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Preface

This volume includes an exciting collection of papers on computational and applied
mathematics presenting the recent advances in several areas of this field. All the
papers have been peer reviewed by at least three reviewers.

In the paper entitled: “Fifty Years of Stiffness” by Luigi Brugnano, Francesca
Mazzia and Donato Trigiante a review on the evolution of stiffness is presented.
The authors also given a precise definition of stiffness which encompasses all the
previous ones.

In the paper entitled: “Efficient Global Methods for the Numerical Solution of
Nonlinear Systems of Two point Boundary Value Problems” by Jeff R. Cash and
Francesca Mazzia, the authors investigated the numerical methods for the solution
of nonlinear systems of two point boundary value problems in ordinary differential
equations. More specifically they answer to the question: “which codes are currently
available for solving these problems and which of these codes might we consider
as being state of the art”. Finally the authors included some new codes for BVP’s
which are written in MATLAB. These codes was not available before and allow
us for the first time in the literature the possibility of comparing some important
MATLAB codes for solving boundary value problems.

In the paper entitled: “Advances on collocation based numerical methods for
Ordinary Differential Equations and Volterra Integral Equations” by D. Conte,
R. D’Ambrosio, B. Paternoster a survey on collocation based numerical methods
for the numerical integration of Ordinary Differential Equations and Volterra Inte-
gral Equations (VIEs) is presented. This survey starts from the classical collocation
methods and arrive to the important modifications appeared in the literature. The
authors consider also the multistep case and the usage of basis of functions other
than polynomials.

In the paper entitled: “Basic Methods for Computing Special Functions” by Am-
paro Gil, Javier Segura and Nico M. Temme, the authors given a survey of methods
for the numerical evaluation of special functions, that is, the functions that arise in
many problems in the applied sciences. They considered a selection of basic meth-
ods which are used frequently in the numerical evaluation of special functions. They
discussed also several other methods which are available. Finally, they given exam-
ples of recent software for special functions which use the above mentioned methods
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and they mentioned a list of new bibliography on computational aspects of special
functions available on our website.

In the paper entitled: “Melt Spinning: Optimal Control and Stability Issue” by
Thomas Gotz and Shyam S.N. Perera, the authors studied a mathematical model
which describe the melt spinning process of polymer fibers. The authors used New-
tonian and non-Newtonian models in order to describe the rheology of the polymeric
material. They also investigated two important properties, the optimization and the
stability of the process.

In the paper entitled: “On orthonormal polynomial solutions of the Riesz system
in R

3” by K. Gürlebeck and J. Morais, a special orthogonal system of polynomial
solutions of the Riesz system in R

3 is studied. This system presents a proportion
with the complex case of the Fourier exponential functions {einθ }n≥0 on the unit
circle and has the additional property that also the scalar parts of the polynomials
form an orthogonal system. An application of the properties of the above system to
the explicit calculation of conjugate harmonic functions with a certain regularity is
also presented.

In the paper entitled: “Brief survey on the CP methods for the Schrödinger equa-
tion” by L.Gr. Ixaru, a review of the CP methods is presented. The authors investi-
gated, after years of research in the subject all the advantages over other methods.

In the paper entitled: “Symplectic Partitioned Runge–Kutta methods for the nu-
merical integration of periodic and oscillatory problems” by Z. Kalogiratou, Th.
Monovasilis and T.E. Simos an investigation on Symplectic Partitioned Runge–
Kutta methods (SPRK) is presented. More specifically they present the method-
ology for the construction of the exponentially/trigonometrically fitted SPRK. They
applied the above methodology to methods with corresponding order up to fifth.
The trigonometrically-fitted approach is based on two different types of construc-
tion: (i) fitting at each stage and (ii) Simos’s approach. The authors also derived
SPRK methods with minimal phase-lag as well as phase-fitted SPRK methods. Fi-
nally, they applied the methods to several problems.

In the paper entitled: “On the Klein-Gordon equation on some examples of con-
formally flat spin 3-manifolds” by Rolf Sören Kraußhar a review about recent re-
sults on the analytic treatment of the Klein-Gordon equation on some conformally
flat 3-tori and on 3-spheres is presented. The paper has two parts. In the first part the
time independent Klein-Gordon equation (� − α2)u = 0 (α ∈ R) on some confor-
mally flat 3-tori associated with a representative system of conformally inequivalent
spinor bundles is considered. In the second part a unified approach to represent the
solutions to the Klein-Gordon equation on 3-spheres is described.

The hp version of the finite element method (hp-FEM) combined with adaptive
mesh refinement is a particularly efficient method. For this method a single error
estimate can not simultaneously determine whether it is better to do the refinement
by h or by p. Several strategies for making this determination have been proposed
over the years. In the paper entitled: “A Survey of hp-Adaptive Strategies for Elliptic
Partial Differential Equations” by William F. Mitchell and Marjorie A. McClain, the
authors studied these strategies and demonstrate the exponential convergence rates
with two classic test problems.
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In the paper entitled: “Vectorized Solution of ODEs in MATLAB with Control
of Residual and Error” by L.F. Shampine a study on vectorization which is very
important to the efficient computation in the popular problem-solving environment
MATLAB is presented. More specifically, the author derived a new error control
procedure which is based on vectorization. An explicit Runge—Kutta (7,8) pair of
formulas that exploits vectorization is obtained. The new proposed method controls
the local error at 8 points equally spaced in the span of a step. A new solver which is
based on the above mentiobed pair and it is called odevr7 is developed. This solver
is much more efficient than the solver ode45 which is recommended by MATLAB.

In the paper entitled: “Forecasting equations in complex-quaternionic setting” by
W. Sprössig, the author considered classes of fluid flow problems under given initial
value and boundary value conditions on the sphere and on ball shells in R

3. The
author interest is emphasized to the forecasting equations and the deduction of a
suitable quaternionic operator calculus.

In the paper entitled: “Symplectic exponentially-fitted modified Runge–Kutta
methods of the Gauss type: revisited” by G. Vanden Berghe and M. Van Daele, the
development of symmetric and symplectic exponentially-fitted Runge–Kutta meth-
ods for the numerical integration of Hamiltonian systems with oscillatory solutions
is studied. New integrators are obtained following the six-step procedure of Ixaru
and Vanden Berghe (Exponential Fitting, Kluwer Academic, 2004).

We would like to express our gratitude to the numerous (anonymous) referees,
to Prof. Hélène de Rode, the President of the European Academy of Sciences for
giving us the opportunity to come up with this guest editorial work.

T.E. SimosUniversity of Peloponnese
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Chapter 1
Fifty Years of Stiffness

Luigi Brugnano, Francesca Mazzia,
and Donato Trigiante

Abstract The notion of stiffness, which originated in several applications of a dif-
ferent nature, has dominated the activities related to the numerical treatment of dif-
ferential problems for the last fifty years. Contrary to what usually happens in Math-
ematics, its definition has been, for a long time, not formally precise (actually, there
are too many of them). Again, the needs of applications, especially those arising in
the construction of robust and general purpose codes, require nowadays a formally
precise definition. In this paper, we review the evolution of such a notion and we
also provide a precise definition which encompasses all the previous ones.

Keywords Stiffness · ODE problems · Discrete problems · Initial value problems ·
Boundary value problems · Boundary value methods

Mathematics Subject Classification (2000) 65L05 · 65L10 · 65L99
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2 L. Brugnano et al.

1.1 Introduction

The struggle generated by the duality short times–long times is at the heart of human
culture in almost all its aspects. Here are just a few examples to fix the idea:

• in historiography: Braudel’s distinction among the geographic, social and indi-
vidual times;1

• in the social sphere: Societies are organized according to three kinds of laws, i.e.,
codes (regulating short term relations), constitutions (regulating medium terms
relations), and ethical laws (long term rules) often not explicitly stated but reli-
giously accepted;

• in the economy sphere: the laws of this part of human activities are partially
unknown at the moment. Some models (e.g., the Goodwin model [19]), permits
us to say, by taking into account only a few variables, that the main evolution is
periodic in time (and then predictable), although we are experiencing an excess of
periodicity (chaotic behavior). Nevertheless, some experts claim (see, e.g., [18])
that the problems in the predictability of the economy are mainly due to a sort of
gap in passing information from a generation to the next ones, i.e. to the conflict
between short time and long time behaviors.2

Considering the importance of this concept, it would have been surprising if the
duality “short times–long times” did not appear somewhere in Mathematics. As a
matter of fact, this struggle not only appears in our field but it also has a name:
stiffness.

Apart from a few early papers [10, 11], there is a general agreement in placing the
date of the introduction of such problems in Mathematics to around 1960 [17]. They
were the necessities of the applications to draw the attention of the mathematical
community towards such problems, as the name itself testifies: “they have been
termed stiff since they correspond to tight coupling between the driver and the driven
components in servo-mechanism” ([12] quoting from [11]).

Both the number and the type of applications proposing difficult differential
problems has increased exponentially in the last fifty years. In the early times, the
problems proposed by applications were essentially initial value problems and, con-
sequently, the definition of stiffness was clear enough and shared among the few
experts, as the following three examples evidently show:

D1: Systems containing very fast components as well as very slow components
(Dahlquist [12]).

D2: They represent coupled physical systems having components varying with very
different times scales: that is they are systems having some components varying
much more rapidly than the others (Liniger [31], translated from French).

1Moreover, his concept of structure, i.e. events which are able to accelerate the normal flow of time,
is also interesting from our point of view, because it somehow recalls the mathematical concept of
large variation in small intervals of time (see later).
2Even Finance makes the distinction between short time and long time traders.
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D3: A stiff system is one for which λmax is enormous so that either the stability
or the error bound or both can only be assured by unreasonable restrictions
on h. . . Enormous means enormous relative to the scale which here is t̄ (the
integration interval) . . . (Miranker [34]).

The above definitions are rather informal, certainly very far from the precise def-
initions we are accustomed to in Mathematics, but, at least, they agree on a crucial
point: the relation among stiffness and the appearance of different time-scales in the
solutions (see also [24]).

Later on, the necessity to encompass new classes of difficult problems, such as
Boundary Value Problems, Oscillating Problems, etc., has led either to weaken the
definition or, more often, to define some consequence of the phenomenon instead
of defining the phenomenon itself. In Lambert’s book [29] five propositions about
stiffness, each of them capturing some important aspects of it, are given. As matter
of fact, it has been also stated that no universally accepted definition of stiffness
exists [36].

There are, in the literature, other definitions based on other numerical difficulties,
such as, for example, large Lipschitz constants or logarithmic norms [37], or non-
normality of matrices [23]. Often is not even clear if stiffness refers to particular
solutions (see, e.g. [25]) or to problems as a whole.

Sometimes one has the feeling that stiffness is becoming so broad to be nearly
synonymous of difficult.

At the moment, even if the old intuitive definition relating stiffness to multiscale
problems survives in most of the authors, the most successful definition seems to
be the one based on particular effects of the phenomenon rather than on the phe-
nomenon itself, such as, for example, the following almost equivalent items:

D4: Stiff equations are equations where certain implicit methods . . . perform better,
usually tremendous better, than explicit ones [11].

D5: Stiff equations are problems for which explicit methods don’t work [21].
D6: If a numerical method with a finite region of absolute stability, applied to a

system with any initial condition, is forced to use in a certain interval of inte-
gration a step length which is excessively small in relation to the smoothness
of the exact solution in that interval, then the system is said to be stiff in that
interval [29].

As usually happens, describing a phenomenon by means of its effects may not
be enough to fully characterize the phenomenon itself. For example, saying that fire
is what produces ash, would oblige firemen to wait for the end of a fire to see if the
ash has been produced. In the same way, in order to recognize stiffness according
to the previous definitions, it would be necessary to apply first one3 explicit method
and see if it works or not. Some authors, probably discouraged by the above de-
feats in giving a rigorous definition, have also affirmed that a rigorous mathematical
definition of stiffness is not possible [20].

It is clear that this situation is unacceptable for at least two reasons:

3It is not clear if one is enough: in principle the definition may require to apply all of them.
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• it is against the tradition of Mathematics, where objects under study have to be
precisely defined;

• it is necessary to have the possibility to recognize operatively this class of prob-
lems, in order to increase the efficiency of the numerical codes to be used in
applications.

Concerning the first item, our opinion is that, in order to gain in precision, it
would be necessary to revise the concept of stability used in Numerical Analysis,
which is somehow different from the homonym concept used in all the other fields
of Mathematics, where stable are equilibrium points, equilibrium sets, reference
solutions, etc., but not equations or problems4 (see also [17] and [30]).

Concerning the second item, operatively is intended in the sense that the def-
inition must be stated in terms of numerically observable quantities such as, for
example, norms of vectors or matrices. It was believed that, seen from the applica-
tive point of view, a formal definition of stiffness would not be strictly necessary:
Complete formality here is of little value to the scientist or engineer with a real
problem to solve [24].

Nowadays, after the great advance in the quality of numerical codes,5 the use-
fulness of a formal definition is strongly recognized, also from the point of view of
applications: One of the major difficulties associated with the study of stiff differen-
tial systems is that a good mathematical definition of the concept of stiffness does
not exist [6].

In this paper, starting from ideas already partially exposed elsewhere [2, 4, 26],
we will try to unravel the question of the definition of stiffness and show that a
precise and operative definition of it, which encompasses all the known facets, is
possible.

In order to be as clear as possible, we shall start with the simpler case of initial
value for a single linear equation and gradually we shall consider more general cases
and, eventually, we shall synthesize the results.

1.2 The Asymptotic Stability Case

For initial value problems for ODEs, the concept of stability concerns the behavior
of a generic solution y(t), in the neighborhood of a reference solution ȳ(t), when
the initial value is perturbed. When the problem is linear and homogeneous, the dif-
ference, e(t) = y(t) − ȳ(t), satisfies the same equation as ȳ(t). For nonlinear prob-
lems, one resorts to the linearized problem, described by the variational equation,
which, essentially, provides valuable information only when ȳ(t) is asymptotically
stable. Such a variational equation can be used to generalize to nonlinear problems
the arguments below which, for sake of simplicity, concerns only the linear case.

4Only in particular circumstances, for example in the linear case, it is sometimes allowed the
language abuse: the nonlinear case may contain simultaneously stable and unstable solutions.
5A great deal of this improvement is due to the author of the previous sentence.
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Originally, stiffness was almost always associated with initial value problems
having asymptotically stable equilibrium points (dissipative problems) (see, e.g.,
Dahlquist [13]). We then start from this case, which is a very special one. Its pecu-
liarities arise from the following two facts:6

• it is the most common in applications;
• there exists a powerful and fundamental theorem, usually called Stability in the

first approximation Theorem or Poincaré-Liapunov Theorem, along with its corol-
lary due to Perron7, which allows us to reduce the study of stability of critical
points, of a very large class of nonlinearities, to the study of the stability of the
corresponding linearized problems (see, e.g., [9, 27, 35, 38]).

The former fact explains the pressure of applications for the treatment of such
problems even before the computer age. The latter one provides, although not al-
ways explicitly recognized, the mathematical solid bases for the profitable and ex-
tensive use, in Numerical Analysis, of the linear test equation to study the fixed-h
stability of numerical methods.

We shall consider explicitly the case where the linearized problem is au-
tonomous, although the following definitions will take into account the more general
case.

Our starting case will then be that of an initial value problem having an asymp-
totically stable reference solution, whose representative is, in the scalar case,

y′ = λy, t ∈ [0, T ], Reλ < 0,

y(0) = η,
(1.2.1)

where the reference solution (an equilibrium point, in this case) has been placed
at the origin. From what is said above, it turns out that it is not by chance that it
coincides with the famous test equation.

Remark 1.1 It is worth observing that the above test equation is not less general
than y ′ = λy + g(t), which very often appears in the definitions of stiffness: the
only difference is the reference solution, which becomes ȳ(t) = ∫ t

0 eλ(t−s)g(s)ds,
but not the topology of solutions around it. This can be easily seen by introducing
the new variable z(t) = y(t)− ȳ(t) which satisfies exactly equation (1.2.1) and then,
trivially, must share the same stiffness. Once the solution z(t) of the homogeneous
equation has been obtained, the solution y(t) is obtained by adding to it ȳ(t) which,
in principle, could be obtained by means of a quadrature formula. This allows us to
conclude that if any stiffness is in the problem, this must reside in the homogeneous
part of it, i.e., in problem (1.2.1).

6We omit, for simplicity, the other fact which could affect new definitions, i.e., the fact that the
solutions of the linear equation can be integrated over any large interval because of the equivalence,
in this case, between asymptotic and exponential stability.
7It is interesting to observe that the same theorem is known as the Ostrowsky’s Theorem, in the
theory of iterative methods.
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Remark 1.2 We call attention to the interval of integration [0, T ], which depends on
our need for information about the solution, even if the latter exists for all values of t .
This interval must be considered as datum of the problem. This has been sometimes
overlooked, thus creating some confusion.

Having fixed problem (1.2.1), we now look for a mathematical tool which allows
us to state formally the intuitive concept, shared by almost all the definitions of
stiffness: i.e., we look for one or two parameters which tell us if in [0, T ] the solution
varies rapidly or not. This can be done easily by introducing the following two
measures for the solution of problem (1.2.1):

κc = 1

|η| max
t∈[0,T ]

|y(t)|, γc = 1

|η|
1

T

∫ T

0
|y(t)|dt, (1.2.2)

which, in the present case, assume the values:

κc = 1, γc = 1

|Reλ|T (1 − eReλT ) ≈ 1

|Reλ|T = T ∗

T
,

where T ∗ = |Reλ|−1 is the transient time. The two measures κc, γc are called con-
ditioning parameters because they measure the sensitivity of the solution subject to
a perturbation of the initial conditions in the infinity and in the l1 norm.

Sometimes, it would be preferable to use a lower value of γc , i.e.,

γc = 1

|λ|T . (1.2.3)

This amounts to consider also the oscillating part of the solution (see also Re-
mark 1.5 below).

By looking at Fig. 1.1, one realizes at once that a rapid variation of the solution
in [0, T ] occurs when kc � γc. It follows then that the parameter

σc = kc

γc

≡ T

T ∗ , (1.2.4)

which is the ratio between the two characteristic times of the problem, is more sig-
nificant. Consequently, the definition of stiffness follows now trivially:

Definition 1.3 The initial value problem (1.2.1) is stiff if σc � 1.

The parameter σc is called stiffness ratio.

Remark 1.4 The width of the integration interval T plays a fundamental role in the
definition. This is an important point: some authors, in fact, believe that stiffness
should concern equations; some others believe that stiffness should concern prob-
lems, i.e., equations and data. We believe that both statements are partially correct:
stiffness concerns equations, integration time, and a set of initial data (not a specific
one of them). Since this point is more important in the non scalar case, it will be
discussed in more detail later.
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Fig. 1.1 Solutions and values of kc and γc in the cases λ = −0.2 (left plot) and λ = −2 (right
plot)

Remark 1.5 When γc is defined according to (1.2.3), the definition of stiffness con-
tinues to be also meaningful in the case Reλ = 0, i.e., when the critical point is only
marginally stable. In fact, let

λ = iω ≡ i
2π

T ∗ .

Then,

σc = 2π
T

T ∗ ,

and the definition encompasses also the case of oscillating stiffness introduced by
some authors (e.g., [34]). Once again the stiffness is the ratio of two times. If infor-
mation about the solution on the smaller time scale is needed, an adequately small
stepsize should be used. It is worth noting that high oscillating systems (with respect
to T ) fall in the class of problems for which explicit methods do not work, and then
are stiff according to definitions D4–D6.

When λ = 0, then kc = γc = σc = 1.
In the case Reλ > 0 (i.e., the case of an unstable critical point), both parameters

kc and γc grow exponentially with time. This implies that small variations in the
initial conditions will imply exponentially large variations in the solutions, both
pointwise and on average: i.e., the problem is ill conditioned.

Of course, the case Reλ = 0 considered above cannot be considered as repre-
sentative of more difficult nonlinear equations, since linearization is in general not
allowed in such a case.

The linearization is not the only way to study nonlinear differential (or differ-
ence) equations. The so called Liapunov second method can be used as well (see,
e.g., [22, 27, 38]). It has been used, in connection with stiffness in [5, 13–17], al-
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though not always explicitly named.8 Anyway, no matter how the asymptotic sta-
bility of a reference solution is detected, the parameters (1.2.2) and Definition 1.3
continue to be valid. Later on, the problem of effectively estimating such parameters
will also be discussed.

1.2.1 The Discrete Case

Before passing to the non scalar case, let us now consider the discrete case, where
some interesting additional considerations can be made. Here, almost all we have
said for the continuous case can be repeated. The first approximation theorem can
be stated almost in the same terms as in the continuous case (see e.g. [28]).

Let the interval [0, T ] be partitioned into N subintervals of length hn > 0, thus
defining the mesh points: tn = ∑n

j=1 hj , n = 0,1, . . . ,N .
The linearized autonomous problem is now:

yn+1 = μnyn, n = 0, . . . ,N − 1, y0 = η, (1.2.5)

where the {μn} are complex parameters. The conditioning parameters for (1.2.5),
along with the stiffness ratio, are defined as:

κd = 1

|η| max
i=0,...,N

|yi |, γd = 1

|η|
1

T

N∑

i=1

hi max(|yi |, |yi−1|),

σd = kd

γd

.

(1.2.6)

This permits us to define the notion of well representation of a continuous prob-
lem by means of a discrete one.

Definition 1.6 The problem (1.2.1) is well represented by (1.2.5) if

kc ≈ kd, (1.2.7)

γc ≈ γd. (1.2.8)

In the case of a constant mesh-size h, μn ≡ μ and it easily follows that the con-
dition (1.2.7) requires |μ| < 1. It is not difficult to recognize the usual A-stability
conditions for one-step methods (see Table 1.1). Furthermore, it is easily recognized
that the request that condition (1.2.7) holds uniformly with respect to hλ ∈ C

− im-
plies that the numerical method producing (1.2.5) must be implicit.

What does condition (1.2.8) require more? Of course, it measures how faith-
fully the integral

∫ T

0 |y(t)|dt is approximated by the quadrature formula
∑N

i=1 hi ·
max(|yi |, |yi−1|), thus giving a sort of global information about the behavior of the

8Often, it appears under the name of one-sided Lipschitz condition.



1 Fifty Years of Stiffness 9

Table 1.1 Condition (1.2.7)
for some popular methods Method μ Condition

Explicit Euler 1 + hλ |1 + hλ| < 1

Implicit Euler 1
1−hλ

∣
∣ 1

1−hλ

∣
∣ < 1

Trapezoidal rule 1+hλ/2
1−hλ/2

∣
∣ 1+hλ/2

1−hλ/2

∣
∣ < 1

method producing the approximations {yi}. One of the most efficient global strate-
gies for changing the stepsize is based on monitoring this parameter [3, 4, 7, 8, 32,
33]. In addition to this, when finite precision arithmetic is used, then an interest-
ing property of the parameter γd occurs [26]: if it is smaller than a suitably small
threshold, this suggests that we are doing useless computations, since the machine
precision has already been reached.

1.2.2 The non Scalar Case

In this case, the linearized problem to be considered is

y′ = Ay, t ∈ [0, T ], y(0) = η, (1.2.9)

with A ∈ R
m×m and having all its eigenvalues with negative real part. It is clear

from what was said in the scalar case that, denoting by 	(t) = eAt the fundamental
matrix of the above equation, the straightforward generalization of the definition of
the conditioning parameters (1.2.2) would lead to:

κc = max
t∈[0,T ]

‖	(t)‖, γc = 1

T

∫ T

0
‖	(t)‖dt, σc = κc

γc

. (1.2.10)

Indeed, these straight definitions work most of the time, as is confirmed by the fol-
lowing example, although, as we shall explain soon, not always.

Example 1.7 Let us consider the well-known Van der Pol’s problem,

y′
1 = y2,

y′
2 = −y1 + μy2(1 − y2

1), t ∈ [0,2μ],
y(0) = (2, 0)T ,

(1.2.11)

whose solution approaches a limit cycle of period T ≈ 2μ. It is also very well-
known that, the larger the parameter μ, the more difficult the problem is. In Fig. 1.2
we plot the parameter σc(μ) (as defined in (1.2.10)) for μ ranging from 0 to 103.
Clearly, stiffness increases with μ.

Even though (1.2.10) works for this problem, this is not true in general. The
problem is that the definition of stiffness as the ratio of two quantities may require
a lower bound for the denominator. While the definition of κc remains unchanged,
the definition of γc is more entangled. Actually, we need two different estimates of
such a parameter:
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Fig. 1.2 Estimated stiffness
ratio of Van der Pol’s problem
(1.2.11)

• an upper bound, to be used for estimating the conditioning of the problem in l1
norm;

• a lower bound, to be used in defining σc and, then, the stiffness.

In the definition given in [2, 4], this distinction was not made, even though the
definition was (qualitatively) completed by adding

“for at least one of the modes”. (1.2.12)

We shall be more precise in a moment. In the meanwhile, it is interesting to note
that the clarification contained in (1.2.12) is already in one of the two definitions
given by Miranker [34]:

A system of differential equations is said to be stiff on the interval (0, t̄) if there
exists a solution of that system a component of which has a variation on that interval
which is large compared to 1

t̄
,

where it should be stressed that the definition considers equations and not problems:
this implies that the existence of largely variable components may appear for at least
one choice of the initial conditions, not necessary for a specific one.

Later on, the definition was modified so as to translate into formulas the above
quoted sentence (1.2.12). The following definitions were then given (see, e.g., [26]):

κc(T , η) = 1

‖η‖ max
0≤t≤T

‖y(t)‖, κc(T ) = max
η

κc(T , η),

γc(T , η) = 1

T ‖η‖
∫ T

0
‖y(t)‖dt, γc(T ) = max

η
γc(T , η)

(1.2.13)

and

σc(T ) = max
η

κc(T , η)

γc(T , η)
. (1.2.14)

The only major change regards the definition of σc. Let us be more clear on this
point with an example, since it leads to a controversial question in the literature: i.e.,
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the dependence of stiffness from the initial condition. Let A = diag(λ1, λ2, . . . , λm)

with λi < 0 and |λ1| > |λ2| > · · · > |λm|. The solution of problem (1.2.9) is y(t) =
eAtη.

If σc is defined according to (1.2.10), it turns out that ‖eAt‖ = eλmt and, then,
γc(T ) ≈ 1

T |λm| . If, however, we take η = (1,0, . . . ,0)T , then y(t) = eλ1t and γc(T )

becomes γc(T ) ≈ 1
T |λ1| . Of course, by changing the initial point, one may activate

each one of the modes, i.e. the functions eλi t on the diagonal of the matrix eAt ,
leaving silent the others. This is the reason for specifying, in the older definition,
the quoted sentence (1.2.12). The new definition (1.2.14), which essentially poses
as the denominator of the ratio σc the smallest value among the possible values of
γc(T , η), is more compact and complies with the needs of people working on the
construction of codes, who like more operative definitions. For the previous diagonal
example, we have that kc continues to be equal to 1, while γc(T ) = 1

T |λ1| .
Having got the new definition (1.2.14) of σc(T ), the definition of stiffness con-

tinues to be given by Definition 1.3 given in the scalar case, i.e., the problem (1.2.9)
is stiff if σc(T ) � 1.

How does this definition reconcile with the most used definition of stiffness for
the linear case, which considers the “smallest” eigenvalue λm as well? The answer is
already in Miranker’s definition D3. In fact, usually the integration interval is chosen
large enough to provide complete information on the behavior of the solution. In this
case, until the slowest mode has decayed enough, i.e. T = 1/|λm|, which implies

σc

(

T = 1

|λm|
)

=
∣
∣
∣
∣
λ1

λm

∣
∣
∣
∣, (1.2.15)

which, when much larger than 1, coincides with the most common definition of
stiffness in the linear case. However, let us insist on saying that if the interval of in-
tegration is much smaller than 1/|λm|, the problem may be not stiff even if | λ1

λm
| � 1.

The controversy about the dependence of the definition of stiffness on the ini-
tial data is better understood by considering the following equation given in [29,
pp. 217–218]:

d

dt

(
y1
y2

)

=
( −2 1

−1.999 0.999

)(
y1
y2

)

+
(

2 sin t

0.999(sin t − cos t)

)

,

whose general solution is
(

y1
y2

)

= c1e
−t

(
1
1

)

+ c2e
−0.001t

(
1

1.999

)

+
(

sin t

cos t

)

.

The initial condition y(0) = (2, 3)T requires c2 = 0 and, then, the slowest mode is
not activated: the solution rapidly reaches the reference solution. If this information
was known beforehand, one could, in principle, choose the interval of integration
T much smaller than 1

0.001 . This, however, does not take into account the fact that
the computer uses finite precision arithmetic, which may not represent exactly the
initial condition η. To be more precise, let us point out that the slowest mode is
not activated only if the initial condition is on the line y2(0) − y1(0) − 1 = 0. Any
irrational value of y1(0) will not be well represented on the computer. This is enough
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Fig. 1.3 Estimated stiffness
ratio of Robertson’s problem
(1.2.16)

to activate the silent mode. Of course, if one is sure that the long term contribution
to the solution obtained on the computer is due to this kind of error, a small value of
T can always be used. But it is rare that this information is known in advance. For
this reason, we consider the problem to be stiff, since we believe that the definition
of stiffness cannot distinguish, for example, between rational and irrational values
of the initial conditions. Put differently, initial conditions are like a fuse that may
activate stiffness.

We conclude this section by providing a few examples, which show that Defini-
tion 1.3, when σc is defined according to (1.2.14), is able to adequately describe the
stiffness of nonlinear and/or non autonomous problems as well.

Example 1.8 Let us consider the well-known Robertson’s problem:

y′
1 = −0.04y1 + 104y2y3,

y′
2 = 0.04y1 − 104y2y3 − 3 × 107y2

2 , t ∈ [0, T ],
y′

3 = 3 × 107y2
2 ,

y(0) = (1,0,0)T .

(1.2.16)

Its stiffness ratio with respect to the length T of the integration interval, obtained
through the linearized problem and considering a perturbation of the initial condi-
tion of the form (0, ε, −ε)T , is plotted in Fig. 1.3. As it is well-known, the figure
confirms that for this problem stiffness increases with T .

Example 1.9 Let us consider the so-called Kreiss problem [21, p. 542], a linear and
non autonomous problem:

y′ = A(t)y, t ∈ [0,4π ], y(0) fixed, (1.2.17)

where

A(t) = QT (t)�εQ(t), (1.2.18)
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Fig. 1.4 Estimated stiffness
ratio of the Kreiss problem
(1.2.17)–(1.2.19)

and

Q(t) =
(

cos t sin t

− sin t cos t

)

, �ε =
(−1

−ε−1

)

. (1.2.19)

Its stiffness ratio with respect to the small positive parameter ε, obtained by con-
sidering a perturbation of the initial condition of the form (−ε, 1)T , is plotted in
Fig. 1.4. As one expects, the figure confirms that the stiffness of the problem be-
haves as ε−1, as ε tends to 0.

Example 1.10 Let us consider the following linear and non autonomous problem, a
modification of problem (1.2.17), that we call “modified Kreiss problem”:9

y′ = A(t)y, t ∈ [0,4π ], y(0) fixed, (1.2.20)

where

A(t) = Q−1
ε (t)P −1�εPQε(t), (1.2.21)

and

P =
(−1 0

1 1

)

, Qε(t) =
(

1 ε

esin t esin t

)

, �ε =
(−1

−ε−1

)

. (1.2.22)

Its stiffness ratio with respect to the small positive parameter ε, obtained by con-
sidering a perturbation of the initial condition of the form (−ε, 1)T , is shown in
Fig. 1.5. Also in this case the stiffness of the problem behaves as ε−1, as ε tends to
0.

Remark 1.11 It is worth mentioning that, in the examples considered above, we
numerically found that

max
η

κc(T , η)

γc(T , η)

9This problem has been suggested by J.I. Montijano.
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Fig. 1.5 Estimated stiffness
ratio of the modified Kreiss
problem (1.2.20)–(1.2.22)

is obtained by considering an initial condition η in the direction of the eigenvector
of the Jacobian matrix (computed for t ≈ t0) associated to the dominant eigenvalue.
We note that, for an autonomous linear problem, if A is diagonalizable, this choice
activates the mode associated with λ1, i.e., the eigenvalue of maximum modulus
of A.

1.2.3 The Non Scalar Discrete Case

As for the scalar case, what we said for the continuous problems can be repeated,
mutatis mutandis, for the discrete ones. For brevity, we shall skip here the details
for this case, also because they can be deduced from those described in the more
general case discussed in the next section.

1.3 Boundary Value Problems (BVPs)

The literature about BVPs is far less abundant than that about IVPs, both in the
continuous and in the discrete case. While there are countless books on the latter
subject presenting it from many points of view (e.g., stability of motion, dynami-
cal systems, bifurcation theory, etc.), there are many less books about the former.
More importantly, the subject is usually presented as a by product of the theory of
IVPs. This is not necessarily the best way to look at the question, even though many
important results can be obtained this way. However, it may sometimes be more use-
ful to look at the subject the other way around. Actually, the question is that IVPs
are naturally a subclass of BVPs. Let us informally clarify this point without many
technical details which can be found, for example, in [4].

IVPs transmit the initial information “from left to right”. Well conditioned IVPs
are those for which the initial value, along with the possible initial errors, decay
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moving from left to right. FVPs (Final Value problems) are those transmitting in-
formation “from right to left” and, of course, well conditioning should hold when
the time, or the corresponding independent variable, varies towards −∞. More pre-
cisely, considering the scalar test equation (1.2.1), the asymptotically stability for
IVPs and FVPs requires Reλ < 0 and Reλ > 0, respectively. BVPs transmit infor-
mation both ways. Consequently, they cannot be scalar problems but vectorial of
dimension at least two. We need then to refer to the test equation (1.2.9). It can be
affirmed that a well conditioned linear BVP needs to have eigenvalues with both
negative and positive real parts (dichotomy, see, e.g., [1, 4]). More precisely: the
number of eigenvalues with negative real part has to match the amount of informa-
tion transmitted “from left to right”, and the number of eigenvalues with positive
real part has to match the amount of information traveling “from right to left”. For
brevity, we shall call the above statement continuous matching rule. Of course, if
there are no final conditions, then the problem becomes an IVP and, as we have
seen, in order to be well conditioned, it must have all the eigenvalues with negative
real part. In other words, the generalization of the case of asymptotically stable IVPs
is the class of well conditioned BVPs because both satisfy the continuous matching
rule. This is exactly what we shall assume hereafter.

Similar considerations apply to the discrete problems, where the role of the imag-
inary axis is played by the unit circumference in the complex plane. It is not sur-
prising that a numerical method will well represent a continuous autonomous linear
BVP if the corresponding matrix has as many eigenvalues inside the unit circle as
the number of initial conditions and as many eigenvalues outside the unit circle as
the number of final conditions (discrete matching rule).

Remark 1.12 The idea that IVPs are a subset of BVPs is at the root of the class of
methods called Boundary Value Methods (BVMs) which permits us, thanks to the
discrete matching rule, to define high order and perfectly A-stable methods (i.e.,
methods having the imaginary axis separating the stable and unstable domains),
which overcome the Dahlquist’s barriers, and are able to solve both IVPs and BVPs
(see, e.g., [4]).

Remark 1.13 From this point of view, the popular shooting method, consisting of
transforming a BVP into an IVP and then applying a good method designed for
IVPs, does not appear to be such a good idea. As matter of fact, even a very well
conditioned linear BVP, i.e. one which satisfies the continuous matching rule, will
be transformed in a badly conditioned IVP, since the matrix of the continuous IVP
shall, of course, contain eigenvalues with positive real part. This will prevent the
discrete matching rule to hold.

1.3.1 Stiffness for BVPs

Coming back to our main question, stiffness for BVPs is now defined by generaliz-
ing the idea already discussed in the previous sections.
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As in the previous cases, we shall refer to linear problems, but the definitions
will also be applicable to nonlinear problems as well. Moreover, according to what
is stated above, we shall only consider the case where the problems are well con-
ditioned (for the case of ill conditioned problems, the arguments are slightly more
entangled, see e.g. [7]). Then, let us consider the linear and non autonomous BVP:

y′ = A(t)y, t ∈ [0, T ], B0y(0) + B1y(T ) = η, (1.3.1)

where y(t), η ∈ R
m and A(t),B0,B1 ∈ R

m×m. The solution of the problem (1.3.1)
is

y(t) = 	(t)Q−1η,

where 	(t) is the fundamental matrix of the problem such that 	(0) = I , and Q =
Ba + Bb	(T ), which has to be nonsingular, in order for (1.3.1) to be solvable.10

As in the continuous IVP case, the conditioning parameters are defined (see
(1.2.13)) as:

κc(T , η) = 1

‖η‖ max
0≤t≤T

‖y(t)‖, κc(T ) = max
η

κc(T , η),

γc(T , η) = 1

T ‖η‖
∫ T

0
‖y(t)‖dt, γc(T ) = max

η
γc(T , η).

(1.3.2)

Consequently, the stiffness ratio is defined as (see (1.2.14)):

σc(T ) = max
η

κc(T , η)

γc(T , η)
,

and the problem is stiff if σc(T ) � 1. Moreover, upper bounds of κc(T ) and γc(T )

are respectively given by:

κc(T ) ≤ max
0≤t≤T

‖	(t)Q−1‖, γc(T ) ≤ 1

T

∫ T

0
‖	(t)Q−1‖dt. (1.3.3)

Thus, the previous definitions naturally extend to BVPs the results stated for
IVPs. In a similar way, when considering the discrete approximation of (1.3.1), for
the sake of brevity provided by a suitable one-step method over a partition π of the
interval [0, T ], with subintervals of length hi , i = 1, . . . ,N , the discrete problem
will be given by

yn+1 = Rnyn, n = 0, . . . ,N − 1, B0y0 + B1yN = η, (1.3.4)

whose solution is given by

yn =
(

n−1∏

i=0

Ri

)

Q−1
N η, QN = B0 + B1

N−1∏

i=0

Ri.

10Observe that, in the case of IVPs, B0 = I and B1 = O , so that Q = I .
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The corresponding discrete conditioning parameters are then defined by:

κd(π,η) = 1

‖η‖ max
0≤n≤N

‖yn‖, κd(π) = max
η

κd(π,η),

γd(π,η) = 1

T ‖η‖
N∑

i=1

hi max(‖yi‖,‖yi−1‖), γd(π) = max
η

γd(π,η),

(1.3.5)

and

σd(π) = max
η

κd(π,η)

γd(π,η)
.

According to Definition 1.6, we say that the discrete problem11 (1.3.4) well rep-
resents the continuous problem (1.3.1) if

κd(π) ≈ κc(T ), γd(π) ≈ γc(T ). (1.3.6)

Remark 1.14 It is worth mentioning that innovative mesh-selection strategies for
the efficient numerical solution of stiff BVPs have been defined by requiring the
match (1.3.6) (see, e.g., [3, 4, 7, 8, 26]).

1.3.2 Singular Perturbation Problems

The numerical solution of singular perturbation problems can be very difficult be-
cause they can have solutions with very narrow regions of rapid variation character-
ized by boundary layers, shocks, and interior layers. Usually, the equations depend
on a small parameter, say ε, and the problems become more difficult as ε tends to 0.
It is not always clear, however, how the width of the region of rapid variation is
related to the parameter ε. By computing the stiffness ratio σc(T ), we observe that
singularly perturbed problems are stiff problems. Moreover, as the following exam-
ples show, the parameter σc(T ) provides us also with information about the width
of the region of rapid variation.

The examples are formulated as second order equations: of course, they have to
be transformed into corresponding first order systems, in order to apply the results
of the previous statements.

Example 1.15 Let us consider the linear singularly perturbed problem:

εy′′ + ty′ = −επ2 cos(πt) − πt sin(πt), y(−1) = −2, y(1) = 0, (1.3.7)

whose solution has, for 0 < ε � 1, a turning point at t = 0 (see Fig. 1.6). The exact
solution is y(t) = cos(πt) + exp((t − 1)/

√
ε) + exp(−(t + 1)/

√
ε).

In Fig. 1.7 we plot an estimate of the stiffness ratio obtained by considering two
different perturbations of the boundary conditions of the form (1,0)T and (0,1)T .

11It is both defined by the used method and by the considered mesh.
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Fig. 1.6 Problem (1.3.7),
ε = 10−8

Fig. 1.7 Estimated stiffness
ratio of problem (1.3.7)

The parameter ε varies from 10−1 to 10−14. We see that the (estimated) stiffness
parameter grows like

√
ε−1.

Example 1.16 Let us consider the following nonlinear problem:

εy′′ + exp(y)y′ − π

2
sin

(
πt

2

)

exp(2y) = 0, y(0) = 0, y(1) = 0. (1.3.8)

This problem has a boundary layer at t = 0 (see Fig. 1.8). In Fig. 1.9 we plot an
estimate of the stiffness ratio obtained by considering two different perturbations
of the boundary conditions of the form (1,0)T and (0,1)T . The parameter ε varies
from 1 to 10−8. We see that the (estimated) stiffness parameter grows like ε−1, as ε

tends to 0.

Example 1.17 Let us consider the nonlinear Troesch problem:

y′′ = μ sinh(μy), y(0) = 0, y(1) = 1. (1.3.9)
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Fig. 1.8 Problem (1.3.8),
ε = 10−6

Fig. 1.9 Estimated stiffness
ratio of problem (1.3.8)

Fig. 1.10 Troesch’s problem
(1.3.9), μ = 50
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Fig. 1.11 Estimated stiffness
ratio of Troesch’s problem
(1.3.9)

This problem has a boundary layer near t = 1 (see Fig. 1.10). In Fig. 1.11 we plot
the estimate of the stiffness ratio obtained by considering two different perturbations
of the boundary conditions of the form (1,0)T and (0,1)T . The parameter μ is
increased from 1 to 50 and, as expected, the stiffness ratio increases as well: for
μ = 50, it reaches the value 1.74 × 1012.
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Chapter 2
Efficient Global Methods for the Numerical
Solution of Nonlinear Systems of Two Point
Boundary Value Problems

Jeff R. Cash and Francesca Mazzia

Abstract In this paper we will be concerned with numerical methods for the so-
lution of nonlinear systems of two point boundary value problems in ordinary dif-
ferential equations. In particular we will consider the question “which codes are
currently available for solving these problems and which of these codes might we
consider as being state of the art”. In answering these questions we impose the re-
strictions that the codes we consider should be widely available (preferably written
in MATLAB and/or FORTRAN) they should have reached a fairly steady state in
that they are seldom, if ever, updated, they try to achieve broadly the same aims
and, of course, it is relatively inexpensive to purchase the site licence. In addition
we will be concerned exclusively with so called boundary value (or global) methods
so that, in particular, we will not include shooting codes or Shishkin mesh meth-
ods in our survey. Having identified such codes we go on to discuss the possibility
of comparing the performance of these codes on a standard test set. Of course we
recognise that the comparison of different codes can be a contentious and difficult
task. However the aim of carrying out a comparison is to eliminate bad methods
from consideration and to guide a potential user who has a boundary value problem
to solve to the most effective way of achieving his aim. We feel that this is a very
worthwhile objective to pursue. Finally we note that in this paper we include some
new codes for BVP’s which are written in MATLAB. These have not been avail-
able before and allow for the first time the possibility of comparing some powerful
MATLAB codes for solving boundary value problems. The introduction of these
new codes is an important feature of the present paper.
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2.1 Introduction

An important task in many areas of Numerical Analysis is to carry out meaningful
comparisons of numerical algorithms which attempt to achieve roughly the same
well defined objectives. This is of particular interest to a user who wishes to find
an appropriate code to solve his problem as well as to someone who has developed
a new algorithm and wishes to compare it with existing state of the art codes. An
obvious example of a particular case where such comparisons have been carried out
leading to the development of codes which are very much more efficient is in the
numerical solution of initial value problems of the form

dy

dx
= f (x, y), x ≥ a, y(a) = ya. (2.1.1)

The normal course of events which was followed by, for example, algorithms for
initial value problems (and also by most linear algebra routines) is that first the
mathematical theory behind the problems to be solved is well understood, then the
mathematical theory behind the numerical algorithms is established, then the prob-
lems involved in the writing of high quality, robust codes are identified and over-
come and finally some sort of numerical comparison is carried out to highlight the
strengths and weaknesses of the codes.

It is particularly relevant to us in this paper to focus our attention for the present
on what has been done for initial value problems of the general form (2.1.1) and this
we now do. Traditionally when a new code was proposed for the numerical solution
of (2.1.1) the code was illustrated by comparing it, on a small set of test problems,
with other codes also designed to solve (2.1.1). This proved to be less than satis-
factory since there is the danger that potential disadvantages of the new code are
not discovered if such limited testing is done. The first widely used test set for gen-
eral initial value problems was DETEST which was proposed by Enright, Hull and
Lindberg [18]. After this test set first appeared, users proposing a new method were
often expected to run their code on this test set (which contains 30 problems) and
this proved very useful in eliminating poor codes. However as codes became even
more powerful they tended to find the problems in DETEST to be too easy. A partic-
ular cause for concern was that many of the problems in DETEST were of very small
dimension and so they were often solved extremely quickly even by relatively poor
codes. Following an appraisal by Shampine [35] this test set was modified to make it
much more challenging but the major disadvantage still was the small dimension of
the problems. A big step forward in the quality of numerical testing came with the
book of Hairer and Wanner [20]. They proposed a test set which was considerably
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more challenging than DETEST and, in particular, contained some problems of very
large dimension (for example, the Brusselator problem on p. 151 of [20] is of dimen-
sion 32768). They also considerably advanced the methodology of testing and set
new standards in attempting to make the tests as fair as possible. Based on the work
of Hairer and Wanner an even more demanding test set was derived in Amsterdam
by Lioen and de Swart [23]. They considerably broadened the aims and scope of the
test set by adding differential algebraic equations with index ≤ 3. More recently this
test set was taken over by Francesca Mazzia and her co-workers at the University
of Bari [25] and it now plays a central role in providing realistic test problems for
IVP solvers. It is important to realise, however, that this test set now has several
additional facilities which can be extremely useful to users and which considerably
strengthens the case for carrying out sophisticated numerical testing. For example,
the user is easily able to run several state of the art codes either on his own test
problems or on problems that appear in the test set. It also allows the user to test his
own code against those appearing in the test set on really challenging problems and
as output it produces highly relevant, and easy to understand, statistics. For these
reasons the Bari test set now plays an important role in the development of powerful
codes for the numerical solution of initial value problems of the form (1.1) and it
also has several other important features available, which are much more important
than was anticipated when this project was first begun. To see exactly what is avail-
able (and to note the very high level of use of this facility) the reader is urged to log
into the Bari web page [25].

2.2 Boundary Value Problems

Having explained what has been done in developing test sets for initial value prob-
lems of the form (2.1.1), and witnessing the central role that is taken by test sets in
deriving efficient codes for initial value problems, it clearly would be a worthwhile
aim to extend some of these ideas to codes for the numerical solution of two-point
boundary value problems. Ideally we would like to be able to answer the question
“What are the best codes currently available for solving a large class of nonlinear
two-point boundary value problems and what properties of the boundary value prob-
lem need to be taken into account when deriving efficient numerical methods for its
solution”. Here the situation is very different than it is for initial value problems
simply because boundary value problems tend to be much harder to solve and much
more diverse than initial value problems. However it could be argued that in these
circumstances a user is in even more need of guidance. Due to the many forms that
can be taken by two-point boundary value problems, it is clear that we will need to
impose some important restrictions: firstly, on which classes of problems we will
attempt to solve; secondly, on which classes of numerical methods we will con-
sider. We need to decide for example whether or not we will consider non-separated
boundary conditions, eigenvalues and other parameter dependent problems, singu-
lar problems, problems of the special form y′′ = f (x, y) where there is no first
derivative present) and so on. What we will in fact consider in this paper is global
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methods, i.e. not shooting methods or Shishkin methods, for first order systems of
nonlinear two-point boundary value problems with separated boundary conditions.
This means that we will restrict the class of problems that we are interested in to

dy

dx
= f (x, y), a ≤ x ≤ b, g(y(a), y(b)) = 0. (2.2.1)

In this paper our aim will be to identify which codes are at present suitable to be
used for the numerical solution of (2.1). In order to do this, we need to reconsider
the codes that were presented in a previous article [5], where one of the present
authors sought to identify those codes designed for the numerical solution of two
point boundary value problems of the form (2.2.1), which were in some sense ef-
ficient for the solution of this class of problems. This has naturally involved some
repetition of what was considered in [5] but we feel that this is justified since it is
appropriate, for the sake of completeness, for us to collect together in a single article
those codes which we feel are efficient and are suitable for inclusion in a numerical
comparison. Note however that all of these codes in [5] are written in FORTRAN.
In due course we will hope to provide a comparison of the performance of various
codes on (2.2.1) but in the present paper we will be mainly interested in identifying
‘state of the art’ codes which will be suitable for inclusion in a comparison. Some
interesting thoughts concerning this can be found in [2, p. 515]. In [5] three codes
were identified as having the possibility of being considered state of the art codes
and these were COLNEW.f/COLSYS.f, MIRKDC.f, and TWPBVP.f/TWPBVPL.f.
Also identified in [5] as being powerful continuation codes were COLMOD.f and
ACDC.f [13]. The first of these two codes is based on COLSYS.f and the second
is an adaptation of TWPBVPL.f. These codes allow COLSYS.f and TWPBVPL.f
to be run in a continuation framework. This makes these codes much more able to
deal with really difficult singular perturbation problems than is the case when con-
tinuation is not used. The important questions we need to consider in this section
are: whether these codes have stabilised in the time since [5] was written; whether
these new codes can still be considered as state of the art; whether new codes which
are competitive with these three codes have been developed in the interim; whether
more recent codes written in MATLAB are now suitable. It is important to be aware
of the fact that the development of a test set for initial value problems took a lot of
time, and considerable effort, and many researchers contributed to this project. We
would expect the same to be the case for BVPs and so the present paper, which aims
to identify which codes should have a place in a numerical comparison, should be
regarded as the first step in an on going project.

The first code we consider is COLSYS.f/COLNEW.f [1, 2]. This code is based
on the approximation of the solution of the differential equation (2.2.1) by a piece-
wise polynomial and it uses collocation at Gauss points to define this polynomial
uniquely. In fact, the COLSYS.f codes are applicable directly to mixed order sys-
tems (i.e., there is no need to reduce the problem to a first order system before at-
tempting to solve it) and in what follows we describe how COLSYS.f can deal with
such systems. This code was considered in [5] but for completeness we include it
here. However, there is a major difference in that in [5] we considered a single high
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order equation whereas here we consider a mixed order system. We consider the
mixed order system of ODEs with separated boundary conditions

u
(mi)
i = fi(x,u1, . . . , u

(m1−1)
1 , u2, . . . , u

(md−1)
d ) (2.2.2)

= fi(x, z(u)), 1 ≤ i ≤ d, a ≤ x ≤ b. (2.2.3)

The boundary conditions are

gj (z(u(ηj ))) = 0, 1 ≤ j ≤ m∗, (2.2.4)

where

u(x) = [u1(x), u2(x), . . . , ud(x)]T , (2.2.5)

m∗ =
d∑

i=1

mi, a = η1 ≤ η2 ≤ · · · ≤ ηm∗ = b, (2.2.6)

and

z(u(x)) = (u1(x), u′
1(x), . . . , u

(m1−1)
1 (x), u2(x), . . . , u

(m2−1)
2 (x), . . . , u

(md−1)
d (x))T .

(2.2.7)
There are some important points to be noted about COLSYS.f. The first is that
multipoint boundary conditions are allowed but all boundary conditions must be
separated. The second point is that, as mentioned earlier, collocation codes such as
COLSYS.f do not require the problem to be reduced to first order form before it can
be solved. The codes COLSYS.f and COLNEW.f approximate the solution by using
collocation at Gauss points. This requires

u(x) ∈ Cmi−1[a, b], for i = 1,2, . . . , d. (2.2.8)

In this approach, an approximate solution of the form

uπ(x) =
M∑

j=1

αjφj (x), a ≤ x ≤ b, (2.2.9)

is sought. Here the φj (x) are known linearly independent functions, defined on the
range [a, b], and the αj are parameters that remain to be chosen. The M parameters
are determined by the requirement that uπ(x) should satisfy the following M condi-
tions: It should satisfy the m boundary conditions and it must also satisfy the ODE
at M − m points in [a, b]. These M − m points are called the collocation points.
A popular choice for the φj (x) is to let them be piecewise polynomial functions and
this is exactly what is done in COLSYS.f. It follows that the M conditions imposed
on uπ(x), to allow (2.2.9) to be uniquely defined are

(1) uπ satisfies the m boundary conditions (2.2.4)
(2) uπ satisfies the ODE at k points in each of the N mesh subintervals and this

defines Nk + m unknowns.



28 J.R. Cash and F. Mazzia

In order that the solution should satisfy the differential equation at Nk points we
require that

0 = u(m)
π (xij ) − f (xij , uπ (xij )), 1 ≤ j ≤ k,1 ≤ i ≤ N. (2.2.10)

If we define the mesh with maximum mesh size h, and we derive our collocation
method so that it is based on Gauss points with s collocation points per subinterval,
then the global error is uniformly O(hs) while at the mesh points we have supercon-
vergence and the error is O(h2s). It is important to realise that COLSYS.f derives
a continuous solution in the form of a piecewise polynomial and it also attempts to
compute the error in this continuous solution. Of course, computing a continuous
solution is a much more difficult task than just computing the solution at a discrete
set of points as is done by several other codes. On the other hand, COLSYS.f per-
forms the expensive task of computing a continuous solution even if the user only
requires the solution to be computed at a few points. Thus, in any numerical com-
parison, we have to consider if the user will be provided with a continuous solution
and if that is what he requires.

As mentioned previously, COLSYS.f attempts to provide an estimate of the error
in the continuous solution and it does this using equi-distribution. The idea is that
mesh points are distributed so that an equal error is made in each mesh interval.
A description of this technique can be found in [2, p. 62].

The second code highlighted in [5] was MIRKDC.f. This code is based on Mono
Implicit Runge-Kutta methods [4, 11, 16] which have been widely used for the
numerical solution of two point boundary value problems. These methods have the
special property that they can be implemented very efficiently for boundary value
problems, due to a certain explicitness appearing in the MIRK equations. In what
follows, we will describe exactly what MIRK formulae attempt to achieve and we
show how this is done. Following Enright and Muir [17], we rewrite MIRK schemes
in the slightly different form

yn+1 = yn + h

s∑

i=1

bi f (xn + ci h,Yi),

Yi = (1 − vi) yn + vi yn+1 + h

s∑

j=1

zij f (xn + cj h, Yj ), i = 1, . . . , s. (2.2.11)

This is of course just a standard implicit Runge-Kutta method which can be ex-
pressed using the celebrated Butcher notation. A convenient way of expressing this
formula as an array, is to write it in the form

c1 v1 z11 z12 . . . z1s

c2 v2 z21 z22 . . . z2s

...
...

...
...

...

cs vs zs1 zs2 . . . zss

b1 b2 . . . bs

(2.2.12)
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This is written to emphasise the fact that both yn and yn+1 appear in the Runge-Kutta
equations written in the form (2.2.11). The link between (2.2.12) and the standard
Butcher notation is

A = Z + vbT . (2.2.13)

Having defined the Runge-Kutta method in this particular way, Enright and Muir
then compute a solution of the given two point boundary value problem on a discrete
set of points. Once convergence has been obtained to a discrete solution, Enright
and Muir consider how this can be transformed to a continuous solution by the
computation of additional function evaluations. Muir and Owren consider schemes
of the form

u(x) = u(xi + θhi) = yi + h

s∗
∑

r=1

br(θ)kr (2.2.14)

where

θ = (x − xi)/hi, 0 ≤ θ ≤ 1, xi ≤ x ≤ xi+1, (2.2.15)

which they call CMIRK schemes [33]. Note that this defines a continuous solution
on the ith subinterval. The number of stages required to compute this continuous
solution is s∗, with s < s∗, and the first s stages of the interpolating polynomial
(2.2.14) are the same as the first s stages of the discrete solution. The main dif-
ference between discrete MIRK schemes and continuous CMIRK schemes is that
the weight coefficients of the MIRK scheme are replaced by weight polynomials in
(2.2.14). Having derived a continuous solution u(x) by using the CMIRK frame-
work (2.2.14), (2.2.15), Enright and Muir use defect control both for mesh selection
and accuracy control, in order to define a continuous defect. The (continuous) defect
is defined as

δ(x) = u′(x) − f (x,u(x)) (2.2.16)

and Enright and Muir estimate the maximum value of this defect on each subinter-
val. For further discussion of this defect correction approach, the reader is referred
to [5, p. 13]. In summary, we should point out that COLSYS.f controls the global
error while MIRKDC.f controls the defect and these two tasks are not equivalent.
The theory underlying the code MIRKDC.f [17] has remained largely unchanged
since the MIRKDC.f code was written. What has changed, since [17] was written,
is that there has been a major update to the code rather than to the theory. Con-
cerned by the long calling sequence of many boundary value codes (in particular
calling sequences for boundary value problems tend to be much longer than for ini-
tial value problems) and worried that many potential users may be put off using
standard codes because of this, Shampine and Muir wrote a MIRKDC code which
they called ‘user friendly’ [37]. This new code is written in FORTRAN 90/95, it
cuts down drastically on the number of calling parameters required, it extends the
capabilities of the MIRKDC code to the solution of problems with unknown param-
eters, it is able to deal with eigenvalue problems and some singular problems, and it
allows the required Jacobian matrices to be computed using numerical differences.
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There is also a discussion explaining why it is desirable for the code to be written
in FORTRAN 90/95. Also the possibility of using the code in a continuation frame-
work is discussed. For the purpose of this paper we will consider this code to be
state of the art and, for more details, the reader is referred to [37].

2.3 Deferred Correction Codes

The most convenient way to describe our deferred correction approach is to write
our methods in a Runge-Kutta framework. As mentioned earlier, if we are using
MIRK formulae we can write our Runge-Kutta formulae in the form (2.2.11). In
what follows we consider the deferred correction framework originally proposed by
Fox [19]. In this approach we first need to define two Runge-Kutta methods which
will be used to define our basic algorithm. The first Runge-Kutta method, which
we will denote by φ, computes a cheap low order approximation to the solution of
(2.2.1) while the second, denoted by ψ , computes an estimate of the local error in
φ. This then allows us to define the deferred correction scheme in the basic form

φ(η) = 0,

φ(η) = ψ(η).
(2.3.1)

For a long time the question concerning the order of accuracy of (2.3.1) was un-
resolved. This problem was solved by Skeel [38] and in what follows we give his
theorem. In the theorem below the first two conditions have been known for some
time, it was the third condition that was elusive. However the theorem is quite intu-
itive if we regard the true solution as being the sum of the numerical solution and
the global error. To state Skeel’s theorem consider the deferred correction scheme
(2.3.1) defined on the grid

π : a = x0 < x1 < · · · < xN = b. (2.3.2)

Denote by 	y the restriction of the continuous solution y(x) to the final grid π .
Then Skeel’s theorem says the following:

Theorem Let φ be a stable numerical method and assume that the following con-
ditions hold for the deferred correction scheme (2.3.1):

‖η − 	y‖ = O(hp),

‖ψ(	y) − φ(	y)‖ = O(hr+p),

ψ(	w) = O(hr),

(2.3.3)

for arbitrary functions w having at least r continuous derivatives. Then if φ(η) =
ψ(η) it follows that

‖η − 	y‖ = O(hr+p). (2.3.4)
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The main problem was how to define the two operators φ and ψ . There are
many ways in which the deferred correction schemes can be refined depending on
the choices of φ and ψ and in what follows we use a particular form of deferred
correction which was proposed by Fox [19] and later refined by Lindberg [22]. Their
proposal was to consider two Runge-Kutta formulae of order i and j , respectively,
where i < j . Having defined these formulae (and of course there is an extremely
wide choice that we have), we consider the algorithm defined by

φi(η) = 0,

φi(η) = −φj (η).

It is clear that the first two conditions of Skeel’s theorem are trivially satisfied if
we use this deferred correction approach, with p = i and r + p = j . It is much
more complicated to verify that the final condition is satisfied and this requires us to
present our Runge-Kutta methods in a special way and to explain this the reader is
referred to [10]. There are many ways in which these deferred correction methods
can be refined. For example we could consider the deferred correction scheme

φi(η) = 0,

φi(η) = −φj (η),

φi(η) = −φj (η) − φk(η),

(2.3.5)

where an extra symmetric Runge-Kutta formula is introduced in an attempt to define
a scheme of order k where k > j . Again the order of accuracy of this scheme can be
determined by Skeel’s theorem. A popular choice is to take i = 4, j = 6, k = 8. It is
easy to show that if the φ are either MIRK formulae or Lobatto formulae then η , η,
and η are of order 4,6 and 8 respectively. If we use the deferred correction scheme
based on MIRK methods then this defines the code TWPBVP.f and if we base our
codes on Lobatto formulae then we have the code TWPBVPL.f. This leads to two
widely used codes which use the basic framework (2.3.5). For an illustration of how
these formulae perform on a wide range of test problems the reader is referred to
the web page of one of the authors [8]. We emphasise that the schemes we have
described are just some of many that can be defined in the Runge-Kutta framework.
Another possibility which certainly seems worth investigating is to use methods of
different orders in different parts of the mesh. Another possibility is to use fixed
order but include methods of order 10 rather than stopping at order 8. An important
point to note is that these schemes, which are based on Runge-Kutta methods, have
the usual problem that there is no convenient error estimate available and, also, the
obtained solution is a discrete one. In order to define a continuous solution, if it is
needed, we have to derive a suitable interpolant and as an estimate of the error we
compute

φi(η) − φi(η). (2.3.6)
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This gives us an error estimate in the j th order solution η and this is used for
grid refinement [39]. There is also an important difference in the way in which
the mesh is formed when using iterated deferred correction methods. As men-
tioned earlier, COLSYS.f uses equi-distribution and this results in mesh points
‘sliding about’. The deferred correction methods discussed in [5], namely TW-
PBVPL.f which is based on Lobatto formulae and TWPBVP.f which is based
on MIRK formulae, either add in or take out mesh points depending on the er-
ror estimate and this results in a lot of the mesh points not moving during a
grid refinement. These codes are on the authors web page and can be consid-
ered as being state of the art codes. In particular, the code TWPBVP.f tends
to be very effective for non-stiff problems while TWPBVPL.f is particularly ef-
ficient for stiff problems. The main reason for this behaviour is that the Lo-
batto codes, which use implicit deferred corrections, are much more reliable
than the codes based on MIRK formulae which use explicit deferred correc-
tions [12].

An important way in which deferred correction codes have changed since TW-
PBVP and TWPBVPL were written is that they now have the option of taking into
account the conditioning of the problem. The importance of having this facility was
demonstrated in a paper of Shampine and Muir [36] who wanted to test out the di-
agnostic capabilities of the two-point boundary value code BVP4C. They did this
by considering Bratu’s problem:

y′′ = λ exp(y),

y(0) = y(1) = 0.
(2.3.7)

Davis [14] has shown that if 0 ≤ λ < λ∗ = 3.51383 . . . then there are 2 solutions
to this problem and both are parabolic and are concave down in nature. If λ = λ∗
then there is just one solution and for λ > λ∗ there are no solutions. In their numer-
ical experiments Shampine and Muir first described the performance of the code
for λ = 3.45 and plotted one of the solutions which they obtained in a perfectly
satisfactory way. However they did note that their estimate of the conditioning con-
stant was quite high (the error tolerance imposed was 10−3) and the estimate of
the conditioning constant was 3.14 × 103. The code found this problem so easy
that the solution was obtained on the initial mesh of 10 points. Having done this,
Shampine and Muir solved Bratu’s problem with λ = 3.55 for which the problem
has no solution. The expectation was that BVP4C would fail to find a solution and
would send this message back to the user. However the code did not do this, in-
stead it returned a solution which had all the characteristics of being parabolic in
nature and concave downwards. The solver provided no warning message. However
the code did need 179 points to compute the solution and the estimate of the con-
ditioning constant was 106 which can be considered as being very large given the
precision that is required. The reason for this poor performance of BVP4C is not
hard to understand. The problem arises from the fact that the solution is obtained,
and the mesh is refined, using a local error estimate. We do this on the assumption
that if the local error estimate is sufficiently small, then the global error will also
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be small. However a backward error analysis shows that this may not be the case if
the problem is ill conditioned. All of this makes a very powerful case, when solv-
ing two point boundary value problems, for computing the conditioning constant
of the problem as well as the solution. Without a conditioning estimate we are not
able to have any confidence in a solution that we compute based on local errors and
we feel that this is a really important problem which requires considerable further
investigation.

Early work on the estimation of conditioning for boundary value problems was
carried out by Trigiante, Brugnano and Mazzia [3, 28]. The approach of these re-
searchers was rather different from that of Shampine and Muir. The Shampine Muir
approach on the detection of poor conditioning was to warn the user of this and to
warn that there may be a severe loss of correct digits in the solution computed. In
contrast, in a recent series of papers [6, 7] Cash, Mazzia and their co-workers de-
rived efficient algorithms for estimating the condition numbers of BVPs and they
developed a mesh choosing algorithm which takes into account the conditioning of
the problem. In this approach the aim is to choose the mesh so that a local error tol-
erance is satisfied and also so that the problem remains well conditioned. This led to
the derivation of codes TWPBVPLC.f and TWPBVPC.f which are based on Lobatto
and MIRK methods respectively and which give an estimate of the conditioning of
the problem along with the numerical solution computed by the code. The existence
of these new codes gives the user the option of taking into account the condition-
ing of the problem and, if this option is used, the original codes TWPBVP.f and
TWPBVPL.f require the change of just one input parameter. Extensive numerical
testing on these four deferred correction codes appear on the web page of one of the
authors [8]. What is found, for most problems where conditioning is not an issue, is
that there is little difference between the performance of TWPBVP.f/TWPBVPC.f
and TWPBVPL.f/TWPBVPLC.f. However for problems where conditioning is im-
portant there is often a considerable gain in efficiency if the codes TWPBVPC.f and
TWPBVPLC.f are used. Finally, another important feature, is that the estimate of
the conditioning constant can be used in a backward error analysis to ensure that the
final solution, which is based on local error estimation, gives a solution with a sat-
isfactory global error. Although considerable advances have been made in the com-
putation of conditioning constants we feel that there is still more work to be done.
However the approach of Trigiante, Brugnano, Cash and Mazzia which chooses the
mesh so that a local error tolerance is satisfied and so that the conditioning of the
continuous and discrete problems remains roughly the same is a very powerful one.

2.4 Boundary Value Methods

In this section we describe a class of methods known as Boundary Value Methods
(BVMs) [3]. These are linear multistep methods used in a special way that allows
us to generate stable discrete boundary values schemes. In the case of symmet-
ric schemes, given the grid π defined by (2.3.2) with hi = xi − xi−1,1 ≤ i ≤ N ,
the numerical scheme generated by a k-step BVM is defined by the following
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equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(y0, yN) = 0,
∑k−i

j=−i α
(i)
j+i yi+j = hi

∑k−i
j=−i β

(i)
j+i fi+j ,

i = 1, . . . , k1 − 1
(additional initial methods),

∑k2
j=−k1

α
(i)
j+k1

yi+j = hi

∑k2
j=−k1

β
(i)
j+k1

fi+j ,

i = k1, . . . ,N − k2
(main methods),

∑N−i
j=N−i−k α

(i)
j−N+i+k yi+j = hi

∑N−i
j=N−i−k β

(i)
j−N+i+k fi+j ,

i = N + 1 − k2, . . . ,N

(additional final methods),

(2.4.1)

where yi is the approximation of y(xi), fi = f (xi, yi), k is odd, k1 = (k + 1)/2,
k2 = k − k1 and α(i) = (α

(i)
0 , . . . , α

(i)
k )T and β(i) = (β

(i)
0 , . . . , β

(i)
k )T are the coeffi-

cient vectors characterising the method. The so called “additional initial methods”
and “additional final methods” i.e. k1 − 1 initial and k2 final equations, are derived
by using appropriate discretisation schemes.

The main code currently available, which implements these methods, is known as
TOM. This is a general purpose code for the solution of BVPs and is rather different
from other codes that have been derived. The first release of the code was written
in MATLAB in 2003 [24], and was based on a class of symmetric Boundary Value
Methods (BVMs) [3]. The Top Order Methods (TOM) are k-step linear multistep
methods with the highest possible order 2k and in the code TOM we use k = 3
to give a sixth order method. A complete description of these methods, along with
their stability properties, can be found in [3, Sect. 7.4]. Recently the code has been
updated by implementing another class of BVMs, namely the BS linear multistep
methods [30–32]. The new version of the code is available in MATLAB.

The BS methods are derived by imposing the restriction that the numerical so-
lution of the general k-step linear multistep formula is the same as is given by
the collocation procedure using the B-spline basis. The coefficients are computed
by solving special linear systems. The k-step BS scheme provides a Ck continu-
ous solution that is kth-order accurate uniformly in [a, b] and collocating the dif-
ferential equation at the mesh points [32]. In order to introduce the continuous
extension, some further notation is needed. First, we represent any spline func-
tion s of degree d = (k + 1) and knot xi, i = 0, . . . ,N using the associated (d th-
degree) B-spline basis Bj (x), j = −d, . . . ,N − 1. This can be defined after pre-
scribing two additional sets of d knots, {xi, i = −d, . . . ,−1} (left auxiliary knots),
with x−d ≤ · · · ≤ x0, and {xi, i = N + 1, . . . ,N + d} (right auxiliary knots), with
xN ≤ xN+1 ≤ · · · ≤ xN+d [15]. Using this notation, the spline collocating the dif-
ferential equation can be represented as follows,

Q
(BS)
d (y) =

N−1∑

j=−d

μ
(BS)
j (y)Bj , (2.4.2)
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where μ
(BS)
j (y) are linear combinations of the values of yi and fi , i = 0, . . . ,N

in π . We note that, if the values yi and fi have been computed with a different
scheme, the continuous approximation is the quasi-interpolation spline described
in [26]. This means that this continuous extension could safely be used for any
discretisation method.

The main feature of the code is that it implements a hybrid mesh selection strat-
egy based on both the conditioning parameters of the problem and on a suitable
approximation of the local error. This strategy was introduced in [28] and was first
implemented in the code TOM. Subsequently it was modified in [6, 7] for use in
TWPBVPC and TWPBVPLC. As is the case for the codes based on deferred cor-
rection, by changing just one input parameter, it is possible for the mesh selection to
use a standard strategy based only on the local error for the mesh selection. Instead
of using a damped Newton method for the solution of the nonlinear equations, the
code TOM implements a quasi-linearisation technique [27, 29, 32]. This means that
a sequence of continuous linear BVPs is solved to a suitable tolerance. This allows
us to use very efficiently the mesh selection based on conditioning for non linear
problems as well as linear ones.

We note that the conditioning parameters estimated by the code can be defined
both for the continuous problem and for the discrete one giving the possibility to
measure the reliability of the discrete problem with respect to the continuous one.
In other words, we must be suspicious if the discrete problem provides parameters
which are very different from the continuous ones, and this could be checked if the
conditioning parameters do not converge. Since such parameters, for the discrete
problem, depend on the chosen mesh, it is possible, for a fixed method, to vary the
latter in order to be sure that the discrete parameters converge. This allows us, for
example, to recognise if the solution has two or more time scales associated with it.
This is the idea on which the mesh strategy is based.

Since the BS are collocation methods, the code provides as output a continuous
solution, which could be used to estimate the error at any chosen point, or a set of
discrete points, if, for example, the user requires only the solution at the mesh points.
A continuous solution is also computed, if needed, when using the TOM code, by
the quasi-interpolation technique based on the BS methods described in [26].

2.5 Interpolation

As mentioned earlier, the deferred correction codes TWPBVP.f and TWPBVPL.f
are the only ones described in this paper which do not seek to provide a continuous
solution. The obvious way of getting around this problem is to derive an a posteri-
ori interpolant which can be computed using just a few extra function evaluations.
This is rather similar to what the code MIRKDC does, although this code needs a
continuous solution from the start so that it can estimate the defect. Here a discrete
solution is computed first of all and this is accepted once the defect is sufficiently
small. After the discrete solution has been accepted a continuous MIRK scheme is
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formed using an approach of Muir and Owren [33]. Note that, if a continuous solu-
tion is not required, for example the solution may be required only at a few mesh
points, then this interpolant is not needed for error estimation. Numerical experience
has shown that it is advisable to compute an interpolant using data from only one
sub-interval, and this avoids problems at the end of the mesh. If the interpolant is a
local one, that is it is defined over a single interval, then the interpolant is identical
over each sub-interval and it also has the desirable property that it is symmetric.
The problem of deriving high order interpolants for MIRK formulae has recently
been considered in some detail. It has been shown in [9] that a sixth order MIRK
interpolant can be computed using just one extra function evaluation. To compute an
eighth order MIRK interpolant, we need four extra function evaluations and the way
in which this is done is described in [9]. By deriving an a posteriori interpolant, we
are effectively introducing a continuous solution and this allows a fair comparison
with other codes discussed in this paper to be carried out.

2.6 Conclusion

The purpose of the present paper was to answer the question ‘Which codes for
the numerical solution of two point boundary value problems of the form (2.2.1)
can be considered as being state of the art’. The codes identified as falling into
this class were based on: collocation methods (COLSYS/COLNEW); defect con-
trol methods based on MIRK formulae (MIRKDC); deferred correction methods
(TWPBVP/TWPBVPL) and boundary value methods (TOM). There is consider-
able numerical evidence to suggest that these codes are amongst the most efficient
global methods currently available. In addition these codes have reached what we
have called a “steady state” and this makes them ideal for use in a numerical com-
parison. However there are two important points that we need to bear in mind.

Firstly, these codes attempt to solve slightly different problems. In particular
COLSYS/COLNEW and TOM attempt to define a continuous solution by com-
puting the error in a polynomial approximation to the solution. MIRKDC also seeks
to provide a continuous solution but controls the error in the defect. In contrast the
deferred correction codes compute a discrete solution initialy and the continuous
solution is obtained using an a posteriori interpolant.

The second point to note is that it is important to take into account the condition-
ing of the problem when solving a problem of the form (2.2.1). A standard backward
error analysis which links the global error to the local one relies on the problem
being well conditioned and, if it is not, a solution which has not got the required
accuracy may be accepted. A considerable amount of effort has been applied to the
estimation of the conditioning of a problem and the reader is referred to [3, 6, 7, 28].
The boundary vale methods and deferred correction codes allow conditioning esti-
mation and an estimate of the conditioning can be obtained by changing just one
input parameter for these codes. We expect the estimation of the conditioning of a
problem to become a very important topic in the future. In addition we feel that the
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four FORTRAN codes we have discussed are a very firm basis for carrying out nu-
merical comparisons of different methods and we hope to be able to investigate this
in the near future. Finally, we list those codes in FORTRAN and MATLAB which
would be candidates for use in a numerical comparison. We feel it appropriate to
divide the codes into two catagories, namely those which are written in FORTRAN
and those which are written in MATLAB. Generally speaking, if run time is an issue
then the user should probably be using a FORTRAN code. If it is not, then the user
may find a MATLAB code to be more convenient. The codes that we feel either are
or will become state of the art codes are

• FORTRAN codes: TWPBVPC, TWPBVPLC, ACDC, COLNEW, COLMOD,
MIRKDC, BVP_SOLVER.

• MATLAB codes: BVP4C, BVP5C ([21]), TOM, TWPBVPC, TWPBVPLC.

Note that the MATLAB codes TWPBVPC/TWPBVPLC have only just been re-
leased but are based on widely used codes. We finish this section with the observa-
tion that codes written in languages other than FORTRAN or MATLAB are starting
to appear. As an example we mention the code TWPBVP which is now available in
R (package bvpSolve) [34].
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Chapter 3
Advances on Collocation Based Numerical
Methods for Ordinary Differential Equations
and Volterra Integral Equations

Dajana Conte, Raffaele D’Ambrosio,
and Beatrice Paternoster

Abstract We present a survey on collocation based methods for the numerical inte-
gration of Ordinary Differential Equations (ODEs) and Volterra Integral Equations
(VIEs), starting from the classical collocation methods, to arrive to the most impor-
tant modifications appeared in the literature, also considering the multistep case and
the usage of basis of functions other than polynomials.

Keywords Collocation · Two-step collocation · Runge–Kutta methods · Two-step
Runge–Kutta methods · Mixed collocation
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3.1 Introduction

Collocation is a widely applied and powerful technique in the construction of nu-
merical methods for ODEs and VIEs. As it is well known, a collocation method is
based on the idea of approximating the exact solution of a given functional equation
with a suitable approximant belonging to a chosen finite dimensional space, usually
a piecewise algebraic polynomial, which exactly satisfies the equation on a certain
subset of the integration interval (i.e. the set of the so-called collocation points).
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This technique, when applied to problems based on functional equations, allows
the derivation of methods having many desirable properties. In fact, collocation
methods provide an approximation over the entire integration interval to the so-
lution of the equation. Moreover, the collocation function can be expressed as a
linear combination of functions ad hoc for the problem we are integrating, in order
to better reproduce the qualitative behavior of the solution.

The systematic study of collocation methods for initial value problems in ODEs,
VIEs, and Volterra integro-differential equations (VIDEs) has its origin, respec-
tively, in the late ’60, the early ’70 and the early ’80s. The idea of multistep col-
location was first introduced by Lie and Norsett in [58], and further extended and
investigated by several authors [12, 24–26, 28, 31, 34–36, 38, 42, 57, 62].

Multistep collocation methods depend on more parameters than classical ones,
without any significant increase in the computational cost, by regarding them as
special case of multistep Runge–Kutta methods: therefore, there are much more
degrees of freedom to be spent in order to obtain strong stability properties and an
higher order and stage order of convergence. As a direct consequence the effective
order of multistep collocation methods is generally higher with respect to one step
collocation methods with the same number of stages. Moreover, as they generally
have high stage order, they do not suffer from the order reduction phenomenon
(see [11, 43]), which occurs in the integration of stiff systems.

The purpose of this paper is to present a review of recently introduced families
of collocation and modified collocation methods for ODEs and VIEs. In particular
we aim to present the main results obtained in the context of multistep collocation
and almost collocation methods, i.e. methods obtained by relaxing some collocation
and/or interpolation conditions in order to obtain desirable stability properties.

The paper is organized as follows: Sect. 3.2 reviews the main results concerning
classical one-step and multistep collocation methods for ODEs and their recent ex-
tensions and modifications; Sect. 3.3 is dedicated to collocation methods for second
order initial value problems and also collocation methods based on functional basis
other than polynomials; in Sect. 3.4 we consider the evolution of the collocation
technique for Volterra integral equations.

3.2 Collocation Based Methods for First Order ODEs

In this section we focus our attention on the hystorical background and more
recent results concerning the collocation technique, its modifications and extensions
for the derivation of highly stable continuous methods for the numerical solution of
initial value problems based on first order ODEs

{
y′(x) = f (x, y(x)), x ∈ [x0,X],
y(x0) = y0 ∈ R

d,
(3.2.1)

with f : [x0,X]×R
d → R

d . It is assumed that the function f is sufficiently smooth,
in such a way that the problem (3.2.1) is well-posed.
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3.2.1 Classical One-Step Collocation Methods

Let us suppose that the integration interval [x0,X] is discretized in an uniform
grid x0 < x1 < · · · < xN = X. Classical collocation methods (see [6, 10, 11, 44,
45, 55, 78]) are determined by means of a continuous approximant, generally an
algebraic polynomial P(x), satisfying some opportune conditions: in order to ad-
vance from xn to xn+1, the polynomial P(x) interpolates the numerical solution
in xn, and exactly satisfies the ODE (3.2.1)—i.e. co-locates—in the set of points
{xn + cih, i = 1,2, . . . ,m}, where c1, c2, . . . , cm are m real numbers (named collo-
cation nodes), that is

{
P(xn) = yn,

P ′(xn + cih) = f (xn + cih,P (xn + cih)), i = 1,2, . . . ,m.
(3.2.2)

The solution in xn+1 can then be computed from the function evaluation

yn+1 = P(xn+1). (3.2.3)

The classical framework in which collocation methods must be placed is cer-
tainly constituted by implicit Runge–Kutta methods (IRK). In fact, Guillou and
Soule in [42] and Wright in [78] independently proved that one step collocation
methods form a subset of implicit Runge–Kutta methods

yn+1 = yn + h

m∑

i=1

bif (xn + cih,Yi), (3.2.4)

Yi = yn + h

m∑

j=1

aijf (xn + cjh,Yj ), i = 1,2, . . . ,m, (3.2.5)

where

aij =
∫ ci

0
Lj (s)ds, bj =

∫ 1

0
Lj(s)ds, i, j = 1,2, . . . ,m (3.2.6)

and Lj (s), j = 1, . . . ,m, are fundamental Lagrange polynomials. The maximum
attainable order of such methods is at most 2m, and it is obtained by using Gaussian
collocation points [45, 55]. Anyway, unfortunately, the order 2m is gained only
at the mesh points: the uniform order of convergence over the entire integration
interval is only m. As a consequence, they suffer from order reduction showing
effective order equal to m (see [10, 11, 43, 45]).

Butcher (see [10] and references therein) gave an interesting characterization of
collocation methods in terms of easy algebraic conditions, and analogous results are
also reported in [45, 55]. This characterization, together with many other several
results regarding the main properties of collocation methods, comes out as natu-
ral consequence of an interesting interpretation of collocation methods in terms of
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quadrature formulae. In fact, if f (x, y(x)) = f (x), (3.2.4)–(3.2.5) can be respec-
tively interpreted as quadrature formulae for

∫ xn+h

xn
f (x)dx and

∫ xn+cih

xn
f (x)dx,

for i = 1,2, . . . ,m. We next consider the following linear systems

A(q) :
m∑

j=1

aij c
k−1
j = ck

i

k
, k = 1,2, . . . , q, i = 1,2, . . . ,m, (3.2.7)

B(p) :
m∑

i=1

bic
k−1
i = 1

k
, k = 1,2, . . . , p. (3.2.8)

Then, the following result holds (see [44, 55]):

Theorem 3.1 If the condition B(p) holds for some p ≥ m, then the collocation
method (3.2.2) has order p.

As a consequence, a collocation method has the same order of the underlying
quadrature formula (see [44], p. 28). Finally, the following result characterizing
classical collocation methods arises (see [10, 44, 45, 55]).

Theorem 3.2 An implicit m-stage Runge–Kutta method, satisfying B(m) and hav-
ing distinct collocation abscissae, is a collocation method if and only if conditions
A(m) holds.

The most used collocation methods are those based on the zeros of some or-
thogonal polynomials, that is Gauss, Radau, Lobatto [10, 11, 43, 45, 55], having
respectively order of convergence 2m, 2m − 1, 2m − 2, where m is the number
of collocation points (or the number of stages, regarding the collocation method
as an implicit Runge–Kutta). Concerning their stability properties, it is known that
Runge–Kutta methods based on Gaussian collocation points are A-stable, while the
ones based on Radau IIA points are L-stable and, moreover, they are also both al-
gebraically stable (see [11, 43, 49] and references therein contained); Runge–Kutta
methods based on Lobatto IIIA collocation points, instead, are A-stable but they are
not algebraically stable (see [10, 44, 45, 55]).

3.2.2 Perturbed Collocation

As remarked by Hairer and Wanner in [43], only some IRK methods are of collo-
cation type, i.e. Gauss, Radau IIA, and Lobatto IIIA methods. An extension of the
collocation idea, the so-called perturbed collocation is due to Norsett and Wanner
(see [63, 64]), which applies to all IRK methods.
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We denote by �m the linear space of polynomials of degree at most m and con-
sider the polynomial Nj ∈ �m defined by

Nj(x) = 1

j !
m∑

i=0

(pij − δij )x
i, j = 1,2, . . . ,m,

where δij is the usual Kronecker delta. We next define the perturbation operator
Px0,h : �m → �m by

(Px0,hu)(x) = u(x) +
n∑

j=1

Nj

(
x − x0

h

)

u(j)(x0)h
j .

Next, the following definition is given (see [63, 64]).

Definition 3.3 Let c1, . . . , cm be given distinct collocation points. Then the corre-
sponding perturbed collocation method is defined by

u(x0) = y0, u ∈ �m,

u′(x0 + cih) = f (x0 + cih, (Px0,hu)(x0 + cih)), i = 1,2, . . . ,m,

y1 = u(x0 + h).

As the authors remark in [64], if all Nj ’s are identically zero, then Px0,h is the
identical map and the definition coincides with classical collocation. In the same pa-
per the authors provide the equivalence result between the family of perturbed col-
location methods and Runge–Kutta methods (see [64]). The interest of this results,
as again is stated in [64], is that the properties of collocation methods, especially in
terms of order, linear and nonlinear stability, can be derived in a reasonable short,
natural and very elegant way, while it is known that, in general, these properties are
very difficult to handle and investigate outside collocation.

3.2.3 Discontinuous Collocation

In the literature, perturbed collocation has been considered as a modification of the
classical collocation technique, in such a way that much more Runge–Kutta methods
could be regarded as perturbed collocation based methods, rather than classically
collocation based. There are other possible extensions of the collocation idea, which
apply to wider classes of Runge–Kutta methods, such as the so-called discontinuous
collocation (see [44]).

Definition 3.4 Let c2, . . . , cm−1 be distinct real numbers (usually between 0 and 1),
and let b1, bm be two arbitrary real numbers. The corresponding discontinuous
method is then defined via a polynomial of degree m − 2 satisfying

u(x0) = y0 − hb1(u̇(x0) − f (x0, u(x0)),
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u̇(x0 + cih) = f (x0 + cih,u(x0 + cih)), i = 2,3, . . . ,m − 1,

y1 = u(x1) − hbs(u̇(x1) − f (x1, u(x1)).

Discontinuous collocation methods fall inside a large class of implicit Runge–
Kutta methods, as stated by the following result (see [44]).

Theorem 3.5 The discontinuous collocation method given in Definition 3.4 is
equivalent to an m-stage Runge–Kutta method with coefficients determined by
c1 = 0, cm = 1 and

ai1 = b1, aim = 0, i = 1,2, . . . ,m,

while the other coefficients result as solutions of the linear systems A(m − 2) and
B(m − 2) defined in (3.2.7) and (3.2.8).

As a consequence of this result, if b1 = 0 and bm = 0, then the discontinuous col-
location method in Definition 3.4 is equivalent to the (m − 2)-collocation method
based on c2, . . . , cm−1. An interesting example of implicit Runge–Kutta method
which is not collocation based but is of discontinuous collocation type is the Lo-
batto IIIB method (see [10, 44, 45, 55]), which plays an important role in the con-
text of geometric numerical integration, together with Lobatto IIIA method (see
[44], p. 33). They are both nonsymplectic methods (see Theorem 4.3 in [44]) but,
considered as a pair, the resulting method is symplectic. This is a nice example
of methods which possess very strong properties, but are difficult to investigate as
discrete scheme (they cannot be studied as collocation methods, because they are
not both collocation based); however, re-casted as discontinuous collocation based
methods, their analysis is reasonably simplified and very elegant [44].

3.2.4 Multistep Collocation

The successive results which appeared in literature (see [22, 42, 43, 57, 58]) have
been devoted to the construction of multistep collocation methods. Guillou and
Soulé introduced multistep collocation methods [42], by adding interpolation con-
ditions in the previous k step points, so that the collocation polynomial is defined
by

{
P(xn−i ) = yn−i , i = 0,1, . . . , k − 1,

P ′(xn + cjh) = f (xn + cjh,P (xn + cjh)), j = 1,2, . . . ,m.
(3.2.9)

The numerical solution is given, as usual by

yn+1 = P(xn+1). (3.2.10)
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Hairer–Wanner [43] and Lie–Norsett [58] derived different strategies to obtain
multistep collocation methods. In [43] the Hermite problem with incomplete data
(3.2.9) is solved by means of the introduction of a generalized Lagrange basis

{ϕi(s), ψj (s), i = 1,2, . . . , k, j = 1,2, . . . ,m}
and, correspondingly, the collocation polynomial is expressed as linear combination
of this set of functions, i.e.

P(xn + sh) =
k∑

i=1

ϕi(s)yn−k+i + h

s∑

i=1

ψi(s)P
′(xn + cih),

where s = x−xn

h
. Therefore, the problem (3.2.9) is transformed in the problem of de-

riving {ϕi,ψj , i = 1,2, . . . , k, j = 1,2, . . . ,m} in such a way that the corresponding
polynomial P(xn + sh) satisfies the conditions (3.2.9).

Lie–Norsett in [58] completely characterized multistep collocation methods, giv-
ing the expressions of the coefficients of collocation based multistep Runge–Kutta
methods in closed form, as stated by the following

Theorem 3.6 The multistep collocation method (3.2.9)–(3.2.10) is equivalent to a
multistep Runge–Kutta method

Yj =
k−1∑

i=0

ϕi(cj )yn+k−1−i

+ h

m∑

i=1

ψi(cj )f (xn+k−1 + cih,Yi), j = 1,2, . . . ,m,

yn+k =
k−1∑

i=0

ϕi(1)yn+k−1−i + h

m∑

i=1

ψi(1)f (xn+k−1 + cih,Yi),

where the expression of the polynomials ϕi(s), ψi(s) are provided in Lemma 1
of [58].

Lie and Norsett in [58] also provided a complete study of the order of the result-
ing methods, stating order conditions by means of the study of variational matrices,
and showing that the maximum attainable order of a k-step m-stage collocation
method is 2m + k − 1. They also proved that there exist

(
m+k−1

k−1

)
nodes that allow

superconvergence and, in analogy with Runge–Kutta methods, they are named mul-
tistep Gaussian collocation points. As Hairer–Wanner stated in [43], these methods
are not stiffly stable and, therefore, they are not suited for stiff problems: in order to
obtain better stability properties, they derived methods of highest order 2m + k − 2,
imposing cm = 1 and deriving the other collocation abscissa in a suited way to
achieve this highest order and named the corresponding methods of “Radau”-type,
studied their stability properties, deriving also many A-stable methods.
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3.2.5 Two-Step Collocation and Almost Collocation Methods

In more recent times, our strenghts have been devoted to extend the multistep collo-
cation technique to the class of two-step Runge–Kutta methods (TSRK)

{
yn+1 = θyn−1 + θ̃yn + h

∑m
j=1(vjf (Y

[n−1]
j ) + wjf (Y

[n]
j )),

Y
[n]
i = uiyn−1 + ũiyn + h

∑m
j=1(aij f (Y

[n−1]
j ) + bij f (Y

[n]
j )),

(3.2.11)

introduced by Jackiewicz and Tracogna [50] and further investigated by several au-
thors (see [49] and references therein contained). Two-step Runge–Kutta methods
(3.2.11) differ from the multistep Runge–Kutta methods above described, because
they also depend on the stage derivatives at two consecutive step points: as a con-
sequence, “we gain extra degrees of freedom associated with a two-step scheme
without the need for extra function evaluations” (see [50]), because the function
evaluations f (Y

[n−1]
j ) are completely inherited from the previous step. Therefore,

the computational cost of these formulae only depends on the structure of the matrix
B . Different approaches to the construction of continuous TSRK methods outside
collocation are presented in [1, 2] and [51].

The continuous approximant
⎧
⎨

⎩

P(xn + sh) = ϕ0(s)yn−1 + ϕ1(s)yn + h
∑m

j=1(χj (s)f (P (xn−1 + cjh))

+ψj(s)f (P (xn + cjh))),

yn+1 = P(xn+1),

(3.2.12)
expressed as linear combination of the basis functions

{ϕ0(s), ϕ1(s), χj (s), ψj (s), j = 1,2, . . . ,m},
is an algebraic polynomial which is derived in order to satisfy some interpolation
and collocation conditions, i.e.

P(xn−1) = yn−1, P (xn) = yn,

P ′(xn−1 + cih) = f (xn−1 + cih,P (xn−1 + cih)), i = 1,2, . . . ,m,

P ′(xn + cih) = f (xn + cih,P (xn + cih)), i = 1,2, . . . ,m.

(3.2.13)

As a first attempt, we have generalized in [34, 38] the techniques introduced by
Guillou–Soulé [42], Hairer–Wanner [43] and Lie–Norsett [58], adapting and ex-
tending this technique to TSRK methods. Using the techniques introduced in [58],
we have derived in [38] the coefficients of (3.2.12) in closed form: the corresponding
results are reported in the following theorem (see [38]).

Theorem 3.7 The method (3.2.12) is equivalent to a TSRK method in the form

Y
[n]
j = ϕ0(cj )yn−1 + ϕ1(cj )yn + h

m∑

i=1

[χj (ci)f (xn−1 + cih,Y
[n−1]
i )
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+ ψj (ci)f (xn + cih,Y
[n]
i )], j = 1,2, . . . ,m,

yn+1 = ϕ0(1)yn−1 + ϕ1(1)yn + h

m∑

j=1

[χj (1)f (xn−1 + cjh,Y
[n−1]
j )

+ ψj (1)f (xn + cjh,Y
[n]
j )],

where

ψj(s) =
∫ s

0
lj (τ )dτ −

∫ 0
−1 lj (τ )dτ

∫ 0
−1 M(τ)dτ

∫ s

0
M(τ)dτ, j = 1,2, . . . ,m,

χj (s) =
∫ s

0
l̃j (τ )dτ −

∫ 0
−1 l̃j (τ )dτ

∫ 0
−1 M(τ)dτ

∫ s

0
M(τ)dτ, j = 1,2, . . . ,m,

ϕ0(s) = −
∫ s

0 M(τ)dτ
∫ 0
−1 M(τ)dτ

,

ϕ1(s) = 1 +
∫ s

0 M(τ)dτ
∫ 0
−1 M(τ)dτ

.

with

li (s) =
2m∏

j=1,j �=i

s − dj

di − dj

, M(s) =
2m∏

j=1

(s − dj ),

{
di = ci,

dm+i = ci − 1,

i = 1,2, . . . ,m,

l̃j (s) =
2m∏

i=1,i �=j

s − ei

ej − ei

,

{
ei = ci − 1,

em+i = ci,
i = 1,2, . . . ,m.

We proved in [38] that the resulting methods have uniform order 2m + 1 but
such an high order enforces these methods to have bounded stability regions only.
For this reason, in order to derive highly stable methods (i.e. A-stable and L-stable),
we have introduced in [27, 28, 36] the class of almost collocation methods, which
are obtained in such a way that only some of the above interpolation and colloca-
tion conditions are satisfied. Relaxing the above conditions, we obtain more degrees
of freedom, which have been used in order to derive many A-stable and L-stable
methods of order m + r , r = 0,1, . . . ,m. Therefore the highest attainable order is
2m which, in principle, can seem the same of standard Runge–Kutta methods. As a
matter of fact, this is not true: in fact, Runge–Kutta–Gauss methods have order 2m

in the grid points, while the stage order is equal to m, therefore they suffer from or-
der reduction in the integration of stiff problems (see [10, 11, 43]), i.e. the effective
order of convergence in presence of stiffness is only m. Our methods, instead, do not
suffer from order reduction, i.e. the effective order of convergence in the integration
of stiff problems is 2m, because they have high stage order. In [36] we have stud-
ied the existence of such methods, derived continuous order conditions, provided
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characterization results and studied their stability properties. A complete analysis
of m-stage two-step continuous methods, with m = 1,2,3,4, has been provided in
[32], while the analysis of the implementation issues for two-step collocation meth-
ods has been provided in [33]. The construction of algebraically stable two-step
collocation methods is object of a current research project.

3.3 Collocation Methods for Second Order ODEs of Special Type

We now concentrate our attention on the hystorical evolution of the collocation tech-
nique for the numerical solution of initial value problems based on second order
ODEs with periodic and oscillating solution

⎧
⎨

⎩

y′(x) = f (x, y(x)), x ∈ [x0,X],
y′(x0) = y′

0 ∈ R
d,

y(x0) = y0,

(3.3.1)

where f : [x0,X] × R
d → R

d is assumed to be a is sufficiently smooth function, in
order to ensure the existence and the uniqueness of the solution.

3.3.1 Direct and Indirect Collocation Methods

In the context of collocation methods for second order ODEs, two possibilities have
been taken into account in the literature, i.e. methods based on indirect or direct col-
location [77]. Indirect collocation methods are generated by applying a collocation
based Runge–Kutta method to the first order representation of (3.3.1), which has
doubled dimension. If

c A

bT

is the Butcher array of a collocation Runge–Kutta method, the tableau of the corre-
sponding indirect collocation method is

c A2

AT b

bT

which results in a Runge–Kutta–Nyström method [45]. The theory of indirect col-
location methods completely parallels the well-known theory of collocation meth-
ods for first order equations (see [77]) and, therefore, the properties of a colloca-
tion method are totally inherited by the corresponding indirect collocation method.
Thus, the maximum attainable order is 2m, where m is the number of stages, and
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it is achieved by Gauss-type methods, which are also A-stable, while L-stability is
achieved by Radau IIA-type methods, of order 2m − 1.

In the case of direct collocation methods, the collocation polynomial is derived
directly for the second order problem. Van der Houwen et al. in [77] studied the
order, stage order of direct collocation methods and also provided their stability
analysis, extending the results of Kramarz [54]. Concerning order and stage order,
the following result holds (see [77]):

Theorem 3.8 Direct and indirect collocation methods with the same collocation
nodes have the same order. The stage order of direct collocation methods is one
higher whenever

∫ 1

0

m∏

i=1

(s − ci)ds = 0.

Therefore, while indirect and direct collocation methods have the same order,
their stage order is different and, in particular, direct methods have higher stage
order. However, they are not competitive in terms of stability. Van der Houwen et al.
in [77] clearly state that “From a practical point of view, direct collocation methods
based on Gauss, Radau and Lobatto collocation points are of limited value, because
the rather small stability or periodicity boundaries make them unsuitable for stiff
problems. The A-stable indirect analogues are clearly more suitable for integrating
stiff problems”.

Moreover, Coleman [17] proved that no P -stable one step symmetric collocation
methods exist. P -stability (see Lambert-Watson paper [56]) is a very relevant prop-
erty for the numerical treatment of a second order system whose theoretical solution
is periodic with a moderate frequency and a high frequency oscillation of small am-
plitude superimposed. This phenomenon is known in literature as periodic stiffness
[73], which can be reasonably faced using P -stable methods, exactly as A-stable
methods are suitable for stiff problems. In other terms, P -stability ensures that the
choice of the stepsize is independent from the values of the frequencies, but it only
depends on the desired accuracy [21, 68].

In [56], the authors proved that P -stable linear multistep methods

p∑

j=0

αjyn+j = h2
p∑

j=0

βjfn+j

can achieve maximum order 2. In the context of Runge–Kutta–Nyström methods

yn+1 = yn + hy′
n + h2

m∑

i=1

b̄if (xn + cih,Yi),

y′
n+1 = y′

n + h

m∑

i=1

bif (xn + cih,Yi),
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Yi = yn + cihy′
n + h2

m∑

j=1

aij f (xn + cjh,Yj ), i = 1,2, . . . ,m,

many A-stable and P -stable methods exist, but the ones falling in the subclass of
collocation methods, whose coefficients (see [45]) are of the form

aij =
∫ ci

0
Lj (s)ds,

bi =
∫ 1

0
Li(s)ds,

b̄i =
∫ 1

0
(1 − s)Li(s)ds,

have only bounded stability intervals and are not P -stable [68].

3.3.2 Two-Step Runge–Kutta–Nyström Methods

We have observed in the previous paragraph that P -stability is a desirable property
that only few methods in the context of linear multistep methods and Runge–Kutta–
Nyström methods possess. In order to create a good balance between high order and
strong stability properties, further steps in the literature have been devoted to the de-
velopment of multistep Runge–Kutta–Nystrom methods for second order problems.
Much of this work has been done by Paternoster (see [61, 68–72]). In particular, the
author proved that no P -stable methods can be found in the class of indirect collo-
cation TSRK methods, while it is possible to find P -stable methods in the context
of two-step Runge–Kutta–Nyström methods

Y
[n−1]
j = yn−1 + cjhy′

n−1 + h2
m∑

k=1

ajkf (xn−1 + ckh,Y
[n−1]
k ), j = 1,2, . . . ,m,

Y
[n]
j = yn + cjhy′

n + h2
m∑

k=1

ajkf (xn + ckh,Y
[n]
k ), j = 1,2, . . . ,m,

yn+1 = (1 − θ)yn + θyn−1 + h

m∑

j=1

(vj y
′
n−1 + wjy

′
n)

+ h2
m∑

j=1

v̄j f (xn−1 + cjh,Y
[n−1]
j ) + w̄j f (xn + cjh,Y

[n]
j ),

y′
n+1 = (1 − θ)y′

n + θy′
n−1 + h

m∑

j=1

(vjf (xn−1 + cjh,Y
[n−1]
j )

+ wjf (xn + cjh,Y
[n]
j )),
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which represent the extension to second order problems of the two-step Runge–
Kutta methods introduced in [52] for first order ODEs.

3.3.3 Collocation Based Two-Step Hybrid Methods

In the numerical integration of second order ODEs through collocation, many pos-
sibilities can be taken into account: for example, Runge–Kutta–Nyström methods
provide an approximation to the solution and its first derivative at each step point.
However, as Henrici observed in [46], “If one is not particularly interested in the
values of the first derivatives, it seems unnatural to introduce them artificially”. For
this reason, other types of methods have been taken into account in the literature,
i.e. methods which provide an approximation to the solution without computing any
approximation to the first derivative. Coleman introduced in [19] the following class
of two-step hybrid methods for second order equations:

Y
[n]
i = uiyn−1 + (1 − ui)yn + h2

m∑

j=1

aijf (xn + cjh,Y
[n]
j ),

i = 1,2, . . . ,m, (3.3.2)

yn+1 = θyn−1 + (1 − θ)yn + h2
m∑

j=1

wjf (xn + cjh,Y
[n]
j ). (3.3.3)

This class of methods has been further investigated in [16, 37, 40, 75, 76]. In
more recent times, we derived in [35] collocation based methods belonging to the
class of Coleman hybrid methods (3.3.2)–(3.3.3), extending the technique intro-
duced by Hairer and Wanner in [43] for first order problems. The collocation poly-
nomial takes the form

P(xn + sh) = ϕ1(s)yn−1 + ϕ2(s)yn + h2
m∑

j=1

χj (s)P
′′(xn + cjh), (3.3.4)

where s = x−xn

h
∈ [0,1], and the unknown basis functions

{ϕ1(s), ϕ2(s), χj (s), j = 1, 2, . . . ,m},

are derived imposing the following m + 2 conditions

P(xn−1) = yn−1,

P (xn) = yn,

P ′′(xn + cjh) = f (xn + cjh,P (xn + cjh)), j = 1,2, . . . ,m.
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After computing the basis functions as solutions of m + 2 linear systems (see
[62]), the resulting class of methods takes the following form

Y
[n]
i = ϕ1(ci)yn−1 + ϕ2(ci)yn + h2

m∑

j=1

χj (ci)P
′′(xn + cjh), (3.3.5)

yn+1 = ϕ1(1)yn−1 + ϕ2(1)yn + h2
m∑

j=1

χj (1)P ′′(xn + cjh). (3.3.6)

In [35] we have provided the study of stability and periodicity properties and
derived continuous order conditions for (3.3.6)–(3.3.5), which are object of the fol-
lowing result.

Theorem 3.9 Assume that the function f is sufficiently smooth. The collocation
method associated to (3.3.4) has uniform order p if the following conditions are
satisfied:

1 − ϕ1(s) − ϕ2(s) = 0, s + ϕ1(s) = 0,

sk + (−1)k+1ϕ1(s) − k(k − 1)

m∑

j=1

χj (s)c
k−2
j = 0, k = 2,3, . . . , p, s ∈ [0,1].

Theorem 3.9 allows us to prove that every two-step collocation method associ-
ated to (3.3.4), has order p = m on the whole integration interval, and this result is
in keeping with [19].

3.3.4 Mixed Collocation Methods

The development of classical collocation methods (i.e. methods based on algebraic
polynomials), even if it is not the most suitable choice for second order problems
that do not possess solutions with polynomial behavior, it is the first necessary step
in order to construct collocation methods whose collocation function is expressed as
linear combination of different functions, e.g. trigonometric polynomials, mixed or
exponential basis (see, for instance, [20, 48]), which can better follow the qualitative
behavior of the solution. It is indeed more realistic to choose basis functions which
are not polynomials.

Many authors have considered in literature different functional basis, instead of
the polynomial one, e.g. [8, 18, 21, 37, 39, 41, 48, 53, 65, 67, 69, 71, 74]. In particu-
lar we mention here the work by Coleman and Duxbury [20], where the authors in-
troduced mixed collocation methods applied to the Runge–Kutta–Nyström scheme,
where the collocation function is expressed as linear combination of trigonometric
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functions and powers, in order to provide better approximations for oscillatory so-
lutions. The methods are derived in order to exactly integrate the armonic oscillator

y′′ = −k2y,

where k is a constant, a feature which is not achievable by algebraic polynomial col-
location. The term mixed interpolation appeared for the first time in [39] to describe
interpolation by a linear combination of a sine and cosine of a given frequency, and
powers of the relevant variable, and later used by Brunner et al. in [8] in the con-
text of Volterra integral equations. The solution on the generic integration interval
[xn, xn+1] is approximated by the collocating function

u(xn + sh) = a cos θs + b sin θs +
m−1∑

i=0

�is
i, (3.3.7)

which satisfies the following collocation and interpolation conditions

u(xn) = yn, u′(xn) = y′
n,

u′′(xn + cjh) = f (xn + cjh,u(xn + cjh)), j = 1,2, . . . ,m.

Integrating (3.3.7) twice, we obtain the Runge–Kutta–Nyström formulation of the
methods, i.e.

u′(xn + sh) = y′
n + h

m∑

i=1

αi(s)f (xn + cih),

u(xn + sh) = yn + shy′
n + h2

m∑

i=1

βi(s)f (xn + cih),

where

αi(s) =
∫ s

0
Li(τ )dτ, βi(s) =

∫ s

0
(s − τ)Li(τ )dτ.

Outside collocation, many authors derived methods having frequency dependent
parameters (see, for instance, [48, 53, 66, 74] and references therein contained). The
linear stability analysis of these methods is carried out in [21]. In [37] also a method
with parameters depending on two frequencies is presented, and the modification in
the stability analysis is performed, leading to a three dimensional region.

3.4 Collocation Methods for VIEs

Piecewise polynomial collocation methods for Volterra Integral Equations introduce
a number of aspects not present when solving ODEs. In this section we will present
the main results in the context of collocation and almost collocation methods for
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VIEs of the form

y(x) = g(x) +
∫ x

0
k(x, τ, y(τ ))dτ, x ∈ I := [0,X], (3.4.1)

where k ∈ C(D × R), with D := {(x, τ ) : 0 ≤ τ ≤ x ≤ X}, and g ∈ C(I), also un-
derlying connections and differences with the case of ODEs.

3.4.1 Classical One-Step Collocation Methods

Let us discretize the interval I by introducing a uniform mesh

Ih = {xn := nh,n = 0, . . . ,N,h ≥ 0,Nh = X}.
Equation (3.4.1) can be rewritten, by relating it to this mesh, as

y(x) = Fn(x) + �n(x), x ∈ [xn, xn+1],
where

Fn(x) := g(x) +
∫ xn

0
k(x, τ, y(τ ))dτ

and

�n(x) :=
∫ x

xn

k(x, τ, y(τ ))dτ

represent respectively the lag term and the increment function. Let us fix m collo-
cation parameters 0 ≤ c1 < · · · < cm ≤ 1 and denote by xnj = xn + cjh the collo-
cation points. The collocation polynomial, restricted to the interval [xn, xn+1], is of
the form:

un(xn + sh) =
m∑

j=1

Lj(s)Unj , s ∈ [0,1], n = 0,1, . . . ,N − 1, (3.4.2)

where Lj (s) is the j -th Lagrange fundamental polynomial with respect to the col-
location parameters and Unj := un(xnj ). Exact collocation methods are obtained by
imposing that the collocation polynomial (3.4.2) exactly satisfies the VIE (3.4.1) in
the collocation points xni and by computing yn+1 = un(xn+1):

{
Uni = Fni + �ni,

yn+1 = ∑m
j=1 Lj (1)Unj ,

(3.4.3)

where

Fni = g(xni) + h

n−1∑

ν=0

∫ 1

0
k(xni, xν + sh,uν(xν + sh))ds, i = 1,2, . . . ,m,

(3.4.4)
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�ni = h

∫ ci

0
k(xni, xn + sh,un(xn + sh))ds, i = 1,2, . . . ,m. (3.4.5)

Note that the first equation in (3.4.3) represents a system of m nonlinear equations
in the m unknowns Uni . We obtain an approximation u(x) of the solution y(x) of
the integral equation (3.4.1) in [0,X], by considering

u(x)|(xn,xn+1] = un(x), (3.4.6)

where un(x) given by (3.4.2).
We recall that, in contrast with what happens in the case of ODEs, generally u(x)

is not continuous in the mesh points, as

u(x) ∈ S
(−1)
m−1(Ih), (3.4.7)

where

S(d)
μ (Ih) = {

v ∈ Cd(I) : v|(xn,xn+1] ∈ �μ (0 ≤ n ≤ N − 1)
}
.

Here, �μ denotes the space of (real) polynomials of degree not exceeding μ. A com-
plete analysis of collocation methods for linear and nonlinear Volterra integral and
integro–differential equations, with smooth and weakly singular kernels is given
in [6]. In particular, as shown in [6, 7], the classical one–step collocation methods
for a second-kind VIE do no longer exhibit O(h2m) superconvergence at the mesh
points if collocation is at the Gauss points, in fact they have uniform order m for any
choice of the collocation parameters and local superconvergence order in the mesh
points of 2m − 2 (m Lobatto points or m − 1 Gauss points with cm = 1) or 2m − 1
(m Radau II points). The optimal order is recovered only in the iterated collocation
solution.

We observe that, differently from the case of ODEs, the collocation equations
are in general not yet in a form amenable to numerical computation, due to the
presence of the memory term given by the Volterra integral operator. Thus, another
discretization step, based on quadrature formulas F̄ni � Fni and �̄ni � �ni for ap-
proximating the lag term (3.4.4) and the increment function (3.4.5), is necessary to
obtain the fully discretized collocation scheme, thus leading to discretized colloca-
tion methods. Such methods preserve, under suitable hypothesis on the quadrature
formulas, the same order of the exact collocation methods [7].

The connection between collocation and implicit Runge–Kutta methods for VIEs
(the so called VRK methods) is not immediate: a collocation method for VIEs is
equivalent to a VRK method if and only if cm = 1 (see Theorem 5.2.2 in [7]). Some
other continuous extensions of Runge–Kutta methods for VIEs, which do not nec-
essarily lead to collocation methods, have been introduced in [3].

Many efforts have been made in the literature with the aim of obtaining fast
collocation and more general Runge–Kutta methods for the numerical solution of
VIEs. It is known that the numerical treatment of VIEs is very expensive from com-
putational point of view because of presence of the lag-term, which contains the
entire history of the phenomenon. To this cost, it has also to be added the one due
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to the increment term which leads, for implicit methods (generally possessing the
best stability properties), to the resolution of a system of nonlinear equations at
each step of integration. In order to reduce the computational effort in the lag–term
computation, fast collocation and Runge–Kutta methods have been constructed for
convolution VIEs of Hammerstein type, see [13, 23, 59, 60].

The stability analysis of collocation and Runge–Kutta methods for VIEs can
be found in [4, 7, 14, 30] and the related bibliography. In particular a collocation
method for VIEs is A-stable if the corresponding method for ODEs is A-stable.

3.4.2 Multistep Collocation

Multistep collocation and Runge–Kutta methods for VIEs, have been introduced in
order to bring down the computational cost related to the resolution of non-linear
systems for the computation of the increment term. As a matter of fact such methods,
showing a dependence on stages and steps in more consecutive grid points, permit
to raise the order of convergence of the classical methods, without inflating the
computational cost or, equivalently, having the same order at a lower computational
cost.

A first analysis of multistep collocation methods for VIEs appeared in [24, 25],
where the methods are obtained by introducing in the collocation polynomial the de-
pendence from r previous time steps; namely we seek for a collocation polynomial,
whose restriction to the interval [xn, xn+1] takes the form

Pn(xn + sh) =
r−1∑

k=0

ϕk(s)yn−k +
m∑

j=1

ψj(s)Ynj ,

s ∈ [0,1], n = 0,1, . . . ,N − 1, (3.4.8)

where

Ynj := Pn(xnj ) (3.4.9)

and ϕk(s), ψj (s) are polynomials of degree m+ r −1 to be determined by imposing
the interpolation conditions at the points xn−k , that is un(xn−k) = yn−k , and by
satisfying (3.4.9). It is proved in [26, 29] that, assuming ci �= cj and c1 �= 0, the
polynomials ϕk(s), ψj(s) have the form:

ϕk(s) =
m∏

i=1

s − ci

−k − ci

·
r−1∏

i=0
i �=k

s + i

−k + i
,

ψj (s) =
r−1∏

i=0

s + i

cj + i
·

m∏

i=1
i �=j

s − ci

cj − ci

.

(3.4.10)
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Then the discretized multistep collocation method assumes the form:

{
Yni = F̄ni + �̄ni ,

yn+1 = ∑r−1
k=0 ϕk(1)yn−k + ∑m

j=1ψj (1)Ynj .
(3.4.11)

The lag-term and increment–term approximations

F̄ni = g(xni) + h

n−1∑

ν=0

μ1∑

l=0

blk(xni, xν + ξlh,Pν(xν + ξlh)),

i = 1,2, . . . ,m (3.4.12)

�̄ni = h

μ0∑

l=0

wilk(xni, xn + dilh,Pn(xn + dilh)), i = 1,2, . . . ,m (3.4.13)

are obtained by using quadrature formulas of the form

(ξl, bl)
μ1
l=1, (dil,wil)

μ0
l=1, i = 1,2, . . . ,m, (3.4.14)

where the quadrature nodes ξl and dil satisfy 0 ≤ ξ1 < · · · < ξμ1 ≤ 1 and 0 ≤ di1

< · · · < diμ0 ≤ 1, μ0 and μ1 are positive integers and wil , bl are suitable weights.
The discretized multistep collocation method (3.4.8)–(3.4.11) provides a contin-

uous approximation P(x) of the solution y(x) of the integral equation (3.4.1) in
[0,X], by considering

P(x)|(xn,xn+1] = Pn(x), (3.4.15)

where Pn(x) is given by (3.4.8). We note that usually the polynomial constructed in
the collocation methods for VIEs doesn’t interpolate the numerical solution in the
previous step points, resulting a discontinuous approximation of the solution (3.4.7).
In this multistep extension, the collocation polynomial is instead a continuous ap-
proximation to the solution, i.e. u(x) ∈ S

(0)
m+r−1(Ih).

The discretized multistep collocation method (3.4.8)–(3.4.11) can be regarded as
a multistep Runge–Kutta method for VIEs:

⎧
⎪⎨

⎪⎩

Yni = F̄n(xni)

+ h
∑μ0

l=1 wilk
(
xn + eilh, xn + dilh,

∑r−1
k=0 γilkyn−k + ∑m

j=1 βilj Ynj

)
,

yn+1 = ∑r−1
k=0 θkyn−k + ∑m

j=1 λjYnj ,

(3.4.16)
where

F̄n(x) = g(x) + h

n−1∑

ν=0

μ1∑

l=1

blk

(

x, xν + ξlh,

r−1∑

k=0

δlkyν−k +
m∑

j=1

ηljYν,j

)

(3.4.17)
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and

eil = ci, γilk = ϕk(dil), βilj = ψj (dil),

θk = ϕk(1), λj = ψj (1),

δlk = ϕk(ξl), ηlj = ψj (ξl).

The reason of interest of the multistep collocation methods lies in the fact that
they increase the order of convergence of collocation methods without increasing
the computational cost, except for the cost due to the starting procedure. As a matter
of fact, in advancing from xn to xn+1, we make use of the approximations yn−k ,
k = 0,1, . . . , r − 1, which have already been evaluated at the previous steps. This
permits to increase the order, by maintaining in (3.4.11) the same dimension m of
the nonlinear system (3.4.3).

The r-steps m-points collocation methods have uniform order m+r , and order of
local superconvergence 2m + r − 1. The knowledge of the collocation polynomial,
which provides a continuous approximation of uniform order to the solution, will
allow a cheap variable stepsize implementation. Indeed, when the stepsize changes,
the new approximation values can be computed by simply evaluating the collocation
polynomial, without running into problems of order reduction, as a consequence of
the uniform order.

3.4.3 Two-Step Collocation and Almost Collocation Methods

Unfortunately multistep methods of the form (3.4.8)–(3.4.11) do not lead to a good
balance between high order and strong stability properties, infact, altough meth-
ods with unbounded stability regions exist, no A-stable methods have been found.
Therefore in [25] a modification in the technique has been introduced, thus obtaining
two-step almost collocation methods, also for systems of VIEs, by relaxing some of
the collocation conditions and by introducing some previous stage values, in order
to further increase the order and to have free parameters in the method, to be used
to get A-stability.

The methods are defined by

⎧
⎨

⎩

P(xn + sh) = ϕ0(s)yn−1 + ϕ1(s)yn + ∑m
j=1 χj (s)P (xn−1,j )

+∑m
j=1 ψj(s)(F̄nj + �̄nj ),

yn+1 = P(xn+1),

(3.4.18)

s ∈ (0,1], n = 1,2, . . . ,N − 1.
If the polynomials ϕ0(s), ϕ1(s), χj (s) and ψj (s), j = 1,2, . . . ,m satisfy the

interpolation conditions

ϕ0(0) = 0, ϕ1(0) = 1, χj (0) = 0, ψj (0) = 0,

ϕ0(−1) = 1, ϕ1(−1) = 0, χj (−1) = 0, ψj (−1) = 0,
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and the collocation conditions

ϕ0(ci) = 0, ϕ1(ci) = 0, χj (ci) = 0, ψj (ci) = δij ,

ϕ0(ci − 1) = 0, ϕ1(ci − 1) = 0, χj (ci − 1) = δij , ψj (ci − 1) = 0,

i = 1,2, . . . ,m, then we obtain order p = 2m + 1.
In our search for A-stable methods we will have been mainly concerned with

methods of order p = 2m + 1 − r , where r = 1 or r = 2 is the number of relaxed
conditions. Namely we have chosen ϕ0(s) as a polynomial of degree ≤ 2m + 1 − r ,
which satisfies the collocation conditions

ϕ0(ci) = 0, i = 1,2, . . . ,m. (3.4.19)

This leads to the polynomial ϕ0(s) of the form

ϕ0(s) = (q0 + q1s + · · · + qm+1−r s
m+1−r )

m∏

i=1

(s − ci), (3.4.20)

where q0, q1, . . . , qm+1−r are free parameters. Moreover, for p = 2m − 1 we have
chosen ϕ1(s) as a polynomial of degree ≤ 2m − 1 which satisfies the collocation
conditions

ϕ1(ci) = 0, i = 1,2, . . . ,m. (3.4.21)

This leads to the polynomial ϕ1(s) of the form

ϕ1(s) = (p0 + p1s + · · · + pm−1s
m−1)

m∏

i=1

(s − ci), (3.4.22)

where p0, p1, . . . , pm−1 are free parameters.
The methods have uniform order of convergence p = 2m + 1 − r , and are there-

fore suitable for an efficient variable stepsize implementation. Moreover methods
which are A-stable with respect to the basic test equation and have unbounded sta-
bility regions with respect to the convolution test equation have been provided.

3.4.4 Mixed Collocation

In the case of VIEs with periodic highly oscillatory solutions, traditional methods
may be inefficient, as they may require the use of a small stepsize in order to fol-
low accurately the oscillations of high frequency. As in the case of ODEs “ad hoc”
numerical methods have been constructed, incorporating the a priori knowledge of
the behavior of the solution, in order to use wider stepsizes with respect to classical
methods and simultaneously to simulate with high accuracy the oscillations of the
solution.
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A first work on the numerical treatment of VIEs with periodic solution is [5],
where numerical methods were constructed by means of mixed interpolation. Re-
cently, mixed collocation methods have been introduced in [8, 9] for VIEs and
VIDEs. In particular in [8], mixed collocation methods have been introduced for
linear convolution VIEs of the form

y(x) = g(x) +
∫ x

−∞
k(x − τ)y(τ )dτ, x ∈ [0,X], (3.4.23)

with

y(x) = ψ(x), x ∈ [−∞,0],
where k ∈ L1(0,∞), g is a continuous periodic function and ψ is a given bounded
and continuous function. The collocation polynomial is taken in the form

Pn(xn + sh) =
m∑

k=0

Bk(s)Yn,k,

where the Bk(s) are combinations of trigonometric functions and algebraic polyno-
mials given in [8]. The numerical method is of the form

{
Yni = F̄ni + �̄ni ,

yn+1 = ∑m
k=0 Bk(1)Yn,k,

(3.4.24)

where the lag-term and increment term approximations are given by

F̄ni = g(xni) +
∫ 0

−∞
k(xni − τ)ψ(τ)dτ + h

n−1∑

ν=0

m∑

l=0

wl(1)k(xnj − xν,lPν(xν,l),

�̄ni = hci

m∑

l=0

wl(1)k(xni − xn − hcicl)

(
m∑

k=0

Bk(cicl)Yn,k

)

with

wl(s) =
∫ s

0
Bl(τ )dτ.

With some suitable choices for collocation parameters such methods accurately in-
tegrate systems for which the period of oscillation of the solution is known. In the
paper [15] the authors introduce a family of linear methods, namely Direct Quadra-
ture (DQ) methods, specially tuned on the specific feature of the problem, based on
the exponential fitting [47, 48], which is extremely flexible when periodic functions
are treated. Such methods are based on a three-term quadrature formula, that is of
the same form as the usual Simpson rule, but specially tuned on integrands of the
form k(s)y(s) where k and y are of type

k(x) = eαx, y(x) = a + b cos(ωx) + c sin(ωx), (3.4.25)

where α,ω,a, b, c ∈ R. The coefficients of the new quadrature rule depend on the
parameters of the integrand, i.e. α and ω. It has been shown as the use of exponen-
tially fitted based three-point quadrature rules produces a definite improvement in
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the accuracy when compared with the results from the classical Simpson rule, and
that the magnitude of the gain depends on how good is the knowledge of the true
frequencies. The results also indicate that, as a rule, if the input accuracy is up to 10
percent, then the accuracy gain in the output is substantial.

3.5 Conclusions and Future Perspectives

In this paper we have described, at the best of our knowledge, some of the col-
location methods appeared in the literature for ODEs and VIEs. Some interesting
properties of collocation-based methods are, in our opinion, still to be exploited.
For instance, the knowledge of the collocation function on the whole interval of
integration might allow cheap and realiable error estimators, to be used in a vari-
able stepsize-variable order environment, also for problems with delay. Therefore,
although collocation technique is an old idea in Numerical Analysis, we strongly be-
lieve that it will constitute building blocks for the development of modern software
for an efficient and accurate integration of evolutionary problems.
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4.1 Introduction

For workers in the applied sciences the Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables [1], edited by Milton Abramowitz and
Irene Stegun, and published in 1964 is usually the first source of information about
the properties of special functions. It may be the most cited book in mathematics.
These days the Handbook is being updated as a Digital Library of Mathematical
Functions (DLMF), and will be freely accessible in a Web version. Other sources for
collections of formulas for special functions on the web are Wolfram MathWorld1

and Wikipedia2.
These sources give many properties of special functions of which a number can

be used for their numerical evaluation, sometimes with references to suitable algo-
rithms. However, it is not always clear how to write efficient and reliable algorithms.

The present paper gives an overview on numerical methods for special func-
tions. It is based on our recent book [54] in which we consider four Basic Methods,
namely

1. Convergent and divergent series.
2. Chebyshev expansions.
3. Linear recurrence relations and associated continued fractions.
4. Quadrature methods.

In addition we give a selection of published algorithms for special functions.
There are many other methods, which are also discussed in our book, and some of

them will be discussed in this overview as well. For example, the use of differential
equations will be discussed in connection with the Taylor expansion method for
initial boundary problems.

Our general point of view in connection with special functions is to remain mod-
est in the number of parameters. It is possible to design straightforward algorithms
for the generalized hypergeometric function

pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)

=
∞∑

n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)n

zn

n! , (4.1.1)

where p ≤ q + 1 and (a)n is the Pochhammer symbol, also called the shifted facto-
rial, defined by

(a)0 = 1, (a)n = a(a + 1) · · · (a + n − 1) (n ≥ 1), (a)n = �(a + n)

�(a)
.

(4.1.2)
Many special functions can be written in terms of this function, with the main cases
given by p = 1, q = 1 (Kummer functions, with convergence of the series for all
complex z) and p = 2, q = 1 (Gauss hypergeometric functions, with convergence if

1http://mathworld.wolfram.com/.
2http://en.wikipedia.org/.

http://mathworld.wolfram.com/
http://en.wikipedia.org/
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|z| < 1). For efficient and reliable algorithms the series in (4.1.1) is only of limited
use.

Also, differential equations, especially those that arise in the physical sciences,
are the reservoir that generates many special functions. One may define a general
second order equation, make an algorithm for this equation, and expect that solu-
tions of simpler equations follow from the general solution. However, very difficult
problems may arise then. Consider as an example the equation

d2

dz2
w(z) = (pz2 + qz + r)w(z), (4.1.3)

the solutions of which can be expressed in terms of the parabolic cylinder functions
U and V , see [1, Chap. 19], which are solutions of the equation

d2

dz2
w(z) =

(
1

4
z2 + a

)

w(z). (4.1.4)

When p = r = 0 in (4.1.3) that equation reduces to the Airy equation, whereas the
Airy functions are not special cases of the parabolic cylinder functions U and V (in
the sense that Airy functions are Bessel functions for certain values of the order of
these functions). A nontrivial limiting process with p → 0 and r → 0 is needed to
get Airy functions from a linear combination of the solutions of (4.1.3).

In its turn, the parabolic cylinder function U(a, z) is a special case of the con-
fluent hypergeometric function (also called Kummer functions) U(a, c, z). We have
two forms [1, p. 691]:

U(a, z) = 2− 1
4 − 1

2 ae− 1
4 z2

U

(
1

2
a + 1

4
,

1

2
,

1

2
z2

)

= 2− 3
4 − 1

2 aze− 1
4 z2

U

(
1

2
a + 3

4
,

3

2
,

1

2
z2

)

. (4.1.5)

The first form suggests that the function U(a, z) is an even function of z, the
second one that it is odd. The point is that this Kummer function is multi-valued,
and the representation

U(a,±z) =
√

π2− 1
4 − 1

2 ae− 1
4 z2

�( 3
4 + 1

2a)
1F1

(
1
2a + 1

4
1
2

; 1
2z2

)

∓
√

π2
1
4 − 1

2 aze− 1
4 z2

�( 1
4 + 1

2a)
1F1

(
1
2a + 3

4
3
2

; 1
2z2

)

(4.1.6)

gives a better insight. However, this form is extremely unstable for intermediate or
large values of z.

In our opinion it is important to have codes that can be used for a limited
class of functions. In this sense we have written algorithms for conical functions
P

μ
−1/2+iτ (x) [55] for real x, τ and μ, and not for Legendre functions of general
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complex degree. Also, we have written codes [51] for modified Bessel functions of
purely imaginary order, that is for Kia(x) and a related function, and not a general
code for Bessel functions with general complex order.

4.2 Convergent and Divergent Series

Convergent series for special functions usually arise in the form of hypergeometric
series, with as general form the one shown in (4.1.1). The series is easy to evaluate
because of the recursion (a)n+1 = (a + n)(a)n, n ≥ 0, of the Pochhammer symbols
in (4.1.2). For certain special function, for example for the modified Bessel function

Iν(z) =
(

1

2
z

)ν ∞∑

n=0

( 1
4z2)n

�(ν + n + 1) n! =
(

1

2
z

)ν

0F1

( −
ν + 1

; 1
4z2

)

(4.2.1)

it gives a stable representation when z > 0 and ν ≥ 0 and it is an efficient represen-
tation when z is not large compared with ν. However, when we use this expansion
in the representation of the other modified Bessel function

Kν(z) = 1

2
π

I−ν(z) − Iν(z)

sinπν
, (4.2.2)

it can be used only for small values of z. This is because of the cancellation of
numerical digits, which can be seen from the asymptotic estimates

Iν(z) ∼ ez

√
2πz

, Kν(z) ∼
√

π

2z
e−z, z → ∞, (4.2.3)

which is valid for fixed values of ν.
There is another phenomenon when using combinations of hypergeometric func-

tions. When ν is an integer, the form in (4.2.2) is well defined by a limiting process,
but for numerical computations a special algorithm is needed. See [109], where it
is shown that it is sufficient to treat the case ν ∼ 0 in detail and that the remaining
integer values follow from recursion relations.

The case for confluent hypergeometric functions is more complicated. We have
for the function U(a, c, z) the representation

U(a, c, z) = π

sinπc

(
1F1(

a
c
; z)

�(1 + a − c)�(c)
− z1−c

1F1(
1+a−c

2−c
; z)

�(a)�(2 − c)

)

, (4.2.4)

and it is useful for small values of z. Consider c ∼ 0. We have

lim
c→0

1F1(
a
c
; z)

�(1 + a − c)�(c)
=

z 1F1(
a+1

2 ; z)

�(a)
. (4.2.5)
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So, apart from this limit, another (simultaneous) limiting process for c → 0 needs
to be controlled, and also the extra parameter a makes it more difficult to write a
stable algorithm. A published algorithm seems not to be available for this case.

For Gauss hypergeometric functions similar problems arise in the connection
formulas, say the one writing a function with argument z as a linear combination of
two functions with argument 1 − z. See [36] for numerical algorithms.

Other instabilities occur when the parameters of the hypergeometric function
become large and/or complex.

For Gauss and Kummer hypergeometric functions many other convergent expan-
sions are available, for example in terms of Chebyshev polynomials and of Bessel
functions; see [75, Sects. 9.3.4, 9.4.1, 9.4.3]. For a different type of expansion in
terms of Bessel functions, with an application to the parabolic cylinder functions,
see [78].

4.2.1 Divergent Expansions

With this we mean asymptotic expansions of the form

F(z) ∼
∞∑

n=0

cn

zn
, z → ∞. (4.2.6)

The series usually diverges, but it has the property

F(z) =
N−1∑

n=0

cn

zn
+ RN(z), RN(z) = O

(
z−N

)
, z → ∞, (4.2.7)

for N = 0,1,2, . . . , and the order estimate holds for fixed N . This is the Poincaré-
type expansion and for special functions like the gamma and Bessel functions they
are crucial for evaluating these functions. Other variants of the expansion are also
important, in particular expansions that hold for a certain range of additional pa-
rameters (this leads to the uniform asymptotic expansions in terms of other special
functions like Airy functions, which are useful in turning point problems).

Usually the optimal choice of N with a given (large) z occurs for the N that
makes cN/zN the smallest term. And usually the error estimate in (4.2.7) may be
exponentially small for this N . Say, with z > 0, the smallest term is achieved when
N ∼ z, then it may happen that RN(N) = O(exp(−N)). Many asymptotic expan-
sions for special functions share this property, and it makes asymptotic expansions
very useful for numerical computations.

Convergent power series may be very unstable in certain parts of their conver-
gence region, as the expansion of e−z for 	z > 0. In a similar way, asymptotic
expansions may be very useful in a certain sector of the complex z-plane, but may
become useless in other sectors. Other expansions may be available in these sectors.
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For example, consider the compound expansion of the Kummer function

1

�(c)
1F1

(
a

c
; z

)

= ezza−c

�(a)

[
R−1∑

n=0

(c − a)n(1 − a)n

n! zn
+ O

(|z|−R
)
]

+ z−ae±iπa

�(c − a)

[
S−1∑

n=0

(a)n(1 + a − c)n

n! (−z)n
+ O

(|z|−S
)
]

, (4.2.8)

the upper sign being taken if − 1
2π < ph z < 3

2π , the lower sign if − 3
2π < ph z <

1
2π . When 	z > 0 the second term can be neglected because of ez in front of the
first term. We see that within a sector properly inside the sector − 1

2π < ph z < 1
2π

we can work with one expansion, and in a sector containing the negative z-axis with
another one. In sectors containing the imaginary axis we need both expansions.

The fact that an entire function, as is the Kummer function, does not have a
unique asymptotic expansion valid for all phases of z will be explained in Sect. 4.6,
where we discuss elements of the Stokes phenomenon.

A remarkable point is in this example that we have, say for − 1
2π + δ < ph z <

1
2π − δ (δ a small positive number), not only one expansion, but also an expansion
that gives an exponentially small correction to the main expansion. For computa-
tions (and also for applications in physics) this may give interesting information.
The role of exponentially small terms in asymptotics has been discussed in great de-
tail the last twenty years. For many aspects from a physicists’ point of view, we refer
to The Devil’s Invention: Asymptotic, Superasymptotic and Hyperasymptotic Series
[13] for a lively introduction to this topic.3 In Sect. 4.6 we also discuss aspects of
the role of exponentially small terms.

4.3 Linear Recurrence Relations

Many special functions of mathematical physics satisfy three-term recurrence rela-
tions. We first give a simple relation and discuss stability and direction of recursion,
which elements are important in the general theory.

4.3.1 A Simple Recurrence Relation

The recurrence relations

fn = fn−1 − xn

n! , gn = gn−1 + xn

n! , n = 1,2, . . . , (4.3.1)

3The “Devil’s invention” refers to a quote from Niels Hendrik Abel (1828), who claimed “Diver-
gent series are the invention of the devil, and it is shameful to base on them any demonstration
whatsoever.”
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with initial values f0 = ex − 1, g0 = 1 have solutions

fn =
∞∑

m=n+1

xm

m! , gn = ex − fn =
n∑

m=0

xm

m! , (4.3.2)

which are in fact special cases of the incomplete gamma functions:

fn = ex γ (n + 1, x)

n! , gn = ex �(n + 1, x)

n! , n = 0,1,2, . . . . (4.3.3)

Assume that x > 0. Then, following our intuition, the recursion for gn will not cause
any problem, since two positive numbers are always added during the recursion. For
the recurrence relation of fn it is not clear, but there is a potential danger owing to
the subtraction of two positive quantities. Note that the computation of the initial
value f0, for small values of x, may produce a large relative error, when the quanti-
ties ex and 1 are simply subtracted. This problem repeats itself for each subsequent
fn that is computed by using the recurrence relation: in each step the next term of
the Taylor series is subtracted from the exponential function.

Apparently, this is a hopeless procedure for computing successive fn (even when
x is not small). On the other hand, the computation of successive gn does not show
any problem.

In the study of recurrence relations it may make sense to change the direction of
the recursion. Writing the recursion for fn and gn in the backward direction:

fn−1 = fn + xn

n! , gn−1 = gn − xn

n! (4.3.4)

then we note that for both solutions the roles are reversed: gn is obtained by
subtraction, whereas fn is obtained by addition of positive numbers. In addition,
limn→∞ fn = 0.

It can be easily verified that both fn and gn satisfy the recurrence relation

(n + 1)yn+1 − (x + n + 1)yn + xyn−1 = 0. (4.3.5)

Again, this relation is stable for the computation of gn in the forward direction; it
is stable for fn in the backward direction. Note that the solutions of this recursion
satisfy fn → 0, gn → ex as n → ∞. Apparently, the solution which becomes ulti-
mately small in the forward direction (small compared to the other solution), is the
victim. A similar phenomenon occurs in the backward direction. This phenomenon
will be explained and put in a general framework in the following section.

4.3.2 Some Elements of the General Theory

For details on the theory of this topic we refer to [54, Chap. 4].
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Consider the recurrence relation

yn+1 + bnyn + anyn−1 = 0, n = 1,2,3, . . . , (4.3.6)

where an and bn are given, with an 
= 0. Equation (4.3.6) is also called a linear
homogeneous difference equation of the second order. In analogy with the theory
of differential equations, two linearly independent solutions fn, gn exist in general,
with the property that any solution yn of (4.3.6) can be written in the form

yn = Afn + Bgn, (4.3.7)

where A and B do not depend on n. We are interested in the special case that the
pair {fn, gn} satisfies

lim
n→∞

fn

gn

= 0. (4.3.8)

Then, for any solution (4.3.7) with B 
= 0, we have fn/yn → 0 as n → ∞. When
B = 0 in (4.3.7), we call yn a minimal solution; when B 
= 0, we call yn a dominant
solution. When we have two initial values y0, y1, assuming that f0, f1, g0, g1 are
known as well, then we can compute A and B . That is,

A = g1y0 − g0y1

f0g1 − f1g0
, B = y0f1 − y1f0

g0f1 − g1f0
. (4.3.9)

The denominators are different from 0 when the solutions fn, gn are linearly inde-
pendent.

When we assume that the initial values y0, y1 are to be used for generating a dom-
inant solution, then A may, or may not, vanish; B should not vanish: y0f1 
= y1f0.
When however the initial values are to be used for the computation of a minimal
solution, then the much stronger condition y0f1 = y1f0 should hold. It follows that,
in this case, one and only one initial value can be prescribed and the other one
follows from the relation y0f1 = y1f0; in other words, the minimal solutions, if it
exists, is unique up to a constant multiplicative factor. In the numerical approach this
leads to the well-known instability phenomena for the computation of minimal so-
lutions. The fact is that, when our initial values y0, y1 are not specified to an infinite
precision,—and consequently B does not vanish exactly—the computed solution
(4.3.7) always contains a fraction of a dominant solution gn. Hence, in the long run,
our solution yn does not behave as a minimal solution, although we assumed that we
were computing a minimal solution. This happens even if all further computations
are done exactly.

In applications it is important to know whether a given equation (4.3.6) has dom-
inant and minimal solutions. Often this can be easily concluded from the asymptotic
behavior of the coefficients an and bn.

Assume that for large values of n the coefficients an, bn behave as follows:

an ∼ anα, bn ∼ bnβ, ab 
= 0 (4.3.10)



4 Basic Methods for Computing Special Functions 75

with α and β real; assume that t1, t2 are the zeros of the characteristic polynomial

(t) = t2 +bt +a with |t1| ≥ |t2|. Then it follows from Perron’s theorem [54, p. 93]
that we have the following results.

1. If β > 1
2α then the difference equation (4.3.6) has two linearly independent so-

lutions yn,1 and yn,2, with the property

yn+1,1

yn,1
∼ −bnβ,

yn+1,2

yn,2
∼ −a

b
nα−β, n → ∞. (4.3.11)

2. If β = 1
2α and |t1| > |t2|, then the difference equation (4.3.6) has two linear

independent solutions yn,1 and yn,2, with the property

yn+1,1

yn,1
∼ t1n

β,
yn+1,2

yn,2
∼ t2n

β, n → ∞. (4.3.12)

3. If β = 1
2α and |t1| = |t2|, or if β < 1

2α, then some information is still available,
but the theorem is inconclusive with respect to the existence of minimal and
dominant solutions.

4.3.3 Miller’s Algorithm

This algorithm can be used for calculating a sequence

f0, f1, . . . , fN (4.3.13)

of values of a minimal solution that satisfies (4.3.6); N is a non-negative integer.
Such sequences frequently occur in expansions of special functions; see for example
the expansions in terms of Chebyshev polynomials in (4.4.16).

When we use (4.3.6) in the backward direction we may start with two initial
values fN and fN−1. But these are perhaps difficult to obtain. Miller’s algorithm
does not need these values, and uses a smart idea for the computation of the required
sequence (4.3.13). The algorithm works for many interesting cases and gives an
efficient method for computing such sequences.

Assume we have a relation of the form

S =
∞∑

n=0

λnfn, S 
= 0. (4.3.14)

The series should be convergent and λn and S should be known. The series in
(4.3.14) plays a role in normalizing the required minimal solution. The series may
be finite; we only require that at least one coefficient λn with n ≤ N is different
from zero. When just one coefficient, say λn, is different from zero, we assume that
the value fn is available.
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Table 4.1 Computing the
modified Bessel functions
In(x) for x = 1 by using
(4.3.17) in the backward
direction. The underlined
digits in the third column
are correct

n yn before normalization yn
.= In(1) after normalization

0 2.2879 49300 10
+8 1.26606 587801 10

−0

1 1.0213 17610 10
+8 5.65159 104106 10

−1

2 2.4531 40800 10
+7 1.35747 669794 10

−1

3 4.0061 29000 10
+6 2.21684 249288 10

−2

4 4.9434 00000 10
+5 2.73712 022160 10

−3

5 4.9057 00000 10
+4 2.71463 156012 10

−4

6 4.0640 00000 10
+3 2.24886 614761 10

−5

7 2.8900 00000 10
+2 1.59921 829887 10

−6

8 1.8000 00000 10
+1 9.96052 919710 10

−8

9 1.0000 00000 10
+0 5.53362 733172 10

−9

10 0.0000 00000 10
+0 0.00000 000000 10

−0

In Miller’s algorithm a starting value ν is chosen, ν > N , and a solution {y(ν)
n } of

(4.3.6) is computed with the false initial values

y
(ν)
ν+1 = 0, y(ν)

ν = 1. (4.3.15)

The right-hand sides may be replaced by other values; at least one value should be
different from zero. In some cases a judicious choice of these values may improve
the convergence of the algorithm.

The computed solution yn, with (4.3.15) as initial values, is a linear combination
of the solutions fn and gn, gn being a dominant solution. When we choose ν large
enough it follows that the wanted solution fn satisfies fn

.= ρyn, n = 0,1, . . . ,N ,
because the dominant solution gn can be neglected in the backward direction. For
details and proofs we refer to [37] and [54, Sect. 4.6]. The number ρ then follows
from the normalizing sum (4.3.14). That is,

ρ
.= 1

S

ν∑

n=0

λnyn. (4.3.16)

In [11] the above method was introduced for computing the modified Bessel
functions In(x). The recurrence relation for these functions reads

In+1(x) + 2n

x
In(x) − In−1(x) = 0. (4.3.17)

A normalizing condition (4.3.14) is

ex = I0(x) + 2I1(x) + 2I2(x) + 2I3(x) + · · · . (4.3.18)

That is, S = ex, λ0 = 1, λn = 2 (n ≥ 1). We take x = 1 and initial values (4.3.15)
with ν = 9 and obtain the results given in Table 4.1.
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The rightmost column in Table 4.1 is obtained by dividing the results of the
middle column by

ρ
.= 1

e

9∑

n=0

λny
(9)
n = 1.807132898610

+8. (4.3.19)

When we take N = 5, which means we want to compute the sequence I0(1), I1(1),

. . . , I5(1), we see that these quantities are computed with at least 10 correct decimal
digits.

4.3.4 Examples of Hypergeometric Functions and Recursions

We mention classes of functions of hypergeometric type that are of interest for ap-
plications and give a few details about their recursions.

4.3.4.1 Bessel Functions

In the case of ordinary Bessel functions, we have the recurrence relation

yn+1 − 2n

z
yn + yn−1 = 0, z 
= 0, (4.3.20)

with solutions

fn = Jn(z), gn = Yn(z). (4.3.21)

This is covered by (4.3.11), with

a = 1, α = 0, b = −2

z
, β = 1. (4.3.22)

In this case
fn+1

fn

∼ z

2n
,

gn+1

gn

∼ 2n

z
. (4.3.23)

The known asymptotic behavior of the Bessel functions reads

fn ∼ 1

n!
(

z

2

)n

, gn ∼ − (n − 1)!
π

(
2

z

)n

, n → ∞. (4.3.24)

Similar results hold for the modified Bessel functions, with recurrence relation

yn+1 + 2n

z
yn − yn−1 = 0, z 
= 0, (4.3.25)

with solutions In(z) (minimal) and Kn(z) (dominant).
There is an extensive literature on the use of recursion for evaluating Bessel func-

tions, with [37] as pioneering paper; see also [5, 70, 101].
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4.3.4.2 Kummer Functions

The Kummer functions (or confluent hypergeometric functions) 1F1 and U do not
satisfy the same recurrence relations, but by multiplying them with certain gamma
functions they do. We assume z > 0. An overview of the relevant recurrence rela-
tions can be found in [1, Chap. 13].

Recursion with respect to a. The functions

�(a + n)

�(a + n + 1 − c)
1F1

(
a + n

c
; z

)

and
�(a + n)

�(a)
U(a + n, c, z) (4.3.26)

are respectively dominant and minimal.
Recursion with respect to c. The functions

�(c − a + n)

�(c + n)
1F1

(
a

c + n
; z

)

and U(a, c + n, z) (4.3.27)

are respectively minimal and dominant.

There are other interesting cases: recursion with respect to both a and c, and recur-
sion with respect to negative n. All the possible cases are analyzed in [103], where
it is shown that the Kummer recurrences always have a minimal solution except for
the case of recursion over a when z is real and positive (for a → −∞) or negative
real (for a → +∞). See also [30] and [54, Sect. 4.5.1].

4.3.4.3 Gauss Hypergeometric Functions

The recursions for the functions

2F1

(
a + ε1n, b + ε2n

c + ε3n
; z

)

, (4.3.28)

where εj = 0,±1, not all equal to zero, and z is complex are analyzed in [53, 59]. Of
the 27 nontrivial cases, only a limited set of these recursions need to be considered.
This is because of several relations between contiguous Gauss functions. Among
other results, in [59] it is shown that the function (4.3.28) is minimal around z = 0
when ε3 > 0. An overview of the relevant recurrence relations can be found in [1,
Chap. 15].

4.3.4.4 Legendre Functions

For definitions and properties, see [1, Chap. 8] and [111, Chap. 8]. Legendre func-
tions are special cases of Gauss hypergeometric functions, but the recursions need
special attention. When 	z > 0, z /∈ (0,1], P

μ
ν (z) is the minimal solution of the

recursion with respect to positive order μ; Q
μ
ν (z) is dominant. Particular cases
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are toroidal functions and conical functions. The latter have the form P
μ
−1/2+iτ (z),

Q
μ
−1/2+iτ (z), which are real for z > −1 and real τ and μ.

For recursion with respect to the degree ν, Q
μ
ν (z) is a minimal solution and

P
μ
ν (z) is dominant.

For further details on numerical aspects and algorithms we refer to [41–44, 46,
55] and [54, Sect. 12.3].

4.3.4.5 Coulomb Wave Functions

Information on these functions can be found in [1, Chap. 14]. Coulomb wave func-
tions are special cases of the Kummer functions, and they can also be viewed as
generalizations of Bessel functions. The regular function Fλ(η,ρ) is the minimal
solution with respect to increasing λ, while the irregular Gλ(η,ρ) function is a dom-
inant one. Algorithms based on recursions are discussed in [85]; in [96, 97] several
types of series expansions are considered, with references to earlier algorithms.

4.3.4.6 Parabolic Cylinder Functions

For definitions and properties, see [1, Chap. 19]. The standard forms are U(a, z) and
V (a, z), and, again, special cases of the Kummer functions. The function U(a,x)

is minimal in the forward a-recursion. For negative values of a the situation is quite
different, and for |a| large enough (a � −z2/4), the solutions are neither minimal
nor dominant. See [54, p. 102]. Algorithms using recursion can be found in [57, 58,
95, 102].

4.4 Chebyshev Expansions

Chebyshev expansions are examples of convergent expansions, considered earlier,
but because of their special properties they deserve a separate discussion.

Chebyshev polynomials of the first kind Tn(x) have the nice property Tn(cos θ) =
cos(nθ), giving an equal ripple in the θ -interval [0,π] and in the x-interval [−1,1].
Because of their excellent convergence properties, Chebyshev expansions may re-
place convergent power series and divergent asymptotic expansions, or they may
be used for filling the gap between the domains where convergent and asymptotic
expansions can be used.

The standard Chebyshev expansion is of the form

f (x) =
∞∑

n=0

′cnTn(x), −1 ≤ x ≤ 1, (4.4.1)
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where the prime means that the first term is to be halved. Provided that the coef-
ficients ck decrease in magnitude sufficiently rapidly, the error made by truncating
the Chebyshev expansion after the terms k = n, that is,

En(x) =
∞∑

k=n+1

ckTk(x), (4.4.2)

will be given approximately by

En(x)
.= cn+1Tn+1(x), (4.4.3)

that is, the error approximately satisfies the equioscillation property, which is hap-
pening in best-approximation (mini-max) methods.

4.4.1 Clenshaw’s Summation Method

There is a very simple algorithm due to Clenshaw [24] for evaluating the finite sum

Sn(x) = 1

2
c0 +

n∑

k=1

ckTk(x), (4.4.4)

which is based on the recurrence relation

xTk(x) = 1

2

(
Tk+1(x) + T|k−1|(x)

)
. (4.4.5)

The algorithm computes a sequence b1, b2, . . . , bn+1 and starts with putting bn+1 =
0 and bn = cn. Next,

bk = 2xbk+1 − bk+2 + ck, k = n − 1, n − 2, . . . ,1. (4.4.6)

Then, Sn(x) = xb1 − b2 + 1
2c0.

4.4.2 Methods for Obtaining the Coefficients

The coefficients cn in the expansion in (4.4.1) can be obtained in several ways,
and we mention a few elements of the main methods. For details we refer to [54,
Chap. 3].
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4.4.2.1 Tabled Coefficients

In the case that the function f is an elementary or a one-variable special function,
such as the error function erfx, the Bessel function J0(x), and so on, the coefficients
can be obtained from tables, see [75]. Usually 20D accuracy of the coefficients is
given. In [93] 30D coefficients are given for the error function and the comple-
mentary error function. Nowadays, computer algebra systems can be used to obtain
tables of high precision coefficients.

4.4.2.2 Discretizing the Integral

A numerical method uses discretization of the integral representation. That is,

ck = 2

π

∫ 1

−1

f (x)Tk(x)√
1 − x2

dx = 2

π

∫ π

0
f (cos θ) cos(kθ) dθ, (4.4.7)

and discretization gives

ck
.= 2

n

n∑

j=0

′′f
(

cos
πj

n

)

cos
πkj

n
, (4.4.8)

where the primes mean that the first and last terms is are to be halved. This is a
discrete cosine transform, which can be computed by methods based on the fast
Fourier transform [116].

4.4.2.3 Clenshaw’s Method

This method can be used for functions satisfying linear ordinary differential equa-
tions with polynomial coefficients of the form

m∑

k=0

pk(x)f (k)(x) = h(x), (4.4.9)

with pk polynomials and where the coefficients of the Chebyshev expansion of the
function h are known. The idea is as follows. Next to the expansion in (4.4.1), we
introduce expansions for the relevant derivatives:

f (s)(x) =
∞∑

n=0

′c(s)
n Tn(x), s = 0,1,2, . . . , (4.4.10)

and from known properties of the Chebyshev polynomials we have

2rc(s)
r = c

(s+1)
r−1 − c

(s+1)
r+1 , r ≥ 1. (4.4.11)
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A next element in Clenshaw’s method is to handle the powers of x occurring
in the differential equation satisfied by f . For this we need the relation (4.4.5) and
formulas for higher powers of x in the left-hand side. These can easily be obtained
from the above one.

By substituting the expansion in (4.4.1) in the equation in (4.4.9) and using the
formulas for the powers of x, a set of recursions for the coefficients c

(s)
r can be

obtained. Together with boundary values (or other known relations) this set of re-
cursions can be solved numerically, and Clenshaw [25, 26] explained how this can
be done by using a backward recursion method.

For example, the exponential function y(x) = eax satisfies the differential equa-
tion y′ = ay. Substituting expansions following from (4.4.1) we obtain c

(1)
r = acr .

Using this in the form c
(1)
r+2 = acr+2 and using (4.4.11) we have the recursion for

the coefficients:

2(r + 1)rcr+1 = a(cr − cr+2), r ≥ 0. (4.4.12)

This is the recursion relation for the modified Bessel function Ir (a), and so cr is
multiple of this function (the other modified Bessel function Kr(a) being excluded
because of its behavior for large r). The value y(0) = 1 gives cr = Ir (a). This result
is known because of the expansion

ea cos θ =
∞∑

r=0

′Ir (a) cos(rθ). (4.4.13)

It is not at all needed that we know the solution in terms of a known function; for
numerical purposes it is enough to have (4.4.12), and to use a backward recursion
scheme, the Miller algorithm, as explained in Sect. 4.3.3.

However, several questions arise in this successful method. The recursion given
in (4.4.12) is very simple, and we can find its exact solution. In more complicated
recursion schemes obtained for the coefficients c

(s)
r this information is not avail-

able. The scheme may be of large order and may have several solutions of which
the asymptotic behavior is unknown. So, in general, we don’t know if Clenshaw’s
method for differential equations computes the solution that we want, and if for the
wanted solution the scheme is stable in the backward direction.

Clenshaw’s method goes wrong in another simple example. Consider y(x) =
eax+bx2

with differential equation y′ = (a + 2bx)y. It is again easy to give a recur-
sion scheme for the coefficients c

(s)
r . It reads (we use also (4.4.5))

c(1)
r = acr + b

(
cr+1 + c|r−1|

)
, r ≥ 0. (4.4.14)

The coefficient c
(1)
r can be eliminated simply by using this relation with r replaced

with r + 2, and invoking (4.4.11). This gives

2(r + 1)cr+1 = a(cr − cr+2) + b(cr+1 − cr+3), r = 0,1,2, . . . . (4.4.15)



4 Basic Methods for Computing Special Functions 83

When applying a backward recursion algorithm for computing cr it appears that the
solution does not give the requested function y(x). The problem is that the recur-
rence is a third order difference equation, with three independent solutions that can
be chosen in such a way that two of them are minimal solutions while the third one
is dominant. Straightforward application of Miller’s backward algorithm explained
in Sect. 4.3.3 gives a linear combination of such two minimal solutions. There are
modifications of the Miller algorithm, which can be used for obtaining the requested
minimal solution, eliminating the contamination introduced by the unwanted mini-
mal solution.

In [56] a similar phenomenon has been discussed for the computation of the
Weber function W(a,x), solution of the equation y′′ + (x2/4 − a)y = 0. In that
paper we describe a modification of Miller’s algorithm in detail. See also [77] for
an instability problem in Chebyshev expansions for special functions.

4.4.2.4 Known Coefficients in Terms of Special Functions

As we have seen in (4.4.13), the coefficients in a Chebyshev expansion for the ex-
ponential function are known in terms of special functions. There are many other
examples, also for higher transcendental functions. For example, we have (see [75,
p. 37])

J0(ax) =
∞∑

n=0

εn(−1)nJ 2
n (a/2) T2n(x),

J1(ax) = 2
∞∑

n=0

(−1)nJn(a/2)Jn+1(a/2) T2n+1(x),

(4.4.16)

where −1 ≤ x ≤ 1 and ε0 = 1, εn = 2 if n > 0. The parameter a can be any com-
plex number. Similar expansions are available for J -Bessel functions of any com-
plex order, in which the coefficients are 1F2-hypergeometric functions, and explicit
recursion relations are available for computing the coefficients. For general integer
order, the coefficients are products of two J -Bessel functions, as in (4.4.16). See
again [75].

Another example is the expansion for the error function,

ea2x2
erf(ax) = √

πe
1
2 a2

∞∑

n=0

I
n+ 1

2

(
1

2
a2

)

T2n+1(x), −1 ≤ x ≤ 1, (4.4.17)

in which the modified Bessel function is used. Again, a can be any complex number.
The complexity of computing the coefficients of the expansions in (4.4.16) seems

to be greater than the computation of the function that has been expanded. In some
sense this is true, but the coefficients in (4.4.16), and those of many other exam-
ples for special functions, satisfy linear recurrence relations, and the coefficients
satisfying such relations can usually be computed very efficiently by the backward
recursion algorithm; see Sect. 4.3.3.
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The expansions in (4.4.16) and (4.4.17) can be viewed as expansions near the ori-
gin. Other expansions are available that can be viewed as expansions at infinity, and
these may be considered as alternatives for asymptotic expansions of special func-
tions. For example, for the confluent hypergeometric U -functions we have the con-
vergent expansion in terms of shifted Chebyshev polynomials T ∗

n (x) = Tn(2x − 1):

(ωz)aU(a, c,ωz) =
∞∑

n=0

Cn(z)T
∗
n (1/ω), (4.4.18)

where

z 
= 0, |ph z| < 3

2
π, 1 ≤ ω ≤ ∞. (4.4.19)

Furthermore, a,1 + a − c 
= 0,−1,−2, . . . . When equalities hold for these values
of a and c, the Kummer U -function reduces to a Laguerre polynomial. This follows
from

U(a, c, z) = z1−cU(1 + a − c,2 − c, z) (4.4.20)

and

U(−n,α + 1, z) = (−1)nn!Lα
n(z), n = 0,1,2, . . . . (4.4.21)

The expansion (4.4.18) is given in [75, p. 25]. The coefficients can be represented
in terms of generalized hypergeometric functions, in fact, Meijer G-functions, and
they can be computed from the recurrence relation

2Cn(z)

εn

= 2(n + 1)A1Cn+1(z) + A2Cn+2(z) + A3Cn+3(z), (4.4.22)

where b = a + 1 − c, ε0 = 1
2 , εn = 1 (n ≥ 1), and

A1 = 1 − (2n + 3)(n + a + 1)(n + b + 1)

2(n + 2)(n + a)(n + b)
− 2z

(n + a)(n + b)
,

A2 = 1 − 2(n + 1)(2n + 3 − z)

(n + a)(n + b)
,

A3 = − (n + 1)(n + 3 − a)(n + 3 − b)

(n + 2)(n + a)(n + b)
.

(4.4.23)

For applying the backward recursion algorithm it is important to know that

∞∑

n=0

(−1)nCn(z) = 1, |ph z| < 3

2
π. (4.4.24)

This follows from

lim
ω→∞(ωz)aU(a, c,ωz) = 1 and T ∗

n (0) = (−1)n. (4.4.25)
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The standard backward recursion scheme (see Sect. 4.3) for computing the coef-
ficients Cn(z) works only for |ph z| < π , and for ph z = ±π a modification seems
to be possible; see [75, p. 26].

Although the expansion in (4.4.18) converges for all z 
= 0 in the indicated sector,
it is better to avoid small values of the argument of the U -function. Luke gives an
estimate of the coefficients Cn(z) of which the dominant factor that determines the
speed of convergence is given by

Cn(z) = O
(
n2(2a−c−1)/3 e−3n

2
3 z

1
3
)
, n → ∞, (4.4.26)

and we see that large values of 	z1/3 improve the convergence.
The expansion in (4.4.18) can be used for all special cases of the Kummer

U -function, that is, for Bessel functions (Hankel functions and K-modified Bessel
function), for the incomplete gamma function �(a, z), with special cases the com-
plementary error function and exponential integrals. In [54, Sect. 3.10] numerical
coefficients are derived for expansions of the Airy function Ai(x) for x ≥ 7 and for
its derivative by using the expansion in (4.4.18).

4.5 Quadrature Methods

We start with a simple example in which an oscillatory integral can be transformed
into a stable representation. Consider the integral

F(λ) =
∫ ∞

−∞
e−t2+2iλt dt = √

πe−λ2
. (4.5.1)

Taking λ = 10 we get

F(λ)
.= 0.6593662990 10

−43. (4.5.2)

When we ask a well-known computer algebra system to do a numerical evalua-
tion of the integral, without using the exact answer in (4.5.1) and with standard 10
digits accuracy, we obtain

F(λ)
.= 0.24 10

−12. (4.5.3)

We see that in this way this simple integral, with strong oscillations, cannot be
evaluated correctly. Increasing the accuracy from 10 to 50 digits we obtain the an-
swer

F(λ)
.= 0.65936629906 10

−43, (4.5.4)

the first 8 digits being correct. Observe that we can shift the path of integration
upwards until we reach the point t = iλ, the saddle point, and we write

F(λ) =
∫ ∞

−∞
e−(t−iλ)2−λ2

dt = e−λ2
∫ ∞

−∞
e−s2

ds. (4.5.5)
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Now the saddle point is at s = 0, we integrate through this point along a path where
no oscillations occur, a steepest descent path. Moreover the small factor e−λ2

that
causes the main problems in the standard quadrature method, is now in front of the
s-integral.

Similar methods can be applied to more complicated functions, in particular to a
wide class of special functions from mathematical physics. Much software has been
developed for many of these functions, but for large parameters the software is not at
all complete and reliable, in particular when the parameters are large and complex.

We have come to the conclusion that methods based on asymptotic analysis are
important for evaluating integrals by quadrature. Choosing suitable paths of integra-
tion and scaling the functions by separating dominant factors are important steps in
these methods.

In this section we discuss the application of a simple quadrature rule, namely,
the trapezoidal rule. For integral representations of special functions it may perform
very well. Not always the standard integral representations should be taken, but
modifications obtained by transformations or by choosing contours in the complex
plane.

4.5.1 The Trapezoidal Rule

Gauss quadrature is a well-known quadrature method for evaluating integrals. It has
a very good performance for various types of integrals over real intervals, given that
the quadrature has maximal degree of exactness. However, one of the drawbacks is
that it is not very flexible in algorithms when we want adjustable precision or when
additional parameters are present. Also, we need zeros and weights of a certain class
of orthogonal polynomials. For high precision algorithms computing these numbers
in advance may be time consuming and/or not reliable.

The n-point extended trapezoidal rule

∫ b

a

f (t) dt = 1

2
h[f (a) + f (b)] + h

n−1∑

j=1

f (hj) + Rn, h = b − a

n
, (4.5.6)

is more flexible, because we don’t need precomputed zeros and weights; for this
rule these numbers are trivial.

The error term has the form

Rn = − 1

12
(b − a)h2f ′′(ξ), (4.5.7)

for some point ξ ∈ (a, b), and for functions with continuous second derivative.
More insight in the error term follows from the Euler-Maclaurin summation rule

[54, p. 131]. This rule gives the representation (for functions f having 2m + 2
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Table 4.2 The remainder Rn

of the rule in (4.5.9) for
several choices of n

n Rn

4 −0.12 10
−0

8 −0.48 10
−6

16 −0.11 10
−21

32 −0.13 10
−62

64 −0.13 10
−163

128 −0.53 10
−404

continuous derivatives in [a, b]):

Rn =
m∑

j=0

B2j

(2j)!h
2j

(
f (2j−1)(a) − f (2j−1)(b)

)

− (b − a)h2m+2 B2m+2

(2m + 2)! f (2m+2)(ξ), (4.5.8)

for some point ξ ∈ (a, b). Bm are the Bernoulli numbers. The first numbers with
even index are B0 = 1, B2 = 1

6 , B4 = − 1
30 .

We take as an example the Bessel function

π J0(x) =
∫ π

0
cos(x sin t) dt = h + h

n−1∑

j=1

cos
[
x sin(h j)

] + Rn, (4.5.9)

where h = π/n, and use this rule for x = 5. The results of computations are shown
in Table 4.2.

We observe that the error Rn is much smaller than the upper bound that can be
obtained from (4.5.7). The explanation comes from the periodicity in the integral
for the Bessel function. Hence, all terms of the sum in (4.5.8) vanish, and we infer
that now the error is O(h2m+2). And because for this integral this is true for any
positive m, we conclude that the error is exponentially small as a function of h.

Another example is the Bessel function integral for general order

Jν(x) = 1

2πi

∫

C
ex sinh t−νt dt, (4.5.10)

where C starts at ∞ − iπ and terminates at ∞ + iπ ; see [111, p. 222] and [118,
p. 176]. Without further specifications, on such contour oscillations will occur, but
we will select a special contour that is free of oscillations for the case 0 < x ≤ ν.
This contour will run through a saddle point of the integrand. In particular when
the parameters are large, strong oscillations occur on a general path, and numer-
ical quadrature will be very unstable. When we select the contour that is free of
oscillations we are also able to pick up the most relevant part in the asymptotic
representation of this Bessel function.
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We write ν = x coshμ,μ ≥ 0. The real saddle points of x sinh t −νt = x(sinh t −
t coshμ) occur at t = ±μ, and at these saddle points the imaginary part of x sinh t −
νt equals zero. It is possible to select a path free of oscillations (a steepest descent
path) through the saddle point at t = μ (this is not possible when we would have
selected the saddle point at t = −μ). This path can be described by the equation
�(x sinh t − νt) = 0. Writing t = σ + iτ we obtain for the path the equation

coshσ = coshμ
τ

sin τ
, μ ≤ σ, −π < τ < π. (4.5.11)

On this path we have

	(x sinh t − νt) = x(sinhσ cos τ − σ coshμ). (4.5.12)

Integrating with respect to τ , using dt/dτ = (dσ/dτ + i) (where dσ/dτ is an odd
function of τ , and does not contribute), we obtain

Jν(x) = 1

2π

∫ π

−π

ex(sinhσ cos τ−σ coshμ) dτ, 0 < x ≤ ν. (4.5.13)

The integrand is analytic and vanishes with all its derivatives at the points τ = ±π .
We can interpret the integrand as being a periodic C∞ function with period 2π , and
consider representation (4.5.8) of the remainder. Again, the error in the trapezoidal
rule is exponentially small.

When ν � x the Bessel function becomes very small and we can take the domi-
nant part ex(sinhμ−μ coshμ) in front of the integral. When x ≥ ν (the oscillatory case),
the Bessel function can be represented in a similar way, now by using two integrals
(coming from the Hankel functions).

Integral representations in terms of non-oscillating integrals (starting from com-
plex contours) can be obtained for many of other special functions with large pa-
rameters. In other cases it may be difficult to obtain a suitable parametrization of
the path, in which case it still may be possible to choose a path through a relevant
saddle point and running into the valleys of the saddle point. In that case the oscil-
lations will be less harmful compared with a path not going through a saddle point.
For more details we refer to [54, Sect. 5.5].

Our main conclusion of this section is that the trapezoidal rule may be very ef-
ficient and accurate when dealing with a certain class of integrals. Smoothness and
periodicity of the integrand are the key properties here.

4.5.1.1 The Trapezoidal Rule on RRR

In the previous section we considered integrals over finite intervals. For integrals
over R the trapezoidal rule may again be very efficient and accurate.

We consider
∫ ∞

−∞
f (t) dt = h

∞∑

j=−∞
f (hj + d) + Rd(h), (4.5.14)
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Table 4.3 The remainder R0
of the rule in (4.5.19) for
several choices of h

h j0 R0(h)

1 2 −0.18 10
−1

1/2 5 −0.24 10
−6

1/4 12 −0.65 10
−15

1/8 29 −0.44 10
−32

1/16 67 −0.19 10
−66

1/32 156 −0.55 10
−136

1/64 355 −0.17 10
−272

where h > 0 and 0 ≤ d < h. We apply this rule with even functions f analytic in a
strip Ga of width 2a > 0 around R:

Ga = {z = x + iy | x ∈ R, −a < y < a}, (4.5.15)

which are bounded in Ga and for which limx→±∞ f (x + iy) = 0 (uniformly in
|y| ≤ a) and

Ma(f ) =
∫ ∞

−∞
|f (x + ia)|dx < ∞. (4.5.16)

Then, for real functions f , the remainder Rd(h) of (4.5.14) satisfies

|Rd(h)| ≤ e−πa/h

sinh(πa/h)
Ma(f ). (4.5.17)

The proof is based on residue calculus; see [54, p. 151].
As an example we consider the modified Bessel function

K0(x) = 1

2

∫ ∞

−∞
e−x cosh t dt. (4.5.18)

We have, with d = 0,

exK0(x) = 1

2
h + h

∞∑

j=1

e−x(cosh(hj)−1) + R0(h). (4.5.19)

For x = 5 and several values of h we obtain the results given in Table 4.3 (j0 denotes
the number of terms used in the series in (4.5.19)).

We see in this example that halving the value of h gives a doubling of the number
of correct significant digits (and, roughly speaking, a doubling of the number of
terms needed in the series). When programming this method, observe that when
halving h, previous function values can be used.
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4.5.2 Complex Contours

In Sect. 4.5.1 we have transformed the complex contour integral (4.5.10) for the
Bessel function Jν(x) into a more suitable integral (4.5.13) by using saddle point
methods. Here we explain how this works for the Airy function for applying the
trapezoidal rule on the real line of Sect. 4.5.1.1. This gives a very flexible and effi-
cient algorithm with adjustable precision.

We consider

Ai(z) = 1

2πi

∫

C
e

1
3 w3−zw dw, (4.5.20)

where ph z ∈ [0, 2
3π] and C is a contour starting at ∞e−iπ/3 and terminating at

∞e+iπ/3 (in the valleys of the integrand).
Let

φ(w) = 1

3
w3 − zw. (4.5.21)

The saddle points are w0 = √
z and −w0 and follow from solving φ′(w) = w2 −z =

0.
The saddle point contour (the path of steepest descent) that runs through the

saddle point w0 is defined by

�[φ(w)] = �[φ(w0)]. (4.5.22)

We write

z = x + iy = reiθ , w = u + iv, w0 = u0 + iv0. (4.5.23)

Then

u0 = √
r cos

1

2
θ, v0 = √

r sin
1

2
θ, x = u2

0 − v2
0, y = 2u0v0. (4.5.24)

The path of steepest descent through w0 is given by the equation

u = u0 + (v − v0)(v + 2v0)

3[u0 +
√

1
3 (v2 + 2v0v + 3u2

0)]
, −∞ < v < ∞. (4.5.25)

Examples for r = 5 and a few θ -values are shown in Fig. 4.1. The relevant saddle
points are located on the circle with radius

√
r and are indicated by small dots.

The saddle point on the positive real axis corresponds with the case θ = 0 and
the two saddles on the imaginary axis with the case θ = π . This is out of the range
of present interest, but it is instructive to see that the contour may split up and run
through both saddle points ±w0. When θ = 2

3π both saddle points are on one path,
and the half-line in the z-plane corresponding with this θ is called a Stokes line (see
Sect. 4.6).
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Fig. 4.1 Saddle point
contours for θ = 0, 1

3 π, 2
3 π,π

and r = 5

Integrating with respect to τ = u − u0 (and writing σ = v − v0) we obtain

Ai(z) = e−ζ

2πi

∫ ∞

−∞
eψr (σ,τ)

(
dσ

dτ
+ i

)

dτ, (4.5.26)

where ζ = 2
3z

3
2 , and

σ = τ(τ + 3v0)

3[u0 +
√

1
3 (τ 2 + 4v0τ + 3r)]

, −∞ < τ < ∞, (4.5.27)

ψr(σ, τ ) = 	[φ(w) − φ(w0)] = u0(σ
2 − τ 2) − 2v0στ + 1

3
σ 3 − στ 2. (4.5.28)

Quadrature methods for evaluating complex Airy functions can be found in [39,
47, 48, 50, 94].

4.6 The Stokes Phenomenon

The Stokes phenomenon concerns the abrupt change across certain rays in the com-
plex plane, known as Stokes lines, exhibited by the coefficients multiplying expo-
nentially subdominant terms in compound asymptotic expansions. There is much
recent interest in the Stokes phenomenon, and it fits in the present paper because it
has to do with sudden changes in approximations when a certain parameter (in this
case the phase of the large parameter) passes critical values.
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4.6.1 The Airy Function

First we explain this phenomenon by using a simple example from differential equa-
tions. Consider Airy’s equation

d2w

dz2
= zw, (4.6.1)

the solutions of which are entire functions. When |z| is large the solutions of (4.6.1)
are approximated by linear combinations of

w± = z− 1
4 e±ξ , ξ = 2

3
z3/2. (4.6.2)

Obviously, w± are multivalued functions of the complex variable z with a branch
point at z = 0. Therefore, as we go once around the origin, the solutions of (4.6.1)
will return to their original values, but w± will not. It follows that the constants c±
in the linear combination

w(z) ∼ c−w−(z) + c+w+(z), z → ∞, (4.6.3)

are domain-dependent. The constants change when we cross certain lines, the
boundaries of certain sectors in the z-plane.

In the above example one of the terms eξ , e−ξ maximally dominates the other one
at the rays ph z = 0,ph z = ±2π/3. In this example these 3 rays are the Stokes lines.
At the rays ph z = ± 1

3π and the negative z-axis the quantity ξ is purely imaginary,
and, hence, the terms eξ , e−ξ are equal in magnitude. These three rays are called the
anti-Stokes lines4.

For the Airy function Ai(z) we have the full asymptotic expansion (see [1,
Chap. 10])

Ai(z) ∼ c−z− 1
4 e−ξ

∞∑

n=0

(−1)ncnξ
−n, c− = 1

2
π− 1

2 , |ph z| < π, (4.6.4)

with coefficients

cn = �(3n + 1
2 )

54n n!�(n + 1
2 )

, n = 0,1,2, . . . . (4.6.5)

On the other hand, in another sector of the z-plane, we have

Ai(−z) ∼ c− z− 1
4

[

e−ξ
∞∑

n=0

(−1)ncnξ
−n + ieξ

∞∑

n=0

cnξ
−n

]

, (4.6.6)

4This terminology is not the same in all branches of applied mathematics and mathematical
physics: sometimes one sees a complete interchange of the names ‘Stokes line’ and ‘anti-Stokes
line’.
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in which exactly the same term (with the same constant c−) is involved as in (4.6.4),
and there is another term corresponding with w+. We can rewrite this in a more
familiar expansion

Ai(−z) ∼ π− 1
2 z− 1

4

(

sin

(

ξ + 1

4
π

) ∞∑

n=0

(−1)n
c2n

ξ2n

− cos

(

ξ + 1

4
π

) ∞∑

n=0

(−1)n
c2n+1

ξ2n+1

)

, (4.6.7)

valid in the sector |ph z| < 2
3π . In the overlapping domain of expansions (4.6.4)

and (4.6.7), that is, when 1
3π < |ph z| < π , the term with w+ is asymptotically

small compared with w−, and it suddenly appears in the asymptotic approximation
when we cross with increasing values of |ph z| the Stokes lines at ph z = ± 2

3π . It
seems that, when going from (4.6.4) to (4.6.6), the constant multiplying w+ changes
discontinuously from zero values (when |ph z| < 2

3π ) to a non-zero value when we
cross the Stokes line. This sudden appearance of the term w+ does not have much
influence on the asymptotic behavior near the Stokes lines at |ph z| = 2

3π , because
w+ is dominated maximally by w− at these rays. However, see Sect. 4.6.3 below.
Observe also the special value θ = 2

3π in Sect. 4.5.2.

4.6.2 The Recent Interest in the Stokes Phenomenon

This phenomenon of the discontinuity of the constants was discovered by Stokes and
was discussed by him in a series of papers (on Airy functions in 1857, on Bessel
functions in 1868). It is a phenomenon which is not confined to Airy or Bessel
functions. The discovery by Stokes was, as Watson says, apparently one of those
which are made at three o’clock in the morning. Stokes wrote in a 1902 retrospective
paper: “The inferior term enters as it were into a mist, is hidden for a little from view,
and comes out with its coefficients changed.”

In 1989 the mathematical physicist Michael Berry provided a deeper explanation.
He suggested that the coefficients of the subdominant expansion should be regarded
not as a discontinuous constant but, for fixed |z|, as a continuous function of ph z.
Berry’s innovative and insightful approach was followed by a series of papers by
himself and other writers. In particular, Olver put the formal approach by Berry on
a rigorous footing in papers with applications to confluent hypergeometric functions
(including Airy functions, Bessel functions, and Weber parabolic functions).

At the same time interest arose in earlier work by Stieltjes [106], Airey [2], Din-
gle [32], and others, to expand remainders of asymptotic expansions at optimal val-
ues of the summation variable. This resulted in exponentially-improved asymptotic
expansions, a method of improving asymptotic approximations by including small
terms in the expansion that are in fact negligible compared with other terms in the
expansion.
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4.6.3 Exponentially Small Terms in the Airy Expansions

We conclude this discussion by pointing out the relation between the Stokes phe-
nomenon and the exponentially small terms in the asymptotic expansion of the Airy
function. Consider the terms in the expansions in (4.6.4)–(4.6.7). They have the
asymptotic form

cnξ
−n = O

[
�(n) (2ξ)−n

]
, n → ∞. (4.6.8)

When z is large the terms decrease at first and then increase. The least term of
the first series of (4.6.6) is near n = n∗ = [|2ξ |] and its size is of order e−2|ξ |. At
the Stokes lines at |ph z| = 2

3π the quantity ξ is negative and the exponential term
in front of the first series in (4.6.6) equals e|ξ |. Hence the order of magnitude of
e−ξ cn∗ξ−n∗

is roughly of the same size as the second part in (4.6.7), that is, of the
size of eξ that is present in front of the second series. It follows that near the Stokes
lines (and of course when z turns to the negative axis) the second series in (4.6.7) is
not at all negligible when we truncate the first series at the least term with index n∗.

At present we know, after Berry’s observations, that near the Stokes lines one
of the constants c± in the asymptotic representation in (4.6.2) in fact is a rapidly
changing function of z. In the case of (4.6.6) we can write

Ai(z) ∼ c− z− 1
4

[

e−ξ

∞∑

n=0

(−1)ncnξ
−n + iS(z) eξ

∞∑

n=0

cnξ
−n

]

, (4.6.9)

where S(z) switches rapidly but smoothly from 0 to 1 across the Stokes line at ph z =
2
3π . A good approximation to S(z) involves the error function, which function can
describe the fast transition in this asymptotic problem.

Many writers have contributed recently in this field, both for the Stokes phe-
nomenon of integrals and that of differential equations. For more details see the
survey paper [87].

4.7 A Selection of Other Methods

Many other methods are available for computing special functions. In this section
we mention a selection. For all these topics more details can be found in [54].

4.7.1 Continued Fractions

For many elementary and special functions representations as continued fractions
exist. We give examples for incomplete gamma functions and incomplete beta func-
tions that are useful for numerical computations.
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We introduce the following notation. Let {an}∞n=1 and {bn}∞n=0 be two sequences
of real or complex numbers. With these numbers we construct a continued fraction
of the form

b0 + a1

b1 + a2

b2 + a3

b3 + a4

b4+. . .

(4.7.1)

A more convenient notation is

b0 + a1

b1+
a2

b2+
a3

b3+
a4

b4 + · · · . (4.7.2)

For convergence aspects, contractions, even and odd parts, equivalence trans-
formations, and so on, we refer to the literature; see [54, Chap. 6] and a recent
handbook with many details for special functions [29].

To evaluate the finite part (also called the convergent)

Cn = b0 + a1

b1+
a2

b2+
a3

b3+ · · · an

bn

, (4.7.3)

we can use recursion. Let

A−1 = 1, A0 = b0, B−1 = 0, B0 = 1. (4.7.4)

We compute An and Bn by using the following recursion

An = bnAn−1 + anAn−2, Bn = bnBn−1 + anBn−2, n ≥ 1. (4.7.5)

Then Cn = An/Bn. Several other algorithms are available; see [54, Sect. 6.6]. The
recursion for An and Bn may produce large numbers of these quantities, causing
overflow. However, because only the ratio An/Bn is needed to compute the conver-
gent Cn, scaling can be used to keep control.

4.7.1.1 Incomplete Gamma Functions

The incomplete gamma functions are defined by

γ (a, z) =
∫ z

0
ta−1e−t dt, �(a, z) =

∫ ∞

z

ta−1e−t dt, (4.7.6)

where for the first form we require 	a > 0 and for the second one |ph z| < π .
We have

z−aezγ (a, z) = b0 + a1

b1+
a2

b2+
a3

b3+
a4

b4 + · · · , (4.7.7)
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where z and a are complex, a 
= 0,−1,−2, . . . , and

b0 = 1

a − z
, am = mz, bm = a + m − z, m ≥ 1. (4.7.8)

This fraction corresponds to the power series

az−aezγ (a, z) =
∞∑

k=0

zk

(1 + a)k
. (4.7.9)

For �(a, z) we have

(z + 1 − a)z−aez�(a, z) = 1

1+
α1

1+
α2

1+
α3

1 + · · · , (4.7.10)

where

αn = n(a − n)

(z + 2n − 1 − a)(z + 2n + 1 − a)
, n = 1,2,3, . . . . (4.7.11)

This form is used in [38] for computing the function �(a, x), for x > 1.5 and −∞ <

a < α∗(z), where α∗(x) ∼ x for large x. The fraction in (4.7.10) is convergent for
all z 
= 0 in the sector |ph z| < π , and for computations it is an excellent alternative
for the corresponding asymptotic expansion

z1−aez�(a, z) ∼
∞∑

k=0

(−1)k
(1 − a)k

zk
, (4.7.12)

valid for a ∈ C, z → ∞, |ph z| < 3
2π .

4.7.1.2 Incomplete Beta Function

This function is defined by

Bx(p,q) =
∫ x

0
tp−1(1 − t)q−1 dt, 	p > 0, 	q > 0, (4.7.13)

and usually 0 ≤ x ≤ 1; when x < 1 the condition on q can be omitted. The beta
integral is obtained when we take x = 1, that is,

B(p,q) =
∫ 1

0
tp−1(1 − t)q−1 dt = �(p)�(q)

�(p + q)
, 	p > 0, 	q > 0. (4.7.14)

We have the continued fraction

px−p(1 − x)−qBx(p, q) = 1

1+
d1

1+
d2

1+
d3

1 + · · · , (4.7.15)
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where, for n = 0,1,2, . . . ,

d2n+1 = − (p + n)(p + q + n)

(p + 2n)(p + 2n + 1)
x,

d2n+2 = (n + 1)(q − n − 1)

(p + 2n + 1)(p + 2n + 2)
x.

(4.7.16)

When p > 1 and q > 1, the maximum of the integrand in (4.7.13) occurs at
x0 = (p − 1)/(p + q − 2), and the best numerical results are obtained when x ≤ x0.
When x0 < x ≤ 1, we use the reflection relation with the beta integral (see (4.7.14))

Bx(p,q) = B(p,q) − B1−x(q,p). (4.7.17)

From a numerical point of view the continued fraction (4.7.15) has an interesting
property of the convergents: C4n and C4n+1 are less than this value of the continued
fraction and C4n+2, C4n+3 are greater than this value. This gives excellent control
of the convergence of an algorithm that uses (4.7.15).

4.7.2 Sequence Transformations

When applying numerical techniques to physical problems, results are usually pro-
duced in the form of sequences. Examples are iterative methods, discretization
methods, perturbation methods, and—most important in the context of special
functions—series expansions. Often, the sequences that are produced in this way
converge too slowly to be numerically useful. When dealing with asymptotic series,
summation of the sequences may also be difficult.

Sequence transformations are tools to overcome convergence problems of that
kind. A slowly convergent (or even divergent in the asymptotic sense) sequence
{sn}∞n=0, whose elements may be the partial sums

sn =
n∑

k=0

ak (4.7.18)

of a convergent or formal infinite series, is converted into a new sequence {s′
n}∞n=0

with hopefully better numerical properties.
We discuss sequence transformations that are useful in the context of special

functions. For many special functions convergent and divergent (asymptotic) power
series are available. Consequently, the emphasis in this section will be on sequence
transformations that are able either to accelerate the convergence of slowly conver-
gent power series effectively or to sum divergent asymptotic series.
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4.7.2.1 Padé Approximations

From a numerical point of view, the Padé approximants are important for computing
functions outside the disk of convergence of the power series of the function, as well
as inside the disk (for example, near the boundary of the disk). The Padé method
can also be successfully applied for locating zeros and poles of the function.

Consider the power series

f (z) = c0 + c1z + c2z
2 + · · · , (4.7.19)

with c0 
= 0. This series may be convergent or just a formal power series. We intro-
duce a rational function Nn

m(z)/Dn
m(z), where Nn

m(z) and Dn
m(z) are polynomials of

maximal degree n and m, respectively. That is,

Nn
m(z) = a0 + a1z + · · · + anz

n, Dn
m(z) = b0 + b1z + · · · + bmzm. (4.7.20)

We choose these polynomials such that the power series expansion of Nn
m(z) −

f (z)Dn
m(z) starts with a term An,mzn+m+1. The ratio Nn

m(z)/Dn
m(z), of which the

polynomials Nn
m(z) and Dn

m(z) satisfy the conditions

degree Nn
m(z) ≤ n, degree Dn

m(z) ≤ m,

Nn
m(z) − f (z)Dn

m(z) = An,mzn+m+1 + · · · ,
(4.7.21)

is called a Padé approximant of type (n,m) to the power series (4.7.19) (the func-
tion f ). The ratio Nn

m(z)/Dn
m(z) is denoted by [n/m]f .

For each pair (n,m) at least one rational function exists that satisfies the condi-
tions in (4.7.21), and this function can be found by solving the equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a0 = c0b0,

a1 = c1b0 + c0b1,
...

an = cnb0 + cn−1b1 + · · · + cn−mbm,
⎧
⎪⎨

⎪⎩

0 = cn+1b0 + · · · + cn−m+1bm,
...

0 = cn+mb0 + · · · + cnbm,

(4.7.22)

where cj = 0 if j < 0. When m = 0 the system of equations at the right is empty. In
this case aj = cj (j = 0,1, . . . , n) and b0 = 1, and the partial sums of (4.7.19) yield
the Padé approximants of type (n,0). In general, first the set at the right-hand side
of (4.7.22) is solved (a homogeneous set of m equations for the m + 1 values bj ),
which has at least one nontrivial solution. We take a normalization, for example, by
taking b0 = 1 (see also the discussion in [8, p. 18]), and with this choice the last m

equations give b1, . . . , bm as the solution of a system of m linear equations. The set
on the left-hand side in (4.7.22) then yields a0, . . . , an.
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The array of Padé approximants

[0/0]f [0/1]f [0/2]f · · ·
[1/0]f [1/1]f [1/2]f · · ·
[2/0]f [2/1]f [2/2]f · · ·

...
...

...
. . .

(4.7.23)

is called a Padé table. It is arranged here so that approximants with the same denom-
inator degree are located in the same column. As remarked earlier, the first column
corresponds to the partial sums of the power series in (4.7.19). The elements of the
first row correspond to the partial sums of the power series of 1/f .

In the literature special attention is paid to the diagonal elements [n,n]f of the
table, with applications to orthogonal polynomials, quadrature formulas, moment
problems, and other problems of classical analysis.

In applied mathematics and in theoretical physics, Padé approximants have be-
come a useful tool for overcoming convergence problems with power series. The
popularity of Padé approximants in theoretical physics is due to Baker [6], who also
wrote a monograph on Padé approximants [7]. Of interest also is the monograph by
Baker and Graves-Morris [8].

An extended bibliography on Padé approximants and related matters containing
several thousand references was published by Brezinski in [14]. For an annotated
bibliography focusing on computational aspects, see [126]. Luke gives many ratio-
nal approximations of special functions, and usually these are Padé approximants;
see [75, 76].

4.7.2.2 How to Compute the Padé Approximants

The approximants can be computed by Wynn’s cross rule. Any five Padé approxi-
mants arranged in the Padé table as

N

W C E

S

satisfy Wynn’s cross rule (see [128])

(N − C)−1 + (S − C)−1 = (W − C)−1 + (E − C)−1. (4.7.24)

Starting with the first column [n/0]f , n = 0,1,2, . . . , initializing the preceding col-
umn by [n/ − 1]f = ∞, n = 1,2, . . . , (4.7.24) enables us to compute the lower
triangular part of the table. Likewise, the upper triangular part follows from the first
row [0/n]f , n = 0,1,2, . . . , by initializing [−1/n]f = 0, n = 1,2, . . . .
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The elements of the Padé table can also be computed by the epsilon algorithm of
Wynn [127]. We consider the recursions

ε
(n)
−1 = 0, ε

(n)
0 = sn, n = 0,1,2, . . . ,

ε
(n)
m+1 = ε

(n+1)
m−1 + 1

ε
(n+1)
m − ε

(n)
m

, n,m = 0,1,2, . . . .
(4.7.25)

If sn is the nth partial sum of a power series f , then ε
(n)
2k is the Padé approximant

[n + k/k]f (cf. (4.7.23)). The elements ε
(n)
2k+1 are only auxiliary quantities which

diverge if the whole transformation process converges and shouldn’t be used for
convergence tests or output. A recent review of the applications of the epsilon algo-
rithm can be found in [63].

In applications one usually concentrates on obtaining diagonal elements [n/n]f
and elements not far away from the diagonal; see [121], which also has an efficient
modified algorithm for these elements.

4.7.2.3 Nonlinear Sequence Transformations

We discuss a few other sequence transformations that, in the case of power series,
produce different rational approximants, and they can also be applied to other con-
vergence acceleration problems.

Details on the history of sequence transformations and related topics, starting
from the 17th century, can be found in [15]; see also [16]. For review papers, with
many references to monographs devoted to this topic, we refer the reader to [65,
121]. See also Appendix A in [12], written by Dirk Laurie, with interesting obser-
vations and opinions about sequence transformations.

First we mention Levin’s sequence transformation [71], which is defined by

L(n)
k (sn,ωn) =

∑k
j=0(−1)j

(
k
j

) (n+j+1)k−1

(ζ+n+k)k−1
sn+j

ωn+j

∑k
j=0(−1)j

(
k
j

) n+j+1)k−1

(ζ+n+k)k−1
1

ωn+j

, (4.7.26)

where sn are the partial sums of (4.7.18) and the quantities ωn are remainder esti-
mates. For example, we can simply take ζ = 1 and

ωn = sn+1 − sn = an+1, (4.7.27)

but more explicit remainder estimates can be used.
Another transformation is due to Weniger [121], who replaced the powers (n +

j + 1)k−1 in Levin’s transformation by Pochhammer symbols (n + j + 1)k−1. That
is, Weniger’s transformation reads

S (n)
k (sn,ωn) =

∑k
j=0(−1)j

(
k
j

) (ζ+n+j)k−1
(ζ+n+k)k−1

sn+j

ωn+j

∑k
j=0(−1)j

(
k
j

) (ζ+n+j)k−1
(ζ+n+k)k−1

1
ωn+j

. (4.7.28)
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Other sequence transformations can be found in [121] or in [17, Sect. 2.7]. The
sequence transformations (4.7.26) and (4.7.28) differ from other sequence transfor-
mations because not only the elements of a sequence {sn} are required, but also
explicit remainder estimates {ωn}. For special functions this information is usually
available when divergent asymptotic expansions are considered. It was shown in
several articles that the transformation (4.7.28) is apparently very effective, in par-
ticular if divergent asymptotic series are to be summed; see [10, 123, 125].

For transforming partial sums fn(z) = ∑n
k=0 γkz

k of a formal power series

f (z) =
∞∑

k=0

γkz
k, (4.7.29)

we can take the remainder estimates

ωn = γn+1z
n+1, (4.7.30)

and we replace z by 1/z in the case of an asymptotic series.
With these modifications the transformations (4.7.26) and (4.7.28) become ra-

tional functions of the variable z. If the coefficients γn in (4.7.29) are all different
from zero, these rational functions satisfy the asymptotic error estimates [124, Eqs.
(4.28)–(4.29)]

f (z) − L(n)
k (fn(z), γn+1z

n+1) = O(zk+n+2), z → 0,

f (z) − S (n)
k (fn(z), γn+1z

n+1) = O(zk+n+2), z → 0.

(4.7.31)

These estimates imply that all terms of the formal power series, which were used for
construction of the rational approximants in this way, are reproduced exactly by a
Taylor expansion around z = 0. Thus, the transformations L(n)

k (fn(z), γn+1z
n+1)

and S (n)
k (fn(z), γn+1z

n+1) are formally very similar to the analogous estimate
(4.7.21) satisfied by the Padé approximants [n/m]f (z) = Nn

m(z)/Dn
m(z).

4.7.2.4 Numerical Examples

Simple test problems, which nevertheless demonstrate convincingly the power of
sequence transformations using explicit remainder estimates, are the integrals

E(ν)(z) =
∫ ∞

0

e−t dt

1 + ztν
(4.7.32)

and their associated divergent asymptotic expansions

E(ν)(z) ∼
∞∑

k=0

(νk)!(−z)k, z → 0. (4.7.33)
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For ν = 1, E(ν)(z) is the exponential integral E1 with argument 1/z according to
E(1)(z) = e1/zE1(1/z)/z. For ν = 2 or ν = 3, E(ν)(z) cannot be expressed in terms
of known special functions.

In order to demonstrate the use of sequence transformations with explicit remain-
der estimates, both S (n)

k (fn(z), γn+1z
n+1) and Padé approximants are applied to the

partial sums

E(ν)
n (z) =

n∑

k=0

(νk)!(−z)k, 0 ≤ n ≤ 50, (4.7.34)

of the asymptotic series (4.7.33) for ν = 1,2,3. The Padé approximants were com-
puted with the help of Wynn’s epsilon algorithm (see Sect. 4.7.2.2). All calculations
were done in Maple, and the integrals E(ν)(z) were computed to the desired pre-
cision with the help of numerical quadrature. For the remainder estimates we took
ωn = (ν(n + 1))!(−z)n+1.

The results for E(1)(z) with z = 1 are

E(1)(1) = 0.59634 73623 23194 07434 10785,

L(50)
0 (E

(1)
0 (1),ω50) = 0.59634 73623 23194 07434 10759,

S (50)
0 (E

(1)
0 (1),ω50) = 0.59634 73623 23194 07434 10785,

[25/24] = 0.59634 7322,

[25/25] = 0.59634 7387.

(4.7.35)

The Padé approximants are not very efficient. Nevertheless, it seems that they are
able to sum the divergent series (4.7.33) for ν = 1.

The results for E(2)(z) with z = 1/10 are

E(2)(1/10) = 0.88425 13061 26979,

L(50)
0 (E

(2)
0 (1/10),ω50) = 0.88425 13061 26980,

S (50)
0 (E

(2)
0 (1/10),ω50) = 0.88425 13061 26985,

[25/24] = 0.88409,

[25/25] = 0.88437.

(4.7.36)

Here, the Padé approximants are certainly not very useful since they can only extract
an accuracy of three places.



4 Basic Methods for Computing Special Functions 103

The results for E(3)(z) with z = 1/100 are

E(3)(1/100) = 0.96206 71061,

S (50)
0 (E

(3)
0 (1/100),ω50) = 0.96206 71055,

L(50)
0 (E

(3)
0 (1/100),ω50) = 0.96206 71057,

[25/24] = 0.960,

[25/25] = 0.964.

(4.7.37)

In [62] it is shown that an asymptotic series, whose coefficients grow more
rapidly than (2n)!, is not Padé summable since subsequences [n + j/n] in the Padé
table converge to different, j -dependent limits as n → ∞. The Levin and Weniger
transformations are apparently able to sum the asymptotic series (4.7.33) even for
ν = 3.

Other numerical examples of sequence transformations using explicit remainder
estimates can be found in [10, 122, 123]. For a recent paper on transformations of
hypergeometric series, see [22].

4.7.3 Other Quadrature Methods

In Sect. 4.5 we have described the use of the trapezoidal rule in the evaluation of
special functions. In [54, Sects. 5.3, 9.6] several other methods are discussed, with
as the main one Gaussian quadrature, and the relation with orthogonal polynomials.

Other methods are Romberg quadrature, which provides a scheme for computing
successively refined rules with a higher degree of exactness. Fejér and Clenshaw–
Curtis quadratures are interpolatory rules which behave quite similarly to Gauss–
Legendre rules, but which are easier to compute and provide nested rules. Other
nested rules, related to Gauss quadrature but harder to compute than the Clenshaw–
Curtis rule, are Kronrod and Patterson quadratures. Specific methods for oscillatory
integrands are also described, with special attention to Filon’s method.

4.7.4 Numerical Inversion of Laplace Transforms

We consider the pair of Laplace transforms

F(s) =
∫ ∞

0
e−stf (t) dt, f (t) = 1

2πi

∫ c+i∞

c−i∞
estF (s) ds, (4.7.38)

where f should be absolutely integrable on any finite interval [0, a] and the number
c is chosen such that all singularities of F(s) are at the left of the vertical line
	s = c.
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The inversion problem is to find f (t) when F(s) is given. To solve this prob-
lem numerically, an essential condition is whether function values of F(s) are only
available for real s or for complex values of s. The first case is quite difficult and
requires completely different techniques compared with those for the second case.
In this section we consider a method for the case that F(s) is available as an ana-
lytic function in part of the complex s-plane. We describe a method based on the
deformation of the contour of integration.

We give an example in which an optimal representation of the integral is obtained
by deforming the contour of integration and by using a proper value of c in the
complex integral in (4.7.38). After selecting this new contour, the trapezoidal rule
can be used for numerical quadrature. As explained in Sect. 4.5 this method may be
very efficient for evaluating a class of integrals with analytic integrands.

We use the Laplace transform pair (see [1, Eq. (29.3.83)])

F(s) = 1

s
e−k

√
s =

∫ ∞

0
e−sterfc

k

2
√

t
dt,

erfc
k

2
√

t
= 1

2πi

∫ c+i∞

c−i∞
est−k

√
s ds

s
, (4.7.39)

where in this case c > 0. We take k = 2λ and t = 1, which gives

erfcλ = 1

2πi

∫ c+i∞

c−i∞
es−2λ

√
s ds

s
, (4.7.40)

and we assume that λ > 0. When λ is large the integral becomes exponentially small,
and straightforward application of a quadrature rule is useless.

With the transformation s = λ2t , (4.7.40) becomes

erfcλ = 1

2πi

∫ c+i∞

c−i∞
eλ2(t−2

√
t) dt

t
. (4.7.41)

When we take c = 1 the path runs through the saddle point at t = 1, where the
exponential function of the integrand has the value e−λ2

, which corresponds to the
main term in the asymptotic estimate

erfcλ ∼ e−λ2

√
πλ

, λ → ∞. (4.7.42)

Because the convergence at ±i∞ along the vertical through t = 1 is rather poor,
the next step is to deform the contour into a new contour that terminates in the left
half-plane, with 	t → −∞.

In fact many contours are suitable, but there is only one contour through t = 1
on which no oscillations occur. That contour, the steepest descent path, is given by
�(t −2

√
t) = 0, or in polar coordinates t = reiθ we have r = sec2( 1

2θ). See Fig. 4.2.
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Fig. 4.2 The new contour of
integration for (4.7.41) has
the shape of a parabola

Table 4.4 Composite
trapezoidal rule for the
integral in (4.7.43) with
λ = 10

h erfcλ n

0.25 0.20949 49432 96679 10
−44 5

0.20 0.20886 11645 34559 10
−44 6

0.15 0.20884 87588 72946 10
−44 8

0.10 0.20884 87583 76254 10
−44 11

This gives, by integrating with respect to θ ∈ [−π,π],

erfcλ = e−λ2

2π

∫ π

−π

e−λ2 tan2( 1
2 θ) dθ. (4.7.43)

As discussed in Sect. 4.5.1 the trapezoidal rule is exceptionally accurate in this case.
Table 4.4 gives the results of applying the composite trapezoidal rule with step

size h; n indicates the number of function values in the rule that are larger than 10−15

(we exploit the fact that the integrand is even). All digits shown in the approximation
in the final row are correct.

When F(s) in (4.7.38) has singularities or poles, a straightforward and optimal
choice of the path of integration, as in the above example, might not be easy to find.
In these cases, or when less information is available on the function F(s), a less
optimal contour may be chosen.

For example, we can take a parabola or a hyperbola that terminates in the left
half-plane at −∞. When we write s = u + iv, and consider the parabola defined by
u = p − qv2, and integrate with respect to v. When we choose p and q properly
all singularities of F(s) may remain inside the contour (unless F(s) has an infinite
number of singularities up to ±i∞).

Further details can be found in [84, 91, 107]. Recent investigations are discussed
in [92, 114, 119, 120].
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4.7.5 Computing Zeros of Special Functions

The zeros of special functions appear in a great number of applications in mathe-
matics, physics, and engineering, from the computation of Gauss quadrature rules
[60] in the case of orthogonal polynomials to many applications in which boundary
value problems for second order ordinary differential equations arise.

In some sense, the computation of the zeros of special functions has nothing spe-
cial: to compute the roots of an equation y(x) = 0, with y(x) special or not, we can
apply well-known methods (bisection, secant, Newton–Raphson, or whatever) once
we know how to compute the function y(x) (and in the case of Newton–Raphson
also its derivative) accurately enough.

However, as is generally the case with nonlinear equations, some information on
the location of the zeros is desirable, particularly when applying rapidly convergent
(but often unpredictable) methods like Newton–Raphson or higher order methods.

The zeros of special functions usually appear nicely arranged, forming clear pat-
terns from which a priori information can be found. For instance, the zeros of Ja-
cobi polynomials P

(α,β)
n (x) are all real and in the interval (−1,1) for α > −1 and

β > −1, and they satisfy other regularity properties (such as, for instance, interlac-
ing with the zeros of the derivative and with the zeros of contiguous orders). As α

and/or β become smaller than −1, some or all of the n zeros escape from the real
axis, forming a regular pattern in the complex plane (see Fig. 4.3).

These regular patterns formed by the zeros is a common feature of “classical”
special functions and beyond [23]. The regularity in the distribution of zeros helps
in the design of specific algorithms with good convergence properties. In addition,
for many special functions, accurate a priori approximations are available. This a
priori information, when wisely applied, will save computation time and avoid di-
vergent (or even chaotic) algorithms. In a fortunate situation, as in the case of Bessel
functions, asymptotic approximations provide accurate enough starting values for
higher order Newton–Raphson methods; see [110].

In [54, Chap. 7], a variety of methods for computing zeros of special functions
is discussed, starting with bisection and the fixed point method, including Newton-
Raphson. In general, for computing zeros of special functions it is a wise idea to use
some of their properties and to design specific methods.

Next to methods that take advantage of information about asymptotic approx-
imations for the zeros of special functions, there are methods for which it is not
necessary to compute values of these functions themselves in order to obtain their
zeros. This is the case for the classical orthogonal polynomials, the zeros of which
are the exact eigenvalues of real tridiagonal symmetric matrices with very simple
entries; this method is usually named the Golub-Welsch algorithm [60]. The recur-
rence relation of the special functions plays a crucial role because the matrix is built
from the coefficients of the recursion. Also, there are other functions, minimal solu-
tions of three-term recurrence relations (the Bessel function Jν(x) is among them)
for which the problem of computing zeros is not exactly an eigenvalue problem for
a (finite) matrix, but it can be approximated by it [61, 67].
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Fig. 4.3 Zeros of the Jacobi
polynomials P

(2,−42.5)
50 (x)

(left), P
(2,−52)
50 (x) (center),

and P
(2,−63.5)
50 (x) (right) in

the complex plane
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Another type of methods, which are global in the sense that, similarly as matrix
methods, don’t require a priori estimations of the zeros for ensuring convergence,
are the fixed point methods of [45, 100]; these methods use first order differential
systems, which are satisfied by a large number of special functions (hypergeometric
functions among them). More recently, a fixed point method of fourth order was ob-
tained in [99], which can be used to compute the zeros of any solution of any second
order equation y′′(x) + A(x)y(x) = 0 in an interval where A(x) is continuous. It is
shown that, when A(x) > 0, the fixed point iteration

T (x) = x − 1
√

A(x)
arctan

(√
A(x)y(x)/y′(x)

)
(4.7.44)

has order four and the sequence xn+1 = T (xn) converges for any x0 under mild
conditions on A(x). A scheme is given which guarantees convergence for any con-
tinuous A(x) and allows for computing all the zeros in an interval. Typically 3 or 4
iterations per zero are required for 100 digits accuracy.

Additional methods and details on obtaining information on the zeros by using
asymptotic expansions of the special functions, with examples such as Airy func-
tions, Scorer functions, error functions, parabolic cylinder functions, Bessel func-
tions, and Laguerre polynomials L

(α)
n (x) with large values of α are given in [54,

Chap. 7].

4.7.6 Uniform Asymptotic Expansions

The asymptotic expansions considered in Sect. 4.2.1 are simple in the sense that
they hold for large values of one variable, in fact the argument of the special func-
tion. There are many powerful expansions available that hold also for other large
parameters.

For example, the expansion for the incomplete gamma function in (4.7.12) holds
when z is large, but it becomes useless when a is also large. Also, the expansion in
(4.7.9) converges for all a and z with trivial exceptions: a 
= 0,−1,−2, . . . . But for
computations it becomes useless when z is much larger than a.

There is a nice alternate asymptotic representations for these functions which
can be used when a and/or z are large, and which in particular holds when a ∼ z,
a transition point in the behavior for large a and z. In this representation the com-
plementary error function

erfc z = 2√
π

∫ ∞

z

e−t2
dt (4.7.45)

plays the role of the transition form very small to very large values, or for the scaled
functions

P(a, z) = γ (a, z)

�(a)
, Q(a, z) = �(a, z)

�(a)
(4.7.46)

from values close to 0 to values close to 1.
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We have the following representations:

Q(a, z) = 1

2
erfc(η

√
a/2) + Ra(η),

P (a, z) = 1

2
erfc(−η

√
a/2) − Ra(η),

(4.7.47)

where
1

2
η2 = λ − 1 − lnλ, λ = z

a
, (4.7.48)

and

Ra(η) = e− 1
2 aη2

√
2πa

Sa(η), Sa(η) ∼
∞∑

n=0

Cn(η)

an
, (4.7.49)

as a → ∞.
The relation between η and λ in (4.7.48) becomes clear when we expand

λ − 1 − lnλ = 1

2
(λ − 1)2 − 1

3
(λ − 1)3 + 1

4
(λ − 1)4 + · · · , (4.7.50)

and in fact the relation in (4.7.48) can also be written as

η = (λ − 1)

√
2(λ − 1 − lnλ)

(λ − 1)2
, (4.7.51)

where the sign of the square root is positive for λ > 0. For complex values we use
analytic continuation. An expansion for small values of |λ − 1| reads

η = (λ − 1) − 1

3
(λ − 1)2 + 7

36
(λ − 1)3 + · · · , (4.7.52)

and, upon inverting this expansion,

λ = 1 + η + 1

3
η2 + 1

36
η3 + · · · . (4.7.53)

The asymptotic expansion for Sa(η) in (4.7.49) holds uniformly with re-
spect to z ≥ 0. Both a and z may be complex. Note that the symmetry rela-
tion P(a, z) + Q(a, z) = 1 is preserved in the representations in (4.7.47) because
erfc z + erfc(−z) = 2.

The first coefficients for Sa(η) are

C0 = 1

λ − 1
− 1

η
, C1(η) = 1

η3
− 1

(λ − 1)3
− 1

(λ − 1)2
− 1

12(λ − 1)
. (4.7.54)

These coefficients, and all higher ones, are regular at the transition point a = z,
or λ = 1, or η = 0. For numerical applications Taylor expansions can be used, as
explained in [54, Sect. 8.3].
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For Bessel functions we have a similar problem in the design of efficient algo-
rithms. All Bessel functions can be expanded in terms of Airy functions, and these
expansions are in particular useful in the neighborhood of the turning point z = ν.
For example, the Bessel function Jν(z) is oscillatory for z > ν and monotonic for
z < ν. Airy functions have a similar turning point behavior, as follows from their
differential equation w′′ − zw = 0.

The coefficients in the asymptotic series are regular at the turning point z = ν,
but for numerical evaluations we need expansions of the used coefficients in the
neighborhood of the turning point. For more details we refer to [54, Sect. 8.4] and
[112].

Airy-type expansions are used in software for Bessel functions in [5, 51, 70], and
for parabolic cylinder functions in [56, 57, 95].

4.7.7 Taylor Expansion Methods for Ordinary Differential
Equations

The special functions of mathematical physics usually arise as special solutions of
ordinary linear differential equations, which follow from certain forms of the wave
equation. Separation of the variables and the use of domains such as spheres, cir-
cles, cylinders, and so on, are the standard ways of introducing Bessel functions,
Legendre functions, and confluent hypergeometric functions (also called Whittaker
functions). For an introduction to this topic, see [111, Chap. 10].

In numerical mathematics, computing solutions of ordinary linear differential
equations is a vast research area, with popular methods such as, for example, Runge–
Kutta methods. These techniques are usually not used for computing special func-
tions, mainly because so many other efficient methods are available for these func-
tions. However, when the differential equation has coefficients in terms of analytic
functions, as is the case for the equations of special functions, a method based on
Taylor expansions may be considered as an alternative method, in particular for
solving the equation in the complex plane.

In [54, Sect. 9.5] the basic steps are given for the Taylor expansion method, in
particular for linear second order equations of the form

d2w

dz2
+ f (z)

dw

dz
+ g(z)w = h(z), (4.7.55)

where f , g, and h are analytic functions in a domain D ⊆ C. For applications to
special functions f , g, and h are often simple rational functions, and usually the
equation is homogeneous.

For further information and examples, see [86] and [73]. For an application to
compute solutions in the complex plane of the Airy differential equation, see [35]
with a Fortran computer program in [34]. In [56] Taylor methods are used for com-
puting the parabolic cylinder function W(a,x).
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4.7.8 Computing Symmetric Elliptic Integrals

Legendre’s standard elliptic integrals are the incomplete elliptic integral of the first
kind,

K(k) =
∫ φ

0

dθ
√

1 − k2 sin2 θ
, (4.7.56)

the incomplete integral of the second kind,

E(k) =
∫ φ

0

√
1 − k2 sin2 θ dθ, (4.7.57)

and the incomplete elliptic integral of the third kind,

�(n;φ, k) =
∫ φ

0

1

1 − n sin2 θ

dθ
√

1 − k2 sin2 θ
. (4.7.58)

It is assumed here that k ∈ [0,1], φ ∈ [0, 1
2π], although the functions can also be

defined for complex values of the parameters. Also, n is real, and if n > 1, the
integral of the third kind should be interpreted as a Cauchy principal value integral.
When φ = 1

2π the integrals are called complete elliptic integrals.
The computational problem for the elliptic integrals has received much attention

in the literature, and the algorithms are usually based on successive Landen trans-
formations or Gauss transformations, or by infinite series.

By considering a new set of integrals it is possible to compute the elliptic inte-
grals, also by using successive transformations, by very efficient algorithms. The
integrals are introduced in [18]. For example we have

RF (x, y, z) = 1

2

∫ ∞

0

dt√
(t + x)(t + y)(t + z)

. (4.7.59)

This function is symmetric and homogeneous of degree − 1
2 in x, y, z and is nor-

malized so that RF (x, x, x) = x− 1
2 .

Many elementary functions can be expressed in terms of these integrals. For
example,

RF (x, y, y) = 1

2

∫ ∞

0

dt√
(t + x) (t + y)

, (4.7.60)

which is a logarithm if 0 < y < x and an inverse circular function if 0 ≤ x < y.
The three standard elliptic integrals in (4.7.56)–(4.7.58) can be written in terms

of symmetric integrals. For example, we have

F(φ, k) = sinφRF

(
cos2 φ,1 − k2 sin2 φ,1

)
. (4.7.61)

For further details we refer to [54, Sect. 11.4] and to the work of B.C. Carlson,
who wrote very efficient algorithms for the computation of Legendre’s standard
elliptic integrals, also for complex parameters [19–21].
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Other methods [82], based on series expansions [31], can be also considered and
may be faster for some parameter values.

4.7.9 Best Rational Approximations

In the theory of best rational approximation (which includes the best polynomial of
approximation) the goal is to find a rational function that approximates a function
f on a finite real interval as best as possible. The rational approximations can be
written in the form

Nn
m(x)

Dn
m(x)

= a0 + a1x + · · · + anx
n

b0 + b1x + · · · + bmxm
. (4.7.62)

The characterization of the best approximation to a function f may be given in
terms of oscillations of the error curve. Let R = N/D be an irreducible rational
function of the form (4.7.62). A necessary and sufficient condition that R be the
best approximation to f is that the error function R(x) − f (x) exhibits at least
2 + max{m + ∂N,n + ∂D} points of alternation. (Here ∂P denotes the degree of
the polynomial P .) For the proof see [79].

For the elementary and well-known higher transcendental functions the polyno-
mials in the best rational approximations are not explicitly known, and the coeffi-
cients of these polynomials should be computed by an algorithm. This algorithm
is not as simple as the one for computing coefficients in Chebyshev series (see
Sect. 4.4) or Padé approximants (which can be based on solving a set of linear
equations). For best approximation the second algorithm of Remes can be used [90,
p. 176], and for a Fortran program see [69].

For many elementary and special functions best rational approximations have
been computed. See [64] for many tables (and an explanation of the Remes algo-
rithm). For several other special functions we refer to the survey [27]. Computer
algebra packages, such as Maple, also have programs for computing best rational
approximants.

For flexible algorithms for special functions we prefer the method based on
Chebyshev polynomials. Chebyshev series (4.4.1) usually converge rapidly (for ex-
ample, for functions in C∞ on [−1,1]), we obtain a very good first approximation
to the polynomial pn(x) of best approximation for [−1,1] if we truncate (4.4.1) at
its (n + 1)th term. This is because

f (x) −
n∑

k=0

′ckTk(x)
.= cn+1Tn+1(x), (4.7.63)

and the right-hand side enjoys exactly those properties concerning its maxima and
minima that are required for the polynomial of best approximation. In practice the
gain in replacing a truncated Chebyshev series expansion by the corresponding min-
imax polynomial approximation is hardly worthwhile; see [88].
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Inspection of the size of the coefficients ck gives a good idea about the applica-
bility for a certain choice of n, and for a new choice of n the computations are easy
to modify. In best approximations for each choice of n (or of n and m in rational
approximations), new coefficients have to be computed by using a complicated al-
gorithm. In addition, representations of the polynomials in best approximations may
be quite unstable.

4.8 Recent Software and Publications on Methods for
Computing Special Functions

4.8.1 A Selection of Recent Software for Special Functions

Software packages such as Mathematica, Maple, and Matlab have many excellent
algorithms in multi-length arithmetic. For large scale and high performance com-
puting these packages are not the optimal platforms. Also, there are many published
books with software for special functions, some with supplied sources of the algo-
rithms. We mention [9, 83, 89, 113, 117, 129]. Many software collections of special
functions are available on the web, for instance the Cephes math library5 and in
more general repositories6,7.

For an extensive survey of the available software for special functions we refer to
[74]. The latest update of this project appeared in December 2000. In this section we
give a selection of software for special functions published in the period 2000–2009
(disclaimer: we provide references, but we don’t claim that all the software listed is
equally reliable).

Books describing published software

1. Cuyt et al. [29], a Handbook describing numerical methods for evaluating spe-
cial functions by using continued fractions. Many tables are given based on
Maple programs published elsewhere by the group. All kinds of functions are
considered: from gamma to Gauss, confluent, generalized and basic hypergeo-
metric functions.

2. Gautschi [40] describes routines for generating recursion coefficients of orthog-
onal polynomials as well as routines dealing with applications.

3. Gil et al. [54] describes software for Airy and Scorer functions, associated Leg-
endre functions of integer and half-integer degrees (including toroidal harmon-
ics), Bessel functions (including modified Bessel functions with purely imagi-
nary orders), parabolic cylinder functions, and a module for computing zeros of
Bessel functions.

5http://www.moshier.net.
6http://www.netlib.org/.
7http://gams.nist.gov/Classes.html.

http://www.moshier.net
http://www.netlib.org/
http://gams.nist.gov/Classes.html
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Gamma, error, Fadeeva, Voigt and related functions

1. Smith [105]: Fortran 90 software for floating-point multiple precision arith-
metic, gamma and related functions.

2. Linhart et al. [72]: the logarithm of the normal distribution.
3. Shippony and Read [104]: Voigt function (a special case of the plasma disper-

sion function or the complex error function).

Bessel functions

1. Kodama [70]: all kinds of cylindrical functions of complex order and nonnega-
tive argument.

2. Gil et al. [52]: modified Bessel functions Iia(x) and Kia(x) for real a and pos-
itive x.

3. Van Deun and Cools [115]: infinite range integrals of an arbitrary product of
Bessel functions.

4. Talman [108]: spherical Bessel transforms.

Airy and related functions

1. Gil et al. [48, 49]: complex Airy and Scorer functions.
2. Fabijonas [34]: complex Airy functions.

Parabolic cylinder functions

1. Gil et al. [57]: functions U(a,x) and V (a, x) for real a and x.

Coulomb wave functions

1. Michel [80]: functions F�(η,ρ) and G�(η,ρ) for complex parameters
2. Seaton [97]: functions F�(η,ρ) and G�(η,ρ).
3. Seaton [98]: Numerov integrations of Coulomb functions.
4. Noble [85]: negative energy Coulomb (Whittaker) functions.

Legendre functions

1. Gil and Segura [43, 44]: toroidal harmonics.
2. Inghoff et al. [68]: Maple procedures for the coupling of angular momenta.

Hypergeometric functions

1. Michel and Stoitsov [81]: Gauss hypergeometric function with all its parameters
complex.

2. Colavecchia and Gasaneo [28]: Appell’s F1 function.
3. Huber and Maître [66]: expanding hypergeometric functions about half-integer

parameters.

Mathieu functions

1. Alhargan [3, 4]: Mathieu functions and characteristic numbers.
2. Erricolo [33]: expansion coefficients of Mathieu functions using Blanch’s algo-

rithm.
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4.8.2 Recent Literature on the Computation of Special Functions

From our website8 a list will be soon available with recent literature from the last
ten years (2000–2009). The list can be viewed as an addition to the bibliography
of Lozier and Olver [74], and contains references to software and papers describing
methods for computing special functions. Some of the references are mentioned in
earlier sections. The following topics can be found in the list.

1. General aspects in books and papers: continued fractions, recurrence relations,
Hadamard-type expansions, infinite products.

2. Gamma function, Barnes multiple gamma function, incomplete gamma func-
tions, beta distribution, error functions, exponential integrals.

3. Bessel functions, integrals of Bessel functions, series of K-Bessel function.
4. Airy functions, Airy-type integrals: oscillatory cuspoid integrals with odd and

even polynomial phase functions, Pearcy integral.
5. Hypergeometric functions: Gauss, confluent, Coulomb, Weber parabolic, Ap-

pell.
6. Legendre functions: toroidal, conical, spherical harmonics.
7. Orthogonal polynomials, Gauss quadrature.
8. q-functions.
9. Mathieu functions.

10. Spheroidal wave functions.
11. Polylogarithms.
12. Mittag-Leffler function, Wright function.
13. Elliptic integrals, elliptic functions.
14. Riemann zeta function, Riemann theta function.
15. Bose–Einstein, Fermi–Dirac integrals.
16. Hubbell rectangular source integrals, Lambert’s W -function, leaky aquifer

function.
17. Multicenter integrals, Slater orbitals, other integrals from physics.
18. Zeros of special functions.
19. Multiprecision implementation of elementary and special functions.
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Chapter 5
Melt Spinning: Optimal Control and Stability
Issues

Thomas Götz and Shyam S.N. Perera

Abstract A mathematical model describing the melt spinning process of polymer
fibers is considered. Newtonian and non-Newtonian models are used to describe
the rheology of the polymeric material. Two key questions related to the industrial
application of melt spinning are considered: the optimization and the stability of the
process. Concerning the optimization question, the extrusion velocity of the polymer
at the spinneret as well as the velocity and temperature of the quench air serve as
control variables. A constrained optimization problem is derived and the first-order
optimality system is set up to obtain the adjoint equations. Numerical solutions are
carried out using a steepest descent algorithm. Concerning the stability with respect
to variations of the velocity and temperature of the quench air, a linear stability
analysis is carried out. The critical draw ratio, indicating the onset of instabilities, is
computed numerically solving the eigenvalue problem for the linearized equations.
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5.1 Introduction

Many kinds of synthetic textile fibers, like Nylon, Polyester, etc. are manufactured
by a so-called melt spinning process. In this process, the molten polymer is extruded
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Fig. 5.1 Sketch of the melt
spinning process

through a die, called the spinneret, to create a slender, cylindrical jet of viscous
polymer, the fiber. Far away from the spinneret, the fiber is wrapped around a drum,
which pulls it away at a pre-determined take-up speed, see Fig. 5.1. The take-up
speed is much higher than the extrusion speed; in industrial processes the take-up
speed is about 50 m/s and the extrusion speed is about 10 m/s, see [2, 10]. The
ratio between the take-up speed vL and the extrusion speed v0 is called draw-ratio
d = vL/v0 > 1. Hence the filament is stretched considerably in length and therefore
it decreases in diameter. The ambient atmosphere temperature is below the polymer
solidification temperature such that the polymer is cooled and solidifies before the
take-up. In industrial processes a whole bundle of hundreds of single filaments is
extruded and spun in parallel, however for the analysis we consider a single filament.

The dynamics of melt spinning processes has been studied by many research
groups throughout the world during the last decades starting with early works of
Kase and Matsuo [8] and Ziabicki [18]. In later works more and more sophisti-
cated descriptions including crystallization kinetics and viscoelastic behavior were
developed by several authors in order to achieve a better understanding of the fiber
formation process. Up to now it is possible to use the basic models with more or
less modifications in different technological aspects of the melt spinning process.
The outcome of the melt spinning process depends significantly on the boundary
conditions, e.g. the draw ratio, the ambient temperature, the quench air velocity and
temperature. The questions of optimizing the fiber production or investigating the
stability of the melt spinning process with respect to these external variables has not
yet been treated in the literature.
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The aim of this paper is twofold. First, we want to optimize the melt spinning
process with respect to the final temperature, the quench air velocity and temper-
ature. To model the fiber spinning process, we consider both a Newtonian model
for the viscosity and a non-Newtonian model, where the viscosity is temperature-
dependent. We formulate the optimal control problem as a constrained minimiza-
tion problem, see [6], and derive formally the corresponding first-order optimality
system via the Lagrange functional. For the numerical computation of the optimal
control variables we present a steepest descent algorithm using the adjoint variables.

Second, we want to investigate the stability of the process. The onset of the so-
called draw resonance instability occurring in the melt spinning process as well as
related processes like fiber spinning, film casting and tubular film blowing, have
been investigated by many research groups theoretically as well as experimentally
during the last four decades, see [3–5]. The draw resonance phenomenon was first
experimentally observed and named as such in the early 1960s. Draw resonance is
of importance, both theoretically as well as practically, since it is closely related to
the quality of the final product. Its theoretical analysis involves a fundamental un-
derstanding of the nonlinear dynamics of the fiber formation process. Earlier stud-
ies [3–5, 11] aimed to understand the physics behind draw resonance. In this paper,
we try to analyse the stability of the melt spinning process with respect to the quench
air velocity and temperature. The stability analysis of the melt spinning process is
based on a linear approach.

The paper is organized as follows. In Sect. 5.2, we shortly derived the underlying
stationary model. In Sect. 5.3 we introduce the constrained optimization problem
and derive the according first-order optimality system. A steepest descent algorithm
is proposed to solve the optimization problem numerically. Numerical results of the
optimization are shown in Sect. 5.4. Section 5.5 deals with the linear stability anal-
ysis for the isothermal Newtonian and the temperature-dependent non-Newtonian
case. The numerical results are presented in Sect. 5.6 and concluding remarks can
be found in Sect. 5.7.

5.2 Governing Equations for Melt Spinning

5.2.1 Melt Spinning Model

Considering the conservation laws for mass, momentum and energy of a viscous
polymer jet, one can obtain by averaging over the cross-section of the slender fiber,
the following set of equations, see [10–12]:

∂A

∂t
+ ∂

∂z
(Av) = 0, (5.2.1a)

ρA

(
∂v

∂t
+ v

∂v

∂z

)

= ∂

∂z
(Aτ) − √

πACd ρair v
2 + ρ Ag, (5.2.1b)
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ρCp

(
∂T

∂t
+ v

∂T

∂z

)

= −2α
√

π√
A

(T − T∞). (5.2.1c)

In the mass balance (5.2.1a), z denotes the coordinate along the spinline, t is the
time, A denotes the cross-sectional area of the fiber and v is the velocity of the fiber
along the spinline. The density ρ of the polymer is assumed to be constant. In the
momentum balance (5.2.1b), the axial stress τ is related via the constitutive equation

τ = 3η
dv

dz

to the viscosity η [1]. By g we denote the gravitational acceleration and Cd is the air
drag coefficient. In the energy equation (5.2.1c), T and Cp denote the temperature
and the heat capacity of the polymer, T∞ is the temperature of the quench air and α

denotes the heat transfer coefficient between the fiber and the quench air.
According to [10], we assume the following relations for the air drag and the heat

transfer coefficient

Cd = 0.37 Re−0.61
air

and

α = 0.21√
A0

κ Re
1
3
air

[

1 + 64v2
c

v2

] 1
6

depending on the Reynolds-number of the quench air flow

Reair = 2vρair

ηair

√
A

π
.

Here A0 = πR2
0 denotes the cross-sectional area of the spinneret, ρair, ηair and κ

represent the density, viscosity and heat conductivity of the air and vc is the velocity
of the quench air.

In the Newtonian model, the viscosity η = η0 of the polymer is constant, whereas
in the non-Newtonian case, we consider an Arrhenius-type temperature depen-
dence [10]

η = η0 exp

[
Ea

RG

(
1

T
− 1

T0

)]

,

where η0 > 0 is the zero shear viscosity at the initial temperature T0, Ea denotes the
activation energy and RG equals to the gas constant.

The system (5.2.1a)–(5.2.1c) is subject to the boundary conditions

A = A0, v = v0 and T = T0 at z = 0 for all t, (5.2.1d)

v = vL at z = L for all t, (5.2.1e)

where L denotes the length of the spinline.
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In the momentum balance (5.2.1b), the air drag and gravity effects are neglected
for the sake of brevity and clarity. However, including these effects into the model
would not change the general outline of our study.

5.2.2 Dimensionless Form

Introducing the dimensionless quantities

t∗ = tv0

L
, v∗ = v

v0
, z∗ = z

L
, T ∗ = T

T0
, A∗ = A

A0
and τ ∗ = τL

η0v0
,

and dropping the star, the system (5.2.1a)–(5.2.1e) can be re-formulated in dimen-
sionless form

∂A

∂t
+ ∂

∂z
(Av) = 0, (5.2.2a)

∂v

∂t
+ v

∂v

∂z
= 3

ReA

∂

∂z

(

ηA
∂v

∂z

)

− C
v2

√
A

+ 1

Fr
, (5.2.2b)

∂T

∂t
+ v

∂T

∂z
= −γ

T − T∞√
A

, (5.2.2c)

where Re = ρLv0
η0

is the Reynolds number, Fr = v2
0

gL
stands for the Froude number,

C = πCdρairL√
A0ρ

and γ = 2αL
ρCpv0R0

are the scaled air drag and heat transfer coefficients.
The viscosity is given by

η =
{

1 for the Newtonian model,

exp
[

Ea

RGT0

( 1
T

− 1
)]

for the non-Newtonian model.
(5.2.2d)

The boundary conditions read as

A(0) = 1, v(0) = 1 and T (0) = 1 for all t, (5.2.2e)

v(1) = d for all t, (5.2.2f)

where d = vL/v0 > 1 denotes the draw-ratio.
Now, we can easily read off the steady state equations of melt spinning. The

continuity equation (5.2.2a) reduces to A = 1/v and writing the second order mo-
mentum equation (5.2.2b) as two first order equations, we finally arrive at

dv

dz
= τ

3η
, (5.2.3a)

dτ

dz
= Re

vτ

3η
+ τ 2

3ηv
− 1

Fr
+ Cv3/2, (5.2.3b)
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dT

dz
= −γ

T − T∞√
v

, (5.2.3c)

subject to the boundary conditions

v(0) = 1 and T (0) = 1, (5.2.3d)

v(1) = d. (5.2.3e)

In the sequel we will consider two main questions related to the model (5.2.3a)–
(5.2.3e)

(1) How to choose the process conditions, i.e. the external air velocity vc and tem-
perature T∞, such that the fiber is solid at the take-up? Moreover, we wish to
maximize the mass flux, i.e. the inflow velocity v0. In Sects. 5.3 and 5.4 this op-
timization problem is treated using optimal control techniques. Some numerical
simulations illustrate our findings.

(2) Is the system (5.2.3a)–(5.2.3e) stable with respect to small perturbations of the
process parameters? In Sect. 5.5 we apply a linear stability analysis to investi-
gate this question. Again, some numerical computations highlight the results,
see Sect. 5.6.

5.3 Optimal Control of the Melt Spinning Process

We want to control the temperature profile of the fiber, such that the final tempera-
ture T (1) is below the solidification point T ∗

s = Ts/T0. On the other hand we want to
maximize the outflow, i.e. maximize v0. The air temperature T∞ and the air velocity
vc can be influenced and hence serve as control variables. Therefore, we consider
the following cost functional

J = J (y,u) = J1 + J2 + J3 + J4

= − ω1u3 + ω2(y3(1) − T ∗
s )

+ ω3

2

∫ 1

0
(u2(z) − Tref)

2dz + ω4

2

∫ 1

0
u1(z)

2dz, (5.3.1)

where y = (v, τ, T ) ∈ Y denotes the vector of state variables and u = (vc, T∞, v0) ∈
U are the controls. The weighting coefficients ωi > 0, i = 1, . . . ,4 allow to adjust
the cost functional to different scenarios. The larger the coefficient ω1, the more
importance is given to the maximization of the outflow; ω2 and ω3 measure the in-
fluence of the temperature constraints and the larger ω4, the more weight is given
to a low and hence “cheap” cooling air velocity. The actual choice of the numeri-
cal values of the weighting coefficients ω1, . . . ,ω4 depends of the demands of the
applicant.

Summarizing, we consider the following constrained optimization problem

minimize J (y,u) with respect to u, subject to (5.2.3a)–(5.2.3e). (5.3.2)

In the sequel, we will address this problem using the calculus of adjoint variables.
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5.3.1 First-Order Optimality System

In this section we introduce the Lagrangian associated to the constrained minimiza-
tion problem (5.3.2) and derive the system of first-order optimality conditions.

Let Y = C1([0,1];R
3) be the state space consisting of triples of differentiable

functions y = (v, τ, T ) denoting velocity, stress and temperature of the fiber. Fur-
ther, let U = C1([0,1];R

2) × R be the control space consisting of a pair (u1, u2) =
(vc, T∞) of differentiable functions, i.e. air velocity and temperature, and a scalar
u3 = v0 interpreted as the inflow velocity.

We define the operator e = (ev, eτ , eT ) : Y × U → Y ∗ via the weak formulation
of the state system (5.2.3a)–(5.2.3e):

〈e(y,u), ξ 〉Y,Y ∗ = 0, ∀ξ ∈ Y ∗,

where 〈·, ·〉Y,Y ∗ denotes the duality pairing between Y and its dual space Y ∗. Now,
the minimization problem (5.3.2) reads as

minimize J (y,u) with respect to u ∈ U , subject to e(y,u) = 0.

Introducing the Lagrangian L : Y × U × Y ∗ → R defined as

L(y,u, ξ) = J (y,u) + 〈e(y,u), ξ 〉Y,Y ∗ ,

the first-order optimality system reads as

∇y,u,ξ L(y,u, ξ) = 0.

Considering the variation of L with respect to the adjoint variable ξ , we recover
the state system

e(y,u) = 0

or in the classical form

dy

dz
= f (y,u), with v(0) = 1, v(1) = d, T (0) = 1, (5.3.3)

where

f (y,u) =

⎛

⎜
⎜
⎝

τ
3η

Re vτ
3η

+ τ 2

3η
− 1

Fr + Cv3/2

−γ T −T∞√
v

⎞

⎟
⎟
⎠ .

Second, taking variations of L with respect to the state variable y we get the
adjoint system

Jy(y,u) + e∗
y(y,u)ξ = 0
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or in classical form

−dξ

dz
= F(y,u, ξ), with ξq(0) = 0, ξq(1) = 0, ξT (1) = −ω2, (5.3.4)

where

F(y,u, ξ) =
(

∂f

∂y

)�
ξ.

Finally, considering variations of L with respect to the control variable u in a
direction of δu we get the optimality condition

〈Ju(y,u), δu〉 + 〈eu(y,u)δu, ξ 〉 = 0. (5.3.5)

In the optimum, this holds for all δu ∈ U .

5.3.2 Decent Algorithm

To solve the nonlinear first-order optimality system consisting of (5.3.3), (5.3.4)
and (5.3.5), we propose an iterative steepest-descent method.

1. Set k = 0 and choose initial control u(0) ∈ U .
2. Given the control u(k). Solve the state system (5.3.3) with a shooting method to

obtain y(k+1).
3. Solve the adjoint system (5.3.4) with a shooting method to obtain ξ (k+1).
4. Compute the gradient g(k+1) of the cost functional.
5. Update the control u(k+1) = u(k) − βg(k+1) for a step size β > 0.
6. Compute the cost functional J (k+1) = J (y(k+1), u(k+1)).
7. If |g(k+1)| ≥ δ, goto 2.

Here, δ > 0 is some prescribed relative tolerance for the termination of the opti-
mization procedure. In each iteration step, we need to solve two boundary value
problems, i.e. the state system (5.3.3) and the adjoint system (5.3.4) in the steps 2
and 3 of the algorithm. Both systems are solved using a shooting method based on
a Newton-iteration.

The main steps of the shooting method for solving, e.g. the state system (5.3.3)
are the following. Choose some initial guess s for y2(0) and denote by y(z; s) the
solution of the initial value problem

dy

dz
= f (y,u), with y1(0) = 1, y2(0) = s, y3(0) = 1. (5.3.6)

Now we introduce new dependent variables

x(z; s) = ∂y

∂s
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and define a second system as follows

∂x

∂z
=

(
∂f

∂y

)

x, with x1(0; s) = 0, x2(0; s) = 1, x3(0; s) = 0. (5.3.7)

The solution of y(z; s) of the initial value problem (5.3.6) coincides with the solu-
tion y(z) of the boundary value state system (5.3.3) provided that the value s can be
found such that

φ(s) = y1(1; s) − d = 0.

Using the system (5.3.7), φ′(s) can be computed as

φ′(s) = x1(1; s).

Applying Newton’s method generates a sequence (sn)n∈N

sn+1 = sn − φ(sn)

φ′(sn)
for a given initial guess s0.

If the initial guess s0 is a sufficiently good approximation to the required root of
φ(s) = 0, the theory of the Newton-iteration method ensures that the sequence
(sn)n∈N converges to the desired root s.

A crucial ingredient for the convergence of the decent algorithm is the choice of
the step size β in the direction of the gradient, see step 5 of the algorithm. Clearly,
the best choice would be the result of a line search

β∗ = argmin
β>0

J (uk − βgk).

However this is numerically quite expensive although it is a one dimensional min-
imization problem. Instead of the exact line search method, we use an approxima-
tion based on a quadratic polynomial method [9] in order to find β∗ such that we
minimize J (uk − βgk). We construct a quadratic polynomial p(β) to approximate
J (uk − βgk) using following data points

p(0) = J (uk), p(1) = J (uk − gk), p′(0) = −∇J (uk)
Tgk < 0.

Now, the quadratic approximation to our cost functional reads as

p(β) = p(0) + p′(0)β + (p(1) − p(0) − p′(0))β2

and its global minimum is located at

β∗ = −p′(0)

2(p(1) − p(0) − p′(0))
∈ (0,1).
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Table 5.1 Processing
conditions and parameter
values

Parameter Value Unit

ρ 0.98 g/cm3

Cp 0.46 cal/(g°C)

R0 0.01 cm

T0 300 °C

v0 16.667 m/s

vL 50 m/s

L 1 m

T∞ 24 °C

Tref 20 °C

vc 0.4 m/s

ρair 1.189 kg/m3

ηair 1.819 × 10−5 pa s

RG 1.9859 cal/(K mol)

Ea 13500 cal/mol

κ 0.0257 W/(m K)

5.4 Optimal Control Results

Both the state and the adjoint system (5.3.3) and (5.3.4) were solved using the MAT-
LAB routine ode23tb. This routine uses an implicit method with backward differ-
entiation to solve stiff differential equations. As weighting coefficients for the cost
functional (5.3.1) we use (ω1, . . . ,ω4) = (1, 1, 1.5, 2.5). The relevant simulation
conditions and parameter values are shown in Table 5.1. These values are typical
for Nylon-66.

5.4.1 Newtonian Model

Figure 5.2 shows the spinline velocity and temperature as well as the cooling air
velocity and temperature profiles before and after optimization for the Newtonian
model. Some of the intermediate profiles are also included in the graphs. The corre-
sponding cost functional is shown on the left in Fig. 5.3.

It can be seen that in the optimum, the final temperature is below 50°C. The
extrusion velocity drops from 16.67 m/s to 12.65 m/s. The optimal air temperature
is more or less close to 20°C, which we considered as a reference temperature. In
this case, the optimal air velocity is quite large near the spinneret and drops after the
first 30 cm almost to zero. Figures 5.4 and 5.5 visualize the optimal air velocity and
air temperature profiles in Newtonian model for different weighting coefficients.
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Fig. 5.2 Graphs for the spinline velocity (top-left) and temperature (top-right) as well as for the
air velocity (bottom-left) and temperature (bottom-right). The dashed curve is the initial profile,
while dotted curves correspond to intermediate profiles. The final, optimized profile is shown with
the solid line

Fig. 5.3 Reduction of the cost functional for the Newtonian (left) and non-Newtonian model
(right)

5.4.2 Non-Newtonian Model

Figure 5.6 visualizes the spinline velocity and temperature as well as the cooling
air velocity and temperature before and after optimization for the non-Newtonian
model. The reduction of the cost functional is shown on the right in Fig. 5.3.
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Fig. 5.4 Optimal air velocity
in the Newtonian case for
different weighting
coefficients

Fig. 5.5 Optimal air
temperature in the Newtonian
case for different weighting
coefficients

As for the Newtonian model, the optimized final temperature is well below 50°C
and the optimal air temperature profile is more or less close to 20°C. The extrusion
velocity drops from 16.67 m/s to 10.42 m/s. In the optimal state, the air velocity
reaches a peak value near the spinneret exit point and just after this point it almost
close to zero.

Figures 5.7 and 5.8 show the optimized air velocity and temperature profiles in
the non-Newtonian case for different cost coefficients.

5.5 Linear Stability Analysis

Now, we turn our attention the second question treated in this paper. Are the solu-
tions of the steady state system (5.2.3a)–(5.2.3e) stable with respect to small pertur-
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Fig. 5.6 Graphs for the spinline velocity (top-left) and temperature (top-right) as well as for the
air velocity (bottom-left) and temperature (bottom-right). The dashed curve is the initial profile,
while dotted curves correspond to intermediate profiles. The final, optimized profile is shown with
the solid line

Fig. 5.7 Optimal air velocity
in the non-Newtonian model
for different weighting
coefficients

bations of the process conditions? For the sake of simplicity of notation, we assume
Fr = 0 and C = 0, i.e.—we neglect the influence of gravity and air drag. Including
those effects in the analysis, however, is straightforward.
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Fig. 5.8 Optimal air
temperature in the
non-Newtonian model for
different weighting
coefficients

Let vs(z) and Ts(z) denote the solutions of the steady state system (5.2.3a)–
(5.2.3e). Then As(z) = 1/vs(z) solves the stationary version of the mass bal-
ance (5.2.2a). Now, we consider small perturbations φ,ϕ and θ of the state variables
A, v and T around their steady states. A linearization leads to

A(t, z) = As(z) + φ(z) exp(�t),

v(t, z) = vs(z) + ϕ(z) exp(�t),

T (t, z) = Ts(z) + θ(z) exp(�t),

(5.5.1)

where � ∈ C is a complex eigenvalue that accounts for the growth rate of the pertur-
bation. Substituting (5.5.1) into the transient system (5.2.2a)–(5.2.2f) and neglecting
higher order terms yields the following linearized equations.

In the case of a isothermal Newtonian flow, i.e. η ≡ 1, we get

�φ = −
[

(vsφ)′ +
(

ϕ

vs

)′]
, (5.5.2a)

�ϕ = −(vsϕ)′ + 3

Re

[

v′
s(vsφ)′ + vs

(
ϕ′

vs

)′]
, (5.5.2b)

subject to the boundary conditions

0 = φ(0) = ϕ(0) = ϕ(1). (5.5.2c)

In the non-Newtonian case, we get

�φ = −
[

(vsφ)′ +
(

ϕ

vs

)′]
, (5.5.3a)
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�ϕ = −(vsϕ)′ + 3η

Re

[

v′
s(vsφ)′ + vs

(
ϕ′

vs

)′]
− 3Eaηθ

RG ReT0T 2
s

[

vs

(
v′
s

vs

)′
+ T ′

s ϕ
′
]

+ 3Eaη

RG ReT0Ts

v′
s

[

T ′
s θ

(
Ea

RG ReT0T 3
s

+ 2

T 2
s

)

− θ ′
]

, (5.5.3b)

�θ = 1

2
C0(Ts − T∞)v

11
6

s �
1
6 φ − C0v

5
6
s �

1
6 θ − vsθ

′

+
(

64

3
C0v

2
c v

− 13
6

s (Ts − T∞)�− 5
6 − 1

3
C0v

− 1
6

s (Ts − T∞)�
1
6 − T ′

s

)

ϕ,

(5.5.3c)

subject to the boundary conditions

0 = φ(0) = ϕ(0) = θ(0) = ϕ(1), (5.5.3d)

where

� =
[

1 + 64

(
vc

vs

)2]

and C0 = 0.42Lκ

ρCpv0R
2
0

(
2R0v0ρair

ηair

) 1
3

.

5.5.1 Numerical Solution of the Eigenvalue Problem

Now we discretize the linearized system (5.5.2a)–(5.5.2c) or (5.5.3a)–(5.5.3d) re-
spectively, using a finite-difference scheme on a uniform grid zi = ih, i = 0, . . . , n

with grid size h = 1/n. The derivatives are approximated using centered differences

dy

dz
≈ yi+1 − yi−1

2h
and

d2y

dz2
≈ yi+1 − 2yi + yi−1

h2
,

where i = 1, . . . , n − 1 ranges through the interior points. At the endpoint i = n we
apply a backward difference formula

dy

dz
≈ yn − yn−1

h
,

In each point zi we have two unknowns, namely φi, ϕi , in the isothermal Newto-
nian case and three unknowns φi ,ϕi and θi in the non-Newtonian case. Due to the
boundary conditions φ0 = ϕ0 = ϕn = 0 and θ0 = 0, we end up with m = 2n − 1
degrees of freedom in the isothermal Newtonian model and m = 3n − 1 in the non-
Newtonian model.

Plugging the difference approximations into the linearized systems (5.5.2a)–
(5.5.2c) or (5.5.3a)–(5.5.3d) and re-arranging the terms, we arrive at the algebraic
eigenvalue problem

�Y = MY, (5.5.4)
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Table 5.2 Critical draw ratio
in the isothermal Newtonian
case

dc Literature source

20.218 This study

20.20 Pearson & Shah [14]

20.22 van der Hout [17]

20.218 Jung, Song, Hyun [7]

where Y = [φ1, ϕ1, . . . φn−1, ϕn−1, φn]T ∈ R
m for the isothermal Newtonian case

and Y = [φ1, ϕ1, θ1, . . . , φn−1, ϕn−1, θn−1, φn, θn]T in the non-Newtonian case and
M ∈ R

m×m arises from the discretization.
The stability is determined by the real parts of the eigenvalues �. Positive real

parts indicate instability due to unbounded growth of the state variables with time.
The critical draw-ratio dc is defined to be the minimal draw-ratio, where instability,
i.e. an eigenvalue � with Re(�) > 0 occurs. In order to determine the critical draw-
ratio dc, we have to compute the eigenvalues of the system (5.5.4). To do so, we
first solve the stationary state system (5.2.3a)–(5.2.3e) for a given draw ratio d and
given parameters vc and T∞. In this step, we use the MATLAB-routine ode23tb.
This routine uses an implicit method with backward differentiation to solve stiff
differential equations. It is an implementation of TR-BDF2 [15], an implicit two
stage Runge–Kutta formula where the first stage is a trapezoidal rule step and the
second stage is a backward differentiation formula of order two. The computed sta-
tionary solution As , vs and Ts is then plugged into the eigenvalue problem (5.5.4).
The eigenvalue problem is solved using the MATLAB-routine eigs based on the
ARPACK-library for large sparse matrices. This algorithm is based upon an algorith-
mic variant of the Arnoldi process called the implicitly restarted Arnoldi method,
see [13, 16]. As a result, we finally obtain the eigenvalues � as functions of d .

5.6 Stability Results

Table 5.2 compares the computed critical draw ratio dc in the isothermal Newtonian
case with values reported in literature. An excellent agreement is found.

Table 5.3 reports the critical draw ratio for the non-Newtonian model depending
on the velocity of the quench air. These simulations are carried out using a fixed air
temperature of 24°C. With increasing air velocity, the onset of instability is shifted
to higher draw ratios. Hence, the stability of the spinning process can be improved
by increasing the quench air velocity. Figure 5.9 visualizes the relation between the
air velocity vc and the critical draw ratio in the non-Newtonian case. The simulation
results suggest an almost linear relation between the air velocity vc and the critical
draw ratio. A regression analysis yields—as a rule of thumb—

dc = 3.4vc + 27, (5.6.1)

where the air velocity vc is measured in m/s.
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Table 5.3 Critical draw ratio
for the non-Newtonian case
depending on the air velocity
(air temperature 24°C fixed)

Air velocity [m/s] Critical draw ratio

0 30.50

2.5 36.12

5.0 45.27

7.7 52.49

10.0 60.04

15.0 76.94

20.0 93.31

25.0 111.44

30.0 135.17

Fig. 5.9 Plot of the critical
draw ratio vs. the quench air
velocity for the
non-Newtonian model

Figure 5.10 shows the critical draw ratio vs. the temperature of the quench air
at a fixed air velocity of 0 m/s. The critical draw ratio decreases with a cooler
quench air; the according numerical values are reported in Table 5.4. Again a linear
regression was carried out. Measuring the air temperature T∞ in °C, one finds dc =
0.21T∞ + 25 indicating a weak dependence of the critical draw ratio on the air
temperature.

5.7 Conclusions

We considered two key questions related to the industrial application of the melt
spinning process: the optimization and the stability of the process. The mathematical
model describing the melt spinning process of polymer fibers uses Newtonian and
non-Newtonian models for the rheology of the polymeric material.
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Table 5.4 Critical draw ratio
depending on the air
temperature (air velocity
0 m/s)

Air temperature [°C] Critical draw ratio

10 27.40

15 28.20

20 29.40

24 30.50

30 31.60

35 32.50

Fig. 5.10 Critical draw ratio
vs. air temperature

Concerning the optimization question, the aim was to maximize the outflow, min-
imize the air velocity and air temperature and to get the final spinline temperature
below the fiber solidification temperature. Defining an appropriate cost functional,
we converted the problem into a constrained optimization problem and derived the
first-order optimality system. Based on the adjoint variables, we propose a steepest
descent algorithm with suitable step size control to solve the problem numerically.
Simulations show the applicability of our approach and yield the desired results.
After the optimization, the final fiber temperature is well below the solidification
temperature. The velocity of the quench air was reduced as much as possible.

Regarding the stability of the process, instabilities may arise, if some process
variables exceeded a certain critical value. Furthermore, instabilities lead to irregu-
lar fibers or induces breakage of the individual filaments along the spinline. Hence,
a stability analysis of the process with respect to process parameters is needed. We
analysed the stability of the melt spinning process with respect to the quench air ve-
locity and the temperature. From this results the following points can be concluded.

In the Newtonian regime, the stability domain is independent of the quench air
velocity and air temperature. The critical draw ratio is found to be dc ≈ 20.218; in
accordance with the results of other research groups.
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In the non-Newtonian case, the stability domain strongly depends on the quench
air velocity. A linear regression reveals the approximate relation dc = 3.4vc + 27,
hence the process stability can be improved by increasing the air velocity. The
quench air temperature only has a minor influence on the process stability. How-
ever, there is a weak trend towards improved stability with higher air temperature.
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Chapter 6
On Orthonormal Polynomial Solutions
of the Riesz System in R

3

K. Gürlebeck and J. Morais

Abstract The main goal of the paper is to deal with a special orthogonal system
of polynomial solutions of the Riesz system in R

3. The restriction to the sphere of
this system is analogous to the complex case of the Fourier exponential functions
{einθ }n≥0 on the unit circle and has the additional property that also the scalar parts
of the polynomials form an orthogonal system. The properties of the system will
be applied to the explicit calculation of conjugate harmonic functions with a certain
regularity.

Keywords Quaternionic analysis · Homogeneous monogenic polynomials · Riesz
system · Harmonic conjugates

Mathematics Subject Classification (2000) 30G35 · 31B05 · 31B35

6.1 Introduction

Quaternionic analysis is nowadays a comfortable tool to solve boundary value prob-
lems of mathematical physics given in three or four dimensions. The reader who
wishes a comprehensive account of such theory and its more recent achievements
can profitably consult [28–31, 33, 34, 43–45] and elsewhere. Related to concrete
boundary value problems, we need special systems of functions (well-adapted to
series expansions and special geometries) that can be used theoretically and/or nu-
merically in stable procedures. A starting point for these considerations relies on
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the concept of null solutions of higher-dimensional Cauchy-Riemann or Dirac sys-
tems, known as monogenic functions. The present work is intended as a study on
the best approximation of a given class of monogenic functions in the quaternionic
analysis setting. For a general orientation the reader is suggested to read some of
the works [9, 11, 12] and [39], of which the first three deal entirely with the four-
dimensional case and the last the three-dimensional case.

In view of many applications to boundary value problems and for simplicity one
is mainly interested in the approximation of functions defined in domains of R

3 and
with values again in R

3. One possible approach is then, roughly speaking, the iden-
tification of vectors from R

3 with the so-called reduced quaternions. Unfortunately,
such a structure is not closed under the quaternionic multiplication. For those rea-
sons, Sect. 6.3 studies the approximation of monogenic functions in the linear space
of square integrable functions over R. This is also supported by the fact that the
operators of some boundary value problems are not H-linear but are nevertheless
efficiently treated by means of quaternionic analysis tools (e.g., Lamé system [30],
Stokes system [29]). Therefore, we aim to approximate reduced quaternion-valued
monogenic functions in terms of well-defined homogeneous monogenic polynomi-
als. To pave the way, we choose a convenient system of homogeneous monogenic
polynomials that should replace the holomorphic function systems (polynomials)
used in the complex case. We wish to deal with a system that has a simple struc-
ture, in the sense that the underlying functions can be explicitly calculated and the
numerical costs are only slightly growing. To define some differential operators on
the basis functions and to extend them to more general functions via Fourier expan-
sions, one has forcibly to consider complete orthonormal systems. This gives then
via continuous extension a basis to approximate monogenic functions or solutions
of more general differential equations by series expansions in terms of homoge-
neous monogenic polynomials. The latter is also necessary to ensure the numerical
stability of the considered approximations.

The remarks above cover only a part of the problem. Analogously to the one-
dimensional case, the following facts have also to be considered:

1. Homogeneous monogenic polynomials of different order are orthogonal;
2. The scalar parts of the basis polynomials are orthogonal to each other;
3. All (hypercomplex-)derivatives of the basis elements deliver again basis ele-

ments, one degree lower.

The general problem of approximating a monogenic function by monogenic
polynomials started basically with early works of Fueter [21, 22]. This was managed
by means of the notion of hypercomplex variables. Later, in [6] and [36] it is shown
that a monogenic function can be developed locally as a Taylor series in terms of ho-
mogeneous monogenic polynomials based on those variables. The resulting homo-
geneous monogenic polynomials are the so-called Fueter polynomials. In this line
of reasoning Leutwiler in 2001 (see [35]), based on these polynomials, constructed
a basis in the real-linear Hilbert space of reduced quaternion-valued homogeneous
monogenic polynomials in R

3. His results were recently generalized to arbitrary
dimensions in the framework of a Clifford algebra by Delanghe in 2007 [16]. The
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approach followed from both authors relies on the notion of harmonic conjugates.
However, a drawback remains in the fact that in general the Fueter polynomials and
their associated scalar parts are not orthogonal with respect to the real-inner product
(see [39] Chap. 2 for a special approach). A naive approach is to apply the Gram-
Schmidt procedure for normalization of these polynomials. Unfortunately, this or-
thonormalization process is not easy to handle and it is numerically highly unstable.
For this reason, research has been directed to the construction of a more suitable
basis.

A different effort in this direction was done by Ryan in 1986 [41]. Therein,
the author constructed a complete orthonormal system of homogeneous monogenic
polynomials for even dimensions. However, his system is not appropriate for our
case since we consider only functions defined in domains of the Euclidean space R

3,
of odd dimension. In this context we also mention the works by Brackx, Delanghe
and Sommen in [6] and the first author in [23]. The authors have constructed
shifted systems of Cauchy kernels as rational basis systems to approximate a mono-
genic function. Although the constructed systems are complete and give a simple
structured basis, they are not orthogonal and do not have the property of having
(hypercomplex-)derivatives within the same basis. Also, in these systems the con-
struction of a series expansion is not possible and derivatives of the basis functions
are not even finite linear combinations of the original basis functions. Other inten-
sive works in the 90-ties were done by Abul-Ez and Constales (see e.g. [1–3]). The
authors have constructed so-called special monogenic polynomials in the framework
of Clifford analysis, as an extension of the basic sets of polynomials of one complex
variable that appeared in the thirties in the work of Whittaker and resumed later in
his book [49]. The completeness of the set in the space of homogeneous monogenic
polynomials is not considered. Recently, Falcão and Malonek [18–20] have also
constructed a set of special homogeneous monogenic polynomials involving only
products of a hypercomplex variable and its hypercomplex conjugate. It is proved
that the obtained set is an Appell set of monogenic polynomials with respect to the
(hypercomplex-)derivative. Since the authors have just constructed one polynomial
for each degree, the latter is not enough to form a basis for the space of square inte-
grable monogenic functions. In a different setting, there are several other works as
for example those by Cnops [13], Brackx, De Schepper and Sommen [8], De Bie
and Sommen [14], related to Clifford-Hermite and Gegenbauer polynomials.

An important effort was done recently by Cação, worked out in her the-
sis [9] and in follow-up papers [11, 12]. Cação et al. have constructed a com-
plete orthonormal system of homogeneous monogenic polynomials in the unit ball
of R

3 and taking values in the full quaternions (R3 → R
4 case). In [10] it is

proved that the rate of convergence for a monogenic function approximated by
this system of homogeneous monogenic polynomials has the same quality as in
the similar case of a harmonic function approximated by homogeneous harmonic
polynomials (for comparison see [32]). In particular one part of the resulting poly-
nomials, contrary to the sets described above, carry the property of having mono-
genic (hypercomplex-)derivatives within the same basis one degree lower, like in the
complex case. Partially motivated by the strategy adopted by the previous authors,
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in [39] the second author constructed a basis (R3 → R
3 case) such that property 2 of

the previous list has been also regarded. In this paper we mainly follow the notations
as in [39]; cf. also [27].

The paper is organized as follows. After some preliminaries, in Sect. 6.3 we start
by presenting the orthogonal polynomial system exploited in [39]. The usage of a
system of spherical harmonics in R

3 (considered e.g. in [42]) for the construction
of our system allows to use some well-known results like its orthogonality on the
unit sphere. As a consequence of the interrelation between spherical harmonics and
Legendre polynomials, the constructed homogeneous monogenic polynomials are
related to the Legendre polynomials as well. Surprisingly, the set formed by the
scalar parts of the basis elements are multiples of the used spherical harmonics.
This reproducing property is in no way self-evident and it establishes a special rela-
tionship between quaternionic analysis and harmonic analysis. By the nature of the
given approach, which is genuinely constructive, this relation is also fundamental
in the study of the notion of conjugate harmonicity. As an illustration, we are able
to set up under some particular asymptotic conditions on the Fourier coefficients of
a scalar-valued function U , a (sufficient) condition that ensures the existence of a
vector-valued function V conjugate to U such that U + V is square integrable and
reduced quaternion-valued monogenic. It is also described an explicit formula for
the construction of V .

6.2 Basic Notions and Terminology

Consider a holomorphic function f (z) = u(x, y) + iv(x, y) defined in a domain
� ⊂ C. As is well-known, its real and imaginary parts are real-valued harmonic
functions in �, satisfying the so-called Cauchy-Riemann system

{
∂u
∂x

= ∂v
∂y

,

∂u
∂y

= − ∂v
∂x

.

As in the case of two variables, we may characterize the analogue of the
Cauchy-Riemann system in an open domain of the Euclidean space R

3. More
precisely, consider a vector-valued function f ∗ = (u0, u1, u2) whose components
ui = ui(x0, x1, x2) are real functions of real variables x0, x1, x2 for which

{∑2
i=0 ∂xi

ui = 0,

∂xj
ui − ∂xi

uj = 0 (i �= j,0 ≤ i, j ≤ 2)

or, equivalently, in a more compact form:
{

divf ∗ = 0,

rotf ∗ = 0.
(6.2.1)

This 3-tuple f ∗ is said to be a system of conjugate harmonic functions in the
sense of Stein-Weiß [46, 47] and system (6.2.1) is called the Riesz system [40].
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The system (6.2.1) can be obtained naturally using the quaternionic algebra. Let
H := {a = a0 + a1e1 + a2e2 + a3e3, ai ∈ R, i = 0,1,2,3} be the algebra of the real
quaternions, where the imaginary units ei (i = 1,2,3) are subject to the multiplica-
tion rules

e2
1 = e2

2 = e2
3 = −1,

e1e2 = e3 = −e2e1, e2e3 = e1 = −e3e2, e3e1 = e2 = −e1e3.

For the standard basis system of the Hamiltonian quaternions one uses the origi-
nal notation {1, i, j,k}. In this paper we use a more general notation, {1, e1, e2, e3},
more suited for a future extension.

The real number Sc(a) := a0 and Vec(a) := a1e1 +a2e2 +a3e3 are the scalar and
vector parts of a, respectively. Analogously to the complex case, the conjugate of a
is the quaternion a = a0 −a1e1 −a2e2 −a3e3. The norm of a is given by |a| = √

aa,
and coincides with its corresponding Euclidean norm, as a vector in R

4.
We consider the subset

A := spanR{1, e1, e2}

of H. Its elements are usually called reduced quaternions. The real vector space R
3

is to be embedded in A via the identification

x := (x0, x1, x2) ∈ R
3 ↔ x := x0 + x1e1 + x2e2 ∈ A.

We denote by x the vectorial part of the reduced quaternion x, that is, x := x1e1 +
x2e2. Also, we emphasize that A is a real vectorial subspace, but not a sub-algebra,
of H.

Let � be an open subset of R
3 with a piecewise smooth boundary. A reduced

quaternion-valued function or, briefly, an A-valued function is a mapping f : � −→
A such that

f(x) = [f(x)]0 +
2∑

i=1

[f(x)]iei , x ∈ �,

where the coordinate-functions [f]i (i = 0,1,2) are real-valued functions defined
in �. Properties such as continuity, differentiability or integrability are ascribed
coordinate-wise. We will work with the real-linear Hilbert space of square integrable
A-valued functions defined in �, that we denote by L2(�; A;R). The real-valued
inner product is defined by

〈f,g〉L2(�;A;R) =
∫

�

Sc(fg) dV , (6.2.2)

where dV denotes the Lebesgue measure on �.
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One possibility to generalize complex holomorphy is offered by following the
Riemann approach. In this context for continuously real-differentiable functions f :
� −→ A, we consider the (reduced) quaternionic operator

D = ∂

∂x0
+ e1

∂

∂x1
+ e2

∂

∂x2
(6.2.3)

thet is called generalized Cauchy-Riemann operator on R
3, as it corresponds to the

3-dimensional extension of the classical Cauchy-Riemann operator ∂z. In the same
way, we define the conjugate quaternionic Cauchy-Riemann operator

D = ∂

∂x0
− e1

∂

∂x1
− e2

∂

∂x2
, (6.2.4)

which is a generalization of the operator ∂z.

Definition 6.1 (Monogenicity) A continuously real-differentiable A-valued func-
tion f is called monogenic in � if Df = 0 in �.

Remark 6.1 It is not necessary to distinguish between left and right monogenic in
the case of A-valued functions because Df = 0 implies fD = 0 and vice versa.

The generalized Cauchy-Riemann operator (6.2.3) and its conjugate (6.2.4) fac-
torize the 3-dimensional Laplace operator, in the sense that �3f = DDf = DDf,
whenever f ∈ C2, which implies that any monogenic function is also a harmonic
function. This means that quaternionic analysis can be seen as a refinement of har-
monic analysis.

According to [24, 37, 48], we use ( 1
2D)f as the hypercomplex derivative of a

monogenic function f. An A-valued monogenic function with an identically vanish-
ing hypercomplex derivative is called hyperholomorphic constant (see again [24]).
It is immediately clear that such a function depends only on the variables x1 and x2.

Reconsider now a function f : � ⊂ R
3 −→ A and write the Riesz system (6.2.1)

explicitly as

(R)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂[f]0
∂x0

− ∂[f]1
∂x1

− ∂[f]2
∂x2

= 0,

∂[f]0
∂x1

+ ∂[f]1
∂x0

= 0,

∂[f]0
∂x2

+ ∂[f]2
∂x0

= 0,

∂[f]1
∂x2

− ∂[f]2
∂x1

= 0.

Using the generalized Cauchy-Riemann operator this reads as Df = fD = 0.
Following [35], the solutions of the system (R) are called (R)-solutions. The sub-

space of polynomial (R)- solutions of degree n is denoted by M+(�; A;n). In [35],
it is shown that the space M+(�; A;n) has dimension 2n+3. Later, this result was
generalized to arbitrary higher dimensions in the framework of a Clifford algebra
by Delanghe in [17]. We denote further by M+(�; A) := L2(�; A;R) ∩ kerD the



6 On Orthonormal Polynomial Solutions of the Riesz System in R
3 149

space of square integrable A-valued monogenic functions defined in �. A basis of
M+(R3; A;n), based on the well-known Fueter polynomials, was constructed by
Leutwiler in [35]. His results were recently generalized to arbitrary dimensions by
Delanghe in [16]. Both papers rely on the notion of harmonic conjugates. The main
difficulty in carrying out such constructions is that only a certain number of these
polynomials and their associated scalar parts are orthogonal to each other with re-
spect to the real-inner product (6.2.2). Also, their norms are not easy to handle and
the calculations are numerically highly unstable. For an account of such arguments,
see [39], Chap. 2.

6.3 A Basis of M+(B;A;n)

In ([9], Chap. 3) and [11], special R-linear and H-linear complete orthonormal sys-
tems of H-valued homogeneous monogenic polynomials defined in the unit ball B

of R
3 are explicitly constructed (R3 → R

4 case). The main idea of such construc-
tions is the already referred factorization of the Laplace operator. Partially motivated
by these results (see [39], Chap. 1) we deal from now on with constructive aspects
of approximation theory by presenting a convenient system of polynomial solutions
of the Riesz system (R3 → R

3 case). The restriction to the sphere of this system
can be viewed as analogue to the complex case of the Fourier exponential functions
{einθ }n≥0 on the unit circle and constitutes a refinement of the well-known spherical
harmonics.

The strategy adopted (the idea is taken from [9]) is the following: we start by
considering the set of homogeneous harmonic polynomials

{
rn+1U0

n+1, r
n+1Um

n+1, r
n+1V m

n+1,m = 1, . . . , n + 1
}
n∈N0

, (6.3.1)

formed by the extensions in the ball of an orthogonal basis of spherical harmonics
in R

3 considered e.g. in [42]. The application of the operator 1
2D to the homoge-

neous harmonic polynomials in (6.3.1) leads to the following set of homogeneous
monogenic polynomials:

{
X0,†

n ,Xm,†
n ,Ym,†

n : m = 1, . . . , n + 1
}
, (6.3.2)

with the notation

X0,†
n := rnX0

n, Xm,†
n := rnXm

n , Ym,†
n := rnYm

n .

In [9] it is proved the following result:

Lemma 6.1 For each n, the set

{
X0,†

n ,Xm,†
n ,Ym,†

n : m = 1, . . . , n + 1
}

is orthogonal with respect to the real-inner product (6.2.2).
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The consideration of the orthogonal system of harmonic spherical functions
{U0

n ,Um
n ,V m

n : m = 1, . . . , n} for the construction of our system allows to use prop-
erly some well-known results like its orthogonality on the unit sphere. Of course,
as a consequence of the interrelation between spherical harmonics and Legendre
polynomials (resp. Legendre functions), the constructed homogeneous monogenic
polynomials are related to the Legendre polynomials (resp. Legendre functions) as
well. A detailed study of Legendre polynomials and associated Legendre functions
together with their relations with the polynomials (6.3.2) shows more interesting
properties of the basis polynomials but they are not needed in the present article and
so will not be discussed.

We now come to the aim of this section. In order to establish our main results,
we first state the following properties of the basis polynomials.

Theorem 6.1 For a fixed n, the homogeneous monogenic polynomials

{
Xl,†

n ,Ym,†
n ,Xn+1,†

n ,Yn+1,†
n : l = 0, . . . , n,m = 1, . . . , n

}
,

satisfy the properties:

1. The following relations hold:

Sc(Xl,†
n ) := (n + l + 1)

2
Ul,†

n ,

Sc(Ym,†
n ) := (n + m + 1)

2
V m,†

n ;

2. The polynomials Xn+1,†
n and Yn+1,†

n are hyperholomorphic constants.

Proof The proof of the Affirmation 1 may be found in [25] and [39] by direct in-
spection of the scalar parts of the basis polynomials and their relations with the
Legendre polynomials and associated functions. Affirmation 2 is already known
from [9] because our constructed system is a subsystem of the polynomials which
were constructed in [9]. �

The surprising observation in Affirmation 1 is that the scalar parts of the
A-valued homogeneous monogenic polynomials, which were obtained by apply-
ing the D operator to scalar-valued harmonic polynomials, are strongly related to
the original polynomials. This means nothing else than the scalar parts being orthog-
onal to each other. In this sense, it reflects one of the most noteworthy properties of
the system and it shows an immediate relationship with the classical complex func-
tion theory in the plane, where the real parts of the complex variables zn are also
orthogonal to each other. We remark that such a behavior is very different in the
case of the Fueter polynomials (see [39], Chap. 2 for a special approach).
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Now we want to orthonormalize the basis polynomials (6.3.2), and for that we
proceed by presenting explicit formulae of their norms (see [9]) and of their corre-
sponding scalar parts (see [25] and [26]).

Proposition 6.1 For n ∈ N0, the norms of the homogeneous monogenic polynomials
X0,†

n , Xm,†
n and Ym,†

n (m = 1, . . . , n) and their associated scalar parts are given by

‖X0,†
n ‖L2(B;A;R) =

√
π(n + 1)

2n + 3
,

‖Xm,†
n ‖L2(B;A;R) = ‖Ym,†

n ‖L2(B;A;R) =
√

π

2

(n + 1)

2n + 3

(n + 1 + m)!
(n + 1 − m)! ,

‖Xn+1,†
n ‖L2(B;A;R) = ‖Yn+1,†

n ‖L2(B;A;R) =
√

π

2

(n + 1)(2n + 2)!
2n + 3

,

‖Sc(X0,†
n )‖L2(B) = (n + 1)√

2n + 3

√
π

2n + 1
,

‖Sc(Xm,†
n )‖L2(B) = ‖Sc(Ym,†

n )‖L2(B) = (n + 1 + m)√
2n + 3

√
π

2

1

(2n + 1)

(n + m)!
(n − m)! .

From now on we shall denote by X0,†,∗
n ,Xm,†,∗

n ,Ym,†,∗
n (m = 1, . . . , n + 1) the

new normalized basis functions X0,†
n ,Xm,†

n ,Ym,†
n in L2(B; A;R). We begin by for-

mulating a theorem from [39], p. 96:

Theorem 6.2 For each n, the normalized set of 2n + 3 homogeneous monogenic
polynomials

{
X0,†,∗

n ,Xm,†,∗
n ,Ym,†,∗

n : m = 1, . . . , n + 1
}

(6.3.3)

forms an orthonormal basis in the subspace M+(B; A;n) with respect to the real-
inner product (6.2.2). Consequently,

{
X0,†,∗

n ,Xm,†,∗
n ,Ym,†,∗

n ,m = 1, . . . , n + 1;n = 0,1, . . .
}

is an orthonormal basis in M+(B; A).

The above consideration makes it possible to define the Fourier expansion of a
square integrable A-valued monogenic function. Next we formulate the result:

Theorem 6.3 Let f be a square integrable A-valued monogenic function. The func-
tion f can then be represented with the orthonormal system (6.3.3):

f =
∞∑

n=0

[

X0,†,∗
n a0

n +
n+1∑

m=1

(
Xm,†,∗

n am
n + Ym,†,∗

n bm
n

)
]

, (6.3.4)



152 K. Gürlebeck, J. Morais

where for each n ∈ N0, a0
n, a

m
n , bm

n ∈ R (m = 1, . . . , n + 1) are the associated
Fourier coefficients.

Remark 6.2 Since by construction the system (6.3.3) forms an orthonormal basis
with respect to the real-inner product (6.2.2), we stress that the coefficients a0

n, a
m
n

and bm
n (m = 1, . . . , n + 1) are real constants.

Based on representation (6.3.4), in [26] we have proved that each A-valued
monogenic function can be decomposed in an orthogonal sum of a monogenic “main
part” of the function (g) and a hyperholomorphic constant (h).

Lemma 6.2 (Decomposition theorem) A function f ∈ M+(B; A) can be decom-
posed into

f := f(0) + g + h, (6.3.5)

where the functions g and h have the Fourier series

g(x) =
∞∑

n=1

(

X0,†,∗
n (x)a0

n +
n∑

m=1

[
Xm,†,∗

n (x)am
n + Ym,†,∗

n (x)bm
n

]
)

,

h(x) =
∞∑

n=1

[
Xn+1,†,∗

n (x)an+1
n + Yn+1,†,∗

n (x)bn+1
n

]
.

Obviously, using Parseval’s identity, f may be characterized by its coefficients in
the following way:

Theorem 6.4 The function f is a square integrable A-valued monogenic function
iff

∞∑

n=0

(

(a0
n)

2 +
n+1∑

m=1

[
(am

n )2 + (bm
n )2]

)

< ∞. (6.3.6)

6.4 Generation of A-Valued Monogenic Functions

Despite the fact that Quaternionic analysis offers a possibility to generalize some of
the most important features of classical complex analysis, the monogenic functions
do not enjoy all the properties of the holomorphic functions in one complex vari-
able. In fact, because of the non-commutativity of the quaternionic multiplication
the product of two monogenic functions is seldom a monogenic function. Therefore,
the construction of elementary monogenic functions is a challenging problem. It is
already known that there are a lot of techniques, which generate monogenic func-
tions (a list of those techniques can be found e.g. in [15]). In this section we consider
the problem of deriving A-valued monogenic functions with prescribed asymptotic
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properties, in particular, asymptotic properties related to the Fourier coefficients of
a scalar-valued harmonic function. This approach is related to the generation of
monogenic functions by means of conjugate harmonic functions.

Given a harmonic function U in a domain � of R
4 with a specific geometric

property, the problem of finding a harmonic conjugate V , generalizing the well-
known case of the complex plane to the case of quaternion-valued monogenic func-
tions, was introduced by Sudbery in [48]. The author proposed an algorithm for the
calculation of quaternion-valued monogenic functions. However, since our particu-
lar interest in this contribution is the study of monogenic functions with values in
the reduced quaternions, the described procedure is not well-adapted to our case.
Later and independently, Xu in [50] considered the problem of conjugate harmonics
in the framework of Clifford analysis. In [52] and [51] the construction of conju-
gate harmonics to the Poisson kernel in the open unit ball and the upper half space
respectively are obtained in this setting. The extension and completeness of these
results were obtained in [7] and [5] by Brackx, Delanghe and Sommen. Therein an
algorithm is constructed for the calculation of a harmonic conjugate V to a given
harmonic function U in �. By the nature of the given construction, the authors ob-
served that such function V is not unique. While these results establish a general
form of V , its precise description is given only up to a solution of a Poisson equa-
tion. Also, it is not discussed if the functions U and V belong to certain function
spaces. For this reason, our research has been focused on the construction of an
explicit algorithm respecting the underlying function spaces.

Next, we briefly introduce the notion of harmonic conjugates:

Definition 6.2 (Conjugate harmonic functions, see [7]) Let U be a harmonic func-
tion defined in an open subset � of R

3. A vector-valued harmonic function V in �

is called conjugate harmonic to U if f := U +V is monogenic in �. The pair (U ;V )

is called a pair of conjugate harmonic functions in �.

In the sequel, assume U be a square integrable harmonic function defined in an
open subset � of R

3. In contrast to the approach presented in [5, 7], the general the-
ory developed in the previous section gives the possibility to express explicitly the
general form of a square integrable vector-valued harmonic function V conjugate to
the scalar-valued U . This special case of conjugate harmonicity was first introduced
by Moisil in [38] and taken up again by Stein and Weiß in [47].

First result in our line of consideration was already proved in [39].

Theorem 6.5 Let U be harmonic and square integrable in B ⊂ R
3 with respect to

the orthonormal system

{
Sc(X0,†

n )

‖Sc(X0,†
n )‖L2(B)

,
Sc(Xm,†

n )

‖Sc(Xm,†
n )‖L2(B)

,
Sc(Ym,†

n )

‖Sc(Ym,†
n )‖L2(B)

: m = 1, . . . , n

}

(6.4.1)
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given by

U =
∞∑

n=0

[
Sc(X0,†

n )

‖Sc(X0,†
n )‖L2(B)

a0
n

+
n∑

m=1

(
Sc(Xm,†

n )

‖Sc(Xm,†
n )‖L2(B)

am
n + Sc(Ym,†

n )

‖Sc(Ym,†
n )‖L2(B)

bm
n

)]

, (6.4.2)

where for each n ∈ N0, a0
n, a

m
n , bm

n ∈ R (m = 1, . . . , n) are the associated Fourier
coefficients. If the series

∞∑

n=0

[
([X0,†

n ]1e1 + [X0,†
n ]2e2)

‖Sc(X0,†
n )‖L2(B)

a0
n

+
n∑

m=1

(
([Xm,†

n ]1e1 + [Xm,†
n ]2e2)

‖Sc(Xm,†
n )‖L2(B)

am
n + ([Ym,†

n ]1e1 + [Ym,†
n ]2e2)

‖Sc(Ym,†
n )‖L2(B)

bm
n

)]

(6.4.3)

is convergent, then it defines a square integrable vector-valued harmonic function
V conjugate to U .

Proof Let U ∈ L2(B) be a harmonic function. Consider the Fourier series of U with
respect to the orthonormal system (6.4.1). Since the series (6.4.2) is convergent in
L2, it converges uniformly to U in each compact subset of B . Now, replacing the
scalar part of each polynomial by the full polynomial we get formally

f =
∞∑

n=0

[
X0,†

n

‖Sc(X0,†
n )‖L2(B)

a0
n

+
n∑

m=1

(
Xm,†

n

‖Sc(Xm,†
n )‖L2(B)

am
n + Ym,†

n

‖Sc(Ym,†
n )‖L2(B)

bm
n

)]

:= U + V. (6.4.4)

�

Remark 6.3 If the previous series are finite sums then the functions U and V are
polynomials. Then, it is clear that the partial expansion (6.4.3) makes always sense.
In this special case our approach covers the results obtained in [7] and [5].

Remark 6.4 The vector-valued function V conjugate to the scalar-valued U is not
unique. This is due to the fact that by adding any hyperholomorphic constant ϕ to
V the resulting function Ṽ := V + ϕ is also harmonic conjugate to U .

Remark 6.5 By the direct construction of formula (6.4.4), we get only 2n + 1 ho-
mogeneous monogenic polynomials (i.e., the monogenic “main part” of f). How-
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ever, since dim M+(R3; A;n) = 2n + 3, adding two hyperholomorphic constants
the necessary number of independent polynomials is achieved.

Remark 6.6 Originally the Fourier coefficients a0
n, a

m
n , bm

n (m = 1, . . . , n) are de-
fined as inner products of U and elements of the space Hn(R

3). The new result
is that one obtains, up to a factor, the same coefficients but now as inner products
between f and elements of the space M+(R3; A;n).

The main point in the approach presented in [5, 7] as well as Sudbery’s for-
mula [48] is the construction of harmonic conjugates “function by function”. No at-
tention was paid to the question to which function spaces these conjugate harmonics
and the whole monogenic function belong. In [4] this question was studied for con-
jugate harmonics via Sudbery’s formula in the scale of Bergman spaces. As already
mentioned this result is not applicable for A-valued functions. If we want to make
the previous theorem more precise then we need an a-priori criterion that ensures the
convergence of the constructed series for mononogenic functions in L2(B; A;R).

Theorem 6.6 Let U be harmonic and square integrable in B ⊂ R
3 with respect to

the orthonormal system (6.4.1). Additionally, we assume that the Fourier coefficients
satisfy the condition

∞∑

n=0

(
2n + 1

n + 1
(a0

n)
2 +

n∑

m=1

(n + 1)(2n + 1)

(n + 1)2 − m2
[(am

n )2 + (bm
n )2]

)

< ∞.

Then, the series in Theorem 6.5 converges in L2(B).

The proof runs analogously to the previous theorem. Of course, this criterion is
not well-applicable in practice and it is still open to characterize which function
space (for the functions U ) is described by the condition of the theorem. If we
suppose for the moment more smoothness of the given function U , then we can
count with an exponential decay of the Fourier coefficients and we can formulate
a simple sufficient condition to guarantee the convergence of the series expansion
for V .

Theorem 6.7 (See [39]) Let U be harmonic and square integrable in B ⊂ R
3. If

the absolute values of its Fourier coefficients a0
n, am

n and bm
n (m = 1, . . . , n), with

respect to the orthonormal system (6.4.1) in L2(B), are less than c

(n+1)1+α (α > 1/2)

with a positive constant c, then f := U + V ∈ M+(B; A).

Proof Let U ∈ L2(B) be a harmonic function. Consider the Fourier series of U with
respect to the orthonormal system (6.4.1). Now, as before, we replace the scalar part
of each polynomial by the full polynomial and by introducing suitable correction
factors we can rewrite the obtained series as a series expansion with respect to the
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normalized full polynomials. We get formally

f =
∞∑

n=0

[

X0,†,∗
n

√
2n + 1

n + 1
a0
n +

n∑

m=1

√
(n + 1)(2n + 1)

(n + 1)2 − m2

(
Xm,†,∗

n am
n + Ym,†,∗

n bm
n

)
]

.

On the right-hand side of the previous equality we recognize the Fourier expan-
sion of the function f with respect to the orthonormal system (6.3.3) in M+(B; A).
Having in mind the conditions of the L2-convergence of (6.4.2), our task now is to
find out if the series

∞∑

n=0

(
(2n + 1)

n + 1
(a0

n)
2 +

n∑

m=1

(n + 1)(2n + 1)

(n + 1)2 − m2

[
(am

n )2 + (bm
n )2]

)

(6.4.5)

is convergent. By assumption, there exists a constant c such that the Fourier coeffi-
cients a0

n, am
n , bm

n (n ∈ N0,m = 1, . . . , n) satisfy

|a0
n|, |am

n |, |bm
n | < c

(n + 1)1+α
, α > 1/2, m = 1, . . . , n.

Substituting in the expression (6.4.5) we get

‖f‖2
L2(B;A;R) <

∞∑

n=0

c2

(n + 1)2(1+α)

(
2n + 1

n + 1
+ 2(n + 1)n

)

≤
∞∑

n=0

2c2

(n + 1)2α
.

The series on the right-hand side is convergent, because by assumption α > 1
2 .

Consequently, the series (6.4.5) is convergent. �
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Chapter 7
Brief Survey on the CP Methods
for the Schrödinger Equation

L.Gr. Ixaru

Abstract The CP methods have some salient advantages over other methods, viz.:
(i) the accuracy is uniform with respect to the energy E; (ii) there is an easy control
of the error; (iii) the step widths are unusually big and the computation is fast;
(iv) the form of the algorithm allows a direct evaluation of collateral quantities such
as normalisation constant, Prüfer phase, or the derivative of the solution with respect
to E; (v) the algorithm is of a form which allows using parallel computation.

Keywords Schrödinger equation · CP methods · ηm set of functions
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7.1 Introduction

The piecewise perturbation methods (PPM) are a class of numerical methods spe-
cially devised for the solution of the Schrödinger equation, and the CP methods
form a subclass of these. The main element of attractivity for the methods in this
subclass is that their algorithms are the easiest to construct and the fastest in runs.

Given the one-dimensional Schrödinger equation

d2y

dx2
+ [E − V (x)]y = 0, x ∈ [a, b], (7.1.1)
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where the potential V (x) is a well behaved function and the energy E is a free pa-
rameter, one can formulate either an initial value (IV) or a boundary value (BV)
problem. The form of V (x) is determined by the physical phenomenon under inves-
tigation, and a large variety of shapes are encountered. However, analytic solutions
of (7.1.1), either for the IV or for the BV problem, are known only for a small num-
ber of expressions for the function V (x), let such functions be denoted by V̄ (x),
such that any attempt to obtain an approximate solution in analytic form for a realis-
tic problem must have the selection of V̄ (x) which best fits the shape of the original
V (x) as its first step. In fact, this was the standard way of doing the things decades
ago, when computers were at their infancy.

In the early stages the fit was global (that is a single fitted V̄ (x) was used in
place of V (x) over the whole equation interval) but quite soon it became clear that
the quality of the approximation increases if this fit is made piecewise, i.e., when
the interval Ia,b = [a, b] is first partitioned, x0 = a, x1, x2, . . . , xkmax = b, and a
suitable V̄ (x) is introduced on each step Ik = [xk−1, xk]. If so is done, the solution
on the whole Ia,b requires an extra algebraic manipulation of the piecewise analytic
solutions, a task which can be accomplished efficiently only on a computer, and this
explains why the first systematic investigations along these lines are in the 60’s. In
[4, 6, 7] the piecewise V̄ (x) was a constant, that is the average value of V (x) over
Ik , while in [5] it was a straightline segment which is tangent to V (x). The versions
corresponding to the two options are called CP (short for constant-based potential)
and LP (line-based potential) methods, respectively. The two linear independent so-
lutions are expressed by trigonometric or hyperbolic functions for the CP methods,
and by the Airy functions for the LP methods.

7.2 The Algorithm of a CP Method

To fix the ideas we concentrate on a single step Ik denoted generically as [X,X+h],
and show how the solution can be propagated from one end to the other end. As
said before, the first versions [4–7] contained only the solution from the reference
potential V̄ (X + δ), δ ∈ [0, h] and therefore their order was low, namely 2, see [8].
It has also became clear that the order can be increased only if corrections from the
perturbation �V (δ) = V (X + δ) − V̄ (X + δ) can be added into the algorithm but
this raised another problem: are the formulae of these corrections simple enough
for not charging the run time too much? The answer was given by Ixaru in [9]: if
V̄ (X + δ) is a constant and �V (δ) is a polynomial then a set of special functions
can be introduced such that the perturbation corrections have simple analytic forms.
In fact, all CP versions built up later on were based on this.

The starting point then technically consists in approximating the potential func-
tion by a polynomial, and a first problem is how the polynomial coefficients have
to be chosen in order to ensure the best fit. The most important result is due to
Pruess [24] and it says in essence that the best fit consists in taking a finite number of
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terms in the expansion of V (x) over shifted Legendre polynomials of argument δ/h,

V (X + δ) ≈ V p(X + δ) =
N∑

n=0

Vnh
nP ∗

n

(
δ

h

)

. (7.2.1)

In [9] V p is called a pilot potential and all subsequent operations use only this. As
a matter of fact, taking V p for V induces a residual error of O(h2N+2).

The expressions of several P ∗
n (γ ) polynomials,γ ∈ [0,1], are as follows (see

[1]):

P ∗
0 (γ ) = 1, P ∗

1 (γ ) = −1 + 2γ,

P ∗
2 (γ ) = 1 − 6γ + 6γ 2, P ∗

3 (γ ) = −1 + 12γ − 30γ 2 + 20γ 3.

The form (7.2.1) is separated into the constant reference potential V̄ (X + δ) = V0
and the perturbation �V (δ) = V p(X+δ)−V0 such that the one step solution results
by taking the exact solution from the reference potential and by adding to this as
many corrections as possible from the perturbation �V .

Each member of the CPM family is identified by the degree N of the polynomial
�V (δ) and by the number of perturbation corrections Q retained in the algorithm,
CPM[N, Q] for short. The simplest version, that is when no correction is intro-
duced, is identified either as CPM[0, 0] or directly as CPM(0).

How do N and Q influence the quality of the method? The main parameter for
the quality of a numerical method is its order. Roughly speaking, if ε(h) and ε(h/2)

are the errors produced by using the sufficiently small steps h and h/2 then the order
p is that number such that

ε(h/2) = ε(h)/2p.

Example For p = 4 the error at h/2 is by a factor 24 = 16 smaller than that at h, but
for p = 6 it is smaller by a factor 26 = 64. The Numerov and standard Runge-Kutta
methods are of order p = 4.

Intuition says that the order p must increase with N and Q and indeed this is
confirmed by a theorem proved in [16]. In particular, for fixed N the maximal p is
2N +2 because the residual error acts as a barrier. The dependence of p with respect
to N and Q is listed in Table 7.1 for a number of cases. In that table the value of the
minimal Q is given, with the meaning that any greater number of corrections does
not influence anymore the value of the order. For example, versions CPM[4,3] and
CPM[4,4] have the same order p = 10.

As for the versions for solving the one-channel equation (7.1.1) published in the
literature, we find versions of orders between 2 (when no correction is added) and 6
in [9], up to 12 in [16], and 18 in [19]. A Fortran code for the CP version of [16] is in
[17]. In all these the independent variable x, potential function V (x) and energy E

are assumed real. CPM versions when these are complex are also available, see [15].



162 L.Gr. Ixaru

Table 7.1 Link between
order p and parameters N

and Q of the version
CPM[N,Q]

p N minimal Q

2 0 0

4 1 1

6 2 2

8 3 3

10 4 3

12 5 4

The case of systems of coupled-channel equations also enjoyed much attention.
Again, the need of first having each element of the potential matrix approximated by
a polynomial plays a central role in making the expressions of the corrections attrac-
tive from computational point of view. However the orders of the existing versions
is comparatively lower than before. In fact, the orders are between 2 and 6 in [9,
11], and up to 10 in [21]. Other numerical approaches pertinent to the Schrödinger
equation can be found in [25].

What about the computational effort? For the one-channel case the CPU
time/step increases with p but moderately: for p = 12 it is only 2–3 times big-
ger than for p = 2. For the coupled-channel case the rate of increase depends on the
number of channels.

As said, we look for a procedure which gives the values of y and y′ at X+h when
the values at X are given (forward propagation) or, conversely, yields the values at
X when the values at X + h are given (backward propagation).

The values of y and y′ at X and X+h are connected via the so-called propagation
(or transfer) matrix

P =
[

u(h) v(h)

u′(h) v′(h)

]

, (7.2.2)

where u(δ) and v(δ), δ = x − X ∈ [0, h] are two linear independent solutions
of (7.1.1) on [X,X + h] which satisfy the following initial conditions

u(0) = 1, u′(0) = 0, v(0) = 0, v′(0) = 1. (7.2.3)

Indeed, with the column vector

y(x) = [y(x), y′(x)]T (7.2.4)

we have

y(X + h) = Py(X), y(X) = P−1y(X + h) (7.2.5)

and then the propagation of the solution in either of the two directions requires the
generation of the elements of matrix P, i.e. the values at δ = h of the two indepen-
dent solutions u(δ) and v(δ) and of their first derivatives.
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Functions u(δ) and v(δ) are constructed by perturbation. The procedure consists
in taking the constant V̄ = V0 as the reference potential and the polynomial �V (δ)

as a perturbation. Each of the two propagators, denoted generically as p(δ), is writ-
ten as a perturbation series,

p(δ) = p0(δ) + p1(δ) + p2(δ) + p3(δ) + · · · , (7.2.6)

where the zeroth-order term p0(δ) is the solution of

p′′
0 = [V0 − E]p0 (7.2.7)

with p0(0) = 1,p′
0(0) = 0 for u0 and p0(0) = 0,p′

0(0) = 1 for v0. The correction
pq, q = 1,2, . . . obeys the equation

p′′
q = [V0 − E]pq + �V (δ)pq−1, pq(0) = p′

q(0) = 0. (7.2.8)

With Z(δ) = (V0 − E)δ2 and functions ξ(Z), η0(Z), η1(Z), . . . , defined in the
Appendix, the zeroth order propagators are

u0(δ) = ξ(Z(δ)), v0(δ) = δη0(Z(δ)) (7.2.9)

and the following iteration procedure exists to construct the corrections. Correction
pq−1 is assumed as known and of such a form that the product �V (δ)pq−1 reads

�V (δ)pq−1(δ) = Q(δ)ξ(Z(δ)) +
∞∑

m=0

Rm(δ)δ2m+1ηm(Z(δ)). (7.2.10)

Then pq(δ) and p′
q(δ) are of the form

pq(δ) =
∞∑

m=0

Cm(δ)δ2m+1ηm(Z(δ)), (7.2.11)

p′
q(δ) = C0(δ)ξ(Z(δ))

+
∞∑

m=0

(Cm(δ) + δCm+1(δ))δ
2m+1ηm(Z(δ)), (7.2.12)

where C0(δ),C1(δ), . . . are given by quadrature (see again [9]):

C0(δ) = 1

2

∫ δ

0
Q(δ1)dδ1, (7.2.13)

Cm(δ) = 1

2
δ−m

∫ δ

0
δm−1

1 [Rm−1(δ1)

− C′′
m−1(δ1)]dδ1, m = 1,2, . . . . (7.2.14)
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To calculate successive corrections for u, the starting functions in �V (δ)p0(δ) are
Q(δ) = �V (δ),R0(δ) = R1(δ) = · · · = 0, while for v they are Q(δ) = 0,R0(δ) =
�V (δ),R1(δ) = R2(δ) = · · · = 0. Integrals (7.2.13) and (7.2.14) have analytic
forms. Each Cm(δ) is a polynomial and the series (7.2.11) and (7.2.12) are finite.

We give below the expression of u(h) for the CPM version of order 12,
[16]; the expressions of the other three matrix elements of the propagation ma-
trix can be found in the same paper. With V0,V1,V2, . . . , V10 defined in (7.2.1)
and V̄i = Vih

i+2, i = 1,2, . . . ,10, Z = (V0 − E)h2 and functions ξ(Z), ηm(Z),
m = 0,1,2, . . . as in the Appendix, this is:

u(h) = ξ + V̄1[−576η1 − 48η2V̄1 + 24η4V̄
2
1 + η5V̄

3
1 ]/1152

+ V̄2[280η3V̄1 + 14η4V̄
2
1 − 14(η2 + 3η3)V̄2

+ 7(η4 − 31η5)V̄1V̄2 + 2(η4 + 10η5)V̄
2
2 ]/560

+ V̄3[−840η1 + 4200η2 + 420η3V̄1 + 35(η4 − 23η5)V̄
2
1

+ 420(2η3 − 15η4)V̄2 + 6(9η4 − 50η5)V̄1V̄2

− 30(η2 − 4η3 + 15η4)V̄3]/1680

+ V̄4[18(2η3 − 21η4)V̄1 − 18η5V̄
2
1 + 54η4V̄2

+ 36(η3 − 18η4 + 105η5)V̄3 − (η2 + 3η3 − 75η4 + 105η5)V̄4]/72

+ V̄5[−2η1 + 28η2 − 126η3 + (η3 − 9η4)V̄1

+ 2(η3 − 21η4 + 126η5)V̄2 + (η3 − 9η4 + 15η5)V̄3]/4

+ V̄6[2(η3 − 27η4 + 198η5)V̄1 + 3(η4 − 11η5)V̄2]/4

+ V̄7[−2η1 + 54η2 − 594η3 + 2574η4 + (η3 − 22η4 + 143η5)V̄1]/4

+ V̄9[−η1 + 44η2 − 858η3 + 8580η4 − 36465η5]/2. (7.2.15)

7.3 Advantages of the CPM Versions

A list of advantages is largely publicised in the literature (see, e.g., [9, 10, 22]), to
mention only: (i) the accuracy is uniform with respect to E, a feature unparallelled
by any other numerical method; (ii) there is an easy control of the error; (iii) the step
widths are unusually big and the computation is fast; (iv) the form of the algorithm
allows a direct evaluation of the normalisation constant, of the Prüfer phase and of
the partial derivative with respect to E of the solution. Finally, (v), the algorithms
are of a form which allows using parallel computation.

Related to point (i) above, it is instructive mentioning that another class of numer-
ical methods is also often presented as much suited for application at big values of
the energy. This is the class of methods whose algorithms are built up by exponential
fitting, e.g., [2, 3, 13, 14, 18, 26–28] and references therein. Exponential fitting (ef)
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is a procedure for building up approximation formulae which are appropriate for lin-
ear combinations of trigonometric or hyperbolic functions sin, cos, with coefficients
that are smooth enough to be well approximated by low degree polynomials.

The dependence of the error with respect to E has been examined in detail for
various versions of the Numerov method, see [13, 14]. Four existing degrees of ef-
tuning are available for this method, that is 0-classical version, 1, 2, and 3, and it
has been proved that the error increases asymptotically as Es where s = 3,2,3/2
and 1, respectively. As a matter of fact, there are reasons to believe that the same
behaviour holds true for all other ef-based methods: each new higher degree of ef-
tuning results in a reduction of the rate of increase or the error with E. However, the
important fact is that the exponent s remains positive. For contrast, in the case of
the CPM[N,Q] the exponent is negative. In fact the error now decreases as E−1/2,
as proved in [16]. Thus, though the ef-based methods certainly have some impor-
tant merits, to mention only a vast area of applicability (approaching differential
or integral equations, numerical differentiation, quadrature, interpolation etc.) their
performance when solving the Schrödinger equation at big values of E is not one of
these, in particular when this is compared to that of the CPM versions.

A number of advantages mentioned for the CPM versions is also shared by the
LPM versions. The main difference is in the run time: the LP methods are about 15
times slower than their CP counterparts, see [20]. There are two main reasons for
this. The first is that the zeroth order solutions are expressed by Airy functions and
the existing subroutines for these, e.g. [23], are much slower than for the compu-
tation of the η functions. Second, the formulae of the perturbation corrections are
no more so short and compact as they are in the CP methods. A way to improve
the things was undertaken in [12]. It consisted in building up a procedure for the
computation of the Airy propagators by a CPM version, and by converting the ex-
pressions of the perturbation corrections in the standard form accepted for the CPM
versions, that is with the η functions. In this way the computational effort was dras-
tically reduced: the new form of the LP method is only by a factor 1.5 slower than
that of the CPM version of the same order.

7.4 A Numerical Illustration

We consider the Woods-Saxon potential defined by

V (x) = v0w(x)

(

1 − 1 − w(x)

a0

)

(7.4.1)

with w(x) = {1 + exp[(x − x0)/a0]}−1, v0 = −50, x0 = 7, a0 = 0.6, x ∈ [0, xf =
15] (see [9]). For this potential we have solved the eigenvalue problem in the range
E ∈ (−50,0) with the boundary conditions

A1y(0) + B1y
′(0) = 0, (7.4.2)

A2y(xf ) + B2y
′(xf ) = 0, (7.4.3)
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Table 7.2 Woods-Saxon potential: absolute errors �En at different steps

n En h = 1 h = 1/2 h = 1/4

0 −49.45778872808258 −0.214E–06 −0.543E–10 −0.284E–13

1 −48.14843042000636 −0.192E–05 −0.498E–09 −0.142E–12

2 −46.29075395446608 −0.872E–05 −0.232E–08 −0.604E–12

3 −43.96831843181423 −0.257E–04 −0.727E–08 −0.195E–11

4 −41.23260777218022 −0.487E–04 −0.169E–07 −0.475E–11

5 −38.12278509672792 −0.435E–04 −0.303E–07 −0.908E–11

6 −34.67231320569966 0.371E–04 −0.415E–07 −0.138E–10

7 −30.91224748790885 0.152E–03 −0.373E–07 −0.161E–10

8 −26.87344891605987 0.155E–03 −0.351E–08 −0.121E–10

9 −22.58860225769321 0.618E–04 0.568E–07 0.112E–11

10 −18.09468828212442 0.182E–03 0.119E–06 0.216E–10

11 −13.43686904025008 0.507E–03 0.196E–06 0.399E–10

12 −8.67608167073655 0.390E–03 0.268E–06 0.399E–10

13 −3.90823248120623 −0.330E–03 0.957E–07 0.994E–11

where A1 = 1,B1 = 0,A2 = √
V (xf ) − E,B2 = 1. The eigenvalue spectrum has

14 eigenenergies denoted E0, . . . ,E13.
In Table 7.2 we list the exact eigenvalues, and the errors produced by the CP

version of [16] at three values for the step width h. The examination of these data
allows some interesting remarks. First, the error dependence with respect to the in-
dex n exhibits an oscillatory behaviour. This is in contrast with the classical methods
(Numerov, for example) where the error is known to increase with n. Second, the
maximal error along the spectrum decreases by three orders of magnitude at each
halving of h, in agreement with the fact that the method is of order 12. Third, un-
commonly big steps are sufficient to obtain very accurate eigenvalues. A step h = 1
is enough for obtaining all eigenvalues with at least three exact figures after the deci-
mal point. Just for comparison, the Numerov method will require h = 1/32 to reach
the same accuracy. As for the computational effort, all data in Table 7.2 required
only a few seconds on a laptop with one processor at 1.73 GHz.

Acknowledgements This work was partially supported under contract IDEI-119 (Romania).

Appendix

Functions ξ(Z), η0(Z), η1(Z), . . . , originally introduced in [9] (they are denoted
there as ξ̄ (Z), η̄0(Z), η̄1(Z), . . .), are defined as follows:

ξ(Z) =
{

cos(|Z|1/2) if Z ≤ 0,

cosh(Z1/2) if Z > 0,
(A.1)
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η0(Z) =

⎧
⎪⎨

⎪⎩

sin(|Z|1/2)/|Z|1/2 if Z < 0,

1 if Z = 0,

sinh(Z1/2)/Z1/2 if Z > 0,

(A.2)

η1(Z), η2(Z), . . . , are constructed by recurrence:

η1(Z) = [ξ(Z) − η0(Z)]/Z,

ηm = [ηm−2(Z) − (2m − 1)ηm−1(Z)]/Z, m = 2,3, . . . .
(A.3)

Some useful properties are as follows:

(i) Series expansion:

ηm(Z) = 2m
∞∑

q=0

gmqZq

(2q + 2m + 1)! , (A.4)

with

gmq =
{

1 if m = 0,

(q + 1)(q + 2) · · · (q + m) if m > 0.
(A.5)

In particular,

ηm(0) = 1

(2m + 1)!! , (A.6)

where (2m + 1)!! = 1 × 3 × 5 × · · · × (2m + 1).
(ii) Asymptotic behaviour at large |Z|:

ηm(Z) ≈
{

ξ(Z)/Z(m+1)/2 for odd m,

η0(Z)/Zm/2 for even m.
(A.7)

(iii) Differentiation properties:

ξ ′(Z) = 1

2
η0(Z), η′

m(Z) = 1

2
ηm+1(Z), m = 0,1,2, . . . . (A.8)

References

1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions, 8th edn. Dover, New
York (1972)

2. Calvo, M., Franco, J.M., Montijano, J.I., Ràndez, L.: Comput. Phys. Commun. 178, 732–744
(2008)

3. Calvo, M., Franco, J.M., Montijano, J.I., Ràndez, L.: J. Comput. Appl. Math. 223, 387–398
(2009)

4. Canosa, J., Gomes de Oliveira, R.: J. Comput. Phys. 5, 188–207 (1970)
5. Gordon, R.G.: J. Chem. Phys. 51, 14–25 (1969)



168 L.Gr. Ixaru

6. Ixaru, L.Gr.: The algebraic approach to the scattering problem. Internal Report IC/69/7, Inter-
national Centre for Theoretical Physics, Trieste (1969)

7. Ixaru, L.Gr.: An algebraic solution of the Schrödinger equation. Internal Report IC/69/6, In-
ternational Centre for Theoretical Physics, Trieste (1969)

8. Ixaru, L.Gr.: J. Comput. Phys. 9, 159–163 (1972)
9. Ixaru, L.Gr.: Numerical Methods for Differential Equations and Applications. Reidel, Dor-

drecht/Boston/Lancaster (1984)
10. Ixaru, L.Gr.: J. Comput. Appl. Math. 125, 347–357 (2000)
11. Ixaru, L.Gr.: Comput. Phys. Commun. 147, 834–852 (2002)
12. Ixaru, L.Gr.: Comput. Phys. Commun. 177, 897–907 (2007)
13. Ixaru, L.Gr., Rizea, M.: Comput. Phys. Commun. 19, 23–27 (1980)
14. Ixaru, L.Gr., Rizea, M.: J. Comput. Phys. 73, 306–324 (1987)
15. Ixaru, L.Gr., Rizea, M., Vertse, T.: Comput. Phys. Commun. 85, 217–230 (1995)
16. Ixaru, L.Gr., De Meyer, H., Vanden Berghe, G.: J. Comput. Appl. Math. 88, 289 (1998)
17. Ixaru, L.Gr., De Meyer, H., Vanden Berghe, G.: Comput. Phys. Commun. 118, 259 (1999)
18. Kalogiratou, Z., Monovasilis, Th., Simos, T.E.: Comput. Phys. Commun. 180, 167–176

(2009)
19. Ledoux, V., Van Daele, M., Vanden Berghe, G.: Comput. Phys. Commun. 162, 151–165

(2004)
20. Ledoux, V., Ixaru, L.Gr., Rizea, M., Van Daele, M., Vanden Berghe, G.: Comput. Phys. Com-

mun. 175, 424–439 (2006)
21. Ledoux, V., Van Daele, M., Vanden Berghe, G.: Comput. Phys. Commun. 174, 357–370

(2006)
22. Ledoux, V., Van Daele, M., Vanden Berghe, G.: Comput. Phys. Commun. 180, 241–250

(2009)
23. NAG Fortran Library Manual: S17AGF, S17Astron. J.F, S17AHF, S17AKF, Mark 15, The

Numerical Algorithms Group Limited, Oxford (1991)
24. Pruess, S.: SIAM J. Numer. Anal. 10, 55–68 (1973)
25. Pryce, J.D.: Numerical Solution of Sturm-Liouville Problems. Oxford University Press, Ox-

ford (1993)
26. Simos, T.E.: Comput. Phys. Commun. 178, 199–207 (2008)
27. Vanden Berghe, G., Van Daele, M.: J. Comput. Appl. Math. 200, 140–153 (2007)
28. Vanden Berghe, G., Van Daele, M.: Appl. Numer. Math. 59, 815–829 (2009)



Chapter 8
Symplectic Partitioned Runge-Kutta Methods
for the Numerical Integration of Periodic
and Oscillatory Problems

Z. Kalogiratou, Th. Monovasilis, and T.E. Simos

Abstract In this work specially tuned Symplectic Partitioned Runge-Kutta (SPRK)
methods have been considered for the numerical integration of problems with pe-
riodic or oscillatory solutions. The general framework for constructing exponen-
tially/trigonometrically fitted SPRK methods is given and methods with correspond-
ing order up to fifth have been constructed. The trigonometrically-fitted methods
constructed are of two different types, fitting at each stage and Simos’s approach.
Also, SPRK methods with minimal phase-lag are derived as well as phase-fitted
SPRK methods. The methods are tested on the numerical integration of Kepler’s
problem, Stiefel-Bettis problem and the computation of the eigenvalues of the
Schrödinger equation.
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8.1 Introduction

In the last decades a lot of research has been performed in the area of numerical
integration of Hamiltonian systems. Hamiltonian systems appear in many areas of
mechanics, physics, chemistry, and elsewhere.

Symplecticity is a characteristic property of Hamiltonian systems and many au-
thors developed and applied symplectic schemes for the numerical integration of
such systems. Many authors constructed symplectic numerical methods based on
the theory of Runge-Kutta methods these are symplectic Runge-Kutta (SRK) meth-
ods, symplectic Runge-Kutta-Nyström (SRKN) methods and symplectic Partitioned
Runge-Kutta (SRRK) methods. The theory of these methods can be found in the
books of Hairer et al. [5] and Sanz-Serna and Calvo [22].

Additionally the solution of Hamiltonian systems often has an oscillatory behav-
ior and have been solved in the literature with methods which take into account the
nature of the problem. There are two categories of such methods with coefficients
depending on the problem and with constant coefficients. For the first category a
good estimate of the period or of the dominant frequency is needed, such methods
are exponentially and trigonometrically fitted methods, phase-fitted and amplifica-
tion fitted methods. In the second category are methods with minimum phase-lag
and P-stable methods and are suitable for every oscillatory problem with.

Originally exponentially/trigonometrically fitted multistep methods have been
studied. In the last decade exponentially/trigonometrically fitted Runge-Kutta
(EFRK, TFRK) and Runge-Kutta-Nyström (EFRKN, TFRKN) methods have been
constructed by many authors. Simos [23], Vanden Berghe et al. [32] first constructed
EFRK methods. The general theory of exponentially fitted methods can be found in
the book of Ixaru and Vanden Berghe [6]. Also EFRKN methods have been studied
by Simos [24], Franco [4], Kalogiratou and Simos [8]. There are two different ap-
proaches in exponentially fitted Runge-Kutta type methods. Fitting at each stages as
suggested by Vanden Berghe et al. [32] and fitting the advance stage as suggested
by Simos [23]. Both approaches perform better on different type of problems.

The idea of combining the exponentially fitting property and symplecticness
arised some years later in the work of Simos and Vigo-Aguiar [25] where they con-
structed a symplectic modified RKN (SRKN) method with the trigonometrically
fitted property. Also Van de Vyver [28] constructed another exponentially fitted
SRKN method of second order. Aguiar and Tocino [27] gave order conditions for
symplectic Runge-Kutta-Nyström methods. The authors constructed exponentially
fitted symplectic partitioned Runge-Kutta (TFPRK) methods following both fitting
approaches. Following Simos’ approach they constructed methods up to fourth or-
der (six stages) [12–17] and with the each stage approach methods up to fifth or-
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der [7, 10]. The authors also derived the order conditions for exponentially fitted
SPRK methods [9]. Van de Vyver [29] constructed an exponentially fitted implicit
symplectic RK (SRK) method based on the classical fourth order Gauss method.
The phase-lag (or dispersion) property was introduced by Brusa and Nigro [2] and
was extended to RK(N) methods by van der Houwen and Sommeijer [31]. Van de
Vyver [30] constructed a symplectic Runge-Kutta-Nyström method with minimal
phase-lag, the authors constructed SPRK methods with minimal phase-lag [19]. The
idea of phase-fitting was introduced by Raptis and Simos [20]. Phase-fitted SPRK
methods have been considered by the authors [18].

In this work (Sect. 8.2) we present the general framework for constructing expo-
nentially/trigonometrically fitted symplectic PRK methods following the approach
of Simos presented in [23] and the approach of Vanden Berghe et al. presented
in [32]. We construct trigonometrically fitted SPRK methods of orders up to fifth
(up to six stages). In Sect. 8.3 methods with minimum phase-lag and phase-fitted
methods are presented. Numerical results are given in Sect. 8.4 and conclusions in
Sect. 8.5. The Taylor expansions of the coefficients of the methods derived are given
in the Appendix.

Let U be an open subset of �2N , I an open subinterval of � and (p, q) ∈ U ,
x ∈ I . Hamiltonian systems are of the general form

p′
i = −∂H

∂qi

(p, q, x), q ′
i = ∂H

∂pi

(p, q, x), i = 1, . . . ,N, (8.1.1)

where the integer N is the number of degrees of freedom. The q variables are gen-
eralized coordinates, the p variables are the conjugated generalized momenta and
H(p,q, x) is the total mechanical energy.

The flow ϕx : U → �2N of a Hamiltonian system is the mapping that advances
the solution by time x ϕt (p0, q0) = (p(p0, q0, x), q(p0, q0, x)), where p(p0, q0, x),
q(p0, q0, x) is the solution of the system coresponding to initial values p(0) = p0,
q(0) = q0. The following result is due to Poincare and can be found in [22].

Let H(p,q) be a twice continously differentiable function on U ⊂ �2N . Then for
each fixed x, the flow ϕx is a symplectic transformation wherever it is defined.

For each x, x0 the solution operator �H (x, x0) of a Hamiltonian system is a
symplectic transformation. A differentiable map g : U → �2N is called symplectic
if the Jacobian matrix g′(p, q) satisfies

g′(p, q)T Jg′(p, q) = J, where J =
(

0 I

−I 0

)

.

We shall consider Hamiltonian systems with separable Hamiltonian

H(p,q, x) = T (p,x) + V (q, x),

where T is the kinetic energy and V is the potential energy. Then the Hamiltonian
system can be written as:

p′ = f (q, x), q ′ = g(p,x), (8.1.2)
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where

f (q, x) = −∂H

∂q
(p,q, x) = −∂V

∂q
(q, x),

g(p, x) = ∂H

∂p
(p,q, x) = ∂T

∂p
(p,x).

Partitioned Runge-Kutta methods are appropriate methods for the numerical inte-
gration of Hamiltonian systems with separable Hamiltonian.

A Partitioned Runge-Kutta (PRK) scheme is specified by two tableaux

c1 a11 · · · a1s

...
...

. . .
...

cs as1 · · · ass

b1 · · · bs

C1 A11 · · · A1s

...
...

. . .
...

Cs As1 · · · Ass

B1 · · · Bs

where

ci =
s∑

j=1

aij , and Ci =
s∑

j=1

Aij

or in matrix form
c a

b

C A

B

where a, A are s × s matrices and c, C, b, B are s size vectors. Let e = (1,1, . . . ,1)

then c = a.e and C = A.e. The first tableau is used for the integration of p com-
ponents and the second tableau is used for the integration of the q components as
follows:

Pi = pn + h

s∑

j=1

aij f (Qj , x + Cjh),

Qi = qn + h

s∑

j=1

Aijg(Pj , x + cjh),

(8.1.3)

i = 1,2, . . . , s, and

pn+1 = pn + h

s∑

j=1

bi f (Qi, x + Cih),

qn+1 = qn + h

s∑

j=1

Big(Pi, x + cih).

Here Pi and Qi are the stages for the p and q .
The order conditions for PRK methods are written in terms of bicoloured rooted

trees βρτ . These are trees with two kind of vertices coloured with white or black
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in such a way that adjacent vertices have different colours. The first tableau corre-
sponds to the white vertices and the second to the black vertices. Then each order
condition is defined in terms of a βρτ

�(βρτ) = 1

γ (βρτ)
, (8.1.4)

where � is the elementary weight and γ is the density function.
The order conditions of first order are

s∑

i=1

bi = 1,

s∑

i=1

Bi = 1, (8.1.5)

or

b.e = 1, B.e = 1

and correspond to the trees βρτ1,1,w and βρτ1,1,b . The first subscript denotes the
number of vertices, the last is w and b for the white or black root. The second is the
numbering within the class of the trees with the same number of vertices. Following
the numbering of Sanz-Serna ([22], Sect. 4.3) number one is given to the tree for
which each father has only one son.

The second order conditions are
s∑

i,j=1

biAij = 1

2
,

s∑

i,j=1

Biaij = 1

2
, (8.1.6)

or

b.A.e = 1/2, B.a.e = 1/2

and correspond to the trees βρτ2,1,w and βρτ2,1,b .
Symplectic PRK methods have been considered Ruth [21], Forest and Ruth in

[3] who derived the order conditions using Lie formalization. Also Abia and Sanz-
Serna [1] considered symplectic PRK methods and gave the order conditions using
graph theory according to the formalization of Butcher. The following theorem was
found independently by Sanz-Serna and Suris and can be found in [22].

Theorem 8.1 Assume that the coefficients of the PRK method (8.1.3) satisfy the
relations

biAij + Bjaji − biBj = 0, i, j = 1,2, . . . , s. (8.1.7)

Then the method is symplectic when applied to Hamiltonian problems with separa-
ble Hamiltonian (8.1.2).

A RRK method that satisfies (8.1.7) is called symplectic PRK method (SPRK).
We consider the order conditions of SPRK methods. To each bicolour tree βτ with
r > 1 vertices correspond more than one bicolour rooted trees βρτ . Abia and Sanz-
Serna [1] proved that it is sufficient that for each βτ with r vertices, there is one βρτ

associated with βτ for which (8.1.4) is satisfied. This result reduces the number of
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order conditions, for example for second order only one of the conditions (8.1.6)
should be imposed. For a SPRK method there are two third order conditions (instead
of four for a PRK method)

s∑

i,j,k=1

biAij aik = 1

6
,

s∑

i,j=1

BiaijAjk = 1

6
, (8.1.8)

or

b.A.a.e = 1/6, B.a.A.e = 1/6,

and correspond to the trees βρτ3,1,w and βρτ3,1,b .
The advantage of using SPRK is that there exist explicit SPRK methods, while

SRK methods can not be explicit. Assume the following explicit form aij = 0 for
i < j and Aij = 0 for i ≤ j . Then due to the symplecticness requirement (8.1.7) the
coefficients aij and Aij (and consequently ci and Ci ) are fully determined in terms
of the coefficients bi and Bi .

aij = bj , Aij = Bj , ci =
i∑

j=1

bj , Ci =
i−1∑

j=1

Bj , i = 1,2, . . . , s. (8.1.9)

The Butcher tableaux become

c1 b1 0 0 · · · 0
c2 b1 b2 0 · · · 0
c3 b1 b2 b3 · · · 0
...

...
...

...
. . .

...

cs b1 b2 b3 · · · bs

b1 b2 b3 · · · bs

C1 0 0 0 · · · 0
C2 B1 0 0 · · · 0
C3 B1 B2 0 · · · 0
...

...
...

...
. . .

...

Cs B1 B2 B3 · · · 0

B1 B2 B3 · · · Bs

The SPRK method can be denoted by

[b1, b2, . . . , bs](B1,B2, . . . ,Bs).

The fact that the tableaux of the SPRK method (8.1.3) are constant along columns
imply a favourable implementation of the method using only two d-dimensional
vectors since Pi+1 and Qi+1 can be overwritten on Pi and Qi . The computation
proceeds in the following form:

P0 = pn,

Q1 = qn, for i = 1, . . . , s

Pi = Pi−1 + hbif (Qi, xn + Cih),

Qi+1 = Qi + hBig(Pi, xn + cih),

pn+1 = Ps,

qn+1 = Qs+1.

(8.1.10)
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We shall consider problems with Hamiltonians of the special form

H(p,q, x) = T (p) + V (q, x), T (p) = 1

2
pT p (8.1.11)

in this case g(Pi) = Pi .
As it was mentioned above Ruth [21] suggested SPRK methods and derived order

conditions up to third order. Also constructed a three stage third order method with
the following coefficients

b1 = 7

24
, b2 = 3

4
, b3 = − 1

24
, B1 = 2

3
, B2 = −2

3
, B3 = 1. (8.1.12)

In an other work Forest and Ruth [3] derived conditions of fourth order and con-
structed a fourth order four stage SPRK. This method was also constructed inde-
pendently by Yoshida [33] who suggested a different way of constructing SPRK
methods.

x0 = 2
1
3 , x1 = − x0

2 − x0
, x2 = 1

2 − x0
,

b1 = b4 = x2

2
, b2 = b3 = x1 + x2

2
,

B1 = B3 = x2, B2 = x1, B4 = 0.

(8.1.13)

In the same work Yoshida suggested his well known two-stage second order
method with coefficients

b1 = 0, b2 = 1, B1 = 1

2
, B2 = 1

2
. (8.1.14)

McLachlan and Atela [11] also suggested a two-stage second order method with
coefficients

b1 = 2 − √
2

2
, b2 =

√
2

2
, B1 =

√
2

2
, B2 = 2 − √

2

2
, (8.1.15)

Monovasilis and Simos [13] constructed a third order method

b1 = 9 + 3 3
1
3 + 3

2
3

24
, b2 = 3 − 3 3

1
3 − 3

2
3

12
, b3 = b1,

B1 = 9 − 3 3
1
3 − 4 3

2
3

30
, B2 = 3 + 3

2
3

6
, B3 = 6 + 3 3

1
3 − 3

2
3

30
.

(8.1.16)

McLachlan and Atela [11] also constructed a four stage fourth order method with
the following coefficients

b1 = 0.1344962, b2 = −0.2248198, b3 = 0.75632, b4 = 0.3340036,

B1 = 0.515353, B2 = −0.085782, B3 = 0.441583, B4 = 0.128846.

(8.1.17)
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From any odd order (p) order method with s stages one can construct an even
order method (≥ p + 1) with 2s stages with coefficients

b1

2
,

b2

2
, . . . ,

bs−1

2
,

bs

2
,

bs

2
,

bs−1

2
, . . . ,

b2

2
,

b1

2
,

B1

2
,

B2

2
, . . . ,

Bs−1

2
, Bs,

Bs−1

2
, . . . ,

B2

2
,

B1

2
, 0.

(8.1.18)

In this way a method of fourth order is derived from any third order method above.
The six stage fifth order method of McLachlan and Atela [11]

B1 = 0.339839625839110000, b1 = 0.1193900292875672758,

B2 = −0.088601336903027329, b2 = 0.6989273703824752308,

B3 = 0.5858564768259621188, b3 = −0.1713123582716007754,

B4 = −0.6030393565364911888, b4 = 0.4012695022513534480,

B5 = 0.3235807965546976394, b5 = 0.0107050818482359840,

B6 = 0.4423637942197494587, b6 = −0.0589796254980311632.

Phase-lag analysis of numerical methods for second order equations is based on
the scalar test equation q ′′ = −w2q , where w is a real constant. For the numerical
solution of this equation we can write

(
qn

h pn

)

= Mn

(
q0

h p0

)

, M =
(

As(v
2) Bs(v

2)

Cs(v
2) Ds(v

2)

)

, v = wh.

The eigenvalues of the M are called amplification factors of the method and are
the roots of the characteristic equation

ξ2 − tr(M(v2))ξ + det(M(v2)) = 0.

The phase-lag (dispersion) of the method is

φ(v) = v − arccos

(
tr(M(v2))

2
√

det(M(v2))

)

,

and the dissipation (amplification error) is

α(v) = 1 −
√

det(M(v2)).

For a symplectic PRK method the determinant of the amplification matrix is zero,
so the methods we construct here are zero dissipative.
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8.2 Construction of Trigonometrically Fitted SPRK Methods

8.2.1 Trigonometrically Fitted Symplectic PRK Methods

We want our method to integrate at each stage the exp (wx) and exp (−wx) (for the
exponentially fitted case) and the functions sin (wx) and cos (wx) (for the trigono-
metrically fitted case). Following the idea of Vanden Berghe et al. [32] we consider
the modified Runge-Kutta method with extra parameters γi and �i for i = 1, . . . , s

c1 γ1 a11 · · · a1s

...
...

...
. . .

...

cs γs as1 · · · ass

b1 · · · bs

C1 �1 A11 · · · A1s

...
...

...
. . .

...

Cs �s As1 · · · Ass

B1 · · · Bs

then the method becomes

Pi = γipn + h

s∑

j=1

aijf (Qj , xn + Cjh),

Qi = �iqn + h

s∑

j=1

Aijg(Pj , xn + cjh),

pn+1 = pn + h

s∑

i=1

bif (Qi, xn + Cih),

qn+1 = qn + h

s∑

i=1

Big(Pi, xn + cih).

i = 1,2, . . . , s, (8.2.1)

Theorem 8.2 Assume that the coefficients of the PRK method (8.1.3) satisfy the
relations

bi

�i

Aij + Bj

γj

aji − biBj = 0, i, j = 1,2, . . . , s. (8.2.2)

Then the method is symplectic when applied to Hamiltonian problems with separa-
ble Hamiltonian (8.1.2).

It is easy to verify that (8.2.2) become (8.1.7) for �i = γi = 1, for i = 1, . . . , s.
In the situation aij = 0 for i < j and Aij = 0 for i ≤ j the coefficients aij and Aij

are fully determined by the coefficients bi , Bi , γi and �i in the following way

ai,j = γibj , i = 1, . . . , s, j = 1, . . . , i,

Ai,j = �iBj , i = 2, . . . , s, j = 1, . . . , (i − 1).
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The Butcher tableaux become

c1 γ1b1
c2 γ1b1 γ2b2
c3 γ1b1 γ2b2 γ3b3
...

...
...

...
. . .

cs γ1b1 γ2b2 γ3b3 · · · γsbs

b1 b2 b3 · · · bs

C1
C2 �2B1
C3 �3B1 �3B2
...

...
...

Cs �sB1 �sB2 �sB3 · · · �sBs−1

B1 B2 B3 · · · Bs−1 Bs

Rewritting the above method in the form of (8.1.11) we have

P0 = pn,

Q1 = �1q
n, for i = 1, . . . , s

Pi = γi

(
Pi−1

γi−1
+ hbif (Qi, xn + Cih)

)

,

Qi+1 = �i+1

(
Qi

�i

+ hBiPi

)

,

pn+1 = Ps,

qn+1 = Qs+1.

(8.2.3)

In other works the authors [15] considered the PRK method in the form (8.2.3)
and inserted the parameters αi , βi , γi and δi as follows

Pi = αiPi−1 + hγibif (Qi, xn + Cih),

Qi+1 = βiQi + hδiBiPi.
(8.2.4)

It was proved that the above method is symplectic if

s∏

i=1

αiβi = 1. (8.2.5)

There is the following relation between these parameters

αi = γi

γi−1
, βi = �i+1

�i

, δi = �i+1

and it is easy to verify that condition (8.2.5) holds.
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In order to construct the trigonometrically fitted methods hereafter we shall con-
sider the form

Pi = αiPi−1 + hb̃if (Qi, xn + Cih),

Qi+1 = βiQi + hB̃iPi .
(8.2.6)

8.2.2 Final Stage Approach

Requiring the modified method to integrate exactly cos(wx) and sin(wx) we obtain
a set of four equations. We can determine any four coefficients αi , βi , bi , Bi . Here
we shall determine the parameters α1, β1 we shall refer to them as α, β and take
αi = βi = 1 for i = 2, . . . , s. Also we shall modify two of the coefficients bi , Bi .
The resulting equations are

α

(

1 −
s−1∑

k=1

(−1)k�(βρτ2k,1,w)v2k

)

= cos(v),

s∑

k=1

(−1)k+1�∗(βρτ2k−1,1,w)v2k−1 = sin(v),

β +
s−1∑

k=1

(−1)k�∗(βρτ2k,1,b)v
2k = vBs sin(v) + cos(v),

α

s−1∑

k=1

(−1)k+1�(βρτ2k−1,1,b)v
2k−1 = −vBs cos(v) + sin(v),

(8.2.7)

where with �∗ we denote the elementary weight where instead of the vector e the
vector

e∗ = (1, β, . . . , β)

is used.
For a two stage method the system (8.2.7) becomes

α(1 − b2B1v
2) = cos(v),

(b1 + βb2)v − b1b2B1v
3 = sin(v),

β + b1B1v
2 = cos(v) + B2v sin(v),

αB1v = −B2v cos(v) + sin(v).

(8.2.8)

This general form of the trigonometrically fitted symplectic method can generate
several special methods if we use different sets of coefficients.
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If we choose the Yoshida coefficients (8.1.14) (b2 = 1, B1 = 1
2 ) we have the

following method:

β = 2 − v2

2 cos(v)
, α = 1

β
,

b1 = sin(2v)

v(2 − v2)
− 1

cos(v)
,

B2 = tan(v)

v
− 1

2 − v2
.

(8.2.9)

If we take McLachlan’s coefficients (8.1.15) (b2 = B1 =
√

2
2 ) the following method

is derived:

β = 2 − v2

2 cos(v)
, α = 1

β
,

b1 = 2 sin(v)

v(2 − v2)
− 1√

2 cos(v)
,

B2 = tan(v)

v
−

√
2

2 − v2
.

(8.2.10)

For a three stage method the system (8.2.7) becomes

α(−(b2B1 + b3B1 + b3B2)v
2 + b2b3B1B2v

4)

= cos(v),

(b1 + β(b2 + b3))v − (b1(b2B1 + b3(B1 + B2)) + βb2b3B2)v
3 + b1b2b3B1B2v

5

= sin(v),

β − (b1B1 + b2b1B2 + βb2B2)v
2 + b1b2B1B2v

4

= cos(v) + B3v sin(v),

α((B1 + B2)v − b2B1B2v
3)

= −B3v cos(v) + sin(v).

(8.2.11)
The modified third order method based on (8.1.12) is

β = v4 − 36v2 + 72

72 cos(v)
, α = 1

β
,

b1 = 72 sin(v)

v(v4 − 36v2 + 72)
+ v2 − 34

48 cos(v)
,

B3 = tan(v)

v
− 24v2

v4 − 36v2 + 72
.

(8.2.12)
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Similarly the modified third order method based on (8.1.16)

k1 = 360 − 180v2 + (
9 − 3

4
3 + 3

2
3
)
v4,

k2 = −12(24 − 3
4
3 + 3

2
3 ) + 6(4 − 3

4
3 + 3

2
3 )v2,

k3 = 2(−15 + 3
4
3 + 3

2
3 ) − (1 + 3

4
3 + 3

2
3 )v2,

β = k1

360 cos(v)
, α = 1

β
,

b1 = 360 sin(v)

vk1
+ k3

48 cos(v)
,

B1 = tan(v)

v
+ k2

k1
.

(8.2.13)

For a method with four stage (s = 4) we obtain the following system:

α(1 − (b2B1 + b3(B1 + B2) + b4(B1 + B2 + B3))v
2

+ (b2(b3 + b4)B1B2 + (b3b4B2 + b2b4B1 + b3b4B1)B3)v
4

− b2b3b4B1B2B3v
6) = cos(v),

(b1 + β(b2 + b3 + b4))v − (b1b4(B2 + B3) + β(b2b4(B2 + B3) + b3b4B3))v
3

+ (b1(b2B1B2(b3 + b4) + b3b4B3B2 + (b2 + b3)b4B1B3) + βb2b3b4B3B2)v
5

+ b1b2b3b4B1B2B3v
7 = sin(v), (8.2.14)

β − (b1B1 + b1B2 + b1B3 + β(b2B2 + b2B3 + b3B3))v
2

− (b1((b2B1 + b3B3)B2 + (b2 + b3)B1B3) + βb2b3B3B2)v
4

+ b1b2b3B1B2B3v
6 = B4v sin(v) + cos(v),

α((B1 + B2 + B3)v − (b2B1(B2 + B3) + b3B3(B1 + B2))v
3

+ b2b3B1B2B3v
5) = sin(v) − B4v cos(v).

The modified method based on the fourth order method (8.1.17) is

k = 1 − 0.5v2 + 0.0416667v4 − 0.00110868v6,

β = k

cos(v)
, α = 1

β
,

b1 = sin(v)

vk
− 0.865504 − 0.0994186v2 + 0.00215129v4

cos(v)
,

B4 = tan(v)

v
− 0.871154 − 0.102244v2 + 0.00331935v4

k
.

(8.2.15)



182 Z. Kalogiratou et al.

The modified method based on the fourth order method (8.1.13) is

k1 = 8 − 4(x1 + 2x2)
2v2 + 2x2(x1 + x2)

2(x1 + 2x2)v
4

− x1x
3
2(x1 + x2)

2v6,

k2 = 4(x1 + 2x2) − 4x2(x1 + x2)
2v2 + x1x

2
2(x1 + x2)

2v4,

β = k1

8 cos(v)
, α = 1

β
,

b1 = 8 sin(v)

vk1
− (−2(−2 + v2x2

1)(x1 + x2) + k2)

8 cos(v)
,

B4 = tan(v)

v
− 2k2

k1
.

(8.2.16)

In the case of six stages the system of equations is long and not presented here,
two modified six stage methods are given below. The modified method based on the
fourth order method based on the third order Ruth coefficients is the following

k1 = 1 − v2

2
+ v4

24
− 79v6

55296
+ 31v8

1327104
− 7v10

63700992
,

k2 = 1 − v2

6
+ v4

144
− v6

6912
+ v8

1327104
,

k3 = −41

48
+ 3v2

32
− 103v4

27648
+ 179v6

2654208
− 7v8

21233664
,

β = k1

cos(v)
, α = 1

β
,

b1 = sin(v)

vk1
+ k3

cos(v)
,

B6 = tan(v)

v
− k2

k1
.

(8.2.17)

Similarly, the modified method based on the fifth order method of McLachlan is

k1 = 1. − 0.5v2 + 0.0416667v4 − 0.00120185v6 + 0.0000131033v8

− 1.0442 × 10−7v10,

k2 = 0.557636 + 0.0545152v2 − 0.0100985v4 + 0.000314933v6

− 1.77044 × 10−6v8,

k3 = −1 − 0.00894v2 + 0.0255521v4 − 0.000904778v6

+ 5.20963 × 10−6v8,
(8.2.18)

k4 = 1 + k1k3

v2k2
,
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β = k1

cos(v)
, α = 1

β
,

b1 = sin(v)

vk1
− k4

cos(v)
,

B6 = tan(v)

v
− k2

k1
.

8.2.3 Each Stage Approach

In this work we follow the idea presented in Vanden Berghe et al. [32] each internal
stage of a RK method can be seen as a linear multistep method on a non-equidistant
grid. We want our method to integrate exactly sin(w x) and cos(w x) at each stage.
Then we have four equations for each stage and we determine the new parameters
αi , βi as well as the modified coefficients b̃i and B̃i . The resulting equations are

cos(civ) = αi cos(ci−1 v) − bi v sin(Ci v),

sin(ci v) = αi sin(ci−1 v) + bi v cos(Ci v),

cos(Ci+1 v) = βi cos(Ci v) − Bi v sin(ci v),

sin(ci+1 v) = βi sin(Ci v) + Bi v cos(ci v),

(8.2.19)

where v = wh.
The above system of equations gives the following solution

αi = cos((ci − Ci) v)

cos((ci−1 − Ci) v)
,

bi = sin((ci − ci−1)v)

v cos((ci−1 − Ci) v)
,

βi = cos((ci − Ci+1) v)

cos((ci − Ci) v)
,

Bi = sin((Ci+1 − Ci)v)

v cos((ci − Ci) v)
.

(8.2.20)

The two stage methods modified here are the second order method of Yoshida
(8.1.14) and McLachlan (8.1.15)

α1 = 1, β1 = cos

(
v

2

)

, b1 = 0, B1 = 1

v
sin

(
v

2

)

,

α2 = 1, β2 = 1

cos( v
2 )

, b2 = 2

v
sin

(
v

2

)

, B2 = 1

v
tan

(
v

2

) (8.2.21)
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and

α1 = cos

(
(2 − √

2)

2
v

)

, β1 = cos((1 − √
2)v)

cos( (2−√
2)

2 v)
,

b1 = sin(
(2−√

2)
2 v)

v
, B1 =

sin( 2√
2
v)

v cos( (2−√
2)

2 v)
,

α2 = 1

β1
, β2 = 1

α1
,

b2 =
sin( 2√

2
v)

v cos((1 − √
2)v)

, B2 = 1

v
tan

(
v(2 − √

2)

2

)

.

(8.2.22)

The three stage methods modified here are (8.1.12) and (8.1.16)

α1 = cos

(
7

24
v

)

, β1 = cos( 3
8v)

cos( 7
24v)

, b1 = sin( 7
24v)

v
, B1 = sin( 2

3v)

v cos( 7
24v)

,

α2 = 1, β2 = cos( 25
24v)

cos( 3
8v)

, b2 = 2

v
sin

(
3

8
v

)

, B2 = − sin( 2
3v)

v cos( 3
8v)

,

α3 = cos(v)

cos( 25
24v)

, β3 = 1

cos(v)
, b3 = − sin( 1

24v)

v cos( 25
24v)

, B3 = 1

v
tan(v)

(8.2.23)
and

α1 = cos

(
1

24

(
9 + 3 3

1
3 + 3

2
3
)
v

)

, β1 = cos( 1
40 (3 + 9 3

1
3 + 7 3

2
3 )v)

cos( 1
24 (9 + 3 3

1
3 + 323)v)

,

b1 = 1

v
sin

(
1

24
(9 + 3 3

1
3 + 323)v

)

, B1 = sin( 1
30 (9 − 3 3

1
3 − 4 3

2
3 )v)

v cos( 1
24 (9 + 3 3

1
3 + 3

2
3 )v)

,

α2 = cos( 1
120 (39 − 3 3

1
3 + 11 3

2
3 )v)

cos( 1
40 (3 + 9 3

1
3 + 7 3

2
3 )v)

, β2 = cos( 1
40 (7 + 3

1
3 + 3 3

2
3 )v)

cos( 1
120 (39 − 3 3

1
3 + 11 3

2
3 )v)

,

b2 = − sin( 1
12 (−3 + 3 3

1
3 + 3

2
3 )v)

v cos( 1
40 (3 + 9 3

1
3 + 7 3

2
3 )v)

, B2 = sin( 1
6 (3 + 3

2
3 )v)

v cos( 1
120 (39 − 3 3

1
3 + 11 3

2
3 )v)

,

α3 = cos( 1
30 (−6 − 3 3

1
3 + 3

2
3 )v)

cos( 1
40 (7 + 3

1
3 + 3 3

2
3 )v)

, β3 = sec

(
1

30
(−6 − 3 3

1
3 + 3

2
3 )v

)

,

b3 = sin( 1
24 (9 + 3 3

1
3 + 3

2
3 )v)

v cos( 1
40 (7 + 3

1
3 + 33

2
3 )v)

, B3 = −1

v
tan

(
1

30
(−6 − 3 3

1
3 + 3

2
3 )v

)

.

(8.2.24)
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The modified method based on (8.1.17) is

α1 = cos(0.1344962v), β1 = cos(0.3808566v)

cos(0.1344962v)

b1 = sin(0.1344962v)

v
, B1 = sin(0.5153528v)

v cos(0.1344962v)
,

α2 = cos(0.6056764v)

cos(0.3808566v)
, β2 = cos(0.519894v)

cos(0.6056764v)
,

b2 = − sin(0.2248198v)

v cos(0.3808566v)
, B2 = − sin(0.085782v)

v cos(0.6056764v)
,

α3 = cos(0.236426v)

cos(0.519894v)
, β3 = cos(0.205157v)

cos(0.236426v)
,

b3 = sin(0.7563200v)

v cos(0.519894v)
, B3 = sin(0.4415830v)

v cos(0.236426v)
,

α4 = cos(0.1288462v)

cos(0.205157v)
, β4 = 1

cos(0.1288462v)
,

b4 = sin(0.3340036v)

v cos(0.205157v)
, B4 = tan(0.1288462v)

v
.

The trigonometrically fitted method based on the forth order method of Yoshida
(8.1.13).

α1 = cos

(

v

(

−x1 − 3x2

2
+ 1

))

, β1 = 1,

b1 = 1

v
sin

(

v

(

−x1 − 3x2

2
+ 1

))

, B1 = sin(vx2)

v sec(v(−x1 − 3x2
2 + 1))

,

α2 = cos( 1
2v(x1 + 4x2 − 2))

cos(v(−x1 − 5x2
2 + 1))

, β2 = 1,

b2 = sin( 1
2v(x1 + x2))

v cos(v(−x1 − 5x2
2 + 1))

, B2 = sin(vx1)

v sec( 1
2v(x1 + 4x2 − 2))

,

α3 = cos(v(−x1 − 3x2
2 + 1))

cos(v(− 3x1
2 − 2x2 + 1))

, β3 = 1,

b3 = sin( 1
2v(x1 + x2))

v cos(v(− 3x1
2 − 2x2 + 1))

, B3 = sin(vx2)

v sec(v(−x1 − 3x2
2 + 1))

,

α4 = cos(v(x1 + 2x2 − 1))

cos(v(−x1 − 5x2
2 + 1))

, β4 = 1,

b4 = sin( vx2
2 )

v sec(v(−x1 − 5x2
2 + 1))

, B4 = 0.
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The trigonometrically fitted method based on the fourth order (six stage) method
derived by Ruth’s method (8.1.12) with the technique (8.1.18).

α1 = cos

(
7v

48

)

, β1 = cos

(
3v

16

)

sec

(
7v

48

)

,

b1 = 1

v
sin

(
7v

48

)

, B1 = 1

v
sec

(
7v

48

)

sin

(
v

3

)

,

α2 = 1, β2 = cos

(
25v

48

)

sec

(
3v

16

)

,

b2 = 2

v
sin

(
3v

16

)

, B2 = −1

v
sec

(
3v

16

)

sin

(
v

3

)

,

α3 = cos

(
v

2

)

sec

(
25v

48

)

, β3 = 1,

b3 = −1

v
sec

(
25v

48

)

sin

(
v

48

)

, B3 = 2

v
sin

(
v

2

)

,

α4 = cos

(
25v

48

)

sec

(
v

2

)

, β4 = cos

(
3v

16

)

sec

(
25v

48

)

,

b4 = −1

v
sec

(
v

2

)

sin

(
v

48

)

, B4 = −1

v
sec

(
25v

48

)

sin

(
v

3

)

,

α5 = 1, β5 = 2 sin( 3v
16 )

v
,

b5 = cos

(
7v

48

)

sec

(
3v

16

)

, B5 = 1

v
sec

(
3v

16

)

sin

(
v

3

)

,

α6 = sec

(
7v

48

)

, β6 = 1,

b6 = 1

v
tan

(
7v

48

)

, B6 = 0.

The trigonometrically fitted method based on the fifth order (six stage) method
of McLachlan and Atela.

α1 = cos(b1 v), β1 = cos(0.22045v)

cos(b1 v)
,

b1 = sin(b1 v)

v
, B1 = sin(B1 v)

v cos(b1 v)
,

α2 = cos(0.478478v)

cos(0.22045v)
, β2 = cos(0.567079v)

cos(0.478478v)
,



8 Symplectic Partitioned Runge-Kutta Methods for the Numerical Integration 187

b2 = sin(b2 v)

v cos(0.22045v)
, B2 = − sin(B2 v)

v cos(0.478478v)
,

α3 = cos(0.395767v)

cos(0.567079v)
, β3 = cos(0.19009v)

cos(0.395767v)
,

b3 = − sin(b3 v)

v cos(0.567079v)
, B3 = sin(B3 v)

v cos(0.395767v)
,

α4 = cos(0.21118v)

cos(0.19009v)
, β4 = cos(0.814219v)

cos(0.21118v)
,

b4 = sin(b4 v)

v cos(0.19009v)
, B4 = − sin(B4 v)

v cos(0.21118v)
,

α5 = cos(0.824924v)

cos(0.814219v)
, β5 = cos(0.501343v)

cos(0.824924v)
,

b5 = sin(b5 v)

v sec(0.814219v)
, B5 = sin(B5 v)

v sec(0.824924v)
,

α6 = cos(0.442364v)

cos(0.501343v)
, β6 = sec(0.442364v),

b6 = − sin(b6 v)

v sec(0.501343v)
, B6 = tan(B6 v)

v
.

8.3 Construction of SPRK Methods with Minimum Phase-Lag
and Methods with Infinite Phase-Lag Order

Three stage methods are considered here with algebraic order two and three and
fifth phase-lag order. For the second order method we set b1 = b3 and solve the
order conditions leaving b1 and B3 as free parameters. We substitute into

φ(v) = v − arccos

(
tr(M(v2))

2
√

det(M(v2))

)

,

and take the Taylor expansion the constant term and the coefficients of v and v2 are
zero, the coefficient of v3 is

pl3 = 24(B3 − 1)b1
3 − 12(B3

2 + B3 − 2)b1
2 + 4(3B3

2 − 2)b1 + 1

48b1 − 24

and the coefficient of v5 is pl5 = t1/t2, where

t1 = 320(B3 − 1)2b6
1 + 320(B3 − 2)(B3 − 1)2b5

1

+ 80(B4
3 − 6B3

3 + 17B2
3 − 16B3 + 4)b4

1



188 Z. Kalogiratou et al.

− 80(2B4
3 − 2B3

3 + 8B2
3 − 5B3 − 1)b3

1

+ 8(10B4
3 + 25B2

3 − 5B3 − 14)b2
1 − 8(5B2

3 − 4)b1 − 3,

t2 = 640(1 − 2b1)
2.

We solve the equations pl3 = 0, pl5 = 0 and obtain the following coefficients

b1 = 0.5974665433347971, b2 = −0.1949330866695942,

b3 = 0.5974665433347971, B1 = −0.18554773759667065

B2 = 0.9618767420574417, B3 = 0.2236709955392291.

(8.3.1)

For a third order method the first nonzero coefficient in the Taylor expansion of
φ(v) is the coefficient of v3. We solve the five order conditions with the additional
condition that the coefficient of v5 is zero and obtain the following coefficients

b1 = 0.2603116924199056, b2 = 1.0941427983167422,

b3 = −0.35445449073664803, B1 = 0.6308476929866689,

B2 = −0.0941427983167424, B3 = 0.4632951053300734.

(8.3.2)

In order to construct methods with phase-lag of order infinity φ(v) should be
zero. This equation together with the five equations (of algebraic order 3) are solved
and the second method is derived. For the derivation of the first method only the
three equations of second order are solved together with the zero dispersion equa-
tion. In this case we use the coefficients c1 and d3 of method (8.3.2).

The coefficients found are long and omitted in this version of the work, alterna-
tively we present the Taylor expansions of these coefficients.

Taylor expansions of the coefficients of the First Method.

b2 = −0.194933 + 0.0000445788v4 + 2.27794 × 10−6v6

+ 1.36987 × 10−7v8 + O(v10),

b3 = 0.597467 − 0.0000445788v4 − 2.27794 × 10−6v6

− 1.36987 × 10−7v8 + O(v10),

B1 = −0.185548 − 0.000219969v4 − 0.0000112403v6

− 7.26254 × 10−7v8 + O(v10),

B2 = 0.961877 + 0.000219969v4 + 0.0000112403v6

+ 7.26254 × 10−7v8 + O(v10).

(8.3.3)
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Taylor expansions of the coefficients of the Second Method.

b1 = 0.260311692419906 − 0.00141750768546037v2

+ 0.0000171295629106582v4 + 1.09317432962664 × 10−6v6

+ 5.39795398526919 × 10−8v8 + O(v10),

b2 = 1.09414279831674 + 0.0482677717443141v2

+ 0.00444453889658238v4 + 0.000416871771038772v6

+ 0.0000395369062137604v8 + O(v10),

b3 = −0.354454490736648 − 0.0468502640588538v2

− 0.00446166845949304v4 − 0.000417964945368399v6

− 0.0000395908857536131v8 + O(v10),

B1 = 0.630847692986669 − 0.0000945321219474852v2

+ 0.000159464702869448v4 + 7.57889134172802 × 10−6v6

+ 3.79501123670239 × 10−7v8 + O(v10),

B2 = −0.0941427983167423 + 0.0147689541113375v2

− 0.000465169491230152v4 + 1.10473661738189 × 10−6v6

− 4.71876906682702 × 10−7v8 + O(v10),

B3 = 0.463295105330073 − 0.0146744219893900v2

+ 0.000305704788360704v4 − 8.68362795910990 × 10−6v6

+ 9.23757830124625 × 10−8v8 + O(v10).

(8.3.4)

8.4 Numerical Results

8.4.1 The Two-Body Problem

The following system of equations is known as the two-body problem and is a stan-
dard symplectic testcase:

p′
1 = − q1√

(q2
1 + q2

2 )3
, q ′

1 = p1, p′
2 = − q2√

(q2
1 + q2

2 )3
, q ′

2 = p2
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Table 8.1 Two-body. The maximum absolute error of the Hamiltonian

h (8.1.15) (8.2.10) (8.2.22) (8.1.16) (8.2.13) (8.2.24)

1 1.05 × 10−2 9.89 × 10−2 1.84 × 10−12 2.30 × 10−3 2.05 × 10−3 6.56 × 10−13

1/2 8.99 × 10−4 4.98 × 10−4 1.19 × 10−12 4.42 × 10−5 2.53 × 10−5 5.51 × 10−12

1/4 6.23 × 10−5 5.46 × 10−5 5.05 × 10−12 7.21 × 10−7 1.66 × 10−7 1.69 × 10−12

Table 8.2 Two-body. The maximum absolute error of the Hamiltonian

h (8.1.16) (8.3.1) (8.3.2) (8.3.3) (8.3.4)

1 2.30 × 10−3 4.57 × 10−3 9.07 × 10−4 4.57 × 10−3 8.74 × 10−4

1/2 4.42 × 10−5 9.61 × 10−5 7.47 × 10−6 9.61 × 10−5 7.42 × 10−6

1/4 7.21 × 10−7 2.12 × 10−6 5.47 × 10−8 1.12 × 10−6 5.48 × 10−8

with initial conditions

p1(0) = 0, q1(0) = 1 − e, p2(0) =
√

1 + e

1 − e
, q2(0) = 0.

The Hamiltonian of this problem is

H(p1,p2, q1, q2) = T (p1,p2) + V (q1, q2),

T (p1,p2) = 1

2
(p2

1 + p2
2), and V (q1, q2) = − 1

√
q2

1 + q2
2

.

The exact solution is

q1(x) = cos(E) − e, q2(x) =
√

1 − e2 sin(E),

where e is the eccentricity of the orbit and the eccectricity anomaly E is expressed
as an implicit function of x by Kepler’s equation

x = E − e sin(E).

For this problem we use v = h.
In Tables 8.1, 8.2 the maximum absolute error of the Hamiltonian is given with

e = 0 and integration interval [0,10000] for several stepsizes.

8.4.2 An Orbit Problem Studied by Stiefel and Bettis

We consider the following almost periodic orbit problem studied by Stiefel and
Bettis [26]:

p′
1 = −q1 + 0.001 cos(x), q ′

1 = p1, p′
2 = −q2 + 0.001 sin(x), q ′

2 = p2
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Table 8.3 Stiefel-Bettis. The maximum absolute error of the solution

h (8.1.15) (8.2.10) (8.2.22) (8.1.16) (8.2.13) (8.2.24)

1/2 – 3.85 × 10−4 8.32 × 10−3 9.92 × 10−3 2.97 × 10−4 8.26 × 10−4

1/4 – 1.82 × 10−4 1.27 × 10−3 4.36 × 10−4 1.76 × 10−5 7.53 × 10−5

1/8 3.21 × 10−1 5.50 × 10−5 2.72 × 10−4 8.70 × 10−6 1.43 × 10−6 7.81 × 10−6

Table 8.4 Stiefel-Bettis. The maximum absolute error of the solution

h (8.1.16) (8.3.1) (8.3.2) (8.3.3) (8.3.4)

1/2 1.83 × 10−2 4.87 × 10−3 1.41 × 10−3 4.73 × 10−3 1.72 × 10−3

1/4 11.09 × 10−3 1.01 × 10−3 2.05 × 10−4 1.01 × 10−3 2.10 × 10−4

1/8 6.75 × 10−5 2.36 × 10−4 2.59 × 10−5 2.36 × 10−4 2.60 × 10−5

with initial conditions

p1(0) = 0, q1(0) = 1, p2(0) = 0.9995, q2(0) = 0.

The analytical solution is given by

q(x) = cos(x) + 0.0005x sin(x), p(x) = sin(x) − 0.0005x cos(x).

In Tables 8.3, 8.4 the maximum absolute error of the solution is given with inte-
gration interval [0,1000] for several stepsizes.

8.4.3 The Schrödinger Equation

We shall use our new methods for the computation of the eigenvalues of the
one-dimensional time-independent Schrödinger equation. The Schrödinger equa-
tion may be written in the form

−1

2
ψ ′′ + V (x)ψ = Eψ, (8.4.1)

where E is the energy eigenvalue, V (x) the potential, and y(x) the wave function.
The tested problems are the harmonic oscillator and the exponential potential.

8.4.3.1 Harmonic Oscillator

The potential of the one dimensional harmonic oscillator is

V (x) = 1

2
kx2
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Table 8.5 Absolute Error
(×10−6) of the eigenvalues of
the harmonic oscillator

(8.1.15) (8.2.10) (8.2.22) (8.1.16) (8.2.13) (8.2.24) h

E0 152 102 102 0 0 2 0.1

E10 – 104 109 81 3 31

E30 – 108 131 2178 11 105

E50 – 79 147 – 0 186

E100 – 28 32 – 3 22 0.05

E150 – 27 35 – 3 34

E200 – 22 39 – 2 49

E250 – 10 42 – 2 63

E300 – 22 45 – 14 81

Table 8.6 Absolute Error
(×10−6) of the eigenvalues of
the harmonic oscillator with
step size h = 0.1

(8.1.16) (8.3.1) (8.3.2) (8.3.3) (8.3.4)

E0 0 0 0 0 0

E10 81 8 7 0 0

E15 285 16 15 1 1

E20 692 18 18 2 2

E30 2178 121 120 4 4

E50 – 842 841 6 6

E100 – 1505 1505 22 10

with boundary conditions ψ(−R) = ψ(R) = 0. We consider k = 1.
The exact eigenvalues are given by

En = n + 1

2
, n = 0,1,2, . . . .

In Tables 8.5 and 8.6 we give the computed eigenvalues of the harmonic oscillator
up to E300.

8.4.3.2 Doubly Anharmonic Oscillator

The potential is V (x) = 1
2x2 +λ1x

4 +λ2x
6 we take λ1 = λ2 = 1/2. The integration

interval is [−R,R]. In Tables 8.7 and 8.8 we give the computed eigenvalues up to
E30 with step h = 1/30. The performance of all methods considered is similar with
this the harmonic oscillator.

8.5 Conclusions

In this work symplectic partitioned Runge-Kutta methods have been considered spe-
cially tuned for the numerical integration of problems with periodic or oscillatory
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Table 8.7 Absolute Error (×10−6) of the eigenvalues of the doubly anharmonic oscillator with
step size h = 1/30

(8.1.15) (8.2.10) (8.2.22) (8.1.16) (8.2.13) (8.2.24)

0.807447 70 55 55 0 0 0

5.553677 1814 229 244 1 1 1

12.534335 9014 281 432 4 3 5

21.118364 – 87 622 17 6 15

31.030942 – 1454 815 53 12 34

42.104446 – 4753 1013 130 21 62

54.222484 – – 1212 273 29 99

67.29805 – – 1418 521 42 151

81.262879 – – 1629 920 57 215

96.061534 – – 1845 1525 73 293

111.647831 – – 2067 2410 93 390

127.982510 – – – 3658 114 502

145.031661 – – – 5365 133 627

162.765612 – – – 7643 147 772

181.158105 – – – – 111 877

200.185694 – – – – 146 –

Table 8.8 Absolute Error (×10−6) of the eigenvalues of the doubly anharmonic oscillator with
step size h = 1/30

(8.1.16) (8.3.1) (8.3.2) (8.3.3) (8.3.4)

0.807447 0 0 0 0 0

5.553677 1 1 1 1 1

12.534335 4 2 2 2 2

21.118364 17 6 6 6 6

31.030942 53 12 11 12 11

42.104446 130 21 20 20 19

54.222484 273 32 31 30 28

67.298050 521 50 47 43 41

81.262879 920 74 71 60 57

96.061534 1525 106 102 79 75

111.647831 2410 152 147 102 97

127.982510 3658 216 210 128 122

145.031661 5365 301 294 145 149

162.765612 7643 412 402 179 171

181.158105 – 516 505 156 149

200.185694 – 457 444 85 89
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solutions. The general framework for constructing trigonometrically fitted methods
is given and methods with corresponding order up to fifth have been constructed
following two different approaches. The methods that integrate the trigonometric
functions at each stage are suitable for the integration of Kepler’s problem as shown
by the numerical results. Both type of methods show almost the same behavior on
Stiefel-Bettis problem. Simos’ approach is more favourable for the computation of
the eigenvalues of the Schrödinger equation as shown with the two potentials used
here, the phase-fitted methods also have superb behavior on this problem.

Appendix

Taylor expansion for method (8.2.9)

β = 1 − v4

24
− 7v6

360
− 323v8

40320
− 2951v10

907200
+ O(v11),

α = 1 + v4

24
+ 7v6

360
+ 131v8

13440
+ 4421v10

907200
+ O(v11),

b1 = −v2

6
− v4

30
+ 13v6

5040
+ 211v8

22680
+ 315523v10

39916800
+ O(v11),

B2 = 1

2
+ v2

12
+ v4

120
− 43v6

5040
− 851v8

90720
− 67477v10

9979200
+ O(v11).

Taylor expansion for method (8.2.10)

β = 1 − v4

24
− 7v6

360
− 323v8

40320
− 2951v10

907200
+ O(v11),

α = 1 + v4

24
+ 7v6

360
+ 131v8

13440
+ 4421v10

907200
+ O(v11),

b1 =
(

1 − 1√
2

)

+
(

1

3
− 1

2
√

2

)

v2 +
(

7

40
− 5

24
√

2

)

v4

+
(

11

126
− 61

720
√

2

)

v6 +
(

2263

51840
− 277

8064
√

2

)

v8

+
(

48403

2217600
− 50521

3628800
√

2

)

v10 + O(v11),

B2 =
(

1 − 1√
2

)

+
(

1

3
− 1

2
√

2

)

v2 +
(

2

15
− 1

4
√

2

)

v4

+
(

17

315
− 1

8
√

2

)

v6 +
(

62

2835
− 1

16
√

2

)

v8 +
(

1382

155925
− 1

32
√

2

)

v10

+ O(v11).
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Taylor expansion for method (8.2.12)

β = 1 − v4

36
− v6

80
− 619v8

120960
− 3767v10

1814400
+ O(v11),

α = 1 + v4

36
+ v6

80
+ 2137v8

362880
+ 5027v10

1814400
+ O(v11),

b1 = 7

24
+ 23v4

960
+ 1213v6

60480
+ 37921v8

2903040
+ 7507v10

985600
+ O(v11),

B3 = 1 − v4

30
− 187v6

7560
− 43v8

2835
− 256331v10

29937600
+ O(v11).

Taylor expansion for method (8.2.13)

β = 1 + 1

360
(−6 − 3 3

√
3 + 32/3)v4 + 1

720
(−5 − 3 3

√
3 + 32/3)v6

+
(−113 + 70

3√3
− 70 3

√
3)

40320
v8 + (−2059 − 1281 3

√
3 + 427 32/3)v10

1814400
+ O(v12),

α = 1 + 1

360
(6 + 3 3

√
3 − 32/3)v4 + 1

720
(5 + 3 3

√
3 − 32/3)v6

+ (1779 + 1232 3
√

3 − 364 32/3)

604800
v8

+ (2227 + 1785 3
√

3 − 455 32/3)v10

1814400
+ O(v12),

b1 = 1

24
(9 + 3 3

√
3 + 32/3) + 1

960

(

9 − 13
3
√

3
+ 3 3

√
3

)

v4

+ (185 + 91 3
√

3 − 63 32/3)v6

20160
+ (88747 + 51321 3

√
3 − 25677 32/3)

14515200
v8

+ (833343 + 541629 3
√

3 − 220825 32/3)v10

239500800
+ O(v12),

B3 = 1

10

(

2 − 1
3
√

3
+ 3

√
3

)

+ (−27 − 16 3
√

3 + 7 32/3)v4

1800

+ (−897 − 546 3
√

3 + 217 32/3)v6

75600
+ (−16256 − 10563 3

√
3 + 3801 32/3)

2268000
v8

+ (−193472 − 135751 3
√

3 + 44352 32/3)v10

49896000
+ O(v12).

Taylor expansion for method (8.2.15)

β = 1 − 1.52485 × 10−7v2 − 6.2304 × −8v4 + 0.000280188v6

+ 0.000115295v8 + 0.0000462484v10 + O(v11),
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α = 1 + 1.524845 × 10−7v2 + 6.2304 × 10−8v4 − 0.000280188v6

− 0.000115295v8 − 0.0000462485v10 + O(v11),

b1 = 0.134496 + 1.43141 × 10−7v2 + 0.000578139v4 − 2.74604 × 10−6v6

− 0.0000946384v8 − 0.0000757574v10 + O(v11),

B4 = 0.128846 − 1.70966 × 10−7v2 − 0.000354727v4 + 0.0000472764v6

+ 0.00010977v8 + 0.0000818646v10 + O(v11).

Taylor expansion for method (8.2.16)

β = 1 + (32 + 25 3
√

2 + 2022/3)v6

1440
+ (447 + 350 3

√
2 + 28022/3)v8

40320

+ (16756 + 13125 3
√

2 + 1050022/3)v10

3628800
+ O(v11),

α = 1 + (−32 − 25 3
√

2 − 2022/3)v6

1440
+ (−447 − 350 3

√
2 − 28022/3)v8

40320

+ (−8378 − 13125
22/3 − 525022/3)v10

1814400
+ O(v11),

b1 = 1

12
(4 + 2

3
√

2 + 22/3) + 1

720
(6 + 5

3
√

2 + 522/3)v4

+ (−1076 − 826 3
√

2 − 62322/3)v6

60480
+

(−12070 − 14619
3√2

− 9369 3
√

2)v8

725760

+ (−2518940 − 1961674 3
√

2 − 154447722/3)v10

239500800
+ O(v11),

B4 = 1

720
(26 + 20

3
√

2 + 1522/3)v4 + (404 + 315 3
√

2 + 24522/3)v6

10080

+ (9406 + 7350 3
√

2 + 577522/3)v8

362880

+ (478917 + 373450 3
√

2 + 29452522/3)v10

39916800
+ O(v11).

Taylor expansion for method (8.2.17)

β = 1 − 11v6

276480
− 991v8

46448640
− 98593v10

11147673600
+ O(v11),

α = 1 + 11v6

276480
+ 991v8

46448640
+ 98593v10

11147673600
+ O(v11),

c1 = 7

48
− 203v4

138240
− 57863v6

92897280
− 175937v8

743178240
− 7260959v10

81749606400
+ O(v11),
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d6 = v4

720
+ 1163v6

1935360
+ 5339v8

23224320
+ 10575749v10

122624409600
+ O(v11).

Taylor expansion for method (8.2.18)

β = 1 + 1.7743047420193392 × 10−8v2 + 6.204841085377666 × 10−9v4

+ 0.000187041v6 + 0.0000818221v8 + 0.0000332888v10 + O(v11),

α = 1 − 1.7743047420193392 × 10−8v2 − 6.204840780066334 × 10−9v4

− 0.000187041v6 − 0.0000818221v8 − 0.0000332888v10 + O(v11),

b1 = 0.11939 − 1.2711962010802935 × 10−8v2 − 8.788109379098685 × 10−9v4

− 0.000182374v6 − 0.000142348v8 − 0.0000847776v10 + O(v11),

B6 = 0.442364 + 7.940184509891424 × 10−9v2 + 9.158207150972153 × 10−9v4

+ 0.000205354v6 + 0.000152055v8 + 0.0000887026v10 + O(v11).

Taylor expansion for method (8.2.21)

α1 = 1,

β1 = 1 − v2

8
+ v4

384
− v6

46080
+ v8

10321920
− v10

3715891200
+ O(v11),

B1 = 1

2
− v2

48
+ v4

3840
− v6

645120
+ v8

185794560
− v10

81749606400
+ O(v11),

α2 = 1,

β2 = 1 + v2

8
+ 5v4

384
+ 61v6

46080
+ 277v8

2064384
+ 50521v10

3715891200
+ O(v11),

b2 = 1 − v2

24
+ v4

1920
− v6

322560
+ v8

92897280
− v10

40874803200
+ O(v11),

B2 = 1

2
+ v2

24
+ v4

240
+ 17v6

40320
+ 31v8

725760
+ 691v10

159667200
+ O(v11).

Taylor expansion for method (8.2.22)

α1 = 1 +
(

−3

4
+ 1√

2

)

v2 + 1

96
(17 − 12

√
2)v4 + (−99 + 70

√
2)

5760
v6

+ (577 − 408
√

2)v8

645120
+ (−3363 + 2378

√
2)v10

116121600
+ O(v11),

β1 = 1 +
(

−3

4
+ 1√

2

)

v2 + 1

32
(−17 + 12

√
2)v4 + 37(−99 + 70

√
2)

5760
v6

+ 839(−577 + 408
√

2)v8

645120
+ 30601(−3363 + 2378

√
2)v10

116121600
+ O(v11),
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b1 =
(

1 − 1√
2

)

+ 1

24
(−10 + 7

√
2)v2 + 1

960
(58 − 41

√
2)v4

+ (−338 + 239
√

2)

80640
v6

+ (1970 − 1393
√

2)v8

11612160
+ (−11482 + 8119

√
2)v10

2554675200
+ O(v11),

B1 = 1√
2

+ 1

6
(−3 + 2

√
2)v2 +

(

− 7

12
+ 33

40
√

2

)

v4 +
(

−497

720
+ 41

42
√

2

)

v6

+ (−591816 + 418477
√

2)v8

725760
+ (−38445099 + 27184790

√
2)v10

39916800
+ O(v11),

α2 = 1 +
(

3

4
− 1√

2

)

v2 + 1

32
(51 − 36

√
2)v4 − 217(−99 + 70

√
2)

5760
v6

− 9841(−577 + 408
√

2)v8

645120
− 717841(−3363 + 2378

√
2)v10

116121600
+ O(v11),

β2 = 1 +
(

3

4
− 1√

2

)

v2 + 1

96
(85 − 60

√
2)v4 − 61(−99 + 70

√
2)

5760
v6

− 277(−577 + 408
√

2)v8

129024
− 50521(−3363 + 2378

√
2)v10

116121600
+ O(v11),

b2 = 1√
2

+
(

−1 + 17

12
√

2

)

v2 +
(

−29

12
+ 547

160
√

2

)

v4

+ (−461608 + 326409
√

2)

80640
v6 + (−157064352 + 111061297

√
2)v8

11612160

+ (−81625595832 + 57718012769
√

2)v10

2554675200
+ O(v11),

B2 =
(

1 − 1√
2

)

+
(

5

6
− 7

6
√

2

)

v2 + 1

60
(58 − 41

√
2)v4 − 17(−338 + 239

√
2)

5040
v6

− 31(−1970 + 1393
√

2)v8

45360
− 691(−11482 + 8119

√
2)v10

4989600
+ O(v11).

Taylor expansion for method (8.2.23)

α1 = 1 − 49v2

1152
+ 2401v4

7962624
− 117649v6

137594142720
+ 823543v8

634033809653760

− 40353607v10

32868312692450918400
+ O(v11),

β1 = 1 − v2

36
− 41v4

62208
− 6091v6

268738560
− 1691801v8

2167107747840
− 755864131v10

28085716412006400

+ O(v11),
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b1 = 7

24
− 343v2

82944
+ 16807v4

955514880
− 117649v6

3302259425280
+ 5764801v8

136951302885212160

− 282475249v10

8677234550807042457600
+ O(v11),

B1 = 2

3
− 109v2

5184
+ 121v4

59719680
− 6669349v6

1444738498560
− 8635447439v8

59916195012280320

− 18974353194589v10

3796290115978081075200
+ O(v11),

α2 = 1,

β2 = 1 − 17v2

36
+ 935v4

62208
− 87227v6

268738560
− 1152821v8

433421549568
− 7623177587v10

28085716412006400

+ O(v11),

b2 = 3

4
− 9v2

512
+ 81v4

655360
− 243v6

587202560
+ 243v8

300647710720
− 2187v10

2116559883468800

+ O(v11),

B2 = −2

3
+ 13v2

5184
− 22201v4

59719680
− 27692027v6

1444738498560
− 65723908081v8

59916195012280320

− 237325267297667v10

3796290115978081075200
+ O(v11),

α3 = 1 + 49v2

1152
+ 124901v4

7962624
+ 936875149v6

137594142720
+ 1896071678543v8

634033809653760

+ 43219313660178607v10

32868312692450918400
+ O(v11),

β3 = 1 + v2

2
+ 5v4

24
+ 61v6

720
+ 277v8

8064
+ 50521v10

3628800
+ O(v11),

b3 = − 1

24
− 937v2

41472
− 609961v4

59719680
− 6511231289v6

1444738498560
− 7424833305271v8

3744762188267520

− 103444872822456427v10

118634066124315033600
+ O(v11),

B3 = 1 + v2

3
+ 2v4

15
+ 17v6

315
+ 62v8

2835
+ 1382v10

155925
+ O(v11).

Taylor expansion for method (8.2.24)

α1 = 1 + 1

384
(−33 − 19 3

√
3 − 9 32/3)v2 + (2115 + 1497 3

√
3 + 955 32/3)v4

884736

+ (−54883 − 38457 3
√

3 − 26331 32/3)v6

1698693120
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+ (4350345 + 3022795 3
√

3 + 2093553 32/3)v8

18264348426240

+ (−344509371 − 238934721 3
√

3 − 165673459 32/3)v10

315607940805427200
+ O(v11),

β1 = 1 + 1

600
(−21 − 8 3

√
3 − 9 32/3)v2 +

(−5343 − 7091
3√3

− 3389 3
√

3)v4

1440000

+ (−30310189 − 20870847 3
√

3 − 14343981 32/3)v6

51840000000

+ (−337413172197 − 234059500031 3
√

3 − 161907159213 32/3)v8

3483648000000000

+ (−6082242830801181 − 4218418696110663 3√3 − 2923800594515749 32/3)v10

376233984000000000000

+ O(v11),

b1 = 1

24
(9 + 3 3

√
3 + 32/3) + (−145 − 99 3

√
3 − 57 32/3)v2

9216

+ (10707 + 7561 3
√

3 + 5067 32/3)v4

35389440

+ (−846297 − 589755 3
√

3 − 407233 32/3)v6

285380444160

+ (22354489 + 15512283 3
√

3 + 10753569 32/3)v8

1315033086689280

+ (−589827737 − 1226986993
32/3 − 283597185 32/3)v10

9257832930292531200
+ O(v11),

B1 = 1

30
(9 − 3 3

√
3 − 4 32/3) + (−971 − 333 3

√
3 − 159 32/3)v2

72000

+ (−9893067 − 6725041 3
√

3 − 4669443 32/3)v4

6912000000

+
(−110223290553 − 158020656611

3√3
− 76358768219 3

√
3)v6

464486400000000

+ (−6350043743536681 − 4405010788277163 3
√

3 − 3051258622095249 32/3)v8

160526499840000000000

+ (−559973032616626919337 − 388318940090190174251 3
√

3 − 269211764230935936273 32/3)v10

84757991915520000000000000

+ O(v11),

α2 = 1 + 1

120
(9 + 7 3

√
3 + 32/3)v2 + (22467 + 17241 3

√
3 + 10043 32/3)v4

1728000

+ (63724561 + 44978403 3
√

3 + 30563769 32/3)

20736000000
v6
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+ (1015271271657 + 705779397611 3
√

3 + 488297833553 32/3)

1393459200000000
v8

+ (5185245735246333 + 3596505417981159 3
√

3 + 2493152211073157 32/3)v10

30098718720000000000

+ O(v11),

β2 = 1 + 1

120
(3 − 3

√
3 + 2 32/3)v2 + (327 + 771 3

√
3 + 983 32/3)v4

864000

+ (938671 + 1212933 3
√

3 + 562959 32/3)

10368000000
v6

+ (8718904887 + 6027766901 3
√

3 + 3239842223 32/3)

696729600000000
v8

+ (17304108560643 + 10653464795289 3
√

3 + 7673078753147 32/3)v10

15049359360000000000

+ O(v11),

b2 = 1

12
(3 − 3 3

√
3 − 32/3) + (−2747 − 1281 3

√
3 − 2163 32/3)v2

115200

+ (−2847087 − 1868701 3
√

3 − 1377223 32/3)

442368000
v4

− 47(71319490701 + 49113289623 3
√

3 + 34277991829 32/3)v6

2229534720000000

+ (−18215815214276273 − 12618020227459779 3√3 − 8754867925251417 32/3)

51368479948800000000
v8

+ (−11358347350190084902233 − 7874452928611400716859 3
√

3 − 5460177434215423944257 32/3)v10

135612787064832000000000000

+ O(v11),

B2 = 1

6
(3 + 32/3) + (−37 − 51 3

√
3 + 27 32/3)v2

14400

+ (11703 + 22069 3
√

3 + 14287 32/3)

55296000
v4

+ (10155546543 + 8959120989 3
√

3 + 4061194247 32/3)v6

278691840000000

+ (24922607251937 + 15440631924051 3
√

3 + 9981610481673 32/3)

6421059993600000000
v8

+ (5720864832661462197 + 3685666714497670031 3
√

3 + 2734652857842569213 32/3)v10

16951598383104000000000000

+ O(v11),

α3 = 1 + (21 − 17 3
√

3 + 29 32/3)v2

1920
+ (20787 + 50601 3

√
3 + 33323 32/3)

110592000
v4
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+ (144458419 + 104260137 3
√

3 + 61812651 32/3)v6

5308416000000

+ (2091346305117 + 1420085277191 3
√

3 + 994680593893 32/3)

1426902220800000000
v8

+ (9752298693664947 + 6766245560458281 3
√

3 + 4700400283073963 32/3)v10

123284351877120000000000

+ O(v11),

β3 = 1 + 1

600
(6 + 13 3

√
3 − 32/3)v2 + (−42 + 159 3

√
3 + 157 32/3)

432000
v4

+ 61(1798 − 21 3
√

3 + 1017 32/3)v6

6480000000
+ 277(50514 + 20197 3

√
3 + 4031 32/3)

21772800000000
v8

+ 50521(399702 + 765771 3
√

3 + 236233 32/3)v10

2939328000000000000
+ O(v11),

b3 = 1

24
(9 + 3 3

√
3 + 32/3) + (−143 − 189 3

√
3 + 153 32/3)v2

115200

+ (5619 + 5737 3
√

3 + 3051 32/3)

55296000
v4

+ (1777353849 + 1192560027 3
√

3 + 805825121 32/3)v6

278691840000000

+ (136087408691 + 93914868393 3
√

3 + 65599498539 32/3)

401316249600000000
v8

+ (9797155554558513 + 6798867873791299 3
√

3 + 4713547167196377 32/3)v10

529737449472000000000000

+ O(v11),

B3 = 1

10

(

2 − 1
3
√

3
+ 3

√
3

)

+ (−4 + 33 3
√

3 + 9 32/3)v2

9000

+ (228 + 119 3
√

3 + 487 32/3)

6750000
v4 17(20004 + 2217 3

√
3 + 4241 32/3)v6

85050000000

+ 31(92924 + 86877 3
√

3 + 11421 32/3)

38272500000000
v8

+ 691(742332 + 1695011 3
√

3 + 1105003 32/3)v10

631496250000000000
+ O(v11).

Taylor expansions for the trigonometrically fitted (each stage) method based on
the fourth order method (8.1.13).

α1 = 1 − 0.22822v2 + 0.00868074v4 − 0.000132075v6

+ 1.0765026331929995 × 10−6v8

− 5.459545528244244 × 10−9v10 + O(v11),
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b1 = 0.675604 − 0.0513954v2 + 0.00117295v4 − 0.0000127472v6

+ 8.08098944518828 × 10−8v8

− 3.353171446634005 × 10−10v10 + O(v11),

B1 = 1.35121 − 0.102791v2 + 0.00234589v4 − 0.0000254943v6

+ 1.616197889037656 × 10−7v8

− 6.70634289326801 × 10−10v10 + O(v11),

α2 = 1 − 0.134057v2 − 0.0174011v4 − 0.00320379v6 − 0.000592062v8

− 0.000109513v10 + O(v11),

b2 = −0.175604 − 0.0391738v2 − 0.00741726v4 − 0.0013759v6

− 0.000254606v8 − 0.0000471009v10 + O(v11),

B2 = −1.70241 + 0.205582v2 − 0.00744775v4 + 0.000128483v6

− 1.292958311230123 × 10−6v8

+ 8.516524610906462 × 10−9v10 + O(v11),

α3 = 1 + 0.134057v2 + 0.0353723v4 + 0.0102784v6 + 0.00301496v8

+ 0.00088524v10 + O(v11),

b3 = −0.175604 − 0.0627146v2 − 0.0188803v4 − 0.00556083v6 − 0.0016335v8

− 0.000479698v10 + O(v11),

B3 = 1.35121 − 0.102791v2 + 0.00234589v4 − 0.0000254943v6

+ 1.616197889037656 × 10−7v8

− 6.70634289326801 × 10−10v10 + O(v11),

α4 = 1 + 0.22822v2 + 0.0434037v4 + 0.00805655v6 + 0.00149096v8

+ 0.000275822v10 + O(v11),

b4 = 0.675604 + 0.102791v2 + 0.0187672v4 + 0.00346723v6 + 0.000641307v8

+ 0.000118633v10 + O(v11).

Taylor expansions for the trigonometrically fitted (each stage) method based on
the fourth order method (8.1.17).

α1 = 1 − 0.00904461v2 + 0.0000136342v4 − 8.221055656370937 × 10−9v6

+ 2.655581225772937 × 10−12v8 − 5.337490419195165 × 10−16v10

+ O(v12),

β1 = 1 − 0.0634813v2 + 0.000288871v4 − 7.522904550911909 × 10−7v6
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− 2.879643476093273 × 10−10v8 − 7.498877433437165 × 10−12v10

+ O(v12),

b1 = 0.134496 − 0.000405489v2 + 3.6674890397071147 × 10−7v4

− 1.5795724939577097 × 10−10v6

+ 3.96850648508669 × 10−14v8 − 6.52611071743779 × 10−18v10

+ O(v12),

B1 = 0.515353 − 0.0181508v2 + 0.000131737v4 − 4.7237602431486547

× 10−7v6

+ 8.469392903940952 × 10−10v8 − 1.828526001573185 × 10−12v10

+ O(v12),

α2 = 1 − 0.110896v2 − 0.00331224v4 − 0.000207332v6

− 0.0000121651v8 − 7.151580951637622 × 10−7v10 + O(v12),

β2 = 1 + 0.0482769v2 + 0.00629181v4 + 0.000924495v6

+ 0.000137286v8 + 0.0000204086v10 + O(v12),

b2 = −0.22482 − 0.0144114v2 − 0.000852893v4 − 0.0000501701v6

− 2.9495499139878988 × 10−6v8 − 1.7339730988019144 × 10−7v10

+ O(v12),

B2 = −0.085782 − 0.0156291v2 − 0.00238576v4 − 0.000355846v6

− 0.0000529255v8 − 7.869094771269424 × 10−6v10 + O(v12),

α3 = 1 + 0.107197v2 + 0.0115733v4 + 0.00126494v6

+ 0.00013853v8 + 0.0000151747v10 + O(v12),

β3 = 1 + 0.00690366v2 + 0.000136575v4 + 3.0573015286240117 × 10−6v6

+ 6.917710386828629 × 10−8v8 + 1.5669474854300608 × 10−9v10

+ O(v12),

b3 = 0.75632 + 0.030108v2 + 0.00382896v4 + 0.000418471v6

+ 0.0000458476v8 + 5.02241305086368 × 10−6v10

+ O(v12),

B3 = 0.441583 − 0.00200954v2 + 0.0000262685v4

+ 4.532774919129704 × 10−7v6

+ 1.0413592845429705 × 10−8v8 + 2.3583970107393747 × 10−10v10

+ O(v12),
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α4 = 1 + 0.0127442v2 + 0.000205868v4 + 3.4889662628521454 × 10−6v6

+ 5.947253211683284 × 10−8v8 + 1.0144177996172859 × 10−9v10

+ O(v12),

β4 = 1 + 0.00830065v2 + 0.0000574173v4 + 3.876349986827062 × 10−7v6

+ 2.609136341938259 × 10−9v8 + 1.755570645359568 × 10−11v10

+ O(v12),

b4 = 0.334004 + 0.000818894v2 + 0.000027219v4

+ 4.549550964670017 × 10−7v6

+ 7.766666845847533 × 10−9v8 + 1.324886688646942 × 10−10v10

+ O(v12),

B4 = 0.128846 + 0.000713003v2 + 4.73471060426436 × 10−6v4

+ 3.181522149637934 × 10−8v6

+ 2.1403120215930684 × 10−10v8 + 1.4400336343405398 × 10−12v10

+ O(v12).

Taylor expansions for the trigonometrically fitted (each stage) method based on
the fourth order (six stages) method derived by Ruth’s method (8.1.12) with the
technique (8.1.18).

α1 = 1 − 49v2

4608
+ 2401v4

127401984
− 117649v6

8806025134080
+ 823543v8

162312655271362560

− 40353607v10

33657152197069740441600
+ O(v12),

β1 = 1 − v2

144
− 41v4

995328
− 6091v6

17199267840
− 1691801v8

554779583447040

− 755864131v10

28759773605894553600
+ O(v12),

b1 = 7

48
− 343v2

663552
+ 16807v4

30576476160
− 117649v6

422689206435840

+ 5764801v8

70119067077228625920
− 282475249v10

17770976360052822953164800
+ O(v12),

B1 = 1

3
− 109v2

41472
+ 121v4

1911029760
− 6669349v6

184926527815680

− 8635447439v8

30677091846287523840
− 18974353194589v10

7774802157523110042009600
+ O(v12),



206 Z. Kalogiratou et al.

β2 = 1 − 17v2

144
+ 935v4

995328
− 87227v6

17199267840
− 1152821v8

110955916689408

− 7623177587v10

28759773605894553600
+ O(v12),

b2 = 3

8
− 9v2

4096
+ 81v4

20971520
− 243v6

75161927680
+ 243v8

153931627888640

− 2187v10

4334714641344102400
+ O(v12),

B2 = −1

3
+ 13v2

41472
− 22201v4

1911029760
− 27692027v6

184926527815680

− 65723908081v8

30677091846287523840
− 237325267297667v10

7774802157523110042009600
+ O(v12),

α3 = 1 + 49v2

4608
+ 124901v4

127401984
+ 936875149v6

8806025134080
+ 1896071678543v8

162312655271362560

+ 43219313660178607v10

33657152197069740441600
+ O(v12),

b3 = − 1

48
− 937v2

331776
− 609961v4

1911029760
− 6511231289v6

184926527815680

− 7424833305271v8

1917318240392970240
− 103444872822456427v10

242962567422597188812800
+ O(v12),

B3 = 1 − v2

24
+ v4

1920
− v6

322560
+ v8

92897280
− v10

40874803200
+ O(v12),

α4 = 1 − 49v2

4608
− 110495v4

127401984
− 763859089v6

8806025134080
− 284943681589v8

32462531054272512

− 29929168009554247v10

33657152197069740441600
+ O(v12),

β4 = 1 + 17v2

144
+ 12937v4

995328
+ 24571307v6

17199267840
+ 87131648377v8

554779583447040

+ 496587784106147v10

28759773605894553600
+ O(v12),

b4 = − 1

48
− 1727v2

663552
− 8288641v4

30576476160
− 81542922047v6

2958824445050880

− 1371109788552961v8

490833469540600381440
− 35210074731213970367v10

124396834520369760672153600
+ O(v12),

B4 = −1

3
− 1619v2

41472
− 8231161v4

1911029760
− 87591429659v6

184926527815680

− 1597512864247921v8

30677091846287523840
− 44512125440565344099v10

7774802157523110042009600
+ O(v12),
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β5 = 1 + v2

144
+ 89v4

995328
+ 21691v6

17199267840
+ 9958409v8

554779583447040

+ 7354742131v10

28759773605894553600
+ O(v12),

b5 = 3

8
− 9v2

4096
+ 81v4

20971520
− 243v6

75161927680
+ 243v8

153931627888640

− 2187v10

4334714641344102400
+ O(v12),

B5 = 1

3
− 13v2

41472
+ 22201v4

1911029760
+ 27692027v6

184926527815680

+ 65723908081v8

30677091846287523840
+ 237325267297667v10

7774802157523110042009600
+ O(v12),

α6 = 1 + 49v2

4608
+ 12005v4

127401984
+ 7176589v6

8806025134080
+ 228121411v8

32462531054272512

+ 2038704579247v10

33657152197069740441600
+ O(v12),

b6 = 7

48
+ 343v2

331776
+ 16807v4

1911029760
+ 2000033v6

26418075402240
+ 178708831v8

273902605770424320

+ 195190397059v10

34708938203228169830400
+ O(v12).
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Chapter 9
On the Klein-Gordon Equation on Some
Examples of Conformally Flat Spin 3-Manifolds

Rolf Sören Kraußhar

Abstract In this paper we present an overview about our recent results on the
analytic treatment of the Klein-Gordon equation on some conformally flat 3-tori
and on 3-spheres.

In the first part of this paper we consider the time independent Klein-Gordon
equation (� − α2)u = 0 (α ∈ R) on some conformally flat 3-tori associated with
a representative system of conformally inequivalent spinor bundles. We set up an
explicit formula for the fundamental solution associated to each spinor bundle. We
show that we can represent any solution to the homogeneous Klein-Gordon equation
on such a torus as finite sum over generalized 3-fold periodic or resp. antiperiodic el-
liptic functions that are in the kernel of the Klein-Gordon operator. Furthermore, we
prove Cauchy and Green type integral formulas and set up an appropriate Teodor-
escu and Cauchy transform for the toroidal Klein-Gordon operator on this spin tori.
These in turn are used to set up explicit formulas for the solution to the inhomoge-
neous Klein-Gordon equation (�−α2)u = f on the 3-torus attached to the different
choices of different spinor bundles. In the second part of the paper we present a uni-
fied approach to describe the solutions to the Klein-Gordon equation on 3-spheres.
We give an explicit representation formula for the solutions in terms of hypergeo-
metric functions and monogenic homogeneous polynomials.
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9.1 Introduction

The Klein-Gordon equation is a relativistic version of the Schrödinger equation.
It describes the motion of a quantum scalar or pseudoscalar field, a field whose
quanta are spinless particles. The Klein-Gordon equation describes the quantum
amplitude for finding a point particle in various places, cf. for instance [6, 21]. It
can be expressed in the form

(

� − α2 − 1

c2

∂2

∂t2

)

u(x; t) = 0,

where � := ∑3
i=1

∂2

∂x2
i

is the usual Euclidean Laplacian in R
3 and α = mc

�
. Here, m

represents the mass of the particle, c the speed of light and � is the Planck number.
This equation correctly describes the spin-less pion which however appears in nature
as a composite particle.

Since a long time it is well known that any solution to the Dirac equation, which
describes the spinning electron, satisfies the Klein-Gordon equation. However, the
converse is not true. In the time-independent case the homogeneous Klein-Gordon
equation simplifies to a screened Poisson equation of the form

(� − α2)u(x) = 0.

The solution of this equation provides the first step to solve the more complicated
time-dependent case. Therefore, the study of the time-independent solutions is very
important. As explained extensively in the literature, see for example [10, 11, 15,
16] and elsewhere, the quaternionic calculus allows us to factorize the Klein-Gordon
operator elegantly by

� − α2 = −(D − iα)(D + iα),

where D := ∑3
i=1

∂
∂xi

ei is the Euclidean Dirac operator associated to the spatial
variable. Here the elements e1, e2, e3 stand for the elementary quaternionic imagi-
nary units. The study of the solutions to the original scalar second order equation
is thus reduced to study vector valued eigensolutions to the first order Dirac opera-
tor associated to purely imaginary eigenvalues. For eigensolutions to the first order
Euclidean Dirac operator it was possible to develop a powerful higher dimensional
version of complex function theory, see for instance [10, 15, 20, 22, 24]. By means
of these function theoretical methods it was possible to set up fully analytic repre-
sentation formulas for the solutions to the homogeneous and inhomogeneous Klein-
Gordon in the three dimensional Euclidean space in terms of quaternionic integral
operators.

In the first part of this paper (Sects. 9.3–9.5) we present analogous methods for
the Klein-Gordon equation on three-dimensional conformally flat tori associated to
different conformally inequivalent spinor bundles. The torus model is one of the
most important geometrical models in modern quantum gravity and cosmology.
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We give an explicit formula for the fundamental solution in terms of an appropri-
ately adapted three-fold periodic resp. anti-periodic generalization of the Weierstraß
℘-function associated to the operator (D − iα). Then we show that we can repre-
sent any solution to the homogeneous Klein-Gordon equation on these classes of
tori as a finite sum over generalized three-fold periodic resp. anti-periodic elliptic
functions that are in the kernel of the Klein-Gordon operator. Furthermore we give
a Green type integral formula and set up a Teodorescu and Cauchy transform for
the toroidal Klein-Gordon operator. These in turn are used to set up explicit for-
mulas for the solution to the inhomogeneous Klein-Gordon equation on this class
of 3-tori. A non-zero right-hand side in the Klein-Gordon equation naturally arises
in the context when including for instance quantum gravitational effects into the
model.

In turn, the results of this paper refer to a very particular mathematical subcase
that appears within the theory of generalized Helmholtz type equations with arbi-
trary complex parameters that we developed for the general framework of k di-
mensional cylinders in R

n with arbitrary spinor bundles in [5], jointly written with
D. Constales. However, from the quantum mechanical view the case treated here in
great detail has a very special meaning and in the three-dimensional case the Bessel
functions simplify significantly to ordinary trigonometric functions.

Finally, in the remaining part of this paper (Sect. 9.6) we present a unified ap-
proach to describe the solutions to the Klein-Gordon equation on spheres. We give
an explicit representation formula for the solutions in terms of hypergeometric func-
tions and monogenic homogeneous polynomials. We also establish links to projec-
tive hyperbolic models and discuss some interesting limit cases.

This provides a counterpart contribution to the unified model that the author de-
veloped in joint work with I. Cação and D. Constales in [3] to treat the solutions to
the time-harmonic Maxwell-equations in radially symmetric spaces.

9.2 Notations

Let {e1, e2, e3} be the standard basis of R
3. We embed R

3 into the quaternions H

whose elements have the form a = a0e0 + a with a = a1e1 + a2e2 + a3e3. In the
quaternionic calculus one has the multiplication rules e1e2 = e3 = −e2e1, e2e3 =
e1 = −e3e2, e3e1 = e2 = −e1e3, and ej e0 = e0ej and e2

j = −1 for all j = 1,2,3.

The quaternionic conjugate of a is defined by a = a0 − ∑3
i=1 aiei , that means it

switches the sign on the imaginary units ej = −ej for j = 1,2,3 and it leaves the
scalar part invariant.

By H ⊗R C we obtain the complexified quaternions. These will be denoted
by H(C). Their elements have the form

∑3
j=0 aj ej where aj are complex num-

bers aj = aj 1 + iaj 2. The complex imaginary unit satisfies iej = ej i for all j =
0,1,2,3. The scalar part a0e0 of a (complex) quaternion will be denoted by Sc(a).
On H(C) one considers a standard (pseudo)norm defined by ‖a‖ = (

∑3
j=0 |aj |2)1/2

where | · | is the usual absolute value.
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The complex imaginary unit i commutes with all basis elements ej , i.e. we have
iej = ej i for all j = 1,2,3. We denote the complex conjugate of a complex number

λ ∈ C by λ�. For any elements a ∈ H(C) we have (a)� = (a�).
For simplicity we write in all that follows D for the Euclidean Dirac operator

D := ∑3
i=1

∂
∂xi

ei associated exclusively to the spatial variable.

9.3 Conformally Flat 3-Tori

In this section and the following two ones we treat conformally flat spin 3-tori
with inequivalent spinor bundles. Let � := Ze1 + Ze2 + Ze3 be the standard lat-
tice in R

3. Then, following e.g. [13] the topological quotient space R
3/� realizes a

3-dimensional conformally flat torus denoted by T3. This is contructed by gluing
the equivalent vertices of the fundamental period cell together. However, as men-
tioned in [14] one can construct a number of conformally inequivalent spinor bun-
dles over T3.

We recall that in general different spin structures on a spin manifold M are
detected by the number of distinct homomorphisms from the fundamental group
	1(M) to the group Z2 = {0,1}. In this case we have that 	1(T3) = Z

3. There are
two homomorphisms of Z to Z2. The first one is θ1 : Z → Z2 : θ1(n) ≡ 0 mod 2
while the second one is the homomorphism θ2 : Z → Z2 : θ2(n) =≡ 1 mod 2. Con-
sequently there are 23 distinct spin structures on T3. T3 is a simple example of a
Bieberbach manifold. Further details of spin structures on the n-torus and other
Bieberbach manifolds can be found for instance in [9, 18, 19].

We shall now give an explicit construction for some of these spinor bundles
over T3. All the others are constructed similarly. First let l be an integer in the set
{1,2,3}, and consider the sublattice Z

l = Ze1 + · · · + Zel where (0 ≤ l ≤ 3). In the
case l = 0 we have Z

0 := ∅.
There is also the remainder lattice Z

3−l = Zel+1 + · · · + Ze3. In this case Z
3 =

{m+n : m ∈ Z
l and n ∈ Z

3−l}. Suppose now that m = m1e1 +· · ·+mlel . Let us now
make the identification (x,X) with (x + m + n, (−1)m1+···+mlX) where x ∈ R

3 and
X ∈ H. This identification gives rise to a quaternionic spinor bundle E(l) over T3.
For example in the case l = 1, we have the lattice decomposition Z ⊕ Z

2 and we
identify (x,X) with (x + m1e1 + m2e2 + m3e3, (−1)m1X).

Notice that R
3 is the universal covering space of T3. Consequently, there exists

a well-defined projection map p : R
3 → T3. As explained for example in [13] every

3-fold periodic resp. anti-periodic open set U ⊂ R
3 and every 3-fold periodic resp.

anti-periodic section f : U ′ → E(l), satisfying f (x) = (−1)m1+···+ml (x + ω) for all
ω ∈ Z

l ⊕ Z
3−l , descends to a well-defined open set U ′ = p(U) ⊂ T3 (associated

with the chosen spinor bundle) and a well-defined spinor section f ′ := p(f ) : U ′ ⊂
T3 → E(l) ⊂ H, respectively.



9 On the Klein-Gordon Equation on Some Examples of Conformally Flat Spin 213

9.4 The Klein-Gordon Equation on Conformally Flat 3-Tori

The study of the null-solutions to the first order operator D − iα leads to a full
understanding of the solutions to the Klein-Gordon equation. The null-solutions to
this equation are also often called iα-holomorphic, see for instance [15].

Following for instance [10, 22], in the three-dimensional case, the fundamental
solution to D − iα has the special form

eiα(x) = 1

4π
e−α‖x‖2

(
iα

‖x‖2
− x

‖x‖3
2

(1 + α‖x‖2)

)

.

The projection map p induces a shifted Dirac operator and a Klein-Gordon op-
erator on the torus T3 (with the chosen spinor bundle) viz D′

iα;l := p(D − iα) resp.

�′
iα;l := p(� − α2). The projections of the 3-fold (anti-)periodization of the func-

tion eiα(x) denoted by

℘iα;0;l (x) :=
∑

ω∈Zl⊕Z3−l

(−1)m1+···+ml eiα(x + ω)

provides us with the fundamental section to the toroidal operator D′
iα;l acting on the

corresponding spinor bundle of the torus T3. From the function theoretical point of
view the function ℘iα;0;0(x) can be regarded as the canonical generalization of the
classical elliptic Weierstraß ℘ function to the context of the shifted Dirac operator
D − iα in three dimensions.

To prove the convergence of the series we use the following asymptotic estimate.
We have

‖eiα(x)‖2 ≤ c
e−α‖x‖2

‖x‖2
(9.4.1)

supposed that ‖x‖2 ≥ r ′ where r ′ is a sufficiently large real. Now we decompose the
total lattice Z

3 into the following union of lattice points � = ⋃+∞
m=0 �m where

�m := {ω ∈ Z
3 | ‖ω‖max = m}.

We further consider the following subsets of this lattice Lm := {ω ∈ Z
3 | ‖ω‖max ≤

m}. Obviously the set Lm contains exactly (2m + 1)3 points. Hence, the cardinality
of �m is ��m = (2m + 1)3 − (2m − 1)3. The Euclidean distance between the set
�m+1 and �m has the value dm := dist2(�m+1,�m) = 1.

To show the normal convergence of the series, let us consider an arbitrary com-
pact subset K ⊂ R

3. Then there exists a positive r ∈ R such that all x ∈ K sat-
isfy ‖x‖max ≤ ‖x‖2 < r . Suppose now that x is a point of K. To show the normal
convergence of the series, we can leave out without loss of generality a finite set
of lattice points. We consider without loss of generality only the summation over
those lattice points that satisfy ‖ω‖max ≥ [R]+ 1, where R := max{r, r ′} In view of
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‖x + ω‖2 ≥ ‖ω‖2 − ‖x‖2 ≥ ‖ω‖max − ‖x‖2 = m − ‖x‖2 ≥ m − r we obtain

+∞∑

m=[R]+1

∑

ω∈�m

‖eiα(x + ω)‖2

≤ c

+∞∑

m=[R]+1

∑

ω∈�m

e−α‖x+ω‖2

‖x + ω‖2

≤ c

+∞∑

m=[R]+1

[(2m + 1)3 − (2m − 1)3]e
α(R−m)

m − R
,

where c is an appropriately chosen positive real constant, because m − R ≥ [R] +
1 − R > 0. This sum clearly is absolutely uniformly convergent. Hence, the series

℘iα;0;l (x) :=
∑

ω∈Zl⊕Z3−l

(−1)m1+···+ml eiα(x + ω),

which can be written as

℘iα;0;l (x) :=
+∞∑

m=0

∑

ω∈�m

(−1)m1+···+ml eiα(x + ω),

converges normally on R
3\Z

3. Since eiα(x) belongs to Ker (D − iα) in each x ∈
R

3\{0} and has a pole of order 2 at the origin and exponential decrease for ‖x‖ →
+∞, the series ℘iα;0;l (x) satisfies (D − iα)℘iα;0;l (x) = 0 in each x ∈ R

3\Z
3 and

has a pole of order 2 in each lattice point ω ∈ Z
3.

Obviously, by a direct rearrangement argument, one obtains that

℘iα;0;l (x) = (−1)m1+···+ml℘iα;0;l (x + ω), ∀ω ∈ �.

Remarks

• In the general n-dimensional case we will have estimates of the form

+∞∑

m=[R]+1

∑

ω∈�m

‖eiα(x + ω)‖2

≤ c

+∞∑

m=[R]+1

∑

ω∈�m

e−α‖x+ω‖2

‖x + ω‖(n−1)/2
2

≤ c

+∞∑

m=[R]+1

[(2m + 1)n − (2m − 1)n] eα(R−m)

(m − R)n−1
.

This provides a correction to the convergence proof given in [5] for the corre-
sponding n-dimensional series for general complex λ. Notice that the majorant
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series
+∞∑

m=[R]+1

[(2m + 1)n − (2m − 1)n] eα(R−m)

(m − R)

is also still convergent. This is a consequence of the exponentially fast decreasing
factor in the nominator. Therefore, all the claimed results in [5] remain valid
in its full extent. In the convergence proof of [5] one simply has to replace the
square root in the denominator by the (n − 1) power of that square root. This
replacement however makes the convergence of the series even stronger, so that
all constructions proposed in [5] remain well-defined and are true in its full extent.

• In the limit case α → 0 we will obtain a divergent series. Indeed, as shown for
instance in [12], a non-constant n-fold periodic function satisfying Df = 0 except
at one pole of order n − 1 in each period cell does not exist. One needs to have
at least two singularities of order n − 1 in a period cell or singularities of higher
order.

Further elementary non-trivial examples of 3-fold (anti-) periodic iα-holo-
morphic sections are the partial derivatives of ℘iα;0;l . These are denoted by

℘iα;m;l (x) := ∂ |m|
∂xm ℘iα;0;l (x) where m ∈ N

3
0 is a multi-index. For each x,y ∈ R

3\Z
3

the function ℘iα;0;l (y − x) induces the Cauchy kernel for D′
iα;l viz Giα;l (y′ − x′)

on T3 where x′ := p(x),y′ := p(y). This attributes a key role to the functions
℘iα;0;l (x). Notice that in the limit case α = 0 we need to apply a modification of
this construction involving two singularities of order n − 1 to get a Cauchy ker-
nel on these tori, as indicated in the previous remark above. This particular case is
treated in detail in [14].

So, in what follows we always assume α �= 0.
From the 3-fold (anti-)periodic basic toroidal iα-holomorphic function ℘iα;0;l

we can easily obtain 3-fold (anti-)periodic solutions to the Klein-Gordon operator
� − α2 = −(D − iα)(D + iα). Let C1,C2 be arbitrary complex quaternions from
H(C). Then the functions

Sc(℘iα;0;l (x)C1)

and

Sc(℘−iα;0;l (x)C2)

as well as all their partial derivatives are 3-fold (anti-)periodic and satisfy the ho-
mogeneous Klein-Gordon equation (� − α2)u = 0 in the whole space R

3\Z
3.

As a consequence of the Borel-Pompeiu formula proved in [10, 22] for the Eu-
clidean case we can readily prove a Green’s integral formula for solutions to the
homogeneous Klein-Gordon equation on this class of conformally flat 3-tori of the
following form:

Theorem 9.1 Suppose that a section h : U ′ → E(l) ⊂ H(C) is a solution to the
toroidal Klein-Gordon operator �′

iα;l in U ′ ⊂ T3. Let V ′ be a relatively com-
pact subdomain with cl(V ′) ⊂ U ′. Then provided the boundary of V ′ is sufficiently
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smooth we have

h(y) =
∫

∂V ′
(G−iα;l (x′ − y′)(dxp(n(x)))h(x)

+ [Sc(G)−iα;l](y′ − x′)(dxp(n(x)))D′
+iα;lh(x′))dS(x′) (9.4.2)

for each y′ ∈ V ′. Here dx stands for the derivative of p(n(x)) with respect to x.

Notice that we only have one point singularity in each period cell. The repro-
duction of the function by the Green’s integral hence follows by applying Cauchy’s
theorem and the Almansi-Fischer type decomposition. See also [20] for details.

One really striking property is that we can represent any solution to the homo-
geneous Klein-Gordon equation on T3 as a finite sum over projections of a finite
number of generalized three-fold (anti-)periodic elliptic functions that are in the
kernel of the Klein-Gordon operator. We can prove

Theorem 9.2 Let a′
1, a

′
2, . . . , a

′
p ∈ T3 be a finite set of points.

Suppose that f ′ : T3\{a′
1, . . . , a

′
p} → E(l) ⊂ H(C) is a section in the kernel of the

toroidal Klein-Gordon operator which has at most isolated poles at the points a′
i of

the order Ki . Then there are constants b′
1, . . . , b

′
p ∈ H(C) such that this section can

be represented by

f ′(x′) =
p∑

i=1

Ki−1∑

m=0

∑

m=m1+m2+m3

[

Sc
∂ |m|

∂xm Giα,0;l (x′ − a′
i )

]

b′
i . (9.4.3)

To establish this result we first need to prove the following lemmas:

Lemma 9.3 Suppose that f is a 3-fold (anti-)periodic function that satisfies (D −
iα)f = 0 in the whole space R

3. Then f vanishes identically.

Proof Suppose first that f is 3-fold periodic, that means, f (x) = f (x + ω) for all
ω ∈ �. In this case it takes all its values in the fundamental period cell spanned with
the edges 0, e1, e2, e3, e1 + e2, e1 + e3, e2 + e3, e1 + e2 + e3. This is a compact set.
Since f is continuous it must be bounded on the fundamental cell. As a consequence
of the 3-fold periodicity, f must be a bounded function on the whole space R

3. Since
f is entire iα-holomorphic, adapting from [22], it has a Taylor series representation

f (x) =
+∞∑

q=0

‖x‖−q−1/2
(

eπi(q/2+1/4)Iq+1/2(α‖x‖)

− x
‖x‖eπi(q/2+3/4)Iq+3/2(α‖x‖)

)

Pq(x), (9.4.4)

where Pq are the well-known inner spherical monogenics, as defined for instance in
[7], is valid on the whole space R

n. Since the Bessel functions I with real arguments
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are exponentially unbounded, the expression f can only be bounded if all spherical
monogenics Pq vanish identically. Hence, f ≡ 0.

In the case where f is anti-periodic, i.e. f (x) = (−1)f (x + ω) for a primitive
period ω, then f satisfies f (x) = f (x + 2ω), so one has f (x) = f (x + 2ω) for
all ω ∈ �. It is hence periodic with respect to the double of any primitive period.
Instead of the usual fundamental cell one considers the larger cell with the edges

0,2e1,2e2,2e3,2(e1 + e2),2(e1 + e3),2(e2 + e3),2(e1 + e2 + e3)

which then is a compact periodicity cell of f and the previously outlined arguments
can be applied in the same way as in the periodic case. �

Lemma 9.4 Let a′
1, a

′
2, . . . , a

′
p ∈ T3 be a finite set of points.

Suppose that the section f ′ : T3\{a′
1, . . . , a

′
p} → E(l) ⊂ H(C) is a solution to

D′
iαf ′ = 0 which has at most isolated poles at the points a′

i of the order Ki . Then
there are constants b′

1, . . . , b
′
p ∈ H(C) such that

f ′(x′) =
p∑

i=1

Ki−2∑

m=0

∑

m=m1+m2+m3

[
∂ |m|

∂xm Giα,0;l (x′ − a′
i )

]

b′
i . (9.4.5)

Proof Since f = p−1(f ′) is supposed to be iα-holomorphic with isolated poles of
order Ki at the points ai , the singular parts of the local Laurent series expansions

are of the form eiα,m(x − ai)bi in each point ai + �, where eiα,m(y) := ∂ |m|
∂ym eiα(y).

As a sum of 3-fold (anti-) periodic iα-holomorphic functions, the expression

g(x) =
p∑

i=1

Ki−2∑

m=0

∑

m=m1+m2+m3

[

℘iα,m;l (x − ai)bi

]

is also 3-fold (anti-) periodic and has also the same principal parts as f . Hence,
the function h := g − f is also a 3-fold periodic and iα-holomorphic function, but
without singular parts, since these are canceled out. So, the function h is an entire
iα-holomorphic 3-fold periodic function. Consequently, it vanishes identically as a
consequence of the preceding lemma. �

The statement of Theorem 9.2 now follows as a direct consequence.

9.5 The Inhomogeneous Klein-Gordon Equation on Tori

We round off with discussing the inhomogeneous Klein-Gordon equation
(�′ − α2)u′ = f ′ on a strongly Lipschitz domain on the surface of such a 3-torus
�′ ⊂ T3 with prescribed boundary data u′ = g′ at ∂�′. Non-zero terms on the right-
hand side naturally appear for instance when we include gravitational effects in our
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consideration. To solve inhomogeneous boundary value problems of this type one
can introduce a toroidal Teodorescu transform and an appropriate singular Cauchy
transform for the operator D′

iα;l by replacing the kernel eiα by the projection of
the 3-fold (anti-)periodic function ℘iα,0;l in the corresponding integral formulas
given in [10] for the Euclidean flat space. By means of these operators one can then
also solve the inhomogeneous Klein-Gordon equation on these 3-tori with given
boundary data explicitly using the same method as proposed in [1, 10, 11, 15] for
analogous problems in the Euclidean flat space. Precisely, the proper analogies of
the operators needed to meet these ends are defined as follows. The Teodorescu
transform of toroidal iα-holomorphic functions on the torus T3 with values in the
spinor bundle E(l) is defined by

T
T3
iα;l :Wp

l,E(l) (�
′) → W

p+1
l,E(l) (�

′);

[T T3
iα;lf

′(x′)] = −
∫

�′
G−iα;l (x′ − y′)f ′(y′)dV ′(y′),

where x′ and y′ are distinct points on the 3-torus from �′. Here W
p

l,H(C)
(�′) denotes

as usual the Sobolev space of E(l)-valued Lp functions defined in �′ which are
l-times differentiable in the sense of Sobolev.

Next, the toroidal iα-holomorphic Cauchy transform has the mapping properties

F
T3
iα;l :Wp−1

l− 1
p

,E(l)
(∂�′) → W

p

l,E(l) (�
′) ∩ Ker D′

iα;l;

[FT3
iα;lf

′(y′)] =
∫

∂V ′
G−iα;l (x′ − y′)n(x′)dxp(n(x))f ′(x′)dS′(x′),

where dS′ is the projected scalar surface Lebesgue measure on the surface of the
torus. Using the toroidal Teodorescu transform, a direct analogy of the Borel-
Pompeiu formula for the shifted Dirac operator D′

iα;l on the 3-torus can now be
formulated in the classical form

f ′ = F
T3
iα;lf

′ + T
Ck

iα;lD
′
iα;lf

′,

as formulated for the Euclidean case in [10, 11]. Adapting the arguments from [10,
p. 80] that were explicitly worked out for the Euclidean case, one can show that
the space of square integrable functions over a domain �′ of the 3-torus, admits the
orthogonal decomposition

L2(�′,E(l)) = Ker D′
iα;l ∩ L2(�′,E(l)) ⊕ D′

iα;lW̊
1
2,E(l) (�

′).

The space Ker D′
iα;l ∩ L2(�′,E(l)) is a Banach space endowed with the L2 inner

product

〈f ′, g′〉 :=
∫

�′
f ′(x′)�g(x′)dV (x′),

as used in [4].
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As a consequence of the Cauchy integral formula for the toroidal iα-holomorphic
sections and of the Cauchy-Schwarz inequality we can show that this space has
a continuous point evaluation and does hence possess a reproducing kernel, say
B(x′,y′). If f ′ is any arbitrary section from L2(�′,E(l)), then the operator

[P T3
iα;lf

′(y′)] =
∫

V ′
B(x′,y′)f (x′)dV (x′)

produces the ortho-projection from L2(�′,E(l)) into Ker D′
iα;l ∩ L2(�′,E(l)). It

will be called the toroidal iα-holomorphic-Bergman projector. With these opera-
tors we can represent in complete analogy to the Euclidean case treated in [10] the
solutions to the inhomogeneous Klein-Gordon equation on these 3-tori:

Theorem 9.5 Let α > 0. Let �′ be a domain on the flat 3-torus T3 (associated with
one of the above described spinor bundles) with a strongly Lipschitz boundary. Let
f ′ ∈ W

p

2,E(l) (�
′) and g′ ∈ W

p+3/2
2,E(l) (∂�′) be two sections. Let �′

iα;l stand for the
toroidal Klein-Gordon operator. Then the system

�′
iα;lu

′ = f ′ in V ′, (9.5.1)

u′ = g′ at ∂V ′, (9.5.2)

always has a unique solution u ∈ W
p+2,loc

2,E(l) (V ′) of the form

u′ = F
T3
iα g′ + T

T3−iαP
T3
iα;lD

′
iα;lh

′ − T
T3−iα(I − P

T3
iα;l )T

T3
iα;lf

′, (9.5.3)

where h′ is the unique W
p+2
E(l) extension of g′.

To the proof one can apply the same calculation steps as in [10, p. 81] in-
volving now the properly adapted version of the Borel-Pompeiu formula for the
toroidal shifted Dirac operator D′

iα;l and the adapted integral transform. Notice that
we have for all values α > 0 always a unique solution, because the Laplacian has
only negative eigenvalues. Notice further that we can represent any solution to the
toroidal Klein-Gordon equation by the scalar parts of a finite number of the basic

iα-holomorphic generalized elliptic functions ∂ |m|
∂xm ℘iα,0;l (x − a)bm, such as indi-

cated in Theorem 9.2. The Bergman kernel can be hence approximated by apply-
ing for instance the Gram-Schmidt algorithm to a sufficiently large set of those
iα-holomorphic generalized elliptic functions series that have no singularities in-
side the domain.

9.6 The Homogeneous Klein-Gordon Equation on Spheres

Aim In this section we present a unified approach to treat the solutions to the Klein-
Gordon equation on spheres of ray R ∈]0,+∞] in terms of a Dirac type operator.
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Model To this end we add the radial symmetric Euler operator E := ∑3
i=1 xi

∂
∂xi

in
the shifted Dirac equation. We recover the solutions to the time-independent Klein-
Gordon operator on a sphere of ray R ∈]0,+∞] as the solutions to the system

[

D − iα − 1

R
E

]

f = 0. (9.6.1)

The cases R ∈]0,+∞[ deal with a radially symmetric universe model with ray R

(at time t = t0).

In the case R → +∞ we deal with an Euclidean flat universe of infinite exten-
sion.

9.6.1 Representation of the Regular Solutions

The following theorem provides us with an explicit representation of the solutions to
the system (9.6.1) in terms of hypergeometric functions and the basic homogeneous
monogenic polynomials that we introduced previously. More precisely, adapting
from [3] in the particular three dimensional case we obtain for the regular part of
the solutions the following representation:

Theorem 9.6 Let f be a H(C)-valued function that satisfies in the 3-dimensional
open ball ‖x‖ < r2 (r2 > 0) the system of differential equations (D− iα−βE)f = 0
for β,α ∈ R\{0}. Then there exists a sequence of monogenic homogeneous polyno-
mials of total degree m = 0,1,2, . . . , say Pm(x), such that in each open ball ‖x‖ < r

with 0 < r < r2

f (x) =
+∞∑

m=0

(

am(‖x‖) + bm(‖x‖) x
‖x‖

)

Pm(x),

where

am(‖x‖) = 2F1

(
iα

2β
+ m

2
,

iα

2β
+ m + 1

2
;m + 3

2
;−β2‖x‖2

)

, (9.6.2)

bm(‖x‖) = − iα + β m

2m + 3
|x| 2F1

(

1 + iα

2β
+ m

2
,

iα

2β
+ m + 1

2
;

m + 5

2
;−β2‖x‖2

)

. (9.6.3)

Here, 2F1 denotes the standard hypergeometric function reading explicitly

2F1(a, b; c; z) =
+∞∑

n=0

(a)n(b)n

(c)n

zn

n! ,

(a)n, etc. stand for the Pochhammer symbol.
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Proof Suppose that f is a H(C)-valued function defined in the 3-dimensional open
ball ‖x‖ < r2 (r2 > 0) that satisfies the differential equation (D − iα − βE)f = 0
with some arbitrarily chosen β,α ∈ R\{0}.

Since the operator D − iα − βE is elliptic, its null-solutions are real-analytic in
the open ball ‖x‖ < r2 (r2 > 0). Therefore f admits the series expansion

f (x) =
+∞∑

m=0

Rm(x), (9.6.4)

converging normally on compact subsets of the open ball ‖x‖ < r2, and where Rm

are H(C)-valued homogeneous polynomials of degree m. When applying the Fis-
cher decomposition one obtains

Rm(x) =
m∑

j=0

xm−jPm,j (x),

where the expressions Pm,j are homogeneous monogenic polynomials of total de-
gree j (for each m = 0,1,2, . . .).

Since f is a solution to (D − iα − βE)f = 0, each single term from (9.6.4) of
the same degree of homogeneity has to solve this equation, i.e.

DRm+1(x) − (iα + βE)Rm(x) = 0. (9.6.5)

As a consequence of (9.6.5) there exists a sequence of homogeneous monogenic
polynomials of total degree j , say (Pj )j=0,1,...,+∞, such that

Pm,j (x) = βm,jPj (x)

for all m = 0,1, . . . with uniquely defined scalars βm,j where in particular βj,j = 1.
So one obtains that

Rm(x) =
m∑

j=0

xm−jβm,jPj (x).

This results into

f (x) =
+∞∑

m=0

(
m∑

j=0

xjβm,m−jPm−j (x)

)

. (9.6.6)

Now one introduces spherical coordinates (r,ω), where r = ‖x‖ and ω = x
‖x‖ ∈

S2 := {x ∈ R
3 | ‖x‖ = 1}. Next one can rewrite the representation (9.6.6) in the

form

f (x) =
+∞∑

m=0

am(r)Pm(r ω) + bm(r)ωPm(r ω), (9.6.7)
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where

am(r) =
+∞∑

k=0

β2k+m,m(−r2)k

and

bm(r) = r

+∞∑

k=0

β2k+1+m,m(−r2)k.

Notice that these sums actually only encompass finitely many terms. Again as a
consequence of (9.6.5), for each degree m = 0,1,2, . . . each associated homogene-
ity term of the series representation (9.6.7) satisfies

[D − iα − βE](am(r)Pm(r ω) + bm(r)ωPm(r ω)) = 0. (9.6.8)

Notice, this is not an ansatz. This equality needs to hold necessarily. The expressions
Pm, multiplied from the left with am(r) or bm(r)ω, are all mapped under the three
operators D, iα and E to an expression of the same form. One never obtains a
polynomial of an other degree being different from Pm. If we fix r and vary ω,
after applying D − iα − βE we still end up with the same Pm(r ω), but with new
coefficients am(r) and bm(r).

Next one needs to compute the action of the Euler operator and the Dirac operator
on each single term. For simplicity we use the notation

a′
m(r) := ∂

∂r
am(r) and b′

m(r) := ∂

∂r
bm(r).

As in [2] one determines:

E[am(r)Pm(r ω)] = r a′
m(r)Pm(r ω) + mam(r)Pm(r ω), (9.6.9)

E[bm(r)ωPm(r ω)] = r b′
m(r)ωPm(r ω) + mbm(r)ωPm(r ω), (9.6.10)

D[am(r)Pm(r ω)] = a′
m(r)ωPm(r ω), (9.6.11)

D[bm(r)ωPm(r ω)] = −2 − 2m

r
bm(r)Pm(r ω) − b′

m(r)Pm(r ω). (9.6.12)

Next one applies the calculus rules (9.6.9), (9.6.10), (9.6.11) and (9.6.12) to (9.6.8).
We obtain

[(D − iα) − βE](am(r)Pm(rω) + bm(r)ωPm(rω))

= D[am(r)Pm(rω)] + D[bm(r)ωPm(rω)] − iαam(r)Pm(rω)

− iαbm(r)ωPm(rω)

− βE[am(r)Pm(rω)] − βE[bm(r)ωPm(rω)]
= a′

m(r)ωPm(rω) + −2 − 2m

r
bm(r)Pm(rω) − b′

m(r)Pm(rω)
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− iαam(r)Pm(rω) − iαbm(r)ωPm(rω)

− βra′
m(r)Pm(rω) − βmam(r)Pm(rω)

− βrb′
m(r)ωPm(rω) − βmbm(r)ωPm(rω).

Now we collect all the terms that belong to Pm(rω) and ωPm(rω), respectively:

[(D − iα) − βE](am(r)Pm(rω) + bm(r)ωPm(rω))

=
[

−b′
m(r) + −2 − 2m

r
bm(r) − (iα + βm)am(r) − βra′

m(r)

]

Pm(rω)

+ [a′
m(r) − βrb′

m(r) − (βm + iα)bm(r)]ωPm(rω).

Due to the linear independence of the functions Pm(r ω) and ωPm(r ω) we obtain
the following coupled first order linear system of ODE

−b′
m(r) − β r a′

m(r) − (β m + iα) am(r) − 2 + 2m

r
bm(r) = 0, (9.6.13)

a′
m(r) − β r b′

m(r) − (β m + iα) bm(r) = 0. (9.6.14)

To solve this system we first solve equation (9.6.14) to a′
m(r). We have

a′
m(r) = βrb′

m(r) + (βm + iα)bm(r). (9.6.15)

Now we insert this expression for a′
m(r) into (9.6.13):

−b′
m(r) − βr(βrb′

m(r) + (βm + iα)bm(r))

−(βm + iα)am(r) − 2 + 2m

r
bm(r) = 0.

Thus

(βm + iα)am(r) = (−β2r2 − 1)b′
m(r)

− βr(βm + iα)bm(r) − 2 + 2m

r
bm(r). (9.6.16)

In view of α,β ∈ R\{0} and m ∈ N0 we always have that (βm + iα) �= 0.
Then (9.6.16) is equivalent to

am(r) = −β2r2 + 1

βm + iα
b′
m(r) +

(

−βr − 2 + 2m

r(βm + iα)

)

bm(r). (9.6.17)

Deriving this expression to the variable r yields

a′
m(r) = − β2r2 + 1

βm + iα
b′′
m(r) −

[
2β2r

βm + iα
+ βr + 2 + 2m

r(βm + iα)

]

b′
m(r)

+
[

2 + 2m

r2(βm + iα)
− β

]

bm(r). (9.6.18)
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Inserting (9.6.18) into equation (9.6.14) leads to the following second order linear
ODE for bm(r):

−β2r2 + 1

βm + iα
b′′
m(r) −

[
2β2r

βm + iα
+ 2βr + 2 + 2m

r(βm + iα)

]

b′
m(r)

+
[

2 + 2m

r2(βm + iα)
− β − (βm + iα)

]

bm(r) = 0. (9.6.19)

The part of the solution that is regular around the origin turns out to be

bm(r) = − iα + β m

2m + 3
r 2F1

(

1 + iα

2β
+ m

2
,

iα

2β
+ m + 1

2
;m+ 5

2
;−β2r2

)

. (9.6.20)

Inserting this expression into (9.6.17) gives the stated formula for am(r). �

9.6.2 Limit and Special Cases

• Unit sphere: In the particular case β = 1 in which the expressions (9.6.2) and
(9.6.3) simplify to

am(‖x‖) = 2F1

(
iα

2
+ m

2
,
iα

2
+ m + 1

2
;m + 3

2
;−‖x‖2

)

,

bm(‖x‖) = − iα + m

2m + 3
‖x‖ 2F1

(

1 + iα

2
+ m

2
,
iα

2
+ m + 1

2
;m + 5

2
;−‖x‖2

)

.

Here we recognize the regular solutions of the Dirac equation on the unit sphere
and on the projective space R

1,2 discussed by P. Van Lancker [23], D. Eelbode,
F. Sommen [8], H. Liu, J. Ryan [17], and others.

Physical meaning: These solutions exactly represent the solutions to time de-
pendent Klein-Gordon equations on the unit sphere or on the hyperbolic pro-
jective space, respectively. Applying a re-scaling argument, in the cases where
β = 1

R
> 0 is an arbitrary positive number, the solutions to (9.6.1) may be phys-

ically interpreted as solutions to the time-independent Klein-Gordon equation on
the sphere of arbitrary radius R > 0.

Notice that α may be any arbitrary non-zero real number. Thus, indeed all
vector-valued solutions to (9.6.1) are solutions to the time-independent Klein-
Gordon equations on the sphere of radius R when one puts β = 1

R
and vice versa

all solutions to the time-independent Klein-Gordon equation appear as vector-
valued solutions of (9.6.1) because (9.6.1) is a first order equation.

• In the other limit case β → 0 we obtain by asymptotic analysis that the expression
am(r) tends (up to a multiple) to the expression

�

(

m + 3

2

)(
iα‖x‖

2

)−m−1/2

exp(πi(m/2 + 1/4))Im+1/2(α‖x‖).
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Similarly the expression of bm(r) tends asymptotically for β → 0 to a multiple
of the expression

|x|− 1
2 −m exp(π(m/2 + 3/4))Im+3/2(α‖x‖).

We hence recognize the representation formulas for regular solutions to (D − iα)

from [22] around the origin described for example by Sommen and Xu. In this
case we are dealing with the regular part of the solutions to the time-independent
Klein-Gordon equation inside a ball of an infinite Euclidean flat universe.

• In the case where α = 0 in which the equation simplifies to the system (D −
βE)f = 0 the functions am(r) and bm(r) read as follows:

am(r) = 2F1

(
m

2
,
m + 1

2
;m + 3

2
;−β2r2

)

,

bm(r) = − βm

2m + 3
r 2F1

(
2 + m

2
,
m + 1

2
;m + 5

2
;−β2r2

)

.

In this case only hypergeometric functions 2F1(a, b; c; z) with integer resp. half-
integer parameters a, b, c do appear.

In the limit case where α = 0 and β → 0 (which deals with the equation
Df = 0) the expression am(r) reduces to the constant value 1 and bm(r) ≡ 0.
Hence, in this case we obtain that f must be of form

f (x) =
+∞∑

m=0

Pm(x).

This is the well-known representation of a monogenic function as a Taylor series,
cf. [7].

• In the case β = 1 and α = 0 we deal with the equation Df = Ef . Its regular
solutions around the origin have the form

f (x) =
+∞∑

m=0

(

2F1

(
m

2
,
m + 1

2
;m + 3

2
;−‖x‖2

)

Pm(x)

− m

2m + 3
‖x‖ 2F1

(
m + 2

2
,
m + 1

2
;m + 5

2
;−‖x‖2

)

Pm(x)

)

.

In turn these solutions again appear as special regular solutions of the Dirac
equation on the hyperbolic projective space R

1,2 treated by D. Eelbode and F.
Sommen [8] and of the Dirac equation on the unit sphere treated by P. Van
Lancker [23] and H. Liu and J. Ryan [17].
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Chapter 10
A Survey of hp-Adaptive Strategies for Elliptic
Partial Differential Equations

William F. Mitchell and Marjorie A. McClain

Abstract The hp version of the finite element method (hp-FEM) combined with
adaptive mesh refinement is a particularly efficient method for solving partial differ-
ential equations because it can achieve a convergence rate that is exponential in the
number of degrees of freedom. hp-FEM allows for refinement in both the element
size, h, and the polynomial degree, p. Like adaptive refinement for the h version
of the finite element method, a posteriori error estimates can be used to determine
where the mesh needs to be refined, but a single error estimate can not simulta-
neously determine whether it is better to do the refinement by h or by p. Several
strategies for making this determination have been proposed over the years. In this
paper we summarize these strategies and demonstrate the exponential convergence
rates with two classic test problems.

Keywords Elliptic partial differential equations · Finite elements · hp-adaptive
strategy · hp-FEM

Mathematics Subject Classification (2000) 65N30 · 65N50

10.1 Introduction

The numerical solution of partial differential equations (PDEs) is the most compute-
intensive part of a wide range of scientific and engineering applications. Conse-
quently the development and application of faster and more accurate methods for
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solving partial differential equations has received much attention in the past fifty
years. Self-adaptive methods to determine a quasi-optimal grid are a critical compo-
nent of the improvements, and have been studied for nearly 30 years now. They are
often cast in the context of finite element methods, where the domain of the PDE
is partitioned into a mesh consisting of a number of elements (in two dimensions,
usually triangles or rectangles), and the approximate solution is a polynomial over
each element. Most of the work has focused on h-adaptive methods. In these meth-
ods, the mesh size, h, is adapted locally by means of a local error estimator with the
goal of placing the smallest elements in the areas where they will do the most good.
In particular, elements that have a large error estimate get refined so that ultimately
the error estimates are approximately equal over all elements.

Recently, the research community has begun to focus more attention on
hp-adaptive methods. In these methods, one not only locally adapts the size of the
mesh, but also the degree of the polynomials, p. The attraction of hp-adaptivity is
that the error converges at an exponential rate in the number of degrees of freedom,
as opposed to a polynomial rate for fixed p. Much of the theoretical work showing
the advantages of hp-adaptive methods was done in the 1980’s, but it wasn’t until
the 1990’s that practical implementation began to be studied. The new complication
is that the local error estimator is no longer sufficient to guide the adaptivity. It indi-
cates which elements should be refined, but it does not indicate whether it is better
to refine the element by h or by p. A method for making that determination is called
an hp-adaptive strategy. A number of strategies have been proposed. In this paper
we summarize 15 such hp-adaptive strategies.

The remainder of the paper is organized as follows. In Sect. 10.2 we define the
equation to be solved, present the finite element method, and give some a priori
error estimates. In Sect. 10.3 we give the details of an hp-adaptive finite element
algorithm. Section 10.4 defines the hp-adaptive strategies. Section 10.5 contains nu-
merical results to demonstrate the convergence achieved by the different strategies.
Finally, we draw our conclusions in Sect. 10.6.

10.2 The Finite Element Method

For simplicity, consider the Poisson boundary value problem

−∂2u

∂x2
− ∂2u

∂y2
= f (x, y) in � (10.2.1)

u = g(x, y) on ∂� (10.2.2)

where � is a bounded, connected, open region in R
2. Note, however, that everything

in this paper applies equally well to a general second order elliptic PDE with mixed
boundary conditions. The data in (10.2.1–10.2.2) are assumed to satisfy the usual
ellipticity and regularity assumptions.
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Denote by L2(�) the space of square integrable functions over � with inner
product

〈u,v〉2 =
∫∫

�

uv

and norm

‖v‖2
2 = 〈v, v〉2.

Hm(�) denotes the usual Sobolev spaces of functions whose derivatives up to order
m are in L2(�). The Sobolev spaces have inner products

〈u,v〉Hm(�) =
∫∫

�

∑

|α|≤m

DαuDαv

and norms

‖v‖2
Hm(�) = 〈v, v〉Hm(�)

where

Dαv = ∂ |α|v
∂α1x∂α2y

α = (α1, α2), αi ∈ N, |α| = α1 + α2.

Let Hm
0 (�) = {v ∈ Hm(�) : v = 0 on ∂�}. Let ũD be a lift function satis-

fying the Dirichlet boundary conditions in (10.2.2) and define the affine space
ũD + H 1

0 (�) = {ũD + v : v ∈ H 1
0 (�)}. Define the bilinear form

B(u, v) =
∫∫

�

∂u

∂x

∂v

∂x
+ ∂u

∂y

∂v

∂y

and the linear form

L(v) =
∫∫

�

f v.

Then the variational form of the problem is to find the unique u ∈ ũD + H 1
0 (�) that

satisfies

B(u, v) = L(v) ∀v ∈ H 1
0 (�).

The energy norm of v ∈ H 1
0 is defined by ‖v‖2

E(�) = B(v, v).
The finite element space is defined by partitioning � into a grid (or mesh), Ghp ,

consisting of a set of NT triangular elements, {Ti}NT

i=1 with �̄ = ⋃NT

i=1 T̄i . If a vertex
of a triangle is contained in the interior of an edge of another triangle, it is called
a hanging node. We only consider compatible grids with no hanging nodes, i.e.
T̄i ∩ T̄j , i 	= j , is either empty, a common edge, or a common vertex. The diameter
of the element is denoted hi . With each element we associate an integer degree pi ≥
1. The finite element space Vhp is the space of continuous piecewise polynomial
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functions on � such that over element Ti it is a polynomial of degree pi . The degree
of an edge is determined by applying the minimum rule, i.e. the edge is assigned the
minimum of the degrees of the adjacent elements.

The finite element solution is the unique function uhp ∈ ũD + Vhp that satisfies

B(uhp, vhp) = L(vhp) ∀vhp ∈ Vhp.

The error is defined by ehp = u − uhp .
The finite element solution is expressed as a linear combination of basis functions

{φi}Ndof
i=1 that span ũD + Vhp ,

uhp(x, y) =
Ndof∑

i=1

αiφi(x, y)

Ndof is the number of degrees of freedom in the solution. The p-hierarchical ba-
sis of Szabo and Babuška [31], which is based on Legendre polynomials, is used
in the program used for most of the results in Sect. 10.5. The basis functions are
hierarchical in the sense that the basis functions for a space of degree p are a sub-
set of the basis functions for a space of degree p + 1. For an element of degree
pi with edge degrees pi,j , j = 1,2,3 there is one linear basis function associated
with each vertex, pi,j − 1 basis functions, of degree 2,3, . . . , pi,j , associated with
edge j , and q − 2 basis functions of degree q for q = 3,4, . . . , pi (for a total of
(pi − 1)(pi − 2)/2) whose support is the interior of the triangle.

The discrete form of the problem is a linear system of algebraic equations

Ax = b (10.2.3)

where the matrix A is given by Aij = B(φi,φj ) and the right hand side is given by
bi = L(φi). The solution x consists of the αi ’s.

If h and p are uniform over the grid, u ∈ Hm(�), and the other usual assumptions
are met, then the a priori error bound is [6, 7]

‖ehp‖H 1(�) ≤ C
hμ

pm−1
‖u‖Hm(�) (10.2.4)

where μ = min(p,m − 1) and C is a constant that is independent of h, p and u, but
depends on m.

With a suitably chosen hp mesh, and other typical assumptions, the error can be
shown [13] to converge exponentially in the number of degrees of freedom,

‖ehp‖H 1(�) ≤ C1e
−C2N

1/3
dof (10.2.5)

for some C1, C2 > 0 independent of Ndof.
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begin with a very coarse grid in h with small p

form and solve the linear system
repeat

determine which elements to coarsen and whether to coarsen by h or p

coarsen elements
determine which elements to refine and whether to refine by h or p

refine elements
form and solve the linear system

until some termination criterion is met

Fig. 10.1 Basic form of an hp-adaptive algorithm

10.3 hp-Adaptive Refinement Algorithm

One basic form of an hp-adaptive algorithm is given in Fig. 10.1. There are a
number of approaches to each of the steps of the algorithm. In this paper, the fol-
lowing approaches are used.

Triangles are h-refined by the newest node bisection method [18]. Briefly, a par-
ent triangle is h-refined by connecting one of the vertices to the midpoint of the
opposite side to form two new child triangles. The most recently created vertex is
chosen as the vertex to use in this bisection. Triangles are always refined in pairs
(except when the edge to be refined is on the boundary) to maintain compatibility
of the grid. This may require first refining a neighbor triangle to create the second
triangle of the pair. The h-refinement level, li , of a triangle Ti is one more than the
h-refinement level of the parent, with level 1 assigned to the triangles of the initial
coarse grid. p-refinement is performed by increasing the degree of the element by
one, followed by enforcing the minimum rule for the edges. Coarsening of elements
means reversing the refinement.

Adaptive refinement is guided by a local a posteriori error indicator computed
for each element. There are several choices of error indicators; see for example [2,
32]. For this paper, the error indicator for element Ti is given by solving a local
Neumann residual problem:

−∂2ei

∂x2
− ∂2ei

∂y2
= f − ∂2uhp

∂x2
− ∂2uhp

∂y2
in Ti (10.3.1)

ei = 0 on ∂Ti ∩ ∂� (10.3.2)

∂ei

∂n
= −1

2

[
∂uhp

∂n

]

on ∂Ti \ ∂� (10.3.3)

where ∂
∂n

is the unit outward normal derivative and [ ∂uhp

∂n
] is the jump in the outward

normal derivative of uhp across the element boundary. The approximate solution,
ei,hp of (10.3.1–10.3.3) is computed using the hierarchical bases of exact degree
pi + 1, where pi is the degree of Ti . The error indicator for element Ti is then given
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by

ηi = ‖ei,hp‖E(Ti).

A global energy norm error estimate is given by

η =
(

NT∑

i=1

η2
i

)1/2

.

The criterion for program termination is that the relative error estimate be smaller
than a prescribed error tolerance τ , i.e. η/‖uhp‖E(�) < τ . Elements are selected for
coarsening if ηi < maxi ηi/100 and for refinement if ηi > τ‖uhp‖E(�)/

√
NT . Note

that if every element had ηi = τ‖uhp‖E(�)/
√

NT then η/‖uhp‖E(�) = τ , hence the√
NT factor.

10.4 The hp-Adaptive Strategies

In this section, the hp-adaptive strategies that have been proposed in the literature
are presented. In some cases, these strategies were developed in the context of 1D
problems, rectangular elements, or other settings that are not fully compatible with
the context of this paper. In those cases, the strategy is appropriately modified for
2D elliptic PDEs and newest node bisection of triangles.

10.4.1 Use of a priori Knowledge of Solution Regularity

It is well known that for smooth solutions p-refinement will produce an exponen-
tial rate of convergence, but near singularities p-refinement is less effective than
h-refinement. This is a consequence of the a priori error bounds in (10.2.4) and
(10.2.5). For this reason, many of the hp strategies use h-refinement in areas where
the solution is irregular (i.e., locally fails to be in Hm for some finite m, also called
nonsmooth) or nearly irregular, and p-refinement elsewhere. The simplest strategy
is to use any a priori knowledge about irregularities. For example, it is known that
linear elliptic PDEs with smooth coefficients and piecewise analytic boundary data
will have point singularities only near reentrant corners of the boundary and where
boundary conditions change [4]. Another example would be a situation where one
knows the approximate location of a shock in the interior of the domain.

An hp-adaptive strategy of this type was presented by Ainsworth and Senior [4].
In this approach they simply flag vertices in the initial mesh as being possible trouble
spots. During refinement an element is refined by h if it contains a vertex that is so
flagged, and by p otherwise. We will refer to this strategy by the name APRIORI.

We extend this strategy to allow more general regions of irregularity, and to pro-
vide the strength of the irregularity. The user provides a function that, given an
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element Ti as input, returns a regularity value for that element. For true singular-
ities, it would ideally return the maximum value of m such that u ∈ Hm(Ti). But
it can also indicate that a triangle intersects an area that is considered to be nearly
irregular, like a boundary layer or sharp wave front. Based on the definition of μ in
(10.2.4), if the current degree of the triangle is pi and the returned regularity value
is mi , we do p-refinement if pi ≤ mi − 1 and h-refinement otherwise. The same
approach is used in all the strategies that estimate the local regularity mi .

10.4.2 Estimate Regularity Using Smaller p Estimates

Süli, Houston and Schwab [30] presented a strategy based on (10.2.4) and an esti-
mate of the convergence rate in p using error estimates based on pi − 2 and pi − 1.
We will refer to this strategy as PRIOR2P. This requires pi ≥ 3, so we always use
p-refinement in elements of degree 1 and 2.

Suppose the error estimate in (10.2.4) holds on individual elements and that the
inequality is an approximate equality. Let ηi,pi−2 and ηi,pi−1 be a posteriori error
estimates for partial approximate solutions over triangle Ti using the bases up to
degree pi − 2 and pi − 1, respectively. Then

ηi,pi−1

ηi,pi−2
≈

(
pi − 1

pi − 2

)−(mi−1)

and thus the regularity is estimated by

mi ≈ 1 − log(ηi,pi−1/ηi,pi−2)

log((pi − 1)/(pi − 2))
.

Use p-refinement if pi ≤ mi − 1 and h-refinement otherwise.
Thanks to the p-hierarchical basis, the computation of the error estimates is very

inexpensive. For 1 ≤ j < pi ,

uhp|Ti
=

∑

supp(φk)∩Ti 	=∅
αkφk =

∑

supp(φk)∩Ti 	=∅
deg(φk)≤pi−j

αkφk +
∑

supp(φk)∩Ti 	=∅
deg(φk)>pi−j

αkφk

where supp(φk) is the support of φk and deg(φk) is the degree of φk . The last sum
is the amount by which the solution changed when the degree of the element was
increased from pi − j to pi , and provides an estimate of the error in the partial
approximate solution of degree pi − j given in the next to last sum. (Indeed, the
local Neumann error estimator of (10.3.1–10.3.3) approximates this quantity for the
increase from degree pi to pi+1.) Thus the error estimates are

ηi,pi−j =
∥
∥
∥
∥

∑

supp(φk)∩Ti 	=∅
deg(φk)>pi−j

αkφk

∥
∥
∥
∥

H 1(Ti )

which only involves computing the norm of known quantities.
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10.4.3 Type Parameter

Gui and Babuška [12] presented an hp-adaptive strategy using what they call a type
parameter, γ . This strategy is also used by Adjerid, Aiffa and Flaherty [1]. We will
refer to this strategy as TYPEPARAM.

Given the error estimates ηi,pi
and ηi,pi−1, define

R(Ti) =
{ ηi,pi

ηi,pi−1
ηi,pi−1 	= 0

0 ηi,pi−1 = 0.

By convention, ηi,0 = 0, which forces p-refinement if pi = 1.
R is used to assess the perceived solution smoothness. Given the type parameter,

0 ≤ γ < ∞, element Ti is h-refined if R(Ti) > γ , and p-refined if R(Ti) ≤ γ . Note
that γ = 0 gives pure h-refinement and γ = ∞ gives pure p-refinement.

For the error estimates, we use the local Neumann error estimate of (10.3.1–
10.3.3) for ηi,pi

, and the ηi,pi−1 of Sect. 10.4.2. We use γ = 0.3 in the results of
Sect. 10.5.

10.4.4 Estimate Regularity Using Larger p Estimates

Another approach that estimates the regularity is given by Ainsworth and Senior [3].
This strategy uses three error estimates based on spaces of degree pi +1, pi +2 and
pi + 3, so we refer to it as NEXT3P.

The error estimate used to approximate the regularity is a variation on the lo-
cal Neumann residual error estimate given by (10.3.1–10.3.3) in which (10.3.3) is
replaced by

∂ei

∂n
= gi on ∂Ti \ ∂�

where gi is an approximation of ∂u
∂n

that satisfies an equilibrium condition. This is
the equilibrated residual error estimator in [2].

The local problem is solved on element Ti three times using the spaces of degree
pi + q , q = 1,2,3, to obtain error estimates ei,q . In contrast to the local Neumann
residual error estimate, the whole space over Ti is used, not just the p-hierarchical
bases of degree greater than pi . These approximations to the error converge to the
true solution of the residual problem at the same rate the approximate solution con-
verges to the true solution of (10.2.1–10.2.2), i.e.

‖ei − ei,q‖E(Ti) ≈ C(pi + q)−α

where C and α are positive constants that are independent of q but depend on Ti .
Using the Galerkin orthogonality

‖ei‖2
E(Ti)

= ‖ei − ei,q‖2
E(Ti)

+ ‖ei,q‖2
E(Ti)
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this can be rewritten

‖ei‖2
E(Ti)

− ‖ei,q‖2
E(Ti)

≈ C2(pi + q)−2α.

We can compute ‖ei,q‖2
E(Ti)

and pi + q for q = 1,2,3 from the approximate solu-
tions, so the three constants ‖ei‖E(Ti), C and α can be approximated by fitting the
data. Then, using the a priori error estimate in (10.2.4), the approximation of the
local regularity is mi = 1 + α. Use p-refinement if pi ≤ mi − 1 and h-refinement
otherwise.

10.4.5 Texas 3 Step

The Texas 3 Step strategy [8, 20, 21] first performs h-refinement to get an inter-
mediate grid, and follows that with p-refinement to reduce the error to some given
error tolerance, τ . We will refer to this strategy as T3S. Note that for this strategy
the basic form of the hp-adaptive algorithm is different than that in Fig. 10.1.

The first step is to create an initial mesh with uniform p and nearly uniform
h such that the solution is in the asymptotic range of convergence in h. This may
be accomplished by performing uniform h-refinements of some very coarse initial
mesh until the asymptotic range is reached. The resulting grid has N0 elements with
sizes hi , degrees pi and a posteriori error estimates ηi , and approximate solution u0.
The results in Sect. 10.5 begin with p = 1 and assume the initial grid is sufficiently
fine in h.

The second step is to perform adaptive h-refinement to reach an intermediate er-
ror tolerance γ τ where γ is a given parameter. In the references, γ is in the range
5–10, usually 6 in the numerical results. This intermediate grid is created by com-
puting a desired number of children for each element Ti by the formula

ni =
[

	2
i NIh

2μi

i

p
2(mi−1)
i η2

I

] 1
βμi+1

(10.4.1)

where NI = ∑
ni is the number of elements in the intermediate grid, mi is the local

regularity of the solution, μi = min(pi,mi − 1), ηI = γ τ‖u0‖E(�), β = 1 for 2D
problems, η2

0 = ∑
η2

i and

	i = ηi	

η0

where

	 = η0p
mi−1
i

h
μi

i

.

See any of the above references for the derivation of this formula. It is based on the
a priori error estimate in (10.2.4). Inserting the expression for 	i into (10.4.1) and
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using β = 1 we arrive at

ni =
[
η2

i NI

η2
I

] 1
μi+1

NI is not known at this point, since it is the sum of the ni . Successive iterations are
used to solve for ni and NI simultaneously. We use 5 iterations, which preliminary
experiments showed to be sufficient (convergence was usually achieved in 3 or 4
iterations). Once the ni have been determined, we perform �0.5 + log2 ni� uniform
h-refinements (bisections) of each element Ti to generate approximately ni children,
and solve the discrete problem on the intermediate grid.

The third step is to perform adaptive p-refinement to reduce the error to the
desired tolerance τ . The new degree for each element is given by

p̂i = pi

[
ηI,i

√
NI

ηT

] 1
mi−1

where ηI,i is the a posteriori error estimate for element Ti of the intermediate grid
and ηT = τ‖u0‖E(�). Again, the formula is a simple reduction of the equations
derived in the references. p-refinement is performed to increase the degree of each
element Ti to p̂i , and the discrete problem is solved on the final grid.

In the results of Sect. 10.5, if ni < 2 or p̂i < pi then refinement is not performed.
Also, to avoid excessive refinement, the number of h-refinements done to any ele-
ment in Step 2 and number of p-refinements in Step 3 is limited to 3.

The strategy of performing all the h-refinement in one step and all the
p-refinement in one step is adequate for low accuracy solutions (e.g. 1%), but is
not likely to work well with high accuracy solution (e.g. 10−8 relative error) [22].
We extend the Texas 3 Step strategy to high accuracy by cycling through Steps 2
and 3 until the final tolerance τfinal is met. τ in the algorithm above is now the fac-
tor by which one cycle of Steps 2 and 3 should reduce the error. Toward this end,
before Step 2 the error estimate η0 is computed for the current grid. The final (for
this cycle) and intermediate targets are now given by ηT = τη0 and ηI = γ ηT . In
the results of Sect. 10.5 we use τ = 0.1 and γ = 6. For the local regularity mi we
use the same routine as the APRIORI strategy (Sect. 10.4.1).

10.4.6 Alternate h and p

This strategy, which will be referred to as ALTERNATE, is a variation on T3S that is
more like the algorithm of Fig. 10.1. The difference is that instead of predicting the
number of refinements needed to reduce the error to the next target, the usual adap-
tive refinement is performed until the target is reached. Thus in Step 2 all elements
with an error indicator larger than ηI /

√
N0 are h-refined. The discrete problem is

solved and the new error estimate compared to ηI . This is repeated until the error
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estimate is smaller than ηI . Step 3 is similar except adaptive p-refinement is per-
formed and the target is ηT . Steps 2 and 3 are repeated until the final error tolerance
is achieved.

10.4.7 Nonlinear Programming

Patra and Gupta [23] proposed a strategy for hp mesh design using nonlinear pro-
gramming. We refer to this strategy as NLP. They presented it in the context of
quadrilaterals with one level of hanging nodes, i.e., an element edge is allowed to
have at most one hanging node. Here it is modified slightly for newest node bi-
section of triangles with no hanging nodes. This is another approach that does not
strictly follow the algorithm in Fig. 10.1.

Given a current grid with triangles {Ti}, degrees {pi}, h-refinement levels {li},
error estimates {ηi}, and element diameters

hi =
(

1√
2

)li

H0,i

where H0,i is the diameter of the element in the initial grid that contains Ti , the
object is to determine new mesh parameters {p̂i} and {l̂i}, i = 1..NT , by solving
an optimization problem. The new grid is obtained by refining Ti l̂i − li times (or

coarsening if l̂i < li ) and assigning degree p̂i to the 2l̂i−li children. The size of the
children of Ti is

ĥi =
(

1√
2

)l̂i

H0,i .

There are two forms of the optimization problem, which can be informally stated
as (1) minimize the number of degrees of freedom (or some other measure of grid
size) subject to the error being less than a given tolerance and other constraints, and
(2) minimize the error subject to the number of degrees of freedom being less than
a given limit and other constraints. We will only consider the first form here; the
second form simply reverses the objective function and constraint.

Computationally, the square of the error is approximated by
∑NT

i=0 η̂2
i where η̂i ,

to be defined later, is an estimate of the error in the refined grid over the region
covered by Ti . The number of degrees of freedom associated with a triangle of
degree p is taken to be 3/6 (one for each vertex with an average of six triangles
sharing a vertex) plus 3(p − 1)/2 (p − 1 for each edge with two triangles sharing an
edge) plus (p − 1)(p − 2)/2 (for the interior), which is p2/2. Thus the number of

degrees of freedom over the children of Ti is 2l̂i−li p̂2
i /2. We can now formally state

the optimization problem as

minimize
{l̂i }, {p̂i }

NT∑

i=1

2l̂i−li
p̂2

i

2
(10.4.2)
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s.t.
NT∑

i=1

η̂2
i ≤ τ̂ 2 (10.4.3)

l̂j − 1 ≤ l̂i ≤ l̂j + 1

∀j such that Tj shares an edge with Ti (10.4.4)

1 ≤ l̂i ≤ lmax (10.4.5)

1 ≤ p̂i ≤ pmax (10.4.6)

li − δldec ≤ l̂i ≤ li + δlinc (10.4.7)

pi − δpdec ≤ p̂i ≤ pi + δpinc (10.4.8)

where τ̂ is the error tolerance for this refinement phase. We use τ̂ = η/4 where
η is the global error estimate on the current grid. The divisor 4 is arbitrary and
could be replaced by some other value. In practice, (10.4.3) is divided through by
τ 2 so that the numbers are O(1). Equation (10.4.4) is a necessary condition for
compatibility of the grid (in [23] it enforces one level of hanging nodes). It is not
a sufficient condition, however any violations of compatibility while this condition
is met are cases where only one triangle of a compatibly divisible pair was refined,
and it is a slight adjustment to the optimal solution to also refine the other one
to maintain compatibility. Equation (10.4.5) insures that coarsening does not go
beyond the initial grid, and that the refinement level of an element does not exceed
a prescribed limit lmax. Similarly, (10.4.6) insures that element degrees do not go
below one or exceed a prescribed limit pmax. Also, because many quantities are
only approximate, it is wise to limit the amount of change that occurs to any element
during one phase of refinement. Equations (10.4.7) and (10.4.8) restrict the amount
of decrease in l and p to prescribed limits δldec and δpdec, and the amount of increase
to δlinc and δpinc. In the results in Sect. 10.5 we used δldec = δpdec = 1, δlinc = 5,
and δpinc = 2.

Since the l̂i and p̂i are naturally integers, the optimization problem is a mixed
integer nonlinear program, which is known to be NP-hard. To make the problem
tractable, the integer requirement is dropped to give a nonlinear program which can
be solved by one of several software packages. For the results in Sect. 10.5, we used
the program ALGENCAN1 Version 2.2.1 [5, 9]. Following solution of the nonlinear
program, the l̂i and p̂i are rounded to the nearest integer.

It remains to define η̂i , the estimate of the error in the refined grid over the region
covered by Ti . Assuming approximate equality in the a priori error estimate of

1The mention of specific products, trademarks, or brand names is for purposes of identification
only. Such mention is not to be interpreted in any way as an endorsement or certification of such
products or brands by the National Institute of Standards and Technology. All trademarks men-
tioned herein belong to their respective owners.
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(10.2.4), we have

ηi ≈ C
h

μi

i

p
mi−1
i

‖u‖Hm(Ti)

and

η̂i ≈ C
ĥ

μi

i

p̂
mi−1
i

‖u‖Hm(Ti)

where mi is the local regularity over Ti and μi = min(pi,mi − 1). Combining these
leads to

η̂i ≈ ĥ
μi

i

p̂
mi−1
i

p
mi−1
i

h
μi

i

ηi =
(

1√
2

)μi(l̂i−li )
(

pi

p̂i

)mi−1

ηi

and thus the constraint in (10.4.3) is

NT∑

i=1

(
1

2

)min(pi ,mi−1)(l̂i−li )
(

pi

p̂i

)2(mi−1)

η2
i < τ̂ 2

in which the only remaining quantity to be determined is mi . Patra and Gupta sug-
gest estimating mi by using the observed convergence rate from two grids, with a
formula very similar to that used in the PRIOR2P strategy of Sect. 10.4.2. However,
this requires that pi be at least three in every element, so instead we use the estimate
of mi from the NEXT3P strategy of Sect. 10.4.4 which allows pi = 1.

10.4.8 Another Optimization Strategy

Another strategy based on the formulation and solution of an optimization problem
is given in Novotny et al. [19]. However, it turns out that (1) the optimization does
not work near singularities, so a priori knowledge of singularities must be used
to force h-refinement near singularities, and (2) for the finite element method and
class of problems considered in this paper, the strategy always chooses p-refinement
except for extremely large elements. Thus, this strategy is (nearly) identical to the
APRIORI strategy, and will not be considered further in this paper.

10.4.9 Predict Error Estimate on Assumption of Smoothness

Melenk and Wohlmuth [16] proposed a strategy based on a prediction of what the
error should be if the solution is smooth. We call this strategy SMOOTH_PRED.

When refining element Ti , assume the solution is locally smooth and that the
optimal convergence rate is obtained. If h-refinement is performed and the degree
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of Ti is pi , then the expected error on the two children of Ti is reduced by a factor of√
2

pi as indicated by the a priori error estimate of (10.2.4). Thus if ηi is the error
estimate for Ti , predict the error estimate of the children to be γhηi/

√
2

pi where
γh is a user specified parameter. If p-refinement is performed on Ti , exponential
convergence is expected, so the error should be reduced by some constant factor
γp ∈ (0,1), i.e., the predicted error estimate is γpηi . When the actual error estimate
of a child becomes available, it is compared to the predicted error estimate. If the
error estimate is less than or equal to the predicted error estimate, then p-refinement
is indicated for the child. Otherwise, h-refinement is indicated since presumably the
assumption of smoothness was wrong. For the results in Sect. 10.5 we use γh = 4
and γp = √

0.4.

10.4.10 Larger of h-Based and p-Based Error Estimates

In 1D, Schmidt and Siebert [25] proposed a strategy that uses two a posteriori er-
ror estimates to predict whether h-refinement or p-refinement will reduce the error
more. We extend this strategy to bisected triangles and refer to it as H&P_ERREST.

The local Neumann residual error estimate given by (10.3.1–10.3.3) is actually
an estimate of how much the error will be reduced if Ti is p-refined. This is because
the solution of the local problem is estimated using the p-hierarchical bases that
would be added if Ti is p-refined, so it is an estimate of the actual change that
would occur. Using the fact that the current space is a subspace of the refined space
and Galerkin orthogonality, it can be shown that

‖u − ûhp‖2 = ‖u − uhp‖2 − ‖ûhp − uhp‖2

where ûhp is the solution in the refined space. Thus the change in the solution indi-
cates how much the error will be reduced.

A second error estimate for Ti can be computed by solving a local Dirichlet
residual problem

−∂2ei

∂x2
− ∂2ei

∂y2
= f − ∂2uhp

∂x2
− ∂2uhp

∂y2
in Ti ∪ T mate

i (10.4.9)

ei = g − uhp on ∂(Ti ∪ T mate
i ) ∩ ∂� (10.4.10)

ei = 0 on ∂(Ti ∪ T mate
i ) \ ∂� (10.4.11)

where T mate
i is the element that is refined along with Ti in the newest node bisection

method [18]. The solution to this problem is approximated by an h-refinement of
the two elements using only the new basis functions. The error estimate obtained by
taking the norm of this approximate solution is actually an estimate of how much
the solution will change, or the error will be reduced, if h-refinement is performed.

The two error estimates can be divided by the associated increase in the num-
ber of degrees of freedom to obtain an approximate error reduction per degree of
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freedom, and/or be multiplied by a user specified constant to bias the refinement
toward h- or p-refinement. In the results of Sect. 10.5 the p-based error estimate is
multiplied by 2, which seemed to work best on the largest number of test problems.

The type of refinement that is used is the one that corresponds to the larger of the
two modified error estimates.

10.4.11 Legendre Coefficient Strategies

There are three hp-adaptive strategies that are based on the coefficients in an expan-
sion of the solution in Legendre polynomials. In 1D, the approximate solution in
element Ti with degree pi can be written

ui(x) =
pi∑

j=0

ajPj (x)

where Pj is the j th degree Legendre polynomial scaled to the interval of element Ti .
Mavriplis [15] estimates the decay rate of the coefficients by a least squares fit of

the the last four coefficients aj to Ce−σj . Elements are refined by p-refinement
where σ > 1 and by h-refinement where σ ≤ 1. We refer to this strategy as
COEF_DECAY. When four coefficients are not available, we fit to whatever is avail-
able. If only one coefficient is available, we use p-refinement.

Houston et al. [14] present the other two approaches which use the Legendre
coefficients to estimate the regularity of the solution. One approach estimates the
regularity using the root test yielding

mi =
log(

2pi+1
2a2

pi

)

2 logpi

.

If pi = 1, use p-refinement. Otherwise, use p-refinement if pi ≤ mi − 1 and
h-refinement if pi > mi − 1. We refer to this strategy as COEF_ROOT.

They also present a second way of estimating the regularity from the Legendre
coefficients using the ratio test. However, they determined the ratio test is inferior to
the root test, so it will not be considered further in this paper.

Both Mavriplis and Houston et al. presented the strategies in the context of one
dimension and used the Legendre polynomials as the local basis so the coefficients
are readily available. In [14] it is extended to 2D for rectangular elements with a
tensor product of Legendre polynomials, and the regularity is estimated in each di-
mension separately, so the coefficients are still readily available. In this paper we are
using triangular elements which have a basis that is based on Legendre polynomi-
als [31]. In this basis there are 3 + max(j − 2,0) basis functions of exact degree j

over an element, so we don’t have a single Legendre polynomial coefficient to use.
Instead, for the coefficients aj we use the 1 norm of the coefficients of the degree
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j basis functions, i.e.

aj =
∑

k s.t. deg(φk)=j
supp(φk)∩Ti 	=∅

|αk|.

10.4.12 Reference Solution Strategies

Demkowicz and his collaborators developed an hp-adaptive strategy over a num-
ber of years, presented in several papers and books, e.g. [10, 11, 24, 28]. In its full
glory, the method is quite complicated. Here we present only the basic ideas of
the algorithm and how we have adapted it for bisected triangles (it is usually pre-
sented in the context of rectangular elements with some reference to quadrisected
triangles), and refer to the references for further details. We refer to this strategy
as REFSOLN_EDGE because it relies on computing a reference solution and bases
the refinement decisions on edge refinements. Note that for this strategy the basic
form of the hp-adaptive algorithm is different than that in Fig. 10.1.

The algorithm is first presented for 1D elliptic problems. Given the current ex-
isting (coarse) mesh, Gh,p := Ghp , and current solution, uh,p := uhp , a uniform
refinement in both h and p is performed to obtain a fine mesh Gh/2,p+1. The equa-
tion is solved on the fine mesh to obtain a reference solution uh/2,p+1. The norm
of the difference between the current solution and reference solution is used as the
global error estimate, i.e.,

η = ‖uh/2,p+1 − uh,p‖H 1(�).

The next step is to determine the optimal refinement of each element. This is
done by considering a p-refinement and all possible (bisection) h-refinements that
give the same increase in the number of degrees of freedom as the p-refinement.
In 1D, this means that the sum of the degrees of the two children must be p + 1,
resulting in a total of p h-refinements and one p-refinement to be examined. For
each possibility, the error decrease rate is computed as

|uh/2,p+1 − �hp,iuh/2,p+1|2H 1(Ti )
− |uh/2,p+1 − �new,iuh/2,p+1|2H 1(Ti )

Nnew − Nhp

where �hp,iuh/2,p+1 is the projection-based interpolant of the reference solution in
element Ti , computed by solving a local Dirichlet problem, and likewise �new,i is
the projection onto the resulting elements from any one of the candidate refinements.
| · |H 1(Ti )

is the H 1 seminorm over Ti . The refinement with the largest error decrease
rate is selected as the optimal refinement. In the case of h-refinement, the degrees
may be increased further by a process known as following the biggest subelement
error refinement path, which is also used to determine the guaranteed element rate;
see [10] for details.
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Elements that have a guaranteed rate larger than 1/3 the maximum guaranteed
rate are selected for refinement, although the factor 1/3 is somewhat arbitrary.

The 2D algorithm also begins by computing a reference solution on the glob-
ally hp-refined grid Gh/2,p+1. (For bisected triangles, we should use the subscript
h/

√
2,p+1 for the fine grid and solution, but for simplicity we will use the original

notation.) Then for each edge in the grid, the choice between p- and h-refinement,
the determination of the guaranteed edge rate, and the selection of edges to refine
are done exactly as in 1D, except that a weighted H 1 seminorm is used instead of
the more natural H 1/2 seminorm which is difficult to work with. In the case of bi-
sected triangles, we only consider edges that would be refined by the bisection of an
existing triangle.

The h-refinement of edges determines the h-refinement of elements. It remains
to determine the degree of each element. As a starting point, element degrees are
assigned to satisfy the minimum rule for edge degrees, using the edge degrees de-
termined in the previous step. Then the biggest subelement error refinement path is
followed to determine the guaranteed element rate and assignment of element de-
grees. We again refer to [10] for details. Finally, the minimum rule for edge degrees
is enforced by increasing edge degrees as necessary.

A related, but simpler, approach was developed by Šolín et al. [29]. We refer to
this strategy as REFSOLN_ELEM since it also begins by computing a reference
solution, uh/2,p+1, on Gh/2,p+1, but bases the refinement on elements. The basic
form of the hp-adaptive algorithm is different than that in Fig. 10.1 for this strategy,
also.

The local error estimate is given by the norm of the difference between the refer-
ence solution and the current solution,

ηi = ‖uh/2,p+1 − uh,p‖H 1(Ti )

and the elements with the largest error estimates are refined. If Ti is selected for
refinement, let p0 = �(pi + 1)/2� and consider the following options:

• p-refine Ti to degree pi + 1,
• p-refine Ti to degree pi + 2,
• h-refine Ti and consider all combinations of degrees p0, p0 + 1 and p0 + 2 in the

children.

In all cases the minimum rule is used to determine edge degrees. In [29], quadrisec-
tion of triangles is used leading to 83 options to consider. With bisection of triangles,
there are only 11 options. Also, since the object of dividing by two to get p0 is to
make the increase in degrees of freedom from h-refinement comparable to that of
p-refinement, we use p0 = �(pi + 1)/

√
2� since there are only two children instead

of four. Šolín et al. allow an unlimited number of hanging nodes, so they have no
issue of how to assign the degrees of children that were created to maintain com-
patibility or one level of hanging nodes. For the newest node bisection of triangles
algorithm, we assign �(p + 1)/

√
2� to both children of a triangle of degree p that is

refined only for the sake of compatibility.
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For each candidate, the standard H 1 projection �
H 1(Ti )
candidate of uh/2,p+1 onto

the corresponding space is performed, and the projection error in the H 1 norm,
ζcandidate, is computed,

ζcandidate = ‖uh/2,p+1 − �
H 1(Ti )
candidateuh/2,p+1‖H 1(Ti )

as well as the projection error of the projection onto Ti , ζi .
The selection of which candidate to use is not simply the candidate with the

smallest projection error [27]. Let Ni be the number of degrees of freedom in the
space corresponding to Ti , and Ncandidate be the number of degrees of freedom in
the space corresponding to a candidate. For simplicity, when computing Ni and
Ncandidate we apply the minimum rule for edge degree ignoring the degrees of the
neighbors of Ti , e.g. Ni = (pi + 1)(pi + 2)/2 regardless of what the actual edge
degrees of Ti are.

Candidates with ζcandidate > ζi are discarded. We also discard any of the h-refined
candidates for which the degrees are both greater than pi since the reference solution
is (locally) in that space. Let n be the number of remaining candidates. Compute the
average and standard deviation of the base 10 logarithms of the ζ ’s

ζ̄ = 1

n

∑

candidates

log ζcandidate

σ =
√

1

n

∑

candidates

(log ζcandidate)2 − ζ̄ 2.

Finally, to determine which candidate to use, select an above-average candidate with
the steepest error decrease, i.e., from among the candidates with log ζcandidate < ζ̄ +
σ and Ncandidate > Ni , select the candidate that maximizes

log ζi − log ζcandidate

Ncandidate − Ni

.

Following the refinement that is indicated by the selected candidate, the minimum
rule for edge degrees is applied.

10.5 Numerical Results

In this section we demonstrate the performance of the hp-adaptive strategies using
two problems that are commonly used in the adaptive refinement literature. It is
not the intention of this paper to compare the strategies against each other. In this
paper, we merely demonstrate the ability of the strategies to achieve exponential
convergence rates on a problem with a regular, but nearly irregular, solution and a
problem with a point singularity.
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Fig. 10.2 The solution of the
wave front problem. Colors
represent the function value,
with blue the minimum value
and red the maximum

The computations were performed on an Intel Core 2 based PC operating under
the 32 bit CentOS 4 distribution of Linux with kernel 2.6.18-128.1.10.el5. Programs
were compiled with Intel Fortran Version 10.1 and gcc Version 4.1.2.

Results for REFSOLN_EDGE were computed using Demkowicz’s code hp2d,
which was obtained from the CD in Demkowicz’s book [10]. For h-refinement of
triangles this code uses quadrisection with one level of hanging nodes. The maxi-
mum degree for the polynomials is 7. Results for REFSOLN_ELEM were computed
using Šolín’s code Hermes Version 0.99 [26]. For h-refinement of triangles this code
uses quadrisection with unlimited levels of hanging nodes. The maximum degree for
the polynomials is 9. Results for all other strategies were computed using PHAML
Version 1.6 [17]. This code uses newest node bisection of triangles. The maximum
h-refinement level was set to 53 and the maximum degree was set to 21.

To observe the convergence rates, we apply the algorithm in Fig. 10.1 with a
series of tolerances, τ = 0.1,0.05,0.025,0.01,0.005, . . . ,10−8. For each run we
record Ndof and ‖ehp‖E(�) for the final grid and solution. A least squares fit to the
exponential form

‖ehp‖E(�) = Ae−BNC
dof

is computed to determine the rate of convergence. According to (10.2.5), C is op-
timally 1/3. Slightly smaller values of C still indicate exponential convergence,
although not quite optimal, but very small values of C indicate that exponential
convergence was not obtained.

The first test problem is Poisson’s equation given in (10.2.1–10.2.2) on the unit
square with the right hand sides f and g chosen so the solution is

u(x, y) = tan−1
(
α(

√
(x − xc)2 + (y − yc)2 − r0)

)
.

The solution has a sharp circular wave front of radius r0 centered at (xc, yc) as
shown in Fig. 10.2. α determines the sharpness of the wave front. For this paper
we use α = 200, (xc, yc) = (−0.05,−0.05) and r0 = 0.7. The center of the circle is
taken to be slightly outside the domain because the solution has a mild singularity
at the center of the circle and we want to see how the strategies handle the wave
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front, not the singularity. For the regularity function for the APRIORI strategy we
return 3.0 if the element touches the circle on which the wave front is centered, and
a very large number otherwise. This causes h-refinement with cubic elements along
the wave front and p-refinement elsewhere. The choice of cubics was arbitrary.

The convergence results are shown in Figs. 10.3–10.7 where the norm of the
error is plotted against the number of degrees of freedom on a log-log scale. The
circles show the actual results for the sequence of values of τ , and the lines are the
exponential least squares fit to that data. The curvature of the lines is indicative of
the exponential rate of convergence. Higher curvature indicates a larger exponent
on Ndof, and a straight line would indicate a polynomial rate of convergence.

Table 10.1 contains the exponents C from the exponential least squares fit. All
strategies exhibit exponential rates of convergence, as none of the exponents are far
from the theoretical 1/3. The differences from 1/3, both smaller and larger, may be
due to effects such as suboptimal performance of the strategy, data points that are
not in the asymptotic range of convergence, etc. Note that if the early (coarse grid,
low accuracy) data points are suboptimal, this causes an increased curvature as the
accuracy “catches up” in the finer grids, which can create exponents larger than 1/3.

The second test problem is Laplace’s equation, i.e. (10.2.1) with the right hand
side f = 0, on the L-shaped domain of Fig. 10.8. The reentrant corner induces a
singularity such that the exact solution, which is also shown in Fig. 10.8, in polar
coordinates is

u(r, θ) = r2/3 sin(2θ/3).

Dirichlet boundary conditions are set accordingly. The solution is known to be in
H 1+2/3 in any neighborhood of the reentrant corner, so the regularity function for
APRIORI returns 1+2/3 if the element touches the reentrant corner and a very large
number otherwise. This results in h-refinement with linear elements at the reentrant
corner and p-refinement elsewhere.

The convergence results are shown in Figs. 10.9–10.13, and the exponents from
the least squares fit are given in Table 10.2. Again, all strategies achieved exponen-
tial rates of convergence with a few of them achieving an exponent of about 1/3 or
more.

10.6 Conclusion and Future Work

Several hp-adaptive strategies have been presented in this paper. Although they were
presented in the context of Poisson’s equation in 2D, the strategies either apply di-
rectly to other classes of PDEs or are easily modified for other classes. Numeri-
cal results with two classic test problems demonstrate that all of the strategies can
achieve exponential rates of convergence, although the 1/3 in the theoretical N1/3

is not always achieved.
The purpose of this paper is to summarize the proposed strategies in one source

and demonstrate that exponential rates of convergence can be achieved. It would
be of interest to know which, if any, of the strategies consistently outperform the
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Fig. 10.3 Convergence plots
for the wave front problem
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Fig. 10.4 Convergence plots
for the wave front problem
(continued)
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Fig. 10.5 Convergence plots
for the wave front problem
(continued)
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Fig. 10.6 Convergence plots
for the wave front problem
(continued)
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Fig. 10.7 Convergence plots
for the wave front problem
(continued)

Fig. 10.8 The solution of the
L-domain problem

Table 10.1 Exponent on
Ndof from the exponential
least squares fit to the
convergence data for the
wave front problem

Strategy Exponent C

ALTERNATE 0.27

APRIORI 0.23

COEF_DECAY 0.14

COEF_ROOT 0.25

H&P_ERREST 0.27

NEXT3P 0.23

NLP 0.30

PRIOR2P 0.16

REFSOLN_EDGE 0.21

REFSOLN_ELEM 0.44

SMOOTH_PRED 0.40

TYPEPARAM 0.28

T3S 0.18
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Fig. 10.9 Convergence plots
for the L-domain problem
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Fig. 10.10 Convergence
plots for the L-domain
problem (continued)



254 W.F. Mitchell and M.A. McClain

Fig. 10.11 Convergence
plots for the L-domain
problem (continued)
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Fig. 10.12 Convergence
plots for the L-domain
problem (continued)
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Fig. 10.13 Convergence
plots for the L-domain
problem (continued)

Table 10.2 Exponent on
Ndof from the exponential
least squares fit to the
convergence data for the
L-domain problem

Strategy Exponent C

ALTERNATE 0.34

APRIORI 0.45

COEF_DECAY 0.23

COEF_ROOT 0.30

H&P_ERREST 0.30

NEXT3P 0.22

NLP 0.61

PRIOR2P 0.32

REFSOLN_EDGE 0.13

REFSOLN_ELEM 0.20

SMOOTH_PRED 0.41

TYPEPARAM 0.32

T3S 0.17

other strategies. Toward this end, future research involves a numerical experiment
using a large collection of 2D elliptic PDEs that exhibit several types of difficulties,
a uniform software base, and a consistent methodology.
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Chapter 11
Vectorized Solution of ODEs in MATLAB
with Control of Residual and Error

L.F. Shampine

Abstract Vectorization is very important to the efficiency of computation in
the popular problem-solving environment MATLAB. Here we develop an ex-
plicit Runge–Kutta (7,8) pair of formulas that exploits vectorization. Conventional
Runge–Kutta pairs control local error at the end of a step. The new method controls
the extended local error at 8 points equally spaced in the span of a step. This is a
byproduct of a control of the residual at these points. A new solver based on this
pair, odevr7, not only has a very much stronger control of error than the recom-
mended MATLAB solver ode45, but on standard sets of test problems, it competes
well at modest tolerances and is notably more efficient at stringent tolerances.

Keywords MATLAB · Vectorization · Ordinary differential equations · Initial value
problems

Mathematics Subject Classification (2000) 65L05 · 65L20

11.1 Introduction

The problem-solving environment (PSE) MATLAB [7] is in very wide use. The
costs of certain computations in a PSE are quite different from the costs in gen-
eral scientific computation. In particular, it is possible to reduce run times in MAT-
LAB very substantially by using the compiled functions that are built into the PSE
and by vectorizing the computation so as to exploit fast array operations. Advice
about how to vectorize code in MATLAB and pointers to other documents about ef-
ficient computation are available at [15]. Vectorization is so important to efficient
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computation in MATLAB that all the programs for approximating
∫ b

a
f (x) dx re-

quire that f (x) be coded to accept a vector [x1, x2, . . . , xk] and return a vector
[f (x1), f (x2), . . . , f (xk)]. That is because the cost of evaluating f (x) generally
depends weakly on the number of arguments when the computation is vectorized.
In [13] we considered how to exploit vectorization when solving numerically a sys-
tem of n first-order ODEs

y′ = f (t, y) (11.1.1)

on an interval [t0, tf ] with initial value y0 = y(t0). Following the advice of the
programs provided by MATLAB for solving stiff initial value problems and bound-
ary value problems, we assume that when the function for evaluating f is given
a vector as the first argument with entries t1, t2, . . . , tk and a matrix as the sec-
ond argument with columns y1, y2, . . . , yk , it will return a matrix with columns
f (t1, y1), f (t2, y2), . . . , f (tk, yk). With careful coding of this function it is often
the case that the cost of evaluating the function with array arguments is not much
more than the cost of evaluating it with a single argument. A method was developed
in [13] to exploit this kind of vectorization. On standard sets of test problems, the
BV78 solver of that paper competes well with the recommended MATLAB solver
ode45 at all tolerances and is considerably more efficient at stringent tolerances.

In the present investigation we develop a method and a solver odevr7 that also
competes well with ode45 at all tolerances and is considerably more efficient at
stringent tolerances. The new solver has a very strong control of error. Conventional
solvers like ode45 and BV78 are based on a pair of formulas. They control the size
of an estimate of the local error of the lower order formula at the end of a step. They
advance the integration with the higher order formula. It is assumed that the error
of this formula is less than the error of the lower order formula, hence less than the
specified tolerance. The new solver controls the error in the formula used to advance
the integration. It controls the size of a residual at 8 points equally spaced in the span
of each step. This implies a control of estimates of the extended local error at the 8
points. There is a price to pay for this strong control, but it is a modest one because
we have found an analog of the First Same as Last (FSAL) technique for reducing
the cost of a successful step. Also, the basic formula is slightly more accurate than
the corresponding formula of the BV78 pair. We prove the surprising result that the
new pair of formulas has exactly the same stability regions as the BV78 pair. Our
goal was to develop a solver that has an exceptionally strong error control and is
still competitive with a good conventional solver like ode45. Certainly we have
achieved that with odevr7 provided that our assumptions about vectorization are
valid.

11.2 Block RK Methods

The explicit block one-step methods suggested by Milne [8] are based on implicit
Runge-Kutta (RK) formulas that in the course of a step from tn to tn + h = tn+1,
form an accurate approximation not only at tn+1, but also points equally spaced
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in the span of the step. The implicit formulas are derived in [13] by collocation:
A polynomial P(t) with P(tn) = yn is to collocate at equally spaced points tn,j =
tn + jh/r for j = 0,1, . . . , r . With the notation yn,j = P(tn,j ), fn,j = f (tn,j , yn,j )

and the definition yn,0 = yn, the resulting formulas have the form

yn,1 = (yn,0 + hA1,0fn,0) + h[A1,1fn,1 + · · · + A1,rfn,r ],
yn,2 = (yn,0 + hA2,0fn,0) + h[A2,1fn,1 + · · · + A2,rfn,r ],

...

yn,r = (yn,0 + hAr,0fn,0) + h[Ar,1fn,1 + · · · + Ar,rfn,r ].
It is shown in [17] that the yn,j are all of local order r + 2. In particular, this is true
of the approximation yn,r = yn+1 used to advance the integration, so the implicit
RK method is of global order r + 1. It is also shown that if r is even, yn,r has a
higher local order than at intermediate points, namely r + 3, so the method is of
global order r + 2.

Following Rosser [9], we investigated explicit methods in [13] that are formed
by starting with the locally second order approximations y

[1]
n,j = yn,0 + (jh/r)fn,0

for j = 1, . . . , r and then making a fixed number of simple iterations in the im-
plicit formulas. An iteration begins by evaluating the f

[m]
n,j = f (tn,j , y

[m]
n,j ) and then

computing the y
[m+1]
n,j from

y
[m+1]
n,1 = (yn,0 + hA1,0fn,0) + h

[
A1,1f

[m]
n,1 + · · · + A1,rf

[m]
n,r

]
,

y
[m+1]
n,2 = (yn,0 + hA2,0fn,0) + h

[
A2,1f

[m]
n,1 + · · · + A2,rf

[m]
n,r

]
,

...

y[m+1]
n,r = (yn,0 + hAr,0fn,0) + h

[
Ar,1f

[m]
n,1 + · · · + Ar,rf

[m]
n,r

]
.

Each iteration raises the local order of the approximations y
[m]
n,j by one (up to a

maximum order determined by the order of the underlying quadrature formulas).
For the BV78 pair of [13] we took r = 6, so after 6 iterations, all the approximations
have local order 8. When another iteration is done, the local order remains 8 at all the
interior points, but the local error at the end of the step is increased to 9, resulting
in a formula of global order 8. Along with the previous iterate, this results in an
explicit (7,8) pair that we called BV78. As this pair is implemented in the solver
BV78, the function f (t, y) is evaluated with a single argument to obtain fn,0. Each
iteration requires evaluation of f at 6 arguments, which can be accomplished with
a single array evaluation. Seven iterations are needed to reach the desired order, so
each step costs 8 (array) evaluations. This is much better than the 13 evaluations of
conventional (7,8) pairs. An attractive aspect of this kind of formula is that the values
y

[m+1]
n,j are just P [m](tn,j ) for the polynomial P [m](t) that interpolates y0 and f

[m]
n,j

for j = 0,1, . . . , r . Accordingly, when we reach the m that provides the desired
order, we already have available a continuous extension P [m](t) for “free”. This
contrasts with the excellent conventional (7,8) pair of Verner [16] that uses three
additional evaluations to form a continuous extension of the lower order formula.
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In this paper we investigate the (7,8) pair in this family that has r = 7. The ex-
plicit formulas are evaluated in exactly the same number of array evaluations as the
BV78 pair. It is plausible that the extra collocation point would provide a more ac-
curate formula. Indeed, a result in [17] shows that the underlying implicit formula
for yn+1 with r = 7 has a significantly smaller truncation error than the formula
with r = 6. Unfortunately, this does not appear to be the case for the corresponding
explicit formulas. To investigate the matter we substituted the pair with r = 7 into
BV78 and compared the resulting code to BV78 precisely as we compared BV78
to ode45 in [13]. The two pairs behaved almost the same, though there were some
problems for which the new pair was a little more efficient.

The implicit formulas underlying both pairs are shown in [17] to be A-stable, but,
of course, the explicit formulas have finite stability regions. The stability regions for
the two formulas of BV78 appear as Fig. 1 in [13]. When the author computed
the corresponding stability regions for the new (7,8) pair, he was surprised to find
that the regions were the same as those of the BV78 pair! This is an interesting
consequence of the form of the formulas. The stability region is obtained from the
stability polynomial, which results from applying the formula to the test equation
y′ = λy. Like Rosser [9], we use as initial approximation the same polynomial of
degree 1 for each choice of r . Each iterate constructs a new polynomial by applying
a set of quadrature formulas to the current polynomial. As long as the degree of this
polynomial is no greater than the degree of precision of the quadrature formulas,
the polynomial is independent of r . In the present circumstances the stability poly-
nomials are the same, so the new explicit (7,8) pair has exactly the same stability
regions as those of BV78.

The (7,8) pair with r = 7 costs the same number of array evaluations as the
BV78 pair with r = 6, it has the same stability, and is only a little more efficient.
Nevertheless, it has some important advantages. In this section we show how to
reduce the cost of a typical step. This improves not only efficiency, but also stability.
In the next section we show how to achieve a very much stronger control of error.

The (4,5) Runge–Kutta pair derived by Dormand and Prince [1] that is imple-
mented in the recommended MATLAB ODE solver ode45 is FSAL (First Same As
Last). A pair of this kind first forms the result yn+1 that will be used to advance
the integration. The function f (t, y) is then evaluated at (tn+1, yn+1), and possibly
other arguments. The values are used to compute the other formula in the pair and
then the local error of the lower order formula is estimated by comparison. If the
step is a success, and most are, the value f (tn+1, yn+1) = fn+1,0 is the first value
needed in the next step and so is “free” in that step. A pair might be derived so that
the integration is advanced with either the lower or the higher order formula. Gener-
ally the higher order formula is used, which is known as local extrapolation, because
if the error estimate is valid, the higher order formula is the more accurate. However,
the BDFs that are so popular for solving stiff problems are not implemented with
local extrapolation because the companion formulas have unsatisfactory stability.
The Dormand/Prince pair is typical of popular explicit Runge–Kutta pairs in that
the higher order formula has a better stability region, so there is quite a good case
for local extrapolation. The same is true of the BV78 pair, so we do local extrapola-
tion in the BV78 solver. It struck the author that something analogous to FSAL was
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Fig. 11.1 K7 tests stability
along the negative real axis

possible with the explicit block RK formulas if local extrapolation is not done. To
be specific, we discuss this for the (7,8) pair. After forming the results yn,j of global
order 7, we form all the f (tn,j , yn,j ) in a single array evaluation to construct the re-
sult of global order 8 used for error estimation. If the step is a success, we advance
the integration with yn+1 = yn,r , so we have available the value f (tn+1, yn+1) that
we need to start the next step. Just as with an FSAL pair like DOPRI5, this reduces
the cost of a successful step by one evaluation.

We had hoped that increasing r would provide more stable explicit formulas.
Although that did not prove to be the case, it is shown in [13] that the stability
of the BV78 pair is quite satisfactory. Indeed, the stability regions of the DOPRI5
pair used in ode45, as seen in Fig. 7.4 of [1], are both uniformly smaller than the
region for the block RK formula of order 7. The DOPRI5 pair is FSAL and costs
only 6 evaluations per successful step. As we have just seen, something similar is
true of the new (7,8) pair so that a successful step costs only 7 evaluations per step.
Comparing the regions and the cost per step, it appears that the stability of the new
odevr7 is comparable to ode45. It is stated in [13] that the average radius of the
stability region for the formula of order 8 in the BV78 pair is about 4.66 and the
average radius of the region for the formula of order 7 is about 4.26. Although the
BV78 program advances the integration with the more stable formula of order 8,
this costs 8 array evaluations per step. Each successful step in odevr7 using the
formula of order 7 costs only 7 evaluations. Taking into account the sizes of the
stability regions and the costs per step, odevr7 has a small theoretical advantage.
In [13] we compared numerically the efficiency of BV78 and ode45 when applied
to problem K7 of a test set of Krogh [6]. This problem appears in the test set to
illuminate the behavior of a solver when stability is an issue. Figure 11.1 shows
how much accuracy is achieved for a given number of function calls for all three
solvers. In this no distinction is made between calling the function with one, six, or
seven arguments. As we expected on theoretical grounds, the codes perform much
the same, but odevr7 is somewhat more efficient.
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Our scheme for reducing the cost per step requires that we advance the integration
with the lower order formula of the pair. This affects the behavior of the solver with
respect to a change of tolerance. In a step from tn to tn + h, an error per step control
(EPS) chooses the step size so that the local error is bounded by a given tolerance τ

and an error per unit step control (EPUS) chooses it so that the local error is bounded
by hτ . The paper [10] works out the behavior of the global error of a one-step
method with each of the four possibilities of error control and local extrapolation.
An error per step control with local extrapolation results in a global error that is
asymptotically proportional to the tolerance τ . This combination is found in ode45
and BV78. The popular BDF codes use EPS and do not do local extrapolation.
A one-step method of global order p implemented in this way has a global error
proportional to τp/(p+1). Accordingly, the implementation of the new (7,8) pair in
odevr7 has a global error proportional to τ 7/8. As with the popular BDF codes,
at orders this high, the global error is sufficiently close to being proportional to
the tolerance that users do not seem to be troubled by the fact that it is not quite
proportional. The experiments reported in Sect. 11.4 consider the behavior of the
global error as the tolerance is successively reduced by a factor of 10. At stringent
tolerances, it can be seen in plots like Fig. 11.2, where observed accuracy is plotted
against the number of array function evaluations, that the reduction when using
odevr7 is not as close to being an order of magnitude as it is with BV78.

11.3 Error Control

In this section we exploit an important difference between the two (7,8) block RK
formulas to control error in a much more robust way. In Sect. 11.2 we saw that for
the BV78 pair, all the approximations yn,j corresponding to the lower order formula
have local order 8, but for the higher order formula, only the approximation at the
end of the step is of local order 9. For the new pair with block size r = 7, all the
approximations yn,j corresponding to the higher order formula are of local order 9.
Accordingly, we can compare these approximations to those of local error 8 to es-
timate the local error in all of the intermediate approximations, not merely the one
used to advance the integration. This is quite remarkable. At each step we compute
7 new approximations evenly spread throughout the step and we can estimate the
local error of each in exactly the same way that the local error at the end of the
step is ordinarily estimated. Not only do we get an extraordinarily robust assess-
ment of the local error, but we also account for the fact that a solution might change
substantially over the course of a step.

A more formal statement of this control of local error will be needed for subse-
quent developments. The local solution u(t) through (tn, yn) is defined by

u′(t) = f (t, u(t)), u(tn) = yn. (11.3.1)
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Typical methods approximate the local solution at the end of a step to tn +h, but we
consider here methods that also produce a polynomial P(t) that approximates u(t)

throughout the span of the step. How well it does this is measured by

max
tn≤t≤tn+h

‖P(t) − u(t)‖ = |||P − u|||. (11.3.2)

The usual local error is the quantity P(tn + h) − u(tn + h), so at other t in the span
of the step, the quantity P(t) − u(t) is sometimes called the extended local error.
When the meaning is clear, we shorten this to local error. The local errors of the
approximate solutions yn,j ,

max
j=0,...,r

‖P(tn,j ) − u(tn,j )‖ = |||P − u|||r (11.3.3)

are of particular interest for the methods we study. For our investigation of the new
formula implemented in odevr7, it will be convenient to write yn,j = y

[6]
n,j for the

locally eighth order results that are returned as approximations to y(tn,j ) and P(t)

for the polynomial with P(tn,j ) = yn,j , j = 0, . . . ,7. We further write y∗
n,j = y

[7]
n,j

for the locally ninth order results that are used to estimate the local errors of the
yn,j . In this notation a conventional estimate of the local error of yn,j is

y∗
n,j − yn,j = u(tn,j ) − P(tn,j ) + O(h9) for j = 0, . . . ,7.

With this we have an estimate of the maximum local error at 8 points equally spaced
in the interval of interest,

max
j=0,...,r

‖y∗
n,j − yn,j‖ = |||P − u|||r + O(h9).

Rather than control this quantity directly, we have preferred in odevr7 to control
a scaled residual. In the rest of this section we study how the two kinds of controls
are related.

The residual of a smooth approximate solution Q(t) is

R(t) = Q′(t) − f (t,Q(t)).

When we recognize that

f
[6]
n,j = f (tn,j , y

[6]
n,j ) = f (tn,j ,P (tn,j ))

and

f
[5]
n,j = dP [5]

dt
(tn,j ) = P ′(tn,j )

we find that the residual of P(t) at the nodes tn,j is

R(tn,j ) = P ′(tn,j ) − f (tn,j ,P (tn,j )) = f
[5]
n,j − f

[6]
n,j . (11.3.4)

From the definition of the iterates we find that for given m,

y
[m+1]
1 − y

[m]
1 = h

[
A1,1

(
f

[m]
1 − f

[m−1]
1

) + · · · + A1,r

(
f [m]

r − f [m−1]
r

)]
,

y
[m+1]
2 − y

[m]
2 = h

[
A2,1

(
f

[m]
1 − f

[m−1]
1

) + · · · + A2,r

(
f [m]

r − f [m−1]
r

)]
,

...

y[m+1]
r − y[m]

r = h
[
Ar,1

(
f

[m]
1 − f

[m−1]
1

) + · · · + Ar,r

(
f [m]

r − f [m−1]
r

)]
.
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Using the new notation and (11.3.4) in these equations for m = 6 leads to

y∗
1 − y1 = −h[A1,1R(t1) + · · · + A1,rR(tr )],

y∗
2 − y2 = −h[A2,1R(t1) + · · · + A2,rR(tr )],

...

y∗
r − yr = −h[Ar,1R(t1) + · · · + Ar,rR(tr )].

It is then straightforward to show that

max
j=0,...,r

‖y∗
n,j − yn,j‖ ≤ h‖A‖∞|||R(t)|||r . (11.3.5)

At each step the odevr7 program controls the size of the scaled residual at the
nodes of the step, which is to say that it controls h|||R(t)|||r . For the new formula,
‖A‖∞ ≈ 0.96, so this also controls the extended local error at 8 points evenly spread
throughout [tn, tn + h].

To better understand this error control, we derive a general result relating control
of (extended) local error to control of a scaled residual. This aspect of the present
investigation is closely related to the work of [12, 14]. Suppose now that P(t) is
an approximate solution that has the correct value at the beginning of the step and
satisfies the ODEs with residual R(t),

P ′(t) = f (t,P (t)) + R(t), P (tn) = yn.

Subtracting (11.3.1) satisfied by the local solution u(t) from this equation for P(t),
integrating the difference from tn to t , and accounting for the values at the beginning
of the step leads first to

P(t) − u(t) =
∫ t

tn

[f (x,P (x)) − f (x,u(x))]dx +
∫ t

tn

R(x)dx

and then to

‖P(t) − u(t)‖ ≤
∫ t

tn

‖f (x,P (x)) − f (x,u(x))‖dx +
∫ t

tn

‖R(x)‖dx.

As usual in the study of numerical methods for ODEs, we suppose that f (t, y)

satisfies a Lipschitz condition with constant L. It then follows easily that

|||P − u||| ≤ hL|||P − u||| + h|||R|||.
When solving non-stiff problems, it is generally assumed that hL is rather smaller
than one. To be concrete, if we assume that hL ≤ 1/2, then

|||P − u||| ≤ h

1 − hL
|||R||| ≤ 2h|||R|||. (11.3.6)

With this modest assumption on the step size we find that a control of the scaled
residual h|||R||| provides a control of the extended local error. We favor a residual
control because it is meaningful even when the asymptotic results about accuracy
that justify estimates of local error are of dubious validity. In principle we can al-
ways compute a good estimate of the size of the residual because we can evaluate
R(t) wherever we like.
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It is useful to regard the inequality (11.3.5) for explicit block RK formulas as
a discrete analog of the general result (11.3.6), but we must recognize that there
are some important differences. Obviously one takes into account only r + 1 points
in the span of the step and the other, the whole interval [tn, tn + h]. The quantity
on the left side of (11.3.5) is only an (asymptotically correct) estimate of the ex-
tended local error at the points of interest. Unfortunately, we have no theoretical re-
sults that say the discrete norms of (11.3.5) approximate well the continuous norms
of (11.3.6). Certainly it is plausible that sampling the residual at 8 points equally
spaced throughout the step would provide a good estimate of the maximum value of
the residual, but we have not shown that for the scheme of odevr7. There are meth-
ods with continuous extensions for which there are asymptotic results that provide
the locations of extrema of the residual, see for example [3, 11]. With this infor-
mation an asymptotically correct estimate of the maximum residual can be readily
computed. Alternatively, a quadrature formula is used to obtain an asymptotically
correct estimate of an integral norm of the residual for the method of [5]. Enright
and Li [2] discuss estimation of the size of the residual and in particular, how an
improved estimate can lead to a better performance. Schemes with asymptotically
correct estimates of the size of the residual are used in [12, 14] to provide a control
not only of the size of a scaled residual, but also a control of the extended local error
as in (11.3.6).

In odevr7 we control the size of a scaled residual at 8 points equally spaced
in the span of each step. We have shown that this bounds asymptotically correct
estimates of the extended local error at those 8 points. It is conventional to control
an estimate of the local error only at the end of a step. Also, it is conventional
to do local extrapolation with the consequence that the error actually incurred is
smaller than the quantity being controlled only if the expected asymptotic behavior
is evident. Certainly we have a far stronger control of error in odevr7. We have not
proved that the 8 equally spaced samples provide an asymptotically correct estimate
of the residual for the method of odevr7. Indeed, we do not believe that to be true.
Still, with this many samples spread throughout the interval we think it reasonable
to expect that odevr7 will enjoy some of the robustness of a full control of the
residual.

11.4 Illustrative Computations

In [13] we compared BV78 and ode45 using two standard sets of test prob-
lems [4, 6]. Here we compare these solvers to odevr7 in the same way. Full
details of the tests are reported in [13], so here we provide only an overview.
We have compared the three solvers on both sets of test problems, but the re-
sults are consistent, so for brevity we report here only what happened with
Krogh’s set. The programs for both sets and odevr7 itself are available at
http://faculty.smu.edu/shampine/current.html. There are 10 problems in the set, but
we must exclude K5 because it is a pair of second order ODEs and none of the
solvers can treat such problems directly. For this reason Krogh includes in his set

http://faculty.smu.edu/shampine/current.html
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Table 11.1 Run times for test set of Krogh [6]

Problem K1 K2 K3 K4_5 K6 K7 K8 K9 K10

BV78 0.2 0.5 0.5 0.6 0.6 0.9 0.8 0.9 0.5

odevr7 0.2 0.5 0.5 0.6 0.6 1.0 0.9 1.0 0.5

ode45 0.5 1.8 1.7 2.0 1.9 1.2 2.1 2.7 1.7

the problem K4, which is K5 written as a first order system. We display results
for this problem in Table 11.1 under the heading “K4_5”. The problems are to be
solved with either pure relative or pure absolute error. The solvers were applied to
each of the 9 problems of the test set with tolerances 10−2,10−3, . . . ,10−12. Tol-
erances were excluded from the comparison when one of the solvers had an error
bigger than 1. Using reference values obtained as in [13], we compared the accura-
cies at 200 points equally spaced in the interval of integration. In this way we test
not only the accuracy of the method, but also the accuracy of the continuous exten-
sion. Moreover, the cost of evaluating the continuous extension is included in the run
times reported. As emphasized in [13], it is difficult to obtain consistent run times
in MATLAB, especially when the run times are small in absolute terms, as they are
for these test problems. To reduce the effects of this, we report run times summed
over the whole range of tolerances. For each test problem, the entries of Table 11.1
were obtained in a single run of a program preceded by a “clear all” command.
We have done this repeatedly and found the times to be consistent, though the last
digit displayed might vary. Nevertheless, the run times displayed in the table should
be considered only a rough guide as to relative costs. We summarize these results
by comparing the total time required to solve this wide range of problems over a
wide range of tolerances. As we found already in [13], the total run time of ode45
is about 2.8 times that of BV78 and we now see that it is about 2.7 times that of
odevr7.

For both sets of test problems it was possible to vectorize the evaluation of the
ODEs so that the cost depends weakly on the number of arguments. With the ex-
ception of the C5 problem of the test set [4], this was easy. In the case of the five
body problem of C5, we actually tried several ways of coding the equations. Array
operations and vectorization are so important to efficient computation in MATLAB

that the experienced user routinely takes this into account. The programs for solving
stiff initial value problems for ODEs and those for solving boundary value problems
for ODEs have already demonstrated the advantages of accounting for vectorization
when developing numerical algorithms. It is not always easy and it may not be pos-
sible to code evaluation of a system of ODEs so that the cost is a weak function of
the number of arguments. Whether or not the ODEs can be vectorized well, the new
odevr7 solver is effective and provides an exceptionally strong control of error.

Each of our programs plots efficiency in terms of the accuracy achieved versus
the number of array evaluations. The performance differs from problem to problem,
but Fig. 11.2 shows what might be described as a typical plot. The problem K9 is a
two body problem in elliptic motion with eccentricity 0.6. BV78 is somewhat more
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Fig. 11.2 K9 is a two body
problem with eccentricity 0.6

Fig. 11.3 K10 is a restricted
three body problem

efficient than odevr7, especially at the most stringent tolerances where the fact
that it integrates at order 8 is most important. Though BV78 is typically more ef-
ficient in this sense for Krogh’s test set, odevr7 is comparably efficient for some
problems and more efficient for a few. As we saw in Fig. 11.1, odevr7 is some-
what more efficient than BV78 when stiffness is an issue. The performance of the
solvers on the restricted three body problem K10 is interesting. Figure 11.3 shows
that odevr7 solves K10 a little more efficiently than BV78. The fact that it per-
forms better at crude tolerances is not unusual, but the fact that it performs better at
the most stringent tolerances is.

The new odevr7 has a very much stronger control of error than BV78. It is
less efficient than BV78, but it is competitive because each step is cheaper and the
formulas are a little more accurate. That, however, is not the important conclusion
from these tests and analysis: odevr7 has a very much stronger control of error
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than ode45 and if the cost of evaluating the ODEs depends weakly on the num-
ber of arguments, it is comparably efficient at modest tolerances and notably more
efficient at stringent tolerances.

11.5 Conclusions

We assume that evaluation of f (t, y) in the ODEs (11.1.1) is vectorized and that the
cost of evaluating this function with several arguments is not much greater than the
cost of evaluating it with a single argument. This is a good assumption for the stan-
dard sets of test problems [4, 6]. The solver BV78 developed in [13] then competes
well with the recommended MATLAB solver ode45 at all tolerances and is consid-
erably more efficient at stringent tolerances. The same is true of the solver odevr7
developed here. Indeed, for a wide range of standard test problems solved for a wide
range of tolerances, ode45 had a run time that was about 2.7 times the run time of
odevr7. This is gratifying when it is appreciated that the new solver has a remark-
ably strong control of error. The ode45 solver has a conventional control of the size
of an estimate of the local error of the formula of order 4. However, it advances the
integration with the formula of order 5 (local extrapolation). This assumes that its
error is smaller than the error of the formula of order 4, which it certainly will be if
the expected asymptotic behavior is evident, hence the local error of the step will be
smaller than the specified tolerance. The odevr7 solver advances the integration
with a formula of order 7. Not only does it control the size of an estimate of the
local error of this formula at the end of the step, but even the size of estimates of
the extended local error at 7 other points equally spaced in the span of the step. In
odevr7 this control of the extended local error is a byproduct of the control of the
size of the residual of a continuous extension at 8 points equally spaced throughout
the span of the step.
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Chapter 12
Forecasting Equations in Complex-Quaternionic
Setting

W. Sprössig

Abstract We consider classes of fluid flow problems under given initial value and
boundary value conditions on the sphere and on ball shells in R

3. Our attention is
focused to the forecasting equations and the deduction of a suitable quaternionic
operator calculus.

Keywords Forecasting equations · Quaternionic operator calculus · Toroidal flows

Mathematics Subject Classification (2000) Primary 30G35 · Secondary 35G15

12.1 Introduction

Hamilton’s discovery of the skew-field of quaternions was made in 1843. He found
the first division ring and opened the possibility of its algebraic and geometric use.
Almost 90 years later, the Romanian mathematicians G.C. Moisil and N. Teodor-
escu [17] from Cluj University as well the group around the Swiss mathematician
R. Fueter from the Federal Institute of Technology Zurich started with a quater-
nionic analysis and Clifford analysis, which is an analogue of complex function
theory in higher dimensions. The breakthrough came with the book “Clifford anal-
ysis” by the Belgian research group around R. Delanghe at Ghent University. In the
following years, right and left analogues of complex analysis were developed. In
this connection, independent work of H.R. Malonek and F. Sommen are significant.
They both discussed possible equivalence of the three different approaches to real

W. Sprössig (�)
Fakultaet fuer Mathematik und Informatik, TU Bergakademie Freiberg, Prueferstraße 9,
09596 Freiberg, Germany
e-mail: sproessig@math.tu-freiberg.de

T.E. Simos (ed.), Recent Advances in Computational and Applied Mathematics,
DOI 10.1007/978-90-481-9981-5_12, © Springer Science+Business Media B.V. 2011

273

mailto:sproessig@math.tu-freiberg.de
http://dx.doi.org/10.1007/978-90-481-9981-5_12


274 W. Sprössig

Clifford analysis (series expansions, differentiability, generalised Cauchy-Riemann
equations). In particular it means that this type of “hypercomplex” analysis has the
same power like the classical complex analysis in the plane.

Complex methods play an important role for the treatment of boundary value
problems. In our books [9, 10] and [12], we developed a new strategy for solv-
ing linear and non-linear boundary and initial-value boundary problems of partial
differential equations of mathematical physics using quaternionic analysis. It was
found that stationary problems are related to the algebra of real quaternions and
initial-boundary value problems are associated to the algebra of complex quater-
nions, which is isomorphic (in the sense of associative algebras) with the famous
Pauli algebra. It was necessary to develop a special quaternionic operator calcu-
lus with three basic operators: Dirac type operator or Cauchy-Riemann operator,
Teodorescu transform and Cauchy-Fueter operator. In the complex plane, these op-
erators correspond to the Cauchy-Riemann equations, the T-operator and the Cauchy
operator. Null solutions of the Dirac type operator are called holomorphic or mono-
genic. Boundary conditions are handled using Plemelj type formulae relative to the
Cauchy-Fueter operator. A good understanding of initial value problems requires a
change in the basic operator trinity. In this way, the Dirac operator with zero mass is
replaced by the Dirac operator with mass. The kernel of the Teodorescu transform
changes from the Cauchy kernel to a kernel generated by the MacDonald function.
The Cauchy-Fueter operator has the same kernel. As a result, a new operator calcu-
lus satisfying again a formula of Borel–Pompeiu type was developed.

In 1989, we introduced a Hodge-Bergman decomposition for the quaternionic
Hilbert space in our first book [9]. Such a decomposition separates the kernel of the
Dirac type operator. We were able to describe explicitly its orthogonal complement
space. The space is just the image of the operator adjoint to the Dirac type oper-
ator on the quaternionic Sobolev space W 2

1 with zero trace on the boundary. The
corresponding orthogonal projections onto these subspaces are called the Bergman
projection and the Pompeiu projection, respectively. This basic principle has been
generalised for forms on differentiable manifolds (cf. [20], 1995). Both orthogonal
projections can be described with help of the generating operator trinity and an iso-
morphism between two subspaces of suitable Sobolev-Slobodetzkij spaces over the
boundary of the domain. The first one is the space of all functions holomorphically
extentable to the domain, the other is the space of all functions holomorphically
extentable to the exterior of the domain, vanishing at infinity.

Finally, the quaternionic factorisation of the Klein-Gordon operator into two
Dirac operators with masses plays the key role. The relation � = −D2 was found
already by Paul Dirac.

In this paper, we consider classes of fluid flow problems on the sphere and in
ball shells with given initial value and boundary value conditions. We focus our
attention to the corresponding Navier-Stokes equations and its linearisations—the so
called forecasting equations. Shallow water equations are rather similar to these set
of equations, we shall discuss them as well. The physical background of such type
of equations is described in the book “Turbulence in fluids” by M. Lesnieur [14].
For a better understanding, we will give a brief introduction to the corresponding
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physical problems. The main aim of the article is to construct quaternionic operator
calculus tailored for the above mentioned applications.

12.2 Forecasting Equations—A Physical Description

Taking into account the Earth’s rotation, Newton’s second law reads as follows:
Let ν be the dynamic viscosity and a the angular velocity of the rotating frame

of reference, we then have

Du

Dt
= − 1

ρ
∇p + ν�u + f − 2a ∧ u + φ (Newton’s second law), (12.2.1)

where the left hand side describes the inertial acceleration of a fluid element with
respect to all forces acting on it. The notation Du/Dt expresses the Lagrangian rate
of change of the radial velocity u of an infinitesimal box of fluid. The flow vector
u is considered relatively to the center of the rotating reference frame. Furthermore,
f stands for the outer forces and the term 2a ∧ u is the Coriolis force. We set

φ := g − a × (a × x), (12.2.2)

where g is Newtonian gravity and a × (a × x) the centrifugal force (cf. [18]). We
denote by x the position vector in a frame which rotates with the Earth, its origin is
in the center of the Earth.

There are the following relations between temperature T , pressure p and den-
sity ρ. At first we have

cR = p

Tρ
, (12.2.3)

where cR denotes the universal gas constant per unit mass. Further the total time
derivative of the temperature is the sum of the local rate of change of the temperature
and the advection term of T .

DT

Dt
= ∂tT + (u · ∇)T . (12.2.4)

The left hand side depends on Q,p,ρ, cV . Here Q is the a quantity of heat and
cV the specific heat at constant volume V . In a fixed volume the change of mass is
measured by inflow and outflow. Gauss’ law yields

∂tρ = −∇ · (uρ) (12.2.5)

or in another formulation

Dρ

Dt
+ ρ∇ · u = 0. (12.2.6)
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Hence

Dρ

Dt
= 0 ⇔ ∇ · u = 0 (incompressibility condition). (12.2.7)

Summing up we obtain by substitution of Lagrange’s derivatives

∂tu = ν�u − (u · ∇)u − 2a ∧ u − 1

ρ
∇p − φ + f, (12.2.8)

cV ∂tT = −cV (u · ∇)T − p

ρ
(∇ · u) + Q, (12.2.9)

∂tρ = −(u · ∇)ρ − ρ(∇ · u), (12.2.10)

p = ρcRT (12.2.11)

and initial value and boundary value conditions. It should be noted that the quantities
Q, cV , cR consider also the water particles in the air.

If density and heating changes can be neglected, i.e.,

Dρ

Dt
= 0, (12.2.12)

we get the following simplified model of the simplified forecasting equations (SFE)
in a ball-shell.

Let G12 be a ball-shell with an inner boundary �1 and an outer boundary �2.
Then we have

∂tu = ν�u − (v(u) · ∇)u − 1

ρ
∇p − 2a ∧ u + F in G12, (12.2.13)

∇ · u = 0 in G12, (12.2.14)

ρ = const, (12.2.15)

u(t, x) = g(t, x) on �1 ∪ �2, (12.2.16)

u(0, x) = u0(x) in G12. (12.2.17)

We have fixed F := f − φ, where φ is the apparent gravity. A suitable reference
for such physical interpretation of the system is the book [14]. In particular, it is
also explained there, why the assumption of incompressibility is physical realistic.
The argument goes as follows: One has to compare the anticipated velocity with the
sound speed. In case of atmospherical flows, we have, as a rule, velocities smaller
than the speed of sound and so the condition of incompressibility makes sense.

Remark 12.1 The key role plays the advection term (v(u) · ∇)u. For v = const we
have the (linear) Oseen-type of the SFE. For v = 0 we obtain the linear Stokes-type
of the SFE) and for v = u the non-linear Navier-Stokes type SFE arise.
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12.3 Toroidal Flows on the Sphere

12.3.1 Tangential Flows on the Sphere

The height of the Earth’s atmosphere is only about ten kilometers. When we com-
pare this with the diameter of a low pressure area of thousand kilometers and more,
it is justified to reduce the ball shell to a sphere. Then we allow only surface curl
divergence-free flows in tangential directions. This is a strong restriction, only hori-
contal movements are allowed. Unfortunately, hurricans are excluded.

Let be � a domain on the sphere with the sufficient smooth boundary C. We then
have the equation (cf. [7])

∂tu + (v(u) · ∇S)u = ν�Su − 1

ρ
∇Sp − 2a ∧ u + F in � (12.3.1)

with the vector derivative ∇S , the Beltrami operator �S , the surface gradient ∇Sp

and the surface divergence ∇S · u. The vector of outer forces F also includes the
so-called apparent gravity, which means that gravity is reduced by the centrifugal
force. Moreover it is assumed that

∇S · u = 0 (12.3.2)

with Dirichlet boundary conditions on ∂� =: C.

Remark 12.2 We note that a velocity field is called toroidal, if it is tangential and
surface-divergence-free

Note There is a similarity to shallow water (or Barré de Saint-Vainant) equations,
which can be described in a normalised form as follows:

∂tu + (v(u) · ∇S)u = −2a ∧ u + ν�S,u − g∇Sh, (12.3.3)

∂tH = −(u · ∇S)H + H∇S · u, (12.3.4)

H := h(t, x) − hG(t, x), (12.3.5)

u(0, x) = u0, (12.3.6)

h(0, x) = h0, (12.3.7)

where H is total depth of the fluid, hG describes the ground profil and h is the
surface function of the fluid. The reader may compare it with [15].

12.3.2 Quaternionic Algebras and Functional Spaces

Let H be the algebra of real quaternions and a ∈ H, then a = ∑3
k=0 αkek . α0 is

called the scalar part and denoted by Sca. Further let e2
k = −e0 = −1; e1e2 =
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−e2e1 = e3, e2e3 = −e3e2 = e1, e3e1 = −e1e3 = e2. Natural operations of addition
and multiplication in H turn H into a skew-field. Quaternionic conjugation is given
by

e0 = e0, ek = −ek (k = 1,2,3),

a = a0 −
3∑

k=1

αkek =: α0 − a.
(12.3.8)

Further relations are

aa = aa = |a|2
R4 =: |a|2

H
, (12.3.9)

a−1 := 1

|a|2 a, ab = b a. (12.3.10)

Remark 12.3 Quaternions as structure were discovered by Sir R.W. Hamilton in
1843 [13]. Already 100 years earlier L. Euler used such units in his theory of kine-
matics [1].

We denote by H(C) the set of quaternions with complex coefficients, i.e.

a =
3∑

k=0

αkek (αk ∈ C). (12.3.11)

For k = 0,1,2,3 we have the commutator relation iek = eki. Any complex quater-
nion a has the decomposition a = a1 + ia2 (aj ∈ H), leading to notation CH. We
have three possible conjugations:

1. a C := a1 − ia2,
2. a H := a1 + ia2,
3. a CH := a1 − ia2.

We assume that we have a sufficiently smooth bounded domain G with the
boundary � in R

3 or in a domain � with the smooth boundary curve C on the
sphere S2. Function spaces of quaternionic valued functions are defined compo-
nentwise. We will use in our paper Hölder spaces, C∞, subspaces of some kind of
quaternionic holomorphic (monogenic) functions and quaternionic Sobolev spaces
as well as their trace spaces on the corresponding boundary.

12.3.3 Tangential Derivatives

We have to work with Sobolev spaces on smooth 2-dimensional manifolds M in R
3,

so-called hypersurfaces. We denote by Br(x) the ball with the radius r around x.
Let h be a function defined on M ∩ Br(x) and let H be a smooth extension into
Br(x) ⊂ R

3. Furthermore, let Px be the orthogonal projection onto the tangent space



12 Forecasting Equations in Complex-Quaternionic Setting 279

TxM of the manifold M at a point x. Then the vector derivative ∇M is defined at the
point x by

(∇Mh)(x) =
3∑

i=1

Pxei∂iH. (12.3.12)

If y ∈ R
3, then Px can be computed as Pxy = y − nx(nx · y) ∈ TxM , because of

nx · Pxy = 0. Using nx × ny = nx ∧ ny and the double cross product we have

Pxy = −nx ∧ (nx ∧ y). (12.3.13)

A good reference is the book by J. Cnops [4]. Now let D = ∑3
i=1 ei∂i be the mass-

less Dirac operator, then the vector derivative is given by

∇M = Px(D) = D − nx(nx · D)

=
3∑

j=1

[∂j − nj∂j ]ej =
3∑

j=1

Dj ej . (12.3.14)

In this case the vector derivative ∇M is called Günter’s gradient and Dj Günter’s
partial derivatives.

Note Günter’s derivatives were studied for the first time by N. Günter [8] in 1953.

There are close relations to Stokes derivatives and the Gaussian curvature. In-
deed, we have

∇M = −nx(nx × D) = −nx

∑

i<j

eij (ni∂j − nj∂i) = nx

∑

i<j

eij Mij . (12.3.15)

The derivatives Mij are called Stokes derivatives. Günter’s partial derivatives can
be expressed by Stokes partial derivatives

Dj =
3∑

k=1

nk Mkj ,

3∑

k=1

nkDk = 0. (12.3.16)

Moreover, we have the relation

3∑

k=1

Dknk = G, (12.3.17)

where G is the Gaussian curvature (cf. [6, 16]).
Now we return to the sphere. The vector derivative on the sphere is given by

Px(D) = ∇S = −ω(ω ∧ D) = −ω
∑

i<j

eiej (ωi∂j − ωj∂i), (12.3.18)
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with (ω2 = −1). The operators ωi∂j − ωj∂i are called angular momentum opera-
tors. The spherical Dirac operator is given by

�S =
∑

i<j

eiej (ωi∂j − ωj∂i) (12.3.19)

and connected to the vector derivative as follows:

∇S = −ω�S and ω∇S = �S. (12.3.20)

�S · u is called surface-curl-divergence. It is well-known that the Laplacian permits
the factorisation

� = ∂2
r + 2

r
∂r + 1

r2
�S = ∇ · ∇ =

3∑

i=1

∂2
i . (12.3.21)

R. Duduchava [6] proved that a similar decomposition is also valid for the Beltrami
operator using Günter’s derivatives. We have

�S = �S(−2 − �S) = ∇S · ∇S =
3∑

i=1

D2
i . (12.3.22)

12.4 Oseen’s Problem on the Sphere

In this section we deal with the Oseen linearisation of the simplified forecasting
equations. We intent to study these equations on the sphere and in a ball-shell. For
this reason a corresponding quaternionic operator calculus will be introduced. Cor-
responding versions of a Dirac operator, a Teodorescu transform and a Cauchy-
Fueter type operator will play a key role again. But also formulae of Plemelj type
and a Bergman-Hodge decomposition are necessary. The best introduction to these
topics can be found in the PhD thesis of P. Van Lancker (Ghent) [23].

12.4.1 Discretized Oseen’s Problem on the Sphere

At least there are three different methods to involve time-derivatives in a quater-
nionic operator system:

(i) The quaternionic basis is extended by addition of two further formal algebraic
elements. Then we get a so called Witt basis. In this basis a quaternionic operator
trinity can be introduced. A corresponding Borel-Pompeiu formula keeps valid. This
approach is proposed in the papers [3] and [2].

(ii) A time-discretisation leads to a new quaternionic operator trinity. We now
study a Dirac operator with a mass and integral operators with more general kernels.
This approach was used for the first time in our paper [11].
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(iii) A quaternionic method of harmonic extension is worked out. This is based
on the use of operator exponentials of the Dirac operator and the Laplacian. First
results in this direction can be found in [21].

Here we follow the second method and we construct a time-discretisation. Con-
sider T > 0, ⊂ S. Oseen’s problem is defined in [0, T ] × � with the known vector
function v. In the sequel we shall work with the quaternionic formulation, i.e. we
have shall identify the 3-dimensional vector u with the quaternion (0, u). In our
sense this is completely unspectacular.

∂tu − ν�Su − 1

ρ
∇Sp = F in �, (12.4.1)

∇S · u = 0 in �, (12.4.2)

u(0, ·) = u0 in �, (12.4.3)

u = g on ∂� = C, (12.4.4)

where F = F (u, a, v) := −2a ∧ u + (v · ∇S)u + F .
Now let us consider T = nτ , with the meshwidth τ . We set uk := u(kτ, ·), pk :=

p(kτ, ·)gk = g(kτ, ·) for 0 ≤ k ≤ m.
We take the forward differences: ∂tu ≈ (uk+1 − uk)/τ in (kτ, x), introducing

the so-called kinematic viscosity η := νρ. A division by ν leads to the quaternionic
formulation of Oseen’s equation

1

ντ
uk+1 − �S(−�S − 2)uk+1 + 1

η
∇Spk+1 = Fk = 1

ν
F (uk, . . .) + uk

ν
. (12.4.5)

By symmetric factorisation we obtain the decomposition

(�S + α+)(�S + α−)uk+1 + 1

η
∇Spk+1 = Fk. (12.4.6)

Using Günters gradient and taking into account ω2 = −1 (quaternionic multipli-
cation!) we find

ω(�S − 2 − α+)ω(� + α+)uk+1 + 1

η
∇Spk+1 = Fk =: Fk(uk), (12.4.7)

hence

D−2−α+Dα+uk+1 + 1

η
D0pk+1,= Fk, (12.4.8)

where

α− = −2 − α+ = β and α+ = α = −1 + i

√

−1 + 1

ντ
,

β := −2 − α, (12.4.9)

DβDαuk+1 + 1

η
D0pk+1 = Fk. (12.4.10)
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12.4.2 Quaternionic Operator Calculus on the Sphere

We introduce the following operators (cf. [23]): �S + α, α ∈ C \ (N ∪ −N), α �= 0.

Dα := ω(�S + α) (Günter’s gradient), (12.4.11)

Tα := −
∫

�

Eα(ω, ξ) · dS(ω) (Teodorescu transform), (12.4.12)

FC,α := −
∫

−C

Eα(ω, ξ)n(ω) · dC(ω) (Cauchy-Fueter type operator).

(12.4.13)

A corresponding Borel-Pompeiu formula is given by

FC,αu + TαDαu =
{

u in �,

0 in S \ �.
(12.4.14)

The result can be found in [23]. Let α ∈ C \ {N ∪ {−2 − N}}. Then

Eα(ω, ξ) = π

σ3 sinπα
Kα(−ξ,ω)ω, (12.4.15)

where σ3 is the surface area of the unit sphere. Further we have

ω · ξ = −
3∑

i=1

ξiωi, (12.4.16)

Kα(−ξ,ω) = C3/2
α (ω · ξ) − ξωC

3/2
α−1(ω · ξ), (12.4.17)

with the Gegenbauer polynomials C
μ
α (t).

Using Kummer’s function 2F1(a, b; c; z) we get the representation:

C3/2
α (z) = �(α + 3)

�(α + 1)

1

4
2F1

(

−α,α + 3;2; 1 − z

2

)

,

z ∈ C \ {−∞,1}. (12.4.18)

Kummer’s function is for |z| < 1 defined by:

2F1(a, b; c; z) :=
∞∑

k=0

(a)k(b)k

(c)k

zk

k! , (a)k = �(a + k)

�(a)
. (12.4.19)

Solutions of Dαu = 0 in � are called inner spherical holomorphic (monogenic)
functions of order α in �. We have

DαEα(ω, ξ) = δ(ω − ξ). (12.4.20)

Good references to this topic are the works [23] and [5].
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12.4.3 Plemelj Decompositions on the Boundary of Spherical
Domains

Now we consider the Hilbert module L2(∂�) =: L2(C) of all square integrable
complex-quaternionic valued functions defined on C, which is a C∞-Liapunov
curve. There are two possibilities to introduce an inner product

(u, v)C =
∫

C

uvdS ∈ CH. (12.4.21)

Here dS denotes the Lebesgue measure on C. Another complex valued inner prod-
uct can be obtained by putting

[u,v]C = Sc(u, v)C. (12.4.22)

The latter definition leads to a norm and therefore to a quaternionic Hilbert space.
Let u be a quaternion valued C∞-function on C. We already know that FC,αu

belongs to the kernel of the operator Dα = ω(�S + α). We introduce a singular
integral operator of Fueter-Bitzadse type

(SC,αu)(ξ) := 2 lim
ε→0

∫

C\Bε(ξ)

Eα(ω, ξ)n(ω)u(ω)dS(ω) (12.4.23)

= 2v.p.

∫

C

Eα(ω, ξ)n(ω)u(ω)dS(ω). (12.4.24)

The vector-valued quaternion n(ω) is orthogonal to the curve C in the point ω ∈ S2

and belongs to the 2-dimensional tangent space TωS2 as well as to the 1-dimensional
tangent space TωC.

Using ideas in [19] and [23] one gets S2
C,α = I . Let �+ := �, �− := co�.

Applying the general trace operator as non-tangential limit on the sphere towards
the boundary C we get Plemelj-type formulae

n.t. − lim
t→ξ

t∈�±
(FC,αu)(t) = 1

2
[±I + SC,α]u(ξ)

=:
{

PC,αu(ξ), t ∈ �+,

−QC,αu(ξ), t ∈ �−.
(12.4.25)

The operators

QC,α := 1

2
[I − SC,α], PC,α := 1

2
[I + SC,α] (12.4.26)

are called Plemelj projections. Let Mα,∞ be the submodule of C∞(�) of α + �S -
holomorphic functions (cf. [22]). Further we denote by Mα,∞(C) the subspace of
traces of Mα,∞(�). The space Mα,∞ is isomorphic to Mα,∞ considered as subspace
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of L2(C). The Hardy space HSα(�) is defined as the closure of Mα,∞ in L2(C).
Such a decomposition is now given by

L2(C) = HSα(�+) ⊕ HSα(�−) (12.4.27)

with the Plemelj-type projection PC,α , QC,α , on the first and the second Hardy
space, respectively.

The Stokes theorem on the sphere is proved in [23]. It reads as follows
∫

C

vngds =
∫

�

[−(Dβv)g + v(Dαg)]dS(ω) (12.4.28)

with β + α = −2 and with respect to the inner product

(u, v) =
∫

�

uvd�. (12.4.29)

Using Eα(ξ,ω) = −Eβ(ω, ξ), Eα(ξ,ω) = −ξEβ(ξ,ω)ω we obtain the following
Bergman-Hodge decomposition of the quaternionic Hilbert space

L2(�) = kerDα ∩ L2(�) ⊕ Dβ

◦
W

1
2(�). (12.4.30)

The operators Pα,β , Qα,β = I − Pα,β are called Bergman type projection, Pompeiu
type operator, respectively. The proof is analogous to that in the book [9]. In a
similar way to the space case one can show that the Bergman type projection Pα,β

permits the explicit representation:

Pα,β := FC,α(trCTβFC,α)−1trCTβ. (12.4.31)

12.4.4 Time-Discrete Representation of Oseen’s Problem

Set

Hk+1 := TβFC,α(trCTβFC,α)−1QC,βgk+1 + FC,βgk+1, (12.4.32)

then follows that

uk+1 = −1

η
TβQα,β p̃k+1 + TβQα,βTα Fk + Hk+1, (12.4.33)

where p̃k+1 := pk+1 − αTαpk+1. Note that

Dαp̃k+1 = D0pk+1. (12.4.34)

The approximation and stability can be proved in a similar way as in [11], be-
cause α tends to finite a complex value for τ , which are going to zero and do not lie
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on the axes. We should remark here, that we have the identity

Kα(−ξ,ω) = sinπα

π

∞∑

k=0

[
Kk(ξ,ω)

α − k
− ξKk(ξ,ω)ω

α + k + 2

]

(12.4.35)

at least for all non-real α (cf. [23], p. 120). The convergence of the expansion has to
be understood in the distributional sense. We emphasize that all information on the
boundary values is included in the terms Hk+1.

12.4.5 Forecasting Equations in the Ball Shell

We would like to come back to the forecasting equations on the ball shell, which
were described as

1

ν
∂tu + DDu + 1

η
Dp + 1

η
(u · D)u = 1

η
F − 2

1

η
a ∧ u =: F (·, u), (12.4.36)

ScDu = 0 in G12, (12.4.37)

ρ(t, x) = 0, (12.4.38)

u(0, x) = u0(x) in G12, (12.4.39)

u(t, x) = g(t, x) on �1 ∪ �2 =: �. (12.4.40)

12.4.6 Quaternionic Operator Formulation of Forecasting
Equations

Again we use forward differences in order to approximate the time derivative. With

the same notations as before and with a :=
√

ρ
τη

, we obtain

(D + ia)(D − ia)uk+1 + 1

η
Dpk+1

= F (·, uk) − M∗(uk) + a2uk =: M(uk) (k = 0, . . . , n − 1) (12.4.41)

and

uk+1 = −1

η
T−iaQiaTiaDpk+1 − T−iaQiaTiaM(uk) (12.4.42)

+ T−iaFia(tr�T−iaFia)
−1Q�,−iagk+1 + F−iagk+1︸ ︷︷ ︸
Hk+1

. (12.4.43)

Then we get the following statement.
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Corollary 12.1 Set

u
(n)
k+1 − Hk+1 = −T−iaQiaTiaM(u

(n−1)
k ) − 1

η
T−iaQiap

(n)
k+1 (12.4.44)

with

1

η
Sc Qiap

(n)
k = −ScQiaTiaM(u

(n−1)
k ). (12.4.45)

Under suitable “smallness” conditions (cf. [9, 10]) the sequence u
(n)
k+1 converges for

(n → ∞) in W 1
2 (G12) to uk+1.

Proof The proof is similar to the proof in ([10], p. 178). �

Remark 12.4 We have in a neighbourhood of the “quaternion” Hk which reflects for
each k the boundary value information, for any time in the interval [0, T ] a sequence,
which is strongly coverging to the solution of the forecasting problem.

The author thanks Mrs. Le Thu Hoai (TU Hanoi) for carefully reading, improving
this manuscript and many fruitful discussions. Furthermore, the author wishes also
to thank the reviewers for their valuable hints and improvements.
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Chapter 13
Symplectic Exponentially-Fitted Modified
Runge-Kutta Methods of the Gauss Type:
Revisited

G. Vanden Berghe and M. Van Daele

Abstract The construction of symmetric and symplectic exponentially-fitted
Runge-Kutta methods for the numerical integration of Hamiltonian systems with
oscillatory solutions is reconsidered. In previous papers fourth-order and sixth-order
symplectic exponentially-fitted integrators of Gauss type, either with fixed or vari-
able nodes, have been derived. In this paper new such integrators are constructed
by making use of the six-step procedure of Ixaru and Vanden Berghe (Exponential
Fitting, Kluwer Academic, Dordrecht, 2004). Numerical experiments for some os-
cillatory problems are presented and compared to the results obtained by previous
methods.

Keywords Exponential fitting · Symplecticness · RK-methods · Oscillatory
Hamiltonian systems

Mathematics Subject Classification (2000) 65L05 · 65L06

13.1 Introduction

The construction of Runge-Kutta (RK) methods for the numerical solution of ODEs,
which have periodic or oscillating solutions has been considered extensively in the
literature [1–5, 9, 12–17]. In this approach the available information on the solutions
is used in order to derive more accurate and/or efficient algorithms than the general
purpose algorithms for such type of problems. In [8] a particular six-step flow chart
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is proposed by which specific exponentially-fitted algorithms can be constructed. Up
to now this procedure has not yet been applied in all its aspects for the construction
of symplectic RK methods of Gauss type.

In principle the derivation of exponentially-fitted (EF) RK methods consists in
selecting the coefficients of the method such that it integrates exactly all functions
of a particular given linear space, i.e. the set of functions

{1, t, . . . , tK, exp(±λt), t exp(±λt), . . . , tP exp(±λt)}, (13.1.1)

where λ ∈ C is a prescribed frequency. In particular when λ = iω, ω ∈ R the cou-
ple exp(±λt) is replaced by sin(ωt), cos(ωt). In all previous papers other set of
functions have been introduced.

On the other hand, oscillatory problems arise in different fields of applied sci-
ences such as celestial mechanics, astrophysics, chemistry, molecular dynamics and
in many cases the modelling gives rise to Hamiltonian systems. It has been widely
recognized by several authors [7, 10, 11, 13, 14] that symplectic integrators have
some advantages for the preservation of qualitative properties of the flow over the
standard integrators when they are applied to Hamiltonian systems. In this sense it
may be appropriate to consider symplectic EFRK methods that preserve the struc-
ture of the original flow. In [14] the well-known theory of symplectic RK methods
is extended to modified (i.e. by introducing additional parameters) EFRK methods,
where the set of functions {exp(±λt)} has been introduced, giving sufficient condi-
tions on the coefficients of the method so that symplecticness for general Hamilto-
nian systems is preserved. Van de Vyver [14] was able to derive a two-stage fourth-
order symplectic modified EFRK method of Gauss type. Calvo et al. [2–4] have
studied two-stage as well as three-stage methods. In their applications they consider
pure EFRK methods as well as modified EFRK methods. Their set of functions is
the trigonometric polynomial one consisting essentially of the functions exp(±λt)

combined with exp(±2λt) and sometimes exp(±3λt) or a kind of mixed set type
where exp(±λt) is combined with 1, t and t2. In all cases they constructed fourth-
order (two-stage case) and sixth-order (three-stage case) methods of Gauss type
with fixed or frequency dependent knot points. On the other hand Vanden Berghe et
al. have constructed a two-stage EFRK method of fourth-order integrating the set of
functions (13.1.1) with (K = 2,P = 0) and (K = 0,P = 1), but unfortunately these
methods are not symplectic. In addition it has been pointed out in [7] that symmetric
methods show a better long time behavior than non-symmetric ones when applied
to reversible differential systems.

In this paper we investigate the construction of two-stage (fourth-order) and
three-stage (sixth-order) symmetric and symplectic modified EFRK methods which
integrate exactly first-order differential systems whose solutions can be expressed
as linear combinations of functions present in the set (13.1.1). Our purpose consists
in deriving accurate and efficient modified EF geometric integrators based on the
combination of the EF approach, followed from the six-step flow chart by Ixaru and
Vanden Berghe [8], and symmetry and symplecticness conditions. A sketch of this
six-step flow is given in Sect. 13.2. The paper is organized as follows. In Sect. 13.2
we present the notations and definitions used in the rest of the paper as well as some
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properties of symplectic and symmetric methods also described in [4]. In Sect. 13.3
we derive a class of new two-stage symplectic modified EFRK integrators with fre-
quency dependent nodes and in Sect. 13.4 we consider the analogous class of new
three-stages method. In Sect. 13.5 we present some numerical experiments for sixth-
order methods with oscillatory Hamiltonian systems and we compare them with the
results obtained by other symplectic (EF)RK Gauss integrators given in [4, 7].

13.2 Notations and Definitions

We consider initial value problems for first-order differential systems

y′(t) = f (t, y(t)), y(t0) = y0 ∈ R
m. (13.2.1)

In case of Hamiltonian systems m = 2d and there exits a scalar Hamiltonian func-
tion H = H(t, y), so that f (y) = −J∇yH(t, y), where J is the 2d-dimensional
skew symmetric matrix

J =
(

0d Id

−Id 0d

)

, J−1 = −J,

and where ∇yH(t, y) is the column vector of the derivatives of H(t, y) with respect
to the components of y = (y1, y2, . . . , y2d)T . The Hamiltonian system can then be
written as

y′(t) = −J∇yH(t, y(t)), y(t0) = y0 ∈ R
2d . (13.2.2)

For each fixed t0 the flow map of (13.2.1) will be denoted by φh : R
m → R

m so that
φh(y0) = y(t0 + h; t0, y0). In particular, in the case of Hamiltonian systems, φh is
a symplectic map for all h in its domain of definition, i.e. the Jacobian matrix of
φh(y0) satisfies

φ′
h(y0)Jφ′

h(y0)
T = J.

A desirable property of a numerical method ψh for the numerical integration of
a Hamiltonian system is to preserve qualitative properties of the original flow φh

such as the symplecticness, in addition to provide an accurate approximation of the
exact φh.

Definition 13.1 A numerical method defined by the flow map ψh is called symplec-
tic if for all Hamiltonian systems (13.2.2) it satisfies the condition

ψ ′
h(y0)Jψ ′

h(y0)
T = J. (13.2.3)

One of the well-known examples of symplectic numerical methods is the s-stage
RK Gauss methods which possess order 2s. In this paper we shall deal with so-called
modified implicit RK-methods, introduced for the first time to obtain explicit EFRK
methods [15] and re-used by Van de Vyver [14] for the construction of two-stage
symplectic RK methods.
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Definition 13.2 A s-stage modified RK method for solving the initial value prob-
lems (13.1.1) is a one step method defined by

y1 = ψh(y0) = y0 + h

s∑

i=1

bif (t0 + cih,Yi), (13.2.4)

Yi = γiy0 + h

s∑

i=1

aijf (t0 + cjh,Yj ), i = 1, . . . , s, (13.2.5)

where the real parameters ci and bi are respectively the nodes and the weights of the
method. The parameters γi make the method modified with respect to the classical
RK method, where γi = 1, i = 1, . . . , s. The s-stage modified RK-method (13.2.4)–
(13.2.5) can also be represented by means of its Butcher’s tableau

c1 γ1 a11 . . . a1s

c2 γ2 a21 . . . a2s

... . . .
...

. . .
...

cs γs as1 . . . ass

b1 . . . bs

(13.2.6)

or equivalently by the quartet (c, γ,A,b).

The conditions for a modified RK method to be symplectic have been obtained
by Van de Vyver [14] and they are given in the following theorem.

Theorem 13.1 A modified RK-method (13.2.4)–(13.2.5) for solving the Hamilto-
nian system (13.2.2) is symplectic if the following conditions are satisfied

mij ≡ bibj − bi

γi

aij − bj

γj

aji = 0, 1 ≤ i, j ≤ s. (13.2.7)

In [2] it is shown that a modified RK-method not only preserves the linear invari-
ants but also quadratic invariants if its coefficients satisfy conditions (13.2.7).

Definition 13.3 The adjoint method ψ∗
h of a numerical method ψh is the inverse

map of the original method with reverse time step −h, i.e. ψ∗
h := ψ−1

−h . In other
words, y1 = ψ∗

h(y0) is implicitly defined by ψ−h(y1) = y0. A method for which
ψ∗

h = ψh is called symmetric.

One of the properties of a symmetric method ψ∗
h = ψh is that its accuracy order

is even. For s-stage modified RK methods whose coefficients are h-dependent, as it
is the case of EF methods, it is easy to see that the coefficients of ψh and ψ∗

h are
related by

c(h) = e − Sc∗(−h), b(h) = Sb∗(−h),

γ (h) = Sγ ∗(−h), A(h) = Sγ ∗(−h)bT (h) − SA(−h)S,
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where

e = (1, . . . ,1)T ∈ R
s and S = (sij ) ∈ R

s×s with sij =
{

1, if i + j = s + 1,

0, if i + j 	= s + 1.

It has been remarked by Hairer et al. [7] that symmetric numerical methods show a
better long time behavior than nonsymmetric ones when applied to reversible dif-
ferential equations, as it is the case of conservative mechanical systems. In [3] it is
observed that for modified RK methods whose coefficients are even functions of h

the symmetry conditions are given by

c(h) + Sc(h) = e, b(h) = Sb(h),

γ (h) = Sγ (h), SA(h) + A(h)S = γ (h)bT (h).
(13.2.8)

Since for symmetric EFRK methods the coefficients contain only even powers of h,
the symmetry conditions can be written in a more convenient form by putting [3]

c(h) = 1

2
e + θ(h), A(h) = 1

2
γ (h)bT (h) + �(h),

θ(h) = (θ1, . . . , θs)
T ∈ R

s and � = (λij ) ∈ R
s×s .

(13.2.9)

Therefore, for a symmetric EFRK method whose coefficients aij are defined by

aij = 1

2
γibj + λij , 1 ≤ i, j ≤ s,

the symplecticness conditions (13.2.7) reduce to

μij ≡ bi

γi

λij + bj

γj

λji = 0, 1 ≤ i, j,≤ s. (13.2.10)

The idea of constructing symplectic EFRK taking into account the six-step proce-
dure [8] is new. We briefly shall survey this procedure and suggest some adaptation
in order to make the comparison with previous work more easy.

In step (i) we define the appropriate form of an operator related to the discussed
problem. Each of the s internal stages (13.2.5) and the final stage (13.2.4) can be
regarded as being a generalized linear multistep method on a non-uniform grid; we
can associated with each of them a linear functional, i.e.

Li[h,a]y(t) = y(t + cih) − γiy(t) − h

s∑

j=1

aij y
′(t + cjh),

i = 1,2, . . . s (13.2.11)

and

L[h,b]y(t) = y(t + h) − y(t) − h

s∑

i=1

biy
′(t + cih). (13.2.12)

We further construct the so-called moments which are for Gauss methods the expres-
sions for Li,j (h,a) = Li[h,a]t j , j = 0, . . . , s − 1 and Li(h,b) = L[h,b]t j , j =
0, . . . ,2s − 1 at t = 0, respectively.
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In step (ii) the linear systems

Lij (h,a) = 0, i = 1, . . . , s, j = 0,1, . . . , s − 1,

Li(h,b) = 0, i = 0,1, . . . ,2s − 1

are solved to reproduce the classical Gauss RK collocation methods, showing the
maximum number of functions which can be annihilated by each of the operators.

The steps (iii) and (iv) can be combined in the present context. First of all we
have to define all reference sets of s and 2s functions which are appropriate for the
internal and final stages respectively. These sets are in general hybrid sets of the
following form

1, t, t2, . . . , tK or tK
′

exp(±λt), t exp(±λt), . . . , tP exp(±λt) or tP
′
exp(±λt),

where for the internal stages K + 2P = s − 3 and for the final stage K ′ + 2P ′ =
2s − 3. The set in which there is no classical component is identified by K = −1
and K ′ = −1, while the set in which there is no exponential fitting component is
identified by P = −1 or P ′ = −1. It is important to note that such reference sets
should contain all successive functions inbetween. Lacunary sets are in principle
not allowed.

Once the sets chosen the operators (13.2.11)–(13.2.12) are applied to the mem-
bers of the sets, in this particular case by taking into account the symmetry and
the symplecticness conditions described above. The obtained independent expres-
sions are put to zero and in step (v) the available linear systems are solved. Detailed
examples of these technique follow in Sects. 13.3 and 13.4. The numerical values
for λij (h), bi(h), γi(h) and θi(h) are expressed for real values of λ (the pure expo-
nential case) or for pure imaginary λ = iω (oscillatory case). In order to make the
comparison with previous work transparable we have opted to denote the results for
real λ-values.

After the coefficients in the Butcher tableau have been filled in, the principal term
of the local truncation error can be written down (step (vi)). Essentially, we know
[17] that the algebraic order of the EFRK methods remains the same as the one of
the classical Gauss method when this six-step procedure is followed, in other words
the algebraic order is O(h2s), while the stage order is O(hs). Explicit expressions
for this local truncation error will not be discussed here.

13.3 Two-Stage Methods

In this section we analyze the construction of symmetric and symplectic EFRK
Gauss methods with s = 2 stages whose coefficients are even functions of h. These
EFRK methods have stage order 2 and algebraic order 4. From the symmetry condi-
tions (13.2.8), taking into account (13.2.9) it follows that the nodes cj = cj (h) and
weights bj = bj (h) satisfy

c1 = 1

2
− θ, c2 = 1

2
+ θ, b1 = b2,
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θ being a real parameter, and the coefficients aij = aij (h) and γi(h) satisfy:

a11 + a22 = γ1b1, a21 + a12 = γ2b1.

The symplecticness conditions (13.2.7) or (13.2.10) are equivalent to

a11 = γ1b1/2,
a12

γ1
+ a21

γ2
= b1, a22 = γ2b2/2,

which results in

γ1 = γ2, λ21 = −λ12.

Taking into account the above relations the Butcher tableau can be expressed in
terms of the unknowns θ, γ1, λ12 and b1:

1
2 − θ γ1

γ1b1
2

γ1b1
2 + λ12

1
2 + θ γ1

γ1b1
2 − λ12

γ1b1
2

b1 b1

(13.3.1)

For the internal stages, the relation K + 2P = −1 results in the respective (K,P )-
values:

• (K = 1,P = −1) (the classical polynomial case with set {1, t}), and
• (K = −1,P = 0) (the full exponential case with set {exp(λt), exp(−λt)}).

For the outer stage, we have K ′ + 2P ′ = 1, resulting in the respective (K ′,P ′)-
values:

• (K ′ = 3,P ′ = −1) (the classical polynomial case with set {1, t, t2, t3}),
• (K ′ = 1,P ′ = 0) (mixed case with hybrid set {1, t, exp(±λt)), and
• (K ′ = −1,P ′ = 1) (the full exponential case with set {exp(±λt), t exp(±λt)}.
The hybrid sets (K = 1,P = −1) and (K ′ = 3,P ′ = −1) are related to the polyno-
mial case, giving rise to the well-known RK order conditions and to the fourth order
Gauss method [6]

1
2 −

√
3

6 1 1
4

1
4 −

√
3

6

1
2 +

√
3

6 1 1
4 +

√
3

6
1
4

1
2

1
2

Let us remark that considering the (K = 1,P = −1) set for the internal stages gives
rise to γ1 = 1, a value which is not compatible with the additional symmetry, sym-
plecticity and order conditions imposed. Therefore in what follows we combine the
(K = −1,P = 0) case with either (K ′ = 1,P ′ = 0) or (K ′ = −1,P ′ = 1).

Case (K ′ = 1,P ′ = 0)

The operators (13.2.11) and (13.2.12) are applied to the functions present
in the occurring hybrid sets, taking into account the structure of the Butcher
tableau (13.3.1). Following equations arise with z = λh:
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2b1 = 1, (13.3.2)

2b1 cosh(z/2) cosh(θz) = sinh(z)

z
, (13.3.3)

λ12 cosh(θz) = − sinh(θz)

z
, (13.3.4)

λ12 sinh(θz) − cosh(θz)

z
= −γ1

z
cosh(z/2), (13.3.5)

resulting in

b1 = 1/2, θ = arccosh(
2 sinh(z/2)

z
)

z
, λ12 = − sinh(θz)

z cosh(θz)
,

γ1 = (
sinh(θz)2

z cosh(θz)
+ cosh(θz)

z
)z

cosh(z/2)
.

The series expansions for these coefficients for small values of z are given by

θ = √
3

(
1

6
+ 1

2160
z2 − 1

403200
z4 + 1

145152000
z6 + 533

9656672256000
z8

− 2599

2789705318400000
z10 + · · ·

)

,

λ12 = √
3

(

−1

6
+ 1

240
z2 − 137

1209600
z4 + 143

48384000
z6 − 81029

1072963584000
z8

+ 16036667

8369115955200000
z10 + · · ·

)

,

γ1 = 1 − 1

360
z4 + 11

30240
z6 − 71

1814400
z8 + 241

59875200
z10 + · · · ,

showing that for z → 0 the classical values are retrieved.

Case (K ′ = −1,P ′ = 1)

In this approach equations (13.3.3)–(13.3.5) remain unchanged and they deliver
expressions for b1, γ1 and λ12 in terms of θ . Only (13.3.2) is replaced by

b1(cosh(θz)(2 cosh(z/2) + z sinh(z/2)) + 2θz cosh(z/2) sinh(θz))

= cosh(z) (13.3.6)

By combining (13.3.3) and (13.3.6) one obtains an equation in θ and z, i.e.:

θ sinh(z) sinh(θz) = cosh(θz)

(

cosh(z) − sinh(z)

z
− sinh2(z/2)

)

.

It is not anymore possible to write down an analytical solution for θ , but iteratively
a series expansion can be derived. We give here those series expansions as obtained
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for the four unknowns

θ = √
3

(
1

6
+ 1

1080
z2 + 13

2721600
z4 − 1

7776000
z6 − 1481

1810626048000
z8

+ 573509

63552974284800000
z10 + · · ·

)

,

b1 = 1

2
− 1

8640
z4 + 1

1088640
z6 + 1

44789760
z8 − 149

775982592000
z10 + · · · ,

λ12 = √
3

(

−1

6
+ 1

270
z2 − 223

2721600
z4 + 17

9072000
z6 − 259513

5431878144000
z8

+ 9791387

7944121785600000
z10 + · · ·

)

,

γ1 = 1 − 1

480
z4 + 17

60480
z6 − 2629

87091200
z8 + 133603

43110144000
z10 + · · · .

13.4 Three-Stage Methods

The Gauss methods with s = 3 stages have been analyzed in detail by Calvo et al.
[3, 4]. We just shall report here the final results they have obtained by taking into
account the symmetry and symplecticity conditions:

c1 = 1

2
− θ, c2 = 1

2
, c3 = 1

2
+ θ,

b3 = b1, γ3 = γ1

� =
⎛

⎝
0 −α2 −α3

−α4 0 α4
α3 α2 0

⎞

⎠

and
b1

γ1
α2 + b2

γ2
α4 = 0. (13.4.1)

The three-stage modified RK-methods are given by the following tableau in terms
of the unknowns θ , γ1, γ2, α2, α3, α4, b1 and b2:

1
2 − θ γ1

γ1b1
2

γ1b2
2 − α2

γ1b1
2 − α3

1
2 γ2

γ2b1
2 − α4

γ2b2
2

γ2b1
2 + α4

1
2 + θ γ1

γ1b1
2 + α3

γ1b2
2 + α2

γ1b1
2

b1 b2 b1

For the internal stages the relation K + 2P = 0 results in the respective (K,P )-
values:

• (K = 2,P = −1) (the classical polynomial case with set {1, t, t2}), and
• (K = 0,P = 0) (with hybrid set {1, exp(±λt)}).
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For the final state we have K ′ + 2P ′ = 3, resulting in the respective (K ′,P ′)-
values:

• (K ′ = 5,P ′ = −1) (the classical polynomial case with set {1, t, t2, t3, t4, t5}),
• (K ′ = 3,P ′ = 0) (with hybrid set {1, t, t2, t3, exp(±λt)}),
• (K ′ = 1,P ′ = 1) (with hybrid set {1, t, exp(±λt), t exp(±λt)}), and
• (K ′ = −1,P ′ = 2) (the full exponential case with set {exp(±λt), t exp(±λt),

t2 exp(±λt)}).

The sets (K = 2,P = −1) and (K ′ = 5,P ′ = −1) related to the polynomial case
gives rise to the order conditions for the three-stage Gauss method of order six [6]

1
2 −

√
15

10 1 5
36

2
9 −

√
15

15
5

36 −
√

15
30

1
2 1 5

36 +
√

15
24

2
9

5
36 −

√
15

24

1
2 +

√
15

10 1 5
36 +

√
15

30
2
9 +

√
15

15
5

36

5
18

4
9

5
18

Following the ideas developed in this paper it should be obvious that we combine
the (K = 0,P = 0) case with the three non-polynomial cases for the final stage.
However keeping the 1 in the hybrid set for (K = 0,P = 0) delivers in γ1 = γ2 = 1,
a result which is not compatible with the symplecticity condition (13.4.1). There-
fore we choose for the internal stages the hybrid set {exp(±λt)}, omitting the con-
stant 1; in other words we accept exceptionally a lacunary set, what is principally
not allowed by the six-step procedure [8]. Under these conditions, and taking into
account the symmetry conditions the αi (i = 2,3,4) parameters are the solutions in
terms of θ , γ1 and γ2 of the following three equations [4]:

1 − γ2 cosh(z/2) − 2zα4 sinh(θz) = 0,

cosh(θz) − γ1 cosh(z/2) + zα3 sinh(θz) = 0, (13.4.2)

sinh(θz) − zα3 cosh(θz) − zα2 = 0,

thus giving:

α2 = cosh(2θz) − γ1 cosh(z/2) cosh(θz)

z sinh(θz)
,

α3 = γ1 cosh(z/2) − cosh(θz)

z sinh(θz)
, α4 = 1 − γ2 cosh(z/2)

2z sinh(θz)
.

(13.4.3)

For small values of z series expansions are introduced for these expressions (see
also next paragraphs). The solution for the other parameters depends essentially on
the chosen values of K ′ and P ′.

Case (K ′ = 3,P ′ = 0)

The operators (13.2.11) and (13.2.12) are applied to the functions present in the
occurring hybrid set, taking into account the symmetry conditions; we derive three
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independent equations in b1, b2 and θ , i.e.

2b1 + b2 = 1, (13.4.4)

b1θ
2 = 1

24
, (13.4.5)

b2 + 2b1 cosh(θz) = 2 sinh(z/2)

z
. (13.4.6)

Taking into account (13.4.4) and (13.4.6) b1 and b2 can be expressed in terms of θ :

b1 = z − 2 sinh(z/2)

2z(1 − cosh(θz))
, b2 = 2 sinh(z/2) − z cosh(θz)

z(1 − cosh(θz))
.

These expressions combined with (13.4.5) results in the following equation
for θ :

θ2 − z(1 − cosh(θz))

12(z − 2 sinh(z/2))
= 0.

If now the symplecticness condition (13.4.1) is imposed, the parameter γ1 is deter-
mined by

γ1 = γ2(2 sinh(z/2) − z) cosh(2θz)

2 sinh(z/2) − γ2 sinh(z) + (γ2 sinh(z) − z) cosh(θz)
.

The obtained parameters define a family of EFRK methods which are sym-
metric and symplectic for all γ2 ∈ R. Following [4] we choose from now on
γ2 = 1.

Now it is easy to give the series expansions for all the coefficients for small values
of z:

θ = √
15

(
1

10
+ 1

21000
z2 − 131

1058400000
z4 + 13487

48898080000000
z6

− 1175117

3203802201600000000
z8 − 505147

915372057600000000000
z10 + · · ·

)

,

γ1 = 1 − 3

70000
z6 + 13651

1176000000
z8 − 2452531

862400000000
z10 + · · · ,

b1 = 5

18
− 1

3780
z2 + 167

190512000
z4 − 23189

8801654400000
z6

+ 7508803

1153368792576000000
z8 − 87474851

8073581548032000000000
z10 + · · · ,

b2 = 4

9
+ 1

1890
z2 − 167

95256000
z4 + 23189

4400827200000
z6

− 7508803

576684396288000000
z8 + 87474851

4036790774016000000000
z10 + · · · ,

α2 = √
15

(
1

15
− 1

6000
z2 + 11623

3175200000
z4 − 213648613

73347120000000
z6

+ 1669816359863

2135868134400000000
z8 − 409429160306437

2135868134400000000000
z10 + · · ·

)

,
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α3 = √
15

(
1

30
+ 3

14000
z2 − 24739

793800000
z4 + 14753813

2993760000000
z6

− 7187933379103

6407604403200000000
z8 + 48242846122937

177989011200000000000
z10 + · · ·

)

,

α4 = √
15

(

− 1

24
+ 13

67200
z2 − 37

12700800
z4 + 19922401

469421568000000
z6

− 733072729

1220496076800000000
z8 + 1539941201

183074411520000000000
z10 + · · ·

)

.

Case (K ′ = 1,P ′ = 1)

Equations (13.4.4) and (13.4.6) remain unchanged. Equation (13.4.5) is re-
placed by the equation obtained by applying the operator (13.2.12) with s = 3 on
t exp(±λt) resulting in:

2b1z
2θ sinh(θz) = z cosh(z/2) − 2 sinh(z/2). (13.4.7)

Taking into account (13.4.6) and (13.4.7) b1 and b2 can be expressed in terms
of θ :

b1 = z cosh(z/2) − 2 sinh(z/2)

2z2θ sinh(θz)
, (13.4.8)

b2 = − cosh(θz)z cosh(z/2) + 2 cosh(θz) sinh(z/2) + 2 sinh(z/2)zθ sinh(θz)

z2θ sinh(θz)
.

(13.4.9)

Introducing these results for b1 and b2 into (13.4.4) provides an equation for θ :

(1 − cosh(θz))(z cosh(z/2) − 2 sinh(z/2)) + zθ sinh(θz)(2 sinh(z/2) − z)

z2θ sinh(θz)
= 0.

From the symplecticness condition (13.4.1) an expression for γ1 follows:

γ1 = γ2 cosh(2θz)(z cosh(z/2) − 2 sinh(z/2))

cosh(θz)(z cosh(z/2) − 2 sinh(z/2)) − 2 sinh(z/2)zθ sinh(θz)(1 − γ2 cosh(z/2))
.

(13.4.10)

Again we choose γ2 = 1. The series expansions for the different parameters now
follow immediately:

θ = √
15

(
1

10
+ 1

10500
z2 − 31

117600000
z4 + 2869

5433120000000
z6

− 332933

355978022400000000
z8 + 1792783

711956044800000000000
z10 + · · ·

)

,

γ1 = 1 − 9

280000
z6 + 6861

784000000
z8 − 3685091

1724800000000
z10 + · · · ,
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b1 = 5

18
− 1

1890
z2 − 23

21168000
z4 + 3383

244490400000
z6

− 6186473

128152088064000000
z8 + 6259951

448532308224000000000
z10 + · · · ,

b2 = 4

9
+ 1

945
z2 + 23

10584000
z4 − 3383

122245200000
z6 + 6186473

64076044032000000
z8

− 6259951

224266154112000000000
z10 + · · · ,

α2 = √
15

(
1

15
− 1

18000
z2 + 1063

352800000
z4 − 4445759

2037420000000
z6

+ 1250913246151

2135868134400000000
z8 − 305480839860709

2135868134400000000000
z10 + · · ·

)

,

α3 = √
15

(
1

30
+ 19

126000
z2 − 2179

88200000
z4 + 8735197

2328480000000
z6

− 1798803442789

2135868134400000000
z8 + 216068604952379

1067934067200000000000
z10 + · · ·

)

,

α4 = √
15

(

− 1

24
+ 43

201600
z2 − 59

28224000
z4 + 1419377

52157952000000
z6

− 431537179

1220496076800000000
z8 + 237023071

53396703360000000000
z10 + · · ·

)

.

Case (K ′ = −1,P ′ = 2)

Equations (13.4.6) and (13.4.7) remain unchanged. A third equation is added
which follows from the application of the operator (13.2.12) with s = 3 on
t2 exp(±λt), i.e.:

b1 cosh(zθ)

(

2 cosh(z/2) + 1

2
z sinh(z/2) + 2zθ2 sinh(z/2)

)

− cosh(z)

+ 2b1 sinh(zθ)(2θ sinh(z/2) + zθ cosh(z/2))

+ b2

(

cosh(z/2) + 1

4
z sinh(z/2)

)

= 0. (13.4.11)

The formal expression for b1 and b2 remain respectively (13.4.8) and (13.4.9). In-
troducing these expression for b1 and b2 into (13.4.11) gives us an equation for θ .
From the symplecticness condition (13.4.1) again the expression (13.4.10) for γ1
follows. Again by choosing γ2 = 1, the series expansion of the different parameters
follow:

θ = √
15

(
1

10
+ 1

7000
z2 − 37

88200000
z4 − 2323

679140000000
z6

+ 466717

8899450560000000
z8 − 15014807

66745879200000000000
z10 + · · ·

)

,
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γ1 = 1 − 27

1120000
z6 + 41379

6272000000
z8 − 22149861

13798400000000
z10 + · · · ,

b1 = 5

18
− 1

1260
z2 − 187

31752000
z4 + 11887

91683900000
z6

− 14932867

16019011008000000
z8 − 16262011

28033269264000000000
z10 + · · · ,

b2 = 4

9
+ 1

630
z2 + 187

15876000
z4 + 173633

733471200000
z6

− 52835987

32038022016000000
z8 + 817009801

224266154112000000000
z10 + · · · ,

α2 = √
15

(
1

15
+ 1

18000
z2 + 719

176400000
z4 − 157253603

97796160000000
z6

+ 468408965117

1067934067200000000
z8 − 76002203332597

711956044800000000000
z10 + · · ·

)

,

α3 = √
15

(
1

30
+ 11

126000
z2 − 3523

176400000
z4 + 40063763

13970880000000
z6

− 675385487507

1067934067200000000
z8 + 322656693230117

2135868134400000000000
z10 + · · ·

)

,

α4 = √
15

(

− 1

24
+ 47

201600
z2 − 73

56448000
z4 + 1520789

156473856000000
z6

− 220181869

1220496076800000000
z8 + 47152907

14063329280000000000
z10 + · · ·

)

.

Remark Sixth-order symmetric and symplectic modified Runge-Kutta methods
of Gauss type have been constructed by others. In [3] the authors constructed
such methods by making use of a basic set consisting of {exp(±λt), exp(±2λt),

exp(±3λt)} with fixed θ -values and frequency dependent θ -values. In [4] analo-
gous constructions are discussed based on a reference set {t, t2, exp(±λt)}, again
with fixed and frequency dependent θ -values. In both cases the results are in a sense
comparable with ours and in the numerical experiments we shall compare the results
of [4] with the ones we have obtained.

13.5 Numerical Experiments

In this section we report on some numerical experiments where we test the effec-
tiveness of the new and the previous [4] modified Runge-Kutta methods when they
are applied to the numerical solution of several differential systems. All the con-
sidered codes have the same qualitative properties for the Hamiltonian systems. In
the figures we show the decimal logarithm of the maximum global error versus the
number of steps required by each code in logarithmic scale. All computations were
carried out in double precision and series expansions are used for the coefficients
when |z| < 0.1. In all further displayed figures following results are shown: the
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Fig. 13.1 Maximum global error in the solution of Problem 1. In the left figure the results obtained
by the methods of Calvo et al. [4] are displayed. In the right figure the results obtained with the
methods of order six derived in this paper are shown

method of Calvo et al. with constant nodes (const) and with variable nodes (var),
the classical Gauss results (class) and the results obtained with the new methods
with P ′ = 0 (P0), P ′ = 1 (P1) and P ′ = 2 (P2).

Problem 1 Kepler’s plane problem defined by the Hamiltonian function

H(p,q) = 1

2
(p2

1 + p2
2) − (q2

1 + q2
2 )−1/2,

with the initial conditions q1(0) = 1 − e, q2(0) = 0, p1(0) = 0, p2(0) =
((1 + e)/(1 − e))

1
2 , where e (0 ≤ e < 1) represents the eccentricity of the elliptic

orbit. The exact solution of this IVP is a 2π -periodic elliptic orbit in the (q1, q2)-
plane with semimajor axis 1, corresponding the starting point to the pericenter of
this orbit. In the numerical experiments presented here we have chosen the same

values as in [4], i.e. e = 0.001, λ = iω with ω = (q2
1 + q2

2 )− 3
2 and the integration

is carried out on the interval [0,1000] with the steps h = 1/2m, m = 1, . . . ,4. The
numerical behavior of the global error in the solution is presented in Fig. 13.1. The
results obtained by the three new constructed methods are falling together. One
cannot distinguish the results. They are comparable to the ones obtained by Calvo
and more accurate than the results of the classical Gauss method of the same order.
Remark that e has been kept small as it was the case in previous papers. We have
however observed that increasing e does not changed the conclusions reached.

Problem 2 A perturbed Kepler’s problem defined by the Hamiltonian function

H(p,q) = 1

2
(p2

1 + p2
2) − 1

(q2
1 + q2

2 )1/2
− 2ε + ε2

3(q2
1 + q2

2 )3/2
,
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Fig. 13.2 Maximum global error in the solution of Problem 2. In the left figure the results obtained
by the methods of Calvo et al. [4] are displayed. In the right figure the results obtained with the
methods of order six derived in this paper are shown

with the initial conditions q1(0) = 1, q2(0) = 0, p1(0) = 0, p2(0) = 1 + ε, where ε

is a small positive parameter. The exact solution of this IVP is given by

q1(t) = cos(t + εt), q2(t) = sin(t + εt), pi(t) = q ′
i (t), i = 1,2.

As in [4] the numerical results are computed with the integration steps h = 1/2m,
m = 1, . . . ,4. We take the parameter ε = 10−3, λ = iω with ω = 1 and the prob-
lem is integrated up to tend = 1000. The global error in the solution is presented
in Fig. 13.2. For our methods we have the same conclusions as for the Problem 1.
On the contrary for the results of Calvo the results obtained with fixed θ -values are
more accurate than the ones obtained by variable θ -values.

Problem 3 Euler’s equations that describe the motion of a rigid body under no
forces

q̇ = f (q) = ((α − β)q2q3, (1 − α)q3q1, (β − 1)q1q2)
T ,

with the initial values q(0) = (0,1,1)T , and the parameter values α = 1+ 1√
1.51

and

β = 1 − 0.51√
1.51

. The exact solution of this IVP is given by

q(t) =
(√

1.51sn(t,0.51), cn(t,0.51),dn(t,0.51)
)T

,

it is periodic with period T = 7.45056320933095, and sn, cn,dn stand for the ellip-
tic Jacobi functions. Figure 13.3 shows the numerical results obtained for the global
error computed with the iteration steps h = 1/2m, m = 1, . . . ,4, on the interval
[0,1000], and λ = i2π/T . The results of Calvo et al. are all of the same accuracy
while in our approach the EF methods are still more accurate than the classical one.
In this problem the choice of the frequency is not so obvious and therefore the dif-
ferentiation between the classical and the EF methods is not so pronounced.
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Fig. 13.3 Maximum global error in the solution of Problem 3. In the left figure the results obtained
by the methods of Calvo et al. [4] are displayed. In the right figure the results obtained with the
methods of order six derived in this paper are shown

13.6 Conclusions

In this paper another approach for constructing symmetric symplectic modified
EFRK methods based upon the sixth-step procedure of [8] is presented. Two-stage
fourth-order and three-stage sixth-order integrators of Gauss type which are sym-
metric and symplectic and which preserve linear and quadratic invariants have been
derived. When the frequency used in the exponential fitting process is put to zero
all considered integrators reduce to the classical Gauss integrator of the same order.
Some numerical experiments show the utility of these new integrators for some os-
cillatory problems. The results obtained here are quite similar to the ones obtained
in [4], but they differ in some of the details. The introduced method can be extended
to EFRK with larger algebraic order.

References

1. Bettis, D.G.: Runge-Kutta algorithms for oscillatory problems. J. Appl. Math. Phys. 30, 699–
704 (1979)

2. Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.: Structure preservation of exponentially
fitted Runge-Kutta methods. J. Comput. Appl. Math. 218, 421–434 (2008)

3. Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.: Sixth-order symmetric and symplectic
exponentially fitted Runge-Kutta methods of the Gauss type. Comput. Phys. Commun. 178,
732–744 (2008)

4. Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.: Sixth-order symmetric and symplectic
exponentially fitted modified Runge-Kutta methods of the Gauss type. J. Comput. Appl. Math.
223, 387–398 (2009)

5. Franco, J.M.: Runge-Kutta methods adapted to the numerical integration of oscillatory prob-
lems. Appl. Numer. Math. 50, 427–443 (2004)

6. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Prob-
lems. Springer, Berlin/Heidelberg (1993)



306 G. Vanden Berghe and M. Van Daele

7. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure Preserving
Algorithms for Ordinary Differential Equations. Springer, Berlin (2002)

8. Ixaru, L.Gr., Vanden Berghe, G.: Exponential Fitting. Mathematics and Its Applications,
vol. 568. Kluwer Academic, Dordrecht (2004)

9. Ozawa, K.: A functional fitting Runge-Kutta method with variable coefficients. Jpn. J. Indust.
Appl. Math. 18, 107–130 (2001)

10. Sanz-Serna, J.M.: Symplectic integrators for Hamiltonian problems: An overview. Acta Nu-
mer. 1, 243–286 (1992)

11. Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems. Chapman and Hall, London
(1994)

12. Simos, T.E.: An exponentially-fitted Runge-Kutta method for the numerical integration of
initial-value problems with periodic or oscillating solutions. Comput. Phys. Commun. 115,
1–8 (1998)

13. Simos, T.E., Vigo-Aguiar, J.: Exponentially-fitted symplectic integrator. Phys. Rev. E 67, 1–7
(2003)

14. Van de Vyver, H.: A fourth order symplectic exponentially fitted integrator. Comput. Phys.
Commun. 174, 255–262 (2006)

15. Vanden Berghe, G., De Meyer, H., Van Daele, M., Van Hecke, T.: Exponentially-fitted explicit
Runge-Kutta methods. Comput. Phys. Commun. 123, 7–15 (1999)

16. Vanden Berghe, G., De Meyer, H., Van Daele, M., Van Hecke, T.: Exponentially-fitted Runge-
Kutta methods. J. Comput. Appl. Math. 125, 107–115 (2000)

17. Vanden Berghe, G., Van Daele, M., Van de Vyver, H.: Exponentially-fitted Runge-Kutta meth-
ods of collocation type: Fixed or variable knot points? J. Comput. Appl. Math. 159, 217–239
(2003)



Index

3-spheres, 209
3-tori, 209
ηm set of functions, 159

A
A posteriori error indicator, 231
A priori error bound, 230
A priori knowledge of solution regularity, 232
A-stability conditions, 8
Adaptive mesh refinement, 227
Airy equation, 69
Airy function, 92, 108
Algebra of the real quaternions, 147
Almost collocation methods, 49
ALTERNATE, 236
APRIORI, 232
Array arguments, 260
Array evaluation, 261
Asymptotically stable, 4

B
Backward recursion, 73, 82
Badly conditioned IVP, 15
Bessel function, 69, 77, 87, 88, 108

Modified Bessel functions
of imaginary order, 70

Best rational approximations, 112
Bicoloured rooted trees, 172
Block one-step methods, 260
Boundary layer, 17, 18, 20
Boundary value methods, 15, 33
Boundary value problems, 3, 14, 25
Butcher’s tableau, 292

C
Cauchy and Green type integral formulas, 209
Cauchy–Riemann system, 146

Change of tolerance, 264
Chebyshev Expansions, 79
Chebyshev polynomials, 112
Chebyshev polynomials of the first kind, 79
Chebyshev series, 112
Classical collocation, 43
Clenshaw’s method, 81
Clenshaw’s summation method, 80
COEF_DECAY, 241
COEF_ROOT, 241
Collocation at Gauss points, 27
Collocation methods, 36
Complete orthonormal systems, 144, 145, 149
Conditioning parameters, 6, 8, 9, 16
Confluent hypergeometric functions, 70
Conical functions, 69, 79
Conjugate harmonic functions, 143, 153
Conjugate harmonics, 153, 155
Conjugate quaternionic Cauchy-Riemann

operator, 148
Continued fractions, 94
Continuous matching rule, 15
Continuous TSRK methods, 48
Convergent series, 70
Coulomb wave functions, 79
CP methods, 159

D
Dahlquist, 2, 5
Dahlquist’s barriers, 15
Decomposition theorem, 152
Deferred correction codes, 30
Dichotomy, 15
Direct collocation methods, 51
Discontinuous method, 45
Discrete approximation, 16
Discrete conditioning parameters, 17

T.E. Simos (ed.), Recent Advances in Computational and Applied Mathematics,
DOI 10.1007/978-90-481-9981-5, © Springer Science+Business Media B.V. 2011

307

http://dx.doi.org/10.1007/978-90-481-9981-5


308 Index

Discrete matching rule, 15
Discretized collocation methods, 57
Dissipative problems, 5
Divergent expansions, 71

exponentially small correction, 71
Poincaré-type, 71
Stokes phenomenon, 71
uniform expansions, 71

Dominant solution of a three-term recurrence
relation, 74

E
Eigensolution, 210
Error functions, 108
Error term, 86
Estimate regularity, 233, 234
Euclidean Dirac operator, 210
Euler-Maclaurin summation rule, 86
Euler’s equations, 304
Exact collocation methods, 56
Exponential convergence, 227, 230
Exponential fitting, 62
Exponentially small correction, 72
Exponentially-fitted, 290
Exponentially-fitted Runge–Kutta, 289
Exponentially-improved asymptotic

expansions, 93
Extended local error, 260, 265

F
Fejér and Clenshaw–Curtis quadratures, 103
Final value problems, 15
Finite element method, 228
First approximation theorem, 8
First order ODEs, 42
Fixed point, 108
Fixed-h stability, 5
Forecasting equations, 273, 275, 285
Forward recursion, 73
Fourier coefficients, 146, 152–156
Fourier expansion, 151
Fourier series, 152, 154, 155
FSAL (First Same As Last), 262
Fueter polynomials, 144, 145, 149, 150

G
Gauss, 289, 290
Gauss hypergeometric functions, 68, 71, 78
Gauss transformations, 111
Generalized Cauchy–Riemann operator, 148
Generalized hypergeometric function, 68

H
H&P_ERREST, 240

Hamiltonian system, 290, 291
Harmonic conjugate, 145, 149, 153, 154, 155
Homogeneous harmonic polynomials, 145,

149
Homogeneous monogenic polynomials,

144–146, 149–151, 154
hp-Adaptive refinement algorithm, 231
hp-Adaptive strategies, 232
hp-FEM, 227
Hypercomplex derivative, 144, 145, 148
Hypergeometric function, 209

confluent functions, 68
Gauss hypergeometric function, 68
generalized, 68
Kummer function, 68

Hyperholomorphic constant, 148, 152, 150,
154, 155

I
Ill conditioned, 7
Incomplete beta function, 96
Incomplete gamma function, 95, 108
Indirect collocation methods, 50
Inequivalent spinor bundles, 210
Initial value problems, 2, 4
Interior layers, 17

K
Kepler’s plane problem, 303
Klein–Gordon equation, 209, 210
Kreiss problem, 12
Kummer function, 68, 71, 72, 78
Kummer hypergeometric function, 71

L
Laguerre polynomials, 108
Lambert, 3
Landen transformations, 111
Laplace operator, 148, 149
Legendre function, 78, 150

conical functions, 69
toroidal functions, 69

Legendre polynomials, 146, 150
Levin’s sequence transformation, 100
Liapunov second method, 7
Linear case, 11
Linear functional, 293
Linear recurrence relations, 72

backward recursion, 72
forward recursion, 72

Linear stability analysis, 134
Liniger, 2
Local extrapolation, 262



Index 309

M
Matlab, 259
Melt Spinning, 123
Mesh design using nonlinear programming,

237
Mesh-selection strategies, 17
Miller’s algorithm, 75, 82

modification of, 83
normalizing condition, 75

Minimal solution of a three-term recurrence
relation, 74

Miranker, 3, 10, 11
Mixed collocation, 54, 62
Mode, 14
Modes, 10, 11
Modified Bessel function, 70, 76
Modified Kreiss problem, 13
Mono implicit Runge–Kutta methods, 28
Monogenic functions, 144, 145, 151–153, 155
Monogenicity, 148
Multiscale problems, 3
Multistep collocation, 46

N
Newton–Raphson method, 106
NEXT3P, 234
NLP, 237
Nonlinear problems, 16
Nonlinear sequence transformations, 100
Normalizing condition, 75, 76
Numerical inversion of Laplace transforms,

103

O
Ode45, 263, 270
ODEs, 50
Odevr7, 260, 270
Optimal Control, 123
Oscillating, 289
Oscillating problems, 3
Oscillating stiffness, 7

P
P -stability, 51
Padé Approximants, 99
Padé Approximations, 98
Padé table, 99
Parabolic cylinder functions, 69, 79, 108
Parseval’s identity, 152
Partitioned Runge Kutta (PRK), 172
Path of steepest descent, 90
Perfectly A-stable methods, 15
Periodic, 289
Perron’s theorem, 75

Perturbation of the initial conditions, 6
Perturbation series, 163
Perturbed collocation, 45
Perturbed Kepler’s problem, 303
Phase lag analysis, 176
Piecewise perturbation methods, 159
Pilot potential, 161
Poincaré–Liapunov Theorem, 5
Poincaré-type, 71
Poisson equation, 210
PRIOR2P, 233
Propagation (or transfer) matrix, 162

Q
Quadrature methods, 85
Quaternionic analysis, 143, 144, 146, 148, 152
Quaternionic operator calculus, 274, 282

R
Real-inner product, 145, 149
Reduced quaternions, 144, 147, 153
Reference solution, 4, 5
Reference solution strategies, 242
REFSOLN_EDGE, 242
REFSOLN_ELEM, 243
Residual, 260, 265
Residual control, 266
Riesz system, 143, 146, 148, 149
Robertson’s problem, 12
Romberg quadrature, 103
Runge–Kutta, 289

S
Saddle point, 88, 104
Scaled residual, 266
Schrödinger equation, 159, 191, 210
Scorer functions, 108
Second algorithm of Remes, 112
Second order, 50
Sensitivity of the solution, 6
Sequence Transformations, 97
Shocks, 17
Shooting method, 15
Silent mode, 12
Simplified forecasting equations, 276, 280
Singular perturbation problems, 17
Six-step procedure, 293
Slowest mode, 11
SMOOTH_PRED, 239
Spherical harmonics, 146, 149, 150
Spinor bundles, 209
Stability, 4
Stability in the first approximation theorem, 5



310 Index

Stable representation, 70
Stiff, 11, 12, 16
Stiff problems, 17
Stiffness, 2, 9, 11, 12
Stiffness for BVPs, 15
Stiffness ratio, 6, 8, 16–18
Stokes lines, 91
Stokes phenomenon, 72, 91
Symmetric, 289, 290, 292
Symmetric elliptic integrals, 111
Symplectic, 289–292
Symplectic partitioned Runge Kutta

methods, 173
with minimum phase lag, 187
with phase lag of order infinity, 188

System of conjugate harmonic functions, 146

T
T3S, 235
Taylor expansion methods, 110
Texas 3 Step, 235
Three-stage methods, 297
Three-term recurrence relations, 72
Toroidal flows, 277
Toroidal functions, 79
Transient time, 6
Trapezoidal rule, 86

error term, 86
Trigonometrically fitted methods

final stage approach, 179
each stage approach, 183

Troesch problem, 18

Turning point, 17
Two-stage methods, 294
Two-step almost collocation methods, 60
Two-step collocation, 48
Two-step hybrid methods, 53
Two-step Runge–Kutta, 48
Two-step Runge–Kutta–Nyström methods, 52
Type parameter, 234
TYPEPARAM, 234

U
Uniform asymptotic expansions, 108
Uniform expansions, 71
Unit ball, 153
Unit sphere, 146, 150

V
Van der Pol’s problem, 9
Variational equation, 4
Vectorization, 259
Volterra Integral Equations, 55

W
Well conditioned linear BVP, 15
Well representation, 8
Well represented, 8
Well represents, 17
Wynn’s cross rule, 99

Z
Zeros of special functions, 106


	Cover
	Recent Advances in Computational and Applied Mathematics
	Copyright
	9789048199808

	Preface
	Contents
	Contributors
	Fifty Years of Stiffness
	Introduction
	The Asymptotic Stability Case
	The Discrete Case
	The non Scalar Case
	The Non Scalar Discrete Case

	Boundary Value Problems (BVPs)
	Stiffness for BVPs
	Singular Perturbation Problems

	References

	Efficient Global Methods for the Numerical Solution of Nonlinear Systems of Two Point Boundary Value Problems
	Introduction
	Boundary Value Problems
	Deferred Correction Codes
	Boundary Value Methods
	Interpolation
	Conclusion
	References

	Advances on Collocation Based Numerical Methods for Ordinary Differential Equations and Volterra Integral Equations
	Introduction
	Collocation Based Methods for First Order ODEs
	Classical One-Step Collocation Methods
	Perturbed Collocation
	Discontinuous Collocation
	Multistep Collocation
	Two-Step Collocation and Almost Collocation Methods

	Collocation Methods for Second Order ODEs of Special Type
	Direct and Indirect Collocation Methods
	Two-Step Runge-Kutta-Nyström Methods
	Collocation Based Two-Step Hybrid Methods
	Mixed Collocation Methods

	Collocation Methods for VIEs
	Classical One-Step Collocation Methods
	Multistep Collocation
	Two-Step Collocation and Almost Collocation Methods
	Mixed Collocation

	Conclusions and Future Perspectives
	References

	Basic Methods for Computing Special Functions
	Introduction
	Convergent and Divergent Series
	Divergent Expansions

	Linear Recurrence Relations
	A Simple Recurrence Relation
	Some Elements of the General Theory
	Miller's Algorithm
	Examples of Hypergeometric Functions and Recursions
	Bessel Functions
	Kummer Functions
	Gauss Hypergeometric Functions
	Legendre Functions
	Coulomb Wave Functions
	Parabolic Cylinder Functions


	Chebyshev Expansions
	Clenshaw's Summation Method
	Methods for Obtaining the Coefficients
	Tabled Coefficients
	Discretizing the Integral
	Clenshaw's Method
	Known Coefficients in Terms of Special Functions


	Quadrature Methods
	The Trapezoidal Rule
	The Trapezoidal Rule on R

	Complex Contours

	The Stokes Phenomenon
	The Airy Function
	The Recent Interest in the Stokes Phenomenon
	Exponentially Small Terms in the Airy Expansions

	A Selection of Other Methods
	Continued Fractions
	Incomplete Gamma Functions
	Incomplete Beta Function

	Sequence Transformations
	Padé Approximations
	How to Compute the Padé Approximants
	Nonlinear Sequence Transformations
	Numerical Examples

	Other Quadrature Methods
	Numerical Inversion of Laplace Transforms
	Computing Zeros of Special Functions
	Uniform Asymptotic Expansions
	Taylor Expansion Methods for Ordinary Differential Equations
	Computing Symmetric Elliptic Integrals
	Best Rational Approximations

	Recent Software and Publications on Methods for Computing Special Functions
	A Selection of Recent Software for Special Functions
	Recent Literature on the Computation of Special Functions

	References

	Melt Spinning: Optimal Control and Stability Issues
	Introduction
	Governing Equations for Melt Spinning
	Melt Spinning Model
	Dimensionless Form

	Optimal Control of the Melt Spinning Process
	First-Order Optimality System
	Decent Algorithm

	Optimal Control Results
	Newtonian Model
	Non-Newtonian Model

	Linear Stability Analysis
	Numerical Solution of the Eigenvalue Problem

	Stability Results
	Conclusions
	References

	On Orthonormal Polynomial Solutions of the Riesz System in \mathbb{R}^3
	Introduction
	Basic Notions and Terminology
	A Basis of M+(B;A;n)
	Generation of A-Valued Monogenic Functions
	References

	Brief Survey on the CP Methods for the Schrödinger Equation
	Introduction
	The Algorithm of a CP Method
	How do N and Q influence the quality of the method?
	What about the computational effort?

	Advantages of the CPM Versions
	A Numerical Illustration
	Appendix
	References

	Symplectic Partitioned Runge-Kutta Methods for the Numerical Integration of Periodic and Oscillatory Problems
	Introduction
	Construction of Trigonometrically Fitted SPRK Methods
	Trigonometrically Fitted Symplectic PRK Methods
	Final Stage Approach
	Each Stage Approach

	Construction of SPRK Methods with Minimum Phase-Lag and Methods with Infinite Phase-Lag Order
	Numerical Results
	The Two-Body Problem
	An Orbit Problem Studied by Stiefel and Bettis
	The Schrödinger Equation
	Harmonic Oscillator
	Doubly Anharmonic Oscillator


	Conclusions
	Appendix
	References

	On the Klein-Gordon Equation on Some Examples of Conformally Flat Spin 3-Manifolds
	Introduction
	Notations
	Conformally Flat 3-Tori
	The Klein-Gordon Equation on Conformally Flat 3-Tori
	The Inhomogeneous Klein-Gordon Equation on Tori
	The Homogeneous Klein-Gordon Equation on Spheres
	Representation of the Regular Solutions
	Limit and Special Cases

	References

	A Survey of hp-Adaptive Strategies for Elliptic Partial Differential Equations
	Introduction
	The Finite Element Method
	hp-Adaptive Refinement Algorithm
	The hp-Adaptive Strategies
	Use of a priori Knowledge of Solution Regularity
	Estimate Regularity Using Smaller p Estimates
	Type Parameter
	Estimate Regularity Using Larger p Estimates
	Texas 3 Step
	Alternate h and p
	Nonlinear Programming
	Another Optimization Strategy
	Predict Error Estimate on Assumption of Smoothness
	Larger of h-Based and p-Based Error Estimates
	Legendre Coefficient Strategies
	Reference Solution Strategies

	Numerical Results
	Conclusion and Future Work
	References

	Vectorized Solution of ODEs in Matlab with Control of Residual and Error
	Introduction
	Block RK Methods
	Error Control
	Illustrative Computations
	Conclusions
	References

	Forecasting Equations in Complex-Quaternionic Setting
	Introduction
	Forecasting Equations-A Physical Description
	Toroidal Flows on the Sphere
	Tangential Flows on the Sphere
	Quaternionic Algebras and Functional Spaces
	Tangential Derivatives

	Oseen's Problem on the Sphere
	Discretized Oseen's Problem on the Sphere
	Quaternionic Operator Calculus on the Sphere
	Plemelj Decompositions on the Boundary of Spherical Domains
	Time-Discrete Representation of Oseen's Problem
	Forecasting Equations in the Ball Shell
	Quaternionic Operator Formulation of Forecasting Equations

	References

	Symplectic Exponentially-Fitted Modified Runge-Kutta Methods of the Gauss Type: Revisited
	Introduction
	Notations and Definitions
	Two-Stage Methods
	Three-Stage Methods
	Numerical Experiments
	Conclusions
	References

	Index

