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Preface

This book is dedicated to applications of Lie groups to finite-difference equations,
meshes, and difference functionals. The interest in continuous symmetries of dis-
crete equations (i.e., Lie transformation groups admitted by such equations) springs
from at least two sources. First, discrete equations serve as primary, fundamental
mathematical models in physics and mechanics. Cellular automata and neural nets
also clearly belong to the realm of discrete models. Their integrability and the
existence of exact solutions and conservation laws are undoubtedly related to the
presence of continuous symmetries. This raises the question of finding and using
the transformation group admitted by a given discrete equation.

Second, modeling a given system of differential equations with the use of dif-
ference equations and meshes can also be based on symmetries. It is well known
that one and the same system of differential equations can be approximated by
infinitely many difference schemes. Hence finite-difference modeling always in-
volves the problem of selecting the schemes that are in some respect advantageous.
The selection criteria are often given by fundamental physical principles present
in the original model, such as conservation laws, variational principles, the exis-
tence of physically meaningful exact solutions, etc. In this connection, qualitative
considerations play a significant role in the construction of numerical algorithms,
because they permit including the “physical meaning” of the object under study in
the numerical method used to analyze the mathematical model. This point of view
has led to the development of methods for constructing conservative difference
schemes, to the integro-interpolation approach to constructing numerical schemes,
to variational methods for constructing schemes, to symplectic numerical methods,
etc.

The invariance of differential equations under continuous transformation groups
is certainly a fundamental property of these models and reflects the homogeneity
and isotropy of space–time, the Galilean principle, and other symmetry properties
that are intuitively (or experimentally) taken into account by the creators of physical
models. Therefore, it is apparently important in the theory of difference schemes to
preserve the symmetry properties when passing to the finite-difference model, thus
adequately representing the symmetry of the original differential model. This may
serve as the above-mentioned selection criterion.

The author first became acquainted with the idea that the qualitative (physical)

ix
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characteristics of differential equations should be preserved in difference models at
A. A. Samarskii’s seminar in the late 1960s,1 mainly in connection with the con-
struction of conservative and completely conservative difference schemes and vari-
ational numerical methods for gasdynamic and magnetohydrodynamic problems.
From the theoretical viewpoint, this work of Samarskii and his scientific school
was perhaps ahead of their time. (By the way, all their publications at the time
were only in Russian.) Back then, the community of mathematicians dealing with
qualitative methods of the theory of differential equations did not pay much atten-
tion to difference equations. These ideas were widely implemented and developed
only a few decades later. Nowadays, methods putting emphasis on the preserva-
tion of geometric and other qualitative properties of the solution set of the original
differential system (e.g., the symmetry group; variational principles; the existence
of first integrals, conservation laws, and exact solutions; symplecticity; and volume
preservation) are being intensively developed. In recent years, they have sometimes
been combined under the common name of geometric numerical integration. This
book largely deals with only one aspect of this new research trend, with attention
being mainly paid to continuous symmetries of discrete mathematical models.

The theory of continuous transformation groups was first formulated by So-
phus Lie when he was devising general integration methods for ordinary differen-
tial equations. Further development of group analysis of differential equations and
a systematic study of the structure of their solution sets originated in the work of
L. V. Ovsyannikov and his scientific school. (This was indeed a second birth of
group analysis, at least in Russia.) The publication of Ovsyannikov’s papers and
books in the USSR in the 1960s led to a boom of studies and publications on the
topic. The work of Ovsyannikov, Birkhoff, and their students and successors has
made Lie’s idea of describing symmetries of differential equations into an indepen-
dent scientific field. At present, group analysis is a generally recognized method for
describing continuous symmetries of differential and integro-differential equations
of mathematical physics.

It is very tempting to use the group-theoretic approach when constructing and
studying various mathematical models (including difference schemes), because
group analysis has powerful infinitesimal criteria for the invariance of objects un-
der study. Thus, the problem of finding a continuous transformation group can be
reduced to solving a system of linear equations regardless of whether the original
model itself is linear or not. To model a physical process with known symmetry,
one should finding a set of differential (or, in our case, difference) invariants, and
this problem is also linear.

The knowledge of the transformation group admitted by a mathematical model
provides significant information about the solution set of the model, because the
structure of this group correlates with the algebraic structure of the set of solutions.

1It was in the 1950s that Tikhonov and Samarskii [135] recognized the importance of the re-
quirement that the scheme be conservative.
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The higher the dimension of the admissible group, the wider are the possibilities
for its application. Therefore, it is apparently important to preserve the entire sym-
metry of the original continuous model in its finite-difference analog.

In this book, attention is focused on the problem of constructing difference
equations and meshes such that the difference model preserves the symmetry of the
original continuous model. The introduction of finite-difference variables is rather
formal. But one can intuitively rely on the geometric vision of the “difference”
space being embedded in the “continuous” space; i.e., continuous transformations
act on the entire Euclidean space of appropriate dimension, but we are only inter-
ested in countably many of its points. Therefore, two types of variables, continuous
and discrete, are used in the mathematical apparatus. The first are used to describe
the tangent fields of continuous transformation groups, and the second serve to
construct difference forms and equations. As a result, there arises a rather unusual
object, an infinitesimal group operator whose action is a continuous differentiation
with respect to discrete variables.

Finite-difference operators, in contrast to differential operators, are defined on
finite subsets of countable sets of mesh nodes. (The finite set of mesh points on
which a difference equation is written is called a difference stencil.) Owing to this
nonlocality of the operators (which physically means that the problem has char-
acteristic length scales), difference operators possess peculiar properties absent in
the local differential models. In particular, one distinguishes between “right” and
“left” differentiations (and the corresponding shifts), there are uniform and nonuni-
form meshes, and the difference Leibniz rule has a specific character. This specific
character results in the appearance of a peculiar calculus of infinitesimal transfor-
mations of finite-difference variables considered in Chapter 1.

Note that all issues in this book are considered locally, just as in the classical
group analysis: invariance problems for difference equations and difference meshes
are studied in a neighborhood of an arbitrary point. However, unlike in the case of
differential equations, a “point” in the case of difference equations is a difference
stencil, which has a certain geometric structure, so that the role of transformations
of independent variables is of exceptional importance. It is a distinguishing fea-
ture of our approach to the analysis of group properties of difference equations that
the transformations of independent variables are included in the class of admissible
transformations. Accordingly, the group action generally transforms the differ-
ence stencil (and the entire mesh). To pose the invariance problem for a difference
model, we suggest including the mesh equation characterizing the difference sten-
cil geometry in the difference model. With this approach, it is possible to preserve
the symmetry of the original differential model exactly rather than in the form of a
group isomorphic to the original one. This finally permits constructing difference
models completely preserving the symmetry of the original differential equations.

In Chapter 1, we consider the invariance problem for various difference meshes,
uniform and nonuniform, orthogonal and nonorthogonal. It is clearly impossible to
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list all meshes used in practice, but a series of propositions establishing necessary
and sufficient conditions for the invariance of several classes of most widely used
meshes allow us to carry out a preliminary analysis of the possibilities of difference
modeling in specific situations. In the same Chapter 1, we consider the relation-
ship between the operations of discrete and continuous differentiation and also the
problems related to changes of variables in the space of difference variables. We
construct a difference representation of the (continuous) total differentiation oper-
ator with the help of so-called Newton series. Note that this representation is ex-
tremely cumbersome. Hence the well-known equivalence of the symmetry group
in the form of evolution fields (for which the independent variables are invariants)
is no longer attractive for difference equations. While the point symmetry group of
a difference equation can be written out in exactly the same form as for a differen-
tial equation, the symmetry in the form of evolution fields has an awkward structure
(which uses all points of the difference mesh), which is unsuitable in practice. Here
the specific features of difference models manifest themselves as well.

In Chapter 2, we use the mathematical technique developed in the preceding
chapter to study the symmetry properties of finite-difference models, i.e., differ-
ence equations considered together with difference meshes. The main theorem of
this chapter provides necessary and sufficient conditions for the invariance of dif-
ference equations and meshes. We also propose a simple algorithm for constructing
invariant difference models from a given transformation group, namely, the method
of finite-difference invariants. In several examples, we construct finite-difference
models completely inheriting the symmetry of the original differential equations.
We show that the symmetry of difference models permits applying reduction to
subgroups just as in the case of differential equations and thus obtaining invari-
ant (exact) solutions of difference schemes. Since the criterion for finite-difference
equations to be invariant on the difference mesh also provides necessary conditions
for the invariance of a difference model, it is possible to calculate the symmetry
of a given difference equation. We present an example of such calculations of the
admissible group, showing the peculiarity of the splitting procedure.

In subsequent chapters, the technique of point transformation groups is used to
study invariant properties of difference equations. In Chapter 3, we consider in-
variant ordinary difference equations. Just as in the case of first-order ODE, the
knowledge of the admissible group permits integrating the difference equation. For
second-order ODE, we give a complete group classification of difference equations
and meshes. It is of interest to note that this classification presents significantly
more invariant difference equations than the corresponding list of invariant differ-
ential equations.

In Chapter 4, we construct examples of finite-difference models (i.e., difference
equations and meshes) completely preserving the symmetry of the original partial
differential equations. We note that a majority of the constructed invariant dif-
ference schemes are very unusual and rather different from the traditional ones. In
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particular, the symmetry of most evolution equations can be preserved with the help
of moving mesh schemes. For the nonlinear heat equation with a source (which in-
cludes the linear equation as a special case), we present a complete list of invariant
difference models corresponding to the list of invariant differential equations ob-
tained earlier. Note that we do not discuss any issues concerning the numerical
implementation of the invariant difference models obtained earlier, and hence the
book does not contain specific numerical calculations.

In Chapter 5, we consider combined models, i.e., equations containing both
differential and difference variables. As typical examples, we consider delay dif-
ferential equations and differential-difference equations, where continuous deriva-
tives with respect to time occur together with difference spatial derivatives. The
symmetry of such models is described by admitted transformations in the product
of the spaces of differential and difference variables, and its analysis is in some
sense simpler than that of purely difference models, because the question of the
invariance of geometric properties of the space–time mesh does not arise.

It is well known that conservation laws underlie the construction of mathemat-
ical models in a majority of cases. The relationship between the conservation laws
and the symmetries of the corresponding variational problem is stated in a defini-
tive constructive form in the Noether theorem, which says that if the variational
functional is invariant, then the corresponding Euler differential equations are con-
servative (i.e., the conservation laws are satisfied on their solutions). In Chapter 6,
we consider invariant variational problems for difference functionals and present
a difference counterpart of E. Noether’s construction. Difference variational prob-
lems have their own specific features and in general substantially differ from the
continuous version. Nevertheless, fully constructive methods for devising invari-
ant schemes and meshes with difference analogs of the conservation laws are also
proposed in the difference case. We show that the invariance of the finite-difference
functional does not automatically imply the invariance of the corresponding Euler
equations. We obtain a new difference equation (which, in general, does not coin-
cide with the difference Euler equation) on whose solutions the functional proves
to be stationary under the group transformations. This equation, which is called
the quasi-extremal equation (or a local extremal equation), depends on the coor-
dinates of the group operator and, in the case of an invariant functional, has the
corresponding conservation law. Thus, if a difference functional is invariant un-
der several subgroups, then, in general, this leads to several difference equations
with conservation laws. (Each equation has its own conservation law.) If this set
of quasi-extremals has a nonempty set of general solutions, then it is possible to
state a theorem completely similar to the Noether theorem for such an intersection
of quasi-extremals of the invariant functional. Note that the proposed difference
construction becomes the classical Noether theorem in the continuum limit.

In Chapter 7, the relation between symmetries and first integrals for differ-
ence Hamiltonian equations is considered. These results are based on results for
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continuous canonical Hamiltonian equations considered in the Introduction. It is
shown that discrete Hamiltonian equations can be obtained by the variational prin-
ciple from action functionals. Noether-type difference operator identities are de-
veloped. On the basis of these identities, a Noether-type theorem for the canonical
Hamiltonian equations is stated. The approach based on the symmetries of discrete
Hamiltonians provides a simple, clear way to construct first integrals of difference
Hamiltonian equations by means of purely algebraic manipulations. It can be used
to preserve the structural properties of underlying differential equations under dis-
cretization procedure, which is useful for numerical implementation.

In Chapter 8, we construct examples of exact schemes, i.e., difference models
that have infinite order of approximation. The set of solutions of exact schemes,
which coincide with the corresponding solutions of the differential equation at the
mesh points, obviously admits the symmetry group of the differential equation.
Therefore, the exact scheme (and the mesh) must be invariant and can be con-
structed from difference invariants. Several examples show that the parametric
family of invariant schemes contains exact schemes. Such schemes can be viewed
as a discrete representation of the solution set of the corresponding ODE. Thus, the
following peculiar mathematical dualism arises: one and the same process can be
described either by ODE or by an exact difference model.

At present, there is a comprehensive literature concerning applications of Lie
groups to differential equations. Moreover, there are excellently written introduc-
tory courses, which allow young researchers to assimilate the main ideas of group
analysis rather quickly. Nevertheless, to make our presentation closed and self-
sufficient, in the Introduction we briefly recall the elementary notions of group
analysis of differential equations and introduce some notation that we need in our
studies of applications of Lie groups of transformations to difference equations,
functionals, and meshes. In addition, we briefly present some results concerning
the Lie–Bäcklund groups (or higher-order symmetries) and Noether-type theorems
for Lagrangian and Hamiltonian formalisms in the context of differential equations.
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Introduction

0.1. Brief Introduction to Lie Group Analysis
of Differential Equations

Nowadays, there is a wide literature dealing with applications of Lie groups to
differential equations (e.g., see [13–15, 69, 73, 107, 111, 130]).

To make our presentation closed and self-contained, in this introductory section
we briefly recall the required elementary notions and introduce the notation used in
group analysis of differential equations and needed to study difference equations,
functionals, and meshes with the help of Lie transformation groups in subsequent
chapters.

In our presentation, we follow the notation and partly the contents of Ovsyan-
nikov’s excellent book [114], which has long since become a bibliographical rarity.
We also briefly present some results concerning the Lie–Bäcklund group (or higher-
order symmetries) and Noether-type theorems for the Lagrangian and Hamiltonian
formalisms. Theorems are given without proofs but are illustrated by examples.

0.1.1. One-parameter continuous transformation groups

Consider the Euclidean spaceRN of points x = (x1, x2, x3, . . . , xN) in which some
smooth transformations Ts, s = 1, 2, . . . , taking RN to itself, x∗ = Tsx ∈ RN , are
given.

The action of Ts can be written as the system of relations

xi∗ = f is(x) = f is(x
1, x2, . . . , xN), i = 1, 2, . . . , N, s = 1, 2, . . . .

We assume that the functions f is determining this transformation are locally in-
vertible and three times continuously differentiable. The inverse transformation is
denoted by Ts−1.

The product T1T2 of transformations T1 and T2 is understood as the succes-
sive application first of T2 and then of T1. This composition of transformations is
referred to as multiplication. The role of unity element for this multiplication is
played by the identity transformation E. In terms of the functions f i, the multipli-
cation of transformations can be written as

f i(x) = f i1(f 1
2(x), f2

2(x), . . . , fN 2(x)), i = 1, 2, . . . , N.

xvii



xviii INTRODUCTION

It follows from the above definition of multiplication as consecutive transfor-
mations that multiplication is associative,

T1(T2T3) = (T1T2)T3.

The definition also implies the inversion formula

(T1T2)−1 = T2
−1T1

−1 (0.1)

for the product of transformations.
Now consider a family {Ta} of transformations depending on a real parameter a

ranging in an interval ∆. The family {Ta} is said to be locally closed with respect
to multiplication if there exists a subinterval δ ∈ ∆ such that the product TaTb
belongs to {Ta} for any a, b ∈ δ. In coordinate form,

Ta : xi
∗

= f i(x, a), i = 1, 2, . . . , N,

TaTb : f i(f(x, b), a) = f i(x, φ(a, b)), i = 1, 2, . . . , N.
(0.2)

Thus, there is a function φ(a, b) determining the multiplication law for the trans-
formations in the family {Ta} by the formula TbTa = Tc, c = φ(a, b). We assume
that this function is three times continuously differentiable.

A family {Ta} of transformations is called a local one-parameter continuous
transformation group (a local Lie transformation group) if

1. {Ta} is locally closed with respect to multiplication.
2. There exists a unique parameter value a0 ∈ δ determining the identity trans-

formation Ta0 .
3. The equation φ(a, b) = a0 has a unique solution b = a−1 for each a ∈ δ.

This means that every transformation Ta, a ∈ δ, is invertible, (Ta)
−1 = Ta−1 .

Note that the multiplication and inversion of transformations is defined only for
a ∈ δ rather than on the entire admissible interval ∆. For δ we can take any smaller
interval containing a0; i.e., we are only interested in some small neighborhood
of a0. Accordingly, the object introduced above is not a group in general; it is
called a local group. We denote a local one-parameter continuous transformation
group by G1.

The group parameter can be transformed with the use of a three times contin-
uously differentiable function, ā = ā(a). In particular, using the transformation
ā = a − a0, we can ensure that the identity transformation is associated with the
zero parameter value. As the group parameter varies, each point (x1, x2, . . . , xn)
moves in Rn along a smooth one-parameter curve, which is called an orbit of the
group G1.

The definition of G1 implies the following properties of the function φ(a, b)
determining the multiplication law for the transformations:

φ(0, 0) = 0, φ(a, 0) = a, φ(0, b) = b, φ(a, a−1) = φ(a−1, a) = 0.
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The parameter a is said to be canonical if the multiplication law is just the addition
φ(a, b) = a+ b. In this case, a−1 = −a, and formulas (0.1) can be rewritten as

f i(f(x, a), b) = f i(x, a+ b), i = 1, 2, . . . , N. (0.3)

One can show that there exists a canonical parameter for any one-parameter group.
The transformation yielding the canonical parameter is given by the formula

ā(a) =

∫ a

0

V (s)ds, where V (b) =
∂φ(a, b)

∂b

∣∣∣∣
a=b−1

.

It follows that every one-parameter transformation group is Abelian (commutative).

Some examples of one-parameter transformation groups include
1. The translations along a vector (γ1, γ2, . . . , γN) in RN ,

xi∗ = xi + γia, i = 1, 2, . . . , N.

(As a special case, this includes the translations x∗ = x+ a on the real line.)
2. The dilations x∗ = eax on the real line and the inhomogeneous dilations

xi∗ = es
iaxi in RN .

3. The Galilei translations on the plane,

x∗ = x+ ay, y∗ = y.

4. The rotations on the plane,

x∗ = x cos a+ y sin a, y∗ = −x sin a+ y cos a.

5. The Lorentz transformations on the plane,

x∗ = x cosh a+ y sinh a, y∗ = x sinh a+ y cosh a.

6. The projective transformations on the plane,

x∗ =
x

1− ax
, y∗ =

y

1− ax
.

Note that φ(a, b) = a+ b in all these examples.

0.1.2. Infinitesimal operator of a group

With the group G1 determined by the transformations (0.1), we associate the aux-
iliary functions

ξi(x) =
∂f i(x, a)

∂a

∣∣∣∣
a=0

, i = 1, 2, . . . , N. (0.4)

The following theorem establishes a one-to-one correspondence between vector
fields (0.4) and one-parameter transformation groups G1.
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THEOREM. The functions f i(x, a) determining the transformation group satisfy
the system of differential equations (which are called the Lie equations)

∂f i

∂a
= ξi(f), i = 1, 2, . . . , N, (0.5)

with the initial conditions

f i
∣∣
a=0

= xi, i = 1, 2, . . . , N. (0.6)

Conversely, for any set of sufficiently smooth functions ξi(x), system (0.5)–(0.6)
has a solution f i(x, a), which determines the group G1.

This theorem establishes the most important relationship between the transfor-
mation group and the tangent vector field (0.4).

Along with the tangent field (0.4), consider the linear differential operator

X = ξi(x)
∂

∂xi
, (0.7)

which is called the infinitesimal operator (or the generator) of the group G1. (In
formula (0.7) and in what follows, summation over repeated indices is assumed.)
The functions ξi(x) are called the coordinates of the operator X .

Let us write out the infinitesimal operators for the above examples.
1. The operator of the group of translations along the vector (γ1, γ2, . . . , γN)

in RN has the form
X = γi

∂

∂xi
.

2. The inhomogeneous dilation transformation in RN has the infinitesimal op-
erator

X = sixi
∂

∂xi
.

3. The Galilei translations on the plane have the generator

X = y
∂

∂x
.

4. The rotations on the plane are generated by the operator

X = y
∂

∂x
− x ∂

∂y
.

5. The infinitesimal Lorentz transformation has the form

X = y
∂

∂x
+ x

∂

∂y
.
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6. The infinitesimal operator corresponding to projective transformations on
the plane is given by

X = x2 ∂

∂x
+ xy

∂

∂y
.

The action of a transformation Ta of the group G1 on a scalar function F (x) is
defined as TaF (x) = F (Tax). The infinitesimal operator gives the principal linear
part of the increment of the function; indeed,

TaF (x) = eaXF (x) = F (x) + aXF (x) +
a2

2!
X2F (x) + · · ·+ an

n!
XnF (x) + · · · .

If we make a change of variables yi = yi(x) in RN , then the coordinates of the
infinitesimal operator are changed by the formulas

ξ̄i = X(yi) : X = ξ̄i(y)
∂

∂yi
. (0.8)

If one group can be obtained from another group by a smooth invertible point
change of variables, then these groups are said to be similar.

THEOREM. Each one-parameter transformation group is similar to the group of
translations along one of the coordinates.

Remark. The desired change of variables can be found from the linear system

X(yi(x)) = 0, i = 1, 2, . . . , N − 1, X(yN(x)) = 1.

0.1.3. Group invariants and invariant manifolds

A locally analytic function F (x) 6= 0 is said to be group invariant if F (x∗) = F (x)
for any transformations of the group.

THEOREM. For F (x) to be group invariant, it is necessary and sufficient that

XF (z) = 0, (0.9)

where X is the operator of the group (0.3).

It is well known that the linear partial differential equation (0.9) has N − 1
functionally independent solutions I1(x), I2(x), . . . , IN−1(x) and that the general
solution has the form

F (x) = Φ(I1(x), I2(x), . . . , IN−1(x)),

where Φ(z1, . . . , zN−1) is an arbitrary differentiable function. Thus, the group G1

has N − 1 functionally independent invariants.
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Consider some examples of solutions of Eq. (0.9) used to calculate group in-
variants.

1. The group of translations along a vector (γ1, γ2, . . . , γN) in RN has N − 1
independent invariants. For example (assuming that all γi are nonzero), one can
take

Ii = γi+1xi − γixi+1, i = 1, 2, . . . , N − 1.

2. The inhomogeneous dilation transformations in RN have the invariants

Ii =
(xi)s

i+1

(xi+1)si
, i = 1, 2, . . . , N − 1.

3. The Galilei translations on the plane have one invariant

I1 = y.

4. The rotations on the plane have the obvious invariant

I1 = x2 + y2.

5. The Lorentz transformations on the plane have one invariant

I1 = x2 − y2.

6. The projective transformations on the plane have the invariant

I1 =
x

y
.

Remark. One can also find group invariants in a different way, by considering finite
transformations of the group and by eliminating the group parameter. We illustrate
this by the example of projective transformations on the plane,

x∗ =
x

1− ax
, y∗ =

y

1− ax
.

By eliminating the group parameter a, we obtain

x∗

y∗
=
x

y
.

This relation means exactly that the expression x/y is an invariant of the one-
parameter group considered.

This idea was generalized in [54, 109, 110] to multiparameter groups acting in
a space with a larger number of variables.
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The manifold defined inRN by some functions φs(x) according to the formulas

φs(x) = 0, s = 1, 2, . . . , A, (0.10)

is said to be invariant if the following relation holds for all group transformations:

φs(x∗) = 0, s = 1, 2, . . . , A.

In other words, the group transformations take the manifold (0.8) to itself.

DEFINITION. The manifold (0.10) is said to be regularly defined if the functions
φs(x) are continuously differentiable and the matrix ‖∂φs/∂xi‖ has rank A (equal
to the number of equations in system (0.10)).

A criterion for a regular manifold to be invariant can be written in terms of the
group operator.

THEOREM. For a manifold regularly defined by Eqs. (0.8) to be invariant under a
group G1 with operator X , it is necessary and sufficient that

Xφs(x)
∣∣
φs(x)=0

= 0. (0.11)

The geometric meaning of condition (0.11) is that the vector field ξi(x) is tan-
gent to the surface (0.10).

0.1.4. Prolongation of the transformation group to derivatives

Now we divide the coordinates in RN into two types, independent variables xi, i =
1, 2, . . . , n, and dependent (differential) variables uk, k = 1, 2, . . . ,m, N = m+n.
Accordingly, we divide the transformations in the group G1 into two types,

x∗i = f i(x, u, a), i = 1, 2, . . . , n,

u∗k = gk(x, u, a), k = 1, 2, . . . ,m.

We prolong the space RN to the derivatives, i.e., supplement it with differential
variables uki,

uki =
∂uk

∂xi
, i = 1, 2, . . . , n, k = 1, 2, . . . ,m.

The space prolonged to the first derivatives has dimension N = N + mn. In
the prolonged space, consider the one-parameter transformation group defined by
the operator

X = ξi
∂

∂xi
+ ηk

∂

∂uk
+ ζki

∂

∂uki
, (0.12)
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where the ζki are some functions of xi, uk, and uki.
To ensure that the group transformations preserve the definition and the geomet-

ric meaning of the derivatives, we require that the following relations be invariant
under the transformations in G1:

duk = uki dx
i, k = 1, 2, . . . ,m. (0.13)

The invariance of Eqs. (0.13) under the group G1 with operator (0.12) implies
the following prolongation formulas:

ζki = Di(η
k)− ukjDi(ξ

j), i = 1, 2, . . . , n, k = 1, 2, . . . ,m, (0.14)

where
Di =

∂

∂xi
+ ui

k ∂

∂uk
, i = 1, 2, . . . , n,

is the operator of total differentiation with respect to the variable xi.
Prolonging this process to the second derivatives, in a similar way we obtain

expressions for the coordinates of the group operator which determine the transfor-
mation of the second derivatives:

ζkji = Di(ζ
k
j )− uksjDi(ξ

s), i, j = 1, 2, . . . , n, k = 1, 2, . . . ,m. (0.15)

In the same manner, one can obtain formulas of prolongation to third and higher
derivatives. The operator of the group G1 prolonged to the desired number of
derivatives (which will be clear from the context) will be indicated by a tilde,

X̃ = ξi
∂

∂xi
+ ηk

∂

∂uk
+ ζki

∂

∂uki
+ ζkij

∂

∂ukij
+ · · · .

The operation of prolongation is linear and homogeneous in the coordinates of
the original operator, which can readily be seen from formulas (0.14) and (0.15).

In the prolonged space, there are more group invariants. The invariants of the
prolonged group that are not invariants of the original group (i.e., of the group
acting in the space of independent and dependent variables alone) are called differ-
ential invariants of the groupG1. In a similar way, a differential invariant manifold
of the group is defined to be an invariant manifold that is not an invariant manifold
of the original group (i.e., contains derivatives).

0.1.5. Transformation groups admitted by differential equations

Consider the system of differential equations

Fα(x, u, u1, u2, . . . , us) = 0, α = 1, 2, . . . ,m, (0.16)

where x ∈ Rn, u ∈ Rm, and us is the set of sth partial derivatives.
We treat Eqs. (0.16) as the equations of a manifold in the corresponding pro-

longed space.



0.1. BRIEF INTRODUCTION TO LIE GROUP ANALYSIS OF DIFFERENTIAL EQUATIONS xxv

DEFINITION. One says that system (0.16) admits a group G1 if the corresponding
manifold is a differential invariant manifold of G1, i.e., if Eqs. (0.16) remain un-
changed under the action of any group transformation appropriately prolonged to
the derivatives.

Another equivalent definition can be stated as follows: system (0.16) admits the
group G1 if the group action takes every solution of the system to a solution of the
same system (see [73, 107, 111]).

In connection with this definition, the following main problem of group analy-
sis arises: for a given system of equations, find all transformation groups admitted
by this system. We point out that, for this problem to be solved, it is insignifi-
cant whether the system has solutions. The only significant characteristic is the
possibility to rewrite (0.16) in the form of a regularly defined manifold.

Since finding a symmetry group is equivalent to finding its infinitesimal opera-
tor, we continue this operator to the derivatives up to and including us,

X̃ = ξi
∂

∂xi
+ ηk

∂

∂uk
+ ζki

∂

∂uki
+ · · ·+ ζks

∂

∂uks
, (0.17)

and rewrite the criterion for system (0.16) of differential equations to be invariant
in the form

X̃Fα(x, u, u1, u2, . . . , us)
∣∣
(0.16) = 0, α = 1, 2, . . . ,m. (0.18)

The invariance criterion (0.18) is an overdetermined system of linear equations
for the coordinates of the operator (0.17). Therefore, the solutions of system (0.18)
form a linear vector space Lr of some dimension r. Thus, the problem of finding a
symmetry group (operator) is always linear, regardless of whether the system itself
is linear or nonlinear. The efficiency of group analysis is a consequence of this fact.

System (0.18) is called the system of determining equations. In general, there
is no relationship between the dimension r of the space of symmetry operators and
the dimension of system (0.16).

We illustrate the process of solving the determining equations by an example of
a nonlinear ordinary differential equation.

EXAMPLE. Consider the ordinary differential equation

u
′′

=
1

u3
. (0.19)

We seek the operator of the symmetry group in the form

X = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
,

which we have to prolong to the first and second derivatives:

X̃ = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
+ ζ1

∂

∂u′
+ ζ2

∂

∂u′′
, (0.20)
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where

ζ1 = D(η)− u′D(ξ), D =
∂

∂x
+ u′

∂

∂u
+ u′′

∂

∂u′
+ u′′′

∂

∂u′′
+ · · · ,

ζ2 = D(ζ1)− u′′D(ξ) = D2(η)− 2u′′D(ξ)− u′D2(ξ).

We act by the prolonged operator (0.20) on Eq. (0.19):

D2(η)− 2u′′D(ξ)− u′D2(ξ) = −3η

u4
,

or, in expanded form,

ηxx + 2ηxuu
′ + ηuu(u

′)
2

+ ηuu
′′ − 2u′′(ξx + ξuu

′)

− u′(ξxx + 2ξxuu
′ + ξuu(u

′)2 + ξuu
′′) +

3

u4
η = 0. (0.21)

Now it is necessary to “introduce the manifold,” i.e., write out the action of the
operator at the points of Eq. (0.19). To this end, we can, for example, express u′′

from (0.19) and substitute it into Eq. (0.21):

ηxx + 2ηxuu
′ + ηuuu

′2 + ηu
1

u3
− 2

1

u3
(ξx + ξuu

′)

− u′(ξxx + 2ξxuu
′ + ξuu(u

′)2 + ξu
1

u3
) +

3

u4
η = 0. (0.22)

Thus, the determining equation has been obtained. Any of its nonzero solutions
gives the coordinates of an operator generating a one-parameter group.

The desired coordinates of the operator depend only on x and u but are inde-
pendent of u′, and the determining equation (0.22) should be satisfied identically
in the variables x, u, and u′. This permits splitting Eq. (0.22) into several simpler
equations. By matching the coefficients of like powers of u′, we readily obtain the
following overdetermined system of equations:

ξuu = 0, ηuu − 2ξxu = 0,

2ηxu − 3
ξu
u3
− ξxx = 0,

ηxx + (ηu − 2ξx)
1

u3
+

3η

u4
= 0.

(0.23)

From the first two equations in (0.23), we obtain

ξ = α(x)u+ β(x), η = αxu
2 + γ(x)u+ δ(x).

By substituting these expressions into the remaining equations in system (0.23) and
by matching the coefficients of like powers of u, we obtain the general solution in
the form

ξ(x) = Ax2 + 2Bx+ C, η(x, u) = (Ax+B)u,
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where A, B, and C are arbitrary constants.
Thus, we have obtained a three-dimensional space of operators. By setting any

two of the three constants to zero, we obtain a basis of symmetry operators:

X1 =
∂

∂x
, X2 = 2x

∂

∂x
+ u

∂

∂u
, X3 = x2 ∂

∂x
+ xu

∂

∂u
. (0.24)

Thus, Eq. (0.19) admits three one-parameter transformation groups with op-
erators (0.24). The finite transformations on the (x, u)-plane for each of these
one-parameter groups can readily be obtained by solving the corresponding Lie
equation (0.5). Thus, we obtain three families of transformations,

x∗ = x+ a, u∗ = u;

x∗ = e2ax, u∗ = eau;

x∗ =
x

1− ax
, u∗ =

u

1− ax
.

(0.25)

Let us prolong the transformations (0.25) to the first and second derivatives:

x∗ = x+ a, u∗ = u, (u′)∗ = u′, (u′′)∗ = u′′;

x∗ = e2ax, u∗ = eau, (u′)∗ = e−au′, (u′′)∗ = e−3au′′;

x∗ =
x

1− ax
, u∗ =

u

1− ax
,

(u′)∗ = au+ (1− ax)u′, (u′′)∗ = (1− ax)3u′′.

(0.26)

By substituting the transformations (0.26) into Eq. (0.19), we readily see that it is
invariant.

We point out the following obvious fact, which we need in the subsequent anal-
ysis of invariance properties of finite-difference equations. Under the transforma-
tions (0.26), Eq. (0.19) becomes the same equation

(u′′)∗ =
1

(u∗)3

but at a different point of the same prolonged space (x, u, u′, u′′). Thus, the group
action does not change the invariant equation but transforms the point at which it is
written, (x, u, u′, u′′)→ (x∗, u∗, (u′)∗, (u′′)∗).

0.1.6. Lie algebra of infinitesimal operators

Thus, the symmetry of given differential equations is described by a vector space
of infinitesimal operators, which was confirmed by an example. Along with the
operation of addition of operators and their multiplication by numbers, one more
operation can be introduced in this space.
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DEFINITION. The commutator of operators X1 = ξ1
i∂/∂xi and X2 = ξ2

i∂/∂xi is
the operator

[X1, X2] = X1X2 −X2X1 = (X1ξ2
i −X2ξ1

i)
∂

∂xi
.

This definition readily implies the following properties of the commutation op-
eration:

1. The commutator is bilinear,

[aX1 + bX2, X3] = a[X1, X3] + b[X2, X3], a, b = const.

2. The commutator is antisymmetric,

[X1, X2] = −[X2, X1].

3. The Jacobi identity

[[X1, X2], X3] + [[X2, X3], X1] + [[X3, X1], X2] = 0

is satisfied.
A linear space L of operators containing all commutators of these operators is

called a Lie algebra of operators.
In the above example, we obtained three linearly independent operatorsX1,X2,

and X3. Now let us calculate the following commutators of these operators:

[X1, X2] = 2X1, [X1, X3] = X2, [X2, X3] = 2X3.

The other commutators can be obtained from the property that the commutator is
antisymmetric; in particular, [Xi, Xi] = 0, i = 1, 2, 3.

Thus, we have shown that the commutator of any two operators admitted by
our equation can be expressed via the basis operators and is also admitted by the
equation. This assertion is also true in general [111].

THEOREM. If a manifold is invariant under operators X1 and X2, then it is also
invariant under their commutator [X1, X2].

This means that, for any system of differential equations, the set of infinitesimal
operators admitted by it is a Lie algebra.

Note two more properties of the commutator, which are useful in further analy-
sis:

1. The commutator is invariant under changes of the coordinate system.
2. The operation of prolongation to the derivatives commutes with the operation

of commutation [111].
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Table 0.1: Commutators of the group G3

X1 X2 X3

X1 0 2X1 X2

X2 −2X1 0 2X3

X3 −X2 −2X3 0

It is convenient to arrange the commutators of the operators under study in
a table where the commutator [Xi, Xj] is placed at the intersection of the ith row
with the jth column. Table 0.1 shows the commutators of the operatorsX1, X2, X3.

Lie algebras have been studied sufficiently well in the general theory. Here
we need only the simplest of their properties. In particular, if a subspace of op-
erators itself forms a Lie algebra, then it is called a subalgebra. In our example,
the subspaces spanned by the basis operators X1, X2 and X2, X3 are subalgebras,
while the operators X1 and X3 do not span a subalgebra, because their commutator
cannot be expressed as a linear combination of X1 and X3.

0.1.7. Local Lie transformation groups

In the general theory of Lie transformation groups, one-parameter transformations
groups are generalized to the multiparameter groups. In the Euclidean space RN

of points x = (x1, x2, x3, . . . , xN), one introduces transformations taking RN to
itself:

xi
∗

= f i(x, a) = f i(x1, x2, . . . , xN ; a1, a2, . . . , ar), i = 1, 2, . . . , N. (0.27)

We assume that the transformations (0.27) satisfy the same axioms as for one-
parameter transformation groups. The main novelty is that the parameter is a vector
(a1, a2, . . . , ar) ∈ Rr ranging in a small neighborhood of the point (0, 0, . . . , 0)
corresponding to the identity transformation.

By Gr
N we denote a set of transformations (0.27) satisfying the axioms of a

local group with the usual law φ(a, b) of multiplication of transformations:

TbTa = Tφ(a,b) : f i(f(x, a), b) = f i(x, φ(a, b)), i = 1, 2, . . . , N.

The definition of the groupGr
N implies the following properties of the function

φ(a, b) = (φ1, φ2, . . . , φr) determining the multiplication law:

φ(0, 0) = 0, φ(a, 0) = a, φ(0, b) = b.

With the group Gr
N of transformations (0.27), we associate the auxiliary func-

tions

ξα
i(x) =

∂f i(x, a)

∂aα

∣∣∣∣
a=0

, i = 1, 2, . . . , N, α = 1, 2, . . . , r.
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These functions are used to define the linear operators

Xα = ξα
i(x)

∂

∂xi
, i = 1, 2, . . . , N, α = 1, 2, . . . , r, (0.28)

which are called the basis operators of the group Gr
N .

To state the multidimensional analog of Lie equations, we also need the auxil-
iary functions

Vβ
α(b) =

∂φα(a, b)

∂bβ

∣∣∣∣
a=b−1

, Vβ
α(0) = δβ

α, α, β = 1, 2, . . . , r.

Using these functions, we can write out the Lie equations

∂f i

∂aα
= ξσ

i(f)Vβ
σ(a) (0.29)

with the initial conditions

f i|a=0 = xi, i = 1, 2, . . . , N, (0.30)

and state the following theorem.

THEOREM. The functions f i(x, a) determining a transformation group satisfy sys-
tem (0.29) of differential Lie equations with the initial conditions (0.30). Con-
versely, if there are given auxiliary functions Vβσ(a) and linearly independent vec-
tors ξαi(x), then the solution of system (0.29), (0.30) determines a local Lie trans-
formation group.

In the group Gr
N , a one-parameter subgroup can be chosen as follows. In the

space of the parameters (a1, a2, . . . , ar), take a directing vector e = (e1, e2, . . . , er)
and consider the straight line aα = eαt, where t is a parameter. Then the group
transformations become the one-parameter transformations

xi
∗

= f i(x, et), i = 1, 2, . . . , N,

and the Lie equations acquire the form

∂f i

∂t
= eαξα

i(f), f i|t=0 = xi, i = 1, 2, . . . , N.

We denote the Lie algebra generated by the basis operators (0.28) of the group
Gr

N by the symbol Lr. Note that the general theories of Lie groups and Lie alge-
bras are completely parallel: there is a full correspondence between the structures
of Lie algebras and Lie groups; in particular, to any subalgebra there corresponds
a subgroup of the Lie transformation group up to the choice of a coordinate sys-
tem. In fact, this reduces the problem of finding the transformation group admitted



0.1. BRIEF INTRODUCTION TO LIE GROUP ANALYSIS OF DIFFERENTIAL EQUATIONS xxxi

by a given system of equations to the problem of finding one-parameter subgroups
admitted by the system.

An r-parameter Lie transformation group can be constructed from the given
basis operators (0.28) by various methods. For example, one can construct one-
parameter transformation groups corresponding to the basis operators and then use
the multiplication of the corresponding transformations. Thus the so-called canon-
ical coordinates of the second kind [111] are introduced:

Ta = Ta1Ta2 · · ·Tar . (0.31)

Note that the introduction of an r-parameter group in such a way is not unique;
namely, a permutation of transformations in (0.31) generally leads to a different
representation of the group Gr

N .

EXAMPLE. We return to our example of the three-dimensional Lie algebra admit-
ted by Eq. (0.19). Each of the basis operators generates its own one-parameter
subgroup:

X1 : x∗ = x+ a, u∗ = u;

X2 : x∗ = e2ax, u∗ = eau;

X3 : x∗ =
x

1− ax
, u∗ =

u

1− ax
.

Two-parameter subgroupsG2
2 can be constructed from the subalgebras spanned by

X1, X2 or X2, X3, respectively,

x∗ = e2ax+ b, u∗ = eau;

x∗ =
xe2b

1− ax
, u∗ =

ueb

1− ax
.

The full three-parameter group G3
2 can be represented as the superposition of all

three one-parameter transformations,

x∗ =
xe2b

1− ax
+ c, u∗ =

ueb

1− ax
,

where a, b, c are the parameters of the group G3
2.

0.1.8. Group invariants

An invariant of the group Gr
N is a function I(x) that is not identically constant and

satisfies I(Tax) = I(x) for any transformation Ta ∈ Gr
N .

Since a one-parameter subgroup can be drawn through any element of the group
(sufficiently close to the identity element), it follows that a function I(x) is an
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invariant of the group if and only if it is an invariant of any subgroup G1
N . Thus, a

necessary and sufficient condition for I(x) to be invariant can be written as

XαI(x) = 0, α = 1, 2, . . . , r, (0.32)

where the Xα are the basis operators of the group.
System (0.32) is a system of linear first-order partial differential equations. If

I1(x), I2(x), . . . , Is(x) are some solutions, then any function of them is also a so-
lution of this system. Therefore, it is meaningful to speak only about functionally
independent solutions, i.e., about solutions for which the relation

F (I1(x), I2(x), . . . , Is(x)) = 0

implies that F (y1, y2, . . . , ys) is zero as a function of the independent variables
y1, y2, . . . , ys. If there exists a function F (y1, y2, . . . , ys) that is not identically zero
but F (I1(x), I2(x), . . . , Is(x)) = 0, then such solutions are said to be functionally
dependent. The solutions of systems of the form (0.32) have been well studied in
the classical literature. In particular, the following assertion holds.

PROPOSITION. For functions I1(x), I2(x), . . . , Is(x) to be functionally indepen-
dent, it is necessary and sufficient that the Jacobi matrix J = ‖∂I i/∂xJ‖ have
general rank equal to s (the number of functions), R(J) = s. If R(J) < s, then
there exist s−R(J) independent functions Fα(y1, y2, . . . , ys) satisfying the condi-
tion Fα(I1(x), I2(x), . . . , Is(x)) = 0, α = 1, 2, . . . , s−R.

DEFINITION. Operators Xα, α = 1, 2, . . . , r, are said to be linearly connected if
there exist functions Φα(x) of which not all are identically zero such that ΦαXα =
0. If such functions do not exist, then the operators Xα are said to be linearly
unconnected.2

DEFINITION. Operators Xα, α = 1, 2, . . . , r, form a complete system if they are
linearly unconnected and their commutators satisfy the representation

[Xα, Xβ] = φαβ
σXσ

with some functions φσαβ(x).

The above-introduced definitions permit stating the following lemma.

LEMMA. If the system of equations

XαI(x) = 0, α = 1, 2, . . . , r,

is generated by a complete system of operators, then, for s ≤ N , there exist N − s
functionally independent solutions such that any other solution is a function of
them. (For N = s, the system does not have functionally independent solutions.)

2Note that linearly connected operators may or may not be linearly dependent over C.
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The maximum number of linearly unconnected basis operators of the group
Gr

N is determined by the general rank R(M) of the function matrix

M = ‖ξαi‖, α = 1, 2, . . . , r, i = 1, 2, . . . , N.

The number R(M) is used to solve the problem on the number of functionally
independent invariants of Gr

N .

THEOREM. The group Gr
N has invariants if and only if R(M) < N . In this case,

there exist t = N − R functionally independent invariants I1(x), I2(x), . . . , I t(x)
of the group such that any invariant of Gr

N is a function of them.

EXAMPLE. We return to our example of the three-dimensional Lie algebra admit-
ted by Eq. (0.19). The three-parameter group G3

N can have invariants only for
N > 3. Therefore, we need to consider the prolonged space x, u, u′, u′′ and the
corresponding prolonged operators

X1 =
∂

∂x
, X2 = 2x

∂

∂x
+ u

∂

∂u
− u′ ∂

∂u′
− 3u′′

∂

∂u′′
,

X3 = x2 ∂

∂x
+ xu

∂

∂u
+ (u− xu′) ∂

∂u′
− 3xu′′

∂

∂u′′
.

(0.33)

It is easily seen that the operators (0.33) are linearly unconnected, R(M) = 3, and
hence the group G3

4 has 4 − 3 = 1 invariant. Since the invariant depends on the
derivatives, it follows that this is a differential invariant. To find the invariant, one
has to solve the system of linear partial differential equations

Xj

(
I(x, u, u′, u′′)

)
= 0, j = 1, 2, 3.

We solve it successively. It follows from the equations X1(I(x, u, u′, u′′)) = 0 that
the invariant is independent of x. Then the second equation X2(I(u, u′, u′′)) = 0
has two solutions, J1 = uu′ and J2 = u3u′′. We prolong the action of X3 to the
new variables J1, J2,

X̃3 = x2 ∂

∂x
+ xu

∂

∂u
+ (u− xu′) ∂

∂u′
− 3xu′′

∂

∂u′′
+ u2 ∂

∂J1

+ 0
∂

∂J2

.

It follows that the only common differential invariant is I = J2 = u3u′′.

Note that each group has differential invariants. Indeed, in the case of succes-
sive prolongations of the group to derivatives provided that the rank R is bounded,
the group begins to acquire differential invariants after a certain increase in the di-
mension of the space. In our example, this occurs in the prolongation to the second
derivative.
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0.1.9. Invariant manifolds of a group

DEFINITION. A manifoldK is said to be invariant under the groupGr
N if Tax ∈ K

for any x ∈ K and Ta ∈ Gr
N .

Just as in the case of invariants, the problem on the invariance of a manifold
regularly defined by the equations

φk(x) = 0, k = 1, 2, . . . , s, (0.34)

can be solved by using one-parameter subgroups.

THEOREM. For the manifold regularly defined by Eqs. (0.34) to be an invariant
manifold of the group Gr

N , it is necessary and sufficient that

Xαφ
k(x)

∣∣
(0.34) = 0, k = 1, 2, . . . , s, α = 1, 2, . . . , r.

The following definition essentially distinguishes the invariance of a manifold
with respect to multiparameter groups and the invariance with respect to the action
of G1

N .

DEFINITION. A manifold K is called a nonsingular manifold of the group Gr
N if

R(M)
∣∣
K

= R. Otherwise, if the rank of the matrixM decreases at the points of the
manifold compared with the general rank, then the manifold is said to be singular.

If we have a complete set of invariants I1(x), I2(x), . . . , I t(x) of the group
Gr

N , then, obviously, each system of equations of the form

Φk(I1(x), I2(x), . . . , I t(x) = 0, k = 1, 2, . . . , s, (0.35)

is an invariant manifold. It turns out that this method for constructing invariant
manifolds is actually most general.

THEOREM (on the representation of nonsingular invariant manifolds of a group).
For a group Gr

N to have nonsingular invariant manifolds, it is necessary and suffi-
cient that R < N . In this case, a nonsingular invariant manifold can be defined by
(0.35), where I1(x), I2(x), . . . , I t(x) is a complete set of functionally independent
invariants of the group Gr

N .

This theorem shows that the problem of constructing invariant manifolds is
rather simple and can be solved constructively. It suffices to find a complete set
of group invariants. In the case of differential equations, the problem can be solved
in a similar way, only the group transformations are understood as appropriately
prolonged transformations and one needs a complete set of functionally indepen-
dent differential invariants of the prolonged group Gr

N .



0.1. BRIEF INTRODUCTION TO LIE GROUP ANALYSIS OF DIFFERENTIAL EQUATIONS xxxv

EXAMPLE. We return to our example of the three-dimensional algebra admitted by
Eq. (0.19). The only differential invariant in the space (x, u, u′, u′′) is I = u3u′′.
Any sufficiently smooth function of this invariant determines an invariant of the
second-order differential equation

F (u3u′′) = 0.

A special case of this equation coincides with Eq. (0.19),

I = u3u′′ = 1.

The equation thus obtained is an invariant representation of Eq. (0.19).

This example shows that invariant equations can very easily be constructed for
a given group; it suffices to calculate the differential invariants of the desired order
and use them to construct an equation satisfying the conditions of a given problem.
It is this simple idea that we use to construct finite-difference equations and meshes
preserving the symmetry of the original differential equations.

0.1.10. Group classification of differential equations

For the three-dimensional Lie algebra (0.24), we have constructed the most gen-
eral differential equation admitting the corresponding three-parameter transforma-
tion group. This raises the natural question as to whether it is possible to list all
equations of given order that are invariant under a set of groups. Lie classified all
groups on the line and on the plane (x, y) with respect to their dimension and struc-
ture. Starting from the classification of algebras (and the corresponding groups), he
classified invariant second-order differential equations [93]. In each class of sim-
ilar subalgebras, by choosing an appropriate point change of variables, he found
the simplest representatives of invariant equations containing the minimum pos-
sible number of arbitrary constants. The result of this classification is shown in
Table 0.2, where one can readily see the equation considered in our example. The
dimension of a Lie algebra of symmetries is equal to 1, 2, 3, or 8. The maximal
eight-dimensional algebra is admitted only by a linear equation and by any other
equation related to the linear equation by a point change of variables x, y → x∗, y∗.
The same pertains to all other equations in the list of invariant second-order equa-
tions. Thus, invariant second-order differential equations have been classified up to
arbitrary point changes of variables. Such transformations take the corresponding
subgroup to a similar subgroup together with the corresponding equation.

In the case of partial differential equations, the situation is more complicated,
because no classification of Lie algebras and Lie groups in the space (x, y, z) has
been obtained yet.

But in this case, it is also possible to pose the problem of group classification
for equations in a certain class. Apparently, this problem was first put forward
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Table 0.2: Group classification of second-order ordinary differential equations

Group Basis operators Equation

G1 X1 = ∂
∂x

y′′ = F (y, y′)

G2 (a) X1 = ∂
∂x
, X2 = ∂

∂y
y′′ = F (y′)

G2 (b) X1 = ∂
∂y
, X2 = x ∂

∂x
+ y ∂

∂y
y′′ = 1

x
F (y′)

G3 (a)
X1 = ∂

∂x
+ ∂

∂y
, X2 = x ∂

∂x
+ y ∂

∂y
,

X3 = x2 ∂
∂x

+ y2 ∂
∂y

y′′ + 2y
′+Cy′

√
y′+y′2

x−y = 0

G3 (b)
X1 = ∂

∂x
, X2 = 2x ∂

∂x
+ y ∂

∂y
,

X3 = x2 ∂
∂x

+ xy ∂
∂y

y′′ = y−3

G3 (c)
X1 = ∂

∂x
, X2 = ∂

∂y
,

X3 = x ∂
∂x

+ (x+ y) ∂
∂y

y′′ = C exp(−y′)

G3 (d)
X1 = ∂

∂x
, X2 = ∂

∂y
,

X3 = x ∂
∂x

+ ky ∂
∂y
, k 6= 0, 1

2
, 1, 2

y′′ = Cy
′k−2
k−1

G8

X1 = ∂
∂x
, X2 = ∂

∂y
, X3 = x ∂

∂y
,

X4 = x ∂
∂x
, X5 = y ∂

∂x
,

X6 = y ∂
∂y
, X7 = x2 ∂

∂x
+ xy ∂

∂y
,

X8 = xy ∂
∂x

+ x2 ∂
∂y

y′′ = 0
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by Ovsyannikov [112], and its solution was demonstrated for the nonlinear heat
equation

ut = (k(u)ux)x, k 6= const. (0.36)

In this equation, the unspecified coefficient k = k(u) is called an arbitrary element,
and the equations in this class are classified with respect to this element. The group
classification problem is posed as follows: find the transformation group admitted
by Eq. (0.36) for an arbitrary k = k(u) (the so-called main group), and also find all
special cases of k = k(u) in which the symmetry group can be extended and find
these larger transformation groups. Technically, the computation of the group by
solving the determining system is complicated only by the presence of an arbitrary
element. Hence, in the solution process, there arise additional equations for the
arbitrary element. Just their solution gives all special cases in which the main
group can be extended.

To concentrate the results of the group classification, Ovsyannikov [112] pro-
posed to write out the corresponding groups up to some “external” transformations
that transform only the arbitrary element but do not change the type and structure of
the equation under study. The group of such transformations was called the equiv-
alence group. For Eq. (0.36), the following group was chosen as the equivalence
group:

t̄ = at+ e, x̄ = bx+ f, ū = cu+ g; k̄ =
b2

a
k;

a, b, c, e, f, g = const, abc 6= 0.

The classification of Eq. (0.36) up to transformations of the equivalence group has
led to the following result. For arbitrary k = k(u), Eq. (0.36) admits the three-
dimensional Lie algebra of operators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2t

∂

∂t
+ x

∂

∂x
.

The algebra of symmetry operators extends to L4 in the following cases:

k = eu : X4 = x
∂

∂x
+ 2

∂

∂u
,

k = uσ, σ 6= 0,−4/3: X4 =
σ

2
x
∂

∂x
+ u

∂

∂u
.

The space of symmetry operators becomes five dimensional if

k = u−4/3 : X4 = −2

3
x
∂

∂x
+ u

∂

∂u
, X5 = −x2 ∂

∂x
+ 3xu

∂

∂u
.

The above results completely solve the problem of group properties of an equa-
tion of the form (0.36). It should be noted that the publication of [112] caused a
wave of studies on group properties of equations of mathematical physics and me-
chanics. The results of these studies are largely reflected in the reference book [74].
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0.1.11. Integration of ordinary differential equations
with the use of a symmetry group

Integration of nonlinear ordinary differential equations and systems is a rather dif-
ficult problem. Therefore, numerous examples of successful integration were col-
lected in various reference books, which, as a rule, contain hundreds of equations
and the corresponding solutions obtained by various specific methods. Part of these
specific integration methods are also traditionally presented in manuals on differ-
ential equations. It is remarkable that an absolute majority of these integration
methods can be considered from a unique viewpoint, namely, from the viewpoint
of the transformation group admitted by a given equation.

Integrating factor

It is well known that any first-order ordinary differential equation

y′ = f(x, y) (0.37)

admits an infinite point group (e.g., see [107, 111]). Let us find the relationship
between its symmetry and integrability.

We seek the operator of a symmetry group in the form

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
.

Prolonging it to the derivative

X̃ = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
+
(
D(η)− y′D(ξ)

) ∂
∂y′

,

we apply it to Eq. (0.37) and replace y′ by f(x, y),

ηx + (ηy − ξx)f − ξyf 2 = ξfx + ηfy. (0.38)

This determining equation contains two unknown functions ξ and η; therefore, it
is clear that the symmetry group is infinite-dimensional. We introduce the new
function

θ(x, y) = η − ξf ;

then the determining equation (0.38) acquires the form

θx + fθy = fyθ. (0.39)

The zero solution θ = 0 of this equation gives the symmetry operator

X = ξ
∂

∂x
+ ξf

∂

∂y
, (0.40)
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with an arbitrary function ξ(x, y).
But if a nonzero solution θ(x, y) 6= 0 of Eq. (0.39) is known, then the function

M =
1

θ
=

1

η − ξf
(0.41)

is an integrating factor for the original equation. Indeed, we can rewrite (0.37) as

dy − f dx = 0

and multiply by M ,
M dy −Mf dx = 0. (0.42)

The well-known integrating factor condition

∂M

∂x
+
∂(Mf)

∂y
= 0

is transformed into the determining equation (0.39) by the change (0.41).
We rewrite the total differential equation (0.42) as

A(x, y) dx+B(x, y) dy = 0, (0.43)

where A(x, y) = Vx(x, y) = −Mf , B(x, y) = Vy(x, y) = M , Ay = Bx, and
V (x, y) is a function implicitly determining the general solution of Eq. (0.37),

V (x, y) = c = const.

In particular, Eq. (0.43) admits the one-parameter group generated by the operator

X = B(x, y)
∂

∂x
− A(x, y)

∂

∂y
,

which is obtained from (0.40) for ξ = M(x, y) = B.
It is easily seen that in the space (x, y) this operator has the unique invariant

J1 = V (x, y)

determining the general solution of Eq. (0.37).
Thus, the knowledge of a nonzero solution of the determining equation is equiv-

alent to the knowledge of an integrating factor, which permits integrating the first-
order equation. Unfortunately, the problem of finding a nonzero solution of the
determining equation is not at all simpler than the problem of integration of the
original equation. But if some nontrivial symmetry of the original equation is
known from some auxiliary considerations, then the change (0.41) gives an effi-
cient integration method for the equation. This property underlies all elementary
integration methods for first-order ordinary differential equations presented in nu-
merous manuals. The idea of integrating factor for ordinary differential equations
of higher order was developed in [13].
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EXAMPLE. Consider the nonlinear equation

y′ =
2

x2
− y2.

It admits the dilation operator

X = x
∂

∂x
− y ∂

∂y
,

which has two invariants x2y′ and xy in the space (x, y, y′). In this case,

θ = −y − 2

x
+ xy2, M =

x

x2y2 − xy − 2
,

which permits rewriting the equation as the total differential equation

x

x2y2 − xy − 2
dy +

xy2 − 2/x

x2y2 − xy − 2
dx = 0.

Integration gives the solution

V (x, y) = ln |x|+ 1

3
ln

∣∣∣∣xy − 2

xy + 1

∣∣∣∣ = const.

Integration of second-order ordinary differential equations
with the use of a symmetry group

The above Table 0.2 displaying Lie’s group classification of second-order ordinary
differential equations contains an exhaustive list of equations with symmetries. As
was already noted, the table contains the resulting examples of equations “up to
arbitrary point transformations”; i.e., any other ordinary differential equation ob-
tained from the given equation by a point transformation admits a similar algebra
of operators. This is very inconvenient in practical applications, where a given or-
dinary differential equation may be related to one of the equations in the table by
a rather unobvious transformation. By distinguishing between four types of L2,
Lie developed a unique approach to the integration of second-order ordinary differ-
ential equations with a symmetry that contains two-dimensional subalgebras (e.g.,
see [77]).

We assume that the symmetry of a given equation contains a two-dimensional
subalgebra of operators

X1 = ξ1(x, y)
∂

∂x
+ η1(x, y)

∂

∂y
, X2 = ξ2(x, y)

∂

∂x
+ η2(x, y)

∂

∂y
.

To classify the algebras L2, we need to calculate the commutator and the pseu-
doscalar (skew) product

X1 ∨X2 = ξ1η2 − ξ2η1
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of the operators.
Then, determining the type of the symmetry subalgebra in Table 0.3, we can

make the change of variables and pass to the canonical variables t, u, in which this
equation takes one of the integrable forms listed in Table 0.3.

Table 0.3: Standard forms of L2 and canonical forms of second-order ODE

Structure of L2 Standard form of L2
Canonical
second-order ODE

[X1, X2] = 0, ξ1η2 − ξ2η1 6= 0 X1 =
∂

∂t
, X2 =

∂

∂u
u′′ = F (u′)

[X1, X2] = 0, ξ1η2 − ξ2η1 = 0 X1 =
∂

∂u
, X2 = t

∂

∂u
u′′ = F (t)

[X1, X2] = X1, ξ1η2 − ξ2η1 6= 0
X1 =

∂

∂u
,

X2 = t
∂

∂t
+ u

∂

∂u

u′′ =
1

t
F (u′)

[X1, X2] = X1, ξ1η2 − ξ2η1 = 0 X1 =
∂

∂u
, X2 = u

∂

∂u
u′′ = u′F (t)

Thus, to integrate a second-order ordinary differential equation, we should

• Find the transformation group admitted by the equation and single out a two-
dimensional subalgebra L2 if any.

• Determine the type of the obtained subalgebra L2 according to Table 0.3.

• Find canonical variables by solving the corresponding equation in Table 0.4
and make the corresponding change of variable.

• Integrate the resulting equation and return to the original variables.

Let us illustrate Lie’s method by an example.

EXAMPLE. Consider the nonlinear equation

y′′ =
y′3

y
.
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Table 0.4: Equations to be solved for obtaining the canonical variables

Standard form of L2 Equations to be solved

X1 =
∂

∂t
, X2 =

∂

∂u
X1(t) = 1, X2(t) = 0, X1(u) = 0, X2(u) = 1

X1 =
∂

∂u
, X2 = t

∂

∂u
X1(t) = 0, X2(t) = 0, X1(u) = 1, X2(u) = t

X1 =
∂

∂u
, X2 = t

∂

∂t
+ u

∂

∂u
X1(t) = 0, X2(t) = t, X1(u) = 1, X2(u) = u

X1 =
∂

∂u
, X2 = u

∂

∂u
X1(t) = 0, X2(t) = 0, X1(u) = 1, X2(u) = u

By solving the determining equation, we find the symmetry algebra

X1 =
∂

∂x
, X2 = y

∂

∂x
.

Then we determine the type of the two-dimensional algebra:

[X1, X2] = 0, ξ1η2 − ξ2η1 = 0.

We find the canonical variables by solving the following equations in the second
row of Table 0.4:

t = y(x), u(t) = x.

In the canonical variables, the operators acquire the form

X1 =
∂

∂u
, X2 = t

∂

∂u
,

and the equation becomes

u′′ = −1

t
and has the general solution

u = t− t ln |t|+ C1t+ C2.

Returning to the original variables, we obtain

y − y ln |y|+ C1y − x = C2.
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The Lie method is discussed in more detail in [77].

0.1.12. Symmetry reduction and invariant solutions
of partial differential equations

The best-known application of transformation groups admitted by partial differen-
tial equations is the construction of invariant solutions. Let the following system of
differential equations be given:

Fα(x, u, u1, u2, . . . , us) = 0, α = 1, 2, . . . ,m, (0.44)

where x ∈ Rn, u ∈ Rm, and us is the set of sth partial derivatives.
We assume that Eqs. (0.44) admit a transformation group Gr

N , and H is a
subgroup of Gr

N .

DEFINITION. A solution u = Φ(x) of system (0.44) is called an invariant solution
if it is an invariant manifold of the subgroup H .

We restrict our consideration to solutions that form a nonsingular invariant man-
ifold. Moreover, the manifolds given by Eqs. (0.44) are also assumed to be nonsin-
gular.

The nonsingular manifold u = Φ(x) has some rank ρ, which is called the rank
of the invariant solution. Let the subgroup H be generated by the subalgebra of
operators

Xα = ξiα
∂

∂xi
+ ηkα

∂

∂uk
, α = 1, 2, . . . , r. (0.45)

Let R = R(M) be the general rank of the matrix

M = ‖ξαi, ηαk‖

of coordinates of the operators (0.45); then the following assertion holds.

PROPOSITION. For an invariant solution to exist, it is necessary that the group H
have invariants Iτ (x, u) (i.e., R(M) < N ) and

R

(∥∥∥∥∂Iτ (x, u)

∂uk

∥∥∥∥) = m. (0.46)

Under these conditions, there exists an invariant solution in principle. To con-
struct such a solution, one has to calculate a complete set of independent invariants
of the subgroup H and perform the symmetry reduction of the original system by
means of this subgroupH , i.e., pass to a system of equations relating the invariants,
which is ensured by condition (0.46). We illustrate this by an example.
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EXAMPLE (symmetry reduction).
A. Consider a solution invariant under the operatorX1 = ∂/∂t for the heat equation
with a power-law coefficient,

ut = (uσux)x.

In this case, the invariants are J1 = x and J2 = u. One can readily verify that both
necessary conditions for the existence of an invariant solution are satisfied:

R = 1 < 3, R

(∥∥∥∥∂Iτ (x, u)

∂u

∥∥∥∥) = 1.

To pass to the space of invariants, we let the second invariant to be a function of the
first: u = V (x). Substituting this representation into the heat equation, we obtain
the ordinary differential equation

(V σVx)x = 0

for the unknown function V (x). By integrating this equation, we obtain the sta-
tionary solution

u = (C1x+ C2)1/(σ+1), σ 6= −1; u = C2e
C1x, σ = −1,

where C1 and C2 are arbitrary constants.

B. For the same heat equation, let us construct a self-similar solution, i.e., a solu-
tion that is invariant under the dilation operator

X4 =
σ

2
x
∂

∂x
+ u

∂

∂u
.

One can readily verify that both necessary conditions for the existence of an invari-
ant solution are satisfied. In this case, the invariants are

J1 = t, J2 = ux−2/σ.

We seek the solution as a relation between the two invariants, ux−2/σ = V (t). We
reduce the original equation to an ordinary differential equation for the unknown
function V (t) by substituting the invariant representation u = V (t)x2/σ of the
solution into the heat equation,

V ′ =
2(σ + 2)

σ2
V σ+1.

By integrating this equation, we obtain the self-similar solution

u =

(
x2

C − 2(σ + 2)t/σ

)1/σ

, C = const.
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C. Remark about self-similar solutions. Self-similar solutions are often used to
solve problems in mechanics and physics. Their popularity is based on the fact that
the form of solutions can be guessed by analyzing the dimensions of the variables
determining the solution of the problem. The central theorem in this approach, the
so-called π-theorem, is a special case of the theorem on the invariant representation
of the solution determined by the dilation group. This approach is not invariant
under the change of the coordinate system; it suffices to pass to another coordinate
system, and the group ceases to be the dilation group. In our last example, the
change of variables

x̄ = lnx, t̄ = ln t, ū = lnu

transforms the operator X4 into the translation operator

X4 =
σ

2

∂

∂x̄
+

∂

∂ū
.

For the translation operator, dimension analysis does not work any more, but the
theorem on the invariant representation of the solution remains valid. A detailed
discussion of this problem can be found in [111].

The preceding examples show that if the necessary conditions are satisfied, then
invariant solutions can be constructed for any subgroup of the group admitted by
the equation or system under study. In the general case, the subgroups can have
different dimensions, and for the operators one can take any linear combinations
of basis operators. Therefore, the following problem of classification of the set of
invariant solutions arises.

The basic classification of invariant solutions is usually performed with respect
to their rank ρ = n − R. Therefore, the rank of solutions may vary in the range
ρ = 0, 1, 2, . . . , n − 1. The set of invariant solutions of given rank ρ can also
be arranged in a certain order. To this end, L. Ovsyannikov proposed to divide a
subgroup H ∈ Gr

N of given rank into classes of equivalent subgroups in the sense
of the following definition.

Two subgroups H and H∗ are said to be similar in the group Gr
N if there exists

a transformation T ∈ Gr
N such that H∗ = THT−1. In this case, the invariant

solutions corresponding to the subgroups H and H∗ are obviously related to each
other by the same transformation T . Thus, the problem is reduced to listing all
nonsimilar subgroups of given dimension. Using the algorithm for obtaining all
nonsimilar subgroups of given dimension (see [111]), upon which we do not dwell
here, we present the result of such calculations for the nonlinear heat equation
with an arbitrary coefficient k(u) and for one-dimensional subalgebras. This set of
subalgebras, which is called an optimal system of subalgebras, is generated by the
following operators:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2t

∂

∂t
+ x

∂

∂x
, X1 +X2 =

∂

∂t
+

∂

∂x
. (0.47)
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All other invariant solutions of the first rank are similar in the above sense to the
solutions invariant under the four subalgebras (0.47). In all cases where one has a
larger symmetry group, an optimal system of subalgebras can also be constructed.

The knowledge of the transformation group admitted by a system of differential
equations also permits constructing solutions that are noninvariant in the rigorous
sense. The most famous extension of the set of solutions is given by the so-called
partially invariant solutions: these are solutions lying in a certain invariant mani-
fold but not coinciding with it. An algorithm for constructing partially invariant so-
lutions can be found in [111]. Moreover, to reduce a given system of equations, one
can use differential rather than finite invariants. In this case, differential-invariant
solutions are constructed with the use of relations between differential invariants.

0.1.13. Contact symmetries of differential equations

Contact (tangent) transformations have been widely used in mechanics and the the-
ory of differential equations for a long time. Sophus Lie used the group of contact
transformations of the form

x∗i = f i(x, u, u1, a), i = 1, 2, . . . , n,

u∗ = g(x, u, u1, a), ui
∗ = hi(x, u, u1, a),

(0.48)

where u1 denotes the set of all partial derivatives ui. It turns out that the transfor-
mations (0.48) can be different from point transformations prolonged to the first
derivatives only in the case of a single dependent variable u (e.g., see [111]).

Consider the one-parameter group operator

X = ξi(xi, u, ui)
∂

∂xi
+ η(xi, u, ui)

∂

∂u
+ ζi(xi, u, ui)

∂

∂ui
. (0.49)

The requirement that the first derivatives are preserved, or the manifold is invariant,

du = ui dx
i, i = 1, 2, . . . , n,

results in the prolongation formulas

ζi = Di(η)− ujDi(ξ
j), i = 1, 2, . . . , n,

where
Di =

∂

∂xi
+ ui

∂

∂u
+ uij

∂

∂u j
, i = 1, 2, . . . , n.

THEOREM. For the operator (0.49) to generate a group of contact transformations,
it is necessary and sufficient that

ξi = −∂W
∂ui

, η = W − ui
∂W

∂ui
, ζ i =

∂W

∂xi
+ ui

∂W

∂u
, i = 1, 2, . . . , n,

where W = W (xi, u, ui) is the so-called characteristic function of the group of
contact transformations (see [73, 107, 111]).
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Note that the point transformation groups form a subset of contact groups.
The invariance criterion for a group of contact transformations can be written in

the same form as in the case of point groups. Any second-order ordinary differen-
tial equation has infinitely many contact symmetries (just as a first-order ordinary
differential equation admits infinitely many point transformations), but usually one
does not succeed in finding them. For third- and higher-order ordinary differential
equations, contact symmetries can be found (in this case, the determining equation
splits), because the characteristicW is independent of the second derivatives. As an
example of solving such a problem, we present the symmetry of a linear third-order
equation.

EXAMPLE. The ordinary third-order equation u′′′ = 0 admits the symmetry

X1 =
∂

∂u
, X2 = x

∂

∂u
, X3 = x2 ∂

∂u
, X4 = u

∂

∂u
,

X5 =
∂

∂x
, X6 = x

∂

∂x
, X7 = x2 ∂

∂x
+ xu

∂

∂u
, X8 = 2u′

∂

∂x
+ u′2

∂

∂u
,

X9 = (u− xu′) ∂
∂x
− xu′2

2

∂

∂u
− u′2

2

∂

∂u′
,

X10 =

(
xu− x2u′

2

)
∂

∂x
+

(
u2 − x2u′2

4

)
∂

∂u
+

(
uu′ − xu′2

2

)
∂

∂u′
.

We note that the operators X1, X2, . . . , X7 correspond to point transformation
groups and the operators X8, X9, X10 correspond to contact groups.

0.1.14. Groups of formal power series and higher-order symmetries
of differential equations

A nontrivial generalization of contact transformation groups are groups of higher-
order symmetries, or Lie–Bäcklund groups [5, 73].

Consider the spaceZ of sequences (x, u, u1, u2, . . . ), where x is an independent
variable, u is a dependent variable, and u1, u2, . . . are differential variables; here
us is the sth derivative. By z we denote some vector consisting of finitely many
coordinates of the vector (x, u, u1, u2, . . .), and by zi we denote its ith coordinate.

In the space Z, we introduce a mapping D (differentiation) by the rule

D(x) = 1, D(u) = u1, . . . , D(us) = us+1, s = 1, 2, . . . .

Let A be the space of analytic functions F(z) of finitely many variables z. (Dif-
ferent functions F(z) contained in A can depend on different variables in the se-
quence (x, u, u1, u2 . . . ), but the set of arguments is always finite.) Identifying D
with the action of the first-order linear differential operator

D =
∂

∂x
+ u1

∂

∂u
+ u2

∂

∂u1

+ · · ·+ us+1
∂

∂us
+ · · · ,
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we generalize the differentiation D to functions in A, and D(F (z)) ∈ A in this
case.

Consider sequences of formal power series

f i(z, a) =
∞∑
k=0

Aik(z)a
k, i = 1, 2, . . . , (0.50)

in a single symbol (parameter) a, where Aik(z) ∈ A and Ai0 ≡ zi. Here zi is the ith
coordinate of a vector in Z.

We denote the space of sequences

(f 1(z, a), f2(z, a), . . . , f s(z, a), . . .)

of formal power series (0.50) by Z̃. The sequences (x, u, u1, u2, . . . ) are a special
case of such sequences, Z ⊂ Z̃.

In Z̃, by definition, we introduce the operations of addition and multiplication
by a number and the product of formal series as follows (these operations coincide
with the operations for converging series):

α

( ∞∑
k=0

Aika
k

)
+ β

( ∞∑
k=0

Bi
ka

k

)
=
∞∑
k=0

(
αAik + βBi

k

)
ak,( ∞∑

k1=0

Aik1
ak1

)( ∞∑
k2=0

Bi
k2
ak2

)
=
∞∑
k=0

( ∞∑
k1+k2=k

Aik1
Bi
k2

)
ak,

where i = 1, 2, . . . and α, β = const. We also introduce the operations

D

( ∞∑
k=0

Aik(z)a
k

)
=
∞∑
k=0

D(Aik(z))a
k,

∂

∂a

( ∞∑
k=0

Aik(z)a
k

)
=
∞∑
k=1

kAik(z)a
k−1,

∂

∂a

( ∞∑
k=0

Aik(z)a
k

)∣∣∣∣
a=0

= Ai1(z), i = 1, 2, . . . ,

of differentiation of the series (0.50). An equality of formal power series is under-
stood in the sense that the coefficients of like powers of a coincide. In particular,
the series (0.50) is equal to 0 if Aik = 0, k = 0, 1, 2, . . . .

In Z̃, consider the transformation

zi∗ = f i(z, a), i = 1, 2, . . . , (0.51)

determined by the series (0.50). This transformation takes a sequence zi to the
sequence zi∗.

The above-introduced operations on the series (0.50) permit considering powers
of series of the form (0.50), monomials, polynomials, and even analytic functions
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(or formal power series) of finitely many variables zi. For example, the composition
of transformations of the form (0.51) is well defined:

zi∗∗ = f i(z∗, b) =
∞∑
k=0

Aik(z
∗)bk =

∞∑
k=0

Aik(f(z, a))bk, i = 1, 2 . . . .

In general, such a composition takes a one-parameter series (0.50) out of Z̃. We
consider only such series (0.50) (and the corresponding transformations (0.51))
whose coefficient structure ensures that the transformations (0.51) are closed in Z̃:

zi∗∗ = f i(z∗, b) = f i(z, a+ b) =
∞∑
k=0

Aik(z)(a+ b)k, i = 1, 2, . . . . (0.52)

Property (0.52) of the formal series (0.50) means that the transformations (0.51)
form a formal one-parameter group in Z̃.

Property (0.52) is equivalent to the following exponential representation of the
power series (0.50) (see [107]):

zi∗ = f i(z, a) = eaX(zi) ≡
∞∑
s=0

as

s!
X(s)(zi), i = 1, 2, . . . , (0.53)

where X is the infinitesimal operator (generator) of the group:

X = ξi(z)
∂

∂xi
, ξi(z) =

∂f i(z, a)

∂a

∣∣∣∣
a=0

∈ A, i = 1, 2, . . . . (0.54)

Let us show that the representation (0.53) is equivalent to definition (0.54) of the
formal group. To this end, we consider the superposition of transformations of the
form (0.52):

zi∗∗ = ebX(eaX(zi)) =
∞∑
l=0

bl

l!
X(l)

( ∞∑
s=0

as

s!
X(s)(zi)

)
=
∞∑
k=0

( ∞∑
s+l=k

asbl

s!l!
Xs+l(zi)

)
=
∑
k=0

(a+ b)k

k!
Xk(zi) = e(a+b)X(zi).

Hence the representation (0.53) is equivalent to (0.54). Moreover, it is obvious that
f i(z, a)

∣∣
a=0

= zi and f i(f i(z, a),−a) = zi.
Thus, for formal one-parameter groups, the exponential representation in terms

of the infinitesimal operator holds just as for the classical local Lie transformation
groups.

Note that the exponential representation (0.53) implies the recursive chain

Aik(z) =
1

k
X(Aik−1(z)), k = 1, 2, . . . , i = 1, 2, . . . ,
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for the coefficients of the formal group (0.54) and the following formula convenient
for calculating the coefficients of the formal series (0.50):

Aik(z) =
1

k!
X(k)(zi), k = 1, 2, . . . , i = 1, 2, . . . .

In the theory of formal groups, it is shown (see [72]) that the tangent vector
field

ξi(z) =
∂f i(z, a)

∂a

∣∣∣∣
a=0

is related to formal series (0.50) by the Lie equations

∂f i

∂a
= ξi(f), f i(z, a)

∣∣
a=0

= zi, i = 1, 2, . . . ; (0.55)

i.e., the sequence of formal series (f 1, f2, . . . ), which form a group with tan-
gent field ξi(z), satisfy system (0.55), and conversely, for an arbitrary sequence
(ξ1(z), ξ2(z), . . . ), ξi(z) ∈ A of functions, the solution of system (0.55) is a formal
one-parameter group.

Thus, the same relationship between the group and the operator as in the case
of classical local Lie groups holds for formal one-parameter groups. If the formal
power series converge and give sufficiently smooth differentiable functions, then
we deal with Lie point or tangent transformation groups. Thus, point and contact
transformations are part of formal groups but do not exhaust them completely. The
class additional to point and tangent transformation groups is formed by groups of
“higher-order symmetries,” or by Lie–Bäcklund groups [5, 73, 107].

For formal groups, just as for Lie point and tangent transformation groups, one
can introduce the notion of invariants and invariant manifolds.

A locally analytic function F (z) of finitely many variables is called an invariant
of a formal group if F (z∗) = F (z) for any transformations of the group (0.54).

For a function F (z) ∈ A to be invariant, it is necessary and sufficient that

XF (z) = 0,

where X is the group operator (0.54).
A manifold defined in Z̃ by a function φ(z) ∈ A according to the formula

φ(z) = 0,

is called an invariant manifold if

φ(z∗) = 0

for all solutions (0.50) and all transformations of the formal group. A criterion for
a manifold to be invariant can also be written with the use of the group operator
(see [73, 107]):

Xφ(z)
∣∣
φ(z)=0

= 0.
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In the set of formal groups whose transformations are described by formal power
series (0.50), a special place is occupied by point and contact groups and by higher-
order symmetries. While the first two classes of transformations can be considered
in the finite-dimensional part of Z̃, any nontrivial higher-order symmetry can be
realized only in the entire infinite-dimensional space Z̃.

In what follows, we present an example of a nontrivial Lie–Bäcklund group,
i.e., of a group that cannot be reduced to a point or contact group.

EXAMPLE (of a Lie–Bäcklund group). Consider the heat equation

ut = uxx

and seek a symmetry operator in the form

X = η(t, x, u, u1, u2, . . . uk)
∂

∂u
,

where the spatial derivatives are denoted by uk = ∂uk−1/∂x. The invariance crite-
rion acquires the form

(Dt −D2)η
∣∣
ut=u2

= 0, (0.56)

where

D =
∂

∂x
+ u1

∂

∂u
+ u2

∂

∂u1

+ · · · , Dt =
∂

∂t
+ ut

∂

∂u
+ ut1

∂

∂u1

+ · · · .

One solution of the determining equation (0.56) is obvious, η0 = u, which im-
plies the point dilation group. One can readily see that the action of the operator D
takes each solution of the determining equation to a solution, because the following
commutation relation holds:

[(Dt −D2), D]
∣∣
ut=u2

= 0.

Thus, the solutions of the determining equation form the infinite series

ηk = Dk(u) = uk, k = 1, 2, . . . .

This series of solutions suggests the following approach to solving (0.56). One
seeks an operator L commuting with the operators of the determining equation,

[(Dt −D2), L]
∣∣
ut=u2

= 0. (0.57)

Then the action of such an operator L generates an infinite series of solutions of
the determining equation (0.56). One can show (see [73, 107]) that (0.57) has the
solution

L = αD + β(2tD + x),

where α and β are arbitrary constants.

One can acquaint oneself with higher-order symmetry groups and a vast bibli-
ography on the subject in [73, 106, 107].
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0.1.15. Invariant variational problems and conservation laws

One of the great achievements in group analysis, which strongly impressed physi-
cists and mechanicians, was the discovery of the relationship between symmetries
of differential equations and the existence of conservation laws for their solutions.
This relationship is established not directly but with the use of a variational func-
tional. More precisely, E. Noether’s well-known theorem [104] establishes a rela-
tionship between the invariance of the variational functional and the conservativity
of the corresponding Euler differential equations (i.e., the fact that the conservation
laws are satisfied on their solutions).

Suppose that a differential equation

F (x, u, u1, . . . , us) = 0

of some order s is given and its solutions are extremals of some functional

L(u) =

∫
Ω

L(x, u, u1, . . . , uk) dx, (0.58)

where the integral is taken over a domain Ω ⊂ Rn. We assume there is a given
group Gr

N of transformations of the N -dimensional space of n independent and m
dependent variables, n+m = N , which is generated by the Lie algebra of operators

Xα = ξα
i ∂

∂xi
+ ηα

k ∂

∂uk
, α = 1, 2, . . . , r. (0.59)

The following theorem [104] presents a necessary and sufficient condition for the
functional (0.58) to be invariant. Without loss of generality, we restrict our consid-
eration to functionals independent of the higher derivatives,

L(u) =

∫
Ω

L(x, u, u1) dx. (0.60)

THEOREM. For the functional (0.60) to be invariant under the group Gr
N , it is

necessary and sufficient that

X̃αL+ LDi(ξα
i) = 0, α = 1, 2, . . . , r, (0.61)

where the operator X̃α is the operator Xα prolonged to the first derivatives and Di

is the operator of total differentiation with respect to the variable xi.

Simple transformations reduce condition (0.61) to the equivalent condition

(ηα
k − uikξαi)

δL
δuk

+DiA
i
α = 0, α = 1, 2, . . . , r, (0.62)
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where

Aiα = (ηα
k − uikξiα)

∂L
∂uik

+ Lξiα.

This condition explicitly contains the Euler equation

δL
δuk

=
∂L
∂uk
−Di

(
∂L
∂uik

)
= 0, k = 1, 2, . . . ,m, (0.63)

which provides an extremum of the functional, and the vectorAiα, which determines
the conservation law. These relations allow us to state the following theorem due
to E. Noether.

THEOREM (E. Noether). Let the variational functional (0.60) be invariant under
the group Gr

N with the operators (0.59). Then the r linearly independent vectors
Aiα give r conservation laws

DiA
i
α

∣∣
(0.63) = 0, α = 1, 2, . . . , r, (0.64)

on the solutions of the Euler equation (0.63).

Thus, Noether’s theorem gives sufficient conditions for the existence of conser-
vation laws. We point out that the invariance of the functional rather than of the
Euler equations is required. The Euler equations may admit a group, but this does
not ensure that the functional is invariant. The invariance of the Euler equations is
a necessary condition for the variational functional to be invariant.

THEOREM. The group Gr
N takes each extremal of an invariant functional to an

extremal of the same functional.

Thus, the invariance of a variational functional implies the invariance of the
corresponding Euler equations.

In the proof of Noether’s theorem, one needs to show that formulas (0.61)
and (0.62) are equivalent. Ibragimov [72, 73] noticed that the relationship between
these formulas is of identical character regardless of the function L on which the
operators act. This operator identity was called the Noether identity in [73]:

ξα
i ∂L
∂xi

+ ηα
k ∂L
∂uk

+ [Di(ηα
k)− ujkDi(ξα

j)]
∂L
∂uik

+ LDi(ξα
i)

≡ (ηα
k − uikξαi)

δL
δuk

+Di

(
(ηα

k − uikξαi)
∂L
∂uik

+ Lξαi
)
,

α = 1, 2, . . . , r. This identity permits stating a necessary and sufficient condition
for the existence of conservation laws.
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THEOREM ( [73]). The invariance of the variational functional (0.60) with respect
to the group Gr

N on the solutions of the Euler equations (0.63) is a necessary and
sufficient condition for the existence of the conservation laws (0.64).

The Noether identity gives a relationship between three types of differentiation:
the total differentiationDi, the variational differentiation δ

δuk
, and the Lie derivative

X̃α. This permits one to formalize the theory in general without relating the prob-
lem of constructing conservation laws to the statement of the variational problem.

The Noether identity readily allows one to generalize it to the case in which
both of its parts are equal not to zero but to the divergence of a vector Bi(x, u, ui

k)
(see [11]). Introducing this vector on the right-hand side in (0.62),

(ηα
k − uikξαi)

δL
δuk

+Di

(
(ηα

k − uikξαi)
∂L
∂uik

+ Lξαi −Bi(x, u, ui
k)

)
= 0,

α = 1, 2, . . . , r, we see that, for such (divergence-invariant) Lagrangians, the con-
servation law takes the form

Di(A
i
α −Bi)

∣∣
(0.63) = 0.

The fact that the functional is divergence-invariant means that there exists another
Lagrangian function for which the exact invariance is satisfied (see [107]).

EXAMPLE. The second-order ordinary differential equation

u
′′

=
1

u3
(0.65)

admits the Lie algebra L3 with the basis operators

X1 =
∂

∂x
, X2 = 2x

∂

∂x
+ u

∂

∂u
, X3 = x2 ∂

∂x
+ xu

∂

∂u
.

One can readily verify that the Lagrangian function

L = u′2 − 1

u2

satisfies the condition that the corresponding functional is invariant with respect
to X1 and X2. By Noether’s theorem, this implies the following first integrals:

J1 = u′2 +
1

u2
= A0, J2 =

x

u2
− (u− u′x)u′ = B0. (0.66)

The action of the third operator X3 gives the total derivative

X3L+ 2xL = 2uu′ = Dx(u
2).
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The divergence-invariant Lagrangian generates the first integral

J3 =
x2

u2
+ (u− xu′)2 = C0. (0.67)

The same integral can be obtained starting from the other Lagrangian

L =

(
u

x
− u′

)2

− 1

u2
,

which is invariant under X3 without any additional divergence.
Note that Noether’s theorem guarantees the independence of the first integrals

only under the condition that they were obtained from the same Lagrangian invari-
ant under all symmetries under study. The violation of this condition in our case
implies that the three integrals are dependent and satisfy the relation

J1J3 − J2
2 = 1.

But for any two integrals in (0.66) and (0.67) it suffices, eliminating u′, to construct
the general solution of Eq. (0.65):

A0u
2 = (A0x+B0)2 + 1.

Invariance of Euler–Lagrange equations. There exists a relation between the in-
variance of the Lagrangian functional (0.60) and invariance of the corresponding
Euler–Lagrange equations (0.63).

THEOREM ( [73, 107]). If the Lagrangian L is invariant with respect to the op-
erator (0.59), i.e., if condition (0.61) is satisfied, then the Euler–Lagrange equa-
tions (0.63) are also invariant.

Remark. If the Lagrangian L is divergence invariant, i.e., satisfies condition (0.62),
then the Euler–Lagrange equations (0.63) are also invariant. This follows from the
fact that full divergences belong to the kernel of variational operators.

Thus, if X is a variational or divergence symmetry of the functional L(u), it
is also a symmetry of the corresponding Euler–Lagrange equations (0.63). The
symmetry group of the Euler–Lagrange equations can, of course, be larger than the
group generated by the variational and divergence symmetries of the Lagrangian.

It is of interest to establish a necessary and sufficient condition for the invari-
ance of the Euler–Lagrange equations. We will need the following lemma [45]:

LEMMA. For any smooth function L(t,u,u1), it is true that

δ

δuj
(
X(L) + LD(ξ)

)
≡ X

(
δL

δuj

)
+

(
∂ηi

∂uj
+ δijD(ξ)− ∂ξ

∂uj
ui1

)
δL

δui
,

j = 1, . . . , n, where δij is the Kronecker delta.
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Proof. The result can be established by a straightforward computation.

The above theorem and remark follow from this lemma. The lemma also pro-
vides a necessary and sufficient condition for the invariance of the Euler–Lagrange
equations.

THEOREM ( [45]). The Euler–Lagrange equations (0.63) are invariant with respect
to a symmetry (0.59) if and only if the following conditions are true (on the solutions
of Eqs. (0.63)):[

δ

δuj
(
X(L) + LD(ξ)

)]
δL
δu1 =···= δL

δun
=0

= 0, j = 1, . . . , n. (0.68)

Proof. The assertion follows from the identities in the preceding lemma.

EXAMPLE. The equation

u′′ =
1

u2
(0.69)

is the Euler–Lagrange equation for the Lagrangian function

L(t, u, u′) =
u′2

2
− 1

u
.

The equation admits the symmetries

X1 =
∂

∂t
, X2 = 3t

∂

∂t
+ 2u

∂

∂u
.

The operator X1 is a symmetry of the Lagrangian L and hence a symmetry of
Eq. (0.69). The symmetry X2 is not a symmetry of the Lagrangian,

X2(L) + LD(ξ2) = L.

However, it is a symmetry of the equation, as follows from the theorem:[
δ

δu

(
X2(L) + LD(ξ2)

)]
δL
δu

=0

=

[
δL

δu

]
δL
δu

=0

= 0.

0.1.16. Symmetries and first integrals of canonical
Hamiltonian equations

In this section, we consider the relationship between the symmetries of canonical
Hamiltonian equations and the first integrals. We do not follow the traditional way
accepted in the literature but develop a method based on an operator identity [44,45]
that is a Hamiltonian analog of the Noether identity for Lagrangian structures. This
allows us to draw a complete analogy between the Hamiltonian and the Lagrangian
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formalism for obtaining the first integrals of ordinary differential equations with
symmetries. This approach is illustrated by several examples.

In the present section, we are interested in the canonical Hamiltonian equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, . . . , n. (0.70)

These equations can be obtained by the variational principle from the action func-
tional

δ

∫ t2

t1

(
piq̇

i −H(t,q,p)
)
dt = 0 (0.71)

in the phase space (q,p), where q = (q1, q2, . . . , qn), p = (p1, p2, . . . , pn) (e.g.,
see [60,98]). The variations δqi and δpi are arbitrary and satisfy δqi(t1) = δqi(t2) =
0, i = 1, . . . , n. Then we have

δ

∫ t2

t1

(
piq̇

i −H(t,q,p)
)
dt =

∫ t2

t1

(
δpiq̇

i + piδq̇
i − ∂H

∂qi
δqi − ∂H

∂pi
δpi

)
dt

=

∫ t2

t1

[(
q̇i − ∂H

∂pi

)
δpi −

(
ṗi +

∂H

∂qi

)
δqi
]
dt+

[
piδq

i
]t2
t1
.

The last term vanishes, because δqi = 0 at the endpoints. Since the variations δqi

and δpi are arbitrary, it follows that the variational principle (0.71) is equivalent to
the canonical Hamiltonian equations (0.70).

Note that the canonical Hamiltonian equations (0.70) can be obtained by apply-
ing the variational operators

δ

δpi
=

∂

∂pi
−D ∂

∂ṗi
, i = 1, . . . , n, (0.72)

and
δ

δqi
=

∂

∂qi
−D ∂

∂q̇i
, i = 1, . . . , n, (0.73)

where

D =
∂

∂t
+ q̇i

∂

∂qi
+ ṗi

∂

∂pi
+ · · · (0.74)

is the operator of total differentiation with respect to time, to the function

piq̇
i −H(t,q,p).

The Legendre transformation relates the Hamiltonian and Lagrange functions,

L(t,q, q̇) = piq̇
i −H(t,q,p),
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where
p =

∂L

∂q̇
, q̇ =

∂H

∂p
.

This permits one to establish the equivalence of the Euler–Lagrange and Hamilto-
nian equations [6]. Indeed, from the Euler–Lagrange equations in the form (m = 1)

δL

δqk
=
∂L

∂qk
−D

(
∂L

∂q̇k

)
= 0, k = 1, . . . , n,

we can obtain the canonical Hamiltonian equations (0.70) by using the Legendre
transformation. It should be noted that the Legendre transformation is not a point
transformation. Hence, there is no conservation of Lie group properties of the cor-
responding Euler–Lagrange equations and Hamiltonian equations within the class
of point transformations.

The Lie group symmetries in the space (t,q,p) are generated by operators of
the form

X = ξ(t,q,p)
∂

∂t
+ ηi(t,q,p)

∂

∂qi
+ ζi(t,q,p)

∂

∂pi
. (0.75)

The standard approach to the symmetry properties of Hamiltonian equations is to
consider so-called Hamiltonian symmetries [107]. In the case of canonical Hamil-
tonian equations, these are the evolution (ξ = 0) symmetries (0.75)

X = ηi(t,q,p)
∂

∂qi
+ ζi(t,q,p)

∂

∂pi
(0.76)

with
ηi =

∂I

∂pi
, ζi = − ∂I

∂qi
, i = 1, . . . , n (0.77)

for some function I(t,q,p), namely, symmetries of the form

XI =
∂I

∂pi

∂

∂qi
− ∂I

∂qi
∂

∂pi
. (0.78)

These symmetries are restricted to the phase space (q,p) and are generated by the
function I = I(t,q,p). For the symmetry (0.78), the independent variable t is
invariant and plays the role of a parameter.

Noether’s theorem [107, Theorem 6.33] relates Hamiltonian symmetries of the
Hamiltonian equations to their first integrals. Being restricted to the case of the
canonical Hamiltonian equations, it can be stated as follows.

PROPOSITION. An evolution vector field X of the form (0.76) generates a Hamil-
tonian symmetry group of the canonical Hamiltonian system (0.70) if and only if
there exists a first integral I(t,q,p) such thatX = XI is the corresponding Hamil-
tonian vector field. Another function Ĩ(t,q,p) determines the same Hamiltonian
symmetry if and only if Ĩ = I + F (t) for some time-dependent function F (t).
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Indeed, the invariance of the canonical Hamiltonian equations (0.70) with re-
spect to the symmetry (0.78) implies that

∂2I

∂t∂pi
+
∂H

∂pj

∂2I

∂qj∂pi
− ∂H

∂qj
∂2I

∂pj∂pi
=

∂I

∂pj

∂2H

∂qj∂pi
− ∂I

∂qj
∂2H

∂pj∂pi
,

− ∂2I

∂t∂qi
− ∂H

∂pj

∂2I

∂qj∂qi
+
∂H

∂qj
∂2I

∂pj∂qi
=

∂I

∂qj
∂2H

∂pj∂qi
− ∂I

∂pj

∂2H

∂qj∂qi
,

i = 1, . . . , n.

These equations can be rewritten as

∂

∂pi

(
∂I

∂t
+
∂H

∂pj

∂I

∂qj
− ∂H

∂qj
∂I

∂pj

)
= 0,

∂

∂qi

(
∂I

∂t
+
∂H

∂pj

∂I

∂qj
− ∂H

∂qj
∂I

∂pj

)
= 0,

i = 1, . . . , n.

Therefore, we obtain

∂I

∂t
+
∂H

∂pj

∂I

∂qj
− ∂H

∂qj
∂I

∂pj
= f(t).

The left-hand side is the total time derivative of I on the solutions of the canonical
Hamiltonian equations,

∂I

∂t
+
∂H

∂pj

∂I

∂qj
− ∂H

∂qj
∂I

∂pj
= D(I)

∣∣
(0.70).

Thus, we conclude that a Hamiltonian symmetry determines a first integral of the
canonical Hamiltonian equations up to some time-dependent function that can be
found with the help of these equations. As a disadvantage of such approach, one
can note the loss of the geometrical meaning of transformations in the evolution
form (0.78) and the necessity of integration to find first integrals with the help
of (0.77). In this approach, it is also not clear why some point symmetries of
Hamiltonian equations yield first integrals while others do not.

In the present section, we consider symmetries of the general form (0.75) which
are not restricted to the phase space and can also transform the time variable t. In
contrast to Hamiltonian symmetries in the form (0.78), the underlying symmetries
have a clear geometric meaning in finite space and do not require integration for the
calculation of first integrals. We shall provide a Hamiltonian version of Noether’s
theorem (in the strong statement) based on a newly established Hamiltonian iden-
tity, which is an analog of the Noether identity in the Lagrangian approach. The
Hamiltonian identity directly links an invariant Hamiltonian function to the first
integrals of the canonical Hamiltonian equations. This approach provides a simple
and clear way to construct first integrals by means of purely algebraic manipula-
tions with symmetries of the action functional. The approach will be illustrated in a
number of examples, including the equations of three-dimensional Kepler motion.
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Invariance of elementary Hamiltonian action

As an analog of the elementary Lagrangian action [73], consider the elementary
Hamiltonian action

pi dq
i −H dt, (0.79)

which can be invariant or not with respect to the group generated by an operator of
the form (0.75).

DEFINITION. We say that a Hamiltonian function is invariant with respect to a sym-
metry (0.75) if the elementary action (0.79) is an invariant of the group generated
by the operator (0.75).

THEOREM 0.1. A Hamiltonian is invariant with respect to a group with opera-
tor (0.75) if and only if

ζiq̇
i + piD(ηi)−X(H)−HD(ξ) = 0. (0.80)

Proof. The invariance condition follows directly from the action of X prolonged
to the differentials dt and dqi, i = 1, . . . , n:

X = ξ(t,q,p)
∂

∂t
+ηi(t,q,p)

∂

∂qi
+ζi(t,q,p)

∂

∂pi
+D(ξ)dt

∂

∂(dt)
+D(ηi)dt

∂

∂(dqi)
.

An application of this equation gives

X(pi dq
i −H dt) =

(
ζiq̇

i + piD(ηi)−X(H)−HD(ξ)
)
dt = 0.

COROLLARY. It follows from the relation

L(t,q, q̇) dt = pi dq
i −H(t,q,p) dt (0.81)

that if the Lagrangian is invariant, then the Hamiltonian is also invariant with
respect to the same group. Conversely, invariant Hamiltonians provide invariant
Lagrangians by means of (0.81).
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Proof. This follows from the action of the operator (0.75) on relation (0.81).

Remark 0.2. The total differentiation operator (0.74) applied to the Hamiltonian H
on the solutions of Hamiltonian equations (0.70) coincides with the partial differ-
entiation with respect to time,

D(H)
∣∣

(0.70) =

[
∂H

∂t
+ q̇i

∂H

∂qi
+ ṗi

∂H

∂pi

]
(0.70)

=
∂H

∂t
.

Remark 0.3. Condition (0.80) means that pi dqi −H dt is an invariant in the space
(p,q, dq, dt). Meanwhile, this condition can be obtained as an invariance condition
for the manifold

h = piq̇
i −H (0.82)

under the action of the operator (0.75), which is specially prolonged to the new
variable h in the following way:

X = ξ(t,q,p)
∂

∂t
+ ηi(t,q,p)

∂

∂qi
+ ζi(t,q,p)

∂

∂pi
− hD(ξ)

∂

∂h
. (0.83)

Indeed, an application of the operator (0.83) to (0.82) yields

−hD(ξ) = ζiq̇
i + pi

(
D(ηi)− q̇iD(ξ)

)
−X(H). (0.84)

Then the substitution of h from (0.82) gives condition (0.80).

Hamiltonian identity and Noether-type theorem

Now we can relate the conservation properties of the canonical Hamiltonian equa-
tions to the invariance of the Hamiltonian function.

LEMMA 0.4. The identity

ζiq̇
i + piD(ηi)−X(H)−HD(ξ) = ξ

(
D(H)− ∂H

∂t

)
− ηi

(
ṗi +

∂H

∂qi

)
+ ζi

(
q̇i − ∂H

∂pi

)
+D

[
piη

i − ξH
]

(0.85)

is true for any smooth function H = H(t,q,p).

Proof. The identity can be established by a straightforward computation.

We call this identity the Hamiltonian identity. This identity permits one to prove
the following result.
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THEOREM 0.5. The canonical Hamiltonian equations (0.70) possess a first integral
of the form

I = piη
i − ξH

if and only if the Hamiltonian function is invariant with respect to the opera-
tor (0.75) on the solutions of the canonical equations (0.70).

Proof. The result follows from identity (0.85) in view of Remark 0.2.

Theorem 0.5 corresponds to the strong version of Noether’s theorem (i.e., a
necessary and sufficient condition) for invariant Lagrangians and Euler–Lagrange
equations [73].

COROLLARY. Theorem 0.5 can be generalized to the case of divergence invariance
of the Hamiltonian action,

ζiq̇
i + piD(ηi)−X(H)−HD(ξ) = D(V ), (0.86)

where V = V (t,q,p). If this condition holds on the solutions of the canonical
Hamiltonian equations (0.70), then one has the first integral

I = piη
i − ξH − V.

Invariance of the canonical Hamiltonian equations

In the Lagrangian framework, the variational principle gives the Euler–Lagrange
equations. It is known that the invariance of the Euler–Lagrange equations follows
from the invariance of the action integral. The following Lemma 0.6 and Theo-
rem 0.7 establish a sufficient condition for the canonical Hamiltonian equations to
be invariant.

LEMMA 0.6. The application of the variational operators (0.72) to (0.85) gives

δ

δpj

(
ζiq̇

i + piD(ηi)−X(H)−HD(ξ)
)

= D(ηj)− q̇jD(ξ)−X
(
∂H

∂pj

)
+ ξpj

(
D(H)− ∂H

∂t

)
− ηipj

(
ṗi +

∂H

∂qi

)
+
(
(ζi)pj + δijD(ξ)

)(
q̇i − ∂H

∂pi

)
,

j = 1, . . . , n. (0.87)
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Likewise, the application of the variational operators (0.73) to identity (0.85) gives

δ

δqj
(
ζiq̇

i + piD(ηi)−X(H)−HD(ξ)
)

= −D(ζj) + ṗjD(ξ)−X
(
∂H

∂qj

)
+ ξqj

(
D(H)− ∂H

∂t

)
− (ηiqj + δijD(ξ))

(
ṗi +

∂H

∂qi

)
+ (ζi)qj

(
q̇i − ∂H

∂pi

)
,

j = 1, . . . , n. (0.88)

Here δij is the Kronecker delta.

The above identities are true for any smooth function H = H(t,q,p).

THEOREM 0.7. If the Hamiltonian is invariant with respect to the symmetry (0.75),
then Eqs. (0.70) are also invariant.

Proof. We start from the invariance of the canonical Hamiltonian equations (0.70).
An application of the symmetry operator to these equations yields

D(ηj)− q̇jD(ξ)−X
(
∂H

∂pj

)
= 0, j = 1, . . . , n, (0.89)

D(ζj)− ṗjD(ξ) +X

(
∂H

∂qj

)
= 0, j = 1, . . . , n. (0.90)

Both conditions obtained should be true on the solutions of Eqs. (0.70).
Let the Hamiltonian be invariant; then all left-hand sides of identities (0.87)

and (0.88) are zero on the solutions of Eqs. (0.70). All right-hand sides of (0.87)
and (0.88) are also zero. By substituting (0.70) into the right-hand sides of (0.87)
and (0.88), we obtain the invariance conditions (0.89) and (0.90).

Remark 0.8. Theorem 0.7 remains valid if we consider divergence symmetries of
the Hamiltonian, i.e., condition (0.86), because the term D(V ) on the right-hand
side belongs to the kernel of the variational operators (0.72) and (0.73).

The invariance of the Hamiltonian on Eqs. (0.70) is a sufficient condition for
the canonical Hamiltonian equations to be invariant. The symmetry group of the
canonical Hamiltonian equations can of course be larger than that of the Hamilto-
nian. The following Theorem 0.9 establishes a necessary and sufficient condition
for the canonical Hamiltonian equations to be invariant.

THEOREM 0.9. The canonical Hamiltonian equations (0.70) are invariant with
respect to a symmetry (0.75) if and only if the following conditions are true (on the
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solutions of the canonical Hamiltonian equations):[
δ

δpj

(
ζiq̇

i + piD(ηi)−X(H)−HD(ξ)
)]

(0.70)
= 0,[

δ

δqj
(
ζiq̇

i + piD(ηi)−X(H)−HD(ξ)
)]

(0.70)
= 0.

i, j = 1, . . . , n. (0.91)

Proof. The proof follows from identities (0.87) and (0.88).

We point out that conditions (0.91) are true for all symmetries of canonical
Hamiltonian equations. But not all of these symmetries yield the “variational inte-
gral” of these conditions, i.e.,(

ζiq̇
i + piD(ηi)−X(H)−HD(ξ)

)
|(0.70) = 0,

which gives first integrals by Theorem 0.5. That is why not all symmetries of the
canonical Hamiltonian equations provide first integrals.

Symplecticity of the canonical Hamiltonian equations

The solutions of the canonical Hamiltonian equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, . . . , n. (0.92)

possess the important property called symplecticity.
For the solution (q(t),p(t)) of system (0.92) with the initial data q(t0) = q0,

p(t0) = p0, we introduce the solution operator ψ(t, t0) by means of the transfor-
mation

(p,q) = ψ(t, t0)(p0,q0). (0.93)

For autonomous Hamiltonians, the mapping (0.93) depends on the difference
t− t0 and possesses the group property

ψ(t2 − t0) = ψ(t2 − t1)ψ(t1 − t0).

We denote the Jacobi matrix of the transformation ψ on the phase space R2n by

ψ′ =
∂(p, q)

∂(p0, q0)
.

Such a transformation ψ is said to be symplectic if

ψ′TJψ′ = J, (0.94)

where

J =

(
0 I
−I 0

)
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and I is the n× n identity matrix.
Consider the special case in which n = 1. The transformation

(p∗, q∗) = ψ(t, t0)(p, q),

defined in some domain Ω and possessing property (0.94) gives

∂p∗

∂p

∂q∗

∂q
− ∂p∗

∂q

∂q∗

∂p
= 1. (0.95)

This means that the Jacobian is identically 1; i.e., ψ(t, t0) is volume preserving.
Alternatively, the symplectic property of the Hamiltonian equations can be

expressed as a conservation of a certain differential form. The differentials dp∗

and dq∗ of the components of the transformation ψ give the so-called one-forms

dp∗ =
∂p∗

∂p
dp+

∂p∗

∂q
dq, dq∗ =

∂q∗

∂p
dp+

∂q∗

∂q
dq.

Two one-forms by means of the exterior, or wedge, product ∧ give rise to the so-
called differential two-form

dp∗∧dq∗ =
∂p∗

∂p

∂q∗

∂p
dp∧dp+

∂p∗

∂p

∂q∗

∂q
dp∧dq+

∂p∗

∂q

∂q∗

∂p
dq∧dp+

∂p∗

∂q

∂q∗

∂q
dq∧dq.

We can simplify this expression using the fact that the exterior product is skew-
symmetric,

dp ∧ dq = −dq ∧ dp, dp ∧ dp = dq ∧ dq = 0.

Consequently, the two-form becomes

dp∗ ∧ dq∗ =

(
∂p∗

∂p

∂q∗

∂q
− ∂p∗

∂q

∂q∗

∂p

)
dp ∧ dq. (0.96)

From (0.95) and (0.96), we conclude that

dp∗ ∧ dq∗ = dp ∧ dq.

The geometric interpretation of symplecticity of the transformation ψ(t, t0) is that
the oriented area of the projection of a parallelogram onto the (p, q)-plane is pre-
served by ψ(t, t0).

In the multidimensional case, we have the conservation of the two-form

ω2 =
n∑
i=1

(dp)∗i ∧ (dqi)∗ =
n∑
i=1

dpi ∧ dqi;

i.e., the two-form ω2 is invariant.
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The geometric interpretation of the symplecticity of the mapping ψ(t, t0) in
the multidimensional case is that the sum of oriented areas of its projections onto
the (pi, q

i)-planes is conserved throughout the evolution (see [6, 98, 128, 132] for
details). This property is significant for long-time behavior of solutions of Hamil-
tonian systems. Moreover, all properties of Hamiltonian equations can be derived
from the area preservation property.

The key theorem for Hamiltonian equations is the following.

THEOREM (Poincaré, 1899). The flow ψ(t, t0) generated by Eqs. (0.92) with the
Hamiltonian function H is symplectic.

EXAMPLE (harmonic oscillator). We rewrite the ordinary differential equation

u′′ + u = 0

as the Hamiltonian system
q̇ = p, ṗ = −q

with Hamiltonian

H(t, q, p) =
1

2
(p2 + q2).

The corresponding Hamiltonian equations have the general solution

p = A sin t+B cos t, q = B sin t− A cos t.

From the initial data

p0 = A sin t0 +B cos t0, q0 = B sin t0 − A cos t0

at t = t0, we obtain the representation of the solution operator as

p = −q0 sin(t− t0) + p0 cos(t− t0), q = p0 sin(t− t0) + q0 cos(t− t0),

which demonstrates the local group property.
The corresponding one-forms are as follows:

dp = cos(t− t0) dp0 − sin(t− t0) dq, dq = sin(t− t0) dp+ cos(t− t0)dq.

The two-form demonstrates its invariance

dp ∧ dq =
(
sin2(t− t0) + cos2(t− t0)

)
dp0 ∧ dq0

along the solution of the harmonic oscillator.
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Examples

Here we provide examples showing how to find first integrals by using symmetries.

EXAMPLE 0.10 (a scalar ODE). As the first example, we consider the following
second-order ordinary differential equation

ü =
1

u3
,

which admits the Lie algebra L3 with basis operators

X1 =
∂

∂t
, X2 = 2t

∂

∂t
+ u

∂

∂u
, X3 = t2

∂

∂t
+ tu

∂

∂u
.

Hamiltonian framework. Let us transfer this example to the Hamiltonian frame-
work. We change the variables by setting

q = u, p =
∂L

∂u̇
= u̇.

The corresponding Hamiltonian is

H(t, q, p) = u̇
∂L

∂u̇
− L =

1

2

(
p2 +

1

q2

)
.

The Hamiltonian equations

q̇ = p, ṗ =
1

q3
(0.97)

admit the symmetries

X1 =
∂

∂t
, X2 = 2t

∂

∂t
+q

∂

∂q
−p ∂

∂p
, X3 = t2

∂

∂t
+ tq

∂

∂q
+(q− tp) ∂

∂p
. (0.98)

We check the invariance of H in accordance with Theorem 0.1 and find that
condition (0.80) is satisfied for the operatorsX1 and X2. Then, using Theorem 0.5,
we calculate the corresponding first integrals

I1 = −H = −1

2

(
p2 +

1

q2

)
, I2 = pq − t

(
p2 +

1

q2

)
. (0.99)

For the third symmetry operator, the Hamiltonian is divergence invariant with V3 =
q2/2. In accordance with the Corollary of Theorem 0.5, this gives the conserved
variable

I3 = −1

2

(
t2

q2
+ (q − tp)2

)
. (0.100)

Note that no integration is needed. As we indicated before, only two first integrals
of a second-order ordinary differential equation can be functionally independent.
Putting I1 = A/2 and I2 = B, we find the solution as

Aq2 + (At−B)2 + 1 = 0, p =
B − At

q
.



lxviii INTRODUCTION

Evolution vector field approach. Consider the same example for evolution vec-
tor fields in the Hamiltonian form (0.78). We rewrite the operators (0.98) in the
evolution form

X1 = −q̇ ∂
∂q
− ṗ ∂

∂p
, X2 = (q − 2tq̇)

∂

∂q
− (p+ 2tṗ)

∂

∂p
,

X3 = (tq − t2q̇) ∂
∂q

+ (q − tp− t2ṗ) ∂
∂p
.

(0.101)

The transformations corresponding to the symmetries (0.101) are not point trans-
formations. Therefore, the Hamiltonian equations (0.97) are invariant with respect
to (0.101) if they are considered together with their differential consequences. On
the solutions of the canonical equations (0.97), these operators are equivalent to the
set

X̃1 = −p ∂
∂q
− 1

q3

∂

∂p
, X̃2 = (q − 2tp)

∂

∂q
−
(
p+

2t

q3

)
∂

∂p
,

X̃3 =

(
tq − t2p

)
∂

∂q
+

(
q − tp− t2

q3

)
∂

∂p
.

One should integrate Eqs. (0.77) for each operator to find the first integrals. Inte-
gration provides the three first integrals given in (0.99) and (0.100).

EXAMPLE 0.11 (Repulsive one-dimensional motion). As another example of an
ordinary differential equation, we consider one-dimensional motion in the Coulomb
field (the case of a repulsive force):

ü =
1

u2
, (0.102)

which admits the Lie algebra L2 with basis operators

X1 =
∂

∂t
, X2 = 3t

∂

∂t
+ 2u

∂

∂u
.

We change the variables by the formula

q = u, p =
∂L

∂u̇
= u̇

and find the Hamiltonian function

H(t, q, p) = u̇
∂L

∂u̇
− L =

p2

2
+

1

q
.

The Hamiltonian equations have the form

q̇ = p, ṗ =
1

q2
. (0.103)
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We rewrite the symmetries in the canonical variables as the following algebra L2:

X1 =
∂

∂t
, X2 = 3t

∂

∂t
+ 2q

∂

∂q
− p ∂

∂p
.

The invariance of the Hamiltonian condition (0.80) holds only for the operator X1.
By applying Theorem 0.5, we calculate the corresponding first integral

I1 = −
(
p2

2
+

1

q

)
.

An application of the operator X2 to the Hamiltonian action gives

ζq̇ + pD(η)−X(H)−HD(ξ) = pq̇ −
(
p2

2
+

1

q

)
6= 0.

Meanwhile, by Theorem 0.9 we have[
δ

δp

(
ζq̇+pD(η)−X(H)−HD(ξ)

)]
(0.103)

=

[
δ

δp

(
pq̇ −

(
p2

2
+

1

q

))]
(0.103)

= 0.

We shall show that there exists a second integral of nonlocal character.

It was shown in [40] that Eq. (0.102) can be linearized by a contact transforma-
tion. For Eqs. (0.103), this transformation is as follows:

p(t) = P (s), Q2(s) =
2

q(t)
, dt = − 4

Q3
ds. (0.104)

The new Hamiltonian
H(s,Q, P ) =

1

2
(P 2 +Q2)

corresponds to the linear equations

dQ

ds
= P,

dP

ds
= −Q,

which describe the one-dimensional harmonic oscillator. These equations have two
first integrals

Ĩ1 =
P 2 +Q2

2
, Ĩ2 = arctan

P

Q
+ s,

which let us write down the general solution

Q = A sin s+B cos s, P = A cos s−B sin s, A,B = const.

By applying the transformation (0.104) to the integral I2, one obtains the nonlocal
integral

I∗2 = arctan
p
√
q

√
2
− 1√

2

∫ t

t0

dt

q3/2

of Eqs. (0.103).
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EXAMPLE 0.12 (Three-dimensional Kepler motion). The three-dimensional Kepler
motion of a body in Newton’s gravitational field is described by the equations

dq

dt
= p,

dp

dt
= −K

2

r3
q, r = |q|, (0.105)

where q = (q1, q2, q3), p = (p1, p2, p3), and K = const, with the initial data

q(0) = q0, p(0) = p0.

These equations are Hamiltonian. They are defined by the Hamiltonian function

H(q,p) =
1

2
|p|2 − K2

r
. (0.106)

Among symmetries admitted by the equations (0.105) there are

X0 =
∂

∂t
, X1 = 3t

∂

∂t
+ 2qi

∂

∂qi
− pi

∂

∂pi
,

Xij = −qj
∂

∂qi
+ qi

∂

∂qj
− pj

∂

∂pi
+ pi

∂

∂pj
, i 6= j,

Yl = (2qlpk − qkpl − (q,p)δlk)
∂

∂qk

+

(
plpk − (p,p)δlk −

K2

r3
(qlqk − (q,q)δlk)

)
∂

∂pk
, l = 1, 2, 3,

where (f ,g) = fTg is the inner product of vectors.
The Hamiltonian function (0.106) is invariant with respect to the symmetriesX0

and Xij . Theorem 0.5 permits one to find the first integral for the symmetry X0,

I1 = −H,

which represents the conservation of energy in Kepler motion. For the symmetries
Xij , we obtain the first integrals

Iij = qipj − qjpi, i 6= j,

which are components of the angular momentum

L(q,p) = q× p.

Conservation of the angular momentum shows that the orbit of motion of a body
lies in a fixed plane perpendicular to the constant vector L. It also follows that in
this plane the position vector q sweeps out equal areas in equal time intervals, so
that the sectorial velocity is constant [6]. Therefore, Kepler’s second law can be
considered as a geometric restatement of the conservation of angular momentum.
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The scaling symmetry X1 is not a Noether symmetry (neither variational, nor
divergence symmetry) and does not lead to a conserved variable.

For each of the symmetries Yl, the Hamiltonian is divergence invariant with the
functions

Vl = ql

(
(p,p) +

K2

r

)
− pl(q,p), l = 1, 2, 3.

Hence the operators Yl yield the first integrals

Il = ql

(
(p,p)− K2

r

)
− pl(q,p), l = 1, 2, 3,

which are the components of the Runge–Lenz vector

A(q,p) = p× L− K2

r
q = q

(
H(q,p) +

1

2
|p|2
)
− p(q,p). (0.107)

Physically, the vector A points along the major axis of the conic section determined
by the body orbit. Its magnitude determines the eccentricity [134].

Note that not all first integrals are independent. There are two relations between
them given by the equations

A2 − 2HL2 = K4, (A,L) = 0.

The two-dimensional Kepler motion can be treated in a similar way. Note that
the symmetries and first integrals of the two-dimensional Kepler motion can be
obtained by restricting the symmetries and first integrals of the three-dimensional
Kepler motion to the space (t, q1, q2, p1, p2). As the conserved quantities of the
two-dimensional Kepler motion, one obtains the energy

H(q,p) =
1

2
|p|2 − K2

r
, r = |q|, q = (q1, q2), p = (p1, p2),

one component
L3 = q1p2 − q2p1

of the angular momentum, and two components

A1 = q1

(
H(q,p) +

1

2
|p|2
)
− p1(q,p).

A2 = q2

(
H(q,p) +

1

2
|p|2
)
− p2(q,p)

of the Runge–Lenz vector. There is one relation between these conserved variables,
namely,

A2
1 + A2

2 − 2HL2
3 = K4.

Further restriction to the one-dimensional Kepler motion leaves only one first
integral, which is the Hamiltonian function.
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0.2. Preliminaries: Heuristic Approach in Examples

Let us at once try to study the invariance of some difference equations using only
basic knowledge about Lie groups of point transformations acting on a space of
continuous variables.

EXAMPLE 0.13. As a first example, consider the ordinary differential equation

u′′ =
1

u3
. (0.108)

Let us try to preserve its symmetries

X1 =
∂

∂x
, X2 = 2x

∂

∂x
+ u

∂

∂u
, X3 = x2 ∂

∂x
+ xu

∂

∂u

in a difference model of this equation.
We introduce the one-dimensional difference mesh

xi+1 = xi + hi, i = 0,±1,±2, . . . , (0.109)

where the mesh steps hi are assumed to be given constants. To approximate a
second-order equation at some point x, we need at least three mesh points. For
the simplest finite-difference approximation to Eq. (0.108) we take the difference
equation (

ui+1 − ui
hi+1

− ui − ui−1

hi

)
2

hi + hi+1
=

1

u3
i

(0.110)

on the mesh (0.109). If all steps are equal (a uniform mesh), then the difference
scheme has the extremely simple form

ui+1 − 2ui + ui−1

h2
=

1

u3
i

.

The integer index i in Eq. (0.110) ranges over a finite or infinite interval; however,
we shall consider this equation locally, in a neighborhood of some point (x, u),
assuming that Eq. (0.110) has precisely the same form at all other points. (Such
schemes are said to be homogeneous [122].) Accordingly, we rewrite Eq. (0.110)
in the index-free form(

u+ − u
h+

− u− u−

h−

)
2

h+ + h−
=

1

u3
, (0.111)

where u = u(x), u+ = u(x+h+), u− = u(x−h−), h+ = x+−x, and h− = x−x−.
Now consider how group transformations act on the scheme (0.111), (0.109).

The translations corresponding to X1 act on each mesh point (because there is an
orbit of the group through each point (x, u)) by the formulas

x∗ = x+ a, (x+)∗ = x+ + a, (x−)∗ = x− + a, . . .
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without affecting the mesh steps and Eq. (0.111). Thus, the scheme (0.111), (0.109)
admits translations regardless of whether the mesh is uniform or not.

The dilations

x∗ = xe2a, (x+)∗ = x+e2a, (x−)∗ = x−e2a,

u∗ = uea, (u+)∗ = u+ea, (u−)∗ = u−ea

corresponding to X2 change the mesh according to the formulas

(h+)∗ = h+e2a, (h−)∗ = h−e2a,

and so a mesh with fixed steps is not dilation invariant.
Now let us specify the mesh differently; we no longer try to fix the mesh steps

(this is usually not important in computations) but preserve the mesh geometric
structure. For example, let us force the mesh to be uniform by imposing the equa-
tion

h+ = h−. (0.112)

It is easily seen that such a mesh is necessarily dilation invariant, for Eq. (0.112)
remains the same, (h+)∗ = (h−)∗, after the transformation.

For the mesh equation we could also take the difference equation

h+ = kh−, k = const, (0.113)

specifying a nonuniform mesh whose steps correspond to a geometric progression.
Let us verify the invariance of this mesh using the operator X2 prolonged to all
variables of the difference stencil. We obtain additional coordinates for h+ and h−

by applying the operator to the relations h+ = x+ − x and h− = x− x−:

X̃2 = 2x
∂

∂x
+ u

∂

∂u
+ u+ ∂

∂u+
+ u−

∂

∂u−
+ 2h+ ∂

∂h+
+ 2h−

∂

∂h−
. (0.114)

The operator (0.114) leaves invariant the mesh (0.112) (or (0.113). One can read-
ily verify that Eq. (0.111) is invariant under the operator (0.114) as well. Thus,
dilations are admitted by the difference model (0.111), (0.113).

Now consider how the transformations corresponding to X3 act on the scheme
(0.111), (0.113). We verify its invariance using the operator X3 prolonged to the
variables of the difference stencil,

X̃3 = x2 ∂

∂x
+ (x+)2 ∂

∂x+
+ (x−)2 ∂

∂x−
+ xu

∂

∂u
+ x+u+ ∂

∂u+

+ x−u−
∂

∂u−
+ (2x+ h+)h+ ∂

∂h+
+ (2x− h−)h−

∂

∂h−
.

An application of the operator X̃3 to Eq. (0.113) gives the relation h+(2x+ h+) =
kh−(2x − h−), and the subsequent substitution of (0.113) into this relation yields
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h+ + h− = 0. The application of finite transformations corresponding to X̃3 con-
firms the noninvariance of the mesh (0.113) for any k as well. The action of X̃3 on
Eq. (0.111) yields the relation

x+u+ − xu
h+

− xu− x−u−

h−
− u+ − u

h+
(2x+ h+) +

u− u−

h−
(2x− h−)

=
h+(x+ h+) + h−(x− h−)

2u2
,

which cannot hold on the mesh (0.113) for any k.
Thus, only two out of the three symmetries present in the original differential

model can be preserved on the uniform mesh and on its generalization (0.113).
The conclusion suggests itself that, to preserve the symmetry corresponding to the
operator X̃3, one needs some special mesh, but it is not clear how one can guess
it. Later on in the book, we construct a completely invariant difference model of
Eq. (0.108) by using a regular algorithm.

EXAMPLE 0.14. As another example, we consider a partial differential equation,
namely, the linear heat equation

ut = uxx. (0.115)

This equation is known to admit a six-parameter point transformation group and, in
addition, an infinite-parameter group equivalent to the linearity of Eq. (0.115) (e.g.,
see [111]). This transformation group is completely described by the following Lie
algebra of infinitesimal operators:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2t

∂

∂t
+ x

∂

∂x
, X4 = u

∂

∂u
,

X5 = 2t
∂

∂x
− xu ∂

∂u
, X6 = 4t2

∂

∂t
+ 4tx

∂

∂x
− (x2 + 2t)

∂

∂u
,

X∗ = α(x, t)
∂

∂u
,

(0.116)

where α is an arbitrary solution of (0.115).
Let us consider some simplest difference model approximating Eq. (0.115) and

see how the transformations determined by the operators (0.116) act on this model.
For this simplest difference equation we take the explicit difference scheme (at the
point x = xi, t = tj)

uj+1
i − uji
τ

=
uji+1 − 2uji + uji−1

h2
(0.117)

on an orthogonal difference mesh uniform in the t- and x-directions with mesh
steps τ and h, respectively.
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Figure 0.1: The difference stencil for Eq. (0.118)

Note an important difference between the discrete version (0.117) and the con-
tinuous version (0.115). It is meaningless to specify any function uji = φji (t

j, xi)
without describing the discrete set {(tj, xi)} on which uji is defined. The same is
true of the difference equation (0.117). Thus, we should supplement Eq. (0.117)
by something completely characterizing the difference mesh. Take an orthogonal
mesh (we simply write down the words

Orthogonal Difference Mesh

for now) uniform in x and t,

h+ = h−, τ+ = τ−.

The integer indices i and j in Eq. (0.117) range over finite or infinite intervals,
but we shall consider this equation in a neighborhood of some point (t, x, u) and
rewrite Eq. (0.117) in the index-free form

û− u
τ

=
u+ − 2u+ u−

h2
, (0.118)

where the symbol û stands for passage to the “upper” layer with respect to t, while
u+ and u− stand for the shifts to the right and left, respectively, with respect to x.

The difference stencil, i.e., the set of points of the (t, x)-plane used to describe
Eq. (0.118), is shown in Fig. 0.1.

The set (x, x+h, x−h, t, t+τ) of points of the difference stencil is a “point” of
the difference space on the (t, x)-plane where we consider Eq. (0.118). In contrast
to the continuous case, a “point” of the difference space has quite a determined
geometric structure. To describe this structure, let us denote the points of the dif-
ference stencil by A, B, C, and D. Then the mesh structure can be represented as
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follows:
(
−→
AB)(

−−→
BD) = (

−−→
BC)(

−−→
BD) = 0,

h+ = h− = h, τ+ = τ−.
(0.119)

Now we can consider the action of the groupG with infinitesimal operators (0.116)
on Eq. (0.118) and relations (0.119). Note that the transformations (0.116) are
continuous; i.e., the coordinates of all points of the (t, x, u)-space (in particular,
of the points corresponding to the difference stencil in Fig. 0.1) are varied in a
continuous manner (rather than discretely, where, say, some mesh points would be
taken to other mesh points). By analogy with the case of differential equations,
we say that Eqs. (0.119), (0.118) are invariant with respect to the corresponding
transformations if these equations have the same form in the transformed variables.
Consider the action of X1, . . . , X6 on system (0.119), (0.118).

The translations X1 = ∂/∂t and X2 = ∂/∂x mean the corresponding shifts of
the independent variables,

(i) t∗ = t+ a, x∗ = x, u∗ = u;

(ii) t∗ = t, x∗ = x+ a, u∗ = u,

where a is the group parameter.
It is fully obvious that the structure of the mesh (0.119), as well as Eq. (0.118),

remains unchanged; i.e., Eqs. (0.119), (0.118) are invariant with respect to X1

and X2.
The dilation group with infinitesimal generator X3 = 2t∂/∂t+x∂/∂x is deter-

mined by the transformations

t∗ = e2at, x∗ = eax, u∗ = u.

To find how the mesh steps are transformed, consider the orbits passing through the
points of the difference stencil. Obviously, the operator X3 can be prolonged to the
coordinates of the points A, C, and D,

X3 = 2t
∂

∂t
+ x

∂

∂x
+ 2t̂

∂

∂t̂
+ 2ť

∂

∂ť
+ x+ ∂

∂x+
+ x−

∂

∂x−
,

where t̂ = t + τ+ and ť = t − τ−. This means that the “additional” coordinates t̂,
ť, x+, and x− are transformed in the same way as the “main” coordinates t and x,

t̂∗ = e2at̂, ť∗ = e2ať, (x+)∗ = eax+, (x−)∗ = eax−.

The transformation law for the mesh steps follows,

(τ+)∗ = t̂∗ − t∗ = e2a(t̂− t) = e2aτ+, (τ−)∗ = e2aτ−,

(h+)∗ = (x+)∗ − x = ea(x+ − x) = eah+, (h−)∗ = eah−,
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and the operation ∂
∂a

∣∣
a=0

gives the additional coordinates of the operator X3 ex-
tended to h+, h−, τ+, and τ−,

X3 = 2t
∂

∂t
+ x

∂

∂x
+ · · ·+ 2τ+ ∂

∂τ+
+ 2τ−

∂

∂τ−
+ h+ ∂

∂h+
+ h−

∂

∂h−
.

From this, we see that the operator X3, which dilates the (t, x)-plane, obviously
dilates the difference mesh. The relations h+ = h− and τ+ = τ− are clearly
invariant with respect to the prolonged operator X3,[

X3(h+ − h−)
]∣∣
h+=h−

= 0,
[
X3(τ+ − τ−)

]∣∣
τ+=τ−

= 0.

The mesh orthogonality conditions are also preserved,

(
−−−→
A∗B∗)(

−−−→
B∗D∗) = (

−−−→
B∗C∗)(

−−−→
B∗D∗) = 0.

Thus, the dilation group changes the mesh steps but does not affect the mesh or-
thogonality and uniformity.

It is easily seen that the action of X3 on the difference equation (0.118) does
not change this equation as well,[

X3

(
u
τ
t − u

h
xx̄

)]
u
τ
t=u

h
xx̄

= 0,

where we have introduced the shorthand notation

u
τ
t =

û− u
τ

, u
h
xx̄ =

u+ − 2u+ u−

h2

for the difference derivatives. Thus, Eqs. (0.119), (0.118) admit the dilations deter-
mined by the operator X3.

The operator X4 = u∂/∂u, which does not affect the independent variable t
and x and dilates u (namely, u∗ = eau), leaves unchanged relations (0.119) and is
obviously admitted by Eq. (0.118),[

X4

(
u
τ
t − u

h
xx̄

)]
u
τ
t=u

h
xx̄

= 0.

Now consider the subgroup generated by the operator X5. The corresponding
finite transformations have the form

t∗ = t, x∗ = x+ 2ta, u∗ = ue−xa−t
2a2

.

Let us see what happens to the difference mesh under these transformations. They
do not change t and hence do not affect the step τ . For each value of the parame-
ter a, the mesh is shifted along x on each time layer t, the shift being proportional
to t. The mesh structure after the transformations is shown in Fig. 0.2.
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Figure 0.2: The mesh structure after the transformations generated by X5

Clearly, the mesh uniformity in the x-direction is also preserved, (h+)∗ =
(x+)∗ − x∗ = h+. However, the mesh is no longer orthogonal. Let us study the
consequences. Equation (0.118) is changed by the transformations into the equa-
tion

ûe−xa−(t+τ)2a2 − ue−xa−t2a2

τ
=
u+e−(x+h)a − 2ue−xa+ u−e−(x−h)a

h2
e−t

2a,

or
ûe−τ(2t+τ)a2 − u

τ
=
u+e−ha − 2u+ u−e+ha

h2
. (0.120)

Thus, the transformations generated by X5 violate the mesh orthogonality and
change Eq. (0.118). What does Eq. (0.120) on the transformed mesh approximate?
First of all, note that the operator X5, which violates the mesh orthogonality, does
not change the meaning of the spatial difference derivatives (in particular, u

h
xx̄) but

distorts the geometric meaning of the time derivative u
τ
t = û−u

τ
, because the trans-

formed expression u
τ
t
∗ = û∗−u∗

τ
for the time derivative has a component not only

in t but also in x. Now assume that Eq. (0.120) has a sufficiently smooth solu-
tion u = u(x, t). By substituting the expansions u+ = u + hux + h2

2
uxx + O(h2),

u− = u− hux + h2

2
uxx +O(h2), and û = u+ utτ + ux2τa+O(τ) (here we have

taken into account the spatial component) into Eq. (0.120), we obtain

ut = uxx − 4aux + 2ta2u

modulo O(τ + h2).
Thus, the difference equation (0.117) approximating Eq. (0.115) on the or-

thogonal mesh with accuracy O(τ + h2) is transformed into the difference equa-
tion (0.120) on a “skew” mesh; Eq. (0.120) approximates a completely different
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differential equation, which, in addition, explicitly depends on the group parame-
ter.

Thus, the operator X5 is not admitted by the difference model (0.119), (0.118).
A similar argument shows that the action of X6 destroys the mesh orthogonality as
well and also violates the mesh uniformity in the t-direction.

The operator X∗ = α∂/∂u does not affect the variables (t, x) and adds an
arbitrary solution of Eq. (0.115) to u,

u∗ = u+ α(x, t)a.

This symmetry is equivalent to the fact that Eq. (0.115) is linear.
The difference equation (0.118) is linear as well, and so the substitution of the

last transformation gives

α(x, t+ τ)− α(x, t)

τ
=
α(x+ h, t)− 2α(x, t) + α(x− h, t)

h2
,

where α is an arbitrary solution of the equation αt = αxx.
So far, it is not clear whether a solution of the differential equation (0.115) is

an exact solution of the difference equation (0.118). However, we have clearly
preserved linearity when passing to the difference model (0.119), (0.118), which is
equivalent to the symmetry with the operator

X
h
∗ = A(t, x)

∂

∂u
,

where A(x, t) is an arbitrary solution of Eq. (0.118) on the mesh (0.119).
Thus, the difference model that we have considered — Eq. (0.118) on the uni-

form orthogonal mesh (0.119) —has preserved only four out of the six symmetries
of the original equation (0.115) and also the linearity property. Note that the pre-
served symmetries form a Lie algebra that is a subalgebra of the original algebra.

We have chosen the simplest difference model, namely, an explicit scheme on
an orthogonal mesh. However, it is clear that using an implicit scheme or combin-
ing it with an explicit one would not rectify the situation, for the transformations
determined by X5 and X6 violate the mesh orthogonality, and this also irrepara-
bly destroys the structure of the difference equation. In the next chapter, we con-
struct a difference model of Eq. (0.115) preserving all symmetries but defined on a
nonorthogonal mesh depending on the solution.

Thus, the geometric structure of the mesh (and, naturally, the structure of the
difference stencil, which is part of the mesh) exerts substantial influence on the
invariance of the difference model. In the next chapter, we obtain necessary and
sufficient conditions for the preservation of geometric characteristics of the differ-
ence mesh (stencil). Using these conditions, one can readily establish mesh classes
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suitable for a given symmetry without carrying out detailed constructions like those
given above.

The preceding examples show that it is convenient to introduce new variables
and notation. For example, the difference derivatives

u
h
t =

û− u
τ+

, u
h
x =

u+ − u
h+

(right time and space derivatives),

u
h
x̄ =

u− u−

h−

(a left space derivative),

u
h
xx̄ =

u
h
x − u

h
x̄

h
=
u+ − 2u+ u−

h2

(the second space derivative), etc.
It is convenient to introduce the right shift operators S

+τ
and S

+h
and the left shift

operators S
−τ

and S
−h

. These operators act on (t, x) and translate these points to the

right or left neighboring mesh points. The action of these shift operators on any
functions of (t, x) is determined by their action on the arguments,

S
+τ
F (z) = F (S

+τ
(z)), S

−τ
F (z) = F (S

−τ
(z)),

S
+h
F (z) = F (S

+h
(z)), S

−h
F (z) = F (S

−h
(z)).

The operators

D
+h

=
S
+h
− 1

h
, D

−h
=

1− S
−h

h
, D

+τ
=

S
+τ
− 1

τ
, D

−τ
=

1− S
−τ

τ
,

define right and left difference derivation, respectively; by using these operators,
one can readily introduce the difference derivatives

u
h
x = D

+h
(u), u

h
x̄ = D

−h
(u),

u
h
xx̄ = u

h
x̄x = D

−h
D
+h

(u) = D
+h
D
−h

(u),

etc. Note that the operators D
+h

and D
−h

on the uniform mesh commute.

In subsequent chapters, we show how one can naturally introduce difference
derivatives starting from the “continuous” space and continuous differentiation.



Chapter 1

Finite Differences and Transformation
Groups in Space of Discrete Variables

In this chapter, we find out how a local Lie transformation group acts on nonlocal
objects such as discrete variables, finite-difference derivatives, lattice spacings, etc.

In contrast to differential operators, finite-difference operators are specified on
a finite subset (a difference stencil) of the countable set of lattice points where
the solution of the problem in question is to be sought. This nonlocality of oper-
ators (from the physical viewpoint, the presence of typical dimensional scales in
the problem) results in specific properties of finite-difference operators, properties
which are absent in the local differential model. In particular, we can mention right
and left differentiations with the corresponding shifts, uniform and nonuniform lat-
tices, and specific features of the difference Leibniz rule. As a result, there arises a
specific calculus of infinitesimal transformations of difference variables.

The nonlocality of difference operators has the consequence that the transfor-
mation group can distort the proportions, orthogonality, and other geometric char-
acteristics of the difference stencil. In turn, the violation of the lattice structural
properties under transformations can distort the difference equations (say, by af-
fecting the approximation order and the commutativity of difference derivatives);
the lattice orthogonality distortion may result in a loss of geometric meaning of
difference derivatives, etc. Hence a criterion for the invariance of difference mod-
els should necessarily include the invariance of the lattice (or the difference stencil
viewed as an element of the lattice) on which the difference equations are written
out. This gives rise to a peculiar lattice geometry related to transformation groups.

The next step is to find requirements that should be imposed on the transforma-
tion groups so as to preserve the meaning of finite-difference derivatives (i.e., ensure
that the definition and geometric meaning of the finite-difference derivatives in the
transformed variables will be the same). It turns out that this condition is equiva-
lent to the preservation of infinite-order tangency. In the “continuous” space, such
groups satisfy the prolongation formulas for point transformations, tangent trans-
formations, and higher symmetries (or Lie–Bäcklund groups).

In this chapter, we also consider some structural properties of transformation
groups in lattice spaces as well as difference integration and change-of-variables
formulas needed for studying the group properties of finite-difference equations.

1



2 FINITE DIFFERENCES AND TRANSFORMATION GROUPS

1.1. The Taylor Group and Introduction
of Finite-Difference Derivatives

When trying to describe finite-difference objects (equations and lattices) in terms
of differential operators, the main, almost insurmountable difficulty is the nonlocal-
ity of these objects. The nonlocality of objects needed in the description of differ-
ence equations, lattices, and functionals necessitates the use of infinite-dimensional
spaces or spaces of sequences of functions and their derivatives.

1. In the space Z̃ of formal series, consider the formal transformation group whose
infinitesimal operator is the total derivative operator

D =
∂

∂x
+ u1

∂

∂u
+ u2

∂

∂u1

+ · · ·+ us+1
∂

∂us
+ · · · . (1.1)

For simplicity, we restrict ourselves to the case of one independent variable x and
one dependent variable u for now.

According to the exponential representation, the transformations in this group
are determined by the action of the operator Ta ≡ eaD,

zi∗ = eaD(zi) ≡
∞∑
s=0

as

s!
D(s)(zi). (1.2)

The point z∗ ∈ Z̃ has the coordinates

x∗ = Ta(x) = x+ a,

u∗ = Ta(u) =
∞∑
s=0

as

s!
us,

u∗1 = Ta(u1) =
∞∑
s=0

as

s!
us+1,

· · · · · · · · · · · · · · ·

u∗k = Ta(uk) =
∞∑
s=0

as

s!
uk+s,

· · · · · · · · · · · · · · ·

(1.3)

The transformations (1.3) considered on a smooth curve u = u(x) are none other
than the formal Taylor series expansions of the function u = u(x) and its deriva-
tives at the point x + a, and that is why the transformation group (1.3) with in-
finitesimal operator (1.1) was named the Taylor shift group, or simply the Taylor
group [29].

In the theory of higher symmetries, or Lie–Bäcklund groups [73], of all the
transformations comprising the group one distinguishes those which preserve the
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definition and geometric meaning of the derivatives (u1, u2, . . . ) in Z̃, i.e., leave
invariant the following infinite sequence (we still restrict ourselves to the one-
dimensional case):

du = u1 dx,

du1 = u2 dx,

· · · · · · · · ·
dus = us+1 dx,

· · · · · · · · ·

(1.4)

One can readily verify that the Taylor group leaves system (1.4) invariant and
is a higher symmetry group.

Moreover, the Taylor group is a nontrivial higher symmetry group; i.e., it is not
the prolongation to Z̃ of a point or tangent transformation group. This follows from
the fact that the sequence

dx∗

da
= 1, x∗

∣∣
a=0

= x,

du∗

da
= u∗1, u∗

∣∣
a=0

= u,

· · · · · · · · · · · · · · ·
du∗s
da

= u∗s+1, u∗s
∣∣
a=0

= us,

· · · · · · · · · · · · · · ·

of Lie equations determining the finite transformations in the Taylor group for a
given group operator D has no solutions in the finite-dimensional part of Z̃. In
other words, the formal Taylor series expansions (1.3) form a one-parameter group
only in the infinite-dimensional space Z̃.

The Taylor group is a convenient tool in the study of properties of finite-differ-
ence objects.

2. Let us fix an arbitrary parameter value a = h > 0 and use the tangent field (1.1)
of the Taylor group to form a pair of operators, which will be called the right and
left discrete shift operators, respectively:

S
+h

= ehD ≡
∞∑
s=0

hs

s!
Ds, S

−h
= e−hD ≡

∞∑
s=0

(−h)s

s!
Ds, (1.5)

where D is a derivation in Z̃. The operators S
+h

and S
−h

commute with each other

and with the operator Ta = eaD, and moreover, S
+h
S
−h

= S
−h
S
+h

= 1. Furthermore,

(S
±h

)n = Ta
∣∣
a=±nh, n = 0, 1, 2, . . . . (1.6)
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Using S
+h

and S
−h

, we form a pair of right and left discrete (finite-difference) differ-

entiation operators by setting

D
+h

=
1

h
(S
+h
− 1) ≡

∞∑
s=1

hs−1

s!
Ds,

D
−h

=
1

h
(1− S

−h
) ≡

∞∑
s=1

(−h)s−1

s!
Ds.

(1.7)

The operators S
+h

, S
−h

, D
+h

, D
−h

, and Ta pairwise commute, and

D
+h

= D
−h
S
+h
, D

−h
= D

+h
S
−h
.

Thus, the shift operators S
±h

and the discrete differentiation operators D
±h

, which

were introduced phenomenologically in the introduction, can be defined in Z̃ as the
power series (1.5) and (1.7) of the Taylor group operator (1.1).

The shift operators S
±h

and the differentiation operators D
±h

permit one to “dis-

cretize” the space Z̃, i.e., introduce new variables (the difference derivatives and
the lattice).

We denote the countable set {xα = S
+h

α(x)}, α = 0,±1,±2, . . . , of values of

the independent variable x by ω
h

and call it a uniform difference lattice (or mesh).
Let us introduce formal power series of the following special form:

u1
h

= D
+h

(u),

u2
h

= D
−h
D
+h

(u),

u3
h

= D
+h
D
−h
D
+h

(u),

· · · · · · · · · · · · · · ·

(1.8)

The variable us
h

will be called the finite-difference (or discrete, or lattice) derivative

of order s. In the odd case, the formal series u
h

2k+1 will be called the right difference

derivative. Using u
h

2k and u
h

2k+1, one can introduce the odd-order left difference

derivatives
u
h

2k+1 = u
h

2k+1 − hu
h

2k+2

or the difference derivatives

u
h

(σ)
2k+1 = σu

h
2k+1 + (1− σ)u

h
2k+1 = u

h
2k+1 + h(1− σ)u

h
2k+2, σ = const,

with weight σ, which are often used in the theory of finite-difference schemes.
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We denote sequences (u
h

1, u
h

2, u
h

3, . . .) of formal series by Z
h

and the product of

the spaces Z
h

and Z̃ by Z̃
h

,

Z̃
h

= (x, u, u1, u2, . . . ;u
h

1, u
h

2, . . .).

If the series u
h
s converges (in some norm), then it will be called a continuous repre-

sentation of the difference derivative u
h
s.

Note that the formal series u
h
s cannot be represented in exponential form, and

so they do not form a group with parameter h and cannot be described in terms of
a tangent field.

By definition, we extend the action of the discrete shift S
±h

to functions in A as

follows:
S
±h

(F (z)) = F (S
±h

(z)).

This permits finding the difference derivatives of F ∈ A,

D
±h

(F (z)) = ±
F (S
±h

(z))− F (z)

h
.

3. Consider how the Taylor group is prolonged into Z
h

. First, note that the Taylor

group does not change the spacing h of the lattice ω
h

. Indeed, h∗ = x∗α+1− x∗α = h,
because x∗α = xα + a.

Having in mind the preservation of the lattice spacing, we define a transforma-
tion of the variables u

h
s in Z̃

h
by setting

u
h

∗
1 = D

+h
(u∗) = u∗1 +

h

2!
u∗2 +

h2

3!
u∗3 + · · · ,

u
h

∗
2 = D

−h
D
+h

(u∗) = u∗2 +
h2

12
u∗4 + · · · ,

· · · · · · · · · · · · · · · ,
where the u∗s are formal series of the form (1.3) whose transformations are deter-
mined by the tangent field of the Taylor group according to the formula

ζs =
∂u∗s
∂a

∣∣∣∣
a=0

= us+1, s = 1, 2, . . . .

Starting from this, one can readily compute the additional coordinates of the
operator for the variables u

h
s,

ζ
h

1 =
∂u
h

∗
1

∂a

∣∣∣∣
a=0

= ζ1 +
h

2!
ζ2 + · · · = u2 +

h

2!
u3 + · · · = D(u

h
1),

ζ
h

2 =
∂u
h

∗
2

∂a

∣∣∣∣
a=0

= D(u2
h

), . . . , ζ
h

s = D(u
h
s), . . . .

(1.9)
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Thus, the tangent field of the Taylor group prolonged into Z̃
h

can be identified with
the operator

D =
∞∑
i=1

D(zi)
∂

∂zi
, (1.10)

where the zi are the coordinates of the vector (x, u, u1, u2, . . . , u1
h
, u2
h
, . . .). Note

that the coordinates (1.9) are formal power series in h, and hence the series u
h
s
∗ =

u
h
s
∗(h, a) are formal power series in two symbols, “group” series in a and “non-

group” series in h.

4. Now consider the result of the action of the discrete shift operator S
±h

in the

lattice space Z
h

= (x, u, u
h

1, u
h

2, . . .),

S
±h

(x) = x± h,

S
+h

(u) = u+ h
∑
s≥1

hs−1

s!
Ds(u) ≡ u+ hu

h
1.

In a similar way, we obtain

S
−h

(u) = u− hS
−h

(u
h

1) = u− hu
h

1 + h2u
h

2.

By just the same procedure, we single out the formal series u
h
s in the result of the

action of S
±h

on u
h
k, k = 1, 2, . . . . As a result, we obtain a table showing how the

discrete shift operator acts in the lattice space Z
h

(see Table 1.1).
From Table 1.1, we readily obtain a table showing how the discrete differentia-

tion operator D
±h

= ±h−1(S
±h
− 1) acts on the point (x, u, u

h
1, u
h

2, . . .) (Table 1.2).

Remark 1.1. Under the action of the Taylor group in Z̃
h

, as a increases, the point

z = (x, u, u1, u2, . . . , u
h

1, u
h

2, . . .) draws a one-parameter curve (namely, the orbit of

the point z). Since (S
±h

)n = Ta
∣∣
a=±nh, we see that the orbit of the Taylor group is a

“continuous shift” drawn through the “discrete shift” (S
±h

)n. If the formal series in

question converge, then one can speak of the geometric meaning of the lattice vari-
ables u

h
s. In particular, u

h
1 is the slope of the chord joining the points u and S

+h
(u) in

the (x, u)-plane, onto which the orbit of the point z of the Taylor group is projected.
Note that the action of the operators S

±h
does not form a group with parameter h in

the space Z
h

of difference variables.
Indeed, consider, say, the following transformation of the variable u:

S
+h

(u) = u+ hu
h

1.
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Table 1.1: Action of the discrete shift operator on the point z = (x, u, u
h

1, u
h

2, . . .)

S
−h

is the finite-difference left shift S
+h

is the finite-difference right shift
operator operator

S
−h

(x) = x− h S
+h

(x) = x+ h

S
−h

(u) = u− hu
h

1 + h2u
h

2 S
+h

(u) = u+ hu
h

1

S
−h

(u
h

1) = u
h

1 − hu
h

2 S
+h

(u
h

1) = u1 + hu
h

2 + h2u
h

3

S
−h

(u
h

2) = u
h

2 − hu
h

3 + h2u
h

4 S
+h

(u
h

2) = u
h

2 + hu
h

3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S
−h

(u
h

2k+1) = u
h

2k+1 − hu
h

2k+2 S
+h

(u
h

2k+1) = u
h

2k+1 +hu
h

2k+2 +h2u
h

2k+3

S
−h

(u
h

2k+2) = u
h

2k+2−hu
h

2k+3 +h2u
h

2k+4 S
+h

(u
h

2k+2) = u
h

2k+2 + hu
h

2k+3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1.2: Action of the discrete differentiation operator on the coordinates of the
point z

h
= (x, u, u

h
1, u
h

2, u
h

3, . . .)

D
−h

is the finite-difference left D
+h

is the finite-difference right
differentiation operator differentiation operator

D
−h

(x) = 1 D
+h

(x) = 1

D
−h

(u) = u
h

1 − hu
h

2 D
+h

(u) = u
h

1

D
−h

(u
h

1) = u
h

2 D
+h

(u
h

1) = u
h

2 + hu
h

3

D
−h

(u
h

2) = u
h

3 − hu
h

4 D
+h

(u
h

2) = u
h

3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
D
−h

(u
h

2k+1) = u
h

2k+2 D
+h

(u
h

2k+1) = u
h

2k+2

D
−h

(u
h

2k+2) = u
h

2k+3 − hu
h

2k+4 D
+h

(u
h

2k+2) = u
h

2k+3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The composition of such transformations has the form

S
+h

2(u) = S
+h

(u+ hu
h

1) = u+ 2hu
h

1 + hu
h

2 + h2u
h

3 6= u+ 2hu1
h
.

However, the point S
+h

2(u) can be reached with the help of the Taylor group with

value a = 2h of the group parameter,

S
+h

2(u) = Ta(u)
∣∣
a=2h

= e2hD(u).
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5. Remarks on the multidimensional case. Let Z be the space of sequences
(x, u, u1, u2, . . .), where x = {xi; i = 1, 2, . . . , n}, u = {uk; k = 1, 2, . . . ,m},
u1 = {uki } is the set of mn first partial derivatives, u2 = {ukij} is the set of second
partial derivatives, etc.

The prolongation formulas obtained earlier can readily be generalized to the
case of several dependent variables uk; to this end, it suffices to treat the latter as
the components of a vector u. However, one encounters essential changes when
passing to the case of several variables xi.

To avoid awkward formulas, we restrict ourselves to the case n = 2; i.e., x =
(x1, x2). The superscript k on uk will be omitted.

We consider two types of differentiations,

D1 =
∂

∂x1
+ u1

∂

∂u
+ u11

∂

∂u1

+ u21
∂

∂u2

+ · · · ,

D2 =
∂

∂x2
+ u2

∂

∂u
+ u12

∂

∂u1

+ u22
∂

∂u2

+ · · · ,
(1.11)

where

u1 =
∂u

∂x1
, u11 =

∂2u

∂(x1)2
, u21 =

∂2u

∂x2∂x1
, . . .

and summation over the omitted superscript k in (1.11) is assumed.
The operators D1 and D2 generate two commuting Taylor groups, whose finite

transformations are determined by the action of the operators T 1
a = eaD1 and T 2

a =
eaD2 . Let us fix two arbitrary parameter values h1, h2 > 0 and form two kinds of
discrete shift operators,

S
±h

1 = e±h1D1 ≡
∑
s≥0

(±h1)s

s!
Ds

1, S
±h

2 = e±h2D2 ≡
∑
s≥0

(±h2)s

s!
Ds

2. (1.12)

Accordingly, we have two pairs of discrete differentiation operators,

Di
h

= ± 1

hi
(Si
±h
− 1), i = 1, 2.

The set {
S
±h

α

1

(x1), S
±h

β

2

(x2)
}
, α, β = 0, 1, 2, . . . ,

of points in the (x1, x2)-plane will be called a uniform orthogonal difference mesh
and denoted by ω

h
. The operators S

±h
i and D

±h
i in any combination commute on the

uniform mesh ω
h

.

By analogy with the one-dimensional case, we introduce the difference deriva-
tives u

h
1 = D

+h
1(u), u

h
11̄ = D

−h
1D

+h
1(u), u

h
12̄ = D

−h
2D

+h
1(u), u

h
2 = D

+h
2(u), u

h
12 =
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D
+h

2D
+h

1(u), etc. The analogs of Tables 1.1 and 1.2 of discrete shifts and differentia-

tions can be formed accordingly.
Thus, the Taylor group permits naturally introducing the discrete shift opera-

tors S
±h

and the discrete differentiation operators D
±h

. In turn, these operators allow

one to consider new variables—difference derivatives, introduced as formal power
series of a special form. Needless to say, there are various ways to introduce differ-
ence derivatives. For example, independently from the continuous variables, one
can introduce difference derivatives u

h
s and define the action of S

±h
and D

±h
on these

derivatives by using Tables 1.1 and 1.2.
Another approach is to introduce the difference derivatives on the manifold u =

φ(x). In this case, Tables 1.1 and 1.2 and the difference Leibniz rule can be obtained
by a method usual in the theory of difference schemes (e.g., see [122]). Note that
the method that we used in this section to introduce the variables u

h
s is independent

of a specific manifold.
The Taylor group considered above is unique in a sense. It is the simplest higher

symmetry group, and the Taylor group is completely sufficient to extend the action
of the point transformation group to the case of finite-difference variables. The
algebra of operators corresponding to the Taylor group forms an ideal in the higher
symmetry algebra.

A more general remark is also possible. As is known, the idea that the Lie
transformation group is local consists in that the transformation superposition (and
inversion) is possible only for elements sufficiently close to the unit element, i.e.,
for sufficiently small values of the group parameter a. Actually, the same idea
also underlies the theory of functions when constructing analytic continuations.
These typical ideas of two different fields in mathematics have a quite specific
intersection: the Taylor group. The Taylor group considered on a manifold is the
Taylor series used to construct the analytic continuation.

In what follows, we show that the Taylor group can be represented directly in
the space of discrete variables; in this case, the transformation group isomorphic to
it operates with the so-called Newton series.

1.2. Difference Analog of the Leibniz Rule
and Discrete Differentiation Formulas

In the preceding section, the action of the discrete shift operator S
±h

was extended

(by definition) to functions in A as follows: S
±h

(F (z)) = F (S
±h

(z)). This permits

finding the difference derivatives of F ∈ A in the form

D
±h

(F (z)) = ±
F (S
±h

(z))− F (z)

h
. (1.13)
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Starting from this definition, it is easy to introduce the discrete (difference)
Leibniz rule for the operators of right and left discrete differentiation:

D
+h

(FG) = D
+h

(F )G+ FD
+h

(G) + hD
+h

(F )D
+h

(G),

D
−h

(FG) = D
−h

(F )G+ FD
−h

(G)− hD
−h

(F )D
−h

(G),
(1.14)

where F,G ∈ A. Indeed, let us prove the first formula:

D
+h

(FG) =
S
+h

(FG)− FG

h
=

S
+h

(F )G− FG

h
+
F S

+h
(G)− FG

h

+ h

(
S
+h

(F )− F
)(
S
+h

(G)−G
)

h2
= D

+h
(F )G+ FD

+h
(G) + hD

+h
(F )D

+h
(G).

The second equation is also obvious.
The Leibniz rule for the discrete differentiation can be written in the different

equivalent form

D
±h

(FG) = D
±h

(F )G+ S
±h

(F )D
±h

(G) = D
±h

(F )S
±h

(G) + FD
±h

(G), (1.15)

which readily follows from the above definitions.
Let us present several useful formulas of discrete differentiation, which can be

proved by straightforward computations:

D
+h

(uv−) = u
h
xv + uv

h
x̄, D

−h
(uv+) = u

h
x̄v + uv

h
x,

where z+ = S
+h

(z) and z− = S
−h

(z);

D
+h

(un) =
n∑

m=1

(
n

m

)
un−mu

h
xh

m−1, D
−h

(un) =
n∑

m=1

(
n

m

)
un−mu

h
x̄(−h)m−1,

D
−h

(
1

x

)
= − 1

x(x− h)
, D

+h

(
1

x

)
= − 1

x(x+ h)
,

D
−h

(
1

u

)
= −

u
h
x̄

u−u
, D

+h

(
1

u

)
= −

u
h
x

u+u
,

D
−h

(ax) = ax
1− a−h

h
, D

+h
(ax) = ax

a+h − 1

h
,

D
−h

(lnu) =
1

h
ln

(
1− h

u
h
x̄

u

)
, D

+h
(lnu) =

1

h
ln

(
1 + h

u
h
x

u

)
,

D
−h

(sinαx) =
2

h
sin

(
αh

2

)
cos

(
α

(
x− h

2

))
,

D
+h

(sinαx) =
2

h
sin

(
αh

2

)
cos

(
α

(
x+

h

2

))
,
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D
−h

(arctanx) = arctan
1

1 + x(x− h)
, D

+h
(arctanx) = arctan

1

1 + x(x+ h)
.

The powers of the operators D
+h

and S
+h

are related as

D
+h

n = h−n
n∑

m=0

(−1)m
(
n

m

)
S
+h

n−m, S
+h

n =
n∑

m=0

(
n

m

)
hmD

+h

m.

The difference Leibniz rule significantly affects all constructions of the group
analysis of difference equations. The distinction of the space of discrete variables
from the space of continuous variables can be described in various languages. From
the physical viewpoint, the space of discrete variables has a new scale, the mesh
spacing, which is absent in the continuous model. From the functional-analytic
viewpoint, the main distinction is that the objects are nonlocal (i.e., the space Z̃

h

is in principle infinite-dimensional). From the algebraic viewpoint, this is a new
Leibniz rule, which means that the action of the discrete differentiation on analytic
functions (and on formal power series) is quite different from the “usual” Leibniz
rule.

1.3. Invariant Difference Meshes

In this section, we study the relations between one-parameter groups and difference
meshes preserving their geometric structure under group transformations. Consid-
ering several typical examples of difference meshes, we obtain criteria for their
invariance.

1.3.1. Invariant uniform meshes and invariance criterion

The uniform difference mesh ω
h

is the most widely used discretization method for
spaces of independent variables. The formal one-parameter group transformations
that change the independent variable x can distort the mesh by violating its uni-
formness, which affects finite-difference equations written on ω

h
. In particular, the

operators D
+h

and D
−h

do not commute any more, and the approximation order can

also be changed. Therefore, we need to single out the class of admissible trans-
formations preserving the mesh uniformness. First, consider the case of a single
independent variable.

We assume that there is a formal transformation group G1 given in Z̃
h

,

x∗ = f(z, a), u
h

1
∗ = ψ1(z, a),

u∗ = ϕ(z, a), u
h

2
∗ = ψ2(z, a),

u∗1 = ϕ1(z, a), . . . . . . . . . . . . ,

u∗2 = ϕ2(z, a), . . . . . . . . . . . . ,

(1.16)
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which is associated with an infinitesimal operator

X = ξ
∂

∂x
+ η

∂

∂u
+
∑
s≥1

ζs
∂

∂us
+
∑
m≥1

ζ
h

m ∂

∂u
h
m

. (1.17)

It is clear that if the independent variable is an invariant (i.e., f(z, a) ≡ x and
ξ ≡ 0), then such a class of transformations does not change the difference mesh;
the same is true for uniform meshes. But this condition is not necessary.

Let us supplement the space Z
h

with new variables, the right spacing h+ and the

left spacing h− at a point zi: (x, u, u
h

1, u
h

2, . . . , h+, h−).

It is natural to define the mesh spacing transformations as follows:

h+∗ = S
+h

(x∗)− x∗ = f(S
+h

(z), a)− f(z, a),

h−
∗

= x∗ − S
−h

(x∗) = f(z, a)− f(S
−h

(z), a);

then h+
∗∣∣
a=0

= h−
∗∣∣
a=0

= h. The additional coordinates of the operator (1.17) are

∂h∗+
∂a

∣∣∣∣
a=0

= (S
+h
− 1)ξ(z) = ξ(S

+h
(z))− ξ(z) = hD

+h
(ξ),

∂h∗−
∂a

∣∣∣∣
a=0

= (1− S
−h

)ξ(z) = ξ(z)− ξ(S
−h

(z)) = hD
−h

(ξ).

If the tangent field for h+ and h− is known, then we can readily obtain the invari-
ance criterion for the equality h+ = h− viewed as a manifold in the extended space
Z̃
h

= (x, u, u1, . . . ;u
h

1, . . . , h+, h−). Indeed, by applying the infinitesimal criterion
and by using the operator (1.17), we obtain the following second-order difference
equation for the coordinate ξ(z) of the operator (1.17):

(S
+h
− 1)ξ(z) = (1− S

−h
)ξ(z),

or D
+h
D
−h

(ξ(z)) = 0. Thus, we arrive at the following assertion.

PROPOSITION 1.2. For the mesh ω
h

to remain uniform (h+
∗ = h−

∗) under the action

of the transformation group G1, it is necessary and sufficient that the following
condition be satisfied at each point z ∈ Z̃

h
:

D
+h
D
−h

(ξ(z)) = 0. (1.18)

The meshes satisfying criterion (1.18) are said to be invariantly uniform.



1.3. INVARIANT DIFFERENCE MESHES 13

Remark. Condition (1.18) means that an arbitrary uniform mesh preserves its uni-
formness in the entire space Z̃

h
. For a specific difference equation F (z) = 0 con-

sidered on a uniform mesh ω
h

, condition (1.18) can be weakened to the condition

D
+h
D
−h

(ξ(z))
∣∣
F (z)=0

= 0. (1.19)

In what follows, we consider an example of this weakening.

Consider examples of groups satisfying condition (1.18).

1. In particular, condition (1.18) is satisfied by the group G1 with ξ = const, i.e.,
the group of shifts along the coordinate x. The simplest example is the translation
along the independent variable, X = ∂/∂x. But such a condition may be satisfied
not only by a point transformation group. For example, for the Taylor group we
have ξ = 1, x∗ = x+ a, and h∗ = h = const.

2. In particular, condition (1.18) is also satisfied for the relations ξ = Ax, A =
const, i.e., for the transformations under which the x-axis is extended. In this case,
h+∗ = h−

∗
= eaA(h), where a is the group parameter.

3. Condition (1.18) is satisfied by the group G1 for which ξ(x + h) = ξ(x) is a
periodic function with period h.

4. In the more general case, ξ(S
±h

(z)) = ξ(z); i.e., ξ(z) is invariant under the

discrete shift operator S
±h

.

5. Equation (1.18) is satisfied by the function ξ(z) = A(z)x + B(z), where A(z)
and B(z) are arbitrary invariants of the discrete shift operator S

±h
.

It is of interest to note that criterion (1.18) is satisfied by the groups most widely
considered in mathematical models of physics. We mean translations along inde-
pendent variables and dilations, i.e., “self-similar” transformations; in the multi-
dimensional case, as we shall see, they are supplemented with rotations and other
well-known groups.

But, as the simple example given in the Introduction shows, it is impossible to
restrict oneself only to the case of uniform meshes.

An example of a group (projective transformations) that does not satisfy condi-
tion (1.18) is as follows: X = x2∂/∂x + · · · ; in this case, criterion (1.18) is not
satisfied: D

+h
D
−h

(x2) = 2.

Proposition 1.2 can readily be generalized to the multidimensional case. In-
deed, let a group G1 be determined by the operator

X = ξi
∂

∂xi
+ η

∂

∂u
+ · · · , i = 1, 2, . . . , n; (1.20)
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the number of dependent variables is of no importance here. In Z̃
h

, the opera-
tor (1.20) determines the finite transformations

xi∗ = f i(z, a), u∗ = φ(z, a), . . . . . . . . . ,

which transform the spacings h+
i and h−i of the orthogonal mesh ω

h
as follows:

h+
i
∗

= Si
+h

(xi
∗
)− xi∗ = f i(Si

+h
(z), a)− f i(z, a),

h−i
∗

= xi
∗ − Si

−h
(xi
∗
) = f i(z, a)− f i(Si

−h
(z), a).

Just as in the one-dimensional case, we say that the mesh ω
h

preserves its uni-

formness in the direction xi if the relation h+
i = h−i is invariant under the action

of G1.
The use of an infinitesimal invariance criterion results in the following neces-

sary and sufficient conditions for the invariance of the mesh uniformness in the
direction xi:

Si
+h

(ξi)− 2ξi + Si
−h

(ξi) = 0,

where i is fixed, or

Di
+h
Di
−h

(ξi) = 0. (1.21)

Note that in the one-dimensional case criterion (1.18) completely solves the
problem of invariance of the mesh geometric structure, while in the multidimen-
sional case condition (1.21) solves this problem only partly. In particular, condition
(1.21) does not guarantee that the mesh remains orthogonal under the action of the
transformation group G1.

1.3.2. Preservation of mesh orthogonality

Assume that there is given an orthogonal mesh ω
h

, uniform or nonuniform. For

simplicity, consider the case of two independent variables x1 and x2. Let us see
how an arbitrary cell of the mesh ω

h
is transformed under the action of G1 with the

operator (1.20).
PointsA,B,C, andD of an arbitrary mesh cell (see Fig. 1.1) have the following

coordinates:

A : (x1, x2), B : (x1, x2 + h+
2 ), C : (x1 + h+

1 , x
2 + h+

2 ), D : (x1 + h+
1 , x

2).

The transformation group G1 takes points A, B, C, and D into points A∗, B∗, C∗,
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and D∗ with the following coordinates:

A∗ : (f 1(z, a), f2(z, a)), B∗ :
(
f 1(S

+h
2(z), a), f2(S

+h
2(z), a)

)
,

C∗ :
(
f 1(S

+h
1 S

+h
2(z), a), f2(S

+h
1 S

+h
2(z), a)

)
, D∗ :

(
f 1(S

+h
1(z), a), f2(S

+h
1(z), a)

)
.

Now we write out the orthogonality condition for the angle B∗A∗D∗:

[f 1(S
+h

2(z), a)− f 1(z, a)][f1(S
+h

1(z), a)− f 1(z, a)]

+ [f 2(S
+h

2(z), a)− f 2(z, a)][f2(S
+h

1(z), a)− f 2(z, a)] = 0.

To obtain an infinitesimal characteristic of the last condition, we apply the operation
∂/∂a

∣∣
a=0

to it:
D
+h

1(ξ2) = −D
+h

2(ξ1). (1.22)

For the mesh orthogonality condition to be satisfied for all angles at this point,
condition (1.22) must obviously hold for any combinations of the differentiation
operators D

−h
1, D

+h
1, D
−h

2, and D
+h

2:

D
±h

1(ξ2) = −D
±h

2(ξ1). (1.23)

Now we obtain the following obvious statement.

PROPOSITION 1.3. For an orthogonal mesh ω
h

to preserve its orthogonality in the

plane (xi, xj) under any transformation of the group G1 with the operator (1.20),
it is necessary and sufficient that the following condition be satisfied at each mesh
point:

D
±h

i(ξ
j) = −D

±h
j(ξ

i), i 6= j. (1.24)
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Condition (1.24) is a partial difference equation for the coordinate ξi of the
generator of the group G1. The meshes for which condition (1.24) is satisfied are
said to be invariantly orthogonal under the action of G1.

One can readily verify that condition (1.24) is satisfied for the translation, di-
lation, rotation and many other groups. But there exist transformations for which
conditions (1.24) are not satisfied (i.e., orthogonal meshes do not preserve their
structure). For example, for the Lorentz transformations

X = x2 ∂

∂x1
+ x1 ∂

∂x2

we have

D
+h

2(x2) = 1, D
+h

1(x1) = 1, D
+h

2(ξ1) 6= −D
+h

1(ξ2).

We note that we have obtained criterion (1.24) for an orthogonal mesh originally
oriented along the coordinate axes. Therefore, if condition (1.24) for a given group
G1 is not satisfied, then this does not mean that there does not exist an orthogonal
differently oriented mesh that preserves its orthogonality under the action of G1.

Consider this situation.
We assume that there is given an orthogonal mesh ω

h
, uniform or nonuniform,

titled with respect to the coordinate x1- and x2-axes (see Fig. 1.2).
In the plane (x1, x2), there is a pair of shift operators S

±h
1 and S

±h
2 acting so that

the coordinates zi of a vector in Z̃
h

(or a finite set z of such vectors) move along the

mesh edges ω
h

but not along the coordinate axes.

Under the action of the transformation group G1 with the operator (1.20), the
nodes of an arbitrary cell of the mesh ω

h
are taken to points A∗, B∗, C∗, and D∗
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with the following coordinates:

A∗ : (f 1(z, a), f2(z, a)), B∗ : (f 1(S
+h

2(z), a), f2(S
+h

2(z), a)),

C∗ : (f 1(S
+h

1 S
+h

2(z), a), f2(S
+h

1 S
+h

2(z), a)), D∗ : (f 1(S
+h

1(z), a), f2(S
+h

1(z), a)).

Let us write out the orthogonality condition for the angle B∗A∗D∗:

[f 1(S
+h

2(z), a)− f 1(z, a)][f1(S
+h

1(z), a)− f 1(z, a)]

+ [f 2(S
+h

2(z), a)− f 2(z, a)][f2(S
+h

1(z), a)− f 2(z, a)] = 0.

By applying the operation ∂/∂a
∣∣
a=0

to the last equation, we obtain

(S
+h

2(ξ1)− ξ1)h+
1 cosα− (S

+h
1(ξ1)− ξ1)h+

2 sinα

+ (S
+h

2(ξ2)− ξ2)h+
1 sinα + (S

+h
1(ξ2)− ξ2)h+

2 cosα = 0,

or, by dividing by h+
1 h

+
2 ,

D
+h

2(ξ1) cosα− D
+h

1(ξ1) sinα + D
+h

2(ξ2) sinα + D
+h

1(ξ2) cosα = 0, (1.25)

where the D
+h

i are the differentiations along the mesh edges.

Thus, we obtain the following assertion.

PROPOSITION 1.4. For an orthogonal mesh ω
h

oriented at an angle α with the co-

ordinate axes (according to Fig. 1.2) to preserve its orthogonality under any trans-
formation of the group G1 with the operator (1.20), it is necessary and sufficient
that conditions (1.25) be satisfied.

Note that conditions (1.25) for α = 0 imply conditions (1.24).

EXAMPLE 1.5. We return to our example of an orthogonal mesh subjected to the
Lorentz transformations:

X = x2 ∂

∂x1
+ x1 ∂

∂x2
.

In this case, it follows from conditions (1.25) that

D
+h

2(x2) cosα− D
+h

1(x2) sinα + D
+h

2(x1) sinα + D
+h

1(x1) cosα = 0,

which, with the “inclined” differentiation D
+h

i (see Fig. 1.2) taken into account,

implies that sin2 α = cos2 α and hence α = π/4 + kπ/2; i.e., the mesh must be
oriented at an angle of 45◦ with respect to the coordinate axes: it is only in this case
that it preserves its orthogonality under the Lorentz transformations.
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Consider the one-parameter dilation group with the operator

X = Ax1 ∂

∂x1
+ x2 ∂

∂x2
, (1.26)

where A = const.

EXAMPLE 1.6. Consider a mesh located as in Fig. 1.2. In this case, it follows from
conditions (1.25) for the operator (1.26) that

D
+h

2(Ax1) cosα− D
+h

1(Ax1) sinα + D
+h

2(x2) sinα + D
+h

1(x2) cosα = 0,

which implies that
(A− 1) sinα cosα = 0.

In particular, the latter condition means that the orthogonal mesh preserves its or-
thogonality under the dilation transformations (1.26) with any A if it is parallel to
the coordinate axes. Under the condition α 6= 0, we obtain A = 1; i.e., the di-
lation group does not change the orthogonality of an “inclined” orthogonal mesh
(Fig. 1.2) only if the dilations are uniform.

1.3.3. Invariant nonuniform meshes and invariance criterion

Now we assume that a nonuniform mesh ω
~

is given in Z̃
h

. At each point zi ∈ Z̃
h

,

there is a pair of given quantities, the right spacing h+ and the left spacing h−. (We
first consider the case of a single independent variable x.) The operators D

+h
and D

−h
are no longer commutative and become “local,” i.e., depend on the points x.

Let the right spacing h+ be given as a sufficiently smooth function of x, h+ =
ϕ(x). The left spacing is the right spacing at the point shifted by h− to the left,
h− = ϕ(x− h−). Therefore, we can consider only h+. Conversely, if the function
ϕ(x) and the point x0 at which the discretization of the x-axis begins are given,
then the points of the mesh ω

~
can be reconstructed uniquely.

Under the action of the group G1, the quantity x and hence the variables h+

and h− vary. After the transformations of G1, the new spacing h∗+ is, in general,
some other function of x∗, h∗+ = ϕ̃(x∗).

DEFINITION. We say that a given nonuniform mesh ω
~

is invariant under transfor-

mations of G1 in the space Z̃
h

if the manifold

h+ = ϕ(x) (1.27)

is invariant, i.e., if the relation h∗+ = ϕ(x∗) remains valid in the new variables.

The invariance criterion for the manifold (1.27) leads to the following assertion.
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PROPOSITION 1.7. For the difference mesh ω
~

given by Eq. (1.27) to be invariant

under the transformations of G1 with the operator (1.17), it is necessary and suffi-
cient that the following condition be satisfied:

ξ(S
+h

(z))− ξ(z)
(

1 +
∂ϕ

∂x

)∣∣∣∣
(1.27)

= 0. (1.28)

Proof. Indeed, let us act by the operator (1.17) on the relation h+ = ϕ(x):

X(h+ − ϕ(x)) = ξ(S
+h

(z))− ξ(z)− ξ(z)∂ϕ
∂x

= 0.

Obtaining the manifold (1.27), we complete the proof.

Note that condition (1.28) can be written in the equivalent form

D
+h

(ξ)

ξ
=
ϕ′x
ϕ
.

EXAMPLE. Consider the transformations determined by the operator

X = x2 ∂

∂x
.

The criterion for preserving the uniformness is not satisfied, D
+h
D
−h

(x2) = 2, and

therefore, we must consider the nonuniform mesh h+ = ϕ(x). Let us continue the
operator to h+ and h−:

X = x2 ∂

∂x
+ h+(2x+ h+)

∂

∂h+

+ h−(2x− h−)
∂

∂h−
. (1.29)

An invariant mesh can readily be constructed starting from the invariants of the
group G1:

J1 = x+
x2

h+

, J2 = x− x2

h−
.

For example, let us construct an invariant nonuniform mesh on an arbitrary interval
(0, L0). By setting J1 = L0, we obtain the relation

h+ =
x2

L0 − x
, (1.30)

and the left spacing is determined by the equation h− = ϕ(x− h−):

h− =
x2

L0 + x
. (1.31)

One can readily verify that relations (1.30) and (1.31) define an invariant manifold
with respect to the operator (1.29).
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We can see that the quantity

h+

h−
=
L0 + x

L0 − x

is also an invariant; i.e., the transformations of G1 preserving the mesh invariance
preserve the difference stencil proportions. This situation also takes place in the
general case.

Indeed, let a nonuniform difference mesh be given,

h+ = ϕ(x), h− = ϕ(x− h−). (1.32)

If the mesh is invariant, then on (1.32) we have

(ξ+ − ξ) = ξϕx, (ξ − ξ)− = ξ−ϕx
−. (1.33)

The invariance of the manifold

h+

h−
=

ϕ(x)

ϕ(x− h−)
, (1.34)

is determined by whether the following condition is satisfied on (1.34):

(ξ+ − ξ)ϕ− + ξ−ϕx
− = (ξ − ξ−)ϕ+ h−ξϕx,

which holds by virtue of (1.32) and (1.33).
Thus, we have the following assertion.

PROPOSITION 1.8. Let a nonuniform mesh (1.27) be given in Z̃
h

. Then it follows

from its invariance under the one-parameter group G1 with the operator (1.17)
that (1.34) is also invariant; i.e., the transformation group preserves the difference
stencil proportions.

EXAMPLE (exponential meshes). Consider the special case of a nonuniform one-
dimensional mesh in which the spacings h+ exponentially increase as x→∞,

qh+ = h−, (1.35)

where q = const, 0 < q < 1. For example, relation (1.35) is satisfied for the mesh{
h+ = xq−1 − x,
h− = x− qx.

(1.36)

Acting by the operator (1.17), we readily obtain necessary and sufficient conditions
for the invariance of the exponential mesh:[

qξ+ − (q + 1)ξ + ξ−
]

(1.35) = 0,
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where ξ+ = S
+h

(ξ) and ξ− = S
−h

(ξ). In the limit case q → 1, the above conditions

imply a criterion for the invariant uniformness of the mesh (1.18). One can readily
verify that, in particular, this criterion is satisfied by the translation group (ξ =
const) and the dilation group (ξ = A0x).

In the special case (1.36), where the mesh depends only on the independent
variable x, the action of the differentiation operators on F (z) ∈ A

h
can be written

as

D
+h
F (z)

∣∣
(1.36) =

F (S
+h

(z))− F (z)

x(q−1 − 1)
= D−,

D
−h
F (z)

∣∣
(1.36) =

F (z)− F (S
−h

(z))

x(1− q)
= D+,

where the S
±h

are the shift operators along the mesh (1.36).

The discrete differentiation operators D+ and D− on the mesh (1.36) are used
to write out the so-called “q-deformed” difference equations (e.g., see [55–57]).

1.3.4. Invariant meshes depending on the solution

Proposition 1.7 can be generalized to the case of a time-dependent mesh ω
~

.

PROPOSITION 1.9. Let a mesh be given by the equation h+ = ϕ(z), where ϕ(z) ∈
A
h

. Then the invariance criterion for this mesh acquires the form

ξ(S
+h

(z))− ξ(z)−X(ϕ(z))
∣∣
h+=ϕ(z)

= 0, (1.37)

where X is an operator of the form (1.17).
In particular, if h+ = ϕ(x, u), then the criterion (1.37) becomes

ξ(S
+h

(z))− ξ(z)
(

1 +
∂ϕ

∂x

)
− η(z)

∂ϕ

∂u

∣∣∣∣
h+=ϕ(x,u)

= 0.

This proposition can be proved by a straightforward application of the opera-
tor (1.17).

If the coordinate ξ(x, u) of the operator of the group G1 explicitly depends on
the solution (ξu 6= 0),1 then the invariance criterion for the mesh can be explicitly
related to the solution of the corresponding invariant equation.

1The transformation groups with ξu = 0 were called the “x-autonomous” groups by Ovsyan-
nikov [116].
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EXAMPLE. Later on, we shall consider an example in which the invariance criteria
for the difference mesh and the difference equation are related to each other, i.e.,
do not hold separately.

In particular, the second-order linear equation

d2u

dx2
= 0 (1.38)

admits the operator

X = u
∂

∂x
. (1.39)

In Z
h

, consider the finite-difference equation

v
h
xx̄ = 0 (1.40)

providing the second-order approximation to Eq. (1.38) on the uniform mesh. The
operator

X
h

= v
∂

∂x
− v

h

2
x

∂

∂v
h
x

+ v
h
xx̄(2h

−v
h
xx̄ − 3v

h
x)

∂

∂v
h
xx̄

(1.41)

corresponding to (1.39) isomorphically represents the operator (1.39) in the mesh
space. (The prolongation formulas are given below.) The operator (1.41) does not
satisfy the criterion for preserving the mesh uniformness. But a uniform mesh can
still be used.

Indeed, we write our manifold as the two relations

v
h
xx̄ = 0, h+ = h− (1.42)

and prolong the operator (1.41) to h+ and h−,

X
h

= v
∂

∂x
+ · · ·+ h+v

h
x
∂

∂h+

+ h−v
h
x̄
∂

∂h−
, (1.43)

where v
h
x̄ is the first-order left difference derivative,

v
h
x̄ = v

h
x − h−v

h
xx̄.

We act by the operator (1.43) on the manifold (1.42):

(2h−v
h
xx̄ − 3v

h
x)v
h
xx̄

∣∣
(1.42) = 0,

h+v
h
x − h−v

h
x̄

∣∣
(1.42) = 0.

The invariance of the first equation is obvious; the invariance of the second equation
follows from (1.42) and the relation

h−v
h
xx̄ = v

h
x − v

h
x̄.
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Thus, the uniform mesh is not invariant in the entire space Z
h

but admits the opera-
tor (1.43) on the manifold (1.42).

In more detail, this situation can be considered together with the invariance
criterion for difference equations (see Chapter 2).

1.3.5. Straightening of an invariant nonuniform difference mesh

The invariance property
h+ = ϕ(x), (1.44)

of an arbitrary mesh ω
~

is independent of the choice of the coordinate system, be-
cause the invariance criterion for this mesh is a scalar expression. But an external
point transformation can change the mesh structure.

It is well known (see [111]) that each point one-parameter group G1 can be
transformed by a change of variables into the translation group along the indepen-
dent variable. In this case, the group operator in the new variables satisfies the
invariant uniformness condition (1.18).

The following theorem solves the problem of the possibility of “straightening”
an invariant nonuniform mesh (1.28), i.e., of making the mesh uniform.

PROPOSITION 1.10. Let a smooth and locally invertible change of variables be
given in Z̃

h
,

x̄ = f(x, u), ū = g(x, u). (1.45)

Then the mesh ω
h

(1.44) invariant under the one-parameter groupG1 with the oper-

ator (1.17) becomes uniform after the change of variables (1.45) with the following
condition on the function f :

X
{
f(x+, u+)− 2f(x, u) + f(x−, u−)

} ∣∣
(1.44) = 0, (1.46)

where z+ = S
+h

(z) and z− = S
−h

(z).

Indeed, according to the transformation formulas for the coordinates of the op-
erator of a point group (see [111]), the operator (1.17) in the new coordinate system
acquires the form

X̃ = X(f(x, u))
∂

∂x̄
+X(g(x, u))

∂

∂ū
+ · · ·

+X(f(x+, u+)− f(x, u))
∂

∂h̄+

+X(f(x, u)− f(x−, u−))
∂

∂h̄−
, (1.47)

where X is the operator (1.17) in the “old” variables (x, u) and h̄+ and h̄− are the
right and left spacings in the “new” variables. By applying the mesh uniformness
condition to the operator (1.47), we obtain condition (1.46).
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In particular, by solving the equations

X(f(x, u)) = 1, X(g(x, u)) = 0

for f and g, we obtain the change of variables (1.45), which transforms the group
G1 into the translation group X̃ = ∂

∂x̄
.

A sufficient condition for “straightening” of the mesh (1.46) is simplified es-
sentially if the change of variables concerns only the independent variable,

x̄ = f(x), ū = u.

In this case, the condition reads

S
+h

(ξfx)− 2ξfx + S
−h

(ξfx)
∣∣
ω
h

= 0. (1.48)

The new spacing has the form h̄+ = S
+h

(f(x))− f(x) = f(x+ h)− f(x).

Thus, each invariant nonuniform mesh is uniform in some coordinate system.
Note that the difference equations written on this mesh are of course different.

EXAMPLE (of “straightening” of a mesh). We use the above condition for straight-
ening of a mesh, which is invariant under the one-parameter projective group:

X = x2 ∂

∂x
+ h+(2x+ h+)

∂

∂h+

+ h−(2x− h−)
∂

∂h−
. (1.49)

An invariant nonuniform mesh on the interval (0, L0) was already obtained:

h+ =
x2

L0 − x
, h− =

x2

L0 + x
.

One can readily verify that the change of variables x̄ = −1/x, ū = u satisfies
condition (1.48). The projective operator (1.49) in the new variables becomes the
translation operator ∂/∂x̄, which does not change the mesh spacings under the
transformations of the group Ḡ1. Let us verify that the mesh is uniform in the new
variables:

h̄+ = − 1

x+
x2

L0 − x

+
1

x
=

1

L0

,

h̄− = −1

x
+

1

x− x2

L0 + x

=
1

L0

= h̄+.
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1.3.6. Invariant orthogonal nonuniform meshes on the plane

The above-obtained invariance conditions for the geometric characteristics of dif-
ference meshes permit constructing their combinations. For example, consider the
case of a two-dimensional orthogonal mesh that has an irregular structure along the
x1- and x2-axes.

PROPOSITION 1.11. Let there be given an orthogonal nonuniform rectangular
mesh ω

h
,

h1
+ = φ1(x1, x2), h2

+ = φ2(x1, x2). (1.50)

For the mesh (1.50) to be invariant under the groupG1 with the operator (1.20),
it is necessary and sufficient that the following conditions be satisfied:

D
±h

1(ξ2(z)) + D
±h

2(ξ1(z))

∣∣∣∣
(1.50)

= 0,

ξ1(S
+h

1(z))− ξ1(z)

(
1 +

∂φ1

∂x1

)
− ξ2(z)

∂φ1

∂x2

∣∣∣∣
(1.50)

= 0,

ξ2(S
+h

2(z))− ξ2(z)

(
1 +

∂φ2

∂x2

)
− ξ1(z)

∂φ2

∂x1

∣∣∣∣
(1.50)

= 0.

Proof. The proof is by a straightforward application of the operator (1.20) with the
above conditions for invariant orthogonality taken into account.

1.3.7. Moving meshes preserving the flatness of time layers

Consider the situation in which the orthogonal mesh is not invariant for a given
group G1. In this case, it is sometimes important to preserve the plane structure of
the mesh layers in any direction. This especially makes sense if evolution equations
are considered. If we use a mesh whose time layers are straight lines parallel to
the x-axis (see Fig. 1.3), then it is also important to preserve this property under
the transformation group G1. Otherwise, we meet the situation shown in Fig. 1.3,
where, after the transformations of G1, part of the space is in the “future,” and
another part is in the “past.”

Let a mesh in the plane (t, x) be given by the relations

τ+ = ϕ(t), h+ = ψ(t, x). (1.51)

Then the mesh has flat time layers (the spacing τ+ is independent of x).
We assume that the group G1 is defined by its operator

X = ξt(z)
∂

∂t
+ ξx(z)

∂

∂x
+ η(z)

∂

∂u
+ · · ·+ [ξt(S

+τ
(z))− ξt(z)] ∂

∂τ+

, (1.52)



26 FINITE DIFFERENCES AND TRANSFORMATION GROUPS

-

6

�
�
��

�
�
��

E
E
EE

�
�
��

E
E
EE

B
B
BB

A
A
A

C
C
C

E
E
EE

h− h+

t

x

τ+

G1-

-

6

�
�
��

A
A

��
�HH

HH

�
�
����

��PPPC
C
C
C

A
A

B
B
BB

�
XXXX

t

x

Figure 1.3

where
S
+τ

=
∑
s≥0

τ s+
s!
Ds
t

is the operator of shift to the subsequent time layer.
The new spacing τ ∗+ is the same at each mesh node at a time layer if it is inde-

pendent of the spatial variable x,

D
+h
τ ∗+ = 0.

Accordingly, the infinitesimal characteristic of this is

D
+h
D
+τ

(ξt(z)) = 0, (1.53)

where

D
+τ

=
S
+τ
− 1

τ+

.

PROPOSITION 1.12. For a mesh with plane time layers to preserve this property
under the transformations of the group G1 with the operator (1.52), it is necessary
and sufficient that condition (1.53) be satisfied at each mesh point.

Note that Proposition 1.12 solves the problem of invariance of the time layer
flatness (or the layer flatness with respect to any other coordinate) but does not
solve the problem of invariance of the mesh (1.51). The application of the operator
(1.52) to Eqs. (1.51) supplements conditions (1.53) with the following ones:

ξt(S
τ
(z))− ξt(z)(1 + ϕt)

∣∣
(1.51) = 0,

ξx(S
+h

(z))− ξx(z)(1 + ψx)− ξt(z)ψt
∣∣
(1.51) = 0.
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Note that the meshes thus constructed are moving in the originally chosen co-
ordinate system. Several examples of meshes preserving the flatness of the time
layers under the transformation group are considered in the next chapter.

Of course, we cannot consider all types of difference meshes and obtain con-
ditions for their invariance. The above examples only show how closely the mesh
geometric structure is related to transformation groups. In what follows, we pro-
pose a general method for constructing invariant meshes, which is based on the
complete set of difference invariants.

1.4. Transformations Preserving the Geometric Meaning
of Finite-Difference Derivatives;
Prolongation Formulas

1. Consider a formal one-parameter transformation group G1 in Z̃
h

:

x∗ = f(z, a), u
h

∗
1 = ϕ1(z, a)

u∗ = g(z, a), u
h

∗
2 = ϕ2(z, a)

u∗1 = g1(z, a), . . . . . . . . . . . . ,

u∗2 = g2(z, a), . . . . . . . . . . . . ,

. . . . . . . . . . . . , . . . . . . . . . . . . ,

(1.54)

where f , g, and gi are formal power series of the form (1.3).
The discrete shift operator S

±h
acts on all coordinates of the vector (x, u, u1, . . . )

∈ Z̃, and therefore, it is natural to define the transformation of the spacing h+ as
the difference of two formal series,

h+
∗ = f(S

+h
(z), a)− f(z, a),

where
f(S

+h
(z), a) =

∑
s≥0

as

s!
As(S

+h
(z))

is a formal power series with “shifted” coefficients.
Likewise, h−∗ = f(z, a)− f(S

−h
(z), a).

The finite-difference derivatives were introduced in Z̃ as formal power series of
special form

u
h

1 = D
+h

(u) =
∑
s≥1

hs−1
+

s!
us, u

h
2 = D

−h
(u
h

1), . . . . (1.55)
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Transformations of an arbitrary formal group (1.54) may have the effect that
the series u

h

∗
1, u
h

∗
2, . . . , h+

∗, h−
∗ cannot be represented in the form (1.55) in the new

variables.
We demand that the formal series (1.54) preserve the definitions of difference

derivatives, i.e., that the representation (1.55) be invariant under (1.54). If the se-
ries (1.55) converge, then we can say that the geometric meaning of the difference
derivatives is also preserved.

Thus, we define the transformations of u
h
k as follows:

u
h

∗
1 =

∑
s≥1

(h∗+)s−1

s!
gs(z, a) = u∗1 +

h∗+
2!
u∗2 + · · · ,

u
h

∗
2 =

∑
l≥1

∑
s≥1

(−h∗−)l−1

l!

(h∗+)s−1

s!
gs+l(z, a) = u∗2 +

h∗+ − h∗−
2

u∗3 + · · · ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(1.56)

From the definition of S
±h

and u
h
k, we have obtained the table of actions of S

±h
on

the difference derivatives; in particular,

S
+h

(u)− u = u
h

1h+. (1.57)

If the representation of u
h
k in the form (1.56) is preserved, then so are naturally

the relations in Table 1.1. In particular, relation (1.57) is preserved:

g(S
+h

(z), a)− g(z, a) = u
h

∗
1h
∗
+.

By analogy with the tangent transformation groups [73, 107], we refer to rela-
tion (1.57) as the discrete first-order tangency condition.

If the transformations of G1 preserve (1.57), then we say that they preserve
the meaning of the first difference derivative, i.e., preserve the definition and the
geometric meaning of the difference derivative.

Along with the preservation of the meaning of the first difference derivative,
we can also say that the meaning (i.e., the definitions and the geometric meaning)
of the continuous derivatives u1, u2, . . . in Z̃ is preserved, i.e., that the following
relations are invariant:

du = u1 dx, du1 = u2 dx, . . . , dus = us+1 dx, . . . . (1.58)

(For simplicity, we consider only the case of a single independent variable x.)
It is well known [73, 107] that system (1.58) is invariant under local Lie point

and contact transformation groups, and for higher symmetries as well; i.e., sys-
tem (1.58) preserves all continuous symmetries. The invariance of (1.58) implies
the following chain of relations:

ζs = Ds(η − ξu1) + ξus+1, s = 1, 2, . . . , (1.59)
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for the coordinates of the operator (1.54):

X = ξ
∂

∂x
+ η

∂

∂u
+
∑
s≥1

ζs
∂

∂us
(1.60)

of the group G1, where ζs = ∂u∗s/∂a
∣∣
a=0

.
There is a natural question as to whether the preservation of the meaning of the

difference derivatives can be combined with the preservation of the meaning of the
“usual” derivatives, i.e., with the invariance of system (1.58).

The following statement answers this question.

THEOREM 1.13. LetG1 be a formal one-parameter group with the operator (1.60).
Suppose that Eq. (1.57) is an invariant manifold of G1 at each point of Z̃. Then
the coordinates of the operator (1.60) satisfy the chain of relations (1.59); i.e., sys-
tem (1.58) is invariant. Conversely, it follows from the invariance of system (1.58)
that the discrete first-order tangency is preserved, i.e., that relation (1.57) is invari-
ant.

Proof. In Z̃, we calculate the coordinates of the operator (1.60) in the difference
differential contained in (1.57):

∂

∂a

[
g(S

+h
(z), a)− g(z, a)

]∣∣
a=0

=
∑
s≥0

hs+
s!
Ds(η)− η

=
∑
s≥1

hs+
s!
Ds(η) = h+D

+h
(η). (1.61)

Now from formulas (1.56) we obtain the coordinate of the operator (1.60), which
determines the transformation u

h
1:

ζ
h

1 =
∂u
h

∗
1

∂a

∣∣∣∣
a=0

=
∑
s≥1

hs−1
+

s!
ζs +

∑
s≥2

(s− 1)hs−2
+

s!
us
∑
l≥1

hl+
l!
Dl(ξ), (1.62)

where the functions ζs are not defined, because we do not assume the invariance
of system (1.58). The invariance criterion (1.57) with formulas (1.61) and (1.62)
taken into account has the form

∑
s≥1

hs+
s!
Ds(η)−

∑
s≥1

hs+
s!
Ds(ξ)

∑
l≥1

hl−1
+

l!
ul

− h+

∑
s≥1

hs−1
+

s!
ζs −

∑
s≥2

(s− 1)hs−1
+

s!
us
∑
l≥1

hl+
l!
Dl(ξ) = 0. (1.63)
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Equation (1.63) means that the formal power series in h+ is equal to zero. By
equating the coefficients of powers of h+ with zero, we obtain the chains of formu-
las (1.59).

Thus, the preservation of the meaning (definition) of the first difference deriva-
tive under the transformations of G1 automatically implies that the definition of all
continuous derivatives u1, u2, . . . is preserved, i.e., that the infinite system (1.58)
is invariant. Note that when writing out the invariance criterion (1.57) for the first-
order tangency we have not considered any specific difference mesh; i.e., the mesh
invariance has not been assumed.

Conversely, assume that the chain of formulas (1.59) is given; then, by substitut-
ing them into criterion (1.63), we see that it is satisfied identically, which confirms
the invariance of (1.57). The proof of the theorem is complete.

The invariance of (1.57) ensures that the meaning of the first difference deriva-
tive is preserved under the transformations of G1 (1.54) and not only formulas
(1.58) obtained in Theorem 1.13 but also the meaning of all “usual” derivatives
u1, u2, . . . are preserved. Does such a group preserve the meaning of the second,
third, and higher difference derivatives? The answer is given by the following as-
sertion.

THEOREM 1.14. Let a formal one-parameter group G1 (1.54) with the operator
(1.60) be given, and let relation (1.57) be invariant at each point of Z̃

h
(at each

node of the mesh ωh). Then G1 preserves the discrete tangency of any finite order.

Proof. The discrete second-order tangency is defined to be the second relation in
Table 1.1:

u
h

1 − S
−h

(u
h

1) = hu
h

2, (1.64)

and the invariance of this relation is called the preservation of the meaning of the
second difference derivative. We show that the invariance of (1.64) is a conse-
quence of the invariance of discrete first-order tangency. Indeed, along with the
preservation of condition (1.57),

S
+h

(u)− u = hu
h

1,

the invariance of the tangency at the neighboring point is also satisfied (by the
assumtions of the theorem):

u− S
−h

(u) = hS
−h

(u
h

1). (1.65)

By subtracting (1.65) from the preceding relation, we obtain

S
+h

(u)− 2u+ S
−h

(u) = h(u
h

1 − S
−h

(u
h

1)) = h2u
h

2; (1.66)
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i.e., we obtain relation (1.61). Thus, the invariance of (1.61) is a consequence of
the invariance of the terms in (1.57) and (1.65). Quite obviously, the proof of the
theorem (for tangency of any order) can be completed by induction.

Thus, the formal group G1 (1.54) preserving the meaning of the first difference
derivative is a group in Z̃ preserving the meaning of all continuous derivatives and
can be prolonged to Z̃

h
with preserving the meaning of all difference derivatives of

any finite order.
Note the nonlocality of this interpretation of symmetry groups: two points on a

smooth curve lying at a small but finite distance from each other are taken to two
points on the image of this curve. (In the multidimensional case, the transformation
take a neighborhood of a point z of a locally analytic manifold Φ to a neighborhood
of a point z∗ of the manifold Φ∗.)

We present the prolongation formulas for the finite-difference derivatives ob-
tained by successive actions of the operator X (1.57) on the rows in Table 1.2:

ζ
h

1 = D
+h

(η)− u
h

1D
+h

(ξ),

ζ
h

2 = D
−h

(ζ
h

1)− u
h

2D
−h

(ξ),

· · · · · · · · · · · · · · · · · · ,
ζ
h

2k = D
−h

(ζ
h

2k−1)− u
h

2kD
−h

(ξ),

ζ
h

2k+1 = D
+h

(ζ
h

2k)− u
h

2k+1D
+h

(ξ), k = 1, 2, . . . .

(1.67)

Note that the recursive chain of formulas (1.67) as h → 0 is formally taken to
the formulas of Lie transformation group in the continuous case.

2. Consider how the operator of the group G1 is extended in the two-dimensional
case. We recall the notation of spaces in this case:

Z
h

= (x1, x2, u, u
h

1, u
h

2, u
h

12, . . . , h
1

+, h
2
−),

Z̃ = (x1, x2, u, u1, u2, u12, . . .),

Z̃
h

= (x1, x2, u, u1, u2, . . . , u
h

1, u
h

2, u
h

12, . . . , h
1

+, h
2
−),

where

uij =
∂2u

∂xi∂xj
, u

h
ij = D

+h
jD
+h

i(u), . . . , ω
h

= ω
h

1 × ω
h

2,

and ω
h
i is the difference mesh in the ith direction.

By Z̃
h

we denote the space of sequences of formal power series with analytic
coefficients,

zj∗ =
∑
s≥0

Ajs(z)a
s, Aj0 = zj, (1.68)



32 FINITE DIFFERENCES AND TRANSFORMATION GROUPS

where zj is a coordinate of the vector (x, u, u1, u2, . . . , u
h

1, u
h

2, u
h

12, . . . ).

We treat the sequence of series (1.68) as transformations in Z̃
h

. Among the
series of the form (1.68), we are interested only in the series that produce formal
one-parameter groups and are described by infinitesimal operators

X = ξ1 ∂

∂x1
+ ξ2 ∂

∂x2
+ ηk

∂

∂uk
+
∑
s≥1

ζi1...is
∂

∂ui1...is
+
∑
l≥1

ζi1...il
∂

∂ui1...il
. (1.69)

Supplementing Z̃
h

with the variables h1
+ and h2

−, we prolong the operator (1.69):

X = . . .+ h1
+ D

+h1

(ξ1)
∂

∂h1
+

+ h2
− D

+h2

(ξ2)
∂

∂h2
−
. (1.70)

We need to calculate the coordinates of the operator (1.69) for the difference deriva-
tives.

To this end, in Z̃
h

we consider the two-dimensional surface (the index k in uk is
still omitted)

u = Ψ(x1, x2). (1.71)

We assume that in Z̃
h

there acts a formal transformation group G1,

x1 = f 1(z, a), x2 = f 2(z, a), u = g(z, a), . . . ,

whose tangent field is determined by the operator (1.69). Under the action of the
group G1, the manifold (1.71) is taken to u∗ = Ψ∗(x1∗, x2∗), or

g(z, a) = Ψ∗(f 1(z, a), f2(z, a)). (1.72)

Let us apply the operator S
+h1

− 1 to relation (1.72) (see Fig. 1.4):

( S
+h1

− 1)g(z, a) = Ψ∗( S
+h1

(f 1), S
+h1

(f 2))−Ψ∗(f 1, f2)

=
Ψ∗( S

+h1

(f 1), S
+h1

(f 2))−Ψ∗(S1

+h1

(f 1), f2)

( S
+h!

− 1)f2
( S
+h1

− 1)f2

+ Ψ∗( S
+h1

(f 1), f2)−Ψ∗(f 1, f2).

By applying the operation ∂
∂a |a=0

to the above relation, we obtain

( S
+h1

− 1)(η) = S
+h1

(u2)( S
+h1

− 1)(ξ2) + ζ
h

1h1 + u
h

1( S
+h1

− 1)(ξ1),

which implies the expression for the desired coordinate:

ζ
h

1 = D
+h1

(η)− u
h

1 D
+h1

(ξ1)− S
+h1

(u2) D
+h1

(ξ2), (1.73)
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where S
+h1

(u2) is the “continuous” derivative u2 = ∂u
∂x2 at the point shifted to the

right by the spacing h1
+ along the axis x1. (About the discrete representation of

“continuous” derivatives in Z
h

, see below.)
In a similar way, we obtain the following prolongation formulas:

ζ
h

2 = D
+h2

(η)− S
+h2

(u1) D
+h2

(ξ1)− u
h

2 D
+h2

(ξ2),

ζ
h

11̄ = D
−h1

D
+h1

(η)− 2u
h

11̄ D
+h1

(ξ1)− 1

h1
S

+h1

(u2) D
+h1

(ξ2) +
1

h1
S
−h1

(u2) D
−h1

(ξ2),

ζ
h

22̄ = D
−h2

D
+h2

(η)− 2u
h

22̄ D
+h2

(ξ2)− 1

h2
S

+h2

(u1) D
+h2

(ξ1) +
1

h2
S
−h2

(u1) D
−h2

(ξ1),

ζ
h

12 = D
+h2

D
+h1

(η)− u
h

12( D
+h1

(ξ1) + D
+h1

(ξ1)) +
1

h1
S

+h2

(u1) D
+h2

(ξ1)

+
1

h2
S

+h1

(u2) D
+h1

(ξ2),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · .

(1.74)

In formulas (1.73)–(1.74), it is not assumed that the corresponding mesh is
invariantly uniform or invariantly orthogonal. If precisely such meshes are consid-
ered, then the prolongation formulas (1.73)–(1.74) must be supplemented with the
corresponding formulas for invariant meshes.

Note that the prolongation formulas (1.73)–(1.74) can be obtained using the
formulas of Lie transformation groups in the continuous space, just as in the one-
dimensional case.
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1.5. Newton’s Group and Lagrange’s Formula

The Taylor group determined in Z̃
h

by the operator D allowed us to prolong the

action of a formal group to the mesh variables (u
h

1, u
h

2, . . . ). In the theory of higher
symmetry groups [73, 107], the Taylor group also plays a significant role. Its gen-
eralization, i.e., the group determined in Z̃ by the operators ξiDi with arbitrary
functions ξi(z) ∈ A, which is admitted by any differential equations, is used to
pass to the quotient operators algebra. The representatives of this quotient algebra
have independent variables as invariants, and the prolongation formulas for them
have a simple convenient form.

In this and subsequent sections, in the simplest case of a single independent
variable x and a uniform mesh ω

h
, we consider the difference analog of this con-

struction. We construct the transformation group in the mesh space, i.e., the New-
ton group, which is isomorphic to the Taylor group. In the next section, we use the
Newton group to construct an ideal of the Lie algebra of the set of all operators in
the mesh space. The ideal thus constructed is used to factorize the set of operators
of a formal group.

A Taylor group orbit, i.e., a one-parameter curve in Z̃, obtained as the trajectory
of an arbitrary point (x, u, u1, u2, . . .) under the action of the operator Ta = eaD,
coincides at the points a = ±nh, n = 0, 1, 2, . . . , with the points obtained by the
action of the discrete shift operator S

±h
n. In other words, the Taylor group orbit is

the “continuous shift” performed via the “discrete shift.” This leads to the question
as to whether this procedure is invertible, i.e., whether a continuous shift can be
obtained via a discrete shift, or, in other words, to the problem of the Taylor group
representation in the mesh space Z̃

h
.

The following heuristic considerations permits finding which power series must
be used to obtain such a representation.

If the shift of the Taylor group orbit for a = h gives the discrete shift S
+h

,

then, to obtain the shift by a certain quantity a 6= nh, we act by the operator S
+h

a “noninteger number of times” at a point in Z̃
h

; i.e., we introduce the fractional

power of the operator S
+h

. For the definition of the fractional power S
+h

a/h of the

shift operator we take the following operator series:

S
+h

a/h ≡ (1 + hD
+h

)a/h ≡ 1 +
a

h
hD

+h
+
a

h
(
a

h
− 1)

h2

2!
D
+h

2 + · · ·

= 1 + aD
+h

+
a(a− h)

2!
D
+h

2 +
a(a− h)(a− 2h)

3!
D
+h

3 + · · ·

= 1 +
∞∑
s=1

(s−1∏
k=0

(a− kh)

)
1

s!
D
+h

s. (1.75)
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The quantity a[s] =
∏s−1

k=0(a−kh) contained in (1.75) is called a generalized power
of the quantity a [61]. Under the action of the operator series (1.75), the coordinate
x becomes x∗ = x+ a, and the coordinate u becomes the series

u∗ = u+ au
h

1 +
a(a− h)

2!
(u
h

2 + hu
h

3) + · · · ,

i.e., is the expansion into the Newton series of the function u = u(x) at the point
(x+ a) on the uniform mesh x, (x+ h), (x+ 2h), . . ..

In a similar way, we obtain the expansion into fractional power series of the left
discrete shift operator (a > 0),

S
−h

a/h ≡ (1− hD
−h

)a/h = 1 +
∞∑
s=1

(s−1∏
k=0

(kh− a)

)
1

s!
D
−h

s. (1.76)

The action of the series (1.76) on the coordinate u gives the expansion in the New-
ton series of the function u = u(x) at the point (x − a) on the uniform mesh
(x, x− h, x− 2h, . . . ).

The action of the operator series (1.75)–(1.76) on the point (x, u, u1, u2, . . .)
coincides with the action of the Taylor group at the points a = ±nh. In addition,
note that the series (1.75)–(1.76) terminate at these points; i.e., they have finitely
many terms (s = 1, 2, . . . , n):

[
1+

∞∑
s=1

s−1∏
k=0

(a− kh)

s!
D
+h

s

]
a=nh

= S
+h

n,

[
1+

∞∑
s=1

s−1∏
k=0

(kh− a)

s!
D
−h

s

]
a=nh

= S
−h

n.

We regroup the formal operator power series in the parameter a,

N+
a =

∞∑
s=0

as

s!

( ∞∑
n=1

(−h)n−1

n
D
+h

n

)s
, N−a =

∞∑
s=0

(−a)s

s!

( ∞∑
n=1

hn−1

n
D
−h

n

)s
. (1.77)

Thus, the operators (1.77) are defined in Z
h

= (x, u, u
h

1, u
h

2, . . . ) and can be repre-
sented in exponential form,

Na = e
a D̃

+h, Na = e
−a D̃
−h, (1.78)

where

D̃
+h

=
∞∑
n=1

(−h)n−1

n
D
+h

n, D̃
−h

=
∞∑
n=1

hn−1

n
D
−h

n (1.79)

The exponential representation (1.78)–(1.79) means that the action of the opera-
tors N+

a and N−a at the point (x, u, u
h

1, u
h

2, . . . ) forms the following pair of formal
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transformation groups in Z
h

:

x∗ = x± a,

u∗ = u± aD̃
±h

(u) +
a2

2!
D̃
±h

2
(u)± · · · ,

u
h

∗
1 = u

h
1 ± aD̃

±h
(u
h

1) +
a2

2!
D̃
±h

2
(u
h

1)± · · · ,

· · · · · · · · · · · · · · · · · ·

u
h

∗
s = u

h
s ± aD̃

±h
(u
h
s) +

a2

2!
D̃
±h

2
(u
h
s)± · · · .

(1.80)

The second row of these transformations is a formal (right and left) Newton series
expansion of the function u = u(x) at the point (x ± a) (e.g., see [61]). The other
rows can be obtained by the termwise discrete differentiation, because the operators
D
+h
, D
−h

and D̃
+h
, D̃
−h

commute. The group (1.80) is called the Newton group [29].

The action of N+
a and N−a for a > 0 can be treated as a formal (resp., right and

left) interpolation in the sense of Newton on infinitely many equidistance nodes;
for a < 0, N+

a and N−a provide the respective left and right extrapolations.
We calculate the tangent field of a pair of formal groups (1.80), i.e., the Newton

groups:

ξ± =
∂x∗

∂a

∣∣∣∣
a=0

= ±1,

η± =
∂u∗

∂a

∣∣∣∣
a=0

= ±D̃
±h

(u),

ζ
h

±

1

=
∂u
h

∗
1

∂a

∣∣∣∣
a=0

= ±D̃
±h

(u
h

1),

· · · · · · · · · · · · · · · · · · .

(1.81)

Instead of the pair of tangent fields (1.81), consider the infinitesimal operators of
the Newton group:

D
h

+ =
∂

∂x
+ D̃

+h
(u)

∂

∂u
+ D̃

+h
(u
h

1)
∂

∂u
h

1

+ · · · ,

D
h

− = − ∂

∂x
− D̃
−h

(u)
∂

∂u
− D̃
−h

(u
h

1)
∂

∂u
h

1

− · · · .

In the operator D
h

−, we preserve the sign “−”, because D
h

− determines the left shift
for a positive value of the parameter a.

Thus, using heuristic considerations, we have constructed a formal group in Z
h

,
i.e., the Newton group. Its orbit coincides with the Taylor group orbit at the points
a = nh.
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Now let us show that the Newton group (1.80) with the tangent field (1.81) is
indeed a “discrete” representation of the Taylor group in Z

h
.

It is well known that finite transformations of a continuous group are bijectively
related to infinitesimal transformations. In the case of point groups, this relation is
expressed by a finite system of Lie equations. In the case of a higher symmetry
group, the corresponding relation is expressed by an infinite chain of Lie equa-
tions, whose solution is given by a unique recursive sequence of coefficients of
formal series [73]. In both cases, the solution of this system can be represented as
the exponential mapping. In the case of Z̃

h
, the finite transformation of any coordi-

nate zi is given by the formula

zi∗ = S
a
(zi) ≡ eaX(zi) ≡

∑
s≥0

as

s!
Xs(zi). (1.82)

The series (1.82) can be inverted; i.e., the infinitesimal transformation aX(zi)
can be reconstructed from the finite transformation S

a
(zi) as the logarithmic series

(e.g., see [111])

aX(zi) = ln[1 + (S
a
− 1)](zi)

≡
(

(S
a
− 1)− 1

2
(S
a
− 1)2 + · · ·+ (−1)n−1

n
(S
a
− 1)n + · · ·

)
(zi)

=
∞∑
s=1

(−1)s−1

s
(S
a
− 1)s(zi), i = 1, 2, . . . .

We apply the process of reconstruction of the tangent field X from the finite
transformations to the Taylor group, taking the parameter value a = h:

eaD
∣∣
a=h

= S
+h

= 1 + hD
+h
,

hD = hD
+h
− 1

2
(hD

+h
)2 + · · ·+ (−1)n−1

n
(hD

+h
)n + · · · ,

which implies that

D =
∞∑
n=1

(−h)n−1

n
D
+h

n; (1.83)

i.e., we obtain an expression coinciding with the operator D̃
+h

. In formulas (1.83),

we omit the argument zi under the action of the corresponding operator. If zi ∈ Z
h

,
then we assume that the difference derivatives on the left-hand side of (1.83) are
given by series; if zi ∈ Z̃, then the operator D

+h
must be expressed in terms of ehD.

Formula (1.83) gives the action of the tangent field of the Taylor group on the
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coordinate zi. The infinitesimal operator of the Taylor group in Z
h

can be written as

(note that D̃
+h

(x) = 1)

D
h

+ =
∂

∂x
+ D̃

+h
(u)

∂

∂u
+ D̃

+h
(u
h

1)
∂

∂u
h

1

+ · · ·+ D̃
+h

(u
h
s)

∂

∂u
h
s

+ . . . . (1.84)

In a similar way, for a = −h we obtain

D
h

− =
∂

∂x
+ D̃
−h

(u)
∂

∂u
+ D̃
−h

(u
h

1)
∂

∂u
h

1

+ · · ·+ D̃
−h

(u
h
s)

∂

∂u
h
s

+ · · · . (1.85)

Thus, the Taylor group with tangent field

D =
∂

∂x
+ u1

∂

∂u
+ u2

∂

∂u1

+ · · ·+ us+1
∂

∂us
+ · · ·

in Z̃ can be represented inZ
h

by the Newton group with pair of tangent fields (1.84)–

(1.85); i.e., the Taylor and Newton groups are isomorphic. If a transformation of Z̃
into Z̃

h
is given, then the coordinates of the infinitesimal operator of the Taylor

group are changed by using the operator series D̃
±h

, which can be written as

D ⇐⇒


∞∑
n=1

(−h)n−1

n
D
+h

n,

∞∑
n=1

(+h)n−1

n
D
−h

n.
(1.86)

The upper part of the formula uses the right Newton series; and the lower part, the
left Newton series. Note that these representations are taken to each other by a
discrete reflection group, which obviously admits a uniform mesh.

Formula (1.86) has been known for a long time (e.g., see [61]). Apparently, it
was first obtained by Lagrange [81, 82]. Of course, the fact that (1.86) is a rela-
tion between the coordinates of infinitesimal operators of the corresponding groups
was not known, because, at these times, the notion of the group had not yet been
formulated. This is just the novelty of formula (1.86).

Remark. 1. The discrete representation of the Taylor group was constructed by us-
ing the formal Newton series. This representation is also possible for a nonuniform
mesh, but the tangent field of the Newton group for an arbitrary nonuniform mesh
is very cumbersome. Considering only a specific case of such a representation (on
an invariant nonuniform mesh), we can reduce the problem to the preceding one
by using the theorem about the “straightening” of an invariant nonuniform mesh.
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2. Here we do not consider the problems of convergence of the Newton se-
ries, because we are interested only in the algebraic aspects of the above construc-
tions. Nevertheless, it is of interest to note that the Newton group, although it is
an isomorphic representation of the Taylor group, has analytic properties that are
significantly different from those of the Taylor group. For example, the domain of
convergence of the Newton series is a half-plane in a complex domain to the right
of the vertical line passing through the real number λ0, which is called the conver-
gence asymptote. Apparently, the first estimates of the asymptote λ0 were obtained
by Abel. The further history of such estimates and the study of problems of the
Newton series convergence can be found in [61, 71, 105].

In the next section, we consider some structure properties of the Lie algebra of
operators of a formal group in the simplest one-dimensional case and on uniform
difference meshes.

1.6. Commutation Properties and Factorization of Group
Operators on Uniform Difference Meshes

As was already noted, in the theory of group properties of differential equations
there are two equivalent approaches to describing point symmetries, the classical
approach based on operators of the form

X = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
+ · · ·

and the approach based on the use of the factorized form of operators or the evo-
lution vector fields. Under the second approach, the independent variables are in-
variants, which, at first sight, is very attractive from the standpoint of difference
models, because the problem of invariance of meshes has already been solved. But,
as follows from the detailed considerations of this approach to difference models,
the evolution vectors fields thus obtained have an extremely complicated form and
use infinitely many mesh nodes rather then only the difference stencil nodes.

In this section, we consider the structure of the set of operators of a formal
group in the simplest case of a single independent variable and a uniform mesh
(see [29]). The Newton group is used to construct an ideal of the Lie algebra of the
set of all operators in the mesh space. The ideal thus constructed is used to factorize
the set of operators of the formal group. A difference mesh whose description is
obtained only by using the independent variable is invariant under such an ideal.

We assume that, on the same uniform mesh ω
h

, a set of operators of a formal
group G1 preserving the discrete first-order tangency is given:

Xi = ξi
∂

∂x
+ηi

∂

∂u
+[D

+h
(ηi)−u

h
1D

+h
(ξi)]

∂

∂u
h

1

+ · · ·+ hD
+h

(ξi)
∂

∂η
, i = 1, 2, . . . .
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For any two operators X1 and X2, we introduce the multiplication (commutation)
operation by the usual formula

[X1, X2] = X1X2 −X2X1.

The commutator [X1, X2] contains differentiation of at most first order and hence
is an operator of the formal group:

[X1, X2] = (X1(ξ2)−X2(ξ1))
∂

∂x
+ (X1(η2)−X2(η1))

∂

∂u

+ [X1(D
+h

(η2)− u
h

1D
+h

(ξ2))−X2(D
+h

(η1)− u
h

1D
+h

(ξ1))]
∂

∂u
h

1

+ · · ·+ [X1(hD
+h

(ξ2))−X2(hD
+h

(ξ1))]
∂

∂h
. (1.87)

Is the commutator [X1, X2] an operator preserving the meaning of the difference
derivatives? To answer this question, it suffices to verify whether it preserves the
“discrete tangency” of first order (i.e., whether it preserves the meaning of the first
difference derivative at each point of ω

h
):

d
h
u = u

h
1h, where d

h
= S

+h
− 1. (1.88)

We extend the operator (1.87) to the variable d
h
u by the formula (see [21])[

∂

∂a
(d
h
u∗)

]
a=0

= hD
+h

(X1(η2)−X2(η1));

acting by this operator on (1.88), we hence obtain the condition

D
+h
X1(η2)−D

+h
X2(η1)−X1D

+h
(η2)+X2D

+h
(η1)−D

+h
(ξ1)D

+h
(η2)+D

+h
(ξ2)D

+h
(η1) = 0.

(1.89)
To prove relation (1.89), we need to compute the commutator [X, D

+h
] ≡ XD

+h
−

D
+h
X . The expression X(η) is a function in A

h
, i.e., an analytic function of finitely

many variables in Z
h

if η ∈ A
h

. By the definition of discrete differentiation of a
function in A

h
, we have

D
+h
X(η) =

1

h
(X(S

+h
(η))−X(η))

and hence

[X, D
+h

] = −D
+h

(ξ)D
+h
. (1.90)
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The substitution of formula (1.90) into (1.89) takes the latter into an identity. Thus,
the commutator (1.87) preserves discrete first-order tangency. Since any operator
of a formal group preserving discrete first-order tangency at each point of ω

h
also

preserves tangency of any finite order, it follows that the commutator [X1, X2] pre-
serves any finite discrete tangency.

Thus, we have the following assertion.

THEOREM 1.15. The set of all operators of a formal group given on the same
uniform mesh ω

h
forms a Lie algebra with multiplication

[X1, X2] = X1X2 −X2X1.

Now consider the tangent field of the Newton group, i.e., the pair of operators

D
h

+ =
∂

∂x
+ D̃

+h
(u)

∂

∂u
+ D̃

+h
(u
h

1)
∂

∂u
h

1

+ · · · ,

D
h

− =
∂

∂x
+ D̃
−h

(u)
∂

∂u
+ D̃
−h

(u
h

1)
∂

∂u
h

1

. . . ,

(1.91)

where

D̃
±h

=
∞∑
n=1

(∓h)n−1

n
D
±h

n.

Note that one tangent field of the Taylor group in Z̃,

D =
∂

∂x
+ u1

∂

∂u
+ · · ·+ us+1

∂

∂u s
+ · · · ,

is associated with the pair of fields (1.91) in the mesh space Z
h

. This doubling of
objects, i.e., the appearance of the “right” and “left” objects, is a typical feature of
mesh spaces and concerns not only the operators of the Newton group (1.91) but
also the discrete shift S

±h
= e±hD, the discrete differentiation D

±h
, etc. In the case

of a uniform difference mesh, this doubling is related to the existence of a specific
discrete group, namely, the reflection group: x → −x, which changes the sign of
the mesh spacing h, h → −h. Therefore, instead of the pair of Newton groups
with operators (1.91), we can consider one group, which means factorization with
respect to the reflection roup. Thus, in the one-dimensional case with a uniform
mesh ω

h
, the transition from the Taylor group in Z̃ to the Newton group in Z̄

h
is the

transition to an isomorphic continuous group with addition of a discrete reflection
group.

Consider the following formal group operator:

X = ξ
∂

∂x
+ η

∂

∂u
+ ζ

h
1
∂

∂ u
+h

1

+ ζ
h

2
∂

∂ u
+h

2

+ · · ·+ hD
+h

(ξ)
∂

∂h
,
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where
ζ
h

1 = D
+h

(η)− u
h

1D
+h

(ξ), ζ
h

2 = D
−h

(ζ
h

1)− u
h

2D
−h

(ξ), . . . . (1.92)

Formulas (1.92) for ζ1
h
, ζ2
h
, . . . ensure the preservation of the meaning of the finite-

difference derivatives under the formal group transformations.
One can readily see that the operators (1.91) satisfy relations (1.92); i.e., the

Newton group preserves the meaning of finite-difference derivatives of any finite
order.

Multiplying the operator (1.92) by a certain function ξ̃(z) ∈ A
h

on the left, we
generally take it out of the set of operators preserving discrete tangency. Let us
introduce a special operation of left multiplication of an operator of a formal group
by an arbitrary analytic function ξ̃(z) ∈ A

h
: ξ̃ ∗ X . In the operator ξ̃ ∗ X , the first

coordinates are multiplied by ξ̃,

ξ̃ ∗X = ξ̃ξ
∂

∂x
+ ξ̃η

∂

∂u
+ · · · ,

and the other coordinates are constructed so that the operator determines a group
preserving the finite-difference derivative of first order (and hence any difference
derivative of finite order). Thus, ξ̃ ∗X must satisfy formulas (1.92),

ξ̃ ∗X = ξ̃ξ
∂

∂x
+ ξ̃η

∂

∂u
+ [D

+h
(ξ̃η)− u1

h
D
+h

(ξ̃ξ)]
∂

∂u
h

1

+ · · ·+ hD
+h

(ξ̃ξ)
∂

∂h
, (1.93)

and does not coincide with the operator ξ̃X .
The same operation of left multiplication by ξ̃(z) can be introduced in the “con-

tinuous” space Z̃ with the requirement to preserve the infinite-order tangency.
Suppose that the following formal group operator is given in Z̃ = (x, u, u1, . . .):

X = ξ
∂

∂x
+ η

∂

∂u
+
∑
s≥0

ζs
∂

∂us
,

where ζs = Ds(η − ξu1) + ξus+1 = D(ζs−1)− usD(ξ).
Then the multiplication operation (∗) implies

ξ̃ ∗X = ξ̃ξ
∂

∂x
+ ξ̃η

∂

∂u
+ [D(ξ̃η)− u1D(ξ̃ξ)]

∂

∂u1

+ · · · .

One can readily see that

ξ̃ ∗X = ξ̃X +
∑
s≥0

s∑
n=1

Cn
sD

n(ξ̃)D(s−n)(η − ξu1)
∂

∂us
;
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i.e., for a formal group operator to be multiplied on the left by an arbitrary function
ξ̃ ∈ A so that it remains an operator preserving the infinite-order tangency condi-
tion, it is necessary and sufficient that η = ξu1. This condition is satisfied by the
coordinates of the operator ξD of the Taylor group. Thus, the operator D is the
only operator that can be multiplied on the left by ξ̃(z) ∈ A “without penalty.”

This situation does not hold in the mesh space Z
h

; namely, the tangent field of

the Newton groupD
h

± cannot be multiplied on the left by ξ̃(z) ∈ A
h

, which is related
to the specific features of the difference Leibniz rule. Therefore, it is necessary to
use formula (1.93), i.e., construct an operator of the form

ξ̃ ∗D
h

± = ±ξ̃ ∂
∂x
± ξ̃ D̃

±h
(u)

∂

∂u
± [D

+h
(ξ̃D
±h

(u))− u
h

1D
+h

(ξ̃)]
∂

∂u
h

1

+ · · · ± hD
+h

(ξ̃)
∂

∂h
.

(1.94)
Note that the coordinate hD

+h
(ξ̃) appears in the operator (1.94); this coordinate

determines the deformation of the spacing of the mesh ω
h

and is zero for the operator

D
h

± of the Newton group.

Consider the commutation properties of the Lie–Bäcklund operators X , D
h

±,

and ξ ∗D
h

± in the mesh space Z
h

.

LEMMA 1.16. For the formal group operators X and D
h

± defined on the same

uniform mesh ω
h

, the following relation holds:

[X,D
h

±] = −(D
h

±(ξ)) ∗D
h

±. (1.95)

Proof. To prove relation (1.95), consider only the “right” operator D
h

+ of the New-
ton group. Let us write out the left- and right-hand sides of (1.95):

−D
h

+(ξ)
∂

∂x
−D

h

+(ξ)D̃
+h

(u)
∂

∂u
+ · · ·+ hD

+h
(D
h

+(ξ))
∂

∂h

= −D
h

+(ξ)
∂

∂x
+ [X(D̃

+h
(u))−D

h

+(η)]
∂

∂u
+ · · ·+ hD

+h

+(D
h

+(ξ))
∂

∂h
.

The coordinates of ∂/∂x and ∂/∂h coincide, because D
h

+ and D̃
h

commute. The

simplest way to prove that the coordinates of ∂/∂u coincide in relation (1.95) is to
use the continuous representation of the coefficients, i.e., reflect them from Z

h
into

Z̃, and then vice versa:

X(D̃
+h

(u))−D
h

+(η)←→ X(u1)−D(η) = D(η)− u1D(ξ)−D(η)

= −D(ξ)u1 ←→ −D
h

+(ξ)D̃
+h

(u).
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The coincidence of the other coordinates, i.e., of ∂/∂u
h
s, s = 1, 2, . . ., is ensured

by Theorem 1.15 and the multiplication (∗) introduced above, because the left- and
right-hand sides in relation (1.95) contain formal group operators whose coordi-
nates of ∂/∂x and ∂/∂u coincide, while the other coordinates are obtained by the
same prolongation formulas. The proof of the lemma is complete.

LEMMA 1.17. The following commutation relation holds for the formal group op-
erators X , ξ̃ ∗D

h

±, and ξ̃(z) ∈ A
h

defined on the same uniform mesh ω
h

:

[ξ̃ ∗D
h

±, X] =
(
ξ̃ ∗D

h

±(ξ)−X(ξ̃)
)
∗D

h

±.

Proof. The proof of Lemma 1.17 is quite similar to that of the preceding lemma;
namely, one should establish the coincidences of the coordinates of the operators
for ∂/∂x and ∂/∂u (see [29]).

The multiplication (∗) introduced above and Lemma 1.17 imply the following
assertion.

THEOREM 1.18. The set of operators of the form

ξ̃ ∗D
h

± = ξ̃
∂

∂x
+ ξ̃ ∗ D̃

±h
(u)

∂

∂u
+ · · · (1.96)

with arbitrary analytic functions ξ̃(z) ∈ A
h

is an ideal in the Lie algebra of all

formal group operators on the same uniform mesh ω
h

.

Therefore, instead of the Lie algebra of the operators

X = ξ
∂

∂x
+ η

∂

∂u
+ [D

+h
(η)− u

h
1D

+h
(ξ)]

∂

∂u
h

1

+ · · ·+ hD
+h

(ξ)
∂

∂h

we can consider the quotient algebra by the ideal (1.96).
For representatives of the above quotient algebra we take the operators with

coordinate ξ ≡ 0,

X̄ = η̄
∂

∂u
+ ζ

h
1
∂

∂u
h

1

+ ζ
h

2
∂

∂u
h

2

+ · · · , (1.97)

where η̄ = η − ξD̃
±h

(u).

The operators (1.97) are called canonical operators, just as in the continuous
case (see [73]). For these operators, the prolongation formulas have the simple
form

ζ
h

1 = D
+h

(η̄), ζ
h

2 = D
−h
D
+h

(η̄), . . . .
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Note that the independent variable for the canonical operator X̄ is an invariant,
and hence so is the mesh spacing. (The coordinate of ∂/∂h in the operator X̄ is
zero.) In Lemma 1.16, the canonical operators X̄ commute with the operators D

h

+

and D
h

−.
Another approach to the factorization of formal group operators is as follows.

Consider the space (. . . , x−, u−, x, u, x+, u+, . . . ) of discrete variables without in-
troducing the finite-difference derivatives, i.e., the space of sequences obtained by
successive actions of the shift operators on the coordinates (x, u).

Consider the tangent field of the Newton group in such a space:

D
h

+ =
∂

∂x
+

∂

∂x+
+ D̃

+h
(u)

∂

∂u
+ D̃

+h
(u+)

∂

∂u+
+ · · · ,

D
h

− =
∂

∂x
+

∂

∂x−
+ D̃
−h

(u)
∂

∂u
+ D̃
−h

(u−)
∂

∂u−
. . . ,

D̃
±h

=
∞∑
n=1

(∓h)n−1

n
D
±h

n.

(1.98)

We introduce the usual left multiplication of an operator of the Newton group by a
function ξ̃,

ξ̃D
h

+ = ξ̃
∂

∂x
+ ξ̃

∂

∂x+
+ ξ̃ D̃

+h
(u)

∂

∂u
+ ξ̃ D̃

+h
(u+)

∂

∂u+
+ · · · ,

ξ̃D
h

− = ξ̃
∂

∂x
+ ξ̃

∂

∂x−
+ ξ̃ D̃

−h
(u)

∂

∂u
+ ξ̃ D̃

−h
(u−)

∂

∂u−
. . . .

Note that the action of the operator ξ̃D
h

± on the mesh spacing h+ = x+−x is zero.

LEMMA 1.19. Any formal group operators X , ξ̃D
h

±, and ξ̃(z) ∈ A
h

given on the

same uniform mesh ω
h

satisfy the commutation relation

[ξ̃D
h

±, X] =
(
ξ̃D
h

±(ξ)−X(ξ̃)
)
D
h

±. (1.99)

Lemma 1.19 can be proved by straightforward computations.
In fact, relation (1.99) is completely similar to the corresponding relation for

the Lie–Bäcklund groups [73], which is extended to the “shifted” points x−, u−,
x+, u+, . . . . Note that the difference derivatives and the mesh spacings are not
contained in this relation.

In the space (. . . , x−, u−, x, u, x+, u+, . . . ), consider the point group operator

X = ξ
∂

∂x
+ ξ+ ∂

∂x+
+ ξ−

∂

∂x−
+ · · ·+ η

∂

∂u
+ η+ ∂

∂u+
+ η−

∂

∂u−
+ · · · . (1.100)

Suppose that the operators of the form (1.100) on a uniform mesh form a Lie
algebra. Then Lemma 1.19 implies the following assertion.
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THEOREM 1.20. The set of operators of the form

ξ̃D
h

± = ξ̃
∂

∂x
+ ξ̃

∂

∂x+
+ ξ̃ D̃

±h
(u)

∂

∂u
+ ξ̃ D̃

±h
(u+)

∂

∂u+
+ · · · (1.101)

with arbitrary analytic functions ξ̃(z) ∈ A
h

is an ideal in the Lie algebra of all

formal group operators on the same uniform mesh ω
h

.

Therefore, instead of the Lie algebra of operators (1.100), we can consider the
quotient algebra by the ideal (1.101). For the representatives of this quotient algebra
we can take the operators

X̄ = (ξ+ − ξ) ∂

∂x+
+ (ξ− − ξ) ∂

∂x−
+ · · ·+ (η − ξD̃

±h
(u))

∂

∂u

+ (η+ − ξD̃
±h

(u+))
∂

∂u+
+ · · ·+ (ξ+ − ξ) ∂

∂h+

+ (ξ − ξ−)
∂

∂h−
+ · · · .

Note that, in contrast to the preceding version of factorization, the operator X̄ trans-
forms the mesh spacings.

Here we have considered only the simplest case of a Lie algebra of operators on
a uniform mesh. The transition to a nonuniform mesh changes the tangent vector
field of the group but does not vary the structure properties of the set of operators,
which are scalar quantities and are independent of coordinate system. In particular,
if the nonuniform mesh is invariant, then the theorem about the “straightening” of
such a mesh reduces the problem to the already studied problem.

Thus, both versions of factorization in the difference case have the consequence
that the coefficients of the operators become formal series defined on infinitely
many points of the difference mesh. This fact significantly complicates their prac-
tical use. An example of application of factorized symmetry operators will be con-
sidered in a subsequent chapter.

1.7. Finite-Difference Integration and Prolongation
of the Mesh Space to Nonlocal Variables

The above-introduced discrete (finite-difference) variables were obtained by using
a pair of discrete shift operators S

±h
and the differentiation operator D

±h
. Since the

operator S
±h

is an operator of finite transformations of the group for a fixed value of

the parameter a = ±h, it is invertible, just as any action of the Taylor group. The
inverse of the shift operator is the operator of finite transformations of the Taylor
group with opposite sign of the group parameter; i.e.,

(S
+h

)−1 = S
−h
, (S

−h
)−1 = S

+h
,
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or, otherwise, S
+h
S
−h

= S
−h
S
+h

= 1.

It is of interest to find the operator of discrete integration as the inverse of the
pair D

+h
, D
−h

.

We consider only the simplest case of a single independent variable and a uni-
form mesh with spacing h.

The operator of discrete integration on a uniform mesh ω
h

is defined to be a pair

of linear operators D
+h

−1, D
−h
−1 commuting with the pair D

+h
, D
−h

and satisfying

D
+h

−1D
+h

= D
+h
D
+h

−1 = 1, D
−h
−1D
−h

= D
−h
D
−h
−1 = 1, (1.102)

Starting from this definition, one can readily obtain the “mixed” actions of the
operators D

±h
and D

±h
−1:

D
−h
D
+h

−1 = D
+h

−1D
−h

= S
−h
, D

+h
D
−h
−1 = D

−h
−1D

+h
= S

+h
.

Definition (1.102) readily permits obtaining the table of action of the opera-
tor D

±h
−1 on the finite-difference derivatives u

h
s (see Table 1.3). Here we use the

following notation for difference derivatives: u
h

1 = u
h
x, u

h
2 = u

h
xx̄, etc.

Starting from the definition of the operators D
±h
−1, one can readily obtain the

discrete rule of integration by parts on a uniform mesh ω
h

:

D
+h

−1(u1
h
v) = uv − D

+h

−1(uv1
h

)− hD
+h

−1(u
h

1v
h

1) = uv − D
+h

−1(u+v
h

1),

D
−h
−1(u1̄

h
v) = uv − D

−h
−1(uv

h
1̄)− hD

−h
−1(u

h
1̄v
h

1̄) = uv − D
−h
−1(u−v

h
1̄),

(1.103)

where f+ = S
+h

(f), f− = S
−h

(f), and u
h

1̄ and v
h

1̄ are the left difference derivatives

of first order.
Formulas (1.103), which are called the “Abel transformations” in the old liter-

ature (e.g., see [61]), can readily be verified by the action of the operators D
±h

with

the use of the difference Leibniz rule.
Note that the above-introduced discrete integration does not permit closing its

action in Z
h

= (x, u, u
h

1, u
h

2, u
h

3, . . .). It is not difficult to extend the action of D
±h
−1

to x:

D
+h

−1(x) =
xx̌

2
, D

−h
−1(x) =

xx̂

2
.

But the action of D
±h
−1 on u takes it outside Z

h
. To make the action of D

±h
−1 in Z

h

well defined, it is necessary to extend it to the nonlocal variables, which can be
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Table 1.3: Action of the discrete integration operators on the finite-difference
derivatives (u

h
1, u
h

2, u
h

3, . . .).

“left” D
−h
−1-integration “right” D

+h

−1-integration

D
−h
−1(u

h
1) = u+ hu

h
1 D

+h

−1(u
h

1) = u

D
−h
−1(u2

h
) = u

h
1 D

+h

−1(u2
h

) = u
h

1 − hu
h

2

D
−h
−1(u3

h
) = u

h
2 + hu3

h
D
+h

−1(u
h

3) = u
h

2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D
−h
−1(u2k+1) = u

h
2k + hu

h
2k+1 D

+h

−1u
h

2k+1 = u
h

2k

D
−h
−1(u

h
2k+2) = u

h
2k+1 D

+h

−1(u
h

2k+2) = u
h

2k+1 − hu
h

2k+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

introduced as follows:

u
h
−1 = D

−h
−1(u), u

h
−2 = D

+h

−1(u
h
−1),

· · · · · · · · · · · · · · · · · · · · ·
u
h
−2k = D

+h

−1(u
h
−2k+1), u

h
−2k−1 = D

−h
−1(u

h
−2k),

· · · · · · · · · · · · · · · · · · · · ·

In the space Z
h

supplemented with the nonlocal variables u
h
−s, the action of D

±h
−1

is closed (see Table 1.4, which includes Table 1.3).
It is of interest to learn to express the operators D

±h
−1 in terms of the discrete

shift operators S
±h

, i.e., to relate them to the Taylor group.

LEMMA 1.21. Equation D
±h
−1D
±h

= 1 is solvable in the class of formal operator

series of the form

D
+h

−1 = −h
∞∑
α=0

S
+h

α = −h(1 + S
+h

+ S
+h

2 + · · · ) ≡ −h
∞∑
α=0

e+αhD,

D
−h
−1 = +h

∞∑
α=0

S
−h

α = h(1 + S
−h

+ S
−h

2 + · · · ) ≡ h
∞∑
α=0

e−αhD.

(1.104)

Indeed,

D
+h

−1D
+h

= D
+h
D
+h

−1 =
1

h
(S
+h
− 1)[−h(1 + S

+h
+ S

+h

2 + · · · )]

= 1 + S
+h

+ S
+h

2 + · · · − S
+h
− S

+h

2 − · · · = 1.
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Table 1.4: Discrete integration in the extended space
Z̃
h

= (. . . , u
h
−2, u

h
−1, x, u, u

h
1, u
h

2, . . .).

“left” D
−h
−1-integration “right” D

+h

−1-integration

D
−h
−1(u

h
−2k) = u

h
−2k−1 D

+h

−1(u
h
−2k) = u

h
−2k−1 − hu

h
−2k

D
−h
−1(u

h
−2k+1) = u

h
−2k + hu

h
−2k+1 D

+h

−1(u
h
−2k+1) = u

h
−2k

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D
−h
−1(u2) = u

h
3 D

+h

−1)u
h

2 = u
h

3 − hu
h

2

D
−h
−1(u

h
1) = u

h
2 + hu

h
1 D

+h

−1(u
h

1) = u
h

2

D
−h
−1(u) = u

h
1 D

+h

−1(u) = u
h

1 − hu

D
−h
−1(u

h
1) = u+ hu

h
1 D

+h

−1(u
h

1) = u

D
−h
−1(u

h
2) = u

h
1 D

+h

−1(u
h

2) = u
h

1 − hu
h

2

D
−h
−1(u

h
3) = u

h
2 + hu

h
3 D

+h

−1(u
h

3) = u
h

2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D
−h
−1(u

h
2k+1) = u

h
2k + hu

h
2k+1 D

+h

−1(u
h

2k+1) = u
h

2k

D
−h
−1(u

h
2k+2) = u

h
2k+1 D

+h

−1(u
h

2k+2) = u
h

2k+1 − hu
h

2k+2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The representation (1.104) permits extending the action of D
±h
−1 to analytic

functions F (z) ∈ A
h

of finitely many variables:

D
±h
−1F (z) = ∓h[F (z) + F (S

±h
(z)) + F (S

±h
2(z)) + · · · ].

The series on the right-hand side converges if F (z) decreases sufficiently rapid-
ly at infinity. (It follows from the analysis that this series converges, for example,
simultaneously together with the corresponding improper integral.)

By using the operators D
±h
−1, one can introduce the inner product. For example,

the analog of the inner product in L2 acquires the form

(u, v) = (D
−h
−1 − D

−h
−1 − h)(uv). (1.105)

One can show that the discrete shift operator S
±h

is unitary with respect to the

inner product (1.105):
S
±h
∗ = (S

±h
)−1 = S

∓h
.
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Indeed, it follows from (1.104) and (1.105) that

(S
+h

(u), v) = h(. . .+ S
+h

(u)v + uS
−h

(v) + S
−h

(u)S
−h

2(v) + · · · ),

(u, (S
+h

)−1(v)) = h(. . .+ S
+h

(u)v + uS
−h

(v) + S
−h

(u)S
−h

2(v) + · · · );

i.e.,
(S
+h

(u), v) = (u, S
−h

(v)).

In conclusion, note that the problems of convergence of the above-considered
series in the shift operator are not the object of our attention and do not affect the
algebraic aspects of studying the difference forms and equations.

1.8. Change of Variables in the Mesh Space

In this section, we present some formulas of the change of variables in Z
h

, which
will be used in what follows to study group properties of difference equations. We
consider only the case of a single independent variable.

1. Suppose that a formal one-parameter group G1 acts in Z̃ and Z
h

:

x∗ = f(z, a), h+∗ = S
+h

(f(z, a))− f(z, a),

u∗ = g(z, a), u
h

∗
1 = ϕ1(z, a),

u∗1 = g1(z, a), u
h

∗
2 = ϕ2(z, a),

· · · · · · · · · · · · · · · · · ·

(1.106)

with the operator

X = ξ
∂

∂x
+η

∂

∂u
+
∑
i≥1

ζi
∂

∂ui
+
∑
s≥1

ζ
h
s
∂

∂u
h
s

+(ξ+−ξ) ∂

∂h+
+(ξ−ξ−)

∂

∂h−
. (1.107)

The scalar function F(z) ∈ A
h

at the transformed point z∗ ∈ Z
h

is the formal
power series

F(z∗) = F(z) + a

(
ξ
∂F
∂x

+ η
∂F
∂u

+ · · ·
)

+ · · · =
∞∑
s=0

as

s!
X(s)F(z). (1.108)

In particular, if G1 (1.106) is the Taylor group with operator D, then for a = ±h
formula (1.108) gives

S
±h

(F(z)) = F(S
±h

(z));

i.e., the shift operators S
±h

commute with any function in A
h

.
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Now consider an “external” point transformation (not necessarily comprising a
group!):

x̄ = F (x, u), ū = G(x, u). (1.109)

In the change of variables (1.109), the coordinates are changed in Z̃ and Z
h

. The

changes of differential variables in Z̃ are well known (see [107, 111, 113]). There-
fore, we consider the change of the difference variables. The points (x+, u+) and
(x−, u−) pass respectively into

x̄+ = F (x+, u+), ū+ = G(x+, u+), x̄− = F (x−, u−), ū− = G(x−, u−);

i.e.,

h̄+ = F (x+, u+)−F (x, u) = h+D
+h

(F ), h̄− = F (x, u)−F (x−, u−) = h−D
−h

(F ).

We introduce the shift operators S̄
±h

in the new coordinate system:

S̄
+h

=
∞∑
s=0

(h̄+)
s

s!
D̄s, S̄

−h
=
∞∑
s=0

(−h̄−)
s

s!
D̄s,

where D̄ is the differentiation operator in the new coordinate system.
The discrete differentiation operator in the new coordinate system becomes

D̄
±h

=
1

D
±h

(F (x, u))
D
±h
. (1.110)

In particular, it follows from (1.110) that

ū
h
x =

D
+h

(G)

D
+h

(F )
, ū

h
xx̄ =

D
+h

(G)D
−h

(F )− D
+h

(F )D
−h

(G)

h−D
+h

(F )[(D
−h

(F )]2
, . . . . (1.111)

Let us find how the coefficients of the operator (1.107) vary in the change (1.109).
The well-known formulas of group analysis (see [107, 111, 113]) give the coeffi-
cients of the operator (1.107) in Z̃:

X̄ = X(F )
∂

∂x̄
+X(G)

∂

∂ū
+X

(
D(G)

D(F )

)
∂

∂ūx
+ · · · . (1.112)

Thus, the operator (1.107) is an operator of a formal group preserving “con-
tinuous” tangency of any order and “discrete” tangency of any finite order. This
property is independent of the coordinate system (the operator (1.107) is a scalar
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expression), and hence the other coordinates in (1.112) can be obtained by the pro-
longation formulas:

X̄ = · · ·+ [D̄
+h

(X(G))− ū
h
xD̄

+h
(X(F ))]

∂

∂ū
h
x

+ · · ·

+X(F (x+, u+)− F (x, u))
∂

∂h̄+
+X(F (x, u)− F (x−, u−))

∂

∂h̄−
. (1.113)

Indeed, for example, h̄+ = F (x+, u+) − F (x, u) under the action of Ḡ1 becomes
the new spacing:

(h̄+)
∗

= F (x+∗, u+∗)− F (x∗, u∗).

By differentiating the last relation with respect to a and by equating a with zero,
we obtain the desired coefficient of ∂

∂h̄+ in (1.113).
In a similar way, we obtain the following expression from (1.111):

ū
h

∗
x =

G(x+∗, u+∗)−G(x∗, u∗)

F (x+∗, u+∗)− F (x∗, u∗)
;

by applying it to some ∂/∂a|a=0, we obtain the coefficient of ∂/∂ū
h
x in (1.113).

Thus, the group Ḡ1, similar to the group G1, is determined in Z
h

by an operator that
can be written in the unique form

X̄ = X(x̄)
∂

∂x̄
+X(ū)

∂

∂ū
+
∞∑
s=1

X(ū
h
s)

∂

∂ū
h
s

+X(h̄+)
∂

∂h̄+
+X(h̄−)

∂

∂h̄−
. (1.114)

2. In what follows, we need to apply the operator (1.107) to the functions F (z) ∈
A
h

, which contain the neighboring points of a given point or some of their coordi-
nates. To obtain the desired extension of the coordinates in the operator (1.107),
note that the operator (1.107) is the inner product (in Z

h
) of the vectors

(ξ, η, ζ
h

1, ζ
h

2, . . . , h
+),

(
∂

∂x
;
∂

∂u
;
∂

∂u
h
x

,
∂

∂u
h
xx̄

, . . . ,
∂

∂h+

)
. (1.115)

To obtain the product of vectors at the points z+ = S
+h

(z) and z− = S
−h

(z), we

write both vectors (1.115) at the points z+ and z− and take their inner product:

X+ = ξ+ ∂

∂x+
+ η+ ∂

∂u+
+ ζ1

+

h

∂

∂u+

h
x

+ · · ·+ h++ ∂

∂h++
,

X− = ξ−
∂

∂x−
+ η−

∂

∂u−
+ ζ1

−

h

∂

∂u−
h
x

+ · · ·+ h−−
∂

∂h−−
.

(1.116)
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The desired coefficients in (1.116) can be obtained in a different way. Formula
(1.114) permits extending the action of G1 to any new variables. For example, by
introducing the new variables

x̄ = x+ = x+ h+,

ū = u+ = u+ h+u
h
x,

· · · · · · · · · · · · · · ·

according to (1.114), we obtain

X̄ = X(x+ h+)
∂

∂x+
+X(u+ h+u

h
x)

∂

∂u+
+ · · · = ξ+ ∂

∂x+
+ η+ ∂

∂u+
+ · · · ,

i.e., formulas (1.116).
We use the formulas obtained above to prolong the groupG1 to the neighboring

points of a given point, i.e., to the set of points of the difference mesh that comprise
the difference stencil. Their generalization to the multidimensional case is quite
obvious.





Chapter 2

Invariance of Finite-Difference Models

In this chapter, we use the mathematical technique developed in the preceding chap-
ter to study the symmetry properties of finite-difference models, i.e., difference
equations considered together with difference meshes. The main theorem proved in
this chapter deals with necessary and sufficient conditions for the invariance of dif-
ference equations and meshes. We develop a simple algorithm, called the method of
finite-difference invariants, for constructing invariant difference model from a given
differential equation and admitted transformation group. We also consider several
examples of constructing finite-difference models, where we completely preserve
the symmetry of the original differential equations. We show that symmetries of
difference models permits symmetry reduction by means of subgroups (just as in
the case of differential equations). In addition, we present an example where the
group admitted by a difference model is calculated.

We should mention the pioneering papers on the invariance of difference equa-
tions [95–97].

2.1. An Invariance Criterion for Finite-Difference Equations
on the Difference Mesh

1. For simplicity, we consider the case of a single independent variable. Let Z
h

be

the space of sequences of mesh variables (x, u, u
h

1, . . . , h
+), and let A

h
be the space

of analytic functions of finitely many coordinates zi of a vector z ∈ Z
h

. Then each
finite-difference equation on the mesh ω

h
can be written as

F (z) = 0, (2.1)

where F ∈ A
h

. This equation is written on finitely many points of the difference
mesh ω

h
, which may be uniform or nonuniform. We assume that the mesh is deter-

mined by the equation
Ω(z) = 0, (2.2)

where Ω ∈ A
h

. The function Ω is uniquely determined by the “discretization” of
the space of independent variables, which is obtained by the action of the operator

55
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S
±h

α on the “starting point” point x0. Thus, we initially assume that Eq. (2.2) is

invariant under the discrete shift operator S
±h

in Z
h

. A difference equation (2.1)

that admits S
±h

is said to be homogeneous ( [122]). The function Ω(z) depends on

finitely many variables in Z
h

and explicitly depends on the mesh spacing h+. In

the continuum limit, the mesh equation Ω(z) = 0 degenerates into an identity (for
example, 0 = 0).

If a transformation group acts on Z
h

, then, in contrast to the continuous case,
one should also include Eq. (2.2) in the invariance condition, because an arbitrary
mesh ω

h
does not necessarily admit this group.

PROPOSITION 2.1. Let G1 be a one-parameter group in Z
h

with operator

X = ξ
∂

∂x
+ η

∂

∂u
+ · · ·+ h+D

+h
(ξ)

∂

∂h+
. (2.3)

For the difference equation (2.1) to admit the group G1 with operator (2.3) on the
mesh (2.2), it is necessary and sufficient that the following condition be satisfied:

XF (z)
∣∣

(2.1),(2.2) = 0, XΩ(z)
∣∣
(2.1),(2.2) = 0. (2.4)

Proof. In the proof, we restrict ourselves to the one-dimensional case,

Z̃
h

= (x, u, u1, u2, . . . , u
h

1, u
h

2, . . . , h
+).

We assume that the finite-difference equation (2.1) and Eq. (2.2) are invariant in Z
h

;
i.e.,

F (z∗) = 0, Ω(z∗) = 0

for each point z of the manifold (2.1), (2.2). By expanding the functions F,Ω ∈ A
h

in power series in a, we obtain

F (z∗) = F (z) + a

[
ξ(z)

∂F (z)

∂x
+ η(z)

∂F (z)

∂u
+ · · ·

]
+ a2N(z, a),

Ω(z∗) = Ω(z) + a

[
ξ(z)

∂Ω(z)

∂x
+ η(z)

∂Ω(z)

∂u
+ · · ·

]
+ a2M(z, a),

(2.5)

where N(z, a) and M(z, a) are formal power series in the parameter a as well. In
particular, the fact that the formal series (2.5) are zero for the points of the mani-
fold (2.1), (2.2) implies that the first coefficients are zero; i.e., (2.4) is satisfied.

Now let us assume that the manifold (2.1), (2.2) satisfies conditions (2.4). The
groupG1 with operator (2.3) takes each point z = (x, u, u1, u2, . . . , u

h
1, u
h

2, . . . , h
+)

to the point z∗ with coordinates given by the formal power series

zi∗ = f i(z, a) =
∞∑
k=0

Aik(z, a)ak. (2.6)
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Since the series (2.6) form a group, it follows that they can be represented in expo-
nential form (see Chapter I),

zi∗ = eaX(zi) ≡
∞∑
s=0

as

s!
X(s)(zi). (2.7)

Consider F (z∗) and Ω(z∗), i.e., a superposition of series of the form (2.6) and (2.7).
Let us find the derivative of F (z∗) and Ω(z∗) with respect to the parameter a:

dF (z∗)

da
= ξ(z∗)

∂F (z∗)

∂x∗
+ η(z∗)

∂F (z∗)

∂u∗
+ · · · =

∞∑
s=1

as−1

(s− 1)!
X(s)F (z),

dΩ(z∗)

da
= ξ(z∗)

∂Ω(z∗)

∂x∗
+ η(z∗)

∂Ω(z∗)

∂u∗
+ · · · =

∞∑
s=1

as−1

(s− 1)!
X(s)Ω(z).

(2.8)

Equations (2.8) are the Lie equations for the formal series F (z∗) and Ω(z∗) with
the initial data F (z) = 0 and Ω(z) = 0. By assumption, the manifold F (z∗) = 0,
Ω(z∗) = 0 satisfies Lie equations (2.8) and the initial conditions. Since Eqs. (2.8)
determine the solutions as unique recursion relations for the coefficients of the for-
mal series F (z∗) and Ω(z∗), it follows that the solution of the system F (z∗) = 0,
Ω(z∗) = 0 is unique. Hence the manifold (2.1), (2.2) is invariant under the formal
group G1 with operator (2.3).

Note that the only essentially new fact in considering the invariance of finite-
difference equations for the formal one-parameter group G1 is the appearance of
Eq. (2.2) for the difference mesh, which is not contained in the differential setting.

Remark. If the equation Ω(x, h+) = 0 is independent of the variables u, u
h

1, u
h

2, . . .

(i.e., of the solution), then the mesh invariance condition[
ξ(x, u)

∂Ω

∂x
+ η(x, u)

∂Ω

∂u
+ · · ·+ (S

+h
(ξ)− ξ) ∂Ω

∂h+

]∣∣∣∣
(2.1),(2.2)

= 0

is not related to the invariance criterion for the difference equation F (z) = 0 for
groups with ξu = 0 (so-called x-autonomous groups):[

ξ(x)
∂Ω

∂x
+ (ξ(x+ h+)− ξ(x))

∂Ω

∂h+

]∣∣∣∣
(2.2)

= 0.

These groups include shifts and dilations of independent variables, rotations, the
Lorentz group, and some other widely used symmetries of mathematical models in
physics. This fact significantly simplifies the construction of invariant difference
equations for specific mathematical models of physics. Indeed, in this case the
mesh invariance criterion can be separated from the invariance criterion for the
difference equations, and the difference mesh can be constructed independently.
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2. We see that criterion (2.4) implies necessary and sufficient conditions for the
invariance of finite-difference equations. Conditions (2.4) are linear partial differ-
ence equations for the coefficients ξi(x, u) and ηk(x, u) of the infinitesimal opera-
tor (2.3). If the problem is to find all operators of the form (2.3) admitted by a given
finite-difference equation (system), then it always reduces to the solution of the lin-
ear system (2.4) regardless of whether the original system (2.1), (2.2) is linear.
Thus, the problem of finding the group admitted by given finite-difference equa-
tions is always linear. But even such a linear problem is intractable, because the
problem of exact integration of partial finite-difference equations is in fact open.
It is significantly simpler to solve the inverse problem, i.e., construct difference
equations and meshes admitting a given transformation group. For example, if
one needs to preserve the symmetry group of the original model in finite-difference
modeling, then one can use the fact that conditions (2.4) are sufficient for difference
equations and meshes to be invariant.

Consider several examples of difference equations and meshes that preserve the
symmetry group of the original model.

EXAMPLE 2.2. The ordinary differential equation

d2u

dx2
= eu (2.9)

admits the two-parameter point transformation group generated by the operators

X1 =
∂

∂x
, X2 = x

∂

∂x
− 2

∂

∂u
. (2.10)

Consider the finite-difference equation

u
h
xx̄ = eu (2.11)

in Z
h

. Let us represent the operators (2.10) in Z
h

by extending X2 to h+ and h− as
follows (the corresponding coordinates in X1 are zero):

X1 =
∂

∂x
, X2 = x

∂

∂x
−2

∂

∂u
−u

h
x
∂

∂u
h
x

−2u
h
xx̄

∂

∂u
h
xx̄

+h+ ∂

∂h+
+h−

∂

∂h−
. (2.12)

Both operators satisfy the criterion for the preservation of the mesh uniformity (see
Chapter 1); therefore, the uniform mesh (h+ = h−) is invariant.

We check the invariance criterion (2.4) for Eq. (2.11) and the operators (2.12):

X1(u
h
xx̄ − eu)

∣∣
(2.11) = 0, X2(u

h
xx̄ − eu)

∣∣
(2.11) = −2(u

h
xx̄ − eu)

∣∣
(2.11) = 0.

Note that we have first constructed a difference equation and then verified
whether the invariance criterion (2.4) is satisfied.
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Is Eq. (2.11) unique in the sense that it is the only equation that admits the
group (2.12) and approximates (2.9) modulo O(h2)? The following example gives
another difference equation with the same properties:

u
h
xx̄ = eu + h2e2u.

By way of example, consider the following equation, which approximates (2.9) to
the second order but does not admit the same group as the original equation:

u
h
xx̄ = eu + h2eu. (2.13)

It is obvious that Eq. (2.13) admits X1 but does not admit X2,

X2(u
h
xx̄ − eu(1 + h2))

∣∣
(2.13) 6= 0.

EXAMPLE 2.3. The nonlinear heat equation

ut = (uσux)x, σ > 0 (2.14)

admits (see [112]) the four-parameter group with the operators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2t

∂

∂t
+ x

∂

∂x
, X4 = σt

∂

∂t
− u ∂

∂u
.

The operators in Z̃
h

in extended form become

X1 =
∂

∂t
, X2 =

∂

∂x
,

X3 = 2t
∂

∂t
+ x

∂

∂x
− u

h
x
∂

∂u
h
x

− 2u
τ
t
∂

∂u
τ
t

− 2u
h
xx̄

∂

∂u
h
xx̄

+ 2τ
∂

∂τ
+ h

∂

∂h
,

X4 = σt
∂

∂t
− u ∂

∂u
− u

h
x
∂

∂u
h
x

− (σ + 1)u
τ
t
∂

∂u
τ
t

− u
h
xx̄

∂

∂u
h
xx̄

+ στ
∂

∂τ
.

(2.15)

Note that all four operators generate x-autonomous subgroups and preserve the
orthogonality and uniformity of the mesh ω

h
× ω

τ
. (The operators X1 and X2 do

not change the mesh spacings h and τ , and the operators X3 and X4 dilate them
uniformly.) Therefore, we choose just such an invariant mesh.

Consider a difference mesh approximating Eq. (2.14) inZ
h

to the order of τ+h2:

u
τ
t = D

+h
(k(u)û

h
x̄) = k(u)û

h
xx̄ + D

+h
(k(u))û

h
x, (2.16)

where ẑ = S
+τ

(z) is the value of z at the “upper layer” in t and k(u) is the dif-

ference approximation to the thermal conductivity coefficient uσ. The implicit
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scheme (2.16) is based on a six-point stencil and is divergence free; i.e., it can
be written in the form of a difference conservation law. We choose the following
approximation to the coefficient k = uσ:

k(u) =
1

2
(uσ + S

−h
(uσ));

then D
+h

(k(u)) = 1
2h

(S
+h

(uσ)− S
−h

(uσ)), and the scheme (2.16) becomes

u
τ
t =

1

2
(uσ + S

−h
(uσ))û

h
xx̄ +

1

2h
(S
+h

(uσ)− S
−h

(uσ))û
h
x. (2.17)

We extend the operators (2.15) to the variables û
h
x̄, û

h
xx̄, S

+h
(uσ), S

−h
(uσ) as follows:

X3 = · · · − û
h
x
∂

∂û
h
x

− 2û
h
xx̄

∂

∂û
h
xx̄

;

X4 = · · · − S
+h

(u)
∂

∂(S
+h

(u))
− S
−h

(u)
∂

∂(S
−h

(u))
− û

h
x
∂

∂û
h
x

− û
h
xx̄

∂

∂û
h
xx̄

.

(The operators X1 and X2 are “nonextensible”; i.e., the coordinates of any addi-
tional variables are zero.)

Obviously, the difference equation (2.17) admits X1 and X2. Let us verify
whether it is invariant under X3 and X4:

X3

[
u
τ
t −

1

2
[uσ + S

−h
(uσ)]û

h
xx̄ −

1

2h
[S
+h

(uσ)− S
−h

(uσ)]û
h
x

]∣∣∣∣
(2.17)

= −2

[
u
τ
t −

1

2
[uσ + S

−h
(uσ)]û

h
xx̄ −

1

2h
[S
+h

(uσ)− S
−h

(uσ)]û
h
x

]∣∣∣∣
(2.17)

= 0,

X4

[
u
τ
t −

1

2
[uσ + S

−h
(uσ)]û

h
xx̄ −

1

2h
[S
+h

(uσ)− S
−h

(uσ)]û
h
x

]∣∣∣∣
(2.17)

= −(σ + 1)

[
1

2
[uσ + S

−h
(uσ)]û

h
xx̄ −

1

2h
[S
+h

(uσ)− S
−h

(uσ)]û
h
x

]∣∣∣∣
(2.17)

= 0.

Here we have used the fact that the operators S
±h

commute with any function in A
h

.

Thus, the scheme (2.17) is invariant on a uniform orthogonal mesh.

3. The most famous applications of the theory of group properties of differential
equations are methods for obtaining group-invariant solutions [111], of which self-
similar solutions are used most widely. The method for constructing such solutions
is based on the so-called “π-theorem.”

If an equation (a system) admits an r-parameter transformation group Gr, then
the solutions invariant under a subgroup of Gr can be obtained by integrating
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an equation (a system) of smaller dimension. If the necessary conditions [111] are
satisfied, then invariant solutions can be constructed on subgroups of various di-
mensions; they are classified according to their rank, invariance defects, and other
properties.

Just as in the differential case, the invariance of a finite-difference equation (sys-
tem) together with the difference mesh permits constructing invariant solutions. But
discrete equations are nonlocal, and so this procedure has several specific features.
A difference equation is defined on a difference stencil, which is a finite set of dif-
ference mesh points, and hence the mapping into the space of the group invariants
should match the difference mesh and the stencil in the original space with those in
the space of invariants. In other words, the projection onto the space of invariants
should take all points of the original difference stencil to the points of the stencil of
the reduced model. Let us illustrate this by examples.

Symmetry reduction by means of subgroups of the admissible group

Consider several typical invariant solutions of the difference nonlinear heat equa-
tion (2.17),

u
τ
t =

1

2
(uσ + S

−h
(uσ))û

h
xx̄ +

1

2h
(S
+h

(uσ)− S
−h

(uσ))û
h
x, σ > 0, (2.18)

which admits the group G4 with operators (2.15) on a uniform orthogonal mesh.

Translation groups

Consider the stationary solution of Eq. (2.18). In the space (t, x, u), the operatorX1

has two invariants, x and u. The invariant solution u(x, t) = ũ(x) is the stationary
solution determined by the ordinary difference equation obtained by substituting
u(x, t) = ũ(x) into the difference equation:

k(ũ)ũ
h
xx̄ + D

+h
(k(ũ))ũ

h
x = 0, k(ũ) =

1

2
(ũσ + S

−h
(ũσ)),

and the mesh spacing h must remain the same as in the original space.
A homogeneous solution on the operator X2 can be obtained in a similar way.
A solution invariant under the operator

X1 + αX2 =
∂

∂t
+ α

∂

∂x
, α = const,

with invariants
J1 = u, J2 = x− αt,

is a difference traveling wave,

u(x, t) = ũ(λ), λ = x− αt, (2.19)



62 INVARIANCE OF FINITE-DIFFERENCE MODELS

-

6

λ = const
��

��
�
��
�
��

��
�
��
�
��

�
��
�
��

��
�
��

�
��

��t
t
t

t
t
t

t
t
t

τ

τ
h h

t

x

Figure 2.1

propagating for α > 0 to the right with respect to x at velocity α. The conditions
necessary for the existence of a traveling wave type solution are satisfied,

R

(∥∥∥∥∂λ∂u, ∂ũ∂u
∥∥∥∥) = 1, R (‖1, α, 0‖) = 1 < N = m+ n = 3.

But this is insufficient for the desired solution of Eq. (2.18) on the difference stencil
in the subspace (x, t) to be taken to the difference stencil of the mesh in the invariant
subspace (λ).

Additional specific difference conditions for the existence of an invariant solu-
tion relate the original stencil to the stencil in the space of invariants (the “multi-
point” mapping conditions).

The difference mesh spacing ∆λ along the λ-axis should be matched with the
original mesh spacings h and τ and the wave velocity α,

α = h/τ, ∆λ = h. (2.20)

These relations mean that the lines λ = const pass through the nodes of the original
mesh in the plane (x, t) (see Fig 2.1).

The difference stencils can be matched if α = kh/τ , where k is any rational
number, i.e., if the traveling wave velocity α is a multiple of the “difference veloc-
ity” h/τ . Difference traveling waves of the heat equation were originally obtained
in [126].

Under conditions (2.20), we can substitute the invariant representation (2.19) of
a solution into the invariant difference equation (2.18), thus obtaining the following
ordinary difference equation for the function ũ(λ):

αũλ +
1

2
[ũσ + ˇ̃uσũλ̄]λ = 0, (2.21)

where ˇ̃u = ũ(λ−∆λ).
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Just as in the differential case, the difference equation (2.21) has a first integral.
By applying the right integration operator to (2.21), we obtain

αũ+
1

2
(ũσ + ˇ̃uσ)ũλ̄ = const.

The dilation group

Consider a self-similar solution of Eq. (2.18) invariant under the one-parameter
dilation group and corresponding to X4. The invariants are x and ut1/σ.

We seek the invariant solution in the form

u(x, t) = ũ(x)t−
1
σ .

By substituting the invariant representation of u(x, t) into Eq. (2.18), we obtain the
following equation for ũ(x) at the (n+ 1)st t-layer:

(S
+h

(ũσ) + ũσ)ũ
h
x − (ũσ + S

−h
(ũσ))ũ

h
x + 2nh(

√
n2 + n− 1)ũ = 0. (2.22)

In this equation, the mesh spacing h coincides with the original one. Having solved
Eq. (2.22), we can find the solution of the original equation by the formula

u(x, t) =
ũ(x)

[τ(n+ 1)]1/σ
, n = 0, 1, 2, . . . .

Thus, finding an invariant solution of the scheme (2.18) is reduced to finding
a solution of an ordinary difference equation, i.e., solving the problem at each time
layer reduced to a one-time process.

4. Consider an example where the invariance criterion is applied to a difference
equation for factorized (canonical) symmetry operators.

Consider the ordinary differential equation

uxx = u2. (2.23)

Equation (2.23) admits the two-parameter point transformation group generated by
the operators

X1 =
∂

∂x
, X2 = x

∂

∂x
− 2u

∂

∂u
. (2.24)

Consider the finite-difference equation

u+ − 2u+ u−

h2
= u2, (2.25)

where u+ = S
+h

(u) and u− = S
−h

(u), on the uniform difference mesh

h+ = h−. (2.26)
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Equations (2.25)–(2.26) use the three-point stencil (x, x+, x−, u, u+, u−). We
extend the operators (2.24) to the points of this stencil by setting

X1 =
∂

∂x
+

∂

∂x+
+

∂

∂x−
,

X2 = x
∂

∂x
+ x+ ∂

∂x+
+ x−

∂

∂x−
− 2u

∂

∂u
− 2u+ ∂

∂u+
− 2u−

∂

∂u−

+ h+ ∂

∂h+
+ h−

∂

∂h−
.

One can readily verify the invariance of Eqs. (2.25)–(2.26):

X2

[
u+ − 2u+ u−

h2
− u2

]∣∣∣∣
(2.25),(2.26)

= 0, X2

(
h+ − h−

) ∣∣
(2.25),(2.26) = 0. (2.27)

(The operator X1 does not change Eqs. (2.25)–(2.26).)
It follows that the difference model (2.25)–(2.26) admits the same transforma-

tion group as the original differential equation (2.23). Note that the invariance
conditions (2.27) split into two independent equations.

Now consider the invariance criterion for the difference model (2.25)–(2.26) in
the case of canonical operators. Without loss of generality, consider the represen-
tation of the operator D+ for the right half-line,

D+ =
∂

∂x
+

∂

∂x+
+

∂

∂x−
+ ux

∂

∂u
+ u+

x

∂

∂u+
+ u−x

∂

∂u−
,

where

ux ≡
∞∑
n=1

(−h)n−1

n
D
+h

n(u), u+
x ≡

∞∑
n=1

(−h)n−1

n
D
+h

n(u+),

u−x ≡
∞∑
n=1

(−h)n−1

n
D
+h

n(u−)

are the difference representations of continuous derivatives at different points of the
stencil.

The canonical operators acquire the form

X̄
+h

1 = −X1 +D+ = ux
∂

∂u
+ u+

x

∂

∂u+
+ u−x

∂

∂u−
,

X̄
+h

2 = −X2 + xD+ = −h+ ∂

∂h+
− h− ∂

∂h−
+ (2u+ xux)

∂

∂u

+ (2u+ + xu+
x )

∂

∂u+
+ (2u− + xu−x )

∂

∂u−
.

(2.28)

It is obvious that the mesh equation (2.26) admits the operators (2.28).
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The action of the operators (2.28) on Eq. (2.25), considered on the equation
itself, leads to

ux + 2u+
x + u−x = 2uuxh

2.

The last equation is a differential corollary of Eq. (2.25) based on the use of all
points of the right half-line.

One can see that the use of factorized (canonical) operators in the difference
case leads to significant technical difficulties even on uniform meshes. If it is re-
quired to construct a difference model, then it is impossible to use canonical opera-
tors, because no methods for constructing invariants have been developed for such
operators.

2.2. Symmetry Preservation in Difference Modeling:
Method of Finite-Difference Invariants

In the preceding section, the invariance criterion (2.4) was used to verify the invari-
ance of finite-difference equations. In this section, we consider the problem of how
to construct difference models for a given differential equation if the symmetry
group of this equation is known.

One can readily construct an arbitrary invariant difference equation for a given
group Gr. For simplicity, consider the case of a single independent variable and
first-order difference equations. We assume that there is given a point group Gr

that acts in the space of a single independent andm dependent variables. We extend
it to the first difference derivatives, i.e., to the space with m + 1 variables, which
is supplemented with the mesh spacing and m first difference derivatives; i.e., the
total number of variables is 2m + 2. Just as in the differential case, to find the
invariants, one has to solve the linear partial differential system

Xα(Ik) = 0, α = 1, 2, . . . , r.

If there exists a nontrivial solution of this system, then, according to the classical
Lie theory, for a group with a set of operators of rank R we have λ = 2m+ 2− R
independent invariants. The invariants that are not invariants in the original (m+1)-
dimensional space are naturally called first-order finite-difference invariants. By
repeating this process, we can construct finite-difference invariants of any order,
and the number of them increases together with the number of repetitions, just as
in the continuous case of extension to higher-order derivatives (cf. [111]).

Now it is clear how to construct an arbitrary invariant difference equation for
a given group Gr. Any equations relating (in a sufficiently smooth way) these λ
independent invariants,

Φk(I
1(z), I2(z), . . . , Iλ(z)) = 0, k = 1, 2, . . . , s, (2.29)
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are first-order finite-difference equations admitting the given group. The number s
of equations must ensure the solvability of system (2.29) for the dependent vari-
ables; moreover, one of the equations in the system should determine the difference
mesh. As the group is extended to the second and higher difference derivatives, the
number of difference invariants increases, and the invariant difference equations of
the second-, third-, and higher-orders can be written in a completely similar way.

Note, however, that these equations have nothing in common with any differen-
tial model. Consider the following problem: of equations of the form (2.29), choose
equations that approximate a given equation (system) to a given order O(hk). Let
us illustrate this by an example.

EXAMPLE. We return to the example of the equation

u′′ = eu.

For this second-order equation, we should have at least a three-point difference
stencil, on which we should construct (to be definite) a second-order approximation
to the original equation. The group G2 with operators

X1 =
∂

∂x
, X2 = x

∂

∂x
− 2

∂

∂u
− u

h
x
∂

∂u
h
x

− 2u
h
xx̄

∂

∂u
h
xx̄

+ h+ ∂

∂h+
+ h−

∂

∂h−

extended to the space (x, u, u
h
x, u

h
xx̄, h

+, h−) has 6− 2 = 4 independent invariants,
which can be obtained by solving the corresponding linear system (which we omit
here). The solution of this system has a functional ambiguity in the choice of the
solution. (Any function of invariants is again an invariant.) For example, we can
choose the following difference invariants:

J1 = (h+)2eu, J2 = u
h
xe
−u/2, J3 = u

h
xx̄e
−u, J4 =

h+

h−
.

We should write out two invariant difference equations of the form

Φ1(I1(z), I2(z), . . . , I4(z)) = 0, Φ2(I1(z), I2(z), . . . , I4(z)) = 0,

one of which should determine the difference mesh. A differential equation con-
tains no “traces” of a difference mesh, and hence it is only the developer of the
difference scheme who can choose it. However, if the problem is to preserve the
symmetry of the original differential equation in the difference model, then the
choice is significantly narrower, because the equation generating the mesh should
be written in terms of difference invariants. Note that it is possible to choose a mesh
independent of the solution in our example:

J4 =
h+

h−
= 1.
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This choice of the simplest invariant mesh seems to be quite logical if there is no
special modeling problem. On such a uniform mesh, as is easily seen, the third
difference invariant gives a second-order approximation to the differential invari-
ant u′′e−u modulo O(h2). Therefore, for the invariant difference equation we take

J3 = u
h
xx̄e
−u = 1.

Thus, we have constructed a difference model completely preserving the two-
parameter symmetry group of the original differential equation:

u
h
xx̄ = eu, h+ = h−.

Is the constructed invariant model unique? Of course, not. The equation for in-
variant mesh generation provides infinitely many possibilities. In addition, even
on any chosen invariant mesh, an infinite choice is still possible. For example, on
the above-chosen invariant uniform mesh, another invariant approximation can be
taken. The equation

u
h
xx̄ = eu + (h+)

2
e2u,

can also be represented in the invariant form

J3 = 1 + J1, (2.30)

and it provides a second-order approximation to the differential equation. But in
this case the equation

u
h
xx̄ = eu + (h+)

2
eu

has the second order of approximation as well but cannot be written in invariant
form.

Now consider the general case. Let there be given a system of m differential
equations

Fα(x, u, u1, u2) = 0, α = 1, . . . ,m, (2.31)

that admits a known transformation group Gr. Without loss of generality, we as-
sume that (2.31) is a second-order system in the highest-order derivatives.

We should construct a system of difference equations

Fα(x, h+, h−, u, u+, u−) = 0, α = 1, . . . ,m,

where u+ and u− are the values of the desired function at the neighbors of a given
point x in all n directions, and a system of equations for constructing the difference
mesh,

Ωβ(x, h+, h−, u, u+, u−) = 0, β = 1, . . . , n, (2.32)

which admit the same group Gr in Z
h

and provide a second-order approximation to
the original system (2.31).
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Note that the order of Eq. (2.32) may be less than 2.
Since system (2.31) admits the groupGr (which is assumed to have invariants),

it follows that, after the complete set of τ functionally independent invariants

(J1(z), J2(z), . . . , Jτ (z)), Jα ∈ A,

of order k is constructed, system (2.31) can be rewritten in the invariant represen-
tation

Φα(J1(z), J2(z), . . . , Jτ (z)) = 0, α = 1, . . . ,m.

(It is assumed that system (2.31) is nondegenerate.)
The next step is to construct finite-difference invariants of the group Gr. The

set of difference invariants can be found by solving the following standard linear
problem of group analysis:

Xγ(I) = 0, γ = 1, 2, . . . , r.

The group Gr represented in Z
h

has τ + nm functionally independent difference
invariants

I1(z), I2(z), . . . , Iτ+nm(z), Iα(z) ∈ A
h
,

because in the difference space we have two sets (right and left) of first difference
derivatives. (This situation is preserved for any difference derivatives of odd order.)

Now one has to choose an invariant mesh from the general equation for invariant
mesh generation:

ωβ(I1(z), I2(z), . . . , Iτ+nm(z)) = 0,

where the ωβ are arbitrary smooth functions. This choice can be made from dif-
ferent standpoints. In our examples, we usually take an invariant mesh that is, in
a sense, simplest. At this step of choice, a preliminary analysis of possible meshes,
which was developed in the preceding chapter, may be of great help.

The next step is to form a set of τ invariants with the desired approximation
property; i.e., for each invariant Iα representable in Z̃ by the Taylor group, we have
the relation

Iα(z) = Jα(z) +O(h2), α = 1, . . . , τ, i = 1, . . . , n, (2.33)

which holds on the mesh chosen above. In practice, as a rule, it suffices to have less
than τ of such invariants.

Finally, we write out the difference equations

Φα(I1(z), I2(z), . . . , Iτ (z)) = 0, ωβ(I1(z), I2(z), . . . , Iτ+nm(z)) = 0, (2.34)

where ωβ = 0 is the above-chosen invariant representation of the finite-difference
mesh.
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Thus, roughly speaking, the algorithm is that we substitute the difference in-
variants for the differential ones into the invariant representation of the original
system.

Since the functions Φα(I1, I2, . . . , Iτ ) = 0 are assumed to be locally analytic in
their arguments, it follows from (2.33) that the difference equations Φα = 0 model
the corresponding differential equations with second-order approximation.

Obviously, the system of difference equations (2.34) thus constructed admits
the complete group Gr.

The above method for constructing invariant difference equations was called
the method of finite-difference invariants in [29].

Of course, this method is not unique. More possibilities can be obtained by in-
creasing the number of points in the difference stencil, i.e., by increasing the num-
ber of variables in the mesh space, by increasing the number of difference invari-
ants, and accordingly, by increasing the possibilities for obtaining relations (2.33).
Moreover, the finite-difference invariants can be used to approximate the original
differential equation itself rather than its invariant representation. But in all cases
the main tool is the set of finite-difference invariants. As we shall see later, when
constructing an invariant model of the linear heat equation, it may happen that
the differential equation is degenerate in the sense that there are no differential in-
variants, while simultaneously there exist difference invariants that can be used to
approximate the heat equation by a nondegenerate difference model. (Thus, the
degeneration occurs in the continuum limit.)

In the next section, we consider examples of applications of the above algo-
rithm.

2.3. Examples of Construction of Difference Models
Preserving the Symmetry of the Original
Continuous Models

2.3.1. Invariant difference model for the equation uxx = u−3

Consider a more complicated situation in which the invariance conditions for the
mesh and the difference equations are related to each other and do not hold sepa-
rately.

The ordinary differential equation

uxx = u−3 (2.35)

admits the three-parameter point group associated with the Lie algebra spanned by
the operators

X1 =
∂

∂x
, X2 = 2x

∂

∂x
+ u

∂

∂u
, X3 = x2 ∂

∂x
+ xu

∂

∂u
. (2.36)
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Equation (2.35) is a special case of the Ermakov–Pinney equation (see also [26,
27]). It can be treated as the equation of one-dimensional motion of a particle in
a field with potential U = u−2 (where u is the coordinate and x is time). Equa-
tion (2.35) (and its three-dimensional analog) are in a sense unique: it is only
for the quadratic potential that there exists an additional projection symmetry and
a variational symmetry corresponding to all symmetries of (2.36). This results in
additional conservation laws for the particle motion in such a field. In the case of
a quadratic potential, the Boltzmann equation and the hydrodynamic equations of
a polytropic gas for an appropriate value of the adiabatic constant have additional
symmetry and the corresponding conservation laws as well. (See the discussion of
this topic in [16].) Thus, the ordinary differential equation (2.35) is the simplest
model with additional symmetry in this hierarchy.

To approximate Eq. (2.35), we need a difference stencil with at least three
points, which is associated with the subspace (x, h+, h−, u, u+, u−).

The operator X3 violates the uniformity invariance condition (see Chapter 1),
and hence the uniform mesh is not invariant. Although the group G3 correspond-
ing to the algebra (2.36) is autonomous in x, it has no invariants in the subspace
(x, h+, h−). This means that it is impossible to construct an invariant mesh inde-
pendent of the solution u. On the above-chosen stencil of the nonuniform mesh,
we have three difference invariants, for which we can take the following ones:

J1 =
h+

uu+
, J2 =

h−

uu−
, J3 = u2u−

u
h
x − u

h
x̄

h−
,

where

u
h
x =

u+ − u
h+

, u
h
x̄ =

u− u−

h−
.

Note that there is only one invariant, I1 = u3uxx, in the original space of differential
variables (x, u, ux, uxx).

The general equation determining the family of difference meshes invariant un-
der (2.36) can be written as

F

(
h+

uu+
,
h−

uu−
, u2u−

u
h
x − u

h
x̄

h−

)
= 0, (2.37)

where F is an arbitrary function of its arguments. We choose the simplest version

h+

uu+
=

h−

uu−
(2.38)

of Eq. (2.37). This mesh has the obvious integral

h+

uu+
= ε,

h−

uu−
= ε, ε = const, 0 < ε� 1, (2.39)
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where the constant ε characterizes the mesh spacing smallness. Using Taylor series
expansions, we can obtain the relation

h+ = h− +O(h2) (2.40)

for the spacings of the invariant mesh (2.38). On the mesh (2.38), the third differ-
ence invariant can be rewritten as

J3 = u2u−
u
h
x − u

h
x̄

h−
= 2u2u+u−

u
h
x − u

h
x̄

h−u+ + h+u−
, (2.41)

and the differential invariant can be estimated as

J3 = u3uxx +O(h2).

Thus, for the difference equation approximating Eq. (2.35) we can take

J3 = 1, or u
h
xx̄ ≡

u
h
x − u

h
x̄

h−
=

1

u2u−
. (2.42)

Since our model (2.38)–(2.42) is constructed from difference invariants of the
group (2.36), it is completely invariant.

The difference mesh (2.38) depends on the solution u, u+, u−, which must be
found from Eq. (2.42) containing the mesh spacings as well. At first glance, the
scheme (2.38)–(2.42) is implicit, and it is not clear in general how to perform the
actual computations for a specific boundary-value problem on this mesh.

Let us make several transformations of (2.38)–(2.42). By substituting the mesh
spacings (2.39) into Eq. (2.35), we obtain the one-dimensional mapping

u+u−(2− ε2) = u(u+ + u−), (2.43)

which uniquely determines the unknown value u+ from the two known values u
and u−. Thus, the scheme (2.38)–(2.42) is in fact an explicit scheme for solving
the boundary value problem: first, we calculate the sequence of values u from the
mapping (2.43), and then we use formulas (2.39) to calculate the mesh spacings h+

and h−, i.e., the values of x at the corresponding mesh points.
As will be shown in Chapter 7, no numerical computations at all are required for

the scheme (2.38)–(2.42). It turns out that the scheme (2.38)–(2.42) is completely
integrable, which is related to the fact that it has three first integrals. (A method for
constructing these integrals is considered in detail in Chapter 7.)

2.3.2. Invariant difference model of the sine–Gordon equation.

It is well known (e.g., see [74]) that the equation

uxy = sinu (2.44)
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admits the three-parameter point transformation group generated by the operators

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
− y ∂

∂y
. (2.45)

Note that Eq. (2.44) also admits an infinite series of higher-order symmetries
and nonlocal symmetries (see [74]), which we do not consider here. Now Eq. (2.44)
can be rewritten in the different form

vtt − vzz = sin v. (2.46)

The symmetry of Eq. (2.46) is described by the operators

X1 =
∂

∂t
, X2 =

∂

∂z
, X3 = z

∂

∂t
+ t

∂

∂x
. (2.47)

Equations (2.44) and (2.46) are related to each other by the point transformation

t = x+ y, z = x− y, u(x, y) = v(t, z), (2.48)

which of course takes the symmetry (2.45) to (2.47).
Let us construct a finite-difference model of Eq. (2.44) preserving the symme-

try of (2.45). The first problem is the problem of choosing the mesh on which
an approximation to this equation is possible so that it is invariant under the op-
erators (2.45). Note that in this case the transformation (2.45) does not affect the
dependent variable (u is an invariant), and therefore, the invariance conditions for
the mesh can be considered independently of the invariance conditions for the dif-
ference equation approximating (2.44).

In this case, it is easily seen that one can use the simplest orthogonal mesh uni-
form in both directions. Indeed, all three operators (2.45) satisfy the mesh invariant
orthogonality conditions

D
±h

i(ξ
j) = −D

±h
j(ξ

i), i = 1, 2, i 6= j,

developed in Chapter 1 and the mesh invariant uniformness conditions

D
+h

iD
−h

i(ξ
i) = 0, i = 1, 2.

These conditions are satisfied in the entire space Z
h

, in particular, on solutions of
the difference equation approximating Eq. (2.44). On the orthogonal difference
mesh, we should approximate the derivative uxy. We introduce the notation for the
variable u at different points of the mesh according to Fig. 2.2.

All nine variables u, u+, u−, û, û+, û−, ǔ, ǔ−, ǔ+ are invariants of the operators
(2.45); hence one can use any of these, say, sinu, to approximate the right-hand
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side of (2.44) at (x, y, u). The space (x, y, hx, hy, u, u
+, u−, û, û+, û−, ǔ, ǔ−, ǔ+)

contains one more invariant
J10 = hxhy.

Thus the invariant approximation problem is very simple in this case, and it only
remains to construct second-order approximations to the mixed derivative uxy.

For example, this can be realized as follows:

uxy ≈
(
û+ − û−

2hx
− ǔ+ − ǔ−

2hx

)
1

2hy
+O(h2),

which finally implies the equation

û− − û− − ǔ+ + ǔ−

4hxhy
= sinu. (2.49)

Equation (2.49) is based on the use of a five-point stencil. In particular, we can
set hx = hy in (2.49). In this case, the x- and y-directions become equivalent, just
as in the original equation. The central point can be eliminated by using another
approximation to the right-hand side,

û+ − û− − ǔ+ + ǔ−

4hxhy
= sin

û+ + û− + ǔ+ + ǔ−

4
.

By using Taylor expansions, one can readily estimate the order of approximation
of the difference equation (2.49) on the uniform orthogonal mesh:

û+ − û− − ǔ+ + ǔ−

4hxhy
− sinu = uxy − sinu+O(h2

x + h2
y).

Thus, the difference equation (2.49) on an orthogonal mesh provides a second-
order approximation to the differential equation (2.44) and admits the entire sym-
metry (2.47) of the original equation.
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The simplest way to obtain an invariant scheme and a mesh for Eq. (2.46) is to
use the transformation (2.48). This transformation takes Eq. (2.49) to the equation

v̂+ − v̂− − v̌+ + v̌−

4hzht
= sin v, (2.50)

where hz and ht are the spacings of the mesh shown in Fig. 2.3.
Under the action of the transformations (2.48), the orthogonal mesh shown in

Fig. 2.2 becomes the diagonal orthogonal mesh shown in Fig. 2.3. Of course, we
could obtain this invariantly orthogonal mesh directly, by using the result obtained
in Chapter 1: the Lorentz transformations (2.47) leave a mesh orthogonal only if
the mesh makes an angle of 45◦ with the coordinate axes.

Equation (2.50) on the mesh in Fig. 2.3 admits the complete group (2.47), be-
cause the point transformation (2.48) preserves the symmetry group of the original
equation by taking the operators (2.45) to the operators (2.47).

In the subsequent chapters, we present numerous examples of construction of
other finite-difference models preserving the symmetry of the original differential
equation.

2.3.3. An example of solving the determining equations for a difference
model

In this section, we use the invariance criterion for difference models to calculate
the symmetry group. For the difference model, we consider the following difference
equation and mesh:

u+ − 2u+ u−

h+h−
= eu, h+ = h−. (2.51)

Here, as usual, h+ = x+ − x and h− = x − x−. This model is known to give
a second-order approximation to the ordinary differential equation

d2u

dx2
= eu (2.52)
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on the uniform mesh.
We seek the point symmetry admitted by system (2.51) in the operator form

X = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
. (2.53)

The equation and the mesh (2.51) are written on the three-point difference sten-
cil (x−, x, x+, u−, u, u+), to which we extend the operator (2.53) by setting

X = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
+ ξ(x−, u−)

∂

∂x−
+ η(x−, u−)

∂

∂u−

+ ξ(x+, u+)
∂

∂x+
+ η(x+, u+)

∂

∂u+
. (2.54)

Acting on the difference equation (2.51) by the operator (2.54), we obtain the
linear difference equations

η+ − 2η + η− = euηh−h+ + euh+(ξ − ξ−) + euh−(ξ+ − ξ),
ξ+ − 2ξ + ξ− = 0

(2.55)

for the desired functions ξ and η, where the notation f+ = f(x+, u+) and f− =
f(x−, u−) is used. The equation for the difference mesh has the obvious integral

h+ = h− = const = h,

which we take into account in the subsequent calculations.
The determining equations (2.55) should be considered on the solutions of sys-

tem (2.51). In the case of differential equations, the standard method is to eliminate
the second derivative from the determining equation and use the splitting proce-
dure for the first derivative. In the case of the difference system (2.55), we can, say,
eliminate u+ by using the first equation in (2.51):

u+ = h2eu + 2u− u−.

Consider the equation for the mesh with the above elimination taken into ac-
count:

ξ+(x+, (h2eu + 2u− u−))− 2ξ(x, u) + ξ−(x−, u−) = 0. (2.56)

Now this equation should be satisfied identically at the remaining two values u, u−.
We differentiate Eq. (2.56) with respect to the variable u−,

ξ+
u+ = ξ−u− ,

which implies that
ξ+

u+ = ξ−u− = A = const,
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and the constant cannot depend on x. Thus, we have specified the form of the
desired coordinate,

ξ(x, u) = Au+B(x), A = const.

By substituting this expression into (2.56), we obtain

Ah2eu +B(x+)− 2B(x) +B(x−) = 0.

By splitting the last equation with respect to u, we obtain

A = 0, B(x+)− 2B(x) +B(x−) = 0.

The last linear equation has the obvious solutionB(x) = αx+β, where α, β =
const. Thus, the desired coordinate has the form

ξ = αx+ β. (2.57)

Taking into account this form of the desired function ξ(x), let us now consider the
second determining equation on the solution of the original equation,

η+(x+, (h2eu + 2u− u−)− 2η(x, u) + η−(x−, u−) = h2eu(η(x, u) + 2α). (2.58)

In a similar way, we differentiate Eq. (2.58) with respect to the variable u−,

η+
u+ = η−u− ,

which implies that
η+

u+ = η−u− = γ = const;

namely,
η(x, u) = γu+ δ(x).

We substitute this specified form of the desired function into (2.58):

γh2eu + δ(x+)− 2δ(x) + δ(x−) = h2eu(2α + γu+ δ(x)).

The splitting of this equation with respect to u and eu yields

γ = 0, δ = −2α, δ(x+)− 2δ(x) + δ(x−) = 0. (2.59)

Since δ = −2α = const, it follows that the last equation in (2.59) is satisfied
identically.

Thus, we have obtained the following solution of the determining system (2.55):

ξ = αx+ β, η = −2α. (2.60)
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By choosing a basis in the two-parameter family, we obtain

X1 =
∂

∂x
, X2 = x

∂

∂x
− 2

∂

∂u
; (2.61)

i.e., the difference equation admits the same transformation group as the differen-
tial equation (2.52). In the three-point stencil extended to all variables, the opera-
tors (2.61) can be written as

X1 =
∂

∂x
+

∂

∂x+
+

∂

∂x−
, X2 = x

∂

∂x
+x+ ∂

∂x+
+x−

∂

∂x−
−2

∂

∂u
−2

∂

∂u+
−2

∂

∂u−
.

Some other examples of solving the determining equations for difference mod-
els can be found in [85, 89].

An alternative approach to symmetry preservation in difference equations can
be found in [108–110].





Chapter 3

Invariant Difference Models
of Ordinary Differential Equations

3.1. First-Order Invariant Difference Equations
and Lattices

It is well known that every ordinary differential equation (ODE) of first order ad-
mits an infinite point group (e.g., see [107, 111]), but it is precisely in the case of
first-order equations that a search for this group is ineffective. If the admissible
symmetry is known, then an integrating factor for the ODE can be found explicitly
(see the Introduction). Since the knowledge of the symmetry of a first-order ODE
permits finding its general solution, we see that the construction of an invariant
scheme does not make any practical sense. But it is of interest to find out what the
relation between the symmetry and integrability is in the case of ordinary difference
equations (see [120]).

Consider a first-order ODE

y′ = f(x, y). (3.1)

We assume that its symmetry is known, which permits rewriting this equation as a
total differential equation

A(x, y)dx+B(x, y)dy = 0, (3.2)

where Ay = Bx, A(x, y) = Vx(x, y), B(x, y) = Vy(x, y), and V (x, y) is a function
implicitly determining the general solution of Eq. (3.1) by the formula

V (x, y) = c = const. (3.3)

Equation (3.2) admits the one-parameter group generated by the operator

X = B(x, y)
∂

∂x
− A(x, y)

∂

∂y
. (3.4)

In the (x, y)-space, this operator has the only invariant

J1 = V (x, y).

79
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The situation is different in the case of difference equations. To approximate the
ODE (3.1), we need at least a two-point stencil on a difference mesh; i.e., we
should consider the subspace (x, y, x+, y+) of difference variables, where the op-
erator (3.4) already has three difference invariants. To find the invariants of the
operator extended to the difference variables,

X = B(x, y)
∂

∂x
− A(x, y)

∂

∂y
+B(x+, y+)

∂

∂x+

− A(x+, y+)
∂

∂y+

,

one has to solve the characteristic system

dx

Vy(x, y)
= − dy

Vx(x, y)
=

dx+

Vy+(x+, y+)
= − dy+

Vx+(x+, y+)
.

This gives the following three invariants:

I1 = V (x, y), I2 = V (x+, y+),

I3 =

∫
dx+

Vy+(x+, y+(x+, I2))
−
∫

dx

Vy(x, y(x, I1))
,

where the third invariant contains the expressions of y and y+ via the first two
invariants I1 and I2.

The two-point difference scheme can be written out using I1 and I2 as

V (x+, y+)− V (x, y) = 0, (3.5)

and this scheme is exact on any difference mesh, for example, on the uniform mesh
h+ = h−. But the uniform mesh is not invariant under an arbitrary group. The
general equation for invariant meshes can be written out in terms of the difference
invariants,

F (I1, I2, I3) = 0. (3.6)

The difference scheme (3.5), (3.6) is invariant and exact. Its general solution is
implicitly given by formula (3.3), the same formula as for the original equation.

Consider an example of constructing an invariant difference model for a first-
order ODE.

EXAMPLE. Consider the ODE

y′ = −2
y

x
.

This equation can be rewritten as the total differential equation

2xy dx+ x2 dy = 0, (3.7)
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Equation (3.7) admits the operator

X = x2 ∂

∂x
− 2xy

∂

∂y
(3.8)

and has the first integral

V (x, y) = x2y = C0 = const,

which is an invariant of the operator (3.8). In the space of the difference variables
(x, y, x+, y+), the extended operator (3.8) given by

X = x2 ∂

∂x
− 2xy

∂

∂y
+ x+

2 ∂

∂x+

− 2x+y+
∂

∂y+

has the following three difference invariants:

I1 = x2y, I2 = x+
2y+, I3 =

1

x
− 1

x+

.

An exact difference equation can be constructed from the first two invariants as
follows:

I2 − I1 = 0 =⇒ x+
2y+ − x2y = 0. (3.9)

An invariant mesh is determined by any equation of the form

F (I1, I2, I3) = 0.

By way of example, consider the mesh

I3 =
1

x
− 1

x+

= ε� 1,

which we rewrite explicitly for h+ = x+ − x as

h+ =
εx2

1− εx
, 0 < x <

1

ε
. (3.10)

The invariant equation (3.9) can be rewritten as

y+ − y
h+

= −(x+ x+)y+

x2
. (3.11)

Note that the exact invariant scheme (3.10), (3.11) is implicit. A series of examples
of invariant schemes for first-order ODE can be found in [120].

Thus, if the symmetry of the first-order ODE is known, then it is always pos-
sible to write out a family of exact difference schemes containing a family of in-
variant schemes. On the other hand, it is always possible (by using the difference
invariants) to write out an invariant scheme that is not exact. This fact is of general
character, because the order of approximation (the accuracy) and the invariance are
distinct properties of difference equations.
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3.2. Invariant Second-Order Difference Equations
and Lattices

In this section, we consider the more general problem of how to list all difference
models invariant under a given group, i.e., how to solve the group classification
problem for difference schemes by analogy with the same problem for the dif-
ferential equations. When solving this problem, it is of interest to compare the
group classifications of difference schemes and of differential equations. Is the list
of invariant schemes wider or narrower than the corresponding list of differential
equations?

In this section, by way of example, we solve the group classification prob-
lem for second-order ordinary difference equations on the corresponding difference
meshes [46].1

In the classical papers [90–93], S. Lie obtained the group classification of
second-order ordinary differential equations. In particular, he showed that the di-
mension n of the point transformation group under which the solution set of a
second-order ODE is invariant can be 0, 1, 2, 3, or 8. Moreover, he showed that
each equation that admits the transformation group of maximum dimension n = 8
can be transformed into the simplest equation y′′ = 0. Lie’s classification is based
on the list of all finite-dimensional Lie algebras realizable by vector fields on the
two-dimensional space [92], i.e., by vector fields of the form

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
.

Lie used vector fields over the field of complex numbers, using the list of all finite-
dimensional subalgebras of infinite-dimensional Lie algebras. This classification
was obtained up to arbitrary locally invertible transformations of the complex plane
C2.

Much later, a classification over the field of real numbers was obtained [63],
and here we follow this classification.

In our classification of difference models, we restrict ourselves to the minimal
three-point difference stencil needed to approximate second-order difference equa-
tions. But we do not specify and restrict the types of meshes in advance.

Let x be an independent variable, and let y be a dependent variable. To consider
a second-order equation and a difference mesh in the x-direction, we need the three-
point stencil corresponding to the subspace (x, x−, x+, y, y−, y+) (see Fig. 3.1).

The difference model under study consists of two difference equations

F (x, x−, x+, y, y−, y+) = 0, Ω(x, x−, x+, y, y−, y+) = 0. (3.12)

Here the first equation is a second-order difference equation and should become
a second-order ODE at the point (x, y, y′, y′′) in the continuum limit. The second

1This research was carried out jointly with P. Winternitz and R. Kozlov.
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equation provides a difference mesh on which the first equation will be considered.
The second equation need not be a second-order difference equation; for example,
we can treat a uniform mesh as the equation h+ = h−, which “disappears” in the
continuum limit.

In some cases, we use the following notation for the difference models:

y+ = f(x, x−, y, y−), x+ = g(x, x−, y, y−),

or
yx = f(x, h−, y, yx̄), h+ = g(x, h−, y, yx̄).

We use the following notation for the mesh spacings and difference derivatives:

h+ = x+−x, h− = x−x−, yx =
y+ − y
h+

, yx̄ =
y − y−
h−

, yxx̄ =
2(yx − yx̄)
h+ + h−

,

where yx and yx̄ are the first right and left difference derivatives and yxx̄ is the
second difference derivative. The continuous derivatives are denoted by y′ and y′′.

We must prolong the group operator of the continuous symmetry group to all
points of the difference stencil. The corresponding coefficients of the operator are
obtained by shifting the arguments to the difference stencil points adjacent to (x, y):

X̃α = Xα + ξα(x−, y−)
∂

∂x−
+ ξα(x+, y+)

∂

∂x+

+ ηα(x−, y−)
∂

∂y−
+ ηα(x+, y+)

∂

∂y+

. (3.13)

The difference invariants are obtained as the solutions of the system of first-
order partial differential equations:

X̃αΦ = 0, α = 1, . . . , n,

where the function Φ depends on (x, x−, x+, y, y−, y+). We see that the group G
has k = dimM − rankZ functionally independent invariants, where M is the
manifold (3.12) and Z is the coefficient matrix of the operator (3.13).
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Note that dimM = 4 in the differential case and dimM = 6 in the difference
case. Hence we can expect that there are two more invariants in the difference case
than in the continuous case.

In the continuous case, an invariant second-order ODE can be written as

E(I1, . . . , Ik) = 0,
∂E

∂y′′
6= 0,

while in the difference case we need two equations,

F (I1, . . . , Ik) = 0,
∂F

∂y−
6= 0,

∂F

∂y
6= 0,

∂F

∂y+

6= 0,

G(I1, . . . , Ik) = 0,
∂G

∂x−
6= 0,

∂G

∂x
6= 0,

∂G

∂x+

6= 0.

(3.14)

The conditions on F and G guarantee that Eqs. (3.14) determine an ordinary dif-
ference equation and a mesh.

3.2.1. Difference models invariant under one- and two-dimensional
groups

We start from the simplest one-dimensional point transformation group, whose Lie
algebra can always be reduced to the form

X1 =
∂

∂y

by an appropriate change of variables. The most general second-order ordinary
differential equation invariant under the one-dimensional group has the form

y′′ = F (x, y′), (3.15)

where F is an arbitrary function of its arguments.
To write out the invariant difference model, we should compute the basis of

finite-difference invariants of the operator X1 in the space (x, x−, x+, y, y−, y+).
Computations give the following five difference invariants:{

yxx̄,
yx + yx̄

2
, x, h−, h+

}
.

Hence the general invariant difference model can be written as

yxx̄ = f

(
x,
yx + yx̄

2
, h−

)
, h+ = h−g

(
x,
yx + yx̄

2
, h−

)
, (3.16)

where f and g are arbitrary functions of their arguments. Throughout the following,
we assume that the functions occurring in the definition of difference models do not
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have any singularities as h+ → 0 and h− → 0. The form in which the equation for
the mesh is written assumes that the equation “disappears” in the continuum limit.

In the family of difference models (3.16), the simplest difference scheme ap-
proximating the ODE (3.15) can be distinguished by taking a function f indepen-
dent of h− and the function g ≡ 1,

yxx̄ = F

(
x,
yx + yx̄

2

)
, h− = h+. (3.17)

We point out that the difference scheme (3.17) is only a special case of the differ-
ence model (3.16) containing two arbitrary functions. In other words, the family
of invariant difference models is much more ambiguous than the corresponding
invariant differential equation.

Now consider two-dimensional algebras.

1. In the continuous case, the Abelian Lie algebra with two unconnected elements

X1 =
∂

∂x
, X2 =

∂

∂y

leaves invariant the solution set of the family of second-order ODE

y′′ = F (y′), (3.18)

where F is an arbitrary function. In the difference case, the standard computational
procedure gives the following set of functionally independent invariants:{

h+, h−,
yx + yx̄

2
, yxx̄

}
.

Accordingly, the general invariant difference model can be represented as

yxx̄ = f

(
yx + yx̄

2
, h−

)
, h+ = h−g

(
yx + yx̄

2
, h−

)
. (3.19)

The simplest difference scheme approximating (3.18) can again be obtained by
restricting f and by choosing g = 1:

yxx̄ = F

(
yx + yx̄

2

)
, h− = h+. (3.20)

2. The Abelian Lie algebra with two connected elements

X1 =
∂

∂y
, X2 = x

∂

∂y
(3.21)

gives the invariant equation
y′′ = F (x). (3.22)



86 INVARIANT MODELS OF ORDINARY DIFFERENTIAL EQUATIONS

This equation can be transformed into the simplest linear equation u′′ = 0 by the
change of variables

u = y −W (x),

where W (x) is an arbitrary solution of Eq. (3.22). The basis

{yxx̄, x, h+, h−}

of finite-difference invariants of the algebra (3.21) permits writing out the following
family of invariant models:

yxx̄ = f(x, h−), h+ = h−g(x, h−). (3.23)

By restricting f and by aking g = 1, we obtain the following simplest scheme on a
uniform mesh, which approximates Eq. (3.22):

yxx̄ = F (x), h− = h+.

Just as in the continuous case, the difference model (3.23) can be reduced to the
form

uxx̄ = 0, h+ = h−g(x, h−) (3.24)

by the change of variables

u = y −W (x, h−, h+), Wxx̄ = f(x, h−),

where W is an arbitrary solution of the difference system (3.23).

3. The non-Abelian Lie algebra with two unconnected elements

X1 =
∂

∂y
, X2 = x

∂

∂x
+ y

∂

∂y

gives the invariant ODE

y′′ =
1

x
F (y′). (3.25)

For this algebra, computations give the following basis set of difference invariants:{
xyxx̄,

yx + yx̄
2

,
h+

h−
,

h−
x

}
.

The invariant model has the general form

yxx̄ =
1

x
f

(
yx + yx̄

2
,
h−
x

)
, h+ = h−g

(
yx + yx̄

2
,
h−
x

)
. (3.26)

By restricting f and by taking g = 1, we obtain the invariant equation and mesh

yxx̄ =
1

x
F

(
yx + yx̄

2

)
, h− = h+,

for which Eq. (3.25) is the continuum limit.



3.2. INVARIANT SECOND-ORDER DIFFERENCE EQUATIONS AND LATTICES 87

4. The non-Abelian Lie algebra with two linearly connected elements

X1 =
∂

∂y
, X2 = y

∂

∂y

leads to the invariant ODE
y′′ = F (x)y′. (3.27)

This equation can be reduced to the linear form v′′ = 0 as well by the change of
variables t = g(x), v(t) = y(x), where g(x) is an arbitrary solution of Eq. (3.27).
The complete set {

yxx̄
yx + yx̄

, x, h−, h+

}
of finite-difference invariants permits writing out the invariant difference model as

yxx̄ =
yx + yx̄

2
f(x, h−), h+ = h−g(x, h−). (3.28)

The special case of this family for f(x, h−) = F (x), g(x, h−) = 1 is the scheme

yxx̄ =
yx + yx̄

2
F (x), h− = h+

approximating the corresponding ODE (3.27). The difference family (3.28) can be
transformed into the scheme (3.24) by using any solution φ(x) of system (3.28) and
the transformation

(x, y) 7−→ (t = φ(x), u(t) = y(x)) (3.29)

of the independent variable.

The results obtained for two-dimensional Lie algebras can be summarized as
follows.

THEOREM 3.1. Two subalgebras with linearly unconnected elements give families
of invariant schemes (3.19) and (3.26) containing two arbitrary functions of two
variables. Two subalgebras with linearly connected elements permit writing out
the families of invariant models (3.23) and (3.28), which can be reduced to the
form (3.24) if at least one solution of the original family is known.

Remark. Theorem 3.1 is an analog of the well-known result obtained by S. Lie for
second-order ODE in the cases where the equations with the same two-dimensional
Lie symmetry algebras can be reduced to the linear equation y′′ = 0 [90, 93].

3.2.2. Difference equations invariant under three-dimensional
transformation groups

First, let us study three-dimensional Lie algebras containing two-dimensional sub-
algebras with linearly connected elements.
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1. The three-dimensional algebra

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂y

contains commuting linearly connected operators X2 and X3. The invariant differ-
ential equation y′′ = C is equivalent to y′′ = 0. The set

{yxx̄, h−, h+}

of independent finite-difference invariants permits representing the family of in-
variant difference models as

yxx̄ = f(h−), h+ = h−g(h−). (3.30)

The equation y′′ = C is the continuum limit of (3.30) if f = C and g = 1.
System (3.30) is equivalent to (3.24) if the function g is independent of x.

2. The three-dimensional algebra

X1 =
∂

∂y
, X2 = x

∂

∂y
, X3 =

∂

∂x
+ y

∂

∂y

contains two linearly connected operators X1 and X2. The invariant ODE has the
form

y′′ = C exp(x). (3.31)

The basis of difference invariants can be represented as

{yxx̄ exp(−x), h−, h+} .

The general form

yxx̄ = f(h−) exp(x), h+ = h−g(h−) (3.32)

of the family of invariant models in particular contains the simplest scheme approx-
imating Eq. (3.31) for f = C and g = 1. The scheme (3.32) can be transformed
into (3.24) for g independent of x.

3. The operator algebra

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = y

∂

∂y

leaves invariant the equation
y′′ = Cy′. (3.33)
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The complete set of difference invariants can be chosen as{
yxx̄
yx
,

yx + yx̄
yx

, h−

}
.

The general invariant difference model can be written as

yxx̄ =
yx + yx̄

2
f(h−), h+ = h−g(h−). (3.34)

By choosing f = C and g = 1, we transform system (3.34) into a scheme approxi-
mating Eq. (3.33). The transformation (3.29) with g independent of x takes (3.34)
to (3.24).

4. Consider the three-dimensional Lie algebra spanned by the pairwise linearly
connected operators

X1 =
∂

∂y
, X2 = x

∂

∂y
, X3 = y

∂

∂y
.

The only continuous invariant of this algebra is the function x, but y′′ = 0 is an
invariant manifold, and hence the equation y′′ = 0 is an invariant ODE. The only
difference invariants are {x−, x, x+}, but the difference equation yxx̄ = 0 is an
invariant manifold as well, and hence the difference scheme

yxx̄ = 0, h+ = h−g(x, h−)

is invariant. If we set g = 1 in this scheme, then we obtain the simplest approxima-
tion to the equation y′′ = 0.

5. The operator algebra

X1 =
∂

∂y
, X2 = x

∂

∂y
, X3 = (1− a)x

∂

∂x
+ y

∂

∂y
, a 6= 1,

has the invariant equation

y′′ = Cx
2a−1
1−a , a 6= 1. (3.35)

Computations give the following set of difference invariants:{
yxx̄x

2a−1
a−1 ,

h−
x
,

h+

x

}
,

according to which we obtain the invariant form

yxx̄ = x
2a−1
1−a f

(
h−
x

)
, h+ = h−g

(
h−
x

)
(3.36)

of the difference model. An approximation to Eq. (3.35) is obtained for f = C and
g = 1. The difference scheme (3.36) can also be transformed into (3.24).
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6. The operator algebra

X1 =
∂

∂y
, X2 = x

∂

∂y
, X3 = (1 + x2)

∂

∂x
+ (x+ b)y

∂

∂y

is associated with the invariant ODE

y′′ = C(1 + x2)−3/2 exp(b arctan(x)), (3.37)

which can be transformed to y′′ = 0 by a change of variables. The complete set{
h+

1 + xx+

,
h−

1 + xx−
, (yx − yx̄)

√
1 + x2 exp(−b arctan(x)),

}
of difference invariants permits writing out the invariant difference model as

yxx̄ =
exp(b arctan(x))

(h− + h+)
√

1 + x2

(
h+

1 + xx+

+
h−

1 + xx−

)
f

(
h−

1 + xx−

)
,

h+ = h−
1 + xx+

1 + xx−
g

(
h−

1 + xx−

)
.

By setting f = g = 1, we obtain a difference approximation to the ODE (3.37).

7. The operator algebra

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
+ y

∂

∂y

has the only invariant y′, but y′′ = 0 is an invariant manifold. By using the basis set{
h−yxx̄,

yx + yx̄
2

,
h+

h−
,

}
of difference invariants, we can readily write out the invariant difference model

h−yxx̄ = f

(
yx + yx̄

2

)
, h+ = h−g

(
yx + yx̄

2

)
, (3.38)

which does not have a continuum limit in general. This limit only exists for f = 0.
The equation y′′ = 0 is approximated by system (3.38) for f = 0 and g = 1.

Thus, the difference models invariant under three-dimensional algebras consid-
ered so far are equivalent to special cases of the system

yxx̄ = 0, g(x, h−, h+) = 0. (3.39)

The difference models considered below cannot be reduced to the form (3.39).
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8. The operator algebra

X1 =
∂

∂x
X2 =

∂

∂y
X3 = x

∂

∂x
+ (x+ y)

∂

∂y

gives the invariant ODE
y′′ = exp(−y′). (3.40)

Its general solution

y = −x+ (x+B) ln(x+B) + A

contains constants A and B of integration. The basis{
h+

h−
, h+ exp (−yx) , h− exp (−yx̄)

}
of finite-difference invariants permits writing out the general invariant difference
system

2 (exp (yx)− exp (yx̄))

h− + h+

= f (h− exp (−yx̄)) , h+ = h−g (h− exp (−yx̄)).

An invariant approximation to the ODE (3.40) is obtained for f = g = 1.

9. The three-dimensional operator algebra

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
+ ky

∂

∂y
, k 6= 0, 1,

gives the family of invariant ODE

y′′ = y′
k−2
k−1 , (3.41)

where k = const. The general solution is

y =

(
1

k − 1

)k−1
1

k
(x− x0)k + y0

By using the basis set {
h+

h−
, yxh+

(1−k), yx̄h−
(1−k)

}
,

of difference invariants, we can write out the invariant model as

2(k − 1)

h− + h+

(
(yx)

1
k−1 − (yx̄)

1
k−1

)
= f

(
yx̄h−

(1−k)
)
, h+ = h−g

(
yx̄h−

(1−k)
)
.

The simplest approximation to the ODE (3.41) is obtained for f = g = 1.
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10. The Lie algebra of linearly unconnected operators

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = (kx+ y)

∂

∂x
+ (ky − x)

∂

∂y

gives the invariant ODE

y′′ = (1 + (y′)2)3/2 exp(k arctan(y′)) (3.42)

with the general solution

exp

(
2k arctan

(
−(x− x0) + k(y − y0)

k(x− x0) + (y − y0)

))(
(x− x0)2 + (y − y0)2

)
=

1

1 + k2
.

Computations give the basis{
h+

√
1 + y2

x exp (k arctan yx), h−
√

1 + y2
x̄ exp (k arctan yx̄),

yx − yx̄
1 + yxyx̄

}
of finite-difference invariants. This implies the general form

yxx̄ =
1 + yxyx̄
h− + h+

(
h+

√
1 + y2

x exp(k arctan yx) + h−
√

1 + y2
x̄ exp(k arctan yx̄)

)
× f

(
h−
√

1 + y2
x̄ exp(k arctan yx̄)

)
,

h+

√
1 + y2

x exp(k arctan yx) = h−
√

1 + y2
x̄ exp(k arctan yx̄)

+ g
(
h−
√

1 + y2
x̄ exp(k arctan yx̄)

)
of the invariant difference model, which has the ODE (3.42) as the continuum limit
provided that f = 1 and g = 0.

11. The operator algebra

X1 =
∂

∂x
, X2 = 2x

∂

∂x
+ y

∂

∂y
, X3 = x2 ∂

∂x
+ xy

∂

∂y

leaves invariant the equation
y′′ = y−3, (3.43)

which has the general solution

Ay2 = (Ax+B)2 + 1, A = const, B = const.

By using the complete set{
y(yx − yx̄),

1

y

(
h+

y+

+
h−
y−

)
,

1

y2

h+h−
h+ + h−

}
of difference invariants, we can write out an invariant scheme as

yxx̄ =
1

y2

(
h+

h+ + h−

1

y+

+
h−

h+ + h−

1

y−

)
f

(
1

y2

h+h−
h+ + h−

)
,

1

y

(
h+

y+

+
h−
y−

)
=

4

y2

h+h−
h+ + h−

g

(
1

y2

h+h−
h+ + h−

)
.

An approximation to Eq. (3.43) is obtained for f = g = 1.
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12. The operator algebra

X1 =
∂

∂x
, X2 = x

∂

∂x
+ y

∂

∂y
, X3 = (x2 − y2)

∂

∂x
+ 2xy

∂

∂y

gives the invariant equation

yy′′ = C(1 + (y′)2)3/2 − (1 + (y′)2), C = const, (3.44)

with the general solution

(Ax−B)2 + (Ay − C)2 = 1.

The set of difference invariants can be taken in the form

I1 =
h2
− + (y − y−)2

yy−
, I2 =

h2
+ + (y+ − y)2

yy+

,

I3 =
2y(h+ + h− + h+y

2
x + h−y

2
x̄ + 2y(yx − yx̄))

4y2 − (h+(1 + y2
x) + 2yyx)(h−(1 + y2

x̄)− 2yyx̄)
.

Since these expressions are very cumbersome, we write out the invariant difference
model in terms of invariants:

I3 =
1

2

(√
I1 +

√
I2

)
f(I1), I2 = I1g(I1).

A difference approximation to Eq. (3.44) is obtained for f = C and g = 1.

13. The operator algebra is

X1 =
∂

∂x
+

∂

∂y
, X2 = x

∂

∂x
+ y

∂

∂y
, X3 = x2 ∂

∂x
+ y2 ∂

∂y
.

The invariant ODE

y′′ +
2

x− y
(y′ + y′

2
) =

2C

x− y
y′

3/2 (3.45)

has the general solution

y =
1

A
(
B + 1

2
C
)
− Ax

+
2B − C

2A
, A 6= 0,

and the particular solution
y = ax,

where the constant a is found from the algebraic equation

a− Ca
√
a+ a2 = 0.
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The complete set

I1 =
h2

+yx
(x− y+)(x+ − y)

, I2 =
h2
−yx̄

(x− y−)(x− − y)
, I3 =

x+ − y
x− y

h−
h− + h+

of difference invariants permits writing out the invariant equation and mesh as

I1

(1− I3)2
− I2

(I3)2
= f(I3)

(
I1

(1− I3)2
+

I2

(I3)2

)3/2

, I1 = I2g(I3).

For f = C and g = 1, we obtain an approximation to the ODE (3.45).

14. The basis set

X1 = (1+x2)
∂

∂x
+xy

∂

∂y
, X2 = xy

∂

∂x
+(1+y2)

∂

∂y
, X3 = y

∂

∂x
−x ∂

∂y

of operators of the three-dimensional algebra permits calculating the differential
invariants and hence writing out the invariant differential equation

y′′ = C

(
1 + y′2 + (y − xy′)2

1 + x2 + y2

)3/2

. (3.46)

Equation (3.46) can be integrated as follows:(
Bx− Ay + C

√
1 + x2 + y2

)2
= 1 + C2 − A2 −B2.

The difference invariants can be calculated as

I1 =
h2

+(1 + y2
x + (y − xyx)2)

(1 + x2 + y2)(1 + x2
+ + y2

+)
, I2 =

h2
−(1 + y2

x̄ + (y − xyx̄)2)

(1 + x2
− + y2

−)(1 + x2 + y2)
,

I3 =
h+h−(yx − yx̄)√

(1 + x2
− + y2

−)(1 + x2 + y2)(1 + x2
+ + y2

+)
.

We use them to write out the invariant difference equation and mesh as follows:

h+h−(yx − yx̄)√
(1 + x2

− + y2
−)(1 + x2 + y2)(1 + x2

+ + y2
+)

= f

(
h2
−(1 + y2

x̄ + (y − xyx̄)2)

(1 + x2
− + y2

−)(1 + x2 + y2)

)
,

h2
+(1 + y2

x + (y − xyx)2)

(1 + x2 + y2)(1 + x2
+ + y2

+)
= g

(
h2
−(1 + y2

x̄ + (y − xyx̄)2)

(1 + x2
− + y2

−)(1 + x2 + y2)

)
.
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For the difference approximation to Eq. (3.46) we can take the equation

h+h−(yx − yx̄)√
(1 + x2

− + y2
−)(1 + x2 + y2)(1 + x2

+ + y2
+)

= C

[(
h2

+(1 + y2
x + (y − xyx)2)

(1 + x2 + y2)(1 + x2
+ + y2

+)

) 3
2

+

(
h2
−(1 + y2

x̄ + (y − xyx̄)2)

(1 + x2
− + y2

−)(1 + x2 + y2)

) 3
2
]

on the difference mesh

h2
+(1 + y2

x + (y − xyx)2)

(1 + x2 + y2)(1 + x2
+ + y2

+)
=

h2
−(1 + y2

x̄ + (y − xyx̄)2)

(1 + x2
− + y2

−)(1 + x2 + y2)
= ε2,

where ε = const.

15. The operator algebra

X1 =
∂

∂y
, X2 = y

∂

∂y
, X3 = y2 ∂

∂y

contains three linearly connected elements, and the independent variable x is the
only invariant in the continuous space (x, y, y′, y′′). The only invariant manifold is
the first-order equation y′ = 0.

In the difference case, the situation is similar: there are only three invariants x,
x−, and x+. The dependent variables y, y−, y+ do not participate in the formation
of invariants, and hence we cannot write out invariant difference equations.

16. The situation with the last three-dimensional subalgebra

X1 =
∂

∂y
; X2 = x

∂

∂y
; X3 = φ(x)

∂

∂y
, φ′′(x) 6= 0,

is similar. In this case as well, there is neither an invariant second-order ODE nor a
second-order difference equation invariant under this group.

3.2.3. Difference equations invariant under four-dimensional groups

In the differential case, the maximum point symmetry group of a second-order ODE
is eight-dimensional. Any differential equation admitting a group of dimension 4,
5, or 6 is equivalent to the equation y′′ = 0, which admits the eight-dimensional
group.

The situation is different in the case of difference equations.



96 INVARIANT MODELS OF ORDINARY DIFFERENTIAL EQUATIONS

1. The four-dimensional operator algebra

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
+ y

∂

∂y
, X4 = y

∂

∂x
− x ∂

∂y

in the space (x, y, y′, y′′) does not have any differential invariants, but the equation
y′′ = 0 is an invariant manifold, which admits four additional operators (see below).
In the space of difference variables, there are two invariants

I1 =
yx − yx̄
1 + yxyx̄

, I2 =
h+

h−

(
1 + y2

x

1 + y2
x̄

)1/2

.

Hence the invariant difference model can be written as

yx − yx̄ = C1(1 + yxyx̄), h+ = C2h−

(
1 + y2

x̄

1 + y2
x

)1/2

, (3.47)

where C1 and C2 are arbitrary constants. But system (3.47) has the continuum limit
only for C1 = 0. In this case, the system approximates the equation y′′ = 0.

2. The group determined by the infinitesimal operators

X1 =
∂

∂y
, X2 = x

∂

∂y
, X3 = y

∂

∂y
, X4 = (1 + x2)

∂

∂x
+ xy

∂

∂y

does not have differential invariants in the space (x, y, y′, y′′) as well, but it does
have the invariant manifold y′′ = 0. In the difference case, we have the invariants

I1 =
h+

1 + xx+

, I2 =
h−

1 + xx−

and the invariant difference manifold yxx̄ = 0. Thus, we have the invariant differ-
ence model

yxx̄ = 0, h+ = h−
1 + xx+

1 + xx−
g

(
h−

1 + xx−

)
.

For g = 1, this system approximates the ODE y′′ = 0.

3. The four-dimensional algebra

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂y
, X4 = x

∂

∂x
+ ay

∂

∂y

has the only differential invariant y′′ if the constant a is 2. For a 6= 2, we have the
only invariant manifold y′′ = 0. The expressions

I1 =
h+

h−
, I2 = yxx̄h

2−a
+

give a complete set of difference invariants, which can be used to write out the
general form of the invariant models as

yxx̄ = C1h
a−2
+ , h+ = C2h−.

For a > 2, the continuum limit is y′′ = 0. For a < 2, the continuum limit exists
only if C1 = 0.
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4. The Lie point transformation group determined by the infinitesimal operators

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂y
, X4 = x

∂

∂x
+ (2y + x2)

∂

∂y

has neither differential invariants nor an invariant manifold in the continuous case.
In the difference case, there are two invariants

I1 =
h+

h−
, I2 = yxx̄ − ln(h−h+),

which permit writing out the invariant difference model as

yxx̄ = ln(h−h+) + C1, h+ = C2h−.

This difference model has no continuum limit.

5. The operator algebra

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂y
, X4 = y

∂

∂y

does not have invariants in the space (x, y, y′, y′′) but has the invariant manifold
y′′ = 0. In the difference case, the mesh spacings h+ and h− form a basis of invari-
ants, and the difference equation yxx̄ = 0 is an invariant manifold. The invariant
model can be written as

yxx̄ = 0, h+ = h−g(h−).

6. The operator algebra

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
, X4 = y

∂

∂y

has no differential invariants, but the ODE y′′ = 0 is invariant. In the difference
case, there exist invariants

I1 =
h+

h−
, I2 =

yx
yx̄
.

Needless to say, the difference model

yxx̄ = C1
yx̄
h−
, h+ = C2h−

has a continuum limit only for C1 = 0.
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7. For the four-dimensional algebra

X1 =
∂

∂y
, X2 = x

∂

∂y
, X3 = x

∂

∂x
, X4 = y

∂

∂y
,

there are no differential invariants, but the ODE y′′ = 0 is invariant. The expres-
sions h+

x
and h−

x
are difference invariants, and the difference equation yxx̄ = 0 is an

invariant manifold. The invariant scheme in general form can be written as

yxx̄ = 0, h+ = h−g

(
h−
x

)
.

8. The four-dimensional operator algebra

X1 =
∂

∂x
, X2 = x

∂

∂x
, X3 = y

∂

∂y
, X4 = x2 ∂

∂x
+ xy

∂

∂y

does not have differential invariants, but the ODE y′′ = 0 is invariant. The expres-
sions

I1 = h+h−
yxx̄
y
, I2 =

y−h+

y+h−

form a complete set of difference invariants, which implies the general form

yxx̄ =
C1

h+h−
y, h+y− = C2h−y+

of an invariant model. This system has a continuum limit only if C1 = 0.

3.2.4. Difference equations invariant under five-dimensional groups

1. The five-dimensional operator algebra

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
, X4 = x

∂

∂y
, X5 = y

∂

∂y

does not have differential invariants, but the equation y′′ = 0 admits it. This group
has one difference invariant h+

h−
, and the invariant manifold is

(x− x−)(y+ − y)− (x+ − x)(y − y−) = 0.

The invariant difference system in general form can be written as

yxx̄ = 0, h+ = Ch−, (3.48)

where C is an arbitrary constant.
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2. The operator algebra

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = y

∂

∂x
, X4 = x

∂

∂y
, X5 = x

∂

∂x
− y ∂

∂y

does not have differential invariants as well, and the equation y′′ = 0 admits it. This
group does not have difference invariants but has the invariant manifold (3.48).

3.2.5. Six-dimensional group and an invariant difference model

The six-dimensional operator algebra

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
, X4 = y

∂

∂x
, X5 = x

∂

∂y
, X6 = y

∂

∂y

has the only invariant manifold y′′ = 0, and the invariant manifold in the difference
case is the system

yxx̄ = 0, h+ = Ch−.

There are no three-point difference equations and meshes invariant under the
seven-dimensional Lie algebras.

3.2.6. Eight-dimensional Lie transformation group

The linear equation
y′′ = 0 (3.49)

(the equation of free motion of a particle), as well as all the ODE equivalent to it
up to a point change of variables, admits the algebra

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
, X4 = y

∂

∂x
, X5 = x

∂

∂y
,

X6 = y
∂

∂y
, X7 = x2 ∂

∂x
+ xy

∂

∂y
, X8 = xy

∂

∂x
+ y2 ∂

∂y
.

(3.50)
The three-point discretization of Eq. (3.49) must have the form

yxx̄ = 0, Ω(x, x−, x+, yx̄ + yx) = 0, (3.51)

where the equation Ω = 0 determines the difference mesh. In the difference case,
the eight-dimensional algebra (3.50) does not have any invariants, and the only
invariant manifold is the difference equation

yxx̄ = 0.

But the equation alone is insufficient to determine a difference model; one needs
to have another equation for the mesh. However, the use of any equation for the
mesh immediately decreases the model symmetry.
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Thus, the maximum symmetry of a second-order difference model is 6, and the
symmetry may vary depending on the type of the difference mesh. Note, however,
that the linear equation (3.51) on a uniform mesh has the same solution set as
the original ODE. Thus, although we do not succeed in constructing a three-point
scheme admitting all 8 operators for linear ODE, the simplest linear scheme is
exact.

Comments

Let us compare the group classification of second-order ordinary differential equa-
tions with that of three-point difference equations and meshes.

1. For each ODE invariant under a Lie group G of dimension 1 ≤ n ≤ 3, there
exists a family of difference models invariant under the same groupG. In particular,
for n = 3 the second-order invariant ODE is specified up to a constant, while the
ambiguity in invariant schemes in general involves two arbitrary functions.

2. All ODE invariant under a group of dimension n = 4, 5, or 6 can be transformed
into the linear equation y′′ = 0. In the same dimensions, the invariant schemes
either have the equation y′′ = 0 as their continuum limit or this limit does not exist
at all.

3. The difference equation yxx̄ = 0 has significantly different group properties than
its continuum limit. This equation is invariant under an at most six-dimensional
point transformation group, and in this case the mesh is given by the equation
h+ = Ch−, where C > 0. The equation yxx̄ = 0 is invariant under groups of
dimension 1 ≤ n ≤ 4 for meshes of more general forms.

Several examples of invariant difference schemes and lattices and their numer-
ical implementations can be found in [17, 18]



Chapter 4

Invariant Difference Models
of Partial Differential Equations

4.1. Symmetry Preserving Difference Schemes
for the Nonlinear Heat Equation with a Source

The aim of this section is to develop the entire set of invariant difference schemes
for the heat equation with a source,

ut = (K(u)ux)x +Q(u), (4.1)

for all special cases of the coefficients K(u) and Q(u) in which the symmetry
group admitted by Eq. (4.1) is extended. This set of invariant difference models
corresponds to the Lie group classification [28] (see also [58,74]) of Eq. (4.1) with
arbitrary K(u) and Q(u). This classification contains the result due to Ovsyan-
nikov [112] for Eq. (4.1) with Q ≡ 0 as well as the symmetries for the linear case
(K ≡ 1, Q ≡ 0), which were already known to S. Lie.

A few examples of invariant difference schemes and meshes for the heat equa-
tion were constructed in [8, 9] and completed in [42]. In the present section (see
[42]) we go through all cases of K(u) and Q(u) identified in the group classifica-
tion in [28], and construct difference equations and meshes which admit the same
Lie point transformation groups as their continuous counterparts. We single out all
linear cases of Eq. (4.1) and consider them in the next section.

When developing an invariant difference scheme, we have to choose a differ-
ence stencil sufficient for approximating all derivatives that occur in the equation.
We shall consider six-point stencils whose have three points on each of the two
time layers. Such stencils allow us to write out explicit as well as implicit differ-
ence schemes. For different transformation groups, we consider different meshes:
an orthogonal mesh that is uniform in space, an orthogonal mesh that is nonuni-
form in space, and a mesh nonorthogonal in time-space, i.e., a moving mesh. The
corresponding stencils are different. Furthermore, the corresponding spaces of dis-
crete variables are of different dimensions, and so they have different numbers of
difference invariants I = (I1, I2, . . . , Il) for the same Lie group Gn.

For example, let us take an orthogonal mesh that is uniform in space. (Later,
we shall describe the groups for which this mesh can be used.) The stencil of this
mesh is shown in Fig. 4.1. The corresponding subspace of difference variables is

101
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t
t t

tt
t(x− h, t̂, û−) (x, t̂, û) (x+ h, t̂, û+)

(x− h, t, u−) (x, t, u) (x+ h, t, u+)

Figure 4.1: The stencil of the orthogonal mesh.

ten-dimensional, M ∼ (t, x, τ, h, u, u−, u+, û, û−, û+), where τ = t̂− t.
The symmetry operator

X = ξt
∂

∂t
+ ξx

∂

∂x
+ η

∂

∂u

prolonged to the difference stencil variables has the form

X̃ = ξt
∂

∂t
+ ξx

∂

∂x
+ (ξ̂t − ξt) ∂

∂τ
+ (ξx+ − ξx)

∂

∂h

+ η
∂

∂u
+ η−

∂

∂u−
+ η+

∂

∂u+

+ η̂
∂

∂û
+ η̂−

∂

∂û−
+ η̂+

∂

∂û+

,

where we have used the notation f̂ = f(t + τ, x, u), f− = f(t, x − h, u), and
f+ = f(t, x+ h, u) for the time and space shifts.

Once chosen, an invariant mesh serves as a background for the application of
the method of finite-difference invariants. Having found finite-difference invari-
ants Ij as solutions of the system of linear equations

X̃iΦ(t, x, τ, h, u, u−, u+, û, û−, û+) = 0, i = 1, . . . , n,

we can use them to approximate the differential invariants,

Jj = fj(I1, I2, . . . , Il) +O(τα, hβ), j = 1, . . . , k,

where α and β specify some given order of approximation. Note that the approx-
imation error O(τα, hβ), together with other terms in the above representation, is
invariant. The substitution of the difference invariants Ii instead of the differential
invariants Ji into the invariant representation of Eq. (4.1) results in an invariant dif-
ference scheme. Practically, we can often omit the representation of the original
differential equation in terms of its invariants and just approximate it by difference
invariants. The use of difference invariants is the key point in both methods.

Thus, the first step in the invariant approximation is the choice of an invariant
mesh. The second step is the choice of an invariant discretization of the original
equation on the invariant mesh.
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We point out that the invariant approximation is still not unique. For example,
by extending the stencil (i.e., by increasing the number of mesh points involved in
the approximation) we can find invariant approximations of any higher order.

Now let us start to develop invariant schemes by exhausting all cases of the
Lie group classification [28]. Note that the group classification of Eq. (4.1) was
obtained in [28] up to the equivalence transformations

t̄ = at+ e, x̄ = bx+ f, ū = cu+ g, k̄ =
b2

a
k, q̄ =

c

a
q,

where a, b, c, e, f , and g are arbitrary constants such that abc 6= 0. These trans-
formations do not change the differential structure of Eq. (4.1) and transform the
group admitted by the equation into a similar point transformation group.

4.1.1. An arbitrary heat conductivity coefficient K(u)

1. We start from the general case in which the coefficients K(u) and Q(u) are
arbitrary. Then Eq. (4.1) only admits the two-parameter translation group. This
group is defined by the infinitesimal operators

X1 =
∂

∂t
, X2 =

∂

∂x
, (4.2)

which generate the translations of the independent variables. In this case, there are
virtually no constraints on the mesh and the difference equation. In particular, we
can use an orthogonal mesh regular in both directions in the plane (x, t) as long as
the invariant orthogonality and uniformness conditions hold for the operators (4.2).

The group with operators (4.2) in the subspace (x, t, h, τ, u, u−, u+, û, û−, û+)
corresponding to the stencil shown in Fig. 4.1 has eight invariants

τ, h, u, u+, u−, û, û−, û+.

That is why any difference approximation to Eq. (4.1) using the above invariants
can give a difference equation that admits the operators (4.2). For example, the
explicit model

û− u
τ

=
1

h

(
K

(
u+ + u

2

)
u
h
x −K

(
u+ u−

2

)
u
h
x̄

)
+Q(u), (4.3)

where K(u) and Q(u) represent any approximation to the corresponding coeffi-
cients by invariants and u

h
x = (u+ − u)/h and u

h
x̄ = (u − u−)/h are the right and

left difference derivatives, admits the operators (4.2).
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2. If K(u) is an arbitrary function and Q(u) ≡ 0, then the equation

ut = (K(u)ux)x (4.4)

admits the three-parameter algebra of operators [112]

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2t

∂

∂t
+ x

∂

∂x
. (4.5)

This case is almost similar to the previous one. The operators (4.5) do not violate
the conditions of invariant orthogonality and invariant uniformness of the mesh.
For example, in this case we could use the orthogonal mesh shown in Fig. 4.1. Any
approximation to Eq. (4.4) using the seven invariants

h2

τ
, u, u+, u−, û, û−, û+

gives an invariant model for Eq. (4.4). In particular, the explicit scheme (4.3) with
Q ≡ 0,

û− u
τ

=
1

h

(
K

(
u+ + u

2

)
u
h
x −K

(
u+ u−

2

)
u
h
x̄

)
,

can be applied.

4.1.2. The exponential heat conductivity coefficient K = eu

In this subsection, we consider three cases of group classification for K = eu in
accordance with [28] and [112].

1. If Q = 0, then the equation

ut = (euux)x (4.6)

admits the four-dimensional algebra of infinitesimal operators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2t

∂

∂t
+ x

∂

∂x
, X4 = t

∂

∂t
− ∂

∂u
. (4.7)

As in the cases considered above, the invariant uniformness and invariant orthog-
onality conditions hold. A difference model for Eq. (4.6) can be constructed by
approximation to the differential equation with the help of the difference invariants

eu
τ

h2
, û− u, u+ − u, u− u−, û+ − û, û− û−.

An example is given by the simple explicit difference model

û− u
τ

=
1

h

(
exp

(
u+ + u

2

)
u
h
x − exp

(
u+ u−

2

)
u
h
x̄

)
, (4.8)

but one has still enough freedom to construct invariant schemes using difference
invariants.
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2. For Q = δ = ±1, we can eliminate the constant source from the equation

ut = (euux)x + δ (4.9)

by the change of variables

ū = u− δt, t̄ = δ(eδt − 1). (4.10)

Equation (4.9) is transformed by this change of variables into Eq. (4.6), but the
mesh uniformness in the t-direction is destroyed. Equation (4.9) admits the four-
dimensional algebra of infinitesimal operators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = e−δt

∂

∂t
+ δe−δt

∂

∂u
, X4 = x

∂

∂x
+ 2

∂

∂u
,

and we can readily see that the operatorX3 does not preserve the mesh uniformness
in the time direction. The difference invariants

eu(eδτ − 1)

h2
, û− u− δτ, u+ − u, u− u−, û+ − û, û− û−

permit us to construct the following version of the difference model for Eq. (4.9):

δ(û− u)− τ
eδτ − 1

=
1

h

(
exp

(
u+ + u

2

)
u
h
x − exp

(
u+ u−

2

)
u
h
x̄

)
. (4.11)

Note that the change of variables (4.10) transforms the model (4.11) on the orthog-
onal mesh given on the time interval [0, T ] by the formula

tn = δ ln
(

1 +
n

k
(eδT − 1)

)
, n = 0, . . . , k, (4.12)

where k is the number of time steps of the mesh, into the model (4.8) with a uniform
time mesh on the time interval [0, δ(eδT − 1)].

3. If Q = ±eαu, α 6= 0, then the equation

ut = (euux)x ± eαu (4.13)

admits the three infinitesimal operators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2αt

∂

∂t
+ (α− 1)x

∂

∂x
− 2

∂

∂u
. (4.14)

These operators satisfy the conditions of invariant orthogonality and uniformness
of the meshes, and we shall consider the stencil in Fig. 4.1. Any approximation to
Eq. (4.13) using the difference invariants

τ
α−1
2α

h
, eαuτ, û− u, u+ − u, u− u−, û+ − û, û− û−

gives a version of the difference model for Eq. (4.13) admitting the symmetries
(4.14); for example, we obtain the following model:

û− u
τ

=
1

h

(
exp

(
u+ + u

2

)
u
h
x − exp

(
u+ u−

2

)
u
h
x̄

)
± eαu. (4.15)
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4. In accordance with the group classification in [28], we shall also consider the
case in which Q = ±eu + δ, δ = ±1. We can eliminate the constant source from
the equation

ut = (euux)x ± eu + δ (4.16)

by the change of variables (4.10). Equation (4.16) is then transformed into (4.13).
Equation (4.16) admits the following infinitesimal operators:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = e−δt

∂

∂t
+ δe−δt

∂

∂u
. (4.17)

The difference invariants

eu(eδτ − 1), h, û− u− δτ, u+ − u, u− u−, û+ − û, û− û−

of (4.17) permit constructing the following version of the difference model on the
invariant mesh (4.12):

δ(û− u)− τ
eδτ − 1

=
1

h

(
exp

(
u+ + u

2

)
u
h
x − exp

(
u+ u−

2

)
u
h
x̄

)
± eu.

The model for the considered equation can be obtained from the model (4.15) with
the help of the transformation (4.10).

4.1.3. The power-law heat conductivity coefficient K = uσ,
σ 6= 0, −4/3

For K = uσ, further classification depends on the source.

1. Let us start from the simplest case Q ≡ 0,

ut = (uσux)x. (4.18)

The symmetries of Eq. (4.18) are described by the four-dimensional algebra of
infinitesimal operators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2t

∂

∂t
+ x

∂

∂x
, X4 = σx

∂

∂x
+ 2u

∂

∂u
. (4.19)

For any σ, the operators (4.19) preserve the mesh uniformness and orthogonality.
The difference invariants corresponding to the stencil in Fig. 4.1 are

uσ
τ

h2
,

û

u
,

u+

u
,

u−
u
,

û+

û
,

û−
û
.

They permit us to write out, for example, the following version of the difference
model on the orthogonal uniform mesh in both directions:

û− u
τ

=
1

h

((
u+ + u

2

)σ
u
h
x −

(
u+ u−

2

)σ
u
h
x̄

)
. (4.20)
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Figure 4.2: A moving mesh with flat time layers

An orthogonal mesh is not the only possible way to discretize the problem.
Now let us show how to introduce a moving mesh of the form shown in Fig. 4.2.

One can use an adaptive mesh defined by the evolution equation (see also [21])

dx

dt
= ϕ(t, x, u, ux). (4.21)

In this case, the heat equation acquires the form

du

dt
= (uσux)x + ϕ(t, x, u, ux)ux.

Different requirements can be imposed on the function ϕ. If we require the in-
variance of Eq. (4.21) with respect to the whole set of operators (4.19), our freedom
to choose ϕ is limited by the function

ϕ = Cuσ−1ux, C = const.

In what follows, we show how to introduce the Lagrangian type of evolution dx
dt

.
Note that Eq. (4.18) has the form of a conservation law that presents the conserva-
tion of heat. Hence we can seek a moving mesh of Lagrangian type which evolves
in accordance with heat diffusion. We should find an evolution dx

dt
that satisfies the

equation
d

dt

∫ x2(t)

x1(t)

udx = 0.

Since
d

dt

∫ x2

x1

udx =

∫ x2

x1

∂u

∂t
dx+

[
u
dx

dt

]x2

x1

=

[
uσux + u

dx

dt

]x2

x1

we obtain the evolution dx/dt = −uσ−1ux. Note that this evolution is invariant
with respect to the operators (4.19). Our original differential equation (4.18) can
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now be represented in the form of the system

dx

dt
= −uσ−1ux,

du

dt
= uσuxx + (σ − 1)uσ−1u2

x. (4.22)

Note that Eq. (4.18) has two conservation laws

ut = (uσux)x, (xu)t =

(
xuσux −

uσ+1

σ + 1

)
x

.

For the evolution system (4.22) it is convenient to represent the conservation laws
in the integral form

d

dt

∫ x2(t)

x1(t)

udx = 0,
d

dt

∫ x2(t)

x1(t)

xudx = − uσ+1

σ + 1

∣∣∣∣x2

x1

. (4.23)

For finite-difference modeling of system (4.22), we can take the stencil shown in
Fig. 4.3.

�
�
�
�

t
t t

tt
t(x̂− ĥ−, t̂, û−) (x̂, t̂, û) (x̂+ ĥ+, t̂, û+)

(x, t, u) (x+ h+, t, u+)(x− h−, t, u−)

Figure 4.3: The stencil of the evolution mesh

In the space of the variables (t, x, τ, h+, h−, ĥ+, ĥ−,∆x, u, u+, u−, û, û+, û−)
corresponding to this stencil, there are ten finite-difference invariants

uσ
τ

h+2
,

û

u
,

u+

u
,

u−
u
,

û+

û
,

û−
û
,

h−

h+

,
ĥ−

h+
,

ĥ+

h+
,

∆x

h+
.

Approximating system (4.22) with the use of these invariants, we can obtain, say,
the system of two equations

∆x

τ
= − 1

2σ

(
uσ+ − uσ

h+
+
uσ − uσ−
h−

)
,

û+ û+

2
ĥ+ =

u+ u+

2
h+, (4.24)

where we have approximated the heat conservation law to obtain the equation for
the solution u.

The first equation in system (4.22) shows that the evolution of x depends on the
solution. System (4.24) may be inconvenient for computations, because the step
length will be changed automatically and the nature of this process is not clear. To
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avoid this uncertainty, we introduce a new space variable whose values characterize
the evolution trajectories of x. Consider the variable s defined by the system

st = uσux, sx = u.

One can readily see that each trajectory of x is determined by a fixed value of s,
since

ds

dt
= st + sx

dx

dt
= uσux −

u

σ
(uσ)x = 0.

In the new coordinate system with independent variables (t, s), Eq. (4.18) has the
form (

1

u

)
t

= −(uσus)s, (4.25)

and the former space variable x satisfies

xt = −uσus, xs =
1

u
. (4.26)

For the discrete modeling of Eq. (4.18), one can use Eq. (4.25) in the new inde-
pendent variables (t, s) to describe the diffusion process and the first equation in
system (4.26) to trace the evolution of the coordinate x. Equation (4.25), consid-
ered together with system (4.26), admits the symmetries

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂s
, X4 = 2t

∂

∂t
+ s

∂

∂s
+ x

∂

∂x
,

X5 = (σ + 2)s
∂

∂s
+ σx

∂

∂x
+ 2u

∂

∂u
.

In the new variables (t, s), the stencil becomes orthogonal, so that there is no need
to consider a nonuniform mesh in the variable s. We have the following invariants
for this set of operators in the space

(t, τ, s, hs, x, h
+
x , h

−
x , ĥ

+
x , ĥ

−
x ,∆x, u, u+, u−, û, û+, û−)

corresponding to the orthogonal stencil in (t, s) extended by the additional depen-
dent variable x:

uσ
τ

h+2
x

,
û

u
,

u+

u
,

u−
u
,

û+

û
,

û−
û
,

h−x
h+
x

,
ĥ−x
h+
x

,
ĥ+
x

h+
x

,
∆x

h+
x

,
hs
h+
x

.

By means of these invariants, we obtain an approximation to (4.25) that has the
form of the conservation law

1

τ

(
1

û
− 1

u

)
= − α

σ + 1

(
uσ+1

+ − 2uσ+1 + uσ+1
−

h2
s

)
− 1− α
σ + 1

(
ûσ+1

+ − 2ûσ+1 + ûσ+1
−

h2
s

)
, (4.27)
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where 0 ≤ α ≤ 1. Note that the variable x is introduced in the coordinates (t, s)
by the system (4.26) as some sort of potential for Eq. (4.25). In a similar way, we
can introduce x as a discrete potential with the help of the system

∆x

τ
= − α

σ + 1

(
uσ+1

+ − uσ+1
−

2hs

)
− 1− α
σ + 1

(
ûσ+1

+ − ûσ+1
−

2hs

)
,

h+
x

hs
=

1

2

(
1

u
+

1

u+

)
.

(4.28)

In computations, only Eq. (4.27) and the first equation in (4.28) are needed. The
second equation in system (4.28) is needed only to establish the relationship be-
tween the solutions u(x) and u(s) for a fixed time. For given initial data u(0, x) =
u0(x), we choose an appropriate step length hs for the Lagrangian coordinate s.
Then we can introduce the mesh points xi in the original coordinates satisfying

xi+1 − xi
hs

=
1

2

(
1

u0(xi)
+

1

u0(xi+1)

)
;

i.e., we use this equation to establish a difference relation between the original
space coordinate x and the Lagrangian substantive coordinate s. Computing the
solution with the help of the numerical scheme (4.27) and the first equation in
(4.28), we preserve the relation

xi+1 − xi
hs

=
1

2

(
1

ui
+

1

ui+1

)
.

Introducing the material type variable s, we can rewrite the conservation laws (4.23)
as

∂

∂t

∫ s2

s1

ds = 0,
∂

∂t

∫ s2

s1

xds = − uσ+1

σ + 1

∣∣∣∣s2
s1

.

The proposed discrete model possesses the difference analogs

N−1∑
i=1

hs = const,

N−1∑
i=1

x̂i + x̂i+1

2
hs −

N−1∑
i=1

xi + xi+1

2
hs = − α

σ + 1

(
uσ+1
N+1 + uσ+1

N

2

)
− 1− α
σ + 1

(
ûσ+1
N+1 + ûσ+1

N

2

)
+

α

σ + 1

(
uσ+1
−1 + uσ+1

0

2

)
+

1− α
σ + 1

(
ûσ+1
−1 + ûσ+1

0

2

)
of these conservation laws.
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2. Q = δu, δ = ±1. In this case, the symmetry of the equation

ut = (uσux)x + δu (4.29)

is described by the infinitesimal operators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = σx

∂

∂x
+ 2u

∂

∂u
, X4 = e−δσt

∂

∂t
+ δe−δσtu

∂

∂u
.

The change of variables

ū = ue−δt, t̄ =
δ

σ
(eδσt − 1) (4.30)

transforms Eq. (4.29) into Eq. (4.18). The finite-difference invariants

uσ(eδστ − 1)

h2
, δ ln

û

u
− τ, u+

u
,

u−
u
,

û+

û
,

û−
û

give the following possibility for an explicit difference model:

σu

eδστ − 1

(
δ ln

û

u
− τ
)

=
1

h

((
u+ + u

2

)σ
u
h
x −

(
u+ u−

2

)σ
u
h
x̄

)
.

Note that the change of variables (4.30) transforms this equation considered on the
orthogonal mesh with time layers

tn =
δ

σ
ln
(

1 +
n

k
(eδσT − 1

)
, n = 0, . . . , k, (4.31)

on the time interval [0, T ] into Eq. (4.20) on the uniform mesh on the time interval
[0, δσ−1(eδσT − 1)].

3. Q = ±uσ+1 + δun, δ = ±1. The equation

ut = (uσux)x ± un, σ, n = const, (4.32)

admits a three-parameter symmetry group. One possible representation of this
group is given by the following infinitesimal operators:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2(n−1)t

∂

∂t
+(n−σ−1)x

∂

∂x
−2u

∂

∂u
. (4.33)

The set (4.33) satisfies all invariant orthogonality and regularity conditions. Thus,
one can use an orthogonal mesh uniform in both t- and x-directions. By consid-
ering the set of operators (4.33) in the space (t, t̂, x, h+, h−, u, u+, u−, û, û+, û−)
corresponding to the stencil shown in Fig. 4.1, we find seven difference invariants
of the Lie algebra:

τ
n−σ−1
2(n−1)

h
, τun−1,

û

u
,

u+

u
,

u−
u
,

û+

û
,

û−
û
.
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There are few symmetry operators and hence many difference invariants. Thus we
are left with freedom in the invariant difference modeling of Eq. (4.32). Using
the difference invariants we, for example, obtain the following explicit invariant
scheme:

û− u
τ

=
1

h

((
u+ + u

2

)σ
u
h
x −

(
u+ u−

2

)σ
u
h
x̄

)
± un, (4.34)

where
u
h
x =

u+ − u
h

, u
h
x̄ =

u− u−
h

.

4. Q = ±uσ+1 + δu, δ = ±1. The equation

ut = (uσux)x ± uσ+1 + δu

is related to Eq. (4.32) by the transformation (4.30). This equation admits the in-
finitesimal operators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = e−δσt

∂

∂t
+ δe−δσtu

∂

∂u
. (4.35)

Using the invariants

uσ(eδστ − 1), h, δ ln
û

u
− τ, u+

u
,

u−
u
,

û+

û
,

û−
û

of the operators (4.35), we obtain the following example of an explicit difference
model:

σu

eδστ − 1

(
δ ln

û

u
− τ
)

=
1

h

((
u+ + u

2

)σ
u
h
x −

(
u+ u−

2

)σ
u
h
x̄

)
± uσ+1.

This equation on the mesh (4.31) is transformed by the change of variables (4.30)
into Eq. (4.34) on a mesh with regular time spacing.

4.1.4. The special case K = u−4/3 of a power-law heat conductivity
coefficient

1. If Q ≡ 0, then the symmetry of the equation

ut = (u−4/3ux)x (4.36)

is described by the five-dimensional algebra with infinitesimal operators (see [112])

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2t

∂

∂t
+ x

∂

∂x
,

X4 = 2x
∂

∂x
− 3u

∂

∂u
, X5 = x2 ∂

∂x
− 3xu

∂

∂u
.

(4.37)
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t
t t

tt
t(x, t̂, û) (x+ h+, t̂, û+)(x− h−, t̂, û−)

(x, t, u) (x+ h+, t, u+)(x− h−, t, u−)

Figure 4.4: The stencil of a nonuniform mesh

These operators preserve the mesh orthogonality and uniformness in the time direc-
tion. The operator X5 preserves the mesh uniformness in the t-direction but does
not preserve the mesh uniformness in the x-direction; however, orthogonality is not
disturbed. We shall consider the stencil shown in Fig. 4.4.

The finite-difference invariants

û

u
,

û+

u+

,
û−
u−
, u

1/3
+ u1/3 h

+

√
τ
, u

1/3
− u1/3 h

−
√
τ
,

u2/3

√
τ

(
h+h−

h+ + h−

)
(4.38)

corresponding to this stencil give, among others, the explicit difference equation

û− u
τ

= −h
+ + h−

6h+h−

(
u
−1/3
+ − u−1/3

h+
− u−1/3 − u−1/3

−

h−

)
. (4.39)

Note that one cannot apply the spatial mesh h+ = f(x, h−), which is preserved
under all transformations of the group (4.37). Using the difference invariants (4.38),
one can apply, for example, the following invariant mesh:

u
1/3
+ h+ = u

1/3
− h−,

which has the obvious integral

u
1/3
+ u1/3h+ = ε, ε = const.

2. If Q = δu and δ = ±1, then the equation

ut = (u−4/3ux)x + δu (4.40)

admits the operators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2x

∂

∂x
− 3u

∂

∂u
,

X4 = e4δt/3 ∂

∂t
+ δe4δt/3u

∂

∂u
, X5 = x2 ∂

∂x
− 3xu

∂

∂u
.

(4.41)
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The change of variables (4.30) transforms this equation into Eq. (4.36). Let us write
out the difference invariants for the set of operators (4.41):

δ ln
û

u
− τ, u2/3

(
h+h−

h+ + h−

)
1√

(eδστ − 1)
,

u
1/3
+ u1/3h+√
(eδστ − 1)

,
u

1/3
− u1/3h−√
(eδστ − 1)

,
û

1/3
+ û1/3h+√
(eδστ − 1)

,
û

1/3
− û1/3h−√
(eδστ − 1)

.

These invariants can be used to construct a difference model for Eq. (4.40). Let us
present the explicit version

σu

eδστ − 1

(
δ ln

û

u
− τ
)

= −h
+ + h−

6h+h−

(
u
−1/3
+ − u−1/3

h+
− u−1/3 − u−1/3

−

h−

)
(4.42)

of the difference model and the example

u
1/3
+ h+ = u

1/3
− h−

of an invariant mesh.

3. Q = ±un, n 6= −1/3. The equation

ut = (u−4/3ux)x ± un (4.43)

admits the infinitesimal operators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2(n− 1)t

∂

∂t
+

(
n+

1

3

)
x
∂

∂x
− 2u

∂

∂u
.

Although this equation is specified in the group classification (see [28]), it is a
special case of Eq. (4.32): there is no extension of the admitted group. That is why
we can use the model (4.34) with parameter σ = −4/3 corresponding to the given
equation as an invariant difference model for Eq. (4.43).

4. If Q = αu−1/3 and α = ±1, then the version of the difference model for the
equation

ut = (u−4/3ux)x ± u−
1
3 (4.44)

depends on the sign of the coefficient α. Equation (4.44) admits the five-dimen-
sional algebra of infinitesimal operators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

4

3
t
∂

∂t
+ 2u

∂

∂u
,

X4 = e2
√
α/3x ∂

∂x
−
√

3αe2
√
α/3xu

∂

∂u
, X5 = e−2

√
α/3x ∂

∂x
+
√

3αe−2
√
α/3xu

∂

∂u
.
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(a) The case of α = 1. The change of variables

ū = u cosh3 x√
3
, x̄ =

√
3 tanh

x√
3

(4.45)

transforms the considered equation into Eq. (4.36) (see [74]). Using the difference
invariants

û

u
,

û+

u+

,
û−
u−
,

√
τu−2/3

(
1

tanh(h+/
√

3)
+

1

tanh(h−/
√

3)

)
,

u1/3u
1/3
+√
τ

sinh
h+

√
3
,

u1/3u
1/3
−√
τ

sinh
h−√

3
,

one can construct a difference model. Let us write out one possible version of the
difference model, namely, the explicit equation

û− u
τ

= − 1

18

(
1

tanh(h+/
√

3)
+

1

tanh(h−/
√

3)

)

×

(
u
−1/3
+ − u−1/3 cosh(h+/

√
3)

sinh(h+/
√

3)
− u−1/3 cosh(h−/

√
3)− u−1/3

−

sinh(h−/
√

3)

)
, (4.46)

and the example

u
1/3
+ sinh

(
h+

√
3

)
= u

1/3
− sinh

(
h−√

3

)
of an invariant mesh.

(b) The case of α = −1. The change of variables

ū = u cos3 x√
3
, x̄ =

√
3 tan

x√
3

(4.47)

transforms the given equation into Eq. (4.36). The set of difference invariants

û

u
,

û+

u+

,
û−
u−
,

√
τu−2/3

(
1

tan(h+/
√

3)
+

1

tan(h−/
√

3)

)
,

u1/3u
1/3
+√
τ

sin
h+

√
3
,

u1/3u
1/3
−√
τ

sin
h−√

3

permits us to construct an invariant difference scheme. For example, one can use
the explicit difference equation

û− u
τ

= − 1

18

(
1

tan(h+/
√

3)
+

1

tan(h−/
√

3)

)
×
(
u
−1/3
+ − u−1/3 cos(h+/

√
3)

sin(h+/
√

3)
− u−1/3 cos(h−/)− u−1/3

−

sin(h−/
√

3)

)
, (4.48)
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and an example of an invariant mesh is given by

u
1/3
+ sin

h+

√
3

= u
1/3
− sin

h−√
3
.

We point out that the obtained difference models (4.46) and (4.48) are related
to the difference model (4.39) for Eq. (4.36) by the changes of variables (4.45) and
(4.47), respectively, as is the case for the original differential equations.

5. Q = αu−
1
3 + δu, |α| = |δ| = 1. As in the preceding item, two cases of the

parameter α in the equation

ut = (uσux)x ± uσ+1 + δu (4.49)

should be considered separately, and two difference models should be constructed.
Let us write out the infinitesimal operators admitted by Eq. (4.49):

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = e4δt/3 ∂

∂t
+ δe4δt/3u

∂

∂u
,

X4 = e2
√
α/3x ∂

∂x
−
√

3αe2
√
α/3xu

∂

∂u
, X5 = e−2

√
α/3x ∂

∂x
+
√

3αe−2
√
α/3xu

∂

∂u
.

(a) The case of α = 1. The change of variables (4.30) transforms the considered
equation into Eq. (4.44), and the change (4.45) transforms it into Eq. (4.36).

Let us write out the set of finite-difference invariants for Eq. (4.49) with α = 1:

δ ln
û

u
− τ,

√
(eδστ − 1)u−2/3

(
1

tanh(h+/
√

3)
+

1

tanh(h−/
√

3)

)
,

u1/3u
1/3
+√

(eδστ − 1)
sinh

h+

√
3
,

u1/3u
1/3
−√

(eδστ − 1)
sinh

h−√
3
,

û1/3û
1/3
+√

(eδστ − 1)
sinh

h+

√
3
,

û1/3û
1/3
−√

(eδστ − 1)
sinh

h−√
3
.

The explicit version of the difference model for Eq. (4.49) on the time mesh (4.31)
has the form

σu

eδστ − 1

(
δ ln

û

u
− τ
)

= − 1

18

(
1

tanh(h+/
√

3)
+

1

tanh(h−/
√

3)

)
×
(
u
−1/3
+ − u−1/3 cosh(h+/

√
3)

sinh(h+/
√

3)
− u−1/3 cosh(h−/

√
3)− u−1/3

−

sinh(h−/
√

3)

)
, (4.50)

and an example of an invariant mesh is given by

u
1/3
+ sinh

h+

√
3

= u
1/3
− sinh

h−√
3
.
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(b) The case of α = −1. The change of variables (4.47) transforms this equation
into Eq. (4.40), and the change of variables (4.30) transforms it into Eq. (4.44).
A difference model for Eq. (4.49) can be obtained with the help of the invariants

δ ln
û

u
− τ,

√
(eδστ − 1)u−2/3

(
1

tan(h+/
√

3)
+

1

tan(h−/
√

3)

)
,

u1/3u
1/3
+√

(eδστ − 1)
sin

h+

√
3
,

u1/3u
1/3
−√

(eδστ − 1)
sin

h−√
3
,

û1/3û
1/3
+√

(eδστ − 1)
sin

h+

√
3
,

û1/3û
1/3
−√

(eδστ − 1)
sin

h−√
3
.

One possible difference model for Eq. (4.49) is

σu

eδστ − 1

(
δ ln

û

u
− τ
)

= − 1

18

(
1

tan(h+/
√

3)
+

1

tan(h−/
√

3)

)
×
(
u
−1/3
+ − u−1/3 cos(h+/

√
3)

sin(h+/
√

3)
− u−1/3 cos(h−/

√
3)− u−1/3

−

sin(h−/
√

3)

)
, (4.51)

and an example of an invariant mesh is given by

u
1/3
+ sin

h+

√
3

= u
1/3
− sin

h−√
3
.

The difference models (4.50) and (4.51) are related to the model (4.42) by the
changes of variables (4.45) and (4.47), respectively. The change (4.30) transforms
the difference models obtained in this item into the model of item 4 for the corre-
sponding values of the parameter α. This example shows that in invariant difference
modeling it is possible to obtain consistent models related to each other by the same
point transformations as their original differential counterparts.

4.1.5. Linear heat conduction with a nonlinear source

In this section, we consider the semilinear heat equation

ut = uxx +Q(u)

with various types of source.

1. With Q = ±eu, the equation becomes

ut = uxx ± eu.

It admits the three-dimensional algebra of infinitesimal operators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2t

∂

∂t
+ x

∂

∂x
− 2

∂

∂u
.
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One can readily verify that the conditions for the preservation of the mesh orthog-
onality and regularity hold for these operators. An approximation to the equation
with the use of the invariants

h2

τ
, τeu, û− u, u+ − u, u− u−, û+ − û, û− û−

gives various types of difference equations. An explicit equation can be as follows:

û− u
τ

=
1

h
(u
h
x − u

h
x̄)± eu.

2. Q = ±un. The equation
ut = uxx ± un

admits the infinitesimal operators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2(n− 1)t

∂

∂t
+ (n− 1)x

∂

∂x
− 2u

∂

∂u
.

These operators satisfy the orthogonality and regularity invariance conditions, and
the difference invariants

h2

τ
, τun−1,

û

u
,

u+

u
,

u−
u
,

û+

û
,

û−
û

permit us to construct, for example, the following difference scheme:

û− u
τ

=
1

h
(u
h
x − u

h
x̄)± un.

3. Q = δu lnu, δ = ±1. The semilinear heat equation

ut = uxx + δu lnu, δ = ±1, (4.52)

admits the four-parameter Lie symmetry point transformation group corresponding
to the following set of infinitesimal operators:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2eδt

∂

∂x
− δeδtxu ∂

∂u
, X4 = eδtu

∂

∂u
. (4.53)

Before constructing a difference equation and a mesh that approximate (4.52) and
inherit the whole Lie algebra (4.53), we should first verify the orthogonality in-
variance condition. The operators X1, X2, and X4 preserve orthogonality, while
X3 does not. Consequently, an orthogonal mesh cannot be used for the invariant
modeling of (4.52). Condition of invariant flatness of the time layer is true for the
complete set of operators, so that it is possible to use a nonorthogonal mesh with
flat time layers, and we shall use the mesh shown in Fig. 4.2.
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A possible reformulation of Eq. (4.52) with the use of the four differential in-
variants

J1 = dt, J2 =
(ux
u

)2

− uxx
u
, J3 = 2

ux
u

+
dx

dt
, J4 =

du

udt
−δ lnu+

1

4

(
dx

dt

)2

in the subspace (t, x, u, ux, uxx, dt, dx, du) is given by the system

J3 = 0, J4 = J2, (4.54)

that is,
dx

dt
= −2

ux
u
,

du

dt
= uxx + δu lnu− 2

u2
x

u
. (4.55)

Thus, the structure of the admitted group suggests approximating two evolution
equations.

As the next step, we shall find difference invariants for the operatorsX1, . . . , X4

of the group (4.53). We shall use the six-point difference stencil in Fig. 4.3, on
which we shall approximate system (4.55). The stencil defining the subspace of the
variables (t, t̂, x, x̂, h+, h−, ĥ+, ĥ−, u, u+, u−, û, û+, û−) and the operators (4.53)
has the following difference invariants:

I1 = τ, I2 = h+, I3 = h−, I4 = ĥ+, I5 = ĥ−,

I6 = (lnu)x − (lnu)x̄, I7 = (ln û)x − (ln û)x̄,

I8 = δ∆x+ 2(eδτ − 1)

(
h−

h+ + h−
(lnu)x +

h+

h+ + h−
(lnu)x̄

)
,

I9 = δ∆x+ 2(1− e−δτ )
(

ĥ−

ĥ+ + ĥ−
(ln û)x +

ĥ+

ĥ+ + ĥ−
(ln û)x̄

)
,

I10 = δ(∆x)2 + 4(1− e−δτ )(ln û− eδτ lnu),

where

∆x = x̂− x, (lnu)x =
lnu+ − lnu

h+
, (lnu)x̄ =

lnu− lnu−
h−

.

An explicit model can be chosen as follows:

I8 = 0, I10 =
8

δ

(eδI1 − 1)2

I2 + I3

I6,

i.e.,

δ∆x+ 2(eδτ − 1)

(
h−

h+ + h−
(lnu)x +

h+

h+ + h−
(lnu)x̄

)
= 0,

δ(∆x)2 + 4(1− e−δτ )(ln û− eδτ lnu) =
8

δ

(eδτ − 1)2

h+ + h−
[(lnu)x − (lnu)x̄].

(4.56)
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Consider a symmetry reduction and an appropriate family of exact invariant
solutions of this scheme [8, 9].

Consider solutions of Eq. (4.56) invariant with respect to the operator

2αX2 +X3, α = const.

This operator has the three difference invariants

J1 = t, J2 = u exp

(
δeδt

α + eδt
x2

4

)
, J3 =

(
∆x

eδt(eδτ − 1)
− x

α + eδt

)
,

and hence we seek an exact solution in the form

u(x, t) = exp

(
− δeδt

α + eδt
x2

4

)
ef(t),

∆x

eδt(eδτ − 1)
=

x

α + eδt
+ g(t).

The substitution of this solution into system (4.56) yields the system of ordinary
difference equations

f(t+ τ)− eδτf(t)

eδτ (eδτ − 1)
= −1

2

eδt

α + eδt
, g(t) = 0,

for two unknown functions f(t) and g(t). The solution of the last system is the
expression

u(x, t) = exp

(
eδt
(
f(0)− eδτ − 1

2

n−1∑
j=1

e−δtj

1 + αe−δtj

)
− δeδt

α + eδt
x2

4

)
for u and the expression

x = x0 e
δt + α

1 + α

for the mesh, where x = xji = xi(tj) and t = tj . The mesh can be arbitrary at the
initial time t = 0. If it is originally regular, then it will be regular on any further
time layer.

The obtained exact solution yields the solution of the Cauchy problem with the
initial conditions

u(x, 0) = exp

(
f(0)− δeδt

α + eδt
x2

4

)
.

4.2. Symmetry Preserving Difference Schemes
for the Linear Heat Equation

In this section, we complete the set of invariant difference schemes for the heat
transfer equation with a source in accordance with the Lie group classification [28]
(see also [74]). Namely, we consider a linear heat equation without a source and
with a linear source [8, 9, 42].
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4.2.1. Linear heat equation without a source

The linear heat equation
ut = uxx (4.57)

admits the six-parameter point transformation group with infinitesimal operators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2t

∂

∂x
−xu ∂

∂u
, X4 = 2t

∂

∂t
+ x

∂

∂x
,

X5 = 4t2
∂

∂t
+ 4tx

∂

∂x
− (x2 + 2t)u

∂

∂u
, X6 = u

∂

∂u

(4.58)

and the infinite-dimensional symmetry

X∗ = a(x, t)
∂

∂u
,

where a(t, x) is an arbitrary solution of Eq. (4.57). The symmetry X∗ represents
the linearity of Eq. (4.57).

Probably the simplest approximation to the linear equation is given by the ex-
plicit scheme

û− u
τ

=
u+ − 2u+ u−

h2
(4.59)

considered on a uniform orthogonal mesh. As was shown in the Introduction,
this equation is invariant with respect to the operators X1, X2, X4, and X6 in the
set (4.58). Since the equation is linear, it obeys the superposition principle, which
is reflected in the invariance with respect to the operator

X∗h = ah(x, t)
∂

∂u
,

where ah(x, t) is an arbitrary solution of Eq. (4.59). It was shown in [8, 9, 42] how
to construct a discrete model which admits the six-dimensional group (4.58).

To preserve the Galilei operator X3 and the projective operator X5, one has to
introduce a moving mesh.

Heat equation as a system of equations

With the help of the differential invariants

J1 =
dx+ 2

ux
u
dt

dt1/2
, J2 =

du

u
+

1

4

dx

dt

2

+

(
−uxx

u
+
u2
x

u2

)
dt

of the operators (4.58) in the space (t, x, u, ux, uxx, dt, dx, du), we can represent
the heat equation (4.57) as the system

J1 = 0, J2 = 0,



122 INVARIANT DIFFERENCE MODELS OF PDE

that is,
dx

dt
= −2

ux
u
,

du

dt
= uxx − 2

u2
x

u
. (4.60)

This system is invariant with respect to the six-dimensional group generated by the
operators (4.58), because it was constructed by means of differential invariants.

Invariant schemes on moving meshes

For the difference modeling of system (4.60), we need the whole set of difference
invariants of the symmetry group (4.58) in the difference space corresponding to
the chosen stencil (t, t̂, x, x̂, h+, h−, ĥ+, ĥ−, u, û, u+, u−, û+, û−):

I1 =
h+

h−
, I2 =

ĥ+

ĥ−
, I3 =

ĥ+h+

τ
, I4 =

τ 1/2

h+

û

u
exp

(
1

4

(∆x)2

τ

)
,

I5 =
1

4

h+2

τ
− h+2

h+ + h−

(
1

h+
ln
u+

u
+

1

h−
ln
u−
u

)
,

I6 =
1

4

ĥ+2

τ
+

ĥ+2

ĥ+ + ĥ−

(
1

ĥ+
ln
û+

û
+

1

ĥ−
ln
û−
û

)
,

I7 =
∆xh+

τ
+

2h+

h+ + h−

(
h−

h+
ln
u+

u
− h+

h−
ln
u−
u

)
,

I8 =
∆xĥ+

τ
+

2ĥ+

ĥ+ + ĥ−

(
ĥ−

ĥ+
ln
û+

û
− ĥ+

ĥ−
ln
û−
û

)
.

Approximating system (4.60) by invariants, we obtain a system of difference
evolution equations. By way of example, here we present the invariant difference
model

∆x =
2τ

h+ + h−

(
−h

−

h+
ln
u+

u
+
h+

h−
ln
u−
u

)
,(u

û

)2

exp

(
−1

2

(∆x)2

τ

)
= 1− 4τ

h+ + h−

(
1

h+
ln
u+

u
+

1

h−
ln
u−
u

)
,

(4.61)

which has explicit equations for the solution u and the mesh trajectory. We also can
write out the implicit model

∆x =
2τ

ĥ+ + ĥ−

(
− ĥ

−

ĥ+
ln
û+

û
+
ĥ+

ĥ−
ln
û−
û

)
,(

û

u

)2

exp

(
1

2

∆x2

τ

)
= 1 +

4τ

ĥ+ + ĥ−

(
1

ĥ+
ln
û−
û

+
1

ĥ−
ln
û−
û

)
.

It is also possible to combine an explicit equation for the mesh and an implicit
approximation to the partial differential equation, or vice versa. Other ways to
approximate system (4.60) by difference invariants are also possible.
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It should be noticed that an invariant mesh adapts to a given solution regardless
of whether the solution itself is invariant or not. Examples of two evolutions of
meshes and appropriate noninvariant solutions are shown in Figs. 4.5–4.8. The
invariant scheme (4.61) was used in the numerical implementation.

Optimal system of subalgebras and reduced systems

Among all invariant solutions, there is a minimal set of such solutions, called a
optimal system of invariant solutions [111]. Any invariant solution can be obtained
from this set of invariant solutions by an appropriate group transformation.
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The difference model (4.61) is a system of two evolution equations. To find its
invariant solutions, we need to provide a time mesh that is invariant with respect
to the considered operator. An invariant time mesh giving flat time layers can be
represented by the equation

τi = g(ti), i = 0, 1, 2, . . . . (4.62)

We require this equation to be invariant with respect to the considered symmetry.
Since the coefficients ξt for the operators (4.58) do not depend on x and u, we
can propose an invariant time mesh for any symmetry. In the case of ξt = 0, the
function g can be taken arbitrarily. For example, we can choose the uniform mesh
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tj = jτ , τ = const. Thus, different invariant solutions can have different time
meshes.

The action of admitted Lie group transforms an invariant solution into another
one [111]. In our case, it also transforms the time mesh equation (4.62). Thus, the
group action gives a new invariant solution with the corresponding invariant mesh.

Using the difference model (4.61) as an example, we shall construct an optimal
system of solutions invariant with respect to one-parameter groups. The optimal
system of one-dimensional subalgebras of the symmetry algebra for the linear heat
equation consists of the algebras corresponding to the operators (see [111])

Y1 = X2 =
∂

∂x
, Y2 = X6 = u

∂

∂u
, Y3 = X1 + cX6 =

∂

∂t
+ cu

∂

∂u
,

Y4 = X1 −X3 =
∂

∂t
− 2t

∂

∂x
+ xu

∂

∂u
,

Y5 = X4 + 2cX6 = 2t
∂

∂t
+ x

∂

∂x
+ 2cu

∂

∂u
,

Y6 = X1 +X5 + cX6 = (4t2 + 1)
∂

∂t
+ 4tx

∂

∂x
+ (c− x2 − 2t)u

∂

∂u
.

Let us find the invariant solutions corresponding to these one-dimensional sub-
algebras.

1. The subalgebra corresponding to the operator Y1 has only the constant solutions
u = C, C = const, considered on the orthogonal mesh ∆x = 0.

2. The subalgebra corresponding to the operator Y2 does not have invariant solu-
tions. (The necessary condition for the existence of invariant solutions does not
hold [21].)

3. The operator Y3 has the following invariants: u exp(−ct), τ , and ∆x. The time
step τ is invariant, and so we can consider a uniform time mesh. We seek a solution
of the difference model in the form

u = exp(ct)f(x).

By substituting this invariant form of the solution into system (4.61), we obtain

∆x =
2τ

h+ + h−

(
−h

+

h−
ln

(
f(x+ h+)

f(x)

)
+
h+

h−
ln

(
f(x− h−)

f(x)

))
,(

f(x)

f(x+ ∆x)

)2

exp

(
−2cτ − 1

2

∆x2

τ

)
= 1− 4τ

h+ + h−

(
1

h+
ln

(
f(x+ h+)

f(x)

)
+

1

h−
ln

(
f(x− h−)

f(x)

))
.

(4.63)
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System (4.63) becomes a system of two ordinary difference equations if we project
it onto the space of invariants. To project the system, we have to impose the condi-
tion

∆x = −h−, 0, or h+. (4.64)

The solution of system (4.63) with one of conditions (4.64) provides the solution
of system (4.61) invariant with respect to the operator Y3.

4. The operator Y4 has the invariants

u exp

(
−xt− 2

3
t3
)
, x+ t2, τ,

∆x

2τ
− t.

Let us seek the solution of the difference model (4.61) in the form

u = exp

(
tx+

2

3
t3
)
f(x+ t2).

By the change of variables

y = x+ t2, y − h−y = x− h− + t2,

y + h+
y = x+ h+ + t2, y + ∆y = x+ ∆x+ (t+ τ)2,

we obtain the following system for the invariant solution of system (4.61):

∆y − τ 2 =
2τ

h+
y + h−y

(
−
h−y
h+
y

ln

(
f(y + h+

y )

f(y)

)
+
h+
y

h−y
ln

(
f(y − h−y )

f(y)

))
,(

f(y)

f(y + ∆y)

)2

exp

(
− 1

2τ
∆y2 − τ(2y + ∆y) +

1

6
τ 3

)
= 1− 4τ

h+
y + h−y

(
1

h+
y

ln

(
f(y + h+

y )

f(y)

)
+

1

h−y
ln

(
f

(
y − h−y
f(y)

)))
,

where ∆y can have one of the following values:

∆y = −h−y , 0, or h+
y . (4.65)

The solution of the above system with one of conditions (4.65) allows us to find the
solution invariant under the operator Y4.

5. The expressions
x√
t
, t−cu,

τ

t
,

∆x

x

are invariants of the operator Y5. Let us seek the solution of the difference model
in the form

u = tcf

(
x√
t

)
.
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In the variables

y =
x√
t
, y− h−y =

x− h−√
t

, y + h+
y =

x+ h+

√
t

, y + ∆y =
x+ ∆x√
t+ τ

,

we obtain the following system of equations:

√
1 + a(y + ∆y)− y

=
2a

h+
y + h−y

(
−
h−y
h+
y

ln

(
f(y + h+

y )

f(y)

)
+
h+
y

h−y
ln

(
f(y − h−y )

f(y)

))
,

(1 + a)−2c

(
f(y)

f(y + ∆y)

)2

exp

(
−1

2

(
(y + ∆y)

√
1 + a

a
− y 1√

a

)2)
= 1− 4a

h+
y + h−y

(
1

h+
y

ln

(
f(y + h+

y )

f(y)

)
+

1

h−y
ln

(
f(y − h−y )

f(y)

))
.

Here ∆y can have one of the values determined by conditions (4.65) and a is the
constant in the condition a = τ

t
, which determines an invariant time spacing. This

condition can be found if we look for a time spacing τ = g(t) invariant with respect
to the operator Y5.

6. For the operator Y6, we have the following invariants:

x√
4t2 + 1

, (4t2 + 1)1/4u exp

(
tx2

4t2 + 1
+
c

2
arctan(2t)

)
,

4t2 + 1

τ
+ 4t,

∆x

x

4t2 + 1

τ
− 4t.

We seek the solution of the difference model in the form

u = (4t2 + 1)−1/4 exp

(
− tx2

4t2 + 1
− c

2
arctan(2t)

)
f

(
x√

4t2 + 1

)
.

In the new variables

y =
x√

4t2 + 1
, y − h−y =

x− h−√
4t2 + 1

,

y + h+
y =

x+ h+

√
4t2 + 1

, y + ∆y =
x+ ∆x√

4(t+ τ)2 + 1
,



128 INVARIANT DIFFERENCE MODELS OF PDE

system (4.61) can be represented in the form
√
b2 + 1(y + ∆y)− by

=
1

h+
y + h−y

(
−
h−y
h+
y

ln

(
f(y + h+

y )

f(y)

)
+
h+
y

h−y
ln

(
f(y − h−y )

f(y)

))
,

√
b2 + 1

(
f(y)

f(y + ∆y)

)2

× exp

(
c arctan

(
1

b

)
− b(y2 + (y + ∆y)2) + 2

√
b2 + 1y(y + ∆y)

)
= b− 2

h+
y + h−y

(
1

h+
y

ln

(
f(y + h+

y )

f(y)

)
+

1

h−y
ln

(
f(y − h−y )

f(y)

))
,

where ∆y has one of the values (4.65) and b is the constant in the necessary condi-
tion

2b = 4t+
4t2 + 1

τ
for the existence of an invariant mesh.

Therefore, the obtained reduced systems of equations determine the optimal
system of invariant solutions for the difference model of the liner heat equation. It
means that each invariant solution can be found by a transformation of a solution
from the optimal system with the help of the corresponding element of the group.
As was mentioned before, the invariant time mesh for the new solution is obtained
from the time mesh of the solution from the optimal system with the help of the
same group transformation. For example, the transformation corresponding to the
operator X1 with parameter value −t0 gives the time shift t̂ = t − t0. Since the
appropriate operator becomes

X∗ = Y5 + 2t0X1,

it follows that the action of this transformation takes the invariant solution with
respect to the operator Y5 into the solution invariant with respect to the operator
X∗. By this transformation, the spacing τ

t
= a is transformed into the spacing

τ
t+t0

= a.

EXAMPLE (of an exact solution). Among all group invariant solutions for the dif-
ference model (4.61), there is an interesting solution that can be integrated ex-
actly [9]. This is the solution invariant with respect to the operator

2t0X2 +X3, t0 = const,

namely, the solution

u(x, t) = C

(
t0

t+ t0

)1/2

exp

(
− x2

4(t+ t0)

)
(4.66)
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considered on the mesh

xi = x0
i

(
t+ t0
t0

)
, (4.67)

where the x0
i are the space mesh points at t = t0. In the case of t0 = 0, we obtain

the well-known fundamental solution of the linear heat equation. Note that it has a
“singular” mesh.

Let us show how this solution can be obtained from the optimal system of the
invariant solutions. We consider the operator

X∗ = X2 + 2εX3,

and see that the solution (4.66) can be obtained from the solution invariant with
respect to operator Y1 by the transformation corresponding toX∗ with ε = 0.25t−1

0 .
If we take the original solution on the orthogonal mesh that is uniform in space and
has the special time spacing

uji = C, xi = ih, i = 0,±1,±2, . . . , tj =
jτt0
t0 + jτ

, j = 0, 1, 2, . . . ,

on the interval [0, t0], then the proposed transformation provides the solution (4.66)
on the uniform space mesh (4.67) and the uniform time mesh tj = jτ .

Thus, we see that the difference model (4.61) inherits both the group admitted
by the original differential equation and the integrability on a subgroup.

A way to stop a moving mesh

The obtained difference models have self-adaptive nonorthogonal moving meshes.
We can find a way to stop the moving mesh, i.e., a change of variables that or-
thogonalizes the mesh. The differentiation operator d/dt of Lagrangian type can
be represented in the form

d

dt
= Dt − 2

ux
u
Dx,

where
Dt =

∂

∂t
+ ut

∂

∂u
+ · · ·, Dx =

∂

∂x
+ ux

∂

∂u
+ · · ·.

The operator d/dt, in contrast to the operators Dt and Dx, does not commute with
the operators of total differentiation with respect to t and x:[

d

dt
,Dt

]
= 2

(uxt
u
− uxut

u2

)
Dx,

[
d

dt
,Dx

]
= 2

(
uxx
u
− u2

x

u2

)
Dx.

We need to find an operator of total differentiation with respect to a new space
variable s such that [

d

dt
,Ds

]
= 0. (4.68)
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The last commutativity property is possible if we involve a new dependent variable
ρ > 0 (density). The operatorDs = ρ−1Dx satisfies (4.68) if ρ satisfies the equation

ρt − 2ρ

(
uxx
u
− u2

x

u2

)
− 2

ux
u
ρx = 0.

The new space variable s is introduced with the help of the equations

st = 2ρ
ux
u
, sx = ρ.

For convenience, we can take the initial data ρ(0, x) ≡ 1. Then s = x for t = 0.
In the variables (t, s), the heat equation becomes the system

ut = ρ2

(
uss − 2

u2
s

u

)
+ ρρsus, ρt = 2ρ3

(
uss
u
− u2

s

u2

)
+ 2ρ2ρs

us
u
, (4.69)

which can be rewritten in the form of the conservation laws(
1

ρ

)
t

=

(
−2ρ

us
u

)
s

,

(
u

ρ

)
t

= (−ρus)s.

The space coordinate x is defined by the system of equations

xt = −2ρ
us
u
, xs =

1

ρ
. (4.70)

System (4.69) in the space of independent variables (t, s) and the extended set of
dependent variables (u, ρ, x) admits the point transformation group determined by
the infinitesimal operators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = 2t

∂

∂x
− xu ∂

∂u
, X4 = 2t

∂

∂t
+ x

∂

∂x
+ s

∂

∂s
,

X5 = 4t2
∂

∂t
+ 4tx

∂

∂x
− (x2 + 2t)u

∂

∂u
− 4tρ

∂

∂ρ
, X6 = u

∂

∂u
,

X∗ = f(s)
∂

∂s
+ ρf ′(s)

∂

∂ρ
,

(4.71)
where f(s) is an arbitrary function of s.

The condition of mesh orthogonality and the condition of spatial mesh uniform-
ness are satisfied, and it gives us the opportunity to construct a difference model that
is invariant with respect to the operators X1, . . . , X6 on the orthogonal mesh.

Let us rewrite system (4.69),(4.70) in the form of differential invariants. In the
space of the variables (t, x, s, u, ρ, dt, dx, ds, du, dρ, us, ρs, xs, uss), there are five
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invariants

J1 = xsρ, J2 =
ρ

ds
(dx+ 2ρ

us
u
dt), J3 =

(ds)2

ρ2dt
,

J4 =
(ds)2

ρ3

(
dρ

dt
− ρsds

dt
− 2ρ3

(
uss
u
− u2

s

u2

)
− 2ρ2ρs

us
u

)
,

J5 =

(
ds

ρ

)2
(
−2

u

du

dt
− 1

2

(
dx

dt

)2

+ 2ρ2

(
uss
u
− u2

s

u2

)
+ 2ρρs

us
u

)
.

With the help of these invariants, we rewrite system (4.69), (4.70) as

ut = ρ2

(
uss −

u2
s

u

)
+ ρρsus, ρt = 2ρ3

(
uss
u
− u2

s

u2

)
+ 2ρ2ρs

us
u
,

xt = −2ρ
us
u

(4.72)

with the constraint equation xs = ρ−1.
Now we can find a system of equations that approximates (4.72) and is invariant

with respect to the set of operators (4.71). We can use a six-point stencil which
corresponds to the space

(t, t̂, s, h+
s , h

−
s , x, x̂, h

+
x , h

−
x , ĥ

+
x , ĥ

−
x , u, û, u+, u−, û+, û−, ρ, ρ̂, ρ+, ρ−, ρ̂+, ρ̂−).

For the set of operators (4.71), where the operator X∗ is replaced by its difference
analog

X∗h = f(s)
∂

∂s
+ ρD

+s
(f(s))

∂

∂ρ

we have the following set of invariants

I1 =
h+
x

h−x
, I2 =

ĥ+
x

ĥ−x
, I3 =

h+
x ĥ

+
x

τ
, I4 =

τ 1/2

h+
x

û

u
exp

(
1

4

∆x2

τ

)
,

I5 =
1

4

h+2
x

τ
− h+2

x

h+ + h−

(
1

h+
x

ln
u+

u
+

1

h−x
ln
u−
u

)
,

I6 =
1

4

ĥ+2
x

τ
+

ĥ+2
x

ĥ+
x + ĥ−x

(
1

ĥ+
x

ln
û+

û
+

1

ĥ−x
ln
û−
û

)
,

I7 =
∆xh+

x

τ
+

2h+
x

h+
x + h−x

(
h−x
h+
x

ln
u+

u
− h+

x

h−x
ln
u−
u

)
,

I8 =
∆xĥ+

x

τ
+

2ĥ+
x

ĥ+
x + ĥ−x

(
ĥ−x

ĥ+
x

ln
û+

û
− ĥ+

x

ĥ−x
ln
û−
û

)
,

I9 =
ρ̂−
ρ−
, I10 =

ρ̂

ρ
, I11 =

ρ̂+

ρ+

, I12 =
h+
s

ρh+
x

, I13 =
h−s
ρ−h−x

.
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With the help of these invariants, we can write out the difference model in the
form of the following system of evolution difference equations (here we present
only one invariant difference model, which corresponds to system (4.61) in the
variables (t, x)):

∆x = 2τ

−h
−
s

h+
s

ρ

ρ−
ln
u+

u
+
h+
s

h−s

ρ−
ρ

ln
u−
u

h+
s

ρ
+
h−s
ρ−

, ρ̂ = ρ
h+
x

ĥ+
x

,

(
u

û

)2

exp

(
−1

2

∆x2

τ

)
= 1− 4τ

ρ

h+
s

ln
u+

u
+
ρ−
h−s

ln
u−
u

h+
s

ρ
+
h−s
ρ−

.

In the case of a uniform mesh (h+
s = h−s = hs), this model can be simplified as

follows:

∆x = 2τ
−ρ2 ln u+

u
+ ρ2

− ln u−
u

hs(ρ+ ρ−)
, ρ̂ = ρ

h+
x

ĥ+
x

,(
u

û

)2

exp

(
−1

2

∆x2

τ

)
= 1− 4τρρ−

h2
s(ρ+ ρ−)

(
ρln

u+

u
+ ρ−ln

u−
u

)
.

System (4.69) has only two dependent variables u and ρ and can be approxi-
mated without involvement of the space variable x. However, the Galilei symmetry
X3 and the projective symmetry X5 are nonlocal in the coordinate system (t, s),
and we need to consider the dependent variable x to have these symmetries. When
constructing a difference model invariant with respect to the set of operators (4.71),
we inevitably include x in the difference equations.

It is important to note that moving meshes can be stopped in all cases by using
a Lagrange type coordinate system. (For the introduction of Lagrange type coor-
dinate systems, e.g., see [115].) Note that most of the obtained schemes are quite
different from the “traditional” schemes [127].

4.2.2. Linear heat equation with a linear source

1. If Q = δu and δ = ±1, then the equation

ut = uxx + δu (4.73)

can be transformed into Eq. (4.57) by the change of variables

ū = ue−δt.

Reversing this transformation, one can get an invariant model for equation (4.73)
from an invariant model for the heat equation without a source.



4.3. INVARIANT DIFFERENCE MODELS FOR THE BURGERS EQUATION 133

2. Q = δ = const. The equation has the form

ut = uxx + δ. (4.74)

The constant source can be eliminated by the obvious transformation

ū = u− δt.

It means that we can obtain a difference model for (4.74) from the model for (4.57).

4.3. Invariant Difference Models for the Burgers Equation

The Burgers equation
vt + vvx = vxx (4.75)

admits the transformation group determined by the infinitesimal operators (e.g.,
see [74])

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = t

∂

∂x
+

∂

∂v
,

X4 = 2t
∂

∂t
+ x

∂

∂x
− v ∂

∂v
, X5 = t2

∂

∂t
+ tx

∂

∂x
+ (x− tv)

∂

∂v
,

X∗ =
(
a exp

(w
2

))
x

∂

∂v
,

(4.76)

where a = a(x, t) is an arbitrary solution of the heat equation at = axx. The
function w(t, x) is the potential of the Burgers equation and is introduced by the
system

wx = v, wt = vx −
v2

2
.

The function w(t, x) satisfies the equation

wtx + wxwxx = wxxx,

which, after the integration, implies

wt +
w2
x

2
= wxx.

This equation is often referred to as the potential Burgers equation.
Note that the first five operators describe the point symmetry of Eq. (4.75),

while X∗ is the nonlocal symmetry operator.
One can readily verify that the set of operators admitted by Eq. (4.75) preserves

the uniformness of the spatial mesh structure but does not preserve the mesh uni-
formness in time. One can see that the transformation group of Eq. (4.75) does not
preserve the mesh orthogonality.
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t(x̂− ĥ−, t̂) (x̂, t̂) (x̂+ ĥ+, t̂)

(x− h−, t) (x, t) (x+ h+, t)

Figure 4.9

Thus, for the invariant difference modeling of Eq. (4.75) it is necessary to use
meshes that are not orthogonal in (x, t) or find a “straightening” change of variables
(which, of course, also transforms the equation itself).

One can see that all operators (4.76) preserve the flatness of the time layer.
Thus, a preliminary analysis of the set of operators (4.76) permits concluding that,
in the difference modeling of Eq. (4.75) which preserves the symmetry of the orig-
inal model, it is possible to use a nonorthogonal mesh with parallel structure of the
time layers (see Fig. 4.9).

For the Burgers equation (4.75), we construct several discrete models inheriting
the transformation group (4.76) (see [8, 9]).

Let us rewrite the Burgers equation in terms of differential invariants. In the
space of the variables (t, x, v, vx, vxx, dt, dx, dv), there are three such invariants

J1 = (dx− vdt)v1/3
xx , J2 = v2/3

xx dt, J3 =
dv − vx(dx− vdt)

v
1/3
xx

.

This permits rewriting the Burgers equation as the system

J1 = 0, J2 = J3,

or
dx

dt
= v,

dv

dt
= vxx. (4.77)

Note that the structure of the group (4.76) forces us to use two evolution equa-
tions.

As the next step, we find the difference invariants of the set of point operators
X1, . . . , X5 of the group (4.76), which are required to approximate system (4.77).
We consider the six-point stencil of the evolution difference mesh in Fig. 4.9.

This stencil, on which we approximate system (4.77), determines the space
(t, t̂, x, x̂, h+, h−, ĥ+, ĥ−, v, v+, v−, v̂, v̂+, v̂−), where the group (4.76) has the fol-
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lowing finite-difference invariants:

I1 =
h+

h−
, I2 =

ĥ+

ĥ−
, I3 =

ĥ+h+

τ
,

I4 = h−h+(vx − vx̄), I5 = ĥ−ĥ+(v̂x − v̂x̄), I6 = h+

(
∆x

τ
− v
)
,

I7 = ĥ+

(
∆x

τ
− v̂
)
, I8 = h+2

(
1

τ
+ vx

)
, I9 = ĥ+2

(
1

τ
+ v̂x

)
,

where

∆x = x̂− x, vx =
v+ − v
h+

, vx̄ =
v − v−
h−

.

These invariants permit writing out the following invariant difference models.

A. A model with explicit approximation of the difference mesh evolution

1. Explicit scheme for the Burgers equation:

∆x = τv,
v̂ − v
τ

ĥ+

h+

ĥ−

h−
= vxx̄ =

2

h+ + h−
(vx − vx̄). (4.78)

2. Implicit scheme for the Burgers equation:

∆x = τv,
v̂ − v
τ

h+

ĥ+
= v̂xx̄ ≡

2

ĥ+ + ĥ−
(v̂x − v̂x̄).

3. Implicit scheme for the Burgers equation:

∆x = τv,
v̂ − v
τ

=
2

h+ + h−
(v̂x − v̂x̄).

B. A model with implicit approximation of the difference mesh evolution

1. Explicit scheme for the Burgers equation:

∆x = τ v̂,
v̂ − v
τ

ĥ+

h+
= vxx̄.

2. Implicit scheme for the Burgers equation:

∆x = τ v̂,
v̂ − v
τ

h+

ĥ+

h−

ĥ−
= v̂xx̄.
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3. Implicit scheme for the Burgers equation:

∆x = τ v̂,
v̂ − v
τ

=
2

ĥ+ + ĥ−
(vx − vx̄).

All above difference schemes have a moving nonorthogonal difference mesh.
Let us find a change of variables rectifying the difference mesh.
In system (4.77), we have used the Lagrange type differentiation operator d/dt,

which can be represented as

d

dt
= Dt + vDx,

where
Dt =

∂

∂t
+ vt

∂

∂v
+ · · · , Dx =

∂

∂x
+ vx

∂

∂v
+ · · · .

In contrast to Dt and Dx, the operator d/dt does not commute with the total differ-
entiation operators in t and x,[

d

dt
,Dx

]
= −vxDx,

[
d

dt
,Dt

]
= −vtDx.

To “rectify” the coordinate system, it is necessary to find the spatial differenti-
ation operator with respect to the variable s such that[

d

dt
,Ds

]
= 0.

This property holds for the operator Ds = 1
ρ
Dx with a new dependent variable ρ

satisfying the equation
ρt + vρx + ρvx = 0

and the condition ρ > 0 in the entire domain under study.
The function ρ = ρ(t, x) is called the “initial data density.” The new variable s

is introduced by the system of equations

sx = ρ, st = −ρv.

In the variables (t, s), the Burgers equation can be rewritten in the form of the
system

dv

dt
= ρ2vss + ρρsvs,

dρ

dt
= −ρ2vs. (4.79)

Now this system can be rewritten in the divergence form

d

dt

(
1

ρ

)
= Ds(v),

d

dt

(
v

ρ

)
= Ds

(
ρvs +

v2

2

)
.
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Let us construct a difference analog of system (4.79) (also see [6]).
We supplement system (4.79) with the dependent variable x determined by the

system of equations

xt = v, xs =
1

ρ
. (4.80)

System (4.79), (4.80) admits the transformation group determined by the infinites-
imal operators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = t

∂

∂x
+

∂

∂v
,

X4 = 2t
∂

∂t
+ s

∂

∂s
+ x

∂

∂x
− v ∂

∂v
,

X5 = t2
∂

∂t
+ tx

∂

∂x
+ (x− tv)

∂

∂v
− tρ ∂

∂ρ
,

X∗ = f(s)
∂

∂s
+ ρf ′(s)

∂

∂s
,

(4.81)

where f(s) is an arbitrary function of s.
In the new variables (t, s), the difference mesh orthogonality condition and the

mesh uniformness condition in the spatial variable are satisfied for the operators
X1, . . . , X5, which are the operators of Lie algebra factorized by the operator X∗.
In the variables (t, s), this permits constructing a difference model that is invariant
under the operators X1, . . . , X5 on an orthogonal uniform mesh.

We write out system (4.79), (4.80) in differential invariants, which have the
following form in the space of dependent and independent variables, differentials,
and spatial derivatives (t, x, s, v, ρ, dt, dx, ds, dv, dρ, vs, ρs, xs, vss):

J1 = xsρ, J2 =
ρ

ds
(dx− vdt), J3 =

(
ds

ρ

)3

(ρ2vss + ρρsvs), J4 =
(ds)2

ρ2dt
,

J5 =
(ds)2

ρ3

(
dρ

dt
− ρsds

dt
+ ρ2vs

)
, J6 =

ds

ρ
(dv − ρvs(dx− vdt)).

This permits rewriting system (4.79), (4.80) as

dv

dt
= ρ2vss + ρρsvs,

dρ

dt
= −ρ2vs,

dx

dt
= v,

∂x

∂s
=

1

ρ
. (4.82)

Let us find the difference system of four equations approximating (4.82) and
invariant under the set of operators (4.81). We consider a six-point orthogonal
mesh stencil with three points on two neighboring time layers (see Fig. 4.10).

Note that the new operator X∗ in (4.81) is not related to the symmetry of the
Burgers equation but is related to the extension of the space of dependent variables
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and the introduction of a new coordinate system. In the difference version, we
replace it by the operator

X∗ = f(s)
∂

∂s
+ ρD

h
sf(s)

∂

∂ρ
,

which also determines an infinite symmetry but has different coefficients. In the
space

(t, t̂, s, h+
s , h

−
s , x,∆x, h

+
x , h

−
x , ĥ

+
x , ĥ

−
x , v, v+, v−, v̂, v̂+, v̂−, ρ, ρ+, ρ−, ρ̂, ρ̂+, ρ̂−)

corresponding to the chosen stencil, we have the following 14 difference invariants:

I1 =
h+
x

h−x
, I2 =

ĥ+
x

ĥ−x
, I3 = h−x h

+
x (vx − vx̄), I4 = ĥ−x ĥ

+
x (v̂x − v̂x̄),

I5 = h+
x

(
∆x

τ
− v
)
, I6 = ĥ+

x

(
∆x

τ
− v̂
)
, I7 = h+2

x

(
1

τ
+ vx

)
,

I8 = ĥ+2
x

(
1

τ
+ v̂x

)
, I9 =

ĥ+
x h

+
x

τ
, I10 =

ρ̂−
ρ−
,

I11 =
ρ̂

ρ
, I12 =

ρ̂+

ρ+

, I13 =
h+
s

ρh+
x

, I14 =
h−s
ρ−h−x

.

These invariants permit writing out a difference model as the following system
of difference evolution equations (we present one possible version of the differ-
ence scheme, namely, the explicit scheme; in the variables (t, x), this scheme is
associated with the scheme (4.78)):

∆x = τv,
v̂ − v
τ

=
2ρ̂ρ̂−

h+
s ρ̂− + h−s ρ̂

(ρvs − ρ−vs̄), ρ̂ĥ+
x = ρh+

x = h+
s .

If the mesh is uniform in s, h+
s = h−s = hs, then this scheme acquires the form

∆x = τv,
v̂ − v
τ

=
2ρ̂ρ̂−
ρ̂− + ρ̂

(ρvs)s̄, ρ̂ĥ+
x = ρh+

x = hs.
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The above families of difference equations and meshes, which are invariant
under the complete set of operators admitted by the Burgers equation, allow us to
consider solutions that are invariant under a certain one-parameter subgroup. In
this case, the “scheme–mesh” system reduces to ordinary difference equations. We
again point out that, in contrast to the original continuous case, two equations are
reduced in our case, namely, the difference scheme and the difference equation for
the mesh.

By way of example, consider the invariant solution of the difference model of
the Burgers equation. For the subgroup we take the case corresponding to

αX2 +X3 = (t+ α)
∂

∂x
+

∂

∂v
, α = const. (4.83)

Consider the simplest explicit scheme (4.78). In the subspace (t, x,∆x, v), we
have three invariants of the operators (4.83):

J1 = t, J2 = v − x

t+ α
, J3 =

∆x

τ
− x

t+ α
.

According to this, we seek the invariant solution in the form

v(x, t) = f(t) +
x

t+ α
,

∆x

τ
= g(t) +

x

t+ α
.

By substituting such a solution into the scheme (4.78), we obtain a system of dif-
ference equations for f(t) and g(t),

f(t+ τ) =
t+ τ

t+ τ + α
f(t), g(t) = f(t).

By integrating this system, we obtain the solution

v(x, t) =
x

t+ α
+
f(0)α

t+ α

of the difference equation for v and the solution

x = x0

(
t+ α

α

)
+ f(0)t

of the equation for the difference mesh. Here x = xji = xi(tj) and t = tj . The
mesh can be arbitrary at the initial time moment.

The solution thus obtained is a solution of the Cauchy problem with invariant
initial conditions,

v(x, 0) = f(0) +
x

α
.
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Difference scheme for the potential Burgers equation

In addition to the Burgers equation (4.75), the following potential Burgers equation
is also often considered:

wt +
1

2
w2
x = wxx. (4.84)

The well-known Hopf transformation

v = −2
ux
u

relates the solutions of the Burgers equation (4.75) to the solutions of the heat
equation

ut = uxx, (4.85)

which was considered above. For Eqs. (4.84) and (4.85), this is a point relation,

w = −2 lnu. (4.86)

The potential Burgers equation admits the point transformation group deter-
mined by the operators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = t

∂

∂x
+ x

∂

∂w
, X4 = 2t

∂

∂t
+x

∂

∂x
,

X5 = t2
∂

∂t
+ tx

∂

∂x
+

(
1

2
x2 + t

)
∂

∂w
, X6 =

∂

∂w
, X∗ = a exp

(w
2

) ∂

∂w
,

where X∗ is now a point symmetry operator.
It is of interest to note that the invariant difference model of the linear heat

equation is related by precisely the same Hopf transformations to the invariant dif-
ference model of the Burgers equation. For example, the change of variables (4.86)
reduces the explicit scheme

∆x =
2τ

h+ + h−

(
−h

−

h+
ln
u+

u
+
h+

h−
ln
u−
u

)
,(u

û

)2

exp

(
−1

2

(∆x)2

τ

)
= 1− 4τ

h+ + h−

(
1

h+
ln
u+

u
+

1

h−
ln
u−
u

)
obtained above for the heat equation into the explicit moving mesh scheme

∆x =
τ

h+ + h−

(
h−

h+
(w+ − w) +

h+

h−
(w − w−)

)
,

e(ŵ−w)exp

(
−1

2

(∆x)2

τ

)
= 1 +

2τ

h+ + h−

(
w+ − w
h+

+
w − w−
h−

)
for the potential Burgers equation.

The implicit invariant schemes for the potential Burgers equation can be ob-
tained precisely in the same way. Another approach to the discretization of the
Burgers equation was developed in [67].
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4.4. Invariant Difference Model of the Heat Equation
with Heat Flux Relaxation

In addition to the above-considered parabolic models of heat transfer, let us con-
sider the hyperbolic heat equation with heat flux relaxation taken into account (“hy-
perbolic heat transfer”):

τ(ux)utt + ut = k(ux)uxx. (4.87)

In particular, the group classification of this equation (see [74, p. 163]) contains the
case

τ0utt + ut = k0uxuxx,

where k0 and τ0 are positive constants.
In this case, the transformation group admitted by the equation is wider than

that in the general case (4.87). This group is determined by the operators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂u
,

X4 = e
t
τ0
∂

∂u
, X5 = x

∂

∂x
+ 3u

∂

∂u
.

(4.88)

We use the method of difference invariants to construct a second-order explicit
scheme for the approximation in the special case of Eq. (4.87). One can readily
see that all five operators satisfy the uniformness invariance condition and preserve
the mesh orthogonality, and hence we can use the rectangular mesh ω

h
, which is

uniform in each direction.
In the space (t, x, u, ut, ux, utt, uxx), the complete set of invariants of the five-

parameter group (4.88) consists of two invariants, which, for example, can be cho-
sen in the form

J1 =
τ0utt + ut

u
3/2
x

, J2 =
uxx

u
1/2
x

. (4.89)

The invariants (4.89) permit representing Eq. (4.87) in the invariant form

J1 = k0J2, (4.90)

or
τ0utt + ut

u
3/2
x

= k0
uxx

u
1/2
x

.

We prolong the operators (4.88) to the difference derivatives u
τ
t, u

τ
t̄, u

h
x, u

h
x̄, u

τ
tt̄,
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and u
h
xx̄:

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂u
,

X4 = e−t/τ0
∂

∂u
+

1

τ
e−t/τ0(e−τ/τ0 − 1)

∂

∂u
τ
t

+
1

τ
e−t/τ0(1− e−τ/τ0)

∂

∂u
τ
t̄

+
1

τ 2
e−t/τ0(e−τ/τ0 − 2 + eτ/τ0)

∂

∂u
τ
tt̄

,

X5 = x
∂

∂x
+ 3u

∂

∂u
+ 2u

h
x
∂

∂u
h
x

+ 2u
h
x̄
∂

∂u
h
x̄

+ 3u
τ
t
∂

∂u
τ
t

+ 3u
τ
t̄

∂

∂u
τ
t̄

+ u
h
x
∂

∂u
h
x

+ 3u
τ
tt̄

∂

∂u
τ
tt̄

+ h
∂

∂h
.

(4.91)

In the space (x, t, u, u
τ
t, u
τ
t̄, u
h
x, u

h
x̄, u

τ
tt̄, u

h
xx̄, τ, h), the group (4.88) has a complete set

of six invariants. But it suffices for us to choose only two finite-difference invariants
approximating (4.90) up to O(τ 2 + h2).

One can show that the second-order finite-difference forms

I1 =

(
1

2
u
h
x +

1

2
u
h
x̄

)−3/2{
τ0utt̄

τ
+
τ0

2τ

[
u
τ
t

(
eτ/τ0 − 1

)
+ u

τ
t̄

(
1− e−τ/τ0

)]}
I2 = u

h
xx̄

(
1

2
u
h
x +

1

2
u
h
x̄

)−1/2

are invariants of all operators (4.91) and approximate J1 and J2 up to O(τ 2 + h2):

I1 = J1 +O(τ 2 + h2), I2 = J2 +O(h2).

Substituting them into the invariant representation (4.90) for J1 and J2, we obtain
the invariant equation

I1 = k0I2,

which is equivalent to the difference scheme

τ0utt̄
τ

+
1

2

τ0

τ

[
u
τ
t̄

(
1− e−

τ
τ0

)
+ u

τ
t

(
e
τ
τ0 − 1

)]
=
k0

2
u
h
xx̄(u

h
x + u

h
x̄). (4.92)

The finite-difference equation (4.92) admits all five operators (4.91) and approxi-
mates the differential equation (4.87) up to O(τ 2 + h2) on the uniform rectangular
mesh ω

h
.
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4.5. Invariant Difference Model
of the Korteweg–de Vries Equation

It is well known [79] that the KdV equation

ut = uux + uxxx (4.93)

admits the four-parameter Lie point transformation group with infinitesimal opera-
tors1

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = t

∂

∂x
− ∂

∂u
, X4 = x

∂

∂x
+ 3t

∂

∂t
− 2u

∂

∂u
. (4.94)

Before constructing a difference equation and a mesh that approximate (4.93)
with given order of approximation and inherit the whole Lie algebra (4.94), we
should verify conditions for the invariance of the mesh geometry structure. One
can readily confirm that the operators X1, X2, and X4 preserve the orthogonality,
but X3 gives

D+τ (t) 6= −D+h(0),

where τ is the step in the t-direction and h is the step in the x-direction. Conse-
quently, an orthogonal mesh cannot be used for the invariant modeling of (4.93).
Thus, we should seek an invariant moving mesh scheme.

The next question arising in this situation is the possibility of using a nonorthog-
onal moving mesh with flat time layers. The condition of invariance of the time
layer flatness is satisfied for the complete set of operators (4.94),

D+hD+τ (ξ
t
α) = 0, α = 1, 2, 3, 4.

To approximate (4.93) on such a mesh, we have to use at least four points in
the x-direction and two points in the other direction. We shall use the minimum
difference stencil of explicit type, as shown in Fig. 4.11.

In accordance with this stencil, we have a subspace of difference variables
where Eq. (4.93) can be represented. In the subspace (x, x̂, t, τ , h−, h+, h++,
u, û, u+, u++, u−), we have eight difference invariants, the set of which can be the
following:

J1 =
x̂− x+ τu

h+
, J2 = (û− u)(h+)2, J3 = τu

h
x ≡ τ

u+ − u
h+

,

J4 = τu
h

−
x ≡ τ

u− u−

h−
, J5 = τu

h

+
x ≡

u++ − u+

h++
,

J6 =
(h+)3

τ
, J7 =

h−

h+
, J8 =

h++

h+
.

(4.95)

1Equation (4.93) also admits well-known series of higher-order and nonlocal symmetries, which
we do not consider here.
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To generate an invariant difference mesh, we should use the set (4.95), which
has the only invariant J1 involving the coordinate x̂ of the point x on the next time
layer. The mesh generating equation in general has the form

J1 = Φ(J2, J3, J4, J5, J6, J7, J8),

where Φ is an arbitrary function.
We shall use the simplest form

J1 = 0, or x̂ = x− τu,

for describing this evolution mesh. Using the set (4.95), we can construct the fol-
lowing invariant difference equation:

J2 = 2
J5 − J3

J8 + 1
− 2

J3 − J4

J7 + 1
,

The meaning of the last equation will shortly become clear.
Thus, we have two evolution equations,

∆x

τ
= −u, where ∆x ≡ x̂− x (4.96)

and

û− u
τ

=
1

h+

{(
u++ − u+

h++
− u+ − u

h+

)
2

h++ + h+

−
(
u+ − u
h+

− u− u−

h−

)
2

h+ + h−

}
. (4.97)

Let us return to the continuous space so as to understand more clearly what the
discrete model (4.96)–(4.97) is. In the continuous limit h→ 0, τ → 0, from (4.96),
(4.97) we have

dx

dt
= −u, du

dt
= uxxx. (4.98)
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Now let us introduce the following new operator of differentiation with respect to
time:

d

dt
= Dt − uDx, (4.99)

where Dt and Dx are the operators of total differentiation with respect to t and x,
respectively,

Dt =
∂

∂t
+ ut

∂

∂u
+ uxt

∂

∂ux
+ utt

∂

∂ut
+ · · · ,

Dx =
∂

∂x
+ ux

∂

∂u
+ utx

∂

∂ut
+ uxx

∂

∂ux
+ · · · .

The operator (4.99) can be viewed as the Lagrangian operator of differentiation
with respect to time. By applying (4.99) to x and u, we obtain

dx

dt
= −u, du

dt
= ut − uux. (4.100)

Consequently, system (4.98) is equivalent to the KdV equation (4.93). These equa-
tions provide the relation between Eq. (4.93) in the Cartesian coordinate system
and system (4.98) in the Lagrange coordinate system. The transformation (4.100)
means that we now have the pair of operators ( d

dt
, Dx) instead of (Dt, Dx).

Let us slightly transform the difference model (4.96), (4.97) so as to increase
the order of approximation.

By using the full set of difference invariants (4.95), we can add some terms
to Eqs. (4.96), (4.97) without destroying their invariance. We would like to sym-
metrize the scheme as follows:

x̂ = x+
h+

2
− τ u+ u+

2
, û =

u+ u+

2
+ τu

h
xx̄x, (4.101)

where

u
h
xx̄x ≡

1

h+

(
u++ − u+

h++
− u+ − u

h+

)
2

(h++ + h+)

− 1

h+

(
u+ − u
h+

− u− u−

h−

)
2

(h+ + h−)
.

The scheme (4.101) means that we use the stencil presented in Fig. 4.12.
One can readily estimate the order of approximation of the schemes (4.101)

and (4.96), (4.97) on a uniform mesh with h++ = h+ = h− = h. For the scheme
(4.96), (4.97), the order is O(τ + h), and the scheme (4.101) is of order O(τ + h3).
To estimate the order of approximation on a nonuniform mesh, one needs to use
appropriate norms in a space of difference variables (see [122, 125]).

From the algebraic point of view, the schemes (4.96), (4.97) and (4.101) are
similar, both being invariant under the operators (4.94). We point out that although
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the invariant mesh and scheme for the KdV system (4.98) are not unique, all other
invariant meshes and difference equations can be constructed using difference in-
variants.

Consider the symmetry reduction and the invariant solution of the difference
equations (4.96), (4.97).

The operator X3 = t∂/∂x − ∂/∂u destroys the mesh orthogonality, and so
this symmetry cannot be preserved in a discrete model on an orthogonal mesh in
the original coordinate system. It is thus of interest to verify whether the Galilei
symmetry is respected by (4.96), (4.97) (or (4.101)).

The operator X3 has two invariants, J1 = t and J2 = u + x/t, in the subspace
(x, t, u), and so we shall seek invariant solutions in the form

u(x, t) = v(t)− x

t
(4.102)

Reducing both Eqs.(4.96) and (4.97) using the invariant form (4.102), we obtain

x̂− x
τ

=
x

t
− v(t),

x̂

t+ τ
− x

t
= v(t+ τ)− v(t). (4.103)

The solution of system (4.103) is x = at+ c, v(t) = c/t (see the appropriate mesh
on Fig. 4.13), and it gives the solution

x = at+ c, u(x, t) =
c− x
t

of the original system (4.96), (4.97). This solution coincides with the solution of
the differential KdV system (4.98).

Thus, (4.96) corresponds to a family of meshes that are self-adapted to the
symmetries of subgroups.

System (4.98) does indeed correspond to the KdV equation, but it seems impos-
sible to establish conservation laws for (4.98) in this Lagrangian coordinate system.
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It is well known (see [74] and references therein) that, as a consequence of the sym-
metry group (4.94), the KdV equation possesses the following set of conservation
laws:

Dt(u)−Dx

(
u2

2
+ uxx

)
= 0, Dt(u

2) +Dx

(
u2
x − 2uuxx −

2

3
u3

)
= 0,

Dt

(
t
u2

2
+ xu

)
+Dx

[
t

(
u2
x

2
− uuxx −

u3

3

)
+ ux − xuxx − x

u2

3

]
= 0,

Dt(u
3 − 3u2

x) +Dx

(
6utux − 3u2

xx − 3u2uxx −
3

4
u4

)
= 0.

To construct the corresponding set of conservation laws for (4.98), we need a
divergence-like operator in the Lagrangian coordinate system.

Now we have the following commutators for d/dt, Dx, and Dt:[
d

dt
,Dt

]
= utDx,

[
d

dt
,Dx

]
= uxDx,

and we would like to change our coordinate system so as to have a pair of differen-
tial operators that commute, [

d

dt
,Ds

]
= 0,

where s = s(t, x) is a new independent coordinate that obeys the condition st −
usx = 0.

Introducing the operator

Ds =
1

ρ
Dx, Ds =

∂

∂s
+ us

∂

∂u
+ ρs

∂

∂ρ
+ · · · ,
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we find that the new dependent variable ρ satisfies the equation

ρt − uxρ− uρx = 0

and the condition ρ > 0, which means that we have no “vacuum gap” between x
and s.

Thus, we change the coordinate system {t, x, u(t, x)} to {t, s, u(t, s), ρ(t, s)}
by the transformation

ds = ρ dx+ ρu dt, u(t, x) = u(t, s),
dx

dt
= −u, ∂x

∂s
=

1

ρ
.

In the new coordinate system, we have the differential equations

du

dt
= ρ3usss + 3ρ2ρsuss + (ρρ2

s + ρ2ρss)uss,
dρ

dt
= ρ2us. (4.104)

System (4.104) has the conservation laws

d

dt

(
1

ρ

)
+Ds(u) = 0,

d

dt

(
u

ρ

)
+Ds

(
u2

2
− ρ2uss + ρρsus

)
= 0. (4.105)

Note that we can add the variable x to this coordinate system as some type of
potential and simultaneously add the following equations to (4.104):

dx

dt
= −u, ∂x

∂s
=

1

ρ
. (4.106)

Finally, for system (4.104), (4.106) we have the conservation laws (4.105) and
the additional law

d

dt

(
tu2/2 + xu

ρ

)
+Ds

(
t(
ρ2u2

s

2
− ρu(ρus)s +

u3

6
) + ρus − xρ(ρus)s +

xu2

2

)
= 0, (4.107)

which corresponds to the Galilei symmetry.
It is not difficult to construct an invariant scheme and mesh for system (4.104)

in the same way as we did for the linear heat equation. But constructing an in-
variant difference scheme for system (4.104), (4.106) preserving the whole set of
conservation laws (4.105), (4.107) seems to be a rather complicated task.

In the paper [50] there were constructed invariant difference schemes for Kor-
teweg–de Vries equations with variable coefficients.
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4.6. Invariant Difference Model
of the Nonlinear Schrödinger Equation

The Schrödinger equation

iEt + Exx + E|E|2 = 0 (4.108)

with cubic nonlinearity admits a four-parameter point transformation group (e.g.,
see [74]).2

First, we perform a change of variables to pass to two real dependent variables:

E = A(t, x)eiΦ(t,x).

The system of equations

At + 2AxΦx + AΦxx = 0, AΦt + 2AΦ2
x − Axx − A3 = 0, (4.109)

equivalent to (4.108), admits the operators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂Φ
, X4 = 2t

∂

∂x
+ x

∂

∂Φ
,

X5 = 2t
∂

∂t
+ x

∂

∂x
− A ∂

∂A
.

Just as in a majority of the evolution equations considered above, the symmetry of
system (4.109) does not permit using an orthogonal mesh; namely, the operator X4

violates the mesh orthogonality but preserves the flatness of the time layer. Thus,
we again should use a mesh evolving in time (see Fig. 4.14).

Let us construct explicit invariant difference equations for calculating the mesh
and the solution A,Φ (see [31, 34]). In the subspace

(x, x̂, t, τ, h+, h−,Φ,Φ+,Φ−, Φ̂, A,A+, A−, Â)

2Equation (4.108) also admits an infinite series of higher-order and nonlocal symmetries (e.g.,
see [74]), which we do not consider here.
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corresponding to the explicit stencil, there are 14− 5 = 9 difference invariants

∆x− 2τΦ
h
x

h+
,

∆x− 2τΦ
h
x̄

h−
,

h+

h−
,

τ

(h+)2
,

A

A+
,

A

A3
;

A

Â
,

τa2,
(∆x)2 − 4τ(Φ̂− Φ)

(h+)2
,

(4.110)

where ∆x = x̂− x.
We choose the evolution mesh in the following invariant representation:

∆x = 2τ

(
h−

h+ + h−
Φ
h
x +

h+

h+ + h−
Φ
h
x̄

)
. (4.111)

The continual limit implies the equation

dx

dt
= 2Φx. (4.112)

Equation (4.112) forces us to write out system (4.109) as

dA

dt
= −AΦxx,

dΦ

dt
= Φ2

x +
Axx
A

+ A2, (4.113)

where the Lagrangian differentiation operator

d

dt
= Dt + 2ΦxDx

has been introduced.
System (4.113) can be approximated with the use of the invariants (4.110) on

the mesh (4.111) by the following explicit scheme:

Â− A
τ

+
2A

h+ + h−
(Φ
h
x − Φ

h
x̄) = 0,(

Φ̂− Φ

τ
−
(

h−

h+ + h−
Φ
h
x +

h+

h+ + h−
Φ
h
x̄

)2)
A− 2

A
h
x − A

h
x̄

h+ + h−
− A3 = 0.

(4.114)
We can show that the invariant difference model (4.111), (4.114) approximates

system (4.112)–(4.113) up to O(τ + h2) on a spatially uniform mesh. In a similar
way, we can construct implicit and explicit-implicit invariant schemes and their
versions in the Lagrangian type coordinate system.



Chapter 5

Combined Mathematical Models
and Some Generalizations

In the last decades, the classical Lie group analysis has been considerably extended
to such mathematical models as integro-differential equations, stochastic differen-
tial equations, functional differential equations, etc. This chapter deals with ap-
plications of Lie transformation groups to equations that contain difference and
differential variables.

5.1. Second-Order Ordinary Delay Differential Equations

Delay ordinary differential equations are similar to ordinary differential equations,
but they contain values of solutions as well as of derivatives at earlier instants of
time. Many mathematical models based on delay ordinary differential equations
have wide applications in biology, physics, engineering (see [51, 78, 103]), etc.

Here we consider a second-order delay ordinary differential equation of the
type [117]

u′′ = F (x, u, u′, u−, u
′
−), (5.1)

where x is the independent variable, u is a dependent variable, u− = u(x − τ),
u′− = u′(x− τ), x− = x− τ , and τ is a parameter.

Thus, we actually have a differential-difference equation in the subspace of the
variables (x, u, u′, x−, u−, u

′
−). Equation (5.1) is of second order in differential

variables and of first order as a difference equation. All notation is clearly seen
from Fig. 5.1.

According to [117], the delay parameter τ is considered to be constant. Follow-
ing our point of view, we supplement (5.1) with the simple lattice equation

τ = x− x− = const (5.2)

to complete the delay model.
The symmetry generator admitted by the delay ordinary differential equation

model (5.1),(5.2) has the form

X = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
,

151
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which should be prolonged for the derivatives and delay variables. As to the differ-
ence equations, the coordinates of the point transformation operator can be simply
shifted to the left stencil point as follows:

X̃ = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
+ ζ1

∂

∂u′
+ ζ2

∂

∂u′′
+ η−(x−, u−)

∂

∂u−

+ ζ−1
∂

∂u′−
+ (ξ(x, u)− ξ−(x−, u−))

∂

∂τ
, (5.3)

where

ζ1 = D(η)− u′D(ξ) = ηx(x, u) + u′ηu(x, u)− u′ξx(x, u)− (u′)2ξu(x, u),

ζ2 = D(ζ1)− u′′D(ξ) = D2(η)− 2u′′D(ξ)− u′D2(ξ),

ζ−1 = S
−h

(ζ1) = η−x (x−, u−) + u′−η
−
u (x−, u−)− u′−ξ−x (x−, u−)

− (u′−)2ξ−u (x−, u−),

D =
∂

∂x
+ u′

∂

∂u
+ u′′

∂

∂u′
+ u′′′

∂

∂u′′
+ · · · ,

and S
−h

is the left shift operator. Note that the prolongation for the variable τ is the

same as for the lattice step in the discrete case.
To derive the determining equations, we apply the operator (5.3) to Eq. (5.1):

D2(η)− 2u′′D(ξ)− u′D2(ξ) = Fxξ + Fuη + Fu−η
− + Fu′ζ1 + Fu′−ζ

−
1 ,

or, in particular,

ηxx+2ηxuu
′+ηuu(u

′)
2
+ηuu

′′−2u′′(ξx+ξuu
′)−u′(ξxx+2ξxuu

′+ξuu(u
′)2+ξuu

′′)

= Fxξ +Fuη+Fu−η
−+Fu′

(
ηx(x, u) + u′ηu(x, u)− u′ξx(x, u)− (u′)2ξu(x, u)

)
+ Fu′−

(
η−x (x−, u−) + u′−η

−
u (x−, u−)− u′−ξ−x (x−, u−)− (u′−)2ξ−u (x−, u−)

)
.

(5.4)
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Now we should substitute u′′ from (5.1) into (5.4):

ηxx+2ηxuu
′+ηuu(u

′)
2
+ηuF−2F (ξx+ξuu

′)−u′(ξxx+2ξxuu
′+ξuu(u

′)2 +ξuF )

= Fxξ +Fuη+Fu−η
−+Fu′

(
ηx(x, u) + u′ηu(x, u)− u′ξx(x, u)− (u′)2ξu(x, u)

)
+ Fu′−

(
η−x (x−, u−) + u′−η

−
u (x−, u−)− u′−ξ−x (x−, u−)− (u′−)2ξ−u (x−, u−)

)
.

(5.5)

To complete the determining equations, we apply the operator (5.3) to Eq. (5.2):

ξ(x, u)− ξ−(x−, u−) = 0. (5.6)

Thus, Eqs. (5.5) and (5.6) are the determining equations for the delay model (5.1),
(5.2). Regardless of the function F in (5.1), one can conclude from (5.6) that
ξ(x, u) is independent of u. Indeed, the differentiation of (5.6) with respect to u
and u− yields

ξu = ξ−u− = 0.

Consequently, ξ(x) is a periodic function of x,

ξ(x) = ξ(x− τ).

In the paper [117] (see also [101, 133]), the complete Lie group classification
of Eq. (5.1) was presented. The classification was done in a way similar to that
used by Lie himself for second-order ordinary differential equations. Starting from
the list of all Lie algebras over the real plane [63], there were singled out 40 dis-
tinct classes of delay second-order ordinary differential equations. Note that the
classification list in [117] is much longer than that for second-order ordinary differ-
ential equations. A similar situation was shown to hold for second-order ordinary
difference equations [47].

To illustrate the results, below we reproduce an excerpt from [117].

EXAMPLE. The three-dimensional Lie algebra spanned by the operators

X1 =
∂

∂x
, X2 = 2x

∂

∂x
+ u

∂

∂u
, X3 = x2 ∂

∂x
+ xu

∂

∂u

has the following complete set of invariants in the subspace (x, u, u′, u−, u
′
−, u

′′):{
u′′u3,

u−
u
, u′u−

(
u′−
u′
− u−

u

)}
.

Consequently, the general form of an invariant delay equation is

u′′ = u−3f

(
u−
u
, u′u−

(
u′−
u′
− u−

u

))
, (5.7)
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where f is an arbitrary smooth function. In the special case f = 1, Eq. (5.7)
degenerates into

u′′ = u−3,

which is nothing else than an ordinary differential equation from the Lie list of
invariant equations.

Remark. Apparently, the list of invariant delay ordinary differential equations can
be extended if, instead of (5.2), one uses the more general lattice equation

τ = G(x, x−, u, u
′, u−, u

′
−, u

′′, u′′−),

which means that τ = x− x− is included in the set (x, x−, u, u−, u
′, u′−, u

′′, u′′−, τ)
of variables on which the transformation group acts.

5.2. Partial Delay Differential Equations

In this section, we deal with delay partial differential equations. Namely, we con-
sider Lie group properties of the semi-linear delay heat equation with a source (the
reaction-diffusion equation) [102]:

ut = uxx + g(u, ǔ), (5.8)

where u = u(t, x), ǔ = u(t− τ, x), and τ = const is a delay parameter.
The theory of existence of solutions of (5.8) can be found in [138]. The com-

plete group classification with an arbitrary element g was done in [102].
The delay parameter τ is considered to be a constant [102], and x is not changed

for the time t− τ , which corresponds to the lattice equations

τ = t− ť = const, x = x̌. (5.9)

Consider a Lie transformation group acting in the subspace of the variables
(x, t, t − τ, u, ǔ, ux, ut, ǔx, uxx, ǔxx), where u and ǔ are two dependent variables.
Since Eq. (5.8) is a partial differential equation of second order and a first-order
difference equation, it follows that the symmetry generator

X = ξt(t, x, u)
∂

∂t
+ ξx(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
(5.10)

should be prolonged for the derivatives and the delay variables occurring in (5.8),

X̃ = ξt
∂

∂t
+ ξx

∂

∂x
+ (ξt − ξ̌t) ∂

∂τ
+ η

∂

∂u
+ η̌

∂

∂ǔ
+ ζx

∂

∂ux
+ ζt

∂

∂ut
+ ζxx

∂

∂uxx
,

where

ζx = Dx(η)− uxDx(ξ
x)− utDx(ξ

t) ζt = Dt(η)− uxDt(ξ
x)− utDt(ξ

t),

ζxx = Dx(ζx)− uxxDx(ξ
x)− uxtDx(ξ

t)
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are the standard prolongation formulas,

ξ̌t = ξt(x, t− τ, ǔ), ξ̌x = ξx(x, t− τ, ǔ),

are shifted to the left stencil point coordinates ξt, ξx, and

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ · · · , Dt =

∂

∂t
+ ut

∂

∂u
+ uxt

∂

∂ux
+ · · · .

By applying the generator (5.10) to (5.8), we obtain

(ζt − ζxx − ξxgx − ηgu − η̌gǔ)
∣∣
(5.8)

= 0. (5.11)

It is supposed in (5.11) that ut is substituted from (5.8).
To complete the determining system, we should act on (5.9) by the generator

(5.10),
ξt = ξ̌t ξx = ξ̌x. (5.12)

Again, the differentiation of (5.12) with respect to u and ǔ yields

ξtu = ξtǔ = 0, ξxu = ξxǔ = 0;

consequently, ξt ,ξ̌t, ξx, and ξ̌x are independent of u and ǔ and are periodic func-
tions of t,

ξt(x, t) = ξt(x, t− τ), ξx(x, t) = ξx(x, t− τ).

The last relations substantially simplify solving the remaining equation (5.11), can-
celing many terms. The determining equation (5.11) can then be split with respect
to uxx, ux, u, ǔ into several equations. In [102], the group classification was de-
veloped and all special cases of the function g were singled out. The core admitted
Lie algebra is the two-dimensional algebra

X1 =
∂

∂t
, X2 =

∂

∂x
.

For four special cases of the function g, there exist additional symmetries. To
illustrate the results, below we reproduce an excerpt from [102].

EXAMPLE. Equation (5.8) with

g(u, ǔ) = k1ǔ+ k2u+ k,

where k, k1, and k2 are constants (k1 6= 0), admits the three-dimensional Lie alge-
bra spanned by the operators

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = e−k0t

∂

∂u
.
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Consider a special solution invariant with respect to X3. One can seek the solution
in the form

u = βxe−k0t + φ(t).

By substituting the above solution into Eq. (5.8), we obtain the reduced delay ordi-
nary differential equation

φ′(t) = k1φ(t− τ) + k2φ(t) + k

for the unknown function φ.

5.3. Symmetry of Differential-Difference Equations

Historically, the Lie group symmetry approach was applied primarily by several
authors to differential-difference equations on a fixed regular lattice [62, 86–88,
99, 118, 119, 121]. One motivation of that is that such equations arise as pri-
mary mathematical models in physics and mechanics. As typical examples of a
differential-difference equation, we consider the Toda lattice [86] and the discrete
Volterra equation [85].

EXAMPLE 5.1 (the Toda lattice). Consider the differential-difference equation

utt = eu−−u − eu−u+ , (5.13)

where u = u(t, x), u− = u(t, x − h−), and u+ = u(t, x + h+) are defined on a
fixed regular lattice

h− = h+ = const, t− = t+ = t. (5.14)

The last relations mean that time is one and the same at the points x, x + h+ and
x− h− (i.e. the orthogonality conditions).

We add the continuous variables u−tt = utt(t, x − h−) and u+
tt = u(t, x + h+)

using our notation (clear from Fig. 5.2), which is different from that in [86].

-

6

(((
(((�

��
��

��
�

t t tu, utt

x

(u−, u
−
tt)

(u, utt)

(u+, u
+
tt)

h− h+

x− x x+

Figure 5.2
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Equation (5.13) is a partial differential equation of second order in t and a
second-order difference equation in x. Consider a Lie transformation group act-
ing in the subspace (x, t, x + h+, x − h−, u, u−, u+, utt, u

−
tt, u

+
tt). The symmetry

generator

X = ξt(t, x, u)
∂

∂t
+ ξx(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u

should be prolonged for the derivative utt and the difference variables occurring in
(5.13) and (5.14),

X̃ = ξt
∂

∂t
+ ξx

∂

∂x
+ η

∂

∂u
+ ζtt

∂

∂utt
+ (ξx+ − ξx)

∂

∂h+

+ (ξx − ξx−)
∂

∂h−
+ η+

∂

∂u+

+ η−
∂

∂u−
, (5.15)

where

ζtt = Dt(ζt)− uttDt(ξ
t)− uxtDt(ξ

x), ζt = Dt(η)− uxDt(ξ
x)− utDt(ξ

t)

are the standard prolongation formulas,

ξx+ = ξx(t, x+ h+, u+), ξx− = ξx(t, x− h−, u−),

η+ = η(t, x+ h+, u+), η− = η(t, x− h−, u−)

are the coordinates η, ξx, shifted to the left and right stencil points, and

Dt =
∂

∂t
+ ut

∂

∂u
+ uxt

∂

∂ux
+ · · · .

By applying the generator (5.15) to (5.13), we obtain(
ζtt − eu−−u(η− − η)− eu−u+(η − η+)

) ∣∣
(5.13)

= 0. (5.16)

It is supposed in (5.16) that utt is taken from (5.13).
To complete the determining system we should act on (5.14) by the genera-

tor (5.15),
ξx = ξx− = ξx+, ξt = ξt− = ξt+. (5.17)

Without using (5.16), one can conclude from (5.17) that ξx(x, t, u) and ξt(x, t, u)
are independent of u. Indeed, the differentiation of (5.17) with respect to u, u+ ,
u−,x, x−, and x+ yields

ξtu = 0, ξxu = 0, ξt = ξt(t).

Consequently, ξx(x) is at most a periodic function of x,

ξx(x) = ξx(x+ h+) = ξx(x− h−), h+ = h−.
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The last relations substantially simplify solving the remaining equation (5.16), can-
celing many terms. The determining equation (5.16) can then be split with respect
to u+ and u− into several easier-to-solve equations.

The solution of the determining system is given by the following Lie algebra
operators [86]:

X1 =
∂

∂t
, X2 =

∂

∂u
, X3 = t

∂

∂u
.

In the special case of the lattice h− = h+ = 1, one has the additional operator [86]

X4 = t
∂

∂t
+ 2x

∂

∂u
.

Remark. Let us weaken the condition for the Toda lattice, replacing it by the regular
mesh condition. We additionally plug in finite-difference derivatives instead of
differences of u. Thus, instead of (5.13) and (5.14) we consider the following
system of differential-difference equations:

utt = e−(u−u−)/h− − e−(u+−u)/h+ , h− = h+, t− = t+ = t. (5.18)

The appropriate determining system is[
ζtt − e−(u−u−)/h−

(
η− − η
h−

+ (ξx − ξx−)
u− u−
h2
−

)
− e−(u+−u)/h+

(
η − η+

h+

+ (ξx+ − ξx)
u+ − u
h2

+

)]∣∣∣∣
(5.18)

= 0, (5.19)

ξx+ − 2ξx = ξx− = 0, ξt = ξt− = ξt+. (5.20)

The solution of the determining system (5.19), (5.20) yields the following Lie al-
gebra of generators:

X1 =
∂

∂t
, X2 =

∂

∂u
, X3 = t

∂

∂u
,

X4 =
∂

∂x
, X5 = 2x

∂

∂x
+ t

∂

∂t
+ 2u

∂

∂u
.

EXAMPLE 5.2 (the discrete Volterra equation). The discrete Volterra equation [85]
is the differential-difference equation

ut + u
u+ − u−
x+ − x−

= ut + u
ux − ux̄

2
= 0, (5.21)

where u = u(t, x), u− = u(t, x − h−), and u+ = u(t, x + h+) are defined on the
fixed regular lattice

h− = h+, t− = t+ = t. (5.22)
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Equation (5.21) is a partial differential equation of the first order in t and a second-
order difference equation in x.

Consider the Lie transformation group acting in the subspace (x, t, x+ h+, x−
h−, u, u−, u+, ut). The symmetry generator

X = ξt(t, x, u)
∂

∂t
+ ξx(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u

should be prolonged for the derivative ut and the difference variables occurring in
(5.21) and (5.22),

X̃ = ξt
∂

∂t
+ ξx

∂

∂x
+ η

∂

∂u
+ ζt

∂

∂ut
+ (ξx+ − ξx)

∂

∂h+

+ (ξx − ξx−)
∂

∂h−
+ η+

∂

∂u+

+ η−
∂

∂u−
, (5.23)

where ζt = Dt(η)− uxDt(ξ
x)− utDt(ξ

t) and

ξx+ = ξx(t, x+ h+, u+), ξx− = ξx(t, x− h−, u−),

η+ = η(t, x+ h+, u+), η− = η(t, x− h−, u−)

are the coordinates of ξx and η shifted to the left and right stencil points.
By applying the generator (5.23) to (5.21), we obtain[
ζt + η

u+ − u−
x+ − x−

+ u
η+ − η−
x+ − x−

− u u+ − u−
(x+ − x−)2

(ξx+ − ξx−)

] ∣∣∣∣
(5.21)

= 0. (5.24)

It is supposed in (5.24) that ut is substituted from (5.21). To complete the deter-
mining system, we should act on (5.22) by the generator (5.23),

ξx+ − 2ξx + ξx− = 0, ξt = ξt− = ξt+. (5.25)

Then one can conclude from (5.25) that ξx and ξt are independent of u: ξtu = 0,
ξxu = 0, ξt = ξt(t), and ξx = ξx(x). The last relations substantially simplify
solving the remaining equation (5.24), canceling many terms. The determining
equation (5.24) can then be split with respect to u+ and u− into several easier-to-
solve equations.

The solution of the determining system is the Lie algebra spanned by the oper-
ators [85]

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 = t

∂

∂t
− u ∂

∂u
, X4 = x

∂

∂x
+ u

∂

∂u
. (5.26)

In the continuous limit, Eq. (5.21) becomes the simplest transport equation

ut + uux = 0, (5.27)
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which is linearizable and admits an infinite-dimensional symmetry group (e.g., see
[74], p.178).

Equation (5.21) possesses the four-dimensional Lie algebra (5.26) only and can-
not be considered as a good numerical approximation to (5.27).

Many other examples of differential-difference equations and their symmetries
can be found in [65]. A number of examples of differential-difference equations
that possess noninvariant solutions can be found in [59].



Chapter 6

Lagrangian Formalism
for Difference Equations

The well-known Noether theorem [104] states the relationship between the invari-
ance of a variational functional and the conservativeness of the corresponding Euler
differential equations, i.e., the fact that the conservation laws are satisfied on their
solutions. In the present chapter, we give a difference analog of this construction
(see [29,30,36,39,48,49]). We also find necessary and sufficient conditions for the
invariance of a difference functional defined on a mesh. We show that the invari-
ance of a finite-difference functional does not automatically imply the invariance
of the corresponding Euler equations. We obtain a condition for the difference
Euler equation to be invariant. We derive a new difference equation (which, in
general, does not coincide with the difference Euler equation) such that the func-
tional is stationary under the group transformations on its solutions. This equation,
which is said to be quasi-extremal, depends on the group operator coordinates and
has the corresponding conservation law if the functional is invariant. We study
the properties of quasi-extremal equations. If the functional admits more than one
symmetry, then it makes sense to consider the set of intersections of solutions of
quasi-extremal equations. For the intersection of quasi-extremals of an invariant
functional, we state a theorem quite similar to the Noether theorem. Note that
the proposed difference construction becomes the classical Noether theorem in the
continuum limit.

Note that the preservation of difference analogs of conservation laws in numer-
ical schemes is of great importance (see [64, 122]).

6.1. Discrete Representation of Euler’s Operator

Let us find out how the Euler equation of a difference functional can be written on
various difference meshes.

1. First, consider the simpler case of one single independent variable x and one or
several dependent variables (u1, u2, u3, . . . , um).

It is well known (see [72, 73]) that the Euler operator in the “continuous”

161
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space Z̃ that contains u and all the derivatives (u, u1, u2, . . . ) can be written as

δ

δu
=

∂

∂u
+
∞∑
s=1

(−1)sDs

(
∂

∂us

)
. (6.1)

We first represent the Euler operator in Z
h

under the assumption that the mesh ω
h

is

uniform (or regular). We assume that it is applied to functions L(x, u, u
h
x) ∈ A

h
,

u
h
x = (u+ − u)/h, defined on the mesh ω

h
.

It is remarkable that the operator series that plays the key role in variational
calculus, i.e., the second term on the right-hand side in (6.1), can be “rolled” into
a compact form with the use of the discrete differentiations D

+h
and D

−h
. Indeed, we

note that
∂

∂us
=
∂u
h
x

∂us

∂

∂u
h
x

=
hs−1

s!

∂

∂u
h
x

and obtain

δ

δu
=

∂

∂u
−
∞∑
s=1

(−h)s−1Ds

(
∂

∂u
h
x

)
=

∂

∂u
− D
−h

(
∂

∂u
h
x

)
, (6.2)

where

D
−h

=
∑
s≥1

(−h)s−1

s!
Ds

is the left discrete differentiation operator.
Note that in formula (6.2) the “continuous” partial differentiation with respect

to the first right difference derivative u
h
x is first applied, and then the “discrete” left

differentiation is used.
The finite-difference equation

δL
δu

=
∂L
∂u
− D
−h

(
∂L
∂u
h
x

)
= 0 (6.3)

will be called the difference Euler equation on a uniform mesh, the function L =
L(x, u, u

h
x) is called a mesh (or discrete, or finite-difference) Lagrangian function,

and any solution of Eq. (6.3) is called an extremal.

EXAMPLE. Let L = 1
2
u2
x
h

+ eu; then the Euler equation (6.3) acquires the form

u
h
xx̄ − eu = 0.
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2. Consider how the Euler operator (6.1) can be written on a one-dimensional
nonuniform mesh ω

h
. If the mesh is nonuniform, then the shift and discrete dif-

ferentiation operators are of “local” character, i.e., are related to the local mesh
spacings h− and h+ at a given point x, and hence

∂

∂us
=
∂u
h
x

∂us

∂

∂u
h
x

=
(h+)

s−1

s!

∂

∂u
h
x

.

Therefore, the Euler operator at the point x acquires the form

δ

δu
=

∂

∂u
−
∑
s≥1

(−h+)s−1

s!
Ds

(
∂

∂u
h
x

)
,

where the second term is the left discrete differentiation but with the right step h+

rather than the left step h−, because the left discrete differentiation is written as∑
s≥1

(−h−)
s−1

s!
Ds.

We rewrite this expression differently:

δ

δu
=

∂

∂u
− 1

h+

(
∂

∂u
h
x

− S
−h

∂

∂u
h
x

)
=

∂

∂u
− h−

h+h−

(
∂

∂u
h
x

− S
−h

∂

∂u
h
x

)
=

∂

∂u
− h−

h+
D
−h

(
∂

∂u
h
x

)
.

Thus, the Euler equation on the nonuniform mesh can be written as

∂L
∂u
− h−

h+
D
−h

(
∂L
∂u
h
x

)
= 0. (6.4)

The factor h−/h+ occurring in (6.4) characterizes the difference stencil proportions
at a given point,

h−

h+
= ϕ(x).

As was already shown, if the nonuniform mesh satisfies the invariance conditions,
then this equation represents an invariant manifold in Z

h
.

3. Consider the Euler operator in the two-dimensional case. We assume that the
two-dimensional mesh is rectangular and uniform in each direction (with constant
spacings h1 and h2, respectively). The variational derivative in Z̃ acquires the form

δ

δu
=

∂

∂u
+
∞∑
s=1

(−1)sDi1 · · ·Dis

∂

∂ui1...is
,
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where i1 . . . is is the s-dimensional set of indices (1, 2) and Dis is the complete
(“continuous”) differentiation in the respective direction,

D1 =
∂

∂x1
+ u1

∂

∂u
+ u11

∂

∂u1

+ u21
∂

∂u2

+ · · · ,

D2 =
∂

∂x2
+ u2

∂

∂u
+ u12

∂

∂u1

+ u22
∂

∂u2

+ · · · .

We assume that the operator is applied in Z
h

to functions of the form

L = L(x1, x2, u, u
h

1, u
h

2)

and obtain

δ

δu
=

∂

∂u
+
∑
s≥1

(−1)s
∑
k+l=s

Dk
1D

l
2

∂

∂u11...1k21...2l

=
∂

∂u
−
∑
s≥1

(−1)s−1h
s−1
1

s!
Ds

1

∂

∂u
h

1

−
∑
p≥1

(−1)p−1h
p−1
2

p!
Dp

2

=
∂

∂u
− D
−h

1

(
∂

∂u
h

1

)
− D
−h

2

(
∂

∂u
h

2

)
.

Thus, the Euler equation on a two-dimensional uniform mesh acquires the form

δL
δu

=
∂L
∂u
− D
−h

1

(
∂L
∂u
h

1

)
− D

+h
2

(
∂L
∂u
h

2

)
= 0, (6.5)

where u
h

1 and u
h

2 are the right difference derivatives in the directions (x1, x2), re-
spectively.

4. In a similar way, we can obtain an expression for the Euler operator on a two-
dimensional nonuniform rectangular mesh ω

h
characterized by two local spacings,

h±1 and h±2 :

δL
δu

=
∂L
∂u
− h−1
h+

1

D
−h

1

(
∂L
∂u
h

1

)
− h−2
h+

2

D
−h

2

(
∂L
∂u
h

2

)
= 0.

In what follows, considering difference functionals of specific forms, we also
obtain various forms of the Euler operator.

EXAMPLE. On an orthogonal mesh ω
h

uniform in each of the t- and x-directions

with respective spacings τ and h, consider the Lagrangian

L = e
t
τ0

(
k0

6
u
h

3
x −

τ0

4
u
τ

2
t −

τ0

4
u
τ

2
t

)
,
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where k0 and τ0 are some positive constants. Then formula (6.5) gives the following
difference Euler equation:

τ0u
τ
tt̄ +

τ0

2τ

{
u
τ
t̄(1− e−τ/τ0) + u

τ
t(e

τ/τ0 − 1)
}

=
k0

2
u
h
xx̄(u

h
x + u

h
x̄). (6.6)

Equation (6.6) approximates the heat equation

τ0utt + ut = k0uxuxx

with heat flux relaxation taken into account up to O(τ 2 + h2).

6.2. Criterion for the Invariance of Difference Functionals

1. Let the following finite-difference functional be given on a one-dimensional
mesh ω

h
:

L =
∑

Ω
h

L(x, u, u
h
x)h

+, (6.7)

where the sum is taken over a finite or infinite domain Ω
h
⊂ ω

h
. (In the latter case,

we assume that L sufficiently rapidly decays at∞.)
The functional (6.7) is defined on a difference mesh, uniform or nonuniform. If

the mesh is uniform, then h+ = h−. A nonuniform mesh is introduced by a smooth
function ϕ(x), h+ = ϕ(x), so that h− = ϕ(x − h−). It is also possible that ϕ
depends on u, h+ = ϕ(x, u); i.e., the mesh can depend on the solution.

In the space Z
h

= (x, u, u
h
x, u

h
xx̄, . . . , h

+) of difference variables, consider a one-
parameter transformation group G1 with operator

X = ξ
∂

∂x
+ η

∂

∂u
+ ζ1

∂

∂u
h
x

+ · · ·+ h+D
+h

(ξ)
∂

∂h+
+ h−D

−h
(ξ)

∂

∂h−
, (6.8)

where the functions ξ, η, ζ1
h
, . . . ∈ A

h
, ζ1
h
, ζ2
h
, . . . are linear difference forms of (ξ, η)

(see Chapter 1).
Under the transformations of the groupG1 generated by the operator (6.8), there

are variations not only in the difference functional (6.7) but also in the difference
mesh ω

h
on which the operator is considered (and in the domain Ω

h
⊂ ω

h
along

with the mesh). Therefore, in the definition of the functional transformation, it is
necessary to introduce a transformation of the difference mesh ω

h
.

DEFINITION. An transformed value of the mesh functional (6.7) on a uniform mesh
is defined to be the sum

L∗ =
∑
Ω∗
h

L∗(x∗, u∗, u
h

∗
x)h

+∗, h+∗ = ϕ(h−
∗
), (6.9)
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where, in general, L∗ 6= L and ϕ(h−∗) 6= h−∗; the summation domain Ω∗
h

is ob-
tained from the domain Ω

h
by the transformations of the group G1.

Note that the transformed summation domain Ω∗
h

may depend on the solution u
if the transformed value x∗ depends on u,

x∗ = f(x, u, a) = x+ aξ(x, u) + · · · .
DEFINITION. A difference functional L is said to be invariant under the group G1

on a uniform mesh if the following relations hold for all transformations of the
group G1 and any summation domain Ω

h
:∑

Ω
h

L(x, u, u
h
x)h

+ =
∑
Ω
h

∗

L(x∗, u∗, u
h

∗
x)h

+∗, h+∗ = h−∗. (6.10)

Let us find out under what conditions on the discrete Lagrangian L(x, u, u
h
x)

and for what classes of transformations conditions (6.10) are satisfied. We perform
a change of variables in (6.10) so that the sum over the original domain Ω

h
is on the

right:∑
Ω
h

L(x, u, u
h
x)h

+ =
∑

Ω
h

L(eaX(x), eaX(u), eaX(u
h
x))e

aX(h+), h+∗ = h−∗.

Since the summation domain Ω
h

is arbitrary, it follows that these relations are equiv-
alent to the following relations for the elementary action:

L(x, u, u
h
x)h

+ = L∗(x∗, u∗, u
h

∗
x)h
−∗, h+∗ = h−∗. (6.11)

Relations (6.11) mean that the elementary action L(x, u, u
h

1)h+ is an invariant of

the transformation groupG1 in the space Z
h

= (x, u, u
h
x, u

h
xx̄, . . . , h) on the invariant

manifold h+ = h−.
We use the operator (6.8) to write out a necessary and sufficient invariance

condition for the elementary action L(x, u, u
h
x)h

+ on the manifold h+ = h−. To

this end, we apply the operation ∂/∂a
∣∣
a=0

to relations (6.11):

ξ
∂L
∂x

+ η
∂L
∂u

+ [D
+h

(η)− u
h
xD

+h
(ξ)]

∂L
∂u
h
x

+ LD
+h

(ξ) = 0, D
−h
D
+h

(ξ) = 0. (6.12)

Thus, the following theorem holds.

THEOREM 6.1. For the mesh functional (6.7) to be invariant on a uniform mesh
under the one-parameter groupG1 with operator (6.8), it is necessary and sufficient
that relations (6.12) be satisfied.

The first relation in (6.12) is a difference analog of the first Noether theo-
rem [104], and the second is of course absent in the continuum limit, because the
equation h+ = h− becomes the identity 0 = 0.
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2. Consider the case of a one-dimensional nonuniform mesh ω
h

characterized in Z
h

by the relation
h+ = ϕ(x, u), (6.13)

where ϕ ∈ A (i.e., the case in which the mesh depends on the solution).
The transformed value of the functional (6.7) on the mesh (6.13) is defined to

be the expression

L∗ =
∑

Ω
h

L∗(x∗, u∗, u
h

∗
x)h

+∗ , h+∗ = ϕ∗(x∗, u∗),

where, in general, ϕ(z∗) 6= ϕ∗(z∗). Note that the invariant mesh is characterized
by the same function ϕ(z∗) for the spacing h+∗ in the new variables.

DEFINITION. One says that the functional (6.7) is invariant on the nonuniform
mesh (6.13) if the following conditions are satisfied:∑

Ω
h

L(x, u, u
h
x)h

+ =
∑
Ω
h

∗

L(x∗, u∗, u
h

∗
x)h

+∗, h+∗ = ϕ(x∗, u∗).

In this relation, we replace the sum over the points of the domain Ω
h

by the
equivalent sum over the powers of the shift operator S

+h
:

∑
α

S
+h

α(L(x, u, u
h
x)h

+) =
∑
α

L(S
+h

α(x∗), S
+h

α(u∗), S
+h

α(u
h

∗
x)S

+h

α(h+∗),

h+∗ = ϕ(x∗, u∗).

(6.14)

Since the arbitrariness of the domain Ω
h

is equivalent to the arbitrariness of the
domain of summation over the index α, it follows from (6.14) that

L(x, u, u
h
x)h

+ = L(x∗, u∗, u
h

∗
x)h

+∗, h+∗ = ϕ(x∗, u∗). (6.15)

By applying the operation ∂
∂a

∣∣
a=0

to (6.15), we obtain an infinitesimal criterion for
the functional (6.7) to be invariant on the nonuniform mesh (6.13):

ξ
∂L
∂x

+ η
∂L
∂u

+ ζ
h

1
∂L
∂u
h
x

+ LD
+h

(ξ) = 0, S
+h

(ξ)− ξ(1 + ϕx)− ηϕu = 0, (6.16)

where the operators S
+h

and D
+h

are taken on the mesh (6.13).

THEOREM 6.2. For the mesh functional (6.9) to be invariant on a nonuniform mesh
depending on the solution under the one-parameter group G1 with operator (6.8),
it is necessary and sufficient that relations (6.16) be satisfied.
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3. Let us present the above results for a finite-difference functional written in the
different form

Lh =
∑

Ω

L(x, x+, u, u+)h+, (6.17)

where the mesh spacings h+ = x+ − x can still depend on the solution,

h+ = ϕ(x+, x, u+, u); (6.18)

the notation is clear from Fig. 6.1.
We need the prolongation of the operator X by shifting the coefficients to the

corresponding points (x+, x, u+, u)

X = ξ
∂

∂x
+ ξ−

∂

∂x−
+ ξ+

∂

∂x+

+ ηi
∂

∂ui
+ ηi−

∂

∂ui−

+ ηi+
∂

∂ui+
+ (ξ+ − ξ)

∂

∂h+

+ (ξ − ξ−)
∂

∂h−
,

where the coefficients are given as follows:

ξ− = ξ(x−, u−), ηi− = ηi(x−, u−), ξ+ = ξ(x+, u+), ηi+ = ηi(x+, u+).

The infinitesimal invariance condition for the functional (6.17) on the mesh (6.18)
is given by the two equations[
ξ
∂L
∂x

+ ξ−
∂L
∂x−

+ ξ+
∂L
∂x+

+ ηi
∂L
∂ui

+ ηi−
∂L
∂ui−

+ ηi+
∂L
∂ui+

+ LD
+h

(ξ)

]∣∣∣∣
h+=ϕ

= 0,[
S
+h

(ξ)− ξ −X(ϕ)
]∣∣
h+=ϕ

= 0,

which hold on the lattice (6.18).
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4. Consider the conditions for the mesh functional

L =
∑

Ω
h

L(x1, x2, u, u
h

1, u
h

2)h+
1 h

+
2 , (6.19)

to be invariant on a two-dimensional uniform rectangular mesh ω
h1

× ω
h2

, h+
i = h−i ,

characterized by two constant spacings h1 and h2. An argument similar to that in
the one-dimensional case leads to the infinitesimal invariance criterion

X(L) + L(D
+h

1(ξ1) + D
+h

2(ξ2)) = 0,

D
+h

1D
−h

1(ξ1) = 0, D
+h

2D
−h

2(ξ2) = 0, D
±h

1(ξ2) = −D
±h

2(ξ1),

where D
±h

i is the discrete differentiation in the ith direction, u
h

1 and u
h

2 are the right

difference derivatives in the x1- and x2-directions, respectively,

X = ξ1 ∂

∂x1
+ ξ2 ∂

∂x2
+ η

∂

∂u
+ ζ1

h

∂

∂u
h

1

+ ζ2
h

∂

∂u
h

2

+ · · ·+ (S
+h

1(ξ1)− ξ1)
∂

∂h+
1

+ (S
+h

2(ξ2)− ξ2)
∂

∂h+
2

is the operator of the group G1, and the ζ
h
i are linear difference forms of (ξ1, ξ2, η)

obtained by the prolongation formulas derived in Chapter 1.

5. In the case of a nonuniform rectangular mesh depending on the solution,

h+
1 = ϕ1(x1, x2, u), h+

2 = ϕ2(x1, x2, u), (6.20)

a necessary and sufficient condition for the functional (6.19) to be invariant on the
mesh (6.20) is

X(L) + L(D
+h

1(ξ1) + D
+h

2(ξ2)) = 0, S
+h

1(ξ1)− ξ1 −X(ϕ1) = 0,

S
+h

2(ξ2)− ξ2 −X(ϕ2) = 0, D
±h

1(ξ2) = −D
±h

2(ξ1),

where the operators S
+h

i and D
+h

i are taken on the mesh (6.20).

6.3. Invariance of Difference Euler Equations

It is well known that the invariance of the Euler equations in the differential case is
a consequence of the invariance of the corresponding variational functional [104].
Let us find out whether this situation is preserved in the finite-difference case.
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For simplicity, consider the case of a one-dimensional uniform mesh. The
finite-difference equation

δL
δu
≡ ∂L
∂u
− D
−h

(
∂L
∂u
h
x

)
= 0 (6.21)

for the mesh extremals in the case of a nondegenerate functional is a second-order
difference equation written at three points (x − h, x, x + h) of the mesh ω

h
. The

invariance condition for the elementary Lagrangian action, which was obtained
in the preceding section, contains only the first (right) derivative, i.e., is written
at two points of the mesh (x, x + h) ∈ ω

h
. Therefore, to clarify the invariance

conditions (6.21), we need to prolong the invariance condition for the elementary
action to the left, i.e., to the point x−h. Now consider the condition that two terms
in the sum of the difference functional are equal to each other:

L(x−, u−, u
h
x̄)h
− + L(x, u, u

h
x)h

+ = L(x−∗, u−∗, u
h

∗
x̄)h
−∗
1 + L(x∗, u∗, u

h

∗
x)h

+∗
1 ,

h−∗ = h+∗,
(6.22)

where x−∗ = f(x−, u−, a), u−∗ = g(x−, u−, a), and

u
h

∗
x = S

−h

(
D
+h

(g(x, u, a))

D
+h

(f(x, u, a))

)
.

By applying the Euler operator to relations (6.22), we obtain

∂L
∂u
− D
−h

(
∂L
∂u
h
x

)
= fu

(
∂L(z∗)

∂x∗
+D∗
−h

(
u
h

∗
x

∂L(z∗)

∂u
h

∗
x

))
−D∗
−h

(L(z∗))) + gu

(
∂L(z∗)

∂u∗
+D∗
−h

(
∂L(z∗)

∂u
h

∗
x

))
, (6.23)

where D∗
−h

is the operator of left discrete differentiation in the new variables.

By applying the operation ∂/∂a
∣∣
a=0

to relation (6.23), we obtain

ξu

(
∂L
∂x

+ D
−h

(
u
h
x
∂L
∂u
h
x

)
− D
−h

(L)

)
+ ηu

(
δL
δu

)
+

∂

∂a

(
∂L(z∗)

∂u∗
− D
−h
∗
(
∂L(z∗)

∂u
h
x

))∣∣∣∣
a=0

= 0,

where the last term is just the invariance condition for the Euler equation. Thus, for
invariant functionals on an invariantly uniform mesh the action of the operator X
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on the Euler equation gives

X

(
δL
δu

)
= −ηu

(
δL
δu

)
−ξu

(
∂L
∂x

+D
−h

(
u
h
x
∂L
∂u
h
x

−L
))

, D
+h
D
−h

(ξ) = 0. (6.24)

By substituting δL
δu

= 0 into (6.24), we obtain the following assertion.

THEOREM 6.3. For the Euler equations (6.21) of the invariant functional (6.11) to
be invariant on the uniform mesh ω

h
, it is necessary and sufficient that the following

condition be satisfied on their solutions:

ξu

(
∂L
∂x

+ u
h
x̄
∂L
∂u

+ u
h
xx̄
∂L
∂u
h
x

− D
−h

(L)

)
= 0, D

−h
D
+h

(ξ) = 0. (6.25)

This condition is absent in the differential case, because the operator in paren-
theses becomes identically zero as h→ 0.

Conditions (6.25) are necessarily satisfied for degenerate functionals linearly
depending on their variables and for x-autonomous transformation groups, for
which

ξu = 0, D
−h
D
+h

(ξ) = 0

on uniform meshes, which implies that ξ(x) = Ax + B, where A and B are con-
stants.

Thus, it is only under conditions (6.25) that the situation in the difference case
is similar to that in the differential case: the invariance of the functional implies
the invariance of the corresponding Euler equation. But it is clear that rather wide
classes of transformations and functionals do not satisfy conditions (6.25). This
means that the group transformations can transform the Euler equation into some
different equation without changing the difference functional.

The following question arises: For the solutions of what equation do the values
of the functional remain constant under the group transformations? The answer to
this question is given in the next section.

6.4. Variation of Difference Functional and Quasi-Extremal
Equations

Consider the variation of the functional (6.7)

L =
∑

Ω
h

L(x, u, u
h
x)h+

along a smooth curve
u = Ψ(x) (6.26)
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passing through a given point (x, u). Let us calculate the increment of the func-
tional (6.7) in terms of the variations δx and δu = Ψxδx. Since δx and δu are
contained only in two neighboring terms of the sum (6.7), we omit the terms of
smaller order than δx and obtain

δL =

(
∂L
∂x

+ D
−h

(
u
h
x
∂L
∂u
h
x

− L
))

δx+

(
∂L
∂u
− D
−h

(
∂L
∂u
h
x

))
Ψxδx. (6.27)

Thus, the values of the functional (6.7) remain constant in the case of variation
along the curve (6.26) on the solutions of the equation

∂L
∂x

+ D
−h

(
u
h
x
∂L
∂u
h

1

− L
)

+ Ψx

(
δL
δu

)
= 0.

The above-obtained expression

δ

δu
=

∂

∂u
− D
−h

(
∂

∂u
h
x

)

for the Euler operator on the uniform mesh ω
h

corresponds to the vertical variation

in the functional (6.7). If |Ψx| < C0 in a neighborhood of the point (x, u), then the
variation is said to be inclined, and if Ψx = 0, then it is horizontal.

Now let the curve (6.26) be the orbit of the point (x, u) under transformations
of the group G1. In this case, the variations δx and δu are determined by the
components of the operator of the group G1,

δx = ξ(x, u)δa, δu = η(x, u)δa,

where δa is the variation of the group parameter (see Fig. 6.2). The corresponding
extremal equation (6.27) is

ξ

(
∂L
∂x

+ D
−h

(
u
h
x
∂L
∂u
h
x

− L
))

+ η

(
∂L
∂u
− D
−h

(
∂L
∂u
h
x

))
= 0. (6.28)

Equation (6.28) is said to be quasi-extremal (or called a local extremal equa-
tion), and any of its solutions are called quasi-extremals. Equation (6.28) can be
obtained directly from transformations of the difference functional by applying the
operation ∂

∂a

∣∣
a=0

at the point (x, u).
Note that the slope characteristics ξ(x, u) and η(x, u) are contained in the quasi-

extremal equation (6.28) on whose solutions the functional can be stationary in the
general case. This means that the equations for the quasi-extremals of one and the
same invariant functional, in general, may have different form for different groups.
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Figure 6.2

EXAMPLE 6.4. Consider the linear difference equation

u
h
xx̄ = 0 (6.29)

on the uniform mesh. In particular, this equation admits three translation operators

X1 =
∂

∂x
, X2 =

∂

∂u
, X3 =

∂

∂x
+

∂

∂u

preserving the mesh uniformity. The variational functional

L =
1

2

∑
α

S
+h

α(u
h

2
xh) (6.30)

is invariant underX1, X2, andX3, because so is the elementary action 1
2
u
h

2
xh. Equa-

tion (6.29) is the Euler equation of the functional (6.30). All three operators X1,
X2, and X3 satisfy the invariance conditions for the Euler equation (6.29).
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Now let us obtain the quasi-extremals of the functional (6.30) for the opera-
tors X1, X2, and X3, respectively:

u
h
xx̄

(u
h
x + u

h
x̄

2

)
= 0, u

h
xx̄ = 0, u

h
xx̄

(u
h
x + u

h
x̄

2
− 1

)
= 0.

Obviously, the solution of the extremal equation (6.29) is also a solution of each
quasi-extremal equation, i.e., lies in the domain of intersection of quasi-extremals.
But the converse is not true. Thus, on the set of solutions of Eq. (6.29), the station-
ary value of the functional (6.30) is attained in the case of “vertical” variation (X2)
and of “inclined” variation (X3) and “horizontal” variation (X1).

EXAMPLE 6.5. Consider the nonlinear difference equation

u
h
xx̄ = u2 (6.31)

on a uniform mesh, which obviously admits the translation operator

X =
∂

∂x
.

The variational functional with Lagrangian function

L =
1

3
u3 +

1

2
u
h
x

2 (6.32)

has Eq. (6.31) as the Euler equation. But for (6.32) the horizontal variation along
the orbit of the group with operator X gives the following equation for quasi-
extremals:

u
h
xx̄ =

2u
h
x̄

u
h
x + u

h
x̄

u2 + u−u+ u−
2

3
, (6.33)

where u− = S
−h

(u). Note that the nonlinear quasi-extremal equation (6.33) and

the semi-linear Euler equation (6.31) are close to each other in the sense of the
approximation order but still have different structures.

EXAMPLE 6.6. Consider the difference equation

u
h
xx̄ = eu, (6.34)

which obviously admits the translation operator X = ∂/∂x on the invariantly uni-
form mesh ω

h
. One can readily verify that Eq. (6.34) is the difference Euler equation

of the difference functional with Lagrangian

L =
1

2
u
h

2
x + eu. (6.35)
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The difference functional with the function L given by (6.35) also admits the op-
erator X = ∂

∂x
. But the functional attains its stationary values not on the ex-

tremals (6.34) but on the quasi-extremals determined by the equation

u
h
xx̄ = eu

(
2

h

e
hu
h
x − 1

u
h
x + u

h
x̄

)
.

Thus, in difference variational problems, a variation of the functional leads to
the Euler equation only in the case of vertical variations. The set of solutions on
which the mesh functional attains stationary values depends on the variation direc-
tion, i.e., on the direction of the group orbit. If ξ 6= 0, then the group transforma-
tions change the independent variable and also the difference mesh. In this case,
the action attains stationary values not on extremals but on quasi-extremals.

Each quasi-extremal depends on the group operator coordinates. Therefore,
there are different equations of quasi-extremals for different symmetries. In the
continuum limit, the difference between the quasi-extremals disappears, and all of
them become the differential Euler equation.

Let us rewrite a finite-difference functional in the equivalent form

L =
∑

Ω

L(x, x+, u, u+)h+ (6.36)

on some one-dimensional lattice ω
h

h+ = ϕ(x+, x, u+, u)

with spacing h+ = x+ − x.
Let us take a variation of the difference functional (6.36) along some curve

u = Ψ(x) at some point (x, u). The variation will affect only two terms in the sum
(6.36),

L = · · ·+ L(x−, x, u−, u)h− + L(x, x+, u, u+)h+ + · · · .
Thus, we obtain the following expression for the variation of the difference func-
tional:

δL =
δL
δx
δx+

δL
δu
δu,

where δu = Ψ′δx and

δL
δu

= h+
∂L
∂u

+ h−
∂L
∂u

−
,

δL
δx

= h+
∂L
∂x

+ h−
∂L
∂x

−
+ L− − L

with L = L(x, x+, u, u+) and L− = S
−h

(L) = L(x−, x, u−, u).

Now consider the variation of the functional (6.36) along the orbit of a group
generated by the operator

X = ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u
+ · · · . (6.37)
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Then, we have δt = ξδa and δu = ηδa, where δa is the variation of the group
parameter. A stationary value of the difference functional (6.36) along the flow
generated by the vector field (6.37) is given by the equation

ξ
δL
δt

+ η
δL
δu

= 0, (6.38)

which is another representation of the quasi-extremal equation corresponding to the
coefficients ξ, η of the operator (6.37).

If we have a Lie algebra of vector fields corresponding to two or more different
coefficients ξ, η, then a stationary value of the difference functional (6.36) along
the entire flow will be attained on the intersection of solutions of all quasi-extremal
equations of type (6.38):

δL
δx

= 0,
δL
δu

= 0. (6.39)

This intersection will be referred as global extremal equations. Note that the vari-
ational equations (6.39) can be obtained by the action of the discrete variational
operators

δ

δx
=

∂

∂x
+ S
−h

∂

∂x+

,
δ

δu
=

∂

∂u
+ S
−h

∂

∂u+

on the discrete elementary action L(x, x+, u, u+)h+.

Remark 6.7. We shall also use the global extremal equations (6.39) in the modified
form

∂L
∂x

+
h−
h+

∂L
∂x

−
− D

+h
(L−) = 0,

∂L
∂u

+
h−
h+

∂L
∂u

−
= 0, (6.40)

which is obtained by division by h+.

Thus, for an arbitrary curve, a stationary value of a difference functional is
given by a solution of Eq. (6.40).

EXAMPLE 6.8. Consider the difference model of the ordinary differential equation

u′′ = u−3 (6.41)

from the standpoint of Lagrangian formalism. For the difference analog of the
Lagrangian function u−2 − u2

x we take the expression

L =
1

uu+

−
(
u+ − u
h+

)2

, (6.42)

which is defined at two points of a mesh ω
h

. First, let us verify the variational
invariance of the Lagrangian (6.42) under the original group admitted by Eq. (6.41):

X1 =
∂

∂x
, X2 = 2x

∂

∂x
+ u

∂

∂u
, X3 = x2 ∂

∂x
+ xu

∂

∂u
. (6.43)
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Obviously, the difference functional

L =
∑

Ω

( 1

uu+

−
(u+ − u

h+

)2)
h+ =

∑
Ω

( h+

uu+

− (u+ − u)2

h+

)
, (6.44)

where h+ = x+ − x, admits the translation X1. The invariance of the elementary
action Lh+,

XL+ LD
+h

(ξ) = 0,

can also readily be verified for the dilation X2. In the case of the operator X3,
we obtain the “divergence invariance”; i.e., the action of the operator X3 gives the
finite difference of some non-zero expression,

X3L+ LD
+h

(x2) =
u+

2 − u2

h+

≡ D
+h

(u2).

Let us write out the extremal difference equation

2u
h
x − 2u

h
x̄ −

1

u2

(
h+

u+

+
h−
u−

)
= 0 (6.45)

corresponding to the functional (6.44), where, as usual, u
h
x = (u+ − u)/h+, u

h
x̄ =

(u− u−)/h−. Note that to write out the extremal equation, we need the two terms
of the sum (6.44):

L(u, u+)h+ + L(u−, u)h−.

Note also that the mesh ω
h

remains undefined,

h+ = ϕ(z). (6.46)

Since the group G3 is x-autonomous, it follows that the Euler equation (6.45) ad-
mits the operators (6.43) under the condition that the mesh (6.46) is invariant as
well.

Now consider the quasi-extremals of the functional (6.44). In the case of an
“inclined” variation (6.44) along the orbits of subgroups corresponding to the op-
erators (6.43), we also need to take into account two terms of the sum (6.44). The
operator X1 gives us the following quasi-extremal:

1

u

(
1

u−
− 1

u+

)
+ u

h
x(u+ − u)− u

h
x̄(u− u−) = 0. (6.47)

The quasi-extremal corresponding to the dilation operator X2 is determined by the
equation

x

u

(
1

u−
− 1

u+

)
+

1

u

(
x− h−
u−

− x+ h+

u+

)
+ 2x(u

h
x̄

2 − u
h
x

2) + 2u(u
h
x − u

h
x̄) = 0.

(6.48)
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The third quasi-extremal equation on whose solutions the functional (6.44) takes
stationary values under the transformations X3 acquires the form

x2

(
1

uu−
− 1

uu+

− u
h
x

2 + u
h
x̄

2

)
+ xu

(
2u
h
x − 2u

h
x̄ −

h+

u2u+

− h−
u2u−

)
= 0.

(6.49)
Note that all quasi-extremal equations can be written in the unified form

δL
δx

= 0, 2x

(
δL
δx

)
+

(
δL
δu

)
= 0, x2

(
δL
δx

)
+ xu

(
δL
δu

)
= 0, (6.50)

where

δL
δx

=
∂L
∂x

h+ +
∂L−

∂x
h−+L−−L, δL

δu
= h+

∂L
∂u

+h−
∂L−

∂u
, L− = S

−h
(L).

One can readily verify that the representation of quasi-extremals in the form (6.50)
completely corresponds to the already introduced form based on the use of differ-
entiation with respect to the difference derivatives. Obviously, the quasi-extremal
equations have the common domain of intersection, i.e., the global extremal

δL
δx

= 0,
δL
δu

= 0. (6.51)

Each solution of system (6.51) is a solution of system (6.50). It is remarkable that
the set of solutions of system (6.51) admits the same three-parameter group as the
original functional.

6.5. Invariance of Global Extremal Equations
and Properties of Quasi-Extremal Equations

Now consider the invariant properties of quasi-extremal equations and Eqs. (6.51)
determining the global extremal. The global extremal equations satisfy the follow-
ing theorem.

THEOREM 6.9. Let a difference functional

L =
∑
L(x, x+, u, u+)h+ (6.52)

invariant under the group G1 with operator

X = ξ
∂

∂x
+ η

∂

∂u
+ ξ+

∂

∂x+

+ η+
∂

∂u+

(6.53)

be given. Then system (6.51) admits the same group G1.
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Proof. We express the invariance of the functional (6.52) as the equality of the two
corresponding series, in which we preserve only two terms of the series:

L(x, x+, u, u+)h+ + L−(x−, x, u−, u)h−

= L(x∗, x∗+, u
∗, u∗+)h∗+ + L−(x∗−, x

∗, u∗−, u
∗)h∗−.

After differentiating the last relation with respect to x and u, we apply the operation
∂/∂a

∣∣
a=0

to the result and obtain

∂

∂a

(
∂L
∂x∗

h∗+ +
∂L−

∂x∗
h∗− + L− − L

)∣∣∣∣
a=0

+ ξx
δL
δx

+ ηx
δL
δu

= 0,

∂

∂a

(
∂L
∂u∗

h∗+ +
∂L−

∂u∗
h∗−

)∣∣∣∣
a=0

+ ξu
δL
δx

+ ηu
δL
δu

= 0.

The substitution of Eqs. (6.51) into the above relations completes the proof of the
theorem,

X

(
δL
δx

)∣∣∣∣
(6.51)

= 0, X

(
δL
δu

)∣∣∣∣
(6.51)

= 0.

COROLLARY. If the intersection (6.51) of quasi-extremals corresponds to a func-
tional (6.52) invariant under an r-parameter group Gr, then system (6.51) is also
invariant under Gr.

Note that system (6.51), as well as any invariant manifold, can be written in
terms of difference invariants of the group Gr. We also note that we are not yet
interested in the set of solutions of system (6.51), which may be empty (i.e., the
quasi-extremal equations may be inconsistent).

Another property of quasi-extremals of an invariant functional is given by the
following theorem.

THEOREM 6.10. Let the quasi-extremal equation

ξ
δL
δx

+ η
δL
δx

= 0 (6.54)

correspond to the stationary values of the functional (6.52) under variations along
the orbit of the subgroup G1 with operator (6.53). Then Eq. (6.54) admits the same
subgroup G1.

In other words, each quasi-extremal equation is invariant under “its own” sub-
group. This fact is almost obvious. Indeed, assume that Eq. (6.54) does not ad-
mit the operator X (with the same coordinates (ξ, η)). Then this equation under
the action of transformations of the corresponding subgroup G1 becomes a cer-
tain different equation (6.54)∗, and the functional remains unchanged in this case.
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But Eq. (6.54) was obtained as the set of all solutions on which (6.52) is station-
ary. Therefore, Eq. (6.54)∗ cannot produce an additional manifold on which the
functional (6.52) is stationary. Just this contradiction proves the invariance of the
quasi-extremal equation (6.54).

Thus, the quasi-extremal equations are invariant under their “own” subgroups,
and their intersection admits the entire set of symmetries of the invariant functional.

The following natural question arises: How does a “foreign” subgroup associ-
ated with another extremal act on the given quasi-extremal equation?

Rather often, this question can be answered by using the following relation,
which holds for the invariant Lagrangian and permits writing out the quasi-extremal
equation in divergence form:

ξ

(
∂L
∂x

+
h−
h+

∂L−

∂x
− D

+h
(L−)

)
+ η

(
∂L
∂u

+
h−
h+

∂L−

∂u

)
+ D

+h

(
h−η

∂L−

∂u
+ h−ξ

∂L−

∂x
+ ξL−

)
= 0. (6.55)

One can readily verify that relation (6.55) is equivalent to the invariance condition
for the functional (6.52):

ξ
∂L
∂x

+ ξ+
∂L
∂x+

+ η
∂L
∂u

+ η+
∂L
∂u+

+ LD
+h

(ξ) = 0.

Relation (6.55) allows us to prove the following assertion.

THEOREM 6.11. Suppose that the quasi-extremal equation (6.54) of the invariant
functional (6.52) corresponds to a group G1 with operator X . Let there exist an
operator X̄ commuting on the solutions of (6.54) with the discrete differentiation
operator,

[X̄, D
+h

] = 0. (6.56)

Then the action of the operator X̄ transforms the quasi-extremal (6.54) into another
quasi-extremal of the same functional.

COROLLARY. The operators of the adjoint Lie algebra admitted by (6.52) have the
property (6.56). Thus, a new additional operation, namely, the action of the adjoint
algebra, is introduced on the set of all quasi-extremals of the invariant functional.
In this connection, one can to introduce the following new notion: a basis of quasi-
extremal equations, which is a minimal set of quasi-extremals from which all the
other quasi-extremal equations can be obtained by the action of the operators X̄ .

Note that all the above-listed properties of quasi-extremal equations are of dif-
ference character; i.e., in the continuum limit all the quasi-extremal equations be-
come a single Euler equation, which is invariant under the entire set of symmetries
of the corresponding Lagrangian.
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EXAMPLE. Now let us illustrate all these properties by the example of the equation

u′′ = u−3,

which was considered in the preceding section. Under the transformations (6.43),
the invariant Lagrangian (6.42) preserves its constant values on the solutions of
the corresponding quasi-extremal equations (6.47), (6.48), and (6.49). For these
equations, system (6.51) acquires the form

1

uu−
− 1

uu+

+ u
h
x

2 − u
h

2
x̄ = 0, 2u

h
x − 2u

h
x̄ −

h+

u2u+

− h−
u2u−

= 0. (6.57)

One can readily verify that system (6.57) admits the entire symmetry of (6.43).
The quasi-extremal equations (6.50) were obtained in the preceding section.

They permit verifying the second property of the quasi-extremals. One can see
that the first equation in system (6.50) admits the operator X1, the second equation
admits the operator X2, and the third equation admits the operator X3; i.e., each
quasi-extremal is invariant under its respective subgroup.

We also easily see the third property of the quasi-extremals: the operator ∂/∂x
takes the third equation to the second, and the action of the operator 1

2
∂/∂x trans-

forms the second equation into the first equation. Thus, the third equation in sys-
tem (6.50) forms a basis of quasi-extremals. As we shall see later, the same relation
holds for the conservation laws.

An invariant system determines both an invariant mesh and an invariant differ-
ence equation for u. In particular, this system contains equations obtained earlier
by the method of difference invariants. Indeed, by substituting

h+ = εuu+, h− = εuu− (6.58)

into system (6.57), we obtain

(u+−u)u−−(u−u−)u+ = ε2u+u−, (u+−u)2u−−(u−u−)2u+ = ε(u−−u+).

Both of the last equations are equivalent to the already known mapping

u+u−(2− ε2) = u(u+ + u−),

which approximates Eq. (6.41) up to second-order terms on the mesh (6.58).

6.6. Conservation Laws for Difference Equations

Let finite-difference equations

Fα(x, u, u
h
x, . . . , h) = 0, α = 1, 2, . . . ,m, (6.59)

be given on a difference mesh

Ωβ(x, u, . . . , h) = 0, β = 1, . . . , n, Fα,Ωβ ∈ A
h
. (6.60)
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DEFINITION. We say that a system of difference equations has a conservation law
if there exists a vector A with components Ai = Ai(x, u, u

h
x, . . . , h), i = 1, . . . , n,

Ai ∈ A
h

, such that, on any solution u = ϕ(x) of system (6.59)–(6.60), it satisfies
the condition

DIVA ≡
n∑
i=1

D
+h

i(A
i) = 0, (6.61)

where D
+h

i denotes the discrete differentiation in the ith direction.

If there exist r vectors A, satisfying condition (6.61) and linearly independent
with constant coefficients, then one says that system (6.59)–(6.60) has r indepen-
dent conservation laws.

Note that in the one-dimensional case, where A ≡ A1 = A(x, u, u
h
x, . . . , h),

the condition
D
+h

(A(z))
∣∣
(6.59),(6.60) = 0 (6.62)

for system (6.59)–(6.60) to be conservative is equivalent to the condition saying
that A(x, u, u

h
1) is a mesh invariant on the solutions of (6.59)–(6.60),

A(z)
∣∣
F=0

= S
±h

α(A(z))
∣∣
(6.59),(6.60), α = 1, 2, . . . , (6.63)

where the S
±h

are the discrete shift operators. The conservation law taken in the

form (6.63) is a first integral of the one-dimensional version of system (6.59)–
(6.60) and is a finite algebraic expression on the mesh ω

h
.

In the case of arbitrary nonuniform meshes ω
h

, it should be remembered that the
operators S

±h
i and D

±h
i in (6.61) and (6.63) are of “local” character; i.e., they depend

on the spacings h+
i and h−i at a given point of the mesh.

Note also that condition (6.62) can be rewritten in infinitesimal form using the
fact that the shift operator S

±h
was obtained with the use of the tangent field of the

Taylor group:

D
+h

±(A(z))
∣∣

(6.59),(6.60) = 0, D
+h

± =
∂

∂x
+ D̃
±h

(u)
∂

∂u
+ D̃
±h

(u
h

1)
∂

∂u
h
x

+ · · · , (6.64)

where D̃
±h

is the Lagrangian representation of the differentiation operator on the

difference mesh,

D̃
±h

=
∞∑
n=1

(∓h)n−1

n
D
±h

n.

Note that the use of the conservation law in the form (6.64) requires the use of all
points of the difference mesh.
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Let us show that the difference analog of the differential form of the conserva-
tion law (6.61) implies a difference analog of the integral form of the conservation
law. Let the last coordinate of the vector (x1, x2, . . . , xn) be the time xn = t. Take
the cylindrical domain

Ω
h

=

{
x ∈ ω

h
:
n−1∑
i=1

(xi)2 = r2
0, t1 ≤ t ≤ t2

}
,

where x = (x1, x2, . . . , xn−1, t) and r0, t1, and t2 are constants.
Then it follows from (6.61) that∑

s

Alnh1h2 . . . hn−1τ =
∑

Ω
h

DIVA = 0, (6.65)

where S is the surface bounding the domain Ω
h

and ln is the unit exterior normal
vector on S.

If Ai decays sufficiently rapidly at spatial infinity for the solutions of sys-
tem (6.59)–(6.60), then, by setting r0 → ∞, we can omit the summation over
the cylindrical surface. (If Ai = 0 on it, then the situation is similar.)

We have
Aln = −An

∣∣
t=t1

on the lower base of the cylinder Ω
h

and

Aln = An
∣∣
t=t2

on the upper base. It follows from (6.65) that for any solution u = u(x) of sys-
tem (6.59)–(6.60) the function An(x, u(x)u

h
(x)1, . . .) satisfies the equation

∑
Rn−1

Anh1h2 · · ·hn−1

∣∣∣
t=t1

=
∑
Rn−1

Anh1h2 · · ·hn−1

∣∣∣
t=t2

,

which implies that the variable

E =
∑
Rn−1

An(x, u(x), ux(x)
h

, . . .)h1h2 · · ·hn−1

is independent of time on the solution of system (6.59)–(6.60),

D
+τ
E
∣∣

(6.59)–(6.60) = 0, (6.66)

where
D
+τ

=
1

τ
(S
+τ
− 1)
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is the discrete differentiation with respect to time on the mesh ω
h

.

Note that for n = 1 conditions (6.62) and (6.66) coincide and are equivalent to
the existence of a first integral.

The difference schemes with conservation laws of the form (6.61) are said to
be conservative. Such schemes ensure that there are no fictitious sources in the
computational domain, which is of high importance in numerical implementations
(see [122]).

6.7. Noether-Type Identities and Difference Analog
of Noether’s Theorem

In this section, we develop difference analogs of the Noether identity (see the In-
troduction). This identity plays a crucial role for formulation of a difference analog
of Noether’s theorem for difference equations. The approach based on an opera-
tor identity provides a simple, clear way to construct first integrals (conservation
laws) for quasi-extremal and global extremal equations just by means of algebraic
manipulations.

LEMMA 6.12. The operator identity ( [30, 36, 39])

X(L) + LD
+h

(ξ) ≡ ξ

(
∂L
∂x

+
h−
h+

∂L
∂x

−
− D

+h
(L−)

)
+ η

(
∂L
∂u

+
h−
h+

∂L
∂u

−)
+ D

+h

(
h−η

∂L
∂u

−
+ h−ξ

∂L
∂x

−
+ ξL−

)
(6.67)

holds for any function L = L(x, x+, u, u+) and any vector field X .

The left hand-side of this identity can be written as follows:

X(L) + LD
+h

(ξ) = ξ
∂L
∂x

+ ξ +
∂L
∂x

+ η
∂L
∂u

+ η
∂L
∂u

+ LD
+h

(ξ).

This identity is a discrete analog of the Noether identity and will be called the
discrete (or difference) Noether identity.

We rewrite the discrete Noether identity for the Lagrangian in the equivalent
form L = L(x, u, ux

h
):



6.7. NOETHER-TYPE IDENTITIES AND DIFFERENCE ANALOG OF NOETHER’S THEOREM 185

a. For a one-dimensional regular mesh, one has

ξ
∂L
∂x

+ η
∂L
∂u

+ [D
+h

(η)− u
h
xD

+h
(ξ)]

∂L
∂u
h
x

+ LD
+h

(ξ)

≡ ξ

[
∂L
∂x

+ ux̄
h

∂L
∂u

+ u
h
xx̄
∂L
∂u
h
x

− D
−h

(L)

]
+ (η − ξu

h
x̄)

[
∂L
∂u
− D
−h

(
∂L
∂u
h
x

)]
+ D

+h

[
ξL− + (η − ξu

h
x̄)

(
∂L−

∂u
h
x̄

)]
, (6.68)

where L− = L(x−, u−, u
h
x̄).

b. For a one-dimensional irregular mesh, one has

ξ
∂L
∂x

+ η
∂L
∂u

+ [D
+h

(η)− ux
h
D
+h

(ξ)]
∂L
∂ux
h

+ LD
+h

(ξ)

≡ ξ

[
∂L
∂x

+ ux̄
h

∂L
∂u

+
h−

h+
D
−h

(u
h
x)
∂L
∂ux̄
− h−

h+
D
−h

(L)

]
+ (η − ξu

h
x̄)

[
∂L
∂u
− h−

h+
D
−h

(
∂L
∂u
h
x

)]
+ D

+h

[
ξL− + (η − ξu

h
x̄)

(
∂L−

∂u
h
x̄

)]
. (6.69)

The following operator identity holds for the two-dimensional case if the La-
grangian has the form L = L(x1, x2, u, u

h
1, u
h

2) on a two-dimensional orthogonal
regular mesh:

ξ1 ∂L
∂x1

+ ξ2 ∂L
∂x2

+ η
∂L
∂u

+ L
(
D
+h

1(ξ1) + D
+h

2(ξ2)
)

+ [D
+h

1(η)− u
h

1D
+h

1(ξ1)− S
+h

1(u2)D
+h

1(ξ2)]
∂L
∂u
h

1

+ [D
+h

2(η)− u
h

2D
+h

2(ξ2)− S
+h

2(u1)D
+h

2(ξ1)]
∂L
∂u
h

2

≡ ξ1

[
∂L
∂x1

+ D
−h

1

(
u
h

1
∂L
∂u
h

1

)
− D
−h

1(L) + D
−h

2

(
S
+h

2(u1)
∂L
∂u
h

2

)]
+ ξ2

[
∂L
∂x2

+ D
−h

2

(
u
h

2
∂L
∂u
h

2

)
− D
−h

2(L) +D1
−h

(
S
+h

1(u2)
∂L
∂u
h

1

)]
+ η

[
∂L
∂u
− D
−h

1

(
∂L
∂u
h

1

)
− D
−h

2

(
∂L
∂u
h

2

)]
+ D

+h
1

[
ξ1 S
−h

1(L) + (η − ξ1u
h

1̄ − ξ2u2)S
−h

1

(
∂L
∂u
h

1

)]
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+ D
+h

2

[
ξ2 S
−h

2(L) + (η − ξ1u
h

1̄ − ξ2u2)S
−h

2

(
∂L
∂u
h

2

)]
, (6.70)

where u
h

1 and u
h

2 are the right difference derivatives in the x1- and x2-directions,
respectively, and u1 and u2 are the continuous partial derivatives in discrete repre-
sentation,

ui =
∞∑
n=1

(−hi)n−1

n
D
+h

n
i (u), i = 1, 2.

Proof. Identities (6.67)–(6.70) can be proved by a straightforward verification.

Remark. In the continuous limit h → 0, identities (6.67)–(6.70) tend to Noether’s
differential identities of appropriate dimensions.

From this relations, we obtain the following theorem, which we state just for the
case of identity (6.67). (For all other cases, one can state the theorem in a similar
way.)

THEOREM 6.13. Let an element X of the Lie algebra of the group G give the
quasi-extremal equation

ξ

(
∂L
∂x

+
h−
h+

∂L
∂x

−
− D

+h
(L−)

)
+η

(
∂L
∂u

+
h−
h+

∂L
∂u

−)
= 0.

This quasi-extremal equation possesses a first integral of the form

I =

(
h−η

∂L
∂u

−
+ h−ξ

∂L
∂x

−
+ ξL−

)
if and only if the Lagrangian function L is invariant under the Lie group G of local
point transformations generated by vector fields X of the form

X = ξ
∂

∂x
+ ξ+

∂

∂x+

+ η
∂

∂u
+ η

∂

∂u+

.

Proof. The assertion follows from identity (6.67).

Remark 6.14. If the Lagrangian density L is divergence invariant under a Lie group
of local point transformations, i.e., if

X(L) + LD
+h

(ξ) = D
+h

(V )

for some function V (x, u), then each element X of the Lie algebra of G provides
the first integral

I = h−η
∂L
∂u

−
+ h−ξ

∂L
∂x

−
+ ξL− − V

of the quasi-extremal equations.
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Remark 6.15. As we know, the invariance of a difference functional leads to the
invariance of the corresponding quasi-extremal equation. In the case of a multi-
parameter group Gr the invariance of a difference functional gives r distinct quasi-
extremal equations. Each of these quasi-extremal equations is invariant under its
own subgroup and, in accordance with the above theorem, possesses its own first
integral.

EXAMPLE 6.16. Consider the functional with L = 3u
h
x

2 + 2u3 on a uniform mesh

and the translation operator X = ∂/∂x. The function L satisfies the invariance
condition, just as does the Euler equation

u
h
xx̄ = u2.

The quasi-extremal equation

u
h
xx̄ =

2u
h
x̄

u
h
x + u

h
x̄

u2 + uu− + u−
2

3

is invariant under translations in x and has the first integral

I = 2u3 − 3u
h
x

2 = C0, C0 = const,

which implies the exact solution of the nonlinear difference equation in the recur-
sive form

u+ = u± h
√

2

3
u3 + C0.

EXAMPLE 6.17. With the same translation operator on the uniform mesh ω
h

, con-

sider the functional with L = 0.5u
h

2
x + eu, which, as well as the Euler equation, has

the following difference equation:

u
h
xx̄ = eu.

The quasi-extremal equation

u
h
xx̄ =

2

h
eu
(

1− e−huhx̄

u
h
x + u

h
x̄

)

of this functional corresponding to the operator X = ∂/∂x has the conservation
law

D
+h

(0.5u
h

2
xx̄ − eu−) = 0,
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which is equivalent to the existence of the first integral for the quasi-extremal

u
h

2
x − 2eu = C0, C0 = const,

and which implies the solution in the recursive form

u+ = u± h
√
eu + C0.

Theorem 6.13 has an important practical consequence, which can be viewed as
a difference analog of Noether’s theorem.

THEOREM 6.18 ( [37]). Let a nondegenerate functional with Lagrangian function
L = L(x, x+, u, u+) admit an r-parameter group Gr. (That is, assume that the
functional has a variational symmetry or a divergence invariance.) Assume that
there are r quasi-extremal equations

ξα
δL
δx

+ ηα
δL
δu

= 0, α = 1, 2, . . . , r. (6.71)

Then the system of global extremals

δL
δx

= 0,
δL
δu

= 0

lying in the intersection of the quasi-extremals (6.71) admits the groupGr and has r
conservation laws of the form

I =

(
h−η

α∂L
∂u

−
+ h−ξ

α∂L
∂x

−
+ ξL−

)
α = 1, 2, . . . , r.

Theorems for Lagrangians of different form and for meshes of different dimen-
sion can be stated in a similar way. Note that the invariant mesh is either determined
in the process of finding the first integrals or can be added independently to the sys-
tem of global extremals.

EXAMPLE 6.19 (see [48, 49]). Let us consider how the above-obtained theorems
can be used to compose a conservative difference model of the ordinary differential
equation

u′′ = u−3.

For the difference Lagrangian function we take (Sec. 6.4) the function

L =
1

uu+

−
(
u+ − u
h+

)2

,

which is defined at two mesh points. The variational invariance

X1L+ LD
+h

(ξ1) = 0, X2L+ LD
+h

(ξ2) = 0, X3L+ LD
+h

(ξ3) = D
+h

(y2)
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of the Lagrangian implies the three quasi-extremal equations

δL
δx

= 0, 2x
δL
δx

+
δL
δu

= 0, x2 δL
δx

+ xu
δL
δu

= 0

and the corresponding system of global extremals

δL
δu

: 2(u
h
x − u

h
x̄) =

h+

u2u+

+
h−
u2u−

,

δL
δx

: (u
h
x)

2 +
1

uu+

− (u
h
x̄)

2 − 1

uu−
= 0,

(6.72)

where, as usual, u
h
x = (u+ − u)/h+ and u

h
x̄ = (u− u−)/h−.

Application of Theorem 6.18 gives the following three functionally independent
first integrals:

I1 = u
h

2
x +

1

uu+
= A, I2 =

2x+ h+

2
u
h

2
x +

2x+ h+

2uu+
− u+ u+

2
u
h
x = 2B,

I3 =
x(x+ h+)

uu+
+

(
u+ u+

2
− 2x+ h+

2
u
h
x

)2

= C.

(6.73)
By analogy with the continuous case, the discrete first integrals obey the rela-

tions

X1(I3) = I2, X1(I2) = 2I1, X3(I1) = −I2, X3(I2) = −2I3,

and consequently, each first integral can be taken as a basic integral.
It can be verified the three first integrals satisfy the relation

1

4

(
h+

uu+

)2

= 1 +
I2

2

4
− I1I3,

which means that h+(yy+)−1 is a constant on the solutions of the global extremal
equations. This allows us to introduce the special case

h−
y−y

=
h+

yy+

= ε, ε = const, 0 < ε� 1, (6.74)

of the invariant mesh.
Then the general solution of the discrete model (6.72) can be found with the

help of the first integrals I1 = A and I2 = 2B as

Au2 = (Ax+B)2 + 1− ε2

4
(6.75)

just by algebraic manipulations.
Note that the solution (6.75) contains three parameters and a third parameter ε

arises from the mesh where (6.75) is defined. This solution differs from the solution
of the underlying continuous equation by ε2/4, and the estimate is uniform. The
solution for the mesh points xn and un, n = 0, 1, 2, . . ., was obtained in [48, 49].



190 LAGRANGIAN FORMALISM FOR DIFFERENCE EQUATIONS

The difference integrals (6.73) are partly inherited in an appropriate mapping.
The substitution of the mesh (6.74) into system (6.72) of global extremal equations
reduces the latter to the equation

u+u−(2− ε2) = u(u+ + u−),

which is a one-dimensional mapping. This mapping has the only first integral

Ĩ1 =

(
u+ − u
εuu+

)2

+
1

uu+

,

which is the first integral I1 inherited from the system of global extremals.
Thus, we have developed the invariant difference model

u
h
x − u

h
x̄

h−
=

1

u2u−
,

h+

uu+

=
h−
uu−

= ε, ε = const, 0 < ε� 1,

of the original ODE, which possesses the same Lagrangian structure. The com-
plete set of first integrals allows us to write out an invariant lattice and completely
integrate the discrete model.

It should be noted that not all quasi-extremal equations are consistent, and one
cannot find invariant lattices from the first integrals in all cases. Several other cases
will be considered in Sec. 6.9.

6.8. Necessary and Sufficient Conditions for Global
Extremal Equations to Be Invariant

It has been shown in Sec. 6.5 that if the functional L is invariant under some
group G, then the global extremal equations

δL
δx

= 0,
δL
δu

= 0 (6.76)

are invariant with respect to G as well. If the Lagrangian L is divergence invariant,
then so are the global extremal equations (6.76). This follows from the fact that the
total finite differences belong to the kernel of the discrete variational operators.

As in the continuous case, the global extremal equations can be invariant with
respect to a larger group than the corresponding Lagrangian.

Now we are in a position to establish a necessary and sufficient condition for
the invariance of global extremal equations. We present new identities and a new
theorem [45].
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LEMMA 6.20. The following identities hold for any smooth functionL(t, t+, u, u+):

δ

δu
((X(L) + LD

+h
(ξ))h+) ≡ X

(
δL
δu

)
+
∂η

∂u

δL
δu

+
∂ξ

∂u

δL
δx
,

δ

δx
((X(L) + LD

+h
(ξ))h+) ≡ X

(
δL
δx

)
+
∂η

∂x

δL
δu

+
∂ξ

∂x

δL
δx
.

Proof. The identities can be proved by a straightforward verification.

Lemma 6.20 allows one to obtain not only a sufficient but also a necessary and
sufficient condition for the invariance of the global extremal equations.

THEOREM 6.21. The global extremal equations (6.76) are invariant with respect
to a symmetry generator X if and only if the following conditions are true on the
solutions of Eqs. (6.76):

δ

δu
((X(L) + LD

+h
(ξ))h+)

∣∣
(6.76)

= 0,

δ

δx
((X(L) + LD

+h
(ξ))h+)

∣∣
(6.76)

= 0.

Proof. The assertion follows from the identities in Lemma 6.20.

EXAMPLE. Consider the difference functional with Lagrangian

L =
u
h

2
x

2
+
u3

3
=

(u+ − u)2

2(x+ − x)2
+
u3

3

on a regular lattice, which is invariant with respect to the operators

X1 =
∂

∂x
, X2 = x

∂

∂x
− 2u

∂

∂u
.

Then the global extremal system is

δL
δu

= u
h
xx̄ − u2 = 0,

δL
δx

= u
h
xx̄ −

2u
h
x̄

u
h
x + u

h
x̄

u2 + uu− + u−
2

3
= 0.

(6.77)

The invariance of the difference Lagrangian is satisfied for the operator X1,

X1(L) + LD
+h

(ξ1) = 0,

while the application of the operator X2 to the Lagrangian action gives

X2(L) + LD
+h

(ξ2) = −5L 6= 0.
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Meanwhile, an application of Theorem 6.21 indicates the invariance of both
Eqs. (6.77) with respect to the operators X1 and X2:

δ

δu
((X1(L) + LD

+h
(ξ1))h+)

∣∣
(6.77)

= 0,

δ

δx
((X2(L) + LD

+h
(ξ2))h+)

∣∣
(6.77)

= 0.

An alternative approach to conservation laws for difference equations is devel-
oped in [68, 70].

6.9. Applications of Lagrangian Formalism
to Second-Order Difference Equations

In this section, we give examples of construction of conservative second-order dif-
ference equations approximating second-order ODE and admitting the same trans-
formation group [48, 49]. The example of an invariant conservative scheme for
second-order ODE considered in the preceding section is, in a sense, the sim-
plest example; in this example, we can find a difference analog of the invariant
Lagrangian, which gives a first integral for all symmetries. Moreover, the use of
first integrals permits construction of an invariant mesh. In this section, we con-
sider more complicated situations. We use a modification of the above-obtained
constructions of the difference Lagrangian formalism. It turns out that in the differ-
ence case not only different Lagrangian functions can be used for variations along
the orbits of different subgroups (just as in the continuous case) but also different
approximations to the same invariant Lagrangian for different subgroups (which,
of course, do not exist in the continuous case) can be involved.

In the case where second-order ODEs have two and more symmetries, they
can be integrated completely. The methods for finding the general solution can be
different, but most of them employ the mathematical apparatus of integration. This
integration technique is in fact absent in the difference case. (The technique of
exact integration of ordinary difference equations, including nonlinear equations,
is required.) But the use of first integrals permits obtaining the general solution
with the use of only algebraic operations. Therefore, to obtain analytic solutions
of difference schemes, we use a technique based on the difference analog of the
Noether theorem.
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6.9.1. Equations corresponding to Lagrangians invariant
under one-dimensional groups

First, consider the simplest case of a one-dimensional group. By an appropriate
change of variables it can be transformed into

X1 =
∂

∂y
.

The most general second-order ODE invariant under X1 is

y′′ = F (x, y′), (6.78)

where F is an arbitrary given function.
An invariant Lagrangian function should have the form L = L(x, y′), and the

Euler equation is
∂2L

∂x∂y′
+ y′′

∂2L

∂y′2
= 0.

By substituting y′′ from Eq. (6.78), we obtain a linear partial differential equa-
tion for L(x, y′). This, of course, has infinitely many solutions. Let us assume that
we know a solution L(x, y) explicitly. Then the Noether theorem provides the first
integral

∂L

∂y′
(x, y′) = A. (6.79)

If we can solve Eq. (6.79) for y′ as a function of x (andA), then the general solution
can be obtained by a quadrature,

y′ = φ(x,A), y(x) = y0 +

∫ x

0

φ(x,A) dt.

In the discrete case, the situation is similar. Assume that we know a Lagrangian
L(x, x+, u, u+) invariant under the group of transformations of u generated by X1.
(We replace y by u to distinguish the discrete case from the continuous one.) It has
the form

L = L(x, x+, u
h
x), u

h
x =

u+ − u
x+ − x

.

The corresponding global extremal equations are

δL
δu

= − ∂L
∂u
h
x

(x, x+, u
h
x) +

∂L
∂u
h
x̄

(x−, x, u
h
x̄) = 0, (6.80)

δL
δx

= h+
∂L
∂x

(x, x+, u
h
x) + u

h
x
∂L
∂u
h
x

(x, x+, u
h
x)− L(x, x+, ux)

+ h−
∂L
∂x

(x−, x, u
h
x̄)− ux̄

∂L
∂u
h
x̄

(x−, x, u
h
x̄) + L(x−, x, u

h
x̄) = 0.

(6.81)
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The first integral can be obtained from Eq. (6.80); it is given by

∂L
∂ux

(x, x+, u
h
x) = A. (6.82)

We can solve Eq. (6.82) for u
h
x and by shifting down obtain u

h
x̄,

u
h
x = φ(x, x+, A), u

h
x̄ = φ(x−, x, A).

By substituting this into the global extremal equation (6.81), we obtain a relation
between x+, x−, and x, i.e., a single three-point relation for the variable x. For u
we then obtain the two-point equation

u+ − u = (x+ − x)φ(x, x+, A). (6.83)

Equation (6.83) is a discrete analog of quadrature; it is a first-order inhomogeneous
linear equation for u. Note that any lattice h+ = f(h−, x) will be invariant.

6.9.2. Equations corresponding to Lagrangians invariant
under two-dimensional groups

A. The Abelian Lie algebra with unconnected basis elements

X1 =
∂

∂x
, X2 =

∂

∂y
(6.84)

corresponds to the invariant ODE

y′′ = F (y′), (6.85)

where F is an arbitrary function.
The equation can be obtained from the Lagrangian

L = y +G(y′), F (y′) =
1

G′′(y′)
. (6.86)

The Lagrangian admits the symmetries X1 and X2,

X1L+ LD(ξ1) = 0, X2L+ LD(ξ2) = 1 = D(x). (6.87)

With the help of Noether’s theorem, we obtain the following first integrals:

J1 = y +G(y′)− y′G′(y′), J2 = G′(y′)− x. (6.88)

It suffices to have two first integrals to write out the general solution of a second-
order ODE without quadratures. We can solve the second equation (6.88) for y′ in
terms of x and obtain

y′ = H(J2 + x), H(J2 + x) = [G′]−1(J2 + x).
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By substituting this into the first equation, we obtain the general solution in the
form

y(x) = J1 −G[H(J2 + x)] + (J2 + x)H(J2 + x). (6.89)

Now we show how one can find a discrete model and its first integrals by means
of Lagrange-type technique. Let us choose a difference Lagrangian in the form

L =
u+ u+

2
+G(u

h
x); (6.90)

then we verify the invariance conditions

X1L+ LD
+h

(ξ1) = 0, X2L+ LD
+h

(ξ2) = 1 = D
+h

(x).

The variations of L yield the following global extremal equations:

δL
δu

: G′(u
h
x)−G′(u

h
x̄) =

h+ + h−
2

, (6.91)

δL
δx

: −u+ u+

2
−G(u

h
x) + uxG

′(u
h
x) +

u+ u−
2

+G(u
h
x̄)− ux̄G′(u

h
x̄) = 0.

(6.92)

The difference analog of Noether’s theorem yields two first integrals

I1 = u+G(u
h
x)− uxG′(u

h
x) +

x+ − x
2

ux, (6.93)

I2 = G′(u
h
x)−

x+ x+

2
. (6.94)

We can solve Eq. (6.94) for ux to obtain

u
h
x = Φ1(I2, x+ x+). (6.95)

By substituting this into the equation for I1, we obtain

u = Φ2(I1, I2, x, x+). (6.96)

Calculating u
h
x from Eq. (6.96) and setting it equal to (6.95), we obtain a three-

point recursion relation for x. Solving it, we turn Eq. (6.96) into an explicit general
solution of the difference scheme (6.91), (6.92).

EXAMPLE. Consider the case in which

L =
u+ u+

2
+ exp(u

h
x).
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The two first integrals (6.93) and (6.94) in this case are the following:

I1 = u+exp(u
h
x)−ux exp(u

h
x)+

xn+1 − xn
2

u
h
x, I2 = exp(u

h
x)−

xn+1 + xn
2

.

Equations (6.95) and (6.96) are reduced to

u
h
x = ln

(
I2 +

xn+1 + xn
2

)
,

u = I1 − I2 −
xn+1 + xn

2
+ (I2 + xn) ln

(
I2 +

xn+1 + xn
2

)
.

The recursion relation for x reads

−xn+1 + xn−1

2
+ (I2 + xn)

[
ln(2I2 + xn+1 + xn)− ln(2I2 + xn + xn−1)

]
.

The last equation provides the lattice, but it is difficult to solve. We have however
reduced a system of two three-point equations to a single three-point equation. We
shall return to this case later, applying an alternative method.

B. The non-Abelian Lie algebra with unconnected elements

X1 =
∂

∂y
, X2 = x

∂

∂x
+ y

∂

∂y
(6.97)

gives the invariant ODE

y′′ =
1

x
F (y′). (6.98)

We define a function G(y′) by the equation

F (y′) =
G′(y′)

G′′(y′)
.

Then the ODE (6.98) is the Euler equation for the Lagrangian

L =
1

x
G(y′),

which admits X1 and X2 as variational symmetries,

X1L+ LD(ξ1) = 0, X2L+ LD(ξ2) = 0.

Noether’s theorem provides two first integrals

J1 =
1

x
G′(y′), J2 = G(y′) +

(y
x
− y′

)
G′(y′),

which are sufficient to integrate the ODE.
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Let us take the difference Lagrangian

L =
2

x+ x+

G(u
h
x),

which satisfies the invariance conditions

X1L+ LD
+h

(ξ1) = 0, X2L+ LD
+h

(ξ2) = 0.

Then the variations of L give the following global extremal equations:

δL
δu

:
2

x+ x+

G′(u
h
x)−

2

x− + x
G′(u

h
x̄) = 0,

δL
δx

: − 2h+

(x+ x+)2
G(u

h
x) +

2

(x+ x+)
G′(u

h
x)u
h
x −

2

(x+ x+)
G(u

h
x)

− 2h−
(x− + x)2

G(u
h
x̄)−

2

(x− + x)
G′(u

h
x̄)u
h
x̄ +

2

(x− + x)
G(u

h
x̄) = 0.

(6.99)

Since the Lagrangian is invariant with respect to the operators X1 and X2, we
find the first integrals

I1 =
2G′(u

h
x)

x+ x+

, I2 =
4xx+

(x+ x+)2
G(u

h
x) +

2G′(u
h
x)

x+ x+

(
u− xu

h
x

)
for the solutions of (6.99).

As in the previous case, we can express u
h
x from the integral I1 and obtain

ux = Φ1(I1, x+ x+).

The second integral allows us to express u as a function of x and x+,

u = xΦ1 +
I2

I1

− 4xx+

I1(x+ x+)2G(Φ1).

Remark. The Lie algebra of operators

X1 =
∂

∂x
, X2 = (n− 1)x

∂

∂x
− 2y

∂

∂y
, n 6= −1, 1,

which is isomorphic to the algebra (6.97), was considered in [40], where an invari-
ant difference equation and an invariant lattice were constructed for the approxima-
tion of the invariant ODE

y′′ = yn.
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6.9.3. Equations corresponding to Lagrangians invariant
under three-dimensional groups

We have already considered in Sec. 6.7 one invariant difference model for ODE that
has three-dimensional symmetry groups. In this section, we consider another two
cases. Both of them come from Lagrangians that have three-dimensional symmetry
groups as well.

A. First, consider the family of solvable Lie algebras

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
+ ky

∂

∂y
, k 6= 0,

1

2
, 1, 2, (6.100)

depending on one constant k. The invariant equation has the form

y′′ = y′
k−2
k−1 . (6.101)

This equation can be obtained by the usual variational procedure from the La-
grangian

L =
(k − 1)2

k
(y′)

k
k−1 + y,

which admits the operators X1 and X2 for any parameter k,

X1L+ LD(ξ1) = 0, X2L+ LD(ξ2) = 1 = D(x),

and the operator X3 for k = −1,

X3L+ LD(ξ3) = (k + 1)L.

One can show that there is no Lagrangian function L(x, y, y′) that produces
Eq. (6.101) with k 6= −1 as its Euler equation and is divergence invariant for all
three symmetries (6.100).

For arbitrary k there are two first integrals

J1 =
(1− k)

k
(y′)

k
k−1 + y = A0, J2 = (k − 1)(y′)

1
k−1 − x = B0.

By eliminating y′, we find the general solution

y =
1

k

(
1

k − 1

)k−1

(x+B0)k + A0. (6.102)

For k = −1, we have yet another first integral corresponding to the symme-
try X3,

J3 =
2√
y′

(y − xy′) + xy = C0.
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It is functionally dependent on J1 and J2, since a second-order ODE can possess
only two functionally independent first integrals. Note that the integral J3 is the
basic integral,

J1 = X1(J3), J2 = −X2(J3),

since
[X1, X3] = X1, [X2, X3] = kX2.

In this case, we have the following relation:

4− J1J2 − J3 = 0. (6.103)

Thus, the integral J3 is not independent and is of no use in the present context.

B. Now let us proceed to the discrete case and consider only k = −1. (The other
values of k will be considered later on under a different approach.) Take

L = −4
√
u
h
x +

u+ u+

2

as the discrete Lagrangian, which is invariant with respect to X1 and X3 and diver-
gence invariant with respect to X2,

X1L+LD
+h

(ξ1) = 0, X2L+LD
+h

(ξ2) = 1 = D
+h

(x), X3L+LD
+h

(ξ3) = 0.

From the Lagrangian, we obtain the global extremal equations

δL
δu

: − 4

h− + h+

(
1√
u
h
x

− 1√
u
h
x̄

)
= 1,

δL
δx

: 4
(√

u
h
x −
√
u
h
x̄

)
− u+ u+

2
+
u− + u

2
= 0.

(6.104)

This system of equations is invariant with respect to all three operators (6.100).
Application of the difference analog of the Noether theorem gives us three first
integrals

I1 = −2
√
u
h
x +

u+ u+

2
= A, I2 = − 2√

u
h
x

− x+ x+

2
= B,

I3 =
2(x+u− u+x)

h+

√
u
h
x

+
x+u+ u+x

2
= C.

In contrast to the continuous case, these three first integrals I1, I2, and I3 are
functionally independent, and instead of Eq. (6.103) we have the relation

4− I1I2 − I3 =
1

4
h2

+u
h
x =

4ε2

(ε+ 2)2
.
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This coincides with Eq. (6.103) in the continuous limit ε→ 0. We see that the
expression h2

+u
h
x is a first integral of (6.104) as well. This allows us to introduce a

convenient lattice, namely,

1

4
h2
−u
h
x̄ =

1

4
h2

+u
h
x =

4ε2

(ε+ 2)2
, ε = const, 0 < ε� 1. (6.105)

By substituting u
h
x from Eq. (6.105) into I2, we obtain a two-term recursion

relation for x,
xn+1 − (1 + ε)xn − εB = 0 (6.106)

or
−(1 + ε)xn+1 + xn − εB = 0,

depending on the sign choice for
√
u
h
x. These equations can be solved, and we

obtain a lattice satisfying

xn = (x0 +B)(1 + ε)n −B, x0 > −B, (6.107)

for the first equation and a lattice satisfying

xn = (x0 +B)(1 + ε)−n −B, x0 < −B, (6.108)

for the second equation. Using the expressions for I1, we obtain the general solu-
tion for u (the same for both lattices (6.107) and (6.108)) in the form

un = A− 4

xn +B

1 + ε

(1 + ε/2)2
. (6.109)

We have used the three integrals I1, I2, and I3 to obtain the general solution of
the difference scheme (6.104). Indeed, the solution (6.107), (6.109) for xn and un
depends on the four constants (A,B, x0, ε), as it should.

The difference scheme is not consistent with a regular lattice but requires an
exponential one, as in Eq. (6.107). Note that the only nonalgebraic step in the
integration was the solution of a linear two-point equation with constant coefficients
(6.106), which is known from the theory of difference schemes (e.g., see [122]).

6.9.4. Integration of difference equation with two variational
symmetries: The method of perturbed Lagrangians

It was mentioned that a two-dimensional group of Lagrangian symmetries is al-
ways sufficient to reduce the original system of two three-point equations to a single
three-point equation for the independent variable alone. Using a different approach,
we shall actually obtain a complete solution of a difference scheme approximating
a differential equation with a Lagrangian invariant under a two-dimensional sym-
metry group.
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The case we shall consider is Eq. (6.85) and hence the two-dimensional Abelian
group corresponding to the algebra (6.84). We shall make use of the fact that the
Lagrangian is not unique. In fact, we consider three different Lagrangians, all hav-
ing the same continuous limit (6.86). Instead of writing out the Lagrangian (6.90)
in the discrete case, we shall use a family of Lagrangians parametrized by two
constants α and β,

L = αG(u
h
x) + βu+ (1− β)u+, α ≈ 1, 0 ≤ β ≤ 1.

Each Lagrangian provides its own global extremal system

α
[
−G′(u

h
x) +G′(u

h
x̄)
]

+ βh+ + (1− β)h− = 0, (6.110)

α
[
u
h
xG
′(u
h
x)− u

h
x̄G
′(u
h
x̄)−G(u

h
x) +G(u

h
x̄)
]

− β(u− u−)− (1− β)(u+ − u) = 0.
(6.111)

We shall view one Lagrangian, with α3 = 1 and β3 = 0.5, as the basic one, and the
other two as its perturbations.

Each Lagrangian in the family is divergence invariant under X1 = ∂
∂x

and
X2 = ∂

∂u
and hence provides two first integrals of the corresponding global ex-

tremal equations (6.110) and (6.111),

α
[
−u
h
xG
′(u
h
x) +G(u

h
x)
]

+ u+ (1− β)h+u
h
x = A, (6.112)

αG′(u
h
x)− x− βh+ = B. (6.113)

Let us now choose three different pairs (αi, βi). They provide six integrals (and
six global extremal equations). We shall show that, by appropriately fine tuning
the constants αi and βi and by choosing some of the constants Ai and Bi, we
can manufacture a consistent difference system representing both the equation and
the lattice. Moreover, we can explicitly integrate the equations in a manner that
approximates the exact solution obtained in the continuous limit.

Let us take one equation of the form (6.112) and two of the form (6.113). In
these three equations, we choose α3 = 1, β3 = 0.5, and B2 = B3 = B. We then
take the difference between the two equations involving B and finally obtain the
following system of three two-point equations:

α1

[
−u
h
xG
′(ux) +G(u

h
x)
]

+ u+ (1− β1)h+u
h
x = A, (6.114)

G′(u
h
x)− x−

1

2
h+ = B, (6.115)

(1− α2)G′(u
h
x)− (

1

2
− β2)h+ = 0. (6.116)
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From Eq. (6.115) and (6.116), we have

G′(u
h
x) =

x+ + x+ 2B

2
, (6.117)

x+ − (1 + ε)x− εB = 0, (6.118)

where we have set

ε =
2(1− α2)

α2 − 2β2

. (6.119)

The continuous limit will correspond to ε→ 0.
Equation (6.118) coincides with Eq. (6.106) obtained by using three Lagrangian

symmetries in a special case. Here it appears in a much more general setting. The
general solution

xn = (x0 +B)(1 + ε)n −B (6.120)

of Eq. (6.118) depends on one integration constant x0. This solution gives a lattice
satisfying h− > 0 and h+ > 0 for x0 > −B if ε > 0 and for x0 < −B if ε < 0.
For the other cases, namely for x0 < −B if ε > 0 and for x0 > −B if ε < 0,
formula (6.120) gives a lattice with reverse order of points, h− < 0 and h+ < 0.

Using (6.120) and (6.117), we can express u
h
x via x. We have

G′(u
h
x) =

(
1 +

ε

2

)
(B + x).

Denoting the inverse function of G′(ux) by H , we have

u
h
x = H

[(
1 +

ε

2

)
(B + x)

]
. (6.121)

Using (6.114) and (6.121), we can now write out the general solution of sys-
tem (6.114)–(6.116) as

u(x) = A− α1G(H) + (x+B)H, (6.122)

where we have set
α1

(
1 +

ε

2

)
− (1− β1)ε = 1.

The value of α1, still occurring in the solution (6.122), must be chosen so as to
obtain a consistent scheme. Indeed, xn and un given in Eq. (6.120) and (6.122) will
satisfy system (6.114)–(6.116). We should however ensure that u

h
x in Eq. (6.121)

and u
h
x = (un+1 − un)/(xn+1 − xn) coincide. A simple computation shows that

this equation requires that α1 should satisfy

α1 = (1 + ε)n+1(x0 +B)
Hn+1 −Hn

G(Hn+1)−G(Hn)
. (6.123)
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This equation is consistent only if the right-hand side is a constant (independent
on n). The constants αi and βi can depend on the constant ε, and for ε → 0 we
should have α1, α2 → 1 and β1, β2 → 0.5.

From Eq. (6.116), we have

h+

G′(u
h
x)

=
2(1− α2)

1− 2β2

.

This expression must vanish as ε→ 0. To achieve this while respecting Eq. (6.119),
we set

α2 = 1 + ε2, β2 =
1

2
+ ε+

ε2

2
.

Equation (6.119) is satisfied exactly, and we have

h+

G′(u
h
x)

=
2ε

ε+ 2
. (6.124)

We can view Eqs. (6.120) and (6.122) as the general solution of the three-point
difference scheme

G′(u
h
x)−G′(u

h
x̄)−

x+ − x−
2

= 0,
h+

G′(u
h
x)

=
h−

G′(u
h
x̄)
. (6.125)

System (6.125) is invariant under the group corresponding to (6.84). Strictly
speaking, this is not a global extremal system, since it cannot be derived from any
single Lagrangian. The arbitrary constants A, B, and ε come from the three first
integrals (6.114), (6.115), and (6.124), which are associated with three different
Lagrangians.

Thus, the ODE (6.85) obtained from the Lagrangian (6.86) can be approximated
by the difference system (6.125). If α1 in Eq. (6.123) is constant, then the general
solution of this system is given by

xn = (x0 +B)(1 + ε)n−B, u(xn) = A−α1G(Hn) + (xn +B)Hn, (6.126)

where A, B, ε, and x0 are arbitrary constants. As ε → 0, u(xn) agrees with the
solution (6.89) of the ODE (6.85).

We have not proved that Eq. (6.123) is consistent for arbitrary functionsG(ux).
We shall however show that the above integration scheme is consistent in at least
two interesting special cases. In both cases, the Lagrangian is only divergence
invariant under a two-dimensional subgroup.

EXAMPLE 6.22 (A polynomial nonlinearity).

X1 =
∂

∂x
, X2 =

∂

∂u
, X3 = x

∂

∂x
+ ku

∂

∂u
, k 6= 0,

1

2
,±1, 2.
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This algebra for k = −1 was treated earlier, and now we consider the general
case. We take

G(u
h
x) =

(k − 1)2

k
u
h

k
k−1
x

and hence

G′(u
h
x) = (k − 1)u

h

1
k−1
x =

(
1 +

ε

2

)
(x+B).

Equation (6.121) is reduced to

u
h
x = Hn(x) =

(
x+B

k − 1

)k−1 (
1 +

ε

2

)k−1

,

and we have

G(Hn) =
(k − 1)2

k

(
x+B

k − 1

)k (
1 +

ε

2

)k
.

Substituting this into (6.123), we find

α1 =
k(1 + ε)((1 + ε)k−1 − 1)

(k − 1)(1 + ε
2
)((1 + ε)k − 1)

,

so that α1 = 1 +O(ε2).
Thus, α1 is a constant close to α1 = 1 for ε � 1. The solution un of (6.126)

specializes to

un = A+
(x+B)k

(k − 1)k−1

ε (1 + ε/2)k−1

(1 + ε)k − 1
. (6.127)

This agrees with the solution (6.102) of the ODE (6.101) up to O(ε2).
It is of interest to note that α1 becomes independent on ε for k = −1 and we

obtain α1 = 1 and β1 = 0.5. The solution (6.127) provides us with the solu-
tion (6.109), which was obtained in Sec. 6.4 with the help of a different method.

EXAMPLE 6.23 (An exponential nonlinearity). Consider another three-dimensional
group and its Lie algebra

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂x
+ (x+ y)

∂

∂y
.

The corresponding invariant ODE is

y′′ = exp(−y′) (6.128)

and can be obtained from the Lagrangian

L = exp(y′) + y.
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We have

X1L+ LD(ξ1) = 0, X2L+ LD(ξ2) = 1 = D(x).

The corresponding first integrals of Eq. (6.128) are

exp(y′)(1− y′) + y = A, exp(y′)− x = B.

Finally, the general solution of Eq. (6.128) is

y = (x+B)(ln(x+B)− 1) + A. (6.129)

Now consider the discrete case, following the method of Sec. 6.9.4. We have

G(u
h
x) = exp(u

h
x)

and hence

G′(u
h
x) = exp(u

h
x) = (xn+B)

(
1 +

ε

2

)
, Hn = u

h
x = ln(xn+B)+ ln

(
1 +

ε

2

)
.

Substituting this into Eq. (6.123), we find

α1 =
(1 + ε) ln(1 + ε)

ε (1 + ε/2)
,

so that α1 is indeed a constant, and moreover, α1 = 1 +O(ε2).
The solution u(x) on the lattice given in Eq. (6.126) is

un = A+ (xn +B) ln(xn +B) + (xn +B)

[
ln
(

1 +
ε

2

)
− (1 + ε) ln(1 + ε)

ε

]
.

This agrees with the solution (6.129) of the ODE (6.128) up to O(ε2).

We see that variational symmetries and the first integrals they provide play a
crucial role in the study of exact solutions of invariant difference schemes, much
more so than in the theory of ordinary differential equations.

The procedure followed in this section can be reformulated as follows. We
start from the continuous case, where we know a Lagrangian density L(x, y, y′)
invariant under a local point transformation group G0. We hence also know the
corresponding Euler–Lagrange equation invariant under the same group or a larger
group containing G0 as a subgroup.

Then we approximate this Lagrangian by a discrete Lagrangian L(x, u, x+, u+)
invariant under the same group G0. Even in the absence of any symmetry group,
the Lagrangian will provide the global extremal equations (or the discrete Euler–
Lagrange system).
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If the Lagrangian is invariant under a one-dimensional symmetry group, then
we can reduce the global extremal system to a three-point relation for x alone plus
a “discrete quadrature” for u. If the symmetry group of the Lagrangian is two
dimensional, then we can always reduce the global extremal system to one three-
point equation for x alone and write out the solution un(x) directly.

If the invariance group of the Lagrangian is three dimensional, then we can
integrate the system explicitly.

It was shown that if the symmetry group of the Lagrangian is two dimensional
but the global extremal system has a third (non-Lagrangian) symmetry, then we can
also integrate the difference scheme explicitly.

6.10. Moving Mesh Schemes
for the Nonlinear Schrödinger Equation

In this section, we apply the Lagrangian formalism with the conservation of Lie
point symmetries to partial differential equations and construct several conserva-
tive difference schemes. The object of our study is the nonlinear Schrödinger equa-
tion (NLS) [19, 22, 38]. In one dimension, this equation is integrable and there
exist many numerical schemes (e.g., see [1, 4, 100, 137]) which are based on either
preserving this integrability (often through a direct discretization of the underlying
Lagrangian) and/or preserving the mass or energy (Hamiltonian) of the solution.
When studying blow-up phenomena in higher-dimensional NLS, it is much less
clear whether this is a good idea. In particular, it can lead to meshes that are rela-
tively sparse in the blow-up region [20]. An alternative approach [20,23], which has
proved efficient for a number of blow-up problems, is to construct moving mesh nu-
merical methods which preserve the scaling symmetries close to the blow-up point.
While these may not strictly conserve mass or energy, they have proved efficient in
resolving the blow-up structure. A key test of this is whether they can accurately
reproduce the self-similar evolution behavior which is known [131] to describe the
asymptotic behavior of the blow-up. The purpose of this section is to determine
how feasible it is to combine these three approaches, namely, a discretization of the
Lagrangian, preserving the symmetry, and a moving mesh numerical method.

6.10.1. The cubic nonlinear Schrödinger equation: Symmetry,
Lagrangian structure, and conservation laws

Consider the radially symmetric cubic nonlinear Schrödinger equation

i
∂u

∂t
+
∂2u

∂r2
+
n− 1

r

∂u

∂r
+ u|u|2 = 0, (6.130)

where n is the number of space dimensions.
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This equation describes many physical situations, including some phenomena
in plasma physics and nonlinear optics (see [131]). For the case of n = 1, the
equation is integrable and the solution exists globally. We shall consider the non-
integrable case n ≥ 2, in which singularities are observed to develop for suitable
initial data. A motivation for considering the radially symmetric form of the non-
linear Schrödinger equation is that it has been observed in numerical experiments
reported in [131] that singularities in the NLS when posed as a problem in three
dimensions are highly symmetric close to the singular point.

Let us substitute the polar representation

u(r, t) = AeiΦ,

where A = A(r, t) and Φ = Φ(r, t) are real functions, into Eq. (6.130); we then
obtain the following two equations:

At + AΦrr + 2ArΦr +
n− 1

r
AΦr = 0, (6.131)

AΦt + AΦ2
r − Arr −

n− 1

r
Ar − A3 = 0. (6.132)

Lie group analysis yields the symmetries of system (6.131)–(6.132), and for
n ≥ 2 the admitted Lie algebra of operators is the following:

X1 =
∂

∂t
, X2 =

∂

∂Φ
, X3 = 2t

∂

∂t
+ r

∂

∂r
− A ∂

∂A
, (6.133)

which describe translations in time and phase and scaling.

To apply Noether’s theorem to (6.131)–(6.132), consider the functional

L =

∫
Ω

L(t, r, u, ut, ur)r
n−1 dr dt, (6.134)

where L is some Lagrangian function.

The invariance of L under the action of a symmetry group is connected via
Noether’s theorem with the existence of conservation laws for the Euler equations,
which give the stationary value of the functional (6.134).

We have generalized the Noether-type identity to the case of radially symmetric
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solutions in dimension n:

ξt
∂L
∂t

+ ξr
∂L
∂r

+ η
∂L
∂u

+ [Dt(η)− utDt(ξ
t)− urDt(ξ

r)]
∂L
∂ut

+ [Dr(η)− utDr(ξ
t)− urDr(ξ

r)]
∂L
∂ur

+ L[Dt(ξ
t) +Dr(ξ

r)] +
n− 1

r
ξrL

≡ (η − ξtut − ξrur)
[
∂L
∂u
−Dt

(
∂L
∂ut

)
− 1

rn−1
Dr

(
rn−1 ∂L

∂ur

)]
+Dt

[
ξtL+ (η − ξtut − ξrur)

∂L
∂ut

]
+

1

r(n−1)
Dr

[
rn−1

(
ξrL+ (η − ξtut − ξrur)

∂L
∂ur

)]
, (6.135)

where

u = (A,Φ), Dt =
∂

∂t
+ ut

∂

∂u
+ · · · , Dr =

∂

∂r
+ ur

∂

∂u
+ · · · .

The operator identity (6.135) makes it obvious that there is a connection between
the invariance of the functional (6.134) and the conservation law

Dt

[
ξtL+ (η − ξtut − ξrur)

∂L
∂ut

]
+

1

r(n−1)
Dr

[
rn−1

(
ξrL+ (η − ξtut − ξrur)

∂L
∂ur

)]
= 0

for any solution of the Euler equations

∂L
∂u
−Dt

(
∂L
∂ut

)
− 1

rn−1
Dr

(
rn−1 ∂L

∂ur

)
= 0.

For the NLS problem, one can readily verify that the Lagrangian

L = Ar
2 + A2Φr

2 + A2Φt −
1

2
A4 (6.136)

has system (6.131)–(6.132) as the Euler equations. The Lagrangian (6.136) is in-
variant with respect to X1 and X2, and according to the Noether theorem (see iden-
tity (6.135) with u = (A,Φ)) equips system (6.131)–(6.132) with the following
conservation laws:

Dt{A2}+
1

rn−1
Dr{rn−12A2Φr} = 0,

Dt{0.5A4 − A2
r − A2Φ2

r}+
1

rn−1
Dr{rn−1(2AtAr + 2A2ΦtΦr)} = 0,

which are the well-known laws of conservation of mass and Hamiltonian for the
NLS system.
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6.10.2. Intermediate Lagrange coordinate system

Now we shall change the coordinate system to allow for the possible motion of
points in the mesh, which we shall analyze later. Let us prolong the symmetry
operators (6.133) to the subspace

{t, r, A,Φ; dt; dr; dA; dΦ},

which contains the differentials dt, dr, dA, dΦ, so that

X1 =
∂

∂t
, X2 =

∂

∂Φ
,

X3 = 2t
∂

∂t
+ r

∂

∂r
− A ∂

∂A
+ 2dt

∂

∂(dt)
+ dr

∂

∂(dr)
− dA ∂

∂(dA)
.

(6.137)

By solving the system of linear partial differential equations

Xi(Jk) = 0, i = 1, 2, 3, k = 1, 2, 3, 4, 5,

we obtain the following complete set of differential invariants:

J1 = rA, J2 = dt(dA)2, J3 =
(dr)2

dt
, J4 = dΦ, J5 = Adr.

This set gives us the possibility of finding the most general form for the evolution
of r which preserves the symmetry (6.137):

dr

dt
=

1

dr
F (Adr; dt(dA)2; dΦ; rA).

This result provides means for the evolution of a computational mesh: if F = 0,
then we obtain an orthogonal coordinate system (on a fixed mesh); if F 6= 0, then
we have a moving coordinate system with an invariant evolution of r.

For simplicity, we choose the following invariant evolution of r:

F = k(dΦ),
dr

dt
= kΦr,

where k > 0 is a control parameter (depending on n), which can be chosen to
control the form of the mesh obtained in the numerical calculations. For example,
it can prevent the mesh from becoming too sparse in certain regions.

Since r varies, we should prolong the time derivative to involve the following
Lagrangian derivative:

d

dt
= Dt + kΦrDr.

Significantly, this operation does not commute with Dr:[
d

dt
,Dr

]
6= 0.
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Rewriting system (6.131)–(6.132) in the Lagrangian coordinates then gives

dr

dt
= kΦr,

dA

dt
= −AΦrr + (k − 2)ΦrAr −

n− 1

r
AΦr,

A
dΦ

dt
= Arr +

n− 1

r
Ar + (k − 1)AΦr

2 + A3.

(6.138)

One can readily show that the prolonged system (6.138) admits the symmetry op-
erators (6.137) prolonged for the partial derivatives Φr,Φrr, Ar, Arr,

dr
dt
, dA
dt
, dΦ
dt

:

X1 =
∂

∂t
, X2 =

∂

∂Φ
,

X3 = 2t
∂

∂t
+ r

∂

∂r
− A ∂

∂A
− 2Ar

∂

∂Ar
− 3Arr

∂

∂Arr
− Φr

∂

∂Φr

− 2Φrr
∂

∂Φrr

− dr

dt

∂

∂(dr/dt)
− 3

dA

dt

∂

∂(dA/dt)
− 2

dΦ

dt

∂

∂(dΦ/dt)
.

6.10.3. The “substantive" Lagrange coordinate system

Now we will rewrite system (6.138) in an orthogonal coordinate system by chang-
ing independent variables (t, r) to (t, s) and involving the new dependent variable
ρ as follows:

Ds =
1

ρrn−1
Dr. (6.139)

The purpose of this procedure is to recover the orthogonal differentiation property
satisfied by a fixed coordinate mesh, so that in the revised coordinate system one
has [

d

dt
,Ds

]
= 0, (6.140)

where
d

dt
= Dt + kΦrDr.

From (6.140), we have the following equation for ρ:

ρt + (kρΦr)r +
n− 1

r
kρΦr = 0. (6.141)

From (6.141) and the relation

dρ

dt
= ρt + kΦrρr,
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we obtain one more equation, which gives the evolution for ρ in the form

dρ

dt
= − kρ

rn−1
(rn−1Φr)r. (6.142)

Let us find the connection between s and t, r. From (6.139), we have

sr = ρrn−1.

From the orthogonality of the coordinates (t, s),

ds

dt
= 0,

we obtain
st = −kρΦrr

n−1.

Thus, we have a contact transformation of the independent variables from (t, r) to
(t, s),

t̄ = t, ds = ρrn−1 dr − kρrn−1Φr dt. (6.143)

We also should add ρ > 0 to (6.143), which implies the absence of a “vacuum
gap” in the Lagrange coordinate system.
Remark. It is worth drawing a link at this stage between this approach, based on La-
grangian coordinate system, and the method of equidistributed meshes (see [23]).
In this procedure a time-independent computational variable s is used for all calcu-
lations, and r is expressed in terms of s. To determine r, a monitoring function M
is used, so that ∂s/∂r = M . It is straightforward that this approach is equivalent to
the orthogonal Lagrangian approach we consider provided that we set M = ρrn−1.

Note that the differential form (6.143) is total (complete); moreover, it is possi-
ble to start from the differential form

ds = ρrn−1 dr − kρrn−1Φr dt

and then require the completeness of it; i.e.,

Dt(ρr
n−1) = −Dr(kρr

n−1Φr),

which is equivalent to (6.141).
Now, rewriting system (6.138)–(6.142) in terms of the orthogonal Lagrange

coordinates (t, s), we obtain the system

dr

dt
= kρrn−1Φs,

dA

dt
= rn−1

(
−Aρ(ρrn−1Φs)s + (k − 2)ρ2rn−1ΦsAs − (n− 1)Aρr−1Φs

)
,

A
dΦ

dt
= ρrn−1(ρrn−1As)s + (n− 1)rn−2ρAs + (k − 1)Aρ2Φ2

sr
2(n−1) + A3,

dρ

dt
= −kρ2(ρr2(n−1)Φs)s.

(6.144)
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6.10.4. Conservation laws in the Lagrangian coordinate system

We can now derive conservation laws for system (6.144) by using the conservation
of differential forms. We denote the conservation laws for system (6.131)–(6.132)
by

Dt{A0}+Dr{B0} = 0, (6.145)

where A0 (the density of conservation law), for instance, for the first (mass) con-
servation law is

A0 = rn−1A2.

Equation (6.145) is equivalent to the existence of the total differential form

dΩ = A0 dr −B0 dt. (6.146)

If we now transform the differential form (6.146) to the new set of independent
variables (6.143), then we have

dΩ = A1 ds−B1 dt = A1(ρrn−1 dr − kρrn−1Φr dt)−B1 dt.

It follows that

A1 =
A0

ρrn−1
, B1 = B0 − kA0Φr. (6.147)

We can rewrite this as a conservation law in the new coordinate system to obtain

d

dt
{A1}+Ds{B1} = 0.

In accordance with (6.147), system (6.144) has the following conservation laws:

d

dt

{
ρ−1A2

}
+Ds

{
r2(n−1)A2ρΦs(2− k)

}
= 0,

d

dt

{
ρ−1(0.5A4 − ρ2A2

sr
2(n−1) − ρ2A2r2(n−1)Φ2

s)
}

+Ds

{
ρr2(n−1)

[
2As(Ȧ− kρ2r2(n−1)AsΦs) + 2A2Φs(Φ̇− kρ2r2(n−1)Φ2

s)

− kΦs(0.5A
4 − ρ2r2(n−1)A2

s − A2ρ2r2(n−1)Φ2
s)
]}

= 0,

where

Ȧ =
dA

dt
, Φ̇ =

dΦ

dt
.

Interestingly, system (6.144) has the additional conservation law

d

dt

{
ρ−1
}

+Ds

{
−kρr2(n−1)Φs

}
= 0,
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which does not stem from the invariant Lagrange structure and is a continuity equa-
tion for the mesh density. Being transformed into the space (s, t, A,Φ, ρ, r), the
symmetry operators (6.133) become

X1 =
∂

∂t
, X2 =

∂

∂Φ
,

X3 = 2t
∂

∂t
+ r

∂

∂r
− A ∂

∂A
+ s

∂

∂s
+ (1− n)ρ

∂

∂ρ
.

(6.148)

System (6.144) admits an infinite-dimensional symmetry algebra. Indeed, in addi-
tion to the algebra (6.148), it admits the symmetries generated by

X4 = f(s)
∂

∂s
+ ρfs

∂

∂ρ
,

where f = f(s) is an arbitrary function.

6.10.5. The discretization procedure

Having considered various coordinate transformations of the NLS, we now turn
our attention to discretization of this system in terms of these coordinates. We
start our study of such discretization by considering NLS in the original variables
(6.131)–(6.132) and then proceed to construct an invariant difference scheme with
all appropriate conservation laws. The first question we need to address is finding
the mesh geometry appropriate for the discretization procedure (see [19]).

One can readily verify that all operators (6.133) preserve the mesh orthogo-
nality and regularity in both directions. Thus, we shall initially use the simplest
invariant mesh that is orthogonal and regular in both directions (see Fig. 6.3) with
constant steps h and τ . We note at this stage that while this mesh has good sym-
metry properties, it is not necessarily ideal for problems with associated small time
and length scales—this leads to discretization on regular meshes in the Lagrangian
variables, which we consider in subsequent sections.
On this mesh, we can consider the discrete version of the Lagrangian functional
given by

L =
∑
i

Li(A,Ar,Φr,Φt)hτ,

derived over an appropriate domain Ω. For the discrete Lagrangian we take

L = Ar
2 + A2Φr

2 + A2Φt − 0.5A4, (6.149)

where

Ar =
A+ − A

h
= D

+h
(A), Φr =

Φ+ − Φ

h
= D

+h
(Φ), Φt =

Φ̂− Φ

τ
= D

+τ
(Φ)
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Figure 6.3: The orthogonal regular mesh in the original variables

are the corresponding right difference derivatives. (We omit the subscripts h and τ
under difference derivatives so as not to overload formulas.) Our motivation is now
to use this to derive discretization schemes with correct conservation laws. To apply
the difference Noether theorem to (6.149), we generalize the discrete Noether-type
operator identity [30] to give

ξt
∂L
∂t

+ ξr
∂L
∂r

+ η
∂L
∂u

+ [D
+τ

(η)− utD
+τ

(ξt)− urD
+τ

(ξr)]
∂L
∂ut

+ [D
+h

(η)− utD
+h

(ξt)− urD
+h

(ξr)]
∂L
∂ur

+ L[D
+τ

(ξt) + D
+h

(ξr)] +
n− 1

r
ξrL

≡ ξt
{
∂L
∂t

+ D
−τ

(
ut
∂L
∂ut
− L

)
+

1

rn−1
D
−h

(
rn−1ut

∂L
∂ur

)}
+ξr

{
∂L
∂r

+D
+τ

(
ǔr

ˇ(
∂L
∂ut

))
+

1

r(n−1)
D
+h

{
(r−)

n−1

[
ur
−
(
∂L
∂ur

)−
−L−

]
+
n− 1

r
L
}

+η

{
∂L
∂u
−D
−τ

(
∂L
∂ut

)
− 1

rn−1
D
−h

(
rn−1 ∂L

∂ur

)}
+D

+τ

{
ξtĽ+(η−ξtǔt−ξrǔr)

ˇ(
∂L
∂ut

)}
+

1

r(n−1)
D
+h

{
(r−)

n−1

[
ξrL− + (η − ξtut− − ξrur−)

(
∂L
∂ur

)−]}
, (6.150)

where u = (A,Φ) and all derivatives are difference derivatives. Identity (6.150)
can be proved by straightforward computations.

From identity (6.150), we have the difference Euler equation

∂L
∂u
− D
−τ

(
∂L
∂ut

)
− 1

rn−1
D
−h

(
rn−1 ∂L

∂ur

)
= 0,

but this equation possesses conservation laws only if ξt = ξr = 0.
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If the left hand-side of the Eq. (6.150) is zero, then the quasi-extremal equation

ξt
{
∂L
∂t

+ D
−τ

(
ut
∂L
∂ut
− L

)
+

1

rn−1
D
−h

(
rn−1ut

∂L
∂ur

)}
+ξr

{
∂L
∂r

+D
+τ

(
ǔr

ˇ(
∂L
∂ut

))
+

1

r(n−1)
D
+h

{
(r−)

n−1

[
ur
−
(
∂L
∂ur

)−
−L−

]
+
n− 1

r
L
}

+ η

{
∂L
∂u
− D
−τ

(
∂L
∂ut

)
− 1

rn−1
D
−h

(rn−1 ∂L
∂ur

)

}
= 0

possesses the conservation law

D
+τ

{
ξtĽ+ (η − ξtǔt − ξrǔr)

ˇ(
∂L
∂ut

)}
+

1

r(n−1)
D
+h

{
(r−)

n−1

[
ξrL− + (η − ξtut− − ξrur−)

(
∂L
∂ur

)−]}
= 0.

Now let us apply the difference Noether theorem to the Lagrangian (6.149).
The Lagrangian (6.149) is invariant under the actions of X1 and X2. This leads to
the conservation laws

D
−τ
{A2}+

1

rn−1
D
−h
{2rn−1A2Φr} = 0, (6.151)

D
−τ
{0.5A4 − A2Φr

2 − Ar2}+
1

rn−1
D
−h
{2rn−1[ArAt + A2ΦtΦr]} = 0 (6.152)

for the global extremal difference equations. Note that in the underlying case we
already have the invariant mesh and only need two difference equations for the
solution (A,Φ). For such equations we can take two equations (6.151) and (6.152).
Thus, the difference equations (6.151)–(6.152) form an invariant scheme on an
orthogonal regular mesh and thus coincide with the difference conservation laws.

Note that this model is not unique, because some other equations can be ob-
tained by the same procedure starting from some other invariant Lagrangian.

6.10.6. The total difference form

Now consider the difference analog of a total differential form on the orthogonal
difference mesh in the computational variable s in accordance with Fig. 6.4.

By doing this, we can derive discretizations of the NLS more appropriate for
problems with increasingly small length scales. On the right upper box, we consider
the difference form

∆s = srh+ s+
t τ = ŝrh+ stτ, (6.153)
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Figure 6.4: The orthogonal mesh in the computational variables

where the difference operators on s are as follows:

sr =
s+ − s
h

, ŝr =
ŝ+ − ŝ
h

, st =
ŝ− s
τ

, s+
t =

ŝ+ − s+

τ
.

It follows from (6.153) that

D
+h

(st) = D
+τ

(sr), (6.154)

leading to the completeness of the difference form (6.153).
Let us restate the following difference derivatives of the computational vari-

able s:
sr = ρrn−1, st = −kρrn−1Φr.

The completeness condition (6.154) then gives

D
+τ

(ρrn−1) = −kD
+h

(ρrn−1Φr). (6.155)

Relation (6.155) can readily be shifted to any desired mesh point.
Now we introduce the new discrete differentiation operators of Lagrange type:

d

dt+
= D

+τ
+ kΦrD

+h
,

d

dt−
= D
−τ

+ kΦ̌rĎ
+h
,

where
Ď
+h

= S
−τ
D
+h

= D
+h
S
−τ
, Φ̌r = S

−τ
Φr.

We also invoke a couple of difference operators corresponding to right and left
differentiation in the s-direction as follows:

ρrn−1D
+h

s = D
+h
, ρ−(r−)n−1D

−h
s = D

−h
.

One can readily verify that the above-stated definitions give the orthogonality
of the new mesh in the computational (t, s)-coordinate system,

ds

dt+
= 0,

ds

dt−
= 0.
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6.10.7. Difference conservation laws in the Lagrange coordinate
system

To study discretization in the new coordinate system, we transform the difference
conservation laws (6.151)–(6.152) for the Lagrange coordinate system in the same
manner as was done in the continuous case by using the conservation of differential
forms.

We represent the conservation law (6.151)–(6.152) as

D
+τ
{A0}+ D

+h
{B0} = 0,

which is equivalent to the existence of the difference form

∆0 = A0h−B+
0 τ = Â0h−B0τ. (6.156)

Now we transform the difference form (6.156) by the change of independent
variables:

t̄ = t, ∆s = ρrn−1h− kρ+(r+)n−1Φ+
r τ = ρ̂r̂n−1h− kρrn−1Φrτ.

In this derivation, we have the “new” spatial step hs = ∆s in the computational
variable.

The difference form (6.156) can be represented in the (t, s)-coordinate system
by

∆0 = A1hs −B+
1 τ = Â1hs −B1τ = A1(ρr(n−1)h− kρ+(r+)n−1Φ+

r τ)−B+
1 τ

= Â1(ρ̂r̂n−1h− kρrn−1Φrτ)−B1τ.

Then we have

A1 =
A0

ρrn−1
, B1 = B0 − kA0Φr

ρrn−1

ρ̂r̂n−1
, (6.157)

which we can rewrite as the difference conservation law

D
+τ
{A1}+ D

+h
s{B1} = 0 (6.158)

in the new coordinate system.
In accordance with (6.157) and (6.158), we can finally rewrite the conservation

laws in the following form:

d

dt+

(
Ǎ2 ř

n−1

ρrn−1

)
+ D

+h
s

(
2(r−)2(n−1)(A−)2ρ−Φ−s − kA2ρ

2r3(n−1)

ρ̂r̂n−1
Φs

)
= 0,

(6.159)
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d

dt+

{
řn−1

ρrn−1

[
0.5Ǎ4 − ρ̌2Ǎ2Φ̌2

s ř
2(n−1) − ρ̌2ř2(n−1)Ǎ2

s

]}
+ D

+h
s

{
2(r−)2(n−1)ρ−

[
A−s
(
Ȧ− − k(ρ−)2(r−)2(n−1)A−s Φ−s

)
+ (A−)2Φ−s

(
Φ̇− − k(ρ−)2(r−)2(n−1)(Φ−s )2

)]
− kΦs

ρ2r3(n−1)

ρ̂r̂n−1

[
0.5A4 − ρ2A2Φ2

sr
2(n−1) − ρ2r2(n−1)A2

s

]}
= 0. (6.160)

This system allows us to evolve the discrete solution. We should also allow
for the evolution of the mesh points given by the following two equations for the
evolution of r and ρ:

dr

dt+
= kρrn−1Φs, (6.161)

d

dt+

(
ρrn−1

)
= −kρ+(r+)n−1ρrn−1(ρrn−1Φs)s. (6.162)

Thus, Eqs. (6.159)–(6.162) form an invariant difference scheme on the orthog-
onal mesh in the (t, s)-plane, which can be implemented to calculate solutions of
the NLS as it evolves toward a singularity.

6.10.8. The blow-up invariant solution

Finally, consider the application of the discretization (6.159) in the context of so-
lutions with developing singularities. First, let us transform the symmetry opera-
tors (6.133) into the space (s, t, A,Φ, ρ, r):

X1 =
∂

∂t
, X2 =

∂

∂Φ
,

X3 = 2t
∂

∂t
+ r

∂

∂r
− A ∂

∂A
+ s

∂

∂s
+ (1− n)ρ

∂

∂ρ
.

(6.163)

We have shown that system (6.144), together with (6.163), has one more additional
symmetry

X∗ = f(s)
∂

∂s
+ ρfs

∂

∂ρ
,

where f = f(s) is an arbitrary function.
System (6.159)–(6.162) possesses the same symmetries (6.163) and has the ad-

ditional symmetry

X∗ = f(s)
∂

∂s
+ ρD

+h
s(f)

∂

∂ρ
. (6.164)

Now consider the symmetry subalgebra

X = −2T0X1 +X3 = 2(T0 − t)
∂

∂(T0 − t)
+ r

∂

∂r
− A ∂

∂A
+ s

∂

∂s
+ (1− n)ρ

∂

∂ρ
,

(6.165)
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where T0 is some positive constant. Then to (6.165) we add the special case of the
operator (6.164),

X∗∗ = γ

(
s
∂

∂s
+ ρ

∂

∂ρ

)
,

which gives the subalgebra

X̂ = 2(T0− t)
∂

∂(T0 − t)
+ r

∂

∂r
−A ∂

∂A
+s(1+γ)

∂

∂s
+(1−n+γ)ρ

∂

∂ρ
, (6.166)

where γ is some “monitoring” parameter. One can readily see that γ = −1 cor-
responds to the situation in which s is an invariant of the subalgebra (6.166). The
corresponding symmetry operator is the following:

X̂∗ = 2(T0 − t)
∂

∂(T0 − t)
+ r

∂

∂r
− A ∂

∂A
− nρ ∂

∂ρ
.

Let us write out the invariant representation of the solution in this case:

A = Ā(λ)(T0 − t)−1/2, Φ = Φ̄(λ), ρ = ρ̄(λ)(T0 − t)−n/2,
s = s̄(λ), λ = r(T0 − t)−1/2.

(6.167)

The ordinary differential system and the corresponding ordinary difference sys-
tem can readily be obtained by substituting the invariant representation (6.167) into
system (6.144) and (6.159)–(6.162).

This solution has the desired property of having a self-similar form and of be-
coming singular in finite time T0 with amplitude proportional to (T0− t)−1/2 while
evolving on a length scale proportional to (T0 − t)1/2. Thus, if such a solution ex-
ists for the underlying problem, it is admitted by the discretization. As was noted
earlier, this is a significant feature of such a method, as it is known [131] that if
n > 2, then the stable form of singularity evolution is that of a monotone decreas-
ing self-similar solution.

Since s is an invariant of this solution, there is no movement of waves in the
s-direction for the invariant solution of the form (6.167), and any distinctive point
of the solution (6.167) in λ (gradient maximum or zero point for example) does
not move in the s-direction. Thus, s is a true computational variable, in the sense
that a computationally “difficult” problem when expressed in terms of r has been
transformed into a more “regular” problem in s allowing for a more straightforward
discretization.





Chapter 7

Hamiltonian Formalism
for Difference Equations:
Symmetries and First Integrals

In this chapter, the relationship between symmetries and first integrals for differ-
ence Hamiltonian equations is considered. These results are built upon those for
the continuous canonical Hamiltonian equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, . . . , n, (7.1)

considered in the Introduction. It was shown there that the continuous Hamiltonian
equations can be obtained by the variational principle from action functionals. On
the basis of Noether-type identities, there was developed a Noether-type theorem
for the canonical Hamiltonian equations.

Now we shall develop a similar mathematical formalism for their discrete coun-
terparts, i.e., for difference Hamiltonian equations [43–45]. The approach based on
symmetries of discrete functionals provides a simple, clear way to construct first
integrals of difference Hamiltonian equations by means of purely algebraic ma-
nipulations. It can be used to preserve the structure properties of the underlying
differential equations under the discretization procedure; this is useful for numeri-
cal implementation.

7.1. Discrete Legendre Transform

Consider difference Hamiltonian equations at some lattice point (t,q,p). The no-
tation is given in Fig. 7.1. Generally, the lattice in not regular. Using the analogy
with the continuous case, we can construct discrete Hamiltonian equations on the
basis of the discrete equations in the Lagrangian framework. We use the slightly
modified version [83] of the Legendre transform. The discrete Legendre transform
of L(t, t+,q,q+) with respect to q+ is the function

H(t, t+,q,p
+) = p+

i D
+h

(qi)− L(t, t+,q,q+), (7.2)

221
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where D
+h

(qi) = (qi+ − qi)/h+ and q+ is defined implicitly by

p+ = h+
∂L
∂q+

. (7.3)

Remark. Alternatively, one can consider the discrete Legendre transform with re-
spect to q. Then

H(t, t+,q+,p) = piD
+h

(qi)− L(t, t+,q,q+), (7.4)

where q is found from

p = −h+
∂L
∂q

. (7.5)

For the discrete Legendre transform (7.2), (7.3) we obtain the following rela-
tions for the derivatives of the Hamiltonian function:

∂H
∂p+

= D
+h

(q),
∂H
∂q

= −p+

h+

− ∂L
∂q

,

∂H
∂t

=
p+
i

h+

D
+h

(qi)− ∂L
∂t
,

∂H
∂t+

= −p
+
i

h+

D
+h

(qi)− ∂L
∂t+

.

By using these relations as well as relations (7.2) and (7.3), we can transform the
n+ 1 global extremal equations for the Lagrangian L(t, t+,q,q+) into the Hamil-
tonian framework. We arrive at the system of 2n+ 1 equations

D
+h

(qi) =
∂H
∂p+

i

, D
+h

(pi) = −∂H
∂qi

, i = 1, . . . , n,

∂H
∂t

+
h−
h+

∂H
∂t

−
− D

+h
(H−) = 0,

(7.6)

where H = H(t, t+,q,p+) and H− = S
−h

(H) = H(t−, t,q−,p). We refer to

these equations as the difference (or discrete) Hamiltonian equations. Although
these equations have been introduced in terms of the discrete Legendre transform,
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they can be considered independently of the Lagrangian framework (see the next
section).

Note that the first 2n equations in (7.6) are first-order discrete equations, which
correspond to the canonical Hamiltonian equations (7.1) in the continuous limit.
These (and equivalent) equations were considered in a number of papers [3, 52,
53, 129]. The last equation is of second order. It defines the lattice on which the
canonical Hamiltonian equations are discretized. In the continuous limit, the lattice
equation itself disappears. Being a second-order difference equation, it needs one
more initial value (the first spacing of the lattice) to state the initial-value problem.

Remark. The second version (7.4), (7.5) of the discrete Legendre transform yields
the discrete Hamiltonian equations

D
+h

(qi) =
∂H
∂pi

, D
+h

(pi) = − ∂H
∂qi+

, i = 1, . . . , n,

∂H
∂t

+
h−
h+

∂H
∂t

−
− D

+h
(H−) = 0.

(7.7)

whereH = H(t, t+,q
+,p) andH− = S

−h
(H) = H(t−, t,q,p−).

7.2. Variational Statement of the Difference Hamiltonian
Equations

The discrete Hamiltonian equations (7.6), which were obtained by an application of
the discrete Legendre transform to the discrete Euler–Lagrange equations, can be
obtained from a variational principle. Indeed, consider the finite-difference func-
tional

Hh=
∑

Ω

(p+
i D

+h
(qi)−H(t, t+,q,p+))h+

=
∑

Ω

(p+
i (qi+ − qi)−H(t, t+,q,p+)h+). (7.8)

The variation of this functional along a curve qi = φi(t), pi = ψi(t), i = 1, . . . , n,
at some point (t,q,p) will affect only two terms in the sum (7.8),

Hh = · · ·+ pi(q
i − qi−)−H(t−, t,q−,p)h−

+ p+
i (qi+ − qi)−H(t, t+,q,p+)h+ + · · · .

Therefore, we obtain the expression

δHh =
δH
δpi

δpi +
δH
δqi

δqi +
δH
δt
δt
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for the variation of the functional, where δqi = φ′iδt, δpi = ψ′iδt, i = 1, . . . , n, and

δH
δpi

= qi − qi− − h−
∂H
∂pi

−
, i = 1, . . . , n,

δH
δqi

= −
(
p+
i − pi + h+

∂H
∂qi

)
, i = 1, . . . , n,

δH
δt

= −
(
h+
∂H
∂t
−H + h−

∂H
∂t

−
+H−

)
.

(7.9)

For the stationary value of the finite-difference functional (7.8), we obtain the sys-
tem of 2n+ 1 equations

δH
δpi

= 0,
δH
δqi

= 0, i = 1, . . . , n,
δH
δt

= 0, (7.10)

which are equivalent to the discrete Hamiltonian equations (7.6).
Note that the variational equations (7.9) can be derived by applying the varia-

tional operators

δ

δpi
=

∂

∂pi
+ S
−h

∂

∂p+
i

, i = 1, . . . , n, (7.11)

δ

δqi
=

∂

∂qi
+ S
−h

∂

∂qi+
, i = 1, . . . , n, (7.12)

δ

δt
=

∂

∂t
+ S
−h

∂

∂t+
(7.13)

to the discrete Hamiltonian elementary action p+
i (qi+ − qi)−H(t, t+,q,p

+)h+.
For the variation of the functional (7.8) along an orbit of the group generated

by the operator

X = ξ(t,q,p)
∂

∂t
+ ηi(t,q,p)

∂

∂qi
+ ζi(t,q,p)

∂

∂pi
, (7.14)

we have δt = ξδa, δqi = ηiδa, and δpi = ζiδa, i = 1, . . . , n, where δa is the varia-
tion of the group parameter. The stationary value of the finite-difference functional
(7.8) along the flow generated by this vector field is given by the equation

ζi
δH
δpi

+ ηi
δH
δqi

+ ξ
δH
δt

= 0,

which explicitly depends on the coefficients of the generator and is the Hamiltonian
counterpart of the quasi-extremal equation in the Lagrangian framework.

If we have a Lie algebra of vector fields of dimension≥ 2n+1, then the station-
ary value of the functional (7.8) along the entire flow is attained on the solutions of
the system (7.10).
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Remark. In a similar way, one can show that the discrete Hamiltonian equations
(7.7) can be obtained from variations of the finite-difference functional

Hh =
∑

Ω

(piD
+h

(qi)−H(t, t+,q+,p))h+

=
∑

Ω

(pi(q
i
+ − qi)−H(t, t+,q+,p)h+).

In forthcoming sections, we consider the invariance and conservation proper-
ties of discrete Hamiltonian equations. For simplicity, we restrict ourselves to the
version (7.6) of such equations. All results can be equivalently stated for the other
version, i.e., for the discrete Hamiltonian equations (7.7).

7.3. Symplecticity of Difference Hamiltonian Equations

The canonical Hamiltonian equations generate symplectic transformations in the
phase space (q,p). For the solution (q(t),p(t)) of system (7.1) with initial data
q(t0) = q0, p(t0) = p0, this property can be expressed as the conservation of the
2-form

dpi ∧ dqi = dp0
i ∧ dqi0.

This property is used to select symplectic numerical integrators [84,128] as numer-
ical schemes with the property

dpn+1
i ∧ dqin+1 = dpni ∧ dqin, n = 0, 1, . . . . (7.15)

Definition (7.15) of conservation of symplecticity cannot be used for discretization
on solution-dependent meshes such as the discrete Euler–Lagrange equations and
the discrete Hamiltonian equations (7.6). Generally, the variations of the dependent
variables involve the variations of the lattice points. This is clearly seen from the
variational equations

dqi+ − dqi =
∂2(Hh+)

∂p+
i ∂t

dt+
∂2(Hh+)

∂p+
i ∂t+

dt+ +
∂2(Hh+)

∂p+
i ∂q

j
dqj +

∂2(Hh+)

∂p+
i ∂p

+
j

dp+
j ,

i = 1, . . . , n,

dp+
i − dpi = −∂

2(Hh+)

∂qi∂t
dt− ∂2(Hh+)

∂qi∂t+
dt+ −

∂2(Hh+)

∂qi∂qj
dqj − ∂2(Hh+)

∂qi∂p+
j

dp+
j ,

i = 1, . . . , n,

∂2(Hh+)

∂t2
dt+

∂2(Hh+)

∂t∂t+
dt+ +

∂2(Hh+)

∂t∂qj
dqj +

∂2(Hh+)

∂t∂p+
j

dp+
j

+
∂2(H−h−)

∂t∂t−
dt− +

∂2(H−h−)

∂t2
dt+

∂2(H−h−)

∂t∂qj−
dqj− +

∂2(H−h−)

∂t∂pj
dpj = 0
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for system (7.6). These equations are a system of 2n+ 1 linear algebraic equations
for the variations dt+, dq+, and dp+ at the next lattice point. Thus, the variational
equations considered in the phase space (without the variations of the independent
variable) form an overdetermined system of 2n + 1 equations for 2n variables,
which has only the trivial solution in the general case.

Therefore, we are forced to look for symplecticity in the extended phase space
(t,q,p). (See also the general considerations for the continuous case in [25].)

THEOREM. The difference Hamiltonian equations (7.6) preserve symplecticity:

dp+
i ∧ dqi+ − dE+ ∧ dt+ = dpi ∧ dqi − dE ∧ dt,

where

E+ = H + h+
∂H
∂t+

, E = H− + h−
∂H
∂t

−

are the discrete energies for the lattice points t+ and t.

Proof. From the first 2n variational equations, we obtain

dp+
i ∧ dqi+ − dpi ∧ dqi =

∂2(Hh+)

∂p+
i ∂t

dp+
i ∧ dt+

∂2(Hh+)

∂p+
i ∂t+

dp+
i ∧ dt+

+
∂2(Hh+)

∂qi∂t
dqi ∧ dt+

∂2(Hh+)

∂qi∂t+
dqi ∧ dt+. (7.16)

With the help of the relations

dE+ =
∂2(Hh+)

∂t∂t+
dt+

∂2(Hh+)

∂t2+
dt+ +

∂2(Hh+)

∂qj∂t+
dqj +

∂2(Hh+)

∂p+
j ∂t+

dp+
j

dE =
∂2(H−h−)

∂t−∂t
dt− +

∂2(H−h−)

∂t2
dt+

∂2(H−h−)

∂qj−∂t
dqj− +

∂2(H−h−)

∂pj∂t
dpj

= −∂
2(Hh+)

∂t2
dt− ∂2(Hh+)

∂t∂t+
dt+ −

∂2(Hh+)

∂t∂qj
dqj − ∂2(Hh+)

∂t∂p+
j

dp+
j

for the variations (where the last variational equation was used), we obtain

dE+ ∧ dt+ − dE ∧ dt =
∂2(Hh+)

∂p+
i ∂t

dp+
i ∧ dt+

∂2(Hh+)

∂p+
i ∂t+

dp+
i ∧ dt+

+
∂2(Hh+)

∂qi∂t
dqi ∧ dt+

∂2(Hh+)

∂qi∂t+
dqi ∧ dt+. (7.17)

By comparing the right-hand sides of (7.16) and (7.17), we arrive at the statement
of the theorem.
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7.4. Invariance of the Hamiltonian Action

To consider discrete Hamiltonian equations, we need three lattice points. The pro-
longation of the Lie group operator (7.14) to the neighboring points (t−,q−,p

−)
and (t+,q+,p

+) is as follows:

X = ξ
∂

∂t
+ ξ−

∂

∂t−
+ ξ+

∂

∂t+
+ ηi

∂

∂qi
+ ηi−

∂

∂qi−
+ ηi+

∂

∂qi+

+ ζi
∂

∂pi
+ ζ−i

∂

∂p−i
+ ζ+

i

∂

∂p+
i

+ (ξ+ − ξ)
∂

∂h+

+ (ξ − ξ−)
∂

∂h−
, (7.18)

where

ξ− = ξ(t−,q−,p
−), ηi− = ηi(t−,q−,p

−), ζ−i = ζi(t−,q−,p
−),

ξ+ = ξ(t+,q+,p
+), ηi+ = ηi(t+,q+,p

+), ζ+
i = ζi(t+,q+,p

+).

Consider the functional (7.8) on some lattice given by equation

Ω(t, t−, t+,q,p,q−,p−,q+,p+) = 0. (7.19)

DEFINITION 7.1. We say that the discrete Hamiltonian function H considered on
the mesh (7.19) is invariant with respect to the group generated by the opera-
tor (7.14) if the action functional (7.8) considered on the mesh (7.19) is an invariant
of the group.

THEOREM 7.2. The Hamiltonian function considered together with the mesh (7.19)
is invariant with respect to the group generated by the operator (7.14) if and only
if [

ζ+
i D

+h
(qi) + p+

i D
+h

(ηi)−X(H)−HD
+h

(ξ)
]∣∣

Ω=0
= 0, XΩ

∣∣
Ω=0

= 0. (7.20)

Proof. The invariance condition readily follows from the action of X on the func-
tional:

X(Hh) = X
(∑

Ω

(p+
i (qi+ − qi)−Hh+)

)
=
∑

Ω

(ζ+
i (qi+ − qi) + p+

i (ηi+ − ηi)−X(H)h+ −H(ξ+ − ξ))

=
∑

Ω

(ζ+
i D

+h
(qi) + p+

i D
+h

(ηi)−X(H)−HD
+h

(ξ))h+ = 0.

It should be supplemented with the invariance of the mesh, which is obtained by
the action of the symmetry operator on the mesh equation (7.19).

In the general case, the lattice is provided by the discrete Hamiltonian equations
(7.6). Therefore, we need to require their invariance to consider the invariance of
the Hamiltonian function.
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7.5. Difference Hamiltonian Identity and Noether-Type
Theorem for Difference Hamiltonian Equations

Just as in the continuous case, the invariance of a difference Hamiltonian on a
specified mesh yields first integrals of the discrete Hamiltonian equations.

LEMMA 7.3. For any smooth functionH = H(t, t+,q,p+), one has the identity

ζ+
i D

+h
(qi) + p+

i D
+h

(ηi)−X(H)−HD
+h

(ξ)

≡ −ξ
(
∂H
∂t

+
h−
h+

∂H
∂t

−
− D

+h
(H−)

)
− ηi

(
D
+h

(pi) +
∂H
∂qi

)
+ ζ+

i

(
D
+h

(qi)− ∂H
∂p+

i

)
+ D

+h

[
ηipi − ξ

(
H− + h−

∂H
∂t

−)]
. (7.21)

Proof. The identity can be established by a straightforward computation.

We refer to this identity as the difference Hamiltonian identity. It permits one
to state the following result.

THEOREM 7.4. The difference Hamiltonian equations (7.6) invariant with respect
to the symmetry operator (7.14) possess the first integral

J = ηipi − ξ
(
H− + h−

∂H
∂t

−)
if and only if the Hamiltonian function is invariant with respect to the same sym-
metry on the solutions of Eqs. (7.6).

Proof. This result is a consequence of identity (7.21). The invariance of the discrete
Hamiltonian equations is needed to guarantee the invariance of the mesh defined
by these equations.

Remark. Theorem 7.4 can be generalized to the case of divergence invariance of
the Hamiltonian action, i.e., to the case in which

ζ+
i D

+h
(qi) + p+

i D
+h

(ηi)−X(H)−HD
+h

(ξ) = D
+h

(V ), (7.22)

where V = V (t,q,p). If this condition holds on the solutions of the discrete
Hamiltonian equations (7.6), then one has the first integral

J = ηipi − ξ
(
H− + h−

∂H
∂t

−)
− V.
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Remark. For discrete Hamiltonian equations with Hamiltonian functions H =
H(h+,q,p

+) invariant with respect to time translations, the energy is conserved,

E = H− + h−
∂H−

∂h−
= H + h+

∂H
∂h+

.

Note thatH is not the discrete energy; it has the meaning of generating function of
the discrete Hamiltonian flow.

Remark. In a similar way, one can consider the identity

ζiD
+h

(qi) + piD
+h

(ηi)−X(H)−HD
+h

(ξ)

≡ −ξ
(
∂H
∂t

+
h−
h+

∂H
∂t

−
− D

+h
(H−)

)
− ηi+

(
D
+h

(pi) +
∂H
∂qi+

)
+ ζi

(
D
+h

(qi)− ∂H
∂pi

)
+ D

+h

[
ηipi − ξ

(
H− + h−

∂H
∂t

−)]
,

which permits stating Noether’s theorem for the second version of the difference
Hamiltonian equations (7.7).

7.6. Invariance of Difference Hamiltonian Equations

An application of the discrete variational operators (7.11)–(7.13) to the expression

ζ+
i (qi+ − qi) + p+

i (ηi+ − ηi)−X(H)h+ −H(ξ+ − ξ)
≡
(
ζ+
i D

+h
(qi) + p+

i D
+h

(ηi)−X(H)−HD
+h

(ξ)
)
h+

obtained by action of the symmetry operator X on the elementary action gives the
following result.

LEMMA 7.5. For any smooth functionH = H(t, t+,q,p+), one has the identities

δ

δpj

(
ζ+
i (qi+ − qi) + p+

i (ηi+ − ηi)−X(H)h+ −H(ξ+ − ξ)
)

= X

(
δH
δpj

)
+
∂ζi
∂pj

δH
δpi

+
∂ηi

∂pj

δH
δqi

+
∂ξ

∂pj

δH
δt
, j = 1, . . . , n,

δ

δqj
(
ζ+
i (qi+ − qi) + p+

i (ηi+ − ηi)−X(H)h+ −H(ξ+ − ξ)
)

= X

(
δH
δqj

)
+
∂ζi
∂qj

δH
δpi

+
∂ηi

∂qj
δH
δqi

+
∂ξ

∂qj
δH
δt

j = 1, . . . , n,
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δ

δt

(
ζ+
i (qi+ − qi) + p+

i (ηi+ − ηi)−X(H)h+ −H(ξ+ − ξ)
)

= X

(
δH
δt

)
+
∂ζi
∂t

δH
δpi

+
∂ηi

∂t

δH
δqi

+
∂ξ

∂t

δH
δt
.

Using the lemma, we can relate the invariance of the discrete Hamiltonian equa-
tions to that of the Hamiltonian.

THEOREM 7.6. If the discrete HamiltonianH is invariant with respect to the oper-
ator (7.14), then so are the discrete Hamiltonian equations (7.6).

Proof. If the difference Hamiltonian H is invariant, then the left-hand sides of the
identities in Lemma 7.5 are zero. It follows that the variational equations (7.9) are
invariant. Consequently, so are the difference Hamiltonian equations, which are
equivalent to these variational equations.

Remark. If the difference Hamiltonian H is divergence invariant, then so are the
discrete Hamiltonian equations (7.6). This follows from the fact that total finite
differences belong to the kernel of the discrete variational operators.

By using the identities in Lemma 7.5, we can refine the result of Theorem 7.6
and state a necessary and sufficient condition for the difference Hamiltonian equa-
tions to be invariant. This explicitly shows the distinction between the invariance
of Hamiltonians and the invariance of Hamiltonian equations.

THEOREM 7.7. The difference Hamiltonian equations (7.6) are invariant with re-
spect to a symmetry (7.14) if and only if the following conditions are true (on the
solutions of the discrete Hamiltonian equations):

δ

δpj

(
ζ+
i (qi+ − qi) + p+

i (ηi+ − ηi)−X(H)h+ −H(ξ+ − ξ)
) ∣∣

(7.6)
= 0,

j = 1, . . . , n,

δ

δqj
(
ζ+
i (qi+ − qi) + p+

i (ηi+ − ηi)−X(H)h+ −H(ξ+ − ξ)
) ∣∣

(7.6)
= 0,

j = 1, . . . , n,

δ

δt

(
ζ+
i (qi+ − qi) + p+

i (ηi+ − ηi)−X(H)h+ −H(ξ+ − ξ)
) ∣∣

(7.6)
= 0.

Proof. We use the fact that the discrete Hamiltonian equations (7.6) are equivalent
to the variational equations (7.10). Now the claim follows from the identities in
Lemma 7.5.
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7.7. Examples

In this section, we present applications of the theoretical results presented above to
a number of differential equations and their discrete counterparts.

7.7.1. Discrete harmonic oscillator

Consider the one-dimensional harmonic oscillator

ü+ u = 0. (7.23)

The symmetry group admitted by this equation and the corresponding first integrals
can be found, for example, in [94].

Now consider the one-dimensional harmonic oscillator in the Hamiltonian form

q̇ = p, ṗ = −q. (7.24)

These equations are generated by the Hamiltonian function

H(t, q, p) =
1

2
(q2 + p2).

Consider the discretization

q+ − q
h+

=
p+ p+

2
,

p+ − p
h+

= −q + q+

2
(7.25)

of Eqs. (7.24) on the uniform mesh h+ = h− by the midpoint rule. This discretiza-
tion can be rewritten as the system of equations

D
+h

(q) =
4

4− h2
+

(
p+ +

h+

2
q

)
, D

+h
(p) = − 4

4− h2
+

(
q +

h+

2
p+

)
,

h+ = h− = h.

(7.26)

It can be shown that this system is generated by the discrete Hamiltonian function

H(t, t+, q, p+) =
2

4− h2
+

(q2 + p2
+ + h+qp+).

Indeed, the first and second equations in (7.6) are exactly the same as in (7.26). The
last equation in (7.6) acquires the form

−
2(4 + h2

+)

(4− h2
+)2

(q2 + p2
+)− 16h+

(4− h2
+)2

qp+

+
2(4 + h2

−)

(4− h2
−)2

(q2
− + p2) +

16h−
(4− h2

−)2
q−p = 0.
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Using the first and second equations, we can rewrite it as(
− 2

4 + h2
+

+
2

4 + h2
−

)
(q2 + p2) = 0.

Therefore, this equation can be taken in the equivalent form

h+ = h−

provided that q2 + p2 6= 0.
The system of difference equations (7.26) in particular admits the symmetries

X1 = sin(ωt)
∂

∂q
+ cos(ωt)

∂

∂p
, X2 = cos(ωt)

∂

∂q
− sin(ωt)

∂

∂p
,

X3 =
∂

∂t
, X4 = q

∂

∂q
+ p

∂

∂p
, X5 = p

∂

∂q
− q ∂

∂p
,

where

ω =
arctan(h/2)

h/2
.

For the symmetry operators X1 and X2, we have the divergence invariance condi-
tions

ζ+D
+h

(q) + p+D
+h

(η)−X(H)−HD
+h

(ξ) = D
+h

(V )

satisfied on the solutions of Eqs. (7.26) with the functions V1 = q cos(ωt) and
V2 = −q sin(ωt), respectively. Therefore, we obtain the corresponding two first
integrals

J1 = p sin(ωt)− q cos(ωt), J2 = p cos(ωt) + q sin(ωt).

The symmetry operator X3 satisfies the invariance condition

ζ+D
+h

(q) + p+D
+h

(η)−X(H)−HD
+h

(ξ) = 0.

Thus, we obtain the first integral

J3 = − 4

4− h2
−

(
4 + h2

−

4− h2
−

q2
− + p2

2
+

4h−
4− h2

−
q−p

)
.

Using the first and second equations in (7.26), we can simplify it as

J3 = − 4

4 + h2
−

q2 + p2

2
.

Since the first integrals J1 and J2 give the conservation law

J 2
1 + J 2

2 = q2 + p2 = const,
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we can equivalently take the third integral in the form J̃3 = h−, which permits
using a regular lattice.

The three first integrals J1, J2, J̃3 are sufficient for the integration of sys-
tem (7.25). We obtain the solution

q = J2 sin(ωt)− J1 cos(ωt), p = J1 sin(ωt) + J2 cos(ωt) (7.27)

on the lattice

ti = t0 + ih, i = 0,±1,±2, . . . , h = J̃3. (7.28)

7.7.2. Modified discrete harmonic oscillator (exact scheme)

The solutions of the discrete harmonic oscillator in the Lagrangian case (7.23) and
in the Hamiltonian case (7.27), (7.28) follow the same trajectory as the solution of
the continuous harmonic oscillator but at a different velocity. These discretization
errors can be corrected by time reparametrization. Hence we obtain an exact dis-
cretization of the harmonic oscillator, i.e., a discretization that gives the solution of
the underlying ordinary differential equation.

The discrete harmonic oscillator admits reparametrization. Consider the har-
monic oscillator (7.24) discretized as

q+ − q
h+

= Ω
p+ p+

2
,

p+ − p
h+

= −Ω
q + q+

2
, h+ = h− = h, (7.29)

where

Ω =
tan(h/2)

h/2
.

By analogy with Sec. 7.7.1, it can be shown that this discrete model of the harmonic
oscillator is generated by the discrete Hamiltonian

H(t, t+, q, p+) =
2Ω

4− Ω2h2
+

(q2 + p2
+ + Ω2h+qp+).

The system of difference equations (7.29) admits the symmetries

X1 = sin t
∂

∂q
+ cos t

∂

∂p
, X2 = cos t

∂

∂q
− sin t

∂

∂p
,

X3 =
∂

∂t
, X4 = q

∂

∂q
+ p

∂

∂p
, X5 = p

∂

∂q
− q ∂

∂p
.

For the symmetries X1 and X2, which satisfy the divergence invariance condi-
tion (7.22) with the functions V1 = q cos t and V2 = −q sin t, we obtain two first
integrals,

J1 = p sin t− q cos t, J2 = p cos t+ q sin t.
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The operator X3 satisfies the invariance condition (7.20) and gives the first integral
J3, which (by analogy with Sec. 7.7.1) can be taken in the equivalent form J̃3 =
h−. The scheme (7.29) gives the exact solution of the harmonic oscillator, which
can be found with the help of the first integrals J1, J2, and J̃3 as

q = J2 sin t− J1 cos t, p = J1 sin t+ J2 cos t.

This discrete solution is given on the lattice

ti = t0 + ih, i = 0,±1,±2, . . . , h = J̃3.

Exact schemes for the two- and four-dimensional harmonic oscillators were used
in [80] to construct exact schemes for the two- and three-dimensional Kepler mo-
tion, respectively.

7.7.3. Nonlinear motion

The equations

q̇ =
4

p2
, ṗ = 1

are generated by the Hamiltonian

H = −4

p
− q.

Consider the discretization

q+ − q
h+

=
4

(p+ − h+/2)(p+ h+/2)
,

p+ − p
h+

= 1 (7.30)

on the lattice
h+

p+ − h+/2
=

h−
p− h−/2

. (7.31)

This scheme is invariant with respect to the Lie group operators

X1 =
∂

∂t
, X2 =

∂

∂q
, X3 = t

∂

∂t
− q ∂

∂q
+ p

∂

∂p
.

The difference equations (7.30) can be rewritten as

q+ − q
h+

=
4

(p+ − h+/2)2
,

p+ − p
h+

= 1.

These equations are generated by the discrete Hamiltonian function

H(t, t+, q, p+) = − 4

p+ − h+/2
− q.
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The last discrete Hamiltonian equation in (7.6) is

− 4p+

(p+ − h+/2)2
− q +

4p

(p− h−/2)2
+ q− = 0.

This equation leads to the lattice equation (7.31) on the solutions of (7.30).
The Hamiltonian function is invariant with respect to the symmetry operators

X1 and X3. For the symmetry X2, we have divergence invariance with V2 = t.
Therefore, these symmetries give three first integrals,

I1 =
4p+

(p+ − h+/2)2
+ q, I2 = p+ − t+,

I3 = −q+p+ + t+

(
4p+

(p+ − h+/2)2
+ q

)
.

Note that

4− I1I2 − I3 =

(
h+

p+ − h+/2

)2

on the solutions of the difference equations (7.30), which justifies the lattice (7.31).
By setting

I1 = A, I2 = B,
h+

p+ − h+/2
= ε,

we find the solution of the discrete model in the form

q = A− 4

t+B

(
1− ε2

4

)
, p = t+B.

The integration of the lattice equation can be found in [48].





Chapter 8

Discrete Representation of Ordinary
Differential Equations with Symmetries

In this chapter, we consider the relationships between the objects under study,
namely, between differential and difference equations and transformation groups
admitted by them.

Using the Taylor series, one can readily write out the differential representation
of a given difference equation. This is a formal power series whose sum trun-
cated at a certain term is the so-called differential approximation to the difference
equation. The differential representation (an infinite-order differential equation)
formally admits the same transformation group as the original difference equation,
but the differential approximation, which is a finite-order differential equation, may
preserve the symmetry of neither the original equation nor the difference equation.

Using the Lagrange formula and formal Newton series expansions, one can
construct a discrete representation of the differential equation, which preserves the
group of the original differential equation. But the truncated partial sums of such
series, i.e., the difference approximations to the differential equation, need not pre-
serve the admissible group in general.

In this section, we consider all these objects only for second-order ordinary
differential equations and the corresponding schemes on a uniform mesh. For first-
order ordinary differential equations whose symmetry is known, one can readily
write out not only the invariant scheme but also the exact scheme; see Sec. 3.1.
In Sec. 3.2, we succeeded in writing invariant schemes and meshes on a three-
point stencil for the second-order ordinary differential equations. In Chapters 6
and 7, we constructed difference schemes that additionally have difference first
integrals. The solutions of such schemes are very close to the solutions of ordinary
differential equations not only in the approximation order but also in the form of
the curves, which differ from the exact curves (solutions) only by an insignificant
dilation or shrinking. It turns out that in the set of parametric families of invariant
difference schemes for second-order ordinary differential equations one can single
out schemes that have no approximation error, i.e., the discrete representation of
differential equations, or exact difference schemes.

237
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8.1. The Discrete Representation of ODE as a Series

1. Each second-order ordinary difference equation

F
h

(x, x+, x−, v, v+, v−) = 0

on the uniform mesh
h+ = h− = h

can be represented in the “continuous” space of sequences Z̃ = (x, u, u1, u2, . . .)
by means of the Taylor group with infinitesimal operator D.

Let us illustrate this by an example.

EXAMPLE. Let the following ordinary differential equation be given in Z̃:

u′′ = u2, (8.1)

and let the following finite-difference equation on a uniform mesh approximat-
ing (8.1) up to the second order in h be given in Z

h
:

v
h
xx̄ = v2. (8.2)

To represent (8.2) in Z̃, one has to use the Taylor formula for v
h
xx̄:

v
h
xx̄ = D

−h
D
+h

(v) =
∞∑
s=1

(−h)s−1

s!

∞∑
k=1

hk−1

k!
Ds+k(v).

Thus, Eq. (8.2) in Z̃ is a formal power series in h:
∞∑
s=1

∞∑
k=1

(−h)s−1hk−1

s!k!
vs+k = v2, (8.3)

where vm is the mth derivative with respect to x.

The representation (8.3) allows us to consider the approximate object, namely,
the differential approximation of the difference equation. For example, omitting in
(8.3) the terms of higher order than h2, we obtain the first differential approximation
to (8.2):

v2 +
h2

12
v4 = v2.

Taking the terms of the next order into account, we similarly obtain the second,
third, etc. differential approximations to the difference equation.

In Z̃, the differential approximation of any finite order occupies an intermediate
position in the functional-analytic sense between the difference equation (in contin-
uous representation) and the differential equation. But the fact that the differential
approximation is close to the difference equation and to the differential equation in
the sense of approximation does not guarantee the same closeness in the algebraic
aspect, in particular, concerning the closeness of their group properties.
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2. Thus, so far we have three objects in Z̃ and Z
h

: the differential equation (sys-
tem), the difference equation, and the continuous representation of the difference
equation. For symmetry reasons, it is necessary to have the fourth object, namely,
an exact expression for the differential equation in the mesh space Z

h
.

Earlier, for the Taylor group operator

D =
∂

∂x
+ u1

∂

∂u
+ u2

∂

∂u1
+ · · ·

we obtained the representation

D± =
∂

∂x
+ D̃
±h

(u)
∂

∂u
+ D̃
±h

(u
h
s)

∂

∂u
h
s

+ · · ·

in the mesh space, where D̃
±h

=
∑∞

n=1
(∓h)n−1

n
D
±h

n. The correspondence between the

differential and finite-difference variables is given by the Lagrange formula

D ⇐⇒


∞∑
n=1

(−h)n−1

n
D
+h

n,

∞∑
n=1

(+h)n−1

n
D
−h

n
(8.4)

Formula (8.4) permits one to represent the finite-difference variables in Z̃ and hence
to obtain a representation of any other difference equation.

EXAMPLE. We use the Lagrange formula (8.4) to rewrite Eq. (8.1), which was
considered above on the uniform mesh, in the mesh space Z

h
as

∞∑
s=1

(∓h)s−1

s
D
±h

s
∞∑
n=1

(∓h)n−1

n
D
±h

n(u) = u2. (8.5)

Formula (8.4) gives a nonunique representation for the differential variables: ei-
ther the right half-line, or the left half-line, or the entire line of the independent
variable x is used. With increasing order of the derivative us, the number of its dis-
crete representations also increases. For example, the representation (8.5) generally
means the following four representations:

I.
∞∑

s,n=1

(−h)s+n−2

s
D
+h

s+n(u) = u2.

II.
∞∑

s,n=1

hs+n−2

s
D
−h

s+n(u) = u2.

III.
∞∑
s=1

∞∑
n=1

(−h)s−1hn−1

sn
D
+h

sD
−h

n(u) = u2.

IV.
∞∑
s=1

∞∑
n=1

hs−1(−h)n−1

sn
D
−h

sD
+h

n(u) = u2.

(8.6)
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The formal series (8.6) represents the differential equation (8.1) in difference form;
these series will be called the “exact difference scheme” for (8.1) or the discrete
representation of the differential equation in series form.

In this one-dimensional case of a uniform mesh, the operators D
+h

and D
−h

com-

mute, and representations III and IV in (8.6) coincide. Representations I and II are
taken to each other by the discrete reflection group x→ −x, which acts as follows:
h → −h, S

+h
→ S
−h

, and D
+h
→ D
−h

. Representations III and IV are invariant under

reflection.
Thus, there is a significant difference between representations I (II) and III (IV).

To write out the differential equation in these representations, one uses a half-line
or the entire line of the independent variable, respectively. From the algebraic point
of view, this is the question of whether the reflection group is admissible. In this
respect, representations III and IV are preferable, because the original ordinary
differential equation admits the reflection group.

In more detail, from Eqs. (8.6) we obtain, to within O(h2),

u
h
xx − hu

h
xxx +O(h2) = u2,

u
h
x̄x̄ + hu

h
x̄x̄x̄ +O(h2) = u2,

u
h
x̄x +

h

2
(u
h
x̄x̄x − u

h
x̄xx) +O(h2) = u2,

u
h
xx̄ +

h

2
(u
h
x̄x̄x − u

h
x̄xx) +O(h2) = u2.

The finite-difference equations

u
h
xx − hu

h
xxx = u2, u

h
x̄x̄ + hu

h
x̄x̄x̄ = u2, u

h
xx̄ −

h2

2
u
h
xx̄xx̄ = u2 (8.7)

can be called the first difference approximation to the corresponding differential
equation in the mesh space Z

h
. In particular, it follows from (8.7) that the pres-

ence of the reflection group in representation III (IV) ensures the second order of
approximation. The difference approximation (of any order) to some differential
equation is a finite-order finite-difference equation and can be used to construct an
approximate difference model of the differential equation. Clearly, the situation in
the example considered above is of general character.

Note that we generally use distinct symbols (x, u) and (y, v) for the dependent
and independent variables in the notation of the spaces Z̃ and Z

h
; for simplicity,

we have assumed that x = y and u = v in the examples above. Moreover, the
space Z̃ should be supplemented with a nonlocal variable h, because the continuous
representation of a finite-difference equation contains the mesh spacing h.

Differential-difference equations, which are often used to analyze difference
schemes, occupy an independent position in the above scheme.
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3. We use the same example to show how the group admitted by the original ordi-
nary differential equation acts on the four models considered above.

One can consider the product

Z̃
h

= (x, u, u1, u2, . . . , h; y, v, v
h

1, v
h

2, . . . , h)

of the spaces Z̃ and Z
h

and treat the transition from Z̃ to Z
h

and vice versa as a

change of variables in Z̃
h

:

y = f(x, u), v = g(x, u). (8.8)

In a more general case, this change of variables (8.8) may be nonlocal.
The equation

u′′ = u2

in Z̃ admits the group G2 with generators

X1 =
∂

∂u
, X2 = x

∂

∂x
− 2u

∂

∂u
. (8.9)

Let us pass to a similar group in Z
h

by using the well-known formulas of change of
variables in the infinitesimal operator. We use the simplest change of the form (8.8),
namely, the identity transformation

y = x, v = u

in the subspace (x, u, h, y, v, h). We obtain the following expressions for the coef-
ficients of the operators X1 and X2 given by (8.9):

X̄i = Xi(f(x, u))
∂

∂y
+Xi(g(x, u))

∂

∂v
, i = 1, 2.

It follows that
X̄1 =

∂

∂y
, X̄2 = y

∂

∂y
− 2v

∂

∂v
.

Now it only remains to prolong X̄2 to finite-difference variables. (Note that X̄1 has
no prolongation.) Denoting

v
h

1 = D
+h

(v), v
h

2 = D
−h
D
+h

(v), . . .

and using the prolongation formulas obtained above, we have

X̄1 =
∂

∂y
,

X̄2 = y
∂

∂y
− 2v

∂

∂v
− 3v

h
1
∂

∂v1

− 4v
h

2
∂

∂v
h

2

− (n+ 2)v
h
n
∂

∂v
h
n

+ · · ·+ h
∂

∂h
. (8.10)
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The group Ḡ2 with operators (8.10) acts in the mesh space Z
h

and is similar to the
group G2 with operators (8.9).

Let us verify that the discrete representation (8.6) of a differential equation
in Z

h
admits the operators (8.10). We rewrite the representation (8.6) in the same

notation:
∞∑

s,n=1

(−h)s+n−2

sn
v
h
n+s − v2 = 0. (8.11)

Clearly, (8.11) admits the operator X̄1. The action of X̄2 on (8.11) gives
∞∑

s,n=1

(s+ n− 2)(−h)s+n−2

sn
v
h
n+s −

∞∑
s,n=1

(n+ s+ 2)(−h)s+n−2

sn
v
h
n+s + 4v2 = 0,

or, after simple transformations,

−4

( ∞∑
s,n=1

(−h)s+n−2

sn
v
h
n+s − v2

)
= 0,

whence it follows that the infinite-order difference equation (8.11) is invariant un-
der Ḡ2.

In a similar way, we can verify that the other representations in (8.6) are invari-
ant under the operators (8.10) as well.

In Z
h

, consider the equation

v
h
xx̄ − v2 = 0, (8.12)

which is constructed with the guaranteed property of invariance under the group
Ḡ2 with operators (8.10). As follows from (8.7), Eq. (8.12) is the “zero” difference
approximation to representation III (IV) in (8.6); i.e., it differs by O(h2) from the
infinite-order difference equation of the form III (IV) in (8.6). In this sense, the
difference equation (8.12) is the most natural approximation to (8.6).

It is clear that any difference equation approximating III (IV) in (8.6) to within
O(h2) is not necessarily invariant under Ḡr.

4. Now consider the representation (8.12) in Z̃,
∞∑
s=1

(−h)s−1

s!

∞∑
n=1

hn−1

n!
Ds+n(u)− u2 = 0. (8.13)

The group G2, similar to Ḡ2, can be prolonged to the variables us and h,

X1 =
∂

∂x
,

X2 = x
∂

∂x
− 2u

∂

∂u
− 3u1

∂

∂u1

− 4u2
∂

∂u2

− · · · − (n+ 2)un
∂

∂un
+ h

∂

∂h
.
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The action of X1 on (8.13) is zero, and the action of X2 on (8.13) gives

−
∞∑
s=1

∞∑
n=1

(−h)s−1hn−1

s!n!
(s+ n+ 2)us+n

+
∞∑
s=1

∞∑
n=1

(−h)s−1hs−1

s!n!
(s+ n− 2)us+n + 4u2 = 0,

which implies that

−4

[ ∞∑
s=1

∞∑
n=1

(−h)s−1hn−1

s!n!
us+n − u2

]∣∣∣∣
(8.13)

= 0.

It is obvious that (8.13) admits the group G2 similar to Ḡ2. The invariance of the
uniform mesh is also obvious.

Thus, one and the same group acts in Z̃
h

, and its representations in Z̃ and Z
h

differ by a similarity transformation and can be prolonged to the differential vari-
ables (us) and the difference variables (v

h
n) by different prolongation formulas. The

differential equation and its discrete representation in Z
h

admit similar groups Gr

and Ḡr. In general, an arbitrary difference scheme close in the approximation sense
to a given discrete representation need not admit a given group Ḡr. Apparently ap-
proximate models serving as differential approximations to difference schemes and
difference approximations to differential equations should be considered from the
standpoint of approximate groups [7]. In general, these approximate models need
not inherit the groups Gr and Ḡr of the exact models.

8.2. Three-Point Exact Schemes for Nonlinear ODE

In this section, we consider two examples in which exact difference schemes can
be represented in finite rather than series form. From the set of parametric families
of invariant schemes obtained in Sec. 6.9, we single out exact schemes that have
zero approximation error.

8.2.1. Let us construct an exact scheme for the ordinary differential equation

u′′ = u−3, (8.14)

which was considered in Sec. 6.9, where we constructed a one-parameter family of
invariant schemes with three first integrals.

Recall that Eq. (8.14) admits the three-parameter point transformation group
generated by the operators

X1 =
∂

∂x
, X2 = 2x

∂

∂x
+ u

∂

∂u
, X3 = x2 ∂

∂x
+ xu

∂

∂u
. (8.15)



244 DISCRETE REPRESENTATION OF ODE WITH SYMMETRIES

Equation (8.14) can be viewed as the Euler equation for the invariant functional
with Lagrange function ( 1

u2 − u2
x). By Noether’s theorem, Eq. (8.14) has three first

integrals

J1 = u2
x +

1

u2
= A0, J2 = 2

x

u2
− 2(u− uxx)ux = 2B0,

J3 =
x2

u2
+ (u− xux)2 = C0.

The general solution of the ordinary differential equation has the form

A0u
2 = (A0x+B0)2 + 1.

Earlier, we obtained the one-parameter family of invariant meshes

h+

uu+
=

h−

uu−
= ε, ε = const, 0 < ε� 1, (8.16)

and the difference equation
u
h
x − u

h
x̄

h−
=

1

u2u−
(8.17)

approximating the original equation (8.14) to the second order.
The exact solution of the invariant scheme (8.16)–(8.17)

A0u
2 = (A0x+B0)2 + 1− ε2

4
. (8.18)

is uniformly close to the exact solution of the original ordinary differential equation.
The exact scheme (if any) should admit the same transformation group as the

ordinary differential equation (8.14). Since it is invariant, such scheme and mesh
should be represented in terms of difference invariants. In particular, we can use
the mesh (8.16) constructed from difference invariants. (Any other invariant mesh
can be used as well.)

Let us construct an exact scheme starting from the parameter-dependent differ-
ence Lagrangian

L =
δ

uu+
−
(
u+ − u
h+

)2

,

where the parameter δ = const is as yet undefined.
The variational procedure on the same invariant mesh results in the following

intersection of quasi-extremals (the global extremal):

h+

uu+
=

h−

uu−
= ε, ε = const, 0 < ε� 1, (8.19)

u
h
x − u

h
x̄

h−
=

δ

u2u−
. (8.20)
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Using the difference analog of Noether’s theorem, we obtain the following first
integrals:

1. u
h
x

2 +
δ

uu+
= A0 = const,

2.
2x+ h+

2
ux
h

2 + δ
2x+ h+

2uu+
− u+ u+

2
u
h
x = B0 = const,

3. δ
x(x+ h+)

uu+
+

(
u+ u+

2
− 2x+ h+

2
u
h
x

)2

= C0 = const.

The two-parameter family of schemes (8.19)–(8.20) with constants ε and δ con-
tains the approximate scheme (8.16)–(8.17). To find the value of δ corresponding
to the exact scheme, we substitute the exact solution (8.18) into the scheme (8.19)–
(8.20) at three arbitrary points of some particular solution. This determines the
constant δ:

δ = 2
1−
√

1− ε2

ε2
. (8.21)

Since the action of the group G3 with operators (8.15) takes every solution of the
ordinary differential equation to every other solution and since the scheme (8.19)–
(8.20) is invariant, it follows that the resulting scheme with constant (8.21) gives the
entire family of exact solutions. Note that the scheme (8.19)–(8.20) still contains
the arbitrary parameter ε.

Thus, the scheme (8.19)–(8.20) with constant (8.21) is an exact scheme for
the ordinary differential equation (8.14); i.e., the family of solutions (8.18) of the
ordinary differential equation (8.14) identically satisfies this scheme. Of course,
the exact scheme (8.19)–(8.20) determines a set of points on the exact curve rather
than the entire smooth curve. The density of these points on the curve depends on
the parameter ε and can be arbitrary.

It is important to note that the first integrals (8.14) are difference (i.e., nonlo-
cal) integrals and cannot be obtained from Noether’s classical theorem for ordinary
differential equations. But they hold both for the exact scheme and for the original
ordinary differential equation.
Remark. It turns out that the invariant approximate scheme and the exact scheme
are related by a similarity transformation. More precisely, the dilation

x̃ = x · α2

√
1− ε2

4
, ũ = u · α

of x, or u, or their combination, where α 6= 0 is an arbitrary constant, relates the
invariant scheme (8.16)–(8.17) to the exact scheme (8.19)–(8.20). By transforming
the ODE (8.14), we can find a differential equation for which the approximate
invariant scheme (8.16)–(8.17) is exact. This equation has the form

u′′ =
1

u3

(
1− ε2

4

)
(8.22)
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Table 8.1: Differential equations and invariant difference models

Invariant ODEs Invariant difference models

u′′ =
1

u3

u
h
x − u

h
x̄

h−
=

δ

u2u−
, δ = 2

1−
√

1− ε2

ε2
,

h+

uu+
=

h−

uu−
= ε

u′′ =
1− ε2/4

u3

u
h
x − u

h
x̄

h−
=

1

u2u−
,

h+

uu+
=

h−

uu−
= ε

for each ε.

Thus, the approximate invariant scheme (8.16)–(8.17) is exact for the approxi-
mate differential equations (8.22).

All four objects are shown in Table 8.1. The ordinary differential equation is on
the left, and its discrete representation (exact scheme) is on the right. Each scheme
approximates the ordinary differential equation in the other row.

8.2.2. Consider the operator algebra

X1 =
∂

∂x
, X2 =

∂

∂u
, X3 = x

∂

∂x
+ (x+ u)

∂

∂u
.

The corresponding invariant ordinary differential equation

u′′ = exp(−u′) (8.23)

and invariant schemes were considered in Sec. 6.9. The Lagrangian

L = exp(u′) + u (8.24)

admits the operators X1 and X2 as variational symmetries,

X1L+ LD(ξ1) = 0, X2L+ LD(ξ2) = 1 = D(x).

For the second operator X2, one can find another Lagrangian,

L2 = xu′ − exp(u′),

which ensures the exact (nondivergence) variational symmetry

X2L2 + L2D(ξ2) = 0
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for X2. One can show that there does not exist any Lagrangian providing varia-
tional symmetries for all three operators, but it suffices to have two symmetries to
integrate Eq. (8.23). By Noether’s theorem, the Lagrangian (8.24) permits easily
computing the two first integrals

J1 = exp(u′)(1− u′) + u = A0, J2 = exp(u′)− x = B0,

from which one can readily find the general solution of Eq. (8.23) by eliminating
u′:

u = (B0 + x)(ln(B0 + x)− 1) + A0,

where A0 and B0 are arbitrary constants.
Recall that in Sec. 6.9 we constructed a conservative invariant model, which we

now rewrite as

α1

h+

(exp (yx)− exp (yx̄)) = 1, h+ = ε exp(1 + ε2)(1 + ε)−1−1/ε exp(yx),

(8.25)
where the constant

α1 = exp(1 + ε2)(1 + ε)−1/ε

ensures the second-order approximation. This scheme is completely invariant, has
two first integrals (see Sec. 6.9), and is integrable. By using the integrals and by
performing algebraic transformations, we find the general solution

u =
(
Bh + x

)
ln
(
Bh + x

)
− (1 + ε2)(x+Bh) + Ah. (8.26)

On this solution, the mesh equation in (8.25) is equivalent to the equation

h+ = ε(x+Bh). (8.27)

Such a mesh is an integral of the two-point invariant equation

h+ = (1 + ε)h−.

The scheme (8.25) and its general solution contain the small parameter ε, which
characterizes the mesh scale. This parameter can be found, for example, from the
initial data (x0, u0, x1, u1) for system (8.25).

The general solution (8.26), (8.27) provides a uniform second-order approxi-
mation to the general solution of the original ordinary differential equation (8.23).
We show that the family of models of the form (8.25) with a constant α1 contains
an exact scheme whose solution coincides with the solution of the ordinary dif-
ferential equation at the mesh points. The mesh can be arbitrarily dense on the
x-axis. The exact scheme should admit the same transformation group as the orig-
inal equation; therefore, it should be expressed in terms of difference invariants.
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In particular, this means that one can use the same mesh as in the approximate
invariant scheme (8.25).

To find the constants that single out the exact scheme from the set of approx-
imate schemes, we use the same idea as in the preceding example. Note that the
scheme (8.25) with indeterminate constant α1 is written out in the invariant form

J0 =
1

h+

(exp (ux)− exp (ux̄)) =
1

α
,

h+

h−
= (1 + ε), (8.28)

where J0 is an invariant of the group. To find the value of J0 on the exact solution,
it suffices to calculate this value at three points of an arbitrary particular solution.
For example, for such a solution we take

u = x lnx− x (8.29)

on the mesh
h+ = εx. (8.30)

We take three points x1 = 1, x2 = (1 + ε), and x3 = (1 + ε)2 on the x-axis
according to the mesh (8.30). By substituting the corresponding three points of the
particular solution into (8.28), we obtain the value

J0 = e−1(1 + ε)1/ε,

of the invariant J0, which implies the value

α = e(1 + ε)−1/ε

corresponding to the exact scheme.
Thus, if the exact solution is known at three points, then we can not only recon-

struct the entire curve of the particular solution passing through these three points
but also write out the scheme (8.28), which, for the constant presented above, gives
the entire set of solutions. Note that in general we need not have any analytic ex-
pression for the particular solution (8.29); we should only know three points of the
exact solution.

The exact scheme, which is a special case of approximate invariant schemes,
admits a variational statement as well. Just the same procedure as in the case of
approximate invariant schemes gives the following exact integrals:

e(1 + ε)−1/ε exp (ux) = x+ h+ +B,(
1 +

1

ε

)
e(1 + ε)−(1+1/ε) ln(1 + ε) exp (ux) (ux − 1)

= u+

((
1 +

1

ε

)
ln(1 + ε)− 1

)
h+

ε
ux + A.

(8.31)
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From the integrals (8.31), we find the general solution

u = (x+B) ln (x+B)− (x+B) + A,

which does not contain a small parameter and coincides with the exact solution of
the ordinary differential equation (8.23).

The exact difference model has the same set of solutions as the original ordinary
differential equation. Just as Eq. (8.23), it has two first integrals (8.31), and these
difference integrals also hold for the differential equation (8.23).

The above examples show that approximate invariant schemes contain exact
schemes as a subset and have the same algebraic structure. Exact schemes for other
second-order ordinary differential equations with two or more symmetries can be
constructed in a completely similar way. A more complicated example (an exact
scheme for the Kepler problem) can be found in [80].

The existence of exact schemes whose solutions coincide at the points of an
arbitrarily dense mesh with the corresponding values of the solution of the differ-
ential equation, gives rise to a peculiar mathematical dualism. The same physical
processes can be described either by ordinary differential equations whose solutions
are continuous curves or by discrete equations providing points on these curves. We
believe that this dualism deserves attention of theoretical physicists interested in the
construction of mathematical models.
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(Estérel, PQ, 1994), volume 9 of CRM Proc. Lecture Notes, 1996, pages
103–112. Amer. Math. Soc., Providence, RI.

[36] V. A. Dorodnitsyn. Conservation laws for difference equations. In N. Ibrag-
imov, K. Razi Nagvi, and E. Straume, editors, Modern Group Analysis VII,
Developments in Theory, Computations and Application, 1999, pages 91–97.
MARS Publishers, Symmetry Foundation, Trondheim, Norway.

[37] V. A. Dorodnitsyn. Lie Group Properties of Difference Equations. MAKS-
Press, Moscow, 2000. Revised edition: Moscow, Fizmatgiz, 2001.

[38] V. A. Dorodnitsyn. Invariant difference model for nonlinear Schrödinger
equation with conservation of Lagrangian structure. In N. H. Ibragimov,
editor, Proceedings of the International Conference MOGRAN 2000, 2001,
pages 49–52. USATU Publishers, Ufa, Russia.

[39] V. Dorodnitsyn. Noether-type theorems for difference equations. Appl. Nu-
mer. Math., 39, No. 3-4, 2001, 307–321. Special issue: Themes in geometric
integration.

[40] V. A. Dorodnitsyn. On the linearization of second-order differential and dif-
ference equations. SIGMA, 2, 2006, 065. http://arxiv.org/abs/nlin/0608038.

[41] V. A. Dorodnitsyn, G. G. Elenin, and S. P. Kurdyumov. Exact solutions of
certain problems for a quasilinear equation of parabolic type. In Compu-
tational Mathematics (Warsaw, 1980), volume 13 of Banach Center Publ.,
1984, pages 113–123. PWN, Warsaw.

[42] V. Dorodnitsyn and R. Kozlov. A heat transfer with a source: the complete
set of invariant difference schemes. J. Nonlinear Math. Phys., 10, No. 1,
2003, 16–50.

[43] V. A. Dorodnitsyn and R. Kozlov. First integrals of difference Hamiltonian
equations, J. Phys. A, 45, 2009, 454007.

[44] V. A. Dorodnitsyn and R. Kozlov. Invariance and first integrals of continu-
ous and discrete Hamiltonian equations. J. Engineering Math., 66, No. 1–3,
2010, 253–270.

[45] V. A. Dorodnitsyn and R. Kozlov. Lagrangian and Hamiltonian formalism
for discrete equations: symmetries and first integrals. (To appear in Cam-
bridge Univ. Press, Cambridge, UK).



BIBLIOGRAPHY 255

[46] V. Dorodnitsyn, R. Kozlov, and P. Winternitz. Lie group classification of
second-order ordinary difference equations. J. Math. Phys., 41, No. 1, 2000,
480–504.

[47] V. Dorodnitsyn, R. Kozlov, and P. Winternitz. On Lie group classification of
second-order ordinary difference equations. In Proceedings of the Workshop
on Nonlinearity, Integrability and All That: Twenty Years after NEEDS ’79
(Gallipoli, 1999), 2000, pages 250–257. World Sci. Publ., River Edge, NJ.

[48] V. Dorodnitsyn, R. Kozlov, and P. Winternitz. Symmetries, Lagrangian
formalism and integration of second order ordinary difference equations. J.
Nonlinear Math. Phys., 10, No. suppl. 2, 2003, 41–56.

[49] V. Dorodnitsyn, R. Kozlov, and P. Winternitz. Continuous symmetries of
Lagrangians and exact solutions of discrete equations. J. Math. Phys., 45,
No. 1, 2004, 336–359.

[50] V. Dorodnitsyn and P. Winternitz. Lie point symmetry preserving discretiza-
tions for variable coefficient Korteweg–de Vries equations. Nonlinear Dy-
nam., 22, No. 1, 2000, 49–59.

[51] R. D. Driver. Ordinary and Delay Differential Equations. Springer-Verlag,
New York, 1977. Applied Mathematical Sciences, Vol. 20.

[52] N. A. Elnatanov and J. Schiff. The Hamilton–Jacobi difference equation.
Funct. Differ. Equ., 3, No. 3-4, 1996, 279–286 (1997).

[53] L. H. Erbe and P. X. Yan. Disconjugacy for linear Hamiltonian difference
systems. J. Math. Anal. Appl., 167, No. 2, 1992, 355–367.

[54] M. Fels and P. J. Olver. Moving frames and coframes. In Algebraic Methods
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