

Numerical Methods for
Ordinary Differential
Equations

Numerical Methods for Ordinary Differential Equations, Second Edition. J. C. Butcher
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-72335-7

Numerical Methods for
Ordinary Differential
Equations

Second Edition

J. C. Butcher
The University of Auckland, New Zealand

Copyright c© 2008 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording,
scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or
under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court
Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to
the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The
Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to
permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the
subject matter covered. It is sold on the understanding that the Publisher is not engaged in
rendering professional services. If professional advice or other expert assistance is required, the
services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore
129809

John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, ONT, L5R 4J3

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Butcher, J.C. (John Charles), 1933-
Numerical methods for ordinary differential equations/J.C. Butcher.
p.cm.

Includes bibliographical references and index.
ISBN 978-0-470-72335-7 (cloth)
1. Differential equations—Numerical solutions. I. Title.
QA372.B94 2008
518′.63—dc22

2008002747

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-470-72335-7

Typeset in LATEX using Computer Modern fonts
Printed and bound in Great Britain by TJ International, Padstow, Cornwall

Contents

Preface to the first edition . xiii

Preface to the second edition xvii

1 Differential and Difference Equations 1
10 Differential Equation Problems 1

100 Introduction to differential equations 1
101 The Kepler problem . 4
102 A problem arising from the method of lines 7
103 The simple pendulum . 10
104 A chemical kinetics problem 14
105 The Van der Pol equation and limit cycles 16
106 The Lotka–Volterra problem and periodic orbits 18
107 The Euler equations of rigid body rotation 20

11 Differential Equation Theory 22
110 Existence and uniqueness of solutions 22
111 Linear systems of differential equations 24
112 Stiff differential equations 26

12 Further Evolutionary Problems 28
120 Many-body gravitational problems 28
121 Delay problems and discontinuous solutions 31
122 Problems evolving on a sphere 32
123 Further Hamiltonian problems 34
124 Further differential-algebraic problems 36

13 Difference Equation Problems 38
130 Introduction to difference equations 38
131 A linear problem . 38
132 The Fibonacci difference equation 40
133 Three quadratic problems 40
134 Iterative solutions of a polynomial equation 41
135 The arithmetic-geometric mean 43

vi CONTENTS

14 Difference Equation Theory 44
140 Linear difference equations 44
141 Constant coefficients . 45
142 Powers of matrices . 46

2 Numerical Differential Equation Methods 51
20 The Euler Method . 51

200 Introduction to the Euler methods 51
201 Some numerical experiments 54
202 Calculations with stepsize control 58
203 Calculations with mildly stiff problems 60
204 Calculations with the implicit Euler method 63

21 Analysis of the Euler Method 65
210 Formulation of the Euler method 65
211 Local truncation error 66
212 Global truncation error 66
213 Convergence of the Euler method 68
214 Order of convergence . 69
215 Asymptotic error formula 72
216 Stability characteristics 74
217 Local truncation error estimation 79
218 Rounding error . 80

22 Generalizations of the Euler Method 85
220 Introduction . 85
221 More computations in a step 86
222 Greater dependence on previous values 87
223 Use of higher derivatives 88
224 Multistep–multistage–multiderivative methods 90
225 Implicit methods . 91
226 Local error estimates . 91

23 Runge–Kutta Methods . 93
230 Historical introduction 93
231 Second order methods 93
232 The coefficient tableau 94
233 Third order methods . 95
234 Introduction to order conditions 95
235 Fourth order methods 98
236 Higher orders . 99
237 Implicit Runge–Kutta methods 99
238 Stability characteristics 100
239 Numerical examples . 103

CONTENTS vii

24 Linear Multistep Methods 105
240 Historical introduction 105
241 Adams methods . 105
242 General form of linear multistep methods 107
243 Consistency, stability and convergence 107
244 Predictor–corrector Adams methods 109
245 The Milne device . 111
246 Starting methods . 112
247 Numerical examples . 113

25 Taylor Series Methods . 114
250 Introduction to Taylor series methods 114
251 Manipulation of power series 115
252 An example of a Taylor series solution 116
253 Other methods using higher derivatives 119
254 The use of f derivatives 120
255 Further numerical examples 121

26 Hybrid Methods . 122
260 Historical introduction 122
261 Pseudo Runge–Kutta methods 123
262 Generalized linear multistep methods 124
263 General linear methods 124
264 Numerical examples . 127

27 Introduction to Implementation 128
270 Choice of method . 128
271 Variable stepsize . 130
272 Interpolation . 131
273 Experiments with the Kepler problem 132
274 Experiments with a discontinuous problem 133

3 Runge–Kutta Methods . 137
30 Preliminaries . 137

300 Rooted trees . 137
301 Functions on trees . 139
302 Some combinatorial questions 141
303 The use of labelled trees 144
304 Enumerating non-rooted trees 144
305 Differentiation . 146
306 Taylor’s theorem . 148

31 Order Conditions . 150
310 Elementary differentials 150
311 The Taylor expansion of the exact solution 153
312 Elementary weights . 155
313 The Taylor expansion of the approximate solution 159
314 Independence of the elementary differentials 160
315 Conditions for order . 162

viii CONTENTS

316 Order conditions for scalar problems 162
317 Independence of elementary weights 163
318 Local truncation error 165
319 Global truncation error 166

32 Low Order Explicit Methods 170
320 Methods of orders less than 4 170
321 Simplifying assumptions 171
322 Methods of order 4 . 175
323 New methods from old 181
324 Order barriers . 187
325 Methods of order 5 . 190
326 Methods of order 6 . 192
327 Methods of orders greater than 6 195

33 Runge–Kutta Methods with Error Estimates 198
330 Introduction . 198
331 Richardson error estimates 198
332 Methods with built-in estimates 201
333 A class of error-estimating methods 202
334 The methods of Fehlberg 208
335 The methods of Verner 210
336 The methods of Dormand and Prince 211

34 Implicit Runge–Kutta Methods 213
340 Introduction . 213
341 Solvability of implicit equations 214
342 Methods based on Gaussian quadrature 215
343 Reflected methods . 219
344 Methods based on Radau and Lobatto quadrature 222

35 Stability of Implicit Runge–Kutta Methods 230
350 A-stability, A(α)-stability and L-stability 230
351 Criteria for A-stability 230
352 Padé approximations to the exponential function 232
353 A-stability of Gauss and related methods 238
354 Order stars . 240
355 Order arrows and the Ehle barrier 243
356 AN-stability . 245
357 Non-linear stability . 248
358 BN-stability of collocation methods 252
359 The V and W transformations 254

36 Implementable Implicit Runge–Kutta Methods 259
360 Implementation of implicit Runge–Kutta methods 259
361 Diagonally implicit Runge–Kutta methods 261
362 The importance of high stage order 262
363 Singly implicit methods 266
364 Generalizations of singly implicit methods 271
365 Effective order and DESIRE methods 273

CONTENTS ix

37 Symplectic Runge–Kutta Methods 275
370 Maintaining quadratic invariants 275
371 Examples of symplectic methods 276
372 Order conditions . 277
373 Experiments with symplectic methods 278

38 Algebraic Properties of Runge–Kutta Methods 280
380 Motivation . 280
381 Equivalence classes of Runge–Kutta methods 281
382 The group of Runge–Kutta methods 284
383 The Runge–Kutta group 287
384 A homomorphism between two groups 290
385 A generalization of G1 291
386 Recursive formula for the product 292
387 Some special elements of G 297
388 Some subgroups and quotient groups 300
389 An algebraic interpretation of effective order 302

39 Implementation Issues . 308
390 Introduction . 308
391 Optimal sequences . 308
392 Acceptance and rejection of steps 310
393 Error per step versus error per unit step 311
394 Control-theoretic considerations 312
395 Solving the implicit equations 313

4 Linear Multistep Methods 317
40 Preliminaries . 317

400 Fundamentals . 317
401 Starting methods . 318
402 Convergence . 319
403 Stability . 320
404 Consistency . 320
405 Necessity of conditions for convergence 322
406 Sufficiency of conditions for convergence 324

41 The Order of Linear Multistep Methods 329
410 Criteria for order . 329
411 Derivation of methods 330
412 Backward difference methods 332

42 Errors and Error Growth 333
420 Introduction . 333
421 Further remarks on error growth 335
422 The underlying one-step method 337
423 Weakly stable methods 339
424 Variable stepsize . 340

x CONTENTS

43 Stability Characteristics . 342
430 Introduction . 342
431 Stability regions . 344
432 Examples of the boundary locus method 346
433 An example of the Schur criterion 349
434 Stability of predictor–corrector methods 349

44 Order and Stability Barriers 352
440 Survey of barrier results 352
441 Maximum order for a convergent k-step method 353
442 Order stars for linear multistep methods 356
443 Order arrows for linear multistep methods 358

45 One-Leg Methods and G-stability 360
450 The one-leg counterpart to a linear multistep method . . 360
451 The concept of G-stability 361
452 Transformations relating one-leg and linear multistep

methods . 364
453 Effective order interpretation 365
454 Concluding remarks on G-stability 365

46 Implementation Issues . 366
460 Survey of implementation considerations 366
461 Representation of data 367
462 Variable stepsize for Nordsieck methods 371
463 Local error estimation 372

5 General Linear Methods . 373
50 Representing Methods in General Linear Form 373

500 Multivalue–multistage methods 373
501 Transformations of methods 375
502 Runge–Kutta methods as general linear methods 376
503 Linear multistep methods as general linear methods . . . 377
504 Some known unconventional methods 380
505 Some recently discovered general linear methods 382

51 Consistency, Stability and Convergence 385
510 Definitions of consistency and stability 385
511 Covariance of methods 386
512 Definition of convergence 387
513 The necessity of stability 388
514 The necessity of consistency 389
515 Stability and consistency imply convergence 390

52 The Stability of General Linear Methods 397
520 Introduction . 397
521 Methods with maximal stability order 398
522 Outline proof of the Butcher–Chipman conjecture . . . 402
523 Non-linear stability . 405
524 Reducible linear multistep methods and G-stability . . . 407
525 G-symplectic methods 408

CONTENTS xi

53 The Order of General Linear Methods 410
530 Possible definitions of order 410
531 Local and global truncation errors 412
532 Algebraic analysis of order 413
533 An example of the algebraic approach to order 414
534 The order of a G-symplectic method 416
535 The underlying one-step method 417

54 Methods with Runge–Kutta stability 420
540 Design criteria for general linear methods 420
541 The types of DIMSIM methods 420
542 Runge–Kutta stability 423
543 Almost Runge–Kutta methods 426
544 Third order, three-stage ARK methods 429
545 Fourth order, four-stage ARK methods 431
546 A fifth order, five-stage method 433
547 ARK methods for stiff problems 434

55 Methods with Inherent Runge–Kutta Stability 436
550 Doubly companion matrices 436
551 Inherent Runge–Kutta stability 438
552 Conditions for zero spectral radius 440
553 Derivation of methods with IRK stability 442
554 Methods with property F 445
555 Some non-stiff methods 446
556 Some stiff methods . 447
557 Scale and modify for stability 448
558 Scale and modify for error estimation 450

References . 453

Index . 459

Preface to the first edition

Introductory remarks

This book represents an attempt to modernize and expand my previous
volume, The Numerical Analysis of Ordinary Differential Equations: Runge–
Kutta and General Linear Methods. It is more modern in that it considers
several topics that had not yet emerged as important research areas when the
former book was written. It is expanded in that it contains a comprehensive
treatment of linear multistep methods. This achieves a better balance than
the earlier volume which made a special feature of Runge–Kutta methods.

In order to accommodate the additional topics, some sacrifices have been
made. The background work which introduced the earlier book is here reduced
to an introductory chapter dealing only with differential and difference
equations. Several topics that seem to be still necessary as background reading
are now introduced in survey form where they are actually needed. Some of
the theoretical ideas are now explained in a less formal manner. It is hoped
that mathematical rigour has not been seriously jeopardized by the use of
this more relaxed style; if so, then there should be a corresponding gain in
accessibility. It is believed that no theoretical detail has been glossed over to
the extent that an interested reader would have any serious difficulty in filling
in the gaps.

It is hoped that lowering the level of difficulty in the exposition will widen
the range of readers who might be able to find this book interesting and useful.
With the same idea in mind, exercises have been introduced at the end of each
section.

Following the chapter on differential and difference equations, Chapter 2 is
presented as a study of the Euler method. However, it aims for much more
than this in that it also reviews many other methods and classes of methods
as generalizations of the Euler method. This chapter can be used as a broad-
ranging introduction to the entire subject of numerical methods for ordinary
differential equations.

Chapter 3 contains a detailed analysis of Runge–Kutta methods. It includes
studies of the order, stability and convergence of Runge–Kutta methods and
also considers in detail the design of efficient explicit methods for non-stiff

xiv NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

problems. For implicit methods for stiff problems, inexpensive implementation
costs must be added to accuracy and stability as a basic requirement. Recent
work on each of these questions is surveyed and discussed.

Linear multistep methods, including the combination of two methods
as predictor–corrector pairs, are considered in Chapter 4. The theory
interrelating stability, consistency and convergence is presented together with
an analysis of order conditions. This leads to a proof of the (first) ‘Dahliquist
barrier’. The methods in this class which are generally considered to be the
most important for the practical solution of non-stiff problems are the Adams–
Bashforth and Adams–Moulton formulae. These are discussed in detail,
including their combined use as predictor–corrector pairs. The application of
linear multistep methods to stiff problems is also of great practical importance
and the treatment will include an analysis of the backward difference formulae.

In Chapter 5 the wider class of general linear methods is introduced and
analysed. Questions analogous to those arising in the classical Runge–Kutta
and linear multistep methods – that is, questions of consistency, stability,
convergence and order – are considered and explored. Several sub-families of
methods, that have a potential practical usefulness, are examined in detail.
This includes the so-called DIMSIM methods and a new type of method
exhibiting what is known as inherent Runge–Kutta stability.

The remarks in the following paragraphs are intended to be read following
Chapter 5.

Concluding remarks

Any account of this rapidly evolving subject is bound to be incomplete.
Complete books are all alike; every incomplete book is incomplete in its own
way.

It has not been possible to deal adequately with implementation questions.
Numerical software for evolutionary problems entered its modern phase with
the DIFSUB code of Gear (1971a). ‘Modern’ in this sense means that most
of the ingredients of subsequent codes were present. Both stiff and non-
stiff problems are catered for, provision is made for Jacobian calculation
either by subroutine call or by difference approximation; the choice is up
to the user. Most importantly, automatic selection of stepsize and order
is made dynamically as the solution develops. Compared with this early
implementation of linear multistep methods, the Radau code (Hairer and
Wanner, 1996) uses implicit Runge–Kutta methods for the solution of stiff
problems.

In recent years, the emphasis in numerical methods for evolutionary
problems has moved beyond the traditional areas of non-stiff and stiff
problems. In particular, differential-algebraic equations have become the
subject of intense analysis as well as the development of reliable and efficient
algorithms for problems of variable difficulty, as measured for example by

PREFACE TO THE FIRST EDITION xv

the indices of the problems. Some basic references in this vibrant area are
Brenan, Campbell and Petzold (1989) and Hairer, Lubich and Roche (1989)
In particular, many codes are now designed for applications to stiff ordinary
differential equations in which algebraic constraints also play a role. On the
Runge–Kutta side, Radau is an example of this multipurpose approach. On
the linear multistep side, Petzold’s DASSL code is closely related to Gear’s
DIFSUB but has the capability of solving differential-algebraic equations, at
least of low index.

Many problems derived from mechanical systems can be cast in a
Hamiltonian formulation. To faithfully model the behaviour of such problems
it is necessary to respect the symplectic structure. Early work on this by the
late Feng Kang has led to worldwide activity in the study of this type of
question. A basic reference on Hamiltonian problems is Sanz-Serna and Calvo
(1994).

The emphasis on the preservation of qualitative features of a numerical
solution has now grown well beyond the Hamiltonian situation and has become
a mathematical discipline in its own right. We mention just two key references
in this emerging subject of ‘geometric integration’. They are Iserles, et al.
(2000) and Hairer, Lubich and Wanner (2006).

Internet commentary

Undoubtedly there will be comments and suggestions raised by readers of
this volume. A web resource has been developed to form a commentary and
information exchange for issues as they arise in the future. The entry point is

http://www.math.auckland.ac.nz/~butcher/book

Acknowledgements

I acknowledge with gratitude the support and assistance of many people in the
preparation of this volume. The editorial and production staff at Wiley have
encouraged and guided me through the publishing process. My wife, children,
grandchildren and stepchildren have treated me gently and sympathetically.

During part of the time I have been working on this book, I have received
a grant from the Marsden Fund. I am very grateful for this assistance both as
an expression of confidence from my scientific colleagues in New Zealand and
as practical support.

The weekly workshop in numerical analysis at The University of Auckland
has been an important activity in the lives of many students, colleagues
and myself. We sometimes refer to this workshop as the ‘Runge–Kutta
Club’. Over the past five or more years especially, my participation in
this workshop has greatly added to my understanding of numerical analysis
through collaboration and vigorous discussions. As this book started to take
shape they have provided a sounding board for many ideas, some of which

xvi NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

were worked on and improved and some of which were ultimately discarded.
Many individual colleagues, both in Auckland and overseas, have read and
worked through drafts of the book at various stages of its development. Their
comments have been invaluable to me and I express my heartfelt thanks.

Amongst my many supportive colleagues, I particularly want to name
Christian Brouder, Robert Chan, Tina Chan, David Chen, Allison Heard,
Shirley Huang, Arieh Iserles, Zdzis�law Jackiewicz, Pierre Leone, Taketomo
(Tom) Mitsui, Nicolette Moir, Steffen Schulz, Anjana Singh, Angela Tsai,
Priscilla Tse and Will Wright.

Preface to the second
edition

Reintroductory remarks

The incremental changes incorporated into this edition are an acknowledge-
ment of progress in several directions. The emphasis of structure-preserving
algorithms has driven much of this recent progress, but not all of it. The
classical linear multistep and Runge–Kutta methods have always been special
cases of the large family of general linear methods, but this observation is of
no consequence unless some good comes of it. In my opinion, there are only
two good things that might be worth achieving. The first is that exceptionally
good methods might come to light which would not have been found in any
other way. The second is that a clearer insight and perhaps new overarching
theoretical results might be expressed in the general linear setting. I believe
that both these aims have been achieved but other people might not agree.
However, I hope it can be accepted that some of the new methods which arise
naturally as general linear methods have at least some potential in practical
computation. I hope also that looking at properties of traditional methods
from within the general linear framework will provide additional insight into
their computational properties.

How to read this book

Of the five chapters of this book, the first two are the most introductory
in nature. Chapter 1 is a review of differential and difference equations
with a systematic study of their basic properties balanced against an
emphasis on interesting and prototypical problems. Chapter 2 provides a
broad introduction to numerical methods for ordinary differential equations.
This is motivated by the simplicity of the Euler method and a view that
other standard methods are systematic generalizations of this basic method.
If Runge–Kutta and linear multistep methods are generalizations of Euler
then so are general linear methods and it is natural to introduce a wide range
of multivalue–multistage methods at this elementary level.

xviii NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

A reading of this book should start with these two introductory chapters.
For a reader less experienced in this subject this is an obvious entry point but
they also have a role for a reader who is ready to go straight into the later
chapters. For such readers they will not take very long but they do set the
scene for an entry into the most technical parts of the book.

Chapter 3 is intended as a comprehensive study of Runge–Kutta methods.
A full theory of order and stability is presented and at least the early parts
of this chapter are prerequisites for Chapter 5 and to a lesser extent for
Chapter 4. The use of B-series, or the coefficients that appear in these series,
is becoming more and more a standard tool for a full understanding of modern
developments in this subject.

Chapter 4 is full study of linear multistep methods. It is based on
Dahlquists’ classic work on consistency, stability and order and includes
analysis of linear and nonlinear stability. In both Chapters 3 and 4 the use
of order stars to resolve order and stability questions is complemented by the
introduction of order arrows. It is probably a good idea to read through most
of Chapter 4 before embarking on Chapter 5. This is not because general
linear methods are intrinsically inaccessible, but because an appreciation of
their overarching nature hinges on an appreciation of the special cases they
include.

General linear methods, the subject of Chapter 5, treat well-known methods
in a unified way, but it is hoped they do more than this. There really seem
to be new and useful methods buried amongst them which cannot be easily
motivated in any other way. Thus, while this chapter needs to be put aside to
be read as a culmination, it should not be put off too long. There is so much
nice mathematics already associated with these methods, and the promise of
more to come provides attraction enough. It is general linear methods, and
the stability functions associated with them that really put order arrows in
their rightful place.

Internet support pages

For additional information and supporting material see
http://www.math.auckland.ac.nz/~butcher/ODE-book-2008

Reacknowledgements

I have many people to thank and to rethank in my efforts to produce an
improved edition. My understanding of the stability and related properties
of general linear methods has been sharpened by working with Adrian Hill
and Laura Hewitt. Helmut Podhaisky has given me considerable help and
advice especially on aspects of general linear method implementation. My
special thanks to Jane HyoJin Lee for her assistance with the final form
of the manuscript. A number of people have made comments and provided

PREFACE TO THE SECOND EDITION xix

corrections on the first edition or made constructive suggestions on early drafts
of this new version. In addition to people acknowledged in some other way,
I would like to mention the names of Ian Gladwell, Dawoomi Kim, Yoshio
Komori, René Lamour, Dione O’Neale, Christian Perret, Higinio Ramos, Dave
Simpson, Steve Stalos, Caren Tischendorf, Daniel Weiß, Frank Wrona and
Jinsen Zhuang.

Chapter 1

Differential and Difference
Equations

10 Differential Equation Problems

100 Introduction to differential equations

As essential tools in scientific modelling, differential equations are familiar to
every educated person. In this introductory discussion we do not attempt to
restate what is already known, but rather to express commonly understood
ideas in the style that will be used for the rest of this book.

The aim will always be to understand, as much as possible, what we expect
to happen to a quantity which satisfies a differential equation. At the most
obvious level, this means predicting the value this quantity will have at some
future time. However, we are also interested in more general questions such
as the adherence to possible conservation laws or perhaps stability of the
long-term solution. Since we emphasize numerical methods, we often discuss
problems with known solutions mainly to illustrate qualitative and numerical
behaviour.

Even though we sometimes refer to ‘time’ as the independent variable, that
is, as the variable on which the value of the ‘solution’ depends, there is no
reason for insisting on this interpretation. However, we generally use x to
denote the ‘independent’ or ‘time’ variable and y to denote the ‘dependent
variable’. Hence, differential equations will typically be written in the form

y′(x) = f(x, y(x)), (100a)

where

y′ =
dy

dx
.

Sometimes, for convenience, we omit the x in y(x).
The terminology used in (100a) is misleadingly simple, because y could be

a vector-valued function. Thus, if we are working in R
N, and x is permitted

to take on any real value, then the domain and range of the function f which

Numerical Methods for Ordinary Differential Equations, Second Edition. J. C. Butcher
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-72335-7

2 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

defines a differential equation and the solution to this equation are given by

f : R × R
N → R

N ,

y : R → R
N .

Since we might be interested in time values that lie only in some interval [a, b], we
sometimes considerproblems inwhichy : [a, b] → RN , andf : [a, b]×RN → RN .
When dealing with specific problems, it is often convenient to focus, not on the
vector-valued functions f and y, but on individual components. Thus, instead
of writing a differential equation system in the form of (100a), we can write
coupled equations for the individual components:

y′
1(x) = f1(x, y1, y2, . . . , yN),

y′
2(x) = f2(x, y1, y2, . . . , yN),
...

...
y′

N (x) = fN (x, y1, y2, . . . , yN).

(100b)

A differential equation for which f is a function not of x, but of y only,
is said to be ‘autonomous’. Some equations arising in physical modelling are
more naturally expressed in one form or the other, but we emphasize that
it is always possible to write a non-autonomous equation in an equivalent
autonomous form. All we need to do to change the formulation is to introduce
an additional component yN+1 into the y vector, and ensure that this can
always maintain the same value as x, by associating it with the differential
equation y′

N+1 = 1. Thus, the modified system is

y′
1(x) = f1(yN+1, y1, y2, . . . , yN),

y′
2(x) = f2(yN+1, y1, y2, . . . , yN),
...

...
y′

N (x) = fN (yN+1, y1, y2, . . . , yN),
y′

N+1(x) = 1.

(100c)

A system of differential equations alone does not generally define a unique
solution, and it is necessary to add to the formulation of the problem a number
of additional conditions. These are either ‘boundary conditions’, if further
information is given at two or more values of x, or ‘initial conditions’, if all
components of y are specified at a single value of x.

If the value of y(x0) = y0 is given, then the pair of equations

y′(x) = f(x, y(x)), y(x0) = y0, (100d)

is known as an ‘initial value problem’. Our main interest in this book is with
exactly this problem, where the aim is to obtain approximate values of y(x)

DIFFERENTIAL AND DIFFERENCE EQUATIONS 3

for specific values of x, usually with x > x0, corresponding to the prediction
of the future states of a differential equation system.

Note that for an N -dimensional system, the individual components of an
initial value vector need to be given specific values. Thus, we might write

y0 = [η1 η2 · · · ηN] .

When the problem is formally converted to autonomous form (100c), the value
of ηN+1 must be identical to x0, otherwise the requirement that yN+1(x)
should always equal x would not be satisfied.

For many naturally occurring phenomena, the most appropriate form in
which to express a differential equation is as a high order system. For example,
an equation might be of the form

y(n) = φ
(
x, y, y′, y′′, . . . , y(n−1)

)
, (100e)

with initial values given for y(x0), y′(x0), y′′(x0), . . . , y(n−1)(x0). Especially
important in the modelling of the motion of physical systems subject to forces
are equation systems of the form

y′′
1(x) = f1(y1, y2, . . . , yN),

y′′
2(x) = f2(y1, y2, . . . , yN),
...

...
y′′

N (x) = fN (y1, y2, . . . , yN),

(100f)

where the equations, though second order, do have the advantages of being
autonomous and without y′

1, y
′
2, . . . , y

′
N occurring amongst the arguments of

f1, f2, . . . , fN .
To write (100f) in what will become our standard first order system form,

we can introduce additional components yN+1, yN+2, . . . , y2N . The differential
equation system (100f) can now be written as the first order system

y′
1(x) = yN+1,

y′
2(x) = yN+2,

...
...

y′
N (x) = y2N ,

y′
N+1(x) = f1(y1, y2, . . . , yN),

y′
N+2(x) = f2(y1, y2, . . . , yN),

...
...

y′
2N (x) = fN (y1, y2, . . . , yN).

(100g)

4 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

101 The Kepler problem

The problems discussed in this section are selected from the enormous
range of possible scientific applications. The first example problem describes
the motion of a single planet about a heavy sun. By this we mean that,
although the sun exerts a gravitational attraction on the planet, we regard the
corresponding attraction of the planet on the sun as negligible, and that the
sun will be treated as being stationary. This approximation to the physical
system can be interpreted in another way: even though both bodies are in
motion about their centre of mass, the motion of the planet relative to the
sun can be modelled using the simplification we have described. We also make
a further assumption, that the motion of the planet is confined to a plane.

Let y1(x) and y2(x) denote rectangular coordinates centred at the sun,
specifying at time x the position of the planet. Also let y3(x) and y4(x) denote
the components of velocity in the y1 and y2 directions, respectively. If M
denotes the mass of the sun, γ the gravitational constant and m the mass of
the planet, then the attractive force on the planet will have magnitude

γMm

y2
1 + y2

2

.

Resolving this force in the coordinate directions, we find that the components
of acceleration of the planet, due to this attraction, are −γMy1(y2

1 + y2
2)−3/2

and −γMy2(y2
1 + y2

2)−3/2, where the negative sign denotes the inward
direction of the acceleration.

We can now write the equations of motion:

dy1

dx
= y3,

dy2

dx
= y4,

dy3

dx
= − γMy1

(y2
1 + y2

2)3/2
,

dy4

dx
= − γMy2

(y2
1 + y2

2)3/2
.

By adjusting the scales of the variables, the factor γM can be removed from
the formulation, and we arrive at the equations

dy1

dx
= y3, (101a)

dy2

dx
= y4, (101b)

dy3

dx
= − y1

(y2
1 + y2

2)3/2
, (101c)

dy4

dx
= − y2

(y2
1 + y2

2)3/2
. (101d)

DIFFERENTIAL AND DIFFERENCE EQUATIONS 5

The solutions of this system are known to be conic sections, that is, ellipses,
parabolas or hyperbolas, if we ignore the possibility that the trajectory is a
straight line directed either towards or away from the sun. We investigate
this further after we have shown that two ‘first integrals’, or invariants, of the
solution exist.

Theorem 101A The quantities

H =
1
2
(
y2
3 + y2

4

)
− (y2

1 + y2
2)−1/2,

A = y1y4 − y2y3

are constant.

Proof. We verify that the values of dH/dx and dA/dx are zero if y satisfies
(101a)–(101d). We have

dH

dx
= y3

dy3

dx
+ y4

dy4

dx
+ y1

dy1

dx
(y2

1 + y2
2)−3/2 + y2

dy2

dx
(y2

1 + y2
2)−3/2

= − y1y3

(y2
1 + y2

2)3/2
− y2y4

(y2
1 + y2

2)3/2
+

y1y3

(y2
1 + y2

2)3/2
+

y2y4

(y2
1 + y2

2)3/2

= 0

and
dA

dx
= y1

dy4

dx
+

dy1

dx
y4 − y2

dy3

dx
− dy2

dx
y3

= − y1y2

(y2
1 + y2

2)3/2
+ y3y4 +

y2y1

(y2
1 + y2

2)3/2
− y4y3

= 0. �
The quantities H and A are the ‘Hamiltonian’ and ‘angular momentum’,

respectively. Note that H = T + V , where T = 1
2

(
y2
3 + y2

4

)
is the kinetic

energy and V = −(y2
1 + y2

2)−1/2 is the potential energy.
A further property of this problem is its invariance under changes of scale

of the variables:

y1 = α−2y1,

y2 = α−2y2,

y3 = αy3,

y4 = αy4,

x = α−3x.

The Hamiltonian and angular momentum get scaled to

H =
1
2
(
y2
3 + y2

4

)
− (y2

1 + y2
2)

−1/2 = α−2H,

A = y1y4 − y2y3 = αA.

6 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

A second type of transformation is based on a two-dimensional orthogonal
transformation (that is, a rotation or a reflection or a composition of these)
Q, where Q−1 = Q . The time variable x is invariant, and the position and
velocity variables get transformed to

y1

y2

y3

y4

 =

[
Q 0
0 Q

]
y1

y2

y3

y4

 .

It is easy to see that A = 0 implies that the trajectory lies entirely in a
subspace defined by cos(θ)y1 = sin(θ)y2, cos(θ)y3 = sin(θ)y4 for some fixed
angle θ. We move on from this simple case and assume that A �= 0. The sign
of H is of crucial importance: if H ≥ 0 then it is possible to obtain arbitrarily
high values of y2

1 + y2
2 without y2

3 + y2
4 vanishing. We exclude this case for the

present discussion and assume that H < 0. Scale H so that it has a value
−1

2 and at the same time A takes on a positive value. This value cannot
exceed 1 because we can easily verify an identity involving the derivative of
r =

√
y2
1 + y2

2 . This identity is(
r
dr

dx

)2

= 2Hr2 + 2r − A2 = −r2 + 2r − A2. (101e)

Since the left-hand side cannot be negative, the quadratic function in r on
the right-hand side must have real roots. This implies that A ≤ 1. Write
A =

√
1 − e2, for e ≥ 0, where we see that e is the eccentricity of an ellipse

on which the orbit lies. The minimum and maximum values of r are found to
be 1 − e and 1 + e, respectively. Rotate axes so that when r = 1 − e, which
we take as the starting point of time, y1 = 1− e and y2 = 0. At this point we
find that y3 = 0 and y4 =

√
(1 + e)/(1 − e).

Change to polar coordinates by writing y1 = r cos(θ), y2 = r sin(θ). It is
found that

y3 =
dy1

dx
=

dr

dx
cos(θ) − r

dθ

dx
sin(θ),

y4 =
dy2

dx
=

dr

dx
sin(θ) + r

dθ

dx
cos(θ),

so that, because y1y4 − y2y3 =
√

1 − e2, we find that

r2 dθ

dx
=
√

1 − e2. (101f)

From (101e) and (101f) we find a differential equation for the path traced out
by the orbit (

dr

dθ

)2

=
1

1 − e2
r2
(
e2 − (1 − r)2

)
,

DIFFERENTIAL AND DIFFERENCE EQUATIONS 7

and we can verify that this is satisfied by

1 − e2

r
= 1 + e cos(θ).

If we change back to Cartesian coordinates, we find that all points on the
trajectory lie on the ellipse

(y1 + e)2 +
y2
2

1 − e2
= 1,

with centre (−e, 0), eccentricity e, and major and minor axis lengths 1 and√
1 − e2 respectively.
As we have seen, a great deal is known about this problem. However, much

less is known about the motion of a many-body gravitational system.
One of the aims of modern numerical analysis is to understand the behaviour

of various geometrical properties. In some cases it is possible to preserve the
value of quantities that are invariant in the exact solution. In other situations,
such as problems where the Hamiltonian is theoretically conserved, it may be
preferable to conserve other properties, such as what is known as ‘symplectic
behaviour’.

We consider further gravitational problems in Subsection 120.

102 A problem arising from the method of lines

The second initial value problem we consider is based on an approximation
to a partial differential equation. Consider the parabolic system

∂u

∂t
=

∂2u

∂x2
, (x, t) ∈ [0, 1] × [0,∞), (102a)

where we have used t to represent time, x to represent distance and u(x, t) to
represent some quantity, such as temperature, which diffuses with time. For
this problem it is necessary to impose conditions on the boundaries x = 0 and
x = 1 as well as at the initial time t = 0. We may interpret the solution as
the distribution of the temperature at points in a conducting rod, given that
the temperature is specified at the ends of the rod. In this case the boundary
conditions would be of the form u(0, t) = α(t) and u(1, t) = β(t). Equation
(102a) is known as the heat or diffusion equation, and the conditions given at
x = 0 and x = 1 are known as Dirichlet boundary values. This is in contrast
to Neumann conditions, in which the values of ∂u/∂x are given at the ends
of the x interval.

To convert this problem into an ordinary differential equation system, which
mimics the behaviour of the parabolic equation, let y1(t), y2(t), . . . , yN (t),
denote the values of u(1

N+1 , t), u(2
N+1 , t), . . . , u(N

N+1 , t), respectively. That is,

yj(t) = u

(
j

N + 1
, t

)
, j = 0, 1, 2, . . . , N + 1,

8 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

where we have included y0(t) = u(0, t), yN+1(t) = u(1, t) for convenience.
For j = 1, 2, . . . , N , ∂2u/∂x2, evaluated at x = j/(N +1), is approximately

equal to (N + 1)2(yj−1 − 2yj + yj+1). Hence, the vector of derivatives of
y1, y2, . . . , yN is given by

dy1(t)
dt

= (N + 1)2
(
α(t) − 2y1(t) + y2(t)

)
,

dy2(t)
dt

= (N + 1)2
(
y1(t) − 2y2(t) + y3(t)

)
,

dy3(t)
dt

= (N + 1)2
(
y2(t) − 2y3(t) + y4(t)

)
,

...
...

dyN−1(t)
dt

= (N + 1)2
(
yN−2(t) − 2yN−1(t) + yN (t)

)
,

dyN (t)
dt

= (N + 1)2
(
yN−1(t) − 2yN (t) + β(t)

)
.

This system can be written in vector–matrix form as

y′(t) = Ay(t) + v(t), (102b)

where

A = (N + 1)2

−2 1 0 · · · 0 0 0
1 −2 1 · · · 0 0 0
0 1 −2 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · −2 1 0
0 0 0 · · · 1 −2 1
0 0 0 · · · 0 1 −2

, v = (N + 1)2

α(t)
0
0
...
0
0

β(t)

.

The original problem is ‘dissipative’ in the sense that, if u and v are each
solutions to the diffusion equation, which have identical boundary values but
different initial values, then

W (t) =
1
2

∫ 1

0

(
u(x, t) − v(x, t)

)2
dx

is non-increasing as t increases. We can verify this by differentiating with
respect to t and by showing, using integration by parts, that the result found

DIFFERENTIAL AND DIFFERENCE EQUATIONS 9

cannot be positive. We have

dW

dt
=
∫ 1

0

(
u(x, t) − v(x, t)

)(∂u(x, t)
∂t

− ∂v(x, t)
∂t

)
dx

=
∫ 1

0

(
u(x, t) − v(x, t)

)(∂2u(x, t)
∂x2

− ∂2v(x, t)
∂x2

)
dx

=
[(

u(x, t) − v(x, t)
)(∂u(x, t)

∂x
− ∂v(x, t)

∂x

)]1
0

−
∫ 1

0

(
∂u(x, t)

∂x
− ∂v(x, t)

∂x

)2

dx

= −
∫ 1

0

(
∂u(x, t)

∂x
− ∂v(x, t)

∂x

)2

dx

≤ 0.

Even though the approximation of (102a) by (102b) is not exact, it is an
advantage of the discretization we have used, that the qualitative property is
still present. Let y and z be two solutions to the ordinary differential equation
system. Consider the nature of

Ŵ (t) =
1
2

N∑
j=1

(yj − zj)2.

We have

dŴ

dt
=

N∑
i=1

(yj − zj)
(

dyj

dt
− dzj

dt

)

= (N + 1)2
N∑

j=1

(yj − zj) (yj−1 − 2yj + yj+1 − zj−1 + 2zj − zj+1)

= 2(N + 1)2
N−1∑
j=1

(yj − zj)(yj+1 − zj+1) − 2(N + 1)2
N∑

j=1

(yj − zj)2

= −(N + 1)2
N∑

j=0

(yj+1 − yj − zj+1 + zj)2

≤ 0.

Another aspect of the discretization that might be explored is the spectrum
of the matrix A, in comparison with the spectrum of the linear operator
u
→ d2u

dx2 on the space of C2 functions on [0, 1] for which u(0) = u(1) = 0.
The eigenfunctions for the continuous problem are of the form sin(kπx), for

10 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

k = 1, 2, 3, . . . , and the corresponding eigenvalues are −k2π2. For the discrete
problem, we need to find the solutions to the problem

(A − λI)

v1

v2

...
vN

 = 0, (102c)

where v1, v2, . . . , vN are not all zero. Introducing also v0 = vN+1 = 0, we
find that it is possible to write (102c) in the form

vj−1 − qvj + vj+1 = 0, j = 1, 2, . . . , N, (102d)

where q = 2 + λ/(N + 1)2. The difference equation (102d) has solution of the
form vi = C(µi − µ−i), where µ + µ−1 = q, unless q = ±2 (which is easily
seen to be impossible). Because vN+1 = 0, it follows that λ2N+2 = 2. Because
µ �= ±1, it follows that

µ = exp
(

kπi

N + 1

)
, k = 1, 2, . . . , N,

with i =
√
−1. Hence,

λ = −2(N + 1)2
(

1 − cos
(

kπ

N + 1

))
= −4(N + 1)2 sin2

(
kπ

2N + 2

)
.

For N much larger than k, we can use the approximation sin(ξ) ≈ ξ, for
small ξ, to give eigenvalue number k as λk ≈ −k2π2. On the other hand, for
k small, the eigenvalue number N + 1 − k is λN+1−k ≈ −4(N + 1)2 + k2π2.

103 The simple pendulum

Formulation as a differential-algebraic equation

Consider a small mass m attached to a light inelastic string of length l, with
the other end attached to the origin of coordinates, which can swing back and
forth in a vertical plane. Let X, measured in a rightwards direction, and Y ,
measured in a downward direction, be the coordinates. Because the string is
inelastic, the tension T in the string always matches other forces resolved in
the direction of the string so as to guarantee that the length does not change.

The way these forces act on the mass is shown in Figure 103(i). Also shown
is the angle θ defined by X = l sin(θ), Y = l cos(θ).

We denote by U and V , respectively, the velocity components in the X and

DIFFERENTIAL AND DIFFERENCE EQUATIONS 11

T

mg

Y

X

l
θ

Figure 103(i) Simple pendulum

Y directions. The motion of the pendulum is governed by the equations

dX

dx
= U, (103a)

dY

dx
= V, (103b)

m
dU

dx
= −TX

l
, (103c)

m
dV

dx
= −TY

l
+ mg, (103d)

X2 + Y 2 = l2, (103e)

where, in addition to four differential equations (103a)–(103d), the constraint
(103e) expresses the constancy of the length of the string. The tension T acts
as a control variable, forcing this constraint to remain satisfied. By rescaling
variables in a suitable way, the ‘differential-algebraic’ equation system (103a)–
(103e) can be rewritten with the constants m, g and l replaced by 1 in each
case. In the rescaled formulation write y1 = X, y2 = Y , y3 = U , y4 = V and
y5 = T , and we arrive at the system

dy1

dx
= y3, (103f)

dy2

dx
= y4, (103g)

dy3

dx
= −y1y5, (103h)

dy4

dx
= −y2y5 + 1, (103i)

y2
1 + y2

2 = 1. (103j)

It will be convenient to choose initial values defined in terms of θ = Θ, with

12 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

the velocity equal to zero. That is,

y1(0) = sin(Θ), y2(0) = cos(Θ), y3(0) = y4(0) = 0, y5(0) = cos(Θ).

The five variables are governed by four differential equations (103f)–(103i),
together with the single algebraic constraint (103j). We will say more about
this below, but first we consider the classical way of simplifying the problem.

Formulation as a single second order equation

Make the substitutions y1 = sin(θ), y2 = cos(θ). Because (103j) is
automatically satisfied, the value of y5 loses its interest and we eliminate this
by taking a linear combination of (103h) and (103i). This gives the equation
system

cos(θ)
dθ

dx
= y3, (103k)

− sin(θ)
dθ

dx
= y4, (103l)

− cos(θ)
dy3

dx
+ sin(θ)

dy4

dx
= sin(θ). (103m)

Differentiate (103k) and (103l) and substitute into (103m) and we obtain the
well-known single-equation formulation of the simple pendulum:

d2θ

dx2
+ sin(θ) = 0, (103n)

with initial values
θ(0) = Θ, θ′(0) = 0.

It can be shown that the period of the pendulum is given by

T = 4
∫ π/2

0

dφ√
1 − sin2 φ sin2 Θ

2

and some values are given in Table 103(I).
The value for 0◦ can be interpreted as the period for small amplitudes. The

fact that T increases slowly as Θ increases is the characteristic property of a
simple pendulum which makes it of practical value in measuring time.

Formulation as a Hamiltonian problem

In the formulation (103n), write the H as the ‘Hamiltonian’

H(p, q) = 1
2p2 − cos(q),

DIFFERENTIAL AND DIFFERENCE EQUATIONS 13

Table 103(I) Period of simple pendulum for various amplitudes

Θ T

0◦ 6.2831853072
3◦ 6.2842620831
6◦ 6.2874944421
9◦ 6.2928884880

12◦ 6.3004544311
15◦ 6.3102066431
18◦ 6.3221637356
21◦ 6.3363486630
24◦ 6.3527888501
27◦ 6.3715163462
30◦ 6.3925680085

where q = θ and p = dθ/dx. The second order equation (103n) is now
equivalent to the first order system[

p′

q′

]
=

[
0 −1
1 0

][
∂H
∂p
∂H
∂q

]
.

Differential index and index reduction

Carry out three steps, of which the first is to differentiate (103j) and substitute
from (103f) and (103g) to give the result

y1y3 + y2y4 = 0. (103o)

The second step is to differentiate (103o) and to make various substitutions
from (103f)–(103i) to arrive at the equation

y2 + y2
3 + y2

4 − y5 = 0. (103p)

The third and final step is to differentiate (103p) and make various
substitutions to arrive at the result

dy5

dx
=

y2

dx
+ 2y3

dy3
dx

+ 2y4
dy4

dx
= y4 + 2y3(−y1y5) + 2y4(−y2y5 + 1),

which simplifies to
dy5

dx
= 3y4. (103q)

14 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Given that consistent initial values are used, it seems that the equations
(103f)–(103i) together with any of (103j), (103o), (103p) or (103q) give
identical solutions.

Which of the possible formulations should be used? From the point of
view of physical modelling, it seems to be essential to require that the
length constraint (103j) should hold exactly. On the other hand, when it
comes to numerical approximations to solutions, it is found that the use
of this constraint in the problem description creates serious computational
difficulties. It also seems desirable from a modelling point of view to insist
that (103o) should hold exactly, since this simply states that the direction of
motion is tangential to the arc on which it is constrained to lie.

104 A chemical kinetics problem

We next consider a model of a chemical process consisting of three species,
which we denote by A, B and C. The three reactions are

A → B, (104a)
B + C → A + C, (104b)
B + B → C. (104c)

Let y1, y2 and y3 denote the concentrations of A, B and C, respectively. We
assume these are scaled so that the total of the three concentrations is 1, and
that each of three constituent reactions will add to the concentration of any of
the species exactly at the expense of corresponding amounts of the reactants.
The reaction rate of (104a) will be denoted by k1. This means that the rate
at which y1 decreases, and at which y2 increases, because of this reaction, will
be equal to k1y1. In the second reaction (104b), C acts as a catalyst in the
production of A from B and the reaction rate will be written as k2, meaning
that the increase of y1, and the decrease of y3, in this reaction will have a rate
equal to k2y2y3. Finally, the production of C from B will have a rate constant
equal to k3, meaning that the rate at which this reaction takes place will be
k3y

2
2 . Putting all these elements of the process together, we find the system of

differential equations for the variation with time of the three concentrations
to be

dy1

dx
= −k1y1 + k2y2y3, (104d)

dy2

dx
= k1y1 − k2y2y3 − k3y

2
2 , (104e)

dy3

dx
= k3y

2
2 . (104f)

If the three reaction rates are moderately small numbers, and not greatly
different in magnitude, then this is a straightforward problem. However,

DIFFERENTIAL AND DIFFERENCE EQUATIONS 15

vastly different magnitudes amongst k1, k2 and k3 can make this problem
complicated to understand as a chemical model. Also, as we shall see,
the problem then becomes difficult to solve numerically. This problem was
popularized by Robertson (1966), who used the reaction rates

k1 = 0.04, k2 = 104, k3 = 3 × 107.

Before looking at the problem further we note that, even though it is written
as a three-dimensional system, it would be a simple matter to rewrite it in
two dimensions, because y1 + y2 + y3 is an invariant and is usually set to a
value of 1, by an appropriate choice of the initial values. We always assume
this value for y1 + y2 + y3. Furthermore, if the initial value has non-negative
values for each of the three components, then this situation is maintained for
all positive times. To see why this is the case, write (104d), (104e) and (104f)
in the forms

d(exp(k1x)y1)
dx

= exp(k1x)k2y2y3,

d
(
exp

(
max(k2, k3)x

)
y2

)
dx

= exp
(
max(k2, k3)x

)
F,

dy3

dx
= k3y

2
2 ,

where

F = k1y1 +max(k2, k3)y1y2 +
(
max(k2, k3)− k2

)
y2y3 +

(
max(k2, k3)− k3

)
y2
2 ,

so that each of exp(k1x)y1, exp(max(k2, k3)x)y2 and y3 is non-decreasing.
An interesting feature of this problem is that a small perturbation that does

not disturb the invariance of y1 + y2 + y3 is damped out rapidly. To see why
this is the case, eliminate y1 so that the differential equation system in the
remaining two components becomes

dy2

dx
= k1(1 − y2 − y3) − k2y2y3 − k3y

2
2 , (104g)

dy3

dx
= k3y

2
2 . (104h)

The Jacobian matrix, the matrix of partial derivatives, is given by

J(x) =

[
−k1 − k2y3 − 2k3y2 −k1 − k2y2

2k3y2 0

]
,

and the characteristic polynomial is

λ2 + (k1 + k2y3 + 2k3y2)λ + 2k3y2(k1 + k2y2). (104i)

16 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

λ

y1

y2

y3

y λ

x
0 0.2 0.5 1 2 5 10 20 50 102 103 104

0

10−5

10−4

10−3

10−2

10−1

0.5

1.0 −0.0×104

−0.2×104

−0.4×104

−0.6×104

−0.8×104

−1.0×104

Figure 104(i) Solution and most negative eigenvalue for the Robertson problem

An analysis of the discriminant of (104i) indicates that for y2, y3 ∈ (0, 1], both
zeros are real and negative. Along the actual trajectory, one of the eigenvalues
of J(x), denoted by λ, rapidly jumps to a very negative value, with the second
eigenvalue retaining a small negative value. Consider a small perturbation z to
the solution, so that the solution becomes y + z. Because the two components
of z are small we can approximate f(y + z) by f(y) + (∂f/∂y)z. Hence, the
perturbation itself satisfies the equation dz2

dx
dz3

dx

 = J(x)

[
z2

z3

]

and the negative eigenvalues of J(x) guarantee the decay of the components
of z.

The solution to this problem, together with the value of λ, is shown in
Figure 104(i).

105 The Van der Pol equation and limit cycles

The simple pendulum, which we considered in Subsection 103, is a non-linear
variant of the ‘harmonic oscillator’ problem y′′ = −y. We now consider another
non-linear generalization of this problem, by adding a term µ(1−y2)y′, where
µ is a positive constant, to obtain the ‘Van der Pol equation’

y′′(x) = µ(1 − y(x)2)y′(x) − y(x).

This problem was originally introduced by Van der Pol (1926) in the study
of electronic circuits. If µ is small and the initial values correspond to what
would be oscillations of amplitude less than 1, if µ had in fact been zero, it
might be expected that the values of y(x) would remain small for all time.

DIFFERENTIAL AND DIFFERENCE EQUATIONS 17

0 1 2−1−2

1

2

−1

−2

y

y′

Figure 105(i) Van der Pol problem with µ = 1

0 1 2
−1−2

2

4

6

−2

−4

−6

y

y′

Figure 105(ii) Van der Pol problem with µ = 3

However, the non-linear term has the effect of injecting more ‘energy’ into the
system, as we see by calculating the rate of change of E = 1

2y′(x)2 + 1
2y(x)2.

This is found to be

d

dx

(
1
2
y′(x)2 +

1
2
y(x)2

)
= µ(1 − y(x)2)y′(x)2 > 0,

as long as |y| < 1.
Similarly, if |y| starts with a high value, then E will decrease until |y| = 1.

It is possible to show that the path, traced out in the (y, y′) plane, loops round
the origin in a clockwise direction forever, and that it converges to a ‘limit
cycle’ – a periodic orbit. In Figure 105(i), this is illustrated for µ = 1. The
path traced out in the (y, y′) plane moves rapidly towards the limit cycle and

18 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

0 2 4 6u

0
2

4
6

8
v

Figure 106(i) Phase diagram for Lotka–Volterra solution with (u0, v0) = (2, 2),

together with seven alternative orbits

is soon imperceptibly close to it. In Figure 105(ii), the case µ = 3 is presented.
Of special interest in this problem, especially for large values of µ, is

the fact that numerical methods attempting to solve this problem need to
adjust their behaviour to take account of varying conditions, as the value of
1 − |y(x)|2 changes. The sharp change of direction of the path traced out
near (y, y′) = (±2, 0) for the µ = 3 case, a phenomenon which becomes
more pronounced as µ is further increased, is part of the numerical difficulty
associated with this problem.

106 The Lotka–Volterra problem and periodic orbits

In the modelling of the two-species ‘predator–prey’ problem, differential
equation systems of the following type arise:

u′ = u(2 − v), (106a)
v′ = v(u − 1), (106b)

where the factors 2 − v and u − 1 can be generalized in various ways. This
model was proposed independently by Lotka (1925) and Volterra (1926). The
two variables represent the time-dependent populations, of which v is the
population of predators which feed on prey whose population is denoted by u.
It is assumed that u would have been able to grow exponentially without limit,
if the predator had not been present, and that the factor 2− v represents the
modification to its growth rate because of harvesting by the predator. The
predator in turn, in the absence of prey, would die out exponentially, and
requires at least a prey population of u = 1 to feed upon to be able to grow.
Of the two stationary solutions, (u, v) = (0, 0) and (u, v) = (1, 2), the second

DIFFERENTIAL AND DIFFERENCE EQUATIONS 19

Table 106(I) Approximations to the period T , given by (106d) for

(u0, v0) = (2, 2)

n Approximate integral
10 4.62974838287860
20 4.61430252126987
40 4.61487057379480
80 4.61487051945097

160 4.61487051945103
320 4.61487051945103

is more interesting because small perturbations from this point will lead to
periodic orbits around the stationary point. By dividing (106a) by (106b), we
obtain a differential equation for the path traced out by (u, v). The solution
is that I(u, v) is constant, where

I(u, v) = log(u) + 2 log(v) − u − v.

It is interesting to try to calculate values of the period T , for a given starting
point (u0, v0). To calculate T , change to polar coordinates centred at the
stationary point

u = 1 + r cos(θ), v = 2 + r sin(θ)

and calculate the integral
∫ 2π

0 φ(θ)dθ, where

φ(θ) =
1

v cos2(θ) + u sin2(θ)
. (106c)

Starting values (u0, v0) = (2, 2) lead to the orbit featured in Figure 106(i).
Orbits with various other starting values are also shown. The period, based on
the integral of (106c), has been calculated with a varying number n of equally
spaced values of θ ∈ [0, 2π], using the trapezoidal rule. It is known that for
certain smooth functions, the error of this type of calculation will behave, not
like a power of n−1, but like exp(−αn), for some problem-specific parameter
α. This super-convergence is evidently realized for the present problem, where
the observed approximations

T =
∫ 2π

0

φ(θ)dθ ≈ 2π

n

n−1∑
k=0

φ

(
2πk

n

)
(106d)

are shown in Table 106(I) for n = 10, 20, 40, . . . , 320. Evidently, to full machine
accuracy, the approximations have converged to T = 4.61487051945103. An

20 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Algorithm 106α Computation of orbit and period for the Lotka–Volterra

problem

theta = linspace(0,2*pi,n+1);
co = cos(theta);
si = sin(theta);
C = u0*v0 2*exp(-u0-v0);
r = ones(size(theta));
u = 1+r.*co;
v = 2+r.*si;
carryon=1;
while carryon

f = u.*v. 2-C*exp(u+v);
df = -v.*r.*(v.*co. 2+u.*si. 2);
dr = f./df;
r = r-dr;
u = 1+r.*co;
v = 2+r.*si;
carryon = norm(dr,inf) > 0.000000001;

end
phi = 1./(v.*co. 2+u.*si. 2);
period = (2*pi/n)*sum(phi(1:n));

explanation of the phenomenon of rapid convergence of the trapezoidal rule for
periodic functions can be found in Davis and Rabinowitz (1984), and in papers
referenced in that book.

In Algorithm 106α, MATLAB statements are presented to carry out the
computations that were used to generate Figure 106(i) and Table 106(I). To
compute the value of r for each θ, the equation f(r) = 0 is solved, where

f(r) = (exp(I(u, v)) − C) exp(u + v) = uv2 − C exp(u + v),

with C = u0v
2
0 exp(−u0 − v0). Note that the statement u.v. 2-C*exp(u+v)

evaluates a vector with element number i equal to uiv
2
i − C exp(ui + vi),

and that linspace(0,2*pi,n+1) generates a vector with n + 1 components,
equally spaced in [0, 2π].

107 The Euler equations of rigid body rotation

For a rigid body on which no moments are acting, the three components of
angular velocity, in terms of the principal directions of inertia fixed in the

DIFFERENTIAL AND DIFFERENCE EQUATIONS 21

body, satisfy the Euler equations:

I1
dw1

dt
= (I2 − I3)w2w3,

I2
dw2

dt
= (I3 − I1)w3w1,

I3
dw3

dt
= (I1 − I2)w1w2,

(107a)

where the ‘principal moments of inertia’ I1, I2 and I3 are positive. Denote the
kinetic energy by 1

2E and the squared norm of the angular momentum by F .
That is,

E = I1w
2
1 + I2w

2
2 + I3w

2
3, (107b)

F = I2
1w2

1 + I2
2w2

2 + I2
3w2

3. (107c)

Differentiate these expressions and substitute in dwi/dt, i = 1, 2, 3, to obtain
a zero result in each case. Hence, E and F are invariants of the solution to
(107a). This observation provides useful tests on numerical methods for this
problem because there is in general no reason why these invariants should be
maintained in a numerical approximation.

Exercises 10

10.1 You are given the initial value problem

u′′′(x) − 3u′′(x) + 2u(x)u′(x) = 0, u(1) = 2, u′(1) = −1, u′′(1) = 4.

Show how to reformulate this problem in the form

y′(x) = f(y(x)), y(x0) = y0,

where f : R3 → R3.

10.2 You are given the non-autonomous initial value problem

u′ = xu + x2v, u(0) = 3,
v′ = u − v + 2xw, v(0) = 2,

w′ = u +
v

1 + x
, w(0) = 5.

Show how to write this as an autonomous problem.

22 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

10.3 The matrix

A = (N − 1)2

−1 1 0 · · · 0 0 0
1 −2 1 · · · 0 0 0
0 1 −2 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · −2 1 0
0 0 0 · · · 1 −2 1
0 0 0 · · · 0 1 −1

arises in the numerical solution of the heat equation, but with Neumann
boundary conditions. Find the eigenvalues of A.

10.4 Calculate the period of an orbit of the Lotka–Volterra problem which
passes through the point (3, 2).

11 Differential Equation Theory

110 Existence and uniqueness of solutions

A fundamental question that arises in scientific modelling is whether a given
differential equation, together with initial conditions, can be reliably used
to predict the behaviour of the trajectory at later times. We loosely use the
expression ‘well-posed’ to describe a problem that is acceptable from this point
of view. The three attributes of an initial value problem that have to be taken
into account are whether there actually exists a solution, whether the solution,
if it exists, is unique, and how sensitive the solution is to small perturbations
to the initial information. Even though there are many alternative criteria
for answering these questions in a satisfactory manner, we focus here on
the existence of a Lipschitz condition. This is especially convenient because
the same type of condition can be used to study the behaviour of numerical
approximations.

Definition 110A The function f : [a, b] × RN → RN is said to satisfy
a ‘Lipschitz condition in its second variable’ if there exists a constant L,
known as a ‘Lipschitz constant’, such that for any x ∈ [a, b] and Y, Z ∈ RN ,
‖f(x, Y) − f(x, Z)‖ ≤ L‖Y − Z‖.

We need a basic lemma on metric spaces known as the ‘contraction mapping
principle’. We present this without proof.

Lemma 110B Let M denote a complete metric space with metric ρ and let
φ : M → M denote a mapping which is a contraction, in the sense that
there exists a number k, satisfying 0 ≤ k < 1, such that, for any η, ζ ∈ M ,
ρ(φ(η), φ(ζ)) ≤ kρ(η, ζ). Then there exists a unique ξ ∈ M such that φ(ξ) = ξ.

DIFFERENTIAL AND DIFFERENCE EQUATIONS 23

We can now state our main result.

Theorem 110C Consider an initial value problem

y′(x) = f(x, y(x)), (110a)
y(a) = y0, (110b)

where f : [a, b] × RN → RN is continuous in its first variable and satisfies a
Lipschitz condition in its second variable. Then there exists a unique solution
to this problem.

Proof. Let M denote the complete metric space of continuous functions
y : [a, b] → RN , such that y(a) = y0. The metric is defined by

ρ(y, z) = sup
x∈[a,b]

exp(−K(x − a))‖y(x) − z(x)‖,

where K > L. For given y ∈ M , define φ(y) as the solution Y on [a, b] to the
initial value problem

Y ′(x) = f(x, Y (x)),
Y (a) = y0.

This problem is solvable by integration as

φ(y)(x) = y0 +
∫ x

a

f(s, y(s))ds.

This is a contraction because for any two y, z ∈ M , we have

ρ(φ(y), φ(z)) ≤ sup
x∈[a,b]

exp(−K(x − a))
∥∥∥∥∫ x

a

(
f(s, y(s)) − f(s, z(s))

)
ds

∥∥∥∥
≤ sup

x∈[a,b]

exp(−K(x − a))
∫ x

a

‖f(s, y(s))− f(s, z(s))‖ ds

≤ L sup
x∈[a,b]

exp(−K(x − a))
∫ x

a

‖y(s) − z(s)‖ ds

≤ Lρ(y, z) sup
x∈[a,b]

exp(−K(x − a))
∫ x

a

exp(K(s − a))ds

≤ L

K
ρ(y, z).

The unique function y that therefore exists satisfying φ(y) = y, is evidently
the unique solution to the initial value problem given by (110a), (110b). �

The third requirement for being well-posed, that the solution is not overly
sensitive to the initial condition, can be readily assessed for problems satisfying

24 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

a Lipschitz condition. If y and z each satisfy (110a) with y(a) = y0 and
z(a) = z0, then

d

dx
‖y(x) − z(x)‖ ≤ L‖y(x) − z(x)‖.

Multiply both sides by exp(−Lx) and deduce that

d

dx

(
exp(−Lx)‖y(x) − z(x)‖

)
≤ 0,

implying that

‖y(x) − z(x)‖ ≤ ‖y0 − z0‖ exp
(
L(x − a)

)
. (110c)

This bound on the growth of initial perturbations may be too pessimistic in
particular circumstances. Sometimes it can be improved upon by the use of
‘one-sided Lipschitz conditions’. This will be discussed in Subsection 112.

111 Linear systems of differential equations

Linear differential equations are important because of the availability of a
superposition principle. That is, it is possible for a linear differential equation
system to combine known solutions to construct new solutions. The standard
form of a linear system is

dy

dx
= A(x)y + φ(x), (111a)

where A(x) is a possibly time-dependent linear operator. The corresponding
‘homogeneous’ system is

dy

dx
= A(x)y. (111b)

The superposition principle, which is trivial to verify, states that:

Theorem 111A If ŷ is a solution to (111a) and y1, y2, . . . , yk are solutions
to (111b), then for any constants α1, α2, . . . , αk, the function y given by

y(x) = ŷ(x) +
k∑

i=1

αiyi(x),

is a solution to (111a).

The way this result is used is to attempt to find the solution which matches
a given initial value, by combining known solutions.

Many linear problems are naturally formulated in the form of a single high
order differential equation

Y (m)(x) − C1(x)Y (m−1)(x) − C2(x)Y (m−2)(x) − · · · − Cm(x)Y (x) = g(x).
(111c)

DIFFERENTIAL AND DIFFERENCE EQUATIONS 25

By identifying Y (x) = y1(x), Y ′(x) = y2(x), . . . , Y (m−1) = ym(x), we can
rewrite the system in the form

d

dx

y1(x)
y2(x)

...
ym(x)

 = A(x)

y1(x)
y2(x)

...
ym(x)

+ φ(x),

where the ‘companion matrix’ A(x) and the ‘inhomogeneous term’ φ(x) are
given by

A(x) =

0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 1

Cm(x) Cm−1(x) Cm−2(x) · · · C1(x)

 , φ(x) =

0
0
0
...
0

g(x)

 .

When A(x) = A in (111b) is constant, then to each eigenvalue λ of A, with
corresponding eigenvector v, there exists a solution given by

y(x) = exp(λx)v. (111d)

When a complete set of eigenvectors does not exist, but corresponding to λ
there is a chain of generalized eigenvectors

Av1 = λv1 + v, Av2 = λv2 + v1, . . . , Avk−1 = λvk−1 + vk−2,

then there is a chain of additional independent solutions to append to (111d):

y1 = x exp(λx)v1, y2 = x2 exp(λx)v2, . . . , yk−1 = xk−1 exp(λx)vk−1.

In the special case in which A is a companion matrix, so that the system is
equivalent to a high order equation in a single variable, as in (111c), with
C1(x) = C1, C2(x) = C2, . . . , Cm(x) = Cm, each a constant, the characteristic
polynomial of A is

P (λ) = λm − C1λ
m−1 − C2λ

m−2 − · · · − Cm = 0.

For this special case, P (λ) is also the minimal polynomial, and repeated
zeros always correspond to incomplete eigenvector spaces and the need
to use generalized eigenvectors. Also, in this special case, the eigenvector
corresponding to λ, together with the generalized eigenvectors if they exist,
are

v =

1
λ
λ2

...
λm−1

, v1 =

0
1
2λ
...

(m − 1)λm−2

, v2 =

0
0
1
...

(m−1)(m−2)
2 λm−3

,

26 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

112 Stiff differential equations

Many differential equation systems of practical importance in scientific
modelling exhibit a distressing behaviour when solved by classical numerical
methods. This behaviour is distressing because these systems are characterized
by very high stability, which can turn into very high instability when
approximated by standard numerical methods. We have already seen examples
of stiff problems, in Subsections 102 and 104, and of course there are many
more such examples. The concept of the ‘one-sided Lipschitz condition’ was
mentioned in Subsection 110 without any explanation. Stiff problems typically
have large Lipschitz constants, but many have more manageable one-sided
Lipschitz constants, and this can be an aid in obtaining realistic growth
estimates for the effect of perturbations.

We confine ourselves to problems posed on an inner product space. Thus
we assume that there exists an inner product on R

N denoted by 〈u, v〉, and
that the norm is defined by ‖u‖2 = 〈u, u〉.

Definition 112A The function f satisfies a ‘one-sided Lipschitz condition’,
with ‘one-sided Lipschitz constant’ l if for all x ∈ [a, b] and all u, v ∈ RN ,

〈f(x, u) − f(x, v), u − v〉 ≤ l‖u − v‖2.

It is possible that the function f could have a very large Lipschitz constant
but a moderately sized, or even negative, one-sided Lipschitz constant. The
advantage of this is seen in the following result.

Theorem 112B If f satisfies a one-sided Lipschitz condition with constant
l, and y and z are each solutions of

y′(x) = f(x, y(x)),

then for all x ≥ x0,

‖y(x) − z(x)‖ ≤ exp(l(x − x0))‖y(x0) − z(x0)‖.

Proof. We have

d

dx
‖y(x) − z(x)‖2 =

d

dx
〈y(x) − z(x), y(x) − z(x)〉

= 2〈f(x, y(x))− f(x, z(x)), y(x)− z(x)〉
≤ 2l‖y(x) − z(x)‖2.

Multiply by exp
(
− 2l(x − x0)

)
and it follows that

d

dx

(
exp

(
− 2l(x − x0)

)
‖y(x) − z(x)‖2

)
≤ 0,

so that exp
(
− 2l(x − x0)

)
‖y(x) − z(x)‖2 is non-increasing. �

DIFFERENTIAL AND DIFFERENCE EQUATIONS 27

Note that the problem described in Subsection 102 possesses the one-sided
Lipschitz condition with l = 0.

Even though stiff differential equation systems are typically non-linear,
there is a natural way in which a linear system arises from a given non-linear
system. Since stiffness is associated with the behaviour of perturbations to
a given solution, we suppose that there is a small perturbation εY (x) to a
solution y(x). The parameter ε is small, in the sense that we are interested only
in asymptotic behaviour of the perturbed solution as this quantity approaches
zero. If y(x) is replaced by y(x) + εY (x) in the differential equation

y′(x) = f(x, y(x)), (112a)

and the solution expanded in a series in powers of ε, with ε2 and higher powers
replaced by zero, we obtain the system

y′(x) + εY ′(x) = f(x, y(x)) + ε
∂f

∂y
Y (x). (112b)

Subtract (112a) from (112b) and cancel out ε, and we arrive at the equation
governing the behaviour of the perturbation,

Y ′(x) =
∂f

∂y
Y (x) = J(x)Y (x),

say. The ‘Jacobian matrix’ J(x) has a crucial role in the understanding of
problems of this type; in fact its spectrum is sometimes used to characterize
stiffness. In a time interval ∆x, chosen so that there is a moderate change
in the value of the solution to (112a), and very little change in J(x),
the eigenvalues of J(x) determine the growth rate of components of the
perturbation. The existence of one or more large and negative values of λ∆x,
for λ ∈ σ(J(x)), the spectrum of J(x), is a sign that stiffness is almost
certainly present. If J(x) possesses complex eigenvalues, then we interpret
this test for stiffness as the existence of a λ = Reλ + iImλ ∈ σ(J(x)) such
that Reλ∆x is negative with large magnitude.

Exercises 11

11.1 Show how to modify Theorem 110C so that the Lipschitz condition holds
only in a neighbourhood of y0 and where the solution is only required
to exist on [a, b̃], where b̃ satisfies a < b̃ ≤ b.

11.2 By finding two vectors α and β so that the system

y′(x) =

 0 1 0
1 0 0
0 0 1

 y(x) +

 sin(x)
0

cos(x)

 ,

has a solution of the form ŷ(x) = sin(x)α + cos(x)β, find the general
solution to this problem.

28 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

12 Further Evolutionary Problems

120 Many-body gravitational problems

We consider a more general gravitational problem involving n mutually
attracting masses M1, M2, . . . , Mn at position vectors y1(x), y2(x), . . . , yn(x),
satisfying the 3n-dimensional second order differential equation system

y′′
i (x) = −

∑
j �=i

γMj(yi − yj)
‖yi − yj‖3

, i = 1, 2, . . . , n.

Reformulated as a first order system, the problem is 6n-dimensional because
each of the yi has three components and the velocity vectors y′

i also have three
components.

To reduce this problem to a manageable level in situations of practical
interest, some simplifications can be made. For example, in models of the solar
system, the most massive planets, Jupiter, Uranus, Neptune and Saturn, are
typically regarded as the only bodies capable of influencing the motion of the
sun and of each other. The four small planets closest to the sun, Mercury,
Venus, Earth and Mars, are, in this model, regarded as part of the sun in
the sense that they add to its mass in attracting the heavy outer planets
towards the centre of the solar system. To study the motion of the small
planets or of asteroids, they can be regarded as massless particles, moving in
the gravitation fields of the sun and the four large planets, but not at the
same time influencing their motion.

Another model, involving only three bodies, is useful for studying the
motion of an Earth–Moon satellite or of an asteroid close enough to the Earth
to be strongly influenced by it as well as by the Sun. This system, known as
the restricted three–body problem, regards the two heavy bodies as revolving
in fixed orbits about their common centre of mass and the small body as
attracted by the two larger bodies but not affecting their motion in any way.
If it is possible to approximate the large-body orbits as circles, then a further
simplification can be made by working in a frame of reference that moves with
them. Thus, we would regard the two large bodies as being fixed in space with
their rotation in the original frame of reference translated into a modification
of the equations of gravitational motion.

To simplify this discussion,weuse units scaled to reduce a number of constants
to unit value. We scale the masses of the two larger bodies to 1 − µ and µ and
their positions relative to the moving reference frame by the vectors (µ − 1)e1

and µe1, so that their centre of mass is at the origin of coordinates. Write y1, y2

and y3 as the scalar variables representing the position coordinates of the small
body and y4, y5 and y6 as the corresponding velocity coordinates. Under these
assumptions, the equations of motion become

DIFFERENTIAL AND DIFFERENCE EQUATIONS 29

0 1

Figure 120(i) A solution to the restricted three-body problem

y′
1 = y4,

y′
2 = y5,

y′
3 = y6,

y′
4 = 2y5 + y1 −

µ(y1 + µ − 1)

(y2
2 + y2

3 + (y1 + µ − 1)2)3/2
− (1 − µ)(y1 + µ)

(y2
2 + y2

3 + (y1 + µ)2)3/2
,

y′
5 = −2y4 + y2 −

µy2

(y2
2 + y2

3 + (y1 + µ − 1)2)3/2
− (1 − µ)y2

(y2
2 + y2

3 + (y1 + µ)2)3/2
,

y′
6 = − µy3

(y2
2 + y2

3 + (y1 + µ − 1)2)3/2
− (1 − µ)y3

(y2
2 + y2

3 + (y1 + µ)2)3/2
.

Planar motion is possible; that is, solutions in which y3 = y6 = 0 at all
times. One of these is shown in Figure 120(i), with the values of (y1, y2)
plotted as the orbit evolves. The heavier mass is at the point (µ, 0) and the
lighter mass is at (1 − µ, 0), where (0, 0) is marked 0 and (1, 0) is marked 1.
For this calculation the value of µ = 1/81.45 was selected, corresponding
to the Earth-Moon system. The initial values for this computation were
(y1, y2, y3, y4, y5, y6) = (0.994, 0, 0, 0,−2.0015851063790825224, 0) and the
period was 17.06521656015796.

30 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

0 1

Figure 120(ii) A second solution to the restricted three-body problem

��

��

�� ��
��
��
��
��

��
����

��

��

��

����
��

��
��
��
��

�� ��

��

Figure 120(iii) A figure-of-eight orbit for three equal masses

A second solution, identical except for the initial value (y1, y2, y3, y4, y5, y6)
= (0.87978, 0, 0, 0,−0.3797, 0) and a period 19.14045706162071, is shown in
Figure 120(ii).

If the three masses are comparable in value, then the restriction to a simpler
system that we have considered is not available. However, in the case of a
number of equal masses, other symmetries are possible. We consider just a
single example, in which three equal, mutually attracting masses move in a
figure-of-eight orbit. This is shown in Figure 120(iii).

DIFFERENTIAL AND DIFFERENCE EQUATIONS 31

1

−1

π 2π

A(x)

y(x)
y
=

x

Figure 121(i) Solution to delay differential equation (121b)

121 Delay problems and discontinuous solutions

A functional differential equation is one in which the rate of change of y(x)
depends not just on the values of y for the same time value, but also on time
values less than x. In the simplest case, this has the form

y′(x) = f(x, y(x), y(x − τ)), (121a)

where τ is a constant delay. Note that this cannot be cast as an initial value
problem with the hope of actually defining a unique solution, because at an
initial point x0, the derivative depends on the value of y(x0 − τ). What we
will need to do in the case of (121a) is to specify the value of y on an initial
interval [x0 − τ, x0].

A linear delay differential equation

We consider the problem given by

y′(x) = −y(x − π
2), x > 0, y(x) = x, x ∈ [−π

2 , 0]. (121b)

For x in the interval [0, π
2] we find

y(x) = −
∫ x

0

(x − π
2)dx = 1

2x(π − x),

with y(π
2) = 1

8π2. This process can be repeated over the sequence of intervals
[π
2 , π], [π, 3π

2], . . . to obtain values of y(x) shown in Figure 121(i) for x ≤ 4π.
It appears that the solution is attempting to approximate sinusoidal

behaviour as time increases. We can verify this by estimating a local amplitude
defined by

A(x) = (y(x)2 + y′(x)2)
1
2 .

This function is also shown in Figure 121(i) and we note the discontinuity
at x = 0, corresponding to the discontinuity in the value of y′(x). Such
discontinuities are to be expected because the right-derivative is given by

32 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

0 1 2 3 4

√ 2 1+
√ 2

2
√ 2

2+
√ 2

1+
2
√ 2

10

102

1

Figure 121(ii) Solution to neutral delay differential equation (121c)

the formula for y′(x) for x positive and the left-derivative is found from
the derivative of the initial function. For each positive integral multiple of
1
2π, there will always be an inherited non-smooth behaviour but this will be
represented by a discontinuity in increasingly higher derivatives.

We will now consider a problem with two delays.

An example with persistent discontinuities

A delay differential equation of ‘neutral type’ is one in which delayed values
of y′ also occur in the formulation. An example of this type of problem is

y′(x) = 1
2y′(x − 1) + ay(x −

√
2), x > 0,

y(x) = 1, x ∈ [−
√

2, 0],
(121c)

where the constant is given by a = exp(
√

2)− 1
2 exp(

√
2−1) and was contrived

to ensure that exp(x) would have been a solution, if the initial information
had been defined in terms of that function.

The solution is shown in Figure 121(ii) and we see that it seems to be
approximating exponential behaviour more and more closely as x increases.
However, there is a discontinuity in y′(x) at every positive integer value of x.
Specifically, for each n there is a jump given by

lim
x→n+

y′(x) − lim
x→n−

y′(x) = 2−na.

122 Problems evolving on a sphere

Given a function H(y), we will explore situations in which solutions to
y′(x) = f(y) preserve the value of H(y(x)). In the special case in which
H(y) = 1

2‖y‖2, this will correspond to motion on a sphere. We recall the
standard notation

DIFFERENTIAL AND DIFFERENCE EQUATIONS 33

∇(H) =

∂H
∂y1
∂H
∂y2
...

∂H
∂yN

and consider problems of the ‘Poisson’ form

y′ = L(x, y)∇(y), (122a)

where L(x, y) is always a skew-symmetric matrix. For such problems H(y(x))
is invariant. To verify this, calculate

d

dx
H(y(x)) =

N∑
i=1

∂H

∂yi
y′

i(x) = ∇(H) L(x, y)∇(y) = 0,

because of the skew-symmetry of L.
The Euler equations, discussed in Subsection 107, provide two examples of

this. To show that E(w) is invariant write H(w) = 1
2E(w), and to show that

F (w) is invariant write H(w) = 1
2F (w). The problem reverts to the form of

(122a), with y replaced by w, where L(x, w) is given by 0 I3w3
I1I2

− I2w2
I1I3

− I3w3
I1I2

0 I1w1
I2I3

I2w2
I1I3

− I1w1
I2I3

0

 and

 0 − w3
I1I2

w2
I1I3

w3
I1I2

0 − w1
I2I3

− w2
I1I3

w1
I2I3

0

 ,

respectively.
We now revert to the special case H(x) = 1

2y y, for which (122a) becomes

y′ = L(x, y)y. (122b)

An example is the contrived problemy′
1

y′
2

y′
3

 =

 0 −y1 − sin(x)
y1 0 −1

sin(x) 1 0

y1

y2

y3

,

 y1(0)
y2(0)
y3(0)

 =

 1
0
0

, (122c)

with solution y1(x) = cos(x), y2(x) = cos(x) sin(x), y3(x) = sin2(x). The
solution values for x ∈ [0, 1.4π] are shown in Figure 122(i).

Problems of the form (122b) are a special case of

Y ′ = L(x, Y)Y, (122d)

where Y has a number of columns. In this case the inner product of two
specific columns will be invariant. In particular, if Y (x) is a square matrix,

34 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

y1

y2

Figure 122(i) Solution to problem (122c) with y3 pointing out of the page

initially orthogonal, and L(x, Y) is always skew-symmetric, then Y (x) will
remain orthogonal. Denote the elements of Y by yij . An example problem of
this type is

Y ′(x) =

 0 −1 µy21

1 0 −µy11

−µy21 µy11 0

Y, Y (0) = I, (122e)

with µ a real parameter. The solution to (122e) is

Y (x) =

 cos(x) − sin(x) cos(µx) sin(x) sin(µx)
sin(x) cos(x) cos(µx) − cos(x) sin(µx)

0 sin(µx) cos(µx)

 .

123 Further Hamiltonian problems

In the Hamiltonian formulation of classical mechanics, generalized coordinates
q1, q2, . . . , qN and generalized momenta p1, p2, . . . , pN are used to represent
the state of a mechanical system. The equations of motion are defined in terms

DIFFERENTIAL AND DIFFERENCE EQUATIONS 35

of a ‘Hamiltonian’ function H(p1, p2, . . . , pN , q1, q2, . . . , qN) by the equations

p′i = −∂H

∂qi
,

q′i =
∂H

∂pi
.

Write y(x) as a vector variable, made up from N momenta followed by the N
coordinates. That is,

yi =

{
pi, 1 ≤ i ≤ N,

qi−N , N + 1 ≤ i ≤ 2N.

With the understanding that H is regarded as a function of y, the differential
equations can be written in the form y′ = f(y), where

f(y) = J∇(H), J =

[
0 −I

I 0

]
,

in which I is the N × N unit matrix.

Theorem 123A H(y(x)) is invariant.

Proof. Calculate ∂H/∂y to obtain the result
∇(H) J∇(H) = 0. �

The Jacobian of this problem is equal to

∂

∂y
f(y) =

∂

∂y
(J∇(H)) = JW (y),

where W is the ‘Wronskian’ matrix defined as the 2N ×2N matrix with (i, j)
element equal to ∂2H/∂yi∂yj .

If the initial value y0 = y(x0) is perturbed by a small number ε multiplied by
a fixed vector v0, then, to within O(ε2), the solution is modified by εv +O(ε2)
where

v′(x) =
∂f

∂y
v(x) = JW (y)v(x).

For two such perturbations u and v, it is interesting to consider the value of
the scalar u Jv.

This satisfies the differential equation

d

dx
u Jv = u JJWv + (JWu) Jv = −u Wv + u Wv = 0.

Hence we have:

36 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Figure 123(i) Illustration of symplectic behaviour for H(p, q) = p2/2+q2/2 (left)

and H(p, q) = p2/2− cos(q) (right). The underlying image depicts the North Island

brown kiwi, Apteryx mantelli.

Theorem 123B u Jv is invariant with time.

In the special case of a two-dimensional Hamiltonian problem, the value of
(εu) J(εv) can be interpreted as the area of the infinitesimal parallelogram
with sides in the directions u and v. As the solution evolves, u and v might
change, but the area u Jv remains invariant. This is illustrated in Figure
123(i) for the two problems H(p, q) = p2/2+q2/2 and H(p, q) = p2/2−cos(q)
respectively.

124 Further differential-algebraic problems

Consider the initial value problem

y′ = y + z, (124a)

0 = z + z3 − y, (124b)
y(0) = 2, z(0) = 1. (124c)

This is an index 1 problem, because a single differentiation of (124b) and
a substitution from (124a) converts this to a differential equation system
consisting of (124b) together with z′ = (y + z)/(1 + 3z2). However, this
reduction does not do justice to the original formulation in the sense that
a solution with slightly perturbed initial values has little to do with the
original index 1 problem. This emphasizes the fact that initial conditions for
the differential-algebraic equation formulation must be consistent with the
algebraic constraint for it to be well-posed. A more appropriate reduction is
to replace (124a) by y′ = y + φ(y), where φ(y) is the real value of z which
satisfies (124b).

DIFFERENTIAL AND DIFFERENCE EQUATIONS 37

We next introduce an initial value problem comprising two differential
equations and a single algebraic constraint:

y′
1 = − sin(z), (124d)

y′
2 = 2 cos(z) − y1, (124e)

0 = y2
1 + y2

2 − 1, (124f)
y1(0) = 1, y2(0) = 0, z(0) = 0. (124g)

An attempt to reduce this to an ordinary differential equation system by
differentiating (124f) and substituting from (124d) and (124e), leads to a new
algebraic constraint

−y1 sin(z) + y2(2 cos(z) − y1) = 0, (124h)

and it is clear that this will be satisfied by the solution to the original problem.
However, this so-called ‘hidden constraint’ introduces a new complexity into
this type of problem. That is, for initial values to be consistent, (124h) must
be satisfied at the initial time. If, for example, the initial values y1(0) = 1 and
y2(0) = 0 are retained, but the initial value z(0) is perturbed slightly, (124h)
will not be satisfied and no genuine solution exists. But the hidden constraint,
as the problem has actually been posed, is satisfied, and we can take the
reduction towards an ordinary differential equation system to completion.
Differentiate (124h) and substitute from (124d) and (124e) and we finally
arrive at

z′(cos2(z) + 2 sin2(z)) = sin2(z) + y2 sin(z) + (2 cos(z) − y1)2. (124i)

Because two differentiation steps were required to reach this equation, the
original system is referred to as an index 2 problem. In summary, the original
index 2 problem, comprising (124d), (124e), (124f) has been reduced, first
to an index 1 formulation (124d), (124e), (124h), and then to an ordinary
differential equation system (124d), (124e), (124i).

Exercises 12

12.1 Show that a problem of the form

u′ = −α′(v)γ(u, v),
v′ = β′(u)γ(u, v),

satisfies the assumptions of (122a) with a suitable choice of H(u, v).

12.2 Write the Lotka–Volterra equations (106a), (106b) in the form given in
Exercise 12.1.

38 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

13 Difference Equation Problems

130 Introduction to difference equations

While differential equations deal with functions of a continuous variable,
difference equations deal with functions of a discrete variable. Instead of a
formula for the derivative of a function written in terms of the function
itself, we have to consider sequences for which each member is related in
some specific way to its immediate predecessor or several of its most recent
predecessors. Thus we may write

xn = φn(xn−1, xn−2, . . . , xn−k),

where k is the ‘order’ of this difference equation. This equation, in which
xn depends on k previous values, can be recast in a vector setting in which
members of the sequence lie not in R but in Rk, and depend only on one
previous value. Thus if

Xn =

xn

xn−1

...
xn−k+1

 ,

then

Xn = Φn(Xn−1) =

φn(xn−1, xn−2, . . . , xn−k)
xn−1

xn−2

...
xn−k+1

 .

Just as for differential equations, we can use either formulation as we please.

131 A linear problem

Consider the difference equation

yn = 3yn−1 − 2yn−2 + Cθn, (131a)

where C and θ are constants. We do not specify an initial value, but aim
instead to find the family of all solutions. As a first step, we look at the
special case in which C = 0. In this case, the equation becomes linear in
the sense that known solutions can be combined by linear combinations. The
simplified equation in matrix–vector form is[

yn

yn−1

]
=

[
3 −2
1 0

][
yn−1

yn−2

]
,

DIFFERENTIAL AND DIFFERENCE EQUATIONS 39

which can be rewritten as[
yn − yn−1

−yn + 2yn−1

]
=

[
2 0
0 1

][
yn−1 − yn−2

−yn−1 + 2yn−2

]
,

with solution defined by

yn − yn−1 = A2n−1,

−yn + 2yn−1 = B,

for constants A and B. By eliminating yn−1, we find

yn = A2n + B

for the general solution. The fact that this combines powers of 2 and 1, the
eigenvalues of the matrix [

3 −2
1 0

]
, (131b)

suggests that we can look for solutions for the original formulation in the
form λn without transforming to the matrix–vector formulation. Substitute
this trial solution into (131a), with C = 0, and we find, apart from a factor
λn−2, that the condition on λ is

λ2 − 3λ + 2 = 0.

This is the characteristic polynomial of the matrix (131b), but it can be read
off immediately from the coefficients in (131a).

To find the general solution to (131a), if C �= 0, it is easy to see that we
only need to find one special solution to which we can add the terms A2n +B
to obtain all possible solutions. A special solution is easily found, if θ �= 1 and
θ �= 2, in the form

yn =
Cθn+2

(θ − 1)(θ − 2)
.

This type of special solution is not available if θ equals either 1 or 2. In these
cases a special solution can be found as a multiple of n or n2n, respectively.
Combining these cases, we write the general solution as

yn =

A2n + B − Cn, θ = 1,

A2n + B + 2Cn2n, θ = 2,

A2n + B + Cθ2

(θ−1)(θ−2) θn, θ �= 1, θ �= 2.

40 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

132 The Fibonacci difference equation

The initial value difference equation

yn = yn−1 + yn−2, y0 = 0, y1 = 1, (132a)

is famous because of the mathematical, biological and even numerological
significance attached to the solution values

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,

To find the general solution, solve the polynomial equation

λ2 − λ − 1 = 0,

to find the terms λn
1 and λn

2 , where

λ1 = 1+
√

5
2 , λ2 = 1−

√
5

2 = −λ−1
1 .

To find the coefficients A and B in the general solution

yn = A
(

1+
√

5
2

)n

+ B
(
− 1+

√
5

2

)−n

,

substitute n = 0 and n = 1, to find A = −B = 5−1/2, and therefore the
specific solution to the initial value problem (132a),

yn = 1√
5

((
1+

√
5

2

)n

−
(
− 1+

√
5

2

)−n
)

.

133 Three quadratic problems

We consider the solutions to the problems

yn = y2
n−1, (133a)

yn = y2
n−1 − 2, (133b)

yn = yn−1yn−2. (133c)

If zn = ln(yn) in (133a), then zn = 2zn−1 with solution zn = 2nz0. Hence, the
general solution to (133a) is

yn = y2n

0 .

To solve (133b), substitute yn = zn + z−1
n , so that

zn +
1
zn

= z2
n−1 +

1
z2
n−1

,

DIFFERENTIAL AND DIFFERENCE EQUATIONS 41

and this is satisfied by any solution to zn = z2
n−1. Hence, using the known

solution of (133a), we find

yn = z2n

0 + z−2n

0 ,

where z0 is one of the solutions to the equation

z0 +
1
z0

= y0.

Finally, to solve (133c), substitute zn = ln(yn), and we find that

zn = zn−1 + zn−2.

The general solution to this is found from the Fibonacci equation, so that
substituting back in terms of yn, we find

yn = A(1
2 (1+

√
5))n

· B(1
2 (1−

√
5))n

,

with A and B determined from the initial values.

134 Iterative solutions of a polynomial equation

We discuss the possible solution of the polynomial equation

x2 − 2 = 0.

Of course this is only an example, and a similar discussion would be possible
with other polynomial equations. Consider the difference equations

yn = yn−1 −
1
2
y2

n−1 + 1, y0 = 0, (134a)

yn = yn−1 −
1
2
y2

n−1 + 1, y0 = 4, (134b)

yn = yn−1 − y2
n−1 + 2, y0 =

3
2
, (134c)

yn =
yn−1

2
+

1
yn−1

, y0 = 100, (134d)

yn =
yn−1yn−2 + 2
yn−1 + yn−2

, y0 = 0, y1 = 1. (134e)

Note that each of these difference equations has
√

2 as a stationary point.
That is, each of them is satisfied by yn =

√
2, for every n. Before commenting

further, it is interesting to see what happens if a few values are evaluated
numerically for each sequence. These are shown in Table 134(I).

Note that (134a) seems to be converging to
√

2, whereas (134b) seems
to have no hope of ever doing so. Of course the starting value, y0, is the
distinguishing feature, and we can perhaps investigate which values converge
and which ones do not. It can be shown that the fate of the iterates for various
starting values can be summarized as follows:

42 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Table 134(I) The first few terms in the solutions of some difference equations

Equation (134a) Equation (134b) Equation (134c) Equation (134d) Equation (134e)

y0 0.0000000000 4.0000000000 1.5000000000 1.000000×102 0.0000000000
y1 1.0000000000 −3.0000000000 1.2500000000 5.001000×10 1.0000000000
y2 1.5000000000 −6.5000000000 1.6875000000 2.502500×10 2.0000000000
y3 1.3750000000 −2.662500×10 0.8398437500 1.255246×10 1.3333333333
y4 1.4296875000 −3.800703×102 2.1345062256 6.3558946949 1.4000000000
y5 1.4076843262 −7.260579×104−0.4216106015 3.3352816093 1.4146341463
y6 1.4168967451 −2.635873×109 1.4006338992 1.9674655622 1.4142114385

y0 ∈ {−
√

2, 2 +
√

2}: Convergence to x = −
√

2
y0 ∈ (−

√
2, 2 +

√
2): Convergence to x =

√
2

y0 �∈ [−
√

2, 2 +
√

2]: Divergence

Note that the starting value y0 = −
√

2, while it is a fixed point of the mapping
given by (134a), is unstable; that is, any small perturbation from this initial
value will send the sequence either into instability or convergence to +

√
2. A

similar remark applies to y0 = 2+
√

2, which maps immediately to y1 = −
√

2.
The difference equation (134c) converges to ±

√
2 in a finite number of

steps for y0 in a certain countable set; otherwise the sequence formed from
this equation diverges.

Equation (134d) is the Newton method and converges quadratically to
√

2
for any positive y0. By quadratic convergence, we mean that |yn−

√
2| divided

by |yn−1 −
√

2|2 is bounded. In fact, in the limit as n → ∞,

yn −
√

2
(yn−1 −

√
2)2

→
√

2
4

.

The iteration scheme given by (134e) is based on the secant method for
solving non-linear equations. To solve φ(y) = 0, yn is found by fitting a
straight line through the two points (yn−2, φ(yn−2)) and (yn−1, φ(yn−1)) and
defining yn as the point where this line crosses the horizontal axis. In the case
φ(y) = y2 − 2, this results in (134e).

It is interesting to ask if there exists an ‘order’ k for this sequence. In other
words, assuming that convergence is actually achieved, does k ≥ 1 exist such
that

|yn −
√

2|
|yn−1 −

√
2|k

has a limiting value as n → ∞? For the secant method k does exist, and has
the value k = 1

2 (
√

5 + 1).

DIFFERENTIAL AND DIFFERENCE EQUATIONS 43

135 The arithmetic-geometric mean

Let a0 and b0 be real numbers chosen so that 0 < b0 < a0, and define the
sequence of (an, bn) pairs by the formulae

an = 1
2 (an−1 + bn−1),

n = 1, 2, (135a)
bn =

√
an−1bn−1,

We can verify (i) that bn−1 < bn < an < an−1 for all n ≥ 1 and (ii) that the
sequence a0−b0, a1−b1, a2−b2, . . . converges to zero. The truth of (i) follows
from elementary properties of arithmetic and geometric means. Furthermore,
(ii) can be proved from the identity

an − bn =
(an−1 − bn−1)2

2
(√

an−1 +
√

bn−1

)2 .

The common limit of the an and bn sequences is known as the ‘arithmetic-
geometric mean’ of a0 and b0. We present a single application.

The quantities

F (a, b) =
∫ π/2

0

(
a2 cos2(θ) + b2 sin2(θ)

)−1/2
dθ,

E(a, b) =
∫ π/2

0

(
a2 cos2(θ) + b2 sin2(θ)

)1/2
dθ,

are known as ‘complete elliptic integrals’ of the first and second kind,
respectively. The value of 4E(a, b) is the length of the circumference of the
ellipse

x2

a2
+

y2

b2
= 1.

Use a0 = a and b0 = b as starting values for the computation of the sequences
defined by (135a), and denote by a∞ the arithmetic-geometric mean of a0 and
b0. Then it can be shown that

F (a0, b0) = F (a1, b1),

and therefore that
F (a0, b0) = F (a∞, a∞) =

π

2a∞
.

The value of E(a0, b0) can also be found from the sequences that lead to the
arithmetic-geometric mean. In fact

E(a0, b0) =
π

2a∞

(
a2
0 − 2a1(a0 − a1) − 4a2(a1 − a2) − 8a3(a2 − a3) − · · ·

)
.

44 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Exercises 13

13.1 Write the difference equation given by (134e) in the form

zn = φ(zn−1),

with z0 a given initial value.

13.2 Write the difference equation system

un = un−1 + vn−1, u0 = 2,

vn = 2un−1 + v2
n−1, v0 = 1,

in the form yn = φ(yn−1, yn−2), with y0 and y1 given initial values.

13.3 Use the formula for the error in linear interpolation together with the
solution to (133c) to verify the order of convergence of (134e).

13.4 Calculate
√

2 by applying the Newton method to the equation

2x−2 − 1 = 0.

13.5 Calculate the value of
√

3 by applying the secant method to

x2 − 3 = 0.

13.6 Calculate the circumference of the ellipse

x2

9
+

y2

4
= 1,

using the arithmetic-geometric mean.

14 Difference Equation Theory

140 Linear difference equations

The standard form for linear difference equation systems is

Xn = AnXn−1 + φn, (140a)

which becomes an initial value problem if the value of the initial vector
X0 is specified. The corresponding system in which φn is omitted is the
‘homogeneous part’.

Many linear difference equations are more naturally formulated as

yn = αn1yn−1 + αn2yn−2 + · · · + αnkyn−k + ψn,

DIFFERENTIAL AND DIFFERENCE EQUATIONS 45

but these are easily recast in the form (140a) by writing

Xn =

yn

yn−1

...
yn−k+1

 , An =

αn1 αn2 · · · αnk

1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 0

 , φn =

ψn

0
0
...
0

 .

To solve (140a) as an initial value problem, we need to use products of the
form

n∏
i=m

Ai = AnAn−1 · · ·Am+1Am.

We have:

Theorem 140A The problem (140a), with initial value X0 given, has the
unique solution

yn =
(n∏

i=1

Ai

)
X0 +

(n∏
i=2

Ai

)
φ1 +

(n∏
i=3

Ai

)
φ2 + · · · + Anφn−1 + φn.

Proof. The result holds for n = 0, and the general case follows by induction.
�

141 Constant coefficients

We consider the solution of a linear difference equation with constant
coefficients:

yn = α1yn−1 + α2yn−2 + · · · + αkyn−k + ψn. (141a)

The solution is found in terms of the solution to the canonical problem in
which the initial information is given in the form

y0

y−1

...
y−k+2

y−k+1

 =

1
0
...
0
0

 .

Denote the solution to this problem at step m by

ym = θm, m = 0, 1, 2, . . . , n,

46 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

with θm = 0 for m < 0. Given the difference equation (141a) with initial
values y0, y1, . . . , yk−1, define linear combinations of this data by

ỹk−1

ỹk−2

ỹk−3

...
ỹ1

ỹ0

=

1 θ1 θ2 · · · θk−2 θk−1

0 1 θ1 · · · θk−3 θk−2

0 0 1 · · · θk−4 θk−3

...
...

...
...

...
0 0 0 · · · 1 θ1

0 0 0 · · · 0 1

−1

yk−1

yk−2

yk−3

...
y1

y0

. (141b)

We are now in a position to write down the solution to (141a).

Theorem 141A Using the notation introduced in this subsection, the
solution to (141a) with given initial values y0, y1, . . . , yk−1 is given by

yn =
k−1∑
i=0

θn−iỹi +
n∑

i=k

θn−iψi. (141c)

Proof. Substitute n = m, for m = 0, 1, 2, . . . , k−1, into (141c), and we obtain
the value

ym = ỹm + θ1ỹm−1 + · · · + θmỹ0, m = 0, 1, 2, . . . , k − 1.

This is equal to ym if (141b) holds. Add the contribution to the solution from
each of m = k, k + 1, . . . , n and the result follows. �

142 Powers of matrices

We are interested in powers of a matrix A in terms of two questions: when
is the sequence of powers bounded, and when does the sequence converge to
the zero matrix? There are various equivalent formulations of the criteria for
these properties of A, and we state the most widely accessible of these.

Definition 142A A square matrix A is ‘stable’ if there exists a constant C
such that for all n = 0, 1, 2, . . . , ‖An‖ ≤ C.

This property is often referred to as ‘power-boundedness’.

Definition 142B A square matrix A is ‘convergent’ if limn→∞ ‖An‖ = 0.

Theorem 142C Let A denote an m × m matrix. The following statements
are equivalent:

DIFFERENTIAL AND DIFFERENCE EQUATIONS 47

(i) A is stable.
(ii) The minimal polynomial of A has all its zeros in the closed unit disc

and all its multiple zeros in the open unit disc.
(iii) The Jordan canonical form of A has all its eigenvalues in the closed

unit disc with all eigenvalues of magnitude 1 lying in 1 × 1 blocks.
(iv) There exists a non-singular matrix S such that ‖S−1AS‖∞ ≤ 1.

Proof. We prove that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i). If A is stable but
(ii) is not true, then either there exist λ and v �= 0 such that |λ| > 1 and
Av = λv, or there exist λ, u �= 0 and v such that |λ| = 1 and Av = λv + u,
with Au = λu. In the first case, Anv = λnv and therefore ‖An‖ ≥ |λ|n
which is not bounded. In the second case, Anv = λnv +nλn−1u and therefore
‖An‖ ≥ n‖u‖/‖v‖−1, which also is not bounded. Given (ii), it is not possible
that the conditions of (iii) are not satisfied, because the minimal polynomial
of any of the Jordan blocks, and therefore of A itself, would have factors that
contradict (ii). If (iii) is true, then S can be chosen to form J , the Jordan
canonical form of A, with the off-diagonal elements chosen sufficiently small
so that ‖J‖∞ ≤ 1. Finally, if (iv) is true then An = S(S−1AS)nS−1 so that
‖An‖ ≤ ‖S‖ · ‖S−1AS‖n · ‖S−1‖ ≤ ‖S‖ · ‖S−1‖. �

Theorem 142D Let A denote an m × m matrix. The following statements
are equivalent

(i) A is convergent.
(ii) The minimal polynomial of A has all its zeros in the open unit disc.
(iii) The Jordan canonical form of A has all its diagonal elements in the

open unit disc.
(iv) There exists a non-singular matrix S such that ‖S−1AS‖∞ < 1.

Proof. We again prove that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i). If A is convergent
but (ii) is not true, then there exist λ and u �= 0 such that λ ≥ 1 and Au = λu.
Hence, Anu = λnu and therefore ‖An‖ ≥ |λ|n, which does not converge to
zero. Given (ii), it is not possible that the conditions of (iii) are not satisfied,
because the minimal polynomial of any of the Jordan blocks, and therefore
of A itself, would have factors that contradict (ii). If (iii) is true, then S can
be chosen to form J , the Jordan canonical form of A, with the off-diagonal
elements chosen sufficiently small so that ‖J‖∞ < 1. Finally, if (iv) is true then
An = S(S−1AS)nS−1 so that ‖An‖ ≤ ‖S‖ · ‖S−1‖ · ‖S−1AS‖n → 0. �

While the two results we have presented here are related to the convergence
of difference equation solutions, the next is introduced only because of its
application in later chapters.

48 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Theorem 142E If A is a stable m × m matrix and B an arbitrary m × m
matrix, then there exists a real C such that∥∥∥∥(A +

1
n

B

)n∥∥∥∥ ≤ C,

for n = 1, 2,

Proof. Without loss of generality, assume that ‖ · ‖ denotes the norm ‖ · ‖∞.
Because S exists so that ‖S−1AS‖ ≤ 1, we have∥∥∥∥(A +

1
n

B

)n∥∥∥∥ ≤ ‖S‖ · ‖S−1‖ ·
∥∥∥∥(S−1AS +

1
n

S−1BS

)n∥∥∥∥
≤ ‖S‖ · ‖S−1‖ ·

(
1 +

1
n
‖S−1BS‖

)n

≤ ‖S‖ · ‖S−1‖ exp(‖S−1BS‖). �
In applying this result to sequences of vectors, the term represented by the

matrix B can be replaced by a non-linear function which satisfies suitable
conditions. To widen the applicability of the result a non-homogeneous term
is included.

Theorem 142F Let A be a stable m × m matrix and φ : Rm → Rm

be such that ‖φ(x)‖ ≤ L‖x‖, for L a positive constant and x ∈ R
m. If

w = (w1, w2, . . . , wn) and v = (v0, v1, . . . , vn) are sequences related by

vi = Avi−1 +
1
n

φ(vi−1) + wi, i = 1, 2, . . . , n, (142a)

then

‖vn‖ ≤ C

(
‖v0‖ +

n∑
i=1

‖wi‖
)

,

where C is independent of n.

Proof. Let S be the matrix introduced in the proof of Theorem 142C. From
(142a), it follows that

(S−1vi) = (S−1AS)(S−1vi−1) +
1
n

(S−1φ(vi−1)) + (S−1wi)

and hence

‖S−1vi‖ ≤ ‖S−1AS‖ · ‖S−1vi−1‖ +
1
n
‖S−1φ(vi−1)‖ + ‖S−1wi‖,

leading to the bound

‖vn‖ ≤ ‖S‖ · ‖S−1‖ exp
(
L‖S‖ · ‖S−1‖

)(
‖v0‖ +

n∑
i=1

‖wi‖
)

. �

DIFFERENTIAL AND DIFFERENCE EQUATIONS 49

Exercises 14

14.1 Find a constant C such that ‖An‖∞ ≤ C, for all n = 0, 1, . . . , where

A =

[
1
2

1
2

−1
3

4
3

]
.

14.2 For what values of the complex number θ is the matrix A stable, where

A =

[
θ 1
0 1

]
.

Chapter 2

Numerical Differential Equation
Methods

20 The Euler Method

200 Introduction to the Euler methods

The famous method of Euler was published in his three-volume work
Institutiones Calculi Integralis in the years 1768 to 1770, republished in his
collected works (Euler, 1913). This fundamental idea is based on a very simple
principle. Suppose that a particle is moving in such a way that, at time x0,
its position is equal to y0 and that, at this time, the velocity is known to be
v0. The simple principle is that, in a short period of time, so short that there
has not been time for the velocity to change significantly from v0, the change
in position will be approximately equal to the change in time multiplied by
v0.

If the motion of the particle is governed by a differential equation, the value
of v0 will be known as a function of x0 and y0. Hence, given x0 and y0, the
solution at x1, assumed to be close to x0, can be calculated as

y1 = y0 + (x1 − x0)v0,

which can be found from known values only of x0, x1 and y0. Assuming that v1,
found using the differential equation from the values x1 and y1, is sufficiently
accurate, a second step can be taken to find y2, an approximate solution at
x2, using the formula

y2 = y1 + (x2 − x1)v1.

A sequence of approximations y1, y2, y3, . . . to the solution of the differential
equation at x1, x2, x3, . . . is intended to lead eventually to acceptable
approximations, at increasingly distant times from where the initial data was
given.

Of course, the interpretation of the Euler method is much wider than in the
description of the motion of a single particle, moving in time along a line. Even
though the independent variable, which we denote by x, will not always have

Numerical Methods for Ordinary Differential Equations, Second Edition. J. C. Butcher
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-72335-7

52 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

the meaning of physical time, we will often refer to it as the ‘time variable’.
The dependent variable y need not have the meaning of distance and need not
even be scalar. If y is vector-valued, then it can be interpreted as a collection
of scalar-valued components y1, y2, . . . , yN . Thus, we can write

y(x) =

y1(x)
y2(x)

...
yN (x)

 .

The differential equation, and the initial information, which together
determine the values of the y components as the time variable varies, can
be written in the form

y′(x) = f(x, y(x)), y(x0) = y0. (200a)

In the vector-valued case, the function f is defined on R×RN to RN . However,
it is often convenient to write the individual components of f as scalar-valued
functions of x and the vector y(x); or, what is equivalent, of the individual
components of y(x). Similarly, the initial information can also be written in
terms of individual components y10, y20, . . . , yN0 of y0. There is a potential
for confusion in the use of subscripts to denote either individual components
of y, or individual values of x, at which y is evaluated or approximated. This
confusion will be avoided by using each notation only in a context which
makes the meaning clear, or else, where it becomes necessary, by refining the
notation.

With the freedom we have to write y as a vector or as an ensemble of scalars,
we see that (200a) can be written in one of several equivalent forms. We can
write out the components of y(x) in f(x, y(x)) to emphasize the dependence
of y′(x) on each of these components:

y′(x) = f(x, y1(x), y2(x), . . . , yN (x)), y(x0) = y0,

or we can take this a step further by writing out the individual components
of y′(x):

y′
1(x)

y′
2(x)
...

y′
N (x)

 = f(x, y1(x), y2(x), . . . , yN (x)), y(x0) =

y10

y20

...
yN0

 .

Finally, we obtain a very detailed formulation by writing everything in terms
of individual components:

NUMERICAL DIFFERENTIAL EQUATION METHODS 53

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

x

y

Figure 200(i) An example of the Euler method

y′
1(x)

y′
2(x)
...

y′
N (x)

=

f1(x, y1(x), y2(x), . . . , yN (x))
f2(x, y1(x), y2(x), . . . , yN (x))

...
fN (x, y1(x), y2(x), . . . , yN (x))

 ,

y1(x0)
y2(x0)

...
yN (x0)

=

y10

y20

...
yN0

 .

An important special case is that f – or, for vector problems, each of the
functions f1, f2, . . . , fN – does not depend on the time variable at all. In this
case, we refer to the problem as being ‘autonomous’, and write it in the form

y′(x) = f(y(x)), y(x0) = y0,

or in one of the expanded forms.
To conclude this subsection, we present a pictorial illustration of the use of

the Euler method, for the scalar initial value problem

dy

dx
=

y − 2xy2

1 + x
, y(0) =

2
5
. (200b)

Five steps with the method, using equally sized time steps 1
5 , are taken and

shown against a background of solutions with varying initial values. The
general solution to this problem is given by

y(x) =
1 + x

C + x2
,

for C an arbitrary constant, and the exact and approximate solutions are
shown in Figure 200(i).

54 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

201 Some numerical experiments

To see how the Euler method works in practice, consider the initial value
problem

dy

dx
=

y + x

y − x
, y(0) = 1, (201a)

for which the exact solution is

y(x) = x +
√

1 + 2x2. (201b)

To calculate the solution at x = 0.1 using the Euler method, we need to use
the approximation y(0.1) ≈ y(0) + 0.1y′(0). Since y(0) = 1 and y′(0) = 1, we
find y(0.1) ≈ y(0) + 0.1y′(0) = 1 + 0.1 = 1.1.

We can now take the calculation a second step forward, to find an
approximation at x = 0.2 using the formula y(0.2) ≈ y(0.1) + 0.1y′(0.1).
For the value of y(0.1), we can use the result of the first Euler step and
for the value of y′(0.1), we can use (201a) with the approximate value of
y(0.1) substituted. This gives y′(0.1) ≈ (1.1 + 0.1)/(1.1 − 0.1) = 1.2. Hence,
y(0.2) ≈ y(0.1) + 0.1y′(0.1) ≈ 1.1 + 0.12 = 1.22.

In Table 201(I) these calculations are continued as far as x = 0.5. Steps of
size 0.1 are taken throughout but, for comparison, the same results are also
given for steps of sizes 0.05 and 0.025, respectively. For the three columns of
approximations, the headings h = 0.1, h = 0.05 and h = 0.025 denote the
sizes of the steps used to arrive at these approximations. The exact values of
y are also given in the table.

It is interesting to compare the errors generated in the very first step, for
the three values of h that we have used. For h = 0.1, the exact solution minus
the computed solution is 1.109950 − 1.100000 = 0.009950; for h = 0.05, the
corresponding difference is 1.052497−1.050000 = 0.002497; for h = 0.025, the
difference is 1.025625 − 1.025000 = 0.000625. It is seen that, approximately,
when h is multiplied by a factor of 1

2 , the error in the first step is multiplied by
a factor of 1

4 . This is to be expected because, according to Taylor’s theorem,
the exact answer at x = h is y(h) ≈ y(0) + hy′(0) + (h2/2)y′′(0). The first
two terms of this approximation are exactly what is calculated by the Euler
method, so that the error should be close to (h2/2)y′′(0). We can check this
more closely by evaluating y′′(0) = 2.

Of greater interest in understanding the quality of the numerical
approximation is the error accumulated up to a particular x value, by a
sequence of Euler steps, with varying value of h. In the case of x = 0.5,
we see that, for the three stepsizes we have used, the errors are respectively
1.724745 − 1.687555 = 0.037190, 1.724745 − 1.706570 = 0.018175 and
1.724745 − 1.715760 = 0.008985. These error values approximately drop by a
factor 1

2 when h is reduced by this same factor. The reason for this will be
discussed more fully in Subsection 212, but it can be understood informally.
Note that there is a comparable error produced in each of the steps, but there

NUMERICAL DIFFERENTIAL EQUATION METHODS 55

Table 201(I) Euler method: problem (201a)

x h = 0.1 h = 0.05 h = 0.025 y

0.000000 1.000000 1.000000 1.000000 1.000000
0.025000 1.025000 1.025625
0.050000 1.050000 1.051250 1.052497
0.075000 1.078747 1.080609
0.100000 1.100000 1.105000 1.107483 1.109950
0.125000 1.137446 1.140505
0.150000 1.164950 1.168619 1.172252
0.175000 1.200982 1.205170
0.200000 1.220000 1.229729 1.234510 1.239230
0.225000 1.269176 1.274405
0.250000 1.299152 1.304950 1.310660
0.275000 1.341799 1.347963
0.300000 1.359216 1.372981 1.379688 1.386278
0.325000 1.418581 1.425568
0.350000 1.450940 1.458440 1.465796
0.375000 1.499228 1.506923
0.400000 1.515862 1.532731 1.540906 1.548913
0.425000 1.583436 1.591726
0.450000 1.618044 1.626780 1.635327
0.475000 1.670900 1.679678
0.500000 1.687555 1.706570 1.715760 1.724745

are more of these steps, if h is small. In the case of the present calculation, the
error is about h2 in each step, but to get as far as x = 0.5, n = 1/2h steps have
to be carried out. This leads to a total error of about nh2 = 0.5h. A slight
refinement of this argument would replace y′′(0) by the mean of this quantity
over the interval [0, 0.5]. The value of this mean is approximately 1.63299,
so that the total error should be about 0.40825h. This very crude argument
leads to a prediction that is incorrect by a factor of only about 10%. In the
solution of practical problems using the Euler method, or indeed a different
method, it is not really feasible to estimate the total accumulated error, but it
is important to know the asymptotic form of the error in terms of h. This will
often make it possible to gauge the quality of approximations, by comparing
the values for differing h values. It will also often make it possible to make
realistic decisions as to which of various alternative numerical methods should
be used for a specific problem, or even for a large class of problems.

56 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Table 201(II) Euler method: problem (201d) with e = 0

h y1 y2 y3 y4 ‖Error‖
π

200 −1.084562 0.133022 −0.159794 −0.944876 0.231124
π

400 −1.045566 0.067844 −0.085837 −0.973596 0.121426
π

800 −1.023694 0.034251 −0.044572 −0.987188 0.062333
π

1600 −1.012087 0.017207 −0.022723 −0.993707 0.031593
π

3200 −1.006106 0.008624 −0.011474 −0.996884 0.015906
π

6400 −1.003068 0.004317 −0.005766 −0.998450 0.007981
π

12800 −1.001538 0.002160 −0.002890 −0.999227 0.003998
π

25600 −1.000770 0.001080 −0.001447 −0.999614 0.002001

Table 201(III) Euler method: problem (201d) with e = 1
2

h y1 y2 y3 y4 ‖Error‖
π

200 −1.821037 0.351029 −0.288049 −0.454109 0.569602
π

400 −1.677516 0.181229 −0.163203 −0.517588 0.307510
π

800 −1.593867 0.091986 −0.087530 −0.548433 0.160531
π

1600 −1.548345 0.046319 −0.045430 −0.563227 0.082134
π

3200 −1.524544 0.023238 −0.023158 −0.570387 0.041559
π

6400 −1.512368 0.011638 −0.011693 −0.573895 0.020906
π

12800 −1.506208 0.005824 −0.005875 −0.575630 0.010485
π

25600 −1.503110 0.002913 −0.002945 −0.576491 0.005251

Table 201(IV) Euler method: problem (201d) with e = 3
4

h y1 y2 y3 y4 ‖Error‖
π

200 −2.945389 1.155781 −0.739430 0.029212 1.864761
π

400 −2.476741 0.622367 −0.478329 −0.168796 1.089974
π

800 −2.162899 0.322011 −0.284524 −0.276187 0.604557
π

1600 −1.972584 0.163235 −0.158055 −0.329290 0.321776
π

3200 −1.865987 0.082042 −0.083829 −0.354536 0.166613
π

6400 −1.809268 0.041102 −0.043252 −0.366542 0.084872
π

12800 −1.779967 0.020567 −0.021980 −0.372336 0.042847
π

25600 −1.765068 0.010287 −0.011081 −0.375172 0.021528

NUMERICAL DIFFERENTIAL EQUATION METHODS 57

It is equally straightforward to solve problems in more than one dependent
variable using the Euler method. Given the problem of inverse-square law
attraction in two dimensions

Y ′′(x) = − 1
‖Y (x)‖3/2

Y (x), (201c)

where ‖Y ‖ =
√

Y 2
1 + Y 2

2 , it is necessary to first write the problem as a system
of first order equations. This is done by writing y1 and y2 for the space
coordinates Y1 and Y2, and writing y3 and y4 for the velocity coordinates,
given as the first derivatives of Y1 and Y2. With this reformulation, the system
of differential equations is written in the form

dy1

dx
= y3,

dy2

dx
= y4,

dy3

dx
= − y1

(y2
1 + y2

2)3/2
,

dy4

dx
= − y2

(y2
1 + y2

2)3/2
.

(201d)

The initial value, written as a vector y(0) = [1, 0, 0, 1] , defines the solution
y(x) = [cos(x), sin(x),− sin(x), cos(x)] . The first step of the Euler method
gives a numerical result y(h) ≈ [1, h,−h, 1] ; this differs from the exact
result by approximately [−1

2h2,−1
6h3, 1

6h3,−1
2h2] . Rather than look at all the

components of the error vector individually, it is often convenient to compute
the norm of this vector and consider its behaviour as a function of h.

It will be interesting to perform many steps, sufficient to complete, for
example, half of one orbit and to compare the (Euclidean) norm of the error
for differing values of h. For various values of h, decreasing in sequence by a
factor 1

2 , some calculations are presented for this experiment in Table 201(II).
The approximate halving of the error, when h is halved, is easily observed in
this table.

If the same problem is solved using initial values corresponding to an elliptic,
rather than a circular, orbit, a similar dependence of the error on h is observed,
but with errors greater in magnitude. Table 201(III) is for an orbit with
eccentricity e = 1

2 . The starting value corresponds to the closest point on
the orbit to the attracting force, and the exact value at the end of a half
period is

58 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

y(0) =

1 − e

0
0√
1+e
1−e

 =

1
2

0
0√
3

 , y(π) =

−1 − e

0
0

−
√

1−e
1+e

 =

−3

2

0
0

− 1√
3

 .

When the eccentricity is further increased to e = 3
4 , the loss of accuracy

in carrying out the computation is even more pronounced. Results for
e = 3

4 are given in Table 201(IV), where we note that, in this case,
y(π) = [−7

4 , 0, 0,−1/
√

7] .

202 Calculations with stepsize control

The use of the Euler method, with constant stepsize, may not be efficient for
some problems. For example, in the case of the eccentric orbits, discussed in
the previous subsection, a small step should be taken for points on the orbit,
close to the attracting force, and a larger step for points remote from the
attracting force. In deciding how we might attempt to control the stepsize
for a general problem, we need to consider how the error committed in each
step can be estimated. First, however, we consider how the stepsize in a step
should be chosen, to take account of this error estimate.

Because the total error is approximately the sum of the errors committed in
the individual steps, at least for a limited number of steps, we look at a simple
model in which the interval of integration is divided up into m subintervals,
with lengths δ1, δ2, . . . , δm. We assume that the norms of the errors in steps
carried out in these intervals are C1h

2
1, C2h

2
2, . . . , Cmh2

m, respectively, where
h1, h2, . . . , hm are the constant stepsizes in these subintervals. Assume that a
total of N steps of integration by the Euler method are carried out and that
a fraction ti of these are performed in subinterval i = 1, 2, . . . , m. This means
that tiN steps are carried out in subinterval i and that hi = δi/tiN . The total
error committed, which we assume, in the absence of further information, to
be the sum of the individual errors, is approximately

E =
m∑

i=1

(tiN)Ci

(
δi

tiN

)2

=
1
N

m∑
i=1

δ2
i Cit

−1
i , (202a)

where δi/tiN is the stepsize used for every step in subinterval number i. By
the Cauchy–Schwarz inequality, the minimum value of (202a) is achieved by

ti =
δi

√
Ci∑m

j=1 δj

√
Cj

and it follows that optimality occurs when Cih
2
i is maintained constant over

every subinterval. We interpret this result to mean that the estimated values
of the error should be kept as close as possible to some pre-assigned value.

NUMERICAL DIFFERENTIAL EQUATION METHODS 59

10−210−310−410−5

1
0
−
0

1
0
−
1

1
0
−
2

1
0
−
3

h

‖E
‖

Figure 202(i) Constant (◦) and variable (•) step for orbit with eccentricities

e = 1
2

(– –) and e = 3
4

(· · ·)

This pre-assigned value, which is under control of the user, will be regarded
as the user-imposed tolerance.

To actually estimate the error committed in each step, we have a natural
resource at our disposal; this is the availability of approximations to hy′(x) at
the beginning and end of every step. At the beginning of step n, it is, of course,
the value of hf(xn−1, yn−1) used in the computation of the Euler step itself.
At the end of this step we can calculate hf(xn, yn). This might seem to be an
additional calculation of the function f , but this computation needs to be done
anyway, since it is needed when the following step is eventually carried out.
From these approximations to hy′(xn−1) and hy′(xn) we can recalculate the
step from yn−1 using the more accurate trapezoidal rule to yield the improved
approximation to y(xn), given by

y(xn) ≈ y(xn−1) +
1
2
(
hy′(xn−1) + hy′(xn)

)
,

and we can use the difference between this approximation to y(xn), and the
result computed by the Euler step, as our local error estimate.

Hence we have, as an estimate of the norm of the error,

1
2

∥∥hf(xn−1, y(xn−1)) − hf(xn, y(xn))
∥∥.

As an illustration of how variable stepsize works in practice, the calculations
of gravitational orbits with eccentricities 0.5 and 0.75 have been repeated using
variable stepsize, but with the tolerances set at values that will give a total
number of steps approximately the same as for the constant stepsize cases
already investigated. A summary of the results is shown in Figure 202(i).
To make the comparisons straightforward, only norms of errors are plotted
against stepsize (or mean stepsize in the variable stepsize cases).

60 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

10010−110−210−310−410−5

1
0
8

1
0
6

1
0
4

1
0
2

1
0
−
0

1
0
−
2

1
0
−
4

n−1

‖E
‖

Figure 203(i) Norm error against n−1 for the ‘mildly stiff’ problem (203a)

203 Calculations with mildly stiff problems

Consider the initial value problem

dy1

dx
= −16y1 + 12y2 + 16 cos(x) − 13 sin(x), y1(0) = 1,

dy2

dx
= 12y1 − 9y2 − 11 cos(x) + 9 sin(x), y2(0) = 0,

(203a)

for which the exact solution is y1(x) = cos(x), y2(x) = sin(x). We attempt to
solve this problem using the Euler method. First, we use constant stepsize.
Specifically, we perform n steps with h = π/n and with n taking on various
integer values. This yields a sequence of approximations to y(π), and results
for the norm of the error are given in Figure 203(i).

The results shown here have a disturbing feature. Even though the
asymptotic first order behaviour is clearly seen, this effect is recognizable
only below a certain threshold, corresponding to n = 38. For h above the
corresponding value of π/38, the errors grow sharply, until they dominate the
solution itself. We consider what can be done to avoid this extreme behaviour
and we turn to variable stepsize as a possible remedy. We need to be more
precise than in Subsection 202, in deciding how we should apply this approach.
After a step has been completed, we have to either accept or reject the step,
and rejecting requires us to repeat the step, but with a scaled-down stepsize.
In either case we need a policy for deciding on a stepsize to use in the new
attempt at the failed step, or to use in the succeeding new step.

Because the local truncation error is asymptotically proportional to the
square of h, it makes sense to scale the stepsize in the ratio

√
T/‖E‖, where E

is the error estimate and T is the maximum permitted value of ‖E‖. However,
it is essential to insert a ‘safety factor’ S, less than 1, into the computation,

NUMERICAL DIFFERENTIAL EQUATION METHODS 61

10−110−210−310−4

1
0
−
2

1
0
−
1

T

‖E
‖

Figure 203(ii) Norm error against tolerance T for the ‘mildly stiff’ problem

(203a) with variable stepsize

to guard against a rejection in a new step, because of slight variations in
the magnitude of the error estimate from step to step. It is also wise to use
two further design parameters, M and m, representing the maximum and
minimum stepsize ratios that will be permitted. Typically M = 2, m = 1

2
and S = 0.9, and we adopt these values. Fortunately, this experiment of using
variable stepsize is successful, as is seen from Figure 203(ii).

There is a loss of efficiency, in that unstable behaviour typically results
in wide variations of stepsize, in sequences of adjacent steps. However, there
are relatively few steps rejected, because of excessive error estimates. For the
special choice of the tolerance T = 0.02, 38 successful steps were taken, in
addition to 11 failed steps. The value of the stepsize h as a function of the
value of x, at the beginning of each of the steps, is shown in Figure 203(iii).

The phenomenon experienced with this example goes under the name of
‘stiffness’. To understand why this problem is stiff, and why there seems to
be a value of h such that, for values of the stepsize above this, it cannot
be solved by the Euler method, write v1(x) and v2(x) for the deviations of
y1(x) and y2(x) from the exact solution. That is, y1(x) = cos(x) + v1(x) and
y2(x) = sin(x) + v2(x). Because the system is linear, it reduces in a simple
way to dv1

dx
dv2

dx

 =

[
−16 12

12 −9

][
v1

v2

]
. (203b)

To simplify the discussion further, find the eigenvalues, and corresponding
eigenvectors, of the matrix A occurring in (203b), where

A =

[
−16 12

12 −9

]
.

62 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

0 1 2 3

0
.0

5
0
.1

0
0
.1

5

x

h

Figure 203(iii) Stepsize h against x for the ‘mildly stiff’ problem (203a) with

variable stepsize for T = 0.02

The eigenvalues of A are λ1 = 0 and λ2 = −25 and the eigenvectors are the
columns of the matrix

T =

[
3 4
4 −3

]
.

By substituting v = Tw, that is,[
v1

v2

]
=

[
3 4
4 −3

][
w1

w2

]
,

we find that dw1

dx
dw2

dx

 =

[
0 0
0 −25

][
w1

w2

]
.

The components of w each have bounded solutions, and thus the original
differential equation is stable. In particular, any perturbation in w2 will
lead to very little change in the long term solution, because of the quickly
decaying exponential behaviour of this component. On the other hand, when
the equation for w2 is solved numerically, difficulties arise. In a single step of
size h, the exact solution for w2 should be multiplied by exp(−25h), but the
numerical approximation is multiplied by 1 − 25h. Even though | exp(−25h)|
is always less than 1 for positive h, |1 − 25h| is greater than 1, so that its
powers form an unbounded sequence, unless h ≤ 2

25 .
This, then, is the characteristic property of stiffness: components of the

solution that should be stable become unstable when subjected to numerical
approximations in methods like the Euler method.

NUMERICAL DIFFERENTIAL EQUATION METHODS 63

Table 204(I) Comparison of explicit and implicit Euler methods:

problem (201a)

n Explicit error Implicit error Iterations
5 0.03719000 −0.03396724 28

10 0.01817489 −0.01737078 47
20 0.00898483 −0.00878393 80
40 0.00446704 −0.00441680 149
80 0.00222721 −0.00221462 240

160 0.00111203 −0.00110889 480
320 0.00055562 −0.00055484 960
640 0.00027771 −0.00027762 1621

204 Calculations with the implicit Euler method

As we have pointed out, the Euler method approximates the integral of
y′(x), over each subinterval [xn−1, xn], in terms of the width of the interval,
multiplied by an approximation to the height of the integrand at the left-hand
end. We can consider also the consequences of using the width of this interval,
multiplied by the height at the right-hand end.

This would mean that the approximation at x1 would be defined by
y(x1) ≈ y1, where y1 = y0 + hf(x1, y1). This results in what is known as
the ‘implicit Euler method’. The complication is, of course, that the solution
approximation at the end of the step is defined not by an explicit formula,
but as the solution to an algebraic equation.

For some problems, we can evaluate y1 by simple (‘fixed point’) iteration.
That is, we calculate a sequence of approximations Y [0], Y [1], Y [2], . . . using
the formula

Y [k] = y0 + hf(x1, Y
[k−1]), k = 1, 2, 3,

Assuming that the sequence of approximations converges, to within a required
tolerance, to a limiting value Y , then we take this limit as the value of y1. The
starting value in the sequence may be taken, for simplicity and convenience,
as y0.

Some results for this method, as applied to the initial value problem (201a),
are given in Table 204(I). In this table, all approximations are made for the
solution at x = 0.5 and, for each number of steps n, the calculation is carried
out using both the Euler method and the implicit form of the Euler method.
The total errors for the two methods are shown. In the case of the implicit
method, the total number of iterations to achieve convergence, to within a

64 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

10−3 10−2 10−1 1001
0
−
3

1
0
−
2

1
0
−
1

1
0
0

n−1

‖E
‖

Figure 204(i) Norm error against n−1 for the ‘mildly stiff’ problem (203a) using

the method (204a)

tolerance of 10−6, is also given. If a tolerance as high as 10−4 had been
specified, there would have been only about two, rather than three, iterations
per step, but the cost would still be approximately twice as great as for the
explicit Euler method.

As we see from these results, there is no advantage in the implicit form
of the Euler method, in the case of this problem. On the contrary, there is
a serious disadvantage, because of the very much greater computing cost, as
measured in terms of f evaluations, for the implicit as compared with the
explicit form of the method.

For stiff problems, such as that given by (203a), the implicit Euler method
shows itself to advantage. Since this problem is linear, it is possible to write
the answer for the approximation computed at the end of a step explicitly. In
the step going from x0 to x1 = x0 + h, with solution approximations going
from y0 = [(y0)1, (y0)2] to y1 = [(y1)1, (y1)2] , we have the relations between
these quantities given by[

(y1)1
(y1)2

]
= h

[
−16 12

12 −9

][
(y1)1
(y1)2

]
+

[
(y0)1
(y0)2

]
+ h

[
16 cos(x1) − 13 sin(x1)
−11 cos(x1) + 9 sin(x1)

]
,

so that[
1 + 16h −12h

−12h 1 + 9h

][
(y1)1
(y1)2

]
=

[
(y0)1 + 16h cos(x1) − 13h sin(x1)
(y0)2 − 11h cos(x1) + 9h sin(x1)

]
, (204a)

and the new approximation is found using a linear equation solution.
The results for this calculation, presented in Figure 204(i), show that this

method is completely satisfactory, for this problem. Note that the largest
stepsize used is π, so that only a single step is taken.

NUMERICAL DIFFERENTIAL EQUATION METHODS 65

Exercises 20

20.1 On a copy of Figure 200(i), plot the points corresponding to the solution
computed by the Euler method with y(0) = 1

4 , h = 1
5 .

20.2 Write the initial value problem (200b) in the form

dx
dt = 1 + x, x(0) = 0,
dy
dt = y − 2xy2, y(0) = 1

2 .

Using this alternative formulation, recalculate the solution, using five
equal steps of the Euler method, from t = 0 to t = ln 2. Plot the solution
points after each step on a graph in the (x, y) plane.

20.3 Continue the calculations in Table 201(I) to the point x = 1.

20.4 It is known that E = 1
2 (y2

3 + y2
4) − 1/

√
y2
1 + y2

2 , the total energy, and
A = y1y4 − y2y3, the angular momentum, are invariants of the system
(201d); that is, for any value of x the values of each of these will be
equal respectively to the values they had at the initial time. The quality
of a numerical method for solving this problem can be measured by
calculating by how much these theoretical invariants actually change in
the numerical computation. Repeat the calculations in Tables 201(II),
201(III) and 201(IV) but with the deviation in the values of each of
these quantities used in place of the errors.

21 Analysis of the Euler Method

210 Formulation of the Euler method

Consider a differential equation system

y′(x) = f(x, y(x)), y(x0) = y0, (210a)

where f : [a, b] × RN → RN is continuous and satisfies a Lipschitz condition
‖f(x, y)−f(x, z)‖ ≤ L‖y−z‖, for all x in a neighbourhood of x0 and y and z in
a neighbourhood of y0. For simplicity, we assume that the Lipschitz condition
holds everywhere; this is not a serious loss of generality because the existence
and uniqueness of a solution to (210a) is known to hold in a suitable interval,
containing x0, and we can extend the region where a Lipschitz condition holds
to the entire N -dimensional vector space, secure in the knowledge that no
practical difference will arise, because the solution will never extend beyond
values in some compact set.

We assume that the solution to (210a) is required to be approximated at a
point x, and that a number of intermediate step points are selected. Denote
these by x1, x2, . . . , xn = x. Define a function, ỹ, on [x0, x] by the formula

ỹ(x) = ỹ(xk−1) + (x − xk−1)f(xk−1, ỹ(xk−1)), x ∈ (xk−1, xk], (210b)

66 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

for k = 1, 2, . . . , n. If we assume that ỹ(x0) = y(x0) = y0, then ỹ exactly
agrees with the function computed using the Euler method at the points
x = xk, k = 1, 2, . . . , n. The continuous function ỹ, on the interval [x0, x], is a
piecewise linear interpolant of this Euler approximation.

We are interested in the quality of ỹ as an approximation to y. This will
clearly depend on the values of the step points x1, x2, . . . , and especially on
the greatest of the distances between a point and the one preceding it. Denote
the maximum of x1 − x0, x2 − x1, . . . , xn − xn−1 by H.

We would like to know what happens to ‖ỹ(x)−y(x)‖ as H → 0, given also
that ‖ỹ(x0) − y(x0)‖ → 0. It is also interesting to know what happens to the
uniform norm of ‖ỹ(x)−y(x)‖, for x in [x0, x]. Under very general conditions,
we show that ỹ converges uniformly to y, as the mesh is refined in this way.

211 Local truncation error

In a single step of the Euler method, the computed result, y0 + hf(x0, y0),
differs from the exact answer by

y(x0 + h) − y(x0) − hf(x0, y(x0)) = y(x0 + h) − y(x0) − hy′(x0).

Assuming y has continuous first and second derivatives, this can be written
in the form

h2

∫ 1

0

(1 − s)y′′(x0 + hs)ds. (211a)

For i = 1, 2, . . . , N , component i can be written, using the mean value
theorem, as 1

2h2 times component i of y′′(x0 +hs∗), where s∗ is in the interval
(0, 1). Another way of writing the error, assuming that third derivatives also
exist and are bounded, is

1
2
h2y′′(x0) + O(h3). (211b)

This form of the error estimate is quite convenient for interpreting
numerically produced results, because if h is sufficiently small, the local error
will appear to behave like a constant vector multiplied by h2. It is also useful
for determining how stepsize control should be managed.

212 Global truncation error

After many steps of the Euler method, the errors generated in these steps will
accumulate and reinforce each other in a complicated manner. It is important
to understand how this happens. We assume a uniform bound h2m on the
norm of the local truncation error committed in any step of length h. We
aim to find a global error bound using a difference inequality. We make the
standard assumption that a Lipschitz condition holds, and we write L as the
Lipschitz constant.

NUMERICAL DIFFERENTIAL EQUATION METHODS 67

Recall that ỹ(x) denotes the computed solution on the interval [x0, x]. That
is, at step values x0, x1, . . . , xn = x, ỹ is computed using the equation
ỹ(xk) = yk = yk−1 + (xk − xk−1)f(xk−1, yk−1). For ‘off-step’ points, ỹ(x)
is defined by linear interpolation; or, what is equivalent, ỹ(x) is evaluated
using a partial step from the most recently computed step value. That is, if
x ∈ (xk−1, xk), then

ỹ(x) = yk−1 + (x − xk−1)f(xk−1, yk−1). (212a)

Let α(x) and β(x) denote the errors in ỹ(x), as an approximation to y(x),
and in f(x, ỹ(x)), as an approximation to y′(x), respectively. That is,

α(x) = y(x) − ỹ(x), (212b)
β(x) = f(x, y(x)) − f(x, ỹ(x)), (212c)

so that, by the Lipschitz condition,

‖β(x)‖ ≤ L‖α(x)‖. (212d)

Define E(x) so that the exact solution satisfies

y(x) = y(xk−1) + (x − xk−1)f(xk−1, y(xk−1)) + (x − xk−1)2E(x),
x ∈ (xk−1, xk], (212e)

and we assume that ‖E(x)‖ ≤ m.
Subtract (212a) from (212e), and use (212b) and (212c), so that

α(x) = α(xk−1) + (x − xk−1)β(xk−1) + (x − xk−1)2E(x).

Hence,

‖α(x)‖ ≤ ‖α(xk−1)‖ + (x − xk−1)‖β(xk−1)‖ + (x − xk−1)2m

≤ ‖α(xk−1)‖ + (x − xk−1)L‖α(xk−1)‖ + (x − xk−1)2m

≤ (1 + (x − xk−1)L)‖α(xk−1)‖ + (x − xk−1)2m
≤ (1 + (x − xk−1)L)‖α(xk−1)‖ + (x − xk−1)Hm,

where we have used (212d) and assumed that no step has a length greater
than H. We distinguish two cases. If L = 0, then it follows that

‖α(x)‖ ≤ ‖α(x0)‖ + Hm(x − x0); (212f)

and if L > 0, it follows that(
‖α(x)‖ +

Hm

L

)
≤ (1 + (x − xk−1)L)

(
‖α(xk−1)‖ +

Hm

L

)
≤ exp((x − xk−1)L)

(
‖α(xk−1)‖ +

Hm

L

)
.

68 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Let φ(x) = exp(−(x − x0)L)(‖α(x)‖ + Hm/L), so that φ(x) never increases.
Hence,

‖α(x)‖ ≤ exp((x − x0)L)‖α(x0)‖ +
exp((x − x0)L) − 1

L
Hm.

Combining the estimates found in the two cases and stating them formally,
we have:

Theorem 212A Assuming that f satisfies a Lipschitz condition, with
constant L, the global error satisfies the bound

‖y(x) − ỹ(x)‖ ≤

‖y(x0)−ỹ(x0)‖ + Hm(x−x0), L = 0,

exp((x−x0)L)‖y(x0)−ỹ(x0)‖ + (exp((x−x0)L)−1)Hm
L ,

L > 0.

213 Convergence of the Euler method

We consider a sequence of approximations to y(x). In each of these
approximations, a computation using the Euler method is performed, starting
from an approximation to y(x0), and taking a sequence of positive steps.
Denote approximation number n by ỹn.

The only assumption we will make about ỹn, for each specific value of n, is
that the initial error y(x0) − ỹn(x0) is bounded in norm by Kn and that the
greatest stepsize is bounded by Hn. It is assumed that, as n → ∞, Hn → 0
and Kn → 0. As always, we assume that f satisfies a Lipschitz condition.

Denote by Dn the value of ‖y(x) − ỹn(x)‖.
Theorem 213A Under the conditions stated in the above discussion, Dn → 0
as n → ∞.

Proof. This result follows immediately from the bound on accumulated errors
given by Theorem 212A. �

The property expressed in this theorem is known as ‘convergence’. In
searching for other numerical methods that are suitable for solving initial value
problems, attention is usually limited to convergent methods. The reason for
this is clear: a non-convergent method is likely to give increasingly meaningless
results as greater computational effort is expended through the use of smaller
stepsizes.

Because the bound used in the proof of Theorem 213A holds not only for
x = x, but also for all x ∈ [x0, x], we can state a uniform version of this result.

Theorem 213B Under the conditions of Theorem 213A,

sup
x∈[x0,x]

‖y(x) − ỹn(x)‖ → 0

as n → ∞.

NUMERICAL DIFFERENTIAL EQUATION METHODS 69

Table 214(I) An example of enhanced order for problem (214a)

n |Error| Ratio

20 1130400.0252×10−10
4.4125

40 256178.9889×10−10
4.1893

80 61150.2626×10−10
4.0904

160 14949.6176×10−10
4.0442

320 3696.5967×10−10
4.0218

640 919.1362×10−10
4.0108

1280 229.1629×10−10
4.0054

2560 57.2134×10−10
4.0026

5120 14.2941×10−10
4.0003

10240 3.5733×10−10

214 Order of convergence

It is interesting to know not only that a numerical result is convergent, but
also how quickly it converges. In the case of a constant stepsize h, the bound
on the global error given in Theorem 212A is proportional to h. We describe
this by saying that the order of the Euler method is (at least) 1.

That the order is exactly 1, and that it is not possible, for a general
differential equation, to obtain error behaviour proportional to some higher
power of h, can be seen from a simple example. Consider the initial value
problem

y′(x) = 2x, y(0) = 0,

with exact solution y(x) = x2. If x = 1, and n steps are performed with
stepsize h = n−1, the computed solution is

h

n−1∑
k=0

2k

n
=

n − 1
n

.

This differs from the exact solution by 1/n = h.
In spite of the fact that the order is only 1, it is possible to obtain

higher order behaviour in special specific situations. Consider the initial value
problem

y′(x) = −y(x) tan(x) − 1
cos(x)

, y(0) = 1, (214a)

with solution y(x) = cos(x) − sin(x). Because of an exact cancellation of
the most significant terms in the error contributions, at different parts of the

70 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

10−5 10−4 10−3 10−2 10−1

10−10

10−8

10−6

10−4

10−2

h

|E
|

x = 1.29 . . .

x = π
4

Figure 214(i) Error versus stepsize for problem (214a) at two alternative

output points

trajectory, the computed results for this problem are consistent with the order
being 2 rather than 1, if the output value is taken as x ≈ 1.292695719373.
Note that x was chosen to be a zero of exp(x) cos(x) = 1. As can be seen from
Table 214(I), as the number of steps doubles, the error reduces by a factor
approximately equal to 2−2. This is consistent with second order, rather than
first order, behaviour. The errors are also plotted in Figure 214(i).

An analysis of the apparent cancellation of the most significant component
of the global truncation error is easy to carry out if we are willing to do
the estimation with terms, which decrease rapidly as h → 0, omitted from
the calculation. A more refined analysis would take these additional terms
into account, but would obtain bounds on their effect on the final result. In
step k, from a total of n steps, the local truncation error is approximately
−1

2h2(cos(xk) − sin(xk)). To find the contribution this error makes to the
accumulated error at xn = x, multiply by the product(

1 − h tan(xn−1)
)(

1 − h tan(xn−2)
)
· · ·
(
1 − h tan(xk)

)
. (214b)

We have the approximation

cos(x + h)
cos(x)

= cos(h) − sin(h) tan(x) ≈ 1 − h tan(x),

so that (214b) can be written approximately as

cos(xn)
cos(xn−1)

cos(xn−1)
cos(xn−2)

· · · cos(xk+1)
cos(xk)

=
cos(xn)
cos(xk)

.

NUMERICAL DIFFERENTIAL EQUATION METHODS 71

Table 214(II) An example of reduced order for problem (214c)

n |Error| Ratio

8 0.3012018700 1.4532
16 0.2072697687 1.4376
32 0.1441738248 1.4279
64 0.1009724646 1.4220

128 0.0710078789 1.4186
256 0.0500556444 1.4166
512 0.0353341890 1.4155

1024 0.0249615684 1.4149
2048 0.0176414532 1.4146
4096 0.0124709320 1.4144
8192 0.0088169646 1.4143

16384 0.0062340372 1.4143
32768 0.0044079422

Multiply this by the error in step k and add over all steps. The result is

−1
2
h2 cos(x)

n∑
k=1

cos(xk) − sin(xk)
cos(xk)

,

which is approximately equal to the integral

−1
2
h cos(x)

∫ x

0

cos(x) − sin(x)
cos(x)

dx = −1
2
h cos(x)(x + ln cos(x)).

This vanishes when exp(x) cos(x) = 1.
For comparison, results are also given in Figure 214(i) for a similar sequence

of h values, but at the output point x = π/4. This case is unsurprising, in
that it shows typical order 1 behaviour.

Finally, we present a problem for which an order, even as high as 1, is not
observed. The initial value problem is

y′(x) = − xy

1 − x2
, y(0) = 1, (214c)

with exact solution y =
√

1 − x2. The solution is sought at x = 1 and the
numerical results are shown in Table 214(II). It is seen that, as the number
of steps doubles, the error reduces by a factor of approximately 2−1/2. Thus,

72 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

10−5 10−4 10−3 10−2 10−1

10−6

10−5

10−4

10−3

10−2

10−1

h

|E
|

x = 1
2

x = 1

Figure 214(ii) Error versus stepsize for problem (214c) at two alternative

output points

the order seems to have been reduced from 1 to 1
2 . The reason for the loss of

order for this problem is that the Lipschitz condition does not hold at the end
of the trajectory (at x = 1, y = 0). As for any initial value problem, the error
in the approximate solution at this point develops from errors generated at
every time step. However, in this case, the local truncation error in the very
last step is enough to overwhelm the contributions to the error inherited from
all previous steps. In fact the local truncation error for the final step is

y(1) − y(1 − h) − hf(1 − h, y(1 − h))

= −
√

1 − (1 − h)2 + h(1 − h)

√
1 − (1 − h)2

1 − (1 − h)2
,

which simplifies to

− 1√
2 − h

h
1
2 ≈ −2−

1
2 h

1
2 .

Thus, the order 1
2 behaviour can be explained just by the error contributed

by the last step.
A second computation, for the solution at x = 1

2 , causes no difficulty and
both results are shown in Figure 214(ii).

215 Asymptotic error formula

In a numerical approximation to the solution to a differential equation, using
the Euler method, contributions to the total error are typically produced in
every step. In addition to this, there may be errors introduced at the very

NUMERICAL DIFFERENTIAL EQUATION METHODS 73

start of the integration process, due to an inaccuracy in the numerical initial
value. We attempt to model the development of this error using an asymptotic
approach. That is, we assume that the magnitude of all contributions to the
error are bounded in terms of some small parameter. We consider only the
limiting case, as all stepsizes tend to zero. Consider a step which advances
the approximate solution from x to x + h. Because the local truncation error
in this step is approximately 1

2y′′(x)h2, the rate at which errors are being
generated, as x increases, will be approximately y′′(x)h.

We suppose that for a step starting at x, the stepsize is equal to Hs(x),
where 0 < s(x) ≤ 1 throughout the integration. We use H as the small
parameter, referred to above, and assume that the initial error is equal to a
constant, which we denote by v0, times H. Using the integrated form of the
differential equation,

y(x) = y(x0) +
∫ x

x0

f(x, y(x))dx, (215a)

we write the perturbation to y, defining the numerical approximation, as
y(x) + Hv(x). Thus y(x) + Hv(x) is approximately equal to

y(x) + Hv(x) = y(x0) + Hv0 +
∫ x

x0

(
f(x, y(x) + Hv(x)) + 1

2Hs(x)y′′(x)
)
dx.

Because H is small, we approximate f
(
x, y(x) + Hv(x)

)
by f(x, y(x)) +

H(∂f/∂y)v(x):

y(x) + Hv(x) = y(x0) + Hv0

+
∫ x

x0

(
f(x, y(x)) + H

∂f

∂y
v(x) + 1

2Hs(x)y′′(x)
)
dx. (215b)

Subtract (215a) from (215b), divide the difference by H, and we find

v(x) = v0 +
∫ x

x0

(
∂f

∂y
v(x) +

1
2
s(x)y′′(x)

)
dx,

so that v satisfies the initial value problem

v′(x) =
∂f

∂y
v(x) +

1
2
s(x)y′′(x), v(x0) = v0. (215c)

We use this result in an attempt to understand the contribution to the
total error of local errors introduced at various points on the trajectory. This
is done by writing Φ(ξ, x) for the solution at x to the differential equation

w′(x) =
∂f

∂y
w(x), w(ξ) = I,

74 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

where w takes values in the space of N×N matrices. In the special case where
∂f/∂y is a constant matrix M , the solution is

Φ(ξ, x) = exp((x − ξ)M).

We can now write the solution at x = x of (215c) in the form

v(x) = Φ(x0, x)v0 +
1
2

∫ x

x0

Φ(x, x)s(x)y′′(x)dx.

This suggests that s should be chosen, as closely as possible, to maintain a
constant value of ‖Φ(x, x)s(x)y′′(x)‖, if the norm of the total error is to be
kept low for a given number of steps performed.

216 Stability characteristics

In addition to knowing that a numerical method converges to the true solution
over a bounded interval, it is interesting to know how errors behave over an
unbounded interval. Obtaining quantitative results is difficult, because we are
no longer able to take limits, as stepsizes tend to zero. Hence, our attention
will move towards qualitative questions, such as whether or not a computed
result remains bounded. By comparing the answer to questions like this with
the known behaviour of the exact solution, we obtain further insight into
the appropriateness of the numerical approximation to model the differential
equation.

A further reason for carrying out this type of qualitative analysis is that
so-called ‘stiff problems’ frequently arise in practice. For such problems,
qualitative or ‘stability’ analysis is vital in assessing the fitness of the method
to be used in the numerical solution.

Because of the great complexity of this type of analysis, we need to restrict
ourselves to purely linear problems with constant coefficients. Thus, we could
consider a system of differential equations of the form

y′(x) = My(x), (216a)

with the matrix M constant. Using fixed stepsize h, the Euler method gives
as the approximate solution at xn = x0 + nh,

yn = (I + hM)yn−1,

leading to the numerical solution

yn = (I + hM)ny0. (216b)

For this problem, the exact solution is

y(xn) = exp(nhM)y(x0). (216c)

NUMERICAL DIFFERENTIAL EQUATION METHODS 75

We wish to examine some features of the approximate solution (216b) by
comparing these features with corresponding features of the exact solution
(216c).

By making a change of basis, so that y(x) = Sŷ(x), and yn = Sŷn, where
S is a constant non-singular matrix, we can rewrite the differential equation
in the form

ŷ′(x) = M̂ŷ(x), (216d)

where M̂ = S−1MS. The solution is

ŷ(xn) = exp(nhM̂)ŷ(x0).

The solution computed by the Euler method transforms to

ŷn = (I + hM̂)nŷ0.

If the transformed matrix M̂ is chosen as the Jordan canonical form of M ,
then the differential equation system (216d) and the numerical approximation
become, to some extent, decoupled. This means that, for each distinct
eigenvalue q, one of the equations in the system (216d) has the simple form

y′(x) = qy(x), (216e)

and other components that correspond to the same Jordan block will depend
on this solution, but will not contribute to its behaviour.

Hence, to obtain acceptable behaviour, for the type of linear problem given
by (216a), it is essential that we obtain acceptable behaviour for (216e).
All this will mean is that (1 + hq)n will be an acceptable approximation to
exp(nhq). At very least, we want bounded behaviour for (1+hq)n, as n → ∞,
whenever exp(nhq) is bounded. This, in turn, implies that |1+hq| is bounded
by 1, if Re q ≤ 0 and q is an eigenvalue of M . Because any analysis of this type
will involve the product of h and q, it is convenient to write this product as
z = hq. We allow the possibility that z is complex, because there is no reason
for M to have only real eigenvalues.

The set of points in the complex plane, in which z may lie for this stable
behaviour, is known as the ‘stability region’. Because it is the set for which
|1 + z| ≤ 1, this stability region is the disc with centre at −1 and radius 1.
This is shown as the unshaded region in Figure 216(i). By contrast, we can
find the stability region of the implicit Euler method by replacing hf(xn, yn)
by zyn in the formula defining this method. That is, yn = yn−1 + hf(xn, yn)
becomes

yn = yn−1 + zyn.

Hence, yn = (1−z)−1yn−1, and the sequence formed by this relation is bounded
if and only if |1− z| ≥ 1. This is the complement in the complex plane of the
interior of the disc with centre 1 and radius 1, shown as the unshaded region
of Figure 216(ii).

76 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

−1

−i

i

Figure 216(i) Stability region: Euler method

1

−i

i

Figure 216(ii) Stability region: implicit Euler method

Even if we cannot obtain accurate approximations to the solution to
equations like (216e), we frequently wish to guarantee that the numerical
approximation is bounded in cases when the exact solution is bounded. This
means that we are especially interested in numerical methods, for which the
stability region includes all of the left half-plane. This is the case for the
implicit Euler method (Figure 216(ii)) but, as we clearly see from Figure
216(i), not for the Euler method itself. Methods with this desirable property
are said to be ‘A-stable’. It is widely accepted that this property is close to
being essential for stiff problems.

For these two one-step methods, the ratio yn/yn−1 is known as the ‘stability
function’. Denote this by R(z) so that

R(z) =

 1 + z, (Euler method)
1

1 − z
. (implicit Euler method)

From a consideration of elementary complex analysis, the property of A-
stability can be expressed slightly differently. Obviously, for a method to be
A-stable, the stability function must have no poles in the left half-plane. Also
the magnitude |R(z)| must be bounded by 1, for z on the imaginary axis.

NUMERICAL DIFFERENTIAL EQUATION METHODS 77

−1

−i

i

Figure 216(iii) Order star: Euler method

1

−i

i

Figure 216(iv) Order star: implicit Euler method

The interesting thing is that these two conditions are also sufficient for A-
stability. If a method with these properties were not A-stable, then this would
be contrary to the maximum modulus principle.

Multiplying R(z) by exp(−z) should make no difference to these conclusions.
That is, if the set in the complex plane for which |R(z) exp(−z)| ≤ 1 is plotted
instead, A-stability can still be categorized by this set, including the imaginary
axis, together with there being no poles in the left half-plane. The reason for
this assertion is that the factor exp(−z) does not add to, or take away from, the
set of poles. Furthermore, its magnitude is precisely 1 when the real part of z is
zero.

The modified plots for the two methods are shown in Figures 216(iii) and
216(iv). These were named ‘order stars’ by their inventors, Wanner, Hairer
and Nørsett (1978). The important new feature, introduced by the insertion of

78 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

−1

−i

i

Figure 216(v) Order arrows: Euler method

1

−i

i

Figure 216(vi) Order arrows: implicit Euler method

the exponential factor, is the pattern that has appeared near zero. Because, for
each of these methods, R(z) exp(−z) = 1+Cz2+O(z3), the magnitude of this
will be greater than, equal to, or less than 1 for |z| small, approximately when
the real part of Cz2 is positive, zero or negative, respectively. The regions
adjoining zero for which Re(R(z) exp(−z)) > 0 are known as ‘fingers’, and
those for which Re(R(z) exp(−z)) < 0, are ‘dual fingers’. The bounded fingers
necessarily contain poles and the bounded dual fingers necessarily contain
zeros. For both the Euler method and the implicit Euler method, there is
an exact pairing between zeros and bounded dual fingers, and between poles
and bounded fingers. Since this pairing also generalizes to other large classes
of methods, specifically those methods for which the order is maximal, given
the degrees of the numerator and denominator in the stability function, it
is possible to relate the angles, at which fingers come out from zero, to the
positions of the poles. It will be shown in Subsection 354 how this can be

NUMERICAL DIFFERENTIAL EQUATION METHODS 79

used to determine the possible A-stability of specific methods, and classes of
methods.

Although less well known, order arrows have a role similar to that of order
stars, in the analysis of stability questions. For a given stability function R(z),
we plot the paths in the complex plane where w(z) = exp(−z)R(z) is real and
positive. Arrows are attached to the paths to show the direction of increasing
w. For the Euler and implicit Euler methods, order arrow diagrams are shown
in Figures 216(v) and 216(vi) respectively.

217 Local truncation error estimation

We recall from Subsection 202 that stepsize control based on a local error
estimate was useful in forcing the Euler method to devote computational
effort to those parts of the trajectory where it is most needed. We discuss
here the principles behind this idea.

Let y1, y2, . . . , yn−1, yn, . . . denote a sequence of approximations to the
solution to an initial value problem, computed using the Euler method. For
our present purposes, we can assume that the stepsize takes a constant value
h, since we are discussing the estimation of the local truncation error only
over a single interval. Because we are considering the local error, we treat
the incoming approximation for step n as though it were exact. That is, we
introduce a solution ŷ to the initial value problem

ŷ′(x) = f(x, ŷ(x)), ŷ(xn−1) = yn−1.

We can then interpret ŷ(xn) − yn as the error introduced in step n alone.
Although it is not feasible to obtain convenient and useful bounds on

this quantity, it is possible to obtain asymptotically correct approximations
without additional cost. These will often be useful for the purpose of
controlling the stepsize, to produce efficient numerical algorithms, although
they cannot be used to obtain rigorous error bounds.

An approximation for ŷ(xn), to within O(h3), is found using a truncated
Taylor series

ŷ(xn−1 + h) ≈ ŷ(xn−1) + hŷ′(xn−1) +
h2

2!
ŷ′′(xn−1),

and the first two terms are

ŷ(xn−1) + hŷ′(xn−1) = yn−1 + hf(xn−1, yn−1) = yn.

Hence, we see that the truncation error is approximately

h2

2!
ŷ′′(xn−1).

An alternative interpretation of this quantity, at least asymptotically, with
terms involving third and higher powers of h ignored, is as the difference

80 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

between the result computed by the Euler method and a result computed, at
least for the current step, using a method which has a higher order.

As we will see in Section 22, there are many ways in which such a higher
order method can be found. One method is to evaluate hf(xn, yn), and to
recompute the step as

yn−1 +
1
2

(
hf(xn, yn) + hf(xn−1, yn−1)

)
. (217a)

If we were intending to actually use this more accurate approximation, then
the second computation of the function f in each step would approximately
double the work that needs to be done to complete each step. However, all we
intend to do is to estimate the error and, for this reason, the cost is unchanged,
because we need the value of hf(xn, yn) to proceed to the next step in any
case.

Thus, we see that a convenient, and essentially cost-free, method for
estimating local truncation errors is as the difference of the result found by
the Euler method itself, and the result found from (217a). This leads to the
error estimate

1
2

(
hf(xn, yn) − hf(xn−1, yn−1)

)
.

We already know this estimate can be used, quite satisfactorily, to control
stepsize, because of its evident success in Subsection 202.

218 Rounding error

The mathematical analysis of the behaviour of a numerical method, such
as the Euler method, is usually idealized to exact arithmetic. However,
in practical computation, the nature of computer arithmetic can play a
significant, and possibly overwhelming, part. Thus the discussion of error
growth, given in Subsection 212, is deficient in this respect. Let αn denote
the total error in the result, computed at step n, and βn the corresponding
error in the derivative, computed at this step. Thus,

αn = y(xn) − yn,

βn = f(xn, y(xn)) − f(xn, yn).

The sequences of exact and approximate values are interrelated by

yn = yn−1 + hf(xn−1, yn−1) − rn,

y(xn) = y(xn−1) + hf(xn−1, y(xn−1)) + ln,

where rn is the rounding error, otherwise known as the round-off error,
committed in this step, and ln is the truncation error that we have already
discussed.

NUMERICAL DIFFERENTIAL EQUATION METHODS 81

Stepsize (logarithmic scale)

E
rr

o
r

(l
o
g
a
ri

th
m

ic
sc

a
le

)
Tr

un
ca

tio
n

R
ounding

Figure 218(i) Schema showing effects of rounding error

These lead to the difference equation

αn = αn−1 + hβn−1 + ln + rn.

Even though we know something about ln, in particular that it behaves
asymptotically like a constant times h2, very little is known about rn.

A somewhat pessimistic model of rounding error would bound its magnitude
in terms of the magnitude of yn. It would also assume that its sign (or
direction, in the high-dimensional case) is always such as to reinforce errors
already accumulated. Bounding the magnitude of the rounding error, in terms
of the magnitude of yn, is quite reasonable, because the greatest contribution
to the total rounding error will usually arise from the final addition of
hf(xn−1, yn−1) to yn−1. Of these two terms, yn−1 is usually far the greater
in magnitude. Thus, the rounding error will have a magnitude approximately
equal to ‖yn−1‖ε ≈ ||yn||ε, where ε is the machine round-off constant defined
as the smallest positive number which satisfies the inequality 1 + ε > 1, in
computer arithmetic.

The other aspect of this model, that rounding errors always conspire to
produce the worst possible outcome, is, of course, too severe an assumption.
An alternative is to treat the rounding errors arising in different steps as being
independently and randomly distributed.

The pessimistic assumption adds an additional term to the accumulated
error of Ch−1, for C a constant, because the local error will be more or less
the same in each step and the number of steps is inversely proportional to h.
The randomness assumption will lead to the rounding error contribution being
replaced by a term of the form Ch−1/2. A detailed analysis of the probabilistic
model of rounding error in initial value problem calculations is presented in
Henrici (1962).

Under either the deterministic or the probabilistic model, it is clear that
the conclusion of the convergence of computed solutions to the exact solution,
as the stepsize tends to zero, will have to be reconsidered. If truncation error
alone was significant, the error behaviour would be very much as shown by the
dashed line in Figure 218(i). On the other hand, if there were no appreciable

82 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Algorithm 218α Simple version of Euler

for i = 1: n
term = h*f(y);
y = y + term;

end

Algorithm 218β Sophisticated version of Euler using compensated summation

z = zeros(size(y));
for i = 1: n

term = h*f(y) + z;
newy = y + term;
z = term - (newy - y);
y = newy;

end

truncation error, the accumulated rounding error would be very much like the
dotted line. The solid line shows the combined effect of these two sources of
error. Since a logarithmic scale is used for both stepsize and error, the two
individual error components will be approximately straight lines whose slope
will depend on the order of the method, one in the case of Euler, and whether
the pessimistic or the probabilistic model of rounding error growth is assumed.

Rather than attempting to carry out this analysis, we remark that it is
possible, to a large extent, to overcome the worst effects of the accumulation
of rounding errors, as steps are computed in sequence. This is done by
estimating the value of rn in any particular step, and then adding this to the
value of hf(xn, yn), before this is added in the following step. This improved
technique, which can be used for many situations involving the summation
of a large number of small numbers, is sometimes known as the Gill–Møller
algorithm (Gill, 1951; Møller, 1965, 1965a), but is now more often referred
to as ‘compensated summation’. An analysis, in the context of floating point
arithmetic, was carried out by Kahan (1965) and particular applications to
initial value problems were considered in Vitasek (1969). A modern survey
of compensated summation, with further references, is available in Higham
(1993).

We show how this is done by presenting two fragments of MATLAB code, of
which the first, referred to as Algorithm 218α, computes the solution naively,
and the second, Algorithm 218β, makes the improvement that we have referred
to. In each case, the problem is assumed to be written in autonomous form;
this is convenient because, if it were not the case, the updating of the x variable
would need to be done in a similar way to the y variable. It is assumed that the
statement f(y) yields the value of the derivative vector for given y.

NUMERICAL DIFFERENTIAL EQUATION METHODS 83

10−110−210−310−410−510−610−7

1
0
−
1

1
0
−
2

1
0
−
3

1
0
−
4

1
0
−
5

1
0
−
6

1
0
−
7

h

|E
|

Figure 218(ii) Errors for naive (◦) and sophisticated (•) forms of the Euler

method

Although each of these algorithms is coded to work in a vector setting, it
will be adequate, for illustrative purposes, to confine ourselves to numerical
experiments with a scalar problem. Specifically, we use the problem given
by (201a), using a sequence of stepsizes, h = 2−2, h = 2−3, . . . , h = 2−24.
Each of the two algorithms was used, and the errors were plotted on the same
graph, which is presented in Figure 218(ii). To avoid the necessity of using
abnormally small stepsizes, before rounding error becomes significant, the
calculations were performed in an arithmetic system in which it was possible
to force an accuracy of only nine significant decimal digits. It is seen that
the naive form of the method produces results that are increasingly infected
by rounding for stepsizes less than 2−15. For the Gill–Møller (compensated
summation) algorithm, on the other hand, there is no sign of accumulated
rounding error at all. It can also be seen that the naive version of the method
gives results much as was anticipated in Figure 218(i).

To give additional insight into how compensated summation works, a
further calculation on the initial value problem (201a) was performed, using
modified arithmetic in which the computations were consistently rounded to
three significant decimal digits. Using the notation in Algorithm 218β, these
results are shown in Table 218(I) for the first ten steps, using stepsize 0.01.
The crucial step in the calculation, the evaluation of z, can be expected to
be performed with little or no error. The reason for this is that each of the
two subtractions, newy - y and term - (newy - y), has operands which are
close to being equal, and these subtractions are usually performed without
rounding error. Exceptions may occur when two operands are almost equal,
but where the exponent parts of the floating point representations differ by
one; but this situation will be relatively rare. If we also concede that the errors
generated in the addition of two small quantities, in the statement term =
h*f(y) + z, are not of great significance, then we see that, although y might

84 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Table 218(I) Ten steps of sophisticated Euler to three significant decimals

x y h*f(y) term newy z

0.00 1.00 0.0100 0.0100 1.01 0.0000
0.01 1.01 0.0102 0.0102 1.02 0.0002
0.02 1.02 0.0104 0.0106 1.03 0.0006
0.03 1.03 0.0106 0.0112 1.04 0.0012
0.04 1.04 0.0108 0.0120 1.05 0.0020
0.05 1.05 0.0110 0.0130 1.06 0.0030
0.06 1.06 0.0112 0.0142 1.07 0.0042
0.07 1.07 0.0114 0.0156 1.09 −0.0044
0.08 1.09 0.0116 0.0072 1.10 −0.0028
0.09 1.10 0.0118 0.0090 1.11 −0.0010
0.10 1.11

not be accurate as an approximation to y at the end of a step, the value of y
+ z, if it could be evaluated accurately, would be a very good approximation,
because the statement term - (newy - y) effectively increases the old value
of y + z by h*f(y), to form the new value of y + z.

As further evidence in support of the use of compensated summation, we
present the results of an extended calculation, with the same three decimal
arithmetic system used to produce Table 218(I). In this calculation, 100 steps
were taken, so that the numerical approximations are now extended to the
interval [0, 1]. Shown in Figure 218(iii) are the computed values of y, found
using each of Algorithms 218α and 218β. In each case a rounding-free version
of the same results was subtracted to isolate the error due to rounding alone.
The sum of y and z, for the sophisticated algorithm, is also given. Because
the values of these quantities vary widely, a scale is used for which a value
ε corresponds to a rounding error of ε exp(104|ε|). It is clear that, in this
example, the sophisticated version of Euler performs overwhelmingly better
than the crude version.

Exercises 21

21.1 For the differential equation y′ = y, y(0) = 1, find the function ỹ,
given by (212a), where n = 4 and [x0, x1, x2, x3, x4] = [0, 1

4 , 1
2 , 3

4 , 1] and
ỹ(0) = y(0).

21.2 For the same problem as in Exercise 21.1, but with n an arbitrary
positive integer and xk = k/n, for k = 0, 1, 2, . . . , n, find the value
of ỹ(1) − y(1) and show that this converges to 0 as n → ∞.

NUMERICAL DIFFERENTIAL EQUATION METHODS 85

0.0001

−0.0001

0.001

−0.001

0.01

−0.01

0.05

−0.05

x

Figure 218(iii) Accumulation of rounding errors in low accuracy calculations

with sophisticated Euler, showing y (dashed line) and y+z (solid line); also, for

comparison, crude Euler (dotted line)

21.3 Prove (211a), using integration by parts.

21.4 Assuming that L = 0, prove (212f), using induction on k.

21.5 Repeat the calculation in Subsection 218, but making the correction in
the Gill–Møller algorithm only every second step.

22 Generalizations of the Euler Method

220 Introduction

As we have seen, in our discussion of the Euler method in Sections 20 and 21,
this simplest of all numerical methods enjoys many desirable properties but,
at the same time, suffers from some limitations. In the present section, we
consider generalizations, which will yield improved numerical behaviour but
will retain, as much as possible, its characteristic property of simplicity.

An important aim will be to obtain methods for which the asymptotic
errors behave like high powers of the stepsize h. For such methods, the gain in
accuracy, resulting from a given reduction in stepsize, would be greater than
for the Euler method, because for this method, the error behaves only like the
first power of h. We also examine the stability characteristics of these various
more general methods. As we saw in Subsection 216, the Euler method does

86 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Table 221(I) Errors in the numerical solution of the orbital problem (201d)

with zero eccentricity through a half period using (221a) and (221b)

n y1 error Ratio y2 error Ratio
32 0.01479021 −0.04016858

3.9676 3.9688
64 0.00372781 −0.01012098

4.0417 4.0001
128 0.00092233 −0.00253020

4.0361 4.0041
256 0.00022852 −0.00063190

4.0219 4.0031
512 0.00005682 −0.00015785

4.0119 4.0018
1024 0.00001416 −0.00003945

n y3 error Ratio y4 error Ratio
32 0.04038636 −0.01548159

3.9497 4.1552
64 0.01022525 −0.00372585

4.0132 4.0659
128 0.00254793 −0.00091636

4.0163 4.0294
256 0.00063440 −0.00022742

4.0105 4.0138
512 0.00015818 −0.00005666

4.0059 4.0067
1024 0.00003949 −0.00001414

not work well for stiff problems, because of stability considerations. We would
like to find methods that have better stability.

The two major aims, greater accuracy and better stability, have to be
balanced against the need to avoid additional computational costs, associated
for example, with starting and stepsize-changing mechanisms. In the next few
subsections, we explore some of the approaches used to achieve these aims.

221 More computations in a step

Instead of computing f only once in each time step, as in the Euler method,
we might look for methods which evaluate f (with different arguments, of
course) two or more times. We consider a single example of this idea in which
f is evaluated twice.

Since the Euler method is based on a left-hand quadrature rule, we might
ask how it is possible to base a method on the trapezoidal rule. The difficulty
with this is that the derivative at the beginning of the step is known, but at the
end it is not known. To overcome this difficulty, one of the two f evaluations
can be used to approximate the solution value at the end of the step, using the
same approximation that is used in the Euler method. From this first order
approximation, an approximation to the derivative at the end of the step is

NUMERICAL DIFFERENTIAL EQUATION METHODS 87

computed. The quota of two f evaluations has now been exhausted, but there
is now data available to apply the trapezoidal rule formula.

Putting all these stages of the computation together, we write the algorithm
for computing yn in the form

y∗
n = yn−1 + hf(xn−1, yn−1), (221a)

yn = yn−1 +
h

2
(
f(xn, y∗

n) + f(xn−1, yn−1)
)
. (221b)

This is an example of a Runge–Kutta method.
As an example of the use of this method, refer to Table 221(I), where the

Kepler problem (201d), with zero eccentricity, is integrated through a half
period. The number of steps, n, takes on successive values 2i, i = 5, 6, . . . , 10,
so that h takes on values π2−i, i = 5, 6, . . . , 10, respectively. The second order
nature of the approximations is suggested by the rate at which errors decrease
in each of the four components, as n is repeatedly doubled.

222 Greater dependence on previous values

After the first step of a numerical method has been completed, approximations
are available, to be used in the computation of yn, not only for y(xn−1) and
y′(xn−1) but also for y(xn−2) and y′(xn−2). After further steps, even more
previous information is available. Instead of computing yn in a complicated
manner from just the value of yn−1, we could consider making more use of the
values computed in past steps, as they become available.

In the generalization of the Euler method, introduced in Subsection 221,
we were, in effect, using an approximation to the derivative not at xn−1,
but at xn− 1

2
= xn−1 + 1

2h. One way of doing a similar adjustment, but
using past information, is to note that existing data indicates that the
value of y′(x) is changing by about f(xn−1, yn−1) − f(xn−2, yn−2) per step.
It therefore seems reasonable to assume that, as x advances from xn−1 to
xn− 1

2
, the approximation to the derivative at xn−1, given as f(xn−1, yn−1),

should be increased by 1
2 (f(xn−1, yn−1) − f(xn−2, yn−2)) to obtain a usable

approximation to y′(xn− 1
2
). This means that we could approximate the

derivative at xn− 1
2
, the mid-point of the interval, by 3

2f(xn−1, yn−1) −
1
2f(xn−2, yn−2), to yield the numerical method

yn = yn−1 + h
(3
2f(xn−1, yn−1) − 1

2f(xn−2, yn−2)
)
. (222a)

This method is an example of a ‘linear multistep method’.
Before we can carry out numerical tests with this method, we first need

some procedure for carrying out the first step of the computation. Once y1

is calculated, the information that is needed for the computation of y2, and
subsequently the solution at later steps, will be available as needed. In the

88 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Table 222(I) Errors in the numerical solution of the orbital problem (201d)

with zero eccentricity through a half period using (222a)

n y1 error Ratio y2 error Ratio
32 0.00295976 0.00537347

7.8987 2.3976
64 0.00037472 0.00224114

8.0168 3.3219
128 0.00004674 0.00067465

8.0217 3.6879
256 0.00000583 0.00018294

8.0136 3.8503
512 0.00000073 0.00004751

8.0074 3.9267
1024 0.00000009 0.00001210

n y3 error Ratio y4 error Ratio
32 −0.00471581 −0.00154957

2.1899 7.9797
64 −0.00215339 −0.00019419

3.2451 8.1221
128 −0.00066358 −0.00002391

3.6551 8.1017
256 −0.00018155 −0.00000295

3.8351 8.0620
512 −0.00004734 −0.00000037

3.9194 8.0339
1024 −0.00001208 −0.00000005

experiments we report here, the first step is taken using the Runge–Kutta
method introduced in the previous subsection.

The errors are shown in Table 222(I) and we see that, for this problem at
least, the results are just as good as for the Runge–Kutta method (221a) and
(221b), even though only one derivative is computed in each step. In fact, for
components 1 and 4, better than second order convergence is observed.

223 Use of higher derivatives

For many practical problems, it is possible to derive formulae for the second
and higher derivatives of y, making use of the formula for y′ given by
a differential equation. This opens up many computational options, which
can be used to enhance the performance of multistage (Runge–Kutta) and
multivalue (multistep) methods. If these higher derivatives are available, then
the most popular option is to use them to evaluate a number of terms in
Taylor’s theorem. Even though we consider this idea further in Section 25, we
present a simple illustrative example here.

Consider the initial value problem

y′ = yx + y2, y(0) =
1
2
, (223a)

NUMERICAL DIFFERENTIAL EQUATION METHODS 89

10−110−210−310−410−510−6

1
0
−
2

1
0
−
4

1
0
−
6

1
0
−
8

1
0
−
1
0

1
0
−
1
2

h

|E
|

p = 1

p = 2

p = 3

p = 4

Figure 223(i) Errors in problem (223a) using Taylor series with orders

p = 1, 2, 3, 4

with solution

y(x) =
exp(1

2x2)
2 −

∫ x

0 exp(1
2x2)dx

.

By differentiating (223a) once, twice and a third time, it is found that

y′′ = (x + 2y)y′ + y, (223b)
y′′′ = (x + 2y)y′′ + (2 + 2y′)y′, (223c)

y(4) = (x + 2y)y′′′ + (3 + 6y′)y′′. (223d)

We illustrate the Taylor series method by solving (223a) with output point
x = 1. Using n steps and stepsize h = 1/n, for n = 8, 16, 32, . . . , 220, the
method was used with orders p = 1, 2, 3 and 4. For example, if p = 4, then

yn = yn−1 + hy′ + h2

2 y′′ + h3

6 y′′′ + h2

24 y(4),

where y′, y′′, y′′′ and y(4) are given by (223a), (223b), (223c) and (223d) with
xn−1 and yn−1 substituted for x and y, respectively.

The results for these experiments are shown in Figure 223(i). In each case
the error is plotted, where we note that the exact result is

exp(1
2)/
(
2 −

∫ 1

0

exp(1
2x2)dx

)
,

with numerical value 2.04799324543883.

90 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Use of f
derivatives

Use of y
derivatives

More use of
past values

More calculations
per step

Runge–Kutta

Euler

Taylor
series General

linear
Linear

multistep

Obreshkov

Rosenbrock

Figure 224(i) Classification of general method types

224 Multistep–multistage–multiderivative methods

While multistep methods, multistage methods and multiderivative methods
all exist in their own right, many attempts have been made to combine their
attributes so as to obtain new methods of greater power. By introducing higher
y derivatives into multistep methods, a new class of methods is found. These
are known as Obreshkov methods, after their discoverer Obreshkov (1940).

The best-known combination of the use of higher derivatives with Runge–
Kutta methods is in Rosenbrock methods (Rosenbrock, 1963). This is actually
a greater generalization, in the sense that derivatives of f are used. These
must be regarded as more general, because y′′ can be found in the case of
an autonomous problem as y′′(x) = f ′(y(x))(f(y(x))). On the other hand, it
is not possible to compute f ′(y(x)) from values of the various y derivatives.
Rosenbrock methods have a role in the solution of stiff problems.

Other potentially useful combinations certainly exist but, in this book, we
mainly confine ourselves to combinations of multistage and multiderivative
methods. These we refer to as ‘general linear methods’. The various methods
that come under the classifications we have discussed here can be seen in
a diagrammatic representation in Figure 224(i). The Euler method can be
thought of as the infimum of all the method classes, and is shown at the lowest
point of this diagram. On the other hand, the class of general linear methods
is the supremum of all multistage and multivalue methods. The supremum of
all methods, including also those with a multiderivative nature, is represented
by the highest point in Figure 224(i).

NUMERICAL DIFFERENTIAL EQUATION METHODS 91

225 Implicit methods

We have already seen, in Subsection 204, that the implicit Euler method has
a role in the solution of stiff problems. Implicitness also exists in the case of
linear multistep and Runge–Kutta methods. For example, the second order
backward difference formula (also known as BDF2),

yn =
2
3
hf(xn, yn) +

4
3
yn−1 −

1
3
yn−2, (225a)

is also used for stiff problems. There are also implicit Runge–Kutta methods,
suitable for the solution of stiff problems.

Another example of an implicit method is the ‘implicit trapezoidal rule’,
given by

yn = yn−1 +
h

2
(
f(xn, yn) + f(xn−1, yn−1)

)
. (225b)

Like the Euler method itself, and its implicit variant, (225b) is, at the same
time, a linear multistep method and a Runge–Kutta method. As a linear
multistep method, it can be regarded as a member of the Adams–Moulton
family of methods. As a Runge–Kutta method, it can be regarded as a member
of the Lobatto IIIA family.

Implicit methods carry with them the need to solve the nonlinear
equation on which the solution, at a new step value, depends. For non-stiff
problems, this can be conveniently carried out by fixed-point iteration. For
example, the solution of the implicit equation (225b) is usually found by
evaluating a starting approximation η[0], given as yn in (222a). A sequence of
approximations η[k], k = 1, 2, . . . , is then formed by inserting η[k] in place of
yn on the left-hand side of (225b), and η[k−1] in place of yn on the right-hand
side. That is,

η[k] = yn−1 +
h

2

(
f
(
xn, η[k−1]

)
+ f(xn−1, yn−1)

)
, k = 1, 2, (225c)

The value of yn actually used for the solution is the numerically computed
limit to this sequence.

For stiff problems, unless h is chosen abnormally small, this sequence will
not converge, and more elaborate schemes are needed to evaluate the solution
to the implicit equations. These schemes are generally variants of the Newton–
Raphson method, and will be discussed further in reference to the particular
methods as they arise.

226 Local error estimates

It is usually regarded as necessary to have, as an accompaniment to any
numerical method, a means of assessing its accuracy, in completing each step
it takes. The main reason for this is that the work devoted to each step,

92 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

and the accuracy that is achieved in the step, should be balanced for overall
efficiency. If the cost of each step is approximately constant, this means that
the error committed in the steps should be approximately equal.

A second reason for assessing the accuracy of a method, along with the
computation of the solution itself, is that it may be more efficient to change
to a higher, or lower, member of the family of methods being used. The only
way that this can really be decided is for the accuracy of a current method
to be assessed and, at the same time, for some sort of assessment to be made
of the alternative method under consideration. We discuss here only the local
error of the current method.

It is not known how much a computed answer differs from what would
correspond to the exact answer, defined locally. What is often available,
instead, is a second approximation to the solution at the end of each
step. The difference of these two approximations can sometimes be used
to give quantitative information on the error in one of the two solution
approximations.

We illustrate this idea in a single case. Suppose the method given by (222a)
is used to give a starting value for the iterative solution of (225b). It is possible
to estimate local errors by using the difference of these two approximations.
We discuss this in more detail in the context of predictor–corrector Adams
methods.

Exercises 22

22.1 Assuming the function f satisfies a Lipschitz condition and that y, y′,
y′′ and y′′′ are continuous, explain why the method given by (221a) and
(221b) has order 2.

22.2 Explain why the method given by (222a) has order 2.

22.3 Find a method similar to (221a) and (221b), except that it is based on
the mid-point rule, rather than the trapezoidal rule.

22.4 For a ‘quadrature problem’, f(x, y) = φ(x), compare the likely
accuracies of the methods given in Subsections 221 and 222.

22.5 Verify your conclusion in Exercise 22.4 using the problem y′(x) = cos(x)
on the interval [0, π/2].

22.6 Show that the backward difference method (225a) has order 2.

22.7 Calculate the solution to (203a) using the backward difference method
(225a). Use n steps with constant stepsize h = π/n for n =
20, 21, 22, . . . , 210. Verify that second order behaviour is observed.

NUMERICAL DIFFERENTIAL EQUATION METHODS 93

23 Runge–Kutta Methods

230 Historical introduction

The idea of generalizing the Euler method, by allowing for a number of
evaluations of the derivative to take place in a step, is generally attributed to
Runge (1895). Further contributions were made by Heun (1900) and Kutta
(1901). The latter completely characterized the set of Runge–Kutta methods
of order 4, and proposed the first methods of order 5. Special methods for
second order differential equations were proposed by Nyström (1925), who
also contributed to the development of methods for first order equations. It
was not until the work of Huťa (1956, 1957) that sixth order methods were
introduced.

Since the advent of digital computers, fresh interest has been focused
on Runge–Kutta methods, and a large number of research workers have
contributed to recent extensions to the theory, and to the development
of particular methods. Although early studies were devoted entirely to
explicit Runge–Kutta methods, interest has now moved to include implicit
methods, which have become recognized as appropriate for the solution of
stiff differential equations.

A number of different approaches have been used in the analysis of Runge–
Kutta methods, but the one used in this section, and in the more detailed
analysis of Chapter 3, is that developed by the present author (Butcher, 1963),
following on from the work of Gill (1951) and Merson (1957).

231 Second order methods

In Subsection 221, a method was introduced based on the trapezoidal rule
quadrature formula. It turns out that for any non-zero choice of a parameter
θ, it is possible to construct a method with two stages and this same order. All
that is required is a first partial step to form an approximation a distance θh

into the step. Using the derivative at this point, together with the derivative
at the beginning of the step, the solution at the end of the step is then found
using the second order quadrature formula∫ 1

0

φ(x)dx ≈
(

1 − 1
2θ

)
φ(0) +

1
2θ

φ(θ).

Thus, to advance the solution from xn−1 to xn = xn−1 +h, the result is found
from

Y = yn−1 + θhf(xn−1, yn−1), (231a)

yn = yn−1 +
(

1 − 1
2θ

)
hf(xn−1, yn−1) +

1
2θ

hf(xn−1 + θh, Y). (231b)

94 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Note that the intermediate stage value Y is an approximation to the solution
at the ‘off-step’ point xn−1+θh, and is equal to y∗

n, in the special case we have
already considered, given by (221a) and (221b), in which θ = 1. The other
most commonly used value is θ = 1

2 , as in the ‘mid-point rule’.

232 The coefficient tableau

It is convenient to represent a Runge–Kutta method by a partitioned tableau,
of the form

c A

b

in which the vector c indicates the positions, within the step, of the stage
values, the matrix A indicates the dependence of the stages on the derivatives
found at other stages, and b is a vector of quadrature weights, showing how
the final result depends on the derivatives, computed at the various stages.

In the case of explicit methods, such as those we have considered so far
in this section, the upper triangular components of A are left blank, because
they have zero value.

The first two of the following examples of Runge–Kutta tableaux are,
respectively, for the Euler method and the general second order method,
parameterized by an arbitrary non-zero θ. The special cases, which are also
given, are for the trapezoidal rule method, designated here as RK21 and the
mid-point rule method, RK22, correspond to θ = 1 and θ = 1

2 , respectively:

0
1

0
θ θ

1 − 1
2θ

1
2θ

RK21 :
0
1 1

1
2

1
2

(232a)

RK22 :
0
1
2

1
2

0 1
(232b)

NUMERICAL DIFFERENTIAL EQUATION METHODS 95

233 Third order methods

It is possible to construct methods with three stages, which have order 3
numerical behaviour. These have the form

0
c2 a21

c3 a31 a32

b1 b2 b3

,

where a21 = c2 and a31 + a32 = c3. The conditions for order 3, taken from
results that will be summarized in Subsection 234, are

b1 + b2 + b3 = 1, (233a)

b2c2 + b3c3 =
1
2
, (233b)

b2c
2
2 + b3c

2
3 =

1
3
, (233c)

b3a32c2 =
1
6
. (233d)

The following tableaux

RK31 :

0
2
3

2
3

2
3

1
3

1
3

1
4 0 3

4

(233e)

and

RK32 :

0
1
2

1
2

1 −1 2
1
6

2
3

1
6

(233f)

give two possible solutions to (233a)–(233d).

234 Introduction to order conditions

As the order being sought increases, the algebraic conditions on the coefficients
of the method become increasingly complicated. The pattern behind these
conditions is known and, in this brief introduction to the order conditions, we
state the results without any justification and show, by examples, how they
are used.

96 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

root

leaf

order=2

root

leaf leaf

order=3

root

leaf leaf

order=4

root

leaf

leaf leaf

order=5

root

leaf leaf leaf

leaf

order=8

root

leaf

order=5

Figure 234(i) Some illustrative rooted trees

Let T denote the set of all ‘rooted trees’. These are simple combinatorial
graphs, which have the properties of being connected, having no cycles, and
having a specific vertex designated as the root. The ‘order’ of a tree is the
number of vertices in this tree. If the order is greater than 1, then the ‘leaves’
of a tree are the vertices from which there are no outward-growing arcs; in
other words, a leaf is a vertex, other than the root, which has exactly one
other vertex joined to it.

An assortment of trees of various orders, with leaves and the root indicated
in each case, is shown in Figure 234(i). In pictorial representations of particular
rooted trees, as in this figure, we use the convention of placing the root at the
lowest point in the picture.

For each tree t, a corresponding polynomial in the coefficients of the method
can be written down. Denote this by Φ(t). Also associated with each tree t is
an integer γ(t). We now explain how Φ(t) and γ(t) are constructed.

In the case of Φ(t), associate with each vertex of the tree, except the leaves,
a label i, j, . . . , and assume that i is the label attached to the root. Write down
a sequence of factors of which the first is bi. For each arc of the tree, other
than an arc that terminates in a leaf, write down a factor, say ajk, where j
and k are the beginning and end of the arc (assuming that all directions are in
the sense of movement away from the root). Finally, for each arc terminating
at a leaf, write down a factor, say cj , where j is the label attached to the
beginning of this arc. Having written down this sequence of factors, sum their
product for all possible choices of each of the labels, in the set {1, 2, . . . , s}.

To find the value of γ(t), associate a factor with each vertex of the tree. For

NUMERICAL DIFFERENTIAL EQUATION METHODS 97

Table 234(I) The rooted trees up to order 4

Tree
Order 1 2 3 3

Φ
∑

i bi

∑
i bici

∑
i bic

2
i

∑
ij biaijcj

γ 1 2 3 6

Tree
Order 4 4 4 4

Φ
∑

i bic
3
i

∑
ij biciaijcj

∑
ij biaijc

2
j

∑
ijk biaijajkck

γ 4 8 12 24

the leaves this factor is 1, and for all other vertices it is equal to the sum of
the factors attached to all outward-growing neighbours, plus 1. The product
of the factors, for all vertices of the tree, is the value of γ(t).

The values of these quantities are shown in Table 234(I), for each of the
eight trees with orders up to 4. A further illustrative example is given by the
tree

t =

for which Φ(t) =
∑

ij bic
2
i aijc

2
j and γ(t) = 18. Details of the calculation

of these quantities are presented in Figure 234(ii). On the left-hand diagram
labels i and j are attached to the non-terminal vertices, as used in the formula
for Φ(t), using the factors shown in the middle diagram. On the right-hand
diagram, the factors are shown whose product gives the value of γ(t).

i

j −→

bi

aij
cici

cjcj

Φ(t) =
∑

ij bic
2
i aijc

2
j

6

3
11

11

γ(t) = 1·1·3·1·1·6 = 18

Figure 234(ii) Calculation details for Φ(t) and γ(t), where t =

98 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

235 Fourth order methods

Write the order conditions presented in the previous subsection, in the special
case s = 4, assuming, because the method will be explicit, that aij = 0 unless
i > j. This yields the conditions

b1 + b2 + b3 + b4 = 1, (235a)

b2c2 + b3c3 + b4c4 =
1
2
, (235b)

b2c
2
2 + b3c

2
3 + b4c

2
4 =

1
3
, (235c)

b3a32c2 + b4a42c2 + b4a43c3 =
1
6
, (235d)

b2c
3
2 + b3c

3
3 + b4c

3
4 =

1
4
, (235e)

b3c3a32c2 + b4c4a42c2 + b4c4a43c3 =
1
8
, (235f)

b3a32c
2
2 + b4a42c

2
2 + b4a43c

2
3 =

1
12

, (235g)

b4a43a32c2 =
1
24

. (235h)

That c4 = 1 can be shown, by solving for b2, b3 and b4, from equations (235b),
(235c) and (235e); by then solving for a32, a42 and a43 from (235d), (235f)
and (235g); and then by substituting into (235h). Many solutions and families
of solutions are known to these conditions; the following are two examples:

RK41 :

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

(235i)

RK42 :

0
1
4

1
4

1
2 0 1

2

1 1 −2 2
1
6 0 2

3
1
6

(235j)

NUMERICAL DIFFERENTIAL EQUATION METHODS 99

236 Higher orders

Because the number of rooted trees of various orders increases rapidly for
orders greater than 4, the complexity of the order conditions also increases.
Above order 4, it is no longer possible to obtain order s with just s stages.
For order 5, six stages are required, and for order 6, seven stages are required.
Above this order, there are even sharper increases in the required numbers of
stages. We give a single example of a fifth order method:

RK5 :

0
1
4

1
4

1
4

1
8

1
8

1
2 0 0 1

2
3
4

3
16 −3

8
3
8

9
16

1 −3
7

8
7

6
7 −12

7
8
7

7
90 0 32

90
12
90

32
90

7
90

(236a)

237 Implicit Runge–Kutta methods

Implicit methods have the potential advantage, compared with explicit
methods, that there will be fewer stages for the same order. The disadvantage
is in the implicit nature of at least some of the stages. This makes it impossible
to avoid iterative methods of evaluation. For the purpose of experimental
comparison with explicit methods, we present here just three methods:

1
3

1
3 0

1 1 0
3
4

1
4

(237a)

3 − 2
√

2 5−3
√

2
4

7−5
√

2
4

1 1+
√

2
4

3−
√

2
4

1+
√

2
4

3−
√

2
4

(237b)

1
2 −

√
3

6
1
4

1
4 −

√
3

6
1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

(237c)

It can be verified that (237a) has order 3, (237b) has order only 2 and (237c)
has order 4. In the implicit case, the cost of using a specific method depends
not so much on the number of stages, as on the difficulty in evaluating the

100 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

stages. From this point of view, (237a) is the easiest to use because only one of
the stages is implicit; (237b) and (237c) each have two interconnected implicit
stages but, as we will see in Subsection 363, the order 2 method (237b) can
be implemented more cheaply than (237c).

238 Stability characteristics

In Subsection 216, we discussed the stability of the Euler method when solving
a linear problem of the form

y′(x) = qy(x).

If z = hq, then in a single step of length h, the exact solution will be multiplied
by the factor exp(z). In the same time interval the approximate solution
computed using a Runge–Kutta method will be multiplied by a function
of z, specific to the particular Runge–Kutta method. As in Subsection 216,
we denote this ‘stability function’ by R(z). The ‘stability region’, defined as
{z ∈ C : |R(z)| ≤ 1}, is the set of points in the complex plane such that the
computed solution remains bounded after many steps of computation. There
is special interest in values of z in the left half-plane, because in this case the
exact solution is bounded and good modelling of the problem would require
the computed solution to behave in a similar manner.

For an s-stage Runge–Kutta method, defined by the tableau

c A

b
(238a)

the vector Y , made up from the s stage values, satisfies

Y = 1y0 + hAqY = 1y0 + zAY,

where y0 is the incoming approximation. It follows that

Y = (I − zA)−11y0.

Substitute this into the solution approximation found at the end of the step,
and we find

y1 = y0 + hb qY = y0 + zb (I − zA)−11y0 = R(z)y0,

where
R(z) = 1 + zb (I − zA)−11. (238b)

If (238a) represents an explicit Runge–Kutta method with order p = s = 1, 2, 3
or 4, then we can evaluate R(z) very simply as the exponential series truncated

NUMERICAL DIFFERENTIAL EQUATION METHODS 101

−2 −1−3−4−5 0

i

2i

3i

−i

−2i

−3i

p=1

p=2

p=3

p=4

p=5

Figure 238(i) Stability regions for some explicit Runge–Kutta methods

at the zs term. To see why this should be the case, expand (I − zA)−1 by the
geometric series and evaluate the terms using the order condition

b Ak−11 = b Ak−2c =
1
k!

, k = 1, 2, . . . , p.

Hence, we have for the four cases for which s = p is possible,

R(z) =

1 + z, p = 1,

]1 + z + 1
2z2, p = 2,

1 + z + 1
2z2 + 1

6z3, p = 3,

1 + z + 1
2z2 + 1

6z3 + 1
24z4, p = 4.

The boundaries of the stability regions defined by these functions are shown
in Figure 238(i). In each case the stability region is the bounded set enclosed
by these curves.

For explicit methods with s = 6 and p = 5, the stability function takes the
form

R(z) = 1 + z + 1
2z2 + 1

6z3 + 1
24z4 + 1

120z5 + Cz6,

where C depends on the particular method. In the case of the method given
by the tableau (236a), C = 1

1280 , and the stability region for this is also shown
in Figure 238(i). In each case, the value of p is attached to the curve.

102 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

−5 0 5 10

−5i

5i

(237a)

(237b)

Figure 238(ii) Stability regions for some implicit Runge–Kutta methods

It is never possible, even by the addition of extra stages, to devise explicit
methods with order at least 1, which have unbounded stability regions,
because R(z) is always a polynomial equal to 1 + z + O(z2). However, as
we saw in the case of the implicit Euler method, there is no such barrier for
implicit Runge–Kutta methods.

For the three methods quoted in Subsection 237, the stability functions are
found to be

R(z) =

1 +
2z

3
+

z2

6
1 − z

3

, method (237a),

1 + (
√

2 − 1)z(
1 −

(
1 − 1

2

√
2
)
z
)2 , method (237b),

1 +
z

2
+

z2

12

1 − z

2
+

z2

12

, method (237c),

and the three stability regions are shown in Figure 238(ii). Note that for
the fourth order method (237c), the stability region is exactly the closed
left half-plane. The method (237a) shares the property of explicit Runge–
Kutta methods of having a bounded stability region, whereas (237b) has an
unbounded stability region which includes the left half-plane.

NUMERICAL DIFFERENTIAL EQUATION METHODS 103

2

3

4 5

10−4 10−3 10−2

1
0
−
4

1
0
−
6

1
0
−
8

1
0
−
1
0

h

‖E
‖

Figure 239(i) Orbital calculations for various Runge–Kutta methods

239 Numerical examples

High order methods generally perform better than low order methods if
sufficiently small stepsizes are used. We illustrate this by attempting, with the
methods introduced in this section, a solution to the gravitational problem
(201d) with initial values corresponding to an eccentricity e = 1

2 . Although
calculations were performed with each of the seven methods RK21, RK22,
RK31, RK32, RK41, RK42, RK5, only results for the four methods RK22,
RK31, RK42 and RK5 are actually presented in Figure 239(i). It was observed
that for the two methods with each of the orders 2, 3 and 4, there was very
little difference between the accuracy achieved and a representative of each
order – in fact the slightly more accurate method was chosen in each case –
is sufficient to illustrate the phenomenon of hp dependence. In Figure 239(i),
methods RK22, RK31, RK42 and RK5 are denoted by 2, 3, 4 and 5.

For this problem, high order methods are always more accurate than low
order methods. However, the relative advantage is exaggerated in that no
account is taken of the greater work in completing a step as the order increases.
Assuming that the total computational work is proportional to the number
of stages in the method, it is a simple matter to compensate for this; all that
needs to be done is to multiply the number of steps by the number of stages in
each method. The comparisons with this correction made are shown in Figure
239(ii). The general conclusion, that high order is more efficient than low
order, still follows from these comparisons, but not to such a marked extent.

Numerical tests, not reported here, indicate similar behaviour for implicit
methods. For the initial value problem (201a), with output computed at x = 1,
(237a) and (237b) gave slightly worse results than for corresponding explicit

104 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

2

3

4 5

10−4 10−3 10−2

1
0
−
4

1
0
−
6

1
0
−
8

1
0
−
1
0

h

‖E
‖

Figure 239(ii) Runge–Kutta methods with cost corrections

methods. However, for the fourth order method (237c), the results were
approximately six decimal places better. This suggests that, even though the
cost of evaluating the result in each step of an implicit method is significantly
higher, the extra cost is sometimes worthwhile for this method.

Exercises 23

23.1 Repeat the calculation that led to Table 221(I) but using the method
given by (231a) and (231b) with θ = 1

2 .

23.2 Find a solution to the third order conditions (233a), (233b), (233c) and
(233d) such that b1 = 0, c3 = 1.

23.3 Continue Table 234(I) to include trees of order 5.

23.4 Write down the formula for Φ(t) and the value of γ(t) for t the order 7
tree

t =

23.5 By noting that b4a43a32c2 · b3(c4 − c3)(c3 − c2)c3 = b4a43(c3 − c2)c3 ·
b3(c4 − c3)a32c2, prove that c4 = 1 for any solution to the fourth order
conditions (235a)–(235h).

23.6 Find the order of the implicit method given by the tableau (237a).

23.7 Solve the orbital problem with eccentricity e = 0 using the implicit
method (237a).

NUMERICAL DIFFERENTIAL EQUATION METHODS 105

24 Linear Multistep Methods

240 Historical introduction

The idea of extending the Euler method by allowing the approximate solution
at a point to depend on the solution values and the derivative values at several
previous step values was originally proposed by Bashforth and Adams (1883).
Not only was this special type of method, now known as the Adams–Bashforth
method, introduced, but a further idea was suggested. This further idea was
developed in detail by Moulton (1926). Other special types of linear multistep
methods were proposed by Nyström (1925) and Milne (1926, 1953). The idea
of predictor–corrector methods is associated with the name of Milne, especially
because of a simple type of error estimate available with such methods. The
‘backward difference’ methods were introduced by Curtiss and Hirschfelder
(1952), and these have a special role in the solution of stiff problems.

The modern theory of linear multistep methods was developed in large
measure by Dahlquist (1956), and has become widely known through the
exposition by Henrici (1962, 1963).

241 Adams methods

The most important linear multistep methods for non-stiff problems are of
Adams type. That is, the solution approximation at xn is defined either as

yn = yn−1 + h(β1f(xn−1, yn−1) + β2f(xn−2, yn−2)
+ · · · + βkf(xn−k, yn−k)), (241a)

or as

yn = yn−1 + h(β0f(xn, yn) + β1f(xn−1, yn−1) + β2f(xn−2, yn−2)
+ · · · + βkf(xn−k, yn−k)), (241b)

where, in each case, the constants (β0), β1, β2, . . . , βk are chosen to give the
highest possible order.

The meaning of order, and how it is achieved in particular cases, is
straightforward in the case of methods of the form (241a), which are
known as ‘Adams–Bashforth’ methods. Assuming that no errors have yet
been introduced when the approximation at xn is about to be calculated,
we can replace the terms on the right-hand side by the quantities they
are supposed to approximate, that is, by y(xn−1), y′(xn−1), y′(xn−2), . . . ,
y′(xn−k), respectively. The amount by which the approximation, written in
this form, differs from y(xn) is the error generated in this particular step. If
this error can be estimated for a smooth problem as O(hp+1), then the method
is regarded as having order p.

For the methods given by (241b), which are known as ‘Adams–Moulton’
methods, the term involving f(xn, yn) is a complication in this understanding

106 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

of order. However, the conclusion turns out to be exactly the same as for
Adams–Bashforth methods: if every term in (241b) is replaced by the quantity
it is supposed to be approximating and the two sides of this equation differ
by an amount that can be estimated as O(hp+1), then the method has order
p.

To obtain a simple criterion for a given order, we can write all terms in

y(xn) − y(xn−1) − h
(
β0y

′(xn) + β1y
′(xn−1) + β2y

′(xn−2)

+ · · · + βky′(xn−k)
)

(241c)

as Taylor series about, for example, xn. This gives an expression of the form

C1hy′(xn) + C2h
2y′′(xn) + · · · + Cph

py(p)(xn) + O(hp+1),

and the conditions for order p will be that C1 = C2 = · · · = Cp = 0.
It can be shown that an equivalent criterion is that (241c) vanishes whenever

y is a polynomial of degree not exceeding p.
We will use these criteria to derive Adams–Bashforth methods with p = k

for k = 2, 3, 4, and Adams–Moulton methods with p = k + 1 for k = 1, 2, 3.
For k = 4, the Taylor expansion of (241c) takes the form

hy′(xn)(1 − β0 − β1 − β2 − β3 − β4)

+ h2y′′(xn)
(
− 1

2 + β1 + 2β2 + 3β3 + 4β4

)
+ h3y(3)(xn)

(1
6 − 1

2 (β1 + 4β2 + 9β3 + 16β4)
)

+ h4y(4)(xn)
(
− 1

24 + 1
6 (β1 + 8β2 + 27β3 + 64β4)

)
+ O(h5),

so that

C1 = 1 − β0 − β1 − β2 − β3 − β4,

C2 = − 1
2 + β1 + 2β2 + 3β3 + 4β4,

C3 = 1
6 − 1

2 (β1 + 4β2 + 9β3 + 16β4),

C4 = − 1
24 + 1

6 (β1 + 8β2 + 27β3 + 64β4).

For the Adams–Bashforth methods the value of β0 is zero; for k = 2 we also
have β3 = β4 = 0 and we must solve the equations C1 = C2 = 0. This gives
β1 = 3

2 and β2 = −1
2 . For k = 3 we allow β3 to be non-zero and we require that

C1 = C2 = C3 = 0. The solutions of these equations is β1 = 23
12 , β2 = −4

3 ,
β3 = 5

12 . For k = 4, we solve C1 = C2 = C3 = C4 = 0 to find β1 = 55
24 ,

β2 = −59
24 , β3 = 37

24 , β4 = −3
8 .

For the Adams–Moulton methods we allow β0 to be non-zero. For k = 1
(p = 2) we have β2 = β3 = β4 = 0 and C1 = C2 = 0; this gives β0 = β1 = 1

2 .
In a similar manner we find for k = 2 (p = 3) that β0 = 5

12 , β1 = 2
3 , β2 = − 1

12 ;
and for k = 3 (p = 4) that β0 = 3

8 , β1 = 19
24 , β2 = − 5

24 , β3 = 1
24 .

NUMERICAL DIFFERENTIAL EQUATION METHODS 107

242 General form of linear multistep methods

Even though Adams methods are amongst the most commonly used classes of
linear multistep methods, they are very specialized in that the dependence of
yn on previously computed values ignores yn−1, yn−2, . . . , yn−k. The general
form of the method includes additional terms to take these into account. It
thus has the form

yn = α1yn−1 + α2yn−2 + · · · + αkyn−k

+ h
(
β0f(xn, yn) + β1f(xn−1, yn−1) + β2f(xn−2, yn−2)

+ · · · + βkf(xn−k, yn−k)
)
. (242a)

It is customary to characterize this method by polynomials whose
coefficients are the numbers α1, α2, . . . , αk, β0, β1, β2, . . . , βk. The standard
terminology is to use polynomials ρ(z) and σ(z) defined by

ρ(z) = zk − α1z
k−1 − α2z

k−2 − · · · − αk,

σ(z) = β0z
k + β1z

k−1 + β2z
k−2 + · · · + βk.

The style we are adopting in this book makes it more convenient to use a
slightly different pair of polynomials,

α(z) = 1 − α1z − α2z
2 − · · · − αkzk,

β(z) = β0 + β1z + β2z
2 + · · · + βkzk.

Of course, it really makes little difference whether we use (ρ, σ) or [α, β] to
characterize a method because, once the value of k is known, we can move
between them by the relations

α(z) = zkρ
(1

z

)
, β(z) = zkσ

(1
z

)
, ρ(z) = zkα

(1
z

)
, σ(z) = zkβ

(1
z

)
.

For all eligible α polynomials, α(0) = 1, and for Adams methods, α(z) = 1−z.
Using the [α, β] representation, we can distinguish Adams–Bashforth from
Adams–Moulton by the fact that β(0) = 0 for the Bashforth variety.

243 Consistency, stability and convergence

Suppose we attempt the numerical solution of the simple differential equation
y′(x) = 0, with exact solution y(x) = 1, using the linear multistep method
characterized by the pair of polynomials [α, β]. If the exact answer has already
been found for k steps in a row, it seems to be a desirable property of the
method that the exact value is also found in one further step. This computed
value is equal to α1 + α2 + · · · + αk. For this expression to have the value
1 is equivalent to the assumption that α(1) = 0 or, what is equivalent, that

108 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

ρ(1) = 0. Because of its fundamental importance, this property will be given
the name ‘preconsistency’.

Another interpretation of preconsistency can be found in terms of the
covariance of the numerical method with respect to a translation. By a
translation we mean the replacing of an autonomous initial value problem
y′(x) = f(y(x)), y(x0) = y0, by a related problem z′(x) = f(z(x) + v),
z(x0) = y0 − v. For the exact solutions to these problems, the value of z
will always equal the value of y with the vector v subtracted. In considering
a numerical solution to each of these problems, we can do the calculation in
terms of y and then carry out the translation afterwards; or we can do the
transformation first and carry out the numerical approximation using the z
values. By ‘covariance’ we mean that the two numerical results are exactly
the same.

It is easy to verify that the only way this can be guaranteed to happen,
if the calculations are carried out using a linear multistep method, is for the
method to be preconsistent.

For a preconsistent method it is desirable that the exact solution can also
be found for another simple differential initial value problem: the problem
given by y′(x) = 1, y(0) = 0. For every step, the value of f(yn) is precisely 1.
Substitute these into (242a), and it is found that

nh =
k∑

i=1

αih(n − i) + h
k∑

i=1

βi,

implying that

n

(
1 −

k∑
i=1

αi

)
=

k∑
i=1

βi −
k∑

i=1

iαi.

The left-hand side vanishes for a preconsistent method, whereas the right-
hand side can be written in the form β(1) + α′(1). A ‘consistent method’ is
a method that satisfies the condition that β(1) + α′(1) = 0, in addition to
satisfying the preconsistency condition α(1) = 0.

No matter how precise numerical approximations to the solution to a
differential equation might be, this precision has no ultimate benefit unless the
effect on later step values of small errors is bounded. Later steps are effected by
the introduction of a perturbation in step m both through their dependence
on ym itself and through their dependence on hf(xm, ym). To simplify the
discussion we exclude the second cause of error dependence by restricting
ourselves to a simple ‘quadrature’ type of problem in which y′(x) = f(x). This
will mean that the difference between the unperturbed and perturbed problem
will satisfy the even simpler equation y′(x) = 0. Consider the difference
equation satisfied by the numerical solution just for the perturbation itself.
This difference equation is

yn = α1yn−1 + α2yn−2 + · · · + αkyn−k. (243a)

NUMERICAL DIFFERENTIAL EQUATION METHODS 109

A linear multistep method is said to be ‘stable’ if all solutions to the difference
equation (243a) are bounded as n → ∞.

From the theory of linear difference equations, we know exactly when this
will be the case. It is necessary and sufficient that all zeros of the polynomial
ρ lie in the closed unit disc {z : |z| ≤ 1} and that all repeated zeros lie in
the open unit disc {z : |z| < 1}. Because the zeros of α are the reciprocals of
those of ρ we can equally state these conditions as (i) all zeros of α lie outside
the open unit disc, and (ii) all repeated zeros of α lie outside the closed unit
disc.

‘Convergence’ refers to the ability of a method to approximate the solution
to a differential equation to any required accuracy, if sufficiently many small
steps are taken. Of course, any numerical result computed by a linear multistep
method will depend not only on the particular coefficients of the method and
the differential equation, but also on the procedure used to obtain starting
values. In the formal definition of this concept, we will not impose any
conditions on how the starting values are approximated except to require
that, as h → 0, the errors in the starting values tend to zero. Because the
exact solution is continuous, this is equivalent to requiring that the starting
values all converge to the initial value specified for the problem.

Divide the interval [x0, x] into n steps each of size h = (x−x0)/n, for every
positive integer n. Solve a standard initial value problem using starting values
y0, y1, . . . , yk−1 which depend on h and converge to y(x0) as h → 0. Let the
error in the approximation computed at x be denoted by εn. The method is
convergent if necessarily εn → 0 as n → ∞.

We discuss this property, and its relationship to other concepts introduced
in this subsection, in Chapter 4. In the meantime, we state without proof the
important result expressed in the following.

Theorem 243A A linear multistep method is convergent if and only if it is
stable and consistent.

244 Predictor–corrector Adams methods

Continuing the discussion of Adams–Bashforth and Adams–Moulton methods
from Subsection 241, we present in tabular form the coefficients of these
methods for orders as high as 8. In the Adams–Bashforth case this means
presenting the methods as far as k = 8 and in the Moulton case as far as
k = 7.

Along with the coefficients of the methods, the value is given of the error
constants. For example, in the case of the Adams–Bashforth method with
order 2 we can write

y(xn) = y(xn−1) + h
(3
2y′(xn−1) − 1

2y′(xn−2)
)

+ Ch3y(3)(xn) + O(h4),

110 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Table 244(I) Coefficients and error constants for Adams–Bashforth methods

k β1 β2 β3 β4 β5 β6 β7 β8 C

1 1 −1
2

2 3
2 −1

2
5
12

3 23
12 −4

3
5
12 −3

8

4 55
24 −59

24
37
24 −3

8
251
720

5 1901
720 −1387

360
109
30 −637

360
251
720 − 95

288

6 4277
1440 −2641

480
4991
720 −3649

720
959
480 − 95

288
19087
60480

7 198721
60480 −18637

2520
235183
20160 −10754

945
135713
20160 −5603

2520
19087
60480 − 5257

17280

8 16083
4480 −1152169

120960
242653
13440 −296053

13440
2102243
120960 −115747

13440
32863
13440 −

5257
17280

1070017
3628800

Table 244(II) Coefficients and error constants for Adams–Moulton methods

k β0 β1 β2 β3 β4 β5 β6 β7 C

0 1 1
2

1 1
2

1
2 − 1

12

2 5
12

2
3 − 1

12
1
24

3 3
8

19
24 − 5

24
1
24 − 19

720

4 251
720

323
360 −11

30
53
360 − 19

720
3

160

5 95
288

1427
1440 −133

240
241
720 − 173

1440
3

160 − 863
60480

6 19087
60480

2713
2520 −15487

20160
586
945 − 6737

20160
263
2520 − 863

60480
275

24192

7 5257
17280

139849
120960 −4511

4480
123133
120960 − 88547

120960
1537
4480 − 11351

120960
275

24192 − 33953
3628800

where the error constant is equal to C = 5
12 . The values for the Adams–

Bashforth methods are given in Table 244(I) and for the Adams–Moulton
methods in Table 244(II).

The Adams methods are usually implemented in ‘predictor–corrector’ form.
That is, a preliminary calculation is carried out using the Bashforth form of
the method. The approximate solution at a new step value is then used to
evaluate an approximation to the derivative value at the new point. This
derivative approximation is then used in the Moulton formula in place of the
derivative at the new point. There are many alternatives as to what is done
next, and we will describe just one of them. Let y∗

n denote the approximation
to y(xn) found during the Bashforth part of the step calculation and yn the
improved approximation found in the Moulton part of the step. Temporarily
denote by β∗

i the value of βi in the Bashforth formula so that βi will denote
only the Moulton coefficient. The value of k corresponding to the Bashforth
formula will be denoted here by k∗. Usually k and k∗ are related by k∗ = k+1
so that both formulae have the same order p = k + 1.

NUMERICAL DIFFERENTIAL EQUATION METHODS 111

In the Bashforth stage of the calculation we compute

y∗
n = yn−1 + h

k∗∑
i=1

β∗
i f(xn−i, yn−i), (244a)

and in the Moulton stage

yn = yn−1 + hβ0f(xn, y∗
n) + h

k∑
i=1

βif(xn−i, yn−i). (244b)

Methods of this type are referred to as ‘predictor–corrector’ methods
because the overall computation in a step consists of a preliminary prediction
of the answer followed by a correction of this first predicted value. The use of
(244a) and (244b) requires two calculations of the function f in each step of
the computation. Such a scheme is referred to as being in ‘predict–evaluate–
correct–evaluate’ or ‘PECE’ mode. An alternative scheme in which the second
evaluation is never performed is said to be in ‘predict–evaluate–correct’ or
‘PEC’ mode. In this mode, every occurrence of f(xn−i, yn−i) would need to
be replaced by f(xn−i, y

∗
n−i), and would represent the value of a derivative

evaluated in a previous step but based on the predicted approximation to
y(xn−i) in that step. Thus, (244a) and (244b) would be replaced by

y∗
n = yn−1 + h

k∗∑
i=1

β∗
i f(xn−i, y

∗
n−i)

and

yn = yn−1 + hβ0f(xn, y∗
n) + h

k∑
i=1

βif(xn−i, y
∗
n−i).

In addition to PEC and PECE modes it is also possible to have PECEC
and PECECE and, more generally P(EC)k and P(EC)kE, modes, in which
corrections and evaluations are done repeatedly. Using this same type of
terminology, P(EC)∞ indicates iteration to convergence.

245 The Milne device

A feature of predictor–corrector methods is that two approximations to y(xn)
are found in each step and each of these possesses different error constants,
even though they might have the same order p. Denote the error constant for
the Adams–Bashforth p-step method, as given in Table 244(I), by C∗

p, and the
corresponding error constant for the (p− 1)-step Adams–Moulton method, as
given in Table 244(II), by Cp−1. This means that the error in y∗

n, assuming
that previous step values are exact, is equal to

112 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

y∗
n = y(xn) − hp+1C∗

py
(p+1)(xn) + O(hp+2). (245a)

Of course, the previous values will not be exact, but we can interpret (245a)
in the general case as the new error introduced into step n. Similarly, we can
interpret the corresponding formula for the error in the (p − 1)-step Adams–
Moulton method as representing the error introduced into the corrected value
of step n. The formula for the Adams–Moulton method is

yn = y(xn) − hp+1Cp−1y
(p+1)(xn) + O(hp+2). (245b)

By calculating the difference of the predicted and corrected approximations
and multiplying by an appropriate factor, we can estimate the error in the
corrected value. That is,

y(xn) − yn ≈ Cp−1

Cp−1 − C∗
p

(y∗
n − yn). (245c)

This device, credited to Milne (1926), is used in practical algorithms
to estimate local truncation errors for stepsize control. In some modern
implementations, the order of the predictor is one lower than that of the
corrector, and the Milne device loses the natural significance that we have
described. However, it is still found to be a useful tool for adapting a numerical
computation to the behaviour of the solution.

246 Starting methods

For a k-step method, where k > 1, something special has to be done in the
first k − 1 steps. The method itself gives an algorithm for computing yk in
terms of y0, y1, . . . , yk−1, and then yk+1 in terms of y1, y2, . . . , yk, with all
subsequent approximations found in a similar manner. However, it must be
considered how y1, y2, . . . , yk−1 are to be found before the later steps can be
evaluated.

It would be possible to evaluate the first k − 1 approximations using a
sequence of low order methods. However, this would introduce serious errors
which would nullify all the advantages of the later use of a method of high
order. It would also be possible to use a Runge–Kutta method for the first
k − 1 steps. As long as the Runge–Kutta method has the same order as the
linear k-step method to be used for the later steps, then there will be no
overall order loss.

In the numerical experiments to be reported in the following subsection,
a simple technique is used to retain the use of a single predictor–corrector
method, and at the same time to maintain the long term order during the
starting process. It is intended that the results should be straightforward
and easy to understand, without the influence of alternative methods used in

NUMERICAL DIFFERENTIAL EQUATION METHODS 113

2

3

4 5

10−4 10−3 10−2

1
0
−
1
0

1
0
−
8

1
0
−
6

1
0
−
4

h

‖E
‖

Figure 247(i) Orbital calculations for various PEC methods

the early steps. What we do is to introduce, as unknowns to be computed,
approximations to the values of f(xi, yi), for i = −(k − 1),−(k − 2), . . . ,−1.
Initial values for these quantities are chosen as f(xi−1, yi−1) = f(x0, y0). With
these values available, it is possible to carry out the computations in turn of yi

and of f(xi, yi) for i = 1, 2, . . . , k−1. This then makes it possible to reverse the
direction of integration, by changing the sign of h used in the computations,
and to recompute yi and f(xi, yi) for i = −1,−2, . . . ,−(k − 1). This process
of alternately integrating forwards and backwards can be repeated until
convergence is achieved. Once this has happened, acceptable starting values
will have been found to permit the step values numbered i = k, i = k + 1, . . .
to be evaluated in turn.

247 Numerical examples

Using the starting process described in Subsection 246, and a range of orders,
the same test problem as was used in Subsection 239, that is, (201d) with
e = 1

2 , was solved for PEC and PECE Adams methods. The errors generated
for these methods are shown in Figures 247(i) (PEC methods) and 247(ii)
(PECE methods). The orders are attached to the curves. Note that, at least
for this problem, the two modes have almost identical errors. This means,
perhaps, that the extra cost of PECE methods is not justified. However, for
large stepsizes, there is an advantage in PECE methods because many types
of unstable behaviour exhibit themselves more severely for PEC methods.
For example, the iterative starting procedure that we have used, failed to
converge for large stepsizes (not shown in the diagrams). This effect persisted
for a larger range of stepsizes for PEC methods than was the case for PECE
methods.

114 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

2

3

4 5

10−4 10−3 10−2

1
0
−
1
0

1
0
−
8

1
0
−
6

1
0
−
4

h

‖E
‖

Figure 247(ii) Orbital calculations for various PECE methods

Exercises 24

24.1 Find a linear multistep method of order 3 of the form

yn = yn−2 + β1hf(xn−1, yn−1) + β2hf(xn−2, yn−2) + β3hf(xn−3, yn−2).

24.2 Find a linear multistep method of order 3 of the form

yn = yn−2 + β0hf(xn, yn) + β1hf(xn−1,yn−1) + β2hf(xn−2, yn−2).

24.3 If the differential equation y′ = y is solved using the implicit method
yn = yn−2+2hf(xn−1, yn−1), show that the resulting difference equation
has a solution which grows in powers of 1+h+ 1

2h2+O(h3) and a second
solution that grows in powers of a quantity with smaller magnitude.

24.4 If the differential equation y′ = −y is solved using the same method,
show that the resulting difference equation has a solution which grows
in powers of 1 − h + 1

2h2 + O(h3) but has a second solution that grows
in powers of a quantity with greater magnitude.

25 Taylor Series Methods

250 Introduction to Taylor series methods

A differential equation y′(x) = f(x, y(x)), characterized by the function f , is
presented to a computer in the form of a procedure, function or subroutine for
computing values of f(u, v) for given arguments u and v. The program carries
out the evaluation of this procedure in a manner that exactly corresponds
to the occurrence of the function f , in the mathematical formulation of the

NUMERICAL DIFFERENTIAL EQUATION METHODS 115

numerical method. In this brief introduction, we consider the use of procedures
that evaluate, for given values of x and y(x), not only the value of y′(x), but
also the value of y′′(x) and possibly also y′′′(x) and other higher derivatives.

With such facilities available, there is a wide range of possible methods,
but the natural and straightforward choice of Taylor series is almost always
followed. By repeated differentiation, we can find functions f2(x, y(x)),
f3(x, y(x)), . . . , fm(x, y(x)), which give values, respectively, of y′′(x), y′′′(x),
. . . , y(m)(x).

The order m formula for computing y(xn) = y(xn−1 + h) using these
functions, evaluated at x = xn−1 and y = yn−1, is

yn = yn−1 + hf(xn−1, yn−1) +
h2

2!
f2(xn−1, yn−1)

+ · · · + hm

m!
fm(xn−1, yn−1). (250a)

Most serious investigations of this method have been concerned, above all,
with the automatic generation of procedures for generating the second, third,
. . . derivative functions f2, f3, . . . from a given first derivative function f .
While this aspect of the Taylor series method is more within the scope of
algebraic manipulation than of numerical analysis, there are other important
aspects which arise, just as for other methods. These include error estimation,
order selection and stepsize control.

Although many individuals and teams have made important contributions
to the use of Taylor series methods, we mention three in particular. The
program of Gibbons (1960), using a computer with the limited memory
available at that time, used a recursive technique to generate the Taylor
coefficients automatically. A similar approach using greater sophistication
and more powerful computational tools was used by Barton, Willers and
Zahar (1971). The work of Moore (1964) is especially interesting, in that it
uses interval arithmetic and supplies rigorous error bounds for the computed
solution.

251 Manipulation of power series

We consider problems for which the components of the function f are rational
in x and in the components of y. This means that the terms occurring in (250a)
can all be computed by the use of addition (and subtraction), multiplication
and division.

We use power series with the 1/i! factor absorbed into the coefficient of
fi(xn−1, yn−1). Hence each component takes the form a0 + a1h + a2h

2 + · · ·+
amhm. If a second such expansion, b0 + b1h + b2h

2 + · · · + bmhm, is added
or subtracted, then we simply add or subtract corresponding coefficients. The
product of two terms is found by expanding the formal product but truncating

116 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

after the hm term. This means that the product of a0+a1h+a2h
2+· · ·+amhm

and b0 +b1h+b2h
2 + · · ·+bmhm would be c0 +c1h+c2h

2 + · · ·+cmhm, where

ci =
i∑

j=0

ai−jbj , i = 0, 1, . . . , m. (251a)

The formula for the quotient

a0 + a1h + a2h
2 + · · · + amhm ≈ c0 + c1h + c2h

2 + · · · + cmhm

b0 + b1h + b2h2 + · · · + bmhm

is found by reinterpreting the relationship between the ai, bi and ci coefficients
in (251a) to give

ai =

c0

b0
, i = 0,

ci −
∑i

j=1 ai−jbj

b0
, i = 1, 2, . . . , m.

(251b)

Given a system of differential equations with dependent variables y1, y2,
. . . , yN , write the truncated power series for yk(xn−1 + h) in the form
yk
0 + hyk

1 + · · · + hmyk
m, k = 1, 2, . . . , N . Also denote the power series for

component k of f(xn−1, Y) by fk
0 +hfk

1 + · · ·+hmfk
m, where the vector Y has

its components substituted by the series yl
0+hyl

1+· · ·+hmyl
m, l = 1, 2, . . . , N .

We consider how to evaluate in turn the yk
i coefficients for each k =

1, 2, . . . , N , with i taking on values from 0 to m. For i = 0, all the yk
i are

known from initial information at the start of the current step. For each value
of i > 0 we already know the coefficients yk

j for all k and for all j < i. It is
thus possible to evaluate the hi−1 terms in the components in the power series
for f(xn−1 + h, yn−1). Writing the differential equation in the form

d

dh
(yk

0 + hyk
1 + · · · + hmyk

m) = yk
1 + 2hyk

2 + · · · + mhm−1yk
m

= fk
0 + hfk

1 + · · · + hm−1fk
m−1,

where the last term on the right-hand side has been deleted, we see that
yk

i = fk
i−1/i.

When we have reached i = m, all the required coefficients are known at
x = xn−1, and it is possible to take the step to x = xn.

This method of solution will be illustrated in the next subsection.

252 An example of a Taylor series solution

We consider the example problem, already introduced in Subsection 201,

y′(x) =
y + x

y − x
, y(0) = 1. (252a)

NUMERICAL DIFFERENTIAL EQUATION METHODS 117

Algorithm 252α A Taylor step for problem (252a)

a(1) = y;
b(1) = y + x;
c(1) = y - x;
for i = 0: m - 1,

temp = b(i+1);
for j = 1: i,

temp = temp - d(1+i-j)*c(1+j);
end;
d(i+1) = temp/c(1);
a(i+2) = d(i+1)/(i+1);
if i == 0,

b(i+2) = a(i+2) + 1;
c(i+2) = a(i+2) - 1;

else
b(i+2) = a(i+2);
c(i+2) = a(i+2);

end;
end;
x = x + h;
y = a(m+1);
for i = m-1:-1:0,

y = a(i+1) + h*y;
end;

Let a0, a1, . . . , am denote Taylor coefficients for y(xn−1 + h), b0, b1, . . . , bm be
the corresponding coefficients for y+x, and c0, c1, . . . , cm be the coefficients for
y−x. If d0, d1, . . . , dm are the coefficients for (y + x)/(y−x), then Algorithm
252α, written in MATLAB, can be used to update the value of x = xn−1

and y = yn−1 to the values at the end of a step, x = xn, y = yn. Note that
a0, a1, . . . , am are represented in this program by a(1), a(2), . . . , a(m+1),
because MATLAB subscripts start from 1 (and similarly for the bi, etc.).

Numerical experiments based on this program have been made for a
sequence of m values from 1 to 10 and using stepsizes h = 0.10 × 2−k, with
k = 1, 2, The errors in the approximations to y(0.5) are presented in
Figure 252(i). It can be seen that the rate of increase in accuracy, as smaller
and smaller steps are taken, becomes more and more impressive as m increases.
The results found for m = 9 and m = 10 are not included because, even for
10 steps with h = 0.05, the numerical results in these cases are accurate to
approximately 15 decimal places.

118 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

h

‖E
‖

−10−1−10−2−10−3

−
1
0
−
2

−
1
0
−
6

−
1
0
−
1
0

−
1
0
−
1
4

1

2

3

4

5
6 7 8

Figure 252(i) Taylor series calculations

h

‖E
‖

−10−2−10−3−10−4

−
1
0
−
2

−
1
0
−
6

−
1
0
−
1
0

−
1
0
−
1
4

1

2

3

4

5 6 7 8

Figure 252(ii) Taylor series calculations with cost correction

Since high values of m are more time-consuming, the favourable impression
of their advantages shown in this figure is an exaggeration. Since the cost is
approximately proportional to m, a fairer comparison would be to plot the
errors against h/m. This weighted comparison is shown in Figure 252(ii).

The advantage of high order methods over low order methods is still evident
from this more balanced comparison.

NUMERICAL DIFFERENTIAL EQUATION METHODS 119

Table 253(I) Coefficients defined by (253c)

m α1 α2 α3 α4 β1 β2 β3 β4

1 3
2 −1

2

2 −1
2

17
12

3
2

7
12

3 15
2 −31

10
37
40 −13

2 −29
10 − 49

120

4 −65
2

515
28 −107

28
769
1680

67
2

437
28

239
84

117
560

Table 253(II) Coefficients defined by (253d)

m γ1 γ2 γ3 γ4 δ1 δ2 δ3 δ4

1 1
2

1
2

2 1
2 − 1

12
1
2

1
12

3 1
2 − 1

10
1

120
1
2

1
10

1
120

4 1
2 − 3

28
1
84 − 1

1680
1
2

3
28

1
84

1
1680

253 Other methods using higher derivatives

We consider the possibility of using higher derivative information at more than
one step value. In particular, we consider two special schemes of the form

yn = yn−1 + hα1f(xn−1, yn−1) + h2α2f2(xn−1, yn−1) + · · ·
+ hmαmfm(xn−1, yn−1) + hβ1f(xn−2, yn−2)

+ h2β2f2(xn−2, yn−2) + · · · + hmβmfm(xn−2, yn−2) (253a)

and

yn = yn−1 + hγ1f(xn, yn) + h2γ2f2(xn, yn) + · · ·
+ hmγmfm(xn, yn) + hδ1f(xn−1, yn−1)

+ h2δ2f2(xn−1, yn−1) + · · · + hmδmfm(xn−1, yn−1). (253b)

The scheme (253a) uses information already available before step n is
attempted. Thus it can be regarded as a generalization of an Adams–Bashforth
method. In contrast, the scheme (253b) is fully implicit, and thus corresponds
to an Adams–Moulton method. Using Taylor series analyses, conditions for
order 2m can readily be found. These are equivalent to the conditions

120 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

exp(z) − (1 + α1z + α2z
2 + · · · + αmzm)

− (β1z + β2z
2 + · · · + βmzm) exp(−z) = O(z2m+1) (253c)

and

exp(z)(1 − γ1z − γ2z
2 − · · · − γmzm)

− (1 + δ1z + δ2z
2 + · · · + δmzm) = O(z2m+1). (253d)

Note that the rational function

N(z)
D(z)

=
1 + δ1z + δ2z

2 + · · · + δmzm

1 − γ1z − γ2z2 − · · · − γmzm
,

is known as a Padé approximation to the exponential function. It is the unique
rational function with degree m in both numerator and denominator, which
maximizes the order of approximation of N(z)/D(Z) to exp(z).

For easy reference, the coefficients αi, βi, γi and δi are shown in Tables
253(I) and 253(II) up to m = 4.

An example of the use of the methods discussed here, in a predictor–
corrector mode, will be presented in Subsection 255.

254 The use of f derivatives

In this subsection, we consider an autonomous differential equation system
y′(x) = f(y(x)). As we remarked in Subsection 224, the use of derivatives of
f is more general than the use of higher derivatives of y. Methods that use f ′

directly have mainly been proposed for the solution of stiff problems by one-
step methods. If an implicit Runge–Kutta method is used, the implementation
requires the solution of non-linear equations, typically by a Newton-type
method. It was proposed by Rosenbrock (1963) that the Newton iterations
could be replaced by a single iteration involving the inverse of a matrix such
as I − hγf ′(y(xn−1)). Methods formed in this way use this linear operation
as an intrinsic part of the order requirement for the method. We give a single
example in which modified derivatives F1 and F2, and the final result at the
end of a step, are computed by the formulae(

I − h
(
1 −

√
2

2

)
f ′(yn−1)

)
F1 = f(yn−1), (254a)(

I − h
(
1 −

√
2

2

)
f ′(yn−1)

)
F2 = f

(
yn−1 + h

(√
2

2 − 1
2

)
F1

)
, (254b)

yn = yn−1 + hF2. (254c)

Methods of various orders have been derived by Rosenbrock and others.
These are known collectively as Rosenbrock methods, although the ambiguous
name ‘implicit Runge–Kutta methods’ is sometimes applied to them.

NUMERICAL DIFFERENTIAL EQUATION METHODS 121

10−010−110−210−310−410−5

1
0
−
2

1
0
−
4

1
0
−
6

1
0
−
8

1
0
−
1
0

1
0
−
1
2

h

‖E
‖

2

4
6

8

Figure 255(i) Predictor–corrector multiderivative methods

10−110−210−3

1
0
−
2

1
0
−
3

1
0
−
4

1
0
−
5

1
0
−
6

1
0
−
7

h

‖E
‖

Figure 255(ii) Rosenbrock method given by (254a)–(254c)

255 Further numerical examples

We consider the solution of the same problem discussed in Subsection 252,
but using the methods of Subsection 253. The two methods discussed there,
for various values of m, implying orders 2m, attached to the curves, are used
together in predictor–corrector mode in Figure 255(i). A comparison with
Figure 252(i) shows the new methods to be slightly more accurate for the
same stepsizes.

122 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

The final numerical result in this subsection is based on the mildly stiff
problem (203a), written in the form

dy1

dx
= −16y1 + 12y2 + 16 cos(y3) − 13 sin(y3), y1(0) = 1,

dy2

dx
= 12y1 − 9y2 − 11 cos(y3) + 9 sin(y3), y2(0) = 0,

dy3

dx
= 1, y3(0) = 0.

The norm errors for the approximate solution at x = π are given for various
h in Figure 255(ii).

Exercises 25

25.1 Consider the function f(x, y) = x2 + y2 and the differential equation
y′(x) = f(x, y(x)). Derive formulae for the second, third and fourth
derivatives.

25.2 Solve the initial value problem y′(x) = x2+y(x)2, y(0) = 1 by the fourth
order Taylor series method using n steps with constant stepsize h = 1/n
to yield approximations to the solution at x = 1. Use n = 1, 2, 4, . . . , 210.
Are the results consistent with the order 4 nature of the method?

25.3 Use the eighth order predictor–corrector method discussed in Subsection
253 to solve this problem.

25.4 Show that the Rosenbrock method given by (254a), (254b) and (254c)
has order 2.

26 Hybrid Methods

260 Historical introduction

The idea of combining the ideas behind Runge–Kutta methods with those
behind linear multistep methods dates from the period 1960–1970. One
approach is to make use of stage derivatives computed in one or more previous
steps in the computation of the approximation at the end of a current step.
Methods based on this idea are referred to as pseudo Runge–Kutta methods.
The earliest work on these methods is that of Byrne and Lambert (1966).

Another type of generalization of existing methods was proposed in
three independent publications (Gragg and Stetter, 1964; Butcher, 1965;
Gear, 1965). The most commonly used name for these is that introduced
by Gear, ‘hybrid methods’, although we use here the name ‘modified
multistep methods’ introduced by Butcher. A consideration of these various
generalizations has led to the construction of comprehensive theories. We
consider one of the earliest of these formulations in this section, and refer to
the wide class of multivalue–multistage methods as ‘general linear methods’.

NUMERICAL DIFFERENTIAL EQUATION METHODS 123

261 Pseudo Runge–Kutta methods

The paper by Byrne and Lambert suggests a generalization of Runge–
Kutta methods in which stage derivatives computed in earlier steps are used
alongside stage derivatives found in the current step, to compute the output
value in the step. The stages themselves are evaluated in exactly the same
way as for a Runge–Kutta method. We consider the case where the derivatives
found only in the immediately previous step are used. Denote these by F

[n−1]
i ,

i = 1, 2, . . . , s, so that the derivatives evaluated in the current step, n, are F
[n]
i ,

i = 1, 2, . . . , s.
The defining equations for a single step of the method will now be

Yi = yn−1 + h
s∑

j=1

aijF
[n]
j ,

F
[n]
i = f(xn−1 + hci, Yi),

yn = yn−1 + h

(
s∑

i=1

biF
[n]
i +

s∑
i=1

biF
[n−1]
i

)
.

We consider a single example of a pseudo Runge–Kutta method in which
there are s = 3 stages and the order is p = 4. The coefficients are given by
the tableau

0
1
2

1
2

1 −1
3

4
3

11
12

1
3

1
4

1
12 −1

3 −1
4

(261a)

where the additional vector contains the b components.
Characteristic handicaps with this sort of method are starting and changing

stepsize. Starting in this case can be accomplished by taking the first step with
the classical Runge–Kutta method but inserting an additional stage Y5, with
the role of Y

(1)
3 , to provide, along with Y

(2)
2 = Y2, the derivatives in step 1

required to complete step 2. Thus the starting step is based on the Runge–
Kutta method

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1 −1

3
4
3 0 0

1
6

1
3

1
3

1
6 0

.

124 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

262 Generalized linear multistep methods

These methods, known also as hybrid methods or modified linear multistep
methods, generalize linear multistep methods, interpreted as predictor–
corrector pairs, by inserting one or more additional predictors, typically at off-
step points. Although many examples of these methods are known, we give just
a single example for which the off-step point is 8

15 of the way through the step.
That is, the first predictor computes an approximation to y(xn−1 + 8

15h) =
y(xn − 7

15h). We denote this first predicted value by the symbol ỹn−7/15 and
the corresponding derivative by f̃n−7/15 = f(xn − 7

15h, ỹn−7/15). Similarly,
the second predictor, which gives an initial approximation to y(xn), will
be denoted by ỹn and the corresponding derivative by f̃n = f(xn, ỹn).
This notation is in contrast to yn and fn, which denote the corrected
step approximation to y(xn) and the corresponding derivative f(xn, yn),
respectively. The relationships between these quantities are

ỹn−7/15 = − 529
3375

yn−1 +
3904
3375

yn−2 + h

(
4232
3375

fn−1 +
1472
3375

fn−2

)
,

ỹn =
152
25

yn−1 −
127
25

yn−2 + h

(
189
92

f̃n−7/15 −
419
100

fn−1 −
1118
575

fn−2

)
,

yn = yn−1 + h

(
25
168

f̃n +
3375
5152

f̃n−7/15 +
19
96

fn−1 −
1

552
fn−2

)
.

263 General linear methods

To obtain a general formulation of methods that possess the multivalue
attributes of linear multistep methods, as well as the multistage attributes of
Runge–Kutta methods, general linear methods were introduced by the present
author (Butcher, 1966). However, the formulation we present, while formally
different, is equivalent in terms of the range of methods it can represent, and
was introduced in Burrage and Butcher (1980).

Suppose that r quantities are passed from step to step. At the start of step
n, these will be denoted by y

[n−1]
1 , y

[n−1]
2 , . . . , y

[n−1]
r , and after the step is

completed, the corresponding quantities available for use in the subsequent
step will be y

[n]
1 , y

[n]
2 , . . . , y

[n]
r . During the computation of the step, s

stage values Y1, Y2, . . . , Ys are computed, along with the corresponding
stage derivatives F1, F2, . . . , Fs. For convenience of notation, we can create
supervectors containing either r or s subvectors as follows:

y[n−1] =

y
[n−1]
1

y
[n−1]
2
...

y
[n−1]
r

 , y[n] =

y
[n]
1

y
[n]
2
...

y
[n]
r

 , Y =

Y1

Y2

...
Ys

 , F =

F1

F2

...
Fs

 .

NUMERICAL DIFFERENTIAL EQUATION METHODS 125

Just as for Runge–Kutta methods, the stages are computed making use
of linear combinations of the stage derivatives but, since there are now a
collection of input approximations, further linear combinations are needed
to express the dependence on this input information. Similarly, the output
quantities depend linearly on both the stage derivatives and the input
quantities. All in all, four matrices are required to express all the details
of these computations, and we denote these by A = [aij]s,s, U = [uij]s,r,
B = [bij]r,s and V = [vij]r,r.

The formulae for the stage values and the output values are

Yi =
s∑

j=1

haijFj +
r∑

j=1

uijy
[n−1]
j , i = 1, 2, . . . , s,

y
[n]
i =

s∑
j=1

hbijFj +
r∑

j=1

vijy
[n−1]
j , i = 1, 2, . . . , r,

or, using Kronecker product notation for an N -dimensional problem,

Y = h(A ⊗ IN)F + (U ⊗ IN)y[n−1],

y[n] = h(B ⊗ IN)F + (V ⊗ IN)y[n−1].

We devote Chapter 5 to a detailed study of general linear methods but,
for the present, we illustrate the all-encompassing nature of the methods
included in this family by presenting a number of sample methods written
in this terminology.

In each case, the coefficients of the general linear formulation are presented
in the (s + r) × (s + r) partitioned matrix[

A U

B V

]
.

The Euler method and implicit Euler methods are, respectively,[
0 1
1 1

]
and

[
1 1
1 1

]
.

The Runge–Kutta methods (232a) and (233f) and (235i) are, respectively,

 0 0 1
1 0 1
1
2

1
2 1

 and

0 0 0 1
1
2 0 0 1

−1 2 0 1
1
6

2
3

1
6 1

 and

0 0 0 0 1
1
2 0 0 0 1
0 1

2 0 0 1
0 0 1 0 1
1
6

1
3

1
3

1
6 1

 .

126 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

The second order Adams–Bashforth and Adams–Moulton and PECE methods
based on these are, respectively,

0 1 3

2 −1
2

0 1 3
2 −1

2

1 0 0 0
0 0 1 0

 and

[
1
2 1
1
2 1

]
and

0 0 1 3

2 −1
2

1
2 0 1 1

2 0
1
2 0 1 1

2 0
0 1 0 0 0
0 0 0 1 0

 ,

where for each of the Adams–Bashforth and PECE methods, the output
quantities are approximations to y(xn), hy′(xn) and hy′(xn−1), respectively.

Finally, we re-present two methods derived in this section. The first
is the pseudo Runge–Kutta method (261a), for which the general linear
representation is

0 0 0 1 0 0 0
1
2 0 0 1 0 0 0

−1
3

4
3 0 1 0 0 0

11
12

1
3

1
4 1 1

12 −1
3 −1

4

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

.

The four output quantities for this method are the approximate solution found
at the end of the step, together with h multiplied by each of the three stage
derivatives. The second of the two general linear methods, that do not fit into
any of the classical families, is the method introduced in Subsection 262. Its
general linear method coefficient matrix is

0 0 0 − 529
3375

3904
3375

4232
3375

1472
3375

189
92 0 0 152

25 −127
25 −419

100 −1118
575

3375
5152

25
168 0 1 0 19

96 − 1
552

3375
5152

25
168 0 1 0 19

96 − 1
552

0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0

.

For this method, the output quantities are given by y
[n]
1 ≈ y(xn), y

[n]
2 ≈

y(xn−1), y
[n]
3 ≈ hy′(xn) and y

[n]
4 ≈ hy′(xn−1).

NUMERICAL DIFFERENTIAL EQUATION METHODS 127

10−3 10−2 10−1

1
0
−
2

1
0
−
4

1
0
−
6

1
0
−
8

1
0
−
1
0

1
0
−
1
2

h

‖E
‖

Pseu
do

Run
ge–

Kutt
a meth

od

Run
ge–

Kutt
a meth

od

Figure 264(i) Comparison of Runge–Kutta with pseudo Runge–Kutta method

264 Numerical examples

The limited numerical testing performed here does not give a great deal of
support to the use of pseudo Runge–Kutta or hybrid methods. Using the
Kepler problem with eccentricity e = 1

2 over a half period, the pseudo Runge–
Kutta method (261a) was compared with the classical Runge–Kutta method
and the results are summarized in Figure 264(i). To make the comparison
as fair as possible, the axis denoted by h shows the stepsize per function
evaluation. That is, for the Runge–Kutta method, h = 4h, and for the pseudo
Runge–Kutta method, h = 3h. The classical Runge–Kutta is significantly
more accurate for this problem.

A similar comparison has been made between the hybrid method discussed
in Subsection 262 and a fifth order Runge–Kutta method, but the results,
which are not presented here, show almost identical performance for the two
methods.

Exercises 26

26.1 Find the error computed in a single step using the method (261a) for
the problem

y′(x) = x4

and show that this is 16 times the error for the classical Runge–Kutta
method.

26.2 Find a fifth order method similar to the one discussed in Subsection
262, but with first predictor giving an approximation to y(xn − 1

2h).

128 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

26.3 Show how to represent the PEC method based on the second
order Adams–Bashforth predictor and the third order Adams–Moulton
corrector as a general linear method.

26.4 Show how to represent the PECEC method based on second order
Adams–Bashforth and Adams–Moulton methods as a general linear
method.

27 Introduction to Implementation

270 Choice of method

Many differential equation solvers have been constructed, based on a
variety of computational schemes, from Runge–Kutta and linear multistep
methods, to Taylor series and extrapolation methods. In this introduction
to implementation of initial value solvers, we will use an ‘Almost Runge–
Kutta’ (ARK) method. We will equip this method with local error estimation,
variable stepsize and interpolation. It is intended for non-stiff problems but
can be used also for delay problems, because of its reliable and accurate built-
in interpolation.

Many methods are designed for variable order, but this is a level of
complexity which we will avoid in this introduction. The method to be
presented has order 3 and, because it is a multivalue method, it might
be expected to require an elaborate starting sequence. However, it is a
characteristic property of ARK methods that starting will present a negligible
overhead on the overall costs and will involve negligible complication in the
design of the solver.

Recall from Subsection 263 the notation used for formulating a general
linear method. In the case of the new experimental method, the coefficient
matrix is

[
A U

B V

]
=

0 0 0 1 1
3

1
18

1
2 0 0 1 1

6
1
18

0 3
4 0 1 1

4 0
0 3

4 0 1 1
4 0

0 0 1 0 0 0
3 −3 2 0 −2 0

.

Because general linear methods have no specific interpretation, we need to
state the meaning of the various quantities which play a role in the formulation
of the method. Approximate values of these are as follows:

NUMERICAL DIFFERENTIAL EQUATION METHODS 129

Algorithm 270α A single step using an ARK method

function [xout, yout] = ARKstep(x,y,f,h)
Uy = y*[1,1,1;1/3,1/6,1/4;1/18,1/18,0];
hF = h*f(x+(1/3)*h,Uy(:,1));
hF = [hF,h*f(x+(2/3)*h,Uy(:,2)+(1/2)*hF)];
xout = x+h;
y1out = Uy(:,3)+hF*[0;3/4];
hF = [hF,h*f(xout,y1out)];
y3out = hF*[3;-3;2]-2*y(:,2);
yout = [y1out,hF(:,3),y3out];

y
[n−1]
1 = y(xn−1),

y
[n−1]
2 = hy′(xn−1),

y
[n−1]
3 = h2y′′(xn−1),

Y1 = y(xn−1 + 1
3h),

Y2 = y(xn−1 + 2
3h),

Y3 = y(xn−1 + h),

y
[n]
1 = y(xn),

y
[n]
2 = hy′(xn),

y
[n]
3 = h2y′′(xn).

The method is third order and we would expect that, with precise input
values, the output after a single step would be correct to within O(h4). With
the interpretation we have introduced, this is not quite correct because the
third output value is in error by O(h3) from its target value. We can correct
this by writing down a more precise formula for y

[n−1]
3 , and correspondingly

for y
[n]
3 . However, we can avoid having to do this, by remarking that the

method satisfies what are called ‘annihilation conditions’ which cause errors
O(h3) in the input y

[n−1]
3 to be cancelled out in the values computed for y

[n]
1

and y
[n]
2 . For this method, the stages are all computed correctly to within

O(h3), rather than only to first order accuracy as in an explicit Runge–Kutta
method. The computations constituting a single step of the method in the
solution of a differential equation y′ = f(x, y) are shown in Algorithm 270α.
The array y as a parameter for the function ARKstep consists of three columns
with the values of y

[n−1]
1 , y

[n−1]
2 , y

[n−1]
3 , respectively. The updated values of

these quantities, at the end of step n, are embedded in a similar way in the
output result yout.

130 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

271 Variable stepsize

Variation in the stepsize as the integration proceeds, is needed to deal with
changes in behaviour in the apparent accuracy of individual steps. If, in
addition to computing the output results, an approximation is computed to
the error committed in each step, a suitable strategy is to adjust h to maintain
the error estimates close to a fixed value, specified by a user-imposed tolerance.

In the case of the ARK method introduced in Subsection 270, we propose
to compute an alternative approximation to y at the end of the step and to
regard their difference as an error estimate. This alternative approximation
will be defined as

ŷn = y
[n−1]
1 + 1

8y
[n−1]
2 + 3

8 (hF1 + hF2) + 1
8hF3, (271a)

based on the three-eighths rule quadrature formula. It is known that the
difference between ŷn and y

[n]
1 is O(h4), and this fact will be used in stepsize

adjustments.
Because of the asymptotic behaviour of the error estimate, we can increase

or decrease the error predicted in the following step, by multiplying h by

r =
(

T∥∥ŷ − y
[n]
1

∥∥
)1/4

. (271b)

This assumes that the error, or at least the quantity we are estimating, is
changing slowly from step to step. If ‖ŷ − y

[n]
1 ‖ ≤ T is used as a criterion for

accepting the current step, then the use of (271b) to predict the next stepsize
allows the possibility of obtaining an unwanted rejection in the new step.
Hence it is customary to insert a safety factor, equal to 0.9 for example, in
(271a). Furthermore, to avoid violent swings of h in exceptional circumstances,
the stepsize ratio is usually forced to lie between two bounds, such as 0.5
and 2.0. Thus we should refine (271b) by multiplying h not by r, but by
min(max(0.5, 0.9r), 2.0). For robust program design, the division in (271b)
must be avoided when the denominator becomes accidentally small.

In modern solvers, a more sophisticated stepsize adjustment is used, based
on PI control (Gustafsson, Lundh and Söderlind, 1988; Gustafsson, 1991). In
the terminology of control theory, P control refers to ‘proportional control’,
whereas PI or ‘proportional integral control’ uses an accumulation of values
of the controller, in this case a controller based on error estimates, over recent
time steps.

To illustrate the ideas of error estimation and stepsize control, a modified
version of Algorithm 270α is presented as Algorithm 271α. The additional
parameter T denotes the tolerance; the additional outputs hout and reject
are, respectively, the proposed stepsize in the succeeding step and an indicator
as to whether the current step apparently achieved sufficient accuracy. In the
case reject = 1, signifying failure, the variables xout and yout retain the
corresponding input values x and y.

NUMERICAL DIFFERENTIAL EQUATION METHODS 131

Algorithm 271α An ARK method step with stepsize control

function [xout,yout,hout,reject] = ARKstep(x,y,f,h,T)
Uy = y*[1,1,1;1/3,1/6,1/4;1/18,1/18,0];
hF = h*f(x+(1/3)*h,Uy(:,1));
hF = [hF,h*f(x+(2/3)*h,Uy(:,2)+(1/2)*hF)];
xout = x+h;
y1out = Uy(:,3)+hF*[0;3/4];
hF = [hF,h*f(xout,y1out)];
y3out = hF*[3;-3;2]-2*y(:,2);
yout = [y1out,hF(:,3),y3out];
err = norm(hF*[3/8;-3/8;1/8]-y(:,2)/8);
reject = err > T;
if err < 0.04*T

r = 2;
else

r = (T/err)^0.25;
r = min(max(0.5, 0.9*r),2.0);

end
if reject

xout = x;
yout = y;

end
hout = r*h;
yout=yout*diag([1,r,r^2]);

272 Interpolation

To obtain an approximation solution for a specific value of x, it is possible
to shorten the final step, if necessary, to complete the step exactly at the
right place. However, it is usually more convenient to rely on a stepsize
control mechanism that is independent of output requirements, and to produce
required output results by interpolation, as the opportunity arises. The use
of interpolation makes it also possible to produce output at multiple and
arbitrary points. For the third order method introduced in Subsection 270, a
suitable interpolation scheme is based on the third order Hermite interpolation
formula using both solution and derivative data at the beginning and end of
each step. It is usually considered to be an advantage for the interpolated
solution to have a reasonably high order of continuity at the step points and
the use of third order Hermite will give first order continuity. We will write
the interpolation formula in the form

y(xn−1 + ht) ≈ (1 + 2t)(1 − t)2y(xn−1) + (3 − 2t)t2y(xn)

+ t(1 − t)2hy′(xn−1) − t2(1 − t)hy′(xn).

132 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

y1

y2

�

�

�

�

�

�

��
�

�

�

�

�

�

e = 0

�

�

�

�

�

�

�

�

�
�

���
�

�

�

�

�

�

�

e = 1
2

�
�
�
�
�

�
�

�
�

�
�

�
�

�
�������

�
�

�

�

�

�

�

e = 3
4

��
��
��
��

��
��

��
���������������

�
�

�

�

�

�

�

e = 7
8

Figure 273(i) Third order ARK method computations for the Kepler problem

273 Experiments with the Kepler problem

To see how well the numerical method discussed in this section works in
practice, it has been applied to the Kepler problem introduced in Subsection
101. For each of the eccentricity values chosen, denoted by e, the problem has
been scaled to an initial value

y(0) =
[
1 − e 0 0

√
(1 + e)/(1 − e)

]
,

so that the period will be 2π. The aim is to approximate the solution at x = π
for which the exact result is

y(π) =
[
−1 − e 0 0 −

√
(1 − e)/(1 + e)

]
.

In the first experiment, the problem was solved for a range of eccentricities
e = 0, 1

2 , 3
4 , 7

8 with a tolerance of T = 10−4. The results are shown in Figure
273(i) with all step points marked. The computed result for x = π cannot be
found from the variable stepsize schemes unless interpolation is carried out
or the final step is forced to arrive exactly at the right value of x. There was
no discernible difference between these two half-period approximations, and
their common values are indicated on the results.

The second experiment performed with this problem is to investigate the
dependence on the accuracy actually achieved, as the tolerance is varied. The
results achieved are almost identical for each of the eccentricities considered
and the results will be reported only for e = 7

8 . Before reporting the outcome
of this experiment, we might ask what might be expected. If we really were
controlling locally committed errors, the stepsize would, approximately, be
proportional to T 1/(p+1); however, the contribution to global error, of errors

NUMERICAL DIFFERENTIAL EQUATION METHODS 133

Table 273(I) Global error and numbers of steps for varying tolerance with the

Kepler problem

T ‖Error‖ Ratio Steps
80 4.84285 7
8−1 1.22674

3.94773
8

8−2 3.30401 × 10−1
3.71289

8
8−3 8.28328 × 10−2

3.98876
10

8−4 2.33986 × 10−2
3.54007

13
8−5 4.95205 × 10−3

4.72504
19

8−6 1.04655 × 10−3
4.73180

30
8−7 2.24684 × 10−4

4.65786
50

8−8 4.89663 × 10−5
4.58854

82
8−9 1.02365 × 10−5

4.78350
137

8−10 2.15123 × 10−6
4.75845

228
8−11 4.53436 × 10−7

4.74429
382

8−12 9.57567 × 10−8
4.73529

642
8−13 2.01165 × 10−8

4.76011
1078

8−14 4.22848 × 10−9
4.75737

1810

committed within each small time interval, is proportional to hp. Hence
we should expect that, for very small tolerances, the total error will be
proportional to T p/(p+1). But the controller we are using for the ARK method
is not based on an asymptotically correct error estimate, and this will alter
the outcome.

In fact the results given in Table 273(I), for this third order method, do
show an approximately two-thirds power behaviour. We see this by looking
at the ratios of successive norm errors as T is reduced by a factor of 8. Also
included in the table is the number of steps. As T becomes small, the number
of steps should approximately double each time T is decreased by a factor 1

8 .

274 Experiments with a discontinuous problem

The stepsize control mechanism, coded into Algorithm 271α, contains upper
and lower bounds on the stepsize ratios. The choice of these bounds acquires
crucial importance when low order discontinuities arise in the solution. When
a step straddles a point at which there is a sudden change in one of the
low order derivatives, this will be recognized by the solver as a massive error
estimate, unless the stepsize is abnormally short. Consider, for example, the
two-dimensional problem

134 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

10−10

10−8

10−6

10−4

10−2

100

10−10 10−8 10−6 10−4 10−2 100

T

‖e
rr

or
‖

‖er
ro
r‖

0

10

20

30

40

50

re
je

ct
io

ns

rejections

Figure 274(i) Errors and number of rejections for (274a)

y′(x) =

[
0
1

]
, y1 > y2,[

−1
0

]
, y2 ≥ y1,

y(0) =

[
1

π/6

]
. (274a)

The solution to this problem is very simple: y(x) = [1, x+π/6] for x < 1−π/6
and y(x) = [2 − π/6 − x, 1] for x > 1 − π/6. Because we are interested in
how well the method deals with discontinuous behaviour, we will not take
into account our knowledge of where this point is located. What should
we expect to happen? We would expect the first step, which jumps over
x = 1−π/6, to fail and for the stepsize to be reduced as much as the stepsize
controller permits. There will then be a sequence of successes (followed by
step increases), or failures (followed by step decreases). This sequence will
terminate only when the stepsize is small enough for the quantity used as
the error estimate to be less than T . Numerical results for this problem using
Algorithm 271α are presented in Figure 274(i).

These show the dependence on the accuracy achieved, measured in terms
of the error in the component of y2 after the trajectory has turned the corner
at y = [1, 1] , together with the number of steps rejected in the whole process
of locating the discontinuity in y′ and getting past it.

NUMERICAL DIFFERENTIAL EQUATION METHODS 135

The results will be sensitive to the initial stepsize and, to guarantee we have
represented typical and representative behaviour, a large number of initial
stepsizes were used with each tolerance. For both the error calculations and
the rejected step totals, the results indicate mean values over this range of
initial h with shading showing the mean values plus or minus the standard
deviation and plus or minus twice the standard deviations. The results suggest
that, for this and similar problems, we should expect the error to have a similar
magnitude to the tolerance and the number of rejections to be proportional
to the logarithm of the tolerance.

Exercises 27

27.1 By computing the scaled derivative of the output from the classical
fourth order Runge–Kutta method RK41 (235i), within the current step,
rather than from the first stage of the following step, show that the
method becomes the general linear method

0 0 0 0 1 1
2

1
2 0 0 0 1 0
0 1 0 0 1 0
1
3

1
3

1
6 0 1 1

6
1
3

1
3

1
6 0 1 1

6

0 0 0 1 0 0

.

27.2 Write a fourth order method, with stepsize control, based on the method
in Exercise 27.1 which is equivalent to two steps of RK41, each with
stepsize h, combined with a single step from the same input, with
stepsize 2h. Use the difference between the two-step result and the
double-step result as an error estimator.

27.3 Denote the starting point in Exercise 27.2 as x−1 so that the results are
computed at x0 = x−1 +h and x1 = x0 +h. Find a suitable interpolator
for this method based on approximations to y(x−1), hy′(x−1), y(x0),
y(x1), hy′(x1) to yield an approximation to y(x0 + ht), for t ∈ [−1, 1].
Add this interpolator to the variable step method discussed in Exercise
27.2.

Chapter 3

Runge–Kutta Methods

30 Preliminaries

300 Rooted trees

We saw in Section 23 that the graphs known as ‘rooted trees’ play a central
role in the analysis of the accuracy of Runge–Kutta methods. We regard a
rooted tree as a pair (V, E), where V is a finite set of ‘vertices’ and E a set of
‘edges’. The edges consist of ordered pairs of members of V , subject to certain
conditions. The first condition is that every member of V , except one element
known as the ‘root’, occurs exactly once amongst the second member in each
pair in E. The special root vertex does not occur as the second member of
any pair. For the final condition, for (V, E) to be a rooted tree, there are two
alternatives, which are known to be equivalent: the first is that the graph
defined by (V, E) is connected; and the second is that (V, E) defines a partial
ordering.

It will be convenient, throughout this discussion, to refer to members of V
which do not occur as the first member of any pair in V . For a given edge
[x, y] ∈ E, x will be referred to as the ‘parent’ of y and y will be referred
to as a ‘child’ of x. Thus, a vertex may have one or more children but, if it
has none, it is a leaf. Similarly every vertex, except the root, has exactly one
parent, whereas the root has no parent.

We do not pursue the formal properties of graphs, and of rooted trees in
particular, because they are formulated in specialist books on this subject
and are easily appreciated through examples and diagrams. In diagrammatic
depictions of a directed graph, the vertices are represented as points and the
edges by arrowed line segments joining pairs of points, with the arrow pointing
from the first to second member of the pair. We illustrate these ideas in Figure
300(i), where a number of rooted trees are shown. In contrast, Figure 300(ii)
shows some graphs which are not rooted trees. In these figures, the members
of V are chosen to be positive integers. Wherever possible, the diagrams are
arranged so that the root, if it exists, is at the bottom of the picture and so
that all arrows are pointing in a direction with an upwards component.

Even though we are representing rooted trees using points, labelled by

Numerical Methods for Ordinary Differential Equations, Second Edition. J. C. Butcher
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-72335-7

138 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

1

2 3 4

1

2 3

4

1

2 3

4 5

V

E

{1, 2, 3, 4}

{[1, 2], [1, 3], [1, 4]}

{1, 2, 3, 4}

{[1, 2], [1, 3], [3, 4]}

{1, 2, 3, 4, 5}

{[1, 2], [1, 3], [3, 4], [3, 5]}

Figure 300(i) Some directed graphs which are rooted trees

1

3

2

4

1

3

2

4

1

2 3 4

5

V

E

{1, 2, 3, 4}

{[1, 2], [1, 3], [4, 2], [4, 3]}

{1, 2, 3, 4}

{[1, 3], [3, 4]}

{1, 2, 3, 4, 5}

{[1, 2], [1, 3], [1, 4], [1, 5], [3, 4]}

Figure 300(ii) Some directed graphs which are not rooted trees

members of a vertex set, we are interested in the abstract structure behind
this definition. That is, if (V, E) and (V ′, E ′) are rooted trees and there exists
a bijection ϕ : V → V ′ such that [x, y] ∈ E if and only if [ϕ(x), ϕ(y)] ∈ E ′,
then the two rooted trees are identical, when represented as diagrams, except
for the labels attached to the points. We can thus regard an ‘abstract rooted
tree’ as an equivalence class under this type of isomorphism. We use each
interpretation from time to time, according to our convenience; where it is not
clear from the context which is intended, we add some words of clarification.
For a labelled tree t, the corresponding abstract tree will be denoted by |t|.

To conclude this introduction to rooted trees, we present two alternative
notations for trees. In each notation, we denote the single tree, with only one
vertex, by the symbol τ . In the first notation, we consider a tree t such that,
when the root is removed, there remain a number of disconnected trees, say t1,
t2, . . . , tm, where m is the number of ‘children’ of the root of t. We then write
t = [t1t2 · · · tm]. This gives a recursion for constructing a symbolic denotation
for any particular tree. When some of t1, t2, . . . , tm are equal to each other, it
will be convenient to represent these repetitions using a power notation. For
example, [t1t1t2t2t2t3] will also be written as [t21t32t3].

The second notation builds up a symbolic representation of all trees by
using a non-associative product of rooted trees, such that t1t2 is formed by
joining them at the roots, with an additional edge from the root v1 of t1 to

RUNGE–KUTTA METHODS 139

Table 300(I) Trees, notations for trees and various functions on trees

r(t) t σ(t) γ(t)
1 τ τ 1 1

2 [τ] ττ 1 2

3 [τ2] ττ.τ 2 3

3 [[τ]] τ.ττ 1 6

4 [τ3] (ττ.τ)τ 6 4

4 [τ [τ]] ττ.ττ = (τ.ττ)τ 1 8

4 [[τ2]] τ (ττ.τ) 2 12

4 [[[τ]]] τ (τ.ττ) 1 24

5 [τ4] (ττ.τ)τ.τ 24 5

5 [τ2[τ]] (τ.ττ)τ.τ = (ττ.ττ)τ = (ττ.τ).ττ 2 10

5 [τ [τ2]] ττ.(ττ.τ) = τ (ττ.τ).τ 2 15

5 [τ [[τ]]] τ (τ.ττ).τ = ττ.(τ.ττ) 1 30

5 [[τ]2] (τ.ττ).ττ 2 20
5 [[τ3]] τ.(ττ.τ)τ 6 20

5 [[τ [τ]]] τ (ττ.ττ) = τ.(τ.ττ)τ 1 40

5 [[[τ2]]] τ.τ (ττ.τ) 2 60

5 [[[[τ]]]] τ.τ (τ.ττ) 1 120

the root v2 of t2. Thus if t1 = |(V1, E1)| and t2 = |(V2, E2)|, and V1 and V2 are
disjoint sets, then t1t2 is the tree |(V1 ∪ V2, E1 ∪ E2 ∪ [v1, v2])|. Because the
product is not associative, we need to distinguish between (t1t2)t3 and t1(t2t3)
without introducing more parentheses than necessary. Hence, we sometimes
write (t1t2)t3 = t1t2.t3 and t1(t2t3) = t1.t2t3.

We illustrate these notations in Table 300(I), where all trees with up to
five vertices are shown. Also shown are the functions r(t), σ(t) and γ(t) to be
introduced in the next subsection.

301 Functions on trees

For a rooted tree t, define r(t), the ‘order’ of t, as the number of vertices in
t. That is, if t is labelled as (V, E), then r(t) = #V , the cardinality of the
set V . Let A(t) denote the group of automorphisms on a particular labelling

140 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

of t. That is, A(t) is the set of mappings ϕ : V → V such that [x, y] ∈ E if
and only if [ϕ(x), ϕ(y)] ∈ E. The group A(t) will be known as the ‘symmetry
group’ of t; its order will be known as the ‘symmetry’, and denoted by σ(t).
The ‘density’ of t, γ(t), is defined as the product over all vertices of the order
of the subtree rooted at that vertex. We illustrate these definitions using a
specific tree (V, E) with nine vertices given by

V = {a, b, c, d, e, f, g, h, i},
E = {[a, b], [a, c], [b, d], [b, e], [b, f], [c, g], [c, h], [c, i]}.

The diagram representing this tree, with the vertex labels attached, is

a

b c

ed f hg i

The value of r(t) is, of course, 9. The symmetry group is the set of
permutations generated by all members of the symmetric group on {d, e, f}, by
all members of the symmetric group on {g, h, i}, and the group S2 generated
by the single permutation, in which b and c are interchanged, d and g are
interchanged, e and h are interchanged, and f and i are interchanged. Thus
the order of the symmetry group is σ(t) = 3!3!2! = 72. To calculate γ(t),
attach integers to the vertices as follows:

9

4 4

11 1 11 1

leading to γ(t) = 1 · 1 · 1 · 1 · 1 · 1 · 4 · 4 · 9 = 144.
We complete this subsection with a formal statement of recursions for the

computation of r(t), σ(t) and γ(t).

Theorem 301A Let t = [tm1
1 tm2

2 · · · tmk

k], where t1, t2, . . . , tk are distinct
trees. Then

r(t) = 1 +
k∑

i=1

mir(ti), (301a)

σ(t) =
k∏

i=1

mi!σ(ti)mi , (301b)

γ(t) = r(t)
k∏

i=1

γ(ti)mi . (301c)

RUNGE–KUTTA METHODS 141

Furthermore,
r(τ) = σ(τ) = γ(τ) = 1. (301d)

Proof. To verify (301d), calculate r, σ and γ for the single tree with one
vertex. To prove (301a), add the numbers of vertices in the m1+m2+ · · ·+mk

trees attached to the new root, and add one extra for the new root. In the
calculation of γ(t), the integers attached to the vertices in the m1 + m2 +
· · ·+ mk trees joined to the new root are the same as in the constituent trees
themselves. The product of these integers, and the integer r(t), gives the result
(301c). Finally, (301b) follows by noting that the permutations which leave
the vertex pairs, making up the list of edges, are just as in the individual
attached trees, together with the additional permutations of the label sets
amongst identical subtrees. �

302 Some combinatorial questions

We consider the question of labelling a tree t with r(t) vertices, using the
symbols {1, 2, . . . , r(t)}, under the following conditions:

(i) Each vertex receives one and only one label.
(ii) Labellings that are equivalent under the symmetry group are counted

only once.
(iii) If (i, j) is a labelled edge then i < j.

The number of distinct ways of labelling the given tree t will be denoted by
α(t). A similar question, in which conditions (i) and (ii) apply, but (iii) does
not, leads to a function β(t). We have:

Theorem 302A

α(t) =
r(t)!

σ(t)γ(t)
, (302a)

β(t) =
r(t)!
σ(t)

. (302b)

Proof. The value of β(t) is found by labelling the vertices of t with all
permutations and then dividing by σ(t) so as to count, only once, sets of
labellings which are equivalent under symmetry. In the case of α(t), we are
restricted by the requirement that, of the labels assigned to any vertex v and
to its descendants, only the lowest may be assigned to v. The product of the
factors that must be divided out to satisfy this constraint is γ(t). �

We now look at the enumeration question of the number of rooted trees of
various orders.

142 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Theorem 302B Let θk, k = 1, 2, 3, . . . denote the number of rooted trees
with exactly k vertices. Then,

θ1 + θ2x + θ3x
2 + · · · = (1 − x)−θ1(1 − x2)−θ2(1 − x3)−θ3 · · · . (302c)

Before proving this result, we consider how (302c) is to be interpreted. The
right-hand side can be formally expanded as a power series, and it can be seen
that the coefficient of xk depends only on θ1, θ2, . . . , θk (and is independent of
any of θ1, θ2, . . . if k = 0). Equate this to the coefficient of xk on the left-hand
side and the result is a formula for θk+1 in terms of previous members of the
θ sequence. In particular, k = 0 gives θ1 = 1. We now turn to the justification
of the result.

Proof. Let Θk(U) denote the number of trees of order k that can be formed
using the operation (t1, t2, . . . , tn)
→ [t1, t2, . . . , tn], where t1, t2, . . . , tn are
all members of U which is assumed to be a subset of T . In particular, Θk(T)
is identical to θk. Let V denote the set U ∪{t̂}, where t̂ �∈ U . Every tree of the
form [t̂m, . . .], with order k, is included in a set with Θk(V)−Θk(U) members.
However, there are the same number of members of this set as there are trees
of order k − r(t̂) of the form [t̂m−1, . . .]. Thus, Θk(V)−Θk(U) = Θk−r(t̂)(V),
which is equivalent to

Θ1(U) + Θ2(U)x + · · · = (1 − xr(t̂))(Θ1(V) + Θ2(V)x + · · ·). (302d)

Since
Θ1(U) + Θ2(U)x + · · · = 1,

when U is the empty set, we can successively compute the value of this
expression when U = {t1, t2, . . . , tn} using (302d) as

Θ1(U) + Θ2(U)x + · · · =
n∏

k=1

(1 − xr(tk))−1. (302e)

Now assume that t1, t2, . . . consist of all trees of orders up to some integer p,
and we can write (302e) as

Θ1(U) + Θ2(U)x + · · · =
p∏

k=1

(1 − xk)−θk .

Since Θi(U) = θi if i ≤ p + 1, we obtain the result by replacing
∏p

k=1 by∏∞
k=1. �

The values of θk, computed using Theorem 302B, are shown in Table 302(I)
up to order 10. Also shown are the total numbers of trees up to a given order,
and two further functions equal to the totals of the α(t) and β(t) values for
each order.

RUNGE–KUTTA METHODS 143

Table 302(I) Various enumerations of rooted trees up to order 10

n θn

∑n
i=1 θi

∑
r(t)=n α(t)

∑
r(t)=n β(t)

1 1 1 1 1
2 1 2 1 2
3 2 4 2 9
4 4 8 6 64
5 9 17 24 625
6 20 37 120 7776
7 48 85 720 117649
8 115 200 5040 2097152
9 286 486 40320 43046721

10 719 1205 362880 1000000000

The entries in last two columns of Table 302(I) are important in classical
combinatorics, although their roles in our work is only incidental. The sum of
the β(t) for r(t) = n is the number of fully labelled rooted trees with n vertices,
whereas the corresponding sum for α(t) is the number of monotonically
labelled rooted trees. It is easy to guess a formula for each of these totals,
and we now verify these.

Theorem 302C Let An =
∑

r(t)=n α(t), Bn =
∑

r(t)=n β(t). Then

An = (n − 1)!, Bn = nn−1.

Proof. Let Xn denote the set of vectors of the form [x1, x2, . . . , xn−1] and Yn

the set of vectors of the form [y1, y2, . . . , yn−1], where xi ∈ {1, 2, . . . , i} and
yi ∈ {1, 2, . . . , n}, for i = 1, 2, . . . , n. It is easy to see that the cardinalities
of these sets are #Xn = (n − 1)!, #Yn = nn−1. We conclude the proof by
showing how to define bijections between the monotonically labelled rooted
trees of order n and Xn and between the fully labelled rooted trees of order
n and Yn. In each case, given a labelled rooted tree, let v denote the leaf with
greatest label and assign, as the value of xn−1 or yn−1, respectively, the label
attached to the parent of v. Delete the leaf v and continue the process until
only the root remains. That is, in step i = 1, 2, . . . , n− 1, we work with a tree
with n + 1 − i vertices. We assign to xn−i (or to yn−i, respectively) the label
attached to the parent of the leaf with the highest remaining label, and then
delete this leaf to yield a tree with n − i vertices. �

Although we have not included details of the bijections involved in this
summarized proof, we illustrate these in the cases n = 4, for monotonically
labelled trees in Table 302(II), and n = 3, for fully labelled trees in Table
302(III).

144 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Table 302(II) The bijection relating a monotonically labelled fourth order tree t

and x ∈ X4

x t x t x t

[1, 1, 1]
1

2
3

4 [1, 1, 2]
1

3 2

4

[1, 1, 3]
1

2 3

4

[1, 2, 1]
1

4 2

3
[1, 2, 2]

1
2

3 4
[1, 2, 3]

1

2

3

4

Table 302(III) The bijection relating a fully labelled third order tree t and

y ∈ Y3

y t y t y t

[1, 1]
1

2 3 [1, 2]
1

2

3

[1, 3]
1

3

2

[2, 1]
2

1

3

[2, 2]
2

1 3 [2, 3]
2

3

1

[3, 1]
3

1

2

[3, 2]
3

2

1

[3, 3]
3

1 2

303 The use of labelled trees

We have seen that α(t), introduced in Subsection 302, is the number of distinct
ways of labelling the vertices of t with the integers {1, 2, . . . , r(t)}, on condition
that for each edge (i, j), i < j. It is convenient to generalize this by writing S
for an finite ordered set such that the cardinality is #S = r(t), and counting
trees labelled with members of S such that i < j for each edge (i, j). Let T ∗

S

denote the set of trees labelled in this way and let |t| denote the member of
T corresponding to t ∈ T ∗

S , but with the vertex labels removed. This means
that α(t) can be interpreted as the number of members of T ∗

S such that | · |
maps them to t ∈ T . Similarly, we write TS for the set of trees labelled by a
set with cardinality r(t), where no assumption is made about order. In this
case β(t) is the number of t ∈ TS , such that |t| = t.

304 Enumerating non-rooted trees

Recall the generating function for the numbers of rooted trees of various orders

θ(x) = θ1 + θ2x + θ3x
2 + · · · ,

RUNGE–KUTTA METHODS 145

0

1 1

2 21

3

3
3

1

3 2 32

4 4

4

4
1

4

4
43

2

4 43 32

5

5

5

5

5
1

5

5

5 542

5

4

5

4

52

5

5
543

3

5

5

5

5

33

5 54 43 3

Figure 304(i) Trees with up to six vertices

where θ1, θ2, . . . are given in (302c). Also write

φ(x) = φ1 + φ2x + φ3x
2 + · · · ,

ψ(x) = ψ1 + ψ2x + ψ3x
2 + · · · ,

as the generating functions for the numbers of trees φi of orders i = 1, 2, . . .
and the numbers of non-superfluous trees ψi. The meaning of ‘superfluous
tree’ will become clear from the discussion which follows.

Given a tree, we can form a family of rooted trees by designating one of
its vertices to be the root. We will refer to two such rooted trees as adjacent
if the two roots are at the ends of the same edge in the underlying tree. For
any particular vertex v, let t = [t1, t2, . . . , tm] and write φ(v) = maxm

i=1 r(ti).
There will be at most one vertex adjacent to v for which the value of φ is
lower. However, for some trees with even order there will be two adjacent
vertices for which the values of φ are each equal to r(t)/2. The 14 trees with
up to six vertices are shown in Figure 304(i). The value of φ is attached to
each vertex, with arrows showing the direction of decreasing φ. In the cases
of two adjacent vertices v and w with φ(v) = φ(w), two arrows are shown
meeting midway through the edge.

For a rooted tree formed from a tree by selecting a vertex as the root, we
can move along an arrow to obtain a vertex with a lower value of φ. Thus
we should subtract from the total number of rooted trees of a given order n,
the number of pairs or trees with unequal orders. This means subtracting the
number of rooted trees of the form tu, where r(t) < r(u). In the case of trees
where n = 2m is even, and for two adjacent vertices, the rooted trees tu and
ut occur, where r(t) = r(u), we need to subtract half the number of such trees
unless t = u, in which case no subtraction is performed.

146 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

For a tree of order n = 2m + 1, the number of trees will thus be
θn −

∑m
i=1 θiθn−i, which is the coefficient of xn−1 in

θ(x) − x

2

(
θ(x)2 ∓ θ(x2)

)
, (304a)

where the term involving θ(x2) does not actually contribute to this case of
odd n. In the case of even n = 2m, the number of trees will be

θn −
m−1∑
i=1

θiθn−i −
1
2
θm(θm ∓ 1),

where ∓ is interpreted as −, and this is again equal to the coefficient of xn−1

in (304a).
Counting non-superfluous trees is the same except that we need to subtract

from the totals the number of trees of the form tt, and this gives the same
result as (304a) but with ∓ replaced by +. Putting these results together we
formally state:

Theorem 304A The generating functions for trees and non-superfluous trees
are

φ(x) = θ(x) − x

2

(
θ(x)2 − θ(x2)

)
, (304b)

ψ(x) = θ(x) − x

2

(
θ(x)2 + θ(x2)

)
. (304c)

305 Differentiation

We need to develop fairly intricate formulae involving derivatives of vector-
valued functions of vector arguments. Hence, in this subsection and the next,
we review basic calculus ideas in a vector setting. We start with the elementary
notions of the derivative of a real-valued function of a single real variable, and
the partial derivatives of a real-valued function of several real variables. A
real-valued function f , whose domain contains an open interval around the
real number a, is differentiable at a if there exists a number f ′(a), referred
to as the derivative of f at a, such that |f(a + δ) − f(a) − f ′(a)δ|/|δ| → 0 as
|δ| → 0. This definition is extended in two ways. First, f can take values in
RN , in which case f is differentiable if each of its components is differentiable.
Furthermore, f ′(a) ∈ RN is equal to the vector made up from the derivatives
of the components of f . Another way of writing this is

‖f(a + δ) − f(a) − f ′(a)δ‖
|δ| → 0 as |δ| → 0.

When the domain of f is generalized to X ⊂ R
M , such that a ∈ O ⊂ X,

where O is an open set, such as a product of open intervals, then f ′(a), if it

RUNGE–KUTTA METHODS 147

exists, is a linear operator, f ′(a) : RM → RN , such that

‖f(a + δ) − f(a) − f ′(a)δ‖
‖δ‖ → 0 as ‖δ‖ → 0.

If the components of a and f are written as

a =

a1

a2

...
aM

 , f =

f1

f2

...
fN

 ,

then the linear operator f ′(a) is represented by the matrix of partial
derivatives

f ′(a) =

f1
1 (a) f1

2 (a) · · · f1
M (a)

f2
1 (a) f2

2 (a) · · · f2
M (a)

...
...

...

fN
1 (a) fN

2 (a) · · · fN
M (a)

=

∂f1

∂a1
∂f1

∂a2 · · · ∂f1

∂aM

∂f2

∂a1
∂f2

∂a2 · · · ∂f2

∂aM

...
...

...
∂fN

∂a1
∂fN

∂a2 · · · ∂fN

∂aM

.

Second and higher derivatives are bilinear and multilinear operators. In the
tensor representation

f i
j1j2···jk

(a) =
∂kf i

∂aj1∂aj2 · · · ∂ajk

,

the argument (a) is omitted, for convenience, if its value is understood.
Finally, in this subsection, we remark that evaluation of the result of

operating with the order k derivative f i
j1j2···jk

, as a k-linear operator, on the
collection of k arguments v1, v2, . . . , vk ∈ RM , gives the expression

M∑
j1=1

M∑
j2=1

· · ·
M∑

jk=1

f i
j1j2···jk

vj1
1 vj2

2 · · · vjk

k . (305a)

The complicated appearance of (305a) can be alleviated by omitting all
the summation symbols and regarding them as implied. This is the well-
known ‘summation convention’, and we use this notational simplification
freely throughout this book. Thus we write, instead of (305a),

f i
j1j2···jk

vj1
1 vj2

2 · · · vjk

k .

148 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Table 306(I) Members of I2 and their symmetries

I () (1) (2) (1, 1) (1, 2) (2, 2) (1, 1, 1) (1, 1, 2) (1, 2, 2) (2, 2, 2)
σ(I) 1 1 1 2 1 2 6 2 2 6

306 Taylor’s theorem

We start from the identity,

f(a + δ) = f(a) + f ′(a)(δ) + 1
2!f

′′(a)(δ, δ)

+ · · · + 1
n!

f (n)(a)(δ, δ, . . . , δ) + Rn, (306a)

where the ‘remainder’ Rn is given by

Rn =
1
n!

∫ 1

0

f (n+1)(a + ξδ)(δ, δ, . . . , δ)(1 − ξ)ndξ.

This is proved by induction, with the key step being

Rn−1 =
1
n!

f (n)(a)(δ, δ, . . . , δ) + Rn,

which is verified by integration by parts. With Taylor’s theorem written in
the form (306a), the result is quite versatile and applies if f : X ⊂ R

M → R
N ,

where a + ξδ ∈ O ⊂ X, for all ξ ∈ [0, 1]. Assuming that ‖f (n+1)(x)‖ exists
and is bounded for x ∈ O, then

‖Rn‖ = O(‖δ‖n+1).

We consider a slight variation of the theorem, in which δ is replaced by
the sum of a finite number of vectors, δi, i = 1, 2, . . . , m. We assume that
f is analytic in a neighbourhood of a and that each of the δi is small. The
formal result we present can be interpreted as a finite series, together with
remainder, with the details dependent on the relative magnitudes of the δi.
Let I denote a sequence of integers from the set {1, 2, . . . , m} and Im the set
of all such sequences. Two sequences I and I ′ will be regarded as identical if
the members of I ′ are a permutation of the members of I. The ‘symmetry’ of
I is the order of the group of permutations of the elements of {1, 2, . . . , #I},
which maps the ordered members of I to themselves. That is, if I contains ki

occurrences of i, for each i = 1, 2, . . . , m, then

σ(I) = k1!k2! · · · km!. (306b)

For m = 2, the first few I ∈ Im, together with the corresponding symmetries,
are given in Table 306(I).

RUNGE–KUTTA METHODS 149

For I = (i1, i2, . . . , ik) ∈ Im, we denote by δI the quantity

(δi1 , δi2 , . . . , δim
) ∈ (RN)m.

These will be used as operands for multilinear operators, such as f (m)(a), and,
in the case I = (), we interpret f(a)() as being simply f(a). We are now in a
position to state the form of the Taylor expansion (306a), when δ is replaced
by
∑m

i=1 δi.

Theorem 306A

f
(
a +

m∑
i=1

δi

)
=
∑

I∈Im

1
σ(I)

f (#I)(a)δI .

Proof. Continue to write ki for the number of occurrences of i in I, so that
σ(I) is given by (306b). The coefficient of f (#I)(a)δI is equal to the coefficient
of
∏m

i=1 xki in exp (
∑m

i=1 xi). This equals the coefficient of
∏m

i=1 xki in(
1 + x1 + 1

2!
x2

1 + · · ·
)(

1 + x2 + 1
2!

x2
2 + · · ·

)
· · ·
(
1 + xm + 1

2!
x2

m + · · ·
)

and is equal to 1/σ(I). �

We illustrate this result by applying (306A) to the case m = 2, using Table
306(I):

f(a + δ1 + δ2) = f(a) + f ′(a)δ1 + f ′(a)δ2 + 1
2f ′′(a)(δ1, δ1)

+ f ′′(a)(δ1, δ2) + 1
2f ′′(a)(δ2, δ2) + 1

6f ′′′(a)(δ1, δ1, δ1)

+ 1
2f ′′′(a)(δ1, δ1, δ2) + 1

2f ′′′(a)(δ1, δ2, δ2) + 1
6f ′′′(a)(δ2, δ2, δ2) + · · · .

Exercises 30

30.1 Find r(t), σ(t), γ(t), α(t) and β(t) for the tree t = |t|, where |t| = (V, E),
with

V = {a, b, c, d, e, f, g} and E = {(a, b), (b, c), (b, d), (a, e), (e, f), (e, g)}.

30.2 Find r(t), σ(t), γ(t), α(t) and β(t) for the tree t = [[τ]2τ3].

30.3 Find r(t), σ(t), γ(t), α(t) and β(t) for the tree t = ττ · (ττ · τ)τ .

30.4 Define f : R
3 → R

3 by

f(y1, y2, y3) =

 y1 + y2y3

(y1)2 + 2y1y2

1 + (y2 + y3)2

 .

Find formulae for f i
j , f i

jk and f i
jkl, for i, j, k, l = 1, 2, 3.

30.5 Expand f(a+ δ1ξ + δ2ξ
2 + δ3ξ

3) up to terms in ξ3 using Theorem 306A.

150 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

31 Order Conditions

310 Elementary differentials

To investigate the error in carrying out a single step of a Runge–Kutta method,
we need to compare successive terms in the Taylor expansions of the exact
and the computed solutions. These involve expressions whose structures are
related to rooted trees. In the case of the exact solution, it is possible to
evaluate the Taylor coefficients by repeated differentiation. We start with a
differential equation, assumed for convenience to be autonomous,

y′(x) = f(y(x)). (310a)

We also write (310a) in component-by-component form, with arguments
omitted for brevity, as

(yi)′ = f i. (310b)

To obtain the second derivative, use the chain rule

y′′(x) =
d

dx
f(y(x)) = f ′(y(x))y′(x) = f ′(y(x))f(y(x)) (310c)

or, using (310b) as the starting point,

d

dx
(yi)′ =

d

dx
f i = f i

jf
j . (310d)

Note that in (310d) we have used the summation convention. We continue
to use this convention without further comment. The third derivative can be
found in a similar manner, but is complicated by the fact that y(x) is present
in both factors in f ′(y(x))f(y(x)). Even though we are omitting arguments,
y(x) is also implicitly present in the tensor form f i

jf
j . The two forms of the

third derivative are

d3

dx3
y(x) = f ′′(y(x))

(
f(y(x)), f(y(x))

)
+ f ′(y(x))(f ′(y(x))f(y(x))), (310e)

d3

dx3
yi = f i

jkf jfk + f i
jf

j
kfk. (310f)

We can find a pattern in the terms occurring in the first, second and third
derivatives, using rooted trees. In the total derivative form, (310a), (310c),
(310e), we relate f(y(x)) to a leaf in a tree, we relate f ′(y(x)) to a vertex
with a single outwardly directed edge, and we relate f ′′(y(x)) to a vertex with
two outward edges. In the case of f ′ and f ′′, the outward edges are joined
to subtrees, as representatives of the operands of these linear and bilinear
operators, respectively.

For the tensor representations of the terms in the first three derivatives of
yi, we treat the superscripts in f i, f j , fk as members of the vertex set V , and

RUNGE–KUTTA METHODS 151

Table 310(I) Relation between terms in y derivatives and rooted trees

Operator Labelled TensorTree Termdiagram tree term

f f(y(x)) i f i

f ′
f

f ′(y(x))f(y(x))
i

j
f i

jf
j

f ′′
f f

f ′′(y(x))(f(y(x)), f(y(x)))
i

j k
f i

jkf jfk

f ′
f ′
f

f ′(y(x))(f ′(y(x))f(y(x)))
i

j

k

f i
jf

j
kfk

we define the edge set E in terms of the pairs, such as (i, j) that occur in f i
j ,

f i
jk.
Thus, we can identify four trees as representatives of the terms that occur

in the first, second and third derivatives of y. In Table 310(I) we illustrate
this correspondence using both formulations. Note that we write f, f ′ and f ′′

as abbreviations for f(y(x)), f ′(y(x)) and f ′′(y(x)), respectively.
We can expect this pattern to continue, because the operation of

differentiating adds an additional vertex to an existing tree, in a number
of different ways, and each of these corresponds to a further tree.

Definition 310A Given a tree t and a function f : RN → RN , analytic in a
neighbourhood of y, the ‘elementary differential’ F (t)(y) is defined by

F (τ)(y) = f(y), (310g)

F ([t1, t2, . . . , tm]) = f (m)(y)(F (t1)(y), F (t2)(y), . . . , F (tm)(y)). (310h)

Note that the tensor interpretation of (310h) is written as

F i([t1, t2, . . . , tm]) = f i
j1,j2,...,jm

F j1(t1)F j2(t2) · · ·F jm(tm).

The elementary differentials up to order 5 are shown in Table 310(II). Note
that we use the same abbreviation as in Table 310(I), in which f, f ′, . . . denote
f(y(x)), f(y(x))′, The values of α(t) are also shown; their significance will
be explained in the next subsection.

As part of the equipment we need to manipulate expressions involving
elementary differentials we consider the value of

hf
(
y0 +

∑
t∈T

θ(t)
hr(t)

σ(t)
F (t)(y0)

)
. (310i)

152 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Table 310(II) Elementary differentials for orders 1 to 5

r(t) t α(t) F (t)(y) F (t)(y)i

1 1 f f i

2 1 f′f f i
jf

j

3 1 f′′(f, f) f i
jkf jfk

3 1 f′f′f f i
jf

j
kfk

4 1 f′′′(f, f, f) f i
jklf

jfkf l

4 3 f′′(f, f′f) f i
jkf jfk

l f l

4 1 f′f′′(f, f) f i
jf

j
klf

kf l

4 1 f′f′f′f f i
jf

j
kfk

l f l

5 1 f(4)(f, f, f, f) f i
jklmf jfkf lfm

5 6 f(3)(f, f, f′f) f i
jklf

jfkf l
mfm

5 4 f′′(f, f′′(f, f)) f i
jkf jfk

lmf lfm

5 4 f′′(f, f′f′f) f i
jkf jfk

l f l
mfm

5 3 f′′(f′f, f′f) f i
jkf j

l f lfk
mfm

5 1 f′f′′′(f, f, f) f i
jf

j
klmfkf lfm

5 3 f′f′′(f, f′f) f i
jf

j
klf

kf l
mfm

5 1 f′f′f′′(f, f) f i
jf

j
kfk

lmf lfm

5 1 f′f′f′f′f f i
jf

j
kfk

l f l
mfm

As a formal series, this can be evaluated using the following result:

Lemma 310B The value of (310i) is∑
t∈T

θ̃(t)
hr(t)

σ(t)
F (t)(y0),

where θ̃ is defined by

θ̃(t) =

1, t = τ,
k∏

i=1

θ(ti), t = [t1t2 · · · tk].

RUNGE–KUTTA METHODS 153

Proof. Use Theorem 306A. The case t = τ is obvious. For t = [tm1
1 tm2

2 · · · tmj

j],
where t1, t2, . . . , tj are distinct, the factor(

σ(I)
j∏

i=1

σ(tj)mj

)−1

,

where I is the index set consisting of m1 copies of 1, m2 copies of 2, . . . and
mj copies of j, is equal to σ(t)−1. �

311 The Taylor expansion of the exact solution

We approach the question of the Taylor series of the exact solution from two
points of view. In the first, we evaluate the Taylor coefficients by repeated
differentiation, as we have illustrated in Subsection 310. In the second, we
successively find Taylor series for the Picard iterates.

The central result in the first approach is an expression for the derivatives
written in terms of labelled trees. Throughout the discussion it will be
assumed, without further comment, that y is a solution to y′(x) = f(y(x))
and that y is differentiable arbitrarily often. First, we need a formula for the
derivative of a single elementary differential.

Lemma 311A Let S = S0 ∪ {s} be an ordered set, where every member of
S0 is less than s. Let t be a member of T ∗

S0
. Then

d

dx
F (|t|)(y(x))

is the sum of F (|u|)(y(x)) over all u ∈ T ∗
S such that the subtree formed by

removing s from the set of vertices is t.

Proof. If S = {s0, s}, then the result is equivalent to

d

dx
f(y(x)) = f ′(y(x))f(y(x)).

We now complete the proof by induction in the case S = {s0}∪S1∪S2∪· · ·∪
Sk ∪ {s}, where {s0}, S1, S2, . . . , Sk, {s} are disjoint subsets of the ordered
set S. By the induction hypothesis, assume that the result of the lemma is
true, when S is replaced by Si, i = 1, 2, . . . , k. If t ∈ T ∗

S0
, then

|t| = [|t1| |t2| · · · |tk|],

where ti ∈ T ∗
Si

, i = 1, 2, . . . , k. Differentiate

F (|t|)(y(x))

= f (k)(y(x))
(
F (|t1|)(y(x)), F (|t2|)(y(x)), . . . , F (|tk|)(y(x))

)
, (311a)

154 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

to obtain
Q0 + Q1 + Q2 + · · · + Qk,

where

Q0 = f (k+1)(y(x))
(
F (|t1|)(y(x)), F (|t2|)(y(x)), . . . , F (|tk|)(y(x)), f(y(x))

)
and, for i = 1, 2, . . . , k,

Qi = f (k)(y(x))
(
F (|t1|)(y(x)), . . . ,

d

dx
F (|ti|)(y(x)), . . . , F (|tk|)(y(x))

)
.

The value of Q0 is
F ([|t1| |t2| · · · |tk| |t0|])(y(x)),

where |t0| is τ labelled with the single label s. For i = 1, 2, . . . , k, the value
of Qi is the sum of all terms of the form (311a), with F (|ti|)(y(x)) replaced
by terms of the form F (|ui|)(y(x)), where ui is formed from ti by adding an
additional leaf labelled by s. The result of the lemma follows by combining
all terms contributing to the derivative of (311a). �

Theorem 311B Let S denote a finite ordered set. Then

y(#S)(y0) =
∑
t∈TS

F (|t|)(y0).

Proof. In the case |t| = τ , the result is obvious. For the case #S > 1, apply
Lemma 311A repeatedly by adding additional (and increasing) members to
S. �

We rewrite this result in terms of unlabelled trees, by noting that the
number of times that a tree t with order #S occurs as the unlabelled
counterpart of a member of T ∗

S , is exactly α(t).

Theorem 311C

y(n)(y(x)) =
∑
t∈Tn

α(t)F (t)(y(x)).

The alternative approach to finding the Taylor coefficients is based on the
Picard integral equation

y(x0 + hξ) = y(x0) + h

∫ ξ

0

f(y(x0 + hξ))dξ,

which, written in terms of Picard iterations, becomes

yn(x0 + hξ) = y(x0) + h

∫ ξ

0

f(yn−1(x0 + hξ))dξ, (311b)

RUNGE–KUTTA METHODS 155

where the initial iterate is given by

y0(x + hξ) = y(x0). (311c)

For n = 1, 2, . . . , we expand yn(x0 +hξ) for ξ ∈ [0, 1], omitting terms that are
O(hn+1).

Theorem 311D The Taylor expansion of yn given by (311b) and (311c) is
equal to

yn = y(x0) +
n∑

i=1

hiξi
∑
t∈Ti

1
σ(t)γ(t)

F (t)(y(x0)) + O(hn+1). (311d)

Proof. The case n = 0 is obvious. We now use induction and suppose that
(311d) is true with n replaced by n − 1. By Lemma 310B, with

θ(t) =
1

γ(t)
,

we have as the coefficient of F (t)(y(x0))hr(t), the expression∫ ξ

0

1∏k
i=1 γ(ti)

ξr(t)−1dξ =
1

r(t)
∏k

i=1 γ(ti)
ξr(t) =

1
γ(t)

ξr(t),

where t = [t1t2 · · · tk]. �

312 Elementary weights

Having found the Taylor expansion of the exact solution to an initial value
problem, we now find the corresponding expansion for the approximation
computed by a Runge–Kutta method. A term-by-term comparison of these
will provide criteria for the error generated in a single step to be zero, except
for terms that can be estimated in terms of high powers of the stepsize h.

As a prelude, we consider a three-stage explicit Runge–Kutta method. We
find the Taylor expansion in this simple case up to terms in h3. As the standard
problem that we use for studying Runge–Kutta methods, we consider the
autonomous initial value system

y′(x) = f(y(x)), y(x0) = y0,

where f : RN → RN . The method has the tableau

0
c2 c2

c3 c3 − a32 a32

b1 b2 b3

.

156 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Denote by Y1, Y2 and Y3 the results computed at the stages and y1 for the
result computed at the end of the step.

We can in turn find truncated Taylor expansions for the stages and the
output result. We also use Theorem 306A to evaluate the Taylor expansions
of hFi = hf(Yi), for i = 1, 2, 3. Note that the stage values need only terms up
to h2, because the extra h in hFi takes away the need to find h3 terms except
for the hFi terms and the final result:

Y1 = y0,

hF1 = hf(y0),
Y2 = y0 + c2hf(y0),

hF2 = hf(y0) + c2h
2f ′(y0)f(y0) + 1

2c2
2h

3f ′′(y0)(f(y0), f(y0)) + O(h3),

Y3 = y0 + (c3 − a32)hf(y0) + a32

(
hf(y0) + c2h

2f ′(y0)f(y0)
)

+ O(h3)

= y0 + c3hf(y0) + a32c2h
2f ′(y0)f(y0) + O(h3),

hF3 = hf(y0) + c3h
2f ′(y0)f(y0) + a32c2h

3f ′(y0)f ′(y0)f(y0)

+ 1
2c2

3h
3f ′′(y0)(f(y0), f(y0)) + O(h4),

y1 = y0 + (b1 + b2 + b3)hf(y0) + (b2c2 + b3c3)h2f ′(y0)f(y0)

+ 1
2 (b2c

2
2 + b3c

2
3)h

3f ′′(y0)(f(y0), f(y0))

+ b3a32c2h
3f ′(y0)f ′(y0)f(y0) + O(h4).

We recognize elementary differentials, evaluated at y0, appearing in these
expansions and we rewrite y1 as

y1 = y0 + hΦ()F ()(y0) + h2Φ()F ()(y0)

+ 1
2h3Φ()F ()(y0) + h3Φ

()
F
()

(y0) + O(h4),

where the coefficients associated with the four trees of orders up to 3 are given
by

Φ() = b1 + b2 + b3,

Φ() = b2c2 + b3c3,

Φ() = b2c
2
2 + b3c

2
3,

Φ
()

= b3a32c2.

It is obvious that these expressions, which we have already introduced in
Section 234, are of vital importance in understanding the accuracy of Runge–
Kutta methods. We name them ‘elementary weights’ and define them formally,
along with similar expressions associated with the individual stages, in the
next definition. At the same time we define ‘derivative weights’ associated
with the stages.

RUNGE–KUTTA METHODS 157

Table 312(I) Relation between elementary weights and rooted trees

labelled tree t Elementary weight Φ(t)

i

s∑
i=1

bi

i

j
s∑

i,j=1

biaij =
s∑

i=1

bici

i

j k
s∑

i,j,k=1

biaijaik =
s∑

i=1

bic
2
i

i

j

k s∑
i,j,k=1

biaijajk =
s∑

i,j=1

biaijcj

Definition 312A Let
c A

b

denote the tableau for an s-stage Runge–Kutta method. Then the ‘elementary
weights’ Φ(t), the ‘internal weights’ Φi(t) and the ‘derivative weights’ (ΦiD)(t)
for t ∈ T and i = 1, 2, . . . , s are defined by

(ΦiD)(τ) = 1, (312a)

Φi(t) =
s∑

j=1

aij(ΦjD)(t), (312b)

(ΦiD)([t1t2 · · · tk]) =
k∏

j=1

Φi(tj), (312c)

Φ(t) =
s∑

i=1

bi(ΦiD)(t). (312d)

This definition is used recursively. First ΦiD is found for t = τ , using (312a),
then Φi is evaluated for this single vertex tree, using (312b). This enables
(ΦiD)([τ]), using (312c), and then Φi([τ]) to be found for each stage. The
order is built up in this way until (ΦiD)(t) is known for any required tree.
Finally, (312d) is used to evaluate Φ(t).

The notation ΦiD is part of a more general scheme, which we introduce in
Subsection 387. In the meantime, D should be thought of as an operator to
be applied to Φi, which replaces the sequence of Taylor coefficient weights in
a stage value by the set of coefficient weights for the stage derivatives.

158 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Table 312(II) Elementary weights for orders 1 to 5

r(t) t Φ(t)
1

∑s
i=1 bi

2
∑s

i=1 bici

3
∑s

i=1 bic
2
i

3
∑s

i,j=1 biaijcj

4
∑s

i=1 bic
3
i

4
∑s

i,j=1 biciaijcj

4
∑s

i,j=1 biaijc
2
j

4
∑s

i,j,k=1 biaijajkck

5
∑s

i=1 bic
4
i

5
∑s

i,j=1 bic
2
i aijcj

5
∑s

i,j=1 biciaijc
2
j

5
∑s

i,j,k=1 biciaijajkck

5
∑s

i=1 bi

(∑s
j=1 aijcj

)2
5

∑s
i,j=1 biaijc

3
j

5
∑s

i,j,k=1 biaijcjajkck

5
∑s

i,j,k=1 biaijajkc2
k

5
∑s

i,j,k,l=1 biaijajkaklcl

An alternative formula for Φ(t), which uses the vertex and edge
characterization of each tree t, is given in the following lemma, which we
state without proof.

Lemma 312B Denote the vertex set V of the tree t by the set of index
symbols V = {j, k, l, . . . }, where j is the root of t. Let the corresponding edge
set be E. Form the expression

bj

∏
(k,l)∈E

akl (312e)

and sum this over each member of V ranging over the index set {1, 2, . . . , s}.

RUNGE–KUTTA METHODS 159

The resulting sum is the value of Φ(t). A similar formula for Φi(t), where i
is not a member of V , is found by replacing (312e) by

aij

∏
(k,l)∈E

akl (312f)

and summing this as for Φ(t).

Note that, although c does explicitly appear in Definition 312A or Lemma
312B, it is usually convenient to carry out the summations

∑s
l=1 akl to yield

a result ck if l denotes a leaf (terminal vertex) of V . This is possible because
l occurs only once in (312e) and (312f).

We illustrate the relationship between the trees and the corresponding
elementary weights in Table 312(I). For each of the four trees, we write Φ(t)
in the form given directly by Lemma 312B, and also with the summation
over leaves explicitly carried out. Finally, we present in Table 312(II) the
elementary weights up to order 5.

313 The Taylor expansion of the approximate solution

We show that the result output by a Runge–Kutta methods is exactly the
same as (311d), except that the factor γ(t)−1 is replaced by Φ(t). We first
establish a preliminary result.

Lemma 313A Let k = 1, 2, . . . ,. If

Yi = y0 +
∑

r(t)≤k−1

1
σ(t)

Φi(t)hr(t)F (t)(y0) + O(hk), (313a)

then

hf(Yi) =
∑

r(t)≤k

1
σ(t)

(ΦiD)(t)hr(t)F (t)(y0) + O(hk+1). (313b)

Proof. Use Lemma 310B. The coefficient of σ(t)−1F (t)(y0)hr(t) in hf(Yi) is∏n
j=1 Φi(tj), where t = [t1t2 · · · tk]. �

We are now in a position to derive the formal Taylor expansion for the
computed solution. The proof we give for this result is for a general Runge–
Kutta method that may be implicit. In the case of an explicit method, the
iterations used in the proof can be replaced by a sequence of expansions for
Y1, for hf(Y1), for Y2, for hf(Y2), and so on until we reach Ys, hf(Ys) and
finally y1.

160 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Theorem 313B The Taylor expansions for the stages, stage derivatives and
output result for a Runge–Kutta method are

Yi = y0+
∑

r(t)≤n

1
σ(t)

Φi(t)hr(t)F (t)(y0)+O(hn+1), i = 1, 2, . . . , s, (313c)

hf(Yi) =
∑

r(t)≤n

1
σ(t)

(ΦiD)(t)hr(t)F (t)(y0) + O(hn+1), i = 1, 2, . . . , s, (313d)

y1 = y0 +
∑

r(t)≤n

1
σ(t)

Φ(t)hr(t)F (t)(y0) + O(hn+1). (313e)

Proof. In a preliminary part of the proof, we consider the sequence of
approximations to Yi given by

Y
[0]
i = y0, i = 1, 2, . . . , s, (313f)

Y
[k]
i = y0 + h

s∑
j=1

aijf
(
Y

[k−1]
j

)
, i = 1, 2, . . . , s. (313g)

We prove by induction that Y
[n]
i agrees with the expression given for Yi to

within O(hn+1). For n = 0 this is clear. For n > 0, suppose it has been proved
for n replaced by n − 1. From Lemma 313A with k = n − 1 and Yi replaced
by Y

[n−1]
i , we see that

hf(Y [n−1]
i) =

∑
r(t)≤n

1
σ(t)

(ΦiD)(t)hr(t)F (t)(y0) + O(hn+1), i = 1, 2, . . . , s.

Calculate Y
[n]
i using (313c) and the preliminary result follows. Assume

that h is sufficiently small to guarantee convergence of the sequence
(Y [0]

i , Y
[1]
i , Y

[2]
i , . . .) to Yi and (313c) follows. Finally, (313d) follows from

Lemma 313A and (313e) from (312d). �

314 Independence of the elementary differentials

Our aim of comparing the Taylor expansions of the exact and computed
solutions to an initial value problem will give an inconclusive answer unless
the terms involving the various elementary differentials can be regarded as
independent. We introduce a special type of differential equation for which
any finite number of elementary differentials evaluate to independent vectors.

Let U denote any finite subset of T , such that if

ti = [tm1
1 , tm2

2 , . . . , tmk

k] ∈ U, (314a)

RUNGE–KUTTA METHODS 161

Table 314(I) Trees to order 4 with corresponding differential equations

i ti y′
i = fi

1 [] y′
1 = 1,

2 [t1] y′
2 = y1,

3 [t21] y′
3 = 1

2y2
1 ,

4 [t2] y′
4 = y2,

5 [t31] y′
5 = 1

6y3
1 ,

6 [t1t2] y′
6 = y1y2,

7 [t3] y′
7 = y3,

8 [t4] y′
8 = y4.

then each of t1, t2, . . . , tk is also a member of U . For example, U might consist
of all trees with orders up to some specified integer. Assume that when we
write a tree in this way, the ti, i = 1, 2, . . . , k, are all distinct. Suppose that N
is the number of members of U , and consider the m-dimensional differential
equation system in which

y′
i =

k∏
j=1

y
mj

j

mj !
, (314b)

corresponding to tree number i defined in (314a). The initial values are
supposed to be yi(0) = yi(x0) = 0, for i = 1, 2, . . . , N . The interesting
property of this initial value problem is encapsulated in the following result:

Theorem 314A The values of the elementary differentials for the differential
equation (314b), evaluated at the initial value, are given by

F (ti)(y(x0)) = ei, i = 1, 2, . . . , N.

Because the natural basis vectors e1, e2, . . . , eN are independent, there
cannot be any linear relation between the elementary differentials for an
arbitrary differential equation system.

We illustrate this theorem in the case where U consists of the eight trees
with up to four vertices. Table 314(I) shows the trees numbered from i = 1
to i = 8, together with their recursive definitions in the form (314a) and the
corresponding differential equations. Note that the construction given here is
given as an exercise in Hairer, Nørsett and Wanner (1993) .

162 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

315 Conditions for order

Now that we have expressions for the Taylor expansions of the exact solution,
and also of the computed solution, we have all we need to find conditions
for order. If the exact solution has Taylor series given by (311d) and the
approximate solution has Taylor series given by (313e), then we need only
compare these term by term to arrive at the principal result on the order of
Runge–Kutta methods.

Theorem 315A A Runge–Kutta method with elementary weights

Φ : T → R,

has order p if and only if

Φ(t) =
1

γ(t)
, for all t ∈ T such that r(t) ≤ p. (315a)

Proof. The coefficient of F (t)(y0)hr(t) in (313e) is 1
σ(t)Φ(t), compared with

the coefficient in (311d), which is 1
σ(t)γ(t) . Equate these coefficients and we

obtain (315a). �

316 Order conditions for scalar problems

Early studies of Runge–Kutta methods were built around the single scalar
equation

y′(x) = f(x, y(x)). (316a)

Even though it was always intended that methods derived for (316a) should
be interpreted, where appropriate, in a vector setting, a subtle difficulty arises
for orders greater than 4.

We adopt the notation fx, fy for partial derivatives of f with respect to
the first and second arguments, with similar notations for higher derivatives.
Also, for simplicity, we omit the arguments in expressions like fx(x, y). By
straightforward differentiation of (316a), we have

y′′ = fx + fyy′ = fx + fyf,

where the two terms together correspond to the elementary differential
associated with t = . Similarly, for the third derivative we have

y′′′ =
(
fxx + 2fxyf + fyyf2

)
+
(
fy(fx + fyf)

)
,

where the grouped terms correspond to t = and t = , respectively.

RUNGE–KUTTA METHODS 163

The expressions that arise here, and for the fourth derivative, are more
complicated, because of the presence of derivatives with respect to x. However,
the terms can be grouped together according to the elementary differentials
to which they correspond. Furthermore, the order conditions are identical to
those found in the general vector case. When similar expressions are worked
out for the 17 elementary differentials of order 5, we find a confusion between

the results for two particular trees. In fact for each of t1 = and t2 = , F (t)
reduces to

F (t) = fy(fyyf + fxy)(fyf + fx),

and instead of two order conditions

Φ(t1) =
∑

biciaijajkck =
1

γ(t1)
=

1
30

and
Φ(t2) =

∑
biaijcjajkck =

1
γ(t2)

=
1
40

, (316b)

we have the single condition∑
biciaijajkck +

∑
biaijcjajkck =

7
120

.

We discuss in Subsection 325 the construction of fifth order methods.
These usually satisfy the so-called D(1) condition, which we introduce in
Subsection 321. This simplifying assumption has, as one of its consequences,
the dependence of (316b) on other conditions, for which there is no confusion.
Hence, for methods satisfying D(1), scalar and vector order 5 conditions are
equivalent.

For orders 6 and higher, the confusion between the order conditions for the
scalar case becomes more pronounced. The first published methods of this
order(Huťa, 1956, 1957) were derived for scalar problems but, nevertheless,
have order 6 for the general vector case (Butcher, 1963a).

317 Independence of elementary weights

We show in Subsection 324 that, given a positive integer p, there exists an
integer s such that there is a Runge–Kutta method with s stages with order p.
We now present a more general result on the independence of the elementary
weights but without a specific value of s given.

Theorem 317A Given a finite subset T0, of T and a mapping φ : T0 → R,
there exists a Runge–Kutta method such that the elementary weights satisfy

Φ(t) = φ(t), for all t ∈ T0.

164 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Proof. Let #T0 = n. The set of possible values that can be taken by the
vector of Φ(t) values, for all t ∈ T0, is a vector space. To see why this is the
case, consider Runge–Kutta methods given by the tableaux

c A

b
and

c A

b
(317a)

with s and s stages, respectively. If the elementary weight functions for these
two Runge–Kutta methods are Φ and Φ, then the method given by the tableau

c A 0
c 0 A

θb θb

has elementary weight function θΦ+θΦ. Let V ⊂ Rn denote this vector space.
We complete the proof by showing that V = Rn. If this were not the case, there
would exist a non-zero function ψ : T0 → R such that

∑
t∈T0

ψ(t)Φ(t) = 0,
for all Runge–Kutta methods. Because every coefficient in a Runge–Kutta
tableau can be multiplied by an arbitrary scalar θ to give a new method for
which Φ(t) is replaced by θr(t)Φ(t), we may assume that every non-zero value
of ψ corresponds to trees with the same order k. This is impossible for k = 1,
because in this case there is only a single tree τ . Suppose the impossibility
of this has been proved for all orders less than k, but that there exist trees
t1, t2, . . . , tm, each of order k, such that

∑m
i=1 ψ(ti)Φ(ti) = 0, for all Runge–

Kutta methods with ψ(ti) �= 0, for i = 1, 2, . . . , m. Write ti = [tli1i1 tli2i2 · · ·],
for i = 1, 2, . . . , m. Let t̂ denote a tree appearing amongst the tij which does
not occur with the same exponent in each of the ti. Construct an s-stage
Runge–Kutta method

c A

b

for which each of Φ(tij) = 1, except for Φ(t̂) = θ. Define second Runge–Kutta
tableau with s + 1 stages of the form

c A 0
1 b 0

0 1
.

If qi is the exponent of t̂ in ti, then it follows that
m∑

i=1

ψ(ti)θqi = 0.

Since θ can take any value and since qi is not constant, it is not possible that
ψ is never zero. �

RUNGE–KUTTA METHODS 165

318 Local truncation error

The conditions for order give guarantees that the Taylor expansions of
the exact and computed solutions agree up to terms in hp. Obtaining an
understanding of the respective terms in hp+1 is regarded as a key to deriving
methods that not only have a specific order, but also have a small truncation
error. Because the number of terms of this order rises rapidly as p increases,
it is extremely difficult to know how this sort of optimality should be arrived
at. Picking out just the terms of order p+1, we can write the local truncation
error in a single step as

hp+1
∑

r(t)=p+1

1
σ(t)

(
1

γ(t)
− Φ(t)

)
F (t)(y0) + O(hp+2). (318a)

Since we are interested in asymptotic behaviour, that is, limiting behaviour for
h small, we do not devote much attention to the term O(hp+2). The coefficient
of hp+1 in (318a) is bounded in magnitude by∑

r(t)=p+1

1
σ(t)

∣∣∣∣Φ(t) − 1
γ(t)

∣∣∣∣ · ‖F (t)(y0)‖, (318b)

and this should somehow be made small. There is simply no general rule
interrelating the magnitudes of the various elementary differentials, and some
assumptions need to be made.

The first approach that can be considered is to compare, term by term, the
expression for 1

(p+1)!y
(p+1)(x0), which is proportional to the local truncation

error coefficient for linear multistep methods or for implicit Runge–Kutta
methods of collocation type. The coefficient in this expression, corresponding
to t, is

1
σ(t)γ(t)

,

so that the corresponding multiplier to yield the corresponding term in (318b)
is

|γ(t)Φ(t) − 1|.
Hence, we can bound (318b) by

max
r(t)=p+1

|γ(t)Φ(t) − 1|
∑

r(t)=p+1

1
σ(t)γ(t)

· ‖F (t)(y0)‖

and hence, it might be desirable to minimize

max
r(t)=p+1

|γ(t)Φ(t) − 1|

in seeking an efficient method.

166 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Another approach would be to assume a bound M on ‖f‖, a bound L on
the linear operator ‖f ′‖, and further bounds to make up the sequence

‖f‖ ≤ M,

‖f ′‖ ≤ L,

‖f ′′‖ ≤ L2

M
,

‖f ′′′‖ ≤ L3

M2
,

...
...

‖f (p)‖ ≤ Lp

Mp−1
.

This will mean that for any tree of order p + 1, ‖F (t)(y0)‖ ≤ LpM and that∑
r(t)=p+1

1
σ(t)

∣∣∣∣Φ(t) − 1
γ(t)

∣∣∣∣ · ‖F (t)(y0)‖ ≤
∑

r(t)=p+1

1
σ(t)

∣∣∣∣Φ(t) − 1
γ(t)

∣∣∣∣ · LpM.

In studying the behaviour of a particular method of order p when used
to solve a particular initial value problem, we wish to assume that the local
truncation error is bounded asymptotically by some constant multiplied by
hp+1. This assumption will hinge on smoothness of the solution and the
differentiability, sufficiently many times, of f .

319 Global truncation error

We consider the cumulative effect of errors in many steps leading to an error in
a final output point. Suppose that n steps are performed to carry the solution
from an initial point x0 to a final point x. If a constant stepsize is used, this
would need to be equal to (x− x0)/n to exactly reach the final point. Denote
the approximations computed by a Runge–Kutta method by y1, y2, . . . , yn,
with y0 = y(x0). If the error committed in each of the n steps is bounded by
Chp+1 then the total contribution to the error would seem to be

nChp+1 = C(x − x0)hp.

We attempt to make this argument more precise by noting that an error
in the initial value input to a step will lead to an error in the output value
consisting of two terms. The first of these is the perturbation to the output
due to the error in the input, and the second is the truncation error due to
the method itself.

In the statement of a preliminary lemma that we need, |A| and |b | will
denote the matrix A and the vector b , respectively, with every term replaced
by its magnitude.

RUNGE–KUTTA METHODS 167

δ1 δ2 δ3

δn−2
δn−1

δn

∆1

∆2

∆3

∆n−2

∆n−1

x0 x1 x2 x3 xn−2 xn−1 xn

y0 y1 y2 y3

yn−2
yn−1

yn

y(x0)
y(x1)

y(x2)

y(x3)

y(xn−2)
y(xn−1)

y(xn)

Figure 319(i) Growth of global errors from local errors referred to the

computed solution

Lemma 319A Let f denote a function Rm → Rm, assumed to satisfy a
Lipschitz condition with constant L. Let y0 ∈ Rm and z0 ∈ Rm be two input
values to a step with the Runge–Kutta method (A, b , c), using stepsize h ≤ h0,
where h0Lρ(|A|) < 1, and let y1 and z1 be the corresponding output values.
Then

‖y1 − z1‖ ≤ (1 + hL�)‖y0 − z0‖,
where

L� = L|b |(I − h0L|A|)−11.

Proof. Denote the stage values by Yi and Zi, i = 1, 2, . . . , s, respectively.
From the equation Yi−Zi = (y0−z0)+h

∑s
j=1 aij(f(Yj)−f(Zj)), we deduce

that

‖Yi − Zi‖ ≤ ‖y0 − z0‖ + h0L

s∑
j=1

|aij |‖Yj − Zj‖,

so that, substituting into

‖y1 − z1‖ ≤ ‖y0 − z0‖ + hL
s∑

j=1

|bj |‖Yj − Zj‖,

we obtain the result. �

168 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

δ1

δ2

δ3

δn−2

δn−1
δn

∆1

∆2

∆3

∆n−2

∆n−1

x0 x1 x2 x3 xn−2 xn−1 xn

y0 y1 y2 y3

yn−2
yn−1

yn

y(x0)
y(x1)

y(x2)

y(x3)

y(xn−2)
y(xn−1)

y(xn)

Figure 319(ii) Growth of global errors from local errors referred to the exact

solution

To see how to use this result, consider Figures 319(i) and 319(ii). Each of
these shows the development of global errors generated by local truncation
errors in individual steps. In Figure 319(i), the local truncation errors are
referred to the computed solution. That is, in this figure, δk is the difference
between the exact solution defined by an initial value at the start of step k
and the numerical solution computed in this step. Furthermore, ∆k is the
contribution to the global error resulting from the error δk in step k. An
alternative view of the growth of errors is seen from Figure 319(ii), where
δk is now the difference between the exact solution at xk and the computed
solution found by using an input value yk−1 at the start of this step exactly
equal to y(xk−1). As in the previous figure, ∆k is the contribution to the
global error resulting from the local error δk. To obtain a bound on the global
truncation error we first need an estimate on δ1, δ2, . . . , δn using these bounds.
We then estimate by how much δk can grow to ∆k, k = 1, 2, . . . , n. The global
error is then bounded in norm by

∑n
k=1 ∆k. We have a bound already from

(110c) on how much a perturbation in the exact solution can grow. If we were
basing our global error bound on Figure 319(i) then this would be exactly
what we need. However, we use Figure 319(ii), and in this case we obtain the
same growth factor but with L replaced by L�. The advantage of using an
argument based on this figure, rather than on Figure 319(i), is that we can
then use local truncation error defined in the standard way, by comparing the
exact solution at step value xn with the numerically computed result over a
single step with initial value y(xn−1).

RUNGE–KUTTA METHODS 169

Theorem 319B Let h0 and L� be such that the local truncation error at step
k = 1, 2, . . . , n is bounded by

δk ≤ Chp+1, h ≤ h0.

Then the global truncation error is bounded by

‖y(xn) − yn‖ ≤
{

exp(L�(x−x0))−1
L� Chp, L� > 0,

(x − x0)Chp, L� = 0.

Proof. Use Figure 319(ii) and obtain the estimate

‖y(xn) − yn‖ ≤ Chp+1
n∑

k=1

(1 + hL�)k.

The case L� = 0 is obvious. For the case L� > 0, calculate the sum and use
the bound

(1 + hL�)n ≤ exp(L�hn) = exp(L�(x − x0)). �

Exercises 31

31.1 Define f : R3 → R3 by

f(y1, y2, y3) =

 y1 + y2y3

(y1)2 + 2y1y2

1 + (y2 + y3)2

 .

Find formulae for the elementary differentials F (t), for t = [τ], [τ2] and
[τ [τ]].

31.2 For the Runge–Kutta method

1
3

5
12 − 1

12

1 3
4

1
4

3
4

1
4

find the elementary weights for the eight trees up to order 4. What is
the order of this method?

31.3 For an arbitrary Runge–Kutta method, find the order condition
corresponding to the tree

.

170 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

32 Low Order Explicit Methods

320 Methods of orders less than 4

It will be shown in Subsection 324 that, for an explicit method to have order
p, at least s = p stages are necessary. We derive methods up to p = 3, with
exactly p stages, and then discuss briefly the advantages of using s = p + 1.

For s = p = 1 there is no choice beyond the Euler method with tableau

0
1

For s = p = 2, we have a one-parameter family of methods of the form

0
c2 c2

1 − 1
2c2

1
2c2

which satisfies the conditions b1 + b2 = 1 and b2c2 = 1
2 , corresponding to the

trees and .
For s = p = 3, we must satisfy four conditions, which are shown together

with the corresponding trees as follows:

b1 + b2 + b3 = 1, (320a)

b2c2 + b3c3 =
1
2
, (320b)

b2c
2
2 + b3c

2
3 =

1
3
, (320c)

b3a32c2 =
1
6
. (320d)

To solve these equations in the most straightforward manner, it is convenient
to treat c2 and c3 as free parameters and to carry out three steps. First, solve
for b2 and b3 from the linear system given by (320b) and (320c). Secondly,
evaluate b1 from (320a). Finally, solve for a32 from (320d). This plan will run
into difficulties if the matrix of coefficients in (320b) and (320c) is singular;
that is, if c2c3(c3 − c2) = 0. Assuming this does not occur, we have a further
difficulty if the solution to (320b) and (320c) results in b3 = 0. This anomaly,
which occurs if c2 = 2

3 , makes it impossible to solve (320d). A more careful
analysis is necessary to resolve these difficulties, and it is possible to identify
three cases where a solution can be found. These are

I c2 �= 0 �= c3 �= c2 �= 2
3 ,

II c2 = c3 = 2
3 , b3 �= 0,

III c2 = 2
3 , c3 = 0, b3 �= 0.

RUNGE–KUTTA METHODS 171

The coefficient tableaux for the three cases are summarized as follows, with
the general form of the tableau given in each case: for case I we have

0
c2 c2

c3
c3(3c2 − 3c2

2 − c3)
c2(2 − 3c2)

c3(c3 − c2)
c2(2 − 3c2)

−3c3 + 6c2c3 + 2 − 3c2

6c2c3

3c3 − 2
6c2(c3 − c2)

2 − 3c2

6c3(c3 − c2)

;

for case II,

0
2
3

2
3

2
3

2
3
− 1

4b3

1
4b3

1
4

3
4 − b3 b3

;

and for case III,

0
2
3

2
3

0 − 1
4b3

1
4b3

1
4 − b3

3
4 b3

.

321 Simplifying assumptions

As the order being sought increases, the number of conditions rises rapidly
and soon becomes unmanageable. For this reason, it is necessary to examine
the relationships between the conditions corresponding to various trees. At
the same time, we identify certain collections of order conditions which have
some sort of central role. Since these special conditions will be of varying
complexity, depending on the orders to which we apply them, they will be
parameterized by one or more positive integers. For example, E(η, ζ) is a set
of assumptions about a method that hold for all positive integers k ≤ η and
l ≤ ζ.

The first of these conditions will be denoted by B(η), and simply states
that the conditions

∑s
i=1 bic

k−1
i = k−1 hold for k = 1, 2, . . . , η. For a method

to be of order p, it is necessary that B(p) holds, because this condition simply
restates the order condition for the trees

. . . .

172 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Table 321(I) Order conditions corresponding to some pairs of related trees

t1 Φ(t1) =
1

γ(t1)
t2

1
2Φ(t2) =

1
2γ(t2)∑

biaijcj = 1
6

1
2

∑
bic

2
i = 1

6∑
biciaijcj = 1

8
1
2

∑
bic

3
i = 1

8∑
bkakiaijcj = 1

24
1
2

∑
bkakic

2
i = 1

24

To motivate condition C(η), consider pairs of trees t1 and t2, with the same
order, that differ in only one small respect. Suppose they are labelled with
identical vertex sets and that the edge sets, say E1 and E2, respectively, differ
only in that E1 contains the edges [i, j] and [j, k], and that j and k do not
occur in any of the other ordered pairs in E1, whereas E2 contains the edge
[i, k] instead of [j, k]. This will mean that the elementary weight corresponding
to t1 will have a factor aijcj , whereas t2 will have a corresponding factor c2

i .
Furthermore, the densities are also closely related in that γ(t1) = 2γ(t2).
Hence, the equations

Φ(t1) =
1

γ(t1)
and Φ(t2) =

1
γ(t2)

will be equivalent if

s∑
j=1

aijcj =
1
2
c2
i , for all i = 1, 2, . . . , s. (321a)

We illustrate this by looking at some pairs of trees and noting the form of
the equations

Φ(t1) =
1

γ(t1)
and

1
2
Φ(t2) =

1
2γ(t2)

.

These are displayed in Table 321(I).
It is clear that, if it were possible for (321a) to hold for all i ∈ {1, 2, . . . , s},

then we could simply remove the order equations associated with the t1
trees from consideration, because they will automatically be satisfied if the
conditions Φ(t) = 1/γ(t) are satisfied for the t2 trees. However, it is not
possible in the case i = 2 because this gives the equation 1

2c2
2 = 0 which

implies c2 = 0. It will then follow in turn that c3 = 0, c4 = 0, . . . and all c
components equal to zero will not be consistent even with the order condition∑

bici = 1
2 . While we cannot make use of the simplification of assuming

RUNGE–KUTTA METHODS 173

i

j

i

Figure 321(i) The C(k) condition relating
∑

j aijc
k−1
j (left-hand tree) to ck

i

(right-hand tree). The underlying tree is a pohutukawa (Metrosideros excelsa), also

known as the ‘New Zealand Christmas tree’ because its bright red flowers bloom at

Christmas-time.

(321a) in the case of explicit methods, we make extensive use of this and
closely related conditions in the case of implicit methods. Furthermore, we
can still use this sort of simplification applied to just some of the stages.

In addition to (321a), we can consider the possibility that conditions like

s∑
j=1

aijc
k−1
j =

1
k

ck
i , i = 1, 2, . . . , s, (321b)

hold for k = 1, 2, Assuming that these hold for 1 ≤ k ≤ ξ, we denote this
collection of conditions by C(ξ). The consequences of C(ξ) are that, for any
pair of trees t1 and t2 for which Φ(t1) contains a factor aijc

k−1
j , Φ(t2) contains

a factor 1
k ck

i and the remaining factors are identical in the two expressions,
then Φ(t2) = 1/γ(t2) implies Φ(t1) = 1/γ(t1). We illustrate this in Figure
321(i).

The D(k) conditions interrelate three trees t1, t2 and t3 for which the
corresponding elementary weights differ only in that Φ(t1) has a factor
bic

k−1
i aij , Φ(t2) has a factor bj and Φ(t3) has a factor bjc

k
j . This means that

these trees have forms like those shown in Figure 321(ii).
We illustrate this further, for the case k = 1, in Table 321(II). Note that if

D(1) holds, then the truth of Φ(t1) = 1/γ(t1) follows from Φ(t2) = 1/γ(t2)
and Φ(t3) = 1/γ(t3). For explicit methods, D(2) cannot hold, for similar
reasons to the impossibility of C(2). For implicit methods D(s) is possible, as
we shall see in Section 342.

174 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

i

j
j j

Figure 321(ii) The D(k) condition relating
∑

i bic
k−1
i aij (left-hand tree) to bj

(middle tree) and bjc
k
j (right-hand tree). The underlying tree is a kauri (Agathis

australis). Although the immature tree shown is only a few metres tall, the most

famous kauri tree, Tane Mahuta (Lord of the Forest), has a height of 40 m and a

diameter, 1.5 m above ground level, of 5.21 m.

Table 321(II) Sets of three related trees illustrating D(1)

t1 Φ(t1) =
1

γ(t1)
t2 Φ(t2) =

1
γ(t2)

t3 Φ(t3) =
1

γ(t3)∑
biaijcj = 1

6

∑
bjcj = 1

2

∑
bjc

2
j = 1

3∑
biaijc

2
j = 1

12

∑
bjc

2
j = 1

3

∑
bjc

3
j = 1

4∑
biaijajkck = 1

24

∑
bjajkck = 1

6

∑
bjcjajkck = 1

8

Finally, the condition E(η, ζ) states that

∑
bic

k−1
i aijc

l−1
j =

1
l(k + l)

, k = 1, 2, . . . , η, l = 1, 2, . . . , ζ. (321c)

This simply expresses the fact that the order condition Φ(t) = 1/γ(t) is
satisfied for trees t = [τk−1[τ l−1]] for k ≤ η and l ≤ ζ. This is a necessary
condition for orders at least η + ζ.

RUNGE–KUTTA METHODS 175

322 Methods of order 4

It is an interesting consequence of the fourth order conditions for a method
with s = 4 stages, that c4 = 1 and that D(1) holds. This fact reduces
significantly the number of conditions that remain to be solved; furthermore,
it is possible to segment the derivation into two phases: the solution of the
remaining order conditions and the evaluation of the elements in the final row
of A to ensure that D(1) is actually satisfied. Assuming that the method

0
c2 a21

c3 a31 a32

c4 a41 a42 a43

b1 b2 b3 b4

satisfies the fourth order conditions, then we can compute the values of

b3(c3 − c4)(c3 − c2)c3=
∑

bi(ci − c4)(ci − c2)ci =1
4 − c2+c4

3 + c2c4
2 , (322a)

b4a43(c3 − c2)c3=
∑

biaij(cj − c2)cj = 1
12 − c2

6 , (322b)

b3(c3 − c4)a32c2=
∑

bi(ci − c4)aijcj =1
8 − c4

6 , (322c)

b4a43a32c2=
∑

biaijajkck = 1
24 . (322d)

In each of these calculations, the first column is the only non-zero term
in the middle column, while the final column is found by expanding the
middle column into a linear combination of elementary weights and equating
each of these to the right-hand sides of the corresponding order conditions.
For example, (322a) is evaluated from the trees , and and uses the
combination of order conditions

Φ() − (c2 + c4)Φ() + c2c4Φ() =
1

γ()
− c2 + c4

γ()
+

c2c4

γ()
.

From the first columns of (322a)–(322d), we observe that (322a)×(322d) =
(322b)×(322c) so that, from the last columns, we find(

1
4
− c2 + c4

3
+

c2c4

2

)(
1
24

)
−
(

1
12

− c2

6

)(
1
8
− c4

6

)
= 0.

This relation simplifies to c2(c4−1) = 0 which, because c2 = 0 is incompatible
with (322d), implies c4 = 1.

An alternative proof of this result, is found by using the following:

176 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Lemma 322A If P and Q are each 3 × 3 matrices such that their product
has the form

PQ =

 r11 r12 0
r21 r22 0
0 0 0

 ,

where

det

([
r11 r12

r21 r22

])
�= 0,

then either the last row of P is zero or the last column of Q is zero.

Proof. Because PQ is singular, either P is singular or Q is singular. In the
first case, let u �= 0 be such that u P = 0, and therefore u PQ = 0; in
the second case, let v �= 0 be such that Qv = 0, and therefore PQv = 0.
Because of the form of PQ, this implies that the first two components of u
(or, respectively, the first two components of v) are zero. �

To obtain the result that D(1) necessarily holds if s = p = 4, we apply
Lemma 322A with

P =

b2 b3 b4

b2c2 b3c3 b4c4
4∑

i=1

biai2 − b2(1−c2)
4∑

i=1

biai3 − b3(1−c3)
4∑

i=1

biai4 − b4(1−c4)

and

Q =

 c2 c2
2

∑4
j=1 a2jcj − 1

2c2
2

c3 c2
3

∑4
j=1 a3jcj − 1

2c2
3

c4 c2
4

∑4
j=1 a4jcj − 1

2c2
4

 .

The value of the matrix PQ can be calculated from the order conditions. For
example, the (2, 2) element is equal to

[
b2c2 b3c3 b4c4

][
c2
2 c2

3 c2
4

]
=

4∑
i=1

bic
3
i =

1
4
.

The elements in the last row and last column are a little more complicated to
evaluate because they depend on linear combinations of elementary weights,
but the relation of these elements in the product to the C(2) and D(1)
conditions simplifies each of these elements to a zero value. In summary, the
product of P and Q is

PQ =

1
2

1
3 0

1
3

1
4 0

0 0 0

 ,

RUNGE–KUTTA METHODS 177

so that the conditions of Lemma 322A are satisfied. The conclusion is that the
last row of P or the last column of Q is zero. In particular, this means that
either

∑4
i=1 biai4 − b4(1− c4) = 0 or

∑4
j=1 a2jcj − 1

2c2
2 = 0. These simplify to

b4(1− c4) = 0 or to 1
2c2

2 = 0, respectively. It is impossible that c2 = 0 or that
b4 = 1, and hence c4 = 1 and the D(1) condition holds.

Since D(1) holds, the set of additional equations we need to satisfy reduce
to those associated with the trees , , and as well as with the tree . The
order condition associated with the last of these is

∑
biciaijcj = 1

8 . It turns
out to be more convenient to use, instead of this condition, the difference
between this and with the condition associated with , that is,

∑
biaijcj = 1

6 ,
which is a consequence of other assumptions and of the D(1) condition. Hence
we assume

∑
bi(1 − ci)aijcj = 1

24 .
The steps we need to carry out to derive one of these methods are as

follows:

(a) Choose c2 and c3, noting that c1 = 0 and c4 = 1.
(b) Choose b1, b2, b3, b4 to satisfy

∑
bic

k−1
i = 1/k for k = 1, 2, 3, 4.

(c) Choose a32 so that b3(1 − c3)a32c2 = 1
24 .

(d) Choose a41, a42, a43, so that
∑

i biaij = bj(1 − cj) for j = 1, 2, 3.

Carrying out this programme might present some difficulties. For example,
if in step (a) the ci are not distinct, then there might not exist a solution in
step (b). It might also happen that the value of b4, found in step (b), is zero,
and this will make it impossible to carry out either step (c) or step (d). Even
if a solution exists for the sub-problem that arises in each step, the solution
might not be unique, and there could turn out to be a family of solutions.
The general solution, which is valid except in these exceptional cases, is given
by the following coefficients:

a21 = c2,

a31 =
c3(c3 + 4c2

2 − 3c2)
2c2(2c2 − 1)

,

a32 = − c3(c3 − c2)
2c2(2c2 − 1)

,

a41 =
−12c3c

2
2 + 12c2

3c
2
2 + 4c2

2 − 6c2 + 15c2c3 − 12c2
3c2 + 2 + 4c2

3 − 5c3

2c2c3(−4c3 + 6c3c2 + 3 − 4c2)
,

a42 =
(c2 − 1)(4c2

3 − 5c3 + 2 − c2)
2c2(c3 − c2)(−4c3 + 6c3c2 + 3 − 4c2)

,

a43 = − (2c2 − 1)(c2 − 1)(c3 − 1)
c3(c3 − c2)(−4c3 + 6c3c2 + 3 − 4c2)

,

178 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

b1 =
6c3c2 − 2c3 − 2c2 + 1

12c3c2
,

b2 = − (2c3 − 1)
12c2(c2 − 1)(c3 − c2)

,

b3 =
(2c2 − 1)

12c3(c2 − c3c2 + c2
3 − c3)

,

b4 =
−4c3 + 6c3c2 + 3 − 4c2

12(c3 − 1)(c2 − 1)
.

Kutta identified five special cases where a solution is certain to exist:

I c2 �∈ {0, 1
2 , 1

2 ±
√

3
6 , 1}, c3 = 1 − c2,

II b2 = 0, c2 �= 0, c3 = 1
2 ,

III b3 �= 0, c2 = 1
2 , c3 = 0,

IV b4 �= 0, c2 = 1, c3 = 1
2 ,

V b3 �= 0, c2 = c3 = 1
2 .

The coefficient tableaux are for case I,

0
1−c3 1 − c3

c3
c3(1−2c3)
2(1−c3)

c3
2(1−c3)

1 12c3
3−24c2

3+17c3−4

2(1−c3)(6c3−1−6c2
3)

c3(1−2c3)
2(1−c3)(6c3−1−6c2

3)
1−c3

6c3−1−6c2
3

6c3−1−6c2
3

12c3(1−c3)
1

12c3(1−c3)
1

12c3(1−c3)
6c3−1−6c2

3
12c3(1−c3)

;

(322e)

for case II,

0
c2 c2

1
2

1
2 − 1

8c2

1
8c2

1 1
2c2

− 1 − 1
2c2

2
1
6 0 2

3
1
6

;

(322f)

for case III,

0
1
2

1
2

0 − 1
12b3

1
12b3

1 −1
2 − 6b3

3
2 6b3

1
6 − b3

2
3 b3

1
6

;

(322g)

RUNGE–KUTTA METHODS 179

for case IV,
0
1 1
1
2

3
8

1
8

1 1 − 1
4b4

− 1
12b4

1
3b4

1
6

1
6 − b4

2
3 b4

;

(322h)

and for case V,
0
1
2

1
2

1
2

1
2 − 1

6b3
1

6b3

1 0 1 − 3b3 3b3

1
6

2
3 − b3 b3

1
6

.

(322i)

Some interesting special choices within these cases are c3 = 2
3 in case I,

0
1
3

1
3

2
3 −1

3 1
1 1 −1 1

1
8

3
8

3
8

1
8

,

and c2 = 1
4 in case II,

0
1
4

1
4

1
2 0 1

2

1 1 −2 2
1
6 0 2

3
1
6

.

A further, and somewhat eccentric, special choice in case II, is c2 = −1
2 :

0
−1

2 −1
2

1
2

3
4 −1

4

1 −2 1 2
1
6 0 2

3
1
6

.

The interest in this method, as for a similar method with c2 = −1, is that it is
possible to eliminate one stage of computation, by replacing F2 by a quantity
found in the previous step. The method contrived in this way is no longer
a Runge–Kutta method, and has poorer stability, but it is more efficient in
terms of order achieved per stages computed.

180 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

We also present the choices b3 = 1
12 in case III,

0
1
2

1
2

0 −1 1
1 −1 3

2
1
2

1
12

2
3

1
12

1
6

,

and b4 = 1
6 in case IV,

0
1 1
1
2

3
8

1
8

1 −1
2 −1

2 2
1
6 0 2

3
1
6

.

Amongst the methods in case V, the ‘classical Runge–Kutta method’ is
especially notable. The tableau is

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

.

Also in case V is a special method derived by Gill (1951), for the special
purpose of reducing memory requirements for large problems. Gill found that
by using a value b3 = 1

3 +
√

2
6 , or the conjugate of this which was rejected

as having larger errors, it was possible to solve an N -dimensional system
using only 3N stored numbers. For a general method with s = p = 4, the
corresponding memory needs are 4N . The tableau for Gill’s method is

0
1
2

1
2

1
2

√
2−1
2

2−
√

2
2

1 0 −
√

2
2

2+
√

2
2

1
6

2−
√

2
6

2+
√

2
6

1
6

and is characterized by the condition

det

 1 a31 a32

1 a41 a42

1 b1 b2

 = 0

RUNGE–KUTTA METHODS 181

which, for a method in case V, imposes the constraint

18b2
3 − 12b3 + 1 = 0,

with solutions

b3 =
2 ±

√
2

6
.

323 New methods from old

As we seek explicit Runge–Kutta methods of higher and higher order, we
observe relationships between methods of two adjacent orders. For example,
fourth order methods are connected in a special way with certain methods
with only three stages, but with a modified type of third order condition.
Denote the fourth order method by

c A

b
=

0
c2 a21

c3 a31 a32

1 a41 a42 a43

b1 b2 b3 b4

(323a)

and consider the three-stage tableau

c̃ Ã

b̃
=

0
c2 a21

c3 a31 a32

b1 b2(1 − c2) b3(1 − c3)
.

(323b)

If we denote the elementary weights for the new method (323b) by Φ̃, we find
for the trees with order up to 3,

Φ̃() =
1
2

=
1

(r() + 1)γ()
, (323c)

Φ̃() =
1
6

=
1

(r() + 1)γ()
, (323d)

Φ̃() =
1
12

=
1

(r() + 1)γ()
, (323e)

Φ̃
()

=
1
24

=
1(

r
()

+ 1
)

γ
() . (323f)

The conclusion that Φ̃(t) = 1/
(
(r(t)+1)γ(t)

)
is not in the least remarkable.

In fact, such a conclusion will always hold if b̃ = b A, with obvious

182 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

adjustments made to c and A to form c̃ and Ã, but our interest here is in
working in the opposite direction, from order 3 to order 4. If

∑s
i=1 bi = 1 is

satisfied for the four-stage method (323a), then the remainder of the order
conditions are satisfied as a consequence of (323c)–(323f) and of the D(1)
assumption. We check these as follows, where the relevant trees are also shown:

s∑
i=1

bi = 1,

s∑
i=1

bici =
s∑

i=1

bi −
s∑

i=1

bi(1 − ci) = 1 −
s∑

i=1

b̃i = 1
2 ,

s∑
i=1

bic
2
i =

s∑
i=1

bici −
s∑

i=1

bi(1 − ci)ci = 1
2 −

s∑
i=1

b̃ici = 1
3 ,

s∑
i,j=1

biaijcj =
s∑

j=1

b̃jcj = 1
6 ,

s∑
i=1

bic
3
i =

s∑
i=1

bic
2
i −

s∑
i=1

bi(1 − ci)c2
i = 1

3 −
s∑

i=1

b̃ic
2
i = 1

4 ,

s∑
i,j=1

biciaijcj =
s∑

i=1,j

biaijcj −
s∑

i=1,j

b̃iaijcj = 1
8 ,

s∑
i,j=1

biaijc
2
j =

s∑
j=1

b̃jc
2
j = 1

12 ,

s∑
i,j,k=1

biaijajkck =
s∑

j,k=1

b̃jajkck = 1
24 .

It is not possible to extend the principle illustrated in this result to higher
orders without making some additional assumptions. We introduce the idea
we need as follows:

Definition 323A Consider a Runge–Kutta method given by the tableau

c A

b .

For a tree t and stage i, let Φi(t) denote the elementary weight associated with
t for the tableau

c A

eiA .
Stage i has ‘internal order q’, if for all trees such that r(t) ≤ q,

Φi(t) =
c
r(t)
i

γ(t)
.

The significance of this definition is that if stage i has internal order q, then,
in any step with initial value yn−1 = y(xn−1), the value computed in stage
i satisfies Yi = y(xn−1 + hci) + O(hq+1). Note that the C(q) condition is

RUNGE–KUTTA METHODS 183

necessary and sufficient for every stage to have internal order q, and this is
possible only for implicit methods.

We are now in a position to generalize the remarks we have made about
third and fourth order methods.

Theorem 323B Let
c̃ Ã

b̃

denote a Runge–Kutta method with s − 1 stages and generalized order p − 1,
satisfying c̃s−1 �= 1. Let q be an integer such that 2q + 2 ≥ p and suppose that
for any i ∈ S ⊂ {1, 2, . . . , s − 1}, the method has internal order q. If there
exists b ∈ Rs, with bs �= 0 such that

s∑
i=1

bi = 1, (323g)

and such that bi �= 0 implies i ∈ S, ci �= 1 and bi(1− ci) = b̃i, then the s-stage
method

c A

b

has order p, where c = [c̃ 1] and the s × s matrix A is formed from Ã

by adding an additional row with component j ∈ {1, 2, . . . , s − 1} equal to(
b̃j −

∑s−1
i=1 biaij

)
/bs and then adding an additional column of s zeros.

Proof. The case p = 1 follows from (323g), so we consider instead the case
p ≥ 2. Also, without loss of generality we assume that 1 ≤ q ≤ p− 1, because
internal order 1 is equivalent to ci =

∑s
j=1 aij and because q ≥ p implies

internal order p − 1. We first prove that

s∑
i=1

bic
k−1
i =

1
k

, k = 1, 2, . . . , p.

For k = 1 the result is equivalent to (323g). If the result has been proved for
k−1 < p, we verify it for k, thus completing an induction argument. We have

s∑
i=1

bic
k−1
i =

s∑
i=1

bic
k−2
i −

s∑
i=1

b̃ic
k−2
i =

1
k − 1

− 1
k(k − 1)

=
1
k

.

The next step is to extend the internal order property to stage s. Write the

184 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

value of Φi(t) as
∑s

j=1 aijχj . We then have

1
γ(t)(r(t) + 1)

=
s∑

j=1

b̃jχj

=
s∑

i,j=1

biaijχj

= bs

 s∑
j=1

asjχj −
1

γ(t)

+
s∑

i=1

bi
c
r(t)
i

γ(t)

= bs

 s∑
j=1

asjχj −
1

γ(t)

+
1

γ(t)(r(t) + 1)
,

implying that
s∑

j=1

asjχj =
1

γ(t)
.

Next we prove the order condition for a tree of the form [τk−1t1] where
k + r(t1) ≤ p. We write Φ(t1) =

∑s
i=1 biχi. For k = 1 we have

Φ(t) =
s∑

i,j=1

biaijχj =
s∑

j=1

b̃jχj =
1

γ(t1)(r(t1) + 1)
=

1
γ(t)

.

Now assume that k > 1 and that the result has been proved when k is replaced
by k − 1. For the rest of this proof, we write Φ([t1]) =

∑s
i=1 biχi. We have

bic
k−1
i = bic

k−2
i − b̃ic

k−2
i and hence

Φ(t) = Φ([τk−1t1])

=
s∑

i=1

bic
k−1
i χi

=
s∑

i=1

bic
k−2
i χi −

s∑
i=1

b̃ic
k−2
i χi

=
1

γ(t1)(r(t)− 1)
− 1

γ(t1)r(t)(r(t)− 1)

=
1

γ(t1)r(t)

=
1

γ(t)
.

RUNGE–KUTTA METHODS 185

Finally, we consider a tree of the form t = [t1t2 · · · tm], where r(t1) ≥ r(t2) ≥
· · · ≥ r(tm). Because 2q + 2 ≥ p, r(tk) ≤ q for k = 2, 3, . . . , m. We now have

Φ(t) = Φ([t1t2 · · · tm])

=
s∑

i=1

biχi

m∏
k=2

c
r(tk)
i

γ(tk)

=
s∑

i=1

biχic
r(t)−r(t1)−1
i

1∏m
k=2 γ(tk)

=
1∏m

k=2 γ(tk)
Φ([τ r(t)−r(t1)−1t1])

=
1

r(t)γ(t1)
∏m

k=2 γ(tk)

=
1

γ(t)
. �

Before we consider how to extend the benefits of Theorem 323B beyond the
gain of a single order, we look again at the generalized order conditions

Φ̃(t) =
1

(r(t) + 1)γ(t)
. (323h)

Because the series

y(x0) +
∑
t∈T

ξr(t)hr(t)

γ(t)σ(t)
F (t)(y(x0))

represents the solution of
y′(x) = f(y(x))

at x = x0 + ξh, we find by integrating term by term, from ξ = 0 to ξ = 1,
that h−1

∫ x0+h
x0

y(x)dx has Taylor expansion

y(x0) +
∑
t∈T

hr(t)

(r(t) + 1)γ(t)σ(t)
F (t)(y(x0)). (323i)

Hence a method satisfying (323h) for r(t) ≤ p agrees with (323i) to within
O(hp+1).

We can generalize the meaning of order further by replacing the single
integral by the double integral∫ 1

0

∫ ξ

0

y(x0 + ξh)dξdξ,

186 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

and we now find

h−2

∫ x0+h

x0

∫ x

x0

y(x)dxdx= 1
2y(x0) +

∑
t∈T

hr(t)

(r(t) + 1)(r(t) + 2)γ(t)σ(t)
F (t)(y(x0)).

For a method with generalized order conditions, it might seem possible
to carry out the process of reducing to one less stage and the second
generalization of the order conditions, but this is of little value. When we
have recovered the method with the first generalization, the last abscissa will
have value 1, and it will not be possible to go further to recover a method
satisfying the standard order conditions.

However, this difficulty can be overcome, to some extent, by setting the last
component of the abscissa vector of the first generalized method to 0 rather
than to 1, with appropriate modifications made to the method of recovery. To
see how this works, consider the method with first level of generalized order
equal to 3 whose tableau is

0
1
4

1
4

1
2

1
2 0

3
4 0 1

2
1
4

0 1
2 −1

6
1
6

.

Note that this method was constructed to satisfy not only the four generalized
order conditions

b 1 =
1
2
, b c =

1
6
, b c2 =

1
12

, b Ac =
1
24

,

but also the condition
4∑

i=1

bi

1 − ci
= 1,

which is imposed in anticipation of our intention to construct a fourth order
method by adding an additional stage. The new method is

0
1
4

1
4

1
2

1
2 0

3
4 0 1

2
1
4

0 0 1
6β − 1

3β
1
6β

−β 2
3 −1

3
2
3 β

and it is an easy matter to check that all the fourth order conditions are
satisfied for any choice of the non-zero parameter β.

RUNGE–KUTTA METHODS 187

324 Order barriers

It is possible, as we have seen, to derive explicit methods with s = p for
p = 1, 2, 3, 4. These methods are optimal in the sense that s < p is never
possible and p = 4 is as high as it is possible to go with s = p. We now
formalize these remarks.

Theorem 324A If an explicit s-stage Runge–Kutta method has order p, then
s ≥ p.

Proof. Let t = [[· · · [t] · · ·]] such that r(t) = p > s. The order condition
associated with this tree is Φ(t) = 1/γ(t), where γ(t) = p! and Φ(t) = b Ap−11.
Because A is strictly lower triangular, Ap = 0. Hence, the order condition
becomes 0 = 1/p!, which has no solution. �

Theorem 324B If an explicit s-stage Runge–Kutta method has order p ≥ 5,
then s > p.

Proof. Assume s = p. Evaluate the values of the following four expressions:

b Ap−4(C − c4I)(C − c2I)c =
6
p!

− 2(c2 + c4)
(p − 1)!

+
c2c4

(p − 2)!
, (324a)

b Ap−4(C − c4I)Ac =
3
p!

− c4

(p − 1)!
, (324b)

b Ap−4A(C − c2I)c =
2
p!

− c2

(p − 1)!
, (324c)

b Ap−4A2c =
1
p!

. (324d)

From the left-hand sides of these expressions we observe that (324a)×(324d)
= (324b)×(324c). Evaluate the right-hand sides, and we find that(

6
p!

− 2(c2 + c4)
(p − 1)!

+
c2c4

(p − 2)!

)(
1
p!

)
=
(

3
p!

− c4

(p − 1)!

)(
2
p!

− c2

(p − 1)!

)
,

which simplifies to c2(c4 − 1) = 0.
Now consider the four expressions

b Ap−5(C − c5I)A(C − c2I)c =
8
p!

− 3c2 + 2c5

(p − 1)!
+

c2c5

(p − 2)!
, (324e)

b Ap−5(C − c5I)A2c =
4
p!

− c5

(p − 1)!
, (324f)

b Ap−5A2(C − c2I)c =
2
p!

− c2

(p − 1)!
, (324g)

b Ap−5A3c =
1
p!

. (324h)

188 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Again we see that (324e)×(324h) = (324f)×(324g), so that evaluating the
right-hand sides, we find(

8
p!

− 3c2 + 2c5

(p − 1)!
+

c2c5

(p − 2)!

)(
1
p!

)
=
(

4
p!

− c5

(p − 1)!

)(
2
p!

− c2

(p − 1)!

)
,

leading to c2(c5 − 1) = 0. Since we cannot have c2 = 0, it follows that c4 =
c5 = 1. Now evaluate b Ap−5(C − e)A2c. This equals (4 − p)/p! by the order
conditions but, in contradiction to this, it equals zero because component
number i of b Ap−5 vanishes unless i ≤ 5. However, these components of
(C − e)A2c vanish. �

The bound s − p ≥ 1, which applies for p ≥ 5, is superseded for p ≥ 7
by s − p ≥ 2. This is proved in Butcher (1965a). For p ≥ 8 we have the
stronger bound s − p ≥ 3 (Butcher, 1985). It seems likely that the minimum
value of s − p rises steadily as p increases further, but there are no published
results dealing with higher orders. On the other hand, it is known, because of
the construction of a specific method (Hairer, 1978), that p = 10, s = 17 is
possible.

That a sufficiently high s can be found to achieve order p follows
immediately from Theorem 317A. We now derive an upper bound on the
minimum value of such an s. This is done by constructing methods with odd
orders, or methods satisfying the generalization of odd orders introduced in
Subsection 323. In the latter case, we then use the results of that subsection
to extend the result to the next even order higher.

Theorem 324C For any positive integer p, an explicit Runge–Kutta method
exists with order p and s stages, where

s =

{
3p2−10p+24

8 , p even,
3p2−4p+9

8 , p odd.

Proof. We consider the case of p odd, but allow for generalized order
conditions. If p = 1+2m, we construct first an implicit Runge–Kutta method
with 1 + m stages, using (case I) standard order conditions and (case II)
generalized order conditions. For case I, the order condition associated with
the tree t is, as usual,

Φ(t) =
1

γ(t)
.

In case II, this condition is replaced by

Φ(t) =
1

(r(t) + 1)γ(t)
.

RUNGE–KUTTA METHODS 189

For the implicit method, the abscissae are at the zeros of the polynomial

dm

dxm
xm+1(x − 1)m, in case I,

dm

dxm
xm+1(x − 1)m+1, in case II,

with the zero x = 1 omitted in case II. It is clear that x = 0 is a zero in both
cases and that the remaining zeros are distinct and lie in the interval [0, 1).
Denote the positive zeros by ξi, i = 1, 2, . . . , m. We now construct methods
with abscissae chosen from the successive rows of the following table:

row 0 0
row 1 ξ1

row 2 ξ1 ξ2

row 3 ξ1 ξ2 ξ3

...
...

...
. . .

row m ξ1 ξ2 ξ3 · · · ξm

row m + 1 ξ1 ξ2 ξ3 · · · ξm

...
...

...
...

row 2m ξ1 ξ2 ξ3 · · · ξm

where there are exactly m + 1 repetitions of the rows with m members. The
total number of stages will then be

s = 1 +
(
1 + 2 + · · · + (m − 1)

)
+ (m + 1)m =

1
2
(3m2 + m + 2).

Having chosen c =
(

0 ξ1 ξ1 ξ2 · · · ξm

)
, we construct b with all

components zero except the first component and the final m components.
The non-zero components are chosen so that

b1 +
m∑

i=1

bs−m+i =

{
1, case I
1
2 , case II

m∑
i=1

bs−m+iξ
k−1
i =

{
1
k , case I

1
k(k+1) , case II

}
, k = 1, 2, . . . , 2m + 1.

The possibility that the non-zero b components can be found to satisfy these
conditions follows from the theory of Gaussian quadrature. The final step in
the construction of the method is choosing the elements of the matrix A. For
i corresponding to a member of row k for k = 1, 2, . . . , m, the only non-zero

190 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

aij are for j = 1 and for j corresponding to a member of row k− 1. Thus, the
quadrature formula associated with this row has the form∫ ci

0

φ(x)dx ≈ w0φ(0) +
k−1∑
j=1

wjφ(ξj)

and the coefficients are chosen to make this exact for φ a polynomial of degree
k − 1. For i a member of row k = m + 1, m + 2, . . . , 2m, the non-zero aij are
found in a similar way based on the quadrature formula∫ ci

0

φ(x)dx ≈ w0φ(0) +
m∑

j=1

wjφ(ξj).

The method constructed in this way has order, or generalized order,
respectively, equal to p = 2m+1. To see this, let Ỹi denote the approximation
to y(xn−1 + hξi) in stage 1 + i of the order 2m + 1 Radau I method (in case
I) or the order 2m + 2 Lobatto method (in case II). It is easy to see that
the stages corresponding to row k approximate the Ỹ quantities to within
O(hk+1). Thus the full method has order 2m + 1 in case I and generalized
order 2m + 1 in case II. Add one more stage to the case II methods, as in
Theorem 323B, and we obtain order p = 2m + 2 with s = 1

2 (3m2 + m + 4)
stages compared with p = 2m + 1 and s = 1

2 (3m2 + m + 2) stages in case I.
This gives the result of the theorem. �

325 Methods of order 5

We saw in Theorem 324B that for orders greater than 4, s = p is impossible.
Hence, we assume that s = 6. We assume the D(1) condition and the C(2)
condition applied to all stages except the second. We also need to assume the
subsidiary conditions b2 =

∑5
i=3 bi(1 − ci)ai2 = 0. These conditions dispose

of all conditions except those associated with the trees
, , , , , .

The second and third of these turn out to be consequences of the D(1) and
C(2) conditions, and we find that some of the elements in the final row can be
evaluated in two different but consistent ways. The condition associated with

can be replaced by the difference of this condition and the automatically
satisfied condition associated with ; see (325h) below. This last modification
of the order conditions we actually solve has the advantage that it removes the
last row of the A matrix from the calculation until, at the end, we compute
this row using the D(1) condition.

Collecting these comments together, we summarize the defining equations
for a fifth order method. Where we write ‘choose’ one of the coefficients, we
mean that it can be set to an arbitrary value, excluding only a finite set of

RUNGE–KUTTA METHODS 191

possibilities. We do not state in detail what constitute the exceptional cases,
but these can be identified with little difficulty:

c6 = 1, (325a)
Choose c2, c3, c4, c5, (325b)

6∑
i=1

bic
k−1
i =

1
k

, k = 1, 2, . . . , 5, (325c)

Choose a42, (325d)
i−1∑
j=2

aijcj =
1
2
c2
i , i = 3, 4, 5, (325e)

i−1∑
j=1

aij = ci, i = 2, 3, 4, 5, (325f)

5∑
i=3

bi(1 − ci)ai2 = 0, (325g)

b5(1 − c5)a54c4(c4 − c3) =
1
60

− c3

24
, (325h)

6∑
i=j+1

biaij = bj(1 − cj), j = 1, 2, 3, 4, 5. (325i)

The following schema shows which of these various defining equations are
used in the choice of particular coefficients of the method:

0
(325b) (325f)
(325b) (325f) (325e)
(325b) (325f) (325d) (325e)
(325b) (325f) (325g) (325e) (325h)
(325a) (325i) (325i) (325i) (325i) (325i)

(325c) 0 (325c) (325c) (325c) (325c)

We give a single example of a method derived in this manner:

0
1
4

1
4

1
4

1
8

1
8

1
2 0 0 1

2
3
4

3
16 −3

8
3
8

9
16

1 −3
7

8
7

6
7 −12

7
8
7

7
90 0 16

45
2
15

16
45

7
90

.

192 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

The first methods of this order, derived by Kutta (1901), have a different
structure. One of these, as corrected by Nyström (1925), is

0
1
3

1
3

2
5

4
25

6
25

1 1
4 −3 15

4
2
3

2
27

10
9 −50

81
8
81

4
5

2
25

12
25

2
15

8
75 0

23
192 0 125

192 0 −27
64

125
192

.

As we have pointed out in Subsection 316, the order conditions for a scalar
first order differential equation are less restrictive than for the general vector
case, if orders of 5 or more are under consideration. This suggests the existence
of methods whose orders, when applied to a single first order differential
equation, may be 5, whereas it is only 4 when applied to a higher-dimensional
system. An example of such a method is given in Butcher (1995).

326 Methods of order 6

The first methods of order 6 were derived by Huťa (1956, 1957). Although his
methods used s = 8 stages, it is possible to find methods of this order with
s = 7. Just as for order 5, we assume the modified C(2) condition and the
D(1) condition. We also assume the quadrature conditions so that the only
order conditions that remain are Φ(t) = 1/γ(t) for the trees

t = , , and .

Linear combinations of these with other order conditions whose truth
is automatic appear in (326h)–(326k) below, where we have listed all the
conditions we need to specify a method:

b2 = 0, (326a)
7∑

i=1

bi(1 − ci)(ci − c6)(ci − c3)(ci − c4)ci=
1
30

− c3 + c4 + c6

20
+

c3c4 + c3c6 + c4c6

12
− c3c4c6

6
,

(326b)

7∑
i=1

bi(1 − ci)(ci − c6)(ci − c4)ci =
1
20

− c4 + c6

12
+

c4c6

6
, (326c)

7∑
i=1

bi(1 − ci)(ci − c6)ci =
1
12

− c6

6
, (326d)

RUNGE–KUTTA METHODS 193

7∑
i=1

bi(1 − ci)ci =
1
6
, (326e)

7∑
i=1

bici =
1
2
, (326f)

7∑
i=1

bi = 1, (326g)

7∑
i,j=1

bi(1 − ci)aij(cj − c3)cj =
1
60

− c3

24
, (326h)

7∑
i,j=1

bi(1 − ci)(ci − c6)aij(cj − c3)cj =
1
90

− c3

40
− c6

60
+

c3c6

24
, (326i)

7∑
i,j=1

bi(1 − ci)aij(cj − c4)(cj − c3)cj =
1

120
− c3 + c4

60
+

c3c4

24
, (326j)

7∑
i,j,k=1

bi(1 − ci)aijajk(ck − c3)ck =
1

360
− c3

120
, (326k)

7∑
j=1

aijcj =
1
2
c2
i , i �= 2, (326l)

7∑
j=1

aij = ci, i = 1, 2, . . . , 7, (326m)

7∑
i=1

biaij = bi(1 − cj), j = 1, 2, . . . , 7, (326n)

7∑
i=1

bi(1 − ci)ai2 = 0, (326o)

7∑
i=1

bi(1 − ci)ciai2 = 0, (326p)

7∑
i,j=1

bi(1 − ci)aijaj2 = 0. (326q)

This rather formidable set of equations can be solved in a systematic and
straightforward manner except for one detail: there are three equations, (326i),
(326j) and (326k), each involving a54 and a65 and no other elements of A.
Hence, we need to ensure, by restricting the choice of c, that these equations
are consistent. To find the consistency condition, note that the left-hand
sides of these equations are related by (326i)×(326j) = (326b)×(326k). The
consistency condition, found from the right-hand sides, simplifies to

(c6 − 1)
(
c4(2 − 10c3 + 15c2

3) − c3

)
= 0. (326r)

194 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

We can eliminate the factor c6−1 because, if it were zero, then it would follow
that c3 = 1

3 and that c4 = 1, which are consistent with the vanishing of the
second factor, which leads to

c4 =
c3

2 − 10c3 + 15c2
3

. (326s)

Having chosen c3, and therefore c4, together with arbitrary c2, c5 and c6 and
the known value c7 = 1, excluding some impossible cases, we can solve for
the components of b from (326a)–(326g). We can then solve for a54, a64 and
a65 from the consistent equations (326h)–(326k). We then solve for a32 from
(326l) and then for a42, a43, a52, a53, a62 and a63 from (326l) with i = 4, 5, 6
and from (326o), (326p) and (326q). It remains to compute the first column
of A from (326m) and the last row from (326n).

The following example is of a method derived from these equations:

0
1
3

1
3

2
3 0 2

3
1
3

1
12

1
3 − 1

12
5
6

25
48 −55

24
35
48

15
8

1
6

3
20 −11

24 −1
8

1
2

1
10

1 −261
260

33
13

43
156 −118

39
32
195

80
39

13
200 0 11

40
11
40

4
25

4
25

13
200

.

It is possible to derive sixth order methods in other ways. For example,
Huťa used the C(3) with subsidiary conditions for stages 2 and 3. However,
he used s = 8, and this gave him more freedom in the choice of c.

The alternative example of a method of this order that we give uses C(2)
and D(2) with subsidiary conditions to repair the gaps in the order conditions
caused by C(2) not applying to stage 2 and D(2) not holding for stage 6. It
is necessary to choose b2 = 0, and to require that c3, c4 and c5 are related so
that the right-hand side vanishes in the equations

7∑
i,j=1

bi(1 − ci)(ci − c5)aijcj(cj − c3) =
1
90

− c3

40
− c5

60
+

c3c5

24
,

7∑
i=1

bi(1 − ci)(ci − c3)(ci − c4)(ci − c5)ci =

1
30

− c3 + c4 + c5

20
+

c3c4 + c3c5 + c4c5

12
− c3c4c5

6
,

RUNGE–KUTTA METHODS 195

because the left-hand sides are identically zero. A method derived along these
lines is as follows:

0
2
5

2
5

4
5 0 4

5
2
9

169
1458

110
729 − 65

1458
8
15 − 44

675 − 88
135

76
351

336
325

0 21
106 0 −105

689 −324
689

45
106

1 −2517
4864 −55

38
10615
31616

567
7904

7245
4864

2597
2432

0 0 1375
4992

6561
20384

3375
12544

53
768

19
294

.

327 Methods of orders greater than 6

Methods with order 7 must have at least nine stages. It is possible to construct
such a method using the principles of Subsection 323, extending the approach
used in Subsection 326. The abscissa vector is chosen as

c = [0 1
3c4

2
3c4 c4 c5 c6 c7 0 1] ,

and the orders of stages numbered 4, 5, . . . , 9 are forced to be 3. To achieve
consistency of the conditions∑

bi(1 − ci)aijajkck(ck − c4)(ck − c5) =

1
4·5·6·7 − c4 + c5

3·4·5·6 +
c4c5

2·3·4·5 ,∑
bi(1 − ci)aijcj(cj − c4)(cj − c5)(cj − c6) =

1
5·6·7 − c4 + c5 + c6

4·5·6 +
c4c5 + c4c6 + c5c6

3·4·5 − c4c5c6

2·3·4 ,∑
bi(1 − ci)ciaijcj(cj − c4)(cj − c5) =

1
4·6·7 − c4 + c5

3·5·6 +
c4c5

2·4·5 ,

it is found that

c6 =
u − 12v + 7uv

3 − 12u + 24v + 14u2 − 70uv + 105v2
,

where u = c4 + c5 and v = c4c5. The value of c7 is selected to ensure that∫ 1

0

x(1 − x)(x − c4)(x − c5)(x − c6)(x − c7)dx = 0.

196 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

The tableau for a possible method derived along these lines is

0
1
6

1
6

1
3 0 1

3
1
2

1
8 0 3

8
2
11

148
1331 0 150

1331 − 56
1331

2
3 −404

243 0 −170
27

4024
1701

10648
1701

6
7

2466
2401 0 1242

343 −19176
16807 −51909

16807
1053
2401

0 5
154 0 0 96

539 − 1815
20384 − 405

2464
49

1144

1 −113
32 0 −195

22
32
7

29403
3584 −729

512
1029
1408

21
16

0 0 0 32
105

1771561
6289920

243
2560

16807
74880

77
1440

11
270

.

Order 8 requires 11 stages, and methods of this order were derived by Curtis
(1970)and Cooper and Verner (1972). In each case the abscissae were based
on the Lobatto quadrature formula with three internal points. We quote the
method of Cooper and Verner in Table 327(I).

Although order 9 has not attracted much interest, and it is unknown how
many stages are required to achieve this order, order 10 has posed a challenge.
In Curtis (1975) a method of order 10 was presented with 18 stages. However,
using an ingenious combination of various simplifying assumptions, Hairer
(1978) accomplished this feat in 17 stages. It is still not known if fewer stages
are possible.

Exercises 32

32.1 Find a method with s = p = 3 such that c = [0, 1
2 , 1].

32.2 Find a method with s = p = 3 such that c = [0, 1
3 , 1].

32.3 Find a method with s = p = 4 such that b1 = 0 and c2 = 1
5 .

32.4 Find a method with s = p = 4 such that b2 = 0 and c2 = 1
4 .

32.5 Find a method with s = p = 4 such that b1 = 0 and c3 = 0.

32.6 Show that Lemma 322A can be used to prove that c4 = 1, if s = p ≥ 4.

32.7 Show that Lemma 322A can be used to prove that c5 = 1, if s = p ≥ 5
leading to an alternative proof of Theorem 324B.

RUNGE–KUTTA METHODS 197

T
a
b
le

3
2
7
(I

)
T
a
b
le

a
u

fo
r

C
o
o
p
er

–
V
er

n
er

ei
g
h
th

o
rd

er
m

et
h
o
d

0 1 2
1 2

1 2
1 4

1 4

7
+
√

2
1

1
4

1 7
−

7
−

3
√

2
1

9
8

2
1
+

5
√

2
1

4
9

7
+
√

2
1

1
4

1
1
+
√

2
1

8
4

0
1
8
+

4
√

2
1

6
3

2
1
−
√

2
1

2
5
2

1 2
5
+
√

2
1

4
8

0
9
+
√

2
1

3
6

−
2
3
1
+

1
4
√

2
1

3
6
0

6
3
−

7
√

2
1

8
0

7
−
√

2
1

1
4

1
0
−
√

2
1

4
2

0
−

4
3
2
+

9
2
√

2
1

3
1
5

6
3
3
−

1
4
5
√

2
1

9
0

−
5
0
4
+

1
1
5
√

2
1

7
0

6
3
−

1
3
√

2
1

3
5

7
−
√

2
1

1
4

1 1
4

0
0

0
1
4
−

3
√

2
1

1
2
6

1
3
−

3
√

2
1

6
3

1 9

1 2
1 3
2

0
0

0
9
1
−

2
1
√

2
1

5
7
6

1
1

7
2

−
3
8
5
−

7
5
√

2
1

1
1
5
2

6
3
+

1
3
√

2
1

1
2
8

7
+
√

2
1

1
4

1 1
4

0
0

0
1 9

−
7
3
3
−

1
4
7
√

2
1

2
2
0
5

5
1
5
+

1
1
1
√

2
1

5
0
4

−
5
1
−

1
1
√

2
1

5
6

1
3
2
+

2
8
√

2
1

2
4
5

1
0

0
0

0
−

4
2
+

7
√

2
1

1
8

−
1
8
+

2
8
√

2
1

4
5

−
2
7
3
−

5
3
√

2
1

7
2

3
0
1
+

5
3
√

2
1

7
2

2
8
−

2
8
√

2
1

4
5

4
9
−

7
√

2
1

1
8

1 2
0

0
0

0
0

0
0

4
9

1
8
0

1
6

4
5

4
9

1
8
0

1 2
0

198 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

33 Runge–Kutta Methods with Error Estimates

330 Introduction

Practical computations with Runge–Kutta methods usually require a means
of local error estimation. This is because stepsizes are easy to adjust so as
to follow the behaviour of the solution, but the optimal sequence of stepsizes
depends on the local truncation error. Of course, the exact truncation error
cannot realistically be found, but asymptotically correct approximations to
it can be computed as the integration proceeds. One way of looking at this
is that two separate approximations to the solution at a step value xn are
found. Assuming that the solution value at the previous point is regarded
as exact, because it is the local error that is being approximated, denote the
two solutions found at the current point by yn and ŷn. Suppose the two
approximations have orders p and q, respectively, so that

yn = y(xn) + O(hp+1), ŷn = y(xn) + O(hq+1).

Then, if q > p,
ŷn − yn = y(xn) − yn + O(hp+2),

which can be used as an approximation to the error committed in the step.
Furthermore, the approximation becomes increasingly accurate as h becomes
small. Thus ŷn − yn is used as the error estimator.

Even though we emphasize the construction of method pairs for which
q = p+1, and for which it is yn (rather than the asymptotically more accurate
approximation ŷn) that is propagated as the numerical approximation at xn,
customary practice is to use the higher order as the propagated value. This
is sometimes interpreted as ‘local extrapolation’, in the sense that the error
estimate is added to the approximate solution as a correction. While the
estimator is still used as a stepsize controller, it is now no longer related
asymptotically to the local truncation error.

We review the ‘deferred approach to the limit’ of Richardson (1927) and
then consider specially constructed Runge–Kutta tableaux, which combine
two methods, with orders one apart, built into one. The classical method
of this type is due to Merson (1957), but we also consider built-in estimators
due to Fehlberg (1968, 1969), Verner (1978) and Dormand and Prince (1980).
Some of the methods derived for the author’s previous book (Butcher, 1987)
will also be recalled.

331 Richardson error estimates

Richardson extrapolation consists of calculating a result in a manner that
depends on a small parameter, and for which the error in the calculation
varies systematically as the parameter varies. By using a sequence of values
of the parameter, much of the effect of the errors can be eliminated so that

RUNGE–KUTTA METHODS 199

improved accuracy results. In numerical quadrature, for example, the method
of Romberg (1955) is based on calculating an integral I =

∫ b

a φ(x)dx using
the trapezoidal rule with a stepsize h equal to an integer divisor of b− a. For
a single choice of h, the result computed can be expanded by an asymptotic
formula of the form

T (h) = I + C1h
2 + C2h

4 + · · · ,

so that, using a sequence h = H, 2−1H, 2−2H, . . . , we arrive at the
approximations T0 = T (H), T1 = T (1

2H), T2 = T (1
4H), . . . with expansions

T0 = I + C1H
2 + C2H

4 + · · · ,

T1 = I + 1
4C1H

2 + 1
16C2H

4 + · · · ,

T2 = I + 1
16C1H

2 + 1
256C2H

4 + · · · ,

...
...

By forming

T01 =
4
3
T1 −

1
3
T0,

T12 =
4
3
T2 −

1
3
T1,

...
...

we obtain an ‘improved’ sequence in which the C1H
2 terms are eliminated

from the asymptotic expansions so that convergence towards the exact result
I is more rapid as terms in the sequence are calculated. Similarly, a second
sequence of improved approximations can be found from

T012 =
16
15

T12 −
1
15

T01,

T123 =
16
15

T23 −
1
15

T12,

...
...

This idea has an application to Runge–Kutta methods for ordinary
differential equations on the small scale of a single step, repeated with
two steps and half the original value of h. Let yn−1 denote an incoming
approximation for y(xn−1) and yn the solution computed as an approximation
to y(xn) = y(xn−1 + h) using a Runge–Kutta method with tableau

200 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

0
c2 a21

c3 a31 a32

...
...

...
. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

.

Repeating the calculation with h replaced by 1
2h but carrying out two steps,

rather than only one, is equivalent to taking a single step with the original h,
but using the tableau

0
1
2c2

1
2a21

1
2c3

1
2a31

1
2a32

...
...

...
. . .

1
2cs

1
2as1

1
2as2 · · · 1

2as,s−1

1
2

1
2b1

1
2b2 · · · 1

2bs−1
1
2bs

1
2 + 1

2c2
1
2b1

1
2b2 · · · 1

2bs−1
1
2bs

1
2a21

1
2 + 1

2c3
1
2b1

1
2b2 · · · 1

2bs−1
1
2bs

1
2a31

1
2a32

...
...

...
...

...
...

...
. . .

1
2 + 1

2cs
1
2b1

1
2b2 · · · 1

2bs−1
1
2bs

1
2as1

1
2as2 · · · 1

2as,s−1

1
2b1

1
2b2 · · · 1

2bs−1
1
2bs

1
2b1

1
2b2 · · · 1

2bs−1
1
2bs

Denote the result computed by this 2s-stage method by ŷn, and note that if
the local truncation error in yn is C(xn)hp+1 + O(hp+2), so that

yn = y(xn) − C(xn)hp+1 + O(hp+2), (331a)

then
ŷn = y(xn) − 2−pC(xn)hp+1 + O(hp+2), (331b)

because the error in computing ŷn is 2−p−1C(xn)hp+1 + O(hp+2) contributed
from each of two steps.

From the difference of (331a) and (331b) we find

ŷn − yn = (1 − 2−p)C(xn)hp+1 + O(hp+2),

so that the local truncation error in yn can be approximated by

(1 − 2−p)−1(ŷn − yn). (331c)

RUNGE–KUTTA METHODS 201

This seems like an expensive way of computing the error in the result
computed using an s-stage method, because the additional computations
required for the estimation take twice as long as the result itself. However, the
additional cost becomes more reasonable when we realize that it is not yn but
ŷn that should be propagated. The additional cost on this basis is something
like 50%. Actually, it is slightly less than this because the calculation of the
derivative of yn−1 is shared by each of the two methods, and needs to be
carried out only once.

332 Methods with built-in estimates

Instead of using the Richardson technique it is possible to combine two
methods into one by constructing a tableau with common stages but two
alternative output coefficient vectors. The following method, due to Merson
(1957), seems to have been the first attempt at constructing this type of
stepsize control mechanism:

0
1
3

1
3

1
3

1
6

1
6

1
2

1
8 0 3

8

1 1
2 0 −3

2 2
1
6 0 0 2

3
1
6

1
10 0 3

10
2
5

1
5

.

The interpretation of this tableau, which contains two b vectors, is that it
combines two methods given by

0
1
3

1
3

1
3

1
6

1
6

1
2

1
8 0 3

8

1 1
2 0 −3

2 2
1
6 0 0 2

3
1
6

(332a)

and by
0
1
3

1
3

1
3

1
6

1
6

1
2

1
8 0 3

8

1 1
2 0 −3

2 2
1
10 0 3

10
2
5

1
5

.

(332b)

202 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

102 103 104

1
0
−
2

1
0
−
6

1
0
−
1
0

number of f evaluations

‖g
lo

ba
le

rr
or
‖

e =
0.1

e =
0.5

e =
0.9

Figure 332(i) Two alternative stepsize control mechanisms based on

Richardson (dashed line) and built-in (solid line) error estimates

In Merson’s derivation of this method, (332a) was shown to be of order 4.
Although (332b) has order only 3, it becomes effectively of order 5 if used to
solve linear problems with constant coefficients. The difference between the
results computed by the two methods can, it is suggested, be used as a local
error estimator. To show how well the method works in practice, an experiment
using this technique has been carried out and the results summarized in
Figure 332(i). The three problems attempted are the Kepler orbit problem
with eccentricities e = 0.1, e = 0.5 and e = 0.9, respectively.

333 A class of error-estimating methods

In the search for efficient step-control mechanisms, we consider (s + 1)-stage
methods of the form

0

c2 a21

c3 a31 a32

...
...

...
. . .

cs as1 as2 · · · as,s−1

1 as+1,1 as+1,2 · · · as+1,s−1 as+1,s

b1 b2 · · · bs−1 bs bs+1

(333a)

with order p + 1, with the coefficients chosen so that the embedded method

RUNGE–KUTTA METHODS 203

0

c2 a21

c3 a31 a32

...
...

...
. . .

cs as1 as2 · · · as,s−1

as+1,1 as+1,2 · · · as+1,s−1 as+1,s

(333b)

has order p.
Even though this method formally has s + 1 stages, in terms of

computational cost it can be regarded as having only s, because the derivative
calculation needed for stage s+1 is identical to the first derivative calculation
in the succeeding step. It is convenient to write order conditions for the
embedded method pair in terms of the number B = bs+1 and the artificial
tableau

0

c2 a21

c3 a31 a32

...
...

...
. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

.

(333c)

An elementary weight, computed using this tableau, differs from that of the
full method by a single term. This additional term is formed by multiplying
B by the derivative of the order p result found by the method represented by
(333b). This enables us to form modified order conditions for (333c), which
will ensure that both (333a) and (333b) satisfy the correct conditions. We
denote the elementary weights for (333c) by Φ(t).

Theorem 333A If (333b) has order p and (333a) has order p + 1 and
B = bs+1, then

Φ(t) =
1 − Br(t)

γ(t)
, r(t) ≤ p + 1. (333d)

Conversely, if (333d) holds with cs �= 1 and B �= 0 and, in addition,

bs+1 = B, (333e)

as+1,s = B−1bs(1 − cs), (333f)

as+1,j = B−1

(
bj(1 − cj) −

s∑
i=1

biaij

)
, j = 1, 2, . . . , s − 1, (333g)

then (333b) has order p and (333a) has order p + 1.

204 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Proof. For a given tree t, let Φ̂(t) denote the elementary weight for (333a) and
Φ(t) the elementary weight for (333b). Because the latter method has order
p, it follows that for a tree t = [t1t2 · · · tm], with order not exceeding p+1, we
have Φ(ti) = 1/γ(ti), for i = 1, 2, . . . , m. Hence, for a method identical with
(333a) except for b replaced by the basis vector es+1, the elementary weight
corresponding to t will be

m∏
i=1

1
γ(ti)

=
r(t)
γ(t)

.

Adding B multiplied by this quantity to Φ(t) gives the result

Φ(t) + B
r(t)
γ(t)

= Φ̂(t) =
1

γ(t)
,

which is equivalent to (333d).
To prove the converse, we first note that, because B �= 0, the previous

argument can be reversed. That is, if (333b) has order p then (333d) implies
that (333a) has order p + 1. Hence, it is only necessary to prove that (333b)
has order p. We calculate Φ(t), for r(t) ≤ p as follows, where we have written
χi(t) for the coefficient of bi in Φ(t)

Φ(t) = B−1
s∑

j=1

bj(1 − cj)χj(t) − B−1
s∑

i=1

s−1∑
j=1

biaijχj(t)

= B−1(Φ(t) − Φ(tτ) − Φ(τt))

= B−1

(
1 − Br(t)

γ(t)
− r(t)(1− B(1 + r(t)))

(1 + r(t))γ(t)
− 1 − B(1 + r(t))

(1 + r(t))γ(t)

)
=

1
γ(t)

. �

Although the derivation is carried out from a modified version of the order
conditions, it is convenient to display a particular method in the format

0
c2 a21

c3 a31 a32

...
...

...
. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

d1 d2 · · · ds−1 ds

,

where

[d1 d2 · · · ds−1 ds] = [b1−as1 b2−as2 · · · bs−1−as,s−1 bs]

RUNGE–KUTTA METHODS 205

is the vector of coefficients in the proposed error estimator. That is,
h
∑s

i=1 dif(Yi) is used to evaluate the difference between the order p
approximation yn−1 + h

∑s
i=1 as+1,if(Yi) and the supposedly more accurate

approximation of order p+1 given by yn−1 +h
∑s

i=1 bif(Yi). The dashed line
above row number s of the tableau is intended to indicate that the row below
it is the approximation to be propagated and, of course, the dashed line below
the b vector separates the order p+1 approximation from the error estimator.

Now let us look at some example of these embedded methods. Methods of
orders 1 and 2 are easy to derive and examples of each of these are as follows:

0
1 1

1
2

1
2

−1
2

1
2

and
0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

1
6

1
3 −2

3
1
6

.

Observe that for the second order method, the third order method in which
it is embedded is actually the classical fourth order method.

Order 3 embedded in order 4 requires s = 4 stages. From the modified order
conditions we find that

b3(c3 − c4)c3(c3 − c2) =
(1
4 − B

)
−(c2 + c4)

(1
3 − B

)
+c2c4

(1
2 − B

)
, (333h)

b4a43c3(c3 − c2) =
(1
12 − B

3
)
− c2

(1
6 − B

2

)
, (333i)

b3(c3 − c4)a32c2 =
(1
8 − B

2

)
− c4

(1
6 − B

2

)
, (333j)

b4a43a32c2 =
(1
24 − B

6

)
, (333k)

so that, equating the products (333h)×(333k) and (333i)×(333j) and
simplifying, we find the consistency condition

c4 =
1 − 7B + 12B2

1 − 6B + 12B2
.

For example, choosing B = 1
12 to give c4 = 6

7 , together with c2 = 2
7 and

c3 = 4
7 , yields the tableau

206 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

0
2
7

2
7

4
7 − 8

35
4
5

6
7

29
42 −2

3
5
6

1 1
6

1
6

5
12

1
4

11
96

7
24

35
96

7
48

1
12

− 5
96

1
8 − 5

96 − 5
48

1
12

.

Order 4 embedded in order 5 requires s = 6. That is, there are seven stages
overall, but the last stage derivative is identical to the first stage derivative
for the following step. To derive a method of this type, make the simplifying
assumption

6∑
j=1

aijcj =
1
2
c2
i , i �= 2,

together with the subsidiary conditions

b2 =
6∑

i=3

biai2 =
6∑

i=3

biciai2 =
6∑

i=4

i−1∑
j=3

biaijaj2 = 0.

Also, impose order conditions for the trees but instead of

the corresponding conditions for the trees , use linear

combinations as follows:∑
6≥i>j≥4

biaijcj(cj − c3)=
(

1
12 − 1

3B
)
− c3

(
1
6 − 1

2B
)
, (333l)

∑
5≥i≥5

bici(ci − c6)(ci − c4)(ci − c3) =
(

1
5−B

)
− (c6 + c4 + c3)

(
1
4 − B

)
+(c6c4 + c6c3 + c4c3)

(
1
3 − B

)
−c6c4c3

(
1
2 − B

)
,

(333m)

∑
5≥i>j≥4

bi(ci − c6)aijcj(cj − c3)=
(

1
15 − 1

3B
)
− c6

(
1
12 − 1

3B
)

−c3

(
1
8 − 1

2B
)

+ c6c3

(
1
6 − 1

2B
)
,

(333n)

∑
6≥i>j≥5

biaijcj(ci − c4)(cj − c3)=
(

1
20 − 1

4B
)
− (c4 + c3)

(
1
12 − 1

3B
)

+c4c3

(
1
6 − 1

2B
)
,

(333o)

∑
6≥i>j>k≥4

biaijajkck(ck − c3)=
(

1
60 − 1

12B
)
− c3

(
1
24 − 1

6B
)
. (333p)

RUNGE–KUTTA METHODS 207

The left-hand sides of (333m)–(333p) consist of only a single term and we
see that the product of (333m) and (333p) is equal to the product of (333n)
and (333o). Thus we obtain consistency conditions for the values of a65 and
a54 by comparing the products of the corresponding right-hand sides. After
considerable manipulation and simplification, we find that this consistency
condition reduces to

c6 = 1 − q0B

q0 − q1B + q2B2
, (333q)

with

q0 = 10c2
3c4 + 2c4 − 8c3c4 − c3,

q1 = 60c2
3c4 − 56c3c4 + 16c4 − 8c3,

q2 = 120c2
3c4 − 120c3c4 + 40c4 − 20c3.

Construction of the method consists of selecting c2, c3, c4, c5 and B; choosing
c6 in accordance with (333q); evaluating a65 and a54 from the consistent
equations (333n), (333o) and (333p); and then evaluating a64 from (333l).
The remaining coefficients are then evaluated using the remaining conditions
that have been stated.

An example of a method in this family is

0
1
4

1
4

1
4

1
8

1
8

1
2 0 −1

2 1
13
20

13
200 − 299

1000
78
125

13
50

4
5

548
7475

688
2875

572
2875 − 88

575
132
299

1 37
312 0 4

33
8
9 −100

117
575
792

41
520 0 58

165
16
135

50
351

575
2376

1
15

− 31
780 0 38

165 −104
135

350
351 − 575

1188
1
15

.

For p = 5, that is, a fifth order method embedded within a sixth order
method, s = 8 seems to be necessary. We present a single example of a method
satisfying these requirements. For all stages except the second, the stage order
is at least 2, and for stages after the third, the stage order is at least 3. Under
these assumptions, together with subsidiary conditions, it is found that for
consistency, a relation between c4, c5, c6, c8 and B must hold. Given that
these are satisfied, the derivation is straightforward but lengthy and will not
be presented here. The example of a method pair constructed in this way is
shown in the following tableau:

208 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

0
1
9

1
9

1
9

1
18

1
18

1
6

1
24 0 1

8

1
3

1
6 0 −1

2
2
3

1
2

15
8 0 −63

8 7 −1
2

3
4 −93

22 0 24921
1408 −10059

704
735
1408

735
704

17
19

86547313055
10295610642 0 −96707067

2867062
15526951598
571978869

27949088
81711267−

452648800
245133801

270189568
467982711

1 98
765 0 0 − 9

83
1071
1600 −11

75
64
225

390963
2257600

188
3315 0 0 1593

7553
2943
20800

197
975

576
2275

2476099
29348800

2
39

− 142
1989 0 0 2412

7553 − 549
1040

68
195 − 128

4095 − 130321
1467440

2
39

334 The methods of Fehlberg

Early attempts to incorporate error estimators into Runge–Kutta methods are
exemplified by the work of Fehlberg (1968, 1969). In writing the coefficients
of methods from this paper, a tabular form is used as follows:

c A

b

b̂

d
.

The significance of this augmented tableau is that

c A

b

is a Runge–Kutta method of order p, while

c A

b̂

is a Runge–Kutta method of order p+ 1. The additional vector d = b̂ − b is
used for error estimation. The fifth order method, with additional sixth order
output for error estimation, recommended by Fehlberg, is

RUNGE–KUTTA METHODS 209

0
1
6

1
6

4
15

4
75

16
75

2
3

5
6 −8

3
5
2

4
5 −8

5
144
25 −4 16

25

1 361
320 −18

5
407
128 −11

80
55
128

0 − 11
640 0 11

256 − 11
160

11
256 0

1 93
640 −18

5
803
256 − 11

160
99
256 0 1

31
384 0 1125

2816
9
32

125
768

5
66 0 0

7
1408 0 1125

2816
9
32

125
768 0 5

66
5
66

− 5
66 0 0 0 0 − 5

66
5
66

5
66

.

We also present a similar method with p = 7. This also comes from
Fehlberg’s paper, subject to the correction of some minor misprints. The
augmented tableau is
0
2
27

2
27

1
9

1
36

1
12

1
6

1
24 0 1

8
5
12

5
12 0 −25

16
25
16

1
2

1
20 0 0 1

4
1
5

5
6 − 25

108 0 0 125
108 −65

27
125
54

1
6

31
300 0 0 0 61

225 −2
9

13
900

2
3 2 0 0 −53

6
704
45 −107

9
67
90 3

1
3 − 91

108 0 0 23
108 −976

135
311
54 −19

60
17
6 − 1

12

1 2383
4100 0 0 −341

164
4496
1025 −301

82
2133
4100

45
82

45
164

18
41

0 3
205 0 0 0 0 − 6

41 − 3
205 − 3

41
3
41

6
41 0

1 −1777
4100 0 0 −341

164
4496
1025 −289

82
2193
4100

51
82

33
164

12
41 0 1

41
840 0 0 0 0 34

105
9
35

9
35

9
280

9
280

41
840 0 0

0 0 0 0 0 34
105

9
35

9
35

9
280

9
280 0 41

840
41
840

− 41
840 0 0 0 0 0 0 0 0 0 − 41

840
41
840

41
840

.

The two methods presented here, along with some of the other Runge–
Kutta pairs derived by Fehlberg, have been criticized for a reason associated
with computational robustness. This is that the two quadrature formulae
characterized by the vectors b and b̂ are identical. Hence, if the differential
equation being solved is approximately equal to a pure quadrature problem,
then error estimates will be too optimistic.

210 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Although the methods were intended by Fehlberg to be used as order p
schemes together with asymptotically correct error estimators, such methods
are commonly implemented in a slightly different way. Many numerical
analysts argue that it is wasteful to propagate a low order approximation
when a higher order approximation is available. This means that the method
(A, b̂ , c), rather than (A, b , c), would be used to produce output values. The
order p+1 method will have a different stability region than that of the order
p method, and this needs to be taken into account. Also there is no longer an
asymptotically correct error estimator available. Many practical codes have no
trouble using the difference of the order p and order p + 1 approximations to
control stepsize, even though it is the higher order result that is propagated.

335 The methods of Verner

The methods of Verner overcome the fault inherent in many of the Fehlberg
methods, that the two embedded methods both have the same underlying
quadrature formula. The following method from Verner (1978) consists of a
fifth order method which uses just the first six stages together with a sixth
order method based on all of the eight stages. Denote the two output coefficient
vectors by b and b̂ , respectively. As usual we give the difference b̂ − b which
is used for error estimation purposes:

0
1
18

1
18

1
6 − 1

12
1
4

2
9 − 2

81
4
27

8
81

2
3

40
33 − 4

11 −56
11

54
11

1 −369
73

72
73

5380
219 −12285

584
2695
1752

8
9 −8716

891
656
297

39520
891 −416

11
52
27 0

1 3015
256 −9

4 −4219
78

5985
128 −539

384 0 693
3328

3
80 0 4

25
243
1120

77
160

73
700 0 0

57
640 0 −16

65
1377
2240

121
320 0 891

8320
2
35

33
640 0 −132

325
891
2240 − 33

320 − 73
700

891
8320

2
35

.

As for the Fehlberg methods, we have a choice as to whether we use the
fifth or sixth order approximation as output for propagation purposes. Even
though the sixth order choice leaves us without an asymptotically correct
local error estimator, the use of this more accurate approximation has definite
advantages. In Figure 335(i) the stability regions for the two approximations
are plotted. It is clear that stability considerations favour the higher order
method.

RUNGE–KUTTA METHODS 211

−2−4

2i

−2i

0

p
=

5p
=

6

Figure 335(i) Stability regions of embedded Verner method with orders 5 and 6

336 The methods of Dormand and Prince

If it is accepted that in using a Runge–Kutta pair, comprising methods of
orders p and p + 1, it is the higher order member of the pair that is going to
be propagated, then it is logical to take some care over the properties of this
order p+1 method. In the methods introduced in Dormand and Prince (1980),
this point of view is adopted. The first of these method pairs, referred to by
the authors as ‘RK5(4)7M’, is designed to have a low value of the 2-norm of
the vector of sixth order error coefficients. This method has the tableau

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45 −56

15
32
9

8
9

19372
6561 −25360

2187
64448
6561 −212

729

1 9017
3168 −355

33
46732
5247

49
176 − 5103

18656

1 35
384 0 500

1113
125
192 −2187

6784
11
84

35
384 0 500

1113
125
192 −2187

6784
11
84 0

5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

− 71
57600 0 71

16695 − 71
1920

17253
339200 − 22

525
1
40

.

(336a)

It is emphasized that the first of the output approximations has order p+1 = 5
and is the result propagated. This method, like those derived in Subsection
333, have the so-called FSAL (‘first same as last’) property in which the

212 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

vector b , corresponding to the output approximation, has its last component
zero and is in fact identical to the last row of A. This means that, while
this particular method has seven stages, it operates as though it only had six
because the evaluation of the seventh and last stage derivative can be retained
to serve as the first stage derivative for the subsequent step.

An alternative choice of free parameters leads to the following method:

0
2
9

2
9

1
3

1
12

1
4

5
9

55
324 − 25

108
50
81

2
3

83
330 −13

22
61
66

9
110

1 −19
28

9
4

1
7 −27

7
22
7

1 19
200 0 3

5 −243
400

33
40

7
80

19
200 0 3

5 −243
400

33
40

7
80 0

431
5000 0 333

500 − 7857
10000

957
1000

193
2000 − 1

50

− 11
1250 0 33

500 − 891
5000

33
250

9
1000 − 1

50

.

(336b)

Although this has larger error constants overall (as measured by the 2-norm of
the sixth order error vector), it has the advantage of a longer stability interval
than that of (336a).

For comparison, a method pair with exactly six stages (but of course without
the FSAL property) was also presented in the Dormand and Prince paper.
This method, given by

0
1
5

1
5

3
10

3
40

9
40

3
5

3
10 − 9

10
6
5

2
3

226
729 −25

27
880
729

55
729

1 −181
270

5
2 −266

297 −91
27

189
55

19
216 0 1000

2079 −125
216

81
88

5
56

31
540 0 190

297 −145
108

351
220

1
20

− 11
360 0 10

63 −55
72

27
40 − 11

280

,

seems to be less efficient than the FSAL method.
In the derivation of these method pairs, some attention is devoted to the

properties of the approximation which is not propagated. In particular, care is
taken to ensure that this approximation has an acceptable stability region. In

RUNGE–KUTTA METHODS 213

any implementation of these methods, b̂ does not play a direct role because
stepsize is controlled using the vector of coefficients d = b̂ − b . Rescaling
this vector by a non-zero factor is then equivalent to rescaling the user-
imposed tolerance. From this point of view, the restriction of methods to those
for which the non-propagated approximation has good stability properties is
unnecessary.

Exercises 33

33.1 To overcome the perceived disadvantage of using Richardson extrapo-
lation as in Subsection 331, is it feasible to modify the method so that
a proportion of the estimated error (331c) is subtracted from the result
ŷn?

33.2 Find a problem for which the Merson method gives reasonable error
estimating performance.

33.3 Find a problem which exposes the error estimating deficiencies of the
Merson method.

33.4 Find a method of order 3 embedded in order 4, based on equations
(333h)–(333k) with B = 1

6 , c2 = 2
3 , c3 = 1

3 .

33.5 Find an example of a differential equation system for which the methods
given in Subsection 334 are likely to have misleading error estimates.

34 Implicit Runge–Kutta Methods

340 Introduction

The possibility that the coefficient matrix A in a Runge–Kutta method might
not be strictly lower triangular has very important consequences. These more
general methods, known as ‘implicit Runge–Kutta methods’, are difficult
to actually use, because the explicit stage-by-stage implementation scheme
enjoyed by explicit methods is no longer available and needs to be replaced
by an iterative computation. However, there are several very good reasons,
both theoretical and practical, for moving these methods into the centre of
our attention. Perhaps the most important theoretical reason for regarding
implicit methods as the standard examples of Runge–Kutta methods is the
fact that implicit methods have a group structure. We explore this in detail
in Section 38. In the explicit case, methods do not have explicit methods
as inverses, and thus explicit methods possess only a semi-group structure.
Stiff problems cannot be solved efficiently using explicit methods: this fact is
the most important practical reason for paying special attention to implicit
methods. However, there are other problem classes, such as differential-
algebraic equations, for which implicit Runge–Kutta methods also have a
vital role.

214 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

341 Solvability of implicit equations

As we have remarked, explicit evaluation of the stages is not, in general,
possible for an implicit Runge–Kutta method. However, under mild
assumptions on the smoothness of the function f it is easy to see that, for
sufficiently small h, the values of Y1, Y2, . . . , Ys, and hence the output from
a step, exist and are unique. Suppose that f satisfies a Lipschitz condition

‖f(η) − f(η)‖ ≤ L‖η − η‖

and consider the stages in a step with size h from initial value y0. We can
identify the values of Yi, i = 1, 2, . . . , s, as comprising the components of a
vector in RsN which is a fixed point of the mapping

Y =

Y1

Y2

...
Ys

→ φ(Y) =

y0 + h

∑s
i=1 a1if(Yi)

y0 + h
∑s

i=1 a2if(Yi)
...

y0 + h
∑s

i=1 asif(Yi)

 .

Define a metric on RsN by the formula

ρ(Y, Y) =
s

max
i=1

‖Yi − Y i‖,

and estimate ρ(φ(Y), φ(Y)) as follows:

ρ(φ(Y), φ(Y)) =
s

max
i=1

‖
s∑

j=1

haij‖f(Yj) − f(Yj)‖

≤ |h| s
max
i=1

s∑
j=1

|aij |L‖Yj − Y j‖

≤ |h|L‖A‖∞
s

max
j=1

‖Yj − Y j‖

≤ |h|L‖A‖∞ρ(Y, Y),

so that the conditions for the contraction mapping principle are satisfied as
long as

|h| ≤ (L‖A‖∞)−1.

In practice, this result is of little value, because implicit Runge–Kutta
methods are usually used only for stiff problems for which L is typically
unreasonably large. In this case it is usually more efficient to use some variant
of the Newton method. We discuss this question further in Subsection 360.

RUNGE–KUTTA METHODS 215

342 Methods based on Gaussian quadrature

We recall the Legendre polynomials on the interval [0, 1]

P ∗
0 (x) = 1,

P ∗
1 (x) = 2x − 1,

P ∗
2 (x) = 6x2 − 6x + 1,

P ∗
3 (x) = 20x3 − 30x2 + 12x − 1,

...
...

where we use the notation P ∗
n for the member of the sequence with degree

n. Note that P ∗
n is related to Pn, the Legendre polynomials on the standard

symmetric interval [−1, 1], by P ∗
n(x) = Pn(2x−1). Amongst the rich collection

of properties of this polynomial sequence, we state:

Lemma 342A There exist polynomials P ∗
n : [0, 1] → R, of degrees n, for

n = 0, 1, 2, . . . with the properties that∫ 1

0

P ∗
m(x)P ∗

n(x)dx = 0, m �= n, (342a)

P ∗
n(1) = 1, n = 0, 1, 2, (342b)

Furthermore, the polynomials defined by (342a) and (342b) have the following
additional properties:

P ∗
n(1 − x) = (−1)nP ∗

n(x), n = 0, 1, 2, . . . , (342c)∫ 1

0

P ∗
n(x)2dx =

1
2n + 1

, n = 0, 1, 2, . . . , (342d)

P ∗
n(x) =

1
n!

(
d

dx

)n

(x2 − x)n, n = 0, 1, 2, . . . , (342e)

nP ∗
n(x) = (2x−1)(2n−1)P ∗

n−1(x)−(n−1)P ∗
n−2(x), n=2, 3, 4, . . . ,

(342f)

P ∗
n has n distinct real zeros in the interval (0, 1), n=0, 1, 2, (342g)

Proof. We give only outline proofs of these well-known results. The
orthogonality property (342a), of the polynomials defined by (342e), follows
by repeated integration by parts. The value at x = 1 follows by substituting
x = 1 + ξ in (342e) and evaluating the coefficient of the lowest degree term.
The fact that P ∗

n is an even or odd polynomial in 2x− 1, as stated in (342c),
follows from (342e). The highest degree coefficients in P ∗

n and P ∗
n−1 can be

compared so that nP ∗
n(x) − (2x − 1)(2n − 1)P ∗

n−1(x) is a polynomial, Q say,
of degree less than n. Because Q has the same parity as n, it is of degree

216 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

less than n − 1. A simple calculation shows that Q is orthogonal to P ∗
k for

k < n − 2. Hence, (342f) follows except for the value of the P ∗
n−2 coefficient,

which is resolved by substituting x = 1. The final result (342g) is proved by
supposing, on the contrary, that P ∗

n(x) = Q(x)R(x), where the polynomial
factors Q and R have degrees m < n and n − m, respectively, and where R
has no zeros in (0, 1). We now find that

∫ 1

0 P ∗
n(x)Q(x)dx = 0, even though the

integrand is not zero and has a constant sign. �

In preparation for constructing a Runge–Kutta method based on the zeros
ci, i = 1, 2, . . . , s of P ∗

s , we look at the associated quadrature formula.

Lemma 342B Let c1, c2, . . . denote the zeros of P ∗
s . Then there exist positive

numbers b1, b2, . . . , bs such that∫ 1

0

φ(x)dx =
s∑

i=1

biφ(ci), (342h)

for any polynomial of degree less than 2s. The bi are unique.

Proof. Choose bi, i = 1, 2, . . . , s, so that (342h) holds for any φ of degree less
than s. Because the ci are distinct the choice of the bi is unique. To prove
that (342h) holds for degree up to 2s − 1, write

φ(x) = P ∗
s (x)Q(x) + R(x),

where the quotient Q and the remainder R have degrees not exceeding s− 1.
We now have∫ 1

0

φ(x)dx =
∫ 1

0

P ∗
s (x)Q(x)dx +

∫ 1

0

R(x)dx = 0 +
s∑

i=1

biR(ci) =
s∑

i=1

biφ(ci).

To prove the bi are positive, let φ(x) denote the square of the polynomial
formed by dividing P ∗

s (x) by x − ci. Substitute into (342h), and the result
follows. �

We note that the choice of the ci as the zeros of P ∗
s is the only one possible

for (342h) to hold for φ of degree as high as 2s − 1. If this were not the case,
let

S(x) =
s∏

i=1

(x − ci)

and substitute φ(x) = S(x)Q(x) for any polynomial Q of degree less than s.
It is found that S is orthogonal to all polynomials of lower degree and hence,
apart from a scale factor, is identical to P ∗

s .
We now consider the possibility of constructing an s-stage implicit Runge–

Kutta method with order 2s. If such a method exists, then the values of the

RUNGE–KUTTA METHODS 217

vectors c and b are known. In the case s = 2 we can explore the possibility
of choosing the only free parameters that remain, to satisfy four additional
order conditions. Surprisingly, this can be done. Write the tableau in the form

1
2 −

√
3

6 a11
1
2 −

√
3

6 − a11

1
2 +

√
3

6
1
2 +

√
3

6 − a22 a22

1
2

1
2

. (342i)

For the trees , , , , the order conditions are satisfied. These are just the
B(4) conditions introduced in Subsection 321. The remaining trees and the
conditions that result from substituting the values from (342i) and simplifying
are:

a11 = a22,

(1 −
√

3)a11 + (1 +
√

3)a22 =
1
2
,

a11 = a22,

(1 +
√

3)a11 + (1 −
√

3)a22 + 2
√

3(a2
11 − a2

22) =
1
2
.

These are all satisfied by a11 = a22 = 1
4 .

We also notice that C(2) and D(2) are satisfied by these values, and
it is natural to ask if it is possible, in general, to satisfy both C(s) and
D(s) assuming that the b and c vectors have been chosen to satisfy the
quadrature conditions. A crucial link in the chain connecting these conditions
is E(s, s), given by (321c), and we present a result which expresses the essential
connections between them. It will be convenient to write G(η) to represent
the fact that a given Runge–Kutta method has order η.

Theorem 342C

G(2s) ⇒ B(2s), (342j)
G(2s) ⇒ E(s, s), (342k)

B(2s) ∧ C(s) ∧ D(s) ⇒ G(2s), (342l)
B(2s) ∧ C(s) ⇒ E(s, s), (342m)

B(2s) ∧ E(s, s) ⇒ C(s), (342n)
B(2s) ∧ D(s) ⇒ E(s, s), (342o)

B(2s) ∧ E(s, s) ⇒ D(s). (342p)

Proof. The first two results (342j), (342k) are consequences of the order
conditions. Given that C(s) is true, all order conditions based on trees
containing the structure · · · [τk−1] · · · , with k ≤ s, can be removed, as we

218 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

B(2s)

C(s)

∧ ∧

∧ ∧

D(s)

E(s, s)

G(2s)

∧B(2s)

C(s)

∧ ∧

∧ ∧

D(s)

E(s, s)

G(2s)

∧

Figure 342(i) Schema representing Theorem 342C

saw in Subsection 321. Similarly, the condition D(s) enables us to remove
from consideration all trees of the form [τk−1[· · ·]]. Hence, if both C(s) and
D(s) are true, the only trees remaining are those associated with the trees
covered by B(2s). Hence, (342l) follows. Multiply the matrix of quantities
that must be zero according to the C(s) condition

∑
j a1j − c1

∑
j a1jcj − 1

2c2
1 · · ·

∑
j a1jc

s−1
j − 1

s cs
1∑

j a2j − c2

∑
j a2jcj − 1

2c2
2 · · ·

∑
j a2jc

s−1
j − 1

s cs
2

...
...

...∑
j asj − cs

∑
j asjcj − 1

2c2
s · · ·

∑
j asjc

s−1
j − 1

s cs
s

by the non-singular matrix

b1 b2 · · · bs

b1c1 b2c2 · · · bscs

...
...

...
b1c

s−1
1 b2c

s−1
2 · · · bsc

s−1
s

and the result is the matrix of E(s, s) conditions. Hence, (342m) follows and,
because the matrix multiplier is non-singular, (342n) also follows. The final
results (342o) and (342p) are proved in similar way. �

A schema summarizing Theorem 342C is shown in Figure 342(i). To turn
this result into a recipe for constructing methods of order 2s we have:

RUNGE–KUTTA METHODS 219

Corollary 342D A Runge–Kutta method has order 2s if and only if its
coefficients are chosen as follows:
(i) Choose c1, c2, . . . , cs as the zeros of P ∗

s .
(ii) Choose b1, b2, . . . , bs to satisfy the B(s) condition.
(iii) Choose aij, i, j = 1, 2, . . . , s, to satisfy the C(s) condition.

Proof. If the method has order 2s then B(2s) is satisfied. This implies (i)
and (ii). Because the order is 2s, E(s, s) is satisfied and this, together with
B(2s), implies (iii). Conversely, if (i) and (ii) are satisfied, then B(2s) holds
and this in turn implies E(s, s). This fact, together with B(2s), implies D(s).
Finally, use (342l) to complete the proof. �

We conclude this introduction to the Gauss methods by listing the tableaux
for s = 1, 2, 3 and orders 2, 4, 6, respectively:

s = 1, p = 2,
1
2

1
2

1
;

s = 2, p = 4,
1
2 −

√
3

6
1
4

1
4 −

√
3

6
1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

;

s = 3, p = 6,

1
2 −

√
15

10
5
36

2
9 −

√
15

15
5
36 −

√
15

30
1
2

5
36 +

√
15

24
2
9

5
36 −

√
15

24
1
2 +

√
15

10
5
36 +

√
15

30
2
9 +

√
15

15
5
36

5
18

4
9

5
18

.

343 Reflected methods

Given a Runge–Kutta method,

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
...

cs as1 as2 · · · ass

b1 b2 · · · bs

(343a)

220 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

we construct a method which exactly undoes the work of the given method.
If the signs of the coefficients are then all reversed, the resulting method is
known as the ‘reflection’ (Scherer, 1977, 1978) of the original method. Because
the exact solution is its own reflection, it is natural to consider whether
Runge–Kutta methods that have this property have any advantage over other
methods. In particular, the Gauss methods are their own reflections, as we
will see. Reflected methods are now commonly known as ‘adjoint methods’;
for references to modern applications and research, see Hairer, Lubich and
Wanner (2006).

For method (343a), the stages and the final output at the end of step n are
given by

Yi = yn−1 + h
s∑

j=1

aijf(Yj), i = 1, 2, . . . , s, (343b)

yn = yn−1 + h

s∑
j=1

bjf(Yj). (343c)

Subtract (343c) from (343b) so that the stage values are written in terms of
the result found at the end of the step. Also rearrange (343c) so that it gives
yn−1 in terms of yn. Thus, the result that works in the reverse direction is
given by the equations

Yi = yn + h

s∑
j=1

(aij − bj)f(Yj), i = 1, 2, . . . , s,

yn−1 = yn + h
s∑

j=1

(−bj)f(Yj).

This reversed method has tableau

c1 −
∑s

j=1 bj a11 − b1 a12 − b2 · · · a1s − bs

c2 −
∑s

j=1 bj a21 − b1 a22 − b2 · · · a2s − bs

...
...

...
...

cs −
∑s

j=1 bj as1 − b1 as2 − b2 · · · ass − bs

−b1 −b2 · · · −bs

.

Reverse the signs and we have the tableau for the reflection of (343a)∑s
j=1 bj − c1 b1 − a11 b2 − a12 · · · bs − a1s∑s
j=1 bj − c2 b1 − a21 b2 − a22 · · · bs − a2s

...
...

...
...∑s

j=1 bj − cs b1 − as1 b2 − as2 · · · bs − ass

b1 b2 · · · bs

.

RUNGE–KUTTA METHODS 221

It is easy to verify the following result, which we present without proof.

Theorem 343A The reflection of the reflection of a Runge–Kutta method is
the original method.

If a method satisfies some of the simplifying assumptions introduced in
Subsection 321, then we consider the possibility that the reflection of the
method satisfies corresponding conditions. To enable us to express these
connections conveniently, we write B̃(η), C̃(η), D̃(η) and Ẽ(η, ζ) to represent
B(η), C(η), D(η) and E(η, ζ), respectively, but with reference to the reflected
method. We then have:

Theorem 343B If η and ζ are positive integers, then

B(η) ⇒ B̃(η), (343d)

B(η) ∧ C(η) ⇒ C̃(η), (343e)

B(η) ∧ D(η) ⇒ D̃(η), (343f)

B(η + ζ) ∧ E(η, ζ) ⇒ Ẽ(η, ζ). (343g)

Proof. Let P and Q be arbitrary polynomials of degrees less than η and
less than ζ, respectively. By using the standard polynomial basis, we see that
B(η), C(η), D(η) and E(η, ζ) are equivalent respectively to the statements

s∑
j=1

bjP (cj) =
∫ 1

0

P (x)dx, (343h)

s∑
j=1

aijP (cj) =
∫ ci

0

P (x)dx, i = 1, 2, . . . , s, (343i)

s∑
i=1

biP (ci)aij = bj

∫ 1

cj

P (x)dx, j = 1, 2, . . . , s, (343j)

s∑
i,j=1

biP (ci)aijQ(cj) =
∫ 1

0

P (x)
(∫ x

0

Q(x)dx

)
dx. (343k)

In each part of the result B(η) holds with η ≥ 1, and hence we can assume
that

∑s
i=1 bi = 1. Hence the reflected tableau can be assumed to be

1 − c1 b1 − a11 b2 − a12 · · · bs − a1s

1 − c2 b1 − a21 b2 − a22 · · · bs − a2s

...
...

...
...

1 − cs b1 − as1 b2 − as2 · · · bs − ass

b1 b2 · · · bs

.

222 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

To prove (343d) we have, using (343h),

s∑
j=1

bjP (1 − cj) =
∫ 1

0

P (1 − x)dx =
∫ 1

0

P (x)dx.

To prove (343e) we use (343i) to obtain

s∑
j=1

(bj − aij)P (1 − cj) =
∫ 1

0

P (x)dx −
∫ ci

0

P (1 − x)dx

=
∫ 1

0

P (x)dx −
∫ 1

1−ci

P (x)dx

=
∫ 1−ci

0

P (x)dx.

Similarly, we prove (343f) using (343j):

s∑
i=1

biP (1 − ci)(bj − aij) = bj

∫ 1

0

P (x)dx − bj

∫ 1

cj

P (1 − x)dx

= bj

(∫ 1

0

P (x)dx −
∫ 1−cj

0

P (x)dx

)
= bj

∫ 1

1−cj

P (x)dx.

Finally, use (343k) to prove (343g):

s∑
i,j=1

biP (1 − ci)(bj − aij)Q(1 − cj)

=
∫ 1

0

P (x)dx

∫ 1

0

Q(x)dx −
∫ 1

0

P (1 − x)
(∫ x

0

Q(1 − x)dx

)
dx

=
∫ 1

0

P (x)dx

∫ 1

0

Q(x)dx −
∫ 1

0

P (1 − x)
(∫ 1

1−x

Q(x)dx

)
dx

=
∫ 1

0

P (x)dx

∫ 1

0

Q(x)dx −
∫ 1

0

P (x)
(∫ 1

x

Q(x)dx

)
dx

=
∫ 1

0

P (x)
(∫ x

0

Q(x)dx

)
dx. �

344 Methods based on Radau and Lobatto quadrature

It will be shown in Subsection 353 that the Gauss methods have stability
regions equal to exactly the left half-plane, and they are therefore A-stable.

RUNGE–KUTTA METHODS 223

For many stiff problems, it is desirable to sacrifice order to gain L-stability,
so that the stability function satisfies the property lim|z|→∞ |R(z)| = 0. We
explore methods based on quadrature formulae of orders 2s − 1 or 2s − 2.
Instead of choosing c1, c2, . . . , cs to obtain as high a degree as possible for
polynomials φ such that ∫ 1

0

φ(x)dx =
s∑

i=1

biφ(ci), (344a)

we choose either (i) c1 = 0, (ii) cs = 1 or (iii) c1 = 0 and cs = 1. The remaining
unspecified ci are then chosen to make (344a) true for a polynomial of degree
as high as is still possible.

A ‘Radau I quadrature formula’ is an interpolational quadrature formula
on [0, 1] where the abscissae are chosen as the zeros of P ∗

s (x) + P ∗
s−1(x); a

‘Radau II quadrature formula’ is an interpolational quadrature formula on
[0, 1] where the abscissae are chosen as the zeros of P ∗

s (x) − P ∗
s−1(x) and

a ‘Lobatto quadrature formula’ is an interpolational quadrature formula on
[0, 1] where the abscissae are chosen as the zeros of P ∗

s (x) − P ∗
s−2(x). Note

that ‘Lobatto’ is sometimes referred to as ‘Lobatto III’, to bring the naming
of these formulae into a consistent pattern. These three quadrature formulae
are the ones sought. We have:

Theorem 344A Let c1 < c2 < · · · < cs be chosen as abscissae of the Radau
I, the Radau II or the Lobatto quadrature formula, respectively. Then:

I For the Radau I formula, c1 = 0. This formula is exact for polynomials
of degree up to 2s − 2.

II For the Radau II formula, cs = 1. This formula is exact for polynomials
of degree up to 2s − 2.

III For the Lobatto formula, c1 = 0, cs = 1. This formula is exact for
polynomials of degree up to 2s − 3.

Furthermore, for each of the three quadrature formulae, ci ∈ [0, 1], for
i = 1, 2, . . . , s, and bi > 0, for i = 1, 2, . . . , s.

Proof. The fact that x = 1 is a zero of P ∗
s (x)−P ∗

s−1(x) and of P ∗
s (x)−P ∗

s−2(x)
follows from (342b). The fact that x = 0 is a zero of P ∗

s (x) + P ∗
s−1(x) and of

P ∗
s (x) − P ∗

s−2(x) follows from (342b) and (342c), with x = 1. Let φ denote
an arbitrary polynomial of degree not exceeding 2s − 2 in the Radau cases
or 2s − 3 in the Lobatto case. Divide this by the polynomial satisfied by the
abscissae and write Q for the quotient and R for the remainder. We have in
the three cases,

φ(x) = Q(x)(P ∗
s (x) + P ∗

s−1(x)) + R(x), Radau I case,
φ(x) = Q(x)(P ∗

s (x) − P ∗
s−1(x)) + R(x), Radau II case,

φ(x) = Q(x)(P ∗
s (x) − P ∗

s−2(x)) + R(x), Lobatto case.

224 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Table 344(I) Methods in the Radau and Lobatto families

Name Choice of b and c Choice of A

Radau I Radau I quadrature C(s)
Radau IA Radau I quadrature The reflections of Radau II
Radau II Radau II quadrature D(s)
Radau IIA Radau II quadrature The reflections of Radau I
Lobatto III Lobatto quadrature C(s − 1), a1s = a2s = · · · = ass = 0
Lobatto IIIA Lobatto quadrature C(s)
Lobatto IIIB Lobatto quadrature D(s)
Lobatto IIIC Lobatto quadrature The reflections of Lobatto III

Evaluate the approximate integral of φ written in this form, and the terms
involving Q are zero because of orthogonality, and the terms involving R are
exact because of the interpolational nature of the quadrature.

In the Radau cases, to prove that the abscissae are always in [0, 1] and that
the weights are positive, use a homotopy t
→ P ∗

s ± tP ∗
s−1, where the upper

sign is used for Radau I and the lower sign for Radau II. If any of the weights
becomes zero, then for this value of t, the quadrature formula has a greater
order than is possible. Furthermore, no abscissae can move outside [0, 1], until
t reaches a value t = 1. The proof is slightly more complicated in the Lobatto
case, where we use the homotopy t
→ P ∗

s − tP ∗
s−2. Because of the symmetry of

the quadrature formula for all t, c1 = 0 and cs = 1 both occur at the same time
and this is when t = 1. If a weight passes through zero, then we again obtain
a contradiction to the optimality of Gaussian quadrature because two weights
vanish simultaneously. The one case not covered by this argument is when s
is odd and the weight corresponding to c(s+1)/2 = 1

2 vanishes. However, it is
impossible that as t moves from 0 to 1, it passes through a point for which
this happens because in this case the remaining abscissae would have to be
the zeros of P ∗

s−1. By (342f), this occurs only for t = −(n− 1)/n, and this has
the wrong sign. �

Given the choice of c and b in accordance with the requirements of Radau
I, Radau II or Lobatto quadrature, the choice of A to yield a Runge–Kutta
of the same order as for the underlying quadrature formula remains. The
most obvious choice, of making the methods as close to explicit as possible, is
inappropriate for stiff problems, but makes the method more efficient for non-
stiff problems. Other choices can be made in terms of the C and D conditions,
and in terms of specific choices of specific elements of A. To distinguish these
from the simple (closest to explicit) choices, a letter A, B or C is added to
the designation for the method. A summary of many of the methods in the
Radau and Lobatto families is given in Table 344(I).

RUNGE–KUTTA METHODS 225

Selected examples of these methods are as follows, where we note that
Lobatto IIIB with s = 2 does not exist:

Radau I (s = 2, p = 3),
0 0 0
2
3

1
3

1
3

1
4

3
4

Radau IA (s = 2, p = 3),
0 1

4 −1
4

2
3

1
4

5
12

1
4

3
4

Radau II (s = 2, p = 3),
1
3

1
3 0

1 1 0
3
4

1
4

Radau IIA (s = 2, p = 3),
1
3

5
12 − 1

12

1 3
4

1
4

3
4

1
4

Radau I (s = 3, p = 5),

0 0 0 0
6−

√
6

10
9+

√
6

75
24+

√
6

120
168−73

√
6

600
6+

√
6

10
9−

√
6

75
168+73

√
6

600
24−

√
6

120
1
9

16+
√

6
36

16−
√

6
36

Radau IA (s = 3, p = 5),

0 1
9

−1−
√

6
18

−1+
√

6
18

6−
√

6
10

1
9

88+7
√

6
360

88−43
√

6
360

6+
√

6
10

1
9

88+43
√

6
360

88−7
√

6
360

1
9

16+
√

6
36

16−
√

6
36

226 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Radau II (s = 3, p = 5),

4−
√

6
10

24−
√

6
120

24−11
√

6
120 0

4+
√

6
10

24+11
√

6
120

24+
√

6
120 0

1 6−
√

6
12

6+
√

6
12 0

16−
√

6
36

16+
√

6
36

1
9

Radau IIA (s = 3, p = 5),

4−
√

6
10

88−7
√

6
360

296−169
√

6
1800

−2+3
√

6
225

4+
√

6
10

296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

1 16−
√

6
36

16+
√

6
36

1
9

16−
√

6
36

16+
√

6
36

1
9

Lobatto III (s = 2, p = 2),
0 0 0
1 1 0

1
2

1
2

Lobatto IIIA (s = 2, p = 2),
0 0 0
1 1

2
1
2

1
2

1
2

Lobatto IIIC (s = 2, p = 2),
0 1

2 −1
2

1 1
2

1
2

1
2

1
2

Lobatto III (s = 3, p = 4),
0 0 0 0
1
2

1
4

1
4 0

1 0 1 0
1
6

2
3

1
6

RUNGE–KUTTA METHODS 227

Lobatto IIIA (s = 3, p = 4),
0 0 0 0
1
2

5
24

1
3 − 1

24

1 1
6

2
3

1
6

1
6

2
3

1
6

Lobatto IIIB (s = 3, p = 4),
0 1

6 −1
6 0

1
2

1
6

1
3 0

1 1
6

5
6 0

1
6

2
3

1
6

Lobatto IIIC (s = 3, p = 4),
0 1

6 −1
3

1
6

1
2

1
6

5
12 − 1

12

1 1
6

2
3

1
6

1
6

2
3

1
6

Lobatto III (s = 4, p = 6),
0 0 0 0 0

5−
√

5
10

5+
√

5
60

1
6

15−7
√

5
60 0

5+
√

5
10

5−
√

5
60

15+7
√

5
60

1
6 0

1 1
6

5−
√

5
12

5+
√

5
12 0

1
12

5
12

5
12

1
12

Lobatto IIIA (s = 4, p = 6),

0 0 0 0 0
5−

√
5

10
11+

√
5

120
25−

√
5

120
25−13

√
5

120
−1+

√
5

120
5+

√
5

10
11−

√
5

120
25+13

√
5

120
25+

√
5

120
−1−

√
5

120

1 1
12

5
12

5
12

1
12

1
12

5
12

5
12

1
12

228 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Lobatto IIIB (s = 4, p = 6),
0 1

12
−1−

√
5

24
−1+

√
5

24 0
5−

√
5

10
1
12

25+
√

5
120

25−13
√

5
120 0

5+
√

5
10

1
12

25+13
√

5
120

25−
√

5
120 0

1 1
12

11−
√

5
120

11+
√

5
120 0

1
12

5
12

5
12

1
12

Lobatto IIIC (s = 4, p = 6),
0 1

12 −
√

5
12

√
5

12 − 1
12

5−
√

5
10

1
12

1
4

10−7
√

5
60

√
5

60
5+

√
5

10
1
12

10+7
√

5
60

1
4 −

√
5

60

1 1
12

5
12

5
12

1
12

1
12

5
12

5
12

1
12

Lobatto III (s = 5, p = 8),
0 0 0 0 0 0

7−
√

21
14

1
14

1
9

13−3
√

21
63

14−3
√

21
126 0

1
2

1
32

91+21
√

21
576

11
72

91−21
√

21
576 0

7+
√

21
14

1
14

14+3
√

21
126

13+3
√

21
63

1
9 0

1 0 7
18

2
9

7
18 0

1
20

49
180

16
45

49
180

1
20

Lobatto IIIA (s = 5, p = 8),

0 0 0 0 0 0
7−

√
21

14
119+3

√
21

1960
343−9

√
21

2520
392−96

√
21

2205
343−69

√
21

2520
−21+3

√
21

1960
1
2

13
320

392+105
√

21
2880

8
45

392−105
√

21
2880

3
320

7+
√

21
14

119−3
√

21
1960

343+69
√

21
2520

392+96
√

21
2205

343+9
√

21
2520

−21−3
√

21
1960

1 1
20

49
180

16
45

49
180

1
20

1
20

49
180

16
45

49
180

1
20

RUNGE–KUTTA METHODS 229

Lobatto IIIB (s = 5, p = 8),
0 1

20
−7−

√
21

120
1
15

−7+
√

21
120 0

7−
√

21
14

1
20

343+9
√

21
2520

56−15
√

21
315

343−69
√

21
2520 0

1
2

1
20

49+12
√

12
360

8
45

49−12
√

12
360 0

7+
√

21
14

1
20

343+69
√

21
2520

56+15
√

21
315

343−9
√

21
2520 0

1 1
20

119−3
√

21
360

13
45

119+3
√

21
360 0

1
20

49
180

16
45

49
180

1
20

Lobatto IIIC (s = 5, p = 8),

0 1
20 − 7

60
2
15 − 7

60
1
20

7−
√

21
14

1
20

29
180

47−15
√

21
315

203−30
√

21
1260 − 3

140
1
2

1
20

329+105
√

21
2880

73
360

329−105
√

21
2880

3
160

7+
√

21
14

1
20

203+30
√

21
1260

47+15
√

21
315

29
180 − 3

140

1 1
20

49
180

16
45

49
180

1
20

1
20

49
180

16
45

49
180

1
20

Exercises 34

34.1 Show that there is a unique Runge–Kutta method of order 4 with s = 3
for which A is lower triangular with a11 = a33 = 0. Find the tableau for
this method.

34.2 Show that the implicit Runge–Kutta given by the tableau

0 0 0 0 0
1
4

1
8

1
8 0 0

7
10 − 1

100
14
25

3
20 0

1 2
7 0 5

7 0
1
14

32
81

250
567

5
54

has order 5.

34.3 Find the tableau for the Gauss method with s = 4 and p = 8.

34.4 Show that Gauss methods are invariant under reflection.

230 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

35 Stability of Implicit Runge–Kutta Methods

350 A-stability, A(α)-stability and L-stability

We recall that the stability function for a Runge–Kutta method (238b) is the
rational function

R(z) = 1 + zb (I − zA)−11, (350a)

and that a method is A-stable if

|R(z)| ≤ 1, whenever Re(z) ≤ 0.

For the solution of stiff problems, A-stability is a desirable property, and
there is sometimes a preference for methods to be L-stable; this means that
the method is A-stable and that, in addition,

R(∞) = 0. (350b)

Where A-stability is impossible or difficult to achieve, a weaker property is
acceptable for the solution of many problems.

Definition 350A Let α denote an angle satisfying α ∈ (0, π) and let S(α)
denote the set of points x + iy in the complex plane such that x ≤ 0 and
− tan(α)|x| ≤ y ≤ tan(α)|x|. A Runge–Kutta method with stability function
R(z) is A(α)-stable if |R(z)| ≤ 1 for all z ∈ S(α).

The region S(α) is illustrated in Figure 350(i) in the case of the Runge–Kutta
method

λ λ 0 0
1+λ

2
1−λ
2 λ 0

1 − (1−λ)(1−9λ+6λ2)
1−3λ+6λ2

2(1−λ)(1−6λ+6λ2)
1−3λ+6λ2 λ

1+3λ
6(1−λ)2

2(1−3λ)
3(1−λ)2

1−3λ+6λ2

6(1−λ)2

,
(350c)

where λ ≈ 0.158984 is a zero of 6λ3 − 18λ2 + 9λ − 1. This value of λ was
chosen to ensure that (350b) holds, even though the method is not A-stable.
It is, in fact, A(α)-stable with α ≈ 1.31946 ≈ 75.5996◦.

351 Criteria for A-stability

We first find an alternative expression for the rational function (350a).

Lemma 351A Let (A, b, c) denote a Runge–Kutta method. Then its stability
function is given by

R(z) =
det (I + z(1b − A))

det(I − zA)
.

RUNGE–KUTTA METHODS 231

40i

−40i

50α

α

Figure 350(i) A(α) stability region for the method (350c)

Proof. Because a rank 1 s × s matrix uv has characteristic polynomial
det(Iw−uv) = ws−1(w−v u), a matrix of the form I +uv has characteristic
polynomial (w−1)s−1(w−1−v u) and determinant of the form 1+v u. Hence,

det
(
I + z1b (I − zA)−1

)
= 1 + zb (I − zA)−11 = R(z).

We now note that

I + z(1b − A) =
(
I + z1b (I − zA)−1

)
(I − zA),

so that
det (I + z(1b − A)) = R(z) det(I − zA). �

Now write the stability function of a Runge–Kutta method as the ratio of
two polynomials

R(z) =
N(z)
D(z)

and define the E-polynomial by

E(y) = D(iy)D(−iy) − N(iy)N(−iy).

Theorem 351B A Runge–Kutta method with stability function R(z) =
N(z)/D(z) is A-stable if and only if (a) all poles of R (that is, all zeros
of D) are in the right half-plane and (b) E(y) ≥ 0, for all real y.

232 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Proof. The necessity of (a) follows from the fact that if z∗ is a pole then
limz→z∗ |R(z)| = ∞, and hence |R(z)| > 1, for z close enough to z∗. The
necessity of (b) follows from the fact that E(y) < 0 implies that |R(iy)| > 1,
so that |R(z)| > 1 for some z = −ε + iy in the left half-plane. Sufficiency of
these conditions follows from the fact that (a) implies that R is analytic in
the left half-plane so that, by the maximum modulus principle, |R(z)| > 1 in
this region implies |R(z)| > 1 on the imaginary axis, which contradicts (b). �

352 Padé approximations to the exponential function

Given a function f , assumed to be analytic at zero, with f(0) �= 0, and given
non-negative integers l and m, it is sometimes possible to approximate f by
a rational function

f(z) ≈ N(z)
D(z)

,

with N of degree l and D of degree m and with the error in the approximation
equal to O(zl+m+1). In the special case m = 0, this is exactly the Taylor
expansion of f about z = 0, and when l = 0, D(z)/N(z) is the Taylor
expansion of 1/f(z).

For some specially contrived functions and particular choices of the degrees
l and m, the approximation will not exist. An example of this is

f(z) = 1 + sin(z) ≈ 1 + z − 1
6
z3 + · · · , (352a)

with l = 2, m = 1 because it is impossible to choose a to make the coefficient
of z3 equal to zero in the Taylor expansion of (1 + az)f(z).

When an approximation

f(z) =
Nlm(z)
Dlm(z)

+ O(zl+m+1)

exists, it is known as the ‘(l, m) Padé approximation’ to f . The array of Padé
approximations for l, m = 0, 1, 2, . . . is referred to as ‘the Padé table’ for the
function f .

Padé approximations to the exponential function are especially interesting
to us, because some of them are equal to the rational functions of some
important Gauss, Radau and Lobatto methods. We show that the full Padé
table exists for this function and, at the same time, we find explicit values
for the coefficients in N and D and for the next two terms in the Taylor
series for N(z) − exp(z)D(z). Because it is possible to rescale both N and
D by an arbitrary factor, we specifically choose a normalization for which
N(0) = D(0) = 1.

RUNGE–KUTTA METHODS 233

Theorem 352A Let l, m ≥ 0 be integers and define polynomials Nlm and
Dlm by

Nlm(z) =
l!

(l + m)!

l∑
i=0

(l + m − i)!
i!(l − i)!

zi, (352b)

Dlm(z) =
m!

(l + m)!

m∑
i=0

(l + m − i)!
i!(m − i)!

(−z)i. (352c)

Also define

Clm = (−1)m l!m!
(l + m)!(l + m + 1)!

.

Then

Nlm(z)−exp(z)Dlm(z)+Clmzl+m+1+ m+1
l+m+2Clmzl+m+2 =O(zl+m+3). (352d)

Proof. In the case m = 0, the result is equivalent to the Taylor series for
exp(z); by multiplying both sides of (352d) by exp(−z) we find that the result
is also equivalent to the Taylor series for exp(−z) in the case l = 0. We now
suppose that l ≥ 1 and m ≥ 1, and that (352d) has been proved if l is replaced
by l − 1 or m replaced is by m− 1. We deduce the result for the given values
of l and m so that the theorem follows by induction.

Because the result holds with l replaced by l − 1 or with m replaced by
m − 1, we have

Nl−1,m(z) − exp(z)Dl−1,m(z) +
(
1 + m+1

l+m+1z
)

Cl−1,mzl+m = O(zl+m+2),

(352e)

Nl,m−1(z) − exp(z)Dl,m−1(z) +
(
1 + m

l+m+1z
)

Cl,m−1z
l+m = O(zl+m+2).

(352f)

Multiply (352e) by l/(l + m) and (352f) by m/(l + m), and we find that the
coefficient of zl+m has the value

l

l + m
Cl−1,m +

m

l + m
Cl,m−1 = 0.

The coefficient of zl+m+1 is found to be equal to Clm. Next we verify that

l

l + m
Nl−1,m(z) +

m

l + m
Nl,m−1(z) − Nlm(z) = 0 (352g)

and that
l

l + m
Dl−1,m(z) +

m

l + m
Dl,m−1(z) − Dlm(z) = 0. (352h)

234 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Table 352(I) Padé approximations Nlm/Dlm for l, m = 0, 1, 2, 3

��l
m 0 1 2 3
0 1 1+z 1+z+ 1

2 z2 1+z+ 1
2 z2+ 1

6 z3

1 1
1−z

1+ 1
2 z

1− 1
2 z

1+ 2
3 z+ 1

6 z2

1− 1
3 z

1+ 3
4 z+ 1

4 z2+ 1
24 z3

1− 1
4 z

2 1
1−z+ 1

2 z2
1+ 1

3 z

1− 2
3 z+ 1

6 z2
1+ 1

2 z+ 1
12 z2

1− 1
2 z+ 1

12 z2
1+ 3

5 z+ 3
20 z2+ 1

60 z3

1− 2
5 z+ 1

20 z2

3 1
1−z+ 1

2 z2− 1
6 z3

1+ 1
4 z

1− 3
4 z+ 1

4 z2− 1
24 z3

1+ 2
5 z+ 1

20 z2

1− 3
5 z+ 3

20 z2− 1
60 z3

1+ 1
2 z+ 1

10 z2+ 1
120z3

1− 1
2 z+ 1

10 z2− 1
120z3

The coefficient of zi in (352g) is

(l − 1)!(l + m − i − 1)!
(l + m)!i!(l − i)!

(
l(l − i) + ml − l(l + m − i)

)
= 0,

so that (352g) follows. The verification of (352h) is similar and will be omitted.
It now follows that

Nlm(z)−exp(z)Dlm(z)+Clmzl+m+1+ m+1
l+m+2 C̃lmzl+m+2 =O(zl+m+3), (352i)

and we finally need to prove that C̃lm = Clm. Operate on both sides of (352i)
with the operator (d/dz)l+1 and multiply the result by exp(−z). This gives

P (z) +
(

m+1
l+m+2

(l+m+2)!
(m+1)! C̃lm − (l+m+1)!

m! Clm

)
zm+1 = O(zm+2), (352j)

where P is the polynomial of degree m given by

P (z) =
(l + m + 1)!

m!
Clmzm −

(
1 +

d

dz

)l+1

Dlm(z).

It follows from (352j) that C̃lm = Clm. �

The formula we have found for a possible (l, m) Padé approximation to
exp(z) is unique. This is not the case for an arbitrary function f , as the
example of the function given by (352a) shows; the (2, 1) approximation is
not unique. The case of the exponential function is covered by the following
result:

Theorem 352B The function Nlm/Dlm, where the numerator and denomi-
nator are given by (352b) and (352c), is the unique (l, m) Padé approximation
to the exponential function.

Proof. If N̂lm/D̂lm is a second such approximation then, because these
functions differ by O(zl+m+1),

NlmD̂lm − N̂lmDlm = 0,

RUNGE–KUTTA METHODS 235

Table 352(II) Diagonal members of the Padé table Nmm/Dmm for

m = 0, 1, 2, . . . , 7

m
Nmm

Dmm

0 1

1
1 + 1

2z

1 − 1
2z

2
1 + 1

2z + 1
12z2

1 − 1
2z + 1

12z2

3
1 + 1

2z + 1
10z2 + 1

120z3

1 − 1
2z + 1

10z2 − 1
120z3

4
1 + 1

2z + 3
28z2 + 1

84z3 + 1
1680z4

1 − 1
2z + 3

28z2 − 1
84z3 + 1

1680z4

5
1 + 1

2z + 1
9z2 + 1

72z3 + 1
1008z4 + 1

30240z5

1 − 1
2z + 1

9z2 − 1
72z3 + 1

1008z4 − 1
30240z5

6
1 + 1

2z + 5
44z2 + 1

66z3 + 1
792z4 + 1

15840z5 + 1
665280z6

1 − 1
2z + 5

44z2 − 1
66z3 + 1

792z4 − 1
15840z5 + 1

665280z6

7
1 + 1

2z + 3
26z2 + 5

312z3 + 5
3432z4 + 1

11440z5 + 1
308880z6 + 1

17297280z7

1 − 1
2z + 3

26z2 − 5
312z3 + 5

3432z4 − 1
11440z5 + 1

308880z6 − 1
17297280z7

because the expression on the left-hand side is O(zl+m+1), and is at the same
time a polynomial of degree not exceeding l+m. Hence, the only way that two
distinct approximations can exist is when they can be cancelled to a rational
function of lower degrees. This means that for some (l, m) pair, there exists
a Padé approximation for which the error coefficient is zero. However, since
exp(z) is not equal to a rational function, there is some higher exponent k and
a non-zero constant C such that

Nlm(z) − exp(z)Dlm(z) = Czk + O(zk+1), (352k)

with k ≥ l + m + 2. Differentiate (352k) k − m − 1 times, multiply the result
by exp(−z) and then differentiate a further m + 1 times. This leads to the
contradictory conclusion that C = 0. �

Expressions for the (l, m) Padé approximations are given in Table 352(I) for
l, m = 0, 1, 2, 3. To extend the information further, Table 352(II) is presented
to give the values for l = m = 0, 1, 2, . . . , 7. Similar tables are also given for
the first and second sub-diagonals in Tables 352(III) and 352(IV), respectively,
and error constants corresponding to entries in each of these three tables are
presented in Table 352(V).

236 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Table 352(III) First sub-diagonal members of the Padé table Nm−1,m/Dm−1,m

for m = 1, 2, . . . , 7

m
Nm−1,m

Dm−1,m

1
1

1 − z

2
1 + 1

3z

1 − 2
3z + 1

6z2

3
1 + 2

5z + 1
20z2

1 − 3
5z + 3

20z2 − 1
60z3

4
1 + 3

7z + 1
14z2 + 1

210z3

1 − 4
7z + 1

7z2 − 2
105z3 + 1

840z4

5
1 + 4

9z + 1
12z2 + 1

126z3 + 1
3024z4

1 − 5
9z + 5

36z2 − 5
252z3 + 5

3024z4 − 1
15120z5

6
1 + 5

11z + 1
11z2 + 1

99z3 + 1
1584z4 + 1

55440z5

1 − 6
11z + 3

22z2 − 2
99z3 + 1

528z4 − 1
9240z5 + 1

332640z6

7
1 + 6

13z + 5
52z2 + 5

429z3 + 1
1144z4 + 1

25740z5 + 1
1235520z6

1 − 7
13z + 7

52z2 − 35
1716z3 + 7

3432z4 − 7
51480z5 + 7

1235520z6 − 1
8648640z7

For convenience, we write Vmn(z) for the two-dimensional vector whose
first component is Nlm(z) and whose second component is Dlm(z). From the
proof of Theorem 352A, it can be seen that the three such vectors Vl−1,m(z),
Vl,m−1(z) and Vl,m(z) are related by

lVl−1,m(z) + mVl,m−1(z) = (l + m)Vl,m(z).

Many similar relations between neighbouring members of a Padé table exist,
and we present three of them. In each case the relation is between three Padé
vectors of successive denominator degrees.

Theorem 352C If l, m ≥ 2 then

Vlm(z) =
(
1 +

m − l

(l + m)(l + m − 2)
z
)
Vl−1,m−1(z)

+
(l − 1)(m − 1)

(l + m − 1)(l + m − 2)2(l + m − 3)
z2Vl−2,m−2(z).

RUNGE–KUTTA METHODS 237

Table 352(IV) Second sub-diagonal members of the Padé table

Nm−2,m/Dm−2,m for m = 2, 3, . . . , 7

m
Nm−2,m

Dm−2,m

2
1

1 − z + 1
2z2

3
1 + 1

4z

1 − 3
4z + 1

4z2 − 1
24z3

4
1 + 1

3z + 1
30z2

1 − 2
3z + 1

5z2 − 1
30z3 + 1

360z4

5
1 + 3

8z + 3
56z2 + 1

336z3

1 − 5
8z + 5

28z2 − 5
168z3 + 1

336z4 − 1
6720z5

6
1 + 2

5z + 1
15z2 + 1

180z3 + 1
5040z4

1 − 3
5z + 1

6z2 − 1
36z3 + 1

336z4 − 1
5040z5 + 1

151200z6

7
1 + 5

12z + 5
66z2 + 1

132z3 + 1
2376z4 + 1

95040z5

1 − 7
12z + 7

44z2 − 7
264z3 + 7

2376z4 − 7
31680z5 + 1

95040z6 − 1
3991680z7

Proof. Let

V (z) = Vlm(z) −
(
1 +

m − l

(l + m)(l + m − 2)
z
)
Vl−1,m−1(z)

− (l − 1)(m − 1)
(l + m − 1)(l + m − 2)2(l + m − 3)

z2Vl−2,m−2(z).

It is easy to verify that the coefficients of z0, z1 and z2 vanish in both
components of V (z). We also find that

[1 − exp(z)]V (z) = O(zl+m−1).

If V (z) is not the zero vector, we find that

z−2
[
1 − exp(z)

]
V (z) = O(zl+m−3),

contradicting the uniqueness of Padé approximations of degrees (l−2, m−2).
�

Theorems 352D and 352E which follow are proved in the same way as
Theorem 352C and the details are omitted.

238 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Table 352(V) Error constants for diagonal and first two sub-diagonals

m Cm−2,m Cm−1,m Cmm

0 1
1 −1

2 − 1
12

2 1
6

1
72

1
720

3 − 1
480 − 1

7200 − 1
100800

4 1
75600

1
1411200

1
25401600

5 − 1
20321280 − 1

457228800 − 1
10059033600

6 1
8382528000

1
221298739200

1
5753767219200

7 − 1
4931800473600 − 1

149597947699200 − 1
4487938430976000

Theorem 352D If l ≥ 1 and m ≥ 2 then

Vlm(z) =
(

1 − l

(l + m)(l + m − 1)
z

)
Vl,m−1(z)

+
l(m − 1)

(l + m)(l + m − 1)2(l + m − 2)
z2Vl−1,m−2(z).

Theorem 352E If l ≥ 0 and m ≥ 2 then

Vlm(z) =
(
1 − 1

l + m
z
)
Vl+1,m−1(z) +

m − 1
(l + m)2(l + m − 1)

z2Vl,m−2(z).

353 A-stability of Gauss and related methods

We consider the possible A-stability of methods whose stability functions
correspond to members on the diagonal and first two sub-diagonals of the
Padé table for the exponential function. These include the Gauss methods
and the Radau IA and IIA methods as well as the Lobatto IIIC methods.
A corollary is that the Radau IA and IIA methods and the Lobatto IIIC
methods are L-stable.

Theorem 353A Let s be a positive integer and let

R(z) =
N(z)
D(z)

denote the (s − d, s) member of the Padé table for the exponential function,
where d = 0, 1 or 2. Then

|R(z)| ≤ 1,

for all complex z satisfying Rez ≤ 0.

RUNGE–KUTTA METHODS 239

Proof. We use the E-polynomial. Because N(z) = exp(z)D(z) + O(z2s−d+1),
we have

E(y) = D(iy)D(−iy) − N(iy)N(−iy)

= D(iy)D(−iy) − exp(iy)D(iy) exp(−iy)D(−iy) + O(y2s−d+1)

= O(y2s−d+1).

Because E(y) has degree not exceeding 2s and is an even function, either
E(y) = 0, in the case d = 0, or E(y) = Cy2s with C > 0, in the cases d = 1
and d = 2. In all cases, E(y) ≥ 0 for all real y.

To complete the proof, we must show that the denominator of R has no
zeros in the left half-plane. Without loss of generality, we assume that Re z < 0
and we prove that D(z) �= 0. Write D0, D1, . . . , Ds for the denominators of
the sequence of Padé approximations given by

V00, V11, . . . , Vs−1,s−1, Vs−d,s,

so that D(z) = Ds(z). From Theorems 352C, 352D and 352E, we have

Dk(z) = Dk−1(z) +
1

4(2k − 1)(2k − 3)
z2Dk−2, k = 2, 3, . . . , s − 1, (353a)

and
Ds(z) = (1 − αz)Ds−1 + βz2Ds−2, (353b)

where the constants α and β will depend on the value of d and s. However,
α = 0 if d = 0 and α > 0 for d = 1 and d = 2. In all cases, β > 0.

Consider the sequence of complex numbers, ζk, for k = 1, 2, . . . , s, defined
by

ζ1 = 1 − 1
2
z,

ζk = 1 +
1

4(2k − 1)(2k − 3)
z2ζ−1

k−1, k = 2, 3, . . . , s − 1,

ζs = (1 − αz) + βz2ζ−1
s−1.

This means that ζ1/z = −1/2 + 1/z has negative real part. We prove by
induction that ζk/z also has negative real part for k = 2, 3, . . . , s. We see this
by noting that

ζk

z
=

1
z

+
1

4(2k − 1)(2k − 3)

(
ζk−1

z

)−1

, k = 2, 3, . . . , s − 1,

ζs

z
=

1
z
− α + β

(
ζs−1

z

)−1

.

240 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

The fact that Ds(z) cannot vanish now follows by observing that

Ds(z) = ζ1ζ2ζ3 · · · ζs.

Hence, D = Ds does not have a zero in the left half-plane. �

Alternative proofs of this and related results have been given byAxelsson
(1969, 1972), Butcher (1977), Ehle (1973), Ehle and Picel (1975), Watts and
Shampine (1972) and Wright (1970).

354 Order stars

We have identified some members of the Padé table for the exponential
function for which the corresponding numerical methods are A-stable. We
now ask: are there other members of the table with this property? It will be
seen that everything hinges on the value of m−l, the degree of the denominator
minus the degree of the numerator. It is clear that if m− l < 0, A-stability is
impossible, because in this case

|R(z)| → ∞,

as z → ∞, and hence, for some z satisfying Rez < 0, |R(z)| is greater than
1. For m− l ∈ {0, 1, 2}, A-stability follows from Theorem 353A. Special cases
with m− l > 2 suggest that these members of the Padé table are not A-stable.
For the third sub-diagonal, this was proved by Ehle (1969), and for the fourth
and fifth sub-diagonals by Nørsett (1974). Based on these observations, Ehle
(1973) conjectured that no case with m − l > 2 can be A-stable. This result
was eventually proved by Wanner, Hairer and Nørsett (1978), and we devote
this subsection to introducing the approximations considered in that paper
and to proving the Ehle conjecture.

In Subsection 216, we touched on the idea of an order star. Associated with
the stability function R(z) for a Runge–Kutta method, we consider the set of
points in the complex plane such that

| exp(−z)R(z)| > 1.

This is known as the ‘order star’ of the method, and the set of points such
that

| exp(−z)R(z)| < 1

is the ‘dual order star’. The common boundary of these two sets traces out
an interesting path, as we see illustrated in Figure 354(i), for the case of the
(1, 3) Padé approximation given by

R(z) =
1 + 1

4z

1 − 3
4z + 1

4z2 − 1
24z3

.

RUNGE–KUTTA METHODS 241

−2

−2i

2i

Figure 354(i) Order star for the (1, 3) Padé approximation to exp

In this diagram, the dual order star, which can also be described as the
‘relative stability region’, is the interior of the unshaded region. The order
star is the interior of the shaded region.

In Butcher (1987) an attempt was made to present an informal survey
of order stars leading to a proof of the Ehle result. In the present volume,
the discussion of order stars will be even more brief, but will serve as an
introduction to an alternative approach to achieve similar results. In addition
to Wanner, Hairer and Nørsett (1978), the reader is referred to Iserles and
Nørsett (1991) for fuller information and applications of order stars.

The ‘order star’, for a particular rational approximation to the exponential
function, disconnects into ‘fingers’ emanating from the origin, which may be
bounded or not, and similar remarks apply to ‘dual fingers’ which are the
connected components of the dual star. The following statements summarize
the key properties of order stars for applications of the type we are considering.
Because we are including only hints of the proofs, we refer to them as remarks
rather than as lemmas or theorems. Note that S denotes the order star for a
specific ‘method’ and I denotes the imaginary axis.

Remark 354A A method is A-stable if and only if S has no poles in the
negative half-plane and S ∪ I = ∅, because the inclusion of the exponential
factor does not alter the set of poles and does not change the magnitude of the
stability function on I.

Remark 354B There exists ρ0 > 0 such that, for all ρ ≥ ρ0, functions
θ1(ρ) and θ2(ρ) exist such that the intersection of S with the circle |z| = ρ
is the set {ρ exp(iθ) : θ1 < θ < θ2} and where limρ→∞ θ1(ρ) = π/2
and limρ→∞ θ2(ρ) = 3π/2, because at a great distance from the origin, the

242 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Figure 354(ii) Relation between order arrows and order stars

behaviour of the exponential function multiplied by the rational function on
which the order star is based is dominated by the exponential factor.

Remark 354C For a method of order p, the arcs {r exp(i(j + 1
2)π/(p + 1)) :

0 ≤ r}, where j = 0, 1, . . . , 2p + 1, are tangential to the boundary of S at
0, because exp(−z)R(z) = 1 + Czp+1 + O(|z|p+2), so that | exp(−z)R(z)| =
1 + Re(Czp+1) + O(|z|p+2).

It is possible that m bounded fingers can join together to make up a finger
of multiplicity m. Similarly, m dual fingers in S can combine to form a dual
finger with multiplicity m.

Remark 354D Each bounded finger of S, with multiplicity m, contains
at least m poles, counted with their multiplicities, because, by the Cauchy–
Riemann conditions, the argument of exp(−z)R(z) increases monotonically
as the boundary of the order star is traced out in a counter-clockwise direction.

In the following subsection, we introduce a slightly different tool for
studying stability questions. The basic idea is to use, rather than the fingers
and dual fingers as in order star theory, the lines of steepest ascent and descent
from the origin. Since these lines correspond to values for which R(z) exp(−z)
is real and positive, we are, in reality, looking at the set of points in the
complex plane where this is the case.

We illustrate this by presenting, in Figure 354(ii), a modified version of
Figure 354(i), in which the boundary of the order star is shown as a dashed
line and the ‘order arrows’, as we call them, are shown with arrow heads
showing the direction of ascent.

RUNGE–KUTTA METHODS 243

355 Order arrows and the Ehle barrier

For a stability function R(z) of order p, define two types of ‘order arrows’ as
follows:

Definition 355A The locus of points in the complex plane for which φ(z) =
R(z) exp(−z) is real and positive is said to be the ‘order web’ for the rational
function R. The part of the order web connected to 0 is the ‘principal order
web’. The rays emanating from 0 with increasing value of φ are ‘up arrows’
and those emanating from 0 with decreasing φ are ‘down arrows’.

The up and down arrows leave the origin in a systematic pattern:

Theorem 355B Let R be a rational approximation to exp of exact order p,
so that

R(z) = exp(z) − Czp+1 + O(zp+2),

where the error constant C is non-zero. If C < 0 (C > 0) there are up
(down) arrows tangential at 0 to the rays with arguments k2πi/(p + 1),
k = 0, 1, . . . , p, and down (up) arrows tangential at 0 to the rays with
arguments (2k + 1)πi/(p + 1), k = 0, 1, . . . , p.

Proof. If, for example, C < 0, consider the set {r exp(iθ) : r > 0, θ ∈
[k2πi/(p + 1) − ε, k2πi/(p + 1) + ε}, where ε and r are both small and
k ∈ {0, 1, 2, . . . , p}. We have

R(z) exp(−z) = 1 + (−C)rp+1 exp((p + 1)θ) + O(rp+2).

For r sufficiently small, the last term is negligible and, for ε sufficiently
small, the real part of (−C)rp+1 exp((p + 1)θ)) is positive. The imaginary
part changes sign so that an up arrow lies in this wedge. The cases of the
down arrows and for C > 0 are proved in a similar manner. �

Where the arrows leaving the origin terminate is of crucial importance.

Theorem 355C The up arrows terminate either at poles of R or at −∞.
The down arrows terminate either at zeros of R or at +∞.

Proof. Consider a point on an up arrow for which |z| is sufficiently large
to ensure that it is not possible that z is a pole or that z is real with
(d/dz)(R(z) exp(−z)) = 0. In this case we can assume without loss of
generality that Im(z) ≥ 0. Write R(z) = Kzn + O(|z|n−1) and assume that
K > 0 (if K < 0, a slight change is required in the details which follow). If
z = x + iy = r exp(iθ), then

w(z) = R(z) exp(−z)

= Krn exp(−x)
(
1 + O(r−1)

)
exp

(
i(nθ − y + O(r−1))

)
.

244 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Because θ cannot leave the interval [0, π], then for w to remain real, y is
bounded as z → ∞. Furthermore, w → ∞ implies that x → −∞.

The result for the down arrows is proved in a similar way. �

We can obtain more details about the fate of the arrows from the following
result.

Theorem 355D Let R be a rational approximation to exp of order p with
numerator degree n and denominator degree d. Let n̂ denote the number of
down arrows terminating at zeros and d̂ the number of up arrows terminating
at poles of R. Then

n̂ + d̂ ≥ p.

Proof. There are p + 1− n̂ down arrows and p + 1− d̂ up arrows terminating
at +∞ and −∞, respectively. Let θ and φ be the minimum angles with the
properties that all the down arrows which terminate at +∞ lie within θ on
either side of the positive real axis and all the up arrows which terminate at
−∞ lie within an angle φ on either side of the negative real axis. Hence

2θ ≥ (p − n̂)2π

p + 1
, 2φ ≥ (p − d̂)2π

p + 1
.

Because up arrows and down arrows cannot cross and, because there is a
wedge with angle equal to at least π/(p+1) between the last down arrow and
the first up arrow, it follows that 2θ + 2φ + 2π/(p+ 1) ≤ 2π. Hence we obtain
the inequality

2p + 1 − n̂ − d̂

p + 1
2π ≤ 2π,

and the result follows. �

For Padé approximations we can obtain precise values of n̂ and d̂.

Theorem 355E Let R(z) denote a Padé approximation to exp(z), with
degrees n (numerator) and d (denominator). Then n of the down arrows
terminate at zeros and d of the up arrows terminate at poles.

Proof. Because p = n + d, n ≥ ñ and d ≥ d̃, it follows from Theorem 355D
that

p = n + d ≥ ñ + d̃ ≥ p

and hence that (n− ñ) + (d− d̃) = 0. Since both terms are non-negative they
must be zero and the result follows. �

Before proving the ‘Ehle barrier’, we establish a criterion for A-stability
based on the up arrows that terminate at poles.

RUNGE–KUTTA METHODS 245

Theorem 355F A Runge–Kutta method is A-stable only if all poles of the
stability function R(z) lie in the right half-plane and no up arrow of the order
web intersects with or is tangential to the imaginary axis.

Proof. The requirement on the poles is obvious. If an up arrow intersects or
is tangential to the imaginary axis then there exists y such that

|R(iy) exp(−iy)| > 1.

Because | exp(−iy)| = 1, it follows that |R(iy)| > 1 and the method is not
A-stable. �

We are now in a position to prove the result formerly known as the Ehle
conjecture (Ehle, 1973),but which we will also refer to as the ‘Ehle barrier’.

Theorem 355G Let R(z) denote the stability function of a Runge–Kutta
method. If R(z) is an (n, d) Padé approximation to exp(z) then the Runge–
Kutta is not A-stable unless d ≤ n + 2.

Proof. If d ≥ n + 3 and p = n + d, it follows that d ≥ 1
2 (p + 3). By Theorem

355E, at least d up arrows terminate at poles. Suppose these leave zero in
directions between −θ and +θ from the positive real axis. Then

2θ ≥ 2π(d − 1)
p + 1

≥ π,

and at least one up arrow, which terminates at a pole, is tangential to the
imaginary axis or passes into the left half-plane. If the pole is in the left half-
plane, then the stability function is unbounded in this half-plane. On the other
hand, if the pole is in the right half-plane, then the up arrow must cross the
imaginary axis. In either case, the method cannot be A-stable, by Theorem
355F. �

356 AN-stability

Linear stability analysis is based on the linear test problem

y′(x) = qy(x),

so that
yn = R(z)yn−1,

where z = hq. Even though this analysis provides useful information about
the behaviour of a numerical method when applied to a stiff problem, even
more is learned from generalizing this analysis in two possible ways. The first

246 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

of these generalizations allows the linear factor q to be time-dependent so that
the test problem becomes

y′(x) = q(x)y(x). (356a)

A second generalization, which we explore in Subsection 357, allows the
differential equation to be non-linear.

When (356a) is numerically solved using an implicit Runge–Kutta method
(A, b , c), the stage values satisfy the equations

Yi = yn−1 +
s∑

j=1

aijhq(xn−1 + hcj)Yj , i = 1, 2, . . . , s,

and the output result is

yn = yn−1 +
s∑

i=1

bihq(xn−1 + hci)Yi.

Let Z denote the diagonal matrix given by

Z =

hq(xn−1 + hc1) 0 · · · 0

0 hq(xn−1 + hc2) · · · 0
...

...
...

0 0 · · · hq(xn−1 + hcs)

= diag

([
hq(xn−1 + hc1) hq(xn−1 + hc2) · · · hq(xn−1 + hcs)

])
.

This makes it possible to write the vector of stage values in the form

Y = yn−11 + AZY,

so that
Y = (I − AZ)−11yn−1.

The output value is given by

yn = yn−1 + b ZY =
(
1 + b Z(I − AZ)−11

)
yn−1 = R(Z)yn−1.

The function R(Z) introduced here is the non-autonomous generalization of
the linear stability function.

We are mainly concerned with situations in which the stage abscissae are
distinct and where they do not interfere with the stages of adjoining steps.
This means that we can regard the diagonal elements of Z as different from
each other and independent of the values in the steps that come before or after
the current step. With this in mind, we define a non-autonomous counterpart
of A-stability that will guarantee that we obtain stable behaviour as long as
the real part of q(x) is never positive. This is appropriate because the exact
solution to (356a) is never increasing under this assumption, and we want to
guarantee that this property carries over to the computed solution.

RUNGE–KUTTA METHODS 247

Definition 356A A Runge–Kutta method (A, b , c) is ‘AN-stable’ if the
function

R(Z) = 1 + b Z(I − AZ)−11,

where Z = diag
([

z1 z2 · · · zs

])
is bounded in magnitude by 1 whenever

z1, z2, . . . , zs are in the left half-plane.

It is interesting that a simple necessary and sufficient condition exists for
AN-stability. In Theorem 356C we state this criterion and prove it only in
terms of necessity. Matters become complicated if the method can be reduced
to a method with fewer stages that gives exactly the same computed result.
This can happen, for example, if there exists j ∈ {1, 2, . . . , s} such that
bj = 0, and furthermore, aij = 0 for all i = 1, 2, . . . , s, except perhaps for
i = j. Deleting stage j has no effect on the numerical result computed in a
step. We make a detailed study of reducibility in Subsection 381, but in the
meantime we identify ‘irreducibility in the sense of Dahlquist and Jeltsch’,
or ‘DJ-irreducibility’, (Dahlquist and Jeltsch, 1979) as the property that a
tableau cannot be reduced in the sense of Definition 356B.

Definition 356B A Runge–Kutta method is ‘DJ-reducible’ if there exists a
partition of the stages

{1, 2, . . . , s} = S ∪ S0,

with S0 non-empty, such that if i ∈ S and j ∈ S0,

bj = 0 and aij = 0.

The ‘reduced method’ is the method formed by deleting all stages numbered by
members of the set S0.

The necessary condition to be given in Theorem 356C will be strengthened
under DJ-irreducibility in Corollary 356D.

Theorem 356C Let (A, b , c) be an implicit Runge–Kutta method. Then the
method is AN-stable only if

bj ≥ 0, j = 1, 2, . . . , s,

and the matrix
M = diag(b)A + A diag(b) − bb

is positive semi-definite.

Proof. If bj < 0 then choose Z = −t diag(ej), for t positive. The value of
R(Z) becomes

R(Z) = 1 − tbj + O(t2),

248 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

which is greater than 1 for t sufficiently small. Now consider Z chosen with
purely imaginary components

Z = i diag(vt),

where v has real components and t is a small positive real. We have

R(Z) = 1 + itb diag(v)1− t2b diag(v)Adiag(v)1 + O(t3)

= 1 + itb v − t2v diag(b)Av + O(t3),

so that
|R(Z)|2 = 1 − t2v Mv + O(t3).

Since this cannot exceed 1 for t small and any choice of v, M is positive
semi-definite. �

Since there is no practical interest in reducible methods, we might look
at the consequences of assuming a method is irreducible. This result was
published in Dahlquist and Jeltsch (1979):

Corollary 356D Under the same conditions of Theorem 356C, with the
additional assumption that the method is DJ-irreducible,

bj > 0, j = 1, 2, . . . , s.

Proof. Suppose that for i ≤ s, bi > 0, but that for i > s, bi = 0. In this case,
M can be written in partitioned form as

M =

[
M N

N 0

]
and this cannot be positive semi-definite unless N = 0. This implies that

aij = 0, whenever i ≤ s < j,

implying that the method is reducible to a method with only s stages. �

357 Non-linear stability

The second generalization of A-stability we consider is the assumption that,
even though the function f is non-linear, it satisfies the condition that

〈f(u) − f(v), u − v〉 ≤ 0, (357a)

where 〈·〉 denotes a semi-inner product, with corresponding semi-norm defined
by

|u| = 〈u, u〉1/2.

RUNGE–KUTTA METHODS 249

The reason for our interest in the assumption (357a) is that if there are
two solutions y and z to the same differential equations, but with possibly
different initial values, then the norm difference of y and z satisfies the bound

|y(x) − z(x)| ≤ |y(x0) − z(x0)|,

because

d

dx
|y(x) − z(x)|2 = 2〈f(y(x)) − f(z(x)), y(x) − z(x)〉 ≤ 0.

The corresponding property for a Runge–Kutta method would be that the
sequences of computed solutions satisfy

|yn − zn| ≤ |yn−1 − zn−1|. (357b)

It would equally be possible to use a simpler type of test problem, such as
Y ′(x) = F (Y (x)), where

〈〈g(U), U 〉〉 ≤ 0, (357c)

because (357a) can be expressed using (357c). If 〈·〉 is the semi-inner product
on R

N used in (357a), with | · | the corresponding semi-norm, then we can
define a quasi-inner product 〈〈 · 〉〉 on R2N , with corresponding norm ‖ · ‖, by
the formula〈〈[

u

v

]
,

[
ũ

ṽ

]〉〉
= 〈u, ũ〉 − 〈u, ṽ〉 − 〈v, ũ〉 + 〈v, ṽ〉.

The semi-norms defined from these quasi-inner products are related by∥∥∥∥∥
[

u

v

]∥∥∥∥∥ = 〈〈u − v, u − v 〉〉 = |u − v|2,

and we can write the condition (357a) in the form〈〈
G

([
u

v

])
,

[
u

v

]〉〉
≤ 0,

where G is defined by

G

([
u

v

])
=

[
f(u)
f(v)

]
.

Furthermore, the requirement on a numerical method (357b) can be written
in the form

‖Yn‖ ≤ ‖Yn−1‖.

250 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Hence we lose no generality in using a test problem which satisfies (357c)
rather than the formally more complicated condition (357a). We therefore
adopt this requirement, but revert to the more conventional notation of using
〈·〉 for a standard semi-inner product with ‖ · ‖ the corresponding norm.

Even though we have simplified the notation in one way, it is appropriate
to generalize it in another. We really need to avoid the use of autonomous
problems because of the intimate relationship that will be found between AN-
stability and the type of non-linear stability we are discussing here. When
Definition 357A was first introduced, it was referred to as ‘B-stability’, because
it is one step more stringent than A-stability. In the non-autonomous form
in which it seems to be a more useful concept, a more natural name is BN-
stability.

Definition 357A A Runge–Kutta (A, b , c) is ‘BN-stable’ if for any initial
value problem

y′(x) = f(x, y(x)), y(x0) = y0,

satisfying the condition
〈f(x, u), u〉 ≤ 0,

the sequence of computed solutions satisfies

‖yn‖ ≤ ‖yn−1‖.

The crucial result is that for an irreducible non-confluent method, AN-
stability and BN-stability are equivalent. Because of the fundamental
importance of the necessary and sufficient conditions for a Runge–Kutta
method to have either, and therefore both, of these properties, we formalize
these conditions:

Definition 357B A Runge–Kutta method (A, b , c) is ‘algebraically stable’ if
bi > 0, for i = 1, 2, . . . , s, and if the matrix M , given by

M = diag(b)A + A diag(b) − bb , (357d)

is positive semi-definite.

We now show the sufficiency of this property.

Theorem 357C If a Runge–Kutta method is algebraically stable then it is
BN-stable.

Proof. Let Fi = f(xn−1 + hci, Yi). We note that if M given by (357d) is
positive semi-definite, then there exist vectors vl ∈ R

s, l = 1, 2, . . . , s ≤ s,
such that

M =
s∑

l=1

µlµl .

RUNGE–KUTTA METHODS 251

This means that a quadratic form can be written as the sum of squares as
follows:

ξ Mξ =
s∑

l=1

(µlξ)
2 .

Furthermore, a quadratic form of inner products
s∑

i,j=1

mij〈Ui, Uj〉

is equal to
s∑

l=1

∥∥∥ s∑
i=1

µliUi

∥∥∥2

,

and cannot be negative. We show that

‖yn‖ − ‖yn−1‖2 = 2h
s∑

i=1

bi〈Yi, Fi〉 − h2
s∑

i,j=1

mij〈Fi, Fj〉, (357e)

so that the result will follow. To prove (357e), we use the equations

Yi = yn−1 + h

s∑
j=1

aijFj , (357f)

Yi = yn + h

s∑
j=1

(aij − bj)Fj , (357g)

which hold for i = 1, 2, . . . , s. In each case, form the quasi-inner product with
Fi, and we find

〈Yi, Fi〉 = 〈yn−1, Fi〉 + h
s∑

j=1

aij〈Fi, Fj〉,

〈Yi, Fi〉 = 〈yn, Fi〉 + h
s∑

j=1

(aij − bj)〈Fi, Fj〉.

Hence,

2h

s∑
i=1

bi〈Yi, Fi〉 =
〈
yn + yn−1, h

s∑
i=1

biFi

〉
= h2

s∑
i,j=1

(2biaij − bibj)〈Fi, Fj〉.

Substitute yn and yn−1 from (357f) and (357g) and rearrange to deduce (357e).
�

252 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Our final aim in this discussion of non-autonomous and non-linear
stability is to show that BN-stability implies AN-stability. This will give the
satisfactory conclusion that algebraic stability is equivalent to each of these
concepts.

Because we have formulated BN-stability in terms of a quasi-inner product
over the real numbers, we first need to see how (356a) can be expressed in a
suitable form. Write the real and imaginary parts of q(x) as α(x) and β(x),
respectively. Also write y(x) = ξ(x) + iη(x) and write ζ(x) for the function
with values in R2 whose components are ξ(x) and η(x), respectively.

Thus, because

y′(x) = (α(x) + iβ(x))(ξ(x) + iη(x))
= (α(x)ξ(x)− β(x)η(x)) + i(β(x)ξ(x) + α(x)η(x)),

we can write
ζ ′(x) = Qζ,

where

Q =

[
α(x) −β(x)
β(x) α(x)

]
.

Using the usual inner product we now have the dissipativity property

〈Qv, v〉 = α‖v‖2 ≤ 0,

if α ≤ 0.
What we have found is that the test problem for AN-stability is an instance

of the test problem for BN-stability. This means that we can complete the
chain of equivalences interconnecting AN-stability, BN-stability and algebraic
stability. The formal statement of the final step is as follows:

Theorem 357D If an irreducible non-confluent Runge–Kutta method is BN-
stable, then it is AN-stable.

358 BN-stability of collocation methods

In the case of methods satisfying the collocation conditions

s∑
j=1

aijc
k−1
j =

1
k

ck
i , i, k = 1, 2, . . . , s,

s∑
i=1

bic
k−1
i =

1
k

, k = 1, 2, . . . , s,

a congruence transformation of M , using the Vandermonde matrix

V =
[
1 c c2 · · · cs−1

]
,

RUNGE–KUTTA METHODS 253

where powers of c are interpreted in a componentwise manner, leads to
considerable simplification. Denote

εk =
s∑

i=1

bic
k−1
i − 1

k
, k = 1, 2, . . . , 2s,

so that ε1 = ε2 = · · · = εs = 0. Calculate the (k, l) element of V MV . This
has the value

s∑
i=1

ck−1
i

s∑
j=1

cl−1
j (biaij + bjaji − bibj)

=
s∑

i=1

1
l
bic

k+l−1
i +

s∑
j=1

1
k

bjc
k+l−1
j − 1

kl

=
1

l(k + l)
+

1
l
εk+l +

1
k(k + l)

+
1
k

εk+l −
1
kl

=
k + l

kl
εk+l.

Thus,

V MV =

0 0 0 · · · 0 s+1
s εs+1

0 0 0 · · · s+1
2(s−1)εs+1

s+2
2s εs+2

0 0 0 · · · s+2
3(s−1)εs+2

s+3
3s εs+3

...
...

...
...

...

0 s+1
2(s−1)εs+1

s+2
3(s−1)εs+2 · · · 2s−2

(s−1)2 ε2s−2
2s−1

s(s−1)ε2s−1

s+1
s εs+1

s+2
2s εs+2

s+3
3s εs+3 · · · 2s−1

s(s−1)ε2s−1
2s
s2 ε2s

.

A symmetric positive semi-definite matrix cannot have a zero diagonal element
unless all the elements on the same row and column are also zero. Hence, we
deduce that εi = 0 for i = s + 1, s + 2, . . . , 2s − 1. Thus, the only way for M
to be positive semi-definite is that

V MV =
2s

s2
ε2seses

and that

ε2s ≥ 0. (358a)

Combining these remarks with a criterion for (358a), we state:

254 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Theorem 358A A collocation Runge–Kutta method is algebraically stable if
and only if the abscissae are zeros of a polynomial of the form

P ∗
s − θP ∗

s−1, (358b)

where θ ≥ 0.

Proof. Because εi = 0 for i = 1, 2, . . . , 2s − 1, it follows that

∫ 1

0

P (x)φ(x)dx = 0, (358c)

where φ(x) is a polynomial of degree s, with positive leading coefficient
and zeros c1, c2, . . . , cs and P is any polynomial of degree not exceeding
s − 2. Furthermore, if P is a polynomial of degree s − 1 and positive leading
coefficient, the integral in (358c) has the same sign as −ε2s. Because of the
orthogonality of φ and polynomials of degree less than s − 1, φ is a positive
constant multiple of (358b). Apart from a positive factor, we can now evaluate
the integral in (358c), with P (x) = P ∗

s−1(x),

∫ 1

0

P ∗
s−1(x)(P ∗

s (x) − θP ∗
s−1(x))dx = −θ

∫ 1

0

P ∗
s−1(x)2dx,

which has the opposite sign to θ. �

A consequence of this result is that both Gauss and Radau IIA methods
are algebraically stable. Many other methods used for the solution of stiff
problems have stage order lower than s and are therefore not collocation
methods. A general characterization of algebraic stable methods is found by
using a transformation based not on the Vandermonde matrix V , but on a
generalized Vandermonde matrix based on the polynomials that are essentially
the same as P ∗

i , for i = 0, 1, 2, . . . , s − 1.

359 The V and W transformations

We refer to the transformation of M using the Vandermonde matrix V to form
V MV , as the ‘V transformation’. We now introduce the more sophisticated
W transformation.

We recall Corollary 356D, which enables us to confine our attention to
irreducible methods in which b has only positive elements. Construct a
sequence of polynomials P0, P1, . . . , Ps−1 with degrees 0, 1, . . . , s − 1,
respectively, which are orthonormal in the sense that

RUNGE–KUTTA METHODS 255

s∑
i=1

biPk−1(ci)Pl−1(ci) = δkl, k, l = 1, 2, . . . , s. (359a)

We can assume that the leading coefficients are all positive. Define W as the
generalized Vandermonde matrix

W = [P0(c) P1(c) · · · Ps−1(c)]

=

P0(c1) P1(c1) · · · Ps−1(c1)
P0(c2) P1(c2) · · · Ps−1(c2)

...
...

...
P0(cs) P1(cs) · · · Ps−1(cs)

 . (359b)

This matrix can be constructed using the Gram–Schmidt process, or what is
algebraically equivalent, from a QR factorization

B1/2V = (B1/2W)R,

where B1/2 = diag(
√

b1,
√

b2, · · · ,
√

bs) and R is upper triangular with positive
elements on the diagonal. Note that the coefficients in P0, P1, . . . , Ps−1 can
be read off from the columns of R.

If b and c are weight and abscissa vectors for a Runge–Kutta method of
order p, then as long as k + l ≤ p + 1, (359a) implies that∫ 1

0

Pk−1(x)Pl−1(x)dx =
s∑

i=1

biPk−1(ci)Pl−1(ci) = δkl,

implying that P0, P1, . . . , P[(p−1)/2] are orthonormal with respect to
integration on [0, 1]. This means that they are necessarily the normalized
Legendre polynomials on this interval, given by

Pk(z) =
√

2k + 1
k∑

i=0

(−1)k−i

(
k

i

)(
k + i

i

)
zi.

In particular, P0(x) = 1 and the first column of W is 1. Because of
orthonormality, it follows that 1 BW = e1.

We now focus our attention on the matrix X = W BAW . This is significant
because

W MW = X + X − (W B1)(1 BW) = (X − 1
2e1e1) + (X − 1

2e1e1) .

Because M , and therefore W MW , is the zero matrix for the Gauss method,
it follows that X − 1

2e1e1 is skew-symmetric. Denote X by XG in this special
case. We now evaluate XG in full.

256 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Lemma 359A Let
XG = W BAW,

where A and B = diag(b) are as for the Gauss method of order 2s. Also let

ξk =
1

2
√

4k2 − 1
, k = 1, 2, . . . , s − 1.

Then

XG =

1
2 −ξ1 0 0 · · · 0 0
ξ1 0 −ξ2 0 · · · 0 0
0 ξ2 0 −ξ3 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 0 −ξs−1

0 0 0 0 · · · ξs−1 0

.

Proof. From linear combinations of identities included in the condition
E(s, s), given by (321c), we have

s∑
i=1

s∑
j=1

biφ(ci)aijψ(cj) =
∫ 1

0

φ(u)
∫ u

0

ψ(v)dvdu,

for polynomials φ and ψ each with degree less than s. Use the polynomials
φ = Pk−1, ψ = Pl−1 and we have a formula for the (k, l) element of XG. Add
to this the result for k and l interchanged and use integration by parts. We
have

(XG)kl + (XG)lk =
∫ 1

0

Pk−1(u)du

∫ 1

0

Pl−1(v)dv = δk1δl1.

This result determines the diagonal elements of XG, and also implies the
skew-symmetric form of XG − 1

2e1e1. We now determine the form of the
lower triangular elements. If k > l + 1, the integral

∫ u

0 Pl−1(v)dv has lower
degree than Pk−1 and is therefore orthogonal to it. Thus, in this case,
(XG)kl = 0. It remains to evaluate (XG)k,k−1 for k = 1, 2, . . . , s − 1. The
integral

∫ u
0 Pk−1(v)dv is a polynomial in u of degree k and can be written in the

form θPk(u) added to a polynomial of degree less than k. The integral of Pk(u)
multiplied by the polynomial of degree less than k is zero, by orthogonality,
and the integral reduces to ∫ 1

0

θPk(u)2du = θ.

The value of θ can be found by noting that the coefficient of vk−1 in Pk−1(v)
is

√
2k − 1

(
2k−2
k−1

)
, with a similar formula for the leading coefficient of Pk(u).

RUNGE–KUTTA METHODS 257

Hence,

(XG)k,k−1 = θ =
1
k

√
2k − 1

(
2k−2
k−1

)
√

2k + 1
(
2k
k

) =
1

2
√

4k2 − 1
. �

The computation of elements of X = W BAW for any Runge–Kutta
method, for which W makes sense, will lead to the same (k, l) elements as
in XG as long as k + l ≤ p + 1. We state this formally.

Corollary 359B Let (A, b, c) denote a Runge–Kutta method for which B =
diag(b) is positive definite and for which the abscissae are distinct. Define
W by (359b) and X by X = W BAW . Then Xkl = (XG)kl, as long as
k + l ≤ p + 1.

The W transformation is related in an interesting way to the C(m) and
D(m) conditions, which can be written in the equivalent forms

C(m) :
s∑

j=1

aijPk−1(cj)=
∫ ci

0

Pk−1(x)dx, k≤m, i=1, 2, . . . , s,

D(m) :
s∑

i=1

biPk−1(ci)aij=bj

∫ 1

cj

Pk−1(x)dx, k≤m, j=1, 2, . . . , s.

It follows from these observations that, if B(m) and C(m) are true, then the
first m columns of X will be the same as for XG. Similarly, if B(m) and D(m),
then the first m rows of X and XG will agree.

Amongst the methods known to be algebraically stable, we have already
encountered the Gauss and Radau IIA methods. We can extend this list to
include further methods.

Theorem 359C The Gauss, Radau IA, Radau IIA and Lobatto IIIC methods
are algebraically stable.

Proof. We have already settled the Gauss and Radau IIA cases, using the V
transformation, making use of the C(s) and B(p) conditions, as in Theorem
358A.

To prove the result for Radau IA methods, use the D(s) and B(2s − 1)
conditions:

s∑
i,j=1

ck−1
i biaijc

l−1
j +

s∑
i,j=1

ck−1
i bjajic

l−1
j

=
1
k

s∑
j=1

bj(1 − ck
j)cl−1

j +
1
l

s∑
i=1

bi(1 − cl
i)c

k−1
i − 1

kl

=
1
kl

− k + l

kl

s∑
i=1

bic
k+l−1
i .

258 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

The value of this expression is zero if k+l ≤ 2s−1. Although it can be verified
directly that the value is positive in the remaining case k = l = s, it is enough
to show that the (1, 1) element of M is positive, because this will have the
same sign as the only non-zero eigenvalue of the rank 1 matrix V MV . We
note that all values in the first column of A are equal to b1 because these give
the unique solution to the D(s) condition applied to the first column. Hence,
we calculate the (1, 1) element of M to be

2b1a11 − b2
1 = b2

1 > 0.

In the case of the Lobatto IIIC methods, we can use a combination of the
C(s − 1) and D(s − 1) conditions to evaluate the (k, l) and (l, k) elements of
M , where k ≤ s − 1 and l ≤ s. The value of these elements is

s∑
i,j=1

ck−1
i biaijc

l−1
j +

s∑
i,j=1

ck−1
i bjajic

l−1
j

=
1
k

s∑
j=1

(1 − ck
j)cl−1

j +
1
k

s∑
i=1

bic
k+l−1
i − 1

kl

=
1
k

s∑
j=1

bjc
l−1
j − 1

kl

= 0.

The final step of the proof is the same as for the Radau IA case, because again
ai1 = b1, for i = 1, 2, . . . , s. �

The V transformation was used to simplify questions concerning algebraic
stability in Butcher (1975) and Burrage (1978). The W transformation
was introduced in Hairer and Wanner (1981, 1982). Recent results on the
W transformation, and especially application to symplectic methods, were
presented in Hairer and Leone (2000) .

Exercises 35

35.1 Show that a Runge–Kutta method with R(z) = N(z)/D(z), where
N and D have no common factors, cannot be A-stable unless the
coefficients in D(z) alternate in sign.

35.2 Show that the error constant for the (s − d, s) Padé approximation to
the exponential function has sign (−1)s. Deduce that, if d > 0 and d = 3
(mod 4) or d = 0 (mod 4), then |R(iy)| > 0, for sufficiently small real
y.

RUNGE–KUTTA METHODS 259

35.3 Show that the implicit Runge–Kutta method with tableau

1
4

7
24 − 1

24

3
4

13
24

5
24

1
2

1
2

is A-stable but not AN-stable.

35.4 For the (0, m) Padé approximation N(z)/D(z), show that the
denominator D has zeros with negative real part, for m ≥ 5.

35.5 For the (1, m) Padé approximation N(z)/D(z), show that the
denominator D has zeros with negative real part, for m ≥ 7.

36 Implementable Implicit Runge–Kutta Methods

360 Implementation of implicit Runge–Kutta methods

Because of the implicit nature of these methods, every step requires the
solution of an algebraic system. For an s-stage method with an N -dimensional
problem, there are sN unknowns to evaluate and these satisfy sN equations.
If f is nonlinear, then the large system of equations to be solved is also non-
linear. However, there are linear parts of it, and it may be possible to exploit
this in their numerical solution. Let A denote the coefficient matrix; then the
stage values need to be computed as solutions to the system of equations

Y1 = yn−1 + h
s∑

j=1

a1jf(Yj),

Y2 = yn−1 + h

s∑
j=1

a2jf(Yj),

...
...

Ys = yn−1 + h
s∑

j=1

asjf(Yj).

For an N -dimensional differential equation system, this amounts to a system
of sN non-linear equations.

We consider how to solve these equations using a full Newton method. This
requires going through the following steps:

260 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

1. Compute approximations to Y1, Y2, . . . , Ys using information available at
the start of the step. Denote these ‘predicted’ values by Y

[0]
i , i = 1, 2, . . . , s.

2. Carry out a sequence of iterations leading to approximations Y
[k]
i , for

k = 1, 2, . . . , i = 1, 2, . . . , s. These are given by the formulae

Y
[k]
i = Y

[k−1]
i − ∆i,

where
s∑

j=1

mij∆j = φi, i = 1, 2, . . . , s, (360a)

with

φi = Y
[k−1]
i − yn−1 − h

s∑
j=1

aijf(Y [k−1]
j)

and
mij = δijI − haijf

′(Y [k−1]
j).

3. Test for convergence and terminate when each of ‖∆1‖, ‖∆2‖, . . . , ‖∆s‖
are sufficiently small. Suppose that this happens in the computation of
iteration k.

4. Assign Y
[k]
i to Yi, for each i = 1, 2, . . . , s.

In a practical calculation, it is usual to simplify this computation in various
ways. Most importantly, the solution of (360a), preceded by the evaluation
of the elements of mij which depend on f ′ evaluated at each stage and in
each iteration, requires a large number of algebraic operations; these are to
be avoided whenever possible.

A typical simplification is to replace the value of f ′(Y [k−1]
j) by a constant

approximation to this Jacobian matrix. This approximation is maintained at
a fixed value over every iteration and over each stage, and possibly over many
steps. This means that the sN × sN matrix with elements built up from the
submatrices mij can be replaced by a matrix of the form

Is ⊗ IN − hA ⊗ J, (360b)

where J is the Jacobian approximation. The cost, measured solely in terms
of linear algebra costs, divides into two components. First, the factorization
of the matrix (360b), carried out from time to time during the computation,
costs a small multiple of s3N3 floating point operations. Secondly, the solution
of (360a) costs a small multiple of s2N2 arithmetic operations per iteration.

It is the aim of the study of implementable methods to lower the factors
s3 in the occasional part of the cost and to lower the factor s2 in the ‘per
iteration’ part of the cost.

RUNGE–KUTTA METHODS 261

361 Diagonally implicit Runge–Kutta methods

Because of the excessive cost in evaluating the stages in a fully implicit Runge–
Kutta method, we consider the so-called ‘diagonally implicit Runge–Kutta’ or
DIRK methods (Alexander, 1977). For these methods, the coefficient matrix
A has a lower triangular structure with equal elements on the diagonal. Note
that sometimes these methods are referred to as ‘singly diagonally implicit’
or SDIRK, with DIRK methods not necessarily having equal diagonals.
Earlier names for methods in this general class are semi-implicit Runge–Kutta
methods (Butcher, 1965)and semi-explicit (Nørsett, 1974).

The advantage of these methods is that the stages can be evaluated
sequentially rather than as one great implicit system. We consider here the
derivation of some low order members of this class with a brief analysis of
their stability regions.

To obtain order 2 with two stages, consider the tableau

λ λ 0
c2 c2 − λ λ

b1 b2

.

The order conditions are

b1 + b2 = 1, (361a)

b1λ + b2c2 = 1
2 , (361b)

with solution b1 = 2c2−1
2(c2−λ) , b2 = 1−2λ

2(c2−λ) . The method is A-stable if λ ≥ 1
4 and

L-stable if λ = 1± 1
2

√
2. A particularly attractive choice is c2 = 1, λ = 1− 1

2

√
2,

for which the tableau is

1 − 1
2

√
2 1 − 1

2

√
2 0

1 1
2

√
2 1 − 1

2

√
2

1
2

√
2 1 − 1

2

√
2

.

For s = p = 3, the stability function is given by

R(z) =
1 + (1 − 3λ)z + (1

2 − 3λ + 3λ2)z2 + (1
6 − 3

2λ + 3λ2 − λ3)z3

(1 − λz)3

and the E-polynomial is found to be

E(y)=
(

1
12

− λ + 3λ2 − 2λ3

)
y4+

(
− 1

36
+

λ

2
− 13λ2

4
+

28λ3

3
− 12λ4 + 6λ5

)
y6.

For E(y) ≥ 0, for all y > 0, it is necessary and sufficient for A-stability that
λ ∈ [13 , λ̃], where λ̃ ≈ 1.0685790213 is a zero of the coefficient of y4 in E(y). For

262 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

L-stability there is only one possible choice in this interval: λ ≈ 0.4358665215,
a zero of the coefficient of z3 in the numerator of R(z). Assuming λ is chosen
as this value, a possible choice for the remaining coefficients is given by the
tableau

λ λ 0 0
1
2 (1 + λ) 1

2 (1 − λ) λ 0
1 1

4 (−6λ2 + 16λ − 1) 1
4 (6λ2 − 20λ + 5) λ

1
4 (−6λ2 + 16λ − 1) 1

4 (6λ2 − 20λ + 5) λ

.

362 The importance of high stage order

The asymptotic error behaviour of a numerical method underlines the
importance of the order p in ensuring high accuracy at minimal computing
cost, as long as sufficient accuracy is required. If, for two methods, the
asymptotic local truncation errors are, respectively, C1h

p1+1 and C2h
p2+1,

where p2 > p1, then the second method will always be more efficient as long
as h is taken to be sufficiently small. This argument ignores the fact that the
methods might have differing costs per step, and therefore the stepsizes that
make the work done by the methods comparable might be vastly different. It
also ignores the fact that C1 and C2 can have such values that, for moderate
stepsizes, the first method may be more efficient. This argument also ignores
the fact that it is not just local errors that matter, but rather the accumulated
global error after many steps; from the global error point of view it is also
true that high orders will always eventually win over low orders. This ignores
the case of special problems where there might be a cancellation of errors, so
that in effect the order is greater than it would be for a general problem.

If the stage order is significantly lower than the order, then the final result
computed will have depended for its value on much less accurate answers
evaluated along the way. For non-stiff problems this is not a serious difficulty,
because the order conditions take into account the need for the effect of these
internal errors to cancel each other out. Asymptotically this also happens
for stiff problems, but the magnitude of the stepsize required to enjoy the
benefits of this asymptotic behaviour may depend drastically on the nature
of the problem and on some quantitative measure of its stiffness.

To investigate this question, Prothero and Robinson (1974) considered a
special family of problems of the form

y′(x) = L
(
y(x) − g(x)

)
+ g′(x), y(x0) = g(x0),

where L is a negative constant and g is a smooth function that varies at a
moderate rate. We first look at the extreme ‘non-stiff’ case L = 0. In this case
the Prothero and Robinson problem becomes

y′(x) = g′(x),

RUNGE–KUTTA METHODS 263

and the defining equations for the solution computed by the Runge–Kutta
method are

Y = yn−11 + hAG′, (362a)
yn = y0 + hb G′, (362b)

where G′ is the subvector made up from the values of g′(x) evaluated at the
stage values. We also write G for the corresponding vector of G(x) values.
Thus

G =

g(xn−1 + hc1)
g(xn−1 + hc2)

...
g(xn−1 + hcs)

 , G′ =

g′(xn−1 + hc1)
g′(xn−1 + hc2)

...
g′(xn−1 + hcs)

 .

We see that the accuracy of the computation of yn, as an approximation to
y(xn), is independent of the A matrix and is determined by the accuracy of
the quadrature formula

s∑
i=1

biφ
′(ci) ≈

∫ 1

0

φ′(ξ)dξ, (362c)

which we assume to be of order p. This means that (362c) is exact for φ a
polynomial of degree up to p, and the error will be approximately

1
p!

(
1

p + 1
−

s∑
i=1

bic
p
i

)
φ(p+1)(0)

and the error in the Runge–Kutta method for this problem will be

hp+1

p!

(
1

p + 1
−

s∑
i=1

bic
p
i

)
g(p+1)(xn−1) + O(hp+2). (362d)

Now return to the full Prothero and Robinson problem

y′(x) = L
(
y(x) − g(x)

)
+ g′(x),

for which the computed results satisfy

Y = yn−11 + hA (L(Y − G) + G′) ,

yn = yn−1 + hb (L(Y − G) + G′) .

Eliminate Y , and we find

yn =
(
1 + hLb (I − hLA)−11

)
yn−1 + hb (I − hLA)−1(G′ − LG),

264 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

where the coefficient of yn−1 is seen to be the stability function value

R(hL) = 1 + hLb (I − hLA)−11.

By rearranging this expression we see that

yn = R(hL)
(
yn−1 − g(xn−1)

)
+ g(xn−1) + hb G′

+ hLb (I − hLA)−1
(
hAG′ − (G − g(xn−1))

)
= R(hL)

(
yn−1 − g(xn−1)

)
+ g(xn) − ε0 − hLb (I − hLA)−1ε,

where

ε0 = h

∫ 1

0

g′(xn−1 + hξ)dξ − h

s∑
i=1

big
′(xn−1 + hci)

is the non-stiff error term given approximately by (362d) and ε is the vector
of errors in the individual stages with component i given by

h

∫ ci

0

g′(xn−1 + hξ)dξ − h
s∑

j=1

aijg
′(xn−1 + hcj).

If L has a moderate size, then hLb (I − hLA)−1ε can be expanded in the
form

hLb (I + hLA + h2L2A2 + · · ·)ε

and error behaviour of order p can be verified term by term.
On the other hand, if hL is large, a more realistic idea of the error is found

using the expansion

(I − hLA)−1 = − 1
hL

A−1 − 1
h2L2

A−2 − · · · ,

and we obtain an approximation to the error, g(xn) − yn, given by

g(xn) − yn = R(hL)
(
g(xn−1) − yn−1

)
+ ε0

− b A−1ε − h−1L−1b A−2ε − h−2L−2b A−3ε − · · · .

Even though the stage order may be low, the final stage may have order p.
This will happen, for example, if the final row of A is identical to the vector
b . In this special case, the term b A−1ε will cancel ε0.

In other cases, the contributions from b A−1ε might dominate ε0, if the
stage order is less than the order.

Define
ηn = ε0 + hLb (I − hLA)−1ε, n > 0,

RUNGE–KUTTA METHODS 265

with η0 defined as the initial error g(x0) − y0. The accumulated truncation
error after n steps is equal to

n∑
i=0

R(hL)n−iηi ≈
n∑

i=0

R(∞)n−iηi.

There are three important cases which arise in a number of widely use
methods. If R(∞) = 0, as in the Radau IA, Radau IIA and Lobatto IIIC
methods, or for that matter in any L-stable method, then we can regard the
global truncation error as being just the error in the final step. Thus, if the
local error is O(hq+1) then the global error would also be O(hq+1). On the
other hand, for the Gauss method with s stages, R(∞) = (−1)s. For the
methods for which R(∞) = 1, then we can further approximate the global
error as the integral of the local truncation error multiplied by h−1. Hence,
a local error O(hq+1) would imply a global error of O(hq). In the cases for
which R(∞) = −1 we would expect the global error to be O(hq+1), because
of cancellation of ηi over alternate steps.

We explore a number of example methods to see what can be expected for
both local and global error behaviour.

For the Gauss methods, for which p = 2s, we can approximate ε0 by

h2s+1

(2s)!

(
1

2s + 1
−

s∑
i=1

bic
2s
i

)
g(2s+1)(xn−1) + O(h2s+2),

which equals
h2s+1s!4

(2s)!3(2s + 1)
g(2s+1)(xn−1) + O(h2s+2). (362e)

Now consider the term −b A−1ε. This is found to equal

hs+1s!
(2s)!(s + 1)

g(s+1)(xn−1) + O(hs+2),

which, if |hL| is large, dominates (362e).
We also consider the important case of the Radau IIA methods. In this case

ε0 is approximately

h2s

(2s − 1)!

(
1
2s

−
s∑

i=1

bic
2s−1
i

)
g(2s)(xn−1) + O(h2s+1)

= −h2ss!(s − 1)!3

2(2s − 1)!3
g(2s)(xn−1) + O(h2s+1).

266 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

As we have remarked, for |hL| large, this term is cancelled by −b A−1ε.
Hence, the local truncation error can be approximated in this case by
−(hL)−1b A−2ε. The value of this is

s!
(s + 1)(2s − 1)!

1
hL

g(s)(xn−1)hs + O(L−1hs).

To summarize: for very stiff problems and moderate stepsizes, a combination
modelled for the Prothero–Robinson problem by a high value of hL, the stage
order, rather than the classical order, plays a crucial role in determining
the error behaviour. For this reason, we consider criteria other than super-
convergence as important criteria in the identification of suitable methods for
the solution of stiff problems. In particular, we look for methods that are
capable of cheap implementation.

363 Singly implicit methods

We consider methods for which the stage order q and the order are related by
p = q = s. To make the methods cheaply implementable, we also assume that

σ(A) = {λ}. (363a)

The detailed study of methods for which A has a one-point spectrum and for
which q ≥ p−1 began with Burrage (1978). The special case q = p was further
developed in Butcher (1979), and this led to the implementation of STRIDE
described in Burrage, Butcher and Chipman (1980).

Given q = p and (363a), there will be a constraint on the abscissae of the
method. To explore this, write down the C(s) conditions

s∑
j=1

aijc
k−1
j =

1
k

ck
i , i, k = 1, 2, . . . , s,

or, more compactly,

Ack−1 =
1
k

ck, k = 1, 2, . . . , s, (363b)

where ck denotes the component-by-component power.
We can now evaluate Ak−11 by induction. In fact,

Ak1 =
1
k!

ck, k = 1, 2, . . . , s, (363c)

because the case k = 1 is just (363b), also with k = 1; and the case k > 1
follows from (363c) with k replaced by k − 1 and from (363b).

Because of (363a) and the Cayley–Hamilton theorem, we have

(A − λI)s = 0.

RUNGE–KUTTA METHODS 267

Table 363(I) Laguerre polynomials Ls for degrees s = 1, 2, . . . , 8

s Ls(ξ)
1 1 − ξ

2 1 − 2ξ + 1
2ξ2

3 1 − 3ξ + 3
2ξ2 − 1

6ξ3

4 1 − 4ξ + 3ξ2 − 2
3ξ3 + 1

24ξ4

5 1 − 5ξ + 5ξ2 − 5
3ξ3 + 5

24ξ4 − 1
120ξ5

6 1 − 6ξ + 15
2 ξ2 − 10

3 ξ3 + 5
8ξ4 − 1

20ξ5 + 1
720ξ6

7 1 − 7ξ + 21
2 ξ2 − 35

6 ξ3 + 35
24ξ4 − 7

40ξ5 + 7
720ξ6 − 1

5040ξ7

8 1 − 8ξ + 14ξ2 − 28
3 ξ3 + 35

12ξ4 − 7
15ξ5 + 7

180ξ6 − 1
630ξ7 + 1

40320ξ8

Post-multiply by 1 and expand using the binomial theorem, and we find

s∑
i=0

(
s

i

)
(−λ)s−iAi1 = 0.

Using (363c), we find that

s∑
i=0

(
s

i

)
(−λ)s−i 1

i!
ci = 0.

This must hold for each component separately so that, for i = 1, 2, . . . , s, ci/λ
is a zero of

s∑
i=0

(
s

i

)
(−1)i (−ξ)i

i!
.

However, this is just the Laguerre polynomial of degree s, usually denoted by
Ls(ξ), and it is known that all its zeros are real and positive. For convenience,
expressions for these polynomials, up to degree 8, are listed in Table 363(I) and
approximations to the zeros are listed in Table 363(II). We saw in Subsection
361 that for λ = ξ−1 for the case of three doubly underlined zeros of orders
2 and 3, L-stability is achieved. Double underlining to show similar choices
for other orders is continued in the table and these are the only possibilities
that exist (Wanner, Hairer and Nørsett, 1978). This means that there are
no L-stable methods – and in fact there is not even an A-stable method –
with s = p = 7 or with s = p > 8. Even though fully L-stable methods are
confined to the eight cases indicated in this table, there are other choices of
λ = ξ−1 that give stability which is acceptable for many problems. In each of
the values of ξ for which there is a single underline, the method is A(α)-stable
with α ≥ 1.55 ≈ 89◦.

268 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Table 363(II) Zeros of Laguerre polynomials for degrees s = 1, 2, . . . , 8

s ξ1, . . . , ξs

1 1.0000000000

2 0.5857864376 3.4142135624

3 0.4157745568 2.2942803603 6.2899450829

4 0.3225476896 1.7457611012 4.5366202969 9.3950709123

5 0.2635603197 1.4134030591 3.5964257710 7.0858100059
12.6408008443

6 0.2228466042 1.1889321017 2.9927363261 5.7751435691
9.8374674184 15.9828739806

7 0.1930436766 1.0266648953 2.5678767450 4.9003530845
8.1821534446 12.7341802918 19.3957278623

8 0.1702796323 0.9037017768 2.2510866299 4.2667001703
7.0459054024 10.7585160102 15.7406786413 22.8631317369

The key to the efficient implementation of singly implicit methods is the
similarity transformation matrix that transforms the coefficient matrix to
lower triangular form. Let T denote the matrix with (i, j) element

tij = Lj−1(ξi), i, j = 1, 2, . . . , s.

The principal properties of T and its relationship to A are as follows:

Theorem 363A The (i, j) element of T−1 is equal to

ξj

s2Ls−1(ξj)2
Li−1(ξj). (363d)

Let Ã denote T−1AT ; then

Ã = λ

1 0 0 · · · 0 0
−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0
0 0 0 · · · −1 1

. (363e)

RUNGE–KUTTA METHODS 269

Proof. To prove (363d), use the Christoffel–Darboux formula for Laguerre
polynomials in the form

s−1∑
k=0

Lk(x)Lk(y) =
s

x − y

(
Ls(y)Ls−1(x) − Ls(x)Ls−1(y)

)
.

For i �= j, substitute x = ξi, y = ξj to find that rows i and j of T are
orthogonal. To evaluate the inner product of row i with itself, substitute y = ξi

and take the limit as x → ξi. It is found that

s−1∑
k=0

Lk(ξk)2 = −sL′
s(ξi)Ls−1(ξi) =

s2Ls−1(ξi)2

ξi
. (363f)

The value of TT as a diagonal matrix with (i, i) element given by (363f) is
equivalent to (363d).

The formula for Ã is verified by evaluating

s∑
j=1

aijLk−1(ξj) =
s∑

j=1

aijLk−1(cj/λ)

=
∫ λξi

0

Lk−1(cj/λ)dt

= λ

∫ ξi

0

Lk−1(t)dt

= λ

∫ ξi

0

(L′
k−1(t) − L′

k(t))dt

= λ(Lk−1(ξi) − Lk(ξi))dt,

where we have used known properties of Laguerre polynomials. The value of
this sum is equivalent to (363e). �

For convenience we sometimes write

J =

0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 0
0 0 0 · · · 1 0

,

so that (363e) can be written

Ã = λ(I − J).

270 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

We now consider the possible A-stability or L-stability of singly implicit
methods. This hinges on the behaviour of the rational functions

R(z) =
N(z)

(1 − λz)s
,

where the degree of the polynomial N(z) is no more than s, and where

N(z) = exp(z)(1 − λz)s + O(zs+1).

We can obtain a formula for N(z) as follows:

N(z) =
s−i∑
i=0

(−λ)iL(s−i)
s

(
1
λ

)
zi,

where L
(m)
n denotes the m-fold derivative of Ln, rather than a generalized

Laguerre polynomial. To verify the L-stability of particular choices of s and
λ, we note that all poles of N(z)/(1−λz)s are in the right half-plane. Hence,
it is necessary only to test that |D(z)|2 − |(1 − λz)s|2 ≥ 0, whenever z is on
the imaginary axis. Write z = iy and we find the ‘E-polynomial’ defined in
this case as

E(y) = (1 + λ2y2)s − N(iy)N(−iy),

with E(y) ≥ 0 for all real y as the condition for A-stability. Although A-
stability for s = p is confined to the cases indicated in Table 363(II), it will
be seen in the next subsection that higher values of s can lead to additional
possibilities.

We conclude this subsection by constructing the two-stage L-stable singly
implicit method of order 2. From the formulae for the first few Laguerre
polynomials,

L0(x) = 1, L1(x) = 1 − x, L2(x) = 1 − 2x +
1
2
x2,

we find the values of ξ1 and ξ2, and evaluate the matrices T and T−1. We
have

ξ1 = 2 −
√

2, ξ2 = 2 +
√

2

and

T =

[
L0(ξ1) L1(ξ1)
L0(ξ2) L1(ξ2)

]
=

[
1 −1 +

√
2

1 −1 −
√

2

]
, T−1 =

[
1
2 +

√
2

4
1
2 −

√
2

4√
2

4 −
√

2
4

]
.

For L-stability, choose λ = ξ−1
2 = 1− 1

2

√
2, and we evaluate A = λT (I−J)T−1

to give the tableau

3 − 2
√

2 5
4 − 3

4

√
2 7

4 − 5
4

√
2

1 1
4 + 1

4

√
2 3

4 − 1
4

√
2

1
4 + 1

4

√
2 3

4 − 1
4

√
2

. (363g)

RUNGE–KUTTA METHODS 271

In the implementation of this, or any other, singly implicit method, the
actual entries in this tableau are not explicitly used. To emphasize this
point, we look in detail at a single Newton iteration for this method. Let
M = I − hλf ′(yn−1). Here the Jacobian matrix f ′ is supposed to have been
evaluated at the start of the current step. In practice, a Jacobian evaluated
at an earlier time value might give satisfactory performance, but we do not
dwell on this point here. If the method were to be implemented with no special
use made of its singly implicit structure, then we would need, instead of the
N × N matrix M , a 2N × 2N matrix M̃ given by

M̃ =

[
I − ha11f

′(yn−1) −ha12f
′(yn−1)

−ha21f
′(yn−1) I − ha22f

′(yn−1)

]
.

In this ‘fully implicit’ situation, a single iteration would start with the input
approximation yn−1 and existing approximations to the stage values and stage
derivatives Y1, Y2, hF1 and hF2. It will be assumed that these are consistent
with the requirements that

Y1 = yn−1 + a11hF1 + a12hF2, Y2 = yn−1 + a21hF1 + a22hF2,

and the iteration process will always leave these conditions intact.

364 Generalizations of singly implicit methods

In an attempt to improve the performance of existing singly implicit methods,
Butcher and Cash (1990) considered the possibility of adding additional
diagonally implicit stages. For example, if s = p + 1 is chosen, then the
coefficient matrix has the form

A =

[
λÂ 0
b λ

]
,

where Â is the matrix
Â = T (I − J)T−1.

An appropriate choice of λ is made by balancing various considerations.
The first of these is good stability, and the second is a low error constant.
Minor considerations would be convenience, the avoidance of coefficients with
abnormally large magnitudes or with negative signs, where possible, and a
preference for methods in which the ci lie in [0, 1]. We illustrate these ideas
for the case p = 2 and s = 3, for which the general form for a method would
be

λ(2 −
√

2) λ(1 − 1
4

√
2) λ(1 − 3

4

√
2) 0

λ(2 +
√

2) λ(1 + 3
4

√
2) λ(1 + 1

4

√
2) 0

1 2+3
√

2
4 − λ(1+

√
2)

2 −
√

2
8λ

2−3
√

2
4 − λ(1−

√
2)

2 +
√

2
8λ λ

2+3
√

2
4 − λ(1+

√
2)

2 −
√

2
8λ

2−3
√

2
4 − λ(1−

√
2)

2 +
√

2
8λ λ

.

272 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

0.1 0.2 0.3 0.4 0.5

−0.04

−0.02

0.00

0.02

0.04

C
(λ

)

λ

Figure 364(i) Error constant C(λ) for λ ∈ [0.1, 0.5]

The only choice available is the value of λ, and we consider the consequence
of making various choices for this number. The first criterion is that the
method should be A-stable, and we analyse this by calculating the stability
function

R(z) =
N(z)
D(z)

=
1 + (1 − 3λ)z + (1

2 − 3λ + 3λ2)z2

(1 − λz)3

and the E-polynomial

E(y) = |D(iy)|2 − |N(iy)|2 =
(
3λ4 −

(
1
2 − 3λ + 3λ2

)2)
y4 + λ6y6.

For A-stability, the coefficient of y4 must be non-negative. The condition for
this is that

3 −
√

3 + 2
√

3
2(3 −

√
3)

≤ λ ≤ 3 +
√

3 + 2
√

3
2(3 −

√
3)

,

or that λ lies in the interval [0.180425, 2.185600]. The error constant C(λ),
defined by exp(z) − R(z) = C(λ)z3 + O(z4), is found to be

C(λ) =
1
6
− 3

2
λ + 3λ2 − λ3,

and takes on values for λ ∈ [0.1, 0.5], as shown in Figure 364(i).
The value of b1 is positive for λ > 0.125441. Furthermore b2 is positive for

λ < 0.364335. Since b1 + b2 + λ = 1, we obtain moderately sized values of all
components of b if λ ∈ [0.125441, 0.364335]. The requirement that c1 and c2 lie
in (0, 1) is satisfied if λ < (2 −

√
2)−1 ≈ 0.292893. Leaving aside the question

of convenience, we should perhaps choose λ ≈ 0.180425 so that the error
constant is small, the method is A-stable, and the other minor considerations
are all satisfied. Convenience might suggest an alternative value λ = 1

5 .

RUNGE–KUTTA METHODS 273

365 Effective order and DESIRE methods

An alternative way of forcing singly implicit methods to be more appropriate
for practical computation is to generalize the order conditions. This has to be
done without lowering achievable accuracy, and the use of effective order is
indicated. Effective order is discussed in a general setting in Subsection 389
but, for methods with high stage order, a simpler analysis is possible.

Suppose that the quantities passed from one step to the next are not
necessarily intended to be highly accurate approximations to the exact
solution, but rather to modified quantities related to the exact result by
weighted Taylor series. For example, the input to step n might be an
approximation to

y(xn−1) + α1hy′(xn−1) + α2h
2y′′(xn−1) + · · · + αph

py(p)(yn−1).

We could regard a numerical method, which produces an output equal to

yn = y(xn) + α1hy′(xn) + α2h
2y′′(xn) + · · · + αph

py(p)(yn) + O(hp+1),

as a satisfactory alternative to a method of classical order p.
We explore this idea through the example of the effective order

generalization of the L-stable order 2 singly implicit method with the tableau
(363g). For this method, the abscissae are necessarily equal to 3 − 2

√
2 and

1, which are quite satisfactory for computation. However, we consider other
choices, because in the more complicated cases with s = p > 2, at least one
of the abscissae is outside the interval [0, 1], for A-stability.

If the method is required to have only effective order 2, then we can assume
that the incoming and outgoing approximations are equal to

yn−1 = y(xn−1) + hα1y
′(xn−1) + h2α2y

′′(xn−1) + O(hp+1),

yn = y(xn) + hα1y
′(xn) + h2α2y

′′(xn) + O(hp+1),

respectively. Suppose that the stage values are required to satisfy

Y1 = y(xn−1 + hc1) + O(h3), Y2 = y(xn−1 + hc2) + O(h3),

with corresponding approximations for the stage derivatives. In deriving the
order conditions, it can be assumed, without loss of generality, that n = 1.
The order conditions for the two stages and for the output approximation
yn = y1 are

274 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

y(x0 + hc1) = y(x0) + hα1y
′(x0) + h2α2y

′′(x0)
+ ha11y

′(x0 + hc1) + ha12y
′(x0 + hc2) + O(h3),

y(x0 + hc2) = y(x0) + hα1y
′(x0) + h2α2y

′′(x0)
+ ha21y

′(x0 + hc1) + ha22y
′(x0 + hc2) + O(h3),

y(x1) + hα1y
′(x1) + h2α2y

′′(x1)

= y(x0) + hα1y
′(x0) + h2α2y

′′(x0)

+ hb1y
′(x0 + hc1) + hb2y

′(x0 + hc2) + O(h3).

These can be converted into algebraic relations on the various free parameters
by expanding by Taylor series about x0 and equating coefficients of hy′(x0)
and h2y′′(x0). This gives the conditions

c1 = α1 + a11 + a12,
1
2c2

1 = α2 + a11c1 + a12c2,

c2 = α1 + a21 + a22,
1
2c2

2 = α2 + a21c1 + a22c2,

1 + α1 = α1 + b1 + b2,
1
2 + α1 + α2 = α2 + b1c1 + b2c2.

Because of the single-implicitness condition σ(A) = {λ}, we also have

a11 + a22 = 2λ,

a11a22 − a21a12 = λ2.

Assuming that c1 and c2 are distinct, a solution to these equations always
exists, and it leads to the values

α1 = 1
2 (c1 + c2) − 2λ, α2 = 1

2c1c2 − λ(c1 + c2) + λ2,

together with the tableau

c1 − c2−c1
2 + λ + λ2

c2−c1
λ − λ2

c2−c1

c2 λ + λ2

c2−c1

c2−c1
2 + λ − λ2

c2−c1

1
2 + 2λ− 1

2
c2−c1

1
2 − 2λ− 1

2
c2−c1

.

In the special case c = [0, 1], with λ = 1 − 1
2

√
2 for L-stability, we find

α1 =
√

2 − 3
2 and α2 = 1

2 (1 −
√

2) and the tableau

0 1
2 (4 − 3

√
2) 1

2 (
√

2 − 1)
1 1

2 (5 − 3
√

2) 1
2

√
2

2 −
√

2
√

2 − 1
.

RUNGE–KUTTA METHODS 275

Combine the effective order idea with the diagonal extensions introduced
in Subsection 364, and we obtain ‘DESIRE’ methods (diagonally extended
implicit Runge–Kutta methods using effective order). These are exemplified
by the example with p = 2, s = 3 and λ = 1

5 . For this method, α1 = − 3
20 ,

α2 = 1
400 and the coefficient tableau is

0 31
200 − 1

200 0
1
2

81
200

49
200 0

1 71
200

119
200

1
5

103
250

119
250

14
125

.

Exercises 36

36.1 Derive the tableau for the two-stage order 2 diagonally implicit method
satisfying (361a), (361b) with λ = 1 − 1

2

√
2 and c2 = 3λ.

36.2 Rewrite the method in Exercise 36.1 so that the value of Y1 in step n is
the input and the value of Y1 in step n + 1 is the output.

36.3 Show that the method derived in Exercise 36.2 has stage order 2.

36.4 Derive a diagonally implicit method with s = p = 3 and with λ = c2 =
1
3 , c2 = 2

3 , c3 = 1.

36.5 Derive a diagonally implicit method with s = p = 3, λ = 1, c2 = 1
3 ,

c3 = 1, b1 = 0.

36.6 Show that for an L-stable method of the type described in Subsection
364 with p = 3, s = 4, the minimum possible value of λ is approximately
0.2278955169, a zero of the polynomial

185976λ12 − 1490400λ11 + 4601448λ10 − 7257168λ9 + 6842853λ8

−4181760λ7+1724256λ6−487296λ5+94176λ4−12192λ3+1008λ2−48λ+1.

37 Symplectic Runge–Kutta Methods

370 Maintaining quadratic invariants

We recall Definition 357B in which the matrix M plays a role, where the
elements of M are

mij = biaij + bjaji − bibj . (370a)

Now consider a problem for which

y Qf(y) = 0, (370b)

276 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

for all y. It is assumed that Q is a symmetric matrix so that (370b) is
equivalent to the statement that y(x) Qy(x) is invariant.

We want to characterize Runge–Kutta methods with the property that
ynQyn is invariant with n so that the the numerical solution preserves the
conservation law possessed by the problem. If the input to step 1 is y0, then
the output will be

y1 = y0 + h
s∑

i=1

biFi, (370c)

where the stage derivatives are Fi = f(Yi), with

Yi = y0 + h
s∑

j=1

aijFj .

From (370b) it follows that

Fi Qy0 = −h
s∑

j=1

aijFi QFj . (370d)

Use (370c) to calculate y1Qy1 and substitute from (370d) to obtain the result

y1Qy1 = y0Qy0 − h2
s∑

i,j=1

mijFi QFj ,

with mij given by (370a).
Thus M = 0 implies that quadratic invariants are preserved and, in

particular, that symplectic behaviour is maintained. Accordingly, we have the
following definition:

Definition 370A A Runge–Kutta method (A, b , c) is symplectic if

M = diag(b)A + A diag(b) − bb

is the zero matrix.

The property expressed by Definition 370A was first found by Cooper (1987)
and, as a characteristic of symplectic methods, by Lasagni (1988), Sanz-Serna
(1988) and Suris (1988).

371 Examples of symplectic methods

A method with a single stage is symplectic only if 2b1a11 − b2
1 = 0. For

consistency, that is order at least 1, b1 = 1 and hence c1 = a11 = 1
2 ; this

is just the implicit mid-point rule. We can extend this in two ways: by either
looking at methods where A is lower triangular or looking at the methods
with stage order s.

RUNGE–KUTTA METHODS 277

For lower triangular methods we will assume that none of the bi is zero.
The diagonals can be found from 2biaii = b2

i to be aii = 1
2bi. For the elements

of A below the diagonal we have biaij = bibj so that aij = bj . This gives a
tableau

1
2b1

1
2b1

b1 + 1
2b2 b1

1
2b2

b1 + b2 + 1
2b3 b1 b2

1
2b3

...
...

...
...

. . .

b1 + · · · + bs−1 + 1
2bs b1 b2 b3 · · · 1

2bs

b1 b2 b3 · · · bs

.

This method is identical with s steps of the mid-point rule with stepsizes b1h,
b2h, . . . , bsh.

For methods with order and stage order equal to s, we have, in the notation
of Subsection 358, εi = 0 for i = s + 1, s + 2, . . . , 2s. This follows from the
observation that V MV = 0. Thus, in addition to B(s), B(2s) holds. Hence,
the abscissae of the method are the zeros of P ∗

s and the method is the s-stage
Gauss method.

372 Order conditions

Given rooted trees t, u and a symplectic Runge–Kutta method, we consider
the relationship between the elementary weights φ(tu), φ(ut), φ(t), φ(u). Write

Φ(t) =
∑
i=1

biφi, Φ(u) =
∑
i=1

biψi.

Then we find

Φ(tu) =
s∑

i,j=1

biφiaijψj ,

Φ(ut) =
s∑

i,j=1

bjψjajiφi,

so that

Φ(tu) + Φ(ut) =
s∑

i,j=1

(biaij + bjaji)φiψj

=
s∑

i,j=1

(bibj)φiψj

= Φ(t)Φ(u).

278 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Assuming the order conditions Φ(t) = 1/γ(t) and Φ(u) = 1/γ(u) are satisfied,
then

Φ(tu) − 1
γ(tu)

+ Φ(ut) − 1
γ(ut)

= 0. (372a)

Using this fact, we can prove the following theorem:

Theorem 372A Let (A, b , c) be a symplectic Runge–Kutta method. The
method has order p if and only if for each non-superfluous tree and any vertex
in this tree as root, Φ(t) = 1/γ(t), where t is the rooted tree with this vertex.

Proof. We need only to prove the sufficiency of this criterion. If two rooted
trees belong to the same tree but have vertices v0, v̂ say, then there is a
sequence of vertices v0, v1, . . . , vm = v̂, such that vi−1 and vi are adjacent
for i = 1, 2, . . . , m. This mean that rooted trees t, u exist such that tu is the
rooted tree with root vi−1 and ut is the rooted tree with root vi. We are
implicitly using induction on the order of trees and hence we can assume that
Φ(t) = 1/γ(t) and Φ(u) = 1/γ(u). Hence, if one of the order conditions for the
trees tu and ut is satisfied, then the other is. By working along the chain of
possible roots v0, v1, . . . , vm, we see that the order condition associated with
the root v0 is equivalent to the condition for v̂. In the case of superfluous
trees, one choice of adjacent vertices would imply that t = u. Hence, (372a) is
equivalent to 2Φ(tt) = 2/γ(tt) so that the order condition associated with tt
is satisfied and all rooted trees belonging to the same tree are also satisfied.
�

373 Experiments with symplectic methods

The first experiment uses the simple pendulum based on the Hamiltonian
H(p, q) = p2/2 − cos(q) and initial value (p, q) = (1, 0). The amplitude is
found to be π/3 ≈ 1.047198 and the period to be approximately 6.743001.
Numerical solutions, displayed in Figure 373(i), were found using the Euler,
implicit Euler and the implicit mid-point rule methods. Only the last of these
is symplectic and its behaviour reflects this. That is, like the exact solution
which is also shown, the area of the initial set remains unchanged, even though
its shape is distorted.

The second experiment is based on problem (122c), which evolves on the
unit sphere y2

1 + y2
2 + y2

3 = 1. The value of y2
1 + y2

2 + y2
3 is calculated by

the Euler method, the implicit Euler method and the implicit mid-point rule
method. Only the last of these is symplectic. The computed results are shown
in Figure 373(ii). In each case a stepsize h = 0.1 was used. Although results
are shown for only 500 time steps, the actual experiment was extended much
further. There is no perceptible deviation from y2

1 + y2
2 + y2

3 = 1 for the first
million steps.

RUNGE–KUTTA METHODS 279

Figure 373(i) Solutions of the Hamiltonian problem H(p, q) = p2/2 − cos(q).

Left: Euler method (grey) and implicit Euler method (white). Right: exact solution

(grey) and implicit mid-point method (white). The underlying image depicts the

takahe Porphyrio hochstetteri, rediscovered in 1948 after many years of presumed

extinction.

0 1 2 5 10 20 50
100 200 500

� � � � � �
�

�

�

� � � � � �
�

�

�

10

1

0.1

Euler

Implicit Euler

Mid-point n

‖yn‖2

Figure 373(ii) Experiments for problem (122c). The computed value of ‖yn‖2 is

shown after n = 1, 2, . . . , steps.

Exercises 37

37.1 Do two-stage symplectic Runge–Kutta methods exist which have order
3 but not order 4?

37.2 Do three-stage order 3 symplectic Runge–Kutta methods exist for which
A is lower triangular?

280 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

38 Algebraic Properties of Runge–Kutta Methods

380 Motivation

For any specific N -dimensional initial value problem, Runge–Kutta methods
can be viewed as mappings from RN to RN . However, the semi-group
generated by such mappings has a significance independent of the particular
initial value problem, or indeed of the vector space in which solution values
lie. If a method with s1 stages is composed with a second method with s2

stages, then the combined method with s1 + s2 stages can be thought of as
the product of the original methods. It turns out that this is not quite the best
way of formulating this product, and we need to work with equivalence classes
of Runge–Kutta methods. This will also enable us to construct a group, rather
than a mere semi-group.

It will be shown that the composition group of Runge–Kutta equivalent
classes is homomorphic to a group on mappings from trees to real numbers.
In fact the mapping that corresponds to a specific Runge–Kutta method is
just the function that takes each tree to the associated elementary weight.

There are several reasons for introducing and studying these groups.
For Runge–Kutta methods themselves, it is possible to gain a better
understanding of the order conditions by looking at them in this way.
Furthermore, methods satisfying certain simplifying assumptions, notably the
C and D conditions, reappear as normal subgroups of the main group. An
early application of this theory is the introduction of the concept of ‘effective
order’. This is a natural generalization from this point of view, but makes very
little sense from a purely computational point of view. While effective order
was not widely accepted at the time of its discovery, it has been rediscovered
(López-Marcos, Sanz-Serna and Skeel, 1996) and has now been seen to have
further ramifications.

The final claim that is made for this theory is that it has applications to the
analysis of the order of general linear methods. In this guise a richer structure,
incorporating an additive as well as a multiplicative operation, needs to be
used; the present section also examines this more elaborate algebra.

The primary source for this theory is Butcher (1972), but it is also widely
known through the work of Hairer and Wanner (1974). Recently the algebraic
structures described here have been rediscovered through applications in
theoretical physics. For a review of these developments, see Brouder (2000).

Before proceeding with this programme, we remark that the mappings from
trees to real numbers, which appear as members of the algebraic systems
introduced in this section, are associated with formal Taylor series of the
form

a(∅)y(x) +
∑
t∈T

a(t)
σ(t)

hr(t)F (t)(y(x)). (380a)

Such expressions as this were given the name B-series by Hairer and Wanner

RUNGE–KUTTA METHODS 281

(1974) and written
B(a, y(x)),

where a : T# → R, with T# denoting the set of rooted trees T together with
an additional empty tree ∅. Because of the central role of the exact solution
series, in which a(∅) = 1 and a(t) = 1/γ(t), Hairer and Wanner scale the
terms in the series slightly differently, and write

B(a, y(x)) = a(∅)y(x) +
∑
t∈T

α(t)a(t)
r(t)!

hr(t)F (t)(y(x))

= a(∅)y(x) +
∑
t∈T

a(t)
γ(t)σ(t)!

hr(t)F (t)(y(x)),
(380b)

where α(t) is the function introduced in Subsection 302. This means that the
B-series representing a Runge–Kutta method with order p will have a(t) = 1
whenever r(t) ≤ p. In this book we concentrate on the coefficients themselves,
rather than on the series, but it will be the interpretation as coefficients in
(380a), and not as coefficients in (380b), that will always be intended.

381 Equivalence classes of Runge–Kutta methods

We consider three apparently distinct ways in which two Runge–Kutta
methods may be considered equivalent. Our aim will be to define these
three equivalence relations and then show that they are actually equivalent
equivalence relations. By this we mean that if two methods are equivalent in
one of the three senses then they are equivalent also in each of the other senses.
We temporarily refer to these three equivalence relations as ‘equivalence’, ‘Φ-
equivalence’ and ‘P -equivalence’, respectively.

Definition 381A Two Runge–Kutta methods are ‘equivalent’ if, for any
initial value problem defined by an autonomous function f satisfying a
Lipschitz condition, and an initial value y0, there exists h0 > 0 such that
the result computed by the first method is identical with the result computed
by the second method, if h ≤ h0.

Definition 381B Two Runge–Kutta methods are ‘Φ-equivalent’ if, for any
t ∈ T , the elementary weight Φ(t) corresponding to the first method is equal
to Φ(t) corresponding to the second method.

In introducing P -equivalence, we need to make use of the concept of
reducibility of a method. By this we mean that the method can be replaced
by a method with fewer stages formed by eliminating stages that do not
contribute in any way to the final result, and combining stages that are
essentially the same into a single stage. We now formalize these two types
of reducibility.

282 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Definition 381C A Runge–Kutta method (A, b , c) is ‘0-reducible’ if the
stage index set can be partitioned into two subsets {1, 2, . . . , s} = P0 ∪ P1

such that bi = 0 for all i ∈ P0 and such that aij = 0 if i ∈ P1 and j ∈ P0.
The method formed by deleting all stages indexed by members of P0 is known
as the ‘0-reduced method’.

Definition 381D A Runge–Kutta method (A, b , c) is ‘P -reducible’ if the
stage index set can be partitioned into {1, 2, . . . , s} = P1 ∪ P2 ∪ · · · ∪ Ps and
if, for all I, J = 1, 2, . . . , s,

∑
j∈PJ

aij is constant for all i ∈ PI . The method
(A, b , c), with s stages with aIJ =

∑
j∈PJ

aij, for i ∈ PI , bI =
∑

i∈PI
bi and

cI = ci, for i ∈ PI , is known as the P -reduced method.

Definition 381E A Runge–Kutta method is ‘irreducible’ if it is neither
0-reducible nor P -reducible. The method formed from a method by first
carrying out a P -reduction and then carrying out a 0-reduction is said to
be the ‘reduced method’.

Definition 381F Two Runge–Kutta methods are ‘P -equivalent’ if each of
them reduces to the same reduced method.

Theorem 381G Let (A, b , c) be an irreducible s-stage Runge–Kutta method.
Then, for any two stage indices i, j ∈ {1, 2, . . . , s}, there exists a Lipschitz-
continuous differential equation system such that Yi �= Yj. Furthermore, there
exists t ∈ T , such that Φi(t) �= Φj(t).

Proof. If i, j exist such that

Φi(t) = Φj(t) for all t ∈ T, (381a)

then define a partition P = {P1, P2, . . . , Ps} of {1, 2, . . . , s} such that i and
j are in the same component of the partition if and only if (381a) holds.
Let A denote the algebra of vectors in Rs such that, if i and j are in the
same component of P , then the i and j components of v ∈ A are identical.
The algebra is closed under vector space operations and under component-by-
component multiplication. Note that the vector with every component equal
to 1 is also in A. Let Â denote the subalgebra generated by the vectors made
up from the values of the elementary weights for the stages for all trees. That
is, if t ∈ T , then v ∈ Rs defined by vi = Φi(t), i = 1, 2, . . . , s, is in Â, as
are the component-by-component products of the vectors corresponding to
any finite set of trees. In particular, by using the empty set, we can regard
the vector defined by vi = 1 as also being a member of Â. Because of the
way in which elementary weights are constructed, v ∈ Â implies Av ∈ Â. We
now show that Â = A. Let I and J be two distinct members of P . Then
because t ∈ T exists so that Φi(t) �= Φj(t) for i ∈ I and j ∈ J , we can find
v ∈ Â so that vi �= vj . Hence, if w = (vi − vj)−1(v − vj1), where 1 in this

RUNGE–KUTTA METHODS 283

context represents the vector in Rs with every component equal to 1, then
wi = 1 and wj = 0. Form the product of all such members of the algebra
for J �= I and we deduce that the characteristic function of I is a member
of A. Since the S such vectors constitute a basis for this algebra, it follows
that Â = A. Multiply the characteristic function of J by A and note that, for
all i ∈ I ∈ P , the corresponding component in the product is the same. This
contradicts the assumption that the method is irreducible. Suppose it were
possible that two stages, Yi and Yj , say, give identical results for any Lipschitz
continuous differential equation, provided h > 0 is sufficiently small. We now
prove the contradictory result that Φi(t) = Φj(t) for all t ∈ T . If there were
a t ∈ T for which this does not hold, then write U for a finite subset of T
containing t as in Subsection 314. Construct the corresponding differential
equation as in that subsection and consider a numerical solution using the
Runge–Kutta method (A, b , c) and suppose that t corresponds to component
k of the differential equation. The value of component k of Yi is Φi(t) and the
value of component k of Yj is Φj(t). �

Now the key result interrelating the three equivalence concepts.

Theorem 381H Two Runge–Kutta methods are equivalent if and only if they
are P -equivalent and if and only if they are Φ-equivalent.

Proof.
P -equivalence ⇒ equivalence. It will enough to prove that if i, j ∈ PI , in
any P -reducible Runge–Kutta method, where we have used the notation of
Definition 381D, then for any initial value problem, as in Definition 381A,
Yi = Yj , for h < h0. Calculate the stages by iteration starting with Y

[0]
i = η,

for every i ∈ {1, 2, . . . , s}. The value of Y
[k]
i in iteration k will be identical for

all i in the same partitioned component.
P -equivalence ⇒ Φ-equivalence. Let the stages be partitioned according to

{1, 2, . . . , s} = P1 ∪ P2 ∪ · · · ∪ Ps and assume that a Runge–Kutta method is
reducible with respect to this partition. It will be enough to prove that, for all
t ∈ T , Φi(t) = Φj(t) if i and j belong to the same component. This follows by
induction on the order of t. It is true for t = τ because Φi(t) = ci is constant
for all i in the same component. For t = [t1t2 · · · tm],

Φi([t1t2 · · · tm]) =
s∑

j=1

aij

m∏
k=1

Φj(tk)

and this also is constant for all i in the same component.
Φ-equivalence ⇒ P -equivalence. Suppose two methods are Φ-equivalent but

not P -equivalent. Combine the s stages of method 1 and the ŝ stages of
method 2, together with the output approximations, into a single method and

284 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

replace this by a reduced method. Because the original methods are not P -
equivalent, the output approximations in the combined method are not in the
same partition. Hence, by Theorem 381G, there exists t ∈ T such that Φi(t)
takes on different values for these two approximations.

Equivalence ⇒ P -equivalence. Suppose two methods are equivalent but
not P -equivalent. Carry out the same construction as in the immediately
previous part of the proof. By Theorem 381G, there is an initial value problem
satisfying the requirements of Definition 381A such that Yi takes on different
values for the two output approximations. This contradicts the assumption
that the original methods are equivalent. �

382 The group of Runge–Kutta methods

Consider two equivalence classes of Runge–Kutta methods and choose a
representative member of each of these classes. Because of the results of the
previous subsection, equivalence is the same as Φ-equivalence and the same
as P -equivalence. To see how to construct the composition product for the
classes, form a tableau

c1 a11 a12 · · · a1s 0 0 · · · 0
c2 a21 a22 · · · a2s 0 0 · · · 0
...

...
...

...
...

...
...

cs as1 as2 · · · ass 0 0 · · · 0

∑s
i=1 bi + ĉ1 b1 b2 · · · bs â11 â12 · · · â1ŝ∑s
i=1 bi + ĉ2 b1 b2 · · · bs â21 â22 · · · â2ŝ

...
...

...
...

...
...

...∑s
i=1 bi + ĉŝ b1 b2 · · · bs âŝ1 âŝ2 · · · âŝŝ

b1 b2 · · · bs b̂1 b̂2 · · · b̂ŝ

(382a)

from the elements of the tableaux for the two methods (A, b , c) and (Â, b̂ , ĉ),
respectively. We have written s and ŝ for the numbers of stages in the first
and second method, respectively.

By writing y0 for the initial value for the first method and y1 for the value
computed in a step and then writing y2 for the result computed by the second
method using y1 for its initial value, we see that y2 is the result computed by
the product method defined by (382a). To see why this is the case, denote the
stage values by Yi, i = 1, 2, . . . , s, for the first method and by Ŷi, i = 1, 2, . . . , ŝ,
for the second method. The variables Fi and F̂i will denote the values of f(Yi)
and f(Ŷi).

RUNGE–KUTTA METHODS 285

The values of the stages and of the final results computed within the first
and second steps are

Yi = y0 + h

s∑
j=1

aijFj , i = 1, 2, . . . , s, (382b)

y1 = y0 + h

s∑
j=1

bjFj , (382c)

Ŷi = y1 + h
ŝ∑

j=1

âijF̂j , i = 1, 2, . . . , ŝ, (382d)

y2 = y1 + h

ŝ∑
j=1

b̂j F̂j . (382e)

Substitute y1 from (382c) into (382d) and (382e), and we see that the
coefficients for the stages in the second step and for the final output value
y2 are given as in the tableau (382a).

If m1 and m2 denote the methods (A, b , c) and (Â, b̂ , ĉ), respectively, write
m1 · m2 for the method defined by (382a). Also, for a given method m, we
write [m] for the equivalence class containing m. The notation m ≡ m will
signify that m and m are equivalent methods.

We are interested in multiplication of equivalent classes, rather than of
particular methods within these classes. Hence, we attempt to use the method
given by (382a) as defining a new class of equivalent methods, which we can use
as the product of the original two classes. The only possible difficulty could
be that the result might depend on the particular choice of representative
member for the two original classes. That no such difficulty arises follows
from the following theorem:

Theorem 382A Let m1, m2, m1, m2 denote Runge–Kutta methods, such
that

m1 ≡ m1 and m2 ≡ m2. (382f)

Then
[m1 · m2] = [m1 · m2].

Proof. We note that an equivalent statement is

m1 · m2 ≡ m1 · m2. (382g)

Let y1 and y2 denote the output values over the two steps for the sequence
of steps constituting m1 ·m2, and y1 and y2 denote the corresponding output
values for m1 · m2. If f satisfies a Lipschitz condition and if h is sufficiently

286 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

small, then y1 = y1 because m1 ≡ m1, and y2 = y2 because m2 ≡ m2. Hence,
(382g) and therefore (382f) follows. �

Having constructed a multiplicative operation, we now construct an identity
element and an inverse for equivalence classes of Runge–Kutta methods. For
the identity element we consider the class containing any method m0 that
maps an initial value to an equal value, for a problem defined by a Lipschitz
continuous function, provided that h is sufficiently small. It is clear that
[m0 ·m] = [m·m0] = [m] for any Runge–Kutta method m. It will be convenient
to denote the identity equivalence class by the symbol 1, where it will be clear
from the context that this meaning is intended.

To define the inverse of an equivalence class, start with a particular
representative m = (A, b , c), with s stages, and consider the tableau

c1 −
∑s

j=1 bj a11 − b1 a12 − b2 · · · a1s − bs

c2 −
∑s

j=1 bj a21 − b1 a22 − b2 · · · a2s − bs

...
...

...
...

cs −
∑s

j=1 bj as1 − b1 as2 − b2 · · · ass − bs

−b1 −b2 · · · −bs

.

As we saw in Subsection 343, this method exactly undoes the work of m.
Denote this new method by m−1, and we prove the following result:

Theorem 382B Let m denote a Runge–Kutta method. Then

[m · m−1] = [m−1 · m] = 1.

Proof. The tableaux for the two composite methods m · m−1 and m−1 · m
are, respectively,

c1 a11 a12 · · · a1s 0 0 · · · 0
c2 a21 a22 · · · a2s 0 0 · · · 0
...

...
...

...
...

...
...

cs as1 as2 · · · ass 0 0 · · · 0

c1 b1 b2 · · · bs a11 − b1 a12 − b2 · · · a1s − bs

c2 b1 b2 · · · bs a21 − b1 a22 − b2 · · · a2s − bs

...
...

...
...

...
...

...
cs b1 b2 · · · bs as1 − b1 as2 − b2 · · · ass − bs

b1 b2 · · · bs −b1 −b2 · · · −bs

RUNGE–KUTTA METHODS 287

and

c1 −
∑s

j=1 bj a11 − b1 a12 − b2 · · · a1s − bs 0 0 · · · 0
c2 −

∑s
j=1 bj a21 − b1 a22 − b2 · · · a2s − bs 0 0 · · · 0

...
...

...
...

...
...

...
cs −

∑s
j=1 bj as1 − b1 as2 − b2 · · · ass − bs 0 0 · · · 0

c1 −
∑s

j=1 bj −b1 −b2 · · · −bs a11 a12 · · · a1s

c2 −
∑s

j=1 bj −b1 −b2 · · · −bs a21 a22 · · · a2s

...
...

...
...

...
...

...
cs −

∑s
j=1 bj −b1 −b2 · · · −bs as1 as2 · · · ass

−b1 −b2 · · · −bs b1 b2 · · · bs

.

Each of these methods is P -reducible to the methods m and m−1, respectively,
but in each case with b replaced by the zero vector, so that each lies in the
equivalence class 1. �

383 The Runge–Kutta group

While the group of equivalent classes of Runge–Kutta methods is conceptually
very simple, it is difficult to use for detailed manipulations. We turn to a
second group that is closely related to it, but which has a more convenient
representation.

Let G1 denote the set of functions on T , the rooted trees, to the real
numbers. We define a binary relation on G1 that makes it a group. It is
convenient to widen the scope of our discussion by making use of forests. By a
‘forest’, we mean a set of vertices V and a set of edges E such that each edge
is an ordered pair of members of V under the restrictions that each vertex
appears as the second member of at most one edge. If [v1, v2], [v2, v3], . . . ,
[vn−1, vn] are edges, we write v1 < vn. We will require this relation to be a
partial ordering.

Suppose that V and E can be partitioned as V = V1 ∪ V2 ∪ · · · ∪ Vk,
E = E1∪E2∪· · ·∪Ek, where each of (Vi, Ei), i = 1, 2, . . . , k, is connected and is
therefore a rooted tree. A function α : T → R can be extended multiplicatively
to a function on the set of all forests by defining

α
(
(V, E)

)
=

k∏
i=1

α
(
(Vi, Ei)

)
.

If (V, E) is a forest and V̂ is a subset of V , then the sub-forest induced by
V̂ is the forest (V̂ , Ê), where Ê is the intersection of V̂ × V̂ and E. A special

288 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

case is when a sub-forest (V̂ , Ê) satisfies the requirement that for any two
vertices u, v of E such that u < v and v ∈ Ê, u is also a member of Ê. In this
case we write

(V̂ , Ê) � (V, E).

From now on we write forests by single letters Q, R, S, and interpret R � S
accordingly. If R�S then S \R will denote the forest induced by the difference
of the vertex sets of S and R, respectively.

We can now define a product of two multiplicative mappings of forests to
real numbers. If α and β are two such mappings, then we write

(αβ)(S) =
∑
R�S

α(S \ R)β(R). (383a)

We need to verify that αβ is multiplicative if the same is true for α and β.

Lemma 383A Let α and β be multiplicative mappings from the forests to
the real numbers. Then αβ is multiplicative.

Proof. It will be sufficient to consider the value of (αβ)(S), where S = S1∪S2.
Each R � S can be written as R = R1 ∪ R2, where R1 � S1 and R2 � S2. We
now have

(αβ)(S) =
∑
R�S

α(S \ R)β(R)

=
∑

R1�S1

α(S1 \ R1)β(R1)
∑

R2�S2

α(S2 \ R2)β(R2)

= (αβ)(S1)(αβ)(S2). �

We next show that the product we have defined is associative.

Lemma 383B Let α, β and γ be multiplicative mappings from forests to
reals. Then

(αβ)γ = α(βγ).

Proof. If Q � R � S then (R \ Q) � (S \ Q). Hence, we find

((αβ)γ)(S) =
∑
Q�S

(αβ)(S \ Q)γ(Q)

=
∑
Q�S

∑
(R\Q)�(S\Q)

α((S \ Q) \ (R \ Q))β(R \ Q)γ(Q)

=
∑
Q�R

∑
R�S

α(S \ R)β(R \ Q)γ(Q)

=
∑
R�S

α(S \ R)(βγ)(R)

= (α(βγ))(S). �

RUNGE–KUTTA METHODS 289

We can now restrict multiplication to trees, and we note that associativity
still remains. The semi-group that has been constructed on the set G1 is
actually a group because we can construct both left and right inverses, α−1

left
and α−1

right say, for any α ∈ G1, which must be equal because

α−1
left = α−1

left

(
αα−1

right

)
=
(
α−1

leftα
)

α−1
right = α−1

right.

Lemma 383C Given α ∈ G1, there exist a left inverse and a right inverse.

Proof. We show, by induction on the order of t, that it is possible to
construct β such that (αβ)(t) = 0 or (βα)(t) = 0, for all t ∈ T . Because
(αβ)(τ) = (βα)(τ) = α(τ) + β(τ), the result is clear for order 1. Suppose the
result has been proved for all trees of order less than that of t �= τ ; then we
note that

(αβ)(t) = α(t) + β(t) + φ(t, α, β)

and
(βα)(t) = α(t) + β(t) + φ(t, β, α),

where φ(t, α, β) involves the values of α and β only for trees with orders less
than r(t). Hence, it is possible to assign a value to β(t) so that (αβ)(t) = 0
or that (βα)(t) = 0, respectively. Thus it is possible to construct β as a left
inverse or right inverse of α. �

Having established the existence of an inverse for any α ∈ G1, we find a
convenient formula for α−1. We write S for a tree t, written in the form (V, E),
and P(S) for the set of all partitions of S. This means that if P ∈ P(S), then
P is a forest formed by possibly removing some of the edges from E. Another
way of expressing this is that the components of P are trees (Vi, Ei), for
i = 1, 2, . . . , n, where V is the union of V1, V2, . . . , Vn and each Ei is a subset
of E. The integer n, denoting the number of components of P , will be written
as #P . We write ti as the tree represented by (Vi, Ei).

Lemma 383D Given α ∈ G1 and t ∈ T , written in the form (V, E), then

α−1(t) =
∑

P∈P(S)

#P∏
i=1

(−α(ti)). (383b)

Proof. Construct a mapping β ∈ G1 equal to the right-hand side of (383b).
We show that for any t ∈ T , (αβ)(t) = 0 so that αβ = 1. Let t = (V, E).
For any partition P with components (Vi, Ei), for i = 1, 2, . . . , n, we consider
the set of possible combinations of {1, 2, . . . , n}, with the restriction that if
C is such a combination, then no edge (v1, v2) ∈ E exists with v1 ∈ Vi and
v2 ∈ Vj , with i and j distinct members of C. Let C(P) denote the set of all

290 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

such combinations of P ∈ P(t). Given C ∈ P , denote by C the complement
of C in P .

The value of (αβ)(t) can be written in the form∑
P∈P(t)

∑
C∈C(P)

∏
i∈C

α(ti)(−1)#C
∏
j∈C

α(tj).

For any particular partition P , the total contribution is

∑
C∈C(P)

(−1)n−#C

#P∏
i=1

α(ti).

This is zero because
∑

C∈C(P)(−1)n−#C = 0. �

384 A homomorphism between two groups

We show that the groups introduced in Subsections 382 and 383 are related
in such a way that the former is isomorphic to a subgroup of the latter. The
mapping between elements of the group that provides this homomorphism
maps an equivalence class of Runge–Kutta methods to the function on T to R

defined by the elementary weights associated with a representative member of
the class. We need to establish that products in the first group are preserved
in the second. This means that if m and m̂ are Runge–Kutta methods and
Φ : T → R and Φ̂ : T → R are the elementary weight functions for m and m̂,
respectively, then ΦΦ̂ is the elementary weight function associated with mm̂.

Theorem 384A Let Φ : T → R be the elementary weight function associated
with (A, b , c) and Φ̂ : T → R the elementary weight function associated with
(Â, b̂ , ĉ). Let Φ̃ : T → R denote the elementary weight function for the product
method as represented by (382a). Then

Φ̃ = ΦΦ̂.

Proof. Denote the (s + ŝ)-stage composite coefficient matrices by (Ã, b̃ , c̃)
with the elements of Ã and b̃ given by

ãij =

aij , i ≤ s, j ≤ s,

0, i ≤ s, j > s,

bj , i > s, j ≤ s,

âi−s,j−s, i > s, j > s.

b̃i =

{
bi, i ≤ s,
b̂i−s, i > s.

RUNGE–KUTTA METHODS 291

For a tree t, such that r(t) = n, represented by the vertex–edge pair (V, E),
with root ρ ∈ V , write the elementary weight Φ̃(t) in the form

Φ̃(t) =
∑
i∈I

b̃i(ρ)

∏
(v,w)∈E

ãi(v),i(w). (384a)

In this expression, I is the set of all mappings from V to the set {1, 2, . . . , s̃}
and, for i ∈ I and v ∈ V , i(v) denotes the value to which the vertex v maps.

If v < w and i(v) ≤ s < i(w) then the corresponding term in (384a) is
zero. Hence, we sum only over I ′ defined as the subset of I from which such
i are omitted. For any i ∈ I ′, define R � S = (V, E) such that all the vertices
associated with R map into {s+1, s+2, . . . , s+ ŝ}. Collect together all i ∈ I ′

which share a common R so that (384a) can be written in the form

Φ̃(t) =
∑
R�S

∑
i∈IR

b̃i(ρ)

∏
(v,w)∈E

ãi(v),i(w).

For each R, the terms in the sum have total value Φ(S \ R)Φ̂(R), and the
result follows. �

385 A generalization of G1

It will be convenient to build an algebraic system similar to G1, but possessing,
in addition to the group structure, a vector space structure. We cannot exactly
achieve all of this, but we can achieve almost all of it. The way we go about
this is to add to T an additional member, known as the ‘empty tree’ and
denoted by ∅. The augmented set of trees will be denoted by T#. We write
G for the set of mappings T# → R and G1 for the set of those members of G
for which ∅ maps to 1. We define the operation G1 × G → G just as for the
group operation except that the coefficient of α(t) in the formula for (αβ)(t)
is β(∅). With this understanding we retain the associativity property, in cases
where it makes sense. That is, if α, β ∈ G1 and γ ∈ G, then

(αβ)γ = α(βγ).

Furthermore, left-multiplication by an element of G1 is linear in the sense that

α(β + γ) = αβ + αγ,

whenever α ∈ G1 and β, γ ∈ G. Furthermore,

α(cβ) = cαβ,

where, for a scalar c, cβ is the mapping that takes t to cβ(t) for all t ∈ T#.

292 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

The generalization we have introduced has a simple significance in terms of
Runge–Kutta tableaux and methods. Instead of computing the output value
from a step of computation by the formula

y0 + h
s∑

i=1

biFi, (385a)

where y0 is the input value and F1, F2, . . . , Fs are stage derivatives, we can
replace (385a) by

b0y0 + h
s∑

i=1

biFi.

To express this in a tableau, we place the coefficient b0 in the spare space at
the left of the last line. Thus, the tableau would have the form

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
...

cs as1 as2 · · · ass

b0 b1 b2 · · · bs

.

As a Runge–Kutta method, to be used in the conventional manner as a one-
step method for advancing the solution of a differential equation, this makes
no sense at all, if b0 �= 1. Indeed, the method would not even be covariant
with respect to shifts of origin. However, the process of computing with a
single step of this contrived method may play an important role as part of
a more sophisticated computation. An important example of a generalized
Runge–Kutta method is given by the one-stage tableau

0 0
0 1

. (385b)

This method does nothing other than computing h multiplied by the derivative
of the input value. Combined with linear operations, all Runge–Kutta methods
can be built up from this basic method. The elementary weights associated
with this method are given by

Φ(t) =

{
1, t = τ,

0, t �= τ.

386 Recursive formula for the product

We consider a formalism for the product on G1×G → G, based on the second
of the recursive constructions of trees defined in Subsection 300. That is, for

RUNGE–KUTTA METHODS 293

two trees t, u, we define tu as the tree formed by joining the roots of t and
u with the root of t regarded as the root of the product. Corresponding to
t ∈ T#, we define t̂ : G1 → R by the formula

t̂(α) = α(t), α ∈ G1.

The set of all t̂, for t ∈ T , will be denoted by T̂ . We extend the dot-product
notation from T × T → T to T̂ × T̂ → T̂ by the formula

t̂ · û = t̂u.

Since T̂# denotes a set of linear functionals on G, it is natural to consider
also the vector space spanned by such functionals and extend the dot-product
notation to make the product of two functionals bilinear. We denote this set
of functionals by G∗.

We can now define a special function, λ : G1 × T → G∗, by the recursion

λ(α, τ) = τ̂ ,

λ(α, tu) = λ(α, t)λ(α, u) + α(u)λ(α, t).

This enables us to generate expressions for αβ for all trees.

Theorem 386A For α ∈ G1 and β ∈ G,

(αβ)(∅) = β(∅),
(αβ)(t) = λ(α, t)(β) + α(t)β(∅).

Proof. In this proof only, we introduce the notation R�̇S to denote R � S,
with R �= ∅. If a tree t is represented by the set S of vertices, with an implied
set of edges, then the notation tR, where R � S, will denote the tree formed
from the elements of R, with the induced set of edges. With this terminology,
we can write (383a) in the form

(αβ)(t) =
∑
R�̇S

α(S \ R)β(R) + α(t)β(∅).

Hence, we need to show that

λ(α, t) =
∑
R�̇S

α(S \ R)t̂R.

This is obvious in the case t = τ . We now consider a tree tu with t represented
by S and u represented by Q. This means that tu can be represented by the
graph (V, E), where V is the union of the vertex sets associated with S and

294 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Table 386(I) The function λ for trees of orders 1 to 5

t r(t) λ(α, t)
τ 1 τ̂

τ τ 2 τ̂ τ̂ + α(τ)τ̂
τ τ ·τ 3 τ̂ τ̂ ·τ̂ + 2α(τ)τ̂ τ̂ + α(τ)2τ̂
τ ·ττ 3 τ̂ ·τ̂ τ̂ + α(τ)τ̂ τ̂ + α(ττ)τ̂

(ττ ·τ)τ 4 (τ̂ τ̂ ·τ̂)τ̂ + 3α(τ)τ̂ τ̂ ·τ̂ + 3α(τ)2τ̂ τ̂ + α(τ)3τ̂
τ τ ·ττ 4 τ̂ τ̂ ·τ̂ τ̂ + α(τ)τ̂ τ̂ ·τ̂ + α(τ)τ̂ ·τ̂ τ̂+

(α(τ)2 + α(ττ))τ̂ τ̂ + α(τ)α(ττ)τ̂
τ (ττ ·τ) 4 τ̂(τ̂ τ̂ ·τ̂) + 2α(τ)τ̂ ·τ̂ τ̂ + α(τ)2τ̂ τ̂ + α(ττ ·τ)τ̂

τ (τ ·ττ) 4 τ̂(τ̂ ·τ̂ τ̂) + α(τ)τ̂ ·τ̂ τ̂ + α(ττ)τ̂ τ̂ + α(τ ·ττ)τ̂

(ττ ·τ)τ ·τ 5 (τ̂ τ̂ ·τ̂)τ̂ ·τ̂ + 4α(τ)(τ̂ τ̂ ·τ̂)τ̂ + 6α(τ)2τ̂ τ̂ ·τ̂+
4α(τ)3τ̂ τ̂ + α(τ)4τ̂

(ττ ·τ)·ττ 5 (τ̂ τ̂ ·τ̂)·τ̂ τ̂ + 2α(τ)τ̂ τ̂ ·τ̂ τ̂ + α(τ)(τ̂ τ̂ ·τ̂)τ̂+
2α(τ)2τ̂ τ̂ ·τ̂ + (α(τ)2 + α(ττ))τ̂ τ̂ ·τ̂+
(α(τ)3 + 2α(τ)α(ττ))τ̂ τ̂ + α(τ)2α(ττ)τ̂

τ τ ·(ττ ·τ) 5 τ̂ τ̂ ·(τ̂ τ̂ ·τ̂) + 2α(τ)τ̂ τ̂ ·τ̂ τ̂ + α(τ)τ̂(τ̂ τ̂ ·τ̂)+
α(τ)2τ̂ τ̂ ·τ̂ + 2α(τ)2τ̂ ·τ̂ τ̂+
(α(τ)3 + α(ττ ·τ))τ̂ τ̂ + α(τ)α(ττ ·τ)τ̂

τ τ ·(τ ·ττ) 5 τ̂ τ̂ ·(τ̂ ·τ̂ τ̂) + α(τ)τ̂ τ̂ ·τ̂ τ̂ + α(τ)τ̂(τ̂ ·τ̂ τ̂)+
α(ττ)τ̂ τ̂ ·τ̂ + α(τ)2τ̂ ·τ̂ τ̂+
(α(τ)α(ττ) + α(τ ·ττ))τ̂ τ̂ + α(τ)α(τ ·ττ)τ̂

(τ ·ττ)·ττ 5 (τ̂ ·τ̂ τ̂)·τ̂ τ̂ + 2α(τ)τ̂ τ̂ ·τ̂ τ̂ + α(τ)2τ̂ τ̂ ·τ̂+
2α(ττ)τ̂ ·τ̂ τ̂ + 2α(τ)α(ττ)τ̂ τ̂ + α(ττ)2τ̂

τ ·(ττ ·τ)τ 5 τ̂ ·(τ̂ τ̂ ·τ̂)τ̂ + 3α(τ)τ̂(τ̂ τ̂ ·τ̂) + 3α(τ)2τ̂ ·τ̂ τ̂+
α(τ)3τ̂ τ̂ + α((ττ ·τ)τ)τ̂

τ (ττ ·ττ) 5 τ̂(τ̂ τ̂ ·τ̂ τ̂) + α(τ)τ̂(τ̂ τ̂ ·τ̂) + α(τ)τ̂(τ̂ ·τ̂ τ̂)+
(α(τ)2 + α(ττ))τ̂ ·τ̂ τ̂ + α(τ)α(ττ)τ̂ τ̂ + α(ττ ·ττ)τ̂

τ ·τ (ττ ·τ) 5 τ̂ ·τ̂ (τ̂ τ̂ ·τ̂) + 2α(τ)τ̂(τ̂ ·τ̂ τ̂) + α(τ)2τ̂ ·τ̂ τ̂+
α(ττ ·τ)τ̂ τ̂ + α(τ (ττ ·τ))τ̂

τ ·τ (τ ·ττ) 5 τ̂ ·τ̂ (τ̂ ·τ̂ τ̂) + α(τ)τ̂(τ̂ ·τ̂ τ̂) + α(ττ)τ̂ ·τ̂ τ̂+

α(τ ·ττ)τ̂ τ̂ + α(τ (τ ·ττ))τ̂

Q, and E is the union of the corresponding edge sets together with additional
edge connecting the two roots. Temporarily we write (V, E) = SQ. If R�̇S
and P �̇Q then the set of subgraphs related to SQ by the relation X�̇SQ are
of the form X = RP or of the form X = R. Hence,

RUNGE–KUTTA METHODS 295

Table 386(II) Formulae for (αβ)(ti) up to trees of order 5

i r(ti) ti (αβ)(ti)
0 0 ∅ β0

1 1 β1 + α1β0

2 2 β2 + α1β1 + α2β0

3 3 β3 + 2α1β2 + α2
1β1 + α3β0

4 3 β4 + α1β2 + α2β1 + α4β0

5 4 β5 + 3α1β3 + 3α2
1β2 + α3

1β1 + α5β0

6 4 β6 + α1β4 + α1β3 + (α2
1 + α2)β2 + α1α2β1 + α6β0

7 4 β7 + 2α1β4 + α2
1β2 + α3β1 + α7β0

8 4 β8 + α1β4 + α2β2 + α4β1 + α8β0

9 5 β9 + 4α1β5 + 6α2
1β3 + 4α3

1β2 + α4
1β1 + α9β0

10 5 β10 + 2α1β6 + α1β5 + α2
1β4 + (2α2

1 + α2)β3+
(2α1α2 + α3

1)β2 + α2
1α2β1 + α10β0

11 5 β11 + α1β7 + 2α1β6 + 2α2
1β4 + α2

1β3 + (α3
1 + α3)β2+

α1α3β1 + α11β0

12 5 β12 + α1β8 + α1β6 + α2
1β4 + α2β3 + (α1α2 + α4)β2+

α1α4β1 + α12β0

13 5 β13 + 2α1β6 + 2α2β4 + α2
1β3 + 2α1α2β2 + α2

2β1 + α13β0

14 5 β14 + 3α1β7 + 3α2
1β4 + α3

1β2 + α5β1 + α14β0

15 5 β15 + α1β8 + α1β7 + (α2
1 + α2)β4 + α1α2β2 + α6β1 + α15β0

16 5 β16 + 2α1β8 + α2
1β4 + α3β2 + α7β1 + α16β0

17 5 β17 + α1β8 + α2β4 + α4β2 + α8β1 + α17β0

∑
X�̇SQ

α(SQ \ X)t̂X =
∑
P �̇Q

∑
R�̇S

α(SQ \ PR)t̂PR +
∑
R�̇S

α(SQ \ R)t̂R

=
∑
P �̇Q

α(Q\P)t̂P
∑
R�̇S

α(S\R)t̂R + α((S\R)Q)
∑
R�̇S

t̂R

= λ(α, t)λ(α, u) + α(u)λ(α, t)
= λ(α, tu). �

296 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Table 386(III) Formulae for (α−1)(ti) up to trees of order 5

i r(ti) ti (α−1)(ti)
1 1 −α1

2 2 α2
1 − α2

3 3 2α1α2 − α3
1 − α3

4 3 2α1α2 − α3
1 − α4

5 4 3α1α3 − 3α2α
2
1 + α4

1 − α5

6 4 α1α3 + α1α4 + α2
2 − 3α2α

2
1 + α4

1 − α6

7 4 2α1α4 + α1α3 − 3α2
1α2 + α4

1 − α7

8 4 2α1α4 + α2
2 − 3α2

1α2 + α4
1 − α8

9 5 4α1α5 − 6α2
1α3 + 4α3

1α2 − α5
1 − α9

10 5 2α1α6 + α1α5 + α2α3 − α2
1α4 − 3α2

1α3 + 4α1α2 − α5
1 − α10

11 5 α1α7 + 2α1α6 + α2α3 − 2α1α
2
2 − α2

1α3 − 2α2
1α4+

4α3
1α2 − α5

1 − α11

12 5 α1α8 + α1α6 + α2α3 + α2α4 − 3α1α
2
2 − α2

1α3 − 2α2
1α4+

4α3
1α2 − α5

1 − α12

13 5 2α1α6+2α2α4−α2
1α3−2α2

1α4−3α1α
2
2+4α3

1α2−α5
1−α13

14 5 3α1α7 + α1α5 − 3α2
1α4 − 3α2

1α3 + 4α3
1α2 − α5

1 − α14

15 5 α1α8 + α1α7 + α1α6 + α2α4 − 2α1α
2
2 − α2

1α3 − 3α2
1α4+

4α3
1α2 − α5

1 − α15

16 5 2α1α8 + α1α7 + α2α3 − 2α1α
2
2 − α2

1α3 − 3α2
1α4+

4α3
1α2 − α5

1 − α16

17 5 2α1α8 + 2α2α4 − 3α1α
2
2 + 4α3

1α2 − α5
1 − α17

As examples of the use of the algorithm for evaluating λ, and thence values
of the product on G1 × G, we find

λ(α, τ) = τ̂ , (386a)
λ(α, ττ) = τ̂ τ̂ + α(τ)τ̂ , (386b)

λ(α, ττ ·τ) = (τ̂ τ̂ + α(τ)τ̂)·τ̂ + α(t)(τ̂ τ̂ + α(τ)τ̂)

= τ̂ τ̂ ·τ̂ + 2α(τ)τ̂ τ̂ + α(τ)2τ̂ , (386c)
λ(α, τ ·ττ) = τ̂ ·(τ̂ τ̂ + α(τ)τ̂) + α(ττ)τ̂

= τ̂ ·τ̂ τ̂ + α(τ)τ̂ τ̂ + α(ττ)τ̂ . (386d)

RUNGE–KUTTA METHODS 297

The values of λ(α, t) are continued in Table 386(I) up to trees of order 5. For
convenience, each tree is given in product form as well as in pictorial form.

From (386a)–(386d), we find

(αβ)(τ) = β(τ) + α(τ)β(∅),
(αβ)(ττ) = β(ττ) + α(τ)β(τ) + α(ττ)β(∅),

(αβ)(ττ · τ) = β(ττ · τ) + 2α(τ)β(ττ) + α(τ)2β(τ) + α(ττ · τ)β(∅),
(αβ)(τ · ττ) = β(τ · ττ) + α(τ)β(ττ) + α(ττ)β(τ) + α(τ · ττ)β(∅).

It will be convenient to extend these formulae up to trees of order 5, and we
present this in Table 386(II). For convenience, we denote the empty tree by
t0 and the trees of order 1 to 5 by ti, i = 1, 2, . . . , 17. We also write αi and βi

for α(ti) and β(ti), respectively. Note that α0 does not appear in this table
because it always has the value α(∅) = 1.

Because Table 386(II) has reference value, we supplement the information
it contains with Table 386(III), which gives the formulae for (α−1)(t) where
r(t) ≤ 5 and α ∈ G1.

387 Some special elements of G

As we have remarked, D ∈ G represents the differentiation operation, scaled
by the unit stepsize h. If ξ denotes the element in G1 corresponding to a
generalized Runge–Kutta tableau

c A

1 b
=

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
...

cs as1 as2 · · · ass

1 b1 b2 · · · bs

(387a)

then ξD will correspond to the s-stage tableau

c1 a11 a12 · · · a1s 0
c2 a21 a22 · · · a2s 0
...

...
...

...
...

cs as1 as2 · · · ass 0∑s
i=1 bi b1 b2 · · · bs 0
0 0 0 · · · 0 1

.

(387b)

The result computed by (387b) is just hf(ŷ), where ŷ is the result computed
by (387a). With this understanding, we have an alternative means of defining
the group element corresponding to each of the stages, as well as the final

298 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

result, of a Runge–Kutta method. Denote the members of G1 corresponding
to the stages Yi, i = 1, 2, . . . , s, of (387a) by ηi and the output result by ξ;
then

ηi = 1 +
s∑

j=1

aijηjD,

ξ = 1 +
s∑

i=1

biηiD. (387c)

In the case of a generalized method, where b0 is the coefficient of yn−1 in the
formula for yn, (387c) is replaced by

ξ = b01 +
s∑

i=1

biηiD,

where, in this context, 1 is the group-theoretic identity in G.
In addition to D, it is convenient to introduce an element E ∈ G, defined

by

E(∅) = 1,

E(t) =
1

γ(t)
, t ∈ T.

This means that E corresponds to the exact solution of the differential
equation as represented by the Picard iteration scheme introduced in Section
311. The conditions for order p for the Runge–Kutta method (387a) can now
be written in the form

ξ(t) = E(t), r(t) ≤ p.

Finally, we define a sequence of members of G which correspond to the
computation of the Taylor coefficients at the initial point, scaled in terms of
powers of h. If Tk corresponds to the method which, on input y0 = y(x0),
computes hky(k)(x0), then we require that

Tk(∅) = 0,

Tk(t) =

{
α(t), r(t) = k,

0, r(t) �= k.

Obviously, T1 = D, but Dn is not defined for n ≥ 2.
We can relate T1, T2, . . . with E by writing

E = 1 +
∞∑

k=1

1
k!

Tk, (387d)

RUNGE–KUTTA METHODS 299

where the result is interpreted as meaning that

E(t) = 1(t) +
∞∑

k=1

1
k!

Tk(t),

for any t ∈ T .
Since E takes the exact solution to a differential equation through one unit

step h, it is natural to ask how we would represent the solution at a general
point θh advanced from the initial point. We write this as E(θ), and we note
that

E(θ)(t) = θr(t)E(t),

for all t ∈ T . We can generalize (387d) in the form

E(θ) = 1 +
∞∑

k=1

θk

k!
Tk,

and note that, for θ an integer n, we have

E(n) = En.

This property is, to some extent, characteristic of E, and we have:

Theorem 387A If α ∈ G1 such that α(τ) = 1, and m is an integer with
m �∈ {0, 1,−1}, then α(m) = αm implies that α = E.

Proof. For any tree t �= τ , we have α(m)(t) = r(t)mα(t) + Q1 and αm(t) =
mα(t) + Q2, where Q1 and Q2 are expressions involving α(u) for r(u) < r(t).
Suppose that α(u) has been proved equal to E(u) for all such trees. Then

α(m)(t) = r(t)mα(t) + Q1,

αm(t) = mα(t) + Q2,

E(m)(t) = r(t)mE(t) + Q1,

Em(t) = mE(t) + Q2,

so that α(m)(t) = αm(t) implies that

(r(t)m − m)(α(t) − E(t)) = 0,

implying that α(t) = E(t), because r(t)m �= m whenever r(t) > 1 and
m �∈ {0, 1,−1}. �

Of the three excluded values of m in Theorem 387A, only m = −1
is interesting. Methods for which α(−1) = α−1 have a special property
which makes them of potential value as the source of efficient extrapolation

300 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

procedures. Consider the solution of an initial value problem over an interval
[x0, x] using n steps of a Runge–Kutta method with stepsize h = (x− x0)/n.
Suppose the computed solution can be expanded in an asymptotic series in h,

y(x) +
∞∑

i=1

Cih
i. (387e)

If the elementary weight function for the method is α, then the method
corresponding to (α(−1))−1 exactly undoes the work of the method but
with h reversed. This means that the asymptotic error expansion for this
reversed method would correspond to changing the sign of h in (387e). If
α = (α(−1))−1, this would give exactly the same expansion, so that (387e) is
an even function. It then becomes possible to extend the applicability of the
method by extrapolation in even powers only.

388 Some subgroups and quotient groups

Let Hp denote the linear subspace of G defined by

Hp = {α ∈ G : α(t) = 0, whenever r(t) ≤ p}.

If α, β ∈ G then α = β + Hp will mean that α − β is a member of Hp. The
subspace is an ideal of G in the sense of the following result:

Theorem 388A Let α ∈ G1, β ∈ G1, γ ∈ G and δ ∈ G be such that
α = β + Hp and γ = δ + Hp. Then αγ = βδ + Hp.

Proof. Two members of G differ by a member of Hp if and only if they take
identical values for any t such that r(t) ≤ p. For any such t, the formula
for (αγ)(t) involves only values of α(u) and γ(u) for r(u) < r(t). Hence,
(αγ)(t) = (βδ)(t). �

An alternative interpretation of Hp is to use instead 1 + Hp ∈ G1 as a
subgroup of G1. We have:

Theorem 388B Let α, β ∈ G1; then

α = β + Hp (388a)

if and only if
α = β(1 + Hp). (388b)

Proof. Both (388a) and (388b) are equivalent to the statement α(t) = β(t)
for all t such that r(t) ≤ p. �

Furthermore, we have:

RUNGE–KUTTA METHODS 301

Theorem 388C The subgroup 1 + Hp is a normal subgroup of G1.

Proof. Theorem 388B is equally true if (388b) is replaced by α = (1 + Hp)β.
Hence, for any β ∈ G1, (1 + Hp)β = β(1 + Hp). �

Quotient groups of the form G1/(1 + Hp) can be formed, and we consider
their significance in the description of numerical methods. Suppose that m and
m are Runge–Kutta methods with corresponding elementary weight functions
α and α. If m and m are related by the requirement that for any smooth
problem the results computed by these methods in a single step differ by
O(hp+1), then this means that α(t) = α(t), whenever r(t) ≤ p. However, this
is identical to the statement that

α ∈ (1 + Hp)α,

which means that α and α map canonically into the same member of the
quotient group G1/(1 + Hp).

Because we also have the ideal Hp at our disposal, this interpretation of
equivalent computations modulo O(hp+1) can be extended to approximations
represented by members of G, and not just of G1.

The C(ξ) and D(ξ) conditions can also be represented using subgroups.

Definition 388D A member α of G1 is in C(ξ) if, for any tree t such that
r(t) ≤ ξ, α(t) = γ(t)−1α(τ)r(t) and also

α([t t1t2 · · · tm]) =
1

γ(t)
α([τ r(t)t1t2 · · · tm]), (388c)

for any t1t2 · · · tm ∈ T .

Theorem 388E The set C(ξ) is a normal subgroup of G1.

A proof of this result, and of Theorem 388G below, is given in Butcher (1972).
The D(ξ) condition is also represented by a subset of G1, which is also

known to generate a normal subgroup.

Definition 388F A member α of G1 is a member of D(ξ) if

α(tu) + α(ut) = α(t)α(u), (388d)

whenever t, u ∈ T and r(t) ≤ ξ.

Theorem 388G The set D(ξ) is a normal subgroup of G1.

The importance of these semi-groups is that E is a member of each of them
and methods can be constructed which also lie in them. We first prove the
following result:

302 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Theorem 388H For any real θ and positive integer ξ, E(θ) ∈ C(ξ) and
E(θ) ∈ D(ξ).

Proof. To show that E(θ) ∈ C(ξ), we note that E(θ)(t) = γ(t)−1θr(t) and that
if E(θ) is substituted for α in (388c), then both sides are equal to

θr(t)+r(t1)+···+r(tm)+1

(r(t) + r(t1) + · · · + r(tm) + 1)γ(t)γ(t1) · · ·γ(tm)
.

To prove that E(θ) ∈ D(ξ), substitute E into (388d). We find

r(t)
(r(t) + r(u))γ(t)γ(u)

+
r(u)

(r(t) + r(u))γ(t)γ(u)
=

1
γ(t)

· 1
γ(u)

. �

389 An algebraic interpretation of effective order

The concept of conjugacy in group theory provides an algebraic interpretation
of effective order. Two members of a group, x and z, are conjugate if there
exists a member y of the group such that yxy−1 = z. We consider the group
G1/(1+Hp) whose members are cosets of G1 corresponding to sets of Runge–
Kutta methods, which give identical numerical results in a single step to within
O(hp+1). In particular, E(1+Hp) is the coset corresponding to methods which
reproduce the exact solution to within O(hp+1). This means that a method,
with corresponding group element α, is of order p if

α ∈ E(1 + Hp).

If a second method with corresponding group element β exists so that the
conjugacy relation

βαβ−1 ∈ E(1 + Hp) (389a)

holds, then the method corresponding to α has effective order p and the
method corresponding to β has the role of perturbing method.

We use this interpretation to find conditions for effective orders up to 5. To
simplify the calculation, we use a minor result:

Lemma 389A A Runge–Kutta method with corresponding group element α
has effective order p if and only if (389a) holds, where β is such that β(τ) = 0.

Proof. Suppose that (389a) holds with β replaced by β̂. Let β = E(−β̂(τ))β̂,
so that β(τ) = 0. We then find

βαβ−1 = E−β̂(τ)β̂α
(
E−β̂(τ)β̂

)−1

= E−β̂(τ)β̂αβ̂−1Eβ̂(τ)

∈ E−β̂(τ)EEβ̂(τ)(1 + Hp)
= E(1 + Hp). �

RUNGE–KUTTA METHODS 303

Once we have found effective order conditions on α and found a
corresponding choice of β for α satisfying these conditions, we can use Lemma
389A in reverse to construct a family of possible perturbing methods.

To obtain the conditions we need on α we have constructed Table 389(I)
based on Table 386(II). In this table, the trees up to order 5 are numbered, just
as in the earlier table, and βαβ−1 ∈ E(1+Hp) is replaced by βα ∈ Eβ(1+Hp),
for convenience. In the order conditions formed from Table 389(I), we regard
β2, β3, . . . as free parameters. Simplifications are achieved by substituting
values of α1, α2, . . . , as they are found, into later equations that make use of
them. The order conditions are

α1 = 1,

α2 = 1
2 ,

α3 = 2β2 + 1
3 ,

α4 = 1
6 ,

α5 = 3β2 + 3β3 + 1
4 ,

α6 = β2 + β3 + β4 + 1
8 ,

α7 = β2 − β3 + 2β4 + 1
12 ,

α8 = 1
24 ,

α9 = 4β2 + 6β3 + 4β5 + 1
5 ,

α10 = 5
3β2 + 5

2β3 + β4 + β5 + 2β6 + 1
10 ,

α11 = 4
3β2 + 1

2β3 + 2β4 + 2β6 + β7 + 1
15 ,

α12 = 1
3β2 − 2β2

2 + 1
2β3 + 1

2β4 + β6 + β8 + 1
30 ,

α13 = 2
3β2 − β2

2 + β3 + β4 + 2β6 + 1
20 ,

α14 = β2 + 3β4 − β5 + 3β7 + 1
20 ,

α15 = 1
3β2 + 3

2β4 − β6 + β7 + β8 + 1
40 ,

α16 = 1
3β2 − 1

2β3 + β4 − β7 + 2β8 + 1
60 ,

α17 = 1
120 .

For explicit Runge–Kutta methods with fourth (effective) order, four stages
are still necessary, but there is much more freedom than for methods with the
same classical order. For fifth effective order there is a real saving in that only
five stages are necessary. For the fourth order case, we need to choose the
coefficients of the method so that

α1 = 1,

α2 = 1
2 ,

α4 = 1
6 ,

α8 = 1
24 ,

304 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Table 389(I) Effective order conditions

i r(ti) (βα)(ti) (Eβ)(ti)

1 1 α1 1

2 2 α2 + β2 β2 + 1
2

3 3 α3 + β3 β3 + 2β2 + 1
3

4 3 α4 + β2α1 + β4 β4 + β2 + 1
6

5 4 α5 + β5 β5 + 3β3 + 3β2 + 1
4

6 4 α6 + β2α2 + β6 β6 + β4 + β3 + 3
2β2 + 1

8

7 4 α7 + β3α1 + β7 β7 + 2β4 + β2 + 1
12

8 4 α8 + β2α2 + β4α1 + β8 β8 + β4 + 1
2β2 + 1

24

9 5 α9 + β9 β9 + 4β5 + 6β3 + 4β2 + 1
5

10 5 α10 + β2α3 + β10 β10+2β6+β5+β4+ 5
2β3+2β2+ 1

10

11 5 α11 + β3α2 + β11 β11+β7+2β6+2β4+β3+ 4
3β2+ 1

15

12 5 α12 + β2α3 + β4α2 + β12 β12+β8+β6+β4+ 1
2β3+ 2

3β2+ 1
30

13 5 α13 + 2β2α4 + β2
2α1 + β13 β13 + 2β6 + β4 + β3 + β2 + 1

20

14 5 α14 + β5α1 + β14 β14 + 3β7 + 3β4 + β2 + 1
20

15 5 α15 + β2α4 + +β6α1 + β15 β15 + β8 + β7 + 3
2β4 + 1

2β2 + 1
40

16 5 α16 + β3α2 + β7α1 + β16 β16 + 2β8 + β4 + 1
3β2 + 1

60

17 5 α17+β2α4+β4α2+β8α1+β17 β17 + β8 + 1
2β4 + 1

6β2 + 1
120

and so that the equation formed by eliminating the various β values from the
equations for α3, α5, α6 an α7 is satisfied. This final effective order condition
is

α3 − α5 + 2α6 − α7 = 1
4 ,

and the five condition equations written in terms of the coefficients in a four-
stage method are

b1 + b2 + b3 + b4 = 1,

b2c2 + b3c3 + b4c4 = 1
2 ,

b3a32c2 + b4a42c2 + b4a43c3 = 1
6 ,

b4a43a32c2 = 1
24 ,

b2c
2
2(1 − c2) + b3c

2
3(1 − c3) + b4c

2
4(1 − c4)

+ b3a32c2(2c3 − c2) + b4a42c2(2c4 − c2) + b4a43c3(2c4 − c3) = 1
4 .

RUNGE–KUTTA METHODS 305

Table 389(II) Group elements associated with a special effective order 4 method

t E(t) α(t) β(t) (β−1E)(t) (β−1Eβ(r))(t)

1 1 0 1 1
1
2

1
2 0 1

2
1
2

1
3

1
3 0 1

3
1
3

1
6

1
6

1
72

11
72

11+r3

72

1
4

1
4

1
108

13
54

26+r4

108

1
8

5
36

1
216

13
108

26+3r3+r4

216

1
12

1
9 − 1

216
19
216

19+6r3−r4

216

1
24

1
24 0 1

36
2+r3

72

We do not attempt to find a general solution to these equations, but instead
explore a mild deviation from full classical order. In fact, we assume that the
perturbing method has β2 = β3 = 0, so that we now have the conditions

b1 + b2 + b3 + b4 = 1,

b2c2 + b3c3 + b4c4 = 1
2 ,

b2c
2
2 + b3c

2
3 + b4c

2
4 = 1

3 ,

b3a32c2 + b4a42c2 + b4a43c3 = 1
6 ,

b2c
3
2 + b3c

3
3 + b4c

3
4 = 1

4 ,

b3a32c2(2c3 − c2) + b4a42c2(2c4 − c2) + b4a43c3(2c4 − c3) = 1
4 ,

b4a43a32c2 = 1
24 .

Methods satisfying these more general conditions do not need to have c4 = 1
and we can find, for example, the tableau

0
1
3

1
3

2
3

1
6

1
2

5
6

5
24 0 5

8
1
10

1
2 0 2

5

.

(389b)

A suitable starting method, which does not advance the solution forward
but introduces the correct perturbation so that (389b) faithfully reproduces
this perturbation to within order 4, is given by the tableau

306 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

0
1 1
2
3

2
3 0

1
3 0 −1

3
2
3

− 1
24

1
24 −1

8
1
8

.

(389c)

The freedom that lay at our disposal in selecting this starting procedure was
used to guarantee a certain simplicity in the choice of finishing procedure.
This was in fact decided on first, and has a tableau identical with (389b)
except for the b vector. The reason for this choice is that no extra work is
required to obtain an output value because the stages in the final step will
already have been completed. The tableau for this final step is

0
1
3

1
3

2
3

1
6

1
2

5
6

5
24 0 5

8
3
20

1
3

1
4

4
15

.

(389d)

This example method has not been optimized in any way, and is therefore
not proposed for a practical computation. On the other hand, it shows that
the search for efficient methods need not be restricted to the class of Runge–
Kutta methods satisfying classical order conditions. It might be argued that
methods with only effective order cannot be used in practice because stepsize
change is not possible without carrying out a finishing step followed by a new
start with the modified stepsize. However, if, after carrying out a step with the
method introduced here, a stepsize change from h to rh is required, then this
can be done by simply adding one additional stage and choosing the vector
b which depends on r. The tableau for this h-adjusting step is

0
1
3

1
3

2
3

1
6

1
2

5
6

5
24 0 5

8

1
2

13
40

1
6

1
24 − 1

30

3+r3−2r4

20
2−3r3+4r4

6
1−3r3+2r4

4
4+3r3−r4

15 r3 − r4
.

(389e)

Rather than carry out detailed derivations of the various tableaux we have
introduced, we present in Table 389(II) the values of the group elements in
G1/(1 + H4) that arise in the computations. These group elements are β,
corresponding to the starting method (389c), α for the main method (389b),

RUNGE–KUTTA METHODS 307

β−1E corresponding to the finishing method (389d) and, finally, β−1Eβ(r)

for the stepsize-adjusting method (389e). For convenience in checking the
computations, E is also provided.

Exercises 38

38.1 Find the B-series for the Euler method

0 0
1

.

38.2 Find the B-series for the implicit Euler method

1 1
1

.

38.3 Show that the two Runge–Kutta methods

0 0 0 0
1 1 −1 1
1 1 1 −1

1
2

1
4

1
4

and

0 −1 0 1
1 3

4 0 1
4

0 2 0 −2
−3

2
1
2 1

are P-equivalent. Find a method with only two stages equivalent to each
of them.

38.4 Let m1 and m2 denote the Runge–Kutta methods

m1 =

1
2 − 1

6

√
3 1

4
1
4 − 1

6

√
3

1
2 + 1

6

√
3 1

4 + 1
6

√
3 1

4
1
2

1
2

,

m2 =
−1

2 − 1
6

√
3 −1

4 −1
4 − 1

6

√
3

−1
2 + 1

6

√
3 −1

4 + 1
6

√
3 −1

4

−1
2 −1

2

.

Show that [m2] = [m1]−1.

38.5 Show that D ∈ X is the homomorphic partner of [m], where

m =
0 0
0 1

.

308 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

39 Implementation Issues

390 Introduction

In this section we consider several issues arising in the design and construction
of practical algorithms for the solution of initial value problems based on
Runge–Kutta methods.

An automatic code needs to be able to choose an initial stepsize and then
adjust the stepsize from step to step as the integration progresses. Along with
the need to choose appropriate stepsizes to obtain an acceptable accuracy in
a given step, there is a corresponding need to reject some steps, because they
will evidently contribute too large an error to the overall inaccuracy of the
final result. The user of the software needs to have some way of indicating
a preference between cheap, but low accuracy, results on the one hand and
expensive, but accurate, results on the other. This is usually done by supplying
a ‘tolerance’ as a parameter. We show that this tolerance can be interpreted
as a Lagrange multiplier T . If E is a measure of the total error to plan for, and
W is a measure of the work that is to be allocated to achieve this accuracy,
then we might try as best we can to minimize E +TW . This will mean that a
high value of T will correspond to an emphasis on reducing computing costs,
and a low value of T will correspond to an emphasis on accuracy. It is possible
to achieve something like an optimal value of this weighted objective function
by requiring the local truncation error to be maintained as constant from step
to step. However, there are other views as to how the allocation of resources
should be appropriately allocated, and we discuss these in Subsection 393.

If the local truncation error committed in a step is to be the main
determining criterion for the choice of stepsize, then we need a means of
estimating the local error. This will lead to a control system for the stepsize,
and we need to look at the dynamics of this system to ensure that good
behaviour is achieved.

It is very difficult to find suitable criteria for adjusting order amongst a
range of alternative Runge–Kutta methods. Generally, software designers are
happy to construct fixed order codes. However, it is possible to obtain useful
variable order algorithms if the stage order is sufficiently high. This applies
especially to implicit methods, intended for stiff problems, and we devote at
least some attention to this question.

For stiff problems, the solution of the algebraic equations inherent to the
implementation of implicit methods is a major issue. The efficiency of a stiff
solver will often depend on the management of the linear algebra, associated
with a Newton type of solution, more than on any other aspect of the
calculation.

391 Optimal sequences

Consider an integration over an interval [a, b]. We can interpret a as the point
x0 at which initial information y(x0) = y0 is given and b as a final point, which

RUNGE–KUTTA METHODS 309

we have generally written as x where we are attempting to approximate y(x).
As steps of a Runge–Kutta method are carried out we need to choose h for a
new step starting at a point x ∈ [a, b], assuming previous steps have taken the
solution forward to this point. From information gleaned from details of the
computation, it will be possible to obtain some sort of guide as to what the
truncation error is likely to do in a step from x to x+h and, assuming that the
method has order p, the norm of this truncation error will be approximately
like C(x)hp+1, where C is some positively valued function. Write the choice
of h for this step as H(x). Assuming that all stepsizes are sufficiently small,
we can write the overall error approximately as an integral

E(H) =
∫ b

a

C(x)H(x)pdx.

The total work carried out will be taken to be the simply the number of steps.
For classical Runge–Kutta methods the cost of carrying out each step will be
approximately the same from step to step. However, the number of steps is
approximately equal to the integral

W (H) =
∫ b

a

H(x)−1dx.

To obtain an optimal rule for defining values of H(x), as x varies, we have
to ensure that it is not possible, by altering H, to obtain, at the same time,
lower values of both E(H) and W (H). This means that the optimal choice
is the same as would be obtained by minimizing E(H), for a specified upper
bound on W (H), or, dually, minimizing W (H), subject to an upper bound
on E(H). Thus we need to optimize the value of E(H) + TW (H) for some
positive value of the Lagrange multiplier T .

From calculus of variation arguments, the optimal is achieved by setting to
zero the expression (d/dH)(E(H) + TW (H)). Assuming that W (H) has the
constant value p, chosen for convenience, this means that

pC(x)H(x)p−1 = pTH(x)−2,

for all x. Hence, C(x)H(x)p+1 should be kept equal to the constant value T .
In other words, optimality is achieved by keeping the magnitude of the local
truncation error close to constant from step to step. In practice, the truncation
error associated with a step about to be carried out is not known. However,
an estimation of the error in the last completed step is usually available, using
techniques such as those described in Section 33, and this can be taken as a
usable guide. On the other hand, if a previous attempt to carry out this step
has been rejected, because the truncation error was regarded as excessive,
then this gives information about the correct value of h to use in a second
attempt.

310 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

For robustness, a stepsize controller has to respond as smoothly as possible
to (real or apparent) abrupt changes in behaviour. This means that the
stepsize should not decrease or increase from one step to the next by an
excessive ratio. Also, if the user-specified tolerance, given as a bound on the
norm of the local truncation error estimate, is ever exceeded, recomputation
and loss of performance will result. Hence, to guard against this as much as
possible, a ‘safety factor’ is usually introduced into the computation. If h is the
estimated stepsize to give a predicted truncation error equal to the tolerance,
then some smaller value, such as 0.9h, is typically used instead. Combining
all these ideas, we can give a formula for arriving at a factor r, to give a new
stepsize rh, following a step for which the error estimate is est. The tolerance
is written as tol, and it is assumed that this previous step has been accepted.
The ratio r is given by

r = max
(

0.5, min
(

2.0, 0.9
(tol

est

)1/(p+1)
))

. (391a)

The three constants, given here with values 0.5, 2.0 and 0.9, are all somewhat
arbitrary and have to be regarded as design parameters.

392 Acceptance and rejection of steps

It is customary to test the error estimate in a step against T and to accept
the step only when the estimated error is smaller. To reduce the danger of
rejecting too many steps, the safety factor in (391a) is inserted. Thus there
would have to be a very large increase in the rate of error production for a step
to be rejected. We now consider a different way of looking at the question of
acceptance and rejection of steps. This is based on removing the safety factor
but allowing for the possible acceptance of a step as long as the ratio of the
error to the tolerance is not too great. We need to decide what ‘too great’
should mean.

The criterion will be based on attempting to minimize the rate of error
production plus T times the rate of doing work. Because we are considering
the rejection of a completed step with size h, we need to add the work already
carried out to the computational costs in some way. Suppose that the error
estimated for the step is r−(p+1)T , and that we are proposing to change the
stepsize to rh. This will mean that, until some other change is made, the
rate of growth of error + T × work will be T (1 + p)/rh. By the time the
original interval of size h has been traversed, the total expenditure will be
T (1+ p)/rh. Add the contribution from the work in the rejected step and the
total expenditure will be T ((p + 1)/r + p).

If, instead, the step had been accepted, the expenditure (linear combination
of error and work) would be T (r−(p+1) + p). Comparing the two results, we

RUNGE–KUTTA METHODS 311

Table 392(I) Minimal value of stepsize ratio and maximal value of error/T for

step acceptance

p (p + 1)−1/p (p + 1)(p+1)/p

1 0.500 4.00
2 0.577 5.20
3 0.630 6.35
4 0.669 7.48
5 0.700 8.59
6 0.723 9.68
7 0.743 10.77
8 0.760 11.84
9 0.774 12.92

10 0.787 13.98

conclude that the step should be accepted if r−(p+1) ≤ (p+1)/r, that is, when

r ≥ (p + 1)−1/p,

and rejected otherwise. Looked at another way, the step should be accepted
if the error estimated in a step, divided by the tolerance, does not exceed
(p + 1)(p+1)/p. Values of (p + 1)−1/p and (p + 1)(p+1)/p are given in Table
392(I).

393 Error per step versus error per unit step

The criterion we have described for stepsize selection is based on the principle
of ‘error per step’. That is, a code designed on this basis attempts to
maintain the error committed in each step as close to constant as possible. An
alternative point of view is to use ‘error per unit step’, in which error divided
by stepsize is maintained approximately constant. This idea is attractive from
many points of view. In particular, it keeps the rate of error production under
control and is very natural to use. In an application, the user has to choose a
tolerance which indicates how rapidly he or she is happy to accept errors to
grow as the solution approximation evolves with time.

Furthermore, there is a reasonable expectation that, if a problem is
attempted with a range of tolerances, the total truncation error will vary
in more or less the same ratio as the tolerances. This state of affairs is known
as ‘proportionality’, and is widely regarded as being desirable. On the other
hand, if the error per step criterion is used we should hope only for the global
errors to vary in proportion to tolp/(p+1). The present author does not regard

312 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

this as being in any way inferior to simple proportionality. The fact that error
per step is close to producing optimal stepsize sequences, in the sense we
have described, seems to be a reason for considering, and even preferring, this
choice in practical codes.

From the user point of view, the interpretation of the tolerance as a
Lagrange multiplier is not such a difficult idea, especially if tol is viewed not
so much as ‘error per step’ as ‘rate of error production per unit of work’. This
interpretation also carries over for algorithms for which p is still constant, but
the work might vary, for some reason, from one step to the next.

394 Control-theoretic considerations

Controlling the stepsize, using a ratio of h in one step to h in the previous step,
based on (391a), can often lead to undesirable behaviour. This can come about
because of over-corrections. An error estimate in one step may be accidentally
low and this can lead to a greater increase in stepsize than is justified by the
estimate found in the following step. The consequent rejection of this second
step, and its re-evaluation with a reduced stepsize, can be the start of a series
of similarly disruptive and wasteful increases and decreases.

In an attempt to understand this phenomenon and to guard against its
damaging effects, an analysis of stepsize management using the principles of
control theory was instituted by Gustafsson, Lundh and Söderlind (1988).
The basic idea that has come out of these analyses is that PI control should
be used in preference to I control. Although these concepts are related to
continuous control models, they have a discrete interpretation. Under the
discrete analogue, I control corresponds to basing each new stepsize on the
most recently available error estimate, whereas PI control would make use of
the estimates found in the two most recently completed steps.

If we were to base a new stepsize on a simplified alternative to (391a),
using the ratio r = (est/tol)1/(p+1), this would correspond to what is known
in control theory as ‘dead-beat’ control. On the other hand, using the ratio
r = (tol/est)α/(p+1), where 0 < α < 1, would correspond to a damped version
of this control system. This controller would not respond as rapidly to varying
accuracy requirements, but would be less likely to change too quickly for future
behaviour to deal with. Going further, and adopting PI control, would give a
stepsize ratio equal to

rn =
(

tol
estn−1

)α/(p+1) (tol
estn−2

)β/(p+1)

. (394a)

In this equation, rn is the stepsize ratio for determining the stepsize hn to be
used in step n. That is, if hn−1 is the stepsize in step n−1, then hn = rnhn−1.
The quantities estn−1 and estn−2, denote the error estimates found in steps
n − 1 and n − 2, respectively.

RUNGE–KUTTA METHODS 313

For convenience, we work additively, rather than multiplicatively, by dealing
with log(hn) and log(rn) rather than with hn and rn themselves. Let ξn−1

denote the logarithm of the stepsize that would be adopted in step n, if dead-
beat control were to be used. That is,

ξn−1 = log(hn−1) +
1

p + 1
(log(tol) − log(estn−1)).

Now let ηn denote the logarithm of the stepsize actually adopted in step n.
Thus we can write dead-beat control as

ηn = ξn−1

and the modification with damping factor α as

ηn = (1 − α)ηn−1 + αξn−1.

For the PI controller (394a), we have

ηn = (1 − α)ηn−1 − βηn−2 + αξn−1 + βξn−2. (394b)

Appropriate choices for the parameters α and β have been discussed by
the original authors. Crucial considerations are the stable behaviour of the
homogeneous part of the difference equation (394b) and the ability of the
control system to respond sympathetically, but not too sensitively, to changing
circumstances. For example, α = 0.7 and β = −0.4, as proposed by Gustafsson
(1991), works well. Recently, further work has been done on control-theoretic
approaches to stepsize control by Söderlind (2002).

395 Solving the implicit equations

For stiff problems, the methods of choice are implicit. We discuss some aspects
of the technical problem of evaluating the stages of an implicit Runge–Kutta
method. For a one-stage method, the evaluation technique is also similar for
backward difference methods and for Runge–Kutta and general linear methods
that have a lower triangular coefficient matrix.

For these simple methods, the algebraic question takes the form

Y − hγf(X, Y) = U, (395a)

where X and U are known. Let J(X, Y) denote the Jacobian matrix with
elements given by

J(X, Y)ij =
∂fi

∂yj
(X, Y), i, j, = 1, 2, . . . , N.

A full Newton scheme would start with the use of a predictor to obtain a first
approximation to Y . Denote this by Y [0] and update it with a sequence of
approximations Y [i], i = 1, 2, . . . , given by

Y [i] = Y [i−1] − ∆,

314 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

where

(I − hγJ(X, Y [i−1]))∆ = Y [i−1] − hγf(X, Y [i−1]) − U. (395b)

Although the full scheme has the advantage of quadratic convergence, it is
usually not adopted in practice. The reason is the excessive cost of evaluating
the Jacobian J and of carrying out the LU factorization of the matrix I−hγJ .
The Newton scheme can be modified in various ways to reduce this cost. First,
the re-evaluation of J after each iteration can be dispensed with. Instead the
scheme (395b) can be replaced by

(I − hγJ(X, Y [0]))∆ = Y [i−1] − hγf(X, Y [i−1]) − U,

and for many problems this is almost as effective as the full Newton method.
Even if more iterations are required, the additional cost is often less than the
saving in J evaluations and LU factorizations.

Secondly, in the case of diagonally implicit methods, it is usually possible
to evaluate J only once per step, for example at the start of the first stage.
Assuming the Jacobian is sufficiently slowly varying, this can be almost as
effective as evaluating the Jacobian once for each stage.

The third, and most extreme, of the Jacobian update schemes is the use of
the same approximation over not just one step but over many steps. A typical
algorithm signals the need to re-evaluate J only when the rate of convergence
is sufficiently slow as to justify this expenditure of resources to achieve an
overall improvement. When J is maintained at a constant value over many
steps, we have to ask the further question about when I − hγJ should be
refactorized. Assuming that γ is unchanged, any change in h will affect the
convergence by using a factorization of this matrix which is based not only
on an incorrect value of J , but on what may be a vastly different value of h.

It may be possible to delay the refactorization process by introducing
a ‘relaxation factor’ into the iteration scheme. That is, when ∆ has been
computed in a generalized form of (395b), the update takes the form

Y [i] = Y [i−1] − θ∆,

where θ is a suitably chosen scalar factor. To analyse how this works, suppose
for simplicity that J is constant but that h has changed from h at the time the
factorization took place to rh at the time a generalized Newton step is being
carried out. As a further simplification, assume that f(x, y) = Jy + V and
that we are exploring the behaviour in a direction along along an eigenvector
corresponding to an eigenvalue λ. Write z = hγλ. Under these assumptions
the iteration scheme effectively seeks a solution to an equation of the form

η − rzη = a,

RUNGE–KUTTA METHODS 315

with solution η = η∗ = a/(1 − r), using an iteration scheme which replaces
η∗ + ε by η∗ + φ(z)ε, where

φ(z) = 1 − θ
1 − rz

1 − z
.

Convergence will depend on the magnitude of φ(z) for all z that are likely to
arise. Values of z near zero correspond to non-stiff components of the problem,
and values of z with large magnitude in the left half-plane correspond to stiff
components. Hence, it seems desirable to choose θ to minimize |φ(z)| for z in
the left half-plane. The value that achieves this is

θ =
2

1 + r
.

For fully implicit Runge–Kutta methods, the problem of evaluating the
stages becomes much more complicated and potentially more costly. For a
method with coefficient matrix A, we need to consider all stages at the same
time. Let Y denote the sN -dimensional vector made up from Y1, Y2, . . . , Ys.
Furthermore the approximation sequence will be written as Y [j], j = 0, 1, . . . ,
each also made up from s subvectors, and ∆ will denote a vector in R

sN made
up from the subtrahends in each of the s components in iteration i. Thus

Y =

Y1

Y2

...
Ys

 , Y [i] =

Y

[i]
1

Y
[i]
2
...

Y
[i]
s

 , ∆ =

∆1

∆2

...
∆s

 =

Y

[i−1]
1 − Y

[i]
1

Y
[i−1]
2 − Y

[i]
2

...
Y

[i−1]
s − Y

[i]
s

 .

In place of (395a), the algebraic equations to solve in a step take the form

Y − hA ⊗ f(X, Y) = U ∈ R
sN . (395c)

Note that f(X, Y) denotes a vector in R
sN made up from subvectors of the

form f(Xj , Yj), j = 1, 2, . . . , s. The iteration scheme consists of solving the
equations

∆j − h

s∑
k=1

ajkJ
(
Xk, Y

[i]
k

)
∆k = Yj − h

s∑
k=1

ajkf
(
Xk, Y

[i]
k

)
− Ui,

and then carrying out the update Y
[i]
j = Y

[i−1]
j − ∆j , j = 1, 2, . . . , s. If it

is assumed that Jacobians are evaluated only once per step, or even less
frequently, then we can write (395c) in the simplified form

(Is ⊗ IN − hA ⊗ J)∆ = Y [i−1] − hA ⊗ F [i−1] − U, (395d)

316 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

where F [i−1] is the vector with kth subvector equal to f
(
Xk, Y

[i−1]
k

)
. Here J

is a single approximation to the n×n Jacobian matrix. One of the advantages
of using a single J approximation is the fact that it is possible to operate, for
example, with similarity transformations, on the coefficient matrix A and J
independently.

If no such transformation is carried out, the computational costs can become
very severe. The LU factorization of the matrix on the left-hand side of (395d)
requires a number of operations proportional to s3N3, compared with just N3

if s = 1. However, if A = T−1ÂT , where Â has a structure close to diagonal,
then the cost reduces to something like sN3.

Exercises 39

39.1 An implicit Runge–Kutta method is to be implemented for the solution
of non-stiff problems using functional iteration to solve the nonlinear
equations. How should the stepsize be selected?

39.2 A Runge–Kutta method of order p is used over an interval of length X.
Suppose that for a subinterval of length (1 − θ)X the error in a step
of length h is Chp+1, and for the remaining distance θX the error is
αCh5. Assume that a large number N of steps are performed, of which
(1−φ)N are in the first subinterval and φN are in the second subinterval.
Determine the value of φ which will minimize the total error committed
in the integration.

39.3 Compare the result found in Exercise 39.2 with the result that would
be obtained from an ‘error per unit step’ argument.

Chapter 4

Linear Multistep Methods

40 Preliminaries

400 Fundamentals

This chapter, devoted entirely to the analysis of linear multistep methods,
follows on from the introduction to these methods presented in Section 24.
We use the notation and ideas introduced there, but attempt to fill in missing
details. In particular, we show in the present section how the concepts of
consistency, stability and convergence are interrelated and give more of a
theoretical justification for the concept of ‘order’. This analysis depends
heavily on the use of difference equations, especially on the conditions for
the solution of a linear difference equation to be bounded. For a difference
equation,

yn = α1yn−1 + α2yn−2 + · · · + αkyn−k, (400a)

we recall that all solutions are bounded if and only if the polynomial

zk − α1z
k−1 − α2z

k−2 − · · · − αk

has all its zeros in the closed unit disc and all multiple zeros in the interior of
this disc.

The direct applicability of this result to a linear multistep method [α, β], in
which the approximate solution at xn is computed by

yn = α1yn−1 + α2yn−2 + · · · + αkyn−k

+ β0hf(xn, yn) + β1hf(xn−1, yn−1) + · · · + βkhf(xn−k, yn−k), (400b)

is clear. We wish to be able to solve a wide variety of initial value problems in
a reliable manner, and amongst the problems for which we need good answers
is certainly the simple problem for which f(x, y) = 0. In this case the solution
approximations are related by (400a), and stable behaviour for this problem
becomes essential. It is a remarkable fact that convergence hinges on this
stability result alone, as well as on consistency requirements.

Numerical Methods for Ordinary Differential Equations, Second Edition. J. C. Butcher
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-72335-7

318 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

As in Section 24 we write the method as [α, β], where

α(z) = 1 − α1z − α2z
2 − · · · − αkzk,

β(z) = β0 + β1z + β2z
2 + · · · + βkzk,

or in the more traditional formulation as (ρ, σ), where

ρ(z) = zk − α1z
k−1 − α2z

k−2 − · · · − αk,

σ(z) = β0z
k + β1z

k−1 + β2z
k−2 + · · · + βk.

401 Starting methods

As we pointed out in Subsection 246, linear multistep methods require starting
methods even to carry out a single step. We consider, in general terms, some
of the procedures used to obtain starting values; we then discuss any unifying
characteristics they might have.

One obvious approach to starting a k-step method is to carry out k − 1
steps with a Runge–Kutta method, preferably of the same order as the linear
multistep method itself. An interesting variation of this standard procedure
is to use specially constructed Runge–Kutta methods which make it possible
to move forward several steps at a time (Gear, 1980).

A second approach, which fits naturally into the style of linear multistep
methods, is to solve a system of equations representing the integrals of y′(x)
from x0 to each of x1, x2, . . . , xk−1 written, in each case, as a quadrature
formula with abscissae at these same points. We illustrate this in the case of
the third order Adams–Bashforth method

yn = yn−1 +
h

12
(
23f(xn−1, yn−1) − 16f(xn−2, yn−2) + 5f(xn−3, yn−3)

)
,

for which appropriate quadrature formulae, adapted to a differential equation,
are

y1 = y0 +
h

12
(
5f(x0, y0) + 8f(x1, y1) − f(x2, y2)

)
, (401a)

y2 = y0 +
h

3
(
f(x0, y0) + 4f(x1, y1) + f(x2, y2)

)
. (401b)

These equations are solved by functional iteration to yield approximations
y1 ≈ y(x1) and y2 ≈ y(x2).

In modern variable order codes, it is usual to start with order 1 or order 2,
and to adapt to higher orders when this becomes possible and when it becomes
advantageous from an efficiency point of view. This means that order k may
be reached after many steps with varying stepsize.

LINEAR MULTISTEP METHODS 319

The common feature of these approaches to starting a linear multistep
method is that each is, in reality, a Runge–Kutta method possessing multiple
outputs, to furnish approximations at a number of equally spaced points. For
example, the iteration scheme given by (401a) and (401b) can be represented
by the Runge–Kutta scheme

0 0 0 0
1 5

12
2
3 − 1

12

2 1
3

4
3

1
3

5
12

2
3 − 1

12
1
3

4
3

1
3

in which the two output approximations are for y1 and y2, respectively. This
scheme, like any starting procedure of Runge–Kutta type, has a property we
assume for starting schemes used for the definition of convergence. This is
that the quantities computed as approximations to yi, i = 1, 2, . . . , k − 1, all
converge to y(x0) as h → 0.

402 Convergence

We consider the approximation of y(x) by a linear multistep method, with
h = (x − x0)/m, using initial values

y0 = φ0

(
y(x0), h

)
,

y1 = φ1

(
y(x0), h

)
,

...
...

yk−1 = φk−1

(
y(x0), h

)
.

After the initial values have been evaluated, the values of yn, for n =
k, k + 1, . . . , m, are found in turn, using the linear k-step method [α, β]. It
is assumed that for i = 1, 2, . . . , k − 1,∥∥φi

(
y(x0), h

)
− y(x0)

∥∥→ 0, as h → 0.

Definition 402A Consider a linear multistep method used with a starting
method as described in the previous discussion. Let Ym denote the
approximation to y(x) found using m steps with h = (x−x0)/m. The function
f is assumed to be continuous and to satisfy a Lipschitz condition in its second
variable. The linear multistep method is said to be ‘convergent’ if, for any such
initial value problem,

‖Ym − y(x)‖ → 0, as m → ∞.

320 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

403 Stability

For a general initial value problem, the computed solution satisfies

yn =
k∑

i=1

αiyn−i + h
k∑

i=0

βif(xn−i, yn−i).

However, for the one-dimensional problem for which f(x, y) = 0, we have the
simpler difference equation

yn = α1yn−1 + α2yn−2 + · · · + αkyn−k. (403a)

Definition 403A A linear multistep method [α, β] is ‘stable’ if the difference
equation (403a) has only bounded solutions.

Because stability concepts of one sort or another abound in the theory of
initial value problems, ‘stability’ is often referred to as ‘zero-stability’ – for
example, in Lambert (1991)) – or as ‘stability in the sense of Dahlquist’.

404 Consistency

Just as the initial value problem y′(x) = 0, with initial condition y(x0) = 0,
motivated the concept of stability, so the same problem, with initial value
y(x0) = 1, can be used to introduce preconsistency. We want to ensure that
this problem can be solved exactly, starting from the exact initial value.
Suppose the numerical solution is known to have the correct value at x =
xn−k, xn−k+1, . . . , xn−1 so that yi = y(xi) = 1, for i = n−k, n−k+1, . . . , n−1.
Under these assumptions, the result computed at step n will be

yn = α1 + α2 + · · · + αk,

and this will equal the correct value yn = 1 if and only if

1 = α1 + α2 + · · · + αk. (404a)

Definition 404A A linear multistep method satisfying (404a) is said to be
‘preconsistent’.

Now consider the differential equation

y′(x) = 1, y(x0) = 0,

with exact solution at the step values

yi = hi.

LINEAR MULTISTEP METHODS 321

If this solution has been found for i = n − k, n − k + 1, . . . , n − 1, then it is
also correct for i = n if and only if

nh = α1(n − 1)h + α2(n − 2)h + · · · + αk(n − k)h + h
(
β0 + β1 + · · · + βk

)
.

Assuming the method is preconsistent, the factor h can be cancelled and then
n times (404a) can be subtracted. We then find

α1 + 2α2 + · · · + kαk = β0 + β1 + · · · + βk. (404b)

This leads to the following definition:

Definition 404B A linear multistep method satisfying (404a) and (404b) is
said to be ‘consistent’.

Another way of looking at the consistency conditions is to suppose that yi =
y(xi)+O(h2) and that f(xi, yi) = y′(xi)+O(h), for i = n−k, n−k+1, . . . , n−1,
and to consider the computation of yn using the equation

yn − hβ0f(xn, yn)

= α1yn−1 + α2yn−2 + · · · + αkyn−k

+ h(β1f(xn−1, yn−1) + β2f(xn−2, yn−2) + · · · + βkf(xn−k, yn−k))

= α1y(xn−1) + α2y(xn−2) + · · · + αky(xn−k)

+ h(β1y
′(xn−1) + β2y

′(xn−2) + · · · + βky′(xn−k)).

Expand the right-hand side by Taylor’s theorem about xn, and we find(
α1 + α2 + · · · + αk

)
y(xn)

+
(
β1 + · · · + βk − α1 − 2α2 − · · · − kαk

)
hy′(xn) + O(h2).

This will give the correct answer of

y(xn) − hβ0y
′(xn),

to within O(h2), if and only if

α1 + α2 + · · · + αk = 1

and
α1 + 2α2 + · · · + kαk = β0 + β1 + · · · + βk.

Hence, we can view the two requirements of consistency as criteria that the
computed solution is capable of maintaining accuracy to within O(h2) over
one step, and therefore over several steps.

322 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

405 Necessity of conditions for convergence

We formally prove that stability and consistency are necessary for
convergence. Note that the proofs are based on the same simple problems
that were introduced in Subsections 403 and 404.

Theorem 405A A convergent linear multistep method is stable.

Proof. If the method were not stable, there would exist an unbounded
sequence η satisfying the difference equation

ηn = α1ηn−1 + α2ηn−2 + · · · + αkηn−k.

Define the sequence ζ by
ζn =

n
max
i=0

|ηi|,

so that ζ converges monotonically to ∞. Consider the solution of the initial
value problem

y′(x) = 0, y(0) = 0,

with x = 1. Assuming that n steps are to be performed, we use a stepsize
h = 1/n and initial values yi = ηi/ζn, for i = 0, 1, . . . , k − 1. The condition
that yi → 0 for 0 ≤ i ≤ k−1 is satisfied because ζn → ∞. The approximation
computed for y(x) is equal to ηn/ζn. Because the ζ sequence is unbounded,
there will be an infinite number of values of n for which |ζn| is greater than
the greatest magnitude amongst previous members of this sequence. For such
values of n, |ηn/ζn| = 1, and therefore the sequence n
→ ηn/ζn cannot
converge to 0. �

Theorem 405B A convergent linear multistep method is preconsistent.

Proof. By Theorem 405A, we can assume that the method is stable. Let η

be defined as the solution to the difference equation

ηn = α1ηn−1 + α2ηn−2 + · · · + αkηn−k,

with initial values η0 = η1 = · · · = ηk−1 = 1. The computed solution of the
problem

y′(x) = 0, y(0) = 1, x = 1,

using n steps, is equal to yn = ηn. Since this converges to 1 as n → ∞, it
follows that, for any ε > 0, there exists an n sufficiently large so that |yi−1| ≤ ε

LINEAR MULTISTEP METHODS 323

for i = n − k, n − k + 1, . . . , n. Hence,

∣∣1 − α1 − α2 − · · · − αk

∣∣ ≤ ∣∣∣ηn −
k∑

i=1

αiηn−i

∣∣∣+ (1 +
k∑

i=1

|αi|
)
ε

=
(
1 +

k∑
i=1

|αi|
)
ε.

Because this can be arbitrarily small, it follows that

1 − α1 − α2 − · · · − αk = 0. �

Theorem 405C A convergent linear multistep is consistent.

Proof. We note first that

α1 + 2α2 + · · · + kαk �= 0,

since, if the expression were zero, the method would not be stable. Define the
sequence η by

ηi =
β0 + β1 + · · · + βk

α1 + 2α2 + · · · + kαk
i, i = 0, 1, 2,

Consider the numerical solution of the initial value problem

y′(x) = 1, y(0) = 0,

with the output computed at x = 1, and with n steps computed with stepsize
h = 1/n. Choose starting approximations as

yi =
1
n

ηi, (405a)

for i = 0, 1, 2, . . . , k − 1, so that these values converge to zero as n → ∞. We
verify that the computed solution for all values of i = 0, 1, 2, . . . , n is given
also by (405a), and it follows that the approximation at x = 1 is

β0 + β1 + · · · + βk

α1 + 2α2 + · · · + kαk
,

independent of n. Because convergence implies that the limit of this is 1, it
follows that

β0 + β1 + · · · + βk = α1 + 2α2 + · · · + kαk. �

324 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

406 Sufficiency of conditions for convergence

Given that a linear multistep is stable and consistent, we prove that it is
convergent. We assume that the differential equation under consideration has
the autonomous form

y′(x) = f(y(x)) (406a)

and that f satisfies a Lipschitz condition with constant L. These assumptions
can be weakened in various ways with no change to the final result, but
with considerable complication to the details. If the Lipschitz condition holds
only locally, then it becomes necessary to restrict the stepsize so that it is
possible to guarantee that all approximations which enter into the discussion
are sufficiently close to the exact trajectory for the condition to apply. If the
problem is not autonomous, so that f(y) is replaced by f(x, y), then it is
possible to allow f to be Lipschitz continuous in the y variable, but merely
continuous in x.

However, we now press ahead with consideration of the possible convergence
of the solution to (406a), together with the initial information given at x0 and
the requirement that the approximate solution is to be evaluated at x. We
always assume that x > x0, to avoid the inconvenience of having to allow for
negative stepsizes.

For the rest of this subsection, it will be assumed, without further comment,
that the differential equation we are attempting to solve is (406a) and that
the solution is to be approximated on the interval [x0, x] with initial value
information given at x0. The stepsize h will always be positive, and the
Lipschitz condition holds with constant L. We refer to the problem as ‘the
standard initial value problem’. One further notation we use throughout is to
write M for a bound on

∥∥f(y(x)
)∥∥ for x ∈ [x0, x]. Such a bound clearly exists

because
‖f(y(x)) − f(y(x0))‖ ≤ L‖y(x) − y(x0)‖,

and the latter quantity is bounded.
As a first step towards understanding the relationship between an

approximation to y(x) and the exact value of this quantity, we consider a
quantity which measures the error generated in a single step.

Definition 406A Let [α, β] be a consistent linear multistep method. The
‘local truncation error’ associated with a differentiable function y at a point x

with stepsize h is the value of

L(y, x, h) = y(x) −
k∑

i=1

αiy(x − ih) − h
k∑

i=0

βiy
′(x − ih).

LINEAR MULTISTEP METHODS 325

We estimate the value of L(y, x, h) when y is the exact solution to (406a),
and where not only x but also each x − hi, for i = 1, 2, . . . , k, lies in the
interval [x0, x].

Lemma 406B If y is the exact solution to the standard initial value problem
and x ∈ [x0 + kh, x], then

‖L(y, x, h)‖ ≤
k∑

i=1

(
1
2
i2|αi| + i|iαi − βi|

)
LMh2.

Proof. We first estimate y(x) − y(x − ih) − ihy′(x) using the identity

y(x) − y(x − ih) − hiy′(x) = h

∫ 0

−i

(f(y(x + hξ)) − f(y(x))) dξ,

so that

‖y(x) − y(x − ih) − ihy′(x)‖ ≤ hL

∫ 0

−i

‖y(x + hξ) − y(x)‖ dξ,

and noting, that for ξ ≤ 0,

‖y(x + hξ) − y(x)‖ ≤ h

∫ 0

ξ

‖f(x + hξ)‖dξ ≤ h|ξ|M, (406b)

so that
‖y(x) − y(x − ih) − ihy′(x)‖ ≤ 1

2 i2h2LM.

From (406b), we see also that

‖f(y(x)) − f(y(x − ih))‖ ≤ ihLM.

Because of the consistency of the method, we have
∑k

i=1 αi = 1 and∑k
i=1(iαi − βi) = β0. We now write L(y, x, h) in the form

L(y, x, h) =
k∑

i=1

αi(y(x) − y(x − ih) − ihy′(x))

+ h

k∑
i=1

(iαi − βi)(y′(x) − y′(x − ih));

this is bounded by

1
2

k∑
i=1

i2|αi|LMh2 +
k∑

i=1

i|iαi − βi|LMh2

and the result follows. �

326 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Theorem 406C Let εn denote the vector

εn = y(xn) − yn.

Then for h0 sufficiently small so that h0|β0|L < 1 and h < h0, there exist
constants C and D such that∥∥∥∥εn −

k∑
i=1

αiεn−i

∥∥∥∥ ≤ Ch
k

max
i=1

‖εn−i‖ + Dh2. (406c)

Proof. The value of εn −
∑k

i=1 αiεn−i − h
∑k

i=0 βi(f(y(xn−i)) − f(yn−i)) is
the difference of two terms, of which the first can be bounded by a constant
times h2, by Theorem 406B, and the second is zero. This means that

εn −
k∑

i=1

αiεn−i = T1 + T2 + T3, (406d)

where

‖T1‖ = h|β0|‖f(y(xn)) − f(yn)‖ ≤ hL|β0| · ‖εn‖, (406e)

‖T2‖ = h

∥∥∥∥ k∑
i=1

βi(f(y(xn−i)) − f(yn−i))
∥∥∥∥ ≤ hL

k∑
i=1

|βi|
k

max
i=1

‖εn−i‖, (406f)

and ‖T3‖ can be bounded in terms of a constant times h2. We now use (406d)
twice. First, assuming h ≤ h0, obtain a bound on (1 − hL|β0|)‖εn‖ in terms
of maxk

i=1 ‖εn−i‖ and terms that are bounded by a constant times h2. Hence,
obtain a bound on ‖εn‖. Then, by inserting this preliminary result in the
bound on T1, we obtain the result of the theorem. �

Theorem 406D A stable consistent linear multistep method is convergent.

Proof. Write (406c) in the form

εn =
k∑

i=1

αiεn−i + ψn,

where, according to Theorem 406C,

‖ψn‖ ≤ Ch
k

max
i=1

‖εn−i‖ + Dh2,

LINEAR MULTISTEP METHODS 327

for h sufficiently small. Define θ1, θ2, . . . as in Subsection 141, and note that,
because the method is convergent, the θ sequence is bounded. From Theorem
141A, we have

εn =
k−1∑
i=0

θn−iε̃i +
n∑

i=k

θn−iψi,

where ε̃i, for i = 0, 1, . . . , k−1, are linear combinations of the errors in yi and
tend to zero as h → 0. Hence we have

‖εn‖ ≤ Θ
k−1∑
i=0

‖ε̃i‖ + ΘChk

n−1∑
i=k

‖εi‖ + ΘD(n − k)h2, (406g)

where Θ = sup∞
i=1 |θi| and the factor k is introduced in the second summation

in (406g) because the same maximum value of ‖εn−i‖ may arise in up to k

adjacent terms. We rewrite (406g) in the form

‖εn‖ ≤ φ(h) + ΘChk
n−1∑
i=1

‖εi‖ + ΘDnh2, ‖ε0‖ ≤ φ(h),

where φ(h) takes positive values and will converge to zero as h → 0. It now
follows that ‖εn‖ ≤ un, where the sequence u is defined by

un = ΘChk
n−1∑
i=1

ui + ΘDnh2 + φ(h), u0 = φ(h). (406h)

By subtracting (406h) with n replaced by n − 1, we find that

un +
Dh

Ck
= (1 + ΘChk)

(
un−1 +

Dh

Ck

)
,

which leads to the bound

‖εn‖ ≤ un = (1 + ΘChk)nφ(h) + ((1 + ΘChk)n − 1)
Dh

Ck

≤ exp(ΘCknh)φ(h) + (exp(ΘCknh) − 1)
Dh

Ck
.

To complete the proof, substitute n = m where mh = x−x0, so that the error
in the approximation at x = x using m steps with stepsize h is bounded by

exp(ΘCk(x − x0))φ(h) + exp(ΘCk(x − x0))
Dh

Ck
→ 0. �

328 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Exercises 40

40.1 Find a four-stage Runge–Kutta method with c2 = 1
3 , c3 = 2

3 , c4 = 1,
which satisfies the order conditions

4∑
i=1

bi = ξ,

4∑
i=1

bici =
1
2
ξ2,

4∑
i=1

bic
2
i =

1
3
ξ3,

4∑
i,j=1

biaijcj =
1
6
ξ3,

where ξ is a real parameter and the elements of A are independent of
ξ. Show how this method can be used as a starter for the predictor–
corrector pair consisting of the third order Adams–Bashforth and
Adams–Moulton methods.

40.2 For each of the following polynomial pairs, written as [α(z), β(z)],
determine if the corresponding numerical method is consistent and
stable:

1. [1 − z, 2z − z2],
2. [1 − z2, 2z − z2],
3. [1 + z − 3z2 + z3, 3z − z2],
4. [1 + z − z2 − z3, 3 + z].

40.3 Translate the conditions for stability, preconsistency and consistency
from the [α, β] representation to the (ρ, σ) representation.

40.4 For a linear multistep method [α, β], define polynomials a and b by

a(z) = (1 + z)k − α1(1 + z)k−1(1 − z) − α2(1 + z)k−2(1 − z)2 − · · ·
− (1 − z)kαk,

b(z) = β0(1 + z)k + β1(1 + z)k−1(1 − z) + β2(1 + z)k−2(1 − z)2 + · · ·
+ (1 − z)kβk.

Find the conditions for stability, preconsistency and stability in terms
of the polynomials a and b.

LINEAR MULTISTEP METHODS 329

41 The Order of Linear Multistep Methods

410 Criteria for order

Given a linear multistep method [α, β], we seek conditions on the coefficients in
the polynomials α and β that will guarantee that, locally, errors are O(hp+1).
By this we mean that if starting values satisfy yi = y(xi) + O(hp+1), for
i = 0, 1, . . . , k−1, then this will imply that a similar estimate persists for i ≥ k.
We emphasize that this is a local property in the sense that it cannot be used in
a limiting case in which integration is carried to a fixed point x > x0, because
the number of steps required to achieve this is approximately (x−x0)/h, and
this is unbounded as h → 0. To verify that yn = y(xn) + O(hp+1), assuming
the same is true for the previous k step values, it will be enough to estimate
the value of

y(xn) −
k∑

i=1

αiy(xn−i) −
k∑

i=0

βihy′(xn−i) (410a)

and to show that, under appropriate smoothness assumptions, it is O(hp+1).
The smoothness assumptions will be that the problem under consideration
has a solution with continuous derivatives up to order p + 1. This will enable
us to expand (410a) in a Taylor series

C0y(xn) + C1hy′(xn) + C2h
2y′′(xn) + · · ·

+ Cph
py(p)(xn) + Cp+1h

p+1y(p+1)(xn) + · · · (410b)

and order p will mean that C0 = C1 = · · · = Cp. The value of Cp+1 is closely
related to the error constant and is non-zero unless the order is actually higher
than p.

Theorem 410A The constants C0, C1, C2, . . . in (410b) are given by

α(exp(−z)) − zβ(exp(−z)) = C0 + C1z + C2z
2 + · · · . (410c)

Proof. The coefficient of y(xn) in the Taylor expansion of (410a) is equal to
1 −

∑k
i=1 αi, and this equals the constant term in the Taylor expansion of

α(exp(−z)) − zβ(exp(−z)). Now suppose that j = 1, 2, . . . and calculate the
coefficient of y(j)(xn) in the Taylor expansion of (410a). This equals

−
k∑

i=1

αi
(−i)j

j!
−

k∑
i=0

βi
(−i)j−1

(j − 1)!
,

where the coefficient of β0 is −1 if j = 1 and zero for j > 1. This is identical
to the coefficient of zj in the Taylor expansion of α(exp(−z))− zβ(exp(−z)).

�

330 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Altering the expression in (410c) slightly, we can state without proof a
criterion for order:

Theorem 410B A linear multistep method [α, β] has order p (or higher) if
and only if

α(exp(z)) + zβ(exp(z)) = O(zp+1).

Because we have departed from the traditional (ρ, σ) formulation for linear
multistep methods, we restate this result in that standard notation:

Theorem 410C A linear multistep method (ρ, σ) has order p if and only if

ρ(exp(z)) − zσ(exp(z)) = O(zp+1).

Return now to Theorem 410B and replace exp(z) by (1 + z)−1. It is found
that

α((1 + z)−1) − log(1 + z)β((1 + z)−1) = O(zp+1), (410d)

where log(1 + z) is defined only in {z ∈ C : |z| < 1} by its power series

log(1 + z) = z − 1
2 z2 + 1

3 z3 − · · · .

Because both α(1 + z) and log(1 + z) vanish when z = 0, it is possible to
rearrange (410d) in the form given in the following result, which we present
without further proof.

Theorem 410D A linear multistep formula [α, β] has order p if and only if

z

log(1 + z)
α(1 + z)

z
+ β(1 + z) = O(zp).

411 Derivation of methods

Given the relationship between the coefficients in the α and β polynomials
under the condition that they have a specified order, the choice of actual
methods remains. The first approach we consider is when α is given and β is
then chosen to achieve the required order. In Subsection 412 we consider the
derivation of backward difference methods, in which β is first specified and α

is then derived.
To find the coefficients in Adams–Moulton methods, use α(z) = 1 − z, so

LINEAR MULTISTEP METHODS 331

that from Theorem 410D we find

β(1 + z) =
1

1 − 1
2z + 1

3z2 − 1
4z3 + 1

5z4 − 1
6z5 + · · ·

= 1 + 1
2 z − 1

12 z2 + 1
24 z3 − 19

720 z4 + 3
160 z5

− 863
60480 z6 + 275

24192 z7 − 33953
3628800 z8

+ 8183
1036800 z9 − 3250433

479001600 z10 + · · · .

(411a)

It is clear that order k + 1 can be obtained using a k-step method because
the expansion can be truncated at the term in zk, leading to an O(zk+1) error
and degree k polynomial β(1 + z). For example, for k = 1 we have

β(1 + z) = 1 + 1
2 z,

implying that
β(z) = 1 + 1

2 (z − 1) = 1
2 + 1

2 z,

giving the coefficients β0 = β1 = 1
2 . If k = 2 we have

β(1 + z) = 1 + 1
2 z − 1

12 z2

and
β(z) = 1 + 1

2 (z − 1) − 1
12 (z − 1)2 = 5

12 + 2
3 z + − 1

12 z2,

giving β0 = 5
12 , β1 = 2

3 , β2 = − 1
12 . In general, we can find the coefficients by

rewriting (411a) in the form

β(z) = 1 + 1
2 (z − 1) − 1

12 (z − 1)2 + 1
24 (z − 1)3 − 19

720 (z − 1)4

+ 3
160 (z − 1)5 − 863

60480 (z − 1)6 + 275
24192 (z − 1)7 − 33953

3628800 (z − 1)8

+ 8183
1036800 (z − 1)9 − 3250433

479001600 (z − 1)10 + · · · ,

and truncating at the term in (z − 1)k to obtain the coefficients in the k-step
order k + 1 method.

For Adams–Bashforth methods, in which β0 necessarily vanishes, we write
β(z) = zβ̂(z), where β̂ has degree k − 1 for a k-step method. In this case
Theorem 410D can be written in the form

z

(1 + z) log(1 + z)
α(1 + z)

z
+ β̂(1 + z) = O(zp),

332 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

and we aim for order p = k. It is found that

β̂(1 + z) =
1

(1 + z)
(
1 − 1

2z + 1
3z2 − 1

4z3 + · · ·
)

= 1 − 1
2 z + 5

12 z2 − 3
8 z3 + 251

720 z4 − 95
288 z5

+ 19087
60480 z6 − 5257

17280 z7 + 1070017
3628800 z8

− 25713
89600 z9 + 26842253

95800320 z10 − · · · ,

(411b)

so that the coefficients β1, β2, . . . , βk can be found by selecting the coefficients
of z0, z1, . . . , zk−1 in the truncation to the term in (z−1)k−1 in the expansion

β̂(z) = 1 − 1
2 (z − 1) + 5

12 (z − 1)2 − 3
8 (z − 1)3 + 251

720 (z − 1)4

− 95
288 (z − 1)5 + 19087

60480 (z − 1)6 − 5257
17280 (z − 1)7 + 1070017

3628800 (z − 1)8

−25713
89600 (z − 1)9 + 26842253

95800320 (z − 1)10 − · · · .

For example, when k = 2 we have β̂(z) = 1 − 1
2 (z − 1) = 3

2 − 1
2z leading to

β1 = 3
2 and β2 = −1

2 for the Adams–Bashforth method with order p = 2.
When k = 3 we have β(z) = 1 − 1

2 (z − 1) + 5
12 (z − 1)2 = 23

12 − 4
3z + 5

12z2 so
that, for the Adams–Bashforth method with order p = 3, we have β1 = 23

12 ,
β2 = −4

3 , β3 = 5
12 .

Values of the Adams–Bashforth and Adams–Moulton coefficients have
previously been given in Tables 244(I) and 244(II), respectively.

412 Backward difference methods

These methods are also known as ‘backward difference formulae’ or BDF
methods. Sometimes the notation BDFk is used for the order k member of
this family. Instead of choosing a specific α polynomial, we consider the choice
β = β0, where β0 is to be chosen for consistency. From Theorem 410D we have

α(1 + z) = −β0 log(1 + z) + O(zp+1).

Expand β0 log(1+z) to terms in zk, for order p = k, and then substitute z−1
in place of z. It is found that

α(z) = β0

(
− (z − 1) + 1

2 (z − 1)2 − 1
3 (z − 1)3 + · · ·

)
,

and β0 is chosen so that α(0) = 1. For k = p = 1, we have α(z) = β0(1 − z),
so that β0 = 1 and α1 = 1. For k = p = 2,

α(z) = β0

(
(1 − z) + 1

2 (1 − z)2
)

= β0

(
3
2 − 2z + 1

2 z2
)
,

LINEAR MULTISTEP METHODS 333

Table 412(I) Coefficients of the backward difference methods up to order 7

k α1 α2 α3 α4 α5 α6 α7 β0 C

1 1 1 1
2

2 4
3 −1

3
2
3

2
9

3 18
11 − 9

11
2
11

6
11

3
22

4 48
25 −36

25
16
25 − 3

25
12
25

12
125

5 300
137 −300

137
200
137 − 75

137
12
137

60
137

10
137

6 120
49 −150

49
400
147 −75

49
24
49 − 10

147
20
49

20
343

7 980
363 −490

121
4900
1089 −1225

363
196
121 − 490

1089
20
363

140
363

35
726

giving β0 = 2
3 and

α1 =
4
3
, α2 = −1

3
.

The coefficients for these methods are given up to p = k = 7 in Table 412(I),
where the error constant C is found to be β0/(p + 1).

Note that the method with p = k = 7 is of no practical value, in terms of
the criteria for convergence, because it is not stable. This remark also applies
to methods with k > 7.

Exercises 41

41.1 Given α2, find α1, β1 and β2 such that the linear multistep method
(1 − α1z − α2z

2, β1z + β2z
2) has order 2. What are the bounds on α2

for which the method is convergent?

41.2 Show that all backward difference methods with k ≤ 6 are stable.

41.3 Show that the order 7 backward difference method is not stable.

41.4 Find a stable seventh order linear multistep method of the form
(1 − α1z − α2z

2 − · · · − α8z
8, β0).

42 Errors and Error Growth

420 Introduction

The result computed in a step is generally not exact, even if we ignore any
errors introduced in previous steps. However, once a significant departure from
the exact solution has occurred, we are in effect solving a different problem.
Hence, a proper analysis of error takes account of errors generated locally, and

334 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

also the accumulated effect of errors generated in previous steps. We present
a simplified discussion of this phenomenon in this subsection, and discuss the
limitations of this discussion in Subsection 421.

Suppose a sequence of approximations

y1 ≈ y(x1),
y2 ≈ y(x2),
...

...
yn−1 ≈ y(xn−1),

has been computed, and we are now computing step n. If, for the moment,
we ignore errors in previous steps, the value of yn can be evaluated using a
Taylor expansion where, for implicit methods, we need to take account of the
fact that f(yn) is also being calculated. We have

y(xn) − yn − hβ0(f(y(xn)) − f(yn))

= y(xn) −
k∑

i=1

αiy(xn−i) − h

k∑
i=0

βiy
′(xn−1),

which is equal to
Cp+1h

p+1y(p+1)(xn) + O(hp+2).

In this informal discussion, we not only ignore the term O(hp+2) but also treat
the value of hp+1y(p+1)(xn−i) as constant. This is justified in a local sense.
That is, if we confine ourselves to a finite sequence of steps preceding step
n, then the variation in values of this quantity will also be O(hp+2), and we
ignore such quantities. Furthermore, if

y(xn) − yn − hβ0(f(y(xn)) − f(yn)) ≈ Cp+1h
p+1y(p+1)(xn),

then the assumption that f satisfies a Lipschitz condition will imply that

y(xn) − yn ≈ Cp+1h
p+1y(p+1)(xn)

and that
h(f(y(xn)) − f(yn)) = O(hp+2).

With the contributions of terms of this type thrown into the O(hp+2)
category, and hence capable of being ignored from the calculation, we can
write a difference equation for the error in step n, which will be written as
εn = y(xn) − yn, in the form

εn −
k∑

i=1

αiεn−i = Khp+1,

LINEAR MULTISTEP METHODS 335

where K is a representative value of Cp+1y
(p+1).

For a stable consistent method, the solution of this equation takes the form

εn = −α′(1)−1hp+1nK +
k∑

i=1

ηiλ
n
i , (420a)

where the coefficients ηi, i = 1, 2, . . . , k, depend on initial values and λi,
i = 1, 2, . . . , k, are the solutions to the polynomial equation α(λ−1) = 0.

The factor −α′(1)−1 that occurs in (420a) can be written in a variety of
forms, and we have

−α′(1) = ρ′(1) = β(1) = σ(1) = α1 + 2α2 + · · · + kαk.

The value of −Cα′(1)−1 is known as the ‘error constant’ for the method and
represents the factor by which hp+1y(p+1) must be multiplied to give the
contribution from each step to the accumulated error. Since the method is
assumed to be stable, the terms of the form ηiλ

n
i can be disregarded compared

with the linearly growing term −α′(1)−1hp+1nK. If the integration is carried
out to a specific output value x, and n steps are taken to achieve this result,
then hn = x− x0. In this case we can make a further simplification and write
the accumulated error as approximately

−(x − x0)α′(1)−1hpCy(p+1)(x).

In the next subsection, these ideas will be discussed further.

421 Further remarks on error growth

In Subsection 420 we gave an informal argument that, over many steps, there
is a contribution to the accumulated error from step n of approximately
−α′(1)−1Cp+1y

(p+1)(xn)hp+1. Since we are interested in the effect of this
contribution at some future point x, we can consider the differential equation

y′(x) = f(x, y(x)),

with two possible initial values at the point x = xn. These possible initial
values are

y(xn) and y(xn) + α′(1)−1Cp+1y
(p+1)(xn)hp+1,

and correspond respectively to the exact solution and to the solution
perturbed by the error introduced in step n.

This suggests the possibility of analysing the development of numerical
errors through the differential equation

z′(x) =
∂f(y(x))

∂y
z(x) + y(p+1)(x), z(x0) = 0. (421a)

336 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

δn

xn−1 xn

y(x)

y(x)

ŷ(x)

Figure 421(i) Development of accumulated errors in a single step

Using this equation, we might hope to be able to approximate the error after
n steps have been performed as

−α′(1)−1Cp+1h
pz(xn),

because the linear term in (421a) expresses the rate of growth of the separation
of an already perturbed approximation and the non-linear term, when scaled
by −α′(1)−1Cp+1h

p, expresses the rate at which new errors are introduced
as further steps are taken. The negative sign is consistent with the standard
convention that errors are interpreted to mean the exact solution minus the
approximation.

To turn this idea into a formal result it is possible to proceed in two steps. In
the first step, asymptotic approximations are made. In the second, the errors
in making these approximations are bounded and estimated so that they can
all be bundled together in a single term which tends to zero more rapidly as
h → 0 than the asymptotic approximation to the error.

The second of these steps will not be examined in detail and the first step
will be described in terms of the diagram given in Figure 421(i). In this figure,
y(x) is the exact solution and ŷ(x) is the function y(x) + α′(1)−1Cp+1h

pz(x).
The function y(x) is the exact solution to the differential equation but

with initial value at xn−1 set to ŷ(xn−1). In the single step from xn−1 to
xn, the perturbed approximation y drifts away from y at an approximate
rate

(
∂f(y(x))/∂y

)(
y(x) − y(x)

)
, to reach a value y(xn). Add to this the

contribution of local truncation error, corresponding to this step, denoted
by δn = α′(1)−1Cp+1y

(p+1)(xn)hp+1. With this local error added, the
accumulated error moves to a value ŷ(xn). However, following the smoothed-
out curve ŷ(x) over the interval [xn−1, xn] leads to the same point, to within
O(hp+2).

LINEAR MULTISTEP METHODS 337

422 The underlying one-step method

Although linear multistep methods seem to be at the opposite end of the
spectrum from Runge–Kutta methods, there is a very close link between
them. Suppose the method [α, β] is preconsistent and stable, and consider
the equation

1 − α1η
−1 − α2η

−2 − · · · − αkη−k

− β0D − β1η
−1D − β2η

−2D − · · · − βkη−kD = 0, (422a)

where η ∈ G1. In Theorem 422A, we will show that (422a) has a unique
solution.

Although η does not represent a Runge–Kutta method, it does represent a
process for progressing a numerical approximation through a single time step.
Suppose that the method is started using

yi = y(x0) +
∑
t∈T

ηi(t)hr(t)

σ(t)
F (t)(y(x0)), i = 0, 1, 2, . . . , k − 1,

corresponding to the group element ηi; then this value of yi will persist for
i = k, k + 1, We will show this formally in Theorem 422C.

In the meantime, we remark that convergence of the formal series associated
with ηi is not assured, even for i = 1, unless the function f and the value of
h are restricted in some appropriate way. In this sense we can regard these
‘B-series’ as formal Taylor series.

What we really want is not η satisfying (422a) but the mapping Φ, say, which
corresponds to it. If exponentiation of Φ is taken to denote compositions, or,
for negative powers, compositions of the inverse mapping, then we want to be
able to define Φ by

id − α1Φ−1 − α2Φ−2 − · · · − αkΦ−k

− hβ0f − hβ1(f ◦ Φ−1) − hβ2(f ◦ Φ−2) − · · · − hβk(f ◦ Φ−k) = 0. (422b)

Because the corresponding member of G1 can be evaluated up to any
required order of tree, it is regarded as satisfactory to concentrate on this
representation.

Theorem 422A For any preconsistent, stable linear multistep method [α, β],
there exists a member of the group G1 satisfying (422a).

Proof. By preconsistency,
∑k

i=1 αi = 1. Hence, (422a) is satisfied in the case
of t = ∅, in the sense that if both sides are evaluated for the empty tree, then
they each evaluate to zero. Now consider a tree t with r(t) > 0 and assume

338 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

that

1(u) − α1η
−1(u) − α2η

−2(u) − · · · − αkη−k(u)

− β0D(u) − β1η
−1D(u) − β2η

−2D(u) − · · · − βkη−kD(u) = 0,

is satisfied for every tree u satisfying r(u) < r(t). We will prove that there
exists a value of η(t) such that this equation is also satisfied if u is replaced by
t. The coefficient of η(t) in η−i(t) is equal to i(−1)r(t) and there are no other
terms in η−i(t) with orders greater than r(t) − 1. Furthermore, all terms on
the right-hand side contain only terms with orders less than r(t). Hence, to
satisfy (422a), with both sides evaluated at t, it is only necessary to solve the
equation

(−1)r(t)−1
k∑

i=1

iαiη(t) = C,

where C depends only on lower order trees. The proof by induction on r(t) is
now complete, because the coefficient of η(t) is non-zero, by the stability of
the method. �

Definition 422B Corresponding to a linear multistep method [α, β], the
member of G1 represents the ‘underlying one-step method’.

As we have already remarked, the mapping Φ in (422b), if it exists in more
than a notional sense, is really the object of interest and this really is the
underlying one-step method.

Theorem 422C Let [α, β] denote a preconsistent, stable linear multistep
method and let η denote a solution of (422a). Suppose that yi is represented
by ηi for i = 0, 1, 2, . . . , k− 1; then yi is represented by ηi for i = k, k +1,

Proof. The proof is by induction, and it will only be necessary to show that
yk is represented by ηk, since this is a typical case. Multiply (422a) on the left
by ηk and we find that

ηk − α1η
k−1 − α2η

k−2 − · · · − αk

− β0η
kD − β1η

k−1D − β2η
k−2D − · · · − βkD = 0,

so that yk is represented by ηk. �

The concept of an underlying one-step method was introduced by
Kirchgraber (1986). Although the underlying method cannot be represented
as a Runge–Kutta method, it can be represented as a B-series or, what is
equivalent, in the manner that has been introduced here. Of more recent
developments, the extension to general linear methods (Stoffer, 1993) is of
particular interest. This generalization will be considered in Subsection 535.

LINEAR MULTISTEP METHODS 339

423 Weakly stable methods

The stability requirement for linear multistep methods specifies that all zeros
of the polynomial ρ should lie in the closed unit disc with only simple zeros on
the boundary. There is always a zero at 1, because of consistency, and there
may or may not be other zeros on the boundary. We show in Subsection 441
that for a k-step method, with k even, the maximum possible order is k + 2.
For methods with this maximal order, it turns out that all zeros of ρ lie on the
unit circle and we are forced to take these methods seriously. We will write
methods in the [α, β] terminology. A classic example is

α(z) = 1 − z2, (423a)
β(z) = 2z (423b)

and this is known as the ‘leapfrog method’. Methods based on Newton–Cotes
formulae were promoted by Milne (1953), and these all fall into this family.

The presence of additional zeros (that is, in addition to the single zero
required by consistency) on the unit circle leads to the phenomenon known
as ‘weak stability’.

A characteristic property of weakly stable methods is their difficulty in
dealing with the long term integration of dissipative problems. For example,
if an approximation to the solution of y′ = −y is attempted using (423a), the
difference equation for the computed results is

yn + 2hyn−1 − yn−2 = 0. (423c)

The general solution to (423c) is

yn = Aλn + Bµn, (423d)

where
λ = −h +

√
1 + h2 ≈ 1 − h + 1

2h2 ≈ exp(−h),
µ = −h −

√
1 + h2 ≈ −1 − h − 1

2h2 ≈ − exp(h),

where A and B depend on initial values. Substitute the approximate values
of λ and µ into (423d) and we find

yn ≈ A exp(−nh) + B(−1)n exp(nh).

For high values of n, the second term, which represents a parasitic solution,
eventually dominates the solution and produces a very poor approximation.
This is in contrast to what happens for the differential equation y′ = y,
for which the solution to the corresponding difference equation takes the
form yn ≈ A exp(nh) + B(−1)n exp(−nh). In this case, the first term again
corresponds to the true solution, but the second term will always be less
significant.

340 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

424 Variable stepsize

If a sequence of approximations has already been computed using a specific
stepsize and, for some reason, a decision is made to alter the stepsize, then
a number of options arise as to how this might be done. For example, if a
doubling of the stepsize is called for, then the necessary data might already
be available without further computation. Halving the stepsize is not so
convenient because new approximations to y(x) and y′(x) are required at
points intermediate to the information that has already been computed.
However, both these are special cases and it is usually required to change
the stepsize by a ratio that is perhaps greater than 0.5 and less than 2.0.
We consider a very simple model example in which new values are simply
found by interpolation and the integration resumed using the modified data.
Another approach which we will also consider is where a generalized version
of the numerical method is defined specific to whatever sequence of stepsizes
actually arises.

We now examine some basic stability questions arising from the
interpolation option applied to an Adams method. At the end of step n,
besides an approximation to y(xn), approximations are available for hy′(xn),
hy′(xn − h), . . . , hy′(xn − (p − 1)h). We need to replace these derivative
approximations by approximations to rhy′(xn), rhy′(xn − rh), . . . , rhy′(xn −
(p − 1)rh), and these can be evaluated by the interpolation formula

rhy′(xn)
rhy′(xn − rh)

...
rhy′(xn−(p−1)rh)

 ≈ V D(r)V −1

hy′(xn)

hy′(xn − h)
...

hy′(xn−(p−1)h)

 ,

where V is the Vandermonde matrix

V =

1 0 0 · · · 0
1 1 1 · · · 1
1 2 22 · · · 2p−1

...
...

...
...

1 p − 1 (p − 1)2 · · · (p − 1)p−1

and

D(r) = diag(r, r2, r3, . . . , rp).

The additional errors introduced into the computation by this change of
stepsize technique can be significant. However, we are concerned here by
the effect on stability. With constant stepsize, the stability of the difference
equation system related to the derivative approximations is determined by

LINEAR MULTISTEP METHODS 341

the influence matrix

J =

0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0

and because J is nilpotent, the dependence of quantities computed in
a particular step eventually becomes insignificant. However, whenever the
stepsize is altered by a factor r, the influence matrix becomes

V D(r)V −1J, (424a)

and this is, in general, not nilpotent. If, for example, the interpolation
approach with stepsize ratio r is repeated over many steps, then (424a) might
not be power-bounded and unstable behaviour will result. In the case p = 3,
(424a) becomes 0 0 0

2r2 − r3 −1
2r2 + 1

2r3 0
4r2 − 4r3 −r2 + 2r3 0

 , (424b)

and this is not power-bounded unless r ≤ 1.69562076955986, a zero of the
polynomial r3 − r2 − 2.

As an example of the alternative technique, in which the numerical method
is modified to allow for irregular mesh spacing, consider the BDF3 method.
Suppose that approximate solution values are known at xn−1, xn −h(1+ r−1

2)
and xn − h(1 + r−1

2 + (r2r1)−1), where r2 and r1 are the most recent stepsize
ratios. We now wish to compute y(xn) using a formula of the form

y(xn) ≈ hβy′(xn) + α1(r1, r2)y(xn − h) + α2(r1, r2)y(xn − h(1 + r−1
2))

+ α3(r1, r2)y(xn − h(1 + r−1
2 + (r2r1)−1)).

Using a result equivalent to Hermite interpolation, we find that, to maintain
third order accuracy,

α1 =
(r2 + 1)2(r1r2 + r1 + 1)2

(3r2
2r1 + 4r1r2 + 2r2 + r1 + 1)(r1 + 1)

,

α2 = − r2
2(r1r2 + r1 + 1)2

3r2
2r1 + 4r1r2 + 2r2 + r1 + 1

,

α3 =
r2
2r

3
1(r2 + 1)2

(3r2
2r1 + 4r1r2 + 2r2 + r1 + 1)(r1 + 1)

.

342 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Stability of this variable stepsize version of the BDF3 method will hinge on
the boundedness of products of matrices of the form

M =

 α1 α2 α3

1 0 0
0 1 0

 ,

where the values of r1 and r2 for successive members of the product sequence
are appropriately linked together.

An extreme case will be where r1 and r2 are equal and as large as possible,
subject to M having bounded powers. It is easy to verify that this greatest
rate of continual increase in stepsize corresponds to

r1 = r2 = r∗ =
1 +

√
5

2
.

It is interesting that an arbitrary sequence of stepsize change ratios, in the
interval (0, r∗], still guarantees stable behaviour.

Exercises 42

42.1 Let C(θ) denote the error constant for the third order linear multistep
method (1−(1−θ)z−θz2, 5−θ

12 + 2+2θ
3 + 5θ−1

12 z2). Show that C = 1−θ
24(1+θ) .

42.2 Show that weakly stable behaviour is experienced with the linear
multistep method (1 − z3, 3

8 (1 + z)3).

42.3 Show that the norm of the product of an arbitrary sequence of matrices
of the form (424b) is bounded as long as each r lies in the interval [0, r∗],
where r∗ ≈ 1.69562076955986.

43 Stability Characteristics

430 Introduction

In contrast to Runge–Kutta methods, in which stability regions are
determined by a single stability function, the stability properties of linear
multistep methods are inextricably bound up with difference equations. We
consider the example of the second order Adams–Bashforth method

yn = yn−1 +
3
2
hf(xn−1, yn−1) −

1
2
hf(xn−2, yn−2). (430a)

For the differential equation y′ = qy, this becomes

yn = yn−1 +
3
2
hqyn−1 −

1
2
hqyn−2,

LINEAR MULTISTEP METHODS 343

−1 0

1
2 i

−1
2 i

Figure 430(i) Stability region for the second order Adams–Bashforth method

so that stable behaviour occurs if hq = z, where z is such that the equation

yn =
(
1 +

3
2
z
)
yn−1 −

1
2
zyn−2

has only bounded solutions. This occurs when the polynomial equation

w2 −
(
1 +

3
2
z
)
w +

1
2
z = 0

has each of its two solutions in the closed unit disc and in the interior if they
happen to coincide. The stability region for this method turns out to be the
unshaded part of the complex plane shown in Figure 430(i), including the
boundary.

Just as for Runge–Kutta methods, a consistent explicit linear multistep
method has a bounded stability region and therefore cannot be A-stable.
We therefore explore implicit methods as a source of appropriate algorithms
for the solution of stiff problems. It will be found that A-stability is a very
restrictive property in that it is incompatible with an order greater than 2.
Also in this section, we consider a non-linear stability property, known as G-
stability, which is a multistep counterpart of algebraic stability introduced in
Chapter 3.

344 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

431 Stability regions

For a linear multistep method [α, β], the difference equation associated with
the linear test problem, y′ = qy, is

(1 − zβ0)yn − (α1 + zβ1)yn−1 − (α2 + zβ1)yn−2 − · · ·
− (αk + zβk)yn−k = 0, (431a)

and the stability region is the set of points hq in the complex plane for which
(431a) has only bounded solutions as n → ∞. To simplify the discussion, we
will consider the interior of the stability region so that, for z in this set, all
solutions to (431a) converge to zero as n → ∞. We will refer to this interior
set as the open stability region. Write the difference equation in the form

α(E−1) − zβ(E−1) = 0,

and we see that the open stability region can be defined in terms of the relation

α(w−1) − zβ(w−1) = 0. (431b)

That is, z is in the open stability region if there does not exist w outside the
open unit disc such that the pair (z, w) satisfies (431b). Stated another way,
this means that if w outside the open unit disc this implies that z satisfying
(431b) is not in the open stability region.

As a starting point in determining the stability region, it is convenient to
evaluate the points on the boundary of the unit circle and to note that the
mapping

w
→ α(w−1)
β(w−1)

(431c)

traces out a set of points which includes the boundary of the stability region.
In particular cases it is easy to determine the exact boundary. Since w
→ w−1

maps the unit circle to itself, while changing the sense of rotation, it is
equivalent to replace (431c) by

w
→ α(w)
β(w)

. (431d)

This procedure is known as the ‘boundary locus method’ for determining
stability regions, and we give some examples of its use in the next subsection.

A second procedure for determining stability regions is based on the idea
of the ‘type of a polynomial’. That is, if P is a polynomial of degree n then
the type is a triple (n1, n2, n3), where n1, n2 and n3 are non-negative integers
with sum exactly n. The interpretation is that n1 is the number of zeros of P

LINEAR MULTISTEP METHODS 345

in the open unit disc, n2 is the number of zeros on the unit circle and n3 is the
number of zeros outside the closed unit disc. If we are willing to concentrate on
the open stability region of a specific method, we can simplify the discussion
to the question of determining whether or not the type of P is (n, 0, 0). We
will refer to such a polynomial as being ‘strongly stable’. Polynomials can be
tested for this property recursively, using the following result:

Theorem 431A A polynomial Pn, given by

Pn(w) = a0w
n + a1w

n−1 + · · · + an−1w + an,

where a0 �= 0 and n ≥ 2, is strongly stable if and only if

|a0|2 > |an|2 (431e)

and Pn−1 is strongly stable, where

Pn−1(w)

= (a0a0 − anan)wn−1 + (a0a1 − anan−1)wn−2 + · · · + (a0an−1 − ana1).

Proof. First note that (431e) is necessary for strong stability because if it
were not true, the product of the zeros could not have a magnitude less than
1. Hence, we assume that this is the case and it remains to prove that Pn is
strongly stable if and only if the same property holds for Pn−1. It is easy to
verify that

wPn−1(w) = a0Pn(w) − anwnPn(w−1).

By Rouché’s theorem, wPn−1(w) has n zeros in the open unit disc if and only
if the same property is true for Pn(w), and the result follows. �

The result of this theorem is often referred to as the Schur criterion. In the
case of n = 2, it leads to the two conditions

|a0|2 − |a2|2 > 0, (431f)

(|a0|2 − |a2|2)2 − |a0a1 − a2a1|2 > 0. (431g)

To apply the Schur criterion to the determination of the stability region for
a k-step method, we need to ask for which z the polynomial given by

P (w) = wk(α(w−1) − zβ(w−1))

is strongly stable. We present some examples of the use of this test in
Subsection 433.

346 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Algorithm 432α Boundary locus method for low order Adams–Bashforth

methods

% Second order
% ------------
w = exp(i*linspace(0,2*pi));
z = 2*w.*(w-1)./(3*w-1);
plot(z)

% Third order
% -----------
w=exp(i*linspace(0,2*pi));
z=12*(1-w)./(23*w-16*w.^2+5*w.^3);
plot(z)

% Fourth order
% ------------
w=exp(i*linspace(0,2*pi));
z=24*(1-w)./(55*w-59*w.^2+37*w.^3-9*w.^4);
plot(z)

432 Examples of the boundary locus method

The first example is for the second order Adams–Bashforth method (430a)
for which (431c) takes the form

w
→ 1 − w−1

3
2w−1 − 1

2w−2
.

For w = exp(iθ) and θ ∈ [0, 2π], for points on the unit circle, we have z values
on the (possibly extended) boundary of the stability region given by

z =
exp(2iθ) − exp(iθ)

3
2 exp(iθ) − 1

2

.

The MATLAB code given in Algorithm 432α shows how this is done, and the
boundary traced out is exactly as in Figure 430(i).

No confusion is possible as to which part of the complex plane divided by
the boundary locus is the inside and which is the outside because, using an
argument based on the Cauchy–Riemann equations, we note that the inside
is always to the left of the path traced out as w increases from 0 to 2π. If
we had used (431d) in place of (431c) then, of course, the path would have
been traced in the opposite direction and the inside of the stability region
would have been on the right. Note that in Algorithm 432α the third and

LINEAR MULTISTEP METHODS 347

−1
2 0

1
2 i

−1
2 i

Figure 432(i) Stability region for the third order Adams–Bashforth method

−1
2 0 1

2

1
2 i

−1
2 i

Figure 432(ii) Stability region for the fourth order Adams–Bashforth method

fourth order cases are traced in the reverse direction. The stability region of
the third Adams–Bashforth method, as computed by this algorithm, is given
as the unshaded region of Figure 432(i).

In the case of the fourth order method in this family, the root locus method
traces out more than the boundary of the stability region, as we see in Figure
432(ii). Because crossing the locus corresponds to the shift of one of the growth
factors from stable to unstable, the more heavily shaded region is doubly
unstable in that it contains two unstable terms.

348 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

−6 −4 −2 0

2i

−2i

Figure 432(iii) Stability region for the third order Adams–Moulton method

0 2 4

2i

−2i

Figure 432(iv) Stability region for the second order backward difference method

We present three final examples. The Adams–Moulton method of order 3
is given in Figure 432(iii); we see that even though this method is implicit it
has a bounded stability region.

Now look at the stability regions of the backward difference methods of
orders 2 and 3. The first of these, shown in Figure 432(iv), indicates that the
second order method is A-stable and the second, Figure 432(v), shows that
the third order method is not A-stable.

LINEAR MULTISTEP METHODS 349

0 2 4 6

2i

−2i

Figure 432(v) Stability region for the third order backward difference method

433 An example of the Schur criterion

We first recompute the stability region of the second order Adams–Bashforth
method. We need to find for what values of the complex number z the
polynomial a0w

2 + a1w + a2 has its zeros in the open unit disc, where

a0 = 1, a1 = −1 − 3
2
z, a2 =

z

2
.

The condition |a0|2 − |a2|2 > 0 is equivalent to

|z| < 2, (433a)

while the second condition (|a0|2 − |a2|2)2 − |a0a1 − a2a1|2 > 0 simplifies to

Re(z)(3|z|2 − 4) < |z|4. (433b)

It is easy to verify that (433b) implies (433a). Thus, by plotting the points
for which (433b) holds, we recover Figure 430(i).

434 Stability of predictor–corrector methods

We consider examples of PEC and PECE methods. For the PEC method
based on second order Adams–Bashforth as predictor and Adams–Moulton
as corrector, we have the following equations for the predicted and corrected
values:

y∗
n = yn−1 +

3
2
hf ∗

n−1 −
1
2
hf ∗

n−2, (434a)

yn = yn−1 +
1
2
hf ∗

n +
1
2
hf ∗

n−1. (434b)

350 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

1

2
31 2

i

−i

−2 −1 0

Figure 434(i) Stability regions for Adams–Moulton methods (solid lines) and

PEC methods (dashed lines)

Superficially, this system describes two sequences, the y and the y∗ which
develop together. However, it is only the y∗ sequence that has derivative values
associated with it. Hence, the y sequence can conveniently be eliminated from
consideration. Replace n by n + 1 in (434a), and we find

y∗
n+1 = yn +

3
2
hf ∗

n − 1
2
hf ∗

n−1. (434c)

Add (434b) to this equation and subtract (434a), and we find

y∗
n+1 = y∗

n + 2hf ∗
n − 3

2
hf ∗

n−1 +
1
2
hf ∗

n−2.

Apart from the actual values of the coefficients, this resembles an Adams–
Bashforth method, and its stability region can be found in a similar way. If
β∗ and β are the respective generating polynomials for an order p Adams–
Bashforth method and the corresponding Adams–Moulton method, then the
general form of the generating polynomial for y∗ in a PEC method is equal to
β̂, where

β̂(z) = β∗(z) + β0z(1 − z)p.

The value of β0 could be replaced by any value we wish without sacrificing
the order p. In fact, it could be replaced by the value of (−1)pβ∗

p+1 so that
the method would actually be of order p+1. It would in this case be precisely

LINEAR MULTISTEP METHODS 351

−2 −1 0

i

−i

2

3 2 3

1

Figure 434(ii) Stability regions for PECE methods with q = p (solid lines) and

q = p − 1 methods (dashed lines). In each case p is attached to the curves

the order p + 1 Adams–Bashforth method. Another advantage of pushing the
order up one unit rather than accepting the standard PEC result, is that the
stability region seems to be less desirable for PEC methods. This is illustrated
in Figure 434(i), where the boundaries of some of these regions are shown.

PECE methods are more interesting because two derivatives are computed
in each step. Thus they are in reality two-stage general linear methods. From
the stability point of view, they can be analysed by eliminating y∗

n so that the
method

y∗
n = yn−1 + h

k∑
i=1

β∗
i fn−i,

yn = yn−1 + hβ0f
∗
n + h

k∑
i=1

βifn−i

yields the difference equation

yn = (1 + (β0 + β1)z + β0β
∗
1z

2)yn−1 +
k∑

i=2

(βiz + β0β
∗
i z

2)yn−i.

Note that the step k may be higher for the predictor than for the corrector
but we assume that, if this is the case, sufficient zero values are added to the
sequence of βi values to make the two k values effectively equal. In practice

352 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

there are two options. Either both the predictor and corrector have the same
order p, in which case k = p for the predictor and k = p− 1 for the corrector;
or k = p − 1 for both predictor and corrector; in this case the predictor has
order only p − 1. The boundaries of the stability regions are shown in Figure
434(ii) for each of these cases.

The relatively more generous stability regions for the PECE methods, when
compared with PEC methods, for p > 1 are regarded as constituting a
significant advantage in carrying out a final evaluation in implementations
of predictor–corrector methods. Similar comparisons apparently favour
PECECE over PECE methods.

Exercises 43

43.1 Use the Schur criterion to show that all zeros of the polynomial
7z3 − 11z2 + 5z + 1 lie in the unit disc.

43.2 Use the Schur criterion to show that not all zeros of the polynomial
7z3 − 11z2 + 6z + 1 lie in the unit disc.

43.3 Determine whether or not all zeros of the polynomial 7z3 − 11z2 + (5 +
i)z + 1 lie in the unit disc.

43.4 Find the stability regions for the PEC and PECE methods based on the
fourth order Adams–Bashforth and Adams–Moulton methods.

44 Order and Stability Barriers

440 Survey of barrier results

It is a simple matter to construct a linear k-step method with order 2k. This
can be done, for example, by finding coefficients Aj , Bj , j = 0, 1, . . . , k, such
that

1
z2(z + 1)2(z + 2)2 · · · (z + k)2

=
k∑

j=0

Aj

z + j
+

k∑
j=0

Bj

(z + j)2

and then defining

αj = −Aj

A0
, j = 1, 2, . . . , k, βj =

Bj

A0
, j = 0, 1, . . . , k.

To justify this remark, consider the contour integral

1
2πi

∮
C

φ(z)dz∏k
j=0(z + j)2

=
k∑

j=0

1
2πi

∮
C

φ(z)
(

Aj

z + j
+

Bj

(z + j)2

)
dz,

where the contour C consists of a counter-clockwise circle of radius R > k
and centre at the origin and φ is a polynomial of degree not exceeding 2k. By

LINEAR MULTISTEP METHODS 353

taking R large the value of the integral can be estimated by O(R−1); because
it is constant, it must be zero. On the other hand, the terms in the partial
fraction representation of the integral are

k∑
j=0

(Ajφ(−j) + Bjφ
′(−j)) .

For example, if k = 3, we have

1
z2(z + 1)2(z + 2)2

= − 11
108

1
z
− 1

4
1

z + 1
+

1
4

1
z + 2

+
11
108

1
z + 3

+
1
36

1
z2

+
1
4

1
(z + 1)2

+
1
4

1
(z + 2)2

+
1
36

1
(z + 3)2

,

leading to the values

α1 = −27
11

, α2 =
27
11

, α3 = 1,

so that the method is unstable.
This is an example of a result found by Dahlquist (1956), that order p is

impossible for a convergent method unless p ≤ k +1 if k is odd, and p ≤ k +2
if k is even.

With the recognition of the importance of stiffness came the property of
A-stability (Dahlquist, 1963). It has been shown, also by Dahlquist, for A-
stable linear multistep methods that p cannot exceed 2. This result is known
as the second Dahlquist barrier, in contrast to the result about the order of a
convergent k-step method, which is usually referred to as the first Dahlquist
barrier.

441 Maximum order for a convergent k-step method

As a starting point for the proof we present of the Dahlquist first barrier, use
Theorem 410B. Modify this by substituting z in (410d) with the function

2z

1 − z

and then multiplying throughout by (1 + z)k. We then have

(1 + z)kα
(1 − z

1 + z

)
− log

(1 + z

1 − z

)
(1 + z)kβ

(1 − z

1 + z

)
= O(zp+1),

or, what is equivalent,

(1 + z)kα
(

1−z
1+z

)
z

z

log
(

1+z
1−z

) − (1 + z)kβ
(1 − z

1 + z

)
= O(zp). (441a)

354 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

For the rest of this subsection, including assumptions within lemmas and
theorems, we write

a(z) = a0 + a1z + a2z
2 + · · · + akzk = (1 + z)kα

(1−z
1+z

)
,

b(z) = b0 + b1z + b2z
2 + · · · + bkzk = (1 + z)kβ

(1−z
1+z

)
.

By consistency, a0 = 0 so that (441a) can be written in the form

(a1 + a2z + · · · + akzk−1)(c0 + c2z
2 + c4z

4 + · · ·)
− (b0 + b1z + b2z

2 + · · · + bkzk) = O(zp),

where
z

log
(

1+z
1−z

) = c0 + c2z
2 + c4z

4 + · · · .

The way we use this result, when we consider the possibility that p > k, is to
note that this implies that the coefficients of zk+1, . . . , zp−1 in

(a1 + a2z + · · · + akzk−1)(c0 + c2z
2 + c4z

4 + · · ·) (441b)

are zero.
We will go about this is by establishing some results on the signs of the

coefficients a1, a2, . . . , ak, c2, c4,

Lemma 441A If the method under consideration is stable then a1 > 0 and
ai ≥ 0, for i = 2, 3, . . . , k.

Proof. Write the polynomial a in the form

a(z)=(1+z)k−α1(1+z)k−1(1−z)−α2(1+z)k−2(1−z)2− · · · −αk(1−z)k.

We calculate the value of a1, the coefficient of z, to be

k − (k − 2)α1 − (k − 4)α2 − · · · − (−k)αk = kα(1) − 2α′(1) = −2α′(1),

because α(1) = 0. The polynomial ρ, which we recall is defined by

ρ(z) = zk − α1z
k−1 − α2z

k−2 − · · · − αk,

has no real zeros greater than 1, and hence, because ρ(1) = 0 and because
limz−>∞ ρ(z) = ∞, it is necessary that ρ′(1) > 0. Calculate this to be

ρ′(1) = k − (k − 1)α1 − (k − 2)α2 − · · · − αk−1 = a1.

This completes the proof that a1 > 0.

LINEAR MULTISTEP METHODS 355

Write ζ for a possible zero of a so that, because of the relationship between
this polynomial and α, it follows that

1 − ζ

1 + ζ

is a zero of α, unless it happens that ζ = −1, in which case there is a drop in
the degree of α. In either case, we must have Re(ζ) ≤ 0. Because all zeros of
a are real, or occur in conjugate pairs, the polynomial a can be decomposed
into factors of the form z − ξ or of the form z2 − 2ξz + (ξ2 + η2), where the
real number ξ cannot be positive. This means that all factors have only terms
with coefficients of the same sign, and accordingly this also holds for a itself.
These coefficients must in fact be non-negative because a1 > 0. �

Lemma 441B The coefficients c2, c4, . . . are all negative.

Proof. Using the series for log
(
(1 + z)/(1− z)

)
/z, we see that c0, c2, c4, . . .

satisfy (
2 +

2
3
z2 +

2
5
z4 + · · ·

)
(c0 + c2z

2 + c4z
4 + · · ·) = 1. (441c)

It follows that c0 = 1
2 , c2 = −1

6 . We prove c2n < 0 by induction for n = 2,
n = 3, If c2i < 0 for i = 1, 2, . . . , n − 1 then we multiply (441c) by
2n + 1 − (2n − 1)z2. We find

∞∑
i=0

d2iz
2i ·

∞∑
i=0

c2iz
2i = 2n + 1 − (2n − 1)z2, (441d)

where, for i = 1, 2, . . . , n,

d2i =
2(2n + 1)

2i + 1
− 2(2n − 1)

2i − 1
= − 8(n − i)

(2i + 1)(2i − 1)
,

so that d2i < 0, for i = 1, 2, . . . , n− 1, and d2n = 0. Equate the coefficients of
z2n in (441d) and we find that

c2n = −c2d2n−2 + c4d2n−4 + · · · + c2n−2d2

d0
< 0. �

We are now in a position to prove the Dahlquist barrier result.

Theorem 441C Let [α, β] denote a stable linear multistep method with order
p. Then

p ≤
{

k + 1, k odd,

k + 2, k even.

356 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Proof. Consider first the case k odd and evaluate the coefficient of zk+1 in
(441b). This equals

akc2 + ak−2c4 + · · · + a1ck+1

and, because no term is positive, the total can be zero only if each term is zero.
However, this would mean that a1 = 0, which is inconsistent with stability.

In the case k even, we evaluate the coefficient of zk+2 in (441b). This is

ak−1c4 + ak−3c6 + · · · + a1ck+2.

Again, every term is non-positive and because the total is zero, it again follows
that a1 = 0 which contradicts the assumption of stability. �

There is some interest in the methods with maximal order 2k + 2, for k
even. For these methods, α has all its zeros on the unit circle. This evidently
gives the methods a symmetry that suggests it might be advantageous to use
them for problems whose behaviour is dominated by linear terms with purely
imaginary eigenvalues. Against this possible advantage is the observation that
the stability regions necessarily have empty interiors.

442 Order stars for linear multistep methods

In their historic paper, Wanner, Hairer and Nørsett (1978) introduced order
stars on Riemann surfaces. Suppose that Φ(w, z) is a polynomial function of
two complex variables, w ∈ W and z ∈ Z. We assume that Z = W = C.
The subset RΦ of W × Z defined by the relation Φ(w, z) = 0 is a Riemann
surface. Suppose that Φ has degree r in w and s in z. We may interpret R
as a mapping from the Z plane which takes z ∈ Z to the set of zeros of the
equation Φ(w, z) = 0 or as a mapping which takes w ∈ W to the set of zeros
of this same equation, but with z now the unknown. The main interpretation
will be that Φ(w, z) is the characteristic polynomial det(wI − M(z)) of the
stability matrix of a multivalue method. If this method has order p then
Φ(exp(z), z) = O(zp+1). For ease of notation, we carry over concepts such as
A-stability from multivalue methods, such as linear multistep methods, to the
functions Φ used to characterize their stability.

Definition 442A The function Φ is A-stable if RΦ has no intersection with
the product set

{w ∈ C : |w| > 1} × {z ∈ C : Re(z) ≤ 0}.

This definition is equivalent to the requirement that for any z in the left half
complex plane, all eigenvalues of the stability matrix are in the closed unit
disc. Just as in the case of Runge–Kutta methods, for which the Riemann
surface has only a single sheet, scaling the eigenvalues by exp(−z) does not
affect the behaviour on the imaginary axis or introduce or remove any poles.

LINEAR MULTISTEP METHODS 357

Figure 442(i) Order star for the second order BDF method

Figure 442(ii) Order star for the third order BDF method

Hence we can consider a modified Riemann surface based on the function
Φ(w exp(z), z). Just as for the Runge–Kutta case, one of the sheets, known as
the ‘principal sheet’, behaves like w = 1 + O(zp+1) and order stars appear.

We illustrate this by considering the case of the second order backward
difference method, for which

Φ(w exp(z), z) =
(
1 − 2

3
z
)

exp(2z)w2 − 4
3

exp(z)w +
1
3
,

and the third order backward difference method, for which

Φ(w exp(z), z) =
(
1 − 6

11
z
)

exp(3z)w3 − 18
11

exp(2z)w2 +
9
11

exp(z)w − 2
11

.

For the second order case, shown in Figure 442(i), a pole at z = 3
2 is marked,

together with a branch point at z = −1
2 . Note that for z ∈ (∞,−1

2), the two
roots of the equation Φ(w exp(z), z) = 0, for all z in this real interval, have
equal magnitudes. In this figure, light shading grey indicates that a region

358 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

has exactly one of the sheets with magnitude greater than 1. A darker grey is
used to indicate that both sheets have magnitudes greater than 1.

This method is A-stable, as we already know. This can be seen from the
order star by noting that the only pole is in the right half-plane, and that the
fingers do not intersect the imaginary axis. On the other hand, the third order
method (Figure 442(ii)) is not A-stable because, in this case, the intersection
of the imaginary axis with one the fingers is now not empty. Note that for
the third order case, there is a single pole at z = 11

6 and that three shades
of grey are used to distinguish regions where one, two or three sheets have
magnitudes greater than 1.

Although A-stable Runge–Kutta methods can have arbitrarily high orders,
the order of A-stable linear multistep methods is restricted to 2. This was first
proved using order stars (Wanner, Hairer and Nørsett, 1978), but we will use
the closely related approach of order arrows (Butcher, 2002). These will be
introduced in the Riemann surface case in the next subsection.

443 Order arrows for linear multistep methods

Given a relationship between complex numbers z and w defined by an equation
of the form

Φ(w exp(z), z) = 0,

we can define order arrows as the set of points for which w is real and positive.
In particular, the order arrows that emanate from zero correspond to w with
increasing real parts (the up arrows) and, on these arrows, w ∈ (1,∞), or
decreasing real parts (the down arrows) and for which w ∈ [0, 1).

Order arrows on Riemann surfaces are illustrated for the BDF2 method
(Figure 443(i)) and for the BDF3 method (Figure 443(ii)). Just as for Runge–
Kutta methods, the up arrows either terminate at the pole z = β−1

0 or at −∞,
and down arrows terminate at the zero z = −αkβ−1

k or at +∞. In interpreting
these remarks, we need to allow for the possibility that the path traced out by
an up or down arrow meets another arrow at a branch point of the Riemann
surface. However, this special case is easily included in the general rule with a
possible freedom to choose between two continuations of the incoming arrow.

The ‘principal sheet’ of the Riemann surface will refer to a neighbourhood
of (0, 1) for which the relationship between z and w is injective; that is,
it behaves as though w is a function of z. As long as Φ(w, 0) has only a
single zero with value w = 1, this idea makes sense. On the principal sheet,
w exp(z) = exp(z) + O(zp+1), and the behaviour at zero is similar to what
happens for one-step methods. These simple ideas are enough to prove the
Dahlquist second order bound:

Theorem 443A An A-stable linear multistep method cannot have order
greater than 2.

LINEAR MULTISTEP METHODS 359

Figure 443(i) Order arrows for order 2 BDF method

Figure 443(ii) Order arrows for order 3 BDF method

Proof. If the order were greater than 2, there would be more than three up
arrows emanating from the origin. At least three of these up arrows would
come out in the positive direction (or possibly would be tangential to the
imaginary axis). Since there is only one pole, at least two of these arrows
would cross the imaginary axis (or be tangential to it). Hence, the stability
region does not include all of the imaginary axis and the method is not A-
stable. �

We can make this result more precise by obtaining a bound on the error
constant for second order A-stable methods. The result yields an optimal role
for the second order Adams–Moulton method, for which the error constant is
− 1

12 , because

exp(z) −
1 + 1

2z

1 − 1
2z

= − 1
12

z3 + O(z4).

It is not possible to obtain a positive error constant amongst A-stable second
order methods, and it is not possible to obtain an error constant smaller in
magnitude than for the one-step Adams–Moulton method. To prove the result
we use, in place of exp(z), the special stability function (1 + 1

2z)/(1 − 1
2z) in

forming a relative stability function.

360 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Theorem 443B Let C denote the error constant for an A-stable second order
linear multistep method. Then

C ≤ − 1
12

,

with equality only in the case of the second order Adams–Moulton method.

Proof. Consider the relation

Φ
(

w
1 + 1

2z

1 − 1
2z

, z

)
= 0.

On the principal sheet, w = 1 − (C + 1
12)z3 + O(z4). It is not possible that

C + 1
12 = 0, because there would then be at least four up arrows emanating

from 0 and, as in the proof of Theorem 443A, this is impossible because there
is at most one pole in the right half-plane. On the other hand, if C + 1

12 > 0,
there would be at least two up arrows emanating from zero in the positive
direction and these must cross the imaginary axis. �

Exercises 44

44.1 Show that, for a stable linear multistep method with order k + 2, all
zeros of α are on the unit circle.

44.2 Show that the BDF3 method is not A-stable, by selecting a complex
number x with negative real part for which the corresponding difference
equation is not stable.

45 One-Leg Methods and G-stability

450 The one-leg counterpart to a linear multistep method

In Dahlquist (1976) one-leg methods were introduced. Given a linear multistep
method defined by the generating polynomial pair [α, β], an alternative
method can be found by replacing the weighted sum of derivative values

hβ0f(xn, yn) + hβ1f(xn−1, yn−1) + · · · + hβkf(xn−k, yn−k),

by the single term

h

(k∑
i=0

βi

)
f

(
xn − θh,

(k∑
i=0

βi

)−1
k∑

i=0

βiyn−i

)
,

where θ is a weighted combination of the step numbers

θ =
∑k

i=0 iβi∑k
i=0 βi

.

LINEAR MULTISTEP METHODS 361

For convenience, we write

β̂i =
βi∑k
i=0 βi

, i = 0, 1, 2, . . . , k.

It is obvious that the linear stability of a one-leg method is the same
as for the corresponding linear multistep method. However, it is possible
to investigate the stability of numerical solutions of non-linear dissipative
equations in a relatively simple way if the computation is carried out using
one-leg methods. By contrast, the corresponding analysis for linear multistep
methods becomes hopelessly complicated because of the occurrence of the
same derivative terms in several steps in sequence.

Even though these stability results are derived for one-leg methods, they
can be regarded as having a relevance to linear multistep method, because of
a transformation that links them.

In later papers by Dahlquist and others (Dahlquist, 1983; Wantanabe and
Sheikh, 1984; Hundsdorfer and Steininger, 1991), the feasibility of using one-
leg methods directly, as a practical numerical algorithm, came into serious
consideration. In this brief introduction to these methods, we also discuss
an interpretation in terms of effective order, and review the main results on
G-stability.

451 The concept of G-stability

We recall the non-linear stability property introduced in Subsection 357.
The corresponding property for one-leg methods was introduced in Dahlquist
(1976) and given the name G-stability. For convenience, we consider
applications only to autonomous problems

y′(x) = f(y(x)), (451a)

and we assume that the dissipativity property holds in the sense that solution
values lie in an N -dimensional inner-product space, and that

〈f(u) − f(v), u − v〉 ≤ 0, (451b)

for all u, v ∈ RN .
For Runge–Kutta methods, in the study of the non-linear stability property

applicable to those methods, in Subsection 357, it was possible to use the
norm ‖u‖ =

√
〈u, u〉 to measure the drift between two approximately equal

numerical approximations that takes place in step n. However, for linear k-
step methods, each of the k subvectors making up the current state vector of
each approximate solution has to be taken into account. Hence, we need to
construct a suitable norm on the vector space RkN .

362 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

For U ∈ RkN , write Ui, i = 1, 2, . . . , k, for subvectors in RN . That is,

U =

U1

U2

...
Uk

 .

If U, V ∈ RkN then, given a positive definite symmetric k × k matrix G, we
can define an inner product 〈·〉G by

〈U, V 〉G =
k∑

i,j=1

gij〈Ui, Vj〉,

with corresponding norm

‖U‖G =

√√√√ k∑
i,j=1

gij〈Ui, Uj〉.

The aim of G-stability is to discover, for a given one-leg method, if G exists
so that, for a problem satisfying (451b),∥∥Y (n) − Z(n)

∥∥2

G
−
∥∥Y (n−1) − Z(n−1)

∥∥2

G
(451c)

cannot be positive, where

Y (n) =

yn

yn−1

yn−2

...
yn−k+1

 , Z(n) =

zn

zn−1

zn−2

...
zn−k+1

 ,

and the y and z sequences are numerical approximations corresponding to two
different solutions to (451a).

The only inequality at our disposal that could be used to ensure that (451c)
is not positive is the dissipativity requirement applied to the only evaluations
of f that take place in the step. That is, we can use the fact that〈

f

(k∑
i=0

β̂iyn−i

)
− f

(k∑
i=0

β̂izn−i

)
,

k∑
i=0

β̂i(yn−i − zn−i)
〉

≤ 0. (451d)

Because

yn −
k∑

i=1

αiyn−i =
(∑k

i=0 βi

)−1
f

(k∑
i=0

β̂iyn−i

)
,

LINEAR MULTISTEP METHODS 363

with a similar formula for the z sequence, it follows that

〈
yn − zn −

k∑
i=1

αi(yn−i − zn−i),
k∑

i=0

βi(yn−i − zn−i)
〉
≤ 0,

and this will imply that (451c) has the correct sign if G can be selected so
that the (k + 1) × (k + 1) matrix M is positive semi-definite, where

M = αβ + βα −
[

G 0
0 0

]
+

[
0 0
0 G

]
, (451e)

where, in this context, α and β are the vectors

α =

1
−α1

−α2

...
−αk

 , β =

β0

β1

β2

...
βk

 .

Let mij , i, j = 0, 1, 2, . . . , k, denote the elements of M . For any vector
U ∈ R(k+1)N , the fact that M is positive semi-definite implies that

k∑
i,j=0

mij〈Ui, Uj〉 ≥ 0.

Choose the vector

U =

yn − zn

yn−1 − zn−1

yn−2 − zn−2

...
yn−k+1 − zn−k+1

yn−k − zn−k

,

and we have the identity

k∑
i,j=0

mij〈yn−i − zn−i, yn−j − zn−j〉

= 2
〈
yn − zn −

k∑
i=1

αi(yn−i − zn−i),
k∑

i=0

βi(yn−i − zn−i)
〉

+ ‖Y (n−1) − Z(n−1)‖2
G − ‖Y (n) − Z(n)‖2

G.

364 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

If the left-hand side is non-negative, and the first term on the right is non-
positive, it follows that

‖Y (n) − Z(n)‖G ≤ ‖Y (n−1) − Z(n−1)‖G.

The positive semi-definiteness of M was recognized by Dahlquist (1976) as
just the right condition to identify methods that behave stably for the type
of non-linear problem we are considering. Accordingly we state the following
definition:

Definition 451A A one-leg method [α, β] is ‘G-stable’ if M given by (451e)
is positive semi-definite.

We present the example of the BDF2 method with

[α(z), β(z)] =
(
1 − 4

3
z +

1
3
z2,

2
3

)
.

Write

G =

[
g11 g12

g12 g22

]
and we find

M =

4
3 − g11 −8

9 − g12
2
9

−8
9 − g12 g11 − g22 g12

2
9 g12 g22

 ,

which is positive semi-definite if and only if G is the positive definite matrix

G =

[
10
9 −4

9

−4
9

2
9

]
.

452 Transformations relating one-leg and linear multistep methods

Denote the point at which the derivative is calculated in step n of a one-leg
method by ŷn. Also denote the corresponding x argument as x̂n. Hence, we
have

x̂n = xn −
∑k

i=0 iβi∑k
i=0 βi

h, (452a)

ŷn =
(k∑

i=0

βi

)−1 k∑
i=0

βiyn−i, (452b)

yn =
k∑

i=1

αn−iyn−i +
(k∑

i=0

βi

)
f(x̂n, ŷn). (452c)

LINEAR MULTISTEP METHODS 365

Form a linear combination of ŷn−i, i = 0, 1, . . . , k, given by (452b), based on
the coefficients in the α polynomial, and note that the operators α(E−1) and
β(E−1) are commutative. We have

ŷn −
k∑

i=1

αiŷn−i = h

k∑
i=1

βif(x̂n, ŷn). (452d)

The relationship between the y and ŷ sequences given by (452b) and (452d)
was suggested by Dahlquist (1976) as an indication that stability questions
for a linear multistep method can be replaced by similar questions for the
corresponding one-leg method.

453 Effective order interpretation

The concept of effective order, introduced in Subsections 365 and 389,
gives an alternative interpretation of the relationship between the computed
approximation and the exact solution.

Define the function γ(z) by

γ(z) =
(k∑

i=0

β̂i exp(−iz)
)−1

= γ0 + γ1z + γ2z
2 + · · · ,

where γ0 = 1, and the starting approximation by

S(y)(x) =
p∑

i=0

γih
iy(i)(x),

assuming the linear multistep method [α, β] has order p. Write ŷ(x) = S(y)(x).
We then have

ŷ(xn) −
k∑

i=1

αiŷ(xn−i) = h
k∑

i=1

βif

(
xn,

k∑
i=0

β̂iŷ(xn−i)
)

+ O(hp+1).

454 Concluding remarks on G-stability

It might be suspected that amongst A-stable linear multistep methods, G-
stable methods stand out as being in some way superior. Such considerations
turn out to be vacuous because a linear multistep method is A-stable if and
only if it is G-stable. That G-stable methods are A-stable is shown simply as
in Theorem 454A below. However, the converse result is much deeper. This
was proved in Dahlquist (1978). Now the easy result:

366 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Theorem 454A A G-stable linear multistep method is A-stable.

Proof. We use the criterion that if |w| < 1, then z = α(w)/β(w) is in the right
half-plane. Form the inner product W ∗MW , where M is the matrix given by
(451e) and

W =

1
w

w2

...
wk

 .

We find that

α(w)β(w) + α(w)β(w) = W ∗MW + (1 − |w|2)
k∑

j,l=1

gjlw
j−1wl−1 > 0,

so that Re
(
α(w)/β(w)

)
> 0. �

Exercises 45

45.1 Show that the method defined by α(z) = 1 − 3
2z + 1

2z2, β(z) = 3
4 − 1

4z,
is G-stable, by finding the corresponding matrix G.

45.2 Show that if q1+iq2 is in the left half-plane, then the differential equation

y′(x) = qy(x)

can be written as a system[
y′
1(x)

y′
2(x)

]
=

[
q1 −q2

q2 q1

][
y1(x)
y2(x)

]
,

where y(x) = y1(x)+iy2(x). Furthermore, show that this system satisfies
(451b), using the usual inner product.

46 Implementation Issues

460 Survey of implementation considerations

In addition to the basic algorithm giving the value of yn in terms of yn−1, yn−2,
. . . , yn−k, effective use of linear multistep methods requires further tools. We
have already discussed, albeit briefly, the starting process for a method with
fixed order and fixed stepsize. However, linear multistep methods are seldom

LINEAR MULTISTEP METHODS 367

used in such a manner. It is usually efficient to adapt both the stepsize and the
order to suit local behaviour of the computed solution, and this leads to the
need for representations of the methods that will make adaptivity possible.
Given that a variable order implementation is going to be used, it is easier
to start at order 1 and build the order upwards as the solution develops.
Reducing order is relatively easy and also needs to be built in as an option
within a variable order formulation.

It is natural to make a comparison between implementation techniques for
Runge–Kutta methods and for linear multistep methods. Unlike for explicit
Runge–Kutta methods, interpolation and error estimation are regarded as
straightforward for linear multistep methods. Not only is it possible to
obtain an asymptotically correct estimate of the local truncation error, but
it is a simple extension of the approximation technique to obtain a usable
approximation for the local error that might have been expected if the next
higher order had instead been used.

461 Representation of data

After a number of steps, with constant size h, have been carried out using an
order p method, for example by a PECE combination of Adams–Bashforth
and Adams–Moulton methods, approximations are available to y(xn), hy′(xn),
hy′(xn−1), . . . , hy′(xn−p+1). If the stepsize is to be altered by a factor r to
a new value rh, then there seem to be two distinct approaches to proceeding
further.

The first approach is to use a modified form of the Adams formulae which
enables y(xn + rh) to be written in terms of y(xn), hy′(xn), hy′(xn−1), . . . ,
hy′(xn−p+1). Of course this only works for a single step. For the step after
that, the data on which to base the approximation would be y(xn + hr),
hy′(xn + hr), hy′(xn), . . . , hy′(xn−p+2) and the results computed would be
approximations to y(xn + hr + hrr̂), where r̂ is the stepsize ratio for this new
step. Rather than explore the form of the modified Adams formula in this
rather ad hoc manner, write the exact quantities that the incoming data is
supposed to approximate as the sequence consisting of

y(xn − hθ1), hy′(xn − hθ1), hy′(xn − hθ2), . . . , hy′(xn − hθk).

The Adams–Bashforth method would then generalize to an approximation of
the form

y(xn) ≈ y(xn − hθ1) +
k∑

i=1

β∗
i hy′(xn − hθi), (461a)

and the Adams–Moulton to an approximation of the form

y(xn) ≈ β0hy′(xn) + y(xn − hθ1) +
k∑

i=1

βihy′(xn − hθi). (461b)

368 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

To obtain order p = k for (461a), the coefficients β∗
i , i = 1, 2, . . . , k, have to

be chosen so that

1 = exp(−θ1z) + z

k∑
i=1

β∗
i exp(−θiz) + O(zp+1),

and to obtain order p = k +1 for (461b), βi, i = 1, 2, . . . , k, are chosen so that

1 = exp(−θ1z) + zβ0 + z
k∑

i=1

βi exp(−θiz) + O(zp+1).

To use this approach in practice, the coefficients β∗
1, β∗

2, . . . and β0, β1,
. . . have to be evaluated afresh every step, before any differential equation
solutions are approximated. For many problems this is justified, and many
codes use some sort of approach based on this technique.

The second main approach to stepsize adjustment was proposed by
Nordsieck (1962) and further developed by Gear (1967, 1971). For a Nordsieck
method of order p, the data imported into step n consists of approximations
to

y(xn−1), hy′(xn−1),
1
2!

h2y′′(xn−1),
1
p!

hpy(p)(xn−1),

and the quantities exported from this step are approximations to

y(xn), hy′(xn),
1
2!

h2y′′(xn),
1
p!

hpy(p)(xn). (461c)

Note that the factors (i!)−1 are inserted for convenience. When a stepsize
change from h to rh is required, the simple adjustment of scaling the quantities
in (461c) by powers of the scale factor r is used. This means that they become
approximations to

y(xn), rhy′(xn),
1
2!

(rh)2y′′(xn),
1
p!

(rh)py(p)(xn).

Denote the vector of Nordsieck approximations imported into step n by

η
[n−1]
0 ≈ y(xn−1),

η
[n−1]
1 ≈ hy′(xn−1),

η
[n−1]
2 ≈ 1

2!
h2y′′(xn−1),

...
...

η[n−1]
p ≈ 1

p!
hpy(p)(xn−1),

LINEAR MULTISTEP METHODS 369

Table 461(I) Coefficients, γ0, γ1, . . . , γp, for Nordsieck methods

p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8
γ0

1
2

5
12

3
8

251
720

95
288

19087
60480

5257
17280

γ1 1 1 1 1 1 1 1
γ2

1
2

3
4

11
12

25
24

137
120

49
40

363
280

γ3
1
6

1
3

35
72

5
8

203
270

469
540

γ4
1
24

5
48

17
96

49
192

967
2880

γ5
1

120
1
40

7
144

7
90

γ6
1

720
7

1440
23

2160

γ7
1

5040
1

1260

γ8
1

40320

so that the result computed by the Adams–Bashforth predictor will be

y∗
n = η

[n−1]
0 + η

[n−1]
1 + · · · + η[n−1]

p .

If an approximation is also required for the scaled derivative at xn, this can
be found from the formula, also based on a Taylor expansion,

hy′(xn) ≈ η
[n−1]
1 + 2η

[n−1]
2 + · · · + pη[n−1]

p . (461d)

To find the Nordsieck equivalent to the Adams–Moulton corrector formula,
it is necessary to add β0 multiplied by the difference between the corrected
value of the scaled derivative and the extrapolated value computed by (461d).
That is, the corrected value of η

[n]
0 becomes

η
[n]
0 = β0∆n + η

[n−1]
0 + η

[n−1]
1 + · · · + η[n−1]

p ,

where

∆n = hf(xn, y∗
n) −

s∑
i=1

iη
[n−1]
i .

In this formulation we have assumed a PECE mode but, if further iterations
are carried out, the only essential change will be that the second argument of
hf(xn, y∗

n) will be modified.
For constant stepsize, the method should be equivalent to the Adams

predictor–corrector pair and this means that all the output values will be
modified in one way or another from the result that would have been formed
by simple extrapolation from the incoming Nordsieck components. Thus we
can write the result computed in a step as

370 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

η
[n]
0

η
[n]
1

η
[n]
2
...

η
[n]
p−1

η
[n]
p

=

γ0

γ1

γ2

...
γp−1

γp

∆n+

1 1 1 · · · 1 1
0 1 2 · · · p − 1 p

0 0 1 · · ·
(
p−1
2

) (
p
2

)
...

...
...

...
...

0 0 0 · · · 1 p

0 0 0 · · · 0 1

η
[n−1]
0

η
[n−1]
1

η
[n−1]
2
...

η
[n−1]
p−1

η
[n−1]
p

. (461e)

The quantities γi, i = 0, 1, 2, . . . , p, have values determined by the equivalence
with the standard fixed stepsize method and we know at least that

γ0 = β0, γ1 = 1.

The value selected for γ1 ensures that η
[n]
1 is precisely the result evaluated

from η
[n]
0 using the differential equation. We can arrive at the correct values

of γ2, . . . , γp, by the requirement that the matrix

1 3 · · ·
(
p−1
2

) (
p
2

)
0 1 · · ·

(
p−1
3

) (
p
3

)
...

...
...

...
0 0 · · · 1 p

0 0 · · · 0 1

−

γ2

γ3

...
γp−1

γp

 [2 3 · · · p − 1 p]

has zero spectral radius.
Values of the coefficients γi, i = 0, 1, . . . , p, are given in Table 461(I) for

p = 2, 3, . . . , 8.
Adjustment of stepsize is carried out by multiplying the vector of output

approximations formed in (461e) at the completion of step n, by the diagonal
matrix D(r) before the results are accepted as input to step n + 1, where

D(r) = diag(1, r, r2, . . . , rp).

It was discovered experimentally by Gear that numerical instabilities can
result from using this formulation. This can be seen in the example p = 3,
where we find the values γ2 = 3

4 , γ3 = 1
6 Stability is determined by products

of matrices of the form [
−1

2r2 3
4r2

−1
3r3 1

2r3

]
,

and for r ≥ 1.69562, this matrix is no longer power-bounded.
Gear’s pragmatic solution was to prohibit changes for several further steps

after a stepsize change had occurred. An alternative to this remedy will be
considered in the next subsection.

LINEAR MULTISTEP METHODS 371

462 Variable stepsize for Nordsieck methods

The motivation we have presented for the choice of γ1, γ2, . . . in the
formulation of Nordsieck methods was to require a certain matrix to have
zero spectral radius. Denote the vector γ and the matrix V by

γ =

γ1

γ2

...
γp

 , V =

1 2 3 · · · p

0 1 3 · · · 1
2p(p − 1)

0 0 1 · · · 1
6p(p − 1)(p − 2)

...
...

...
...

0 0 0 · · · 1

 ,

and denote by e1 the basis row vector e1 = [1 0 · · · 0]. The characteristic
property of γ is that the matrix

(I − γe1)V (462a)

has zero spectral radius. When variable stepsize is introduced, the matrix in
(462a) is multiplied by D(r) = diag(r, r2, r3, . . . , rp) and, as we have seen,
if γ is chosen on the basis of constant h, there is a deterioration in stable
behaviour. We consider the alternative of choosing γ as a function of r so that

ρ(D(r)(I − γe1)V) = 0.

The value of γ1 still retains the value 1 but, in the only example we consider,
p = 3, it is found that

γ2 =
1 + 2r

2(1 + r)
, γ3 =

r

3(1 + r)
,

and we have

D(r)(I − γe1)V =

 0 0 0
0 − r3

1+r
3r2

2(1+r)

0 − 2r4

3(1+r)
r3

2(1+r)

 . (462b)

It is obvious that this matrix is power-bounded for all positive values of r.
However, if a sequence of n steps is carried out with stepsize changes r1, r2,
. . . , rn then the product of matrices of the form given by (462b) for these
values of r to be analysed to determine stability. The spectral radius of such
a product is found to be

|r1 − rn|r2
1

1 + r1
· |r2 − r1|r2

2

1 + r2
· |r3 − r2|r2

3

1 + r3
· · · |rn − rn−1|r2

n

1 + rn
,

372 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

and this will be bounded by 1 as long as ri ∈ [0, r�], where r� has the property
that

r1r2|r2 − r1|√
(1 + r1)(1 + r2)

≤ 1, whenever r1, r2 ∈ [0, r�].

It is found after some calculations that stability, in the sense of this discussion,
is achieved if r� ≈ 2.15954543.

463 Local error estimation

The standard estimator for local truncation error is based on the Milne device.
That is, the difference between the predicted and corrected values provides
an approximation to some constant multiplied by hp+1y(p+1)(xn), and the
local truncation error can be estimated by multiplying this by a suitable scale
factor.

This procedure has to be interpreted in a different way if, as in some modern
codes, the predictor and corrector are accurate to different orders. We no
longer have an asymptotically correct approximation to the local truncation
error but to the error in the predictor, assuming this has the lower order.
Nevertheless, stepsize control based on this approach often gives reliable and
useful performance.

To allow for a possible increase in order, estimation is also needed for the
scaled derivative one order higher than the standard error estimator. It is
very difficult to do this reliably, because any approximation will be based on
a linear combination of hy′(x) for different x arguments. These quantities in
turn will be of the form hf(x, y(x) + Chp+1 + O(hp+2)), and the terms of the
form Chp+1 +O(hp+2) will distort the result obtained. However, it is possible
to estimate the scaled order p+2 derivative reliably, at least if the stepsize has
been constant over recent steps, by forming the difference of approximations
to the order p+1 derivative over two successive steps. If the stepsize has varied
moderately, the approximation this approximation will still be reasonable. In
any case, if the criterion for increasing order turns out to be too optimistic for
any specific problem, then after the first step with the new order a rejection is
likely to occur, and the order will either be reduced again or else the stepsize
will be lowered while still maintaining the higher order.

Exercises 46

46.1 Show how to write y(xn+rh) in terms of y(xn), hy′(xn) and hy′(xn−h),
to within O(h3). Show this approximation might be used to generalize
the order 2 Adams–Bashforth method to variable stepsize.

46.2 How should the formulation of Subsection 461 be modified to represent
Adams–Bashforth methods?

Chapter 5

General Linear Methods

50 Representing Methods in General Linear Form

500 Multivalue–multistage methods

The systematic computation of an approximation to the solution of an initial
value problem usually involves just two operations: evaluation of the function
f defining the differential equation and the forming of linear combinations
of previously computed vectors. In the case of implicit methods, further
complications arise, but these can also be brought into the same general linear
formulation.

We consider methods in which a collection of vectors forms the input at
the beginning of a step, and a similar collection is passed on as output from
the current step and as input into the following step. Thus the method is a
multivalue method, and we write r for the number of quantities processed in
this way. In the computations that take place in forming the output quantities,
there are assumed to be s approximations to the solution at points near the
current time step for which the function f needs to be evaluated. As for
Runge–Kutta methods, these are known as stages and we have an s-stage or,
in general, multistage method.

The intricate set of connections between these quantities make up what is
known as a general linear method. Following Burrage and Butcher (1980), we
represent the method by four matrices which we will generally denote by A,
U , B and V . These can be written together as a partitioned (s + r)× (s + r)
matrix [

A U

B V

]
.

The input vectors available at step n will be denoted by y
[n−1]
1 , y

[n−1]
2 , . . . ,

y
[n−1]
r . During the computations which constitute the step, stage values Y1,

Y2, . . . , Ys, are computed and derivative values Fi = f(Yi), i = 1, 2, . . . , s,
are computed in terms of these. Finally, the output values are computed and,
because these will constitute the input at step n + 1, they will be denoted by

Numerical Methods for Ordinary Differential Equations, Second Edition. J. C. Butcher
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-72335-7

374 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

y
[n]
i , i = 1, 2, . . . , r. The relationships between these quantities are defined in

terms of the elements of A, U , B and V by the equations

Yi =
s∑

j=1

aijhFj +
r∑

j=1

uijy
[n−1]
j , i = 1, 2, . . . , s, (500a)

y
[n]
i =

s∑
j=1

bijhFj +
r∑

j=1

vijy
[n−1]
j , i = 1, 2, . . . , r. (500b)

It will be convenient to use a more concise notation, and we start by defining
vectors Y, F ∈ R

sN and y[n−1], y[n] ∈ R
rN as follows:

Y =

Y1

Y2

...
Ys

 , F =

F1

F2

...
Fs

 , y[n−1] =

y
[n−1]
1

y
[n−1]
2
...

y
[n−1]
r

 , y[n] =

y
[n]
1

y
[n]
2
...

y
[n]
r

 .

Using these supervectors, it is possible to write (500a) and (500b) in the form[
Y

y[n]

]
=

[
A ⊗ IN U ⊗ IN

B ⊗ IN V ⊗ IN

][
hF

y[n−1]

]
. (500c)

In this formulation, IN denotes the N × N unit matrix and the Kronecker
product is given by

A ⊗ IN =

a11IN a12IN · · · a1sIN

a21IN a22IN · · · a2sIN

...
...

...
as1IN as2IN · · · assIN

 .

When there is no possibility of confusion, we simplify the notation by replacing[
A ⊗ IN U ⊗ IN

B ⊗ IN V ⊗ IN

]
by

[
A U

B V

]
.

In Subsections 502–505, we illustrate these ideas by showing how some
known methods, as well as some new methods, can be formulated in this
manner. First, however, we will discuss the possibility of transforming a given
method into one using a different arrangement of the data passed from step
to step.

GENERAL LINEAR METHODS 375

501 Transformations of methods

Let T denote a non-singular r × r matrix. Given a general linear method
characterized by the matrices (A, U, B, V), we consider the construction of a
second method for which the input quantities, and the corresponding output
quantities, are replaced by linear combinations of the subvectors in y[n−1] (or
in y[n], respectively). In each case the rows of T supply the coefficients in
the linear combinations. These ideas are well known in the case of Adams
methods, where it is common practice to represent the data passed between
steps in a variety of configurations. For example, the data imported into step
n may consist of approximations to y(xn−1) and further approximations to
hy′(xn−i), for i = 1, 2, . . . , k. Alternatively it might, as in Bashforth and
Adams (1883), be expressed in terms of y(xn−1) and of approximations to a
sequence of backward differences of the derivative approximations. It is also
possible, as proposed in Nordsieck (1962), to replace the approximations to
the derivatives at equally spaced points in the past by linear combinations
which will approximate scaled first and higher derivatives at xn−1.

Let z
[n−1]
i , i = 1, 2, . . . , r, denote a component of the transformed input

data where

z
[n−1]
i =

r∑
j=1

tijy
[n−1]
j , z

[n]
i =

r∑
j=1

tijy
[n]
j .

This transformation can be written more compactly as

z[n−1] = Ty[n−1], z[n] = Ty[n].

Hence the method which uses the y data and the coefficients (A, U, B, V),
could be rewritten to produce formulae for the stages in the form

Y = hAF + Uy[n−1] = hAF + UT−1z[n−1]. (501a)

The formula for y[n] = hBF + V y[n−1], when transformed to give the value of
z[n], becomes

z[n] = T
(
hBF + V y[n−1]

)
= h(TB)F + (TV T−1)z[n−1]. (501b)

Combine (501a) and (501b) into the single formula to give[
Y

z[n]

]
=

[
A UT−1

TB TV T−1

][
hF

z[n−1]

]
.

Thus, the method with coefficient matrices (A, UT−1, TB, TV T−1) is related
to the original method (A, U, B, V) by an equivalence relationship with a
natural computational significance. The significance is that a sequence of
approximations, using one of these formulations, can be transformed into the
sequence that would have been generated using the alternative formulation.

376 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

It is important to ensure that any definitions concerning the properties of a
generic general linear method transform in an appropriate manner, when the
coefficient matrices are transformed.

Even though there may be many interpretations of the same general linear
method, there may well be specific representations which have advantages of
one sort or another. Some examples of this will be encountered later in this
section.

502 Runge–Kutta methods as general linear methods

Since Runge–Kutta methods have a single input, it is usually convenient to
represent them, as general linear methods, with r = 1. Assuming the input
vector is an approximation to y(xn−1), it is only necessary to write U = 1,
V = 1, write B as the single row b of the Runge–Kutta tableau and, finally,
identify A with the s × s matrix of the same name also in this tableau.

A very conventional and well-known example is the classical fourth order
method

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

which, in general linear formulation, is represented by the partitioned matrix
0 0 0 0 1
1
2 0 0 0 1
0 1

2 0 0 1
0 0 1 0 1
1
6

1
3

1
3

1
6 1

 .

A more interesting example is the Lobatto IIIA method

0 0 0 0
1
2

5
24

1
3 − 1

24

1 1
6

2
3

1
6

1
6

2
3

1
6

for which the straightforward representation, with s = 3 and r = 1, is
misleading. The reason is that the method has the ‘FSAL property’ in the
sense that the final stage evaluated in a step is identical with the first stage
of the following step. It therefore becomes possible, and even appropriate, to

GENERAL LINEAR METHODS 377

use a representation with s = r = 2 which expresses, quite explicitly, that the
FSAL property holds. This representation would be

1
3 − 1

12 1 5
12

2
3

1
6 1 1

6
2
3

1
6 1 1

6

0 1 0 0

 , (502a)

and the input quantities are supposed to be approximations to

y
[n−1]
1 ≈ y(xn−1), y

[n−1]
2 ≈ hy′(xn−1).

Finally, we consider a Runge–Kutta method introduced in Subsection 322,
with tableau

0
−1

2 −1
2

1
2

3
4 −1

4

1 −2 1 2
1
6 0 2

3
1
6

.

(502b)

As we pointed out when the method was introduced, it can be implemented
as a two-value method by replacing the computation of the second stage
derivative by a quantity already computed in the previous step. The method
is now not equivalent to any Runge–Kutta method but, as a general linear
method, it has coefficient matrix

0 0 0 1 0
3
4 0 0 1 −1

4

−2 2 0 1 1
1
6

2
3

1
6 1 0

0 1 0 0 0

 . (502c)

503 Linear multistep methods as general linear methods

For a linear k-step method [α, β] of the special form α(z) = 1− z, the natural
way of writing this as a general linear method is to choose r = k + 1, s = 1
and the input approximations as

y[n−1] ≈

y(xn−1)

hy′(xn−1)
hy′(xn−2)

. . .

hy′(xn−k)

 .

378 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

The matrix representing the method now becomes

β0 1 β1 β2 β3 · · · βk−1 βk

β0 1 β1 β2 β3 · · · βk−1 βk

1 0 0 0 0 · · · 0 0
0 0 1 0 0 · · · 0 0
0 0 0 1 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 0 · · · 0 0
0 0 0 0 0 · · · 1 0

.

Because y
[n−1]
1 and y

[n−1]
k+1 occur in the combination y

[n−1]
1 +βky

[n−1]
k+1 in each

of the two places where these quantities are used, we might try to simplify
the method by transforming using the matrix

T =

1 0 0 · · · 0 βk

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0
0 0 0 · · · 0 1

.

The transformed coefficient matrices become

[
A UT−1

TB TV T−1

]
=

β0 1 β1 β2 β3 · · · βk−1 0
β0 1 β1 β2 β3 · · · βk−1 + βk 0
1 0 0 0 0 · · · 0 0
0 0 1 0 0 · · · 0 0
0 0 0 1 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 0 · · · 0 0
0 0 0 0 0 · · · 1 0

,

and we see that it is possible to reduce r from k+1 to k, because the (k+1)th
input vector is never used in the calculation.

The well-known technique of implementing an implicit linear multistep
method by combining it with a related explicit method to form a predictor–
corrector pair fits easily into a general linear formulation. Consider,
for example, the PECE method based on the third order Adams–
Bashforth and Adams–Moulton predictor–corrector pair. Denote the predicted

GENERAL LINEAR METHODS 379

approximation by y∗
n and the corrected value by yn. We then have

y∗
n = yn−1 +

23
12

hf(xn−1, yn−1) −
4
3
hf(xn−2, yn−2) +

5
12

hf(xn−3, yn−3),

yn = yn−1 +
5
12

hf(xn, y∗
n) +

2
3
hf(xn−1, yn−1) −

1
12

hf(xn−2, yn−2).

As a two-stage general linear method, we write Y1 = y∗
n and Y2 = yn.

The r = 4 input approximations are the values of yn−1, hf(xn−1, yn−1),
hf(xn−2, yn−2) and hf(xn−3, yn−3). The (s + r)× (s + r) coefficient matrix is
now

0 0 1 23
12 −4

3
5
12

5
12 0 1 2

3 − 1
12 0

5
12 0 1 2

3 − 1
12 0

0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

. (503a)

The one-leg methods, introduced by Dahlquist (1976) as counterparts
of linear multistep methods, have their own natural representations as
general linear methods. For the method characterized by the polynomial pair
[α(z), β(z)], the corresponding one-leg method computes a single stage value
Y , with stage derivative F , using the formula

yn =
k∑

i=1

αiyn−i +
(k∑

i=0

βi

)
hF, (503b)

where

Y =
∑k

i=0 βiyn−i∑k
i=0 βi

. (503c)

This does not fit into the standard representation for general linear methods
but it achieves this format when Y and yn are separated out from the two
expressions (503b) and (503c). We find

Y = β0hF +
(k∑

i=0

βi

)−1 k∑
i=1

(β0αi + βi)yn−i,

yn =
(k∑

i=0

βi

)
hF +

k∑
i=1

αiyn−i.

380 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

As a general linear method, it has the form

β0 γ1 γ2 γ3 · · · γk−1 γk∑k
i=0 βi α1 α2 α3 · · · αk−1 αk

0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 0 0
0 0 0 0 · · · 1 0

,

where

γi =
(k∑

j=0

βj

)−1(
β0αi + βi

)
, i = 1, 2, . . . , k.

504 Some known unconventional methods

Amongst the methods that do not fit under the conventional Runge–Kutta
or linear multistep headings, we consider the cyclic composite methods of
Donelson and Hansen (1971), the pseudo Runge–Kutta methods of Byrne
and Lambert (1966) and the hybrid methods of Gragg and Stetter (1964),
Butcher (1965) and Gear (1965). We illustrate, by examples, how methods of
these types can be cast in general linear form.

To overcome the limitations of linear multistep methods imposed by the
conflicting demands of order and stability, Donelson and Hansen proposed
a procedure in which two or more linear multistep methods are used in
rotation over successive steps. Write the constituent methods as (α(1), β(1)),
(α(2), β(2)), . . . , (α(m), β(m)), so that the formula for computing yn will be

yn =
k∑

i=1

α
(j)
i yn−i +

k∑
i=0

β
(j)
i hf(xn−i, yn−i),

where j ∈ {1, 2, . . . , m} is chosen so that n − j is a multiple of m.
The step value – that is the maximum of the degrees of α(j) and β(j) –

may vary amongst the m constituent methods, but they can be assumed to
have a common value k equal to the maximum over all the basic methods.
We illustrate these ideas in the case k = 3, m = 2. As a consequence of the
Dahlquist barrier, order p = 5 with k = 3 is inconsistent with stability and
therefore convergence. Consider the following two linear multistep methods:

[α(1)(z), β(1)(z)] = [1 + 8
11z − 19

11z2, 10
33 + 19

11z + 8
11z2 − 1

33z3],

[α(2)(z), β(2)(z)] = [1 − 449
240z − 19

30z2 + 361
240z3, 251

720 + 19
30z − 449

240z2 − 35
72z3].

GENERAL LINEAR METHODS 381

Each of these has order 5 and is, of course, unstable. To combine them, used
alternately, into a single step of a general linear method, it is convenient to
regard h as the stepsize for the complete cycle of two steps. We denote the
incoming approximations as yn−3/2, yn−1, hfn−2, hfn−3/2 and hfn−1. The first
half-step, relating yn−1/2 and hfn−1/2 to the input quantities, gives

yn− 1
2

= 5
33hfn− 1

2
+ 19

11yn− 3
2
− 8

11yn−1 − 1
66hfn−2 + 4

11hfn− 3
2

+ 19
22hfn−1.

Substitute this into the corresponding formula for yn and we find

yn = 4753
7920hfn− 1

2
+ 251

1440hfn + 19
11yn− 3

2
− 8

11yn−1

− 449
15840hfn−2 + 3463

7920hfn− 3
2

+ 449
660hfn−1.

Translating these formulae into the (A, U, B, V) formulation gives

 A U

B V

 =

5
33 0 19

11 − 8
11 − 1

66
4
11

19
22

4753
7920

251
1440

19
11 − 8

11 − 449
15840

3463
7920

449
660

5
33 0 19

11 − 8
11 − 1

66
4
11

19
22

4753
7920

251
1440

19
11 − 8

11 − 449
15840

3463
7920

449
660

0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 1 0 0 0 0 0

.

This formulation can be simplified, in the sense that r can be reduced, and
we have, for example, the following alternative coefficient matrices:

 A U

B V

 =

5
33 0 1 − 1

66
4
11

19
22

4753
7920

251
1440 1 − 449

15840
3463
7920

449
660

−173
990 − 251

1980 1 − 1
180

307
990

329
330

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

.

Because of the natural way in which we have written this particular composite
cyclic pair in general linear form, and then rewritten it, using equally simple
operations, into a less recognizable form, an obvious question arises. The
question is whether it might have been more appropriate to use the general
linear formulation from the start, and then explore the existence of suitable
methods that have no connection with linear multistep methods.

382 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

We now turn to pseudo Runge–Kutta methods. Consider the method given
by (261a). Even though four input values are used in step n (yn−1, hF

[n−1]
1 ,

hF
[n−1]
2 and hF

[n−1]
3), this can be effectively reduced to two because, in

addition to yn−1, only the combination 1
12hF

[n−1]
1 − 1

3hF
[n−1]
2 − 1

4hF
[n−1]
3

is actually used. This means that a quantity of this form, but with n − 1
replaced by n, has to be computed in step n for use in the following step. The
(3 + 2) × (3 + 2) matrix representing this method is

0 0 0 1 0
1
2 0 0 1 0

−1
3

4
3 0 1 0

11
12

1
3

1
4 1 1

1
12 −1

3 −1
4 0 0

.

For a seventh order method taken from Butcher (1965), the solution at
the end of the step is approximated using ‘predictors’ at xn − 1

2h and at xn,
in preparation for a final ‘corrector’ value, also at xn. The input quantities
correspond to solution approximations y

[n−1]
1 ≈ y(xn−1), y

[n−1]
2 ≈ y(xn−2)

and y
[n−1]
3 ≈ y(xn−3), and the corresponding scaled derivative approximations

y
[n−1]
4 ≈ hy′(xn−1), y

[n−1]
5 ≈ hy′(xn−2) and y

[n−1]
6 ≈ hy′(xn−3). The general

linear representation is

0 0 0 −225
128

200
128

153
128

225
128

300
128

45
128

384
155 0 0 540

128 −297
31 −212

31 −1395
155 −2130

155 −309
155

2304
3085

465
3085 0 783

617 −135
617 − 31

617 − 135
3085 − 495

3085 − 39
3085

2304
3085

465
3085 0 783

617 −135
617 − 31

617 − 135
3085 − 495

3085 − 39
3085

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

.

505 Some recently discovered general linear methods

The methods already introduced in this section were inspired as modifications
of Runge–Kutta or linear multistep methods. We now consider two example
methods motivated not by either of the classical forms, but by the general
linear structure in its own right.

GENERAL LINEAR METHODS 383

The first of these is known as an ‘Almost Runge–Kutta’ method. That is,
although it uses three input and output approximations, it behaves like a
Runge–Kutta method from many points of view. The input vectors can be
thought of as approximations to y(xn−1), hy′(xn−1) and h2y′′(xn−1) and the
output vectors are intended to be approximations to these same quantities,
but evaluated at xn rather than at xn−1:

0 0 0 0 1 1 1
2

1
16 0 0 0 1 7

16
1
16

−1
4 2 0 0 1 −3

4 −1
4

0 2
3

1
6 0 1 1

6 0

0 2
3

1
6 0 1 1

6 0

0 0 0 1 0 0 0

−1
3 0 −2

3 2 0 −1 0

. (505a)

The particular example given here has order 4, in contrast to the third
order method introduced in Section 27 to illustrate implementation principles.
Further details concerning Almost Runge–Kutta methodsare presented in
Subsection 543.

The second example is given by the coefficient matrix

0 0 0 1 0 0

1 0 0 0 1 0
1
4 1 0 0 0 1
5
4

1
3

1
6 −2

3
4
3

1
3

35
24 −1

3
1
8 −2

3
4
3

1
3

17
12 0 1

12 −2
3

4
3

1
3

. (505b)

In the case of (505b), the input values are given respectively as approximations
to

y(xn−1),
y(xn−1 + 1

2h) + hy′(xn−1)
and to

y(xn−1) − 1
4hy′(xn−1) + 1

24h3y′′′(xn−1),
and the output consists of the same three quantities, to within O(h4), with
xn−1 advanced one step to xn. Thus the method has order 3. This is an
example of a ‘type 1 DIMSIM method’, to be introduced in Subsection 541.

Both (505a) and (505b) possess the property of RK stability, which
guarantees that the method behaves, at least in terms of linear stability, like
a Runge–Kutta method. While their multivalue structure is a disadvantage
compared with Runge–Kutta methods, they have some desirable properties.
For (505a) the stage order is 2, and for (505b) the stage order is 3.

384 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Exercises 50

50.1 Write the general linear method given by (503a) in transformed form
using the matrix

T =

1 0 0 0
0 1 0 0
0 3

4 −1 1
4

0 1
6 −1

3
1
6

 .

Note that this converts the method into Nordsieck form.

50.2 Write the general linear method given by (502a) in transformed form
using the matrix

T =

[
1 1

6

0 1

]
.

50.3 Write the implicit Runge–Kutta method

0 0 0
1 1

2
1
2

1
2

1
2

as a general linear method with r = 2, s = 1, by taking advantage of
the FSAL property.

50.4 Show that it is possible, by using a suitable transformation, to reduce the
general linear method derived in Exercise 50.3 to an equivalent method
with r = s = 1. Show that this new method is equivalent to the implicit
mid-point rule Runge–Kutta method.

50.5 Write the PEC predictor–corrector method based on the order 2 Adams–
Bashforth method and the order 2 Adams–Moulton method in general
linear form.

50.6 The following two methods were once popular, but are now regarded as
flawed because they are ‘weakly stable’:

yn = yn−2 + 2hf(xn−1, yn−1),

yn = yn−3 + 3
2h(f(xn−1, yn−1) + f(xn−2, yn−2)).

This means that, although the methods are stable, the polynomial α for
each of them has more than one zero on the unit circle. Show how to
write them as a cyclic composite pair, using general linear formulation,
and that they no longer have such a disadvantage.

GENERAL LINEAR METHODS 385

50.7 Consider the Runge–Kutta method

0
−1 −1

1
2

5
8 −1

8

1 −3
2

1
2 2

1
6 0 2

3
1
6

.

Modify this method in the same way as was proposed for (502b), and
write the resulting two-value method in general linear form.

51 Consistency, Stability and Convergence

510 Definitions of consistency and stability

Since a general linear method operates on a vector of approximations to some
quantities computed in the preceding step, we need to decide something about
the nature of this information. For most numerical methods, it is obvious what
form this takes, but for a method as general as the ones we are considering
here there are many possibilities. At least we assume that the ith subvector
in y[n−1] represents uiy(xn−1)+ vihy′(xn−1)+O(h2). The vectors u and v are
characteristic of any particular method, subject to the freedom we have to
alter v by a scalar multiple of u; because we can reinterpret the method by
changing xn by some fixed multiple of h. The choice of u must be such that
the stage values are each equal to y(xn)+O(h). This means that Uu = 1. We
always require the output result to be uiy(xn) + vihy′(xn) + O(h2) and this
means that V u = u and that V v + B1 = u + v. If we are given nothing about
a method except the four defining matrices, then V must have an eigenvalue
equal to 1 and u must be a corresponding eigenvector. It then has to be checked
that the space of such eigenvectors contains a member such that Uu = 1 and
such that B1− u is in the range of V − I.

If a method has these properties then it is capable of solving y′ = 1, with
y(0) = a exactly, in the sense that if y

[0]
i = uia + vih, then for all n = 1, 2,

. . . , y
[n]
i = ui(a + nh) + vih. This suggests the following definitions:

Definition 510A A general linear method (A, U, B, V) is ‘preconsistent’ if
there exists a vector u such that

V u = u, (510a)
Uu = 1. (510b)

The vector u is the ‘preconsistency vector’.

Definition 510B A general linear method (A, U, B, V) is ‘consistent’ if it is
preconsistent with preconsistency vector u and there exists a vector v such that

B1 + V v = u + v. (510c)

386 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Just as for linear multistep methods, we need a concept of stability. In the
general linear case this is defined in terms of the power-boundedness of V and,
as we shall see, is related to the solvability of the problem y′ = 0.

Definition 510C A general linear method (A, U, B, V) is ‘stable’ if there
exists a constant C such that, for all n = 1, 2, . . . , ‖V n‖ ≤ C.

511 Covariance of methods

Assume the interpretation of a method is agreed to, at least in terms of
the choice of the preconsistency vector. We want to ensure that numerical
approximations are transformed appropriately by a shift of origin. Consider
the two initial value problems

y′(x) = f(y(x)), y(x0) = y0, (511a)
z′(x) = f(z(x) − η), z(x0) = y0 + η, (511b)

where η ∈ RN is arbitrary. If (511a) has a solution, then (511b) also has a
solution, which is identical to the former solution except that each point on
the trajectory is translated by η. If the solution is required at some x > x0,
then the solution to (511a) at this point can be found by subtracting η from
the solution of (511b).

When each of these problems is solved by a numerical method, it is
natural to expect that the numerical approximations should undergo the same
covariance rule as for the exact solution. This means that in a single step of a
method (A, U, B, V), interpreted as having a preconsistency vector u, we want
to be able to shift component i of y[0] by uiη, for all i = 1, 2, . . . , r, and be
assured that component i of y[1] is also shifted by the same amount. At the
same time the internal approximations (the stage values) should be shifted by
η. Of course no shift will take place to the stage derivatives.

The idea of covariance is illustrated in Figure 511(i). For an initial value
problem (f, y0) as given by (511a), the operation ν represents the computation
of a numerical approximation to the solution on an interval [x0, x], or at
a single value of x. Furthermore, σ represents a shift of coordinates by a
specific vector η, as in the transformation to the problem (511b). Covariance
is just the statement that the diagram in Figure 511(i) commutes, that is,
that σ ◦ ν = ν ◦ σ. The diagonal arrow representing these equal composed
functions corresponds to the operation of solving the problem and then shifting
coordinates, or else shifting first and then solving.

The covariance of the output values is equivalent to (510a) and the
covariance of the stage values is equivalent to (510b). We have no interest in
methods that are not covariant even though it is possible to construct artificial
methods which do not have this property but can still yield satisfactory
numerical results.

GENERAL LINEAR METHODS 387

σ

σ

ν ν
ν ◦

σσ
◦ ν

Figure 511(i) A commutative diagram for covariance

512 Definition of convergence

Just as for linear multistep methods, the necessity of using a starting
procedure complicates the idea of convergence. We deal with this complication
by assuming nothing more from the starting procedure than the fact that, for
sufficiently small h, it produces an approximation arbitrarily close to

u1y(x0)
u2y(x0)

...
ury(x0)

 ,

where u is some non-zero vector in Rr. Here y(x0) is the given initial data
and it will be our aim to obtain a good approximation at some x > x0. This
approximation should converge to

u1y(x)
u2y(x)

...
ury(x)

 , (512a)

for any problem satisfying a Lipschitz condition. For notational convenience,
(512a) will usually be abbreviated as uy(x).

Formally, we write φ(h) for the starting approximation associated with the
method and with a given initial value problem.

388 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Definition 512A A general linear method (A, U, B, V), is ‘convergent’ if for
any initial value problem

y′(x) = f(y(x)), y(x0) = y0,

subject to the Lipschitz condition ‖f(y)−f(z)‖ ≤ L‖y−z‖, there exist a non-
zero vector u ∈ Rr, and a starting procedure φ : (0,∞) → Rr, such that for
all i = 1, 2, . . . , r, limh→0 φi(h) = uiy(x0), and such that for any x > x0, the
sequence of vectors y[n], computed using n steps with stepsize h = (x− x0)/n
and using y[0] = φ(h) in each case, converges to uy(x).

The necessity of stability and consistency, as essential properties of convergent
methods, are proved in the next two subsections, and this is followed by the
converse result that all stable and consistent methods are convergent.

513 The necessity of stability

Stability has the effect of guaranteeing that errors introduced in any step of
a computation do not have disastrous effects on later steps. The necessity of
this property is expressed in the following result:

Theorem 513A A general linear method (A, U, B, V) is convergent only if
it is stable.

Proof. Suppose, on the contrary, that {‖V n‖ : n = 1, 2, 3, . . . } is unbounded.
This implies that there exists a sequence of vectors w1, w2, w3, . . . such that
‖wn‖ = 1, for all n = 1, 2, 3, . . . , and such that the sequence {‖V nwn‖ : n =
1, 2, 3, . . . } is unbounded. Consider the solution of the initial value problem

y′(x) = 0, y(0) = 0,

using (A, U, B, V), where n steps are taken with stepsize h = 1/n, so that the
solution is approximated at x = 1. Irrespective of the choice of the vector u
in Definition 512A, the convergence of the method implies that the sequence
of approximations converges to zero. For the approximation carried out with
n steps, use as the starting approximation

φ
(1

n

)
=

1
maxn

i=1 ‖V iwi‖
wn.

This converges to zero, because ‖φ(1/n)‖ =
(
maxn

i=1 ‖V iwi‖
)−1. The result,

computed after n steps, will then be

V nφ
(1

n

)
=

1
maxn

i=1 ‖V iwi‖
V nwn,

GENERAL LINEAR METHODS 389

with norm ∥∥∥∥V nφ
(1

n

)∥∥∥ =
‖V nwn‖

maxn
i=1 ‖V iwi‖

. (513a)

Because the sequence n
→ ‖V nwn‖ is unbounded, an infinite set of n values
will have the property that the maximum value of ‖V iwi‖, for i ≤ n, will
occur with i = n. This means that (513a) has value 1 arbitrarily often, and
hence is not convergent to zero as n → ∞. �

514 The necessity of consistency

By selecting a specific differential equation, as in Subsection 513, we can prove
that for covariant methods, consistency is necessary.

Theorem 514A Let (A, U, B, V) denote a convergent method which is,
moreover, covariant with preconsistency vector u. Then there exists a vector
v ∈ R

r, such that (510c) holds.

Proof. Consider the initial value problem

y′(x) = 1, y(0) = 0,

with constant starting values φ(h) = 0 and x = 1. The sequence of
approximations, when n steps are to be taken with h = 1/n, is given by

y[i] =
1
n

B1 + V y[i−1], i = 1, 2, . . . , n.

This means that the error vector, after the n steps have been completed, is
given by

y[n] − u =
1
n

(
I + V + V 2 + · · · + V n−1

)
B1− u

=
1
n

(
I + V + V 2 + · · · + V n−1

)
(B1− u).

Because V has bounded powers, it can be written in the form

V = S−1

[
I 0
0 W

]
S,

where I is r̃× r̃ for r̃ ≤ r and W is power-bounded and is such that 1 �∈ σ(W).
This means that

y[n] − u = S−1

[
I 0
0 1

n (I − W)−1(I − Wn)

]
S(B1− u),

390 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

whose limit as n → ∞ is

S−1

[
I 0
0 0

]
S(B1− u).

If y[n] − u is to converge to 0 as n → ∞, then S(B1− u) has only zero in its
first r̃ components. Write this vector in the form

S(B1− u) =

[
0

(I − W)ṽ

]

=

(
I −

[
I 0
0 W

])
Sv

= S(I − V)v,

where

v = S−1

[
0
ṽ

]
.

Thus B1 + V v = u + v. �

515 Stability and consistency imply convergence

We show that stable and consistent methods are convergent. This is done
in three steps. The first is to analyse the internal and the external local
truncation error; the second is to obtain a difference inequality relating the
total error at the end of a step with the total error at the end of the previous
step. Finally, we find a bound on the global error and show that it converges
to zero.

In the truncation error estimation, we need to decide what the input and
output approximations and the internal stages are intended to approximate.
The choice we make here is determined by a wish for simplicity: we do
not need good error bounds, only bounds sufficiently strong to enable us
to establish convergence. Our assumption will be that y

[n]
i approximates

uiy(xn)+hviy
′(xn), and that the internal stage Yi approximates y(xn−1+hci),

where ci is determined by what happens to the time variable.
We need to make some assumptions about the problem whose solution is

being approximated. What we shall suppose is that there exists a closed set
S in R

N such that all values of y(x) that will ever arise in a trajectory lie in
the interior of S. Furthermore, we suppose that for any y ∈ S, ‖y‖ ≤ M and
‖f(y)‖ ≤ LM . Also, we suppose that for y, z ∈ S, ‖f(y) − f(z)‖ ≤ L‖y − z‖.
Since we are concerned with the limit as h → 0, we restrict the value of h to
an interval (0, h0], for some h0 > 0.

With this in mind, we find bounds as follows:

GENERAL LINEAR METHODS 391

Lemma 515A Assume that h ≤ h0, chosen so that h0L‖A‖∞ < 1. Define ε
as the vector in Rs satisfying

s∑
j=1

(δij − h0L|aij |)εj = 1
2 c2

i +
s∑

j=1

|aijcj |.

Let ŷ
[n−1]
i = uiy(xn−1) + vihy′(xn−1), ŷ

[n]
i = uiy(xn) + vihy′(xn), for i =

1, 2, . . . , r, and Ŷi = y(xn−1 + hci), for i = 1, 2, . . . , s, where c = A1 + Uv.
Also let Ỹi denote the value of Yi that would be computed exactly using ŷ[n−1]

as input vector y[n−1]. Assume the function f satisfies a Lipschitz condition
with constant L and that the exact solution to the initial value problem satisfies
‖y(x)‖ ≤ M , ‖y′(x)‖ ≤ LM . Then∥∥∥∥Ŷi − h

s∑
j=1

aijf(Ŷj) −
r∑

j=1

Uij ŷ
[n−1]
j

∥∥∥∥
≤ h2L2M

(
1
2 c2

i +
s∑

j=1

|aijcj |
)
, (515a)

∥∥∥ŷ[n]
i − h

s∑
j=1

bijf(Ŷj) −
r∑

j=1

Vij ŷ
[n−1]
j

∥∥∥
≤ h2L2M

(
1
2 |ui| + |vi| +

s∑
j=1

|bijcj |
)
, (515b)

∥∥∥ŷ[n]
i − h

s∑
j=1

bijf(Ỹj) −
r∑

j=1

Vij ŷ
[n−1]
j

∥∥∥
≤ h2L2M

(
1
2 |ui| + |vi| +

s∑
j=1

|bijcj | + h0L
s∑

j=1

|bij |εj

)
. (515c)

Proof. We first note that

‖y(xn−1 + hci) − y(xn−1)‖ = h

∥∥∥∥∫ ci

0

y′(xn−1 + hξ)dξ

∥∥∥∥
≤ h

∫ ci

0

∥∥∥y′(xn−1 + hξ)
∥∥∥dξ

≤ |ci|hLM.

We now have

Ŷi − h

s∑
j=1

aijf(Ŷj) −
r∑

j=1

Uij ŷ
[n−1]
j = T1 + T2 + T3 + T4,

392 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

where

T1 = Ŷi − y(xn−1) − h

∫ ci

0

f(y(xn−1 + hξ))dξ,

T2 = y(xn−1) + cihy′(xn−1) −
r∑

j=1

Uij ŷ
[n−1]
j −

s∑
j=1

aijhy′(xn−1),

T3 = h

∫ ci

0

(
f(y(xn−1 + hξ)) − y′(xn−1)

)
dξ,

T4 = −h
s∑

j=1

aij

(
f(y(xn−1 + hcj)) − y′(xn−1)

)
.

Simplify and estimate these terms, and we find

T1 = y(xn−1 + hci) − y(xn−1) − h

∫ ci

0

y′(xn−1 + hξ)dξ = 0,

T2 = y(xn−1) + cihy′(xn−1)

−
r∑

j=1

Uij

(
ujy(xn−1) + hvjy

′(xn−1)
)
−

s∑
j=1

aijhy′(xn−1)

= 0, because Uu = 1 and Uv + A1 = c,

‖T3‖ = h

∥∥∥∥∫ ci

0

(
f(y(xn−1 + hξ)) − f(y(xn−1))

)
dξ

∥∥∥∥
≤ h

∫ ci

0

∥∥∥f(y(xn−1 + hξ)) − f(y(xn−1))
∥∥∥dξ

≤ hL

∫ ci

0

∥∥∥y(xn−1 + hξ) − y(xn−1)
∥∥∥dξ

≤ h2L2M

∫ ci

0

ξdξ

= 1
2h2L2Mc2

i ,

‖T4‖ = h
∥∥∥ s∑

j=1

aij

(
f(y(xn−1 + hcj)) − f(y(xn−1))

)∥∥∥
≤ h

s∑
j=1

|aij | · ‖f(y(xn−1 + hcj)) − f(y(xn−1))‖

≤ hL

s∑
j=1

|aij | · ‖y(xn−1 + hcj) − y(xn−1)‖

≤ h2L2M

s∑
j=1

|aijcj |,

GENERAL LINEAR METHODS 393

so that, combining these estimates, we arrive at (515a).
To verify (515b), we write

ŷ
[n]
i − h

s∑
j=1

bijf(Ŷj) −
r∑

j=1

Vij ŷ
[n−1]
j = T1 + T2 + T3 + T4,

where

T1 = ui

(
y(xn−1 + h) − y(xn−1) − h

∫ 1

0

y′(xn−1 + hξ)dξ
)
,

T2 = vihy′(xn−1 + h) +
(
ui −

s∑
j=1

bij −
r∑

j=1

Vijvj

)
hy′(xn−1),

T3 = hui

∫ 1

0

(
y′(xn−1 + hξ) − y′(xn−1)

)
dξ,

T4 = −h
s∑

j=1

bij

(
y′(xn−1 + hcj) − y′(xn−1)

)
.

We check that T1 = 0 and that, because
∑s

j=1 bij +
∑r

j=1 Vijvj = ui + vi, T2

simplifies to hvi(y′(xn−1 +h)−y′(xn−1)) so that ‖T2‖ ≤ h2L2M |vi|. Similarly,
‖T3‖ ≤ 1

2h2L2M |ui| and ‖T4‖ ≤ h2L2M
∑s

j=1 |bijcj |. To prove (515c) we first
need to estimate the elements of Ỹ − Ŷ by deducing from (515a) that∥∥∥(Ỹi − Ŷi

)
− h

s∑
j=1

aij

(
f(Ỹj) − f(Ŷj)

)∥∥∥ ≤
(

1
2 c2

i +
s∑

j=1

|aijcj |
)
h2L2M,

and hence that
‖Ỹj − Ŷj‖ ≤ h2L2Mεj .

Thus, ∥∥∥∥h s∑
j=1

bij

(
f(Ỹj) − f(Ŷj)

)∥∥∥∥ ≤ h2L3Mh0

s∑
j=1

|bij |εj .

Add this estimate of
∥∥∥h∑s

j=1 bij

(
f(Ỹj) − f(Ŷj)

)∥∥∥ to (515b) to obtain (515c).
�

The next step in the investigation is to find a bound on the local truncation
error.

Lemma 515B Under the conditions of Lemma 515A, the exact solution and
the computed solution in a step are related by

ŷ
[n]
i − y

[n]
i =

r∑
j=1

Vij

(
ŷ
[n−1]
j − y

[n−1]
j

)
+ K

[n]
i , i = 1, 2, . . . , r,

394 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

where
‖K [n]‖ ≤ hα

r
max
i=1

∥∥∥ŷ[n−1]
i − y

[n−1]
i

∥∥∥+ βh2,

and α and β are given by
α = L

s
max
i=1

|εi|,

where ε is given by

s∑
j=1

(δij − h0L|aij |)εj =
s∑

j=1

|Uij |, i = 1, 2, . . . , s,

and

β = L2M
s

max
i=1

(
1
2 |ui| + |vi| +

s∑
j=1

|bijcj | + h0L

s∑
j=1

|bij |εj

)
,

where ε is as in Lemma 515A.

Proof. From (515c), and the relation

y
[n]
i − h

s∑
j=1

bijf(Yj) −
r∑

j=1

Vijy
[n−1]
j = 0,

we have∥∥∥∥ŷ[n]
i − y

[n]
i −

r∑
j=1

Vij

(
ŷ
[n−1]
j − y

[n−1]
j

)∥∥∥∥
≤ h

s∑
j=1

|bij |
∥∥∥f(Ỹj) − f(Yj)

∥∥∥
+ h2L2M

(
1
2 |ui| + |vi| +

s∑
j=1

|bijcj | + h0L
s∑

j=1

|bij |εj

)
≤ hL

s∑
j=1

|bij |
∥∥∥Yj − Ỹj

∥∥∥
(515d)

+ h2L2M
(

1
2 |ui| + |vi| +

s∑
j=1

|bijcj | + h0L

s∑
j=1

|bij |εj

)
.

Bound ηj = ‖Ỹj − Yj‖ using the estimate∥∥∥∥Ỹj − Yj −
r∑

k=1

Ujk

(
ŷ
[n−1]
k − y

[n−1]
k

)∥∥∥∥ ≤ hL

s∑
k=1

|ajk| · ‖Ỹk − Yk‖,

GENERAL LINEAR METHODS 395

which leads to
s∑

k=1

(δjk − h0L|ajk|)ηk ≤
r∑

k=1

|Ujk|
r

max
k=1

∥∥∥ŷ[n−1]
k − y

[n−1]
k

∥∥∥
and to

‖Ỹj − Yj‖ ≤ hεj
s

max
k=1

‖Ỹk − Yk‖.

Substitute this bound into (515d) and we obtain the required result. �

To complete the argument that stability and consistency imply convergence,
we estimate the global error in the computation of y(x) by carrying out n steps
from an initial value y(x0) using a stepsize equal to h = (x − x0)/n.

Lemma 515C Using notations already introduced in this subsection, together
with

E[i] =

ŷ
[i]
1 − y

[i]
1

ŷ
[i]
2 − y

[i]
2

...
ŷ
[i]
r − y

[i]
r

 , i = 0, 1, 2, . . . , n,

for the accumulated error in step i, we have the estimate

‖E[n]‖ ≤
{

exp(αC(x − x0))‖E[0]‖ + βh
α (exp(αC(x − x0)) − 1), α > 0,

exp(αC(x − x0))‖E[0]‖ + βC(x − x0)h, α = 0,

where C = supi=0,1,... ‖V i‖∞ and the norm of E[n] is defined as the maximum
of the norms of its r subvectors.

Proof. The result of Lemma 515B can be written in the form

E[i] = (V ⊗ I)E[i−1] + K [i],

from which it follows that

E[i] = (V i ⊗ I)E[0] +
i∑

j=1

(V j−1 ⊗ I)K [i+1−j],

and hence that

‖E[i]‖ ≤ C‖E[0]‖ +
i−1∑
j=0

C‖K [i−j]‖.

Insert the known bounds on the terms on the right-hand side, and we find

‖E[i]‖ ≤ αhC

i−1∑
j=0

‖E[j]‖ + Ciβh2 + C‖E[0]‖.

396 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

This means that ‖E[i]‖ is bounded by ηi defined by

ηi = αhC
i−1∑
j=0

ηj + Ciβh2 + η0, η0 = C‖E[0]‖.

To simplify this equation, find the difference of the formulae for ηi and ηi−1

to give the difference equation

ηi − ηi−1 = αhCηi−1 + Cβh2

with solution

ηi = (1 + hαC)iη0 +
βh

α
((1 + hαC)i − 1),

or, if α = 0,
ηi = η0 + iCβh2.

Substitute i = n and we complete the proof. �

We summarize the implications of these results:

Theorem 515D A stable and consistent general linear method is convergent.

Exercises 51

51.1 Show that the general linear method 0 1 a

b 1 0
c 0 0

is preconsistent with u = [1, 0] . For what values of a, b and c is the
method consistent?

51.2 Show that a linear multistep method, interpreted as a general linear
method, is convergent if and only if the corresponding one-leg method
is convergent.

51.3 For what values of a, b, c, d, e, f and g is the method 0 a b

c d e

f 0 g

capable of producing convergent approximations?

GENERAL LINEAR METHODS 397

52 The Stability of General Linear Methods

520 Introduction

The linear stability analysis of general linear methods, as for the special cases
of Runge–Kutta and linear multistep methods, is based on the differential
equation

y′(x) = qy(x). (520a)

The idea will be to consider the influence of a single step of the method on
an incoming vector y[n−1]. We obtain a relation of the form

y[n] = M(z)y[n−1], (520b)

where z = hq and M(z) is an r × r matrix-valued function of the complex
variable z.

Definition 520A For a general linear method (A, U, B, V), the ‘stability
matrix’ M(z) is defined by

M(z) = V + zB(I − zA)−1U.

As we have anticipated, we have the following result:

Theorem 520B Let M(z) denote the stability matrix for a general linear
method. Then, for a linear differential equation (520a), (520b) holds with
z = hq.

Proof. For the special problem defined by f(y) = qy, the vector of stage
derivatives F is related to the vector of stage values Y by F = qY . Hence,
(500c) reduces to the form[

Y

y[n]

]
=

[
A U

B V

][
zY

y[n−1]

]
.

It follows that Y = (I − zA)−1Uy[n−1], and that

y[n] = zBY + V y[n−1] = M(z)y[n−1]. �

If the method is stable, in the sense of Section 51, then M(0) = V will be
power-bounded. The idea now is to extend this to values of z in the complex
plane where M(z) has bounded powers.

Just as for Runge–Kutta and linear multistep methods, associated with
each method is a stability region. This, in turn, is related to the characteristic
polynomial of M(z).

398 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Definition 520C Let (A, U, B, V) denote a general linear method and M(z)
the corresponding stability matrix. The ‘stability function’ for the method is
the polynomial Φ(w, z) given by

Φ(w, z) = det(wI − M(z)),

and the ‘stability region’ is the subset of the complex plane such that if z is in
this subset, then

∞
sup
n=1

‖M(z)n‖ < ∞.

We refer to the ‘instability region’ as the complement of the stability region.
Note that in applications of these definitions, Φ(w, z) may be a rational

function. Quite often, the essential properties will be contained in just the
numerator of this expression. We equally refer to the numerator of this rational
function as the stability function.

We state the following obvious result without proof.

Theorem 520D The instability region for (A, U, B, V) is a subset of the set
of points z, such that Φ(w, z) = 0, where |w| ≥ 1. The instability region is a
superset of the points defined by Φ(w, z) = 0, where |w| > 1.

The unanswered question in this result is: ‘Which points on the boundary
of the stability region are actually members of it?’ This is not always a crucial
question, and we quite often interpret the stability region as the ‘strict stability
region’, consisting of those z for which

lim
n→∞

‖M(z)n‖ = 0.

This will correspond to the set of z values such that |w| < 1, for any w
satisfying Φ(w, z) = 0.

In particular, we can define A-stability.

Definition 520E A general linear method is ‘A-stable’ if M(z) is power-
bounded for every z in the left half complex plane.

Just as for Runge–Kutta and linear multistep methods, A-stability is the
ideal property for a method to possess for it to be applicable to stiff problems.
Corresponding to the further requirement for Runge–Kutta methods that
R(∞) = 0, we have the generalization of L-stability to general linear methods.

Definition 520F A general linear method is L-stable if it is A-stable and
ρ(M(∞)) = 0.

521 Methods with maximal stability order

Although a full discussion of the order of general linear methods will be
postponed until Section 53, we look here at the relationship between stability
and methods with a property closely related to order.

GENERAL LINEAR METHODS 399

Definition 521A A method with stability function Φ(w, z) has ‘stability
order’ p̃ if

Φ(exp(z), z) = O(zp̃+1).

Suppose the stability function is given by

Φ(w, z) =
k∑

j=0

wk−j

νj∑
l=0

αjlz
j ,

where k is the w-degree of Φ and νj is the z-degree of the coefficient of wk−j .
We can regard the sequence of integers

ν = [ν0, ν1, . . . , νk],

as representing the complexity of the stability function Φ. To include all
sensible cases without serious redundancies, we always assume that νj ≥ −1
for j = 0, 1, 2, . . . , k with strict inequality in the cases j = 0 and j = k.

It is interesting to ask the question: ‘For a given sequence ν, what is the
highest possible stability order?’. The question can be looked at in two parts.
First, there is the question of determining for what p̃ it is possible to find
a function Φ with a given complexity and with stability order p̃. Secondly,
there is the question of finding a general linear method corresponding to a
given Φ, with order p as close as possible to p̃. The first half of the question
can be firmly answered and is interesting since it gives rise to speculations
about possible generalizations of the Ehle results on rational approximations
to the exponential function. The definitive result that we have referred to is
as follows:

Theorem 521B For given ν, the maximum possible stability order is given
by

p̃ =
k∑

j=0

(νj + 1) − 2. (521a)

Proof. If order higher than p̃ given by (521a) is possible, then

k∑
j=0

exp((k − j)z)
νj∑

l=0

αjlz
l = Cp̃+2z

p̃+2 + Cp̃+3z
p̃+3 + · · · ,

where the right-hand side is convergent for any z. Differentiate νk + 1 times
and multiply the result by exp(−z). We now have a stability function with
complexity [ν0, ν1, . . . , νk−1], where the w-degree can be reduced even further
if νk−1 = −1. Furthermore, the new approximation also has a stability order
contrary to the bound we are trying to prove. Thus, by an induction argument

400 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

we reduce to the case k = 0, and it remains to prove that there does not exist
a non-zero polynomial P of degree ν0 such that

P (z) = O(zν0+1).

To show that an approximation with stability order p̃ given by (521a) exists, it
is possible to reverse the non-existence argument and to construct the required
stability function recursively, but we use a different approach.

Consider the rational function

φ(t) =
k∏

j=0

(t + j)−νj−1, (521b)

with partial fraction expansion which can be written in the form

φ(t) =
k∑

j=0

νj∑
l=0

l!αjl

(j + t)l+1
.

Calculate the integral
1

2πi

∮
C

φ(t) expp̃(tz)dt, (521c)

where

expp̃(z) =
p̃∑

j=0

zj

j!

is the polynomial of degree p̃ approximating the exponential function to within
O(zp̃+1) and C is a circular counter-clockwise contour, centred at 0 and with
radius R > k. Using the partial fraction form of φ, (521c) is found to be

k∑
j=0

νj∑
l=0

αjlz
l expp̃−l(−zj), (521d)

but using (521b), the integral can be bounded in terms of R−1 for large R, and
is therefore zero. Use the fact that zl expp̃−l(−zj) = zl exp(−zj) + O(zp̃+1)
and the result follows. �

Because of the maximal order properties of these approximations, they will
be known as ‘generalized Padé approximations’. Some examples are given in
Table 521(I). In each case, Φ(w, z) is scaled so that the coefficient of wkz0 is 1.
Some of these functions correspond to A-stable methods, and this is indicated
in the table. The entry for ν = [1, 0, 1] is reducible, in the sense that Φ(w, z)
factorizes into the approximation for [1, 1] multiplied by w − 1; the order 3
suggested for this method is, of course, an illusion.

GENERAL LINEAR METHODS 401

Table 521(I) Some generalized Padé approximations

ν p̃ Φ(w, z) Remarks

[1, 0, 0] 2 (1 − 2
3z)w2 − 4

3w + 1
3 A-stable

[1, 0, 1] 3 (1 − 1
2z)w2 − 2w + 1 + 1

2z A-stable

[1, 1, 0] 3 (1 − 2
5z)w2 − (4

5 + 4
5z)w − 1

5

[2, 0, 0] 3 (1 − 6
7z + 2

7z2)w2 − 8
7w + 1

7 A-stable

[2, 0, 1] 4 (1 − 8
11z + 2

11z2)w2 − 16
11w + 5

11 + 2
11z A-stable

[2, 1, 0] 4 (1 − 10
17z + 2

17z2)w2 − (16
17 + 8

17z)w − 1
17 A-stable

[2, 0, 2] 5 (1 − 5
8z + 1

8z2)w2 − 2w + 1 + 5
8z + 1

8z2 see text

[2, 1, 2] 6 (1 − 7
15z + 1

15z2)w2 − 16
15zw − 1 − 7

15z − 1
15z2

[3, 0, 0] 4 (1 − 14
15z + 2

5z2 − 4
45z3)w2 − 16

15w + 1
15 A-stable

[4, 0, 0] 5 (1 − 30
31z + 14

31z2 − 4
31z3 + 2

93z4)w2 − 32
31w + 1

31

The approximation based on ν = [2, 0, 2] is especially interesting. According
to the result formerly known as the Daniel–Moore conjecture (Daniel and
Moore, 1970), it cannot correspond to an A-stable method and also have order
p = 5, because it does not satisfy the necessary condition p ≤ 2s. However,
the solutions to the equation Φ(w, z) = 0 for z = iy satisfy

|w|2 =

∣∣∣∣∣8 ± iy
√

9 + y2

8 − y2 − 5iy

∣∣∣∣∣
2

= 1.

By the maximum modulus principle, the bound |w| ≤ 1 holds in the left half-
plane and the only point in the closed left half-plane where the two w roots
have equal values on the unit circle is when z = 0. For Obreshkov methods we
have to regard this as representing instability in the sense of Dahlquist. On
the other hand, general linear methods with this stability function exist with
V = I and therefore convergent methods are definitely possible. A possible
method satisfying this requirement is

5
16

107
48 1 0

− 21
1712

5
16 0 1

775
856 −99

8 1 0

− 459
91592

295
856 0 1

.

402 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Although Φ(exp(z), z) = O(z6), the order is only 4 because the solution to
Φ(w, z) = 0 which is ‘principal’ in the sense that it is a good approximation
to exp(z), is

w =
1 + 3

8z
√

1 − 1
9z2

1 − 5
8z + 1

8z2
= exp(z) − 1

270
z5 + O(z6).

In Butcher and Chipman (1992), the search for possible ν corresponding
to A-stable methods was focused on the cases 2ν0 − p̃ ∈ {0, 1, 2}. For k = 1
(the one-step case), this is necessary and sufficient for A-stability. It seems to
be the case that, even for k > 1, those methods for which 2ν0 − p̃ > 2 cannot
be A-stable. This proposition has become known as the ‘Butcher–Chipman
conjecture’. A partial proof was given in Butcher (2002), restricted to the
cases 2ν0 − p̃ = 3, 4, 7, 8, 11, 12, . . . , and a complete proof is given in Butcher
(2008). An outline of the argument will be given in Subsection 522.

522 Outline proof of the Butcher–Chipman conjecture

The essential elements of the proof are just as in the proof of Theorem 355G.
That is, the result hinges on the fact that if 2ν0 − p̃ > 2, then an up arrow
from zero must be tangential to the imaginary axis, or protrude into the left
half-plane, and terminate at a pole. This will mean that this pole will be in
the left half-plane or else the arrow will have to cross the imaginary axis to
reach this pole.

The missing detail, which we will now focus on, is the fact that each pole
is at the termination of an up arrow from zero. We cannot prove this in a
simple way based on non-crossing of up and down arrows, because the relation
Φ(w exp(z), z) = 0 now defines a Riemann surface, rather that w as a function
of z. The way we will proceed is (i) to modify the order arrow diagram slightly
to avoid the need to deal in a special way with special points which arise in
the diagram and (ii) to look at changes in the structure of the diagram as the
approximation is changed smoothly from one approximation to another.

The modification to arrow diagrams is illustrated in the case of the [4, 2]
Padé approximation. Consider Figure 522(i), where two versions of the arrow
system are presented. On the left is the standard diagram and on the right
is its modified form. The modifications are of two types. First, all arrows are
moved an infinitesimal distance to the right to avoid an ambiguity caused by
‘stagnation points’, such as at z = 0. The ambiguity is that an up arrow arriving
at a stagnation point is equally related to arrows leaving this point on the
left and on the right. Under the modification, this arrow can be regarded as
being continued as an up arrow to the right. For example, in the approximation
shown in Figure 522(i), arrows arrive in directions 0, 2π/7, 4π/7, . . . , 12π/7. In
the diagram on the right these are continued unambiguously as outgoing up
arrows in the directions 0π/7, 3π/7, 5π/7, . . . , 13π/7, respectively. The second

GENERAL LINEAR METHODS 403

Figure 522(i) Unmodified (left) and modified (right) order arrows for the

approximation [4, 2]

modification is to replace poles and zeros as termination points for up and down
arrows respectively, by additional sheets in the Riemann surface. The way this
done, in the case of poles, is to introduce the approximation defined by

(1 − t)Φ(w, z) + tΦ̃(w, z),

where Φ̃ is defined from [0 ν0 ν1 · · · νk], normalized so that P̃1(0) = 1.
If we take the limit as t → 0, the Riemann surface limit does not exist but
the projection of the new sheet onto the z plane does exist. This new plane
has the same projection as the order arrow system for

± exp(z) + P1(z),

where the sign is chosen to agree with the coefficient of wr+1 in Φ̃(w, z). A
similar construction is used for a new bottom sheet defined from the zeros of
Pk. This means that the artificial bottom sheet is found as the limit as t → 0
of the arrow system for wΦ(w, z)± t. There is no reason why this should not
be replaced by wnΦ(w, z) ± t where n is any positive integer and we would
obtain similar behaviour.

Given an order p approximation [ν0, ν1, . . . , νk], denoted by Φ, we can
construct, for any t ∈ [0, 1], the approximation Φt = tΦ+(1−t)Φ0, where Φ0 is
the [ν0, ν1, . . . , νr −1] approximation of order p−1. Because of the uniqueness
of generalized Padé approximations, Φt will have order only p − 1 if t < 1.
The parameter t now takes the role of homotopy variable and we will consider
the structure of the arrow system as t moves from 0 to 1. We illustrate in
Figure 522(ii) what happens in a series of diagrams in the case p = 4, ν0 = 2,
for t = 0, t = 0+ (a small positive value), t = 1− (a value less than but
close to 1) and t = 1. Note that these are stylized diagrams and apply to
a generic situation. That is, they could apply to any of the approximations,
[2, 2], [2, 1, 0], [2, 0, 1], [2, 0, 0] etc. Furthermore, the diagrams are distorted to

404 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

t = 0 t = 0+ t = 1− t = 1

Figure 522(ii) Homotopy from an order 3 to an order 4 approximation

π

(a) up arrow vertical

>π

(b) pole on left

>π

(c) pole on right
Figure 522(iii) Illustrating the impossibility of A-stable methods with

2ν0 − p > 2

avoid overlapping lines. For t > 0, a new arrow is introduced; this is shown as
a prominent line. As t approaches 1, it moves into position as an additional
up arrow to 0 and an additional up arrow away from 0.

In such a homotopic sequence as this, it is not possible that an up arrow
associated with a pole is detached from 0 because either this would mean a loss
of order or else the new arrow would have to pass through 0 to compensate for
this. However, at the instant when this happens, the order would have been
raised to p, which is impossible because of the uniqueness of the [ν0, ν1, . . . , νk]
approximation.

To complete this outline proof, we recall the identical final step in the proof
of Theorem 355G which is illustrated in Figure 522(iii). If 2ν0 > p+2, then the
up arrows which terminate at poles subtend an angle (ν0 − 1)2π/(p + 1) ≥ π.
If this angle is π, as in (a) in this figure, then there will be an up arrow leaving
0 in a direction tangential to the imaginary axis. Thus there will be points on
the imaginary axis where |w| > 1. In the case of (b), an up arrow terminates
at a pole in the left half-plane, again making A-stability impossible. Finally,
in (c), where an up arrow leaves 0 and passes into the left half-plane, but
returns to the right half-plane to terminate at a pole, it must have crossed
the imaginary axis. Hence, as in (a), there are points on the imaginary axis
where |w| > 1 and A-stability is not possible.

GENERAL LINEAR METHODS 405

523 Non-linear stability

We will consider an example of an A-stable linear multistep method based on
the function

(1 − z)w2 + (−1
2 + 1

4z)w + (−1
2 − 3

4z).

As a linear multistep method this is
1 1

2
1
2 −1

4
3
4

1 1
2

1
2 −1

4
3
4

0 1 0 0 0
1 0 0 0 0
0 0 0 0 0

 ,

where the input to step n consists of the vectors yn−1, yn−2, hf(yn−1), hf(yn−2),
respectively.

To understand the behaviour of this type of method with a dissipative
problem, Dahlquist (1976) analysed the corresponding one-leg method.
However, with the general linear formulation, the analysis can be carried out
directly. We first carry out a transformation of the input and output variables
to the form [

A UT−1

TB TV T−1

]
,

where

T =

2
3

1
3

1
3

1
2

1
3 −1

3
7
6 −1

2

0 0 1 0
0 0 0 1

 .

The resulting method is found to be
1 1 −1

2 0 0
1 1 0 0 0
3
2 1 −1

2 0 0
1 0 0 0 0
0 0 0 1 0

 .

Because the first two output values in the transformed formulation do not
depend in any way on the final two input values, these values, and the final
two output values, can be deleted from the formulation. Thus, we have the
reduced method 1 1 −1

2

1 1 0
3
2 0 −1

2

 . (523a)

406 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

From the coefficients in the first two rows of T , we identify the inputs in (523a)
with specific combinations of the input values in the original formulation:

y
[n−1]
1 = 2

3yn−1 + 1
3yn−2 + 1

3hf(yn−1) + 1
2hf(yn−2),

y
[n−1]
2 = 1

3yn−1 − 1
3yn−2 + 7

6hf(yn−1) − 1
2hf(yn−2).

Stable behaviour of this method with a dissipative problem hinges on the
verifiable identity

‖yn]
1 ‖2 + 1

3‖y
[n]
2 ‖2 = ‖yn−1]

1 ‖2 + 1
3‖y

[n−1]
2 ‖2

+ 2〈hf(Y), Y 〉 − 1
4‖y

[n−1]
2 − hf(Y)‖2.

This means that if 2〈hf(Y), Y 〉 ≤ 0, then ‖y[n]‖G ≤ ‖y[n−1]‖G, where
G = diag(1, 1

3).
Given an arbitrary general linear method, we ask when a similar analysis

can be performed. It is natural to restrict ourselves to methods without
unnecessary inputs, outputs or stages; such irreducible methods are discussed
in Butcher (1987a).

As a first step we consider how to generalize the use of the G norm. Let G
denote an r × r positive semi-definite matrix. For u, v ∈ RrN made up from
subvectors u1, u2, . . . , ur ∈ RN , v1, v2, . . . , vr ∈ RN , respectively, define 〈·, ·〉G
and the corresponding semi-norm ‖ · ‖G as

〈u, v〉G =
r∑

i,j=1

gij〈ui, vj〉,

‖u‖2
G = 〈u, u〉G.

We will also need to consider vectors U ⊕ u ∈ R(s+r)N , made up from
subvectors U1, U2, . . . , Us, u1, u2, . . . , ur ∈ R

N . Given a positive semi-definite
(s + t) × (s + r) matrix M , we will define ‖U ⊕ u‖M in a similar way. Given
a diagonal s × s matrix D, with diagonal elements di ≥ 0, we will also
write 〈U, V 〉D as

∑s
i=1 di〈Ui, Vi〉. Using this terminology we have the following

result:

Theorem 523A Let Y denote the vector of stage values, F the vector of
stage derivatives and y[n−1] and y[n] the input and output respectively from
a single step of a general linear method (A, U, B, V). Assume that M is a
positive semi-definite (s + r) × (s + r) matrix, where

M =

[
DA + A D − B GB DU − B GV

U D − V GB G − V GV

]
, (523b)

with G a positive semi-definite r × r matrix and D a positive semi-definite
diagonal s × s matrix. Then

‖y[n]‖2
G = ‖y[n−1]‖2

G + 2〈hF, Y 〉D − ‖hF ⊕ y[n−1]‖2
M .

GENERAL LINEAR METHODS 407

Proof. The result is equivalent to the identity

M =

[
0 0
0 G

]
−
[
B

V

]
G
[
B V

]
+

[
D

0

] [
A U

]
+

[
A

U

] [
D 0

]
. �

We are now in a position to extend the algebraic stability concept to the
general linear case.

Theorem 523B If M given by (523b) is positive semi-definite, then

‖y[n]‖2
G ≤ ‖y[n−1]‖2

G.

524 Reducible linear multistep methods and G-stability

We consider the possibility of analysing the possible non-linear stability of
linear multistep methods without using one-leg methods. First note that a
linear k-step method, written as a general linear method with r = 2k inputs,
is reducible to a method with only k inputs. For the standard k-step method
written in the form (400b), we interpret hf(xn−i, yn−i), i = 1, 2, . . . , k, as
having already been evaluated from the corresponding yn−i. Define the input
vector y[n−1] by

y
[n−1]
i =

k∑
j=i

(
αjyn−j+i−1 + βjhf(xn−j+i, yn−j+i−1)

)
, i = 1, 2, . . . , k,

so that the single stage Y = yn satisfies

Y = hβ0f(xn, Y) + y
[n−1]
1

and the output vector can be found from

y
[n]
i = αiy

[n−1]
1 + y

[n]
i+1 + (β0αi + βi)hf(xn, Y),

where the term y
[n]
i+1 is omitted when i = k. The reduced method has the

defining matrices

[
A U

B V

]
=

β0 1 0 0 · · · 0 0
β0α1 + β1 α1 1 0 · · · 0 0
β0α2 + β2 α2 0 1 · · · 0 0
β0α3 + β3 α3 0 0 · · · 0 0

...
...

...
...

...
...

β0αk−1 + βk−1 αk−1 0 0 · · · 0 1
β0αk + βk αk 0 0 · · · 0 0

, (524a)

and was shown in Butcher and Hill (2006) to be algebraically stable if it is
A-stable.

408 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

525 G-symplectic methods

In the special case of Runge–Kutta methods, the matrix M , given by (357d),
which arose in the study of non-linear stability, had an additional role. This
was in Section 37 where M was used in the characterization of symplectic
behaviour. This leads to the question: ‘does M , given by (523b), have any
significance in terms of symplectic behaviour’?.

For methods for which M = 0, although we cannot hope for quadratic
invariants to be conserved, a ‘G extension’ of such an invariant may well be
conserved. Although we will show this to be correct, it still has to be asked
if there is any computational advantage in methods with this property. The
author believes that these methods may have beneficial properties, but it is
too early to be definite about this.

The definition, which we now present, will be expressed in terms of the
submatrices making up M .

Definition 525A A general linear method (A, U, B, V) is G-symplectic if
there exists a positive semi-definite symmetric r × r matrix G and an s × s
diagonal matrix D such that

G = V GV, (525a)
DU = B GV, (525b)

DA + A D = B GB. (525c)

The following example of a G-symplectic method was presented in Butcher
(2006):

[
A U

B V

]
=

3+

√
3

6 0 1 −3+2
√

3
3

−
√

3
3

3+
√

3
6 1 3+2

√
3

3
1
2

1
2 1 0

1
2 −1

2 0 −1

. (525d)

It can be verified that (525d) satisfies (525a)–(525c) with G = diag(1, 1+ 2
3

√
3)

and D = diag(1
2 , 1

2).
Although this method is just one of a large family of such methods which

the author, in collaboration with Laura Hewitt and Adrian Hill of Bath
University, is trying to learn more about, it is chosen for special attention
here. An analysis in Theorem 534A shows that it has order 4 and stage order
2. Although it is based on the same stage abscissae as for the order 4 Gauss
Runge–Kutta method, it has a convenient structure in that A is diagonally
implicit.

For the harmonic oscillator, the Hamiltonian is supposed to be conserved,
and this happens almost exactly for solutions computed by this method for
any number of steps. Write the problem in the form y′ = iy so that for stepsize
h, y[n] = M(ih)y[n−1] where M is the stability matrix. Long term conservation

GENERAL LINEAR METHODS 409

n

1−ε

1+ε

20 40 60 80 100 120

Figure 525(i) Variation in |y[n]
1 | for n = 0, 1, . . . , 140, with h = 0.1;

note that ε = 0.000276

requires that the characteristic polynomial of M(ih) has both zeros on the unit
circle. This characteristic polynomial is:

w2
(
1 − ih3+

√
3

6

)2

+ w
(

2
3 i
√

3
)
h −

(
1 + ih3+

√
3

6

)2

.

Substitute

w =
1 + ih3+

√
3

6

1 − ih3+
√

3
6

iW,

and we see that

W 2 + h
2
√

3
3

1 + h2(3+
√

3
6)2

W + 1.

The coefficient of W lies in (−
√

3 + 1,
√

3 − 1) and the zeros of this equation
are therefore on the unit circle for all real h. We can interpret this as saying
that the two terms in((

p
[n]
1

)2 +
(
q
[n]
1

)2)+
(
1 + 2

3

√
3
)((

p
[n]
2

)2 +
(
q
[n]
2

)2)
are not only conserved in total but are also approximately conserved
individually, as long as there is no round-off error. The justification for this
assertion is based on an analysis of the first component of y

[n]
1 as n varies.

Write the eigenvalues of M(ih) as λ(h) = 1 + O(h) and µ(h) = −1 + O(h)
and suppose the corresponding eigenvectors, in each case scaled with first
component equal to 1, are u(h) and v(h) respectively. If the input y[0] is
au(h) + bv(h) then y

[n]
1 = aλ(h)n + bµ(h)n with absolute value

|y[n]
1 | =

(
a2 + b2 + 2abRe

(
(λ(h)µ(h))n

))1/2

.

If |b/a| is small, as it will be for small h if a suitable starting method is used,
|yn]

1 | will never depart very far from its initial value. This is illustrated in
Figure 525(i) in the case h = 0.1.

410 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Exercises 52

52.1 Find the stability matrix and stability function for the general linear
method

1
2 0 1 −1

2
4
3

1
2 1 −5

6
19
16

9
16 1 −3

4
1
4

3
4 0 0

 .

Show that this method A-stable.

52.2 Find a general linear method with stability function equal to the [2, 0, 0]
generalized Padé approximation to exp.

52.3 Find the [3, 0, 1] generalized Padé approximation to exp.

52.4 Show that the [2, 0, 1] generalized Padé approximation to exp is A-stable.

53 The Order of General Linear Methods

530 Possible definitions of order

Traditional methods for the approximation of differential equations are
designed with a clear-cut interpretation in mind. For example, linear multistep
methods are constructed on the assumption that, at the beginning of each
step, approximations are available to the solution and to the derivative at a
sequence of step points; the calculation performed by the method is intended
to obtain approximations to these same quantities but advanced one step
ahead. In the case of Runge–Kutta methods, only the approximate solution
value at the beginning of a step is needed, and at the end of the step this is
advanced one time step further.

We are not committed to these interpretations for either linear multistep
or Runge–Kutta methods. For example, in the case of Adams methods, the
formulation can be recast so that the data available at the start and finish
of a step is expressed in terms of backward difference approximations to the
derivative values or in terms of other linear combinations which approximate
Nordsieck vectors. For Runge–Kutta methods the natural interpretation, in
which yn is regarded as an approximation to y(xn), is not the only one possible.
As we have seen in Subsection 389, the generalization to effective order is such
an alternative interpretation.

For a general linear method, the r approximations, y
[n−1]
i , i = 1, 2, . . . , r, are

imported into step n and the r corresponding approximations, y[n]
i , are exported

at the end of the step. We do not specify anything about these quantities
except to require that they are computable from an approximation to y(xn)
and, conversely, the exact solution can be recovered, at least approximately,
from y

[n−1]
i , i = 1, 2, . . . , r.

GENERAL LINEAR METHODS 411

This can be achieved by associating with each input quantity, y
[n−1]
i , a

generalized Runge–Kutta method,

Si =
c(i) A(i)

b
(i)
0 b(i)T

. (530a)

Write si as the number of stages in Si. The aim will be to choose these
input approximations in such a way that if y

[n−1]
i is computed using Si

applied to y(xn−1), for i = 1, 2, . . . , r, then the output quantities computed
by the method, y

[n]
i , are close approximations to Si applied to y(xn), for

i = 1, 2, . . . , r.
We refer to the sequence of r generalized Runge–Kutta methods

S1, S2, . . . , Sr as a ‘starting method’ for the general linear method under
consideration and written as S. It is possible to interpret each of the output
quantities computed by the method, on the assumption that S is used as a
starting method, as itself a generalized Runge–Kutta method with a total
of s + s1 + s2 + · · · + sr stages. It is, in principle, a simple matter to
calculate the Taylor expansion for the output quantities of these methods
and it is also a simple matter to calculate the Taylor expansion of the result
found by shifting the exact solution forward one step. We write SM for the
vector of results formed by carrying out a step of M based on the results of
computing initial approximations using S. Similarly, ES will denote the vector
of approximations formed by advancing the trajectory forward a time step h
and then applying each member of the vector of methods that constitutes S
to the result of this.

A restriction is necessary on the starting methods that can be used in
practice. This is that at least one of S1, S2, . . . , Sr, has a non-zero value for
the corresponding b

(i)
0 . If b

(i)
0 = 0, for all i = 1, 2, . . . , r, then it would not

be possible to construct preconsistent methods or to find a suitable finishing
procedure, F say, such that SF becomes the identity method.

Accordingly, we focus on starting methods that are non-degenerate in the
following sense.

Definition 530A A starting method S defined by the generalized Runge–
Kutta methods (530a), for i = 1, 2, . . . , r, is ‘degenerate’ if b

(i)
0 = 0, for

i = 1, 2, . . . , r, and ‘non-degenerate’ otherwise.

Definition 530B Consider a general linear method M and a non-degenerate
starting method S. The method M has order p relative to S if the results found
from SM and ES agree to within O(p+1).

Definition 530C A general linear method M has order p if there exists a
non-degenerate starting method S such that M has order p relative to S.

412 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

E

S S

M

F

T

T̂

SM

ES

y(x0) y(x1)

y[0] y[1]

Figure 531(i) Representation of local truncation error

In using Definition 530C, it is usually necessary to construct, or at
least to identify the main features of, the starting method S which gives
the definition a practical meaning. In some situations, where a particular
interpretation of the method is decided in advance, Definition 530B is used
directly. Even though the Taylor series expansions, needed to analyse order,
are straightforward to derive, the details can become very complicated. Hence,
in Subsection 532, we will build a framework for simplifying the analysis. In
the meantime we consider the relationship between local and accumulated
error.

531 Local and global truncation errors

Figure 531(i) shows the relationship between the action of a method M with
order p, a non-degenerate starting method S, and the action of the exact
solution E, related as in Definition 530C. We also include in the diagram the
action of a finishing procedure F which exactly undoes the work of S, so that
SF = id. In this figure, T represents the truncation error, as the correction
that would have to be added to SM to obtain ES. Also shown is T̂ , which
is the error after carrying out the sequence of operations making up SMF ,
regarded as an approximation to E. However, in practice, the application of
F to the computed result is deferred until a large number of steps have been
carried out.

Figure 531(i) illustrates that the purpose of a general linear method is to
approximate not the exact solution, but the result of applying S to every point
on the solution trajectory. To take this idea further, consider Figure 531(ii),
where the result of carrying the approximation over many steps is shown. In
step k, the method M is applied to an approximation to Ek−1S to yield an
approximation to EkS without resorting to the use of the finishing method
F . In fact the use of F is postponed until an output approximation is finally
needed.

GENERAL LINEAR METHODS 413

S S S S S S

E E E E

M M M M

F

y(x0) y(x1) y(x2) y(x3) y(xn−1) y(xn)

y[0] y[1] y[2] y[3] y[n−1] y[n]

Figure 531(ii) Representation of global truncation error

532 Algebraic analysis of order

Associated with each of the components of the vector of starting methods
is a member of the algebra G introduced in Subsection 385. Denote ξi,
i = 1, 2, . . . , r, as the member corresponding to Si. That is, ξi is defined
by

ξi(∅) = b
(i)
0 ,

ξi(t) = Φ(i)(t), t ∈ T,

where the elementary weight Φ(i)(t) is defined from the tableau (530a).
Associate ηi ∈ G1 with stage i = 1, 2, . . . , s, and define this recursively by

ηi =
s∑

j=1

aijηjD +
r∑

j=1

Uijξj . (532a)

Having computed ηi and ηiD, i = 1, 2, . . . , s, we are now in a position to
compute the members of G representing the output approximations. These
are given by

s∑
j=1

bijηjD +
r∑

j=1

Vijξj , i = 1, 2, . . . , r. (532b)

If the method is of order p, this will correspond to Eξi, within Hp. Hence,
we may write the algebraic counterpart to the fact that the method M is of
order p, relative to the starting method S, as

Eξi =
s∑

j=1

bijηjD +
r∑

j=1

Vijξj , in G/Hp, i = 1, 2, . . . , r. (532c)

Because (532b) represents a Taylor expansion, the expression

Eξi −
s∑

j=1

bijηjD −
r∑

j=1

Vijξj , i = 1, 2, . . . , r, (532d)

414 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

represents the amount by which y
[n]
i falls short of the value that would be

found if there were no truncation error. Hence, (532d) is closely related to the
local truncation error in approximation i.

Before attempting to examine this in more detail, we introduce a vector
notation which makes it possible to simplify the way formulae such as (532a)
and (532c) are expressed. The vector counterparts are

η = AηD + Uξ, (532e)
Eξ = BηD + V ξ, (532f)

where these formulae are to be interpreted in the space G/Hp. That is, the
two sides of (532e) and of (532f) are to be equal when evaluated for all t ∈ T#

such that r(t) ≤ p.

Theorem 532A Let M = (A, U, B, V) denote a general linear method and
let ξ denote the algebraic representation of a starting method S. Assume that
(532e) and (532f) hold in G/Hp. Denote

ε = Eξ − BηD − V ξ, in G.

Then the Taylor expansion of S(y(x0 + h)) − M(S(y(x0))) is∑
r(t)>p

ε(t)
σ(t)

hr(t)F (t)(y(x0)). (532g)

Proof. We consider a single step from initial data given at x0 and consider the
Taylor expansion of various expressions about x0. The input approximation,
computed by S, has Taylor series represented by ξ. Suppose the Taylor
expansions for the stage values are represented by η so that the stage
derivatives will be represented by ηD and these will be related by (532e). The
Taylor expansion for the output approximations is represented by BηD +V ξ,
and this will agree with the Taylor expansion of S(y(x0 + h)) up to hp terms
if (532f) holds. The difference from the target value of S(y(x0 + h)) is given
by (532g). �

533 An example of the algebraic approach to order

We will consider the modification of a Runge–Kutta method given by
(502c). Denote the method by M and a possible starting method by S.
Of the two quantities passed between steps, the first is clearly intended to
approximate the exact solution and we shall suppose that the starting method
for this approximation is the identity method, denoted by 1. The second
approximation is intended to be close to the scaled derivative at a nearby point

GENERAL LINEAR METHODS 415

Table 533(I) Calculations to verify order p = 4 for (502c)

i 0 1 2 3 4 5 6 7 8

ti ∅
ξ1 1 0 0 0 0 0 0 0 0
ξ2 0 1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

η1 1 0 0 0 0 0 0 0 0
η1D 0 1 0 0 0 0 0 0 0
η2 1 1

2 −1
4θ2 −1

4θ3 −1
4θ4 −1

4θ5 −1
4θ6 −1

4θ7 −1
4θ8

η2D 0 1 1
2

1
4 −1

4θ2
1
8 −1

8θ2 −1
4θ3 −1

4θ4

η3 1 1 1+θ2
1
2 +θ3 θ4− 1

2θ2
1
4 + θ5 θ6− 1

4θ2 θ7− 1
2θ3 θ8− 1

2θ4

η3D 0 1 1 1 1+θ2 1 1+θ2
1
2 +θ3 θ4− 1

2θ2

ξ̂1 1 1 1
2

1
3

1
6

1
4

1
6 + 1

12θ2
1
12 − 1

12θ2

ξ̂2 0 1 1
2

1
4 −1

4θ2
1
8 −1

8θ2 −1
4θ3 −1

4θ4

Eξ1 1 1 1
2

1
3

1
6

1
4

1
8

1
12

1
24

1+2θ2
1
2 +θ2 1+3θ2

1
2 + 3

2θ2
1
3 +θ2

1
6 + 1

2θ2Eξ2 0 1 1+θ2 +θ3 +θ4 +3θ3+θ5 +θ3+θ4+θ6 +2θ4+θ7 +θ4+θ8

and we will assume that this is represented by θ : T# → R, where θ(∅) = 0,
θ(τ) = 1. The values of θ(t) for other trees we will keep as parameters to be
chosen. Are there possible values of these parameters for which M has order
p = 4, relative to S?

We will start with ξ1 = 1 and ξ2 = θ and compute in turn η1, η1D, η2,
η2D, η3, η3D and finally the representatives of the output approximations,
which we will write here as ξ̂1 and ξ̂2. The order requirements are satisfied if
and only if values of the free θ values can be chosen so that ξ̂1 = Eξ1 and
ξ̂2 = Eξ2. Reading from the matrix of coefficients for the method, we see that

η1 = ξ1, η2 = ξ1 − 1
4 ξ2 + 3

4η1D,

η3 = ξ1 + ξ2 − 2η1D + 2η2D,

ξ̂1 = ξ1 + 1
6η1D + 2

3η2D + 1
6η3D, ξ̂2 = η2D.

The details of these calculations are shown in Table 533(I). Comparing the
entries in the ξ̂1 and Eξ1 rows in this table, we see that we get agreement if
and only if θ2 = −1

2 . Moving now to the ξ̂2 and Eξ2 rows, we find that these
agree only with specific choices of θ3, θ4, . . . , θ8. Thus the method has order
4 relative to S for a unique choice of ξ2 = θ, which is found to be

[θ0 θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8] = [0 1 −1
2

1
4

1
8 −1

8 − 1
16 − 7

48 − 7
96

].

416 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

It might seem from this analysis, that a rather complicated starting method
is necessary to obtain fourth order behaviour for this method. However, the
method can be started successfully in a rather simple manner. For S1, no
computation is required at all and we can consider defining S2 using the
generalized Runge–Kutta method

0
−1

2 −1
2

0 0 1
.

This starter, combined with a first step of the general linear method M , causes
this first step of the method to revert to the Runge–Kutta method (502b),
which was used to motivate the construction of the new method.

534 The order of a G-symplectic method

A second example, for the method (525d), introduced as an example of a
G-symplectic method, is amenable to a similar analysis.

Theorem 534A The following method has order 4 and stage order 2:

[
A U

B V

]
=

3+

√
3

6 0 1 −3+2
√

3
3

−
√

3
3 −3+

√
3

6 1 3+2
√

3
3

1
2

1
2 1 0

1
2 −1

2 0 −1

 . (534a)

Before verifying this result we need to specify the nature of the starting
method S and the values of the stage abscissae, c1 and c2. From an initial
point (x0, y0), the starting value is given by

y
[0]
1 = y0,

y
[0]
2 =

√
3

12 h2y′′(x0) −
√

3
108h4y(4)(x0) + 9+5

√
3

216 h4 ∂f

∂y
y(3)(x0),

and the abscissa vector is c =
[

1
2 + 1

6

√
3 1

2 − 1
6

√
3
]

.

Proof. Write ξ1, ξ2 as the representations of y
[0]
1 , y

[0]
2 and η1, η2 to represent

the stages. The stages have to be found recursively and only the converged
values are given in Table 534(I), which shows the sequence of quantities
occurring in the calculation. The values given for ξ̂i are identical to those
for Eξi, i = 1, 2, verifying that the order is 4. Furthermore ηi(t) = E(ci)(t),
i = 1, 2, for r(t) ≤ 2, showing stage order 2. �

GENERAL LINEAR METHODS 417

Table 534(I) Calculations to verify order p = 4 for (534a)

i 0 1 2 3 4 5 6 7 8

ti ∅
ξ1 1 0 0 0 0 0 0 0 0

ξ2 0 0
√

3
12 0 0 −

√
3

18 −
√

3
36

3+
√

3
36

3+
√

3
72

η1 1 3+
√

3
6

2+
√

3
12

9+5
√

3
36

9+5
√

3
72

11+6
√

3
36

11+6
√

3
72

2+
√

3
36

2+
√

3
72

η1D 0 1 3+
√

3
6

2+
√

3
6

2+
√

3
12

11+6
√

3
36

11+6
√

3
72

9+5
√

3
36

9+5
√

3
72

η2 1 3−
√

3
6

2−
√

3
12 −3+5

√
3

36
3+5

√
3

72 −7+6
√

3
36 −7+6

√
3

72 −4+3
√

3
36 −4+3

√
3

72

η2D 0 1 3−
√

3
6

2−
√

3
6

2−
√

3
12

9−5
√

3
36

9−5
√

3
72 −3+5

√
3

36 −3+5
√

3
72

ξ̂1 1 1 1
2

1
3

1
6

1
4

1
8

1
12

1
24

ξ̂2 0 0
√

3
12

√
3

6

√
3

12
7
√

3
36

7
√

3
72

3+4
√

3
36

3+4
√

3
72

535 The underlying one-step method

In much the same way as a formal one-step method could be constructed as an
underlying representation of a linear multistep method, as in Subsection 422,
a one-step method can be constructed with the same underlying relationship
to a general linear method. Consider a general linear method (A, U, B, V) and
suppose that the preconsistency vector is u. We can ask if it is possible to
find ξ ∈ Xr and η ∈ Xs

1 , such that (532e) and (532f) hold exactly but with E

replaced by θ ∈ X1; that is, such that

η(t) = A(ηD)(t) + Uξ(t), (535a)

(θξ)(t) = B(ηD)(t) + V ξ(t), (535b)

for all t ∈ T#. In this case we can interpret θ as representing an underlying
one-step method. The notional method represented by θ is not unique, because
another solution can be found equal to θ̂ = φ−1θφ, where φ ∈ X1 is arbitrary.
We see this by multiplying both sides of (535a) and (535b) by φ−1 to arrive
at the relations

η̂(t) = A(η̂D)(t) + Uξ̂(t),

(θ̂ξ̂)(t) = B(η̂D)(t) + V ξ̂(t),

with ξ̂ = φ−1ξ. We want to explore the existence and uniqueness of the
underlying one-step method subject to an additional assumption that some

418 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

particular component of ξ has a specific value. As a step towards this aim,
we remark that (535a) and (535b) transform in a natural way if the method
itself is transformed in the sense of Subsection 501. That is, if the method
(A, U, B, V) is transformed to (A, UT−1, TB, TV T−1), and (535a) and 535b)
hold, then, in the transformed method, ξ transforms to Tξ and θ transforms
to TθT−1. Thus

η(t) = A(ηD)(t) + (UT−1)(Tξ)(t), (535c)

((TθT−1)(Tξ))(t) = TB(ηD)(t) + V (Tξ)(t). (535d)

This observation means that we can focus on methods for which u = e1, the
first member of the natural basis for R

r, in framing our promised uniqueness
result.

Theorem 535A Let (A, U, B, V) denote a consistent general linear method
such that u = e1 and such that

U = [1 Ũ], V =

[
1 ṽ

0 Ṽ

]
,

where 1 �∈ σ(Ṽ). Then there exists a unique solution to (535a) and (535b) for
which ξ1 = 1.

Proof. By carrying out a further transformation if necessary, we may assume
without loss of generality that Ṽ is lower triangular. The conditions satisfied
by ξi(t) (i = 2, 3, . . . , r), ηi(t) (i = 1, 2, . . . , s) and θ(t) can now be written in
the form

(1 − Ṽi,i)ξi(t) =
s∑

j=1

bij(ηD)(t) +
i−1∑
j=2

Ṽi−1,j−1ξj(t),

ηi(t) =
s∑

j=1

aij(ηD)(t) + 1(t) +
r∑

j=2

Ũi,j−1ξj(t),

θ(t) =
s∑

j=1

b1j(ηD)(t) + 1(t) +
r∑

j=2

ṽj−1ξj(t).

In each of these equations, the right-hand sides involve only trees with order
lower than r(t) or terms with order r(t) which have already been evaluated.
Hence, the result follows by induction on r(t). �

The extension of the concept of underlying one-step method to general
linear methods was introduced in Stoffer (1993).

GENERAL LINEAR METHODS 419

Although the underlying one-step method is an abstract structure, it has
practical consequences. For a method in which ρ(Ṽ) < 1, the performance
of a large number of steps, using constant stepsize, forces the local errors
to conform to Theorem 535A. When the stepsize needs to be altered, in
accordance with the behaviour of the computed solution, it is desirable to
commence the step following the change, with input approximations consistent
with what the method would have expected if the new stepsize had been
used for many preceding steps. Although this cannot be done precisely, it
is possible for some of the most dominant terms in the error expansion to
be adjusted in accordance with this requirement. With this adjustment in
place, it becomes possible to make use of information from the input vectors,
as well as information computed within the step, in the estimation of local
truncation errors. It also becomes possible to obtain reliable information that
can be used to assess the relative advantages of continuing the integration
with an existing method or of moving onto a higher order method. These
ideas have already been used to good effect in Butcher and Jackiewicz (2003)
and further developments are the subject of ongoing investigations.

Exercises 53

53.1 A numerical method of the form

Y
[n]
1 = yn−1 + hâ11f

(
xn−2 + hc1, Y

[n−1]
1

)
+ hâ12f

(
xn−2 + hc2, Y

[n−1]
2

)
+ ha11f(xn−1 + hc1, Y

[n]
1) + ha12f

(
xn−1 + hc2, Y

[n]
2

)
,

Y
[n]
2 = yn−1 + hâ21f

(
xn−2 + hc1, Y

[n−1]
1

)
+ hâ22f

(
xn−2 + hc2, Y

[n−1]
2

)
+ ha21f

(
xn−1 + hc1, Y

[n]
1

)
+ ha22f

(
xn−1 + hc2, Y

[n]
2

)
,

yn = yn−1 + hb̂1f
(
xn−2 + hc1, Y

[n−1]
1

)
+ hb̂2f

(
xn−2 + hc2, Y

[n−1]
2

)
+ hb1f

(
xn−1 + hc1, Y

[n]
1

)
+ hb2f

(
xn−1 + hc2, Y

[n]
2

)
,

is sometimes known as a ‘two-step Runge–Kutta method’. Find
conditions for this method to have order 4.

53.2 Find an explicit fourth order method (a11 = a12 = a22 = 0) of the form
given by Exercise 53.1.

53.3 Find an A-stable method of the form given by Exercise 53.1.

420 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

54 Methods with Runge–Kutta stability

540 Design criteria for general linear methods

We consider some of the structural elements in practical general linear
methods, which are not available together in any single method of either
linear multistep or Runge–Kutta type. High order is an important property,
but high stage order is also desirable. For single-value methods this is only
achievable when a high degree of implicitness is present, but this increases
implementation costs. To avoid these excessive costs, a diagonally implicit
structure is needed but this is incompatible with high stage order in the case
of one-value methods. Hence, we will search for good methods within the large
family of multistage, multivalue methods.

The additional complexity resulting from the use of diagonally implicit
general linear methods makes good stability difficult to analyse or even
achieve. Hence, some special assumptions need to be made. In Subsection 541
we present one attempt at obtaining a manageable structure using DIMSIM
methods. We then investigate further methods which have the Runge–Kutta
stability property so that the wealth of knowledge available for the stability
of Runge–Kutta methods becomes available. Most importantly we consider
methods with the Inherent Runge–Kutta stability property, introduced in
Subsection 551.

541 The types of DIMSIM methods

‘Diagonally implicit multistage integration methods’ (DIMSIMs) were
introduced in Butcher (1995a). A DIMSIM is loosely defined as a method
in which the four integers p (the order), q (the stage order), r (the number
of data vectors passed between steps) and s (the number of stages) are all
approximately equal. To be a DIMSIM, a method must also have a diagonally
implicit structure. This means that the s × s matrix A has the form

A =

λ 0 0 · · · 0
a21 λ 0 · · · 0
a31 a32 λ · · · 0
...

...
...

...
as1 as2 as3 · · · λ

 ,

where λ ≥ 0. The rationale for this restriction on this coefficient matrix is that
the stages can be computed sequentially, or in parallel if the lower triangular
part of A is zero. This will lead to a considerable saving over a method in which
A has a general implicit structure. For Runge–Kutta methods, where r = 1,
this sort of method is referred to as explicit if λ = 0 or as diagonally implicit
(DIRK, or as singly diagonally implicit or SDIRK) if λ > 0; see Subsection 361.

GENERAL LINEAR METHODS 421

Table 541(I) Types of DIMSIM and related methods

Type A Application Architecture

1

0 0 0 · · · 0
a21 0 0 · · · 0
a31 a32 0 · · · 0
...

...
...

...
as1 as2 as3 · · · 0

 Non-stiff Sequential

2

λ 0 0 · · · 0
a21 λ 0 · · · 0
a31 a32 λ · · · 0
...

...
...

...
as1 as2 as3 · · · λ

 Stiff Sequential

3

0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

 Non-stiff Parallel

4

λ 0 0 · · · 0
0 λ 0 · · · 0
0 0 λ · · · 0
...

...
...

...
0 0 0 · · · λ

 Stiff Parallel

While these Runge–Kutta methods suffer from the disadvantages associated
with low stage order, there is no such difficulty associated with general linear
methods.

For non-stiff problems, it is advantageous to choose λ = 0, whereas for
stiff problems, it is necessary that λ > 0, if A-stability is to be achieved.
Furthermore, as we have already remarked, parallel evaluation of the stages is
only possible if A is a diagonal matrix; specifically, this would be the zero
matrix in the non-stiff case. From these considerations, we introduce the
‘types’ of a DIMSIM method, and we retain this terminology for methods
with a similar structure.

The four types, together with their main characteristics, are shown in Table
541(I). The aim in DIMSIM methods has been to find methods in which p, q,
r and s are equal, or approximately equal, and at the same time to choose V
as a simple matrix, for example a matrix with rank 1.

422 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

If p = q, it is a simple matter to write down conditions for this order and
stage order. We have the following result:

Theorem 541A A method [
A U

B V

]
,

has order and stage order p if and only if there exists a function

φ : C → C
r,

analytic in a neighbourhood of 0, such that

exp(cz) = zA exp(cz) + Uφ(z) + O(zp+1), (541a)

exp(z)φ(z) = zB exp(cz) + V φ(z) + O(zp+1), (541b)

where exp(cz) denotes the vector in Cs for which component i is equal to
exp(ciz).

Proof. Assume that (541a) and (541b) are satisfied and that the components
of φ(z) have Taylor series

φi(z) =
p∑

j=0

αijz
j + O(zp+1).

Furthermore, suppose starting method i is chosen to give the output

p∑
j=0

αijh
jy(j)(x0) + O(hp+1),

where y denotes the exact solution agreeing with a given initial value at x0.
Using this starting method, consider the value of

y(x0 + hck) − h

s∑
i=1

akiy
′(x0 + hci) −

r∑
i=1

Uki

p∑
j=0

αijh
jy(j)(x0). (541c)

If this is O(hp+1) then it will follow that Yk −y(x0 +hck) = O(hp+1). Expand
(541c) about x0, and it is seen that the coefficient of hjy(j)(x0) is

1
j!

cj
k −

s∑
i=1

aki
1

(j − 1)!
cj−1
i −

r∑
i=1

Ukiαij .

However, this is exactly the same as the coefficient of zj in the Taylor
expansion of the difference of the two sides of (541a). Given that the order

GENERAL LINEAR METHODS 423

of the stages is p, and therefore that hf(Yi) = hy′(x0 + hci) + O(hp+1), we
can carry out a similar analysis of the condition for the kth output vector to
equal

p∑
j=0

αkjh
jy[j](x0 + h) + O(hp+1). (541d)

Carry out a Taylor expansion about x0 and we find that (541d) can be written
as

p∑
j=0

p∑
i=j

αkj
1

(i − j)!
hiy(i)(x0) + O(hp+1). (541e)

The coefficient of hi in (541e) is identical to the coefficient of zi in exp(z)φk(z).
Hence, combining this with the terms

s∑
i=1

bki
1

(j − 1)!
cj−1
i +

r∑
i=1

Vkiαij ,

we find (541b).
To prove necessity, use the definition of order given by (532e) and (532f)

and evaluate the two sides of each of these equations for the sequence of trees
t0 = ∅, t1 = τ , t2 = [t1], . . . , tp = [tp−1]. Use the values of αij given by

αij = ξi(tj),

so that

(Eξi)(tj) =
j∑

k=0

1
k!

ξi(tj−k),

which is the coefficient of zj in exp(z)
∑p

k=0 αikzk. We also note that

ηi(tj) =
1
j!

cj
i , (ηiD)(tj) =

1
(j − 1)!

cj−1
i ,

which are, respectively, the zj coefficients in exp(ciz) and in z exp(ciz). Write
φ(z) as the vector-valued function with ith component equal to

∑p
k=0 αikzk,

and we verify that coefficients of all powers of z up to zp agree in the two
sides of (541a) and (541b). �

542 Runge–Kutta stability

For methods of types 1 and 2, a reasonable design criterion is that its
stability region should be similar to that of a Runge–Kutta method. The
reasons for this are that Runge–Kutta methods not only have convenient
stability properties from the point of view of analysis but also that they have

424 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

stability properties that are usually superior to those of alternative methods.
For example, A-stability is inconsistent with high order for linear multistep
methods but is available for Runge–Kutta methods of any order.

The stability matrix for a general linear method has the form

M(z) = V + zB(I − zA)−1U

and the characteristic polynomial is

Φ(w, z) = det(wI − M(z)). (542a)

In general this is a complicated function, in which the coefficients of powers of
w are rational functions of z. To obtain stability properties as close to those
of a Runge–Kutta method as possible we will seek methods for which Φ(w, z)
factorizes as in the following definition.

Definition 542A A general linear method (A, U, B, V) has ‘Runge–Kutta
stability’ if the characteristic polynomial given by (542a) has the form

Φ(w, z) = wr−1(w − R(z)).

For a method with Runge–Kutta stability, the rational function R(z) is known
as the ‘stability function’ of the method.

We will usually abbreviate ‘Runge–Kutta stability’ by ‘RK stability’. We
present two examples of methods satisfying this condition with p = q = r =
s = 2 and with c = [0 1] . The first is of type 1 and is assumed to have the
form [

A U

B V

]
=

0 0 1 0

a21 0 0 1
b11 b12 1 − V12 V12

b11 b12 1 − V12 V12

 .

The assumption that U = I is not a serious restriction because, if U is non-
singular, an equivalent method can be constructed with U = I and B and V
replaced by UB and UV U−1, respectively. The form chosen for V makes it of
rank 1 and preconsistent for the vector c = [1 1] .

By the stage order conditions, it is found that

φ(z) = (I − zA) exp(cz) =

[
1

1 + (1 − a21)z + 1
2z2

]
.

To find B, we have

Bz exp(cz) = (exp(z)I − V)φ(z) + O(z3).

GENERAL LINEAR METHODS 425

Write the coefficients of z and z2 in separate columns and we deduce that

B

[
1 0
1 1

]
=

[
1 − V12 + a21V12

1
2 (1 − V12)

2 − V12 − a21 + a21V12 2 − a21 − 1
2V12

]
,

so that

B =

[
1
2 − 1

2V12 + a21V12
1
2 (1 − V12)

−1
2V12 + a21V12 2 − a21 − 1

2V12

]
.

To achieve RK stability, impose the requirement that the stability function
V + zB(I − zA)−1 has zero determinant and it is found that a21 = 2 and
V12 = 1

2 .
This gives the method

[
A U

B V

]
=

0 0 1 0
2 0 0 1
5
4

1
4

1
2

1
2

3
4 −1

4
1
2

1
2

 . (542b)

To derive a type 2 method with RK stability, carry out a similar calculation
but with

A =

[
λ 0

a21 λ

]
.

In this case, the method is

[
A U

B V

]
=

λ 0 1 0
2

1+2λ λ 0 1
5−2λ+12λ2+8λ3

4+8λ
1
4 − λ2 1

2 + λ 1
2 − λ

3−2λ+20λ2+8λ3

4+8λ
−1+10λ−12λ2−8λ3

4+8λ
1
2 + λ 1

2 − λ

 ,

or, with λ = 1 − 1
2

√
2, for L-stability,

[
A U

B V

]
=

1 −

√
2

2 0 1 0
6+2

√
2

7 1 −
√

2
2 0 1

73−34
√

2
28

4
√

2−5
4

3−
√

2
2

√
2−1
2

87−48
√

2
28

34
√

2−45
28

3−
√

2
2

√
2−1
2

 . (542c)

Type 3 and type 4 methods do not exist with RK stability, and will not be
explored in detail in this section. We do, however, give a single example of
each. For the type 3 method we have

[
A U

B V

]
=

0 0 1 0
0 0 0 1

−3
8 −3

8 −3
4

7
4

−7
8

9
8 −3

4
7
4

 . (542d)

426 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

This method is designed for parallel computation in the sense that the two
stages do not depend on each other, because A = 0, and hence they can be
evaluated in parallel. Is there any advantage in the use of methods like this?
Of course, the answer will depend on the specific coefficients in the method
but, in the case of (542d), we might wish to compare it with the type 1 method
given by (542b) whose error constant has magnitude 1

6 . In contrast, (542d) has
error constant 19

24 which is equivalent to 19
96 when adjusted for the sequential

cost of one f evaluation per step. Thus, in this case, the type 3 method is less
efficient even under the assumption of perfect speed-up.

The type 4 method

[
A U

B V

]
=

3−

√
3

2 0 1 0
0 3−

√
3

2 0 1
18−11

√
3

4
7
√

3−12
4

3−2
√

3
2

2
√

3−1
2

22−13
√

3
4

9
√

3−12
4

3−2
√

3
2

2
√

3−1
2

 (542e)

is found to be A-stable with the additional property that its stability matrix
has zero spectral radius at infinity. Just as for the type 3 method we have
introduced, while the advantages of this type of method are not clear, results
found by Singh (1999) are encouraging.

For type 1 and 2 methods, increasing order presents great challenges in the
solution of the order conditions combined with RK stability requirements. For
an account of the techniques used to find particular methods of orders up to
8, see Butcher and Jackiewicz (1996, 1998).

543 Almost Runge–Kutta methods

The characteristic feature of explicit Runge–Kutta methods, that only
minimal information computed in a step is passed on as input to the next
step, is a great advantage of this type of method but it is also a perceived
disadvantage. The advantage lies in excellent stability properties, while the
disadvantage lies in the low stage order to which the second and later stages
are restricted. Almost Runge–Kutta methods (ARK) are an attempt to retain
the advantage but overcome some of the disadvantages.

Recall the method (505a). Evaluate its stability matrix and we find

M(z) = V + zB(I − zA)−1U

=

 1 + 5
6z + 1

3z2 + 1
48z3 1

6 + 1
6z + 7

48z2 + 1
48z3 1

48z2 + 1
96z3

z + 5
6z2 + 1

3z3 + 1
48z4 1

6z + 1
6z2 + 7

48z3 + 1
48z4 1

48z3 + 1
96z4

z + 1
2z2 + 7

12z3 + 1
24z4 −1 + 1

2z − 1
12z2 + 5

24z3 + 1
24z4 1

48z4

 .

The eigenvalues of this matrix are

σ(M(z)) =
{

1 + z +
1
2
z2 +

1
6
z3 +

1
24

z4, 0, 0
}

,

GENERAL LINEAR METHODS 427

Table 543(I) Calculation of stages and stage derivatives for the method (505a)

α α(∅) α() α() α() α
()

α() α
()

α
()

α
()

1 1 0 0 0 0 0 0 0 0
D 0 1 0 0 0 0 0 0 0
ξ3 0 0 1 θ3 θ4 θ5 θ6 θ7 θ8

η1 1 1 1
2

θ3
2

θ4
2

θ5
2

θ6
2

θ7
2

θ8
2

η1D 0 1 1 1 1
2 1 1

2
θ3
2

θ4
2

η2 1 1
2

1
8

1+θ3
16

1+2θ4
32

1+θ5
16

1+2θ6
32

θ3+2θ7
32

θ4+2θ8
32

η2D 0 1 1
2

1
4

1
8

1
8

1
16

1+θ3
16

1+2θ4
32

η3 1 1 1
2

1−θ3
4

1−2θ4
8 − θ5

4 − θ6
4

1−2θ7
8

1−4θ8
16

η3D 0 1 1 1 1
2 1 1

2
1−θ3

4
1−2θ4

8

η4 1 1 1
2

1
3

1
6

1
4

1
8

1
12

1
24

η4D 0 1 1 1 1
2 1 1

2
1
3

1
6

Eξ̂1 1 1 1
2

1
3

1
6

1
4

1
8

1
12

1
24

Eξ̂2 0 1 1 1 1
2 1 1

2
1
3

1
6

Eξ̂3 0 0 1 1 1
2 1 1

2
1
2

1
4

ξ̂1 1 0 0 0 0 0 0 0 0
ξ̂2 0 1 0 0 0 0 0 0 0
ξ̂3 0 0 1 −1 −1

2 1 1
2

1
2

1
4

so that it is RK stable. Other features of the method are that the minimal
information passed between steps is enough to push the stage order up to
2, and that the third input and output vector need not be evaluated to
great accuracy because of what will be called ‘annihilation conditions’. These
conditions ensure that errors like O(h3) in the input vector y

[n−1]
3 only affect

the output results by O(h5).
Assume that the three input approximations are represented by ξ1 = 1,

ξ2 = D and ξ3, where we assume only that

ξ3(∅) = ξ3() = 0 and ξ3() = 1.

Thus, y
[n−1]
1 = y(xn−1), y

[n−1]
2 = hy′(xn−1), y

[n−1]
3 = h2y′′(xn−1) + O(h3). The

output approximations are computed by first evaluating the representations
of the stage values and stage derivatives. Since we are only working to order
5 accuracy in the output results, it will be sufficient to evaluate the stages
only up to order 4. Denote the representations of the four stage values by ηi,
i = 1, 2, 3, 4. Also, denote the values of ξ3(t) for trees of orders 3 and 4 by θi,
i = 3, 4, . . . , 8. Details of the calculation of stage values are shown in Table
543(I).

428 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Table 543(II) Output and input values for (505a) evaluated at fifth order trees

α α() α
()

α
()

α
()

α
()

α
()

α
()

α
()

α

()
ξ3 θ9 θ10 θ11 θ12 θ13 θ14 θ15 θ16 θ17

ξ̂1
1

120
1

240 −1+5θ3
240 −1+10θ4

480
1

480 − 1
120 − 1

240
1+5θ3
240

1+10θ4
480

ξ̂2 0 0 0 0 0 0 0 0 0
ξ̂3 −1 −1

2 −1
3 −1

6 −1
4 −1

2 −1
4 −1

4 −1
8

The output results are intended to represent approximations to Eξ1, Eξ2

and Eξ3. Write the representation of y
[n]
i by Eξ̂i, for i = 1, 2, 3. We calculate ξ̂i

up to order 5 trees so that we not only verify fourth order behaviour, but also
obtain information on the principal terms in the local truncation error. As a
first step in this analysis, we note that, to order 4, Eξ̂1 = E and hence ξ̂1 = 1.
Similarly ξ̂2 = D to fourth order. Up to fourth order, we have calculated the
value of Eξ̂3 = −1

3η1D − 2
3η3D + 2η4D − ξ2 and ξ̂3 is also given in Table

543(I).
If the calculations are repeated using the specific values [θ3, θ4, θ5, θ6, θ7, θ8]

= [−1,−1
2 , 1, 1

2 , 1
2 , 1

4], then we have ξ̂i = ξi +H4 so that, relative to a starting
method defined by ξi, i = 1, 2, 3, the method has order 4. However, a starting
value defined for arbitrary values of θ3, θ4, . . . , θ8 produces the specific choice
given by the components of ξ̂3 after a single step. To investigate this method
more precisely, the values of ξ̂1, ξ̂2 and ξ̂3 have been calculated also for fifth
order trees and these are shown in Table 543(II).

A reading of this table suggests that the method not only exhibits fourth
order behaviour but also has reliable behaviour in its principal error terms.
This is in spite of the fact that the starting method provides incorrect
contributions of third and higher order elementary differentials, because these
inaccuracies have no long term effect. The components of the error terms in
the first output component depend on θ3 and θ4 after a single step, but this
effect disappears in later steps.

In Subsection 544 we consider order 3 ARK methods, and we then return
in Subsection 545 to a more detailed study of order 4 methods. However, we
first discuss some questions which apply to both orders.

Because we will require methods in these families to have stage order 2, the
matrix U will need to be of the form

U = [1 c − A1 1
2c2 − Ac] (543a)

and we will assume this throughout. We also note that the stability matrix
M(z) = V +zB(I−zA)−1U is always singular because ze1−e2 is an eigenvalue
of this matrix. We see this by observing that zep(I −zA) = (−ze1 +e2)B and
(ze1 − e2)V = zepU .

GENERAL LINEAR METHODS 429

544 Third order, three-stage ARK methods

Since r = s = 3, we will write the coefficient matrices as follows:

[
A U

B V

]
=

0 0 0 1 u12 u13

a21 0 0 1 u22 u23

b1 b2 0 1 b0 0
b1 b2 0 1 b0 0
0 0 1 0 0 0
β1 β2 β3 0 β0 0

.

Denote the abscissa vector by c = [c1, c2, 1] and also write b = [b1, b2, 0] and
β = [β1, β2, β3].

Because we will require the method to have stage order 2, the matrix U will
need to be of the form given by (543a). For the method to have order 3, and
at the same time be RK stable, it is necessary that the trace of M is equal to
the Taylor expansion of the non-zero eigenvalue. Thus,

tr(M) = tr(V) + z tr(BU) + z2 tr(BAU) + z3 tr(BA2U) = 1 + z + 1
2z2 + 1

6z3,

and it follows that

tr(BU) = 1, tr(BAU) = 1
2 , tr(BA2U) = 1

6 , (544a)

where we note that tr(V) = 1, because of the form of V .
To obtain order 3 accuracy for the first output value, it is only necessary

that

b0 + b1 + b2 = 1, b1c1 + b2c2 = 1
2 , b1c

2
1 + b2c

2
2 = 1

3 , (544b)

and to obtain an order 2 approximation to the scaled second derivative for
the third output value, we require that

β0 + β 1 = 0, (544c)
β c = 1. (544d)

Note that b Ac = 1
6 does not arise as an order condition, because the method

has stage order 2. Expand the equations given in (544a), making use of (544b),
and we find

β (1
2c2 − Ac) = 0, (544e)

β A(1
2c2 − Ac) = 0, (544f)

b Ac + β A2(1
2c2 − Ac) = 1

6 . (544g)

430 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Eliminating terms known to be zero, we see that (544g) simplifies to

b2a21c1 =
1

6(1 + 1
2β3c1)

. (544h)

Consider the vector v = β3e3 − β (I + β3A) and note that v x1 = v x2 =
c x3 = 0, where x1 = e3, x2 = 1

2c2−Ac and x3 = A(1
2c2−Ac). It is not possible

that x1, x2, x3 are linearly dependent because this would imply β1 = β2 = 0,
which is inconsistent with β 1 = 0 and β c = 1. Hence, v = 0 and we arrange
this in the form

β = β3e3(I + β3A)−1 = β3e3 − β2
3b + β3

3b A. (544i)

Multiply (544i) by c and use (544d), (544h) to obtain a relationship between
β3 and c1:

c1 =
−2(1 − β3 + 1

2β2
3 − 1

6β3
3)

β3(1 − β3 + 1
2β2

3)
. (544j)

The ingredients for constructing an ARK method with p = r = s = 3 are
now all available and they are put together as follows:

1. Choose the value of β3.
2. Evaluate c1 from (544j).
3. Choose the value of c2.
4. Evaluate b0, b1, b2 to satisfy (544b).
5. Evaluate a21 to satisfy (544h).
6. Evaluate the remaining elements of β from (544i).
7. Evaluate the elements of U and V .

The following example method is found from β3 = 2, leading to c1 = 1
3 ,

together with the choice c2 = 2
3 :

0 0 0 1 1
3

1
18

1
2 0 0 1 1

6
1
18

0 3
4 0 1 1

4 0
0 3

4 0 1 1
4 0

0 0 1 0 0 0
3 −3 2 0 −2 0

.

Further examples of third order ARK methods, together with details on
possible interpolation techniques, can be found in Rattenbury (2005).

GENERAL LINEAR METHODS 431

545 Fourth order, four-stage ARK methods

We write specific coefficients of the method as shown in the tableau

0 0 0 0 1 u12 u13

a21 0 0 0 1 u22 u23

a31 a32 0 0 1 u32 u33

b1 b2 b3 0 1 b0 0
b1 b2 b3 0 1 b0 0
0 0 0 1 0 0 0
β1 β2 β3 β4 0 β0 0

.

As usual, c will denote the abscissa vector. We also write b = [b1 b2 b3 0]

and β = [β1, β2 β3 β4].
As in the example method discussed in Subsection 543, the input

approximations will be of the form y(xn−1) + O(h5), hy′(xn−1) + O(h5) and
h2y′′(xn−1) + O(h3), The crucial assumptions we will make are that each of
the stages is computed with order at least 2, and that the three output values
are not affected by order 3 perturbations in the third input approximation.
For stage order 2 it is necessary and sufficient that the matrix U should have
the form

U = [1 c − A1 1
2c2 − Ac].

Since u42 = b0, this will mean that b 1 + b0 = 1. The conditions for order 4
on the first output component yield the equations

b c = 1
2 , (545a)

b c2 = 1
3 , (545b)

b c3 = 1
4 , (545c)

b Ac2 = 1
12 , (545d)

b (1
2c2 − Ac) = 0, (545e)

where (545e) is included to ensure that an O(h3) error in the third input
vector does not detract from the order 4 behaviour. Combining (545b) and
(545e), we find

b Ac = 1
6 . (545f)

Either (545e) or the equivalent condition (545f), together with the related
condition on β given in (545i) below, will be referred to as ‘annihilation
conditions’. The vector β , together with β0, defines the third output
approximation, which is required to give the result h2y′′(xn) + O(h3). Hence,

β 1 + β0 = 0, (545g)
β c = 1. (545h)

432 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

We now turn to the conditions for RK stability. If the stability matrix

M(z) = V + zBU + z2BAU + z3BA2U + z4BA3U

is to have only a single non-zero eigenvalue, this eigenvalue must be the trace
of M(z) and for order 4 must equal 1 + z + 1

2z2 + 1
6z3 + 1

24z4. We therefore
impose the conditions that the traces of BU , BAU , BA2U and BA3U have
values 1, 1

2 , 1
6 , 1

24 , respectively. These can be written in the form

β (1
2c2 − Ac) = 0. (545i)

β A(1
2c2 − Ac) = 0, (545j)

β A2(1
2c2 − Ac) = 0, (545k)

b A2c + β A3(1
2c2 − Ac) =

1
24

. (545l)

Because A4 = 0, (545l) simplifies to

b A2c =
1

24(1 + 1
2β4c1)

. (545m)

We now show that β satisfies the equation

β4e4 = β (I + β4A). (545n)

This follows by observing that β4e4 − β (I + β4A) multiplied respectively by
e4, 1

2c2 −Ac, A(1
2c2 −Ac) and A2(1

2c2 −Ac) are each zero if and only if each
of (545j), (545k) and (545l) holds.

Multiply each side of (545n) by (I + β4A)−1c and use (545h) to show that

1 = β4 −
1
2
β2

4 +
1
6
β3

4 − β4
4

24(1 + 1
2β4c1)

,

from which it follows that

c1 =
−2(1 − β4 + 1

2β2
4 − 1

6β3
4 + 1

24β4
4)

β4(1 − β4 + 1
2β2

4 − 1
6β3

4)
. (545o)

To construct a four-stage fourth order ARK method in detail, carry out the
following steps:

1. Choose the value of β4.
2. Evaluate c1 from (545o).
3. Choose values of c2 and c3.
4. Evaluate b0, b1, b2, b3 to satisfy (545a), (545b), (545c), (545g).
5. Evaluate a21, a31, a32 to satisfy (545f), (545d), (545m).
6. Evaluate the remaining elements of β from (545n).
7. Evaluate the elements of U and V .

GENERAL LINEAR METHODS 433

In contrast to the method given in (505a), the following method has the same
c = [1 1

2
1
2 1] but different b :

0 0 0 0 1 1 1
2

1
16 0 0 0 1 7

16
1
16

− 1
16 1 0 0 1 − 7

16 − 5
16

1
6

1
3

1
3 0 1 1

6 0
1
6

1
3

1
3 0 1 1

6 0

0 0 0 1 0 0 0

−1 4
3 −4

3 2 0 −1 0

.

A further example with c = [11
24

13
24 1 1] is given by the matrix

0 0 0 0 1 11
24

121
1152

104
297 0 0 0 1 455

2376 − 143
10368

1820
4653

44
47 0 0 1 −1523

4653 − 473
2538

48
143

48
143

47
286 0 1 47

286 0
48
143

48
143

47
286 0 1 47

286 0

0 0 0 1 0 0 0

−354
143

162
143 −423

286 3 0 − 51
286 0

.

These methods were introduced in Butcher (1997, 1998). Although it does not
seem possible to find similar methods with s = p stages where p > 4, we will
see in the next subsection that something very similar can be achieved.

546 A fifth order, five-stage method

We will consider a special method constructed using a more general
formulation of fourth order methods in which there is an additional fifth stage.
There is enough freedom to ensure that the error constants are zero. This does
not mean that, regarded as an ARK method, a method constructed this way
has fifth order, because the trivial rescaling normally used to achieve variable
stepsize does not preserve the correct behaviour up to h5 terms. However, a
slight modification to the way the method is implemented restores fifth order
performance.

The derivation and the results of preliminary experiments are presented in
Butcher and Moir (2003). A fuller description is given by Rattenbury (2005).

434 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

For constant stepsize, the tableau for the method is

0 0 0 0 0 1 1
4

1
32

2
5 0 0 0 0 1 1

10
1
40

27
160

75
128 0 0 0 1 − 3

640 − 69
1280

69
35 −51

28
8
7 0 0 1 − 41

140
17
280

16
45

2
15

16
45

7
90 0 1 7

90 0
16
45

2
15

16
45

7
90 0 1 7

90 0

0 0 0 0 1 0 0 0

−1352
225

34
15 −256

75 −196
225

24
5 0 242

75 0

. (546a)

When the stepsize is changed at the end of step n from h to rh, an additional
term has to be added to the scaled result. In this context D(r) will denote
the scaling matrix D(r) = diag(1, r, r2) so that, for any of the lower order
ARK methods, change of stepsize would be accompanied by the rescaling
y[n] → (D(r) ⊗ IN)y[n]. For (546a), this is corrected to

y[n] → (D(r) ⊗ IN)y[n] + r2(1 − r)δ,

where

δ = 496
45 hF1 + 224

25 hF2 − 4928
225 hF3 − 6482

225 hF4 + 38hF5 − 1636
225 y

[n−1]
2 .

547 ARK methods for stiff problems

In Butcher and Rattenbury (2005), the ARK type of method was extended
to the solution of stiff problems. Methods were presented with orders 3 and
4, subject to a number of criteria, and these were supported by preliminary
numerical comparisons with standard methods. Because stiff ARK methods
are still at an early stage of development, we will not attempt to give a full
description, but will present a single third order method,

[
A U

B V

]
=

1
3 0 0 1 2

3
1
6

− 1
16

1
3 0 1 11

48
1
48

−1
6

2
3

1
3 1 1

6 0

−1
6

2
3

1
3 1 1

6 0

0 0 1 0 0 0
1
3 −8

3 2 0 1
3 0

, (547a)

together with a convenient starting method. This is not the most successful
of the methods known so far, but it has simple coefficients and will serve for
illustrative purposes.

GENERAL LINEAR METHODS 435

To start the method, and simultaneously progress the method a single step
forward, the starting method should be a three-output Runge–Kutta method.
For input the value of y(x0), the method given in the following tableau gives
suitable approximations to y(x1), hy′(x1) and h2y′′(x1):

[
A U

B V

]
=

1
3 0 0 0 1
1
3

1
3 0 0 1

−5
3

4
3

1
3 0 1

1 −1
4 − 1

12
1
3 1

1 −1
4 − 1

12
1
3 1

0 0 0 1 0

−2 −1 2
3

7
3 0

.

For the method given by (547a), the stability function is

R(z) =
1 − 1

6z2 − 1
27z3

(1 − 1
3z)3

,

and it can be verified to satisfy the conditions of A-stability.
Further details concerning stiff ARK methods, and of ARK methods in

general, can be found in Rattenbury (2005).

Exercises 54

54.1 Find the stability matrix of the method given by (542b) and verify that
it is RK-stable.

54.2 Does a transformation matrix exist such that the input to the
transformed method approximates the two quantities y(xn−1 + θh) and
hy′(xn−1 + θh), in each to within O(h3), for some θ?

54.3 Show that the method given by (542c) is L-stable.

54.4 Is the same true for the method in which
√

2 is replaced by −
√

2
throughout?

54.5 Which of the two methods (542c) and the method where the sign of
√

2
is reversed, is likely to be more accurate?

54.6 Find a third order ARK method with β3 = 2 and c2 = 1.

436 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

55 Methods with Inherent Runge–Kutta Stability

550 Doubly companion matrices

As a preliminary to a discussion of inherent RK stability, we recall the
properties of the matrices introduced by Butcher and Chartier (1997). The
original application was in the analysis of singly implicit methods with a
specific effective order, but they also have a central role in the construction of
the methods to be considered in Subsection 551. A review of doubly companion
matrices is given in Butcher and Wright (2006).

Let α(z) = 1 + α1z + · · · + αnzn and β(z) = 1 + β1z + · · · + βnzn denote
given polynomials, and consider the n × n matrix

X =

−α1 −α2 −α3 · · · −αn−1 −αn − βn

1 0 0 · · · 0 −βn−1

0 1 0 · · · 0 −βn−2

...
...

...
...

...
0 0 0 · · · 1 −β1

 . (550a)

Theorem 550A The coefficients in the characteristic polynomial of X,
det(wI − X) = wn + γ1w

n−1 + γ2w
n−2 + · · · + γn, are given by

1 + γ1z + γ2z
2 + · · · + γnzn = det(I − zX) = α(z)β(z) + O(zn+1).

Proof. We assume that the eigenvalues of X are distinct and non-zero. There
is no loss of generality in this assumption because, for given values of the
α coefficients, the coefficients in the characteristic polynomial are continuous
functions of the β coefficients; furthermore, choices of the β coefficients which
lead to distinct non-zero eigenvalues form a dense set.

Let λ denote an eigenvalue of X, and let

vk = λk + β1λ
k−1 + β2λ

k−2 + · · · + βk, k = 0, 1, 2, . . . , n.

By comparing components numbered n, n − 1, . . . , 2 of Xv and λv, where

V = [vn−1 vn−2 · · · 1] , (550b)

we see that v is the eigenvector corresponding to λ. Now compare the first
components of λv and Xv and it is found that

λvn + α1vn−1 + · · · + αn = 0

and contains all the terms with non-negative exponents in the product

vn(1 + α1λ
−1 + · · · + αnλ−n).

Replace λ by z−1 and the result follows. �

GENERAL LINEAR METHODS 437

Write φ(z) for the vector (550b) with λ replaced by z. We now note that

zφ(z) − Xφ(z) =
n∏

i=1

(z − λi)e1, (550c)

because the expression vanishes identically except for the first component
which is a monic polynomial of degree n which vanishes when z is an
eigenvalue.

We are especially interested in choices of α and β such that X has a single
n-fold eigenvalue, so that

α(z)β(z) = (1 − λz)n + O(zn+1) (550d)

and so that the right-hand side of (550c) becomes (z−λ)ne1. In this case it is
possible to write down the similarity that transforms X to Jordan canonical
form.

Theorem 550B Let the doubly companion matrix X be chosen so that
(550d) holds. Also let φ(z) denote the vector given by (550b) with λ replaced
by z, and let S the matrix given by

Ψ =
[

1
(n−1)!φ

(n−1)(λ) 1
(n−2)!φ

(n−2)(λ) · · · 1
1!φ

′(λ) φ(λ)
]
.

Then

Ψ−1XΨ =

λ 0 0 · · · 0 0
1 λ 0 · · · 0 0
0 1 λ · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 λ

 .

Proof. From the special case of (550c), we have

Xφ(z) = zφ(z) − (z − λ)ne1. (550e)

Differentiate k times, divide by k! and set z = λ, for k = 1, 2, . . . , n − 1. The
result is

X
1
k!

φ(k)(λ) = λI
1
k!

φ(k)(λ) +
1

(k − 1)!
φ(k−1)(λ), k = 1, 2, . . . , n − 1.

Hence the vectors φ(λ), 1
1!φ

′(λ), 1
2!φ

′′(λ), . . . , 1
(n−1)!φ

(n−1)(λ) form a sequence
of eigenvector and generalized eigenvectors, and the result follows. �

The inverse of Ψ is easy to evaluate by interchanging the roles of rows and
columns of X. We present the following result without further proof.

438 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Corollary 550C If

χ(λ) = [1 λ + α1 λ2 + α1λ + α2 · · · λn−1 + α1λ
n−2 + · · · + αn−1],

then

Ψ−1 = [χ(λ) 1
1!χ

′(λ) · · · 1
(n−2)!χ

(n−2)(λ) 1
(n−1)!χ

(n−1)(λ)] .

551 Inherent Runge–Kutta stability

In this subsection we discuss a special type of general linear method based
on several assumptions on the form of the method. The original formulation
for stiff methods was given in Butcher (2001) and for non-stiff methods in
Wright (2002). In Butcher and Wright (2003) it was shown how these ansätze
are interrelated and this led to the current formulation in Butcher and Wright
(2003a).

Besides making use of doubly companion matrices, we also use the special
r × r matrix J and its transpose K, where

J =

0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0

 .

For the special type of inherently RK stable general linear method we
consider, A has the diagonally implicit form

A =

λ 0 0 · · · 0
a21 λ 0 · · · 0
a31 a32 λ · · · 0
...

...
...

...
as1 as2 as3 · · · λ

 ,

with λ ≥ 0, and V has the form

V =

[
1 v

0 V̇

]
, (551a)

where ρ(V̇) = 0, with ρ denoting spectral radius. We assume that p = q and
that s = r = p + 1. In some special cases, the last columns of U and V will
vanish, thus making it possible for r to be reduced to r = p.

GENERAL LINEAR METHODS 439

Definition 551A A general linear method (A, U, B, V) is ‘inherently Runge–
Kutta stable’ if V is of the form (551a) and the two matrices

BA − XB and BU − XV + V X

are zero except for their first rows, where X is some matrix.

The significance of this definition is expressed in the following.

Theorem 551B Let (A, U, B, V) denote an inherently RK stable general
linear method. Then the stability matrix

M(z) = V + zB(I − zA)−1U

has only a single non-zero eigenvalue.

Proof. Calculate the matrix

(I − zX)M(z)(I − zX)−1,

which has the same eigenvalues as M(z). We use the notation ≡ to denote
equality of two matrices, except for the first rows. Because BA ≡ XB and
BU ≡ XV − V X, it follows that

(I − zX)B ≡ B(I − zA),
(I − zX)V ≡ V (I − zX) − zBU,

so that
(I − zX)M(z) ≡ V (I − zX).

Hence (I − zX)M(z)(I − zX)−1 is identical to V , except for the first row.
Thus the eigenvalues of this matrix are its (1, 1) element together with the p
zero eigenvalues of V̇ . �

Since we are adopting, as standard r = p + 1 and a stage order q = p, it is
possible to insist that the vector-valued function of z, representing the input
approximations, comprises a full basis for polynomials of degree p. Thus, we
will introduce the function Z given by

Z =

1
z

z2

...
zp

 , (551b)

440 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

which represents the input vector

y[n−1] =

y(xn−1)
hy′(xn−1)
h2y′′(xn−1)

...
hpy(p)(xn−1)

 . (551c)

This is identical, except for a simple rescaling by factorials, to the Nordsieck
vector representation of input and output approximations, and it will be
convenient to adopt this as standard.

Assuming that this standard choice is adopted, the order conditions are

exp(cz) = zA exp(cz) + UZ + O(zp+1), (551d)

exp(z)Z = zB exp(cz) + V Z + O(zp+1). (551e)

This result, and generalizations of it, make it possible to derive stiff methods
of quite high orders. Furthermore, Wright (2003) has shown how it is possible
to derive explicit methods suitable for non-stiff problems which satisfy the
same requirements. Following some more details of the derivation of these
methods, some example methods will be given.

552 Conditions for zero spectral radius

We will need to choose the parameters of IRKS methods so that the p × p
matrix V̇ has zero spectral radius. In Butcher (2001) it was convenient to
force V̇ to be strictly lower triangular, whereas in the formulation in Wright
(2002) it was more appropriate to require V̇ to be strictly upper triangular. To
get away from these arbitrary choices, and at the same time to allow a wider
range of possible methods, neither of these assumptions will be made and
we explore more general options. To make the discussion non-specific to the
application to IRKS methods, we assume we are dealing with n × n matrices
related by a linear equation of the form

y = axb − c, (552a)

and the aim will be to find lower triangular x such that y is strictly upper
triangular. The constant matrices a, b and c will be assumed to be non-singular
and LU factorizable. In this discussion only, define functions λ, µ and δ so
that for a given matrix a,

λ(a) is unit lower triangular such that λ(a)−1a is upper triangular,
µ(a) is the upper triangular matrix such that a = λ(a)µ(a),
δ(a) is the lower triangular part of a.

GENERAL LINEAR METHODS 441

Using these functions we can find the solution of (552a), when this solution
exists. We have in turn

δ(axb) = δ(c),

δ
(
µ(a−1)−1λ(a−1)−1xλ(b)µ(b)

)
= δ(c),

δ
(
λ(a−1)−1xλ(b)

)
= δ
(
µ(a−1)δ(c)µ(b)−1

)
,

implying that
x = δ

(
λ(a−1)δ

(
µ(a−1)δ(c)µ(b)−1

)
λ(b)−1

)
. (552b)

Thus, (552b) is the required solution of (552a).
This result can be generalized by including linear constraints in the

formulation. Let d and e denote vectors in R
n and consider the problem

δ(axb − c) = 0, xd = e.

Assume that d is scaled so that its first component is 1. The matrices a, b and
c are now, respectively n× (n−1), (n−1)×n and (n−1)× (n−1). Partition
these, and the vectors d and e, as

a =
[

a1 a2

]
, b =

[
b1

b2

]
, d =

[
1
d2

]
, e =

[
e1

e2

]
,

where a1 is a single column and b1 a single row.
The solution to this problem is

x =

[
e1 0

e2 − x̂d2 x̂

]
,

where x̂ satisfies δ(âx̂b̂ − c) = 0, and

â = a2, b̂ = b2 − d2b1, ĉ = c − aeb1.

Finally we consider the addition of a second constraint so that the problem
becomes

δ(axb − c) = 0, xd = e, f x = g ,

where c is (n − 2) × (n − 2) and the dimensions of the various other matrix
and vector partitions, including the specific values d1 = f3 = 1, are indicated
in parentheses

a =
[

a1

(1)

a2

(n−2)

a3

(1)

(n−2)

]
b =

 b1

(n−2)

(1)

b2 (n−2)

b3 (1)

 d =

 1
(1)

(1)

d2 (n−2)

d3 (1)

e =

 e1

(1)

(1)

e2 (n−2)

e3 (1)

 f =
[

f1

(1)

f2

(n−2)

1
(1)

(1)

]
g =

[
g1

(1)

g2

(n−2)

g3

(1)

(1)

]

442 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

For both linear constraints to be satisfied it is necessary that f e = f Bd =
g d. Assuming this consistency condition is satisfied, denote the common value
of f e and g d by θ. The solution can now be written in the form

x =

 e1 0 0
e2 − x̂d2 x̂ 0

e3 + g1 − θ + f2x̂d2 g2 − f2x̂ g3

 ,

where
δ(âx̂b̂ − ĉ) = 0,

with

â = a2 − a3f2, b̂ = b2 − d2b1, ĉ = c − aeb1 − a3g b + θa3b1.

553 Derivation of methods with IRK stability

For the purpose of this discussion, we will always assume that the input
approximations are represented by Z given by (551b), so that these
approximations as input to step n are equal, to within O(hp+1), to the
quantities given by (551c).

Theorem 553A If a general linear method with p = q = r − 1 = s − 1
has the property of IRK stability then the matrix X in Definition 551A is a
(p + 1) × (p + 1) doubly companion matrix.

Proof. Substitute (551d) into (551e) and compare (551d) with zX multiplied
on the left. We find

exp(z)Z = z2BA exp(cz) + zBUZ + V Z + O(zp+1), (553a)

z exp(z)XZ = z2XB exp(cz) + zXV Z + O(zp+1). (553b)

Because BA ≡ XB and BU ≡ XV −V X, the difference of (553a) and (553b)
implies that

zXZ ≡ Z + O(zp+1).

Because zJZ ≡ Z + O(zp+1), it now follows that

(X − J)Z ≡ O(zp),

which implies that X − J is zero except for the first row and last column. �

We will assume without loss of generality that βp+1 = 0.

GENERAL LINEAR METHODS 443

By choosing the first row of X so that σ(X) = σ(A), we can assume that
the relation BA = XB applies also to the first row. We can now rewrite the
defining equations in Definition 551A as

BA = XB, (553c)
BU = XV − V X + e1ξ , (553d)

where ξ = [ξ1 ξ2 · · · ξp+1] is a specific vector. We will also write
ξ(z) = ξ1z + ξ2z

2 + · · · + ξp+1z
p+1. The transformed stability function in

Theorem 551B can be recalculated as

(I − zX)M(z)(I − zX)−1 = V + ze1ξ (I − zX)−1,

with (1, 1) element equal to

1 + zξ(I − zX)−1e1 =
det(I + z(e1ξ − X))

det(I − zX)

=
(α(z) + ξ(z))β(z)

α(z)β(z)
+ O(zp+2), (553e)

where the formula for the numerator follows by observing that X − e1ξ is a
doubly companion matrix, in which the α elements in the first row are replaced
by the coefficients of α(z) + ξ(z).

The (1, 1) element of the transformed stability matrix will be referred to as
the ‘stability function’ and denoted by R(z). It has the same role for IRKS
methods as the stability function of a Runge–Kutta method. For implicit
methods, the stability function will be R(z) = N(z)/(1 − λz)p+1, where N(z)
is a polynomial of degree p + 1 given by

N(z) = exp(z)(1 − λz)p+1 − ε0z
p+1 + O(zp+2).

The number ε0 is the ‘error constant’ and is a design parameter for a particular
method. It would normally be chosen so that the coefficient of zp+1 in N(z)
is zero. This would mean that if λ is chosen for A-stability, then this choice
of ε0 would give L-stability.

For non-stiff methods, λ = 0 and N(z) = exp(z) − ε0z
p+1 + O(zp+2). In

this case, ε0 would be chosen to balance requirements of accuracy against an
acceptable stability region.

In either case, we see from (553e) that N(z) = α(z)(β(z)+ξ(z))+O(zp+1),
so that ξ(z), and hence the coefficients ξ1, ξ2, . . . , ξp+1 can be found.

Let C denote the (p + 1) × (p + 1) matrix with (i, j) element equal to
cj−1
i /(j − 1)! and E the (p + 1) × (p + 1) matrix with (i, j) element equal to

1/(j − i)! (with the usual convention that this element vanishes if i > j). We
can now write (551d) and (551e) as

U = C − ACK,

V = E − BCK.

444 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Substitute into (553d) and make use of (553c) and we find

BC(I − KX) = XE − EX + e1ξ . (553f)

Both I −KX and XE −EX + e1ξ vanish, except for their last columns, and
(553f) simplifies to

BC

βp

βp−1

...
β1

1

 =

1
1!

1
2! · · · 1

p!
1

(p+1)! − ε0

0 1
1! · · · 1

(p−1)!
1

(p)!

...
...

...
...

0 0 · · · 1
1!

1
2!

0 0 · · · 0 1
1!

βp

βp−1

...
β1

1

 .

Imposing conditions on the spectrum of V implies constraints on B. This
principle is used to derive methods with a specific choice of the vector β and
the abscissa vector c.

Rather than work in terms of B directly, we introduce the matrix B̃ =
Ψ−1B. Because

B̃A = (J + λI)B̃,

and because both A and J+λI are lower triangular, B̃ is also lower triangular.
In the derivation of a method, B̃ will be found first and the method coefficient
matrices found in terms of this as

A = B̃−1(J + λI)B̃,

U = C − ACK,

B = ΨB̃,

V = E − BCK.

To construct an IRKS method we need to carry out the following steps:

1. Choose the value of λ and ε0 taking into account requirements of stability
and accuracy.

2. Choose c1, c2, . . . , cp+1. These would usually be distributed more or less
uniformly in [0, 1].

3. Choose β1, β2, . . . , βp. This choice is to some extent arbitrary but can
determine the magnitude of some of the elements in the coefficient matrices
of the method.

4. Choose a non-singular p × p matrix P used to determine in what way V̇
has zero spectral radius. If δ is defined as in Subsection 552, then we will
impose the condition δ(P−1V̇ P) = 0. It would be normal to choose P as
the product of a permutation matrix and a lower triangular matrix.

GENERAL LINEAR METHODS 445

5. Solve the linear equations for the non-zero elements of B̃ from a
combination of the equations δ(P−1Ψ̇B̃CK̇P) = δ(P−1ĖP)and

B̃C

βp

βp−1

...
β1

1

 = Ψ−1

1
1!

1
2! · · · 1

p!
1

(p+1)! − ε0

0 1
1! · · · 1

(p−1)!
1

(p)!

...
...

...
...

0 0 · · · 1
1!

1
2!

0 0 · · · 0 1
1!

βp

βp−1

...
β1

1

 .

554 Methods with property F

There is a practical advantage for methods in which

e1B = ep+1A,

e2B = ep+1.

A consequence of these assumptions is that βp = 0.
For this subclass of IRKS methods, in addition to the existence of reliable

approximations

hFi = hy′(xn−1 + hci) + O(hp+2), i = 1, 2, . . . , p + 1, (554a)

where y(x) is the trajectory such that y(xn−1) = y
[n−1]
1 , the value of y

[n−1]
2

provides an additional approximation

hF0 = hy′(xn−1) + O(hp+2),

which can be used together with the p + 1 scaled derivative approximations
given by (554a).

This information makes it possible to estimate the values of

hp+1y(p+1)(xn) and hp+2y(p+2)(xn),

which are used for local error estimation purposes both for the method
currently in use as well as for a possible method of one higher order. Thus we
can find methods which provide rational criteria for stepsize selection as well
as for order selection.

Using terminology established in Butcher (2006), we will refer to methods
with this special property as possessing property F. They are an extension of
FSAL Runge–Kutta methods.

The derivation of methods based on the ideas in Subsections 553 and 554 is
joint work with William Wright and is presented in Wright (2002) and Butcher
and Wright (2003, 2003a).

446 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

555 Some non-stiff methods

The following method, for which c = [13 , 2
3 , 1] , has order 2:

 A U

B V

 =

0 0 0 1 1
3

1
18

3
10 0 0 1 11

30
11
90

1
5

5
12 0 1 23

60
7
45

5
3 −29

12
4
3 1 5

12
2
9

−2 4 −1 0 0 0

3 −9 6 0 0 0

. (555a)

This method was constructed by choosing β1 = −1
6 , β2 = 2

9 , ε0 = 0 and
requiring V̇ to be strictly upper triangular. It could be interpreted as having
an enhanced order of 3, but of course the stage order is only 2.

The next method, with c = [14 , 1
2 , 3

4 , 1] , has order 3:

0 0 0 0 1 1
4

1
32

1
384

224
403 0 0 0 1 − 45

806 − 45
3224

67
19344

1851
2170

93
280 0 0 1 −3777

8680 − 681
6944

297
138880

305
364

5
28

5
12 0 1 − 473

1092 − 81
728

17
17472

305
364

5
28

5
12 0 1 − 473

1092 − 81
728

17
17472

0 0 0 1 0 0 0 0

−156
7

188
7 −20 8 0 52

7
1
7 − 1

28

−512
7

584
7 −160

3 16 0 568
21

4
7 −1

7

. (555b)

For this method, possessing property F, β1 = 1
2 , β2 = 1

16 , ε0 = 0. The 3× 3
matrix V̇ is chosen so that δ(P−1V̇ P) = 0, where

P =

 0 0 1
1 0 0
4 1 0

 .

GENERAL LINEAR METHODS 447

556 Some stiff methods

The first example, with λ = 1
4 and c = [14 , 1

2 , 3
4 , 1] , has order 3:

[
A U

B V

]

=

1
4 0 0 0 1 0 − 1

32 − 1
192

11
2124

1
4 0 0 1 130

531 − 11
8496 − 719

67968

117761
23364 −189

44
1
4 0 1 −130

531
183437
186912

283675
747648

312449
23364 −4525

396
1
36

1
4 1 −650

531
121459
46728

130127
124608

−58405
7788

4297
132 −475

12 15 1 125
236

510
649 − 733

20768

−64
33

746
33 −95

3 12 0 0 85
44

677
1056

−8
3

4
3

4
3 0 0 0 0 13

24

−32 112 −128 48 0 0 0 0

.

(556a)

This method was constructed with β1 = −1
4 , β2 = β3 = 1

4 , ε0 = 1
256 and

δ(V̇) = 0. The choice of ε0 was determined by requiring the stability function
to be

R(z) =
1 − 1

8z2 − 1
48z3

(1 − 1
4z)4

,

which makes the method L-stable.
The second example has order 4 and an abscissa vector [1 3

4
1
4

1
2 1]:

A =

1
4 0 0 0 0

− 513
54272

1
4 0 0 0

3706119
69088256 − 488

3819
1
4 0 0

32161061
197549232 −111814

232959
134
183

1
4 0

− 135425
2948496 − 641

10431
73
183

1
2

1
4

 ,

U =

1 3

4
1
4

1
24 0

1 27649
54272

5601
54272

513
108544 − 153

54272

1 15366379
207264768

756057
69088256

1620299
414529536 − 1615

3636224

1 − 32609017
197549232

929753
65849744

4008881
197549232

58327
27726208

1 − 367313
8845488 − 22727

2948496
40979

5896992
323

620736

 ,

448 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

B =

− 135425

2948496 − 641
10431

73
183

1
2

1
4

0 0 0 0 1
2255
1159 −47125

10431
447
61 −11

2
7
2

25240
3477 −192776

10431
6728
183 −20 8

9936
1159 −239632

10431
3120
61 −24 8

 ,

V =

1 − 367313

8845488 − 22727
2948496

40979
5896992

323
620736

0 0 0 0 0
0 −28745

10431 − 1937
13908

117
18544

65
11712

0 −141268
10431 −2050

3477 − 187
2318

113
1464

0 −216416
10431 − 452

3477 − 491
1159

161
732

 . (556b)

This property F method was constructed with β1 = 3
4 , β2 = 3

16 , β3 = 1
64 ,

ε0 = 13
15360 and δ(P−1V̇ P) = 0, where

P =

0 0 0 1
1 0 0 0
8 1 0 0
16 4 1 0

 .

The method is L-stable with

R(z) =
1 − 1

4z − 1
8z2 + 1

96z3 + 7
768z4

(1 − 1
4z)5

.

557 Scale and modify for stability

With the aim of designing algorithms based on IRKS methods in a variable
order, variable stepsize setting, we consider what happens when h changes
from step to step. If we use a simple scaling system, as in classical Nordsieck
implementations, we encounter two difficulties. The first of these is that
methods which are stable when h is fixed can become unstable when h is
allowed to vary. The second is that attempts to estimate local truncation
errors, for both the current method and for a method under consideration for
succeeding steps, can become unreliable.

Consider, for example, the method (555b). If h is the stepsize in step n,
which changes to rh in step n + 1, the output would be scaled from y[n] to
(D(r)⊗IN)y[n], where D(r) = diag(1, r, r2, r3). This means that the V matrix
which determines stable behaviour for non-stiff problems, becomes effectively

GENERAL LINEAR METHODS 449

D(r)V =

1 − 473

1092 − 81
728

17
17472

0 0 0 0
0 52

7 r2 1
7r2 − 1

28r2

0 568
21 r3 4

7r3 −1
7r3

 .

To guarantee stability we want all products of matrices of the form

V̂ (r) =

[
1
7r2 − 1

28r2

4
7r3 −1

7r3

]
(557a)

to be bounded. As a first requirement, we would need (557a) to be power-
bounded. Because the determinant is zero, this means only that the trace
r2(1 − r)/7 must lie in [−1, 1], so that r ∈ [0, r�], where r� ≈ 2.310852163
is a zero of r3 = r2 + 7. For a product V̂ (rn)V̂ (rn−1) · · · V̂ (r1), the non-zero
eigenvalue is

∏n
i=1

(
(r2 − r3)/7

)
so that r1, r2, . . . , rn ∈ [0, r�] is sufficient for

variable stepsize stability.
While this is a very mild restriction on r values for this method, the

corresponding restriction may be more severe for other methods. For example,
for the scaled value of V given by (556b) the maximum permitted value of r
is approximately 1.725419906.

Whatever restriction needs to be imposed on r for stability, we may wish
to avoid even this restriction. We can do this using a modification to simple
Nordsieck scaling. By Taylor expansion we find

− 40
21hy′(xn−1 + hc1) − 6

7hy′(xn−1 + hc2) + 40
21hy′(xn−1 + hc3)

− 2
3hy′(xn−1 + hc4) + 32

21hy′(xn−1) + 1
7h2y′′(xn−1) − 1

28h3y(3)(xn−1)

= O(h4),

so that it is possible to add a multiple of the vector

d =
[
−40

21 − 6
7

40
21 − 2

3 0 32
21

1
7 − 1

28

]
to any row of the combined matrices [B|V] without decreasing the order below
3. In the scale and modify procedure we can, after effectively scaling [B|V] by
D(r), modify the result by adding (1 − r2)d to the third row and 4(1 − r3)d
to the fourth row. Expressed another way, write

δ = − 40
21hF1 − 6

7hF2 + 40
21hF3 − 2

3hF4 + 32
21y

[n−1]
2 + 1

7y
[n−1]
3 − 1

28 y
[n−1]
4 ,

so that the scale and modify process consists of replacing y[n] by

D(r)y[n] + diag
(
0, 0, (1 − r2), 4(1 − r3)

)
δ.

450 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

558 Scale and modify for error estimation

Consider first the constant stepsize case and assume that, after many steps,
there is an accumulated error in each of the input components to step n. If
y(x) is the particular trajectory defined by y(xn−1) = y

[n−1]
1 , then write the

remaining input values as

y
[n−1]
i = hi−1y(i−1)(xn−1) − εi−1h

p+1y(p+1)(xn−1) + O(hp+2),
i = 2, 3, . . . , p + 1. (558a)

After a single step, the principal output will have acquired a truncation error
so that its value becomes y(xn) − ε0h

p+1y(p+1)(xn) + O(hp+2), where

ε0 = 1
(p+1)! −

1
p!

s∑
j=1

b1jc
p
j +

r∑
j=2

v1jεj−1. (558b)

Write ε as the vector with components ε1, ε2, . . . , εp. The value of ε is
determined by the fact that (558a) evolves after a single step to

y
[n]
i = hi−1y(i−1)(xn) − εi−1h

p+1y(p+1)(xn) + O(hp+2),
i = 2, 3, . . . , p + 1. (558c)

However,

y
[n]
i = h

s∑
j=1

bijy
′(xn−1+hcj)+

r∑
j=2

vijy
[n−1]
j +O(hp+1), i = 2, 3, . . . , p+1,

(558d)

so that substitution of (558a) and (558c) into (558d), followed by Taylor
expansion about xn−1, gives the result

ε =

1
p!
1

(p−1)!

...
1
1!

− 1
p! Ḃ + V̇ ε,

where Ḃ is the matrix B with its first row deleted. It was shown in Wright
(2003) that

εi = βp+1−i, i = 1, 2, . . . , p.

Without a modification to the simple scaling process, the constancy of ε
from step to step will be destroyed, and we consider how to correct for this.
There are several reasons for wanting this correction. First, the reliability

GENERAL LINEAR METHODS 451

of (558b), as providing an estimate of the local error in a step, depends on
values of ε in the input to the current step. Secondly, asymptotically correct
approximations to hp+1y(p+1)(xn) are needed for stepsize control purposes
and, if these approximations are based on values of both hF and y[n−1], then
these will also depend on ε in the input to the step. Finally, reliable estimates
of hp+2y(p+2)(xn) are needed as a basis for dynamically deciding when an
order increase is appropriate. It was shown in Butcher and Podhaisky (2006)
that, at least for methods possessing property F, estimation of both hp+1y(p+1)

and hp+2y(p+2) is possible, as long as constant ε values are maintained.
In Subsection 557 we considered the method (555b) from the point of view

of variable stepsize stability. To further adjust to maintain the integrity of ε
in a variable h regime, it is only necessary to add to the scaled and modified
outputs y

[n]
3 and y

[n]
4 , appropriate multiples of −hF1 + 3hF2 − 3hF3 + hF4.

Exercises 55

55.1 Show that the method given by (555a) has order 2, and that the stages
are also accurate to this order.

55.2 Find the stability matrix of the method (555a), and show that it has
two zero eigenvalues.

55.3 Show that the method given by (556a) has order 3, and that the stages
are also accurate to this order.

55.4 Find the stability matrix of the method (556a), and show that it has
two zero eigenvalues.

55.5 Show that (556a) is L-stable.

55.6 Show that the (i, j) element of Ψ−1 is equal to the coefficient of wi−1zj−1

in the power series expansion about z = 0 of α(z)/(1 − (λ + w)z).

References

Alexander R. (1977) Diagonally implicit Runge–Kutta methods for stiff ODEs.
SIAM J. Numer. Anal., 14, 1006–1021.

Axelsson O. (1969) A class of A-stable methods. BIT, 9, 185–199.
Axelsson O. (1972) A note on class of strongly A-stable methods. BIT, 12, 1–4.
Barton D., Willers I. M. and Zahar R. V. M. (1971) The automatic solution of

systems of ordinary differential equations by the method of Taylor series. Comput.
J., 14, 243–248.

Bashforth F. and Adams J. C. (1883) An Attempt to Test the Theories of Capillary
Action by Comparing the Theoretical and Measured Forms of Drops of Fluid, with
an Explanation of the Method of Integration Employed in Constructing the Tables
which Give the Theoretical Forms of Such Drops. Cambridge University Press,
Cambridge.

Brenan K. E., Campbell S. L. and Petzold L. R. (1989) Numerical Solution of Initial-
Value Problems in Differential-Algebraic Equations. North-Holland, New York.

Brouder C. (2000) Runge–Kutta methods and renormalization. Eur. Phys. J. C.,
12, 521–534.

Burrage K. (1978) A special family of Runge–Kutta methods for solving stiff
differential equations. BIT, 18, 22–41.

Burrage K. and Butcher J. C. (1980) Non-linear stability of a general class of
differential equation methods. BIT, 20, 185–203.

Burrage K., Butcher J. C. and Chipman F. H. (1980) An implementation of singly-
implicit Runge–Kutta methods. BIT, 20, 326–340.

Butcher J. C. (1963) Coefficients for the study of Runge–Kutta integration processes.
J. Austral. Math. Soc., 3, 185–201.

Butcher J. C. (1963a) On the integration processes of A. Huťa. J. Austral. Math.
Soc., 3, 202–206.

Butcher J. C. (1965) A modified multistep method for the numerical integration of
ordinary differential equations. J. Assoc. Comput. Mach., 12, 124–135.

Butcher J. C. (1965a) On the attainable order of Runge–Kutta methods. Math.
Comp., 19, 408–417.

Butcher J. C. (1966) On the convergence of numerical solutions to ordinary
differential equations. Math. Comp., 20, 1–10.

Butcher J. C. (1972) An algebraic theory of integration methods. Math. Comp., 26,
79–106.

Butcher J. C. (1975) A stability property of implicit Runge–Kutta methods. BIT,
15, 358–361.

Butcher J. C. (1977) On A-stable implicit Runge–Kutta methods. BIT, 17, 375–378.

Numerical Methods for Ordinary Differential Equations, Second Edition. J. C. Butcher
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-72335-7

454 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Butcher J. C. (1979) A transformed implicit Runge–Kutta method. J. Assoc.
Comput. Mach., 26, 731–738.

Butcher J. C. (1985) The nonexistence of ten-stage eighth order explicit Runge–
Kutta methods. BIT, 25, 521–540.

Butcher J. C. (1987) The Numerical Analysis of Ordinary Differential Equations,
Runge–Kutta and General Linear Methods. John Wiley & Sons Ltd, Chichester.

Butcher J. C. (1987a) The equivalence of algebraic stability and AN-stability. BIT,
27, 510–533.

Butcher J. C. (1995) On fifth order Runge–Kutta methods. BIT, 35, 202–209.
Butcher J. C. (1995a) An introduction to DIMSIMs. Comput. Appl. Math., 14, 59–

72.
Butcher J. C. (1997) An introduction to ‘Almost Runge–Kutta’ methods. Appl.

Numer. Math., 24, 331–342.
Butcher J. C. (1998) ARK methods up to order five. Numer. Algorithms, 17, 193–

221.
Butcher J. C. (2001) General linear methods for stiff differential equations. BIT, 41,

240–264.
Butcher J. C. (2002) The A-stability of methods with Padé and generalized Padé

stability functions. Numer. Algorithms, 31, 47–58.
Butcher J. C. (2006) General linear methods. Acta Numerica, 15, 157–256.
Butcher J. C. (2008) Order and stability of generalized Padé approximations. Appl.

Numer. Math. (to appear).
Butcher J. C. and Cash J. R. (1990) Towards efficient Runge–Kutta methods for

stiff systems. SIAM J. Numer. Anal., 27, 753–761.
Butcher J. C. and Chartier P. (1997) A generalization of singly-implicit Runge–

Kutta methods. Appl. Numer. Math., 24, 343–350.
Butcher J. C. and Chipman F. H. (1992) Generalized Padé approximations to the

exponential function. BIT, 32, 118–130.
Butcher J. C. and Hill A. T. (2006) Linear multistep methods as irreducible general

linear methods. BIT, 46, 5–19.
Butcher J. C. and Jackiewicz Z. (1996) Construction of diagonally implicit general

linear methods of type 1 and 2 for ordinary differential equations. Appl. Numer.
Math., 21, 385–415.

Butcher J. C. and Jackiewicz Z. (1998) Construction of high order diagonally implicit
multistage integration methods for ordinary differential equations. Appl. Numer.
Math., 27, 1–12.

Butcher J. C. and Jackiewicz Z. (2003) A new approach to error estimation for
general linear methods. Numer. Math., 95, 487–502.

Butcher J. C. and Moir N. (2003) Experiments with a new fifth order method.
Numer. Algorithms, 33, 137–151 .

Butcher J. C. and Podhaisky H. (2006) On error estimation in general linear methods
for stiff ODEs. Appl. Numer. Math., 56, 345–357.

Butcher J. C. and Rattenbury N. (2005) ARK methods for stiff problems. Appl.
Numer. Math., 53, 165–181 .

Butcher J. C. and Wright W. M. (2003) A transformation relating explicit and
diagonally-implicit general linear methods. Appl. Numer. Math., 44, 313–327.

Butcher J. C. and Wright W. M. (2003a) The construction of practical general linear
methods. BIT, 43, 695–721.

Butcher J. C. and Wright W. M. (2006) Applications of doubly companion matrices.
Appl. Numer. Math., 56, 358–373.

REFERENCES 455

Byrne G. D. and Lambert R. J. (1966) Pseudo-Runge–Kutta methods involving two
points. J. Assoc. Comput. Mach., 13, 114–123.

Cooper G. J. (1987) Stability of Runge-Kutta methods for trajectory problems. IMA
J. Numer. Anal., 7, 1–13.

Cooper G. J. and Verner J. H. (1972) Some explicit Runge–Kutta methods of high
order. SIAM J. Numer. Anal., 9, 389–405.

Curtis A. R. (1970) An eighth order Runge–Kutta process with eleven function
evaluations per step. Numer. Math., 16, 268–277.

Curtis A. R. (1975) High-order explicit Runge–Kutta formulae, their uses and
limitations. J. Inst. Math. Appl., 16, 35–55.

Curtiss C. F. and Hirschfelder J. O. (1952) Integration of stiff equations. Proc. Nat.
Acad. Sci. U.S.A., 38, 235–243.

Dahlquist G. (1956) Convergence and stability in the numerical integration of
ordinary differential equations. Math. Scand., 4, 33–53.

Dahlquist G. (1963) A special stability problem for linear multistep methods. BIT,
3, 27–43.

Dahlquist G. (1976) Error analysis for a class of methods for stiff non–linear initial
value problems. In G. A. Watson (ed.) Numerical Analysis, Lecture Notes in
Math. 506, Springer, Berlin, 60–72.

Dahlquist G. (1978) G-stability is equivalent to A-stability. BIT, 18, 384–401.
Dahlquist G. (1983) On one-leg multistep methods. SIAM J. Numer. Anal., 20,

1130–1138.
Dahlquist G. and Jeltsch R. (1979) Generalized disks of contractivity for explicit

and implicit Runge–Kutta methods, Technical Report TRITA NA–7906, Dept. of
Numer. Anal. and Computing Sci., Roy. Inst. Tech.

Daniel J. W. and Moore R. E. (1970) Computation and Theory in Ordinary
Differential Equations. W. H. Freeman, San Francisco.

Davis P. J. and Rabinowitz P. (1984) Methods of Numerical Integration. Academic
Press, New York.

Donelson J. and Hansen E. (1971) Cyclic composite multistep predictor–corrector
methods. SIAM J. Numer. Anal., 8, 137–157.

Dormand J. R. and Prince P. J. (1980) A family of embedded Runge–Kutta formulae.
J. Comput Appl, Math., 6, 19–26.

Ehle B. L. (1969) On Padé approximations to the exponential function and A-stable
methods for the numerical solution of initial value problems, Research Rep. CSRR
2010, Dept. of AACS, University of Waterloo, Ontario, Canada.

Ehle B. L. (1973) A-stable methods and Padé approximations to the exponential.
SIAM J. Math. Anal., 4, 671–680.

Ehle B. L. and Picel Z. (1975) Two parameter, arbitrary order, exponential
approximations for stiff equations. Math. Comp., 29, 501–511.

Euler L. (1913) De integratione aequationum differentialium per approximationem.
In Opera Omnia, 1st series, Vol. 11, Institutiones Calculi Integralis, Teubner,
Leipzig and Berlin, 424–434.

Fehlberg E. (1968) Classical fifth, sixth, seventh and eighth order Runge–Kutta
formulas with stepsize control, NASA TR R-287.

Fehlberg E. (1969) Klassische Runge–Kutta-Formeln fünfter und siebenter Ordnung
mit Schrittweiten-Kontrolle. Computing, 4, 93–106.

Gear C. W. (1965) Hybrid methods for initial value problems in ordinary differential
equations. SIAM J. Numer. Anal., 2, 69–86.

456 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Gear C. W. (1967) The numerical integration of ordinary differential equations.
Math. Comp., 21, 146–156.

Gear C. W. (1971) Numerical Initial Value Problems in Ordinary Differential
Equations. Prentice Hall, Englewood Cliffs, NJ.

Gear C. W. (1971a) Algorithm 407, DIFSUB for solution of ordinary differential
equations. Comm. ACM, 14, 185–190.

Gear C. W. (1980) Runge–Kutta starters for multistep methods. ACM Trans. Math.
Software, 6, 263–279.

Gibbons A. (1960) A program for the automatic integration of differential equations
using the method of Taylor series. Comput. J., 3, 108–111.

Gill S. (1951) A process for the step-by-step integration of differential equations in
an automatic computing machine. Proc. Cambridge Philos. Soc., 47, 96–108.

Gragg W. B. and Stetter H. J. (1964) Generalized multistep predictor–corrector
methods. J. Assoc. Comput. Mach., 11, 188–209.

Gustafsson K. (1991) Control theoretic techniques for stepsize selection in explicit
Runge–Kutta methods. ACM Trans. Math. Software, 17, 533–544.

Gustafsson K., Lundh M. and Söderlind G. (1988) A PI stepsize control for the
numerical solution of ordinary differential equations. BIT, 28, 270–287.

Hairer E. (1978) A Runge–Kutta method of order 10. J. Inst. Math. Appl., 21, 47–59.
Hairer E. and Leone P. (2000) Some properties of symplectic Runge–Kutta methods.

NZ J. Math., 29, 169–175.
Hairer E., Lubich C. and Roche M. (1989) The Numerical Solution of Differential-

Algebraic Systems by Runge–Kutta Methods, Lecture Notes in Math. 1409.
Springer, Berlin.

Hairer E., Lubich C. and Wanner G. (2006) Geometric Numerical Integration:
Structure-preserving Algorithms for Ordinary Differential Equations. Springer,
Berlin.

Hairer E., Nørsett S. P. and Wanner G. (1993) Solving Ordinary Differential
Equations I: Nonstiff Problems. Springer, Berlin.

Hairer E. and Wanner G. (1974) On the Butcher group and general multi-value
methods. Computing, 13, 1–15.

Hairer E. and Wanner G. (1981) Algebraically stable and implementable Runge–
Kutta methods of high order. SIAM J. Numer. Anal., 18, 1098–1108.

Hairer E. and Wanner G. (1982) Characterization of non-linearly stable implicit
Runge–Kutta methods. In J. Hinze (ed.) Numerical Integration of Differential
Equations and Large Linear Systems, Lecture Notes in Math. 968, Springer, Berlin,
207–219.

Hairer E. and Wanner G. (1996) Solving Ordinary Differential Equations II: Stiff
and Differential-Algebraic Problems. Springer, Berlin.

Henrici P. (1962) Discrete Variable Methods in Ordinary Differential Equations.
John Wiley & Sons Inc, New York.

Henrici P. (1963) Error Propagation for Difference Methods. John Wiley & Sons Inc,
New York.

Heun K. (1900) Neue Methoden zur approximativen Integration der Differential-
gleichungen einer unabhängigen Veränderlichen. Z. Math. Phys., 45, 23–38.

Higham N. J. (1993) The accuracy of floating point summation. SIAM J. Sci.
Comput., 14, 783–799.

Hundsdorfer W. H. and Steininger B. I. (1991) Convergence of linear multistep and
one-leg methods for stiff nonlinear initial value problems. BIT, 31, 124–143.

REFERENCES 457

Huťa A. (1956) Une amélioration de la méthode de Runge–Kutta–Nyström pour
la résolution numérique des équations différentielles du premier ordre. Acta Fac.
Nat. Univ. Comenian. Math., 1, 201–224.

Huťa A. (1957) Contribution à la formule de sixième ordre dans la méthode de
Runge–Kutta–Nyström. Acta Fac. Nat. Univ. Comenian. Math., 2, 21–24.

Iserles A., Munthe-Kaas H. Z., Nørsett S. P. and Zanna A. (2000) Lie-group methods.
Acta Numer., 9, 215–365.

Iserles A. and Nørsett S. P. (1991) Order Stars. Chapman & Hall, London.
Kahan W. (1965) Further remarks on reducing truncation errors. Comm. ACM, 8,

40.
Kirchgraber U. (1986) Multistep methods are essentially one-step methods. Numer.

Math., 48, 85–90.
Kutta W. (1901) Beitrag zur näherungsweisen Integration totaler Differential-

gleichungen. Z. Math. Phys., 46, 435–453.
Lambert J. D. (1991) Numerical Methods for Ordinary Differential Systems: the

Initial Value Problem. John Wiley & Sons Ltd, Chichester.
Lasagni F. M. (1988) Canonical Runge–Kutta methods. Z. Angew. Math. Phys., 39,

952–953.
López-Marcos M. A., Sanz-Serna J. M. and Skeel R. D. (1996) Cheap enhancement

of symplectic integrators. In D. F. Griffiths and G. A. Watson (eds.) Numerical
Analysis, Pitman Res. Notes Math. Ser., 344, Longman, Harlow, 107–122.

Lotka A. J. (1925) Elements of Physical Biology. Williams and Wilkins, Baltimore,
Md.

Merson R. H. (1957) An operational method for the study of integration processes.
In Proc. Symp. Data Processing, Weapons Research Establishment, Salisbury, S.
Australia.

Milne W. E. (1926) Numerical integration of ordinary differential equations. Amer.
Math. Monthly, 33, 455–460.

Milne W. E. (1953) Numerical Solution of Differential Equations. John Wiley &
Sons Inc, New York.

Møller O. (1965) Quasi double-precision in floating point addition. BIT, 5, 37–50.
Møller O. (1965a) Note on quasi double-precision. BIT, 5, 251–255.
Moore R. E. (1964) The automatic analysis and control of error in digital

computation based on the use of interval numbers. In L. B. Rall (ed.) Error
in Digital Computation, vol. 1. John Wiley & Sons Inc, New York, 61–130.

Moulton F. R. (1926) New Methods in Exterior Ballistics. University of Chicago
Press.

Nordsieck A. (1962) On numerical integration of ordinary differential equations.
Math. Comp., 16, 22–49.

Nørsett S. P. (1974) Semi-explicit Runge–Kutta methods, Report No. 6/74, Dept.
of Math., Univ. of Trondheim.

Nyström E. J. (1925) Über die numerische Integration von Differentialgleichungen.
Acta Soc. Sci. Fennicae, 50 (13), 55pp.

Obreshkov N. (1940) Neue Quadraturformeln. Abh. der Preuß. Akad. der Wiss.,
Math.-naturwiss. Klasse, 4, .

Prothero A. and Robinson A. (1974) On the stability and accuracy of one-step
methods for solving stiff systems of ordinary differential equations. Math. Comp.,
28, 145–162.

Rattenbury N. (2005) Almost Runge–Kutta methods for stiff and non-stiff problems,
PhD thesis, The University of Auckland.

458 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

Richardson L. F. (1927) The deferred approach to the limit. Philos. Trans. Roy.
Soc. London Ser. A., 226, 299–361.

Robertson H. H. (1966) The solution of a set of reaction rate equations. In J. Walsh
(ed.) Numerical Analysis: An Introduction, Academic Press, London, 178–182.

Romberg W. (1955) Vereinfachte numerische Integration. Norske Vid. Selsk. Forh.,
Trondheim, 28, 30–36.

Rosenbrock H. H. (1963) Some general implicit processes for the numerical solution
of differential equations. Comput. J., 5, 329–330.

Runge C. (1895) Über die numerische Auflösung von Differentialgleichungen. Math.
Ann., 46, 167–178.

Sanz-Serna J. M. (1988) Runge–Kutta schemes for Hamiltonian systems. BIT, 39,
877–883.

Sanz-Serna J. M. and Calvo M. P. (1994) Numerical Hamiltonian Problems.
Chapman & Hall, London.

Scherer R. (1977) A note on Radau and Lobatto formulae for ODEs. BIT, 17, 235–
238.

Scherer R. (1978) Spiegelung von Stabilitätsbereichen. In R. Bulirsch,
R. D. Grigorieff and J. Schröder (eds.) Numerical Treatment of Differential
Equations, Lecture Notes in Math. 631, Springer, Berlin, 147–152.

Singh A. D. (1999) Parallel diagonally implicit multistage integration methods for
stiff ordinary differential equations, PhD thesis, The University of Auckland.

Söderlind G. (2002) Automatic control and adaptive time-stepping. Numer.
Algorithms, 31, 281–310.

Stoffer D. (1993) General linear methods: connection to one step methods and
invariant curves. Numer. Math., 64, 395–408.

Suris Yu. B. (1988) Preservation of symplectic structure in the numerical solution of
Hamiltonian systems (in Russian). Akad. Nauk SSSR, Inst. Prikl. Mat., Moscow,,
232, 148–160, 238–239.

Van der Pol B. (1926) On relaxation-oscillations. Philos. Mag. Ser. 7, 2, 978–992.
Verner J. H. (1978) Explicit Runge–Kutta methods with estimates of the local

truncation error. SIAM J. Numer. Anal., 15, 772–790.
Vitasek E. (1969) The numerical stability in solution of differential equations. In

J.L. Morris (ed.) Conf. on Numerical Solution of Differential Equations, Lecture
Notes in Math. 109, Springer, Berlin, 87–111.

Volterra V. (1926) Variazioni e fluttuazioni del numero d’individui in specie animali
conviventi. Memorie della R. Accad. Naz. dei Lincei, (Ser. VI), 2, 31–131.

Wanner G., Hairer E. and Nørsett S. P. (1978) Order stars and stability theorems.
BIT, 18, 475–489.

Wantanabe D. S. and Sheikh Q. M. (1984) One-leg formulas for stiff ordinary
differential equations. SIAM J. Sci. Statist. Comput., 2, 489–496.

Watts H. A. and Shampine L. F. (1972) A-stable block implicit one-step methods.
BIT, 12, 252–266.

Wright K. (1970) Some relationships between implicit Runge–Kutta, collocation and
Lanczos τ methods, and their stability properties. BIT, 10, 217–227.

Wright W. M. (2002) Explicit general linear methods with inherent Runge–Kutta
stability. Numer. Algorithms, 31, 381–399.

Wright W. M. (2003) General linear methods with inherent Runge–Kutta stability,
PhD thesis, The University of Auckland.

Index

A-stability, 76, 230, 238, 261, 270, 272,
343, 353, 356, 365, 398, 421

A(α)-stability, 230
Adams, xiv, 105, 375
adjoint methods, 220
Alexander, 261
algebraic analysis of order, 413
algebraic stability, 250, 252
AN-stability, 245, 252
angular momentum, 5
annihilation conditions, 129, 427, 431
arithmetic-geometric mean, 43
asymptotic error formula, 72
Axelsson, 240

B-series, 280
B-stability, 250
Barton, 115
Bashforth, xiv, 105, 375
BN-stability, 250, 252
boundary locus, 344, 346
Brenan, xv
Brouder, 280
Burrage, 124, 258, 266, 373
Butcher, 93, 122, 124, 163, 188, 192,

198, 240, 241, 258, 261, 266, 271,
280, 301, 358, 373, 380, 382, 402,
419, 420, 426, 433, 434, 436, 438,
445

Butcher–Chipman conjecture, 402
Byrne, 122, 380

Calvo, xv
Campbell, xv
Cash, 271
Cauchy–Schwarz inequality, 58
Chartier, 436
Chipman, 266, 402
Christoffel–Darboux formula, 269
coefficient tableau, 94

companion matrix, 25
compensated addition, 82
compensated summation, 83
conjugacy, 302
consistency, 107, 109, 317, 320–322, 324,

326, 385, 389, 390, 396
contraction mapping principle, 22
convergence, 69, 107, 109, 317, 319, 322,

324, 326, 385, 387, 388, 390, 396
Cooper, 196
covariance, 108, 386
Curtis, 196
Curtiss, 105

Dahlquist, 105, 247, 248, 320, 353, 358,
360, 361, 364, 365, 379

Dahlquist barrier, 353, 355, 380
Dahlquist second barrier, 358
Daniel, 401
Daniel–Moore barrier, 401
DASSL, xv
Davis, 20
delay differential equation, 31

neutral, 32
density of tree, 140
derivative weight, 156
difference equation, 38

Fibonacci, 40
linear, 38, 44

differential equation
autonomous, 2, 150
chemical kinetics, 14
dissipative, 8
Euler (rigid body), 20
Hamiltonian, xv, 34
harmonic oscillator, 16
initial value problem, 2
Kepler, 4, 87, 127
linear, 24
Lotka–Volterra, 18

Numerical Methods for Ordinary Differential Equations, Second Edition. J. C. Butcher
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-72335-7

460 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

many-body, 28
method of lines, 7
mildly stiff, 60
Prothero and Robinson, 262
restricted three–body, 28
Robertson, 15
simple pendulum, 10
stiff, 26, 64, 74, 214, 245, 308, 313,

343, 353
Van der Pol, 16

differential index, 13
differential-algebraic equation, xiv, 10,

36
differentiation, 146
DIFSUB, xiv
Dirichlet conditions, 7
DJ-reducibility, 247
Donelson, 380
Dormand, 198, 211
doubly companion matrix, 436, 442

E-polynomial, 231, 270
eccentricity, 6
effective order, 273, 302, 365, 436
efficient extrapolation, 299
Ehle, 240, 245
Ehle barrier, 243, 244
Ehle conjecture, 240
elementary differential, 150, 151, 156
elementary differentials

independence of, 160
elementary weight, 155, 156

independence, 163
elliptic integral, 43
equivalence, 281
error constant, 335
error estimation, 79
error estimator, 198
error growth, 335
error per step, 311
error per unit step, 311
Euler, 51
existence and uniqueness, 22

Fehlberg, 198, 208
Feng, xv
finger, 78, 241
forest, 287

product, 288
FSAL property, 211, 376

G-stability, 343, 360, 361, 365
Gaussian quadrature, 189, 215
Gear, xiv, 122, 318, 368, 370, 380
generalized order conditions, 186
generalized Padé approximation, 400
Gibbons, 115
Gill, 82, 93, 180
Gill–Møller algorithm, 82, 83
global truncation error, 395, 412
Gragg, 122, 380
graph, 137
Gustafsson, 130, 312, 313

Hairer, xiv, xv, 77, 161, 188, 196, 220,
240, 241, 258, 267, 280, 281, 356,
358

Hamiltonian, 5
Hansen, 380
Henrici, 81, 105
Heun, 93
hidden constraint, 37
Higham, 82
Hirschfelder, 105
homomorphism, 290
Hundsdorfer, 361
Huťa, 93, 163, 192, 194

ideal, 300
implementation, 128, 259
index reduction, 13
inherent Runge–Kutta stability, 438
internal order, 182
internal weights, 157
interpolation, 131
invariant, 35
Iserles, 241

Jackiewicz, 419, 426
Jacobian, xiv
Jacobian matrix, 27, 260, 271, 313
Jeltsch, 247, 248

Kahan, 82
Kirchgraber, 338
Kronecker product, 374
Kutta, 93, 178, 192

L-stability, 238, 261, 262, 270, 398
labelled trees, 144
Laguerre polynomial, 267

INDEX 461

Laguerre polynomials, 269
Lambert, J. D., 320
Lambert, R. J., 122, 380
Lasagni, 276
Legendre polynomials, 215
Leone, 258
limit cycles, 16
linear stability, 397
linear stability function, 246
Lipschitz condition, 22, 65
Lobatto IIIA, 376
Lobatto quadrature, 196, 222
local extrapolation, 198
local truncation error, 324, 393, 412
López-Marcos, 280
Lotka, 18
Lubich, xv, 220
Lundh, 130, 312

matrix
convergent, 46
Jordan, 47
power-bounded, 46
stable, 46

Merson, 93, 198, 201
method

Adams, 105
Adams–Bashforth, xiv, 105, 109, 111,

318, 331, 346, 378
Adams–Moulton, xiv, 91, 105, 109,

111, 330, 378
Almost Runge–Kutta (ARK), 128,

383, 426
stiff, 434

backward difference, 105, 330, 332
collocation, 252
cyclic composite, 380
DESIRE, 273, 275
diagonally implicit, 261
DIMSIM, xiv, 383, 420, 421

types, 421
DIRK, 261, 421
Dormand and Prince, 198, 211
Euler, xiii, 51, 65, 78

convergence, 68
order, 69

Fehlberg, 198, 208
Gauss, 257, 265
general linear, 90, 124

order, 280

generalized linear multistep, 124
Gill, 180
higher derivative, 88, 119
Huťa, 163, 192
hybrid, 122, 380
implicit, 91
implicit Euler, 63, 64
implicit Runge–Kutta, 102
IRK stable, 442
Kutta, 192
leapfrog, 339
linear multistep, xiv, 87, 105, 107, 377

implementation, 366
order of, 329

Lobatto, 257
Lobatto IIIA, 91
Lobatto IIIC, 265
Merson, 198, 201
mid-point rule, 94
modified multistep, 122
multiderivative, 90
multistage, 88, 373
multistep, 88
multivalue, 88, 373
Nordsieck, 368, 371
Nyström, 105
Obreshkov, 90, 401
one-leg, 360, 361, 364, 379
PEC, 111
PECE, 111, 378
PECEC, 111
PECECE, 111
predictor–corrector, 105
predictor-corrector, xiv, 92, 109, 349,

378
pseudo Runge–Kutta, 122, 123, 380,

382
Radau IA, 257, 265
Radau IIA, 257, 265
reflected, 219
Rosenbrock, 90, 120
Runge–Kutta, xiii, xiv, 87, 93, 112,

319, 376
algebraic property, 280
effective order, 303
embedded, 202
equivalence class, 281, 285
Gauss, 238, 252
generalized, 292, 416
group, 284

462 NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

identity, 286
implementation, 308
implicit, 99, 213, 259
inverse, 286
irreducible, 282
Lobatto IIIC, 238
order, 162
Radau IA, 238
Radau IIA, 238, 252
symplectic, 275

Runge–Kutta (explicit), 170
high order, 195
order 4, 175
order 5, 190
order 6, 192

SDIRK, 261, 421
singly implicit, 266, 268, 270
starting, 112, 318
Taylor series, 89, 114
underlying one-step, 337, 338, 417
Verner, 198, 210
weakly stable, 339

Milne, 105, 112, 339
Milne device, 111
Moir, 433
Moore, 115, 401
Moulton, xiv, 105
Munthe-Kaas, xv
Møller, 82

Neumann conditions, 7
Newton, 214
Newton iteration, 214, 308, 313
Newton method, 42, 91
non-linear stability, 248
Nordsieck, 368, 375
Nordsieck vector, 440
normal subgroup, 301
Nørsett, xv, 77, 161, 240, 241, 261, 267,

356, 358
Nyström, 93, 105, 192

Obreshkov, 90
one-sided Lipschitz condition, 24, 26
optimal stepsize sequences, 198, 308
order, 329, 410
order arrows, 79, 242, 243, 358
order barrier, 187, 352
order conditions, 95, 162

scalar problems, 162

order of tree, 139
order star, 77, 240, 241
order stars, 356
order web, 243

P-equivalence, 281
Padé approximation, 232, 244
Padé approximation, 120
periodic orbit, 17
perturbing method, 302
Petzold, xv
Φ-equivalence, 281
PI control, 312
Picard iteration, 154
Picel, 240
powers of matrix, 46
preconsistency, 108, 320, 385
Prince, 198, 211
principal moments of inertia, 21
problem

discontinuous, 133
Prothero, 262

quotient group, 301

Rabinowitz, 20
Radau code, xiv
Radau quadrature, 222
Rattenbury, 433, 434
reduced method, 247
relaxation factor, 314
Richardson, 198
Riemann surfaces, 356
RK stability, 420, 423, 424, 432
Robertson, 15
Robinson, 262
Roche, xv
Romberg, 199
rooted tree, 96, 137
Rosenbrock, 90, 120
round-off error, 80
rounding error, 80
Runge, 93
Runge–Kutta, xiv
Runge–Kutta group, 287

S-stability, 230
safety factor, 310
Sanz-Serna, xv, 276, 280
Scherer, 220

INDEX 463

Schur criterion, 345, 349
Shampine, 240
Sheikh, 361
similarity transformation, 316
simplifying assumption, 171
Singh, 426
Skeel, 280
Söderlind, 130, 312, 313
stability, 107, 109, 317, 320, 322, 324,

326, 342, 385, 386, 388, 390, 396
stability function, 76, 100, 398, 424
stability matrix, 397, 424, 432
stability order, 398, 399
stability region, 74, 75, 100, 344, 398

explicit Runge–Kutta, 101
implicit Runge–Kutta, 102

stage order, 262
starting method

degenerate, 411
non-degenerate, 411

Steiniger, 361
stepsize control, 58, 112
stepsize controller, 310
Stetter, 122, 380
Stoffer, 338, 418
subgroup, 300
super-convergence, 19
superposition principle, 24
Suris, 276
symmetry, 148
symmetry of tree, 140
symplectic behaviour, 7

Taylor expansion, 153, 159
Taylor’s theorem, 148
tolerance, 308
transformation of methods, 375
tree, 137
truncation error, 333

estimation, 390, 419
global, 66, 166, 168, 265, 390
local, 60, 66, 72, 73, 79, 112, 165, 168,

198, 309, 336, 428
built-in estimate, 201
estimate, 91

V transformation, 254, 258
Van der Pol, 16
variable order, 308, 318
variable stepsize, 130, 340, 368, 371, 419

Verner, 196, 198, 210
Vitasek, 82
Volterra, 18

W transformation, 254
Wanner, xiv, xv, 77, 161, 220, 240, 241,

258, 267, 280, 281, 356, 358
Watanabe, 361
Watts, 240
weak stability, 339
Willers, 115
Wright, K., 240
Wright, W. M., 436, 438, 440, 445, 450
Wronskian, 35

Zahar, 115
Zanna, xv
zero spectral radius, 440
zero-stability, 320

	Cover
	Contents
	Chapter1
	Chapter2
	Chapter3
	Chapter4
	Chapter5
	References
	Index

