatics 
approaches are critical for understanding glycomics and drug  discovery 
(Aoki-Kinoshita and Kanehisa, 2006; also see Table 8.2). Various public 
 databases can be used for glycome informatics including Kyoto Encyclopedia 
of Genes and Genomes (KEGG) GLYCAN,  glycoSCIENCES.de, and 
the Consortium for Functional Glycomics. The tree-based models and 
 algorithms have been found to be helpful to analyze glycan structure data. 
The integration of these data sets and informatics techniques may facili-
tate information extraction and support the discovery of biomarkers and 
drug targets.

8.5  CONCLUSION: SYSTEMS-BASED MODELS AND 
DECISION SUPPORT FOR DRUG DISCOVERY

 The applications of translational bioinformatics may serve as the piv-
otal bridge between the basic research in systems biology and clinical per-
formance of systems and personalized medicine. The analyses of research 
data and patient records may support the patient-centered objectives and 
the decision-making in drug development pipelines in both research and 
clinical environments. With the support of dynamical, robust, and systems-
based models for diseases and drug reactions, the drug discovery processes 
may be significantly improved with lower costs and higher effectiveness.

These integrative methods would contribute to the finding of more 
comprehensive drug targets and candidates. As mentioned earlier, conven-
tional drug discovery approaches of structure-based targets for reducing 
unintentional binding may lead to adverse events caused by the unexpected 
multilevel interactions (Brown and Okuno, 2012). The systems-based pro-
filing would help to identify multilevel variables as biomarkers for better 
drug targets, such as the interactions among proteins and metabolites in the 
pathophysiological networks (Galizzi et al., 2013).

These models may be especially helpful for the decision-making pro-
cesses in drug discovery. They can be applied to examine the “what if?” 
scenarios in silico to predict the possible outcomes of the interventions 
to promote the efficiencies and reduce the expenses (Kell, 2013). These 
robust biomarkers embracing interactions and networks may represent the 
dynamical variances in personalized parameters.

The comprehensive models and decision-making tools would be espe-
cially helpful for embracing polypharmacology into the drug cocktails and 
combinations (Brown and Okuno, 2012; Kell, 2013). Such strategies would 
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transform the conventional drug discovery routines from the single target 
into the “function-first” or phenotypic selecting methods emphasizing sys-
temic networks (see Fig. 8.1). For instance, the comprehensive profiling of 
membrane transporters networks essential in drug absorption, distribution, 
metabolism, and excretion in different tissues may have broad implications 
in personalized medicine (Kell, 2013).

In summary, the integrative models developed from systems biology and 
translational bioinformatics strategies would contribute to the discovery of 
systems-based biomarkers and more effective treatments. Such approaches 
would enable the simulation, detection, and prediction of disease progres-
sion and drug responses for improving the safety, utilization, and effects 
among new and existing drugs.
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CHAPTER NINE

Translational Bioinformatics 
and Systems Biology for 
Understanding Inflammation
 

9.1  INTRODUCTION: SYSTEMS BIOLOGY, 
TRANSLATIONAL BIOINFORMATICS, AND 
INFLAMMATION

 Systems biology studies have highlighted the roles of low-grade inflam-
mation and metabolic factors in various complex conditions such as aging and 
age-associated diseases (Calçada et al., 2014). For instance, aging is an evolving 
process featured with systemic low-grade inflammation (or called “inflammag-
ing”) and progressive decline of metabolic functions (see Chapter 12).

Systems biology–based investigations may reveal the dynamical pro-
cesses in the systemic inflammation and metabolic dysfunctions at multiple 
spatial levels (e.g., molecular, cellular, organ) and time scales (see Chapter 
7). Computational modeling of the interactions among inflammatory and 
metabolic mediators may contribute to integrative strategies such as nutri-
tional interventions (Calçada et al., 2014).

For example, systems biology investigations of adipose tissue metab-
olism showed its importance in energy homeostasis, inflammation, and 
complex interactions with other physiological systems (Manteiga et al., 
2013). The metabolic pathways are critical for the uptake and hydroly-
sis of lipids via positive and negative feedback hubs containing protein 
kinases and nuclear receptors.

The cascade of metabolic and signaling pathways is essential for tissue 
remodeling and inflammatory responses through a self-reinforcing cycle 
(Manteiga et al., 2013). The complex adipose regulatory networks con-
taining multiple cell types require systems strategies for comprehensive 
explorations toward a better understanding of complex diseases including 
diabetes, cancer, and cardiovascular diseases.

Translational systems biology strategies have been proposed as the 
rational and evidence-based method for understanding inflammation and 
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supporting clinical application of personalized and predictive medicine. 
Such methodologies may allow for the elucidation of the complex and 
nonlinear processes in inflammation that are the keys to many diseases 
including sepsis, traumatic brain injury, liver failure, and wound healing 
(Mi et al., 2010).

9.2  THE MICROBIOTA–GUT–BRAIN AXIS AND 
SYSTEMIC INFLAMMATION

 In recent years increasing evidences have highlighted the signifi-
cance of the microbiota–gut–brain (MGB) axis in health, inflammation, 
and diseases (Sherwin et al., 2016). The MGB axis is a bidirectional network 
between the brain and the gastrointestinal (GI) system with complex com-
ponents involved such as the vagus nerve, immune factors, neuroendocrine 
pathways, and microbial metabolites (Sandhu et al., 2016). It can protect the 
host from detrimental pathogens and antigens. It can help with the diges-
tion and metabolism of nutrients that are hard to access, including complex 
lipids and polysaccharides (Montiel-Castro et al., 2013).

This axis is essential for keeping homeostasis and normal behavior, espe-
cially cognitive processes including learning, memory, and decision-making 
mechanisms (Montiel-Castro et al., 2013). Dysfunctions in the axis have 
been associated with the alterations in neurotransmission and behavior, 
leading to various mental and metabolic disorders including anxiety, autism, 
depression, schizophrenia, obesity, cardiovascular diseases, and multiple scle-
rosis (MS) (Kennedy et al., 2016; Montiel-Castro et al., 2013). The MGB 
signaling may have profound implications about nonmotor symptoms in 
Parkinson’s disease (Felice et al., 2016). The MGB axis is also critical for 
stress, visceral pain, and irritable bowel syndrome (Moloney et al., 2016).

Systems biology studies of the structural and functional dynamics in the 
MGB axis and relevant signaling pathways such as the kynurenine pathway 
may provide a pivotal model for the understanding of systemic inflam-
mation and the translation from bench to bedside (Kennedy et al., 2016). 
Various spatiotemporal factors may be critical for the health of the MGB 
axis, such as genetics, mode of birth, nutritional status, and environment at 
different time points across the life span (Sandhu et al., 2016).

As an ecosystem, the human microbiota has many features of a complex 
adaptive system (CAS) including the diversity, dynamics, and adaptation 
(see Chapter 2). Inoculated before and after birth, the human microbiota 
is always in a coevolving process in the whole life span of the person to 
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colonize, survive, and establish a mutualistic and symbiotic relationship with 
the host via finely tuned mechanisms (Mondot et al., 2013).

The human microbiota ecosystem regulates the immune function and 
influence the bowel motor mechanism (Kanauchi et al., 2013). In addition, 
it can neutralize carcinogens and drugs, and regulate intestinal motility. It 
enables visceral perception. In healthy conditions without perturbation, the 
human gut microbiota ecosystem keeps a globally stable state. This ecosys-
tem is very resilient with adaptive features.

A neural network associated with the amygdala and the insular cortex 
may be involved in the integration of visceral inputs. The activation of the 
hypothalamic–pituitary–adrenal (HPA) axis may generate corticosteroids 
and regulate the composition of the gut microbiota. In addition, the neuro-
nal efferent activation such as the “antiinflammatory cholinergic reflex” as 
well as sympathetic activation may lead to the release of neurotransmitters 
and influence the gut microbiota composition (Montiel-Castro et al., 2013).

Systems biology studies of the MGB axis may also help identify novel 
therapeutic targets for inflammation-associated diseases. Such examinations 
may reveal the bioactive microbial signals, the immune mediators, and rele-
vant hormones associated with behavior and neurological functions (Elisei 
and de Castro, 2017). The adjustment of the gut microbiota back to its 
normal condition by using probiotics or prebiotics has been considered an 
important therapeutic choice (Kanauchi et al., 2013). Such intervention 
may be especially helpful for the treatment of the inflammation in the GI 
tract.

9.3  TRANSLATIONAL BIOINFORMATICS METHODS 
FOR THE STUDIES OF INFLAMMATION

 In recent years more and more databases and bioinformatics resources 
have been developed for translational studies in inflammation and inflam-
mation-related diseases. For example, GlycoGAIT (https://apps.connexios.
com/glycogait) is a database about glycogenes and lectins associated with 
gastric inflammatory diseases (Oommen et al., 2016). IBDsite (http://
www.itb.cnr.it/ibd/) provides a comprehensive platform to facilitate high-
throughput data analysis about inflammatory bowel disease (IBD) (Merelli 
et al., 2012). Many of the resources discussed in Chapter 3 may also be 
applied.

As discussed previously, translational bioinformatics and systems biol-
ogy would be the key for the integration, management, and mining of data 

https://apps.connexios.com/glycogait
https://apps.connexios.com/glycogait
http://www.itb.cnr.it/ibd/
http://www.itb.cnr.it/ibd/
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to enable dynamical, explanatory, and predictive models (Voit, 2009). Such 
methods may provide a conceptual strategy for understanding the complex 
diseases in the context of inflammation and preconditioning. With the iden-
tification of high-dimensional biomarkers, the quantitative description of 
personalized health trajectories, and the construction of health risk profiles 
tracking the changes with age, better therapeutic options would be possible 
(see Chapters 2, 7, and 12).

Table 9.1 shows some examples of translational bioinformatics meth-
ods for studying inflammatory conditions. Data integration and data 
mining strategies are especially important for the translational efforts 
(see Chapter 4). Using a combination of proteomics, bioinformatics, 
and in silico interactomics, protein–protein interactions such as those 
between activated leukocytes and endothelial cells may become poten-
tial drug targets (Haqqani and Stanimirovic, 2013; also see Chapter 8). 
Such information can be applied for drug design such as neutralizing 
antibodies.

The bioinformatics workflow may also help identify cell–cell inter-
actions to target certain inflammatory diseases and to improve currently 
available treatments. For example, literature mining and keyword searching 
were applied for finding genes and pathways implicated in radiation and 
immune/inflammatory responses in healthy and tumor tissues (Georgakilas 
et al., 2015). The shared genes in different phenomena may be involved in 
highly connected networks. These genes and pathways may be the poten-
tial biomarkers of responses to radiation with the underlying inflammatory 
mechanisms.

Chronic inflammatory processes are the features of cancers and liver 
cirrhosis. In the study of the evolution of inflammatory processes and liver 
cancer, bioinformatics and systems biology methods have been applied 
for the investigation of the complex cytokine networks or “cytokinome” 
(Costantini et al., 2014; Capone et al., 2014). The study of cytokinome may 
help elucidate the interactions among cytokines and other proteins in and 
around biological cells (see Table 9.1).

The construction of the cytokinome profiles may help reveal the com-
plex interactions among cytokines, metabolic networks, natural antioxidants, 
inflammation, and liver cancer (Capone et al., 2014). Furthermore, such 
systems-based approaches may contribute to the investigations of adipo-
kine interactome, obesity, type 2 diabetes, and chronic hepatitis C infection 
with the elucidation of the evolutionary processes in chronic inflammation 
(Costantini et al., 2014; Capone et al., 2014).
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Table 9.1 Examples of Translational Bioinformatics and Systems Biology Methods for 
the Studies of Inflammation

Associated Conditions
Translational Bioinformatics 
Methods References

Asthma 	•	 	Literature	mining
	•	 	Data	meta-analysis
	•	 	Combined	gene-driven	and	

pathway-driven strategies
	•	 	Clinical	and	across-species	data	

analysis

Riba et al. (2016)

Chronic inflammatory 
diseases, cancers, 
liver cirrhosis

	•	 	Cytokinome	profiles
	•	 	The	complex	interaction	net-

work of cytokines

Capone et al. 
(2014)

Inflammation 	•	 	Data	integration	and	mining	
for dynamic, explanatory, and 
predictive models

	•	 	A	conceptual	approach	for	
formalizing information of 
inflammation

Voit (2009)

Inflammation, type 2 
diabetes mellitus

	•	 	Multivariate	statistical	tools
	•	 	A	micronutrient	phenotype	

database
	•	 	Biological	network	models

van Ommen et al. 
(2008)

Inflammation and liver 
cancer

	•	 	Cytokinome	profiles	in	the	evo-
lution of inflammatory processes

	•	 	The	complex	interaction	net-
works of cytokines

	•	 	Adipokine	interactome

Costantini et al. 
(2014)

Inflammatory disorders 	•	 	A	combination	of	proteomics	
and in silico interactomics

Haqqani and 
Stanimirovic 
(2013)

Inflammatory 
responses and 
vaccination

	•	 	Systems	vaccinology
	•	 	Integrative	analysis	of	innate	and	

adaptive immunity in a quantita-
tive framework

	•	 	Blood	transcriptomes

Zak and Aderem 
(2015)

Lung	cancer 	•	 	Graph-based	scoring	function
	•	 	Literature	mining
	•	 	Longitudinal	proteomics	analysis
	•	 	Bioinformatics	ranking	algorithm

Oh et al. (2011)

Peripheral arterial 
disease

	•	 	Global	protein–protein	interaction	
networks of angiogenesis, immune 
responses, and arteriogenesis

	•	 	Analyses	of	signaling	pathways

Chu et al. (2015)

Tumors and inflamma-
tory responses

	•	 	Literature	mining
	•	 	Keyword	searching

Georgakilas et al. 
(2015)
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In lung cancer, graph-based scoring mechanisms can be utilized to 
rank and identify robust biomarkers (Oh et al., 2011; also see Table 9.1). 
Literature	mining	and	data	analysis	based	on	mass	spectrometry	may	help	
assess	the	proximity	between	candidate	proteins.	Longitudinal	proteomics	
and bioinformatics ranking algorithms may be used for discovering bio-
markers from sample-limited clinical applications. The robust biomarkers 
can be applied for the detection of early signs, disease progression, and drug 
target selections.

For peripheral arterial disease (PAD), translational bioinformatics has 
been useful for the construction of global protein–protein interaction net-
works. These networks are critical in the systems biology studies of angio-
genesis or “angiome” in “omics,” immune responses or “immunome,” and 
arteriogenesis or “arteriome” (Chu et al., 2015). With the mining of micro-
array gene expression data sets, possible drug targets and signaling pathways 
may be identified in the angiogenesis, immune, and arteriogenesis networks 
(see Table 9.1). For example, such assessments found the genes and pathways 
relevant	 to	 functional	 significance	 in	PAD	 including	TLR4,	THBS1,	 and	
PRKAA2.

Because inflammation has a key role in type 2 diabetes mellitus, transla-
tional bioinformatics and systems biology strategies would facilitate multi-
variate analyses using nutrient-centered and physiology-centered parameters 
for the development of a micronutrient phenotype database (van Ommen 
et al., 2008). Such approaches would allow for the construction of network 
models embracing genes and protein–protein interactions for the identifica-
tion of systems-based biomarkers representing target functions, biological 
responses, and metabolites (see Table 9.1). For instance, multiple micro-
nutrients have been found critical in homeostasis and the prevention of 
chronic disorders, oxidation, and inflammation.

In the case of asthma, literature mining and data meta-analysis approaches 
were used to analyze microarray data sets (Riba et al., 2016). With the inte-
gration of gene-driven and pathway-driven strategies, translational bioin-
formatics may provide powerful tools for the analyses of clinical and across 
species data, as well as for the validation of conceptual and experimen-
tal models for finding new mechanisms (see Table 9.1). These approaches 
have led to the discovery of the significant roles of inflammation, circadian 
rhythms, peripheral genes, and superconnectors, for example, the pathways 
associated	with	IL-6,	Stat1,	Cadm1,	and	Erbb2.

Inflammatory responses are essential in vaccination. Systems vaccinol-
ogy is the systems-based investigation of innate and adaptive immunity in 
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a quantitative framework for the design and development of vaccines (Zak 
and Aderem, 2015). The combination of translational bioinformatics and 
systems biology strategies such as the analyses of blood transcriptomes and 
clinical data may help with the establishment of model systems to support 
the development of novel and more effective vaccines (see Table 9.1).

9.4  IDENTIFYING SYSTEMS-BASED BIOMARKERS FOR 
INFLAMMATION: EXAMPLES

9.4.1  Infectious Diseases
Similar to other illnesses, infectious diseases also have complex features 
with progressive stages and phases of development. For example, the disease 
caused by Mycobacterium tuberculosis may develop slowly because the relevant 
immune reactions and postexposure responses usually take several months 
to evolve.

In tuberculosis (TB), a broad spectrum of conditions and symptoms 
can be prompted by the infection, from asymptomatic infections at the 
beginning to severe tissue damages during later stages. The identification of 
the systems-based biomarkers needs to represent not only the evolutionary 
steps of the infections but also the host–immune responses and interactions 
to allow for the potential predictions and protections against the tissue dam-
ages and the overall illness.

Specifically, the clinical signs of M. tuberculosis infections may be closely 
associated with the evolution and progression of granulomatous lesions 
(Kunnath-Velayudhan and Gennaro, 2011). The granuloma structural 
alterations may be manifested in the peripheral circulation. Systems and 
dynamical examinations of biomarkers are needed to support accurate 
detection of the evolutionary progression of the disease. Such dynamical 
methodologies can help overcome the obstacles in detecting the progres-
sive asymptomatic and symptomatic phases of infections to support more 
effective anti-TB preventions and interventions (Kunnath-Velayudhan and 
Gennaro, 2011).

For instance, an assessment of mycobacterium-induced cytokines 
including interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), 
interleukin	6	(IL-6),	and	IL-10	showed	significant	alterations	of	responses	
within different time frames (Talat et al., 2009). Such studies addressed the 
importance of analyzing multiple systems-based biomarkers in longitudinal 
studies to establish predictive biomarker profiles for more accurate diagnosis 
and prognosis of the disease.
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On the basis of such analyses, infected individuals can be divided into 
asymptomatic and symptomatic groups, then subgroups at different stages 
of disease progression for better targeted and effective prevention and treat-
ment.	For	example,	the	soluble	members	of	the	toll-like	receptor	4	(TLR-
4) pathway may be potential biomarkers to distinguish active TB from latent 
TB infection. The plasma levels of lipopolysaccharide and myeloid differ-
entiation-2 have been suggested as the potential markers for the anti-TB 
therapeutic responses (Feruglio et al., 2013).

In patients with hepatitis C virus, components in the interferon signal-
ing	pathway	such	as	IL28B	and	CXCL10	have	been	suggested	as	the	pre-
diction biomarkers for disease progression and the therapeutic responses to 
IFN-α2b/ribavirin (Helbig and Beard, 2012).

9.4.2  Inflammatory Bowel Disease/Crohn’s Disease
Table 9.2 lists some examples of potential systems-based biomarkers in 
inflammation-associated diseases. A more complete and updated list can be 
found at the site of Biomarkers and Systems Medicine (BSM, 2016).

For	example,	the	elements	in	the	IL-23	signaling	pathway	especially	the	
proteins	downstream	of	 IL-23	 including	 regenerating	protein	3β (REG), 
REG3γ,	lipocalin	2	(LCN2),	and	macrophage	migration	inhibitory	factor	
(MIF) have been found important in IBD/Crohn’s disease (CD) (Cayatte 
et al., 2012; also see Table 9.2).

In addition, the components and interactions in the Wnt/β-catenin 
pathway such as β-catenin nuclear translocation, E-cadherin, and APC 
activities, as well as the expressions of c-Myc and Cyclin-D1 have also been 
suggested as the potential diagnostic and prognostic biomarkers for IBDs 
and sporadic colorectal cancer (Serafino et al., 2014).

9.4.3  Autoimmune Diseases
In MS, the members in the c-Jun N-terminal kinase (JNK)–dependent 
apoptosis pathway has been considered to have critical roles as the poten-
tial biomarkers for MS and relapsing-remitting MS (Ferrandi et al., 2011; 
also see Table 9.2).	The	relevant	molecules	include	CD36,	ITGAL,	OLR1,	
PIAS-1,	RTN4RL2,	IL-23,	and	IFN-γ.

In rheumatoid arthritis (RA), the folate pathway including the levels of 
red	blood	cell	methotrexate	(MTX)	and	folate	polyglutamate	(PG)	may	have	
important roles (Dervieux et al., 2006). The genetic variants of the folate 
metabolic pathway enzymes including the gamma-glutamyl hydrolase gene 
(GGH) C-401T alleles have been suggested as the prediction biomarkers 
for	therapeutic	responses	to	the	MTX	therapy	in	RA	(Hayashi et al., 2009).
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In allergic rhinitis, the components in the glucocorticoid (GC) receptor 
pathway	and	the	acute	phase	response	pathway	including	CCL2,	M-CSF,	
and	 CXCL6	 have	 been	 recommended	 as	 the	 potential	 therapeutic	 bio-
markers among patients with intermittent allergic rhinitis under the GCs 
treatment (Wang et al., 2011; also see Table 9.2).
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CHAPTER TEN

Cardiovascular Diseases 
and Diabetes: Translational 
Bioinformatics and Systems 
Biology Methods
 

10.1  TRANSLATIONAL BIOINFORMATICS METHODS 
FOR STUDIES IN CARDIOVASCULAR DISEASES

 In addition to those discussed in Chapters 3 and 4, many databases and 
bioinformatics resources can be useful for translational studies in cardiovas-
cular diseases (CVDs). For example, CADgene (http://www.bioguo.org/
CADgene/) is an integrative database about genes associated with coronary 
artery disease (CAD) (Liu et al., 2011). The Cardiac Atlas Project (http://
www.cardiacatlas.org) is an imaging database about bioinformatics model-
ing and statistical atlases of the heart (Fonseca et al., 2011). LipidHome 
(http://www.ebi.ac.uk/metabolights/lipidhome/) is a platform that can be 
used to support the studies of lipids and lipidomics (Foster et al., 2013).

Table 10.1 shows some examples of translational bioinformatics 
methods for the studies of CVDs. For example, for CAD, genome-
wide association studies (GWAS) were applied together with the assess-
ment of population-specific linkage disequilibrium structures from 
1000 Genomes Project (Bastami et al., 2016; also see Chapter 3). These 
approaches were applied to map disease correlations with microRNA 
(miRNA) targetome. The functional prediction strategies may reveal the 
effects of disease-related variants on miRNA targetome and their func-
tional impacts. Such analyses may enable polymorphic miRNA target-
ing for more effective treatments.

In another study about CAD, gene expression profiles from the Gene 
Expression Omnibus (GEO) database were analyzed (Zhang et al., 2014b; 
also see Chapter 3). Statistical and bioinformatics approaches including 
database analyses were applied to examine the differentially expressed genes 
(DEGs) in CAD and the protein–protein interaction (PPI) networks for 

http://www.bioguo.org/CADgene/
http://www.bioguo.org/CADgene/
http://www.cardiacatlas.org
http://www.cardiacatlas.org
http://www.ebi.ac.uk/metabolights/lipidhome/
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Table 10.1 Examples of Translational Bioinformatics Methods for  
Cardiovascular Diseases
Associated 
Diseases Translational Bioinformatics Methods References

ACS 	•	 	DNA	microarray	data	from	ACS	patients
	•	 	GEO	database	analysis
	•	 	DEGs	by	Affy	packages	of	R
	•	 	Interaction	network	analysis	using	

STRING
	•	 	DrugBank	analysis	for	relevant	small	

molecules

Zhang et al. 
(2014a)

CAD 	•	 	GWAS
	•	 	Disease	mapping	to	miRNA	targetome
	•	 	Functional	prediction	analyses	to	 

prioritize DAVs

Bastami et al. 
(2016)

CAD 	•	 	Gene	expression	profiles	from	the	GEO	
database

	•	 	Analysis	of	DEGs,	PPI	networks
	•	 	Enriched	biological	processes	among	the	

DEGs using GO terms
	•	 	Pathway	analysis	using	the	KEGG	database

Zhang et al. 
(2014b)

CAD 	•	 	Integration	of	the	genomics	and	 
proteomics data

	•	 	Gene	expression	studies
	•	 	Network	modules

Vangala et al. 
(2013)

CVDs 	•	 	The	informational	spectrum	method	 
for structure/function analysis about  
lipoprotein lipase

Glisic et al. 
(2008)

CVDs 	•	 	Algorithms	for	the	analysis	of	miRNAs
	•	 	LocARNA	and	miRBase	for	structure	

analysis
	•	 	Phylogenetic	comparisons	and	RNA	 

folding patterns
	•	 	Functional	target	prediction
	•	 	Analysis	of	signaling	pathways

Kunz	et	al.	
(2015)

HIV-associated 
heart diseases

	•	 	Genome-wide	proteomes	at	different	stages	
of HIV replication and cell growth

	•	 	Functional	categorization	and	statistical	
analyses

Rasheed et al. 
(2015)

ACS, acute coronary syndrome; CAD, coronary artery disease; CVDs, cardiovascular diseases; DAVs, 
disease-associated variants; DEGs, differentially expressed genes; GEO, Gene Expression Omnibus; 
GO, Gene Ontology; GWAS, genome-wide association studies; KEGG,	Kyoto	Encyclopedia	of	Genes	
and Genomes; miRNA, microRNA; PPI, protein–protein interaction.
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these DEGs. Integrative methods were used for the annotation and visual-
ization to assess the enriched biological processes among the DEGs.

In addition, relevant pathways were collected from the information in 
Gene	Ontology	(GO)	and	the	Kyoto	Encyclopedia	of	Genes	and	Genomes	
(KEGG)	pathway	database	(Zhang et al., 2014b; also see Chapter 3). Using 
the tools such as Cytoscape, the study examined the expression-activated 
subnetworks of the PPI networks and their topological features. The results 
of the study showed that the chemokine and focal adhesion signaling path-
ways may be important in the development of CAD.

In a study of acute coronary syndrome, DNA microarray data for 
thrombus-related leukocyte were examined for the associated genes (Zhang 
et al., 2014a). The study analyzed the data about associated small molecules 
from DrugBank. The study identified the significance of some upregulated 
genes from the chemokine family, including CCL2, CXCL3, and IL10, that 
were associated with the inflammatory activities. The identification of the 
inhibitors of CCL2 (l-Mimosine) from the DrugBank database may help 
support better drug targeting and more effective drug discovery.

As shown in these examples, translational bioinformatics and systems 
biology strategies have been found very useful for the integration of the 
genomics and proteomics data about CAD. For instance, the pathways 
associated with the core regulatory transcription factors, such as PPARG, 
EGR1, and ESRRA, may be potential biomarkers for the disease (Vangala 
et al., 2013). Such approaches for the development of multimarker modules 
and pathway-based biomarkers may be helpful for the predictions of disease 
risks.

Systems biology methods focusing on proteomics help revealed the car-
diovascular extracellular matrix (ECM) as a hallmark for various CVDs 
(Barallobre-Barreiro et al., 2016). For instance, cardiac inflammation and 
ECM remodeling of myocardial infarction (MI) were identified as the sig-
nificant components in the response of the left ventricle (Ghasemi et al., 
2014). Data integration and mining of the data from high-throughput 
(HTP) genomic and proteomic studies extracted temporal and spatial infor-
mation for the development of dynamical models to predict cardiac healing 
post-MI and to identify biomarkers (see Chapters 2 and 4).

The informational spectrum method (ISM) is a virtual spectroscopy 
approach in bioinformatics for the assessments of structures and functions 
of nucleotide and protein sequences. Using ISM in CVDs, the evolution-
ary information was examined for the structure of lipoprotein lipase (LPL) 
(Glisic et al., 2008). Mutations were found to change the LPL enzymatic 
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activities. The bioinformatics approach for analyzing the pathogenic effect 
of LPL nonsynonymous single-nucleotide substitution may help recognize 
the risk factors and potential biomarkers for CVDs.

The combination of translational bioinformatics together with valida-
tion and screening experiments has been found necessary for the investiga-
tion of the complex interactions of miRNAs with the genome in CVDs 
(Kunz	 et	 al.,	 2015). The bioinformatics algorithms were applied for the 
studies of miRNAs and their regulatory elements in cardiac miRNA biol-
ogy for the remodeling of their systemic effects. By using resources such as 
LocARNA and miRBase (see Chapter 3), the biogenesis of miRNAs and 
phylogenetic patterns may be revealed. Such strategies can also be used to 
explore the RNA folding patterns and signaling pathways for diagnostic 
biomarkers and therapeutic target predictions.

For the study of HIV-associated heart diseases, bioinformatics and sta-
tistical methods were used to investigate the genome-wide proteomes of a 
CD4+ T-cell line during various stages of HIV replication and cell growth 
(Rasheed et al., 2015). The functional categorization identified multiple 
pathways such as those associated with the myosin light-chain kinase. These 
proteins and pathways may contribute to cardiac stress, arrhythmia, as well 
as cardiomyopathy and heart failure. Such translational efforts have been 
suggested useful for finding novel biomarkers in addition to the conven-
tional markers to support the early diagnosis and more specific treatments.

10.2  LIPIDOMICS, COMPUTATIONAL SYSTEMS 
BIOLOGY, AND DRUG REPOSITIONING

 Atherosclerosis is a complex disease with evolving stages of inflam-
mation and the hardening of the arterial wall. Various reasons may lead 
to the inflammatory status such as increased cellularity and cellular debris, 
lipid buildup, and the accumulation of extracellular materials (De Leon 
et al., 2015). In these cases, lipids have the pivotal roles because they are the 
essential elements of the vascular plaques (Ekroos et al., 2010). Studies using 
mass spectrometry examined and quantified hundreds of different molecu-
lar lipid species to identify the structure–function correlations (De Leon 
et al., 2015; Ekroos et al., 2010).

The term “lipidomics” refers to the “omics” and systems biology research 
about lipids, which may be critical in these efforts. The identifications of 
lipid- and lipidomics-based biomarkers may contribute to more accurate 
CVD diagnosis with better targeted treatments (Ekroos et al., 2010). Such 
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approaches would be meaningful for the establishment of translational 
models to promote patient stratification and personalized therapeutic effi-
cacy and safety.

Computational systems biology strategies have been proven useful for 
supporting drug repositioning in the treatment of CVDs. For example, bio-
informatics methods were applied to screen for pathways in a cellular model 
with the integration of drug–transcriptome–response data sets and disease-
associated genes for the mappings between drugs target pathways (Yu and 
Ramsey, 2016). The gene set enrichment analysis (GSEA) tests about drug 
targets and transcriptome profiles of atherosclerosis identified potential 
CVD targets such as those relevant to PPARγ and δ-opioid receptor. The 
data integration and mining approaches were found effective for the trans-
lational screening (see Chapter 4).

In summary, systems biology methods can be powerful for the trans-
lation of laboratory-based discoveries into safe and effective clinical out-
comes. The integration of the information about the chemical structure 
and “omics” has been found useful for the examinations of drug effects for 
inflammation in atherosclerosis (Kleemann	et	al.,	2011). Using approaches 
such as comparative genome-wide pathway mapping, predictive models can 
be constructed for identifying the potential drug targets, drug-responsive 
cellular pathways, and combination therapies. For example, the inflamma-
tory signaling cascades relevant to cytokines, such as IFNγ and IL1β, and 
transcriptional regulators, such as NFκB and STAT3, may be especially 
important (Kleemann	et	al.,	2011).

10.3  NUTRITIONAL SYSTEMS BIOLOGY, BIOMARKERS, 
AND TYPE 2 DIABETES

 As a critical risk factor for cardiovascular morbidity and mortality, the 
networks in the macrovascular complications of diabetes may be essential 
in the disease onset and progression. The integrative proteomic and bioin-
formatic assessments of data from aortic vessels in diabetic models indicated 
the alterations of molecules and pathways associated with vascularization, 
hypertrophy, and amino acid breakdown in the development of atheroscle-
rosis (Husi et al., 2014).

The systems biology based investigations in obesity, diabetes, and CVDs 
have also revealed the etiological activities in multiple disease-associated 
cells, tissues, and organs (Meng et al., 2013). Approaches using functional 
genomics, causality inference, and network development may contribute to 
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the finding of biomarkers and possible drug targets from the integration of 
large-scale data sets.

Various “omics” branches may contribute to such purposes, including 
genomics, proteomics, transcriptomics, epigenomics, metabolomics, and 
microbiomics (see Chapter 3). The integration of computational, experi-
mental, and clinical studies in translational bioinformatics and systems 
biology may facilitate the description of the dynamical activities and sys-
temic understanding of the pathophysiological processes for personalized 
interventions.

For example, systems biology studies about metabolomics of obesity 
and type 2 diabetes (T2D) may be especially helpful for the detections of 
disease progression and potential biomarkers such as fatty acids and bile 
acids (Abu Bakar et al., 2015). The proteome-based systems biology exami-
nations of the diabetic mouse aorta revealed the alterations in fatty acid 
biosynthesis as the potential hallmark for diabetes-related vascular disease 
(Husi et al., 2014).

Data mining approaches may be used to examine the multifaceted data 
sets from proteomic and HTP transcriptomic microarrays for analyzing 
the complex networks such as nutritional interactions (Moore and Weeks, 
2011). Such research on nutritional systems biology may help elucidate 
the complex interrelationships among dietary nutrients, molecular and cel-
lular elements, as well as phenotypic tissues, organs, systems, and diseases 
(Zhao et al., 2015). The findings about the disease-disturbed nutritional 
networks would contribute to the recognition of the nutritional biomarkers 
and systemic targets for better preventive and treatment methods (Moore 
and Weeks, 2011).

For example, genetic research has emphasized the critical roles of nutri-
tional and dietary imbalances in the T2D pathogenesis and risks. High-fat 
diet (HFD) can be harmful to the normal functions at many levels from 
metabolites to microbiota, from genetic pathways to the NAD+/NADH 
ratio (Zhao et al., 2015). The dysfunctions of metabolites may result in 
altered DNA methylation and abnormal gene expressions. Such changes 
in epigenomics can cause transcriptional aberrant and the disturbance of 
circadian	rhythms	with	 the	abnormal	 functions	of	 the	CLOCK/BMAL1	
complex and PPARγ (Zhao et al., 2015).

Moreover, HFD can also lead to the decreased levels of butyrate-
generating bacteria in the gut microbiota (see Chapter 9). HFD can 
lower the levels of short-chain fatty acids, such as butyrate, and cause 
the dysfunctions of histone and chromatin. The accumulation of these 
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alterations	including	dysfunctions	in	the	AMPK-	and	SIRT1-related	sig-
naling pathways may ultimately result in the malfunctions of mitochon-
dria (Zhao et al., 2015). These factors highlight the importance of the 
systems-based profiling for T2D and CADs.

10.4  FINDING SYSTEMS-BASED BIOMARKERS FOR 
CARDIOVASCULAR DISEASES: EXAMPLES

 Table 10.2 shows some examples of the potential systems-based bio-
markers for CVDs. A more complete and updated list can be found at the 
site of Biomarkers and Systems Medicine (BSM, 2016).

For example, multiple pathways, such as the osteoprotegerin (OPG), 
receptor activator of nuclear factor-κB	 (RANK),	 and	 RANK	 ligand	
(RANKL)	pathways,	have	been	closely	related	to	CVDs.	As	shown	in	Table 
10.2, these pathways have been suggested as the potential predictive bio-
markers for the risk factors, especially the CVD burden and mortality (Lieb 
et al., 2010).

The inflammatory pathways are also important. For example,  
the IL-33/ST2 pathway has been related to the intramyocardial 

Table 10.2 Examples of Potential Systems-Based Biomarkers for Cardiovascular 
Diseases and Diabetes
Associated Conditions Potential Biomarkers References

CVD prediction The	OPG/RANK/RANKL	
pathways

Lieb et al. 
(2010)

CVDs, heart failure  
therapeutic targets

The IL-33/ST2 pathways Kakkar	and	
Lee (2008)

Differentiating ischemic  
from hemorrhagic stroke

The S100B/RAGE pathways Montaner 
et al. 
(2012)

Sepsis-induced nonovert  
DIC diagnosis

TFPI and P-selectin Mosad et al. 
(2011)

Sporadic thoracic aortic  
aneurysm in women

The TGF-β pathway gene 
polymorphisms

Scola et al. 
(2014)

Type 2 diabetes and  
subclinical atherosclerosis

Lipoxygenase pathway gene 
variations (e.g., polymor-
phisms in ALOX12, ALOX5, 
and ALOX5AP)

Burdon et al. 
(2010)

CVDs, cardiovascular diseases; DIC, disseminated intravascular coagulation; OPG, osteoprotegerin; 
RANK, receptor activator of nuclear factor-κB; RANKL,	RANK	ligand;	TFPI, tissue factor pathway 
inhibitor.



Translational Bioinformatics and Systems Biology Methods for Personalized Medicine130

fibroblast–cardiomyocyte interactions. This pathway has been recom-
mended as a potential biomarker and treatment target for CVDs, especially 
heart failure (Kakkar	and	Lee,	2008; also see Table 10.2).

In addition, the plasma levels of the members relevant to the pathways 
of tissue factor pathway inhibitor (TFPI) and P-selectin may be potential 
diagnostic biomarkers for sepsis-induced nonovert disseminated intravascu-
lar coagulation  (DIC) (Mosad et al., 2011; also see Table 10.2). The S100B/
RAGE pathway has been indicated as the potential plasma biomarkers for 
differentiating ischemic from hemorrhagic stroke (Montaner et al., 2012). 
Genetic variants such as the polymorphisms [rs900 transforming growth 
factor beta 2 (TGF-β2) single-nucleotide polymorphism (SNP)] in the 
TGF-β pathway have been proposed as the possible biomarkers of sporadic 
thoracic aortic aneurysm in women (Scola et al., 2014).

10.5  FINDING SYSTEMS-BASED DYNAMICAL 
BIOMARKERS FOR DIABETES: EXAMPLES

 Studies using mice models have discovered two dynamical networks 
as the potential biomarkers to represent two important progression phases 
in type 1 diabetes (T1D) (Liu et al., 2013). The two phases were tightly 
related to periinsulitis and hyperglycemia. These dynamical network-based 
biomarkers may have important predictive values and serve as the early-
warning sign of T1D for the prevention of disease progression.

For type 2 diabetes mellitus (T2DM), the approaches for finding 
dynamical network biomarkers (DNBs) may also be helpful. For instance, 
the tissue-specific DNBs and abnormal gene expressions have been discov-
ered in the phases of T2DM transition and progression in different tissues, 
including the adipose, liver, and muscle (Li et al., 2014). These phases are 
crucial for insulin resistance and inflammation.

As another example, genetic variances of the members in the lipoxygenase 
pathway including the polymorphisms of ALOX12, ALOX5, and ALOX5AP 
have been closely associated with T2D and subclinical atherosclerosis. The 
biomarkers of inflammation (e.g., CRP, ICAM-1) and calcification (MGP) 
may also be important (Burdon et al., 2010; also see Table 10.2).

In summary, the major alterations in the relevant signaling pathways have 
been found especially important for the disease pathogenesis. The systems-
based biomarkers such as the DNBs in the T2DM cases may be very helpful 
for the detection of the signs and emergence of the transition states for the 
early and immediate diagnosis and prognosis of the complex illnesses.
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CHAPTER ELEVEN

Translational Bioinformatics 
and Systems Biology for Cancer 
Precision Medicine
 

11.1  INTRODUCTION: SYSTEMS BIOLOGY, CANCER 
PRECISION MEDICINE, AND IMMUNOTHERAPY

 Cancers are very complex illnesses caused by heterogeneous reasons 
at various system levels. For instance, breast cancer can be classified into 
different subtypes with different patterns of treatment responses and clini-
cal outcomes (Yersal and Barutca, 2014). However, conventional grouping 
methods are not able to provide accurate and comprehensive classifications 
for diagnosis and prognosis. The objectives of personalized medicine for 
cancer therapies request novel strategies that are systems based and practical 
in the clinics.

The heterogeneous complexity in cancers refer to a broad spectrum 
of mechanisms, especially that different genotypes may be related to 
similar clinical phenotypes (Yersal and Barutca, 2014). Such mechanisms 
refer to the importance of the biomarkers based on genomics find-
ings and interactive networks to enable better diagnosis and therapeutic 
target selections, as well as the prevention of disease development or 
recurrence.

For example, in the processes of breast tumor metastasis, the tumor pro-
liferative capacity is a key element. Systems-based biomarkers such as the 
survival-associated subnetworks may be useful for representing the tumor 
proliferative potential (Song et al., 2015). These comprehensive networks 
may include profiles at various system levels, such as the gene expression 
patterns and protein–protein interaction networks. The systems-based pro-
filing of cancer genes, cellular pathways, the dynamics of tumor metastases, 
and therapeutic outcomes may contribute to the discovery of more robust 
biomarkers with high predictive and prognostic values for the selection of 
treatment targets.
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The personalized medicine models may replace the reductionist 
“one-size-fits-all” concept. The novel approaches for systems-based bio-
marker identification may also transform oncology into the biomarker-
driven cancer precision medicine (Aftimos et al., 2014). Translational 
studies in Cancer Precision Medicine (CPM) should include topics 
such as cancer screening, the monitoring and prediction of relapse and 
recurrence, drug selection, drug response prediction, and personalized  
immunotherapy (Deng and Nakamura, 2016).

Various systems biology approaches may be applied for biomarker iden-
tifications. For instance, the immunohistochemistry (IHC) techniques have 
been useful for detecting protein expressions as the biomarkers for analyzing 
therapeutic responses in patients with solid tumors (Aftimos et al., 2014). 
The analyses in functional genomics can help identify different subtypes of 
genetic abnormalities, including the copy number alterations and sequence 
mutations. The comprehensive profiling containing information about the 
“gene expression signatures” and cellular networks may contribute to the 
discovery of novel anticancer targets for individualized adjuvant treatment 
in various tumor types.

Specifically, the immune functions are crucial in cancer pathophysiol-
ogy and therapeutic responses. The immune system may interact with 
and regulate the growth and development of tumors at various molecular, 
cellular, tissue, and organ levels. On the basis of such understanding, a 
new strategy of immunotherapy emerged with the significant potentials 
as the effective treatment for cancers. In recent years more and more 
applications of immunotherapies have been approved by the US FDA 
(Guhathakurta et al., 2013). However, these novel methods need to be 
improved to increase the efficacy, reduce the expenses, and limit the 
potential adverse events.

To achieve these goals, systems biology and “omics”-based strategies 
such as the high-throughput (HTP) profiling are necessary to elucidate the 
complex mechanisms underlying tumor immunosurveillance and different 
immune phenotypes. Integrative translational studies of the immunological 
activities at different system levels can be applied such as microarrays, deep 
sequencing, and mass spectrometry (MS) (Guhathakurta et al., 2013).

Because multiple pathways are altered in tumors, especially those involved 
in redox and immune regulations, they should be considered as systems-
based biomarkers that can be useful for the identification of extracellular 
and intracellular therapeutic targets. For example, thioredoxin 1 (Trx1) is an 
important redox regulator, while CD30 is a crucial cell membrane receptor 
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involved in immune responses (Berghella et al., 2011). The CD30/Trx1 
system plays significant roles in immune homeostasis and can be a potential 
target for cancer therapy toward the concurrent optimization of both the 
redox and the immune regulations.

Translational bioinformatics methods would be especially important in 
analyzing the tremendous amount of data from these comprehensive analy-
ses. Methods such as data mining and decision support would contribute 
to the development of systems-based models for the discovery of diag-
nostic and prognostic biomarkers, target selections, and outcome analysis  
(see Chapter 4). Such translational efforts would be helpful for improving 
cancer immunotherapies.

For example, in a study for precision cancer prognosis, data mining 
strategies were developed for examining big genomics and clinical data 
(Ow and Kuznetsov, 2016). An algorithm for Prognostic Signature Vector 
Matching and multivariate prognostic models were developed based on 
methods including machine learning, K-nearest neighbor, random forest, 
neural networks, and logistic regression. The study recognized the potential 
prognostic significant mRNAs and the age factor to group ovarian cancer 
patients. The systems-based translational bioinformatics methods enabled 
the method for more precise and reproducible patient classification and 
disease predictions.

11.2  TRANSLATIONAL BIOINFORMATICS RESOURCES 
FOR CANCER STUDIES

 Many resources are available for systems biology and translational 
studies in cancer. Some of these resources and methodologies have been 
discussed in Chapters 3–5. Table 11.1 lists some databases and bioinformat-
ics resources that have been developed in recent years, which can be espe-
cially useful for translational studies in cancer.

For example, The Cancer Genome Atlas (TCGA) is an integrative plat-
form supporting the studies in cancer genomics (Cancer Genome Atlas 
Research Network et al., 2013). The cBioPortal for Cancer Genomics is a 
portal for visualization, analysis, and download of cancer genomics data sets 
(Gao et al., 2013). SurvExpress is a database for biomarker validation based on 
the collection of cancer gene expression data (Aguirre-Gamboa et al., 2013).

The Precision Medicine Knowledgebase (PMKB) is an interactive plat-
form to support the studies of structured clinical-grade cancer mutations 
and cancer precision medicine (Huang et al., 2016). The CancerResource 
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Table 11.1 Translational Bioinformatics Resources for Cancer Studies
Tools Web URL Contents References

BcCluster http://www.
bccluster.org

Molecular signa-
tures of bladder 
cancer

Bhat et al. (2016)

BCNTB http://breast-
cancertis-
suebank.org/
bioinformatics

Breast cancer tissue 
bank

Cutts et al. 
(2015)

Cancer 
Proteomics 
database

http://cancerpro-
teomics.uio.no

Proteomic, prostate 
cancer and anti-
cancer drugs

Arntzen et al. 
(2015)

CancerProView http://cancer-
proview.dmb.
med.keio.ac.jp/
php/cpv.html

Graphical images 
of cancer-related 
genes and 
proteins

Mitsuyama 
and Shimizu 
(2012)

CancerResource http://data-anal-
ysis.charite.de/
care/

Drug-target 
relationships in 
cancer

Gohlke et al. 
(2016)

cBioPortal 
for Cancer 
Genomics

http://www.cbio-
portal.org/

Cancer genomics 
data sets

Gao et al. (2013)

miREC http://www.mir-
ecdb.org

miRNAs in endo-
metrial cancer

Ulfenborg et al. 
(2015)

Mouse Tumor 
Biology (MTB)

http://tumor.
informatics.jax.
org/mtbwi/
index.do

Mouse models Bult et al. (2015)

Mutations and 
Drugs Portal 
(MDP)

http://mdp.uni-
more.it

Linking drug 
response data 
to genomic 
information

Taccioli et al. 
(2015)

Pancreatic Cancer 
Database

http://www.pan-
creaticcancerda-
tabase.org

Pancreatic cancer, 
changes at the 
mRNA, protein, 
and miRNA 
levels

Thomas et al. 
(2014)

Precision 
Medicine 
Knowledgebase 
(PMKB)

https://pmkb.
weill.cornell.edu

Clinical-grade  
cancer mutations

Huang et al. 
(2016)

Prospective Lynch 
Syndrome 
Database

http://lscarisk.org Risks for first cancer, 
subsequent cancer 
with Lynch 
syndrome

Møller et al. 
(2016)

http://www.bccluster.org/
http://www.bccluster.org/
http://breastcancertissuebank.org/bioinformatics
http://breastcancertissuebank.org/bioinformatics
http://breastcancertissuebank.org/bioinformatics
http://breastcancertissuebank.org/bioinformatics
http://cancerproteomics.uio.no
http://cancerproteomics.uio.no
http://cancerproview.dmb.med.keio.ac.jp/php/cpv.html
http://cancerproview.dmb.med.keio.ac.jp/php/cpv.html
http://cancerproview.dmb.med.keio.ac.jp/php/cpv.html
http://cancerproview.dmb.med.keio.ac.jp/php/cpv.html
http://data-analysis.charite.de/care/
http://data-analysis.charite.de/care/
http://data-analysis.charite.de/care/
http://www.cbioportal.org/
http://www.cbioportal.org/
http://www.mirecdb.org
http://www.mirecdb.org
http://tumor.informatics.jax.org/mtbwi/index.do
http://tumor.informatics.jax.org/mtbwi/index.do
http://tumor.informatics.jax.org/mtbwi/index.do
http://tumor.informatics.jax.org/mtbwi/index.do
http://mdp.unimore.it
http://mdp.unimore.it
http://www.pancreaticcancerdatabase.org
http://www.pancreaticcancerdatabase.org
http://www.pancreaticcancerdatabase.org
https://pmkb.weill.cornell.edu/
https://pmkb.weill.cornell.edu/
http://lscarisk.org/
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is a knowledge base about drug targets associated with cancer, as well as 
cancer-associated proteins and mutations (Gohlke et al., 2016; also see Table 
11.1). Mutations and Drugs Portal (MDP) is a database containing drug 
response data and genomic information, as well as drug combinatorial strat-
egies (Taccioli et al., 2015).

The Cancer Proteomics Database is an integration of proteomics data 
and information about cell death, prostate cancer, and anticancer drugs 
(Arntzen et al., 2015; also see Table 11.1). The Candidate Cancer Gene 
Database provides a platform about cancer driver genes (Abbott et al., 2015). 
CancerProView is a graphical image database about cancer-associated genes 
and proteins (Mitsuyama and Shimizu, 2012). The platform of miREC is a 
database of miRNAs associated with endometrial cancer (Ulfenborg et al., 
2015). SomamiR 2.0 is a database about cancer somatic mutations that may 
affect the microRNA–competing endogenous RNA (ceRNA) interactions 
(Bhattacharya and Cui, 2016).

Pancreatic Cancer Database is a comprehensive database about pancre-
atic cancer, especially the alterations at the mRNA, protein, and miRNA 
levels (Thomas et al., 2014; also see Table 11.1). BcCluster is a bladder can-
cer (BC) database for the research of molecular signatures associated with 
BC invasion (Bhat et al., 2016). The Prospective Lynch Syndrome Database 
provides a platform for the calculation of cumulative risks by gender, genetic 
variants, and age for subsequent cancer for those with Lynch syndrome in 
previous cancer (Møller et al., 2016).

Tools Web URL Contents References

SomamiR 2.0 http://compbio.
uthsc.edu/
SomamiR

Cancer somatic 
mutations

Bhattacharya and 
Cui (2016)

SurvExpress http://bioinfor-
matica.mty.
itesm.mx/
SurvExpress

Cancer biomarker 
validation

Aguirre-Gamboa 
et al. (2013)

The Cancer 
Genome Atlas 
(TCGA)

https://cancerge-
nome.nih.gov/

Cancer genomics Cancer Genome 
Atlas Research 
Network et al. 
(2013)

The Candidate 
Cancer Gene 
Database

http://ccgd-starr-
lab.oit.umn.edu

Cancer driver genes 
from forward 
genetic screens

Abbott et al. 
(2015)

UMD TP53 muta-
tion database

http://p53.fr TP53 mutations in 
human cancer

Leroy et al. 
(2014)

Table 11.1 Translational Bioinformatics Resources for Cancer Studies—cont’d

http://compbio.uthsc.edu/SomamiR
http://compbio.uthsc.edu/SomamiR
http://compbio.uthsc.edu/SomamiR
http://bioinformatica.mty.itesm.mx/SurvExpress
http://bioinformatica.mty.itesm.mx/SurvExpress
http://bioinformatica.mty.itesm.mx/SurvExpress
http://bioinformatica.mty.itesm.mx/SurvExpress
https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
http://ccgd-starrlab.oit.umn.edu
http://ccgd-starrlab.oit.umn.edu
http://p53.fr
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In addition, Mouse Tumor Biology (MTB) is a database about mouse 
models used in the studies of human cancers (Bult et al., 2015; also see Table 
11.1). The UMD TP53 mutation database focuses on TP53 mutations in 
human cancers (Leroy et al., 2014).

11.3  TRANSLATIONAL BIOINFORMATICS METHODS 
FOR CANCER STUDIES

 Table 11.2 summarizes some recently developed bioinformatics 
methods for cancer studies. A prominent feature of the recent methodolo-
gies is the application of integrative approaches including data integration 
and data mining (see Chapters 3 and 4). For example, an integrated bioin-
formatics approach was used to study triple-negative breast cancer (TNBC). 
The study focused on the roles of kinase dependency in TNBC (Ryall et al., 
2015). With the integration of public gene expression data, HTP pharma-
cological profiling data, and quantitative kinase binding data, the kinase 
dependency was analyzed in 12 TNBC cell lines.

Specifically, a bioinformatics method called “Kinase Addiction Ranker” 
was applied to query the K-Map for compounds targeting the relevant 
kinases (Ryall et al., 2015). The predictions were also validated using pub-
lished and experimental data. Such translational approaches have revealed 
candidate kinases as the potential diagnostic and therapeutic targets in 
TNBC.

Integrative bioinformatics methods were also used for the study of the 
associations between breast cancer and endometriosis (Roy et al., 2015; 
also see Table 11.2). The methods combined environmental, epidemiologi-
cal, genomic, and bioinformatics strategies for the assessments of the effects 
of environmental chemicals on estrogenic activities. The epidemiological 
correlations were examined about the influences of endocrine disrupt-
ing chemical (EDC) on health, as well as the gene–EDC interactions and 
disease correlations. The study revealed that several hundred genes were 
changed with the exposure to polychlorinated biphenyls, phthalate, or 
bisphenol A.

Pathway analysis indicated that the EDCs-altered genes in breast neo-
plasms and endometriosis were associated with the steroid hormone and 
inflammation pathways, especially the mitogen-activated protein kinase 
(MAPK) signaling pathways (Roy et al., 2015). These genes were sensitive 
to the environment and estrogen and could be changed in the human breast 
and uterine tumors, as well as the endometriosis lesions. Such identifications 
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Table 11.2 Examples of Translational Bioinformatics Methods for Cancer Studies
Associated 
Conditions Translational Bioinformatics Methods References

Acute myeloid 
leukemia

	•	 	Analysis	of	prognostic	mutations	
from TCGA

	•	 	Unsupervised	neural	network	analysis	
for clusters and patterns

Welsh et al. 
(2015)

Beta-catenin  
implications in 
cancer

	•	 	Data	integration	from	disparate	
sources

	•	 	Literature	mining
	•	 	Bioinformatics	Knowledge	Map	for	

protein–protein interactions, disease-
associated mutations

Çelen et al. 
(2015)

Breast cancer 	•	 	Data-mining	portal	for	breast	cancer	
tissues

	•	 	Genomics,	methylomics,	transcrip-
tomics, proteomics, and microRNA 
data

	•	 	Pathways	in	breast	cancer
	•	 	Links	to	NCBI,	Ensembl,	and	

Reactome

Cutts et al. 
(2015)

Breast cancer and 
endometriosis

	•	 	Integrated	analyses	for	environmental	
and molecular links

	•	 	Gene-EDC	interactions	and	disease	
associations

	•	 	Steroid	hormone	signaling	and	
inflammation pathways

Roy et al. (2015)

Breast cancer 
progression

	•	 	microRNA	target	prediction	based	
on differentially expressed protein-
coding genes

Pinatel et al. 
(2014)

Cancer 	•	 	Analysis	of	the	serine	and	glycine	
pathways using public data sets

Antonov et al. 
(2014)

Cancer 
metabolomics

	•	 	Metabolomics	technologies	and	data	
generation

	•	 	Data	preprocessing
	•	 	Multivariate	data	analyses,	e.g.,	PCA,	

clustering, self-organizing maps

Blekherman 
et al. (2011)

Cutaneous metastases 
of prostate

	•	 	Analysis	of	multiple	healthcare	
delivery networks

	•	 	Aggregated	EHRs

Brown et al. 
(2014)

Immunotherapies 
for cancer

	•	 	Streamline	for	target	discovery	in	a	
bioinformatics analysis pipeline

	•	 	Cataloging	of	potentially	antigenic	
proteins, HLA binders, epitopes, and 
cotargets

Olsen et al. 
(2014)

Continued
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of the common environmental, molecular, and cellular risk factors in breast 
cancer and endometriosis at various levels would be very helpful for further 
discovery of systems-based biomarkers.

In a study of acute myeloid leukemia, bioinformatics was found use-
ful for identifying prognostic mutations (Welsh et al., 2015; also see Table 
11.2). Data from the TCGA database were analyzed about the cytogenetics, 
genetic mutations, and survival duration for prognosis. Data mining meth-
ods including unsupervised neural network and clustering analyses were 
performed to find the mutation or survival patterns.

The evaluations of the mutations and the clustering analysis identified 
several prognostic subgroups (Welsh et al., 2015). These included “good” 
groups that were associated with the mutations in NPM1 or TET2, “inter-
mediate” relevant to the mutations in NPM1/DNMT3A, and “poor” rel-
evant to the mutations in RUNX1 or FLT3-ITD/CEBPA. Such findings 
are meaningful for the stratification of patient subgroups for personalized 
medicine.

A data-mining portal of the Breast Cancer Campaign Tissue Bank 
(BCCTB) was constructed for the investigations of breast cancer tissues 
(Cutts et al., 2015; also see Table 11.2). The portal provided data integration 
and mining approaches for the analyses based on genomics, methylomics, 
transcriptomics, proteomics, and microRNA studies. The portal incorpo-
rated various resources about annotations and databases including NCBI, 
Ensembl, and Reactome (see Chapter 3). Such bioinformatics efforts may 
help save time and expenses from redundant experiments to improve the 
effectiveness and efficiencies of the translational processes.

Bioinformatics and computational strategies may also be used in the 
prediction of the correlations of microRNAs in breast cancer progression 

Associated 
Conditions Translational Bioinformatics Methods References

TNBC 	•	 	Integrated	analysis	for	kinase	
dependency

	•	 	Integration	of	public	gene	expression	
data, HTP pharmacological profiling 
data

	•	 	Kinase	Addiction	Ranker

Ryall et al. 
(2015)

EDC, endocrine disrupting chemical; EHRs, electronic health records; HTP, high-throughput; PCA, 
principal component analysis; TCGA, The Cancer Genome Atlas; TNBC, triple-negative breast cancer.

Table 11.2 Examples of Translational Bioinformatics Methods for Cancer 
Studies—cont’d



Translational Bioinformatics and Systems Biology 141

(Pinatel et al., 2014; also see Table 11.2). For instance, the microRNA 
target prediction algorithms were applied to analyze the differentially 
expressed protein-coding genes. The mining of the cancer gene expres-
sion data sets revealed miR-223 as a potential target in breast malignancy 
for treatment.

In the study of cutaneous metastases of prostate cancer, bioinfor-
matics strategies were applied to integrate information from multiple 
healthcare delivery networks including those from electronic health 
records (EHRs) (Brown et al., 2014; also see Table 11.2). The study 
revealed that a low rate of prostate carcinomas may lead to cutaneous 
metastases. The study highlighted the importance of the examinations of 
the complete clinical history for more accurate diagnosis of cutaneous 
metastases of the prostate.

In a bioinformatics study using public cancer data sets, the serine 
and glycine pathways in cancer cells were found significant (Antonov 
et al., 2014; also see Table 11.2). The expression patterns of PHGDH and 
SHMT2 were suggested as the prognostic factor for breast cancer associ-
ated with the predictions of patient survival outcomes. In the examina-
tions of the patient data sets of lung cancer, the study showed that other 
enzymes of the pathways could also be important for prognosis. Such 
translational efforts may contribute to the discovery of biomarkers for 
human cancers.

Beta-catenin is a cell adhesion molecule and transcriptional regulator. In 
a recent analysis, the Bioinformatics Knowledge Map was applied to study 
the roles of beta-catenin in cancer (Çelen et al., 2015; also see Table 11.2). 
Methods of data integration were performed to understand the data from 
different sources to construct a bioinformatics platform to support litera-
ture mining and data mining based on biomedical ontologies and curated 
databases. The knowledge “maps” contained information about posttrans-
lational modifications (PTMs), protein–protein interactions, disease-related 
mutations, and transcription factors associated with beta-catenin and their 
targets.

The study emphasized the roles of the proteins in various relation types 
and revealed the proteins in feedback loops associated with beta-catenin 
transcriptional processes (Çelen et al., 2015). The examination of the mul-
tiple networks related to PTM proteoform-specific functions identified 
the significance of the cyclin-dependent kinase CDK5. The analyses of 
the cancer-related mutation data helped in identifying the relevant pat-
terns in different tissue types correlated with beta-catenin mutations and 
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cancer. The integrative strategies such as those in data integration and data 
mining demonstrated their importance in translational bioinformatics (see 
Chapters 3 and 4).

Furthermore, using a bioinformatics analysis pipeline, specialized bio-
informatics tools and databases were found useful for the immunotherapy 
target discovery for cancer (Olsen et al., 2014; also see Table 11.2). These 
approaches included the classifications of possible antigenic proteins, the 
finding of potential HLA binders, and the identifications of epitopes and 
co-targets. The study indicated that translational bioinformatics strategies 
such as those about tumor antigen HER2 may help understand drug resis-
tance to improve the efficiencies in immunotherapy.

Moreover, bioinformatics approaches such as data preprocessing 
and multivariate data analysis can also be used for cancer metabolomics 
(Blekherman et al., 2011; also see Table 11.2). Various techniques can be 
helpful for such purposes, such as principal component analysis (PCA), 
clustering, self-organizing maps (SOMs), and discriminant function analy-
sis. These methods can be applied to track the metabolic alterations in the 
cellular transformation from normal to malignant.

11.4  IDENTIFYING POTENTIAL SYSTEMS-BASED 
BIOMARKERS FOR CANCERS

11.4.1  Cancer Metastasis and Biomarkers
Metastasis is the last stage and the major factor of mortality in most can-
cers. The molecular mechanisms underlying metastasis are not clear, even 
though metastases account for most of the cancer fatalities. Available analy-
ses of gene expression patterns in metastasis have been focusing on only a 
few separate genes as the “signature” biomarkers. It is critical to identify 
metastatic biomarkers for better understanding of this final phase of cancer 
progression to improve the prognosis and treatment of cancers.

To improve the understanding of the metastasis processes, systems biol-
ogy approaches using HTP technologies such as microarray can be useful for 
analyzing gene expression data. Such analysis can help elucidate the genetic 
interaction networks rather than isolated genes. Bioinformatics methods 
such as hierarchical cluster analysis, gene ontology functional analysis, and 
pathway analysis can be applied for such purposes.

For example, by comparing gene expression data from various tissues 
including the advanced gastric cancer and adjacent noncancerous gastric 
tissues, metastatic tumor was found to be associated with the alterations in 
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the apoptosis and proteasome degradation pathways (Wang et al., 2010). 
Specifically, the higher levels of TRAF2 and IRF3 were found in the apop-
tosis pathway, and increased levels of NEDD4 and UBE1 were observed 
in proteasome degradation pathway. Such findings can be helpful for the 
understanding of the cancer progression processes.

In another example, the applications of normalization and pathway 
analysis helped reveal that all metastatic tumors might share some proper-
ties including the alterations in energy metabolism, antigen presentation, 
cell adhesion, cytoskeleton remodeling, and cell cycle regulation (Ptitsyn 
et al., 2008). These features were common even in different tissues. In addi-
tion, compared with primary solid tumors, remarkably lower oxidative 
phosphorylation was observed in metastases.

Various HTP technologies including gene expression arrays, proteomics 
analysis, and array comparative genomic hybridization (aCGH) can be 
applied to analyze the prognostic expression profiles. For instance, by apply-
ing a metastatic transgenic mammary tumor model, it has been found that 
germline polymorphisms could be important determinants of the metastatic 
efficiency (Goldberger and Hunter, 2009). A concordance of survival was 
detected between family members with cancer, suggesting the connection 
between genetic inheritance factors and survival. Using aCGH and pro-
teomic analysis, chromosomal aberrations and signaling pathways associated 
with the metastatic capacity have been identified (Goldberger and Hunter, 
2009).

Furthermore, the analysis using activity-based proteomics helped estab-
lish the carcinoma enzyme activity profiles that could have more clinical 
meanings than the simple expression-based proteomics (Goldberger and 
Hunter, 2009). Such approaches based on the networks of interacting mol-
ecules rather than single genes can help expedite the discovery of robust 
and effective biomarkers for better prognosis and therapeutic results. For 
instance, the metabolic pathways involved in metastasis can be used as novel 
treatment targets.

11.4.2  Dynamical Biomarkers for Cancers
As discussed previously, the initiation and progression processes of cancers 
are very complex, with multiple pathways and different factors involved. 
It is important to elucidate the alteration tendency of carcinogenesis and 
the dynamic patterns of protein expressions during the different stages. 
Robust biomarkers need to be found based on the understanding of the 
associations among serum, tissues, and the microenvironment of tumors 
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(Berghella et al., 2011). Clinical and treatment parameters or variables at 
various stages should be included, from the onset to the progression of the 
tumor.

Specifically, in solid cancers, primary prevention and early detection 
may be efficient for lowering the mortality. Conventional strategies for 
cancer screening classify those at risk into three groups including those 
that are normal, and those having cancer with or without symptoms  
(Li et al., 2011). This static grouping method may not be helpful for low-
ering cancer mortality. Static genetic signatures may not be sufficient for 
the robust prediction of cancer progressions. Systems-based and dynami-
cal biomarkers are needed to represent the evolving processes in cancer 
development.

An effort in this direction is a model of dynamic clonal evolution that 
can be applied as the potential biomarkers for more precise prediction and 
examination of cancer progression (Li et al., 2011). Such dynamical mod-
eling and robust biomarkers for cancer development would enable timely 
prevention and treatment, as well as individualized administrations for bet-
ter clinical outcomes.

For example, a study of different stages of colorectal cancer biopsies 
detected 199 differentially expressed proteins in the comparison between 
the the tumor, nodes, and metastasis (TNM) stages I–IV and normal tissues 
(Peng et al., 2012). Data mining using the SOM clustering analysis showed 
eight distinguished expression patterns. The proteins identified using the 
technologies of matrix-assisted laser desorption/ionization time-of-flight 
(MALDI-TOF) MS were found to be functioning in energy metabolism, 
acetylation, and signaling pathways (Peng et al., 2012). Using the methods of 
survival classifier and leave-one-out cross-validation (LOOCV) analyses, the 
potential prognostic biomarkers were identified with survival predictions for 
TNM stage I–IV patients, especially for the stage III and IV patients.

Furthermore, the cancer-associated proteins were expressed dynamically 
as their expression levels altered constantly throughout the tumorigenesis 
processes (Peng et al., 2012). Molecular indications could be observed much 
earlier than the observable clinical or histological alterations. Such findings 
demonstrate the potential applications of molecular staging profiles, as the 
dynamical analysis of protein expression patterns can be very useful for 
finding prognostic biomarkers for cancers.

To better understand the disease heterogeneity and dynamics, a sys-
tems biology approach based on parsimony phylogenetic analysis has been 
suggested useful for disease modeling and further biomarker discovery 
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(Abu-Asab et al., 2011). The strategy using parsimony phylogenetics would 
allow for a hierarchical classification for disease modeling. Parsimonious 
cladograms can be generated by using phylogenetic software such as 
PHYLIP’s MIX.

The shared genetic expressions or differences in mutations would 
enable more accurate discovery of biomarkers. The parsimonious assem-
bly of the disease heterogeneous data would facilitate the development 
of specimen-specific “omics” profiles. In addition, the profiling of rel-
evant signaling pathways and molecular networks can be used as the 
systems-based biomarkers for disease subgroups. For example, such an 
analysis of prostate tumors revealed a major bifurcation in two clades 
showing differences between primary and metastatic prostate tumors 
(Abu-Asab et al., 2011).

As an example in cervical intraepithelial neoplasia (CIN), the con-
ventional grading system based on static morphology and microscopic 
hematoxylin–eosin features has limitations in representing the dynamic 
processes as the epithelium tissues change over time (Baak et al., 2006). 
Functional biomarkers have been suggested useful for the evaluation of 
the progression and regression in individual patients, including p16, Ki-67, 
p53, retinoblastoma protein cytokeratin (CK)14, and CK13 (Baak et al., 
2006). These biomarkers need to be detected quantitatively and separately 
in different layers of the epithelium to indicate the feature of a particular 
CIN lesion for the dynamical interpretation of the abnormal tissue for 
prognostic applications.

11.4.3  Examples in Breast Cancer
As a subtype of breast cancers, inflammatory breast cancer (IBC) is very 
destructive and difficult to treat. The genetic signatures that have been 
found for this complex illness cannot represent the disease well (Remo 
et al., 2015). For more precise diagnosis and grouping of IBC, better bio-
markers are still needed to indicate the different phenotypes.

In a recent analysis, a network-based method was used to examine the 
master regulators (MRs) associated with the IBC pathogenesis and pheno-
types (Remo et al., 2015). The study assessed the gene expression data with 
computational modeling and investigated the relevant cellular networks by 
using pathway enrichment assessments for the prediction of the possible 
genetic targets. These approaches were combined with the analyses using 
IHC and microarrays for multilevel explorations of the MRs expression 
patterns.
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The integration of these methods help found the enriched MRs such 
as NFAT5 and beta-catenin that were closely associated with the IBC 
phenotypes (Remo et al., 2015). In addition, the NFAT5-related signaling 
pathways have been correlated to the IBC pathogenesis. These factors and 
interactions may be possible biomarkers for better diagnosis and prognosis 
for different disease phenotypes. Such systems-based strategies may contrib-
ute to the advancement of cancer precision medicine.

Table 11.3 shows some example of the potential biomarkers for differ-
ent types of cancers. A more complete and updated list can be found at the 
site of Biomarkers and Systems Medicine (BSM, 2016). For instance, the 
phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin 
(mTOR) pathways may be useful for the prediction of sensitivity to the 
pathway inhibitors and can be the potential biomarkers for the subpop-
ulation drug responses (Gonzalez-Angulo and Blumenschein, 2013). The 
dysregulations of the PI3K/Akt/PTEN pathways may be the possible indi-
cators for the prognosis and high-risk prediction of node-negative breast 
cancer recurrence (Capodanno et al., 2009).

In addition, the insulin-like growth factor receptor 1 (IGF1R)/PI3K 
pathways may be important as the indications for recurrent breast cancer 
after tamoxifen therapy (Drury et al., 2011). The estrogen receptor alpha 
signaling pathways may be useful for the disease detection, prognosis, and 
therapeutic decisions (Ohshiro and Kumar, 2010). The HTP proteomics 
profiling of secretomes suggested that the IGF signaling pathways and the 
plasminogen activating system may be potential prognostic and predictive 
biomarkers for invasive breast cancer (Lawlor et al., 2009).

Furthermore, the leukemia inhibitory factor receptor (LIFR) is a breast 
cancer metastasis suppressor. It is associated with the microRNA miR-9 
and the Hippo-YAP (transcriptional coactivator yes-associated protein) 
pathway. As a potential prognostic biomarker, it has been associated with 
breast cancer metastasis (Chen et al., 2012; also see Table 11.3).

11.4.4  Examples in Lung Cancer
In non–small cell lung cancer (NSCLC), the IGF pathways containing 
IGF-binding proteins (IGFBPs), such as IGFBP5 and IGFBP7, may indi-
cate tumor progression and patient outcomes (Shersher et al., 2011; also 
see Table 11.3). The low levels of IGFBP5 may refer to the recurrence of 
the disease. The high levels of IGFBP7 may indicate the positive nodal 
status.
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Table 11.3 Examples of Potential Systems-Based Biomarkers for Cancers
Associated Conditions Potential Biomarkers References

Advanced gastric cancer 
progression

Apoptosis pathways and 
proteasome degradation 
pathways

Wang et al. (2010)

Breast cancer drug  
sensitivity prediction

The PI3K/Akt/mTOR 
pathways

Gonzalez-Angulo 
and Blumenschein 
(2013)

Breast cancer (invasive)  
prognostic and 
prediction

The IGF signaling and the 
plasminogen activating 
systems

Lawlor et al. (2009)

Breast cancer metastasis 
prognosis

LIFR, microRNA miR-
9, and the Hippo-YAP 
pathways

Chen et al. (2012)

Breast cancer (node-
negative) prognosis, 
recurrence

The PI3K/Akt/PTEN 
pathways

Capodanno et al. 
(2009)

Breast cancer recurrence 
after tamoxifen therapy

The IGF1R/PI3K pathways Drury et al. (2011)

Breast cancer surveillance, 
prognosis and treatment

The estrogen receptor alpha 
signaling pathways

Ohshiro and Kumar 
(2010)

Cancer metastases,  
therapeutic targets

The metabolic pathways Ptitsyn et al. (2008)

Cancer therapeutic targets Multiple pathways in redox 
and immune regulations, 
e.g., the CD30/Trx1 
system

Berghella et al. (2011)

CRC prognosis GRP78, ALDOA, CA1, and 
PPIA associated pathways

Peng et al. (2012)

IBC diagnosis and 
prognosis

The NFAT5-related  
signaling pathways

Remo et al. (2015)

Lung cancer diagnosis and 
therapeutic responses

The mTOR-signaling 
pathway

Ekman et al. (2012)

NSCLC tumor progression, 
recurrence and outcomes

The IGF pathway Shersher et al. (2011)

NSCLC tumor heteroge-
neity during metastasis

The EGFR pathway Park et al. (2009)

NSCLC prognosis The K-Ras signaling 
pathway

Levallet et al. (2012)

NSCLC prognosis The EGFR pathway Galleges Ruiz et al. 
(2009)

CRC, colorectal cancer; EGFR, epidermal growth factor receptor; IBC, inflammatory breast cancer; 
IGF, insulin-like growth factor; IGF1R, insulin-like growth factor receptor 1; LIFR, leukemia inhibi-
tory factor receptor; mTOR, mammalian target of rapamycin; NSCLC, non–small cell lung cancer; 
PI3K, phosphatidylinositol 3-kinase; Trx1, thioredoxin 1.
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Multiple members related to the epidermal growth factor recep-
tor (EGFR) pathways may be the potential prognostic biomarkers for 
NSCLC, including pERK, pSTAT3, and E-cadherin (Galleges Ruiz et al., 
2009). The EGFR pathways may also indicate the heterogeneity during 
metastasis in NSCLC. Mutations in the relevant pathways refer to the 
variances between primary tumors and metastatic lymph nodes (Park 
et al., 2009).

In addition, the mTOR signaling pathways have been suggested as the 
possible diagnostic and treatment biomarker for lung cancer (Ekman et al., 
2012). The β-tubulin III (TUBB3) associated with the K-Ras signaling 
pathways may be the possible prognostic biomarker for NSCLC treated by 
neoadjuvant chemotherapy such as paclitaxel- or gemcitabine-based drugs 
(Levallet et al., 2012; also see Table 11.3).
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CHAPTER TWELVE

Aging and Age-Associated 
Diseases: Translational 
Bioinformatics and Systems 
Biology Methods
 

12.1  INTRODUCTION: CHALLENGES AND 
OPPORTUNITIES IN AGING STUDIES

 Aging has complex consequences especially in age-associated diseases 
such as Alzheimer’s disease, cancer, cardiovascular diseases, and type 2 diabe-
tes (T2D). The worldwide increasing rates of these illnesses demand more 
investigations about the relationships between aging and diseases, which 
may also be beneficial for promoting healthy aging.

However, failed preclinical models and ineffective chemical drug candi-
dates have made it difficult to achieve effective therapies for age-associated 
disorders, especially Alzheimer’s disease (AD) (Flood et al., 2011). Many 
factors may cause such failure, including the wrong drug targets that are 
not closely related to the disease processes, and the lack of the translation of 
animal models into clinical treatments for humans.

It is urgent to identify and validate robust biomarkers to accurately rep-
resent disease onsets and progressions for better preventive strategies and 
drug targets. This is especially true for neurodegenerative diseases (NDs) 
such as AD, Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS) 
(Kori et al., 2016).

Translational bioinformatics may enhance the understanding in systems 
biology of aging with the simulation of the dynamics of biological systems 
in the aging processes (Mooney et al., 2016). Previous computational mod-
els have put emphasis on the detailed components but missed the full scope 
of aging. The conventional reductionist methods have been focusing on the 
separate parameters in aging. However, the complex genotypic and pheno-
typic alterations refer to the multiplex factors that need systemic examina-
tions (Zierer et al., 2015).
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The new directions focusing on the systems part would allow for the 
illustrations of the network interactions at various scales and levels of time 
and space during aging (Chauhan et al., 2015; also see Chapter 7). The 
systems biology-based approaches may link various aging stages at different 
structural, temporal, and spatial levels. The systematic analyses of the large-
scale data sets such as those from the high-throughput (HTP) and “omics” 
data may help elucidate the complexity in the feedback loops and crosstalk 
among different organs and systems (see Chapter 2).

The profiling and modeling of the systemic factors can contribute to 
the discovery of biomarkers for the age-associated illnesses by elucidat-
ing the accumulation or “emergence” of the results from the alterations in 
the different sections in the biomedical system (Zierer et al., 2015; also see 
Chapter 2). The investigations of the nonlinear behaviors in the aging bio-
logical processes would enable beyond intuitive reasoning and more accu-
rate models for predictions (see Chapters 1 and 2).

Specifically, translational bioinformatics and systems biology approaches 
may enable the integration of functional genomics data and complex molec-
ular networks (see Chapter 4). For example, the analyses of gene regulation 
data and KEGG (see Chapter 3) gene sets could be applied to develop regu-
latory gene set networks (R-GSNs) to discover novel associations among 
the pathways in Alzheimer’s disease (Suphavilai et al., 2015). Such GSNs 
would improve the understanding of the mechanisms underlying aging, ill-
nesses, and drug perturbations.

In another example, metabolomics analysis was done based on the 
literature data about metabolite-disease associations among AD, PD, and 
ALS (Kori et al., 2016). The study identified 101 metabolites as the poten-
tial biomarkers for NDs, including the shared metabolite markers from 
different diseases such as creatine. The analysis of the disease-metabolite 
pathways emphasized the roles of membrane transporters including those 
of arginine and proline amino acids. The pathway enrichment analyses 
suggested that the metabolic pathways involving alanine, aspartate, glu-
tamate, and purine metabolism may function to overcome insufficient 
glucose supply and energy crisis. These findings highlight the key roles of 
metabolite-based biomarkers in NDs (Kori et al., 2016).

In addition, the immune system has the essential role in aging and 
age-associated diseases. The terms of “immune aging” or “immunosenes-
cence” refer to the aging routes related to the declining functions in the 
innate and adaptive immunity (O’Connor et al., 2014). The combination 
of translational bioinformatics and experimental approaches may lead to 



Aging and Age-Associated Diseases 155

systems-based models with predictive capabilities to describe the interac-
tions among immune molecules, cells, and tissues in aging. These would 
help understand the dynamical aging processes in the whole organism.

12.2  RESOURCES AND METHODS IN TRANSLATIONAL 
BIOINFORMATICS FOR AGING STUDIES

 In addition to those discussed in Chapters 3 and 4, Table 12.1 lists some 
databases and bioinformatics resources that can be useful for translational 
studies in aging and age-related diseases. For example, Geroprotectors is a 
database about treatments of aging and age-related diseases (Moskalev et al., 
2015; also see Table 12.1). Deep Biomarkers of Human Aging is a platform 
about the application of deep neural networks for the identification of bio-
markers (Putin et al., 2016). GeneFriends provides an analysis tool for finding 
genetic targets for aging and complex diseases (van Dam et al., 2012).

AlzBase is an integrative database about genetic dysfunctions in AD (Bai 
et al., 2016; also see Table 12.1). The National Alzheimer’s Coordinating 
Center (NACC) is a comprehensive platform to support exploratory and 
explanatory studies in AD (Beekly et al., 2007). PolyQ is a database about 
the studies of NDs using mouse models (Szlachcic et al., 2015).

Table 12.2 shows some examples of translational bioinformatics meth-
ods for supporting the systems biology studies of aging and associated 
illnesses including AD. For example, translational methods were applied 
for the phenotyping of Aβ sensitivity, transcriptomic profiling, and data 
mining of published patient data (Hadar et al., 2016; also see Table 12.2). 
The study found that the lower peripheral and brain expression levels of 
the regulator of G-protein signaling 2 (RGS2) could be a potential bio-
marker for early AD detection and treatment. Another study integrated 
bioinformatics and imaging informatics. Using methods such as whole 
genome sequencing (WGS) and single variant analyses, the associations 
were identified between the PSEN1 p. E318G variant and the risk of late-
onset AD (LOAD) among APOE ε4 carriers (Nho et al., 2016).

Integrative strategies have been used for analyzing AD gene expression 
profiles from the resources including Gene Expression Omnibus (GEO) 
database, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways (Feng et al., 2015; also see Chapters 3 and 4).  
The study identified some significant functional roles of protein–protein inter-
action (PPI) networks including upregulated and downregulated genes. These 
networks may be considered for potential biomarkers and therapeutic targets.
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Table 12.1 Translational Bioinformatics Resources for Studies of Aging and Age-Associated Diseases
Databases/Tools Web URL Contents References

AlzBase http://alz.big.ac.cn/alzBase/ Gene dysregulation in Alzheimer’s 
disease

Bai et al. (2016)

Deep Biomarkers of Human 
Aging

http://www.aging.ai/ Deep neural networks for biomarker 
development

Putin et al. (2016)

GeneFriends http://genefriends.org/ A coexpression analysis tool about 
gene targets for aging and complex 
diseases

van Dam et al. (2012)

Geroprotectors http://geroprotectors.org Therapeutic interventions in aging and 
age-related diseases

Moskalev et al. (2015)

National Alzheimer’s 
Coordinating Center 
(NACC)

https://www.alz.washington.edu/ For Alzheimer’s disease research Beekly et al. (2007)

PolyQ database http://conyza.man.poznan.pl/ For research of neurodegenerative 
diseases

Szlachcic et al. (2015)

http://alz.big.ac.cn/alzBase/
http://www.aging.ai/
http://genefriends.org/
http://geroprotectors.org
https://www.alz.washington.edu/
http://conyza.man.poznan.pl/
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Table 12.2 Examples of Translational Bioinformatics Methods for Studies of Age-
Associated Diseases
Associated 
Conditions Translational Bioinformatics Methods References

AD 	•	 	Bioinformatics	workflow	with	
known multivariate methods

	•	 	Support	vector	machines
	•	 	Biclustering

Augustin et al. (2011)

AD 	•	 	Analysis	of	profiles	from	GEO	
database

	•	 	Analysis	of	GO,	KEGG	pathways

Feng et al. (2015)

AD 	•	 	Genome-wide	transcriptomic	
profiling

	•	 	Data	mining	of	published	patient	
data

Hadar et al. (2016)

AD 	•	 	Nonlinear	dynamics	analyses,	FD	
computation, entropy correlations

Holden et al. (2013)

AD 	•	 	Genome	expression	profiling	analysis Li et al. (2012)
AD 	•	 	Analysis	of	microarray	data

	•	 	Hierarchical	clustering
	•	 	Function	analysis
	•	 	Target	genes	prediction
	•	 	Network	construction

Zhao et al. (2016)

AD drug 
repurposing

	•	 	Analyses	of	molecular	similarity
	•	 	Pathway/ontology	enrichment	and	

networks

Siavelis et al. (2016)

LOAD 	•	 	WGS
	•	 	Integration	of	bioinformatics	and	

imaging informatics

Nho et al. (2016)

T2D, AD 	•	 	Analysis	of	GWAS	data	at	SNP,	gene,	
pathway levels

	•	 	Functional	enrichment	analysis

Gao et al. (2016)

PD 	•	 	Analyses	for	disease-affected	genes	
and pathways

	•	 	Expression	Data	Up-Stream	Analysis
	•	 	Analyses	of	GEO	data	sets

Fu and Fu (2015)

PD 	•	 	Maps	for	common	genetic	variability
	•	 	Analysis	of	the	entire	genome	in	a	

systematic, cost-effective way

Scholz et al. (2012)

PD 	•	 	HTP	for	the	expression	profiles Zhang et al. (2014)

AD, Alzheimer’s disease; FD, fractal dimension; GEO, Gene Expression Omnibus; GO, Gene 
Ontology; GWAS, genome-wide association studies; HTP, high-throughput; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; LOAD, Late-onset AD; PD, Parkinson’s disease; SNP, single-
nucleotide polymorphism; T2D, type 2 diabetes; WGS, whole genome sequencing.
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Data mining approaches including hierarchical clustering, functional 
analysis, target gene prediction, and interactive networks were applied for 
assessing AD microarray data from the expression profiles (Zhao et al., 2016; 
also see Chapter 4). The study found some possible target genes and relevant 
networks including FLT1 as the potential biomarkers. In another genome 
expression profiling analysis, several genes were found abnormally expressed 
in the metabolic and signal transduction pathways in the hippocampus (Li 
et al., 2012).

Bioinformatics studies about both T2D and AD examined the data from 
genome-wide association studies (GWAS) at various system levels includ-
ing single-nucleotide polymorphisms (SNPs), genes, and pathways (Gao 
et al., 2016). The functional enrichment analysis identified some shared 
factors between T2D and AD, including the SNPs such as rs111789331 
and rs66626994, as well as the significance of lipid metabolism associated 
pathways.

In addition, the nonlinear dynamics studies of AD including fractal 
dimension computation and entropy correlation analysis revealed the signifi-
cance of hypocretin neuropeptide precursor (HCRT), a hypothalamus neu-
rotransmitter associated with the wake/sleep cycle (Holden et al., 2013). Such 
information may be useful for AD drug discovery. Translational bioinformat-
ics strategies may also contribute to AD drug repurposing. For instance, by 
examining the molecular similarities, interactions, and networks, a list of 27 
potential anti-Alzheimer agents were composed (Siavelis et al., 2016).

Bioinformatics strategies emphasizing the workflow may also be impor-
tant. The study using known multivariate methods such as support vector 
machines and biclustering helped with the discovery of significant mod-
ules associated with transcription factor families including EGRF/ZBPF 
(Augustin et al., 2011). The integration of in silico promoter and multi-
variate analyses may help elucidate the significant regulation mechanisms of 
genes and pathways in the multifactorial disorders.

Together with systems biology and HTP technologies, bioinformatics 
approaches were applied for finding disease-associated genes and pathways 
by assessing tissue samples from patients with PD (Fu and Fu, 2015). The 
study also used Expression Data Up-Stream Analysis and evaluated genomic 
data sets from GEO. The study revealed RNA metabolism pathology as 
possible factors of PD. The functional analyses showed that the dysfunctions 
of the transport system could be important in the early stages of the neuro-
degeneration processes. On the other hand, the mitochondrial dysfunctions 
could occur during a later phase of the disease.
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In another study of PD, bioinformatics and HTP approaches were 
used for examining the expression profiles (Zhang et al., 2014). The 
study identified 181 differentially expressed genes with a similar expres-
sion trend. The analyses showed that these genes were enriched in 
various biological activities such as transcriptional regulations, disease 
progression, and drug responses. The clusters of these genes and relevant 
pathways may be useful for the discovery of biomarkers for the early 
diagnosis of PD.

Translational bioinformatics studies of PD may provide the illustration of 
the detailed maps for the common genetic variability (Scholz et al., 2012). 
Together with systems biology, such strategies may help examine the entire 
genome in a rapid, systematic, and inexpensive way. Using these approaches, 
about 30 genetic loci associated with the pathogenesis of PD were identi-
fied with the emphasis on the essential molecular pathways. These examples 
have demonstrated that the approaches in neurogenomics, systems biol-
ogy, and translational bioinformatics can be valuable for understanding the 
complex age-associated diseases to support the development of rational 
interventions.

12.3  COMPREHENSIVE “OMICS” PROFILING FOR 
NEURODEGENERATIVE DISEASES

 Age-associated NDs are influencing over 40 million people world-
wide (Wood et al., 2015). As discussed earlier, the multifaceted and hetero-
geneous factors in the complex pathophysiology of the illnesses are hard to 
detect or understand. Comprehensive profiling and integrative strategies are 
needed to tackle the complexities.

The multidimensional investigations such as microarray and mass spec-
trometry technologies may provide detailed information about the onset 
and progression of NDs at various levels (Wood et al., 2015). The inte-
gration and mining of the data about human tissues and mouse models, 
together with the efforts from computational modeling, may help iden-
tify the systems-based biomarkers such as the protein aggregations in the 
complicated pathophysiology. Such approaches would enable the selection 
of new treatment targets based on the network studies of the potential 
biomarkers.

At the molecular level, genetic loci and polymorphisms have been asso-
ciated with different neurodevelopmental and neurodegenerative illnesses 
(Parikshak et al., 2015). Studies using systems biology and HTP approaches 
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would help elucidate the hierarchical context not only at the molecular 
level, but also the interrelationships of the cellular networks, neural circuits, 
and organismal cognition.

As a typical ND, AD is multifactorial associated with various “omics” 
including genomics, transcriptomics, metabolomics, epigenomics, interac-
tomics, and environmental interactions (see Chapter 3). Integrative stud-
ies involving such a broad range of “omics” would enable the finding of 
system-based biomarkers such as altered cellular networks to represent the 
disease onset and development for preventive and treatment strategies dur-
ing early phases.

For instance, microRNAs (miRNAs) have the essential roles in the 
mRNA activities in the central nervous system (Roth et al., 2016). They 
are critical in the gene expression profiles in the spatiotemporal dimensions. 
They have been closely associated with the neuronal plasticity, the aging 
processes, and age-associated neurodegeneration including AD.

AD has been related to genomic susceptibility, the dysfunctions of the 
central amyloid precursor protein (APP), and the alterations in the tau net-
works (Castrillo and Oliver, 2016). These alterations can cause the elevation 
of toxic species and the imbalances in the interactions. Among the complex 
factors, miRNAs and miRNA networks may be involved in the activities 
of APP, Aβ, and the cellular subnetworks of tau (Roth et al., 2016). The 
dysfunctions in these interactions have been related to the initiation and 
development of AD.

Other crucial factors include the homeostatic networks that can be 
disease counteracting, such as the quality control of proteins, proteostasis, 
and the protein folding chaperone networks (Castrillo and Oliver, 2016). 
In addition, the ubiquitin proteasome system, endolysosomal network, and 
various stress-response pathways are also important.

In summary, the comprehensive profiling of such interrelationships 
may be useful for the identification of the personalized biomarkers to 
represent the disease onset and progression. The systems biology model-
ing of the complex miRNA interactions may incorporate the findings 
from the transcriptomic, proteomic, metabolomic, and interactomic lev-
els (Roth et al., 2016). The profiles of possible systems-based biomarkers 
may address the dysfunctions in the redox and homeostatic interactions 
for the early diagnosis and preventive strategies to decrease the produc-
tion of toxic species. Integrative interventions may also be designed 
to improve the normal homeostatic reactions to manage the disease 
development.
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12.4  FINDING POTENTIAL SYSTEMS-BASED 
BIOMARKERS FOR AGING AND ASSOCIATED 
DISEASES

12.4.1  Examples in Aging
The aging processes include system-wide changes both functionally and 
structurally. To understand the mechanisms of aging, novel bioinformatics 
methods are needed for the identification of biomarkers of aging. Integrative 
and combinatorial biomarkers should be especially useful because they can 
be applied to quantify various processes on multiple levels of the complex 
biological organism.

Comprehensive biomarkers can also be helpful for the elucidation of the 
heterogeneities in populations. The construction of systems biology models 
for molecular pathways and networks would contribute to the discovery of 
critical and diagnostic components as candidate biomarkers for the predic-
tion of the progression stages of aging (Kriete, 2006).

Table 12.3 lists some examples of potential systems-based biomarkers for 
aging and age-associated diseases. A more complete and updated list can be 
found at the site of Biomarkers and Systems Medicine (BSM, 2016). Some 
of these potential biomarkers have been discussed earlier in this chapter. In 
addition to those, circulating inflammatory mediators including cytokines, 
chemokines, growth factors, and angiogenic factors have been associated 
with age-related alterations. A study of 397 healthy subjects between 40 
and 80 years old showed that with aging, the higher levels of serum mark-
ers were observed including interferon-γ-inducible chemokines (MIG and 
IP-10), eotaxin, chemoattractant for eosinophils, and soluble tumor necrosis 
factor receptor II (TNFR-II) (Shurin et al., 2007).

On the other hand, lower serum levels of the regulators of cell growth 
and differentiation were observed with aging, including EGFR and EGF 
(Shurin et al., 2007; also see Table 12.3). Such findings indicate that these 
pathways play important roles in age-associated immunosenescence and can 
be used as the candidate biomarkers of aging and age-related diseases.

As another example, the activators in the nuclear factor-kappa B (NF-
κB) signaling pathway have been suggested as the potential biomarkers for 
aging and age-associated diseases, as well as the possible treatment targets 
(Balistreri et al., 2013; also see Table 12.3). In addition, WNT16B has been 
proposed as a potential biomarker associated with the p53 activity and the 
phosphoinositide 3-kinase (PI3K)/AKT pathways for the cellular replica-
tive senescence (Binet et al., 2009).
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Table 12.3 Examples of Potential Systems-Based Biomarkers for Aging and Age-Associated Diseases
Associated Conditions Potential Biomarkers References

AD diagnosis Networks including FLT1 Zhao et al. (2016)
AD diagnosis The profiles of toxic Aβ oligomers and tau species, the alterations 

in the splicing and transcriptomic patterns
Castrillo and Oliver 

(2016)
AD diagnosis; primary and  

secondary prevention/treatment
Functional imaging about the dynamical brain activation,  

functional connectivity of the neural networks
Prvulovic et al. (2011)

AD early detection The heme degradation pathway (including heme oxygenase-1, 
biliverdin reductase A, or biliverdin reductase B)

Mueller et al. (2010)

AD dynamics Neuronal calcium sensor proteins especially VILIP-1 in the CSF Mroczko et al. (2015)
AD early detection and treatment The regulators of RGS2, neuronal plasticity Hadar et al. (2016)
AD onset and symptoms prediction Complex dynamical biomarkers representing the temporal 

evolvement
Jack et al. (2013, 2010)

AD stages and severity Cerebrospinal fluid Aβ42, p-tau, t-tau, hippocampal volumes, 
FDG-PET

Mouiha et al. (2012)

Aging Interferon-γ-inducible chemokines, eotaxin, chemoattractant for 
eosinophils, TNFR-II

Shurin et al. (2007)

Aging and age-associated diseases 
therapeutic targets

NF-κB signaling pathway activators Balistreri et al. (2013)

Cellular replicative senescence The PI3K/AKT pathways Binet et al. (2009)
Neurodegenerative diseases The disease-metabolite-pathways, membrane transporters Kori et al. (2016)
PD early diagnosis; disease  

progression; drug responses
The clusters of genes and relevant DEG pathways Zhang et al. (2014)

AD, Alzheimer’s disease; Aβ, amyloid-β; CSF, cerebrospinal fluid; DEG, differentially expressed genes; FDG-PET, fluorodeoxyglucose-positron emission tomogra-
phy; NF-κB, nuclear factor-kappa B;  p-tau, phosphorylated tau; PD, Parkinson’s disease; PI3K, phosphoinositide 3-kinase; RGS2, regulator of G-protein signaling 2; 
t-tau, total-tau; TNFR-II, tumor necrosis factor receptor II; VILIP-1, visinin-like protein 1.
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12.4.2  Dynamical Biomarkers for Alzheimer’s Disease
Dynamical biomarkers representing the temporal evolvement need to be 
highlighted to predict the onset and development of the symptoms in AD 
(Jack et al., 2013; also see Table 12.3). The dynamical modeling in the iden-
tification of AD biomarkers put emphasis on the temporal factors instead of 
the symptom severity to illustrate the disease development and progression 
for personalized diagnosis and treatment.

The establishment of the accurate association between biomarkers and 
disease stages and severity can make it possible to predict the cognitive decline 
and disease development. For example, an analysis was performed on a cross-
sectional data set from 576 subjects including baseline data on cerebrospi-
nal fluid (CSF) amyloid-β (Aβ)42, phosphorylated tau (p-tau), and total tau 
(t-tau), hippocampal volumes, and fluorodeoxyglucose (FDG)-positron emis-
sion tomography (PET) (Mouiha et al., 2012; also see Table 12.3).

The analysis supported a local quadratic regression model and showed that 
the relationship between biomarkers and disease severity was nonlinear with 
differences among biomarkers (Mouiha et al., 2012). Such studies indicated 
that dynamical models of biomarkers should be established for complex dis-
eases such as AD.

In another example, the initial conditions in AD have been related to 
abnormal functions of β-amyloid (Aβ) peptide with the accumulation of 
Aβ plaques in the brain (Jack et al., 2010). The dysfunctions may begin as 
early as the predisposed individuals have no abnormal clinical symptoms. 
At this stage, biomarkers of the brain β-amyloidosis have been suggested 
to have abnormal levels in CSF with higher amyloid PET tracer retention. 
The lagging stage after this is different from patient to patient, whereas the 
pathological processes are becoming dominant with neuronal dysfunction 
and neurodegeneration, requiring personalized prediction and diagnosis.

Synaptic dysfunction has been related to neurodegeneration, with 
potential indicators as lower fluorodeoxyglucose uptake on PET. Such pro-
gressive changes require a dynamical model to map AD biomarkers with 
various disease stages, e.g., initial abnormal Aβ biomarkers followed by neu-
rodegenerative biomarkers and cognitive symptoms in later stages, which 
are associated with clinical symptom severity (Jack et al., 2010).

In a study of mild cognitive impairment in AD, the higher levels of neuro-
nal calcium sensor proteins, especially the visinin-like protein 1 (VILIP-1) in 
the CSF, have been considered as a dynamic biomarker compared with those 
without cognitive impairment (Mroczko et al., 2015; also see Table 12.3). 
The higher levels of VILIP-1 were associated with lower Aβ42/40 ratio and 
elevated pTau181.
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Another study found that the concentrations of t-tau and p-tau were 
much lower in late converters (5–10 years) than those in very early con-
verters (Jack et al., 2013). It is also necessary to include the interindividual 
variability in cognitive impairment related to the disease progression. In 
addition, the specific temporal ordering of biomarkers is important for the 
profiling. These findings indicate that it is necessary to profile biomarkers 
in a dynamical and individualized context to track the pathophysiological 
processes to understand the mechanisms of disease progression.

Functional imaging representing the dynamical brain activation and 
functional connectivity of the neural networks may be used as the candidate 
biomarkers for diagnosis and clinical study designs (Prvulovic et al., 2011). 
In addition, members in the heme degradation pathway such as heme oxy-
genase-1, biliverdin reductase A, and biliverdin reductase B have been sug-
gested as the potential biomarkers for the early detection of AD (Mueller 
et al., 2010; also see Table 12.3).

In summary, NDs including Alzheimer’s disease have the chronic and 
nonlinear dynamic features with very complex preclinical stages. Such dis-
eases develop over years to decades with asymptomatic stages and decom-
pensatory processes in the brain. These silent phases have been considered 
as crucial for the primary and secondary prevention and treatment because 
the early phases before the onset of cognitive decline have the potential to 
be functionally reversible.
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