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Foreword

This book is a welcome and refreshing antidote to the descending spiral of 
instrumentality.  It is offered to those students and those teachers who know 
that there is more to learning mathematics than completing homework 
mechanically.  It is consistent with the view put forward by A. Watson and  
J. Mason in “Mathematics as a Constructive Activity: The Role of Learner-
Generated Examples” (Mahwah: Erlbaum, 2005) that mathematics is a 
constructive activity, and that a central aspect of learning mathematics is 
enriching the space of examples which come to mind and to which you have 
access when you encounter a technical term.

An excellent way to do this is to become familiar with a wide range of 
examples, sometimes called ‘pathological’, but only because they are 
unfamiliar and even unexpected.  The care and precision needed to do and to 
use mathematics depends upon and requires people to extend their range of 
‘familiar’ examples. 

One of the classic behaviours of students trying to use mathematics in 
another discipline is a cavalier attitude to conditions and constraints.  
Desperate to get a task completed, scant regard is paid to conditions which 
are necessary in order to apply a theorem or technique. By making the 
search for counter-examples an integral part of the way they expose students 
to mathematics, teachers can imbue all students with a more mathematical 
way of approaching and using mathematics.

This book provides the groundwork on which to ascend the spiral of 
instrumentality towards appreciation and understanding of the mathematics 
behind the calculus. 

Professor John Mason 
Centre for Mathematics Education 
The Open University 
UK

June 2005 
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Preface
This book is a supplementary resource intended to enhance the 
teaching and learning of a first-year university Calculus course. It can 
also be used in upper secondary school. It consists of carefully 
constructed incorrect mathematical statements that require students to 
create counter-examples to disprove them. Some of these statements 
are the converse of famous theorems, others are created by omitting or 
changing conditions of the theorems. Some are incorrect definitions and 
some are seemingly correct statements. Many of the statements are 
related to common students’ misconceptions. In this book the following 
major topics from a typical single-variable Calculus course are explored: 
Functions, Limits, Continuity, Differential Calculus and Integral 
Calculus.

There is a well-known book on counter-examples in Calculus: 
“Counterexamples in Analysis” by B.R.Gelbaum and J.M.H.Olmsted 
(Holden-Day, Inc., San Francisco, 1964). It is an excellent resource for 
the teaching and learning of Calculus at an advanced level, but it is well 
beyond the scope of first-year university Calculus courses, ones that 
might be based on the popular “Calculus: Concepts and Contexts” by  
J. Stewart (Brooks/Cole, Thomson Learning, 2nd ed., 2001) for example. 
Compared to the above mentioned book “Counterexamples in Analysis” 
in this book the level is lower and the examples are easier. So these two 
books are not overlapping – all statements and examples are different. 
Unlike in “Counterexamples in Analysis”, all functions used as counter-
examples in this book are illustrated by their graphs, making it visually 
accessible and easy to understand for students.

This book is aimed at filling the niche in the activity on using counter-
examples as a pedagogical strategy in teaching/learning of a first-year 
university Introductory Calculus course. It can be useful for: 

upper secondary school teachers and university lecturers as a 
teaching resource 
upper secondary school and first-year university students as a 
learning resource 
upper secondary school teachers for their professional 
development in both mathematics and mathematics education 
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Why Counter-Examples?

In the information age analysing given information and making a quick 
decision on whether it is true or false is an important ability. A counter-
example is an example that shows that a given statement (conjecture, 
hypothesis, proposition, rule) is false. It only takes one counter-example 
to disprove a statement. Counter-examples play an important role in 
mathematics and other subjects. They are a powerful and effective tool 
for scientists, researchers and practitioners. They are good indicators 
that show that a suggested hypothesis or chosen direction of research is 
wrong. Before trying to prove the conjecture or hypothesis it is often 
worth looking for a possible counter-example. Doing so can save a lot of 
time and effort. 

Counter-examples also provide an important means of communicating 
ideas in mathematics, whose entire history may be viewed as making 
conjectures and then either proving or disproving them by counter-
examples. Here are a few well-known cases to illustrate the point:

1. For a long time mathematicians tried to find a formula for prime 

numbers. The numbers of the form 122
n

, where n is natural 
were once considered as prime numbers, until a counter-example 
was found. For n = 5 that number is composite: 

670041764112
52 .

2. Another conjecture about prime numbers is still waiting to be 
proved or disproved - Goldbach’s or the Goldbach-Euler 
conjecture, posed by Goldbach in his letter to Euler in 1742. It 
looks deceptively simple at first. It states that every even number 
greater than 2 is the sum of 2 prime numbers. For example,  
12 = 5 + 7, 20 = 3 + 17, and so on. A powerful computer was used 
in 1999 to search for counter-examples to that conjecture. No 
counter-examples have been found up to 14104 . In 2000 the book 
publishing company Faber & Faber offered a US$1 million prize to 
anyone who could prove or disprove that conjecture. To date (April, 
2005) the prize remains unclaimed. 

3. In the 19th century the great German mathematician Weierstrass 
constructed his famous counter-example – the first known fractal – 
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to the statement: a function continuous on (a,b) cannot be  
non-differentiable at any point on (a,b). Many mathematicians at 
that time thought that such ‘monster-functions’ that were 
continuous but not differentiable at any point were absolutely 
useless for practical applications. About a hundred years later 
Norbert Winer, the founder of cybernetics pointed out in his book  
“I am a mathematician” that such curves exist in nature – for 
example, they are trajectories of particles in Brownian motion. In 
recent decades such curves have been investigated in the theory of 
fractals – a fast growing area with many applications. 

The intention of this book is to encourage teachers and students to use 
counter-examples in the teaching/learning of Calculus with these 
purposes:

For deeper conceptual understanding 
To reduce or eliminate common misconceptions 
To advance one’s mathematical thinking, that is neither 
algorithmic nor procedural 
To enhance generic critical thinking skills – analysing, justifying, 
verifying, checking, proving which can benefit students in other 
areas of life 
To expand the ‘example set’ - a number of examples of interesting 
functions for better communication of ideas in mathematics and 
in practical applications 
To make learning more active and creative 

1. For deeper conceptual understanding 

Many students nowadays are used to concentrating on techniques, 
manipulations, familiar procedures and don’t pay much attention to the 
concepts, conditions of the theorems, properties of the functions, and to 
reasoning and justification.
‘When students come to apply a theorem or technique, they often fail to 
check that the conditions for applying it are satisfied. We conjecture 
that this is usually because they simply do not think of it, and this is 
because they are not fluent in using appropriate terms, notations, 
properties, or do not recognise the role of such conditions’ (Mason & 
Watson, 2001). Paying attention to the conditions of theorems helps 
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engineering students develop the good habit of considering the extreme 
conditions new devices will be subjected to. Aircraft are designed to fly 
in storms and turbulence, not just in perfect weather! The ability to pay 
attention to the conditions of a sale offer is essential in everyday life. We 
all know the importance of reading the fine print on advertisements 
‘special conditions apply’. 

A recent case study done in New Zealand (Klymchuk, 2005 –  
appendix 3) showed that the usage of counter-examples in teaching 
significantly improved the students’ performance on test questions that 
required conceptual understanding. 

2. To reduce or eliminate misconceptions 

Over recent years, partly due to extensive usage of modern technology, 
the proof component of the traditional approach in teaching Calculus 
(definition-theorem-proof-example-application) has almost disappeared. 
Students are used to relying on technology and sometimes lack logical 
thinking and conceptual understanding. Sometimes Calculus courses 
are taught in such a way that special cases are avoided and students 
are exposed only to ‘nice’ functions and ‘good’ examples, especially at 
school level. This approach can create many misconceptions that can be 
explained by Tall’s generic extension principle: ‘If an individual works in 
a restricted context in which all the examples considered have a certain 
property, then, in the absence of counter-examples, the mind assumes 
the known properties to be implicit in other contexts.’ (Tall, 1991).  

In this book many wrong statements are related to students’ common 
misconceptions. There is a difference between students’ misconceptions 
in basic algebra and in Calculus. There are no textbooks where 
‘properties’ like baba  can be found, and nobody teaches such 
‘rules’ either. Some introductory Calculus textbooks on the other hand, 
especially those at school level, contain incorrect statements. For 
example: “If the graph of a function is a continuous and smooth curve (no
sharp corners) on (a,b) then the function is differentiable on (a,b)”, and  
“a tangent line to a curve is a line that just touches the curve at one point 
and does not cross it there”. Some students actually learn Calculus this 
way. Practice in creating counter-examples can help students reduce or 
eliminate such misconceptions before they become second nature. 
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3. To advance mathematical thinking 

Creating examples and counter-examples is neither algorithmic nor 
procedural and requires advanced mathematical thinking which is not 
often taught at school. ‘Coming up with examples requires different 
cognitive skills from carrying out algorithms – one needs to look at 
mathematical objects in terms of their properties. To be asked for an 
example can be disconcerting. Students have no pre-learned algorithms 
to show the “correct way” (Selden & Selden, 1998). Practice in 
constructing their own examples and counter-examples can help 
students enhance their creativity and advance their mathematical 
thinking.

4. To enhance generic critical thinking skills 

Creating counter-examples to wrong statements has a big advantage 
over constructing examples of functions satisfying certain conditions, 
because counter-examples deal with disproving, justification, 
argumentation, reasoning and critical thinking, which are the essence 
of mathematical thinking. These skills will benefit students not only in 
their university study but also in other areas of life. 

5. To expand the ‘example set’ 

After creating or being exposed to many functions with interesting 
properties students will expand their ‘example set’, allowing them to 
better communicate their ideas in mathematics and in practical 
applications. While creating counter-examples students learn a lot 
about the behaviour of functions and can later apply their knowledge to 
solving real life problems.

For example:
a) the counter-examples to statement 2 (Limits) and statement 32 

(Differential Calculus) from the book are the functions 
x
xxf sin)(

and
0,0

0,cos
)(

2

x

x
x

x
xf

if

if
 respectively, which are used for 

modelling vibration processes in mechanical engineering; 
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b) the counter-example to statement 12 (Integral Calculus) is the 

Fresnel function 
x

dttxF
0

2

)
2

sin()(  which apart from being 

important in optics has recently been applied to motorway design. 

As Henry Pollak from Bell Laboratories, USA pointed out “the society 
provides time for mathematics to be taught in schools, colleges and 
universities not because mathematics is beautiful, which it is, or 
because it provides a great training for the mind, but because it is so 
useful”.

6. To make learning more active and creative 

Experience of my colleagues and my own teaching experience shows 
that the usage of counter-examples as a pedagogical strategy in lectures 
and assignments can create a discovery learning environment and make 
learning more active. A recent international study involving more than 
600 students from 10 universities in different countries (Gruenwald & 
Klymchuk, 2003 – appendix 2) showed that the vast majority of the 
participating students (92%) found the use of counter-examples to be 
very effective. They reported it helped them to understand concepts 
better, prevent mistakes, develop logical and critical thinking, and that 
they were more actively involved in lectures. Many commented that 
creating a variety of counter-examples enhanced their critical thinking 
skills in general, skills useful in other areas of life that have nothing to 
do with mathematics. 

There are different ways of using counter-examples in teaching:  
giving the students a mixture of correct and incorrect statements 
making a deliberate mistake in the lecture 
asking the students to spot an error on a certain page of their 
textbook
giving the students bonus marks towards their final grade for 
providing excellent counter-examples to hard questions during 
the lecture.

It can also be a part of assessment. 
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The Structure of the Book

The first part of the book contains incorrect statements from the five 
major topics found in Introductory Calculus courses: Functions, Limits, 
Continuity, Differential Calculus and Integral Calculus. The statements 
from each topic are arranged in order of increasing difficulty. Some 
statements, especially those in the beginning of each topic, are related 
to students’ regular misunderstandings. In the more challenging cases 
statements often appear to be correct, and students will be hard-
pressed to find counter-examples to them. I believe all readers will find 
interesting and surprising examples in the book.

The second part of the book contains suggested solutions to all the 
statements. It is anticipated that the readers will construct their own 
counter-examples to the statements. Some solutions are followed by 
comments written mainly for the students.

The book contains three appendices - an example from teaching 
practice and two papers on mathematics education related to the 
content of this book. The first paper deals with the students’ attitudes 
towards using counter-examples in teaching/learning situations. The 
second paper is about students’ performance after working with 
counter-examples. Both papers are reproduced here with kind 
permission from the editor of The New Zealand Mathematics Magazine. 
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Statements

1. Functions 

1. The tangent to a curve at a point is the line which touches the 
curve at that point but does not cross it there. 

2. The tangent line to a curve at a point cannot touch the curve at 
infinitely many other points. 

3. A quadratic function of x is one in which the highest power of x is 
two.

4. If both functions y = f(x) and y = g(x) are continuous and monotone 
on R then their sum f(x) + g(x) is also monotone on R. 

5. If both functions y = f(x) and y = g(x) are not monotone on R then 
their sum f(x) + g(x) is not monotone on R. 

6. If a function y = f(x) is continuous and decreasing for all positive x 
and f(1) is positive then the function has exactly one root. 

7. If a function y = f(x) has an inverse function )(1 yfx  on (a,b)

then the function f(x) is either increasing or decreasing on (a,b).

8. A function y = f(x) is bounded on R if for any Rx there is M > 0 
such that .)( Mxf

9. If g(a) = 0 then the function 
)(
)()(
xg
xfxF  has a vertical asymptote at 

the point x = a.

10. If g(a) = 0 then the rational function 
)(
)()(
xg
xfxR  (both f(x) and g(x)

are polynomials) has a vertical asymptote at the point x = a.
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11. If a function y = f(x) is unbounded and non-negative for all real x            
then it cannot have roots nx  such that nx as n .

12. A function y = f(x) defined on [a,b] such that its graph doesn’t 
contain any pieces of a horizontal straight line cannot take its 
extreme value infinitely many times on [a,b].

13. If a function y = f(x) is continuous and increasing at the point x = a
then there is a neighbourhood 0),,( xx   where the function 

is also increasing. 

14. If a function is not monotone then it doesn’t have an inverse 
function.

15. If a function is not monotone on (a,b) then its square cannot be   
monotone on (a,b).
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2. Limits 

1. If f(x) < g(x) for all x > 0 and both )(lim xf
x

and )(lim xg
x

 exist then 

)(lim)(lim xgxf
xx

.

2. The following definitions of a non-vertical asymptote are 
equivalent:

a)  The straight line y = mx + c is called a non-vertical asymptote 
to a curve f(x) as x tends to infinity if 0))()((lim cmxxf

x
.

b)  A straight line is called a non-vertical asymptote to a  
curve as x tends to infinity if the curve gets closer and  
closer (as close as we like) to the straight line as x
tends to infinity without touching or crossing it. 

3. The tangent line to a curve at a certain point that touches the 
curve at infinitely many other points cannot be a non-vertical 
asymptote to this curve. 

4.   The following definitions of a vertical asymptote are equivalent: 

a)  The straight line x = a is called a vertical asymptote for a 
function y = f(x) if )(lim xf

ax
or )(lim xf

ax
.

b)  The straight line x = a is called a vertical asymptote for the 
function y = f(x) if there are infinitely many values of f(x) that 
can be made arbitrarily large or arbitrarily small as x gets 
closer to a from either side of a.

5. If )(lim xf
ax

exists and )(lim xg
ax

doesn’t exist because of oscillation of 

g(x) near x = a then ))()((lim xgxf
ax

doesn’t exist.

6. If a function y = f(x) is not bounded in any neighbourhood of the 
point x = a then either )(lim xf

ax
 or )(lim xf

ax
.

7. If a function y = f(x) is continuous for all real x and 
Anf

n
)(lim then Axf

x
)(lim .
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3. Continuity 

1. If the absolute value of the function y = f(x) is continuous on (a,b)
 then the function is also continuous on (a,b).

2. If both functions y = f(x) and y = g(x) are discontinuous at x = a
then f(x) + g(x) is also discontinuous at x = a.

3. If both functions y = f(x) and y = g(x) are discontinuous at x = a
then )()( xgxf  is also discontinuous at x = a.

4. A function always has a local maximum between any two local 
minima.

5. For a continuous function there is always a local maximum 
between any two local minima. 

6. If a function is defined in a certain neighbourhood of point x = a
including the point itself and is increasing on the left from x = a
and decreasing on the right from x = a, then there is a local 
maximum at x = a.

7. If a function is defined on [a,b] and continuous on (a,b) then it 
takes its extreme values on [a,b].

8. Every continuous and bounded function on ),(  takes on its 

extreme values. 

9. If a function y = f(x) is continuous on [a,b], the tangent line exists 
at all points on its graph and f(a) = f(b) then there is a point c in 
(a,b) such that the tangent line at the point (c,f(c)) is horizontal. 

10. If on the closed interval [a,b] a function is:
a. bounded;
b. takes its maximum and minimum values; 
c. takes all its values between the maximum and minimum 
vales;

then this function is continuous on [a,b].



19

11. If on the closed interval [a,b] a function is:
a. bounded;
b. takes its maximum and minimum values; 
c. takes all its values between the maximum and minimum 
values;

then this function is continuous at one or more points or 
subintervals on [a,b].

12. If a function is continuous on [a,b] then it cannot take its absolute 
maximum or minimum value infinitely many times. 

13. If a function y = f(x) is defined on [a,b] and 0)()( bfaf  then 
there is some point ),( bac  such that f(c) = 0.  

14. If a function y = f(x) is defined on [a,b] and continuous on (a,b)
then for any ))(),(( bfafN  there is some point ),( bac  such that 

f(c) = N.   
            
15. If a function is discontinuous at every point in its domain then the 

square and the absolute value of this function cannot be 
continuous.

16. A function cannot be continuous at only one point in its domain 
and discontinuous everywhere else. 

17. A sequence of continuous functions on [a,b] always converges to a 
continuous function on [a,b].
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4. Differential Calculus 

1. If both functions y = f(x) and y = g(x) are differentiable and  
f(x) > g(x) on the interval (a,b) then )()( xgxf  on (a,b).

2. If a non-linear function is differentiable and monotone on ),0(
then its derivative is also monotone on ),0( .

3. If a function is continuous at a point then it is differentiable at that 
point.

4.  If a function is continuous on R and the tangent line exists at any 
point on its graph then the function is differentiable at any point 
on R. 

5. If a function is continuous on the interval (a,b) and its graph is a  
smooth curve (no sharp corners) on that interval then the function 
is differentiable at any point on (a,b).

6. If the derivative of a function is zero at a point then the function is 
neither increasing nor decreasing at this point. 

7. If a function is differentiable and decreasing on (a,b) then its 
gradient is negative on (a,b).

8. If a function is continuous and decreasing on (a,b) then its 
gradient is non-positive on (a,b).

9. If a function has a positive derivative at any point in its domain 
then the function is increasing everywhere in its domain. 

10. If a function y = f(x) is defined on [a,b] and has a local maximum at 
the point ),( bac  then in a sufficiently small neighbourhood of the 

point x = c the function is increasing on the left and decreasing on 
the right from x = c.
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11. If a function y = f(x) is differentiable for all real x and 
0)0()0( ff  then f(x) = 0 for all real x.

12. If a function y = f(x) is differentiable on the interval (a,b) and  takes 
both positive and negative values on it then its absolute value 

)(xf  is not differentiable at the point(s) where f(x) = 0, e.g. 
xxf )( or xxf sin)( .

13. If both functions y = f(x) and y = g(x) are differentiable on the 
interval (a,b) and intersect somewhere on (a,b) then the function 
max{f(x), g(x)} is not differentiable at the point(s) where f(x) = g(x).

14. If a function is twice differentiable at a local maximum (minimum) 
point then its second derivative is negative (positive) at that point. 

15. If both functions y = f(x) and y = g(x) are non-differentiable at x = a
then f(x) + g(x) is also not differentiable at x = a.

16. If a function y = f(x) is differentiable and a function y = g(x) is not 
differentiable at x = a then )()( xgxf  is not differentiable at x = a.

17. If both functions y = f(x) and y = g(x) are not differentiable at x = a
then )()( xgxf  is also not differentiable at x = a.   

         
18. If a function y = g(x) is differentiable at x = a and a function y = f(x)

is not differentiable at g(a) then the function F(x) = f(g(x)) is not 
differentiable at x = a.

19. If a function y = g(x) is not differentiable at x = a and a function       
y = f(x) is differentiable at g(a) then the function F(x) = f(g(x)) is not 
differentiable at x = a.

20. If a function y = g(x) is not differentiable at x = a and a function  
y = f(x) is not differentiable at g(a) then the function F(x) = f(g(x)) is 
not differentiable at x = a.

21. If a function y = f(x) is defined on [a,b], differentiable on (a,b) and  
f(a) = f(b), then there exists a point ),( bac  such that 0)(cf .
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22. If a function is twice-differentiable in a certain neighbourhood of 
the point x = a and its second derivative is zero at that point then 
the point (a,f(a)) is a point of inflection for the graph of the 
function.

23. If a function y = f(x) is differentiable at the point x = a and the point 
(a,f(a)) is a point of inflection on the function’s graph then the 
second derivative is zero at that point. 

24. If both functions y = f(x) and y = g(x) are differentiable on R then to 

evaluate the limit 
)(
)(lim
xg
xf

x
 in the indeterminate form of type

we can use the following rule: 
)(
)(lim

)(
)(lim

xg
xf

xg
xf

xx
.

25. If a function y = f(x) is differentiable on (a,b) and )(lim xf
ax

then

)(lim xf
ax

.

26. If a function y = f(x) is differentiable on ),0(  and )(lim xf
x

 exists 

then )(lim xf
x

also exists. 

27. If a function y = f(x) is differentiable and bounded on ),0(  and 
)(lim xf

x
exists then )(lim xf

x
also exists. 

28. If a function y = f(x) is differentiable at the point x = a then its 
derivative is continuous at x = a.

29. If the derivative of a function y = f(x) is positive at the point x = a
then there is a neighbourhood about x = a (no matter how small) 
where the function is increasing. 

30. If a function y = f(x) is continuous on (a,b) and has a local 
maximum at the point ),( bac  then in a sufficiently small 

neighbourhood of the point x = c the function is increasing on the 
left and decreasing on the right from x = c.

31. If a function y = f(x) is differentiable at the point x = a then there is 
a certain neighbourhood of the point x = a where the derivative of 
the function y = f(x) is bounded. 
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32. If a function y = f(x) at any neighbourhood of the point x = a has 
points where )(xf  doesn’t exist then )(af  doesn’t exist. 

33. A function cannot be differentiable only at one point in its domain 
and non-differentiable everywhere else in its domain.  

34. A continuous function cannot be non-differentiable at every point 
in its domain. 
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5. Integral Calculus 

1. If the function y = f(x) is an antiderivative of a function y = f(x) then 

)()()( aFbFdxxf
b

a

.

2. If a function y = f(x) is continuous on [a,b] then the area enclosed 
by the graph of y = f(x), OX, x = a and x = b numerically equals 
b

a

dxxf )( .

3. If 0
b

a

f(x)dx then 0)(xf for all ],[ bax .

4.  If y = f(x) is a continuous function and k is any constant then: 

dxxfkdxxkf )()( .

5. A plane figure of an infinite area rotated about an axis always 
produces a solid of revolution of infinite volume.

6.  If a function y = f(x) is defined for any ],[ bax and
b

a

dxxf )( exists

then
b

a

dxxf )( exists.

7. If neither of the integrals 
b

a

dxxf )(  and 
b

a

dxxg )(  exist then the 

integral
b

a

dxxgxf ))()((  doesn’t exist. 

8.   If 0)(lim xf
x

then
a

dxxf )(  converges.

   

9. If the integral
a

dxxf )(  diverges then the function y = f(x) is not 

bounded.
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10. If a function y = f(x) is continuous and non-negative for all real x

and
1

)(
n

nf  is finite then
1

)( dxxf converges.

11. If  both integrals 
a

dxxf )( and
a

dxxg )(  diverge then the integral 

a

dxxgxf ))()((  also diverges. 

12. If a function y = f(x) is continuous and
a

dxxf )(  converges then 

.0)(lim xf
x

   
13. If a function y = f(x) is continuous and non-negative and    

a

dxxf )( converges then 0)(lim xf
x

.

14. If a function y = f(x) is positive and not bounded for all real x then 

the integral 
a

dxxf )(  diverges. 

15. If a function y = f(x) is continuous and not bounded for all real x

then the integral 
a

dxxf )(  diverges. 

16. If a function y = f(x) is continuous on ),[1  and 
1

dxxf )(  converges 

then
1

dxxf )(  also converges. 

17. If the integral 
a

dxxf )(  converges and a function y = g(x) is 

bounded then the integral 
a

dxxgxf )()(  converges.  
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Suggested Solutions 
1. Functions 

1. The tangent to a curve at a point is the line which touches the 
curve at that point but does not cross it there. 

Counter-example.

 a) The x-axis is the tangent line to the curve 3xy  but it crosses 

the curve at the origin. 
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b) The three straight lines just touch and don’t cross the curve 
below at the point but none of them is the tangent line to the curve 
at that point. 

   

    

3xy
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2. The tangent line to a curve at a point cannot touch the curve at 
infinitely many other points. 

Counter-example.

The tangent line to the graph of the function xy sin  touches the 

curve at 
2

x  and infinitely many other points. 
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3.   A quadratic function of x is one in which the highest power of x is 
two.

Counter-example.

In both functions 
x

xxyxxy 122 and  the highest power 

of x is two but neither is quadratic. 

4. If both functions y = f(x) and y = g(x) are continuous and monotone 
on R then their sum f(x) + g(x) is also monotone on R. 

Counter-example.

f(x) = x + sin x
g(x) = - x
Both functions f(x) and g(x) are monotone on R but their sum  
f(x) + g(x) = sin x is not monotone on R. 

xy sin
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5. If both functions y = f(x) and y = g(x) are not monotone on R then 
their sum f(x) + g(x) is not monotone on R. 

xxy sin

xy

xy sin
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Counter-example.

 Both functions 2xxf(x)  and 2)( xxxg  are not monotone on 

R but their sum f(x) + g(x) = 2x is monotone on R. 
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6. If a function y = f(x) is continuous and decreasing for all positive x
and f(1) is positive then the function has exactly one root. 

Counter-example.

The function 
x

y 1  is continuous and decreasing for all positive x

and y(1) = 1 > 0 but has no roots. 
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7. If a function y = f(x) has an inverse function )(1 yfx  on (a,b)

then the function f(x) is either increasing or decreasing on (a,b).

Counter-example.

The function below is a one-to-one function and has an inverse 
function on (a,b) but it is neither increasing nor decreasing on 
(a,b).

x
y 1
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8. A function y = f(x) is bounded on R if for any Rx there is M > 0 
such that .)( Mxf

Counter-example.

For the function 2xy for any value of x from R there is a number
M > 0 ( 02 where,xM ) such that .)( Mxf

Comments. The order of words in this statement is very important. 
The correct definition of a function bounded on R differs only by 
the order of words:  A function y = f(x) is bounded on R if there is
M > 0 such that for any Rx .)( Mxf

9. If g(a) = 0 then the function 
)(
)()(
xg
xfxF  has a vertical asymptote 

at the point x = a.

Counter-example.

The function 
x
xy sin doesn’t have a vertical asymptote at the point    

x = 0.

a      b 
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10. If g(a) = 0 then the rational function
)(
)()(
xg
xfxR  (both f(x) and g(x)

are polynomials) has a vertical asymptote at the point x = a.

Counter-example.

The rational function 
1
12

x
xy  doesn’t have a vertical asymptote 

at the point x = 1.

11.  If a function y = f(x) is unbounded and non-negative for all real x
then it cannot have roots nx  such that nx as n .

x
xy sin

o

1

1
12

x
xy

1
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Counter-example.

The function xxy sin  has infinitely many roots nx  such that 

nx  as n .
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12. A function y = f(x) defined on [a,b] such that its graph doesn’t 
contain any pieces of a horizontal straight line cannot take its 
extreme value infinitely many times on [a,b].

Counter-example.

The function 
x

y 1sin  takes its absolute maximum value (=1) and 

its absolute minimum value (=-1) infinitely many times on any 
closed interval containing zero. 
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13. If a function y = f(x) is continuous and increasing at the point x = a
then there is a neighbourhood 0),,( xx  where the function 

is also increasing. 

Counter-example.

The function 
0,0

0,2sin
)(

2

x

x
x

xx
xf

if

if
 is increasing at the point  

x = 0 but it is not increasing in any neighbourhood ),( , where 

0 .
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 Comments. The definition of a function increasing at a point is: 
A function y = f(x) is said to be increasing at the point x = a if in a 
certain neighbourhood 0),,( aa  the following is true:

if x < a then f(x) < f(a) and if  x > a then f(x) > f(a).

14. If a function is not monotone then it doesn’t have an inverse   
function.

Counter-example.

 The function 
irrationalisif
rationalisif

xx
xx

y
,
,

 is not monotone but it has 

0,0

0,2sin
)(

2

x

x
x

xx
xf

if

if
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  the inverse function 
.irrationalisif

rationalisif
yy
yy

x
,
,

 It is impossible to draw the graph of such a function but a rough    
sketch gives an idea of its behaviour: 

         
irrationalisif
rationalisif

xx
xx

y
,
,

15. If a function is not monotone on (a,b) then its square cannot be   
monotone on (a,b).

Counter-example.

The function 
irrationalisif

rationalisif
xx

xx
xf

,
,

)(  defined on ),0( is not 

monotone but its square 22 )( xxf  is monotone on ),0( .

 It is impossible to draw the graph of the function y = f(x) but the   
sketch below gives an idea of its behaviour. 
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 Comments. The functions in counter-examples 14 and 15 may 
seem artificial and without practical use at first. Nevertheless, the 

Dirichlet function 
irrationalisif
rationalisif

x
x

xf
,0
,1

)( , which is very similar 

to the functions in counter-examples 14 and 15, can be 
represented analytically as a limit of cosine functions that have 
many practical applications: n

nk
xkxf 2))!(cos(limlim)( .

22 )( xxf

irrationalisif
rationalisif

xx
xx

xf
,

,
)(

1
irrationalisif
rationalisif

x
x

xf
,0
,1

)(
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2. Limits 

1. If f(x) < g(x) for all x > 0 and both )(lim xf
x

and )(lim xg
x

 exist then 

)(lim)(lim xgxf
xx

.

Counter-example.

For the functions 
x

xf 1)( and
x

xg 1)( f(x) < g(x) for all 0x

but 0)(lim)(lim xgxf
xx

.
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2. The following definitions of a non-vertical asymptote are 
equivalent:

a) The straight line y = mx + c is called a non-vertical asymptote to 
a curve f(x) as x tends to infinity if 0))()((lim cmxxf

x
.

b) A straight line is called a non-vertical asymptote to a curve as x
tends to infinity if the curve gets closer and closer to the straight 
line (as close as we like) as x tends to infinity but doesn’t touch or 
cross it. 

x
xg 1)(

x
xf 1)(
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Counter-example.

As x tends to infinity the function 
x
xy sin  gets closer to the x-axis 

from above and below and 0)0sin(lim
x
x

x
. According to the first 

definition the x-axis is the non-vertical asymptote of the function 

x
xy sin , but its graph crosses the x-axis infinitely many times,  so 

the definitions a) and b) are not equivalent. 

Comments. The correct definition is a). The idea of an asymptotic 
behaviour is getting closer to a (non-vertical) straight line but this 
doesn’t exclude touching or crossing it. 
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3. The tangent line to a curve at a certain point that touches the 
curve at infinitely many other points cannot be a non-vertical 
asymptote to this curve.

 Counter-example.

 The tangent line y = 0 to the curve 
x
xy

2sin  at x  touches the 

curve at infinitely many other points and is a non-vertical 
asymptote to this curve. 

x
xy sin
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4. The following definitions of a vertical asymptote are equivalent: 

a) The straight line x = a is called a vertical asymptote for a 
function y = f(x) if )(lim xf

ax
 or )(lim xf

ax
.

b) The straight line x = a is called a vertical asymptote for the 
function y = f(x) if there are infinitely many values of f(x) that can 
be made arbitrarily large or arbitrarily small as x gets closer to a
from either side of a.

Counter-example.

There are infinitely many values of the function 
xx

y 11 sin  that 

can be made arbitrarily large or small as x gets closer to 0 but the 
straight line x = 0 is not a vertical asymptote of this function. 
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 Comments. The correct definition is a). 

xx
y 1sin1

x
xy

2sin
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5. If )(lim xf
ax

exists and )(lim xg
ax

does’t exist because of oscillation of 

g(x) near x = a then ))()((lim xgxf
ax

doesn’t exist. 

Counter-example.

For the function f(x) = x the limit 0lim
0
x

x
 and for the function 

x
xg 1sin)( the limit 

xx

1
0
sinlim  doesn’t exist because of oscillation of 

g(x) near x = 0, but 01
00

)sin(lim))()((lim
x

xxgxf
xx

.
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6. If a function y = f(x) is not bounded in any neighbourhood of the 
point x = a then either )(lim xf

ax
 or )(lim xf

ax
.

Counter-example.

The function 
xx

xf 11 cos)(  is not bounded in any neighbourhood of 

the point x = 0 but neither 
xxx

1cos1lim
0

 nor 
xxx

1cos1lim
0

 exist.  
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7. If a function y = f(x) is continuous for all real x and 
Anf

n
)(lim then Axf

x
)(lim .

Counter-example.

For the continuous function )cos( xy 2  the limit
)2cos(lim n

n
equals 1 because 1)2cos( n for any natural n but 

)cos(lim x
x

2  does not exist. 

xx
y 1cos1
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Comments.  Statement 6 is the converse of the true statement: 
AnfAxf

nx
)(lim)(lim .

)2cos( xy
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3. Continuity

1. If the absolute value of the function y = f(x) is continuous on (a,b)
then the function is also continuous on (a,b).

Counter-example.

The absolute value of the function  

0,1
0,1

)(
x
x

xy
if
if

 is 1)(xy  for all real x and it is continuous, but 

the function y(x) is discontinuous. 

        

                         

2. If both functions y = f(x) and y = g(x) are discontinuous at x = a
then f(x) + g(x) is also discontinuous at x = a.

Counter-example.

axaxgxf

ax
ax

xxg

ax
ax

xf

if

if

if

,
2

)()(

,1)(

,1)(

Both functions f(x) and g(x) are discontinuous at x = a but the  

  1 

-1 0,1
0,1

)(
x
x

xy
if
if
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function
axa
axx

xgxf
if
if

,
,

)()(    is continuous at x = a.

For example, if a = 2: 
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3. If both functions y = f(x) and y = g(x) are discontinuous at x = a
then )()( xgxf  is also discontinuous at x = a.

Counter-example.

Both functions 
0,2

0,sin
)(

x

x
x
x

xf
if

if
 and

0,
2
1

0,sin

)(
x

x
x
x

xg
if

if
 are 

discontinuous at the point x = 0 but their product 

0,1

0,sin
)()( 2

2

x

x
x
x

xgxf
if

if  is continuous at the point x = 0. 
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xxgxf )()(

0,2

0,sin
)(

x

x
x
x

xf
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4. A function always has a local maximum between any two local 
minima.

Counter-example.

The functions  2

4 1.0
x

xy  and xy 2sec  have no maximum 

between two local minima: 
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5. For a continuous function there is always a local maximum 
between any two local minima. 

Counter-example.

The continuous function below doesn’t have a local maximum 
between its two local minima. 

2

4 1.0
x

xy

xy 2sec
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Comments. A strict inequality in the definition of a local maximum 
is accepted here: a function y = f(x) has a local maximum at the 
point x = a if )()( xfaf  for all x within a certain neighbourhood 

0),,( aa  of the point x = a. Otherwise in the above graph 

we have to treat each point of the line segment as a local 
maximum.

6. If a function is defined in a certain neighbourhood of point x = a
including the point itself and is increasing on the left from x = a
and decreasing on the right from x = a, then there is a local 
maximum at x = a.

Counter-example.

The function 
31

3
)3(

1
2

x,

x,
xy

if

if
 is defined for all real x,

increasing on the left from the point x = 3 and decreasing on the 
right from the point x = 3 but has no a local maximum at the point 
x = 3. 
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7. If a function is defined on [a,b] and continuous on (a,b) then it 
takes its extreme values on [a,b].

Counter-example.

The function 

2
,0

)
2
,
2

(,tan

x

xx
y

if

if
 is defined on ]

2
,

2
[  and 

continuous on )
2
,
2

(  but it has no extreme values on ]
2
,

2
[ .
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8. Every continuous and bounded function on ),(  takes on its 

extreme values. 

Counter-example.

The function )(tan)( 1 xxf  is continuous and bounded on ),(

but takes no extreme values. 
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9. If a function y = f(x) is continuous on [a,b], the tangent line exists 
at all points on its graph and f(a) = f(b) then there is a point c in 
(a,b) such that the tangent line at the point (c,f(c)) is horizontal. 

Counter-example.

The function y = f(x) below is continuous on [a,b], the tangent line 
exists at all points on the graph and f(a) = f(b) but there is no point 
c in (a,b) such that the tangent line at the point (c,f(c)) is 
horizontal.

)(tan)( 1 xxf

a b
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10. If on the closed interval [a,b] a function is:
a. bounded;
b. takes its maximum and minimum values; 
c. takes all its values between the maximum and minimum 
values;

then this function is continuous on [a,b].

Counter-example.

The function below satisfies the three conditions above, but is not 
continuous on [a,b].

11. If on the closed interval [a,b] a function is:
a. bounded;  
b. takes its maximum and minimum values; 
c. takes all its values between the maximum and minimum 
values;

then this function is continuous at some points or subintervals on 
[a,b].

Counter-example.

The function below satisfies all three conditions above but it is 
discontinuous at every point on [-1,1]. It is impossible to draw the 
graph of the function y = f(x) but the sketch below gives an idea of 
its behaviour. 

a  b 
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12. If a function is continuous on [a,b] then it cannot take its absolute 
maximum or minimum value infinitely many times. 

Counter-example.

The function below takes its absolute maximum value (=3) and its 
absolute minimum value (=1) an infinite number of times on the 
interval [1,4]. 

13. If a function y = f(x) is defined on [a,b] and 0)()( bfaf  then there 
is some point ),( bac  such that f(c) = 0. 

     
 Counter-example.

 The function 
0,1

0,1
)(

x

x
xxf

if

if
  is defined on [-1,1] and                

1   2          3          4 

3

2

 1 

               -1 1

1,0
1,1,0,

;1,0,,
;0,1

)(

x
xxxxx

xxxx
x

xf

if
,irrationalisif

rationalisif
if
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f(-1) x f(1) = (-1) x (1) = -1 < 0 but there is no point c on [-1,1] such 
that f(c) = 0. 
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14.  If a function y = f(x) is defined on [a,b] and continuous on (a,b) then 
for any ))(),(( bfafN  there is some point ),( bac  such that         

f(c) = N.

Counter-example.

The function below is defined on [a,b] and continuous on (a,b) but 
for any ))(),(( bfafN  there is no point ),( bac  such that f(c) = N.

                
   

f(b)

a                            b 

f(a)

0,1

0,1
)(

x

x
xxf

if

if
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15. If a function is discontinuous at every point in its domain then the 
square and the absolute value of this function cannot be 
continuous.

Counter-example.

The function 
irrationalisif
rationalisif

x
x

xf
,1
,1

)(  is discontinuous at every 

point in its domain but both the square and the absolute value 
1)()(2 xfxf  are continuous. It is impossible to draw the graph 

of the function y = f(x) but the sketch below gives an idea of its 
behaviour.

16. A function cannot be continuous at only one point in its domain 
and discontinuous everywhere else. 

Counter-example.

The function 
irrationalisif
rationalisif

xx
xx

xg
,
,

)(  is continuous at the point

x = 0 and discontinuous at all other points on R. It is impossible to 
draw the graph of the function y = g(x) but the sketch below gives 
an idea of its behaviour. 

1

-1

irrationalisif
rationalisif

x
x

xf
,1
,1

)(
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17. A sequence of continuous functions on [a,b] always converges to a 
continuous function on [a,b].

Counter-example.

The sequence of continuous functions Nnxxf n
n ,)( on [0,1]  

converges to a discontinuous function when n :

.1,1
)1,0[,0

)(lim
x
x

xfnn if
if

irrationalisif
rationalisif

xx
xx

xg
,
,

)(
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4. Differential Calculus 

1. If both functions y = f(x) and y = g(x) are differentiable and  
f(x) > g(x) on the interval (a,b) then )()( xgxf  on (a,b).

Counter-example.

Both functions y = f(x) and y = g(x) are differentiable and f(x) > g(x)
on the interval (a,b) but )()( xgxf  on (a,b).

2. If a non-linear function is differentiable and monotone on ),0(
then its derivative is also monotone on ),0( .

Counter-example.

The non-linear function xxy sin  is differentiable and monotone 
on ),0(  but its derivative xy cos1  is not monotone on ),0( .

f(x)
g(x)

a           b
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3. If a function is continuous at a point then it is differentiable at that 
point.

Counter-example.

The function xy  is continuous at the point x = 0 but it is not 

differentiable at that point. 

xxy sin

xy cos1
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4. If a function is continuous on R and the tangent line exists at any 
point on its graph then the function is differentiable at any point 
on R. 

 Counter-example.

The function 3 2xy is continuous on R and the tangent line exists 

at any point on its graph but the function is not differentiable at 
the point x = 0.    
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5. If a function is continuous on the interval (a,b) and its graph is a 
smooth curve (no sharp corners) on that interval then the function 
is differentiable at any point on (a,b).

xy

3 2xy



59

Counter-example.

a) The function 3 xy  is continuous on R and its graph is a 

smooth curve (no sharp corners), but it is not differentiable at the 
point x = 0. 
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b) The function below is continuous on R and its graph is a smooth 
curve (no sharp corners), but it is non-differentiable at infinitely 
many points on R. 

6. If the derivative of a function is zero at a point then the function is 
neither increasing nor decreasing at this point. 

Counter-example.

The derivative of the function 3xy  is zero at the point x = 0 but 

the function is increasing at this point.  

3 xy
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7. If a function is differentiable and decreasing on (a,b) then its 
gradient is negative on (a,b).

Counter-example.

The function 3xy  is differentiable and decreasing on R but its 

gradient is zero at the point x = 0. 
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8. If a function is continuous and decreasing on (a,b) then its 
gradient is non-positive on (a,b).

Counter-example.

The function below is continuous and decreasing on R but its 
gradient doesn’t exist at the point x = a.

3xy

3xy
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9. If a function has a positive derivative at any point in its domain 
then the function is increasing everywhere in its domain. 

Counter-example.

The derivative of the function )0(1 x
x

y is 2

1
x

y , which is 

positive for all 0x .

According to the definition, a function is increasing in its domain if 
for any 21 , xx from its domain from 21 xx  it follows that 

).()( 21 xfxf  If we take 11x  and 12x )( 21 xx  it follows that 
).()( 21 xfxf
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10. If a function y = f(x) is defined on [a,b] and has a local maximum at 
the point ),( bac  then in a sufficiently small neighbourhood of the 

point x = c the function is increasing on the left and decreasing on 
the right from x = c.

Counter-example.

The function below is defined on [a,b] and has a maximum at the 
point ),( bac  but it is neither increasing on the left nor decreasing 

on the right from the point x = c.

   

Comments. The definition of a local maximum requires neither 
differentiability nor continuity of a function at the point of interest: 
A function y = f(x) has a local maximum at the point x = c if 

)()( xfcf  for all x within a certain neighbourhood 0),,( cc

of the point x = c.

11. If a function y = f(x) is differentiable for all real x and    
0)0()0( ff  then f(x) = 0 for all real x.

Counter-example.

Both the function 2xy  and its derivative xy 2  equal zero at the 

point x = 0 but the function is not zero for all real x.

a c b

f(c)
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12. If a function y = f(x) is differentiable on the interval (a,b) and takes 
both positive and negative values on (a,b) then its absolute value 

)(xf  is not differentiable at the point(s) where f(x) = 0, e.g. 
xxf )(  or xxf sin)( .

Counter-example.

 The function 3xy  is differentiable on R and takes both positive 
and negative values but its absolute value 3xy  is differentiable 

at the point x = 0 where the function equals zero. 
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 Comments. To make the statement true it should conclude: 
“…then its absolute value )(xf  is not differentiable at the points 
where f(x) = 0 and .0)(xf ”

3xy

2xy
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13. If both functions y = f(x) and y = g(x) are differentiable on the 
interval (a,b) and intersect somewhere on (a,b) then the function 
max{f(x), g(x)} is not differentiable at the point(s) where f(x) = g(x).

Counter-example.

The function },max{ 43 xx  on (-1,1) is differentiable at the point x = 0 
where the functions 3xy and 4xy intersect.
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Comments. To make the statement true it should conclude: 
“…then the function max{f(x), g(x)} is not differentiable at the 
point(s) where f(x) = g(x) and )()( xgxf .”

14. If a function is twice differentiable at a local maximum (minimum) 
point then its second derivative is negative (positive) at that point. 

        Counter-example.

The function 4xy  is twice differentiable at its maximum point

x = 0 but the second derivative is zero at this point. 

4xy

3xy
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The function 4xy  is twice differentiable at its minimum point     

x = 0 but the second derivative is zero at that point: 
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15. If both functions y = f(x) and y = g(x) are non-differentiable at x = a
then f (x) + g(x) is also not differentiable at x = a.

Counter-example.

Both functions xxf )( and 1)( xxg  are not differentiable at  

x = 0 but f(x) + g(x) = 1 is differentiable at any x including x = 0. 

4xy

4xy
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Comments. More generally, f(x) = A(x) and g(x) = B(x) – A(x), where 
A(x) is not differentiable and B(x) is differentiable at x = a. Both f(x)
and g(x) are not differentiable, but f (x) + g(x) = B(x) is differentiable 
at x = a.

xxf )(

1)( xxg

1)()( xgxf
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16. If a function y = f(x) is differentiable and a function y = g(x) is not 
differentiable at x = a then )()( xgxf  is not differentiable at x = a.

Counter-example.

The function xxf )(  is differentiable at x = 0 and the function 
xxg )(  is not differentiable at x = 0, but the function 

xxxgxf )()(  is differentiable at the point x = 0 (the derivative 

equals zero).
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17. If both functions y = f(x) and y = g(x) are not differentiable at x = a
then )()( xgxf  is also not differentiable at x = a.

Counter-example.

Both functions xxf )( and xxg )(  are not differentiable at the 

point x = 0 but the function 22)()( xxxgxf  is differentiable 

at x = 0. 
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18. If a function y = g(x) is differentiable at x = a and a function y = f(x)
is not differentiable at g(a) then the function F(x) = f(g(x)) is not 
differentiable at x = a.

Counter-example.

The function 2)( xxg  is differentiable at x = 0, and  the function 
xxf )(  is not differentiable at g(0)=0, but the function 

22))(()( xxxgfxF  is differentiable at x = 0. 

19. If a function y = g(x) is not differentiable at x = a and a function  
y = f(x) is differentiable at g(a) then the function F(x) = f(g(x)) is not 
differentiable at x = a.

xxg )(

22)()( xxxgxf
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Counter-example.

The function xxg )(  is not differentiable at x = 0, the function 
2)( xxf  is differentiable at g(0) = 0, but the function 

22))(()( xxxgfxF  is differentiable at x = 0. 

20. If a function y = g(x) is not differentiable at x = a and a function
y = f(x) is not differentiable at g(a) then the function F(x) = f(g(x)) is 
not differentiable at x = a.

Counter-example.

The function xxxg
3
1

3
2)(   is not differentiable at x = 0 and the 

function xxxf 2)(  is not differentiable at g(0) = 0, but the 

function xxxxxgfxF
3
1

3
2)

3
1

3
2(2))(()(  is differentiable at  

x = 0. 

Let us show this using the definition of the derivative. 

x

xxxx

x
FxFF

xx

3
1

3
2)

3
1

3
2(2

lim)0()(lim)0(
00

13
1
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2

lim3
1

3
2)

3
1

3
2(2

lim0

12lim3
1

3
2)

3
1

3
2(2

lim0

00

00

x

xx

x

xxxx
x

x
xx

x

xxxx
x

xx

xx

thenIf

thenIf

Therefore .1)0(F  (Another way is to show that F(x) = x).

21. If a function y = f (x) is defined on [a,b], differentiable on (a,b) and
f(a) = f(b), then there exists a point ),( bac  such that 0)(cf .
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Counter-example.

The function below is defined on [a,b], differentiable on (a,b) and   
f(a) = f(b) but there is no such a point ),( bac  that 0)(cf .

                                 

                    

22. If a function is twice-differentiable in a certain neighbourhood 
around x = a and its second derivative is zero at that point then the 
point (a,f(a)) is a point of inflection for the graph of the function. 

Counter-example.

The function 4xy  is twice differentiable on R and its second 

derivative is zero at the point x = 0 but the point (0,0) is not a point 
of inflection.
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23. If a function y = f(x) is differentiable at the point x = a and the point 
(a,f(a)) is a point of inflection on the function’s graph then the 
second derivative is zero at that point. 

Counter-example.

The function xxy  is differentiable at x = 0 and the point (0,0) 

is a point of inflection but the second derivative does not exist at

x = 0. 
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24. If both functions y = f(x) and y = g(x) are differentiable on R then to 

evaluate the limit 
)(
)(lim
xg
xf

x
 in the indeterminate form of type

we can use the following rule: 
)(
)(lim

)(
)(lim

xg
xf

xg
xf

xx

Counter-example.

If we use the above “rule” to find the limit 
xx
xx

x sin2
sin6lim  then: 

xx
xx

x sin2
sin6lim

x
x

x cos2
cos6lim  is undefined. 

But the limit
xx
xx

x sin2
sin6lim  exists and equals 3: 

.3
sin2

sin6
lim

sin2
sin6lim

x
x
x
x

xx
xx

xx

xxy
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Comments.  To make the above ‘rule’ correct we need to add “if the 

limit
)(
)(lim
xg
xf

x
exists or equals ”. This is the well-known 

l’Hopital’s Rule for limits. 

25. If a function y = f(x) is differentiable on (a,b) and )(lim xf
ax

then

)(lim xf
ax

.

Counter-example.

The function 3 xy is differentiable on (0,1) and 

3 200 3
1lim)(lim
x

xy
xx

 but 0lim)(lim 3

00
xxy

xx
.
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26. If a function y = f(x) is differentiable on ),0(  and )(lim xf
x

 exists 

then )(lim xf
x

 also exists. 

Counter-example.

The function 
x
xxf )sin()(
2

is differentiable on ),0(  and 

0)sin(lim
2

x
x

x
 but 2

222 )sin()cos(2lim)(lim
x

xxxxf
xx

does not exist. 
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27. If a function y = f(x) is differentiable and bounded on ),0(  and 
)(lim xf

x
exists then )(lim xf

x
also exists. 

x
xxf )sin()(
2

2

222 )sin()cos(2)(
x

xxxxf
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Counter-example.

The function )cos(ln)( xxf is differentiable and bounded on ).0(

and the limit of its derivative exists: 0)sin(lnlim)(lim
x
xxf

xx
.

However, the limit of the function )cos(lnlim x
x

does not exist. 
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28. If a function y = f(x) is differentiable at the point x = a then its 
derivative is continuous at x = a.

Counter-example.

The function 
0,0

0,1sin
)(

2

x

x
x

x
xf

if

if
  is differentiable at x = 0

)cos(ln)( xxf

x
xxf )sin(ln)(
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but its derivative 
0,0

0,1cos1sin2
)(

x

x
xx

x
xf

if

if
 is discontinuous 

at x = 0. 
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29. If the derivative of a function y = f(x) is positive at the point x = a
then there is a neighbourhood about x = a (no matter how small) 
where the function is increasing. 

Counter-example.

The function 
0,0

0,1sin2
)(

2

x

x
x

xx
xf

if

if
 has the derivative 

0,0

0,1sin
)(

2

x

x
x

x
xf

if

if

0,0

0,1cos1sin2
)(

x

x
xx

x
xf

if

if
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0,1

0,1cos21sin41
)(

x

x
xx

x
xf

if

if
 which is positive at x = 0 but it 

takes positive and negative values in any neighbourhood of the 
point x = 0. This means the function y = f(x) is not monotone in any 
neighbourhood of the point x = 0. 
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30. If a function y = f(x) is continuous on (a,b) and has a local 
maximum at the point ),( bac  then in a sufficiently small 

neighbourhood of the point x = c the function is increasing on the 
left and decreasing on the right from x = c.

Counter-example.

The function 
0,2

0),1sin2(2
)(

2

x

x
x

x
xf

if

if
  is continuous on R. 

Since )1sin2(2
x

x  is positive for all 0x  then ).1sin2(22 2

x
x

Therefore the function y = f(x) has a local maximum at the point     
x = 0.  But it is neither increasing on the left nor decreasing on the 
right in any neighbourhood of the point x = 0. To show this we can 

find the derivative 0;1cos1sin24)( x
xx

xxxf . The derivative 

takes both positive and negative values in any interval 
),0()0,(  and therefore the function is not monotone in any 

interval ),0()0,( , where 0 .

0,0

0,1sin2
)(

2

x

x
x

xx
xf

if

if



78

0.40.20-0.2-0.4
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31. If a function y = f(x) is differentiable at the point x = a then there is 
a certain neighbourhood of the point x = a where the derivative of 
the function y = f(x) is bounded. 

Counter-example.

The function 
0,0

0,1sin
)( 2

2

x

x
x

x
xf

if

if
 is differentiable at the point   

x = 0. Its derivative is 
0,0

0,1cos21sin2
)( 22

x

x
xxx

x
xf

if

if
. The 

derivative of the function y = f(x) is unbounded in any 
neighbourhood of the point x = 0. 

0,2

0),1sin2(2
)(

2

x

x
x

x
xf

if

if
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32. If a function y = f(x) at any neighbourhood of the point x = a has 
points where )(xf  doesn’t exist then )(af  doesn’t exist. 

Counter-example.

The function 
0,0

0,cos
)(

2

x

x
x

x
xf

if

if
 in any neighbourhood of the 

point x = 0 has points where )(xf  doesn’t exist, however 0)0(f .
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33. A function cannot be differentiable only at one point in its domain 
and non-differentiable everywhere else in its domain. 

0,0

0,1cos21sin2
)( 22

x

x
xxx

x
xf

if

if

0,0

0,cos
)(

2

x

x
x

x
xf

if

if
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Counter-example.

The function  
irrationalisif

rationalisif
x
xxy

,0
,2   is defined for all real x and 

differentiable only at the point x = 0. It is impossible to draw the 
graph of the function y = f(x) but the sketch below gives an idea of 
its behaviour. 

               

         

34. A continuous function cannot be non-differentiable at every point 
in its domain. 

Counter-example.

The Weierstrass’ function can be defined as:

0n

)n3cos(
n

2
1)( xxf .

If we take the first 7 terms in the sum we can begin to visualise the 
function:

6420-2-4-6

2

0

-2

6420-2-4-6

2

0

-2

 Comments. The Weierstrass’ function is the first known fractal. 
Another good example of a continuous curve that has a sharp 
corner at every point is the Koch’s snowflake. We start with an 

irrationalisif
rationalisif

x
xx

y
,0
,2
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equilateral triangle and build the line segments on each side 
according to a simple rule and repeat this process infinitely many 
times. The resulting curve is called Koch’s curve and it forms the 
so-called Koch’s snowflake. The first four iterations are shown 
below:
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5. Integral Calculus 

1. If the function y = f(x) is an antiderivative of a function y = f(x) then 

)()()( aFbFdxxf
b

a

.

Counter-example.

 The function xxF ln)(  is an antiderivative of the function 

x
xf 1)( but the (improper) integral 

1

1

1 dx
x

 doesn’t exist. 

Comments. To make the statement true we need to add that the 
function y = f(x) must be continuous on [a,b].

2. If a function y = f(x) is continuous on [a,b] then the area enclosed 
by the graph of y = f(x), OX, x = a and x = b numerically equals 
b

a

dxxf )( .

Counter-example.

For any continuous function y = f(x) that takes only negative values 

on [a,b] the integral 
b

a

dxxf )(  is negative, therefore the area 

enclosed by the graph of f(x), OX, x = a and x = b is numerically 

equal to 
b

a

dxxf )( , or 
b

a

dxxf )( .

3. If 0)(
b

a

dxxf  then 0)(xf for all ],[ bax .

Counter-example.

0
2
32

1

xdx  but the function y = x takes both positive and negative 

values on [-1,2]. 
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4. If y = f(x) is a continuous function and k is any constant then: 

dxxfkdxxkf )()(  . 

Counter-example.

If k = 0 then the left-hand side is: Cdxdxxf 0)(0 , where C is 

an arbitrary constant. The right-hand side is: 0)(0 dxxf . This 

indicates that C is always equal zero, but this contradicts the 
nature of an arbitrary constant. 

Comments. The property is valid only for non-zero values of the 
constant k.

5. A plane figure of infinite area rotated around an axis always 
produces a solid of revolution of infinite volume.

Counter-example.

The figure enclosed by the graph of the function 
x

y 1 , the x-axis

and the straight line x = 1 is rotated about the x-axis.

The area is infinite: )1ln(lnlim1

1

bdx
x b

 (square units), but the 

volume is finite: )11(lim1

1
2 b
dx

x b
 (cubic units). 

 2 -1
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6. If a function y = f(x) is defined for any ],[ bax and
b

a

dxxf )( exists

then
b

a

dxxf )( exists.

 Counter-example.

 The function 
irrationalisif
rationalisif

x
x

xf
,1
,1

)(  is defined for any real x.

1)(xf and therefore 
b

a

abdxxf )( but
b

a

dxxf )( does not exist. 

Let us show this using the definition of the definite integral. 

Let [a,b] be any closed interval. We divide the interval into n
subintervals and find the limit of the integral sums:

1

00max
)(lim

n

i
iix
xcfS

i

.

If on any subinterval we choose ic  equal to a rational number then 
S = b – a. If on any subinterval we choose ic  equal to an irrational 

number then S = a - b. So the limit of the integral sums depends on 
the way we choose ic  and for this reason the definite integral of f(x)

on [a,b] doesn’t exist. 

x
y 1
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7. If neither of the integrals 
b

a

dxxf )(  and 
b

a

dxxg )(  exist then the 

integral
b

a

dxxgxf ))()((  doesn’t exist. 

Counter-example.

For the functions 

irrationalisif
rationalisif

x
x

xf
,1
,1

)(     and   
irrationalisif
rationalisif

x
x

xg
,1
,1

)(

the integrals 
b

a

dxxf )( and
b

a

dxxg )(  don’t exist (see the previous 

exercise) but the integral 
b

a

dxxgxf ))()((  exists and equals 0. 

8. If 0)(lim xf
x

then
a

dxxf )(  converges.   

Counter-example.

 The limit 01lim
xx

but the integral dx
x1

1 diverges.
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9. If the integral 
a

dxxf )(  diverges then the function y = f(x) is not 

bounded.

Counter-example.

 The integral of a non-zero constant 
a

dxk  is divergent but the 

function y = k is bounded. 

10. If a function y = f(x) is continuous and non-negative for all real x

and
1

)(
n

nf is finite then
1

)( dxxf  converges. 

Counter-example.

The function xy sin is continuous and non-negative for all real 

x and 0sin
1n

n  but dxx
1

sin diverges.
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11. If  both integrals 
a

dxxf )(  and
a

dxxg )( diverge then the integral 

a

dxxgxf ))()((  also diverges. 

xy sin
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Counter-example.

Both integrals dx
x1

1  and dx
x
x

1
2

1  diverge but the integral 

1 1
22

1)11( dx
x

dx
x
x

x
 converges. 

12. If a function y = f(x) is continuous and
a

dxxf )( converges then 

0)(lim xf
x

.

 Counter-example.

The Fresnel integral 
0

2sin dxx converges but 2sinlim x
x

does not 

exist:
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13. If a function y = f(x) is continuous and non-negative and 
a

dxxf )(

converges then 0)(lim xf
x

.

Counter-example.

We will use the idea of area. Over every natural n we can construct 

triangles of area 2

1
n

 so that the total area equals 
an n2
1 , which is a 

2sin xy
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finite number. The height of each triangle is n and the base is 3

2
n

.

The integral  
a

dxxf )(  converges since it is numerically equal to the 

total area 
an n2
1 . As one can see from the graph below the function 

(in bold) is continuous and non-negative but )(lim xf
x

 doesn’t exist. 

14. If a function y = f(x) is positive and unbounded for all real x then 

the integral 
a

dxxf )(  diverges. 

Counter-example.

We will use the idea of area. Over every natural n we can construct 

a rectangle with the height n and the base 3
1
n

 so the area is 2

1
n

.

Then the total area equals 
an n2
1 , which is a finite number. The 

positive and non-bounded function equals n on the interval of 

length 3

1
n

 around points x = n, where n is natural. Since the 

integral
a

dxxf )(  numerically equals the total area 
an n2
1  it 

converges.

n n+1 n+2

n+2

n+1

n
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15. If a function y = f(x) is continuous and not bounded for all real x

then the integral 
0

)( dxxf  diverges. 

Counter-example.

The function 4sin xxy  is continuous and unbounded for all real 

x, but the integral 
0

4sin dxxx  converges (making the substitution 

2xt  yields the Fresnel integral 
0

2sin
2
1 dtt   which is convergent). 
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16. If a function y = f(x) is continuous on ),1[  and 
1

)( dxxf  converges 

then
1

)( dxxf  also converges. 

Counter-example.

The function 
x
xy sin  is continuous on ),1[  and 

1

sin dx
x
x

converges but 
1

sin dx
x
x  diverges. 

17. If the integral 
a

dxxf )(  converges and a function y = g(x) is 

bounded then the integral 
a

dxxgxf )()(  converges.  

 Counter-example.

The integral dx
x
x

0

sin  converges and the function xxg sin)(

is bounded but the integral dx
x
x

0

2sin  diverges.

Comments. Statements 10, 13 and 14 in this chapter are supplied 
by Alejandro S.Gonzalez-Martin, University La Laguna, Spain. 
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Appendix 1. 

Example from Teaching Practice 

Below are some thoughts and suggestions from my experience using 
counter-examples with students. Statement 14 from Continuity is 
considered as an example: 

Statement. If a function y = f(x) is defined on [a,b] and continuous on 
(a,b) then for any ))(),(( bfafN  there is some point ),( bac  such that    

f(c) = N.

The only difference between this statement and the Intermediate Value 
Theorem is that continuity of the function is required on an open 
interval (a,b), instead of a closed interval [a,b]. In other words, one side 
continuity of the function at the point x = a from the right and at the 
point x = b from the left is not required. When students are asked to 
disprove the statement they usually come up with something like this: 
            
            
            
            
            
            
            
            
            
            
            
            
            
            
        

f(b)

f(a)

a                            b 
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To generate discussion and create other counter-examples one can 
suggest that: 
In the above graph the statement’s conclusion is not true for any value of 

))(),(( bfafN . Modify the graph in such a way that the statement’s 

conclusion is true for:  
a) one value of ))(),(( bfafN

b) two values of ))(),(( bfafN

c) infinitely many but not all values of ))(),(( bfafN .

One can expect from the students the following three sketches: 

a)
            

b)

f(b)

f(a)

a b

f(b)

a                            b 

f(a)
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c)

Another challenge can be presented: 
Give a counter-example such that the graph doesn’t have white circles. 
In this case students may come up with something like this: 

Some students find such problems very new and challenging. After 
learning Calculus at school many come to university with a strong 
preference to performing calculations, manipulations and techniques, 
ignoring conditions of the theorems and properties of the functions they 
are dealing with. It is often not their fault.

a                            b 

f(a)

f(b)

a                               b 

f(a)f(a)f(a)f(a)

f(b)
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To illustrate the point, below is a real example from a final year high-
school mathematics exam (university entrance) that deals with the 
Intermediate Value Theorem as well. 

Question. “Show that the equation 012 xx  has a solution 
between x = 1 and x = 2. 
Model Solution. If f(x) = 12 xx  then f(1) = - 1 < 0 and
f(2) = 1.58 > 0. So graph of f crosses the x-axis between 1 and 2.” 

The above model solution was given to examiners as a complete 
solution, one for which students would get full marks for. It was based 
on the special case of the Intermediate Value Theorem which has 2 
conditions: the continuity of f(x) on [a,b] and the condition

0)()( bfaf . Only the second condition was checked, and the first 

was ignored as if it was ‘not essential’.  The question came from a 
written exam where all working had to be shown. The fact that the 
condition of continuity of the function f(x) was not required by the 
examiners to award full marks for the solution was very dangerous. The 
message was clear – calculations are important but the function’s 
properties are not. No wonder students don’t consider all theorem 
conditions and properties of functions – it is simply not required.

Some years ago I gave the following provocative question to five average 
students who had done some Calculus at school and at that time were 
taking a University entrance mathematics course: “Show that the 

equation 0
5.1
12

x
xx  has a solution between x = 1 and x = 2.” All five 

students quickly ‘showed’ this by misusing the Intermediate Value 
Theorem. They only checked that f(1) = - 6 < 0 and f(2) = 14 > 0. This 
particular function was chosen deliberately over the simple hyperbola 

5.1
1)(

x
xf  to provoke the students to jump straight into calculations, 

which they did. It’s hard to blame them for this if they are mainly used 
to performing calculations, manipulations and techniques in school 
mathematics.
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Appendix 2. This paper is reproduced with 
some minor changes with permission from the editor 
of The New Zealand Mathematics Magazine, ISSN: 
0549-0510. 2003, Vol 40, No 2, pp.33-41. 

Using Counter-Examples in Teaching Calculus: 
Students’ Attitudes 

Norbert Gruenwald 

Hochschule Wismar University of Technology, Business and Design 
Wismar, Germany 

Sergiy Klymchuk 

Auckland University of Technology 
Auckland, New Zealand 

ABSTRACT: The paper deals with a practical issue encountered by 
many lecturers teaching first-year university Calculus. A big proportion 
of students seem to be able to find correct solutions to test and exam 
questions using familiar steps and procedures. Yet they lack deep 
conceptual understanding of the underlying theorems and sometimes 
have misconceptions. In order to reduce or eliminate misconceptions, 
and for deeper understanding of the concepts involved, the students 
were given the incorrect mathematical statements and were asked to 
construct counter-examples to disprove the statements. More than 600 
students from 10 universities in different countries were questioned 
regarding their attitudes towards the method of using counter-examples 
for eliminating misconceptions and deeper conceptual understanding. 
The vast majority of the students reported that the method was very 
effective and made learning mathematics more challenging, interesting 
and creative. 
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INTRODUCTION AND FRAMEWORK 

In the information age analysing given information and making a quick 
decision on whether it is true or false is an important ability. A counter-
example is an example that shows that a given statement (conjecture, 
hypothesis, proposition, rule) is false. It only takes one counter-example 
to disprove a statement. Counter-examples play an important role in 
mathematics and other subjects. They are a powerful and effective tool 
for scientists, researchers and practitioners. They are good indicators 
showing that the suggested hypothesis or chosen direction of research 
is wrong. Before trying to prove the conjecture or hypothesis it is often 
worth looking for a possible counter-example. This can save lots of time 
and effort.  We decided to introduce this powerful method to our 
students. Creating examples and counter-examples is neither 
algorithmic nor procedural and requires advanced mathematical 
thinking, things not often taught in schools [15, 19, 20]. As Seldens 
write, “coming up with examples requires different cognitive skills from 
carrying out algorithms – one needs to look at mathematical objects in 
terms of their properties. To be asked for an example can be 
disconcerting. Students have no pre-learned algorithms to show the 
’correct way’ ” [15]. Many students are used to concentrating on 
techniques, manipulations and familiar procedures without paying 
much attention to the concepts, conditions of the theorems, properties 
of the functions, nor to the reasoning and justification behind them.

Over recent years in some countries, partly due to extensive usage of 
modern technology, the proof component of the traditional approach in 
teaching mathematics to engineering students (definition-theorem-
proof-example-application) has almost disappeared. Students are used 
to relying on technology and sometimes lack logical thinking and 
conceptual understanding. Sometimes mathematics courses, especially 
at school level, are taught in such a way that special cases are avoided 
and students are exposed only to ‘nice’ functions and ‘good’ examples. 
This approach can create many misconceptions, explained by Tall’s 
generic extension principle: “If an individual works in a restricted 
context in which all the examples considered have a certain property, 
then, in the absence of counter-examples, the mind assumes the known 
properties to be implicit in other contexts.” [18]. “The rapid increase of 
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information over very short periods of time is a major problem in 
engineering education that seems worldwide. Misconceptions or 
unsuitable preconceptions cause many difficulties” [2]. “The basic 
knowledge, performance and conceptual understanding of the students 
in mathematics worsen” [3].

The study’s main objective was to verify our assumptions regarding the 
effectiveness of counter-examples in giving students deeper conceptual 
understanding, eliminating their misconceptions and developing a 
creative learning environment for teaching/learning university 
Calculus.

In this study, practice was selected as the basis for the research 
framework, and it was decided “to follow conventional wisdom as 
understood by the people who are stakeholders in the practice” [1].  The 
theoretical framework was based on Piaget’s notion of cognitive conflict 
[4]. Some studies in mathematics education at school level [5], [6] found 
conflict to be more effective than direct instruction. “Provoking cognitive 
conflict to help students understand areas of mathematics is often 
recommended” [6]. Swedosh and Clark [7] used conflict in their 
intervention method to help undergraduate students eliminate their 
misconceptions. “The method essentially involved showing examples for 
which the misconception could be seen to lead to a ridiculous 
conclusion, and, having established a conflict in the minds of the 
students, the correct concept was taught” [7]. Another study by 
Horiguchi and Hirashima [14] used a similar approach in creating a 
‘discovery learning environment’ in their mechanics classes. They 
showed counter-examples to their students and considered them a 
chance to learn from their mistakes. They claim that for counter-
examples to be effective they “must be recognized to be meaningful and 
acceptable and must be suggestive, to lead a learner to correct 
understanding” [14]. Mason and Watson [8] used a method of so-called 
‘boundary examples’, which suggested students come up with examples 
to correct statements, theorems, techniques, and questions that 
satisfied their conditions. “When students come to apply a theorem or 
technique, they often fail to check that the conditions for applying it are 
satisfied. We conjecture that this is usually because they simply do not 
think of it, and this is because they are not fluent in using appropriate 
terms, notations, properties, or do not recognise the role of such 
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conditions” [8]. In our study, the students, not the lecturers, were asked 
to create and show counter-examples to the incorrect statements, i.e. 
the students themselves established a conflict in their minds. The 
students were actively involved in creative discovery learning that 
stimulated development of their advanced mathematical thinking.

THE STUDY 

To develop a creative learning environment, enhance students’ critical 
thinking skills, help them understand concepts and theorems’ 
conditions better, reduce or even eliminate common misconceptions 
and encourage active participation in class, the students were given 
incorrect statements and asked to create counter-examples to prove 
that the statements were wrong.  They had enough knowledge to do 
this, but for most of the students this kind of activity was entirely new 
and challenging, and even created psychological discomfort and conflict 
for a number of reasons.  In the beginning some of the students could 
not see the difference between ‘proving’ that the statement is correct by 
an example and disproving it by an example. It agrees with the following 
quotation from Seldens [15]: “Students quite often fail to see a single 
counter-example as disproving a conjecture. This can happen when a 
counter-example is perceived as ‘the only one that exists’, rather than 
being seen as generic”.

In our study we did not use ‘pathological’ cases. All the wrong 
statements given to the students were within their knowledge and often 
related to their common misconceptions. 

Below are 6 examples of such statements that were discussed with the 
students:

With a continuous function, i.e. a function which has values of y
which smoothly and continuously change for all values of x, we 
have derivatives for all values of x.
If the first derivative of a function is zero at a point then the 
function is neither increasing nor decreasing at this point. 
At a maximum the second derivative of a function is negative and 
at a minimum positive. 
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The tangent to a curve at a point is the line which touches the 
curve at that point but does not cross it there. 
If F(x) is defined on [a,b] and continuous on (a,b) then for any N
between F(a) and F(b) there is some point c between a and b for 
which F(c) = N.
If the absolute value of F(x) is continuous on (a,b) then F(x) is 
continuous on (a,b).

The first four out of the above 6 statements are quotations from 
university calculus textbooks published by reputable publishers. In this 
paper we will not look into the issue of mistakes in textbooks and their 
effect on students learning mathematics, as it is a sensitive topic. We 
can refer readers to a case study done by one of the co-authors [11]. We 
mention this here due to the importance of developing and enhancing 
critical thinking by students for analyzing any information - not only 
printed in newspapers but also in mathematics textbooks. In addition, 
some such textbooks might be used as a good resource for students for 
finding incorrect statements on the given pages and creating counter-
examples to them. 

After several weeks of using counter-examples in teaching Calculus to 
first-year engineering students, 612 students from 10 universities in 
different countries were given the questionnaire below to investigate 
their attitudes towards the usage of counter-examples in 
learning/teaching. A combination of two non-probability sampling 
methods - judgement and convenience – was used to select lecturers 
who conducted a survey with students in their universities. The survey 
was sent to selected participants of international mathematics 
education conferences held in 2000-2002 and university lecturers who 
either teach university mathematics or write papers on mathematics 
education at university level, or both. The response rate was 60% which 
demonstrates the importance of the topic - this is quite a high rate of 
response for busy professionals. A cross-cultural approach was chosen 
to reduce the effect of differences in education systems, curricula, 
cultures and also to analyse the data from different perspectives and 
backgrounds. The questionnaire is below. 
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THE QUESTIONNAIRE 

Question 1. Do you feel confident using counter-examples? 
a) Yes    Please give the reasons: 
b) No    Please give the reasons: 

Question 2. Do you find this method effective? 
a) Yes    Please give the reasons: 
b) No    Please give the reasons: 

Question 3. Would you like this kind of activity to be a part of 
assessment?
a) Yes    Please give the reasons: 
b) No    Please give the reasons: 

FINDINGS FROM THE QUESTIONNAIRE 

The statistics from the questionnaire are presented in the following 
table:

Table 1. Summary of findings from the questionnaire 

The majority of the students (81%) were not familiar with the usage of 
counter-examples as a method of disproof. The typical comments from 
students who answered “No” to question 1 (confidence) were as follows: 

I have never done this before; 
I am not familiar with this at all; 
I am not used to this method; 
this method is unknown to me; 

Number of 
Students

Question 1
Confident?
Yes       No

Question 2 
Effective?
Yes      No 

Question 3 
Assessment?
Yes        No 

     612 116     496 563       49    196       416 

  100% 19%    81%  92%      8% 32%      68% 
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we did not learn it at school; 
I heard about it but not from my school teacher; 
we hardly created ourselves any examples at school. 

The vast majority of the students (92%) found the method of using 
counter-examples to be effective. The typical comments from the 
students who answered “Yes” to question 2 (effectiveness) were as 
follows:

helps me to think about questions deeply; 
gives more sound knowledge of the subject; 
we can understand more; 
it makes me think more effectively; 
can prevent mistakes; 
you gain a better understanding; 
it makes the problem more clear; 
it boosts self-confidence; 
it helps you retain information that you have learned; 
it is a good teaching tool; 
it teaches you to question everything;
it makes you think carefully about the concepts and how they are 
applied;
it makes you think critically; 
it supports self-control; 
it requires logical thinking, not only calculations; 
makes problems more understandable; 
it is hard but it is fun; 
it is a good way to select top students; 
I can look at maths from another angle; 
it is good not only in mathematics; 
it really forces you to think hard; 
it is not a routine exercise, it is creative. 

The majority of the students (68%) did not want the questions on 
creating counter-examples to incorrect statements to be part of 
assessment, in contrast to the trends pointing to the effectiveness of the 
method (92%).

The typical comments from the students who answered “No” to  
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question 3 (assessment) were generally as follows: 

it is hard; 
never done this stuff before; 
confusing;
not trained enough; 
complicated;
not structured; 
not enough time to master it; 
you don’t know how to start; 
can affect marks. 

The last comment was the most frequent. The majority of these 
students were more concerned about their test results than acquiring 
useful skills. Apparently their attitudes towards learning still had some 
maturing to do. 
     
The students who answered “Yes” (32%) provided excellent comments 
similar to those made on the method’s effectiveness. The comments 
from the students who answered “Yes” to question 3 (assessment) were 
as follows: 

it provokes generalised thinking about the nature of the processes 
involved, as compared to the detail of the processes; 
better performance test; 
it shows full understanding of topic; 
a good way to test students’ insight; 
it is an extremely valuable skill; 
it is good to have it in assessment otherwise we will not put much 
attention to it; 
it is challenging and I like it; 
one can use this method outside university; 

CONCLUSIONS AND RECOMMENDATIONS 

The statistical results of the study and the numerous comments from 
students confirm that the students were positive about the usage of 
counter-examples in first-year undergraduate mathematics. Many of 
them reported that the use of counter-examples helped them to 
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understand concepts better, prevent mistakes in working, develop 
logical and critical thinking, and make their participation in lectures 
more active. All these give us confidence to recommend this pedagogical 
strategy to our colleagues to try with their students. There are different 
ways of using this strategy: giving the students a mixture of correct and 
incorrect statements; making a deliberate mistake in the lecture; asking 
the students to spot an error on a certain page of their textbook or 
manual; giving the students extra (bonus) marks towards their final 
grade for providing excellent counter-examples to hard questions during 
the lecture and so on.  At more advanced levels of mathematics 
Dahlberg and Housman suggest “it might be beneficial to introduce 
students to new concepts by having them generate their own examples 
or having them decide whether teacher-provided candidates are 
examples or non-examples, before providing students examples and 
explanations” [13]. 

Many students commented that creating counter-examples was closely 
connected with enhancing their critical thinking skills. These skills are 
general ones and can be used by the students in other areas of their life 
that have nothing to do with mathematics. The ability to create counter-
examples is an important instrument of critical selection in the broader 
sense. Henry Perkinson, the author of the famous book “Learning from 
our mistakes” [16], writes about the importance of those skills for his 
theory of education in his recent publication: “Our knowledge is 
imperfect, it can always get better, improve, grow. Criticism facilitates 
this growth. Criticism can uncover some of the inadequacies in our 
knowledge, and when we eliminate them, our knowledge evolves and 
gets better…Education is a continual process of trial-and-error 
elimination. Students are fallible creators who make trial conjectures 
and formulate trial skills and then eliminate the errors uncovered by 
criticism and critical selection” [17].

FURTHER STUDY 

We would like to extend the study to measure the effectiveness of this 
pedagogical strategy on the students’ exam performance on the 
questions that require good understanding of concepts, not just skills 
related to manipulation and technique. We plan to compare the 
performance of 2 groups of students with similar backgrounds. In one 
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group we will use counter-examples extensively, with the other group 
being the control group. Then we will use statistical methods to 
establish whether the difference is significant or not.

We also plan to develop a database of incorrect statements related to 
common students’ misconceptions for practice in creating counter-
examples. This supplementary teaching resource could be used for both 
teaching and assessment. 
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Counter-Examples in Teaching/Learning of 
Calculus: Students’ Performance 

Sergiy Klymchuk 
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Auckland, New Zealand

ABSTRACT: This paper presents a case study that involved first year 
science and engineering students at the Auckland University of 
Technology, New Zealand. After very positive feedback was received 
from students in the international study on their attitudes towards  
counter-examples in the teaching/learning of Calculus (Gruenwald, 
Klymchuk, 2003) it was decided to investigate how the use of  
counter-examples would affect students’ performance. The case study 
showed that the usage of counter-examples significantly improved 
students’ performance on a test question that required conceptual 
understanding, but did not affect their performance on other test 
questions that only required the application of familiar rules, 
algorithms and calculations. 

INTRODUCTION

Counter-examples provide an important means of communicating ideas 
in mathematics, whose entire history may be viewed as making 
conjectures and then either proving or disproving them by counter-
example. Here are a few well-known cases to illustrate the point:
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1. For a long time mathematicians tried to find a formula for prime 

numbers. The numbers of the form 122
n

, where n is natural 
were once considered as prime numbers, until a counter-example 
was found. For n = 5 that number is composite: 

670041764112
52 .

2. Another conjecture about prime numbers is still waiting to be 
proved or disproved - Goldbach’s or the Goldbach-Euler 
conjecture, posed by Goldbach in his letter to Euler in 1742. It 
looks deceptively simple at first. It states that every even number 
greater than 2 is the sum of 2 prime numbers. For example,  
12 = 5 + 7, 20 = 3 + 17, and so on. A powerful computer was used 
in 1999 to search for counter-examples to that conjecture. No 
counter-examples have been found up to 14104 . In 2000 the book 
publishing company Faber & Faber offered a US$1 million prize 
to anyone who could prove or disprove that conjecture. To date 
(April, 2005) the prize remains unclaimed. 

3. In the 19th century the great German mathematician Weierstrass 
constructed his famous counter-example – the first known fractal 
– to the statement: a function continuous on (a,b) cannot be non-
differentiable at any point on (a,b). Many mathematicians at that 
time thought that such ‘monster-functions’ that were continuous 
but not differentiable at any point were absolutely useless for 
practical applications. About a hundred years later Norbert 
Winer, the founder of cybernetics pointed out in his book “I am a 
mathematician” that such curves exist in nature – for example, 
they are trajectories of particles in Brownian motion. In recent 
decades such curves have been investigated in the theory of 
fractals – a fast growing area with many applications. 

Using counter-examples in teaching/learning of Calculus can be 
beneficial in many areas: 

For deeper conceptual understanding 
To reduce or eliminate common misconceptions 
To advance one’s mathematical thinking, that is neither 
algorithmic nor procedural 
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To enhance generic critical thinking skills – analysing, justifying, 
verifying, checking, proving which can benefit students in other 
areas of life 
To expand the ‘example set’ - a number of examples of interesting 
functions for better communication of ideas in mathematics and 
in practical applications 
To make learning more active and creative 

The international study on students’ attitudes towards the usage of 
counter-examples as a pedagogical strategy in the teaching/learning of 
Calculus (Gruenwald, Klymchuk, 2003)  involving over 600 students 
from 10 universities around the world showed students’ attitudes to be 
very positive. 92% of the participants reported that this strategy was 
very effective. Many of them commented that it helped them to 
understand concepts better, prevent mistakes, develop logical and 
critical thinking skills, and that it made their participation in lectures 
more active. Students’ attitudes and their exam performance are 
different matters though, so this study investigates how the use of  
counter-examples affects students performance. 

THE STUDY 

Two groups of students enrolled in science or engineering courses from 
the Auckland University of Technology were selected for this case study.  
In group A there were 14 students and in group B (the control group) 
there were 11. All of the students had similar mathematics 
backgrounds and ages, and all were Chinese. Both groups attended 3 
lectures and 1 tutorial per week with the same lecturer, except group A 
was taught by another lecturer once a week who spent 5-6 minutes (out 
of a 50 minute lecture) on counter-examples. There were 8 weeks before 
the mid-semester test, so counter-examples were used in a total of 8 
lectures. During this 8-week period the entire time spent on counter-
examples in the lectures was about 45 minutes. 

Below are some statements and related counter-examples that were 
discussed in the group A’s lectures. 
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Statement 1
The tangent to a curve at a point is the line which touches the curve at 
that point but does not cross it there. 

Counter-example
a) The x-axis is the tangent line to the curve 3xy  but it crosses the 

curve at the origin. 
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b) The three straight lines just touch but don’t cross the curve below at 
the peak, but none of them is the tangent line to the curve at that point. 
   

    

   

Statement 2
If the absolute value of the function y = f(x) is continuous on (a,b) then 
the function is also continuous on (a,b).

3xy
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Counter-example
The absolute value of the function  

0,1
0,1

)(
x
x

xy
if
if

 is 1)(xy  for all real x and it is continuous, but the 

function y(x) is discontinuous. 

      
                      
Statement 3
If a function is continuous on R and the tangent line exists at any point 
on its graph then the function is differentiable at any point on R. 

Counter-example
The function 3 2xy is continuous on R and the tangent line exists at 

any point on its graph but the function is not differentiable at the point  
x = 0.      
      

  1 

-1
0,1
0,1

)(
x
x

xy
if
if
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Statement 4
If the derivative of a function is zero at a point then the function is 
neither increasing nor decreasing at this point. 

Counter-example
The derivative of the function 3xy  is zero at the point x = 0 but the 

function is increasing at this point.  
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Statement 5
If a function is differentiable and decreasing on (a,b) then its gradient is 
negative on (a,b).

Counter-example
The function 3xy  is differentiable and decreasing on R but its 

gradient is zero at the point x = 0. 

3 2xy

3xy



113

86420-2-4-68

2

0

-2

-4

86420-2-4-68

2

0

-2

-4

86420-2-4-68

2

0

-2

-4

86420-2-4-68

2

0

-2

-4

The purpose of this experiment was to see how using counter-examples 
in class affected students’ performance on the test question that 
required conceptual understanding. 

THE RESULTS

After 8 weeks of study both groups sat the same mid-semester test 
containing 11 questions: the first 10 questions dealt with skills in 
techniques, and question 11 tested conceptual understanding.

Question 11. Sketch a graph of a function that is continuous and smooth 
(no sharp corner) at a point but which is not differentiable at that point. 

What we expected from the students was a simple sketch: 

3xy
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Or perhaps something like the cube root function: 
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The results of the test and question 11 are below: 

Group A:  Passed the test 13/14=93%     Question 11: 11/14=79% 
Group B:  Passed the test 10/11=91% Question 11: 5/11=45% 

DISCUSSION AND CONCLUSION 

The students’ performance on questions 1-10 was very similar in both 
groups, as were their overall test results: 93% of the students in group 
A and 91% in group B passed (received more that 50% of the total 
marks). When looking at the results of question 11, a significant 
difference between the two groups is apparent. 79% of the students in 
group A answered question 11 correctly, versus 45% in group B. This 
might suggest that group A’s conceptual understanding was improved 
as an immediate result of their work with counter-examples. 

As with any case study an essential question is this: to what extent can 
we generalise these results? Regardless of the answer, employing 
counter-examples as a pedagogical strategy is certainly worth trying! 

There is a well-known book on counter-examples in Calculus: 
“Counterexamples in Analysis” by B.R.Gelbaum and J.M.H.Olmsted 
(Holden-Day, Inc., San Francisco, 1964). It is an excellent resource for 
the teaching and learning of Calculus at an advanced level, but it is well 
beyond the scope of first-year university Calculus courses, ones that 
might be based on the popular “Calculus: Concepts and Contexts” by  

3 xy
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J. Stewart (Brooks/Cole, Thomson Learning, 2nd ed., 2001) for 
example. Another supplementary teaching resource is the recently 
published book “Counter-Examples in Calculus” (Klymchuk, 2004). 
These two books don’t overlap – all statements and examples are 
different. The latter book is aimed at filling the niche in the activity on 
using counter-examples as a pedagogical strategy in teaching/learning 
of a first-year university Introductory Calculus course. 
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