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Preface

Two distinguished specialists, one of asymptotic methods, the other of sim-
ulation of flows with boundary layer, made an evident effort, on one side,
to understand their respective disciplines and, on the other side, to progress
together. The result is this very original book, which represents a significant
contribution to the problem of laminar flow calculation, at high Reynolds
number, with moderately separated boundary layers.

The basic tools used in this book are not new. Asymptotic methods, ordi-
nary differential equations, fluid mechanics, Euler and Prandtl equations are
the fundamental blocks on which the edifice is built. The proposed examples,
examined theoretically and numerically, produce convincing results. In addi-
tion, standard applications such as the second order boundary layer theory,
the triple deck model for localized separation, the effect of localized wall per-
turbation on plane Poiseuille flow, are revisited with this new construction.

Then, where is the novelty? It lies in the effort conducted to fully review
the application of asymptotic methods for the resolution of problems involv-
ing a boundary layer. The reader is guided in this progression through twelve
chapters. Chapter two to six are devoted to asymptotic methods, in general,
and to their use to solve problems of ordinary differential equations contain-
ing a small parameter. Here, we have the first opportunity to find out the
ingenuity of the method recommended by the authors. Attributing a loose
meaning to the metaphor, let us say that, with the commonly used Method of
Matched Asymptotic Expansions (MMAE), appropriate expansions play the
role that a mathematician associates with intuition, while matching is a sub-
stitute to proof. Here appears a basic change in strategy: the intuition con-
sists of guessing that one may write down a Uniformly Valid Approximation
(UVA), and the substitute to the proof is that a Successive Complementary
Expansion Method (SCEM) may be used to achieve the goal. Usually, we
use asymptotic expansions appropriate to different regions and the matching
between the expansions play a crucial role. Here, the construction of the UVA
is performed abreast, i.e. without going back and forth, by substituting the
assumed approximation in the equations and in the boundary conditions, and
by minimizing the error in an asymptotic sense. The authors show that the
same result is obtained as with the back and forth method with matching.
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The conclusive argument appears after chapter seven, when the method
is applied to boundary layers in fluid mechanics. Indeed, in this case, MMAE
comes up against the impossibility to solve the Prandtl equations beyond
the point of vanishing skin-friction. Many researchers tried to overcome the
difficulty by introducing an interaction between the inviscid flow and the
boundary layer, but it was necessary to abandon any asymptotic expan-
sion while this was an underlying idea. The authors apply SCEM in order
to guess a UVA proceeding according to (fractional) powers of the inverse
Reynolds number (Re). This UVA is substituted in the Navier-Stokes equa-
tions and boundary conditions, and the remainders are rendered as asymp-
totically small as possible. The inviscid flow and the boundary layer are
considered simultaneously by imposing to the two simulations to be as close
as possible to each other in a region which is common to the two domains
of validity. There is no need of the back and forth process and of match-
ing conditions because these latter conditions are implicitly contained in
the construction process of the UVA due to SCEM and to the asymptotic
minimization of errors. The authors show that SCEM produces the same re-
sults as MMAE;, if this method works, including the triple deck results with
separation having a longitudinal extent of order Re=3/%. With SCEM, the
separated zone can be more extended but not up to order one, which is not
surprising.

The effect of wall deformation on plane Poiseuille flow raises a diffi-
cult problem and asymptotic approximation has been thoroughly studied
for large Reynolds number in laminar flows. Discarding any attempt to be
exhaustive, the authors find there a splendid test shedding light on feasi-
bility of their strategy, which leads to solving two sets of Prandtl’s equa-
tions, linking each other by their pressures. The numerical results are con-
vincing.

Any reader mastering a little bit of asymptotic machinery, or the one
who tackled over some of the proposed problems, will be rewarded when
reading chapter eleven on turbulent boundary layer which reveals flexibility
of the strategy. He will understand how, some calculus, inspired by it, leads
to an equation valid over the whole boundary layer thickness. Of course,
such an equation relies on a mixing length model for the Reynolds stress.
The numerics exhibits two zones with logarithmic overlapping which reduces
in extent when the Reynolds number reduces towards transition. Such an
overlapping, which is usually thought about as a consequence of matching, is
now a consequence of the strategy, and obviously of the choice of the mixing
length model for the Reynolds stress.
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For the reasons given above, I find this book very attractive. I am con-
vinced that experienced readers will share this opinion and that young re-

searchers will find new perspectives.

Meudon, 10 march 2006

Jean-Pierre GUIRAUD
Professeur honoraire
Université Pierre et Marie CURIE

Paris



Acknowledgements

We are profoundly grateful to Tuncer Cebeci for his contribution to the prepa-
ration of this work. He reviewed the manuscript very carefully, making many
constructive suggestions, and in doing so, helped us improve the book signif-
icantly. We are entirely responsible for any remaining mistakes and imper-
fections.



Contents

Preface . ... ... A%
Acknowledgements ............. .. VIII
Abbreviations ....... .. .. XVII
1 Introduction....... ... .. ... .. 1
2 Introduction to Singular Perturbation Problems.......... 7
2.1 Regular and Singular Problems.............. ... ... ... .. 8
2.1.1 Linear Oscillator ............ ... .. ... 8

2.1.2 Secular Problem........... ... ... ... . i 11

2.1.3 Singular Problem.......... ... .. .. ... o 14

2.2 Approximation Methods for Singular Perturbation Problems . 15
2.2.1 Method of Matched Asymptotic Expansions ......... 16

2.2.2  Successive Complementary Expansion Method ... .... 19

2.2.3 Multiple Scale Method ............................ 20

2.2.4 Poincaré-Lighthill’s Method ....................... 22

2.2.5 Renormalization Group Method ............... ... .. 24

2.3 Conclusion .. ....... ... 25
Problems . ... .. 25

3 Boundary Layer Structure ................................ 31
3.1 Study of a Second Order Differential Equation ............. 31

3.2 Analysisofeach Case . ...... ... .. ... 35

3.3 Conclusion ........ ... 40
Problems . ... ... 41

4 Asymptotic Expansions ......... ... ... .. o i 43
4.1 Order Functions. Order of a Function .................. ... 43
4.1.1 Definition of an Order Function ................. ... 43

4.1.2 Comparison of Order Functions ................. ... 43

4.1.3 Total Ordering .........cooviniii . 44

4.1.4 Order of a Function .............................. 45

4.2 Asymptotic Sequence . .............. i 46



XII

Contents
4.2.1 Definition of an Asymptotic Sequence ............... 46
4.2.2 Class of Equivalence .......... ... .. ... ... ..... 46
4.2.3 Gauge Functions ....... ... .. .. .. o il 47
4.3 Asymptotic Expansion ........ .. .. . oo 47
4.3.1 Asymptotic Approximation ........... ... ... ... .... 47
4.3.2 Regular Functions . ......... .. ... .. ... .. .. ... 49
4.3.3 Regular and Generalized Asymptotic Expansions .. ... 50
4.3.4 Convergence and ACCUTACY .. ....vvirneinnneenn... 51
4.3.5 Operations on Asymptotic Expansions .............. 54
4.4 Conclusion . .........co.iiii 55
Problems ... ... 59
Successive Complementary Expansion Method............ 59
5.1 Method of Matched Asymptotic Expansions ............... 59
5.1.1 Expansion Operator ..............ccooiiiiiien.... 59
5.1.2 Outer Expansion - Inner Expansion................. 60
5.1.3 Asymptotic Matching ............. .. ... ... ...... 61
5.2 Boundary Layer .......... .. . .. . 65
5.2.1 Expansion Operator to a Given Order .............. 65
5.2.2 Significant Approximations ......... ... ... ... ...... 66
5.3 Intermediate Matching ......... ... ... ... .. .. i 67
5.3.1 Kaplun’s Extension Theorem ...................... 67
5.3.2 Study of Examples ......... ... ... .. ... . 67
5.3.3 Rule of Intermediate Matching ..................... 69
5.4  Asymptotic Matching Principle........ ... .. .. ... ..., 71
5.4.1 Van Dyke’s Principle ........ ... .. ... .. .. ..... 71
5.4.2 Modified Van Dyke’s Principle ..................... 72
5.5 Examples and Counter-Examples . .................. ... ... 72
5.5.1 Example 1..... . .. 72
5.5.2 Example 2..... . ... 73
5.5.3 Example 3.... .. .. 74
554 Example d...... ... 75
5.6 Discussion of the Matching Principle . ............ ... ... .. 76
5.6.1 Corrective Boundary Layer ........................ 77
5.6.2 The MVDP from the Overlap Hypothesis............ 79
5.7 Successive Complementary Expansion Method ............. 81
5.7.1 Principle . ... . 81
5.7.2  Equivalence of MVDP and of Regular SCEM ........ 84
5.8 Applications of SCEM . ........ ... ... ... .. . . 86
5.81 Example 1...... .. 86
5.82 Example 2..... . ... 88
5.83 Example 3.. ... ... 89
5.9 Conclusion ........ ... 90

Problems . ... ... 91



Contents XIII

Ordinary Differential Equations........................... 99
6.1 Example 1...... . 99
6.1.1 Application of MMAE .............. ... .. ........ 100
6.1.2 Application of SCEM ....... ... ... ... .. .. ... .. 102
6.2 Example 2. ... .. . . 107
6.2.1 Application of MMAE ...... ... ... .. .. .. ... .. 107
6.2.2 Application of SCEM .......... ... .. ... ... ....... 109
6.2.3 Identification with MMAE Results.................. 111
6.2.4 Numerical Results .. ....... ... ... ... ... ........... 112
6.3 Example 3..... . .. 112
6.3.1 Application of MMAE ...... ... ... .. .. .. ... .. 112
6.3.2 Application of SCEM .......... ... .. ... ... ....... 116
6.3.3 Identification with MMAE Results.................. 118
6.4 Stokes-Oseen’s Flow Model .............................. 118
6.4.1 Application of SCEM ....... ... ... .. .. .. ... .. 118
6.4.2 Numerical Results ......... ... ... ... .. ... ....... 120
6.5 Terrible Problem ........ ... ... .. . . ... 121
6.5.1 Application of SCEM .......... ... .. ... ... ....... 122
6.5.2 Numerical Results .. ............. ... ... ........... 125
6.6 Conclusion ...............i i 125
Problems . ... ... . 127
High Reynolds Number Flows ............................ 133
7.1 Boundary Layer Theories........... ... . .. 135
7.1.1 Prandtl’s Boundary Layer ......................... 135
7.1.2 Triple Deck ... 140
7.2 Analysis of an Integral Method . .......................... 148
7.2.1 Integral Method.......... ... .. .. ... .. .. ... .... 148
7.2.2 Direct Mode ........ 151
723 Inverse Mode ........ ... . . . 152
7.2.4 Simultaneous Mode . .......... ... ... ... ... . .. ..... 153
7.3 Viscous-Inviscid Interaction . ............................. 155
7.4 Conclusion ............ ... 157
Problems .. ... .. 158
Interactive Boundary Layer............................... 169
8.1 Application of SCEM ........ ... ... ... i 170
8.1.1 Outer Approximation . .................ouueeo.... 170
8.1.2 Determination of a Uniformly Valid Approximation ... 171
8.1.3 Gauge for the Pressure............................ 173
8.2 First Order Interactive Boundary Layer ................... 173
8.2.1 Generalized Boundary Layer Equations ............. 173
8.2.2 Boundary Conditions ............... .. ..., 174
8.2.3 Estimate of the Remainders of Equations............ 175

8.3 Second Order Interactive Boundary Layer ................. 175



X1V

10

11

Contents
8.3.1 Generalized Boundary Layer Equations ............. 175
8.3.2 Boundary Conditions .............. .. ... ... ..... 176
8.3.3 Estimate of the Remainders of Equations............ 176
8.4 Displacement Effect........ ... .. .. . o i 177
8.5 Reduced Model for an Irrotational External Flow ........... 178
8.6 Conclusion . .......... ... i 180
Problems .. ... .. . 181
Applications of Interactive Boundary Layer Models. .. .... 185
9.1 Calculation of a Flow with Separation..................... 186
9.1.1 Definition of the Flow............................. 186
9.1.2 Numerical Method.......... ... ... ... ... .......... 186
9.1.3 Results. ... 188
9.2 Application to Aerodynamic Flows ....................... 190
9.2.1 Flat Plate of Finite Length .......... ... ... ... ... 190
9.2.2 Airfoils at High Reynolds Numbers ................. 192
9.3 Influence of a Rotational External Flow ................... 195
9.3.1 Inviscid Flow ......... ... .. . .. 195
9.3.2 Method of Resolution ............................. 197
9.3.3 Flows Studied. ....... ... ... ... ... ... . .. . ... .. ... 200
934 Results....... ... ... . 200
9.4 Conclusion ........... ... 211
Problems . ... ... .. .. 211
Regular Forms of Interactive Boundary Layer ............ 215
10.1 Second Order Boundary Layer Model ..................... 215
10.1.1 Second Order Interactive Boundary Layer Model .. ... 217
10.1.2 Van Dyke’s Second Order Model ................... 217
10.2 Triple Deck Model . ...... ... 221
10.2.1 Flow on a Flat Plate with a Small Hump ............ 221
10.2.2 Regular Expansions.......... ... ... ... . .. 223
10.3 Summary of Approximations of Navier-Stokes Equations . ... 226
10.4 Conclusion . ......... ... 226
Problems . ..... .. e 227
Turbulent Boundary Layer ............................... 237
11.1 Results of the Standard Asymptotic Analysis .............. 237
11.1.1 Averaged Navier-Stokes Equations . ................. 237
11.1.2 Scales . . ... 238
11.1.3 Structure of the Flow . ....... ... ... ... ... ... ... ... 239
11.2 Application of SCEM ...... ... .. .. .. . 243
11.2.1 First Approximation . ..............cooiiiiiinen. . 243

11.2.2 Contribution of the Outer Region of the Boundary
Layer ... .o 243



12

13

Contents

11.2.3 Contribution of the Inner Region of the Boundary
Layer . ...
11.3 Interactive Boundary Layer ........... .. ... .. .. ... ....
11.3.1 First Order Model . ...... ... ... ... ... ... . ... ......
11.3.2 Second Order Model . .......... ... ... ... ... .......
11.3.3 Global Model . ....... ... ... ... ... .. . . . . . .. ... ...
11.3.4 Reduced Model for an Irrotational External Flow. .. ..
11.4 Approximation of the Boundary Layer: Velocity Profile. ... ..
11.4.1 Formulation of the Problem........................
11.4.2 Turbulence Model ............ ... .. ... ... ... .....
11.4.3 Outer Region ........ .. i
11.4.4 Equation to Solve ......... .. .. ... . . ..
11.4.5 Examples of Results ......... .. ... .. ... ... ....
11.5 Conclusion ......... ...t
Problems ... ... .

Channel Flow. .. ... .. ... . . i
12.1 Formulation of the problem ..............................
12.2 Uniformly Valid Approximation ............ ... ... ... ....
12.3 IBL Model for the Lower Wall ...........................
12.4 Global IBL Model ....... .. . i
12.5 Numerical Solution ......... ... .. . .. . . . ...
12.5.1 General Method .. ........ .. .. ... .. .. .. .. ...,
12.5.2 Simplified Method for the Pressure .................
12.6 Application of the Global IBL model......................
12.6.1 Discussion of the Numerical Procedure ..............
12.6.2 Comparisons with Smith’s theory...................
12.6.3 Comparison with Navier-Stokes Solutions............
12.7 ConcluSion . ... ...t
Problems .. ... ...

Conclusion. . ......... ..

Appendices . ... ...

1

I1

I1I

Navier-Stokes Equations . .................................

Elements of Two-Dimensional Linearized Aerodynamics ..
I1.1 Thickness Problem (Non Lifting Case) ....................
I1.2 Zero-Thickness Problem (Lifting Case) ....................

Solutions of the Upper Deck of the Triple Deck Theory. ..
III.1 Two-Dimensional Flow ............ ... ... ... ... .........
II1.2 Three-Dimensional Flow .............. ... ... ... .........

II1.2.1 Zero Perturbations at Infinity .....................

XV



XVI Contents

II1.2.2 Non Zero Cross-Flow Perturbations at Downstream

Infinity ... . o 314

IV Second Order Triple Deck Theory ........................ 319
IV.1 Main Results . ....... ... i 319
IV.2 Global Model for the Main Deck and the Lower Deck ....... 325

V  Behaviour of an Asymptotic Expansion ................... 327
V.1 Formulation of the Problem............... ... .. ......... 327

V.2 Study of the Gauge Functions.............. ... ... ... ... 328

V.3 Study of the Outer Expansion................ ... .. ... .... 330
Solutions of Problems ........ ... .. ... .. . . .. . . ... 332
References . ... 419
Author Index . ... ... 427

Subject index...... ... .. .. 428



Abbreviations

AE: asymptotic expansion

EST: exponentially small term

IBL: interactive boundary layer

MMAE: method of matched asymptotic expansions
MVDP: modified Van Dyke’s principle

SCEM: successive complementary expansion method
TST: transcendentally small term

UVA: uniformly valid approximation

VDP: Van Dyke’s principle



1 Introduction

The history of relations between science and technique is surprising and
stormy just like those of a couple combining love, hatred and necessity. Ob-
viously, we can go into ecstasies over the marvels obtained by the thought in
the study of motion from Aristotle to Einstein, passing by Galileo, Newton
and Laplace. We can be also attracted by the successes of technique from the
wheel to the computer passing by the astronomical telescope and the aircraft.
Beyond the secular questioning about the pre-eminence of one on the other,
are not science and technique the two faces of intelligence and reason?

Can the modern physics be satisfied with mathematical models which
lead us to the outermost bounds of the knowledge of our macroscopic world?
No, evidently, man needs to realize objects, to check theories, to experiment,
to simulate, to explore. Man needs to search, to create and to understand.

Nowadays, the science of motion — the mechanics — rests on three supports
which ensure its equilibrium: mathematical modelling, numerical simulation
and experiment. Now, the cost of experiment, the modelling difficulty and the
ever increasing power of numerical calculations disorder this beautiful struc-
ture to the detriment of reflection. The close connection between the math-
ematical model, constructed by the physicist, and the mathematics, some-
times very difficult, required to its resolution leads us too often to renounce
the analysis of the model in favour of its numerical resolution. Obviously,
mechanicists cannot wait for mathematicians to progress in the analysis of
their models. However, they must prepare the path of mathematics by in-
stilling a strict rigour in their heuristic reasoning. Many mathematical tools
have been implemented from Leibniz and the advent of analysis in the too re-
stricted world of geometry. The power of mathematics in the development of
models and the search for solutions contributed to a large extent to remark-
able progress in physics. Sometimes, surprising results have been obtained in
what physicists call generically “the theory of approximation”.

Thus, among the different tools of the theories of analysis and of approx-
imation, the divergent series have been used for a long time. Not without
reason, mathematicians took a great interest in these series. Calculated from
well-defined functions, the terms of these series must contain information
on the expanded functions. In general, the divergent series are nothing else
than asymptotic series. The difference with a convergent series is that an
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asymptotic series is such that a partial sum is a better representation of the
expanded function when a certain parameter is smaller. When the parameter
vanishes, the function is exactly recovered with the first term of the series.
When the parameter is not zero but simply small, any partial sum is an ap-
proximation of the function. The generic notation ¢ is often used for the small
parameter. The small parameter is a determining factor in physics to reduce
the considered mathematical model to a simpler model whose solution is an
approximation of the solution of the initial model.

Beyond the notion of asymptotic series, this is the notion of asymptotic
expansion, AE, and, perhaps more generally, the notion of approximation
which is the core of our reflection. Like the word “theory” can have different
degrees in its meaning, the word “approximation” can be interpreted in very
different ways. Even if we restrict ourselves to mathematical physics, the
ambiguity still exists. In contrast with recommendations required for any
rigourous reasoning as formulated by Euclid, the word approximation has
two different meanings. An asymptotic approximation is obtained, according
to mathematicians, for values of ¢ as small as required by the mathematical
formulation, the accuracy of the approximation being here perfectly well-
defined. On the other hand, according to physicists, the approximation is
sought for a given value of the parameter and its accuracy is not known in
advance.

The goal of this book is to reconcile both definitions by proposing
a method, the successive complementary expansion method, SCEM, which
takes into account we have to solve concrete problems, while a rigourous
mathematical procedure is followed. SCEM addresses the so-called singular
perturbation problems which are the subject of the study throughout this
book. In these problems, as e — 0, the solution does not tend uniformly
towards the corresponding reduced problem obtained for € = 0. It must be
noted that the non-uniformity occurs in a domain whose dimension is smaller
than the initial domain. That is why these problems are usually called bound-
ary layer problems.

The non-uniformity of an approximation of the solution as a parameter
is small is a mathematical problem. Now, as physicists, we are fortunate to
be able to identify the known and unknown quantities to physical quantities.
This fundamental piece of information on the nature of the physical problem
enables us to better grasp the mathematical model. This is the case of the
nondimensionalizing process with characteristic scales which enables us to
determine if certain parameters are small. In fact, it is through the multiple
choice offered by the physical description to nondimensionalize that singular
perturbations can be suspected.

Thus, the flow around an airfoil is practically inviscid far away from the
airfoil. However, for a steady incompressible flow, the governing equations
are the Navier-Stokes equations in which, in dimensionless form, the only
physical parameter is the Reynolds number. Now, away from the airfoil, the
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characteristic length scale is such that the inverse of the Reynolds number
is very small compared to unity. Neglecting the terms containing the inverse
of the Reynolds number, we obtain the Euler equations as if the viscosity
were neglected. It is not that the fluid viscosity takes another value, it is that
away from the airfoil, its influence is negligible because the velocity gradient
is small enough. By contrast, near the airfoil, viscosity must be effective. This
means that the characteristic length changes so that we can take into account
the proximity of the wall where the viscous effects are essential. Then, the
Reynolds number based on this latter length scale is no longer large. Near the
airfoil, the Navier-Stokes equations reduce to the boundary layer equations.
Even though this model is simpler than the Navier-Stokes model the wall
conditions are satisfied.

How to construct a uniformly valid approximation, UVA, of the solution
of Navier-Stokes equations by using solutions to Euler equations, valid only
far away from the airfoil, and solutions to the boundary layer equations, valid
only near the airfoil? That is the key question we want to answer for this par-
ticular problem. This is the main idea even if, obviously, other problems than
high Reynolds number flows are considered. How to find the characteristic
reduced problems and their domain of validity, how to link them and, finally,
how to construct an approximation of the initial problem, are the points at is-
sue which lead this book. Admittedly, the main domain of application is fluid
mechanics but the scope of Chaps. 2—6 is very broad and can be useful to
physicists and more generally to modellers faced to large or small parameters
leading them to singular perturbation problems.

Chapter 2 is an introduction to these questions. Even the very simple
example of the linear oscillator shows that the nondimensionalizing process
of the equations is the first key which enables us to educe the nature of
the mathematical models. Within this frame, the skill of the physicist to
understand his topic and to model it is clearly the most powerful tool to solve
it. Friedrichs’ model problem, whose simplicity is such that the exact solution
is immediate, is a so pedagogical model for singular perturbtion problems that
the main methods of resolution are outlined with this example. In fact, the
next chapters are focussed on two methods. One of them is the well-known
method of matched asymptotic expansions, MMAE, the other, less known
and it is seen why, is SCEM which is the heart of the rest of this book.

Chapter 3 deals with the structure of boundary layer. Generally, physical
considerations give the necessary clues to find the location of the boundary
layers. However, with a very simple problem, a second order linear ordinary
differential equation whose exact solution is not known, we can study the
location of the boundary layer as a stability problem. A few examples are
given through the search for an approximation of the solution and the re-
quired corresponding boundary layer structures are studied. In all cases, we
are concerned with a boundary value problem for which existence theorems
are not available, contrary to initial value problems, at least locally.
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In Chapter 4, mathematical definitions are stated. A deliberate choice is
made to ally rigour and simplicity. After defining a total ordering on a set
of order functions, the order of a function is defined. This explains why two
different notations are found in the literature; Hardy’s notations are devoted
to order functions whereas Landau’s notations are used for functions. We at-
tach a particular importance to gauge functions which, when carefully chosen
in equivalence classes for a given problem, enable us to introduce a certain
“uniqueness” in AE. The notion of AE is discussed in this chapter. For many
authors, an AE is regular, that is an expansion in the Poincaré acceptation.
Now, an AE is more general and it is seen why this point is essential. Instead
of calling it non regular, which could be misleading, it is chosen to call it
generalized AE.

Chapter 5 is the heart of this book. Its title, Successive complementarty
expansion method is associated with the fact that the central goal is to seek
approximations to the solution of a problem and that this simple idea leads
us to reconsider more standard methods from another point of view. Within
the frame of MMAE, after discussing the standard notions of outer and in-
ner expansions with a simple example, main definitions such that the notion
of expansion operator and significant approximation bring the minimum re-
quired basic rules. Next, the notion of asymptotic matching is explored by
comparing the respective merits of the intermediate matching set up as a rule
and of Van Dyke’s principle which is more systematic. From the construction
of a UVA called a composite approximation, we show how a modified match-
ing principle, MVDP, enables us to eliminate known counter-examples. This
reflection on the matching, either formal or based on the notion of overlap,
sometimes illusory in practice, leads us to invert the reasoning and to consider
that the assumed form of the UVA must define the method of construction
of the UVA. SCEM is proposed according to this idea. We show that MMAE
is well-adapted when regular AEs are sufficient and that MMAE is contained
in SCEM. SCEM demands a more indepth reflection than MMAE, in partic-
ular in its initialization. SCEM becomes really powerful when, for different
reasons, MMAE is no longer adapted or when a UVA is necessary to analyze
the problem.

Second order ordinary differential equations are discussed with SCEM in
Chap. 6. Both methods, MMAE and SCEM, are systematically compared on
several cases. The study of an equation whose coefficients are regular enough
is performed in detail, showing the advantage of SCEM even on this example.
A few singular cases are addressed specially when a logarithm appears with
MMAE whereas SCEM shows that this singularity is only due to the method.
In fact, the logarithmic behaviour appears only as an asymptotic behaviour
of the solution as € tends formally towards zero which is never the case in
practice. All the studied examples lead us to the conclusion that the use of
generalized AEs requires a more indepth reflection which is superfluous for
the simplest cases but essential in cases that MMAE only cannot deal with.
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Chapter 7, devoted to the study of high Reynolds number flows, is the
transition from abstract theory to physical problems of great importance
in fluid mechanics, the boundary layer. All the following chapters indeed
concern boundary layers in fluid mechanics. It is interesting to note that the
term boundary layer is now in use as a mathematical term. MMAE, through
the MVDP, gives us a whole new insight into Prandtl’s boundary layer theory
and into the triple deck theory which complements it very nicely. This latter
theory yields in particular a detailed analysis of certain types of separated
flows. Based on an integral method, a simplified investigation of problems
associated with separation is also given. This study enables us to understand
why the inverse and simultaneous modes are better adapted to cope with
separated flows than the direct mode. This knowledge is essential to tackle
the numerical resolution.

Various degeneracies of Navier-Stokes equations are studied with SCEM
in Chap. 8. The approximation starts with the Euler equations. As this model
is not valid everywhere, in particular in the neighbourhood of walls where no
condition is written, the approximation is complemented thanks to a general-
ized AE by adding a boundary layer term in order to seek a UVA. This analy-
sis enables us to construct interactive boundary layer models, IBL, to first and
second order. The models are analyzed according to their accuracy. In particu-
lar, for an irrotational external flow, the accuracy is sufficient to write reduced
IBL models. Thanks to the generalized AEs, these IBLs provide a strong cou-
pling between the viscous and inviscid zones. The hierarchy between these
zones and also the asymptotic matching no longer exist. SCEM and the as-
sociated generalized AEs are the basis of the rational justification of IBLs.

Chapter 9 presents calculation results. First, the flow around a standard
hump deforming a flat plate is calculated in the presence of a separated flow.
Next, applications of an IBL method to aerodynamic flows are presented,
including the flow around the trailing edge of a flat plate and the flow around
airfoils with and without separation. Finally, the cases of different rotational
freestreams are discussed. This is particularly important because a reduced
IBL is not obtained as simply as in the case of an irrotational external flow.
SCEM results are compared to Van Dyke’s model and to numerical solutions
of Navier-Stokes equations. It is shown that the results are closer to the
Navier-Stokes model if the rotational character of the flow is weaker.

Chapter 10 is devoted to the derivation of nowadays standard theories
such that Prandtl’s, Van Dyke’s and triple deck theories starting from the
IBL models and not from the Navier-Stokes equations. It is clearly seen how
the various degeneracies of Navier-Stokes equations are embedded into each
other. Thanks to generalized expansions, initially we have first and second
order IBLs; next, by using regular SCEM, equivalent to MMAE, we find
Prandtl’s, Van Dyke’s second order and triple deck models.

The turbulent boundary layer is revisited with SCEM in Chap. 11. First,
it is shown that, under hypotheses stemming from experimental data, the
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VDP or, better, the MVDP indicates the existence of a logarithmic overlap
without any apparent closure relationship. When applied to this problem,
SCEM shows its ability to perform a better modelling of the physical problem.
Adapted to values of £ admittedly small but far from vanishing, SCEM shows
the necessity to write a closure relationship to construct a UVA. Moreover, the
UVA underscores the asymptotic character of the logarithmic law formally
obtained as € — 0.

In Chap. 12 a similar study as in Chap. 8 is carried out for laminar
channel flows. More precisely, we consider high Reynolds number flows in
a two-dimensional channel in which the flow is slightly perturbed by a small
indentation of the walls for example. The wall deformation is sufficient to
induce flow separation. In a channel, there is no external flow region and
the regular asymptotic models for the flow perturbations are mainly based
on an inviscid rotational core flow region together with boundary layers
near the walls. Here, SCEM is used to produce a uniformly valid approx-
imation of the flow. Once again, SCEM leads to a very fruitful analy-
sis of the flow and to the formulation of an interactive boundary layer
model.

The appendices bring complements while lightening the main text. At the
end of each chapter, detailed problems are given to allow the reader to fully
exploit the results described in the corresponding chapters.

Very detailed solutions are given at the end of the book. Certain problems
are really research topics and derive from results often unpublished.

This book is the English version of the book entitled “Analyse asympto-
tique et couche limite” published in French. For most of the chapters, the
material is the same in both versions. However, Chap. 9 has been supple-
mented with examples of application of an IBL method to aerodynamic flows
and Chap. 12, dealing with channel flows, is entirely new. These complemen-
tary elements provide a further evidence of the efficiency of SCEM.

We do hope that this book will provide the reader with the essential el-
ements, mathematical and practical as well, to understand and to apply the
standard asymptotic methods devoted to study boundary layers. In many
problems of mathematical physics, these methods form the basis of a sharp
understanding of the solution structure, which is often the key for an appro-
priate numerical solution. In addition, we think that SCEM sheds a new light
on the search for a UVA of the solution of problems encompassing a boundary
layer. In its regular form, equivalent to MMAE, SCEM provides a complemen-
tary point of view of this very efficient technique. With the implementation
of generalized expansions, SCEM enables us to bring a rational justification
of IBL which was missing until now. Finally, we think that the goal of this
work will be reached if generalized SCEM is applied to domains not ad-
dressed here. For example, in fluid mechanics, unsteady or three-dimensional
boundary layers, instabilities and their control are important topics for the
future.



2 Introduction to Singular
Perturbation Problems

Mathematical models used in physics often lead to problems which do not
have explicit solutions. Their numerical solutions become more difficult when
small parameters are present or when the calculation domains are very large.
In such cases, simpler models can be developed either by setting a param-
eter to zero or by restricting the study to a smaller domain. When a small
parameter, denoted by e, is set to zero, it is possible that the solution of
the initial problem does not tend uniformly to the solution of the reduced
problem as ¢ — 0. A singular perturbation problem arises for which difficult
mathematical questions need to be addressed.

To discuss this further, let us consider an integro-differential operator
L. and seek a solution @.(x,e) of equations L. [P .(x,c)] = 0 where x is
a variable in a domain D and where 0 < ¢ < &g, g9 being a fixed positive
number as small as desired. The parameter ¢ is dimensionless which implies
that the whole problem is expressed in terms of dimensionless variables. Let
Lo [@o(x)] = 0 be the so-called reduced problem, supposedly a simpler prob-
lem, and let us assume that the norm ||@. — $g|| is small in the considered
domain D. Using the supremum norm (see Subsect. 4.1.4), we have

Maxp ‘@5 — @0‘ < K5(€) R

with K denoting a positive number independent of e and §(¢) a positive
function such that

limd(e) =0.
e—0

If this property is satisfied, the problem is called a regular perturbation
problem (see Problem 2-4).

In some problems, this property is not satisfied, at least in the whole
domain D. A singularity can occur, generally in a domain whose dimen-
sion is smaller than D. The problem is called a singular perturbation prob-
lem.

The models considered in this Chapter are such that @, is known. These
pedagogical problems are used to describe the main conceptual difficulties
and the different classes of methods used to solve them.
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2.1 Regular and Singular Problems

2.1.1 Linear Oscillator

The linear oscillator is a typical example of a regular perturbation problem.
To discuss this further, let us consider the following equation

d?y dy
+25—+y—0 (2.1a)

LEy_d2 d

subject to the initial conditions

dy

— =1. 2.1b
= (2.1b)

y‘x:o =0,

The function y(z, ) is defined for z > 0 and ¢ is a small positive parameter
which is as small as desired. All quantities are dimensionless.

This equation models the motion of a mass in a mass-spring-damping
system when the damping is small. The meaning of “small” is important
in the subsequent analysis. Obviously, other physical problems may be of
interest, for example, the case of a small mass.

Let y*(t,m, 8, k, Iy) be the location of the mass m as a function of time,
measured from its equilibrium location, k£ the spring constant and g the
damping coefficient. If the mass is set into motion from its equilibrium loca-
tion with an impulse Iy, (2.1a) can be written as

d2 *
m- (2.2a)
subject to the initial conditions
dy*
* =0 =1. 2.2b
Yy |t:0 , M dr —o 0 ( )

Let y and x be dimensionless variables

and L and T respectively a length and a time scale, not yet defined. As the
origin of the motion is the impulse, it is quite logical to set

mL
T=—
Iy
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With these new variables, (2.2a) in dimensionless form can be written as

2 d%y Bl dy

— — =0 2.3
mLhde? T mLkdr YT (23)
subject to the initial conditions
dy
=0 — =1. 2.3b
y|w:o Y de - ( )

Two dimensionless groups appear and contain the arbitrary length L
which can be defined in two ways

I 1
0 L:&

or

vmk mk

If, according to the physical problem studied, the two-dimensional groups
in (2.3a) are not of the same order, an asymptotic analysis can be used. Two
cases arise:

L =

1. If the action of the spring dominates the action of the damper, the first
2

1,
Y__ is larger than the second group
mL2k m

I() m
L= and T =4/—,
vmk k

so that the small parameter € is defined by

group Ok: and

It is seen below that the corresponding problem is typically a regular
perturbation problem as far as x is bounded. This is the case of a small
damping. Equation (2.3a) becomes

Py, dy
— 42— =0. 24
dx? + dx ty (2:4)
According to Poincaré, the asymptotic behaviour of the solution as ¢ — 0
can be sought as an expansion in powers of £

y(z,e) = yo(x) + ey1 () + 2ya(x) + -+ (2.5)

As for a Taylor series expansion, the small dots --- mean that the ne-
glected terms are smaller than €2 and the approximation is better and
better when ¢ is smaller and smaller.
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Substituting the expansion into the initial equation and equating coeffi-
cients of like powers of ¢, the following equations result for the first two
powers of e:

d*yo : dyo
a) Wero:O with yo‘IZOZO, EJC:OZI,
d*y; dyo dy,
b) S8 4y = 2 itk —0, & 9.
) L2 T w Y1l,—o e,

The first problem for yq is the reduced problem which yields a solution
without damping
Yo = sinzx .
The second problem for y; yields a correction
Yyp = —xsinx
so that an approzximation of the solution is
y=(1—ex)sinec+--- . (2.6)

It is seen that, in any interval of finite time, 0 < = < 7, where 7 is
independent of e, the approximation is uniformly valid; the correction is
small. This is no longer true if the time interval becomes large; this is
clearly seen by taking e7 = 1. This problem is called a secular problem
because a singularity occurs in the expansion when the time interval
is too large. The terminology comes from the study of the trajectories
of planets. Solutions are obtained from perturbation methods which are
valid on a small time scale, but the value of the secular terms is non
realistic over time scales of the order of a century.

The comparison of the above approximation with the exact solution is
enlightening. Approximation given by (2.6) is exactly the first terms of
a Taylor series expansion of the exact solution

e

y(x,e) = ———=sin/1 —2x .
V1—¢?

In the second case, the mass is small and the length and time scales are

—ET

Blo B
L="0 and T=2.

mk " K

The small parameter ¢ is defined by
mk
£ = ﬁ ;
and (2.3a) becomes
d?y dy dy
ez T, TY with yl,_o=0, (2.7)

z=0
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This problem is typically a singular perturbation problem whose study is
precisely the subject of this book.

2.1.2 Secular Problem

We consider the equation

Ley=—+4+¢ecy=0, (2.8a)
subject to the initial condition
Yoo =1, (2.8b)

and we seek its solution in the domain z > 0. Using an expansion as (2.5),
we seek an approximation of y in the form

y(z,e) = yo(x) + eyr(x) + 2y2(x) + - + "yn(x) + - -

Substituting this expression into (2.8a) and equating coefficients of like pow-
ers of ¢, the following successive equations result:

d
1. % — 0 with the initial condition yo|,_, = 1.
o W1 _ ith the initial conditi =0
C o = Yo wi e initial condition y1[,_, = 0.
3, dm _ ith the initial conditi —0
g = Yn-1 Wi e initial condition y,|,_, = 0.
Collecting the solutions for yo, y1, .., yn, the result is well-known
2 n
y(:z:,e):176x+62%+-~~+(71)"6"1’—|+-~~. (2.9)
n!
From the exact solution,
y(@,e) ==, (2.10)

the difficulty is clearly seen. When = becomes large, for any number of terms
considered, the above expansion is no longer valid (Fig. 2.1). The salient
feature is that the infinite series converges towards the exact solution for
any value of € and the partial sum is an approximation of the solution when
€ is small and z is bounded. The considered expansion is a convergent series
whereas the partial sum is the simplest form of an asymptotic expansion.

In order to transfer the singularity when z is large to the neighbourhood
of the origin, the following change of variable is used

1
t =
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)

Yo

exact solution

Yo + €Y1

0 x 1

3

Fig. 2.1. Approximations of the solution of (2.8a) given by (2.9). The exact solution
y is given by (2.10)

By setting
Y(t,e) =y(z,e),

we can write (2.8a) as
dYy
LY=t——-¢cY=0, (2.11a)
dt
subject to the initial condition
Y|, =1. (2.11b)
A straightforward expansion,
Y(t,e) = Yo(t) +eYi(t) +*Ya(t) + -,

leads to the approximation

1 1 1 1
=1 = 224 — 2.12
Y (t,€) +s<1 t) +e (2 t+2t2) + (2.12)

The successive approximations are more and more singular in the neighbour-
hood of the origin (Fig. 2.2). This is clear by expanding the exact solution

Y(t,e) = exp {5 (1 - 1)] . (2.13)

t

This feature is also present in similar problems to which a special treat-
ment can be applied. Let us consider the equation

d
L.y = (x+€y)£+y20 with gy _ =1, (2.14)

and let us seek its solution in the domain 0 < z < 1.
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Yo

exact
Y [solution

\

05 F

Yo+ eV

0 I 05

—_— e - ——

t

Fig. 2.2. Approximations of the solution of (2.11a) given by (2.12). The exact
solution Y is given by (2.13)

The expansion
y(,€) = yo(x) +eya(z) + -

leads to the following equations:

d
1. 2 +yo =0 with yo|,_, =1.
dx
dyr dyo .
X dz + Y1 Yo dx w1 y1|x:1
The result

y(z,e) = & et (1—i)+~-~ (2.15)

x 2x 2

clearly shows that the second approximation is more singular than the first
one in the neighbourhood of the origin (Fig. 2.3). The exact solution,

x 2 2
=—— —+-+1 2.16
y(z,e) STyt h (2.16)
is bounded at the origin,
/2
y(O,(—:) = g +1 )

for any value of € > 0. This is typical of secular problems.
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Yo

|

Y exact
solution
1 ————————————————
0
0 x |
Yo + €

Fig. 2.3. Approximations of the solution of (2.14) given by (2.15). The exact
solution y is given by (2.16)

2.1.3 Singular Problem

The archetype of a singular problem has been introduced by Friedrichs [36]
to justify the matching between the boundary layer and the inviscid flow as
proposed by Prandtl [78]. We consider the equation

d?y

d
Lgyzs@jL%—a:o with 0<a<1, (2.17a)

subject to the boundary conditions
Yoo =0,  ylmy =1, (2.17b)

and we seek its solution in the domain 0 < x < 1. This is a boundary value
problem which is more difficult than an initial value problem. The exact
solution is known as in all the problems considered in this Chapter. The
reduced problem obtained for € = 0 is

d
LO Yo = % —a=0 )
with the solution given by
Yyo=ar+A.

Here A is a constant that must be determined with two boundary conditions.
In general, it is not possible to satisfy both conditions. This feature is char-
acteristic of certain singular problems. When € = 0, the order of the reduced
equation becomes lower than the order of the initial equation.

If the boundary condition at x = 0 is enforced, the solution becomes

Yo = azx .
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This approximation cannot be uniformly valid since yo(1) = a. Similarly, by
enforcing the boundary condition at x = 1, the solution becomes

Yyp=ar+1—a, (2.18)

which is such that yo(0) = 1 — a. The boundary condition at the origin is not
satisfied which indicates necessarily a domain of non-uniformity.

] e e e =
|
|
1—a |
|
|
exact !
solution !
y |
|
|
|
|
|
|
0 J

0

x

Fig. 2.4. Approximation of the solution of (2.17a, 2.17b) given by (2.18). The exact
solution y is given by (2.19)

The exact solution to (2.17a) is

1 —exp(—x/e)
1—exp(—1/e) "~
For x > 0, as ¢ — 0, it is seen that a good approximation of the exact solution
is given by (Fig. 2.4)

y(x,e) =ax + (1 —a) (2.19)

y=ar+1—a+---.
This shows that the reduced problem should satisfy the boundary condition
at © = 1. The domain of non-uniformity is located in the neighbourhood of
the origin.
How to answer these questions without knowing the exact solution? The
first hints are presented in the next sections.

2.2 Approximation Methods for Singular
Perturbation Problems

Many methods have been proposed to solve singular perturbation prob-
lems [6, 38, 42, 43, 72, 108, 112]. The most popular methods are briefly
described below.
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2.2.1 Method of Matched Asymptotic Expansions

The method of matched asymptotic expansions, MMAE, has been the subject
of many in-depth mathematical studies and has been used in many prac-
tical problems. The underlying ideas have been developed after 1950 when
Friedrichs proposed his model. Afterwards, these ideas have been worked
out and applied to viscous flow equations. Kaplun [45], Lagerstrom [47, 48],
Cole [17] and Van Dyke [107] are among the most important names associated
with the development of MMAE. The most thorough study on the founda-
tions of the method is due to Eckhaus [33, 34]. Despite all the valuable work
devoted to MMAE;, it is not possible to formulate a general mathematical
theory of the method. Heuristic rules are available and the applications to
problems of mathematical physics, especially in fluid mechanics, have been
remarkably fruitful.

Considering again Friedrichs’ model (2.17a), the examination of the exact
solution shows that

lim y(z,e) = yo(z) = azx +1—a,
e—

except in the neighbourhood of the origin where the boundary condition
requires y|,_, =0, whereas yo|,_, =1 —a.
Two comments play an essential role subsequently.

1. If the limit process expansion is performed with the variable X = z/e
instead of the variable x, it is obtained

;iir(l)y(ac,a) =Y (X)=(1-a)(1—e).

This procedure is suggested by the desire to take into account the exponen-
tial term. A better approximation is expected because the variable X cov-
ers a domain closer to the origin than the variable z. Indeed, the condition
Yol,_o = 0 is satisfied. However, the condition at # = 1 is no longer satisfied

since
Yol,my = (1 —a) (1 - 6_1/5) .

This result can be surprising but it must be noted that X belongs to a very
wide domain

0<X<

)

o | =

and terms which are neglected when X is bounded can be non negliglible in
the whole domain.

2. The second comment is the basis of the idea leading to the asymptotic
matching. At this point of the discusion, it suffices to note the following
remarkable result

XlgnOCYO(X) = ili%yo(x) =1l-a.
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These two comments have been done from the behaviour of the ex-
act solution. Suppose now that the exact solution is not known. How can
we conceive a heuristic method to construct an approximation of the solu-
tion?

First step. The reduced problem yields
Yo=ax+ A.

In order to determine the constant A, one of the two boundary conditions can
be used but the question is to know which boundary condition must be taken
into account. It is not even certain that A is determined from a boundary
condition. The answer to these questions is discussed for the type of differen-
tial equations studied in Chaps. 3 and 6. For equations modelling a physical
problem, the answer is guided by the physics of phenomena. For example,
in the study of the viscous flow past a flat plate at high Reynolds number,
the reduced problem obtained from the Navier-Stokes equations comprises
the Euler equations for which the no-slip condition at the wall cannot be
applied.

We assume that this problem is solved a priori and that the domain of
non-uniformity is known. In the case of Friedrichs’ model, this means that
the solution of the reduced problem is

yo(zr) =ax+1—a.

Second step. The boundary condition at the origin is not satisfied because,
in the first step, the solution is related to a region too far from the origin. In
order to restore the behaviour of the solution near the origin, it is required to
magnify the neighbourhood of the origin by introducing a change of variable
T
Xoc = E‘_O‘ ’
where « is a strictly positive number. Then, when x is small, X, must remain
bounded. By setting
Ya(X,e) = yla.e),

the governing equation (2.17a) becomes

d?Y, dY,
12« + e =a.

dX?2 dX,

Now, the value of a must be tuned for the best. If « < 1 or if a > 1,
the resulting reduced problem leads to a solution unable to reproduce the
sharp variation near the origin. Noting that the second derivative must be
kept, another choice is the next dominating term be the first derivative. From
inspection, it is clear that the optimal choice is a = 1.
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By setting
Xi=X and Y1 =Y,

the equation becomes

d?y n dy .
—+—==ca.
dX?  dX

Third step. For the above equation, the reduced problem is
ey, dv
dx2z  dx

The general solution is
Yo(X)= A+ Be X,

where A and B are two undetermined constants. It is natural to satisfy the
condition at the origin, which yields

Vo(X)=A(1l—-e ).

It seems now that the second boundary condition at * = 1 can also be
satisfied. However, the result is false because the domain covered by X is very
wide. In reality, in the same manner as yo(z) is not an approximation valid
near the origin, Yp(X) can not be valid when X is not bounded, especially
in the neighbourhood of x = 1.

Fourth step. In order to find the missing condition, we assume that an
overlap domain must exist in which the behaviour of yg for small x identifies
with the behaviour of Yy(X) for large X. This can be formulated as the
search for an intermediate domain formalized with the variable X5 = x/¢”.
For 0 < B < 1, we obtain

yo(z) =1—a+asPXg=1-a+ -,
}/O(X):A<1_67X,8/517ﬁ) :A+ .
It is seen that if X is kept fixed and if ¢ — 0, we obtain A =1 — a.

In this manner, the approximation valid near the origin is found by a tech-
nique of matching called later intermediate matching

Yo(X)=(1—-a)(l—e ).

A more straightforward method consists of taking the limit. The so-called
principle of asymptotic matching

i Y500 = o)
gives the same value of A because the limits exist. In Chapter 5, it will be

seen that if such a principle is easier to implement, the above formulation is
too much straightforward.
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Fifth step. A uniformly valid approximation, UVA, is tentatively constructed
by adding the two approximations obtained in their respective domain of
validity and by subtracting the common part,

Yapp = Yo(2) + Yo(X) = (1 —a),
so that
Yapp = az + (1 —a) (1 —e ) . (2.20)

It can be checked that y.pp reduces to yo(x) and Yy(X) in their respective
domain of validity.

In Fig. 2.5, the exact solution is compared to the composite solution given
by (2.20) for a = 0.2 and £ = 0.25. We see that the approximation is very
good even if the value of € is not really small. For smaller values of ¢, the
approximation becomes better. In fact, the smallness of ¢ is always difficult
to estimate.

The ideas described above constitute the basis on which MMAE is con-
structed.

[
Y |
|
Yapp |
|
|
|
|
|
y |
a=0.2 :
e=0.25 :
|
|
0 J
0 . 1

Fig. 2.5. Study of (2.17a, 2.17b). The composite solution y.pp is given by (2.20).
The exact solution y is given by (2.19)

2.2.2 Successive Complementary Expansion Method

As proposed earlier [26, 75|, a method consists, at once, of seeking a UVA
of the solution by assuming that yo(x) is known. The approximation has the
form

Ya1 = Yo(z) + Y5 (X) .
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For Friedrichs’ equation (2.17a), we have

d2y0 dyO dQYO* dYO* :| 1 |:d2YO* dYO* :|

1
Lsyal—s—+—a+g{

dz2 " dx dx? T dx | e |dxz T ax

Y
22
to zero and if the boundary conditions are satisfied, the solution is

Yy (X)=A+Be ™,

2
This case is very particular because 0 is zero. If the right hand side is set

subject to boundary conditions

1
Yy(0)=a—-1 and Yy (E):O’

which yields

e—l/s —e X
1—e1/e

and, adding to yo(z), the exact solution is obtained.

The above approach is not usual since Y depends not only on X but also
on e. In the asymptotic method developed in the following Chapters, the
functions dependent on ¢ are clearly separated from the functions indepen-
dent of €. Accepting their dependence in € leads us to a new method called
the successive complementary expansion method, SCEM.

The method proposed earlier insists on having an independence of Yy
with respect to . This requirement is achieved by neglecting the terms in
e~/ which are very small

Y (X) = (1-a)

Yo' (X) =(a—1)e ™,
and, adding to yo, the same approximation (2.20) as in MMAE is recovered
Yapp = 0z + (1 —a) (1 —e*X) .

In Chapter 5, it is shown that if the independence with respect to ¢ is
required, SCEM is equivalent to MMAE. As MMAE is relatively easier to
implement, the earlier form of SCEM is not used very much. Nevertheless,
it must be noted that the asymptotic matching principle is equivalent to the
assumed form of the UVA.

2.2.3 Multiple Scale Method

The underlying idea of the method, due to Mahony [62], is based on the
search for a UVA. In Friedrichs’ model for example, it is known that a UVA
cannot be described by a single variable x; another variable X is required. In
contrast with SCEM, the structure of the solution is not assumed but

y(z,e) =Y (x,X,e) with X = g (2.21)

is set with the two variables x and X considered independent.
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The initial equation (2.17a) becomes a partial differential equation

Y | oy O OV L0
oxz T ox " \“ozox "oz ) " ° 0x?

=é&a.

The function Y being defined in the rectangle [O <zx<l1l 0<X< %],
the avalaible boundary conditions are insufficient to determine the solution.
However, the goal is not to find the exact solution but an approximate one.
An expansion is sought in the form

Y(z,X,e) = Yo(x, X) +eYi(z, X) + O(e?) .
Two reduced equations result

%Yy Yy

1. e + X = 0 with the conditions Y5(0,0) = 0 and Yp(1,00) =1,
82Y1 8Y1 a2YO aYO

2. —_— = — — .
oxz Toax ¢ ( 920X | Oz )

The general solution of the first equation is
Yo(z,X) = A(x) + B(z)e ™ .

The boundary conditions are insufficient to determine the functions A(z) and
B(z) since they give

However, the second equation gives
0%y, oy dA n dB _y
it Tl .
X2 90X dz dz ’
which leads to
dA dB
Yi(z, X) =C(x) + D(z)e ™ + X <a - —) - —Xe X

Then, as in Poincaré-Lighthill’s method of strained coordinates discussed
in Subsect. 2.2.4, it is plausible to assume that higher approximations shall
be no more singular than the first. This means that the ratio Y;/Y, must be
bounded, independent of € in the whole considered domain. Then, we set

dA
_2 )
T 1 ’

dB
=0

dz



22 Chapter 2. Introduction to Singular Perturbation Problems

These differential equations are solved with the help of the boundary
conditions and we obtain

Alz)=ax+1—a,
B(zx)=a-1.

Knowing A(x) and B(x), the solution Yj is expressed by
Yo(z, X)=az+(1—a) (1—e ),

which is again the approximation obtained from MMAE or from SCEM.

2.2.4 Poincaré—Lighthill’s Method

The roots of this method are older but the applications are more limited.
A paper by Poincaré dates back to 1892 and he attributed the basic ideas
to Lindstedt. Later, in 1949, Lighthill introduced a more general version of
the method and Kuo published two papers where the method was applied to
viscous flow problems. Tsien, in a review paper published in 1956, called this
method the PLK (Poincaré, Lighthill, Kuo) method. Anglo-Saxon authors
prefer to call it Lighthill’s method or the strained coordinates method. To
pay tribute to a great mathematician and to a great fluid mechanicist, the
method is called here the PL method.

We consider (2.14) already studied

d
Loy = (z+ Ey)ﬁ +y=0 with y|,_,=1, (2.22)

and we seek its solution in the domain 0 < z < 1.

The exact solution is singular on the line 2z = —ey (Fig. 2.6) and the
search for approximations when ¢ is small transfers the singularity towards
x = 0. Instead of improving the situation, the next approximations are more
and more singular. The idea is to claim that the approximations given by the
straightforward expansion have the good shape but not at the right place.
Then, y and x are expanded with respect to € and with respect to a new
variable s which replaces x. In a sense, the variable z is slightly strained in
such a way that

y(x,e) = yo(s) +eyr(s) + e*yals) + - - -, (2.23a)
x(s,€) = s +exi(s) +e%xa(s) +--- . (2.23b)

By substituting into the original equation and by equating coefficients of like
powers of ¢, the first two equations are obtained

s 3%
ds

d d dx
sﬂ—l—yl:—ﬂ (:cl—i—yo—s—l) .

+y0:O with ’y()‘s:l:l,

ds ds ds
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20 +ey =0

exact solution

Fig. 2.6. Study of (2.22). The exact solution y is given by (2.16)

The solution of the first equation is

Yo(s) =

1
S )
which is identical to the one obtained from the straightforward expansion
with x replaced by s.

The second equation, written as

—(s =—|=x - —5s—
ds Y1 52 1 S s

has the general solution given by

A 1 1
nis)=—--5 {371(5) + Z] ;
where A is an arbitrary constant.
The basic principle formulated by Lighthill is to state that higher approz-
imations shall be no more singular than the first.
The unknown function z1(s) is determined by setting

x1(8) 1
—~_ —-B
o T o2 =BG,

where B(s) is a bounded function of s. Then, the second order solution yields

yl(S)Zé—is)~

S S

A feature of this method is that the function z1(s) is not completely deter-
mined. Any regular function of s can be chosen for B. For obvious reasons,
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it is useful that z(s) is not zero at = 1. Moreover, simplicity being a good
guide, B is taken as a constant. The resulting solution is

1
ve) = g
(s.0) = s+ 5 (s 1)+
z(s,e) =s+=(s——
’ 2 s

In this model problem, s can be eliminated and the exact solution is recovered.

Note. The PL method does not apply to Friedrichs’ model whereas MMAE does.

2.2.5 Renormalization Group Method

The renormalization group method [15] applies particularly to oscillatory
problems. Nevertheless, interesting applications to boundary layer and secu-
lar problems have been obtained. The general idea is to give some freedom to
the integration constants in order to eliminate the further singularities or to
accelerate the convergence of the asymptotic expansion. The contents of the
renormalization group method is certainly fundamental but its implementa-
tion is delicate so that a detailed account is not given.
It suffices here to describe the application to the simplest secular problem
Lgy:@Jr&?y:O. (2.24)
dt
The straightforward solution contains a singularity to the second order
when ¢ is large. The “naive” asymptotic exapnsion to this order is

y(t,e) = Ao [L —e(t —to)] + -+ ,

where Ay and tg are two integration constants determined by the initial
condition which is not specified. Obviously, this expansion is not uniformly
valid when ¢ is large. Taking into account the order of the expansion, we set

Ao = [1+ear(to, )] A(p) - (2.25)

In this expression p is an arbitrary time, A is the renormalized part of Ag
and a; is an unknown function. To the considered order, we have

y=A(u) [1+ear(to,p) —e(t —p) —elp—to)] +--- .

By setting
ay = pu— to )

the divergent part due to ty is eliminated and we get

y=A(p) 1 —elt—p]+--.
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This form is identical to the naive expression but p is arbitrary. The renor-
malization criterion is given by

Jy
a—u_o

for any time ¢. Then, the differential equation for A is obtained

dA
@+EA—O7

which yields the solution
y= A=t )+

where A; is a constant.
Setting p = t, a UVA to the desired order is obtained

y(t75) — Alefst + ..

This approximation is nothing else than the exact solution but the model is
very simple.

2.3 Conclusion

The singular perturbation problems are often encountered in physics and
many approximation methods have been proposed to solve them. An idea
shared in almost all these methods is to correct or to avoid the non-uniformly
valid character of a first approximation. The method of matched asymptotic
expansion, MMAE, follows this logic. The MMAE consists of seeking ap-
proximations in different significant domains and these approximations are
matched to render the solution uniformly valid.

The next Chapters are devoted to the construction and to the application
of the successive complementary expansion method, SCEM. In its regular
form, SCEM leads to the same results as MMAE but without requiring the
delicate notion of matching principle. In its non regular form, this method
provides definite advantages.

Problems

2-1. Consider the equation
> +ex—1=0.

Solutions are sought when ¢ is a small parameter.
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1. Give the exact solutions and apply a Taylor series expansion near € = 0 to
order £2.
2. An iterative method of solution is proposed by writing the equation as

r=xV1—cx.

The iterative process is

Ty, =+/1—cx,_1.

The starting value z¢ is solution of the reduced equation by setting ¢ = 0.
By using partial sums of a Taylor series expansion, give the expansions of
solutions obtained by improving the approximation at each step.

3. We assume that the solution has the form

£L'=£L'0+E£L'1+E2.’)32+-~-.

Give the values of xg, x1, x2.
4. We set
T =xg+ 51(6)581 + 52(6)1‘2 + -,

where the sequence 41, 02 is such that d2/61 — 0 and 61 — 0 as ¢ — 0.
Choose 01, d2 as simply as possible.
2-2. Consider the equation

e’ +r—-1=0.

The roots are sought when ¢ is a small parameter.

1. Give the exact solutions and their expansions as ¢ — 0.

2. We want to determine the roots by using an iterative process. The reduced
equation, obtained by setting ¢ = 0 has a single root x = 1. The other root
is lost. The problem facing us is singular. Show that there are two iterative
processes, one given by

Ty, =1—cx2_,,

and the other one given by

1 1
Ty =——+ )
£ ETp_1

which enable us to find the results of the previous question.
3. We assume that the roots can be expanded as

e = xél) + 590&1) + €2x§1) e,

23 ) )

Give the coeflicients of these expansions.
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2-3. Consider the following eigenvalue problem

ef
@—&-)\ fx)=0, A>0, e<z<m,

with the boundary conditions

1. Determine the exact solution. In particular, give the set of eigenvalues A.
Give an expansion of A to order €.
2. To illustrate the use of a perturbation method, we set

F=gotepr+-, A=Xo+er+ .

Express the boundary conditions. For the condition at z = ¢, an expansion
of ¢y and ¢ near x = 0 will be performed, in such a way that the condition
at x = ¢ is transferred at x = 0.

Determine g, 1, A\g, A1. Compare to the exact solution.
2-4. This problem has been proposed by Van Dyke [108]. Consider a two-
dimensional, incompressible, inviscid flow. The continuity equation,

ou n ov 0
or oy
leads us to introduce a stream-function ¢ such that

w0
T

With the stream-function, the continuity equation is automatically satisfied.
Moreover, if the flow is steady and inviscid, the curl of the velocity (vorticity)
is constant along a streamline. Then, if the freestream (at upstream infinity)
is irrotational, the flow is irrotational everywhere. With these conditions, the
stream-function satisfies the equation

AY=0.
The streamlines are defined by 1) = cst since the variations of ¢ are such that
dy = udy — vdz .

The above hypotheses are satisfied if a circular cylinder is placed in a uni-
form, inviscid flow. In polar coordinates, the stream-function is given by
a2
Y =Us(r— —)sind ,
r

where r = 0 is the center of the circle and a is its radius. The modulus of the
freestream velocity is Uy and its direction is 8 = 0.
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Fig. 2.7. Slightly distorted circular cylinder placed in a uniform flow

The flow around a slightly distorted circular cylinder is studied. The equa-
tion of the body is
r=a(l —esin®f) .

This problem is treated with a regular expansion
1/)(7’, 9,6) = 1/)0(7’, 9) + 61/11(7’, 9) +ee

1. Write the equations for ¥y and ;. Give the boundary conditions. It is
reminded that, with the hypothesis of an inviscid flow, the velocity is tangent
to the body wall. The wall is a streamline defined by ¥ = 0.

2. Give the expession of 17 knowing that the general solution of equation
A Y = 0 with the appropriate symmetry conditions is Z b,r" sinnf where
n is an integer, positive or negative. It is reminded that

1
sin® a = 1—1(3 sin v — sin 3av) .
3. Give the expression of the wall velocity to order €.
2-5. This problem has been proposed by Van Dyke [108]. Consider a two-
dimensional, incompressible, steady, inviscid flow.

We study the flow around a circular cylinder of radius a. The freestream

is slightly sheared
*2
U* = U (1+€y2 > .
a

ou*  Ov* . .
——— 4+ —— is constant along a streamline. Then,
dy*  Ox*
w* is function only of ¥*. The equation for 9* is

The curl of velocity w* =

A1/’* :7(‘0*’

*3

3 a2

1. Nondimensionalize the problem with the help of Uy and a. The dimen-
sionless quantities are denoted without star.

1
with ¢* =0 at r* = ¢ and ¢* — Uy (y*Jr—sy > when r* — oo.
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At first, w is expressed as function of 1. Using a perturbation method,
show that

2
w= e+ P+

For that, at upstream infinity, the relation y() will be determined from an
iterative method by writing

1

Yn = 1/1 - gsyi—l .

2. The solution is sought using the following expansion

Y=1o+er+---.

Give the equations for 1y and 1, and give the boundary conditions.
Give the solution for vy and 1. It will be shown that the solution for 1,
is
1 11 11
Y1 = §r3 sin® @ — r(Inr)(sin ) — ir sin 6 + 1373 sin 36 .

It is reminded that the expression of a laplacian in polar coordinates is

2f 10f 1 0%f

Al =gr e TR

Comment the result, in particular as r — oc.



3 Boundary Layer Structure

The singular perturbation problems considered in this Chapter are based
on second order linear differential equations with variable coefficients. We
are interested in boundary value problems because not only local existence
theorems do not exist but also because these problems are more difficult
to treat than initial value problems. Moreover, the solution is not known
analytically. Finally if, for a well-posed physical problem, it is relatively easy
to localize the domain of non-uniformity, this is not the case here because
the problem is purely mathematical. The abstract formulation of the problem
does not enable us to determine, a priori, the localization of the boundary
layer. The method described in this Chapter to localize the boundary layer
is standard and can be used as a good guide for more complex problems.

3.1 Study of a Second Order Differential Equation

In order to illustrate the question of localizing the boundary layer in a singu-
lar perturbation problem, we choose to work with a second order differential
equation in which the second order derivative is multiplied by a small param-
eter. The chosen equation does not refer to any physical problem; it is simply
a model equation for a singular perturbation problem exhibiting a boundary
layer structure. The general form of the equation is

d%y

dy
T fae

+a(r)—=+b(x)y=0, (3.1a)

L
ey dz

subject to the following boundary conditions

y‘w:o =, y‘(z;:l =0. (3'1b)

The function y (z,¢) is defined on the domain x € [0,1] and ¢ is a small
positive parameter. All quantities are dimensionless.

Below, we seek an approximation of the solution. The functions a(z) and
b(x) are defined and continuous on the domain z € [0, 1]. The required addi-
tional hypotheses will be stated when necessary. The goal is not to present
a complete account of all the features of the problem but the cases considered
are sufficient to give the basic ideas useful to treat other cases.
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If an approximation is sought as a straightforward expansion, restricted
here to the first order, we have

y(z,e)=yo(x)+--- .

By substituting into (3.1a), the reduced problem results

a(x)%—i—b(m)yozo. (3.2)
The solution is
Yo (x) = C'exp [—/0 % df] , (3.3)

where C' is a constant yet undetermined. The first additional hypothesis is
associated with the existence of the above integral. At certain points, the
above integral can be divergent revealing the presence of local singularities.
We assume that the integral exists for any value of x. In particular,

s [ 29 o ”

is a bounded constant.

The two boundary conditions (3.1b) cannot be satisfied simultaneously
except if # = Aa but this case is not considered here in order to simplify
the presentation. Then, it is expected that a domain of fast variation of the
function y exists. This domain — the so-called inner region — is denoted by
D, but its localization is not known. We assume that such a domain lies in
the neighbourhood of a point zg such that 0 < zy < 1.

10

|
0 Xo 1

Fig. 3.1. Possible structure of the solution
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According to Fig. 3.1, three regions can be identified

Region 1: z € [0, z¢[. This domain is called the outer region. The solution is

y" (2) = aexp [— /0 ) % dg} .

Region 3: z € ]z, 1]. This domain is called the outer region. The solution is

)= o] [ 29 ]

Region 2: x € D.. The solution can have very fast variations in this domain
which is very small when ¢ is small. A boundary layer forms.

To study the boundary layer, the first step consists of defining the variable
adapted to the study of the domain D.. The adapted variable is called the
inner variable. We set

Tr — X

X == @ (3.5)

where d(¢) is a strictly positive function, yet undetermined, which tends to-
wards 0 as € — 0. This function is a length scale of the inner region. The
function d(¢) belongs to a class of functions called order functions whose
properties are presented in Sect. 4.1. Then, the solution is sought as

y(xz,e) =Y (X,e) .

Equation (3.1a) becomes

e d?Y 1 dYy
=+ = 0X)—=+0b 0X)Y =0.
52dX2+5a(a:0+ ) ¢ T b (@0 +6X)

We assume now that a and b are continuously differentiable functions and
that a (zo) # 0. After multiplying by 62, we obtain

d?y dYy 9

The meaning of the symbol O (6%) is given in Subsect. 4.1.4. Briefly, it
means that the corresponding terms, in D, are as small as 62. The possible
dominant terms are only the first two terms, so that the magnification of the
boundary layer region is tuned by taking § = e.

By letting
T — X0

X =

T and oy () = Yo (X) 4o
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the inner equation is obtained
d?Y, dYp
-— — =0.
axz Tl gy
The solution is
Yo (X) = Cexpl—a(ao) X] + D .

where C' and D are two constants, yet undetermined. The determination
of C' and D should come from the asymptotic matching as formulated in
Subsect. 2.2.1. We have

e for x> xg

. . 3 b(§)
Jim Yo = lim y” = Fexp |- a© %) (37)
1
o forxz<uxg
o b
0

These conditions show that Y should have two finite limits as X — oo,
which is impossible. The solution depends on the sign of a (xg)

e If a(xg) > 0, then only the limit X — 400 is meaningful for Yj is not
bounded as X — —oo. It is concluded that x > xg.

o If a(xp) <0, then only the limit X — —oo is valid. It is concluded that
xr < xg.

As summarized in Fig. 3.2 several cases are possible:

Case 1. if a(z) > 0, the boundary layer develops in the neighbourhood of

z = 0.
Case 2. If a (z) < 0, the boundary layer develops in the neighbourhood of
r=1.

Case 3. If a(x) > 0 for © < zy and a(z) < 0 for & > x¢, there are two
boundary layers, one in the neighbourhood of = 0, the other one in the
neighbourhood of = = 1.

Case 4. If a (z) < 0 for < ¢ and a (x) > 0 for z > ¢, the boundary layer
is in the neighbourhood of x = z¢. An inner boundary layer develops and
the outer solution is discontinuous at xg.

In case 4, it is necessary to reconsider the analysis because it has been
assumed that a (z9) # 0. In addition, this restriction on a is sufficient and
a study of the case where a could have several zeros is not necessary. Indeed,
the qualitative aspect of the solution defined in this way gives the required
information on the localization of the boundary layers in a more general case.
Figure 3.3 clearly shows that two boundary layers are in the neighbourhood
of the end points and two inner boundary layers develop.
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oo )
1
/
1
| -—— : — 1
(l N
0 1 =z 0 1 T
1
1
1
i
a(z)
| - — 1
® ©
0 2o 1 x T
1
1
1

Fig. 3.2. Localization of the bondary layer according to the sign of a(x). The circles
indicate the points around which a boundary layer develops

A A
IVARVARN

Fig. 3.3. Localization of the boundary layer when a(z) has several zeros. The
circles indicate the points around which boundary layers develop

3.2 Analysis of each Case
Case 1: a (x) > 0.

The boundary layer is in the neighbourhood of z = 0, region 1 disappears,
only regions 2 and 3 remain. We now have

e For the outer region

) (z) = yo (x) = Bexp [ /j % df} : (3.9)
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e For the inner region
Yo(X)=(a—D)exp[—a(0) X]+ D . (3.10)

In the above equations, we have

x
X=-.
€
The outer approximation yg (z) satisfies yo (1) = [ whereas the in-

ner approximation Yy (X)) satisfies the condition at the origin Y, (0) = a.
The unknown constant D is determined by the asymptotic matching condi-
tion
lim Yo (X)=D =1 ==
Jim Yo (X) limyo (2) = 1,
which yields

A UVA can be constructed as

Y (2, X) = 30 (2) + Yo (X) = 5
leading to

8 ) “0()
Ya x,X-(a— exp|[—a (0) X|+ Bexp |— —=d¢| .
(¢, X) ) expl-a (0) X] oS
Above, we assumed that a(z) > 0. It is also interesting to study a sim-
ple case with a(xz) > 0 for  # 0 and a(0) = 0 by specifying a (z) = 2P,
p being a positive real number. Using the transformation given by (3.5),
(3.6) becomes
2y dY
—— +0PXP— +0(6*) =0
“axz t ax FO) =0,
with
x
X=—.
5 (¢)
Here, we assume that 0 < p < 1. It is clear that the boundary layer
thickness is such that § (¢) = ¢!'/(1*P) 5o that the boundary layer variable is

x
X = i
The inner equation becomes
2
d7Yo Xp% —-0.

dx? dx



3.2 Analysis of each Case 37
The solution satisfying the condition at the origin is given by

Yo(X)=CG(X)+a,

X
€1+p
G(X)_/exp(1+p> a .
0

so that the asymptotic matching condition,

with

Xlim Yo (X)=CG(c0) +a= lir%yo(a:):—

leads to the approximation

and to the UVA

= (o 3) - 868] e[ 281

Case 3: a (x) > 0 for x < xo and a (x) < 0 for x > xg.

Figure 3.4 shows the behaviour of the solution. There are two inner regions
Dgl) and DS’) and an outer region D(® (see Problems 3-2 and 3-3). The two
boundary layers are characterized by the two inner variables
z—1

-

X =2 and x* =
13

In the outer region D®, according to (3.2) and (3.3), the solution writes

Yo (z) = Cexp [—/Oz%df} :

where C' is a constant, yet undetermined.
Equation (3.2) written at o,

d
a(ao) o +b () v = 0.

indicates that if the derivative of yo is bounded at zq, and if b (zg) # 0, then
we have yo (z¢) = 0 which implies C' = 0 and

Yo (¥) =0.
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y Dgl) D® Dgs)

Fig. 3.4. Shape of the solution in case 3

In the inner region, Dgl), the inner equation holds

d2Y0(1) dYO(l)
oz T %

:O7

with the solution
YV = ¢y exp[—a (0) X] + Dy .

The two constants C7 and D; are determined from the condition at the
origin and from the asymptotic matching principle

Ci+Di=a,

and
Dy = lim YV = lim yo = 0.

X —o00

This results
Yo(l) = aexp[—a(0) X] .

For the inner region D& the inner equation holds

d2}/0(3) dYO(S)
axz el e

pr— 0 5
with the solution
Y0(3) =Csexp|—a (1) X*] + D3 .

The two constants C3 and D3 are determined from the condition at z = 1
and from the asymptotic matching condition

C3+D3=p,
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and ;
D= Jim Y= o =0.
This results
YO(3) = fexp[—a(l) X7"] .
Finally, the UVA is
Yo (£, X) = aexp[—a (0) X] + Bexp[—a (1) X*] .
Case 4: a (x) < 0 for x < xo and a (x) > 0 for x > xo.

Figure 3.5 gives the behaviour of the solution. There are two outer regions
D™ and D® (see Problem 3-1) and an inner region D..
The boundary layer is characterized by the inner variable

r — X

X=50

where d (¢) is an order function. To determine 0 (¢), we assume that the
structure of a (z) in the neighbourhood of x = x is given by

a(2)y p, = K?sgn (z — xo) |v —xo|’ with 0<p<1.

Yy D D. D®

X <0 X>0

Fig. 3.5. Shape of the solution in case 4

The situation is the same as in case 1 with a(z) = zP. The thickness of
the boundary layer is
§(e) = ¥/(+P)
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and the inner equation is

d?Y, dYp
K?|X|P =0.
e+ KX sen(X0) L =
The general solution is
1X]
§1+p
Yy = Cysgn X / exp (K2—> d¢+ Csy
1+p
0

where C7 and Cs are two constants determined from the asymptotic matching
conditions with the outer approximations.
In the outer regions D™ and D(?’)7 the outer approximations are, respec-

tively,
b
uy (x) = aexp [/0 ai?) dﬁ] ;
b
o @) = pexp |- [ 2 ae]
The asymptotic matching yields
= hm Y() C / exp ( El_:;) df + CQ 5
and
i o () = pesp |- [ 28 ac] @)

oo 1+p
_ _ 28
= Xl_lf_rﬁoo% (X) = Cl/o exp < K 7 er) dé+Cs . (3.12)

The above two equations allow the calculation of the two constants C and
Cs.

3.3 Conclusion
In this Chapter, a singular perturbation problem has been studied from the

analysis of the solution of a second order differential equation. The singularity
is introduced by means of a small parameter which multiplies the second
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order derivative. However, when dealing with ordinary differential equations,
it cannot be concluded that a singular perturbation problem is necessarily
due to the presence of a small parameter in front of the higher derivative.
Many other situations can be encountered.

The topic of this Chapter has been essentially to localize the boundary
layer from a method similar to a stability analysis [113]. Using purely math-
ematical arguments, without being guided by physical considerations, it has
been possible to deduce the localization of the boundary layer. This can be
useful for more difficult problems, including partial differential equations.
In practical problems, the equations model a physical phenomenon. With
a good knowledge of the problem, physical arguments can be added to the
mathematical ones or even can supplant them to localize the boundary layer.

The discussion of the second order differential equation presented in this
Chapter is not exhaustive due to restrictive hypotheses which have been
introduced. Moreover, the matching principle has been applied in a very
straightforward manner and does not enable us to go further without a more
elaborate asymptotic method. All the limits should have a sense which is far
from being always the case. The required asymptotics is developed in the next
chapters. Differential equations will be used again to study examples whose
analysis is not as simple as in this Chapter. In addition, these differential
equations will be used to improve the approximations.

Problems

3-1. It is proposed to study an asymptotic approximation of y (x,e) such
that

d? d
LEyEEd—xZ—&-Q(m—l)d——2(35—1)1/:0,
where
0<z<2,
with
y(0,e) =1, y(2,6)=0.
1. Determine the outer region and the corresponding approximation yo ().
2. Find the thickness 6 (¢) of the inner region and determine the general form
of the corresponding approximation Yy (X) where X = (x — z¢)/d, and zg

must be determined.
3. Apply the matching principle. Plot the behaviour of the solution.

It is reminded that
/ e ds = ﬁ .
0 2
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4. Is it possible to give a UVA of y (z,€) on the domain 0 < x < 27
3-2. Consider the following problem

d?y dy
6@+(1+ax)£+ay20,

with
y(0,e) =1, y(l,e)=1.

1. Give the general solution yo(x) outside of any boundary layer.

2. We suppose that « > —1. Find yo(z), the boundary layer solution Yy (X)
and a UVA yapp. Show that X = z/e.

3. We suppose that o < —1. Find yo(z), Yo(X), Yo(X*) and yapp with
X*=(01-x)/e.

3-3. Consider the following problem

dy

—+1l-2)——-y=0, 0<z<1
Edl_2+( x)dl' y ) _.'L'_ b

with
y(0,e) =15 y(le)=1.
Check that the exact solution has the form

X 2
A+B/ et dt|
0

y=e*

with

Determine A and B.

Show that there exists a boundary layer in the neighbourhood of z = 0
and another boundary layer in the neighbourhood of = = 1.

Give the variable appropriate to each boundary layer.

It is known that as z — oo

2 [*V? 2 1 1
ﬁ/ e_t2 dt=1+\/—_e_22/2[——+_+...}_
0

™



4 Asymptotic Expansions

This chapter describes the main tools for asymptotic expansions. In particu-
lar, an expansion depends on the use of an asymptotic sequence formed from
order functions. Different approaches can be used but, keeping in mind we
are interested in practical methods, we use a set of order functions for which
a total ordering exists. A more in-depth study can be found in the book by
Eckhaus [33].

4.1 Order Functions. Order of a Function

4.1.1 Definition of an Order Function

Definition 4.1. Let E be the set of real functions § () of the variable e,
strictly positive and continuous in the semiopen interval 0 < € < g¢ and such
that

1. lir% d(e) exists (we can have 0(g) —O>oo),
e— e
2.V6, € E, Véq € E, 0109 € E.

A function 6(g) € E is called an order function. According to condi-
tion (2), the product of order functions defines an internal law on E.

Note 4.1.1f §(¢) is an order function, then 1/d(¢) is also an order function.

Ezxample 4.1.

° 1 e, &, —— 1 1 + € are order functions

e’ 7 T 14¢e’ In(1/e)’ '

e The first condition accepts 1/e, but excludes fast oscillating functions near
e = 0, for example, 1 + sin?(1/¢). The second condition excludes any function

derived from these functions, for example, € [1 + sin®(1/e)].

4.1.2 Comparison of Order Functions

A comparison of two order functions, 1 and do, requires special notation.
Hardy’s notations are defined as follows:

1. 61 = &9, it is said that &1 is asymptotically smaller than or equal to 6o

0
01 =X 0y if 5_1 is bounded as ¢ — 0,
2
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2. 01 < 09, it is said that &1 is asymptotically smaller than 0o

61<521f5—1H0as5H0,
02

3. 01 & 09, it is said that d;1 is asymptotically equal to 0o

0

5~ 8 if im ==X\ (A>0),
e—0 62

where X is a finite, non zero constant. It is said that §; and Jo are

asymptotically identical when X\ = 1. Sometimes, the following notation

is used

~ s e 01
51:621f§%£—1

FExample 4.2. Using the above notation, different order functions are compared:

1

2<e, 2= DA g —

o &Xe 2 e <e? € = /e
1
2 —1/e 2 3
< < <~ —.
o c?<eg, e e, € n(1/2)
o 2
1+¢e’

e = <

S 1l4e”

4.1.3 Total Ordering
Definition 4.2. In the set E, let R be the relation defined by
R(§1,52).‘ 01 ~ 09 or 01 < 02 s

With this definition, any two elements of E can be compared. The relation
is reflexive as R(d,0) is always satisfied. It is transitive because, if R(d1, d2)
is satisfied and if R(d9,d3) is satisfied, then R(d1,03) is satisfied. Finally,
the relation is skew symmetric because if the two relations R(d1,0d2) and
R(d2,d1) are simultaneously satisfied, then d; & d5.The relation R defines
a total ordering on E.

If the internal law (2) of Subsect. 4.1.1 is not defined on E, the ordering is
not total. Then, on such a set, it is possible that two functions §; and o satisfy
neither R(d1,d2) nor R(02,61). For example, 01 = ¢ and 65 = ¢ [1 4 sin®(1/¢)]
are such that §; < d2 and d2/d; has no limit as ¢ — 0; it is concluded that
the two functions ¢; and d> cannot be compared with relation R.

Sometimes, on a more general set of order functions that do not satisfy
the internal law, the elements of the subset E are called gauge functions. This
point of view is not adopted here. It will be seen that the notion of “gauge
function” is used here according to another meaning (Subsect. 4.2.3).
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4.1.4 Order of a Function

Let ¢ (z,2) be a real function of real variables © = (z1,22,...,Z,,) and

of the parameter . Function ¢ (z,¢) is defined in a domain D of variables

(1,2, ..., m) and in the interval 0 < € < gg. Let ||| be a norm of ¢ in D.
Using Landau’s notation, we have

1. ¢(z,e) = O[d(e)] in D if there exists a constant K, independent of ¢,
such that ||| < K. We say that ¢ is “big Oh” of § as ¢ — 0.

2. p(z,e)=0[0(e)] in D if gli% @ = 0. We say that ¢ is “little oh” of § as
e —0.

3. ¢(z,e) = Og[d(g)] in D if g%@ = K where K is a finite, non zero
constant. The symbol Og means “is of strict (or sharp) order of”.
If ||¢|| is an order function, Hardy’s and Landau’s notations are equivalent:

1. ¢ (x,e) = O[d(¢)] is equivalent to ||¢]| <4,

2. p(z,e) =0][0 ()] is equivalent to ||| < 4,

3. ¢ (z,e) = Og[d ()] is equivalent to ||| ~ 0.

In the rest of this book, the supremum norm is used. If a function ¢ is
continuous and bounded in its domain of definition, we have

l[ell = Maxp [o] . (4.1)

Other norms, for example in Lg, can be used according to the problem
being studied. It must be recognized however that the orders of magnitude
can be completely different. Considering the function ¢ (x,¢) = e~*/¢ and
D = [0, 1], the supremum norm yields

l[oll = Os (1).
On the other hand, the norm Lo,

1/2

el ={ [¢*az] .

D

yields

lell = Os (Ve) -

The supremum norm has an essential property for physicists and mechani-
cists.
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Property 4.1. If ¢ (z,e) = Og[d (¢)], then there exists K such that
Ve €D, Ve€]0,g], |l <KJ,

where K is a finite, non zero constant independent of . This property is not
necessarily satisfied when other norms are used. In particular, the hypothesis
© = Og(1) implies that ¢ is bounded in its domain of definition.

Note 4.2. Landau’s notation is more general than Hardy’s notation which can be
applied only to order functions. For example, fast oscillating functions can be gauged
with Landau’s notation

4.2 Asymptotic Sequence

4.2.1 Definition of an Asymptotic Sequence

Definition 4.3. A sequence of order functions 6, is called asymptotic se-
quence if
Vn, 5n+1 < 6n .

In this definition, n is an integer, positive or zero, in such a way that if €™ is
an asymptotic sequence, e*" is not an asymptotic sequence except if

Vn, ant1 > Q.

4.2.2 Class of Equivalence

In the set E, relation d; = J- is a relation of equivalence r. This relation
satisfies the following three properties:

a. Reflexivity, § = 4,
b. Symmetry, d; = > implies dy ~ 01,
c. Transitivity, d; = d2 and dy ~ d3 imply d; = d3.

Then, it is possible to define the set E of classes of equivalence,
E=E / r. When it is necessary to evaluate the order of a function, the
choice of a representative of the class of equivalence is a matter of logic but
also of intuition or simplicity.

In practice, subsets of E generated by elementary functions are often
considered. Obviously, the subset of functions is chosen is such a way that it
is possible to define a total ordering.

Ezxample 4.3.

e Ey, the subset generated by €™ where n is an integer,
e E,, the subset generated by € where « is rational,

B
1
e Ko, the subset generated by £* <ln g) with 8 # 0.
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4.2.3 Gauge Functions

Definition 4.4. A gauge function is an order function chosen as the repre-
sentative of its class of equivalence.

If 6,, and A,, are two asymptotic sequences such that
vn7 671 ~ An )

the two sequences are said asymptotically equivalent.
The notion of representative of a class of equivalence is present in this
definition. For example,

n € " 3 n
g™, <1+€>, (sing)” ,

represent three asymptotically equivalent sequences. Chosing a representative
of the class, for example in Eg, has implications on the uniqueness of an
asymptotic expansion.

This uniqueness is important in the formal application of an asymptotic
matching principle. It is useful to note Du Bois-Reymond’s theorem cited by
Hardy:

Theorem 4.1. Given any asymptotic sequence, there exists an infinity of
order functions 0* such that

Vn, 6% <0, .

Any function of order §* (¢) having this property is said asymptotically
equivalent to zero with respect to the sequence &y,.

Then, with the sequence §, = &™, any order function of the type
§* () = e /¢ with a > 0 is asymptotically equivalent to zero. In the
same manner, with the sequence 8, (¢) = [In(1/e)]" ", any order function

0* (e) = e with « > 0 is asymptotically equivalent to zero.

In an asymptotic expansion, order functions which are equivalent to zero
are often called transcendentally small terms, TST. Very often, the notation
TST is restricted to order functions that are equivalent to zero with respect
to the subset Eg generated by €™ where n is an integer. The notation EST,
exponentially small terms, is well-adapted to the subsets Eq, E; and Es.

4.3 Asymptotic Expansion

4.3.1 Asymptotic Approximation

Two functions ¢ (z, ) and @, (z, ) defined in D are said asymptotically iden-
tical if they have the same order of magnitude and if their difference is neg-
ligible

¢=0s(01), P =0s(1), ¢—P =O0s(d2) with d2 <41 .
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The function P, is an asymptotic approzimation of the function ¢. The
converse being also true, it must be stressed that the goal of an asymptotic
approximation is not to replace a function ¢ by another function ©; which is
as complicated as ¢ or even more complicated, but by a simpler function. For
example, we can choose p; = ¢ and, not only ©; is an asymptotic approx-
imation of ¢, but the accuracy of the approximation is independent of the
choice of 05 as far as lim._.gds = 0. It is clear that this result has no value.
The notion of “simpler function” is the key which enables us to understand
why it is interesting to replace the function ¢ by ©;.

Since the simplicity, just as the complexity are difficult to define precisely,
it is not useful to discuss it further. However, it must be noted that this
simplicity comes from the different methods used to construct asymptotic
expansions.

In this way, a non trivial approximation @, of ¢ to order ¢; is obtained.
Subsequently, this notation is important and its origin is that

@ — 0101 =0(01) ,
and we set
P1 =011 ,
with
1 =0s(1) .

If a better approximation is desired, the above process can be repeated.
It can be shown that

¢ — 011 = Os (d2) -
If there exists a function po = Og(1) such that
© — 011 = d2ip2 + Os ((53) with d3 < 02,

we can write
@ =011 + dap2 + Og (d3) -

The process can be stopped without taking care of the neglected order of
magnitude. Then, the following notation is used

@ =011 + 202 +0(d2) .

The process can also be continued to the chosen order to obtain
p(2,6) =Y 0n(€) o (,8) +0[0m (€)] - (4.2)
n=1

Finally, an m-term asymptotic expansion of p(z,e) in D has been pro-
duced. Taking into account the non-uniqueness of an asymptotic expansion,
the number of terms is not a very characteristic feature. It is better to say
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that an asymptotic expansion to order 4., is obtained. This expansion can
be written more precisely as

o(2,e) = 8n () n(2,) + Os [ ()] - (4.3)

This expansion is such that
Vn : pn (2,6) = Os (1) and dpq1 < 6p -

As the supremum norm is used, the definition of sharp order implies that the
functions ¢, are bounded in their interval of definition.

According to Du Bois-Reymond’s theorem, any function ¢* (x,¢) has the
same asymptotic expansion as ¢ (z, ), to the considered order, if

p—¢"=0("),

where §* is asymptotically identical to zero with respect to the asymptotic
sequence ¢, of considered order functions. This is one of the reasons of the
non-uniqueness of asymptotic expansions.

4.3.2 Regular Functions

If ¢ (z,e) and ¢y (z,€) are two continuous functions in a closed and bounded
domain D and in the interval 0 < € < g such that

0=0g(61), ¢1=0s(1), @=0d0pi+0(d),

then, necessarily, we have uniformly in D

lim | £2:6)

e—0 51 (6) e ($75) =0

It is precisely in this way that it is checked that the functions ¢ and ;¢ are
asymptotically equivalent. A particularly interesting case of this result [33]
occurs when, uniformly in D, we have

p(re) _
e—0 (51 (E) o 1(.27) '

An asymptotic approximation of ¢ can then be written as

¢ (x,6) =01 () 1 (z) +0(d1) -

A function ¢ having this property is said regular. It must be noted that this
property is not necessarily valid to next orders.

Note 4.3. We assumed that ¢ = Og(d1) et o1 = Os(1). From the definition of
sharp order, this hypothesis implies that the functions ¢ and 1 are bounded in
their domain of definition.
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4.3.3 Regular and Generalized Asymptotic Expansions

The asymptotic approximation of a regular function obtained as above is
objectively simpler than the function ¢ since ¢; depends only on x. More
precisely, if each step of the construction of an asymptotic expansion con-
sists of determining a regular asymptotic approximation, the corresponding
asymptotic expansion is said regular.

An asymptotic expansion which is not regular is called non regular. How-
ever, in order to avoid confusion with other concepts, the terminology gener-
alized expansion is preferred (see Problem 4-4). Strictly, it is not necessary to
add the qualifying adjective “generalized” but, too often, it is thought that an
asymptotic expansion is necessarily regular. As, in the next chapters, asymp-
totic expansions are used in their general framework, the redundancy is not
superfluous. An example of generalized asymptotic expansion is (4.3)

m

p(@.e) = 0u(e)pn(2,) + Os [Brsr ()] - (4.4)

n=1

1
Ezxample 4.4. The function ¢ = T has the following generalized asymptotic

expansion

0= 1 + Z E2n+1x2n+1(1 + E.CU) + O(E2m+3) )
n=0

For an m-term regular asymptotic expansion, the following property holds

o (@) - ; 5: (&) i (x)
Ont1

Vh < m, lim & = pn1 (@) -

An m-term regular asymptotic expansion, also called a Poincaré expansion, takes
the form

p(@,e) = 6n(e)pn(x) +0[0m(e)] - (4.5)

n=1

Ezxample 4.5. The function ¢ = 1 has the following regular asymptotic ex-
—ex

pansion
p= Z e'z” + 0™ .
n=0
An interesting property of regular approximations is: if, for two approxi-
mations of the same function, we have
p(x,€) = 01 (€) p1 (z) +0(d1) and @ (z,) =81 () Py () +0(01)

then _
51(6)
=0 51(e)

= cand ¢y (z) = @y (2) ,
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where ¢ is a finite, non zero constant. The non-uniqueness of asymptotic
expansions is also related to such comments.

Obviously, if the asymptotic sequence is chosen in a set of gauge functions
and not in a set of order functions, a choice is required. This ensures the
uniqueness of the asymptotic expansion.

Ezxample 4.6. Consider the function

o (z,6) = (17 1:;%)71 .

Two regular asymptotic expansions are

¢ (z,e) = 1+Z5n ()" +0[0m (e)] with dn (e) = (1—T—E> )

¢ (z,e) = 1+Zs"m(m—1)"71 +ol[e™] .

4.3.4 Convergence and Accuracy

A well-known example of an asymptotic expansion of a function ¢ () can be
obtained from its Taylor series expansion when ¢ is small. For an m times
continuously differentiable function near ¢ = 0, an (m + 1)-term asymptotic
expansion is

/ (m)(o) 1
v () = p(0) +e¢'(0) +-~-—|—€mm—+03(5m+ ).

!

If m becomes infinite, a series is obtained which can be convergent or diver-
gent. If the series is convergent, it may not converge to the expanded function.
In fact, an asymptotic expansion is different from a series. A series has an
infinite number of terms whereas an asymptotic expansion has a finite num-
ber of terms. An asymptotic expansion can have an infinite number of terms
(in this case we have an asymptotic series) but the question of the conver-
gence of the series has no connection with the behaviour of the function in
the neighbourhood of € = 0.

Ezxample 4.7. The Taylor series expansion of the exponential function is

2 m

5 3 £
2 m!

This asymptotic series converges for any value of €. The asymptotic expansion

2 m

€ € m
f=ltet 5+ -+ —+0s h

is valid in the neighbourhood of € = 0 but nowhere else.
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Ezxample 4.8. Consider the function f(z,¢)
flae)=e " +e " for2<z<3. (4.6)

An asymptotic expansion of this function is
2 z’
fapp:1*€l’+€ 7, (47)

which is obtained by taking the first three terms of the series

sz ™
glz,e)=1—cx+e ?—&—---—i—(—l)mamm—&—---
Figure 4.1 shows the function log ~——— ‘fapp 7 7l for different values of €. The relative

error due to the approximation fapp goes to zero as € — 0.

20 25 z 3.0
0 T 1
-1 :__________/5202
2 F
3 '—___’__/5:005
o Mo = f1 4T
-

6 E

Flg 4.1. Example of an asymptotic approximation. The curves give the function

‘fapp
and( .7)

/1 for different values of . The functions f and fapp are given by (4.6)

It is noted that the series g(z, <) is convergent for all values of = and e, but does
not converge to f(z,e). We have

g — e*Ex
The series ¢ is an asymptotic approximation of f as € — 0. The reason is that
the term e~®/¢ of the function fis an EST as ¢ — 0 and for = being kept fixed,
strictly positive.

More generally, it is possible that, for an asymptotic series, the limits
e — 0 and m — oo do not commute (see Problem 4-5). This is an important
property of divergent series which can be considered, from the asymptotic
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point of view, as convergent. It suffices to take € small enough. If a series
diverges, ¢ must be taken smaller when the number of terms retained is
larger. In a certain sense, this leads to a heuristic paradoxical remark: the
information contained in the first terms of the expansion is more complete
when the series is more divergent. Exaggerating the paradox, it can be said
that the divergent series converge more rapidly than the convergent series [4].

Ezxample 4.9. Hinch [42] considers the differential equation
i

- = _ 4.8
f=--3 (4.8)
whose solution, with zo > 0, is
1/e ¢t
f= e*l/f/ at. (4.9)
xq t
An asymptotic expansion, as € — 0, is
Japp = e+ &2 4+28% 4. 4 (m—1)1e™, (4.10)

which is valid for any value of xp and corresponds to the first m terms of the series
g=e+d+28% + 4+ (m -1+ .

In fact, this series is divergent for all values of €. For a fixed value of ¢, g — oo as
m — 00.

Figure 4.2 shows a comparison between the exact solution, with zo = 1 and
e = 0.1, and the asymptotic expansion for different values of m. The approximation
is excellent if the number of terms is small. Obviously, the approximation is bad
when the number of terms is too large because the series is divergent. The limit
number of terms which ensures a good accuracy depends on the value of €. This
number increases when € decreases. It can also be said that, for a fixed number of
terms, the approximation is better when ¢ is smaller.

There is no contradiction between the different observations. The series is di-
vergent because the limit of g is taken when m — oo for a fixed value of € whereas
the asymptotic expansion is valid for a fixed value of m as € — 0.

For physical problems, the quality of an asymptotic expansion is not pre-
dictable. Sometimes, a good intuition can improve the result. If one writes

3
sins:s—g+0(s5) ,
and -
A 5
sine = 1+52/6+O(5) ,

it is immediately seen that in the second case, with a single term, the same
accuracy can be obtained as in the first case with two terms. This is due to
the appropriate choice of the representative in the class of order functions.
These convergence improvements are useful in practice.
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025
| asymptotic
f 020 approximation (4.10)
0.15 |
0.10 7 exact solution (4.9)
with zg =1, e = 0.1
005 |
0.00 L L L L !
0 5 10 15 20 25

Fig. 4.2. Example of an asymptotic expansion associated with a divergent series

4.3.5 Operations on Asymptotic Expansions

When an approximate solution of a set of partial differential equations is
sought, the expansion of the unknown functions is substituted into the equa-
tions, and we assume that the elementary operations are valid [26, 108, 114].
Thanks to the properties of the set E of order functions and to the existence
of a total ordering on E, it can be shown than the addition, the subtraction,
the multiplication or the division of asymptotic expansions are justified if the
result is expressed with an asymptotic sequence which is possibly enlarged.
The term to term integration with respect to the variables of the problem is
also licit. The differentiation, however, can lead to problems. For example,

consider the function
flze) =Vz+e,

where ¢ is a parameter, as small as desired. An asymptotic expansion of this
function is

flx,e) = vVx+o(1).
This expansion is a uniformly valid approximation in the domain 0 < z < 1.
The differentiation of f with respect to x yields
df 1
de 2z e’

whereas the differentiation of \/z gives

dyz 1

dz 2\/x



Problems 55

1
In the domain 0 < x <1,
2\/x
1
7 — o0 as © — 0. By contrast, the term to term integration is possible,
x
for example from x =0

2 2 2
g(l’ +E)3/2 — 553/2 = 5373/2 +O(1) .

. , . df
is not an asymptotic expansion of P because
x

The difficulty encountered with the differentiation is due to a singularity
near z = 0 which appears with a better approximation of function f. The
examples considered in Subsects. 6.2.2 and 6.3.2 also show that uniformly
valid approximations of a function are not necessary uniformly valid for its
derivative.

Finally, Problem 4-7 shows that caution is needed when an asymptotic
expansion is substituted into another expansion.

4.4 Conclusion

The construction of an asymptotic expansion is associated with the determi-
nation of an asymptotic sequence of order functions. In this book, it is chosen
to work with the set E of order functions on which a total ordering is defined.
Often, for a given problem, the choice of order functions can be restricted
to a subset of E where the total ordering remains defined. Moreover, it can
be convenient to use gauge functions which are particular representatives of
classes of equivalence of order functions.

It is not always easy to obtain an asymptotic sequence. In certain cases,
the sequence appears in a natural manner, but in other cases the sequence is
constructed term by term in parallel with the construction of the asymptotic
expansion. This difficulty is discussed later when studying different examples.

The successive complementary expansion method, SCEM, studied sub-
sequently for the analysis of singular perturbation problems relies upon the
notion of asymptotic expansion. By contrast with a common use, an asymp-
totic expansion is not necessarily regular. In fact, an important feature of
SCEM is to use generalized asymptotic expansions.

Problems

4-1. Consider the following order functions

1
— e’ withO<v<l,e.

Ine

Classify these functions according to their order of magnitude by using
Hardy’s notation as ¢ — 0.

1, —elne, —
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4-2. Consider the asymptotic sequence £ with n integer, n > 0. Let ¢ be the
function ¢(z,e) = eln(z/e) with = > 0. Compare this function as precisely
as possible with the elements of the asymptotic sequence using Landau’s no-
tation and the supremum norm. The three following cases will be considered:
)0 < A1 <2< Ay ii) 0< Are <o < Age, iii) 0 < Aje? <2 < Age?. In
each case, A; and As are strictly positive constants independent of ¢.

4-3. Determine if the following approximations are uniformly valid:
1.e"=140(); 0<x<1l, €—0.
1
2. =0(1); 0<z<1, ¢—0.
T +e€

3.e7%/e=o(e") foranyn >0; 0<z<1, £€—0.

4-4. From the following form of the function ¢, give a series expansion of ¢
ase — 0

1

= 2z—1 °
1+ed=

14

Do we obtain a valid asymptotic expansion in the domain 0 < z < 17 (Exam-
ine if the successive terms satisfy the definition of an asymptotic expansion
in the domain 0 < z < 1).

Use the following form of ¢,

- 1
Cl4 = —2e

1z

2

to deduce an asymptotic expansion of ¢ valid in the whole domain 0 < x < 1.

4-5. From successive integrations by parts, show that the function
o0 eft
x

has the following expansion for large values of x

By giving an upper bound of the neglected term, show that an asymptotic
expansion is defined.
Let R, (x) be the neglected term. Determine the following limits
li R
nﬁool,glﬁxed‘ n(l’)‘ ’
and
li R .
mﬂocl,lr?ﬁxcd ‘ n(fﬂ)‘

Show that the series is divergent.
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Taking = = 3, show that the asymptotic expansion represents the function
xe® By with an error wich has a minimum when a certain number of terms
is retained.

It is given that ze* Ey(x) = 0.7862 for = = 3.

4-6. Consider the equation

e’ +r—1=0,

for which the roots are sought when ¢ is a small parameter.
The reduced equation, obtained by setting € = 0, has only one root. To
recover the other root, a change of variable is used

We assume that 0 < A; < |X| < Ay where A; and Ay are two constants

independent of e. By examining the various possibilities to choose d(¢), show

that the second root is recovered by taking § = ¢~!. The following cases will

be considered: i) § < 1,1ii) § = 1,iii) 1 < <e 1, iv) d =, v) d =L
An expansion of the solution is sought as

Lo
r=—+z1t+ta28e+--- .
€

Determine successively xq, x1, T2.
4-7. Let f(x) be the function

flz)=e"",
where z is given by

r=-+¢.
e

Give an asymptotic expansion of the function f [z(¢)]. Examine what happens
if only the dominant term of x (i.e. = 1/¢) is kept.



5 Successive Complementary
Expansion Method

This chapter is devoted to the asymptotic analysis of singular functions.
Two versions of the method of matched asymptotic expansions, MMAE, are
reminded with their advantages and drawbacks. The first method, associated
with the intermediate matching, is the most popular one since it is apparently
the most natural one. The second method, based on Van Dyke’s matching
principle, VDP, is more puzzling but its application is easier. In both methods,
the point is to match two approximations defined in contiguous domains.
VDP enables us to understand how a composite approximation, which is
taken as a uniformly valid approximation, UVA, can be constructed. This
analysis leads us to a modified Van Dyke principle, MVDP, which seems to
solve the known counter-examples to VDP, in particular when logarithms
are present. This latter method suggests a new approach which is called the
successive complementary expansion method, SCEM. The regular form of
SCEM is equivalent to MMAE but sets us free of any asymptotic matching.
Moreover, the general form of SCEM, with the use of generalized asymptotic
expansions, AEs, enables us to treat problems which cannot be solved in an
easy manner with regular expansions.

5.1 Method of Matched Asymptotic Expansions

5.1.1 Expansion Operator

Consider a function @ (x,¢) defined in a domain D, for example the interval
[0, 1], and assume that a regular AE can be constructed

25 &) ol ( )+o(ag”>), (5.1)

where ééi) () is an asymptotic sequence of order functions. These expansions
are often called Poincaré expansions.

Definition 5.1. As introduced by Eckhaus [33], an expansion operator Eén)
s the operator which expresses the asymptotic approximation of @ to order
s

o B0 =o ("), (5.2)



60 Chapter 5. Successive Complementary Expansion Method
which is sometimes denoted more imprecisely by
@ (x,e) 2EM @ (5.3)

with .
B¢V =5 ()2 () .
i=1

This is an n-term AE but the important point is the order to which the AE
15 written.

If it is desired to obtain the regular AE of @ for m < n, it suffices to know
Eé") @. If order functions are used, we have

BB @ =B @+ o (o) . (5.4)

It is advantegeous to use gauge functions 5(()” (¢) which answer the ques-
tion of non-uniqueness of AEs to a large extent. Then, the asymptotic equal-
ity (5.4) is replaced by a strict equality

m) p(n) (m)
EMEMe =E™

which is useful in the application of the matching principles.

5.1.2 Outer Expansion - Inner Expansion

A particularly interesting case occurs when the function @ is not regular on D,
i.e. when the AE of @ is valid only in a restricted region Dy of D. For example,
Dy is defined by 0 < Ap < z < 1 where Ag is a constant independent of e.
The corresponding AE is often called the outer expansion. The associated
variable x is called the outer variable.

For the sake of simplicity, we consider a one-dimensional case in which
the singularity occurs in the neighbourhood of z = 0. We assume that in
the neighbourhood of x = 0, there exists at least one AE which can be an
asymptotic approximation of @ obtained by another limit process than the
“outer limit process” given by € — 0 and x being kept fixed, strictly positive.

Before we discuss the method, let us consider the following example

= e () ()

Assuming x > 0, it is easy to construct a 2-term outer AE

(5.5)

D(x,e)=e"4ece ™ (2—x)+0(e) .
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We set
Eéz) P=e"Hece " (2—2x) .

This means that a 2-term outer AE has been obtained such that
d-EPd=0(c) .

When determining this expansion, we assume that x is strictly positive
which justifies the expression “outer limit” or “outer expansion”. This an-
nounces the possibility of a singularity at the origin which is confirmed by
the fact that @ (0,e) = 0 whereas E(()l) & = e~ " takes the value 1 at the origin.
By definition, this singularity cannot be resolved with the second approxi-
mation Eé2) @ which takes the value 1+2 ¢ at the origin. Then, Eél) @ and
E(()2) @ are not asymptotic approximations of @ in the neighbourhood of the
origin. There is a singular perturbation and another limit process must be in-
troduced in the neighbourhood of the origin. We say that there is a boundary
layer behaviour.

The hypothesis > 0 is necessary to neglect a term like e=*/¢, which is
not justified if z is very small or equal to zero. The “nner limit process” is
specified by setting

x=2.
€

This new variable X is called the inner variable and allows the construc-
tion of a regular AE in a neighbourhood of the origin. The so-called inner
expansion is obtained by applying the limit process in which X is kept fixed
and € — 0 to the function

" (X,e) =P (eX,e) .
It is easy to get
P (ze)=(1-e¥)+e (2-X)— (2+X)e*X] +o(e) .
We also set
EVo=(1-c¥)+ec[2-X)-2+X)eX].
This means that a 2-term inner AE has been constructed such that

d»—EPd=0() .

5.1.3 Asymptotic Matching

We observe that Eé2) @ is an approximation of @ in the interval 0 < A; < x <1

where A is a constant independent of e, and E§2) @ is an approximation of
the same function if 0 < B; < X < By (i.e. 0 < Bie <z < Boe ) where By
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et By are two constants independent of . Although Eé2) é and E(12) & do not
have the same structure, there is a link between these two approximations.

)@ can be regarded as an approximation of ¢ even closer to

the origin. In the same manner, E§2) @ can be regarded as an approximation
of @ away from the origin. This point of view leads to the notion of overlap.

For example, E(()2

The overlap of E(()Q) $ and E§2) @ expresses that these two functions have
a common domain of validity, i.e. E(()2) @ and E(12) @ are two simultaneous
approximations of @ when x is in a domain between the outer domain and
the inner domain. This will be further discussed in Sect. 5.3.

Too close to the origin, E(()Q) @ cannot be an approximation of @, since
the perturbation is singular. Similarly, E§2) @ is not an approximation of @
too far from the origin. Nevertheless, as suggested by Friedrichs’ model (Sub-
sect. 2.2.1), the two limits can be identified. This simplistic idea of asymptotic
matching allows us to write
lim EY @ = lim B & .

X —o00

x—0

With the example given by (5.5), it is seen that

lin%)EEf)@:l—i—Zs,

whereas limx_ o Egz) & is not bounded.

To improve the process, it is better to work with the behaviours rather
than with the limits. Then, by using asymptotic expansions, E(()2) @ is a func-
tion of x and of € whose behaviour can be determined from the inner process
limit. To the same order O (g), we obtain

EYEPe=1+e2-X),

which gives again the previous limit by setting here X = 0.
Similarly, we have

EPEP ¢ =1-2+2¢.

The limit does not exist because now we have x — oo. However, the two
expansions yield the same result

EPEPe=EPEY¢.

With a formulation to be discussed later (Sect. 5.4), this method, ini-
tially due to Van Dyke [107], is very convenient to produce relations between
the outer and inner expansions. It must be noted that the two expansions
are based on gauge functions. Otherwise, it would be necessary to replace
the sign of identity = by the sign of asymptotic identity =2. It will be seen
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that, as formulated by Van Dyke, the matching principle cannot always be
applied. It is why another method, initiated by the work of Kaplun [45] and
Lagerstrom [48], uses the notion of intermediate matching [11, 17, 42] with
the underlying hypothesis that there exists an overlap domain for the two
asymptotic expansions under consideration. The idea is attractive, but it will
be seen that the method can be complex to implement and that the method
is less efficient than the modified Van Dyke principle.

Let us examine how to apply the rule of intermediate matching to the
example given by (5.5). An “intermediate limit process” is first introduced
with xs being kept fixed and ¢ — 0, where x4 is the intermediate variable
defined by

e — 2
5_5(5)7
with
e<0(e)=<1.

It is reminded that e < § reads “e is asymptotically smaller than §” (see
Subsect. 4.1.2).
The following results are obtained

Es® =1—0dxs5+2c+0 (6%) +o(e) ,
EsES @ =1 — a5+ 26+ 0 (62) +0(e) ,
EsEY @ =1 625 +2+0 (") foranyneR.

where E; is the operator used to expand & in the domain where x5 is such
that 0 < C7 < x5 < Cy, C7 and Cy being two constants independent of ¢.
To order €, the following results are obtained:

o If\£<4(c), then Es®=E;E & but BsEY & £E,EP @,
o If5(c) < \/E, then E;&=FE,EP®=FE;E?®=1— 65+ 2.

In the first case above, the intermediate matching is not possible. Gen-
erally, it cannot be predicted whether the intermediate matching is possible
or not.

Figure 5.1 helps to understand the problems encountered. For the sake of
simplicity, examine the function

d=e",
which is the first term of the outer expansion of function in (5.5).

On this figure, each horizontal line is associated with a value of §. From
top to bottom, the first horizontal line corresponds to § = 1, i.e. to the outer
expansion. The second line corresponds to a value of § such that ¢ < § < 1,
i.e. to an intermediate expansion. The last line corresponds to § = ¢, i.e.
to the inner expansion. Then, along the vertical lines, the variation of § is
indicated from § = 1 (top) to § = e (bottom). The orders of magnitude of the
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2 3
1 § 6 0° ¢ Outer

T expansion: x

(6=1)

| \‘
! ~_ Intermediate

expansion: xs

\
Pe—0
4

~~
Inner
C expansion: X
1 € (6=¢)

Fig. 5.1. Diagram of orders of magnitude

terms of AEs are indicated along the horizontal lines. The order is limited to
€ on the figure. The oblique lines are related to the behaviour of E(()l) &, (here
Eél) @ is the function @ itself), when = = dxs ,

ef$:175x5+52x§753x§+~~ .

The small open circles indicate the presence of a term in the expansion.
The figure shows that the intermediate expansion contains four terms whose
order of magnitude is asymptotically larger than e: the value of ¢ is such that
8% = & = §*. The outer expansion contains only one term: here, in this simple
case, this term is the function e~ itself. The inner expansion contains two
terms to order ¢ since

e T =e N =1 —eX 4.

The double arrows indicate the sense in which the matching is possible
to this order. For example, the term —dxzs of the intermediate expansion
matches with the term —eX of the inner expansion, but the matching of the
term 6222 requires a term of order £2 of the inner expansion which is outside
the figure.

When § is closer to 1, i.e. when ¢ is closer to the outer approximation, the
number of terms which must be considered is larger if one wants to reach the
required order O(g). In order to have an intermediate matching in this zone,
a larger and larger number of terms is required in the inner expansion. This
remark underlines the practical difficulties in the application of the technique
of intermediate matching. It will be seen later that there are more complicated
examples where it is not even possible to match with this method.
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5.2 Boundary Layer

5.2.1 Expansion Operator to a Given Order

As a preliminary, the notion of expansion operator is completed in this Sub-
section. A thorough analysis is given by Eckhaus [33].

If @ (z,¢) is defined in the domain D such that 0 < 2 < By and 0 < & < g
where By and ¢( are positive constants independent of ¢, let us assume that
the regular AE given by (5.1) can be written as

n

& (z,e)=> 65 ()8 (x) +o (55")) . (5.6)

i=1

This expansion is called outer expansion.

If the function is singular at the origin, this expansion is, a priori, an
approximation of @ to the given order only in the domain Dy such that
Ay < x < By where Ay is a constant independent of e, as small as desired.
Nevertheless, it will be seen with Kaplun’s extension theorem (Subsect. 5.3.1)
that this approximation can be extended in the neighbourhood of x = 0 if
a lower accuracy is accepted.

Local variables are introduced to study the neighbourhood of the origin

x
Ty = )
oy (¢)
with
by (e) =o(1) ,
except for ¥ = 0 where we have
(50 (6) =1.

The notation xg = z is used.

Asymptotic domains D, are defined such that A, < z, < B, where A,
et B, are positive constants independent of ¢.

The sequence 6, is an asymptotic sequence for which

v, < Vg

implies
Oy = 60y -
Then, as v increases, the corresponding domain is closer and closer to the
origin.
We assume that, at each step, a regular AE of @ (x,¢) can be constructed

b (x,e) = i 60 (e)dW) (z,) + 0 (5,(,”)) :
i=1
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The number of terms of the AE depends on v and it is better to denote it by
n, rather than by n.
Using the notation

E(M & = Z(s( )W () (5.7)

we have

o - B @ =o(50) .

The operator E,(,”) is called expansion operator. Let us specify this notion to
order 4. If, for a given order J, we have

»—EMd=0(s) , (5.8)

it is said that E,(j") is an expansion operator to order §. As the number of
terms is not an important feature, the exponent (n) is suppressed. Indeed, it
is very convenient as n depends in principle on v.

Then, given an approximation E, @ of @ to order § in the domain D,, it
is written

®—E,d=0(5) .

Subsequently, when an approximation is written in this way, it is implicitly
understood that the order of the approximation is fixed.

5.2.2 Significant Approximations

At first, we define the meaning of the sentence: an approximation is contained
i another approximation.

Definition 5.2. Given two asymptotic approximations defined in different
domains D,, and D,, it is said that E, @ contains E, ¢ if

E,E, 6 =E,d. (5.9)

For a regular function, it can be said that the outer expansion contains
any intermediate expansion. Mathematically, using gauge functions, for any
0, < 1, we have

E,Ec®=E,9.

For a singular function, there exists a value of v, for example v = 1, such
that
E1Eg® #E1 @

The inner expansion Eq @, defined to order d, is not contained in the outer
expansion. Similarly, as for the outer expansion, it is said that the approxi-
mation given by the inner expansion is significant and corresponds to a dis-
tinguished limit. The corresponding variable x; which is often denoted by X
is called boundary layer variable.
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A necessary but not sufficient condition for a regular approximation E,, &
to be significant is that the approximation is not contained in any other
regular approximation to the same order. It will be seen that the presence of
logarithms can invalidate the fact that this statement is sufficient.

The links between the various expansions, Eq®, E;® and E, & for
0 < v <1 are the rules or heuristic principles which define the asymptotic
matching. The matching has an utmost importance when the function @ is
a solution of an integro-differential equation with initial and boundary con-
ditions. The matching enables us to find the conditions required to solve the
reduced inner and outer approximations. In addition, the question to find
a UVA and its order will become meaningful later.

5.3 Intermediate Matching

5.3.1 Kaplun’s Extension Theorem

Consider a singular function ¢ and an outer approximation Eg @ to order 1 in
a domain Ay < z < By, (By = 1). Kaplun’s extension theorem [45, 46] states
that, in a certain sense, the validity of the approximation can be extended.

Theorem 5.1. More precisely, we have

lim [& — Eo&] = 0

e—0
in the interval § () < = < 1, where 6 (¢) is an order function such that
d(e) < 1.

It must be noted that the accuracy of the approximation is not specified
and becomes necessarily lower when x is closer to the origin.
The extension theorem is generalized as:

Theorem 5.2. Given an approzimation E, @ of &, defined in a domain D,,,
the domain of uniform convergence of E, @ can be extended.

More precisely, there exists an order function 6, # 6, and therefore a do-
main D, such that E, & contains E,

E,E,6=E,d.

5.3.2 Study of Examples

An extreme care must be taken when applying the extension theorem. To
demonstrate the difficulty, we consider two examples.

Example 1. Consider the function

P (z,e)=1+x4e%/°, (5.10)
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As it is standard to choose the inner scales by setting
o, (e) =¢",
we obtain to order 1

Eo@=14+2 for v=0,
E,o=1 for O<v<l1,
Eid=1+e ™ for v=1.

What does the extension theorem tell us in the interval 0 < p < 1?7
1. If v = 0, there exists p > 0 such that

1=E,Eg®=E,¢=1.

Then, Eg @ contains E,, @, and the domain of validity of E,, @ extends the
domain of validity of Eq ®.
2. If v =1, there exists p < 1 such that

1=E,E,6=E,&=1.

Here, E; @ contains E,, @ and the domain of validity of E,, @ extends the
domain of validity of E; @. The same conclusion is reached when p > 1
since

2=E,E1¢=E,9=2.

Finally, the extension theorem is applied without any difficulty, which is
a point in favour of the use of intermediate matching.

Example 2. This example illustrates the limits of application of the ex-
tension theorem and shows the difficulties encountered in the presence of
logarithms. Consider the function

1 e—x/s

(5.11)

Inx Ine

1
To order ——, we obtain
Ine

1
Eq®=— for v=0,

Inx
1
E, &= for O0<v<l,
vine
1 —%1
E1€15:+—€ for v=1.

Ine
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The theorem states:

1. If v = 0, there exists ¢ > 0 such that

1 1
—E,Eo®=E, &=

plne plne
It is concluded that Eo @ contains E, @, and the domain of validity of
E, @ extends the domain of validity of Eqg ®.

2. If v =1, there exists p < 1 such that
E,E1¢=E,?,
but

1 1
E.Ed=— d E,&6=—.
wt Ine an " plne
With the scales ¥, E; @ does not contain E, .

In this latter case, there is no possibility to satisfy the extension theorem
and, consequently, to perform an intermediate matching.

In fact, it is not a counter-example because the set of scales ¢ is not
dense enough to produce all the possibilities. In other words, the extension
of the domain corresponding to v = 1 is too small to be measured with the
scale e. With §,, = —eIne for example, the extension theorem is satisfied. It

1
is noted that —elne < &” for v < 1 and, to order e we have
ne

1 —
Iné, " Ine’

We obtain 1
E,2=E,E;0=—.
. . Ine
With the scale §, = —eIne, E; @ contains E, ¢, and the domain of validity
of E,, & extends the domain of validity of E; ¢ (see Problem 5-2).
However, in this example where logarithms are present, it is seen how
much the method of intermediate matching can be difficult to apply.
Although the extension theorem is practically useless in this situation, it
is observed that, to the considered order
E,Ey®=E,E, ¢.

The discussion of this remark is given later (Subsect. 5.4.2).

5.3.3 Rule of Intermediate Matching
Overlap Hypothesis

At first, the hypothesis of an overlap domain seems natural and is formulated
below. The regular outer expansion of @ in the domain 0 < Ag < z < 1 is
given by EJ™ &, i.e.

o -Ef) @ =0 (50" (e)) .
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This domain can be extended to the domain x € (§,1) with § = o(1) so that
& —EM & =0(6*) with 6™ =0(), (5.12)

which expresses that the extension of the domain of validity is associated
with a loss of accuracy of the approximation.

The inner expansion Egm) @, valid in the domain 0 < z; < B; where
x1 = x/61(¢) is the inner variable, is such that

o-E™d=0 (5@ (5)) .
Its domain of validity can be extended to the domain z € (0,6) so that

& —E™ & =o(5*) with &™) =0(5*). (5.13)

Note 5.1. In expressions given by (5.12) and (5.13), §* is the same quantity. In
fact, the choice of §* has been made intentionally to be so and it is possible that
the accuracy of one or the other extension is better.

Definition 5.3. There is overlap if
6=0(0).

This definition of overlap can be expressed with the help of expansion
operators.

The extensions of the domains of validity of Eén) and E(lm) being deter-
mined as said above, the overlap of these domains expresses that, for any d,
such that

§=6,=3,

we have, to order 6*
E, ¢ =E,E"¢=E,E"&. (5.14)

In this equation, E,, is the intermediate expansion operator to order §* defined
with the intermediate variable x, = x/6,.

Eckhaus’ Rule

In this case, the heuristic rule proposed by Eckhaus is:

If we assume that the extended domains of validity of E(()n) @ and of Egm) b
overlap and that these continuous, therefore bounded, functions have an in-
termediate matching, then, for any k, there exist §,, n and m such that

EMe=ERNEM o =EPE™ o (5.15)

Practically, it is not always easy to implement such a rule. In effect, the
situation is logically the inverse of what was expected. Generally, n and m
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are given and it is required to find k in order to be able to write the equality
in a certain domain D, .

Function given by (5.11) shows the limitations of the application of the
intermediate matching. For £k = 1 and any n, with §, = &¥, the following
equality holds

EVEM e =ED @ = for 0 <v <1,

vine

but there is no value of m leading to the equality E( )E(m) P = Ef,l) ®. In
effect, it can be shown that for §, = ¥

B B ¢

m—1
+Z (1-v) ]
p=1

In this particular case, there is no overlapping domain with the considered
scales V. It is necessary to take for example the scale §, = —elne in order
to achieve the overlap of the extensions of Eén) @ and Egm) @ and to satisfy
Eckhaus’ rule.

5.4 Asymptotic Matching Principle

In this section, two asymptotic matching principles are given. The first one
is due to Van Dyke [107] and the second one is a modification proposed by
Mauss [64].

5.4.1 Van Dyke’s Principle

VDP [107] is based on the interpretation of the ideas developed by Kaplun.
When the principle works, its application is very simple. Its statement is:
Given n terms of the outer expansion and m terms of the inner expansion,
we have

E™EM e =EME™ ¢ . (5.16)

Moreover, assuming that one of the goals of singular asymptotic analysis
is to construct an asymptotic expansion of the solution to a given order,
a composite approximation has the form [108]

Bopp =B &+ E™ & —E[VE™ ¢ . (5.17)

Obviously, this form is valid when there is only one boundary layer in the
domain where the function is studied, but the result can be generalized to
more than two significant domains.
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5.4.2 Modified Van Dyke’s Principle

With (5.17), the accuracy of the UVA is the accuracy of the least accurate
term. It would be better if each term has the same accuracy. Then, it is
desirable to use expansions defined to the same order, whence the modified
principle:

Let Ey @ and E; @ be the outer and inner expansions of @, to a given order 6.
These expansions are defined with an asymptotic sequence of gauge functions.
The modified matching principle is

Eo ElfﬁE El Eo@ . (518)

In addition, in the case of a single boundary layer, a UVA ®Pupp in D is
obtained, to the same order, as the composite expansion

Popp =EqP+E, & —-EjE; D (5.19)

This principle, proposed by Mauss [64], is called the “modified Van Dyke
principle”, MVDP. The reason for which this principle has not been stated
by Van Dyke is probably that, in applications, the outer and inner expansions
are generally organized according to a hierarchy. For example, the knowledge
of the first term of Ey @ is used to find the order of magnitude of the first
term of E; @ which is not necessarily of the same order.

It must be stressed that, with gauge functions, (5.18) can be written as
an equality. In order to avoid any ambiguity, we can write

E1EE, & =E, By (5.20)

to specify the use of the variable X.
We can also write

EoE1® = E B, Eg & (5.21)

to specify the use of the variable x. However, in the following examples, or
later in SCEM, the distinction between the inner and outer variables has no
reason to be a source of problem.

5.5 Examples and Counter-Examples

The various principles and rules discussed above are now applied to different
examples.

5.5.1 Example 1
First, consider example given by (5.5), to order . We have

EyP=e¢"4ece ¥ (2—2a),
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E,&=1+2—¢c"2,+0(e")+o0(e),
E,d=(1-e*)+e[2-X)-2+X)e ],

where E* is the asymptotic expansion not written to the given order because
the number of terms depends on the value of v. We have

1+e(2—X)=E By =EE,&d=1—a+2¢.

Note 5.2. The presence of a term like ez is impossible. Indeed, with the variable
X, this term would be £2X and, with the use of gauge functions, this term will not
appear to order € considered here.

It is easily seen that, for any 0 < v < 1, we have
E, Papp =E, @,
with
Dopp =€ " —e X te [(2—z)e ™™ —(2 JrX)e_X] .

5.5.2 Example 2

Even if in the preceding example there is a possibility of an intermediate
matching, let us examine more precisely the example given by (5.11)

1 efz/s

Inx Ine

1
To the order O ((—2> , we obtain the following expansions
ne

1
Eg®@=— for v=0,
Inz
1 Inz,
E, &= —— T for 0<v<l,
vine  12(ln¢)
14+e ™ 1
E,® = te — nx12 for v=1.
Ine (Ine)

Here, the outer expansion contains the intermediate expansion

1 Inz,

vine B V2 (1[15)2 '

E,¢=E,Ey® =

By contrast, the inner expansion does not contain the intermediate ex-

pansion because
2—v Inx,

Ine  (Ine)?

ELE1 @ =

)

and then E, & # E, E; ®.
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With the chosen scales €”, there is no overlap and then no possibility of
intermediate matching. Also, Van Dyke’s principle fails in certain cases. For
example, we have

1 |
E§2) Eél) @ _ nx12
Ine  (Ine)

)

but

2
1 2
Eg>Eg>¢:_m€,

and yet, the MVDP applies without any difficulty

11 2 1
— . L B By =Fg By b= — — ——
Ine (lng) Ine (lng)

Then, using the UVA, it can be shown that for any v

E, ®.pp = E, @ .

This shows that, to order O (1 / (In 5)2) considered here, the same asymp-

totic expansions are obtained by taking @ or @, for any value of v.

This example shows that Van Dyke’s principle does not work for any value
of the number of terms considered (see Problem 5-3). By contrast, the MVDP
indicates exactly the terms which must taken into account in order to ensure
the matching and also the possibility of constructing a UVA.

5.5.3 Example 3

Consider the function
1

) = 5.22
(2.€) Inz —lne+1 ( )

To order O (1 / (In 6)2), we obtain the following asymptotic expansions

1 141
Egd=-— 2T for y=0,
Ine  (In¢)
1 1+1nz,
E, & = R 0<w<1,
(llfl)lné‘ (y—l) (lng)
1
Ei® for v=1.

- Inz; +1
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It can be shown that

1+v 14+Inz,

Ine (Ine)?
1 14+ Inz,

(v—1)Ine (v—1)°(lne)*

E,Eg® = —

7

E,E1&=

By contrast with the preceding example, the inner expansion contains the
intermediate expansion,

ELE,2=E,9.

On the other hand, the outer expansion does not contain the intermediate
expansion,

E,Ec0 £E,d.

Thus, there is no intermediate matching since there is no overlap domain to
this order with the chosen scales €”. In fact, the extension of the domain of
validity of Eg @ is too small to be measured with the scale €. The MVDP,
however, applies again without any difficulty

1 1+1Inx

EiEgyo=EEi1 &= —— —
P o=t Ine  (lng)?

and, with the UVA | it can be shown that, for any v,

E, @opp =E, @,
since Py, = P.
5.5.4 Example 4
We combine the functions
1 e %/e 1
P = — d o = -
1(@e) lnncJr e 2 (2,€) Inz —Ine+1
to obtain
D =P + Dy . (5.23)

There is no overlap with the scales €” to order O (1/ (In 5)2) since, by using
the results of Subsects. 5.5.2 and 5.5.3, we have

E,E\ ¢ #£E, &,
E,Eq® £E, .

The extensions of the domains of validity of Eq @ and of E; @ are too small,
each on their side, to be measured with the scales € . These extensions are
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even so small that, for any scale, an overlap does not exist and yet, the MVDP
works
E1Egd=E¢E;®.

Again, it can be shown that for any v,
E, ®upp =E, @

In the example of Subsect. 5.5.2, the information on the intermediate ex-
pansion is entirely contained in the outer expansion whereas in the example of
Subsect. 5.5.3, it is entirely contained in the inner expansion. In the example
given by (5.23), the information is contained partly in the outer expansion
and partly in the inner expansion.

The intermediate matching requires an overlap domain, i.e. that all the
information on the intermediate expansion is contained in the outer expansion
as well as in the inner expansion.

5.6 Discussion of the Matching Principle

It appears that the MVDP is able to solve all the known counter-examples
to the VDP. However, let us consider the following example

d=1+e "/°4¢ lng , (5.24)

where @ is defined in the interval ¢ < z < 1. To order O(e), we have

Eg®d=1—-clne+elnz, (5.25a)
Eid=1+e X +telnX with X = g . (5.25b)

Then, to order O(—¢Ine), there is no matching

EoEi12=1,
EiEg®@=1—-¢lne,

but, to this order, it is not possible to construct a UVA. More precisely, the
UVA which can be constructed to order O(—elne¢) is the same as the UVA to
order O(1). Therefore, we are led to apply the MVDP, to a certain order, in
association with the construction of a UVA to the same order. We will see in
Subsect. 5.7.2 that the MVDP is a by-product of the regular form of SCEM
whose objective is to construct a UVA.

Moreover, the MVDP applies whereas the rule of intermediate matching
fails when the outer and inner expansions are defined to a given order, which
is always the case in practice. In this respect, it is useful to mention the idea
of Van Dyke “Fortunately, since the two expansions have a common region of
validity, it is easy to construct from them a single uniformly valid expansion”.
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In view of the example of Subsect. 5.5.4 where, to the considered order,
there is no common domain of validity and where a UVA can be constructed,
it appears that the search for a UVA should be the starting point of the
asymptotic analysis. We will go back to this question later (Sect. 5.7) but first
we shall discuss the applications in physics in which the small parameter e
is not necessary as small as required formally by the preceding mathematics
and the application of the idea of overlap becomes unrealistic even in simple
cases. Let us consider for example Friedrichs’ model of Subsect. 2.1.3. To
order 1, we have

Eoy=yo(z) =ax+1—a, (5.26a)
Eiy=Y(X)=(1—-a)(1—e). (5.26b)

The plot of yo(z) and Yp(X) (Fig. 5.2) shows that the intuitive idea of
overlap does not apply in reality. Overlap is a mathematical concept valid
only as € — 0 and subject to limits as discussed before.

Yo (X)

S U U U U Y [ .

Fig. 5.2. Approximations yo(z) and Yo(X) for Friedrichs’ problem

Before proceeding further, a few instructive results obtained by Eck-
haus [34] are reviewed in a simplified and slightly modified presentation.

5.6.1 Corrective Boundary Layer

Consider the outer expansion Ey®. Again, when the number of terms is not
specified, this means that the expansion is constructed, with gauge functions,
to a prescribed order, for example § (). A restrictive hypothesis is that Eq ¢
is a continuous, and therefore bounded function in the whole domain D. We
define the function @ in D

&=—FEyD. (5.27)
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Taking into account that Eqg Eg @ = Eg @, we have
Ey®=0.

We assume that, for any integer k, it is possible to find an order of mag-
nitude d (¢) such that

EME, ¢=0.

Then, we can state that the inner expansion E; @ contains the outer ex-
pansion. For the sake of simplicity, the study is limited to the case where

E,E1¢=0.

It is clear that E15 can be identified as a boundary layer, the adjective
“corrective” being added in a natural manner from the definition of &. This
property is well verified on the example of Subsect. 5.5.4 for which there is
no overlap for @.

Then, it can be shown that

& =FEyP+E,&—E,E, &+0(0) , (5.28)

with
EoE1 o =E{EyD.

From this result, it was deduced by Lagerstrom [48] that there is an
overlap domain for @ (Sect. 5.7). An interpretation is that there exists §,
such that B _ _

ELE1@=E,Eg?=E,92=0.

In fact, Lagerstrom used an example given by Fraenkel for which there is
no overlap for @ but the matching principle applies. Again, this idea, some-
times disputable, that the rule of intermediate matching must prevail over the
matching principle is underlying. Moreover, if Eg @ is not a bounded function
in D, adding a few hypotheses specified below, we can obtain (5.28).

The corrective boundary layer is a key to understand the advantage of the
MVDP and of the UVA. Consider again Friedrichs’ model (Subsect. 2.1.3).
If we set

J=y—yol(z), (5.29)

to the specified order, we have
Eoy =0, (5.30a)
E1 :lj = El (y — Eo y) 5 (530b)

yielding
Eij=—-(1-a)e X . (5.31)
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Fig. 5.3. Corrective boundary layer for Friedrichs’ problem

As Ey g is zero, Eq ¢ is in fact a UVA of g. It is why now the notion of
overlap takes its full meaning (Fig. 5.3). In addition, from the definition of
7, we obtain

EoE,§j=E1Ej=0.

As for order 1, we have
g=Ei17+o(1),

and we obtain the result
y:Eoy+E1y7E1E0y+O(1). (532)

Note 5.3. The idea of a defect boundary layer method is exactly along the same
lines as the corrective boundary layer. A defect boundary layer formulation has
been proposed by Le Balleur [55] to take advantage of the hypothesis that “the
calculation domains of inviscid and viscous flows overlap and occupy the whole
space”. East [32] worked on a similar idea and proposed the use of integral equations
based on the difference between the viscous flow and an equivalent inviscid flow to
calculate the viscous-inviscid interaction around an airfoil. A defect boundary layer
method has also been developed and implemented for hypersonic flows where the
characteristics of the inviscid flow vary in a significant manner within the thickness
of the boundary layer [5, 7, §].

5.6.2 The MVDP from the Overlap Hypothesis

The preceding result can be obtained from the hypothesis of overlap. The
theorem due to Eckhaus [33] is formulated here in a form adapted to the
MVDP. A few conditions are required but they are not very restrictive for
applications. The existence of regular expansions Eg @, E; @ and E, @ to order
¢ is assumed and, in addition we have
o=

)
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where m is an integer and ~ is a positive number as small as desired. In
this way, the possibility to cut an AE between logarithms is excluded. For
example, terms of order e Ilne and € must be taken together and should not
be separated to avoid any problem as discussed by Fraenkel [35] and by Van
Dyke [108]. In fact, as discussed before, the MVDP, being associated with the
existence of UVAs as given by (5.19), resolves all the known counter-examples
to the VDP. Indeed, the question of the cut between logarithms no longer
arises. Another important condition is associated with the behaviour of the
outer expansion as x — 0 and with the one of the inner expansion as X — oo.
Condition of behaviour C. We set

@0 = Eo b= Zé, (E) (Y2 (.’)3) 5 (533&)
i=1

by =FE1 &= 6 (e)hi (X), (5.33b)
i=1

where, by definition, Eq and Eq are operators to order 0,,. The local variable is

- with v <1.

v (e)

Condition C assumes that as x — 0, the behaviour of each function
i (x) is

o1 (@) =Y iy iy (@) + 0 [Aim, ()] (5.3

where a;; is a series of constants and A;; is a sequence of gauge functions
whose properties are specified below.

We also assume that the functions ¥;(X) have a behaviour of the same
type as X — oo.

We assume that the gauge functions A;;(¢) and v (¢) are elementary func-
tions such as €” or (In1/e)? or products of these functions; p, ¢ are real
numbers. To any order ¢* such as 6* < 1, these functions have the prop-
erty (Appendix V)

EgE] Aij(x) = B Eg Aij () ,

where Ej and E] are operators to order ¢*.
It is shown in Appendix V that

EoE1 &y = B Eo &y = E; & , (5.35)

where Eqg and E; are operators to order d,,.
A similar analysis of the behaviour of &1 as X — oo yields

E1Eg®; = EgE, &) = B & . (5.36)
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Theorem 5.3. Eckhaus’ theorem adapted to the MVDP, i.e. by working with
expansion operators to a given order, states that, if the preceding conditions
are satisfied and if there exists an overlap domain such that, to order ¢ with
6 = Om, we have

E E,¢=E E, ¢=E,2,

then
Eo E1¢ = E1 Eo@ s (537)

and
P=E;P+E,$—EE;P+0() . (5.38)

Finally, the only important theorem on the asymptotic matching tells us
that if there is an overlap domain to a given order, an approximation to the
same order is obtained with the MVDP. Nevertheless, the most popular idea
is that if the VDP applies, then there is an overlap. Van Dyke has already
been cited on this subject [107], Hinch can also be cited: [42] “Van Dyke’s
matching rule does not always work. Moreover, the rule does not show that
the inner and outer expansions are identical in an overlap region”.

5.7 Successive Complementary Expansion Method

5.7.1 Principle

SCEM is based upon the idea that the reasoning used in MMAE must be
inverted. At first, a structure of the UVA must be assumed and then the
method to construct the UVA is deduced [66].

The same point of view is adopted in other methods. In the WKB method,
a UVA is sought as [42]

n

Doy = &~ 1:21 8; (e)pi(x) with X = q(ga(:;)g) ,

with ¢ denoting a regular function. This method is well adapted to particular
problems as the turning point problem but its usefulness is restricted.

The multiple scale method is another well-known method (Subsect. 2.2.3).
The UVA has the form

n

B = _0i(e) @i (,X) .

i=1

This method, due to Mahony [62], has been extensively used in many prob-
lems. The limitations come from the fact that the order of the equations
increases.

SCEM does not require a matching rule or principle. Moreover, in sepa-
rating the variables x and X, the complexity of the multiple scale method
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is avoided. The method belongs to a class of so-called multi-variable expan-
sions [75].
In this method, we represent the function @ by the sum

(z,X,¢) 25 [@i(z,€) + (X, )] . (5.39)

and assume that the above expression is a UVA of & defined to order 8,
D=, +0(0,) . (5.40)

The UVA is said generalized. 1t is constructed so that it can be written in
the form
Do = Doy +0(0n) (5.41)

where @,, is a reqgular UVA such that 0, =0 (6m)

m

Por (2, X,8) = Y 6i (&) [pi () + ¢ (X)] - (5.42)

i=1

The sequence of order functions ¢; may or may not be the same as the
sequence ¢;. In addition, the functions ; are gauge functions.

The transformation of the generalized UVA given by (5.39) into the reg-
ular form given by (5.42) is well-suited to boundary layer problems and not
to problems involving fast oscillating functions.

We note that the functions on the right hand side of (5.39) or (5.42) are
not necessarily bounded separately. Only the sum within square brackets is
supposed to be bounded in the domain D.

SCEM has already been used in its regular form [26, 75, 112]. Under
the name of method of composite expansions, Nayfeh [72] discusses related
techniques developed earlier. The generalized form proposed here is very well
adapted to strong interaction problems leading logically to the models of
interactive boundary layer (Chap. 8).

With not too strong hypotheses, regular SCEM is equivalent to the MVDP
(Subsect. 5.7.2). As already seen, this point is fundamental. The MVDP given
by (5.18) takes a precise meaning when associated with a UVA such as the
one given by (5.19).

As the application of the MVDP is relatively straightforward, the gen-
eralized form given by (5.39) of SCEM is the most interesting. Obviously,
a definite advantage should be found in the application of SCEM. Whereas
the regular form given by (5.42) does not raise any questioning, the writing
of the generalized form given by (5.39) is ambiguous. Indeed, the functions
@i(xz,e) can formally be rewritten as functions of X and e. Similarly, the func-
tions 9;(X, ) can be rewritten as functions of z and e. If SCEM appears as
essential, guidelines are necessary to construct the successive approximations.
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In which cases is SCEM imperative and how to apply it raise two basic
questions. In fact, the knowledge of the physics of the problem allows us to
answer these questions efficiently. Nevertheless, a few general guidelines can
be given. SCEM is recommended in two cases:

1. When the local approximation of the solution presents a complex struc-
ture in the neighbourhood of the domain of non-uniformity of the regular
approximation. It is the case for a function of the type

52

x + g2

—x/e

&(x,e) =1+

e

in the neighbourhood of the origin. The example is intentionally made
complicated and the analysis with MMAE indicates the presence of two
boundary layer thicknesses. This question is considered in the solution of
Problem 5-1 while discussing the solution of a differential equation.

2. When terms occur in AEs whose order of magnitude is not suggested or
dictated by the boundary conditions or by the equations as is the case in
the example of Subsect. 5.8.3.

How can one be guided to implement SCEM? There is a simple observa-
tion when one knows an approximation which is supposed to be uniformly
valid @,, given by (5.39), which comes from the solution of integro-differential
equations. With the corresponding operator formally denoted by L., we have

L. ®, = R, (x,¢) .

For the exact solution @, we have
L.®2=0.

Since we assumed that the boundary conditions are exactly satisfied for
®,, the right hand side R,, should be small. The fact that @, is a UVA of
@ when R, is small in a certain sense is ascertained by estimate theorems
which can be obtained, in general, only for linear problems. This is not our
purpose here.

Starting with a known UVA,

Do, = 251(5) [@l(mvg) + J)Z(X7 6)] ’

the next step is to improve the approximation, at least in the outer region
Dy, by adding a term

@:(n-i-l) = Pan + 5n+1(€)<,5n+1(x, e) .
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In Dy, @:(n +1) is a better approximation than @,, and, as a result,

H@ - gzjZ(n+1)HD0 =0 (0nt1) -

The boundary conditions at x = 1 being exactly satisfied, the error at z =0
is Og (5n+1). In certain cases, it can be shown that the additional term is not
bounded in the inner region.

Consequently, a UVA is sought as

D31y = Pan + 0nt1(€) [Prs1(w, ) + Ynia (X €)]

so that, in the whole domain D we have

Hqﬁ - ¢Z(n+1)HD =0 (0nt1) -

This procedure can be repeated and must be initialized by an approximation
in the outer region Dy -
= 51(e)pr () -

The minimization of the remainder R,,, “in a certain sense” is one of the
keys of SCEM. This will be more precisely discussed when the operators are
known. Here, this minimization has only a heuristic value since the estimate
theorems are excluded from the presentation.

5.7.2 Equivalence of MVDP and of Regular SCEM

Starting from (5.42), we write

Bo (¢,6) = > 6i(e) i (x)
i=1
By (X,e) = i (e) i (X) .
i=1
We have
gzjar = gzj0 + gzj1 5
and, by definition, to order d,,,
Py = Eo Do ,
D1 =E1 Py,

so that we obtain

Eo @ar = P + Eo D1,
By &y = By Oy + By .
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This leads to
Dor = Eo Par + E1 Par — (B0 P1 + E1 Do)

and to
Eo®1 + E1 &g = Eg E1 @, = E1 Eg Dar (543)

and also to the UVA
Doy =Eg Py + E1 Doy —EgE 1 @y = EgPur + E1 Doy —E1 Eq @y . (5.44)

This shows that the MVDP is contained in SCEM. In addition, the structure
of the asymptotic matching is explicitly given by (5.43).

Proof. Applying Eg to E; &,, and E; to Eg @,,, we obtain
EoE1 ®ar = EqP1 + EqE1 Pg
E1Eo®a =E1 P9 +E1EqPy
which yields

Eo®1 + E1 @9 = EgEq $ar + E1 Eg Par — (E0E1 $o+E1 EgP4)

or
Eo®1 +E1 99 =EqE @or + E1 Eg @9 — EgE; &g ,

or

Eo®1 +E1 P9 =E1 EgPar + EgE1 @1 —E1 Eg Py .
If condition C of Subsect. 5.6.2 is valid, (5.35) and (5.36) imply

Eo@l :EOEl@l EE1E0@17
El@O :ElEO@O EEoEl@(),

yielding the result already mentioned (see (5.43) and (5.44)). O

These conclusions enable us to adapt certain results of Lagerstrom [48].
Even if the overlap of Eq ¢ and E; @ does not exist, there is an overlap on the
function @ describing the corrective boundary layer defined in Subsect. 5.6.1.

Proof. Taking into account (5.40) and (5.41), we have demonstrated that to
order 0,,

EO E1 b = E1 EO ] 3 (545&)
Doy =EgP+E19-E 1 Eg?. (545b)

Therefore, in the domain D, we have

D — Dy =0(0) -
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We define function @ by
P=0-EgP.
It can be shown that, in D
—FE d=P—EgP—E D+ E1Egd=0(5p,) .

It is concluded that E; @ is an approximation of {?lto order J,, in the whole
domain D. On the other hand, with Eq ® = Eq Eg @, we obtain

Eo® =FEod—EgEg® =0,

and _ _
P —-Egd=D—-EyP.

Now, Eq @ is an approximation of @ to order d,, in a certain domain included
in D. In the same manner, it is deduced that Eg @ is an approximation of o
to order &,,. _ _

Finally, Eg ¢ and E; ¢ are two approximations of ¢ which have a common
domain of validity. Therefore, there is an overlap for @ whereas for Eg @ and
E; @ nothing tells us that there is an overlap. O

Again, the importance of a UVA is stressed. The notion of corrective
boundary layer, which is nothing else than a UVA, makes the link between
the intuitive notion of overlap and the asymptotic matching.

5.8 Applications of SCEM

In this section, we examine the application of SCEM to two analytical func-
tions (5.5) and (5.23) already studied; a differential equation is also considered
in Subsect. 5.8.3.

5.8.1 Example 1

We consider again the function given by (5.5),

e (p)n(Tr) . om

for which a UVA is sought in the domain = > 0.
The significant approximations to order € are given by
EgP=e"+ce ¥ (2—2),
E;d=(1-e")+c[2-X)-2+X)e ¥],
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with the boundary layer variable
x=2.
€

The procedure leading to a UVA according to SCEM is described below.
Step 1. The first regular outer approximation is

x

#1 (l’) =e 7,
but, since
¥1 (O) =1,

the boundary condition at z = 0 is not satisfied. We seek a function 1, (X)
such that

Par (2, X) = @1 (z) + 91 (X)
which is supposed to be a UVA to order 1 of @ (z,¢).
To the same order, applying the expansion operator E;, with the equality

P =E(P—1) ,

it can be shown that
Y (X) = —e ¥

Since 1 (0) = —1, the condition at x = 0 is satisfied.

Step 2. Since 91 (X) is an EST for large X and, since the condition at © = 0
is exactly satisfied, a second approximation is sought by simple iteration. To
order ¢, and taking into account

Ey® = ¢1 () + 92 (2)

we have
pa(x)=(2—2x)e " .
From this expression, we observe that ¢s (0) = 2. Since the condition at
x = 0 is not satisfied, we seek a function 5 (X) such that
(

Doz (2, X,e) = Py (2, X) + 2 (2 () + 92 (X))

which is supposed to be a UVA to order € of @ (z,¢).
Using the inner expansion operator, we obtain

Ewg = E1 (@ — @al — E(pg) .
It can again be shown that
Yo (X)=—(2+X)e X .

Since 19 (0) = —2, the boundary condition at « = 0 is satisfied. At this stage,
a UVA to order € has been constructed

Do (2, X,e) =e " —e X +e[(2—z)e " — (24 X)e ] .
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Then, to order e, we have
Doy (2,X,6) =EqP+E, 2 —[1+e(2—-X)] .
In agreement with results of Sect. 5.7, the MVDP
EE; 2 =E,E,?=1+¢(2—-X)

is a consequence of the assumed structure of the UVA and not the converse.
In addition, taking into account (5.43), the variable X is appropriate in
the application of MVDP because

D =—e X <2+ X)e ¥,
and therefore Eqg @1 = 0.

Note 5.4. SCEM has been used here in its regular form.

5.8.2 Example 2
Consider the function given by (5.23)

1 e~r/e 1

D (r,6) = — :
(@.€) lnx+ Ine +lnxfln6+1

(5.47)

A UVA is sought in the domain x > . We observe that

14e !
lne

b(e,e)=14

In addition, to order O (—1/1In¢), we have

1 1
Eo@—m—a—@l(l',E) .

The boundary condition at x = ¢ is not satisfied for ¢; (¢,€) = 0. Then,
a correction ¥ (X, ¢) is sought to obtain a UVA to the same order

Do1 (2, X,e) = 1 (2,8) + 1 (X,e)  with ng.

By using the expansion operator E;, we note that

1 =E1 (P —¢1) .

It is easy to check that
El Y1 = 0 )
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and to show
1 14+e X

InX +1 + Ine

1ﬁ1 =EFE, 9=
In particular, we have

1+e !
lne

1/)1 (175) =1+

Then, it is noted that the UVA yields the exact solution

1 1 1 1+e X
+ .

Bo (0, X 8) = — — —
L@ 2 Inx ln5+lnX—|—1 Ine

As for the first example, we note that
Do (2,X,6) =E, P+ E, D,

with
EqE1 P =E{Eg®=0,

showing again that the MVDP is a consequence of the assumed structure of
the UVA.

5.8.3 Example 3

This example is concerned with an ordinary differential equation introduced
by Eckhaus [33]. The analysis with regular expansions as given by Lager-
strom [48] is somewhat involved.

The problem consists of solving the equation

A2 do
Le®=(cta) g+ —1=0 (5.48a)

in the domain 0 < x < 1, subject to the boundary conditions
P0)=0, &(1)=2. (5.48Db)

The reduced equation, obtained by setting € = 0, is still of second order but
is singular at = 0 because the function multiplying the second derivative is
zero at this point.

An outer expansion ¢ is obtained from the equation

+ ——-—-1= (5.49)
the solution of which is

pr=1+xz+ A Inz,
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where the condition ¢;,—1) = 2 has been taken into account. The condition
at the origin cannot be satisfied and a UVA is sought as

D, =p1+1U1(X,e) with X = L
€

Substituting into the original equation and taking into account (5.49), we
have " )
1 1 d 1//1 dwl
Le®Pp=——<—+-|(1+X —_—
= x? + € (1+ )dX 2+ dX
It is clear that if one wants to have L. ®, = 0 and to satisfy exactly the
boundary conditions, then @, is the exact solution. Generally, this is not the

case. Here, the exact solution is effectively obtained by taking
Y | diy

=1
dx2 dX ’

A1 =0 and (14 X)
with the boundary conditions for 1

Yix=0)=—1, Yix=1/6)=0.

The solution for v is

1
=B In(l+X B Bl=———— =-1
wl 111( + )+ 2 1 ln(l—i—l/s)’ 2 )
whence the exact solution
In(1+42/¢)
® =9, = —_— 5.50
S R (5.50)

The generalized expansions offer a decisive advantage in the determination
of the solution 91 (X, ¢).

5.9 Conclusion

The method of matched asymptotic expansions, MMAE, is extensively used
to analyze singular perturbation problems, particularly when a boundary
layer is present. Aerodynamics constitute a very wide field of application of
MMAE (38, 41, 108, 116].

The principle is first to seek significant approximations in domains asso-
ciated with the scales of the problem and then to find the link between the
approximations. The answer is provided by the notion of matching. The most
popular techniques are based either on the intermediate variables with the
idea of overlap or on Van Dyke’s matching principle, VDP.

The overlap which postulates the intermediate matching is a hypothesis
which remains illusive for values of parameters which are small but fixed. By
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contrast, the notion of corrective boundary layer provides a sense to both the
overlap and the modified Van Dyke principle, MVDP, thanks to the idea of
uniformly valid approximation, UVA. Again, the MVDP, to a given order,
must be used in conjunction with the hypothesis of the existence of a UVA
to the same order. When this is the case, MVDP is more convenient and
has a wider range of application than the rule of intermediate matching and
allows the solution of the known counter-examples in the application of VDP.

The fact that the existence of a UVA is in the heart of the MVDP leads
naturally to the successive complementary expansion method, SCEM.

Compared to MMAE, the point of view of SCEM is reversed. In this
latter method, we first assume the form of UVA which is sought and the
method of construction results. Consequently, it is not necessary to call for
a matching principle. In certain applications, the UVA is more important
than the asymptotic expansion, AE, in the boundary layer. In addition, the
use of generalized expansions enables us to solve problems which are difficult
or even impossible with regular asymptotic expansions.

Problems

5-1. Consider the equation

d
LEyE(a:—&—E)ﬁ—&—(l—i—e)y—i—a:y:O,

with the boundary condition

y(0,e) =1.
1. Find a UVA to order . The MVDP will be used.
2. Use SCEM to keep the term x 4 ¢ which is at the origin of the singularity.
5-2. To order O {1/ [ln(l/s)f}, a function @(z,e) has the following outer

and inner expansions

1 l1+Inz
b = — 5
W(1/2)  [in(1/2)
b 1
S InX 417
with
x=2.
€

We want to check the rule of intermediate matching. We set

n=¢e%X = with O0<a<1.

51704
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According to this method, the outer expansion is written with the variable n
and the behaviour of the result is studied as ¢ — 0 assuming that 7 is kept
fixed. On the other hand, the inner expansion is written with the variable n
and the behaviour of the result is studied as ¢ — 0 assuming that 7, is kept
fixed. Draw the conclusion. Try to check the rule of intermediate matching
with
n:ajlnl :Xaelnl .
€ €
5-3. Consider the equation

d2_¢+l@+@@—0
dz?  zdx dez ~

with the boundary conditions
r=¢: &=0; z—00: P=1.

Hinch [42] proposes the solution in which the outer and inner expansions
are

B g1() 92(x)
=1+ In(1/2) [ln(l/s)ﬁ + 5
b - InX n InX
n(1/e) T e
with
We have

o0 e—t
gl(.’E) = Bl/ T dt = BlEl(.’E) s
92(z) = BoE(z) + B} [2E1(22) — e " By (2)] .
As x — 0, we have the following behaviours

Ey(z) 2 —Inzx—~vy+a; y=057722...,
2E,(2z) —e " Ey(x) 2 —lnz —y—Ind —zlnz+ (3— 7).

1. The matching between the outer and inner expansions is performed with
the method of intermediate expansion. We set

n=e"X=—— with 0<a<l.
£

According to this method, the outer expansion is written with the variable n
and the behaviour of the result is studied as ¢ — 0 assuming that 7 is kept
fixed. On the other hand, the inner expansion is written with the variable
7 and the behaviour of the result is studied as ¢ — 0 assuming that 7 is

kept fixed. From the comparison between the two expressions to order oI
ni
>4

determine the constants Ay, By, As, Bo.
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2. Examine the application of the VDP
E™E™e=E"E™ o,

where Eém) denotes the outer expansion in which m terms are retained and

E(ln) denotes the inner expansion in which n are retained. Express

EMVEY @ and EVEN @
EP EY @ and EVEP @ .

In each case, it will be concluded if the matching principle is satisfied or not
with the constants determined above.

5-4. A function y(x, ) is given by its outer and inner expansions

y=e"% l+e(l—z)+ 0(52) ,
y=Ag(1—e X)+e[(A — 4 X) — (A1 + AgX)e *] + O(¢?) ,
with

X =—.
€

Write the matching of these two expansions by using the expansion oper-
ators Eg and E;, firstly to order 1, secondly to order €. Give the value of the
constants Ag and Aj.

Give a composite approximation, uniformly valid to order e.

5-5. A spaceship is in the gravitational field of the Earth (mass Mr) and
of the Moon (mass M,). The following notations are used: r is the distance
between the spaceship and the Earth, d is the distance between the Earth
and the Moon, G is the universal gravity constant.

1. We set
T ML
r=-, = ——— |
d Mr + My,
where ¢ is the reduced mass of the Moon. Show that the convenient charac-

teristic time is

d3/2

V(Mp + MG’

which yields the mathematical model

d?z 1—¢ €

- = 4 -
de? x? (1—2)

2. With a good approximation, the model reduces to

1 /dz\? 1-—¢ €
(=) = ith <x<l1.
2<dt> T +1—;L’ with 0sz<
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The initial condition on function z (¢,¢) is given by
x(0,e) =0.

In particular, it is assumed that the energy of the spaceship is zero when =
is large.
An approximation is sought with MMAE.
Express the equation as
dt
de

An outer approximation is sought as

G(z) .

t= to(.’)ﬁ) + Etl(.’lﬁ) .

Determine to(z) and ¢1(z). Give the initial conditions.
3. Justify the choice of the boundary layer variable X = (1 — z)/e.
An inner expansion is sought as

t=eTo(X) +2T1(X) .

Give Ty and T3. Give the integration constants by using the matching prin-
ciple.

Deduce a UVA t,;,, of ¢ in the domain 0 <z < 1.

We have

/,/Hixdxz X(1+X)—1n[\/f+\/1+—x}+cst.

4. The regular form of SCEM is used. The first approximation is
tar = fo(x) .

In fact, t4; is a UVA to order 1. Give fy. Determine the remainder of the

equation
dtay
LE (tal) = d;

on the one hand when 0 < A; < x < Ay < 1 where A; et Ay are constants
independent of £ and, on the other hand, when 0 < B; < X < By where B
and By are two constants independent of € and X is the inner variable

- G(.’L‘) 5

le—x

€
The UVA to order € has the form

taz = fo(z) + e [f1(z) + Fr(X)] .

Give fi(x) and F7(X). Compare to the composite approximation obtained
from MMAE. At each step of the construction of the approximation, take care
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to examine the order of magnitude of terms present in the equations when
0<A<x<A3<lor0<B; <X<By<l.
Determine the remainder of the equation

dta2
i (2)
when 0 < A1 <z <Ay <1land when 0 < By < X < By < 1.

5. The generalized form of SCEM is applied. We seek an approximation in
the form

Le (ta2> =

tar = yo(, €)
which satisfies the initial condition and which is such that the remainder,
dtal

Le(tal) = do —G(l‘)7

is O(e) when 0 < A; <2 < Ay < 1 and when 0 < By < X < By < 1.
Determine the equation for yqg.
The approximation is complemented as

taz = yo(x,€) + ey1(x,€) ,

which satisfies the initial condition and which is such that the remainder

dta2
o ~C¢@

is O(e?) when 0 < A; < 2 < Ay < 1 and when 0 < B; < X < By < 1.
Determine the equation for y;.

6. Calculate the value of ¢ obtained at = 1 i) from the numerical solution
of the exact equation, ii) from regular SCEM (approximation ¢,2), and iii)
from generalized SCEM (approximation t,3).

5-6. This problem is treated in the book of Cole [17]. The deflection w* of
an elastic beam with a constant tension 7 that supports a load distribution
p*(x*) per unit length is given by equation

Le (ta2> =

4, % 2, %
EI% - T% —p*(z*) with 0<a* <L,
where F is Young’s modulus and I is the moment of inertia which is constant
in a plane cross section.

The singular perturbation problem occurs when the two effects due to
Young’s modulus are relatively small compared to the tension effects. Two
boundary layers form in the neighbourhood of the beam ends.

We consider the case where the slope and the deflection are zero at both

ends
dw*

=0 at 2z¥f=0 and z*=1L.
dx*
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,
>
m*
Fig. 5.4. Deflection of a beam
The equation is nondimensionalized with
r* p* T,
r=— == =
L T PL?
We obtain . )
d*w  d*w
S —@—p(x), 0<x<1,
with the conditions
dw dw
0)=0 1)=0, —(©0)=0, —(1)=0
The small parameter ¢ is introduced
EI
E=—.
TL?

Note that P is arbitrary. We can take P = 7/L so that w = w*/L.
The problem is studied with MMAE.

1. We seek an outer expansion in the form
w = wo(x) + vi(e)wi(x) + va(e)wa(x) + -+ - |

where v;(g) forms an asymptotic sequence. Write the equation for wq(z).
Show that the solution has the form

wy = By +A0xf/ p(A)(x — A) dA.
0

Study the form of wg as © — 0 and as x — 1. It will be shown that

wo(r) = By + Aoz —;0(0)2%2 —p’(O)g—?; + 0" asxz—0,
1 1
wo(x) = By + Ao —/0 p(N) (1 =N d\+ [Ao - /0 p(N) d)\] (x—1)

r—1)2 r—1)3
—p(l)(Tl) —p/(l)% +O[(@—1)"] asz—1.
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2. The inner expansion is studied in the neighbourhood of z = 0. The inner

variable is .

X:@.

The inner expansion has the form
w = ,U()(E)W()(X) + ,Ul(E)Wl(X) + -

Determine 4.
The matching with the outer expansion leads us to choose

Mo = el/?.
Determine the equation for W, and show that the solution has the form

W() = Co(X +€_X 71) .

3. Write the matching between the inner expansion in the neighbourhood of
x = 0 and the outer expansion by using the expansion operators Ey and E;
to order £'/? assuming that v, = £'/2. Deduce that the first term of the outer
expansion is

wo = Cox —/ p(A)(x — ) dX.
0
Write the equation for w;. Show that the solution is
wy = —Co+ A1z .

4. We study the inner expansion in the neighbourhood of x = 1. The inner
variable is

Determine §1 ().
The outer expansion has the form

wo = pig W™+ p Wi

Determine H(T . Write the equation for I/VO+ . Show that the solution has the
form

Wi =Cf(Xt+1-eX").

Write the matching with the outer expansion by using the operators Eg
and E] to order £/2.
The following notations are used

1
k= / p(A) dX where k is the total load,
0
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1
MO = / p(M)A dX where M(©) is the moment of the load about the point
0

1
MY = —/ p(\)(1 = A) d\ where M) is the moment of the load about

0
the point z = 1.

Calculate Cy, C’ar and A; as function of k, M(®) and MM,



6 Ordinary Differential Equations

The practical implementation of the successive complementary expansion
method, SCEM, is presented in this Chapter with applications to functions
implicitly defined as solutions of ordinary differential equations. In all the
cases, the solution depends on a small parameter leading to a singular per-
turbation problem. More precisely, the structure of the solution exhibits
a boundary layer. The boundary layer is always located in the neighbour-
hood of a singular point, but this point is not necessarily a part of the
boundary of the considered domain. Among the variety of examples found
in the literature [17, 42, 48, 72|, a selection has been made to enlighten
the various aspects of SCEM and its advantages. This is a first step toward
the treatment of physical problems governed by partial differential equa-
tions.

Compared to the method of matched asymptotic expansions, MMAE, an
essential difference is the objective. Indeed, with SCEM, the main point is to
form a uniformly valid approximation, UVA, from an assumed structure of
the UVA. No matching principle is necessary to obtain the result. By contrast,
the principle of MMAE is first to seek approximations in significant subsets of
the considered domain. A matching principle is absolutely necessary to make
the link between the so obtained approximations. A UVA is constructed at
the end.

6.1 Example 1

We consider the equation

d?® do
L5¢25w+a(x)a+b(x)@:(),a(x)>0, (6.1a)

where @ (z,¢) is defined in the domain D (0 < z < 1) and the functions a
and b are given. The boundary conditions are

B(0,e)=a, D(l,e)=4. (6.1b)
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6.1.1 Application of MMAE

The first approximation ¢; (x) is obtained by setting ¢ = 0 in (6.1a)

a(x)%—i—b(m)(plzo. (6.2)
The solution is
¢1(z) = Cexp (—/j% df) .

All the sufficient hypotheses on a and b are supposed to be satisfied if
required. In particular, we assume that the above integral exists.
This approximation cannot cope with the two boundary conditions (6.1b)

if 8 # Aa where )
o] [
rmem |- [ 25 4]

Now, with a () > 0, it was shown in Chap. 3 that there exists a boundary
layer in the neighbourhood of x = 0. It is then natural to impose the condition
at z = 1 to determine the value of the constant C so that the first outer
approximation of ¢ (x,¢) is the function

@1 (z) = Bexp <+ /; % dg) : (6.3)

In the neighbourhood of x = 0, a significant degeneracy of the equation is
obtained with the local variable X = z /¢ since the original equation becomes

d?¢

do
WJFCL(EX)—Jr&b(aX)@:O.

dX
If a (x) is a sufficiently regular function, a first regular inner approzimation
of @ satisfies the equation

d?41

dipy
X2 —=0.

dx

+a(0)
With 1 (0) = «, the solution is
Y1 (X) = (a—A) e OX 1 4.

The constant A can be calculated by applying the modified Van Dyke
matching principle, MVDP, to order 1

Ee®=p1, E1®=11,
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whence

A=FE¢E19 =EE¢® = g .

The solution becomes

wl(X>: (a_§>ea(0)x+§7

and, according to (5.19), the following UVA is obtained
1
b (&) B\
Do (2, X) = —=d — =) emaOX 6.4
w3 =peon(+ [ TG ac) + (a-F) o0

Since the boundary conditions are satisfied to order €™ for any positive
integer n, a better approximation can be obtained by simple iteration on the
equations. A regular outer expansion to order € is

Eg® = ¢1(z) +ep2 (z) ,
with
d
a (.’l?) Y2

d2(p1
A TP =g

The boundary condition at x = 1 being satisfied by 1, we take
@2(1)=0.
To the same order, a regular inner expansion is
E1® =91 (X) + ey (X)
with the equation

d?4r
dx?

da(x) .

+ a(0) 1

d d
d_f? = —Xa’<0)§ —b(0)r , d'(x) =

The boundary condition at X = 0 being satisfied by 1, we take
2(0)=0.

The solutions are easily calculated since the missing boundary conditions
are obtained from the application of the MVDP to order

EoE19 =E1Eq® .
Note 6.1. Tt is reminded that, in the multiple scale method, the essential argument

stated by Lighthill, implies that 1> should be no more singular than ;. Clearly,
this is not the case here in view of the right hand side of the equation for ;.
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6.1.2 Application of SCEM

The construction of a UVA starts as with MMAE. The first approximation
is obtained in the form
S =¢1(x,e)+---

where ¢ can be a function of z and of € since generalized expansions are
accepted with SCEM. Substituting this expansion into (6.1a) and neglecting
O(e) terms, (6.2) is recovered. With the same arguments as those already
presented in Subsect. 6.1.1, the application of the boundary condition at
2z = 1 again yields the solution given by (6.3), that is

P1(z,e) = () -

The principle of SCEM consists of complementing this approzimation to
get a first UVA in the form

Da1 (2, X 2) = 1 (x) + 91 (X, €) . (6.5)
Equation (6.1a) yields

. 1 { d%y dap R d2
L; $a1 g( wl"’—a(x)ﬂ)‘f'b(x)wl‘f'fﬁ:}zl.

dx? dX dx?

The approximation @, is close to the solution @ if the remainder R is
small in a certain sense. This remainder has two parts

y )
Rn:l(d V1 +a(x)%> +b(2)dr

e \ dX?2 dXx

a1

dz?

As 1 is a UVA in Dy — domain which is outside the boundary layer — 1[)1 is
negligible in Dy. In other words, 1[)1 is of order 1 only in the boundary layer
domain D; of extension €. This is why Rj; cannot be viewed in the same
way as R1s. Without commenting more, it is said that: the estimates giving

R12:€

an upper bound of ‘@ — Qsal‘ in D are of integral nature [63, 75]. However,

the conclusion is drawn that, if Ry is O(e) in D, it is sufficient that Ry
is O(1) in the same domain in order that the two parts have an equivalent
contribution to the result

‘@7@611 < Kie,

where K is a positive constant independent of €. The solution of Problem 6-1
gives details on this point. As also discussed in [17, 26], under certain condi-
tions, a UVA of the solution of the considered problem is the sum of an outer
approximation and of a boundary layer term.

The requirement that R;; should be “as small as possible” can be satisfied
in different ways. Two methods are examined below.
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Method a

Function 1/31 is sought as the solution of

A2y,
dx?

diy

=0.
dX

+a(0)

Forcing D1 to satisfy the boundary conditions ezactly, the following bound-
ary conditions on v; are obtained,

12}1 (0’5) :aig ’ 12}1 (§a5> =

. B J&; e—a(0X _ ,—a(0)/e
Y1 (X,e) = (O‘X 1 — e—a(0)/e

The solution is

In the construction of the UVA, it is important to note that the corrective
term is an EST for large values of X. Clearly, the second boundary condition
on 1/)1 can be replaced by 1/)1 — 0 as X — oo. In fact, the EST can be
eliminated by taking

Py (X) = (a - ﬁ) e OX  with  lim ¢, =0.
A X —o0

With this result, the UVA given by (6.5) is identical to the composite solution
(6.4) deduced from MMAE but the asymptotic matching principle is now
a result, in agreement with the conclusions of Sect. 5.7.

In order to improve the accuracy of the approximation, we keep ESTs if €
is not really small. In this way, in particular in the neighbourhood of z = 1,
the UVA éal remains close to the exact solution.

Since the boundary conditions are satisfied to order " for any positive
integer n, a better approximation is obtained by a simple iteration on the
equation. Another procedure is to examine the remainder of the equation

a(z)—a(0 )d¢1 d2<,01
€ dx +b(z) 1/11 te da?

At this stage, there is a significant difference between MMAE and SCEM

because 1[)1 is a boundary layer term in the outer domain. Then, in the re-

mainder, the first and the second terms are ESTs in the outer domain and

are of order 1 in the inner domain whereas the third term is uniformly of

order ¢ in the whole domain. Using the estimate theorem given in [63] yields

LE éal =

(6.6)

‘@fém

< Kje,

under the assumption that all functions and their derivatives in (6.6) are
bounded.
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The construction of a better approximation can be obtained by writing
®=b, +epo(x,e) + - (6.7)
Equation (6.1a) becomes
L. & =L, 00 +eLepo(z,e) +---
where
d?po dg

gy | o
2 +a(x) i + b(x)ps .

L go(x,e) =€

- d
As already mentioned, when z is in Dy, 11 and % are ESTs. Neglecting

O(g?) terms in Dy yields the equation for ¢,

dpo R d2p,
a(az)%—f—b(aﬁ)g@g =

Since the boundary conditions are satisfied by the first UVA, we simply take
(,272 (1, E) =0.

The solution shows that ¢, is a function of z only and we have

@2(‘%’5) = 902(55) )

where @2 () is the same function as in MMAE.

Clearly, the approximation given by (6.7) must be corrected in the neigh-
bourhood of x = 0 and this can be done by seeking a second UVA in the
form

Bur (@, X,8) = Bar + ¢ |02 (1) + 2 (X, )] . (6.8)
Substituting (6.8) into (6.1a) yields
Ay

+a () ﬁ—i—sb () Py .

2 d%po n A2,
dz?2  dX?2

Lséa& = M%+b(x)¢l+5

We assume that gy is uniformly of order 1 in the studied domain. By neglect-
ing O(e) terms in the domain Dy, that is, when 0 < A; < X < Ay where 4;
and Az are constants independent of ¢, we obtain the following equation for

P2,
d24)y Ao a(x) —a(0)ddy .
dX2 +a(0)ﬁ—*—6 K*b(fﬂ)ﬂil

The boundary conditions are exactly satisfied with

b2(0,2) = —¢2(0) , s (15) 0.
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Finally, with a similar analysis as for L. anl, the expression of L. Do
shows that the accuracy associated with the remainder of @,5 is better than
for @,1 (see (6.6))

_ On the basis of the preceding remarks, there exists a positive constant
K5, independent of € such that

‘@p — éag < ]?282 .

Method b
The first UVA is sought in the form

D1 = 1 +U1(X,€) .
With this expression, we can write (6.1a) as

= 1 (d%yy dyy
“éﬂ_ELMQ o(*) Ix

_ d2(,01
b(x E—5 .
) +b(2) v +e—73
To improve the accuracy of the approximation, the idea is to include more
information in the first UVA. Practically, in D1, instead of neglecting O(1)
terms, O(e) terms are neglected and we obtain

1 /d2y dep -
g<d;f; +a(x)d—f(1> +0b(0)¢1 =0.

This provides us with a better UVA which contains the second order of the
boundary layer expansion. The remainder for @, is

L 61 = [b(x) — b(0)] i + e S22

(6.9)

In agreement with the preceding heuristic remarks, the contribution of the
o

term [b(x) — b(0)] 1)y is smaller than the contribution of the term & Pt
x

Then, the next UVA is sought in the form

g§a2 =&, + P2 (13,6) .
Substituting into (6.1a) yields

o1 A% dps _
12 +e 2 +a(z) S +b(x)eps .

L. a0 = [b(z) — b(0)] ¢y + ¢
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Neglecting O(g?) terms in Dy gives the following equation for @,

a(x) dps

d2(p1
dx '

+b($)@2 = — d;[;2

The exact boundary conditions are satisfied with

P21 =0, B0 =a-F-cpa0.8) . i (2e) =0,

We have again
@Q(I,g) = @2(55) )

where @9 () is the same function as in MMAE.
For confirmation, if this UVA is complemented as

qsaQ - @al + 6‘)02(1') + E&Q(Xﬂc:) )
it is shown that 15 = 0. In effect, (6.1a) becomes
diy

+ a(x)ﬁ + b(2)es .

= - d%py  d%
_ 2
Lo @az = [b(x) = b(0)] s + £ 22 + L2

Neglecting O(e) terms in Dy yields

d*¢s
dx?

2 _
dx

+ a(0) 0,
with
&2(076):03 1[’2 (éae)—o

The solution is 15 = 0.
Finally, the remainder writes

" 4y
_ 2
Le®aa=[b(x) —b(0)] )1 + ¢ P

which leads to
|@ — 4332| < ?262 .

The question is to evaluate if this problem is simpler to solve than the
initial problem.

Until now, the implicit hypotheses require that the functions introduced
in the calculations and their derivatives are bounded in the whole domain D.
As shown below, this is not always necessary.
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6.2 Example 2

We consider the equation

d2¢ d®
Led=c—— +zt/t =

— = 1
S =0, (6.10a)

where the function @ is defined in the domain 0 < z < 1 with the boundary
conditions

B(0)=0, d(1)=e"3. (6.10b)

6.2.1 Application of MMAE
A straightforward outer expansion,

Eo® = ¢1(x) + epa(x) + -+,
leads to equations

d
x1/4£—4p1 =0,

dx
d d?
ade2 o 4
v dz 2 dz? ’

with
(1) =e*® | (1) =0.

The solutions

4
e (L),

L 1) 129 4 34
= +4
V2 (233 x 5 ) exP 395 ,

produce singular terms in the neighbourhood of the origin. The approximation
is not uniformly valid and another one must be sought near z = 0.
A significant degeneracy of the initial equation is obtained with the local
variable defined by
x

=5 (6.11)

and (6.10a) becomes

2e 4o
/492
axe T X

—3Pp =0, (6.12)
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The inner expansion starts with a term 11 (X) governed by the equation

d*¢y dyy

— XV =0,

dx? * dXx

The solution can satisfy only one boundary condition ¢1(0) = 0 and

a matching condition 1 (c0) =1

Gsa(X) /X ( 4 . )
= ——°- with G X)= exp | —=t3/4) dt .
V1 G2 () 5/4(X) A

The condition 11 (00) = 1 results from the application of the MVDP to order 1
1 =E1E¢® = E¢E1® = 91 (c0) .
With the outer expansion and the inner equation, the inner expansion is
E1® = 1 (X) 4 3/ (X) 4 ep3(X) + O(%/7) . (6.13)
The equation for s is

d%y)o 174 dt)a
—— X2 =
axz @ v

with 15(0) = 0. Taking into account that ¢; = 1 + EST as X — oo, the
behaviour of 19 as X — oo is given by

4 1
g 2 §X3/4 +A— 5X*W’ +O(X T4y
The equation for i3 is

Qs | yayadls

=0
dx? dX ’

with 13(0) = 0. The solution is

Y3(X) = BG5/4(X) .

The MVDP is used and gives
5

)

e to order &3/
4 3/ 3/5
EOE1© =1+ gfﬂ + Ae y
4
EiEq® = 1+ 553/5)(3/4 ,

which yields A = 0. Then, we obtain a composite expansion supposed to
be a UVA to order £3/5
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4
By = a1 (2,6) +°/° {@AQ(X) - §X3/4} , (6.14)

where @, is a UVA to order 1,

4

Gsa(X
Par(x,€) = exp (gm?’/“) + Gs/a(X) 1

Goya(50) , (6.15)

to order € ,
4 50 1 )
E()Elq) =14+ glﬁ — §€$ + B{—;G5/4(OO) )

4 1
E1Eg® =1+ &%/° {5)(3/4 - —X—W} + 2 ,

2 2
. . 9 . . S
which yields B = ————, whence a composite expansion which is
2G'5/4(00)
supposed to be a UVA to order &
9 G5/4(X) I 9
Bon— P Sl T Akt Sp2 o) 6.16
=Pl e |[FEAT o) + 5o -] 10

6.2.2 Application of SCEM

A first approximation @ (z) satisfies the equation

da
I1/4% *@1 :O .

With the boundary condition @;(1) = e*/3, the solution is

p1 = exp (%m?’/‘l) .

2 —

For later use, we give the expression of q 9021 written with the variable X
x
ase — 0
A2, 1 _5 2 10
b x5/ 23y -1/2 . 6/5x /4
€ a2 1 + 35 + 9 € +

A UVA is defined by complementing the first approximation

@al =1+ ’(/7}1(X7 6) R (617)

where the function v satisfies the equation

d?ey n X1/4d_1/;1

dxz ax
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subject to the boundary conditions

¥1(0,e) = —1, (5_4/5,5> =0.
The solution is
__GsuX) 1
LG ()
It is noted that @,; is a UVA of the function @ but not for its first and

dp d?@
second derivatives because % and 3 <p21 tend towards infinity as z — 0. In
x x

particular, we observe that
_ d%3, _
Le a1 =€ 12 — 1.

The right hand side cannot be integrated in the interval 0 < z < 1. SCEM,
in its generalized form, enables us to answer these questions. In effect, the

use of generalized AEs allows us to consider the following approximation
Bop = P14 by +€3/° (P2 +v2) , (6.18)

where @5 is solution of equation

dc
xl/4ﬂ —@2 = 07
dz

with the condition @3(1,¢) = 0. The solution is @g = 0.
The original equation becomes

= d2q dep - - d?p
= V2 X1/4£ — P — 63/51/12 +€_d£:'021 .

Le®a2 = %2 dx

2 —
We note that the term e q <p21 behaves like X ~°/% as ¢ — 0. Then, this term
x

is kept in the equation for 1,

d?po diy - d?gy
e AT ‘@ VA Dk .
axz * ST

The boundary conditions are
P2(0,6) =05 o (5_4/57€> =0.

We observe that @, is a UVA not only for ¢ but also for its first and second
derivatives. In effect, by definition

Py =3/ (Paz — 1 — 1)
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and it is possible to form an equation for ®,o

d2§§a2 1/4 déaQ -
= D Nl
e 3 +x 1 Y1+ @1, (6.19)

with the boundary conditions
Pap(x=0)=0, Ppp(x=1)=e"?.

No singularity is expected for ®,5 and for its first and second derivatives.
In particular, we have - -
Le®a2 = _53/51/)2 ;

which clearly shows that ®,s is a UVA.
The next UVA is - - -
@ag = Q)ag + 6(@3 + 1/)3) . (620)

Taking into account the expression for 1), expressed with the variable x
as ¢ — 0, the equation for @3 is

da _
2158 @3 = /59y,
dx

with @5(1,¢) = 0. The solution is

p3 = g2/5 [/ /4 exp (—§t3/4> o dt] exp <§x3/4> .
1

The equation for 3 is

subject to the boundary conditions

1;[}3(()’5) = 7@3(076) ) 1[’3(6_4/576) =0.
The solution is

R - TC I

Gsa(e=4/7)

6.2.3 Identification with MMAE Results

As shown above, a UVA deduced from the application of SCEM is
Paz = @1 + U1 + /Py + (@3 + ¥3) -

The functions @1, 7@1, 12, ¢3, 13 being approximated by regular expansions,
the expression for @,3 becomes

Bus = Fi(2) + Fi(X) + & By(X) + 2 [ fo(@) + F3(X)] +0(e) .
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It is shown (Problem 6-6) that this expansion is identical to the compos-
ite expansion given by (6.16) calculated from MMAE. Therefore, SCEM
results contain MMAE results and the matching principle is a conse-
quence. Obviously, it is simply a confirmation of the general result given
in Sect. 5.7.

Note 6.2. The regular expansions can be obtained directly by applying the regular
form of SCEM, but then it is not possible to show that the generalized expansions
contain the regular expansions.

6.2.4 Numerical Results

Numerical results showing MMAE and SCEM approximations are plotted in
Fig. 6.1. Comparison with the numerical solution of the exact equation is also
given. Within the numerical approximation, this solution can be considered
as a reference solution. For all the values of ¢, SCEM results are a very good
approximation of the numerical solution. With MMAE, we observe that the
approximation @, is better than the approximation @,2. Moreover, when ¢
is not small enough, the results of MMAE are markedly different from the
exact solution.

6.3 Example 3

Consider the equation

d%¢ 1/3dP
il /322

L.d=¢ 12 +x P
where the function @ is defined in the domain 0 < x < 1 with the boundary
conditions

=0, (6.21a)

B0)=0, d(1)=¢e%2. (6.21b)

6.3.1 Application of MMAE

A straightforward outer expansion begins with
Eo®(z,¢) = p1(x) + -,

which yields the equation

d
xl/?)ﬂ — Q1= 0 ’
dz
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40 ¢ 40 -
B num. B _
30 F \ 30 F Do
20 i @al 20 i \ éal
10} TTew num

T
m
I
—_
8

- .

1 1 1 . » 0.0 | 1 1 1 )
0'00.0 02 04 06 08 10 00 02 04 06 08 10
40 40 ~
B num. B
30 F \ 30 - Do
I B _
20 + 20 \ <~ 3,
B Pa2 B num.
10 ¢ 10 ¢
0.0 1 1 1 . » 0.0 1 1 1 1 )
00 02 04 06 08 10 00 02 04 06 08 10
40 - 40 ¢

- num., P,1 and P2 - num., P, and Do

30 30

20 20

10

T x

0.0

A (Y —
00 02 04 06 08 10 00 02 04 06 08 10

Fig. 6.1. Study of problem given by (6.10a). On the left: comparison of the
numerical solution with MMAE approximations: @41 (6.15), Dyo (6414_). On the
right: comparison of the numerical solution with SCEM approximations: @41 (6.17),
D2 (6.19)

with
o1(1) =e/? |

3
P1 = exp (5372/3) )

contains singular terms in the neighbourhood of the origin. Therefore, it is
necessary to seek an appropriate inner approximation. A significant degener-
acy of the initial equation is obtained with the local variable

The solution,

xT

= =i (6.22)
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because (6.21a) becomes

d%o d®
L5¢:€71/2 <W+Xl/3ﬁ> 7@20 (623)

The inner expansion begins with a term (X ) governed by

The solution satisfies the boundary condition ¢ (0) = 0 and the matching
condition ¥1(c0) =1,

Ga/3(X) . /X < 3.4 )
= —"1— = with Gu;3(X)= exp [ —=t*3) dt.
1 G4/3 (o0) 4/3( ) o p 1

The condition 9 (c0) = 1 results from the application of the MVDP to order 1
1= ElE()@ = E()Elq5 = d)l(OO) .

Taking into account the outer expansion and the inner equation, the inner
expansion is improved as

E1®(z,¢) = 1 (X) + /2 (X) + -+, (6.24)
and the equation for 1o becomes

d2¢2 1/3d1/12
e YT

= Qpl )
with
¥2(0) =0.

Knowing that 1 = 1 4+ EST as X — oo, the behaviour of ¥5 as X — oo
is given by

3 1
Py = 5)(2/3+A— 5)(—2/3+~-~

On the other hand, the next term of the outer expansion is necessarily of
order € because all the terms whose order is between 1 and ¢ are zero

Eo®(z,e) = o1(x) + epa(z) + - . (6.25)
The equation for ¢ is

dgo d%py
1/32¢2 Nl
v dzx ¥2 dz? ’
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with

1 1
Py = — (§x2/3 +Inx — 5) exp (gm2/3> .

Applying the MVDP to order £'/2 yields A = 0 because we have

The solution is

1+ 251/2)(2/3 =EEq® = E1EgE1® = 1 + Ac'/? + gsl/zxw .

The outer expansion given by (6.25) enables us to write, to order ¢,

ElEO@ -1 +51/2 <2X2/3 _ %X2/3>

3 9 4 1
elme—e(-2 2. 2
451115 5( 8X +lnX+4> (6.26)

Note 6.53. With the outer expansion given by (6.25) and the expressions for @1 and
(2, the determination of E1Eg® is instructive only to order 1, to order e'/? or to
order . The result obtained to any order strictly between 1 and £1/2 is identical to
the result obtained to order 1. Similarly, the result obtained to any order strictly
between €'/2 and ¢ is identical to the result obtained to order £'/2. In particular,

the expression for E1E¢® to order —elne¢ is identical to the expression for Ei1Eq¢®
to order g'/2 .

Equation (6.26) suggests the next terms of the inner expansion
E1D(z,¢) = 1 (X) +e/2p(X) —elne (X)) +ep3(X) +--- . (6.27)

The equations for 5 and 93 are

A2 1734993
e TN Iy
deS 1 dd)S

X3
dXx? * dX

207

=g,

with

We obtain
Ga/3(X)

G4/3(OO) ’

and, from the behaviour of 1, as X — oo, we deduce the behaviour of 3

V3 =B

9
w3%§X4/3+C—lnX+~-~.
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Then, to order e, we have

E1EoE1® =1+ ¢'/2 (gxw — %X‘Q/?’)

—Belne —¢ (§X4/3 +InX — C’> : (6.28)

Thus, the MVDP written to order ¢ ,
E1E0¢ = E1E0E1(15 s
together with (6.26), gives B =3/4 and C = —1/4.

Note 6.4. To determine the constant B, the MVDP must be written to order e
and not to order —eIne because the expression of E1Eq® to order —eIn e does not
contain any term of order —elne .

Finally, the following UVAs are obtained:
e to order 1,

Pay = p1(x) +¥1(X) — 1, (6.29)
e to order £'/2 |
Do, X, €) = oy (1, X) + /2 [1/)2()() - gx“'/"‘} , (6.30)
e to order ¢,
Doz(x, X, e) = Paa(z, X,e) —elne [wg‘(X) — ;J

1 9 1
+e {@2(95) +3(X) + 590_2/3 - §X4/3 +InX + Z] .(6.31)

6.3.2 Application of SCEM

With generalized expansions, the UVAs given below are obtained. To order 1,
we have

Do = @1 +U1(X,e), (6.32)

_ 3 2/3 - G4/3(‘()
e <2x ) e Gays(e3/4)

with

Here again, the remainder L. D1,

_ 2e, -
L. $a1 ZEW@;—lﬁl’

cannot be integrated on the domain of definition. To order £'/2, the UVA is

By = o1 + /%y . (6.33)
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d?¢
Taking into account the expression for ad—ﬂl, written with the variable
x
X,ase —0,

d?¢, 1., 1 9
— I x4B 223 2
€ a2 3 + 26 + 86+ )

the equation for 1)y is

d%), 173 diba d?¢; -
X832 - L 6.34
ax? X @z Y (6.34)

with the boundary conditions
1;2(075) =0 ) &2(573/475) =0.
It can be checked that

Le éa»2 = _51/2152 y
which shows that @,5 is a UVA. To proceed to order €, we set
Po3 = Pus + &(P3 + 93) - (6.35)

From the equation for 1), it may be shown that the behaviour of 1), as
X — o0, has the form

do =2 f(a)

Then, the equation for @3 is

do _
A LA, (6.36)

with @5(1,£) =0.
On the other hand, the behaviour of @3, as  — 0, is given by
d?p
3/28 83 _ poxey 4L
e (X)+
hence the equation for 13
d*¢s X1/3d_7f;3 _ 753/2d2¢3
dXx? dX dz?

with the boundary conditions

(6.37)

¢3(0a5) = 7@3(076) 3 1[’3(673/476) =0.

The remainder is

L. ®.3 = 7512)3 )
which is satisfactory.

Note 6.5. We observe that the generalized AE deduced from SCEM does not con-
tain any term of order elne .
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6.3.3 Identification with MMAE Results

As shown above, a UVA deduced from the application of SCEM is

Doz = Q1+ 1 + /2, + (@3 + 3) -

The functions ¢, 1/}1, 12, @3, 13 being approximated by regular expansions,
the expression for @,3 becomes

Doz = fl(gc) +F’1(X) +51/2F2(X) +Eln5F3(X) +e [ﬁ;(w) +F4(X) +o(e) .

It is shown (Problem 6-7) that this expansion is identical to the composite
expansion given by (6.31) calculated from SCEM. Therefore, SCEM results
contain MMAE results and the matching principle is a consequence. Obvi-
ously, it is simply a confirmation of the general result given in Sect. 5.7.

Note 6.6. The SCEM generalized expansions do not contain any term of order
—eIne. These terms appear when the approximation is based on regular expansions.
Such terms are also present in MMAE expansions. Now, logarithms are sources of
difficulty in MMAE. For this reason, SCEM proves to be very advantageous.

6.4 Stokes-Oseen’s Flow Model

We consider the equation

d’¢  1deo do
— Iaiinll & _

T dg? Tz da de —

L.® 0, (6.38a)

where the function @ is defined in the domain x > & with the boundary
conditions

x=e: =0 and z—o00: P=1. (6.38b)

This problem, proposed by Lagerstrom [48], simulates the difficulties en-
countered in the analysis of Stokes-Oseen’s flow, i.e. the two-dimensional flow
at low Reynolds number around a circular cylinder.

6.4.1 Application of SCEM

A singular perturbation problem arises in the neighbourhood of = = €. Else-
where, the solution tends to @ = 1 as ¢ — 0. Thus, we seek a first approxi-
mation in the form

& =1+061(c)p1(w,8) + -, (6.39)

where ¢; is an order function such that 9y — 0 as e — 0 .



6.4 Stokes-Oseen’s Flow Model 119
Equation (6.38a) becomes

Por , 1o dp
dz? z dx dx

=0. (6.40)
The exact boundary conditions on @ are satisfied with
r=¢c: 6p1=—-1, T—=o00: @1 =0.

The gauge &; (¢) is determined to within a multiplicative constant simulta-
neously with the solution by applying the boundary conditions. The solution
is

@1 = 7E1(‘r) )
with o 4
o
El(x) = / — dt )
and
1() = —
' Ei(e)

Note the behaviour of Ey(g) as e — 0
Ei(e) 2 —lne—~vy+e+---,

where 7 is the Euler constant v = 0.577215.
We seek a UVA by complementing the preceding approximation

@al = 1+51(ﬁ1 —|—(§11Z)1(X7E) with X = g .

In fact, it is shown that 1); = 0. Therefore, the UVA is

E1 (l‘)

D =1-—
al El({-j)

. (6.41)
Note 6.7. Chen et al. [15] obtained the same result by using a method based on
the renormalization group.

It is interesting to examine the remainder L. D1,

= Ei(x)dEi(x)  Ei(z)e™®
Le @u1 = E2(e) dl:z: B _E%(e) z

We note that, = being kept fixed, L &$,1 — 0 as e — 0, but if z = ¢ then
Lc ®,1 — —o0 as € — 0 . Nevertheless, the integral of the remainder remains
finite, non zero, as € — 0. In fact, this integral is independent of

© 1 oo 1
L. ®, dz = E? =__.
/5 5 1 4Axr 2E12(€)[ l(x)]s 2
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We seek a better approximation in the form

E1 (LL') = _
b=1-— 5 el
Br(e) T RE)elme)+
The equation for @, is
d?¢ 1de dp 1 dE
LA 2 R By ()38 _ g (6.42)

dz? =z dz dz ~ 62F%(e) dx
As the boundary conditions are satisfied by the approximation @,;, we
take
r=¢c: @Po=0 and z—00: @2=0.

The gauge d2(c) is determined to within a multiplicative constant simulta-
neously with the solution by applying the boundary conditions. The solution
is

= o Fl(l') _ Fl(E)El(LL')

"RTEE T BE
with
Fi(x) =2F1(2z) —e "Eq(x) ,
and
5, = 1)
Ei(e)’

Note that the behaviour of Fi(g) as ¢ — 0 is
Fie)2—lne—v—2In2—clne+ 3 —7)e+--- .
We seek a UVA in the form

= o El (LL')
P =156

It is shown that ¥» = 0 so that the UVA &5 is

+ 82(8)@a(z, €) + d2tha (X ) .

= o El(l‘) Fl(l‘) Fl(E)El(l‘)
e=l"E0 T Be T Be

(6.43)

6.4.2 Numerical Results

The numerical results in Fig. 6.2 show that &, and P, are excellent approx-
imations of the numerical solution of the complete equation even for large
values of ¢.

Tt is noted that the order functions §; and d5 are determined to within
a multiplicative constant by applying the exact boundary conditions. On the
contrary, with MMAE, many choices are possible and the range of values of



6.5 Terrible Problem 121
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Fig. 6.2. Stokes-Oseen’s flow model. Comparison of the numerical solution with
SCEM approximations: 1 = first order UVA (6.41), 2 = second order UVA (6.43)

€ over which the numerical accuracy of the MMAE approximation is good
depends strongly on this choice [42, 48]. Often, the order functions are taken
as —1/Ine and 1/(Ine)?. With this choice, it is clear that the approximation
cannot be valid if € = 1, and the accuracy of the approximation is correct
only for very small values of e. This question is discussed in detail by Lager-
strom [48] who also proposes the use of gauges §; and d as determined here.

With this example, it is again observed that the difficulty associated with
the presence of logarithms is completely solved with SCEM.

6.5 Terrible Problem
Consider the equation

d2¢ 1de [dd\® _dd
L= — + —— —— d— =0 6.44

: @2 T (da:) T ’ (6.44a)
where the function @ is defined in the domain x > & with the boundary
conditions

r=¢c¢: =0 and z—o00: &=1. (6.44Db)

This problem has also been proposed by Lagerstrom [48]. With MMAE,
the difficulties which are raised are such that the problem has been termed
“terrible problem” by Hinch [42]. The solution requires the knowledge of an
infinite number of terms, which is not really along the lines of the method.

The solution can be obtained with the change of function e® but to follow
the general procedure, this transformation is not used here.
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6.5.1 Application of SCEM
We seek a first approximation in the form
D =1+6(e)p1(z,8) 4+ . (6.45)

Susbstituting into (6.44a) yields

g 6der | o (de\T < dpr o, dg
) — =46 = o= +0ip1—+---=0. (646
1dx2+xdx+1<dm)+1d33+1g01d33+ (6.46)

Neglecting O(6?) terms, the equation for @; is

_d%p;  Sider < dgy
) ——— 4+ 5H——==0. 4
L da? er dx + Ydr 0 (6.47)

With the exact boundary conditions
r=¢: Nhpr1=—1 and z—o00: @1 =0,

the solution of (6.47) is

p1 = _El(x) )
with o 4
o
El (.’E) = / — dt 5
and
1(e) = —
! Ey(e)

Then, we seek a UVA in the form
Go1 = 146101 + 6191 (X,e) with X = g ;
but we find that ¢; = 0. Therefore, we have
Day =1+0141 -

Let us examine the remainder L, @,

_ 1 (dEi(2)\?  Ei(z)dEi(z)
Lda = (Y07) RO
e 2@ Ei(x)e™™®

T 2?E}e)  Ei(e) =

We deduce that, = being kept fixed, L. b,y — 0ase— 0.If z = ¢, then
Le @a1 — o0 as € — 0, but the integral of the remainder is such that
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0 —
/ L. b, de— .
c e—0

As shown below, a difficulty should be expected. We seek a better approxi-
mation in the form

D =1+01()p1(z,€) + da(e)pa(z,e) + -+, (6.48)

which leads to

_d2¢y 0y d@s - dgs 82 | /der\? de,
5 R I Y . e Y et o1— | . 6.49
> da2? +xdx+ > dx 09 dx +(p1dx ( )
With the exact boundary conditions
r=c¢: @2=0 and xz—o00: Pa=0,
the solution is
= Fi(e) — 3B (e) Fi(z) - 3E{(2)
2Py = ————z~——F1(x) + . ; (6.50)
E}(e) Ef(e)

with
F1 (I’) = 2E1(213) — eff”El (13) .

1FE
Equation (6.50) contains the term 3 Ell((g,

Now, to this order, the UVA &,; should be complete. It is concluded that
the expansion is not asymptotic. The source of difficulty lies in the term
52 (der)

dz
tion for @;. It is concluded that this term must be kept and the equation for
(1 becomes

which is of order —1/Ine.

which has been neglected in (6.46) in the derivation of the equa-

- d’py 01dpr o (don 2 dg
e bkt - —0. b1
o dz? + z dz +o dz o dz 0 (6.51)

It is surprising to keep a O(6%) term but it happens that the term
N2 _
- (d ~d?
62 e 23 disappears when combined with the term §; L2
dx dx?
tion is a logarithmic function. In this way, a term in —1/Ine is no longer
present in the next order term of the expansion.

Indeed, setting

if the solu-

51(,51 =In (1 + 51f1) R (652)
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we have

< d*fi C o o (dRY

. 25, 51@(14‘51101)—51 (E

1 = — )
da? (1+(51f1)2

7N 2
, & (40
- (dp Y\ dz
5 ) T i
z (1 + 51f1)
and, neglecting O(6?) terms, (6.51) becomes

d?f,  1dfy dfi
@2 rdr A

=0.
Imposing the exact boundary conditions on @, we take
<z 1
r=¢: 14+0f1=- and z—o0: f1=0.
e

Thus, the solution is

nenls () 2]
with )

1 - 1
5 = — d = - 1 E .
ag A= (i-)Ee
The next step is to seek a UVA in the form

Qsal =1+1In |:1 +51f_'1 +51g1(X,€)] ,

and it is shown that g; = 0. Therefore, the first UVA is

®a1=1+1In {1 + (% - 1) ?1—((:” . (6.53)

Let us examine the remainder L. @,; ,

_ 1 1 dE(z) |1+
Lg%lz(g—l) 1(x) 1[

Note that, = being kept fixed, L b,y — 0ase — 0. If z = ¢, then
Le @a1 — —o0 as € — 0 but now the integral of the remainder remains finite
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[l () BT -

According to SCEM, we seek a better approximation in the form

S =1406,p1 + 0@z +--- .
o (d3s\?
For the same reasons as before, the term (53 (%) is kept in the equation
x

for @2. The following UVA is obtained

(i) (B -sgee)] o

It is more straightforward to seek an approximation in the form

D0 =P, +1n

b= 1—|—ln[1+51f1+52f2+-~-] .
The equation for f5 is

Ch  1dfy df 1 <1 1>2E1(:1:)

dz?2 "z dz | dz 6y \e E2(e) -

Note that the next term 2g2(X,¢) is zero and, finally, the second UVA

becomes
= 1 El(l’)
bo=1+1In|l - -1
=11+ (5-1) 55

(o) (B -AGee)] o

6.5.2 Numerical Results

Figure 6.3 shows a good agreement between the UVAs constructed with
SCEM and the numerical solution of (6.44a), even for values of & which
are not small compared to 1. The prescription of the exact boundary con-
ditions has enabled us, as with the Stokes-Oseen’s flow model, to choose
well-appropriate gauges. With respect to the Stokes-Oseen’s flow model, the
additional difficulty is the presence of a non linear term which is eliminated
with a logarithmic term.

6.6 Conclusion

The application of the successive complementary expansion method, SCEM,
to singular perturbation problems occurring in the solution of ordinary dif-
ferential equations has shown that the method is flexible and efficient. In its
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Fig. 6.3. Terrible problem. Comparison of the numerical solution with SCEM
approximations: 1 = first order UVA (6.53), 2 = second order UVA (6.55)

simpler form, with regular expansions, SCEM leads to the same results as
the method of matched asymptotic expansion, MMAE. The construction,
however, is different. With SCEM, we seek a uniformly valid approximation,
UVA, starting from an assumed structure of the UVA. A matching principle
is not required. Even, the matching principle is a by-product of the method.
With MMAE, first we seek approximations in different significant domains.
A matching principle is necessary to ensure the consistency of the approxi-
mations and, finally, a UVA is formed.

By accepting generalized expansions, SCEM enables us to go further. For
instance, more information can be included in the first terms of the expan-
sion in order to improve the accuracy. This feature is especially important
because the asymptotic series are often divergent. Moreover, the boundary
conditions can be imposed, not asymptotically, but exactly from the begin-
ning of the construction. In certain cases, it can be shown that the idea to
impose the exact boundary conditions leads to a very appropriate choice of
gauge functions forming the asymptotic sequence. These properties take all
their value if it is recognized that the achievement of asymptotic methods
is to obtain results which are valid even if the small parameter is not really
small compared to unity.

With generalized expansions, SCEM results contain MMAE results. This
means that a SCEM approximation is richer than the corresponding MMAE
approximation.

Another advantage of SCEM is the removal of the problem of logarithms
with the associated difficulty of the application of a matching principle. In
all the examples studied in this Chapter, the logarithms appear only when
one goes back to regular expansions.

The counterpart of these assets is the necessity of a deeper analysis of the
properties of the solution. The improvement of the accuracy of the UVA to
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a given step implies generally an increase in the effort devoted to obtain the
solution. The question is to know if it is worth the trouble. In comparison,
the application of MMAE is more systematic.

Problems

6-1. Consider the equation

d’y  dy

Ly=e- 2+ yy—o.

ey 5dx2+dx+y 0

The function y(z) is defined in the domain 0 < z < 1 and the boundary

conditions are
y(0)=a, y1)=>b.

The solution is studied with MMAE. A boundary layer forms in the neigh-
bourhood of the point x = 0. The variables adapted to the outer region and to
the inner region are respectively x and X = z/e. The associated expansions
are

y(z,€) = y1(z) + eya(x) + - + "y (z) + O(e™ ),
y(x,e) = V(X)) +eYo(X)+ -+ "V, (X) + O(E"+1) .

1. Express the functions y1 (), y2(x), ¥Y1(X) and Y2(X). Give also the com-
posite approximations 3,1 and y,2 which are supposed to be UVAs to order 1
and to order ¢ .
2. Give the order of magnitude of the remainders L. y,1 and L. y,2, on the
one hand in the domain 0 < x < 1 and on the other hand in the domain
0 < Ag <z <1 where Ap is a constant independent of ¢ .
6-2. Consider the problem
2
s%+j—z+y:0, 0<z<1,
with
y(0)=e, y(1)=1.

An exact solution is easily obtained but the problem is studied here with
SCEM. The exact boundary conditions will be imposed.

Find the location of the boundary layer.

The first approximation has the form

Y =yo(x) .
Give yo(x).
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We seek a UVA in the form

Ya1 = Yo(z) + Yo (X,e), X =——.

Give 0 and Yj. In the equation for Yy, only the dominant terms will be kept
for 0 < A < X < Ay where A; and As are constants independent of e. It
will be shown that Yy = 0.

The next approximation has the form

y = yo(r) + Yo(X,¢e) +v(e)yi(,e) .

Give v and y;. In the equation for y;, only the dominant terms will be kept
for 0 < By <z <1 where B; is a constant independent of .
We seek a UVA in the form

Ya2 = Yo(z) + Yo(X,€) + v(e)y1(x, ) + v(e)Yi(z,¢€) .

Give Yi. In the equation for Y7, only the dominant terms will be kept for
0< A <X <A,

Give the solution by applying SCEM in its regular form.
6-3. Consider the problem

with
y(0)=1, y(1)=1

A boundary layer develops near = 0 and another one near = = 1.

The regular form of SCEM is applied.

Show that the variables appropriate to the boundary layers are £ = z/e
near z =0 and ¢ = (1 — z)/e/? near z = 1.

Determine the solution yg () of the reduced equation (obtained by setting
¢ = 0). The integration constant will not be calculated. The approximation
is complemented as

y = yo(r) + Zo(() -
Show that yo(x) = 0. Check that the solution for Z; has the form

¢/V2
20264-2/2 A+B/ eitz dt] .
0

The solution for Zy must satisfy the condition y(1) = 1. Deduce a relation
for the integration constants of Zy. The other relation will be obtained later.
Finally, we seek a UVA in the form

Ya = ZO(C) + YO(E) .
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The condition at @ = 0 must be satisfied by the solution Y;(§). Deduce
a relation between the integration constants of Yj.

Apply the boundary conditions at x = 0 and x = 1 to y,. Deduce the
missing relations to determine all the integration constants. Give the solution
Ya-

It is reminded that -

et dt = ﬁ .
0 2
6-4. From the lubrication theory of Reynolds, the pressure p(x) in a highly
loaded slider bearing is related to the thickness h(z) of the film of fluid by
the dimensionless equation

d dp] _ d(ph)
— || = <zr<l1
gdx{ pdx] dz ’ Osesl,
with
p(0)=1, p(1)=1
We set

ho=h(0), hi1=h(1)=1.
A boundary layer develops in the neighbourhood of x = 1.

\ |

| h |

: —
S S S S S S SSS

Fig. 6.4. Slider bearing

The regular form of SCEM is applied. The first approximation is

p=rpo(z) .

Give the solution for po(z).
Show that the boundary layer variable is

le—a?

€
We seek a UVA in the form

p=po(z) + Py(X) .
Give the solution in the form X = X (Fp).
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6-5. This problem has been studied by Van Dyke [108] with MMAE. Con-
sider an inviscid, incompressible, two-dimensional, irrotational flow around
an elliptic airfoil with a zero angle of attack. The equation of the airfoil is

y = +eT(x),

with
T=+v1—-22 for —1<x<1, otherwise T =0.

At freestream infinity, we have

u=1.
To take into account the singularities which occur near x = —1 and z = 1,
the inner variables are used
1+ 1—x
Sl = ) S2 = - Y Y

g2 ez’ g2’

The flow is defined by the potential equation: A ¢ = 0. A UVA of the
potential ¢ is sought in the form

¢=r +epi(w,y) + & [D1(51,Y) + W1 (Sa, V)] + &% [82(51,Y) + ¥a(S2, V)]

1. Give the velocity components as function of ¢y, @1, P2, ¥y, Us. It is re-
minded that
_ 09 _ 09

u=5-, V= 9y
2. Express the slip condition at the wall. The following identity enables us to
solve the singularities at x = —1 and . = 1

eT' = eT'(z) —ef(x) +eg(z) + F(S1) — G(S2) ,

dT
where T is the derivative o and
x

1
f=——— for z>-1,
2(x+1)
1
g=—=— for z<1,
2(1 —x)
F ! for S;1 >0
= or ,
25, '
1
G = for S5y <0.

:

—25;

Outside the intervals of definition given above, we have f =0, g =0, F = 0,
G=0.

3. Give the equations for 1, @1, o, ¥, ¥s. It will be noted that the function
(1 is given by the thin airfoil theory and that @, + Si, @2 + S1, ¥1 + So,
W, + S5 correspond to the potential around parabolas.
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It is reminded that the velocity components of the flow around a parabola

given by the equation
Yy =V2Rx

are
U 717\/§ r—&—%—x
Vo 2 r ’
v VR\THT—F
Ve 2 r ’
with

It is also reminded that the velocity v on the axis corresponding to the
potential ¢, is given by

o1
1 [T g@y—(x,(M,)

0 0
The notation %(m, 04+) means that the derivative % is evaluated along
x

the upper surface (y = 04).
It is found that the velocity u, for —1 < = < 1 corresponding to the

potential ¢ is equal to 1 because

1 1 /
—% T d¢=1 for —1<z<1,
1 x—&

1 oo
—% ! dé¢=0 for z>-1,

), x—&

1 1
—55 J_4e=0 for z<1.

T) oo —&

Give the components and the modulus of the velocity at the wall of the
ellipse.

The exact solution for the distribution of the velocity at the wall of the
ellipse is
q 1+e¢

[o'e) 2 132
14+¢ T2

Compare the approximate results with the exact solution by plotting the
results for e = 0.1, ¢ = 0.25 and ¢ = 0.5.
6-6. Demonstrate the results of Subsect. 6.2.3.
6-7. Demonstrate the results of Subsect. 6.3.3.




7 High Reynolds Number Flows

As an introduction to the second part of this book devoted to the asymp-
totic analysis of high Reynolds number flows, this Chapter reminds standard
results which are useful subsequently for the general understanding of the
subject. Then, most of these results are given without detailed proof.

Prandtl’s boundary layer theory [78] has been a major step in the un-
derstanding of the flow behaviour in aerodynamics and it proved to be an
extremely useful and fruitful practical engineering tool. The theory has been
formalized much later with the implementation of the method of matched
asymptotic expansions, MMAE [47, 107]. Further progress has been made
with the second order boundary layer theory [105].

Soon after the introduction of the boundary layer concept, numerical so-
lutions of boundary layer equations ran into difficulties when, in the presence
of adverse pressure gradients, the skin-friction decreases and vanishes. This
problem has been analyzed by Landau [51] and Goldstein [40]. In a gen-
eral manner, the question has been raised to determine the solution of the
boundary layer equations downstream of a station where the velocity profile
is given [39]. Among different results, Goldstein has shown that generally
the solution of boundary layer equations is singular if the velocity profile has
a zero derivative at the wall (zero wall shear-stress) and that it is not possible
to continue the boundary layer calculations downstream of the point of zero
wall shear-stress. It is interesting to note in passing that the method used
for this analysis is very close to MMAE but, at that time, this method was
not formalized. Goldstein suggested also that inverse methods could solve
the separation singularity. In these inverse methods, instead of the external
velocity, the distribution of a quantity associated with the boundary layer is
prescribed, for example the distribution of the displacement thickness. Then,
the velocity at the edge of the boundary layer becomes an unknown which
is determined from the solution of the boundary layer equations. As far as
the distribution of the displacement thickness is a regular function, the so-
lution of the boundary layer equations is regular even in the presence of
separated flow. These results have been shown numerically by Catherall and
Mangler [12].

With Lighthill’s analysis of the upstream influence phenomenon in su-
personic flow [58], a great leap forward has been taken. The problem is to
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know how a disturbance in a flat plate boundary layer, for example a small
deflection of the wall, affects the boundary layer when the external flow is
supersonic. A small perturbation theory has been proposed in which the
perturbed flow is structured into three layers. In the region farthest from
the wall, the perturbations obey the linearized equations of an inviscid su-
personic flow. In the region corresponding to the usual boundary layer, the
perturbations obey the small perturbation equations of a parallel, inviscid,
compressible flow. Finally, close to the wall, a viscous layer is introduced in
order to satisfy the no-slip conditions at the wall. In this latter region, the
equations are the Orr-Sommerfeld equations which also provides the evolu-
tion of the stability of an incompressible boundary layer. Then, the solution
shows the possibility for the perturbations to propagate upstream. The order
of magnitude of the length of interaction is LRe 3/% where L is the distance
between the prescribed disturbance and the flat plate leading edge and Re is
the Reynolds number based on L.

This problem addresses the question of the viscous-inviscid interaction,
i.e. the interaction between the boundary layer and the inviscid flow region.
Lighthill’s analysis shed new light on the understanding of this phenomenon.
This analysis has been complemented with the triple deck theory. A discus-
sion of the problems associated with separation and with the structure of
separated flows, in relation with the triple deck theory in particular, can be
found in [86].

The triple deck theory is attributed to Stewartson and Williams and to
Neyland [74, 95, 97, 100, 101]. Messiter [69] has also arrived to this theory
by analyzing the flow near the trailing edge of a flat plate. Stewartson and
Williams consider that their theory is a non linear extension of the theory
proposed by Lighthill. In fact, the triple deck theory has been a major advance
in fluid mechanics wich led to significant progress in the understanding of
many types of flows [41, 116].

Besides these theoretical breakthroughs, practical methods have been de-
vised to solve the interaction between the boundary layer and the inviscid
flow, in particular with the goal to calculate separated flows [9, 10, 13, 53,
54, 56, 60, 109]. A justification of the interactive methods has been provided,
at least partially, by the triple deck theory [81, 110].

In this Chapter, a simplified analysis of the problems set by boundary
layer separation is presented. The discussion is based upon the use of a bound-
ary layer integral method. The method is approximate but reproduces the
properties of boundary layer equations fairly well. Moreover, it provides us
with a simple way to gain a general understanding of the mathematical and
numerical questions set by the viscous-inviscid interaction [23, 24, 53]. To
this extent, this is a pedagogical model.
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7.1 Boundary Layer Theories

Very comprehensive papers on high Reynolds number flows and their asymp-
totic structure have been written by different authors [82, 83, 86, 92, 98]. In
particular, in these references, the problem of separation is discussed. In this
section, we present the main results of standard boundary layer and triple
deck theories without mathematical proof.

7.1.1 Prandtl’s Boundary Layer

We consider laminar flow past a wall, for example around an airfoil in an
unbounded atmosphere (see also Problem 7-2). We assume that the flow
is incompressible, two-dimensional, steady and is described by the Navier-
Stokes equations (Appendix I).

We use an orthonormal axis system (z,y) with all quantities expressed in
dimensionless form. Coordinates x and y are reduced by a reference length L,
velocity by a reference velocity V and pressure by oV?2. The dimensionless
Navier-Stokes equations become

ou ov
%Jra—y =0, (7.1a)
2 2
uaquvau:ia'P 10U 10U (7.1b)

oz Coy T ox RozZ TRoy
oV LoV 0P 19V 1%V

U— + V== =

AL 1
Ox Oy Oy + R Ox2 + R Oy? "’ (7.1c)

where Y = u/V and V = v/V are the velocity components in the 2- and y-
directions, P = p/oV? is the pressure, ¢ the fluid density and y its dynamic
viscosity coefficient. The kinematic viscosity coefficient v = u/p can also be
used. The Reynolds number R is defined by

~oVL
_M )

R

The objective is to simplify the Navier-Stokes model when the Reynolds
number of the flow is large compared to unity.

Two regions are identified: an inviscid flow region far from the wall and
a boundary layer region in its vicinity. In the inviscid flow region, significant
variations of velocity occur over distances whose order of magnitude is the
same in any direction of space. The length scale L is the chord of the airfoil
immersed in the flow. In the boundary layer, two length scales are needed.
Along the direction parallel to the wall, the length scale is again the chord of
the airfoil but the appropriate length scale ¢ in the direction normal to the
wall is

(=LR 2.
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A relation between the scales ¢ and L is obtained by assuming that the
viscosity characteristic time (/v is of the same order as the convection char-
acteristic time L/V. This relation is fundamental in the boundary layer the-
ory.

The small parameter € is defined by

== (7.2)

In the inviscid flow region, the Navier-Stokes equations reduce to the Euler
equations. In this region, the flow velocity components and the pressure are
expanded as

u:ul(x7y)+ 7V:UI($>y)+ 7P:p1($>y)+ ) (73)

and the Euler equations can be written as

8u1 8’01 o
Dz + a—y =0, (7.4a)
6’&1 6’&1 8p1
B .4b
oz T Oy Ox ’ (7.4b)
u1—8v1 +U1—avl = 7_31)1 : (7.4c)

oz dy dy

Note 7.1. With dimensional variables, the Euler equations are

ou  Ov
I + (9_y =0, (7.5a)
ou Ou  Op
gu@ + gv@ = _op , (7.5¢)

ox oy dy

where u, v, p correspond to u1, v1, p1 respectively. For the coordinates x and y, the
same notations as for the dimensionless form are kept.

Since the no-slip conditions at the wall cannot be satisfied, it is necessary
to introduce a boundary layer structure. The axis system used here is tied to
the wall (Fig. 7.1). For convenience, the variables x and y are also used (in
the case of the flat plate flow, these variables are identical to those used in the
Navier-Stokes equations). The z-axis is taken along the wall and the y-axis
is normal to the wall. In the boundary layer region, the velocity components
and the pressure are expanded as

U=U(,Y)+- V=eV(@Y)+- , P=P@Y)+--, (7.6

where Y is the local variable

y=1Y

= (7.7)
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u(y): velocity profile

ue: external velocity

Fig. 7.1. Velocity profile in a boundary layer

The first order boundary layer equations are

ou oV
ax tay =0 (7.8)
oU oUu or 0*U
Uox Vv = ~ax Tave (7.8b)
oP
O = _3_Y . (78C)

Note 7.2. With dimensional variables, the boundary layer equations can be writ-
ten as

ou  Ov
e + a—y =0, (7.9a)
ou Ou  Op *u
Qua—x + Qva—y = 78_:6 -+ Ma—yz s (79b)
_op
0= 9y (7.9¢)

where u, v, p correspond to U, €V, P respectively.

Thanks to the presence of the boundary layer, the no-slip condition at
the wall can be satisfied. Locally, at Y = 0, we have

U=0, V=0.

If we denote by E and I the outer and inner expansion operators (which
correspond, respectively, to the invisicid region and to the boundary layer),
the MVDP becomes

IEU =EIU , (7.10a)
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IEV=EIV, (7.10b)
IEP=EIP, (7.10c)
and, to order 1, we have
Ylim U(z,Y) = ui(x,0), (7.11a)
v1(z,0) =0, (7.11b)
Ylim P(z,Y) = p1(z,0) . (7.11c)

Very often in the literature, the notation U, is used for the velocity cal-
culated from the Euler equations at the wall of the airfoil. The velocity U, is
related to the static pressure by Bernoulli’s equation and, since the pressure
is constant along a normal to the wall in the boundary layer, we have

oP dP dU,
— = =-U,—=. (7.12)
ox dz dx
Note 7.3. In dimensional form, the previous equation is
Op dp _ due
9r  dr T (7.13)

We observe that there is no boundary condition on the wvelocity compo-
nent v at the edge of the boundary layer. The matching with the inviscid
flow is performed to next order (see (7.15)).

With conditions of uniform flow at infinity and the wall condition
v1(z,0) = 0, the Euler equations can be solved independently from the bound-
ary layer equations. Then, an output of the solution of Euler equations is the
velocity distribution U.(z) = wi(x,0) which is an input for the boundary
layer equations.

Therefore, theoretically, the following calculations are performed sequen-
tially:

Step 1. The inviscid flow is calculated around the real airfoil by solving the
Euler equations with a zero velocity component normal to the wall. This
calculation provides us, in particular, with the velocity U, (z) at the wall.

Step 2. The evolution of the boundary layer is calculated with the velocity
distribution U (x) as input.

Step 3. The inviscid flow is corrected by solving the linearized form of Euler
equations. Indeed, the expansion of the outer flow is

U=u(z,y) +eus(z,y) + -, (7.14a)
V =iz, y) + vz, y) + - (7.14b)
P =pi(2,y) +epa(z,y) + -, (7.14c)

and it is easy to show that us, v, po satisfy the linearized Euler equations.



7.1 Boundary Layer Theories 139

The calculation of the inviscid flow perturbed by the presence of the
boundary layer introduces the notion of displacement thickness discussed
by Lighthill [59], and recovered in MMAE [107]. Equivalently, this con-
dition is obtained by applying the MVDP to the velocity V to order .

We get
67}1
V-Y|—— , (7.15)
3y y=0

or, by using the continuity equation

va(x,0) = lim

Y —oo

<9 d
0) = —[-U 0)] dY = — [Uc4] . 7.16
w0 = [ L EUrn@o] v = S UA) . (710)
The displacement thickness A;, expressed here in dimensionless form,
represents the effect of the boundary layer on the inviscid flow and is

defined by
* U
Alz/ (1——) dy , 7.17
- (7.17)

or, in dimensional form

51 = /OOO (1 - ui) dy . (7.18)

The calculation of the inviscid flow perturbed by the boundary layer
can be performed in different ways. One of them consists of calculat-
ing the inviscid flow around a modified airfoil: the wall of the airfoil is
displaced normal to itself over a distance equal to the displacement thick-
ness. Another convenient way consists of simulating the same effect with
the help of a blowing velocity v, distributed along the real wall of the
airfoil
d

w= [uedq] - (7.19)

In this method, the corrected inviscid flow is calculated by prescribing
the velocity v, at the wall.

According to the above procedure, the boundary layer equations are solved
with a prescribed pressure distribution. It is said that the boundary layer
equations are solved in the standard mode or direct mode.

It is observed that the calculations are performed sequentially. The process
is arranged according to a hierarchy in which the inviscid and viscous regions
are considered in turn.

In engineering calculation methods, the third step is performed by solving
the Euler equations and not their linearized form. Sometimes, the iterative
cycle between the inviscid and viscous flows is repeated.
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7.1.2 Triple Deck

The singular behaviour of solutions of boundary layer equations at separation
in the direct mode [40, 51] (see also Problem 7-4) has been considered as
a limitation of the model. This restriction is severe since solutions do not
exist downstream of the separation point. For a long time, the validity of the
boundary layer model has been blamed because the component of velocity
normal to the wall tends towards infinity, which is in contradiction with the
boundary layer hypotheses.

The triple deck theory has enabled us to better understand the nature of
the problem.

The main ideas of this theory are given, to a large extent, in Lighthill’s
paper [58]. As already said in the introduction of the present Chapter, the
problem was to construct a theory to reproduce the phenomenon of upstream
influence observed when a flat plate laminar boundary layer developing in
a supersonic external flow is subject to a local perturbation. For example,
if the wall is slightly deflected, a variation of the wall pressure distribution
is recorded uptream of the deflection. It can be thought that this upstream
influence is in contradiction with the fact that the boundary layer is gov-
erned by a parabolic system of equations (if it is assumed that the pressure
is prescribed) and that the external inviscid flow is governed by a hyperbolic
system of equations. In addition, the order of magnitude of the distance of
upstream influence seems to be incompatible with the boundary layer thick-
ness because it is much greater than this thickness. Finally, in experiments,
a strong modification of the flow is observed although the boundary layer is
thin. The explanation of this latter point was known; a small perturbation
leading to a pressure increase induces a thickening of the boundary layer
which, in turn, provokes a larger pressure increase. Lighthill considers the
boundary layer perturbations. In the basic flow, viscosity plays a crucial role
but the perturbations occur on such scales that viscosity cannot influence
them. Then, the evolution of boundary layer perturbations is described by
the linearized equations of compressible, inviscid flow. This hypothesis is no
longer valid very near the wall where the viscous forces are of the same order
as the pressure and inertia forces and the no-slip conditions hold at the wall.
In the region very close to the wall, Lighthill assumes that the perturba-
tions follow the Orr-Sommerfeld equation established initially for analyzing
the linear stability of a laminar boundary layer subject to small perturba-
tions. The qualitative description of the structure is completed by assuming
that the perturbations can affect the external flow. The perturbations of the
external flow obey the linearized equations of supersonic, inviscid flow. The
equations proposed in the different regions are linked together by coupling
conditions which ensure the continuity of the different functions character-
izing the flow, the pressure and the velocity for example. According to this
formulation, Lighthill’s theory can be considered as a linearized version of
the triple deck theory. Lighthill’s theory allows the correct evaluation of the
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length of upstream influence and many other problems can be solved with
the non linear formulation.

We consider a steady, two-dimensional, incompressible, laminar flow on
a semi-infinite plate. The velocities, lengths and pressure are nondimension-
alized with reference quantities V, L and oV2. The reference velocity is the
freestream velocity and the reference length is the length of development of
the boundary layer. The streamwise coordinate x and the coordinate normal
to the wall y are dimensionless. The Reynolds number is defined by

~oVL
_M .

R

At distance L from the plate leading edge, the boundary layer is per-
turbed, for example, by a small hump at the wall. This point corresponds
to = xo (with the chosen reference length, 29 = 1). The hump can induce
boundary layer separation.

The objective is to define a model which is able to avoid the singu-
lar behaviour of the boundary layer but which is simpler than the Navier-
Stokes model. Therefore, a significant degeneracy of Navier-Stokes equations
is sought. It must be underlined that the model describes the perturbations
of the base flow.

Around the hump, the perturbed flow is structured in three decks as shown
in Fig. 7.2: a lower deck, a main deck and an upper deck. The triple deck
structure establishes a link between the unperturbed upstream flow and the
downstream flow.

LR73/8
_—
Upper deck
LR73/8
Oncoming LR-1/2 Main deck
boundary layer Lower deck ® LR™°/8

SO

Fig. 7.2. Triple deck structure

The streamwise and transverse length scales of the perturbed region are
LR~3/8 Inside the perturbed region, there are three decks. The thickness of
the lower deck is LR~5/8; the viscous effects are important in this deck. The
main deck is the continuation of the oncoming boundary layer. Its thickness is
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LR~1/2, and the viscous effects are negligible (for the perturbations) because
the dimensions of the perturbed region are such that the viscosity has no
significant effect. In the upper deck, the viscous effects are negligible; its
thickness is LR ~5/8.

Studies have been performed by specifying the order of magnitude of the
hump dimensions [22, 79, 80]; results are discussed briefly in Problem 10-3.
Here, the characteristics of the hump are not specificied, but we assume that
the dimensions are compatible with the results of the theory.

The triple deck theory describes, for example, the flow around a hump
whose height is of order LR~°/% and length is of order LR~3/8. It is fun-
damental to have in mind that the dimensions of the disturbance vary with
the Reynolds number and tend towards zero as the Reynolds number tends
towards infinity.

The scales show the local character of the theory. As the Reynolds number
tends towards infinity, the triple deck domain shrinks to a point. Then, the
theory is not able, a priori, to describe the global structure of a flow as the
Reynolds number tends towards infinity. In the same way, Prandtl’s boundary
layer theory describes the flow in the vicinity of the wall as the Reynolds
number tends towards infinity.

Below, we recall the main results of the triple deck theory without justifi-
cation of the scales and of the expansions in the different regions. The argu-
ments leading to the definition of the different gauges are given in Note 7.5,
p- 146. More detailed presentations of the construction of the theory are given
in [82, 86].

The small parameter of the problem e, asymptotic dimensionless thickness
of the oncoming boundary layer, is related to the Reynolds number by

e=RY2.

In each deck, the following variables are used

Upper deck: X = e/ *(x —zo), Y* =34y, (7.20a)
Main deck: X =e 4z —z), Y = ey, (7.20b)
Lower deck: X = ¢ 3/4(z —zo), Y =&/, (7.20c)

We denote by Uy(Y') the non perturbed velocity profile of the boundary
layer at point x = zo and its slope at the wall, A, is defined by

() -

The appropriate expansions in each deck are given below.
e Upper deck

U=1+2U5(X, Y+,
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V=PV XY ) 4
P=c?P}(X,Y*)+--- .
e Main deck
U=Uy(Y)+ AU (X, V) + -,
V= V(X,Y) 4,
P=ec2P(X,Y)+---.
e Lower deck
U=e*U (X, Y) 4,
V= (X, V)4,
P 261/2131(X,)~/)+--~ .

All the scales and asymptotic structures are discussed in Nayfeh [73] and
Mauss et al. [64, 65].

In the main deck, the first term is Up(Y") which does not depend on X.
This means that, to the considered order, the basic velocity profile does not
vary significantly in the perturbed domain. The first term in the upper deck
is 1, i.e. the value of the first approximation for the inviscid flow outside the
boundary layer. This value matches with the limit of Up(Y) as ¥ — oo.

The equations in the three decks are given below.

e Upper deck

(?9?)(&* gg}: =0, (7.22a)
ou; __ory iz
(?9‘;? = 725{ . (7.22¢)
e Main deck
% N % _0, (7.22d)
Uo% + Vl% =0, (7.22¢)
% =0. (7.22f)
e Lower deck
Uy | Vi _ 0, (7.22g)

ox oy
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~OU, S 0U, 9P 9T

Ula_X + Vi 8)7 = _8_X + 8)72 , (7.22h)
a—}zl =0. (7.221)
oY

In the main deck, the solution is

~ dUy
S dy
, . , dA
Vi=-A"(X)Uy(Y) with A'(X)=—,
dX
where the function A(X) is an unknown which must be determined such that
A—0as X - —o0.

Let E, M and I denote the expansion operators in the upper, main and
lower decks respectively. The application of the MVDP leads to the results
given below.

To order €'/ for U, the condition IMU = MIU gives

Uy = AX)UH(Y) with U(Y) (7.23a)

(7.23b)

lim (171 - A)N/) =2 (7.24)
Y —oo
To order /2 for V, the condition EMY = MEV gives
Vi'(X,0) = Ylim X,Y), (7.25)
or, taking into account (7.23b) and the fact that Uy — 1 as ¥ — oo
dA
V'(X,0)=——. 7.26
0= - (7.26)

To order £'/2 for P, the conditions IMP = MIP and EMP = MEP

give

Pi(X,0) = lim P(X,Y), (7.27a)
Y —oo

P{(X,0)= lim Pi(X,Y). (7.27b)

P, P,

Moreover, as we have — = 0 and — = 0, we deduce
oY oY

P} (X,0) = Py (X) = P (X) . (7.28)

Equation (7.24) is one of the conditions necessary to solve (7.22g, 7.22h,
7.22).

Condition (7.26) on velocity Vi*(X,0) allows the solution of the upper
deck equations (7.22a-7.22c¢). The velocity V;*(X,0) can be identified with
the perturbation of blowing velocity v, given by (7.19) used in the boundary
layer studies to simulate viscous effects on the inviscid flow. Function A is
called displacement function.
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Note 7.4. In the main deck, the slope of the streamlines is given by

edY v e/2AN(X)Uo(Y)

SAAX — u  Uo(Y) + e /AAX)UL(Y)

that is, to first order
dy

dx
Thus, the equation of the streamlines is

—e*A(X) .

Y = AX)+C,

with the condition A — 0 as X — —oo; C is a constant which depends on the
considered streamline.

With respect to the non perturbed streamlines whose equation is Y = C, we
note that the streamlines are displaced by the quantity —el/ 4A(X ) which depends
only on X and not on Y. In the main deck, all streamlines undergo an identical
displacement normally to the wall. Moreover, the velocity along a streamline is

[\/(Uo +el/4A UL)? + e AU2 =Us(Y =C)+0("/?) .
Y=—cl/4A(X)+C

Neglecting terms of order /2 the velocity is constant along the streamlines in the
main deck.

From the solution in the upper deck, the pressure and the velocity normal
to the wall are related by a Hilbert integral (Appendix I1T)

1 [ V(X0
P} (X,0) = —;55 1X(—_€) ¢,

o 1™ A(X)

de (7.29)

where the sign Sﬁ means that the Cauchy principal part of the integral is
taken. We also have

With (7.28), we deduce

de . (7.30)

We note that the main deck and lower deck equations are included in
the standard boundary layer equations. The lower deck equations are even
exactly the same as the standard equations but the boundary conditions are
not the usual ones. At the wall, we have

Up=0,V;=0, (7.31)
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but the matching between the lower deck and the main deck gives condi-
tion (7.24). Moreover, the perturbations must vanish at upstream infinity in
order to ensure the matching with the non perturbed boundary layer.

Solving the triple deck equations reduces essentially to solving the lower
deck equations (7.22g) and (7.22h), with the interaction law (7.30) and the
boundary conditions (7.31), (7.24). Function A(X) is a part of the solu-
tion. In practice, it is required to introduce a disturbance. If it is a local
deformation of the wall defined by Y = F(X), this function adds to the
displacement function and, everywhere, function A is replaced by (F + A)
if Prandtl’s transformation is used to reduce the wall to the equation
Y =0 [80].

In contrast with the standard boundary layer theory, the inviscid flow
and viscous flow equations form a strongly coupled system. The upper deck
solution depends on the lower and main deck solution through function A
whereas the lower and main deck solution depends on the upper deck solu-
tion through the pressure distribution. The upper deck solution cannot be
determined independently from the lower and main deck solution; conversely,
the lower and main deck solution cannot be determined independently from
the upper deck solution. It is said that the inviscid flow and the viscous flow
interact. The main deck has a passive role which consists of transmitting the
pressure and the displacement effect between the boundary layer (lower deck)
and the inviscid flow (upper deck).

The matching condition (7.25) on the velocity normal to the wall between
the upper deck and the main deck results from the identity of gauges for
this velocity component. This is an essential feature which guarantees the
absence of hierarchy between the three decks. In addition, in the lower deck,
the perturbation of streamwise velocity is of order £'/4, since the expansion
in this deck is B

w=e U, +--- .

Now, in this deck, the base velocity profile — Blasius’ profile — is given by
Up=\Y =4y .

Thus, in the lower deck, the base profile and the perturbation profile have
the same order of magnitude. Then, it is possible that the resultant velocity
has negative values. Associated with the interaction between the decks, this
property gives access to the calculation of separated flows. However, it must
be noted that the results given here do no constitute a solution to Gold-
stein’s singularity because, in the triple deck theory, the disturbance which
leads to separation tends towards zero as the Reynolds number tends towards
infinity.

Note 7.5. The choice of order functions is crucial for the consistency of the re-
sults and the success of the model. The constraints used to determine these order
functions are given below.
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At first, it is observed that the pressure, to first order, matches directly between
the different decks. The pressure perturbations are of the same order everywhere.

The main deck is the continuation of the oncoming boundary layer. In this way,
the thickness of the main deck is known.

In the upper deck, the dimensions of the perturbed domain are the same in
both directions of space.

The two terms of the continuity equation are always of the same order in the
different decks so that this equation is never trivial.

In the lower deck, the viscous terms, the inertia terms and the pressure term
have the same order in the streamwise momentum equation so that the no-slip
condition at the wall applies.

The wall shear-stress is given by the slope of the velocity profile at the wall in the
lower deck. The choice of the order function is such that the perturbation of the wall
shear-stress has the same order as the wall shear-stress of the oncoming boundary
layer. Thus, the resultant wall shear-stress can be negative and the solution can
describe a separated boundary layer.

The velocity component normal to the wall has the same order in the upper
deck and in the main deck. This essential condition prevents the hierarchy between
the different decks from occurring.

Note 7.6. Without any external disturbance, the triple deck model has the trivial
solution A = 0. There exists, however, an eigensolution such that [98]

p=—a(-X)"*, %:o if X <0,
dA
p=0, ﬁ:—O¢X1/21fX>O,

where « is an arbitrary constant. From Sychev [98, 101], an appropriate choice of «
makes the solution compatible with downstream conditions, and the singularity at
X =0 is smoothed. This model is implemented in association with Kirchhoff’s free
streamline model in order to analyze the separation problem on a regular surface,
for example, on a circular cylinder [102].

Note 7.7. In supersonic flow, the triple deck structure is very close to the incom-
pressible case but the interaction law (7.30) is replaced by Ackeret’s law which,
with appropriate scales, can be written as

P=ax
Lighthill’s linearized form of the triple deck has an eigensolution [58]
p=arexprX + -+,

which provides us with the key of the free interaction problem in which perturba-
tions propagates upstream. These solutions can be interpreted as the generation of
spontaneous perturbations.
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7.2 Analysis of an Integral Method

7.2.1 Integral Method

We consider a laminar, two-dimensional, incompressible, steady boundary
layer flow. The boundary layer equations are given by (7.9a—7.9¢) and the
pressure is related to the external velocity by (7.13).

An integral method [20] is based on the integrated form of the local
equations, the integration being performed with respect to y over the whole
boundary layer, i.e. between the wall and the boundary layer edge. The in-
tegral equations represent global balance equations over the thickness of the
boundary layer. The choice of integral equations is practically infinite: we can
take, for example, the integrated form of the continuity equation or of the mo-
mentum equation, we can take also the integrated form of the kinetic energy
equation or of any other moment equation. Here, we choose the integrated
form of the kinetic energy equation and of the momentum equation [20]

d53 53 due
- =92 .32
1z +3ue 1z Cp, (73 a)
do H + 2 du, Cy
— = —L .32
dx+9 u. dx 2 (7.32b)

In these equations, u. is the velocity at the boundary layer edge; 1, d3 and
0 represent the displacement thickness, the kinetic energy thickness and the
momentum thickness respectively; H is the shape factor. We have

e} o] 2
0 Ue 0 Ue Ug
9:/ i(1i> dy . H=
0 Ue Ue 0

The dissipation coefficient C'p and the skin-friction coefficient C'; are defined

by ,
1 o ou Cf Tw
Cp=— =) dy, 2L ==
D= oud o “<6y) Yo T 2

where 7, is the wall shear-stress

(2

The dissipation coefficient represents, with the boundary layer hypotheses,

0
the integral of the deformation work of viscous stress (,ua—u> 6_u which is
Y Y

responsible for the transformation of kinetic energy into heat.
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The standard method of solution of boundary layer equations — the direct
mode — consists of assuming that the distribution of the external velocity w,
is known and prescribed. An inviscid flow calculation provides us with this
distribution. Then, the integral equations (7.32a) and (7.32b) contain five
unknown functions d1(z), ds(z), 6(z), Cp(x) and Cy(z). Function H(x) is
not an additional unknown since, by definition, we have H = §;/6. The set of
equations being open, it is necessary to complete the integral equations with
closure relationships. They have the form

2
% — F(H), (7.33a)
32
%Re — B(H), (7.33b)
H32 = Fg(H) y (733(3)

where Ry is the Reynolds number based on the momentum thickness

0
R@ = o )
7
and Hso is defined by
0
Hszo = 93

Functions Fy(H), F»(H) and F3(H) are obtained from Falkner-Skan’s
self-similar solutions [20]. These functions are given on Figs. 7.3, 7.4 and 7.5.

Thus, the boundary layer integral equations (7.32a) and (7.32b) associated
with the closure relations (7.33a), (7.33b) and (7.33c) constitute an integral
method for calculating boundary layers.

For the analyses presented below, it is more convenient to rewrite the
equations by taking into account the definition of H3s. We have

ddz _H32d9 9H32dd ((51>

do dx 0
do doq
= (Hyo = HHgy) — + Hyp
with dH
Hby = —2
327 0
The set of integral equations becomes
de doy 03 du,
(Hso — HH?’)Q)d + Hyy— I 3—6 W =2Cp, (7.34a)
de H+2du, C
W gt edue Oy (7.34b)

dx U dx 2
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Three problems are discussed subsequently

Problem 1. The external velocity u () is known. The boundary layer prob-
lem is set under its standard form — the direct mode. It is examined if the
boundary layer calculation is always possible.

Problem 2. The distribution of the displacement thickness ¢ (z) is assumed
to be known and the distribution of the external velocity becomes an
unknown function. The boundary layer is calculated in the inverse mode.
It is examined if the calculation of the boundary layer is always possible.

Problem 3. We analyze the flow in a diffuser whose geometry is known, and
we assume that the velocity distribution in the core of the flow is uniform
in a cross-section. The viscous and inviscid flow equations interact and it
is examined if the calculation is always possible.

7.2.2 Direct Mode
We assume that the distribution of the external velocity wu.(z) is prescribed.

Taking into account the closure relationships (7.33a—7.33c), the main un-
knowns in (7.34a), (7.34b) are 61 (x) and 6(x). Then, the question is to cal-

culate their derivatives — and —, from the system
dx dx
do d61 53 due
Hsy — HH}))— + Hy\y— = 2Cp — 3— .
(Hsz 32)da: T o Cp 3ue a1z (7.35a)
de Cy H + 2 du,
o =3 o 78

The determinant of this system is
Ay =—Hj, .

We assume that the shape factor H is larger than 2.21 which corresponds to
the stagnation point in two-dimensional flow. In this domain, the determinant
Aq is zero when H = 4.029 (Fig. 7.5), which corresponds to boundary layer
separation; the skin-friction vanishes for this value of H (Fig. 7.4).

At separation point, the resolution is either impossible or indeterminate.
The indetermination occurs if the compatibility relation is satisfied

2Cp — 35_3due = Hso (ﬁ — M%) ;

ue dx 2 U dx

which implies that the distribution of external velocity follows a particular
law which is not verified generally.

Then, in general, the resolution of boundary layer equations is impossible
at separation. It follows that the derivative —L becomes infinite because —

x x
can be calculated from (7.35b) and, substituting in (7.35a), we obtain a finite,
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dé
non zero value of H. §2—1. As H!, vansishes at separation, it is deduced that

the value of the derivative of §; becomes infinite. Moreover, the calculation
of the boundary layer downstream of separation is impossible because the

derivative 2 is non zero at separation point if the compatibility relation

is not satisﬁe(f Then, the value of H3o becomes less than the minimum value
given by relation F3(H).

The separation singularity and the impossibility of calculating the bound-
ary layer downstream of separation when the external velocity (or the pres-
sure) is prescribed are results similar to those obtained by Goldstein [40] (see
Problems 7-4 and 7-7).

7.2.3 Inverse Mode

Now, we assume that the distribution of the displacement thickness is known
and prescribed. The distribution of the external velocity becomes an unknown
and must be calculated from the boundary layer equations. In practice, this
problem has a meaning only if the boundary layer equations are associated
with the inviscid flow equations and if an algorithm is devised to solve the
set of both systems of equations. This question is discussed in Sect. 7.3.

In this mode, putting the main unknowns on the left hand side, the bound-
ary layer equations can be written as

do 63 due d§1
. 4 _ _— — — [t
(Hsz HH32)d33 + 3ue i 2Cp — Hs, e (7.36a)
deo H+2due Cf
o +0 P T (7.36Db)
L do du, . .
The unknowns are the derivatives P and . The determinant of this
T T
system is
H+2 1) 0
Ay =0 (Hsy — HHY,) — 3u—3 = — [(Hsy — HHY,)(H +2) — 3Hsg) .

For H > 2.21, it is shown that Ay # 0. In the inverse mode, we are certain
that the resolution of the boundary layer equations presents no singularity
if, obviously, the distribution of 7 is sufficiently regular. Even at separation,
there is no difficulty to solve the boundary layer equations.

This result is similar to the conclusions of Catherall and Mangler [12] who
have shown numerically that the solution of the boundary layer equations in
inverse mode is regular through a separation point.

An important conclusion is that the separation singularity cannot be at-
tributed completely to the use of boundary layer equations. The way in which
these equations are solved plays an important role (see Problem 7-3).
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7.2.4 Simultaneous Mode

We consider a flow in a symmetrical plane diffuser whose geometry is given.
Function h(z) is known (Fig. 7.6). For the sake of simplicity, we assume that
the velocity u. of the flow in the inviscid region is uniform in a cross-section.
We also assume that the evolution of the cross-section is slow. By using
the definition of the displacement thickness d;, the mass conservation in the
diffuser yields

ue(h —61) = Cst

or, after differentiation,

dh doy du,
— +(h—=9¢
b +( ) dx

e7  — Ue =0.
udm dz

The shape of the diffuser being known, the main unknowns are the displace-
ment thickness d;(x), the momentum thickness 6(x) and the velocity u.(x).
The equations are

d9 d(51 63 due
. 1\ 4v r 401 93 _
(H32 HH32)d;l: + H32 a1z + 3ue a1z 2Cp , (737&)
a6 H+2du, O
= 0 ==L .37b
dz + ue dzx 2’ (7.37)
ds, du,  dh
Ue g~ + (h—61) o = leq (7.37¢)

The unknowns being the derivatives of 8, 6; and u., the determinant is

Az = (Hsy — HHj,)(H 4+ 2)0 — [Hjo(h — 01) + 3H3s20] .

Fig. 7.6. Flow in a diffuser
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This determinant vanishes when
(Hss — HH}5)(H +2) + HHY, — 3Hss
Hi, '

L) with f(H) =

Function f(H) has a local minimum f = 183.5 when H = 6.67 (Fig. 7.7).
This means that the resolution of (7.37a), (7.37b) and (7.37c) is possible
when h/6 < 183.5 (by assuming that € remains positive). In this domain, the
simultaneous resolution of viscous and inviscid equations do not raise any
difficulty. When the cross-section of the diffuser is too large compared to the
boundary layer thickness (h/6 > 183.5), it is possible that the hypothesis of
a one-dimensional inviscid flow, uniform in a cross-section, is not sufficient
to express the interaction with the boundary layer. It would be necessary to
consider a two-dimensional inviscid flow.

We observe that the determinant A; is a minor of the determinant Ag
which occurs when the viscous and inviscid equations are solved separately
as in the direct mode. Therefore, this analysis shows that the separation
singularity is associated with the technique used to solve the whole flow.
However, if the separated zone is too extended, the standard boundary layer
hypotheses must be revised because certain hypotheses are restrictive, for
example the hypothesis of a constant static pressure along a normal to the
wall.

It must be noted that all the conclusions drawn above are obtained with
a finite Reynolds number. As the Reynolds number tends towards infinity, the
interaction between the boundary layer and the inviscid flow becomes ineffi-
cient to solve the separation singularity because, for a given diffuser geometry,

the momentum thickness 6 tends towards zero and — becomes infinite. This

result is similar to the one obtained by Stewartson [96] who has established

10%f(H)

)
w
e N
)
[@)
]
%)
\O
S

_s5L

(Hs2 — HH3p)(H +2) + HH3p — 3Hso
Hi,

Fig. 7.7. Function f(H) =
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that the triple deck structure is not able to solve the separation singularity
when the boundary layer develops in the presence of a pressure gradient in-
dependent of the Reynolds number. There is no contradiction with the triple
deck theory because, in this theory, the dimension of the disturbance and
therefore the associated pressure gradient vary with the Reynolds number.

7.3 Viscous-Inviscid Interaction

In aerodynamics, a standard problem is to calculate the flow around an airfoil
at least when the flow is not separated but it is also desired to calculate
separated flows to know, for example, the value of the maximum lift and the
corresponding angle of attack.

When the Reynolds number is large enough, an approximate solution of
the Navier-Stokes equations is obtained from the viscous-inviscid interaction.
The problem consists of solving the system comprising the inviscid equations,
the boundary layer equations and the interaction law which connects the two
systems of equations. Historically, these methods have been developed on
a purely intuitive basis. Nowadays, a justification, at least partial, has been
provided by different theories including the boundary layer theory and the
triple deck theory. Other analyses bring additional elements [22, 80]. The
study presented in Subsects. 7.2.2-7.2.4 with the integral method justifies
also the interaction methods.

An essential difference between the asymptotic theories and the viscous-
inviscid interaction methods must be noted. The latter methods are devoted
to solve problems at finite Reynolds numbers, which is the practical problem,
whereas the asymptotic methods study the behaviour of flows as the Reynolds
number tends towards infinity. The conclusions are not necessarily identical.

According to the standard boundary layer theory, the calculation of the
interaction is performed sequentially. At first, the inviscid flow is calculated
around the real airfoil by applying the condition that the velocity normal
to the wall is zero at the wall. Afterwards, the boundary layer is calculated
with, as input, the streamwise wall velocity determined by the inviscid flow.
Finally, the inviscid flow is corrected by taking into account the displacement
effect. The procedure is called direct-direct: direct for the inviscid flow and
direct for the boundary layer (Fig. 7.8).

In the presence of separation, the procedure is no longer valid because the
solution of boundary layer layer equations is singular and it is not possible
to calculate the boundary layer downstream of the separation point. To solve
this problem, inverse methods can be used (Fig. 7.9). These methods can be
associated with inverse methods to calculate the inviscid flow: the input is the
pressure calculated from the boundary layer equations and the result is the
shape of the body corresponding to the pressure distribution (in fact the real
shape modified by the displacement effect). In practice, this type of method,
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Fig. 7.8. Viscous-inviscid interaction. Direct mode

Inviscid flow
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Fig. 7.9. Viscous-inviscid interaction. Inverse mode

called inverse-inverse, is not easy to implement and other procedures have
been developed [102].

Semi-inverse methods are a very efficient example [9, 10, 53, 54, 56]. These
methods consist of solving the boundary layer equations in the inverse mode
and the inviscid flow equations in the direct mode (Fig. 7.10). For a given
distribution of the displacement thickness, the boundary layer equations yield
a distribution of velocity u. pr.(x). For the same distribution of the displace-
ment thickness, the inviscid flow equations yield a distribution of the wall
velocity ue n(z). Generally, for any distribution of the displacement thick-
ness, the two velocity distributions are not identical. Iterative procedures
have been devised to obtain u. pr(x) = u. n(x). For example, Carter [9, 10]
proposed to determine the new estimate of the displacement thickness at
iteration (n + 1) by

) =01(0) 14w (EBE 1))

where w is a relaxation factor.

Another approach has been developed by Veldman [109]. In agreement
with the triple deck theory, the inviscid flow and the boundary layer are
strongly coupled and there is no hierarchy between the systems of equations.
In a simultaneous method, the external velocity u.(z) and the displacement
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Fig. 7.10. Viscous-inviscid interaction. Semi-inverse mode

thickness 01 (x) are calculated simultaneouly from the set of viscous and in-
viscid equations.

For example, let us consider a flow on a flat plate perturbed by a small
local deformation of the wall. The external velocity u, is given by

e (1) = u® + Sue(x) ,

where u? is the velocity induced by the shape of the real wall calculated
from the linearized Euler equations and du.(z) is the perturbation due to the
boundary layer. This perturbation is expressed by a Hilbert integral

1w
St = Wia Ll (7.38)
In (7.38) vy is the blowing velocity given by (7.19)
d
up(§) = X [ue(€)d1(S)]

which simulates the boundary layer effect in the domain (x,, ;). The Hilbert
integral and the boundary layer equations are solved simultaneously with an
iterative method [109]. An application is presented in Sect. 9.1.

This method has been extended to the calculation of the flow around
wings with compressibility effects [13].

7.4 Conclusion

At high Reynolds number, the study of the flow around a streamlined body
benefits from the structure comprising an inviscid region and a boundary
layer. Historically, the standard boundary layer theory and the triple deck
theory participated in the understanding of interaction between the two re-
gions to a great extent. From a practical point of view, the viscous-inviscid
methods are very efficient tools. Different numerical techniques, partially in-
spired by results obtained by the application of MMAE, have been proposed
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to answer the needs to calculate flows in strong interaction. In Chap. 8, the
successive complementary expansion method, SCEM, is applied to flows at
high Reynolds number. Thanks to the use of generalized expansions, it will
be shown that the theory of interactive boundary layer, IBL, is fully justi-
fied.

Problems

7-1. We consider the Navier-Stokes equations describing the steady flow of
an incompressible Newtonian fluid around a semi-infinite flat plate deformed
by an indentation whose equation is y = ¢F' (z) for « > 0. The freestream, of
velocity Vo 71is uniform and parallel to the plate. The leading edge is at x = 0

and € = R, ? is a small parameter with R, denoting the Reynolds number
Voo L
Re == )

14

where L is the characteristic length of development of the boundary layer.
Below, all the variables are dimensionless.
For the stream-function ), the outer expansion is

1/’(%1/75) :¢0($ay)+51 (5)¢1 (l‘,y)+ :

The inner expansion writes

1/)(x,y,5) =4 (5)¢0 (‘T’Y)+ )

with

Y ==.
5

Give g, Ag, 61 and write the equation for ¢y.

We seek a solution for ¢g in the form ¢o = 2z f () with n = Y /\/2x
and Y =Y — F(z). Write the equation for f(n).

It is noted that

f)=n—PFo+EST as n—oo,

and

1
Fn)=gam*+0 (") as n—0.

Deduce the equation for the streamline v» = 0 to second order. To write
this equation, the matching between the outer and inner expansions will be
used.

7-2. Hiemenz’s problem. We study the boundary layer in the vicinity of
a stagnation point of a circular cylinder placed in a uniform freestream [37].
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Fig. 7.11. Flow around a circular cylinder

The small parameter e of the problem is defined by

1 Vot
2 o0
_ = Re —
c Re '’ © v

where a is the radius of the circle and V,, is the freestream velocity.
The following dimensionless quantities are used

r

Voo’ p:QVOQO

In dimensionless form, using polar coordinates (Fig. 7.11), the Navier-
Stokes equations write

6u9 0

B0 ") =0
up Qup | Oug | ugur _ 10p € 0 [Our , Dup
r 00 Ur or r ro r Or | 00 or 0

2210 w)]
r 00 r 06 r
_A'_i <laur + % _ %)
r \r 00 or r )’
wg O, ou, ug op €20 ou,
o0 " or r - or ror {2T 31"]
e? 9 {1 Ou,  Oug ’U,9:|

r 00 or r
g2 {1 Oug ur]

o i

2o v T
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MMAE is applied. Check that the first appoximation, solution of the
reduced equations, is
. 1
ug1 = sin 6 1+,
r

1
Up1 = cosf (1+ —2) ,
r

1
P1 = Poo + 3 [1 - (Ugl +u31)] .

Give the evolution of ug1, u,1, p1 in the neighbourhood of the stagnation
point (6 =0, » = 1). Deduce the form of the inner expansion

ug:e?Ugl(@,R)Jr"' R

ur =eUpm (O, R) + -+,

p=Py+e*P(O,R)+---,
where

O=-,R=

0 r—1
€ e
Write the equations for Upy, U1, P1. Give the boundary conditions and the
matching conditions.

We seek the solution in the form

Ugr = @(pl(R) , U= *(p(R) , P = 72(@2 +@(R)) .

Write the equations for ¢ and @.

Calculate the difference of stagnation pressure between the wall and the
boundary layer edge (R — 00).
7-3. The evolution of a laminar boundary layer is described by the integral
method proposed in Subsect. 7.2.1. We assume that the shape factor H of the
boundary layer is a known function of x: H = H (z). Write the equations in

do du
the form of a system for — and —. Is the calculation of these derivatives

x x

always possible?

7-4. Goldstein’s singularity. Goldstein [39] studied the structure of the so-
lution of the boundary layer equations downstream of a point xy where the
velocity profile is prescribed.

All quantities are dimensionless. The reference quantities are £, ug, o, v.
The Reynolds number is R = ugl/v. The quantities x, y, u, v and p are
dimensionless, the reference quantities being ¢, E/Rl/z7 uQ, uo/Rl/Q, Qu(l)/Q
respectively.

1. Show that the boundary layer equations write
ou  Ov
oz + oy 0,
ou v dp 0%u
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2. We assume that the velocity profile at xq is given by

u=a1y+ay’ +azy’ +---

where aj, as, ...are functions of x. The profile satisfies the condition v = 0
at y =0.
We also assume that the pressure gradient can be written as
dp
—1, = Po TP —@o) +par —z0) 4
where p1, po, ...are constants.
From the boundary layer equations, show that the following relations hold
d 2 d
25 +po=0, a3=0, ay—t —2a3=0, —a;—2—20a5=0.
dzx 3 dx

3. By differentiating the boundary layer equations with respect to z show
that

da2 d(lg
2—= =0, —=0.
dz th T dx
4. Show that
200 +po=0, a3=0, blas+2a1p1 =0.
Coefficients aq, ay, . ..are free. Note that the pressure gradient and therefore

the coefficients p; are prescribed.

The above conditions are called compatibility conditions. If they are not
satisfied, singularities occur when solving the boundary layer equations down-
stream of point xg. A particular case occurs if a; = 0, which corresponds to
boundary layer separation. Then, show that the compatibility conditions are

2(12+p0207 03:0, (14207 a5:07

6!as = 2pop1, a7 =0.

Coefficients asg, a1, aig, aoo, . ..are free.
In general, all the compatibility conditions are not satisfied. Goldstein as-
sumes that the condition 2a2+pg = 0 is satisfied but not the other conditions.

Show that
a1 = /48ay(x — x0) |

da
and deduce that the derivative d—l is infinite at point x = xg. If the solu-

tion exists upstream of point z, goeﬂicient a4 must be negative. Then, the
solution is impossible downstream of point xg. This behaviour is known as
Goldstein’s singularity. Goldstein confirmed this conclusion by studying in
detail the structure of the solution in the neighbourhood of the separation
point.

7-5. Goldstein’s wake. Goldstein [39] studied the structure of the solution of
boundary layer equations, with a prescribed pressure distribution, when the
velocity profile is given at point x = xg.
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The following dimensionless quantities are used

u:u_7 v:U_Rl/Q7 x:%, y:y_Rlﬂ7 p:p_

U Ug J4 oug

and the Reynolds number is

R= "t
1%

In these relations, ug is a reference velocity and ¢ is a reference length.
In dimensionless form, the boundary layer equations are

ou  Ov

9z oy
ou ou  dp %u
Ox oy dx | 9y

:O’

At point of abscissa zg, the velocity profile is given by
u(zo,y) = ap + a1y + asy® +asy® +--- .

The case ap = 0, a1 # 0 is studied here and we consider the formation
of a symmetric wake downstream of a flat plate. The singularity is due to
a change of boundary conditions at y = 0 because, downstream of point z,
we must have

ou
=0: =0, —=0.
The pressure gradient is prescribed as

dp
a4 P + p1(z — o) + pa(z — 20)* + -+ .
x
MMAE is applied. The proposed structure comprises two layers: an outer

layer in which the appropriate variables are

gz(l‘i‘ro)l/n? y,
and an inner layer in which the appropriate variables are

)

= — 1/71 = -
5 (-'L' xO) y M n(fL'_.'L'O)l/n

The solution is studied in the downstream neighbourhood of point xg.
The small parameter of the problem is &.

The case n = 1, leading to a regular solution, is discarded. We assume
that n > 1.

We seek an outer expansion in the form

u=Fy(y) +&F (y) + EFy) + - .
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L

Outer layer

Inner layer

Zo

Fig. 7.12. Formation of a wake

At € =0, we must have u = u(zo, y), hence
Fy=ao+ a1y +ay’ +--- .

Express v from the continuity equation.
From the momentum equation, give the equation for Fj. Show that the
solution has the form
Fy =kF].

The impossibility to satisfy all the boundary conditions, due to the absence
of viscous term, leads us to introduce the inner layer. We seek the solution
in the form

w=fo(n)+ &A1) +Ef(m) + -

Express v from the continuity equation.

From the momentum equation, give the value of n. Give the equations
for f§ et fi and give the boundary conditions. Write the matching on the
velocity u between the outer and inner layers. Show that fo =0 and F; = 0.
The following result will be used

fi = an*+EST.

77— 00

Note 7.8. In a very small neighbourhood of the trailing edge, it is necessary to
refine Goldstein’s solution by considering a triple deck structure (see Subsect. 9.2.1).
Goldstein’s solution is correct outside this neighbourhood and is used as a boundary
condition for the structure closer to the trailing edge.

7-6. Flat plate leading edge. Goldstein [39] studied the structure of the so-
lution of boundary layer equations, with a prescribed pressure distribution,
when the velocity profile is given at point x = .
The following dimensionless quantities are used
U=—, U:£R1/27 'I:£7 y:y_*R1/27 p= p*a
U U ¢ ¢ ou?
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and the Reynolds number is
uol
R=-2.
v
In these relations, ug is a reference velocity and ¢ is a reference length.

In dimensionless form, the boundary layer equations are

ou, ov
or 0Oy
ou ou dp 0%*u

:07

At point of abscissa zg, the velocity profile is given by
u(zo,y) = ao + a1y + azy® +azy’ +--- .

The case ag # 0 is studied here. This represents, for example, the for-
mation of the boundary layer in the neighbourhood of a flat plate leading
edge. The singularity is due to the change of boundary conditions at y = 0
because, downstream of point zy, we must have

The pressure gradient is prescribed as

d
_d_i = po+pi(z — xo) + pa(a — w0)* + -+

MMAE is applied. The proposed structure comprises two layer: an outer
layer in which the appropriate variables are

é.:(-r—xO)l/n7 Yy,
and an inner layer in which the appropriate variables are

)

= — 1/7l = -
5 (.'L' 1'0) y M n(xfxo)l/"

The solution is studied in the downstream neighbourhood of point zg.
The small parameter of the problem is &.

The case n = 1, leading to a regular solution, is discarded. We assume
that n > 1.

We seek an outer expansion in the form

u=Fy(y) +EF(y) + EF3(y) + - .
At £ =0, we must have u = u(xg,y), hence
F =ap+ary+agy?+--- .

Express v from the continuity equation.
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Inner layer

Zo

Fig. 7.13. Formation of a boundary layer

From the momentum equation, give the equation for F;. Show that the
solution has the form
Fy =kF] .

The impossibility to satisfy all the boundary conditions, due to the absence
of viscous term, leads us to introduce the inner layer. We seek the solution
in the form

u=fo(n)+ &) +Efm) + -

Express v from the continuity equation.

From the momentum equation, give the value of n. Give the equations for
f{ and f] and give the boundary conditions. Do not seek to solve analytically
the equations for fj and f{. It is known that as 7 — oo, we have

fo = /10’17+B()+EST7

— 00
with By = —0.86A4. Show that the behaviour of f; is

fi = AP+ B+ Ci e
— 00
Express A1 and Bj.
Write the matching on the velocity v between the outer and inner layers
up to order &. Express Ag and k as function of ag.

Note 7.9. In a very small neighbourhood of the leading edge, it is necessary to
refine Goldstein’s solution by considering the Navier-Stokes equations.

7-7. Neighbourhood of separation. Goldstein [40] studied the structure of the
solution of boundary layer equations, with a prescribed pressure, when we
give the velocity profile at point x = xy where the boundary layer separates.
The solution is studied here upstream of the separation point.

The following dimensionless variables are defined by
A A A

4 l Ueo U’ZO

xr =
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£7 1/}:_*}{1/2_

p =
ouZ, ugol

The velocity u}, is the velocity at the edge of the boundary layer at point
x(. The stream-function v is such that

_
oy’ Oz

u

The reference length ¢ and the Reynolds number are defined by

uk (TN
g _ e0 — e0
du? , R v

dz* / .

0

The boundary layer momentum equation becomes

ou n ou dp n 0%u
—“U—F+v—=—+ — .
oz Oy dx  0y?
The pressure gradient is prescribed as

d
d—iz—(1+p1x+p2x2+-~-).

At x = 0, the velocity profile is given by

u(0,y) = agy® + asy® +--- .
MMAE is applied. Two regions are identified. In the inner region, the

variables are

_ 1/ -9
E=a/", n= 21/241/n °
In the outer region, the variables are

E=a'" y.

We assume that the outer and inner expansions are respectively

w=2(fo(n) + &1 () +Efs(m) +--+)
u=xo(y) + XA W) + Exa ) + -

The small parameter of the problem is £&. We assume that y} can be
expanded in Taylor series in the neighbourhood of y = 0. Show that

! a
lim =L = —-27/2
n—oo N’ 2
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We study the inner expansion. The stream-function has the expansion

Y=222Efo+ [+ Efr+E s +Efi+ 1)

With ap = 0 and a; = 0, the previous conditions imply that f, = 0 and
f1 = 0. Show that the balance between viscous and convection terms leads
us to take n = 4. Give the equations for f, f3 et f4. Give the boundary
conditions at y = 0. Check that the solutions for fs, f3 and fy are

3
fQZ%a
f3=ain?,
2
_ 2 X 5
fa = aaon T

where a7 and ap are constants yet undetermined.
Show that we must have az = 1/2 and a3 = 0.
Show that a; is given by

af

Ay = 6

Now, we study the outer expansion. The stream-function has the expan-
sion
Y=xo+&a+Ex2+ N3+

Show that
X1 = 0 )
X2 = 2821 xp
X3 = 23/2a2X6 )
with
y2 4
Xo =3 +auy' 4+

ou
From the inner expansion, calculate (—) . From the outer expansion,
Y/ y=0

0
showthatvﬁooanda—uﬁooasﬁﬁo.
x

Note 7.10. The study of the solution downstream of point x§ show that as has the
form a4 = 6% /6. This solution is compatible with the solution upstream of point
x4 only if as = 0. For a given distribution of the external velocity, this condition
is not satisfied in general. This condition can be satisfied only for a particular
distribution of the external velocity. Catherall and Mangler [12] proposed to use an
inverse method to produce a regular solution.



8 Interactive Boundary Layer

The method of matched asymptotic expansions, MMAE, has been extensively
used in fluid mechanics and contributed to the remarkable advances in the
description of flows [107]. The study of high Reynolds number flows past
streamlined bodies is one of the most famous example.

The boundary layer theory emerged at first from the very inspired ideas
of Prandtl. Much later, a sound mathematical basis has been introduced with
the formalism of MMAE. Thanks to this mathematical tool, Van Dyke [105]
also proposed an improvement with a second-order boundary layer theory
which takes into account various effects, for example the influence of the
streamwise or transverse wall curvature, the influence of external vorticity or
the influence of a gradient of stagnation enthalpy. A few years later, a break-
through in the understanding of interactions between the inviscid flow and
the boundary layer occurred with the triple deck theory whose consistency is
fully based on the use of MMAE [69, 74, 100].

The viscous-inviscid interaction at high Reynolds number is analyzed here
by using the successive complementary expansion method, SCEM. As for
ordinary differential equations, the principle of SCEM is to seek a UVA, an
approximation which is uniformly valid in the whole flow field. Moreover,
the introduction of generalized expansions proved to be very fruitful. The
first step consists of the inviscid flow approximation which applies far from
the walls. Obviously, this approximation must be improved near the walls by
adding a correction which takes into account the effects of viscosity. Thanks
to generalized expansions, a strong coupling occurs between the viscous and
inviscid regions. The hierarchy obtained with MMAE is broken, which is
a major difference between MMAE results and generalized SCEM results.
This notion is called “interactive boundary layer”, IBL. This means that the
effect of the boundary layer on the inviscid flow and the reciprocal effect are
considered simultaneously. The construction of UVAs does not require any
matching principle, only the boundary conditions of the problem are applied.

The principle of a strong interaction between the inviscid flow and the
boundary layer is known for a long time and has been implemented in cou-
pling — or interactive — methods [9, 13, 53, 109, 111|. However, Sychev et
al. [102], in commenting these methods, noted that: “No rational mathe-
matical arguments (based, say, on asymptotic analysis of the Navier-Stokes
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equations) have been given to support the model approach”. The objective of
this chapter is precisely to lay the theoretical foundations of the IBL methods
thanks to SCEM.

8.1 Application of SCEM

We consider a flow at high Reynolds number past a flat wall. The flow is lam-
inar, incompressible, two-dimensional and steady. The dimensionless Navier-
Stokes equations are (Appendix I)

ou oy
™ + a—y =0, (8.1a)
ou ou  aP L, (U PU
oy 9V P L, [0*V 9%V
i - - _ — 4+ — 1
u@x + V@y a9 +e <8x2 a7 ) (8.1c)
with 1
2 H
CTRT WL (82)

where the Reynolds number R is based on the reference velocity V and on
the reference length L. All the variables are reduced with these reference
quantities. The coordinate along the wall is « and the coordinate normal to
the wall is y; the velocity components along x and y are U and V), respectively;
the pressure is P.

For the needs of SCEM, the momentum equations are written by putting
all the terms on the left hand side and, symbolically, (8.1b) and (8.1¢) become

L.U=0,
L.V=0.

It is understood that, for any UVA, the continuity equation is identically
satisfied.

8.1.1 Outer Approximation

At first, we seek an outer approximation with a generalized expansion begin-
ning with the terms

u:ul(xay7€)+“'a
V:U1($7y75)+"' 5
P = pi@.y.0) +- -
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By neglecting O(g?) terms, the Navier-Stokes equations reduce to the Euler
equations,

6u1 (9’01 -
(9’11,1 6u1 - 6p1
U O + v 8y = — F (83b)
0 0 0
w o o = - (8.3¢)

Ox Ula_y_ oy

The solution of these equations requires boundary conditions. At infinity, the
most common condition is to prescribe a uniform flow. If the oncoming flow
is rotational, the conditions must be examined specifically for each particular
case. Along the walls, boundary conditions are also required but, at this
stage of the discussion, it is not possible to specify them. It is known only
that the no-slip conditions cannot be imposed and the approximation already
obtained needs refinement.

8.1.2 Determination of a Uniformly Valid Approximation

The application of SCEM consists of adding a correction to the outer approxi-
mation (Fig. 8.1)

U=u(z,y,e)+Us(x,Y,e)+ -, (8.4a)
V=uvi(x,y,¢e)+eVi(a,Y,e)+ -, (8.4b)
P :pl(x7y35)+A(5)P1(ma}/ae)+"' ) (84C)

where A is a gauge function yet undetermined and Y is the boundary layer
variable

Y = (8.5)

Y
-
The term V) in the expansion of V is justified by the continuity equation
which must be non trivial, and then, the terms involving derivatives with
respect to the streamwise and transverse variables must be of the same order
of magnitude. The form of the expansion for pressure P is discussed later.

Note 8.1. The idea to add a correction to the outer approximation meets the con-
cepts of corrective boundary layer and of defect formulation mentioned on page 79.

With expansions given by (8.4a-8.4¢) and using (8.3a-8.3¢), the Navier-
Stokes equations become

8U1 851/1

oz + 2y =0, (8.6a)
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U1

Ul % E‘/l

- —

o oo
E%/U U, dY

Fig. 8.1. Velocity components in the boundary layer

0 oU, 0 oU
Urgo (w1 +Uh) +un—— +<Vig, (U1+U1)+v18—y1
oAP, ., 02 , 02
= 7W+5 a_(ulJFUl)JH? 8_y2(u1+U1) , (8.6b)
0 \% 0 eV
U16—x(v1+€V1)+u1 €1+EV16 (v1 +eVh) + vy ch
oAP, 02 02
= "oy T° 557 (1 en) +¢&° ﬁ(vl—i—sVl) : (8.6¢)

The simplification of these equations leads to the first and second order
IBL models discussed below [25]. To achieve this goal, the derivatives with
respect to y must be evaluated carefully. For example, the diffusion terms in
the y-direction become

82 82’&1 62U1
2 2
68—y2(u1+U1)— ay2+m,
5 02 5 vy 0*Vy
g2 W (Ul + €V1) a +e€ 8Y2 s

and the derivative of the pressure is

OAP, _ A0P
oy e oY
Thus, (8.6a-8.6¢) become
oty | M =0, (8.7a)

ox Y
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0 oU,  oU ouy U oU
U5 + Uit n gt + Vla LSt 2o
Py 0% ,0°U;  ,0%u;  9*U,
= —A% (9.272 +e€ (9.272 + € ayQ 8Y2 s (87b)
v oV, oV, O, oV, oV
Ula +€U18 +cu 18_931+5V18y+ ‘/18 +Ulay}
AP, 0% | S0PV ,0% 0PV,
B A R R R )

8.1.3 Gauge for the Pressure

At the wall, v; is equal to —eV7, so that, in the boundary layer, v; can be
considered formally as being of order ¢ (Fig. 8.1). By neglecting O(¢?) terms,
the y-momentum equation (8.7¢) becomes

90, v, v, Vi Vi AP, 0V
Ula el g temprt igm t g = - T or tegys - (89)

This equation shows that we must take A = Og(¢?). Indeed, if we take

OP;
A = €2, we have a result without interest =L 0; if we take A < €2, the

resulting equation can not be verified because this equation is formed with

terms coming from an independent set of equations. Thus, we choose A = £2.

8.2 First Order Interactive Boundary Layer

8.2.1 Generalized Boundary Layer Equations

In the z-momentum equation (8.7b), O(e) terms are neglected. Then, to first
order, the generalized boundary layer equations are

Uy O
o Ty (8.92)

6u1 8U 6U 8U1 V1 8U1 - 62U1
Ve TV T TViay T ooy T ave o B9

0P
and the y-momentum equation enables us to calculate 8_Y1 from

(9’01 6V1 (9V 6V1 ’Ul (9‘/1 o 8P1 82‘/1
U1 o +U; 31’ 'z +Vi—— 8Y ~ oy - oy + 72 (8.9¢)
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The above equations are rewritten in a form which is closer to the usual
form by setting
w=u + U, (8.10a)

v=uv +eVp, (8.10b)
o _om | _om

2
= P = —. 8.10
p=p1+e b or oy~ oy an ( c)
Using the Euler equations for uq, v; and py, (8.9a, 8.9b) become
ou  Ov
T
o " oy (8.11)
ua—quva—u—v%fu %JriaQ(u*ul) ’ .
oz Oy oy or R 0y
and the y-momentum equation (8.9¢) becomes
v v oy dp 1 0*v—v1)
— — —V)— = F = 8.12
hrr * U@y (o —v) Oy oy R 0y? (8.12)

Equations (8.11) must be solved in association with the Euler equations
for w1, v1 and p;. The solution gives a UVA over the whole domain and not
only in the boundary layer
8.2.2 Boundary Conditions

The boundary conditions are

at thewall: Uy +u; =0, Vi 4+v1 =0,

at infinity : U; =0 ., Vi=0, (8.13)
or

at the wall: u=0 ., v=0,

Yy — o0 : ’I,L—ul—)o7 U—U1—>0. (814)

Conditions at infinity are also imposed on the Euler equations.

The condition v—v1 — 0 as y — oo requires that the generalized boundary
layer equations (8.11) and the Euler equations (8.3a-8.3c) must be solved
simultaneously. It is not possible to solve the Euler equations independently
from the boundary layer equations because the condition that the normal
velocity is zero at the wall does not apply to the Euler equations. The two
systems of equations interact; one system influences the other system and
Vice VErsa.

In the triple deck theory, the coupling between the different decks also
originates from the conditions imposed to the velocity normal to the wall.
In particular, the identity of gauges for this velocity component between the
upper deck and the main deck is essential to prevent the hierarchy between
the decks from occurring (Subsect. 7.1.2). This property establishes a close
relationship between the two theories.
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The idea of IBL is not new and different forms have been used [9, 13, 53,
109, 111]. Until now, the justifications rested on the analysis of the inverse
mode for example (Subsect. 7.2.3) or on the triple deck theory. Here, the
IBL concept is fully justified thanks to the use of generalized expansions in
SCEM.

8.2.3 Estimate of the Remainders of Equations

The remainders of the Navier-Stokes equations are

(9’11,1 2 8P1 (92U1 (92U1 (92U1
L.u= 1 -
u=eh Oy c [ Ox + Ox2 + Oy + 0x2 |’

(9’01 2 62’01 (927}1 82‘/1
bev=chg, ¢ {312 a2 S o]

Taking into account that the boundary conditions are exactly satisfied, if
these remainders were zero, we would have the exact solution. Obviously, the
remainders are not zero but uniformly small.

8.3 Second Order Interactive Boundary Layer

8.3.1 Generalized Boundary Layer Equations

In order to construct a second order model, O(g?) terms are neglected in the
x-momentum equation (8.7b). The second order generalized boundary layer
equations are

ouy oy
8_:E+3_Y =0, (8.15a)
(9 (9U 6U 6 (9U1 U1 8U1 (92U1
= — 1
Ula +U13+ a+V1a +Vigr + — oy 3Y2’(85b)

and, neglecting O(¢?) terms in the y-momentum equation (8.7c), we obtain

ovy oVy ovi ovy ovT v 0Vg
—U I A AL NV udh
s 18x+u13:€+18y Yoy T oy
~op PV
= *W + W . (8.15C)

Note 8.2. In (8.15b), the pressure P is absent. To the considered order, the cor-
responding term is negligible so that everything is as if, in the boundary layer, the
pressure were equal to the pressure p; solution of Euler equations. The same remark
applies to the first order IBL model.



176 Chapter 8. Interactive Boundary Layer

If we set

u=u1+U1 , (816&)
v=uv+eVi, (8.16b)
Op _ 9 05

2
— P, = — 8.16
p=p1+e°P or oy Dy E@Y’ ( c)
the boundary layer equations (8.15a, 8.15b) can also be written as
@ + @ =0
Jdr Oy (8.17)
U%Jrv%—u %Jrv %Jrl—aQ(u*ul) '
oz oy ' ox Yoy TR 0y2
and the y-momentum equation (8.15¢) becomes
16%(v —
v dv _ 9p  10%(v vl). (8.18)

U%Jrva_y_ oy R  0y?

Equations (8.17) are coupled to the Euler equations. It is not possible to
solve one system independently from the other. As in the first order model,
the solution gives a UVA in the whole flow field.

Note 8.3. Equations (8.17), proposed by DeJarnette and Radcliffe [29] (see also [31])
on a heuristic basis, are fully justified here. Again, let us note that this model results
from the use of generalized expansions.

8.3.2 Boundary Conditions

The boundary conditions are the same as for the first order model

at the wall : u =0 , v=0 } , (8.19)

Yy — 00 cu—u;—0, v—v;1 —0

Conditions at infinity are also imposed on the field described by the Euler
equations.

We note that the conditions © —u; — 0 and v —v; — 0 as y — oo enable
the z-momentum equation to be identically satisfied beyond the boundary
layer edge.

8.3.3 Estimate of the Remainders of Equations

Obviously, the remainders in the Navier-Stokes equations are smaller than in
the first order model. We have

oP,  9%*u 0%u 0%U
_ 2| 911 1 1 1
Lew= E[ 8x+8x2+6‘y2+8x2}’
0?v 0% 0%V
__ .2 1 1 1
Lev=—¢ [612+6‘y2 +68x2} .
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If the external flow is irrotational, we observe that a better accuracy is
expected since

oP 0*U
_ 2 Y 1
Lew= 6{ 3x+31'2]’
9%V,
_ 3 1
Lov=—¢ 2

We note that the remainders comprise only boundary layer terms.
This point is discussed in Chap. 9 with applications of IBL models (Sub-
sect. 9.3.4).

8.4 Displacement Effect

In the first and second order IBL models, the viscous-inviscid interaction
results to a large extent from the condition,

lim (v—v1)=0. (8.20)

Y—00

This condition can be interpreted in terms of displacement effect. From
the continuity equation, we have

Y ou
= — —d/7
v 0 8LE y
yaul
V1 = V10 — 8_dy,’
0 xXT

where 3y’ denotes the integration variable with respect to y and vyig is the
value of vy at the wall. We deduce

v—0 :/y %—% dy’ —wv
)y \or ox Y 10

Condition (8.20) becomes

vip = d% Uooo(ul — ) dy} . (8.21)

Thus, the viscous-inviscid interaction is represented by a blowing velocity
v10 at the wall, which implies a displacement effect of the inviscid flow with
respect to a fictitious flow without boundary layer. This displacement is ex-

pressed by the integral / (up —u) dy.
0
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8.5 Reduced Model for an Irrotational External Flow

We consider the flow around a streamlined body in an unbounded atmos-
phere. The freestream is irrotational. Even, in aerodynamics, the freestream
is often uniform. Then, the inviscid flow defined in IBL model is irrotational.

The UVA associated with the first order IBL model is given by (8.10a—
8.10c). The thickness of the boundary layer being of order e, we have y < 1
in the boundary layer. If u;, v1 and p; are expandable in the neighbourhood
of the wall, we can write in the boundary layer

UZU10+U1+"',

V=010 — YUizo + VI + -0,

P _ o+ T
By = P1y0 T YP1yyo oY )

where the continuity equation (8.3a) is used and we defined

5’u1 3]71 62p1

Ulm:%a Ply:8—y7 plyy:a_y2~

The index “0” denotes a value at the wall.
Then, we set

U(z,Y,e) = uio+ Uy,

1
V(z,Y,e) =Vi+ ;(UIO — YUi40)

opP opP; 1
W(xvyv 6) = W + ;(plyO + yplyyo) s
and the UVA becomes
u=U+ Uy — uio , (822&)
v=¢V + v — V10 + YUiz0 (822b)
dp oP
8_y = €W + P1y — P1y0 — YDP1yyo - (8.22C)

The boundary conditions given by (8.14) yield

at thewall: U=0, V=0, (8.23a)
lim U =ugo, lim (V + Vi) = 22 . (8.23D)
Y —oo Y —oo S

While the generalized boundary layer equations (8.9a, 8.9b) or (8.11) are
valid everywhere, they can be simplified if restricted to the boundary layer.
Indeed, in this region, we have y < 1. Then, the characteristics of the external
flow are expanded in Taylor series in the neighbourhood of y =0
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3u1
Uy =up +y a— 4+
Y/ y=0

Our _ (P
gr w0 0x0dy =0

If the inviscid flow is irrotational, by neglecting the wall curvature effects

0
and by observing that v is O(g) in the boundary layer, we find that % is
Y

2
O(e) in the boundary layer. Morevover, 6—1}21 is also O(e) in the boundary
)

layer. Therefore, in this region, we have

uy = uyg + O(e?)
0
v1 = V10 — Yu1z0 + O(%)
32’[}1
In addition, in the boundary layer and from (8.22a-8.22¢), we have
u=U+0(?),
v=eV+0(),
dp opP
— =e— +0(?).
a9y % + 0(e%)
By neglecting O(g?) terms, the generalized boundary layer equations re-
stricted to the boundary layer become

ou v,

dx Y 824

Ua_U+V8_U— +_82U ( )
ar gy | 10Me0T 5y

With a change of notation — u¢ is often replaced by u. — these equations
are exactly Prandtl’s equations (Subsect. 7.1.1), but as discussed hereafter,
the boundary conditions are not the usual conditions.

The y-momentum equation (8.12) restricted to the boundary layer be-
comes

ov ov oP  9*V

At the wall, the boundary conditions are

U(x,0,e) =0, (8.26a)
V(z,0,6) =0, (8.26h)
Ylim U=, (8.26¢)

lim (V + Yurzo) = ”Eﬂ . (8.26d)

— 00
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We note that condition (8.26¢) is identical to the condition used in
Prandtl’s theory but condition (8.26d) brings a new element. Due to this
condition, calculations of separated flows are not excluded.

Thus, for an irrotational external flow, the first order IBL model reduces
to the standard boundary layer equations (8.24) strongly coupled to the Euler
equations. The strong coupling is due to the boundary conditions (8.26¢),
(8.26d).

With the same hypotheses, the second order IBL model leads to the
same reduced model, given by (8.24-8.25), and to the same boundary condi-
tions (8.26a-8.26d).

Note 8.4. From the continuity equation, we have

You .,
= — —d s
Y o Oz Y

where y’ denotes the integration variable with respect to y. Then, condition (8.26d)

for v19 becomes
V10 = /Oo duo — (9_u d
10 0 dx ox

vio = J009) s, :/ <1—i> dy . (8.27)
0

or

dx U10

The viscous-inviscid interaction is expressed through a blowing velocity vio related
to the displacement thickness 1 by (8.27).

8.6 Conclusion

Different approximations of Navier-Stokes equations for the study of high
Reynolds number flows past streamlined bodies have been obtained by ap-
plying SCEM.

The procedure used to get these approximations is close to the one fol-
lowed for an ordinary differential equation. As a first approximation, the flow
is described by the Euler equations. Obviously, this model is not valid near
the wall. Thanks to the use of generalized expansions, the search for a UVA
over the whole flow field leads to the interactive boundary layer, IBL, model,
to first and second orders.

UVAs obtained with MMAE and SCEM are different because MMAE is
based on regular expansions. A major consequence is that the wall bound-
ary condition for the first order inviscid flow approximation in MMAE is
a zero normal velocity. It results that a hierarchy is established between the
inviscid and viscous sets of equations which are solved sequentially. At first,
the inviscid flow equations are solved independently from the boundary layer
equations. In the second step, the boundary layer equations are solved using
results obtained from the previous calculation. In the third step, the solution
of the second order inviscid flow equations takes into account the boundary
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layer effects and provides a correction to the first estimate. Finally, the second
order boundary layer can be calculated. With IBL, the hierarchy between the
inviscid flow equations and the boundary layer is broken. The slip condition
at the walls for the inviscid flow no longer exists. This condition is replaced
by the condition that the normal velocity must tend towards the viscous
flow normal velocity far away from the wall. Consequently, the inviscid flow
equations and the boundary layer equations interact. One system of equations
influences the other and vice versa. The two sets of equations must be solved
simultaneously. With appropriate numerical techniques, IBL model lets us
calculate separated flows. An example is presented in Chap. 9.

The triple deck theory also contains, in its remarkable achievements, the
treatment of separated flows thanks to the absence of hierarchy between the
decks. In this regard, the identity of gauges for the normal velocity in the
upper and main decks is essential. In fact, this property establishes a close
parallel between the triple deck and IBL theories. However, it must be kept
in mind that the triple deck theory is very local since the interaction re-
gion shrinks to a single point as the Reynolds number tends towards infinity
whereas IBL theory remains global through its streamwise extent.

In Chapter 10, it is shown that the second order IBL model contains the
triple deck model and also Van Dyke’s second order boundary layer model.
These two models are obtained by applying regular expansions to IBL model
as the Reynolds number tends towards infinity.

The idea of IBL is not new since this notion has been extensively applied
to calculate flows around airfoils or wings. Rational arguments to support
this approach were missing until now. Here, this lack is filled with a full justi-
fication thanks to the application of SCEM in its generalized form. Moreover,
the boundary layer equations are a generalized form of Prandtl’s equations.

For irrotational external flows, the generalized boundary layer equations
simplify if their validity is restricted to the boundary layer region. Then, the
standard boundary layer equations apply while remaining strongly coupled
to the inviscid flow equations. The first or second order IBL models can be
interesting if the characteristics of the inviscid flow vary significantly within
the boundary layer thickness.

Problems

8-1. We analyze the laminar, incompressible flow at high Reynolds number
past a semi-infinite flat plate of zero thickness. The freestream is parallel to
the plate and the leading edge of the plate is orthogonal to the freestream.
The freestream is uniform with a velocity V.

1. Write the Navier-Stokes equations in dimensionless form. The dimension-
less quantities are denoted by z, y, U, V, P. The dimensionless equations
contain the Reynolds number Re

Re = Vool ,

14
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where L is a reference length which represents the length of development of
the boundary layer. We suppose that Re > 1 and we introduce the small

parameter €
e=Re /2.

2. We study the flow with SCEM in its regular form. We seek a first (outer)
approximation in the form

u:ul(x7y)+"'>
V:U1(1‘7y)+"'7
P=pi(z,y)+

Write the equations for uy, vy, p;.
3. We seek a UVA in the form

u:ul(x7y)+Ul(x7Y)+ 5
V:Ul(xay)+€vl(x7y)+“' )
P =pi(2,y) + Ale)Pr(z,Y) + -+,

with
Y =

Y
c )
and A is a gauge yet undetermined.

Write the equations for Uy, Vi, P;. Give the gauge A.

Give the boundary conditions by noting that we seek a regular expansion,
i.e. an expansion for which we have for example uy = uy(z,y) and U; =

Ul(LL',Y).
Give the solution for ui, vy, p1.
4. We set
U=u +Uy,
V=vi+4+eV.

Write the equations for U and V. Give the boundary conditions. Identify
with Prandtl’s formulation.

For the flat plate, the solution of these equations is Blasius’ solution ob-
tained by seeking a self-similarity solution. For x > 0, the solution has the
form

U=f(n) with 5= ——
Nor

and Blasius’ solution is

n
FUE P =0 with () = / F(Q) .,
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with the boundary conditions
f(O):(), fl(o):07 fl_)l
n—o0
We deduce the following asymptotic behaviours

f = W*BO+EST7

n—00

ap o 5
—n“+0 .
0 27) (n°)

The numerical calculation gives the values of constants
ap = 0.469600 ,
Bo = 1.21678 .

Deduce the behaviour of V; and P} as Y — oo.
5. Since we have neglected certain terms in the equations, we make an error
as Y — oo. Indeed, we have

’ 2

n

o

Y —oo v/ 22 ’
which does not enable us, with the approximation obtained until now, to
satisfy the condition that the velocity V tends towards zero at infinity.
If we want to have a better approximation, taking into account the pre-
vious results, we must write
U=14Ui(z,Y)+eus(z,y)+ -,
V=e¢ [Vl(l?,Y) +UQ(‘ray)] +oe )
P = €p2(may> —|—€2P1($7Y) T
Write the equations for us, va, p2 and the required boundary conditions.
Show that it is interesting to perform the following change of functions

*

Uy = U2 ,
U;—Uer%,

X

Bo 372

* 4+ 22
Do = P2 2\/§

Then, the solution is

Bo Yy

* —_—
Uy = —

PV o 2T

_pe VR
RN

We note the very particular feature of the solution for us which vanishes at
y = 0 except at the origin where the solution is singular.

b



9 Applications of Interactive Boundary
Layer Models

The successive complementary expansion method, SCEM, in its general-
ized form, fully justifies the notion of IBL. A UVA is obtained by solv-
ing two sets of equations — the generalized boundary layer equations and
the inviscid flow equations. These two systems are strongly coupled. In
the framework of the standard boundary layer theory, a hierarchy is estab-
lished between the two systems: first, we can solve the inviscid flow equa-
tions and then the boundary layer equations. With IBL, this hierarchy is
broken; the two systems interact, one system influences the other and vice
versa.

For an irrotational freestream, the boundary layer equations reduce, in
the boundary layer region, to standard Prandtl’s equations. However, the
interactive character is still present because the viscous and inviscid equations
remain strongly coupled. This feature is essential for flows including separated
zones. An example is presented in Sect. 9.1.

For a rotational freestream, this reduced model does not apply. The val-
idation of IBL for such flows is therefore necessary. Thus, in Sect. 9.3, the
IBL model is applied to several examples in which the external flow is rota-
tional. The results are compared to the numerical solutions of Navier-Stokes
equations and to Van Dyke’s model [105].

The objective of this chapter is not to give an exhaustive account of
applications of IBL models but, simply, to show a few illustrative examples.
We discuss applications of IBL methods to aerodynamic flows but we insist
on the influence of external vorticity whose study is not very common. The
IBL methods have been developed by different authors [9, 10, 30, 53, 54, 55,
109, 110] and applied extensively in aerodynamics [1, 2]; it has been shown
that these methods are very efficient [13, 52, 56, 57]. The reader can find
in the literature detailed comparisons between the applications of the triple
deck theory, IBL and numerical solutions of the Navier-Stokes equations in
external flow [81] and in internal flow [49, 50]. Internal flows are also discussed
in Chap. 12.
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9.1 Calculation of a Flow with Separation

9.1.1 Definition of the Flow

We consider a flow on a flat plate deformed by a small hump (Fig. 9.1). The
wall geometry is defined by

y 0.03
L " cosh [4 (% — 2.5)] ’

(9.1)

where L is a reference length. The freestream is uniform and its velocity is
V. Therefore, the inviscid flow is irrotational. The Reynolds number based
on velocity Vi and on length L is equal to 8 x 10%.

005

<

0.00

-0.05

0 1 2 3 4
x/L

Fig. 9.1. Boundary layer on a flat plate with a hump

9.1.2 Numerical Method

The numerical solution rests upon the method proposed by Veldman [109] to
a large extent. This method has been mentioned in Sect. 7.3.

The flow in the boundary layer is calculated with (8.24) and the inviscid
flow is computed by a panel method [14]. As the flow includes a separated
region, the boundary layer equations must be strongly coupled to the inviscid
flow equations. In order to achieve this coupling, the interaction law given by
the Hilbert integral (Sect. 7.3) is used as an intermediary which enables us
to obtain a numerically well-conditioned problem.

A method of solution of boundary layer equations strongly coupled to the
Hilbert integral has been implemented by Roget [79].

In this method w1 is replaced by the more standard notation u., and the
standard boundary layer equations (8.24) whose dimensionalized form is

6_u + @ =0
or Oy
ou ou du.  pd*u

U— + V07— =

oz Yoy T dr T oo

(9.2)
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are solved together with the Hilbert integral in the domain [z, xp]

1 oo Up d
e = = / e () = ¢ (O] (9.3)

In these equations, u. is split into two parts
te(x) = Ue(x) 4 due(z) | (9.4)

where 1, is an input which results partially from the application of the panel
method [13] in which the displacement effect is taken into account.

Displacement 61 Panel
of the wall method
(S;L_l (uepm)n71
(5ue)n—1 (ae)n—l
Boundary layer (9.2)
+

Hilbert integral (9.3)

Fig. 9.2. Calculation method

An iterative method [3] solves the whole problem as depicted in Fig. 9.2.
In the first iteration, the velocity u. is equal to the velocity calculated by
the panel method applied to the real geometry, i.e. by taking into account
the presence of the hump but without the boundary layer effect. In the fol-
lowing iterations, the velocity wu. in the boundary layer equations (9.2) is
decomposed as

(Ue)n — (uepm)nil o (6ue)n*1 + ((5Ue)n , n= 1’27 e 7]\[ .

Here, (tepm)™ ! is the velocity calculated by the panel method around a body
obtained by displacing the real body by the displacement thickness (§;)"*
and du, is the correction of velocity given by the Hilbert integral. Therefore,
at a given iteration, we have

()" = (tepm)"™" = (6ue)" "

When the process converges, i.e. when the difference [(due)" — (due)" ']
between the velocity corrections du, between two successive iterations is very
small, the influence of the Hilbert integral disappears so that the velocity u. is
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the velocity uepm calculated by the panel method with boundary layer effects.
Finally, the Hilbert integral is simply used as a calculation intermediary to
provide a strong coupling between the boundary layer equations and the
inviscid flow equations so as to calculate separated flows.

9.1.3 Results

Figure 9.3 shows the effect of the hump and of the boundary layer on the
wall velocity calculated in inviscid flow. We have

Ue = Vo + Atte .

The variation of velocity Au, labelled “without boundary layer” represents
the influence of the hump alone whereas the variation of velocity Au, labelled
“with boundary layer” represents the combined influence of the hump and of
the boundary layer. For the chosen example, the boundary layer effect is of
the same order as the purely geometrical effect of the wall deformation. We
observe that the boundary layer reduces the velocity overshot induced near
the top of the hump.

0.10
_—~ without boundary layer

0.08 |

0.06 |

V. 004 |

002 kL s with boundary layer

000 F-g=z---- -

-0.02 1 1 1 1 )

Fig. 9.3. Boundary layer on a flat plate with a hump: wall velocity of the inviscid
flow

Figures 9.4 and 9.5 show the evolutions of the displacement thickness 91
and of the skin-friction coefficient C¢. For comparison, the evolution of these
parameters on a flat plate as obtained by Blasius’ solution [20] are also given;

we have
T 0.664 e

5 =1.721 , Cp = ,
' VR, T VR, 1
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The comparisons to Blasius’ solution show the strong influence of the presence
of the hump on the evolution of the boundary layer, but this influence is local
since, upstream and downstream as well, the boundary layer characteristics
are very close to their behaviour on a flat plate. The presence of a separated
region characterized by negative values of the skin-friction is also noted.

0.020 ¢
5 plate
T with hump
0015
0010
flat plate
0.005
0'000 1 1 1 1 J
0 1 2 3 4 /L

Fig. 9.4. Boundary layer on a flat plate with a hump: displacement thickness

0.004
late
C p
! 0.003 L _~~~ with hump
0.002
- flat plate
0.001
0.000 1 1 1 1 J
0 1 2 \3/ 4 5
z/L

Fig. 9.5. Boundary layer on a flat plate with a hump: skin-friction coefficient
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Note 9.1. A detailed discussion of the flow on a flat wall deformed locally by a blunt
backward facing step is given in [86]. The results were obtained by the triple deck
theory and by an IBL method. In certain cases, in the presence of separation bub-
bles, the solution is not unique. The results show the existence of a branch along
which a short region of separation is associated with the theory of marginal sepa-
ration [99]. In addition, the results show the formation of a branch with a longer
separated region meeting the massive separation regime.

9.2 Application to Aerodynamic Flows

In this section, we present the application of IBL theory to aerodynamic
flows. The first application considers the laminar flow around a flat plate of
finite length at zero angle of attack. The second application is concerned with
high Reynolds number flows around airfoils.

9.2.1 Flat Plate of Finite Length

The nature of the flow near the trailing edge of an airfoil has long been
a subject of both theoretical and practical interest. The problem exhibits
a singularity intriguing to the theoretician, and the question of finite Reynolds
number effects on aerodynamic forces is of significant importance.

viscous-inviscid
interaction
P

—
1% ’ N

[e's) / \
— 4 )
\ |

Fig. 9.6. Flow around a flate plate of finite length

In this subsection, we consider a laminar flow around a flat plate at zero
angle of attack (Fig. 9.6). A difficulty arises due to the change of boundary
condition near the trailing edge; along the wall, the no-slip condition u = 0
applies whereas along the wake centerline we have the condition of symme-

try a—u = 0. The problem was first studied within the framework of boundary
Y

layer theory by Goldstein [39], who showed that the continuation of Blasius’
flat plate solution beyond the trailing edge required introduction of a thin
sublayer along the wake centerline whose thickness varies like z'/3, where x is
the distance from the trailing edge (see Problem 7-5). At the point of origin
of this sublayer (z = 0), the transverse velocity v is singular, much as it is at
the leading edge of the plate. In a higher order theory, this large magnitude
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of v would produce a similarly large pressure gradient in the external inviscid
flow, which in turn would produce a significant change in the skin-friction
near the trailing edge.

A number of studies have been made to construct such a higher order the-
ory for this region, as discussed by Van Dyke [107]. However, none of these
older theories properly solved the problem; more accurate solutions than
those provided by simple perturbations series are required. A direct solution
of the Navier-Stokes equations is possible and does not exhibit any sign of
singularity [87, 88]. The understanding of the problem was disclosed by Stew-
artson [95] and Messiter [69] with the triple deck theory; they showed that
the clue is the interaction between the viscous flow and the inviscid external
flow. Another alternative is to solve the IBL problem [110]. In Chapter 8, the
IBL theory has been fully justified with the use of SCEM and, in Chap. 10,
it is is shown that IBL contains the first order triple deck theory.

The results presented in this subsection have been obtained by solving the
boundary layer equations (9.2) in association with the Hilbert integral (9.3).
This set of equations is sufficient to reproduce the viscous-inviscid interaction
around the trailing edge. The numerical technique is described in details
in [13, 14] and computer programs are available.

0.1

Experiments [44]
IBL calculations [14]

------- Blasius’ solution

001 ! 1 Re
10 102 103

Fig. 9.7. Drag coefficient of a flate plate of finite length

Figure 9.7 shows the evolution of the drag coefficient of a flat plate as
a function of the Reynods number. The length of the plate is L and the
freestream velocity is V.

The Reynolds number is defined by
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The drag coefficient is defined by

F

"L .

Ca
where F is the force applied, per unit span, to the two faces of the plate.
For a flat plate at zero angle of attack, the aerodynamic forces are due to

the skin-friction since the pressure forces are zero. From integration of the
skin-friction along the wall, Blasius’ solution gives

1.328
Cd = W .
L

However, due to the viscous-inviscid interaction, the skin-friction is higher
near the trailing edge. According to the solution of the triple deck equations,
the drag coefficient is given by [94]

Cu= % + % . 9.7)
L L

The results of IBL calculations shown in Fig. 9.7 are in very good agreement
with experimental results, even at relatively low Reynolds number. The agree-
ment with the triple deck theory, given by (9.7), is also very good; the error
is 2.5% at a Reynolds number R;, = 10 and decreases for increasing values
of the Reynolds number. At the scale of Fig. 9.7, the difference between the
IBL calculations and triple deck results is practically negligible.

9.2.2 Airfoils at High Reynolds Numbers

The general principle of IBL calculations of the flow around an airfoil at high
Reynolds number is close to the one described in Subsect. 9.1.2. However,
additional complexities are present. The flow is no longer laminar all along
the airfoil and laminar-turbulent transition criteria must be implemented.
A turbulence model is also required to calculate the boundary layer and the
wake. The viscous-inviscid interaction is taken into account with the concept
of blowing velocity on the airfoil and a jump in the normal velocity compo-
nent to represent the wake effects. An extensive evaluation of the interaction
procedure for aerodynamic flows was conducted by Cebeci [13]; the numerical
method is discussed in detail in [13, 14] and computer programs are available.

In this subsection, only a sample of results are discussed to give an idea
of the efficiency of IBL methods.

Results for an NACA 0012 airfoil, with calculations including the wake
effects, are shown in Figs. 9.8 and 9.9, with Fig. 9.8 corresponding to a chord
Reynolds number of 3 x 106 and Fig. 9.9 to Reynolds numbers of 6 x 10% and
9 x 10%. The chord Reynolds number R, is defined by

~ 0Vxc

Re , 9.8
p (9.8)
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where V. is the freestream velocity and c is the chord length of the airfoil.
The lift and drag coefficients are defined by

Fy
Cp——t (9.92)
30V2c
Iy
Cy=—2 (9.9b)
30V2c

where Fy and Fy are the components of the aerodynamic force exerted on
the airfoil per unit span; the drag force is the component of the aerodynamic
force aligned with the freestream velocity and the lift force is normal to it.

Figure 9.8 shows the variation of the lift and drag coefficients of the
NACA 0012 airfoil for a chord Reynolds number of 3 x 10°. As can be seen
from Fig. 9.8a, viscous effects considerably reduce the maximum value of the
lift coefficient of the airfoil, which occurs at a stall angle of around 16°, and
the calculated results agree well with measurements [13].

Figure 9.8b shows the variation of the drag coefficient with lift coefficient.
As can be seen, the measurements of drag coefficients do not extend beyond
an angle of attack of 12° and at smaller angles agree well with the calculations.
It must be noted that the calculations can be performed beyond the stall angle
of attack which implies that the boundary layer is separated. For an angle
of attack of 18°, separation extends on the rear part of the airfoil over more
than 50% of the chord length. The nature of the lift-drag curve at higher
angles of attack is interesting with the expected increase in drag coefficient
and reduction in lift coefficient for post-stall angles.

Figures 9.8 and 9.9 show the effect of Reynolds number on the lift co-
efficient. In accord with the measurements, the calculation method satisfac-
torily accounts for the effects of Reynolds number. The results show that
the maximum lift coefficient, (Cy)max increases with increase in Reynolds
number. For a given angle of attack, this is due to a delay of separation
when the Reynolds number increases, i.e. separation moves towards the trail-
ing edge. At low angle of attack, the effects of Reynolds number on the lift
curve are very small, at least in the range of Reynolds number investigated
here.

For purpose of comparison and to evaluate the viscous effects, results of
inviscid flow calculations are plotted in Figs. 9.8 and 9.9. The linear lift curve
of slope 27 is calculated by the thin airfoil theory [71]. The thin airfoil theory
is an approximate inviscid flow theory which gives a smaller slope of the lift
curve than an exact inviscid theory. Figures 9.8 and 9.9 show also the results
obtained with the Hess-Smith panel method, which is a numerical solution
of the exact inviscid flow equations [13]. With a positive angle of attack, the
boundary layer is thicker on the upper surface than on the lower surface so
that the effective angle of attack is smaller, in comparison with the inviscid
theory. Then, the viscous effects have a tendency to reduce the slope of the
lift curve and, by coincidence, the slope of the experimental curve is very
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Fig. 9.8. Comparison between calculated and experimental values of (a) Cy vs «,
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Fig. 9.9. Effect of Reynolds number on the lift coefficient. NACA 0012 airfoil at

(a) Re =6 x 10°%, and (b) R. =9 x 10°

close to 27 for the range of Reynolds number presented in Figs. 9.8, 9.9. The
IBL method reproduces these viscous effects very well. For a cambered airfoil,
the viscous effects are even larger. The in-depth discussion of these questions
requires a more detailed analysis of airfoil data, for example, the pressure
distributions on the lower and upper surfaces. Obviously, inviscid theories
are not able to predict the stall which is due to boundary layer separation.
The accurate prediction of stall is a very difficult problem. Inviscid theories
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also predict that the drag of an airfoil is zero, which is known as d’Alembert’s
paradoz. The correct prediction of drag requires to include the viscous effects
which are well accounted for in the IBL theory.

9.3 Influence of a Rotational External Flow

We want to calculate the boundary layer developing on a flat plate with
a rotational oncoming flow (Fig. 9.10) and use the IBL model. Then, the Euler
equations, the generalized boundary layer equations and their interaction
must be solved simultaneously.

|

/

\

g

Fig. 9.10. Boundary layer on a flat plate with rotational external flow

9.3.1 Inviscid Flow

The characteristics w1, v1, p1 of the outer flow are decomposed into a non
perturbed component %, Te, P, and a perturbed component ue, Ve, Pe

Uy = T + Tie (9.10a)
V1 = Te + Te (9.10D)
pL=D.+Pe. (9.10c)

The non perturbed part is obtained without any boundary layer effect and
satisfies the Euler equations. The perturbed part represents the boundary
layer effect. Assuming that the perturbation is small, the perturbed part
satisfies the linearized Euler equations.

We introduce the stream-functions ¢ and z/;

oy’ oz
W

U= Gy T
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and the z-component of vorticities @, and &, (vorticity is the curl of velocity)

. om
YeT or Oy’
o oL
Ve T or T oy

The stagnation pressure P, + 3 (U2 + 72) is constant along a streamline
of the non perturbed flow and the vorticity is related to the variation of the
stagnation pressure between streamlines

P+ 5@ +7) = T(@). (9112)
7. =Y (9.11b)
dy

The second equation above is deduced from (9.11a) and Euler equations.
Assuming that the perturbation vanishes at usptream infinity, we have [105]

Pe + Uelie + TeTe = ~%(g) : (9.12a)
Do = —Jde_(;p) . (9.12b)
dy

Equations (9.12a, 9.12b) are linearized forms of (9.11a, 9.11b). The first equa-
tion is an integral form of linearized Euler equations obtained by integration
along a streamline of the non perturbed flow. The second equation is de-
duced from (9.12a) and linearized Euler equations. If the non perturbed flow
is irrotational, the vorticity w. of the perturbation is zero.

Vorticity is related to stream-function by

(:)ezfAJ7

so that the stream-function perturbation satisfies the equation

d*f (%) »

Np = — 29
dy

In the examples discussed in Subsect. 9.3.3, the external flow is such that
Ue =Ue(y), Te=0, (9.13)

and the equation for the stream-function perturbation becomes

! d%ql : (9.14)

=3

The pressure perturbation is given by

~ - ~du,
Pe = —Uele + ¢
dy

(9.15)
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9.3.2 Method of Resolution

The inviscid and viscous equations are solved sequentially and their coupling
is accounted for iteratively (Fig. 9.11) so that, when the process is converged,
the following conditions are achieved

lim (u —uy)=0, lim(v—v;)=0.

y—00 y—00
This procedure works well for flows without separation but would be inap-
propriate for flows with separation.

Solution of modified
generalized boundary layer
equations (9.17) or (9.18)

U1 /\ \/ V1 (x7()) = iw(it)
(with under-
Solution of inviscid relaxation)

flow equation (9.21a)

Fig. 9.11. Global iterative procedure

Modified Boundary Layer Equations

In agreement with Fig. 9.11, the boundary layer equations are solved in the
direct mode: the input of boundary layer equations is a distribution of ve-
locity uy. Obviously, during the iterative cycle, this distribution of u; is not
frozen since u; depends on the boundary layer effect on the inviscid flow.
The problem to solve is to satisfy the two conditions lim (u — uq) = 0 and

Yy—oo

lim (v — v1) = 0 when convergence is achieved. In order to avoid numeri-
y—00

cal problems with the boundary layer equations when the solutions are not
yet converged, it is convenient to replace v; by a modified velocity compo-
nent T [29] defined by

_ ™ O(u1 —u)
T=v +/y . dy , (9.16)

so that the velocity v satisfies the same continuity equation as v

Oouq 367
%Jra—y—o.
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The generalized boundary layer equations (8.17) are replaced by

ou n ov 0
Oz " Oy (9.17)
LU0 o ou 19— m) |
ox oy ' ox oy R 0Oy?
Equation (9.16) shows that condition lim (v — v) = 0 is satisfied if

Y—00
lim (u; — u) = 0. Thus, the modified momentum equation is identically sat-
Yy—00

isfied beyond the boundary layer edge. This is a very important feature of
the numerical method.

Denoting the value of v; at the wall by v,,, we note that v is equal to vy
only if the value of v, is correctly estimated (Fig. 9.12). When the iterative
procedure has not yet converged, conditions v = u; and ¥ = v are satisfied
beyond the boundary layer edge but condition v = wv; is not necessarily
satisfied. An iterative method is implemented to adjust v, in order to get
v = v1. This point is the heart of the viscous-inviscid interaction.

=/
/

Fig. 9.12. Distributions of v and v1 when the value of v,, is not correctly adjusted

The first order generalized boundary layer equations are simpler to treat
than the second order equations because the velocity v is not present in the
equations. Therefore it is not needed to modify the equations

Ju  Ov
az "oy
ou ou Ouq Ou; 1 0%(u—uy)

u—

ox Uﬁ_y_vﬁ_y_u18x+72 oy?

Condition lim (u; —u) = 0 is sufficient to satisfy identically the momentum
y—o0

—0
(9.18)

equation beyond the boundary layer edge.



9.3 Influence of a Rotational External Flow 199
Solution of Boundary Layer Equations

The boundary layer equations are solved by considering that the input is
a velocity field uq(z,y). After discretization according to a finite difference
method, the equations are solved step by step, by a marching method from
upstream to downstream. At a given station x;, a first estimate of v(x;,y)
and v(z;,y) is assumed to be known, for example from the distributions of
v(xi—1,y) and U(x;—1,y) calculated at the previous station. A first estimate
of u(x;,y) is obtained by solving the momentum equation discretized at sta-
tion ;. An updated estimate of v(x;,y) is calculated from the discretized
continuity equation with the wall condition v = 0. Then, the value of T(x;, y)
is updated from the continuity equation

v(wi,y) = v(zi,y) + [/yoo W dy} o (9.19)

We note that the velocity v is calculated by integrating the continuity equa-
tion from the outside boundary towards the wall in order to ensure that v = v
beyond the boundary layer edge. In fact, in the numerical method, the limit
at infinity is replaced by a boundary at finite distance from the wall located
beyond the boundary layer edge.

If required, the calculation is repeated at station z; with the updated dis-
tributions of u, v and ¥ in order to resolve the non-linearity of the momentum
equation. Then, the calculation proceeds to the next station x;41.

It is noted that the estimate of T, (x;) = T(x;,0) is

To(2) = [% /Ow(ul ) dyL R (9.20)

=x;
Viscous-Inviscid Interaction

The resolution of boundary layer equations is a part of the iterative procedure
required to account for the viscous-inviscid interaction (Fig. 9.11).

With the small perturbation hypothesis, the inviscid flow is calculated by
solving Poisson’s equation (9.14)

2 PV § &
0x?  oy?  w. dy?

(9.21a)

with the wall condition
G0 =~ [ g0, (9.21h)

and

01(570) = 610(5) :
The value of 7, is obtained from (9.20).
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Poisson’s equation (9.21a) is solved numerically by means of a finite dif-
ference method on a rectangular mesh with a five point stencil. The discrete
equations are solved iteratively, column by column, with over-relaxation.

The iterative procedure of Fig. 9.11 is continued until convergence is
achieved by introducing an under-relaxation on vy,.

9.3.3 Flows Studied

The chosen examples are the same as those calculated by another approach,
called defect boundary layer formulation [5, 7, 8]. The flows are defined below
by the non perturbed velocity .

Flow I. Vorticity is uniform

Ue =14 60y . (9.22)
Flow II. The velocity distribution has a slope discontinuity

ue. =1+ 60y if y <0.005,

=13  ify>0.005. (9-23)

Flow III. Near the wall, the shear is negative and vanishes away from the
wall. The slope of the velocity distribution is continuous

Te = 1252 — 20y + 1 if y < 0.08

Te = 0.2 if y > 0.08. (9-24)

Flow IV. The shear decreases continuously as the distance to the wall in-

creases
Te = 0.85+ /0.0225 + 18y . (9.25)

9.3.4 Results
‘Wall Shear Stress and Velocity Profiles

All the results have been obtained for a Reynolds number R = R,—; = 10°.
The Reynolds number R, is based on the reference velocity V' and on the
distance along the plate from the leading edge. The abscissa z is reduced by
the reference length L as given in (8.2).

The lower parts of Figs. 9.13-9.16 show the velocity profiles u(y) calcu-
lated at station x = 0.9 for the converged solution of the second order IBL
model. The profiles of the inviscid flow velocity w;(y) obtained for the con-
verged solution are also plotted in the same graph. The difference between the
velocity %, of the non perturbed inviscid flow and the velocity u; represents
the influence of the boundary layer, i.e. the displacement effect. Figure 9.17
shows the profiles of the normal velocity components v and v; corresponding
to u and uq, respectively.
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In general, we observe that the velocity profiles v and u; (Figs. 9.13—
9.16) on one hand, and the profiles of v and v; (Fig. 9.17) on the other
hand match perfectly beyond the boundary layer edge. Functions wu(x,y)
and v(z,y) which are solutions of the generalized boundary layer equations
coupled to the inviscid equations form a UVA of the velocity field in the
whole flow.

Figures 9.13-9.16 give the evolution of the skin-friction coefficient CY
defined by reducing the wall shear stress by %sz. For the purpose of com-
parison, the value obtained in Blasius’ solution is represented with the label
“flat plate”

Cy
2
On these figures, different results are plotted

e the labels “1st order IBL” and ‘“2nd order IBL” refer to the IBL model of
first order (Sect. 8.2) or of second order (Sect. 8.3),

e the label “converged” corresponds to the converged results obtained with
the iterative procedure described in Subsect. 9.3.2,

e the label “1st iteration” means that the generalized boundary layer equa-
tions of first order given by (9.18) or the second order modified equations
given by (9.17) are solved with u; = e,

e the label “Navier-Stokes” refers to the numerical solutions of the Navier-
Stokes equations by Brazier [7].

Re =0.332.

The comparison of the skin-friction coefficient with Blasius’ solution shows
the strong effect of the external vorticity. When the standard boundary layer
equations are used, the condition at the boundary layer edge is u — @.(0).
Now, in all these examples, we have u.(0) = 1. Therefore, the solution to
the standard equations is Blasius’ solution and the results are not affected
by external vorticity.

Generally, the second order IBL results are in better agreement with the
Navier-Stokes results than those obtained with the first order IBL. The first
order IBL model is not sufficient to account for the external vorticity effects.

For a non perturbed flow with a uniform shear

Ue =1+wy. (9.26a)

Van Dyke’s second order theory gives [106] (see Problem 9-1)

C
S V/R. = 0332 + 3126w, /% , (9.26b)

with w = 60 for Flow I. Compared with the Navier-Stokes solutions, the
results obtained with Van Dyke’s theory overestimate the external vorticity
effects. The second order IBL model shows better agreement. This model
contains Van Dyke’s model but differs from it by terms of order £? (Chap. 10).
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/

- —__ Navier-Stokes

~ 2nd order IBL

-/\1sr order IBL
flat plate ~

X
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-
/ (9.26Db)

B —_— Navier-Stokes
™\ 2nd order IBL

i /’\jst order IBL

flat plate ~

1 1 1 1 J m
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L /u
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Fig. 9.13. Flow [: w. = 1 4+ 60y
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Fig. 9.14. Flow II: @, = 1 + 60y if y < 0.005 ; w, = 1.3 if y > 0.005
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Fig. 9.15. Flow III: 7, = 125y — 20y + 1 if y < 0.08 ; @, = 0.2 if y > 0.08
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Fig. 9.16. Flow IV: u. = 0.85 4+ 1/0.0225 + 18y
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Another difference is that Van Dyke’s model is hierarchical whereas the
IBL model is interactive. In Van Dyke’s model, the inviscid and viscous flow
equations are solved alternately according to the following sequence: i) we
solve the first order inviscid flow equations with the slip condition at the
wall, ii) we solve the first order standard boundary layer equations, iii) we
solve the second order inviscid flow equations in which the boundary layer
effects are taken into account, iv) we solve the second order boundary layer
equations. With the interactive model, the inviscid and viscous flow equations
cannot be solved sequentially due to the boundary conditions which impose
a strong coupling of equations; it is necessary to solve all the equations to-
gether. A salient advantage of the interactive model is that the calculation of
separated flows is possible under the condition to use an appropriate numer-
ical method, for example the method described in Sect. 9.1. By contrast, the
application of Van Dyke’s model is restricted by Goldstein’s singularity and
it is impossible to continue the calculations downstream of separation point.

Displacement Effects

Displacement effects are observed by comparing the results labelled “1st it-
eration” and “converged” or by comparing the distributions of velocities .
and u;y plotted at station z = 0.9 (Figs. 9.13-9.16).

The very weak displacement effect for Flow I is associated with the fact
that the right hand side of Poisson’s equation (9.21a) is zero, which is not
the case for the other flows. An approximate analytical solution, given below,
enables us to analyze more deeply the displacement effect.

Equation (9.21a) is present in many problems, for example in the study
of the stability of parallel flows [86], in the study of singular perturbation
problems of channel flows or in the study of the development of a liquid jet
emerging from a two-dimensional channel [103]. An approximate analytical
solution can be obtained by seeking a solution in the form

Y= 1/)(9570)f(y) :

Equation (9.21a) becomes

4% (z,0)

~ &y 42z,
Tf+¢(1%0)_f 9(,0) 4%

dy? ~  w.  dy?

1. (9.27)

For the application discussed here, the behaviour of J(I,O) is nearly pro-
portional to #1/2; this behaviour would be exact for Blasius’ boundary layer.
With a variation of ¢ (z, 0) in #1/2, the first term of the left hand side of (9.27)
is negligible if

ol (9.28)
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Then, (9.27) becomes
aef  f d*u.

— == . 9.29
dy? 7w, dy? (9.29)
Integrating we get
du. d
f - - _fﬂe =
dy  dy

A possible solution, if existing, giving a velocity perturbation vanishing at
infinity is
v o1 7
f:fAﬂe/ = dy+——
0o U u

with

and

du, Y1 1 1 du.| ~
Ue = |—A ° — d — ° ,0) .
! |: <dy /0 ﬂﬁ erﬂE)JFEE(O) dy]d}(x 0)

d_e . .
If ( Y ) = 0, the solution is
dy /} e

U ~ 1 du,

f=u ; ﬂe=w(x,0)m -

(9.30)

This solution shows the relation between the displacement effect and the
distribution of %.. In order to investigate its accuracy, the approximate solu-
tion has been calculated with @.(0) = 1 and ¢ (x,0) = —1.72/%.(0)va which
would be the distribution of {/;(x,O) for Blasius’ boundary layer. Compari-
sons with the numerical solution of Poisson’s equation (9.21a) are given in
Fig. 9.18. The agreement is excellent for Flow III; for y > 0.08, the analytical
solution gives 4, = 0, which is not strictly correct but the numerical solution
yields very small values of u.. For Flow IV, the agreement is less good but
it must be observed that condition imposed by (9.28) cannot be satisfied for
too large values of y.

Equation (9.30) shows that if the plate on which the boundary layer de-
velops is infinite, the perturbation @, becomes infinite as z — oo so that the
hypothesis of small perturbations is no longer satisfied and the solution is
not valid. The flow calculations have been performed for a limited domain.

The general solution of Poisson’s equation (9.21a) includes eigensolu-
tions [103] which are represented neither in the numerical solution nor in the
approximate analytical solution. These eigensolutions have not been studied.
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y 020
0.15 F
(9.30) and
0.10 k numerical solution

/ of (9.21a)
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a) Flow IIL: @, = 12592 — 20y + 1 if y < 0.08, T = 0.2 if y > 0.08

0.20 y
(9.30) 0.15
N
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b) Flow IV: @, = 0.85 + 1/0.0225 + 18y

Fig. 9.18. Comparison of the approximate analytical solution and of the numerical
solution at station = = 0.9

For Flow II, the distribution of 7, has a slope discontinuity. The solution
of Poisson’s equation (9.21a) exhibits a line of discontinuity which is charac-
terized by i) the discontinuity of %., ii) the continuity of 0, iii) the continuity
of ¥, iv) the continuity of p.. From these properties, (9.15) provides a relation

~ du . T
between the jumps of u. and d_e through the discontinuity line
Y

- ¥ [ due
== |-, 9.31
== |5 (9:31)
where [u.] is the jump of %, through the discontinuity line. Numerically, for
Flow II, along the discontinuity line at station z = 0.9, the value of v is

-~ dw,
Y = —1.6181073; with {du } = —60 and uw. = 1.3. Then, the theoretical
Y
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value of [t is [te] = 7.471072. Numerically, we obtain [t = 7.411072
which is reasonably close to the theoretical value.

Limitations of the Model

Figure 9.19 sh ison of viscous t Ot na L LT
igure 9.19 shows a comparison of viscous terms — —— and —

& P R 92 M R ay?
tion x = 0.9 for the different calculated flows. These two terms are present
2—

. .. . 1 d“w,
in the original momentum equation and the term —
R dy?

at sta-

has been neglected

1 d%u
in the IBL model. This hypothesis is justified for Flow I since = du; =
Y
For Flow IV, the jutification is less satisfactory. A limitation of the model
is seen here. We assumed that w, satisfies the Euler equations, but it is also

necessary that u. satisfies the Navier-Stokes equations with a good approx-
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. . . . 1 0%u
Fig. 9.19. Comparison of viscous terms at station z = 0.9: a) ——;
R 0y?

) - 1 d*ue
R dy?
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imation. Otherwise, the viscous terms associated with this flow have a non
negligible contribution which can affect the validity of the approach.
Let us remember that in a divergence-free field we have

AV =—curl(curl V). (9.32)

This equation shows that the viscous terms are zero if the curl of vorticity
is zero. If the first approximation of the inviscid flow is irrotational, the
Navier-Stokes equations are satisfied. However, this is no longer true if the
inviscid flow is rotational. An exception is when the vorticity is uniform in the
field as for Flow I. When the Reynolds number goes to infinity, this problem
d*u,.
du?

1
disapppears because the ratio of the term = to the boundary layer

viscous term goes to zero. Therefore, for finite Reynolds numbers, the IBL
model has a limitation when the viscous terms associated with the inviscid
flow is not negligible in the sense discussed above.

9.4 Conclusion

For irrotational external flows, the generalized boundary layer equations sim-
plify if their validity is restricted to the boundary layer region. Then, the
standard boundary layer equations apply while the interaction with the in-
viscid flow equations is maintained. The notion of interaction is essential for
the calculation of flows with separation. Within the framework of the stan-
dard boundary layer theory, the hierarchy between the viscous and inviscid
equations leads us to Goldstein’s singularity at separation which prevents us
from continuing the solution downstream. With IBL, the velocity normal to
the wall must satisfy a condition which breaks the hierarchy between the
inviscid flow and the boundary layer. This property has a very close counter-
part in the triple deck theory which ensures the absence of hierarchy between
the decks.

Then, with appropriate numerical methods, it is possible to calculate flows
including those with separation. The application to aerodynamic flows, per-
formed by different authors, have demonstrated that IBL methods are very
efficient tools and competitive compared with Navier-Stokes solvers, in terms
of accuracy and robustness.

When the boundary layer is fed by a rotational freestream, it is required
to use second order IBL. This model accounts for the effects observed with
the Navier-Stokes solution very well as far as the variations of the inviscid
flow velocity do not induce too large viscous terms.

Problems

9-1. This problem results in Van Dyke’s second order theory for a sheared
external flow [106]. We consider a flow at high Reynolds number past a flat
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plate. The flow is laminar, incompressible, two-dimensional, steady. The di-
mensionless Navier-Stokes equations are

o w
or oy
U U 0P, [(0U U
ua_x+va_y__6‘x+€ <6‘x2 oy? )’
v v 9P, (PV 0PV
ua_x+va_y__8y+€ <8x2 oy? )’
with
2ol _ v
~ Re VL’

where the Reynolds number Re is based on the reference quantities V and L.
The coordinate along the wall is z and the coordinate normal to it is y; the
- and y-velocity components are U and V respectively; the pressure is P.
The wall is defined by y = 0.

At upstream infinity, the flow is given by

ug =1+ay,

where a is a constant.
We study the flow with MMAE.
The outer expansion is

U=ug+duy+--,
V=dv1+---,
P—biprtoe

where d1(g) < 1 is an order function.
The inner expansion is

U=U;+ AU+ -+,
V=e(Vi+AgVa+ o),
’P:AZPQJF... ,

where As(e) and Aj(e) are two order functions and Uy, Vi, Us, Va, P, are
functions of x and Y = y/e.
1. Write the outer equations for uy, v, p;.
2. Write the boundary layer equations for U;, V;. Reduce the problem to
d

a differential equation for f by putting n = Y/v/2x and Uy = f'(n) = d—f

n
Give the boundary conditions and the matching conditions.
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We assume that the behaviour of f as n — oo is

f(n)n_%oon — o+ EST,
with By = 1.21678.
3. Write the matching on V and deduce §; and v (z,0).
4. Find the behaviour of the solution of outer equations as y — 0 in the form

ui(z,y) = ar(z)y +-- -,
v1(z,y) = bo(x) + ba(z)y® + -+,
pi(e,y) = co(x) + er(2)y + o)y + - -,

by assuming that ¢p(0) = 0 and a;(c0) = 0. Functions ay, by, ba, co, ¢1, Co
will be determined precisely.

5. Write the matching on P; deduce A} and Py(z, 00).

6. Write the matching on U; deduce Ay and the behaviour of Us as Y — oc.
7. Give the second order boundary layer equations.



10 Regular Forms of Interactive
Boundary Layer

In Chap. 8, the application of the successive complementary expansion
method, SCEM, to high Reynolds number flows past streamlined bodies led
us to the notion of interactive boundary layer, IBL, to first and to second
order. The salient feature of IBL is to ensure the interaction between the
equations describing the inviscid and viscous flows.

When the external flow is irrotational, it has been shown that the IBL
equations reduce, in the boundary layer region, to Prandtl’s equations but
their interaction with the inviscid equations is maintained thanks to the
matching condition on the velocity normal to the wall.

The interactive nature of these models is essential for the calculation of
flows with separation.

In this Chapter, we address the following issue: how are these methods po-
sitioned with respect to the standard approximations of Navier-Stokes equa-
tions, such that Prandtl’s theory, Van Dyke’s second order theory, triple deck
theory which are the major references in the modelling of aerodynamics? We
show that IBL contains the standard models mentioned above.

The method used to prove this result is to start with IBL formulation and
seek regular expansions since the common feature to Prandtl’s, Van Dyke’s
and triple deck theories is precisely to be expressed by means of regular expan-
sions. Obviously, this study is performed with the hypotheses corresponding
to each particular case. It is possible to follow another approach in which the
gauges or the scales are a part of the solution but, for the sake of simplicity,
we prefer to consider that the definitions of the asymptotic sequences and of
the scales are known.

Figure 10.1 shows the main levels in the classification of models. The
objective of this chapter is to prove the elements leading to the different
approximations of Navier-Stokes equations.

10.1 Second Order Boundary Layer Model

We want to show that the second order IBL contains Van Dyke’s second
order model when the external flow is rotational. The procedure consists of
reformulating the IBL model by means of regular expansions.
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Navier-Stokes

model

SCEM: generalized expansions

First order

interactive boundary layer

Reduced model
(external irrotational flow)

SCEM: regular expansions

Prandtl’s model First order

triple deck theory

Navier-Stokes

model

SCEM: generalized expansions

Second order

interactive boundary layer

SCEM: reqular expansions

Van Dyke’s second
order model

Fig. 10.1. Approximations at high Reynolds number
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10.1.1 Second Order Interactive Boundary Layer Model

Let us remember that the second order IBL model yields the following UVAs
(Sect. 8.3)

u=ui(x,y,e)+Ui(z,Y,e), (10.1a)
v=uvi(x,y,e) +eVi(z,Y,e), (10.1b)
p=npi(x,y,e)+e*Pi(x,Y,¢e). (10.1¢)

The boundary layer variable Y is

y . 2 1 'U,
Yy==2= th == =—
e VS T RT VL
where V' and L are reference quantities (see (8.2)).
It has been shown that the flow defined by u, v, p satisfy the generalized
boundary layer equations (8.17).

ou n ov 0
oxr Oy (10.2)
u@—&—v@—u %4—1}%4_182(“*1‘1) 7 .
ox oy Yoz ! oy R Oy?
and that the flow defined by wuq, vy, p1 satisfy the Euler equations
Ou O _
ox y
ouy Ouq Op1
—_— _— = —— 10.3
oy o y ox ( )
AL UL
Yoz ! oy Oy
The boundary conditions are
at the wall : u =0 , v=20 . (10.4)
Yy — 00 cu—u;—0, v—v; —0

Conditions at infinity are also imposed for the field described by the Euler
equations.

10.1.2 Van Dyke’s Second Order Model

For the sake of simplicity, we assume that the form of the regular expansions
is known. Strictly, this assumption is not necessary and the form of the ex-
pansions can be demonstrated [105]; this work, however, is not really useful
and would make the discussion cumbersome.
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For the external flow, we seek regular AEs in the form

ule(l)u1+~-~,
Uleg’Ul—f—-'-,
p=Ejpi+-,

where Ej, is an outer expansion operator to order O(g?).
The flow described by w1, v1, p1 satisfies the Euler equations. Then, with

Eguy = @y (x,y) + eta(z,y) , (10.5a)
EZ v = 01(z,y) + eba(z,y) + €203(z,9) , (10.5b)
Efp1 = p1(@,y) + epa(2,y) - (10.5¢)

it is clear that the flow defined by 1, 01, py satisfies the Euler equations and
that the flow defined by s, 02, po satisfies the linearized Euler equations.
To the considered order, UVAs given by (10.1a—10.1c) write

u=Ejus +Ui + -, (10.6a)
v=FEiv +eVi+--, (10.6b)
p=Ejp1+-- . (10.6¢)

Restricting the validity of these expansions to the boundary layer region,
with y = €Y, we have

u=FE{Eju +U; +---,
v:Engvl +eVi+---,
where E} is an expansion operator in the boundary layer to order O(g?).

Note 10.1. Assuming that 1, 91 and 42, 92 are expandable in Taylor series near
the wall, we could write relations of the type
1l N 0l N
E; Equi = 41(z,0) + €Y | — + etiz(z,0) .
oy y=0

This writing is not only not always possible (for example for a channel flow) but
also is not required.

Then, we define U and V by

U=E{Eju + Uy,
eV =EIE2v, +V] .

UVAs given by (10.6a—10.6b) write

u=FEju; —E]Ejuy +U +---, (10.7a)
v=FEgv; —EJESv +eV .- . (10.7b)
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If we seek regular expansions for U and V' in the form

E1U = a1(2,Y) + etig(z,Y) , (10.8a)
EiV =01(z,Y) +eta(z,Y), (10.8b)

UVAs given by (10.7a-10.7b) write

u=FEpus —E]Ejuy +B{U +---, (10.9a)
v=FEjv; —EJE2v, + EfeV +--- | (10.9b)

or, in the boundary layer,

u=ElU+--, (10.10a)
v=eBiV+--. (10.10b)

With these expressions, we write the boundary conditions. At the wall, we
have
Y=0: u=0, v=0, (10.11)

hence
Y=0: EiU=0, E;V=0. (10.12)

Note 10.2. It can happen that terms such that E{ u1 or E2v; are not bounded
at the wall, but terms such that E}(E§ u; — E} E§u1) or E3(E2v1 — EZ E3v1) are
identically equal to zero.
In particular, we deduce
Y=0: uy=0, =0, v7=0, 02=0. (10.13)
The conditions
Y—00: u—u1 —0, v—v;—0 (10.14)
can be written as
Y »o00: EJU—-E;Eju; =0, EieV -EIEjv; =0, (10.15)
whence
Y »o00: EJU—-Ej(i +eta) =0, EjeV —Ej(d; +eb2) =0. (10.16)

Assuming the existence of Taylor series expansions in the neighbourhood
of y = 0, we obtain to first order

Ylim Uy = ’EL1($7O) s (10.17&)

b1(2,0) =0, (10.17b)
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and, to second order

. duy .

Uo — _— = 1 .1
lgréo Uy —Y ( oy )y_ol Ga(x,0) (10.18a)
A 001 .
lim |7, -Y [ — = 0y(z,0) . (10.18b)

Replacing w and v by means of (10.10a, 10.10b) in the boundary layer,
(10.2) become

OEIU OE]V

- 10.1
S+t =0, (10.19a)

L OElU | BElU OEip1 0?°EiU

BJUSL= $ BVt = ——— 2 == (10.19b)

o
If the wall curvature is small, the term L s o(1) at the wall. Then,

dy
2 A~
it can also be shown that the term 31 is o(1) at the wall. Under these
oY
conditions, we can write
E1p1 = pi(@,0) + epa(2,0) . (10.20)

To first order, (10.19a-10.19b) yield Prandtl’s boundary layer equations
(see Problem 8-1)

ow  ov
_ aﬂl _ 8&1 o dﬁl(.’JS,O) 82ﬂ1
T Ty = — =+ o (10.21b)
with
dﬁl(l',O) A dﬁl(l',O)
= - @1 (z,0) o (10.21c¢)

Moreover, conditions given by (10.13) and (10.17a) are the usual boundary
conditions in Prandtl’s theory.
To second order, we obtain the linearized boundary layer equations

Ouy ~ Ovs
— 4+ = = 10.22
dr Y 0, (10.222)
_ aﬂg _ 8&1 _ aﬂg _ aﬂl dﬁg(.’)ﬁ,O) 82ﬂ2
i) —= — = 10.22
Ugy Ty Thigy Th2gy a Toyzo (10220
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with
dﬁg(l‘,O) " (9’&2 R (9’&1 R (9’&1
e -—= —_— —_— . 10.22
dz Yor T "0z o 9 J,—o (10-22¢)

With the boundary conditions given by (10.13) and (10.17a, 10.17b,
10.18a, 10.18b), we recover exactly Van Dyke’s second order model.

It can be 82}10W11 that the streamwise momentum equation is satisfied as
Y — oo if (M

oxdy ) . _

Thus, the second order IBL contains Van Dyke’s second order model. The
two models are not strictly equivalent but the differences are due to terms
which are neglected in the regular expansions.

We can show that the first order IBL does not contain Van Dyke’s second
order model when the external flow is rotational. However, for an irrotational
external flow, the first order IBL contains Van Dyke’s second order model;
the study conducted in Sect. 8.5 lets us anticipate this result.

> is negligible.
y=0

10.2 Triple Deck Model

10.2.1 Flow on a Flat Plate with a Small Hump

We consider a laminar, incompressible, two-dimensional flow past a flat plate
at high Reynolds number. The oncoming flow is uniform and, therefore, irro-
tational. We assume that the perturbation produced by the boundary layer
on the inviscid flow is of order e for the velocity components and for the
pressure. In addition, we assume that a small deformation of the wall induces
a perturbation formally of the same order (in fact, the perturbation could be
stronger). A local separated zone can be present.

The reduced IBL model developed in Sect. 8.5 is well suited to study this
problem. We want to show that this model contains the first order triple deck
model.

The velocities, the lengths and the pressure are nondimensionalized with
reference quantities V, L and oV2. Here, the reference velocity is equal to
the freestream velocity and the reference length L is the distance between the
plate leading edge and the location of the hump (Fig. 10.2). The Reynolds
number R is

VL
rR=2Z
I

Let us remember that the proposed UVAs are given by (8.22a-8.22c)
Uy = U +u1p — ugg

Vo = €V +v1 — 10 + Y120

dp opP
- | = €5 TPy — Piyo — YPiyyo

, (10.23)

y oY
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L

Fig. 10.2. Flow on a flat plate deformed by a hump

with
_ Ouy Ip1 I*pr

= oz’ p1y28—y7 plyyza_y27
and the index “0” denotes a value at the wall.

Functions w1, v1, p1 describe the flow outside the boundary layer whereas
functions U, V, P describe the flow in the boundary layer. The boundary
layer variable is Y

Uiy

y=2,

g

with 1
2—_

E—R.

In the boundary layer, the generalized boundary layer equations reduce
to (8.24) and (8.25)

ou  ov
Dz + v - 0, (10.24a)
oUu oUu 0*U
U% + VW = U10U1z0 + m s (1024b)
P 2
Ua—v + Va—v = 0 + oV . (10.24C)

O oY 9y ' 9vz

Functions wuy, vy, p1 satisfy the Euler equations

8u1 8’01

—+ — =0 10.25

dxr = Oy ’ ( 2)
ul% +v1% __9m 7 (10.25b)

ox Jy ox

ov ov 15
v v O

— . 10.2
Y 9y (10.25¢)
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In addition, we have the wall boundary conditions (8.26a-8.26b)

Y=0: U=0, V=0, (10.26)
and the conditions at the boundary layer edge (8.26¢-8.26d)
Y—oo: U—up, lm (V+Yui)= ”gﬂ . (10.27)

Finally, at infinity, the flow is uniform.

10.2.2 Regular Expansions

The model discussed in Subsect. 10.2.1 is based on generalized expansions.
We want to show that this model, reformulated with regular expansions,
contains the triple deck model. Obviously, it is required to choose the scales
and the gauges adapted to this theory. It would be possible to demonstrate
all these results but, to simplify the presentation, the scales and gauges are
assumed to be known (see Appendix IV and Problem 10-3). Thus, the triple
deck theory consists of studying the flow in the neighbourhood of point g
where the bounday layer is perturbed and the length scale is £3/4, so that
the appropriate streamwise variable is

r — X

X = i (10.28)
With the chosen reference quantities, we have xy = 1.
Upper Deck
In the outer deck, the normal to the wall variable is
«_ Y
Y* = e (10.29)

From the triple deck theory, functions ui, v1, p1 associated with the ex-
ternal flow are normalized as

ui(z,y,e) = 142U (X, Y*,e) , (10.30a)
vi(z,y,e) = e 2VH(X, Y e) (10.30b)
iz, y,e) = /2P (X, Y* ¢) . (10.30c)

In the expression of w1, the value 1 is introduced because, at infinity, we have
uy — 1. Then, (10.25a-10.25¢) become

oU* n ov* _0
ox  oyx
oU* ou* oP*
1/27r:\ Y~ 1/2v Y% -z
(I+e U)aX +e V@Y* 5%
ov* ov* opP*

1 1/277% 1/27 /% _ )
R S Sl
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The regular expansions of U*, V* et P* are

U*(X’Y*,E) — Ul*(X7Y*)+€1/4U5(X,Y*)+ 7
V*(X’Y*7E) — ‘/vl*(X,Y*)-FEI/ALVYQ*(X’Y*)—f— 7
P*(X,Y*,e) = Pf(X,Y*) +/*P5(X,Y*) + -,

and, obviously, we recover the upper deck equations to first order

aag(l + g;’l* =0, (10.31a)
aali% _ —aa];é , (10.31b)
aa\; = —gil* : (10.31c)
and to second order
aag? + g?* =0, (10.32a)
86[;2 _ —aa];? , (10.32b)
aa‘;? = —g?* . (10.32¢)
UVAs given by (10.23) become
U, = U +e2(U* - U;)
vy = VAV — VI + Y UY) + eV
<@> _ |:8P* - <8P*) e (82P*> :| , (10.33)
). oY W Jyeso Y*? )y
+58—P
aY

where
ou*
USZU*(X,O,E), ‘/O*ZV*(X7O’€)7 U)*(OZ v :
X )y._q

From (10.30a-10.30b) and conditions given by (10.27), we can write

Jim U =1+ eY2ur (10.34a)
Jim (V + 6_1/4YU)*(0> — 2y (10.34b)

The conditions of uniform flow at infinity yield

Y*—o0o: Uf=0, Uj=0, V=0, Viy=0. (10.35)
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Main Deck and Lower Deck

These two regions correspond to the boundary layer region defined in the
reduced IBL model. From the triple deck theory, the flow characteristics U,
V', P are written as

U(z,Y,e) = Up(x,Y) + /*U(X,Y,¢), (10.36a)
V(z,Y,e) = Vo(z,Y) +e YV2V(X,Y,e), (10.36b)
P(z,Y,e) = Py(z,Y) 4 3/2P(X,Y,¢) (10.36¢)

where Uy and Vj are the velocity components of the non perturbed boundary
layer, i.e. Blasius’ solution.

Substituting (10.36a-10.36¢) into (10.24a-10.24c) and taking into account
that Uy and Vj satisfy Blasius’ equations, we obtain

ou v
oY LoV _ 10.
ox Fay =0 (10.37a)
U  S0Us | 440U 50U sya [ 7000 U
U03X+V3Y + € U8X+V6‘Y +e U&E +V08Y
920
_ 1/4 1/277% * 3/4
= &V (1+5/U0)Uxo+a/m, (10.37b)
ov P
1/4 Z 7 1/2 10.
€ UO@X aY+O(5 ). (10.37¢)
UVAs given by (10.33) become
Uy = Up + /AU + 2 (U* = UY)
vy = V2V V=V + Y Uky) + Vo
ap\ _ 0Pt (0P . (10.38)
), oYy OY* ) yu_p
*p* oP P
/Ay -1/2%2 270
: (6Y*2)y*_0 Ty Ty

From (10.36a—10.36b) and boundary conditions given by (10.34a—10.34b),
we can write

Jim U=ce"ug, (10.39a)
Jim (17 + VYUY, + 51/21/0) =V (10.39b)

The wall conditions yield

o~

U=0, V=0. (10.40)
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The following conclusions are drawn

e Equations (10.31a-10.31c) are identical to order 1 equations of the upper
deck in the triple deck theory.

e Equations (10.37a-10.37c) contain the set of equations (IV.7a-IV.7c)
which contains itself the order 1 equations of the main deck and of the
lower deck.

e Boundary conditions given by (10.35), (10.39a), (10.39b), (10.40) are iden-
tical to the boundary conditions in the triple deck theory.

It is concluded that the first order triple deck model is contained in the
reduced IBL model of Subsect. 10.2.1. Now, this model is contained itself in
the first order IBL model (Sect. 8.5). Finally, it has been proved that the first
order IBL contains the first order triple deck model.

On the other hand, the second order triple deck model is not included in
the IBL model, even in the second order model. In the IBL model, the pressure
term which is present in the streamwise momentum equation is obtained from
the Euler equations. In the triple deck theory, the pressure P» which is present
in the streamwise momentum equation of the lower deck is constant in the Y-
direction and matches with the main deck pressure P (X, 0) which is not given
by the upper deck equations but by the main deck equations (Appendix IV).

The term @ cannot be recovered from the second order IBL model.

0X

10.3 Summary of Approximations
of Navier-Stokes Equations

In a first step (Fig. 10.1), SCEM, applied to high Reynolds number flows,
leads us to the first and second order IBL models thanks to the implementa-
tion of generalized expansions. The viscous-inviscid interaction is one of the
most salient features of these models.

IBL models simplify in different circumstances. For example, when the
external flow is irrotational, the same reduced model can be used and ob-
tained by starting from the first or from the second order IBL model. It has
been shown that the equations reduce to Prandtl’s equations in the boundary
layer. However, the interaction with the inviscid flow is maintained.

The reduced model contains Prandtl’s boundary layer and the first order
triple deck model.

Van Dyke’s second order model is contained in the second order IBL but
not in the first order IBL when the external flow is rotational.

10.4 Conclusion

The first and second order IBL models and the reduced model take into ac-
count a mutual action between the viscous and inviscid flows. This interaction
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results mainly from the matching of the normal to the wall velocity between
the two flow regions.

Prandtl’s model, Van Dyke’s model and triple deck model are degenera-
cies of the interactive boundary layer, IBL, models obtained with regular
expansions. With Prandtl’s model and Van Dyke’s model, the interaction is
replaced by a hierarchy between the sets of equations describing the inviscid
flow and the boundary layer. This modification results from the shift of or-
ders of magnitude on the normal to the wall velocity in the invisicid flow and
in the boundary layer. In the triple deck theory, the normal velocity recovers
the same order in the upper deck and in the main deck. This choice of gauges
is essential to treat separated flows.

Problems

10-1. We consider the equation

d? d
8= + 23

3 —
i d:L'—’_(aj —ey =0,

with

1. At first, MMAE is applied.
Give an outer approximation of the solution.

d
As the coefficient of S is positive, we expect the existence of a boundary

layer in the neighbourhogd of z = 0. Give the thickness of this boundary
layer. Determine the corresponding approximation. Show that the matching
with the outer approximation is impossible.

We deduce that an intermediate layer is required. Show that the thickness
of this layer is e!/2.

Give the complete solution in the form of a composite approximation.
2. Apply SCEM by imposing the exact boundary conditions.
3. By means of SCEM in its generalized form, give a two layer model such
that the lower layer contains the lower and the intermediate layers of the
regular form of SCEM.
10-2. We study the boundary layer on a flat plate deformed locally by a two-
dimensional indentation.

All the quantities are nondimensionalized by using the freestream velocity
Vs and the abscissa Ly of the hump location. We have

* * * * *
;T r_ Y p_ U ;v ;)P
r=—, y=-—, u = , U= —— p_vz.

oV
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L

Fig. 10.3. Flow on a flat plate deformed by a hump

We define the small parameter ¢ by

Voo L
e=Re V"™  Re= 0,

v

where m is arbitrary (m > 0); the value of m does not influence the results.
The equation of the hump is ' = F(z').
Prandtl’s transformation consists of the following change of variable

($/7 y/) — [.’L‘ = l'/, Y= y/ - F(:LJ)] )
which enables us, with the coordinates (z, y), to write the wall equation as

y=0.
The following change on the velocity components is also introduced

dr
/! / /!
u=u, v=0v ——u .
da’
With these transformations, the Navier-Stokes equations become
e Continuity equation

ou v
or oy
e r-momentum equation
u@ﬁ-v@——@—i—@ﬁ—i—eﬁ"@— M a2u E
ox dy  Or Oydx ox? Ozx0y dx

e 0%u [(dF\? _m ou d’F om 0%u
oy? \ dz Oy da? oy?’
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e y-momentum equation

ov ,d?F ov dF Ou OudF  Op

Yor TV aR ey Mmooy dr T oy
+2€m—d2F@ Em@ dE ’ -2 m_82v dr 5mu—d3F
dz? Oz oy? \ dz 0x0y dx da?

O d?F m OPu (dF 2 O dF Lo dF 0%u
Oy dx? c Ozdy \ dz Oy? dx ¢ dr 0a2
0% (dF>2 B o 2F Ou dF 0%v 0%v

— m— 4" —.
oy? \ dx +

+e dz? oy dz ¢ a2 Oy?

We study the case where the indentation height is of order £2™/3 and the
indentation length is of order /2. Thus, the hump equation has the form

/
/__ _2m/3 €
y =€ f<5m/2> .

Without any indentation (flat wall) the flow is said non perturbed. To
first order, the solution is Blasius’ boundary layer. To the order studied here,
it suffices to consider the boundary layer at ' = 1 (z* = Lg) given by the
velocity profile

u="Us(Y) with ¥ =—2L_.
em/2
As'Y — 0, we have

Up=AY .
The study of the flow perturbation in the neighbourhood of the indentation
does not require, to the considered order, to take into account the variations
of Blasius’ boundary layer in the streamwise direction.
The structure proposed by Mauss [64, 65|, Nayfeh 73], Smith [93] com-
prises two decks. The main deck is the continuation of Blasius’ boundary
layer; the appropriate variables are

X=em, Y=Y=—0.

In the lower deck, the appropriate variables are

__* v__Y
)(_5771/27 Y_E2m/3 :

Therefore, we observe that the lower deck has a thickness of the same order as

the indentation. On the other hand, the perturbation does not reach a region

thicker than the oncoming boundary layer; the inviscid region is not affected.
In the main deck, the expansions are

AU, _
u=U,(Y)4+e™of—= + ™30y +--- |
Y) 'y 2
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d _
v = _Em/ﬁé[]o _|_5m/3V2 SR

p:gm/3F2+... .
In the lower deck, the expansions are

uzam/6()\3~/+[71)+~-~,

vzgm/3‘71+...7
ngm/?’PlJr... .

Give the equations for Us, V5, Py and the equations for ﬁl, ‘71, ]51.
Give the boundary conditions and the matching conditions.
Show that the two sets of equations are strongly coupled.
10-3. The flow on a flat plate deformed by a small two-dimensional hump is
described by a structure which depends on the hump dimensions [22, 79, 80].
All the quantities are nondimensionalized by using the freestream velocity
Vs and the abscissa Ly of the hump location. We have

* * * * *

/ x ’ Y p_ U ’ v / p

:L_07y:L_O7U—VOC7U:VOC7p:QVOQO'

T

We define the small parameter ¢ by

e=Re V"™  Re=

where m is arbitrary (m > 0); the value of m does not influence the results.
The hump equation is y' = F(a').
The study is performed with Prandtl’s transformation

(l‘/, y/) — [l‘ = ‘T/7 Y= y/ - F(l‘/)] )

and AP
ov=0v - —u.
da’
The streamwise extent of the perturbation is “ so that the variable
adapted to the study is

u=1u

T

X=-

EOC

and the hump height is of order e?. Therefore, the hump equation has the
form

y =7 f(X).

In the map («, 3), four significant zones are defined (Fig. 10.4). They are
delimited by different straight lines whose meaning is given below.
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D5
/
B D4
2
T.D D3
Smo| o __ D.D
8 4
3
mo|
2 | D2
D6
I
D1
I
I
| | I -
3m.dmom a
10 8 2

Fig. 10.4. Delimitation of different zones around the triple deck; T.D.: triple deck,
D.D.: double deck

D1: 8 = «. The height of the hump must be smaller than its length
(8 > «) otherwise, as the Reynolds number tends towards infinity, the
hump becomes very steep.

B =m/2. For § > m/2, the hump height is smaller than the thickness of
the oncoming boundary layer.

a = 3m/8. This line defines the boundary between zone 1 and zone 2
which differ by the mode of resolution. The direct mode applies in zone 1
and the inverse mode in zone 2.

D5: 8 =a+m/2.If B > a+m/2, the perturbations are small with respect
to the second order of the standard boundary layer theory. For example,
the first order of the pressure in zone 1 is ¢~ whereas the second order
in the boundary layer is £”/2.

a = 3m/10. This boundary is given by the study of second order terms
and defines the hierarchy between U; and Us. Along the straight line D6,
the point of abscissa o« = 3m/10 corresponds to § = m/2 which is the
limit of the hump height.



232 Chapter 10. Regular Forms of Interactive Boundary Layer

e D6: 8 = 5a/3. This line defines the boundary for the linearity of lower
deck equations between zones 1 and 3. In zone 1, the lower deck equations
are linear whereas in zone 3, they are non linear.

e D3: = a/3+ m/2. This line defines the boundary for the linearity of
lower deck equations between zones 2 and 4. In zone 2, the lower deck
equations are linear whereas in zone 4, they are non linear.

e « = m/2. The upper deck dimension is of order ¢*. The line a = m/2
defines the minimum of the streamwise hump extent which is supposed to
be larger than the thickness of the oncoming boundary layer; this condi-
tion implies the existence of an upper deck thicker than Blasius’ boundary
layer which is of order ™/2.

e D4: f=m—«/3. If B > m — a/3 the perturbations are large compared
to the second order of the standard boundary layer theory. For example,
the first order of the pressure in zone 2 is e#+®/3=7/2 whereas the second
order of the standard boundary layer is ¢™/2.

e D2: 3= —a+ m. This line defines the boundary of zones 3 and 4 which
differ by the mode of resolution of equations: direct mode in zone 3 and
inverse mode in zone 4.

In the different zones, the expansions and the equations are given below.

Zone 1 o _
v = Y —y Y Y

E_Oé ’ - = em/2 V= ca/3+m/2 °
Upper deck
ouy  ovyr
u=1+55—ank—|—-~-7 0X oy:
ouy oPf
— By ... 1 _ 94
v=e A X X’
p=ef2Pr4... | vy dif  opy
0X dX2  9y*’
Main deck
UL Vi _
w=Uy(Y)+eP4/30, 4 B=8/34m2G, 4 ... 9x " oy
_ B=Ta/34+m/27] 871 — dUy
v=¢e Vi+--- 5 Up—— Vi— =0
' ox Ty
p:gﬁ*aﬁl, 61_31 B
oYy
Lower deck
i ) o0, Vi _,
w=e®BNY 4+ P43 .. ox gy
_ _m/2=2a+B s "'aﬁl 5 6[/51 82[71
v=¢ Vit AY — + AWV =+ ——,
! ax T Tax T om
p:gﬁ*aﬁl+...7 aﬁl
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Zone 2 y B y N y
Y = a Y:YZEm/z’ Y:Ea/3+m/2
Upper deck
ouy  oVy
+ =0
u=1+bte/3—m2yx ... ax oy
ou; 0Py
df - _ ’
v = _Eﬁfaﬁ+€ﬁ+a/3fm/2‘/2*+... ; aX aX
B+a/3—m/2 vy _ _oFy
p=c Oé/ m/P2+...7 aX__aY*
Main deck
oU, 0V,
dU e —_— =
u:Uo(Y)-‘rEﬂ_m/Zf(X)d—Yo 0x + Y 0,
+€ﬁ+4a/3—mﬁ2+.'. ,
df _ Uy  — dUy
— _Ba ) B+a/3—m/2 Up——= Vo— =
v=—¢ dXUo(Y)+€ Vo + , 03X+ 2
p=efta/s=m/2p, 81_3_2 _
oY
Lower deck
i i o0y, O _
u:ga/3)\y+5ﬁ*M/2U1 4o, X a}f\/; =Y,
_ _B—2a/37; ~8(71 5 8]31 (92(71
v=¢ Vit N —— + AV = ——— _
' ox T T Tax T oy
p = €B+Oé/37m/2ﬁ1 + BRI aﬁl B O
oY '
Zone 3 y o y N y
Y* = o Y=Y-= gz Y = GaprE
Upper deck
ouy ovyr 0
u:1_|_55—anﬂ_|_...7 0X W_ s
oU¥ OP;
B el VA R 1 _ 9
v=E A X ~ ox
p=el P+, ovy  df OP;

X ' dx2 9y*

)

233
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Main deck

w=Up+eB=/2T, ... .

Y
p:gﬁ_aﬁ1+... ,

Lower deck

= B2, 4 BBy 4

v = eB=3at2m) /AT L

p:gﬁ_aﬁ1+... ,
Zone 4
vi=2L v-
EOC
Upper deck

u=1+""05 4.,

d

dX
p:€2'87mp2*+...’

Main deck

u="Uy+e?™2f(X)

d —
v = —Eﬁ_a—on + e MYy 4.

dX
p:52ﬁ7mﬁ2+... ,

em/2 "’

vy
dy
+€2ﬁ+o¢73m/252 4o,

oU, N oV,

0X = 9y
oUy — dUy

bogx tVigg =9

oP,

oy

:O’

v, oV

ox Ty "

_ oU, -~ OU, P
Uax Ty T ax
on
oY

=0.

> Y

T g(2a—28+3m)/4 °

oU;  ovy

ax tay- O

oU;  op;

X X’

ovy  op;

X~ oy*
oUs | Vs _
ox oy

Uy — dUy

Uoox TVegy =0
9Py

oY

92U,
Y2

)



Lower deck

u=el"m2y,
_|_5(204—2ﬁ+m)/4)\)7 .

v = 5(26—2a+m)/4f/1 4+,

p:g2f3_mﬁ1+... .
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ou, oV

—L 4219

8X+ay ’

U, ~ 0U, or,  9*U,
Uj—t 4V = - =2 ~
18X+lay oxX | ay2
O _ g

oY

We want to apply these different models to a flow on a flat plate (f = 0);
the perturbation is due to wall mass transfer instead of a hump. Wall mass
transfer is characterized by a velocity v whose order of magnitude is given
by the order of the same velocity component in the lower deck. For example,

in zone 1, we have

y=0: v=em/?720H8y (X),

with Vi, # 0 on a length of order £°.

Analyze the solution in the different zones of the map («, 3).



11 Turbulent Boundary Layer

The three-dimensional unsteady Navier-Stokes equations given in Appendix I
also apply to turbulent flow if the values of dependent variables are under-
stood as instantaneous values. A direct approach to solving the equations
for turbulent flows is to solve them for specific boundary conditions and ini-
tial values that include time-dependent quantities. Mean values are needed
in most practical cases, so an ensemble of solutions of time-dependent equa-
tions is required. Even for the most restricted cases, this approach, referred
to as direct numerical simulation, becomes a difficult and extremely expen-
sive computing problem because the unsteady eddy motions of turbulence
appear over a wide range. The usual procedure is to average the equations
rather than their solutions [77]. The averaged Navier-Stokes equations are
also called Reynolds equations. This procedure is used here to study the
turbulent boundary layer.

The standard asymptotic analysis decomposes the boundary layer into
outer and inner regions, whose properties are discussed in this chapter. One
of the most important feature is the overlap region in which the velocity
profile follows a logarithmic law.

The successive complementary expansion method, SCEM, is applied by
taking the scales determined in the standard analysis. As in laminar flow, an
IBL model is obtained. In addition, the study of the contribution of the inner
region enables us to construct simply an approximation of the velocity profile
valid in the whole boundary layer, as far as the velocity profile is known in
the outer region. Numerical results are presented for a flat plate boundary
layer at different Reynolds numbers.

11.1 Results of the Standard Asymptotic Analysis

11.1.1 Averaged Navier-Stokes Equations

The study of incompressible turbulent flows is addressed by defining a mean
flow from a statistical average of velocity and of pressure.
The instantaneous flow is decomposed into a mean and fluctuating flow

U =U + U,
P=P+7P.
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An orthonormal axis system is used. The x-axis is along the wall and the
y-axis is normal to it. All the quantities are dimensionless. The coordinates
z and y are reduced by the reference length L, the velocity components by
a reference velocity V, the pressure by oV?2, the turbulent stresses by oV2.
In fact, the mean flow scales are chosen to define the reference quantities V'
and L.

In two-dimensional, incompressible, steady flow (on the average), the av-
eraged Navier-Stokes equations or Reynolds equations are [14, 21]

ou v _

oxr Oy

ou ou oP 0 1 oU 0 1 ou
aV aV oP 0 10V 9] 10V

il - - 4 = 11.1
uaervay 8y+833 JrRay) » (111e)

0, (11.1a)

where R is the Reynolds number

~ oVL
ek

R

and the turbulent stresses 7;; are defined from the correlations between ve-
locity fluctuations
’Ej =—-< Z/{ZIUJI > .

The turbulent stresses appear when the Navier-Stokes equations are averaged
and they are a consequence of the non-linearity of the convection terms.

11.1.2 Scales

The results presented in this section are based, to a large extent, on a large
amount of experimental data from which a consistent theoretical description
has been developed to reproduce the observations and in which the notion
of turbulence scales plays an essential role. Therefore, the issue is addressed
without resting on a well-posed mathematical frame as it is the case in laminar
flow.

In a standard manner, with MMAE, the flow is decomposed in two regions:
the inviscid region and the boundary layer. The former is treated separately
and provides us with the necessary data to calculate the boundary layer.
The boundary layer is described by a two-layer structure [67, 115] consisting
of: i) an outer layer characterized by the thickness ¢ and ii) an inner layer
whose thickness is of order ui (v = u/p) with u, denoting the friction velocity

T

Tw
Ur = 4| —

4

)

and 7, the wall shear stress.
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The turbulence velocity scale — denoted by w — is identical in the outer
region and in the inner region and is of the order of the friction velocity u..
In the outer region, the turbulence length scale, of the order of ¢, is denoted
by € whereas in the inner region, the length scale is v/u.

In the outer region, we assume that the time scale of the transport due to
turbulence (£/u) is of the same order as the time scale of mean flow convec-
tion. We can view this hypothesis as the counterpart, for turbulent flows,
of the hypothesis used for a laminar boundary layer according to which
the viscosity time scale is of the same order as the convection time scale
(Subsect. 7.1.1). If the reference quantities V' and L are chosen as velocity
and length scales of the mean flow, we deduce

L wu

T=T (11.2)

The asymptotic analysis introduces the small parameters € and € which
define, with dimensionless variables, the order of the thicknesses of the outer
and inner layers

£
= — 11.3
=t (113)

v
£ = — . 11.4
=7 (11.4)

Using (11.2), we have

eER=1. (11.5)

With the skin-friction law (11.14), the following relation between the gauge
€ and the Reynolds number holds

e=0g (ﬁ) . (11.6)

In particular, we deduce that, for any positive n

1
eV -E - —.
R
The variables appropriate to the study of each region are
Outer region: n = Y , (11.7a)
€
I oy
nner region: Yy = = . (11.7b)
é

11.1.3 Structure of the Flow

The whole flow is described by a three-layer structure: the external region
which is inviscid to first orders, the outer and inner regions of the boundary
layer.

The results are stated here by assuming that the wall curvature effects
are negligible [21].
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External Region

In this region, the expansions are

U =ao(z,y) + et (z,y) + -,
V =o(z,y) +evr(z,y) + -,
P =po(z,y) +epi(z,y) +---
72]':0.

It follows that g, Ug, po satisfy the Euler equations and w1, 01, p1 satisfy the
linearized Euler equations.

Matching velocity v to order € with the outer region of the boundary layer
yields

’DOw:07

v —lim[v— <%)]
lw — 100 0 Ui ay N )

where the index “w” denotes the wall.

The first condition enables us to calculate the flow defined by ug, g, Po-
Taking into account (11.9b) and the continuity equation, the second condition
gives U1, = 0. Then, with the condition that @, v; and p; vanish at infinity,
everywhere in the external region we have

up=0; v1=0; p1=0.

Outer Region of the Boundary Layer

In the outer region of the boundary layer, the expansions are

U =uo(w,m) +eur(z,m) +-- -, (11.8a)
V =elvo(w,n) +evi(@,n) +---], (11.8b)
P =po(z,n) +epi(z,n) +--- (11.8¢)
Tij = g (x,m) +--- . (11.8d)

The expansion of V is chosen in such a way that the continuity equation
keeps its standard form to any order. The expansion of the turbulent stresses
imply that their dominant order of magnitude is €2, i.e. the friction velocity
is actually a turbulence velocity scale.

The equations for ug, vg et pg are

Ouo , I _
Ox  On ’
up 2t |y duo _ 9o
09 "o Ox ’
0= 9

=
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A solution which matches with the inviscid flow is

Uy = Ue , (11.9a)

du,
Vo= g (11.9b)

where u, is the inviscid flow velocity at the wall

Ue = ﬂOw .
Moreover, the pressure pg is constant over the thickness of the outer region
and is equal to the inviscid flow pressure at the wall

Po = Dow -

Therefore, we have
dpo due
de T Yz
Neglecting the wall curvature effects (see Subsect. 10.1.2), the equations
for w1, v1 and py are

3u1 (%1

oy s 11.1

5 oy 0, (11.10a)
du, Oouq du, Ouy Op1 . OTayn
Jdu a9 eyl 11.10b
e tu ar dz an or aon ( 0b)
Ip1

= == 11.1

0 o (11.10c)

With the hypothesis that the wall curvature effects are negligible, it can be
shown that p; = 0.

Inner Region of the Boundary Layer

It is necessary to introduce an inner region, otherwise the no-slip condition
at the wall is not satisfied. In this region, the expansions are

U=ci(z,g)+---, (
V=éet+---), (11.11b
P=potepi+---, (
T =eFj1+ . (
The expansion chosen for ¢/ shows that the order of the streamwise velocity
is e. With dimensionalized variables, this means that the velocity scale is
the friction velocity. This essential hypothesis, consistent with experimental

results, implies the logarithmic matching between the outer and inner regions
of the boundary layer.
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The pressure py is constant along a normal to the wall and is equal to the
pressure pg in the outer region

ﬁo = po = Pow -
The equations for 1, 01 and p; are

oty 0t

Tt =0, (11.12a)
0 o0l
0= (1 + 249 11.12b
a7 (T w1t ) ( )
op1
0= —. 11.12
9 ( c)

The matching of the pressure to order € between the outer and inner regions
of the boundary layer gives p; = 0.

From (11.12b), the total stress — sum of the viscous stress and of the
turbulent stress — is constant along a normal to the wall.

The matching between the outer region and the inner region on the ve-
locity U (expansions given by (11.8a) and (11.11a)) raises a difficulty due to
the absence of a term of order Og(1) in the inner expansion. The solution
rests upon a logarithmic evolution of the velocity in the overlap region (see
Problems 11-1, 11-2 and 11-3)

up=Alnn+Cy as n—0, (11.13a)

g =Alng+Cy as §— 0. (11.13b)

The law for 4; corresponds to the universal law of the wall, where A and Cy
do not depend on the conditions under which the boundary layer develops
(Reynolds number, pressure gradient). Constant A corresponds to the inverse
of von Karman’s constant.

Then, in the overlap region, the equality of velocity in the outer and inner
regions gives (see Problem 11-4)

e +e(Alnn+Cp) =e(Alng + Cs) ,

or

de :Alni+c2*01 . (11.14)
£ é

This equation represents the skin-friction law. Expressed with dimensional-
ized variables, this law takes the standard form
U 1. w0
—=—-ln— + B, (11.15)
ur X v
where x ~ 0.4 is von Karman’s constant and B depends on the pressure
gradient.
This relation and the logarithmic variation of velocity in the overlap region
are the keys of the asymptotic structure of the turbulent boundary layer.
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11.2 Application of SCEM

The method employed to construct a UVA consists of seeking a first approx-
imation corresponding to the external region of the flow. Afterwards, this
approximation is corrected in the outer region of the boundary layer and fi-
nally, a UVA is obtained by taking into account the contribution of the inner
region of the boundary layer.

11.2.1 First Approximation

We seek a first approximation in the form

U=uj(z,y,e)+---, (11.16a)
V=vj(x,y,e)+-, (11.16b)
P =pi(x,y,e)+-- , (11.16¢)
T,;=0. (11.16d)

Putting these expansions in (11.1a-11.1¢) and neglecting O(1/R) terms, it
can be shown that wuj, v], pj satisfy the Euler equations. As in laminar
flow (Subsect. 8.1.1), it is required to complement the above approximation
because the no-slip condition at the wall cannot be fulfilled. Moreover, the
wall condition for v} is not known.

11.2.2 Contribution of the Outer Region of the Boundary Layer

A correction to the previous approximation is introduced in the form of a con-
tribution of the outer region of the boundary layer
u:ui(xay7€)+5U1(xan7€)+"' ) (

V =vi(z,y,¢) +*Vi(z,m,e) + -, (11.17b
7):pT(may75>+A(E)P1(x7na€)+"' ) (
Tij = emija(x,m,8) + - (

The gauges for the velocity and for the Reynolds stresses are chosen accord-

ing to the standard asymptotic analysis. The gauge A(e) is determined by
examining the y-momentum equation.

Gauge for the Pressure

Taking into account the Euler equations, the y-momentum equation can be
written as

ovy oV; oV; ovy oV; oV;
€U1% + sQUTa—; + €3U16_m1 + 52V18Ly1 + svfa—nl + 631/18—771
o 7é% 4 62 asz,l + 132111‘ 62 32‘/1 4 saTny 182@{ 1 32‘/1

e On Ox R Ox2 + R 22 on R Oy? + R on? -
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In the boundary layer, by using the continuity equation, the Taylor series
expansion of v} when y < 1 yields

*
ovy

=it (20) o
y=0
. dui
:vly:O_y ax O+
’y:

. ou;
=], — € +-
=0~ 1\ 5z y=0

The condition of zero velocity at the wall implies that v},_, is O(e?) in order

to balance the term £2V) because the next term ££V; of the expansion of
v is smaller. It follows that, in the outer region of the boundary layer, v}

is O(e). Then, the dominant term of the y-momentum equation is e Ll
n
It is concluded that A is O(e?). We set
A=¢e?. (11.18)
Then, the y-momentum equation becomes
8P1 aTyy 1
- — =0(e) .
on - on (¢)

According to the SCEM principle, as n — oo, we must have P; — 0 and
Tyy,1 — 0. Then, neglecting terms of order O(e), we have

P+ 7y =0, (11.19)

Continuity Equation

Taking into account the continuity equation relating u} and vj, we have

ou, oy

— 4+ —=—=0. 11.20

or + an ( )
x-Momentum Equation

Substituting expansions given by (11.17a-11.17d) in (11.1b) and taking into
account the Euler equations for uj, vj, pj, we get

6’&* 8U1 8U1 6’&* 8U1 8U1
U 1 * 271 2U z~1 2v_1 * 21 2v_
€ 18.’)3 + euy oz +e“Usy O +e€ 18y + vy o +e*Vi o
6P1 or. i 1 82U* € 82U1 or. i
_ 2 1 2 T, - 1 < Ty,
T te oz +R8m2+7€8x2 c on
1 2, % 1 2
410 ol (11.21)

R Oy? +§ On?
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If O(?) terms are neglected, (11.21) becomes

3u*1‘ 3U1 ’Uik 8U1 aTajy 1
x221 o azel Zlayl 11.22
Ulam +uj 8m+5 an on ( )

Note 11.1. Associated to Euler equations for u] et v}, this equation is a UVA over
the domain formed by the outer region of the boundary layer and by the inviscid
flow region. Equation (11.22) reduces to (11.10b) if the following two hypotheses are
made: i) the velocities u] and v7 are expanded in Taylor series in the neighbourhood
of y = 0 which is justified by the fact that, in the boundary layer, y = en is very
small compared to unity, ii) we assume that the velocity v] vanishes at the wall.
With these two hypotheses, u] can be replaced by its wall value u. in (11.22) and

* due . . . . .
KEJ- can be replaced by —n& in the same equation. In conformity with the notion

of regular expansion, the hypotheses and the results of MMAE are recovered.

If O(£3) terms are neglected, taking into account (11.19), (11.21) becomes

31& * 8U1 3U1 31& UT 8U1 3U1
Uy Oz + uq or +ely or +eVh ay + - (9’/7 +eVi 6’17
37@ 1 3TM 1 8Tyy 1
_ 7 1 ITyyl ) 11.2
on te < ox ox (11.23)

For both models, described by (11.22) or (11.23), the boundary conditions
as 7 — oo are
n—oo: U —0, Vi1 —=0.

With these conditions and by taking into account the vanishing of the tur-
bulent stresses in the inviscid flow, we observe that (11.22) or (11.23) are
perfectly satisfied as n — oco.

The wall boundary conditions are given later when the contribution of
the inner region is studied.

Equation (11.23) can be written in a form closer to the usual boundary
layer equations. We define

Equations (11.20) and (11.23) become

0T oV

vy 11.24
Ox + Ay ’ ( 2)
—oU —oU Lout Loul O0T., 0 = —
- —— ===t —_ — . 11.24
U&E v Jy e U Jy + y + ox (T = Tyy) ( b)
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11.2.3 Contribution of the Inner Region of the Boundary Layer

We seek a UVA in the form

U =u}(z,y,e) + U (z,n,¢) + el (x,9,€) + - (11.25a)
V =iz, y,e) + £2Va(x,m,e) + eéVi(z, 9, €) + (11.25b)
P =pi(x,y.c) +ePy(z,n,¢) + Ale) Py (x, i), )+ ., (11.25¢)
T = e*riji(z,m,e) + 21 (z, 9,8) + -+ (11.25d)

The gauge A is determined by examining the y-momentum equation.

Gauge for the Pressure

Substituting expansions given by (11.25a-11.25d) in (11.1c), we obtain

vt o avl ov; ov;
U U, =+ LS8y 1830
Ui, +telig, 1y T80, T,
OV, av1 .= VI, Out vt
+éeuy e + ée“U; — o + ée Ul o + eV By + & V1 By
LoV Vi s OV OV av1 0 OV
+evy—— o + 3= o 652‘/13_77 + evi— 99 + 3 == 9 ge2 =L 9
_ 0 AR 0Ty 2Oy | 1O SOV S0PV
on g Oy ox ox R 0xz2 R 9z R 0x?
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In this equation, the dominant terms are of order €2 /¢. This leads us to choose

~

A=¢e?, (11.26)
and the y-momentum equation becomes

OPy 0y
L TV 11.27
a5 " oy (11.27)
Continuity Equation
For the velocity components ﬁl and ‘A/l, we have
U, oV

— 4+ —=0. 11.2
5t o5 =0 (11.28)
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x-Momentum Equation

Substituting expansions given by (11.25a-11.25d) in (11.1b) and taking into
account the Euler equations for u}, v, p}, we obtain

3u* - 3u* 8U1 8U1 = 3U1
Up— + el — 42U —— 4+ U, —
616m+€18x+€u18x te Yoz te Yoz
oUy o 0U, o~ OUy o Oul - Oul
= U— U— Vi Vi
+euy or +e°U; E +e°U; E +e Vi oy +éeVy oy
*8U1 2 8U1 N aUl
+v7 an + Vi an + eV 3
€ 3U1 63 3&1 255 8U1
P gt V=L V=L
+é 1 90 + 2 1 6;} + 1 ag
_ 23P1 . 23131 287’111 +6237A-a:m1
0 ox ox ox

182u’1‘ n £82U1 n £62(71
R 0z2 R 022 R 0z2?
Orayr | & 0fwyn 1 0%ui 1 PUy e 90,

on g 0y R 0y2  eR On? 2R 0992

(11.29)

In the above equation, we can eliminate the terms already taken into account
in the first approximaton of the contribution of the boundary layer outer
region; these terms correspond to the terms of (11.22). We obtain

~ Ou? oU ~
&‘Ulﬂ +€2U1—1 +€2U1—
ox ox
oU oU ~
—|—5u1‘—1 + 20, = + 20, =2 + 2N
Ox Ox

oUy =
+e®Vi—— + éeVi—
Lo " on

2 0tpyn 1 0% 1 0%, e 820,
yl 207U & oUy
& 0 R Oy R On?2 = E2R 032

(11.30)

In the above equation, the dominant terms are of order O(g?/¢).
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e ,oU
Examine the order of term —v7] 8_} In the inner region of the boundary
é

layer, a Taylor series expansion of vj (y < 1) yields

i (2)
Ul — vl :0 y PR
Y 5’y y=0

. duj
:vlyzo_y ax O+
y:

Now, as already said, v},_, is O(e?). It follows that v} is O(£?) in the inner
e 00,
region of the boundary layer and term vl ¥ is O(e/2).
From the results of the standard analy51s 1t is known that, as n — 0, Uy
is a logarithmic function of 7. Under these conditions, with éeR = 1, we have

This term is O(g2/£).
Retaining only O(g%/£) terms, the streamwise momentum equation (11.30)
reduces to R
62 67295%1 1 82U1 e 82U1
2 o) TR o2 T 2R o
Examine now a better approximation consistent with the second approxi-

mation of the contribution of the boundary layer outer region. Taking into
account (11.23), (11.29) becomes

0. (11.31)

a 1 2 6U1
U U
oz Yoz
*aﬁl U, U, out
+€u16—+52U1 O 2U16_+€ ‘/1 ayl
~ 0Uy
+éeVi——
1 o
8U oU . oU
+7 v} a} Vla—} e’V 8}
6131 87' 1
_ 20 29Tzz,1
- ox te ox
+i 82u’1‘ . 382U1 L 582U1
R Ox2 R 0z2 R 0x2
. 102 1 92 277
+5_67y1+_8u1 8U1 g 8U1 (1132)

g 0f R Oy? +§ o2 " 2R 052
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Retaining O(e?/£) terms, the streamwise momentum equation (11.32) be-

comes

*

3
=0
e

11.3 Interactive Boundary Layer

a_ﬁl 4 i a_ﬁl — 6_2872:”?4’1 L_82U1 4 & _3261
Yoy T e Yoy T & 9y | eR o2 | 2R 042

(11.33)

First, we summarize the results obtained until now. The UVA has the

form (11.25a-11.25d)

U= UT(%%E) +€U1(.T7’l’],€) +5[71(.T7:l)76) + o

V = vi(z,y,) + 2 Vi(x,n,€) + eéVi(, §,€) +
P = pi(z,y,€) + 2Py (z,m,) + 2Py (2,5, €) +
Tij = 2mij1(x,n,e) + 2551 (2, 9,8) + -+

According to the order of neglected terms in the z-momentum equation,

we obtain a first or second order IBL model.

11.3.1 First Order Model

This model comprises (11.20), (11.22), (11.28) and (11.31)

ou, oy
Dz T
3u1 *3U1 Ul 8U1 o aTa:y,l
Ui or ox T ox * e On o an
oUu, o,
_ _— :0
ox oy
2 - 1 82 277
E_aTy’1+_aU1+iaU1:0.

& 0y | eR opF | 2R 92

In addition, u} and v} satisfy the Euler equations.
The boundlary conditions are

n—oo: Uy—0, V1 -0,
g—oo: Uy —0, V1 -0,
and, at the wall
u’{+5U1+561:O,
vf—|—52V1—|—édA/1:O.

(11.35a)

(11.35b)
(11.35c¢)

(11.35d)

(11.36a)
(11.36b)

(11.37a)
(11.37b)

At infinity, we also have conditions on u] and vj, usually corresponding to

uniform flow conditions.
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11.3.2 Second Order Model

This model comprises (11.20), (11.23), (11.28) and (11.33)

oUuy oWy
— +—=0 11.38
Ox * on ’ ( 2)
8u1 *8U o, ouj i ol o,
U— or - +eUi—— oz +eVi oy = on +eVi o
8% 1 8Tm 1 aTyy 1
= : = : 11.38b
on te ( Oz Ox ’ ( )
ou, oW
i,z 11.
i + a5 0, (11.38¢)
e *8[71 63 8[71 62 afwy 1 1 82U1 e 82[71

£ UL e 00 e 0y | 1 . (1138d
oy T ey T ey Tmor TER o )

This system must be associated with Euler equations for u} and vj. The
boundary conditions are identical to those of the first order model.

11.3.3 Global Model

The models presented above can be included in a global model having the
following properties: i) the global model describes the outer and the inner
boundary layer layer regions ii) the global model contains the first and the
second order models. This model completes and supplants (11.24a—11.24b)
by taking into account the contribution of the boundary layer inner region.
We set

u=uj +elUs +elUy,
v=uv] +V +eéVp,
2 2
tij =€ °Tij1 +E€7°Tij1 5
with
o /
ti] — < u;u

/
i > -

The equations proposed below for u and v cannot be deduced from any
model established before. This is a heuristic model which can be written as

ou Ov

ety =0 (11.39)
P L S *+£(7<u’v’ >)
r oy gy T dy Oy
2(0 —
L) 9z W) (11.39b)

R 0y? oz
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To the considered order, it can be checked that system formed by (11.38a—
11.38d) is recovered after expanding (11.39a-11.39b) according to the method
discussed in Sect. 11.2.

Equations (11.39a-11.39b) must be associated with the Euler equations
for u} and v}. The boundary conditions are

y—oo : u—uj —0, v—v]—0, (11.40a)
at the wall : u=0, v=0. (11.40b)
Note 11.2. The global heuristic model includes the case of a laminar boundary

layer analyzed in Chap. 8: it suffices to set the turbulent stresses to zero.

11.3.4 Reduced Model for an Irrotational External Flow

For an external irrotational flow, the global model of previous Subsect. 11.3.3
takes a simplified form if the validity of equations is restricted to the boundary
layer region.

As in Sect. 8.5 for a laminar boundary layer, we can use Taylor series
expansions in the boundary layer outer region

ouy
wi=uiyry(Gr) e
y=0

dy
ouj
= UTO + 577 ( + - 5
0y ) =0
ou; . 0%u} n
o,
ox 1z0 T Y 929y ),

We assume that the inviscid flow is irrotational and that the wall curvature
effects are negligible. In the boundary layer outer region, it is known that

. . ouj 0%vy
v} = O(e) and it follows that = O(e). We also have = 0O(e). In
dy dy?

the boundary layer outer region, we obtain

ui = ujp+ O(e?) |

ou .
3_1’1 = Uggo + 0(52) s
vl = vy — yulLe + O(e?)
0%vy
o O(e) .

Approximations (11.17a-11.17d) give
U=ujg+eli+--,
V = vjp — Yuize + Vit
Tij = Tija+ -+ .
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With these hypotheses, (11.38a) and (11.38b) restricted to the outer region
of the boundary layer become

ou; oy
o1 o 11.41
Ox + on ’ ( 2)
dui‘o ¥ 8U1 8U1 Uiko — yu’l‘mo 8U1 8U1
Uy du + uqg O +ely O + - an +eVi 67]
aTmy 1 67'9595 1 8Tyy 1
= : = — : . 11.41b
on +6< ox Ox ( )
We set
U == UTO + EUl B
V =iy — yuio+e* Vi,
Tij = €*ija
Equations (11.41a) and (11.41b) can be recast as
ou oV
— 4+ —=0 11.42
oz T By : ( a)
_oU  _oU duj oT 0 — =
U—+V—=uj,—2 2 (Tpw —Tyy) . (11.42b

In this form, these equations are very close to the equations usually employed
for the outer region of the turbulent boundary layer; the only difference is

0 —
the term 6—(Tm —T,,) which is neglected most of the time. We note that
x

this term is not present in the first order IBL model.
In the boundary layer inner region, we know that vi = O(g?). Assuming
that the inviscid flow is irrotational and neglecting wall curvature effects, it

8 * 82 *
follows that ;1 = O(£?). In this region, we also have 5 1121 = O(g?). Then,
Y Y

the Taylor series expansions of u] and v show that
uj = ujy + 0(é?),
Vi = vy — Jut,e + O(6%?) .
Moreover, we know that uf, = O(1) and v, = O(?).
Then, UVAs given by (11.25a-11.25d), written in the boundary layer, give
UZUTOJrEUlJrEﬁlJr"' s
V=0l —yulo+ Vi +éeVi4 -,
T

2 24
e°Tyj1 e+
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Equations (11.38¢) and (11.38d), restricted to the inner region of the
boundary layer, become

ou, v,
— 4+ —=—=0 11.43
or oy (11.43a)
g 8&1 63 361 62 87A'zy 1 1 82U1 € 3261
e U & 00 & O0Tayn | L = 2L (1143
oy TV T F o TRor TER o | )
We set
u=uly+ el + el , (11.44a)
v =iy — yul + 2V + eV, (11.44b)
tij = 2Tijn + 2T (11.44c)

with
tij:—<u§u;-> .
Equations (11.41a, 11.41b) and (11.43a, 11.43b) are contained in the fol-
lowing heuristic model, valid only in the boundary layer

Ou Ov
gu  ov_ 11.45
Ox * Oy ’ ( 2)
u@—l—vau — oz, 20 —&-i(— < v >)+l@
0 0 10 de oy R Oy?
0
(<> —<u?>), (11.45b)
ox
with the boundary conditions
y—oo : u—ujy—0, v—vig+yui,,—0, (11.464)
at the wall : u=0 | v=0. (11.46b)

0
Generally, the contribution of term p (< VP> — < >> is neglected
x

because experimental results show that the values of < u/2 > and < v’ > are
close; in a first order model, this term is not present. With this hypothesis,
the equations are

ou  Ov
42— 11.47
Ox + Ay ’ ( 2)
ou ou L dui, O , 1 0%u
e =l —Z . (114
u3x+v3y Ui, +3y( < u'v >)+R8y2 (11.47b)

Moreover, in weak coupling, i.e. if we seek regular expansions, the second
boundary condition at infinity (11.46a) gives vj, = 0 as in laminar flow
(Subsect. 10.1.2).
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The other boundary conditions are
y—oo : u—uj,—0, (11.48a)
at thewall: u=0, v=0. (11.48b)

The usual model of turbulent boundary layer is recovered.

11.4 Approximation of the Boundary Layer:
Velocity Profile

11.4.1 Formulation of the Problem

The objective is to construct, for an external irrotational flow, an approxi-
mation of the velocity profile in the whole boundary layer.

For this, we use (11.31) which describes the first order contribution of the
inner region of the boundary layer

S0y LU, e FUL_ (11.49)
g 0y eER On?  E2R 09?
The solution of this equation requires the knowledge of the function Uj(n)
and the implementation of a turbulence model to describe the evolution of
Tzy,1- The study relies on a mixing length scheme, particularly well adapted
to a flat plate flow, and on similarity solutions for the outer region of the
boundary layer [70].

For the sake of simplicity, we work with the reduced model described
by (11.47a-11.47b) and boundary conditions (11.48a—11.48b).

Rather than solve (11.49), it is more convenient to use an equation which
gives directly the total velocity. We return to expansion given by (11.44c)
and write (11.49) in the form

20 (tey N LPU < &0
cog\ e TR o2 T 2R 92

With variable y, this equation can also be written as

6tmy 6627my 1 1 62 ~
— = (u} U U;)=0
6y ay + R 6y2 (ulo +e 1 +e 1) )
o 0 10 0
u 209Tzy,1
2ty + = | = 2L 11.50
y [ vt R 8y] ¢ y ( )

where, for an external irrotational flow, we have
u=ujy+el; +eU; .

In these equations, we introduced u}, which does not depend on y.
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The left hand side of (11.50) represents the total stress — sum of the
turbulent and viscous stresses — in the whole boundary layer whereas the right
hand side represents the turbulent stress in the outer region. Let us integrate
this equation with respect to y from the wall y = 0. The dimensionalized wall
shear stress being 7,,, we obtain

1 ou Tw 9 Tw

tw A x50 — T — T159
y+R3y oV? € Tey.l oV?2

because, at y = 0, we have

Tw 1 Ou

— =—=— and t;, =0,

oV2Z Ry " i
and, on the other hand, the outer solution is such that we have as n — 0, i.e.
at y =0

2 _ Tw
CTay1 = U3
Finally, (11.49) takes the form
- 1 0u 9
oyt = =€ Tyy1 -
y R Oy y,1

Synthetically, by dividing the two members by the dimensionless wall shear
stress, the above equation becomes

L - Tout (11.51)

Tw Tw

where the left hand side represents the dimensionless total stress in the whole
boundary layer and the right hand side represents the approximation of the
dimensionless turbulent stress calculated in the outer region of the boundary
layer.

Following the standard asymptotic theory strictly, the right hand side is
equal to 1 if the solution is sought in the inner region. Indeed, Tout /7w is
a function of 1. Now, we have

[LUERON

=9,
and, for the study of the inner region, § is kept fixed and £/e — 0. Therefore,
the value of the right hand side of (11.51) must be taken at 77 = 0. This value
is 1 and the inner region equation is

-
—=1.
T’UJ
We recover the result of the standard asymptotic theory. In the application
presented here, this result is not used, and we consider that 744t /7, is a func-
tion of 7.
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Here, the solution of (11.51) gives a UVA of the wvelocity profile in the
whole boundary layer and not only an approximation in the inner region.
This point will be discussed later, but we can note now that (11.51) enables
us to satisfy the boundary conditions on the total stress. Indeed, at y = 0
we have 7/7, = 1 and at y = § we have 7/7, = 0. This result is due to the
behaviour of the solution in the outer region (right hand side of (11.51)).

11.4.2 Turbulence Model
Coming back to dimensionalized variables, including the distance to the
wall y, the total stress 7 in the left hand side of (11.51) is
ou
=—o<uv >+pu—. 11.52
TECe<uv > tug (11.52)

A turbulence model is required to express the turbulent stress —p < u/v’ >.
To this end, a mixing length scheme gives [70]

o< UV > = oF? @3) , (11.53a)
¢
- th-—~ Y —0.41 11.53b
5 =0085th oo -% . x =041, (11.53b)
F=1-exp {—(@Wﬁ] . (11.53c)

In the inner region, by setting 7 = 7, and ¢ = xy, the damping function
F takes the form proposed by Van Driest [104]

+
F—l—exp( Z6> ,

where y* is the wall variable

+ _ Yur
14

This simple model is very convenient for our purpose particularly if we
restrict the study to the flow on a flat plate.

11.4.3 Outer Region

According to experimental results, in particular for a flat plate flow, the outer
region of the boundary layer is well described by similarity solutions [16, 18,
19, 68, 84]. We assume that the velocity defect is a function of % where ¢ is
the boundary layer thickness

ueiu:F’(n) with 1):g and u, = Tw
Uy d 0
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Usually, the quantity (u. — u)/u, is called velocity defect because it repre-
sents a defect of the velocity with respect to the external velocity u.. The
similarity equation of the outer region is [70] (see Problem 11-5)

T F 1
—=1—-— — +2 2 11.54
Tw F1+<F1+ ﬁ>n ’ ( )
where ” 5 d
F:/ F'dy, Fi=FQ1), f=-—2¢,
0 u,r do

This equation is equivalent to (11.10Db).

In the outer region of the boundary layer, the stress 7 consists of only the
turbulent stress since the viscous stress is negligible. On the other hand, the
damping function is equal to 1 because y™ > 1. Therefore, we have

T E 2 2
R - Fl/
Tw <6) ’

where F"” is the derivative of F’ with respect to 7.

For any admissible value of the pressure gradient parameter 3, the nu-
merical solution of the similarity equation provides us with a velocity profile
F'(n) and the turbulent stress profile, i.e. with the notations of Subsect. 11.4.1
the quantity Tout/Tw-

11.4.4 Equation to Solve

Given the Reynolds number, the velocity profile in the whole boundary layer
is a solution of the equation
T Tout

— = (11.55)

Tw Tw

where the expression of 7 in the left hand side is given by

0
T:—Q<u’v’>+,u—u,
dy

and the turbulent stress is expressed by (11.53a, 11.53b, 11.53c).
In (11.55), the right hand side is given by the solution of (11.54) which
is the solution of the outer region. Moreover, the Reynolds number must be

-0
fixed. The simplest is to give the value of 479 Which relates directly ¥ and n
v

N )

y =n

v

The equation to solve is a first order ordinary differential equation for
u(y). With the wall variables, (11.55) can be written as

+ +3\ 2
SN STAs <6L> = Tout (11.56)
Y

Tw
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with
pro B b Y
v S v’ wuy v

The wall condition is v = 0, i.e. u™ = 0 at y© = 0. At the boundary
ou
layer edge, the condition 7oyt /7w = 0 imposes 0 = 0; therefore, we have
Y
Ou? T
oyt v
yields a certain value of 4™ which gives the skin-friction coefficient since we
have

(n = 1). At the boundary layer edge, the solution

wh =t oL Of _ T . (11.57)

V=T JOf2 2 ou?

11.4.5 Examples of Results

The results presented in this section have been obtained for a flat plate flow
(6 = 0) for different values of the Reynolds number.

The results of Fig. 11.1 show a seemingly correct evolution of the velocity
i the whole boundary layer. We observe that the logarithmic law is present
when the Reynolds number is large enough. The extent of the logarithmic

30
25
20
15

10

1 1 1 1 ]
0 2 4 6 8 10

Fig. 11.1. Approximation of the velocity profiles in a flat plate turbulent boundary
layer at different Reynolds numbers
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region measured in wall variables increases when the Reynolds number in-
creases. When the Reynolds number is too small, the logarithmic region dis-
appears.

The velocity profiles in the region close to the wall are not very much

Urd
sensitive to the Reynolds number. For values of —— > 250, the function

ut(y™") is practically independent of the Reynolds zumber for yT < 50. In
this sense, the velocity law in the inner region is said universal. This behaviour
is in agreement with the difference in the orders of magnitude between the
turbulence length scales (or between the turbulent time scales) in the inner
region and in the outer region of the boundary layer. The inner region has
a time scale much smaller than the outer region. Under these conditions, the
inner region acquires its own organization, independently of the parameters
which govern the flow in the outer region.

The value of the skin-friction coefficient obtained from the value of u™ at
the edge of the boundary layer (see (11.57)) can be compared to the value
obtained from the overlap between the law of the wall and the velocity defect
law. Indeed, from the standard asymptotic analysis, in the overlap region we
have simultaneously

U 1 yu,
— =—In

+C, (11.58a)

1.y
=——In=+D. 11.58b
X nd-l- ( )

The equality of velocities given by the two laws in the overlap region yields

Lt 404D, (11.58¢)
X 14

In the inner region, the mixing length model gives y = 0.41 and C' = 5.28.
In the outer region, for the flat plate, the solution of (11.54) gives D = 1.76.

Table 11.1 shows the comparison of skin-friction coefficients obtained from
the two methods. Except for low values of the Reynolds number, a good

Table 11.1. Comparison of 4= obtained from solution of (11.56) and from the
logarithmic law (11.58c)

u-0/v from solution of (11.56) law (11.58c)

5000 3.601072 3.591072
1000 4201072 4191072
500 4541072 4501072
250 4.931072 4.881072
100 5.591072 5.471072

50 6.511072 6.031072
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agreement is observed which reinforces the validity of the approach used
here.

It can be surprising to observe a good agreement between the two methods
even when the velocity profiles of Fig. 11.1 do not exhibit a logarithmic
evolution of the velocity whereas law (11.58¢) rests explicity on the existence
of such a logarithmic behaviour. In fact, it is not correct to seek the presence
or not of a logarithmic law in Fig. 11.1. The velocity profiles obtained from
SCEM must be compared to a composite approrimation formed from outer
and inner approximations obtained from MMAE. In such a representation,
it is possible that the common part — which is precisely the logarithmic law
— disappears even if the outer approximation and the inner approximation
have a logarithmic part; this happens when the Reynolds number is not large
enough.

11.5 Conclusion

In the study of the turbulent boundary layer with the standard asymptotic
analysis (MMAE), a striking feature is the logarithmic overlap region between
the inner and outer regions. This result is obtained without using a turbu-
lence model but, obviously, the experimental knowledge is essential to set the
starting hypotheses. Now, to calculate a boundary layer, it is necessary to
implement such a model. The conclusion is that the turbulence model must
be compatible with the existence of a logarithmic evolution of the velocity.

With SCEM, the issue is addressed differently because there is no overlap
condition. Therefore, the result depends on the turbulence model. For the
case of the flat plate flow, the numerical results show that the model used
here, a simple mixing length model, leads us to the desired result. In fact,
the turbulence model has been devised to achieve the right result.

Problems

11-1. A mathematical model has been proposed by Panton [76] to simulate
the decomposition of the boundary layer in two regions. This is an adaptation
of the model proposed by Lagerstrom to illustrate the difficulties of Stokes-
Oseen’s flow. Panton’s model writes

P 1 a_
dy?2  y+edy dy 7

with the boundary conditions

w(0)=0, lmu=1.

The solution is studied with MMAE.
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1. In the outer region, we assume that the expansion has the form

u= foly)+oi(e)fily)+--- .

Give the equations for fy and f;. Give the boundary conditions. It will be
shown that the solution for fy is fo = 1. Give the solution for fi. Do not try
to determine d7.
2. The variable appropriate to the inner region is § = y/e. The expansion
has the form

w="51folg) - .

Give the equation for fy and the boundary condition at § = 0. Give the
solution.

3. From the matching between the inner and outer solutions, calculate the
yet undetermined constants and give ;. It is recalled that

0o —t
/ ert%—lny—v—y when y— 0,
Y
where 7 is the Euler constant v = 0.57722.
Write the composite solution.
11-2. We consider Panton’s model studied in Problem 11-1.
1. With the change of variable vy = y + ¢, show that the problem reduces to
the Stokes-Oseen’s flow model proposed by Lagerstrom (Sect. 6.4).
2. The regular form of SCEM is applied here. We seek the first approximation

in the form
u = 1 + JlFl(y) 3

where d; is an unknown gauge. Give the equation for Fj. Give the solution
which satisfies the boundary condition as y — oo. Show that the condition
at y = 0 cannot be satisfied. Then, we seek a UVA in the form

w=1+6F(y)+6F(j) with gzg.

The equation for F'; will be formulated in such a way that the solution is
a function of 7 only.

The constants are determined by applying the boundary conditions. The
condition at y = 0 can be applied only after expanding the solution for Fj as
y — 0 by taking into account that

()Oe—t
/ Tdt%—lny—'y—ywhenyﬁo,
y

where 7 is the Euler constant v = 0.57722.
3. SCEM is applied in its generalized form. The proposed expansion is

w=1+08f1+0f; .
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For f1, the same equation as for F} will be taken. By retaining terms of order

—» show that the equation for fiis

d%f, 1 dfli 1 df1
d2 ' y+1dy (y+1) dy -

Do not try to solve this equation but form the equation for g

g=fi+f.

Give the solution by applying the boundary conditions at y = 0 and as
Yy — 00.

11-3. According to MMAE, the inner region of the turbulent boundary layer
is described by the equation

—=1.

Tw

In this region, with a mixing length scheme, the total stress 7 is given by
ou o\’
+oF | — ),
~ Moy y

Fczl—e_yw26 , L=xy, x=041.

with

The wall variables are defined by

YUr U T,
+ = u+ = — U~ = —w .
) ) T

v Ur 0

Write the equation of the inner region with the wall variables.
Show that the solution for y* > 1 has the form

1
ut==Iny"+C.
X

Write this equation in the form

2
dut L IRV R AR
dy_+_f(y ) with  f(y") = R

Give the boundary condition which must be prescribed.

Integrate numerically this equation between 3™ = 0 and y+ = 1000. Plot
the function u*(y"). Estimate the value of constant C.

A simple method consists of discretizing the equation as

+ ot

n+l Up, yn+1 + Yn
= = with _
Uil — Un =y n+1/2) Yni1j2 = 5

where the index n refers to mesh points of a grid defined in the y-direction.
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Close to the wall, the grid must be very fine. The first point near the wall
must be at a distance such that y™ < 1. Physically, this limit is associated
with the fact that v/u, represents a length scale.

Accuracy problems can arise due to the expression of function f(y*) in
the neighbourhood of y* = 0. Another form can be tried

2

\/14+4F20+% 41

It is also possible to expand f in the neighbourhood of 3 = 0.
11-4. In the turbulent boundary layer, the variable appropriate to the study

f=

of the outer region is n = % The variable appropriate to the study of the

+_ Yur

U
inner region is y . The small parameter of the problem is —.
U

Coles proposed to represent the velocity profile in the outer regioen by the
formula

Ue — U 1 B
:7_11’1774»_[27“}(77)]’
Ur X X
with
=2 wo= ™ =041,
d 0

where ¢ is the boundary layer thickness and 7, is the wall shear stress. We
also have
w=1-—cos(mn) ,

and B is a constant which depends on the conditions of development of the
boundary layer, for example the intensity of the pressure gradient.

On the other hand, we know that in the inner region of the turbulent
boundary layer, the velocity profile follows the law of the wall

u yu
u+:f(y+), U+:—7 y+: =
Ur v

and, as y© — oo (in practice when y™ > 50), we have
+ Lo
fly")=—lny™+C, C=528.
X

Write the matching between the outer law and the inner law. Deduce the

relation between the skin-friction coefficient Cy = —— and the Reynolds

1
5 59“3
u u
number Rs; = ——. Show that — — 0 as Rs — 0.
v

Ue
Give the expression of the velocity profile in the whole boundary layer by
means of a composite expansion.
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11-5. Two regions are distinguished in the turbulent boundary layer: the
outer region and the inner region. The variable appropriate to the outer

U
region is n = Y The variable appropriate to the inner region is y = yur.

In the overlap region, the velocity profile takes a logarithmic form

— 1
Ue u:——lnn—l—D as n—0,
Uy X
1
i:—lngﬁ—i—C as yT — 0.
Uy X

Write the matching between the two regions and deduce the relation be-
U U U
tween — and Rs = ——. Show that — — 0 as Rs — 0.
U

e v Ue
Under certain conditions, the velocity profile in the outer region is gov-
erned by a form of self-similarity, i.e.

Ue — U

=F'(n),

Ur

where F’ is the derivative with respect to 7 of a function F'(n) which appears
in the calculations. We take F'(0) = 0.
It is recalled that, in the outer region, the boundary layer equations are

6_u+@—0

oxr Oy ’

ou ou du. 0 [T . ;.
ua—l—va—y:uedx—ka—y(E) with 7=—p<u'v’' > .

From the continuity equation, express v as function of F and F’. The
following notations are used

Uy ,_dy 5’*d6 , due

V:u_e”y_dx’ _a’ue_dx'

Write the momentum equation with the hypotheses given above. The follow-
ing notation is used

_ _Su
Y Ue
If F’ is a function of 7 only, it is necessary to have
Ue Y Ue 0
B=cst, ~v=cst, —fl:cst, —/e—:cst
u’, ul §

!/
as Rs; — oo. Show that v — 0 and 6u—fl — 0. Simplify the momentum
u, vy
equation. ‘

Integrate the so obtained equation with respect to n from n = 0. Express
/

e 0
the quantity 3 (1 + u_/g) as function of F; = F(1) and S.
u

€
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11-6. It is proposed to study the spectral density of turbulent kinetic energy
in a turbulent flow. By definition, the turbulent kinetic energy is
< upup >

2

k

Its spectrum F(€) is such that
b= [ B© .
0

where £ is the wave number.

The turbulent field can be viewed as a set of structures of different sizes.
Two important ranges are distinguished: a range of low wavenumbers (large
scale structures) and a range of large wavenumbers (small scale structures).

Most of the kinetic energy is contained in the range of large structures.
These structures are characterized by a Reynolds number very large compared
to unity. Viscosity has a negligible effect.

Viscosity is efficient in the range of small scale structures whose charac-
teristic Reynolds number is of order 1. The role of viscosity is to dissipate
kinetic energy into heat. The quantity of kinetic energy dissipated by time
unit is denoted by &, the so-called dissipation. To follow the common use, the
notation ¢ for dissipation is employed here but this is not a small parameter.

The length scale associated with large scale structures is £. The length
scale associated with small scale structures is 1, the so-called Kolmogorov
scale. This scale is formed from e and v (kinematic viscosity coefficient).
Determine 7.

Give the form of the spectrum in the range of large scale structures know-
ing that the length scale is £ and that the scale of the turbulent kinetic energy
is u?. It will be shown simply that

E =u?LF(&L) .

Give the form of the spectrum in the range of small scale structures know-
ing that the governing parameters are v and ¢.

Write the matching between these two ranges. Assuming that in the over-
lap region the spectrum follows a power law, give the form of the spectrum
as function of € et £. It is noted that, in the overlap region, the influence of
viscosity must disappear since this range belongs to the small scale structures
and to the large scale structures as well.

Express € as function of w and £. Conclude.



12 Channel Flow

In this chapter, we consider a steady, two-dimensional, incompressible, lami-
nar channel flow of a viscous fluid. At high Reynolds numbers, small wall
perturbations, such as indentations, can generate adverse pressure gradi-
ents leading to flow separation. In a channel, there is no external flow re-
gion and the asymptotic models for the flow perturbations are mainly based
on an inviscid rotational core flow region together with boundary layers
near the walls; a comprehensive discussion of this structure can be found
in Sobey [94]. The asymptotic analysis of these flows has been performed
essentially by Smith [89, 90, 91, 92] and a systematic approach has been
proposed later by Saintlos and Mauss [85]. More recently, the modelling of
channel flow has been examined by Lagrée et al. [49] and by Lagrée and
Lorthois [50].

Here, the flow is analyzed by using the successive complementary expan-
sion method, SCEM, in which we seek a uniformly valid approximation, UVA,
based on generalized asymptotic expansions [28].

12.1 Formulation of the problem

The flow is governed by the Navier-Stokes equations which are, in dimension-
less form (see Sect. 8.1),

au v

%+8_y_()7 (12.1a)
ou ou oP 1 [0*u  o*U
U%+Va—y—%+ﬁ(w+a—y2> ) (12.1b)
oV oV oP 1 /0%V 0%V
i — =t — | — 4+ — . 12.1
“ax+vay 3y+R(8xz+3y2> (12.1c)

The above equations are written in an orthonormal axis-system. Coordinates
x and y are reduced by the width H™* of the basic channel so that the lower

1 1
wall of the channel is y = —3 and the upper wall is y = 3 (Fig. 12.1).
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Y /
L2220 SISy, s v/

Yu = é —eG(z,¢)

7. /. /7 /W/ 4
\

Y = *% +eF(xz,¢)

Fig. 12.1. Flow in a two-dimensional channel with deformed walls. In this figure,
all quantities are dimensionless

The velocity components are reduced by a reference velocity V* which is
defined below by (12.4b). The Reynolds number is defined by

r=CV (12.2)
I
where o*, V*, H* and p* are dimensionalized quantities.
The basic flow is the plane Poiseuille flow for which we have
1
u:uozzfy% (12.3a)
V=v=0, (12.3b)
2x
P=po=—25 +pc, (12.3¢)

where p, is an arbitrary constant.

The reference velocity V* is expressed as a function of the basic pressure
gradient or, equivalently, of the dimensionalized mass flow Q* per unit width
of the channel. We have

1/2
oF = Q*V*H*/ ug dy , (12.4a)
g —1/2
V*¥=6 . 12.4b
e (1240
We also have
d 2u*
o _ a (12.4c)

de ~  o*V*H* '

The basic flow is perturbed, for example, by wall indentations such that

1
w=-3 +eF(x,¢e), (12.5a)
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1
Yu =75~ eG(x,¢) , (12.5b)

where y; and y, denote the lower and upper walls, respectively, and ¢ is
a small parameter which characterizes the height of the wall indentations.
We seek a solution in the form

U= UO(y) + eru(Ly,e) ) (126&)
VY =c"v(z,y,e), (12.6b)

2
P—pe=—25 +e'pla,y.e), (12.6¢)

where r and s are constants yet undetermined. The Navier-Stokes equations
become

ou Ov
—+—=0 12.7
Ox + Ay ’ (12.72)
L T @ + @ + Iu dﬂ
su=e hrTr Uay 92 Udy
erOp 1 (0%u  O%u\
+€ % ﬁ (? + 8_1]2 =0, (12.7b)
L - Ov n ov n ov
=v=E "ax Uay 1o ox
_Op 1 (0% 0%
s (20 90 12.
+e R <8m2 + 8y2> 0, (12.7¢)

where the operators L. v and L. v denote the streamwise and transverse mo-
mentum equations, respectively. We have necessarily s > r. This shows that
s is positive since r is positive because €"u is a small perturbation compared
to ug. If regular AEs are used, a more thorough analysis is required to go
further but, with SCEM, generalized expansions allow us to take s = r with-
out loss of generality since the order of magnitude of the pressure p is not
yet determined.

At high Reynolds number, the momentum equations reduce to first or-
der partial differential equations and we are faced to a singular perturbation
problem. Therefore, in the core of the flow, we seek approximations which, in
terms of generalized expansions, are written

u = ul(x7y?€) +o (128&)
v = 7)1(1’, y75) T (128b)
p=pi(z,y,e)+ . (12.8¢)

1
Neglecting formally terms of order O (H, §>, the equations for the flow

perturbations (12.7a—12.7c) reduce to inviscid flow equations

6u1 67}1
- = 12.
o oy 0, (12.9a)
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8u1 duo o 8p1

e I X 12.
Uo 333 +’U1 dy 31” ) ( 9b)
vy Op1
—_— = ——. 12.
U0 2y (12.9¢)

It is useful to note the behaviour of the solution of (12.9a-12.9¢) in the
vicinity of the walls. As y — —1/2, we have

1
up = —2p1oln <§ +y> +co+--, (12.10a)
1 1
V] = —P1oz + 2P10z 5-’-3/ In 5"'9
1
- (5 + Z/) (2p102 + Cr02) + (12.10b)
1/1 2

pr=pio+ g <§ + y> Plose + (12.10¢)

and, as y — 1/2, we have

1

u; = —2p11ln (5 — y) +cip+-0, (12.11&)
2 ! 1 !

V1 = Piiz — == -

1 =P P11 5 y|n 9 Yy
1
+ (5 - y> (2p11z +c112) + 00 (12.11b)

1/1 2

P1 = pu +§ 5V Diigs + - . (12.11c¢)

In the above equations, p1o, p11, c10, €11 are functions of x and . The letter
z in index denotes a derivative with respect to the streamwise variable x; for

example p11, means

:%(x £)
P11z or e

12.2 Uniformly Valid Approximation

In order to satisfy the no-slip condition at the walls, two boundary layer
variables are defined by

D=
+
<

)-<
|

(12.12a)

()

=0
I
N
|
<

(12.12b)

()
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In terms of boundary layer variables, the boundary layer thicknesses are of
order 1. Then, in the two boundary layers, we have ug = O(e). This leads to
the choice of » = 1. In this way, ug and eu; are of the same order near the walls
and the velocity ug + cu in (12.6a) can be negative. Then, the choice r =1
means that we want to obtain an approximation which is able to describe
separation. According to SCEM, a UVA is obtained by complementing the
core approximation

u="U(2,Y,e) + U(2,Y,¢) + ua(z,y,¢) (12.13a)
v=eVi(z,Y,e) — 5171(357)7,5) +vi(z,y,e), (12.13b)

p=A@E)Pi(2,Y,e) + Ale)Py(2,Y ) + p1(z, y,€) (12.13¢)
where the gauge function A(e) is yet undetermined. Here, the quantities
(u,v,p) do not represent the exact solution but only an approximate solution.
Then, if all the boundary conditions are satisfied, L. v and L. v in (12.7b,
12.7¢) are not zero but small in a certain sense.

The form of approximation for v in (12.13b) is imposed by the continuity
equation which must be non trivial

oUu;  o0Wp

== 12.14
ox + 104 0, ( a)
ou, oV

—+ —=0. 12.14b
ox + oy 0 ( )

With this formulation, it is clear that, if (u1,v1) represent an approxima-
tion in the core of the flow, we have

Y—-00: U3 —0, V =0, (12.15a)
Y 5o00: U —0, V} 50. (12.15b)

Boundary conditions are required along the lower and upper walls of the
channel, i.e. along the lines Y = F(z,¢) and Y = G(z,¢). Along these two
walls, we have

Y=F(x,e): up+eu=0, v=0, (12.16a)
Y =G(z,e): up+eu=0, v=0. (12.16b)

With the approximation given by (12.13a, 12.13b), we have
Y =F(z,e): uwo+elUy+euy =0, eVi+v1 =0, (12.17a)
?:G(x,s) : uo—&—sﬁl +eu; =0, YA +v1=0. (12.17b)

It is useful to note that, in contrast with external boundary layers
(Chap. 8), according to (12.10a, 12.10b, 12.11a, 12.11b), the terms u; and vq
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or their y-derivatives are singular in the vicinity of the walls. This shows the
great advantage of SCEM since the UVAs for v and v are perfectly regular.

It is possible that the accuracy of the approximation given by the solution
of (12.9a-12.9¢) is not sufficient in the core of the flow. To improve the

1
accuracy, we neglect formally O (ﬁ) terms in (12.7a-12.7¢), and we obtain

8u1 8’01
— +—=—=0 12.18
Ox + oy ’ ( 2)
8u1 8u1 8u1 duo o 8p1
3 (Ul Oz + v 63/ ) + ug Oz + v dy = — oz’ (1218b)
ov v v 19)
9 <U18_5U1 +U18_y1) +UO8_LL'1 = *aiyl . (1218C)

Finally, we have two models to describe the core flow: a linear model
given by (12.9a-12.9¢) and a non linear model given by (12.18a—12.18¢). The
second model is not simple to solve. In addition, taking into account that an
analysis with regular AEs is possible, the general solution of (12.18a, 12.18b)
is probably singular in the vicinity of the walls even if the direct analysis
based on these equations is not as simple as on (12.9a-12.9c¢).

To close this section, let us remember that we are seeking a UVA for the
Navier-Stokes equations

ou , ov
dr Oy

U ou dug op 1 [(0%u O%u
il == _— — =t — | — 4+ — 12.19b
€(u8x+vay>+u08x+vdy 8x+72<8x2+8y2 , ( 9b)

v v ov  oOp 1 v 0%

or dy + R
In Sect. 12.4, we return to the question of a uniformly valid model. In the
next Sect. 12.3, we seek to construct a boundary layer model coupled to the
core flow equations given either by (12.9a-12.9¢) or by (12.18a-12.18c). This
type of model, just as in Chap. 8, is an interactive boundary layer model, IBL.

-0, (12.19a)

12.3 IBL Model for the Lower Wall

In order to obtain a UVA in the lower boundary layer and in the core flow,
we set

u=U(z,Y,e) +ui(z,y,e), (12.20a)

v=cVi(z,Y,e) +v1(z,y,¢), (12.20b)
p= A(€)P1(I,Y7 6) +P1(I7ya5) ) (IQQOC)
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where, for the sake of simplicity of notation, the same notation (u,v,p) as
for the preceding UVA given by (12.13a-12.13c¢) is used. In order to have the
same order for the inertia terms and the viscous terms in the boundary layer,
we take

1
R=, (12.21)
From (12.19a-12.19¢), we obtain
o, oV
— == 12.22
or "oy 0 (12.222)

oU 0 oU 0
s un (G2 4 52) + s (G + 52

8U1 6u1 duo
Jruo<a +3x>+dy (eVi+u1)
op1 0P, 0%U, 5 0%uy
_ _9¢ 0"ty 12.22
or 0w (aw T )*O( ol (12.22b)

ovi ovy e)%! ovy
€ {(Ul + u1) <s% + %) + (eVi +u1) <W + a—y)]

82‘/1 821)1

= ——— —AeT — +€ <W +e a o + O( ) (1222(3)
In the above equations, it is necessary to keep terms which are apparently

negligible in order to ensure that the behaviour at the wall is bounded. Now,

it is essential to examine the pressure terms. From the condition on the trans-

verse velocity given by (12.17a) and from (12.9¢) or (12.18c¢), in the boundary

0
layer, we have v; = O(e) and % = O(?). Then, from (12.22c), we must
Y
take A = €3, otherwise the transverse momentum equation cannot be satis-

fied. Neglecting O(g3) terms in (12.22b), and coming back to approximations
(u,v,p) expressed by (12.20a-12.20¢), we obtain

ou Ov
P T, 12.2
o + oy 0, (12.23a)
ou ou ou dug op 1 9%u
s — = _— 12.2
(“ax+”ay>+“oa —H}dy 3I+R3y2 (12.23b)

Similar equations can be obtained for the upper boundary layer. These equa-
tions must be solved in association with the core flow equations. Therefore,
it is clear that (12.23a, 12.23b) associated with the core flow equations give
an approximation valid in the whole channel.
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If necessary, the transverse momentum equation can be used to give the

0
transverse pressure gradient 8_p Neglecting O(&3) terms in (12.22c), we have
Y

— +v— uo@x__a_y RayQ.

12.24
ox y ( )

( Ov 81}) ov op 1 0%
elu — ——

Note 12.1. To within the viscous terms which are probably very small in the core,
(12.23a, 12.23b) reduce exactly to (12.18a, 12.18b) in the core. By contrast, in the
core, (12.23a, 12.23b) reduce to (12.9a, 12.9b) to within O(e) terms. In this sense,
the model based on (12.23a, 12.23b) and (12.18a-12.18¢) is more consistent than
the model based on (12.23a, 12.23b) and (12.9a-12.9c).

12.4 Global IBL Model

The generalized asymptotic expansions for the velocity components are given
by

U= UO(y) + Eu($7y7€) oo (1225&)
V=cv(z,y,e)+--- . (12.25D)

Let us remember that it is necessary to solve (12.23a, 12.23b) in associa-
tion with the core flow equations (12.9a-12.9¢) or (12.18a-12.18c¢) according
to the desired accuracy.

Equations (12.23a, 12.23b) can be recast in the same form as Prandtl’s
equations if we set

U =uy+eu, (12.26a)

§=ev, (12.26b)
2

b= f% T epr 4 pe s (12.26¢)

where p,. is an arbitrary constant. Equations (12.23a, 12.23b) become

oi b
5 =0, (12.27a)
~ ~ ~ 2~

adt g0t _ _Oh 107 (12.27b)

8x+ oy O0x ROy’

The above equations have the same form as Prandtl’s equations, but the
pressure is not constant in the y-direction.

Equations (12.27a), (12.27b) are associated with boundary conditions.
At the walls, the no-slip conditions are @ = 0 and o = 0. It is clear that
the pressure gradient must be adjusted to ensure mass flow conservation in
the channel. In addition, the solution for the core flow equations requires
additional conditions. These questions are discussed in Sect. 12.5.
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Note 12.2. Let us note that the remainders L. u and L. v, defined by (12.7b)
and (12.7c), are

__(0Op Op: 1 0%a
Lou= (836 o ) = B (12.28a)
1 0%
V= ———— . 12.2
L.v R 92 (12.28b)
8p 8p1 . . . .
The term 92 ox ) B2 boundary layer term which is small in the core of the

flow.

Note 12.3. For axisymmetric channel flows, Lagrée et al. [49] consider a reduced
form of the Navier-Stokes equations which is equivalent to (12.27a), (12.27b) but

. .. . . . op1 .
with no variation of pressure in the transverse direction: B 0. A comprehensive

study of this model is carried out for different channel configurations and it is shown
that, for axisymmetric flows, the model has a large domain of validity.

12.5 Numerical Solution

In this section, we present a brief description of the numerical solution
of the global IBL model. We consider two cases according to the equa-
tions used to calculate the core flow and, therefore, the pressure. The first
case is based on (12.18a-12.18¢) and, in principle, is able to simulate the
wider range of channel flow configurations. The second case is more re-
stricted since the core flow equations are those obtained in Smith’s the-
ory [94] for the case with upstream influence which is similar, to a certain
extent, to the triple deck theory for an external flow (see Problems 12-1
and 12-2).

12.5.1 General Method

Let us consider the model comprising the generalized boundary layer equa-
tions (12.23a) and (12.23b), and the core flow equations (12.18a-12.18c). The
full problem consists of solving the following equations

oun 0V
— 4+ — = 12.2
. + oy 0, (12.29a)
on  _ou  op 10%
g — = 12.2
“ox + v@y Or R Ooy?’ (12.29b)
and
o O _ (12.30a)

oz 3_y_
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- 8&1 - 8&1 % 1 d2u0

-— —_— = — 12.30b
e T oy ox + R dy? ’ ( )
_0vp 0 op1
— —_— = 12.30
e + U1 ay oy ( c)
In the above equations, we used the change of variables
U =uy+eu, (12.31a)
U =¢v, (12.31Db)
- 2z
p1 = fﬁ —+ EP1 +pc R (1231C)
and
Uy = up +€uq , (12.32a)
171 =&V . (1232b)
Note 12.4. In (12.30b), the viscous term 1 Qg cancels with the term 2 included
' R dy? R
in the pressure term —%.
ox

The two sets of equations, (12.29a,12.29b) and (12.30a-12.30c), are cou-
pled through the pressure and must be solved simultaneously. They are sub-
ject to the wall boundary conditions

y=y: u=0, v=0, (12.33a)
y=y,: u=0, 0=0 (12.33b)

It remains to define the boundary conditions for the core flow. At infinity,
in the streamwise direction, the flow perturbation vanishes so that we must
have 47, — ug — 0 and v; — 0. Along the walls, boundary conditions must
also be prescribed. From the continuity equations (12.29a) and (12.30a), we
obtain

ot —u) 90— 01)
Oz + y
Let y = y. be a line located in the core flow. This line is arbitrary but
it is important that its location is outside the wall boundary layers. Equa-
tion (12.34) is integrated with respect to y between the lower wall y = y; and
the core line y = y. to obtain

=0. (12.34)

Yo o — ) S
/yl —— Ayt -nly =0, (12.35)

At the wall, y = y;, we have ¥ = 0. Along the line y = y., we impose

(ye) = 01(Ye) - (12.36)

This assumption is justified by the fact that the wall boundary layers are thin
and that the flow perturbation in the core is inviscid; therefore the solution
for u and o, which is assumed to be a uniformly valid approrimation, must
agree with the solution for u; and v;.
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From (12.35) and (12.36), we obtain

01(y) = — /yc Ot = ) dy . (12.37a)

u Ox

In the same way, along the upper wall y = y,,, we obtain

51 (y) = — /y a(f‘a—;ﬂl) dy . (12.37D)

u

The conditions given by (12.37a) and (12.37b) are the boundary condi-
tions imposed on v; along the lower and upper walls.

12.5.2 Simplified Method for the Pressure

The use of (12.30a-12.30c) to calculate the pressure is rather involved and,
to produce the results discussed in Sect. 12.6, it is more convenient to use
a simpler approach suggested by Smith’s theory in the case of longer wall
deformations (see Problem 12-2). The core flow equations are a reduced form
of (12.30a-12.30c)

Oy — uo) 001

o 5y =0 (12.382)
uow + @1%’ =0, (12.38b)
uo% - *a% <p1 + 2%) . (12.38¢)
The solution is given by
i —up = X(x)cili; , (12.39a)
o i—fuo : (12.39b)
p1+ 2% = B(z) + f—gg/oy ud(n) dn , (12.39¢)

where 7 is an integration variable and the arbitrary constant in the pressure
is absorbed in the function B(x).

Note 12.5. The solution of (12.29a-12.29b) associated with (12.39a-12.39¢c) de-
pends on the Reynolds number R which is a parameter of the solution. Then,
the functions A and B depend parametrically on R. Strictly, we should write
A = A(z;R) and B = B(z;R). Here, the numerical solution is determined for
a given Reynolds number and the dependence of A and B on R is omitted.
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With
1 2
Uy = — —
0 4 Yy,
the pressure is given by
2z~ d2A y oy P
P+ —==DB —=—-=4+=) . 12.40
btz =B+ s (16 6+5> (12.40)

In this formulation, the question is to determine the function B () and the
so-called displacement function E(w) To this end, two conditions are used.
The first one is to ensure mass flow conservation in the channel and the
second one is given by (12.36).

More precisely, the numerical solution is obtained as described below.
A step by step marching procedure from upstream to downstream is used.
Several sweeps of the calculation domain are required in order to take into
account the upstream influence. At a given station, as a first approximation, it
is assumed that the function A(x) is known. The solution of the generalized
boundary layer equations (12.29a)—(12.29b) is determined by iterating on
the value of function B at the considered station in order to ensure global

dB
mass flow conservation in the channel. More precisely, the derivative T
x

which is present in the momentum equation (12.29b), is determined. Upon
convergence, an updated value of A is calculated. The method is very similar
to the one described in Subsect. 12.5.1. The integration of the continuity
equation, (12.29a) gives

—dy+ 3] =0, (12.41)
X

where y. is an arbitrary line in the core flow. Using (12.36) and taking into
account the wall condition 9(y;) = 0, we obtain

ox

1

Ye A5
/ 0% 4+ 51 () = 0 . (12.42)
Y

Taking into account (12.39b), we obtain the updated value of the displace-
ment function, or more precisely of its derivative

dA 1 (Y9
— = — dy . 12.4
dx uo(yc)/y ar <Y (12.43)

1

When the updated value of the displacement function is determined, the cal-
culations proceed to the next station. The updated value of the displacement
function is used at the next sweep. In fact, in order to ensure the convergence
of the successive sweeps, an underrelaxation on the displacement function is
necessary.
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Another point to discuss is the discretization of the equations, in parti-
cular the discretization of the pressure term, which is important to reproduce
the upstream influence [81]. In the numerical method described in this sub-

dA
section, we calculate the derivative o by means of (12.43) and we discretize
_ x
L od? Ip1 .
the quantity W to express — from (12.40). To evaluate the second deriva-
o de

ox

A
tive of —, we use a five point stencil, with one point upstream and three

points downstream of the calculated station.

Op1

Note 12.6. If we assume that the pressure is constant in a cross-section, 8i =0,
Y

the method described in this subsection is valid by assuming that the function Ais
zero. Only one sweep is required to solve the equations. A similar numerical method
was used by Lagrée et al. [49]. This approach is useful to calculate flows in channels
with symmetrically deformed walls. We note that separated flows can be calculated
but no upstream influence exists. This means that, upstream of any change of wall
geometry, the basic flow is not perturbed.

12.6 Application of the Global IBL model

In this section, we present results obtained with the global IBL model
(Sect. 12.4). More precisely, we solve the system of generalized boundary
layer equations (12.29a) and (12.29b) associated with (12.39¢) and (12.43)
which give the evolution of the pressure and the distribution of the displace-
ment function. The numerical method is described in Subsect. 12.5.2.

In Subsect. 12.6.1, results are presented with a discussion on the numerical
procedure. Comparisons between IBL results and elements of Smith’s theory
are described in Subsect. 12.6.2, and comparisons between IBL results and
Navier-Stokes solutions are discussed in Subsect. 12.6.3.

12.6.1 Discussion of the Numerical Procedure

In the numerical procedure described in Subsect. 12.5.2, the main point
is (12.43) which allows the determination of the displacement function. The
question addressed here is to know if the results are sensitive to the location
y = y. where (12.43) is applied. This equation results from (12.36)

3(ye) = 01(ye) - (12.44)

The prescription of condition given by (12.44) is derived from the as-
sumption that the UVA obtained by solving (12.29a) and (12.29b) associated
with (12.39¢) and (12.43) agrees with the core flow solution given by (12.39a—
12.39b). It must be noted, however, that i) (12.44) is not a matching condition
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on the transverse velocity component, and ii) the solution for o7 is symmet-
rical about the axis y = 0 while there is no reason for v to be symmetrical.
This point is discussed later in this subsection, see (12.47).

To check the relevance of the numerical procedure, different calculations
were performed by varying the value of y. in (12.43) for a channel whose
upper wall is flat (y, = 1/2) and lower wall is given by

= *% + hexp [ (%)1 : (12.45)

where h and L are nondimensional scaling factors and z is the stream-
wise coordinate reduced by the width H* of the non deformed channel,
with h = —0.1 and L? = 0.5. The values of Reynolds number R defined
by (12.2) are R = 10? (Fig. 12.2) and R = 10°® (Fig. 12.3).

The skin-friction coefficient shown in Figs. 12.2 and 12.3 is defined by

C’f Tw

= R (12.46)

where 7, is the dimensionalized wall shear stress and ¢*, V* are the reference
quantities used to define the Reynolds number from (12.2). With the same
notation as in (12.29a) and (12.29b), on the lower wall we have

WV (aa)
Tw = - B\ 5 )
H 6y Y=u
and, on the upper wall,

e (20
N Hr 8y Y=Yu .

In the above equations, p is the viscosity coefficient reduced by p*, so that
n=1.

The results for y. = 0, Fig. 12.2a, and for y. = —0.2, Fig. 12.2b, with
a Reynolds number R :~1027 show that the evolution of the derivative of the

dA
displacement function — is sensitive to the value of y., but the evolution of

the skin-friction is less sgnsitive. It is noted that the influence of the value of
ye is weaker at higher Reynolds number (Figs. 12.3a and 12.3b).

Taking into account the fact that v; is symmetrical about the axis y =0
but not ¥, we tried to apply (12.36) for the symmetrical part of o, that is

0(ye) +277(_1/c) = 1 (ye) (12.47)

and (12.36) becomes

dA “Ye 9
= 2u0 [/y /l ady} : (12.48)
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Fig. 12.3. Influence of the location of the line y = y., R = 10%, a) (12.43) with
ye = 0, b) (12.43) with y. = —0.2, c) (12.48) with y. = —0.2
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Figures 12.2c and 12.3c show that the results obtained with y. = —0.2
in (12.48) are very close to those obtained with y. = 0 (Figs. 12.2a and 12.3a).

It is concluded that, with (12.48), the results are practically independent
from the location of the line y = y, which is very satisfactory but difficult to
justify (12.48), except by invoking symmetry arguments and also the linearity
of the solution for small perturbations.

12.6.2 Comparisons with Smith’s theory
Smith’s theory

In Smith’s theory, we consider the flow in a two-dimensional channel whose
walls are slightly deformed (Fig.12.4). Far upstream of the deformation, we
assume that the flow is fully developed, i.e. we have a Poiseuille flow. The
analysis uses the method of matched asymptotic expansions which implies
reqular expansions [89, 90, 91].

Different flow regimes are obtained according to the scales of the wall
indentation. The equations of the lower and upper walls are

u = —% +hf (%) ; (12.49a)
Yu = % —hyg (%) . (12.49b)

In these equations, y;, ¥, and x are nondimensionalized with the width H*
of the non deformed channel. The scale h of the nondimensional height of
the wall perturbation is a small parameter defined in the same way as in
Sect. 12.1

h*
= = . 12

e=h T (12.50)

Yu = % - hg(%)

Yy \

LLLLLLLL,
T H=1
L
) :—%+hf(%) -_—

Fig. 12.4. Asymptotic analysis of a two-dimensional channel with deformed walls.
In this figure, all quantities are dimensionless
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The inverse of the longitudinal length scale L = L*/H* of the wall inden-
tation is also a small parameter. It is assumed that the two small parameters
are related by

Z =, (12.51)

where « is a positive number. Smith characterizes the indentation by its slope
0 given by

§=— =gt (12.52)
From the analysis of Problems 12-1 and 12-2, we have
e =RVt (12.53)

where the Reynolds number R is defined by (12.2). The length scales of the
wall indentation are such that

L =RYG+a) (12.54a)
h— R-V/G+a) (12.54b)
% _ R-(1+a)/(3+a) (12.54c)

Two flow regimes are of interest here for asymmetric channels. One regime
is such that

1
a>g, (12.55)

and
R <6 <R3, (12.56)

It is shown that the pressure is constant in a cross-section. Flow separation
is possible but there is no upstream influence. This means that the effect of
the wall indentation is relatively weak.

The other regime corresponds to the value & = 1/2. In a way, this case
corresponds to the triple deck theory for external flows. We have

L=7RYT, (12.57a)
h=R2T, (12.57h)
h

7= R (12.57¢)

For aw = 1/2, the slope of the wall indentation is larger than for v > 1/2. The
pressure is no longer constant in a cross-section and its variation is described
by (12.39¢). As for o > 1/2, flow separation is possible. A fundamental differ-
ence with the previous case is that upstream influence is possible. According
to a linearized theory, the influence of any wall perturbation extends a dis-
tance upstream of order R'/7 times the channel width.



12.6 Application of the Global IBL model 285

Comparison between IBL model and Smith’s theory

In order to compare IBL results with Smith’s theory, four sets of calculations
were performed with the IBL model. The upper wall of the channel was
assumed to be flat and the lower wall was deformed by a trough.

The equations for the walls are (Fig 12.4)

N2

f=exp {— (—) } 7 (12.584)
L

g=0, (12.58b)

which is in agreement with the form required by the theory and given

by (12.49a-12.49b).
The four sets of calculations are defined by the geometry of the trough:

Case I
R 1/7 R —2/7
L =Ly |— h=hy|— 12.
0 {RJ ) 0 {Ro] ) (12.59a)
Lo =2.236 , hg=-0.5. (12.59b)
Case 11
R VA F R 11/
L="Ly|— h=hy|— 12.60
0 R | ) 0 R ) ( a)
Lo =2.236 ,ho =—-0.5. (12.60b)
Case III
rR Y7 R 1727
L="Ly|— h=hy|— 12.61
0 R | ) 0 R ) ( a)
Lo =0.707 , hg = —0.57. (12.61b)
Case IV
R VA R 11/
L=Ly|— h=hy|— 12.62
0 {RJ ) 0 [Ro] ) (12.62a)
Lo =0.707 , hg = —0.57. (12.62b)

For each set of calculations, three values of the Reynolds number are con-
sidered: R = 102, R = 103, R = 10*. The Reynolds number Ry is Ry = 10°.

It must be noted that the variations of the length scales L and h are in
agreement with (12.54a) and (12.54b) by taking « = 1/2 or a = 1.

For Cases I and II, the dimensions were chosen to have a weak pertur-
bation and the pressure calculated by the IBL model is nearly constant in
a cross-section of the channel. The family of troughs corresponding to v = 1
(Case II) was taken as a typical representative in the range « > 1/2. For
Cases I1II and IV, the geometry of troughs was chosen to produce a flow with
incipient separation.

Figures 12.5-12.8 show the evolution of the reduced skin-friction along
the walls of the channel. The skin-friction coefficient is defined by (12.46).
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Fig. 12.5. Application of IBL. Evolution of skin-friction in Case I
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Fig. 12.6. Application of IBL. Evolution of skin-friction in Case 11
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5 4 3 2 -

Fig. 12.7. Application of IBL. Evolution of skin-friction in Case III
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Fig. 12.8. Application of IBL. Evolution of skin-friction in Case IV
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For a given set of calculations, if IBL results are in agreement with Smith’s

theory, the evolutions of ﬂR as function of z/L along the lower wall or the

upper wall should be independent of the Reynolds number, exactly as in the
theory.

In Cases I and II, the results plotted in Figs. 12.5 and 12.6 show that the
theory is reasonably well satisfied for & = 1/2 and o = 1. These two cases
correspond to families of troughs which produce a weak perturbation.

For Case IIT (Fig. 12.7), the agreement with Smith’s theory is also fairly
good, specially for the two higher Reynolds numbers R = 10% and R = 10%.
On the contrary, for Case IV (Fig. 12.8), the evolution of the skin-friction
along the upper wall depends on the Reynolds number and Smith’s the-
ory is not satisfied. The wall indentation produces a significant variation of
pressure in a cross-section and the value a = 1 in Smith’s theory is not
appropriate.

The conclusion of this subsection is that IBL results are in good agree-
ment with Smith’s theory, at least for @ > 1/2 which covers a wide range of
variation of the dimensions of the wall deformation. It is interesting to note
that relatively low Reynolds numbers were tested and it seems that the IBL
model produces reasonably correct results.

12.6.3 Comparison with Navier-Stokes Solutions

In order to assess the validity of the proposed global IBL model, compar-
isons with Navier-Stokes solutions are presented in this subsection. The IBL
model is based on the system of generalized boundary layer equations (12.29a)
and (12.29Db) associated with (12.39¢) and (12.43) which give the evolution of
the pressure and the distribution of the displacement function. The Navier-
Stokes solutions were obtained by Dechaume who developed a highly accu-
rate solver [27]. A spectral method based on Legendre polynomials has been
implemented and the solution involves a domain decomposition of Dirichlet-
Neuman type. A technique of velocity-pressure decoupling is used. For the
time integration, the time derivatives are expressed by an implicit Euler
scheme, the nonlinear terms and the pressure boundary conditions are ex-
trapolated. The resulting linear systems are solved by successive diagonali-
sations.

For these comparisons, the flow is calculated in a channel whose upper
wall is flat and the lower wall is deformed in the domain —L/2 < x < L/2

according to
1 h 2
y=-3 + 5 {1 + cos (%x)] (12.63)

Outside the domain —L/2 < x < L/2, the lower wall is flat. In (12.63), yi,
x and L are nondimensionalized with the width H™* of the non deformed
channel.
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Three cases have been selected:

Case 1

h=-03, L=4, R =1000, (12.64)
Case II

h=-016, L=1, TR =1000, (12.65)
Case II1

h=036, L=4, R =1000. (12.66)

In the first two cases, the lower wall is deformed by a trough, and in
the third case, the lower wall is deformed by a bump. The characteristics
of the wall indentations were chosen to produce a flow which is close to
separation somewhere on the lower wall. For all cases, the flow was calculated
in a domain much larger than the wall deformation so that a non perturbed
flow is recovered at the inlet and outlet sections.

Using the definition of the skin-friction coefficient in (12.46), the evo-

C
lution of %R is plotted as function of z in Figs 12.9-12.11. The overall

agreement between the global IBL results and the Navier-Stokes solutions
is very satisfactory. Considering that the Navier-Stokes results are reference
solutions, the shape of the curves and the level of the skin-friction are well
predicted by the global IBL model. In the case of the shorter trough (L =1,
h = —0.16), Case II, the global IBL model leads to a very irregular evolution
of the skin-friction on the upper wall whereas the Navier-Stokes solution is
smooth. This case is on the limit of validity of the global IBL model. The
main reason is probably that the law (12.39¢) for the pressure variation in
a cross-section is too simple. The pressure variations induced by the lower wall
deformation are not well transmitted to the upper wall when the indentation
is too severe. In such a case, it is expected that a more elaborated model for
the pressure variations is required, for example the model given by (12.30a—
12.30c). Let us note, however, that the asymptotic theory is established for
large Reynolds numbers and for wall indentations whose height is small and
length is large compared to the channel width. Even if these conditions are
not satisfied a priori in the test cases, the agreement of IBL results with
Navier-Stokes solutions is strikingly good. When the flow perturbations in-
duced by the wall deformation are weak, the cross-section pressure variations
are very small and it is sufficient to assume that % = 0. Then, the evolutions
of the skin-friction on the upper and lower Wallsyare identical as illustrated
in Figs. 12.5 and 12.6. For more severe wall deformations, the hypothesis of
a constant pressure in a cross-section does not hold and (12.39¢) can be used
to calculate the pressure variations. In this case, for a non symmetric wall
deformation, the skin-friction evolutions along the upper and lower walls are
not the same. However, if the wall deformation is too severe, the difference
between the skin-friction evolutions along the upper and lower walls becomes
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very large as shown in Fig 12.10 for Case II and (12.39c¢) is not sufficient to
reproduce the pressure variations correctly.

12.7 Conclusion

Different approximations of Navier-Stokes equations for the study of high
Reynolds number flows in a two-dimensional channel with deformed walls
are obtained by applying SCEM.

The flow perturbations are described by an inviscid flow model in the
core which is strongly coupled to generalized boundary layer equations valid
in the whole channel. Finally, we obtain a global interactive boundary layer
model. As in the study of external flows, SCEM proved to be a very fruitful
tool for analyzing the flow structure.

A simplified model for the pressure variations has been implemented nu-
merically. Essentially, this model for the pressure is based on Smith’s theory
which is the equivalent of the triple deck theory for external flows. IBL results
obtained with this simplified pressure equation are in very good agreement
with Smith’s theory, at least as far as boundary layer characteristics are con-
cerned, and also with the Navier-Stokes solutions. Even with relatively severe
wall indentations and not very large Reynolds numbers, the global IBL, model
produces satisfactory results. It is expected that even better results can be
obtained with a more refined model for the core flow.

It should be noted that SCEM offers interesting perspectives with the con-
struction of a UVA. In fact, (@1, ¥1) is not necessarily an approximation in the
flow core whereas (@, 0) gives a UVA. Perhaps, this is why the symmetrization
of 0 with (12.47) gives a better result. This is an unusual implementation of
SCEM with respect to more standard methods.

Problems

12-1. Smith’s theory. We consider the laminar flow in a two-dimensional
channel whose walls are slightly deformed. The equations of the lower and
upper walls are

1
Yy = _§+EBF(X)7

1
Yu = 3 —5ﬁG(X) ,
where
X = e .

The exponents o and 8 > 0 characterize the longitudinal and transverse
length scales of the wall indentations. It is assumed that ¢ is a small param-
eter.
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We are looking for approximations of the channel flow at high Reynolds
number for which separation is possible. Regular expansions are used.

1. The flow satisfies (12.1a-12.1c). We seek a solution in the form

U= UO(y) + ETU(X7/y>E) 5
V = €T+QU(X’ y? 6.) 9
2
P —pe= *% +e°p(X,y,¢€) ,

where p. is an arbitrary constant. We assume that the small parameter ¢ is
related to the Reynolds number R by

R=e ™,

where m is a positive number. In fact, the value of m has no influence on the
final results. It can be convenient to choose m = 1.

Write (12.1a-12.1c¢) by using the variables X and y and show that the
Navier-Stokes equations reduce to first order partial differential equations
when m > |a/.

2. To study the boundary layer in the vicinity of the lower wall, we use the
variable
y+3

eh

We want to satisfy the following conditions

a. matching with uo(y),

b. conservation of mass,

c. same order of magnitude of pressure and viscous terms in the longitudinal
momentum equation

Show that we must set

Y:

u
U="2=
eb’
.
V:€2ﬂ+a’
P_pc
P=—Fm

Write (12.1a-12.1c) with the variables X, Y.

The scale of the slope of the wall indentation is characterized by « + (3.
Show that, with a4+ 3 > 0, the Navier-Stokes equations reduce to boundary
layer type equations if

3=m—a«.

3. Show that, in the lower wall boundary layer I, the inner regular asymptotic
expansions are

U=emBUX,Y)+-,
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Y =@ty (X V) -,
P—p. = 5(217%—2a)/i’)p1(X7 Y)4---.

Write the corresponding equations.
4. Show that in the middle deck M (core flow), the pressure can be written

P —pe =20 (X, y)
with the matching condition

lim pi(X,y) =P(X).

y——1/2
5. Regular expansions are used in the middle deck
Z/{ - Uo(y) + Erul(XJ/) + - )
V=" (X, y)+ .

Show that

r<-(m-a).

wl N

We assume that

r<§(mfoz).

Show that
dUO
= AX)—
uy (X) Q
. dA
v = quO )

where A(X) is an undetermined function.

6. With the condition r < 2(m — «)/3, show that a pertinent theory implies

that the couple (r, a) is in the hatched triangle shown in Fig. 12.12 (it is

useful to use the MVDP for longitudinal velocity).

7. For a given value of «, the most significant indentation corresponds to

the largest perturbation in the longitudinal velocity. Give the corresponding

value of r for 0 < a < m.

12-2. Global problem. This problem is the continuation of Problem 12-1 in

which we want to study the upper wall boundary layer and the solution for

the flow in the whole channel.

1. Assuming 0 < o < m/7, show that the pressure in the core is given by
A// (X)

15
P, y) = PuX) + == (12y5 —10y® + VEA 1) :

and that the pressure in the upper wall boundary layer is given by

AI/ (X)
30

Pi(X) = Pi(X) +
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r=2(m—4«a)/3
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2m/7

Fig. 12.12. Domain covered by the study in the (7, a)-plane

2. Prandtl’s transformation for the lower wall is given by

Z=Y-FX),
W=V - F(X)U .

Write the lower wall boundary layer problem.
3. To study the upper wall boundary layer, we introduce the variable

1
Y=o

We seek a regular expansion in the form

U = =BT (X, T) + -
Y = @t (X, F) 4

Prandtl’s transformation for the upper wall is given by

Z=Y-GX),
W=7, - (X, .
Show that the upper wall boundary layer problem is similar to the lower wall

problem.
4. We suppose now that m/7 < o < m. Show that

5. Interpret the classification of cases studied above in terms of Reynolds
number R, characteristic length L = e~ and slope of indentation § = ¢**+5.
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12-3. Study of the symmetric case. This problem is a continuation of Prob-
lems 12-1 and 12-2. The equations of the wall indentations are written

y=—-+eF(X),

Yy = - —eG(X).
This means that the small parameter is taken as being the thickness of the
boundary layer. It means also that the value of 3 considered in Problem 12-1

is now 3 = 1.
1. Show that Fig. 12.12 becomes Fig. 12.13.

7

Fig. 12.13. Domain covered by the study in the (r, «)-plane (8 = 1)

Express the Reynolds number R and the slope § of the wall indentations
as functions of € and «.
2. Write the core flow equations with » and «. Show that the gauge of the
longitudinal velocity for the second order problem is 2.
3. Calculate the analytical solution of the second order problem for o > 1/2.
4. Study the matching with the lower wall boundary layer.

5. Write the solution for a symmetric channel.



13 Conclusion

This book contains two distinct parts.

Chapters 2-6 describe a relatively new approach of singular perturbation
problems including one or more boundary layers. In a certain way, a tool
is proposed to teachers for presenting as simply and rigourously as possible
the necessary material required to study these difficult problems. Simulta-
neously, for teachers, students or scientists, we present an indepth analysis
of the methods devoted to the study of boundary layers. The most popu-
lar method is the method of matched asymptotic expansions, MMAE. In
Chap. 5, which is the heart of this analysis, we show that the idea of uni-
formly wvalid approzimation, UVA, enables us not only to understand how
all the standard methods are based on this idea, but also how new and
more efficient methods can be implemented. These developments are asso-
ciated with the nature of what we call a generalized asymptotic expansion;
this name is chosen in order to make a clear distinction with the more com-
monly used concept of reqular asymptotic expansion or with the even more
restricted concept of Poincaré expansion. This extension enables us to pro-
duce UVAs with a much better accuracy than with a regular expansion.
Then, as this is seen with ordinary differential equations in Chap. 6, the
calculation results show a better accuracy of approximations for not ex-
tremely small values of the small parameter. We can also produce UVAs
which cannot be obtained with MMAE, showing definitely the wider applica-
bility of the method we call the successive complementary expansion method,
SCEM.

This is well illustrated in the second part of this book which is devoted
to the application of SCEM to boundary layer problems in fluid mechanics.

A brief discussion of the t¢riple deck theory in Chap. 7 for an incompressible
flow enables us to evaluate the limitations of this theory when the interactive
boundary layer formulation, IBL, is presented. The successive degeneracies of
Navier-Stokes equations are analyzed and should allow the reader to under-
stand the reasons leading to the different models. The applications to flows
including the effects of external vorticity or to turbulent boundary layers show
the advantage of methods based on UVAs. The use of generalized asymptotic
expansions with SCEM is particularly fruitful and produce valuable results
even if the Reynolds number in not extremely large.
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Thus, SCEM reveals to be not only an attractive practical tool, but also
a pertinent theoretical means of analysis since SCEM supplies a rational basis
for justifying and constructing IBL: methods whose efficiency has been widely
shown by different authors, specially in aerodynamics. Thanks to SCEM, the
asymptotic analysis of boundary layer problems is refined.

Other applications in fluid mechanics can be considered. A few of them
are studied in this book, others are simply mentioned. The authors think that
interesting progress can be obtained in various fields such as flow stability,
laminar-turbulent transition or flow control. Obviously, if fluid mechanics is
at the heart of the meeting of the two authors, the first part of this book
is independent of this natural and historical application. This part concerns
many fields in physics when the mathematical models are constructed around
small parameters leading to singular perturbations of boundary layer type.
These models require a detailed analysis of the structure of the solutions
which, if not carried out, can be detrimental to the numerical simulation.

We do hope that this book, besides the benefit for teachers and students,
will encourage scientists to develop these methods in traditional domains of
fluid mechanics and also to find applications in other practical fields. In all the
concerned disciplines of physics, to find an original and practical asymptotic
technique becomes a valuable achievement.



I Navier-Stokes Equations

We consider an incompressible flow of Newtonian fluid in which the gravity
forces are neglected. We assume that the velocities are small with respect to
the sound celerity so that the Mach number is very small compared to unity.
We also assume that the temperature variations are very small compared to
the characteristic temperature of fluid. With these hypotheses, the state law
is

0= Cst. (I.1)

The density is uniform in space and does not vary in time. Thus, for a flow of
perfect gas, the state law is indeed (I.1) and not the standard law of perfect
gases.

With the hypothesis of Newtonian fluid, the viscous stress tensor within
the flow is expressed by means of a linear function of the rate of stress tensor.
Taking into account the hypothesis of incompressibility, we have

F=2u8 (1.2)

where 7 is the viscous stress tensor, S is the rate of strain tensor and p is the
dynamic viscosity coefficient. The kinematic viscosity coefficient v can also
be used

We assume that the viscosity coefficients ;1 and v are uniform in space.
In an orthonormal axis system, the viscous stress tensor components are

o 6ui 6uj
Tijg = K <8£EJ + 82E1> , (14)

where u; represents the z;-velocity component.

The equations of fluid mechanics comprise the continuity equation or mass
conservation equation and the momentum equation which expresses Newton’s
second law [51, 86].

In tensor notation, the equations of fluid mechanics (Navier-Stokes equa-
tions) are

divu =0, (L.5a)

d _ =
Qd_QtL =div(T —pl) . (I.5Db)
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d =
where — represents the substantial derivative, p is the pressure and [ is the

identity tensor.
In an orthonormal axis system, these equations become

5’ui

= I.
oz, 0, (I.6a)
aui aul 8p 87’1‘]'
—_— - = — —_— I.

If the flow is two-dimensional and steady, the equations are

ou  Ov
42— 1.
oz " oy 0, (I.7a)
ou ou Op 0%u 0%u
e = __ - -— L.7b
Qu@erQvay 8x+ﬂ8x2+u8y2 ’ (L.7b)
ov v Op 0%v 0%v
ougs tevg, oy THomz thae (L.7¢)

where u and v are the x- and y-velocity components respectively.
Choosing a reference velocity V,. and a reference length L,, we set

x Y u v P
Lr ) Lr ) er ) ‘/T ) QV;? )
and we define the Reynolds number R by
Vi Ly
R =22
I
In dimensionless form, the Navier-Stokes equations are
ou oV
= 2L 1.
X + Y 0, (1.8a)
ou ou dp 102U 10%°U
U=+ V—==—=+= - 1.8b
ox "oy T Tox TRoxz TRov: (1.8b)
ov 1% 19) 10V 10*V
vV Vo (L8¢)

0X vy~ oy  Roxz Rove-



1T Elements of Two-Dimensional
Linearized Aerodynamics

The problems of linearized aerodynamics, or thin airfoil theory, are very close
to those encountered in the solution of the upper deck of the triple deck
theory. Thus, it is useful to review a few results.

We consider an inviscid, two-dimensional, incompressible, irrotational
flow.
An airfoil produces a small disturbance in a uniform flow whose velocity
is Voo [61, 71].

The cartesian, orthonormal axis system is chosen in such a way that the
z-axis is parallel to the freestream velocity. The velocity components are

U=Vl +u,
V=uv,

where u et v are the disturbances produced by the airfoil.
The velocity potential ¢, defined by

dp
= — 1.1
= 9r (IL.12)
9¢
= — I1.1b
v=3L. (IL1D)
satisfies Laplace’s equation
0%p 0% —0
ox2 o2
The pressure coefficient is given by
P—-P U
Cp="—"—"=-2—.
LoV Vio

The linearity of the problem enables us to decompose the airfoil in a thick
symmetrical airfoil at zero angle of attack and in a zero-thickness airfoil. The
two corresponding problems are discussed in the next sections.

The airfoil is defined in the domain —1/2 < 2 < [/2. The perturbation
potential is

@ =®n + @1,
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where index “nl” refers to the symmetrical thick airfoil (non lifting case) and
index “1” refers to the zero-thickness airfoil (lifting case).

The boundary conditions are linearized so that they are defined on the
segment (S) [—1/2 < x <1/2,y = 0]. Segment (5) is the support of singularity
elements which enable us to satisfy the boundary conditions and which give
the solution.

II.1 Thickness Problem (Non Lifting Case)

The distribution of singularity elements must be such that the velocity com-

0
ponent v = 8—('0 is discontinuous through segment (.5) since
Y

%(Z,Oi) = +Voon(x) for -

<z <
oy =T

)

DN | =~
DN | =~

where y = 0" denotes the airfoil upper surface and iy = 0~ the lower surface,
0n1 denotes the slope of the airfoil upper surface.

This problem is modelled by means of sources distributed on segment (.5).
The sources strength per unit length is o/ (x) = 2Vo0n (2).

At any point (z,,0%) of the airfoil, the velocity field is given by

Ua(@a) _ l?im Su(@o) 4, (I1.2a)
Vo TJ_1/2 Ta — Zo ’ '
+

% = 6 (2a) - (IL.2b)

At any point outside the airfoil surface the velocity field is given by

Uni(2,y) 1 [ On(zo)(x — x0)

—_ = — —_—— d 11.3
Vo 7T/l/2 (x —20)% + 12 o , (II.3a)

Vn1(Z,y) Y /l/2 dn1 (o)

_— == ———— duxo . 11.3b
Vo wlapGomorty (1L.3)

Obviously, the velocity component v is zero on the axis y = 0 outside seg-
ment (5).

The distribution of pressure coefficient on a thick symmetrical airfoil is
symmetrical

Gy, (1) = G, (za) = %§£Z/2 Ou(20) dxg

Pnl T —l/2 Tq — Xo
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I1.2 Zero-Thickness Problem (Lifting Case)

The distribution of singularity elements must be such that the velocity com-

0
ponent v = %7 is continuous through segment (S) since

dy
) + l l
- = ——<x< -,
ay (2,0%) = Vo) for 5 = r < 5

This problem is modelled by means of wvortices distributed on segment
(S). Their strength ~/(z) is such that

/2
Voo i() = 17«6 (@) dxo

o % —l/2 Tr — X
At any point (z,,0%) of the airfoil, the velocity field is given by

uli (7q) . 7' (%a)

= 1.4
o ST (I.4a)
+ /2
a 1 o0
Vo 2 —1/2 %a — 20
At any point outside the airfoil, the velocity field is given by
/2 ’
mow v [ ANy, L5
Vo 21 J 19 (. —20)% + y?
1 /2 o ’ -
Voo 21 J_yp (x—10)? + 32

We note that the velocity component u vanishes on the axis y = 0 outside
segment (S).

The distribution of pressure coefficient on a zero-thickness airfoil is skew-
symmetrical

= () = Y (@a)
Cl(xa) = =C, (x4) = T

The pressure coefficient on the airfoil is related to the airfoil slope by

1 /2 (o
—% Ao (-TO) dxo .
21 ) 12 Ta — o

(51(1‘,1) =

Note II.1. The non lifting case can be solved easily if the airfoil shape is known,
i.e. if the velocity distribution vy (z,) is known, since the source distribution o’ (z,)
is deduced directly. This problem is called direct thickness problem (non lifting).

Along the line y = 0, outside the airfoil, the value of v is zero. In the whole
field, the pressure is such that

u
Cp=-2—.
P Voo
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Now, we have
Oy
Y=o
whence
Foo x—+00
/ u(§,y) d§ = [p(z, ), 2 2% =0,

—0o0

since ¢(x,y) vanishes as x — too. Therefore, we have

“+oo
In particular, we have
“+oo
Cp(£,0)dE=0.

Note II.2. The zero-thickness problem can be solved easily if the distribution of
pressure Cp(x4) on the airfoil is known since the vortex distribution v'(z4) is de-
duced directly. This problem is called inverse lifting problem. Along the line y = 0,
the pressure coefficient is zero outside the airfoil. As the pressure distribution on
the airfoil is arbitrary, in general we have

/2 +oo

Cp(£,0) d€ = Cp(€,0)dE #£0.

—1/2 —o0

Note II.3. We could think of obtaining the solution of the inverse thickness prob-
lem by inverting (II.2a) (see Appendix III). In this way, the source distribution
could be calculated as function of a given velocity distribution u (or a given pres-
sure distribution) along the line y = 0. However, it must be noted that the inverse
formula involves the velocity distribution u all along the line y = 0 and not only on
segment (S) since the value of u does not vanish outside segment (S). Moreover,
the distribution of u along the line y = 0 cannot be arbitrary since its integral
with respect to 2 must be zero. In practice, it is necessary to use (II.2a) to cal-
culate the source distribution from a given velocity (or pressure) distribution on
segment (S) [61]. A solution can be sought by expanding the complex velocity in
Laurent series whose coefficients are unknown, the form of the expansion being
guided by results obtained from the exact theory.

To solve the direct lifting problem, we can think of inverting (IL.4b) (see Ap-
pendix IIT) to calculate the vortex distribution from a given shape of the airfoil.
However, the inverse formula involves the distribution of v all along the line y = 0
and not only on segment (S) since the value of v does not vanish outside segment
(S) although the vortex distribution is zero outside segment (S). We also note
that, if the vortex distribution vanishes outside segment (), the velocity compo-
nent v along the line y = 0 behaves, in general, like 1/z as © — 400, as far as

1/2
/ v'(x) dz # 0. In practice, it is necessary to use (I1.4b) to calculate the vortex
—1/2

distribution from a given shape of the airfoil [61]. As for the inverse non lifting
problem, a solution can be sought by expanding the complex velocity in Laurent
series whose coefficients are unknown.



IIT Solutions of the Upper Deck of the Triple
Deck Theory

I11.1 Two-Dimensional Flow

We consider the incompressible flow defined in the upper deck of the triple
deck theory. The disturbances of velocity components u and v, the pressure
disturbance p, the coordinates = and y are dimensionless. The equations are

Ou  Ov

9 + a—y =0, (ITI.1a)
ou  Op
r il w (I11.1b)
dv  Jdp

These equations are identical to the dimensionless equations of linearized
aerodynamics (Appendix IT). Here, the equations are to solve in the half-plane
y > 0. Along the line y = 0, either a distribution v(x,0), or a distribution
u(z,0) can be prescribed.

At infinity, we assume that the disturbances vanish

u—0, v—0, p—0 as = —Foco or y—o00.

The flow is irrotational since we are concerned with the perturbation of
a uniform inviscid flow. The z-momentum equation shows that p+u = F(y).
Now, as * — —o0, we have p = 0 and u = 0. It is deduced that F(y) = 0 and
that p + v = 0. Then, we obtain

ou  Op
dy Oy’
Then, the y-momentum equation gives
ov  Ou
or Oy’

which shows directly that the perturbation of the flow is irrotational.
Below, the results are obtained by a Fourier transform method. The results
of Appendix II could also be applied.
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The Fourier transform F(a,y) of a function f(z,y) and the inversion
integral are defined by the following formulas

Flayy) = / Fla,y) e 2 dz

— 00

+oo R .
Fay) = / Fla,y) 2™ da |

— 00

o .
The Fourier transform of 8_f is 2iraF
T

o~

OF _ ginaF .

Oz
Obviously, we assume that the so-defined functions exist: the Fourier
transform of f, its inverse and the Fourier transform of the derivative g—gfg
In particular, we must have f — 0 as |z| — oo. It will be required to as-
sume that the Fourier transforms of f and of == (f = w ou f = v) exist.

These conditions are fulfilled if (sufficient condition) f is continuous and if

the integrals of | f| and of

OF ] it
— | exist.
ox
From the equations written in physical space, we obtain the following
equations in Fourier space

00
%irali + 2 =0,

dy

U= —p,

The equation for v is deduced
0%
—A7%a* 0+ — =0.
oy?
The solution is
o= Kl e27ray +K2 e—27ray )

Let 9y be the Fourier transform of the velocity component v at y = 0
Uo(a) = 0(a,0) .

In order that the velocity component v vanish as y — oo, the solution writes

a<0 0= 0ge?™ W |
a>0 0 =70ge "W
or
D e 27laly
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and we obtain
—2mlaly

u = —isgn(a)vge
The solution can also be expressed as function of the Fourier transform
up of the velocity component u at y = 0
o e 2rlaly ,

= isgn(a)tg e 27loly

To return to physical space, it is required to know the following formulas

“+o00
€T o
e 2iTtax dl’,

—irsgn(a)e27loly = /

oo TPt y?

+oo y )
ﬂ_e—27r|a|y — / = = e—217raa: dx .
—o TTtY

For y # 0, we obtain

u(z,y) = % [ :o % e, (I11.2a)
v(z,y) = %/:o % e, (IIL.2b)
u(z,y) = % [ :o % de, (I11.2¢)
v(z,y) = —% /:o % de . (I11.2d)

In the above formulas, the velocity component u can be replaced by —p.
Along the line y = 0, the following results are obtained

+oo v
u(z,0) = —p(x,0) = 1?[ &0 ¢, (I11.3a)

T o T—E
v(x,0) = —%%jﬂo ux(ﬁ_,(? d¢ = %%jﬂo 1;(6—705) d¢ . (IT1.3b)

All these results show that if the distribution of w(&,0) (or v(£,0)) is known,
the fields of u and v can be calculated. The data cannot be arbitrary since,
at least, all the integrals must be defined.

Note I11.1. Given a velocity distribution v(£,0) # 0 in a bounded interval, the
problem is equivalent to the thick symmetrical airfoil problem (non lifting case)
presented in Appendix II. Then, we have

—+oo + oo
/ udx:(),/ pdr=0.

This result is also obtained by integrating directly (II1.2a).
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Given a velocity distribution u(€,0) # 0 (or p(§,0) # 0) in a bounded inter-
val, the problem is equivalent to the zero-thickness airfoil problem (lifting case)
presented in Appendix II. In general, we then have

—+o0 —+o00
/ udmyé(),/ pdx #0.

—o0 —o0

Note III.2. The solution to the problem could be sought in the complex plane by
introducing the complex velocity g = u — iv. Indeed, it has been shown that u and
—uv satisfy the Cauchy-Riemann conditions. In addition, in the half-plane y > 0,
function g cannot have singularity. The complex velocity g is a holomorphic function
of z =z + iy for y > 0. Applying Kramers-Kronig’s relations [4],

T Sg(z +oo z
Ro(o) = —2 20 g gy = 2T AL g

T) oo T—E& T o T—E&

we recover exactly (II1.3a-II1.3b) relating u and v at y = 0. This result is valid if
we assume that g tends towards zero at infinity in the half-plane y > 0.

IT1.2 Three-Dimensional Flow

For the velocity disturbances u, v and w, and the pressure disturbance p, the
upper deck equations write

%+g_z+g_i’:o, (IIL4a)
g_z _ ,g_i , (IIL4b)
% _ ,g_z , (I1L.4c)
g—i’ - f% . (I1L.4d)

These equations are to be solved in the half-space y > 0. Along the surface
y = 0, a velocity distribution v(z, 2, 0) is prescribed. Regarding the boundary
conditions, two cases are studied below

1. The velocity disturbances u, v, w and the pressure disturbance p vanish
at infinity (x — £o0 or y — 00).

2. The conditions are identical to the previous case except for the velocity
disturbances v and w: at downstream infinity, these velocity disturbances

v w
do not vanish but we assume only that the derivatives e and e vanish.
x x
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I11.2.1 Zero Perturbations at Infinity

We assume that the Fourier transforms with respect to x and z of the per-

~

turbations of velocity and pressure exist. The Fourier transform f(«,~,y) of
a function f(x,z,y) and the inversion integral are

- o0 —+o00 )
fla,v,y) =/ / f(z,z,y) e Amlart2) qpdz |

—+o00 —+o00 R )
f(z,2,y) =/ / fla,v,y)eBm@@72) do dry .

The Fourier transforms of derivatives with respect to = and z, if they
exist, are given by

of ~ of -
8_9]; = 2iraf , a—JZc =2y f .
We take the Fourier transform of (III.4a), (II1.4b), (II1.4c) and (I11.4d)
9
%irad + 22 + 2imyi = 0,
dy
2irau = —2irap
o5
%irad = — L
dy
2iraw = —2imyp .

The equation for v results
%0

Oy?

With the conditions of vanishing perturbations at infinity, we obtain

T=700e 2™ with R=+/a2+12,

where 7y represents the Fourier transform of v at y = 0.
Then, we obtain

— 4} +9%)0=0.

~ e’ _
U= —i=0ge 2"
R

~ .Y

W= —i—=0ge 2
«

=~ : —2m Ry

p=i=1pe
R

To express this solution in physical space, the following transforms are
used

_ i —2rRy _ i/w /OO T —2im(ax+vz) dzd
\/a2+726 21 J o) oo (m2+z2+y2)3/2e e
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1 oo poo y )
—2rRy _ _— —2im(ax+vyz)
e 277/_00/—00 (m2+22+y2)3/26 drdz,

iy 1 [~ [~ z .
. e—2‘n’Ry _ _/ / : : — e—217r(ax+'yz) dx dz ,
vV 042 + "YQ 2w —o0J —oo (l‘ + 24+ Yy )3/

and we obtain, for y # 0

_ i 0 &S] [U(€7na0)] (1'76) X
‘e 27 \/700\/700 (x— &2+ (z—n)2+ y2)3/2 dédn, (IIL.5a)

v= // e (5(;7’_ )}) e ddn . (L5

= 1 Y [U(ﬁﬂ% 0)] (Z - 7])
R [oo[oo (= )2+ (z—n)2 + y2)3/2 dgdn, (IT1.5¢)

N Y A [v(&n,0)] (= &)
p= —%[m[m (0P 1 ()2 +y2)3/2 d¢dn . (IIL5d)

Along the line y = 0, we have

p(z,2,0) ¢ 55 o 75 il )(]( )5))3/2 dédn . (I1L6)

Note II1.3. The problem studied in this section is equivalent to the problem of
small disturbances induced in a uniform flow by a three-dimensional finite wing
symmetrical with respect to y = 0 for which the lift is zero. The velocity potential
¢ is such that

_ 9%
T oz’

“+oo
[ Tude=fetz =0,

since the potential vanishes at infinity (upstream and downstream).

We also have .
/ pdx=0.

These results can also be obtained directly by integrating (II1.5a) and (II1.5d) with
respect to x.

and we have

I11.2.2 Non Zero Cross-Flow Perturbations
at Downstream Infinity

At infinity (z — do0 or y — 00), we assume that the perturbations of velocity

v
u and pressure p vanish. At downstream infinity, we assume that only 7
x
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ow ) P
and — vanish whereas at upstream infinity and also as y — oo we assume

x
that the velocity perturbations v and w vanish.
We assume that the following Fourier transforms exist

—+o00 —+o00 )
u(a, 7, y) =/ / u(z, z,y) e 2im(ar+72) qudz
+oo —+o00 )
pla,v,y) =/ / p(z, z,y) e Am(erty2) qpds
o +oo —+o00 )
dv(a,v,y) = / / g—”e—“(a”w) dzdz,
oo oo O

—~ +OO +OO .
dw(a,v,y) = / / g_l;’e*m(wﬂz) drdz .

The continuity equation is differentiated with respect to x

@ + 2 @ + 2 a_w =0

0zx2 Oy \ Oz 0z \0x )
By taking the Fourier transform of this equation and of (IIL.4b), (IIL.4c)
and (I111.4d), we obtain

o~

~

od —~
—4r?o’u + 3_U + 2imrydw = 0,
Y

2iran = —2iwap ,
0
dy
dw = —2i1p,
and e
0%dv —~
07 4n2(a® +4%)dv = 0.
We set

R=+/a?+72.

v
With condition Yol 0 as y — o0, the solution is
x

dv = dvge 2"

where @0 represents the Fourier transform of the derivative of v with respect
to x at y = 0. Now, we have

- 05—~

dv = _9P _ dvge 2Ry

dy
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With the condition of vanishing pressure as y — oo and integrating with
respect to y, we obtain

S_ 1 g
p 2TR voe
We also have
1 —
PR d —2m Ry
u _27'('R Vo € y
dw = fi%dv e 2Ry

Using the following transforms

1 —27Ry __ o0 oo 1 —2in(aw+yz)
QQ—WG - N (1,2+22+y2)1/26 dzdz,
1 [ [ y .
—27Ry _ _—_ —2in(ax+vz)
e _2W[m[m (x2+22+y2)3/26 drdz,

_ Iy —27Ry _ L/OO /OO ol —2im (aw+vyz) dxd
\/oﬂ—f—fy?e 27 ) o) oo (:132-i-z2—|—y2)3/2e rdz,

we obtain the solution in physical space for y # 0

=2 (£1,0)
85 )
/ / \/ 1‘ — Z — ,’7)2 +y2 dﬁ d"? 5 (III7 )

g_z %/ / — {%imnzlwﬂ?’ﬂ dedn,  (IILTb)

(;_1: / / x{as 3 7(7 )L()Z +Z)2)3/2 dedy,  (IILT7c)

=2 (&,1,0)
55
p= / / N TR dédn . (II1.7d)

Along the line y = 0, we have

p(z,2,0) f ?§ T E " : — d¢dn . (111.8)

Note that the velocity perturbations v and w do not necessarily vanish at
downstream infinity.
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We also note that this solution reduces to the solution developed in Sub-
sect. II1.2.1 when the velocity perturbations v and w vanish at downstream
infinity.

Note II1.4. The problem studied in this section is equivalent to the problem of
small disturbances produced in a uniform flow by a three-dimensional finite wing
of zero thickness for which the lift is non zero. The velocity potential ¢ is such that

_ 99

At upstream infinity, the potential ¢ vanishes but at downstream infinity, due to
the velocity components v and w induced by the vortex sheet leaving the wing, the
potential ¢ does not vanish. Then, we have

+ o0
/ udx #0,

— 00

—+o0
/ pdx#0.

and



IV Second Order Triple Deck Theory

IV.1 Main Results

We consider a steady, two-dimensional, incompressible, laminar flow on
a semi-infinite flat plate.

At distance L from the plate leading edge, the boundary layer is per-
turbed, for example, by a small hump at the wall. The hump can produce
boundary layer separation.

Under certain conditions specified later, the triple deck theory defines
a model able to avoid the singular behaviour of the solution of boundary
layer equations but simpler than the Navier-Stokes equations. It must be
noted that the model describes the perturbations of the basic flow.

The velocity components, the lengths and the pressure are nondimension-
alized by means of reference quantities V', L and oV2. The reference velocity
is the freestream velocity and the reference length is the length of bound-
ary layer development from the plate leading edge up to the location of the
disturbance (Fig. IV.1).

L

Fig. IV.1. Flow on a flat plate deformed by a hump

The flow is described by the Navier-Stokes model. In a cartesian, or-
thonormal axis system tied to the flat plate. The dimensionless equations
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are
ou  Ov

oz dy

ou ou

ua + va—y

v ov

U or + va—y

(IV.1a)
(IV.1b)

(IV.1c)

where v and v are the z- and y-velocity components respectively; the y-axis
is normal to the wall; p is the pressure.
The Reynolds number is defined by

_oVL

R ;

I

and the small parameter ¢ is such that

Around the hump, the perturbed flow is structured in three decks as shown
in Fig. IV.2: a lower deck, a main deck and an upper deck.

LR™3/8

-_——

Upper deck

Oncoming

LR7 1/2
boundary layer

Main deck

Lower deck

® LR75/8

LR73/8

Wil

Fig. IV.2. Triple deck structure

The streamwise and transverse length scales of the perturbed region are
of order LR~3/8. Within the perturbed region, three decks are identified. The
lower deck thickness is LR ~%/8; the viscous effects are significant in it. The
main deck is the continuation of the oncoming boundary layer. The main
deck thickness is LR ~1/2 and the visccous effects, for the perturbations, are
negligible. In the upper deck, the viscous effects are negligible; its thickness

is LR™3/8,
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The triple deck theory describes, for example, the flow around a hump
whose thickness is of order LR /8 and whose length is of order LR~3/%. Tt is
essential to understand that the theory is valid for a hump whose dimensions
vary with the Reynolds number and tend towards zero as the Reynolds number
tends towards infinity.

In each deck, the appropriate variables are

Upper deck: X = e 3/4(z —zo) , Y* =7 3/4y (IV.2a)
Main deck: X = e 34z —z), Y =c"ly, (IV.2b)
Lower deck: X =¢34z —z0), YV =& /4y, (IV.2¢)

where xg = 1 is the location of the disturbance.
The non perturbed flow is described by the solution of Blasius’ equation

2" + ff" =0 with Up(z,Y)=f'(n) and n=Yz /2,
and it is known that

fE2n—0Fy+EST as Y — o,
or
1
vozéﬁox*/MEST as Y — 00.

It is also known that

Uy =AY +0(YY) as YV -0 with A= X\a /2.

The expansions appropriate to each deck are
e Upper deck

w=1+4c"2Ur(X,Y*) + U (X, V") + -,
v 251/2‘/1*()(7 Y*) +53/41/'2*(X,Y*) T
pzel/QPf(X,Y*)+s3/4P2*(X,Y*)+-~~ )

e Main deck
uw=U(Y)+ e U (X,Y) + e PUs(X, V) + -,
v=ePV(X,Y) + V(X Y) 4,
p=cPP(X,Y)+ e Py(X,Y) + - .

e Lower deck

u = 51/4)\0§~/ +51/4ﬁ1(X,§~/) Jrgl/Qﬁ'Q(X7 }N/) 4o,
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0= STXT) + Ta(CT) 4o
p= EI/Qﬁl(X>}7) + 53/4ﬁ2(X>}7) te

The equations are
e Upper deck

- Order 1
ouy ovy 0
ox  oyr 7
ouy 78P1*
0xX 98X’
oy 76131*
X —  ay*’
- Order 2
oUs  ovy _
oxX  oyx
oauy _8P2*
X X’
avy _8P2*
oX  oyx’
e Main deck
- Order 1
o, Vi
0X oy
o, oUp
UOW + VlW =0,
opP;
- Ordre 2
Uy  0Vy
ox Ty~
U, oUp 0P oUy oUy
Uoax TV%y = ax Uax Moy o
n 0P
%90x — oy’
e Lower deck
- Order 1
o0 ot

- ~:0
X = gy ’
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~ -\ OU;, ~ oU oP, 02U
()\0Y+U1)_1+‘/1<>\0+—1>:—_1+ ~17

0X oY 0X = py2
oY
- Order 2
Uy OV
— 4+ —==0
0X + oY ’
< =\ Uy oU, oU, ol OPy  9°U,
NY +U) — +V1— —_— = —— =
(0 + 1)6X+ 1ay+UQaX+V2<)\0+6Y IX vz
oY
In the main deck, the order 1 solution is
— A(X)UL(Y)  with U{)(Y):%,
d4,

Vi = —Ai(X)Uo(Y) with Aj(X) = 5,

where function A;(X) is an unknown of the problem.
To order 2, the solution in the main deck is

A2

Uy = —Pi(1+ &) + AU} + 1@’
dp
Vo= (V@) - AUy — AL AW

Py = H(X)+ Al 22f" + ff' —2X0) ,

where A5 (X)) is the second order displacement function which is an unknown
of the problem. Function H(X) is obtained from the matching with the lower
deck. Functions @ and ¥ are obtained as solutions of equations

U — U@ =1-Uy+ YU,

UgW' — UgW¥ = —(Up)* + UoUy'
with

o - 90

dy ”’ dy -
Functions ¢ and ¥ are

C1-Uy+ YU,
2(Q) = Uy [ v
e’} 0

CUUY — (U))?
W(C)ZUO/ OOU—z(O)dY-
0 0
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From equations for ¢ and ¥, we obtain

1
¢ ——+4o0o(Y) as Y —0,
Ao

U=X+oY) as Y —0.
We also have

U, =2 —-P,+EST as Y — oo,

-~ dpP; ,
‘/2: Yﬁ*AQ +EST as YHOO,
P, =2 H(X)+ A} (Y — (6o +2X)) + EST as Y — o,
UQ%AQAQ—Pl"F"' as Y—>O,

. ldp
‘/2:7)\—()&7)\0‘41‘4/14* as YHO,

Py(X,0) = H(X) .

The different matching between the decks give the following results

~lim ﬁl = /\0A1 5
Y —oo
~lim [72 = )\OAQ — P1 s
Y —oo
PY(X,0) = A(X),
Pi(X) = Pi(X),
Py(X,0) = P(X)
P (X,0) = Py(X) = A7 (X)(Bo +20) .
VI(X,0) = —Ai(X),
V5 (X,0) = —A5(X) .

We obtain
dPy 76Uf(X,O)

ax X
The solution in the upper deck gives in particular

e e L[ (X =P
W =2 [ w6

— 00
hence the interaction law

00 =-1¢ 2 ae.

— 00
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IV.2 Global Model for the Main Deck
and the Lower Deck

With index “0” denoting the basic flow, we seek the perturbed flow in the
form

u(a:, Y, 5) = Uo(l’, Y) + 51/4U(X7 K 6) s

v(z,y,€) = eVo(a,Y) + 2V (X,Y,¢),

p(x,y,e) = 2Py(x,Y) +e'/*P(X,Y,e) .

Substituting these expansions in the Navier-Stokes equations and taking
into account Blasius’ boundary layer equations, we obtain

P9y, (IV.3a)

oX oy
oU  —0Uy | 4 (700  OU 54 (000 ou
U08X+V8Y+5 U8X+V6‘Y +e U3X+%6‘Y
oP U
_ 1/4 3/4 5/4 I
eox +e 572 + 0(%), (IV.3b)
OV |y (70V SOV s/a (V0 ov
anX+s UaXJrVaY +e V8Y+V08Y
oP *V
_ —1/4918 3/4 5/4 I
F)% +e 7v2 +0(e”?). (IV.3c)
For the main deck, the regular expansion is
U(X,Y,e) = U (X,Y) + e/ Us(X,Y) + - -, (IV .4a)
V(X,Y,e) = Vi(X,Y) + Y4 (X,Y) +-- -, (IV.4b)
P(X,Y,e)=P(X,Y)+e/4Py(X,Y) + - . (IV .4c)
For the lower deck, the regular expansion is
U(X,Y,e) = U (X,Y) + Y Us(X,Y) + -+, (IV.5a)
V(X,Y,e) = e/ (X, Y) 4+ Vo (X, Y) + -, (IV.5b)
P(X,Y,e) = P(X,Y) +e/*Py(X, V) 4 -+ . (IV.5¢)

Substituting these expansions in (IV.3a-IV.3c), the results of the triple
deck theory in the main deck and in the lower deck are exactly recovered to
second order. The matching conditions between the main deck and the lower
deck are also identical.

In fact, to recover the results of the second order triple deck theory in the
main deck and in the lower deck, a more restricted system than (IV.3a-IV.3c)
can be used

oT oV

X + Y - 0, (IV.6a)
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8U dUO 1/4 —aU —aU _ 1/4 aﬁ 3/48 U
Uoge *Vagy T/ (Tax +Vay ) = /55t 555 - (IV.6b)
v 0P
Uy =—¢ 55 - (IV.6c¢)

Substituting expansions given by (IV.4a-IV.4c¢) and (IV.5a-IV.5¢) in these
equations, the results of the triple deck theory in the main deck and in the
lower deck are exactly recovered to second order. The matching conditions
between the main deck and the lower deck are also identical.

It must be noted that we have

0P,
Yy
0P, oU{(X,0)
ox — ax
P,
oY
OPy
Y
In order to recover the results of the main deck and of the lower deck to
first order, the following system is sufficient

ou oV
A A . V.
X + Y 0, (IV.7a)
U  —dUs 4 (#0U  —0U 1/46U1 (X,0)
Ua +Vay +"" (Uax *Vay ) = 0X
02U
3/49°U
+e (IV.7b)
9P _y. (IV.7¢)



V Behaviour of an Asymptotic Expansion

V.1 Formulation of the Problem

We consider a singular perturbation problem in which two significant regions
have been identified. The studied function is defined in a domain such that
x > 0. We assume that the singularity is located in the neighbourhood of
point * = 0. In the outer region, the appropriate variable is x and in the
inner region, the appropriate variable is X

X:—x with v <1.

v(e)

The outer and inner expansions are

@0 == Eo@ == Zél (6) Y23 (37) s (Vl)
i=1
By =E1 &= 6 ()i (X), (V.2)

where, by definition, Ey and E; are expansion operators to order d,,.
As x — 0, the behaviour of functions p; (z) is

pi (r) = i%‘ﬂz‘j () +0[Aim, (7)] , (V.3)

where a;; is a series of constants and A4;; is a sequence of gauge functions
such that

xT

Ay (z) = 2P (ml)q : (V.4)

where p and ¢ are real numbers.
In the next sections, it is shown that

EoE1 $9 = E1 Eg 9o
EoEy &, = By Eg &, .

In fact, only the proof of the first equality is given. A similar proof applies
to the second equality.
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V.2 Study of the Gauge Functions

In a first step, it is shown that

where Ej and E] are outer and inner expansion operators to order 6* such that
0*(e) = 1. To simplify the notations, we set

Az) = A (=)

Obviously, we have
Ej A(z) = Ax) . (V.6)

In order to determine E] A(z), we first form A(vX)

A(wX) = (vX)P (m %)q
e () (1 2X)"

In X
This function is studied as € — 0. Assuming that T < 1, which is
nl

always possible if v is small enough for a fixed value of XV, a Taylor series
expansion of the last term of the right hand side is taken

q n
AwX) = wX)? (lnl) |:1_q¥+"'+an (%) +} . (V.7)
v In In

where «, is the non explicitly expressed coefficient of the corresponding term
and n is a positive integer.

According to the value of p, two cases are considered.
First case: p < 0. For any value of ¢ and n, we have

1\ "
Vp(ln—> — o0 as v—20.
v

In order to calculate E] A, it is necessary to keep all the terms present in
expansion (V.7). Therefore, we have

ElAwX)=AwX),
or, with the variable x
El A(vX) = A(x) .

Obviously, we obtain
E{E] A(z) = A(x) .
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Finally, we have
ESE] A(z) =EJEj A(z) .

1 q
Second case: p > 0. According to the order of magnitude of v? <ln —>
v
with respect to §*, two possibilities must be considered.
1 q
First possibility: vP <ln —) < 0*. From expression (V.7), the asymp-
v

totically largest term in the expansion of A(vX) is asymptotically smaller
than 6*. We obtain

E] A(z) =0,
and therefore
E;E] A(z) =0.
We also have
EGE] A(z) = E]Ej A(z) .

1 q
Second possibility: VP (ln —> =0".
v

In the series of expression (V.7), we keep the terms whose exponent is

such that
1\
vP (ln —> =0
v

We assume that this property is satisfied for n < N. We obtain
1\? In X n X\
E’{A(VX):(VX)p<ln—> [l—qn—l—&““—&-az\r (n_l) 1 .
v In > In =
In order to calculate Ef E] A, the variable z is used

lna:—&—ln% lnx—i—ln% N
l-¢g———+ - -+ay | ———F

Ini Ini
v v

(D) g (1) (1 e ’
N v 4 ln% N ln% ’

1\ N
In this expression, the asymptotically smallest term is of order <ln —) .
v

I
VP <ln —) 0",
v

Bl A(X) = (2)? <ln %) '

Taking into account that
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q—N
(ln l) =",
v

since p > 0. Therefore, we have

o 1\? Inz Inaz\"
E¢E] A(z) = ()P (In— l—q(1+— )+ Fanv|(1+— .
v In = In =

Finally, we obtain

we obtain

EjE] A(z) = E]Ej A(x) . (V.8)
Thus, equality (V.5) is proved.

V.3 Study of the Outer Expansion

Now, we wish to show that
E1Eqg®y =EoE1 9 . (V.9)

Obviously, we have
Eo @y =Py .

We want to calculate E; &g and therefore E; 6;(¢)gi(x) in particular. We
define an inner operator E; to order ¢; such that

As 6, =2 9;, we have

We obtain B
Eq16i(e)wi(z) = 0i(e)Erpi(x) .

From the behaviour (V.3) of ¢; in the neighbourhood of z = 0, we obtain
Eipi(x) = aiB14(x) (V.10)
j=1

where 7; is such that we are certain to keep in A;;(v(g)X), for any j, all the
terms asymptotically larger than or of the same order as §;.

To calculate EgE; @, it is required to know Eg E; d;(¢)pi(z). Now, we
have

Eo Eq 05(¢)i(z) = Eo 05(c)Erps(2) -
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We define the outer operator Eq to order §;, whence

Eo 6i(e)E1i(z) = 6i(e)EoE1¢:(x)
= (51‘(6) Z aijE0E1Aij(m) 5
j=1

or

EO E1 51(6)(,01(13) = 51(6) 2 aijE()ElAij (l‘) . (Vll)

On the other hand, let us calculate E; Eg d;(¢)¢;(x). Taking into account
that

Eq 0i(e)pi(z) = di(e)pi(x)
we obtain
Ey Eq 6i(e)pi(x) = E1 6i(e)pi(x) = 6i(e)Erpi() ,

which gives with (V.10)
7j=1

As 0; = 1, from result (V.8), we can write
EoE14:(z) = E1EoA;j(z) = E1A(z) ,
or finally, comparing (V.11) and (V.12)
Eo By 6i(e)pi(x) = E1 Eo di(e) () ,

and therefore
EqE1$9 =E{ Eq Py . (V.13)

A similar reasoning for the inner expansion as for the outer expansion
leads us to the result
EoE1®1 =E1 Eg &y . (V.14)



Solutions of Problems

Chapter 2

2-1.
1. The exact solutions are

We obtain

2
W_q_S, 5 .
v SR

2
@ - _q1_S_& ...
X 8+

€
2
2. We examine the iterative process
Ty, =+/1—cxn_1.
Starting from zg = 1, we have
Tr1 = 1—¢.

Using a Taylor series expansion, we obtain

xlzl—%.

The next approximation is

2o = 175(172).

Using a Taylor series expansion, we have

1 g2 1 g2
m2:1+§ —€+E —=|—e+ =

i.e., to order £2
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Similarly, starting from x¢y = —1, we obtain
2
€ € €
o y Tl 5 T2 57 %
3. We set

x:x0+6x1+623§2+-~-.

This expression is substituted in the initial equation, by assuming that this
procedure is licit

(xo+exy +e2ao+ )2 +e(zo+eri+eaa+---)—1=0.

Expanding the squared term and equating the coefficients of like powers of
€, we obtain

5 —1=0,
2x0x1 + 29 =0,

x?+2x0x2+x120.

Starting from xg = 1, we have

1 1
zo=1, 331:—5, x2:§.
Starting from z¢p = —1, we have
o= —1, xlzfl, xngl.
2 8
4. We set,

x =x0+01(e)x1 + da(e)a + - .

This expression is substituted in the initial equation
(xo + 61(e)x1 + d2(e)zg + - - )2 +e(zg+01(e)x1 + d2(e)x2+---)—1=0.

To first order, we have 23 — 1 = 0. The next order is € or §; according to the
relative order of € with respect to d1. In order to have a significant result, we
must take 0; = € or, at least §; must be of the same order as ¢, i.e. §; must
behave like ¢ as € — 0; for the sake of simplicity, we take §; = e.

The next order is §; or £2. As previously, a significant result is obtained
only by taking d, = 2.

Therefore, we have a constructive method to define the expansion of the
roots of the equation.
2-2.
1. The exact solution is

v —1++1+4¢
2e
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The expansion writes
e =1—e422+... |
1
2@ = _Z 144+,
€
2. With ¢ = 1, the first process gives successively

t1=1—¢, 2zo=1—e+2%4---

1
With zy = ——, the second process gives
€
1 1
T=———1, mo=—=—14e+---.
€ €
3. We set

20 = 20 4 gy 20

This expression is replaced in the initial equation
((1)+€x§)+52mél)+~-~> (1)+5x()+52 M. _1=0.
Equating coefficients of like powers of ¢, we obtain

M —1=0,
EOSY
2;1;8”;1;51) + :l:gl) =0,

whence
e =1, 2V =21

) ml -
For the other root, we set
23 )
@ ==L +x( ) +€x§ )
€

This expression is substituted in the initial equation

x(2) 2 x(z) ,
e ZraP v+ ] + 2 v v+ —1=0.

Equating coefficients of like powers of €, we obtain
(@) +2% =0,
235(2)95(_? + x(2) —1=0,
(z (2)) + 227 (2) (2) (12) -0,

whence
@—_1, 2P =-1, 2P =1
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2-3.
1. The (complex) exact solution is

f _ aeikaj +ﬂe_i)‘$ )
We impose the boundary conditions at x = ¢ and x = 7. We find
nmw

a=—Fe B and A= ,
m™—£

where n is an integer, n > 1 since we assumed that A > 0.
Taking the real solution, the expansion with respect to ¢ yields

. n
f=A [Slnms—l—a—xcosms—sncosms} + e
™

and -
T

2. Substituting the proposed expansions for f and A in the initial equation,
we obtain
d2
dax?

>+ Ao =

and
d*p
da?
The boundary condition at x = 7 yields

eo(m) =0, ¢i(m)=0.

The boundary condition at x = ¢ yields

+ )\0 Y1 = 72)\0)\1()00 .

depo

©0 (0)4‘55(0)4‘5@1(0)4-'“:07
or - - dsoo
©0(0) =0, ©1(0) = e ——(0) .

We obtain the solution for ¢
po=Asinnz, Mg=mn,

where n is an integer n > 1; A is the arbitrary amplitude of the solution for
e=0.
Thelrefore7 the problem to solve for ¢ is

e 2 L 20 = —2n\Asinna , ¢1(0) = —nd, ¢i(r)=0.

We find n

o1 = Ksinnzx —nAcosnr + —A xcosnz ,
™
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and

Apparently, nothing enables us to determine constant K except if we assume
that the amplitude of the term in sinnz must be independent of &; then
K =0.
To order ¢, the solution is
= Asinnx +¢ [ancosnz + gA xcosnx] +oey

and

n

A=n4e—+---.

7r
We recover the expansion of the exact solution.
2-4.
1. Substituting the proposed expansion in equation A ¢ = 0, we obtain equa-
tions for 1y and

Dthg=0, Ayr=0.

Away from the body, the flow is uniform; this flow is characterized by
1) = Usy. Therefore, we have

r—oo: Yo =Uxrsinf and y; =0.
Along the body, we have 1) = 0, which gives
Yo [a(l — esin®0), 0] + ey [a(l — esin®0),0] +---=0.

The functions must be expanded in the neighbourhood of r» = a. We obtain

o(a,8) +e [%/11(@,0) —asin?0 (%) } 1. =0,
whence
Yo(a,0) =0 and (a,0) = asin®6 (%) )

It is deduced that the solution for g is the flow around a circular cylinder
2
Yo = U (r a_> sin@ .
r

Then, we obtain
1
Y1(a,0) = 2Uasin® 6 = 5 ~a(3sin6 — sin30) .

2. The general solution of equation A 1 = 0 with condition 1)y = 0 asr — oo
is > b,r " sinnf where n is an integer, n > 0. To satisfy the condition at
r = a, we taken =1 and n = 3 with b; = % woa? and bs = —% ~a*, whence

2 U 3
Y =Us (r—a—>sin9+5 (;oa (3gsin9—a—3sin39)+-~-
r r

r




338 Solutions of Problems

We have 1
P1(a,0) = 3 so@(3sin 6 — sin 360) .

3. The velocity modulus at any point of the field is

opN® 1 [ov\?
V= “””“V(E) *ﬁ(%) '

After calculation, by taking care of expanding the functions in the neighbour-
hood of r = a, at the body wall, we obtain to order ¢

V =Ux(2sinf 4 ¢sin30) .

2-5.
1. The dimensionless quantities are
r = — - — r=— u = V= =
a’y a’ a’ Uso’ Uy’ Usa’ Uso

The problem becomes

oy
oz Oy v

with the boundary conditions ¢y =0 at r =1 and v — y + %sy‘?’ as r — o0.

ou 0?
At upstream infinity, we have w = —— = oY = —2¢ey, and
dy dy?
L3
y=v-zey.

The first approximation, obtained with ¢ = 0, is y = 1. Iterating, we have
1
y=1v - §E¢3 +0(e%)°),
and 5
w= -2+ 5621/}3 +0(3Y°) .
2. Substituting the expansion

b=+ e+

in equation for 1), we obtain
A’(/J():O and A’(/J122’L/J0.

The condition ¢y =0 at r =1 yields ¢pg =0 at r=1and ¢y =0 at r = 1.
The condition ¢ — y + ey®/3 as r — oo yields

Yo — Yy as r— 00,
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and 1

%/11%53/3 as T — 00,
that is

Po — rsinf as r— o0,
and

3

14 . 4
wlﬂgr sin®f as r—oo.

The solution for 1y represents the flow around a circular cylinder plunged

in a uniform flow, i.e.
1\ .
Yo=|r——|siné,
r

Aw1:2<r—l>sin9.
r

whence the equation for

A particular solution of equation

AN =2rsiné

is 2r3sin® 0. A particular solution of equation

AN TS 2 sin
r
is —rInrsinf@. The condition ¥ — %1"3 sin®# as r — oo is satisfied by the
first particular solution. We add the solution Y b,r~"™sinf of the equation
without right hand side which respects the symmetry properties and which
gives 1 — 0 at infinity; in this equation, we take n = 1 and n = 3 in order
to satisfy the slip condition at the wall (¢ = 0). We obtain

1 1 1
P = 57’3 sin®f — riInrsinf — Z;sin@—l— 123 sin 36 ,

whence

Y= <r - 1) sin f+¢ [17’3 sin® @ — rlnrsinf — 11 sin 6 + il sin36|+--- .
r 3 4r 1273

As r — oo, we observe that 11 introduces a parasitic term in 7 Inr which

does not tend towards zero. This term is small compared to the term in

3 sin® @ but it increases faster than the term rsin @ coming from 1. In fact,

this term is at the origin of a singular problem. If the expansion is continued

as if it were a regular problem, it is not possible to find a solution to the next

order which behaves correctly at infinity.
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Chapter 3

3-1.
1. In the domain 0 < z < 1, yp = €*; in the domain 1 < x < 2, yg = 0.

X
2.20=1;0=&Yy=B[e " dt+C.
0
25
20
1.5
1.0

0.5

00 1 1 1 ]
0.0 05 1.0 15 20

Fig. S.1. Solution for € = 0.01

oo

?).e:—B/e_s2 ds+C;0=RB /es ds+C;Yy=e
0

X
1
=l
V3
0

1
2

X
42
0

Si-

See the plot of the solution in Fig. S.1.

l\.’)lr—l

4. In domain 0 < o < 1, yapp = €” e(

X
1 1

In domain 1 < 2 <2, yapp =€ 5~ /

0
3-2.
1. Outside of any boundary layer, the solution is

C

yo(x) = 1+az’

solution of equation

dyo
1 — =0.
(1+ ax) qr o

2. For a > —1, we have 1 + ax > 0. A boundary layer exists in the neigh-
bourhood of = 0 whose thickness is € because (1 + ax)|,—o > 0. If we set

X = /e, the equation for Yj is

a2Y, LG
dxz T ax

207
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whose solution satisfying condition Y;(0) =1 is
Yo(X) == 1+A—Ae_X .

Moreover, yo(1) = 1 implies C' = 1+ «. The matching condition gives A = .
Finally, we have

1+«
1+az’

Yo(x) =

Yo(X)=14+a—ae ™™,

1+« _x
—ae
1+ ax

Yapp =

3. There are two boundary layers, one at « = 0 with X = z/e and the
other one at © = 1 with X* = (1 — x)/e. Indeed, for 2 < —1/«a, we have
1+ ax > 0 whereas for x > —1/a, we have 1 + ar < 0. As yo(z) = 0
for + = —1/a, yo(x) = 0; we also have Yp(X) = 1+ A — Ae X whereas
Yy (X*) =14 B — Be+X" is solution of

a2yy
dXx*2

vy

=0.
dX*

—(1+a)

The asymptotic matching gives A = —1 and B = —1, whence

Yapp = e X + ellHe)X™

3-3. Taking into account the boundary conditions, the exact solution is

X
/ et dt
e —1/(2¢) _ 0
y=e 14 (e 1) E
/ et dt
0

The expansion as € — 0, x being kept fixed, in domain 0 < x < 1 yields

2 51/2

y:ﬁl—m—'_

This expansion exhibits a singularity at * = 0 and another singularity at
x = 1 since the boundary conditions are not satisfied at these points.

To establish the change of variable in the neighbourhood of z = 0 from
the initial equation, we set
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We obtain
ed?y 1-6X dy
02 dx? 6 dX
To restore the boundary layer, the second derivative term must be kept. Then,
we compare this term to the other two. The solution § = €!/2 is not valid
because there would be only one dominant term which is the first derivative
term. We must take § = ¢.
To establish the change of variable in the neighbourhood of z = 1 from
the initial equation, we set

y=0.

1—=x
X =
4(e)
We obtain
€ d2y B dy o
2dxz “ax YT

The choice § = /2 is appropriate. We note that the initial equation does not
simplify for the study of the boundary layer in the neighbourhood of x = 1.

Chapter 4

4-1.
1
1>——>=¢e"> —clne>c¢.
Ine

4-2.1) p = 0o(1) ; ii) ¢ = Og(e) ; iii) ¢ = o(1) .

4-3.

1. e = 14 O(e): this approximation is uniformly valid in domain 0 < z < 1,
even for x = 0 since then e** = 1.

2. n = O(1): this approximation is not uniformly valid in domain
T+e
0<z < 1 since for = 0, the function is 1/ which is not O(1).

3. e=%/¢ = o(e") for any n > 0: this approximation is not uniformly valid in
domain 0 < z < 1 since for z = 0 we have e=%/¢ = 1 which is not o(e™) for
any n > 0.

4-4. The straightforward expansion of ¢ writes

2
20 -1 2z -1
gp:l—sx +52<x ) +eee

1—=x 1—2x

This is not an asymptotic expansion in the domain 0 < A;e <1 —a < Age
where A; and As are constants independent of «.
We can write

1 1 1
1+ —2 1+

1—z

¥ = 2z )

14 =

1—x

_£
-2z 1 —
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whence the expansion

2
B 1 14 2e n 2e n
H (R

x 1—z

This is an asymptotic expansion in the whole domain 0 < x < 1; this is
a generalized expansion.
4-5. A first integration gives

—x oo —t
B =2 —/ Car.

T t2

Repeating integrations by parts, we obtain finally

e " 1 2 n! o et
Ei(z) = l— =4+ =+ 4+ (=1)"— | +(-1)! 1)! ——dt.
R L0 RATRACR . | FYGE VG CRTEY (-
We have
et . [
/:Et”+2dt<e /m —tn+2dt7
or
Ooeft efm
dt .
/z tnt2 <(n+1)m”+1
Therefore, we have
e " 1 2 4, (n—=1)! 1
= 1 24 = ()2 -
Bilo) = 1= 14 e ol o)

Thus, an asymptotic expansion for large = has been formed.
We set

—t

R (2) = (1)%!/:0 ot
The expression of R, (z) tells us that
|Ry(z)| — o0 as n — oo with = being kept fixed,
and, from the previous calculations, with n being kept fixed, we have
|R,(z)] > 0asz— 0.

The series is divergent since the ratio, in absolute value, of two successive
terms is n/x so that the convergence radius is
1 1
— = lim —=0.
€T n—oo N
Table S.1 and Fig. S.2 give the so-obtained approximation for z = 3
according to the number of terms of the expansion.
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6

5 I expansion

1 Illlnl
1234567\i910

Fig. S.2. Approximation of the function z e” E1(x) for z = 3

Table S.1. Approximation of function ze” Ei(x) for x =3

n 1 2 3 4 5

Expansion 1. 0.66667 0.88889 0.66667 0.96296

n 6 7 8 9 10

Expansion 0.46914 1.4568 —0.84774 5.2977 —13.138

4-6. The change of variable X = z/§ gives the equation
e?X?+6X —-1=0.

1.0 < 1: impossible because the equation would be —1 = 0.
2.6 = 1. The equation becomes X — 1 = 0. The regular root is found.
3.1 < § < e~ '. The equation reduces to X = 0. This solution is not valid.
4.5 = ¢!, The equation reduces to X? = 0. This solution is not valid.
5.6 = £~ !. The equation becomes X2 + X = 0. The root X = —1 is
significant.
We choose the expansion in the form

1
x:—g—i—xl—l—mgs—f—-n .

Substituting this expansion in the initial equation gives

2
1 1
E(—g—l—l’l—l—l'g&-i-'-') —g+3§1+.’)§26+-~-—1=0.
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To order 1, the equation writes
—r1—1=0.
We deduce x1 = —1. To order ¢, the equation becomes
1—2,=0.

We deduce x5 = 1. This result can be checked with the exact solution.
4-7. We have
fle@E)=exp (e +2+¢€%)

whence 1
flz(e)] = exp (e77) ¢ (1 +e2+ 554 +. > .
If we keep only z = 1/¢, we obtain
f=exp (572) ;

which is not the dominant term of the expansion of f[z(g)]. A great care
must be taken when calculating expansions embedded one in each other.

Chapter 5
5-1.
1. If
y(z,e) =y(z) + -,

we have

A xT

yi(x) =—e ",
X

and the solution is singular at origin.
The change of variable X = z:/¢ gives the equation

dY

with
Y(X,e) =y(x,e) .

If
V(X,e) =Y1(X)+---,

with the boundary condition ¥ =1 at X = 0, we have
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Now, to order 1, we have
EoE1 Y1 =0,

whereas to order e, we have
€
EoE1 Yy =—.
x
This lets us suppose that the outer expansion is such that

y(x,e) = eya(x) + - -

If we set
Y(X,e) =Yi(X) +eYo(X) + -,
we find ¥
Yo(X)= ———
2(X) T x°

where it has been assumed that Y2(0) = 0.
Finally, to order €, we have

B
Foy=e—e™™,

T

1 eX
Eiy= —— — .
WX T 14X

The application of the MVDP enables us to find
B=1,
and, to this order, the UVA is

€ Jr1Jre5
1+X°

2. SCEM leads us to seek a first approximation in the form

A —x
yalzge +Y1(X75)7

whence the equation

dY; eA _,
Layalz(l—l—X)d—Xl—i—(l—i-a)Yl +eXYi - —ge

The last term being formally of order e ! in the boundary layer, it is appro-
priate to set A = €Ay in order to solve the equation

dY; Ao

1+ X)—2 4V, =2
I+XNx =%
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and we have

Ay , _
L. yar = (14 X)Y; — X—g (=X —1) .

The solution is given by

€A0 |:em 9 :|+ C()

Yal = o te 1+ X

To satisfy the condition at origin, we set
Co — €A0 =1 s
which clearly leads us to take A = 0 and to solve the complete equation.

Obviously, this is only a pedagogical example leading us to the exact solution

€
xr+¢€

—x

e

y:

It is checked that

whereas

lim y=—— .
o YT Ty

X fixed

Note 5.1. If we use the change of variable T = ez, the initial equation becomes

d
5(i+82)d—g+5(1+8)y+a—cy20.
With the boundary condition y(0) = 1, the solution is

2
3 —T/e

— €
T+ &2

Yy =

With MMAE, three layers appear. In the outer layer, the appropriate variable is
Z; in fact, in this zone, the solution is simply ¥ = 0 to any order €" due to the
term e~®/¢ which appears in the exact solution. In the neighbourhood of the origin,
two boundary layers form. For one of them (the middle layer), the appropriate
variable is Z = T /e and for the other one (the inner layer), the appropriate variable
is # = Z/e%. In the middle layer, the initial equation becomes
- dy U
Z+e)—=+1+e)g+25=0,
dz

with §(0) = 1. The problem reduces to the problem studied previously and it is
seen that SCEM enables us to reduce the study of the two layers to the study of
only one layer.

Even if the example is artificial, the advantge of SCEM is clearly demonstrated.
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5-2. With the variable 7, the outer expansion writes
2—a 1+1In
b = 1 T = —1;] .
ne o (ng)
With the variable 7, the inner expansion writes
1 1 14+1Inn
— _ 4+
{ aln %

1
= 1 = 1
Inn+alnZ+1 aln%(lJrL-&iLng) aln 2

Comparing the two expressions shows that with the chosen scales £, it is

not possible to satisfy the rule of intermediate matching.

1
n=xln- = Xeln—,
€ €

(15 =
With the scale 1/ [In(1/¢)], the rule of intermediate matching is satisfied

With
the outer expansion becomes
SRR I NN ES YO
ne (In2) s (ng)
and the inner expansion becomes
1 B 1 _ 1 [ 14 lnn}
ln[g_lg_%]_’_l_lnn—l—ln%—lnln%—f—l_ln% ln%

5-3.
1. With the variable 7, the outer expansion writes

By 1
fﬁzl—f—ln—l [—lnn—(a—l)lng—v}
Bs [ 1 B? 1
+—— lnn(al)ln—’y]Jr —(a—1)ln—-|+---
(ln 1)’ c (n 1)’ g

or
d=1- (a— 1)31
[~Bilnn— B — (a = 1)By — (a = 1)Bf] + - --

+_
Ind
13

With the variable 7, the inner expansion writes
[A1lnn 4+ o] + - .

1

P =aA
@ 1—'—ln%
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Comparing the two expressions yields

OéAl :1—(a—1)Bl,
Ailnn+ady = —Bilnn — By — (a — 1)By — (o — 1)B? .
In order to satisfy the two equalities for any « such that 0 < o < 1, we have
Ay=1, Bi=-1, Ay=v, By=—-—y—-1.

ESVEN @ = A,
EVENS =1.

The rule is satisfied since A; = 1.

Inx
EVEV S =4+ A —7
lng
InX
= A —_—,
! Ini
In X
EVEP @ =1+ B — B~
lng
The rule is not satisfied.
5-4. To order 1, we have
EO Yy = el—w )
El EO y=e€,
Eiy = Ag(l—e%),
EO E1 Yy = AO .

We have Ay = e.
To order ¢, we have

Boy = o' [ +e(1— )] ,

Eoy =ee X [1+¢(1 -eX)],
EiEpy=e(l—cX +¢),
EiEoy=e(l—xz+¢),

and
Eiy=e(l—e ™) +c[(41—eX)— (4 +eX)e ¥],

—e(1—e2/" —e Lyeule
E1y e(l e )—l—a[(Al eg) (Al—l—eg)e } ,
EoEly:efe:v+sA1.
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We obtain A; = e.

Therefore, the outer and inner expansions write
y=e"""[14(1—x)]+0(?),
y = e(lfe*X) +ee[(1-X)— (1+X)e*X] +0(e?) .
The UVA is obtained by forming a composite approximation

Ya=Eoy +E1y —EoEvy,
Ya=e"T—e X qe[l-z)e T -1+ X)e! Y] .

5-5.
1. If 7 denotes time, we have
d2r
Mg = =Fr+Fp,
where m is the mass of the spaceship and we have
mMr mMrp,
Fr=-G , Fr=G——,
r r2 o (d—r)?
or )
d=r 1 1
— =—-GMr— +GMp,——
dr? 2 + L(d—r)2
With ¢ = 7/T, we obtain
d?z 1—¢ €
- = 4 =
de? x? (1—2)

The radius of the Earth is taken as zero which introduces an apparent sin-
gularity at « = 0.

2.
dt _ 3
dz 201
z 1+ eq=—
2
to(z) = £x3/2 ,
3
2

We have t(0) = 0, ¢1(0) = 0.

3.
To=A,
a1 [ X
X
1
1= - sV + \/_ n[VX+VITX]+B
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Using operators to order ¢, we have

V2 <X 5 In?2 1 1 )

E1Egt = — +¢ +——-——=+—=lne+—InX |,

1o 3 V2 3V2 V2 2v2 2/2
11—=x 1 In2 1

BoBit=A+e|-———" 4+ 2 " Ine

0 ( N W2 V2 22

+2lﬁln(1—m)+3>7
13 2In2 1
P=6va v taate
tapp_gx3/2+%{X\/W+ln[\/f+\/l+—X}
+§m3/2+\/§+%—1n2—1n(1+\/5)—&-%lna}.

4. folz) = gmw.

The remainder L.(t,1) is O(¢) in domain 0 < A7 < 2z < Ay < 1 but L. (ta1)
is O(1) in domain 0 < By < X < Bs.

fl_\/_§x3/2+\/§Ll 1+\/§

3 02 1z’
X 1 1
F1=7§—7§ X(1+X)+Eln[\/f+\/1+)(]
_LIHX_"_L_IH_Q
22 2v2 V2

In its regular form, SCEM yields an approximation identical to the composite
form deduced from MMAE.

The remainder L. (t,2) is O(¢?) in domain 0 < A; < 2 < Ay < 1 but L. (ta2)
is O(g) in domain 0 < B; < X < Bs.

5.

dt 5

dv /1oy =’

dyp _ [z (1-o)'2

de V21 —xz+e)t/2”’
dy _ [fr (-2

de V21 —xz+e)3/2°

6. Numerical results are given in Table S.2.
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Table S.2. Numerical results

€ numerical solution MMAE generalized SCEM

0.01 0.4602 0.4606 0.4602
0.1 0.4249 0.4452 0.4209
0.5 0.3927 0.6248 0.3481

5-6.

1. Substituting the outer expansion in the initial equation, we obtain
d2w0
— 2= _p(2),
o2 = P@)

whence the solution

x 3
wy = By +A0£L'—/ (/ p(>\) d)\) d¢ .
0 0

In fact, the integral represents a double integral. Integrating first with
respect to &, we have

/OI (/jp(A)dA) d§=/:p(A) (/j df) d)\:/oxp()\)(x_)\)cp\_

In the neighbourhood of x = 0, using a Taylor series expansion, we obtain

2

3
wo = wo(0) + zw)(0) + %w”(O) + Zw”(0) + O(z*) .

3!
We have
dwo
0)=B —(0)=A

wO( ) 0 dz ( ) 0

d2w0 d3w0 ’
2 (0 ==p(0), —=(0) = —p'(0) ,

whence
z? / a’ 4
wo(x) = By +A0x—p(0)? —p (0); +0(z%) as x—0.

In the same way, as x — 1, we obtain

wo(x) = By + Ag — /Olp(A)(l —A)dx+ [Ao - /Olp()\) d)\] (x—1)

(z—1) (z—1)°

e e CRTIL
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2. Substituting the inner expansion in the initial equation, we obtain

epo AWy ey AW po AWy g d2W

il s = A Xép'
5 axt T axs e axe & axe PO+ X o)+

In order to keep the order 4 derivative, we must take
§=el?.
With po = /2, the equation for Wy is

d*w, 2w,

Xt oaxe O

The general solution of the equation is obtained from

d?W,
Tz~ Wo=—CoX +Do.
We have
e X eX e X eX
= —_— Sl — ).
Wo Co(X-l— 5 2)+D0< + 5 +2>

The presence of a term in eX makes impossible the matching with the outer
expansion. We conclude that Cy = Dy and the solution for Wy becomes

Wy = Co(X + e X —1) .
3. With the expansion operators to order £'/2, we have

EiEqw = By +A081/2X +51/2w1(0) R
Eo E1 w = 0081/2X — 0081/2 5

whence

BOZO 3 A():Co ] wl(O):—Co.

Therefore, we have
wp = Cox f/ p(A)(x — A) dX.
0

With v, = &'/2, the initial equation becomes

=p(x) .

d4w0 61/2 d4w1 _ d2w0 1/2 d2w1
dxt dxt dx? dx?
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The equation for w; is
d2w1 o
dz?
The solution is
wy = B+ Ai1x .

With w;(0) = —Cy we have By = —Cj. The solution becomes
wy =—Co+ A1z .

4. The boundary layer in the neighbourhood of x = 1 is similar to the bound-
ary layer developing in the neighbourhood of = 0. Repeating the same
operations, we find that 67 = ¢/2 and

z—1

+
X' = el/2 7

with X+ <0.
We must take uf = £1/2 and the equation for Wit is

dwyt Py
dx+*  dx+?

The solution has the form

—-XxTt x+ -x* X+
W0+200+<X++e —e—>+D3<—1+e +e—>.

2 2 2 2

The matching with the outer expansion is impossible with a term in e~ "

since Xt < 0. Therefore, we must have CS‘ = —Dg‘ , whence
Wi =Cf (Xt +1-e¥7)
Using operators Eg and Ef to order £!/2, we have

1 1
Ef Eqw = Cy —/ p(N) (1 —A)dX + [Co —/ p(\) dx} et/2x+
0 0

+€1/2(A1 — C()) R
EoEf w = eV/2CF + Y205 X+ .

We obtain

Co=-MD  cf=-MO Ay =-MO_pD



Solutions of Problems 355

In summary, we have the following approximations
e in the neighbourhood of z =0

w=—/2M™) (X —14+e ) +o(e'/?)

e outer expansion
w=—-MVg— / (z = AN)p(\) dA+¢'/2 [MU) — (MO + M(l))x] +o(e'/?)
0

e in the neighbourhood of x =1

w = —e*/2M©) <X+ +1-— eX+> +o(e1/?) .

Chapter 6

6-1.
1. Substituting the outer expansion in the initial equation, we obtain the
equations for y; and yo

dyr

=1 =0

dz + Y1 )

dyg d2y1
dx 2= da? -

With the boundary condition y(1) = b, we obtain the boundary conditions
for y; and ys
ya(1)
y2(1)

)

b
0.

Thus, we have
Y = bel—a: )
Yo = b(1 —z)e' ™ .

With the change of variable X = z/e, and setting Y (X, ¢) = y(z,¢) the
initial equation becomes
d?y 4y
—+—+eY =0.
ez tax e
Substituting the inner expansion in this equation, we obtain the equations
for Y7 and Y5

e A
dx2 dx
a2y, dYv

2 2 _ —y; .

axz Tax
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Since the inner expansion describes the inner region, we can apply only the
boundary condition y(0) = a. Then, the boundary conditions for Y7 and Y5
are

Yl(O) =a,
¥2(0) =0,

whence the solutions

Yi=a+A1—e %),
Yo=B(l—e X))~ (a+A)X - AXe ¥ .

Constants A and B are obtained by applying the MVDP. To order 1, we have

ElEoy:be7
EOEly:a+A7
whence
A+a=be.

To order €, we have

E1Eoy =be+e(—beX +be)
EoEiy =be+e(B—-beX).

We obtain
B =be .

The composite approximations are obtained from

Ya=Eoy +E1y—EoE1y,

that is
Ya1 = bel " +(a —be)e X |
Yar = be! "% +(a —be)e ¥
+e bl —2)e! " —bee X +(a—be)X e X] .
2. We have

LE Yal = (CL — be) efm/E +€b elfm 7
Le Yao = (a — be)ze /¢ —cbee ™/ (3 — x)e%be! ™* .

In domain 0 < z < 1, we have

Le yar = 0(1) ,
Le ya2 = O(E) s
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whereas in domain 0 < Ayg < z < 1, we have

L. Ya1 = 0(5) 5
LE Ya2 = 0(52) .

Complement. In bounded domains, it can be shown that if, in the domain of
definition D of function y, we have

Leya = O(e) ,
then
y—ya=0().

In other words, y, is an approximation of y to order O(g).
Now, in domain D, we have

LE Ya2 — O(E) .
Therefore, we are certain that there exists a constant K such that
|y — ya2| < Ke .

On the other hand, we can write

Y—Yal =Y — Ya2 + Ya2 — Yal -

As we have
Yaz — Ya1 = O(e) ,

it is clear that there exists a constant K; such that
|y — Yar| < Kie .

Therefore, we have demonstrated that ya1 is an approximation to order O(e).
In fact, with more sophisticated estimates, it can be shown directly that if, in
domain 0 < Ap < x < 1, we have

Leya = O(e) ,

then
y—ya=0(e).
This shows that ya1 is an approximation to order O(g) although L. ya1 = O(1) in
the whole domain D. In fact, here, the exact solution is available and we know that
Ya1 and ya2 are indeed approximations to the considered orders.
This is a much more complex chapter of the asymptotic analysis for singular
perturbation problems, namely the justification of the matching principle.

d
6-2. The coeflicient of d—y being positive, the boundary layer is in the neigh-
x
bourhood of z = 0.
The reduced equation is
dyo

—_— =0.
1z + %o
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With yo(1) = 1, the solution is

We seek a UVA in the form

x
Ya1 = Yo + Yo (X, €) , XZE'

We are led to take § = €. The initial equation becomes

d2y0 1 d2Y0 l dYQ

- —+Y;=0.
@ Tzaxz Toax T
d?yp . . . .
Term ¢ 5 1S of order ¢ in domain 0 < A; < X < Aj so that the equation
T
for Yy is
vy Ao
dx?2 " dx
The solution is
Yo=a+3e X .

The boundary conditions yield « = 0 and 3 = 0.

Therefore we have

Yal = elfm

The next approximation is
y =vo+vyi(x,e).

The initial equation becomes

*vo A’y dy
122 +ev 2 +V§+Vy1 =0.

3

We take v = € and the eqution for y; becomes

dyi Py
az N daz? -

With y1(1) = 0, the solution is

y=(1—xz)et=®)
We seek a UVA in the form
y=yo(x) +eyn(z) +e¥i(X,e).
The initial equation becomes

%y, d*Yh  dy;

2

S S v =o0.
T taxe tax ten
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d2
Term &2 1 y; is of order €2 in domain 0 < A; < X < Ay. The equation
x
for Y7 is
@A
dXx? dx

The solution is
Vi =A+Be X .

The boundary conditions are such that
xr=0: yn1+Y1=0; x=1: y1+Y1=0.
We obtain .y
—1/e
_ et e
1—ele 1—e Ve

A

whence the solution

el—1/e _ gl—X

11—z 1—x
y=e +e|(l—2x)e JFW

With the regular form of SCEM, the solution is
y=e"T4e[1l-z)e' " - ele] .

6-3. To determine the variables appropriate to the boundary layers, we set
& = X/61(e) and ¢ = (1 — x)/d2(e). With these changes of variables, we
compare the order of magnitude of different terms in the equation. It is easily
shown that the changes of variables enabling us to describe the boundary
layers are )
x —x
X = P ¢= ISR

The reduced equation is

dyo
1—2)-2Z —ys=0.
( 35) dz Yo

The solution is .

1oz
The solution is complemented in the form

y = yo(x) + Zo(C) -

The initial equation becomes

Yo

d2y0 d220 dZO
%0 g =0,
Tz Tae  Cta¢ X
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Now, we have
d2y0 1 20

vl

—1/2

We conclude that b = 0, otherwise this term of order ¢ remains alone in

the equation. Therefore, we obtain

2z CdZO -
dac2 ac

It is checked that the solution has the form
vz
A+ B / et dt| .
0

At x =1, the condition y = 1 implies A = 1.
We seek a UVA in the form

Ya = ZO(C) + YO(E) .
Substituting in the initial equation, it is shown that the equation for Yj is

42y, dv;
42 =0,
agz " ag

Zo=0.

ZO = 642/2

whence the solution
Yo=a+pfe " .
This function must satisfy the boundary condition at z = 0, i.e. £ = 0.
Therefore, we have
a+p=1.
Since the condition y(0) = 1 is satisfied by Yp, the contribution of Z;
vanishes at z = 0. This condition must be applied at ¢ = 1/¢'/2. In its regular

form, SCEM demands that this limit is imposed as { — oo. Therefore, we
obtain

A+B/ e dt=0,
0
or, with A =1,
B=——.
VZ3
In the same way, since the condition y(1) = 1 is satisfied by Zj, the

contribution of Y{ vanishes at x = 1. This condition must be applied at
& =1/e, i.e. with the regular form of SCEM as £ — oo, whence

a=0,

and, with o + 3 = 1, we have § = 1.
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Finally, the solution is

¢/V2
— ¢ <2/2l _ 2 —t*
Yo =€ > e 1 e dt| .
Rl

6-4. The equation for py is obtained by setting e = 0

d(poh)
dx

By taking into account the condition at x = 0, the solution is

ho
W

To determine the boundary layer variable, we set X = (1 —x)/d(¢). With
this change of variable, it is easily shown that the boundary layer is restored
by taking § = e. The equation for Py(X) is obtained by expanding h(z) and
po(x) in the neighbourhood of =1 in order to have Py = Py(X). Thus, we
have

Po =

h(z) = h(1 —eX) = h(1) — eX (%)z_l+-.._1gx <%)z_l+... ,

ho dh
= — = 1 —_— DY .
meg=toleox () o]

Moreover, we have

and

AR, 1dR

Az edX
In the initial equation, we substitute po(z) + Po(X) for p. After examining
the order of magnitude of all the terms in domain 0 < 4; < X < A where

A; and Aj are constants independent of £, we obtain

d dp,
— | (h Py)— + FPy| =0
X (ho + O)dX+ 0 )

whence

—X:(h0+01)1H|P0—01|+P0+02.

The boundary conditions are applied. Taking into account py, at * = 1 or
X =0 we must have
Py(0)=1—ho .

The condition at = 0 becomes a condition at X = 1/e. With the regular
form of SCEM, the condition must be prescribed as X — oo; we have

X —00: F=0,
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which gives C7 = 0 and we obtain

| Pol
—X =hyl FPo—1+hg.
oln 7= ho| + 1o + ho
6-5.
1. The velocity components are

8@1 8@1 8&[’1 8@152 8&[’2
=1 PR T 24 "2
. “ax*asﬁasﬁg[asﬁasz} ’
v — 8<p1 8{151 8!?1 c |:8¢2 8%}

oy "oy oy oy oy
2. The slip condition at the wall writes
v=+eT'(x)u

and must be expressed at y = +eT'(x). Thus, using the appropriate Taylor
series expansions as € — 0, the slip condition along the upper surface becomes

a‘pl /
3y - (2,0+) = f+g,
1 0P, 0P,
—_251 [1 95, (Sl,\/ZSl)_ =5y —(51,v251) ,

1 0 0P ) 0P
[%(1+70+) + a—;(sh \/251)_ = 8Y2 (S1,v251) ,

1 8!?1 ] a!pl
—— |1 So, v/ —2S55)| = —=(55,1/—285
\/2_52[+8S(2’ 2)_ (S2, 2)

1 8@1 8% | a!pz
1_ \/ — = —= s
VS, [ 9 U= 04) F 5, (52 V=250) | = G (82, v =250)

with
S1>0, S2<0.

0 0
The notation %(71+,0+) means that the derivative % is evaluated on
x

the upper surface (y = 04) as x — —1 with 2 > —1. Similarly, the notation

(1_,04) means that the derivative P21 s evaluated on the upper surface

or o
(y=04) as z — 1 with z < 1.

3. Each potential 1, @1, @2, U1, ¥y satisfies the potential equation
Acple, Adil:O, A@QZO, A%:O, AWQ:O

The solution for the potential ¢ is given by the thin airfoil theory, but
this potential does not correspond to the flow around an ellipse because the
terms —f and g have been added. These terms enable us to eliminate the
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singularities introduced by the thin airfoil theory at the leading edge and at
the trailing edge.

The last four relations describing the slip condition give the flow around
a parabola whose equation is Y = 1/25] or Y = /=255.

From relation

1 3@1 3@1
1+ —(51,V251)| = == (51,25
\/E + 881 ( 1 1) oY ( 1 1) )

the potential &1 + S; corresponds to the flow around a parabola of equation
Y = /251. Then, the velocity components u and v on the parabola Y = /257
corresponding to potential ¢, are

o e? B 21+ x)
o e242(1+2)

)

T2 o(lta)

The velocity components u and v on the parabola Y = /—255 corre-
sponding to potential ¥; are

2 2(1 —
I (I—z)

24200 —a)” 7652—&-2(1—37) )

In equation

1 (9(,01 (9@2 (9@2
— (-1 — V2 = — V2
V25, {395 (=14,04) + 05, (S, Sl)] gy (v V25,

0
taking into account the solution for ¢, we have %(—1+, 04)=1.
i

Similarly, in equation

1 (9(,01 (9‘1’2 o (9‘1’2
{%(1—70@ + 3—52(527 V —252)} = oy (82, —282),

/=25,

0
we have %(1_70_5_) =1
r
Therefore, the solution for @, is identical to the solution for @;. In the
same way, the solution for ¥ is identical to the solution for ¥;.
The velocity components v and v on the parabola Y = /257 correspond-
ing to potential @, are

o g2 . 2(1+ x)
o242+ Te242(4a)
The velocity components u and v on the parabola Y = /—255 corre-
sponding to potential ¥, are
g2 2(1 —x)

:752—1—2(1—37) ’ U_7€52+2(1—x) '
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Finally, the velocity components on the ellipse and the resulting velocity
are

g2 e?
u=(1+¢) {1_g2+2(1+x)_62+2(1—$)} ’
v=e|-— — . + <

N Vi—z2 2@ +1) /2(1-2)
2(1+ ) 2(1 — =)
+€(1+€) 52—|—2(1—|—£L’) 52+2(1—$)] 3

g=vu+ov2.

Figure S.3 compares the exact solution with the regular SCEM approx-
imation. We note that the SCEM approximation does not give exactly zero
velocity at the stagnation point because the expansions are regular and the
boundary conditions are not applied exactly.

6-6. First, we have p; = ¢ and, as € — 0, we have

Y1 =1 (X) -1+ EST,

where ¢ (z) and ¥ (X) are the functions appearing in MMAE expansions.
On the other hand, in variable X, as ¢ — 0, we have
d2p, 1 2 10
gf—X75/4 “ 3/5X71/2 - 6/5X1/4 cee
€ a2 1 + 36 + 9 € +

Expansion of 1),. A regular expansion of 1), to order £2/° is given by
Py = Fi(X) + 25 (fi(z) + Fa(X)) +0(e¥7) (S.1)

where F|, f; and F; satisfy the following equations

d2Fy dF, 1
x4l _ 14 ix5/4
axz T X oty ’
aadh o der 15,
dx dz?2 4 ’
d?Fy dF,
X2 — 0.
axez © ax

The boundary conditions for F 1, f1 and F, are obtained by determining the
outer and inner expansions of 5. From (S.1), we have

Eo¢2 = Eo By +&%/5(fi + Eo ) .

Now, it can be shown that

_ 1
F1§01—§X71/2+~-~ as X — o0,
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Fig. S.3. Velocity modulus on the ellipse
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whence to order £2/°
EoF =Cy — %52/53371/2 .
On the other hand, to order 1, we have
EoFo =0y .
We obtain
Eo ¢ = Oy +£%/° <f1 - %x—lﬂ + 02> :

The function f; is known to within an additive constant and, without chang-
ing the final result, we can take fi(1) = 0. Then, to satisfy the boundary
condition ¥9 = 0 at x = 1 we have

The inner expansion of )y is

Ei ¢ = Fy(X) + 25 (f1(0) + Fa(X))

since the behaviour of f; as ¢ — 0 is
- - 8
fi=f1(0) - 5391/4 :

where constant f1(0) = 4.4221 is obtained from the numerical solution of the
equation for f;. The boundary condition 15(0) = 0 is satisfied by taking

Fi(0)=0, fi(0)+ F(0)=0.
Expansion of @3. A regular expansion of @3 to order 1 is
@3 = gi(x) + G1(X) +o(1), (5.2)
where g, and G satisfy the equations

dg: _ — 1 _ 1
14991~ 7z Lt a2 1
s T h 5% +5
dGy
— =0.
dXx
Function G is constant B
G =0C;s.
The outer and inner expansions of @3 to order 1 are
Eo @3 = g1(v) + C3 ,
E1 ¢35 =31(0) + C5 .
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In order to satisfy the condition ¢3(1) = 0 and taking g;(1) = 0, we have
C3=0.
Expansion of 1)3. A regular expansion of ¥3 to order 1 is
W3 = Hi(X)+o(1), (S.3)
where H;(X) satisfies the equation

CHy i

dxz x 0

The solution is

Hl(X) = C4G5/4(X) +C5 .
The inner and outer expansions of W3 are
Eo W3 = C4G5)4(00) + Cs
E,¥; = C4G5/4(X) +C5 .
In order to satisfy the boundary conditions on ¥3, we have
O4G5/4(OO) + 05 =0
Cs=—-q1 (0) .
The boundary conditions on H; are
H,(0) = —3:(0)
H —0 as X — 0.

Identification with MMAE results. The results obtained above show
that a regular expansion of @,3, uniformly valid to order ¢ is

Poz =1 + 01 — L+ F +e(fi + 51 + Fo + Hi) +o(e) .

We define the following functions

_ 4
Fy(X)=F + §)(3/4 :
_ 1 1
fo(2) = fi+g1 — 5«’571/2 + 3
Fg(X) = FQ + Ir]l + fl(O) +§1(0) .
From the equations for F, fl, g1 and H, we deduce
d?F. dF:
2 X1/4 2 — ,(/}1 ,

axz dX
1/4df2 o= APy
daz? ’
d*Fy X1/4%
dXx? dX

207
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with the boundary conditions

F3(0) =0,

Fy = §X3/4— %X*W as X — 00,
f2(1) =0,
F3(0) =0,

3 —>f1(0)+§1(0)+% as X — 0.

Then, the following identifications hold

¢2:F27
()02:.}02’
Y3 = Fj .

With the expression of @9, we obtain

J1(0) +g1(0) =4.

Finally, a regular expansion of @, uniformly valid to order ¢ is

4 1 9
D= +1p — 145 <w2 - §X3/4) +e <<p2 + 53:*1/2 -5 +¢3> +o(e) .
This result is ezactly the composite expansion (6.16) obtained with MMAE.
It is concluded that SCEM results contain MMAE results.
6-7. First, we have p; = ¢ and, as € — 0, we obtain

Y1 =1 (X) -1+ EST,

where o1 () and 4 (X) are the functions appearing in MMAE.
Expansion of 5. Equation (6.34) for v is
Chy | apdve Lo

dx? X~ @ Y

The boundary conditions are
7/_}2(076) =0 ) 1[’2(673/476) =0.

It can be shown that

Uy = F1(X) —ePIneFy(X) +e?(Fy(X) + fi(z)) + - . (S.4)
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From the equation for 13, we obtain the following equations

- _
d°Fy X1/3@:1X*4/3+¢1,17

dXx? dx 3
%ﬁi;ww%gzo,
(3;(122 Xl/gi_l):i? _ _%X—ws 7
m1/3% _ d;:;l _ %x—4/3 + %m—z/s .

The boundary conditions are deduced from the boundary conditions on o
and from the calculation of Eg 9 and of E; 5. We obtain

0
0
0
1

=

|
:”‘w*

F5(0) +

N N N
OOOO

(
(
(
fi(

In fact, the condition f;(1) = 0 is chosen arbitrarily. Any other constant gives
the same final result. Here, the condition fi(1) = 0 is chosen for convenience.

Calculating Eq ¥ and applying the condition 13 = 0 at 2 = 1, we obtain
as X — oo

le*2/3

ol
0

[:11\
[

1
— 5 X+ SXY3

The solution for Fy is
e §G4/3(X)

*

~ 8Gys(00)

In addition, we have the identification
5 L 323
Yo =F1+ X7

Indeed, it is easy to check that the functions ¢o and Fy + 2X2/3 satisfy the
same equation and that the boundary conditions are identical. We note that
the boundary conditions on 1) result from the boundary conditions on 1)y
and not from the use of any matching principle.
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Expansion of ¢3. Equation (6.36) for @3 is

da o
I1/3ﬁ*@3:€ V24, ,

dx
with
@3(1,5) = 0 .
It can be shown that
3 _
@3:f§ln€+G1(X)+§1(x)+~~ . (S.5)

The equations for G and g1 are

dg 1 2
x1/3£7§1 =—lnhe+ -+ f1,
T 2

where the equation for g; is obtained by considering Eq /5.
The boundary conditions are deduced from the study of the outer expan-
sion of @3. From the condition @3 = 0 at « = 1, we obtain

gl(l) =0 )
and the behaviour of G; as X — oo is
~ 1
Gl = —glnX .

To a certain extent, the boundary conditions are arbitrary. The condition
g1(1) = 0 has been chosen for convenience but any other constant can be
chosen for gi(1). B
The equations for f; and g; are combined to give
d2g01 1

d - _ 1 1
1/3 N Sy _LpA3 4 223 1
T _dx(fl +a1) — (fi + 1) 12 333 +2x nx+2 .

Consider the function

_ 1 1
f2=f1+§1—§w*2/3—lnfc+§.

The equation for fs is

2
Il/?’d_f2 — fy = ,M ,
dz da?
and we obtain fy(1) = 0.
Then, the functions ¢9 appearing with MMAE and f5 are identical. We
have

- 1 1
fi+a =<P2+§33_2/3+1n33—§.
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Expansion of 3. Equation (6.37) for 3 is
(312_& +X1/3(31_1§(3 _ _53/2% 7
with the boundary conditions
b3(0,6) = —@3(0,6) , (e e) =0.
It can be shown that
Y3 =Hi(X)+aGys(X)+6+---, (S.6)

where G4/3(X) is solution of the equation

d2G4/3 Xl/gdG% :0
dx? dX ’

The equation for H;(X) is

CH, | pdH &G
dX2+X dx —  dx2 -’

The boundary conditions on H; are deduced from the boundary condi-
tions on 3 and from the study of inner and outer expansions of 5. The
function aG4/3(X) + 3 has been introduced in order that H, is a function of
X only and does not depend on . A possible solution is

_ _ 3 Gas(X) 3
=H{(X)—=-lne—"—%+ -1
1,[)3 1( ) 3 n€G4/3(OO) + 3 ne,

and the boundary conditions are such that
H1(0) + G1(0) + 51(0) =0,
H —-0 as X — .
Identification with MMAE results. We define the function F3 by

_ - _ 9 3
F3:F2+G1+H1+§X4/3—Z~

From the equations for I, G; and H; we obtain the equation for F3

d*Fy Xl/?’%
dXx? dX

=12 .

The boundary conditions on Fj are obtained from the boundary conditions
on Fy, G1 and Hy; from the expression of p,, we also have
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Finally, we have

F5(0) =0,
1
F3%§X4/3flanZ as X — 00 .

It follows that the function 3 appearing with MMAE and the function Fj
are identical. We have
3

_ ~ _ 9
F+ G+ Hy :’L/J3—§X4/3+Z.

The SCEM regular expansion to order ¢ is therefore

Ga(X
=1 +ih — 1 +e/? (1/12%)(2/3) —clne (% £ )>

4 (00)

Q

1 9 1
+e <<p2 + 5:6_2/3 +Inx + 3 — §X4/3 + Z) ,

or

4Gyp(00) 4

Gy3(X
¢=@1+¢1—1+51/2<¢2_2X2/3)_Elng(?’ 1/3(X) 3)

1 9 1
+e (@2 + 533—2/3 +1In X + 13 — §)(4/3 + Z) .

This expansion is identical to the MMAE composite expansion (6.31).

Chapter 7

7-1. We have ¢y = y, Ao = ¢, ¢o = V2zxf (n) with n = 7_/\/233 and Y =
Y — F(z). The equation to solve is the same if written with ¥ or with Y. We
have

0%y (000 0 009 0\ 90 _
oY+ Y2

oY Ox Ox 0Y
This leads us to solve
f/l/ + ff// — O

with f(0) = f/(0) =0 and f’(c0) = 1.
Moreover, we have d; = e.
The outer and inner expansions of 1 to order ¢ are

Ev =y +ei(z,y),
1Y =egp(z,Y) .
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Matching to order € requires to evaluate the behaviour of ¢o(z,Y) as Y — oo

do(,Y) OOM[%—&J] :

Y—F(l’)—ﬁo\/ﬁ,

LR

LR

Y

1%

Y F(z) o2z .

Y —oo €
Applying the MVDP, we obtain
y+e(z,0) =y —e(F(x) + fov2r),

whence

Y1 (2,0) = —(F(z) 4 BoV2z) .

To order 1, the equation of the streamline ¥ = 0 is
y=0.

To order ¢, the equation of the streamline ¥ = 0 is obtained from a Taylor
series expansion of v in the neighbourhood of y = 0

y+81ﬂ1($70) =0.

Taking into account the matching results, we obtain the equation of the
streamline ¢ = 0

y:E(F(m)—Fﬁo\/%) .

This equation takes into account the wall deformation and also the influence
of the boundary layer (displacement effect).
7-2. The reduced equations are the Euler equations

Oug 0

6 o) =0
up ug  Oup  ugur _ _10p
r 00 " or r rdl’
wg O, ou, ug ~ Op
r 00 tur or r or’

These equations are satisfied by

1
Ugp = sinf <1+ —2> ,
r
1
U1 = cosf (—1+ —2> ,
r

1
P1 = Poo + 3 (1= (ugy +uly)]
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with the boundary conditions

ur(0,r=1)=0, wupr — sinf, wu,g — —cosh.

T—00 T—00

The first condition expresses the slip condition at the wall; the other two
conditions express the condition of uniform velocity at infinity.
As 6 — 0 and r — 1, we have

ugr =20+,
,Q(Tfl)Jr...,

Pr=poot [ 40+ (r = 1)) 4+

Ur1

)

or, with the inner variables,

Upy = 260 + -
Uy = —2eR+ -+,

1
p1=poo+§—2€2(92+R2)+~-~.

The inner expansion is written in the form

ug = eUp1 (O, R) + -+ -,
uy = eUp (O,R) +--- |
p=Py+e*P(O,R) +---

and we have the matching conditions

lim Uo _
o= @ ’

R— o0
lim

o=~ R ’

R—oo

1
PO = P + 5 )
. P
e}g{}o 02+ R2 2.
R— oo
The equations for Uyy, U1, P, are

O , O
20 ' oRm
O, oy 0P Uy  0°Un
Uy 201 gy OVer 0N ,
"0 UM oR 20 T 002 T oR2
U, oU. P U, 02U
Uy 2t gy OUn 0P
"B6 U or ~ oR 907 | R

207




Solutions of Problems 375

At the wall, we have the no-slip conditions
R=0: []91:07 UT1:0.

We observe that the equations have the same form as the Navier-Stokes
equations in cartesian coordinates. The resolution of the so-obtained equa-
tions is the Hiemenz problem. In the case of a flow impinging a flat wall, we
obtain an exact solution of Navier-Stokes equations. Here, this is only an ap-
proximation since the equations result from seeking an approximate solution
to Navier-Stokes equations.

We seek the solution in the form

Upp =O¢'(R), Unq=—9(R), P=-26%+dR)).

The equations are

@/2 B 9090” _ 4+<,0W ’
(p(pl — 929 — QOH )
The first equation is also written as

ui

0"+ — gt +4=0,
with the boundary conditions
R=0: =0, ¢=0; R—oo: ¢ —2.

This is a standard boundary layer problem which belongs to the general class
of Falkner-Skan’s problem.
The function @ is deduced from the integration of the equation in the
R-direction ) )
¥ ¥
S—-P(0)="—+—.

The stagnation pressure in the boundary layer is

2
&
PizPo+52P1+E[U921+U31] )

where 1
Py = poo + 5 .
‘We obtain
2 2 o2 2
pi=Py+¢e° |-207 — ' —26(0) + 7(,0/ )
whence

pi(0,0) = Py + &% [-28(0)] ,
pi(0,R — o) = Py + % [-2 — 28(0)] .
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Thus, the difference of stagnation pressure between the stagnation point and
the boundary layer edge is

pi(©, R — o00) — p;(0,0) = —92¢% .

Therefore, a stagnation pressure probe does not measure exactly the stagna-
tion pressure of the flow in which the probe is placed. This phenomenon is
known as Barker’s effect.

The determination of constant ¢(0) demands a detailed discussion. If we
assume that the stagnation pressure in the boundary layer must match the
stagnation pressure in the inviscid flow (p;(©, R — o) = Fy), we obtain
$(0) = —1.

7-3. We have 6, = H(z)0, whence

déy dH dé
T owl Ty

The boundary layer equations,

dé dé, 85 due dH3zo
(Hs2 —HHéz)d + Hyp—— I +3—e o~ b, Hiy = T
de Jr‘9H+2due Gy
dx u dx 27
become
de de 03 du
_ / - ! 9 e _
(H32 HHSQ)dl‘ + H32 ( 0 +Hdl‘> +3ue 1r =2Cp,
de H+2due Cf
dz +0 v dzr 2
These equations can be written as
d0 03 due , dH
de H+2due Cf
dz +6 u dx 27
The determinant is
H+2 0 0
A= Hpo 2 T2 3% _ %y,

Ue Ue Ue

This determinant does not vanish in domain H > 1. The calculation is always
possible.
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7-4. For a laminar, two-dimensional boundary layer, the dimensionless con-
tinuity and momentum equations are

ou* . o 0
ox* = oyr
ou* ou* 1 op* L 0%u*

Vo Ve T rae t ot

The dimensionless quantities are defined by

T A Y SR Sy NV p
l ’ ug U oud

1. In dimensionless form, the boundary layer equations are
ou  Ov
—+=—=0,
ox * dy
ou Ou  dp 0%u

2. In the neighbourhood of zy, we assume that the pressure gradient is given
in the form

dp
“1s = Do +P1(I*I0)+p2(90*130)2+"' )

where pg, p1, ... are constants. The velocity profile at zq is
_ 2 3
u=ary+ay” +azy” + -,

where aq, as, ... are functions of x. The velocity component v is obtained from
the continuity equation by taking into account the wall condition v(0) = 0

The expressions of p, u et v are substituted in the momentum equation.
Equating coefficients of like powers of y at zy, we obtain

2a3 +po =0,
a3:O,
da1
— —24a4 =0
aldl} a4 )
2 d
=2 9045 =0.

3 T dx
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3. The momentum equation is differentiated with respect to =

ou\’ %u  Ovou 0%u d?p du
- Ut— + —— +v = —L 4~
oz 0x2 Oz Oy Oxdy dz? = Oxdy?

We substitute the expressions of u, v, p and we equate the coefficients of like
powers of y

da2
2—= =0
dz +m y

da3

— =0.
dx

4. We obtain the following relations

2a2 +po =10,
as = 0,

da
ald_xl —24a4 =0,
5!@5 +2a1p1 =0.

In these equations, pg, p1, - . . are given coefficients. Thus, coeflicients as, as, . . .
are not free since they are determined as function of pg, p1.

If these compatibility conditions are not satisfied, singularities appear
when solving the boundary layer equations for = > zg.

Let us examine the case a; = 0 corresponding to boundary layer separa-
tion. Substituting the expansions of u, v and p in the momentum equation,
we obtain

202+p0207
a3:O,
CL4:0,
a5:O,
6lag = 2pop1 ,
a7:O.

We assume that only the condition 2as + py = 0 is satisfied. We have

d
alﬂ — 24&4 =0.
dz

Suppose that as # 0 at = . In the neighbourhood of x = zy we obtain
a3 = 48ay(x — x0) .

If a solution exists when = < xg, we must have a4 < 0 and the solution does
not exist when x > x.
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7-5. With the outer variables, we have

1-n a
=—£ (9_5 .

y=cst

Using the continuity equation, with v(0) = 0, we obtain
1 1-n
v=—8 (FL+ 28R +-0),
with

y y
R = [ FE . Be)- [ Fe .
0 0
We have Fi(0) =0, F»(0) = 0.
The expressions of u and v are substituted in the momentum equation
1
(Fg +&F] + & Fy 4 )~ (F + 26 Fp + )
1
751—"(}?1 + 2Py 4 ) (FY +EF) + EFy + )
= o +p1€n +p2€2nJr”.+Fé//+€F{//+€2FQH/+'”
With n > 1, we obtain the equation for Fy
FFl - R F)=0.
The solution is
Fy =kF],
where k is a constant yet undetermined. This solution enables us to satisfy
0
the condition F;(0) =0 (v = 0) at y = 0 but not 8_u = 0 at y = 0. Therefore,
Y

an inner layer is required.
With the inner variables, the differentiation rules give

2 Llawd| 11

2 R [ O mcst €™ ON|eocy 7
0 1 0

] T -

From the continuity equation, written in variables (£, 1), we obtain the
expression of v in the inner layer by taking into account the condition v(0) = 0

v=8""fo — fo) + €Sl —2/1) + €T (nfy = 3fa) + -
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The momentum equation becomes
(fo+efi+&F+)
X [ Y+ € ) + €S nf) ]

+[ETfo — fo) + €T (f1 — 2f1) + €T (fy = 3f2) + -]
1
Xn_f( o FEfHE )

(o + €A+ €255 +-).

= Po+p1§n+p252n+~~+n2€2

We could choose n = 2 in order to keep the viscous term. The equation

for fo would be
L2 = 0.

However, the matching conditions with the outer layer give fo = 0. Then, we
take n = 3. The equation for f; is

Lo " 12

g 1 +2f1f1 —J1 :O

The solution must be such that f;(0) = 0 and f”(0) = 0. In the neighbour-
hood of n = 0, the solution has the form

2 3
_ P73 9435 ..
fr=Bn+ =5 = 558+
Coefficient 3 is calculated to satisfy the matching with the outer solution.
Let us express this matching to order £. The outer solution is

Eou = Fj+&F) = ary + asy® + - + Ek(ar + 2a0y + -+ ) |

that is, with the variable n
Eou = 3a1n€ + aa(3n€)? + -+ + €k(ay + 6agné +---) .

Therefore, we obtain
El EQ u = 3@17}6 + a1k§ .

Moreover, we have
Eru=¢fi(n) .
To obtain Eg E; u, it is required to know the behaviour of f] as n — oo
From the equation for f;, we have
fi = an* +EST,

77— 00
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and
fi 2 2an+EST.
77— 00
We obtain 5
o= 5(11 , k=0.

The first condition determines the function f; completely; the second condi-
tion gives F; = 0.
7-6. With the outer variables, we have

0

_ lé—lfn a

nto o€

y=cst y=cst

Using the continuity equation, with v(0) = 0, we obtain
1 1-n
v=-8 (B +28F+ ),

with

R = [ RE e R - [ Fe .

0 0
We have F3(0) =0, F»(0) = 0.

The expressions of u and v are substituted in the momentum equation
1
(Fg + EF) + & F 4 )~ (F + 26 Fy + )
1
— TP 2P ) (B + EF + PF )
— po+p1§"+p2§2n+~-~+Fé"+€F{"+€2F2’"+-~ .
With n > 1, we obtain the equation for Fy
FF —FF/=0.

The solution is
F = kFé ,

where k is a constant yet undetermined. This solution does not enable us to
satisfy, in particular, the wall condition F7(0) = 0 (v = 0) if & # 0 since
ag # 0. Therefore, an inner layer is required.

With the inner variables, the differentiation rules give

O _la.o| _1m o
Ox y=cst n 85 n=cst ngn (9’!} E=cst 7
o _ 1L 2‘

ay x=cst n€ (9’!} E=cst '
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From the continuity equation, written in variables &, 1, we obtain the
expression of v in the inner layer by taking into account the condition v(0) = 0

v=E7"nfh — fo) + €T (fl = 2f1) + €T (fy = 3f2) + -
The momentum equation becomes
(fo+€fi+&f+-)
X [ TN ) + €A~ nff) + ]
HE S o)+ €7l — 260 + €T = 3h) + ]

1
e R )

= po+pi&" +pf" 4+ (f+Eef"+Ef +--).

n2¢2
We choose n = 2 in order to keep the viscous term. The equation for fj
is
V26l = 0.

Let us examine the matching of u between the outer and inner layers. To
order £°, we have

Eou:Fé :a0+a1y+a2y2+~~~ .
With the variable n, this expression becomes
Eou = ag +2a1m¢ + az(20)* + -+ .

Therefore, we obtain
El Eo u=agp .

Moreover, we have
Eiru= fy(n)

and therefore
EoEju= lim fg(n) .
n—o0

Then, the matching expresses that
lim f5(n) = ao .
n—00

The equation for f7 is

1+ 2fofl —2fofi +4f0f1=0.

We express the matching of u between the outer and inner layers to or-
der £&. We have

Bou = Fy(y) + EF(y) = ao + a1y + azy® + - + Ek(ar + 202y + ) ,
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or, with the variable
Eou = ag + 2a1n¢ + ag(2n€)* + - - + Ek(ar + 4agné +---)
whence
Ei Eou = ag + 2a1m€ + ka€ .
Moreover, we have
Eru = fo(n) +&fi(n) -

To obtain Eg Ej u, it is required to know the behaviour of f] as n — co. We
know that

~

(l) ~ a9+ EST.

—00

We deduce that we must have

fi = 2aim+kay+-- .
77— 00

We have the following behaviours
fo =
— 00

fi = AP+ Bim+Cite- .

— 00

Ao?]‘i’Bo +EST,

It has already been seen that Ag = a¢. Using the behaviours of fy and f; in
the equation for f;, we obtain

a
By =2—"By.
ao
Taking into account that we must have

fi 2 2an+kar+---

77— 00
we deduce
By ~1/2

A1 =aj , k=2— = 71.72(10
ag

7-7. We consider for example the operators Eg and E; to order £2. We have

Evu=2[fi(n) + &) +Ef)]

Eo u = xp(y) +&x1(y) +Exa(y) |
with

Xo = ao + a1y +asy? +--- .
Assuming that X} can be expanded in Taylor series in the neighbourhood of
y = 0, we have
Eou = ag + a1y + azy® + - - -
+HEX1(0) +yxT (0) + -]+ € [X5(0) + yx5(0) +---] .
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With y = 2/2¢7, we obtain
B1Eou = ao + € |12/ 4 (0)] + € [aa(2"/2)? + 21/ (0) + X4(0)

With
Eyu=2[fo(n) +&f1(n) + & f3(n)]

the matching is expressed by

With the inner variables, the differentiation rules give

D _lawd|  _1n @
Ox y=cst n 85 n=cst nfn 877 E=cst ’
9 __1 ﬁ’
63/ xr=cst 21/26 817 E=cst .

The momentum equation writes

—2fo+EA+HEL+HER+Efi+)

<& " gy e~ nff) + €2f — nff)
+£3(3f3*nf3)+£4(4fi*nfi')+~']

3/2
F g [fo - iy + @A —nfl) + €32 — i)
+£3(4f3 —nf8) + & Gf—nf) + -]
X2V2ETL( Y+ Ef! + EfY + EF L+
— _(1 +p1§n +p2§2n)+§ ( ///+é—f///+§ f///+§-3 ///+§- f/// . )

As ag =0 and a; = 0, we have

lim f;=0, lim f{=0.
n— 00

n— 00

Then, we obtain fo = 0 and f; = 0; in addition, we are led to take n = 4.
The equations for f5, f3 and f, are

/// 3f2f JFQféQ:

/// - 3f2f + 5f2f3 - fz//f3 =0 5
V3 fafy + 6fafs —5fafa=Afsfy —3f3° .



Solutions of Problems
The no-slip condition at the wall (v = 0, v = 0) is expressed by
f2(0) = f5(0) = f2(0) =0, f5(0) = f5(0) = f4(0) =

The solutions are

f2:%7
f3:0417)27

OL
fa= 0427) - 1—5775

The conditions

!/
lim 97 = %o/
n—oo 1" 2
yield
1 2
(12:5, a3 =0, a4:f%.

385

We must have a4 < 0 in order that the solution exists upstream of the

separation point.
With the outer variables, we have

i — _5 5 0
O y=cst 4 8€ y=cst
The momentum equation writes
/ / 2 3 1 3.1 / 2.7
—(X0+H X HEX2HENE )28 (X 260 + 38X +
4

4
— _(1 +p1€4 +p2€8 )+Xg/ +€X”/ +£2X”/ +£3XW
The equations for x1, x2, x3 are
XoX1 —X1x0 =0,
XoX2 —XaXo =0,
" ! !
XoX3 — X3Xo =0
The solutions are
x1=Fkixo, x2=kaxo, x3=FksXo,
and we have )
1, o 4

,7_ —_—— DR
Xo—zy GZJJF

1.
+=E 0+ 262 +38xs + ) (X0 T +EXT+EXE+ -
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The matching conditions, examined above, yield

2fy = aa(27m)? + 21 (0) +x5(0)
1

2f5 = as(2) 4 521X (0) + 2205 (0) + x5(0)
2f/ ~ 4 (21/2 4 i 21/2 33,110 121/2 2,10

1 2 a7+ @) 0) + 52 ) xR (0)

+22 x5 (0) + x4(0) -
With ,
1
a2:§7 a3:07 a4:_%7
we obtain

k‘l :0, /{‘2 :23/2a1 5 k‘3 :23/2a2 .
From the inner expansion, we calculate
0
<3_Z) = 2'/2¢f5(0) +2'/2€2 f5(0) + - -
0
=23/22120, 4 ...

= /—48aqz'/? + .-

The wall shear-stress vanishes with a behaviour in the square root of the
distance to the separation point.
From the outer expansion, we have
ou 1 __,,
P + .-
al_ 26 X2
= 6_221/2Q1X6/ + N

21/2 ) 5 3
:mal <y_§aly +>+ ,

The expression of v is

1.
U:§§ 2X2+"'
21/2 y2 a2

ou
Thus, — and v tend towards infinity as  — 0. This behaviour is at variance

with thex boundary layer hypotheses. However, it cannot be concluded that
the boundary layer equations are not valid to describe separation. Indeed,
this is the way in which the boundary layer equations are solved which is
concerned. For example, the inverse methods are able to describe separation
with a perfectly regular behaviour. In strong coupling methods, even when
using the standard boundary layer equations, separation is described without
any sign of singularity.
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Chapter 8
8-1.
1. The dimensionless quantities are
U v P ¥ y*
u:—7 V:—’ =, = —, = —.

The Navier-Stokes equations write

ou oy _0
or oy ’
ou ou P, [(0U U
ua_erVa_y__ax (8x2+3y2

% % oP 13 VNG 28
U—FV— =+ |5+ 55| -

ox oy oy ox?  0y?
2. The reduced equations give the equations for uy, v1, p1 which are the Euler
equations

Oouq % _0
dxr = Oy ’
Ul% + 01% = —%
Ox Oy Ox ’
67}1 (9’()1 6p1

Ox oy Oy
3. To write the equations for Uy, V1, P; we expand uq, vy, p1 in the neigh-
bourhood of y = 0 since y = €Y, therefore y <« 1, and we seek a regular
expansion
UL = U1 + Yuiyo + - -
= u10+5Yu1y0+-~- R
V1 =010 + YV1y0 + -
=wvio — YUz + - .

It is shown later that v1p = 0. Using this result, the Navier-Stokes equations
become

ouy oy
Lo
Ox * oY ’
ou, | oUy, | dU; ou, 0%,
Uitig0 + Us O + u10—=— oz + Vi— Y — Y U140 5y = ay2 + ,
oy 19d% oy 19A%
_5U1Yula:a:0 +5Ula_ +5U10 a ! —‘rEVvl 6 EYulwoa—;
AP, 0*Vy
= ——— —|— £— + -

e Y Y2
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Since the regular form of SCEM is applied, the boundary conditions must
be prescribed order by order. We have

U=u(z,y) +Ui(z,Y)+---,
V:vl(x7y)+€‘/l($>y)+ 3

whence
y=0: u1+U; =0, v1y=0, V1 =0.

As y — oo we have
up —1, v —0.

We also have
Y -0, U3 —0.

The solution for the outer expansion is simply w3 = 1 and v; = 0. Then,
the equations for U; and V; are

U, U, | OUL _ 9*Uy

Uy

—t++ :
dr ' 9r 1oy 9y?
and the momentum equation in the direction normal to the wall is

Vi Vi 9P 9V,
Q+U) o +Viesr = ——— .

oz Yy 9y | a2’
4. We set
U=1+Uy,
VZE‘/17
and we obtain
a_UJra_V—O
or oy
2
U@_U+V6‘_U: 2:0°U

Ox oy c oy?’

with the boundary conditions

and
y—oo: U—1.

We recover exactly Prandtl’s model.
With Blasius’ solution, we obtain

‘/1—):—

Y—oo 21
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With the transverse momentum equation

oV, oV, oP 9’V
FENTA At SV AS R !

O Yy oy | ayz’
we obtain the behaviour of P, as Y — oo
_on_Ovi . Po  _ap
oYy or 22 ’
whence 5
~ 0  —3/2
= —= Y,
Y —oo 2\/§
or
o o x—s/zy
Yoo 24/2 e’
or

Bo -3/2
ePp 2 —=x
1Y~>oo 2\/§ y
5. The equations for us, ve, pa are
8U2 3v2
272 )
Ox + Oy ’
8U2 8
-2 _ _ 2 P,
O O (p2 +e 1) )
0 0
— ) =—-—— P).
am(v2+ 1) ay(P2+€ 1)

In the momentum equations, the quantity P; must be understood as the
behaviour of P; as Y — oo; likewise, the quantity V7 must be understood as
the behaviour of V; as Y — oo.

The boundary conditions to take into account are

y—o00: ug=0,
. Po
Yy —00: Vg — ———

V2z
y=0: v9=0.

The last condition enables us to satisfy the wall condition of zero normal
velocity. The no-slip condition at the wall on uy must be discarded.

Taking into account the behaviour of V; and P, as Y — oo, and with the
following change of functions

U2 :u27
vy —Uer%,
X
* /80 —3/2
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the equations become

Ouz  Ovy 0

oxr = Oy ’
Ouy _ Op;
or Oz’
vy Ops
or oy’

with the boundary conditions
Yy —00: uy=

. *7
y—o00: vy =0,

=0: vi=——.
) 2 o
Then, the solution is
o o y
2 — )
2 /x2+y2 /LE+ /x2+y2
. BV
Uy = ———— .

2 /22 4 12

Chapter 9

9-1.
1. Substituting the outer expansion in the Navier-Stokes equations, to the
second order we obtain

gu  On
ox Oy ’
(1+ay)— +av; = _on
ox ’
0y Op1
1 — =
(1 +ay)o— oy
2. The first order boundary layer equations are
ouy  ovy
o Tov "
oU oU U
0 20y, 202U

dr oy  avz
The second order boundary layer equations are
oUs  0Va

o Ty O
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oy OU, oUy o,
Ay (U1 o +V16Y +Ur Vgay>

oPy | L,0°Uy  , 9°Us

= At A
oVh oy A3 0P, 0%V
U +V = - .
( Yox 1ay> = oy “av?
The boundary layer equations are solved by assuming that U; = f/(n) with
= ——. We have
g V2 v
Vi=——lnf ~ f
1 — \/ﬁ 7) I
f/l/ + ff/l — 0

with f(0) =0, f'(0) =0, f'(c0) = 1. On the other hand, the behaviour of f
as n — 00 is

f(n) = n—fo+EST,

with By = 1.21678.

We observe that the first order boundary layer solution is independent
of a.
3. The matching of V implies §; = ¢. Indeed, to order £, we have

E, V=€V,
1 Y Y
EocE1V =¢ +
o E1 T\ v Bo
_ B
V2’
E1 EOV:5U1(£E,O).
We obtain 5
0
’l)1(l’,0) :E .

4. Substituting the behaviours of u1, vy, p1 in the outer equations, we obtain
bo = 27126z =1/2, g = —2Y2aBat/?, ¢y = 2732 Boa3/2,

by = —3- 277/2/801375/27 Cy = 275/2(1/801373/27 a; = 7273/2ﬂ01’73/2.

5. The matching of pressure gives A3 = e. Indeed, to order ¢, we have

E1 EO P = 721/260,/80131/2
EO E1 P = EO [€P2(I7Y)] .

We obtain
Ylim Py(z,Y) = 2248,z /?
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6. The matching of velocity U gives Ay = £. Indeed, to order €, we have

EiEqU =1+¢ca Y ,
EocE1U = Ey [Ul +€U2} .

We have

lim Ul =1 5

Y —oo
and

U2 ~ aY .

Y —oo
7. We have
or,
oY ’
and
P2 = 721/2a601‘1/2
whence
oP, _ 925,512
Oz
The second order boundary layer equations are

oUs  0Va

=272 _)

or oy

oUs 0Us oUy oUy 1 _ 0%U,
U V; U. V; =271/2 V2 222
o TVigy Tl tegy =27 el 4

Chapter 10
10-1.
1. The reduced equation is

d

% +30=0.
With the condition y(1) = 3, the solution is

yo = Be' " .

With the change of variable z = x/d(¢), the initial equation becomes

g3 d?
a~y 2-3 y 3.3
+ 0z +(6°z
52 dz? dz +(

To restore the boundary layer at x = 0, we must keep the term containing
the second derivative. Comparing the order of magnitude of this term with
the other terms shows that we must take § = . Then, the reduced equation
is

—e)y=0.

d’go —0
dj2 yo - 9
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whence
Jo=Ae " +Be" .
The condition y(0) = « gives
A+B=aq.

To order 1, we have -
EEy = fe,

where E and E are the expansion operators corresponding to the lower layer
and to the upper layer respectively. We also have

Ey=Ae ®+Be® = Ae */* 4+ Be®/® |

and -
EEy = lim [Ae_“’/8 +B ew/e] .
e—0, x fixed
We conclude that B = 0 in order to have a possible matching, whence A = a.
Then EEy = 0 and the matching is impossible since EEy # E Ey.
We introduce an intermediate layer whose thickness is v(g). With the
change of variable & = x/v, the initial equation becomes
3 42
e’ d%y 2-3dy 3~3
ﬁ@+ym ﬁJr(V T —e)y=0.
Comparing the orders of magnitude of different terms shows that a distin-
guished limit is obtained by taking v = £'/2. The thickness of the correspond-
ing layer is between the thicknesses of the upper and lower layers. The initial
equation reduces to
dy
~3 0 ~
— —gy=0.
Taz Y

The solution is
:ljo = Ce_l/@iz) .

The matching between the upper layer and the intermediate layer to or-
der 1 yields ~
EEy = fe,

and

whence C' = [e.
The matching between the intermediate layer and the lower layer to or-
der 1 yields
EEy =0.
Therefore, we have necessarily B = 0 and, with the condition A+ B = «a, we
have A = a.
Then, the composite solution is

Yo = Bel " +Bee /%) Lo _Fe .
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2. To simplify, we assume that the triple layer structure is known but it would
be possible to recover it with SCEM.
The outer approximation is the same as with MMAE

Yo = Bel=® .
This approximation is complemented as
y=Yo(x) + Yo(i,e) .
The initial equation becomes

d2y; d2y; dy - -
2 d5320 +8 dgc20 s:z3d—; Yy +323Y — Yy = 0.

2

d?Y;
In this equation, g3 7 20 is of order % in domain 0 < A < # < 1 where A
T

is a constant independent of € and Y, writes

et/2g

Yo = fel™® = fel=" = fe(1+---) .
Then, the equation for Y is
¥y <
P =Y = Be .
dz

The solution is _ =
Yo = —fBe+Ce V)

The condition y(1) = S is satisfied by Yy(1) = 5. Then, we have

whence

C = Bel+e/?
We seek a UVA in the form
Yo = Yo(z) + Yo(Z,¢) + Yo(T,¢€) ,
The equation for Y is

2y, —
~Y,=0.
dz2 0

The solution is -
Yo=Ae *+Be® .

The boundary conditions are

~ _ 1 ~ —
z=0: Yo+Y9+Yo=0a; .’fzgi Yo+Yo+Yo=7,
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whence y
« ae ?/E
Azl—e—Q/87 B:_l—e—2/87
and the UVA is
C /(232 « a ae 2/
Yo = fel T —fetBel T2 1/C )+17672/€e T o °

The regular form of SCEM gives
Yo = Bl —Bet+fee /) oo
3. The outer approximation is again the same
fo=p6e"".
We seek a UVA in the form
Yo = fo+ fo(T,e) with T = g .
The initial equation becomes

d2f0 d2f0 2,3d]?0
w2 T fa T

e3 —efo+e3Ffo—cfo=0.

To cast the intermediate layer and the lower layer in a single approxima-
tion, we neglect the O(e?) terms
d2 ]?0 _3 dfO
A

+e€

dz2 a o=l

It is possible to write fp in the form
fo=pBe " =BT =Be(l—ex+--).
The boundary conditions for fy are
T=0: fot+fo=a; 53251 fot+fo=5.

10-2. The main deck equations are

oU, OV,
ox oy
Uy — AUy . df | /dUy\? Uy | 9P,
box TVewy ix \w) Ve ox

oV i( ﬂ)U%:_@
& T oy
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The lower deck equations are

ox gy
- = U = v\ ap 9°U,
()\YJrUl)WJer()\Jr—A.)—WJr%,
oYy

The boundary conditions at infinity are
Y > 0 ﬁg:O, Vya=0.
The conditions at the wall are
Y=0: U;=0, V,=0.
The matching of velocities between the two decks yields
- - (o sdf
dim U; = Af(X), Vao(X,0)= lim (V1 +AY—= ] .
Y —oo Y —oo dX

Moreover, in the lower deck, the pressure is constant along a normal to
the wall o
P = P1(X,0).

If the shape of the hump is known, i.e. if the function f(X) is known,
it is not possible to determine directly the solution in the main deck or in
the lower deck. The problems are coupled. There is no hierarchy between the
decks. It is said that the interaction is strong.

10-3.
Zone 1. In the lower deck, the boundary conditions are

Y*"—>o00: Uy=0, VW=0.
In addition, the matching between the upper deck and the main deck yields
Vl* (X7 0) =0,

7 3
because f —a < §— s + m as a < ?m in zone 1. Then, in the upper deck,

the solution is (see Appendix IIT)

The matching conditions on pressure between the different decks yields

Pi(X,0)=P(X,Y)=P(X,Y)=0.
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The main deck solution is

_ du,

dA
1 =AX) &

y Vl :*ﬁUo.

The matching between the main deck and the lower deck yields also

lim Uy = U1(X,0) = AA.

Y —oo

The lower deck equations are

ou, oV

ax Ty
SoU,  ~ 9T,
AY — + AV} = —— .

0X Al Y2

The wall conditions are
Y=0: U,=0, V;=V,(X).
At the boundary layer edge, we have

oY

?HOOS

With these conditions, we can determine the lower deck solution and
calculate A from

lim U; = M.

Y —oo

Zone 2. The main deck solution is

— dUy

U =AX)— , Vo=——20U,.
2 ()dY 2 0

dX
The matching between the upper deck and the main deck yields
— dA
V3(X,0)= lim Vo= ——.
5> (X,0) ?Enoo 2 ax

The problem is solved with a given distribution of A(X). Then, the upper
deck solution is calculated with
dA
V3(X,0) = ——.
2 ( ’ ) dX

Then, the value of Py (X,0) is obtained and Py is known since the matching
of pressure between the different decks gives

P} (X,0) = Py(X,Y) = P,(X,Y).
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The lower deck equations are

ox gy
~0U, ~ oP, 02U,
Ay =L -1, 7
ax "M T ax T o

The matching between the main deck and the lower deck gives in partic-
ular B
~lim Ul =0 5
Y —oo
4 3
sinceﬂ—m<,8+—a—masa>—m.

Then, at the edge of the lower deck, the momentum equation gives

- P
AVie = X
with _ _
Vie= lim V.
Y —oo

At the wall, we have _ _
Y =0: U1 =0.
In the lower deck, a possible solution satisfying the boundary conditions
is
U1 =0 5 ‘/1 = Vlc )
and we obtain the value of V,,,
1P
AOX
Zone 3. The matching conditions between the upper deck and the main deck
give in particular

Vw:‘f;rle:

VI*(X7O):O>
B8 —3a+m

5 . Now, the boundary conditions at infinity are

since 0 — a <
Y*—>o00: V=0, Uf=0.
We conclude that the upper deck solution is identically zero
Uuy=0, V=0, P'=0.
The matching conditions between the upper deck and the main deck give

lim U; =0,

Y —oo
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The matching between the main deck and the lower deck gives

Vi(X,0)=0,
ﬂ—3a+m<ﬁ—3a+2m

since

The main deck solution is

e VlzfﬁUo.

The matching between the main deck and the lower deck gives
- ~ dA ~
lim Uy =X, Vi 2 -A—=Y.
um 1 9 1 dx

Y —oo Y —oo

In addition, the matching of pressure between the different decks yields
P =P, =PX,00=0.

Therefore, the lower deck equations are

U,  ov,
L4219
0X + 9y ’
- 9U, ~0U, U
Ul—l“r‘/l ! = ! 5

X Y  oy?
with the boundary conditions at the wall

Y=0: U =0, V;=VuX).

With the condition _
~hIIl U1 = AA 5

Y —oo
the momentum equation, as Y — oo, gives

dA

With A — 0 as X — —o0, we obtain A(X) = 0, whence

lim U; =0.

Y —oo

Then, the lower deck solution is
Uy =0, Vi=V,(X).

To the considered order, the effect of blowing is restricted to the lower deck
in which the component of velocity normal to the wall remains unchanged.
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Zone 4. The lower deck equations are

ox gy
—9U, -~ 9U, 9P 9°U,
Uox Ty T Tox T ove
oy

Now, the matching between the lower deck and the main deck yields

lim U; =0,

Y —oo

3 -
since 0 < B — % <20+ a-— 7m Then, as Y — oo, the X-momentum

equation gives

P,
—=0.
0X
OP; : - .
As — =0, using the condition P, — 0 as X — —o0, we obtain P; = 0.

In addition, at the wall, we must have
Y=0: Uy=0, Vi=V,(X).
A possible solution in the lower deck is
Uy =0, Vi=V,(X).
The matching of the pressure between the different decks yields
P;(X,0)=Py=P, =0.
Taking into account the conditions
Y "—>00:U;=0, V=0,
the upper deck solution is identically zero
U;=0, V=0, P;y=0.

The main deck solution has the form

_ Uy — dA
U= AX)F» Va=—g5U-

The matching between the main deck and the upper deck gives
lim Vy = V5 (X,0)=0.

Y —oo

With A — 0 as X — —o0, we obtain A(X) = 0.
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Chapter 11

11-1.
1. The equation for fj is

d*fo  1dfo d fo

-0 29—
dy?  y dy o dy ’
with
lim fo =1.
y—00

The solution of this non linear equation is fo = 1. Then, the equation for f; is

d2 1d d
dy?  ydy dy

207

with

Y—00

The linear equation for f; has the solution
0o —t
f=af
Y t

which satisfies the condition at infinity.
2. The equation for fy is
a2 fo 1 dfo

d2 " y+1dy

7

with fo(0) = 0.The solution is

foZKln(y+1).

3. We have
EiEou=1+06A(—lneyg—7),
EoElu:&Klngj,
whence 1
01A = , 1K =-6A.
v+1Ine
The composite solution is
1 et 1 1
UZ1+7+ln5/y Tdt_7+1n51n(y+1)+7+1n51ny’
or ) oo oot -
S
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11-2.
1. With ¢ = y + €, the initial equation becomes

d?u 1 du du

Rl —~ _0
dy/2 + y/ dy’ + udy’ ?
with the boundary conditions
ule)=0, limu=1.

Yy—oo

We obtain exactly the Stokes-Oseen’s flow model proposed by Lagerstrom.
2. The equation for Fy is

©R LA AR
dy? y dy  dy
With the condition Fj(0co) = 0 which satisfies the condition at infinity for u,

the solution is
[e'e} eft
F = A/ —dt,
y t

but the condition at y = 0 cannot be satisfied since F} becomes infinite as
y — 0. The equation for Fy is
d?F, 1 dF, 1 dr

A2 y+ldy  glp+1) dy

=0.

dF _
The term Ed—l must be simplified since F'; must be a function of  only. We

have Y
dfy et A AL
dy Y €y €y
The equation for F; becomes
d?F, 1 dF; A
d> T g+ldy  PE+)]

After mutliplying by ¢ + 1, the equation can be integrated easily. We have
Fi=Almyg—Aln(y+1)+Bln(g+1)+C,

whence
o —t
u=1+ (51A/ GT dt+ 6 Alny — 51A1H(17 +1)+6Bln(y + 1) +6:C .
y

The condition u =1 as y — oo gives B = 0 and C = 0. After expanding
oo —t
/ - dt as y — 0, the condition at y = 0 yields
Y

1-— 61A’Y*51Aln€ =0 ;
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that is
1

A= .
o v+ lne

Finally, the solution is

1 oo —t _
w=1+ / ot
y+ne [/, ¢t y+1
The same result as with MMAE (Problem 11-1) is recovered.
3. The equation for f; is
d?f, 1 dfi 1 dfi
—_— = .
dy* y+1dy  yH+1) dy

With the equation for fi,

d2 1d d
dy?  ydy dy

207

we form the equation for ¢ = f; + f1

d?g 1 dg __df
dy?  y+edy  dy

0o —t
With f; = A/ eT dt, we obtain
Y

d?g 1 dg_Ae_y

dy?2  y+edy Ty

This equation is integrated after multiplying by y + ¢

[ee) —t (e’ 1 oo —t
g:A/ te+8dt+A5/ Lﬂ/g ert] dé+aln(y+e)+ 3.
Yy Yy

The condition u = 1 as y — oo gives & = 0 and @ = 0. The condition at
y = 0 yields

ooe—t o) 1 ooe—t
1A dt —dt| d =—1.
' {/0 tte +E/0 [fJF@/g ¢ } 5}

Note 5.2. Observing that in the vicinity of y = 0, it is not appropriate to approxi-
mate y + € by y, we can take for f; the following equation

¢, 1dh dn
dy? y+e dy dy

=0.
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Then, the solution satisfying fi(co) =0 is

oo —t
f1:A/ .
y+e t

The condition u(0) = 0 can be satisfied by taking
1

oo —t :
/ £ at
. t
We note that f1 = fi(z,e), which is pertinent with the generalized form of SCEM.
In addition, it is easily shown that fi = 0. The solution

oo —t
/ ¢ a
Jyre T
oo _—t
/ I
.t

is an excellent approximation of the exact solution.

0A=—

u=1-—

¢]

11-3.
In wall variables, the inner region equation writes

du™ 5 (dut 2
— +FHT [ —) =1.
dy™* e <dy+)

At y* =0, we have u™ = 0. For y™ > 1, this equation becomes

dut
+ _— =
s =1

or )
ut ==yt +C.
X

The plot of the law of the wall (Fig. S.4) exhibits a logarithmic zone for
values of y* greater than 75. Constant C' of the logarithmic law is about
C =5.28.

In the close vicinity of the wall, the velocity profile is linear u™ = yT but
the region where this law is satisfied is very narrow (y™ < 3). Between this
region and the logarithmic law, there exists a buffer layer.

U
11-4. We express the matching to order —. We have

€

and
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25 r

20

15

10

0 1 1 J
1 10 102 103

Fig. S.4. Velocity profiles in semi-log coordinates in the inner region

where, in this last expression, the function between square brackets must be

U
understood as being its behaviour, y* being kept fixed, as — — 0, that is
ue
Uel y
as — — o0; therefore, we have n = y*— — 0.
v U0

In addition, we have

Ei— = —Lf(y") = = f (y MT) .

Ue  Ue Ue o v

0
The behaviour of f as 49 00, % being kept fixed, is given by the behaviour
v

of f as y© — oo, whence

7'1 ] T
EoE — = 2o 2%y ol
Ue Ue X O V Ue

Uy

Then, the matching condition Eg E4 - Ei1 Eq “ yields
Ue

€

1+&{llny+ v QB}_u,rl yéu.r+ Uy
Ue | X

our X

|
[
=3
[
|
[

This condition can be written as

We deduce
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and we have
U+ o Cf
ue V27

u Ued

Then, the skin-friction law tells us that — — 0 as — — oo; we also have
Ue v

U0

— 00.
v
A composite approximation gives a UVA in the whole boundary layer

= —Fy— 4B — —E Ey—,
€ e ue ue
whence B
Yoty 2
Lot i)+ o)
o 1.6 B
u u u
R (0 T LG R S .
S R [ EEI TR TR )]

11-5. In the overlap region, we have simultaneously

— 1
Ue u:——lnn—l—D as n—0,
Uy X
1
i:—lny"’—i—C’ as yT — 0.
Ur X

Adding member to member, we eliminate v and y

e 1 T
de L9 ohp
Ur X v
1 - 1 )
L PR NS

X Ue X v

The properties of the logarithmic function give

We make the change of variables

o) (X =n=1)
The differentiation rules give

9 _9 59
or _ ox s an’
o 19

dy 60n
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Integrating the continuity equation yields
v=—vyued (nF' — F) — dul(n —yF) + duy'F .

The momentum equation becomes

/
aﬁ (l> — 2BF — ByF"* 4+ B~ L (F' — yF”* + yFF")
N \Tw eV
/
-3 (1 + %5—> (nF" — yFF") .

ul o
The skin-friction law is
1

1
—=—Iny
7X v

Ued

+C+D.

This shows that v — 0 as Rs — co. By differentiating with respect to z, we

obtain . ,
_plte _ /X (5_5_) .
yu, 1+79/x v

!
u
Then, we can say that ﬁl—f tends to zero like .
v Ue
The momentum equation reduces to

o (7Y , Ue O .
() =2om -0 (14 55 ) o

We integrate with respect to n from 7 = 0 where we have 7/7, = 1 and

F=0 5
L—l:2ﬂF—ﬁ(1+%—)(nF’—F).

Tw L6

At n=1wehave 7 =0, F/ =0 and F = F; whence
Ue O

1_2/8F1+ﬂ<1+—,—)F1,
ul, §

and

Ue O 1
/B<1+U_’eg>_ﬁ+2ﬂ'

The momentum equation writes

T F 1
—=1-— —+2 F .
Tw Fy + (Fl + 5) K
11-6. The scales of velocity, length and time of small structures are v, n, T
respectively. Between these scales, we have the relations
v vn

E=—, 1, 7=—.
T v v
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The first relation comes from the definition of dissipation (amount of energy
transformed into heat by unit time); the second relation comes from the
hypothesis that the characteristic Reynolds number of dissipative structures
is of order unity; the third relation is simply the link between the scales of
velocity, length and time. In particular, we obtain

L3/4

n=m~

Dimensional arguments gives the shape of the spectrum in the range of
large structures and in the range of small structures

E = u*0F(¢p) ,
3/4
_ . 5/4_1/4 v

We assume that the spectrum follows a power law £% in the overlap range.
We have

3a/4
5/4_1/4caY
vl tet%E ey

The viscosity must disappear, so that we have

= u?ecoe” .

and we obtain

Therefore, we observe that the value of dissipation is independent of viscos-
ity, but the physical mechanism remains a transformation of kinetic energy
into heat due to the deformation power of viscous forces within the flow.
The physical mechanism of dissipation is closely related to viscosity but the
amount of dissipated energy does not depend on it.

Chapter 12
12-1.
Equations (12.1a-12.1c) become
ou o0
oxX oy
@J’_ %4_7 @_’_ Ou —_S_T@_i_ m""aa +m—a@
“ax TV ax " Yay) T ax TS axz Tt g2
U @ +€r ﬂ +'U@ s—r—2a ap +Em+o¢ 82’0 _’_Emfoz 82’0
09X ox " oy) dy X2 D>



Solutions of Problems 409

The case of interest occurs when, in a first approximation, Navier-Stokes
equations reduce to a form leading to a singular perturbation problem. Here,
first order differential equations are obtained, for high Reynolds numbers,
when m > |a|. This is a necessary condition for a small perturbation to be
significant. This condition shows why we assume high Reynolds numbers.

In the boundary layer, the order of magnitude of ug is

uo(y) = O(e”) .

Thus, to obtain a significant degeneracy with possible separation, the stream-
wise velocity perturbation in the boundary layer is clearly Og(¢?) .
Using the variables X and Y, (12.1a-12.1c) become

8_U + 3_V — 0
ax Tay
U OU gy [ 0P PU ras U
Uox "Vav =¢ { ax Tove|te ek
ov oV op 02V 02V
W OV msas5m)OP | moa-390V | _mia-p PV
UVax "Vay = ¢ oy T ¢ vz T ° X2

In the longitudinal momentum equation, the second term on the right
hand side is negligible compared to the first term if m —a — 30 < m+ a — G.
This condition corresponds to a slope of the wall indentation such that
B+ a>0. In order to have viscous and inertia terms of the same order,
we take 33 =m — a.

With 8 = (m — a)/3, the regular expansions are

U= E(mffl)/3U1(X7y) 4o,
V= 5(217%-i-a)/3{/1()(7 Y)4---,
P—p. = 5(2m—2a)/3p1(X7 Y)4---.

Then, we obtain the boundary layer equations

ou, vy
ax tay =
ouy _oU, 9P, U,
Uox tVay T ax Tave
oP;
v
oP;

In the boundary layer, we have v - 0. Then, the pressure expansion is

such that
P—p, = 52(m7°‘)/3P1(X) R

In the middle deck, we have

P—pe=-2"""X+ep1(X,y) +- .
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The condition 8 > 0, i.e. m —« > 0, leads to m — « > 2(m — «)/3. Then, to
order ¢2(m=®)/3 the MVDP leads to

s:z(mfoz).

3

The matching condition on pressure gives

lim pi(X,y) =P(X).

y——1/2

The core flow equations (or middle deck equations) are

our v
ox oy
Ouy dug _ spm—a)/3-—r 901
wogx tg, T F X
Ovy _ 2(m—4o¢)/3—r8p1
Yox T ° By

From the longitudinal momentum equation, a non trivial solution is obtained
if and only if

2
< Z(m—a).
r < 3(m @)
If r < 2(m — «)/3, the longitudinal momentum equation is

5’u1 dUO
U= +v1— =0.
Yox T dy
The solution of the continuity equation and longitudinal momentum equa-
tion is

d’LL()

= A(X)=2

Uy ()dy7
__d4

v = d up -

Using the expansion operators M and I, we obtain

in the middle deck, to order €": MU = ug + €"uq,

in the boundary layer, to order e(™~®/3: 1{f = ¢(m=)/3y,

In order to apply the matching condition M1 = IMU with the MVDP,
the operators M and I must be considered to the same order.

If r < (m — «)/3, the matching of the longitudinal component of velocity
obtained with M and I to order r gives the trivial solution A(X) = 0. Then,
we are led to take r > (m—a)/3. With ug = 1/4 —y?, the matching condition
MIU =1IMU gives
e ifr=(m—a)/3, with M and I taken to order r,

lim (U, —Y) = A(X),

— 00
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o ifr>(m—a)/3, with M and I taken to order (m — «)/3,
lim (U1 —Y)=0.
Y —oo

In addition, with the transverse momentum equation in the middle deck,
we find that the case r < 2(m — 4«a)/3 is impossible. Then, we have
r > 2(m — 4a)/3. The transverse momentum equation gives
o ifr>2(m—4a)/3,

o1
P
Oy ’
o ifr=2(m—4a)/3,
L )}
09X T oy

The above results show that the couple (r, «) is in the hatched triangle
in Fig. S.5 and « > 0. Smith’s theory is obtained for the least degenerated
case, r = 2m/7 and a = m/7. To a certain extent, this theory is equivalent
to the triple deck theory for external flows.

In the general non symmetric case, for a given value of «, the most sig-
nificant degeneracies are given by the smallest value of r. The corresponding
indentation induces the largest perturbation in the streamwise velocity. Then,
for 0 < a < m, we have
e r=(m-—a)/3ifm/7T<a<m,

o r=2(m—4a)/3if0<a<m/T7.

r=2(m—4«a)/3

2m/3

m/3
2m/7

Fig. S.5. Domain covered by the study in the (r, a)-plane

12-2.
If 0 < a < m/7, we have r = 2(m — 4a)/3. The transverse momentum
equation gives

8p1 (9’01
a—y = —an—X = ’U,(%AH(X) .
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To calculate the pressure p;, we know that, for the lower wall

lim/2p1(X,y) =Pi(X).

y——1
In the same way, for the upper wall, we have

lim_p1(X,y) = Pi(X).

y—1/2

We also know that 1

ug = Z — y2 .
Finally, we have

AN(X 15

»(X,y) =P (X)+ % (12y5 —10y3 + Zy + 1) .
‘We obtain A7)
Pi(X)=Pi(X)+ 30

With Prandtl’s transformation, the lower wall boundary layer equations
become

%Jra_w—o

0X 0z 7
Lo U, op 9%,
Uox "Wz = ax T ez

on

0z

The boundary conditions at the wall are
Z=0: Uy=0, W=0,
and the matching condition gives
Zhir})o(Ul —-Z)=B(X)+ F(X).

We have

B(X)=AX)ifr=(m—a«)/3,

B(X)=0ifr > (m—«)/3.

In the upper wall boundary layer, the equations for Uy, V1, P are

U, oV,
ox oy
_0U, — oU, 0P, 0T
Uiox "Viy T T ax P
0P,

oy
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With Prandtl’s transformation, these equations become

oUs oW _
ox oz
— U, —0U,; oP, 9%U,
U W = —
ox oz oxX g7
oPy _
oz

The boundary conditions at the wall are
Z=0: U, =0, W=0.
The matching condition gives

dim (T - Z) = ~B(X) + G(X) ,

Z—00

and we have
e BX)=AX)ifr=(m-a)/3,
e B(X)=0ifr>(m-—a)/3.
If m/7 < a < m, we have r = (m — «)/3. The transverse momentum
equation is
Op1

=0
Oy ’

which gives .
P (X)=Pi(X).

The two canonical problems for the boundary layers are the same and the
pressure distributions in the lower and upper wall boundary layers are the

same. This leads to 1
A= 3 [G(X)-F(X)] .

The slope 0 of the wall indentation is given by
5= 5(m+20¢)/3 )

We obtain the classification of the different studied cases
o if 0 <a<m/7, wehave

1<L=<RY,
RV = §=R3T |

o if m/7<a<m,wehave

RYT <L <R,
R w5-R1T .
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12-3. From Problem 12-1, we have § = 1 and m — a = 3. Then, the lines
bounding the domain of study shown in Fig. S.5 are determined below.

e The line r = (m — a)/3 becomes r = 1.

e The line r = 2(m — 4a)/3 becomes r = 2(1 — «).

e The line r = 2(m — «)/3 becomes r = 2.

We obtain the domain shown in Fig S.6.

7727

0

0 12 o

Fig. S.6. Domain covered by the study in the (r, «)-plane (8 = 1)

From the relation
R=e ™,

we obtain
R =g Bt

From the relation
5= €(m+2a)/3 ,

we obtain
§=c¢lte,

The core flow momentum equations become

X ' dy X ' 0X
v | ., Ov Ov 2(1—a)—r OP 3
wpx TE ( ax+“ay>_ ay TOE)

The first approximation is given by the first significant perturbation, i.e.
the smallest value fo r for a given value of o. Then, for a > 0, we have r < 2
and the first order core flow equations give

Our | dn

ox oy
0 d
uOﬂ—l—Ulﬂ:O.

0X dy
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The solution is

duo
up = Al(X)@ ;
v = —A'l(X)uo .

For the second order, two cases must be considered.
1.« > 1/2, r = 1. The core flow momentum equations are

ou dug ou ou\ dp 3

UO8X+Udy +s<uaX+vay>_ 5aX+O(5)7
Ov v v\ 4 5,0p 3
uoaX+5<uaX+vay>— € 8y—&—O(a).

Then, we are led to take the AEs of u and v as

U=UL+EU2+ -,
V=01 +EVy A+ .
We obtain the equations
8U2 3v2 -0
ox oy
8U2 dUO 8])1 8U1 8’&1

U0 =< =

ox " ay T Tax  Max "oy

For the case o > 1/2, we have

0
0=,
dy
For the case a = 1/2, we have
oy Op1
Upmor = ——— .
YoX T oy

2.0<a<1/2,r=2(1— ). The core flow momentum equations are

ou dup 5, 0p 2(1-a)
uoaX—i—vdy— € 3X+O(€ ),
dv  Op 2(1-a)
Wax = gy TOETTT

Then, we are led to take the AEs of u and v as

u:u1+€2auz+~",

V=11 &%y 4.

415
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which gives the equations

ous o
0X = Oy ’
W on
0X dy X’
dvi  Ip
99X T oy

In fact, the AE of U valid for both cases (a > 0) is
Z/IZUO+€TU1+€2U2+"'

which shows that the gauge of the second order is 2. This corresponds to
the line » = 2 in Fig. S.6. The AE of V is

VY ="t % + 2Ty + - -
For ae > 1/2, the second order equations give
Ouz | Ovs
0X = 0Oy
6’&2 dU() 8])1 6’&1 6“1

U m T V2—— = — == —

X dy ax  ox oy

:O’

and we have also
_ op1
0=—.
Jy

8 V2 - lﬁpliAdAld 1dU0
oy \uo/) utoX Vax dy \uo dy )’

and the solution is

We obtain

B 1/24y\> A2 d2y, dug
uz(X,y)—2lyln(1/2y> —2{ Pt e + A2(X) Q
1 1 1/2+y\° d
(X, y) = (§+y) (5—1/) ln(—1§2z> + 2y 6—?

B dAl d’UJoidAg( )
Vax dy ~ ax e

For the lower wall boundary layer, we have

U=cUy+ -,
V=eev 4.,



Solutions of Problems

where the boundary layer variable is

124y
ey

Y

Two cases are considered.
1. For r =1, a > 1/2, we obtain

— 00

On the other hand, we have

IV =2ty
MY = €1+a1}1 + €2+a1)2 .

To the same order 2%, we obtain

(9p1 dAl
AN 2 et
(&1 +YA1) = a A1 d

lim
Y —oo
2. Forr=2(1—-a), 0 < o < 1/2, we obtain

lim (U; —Y)=0.

Y —oo

On the other hand, we have
MV =@y 4 CFa)y,

and

. Ip1
lim V, = — =t .
Y1—r>noo ! 8X

For the symmetric channel, two cases are considered.
1.For 0 < a < 1/2,r =2(1 — ), we have

"

A 15
=P+ 2L (125 —102+ =y +1
P1 1+60( Y y+4y+ ,

so that the upper and lower walls pressures are related by
1

— A
Pi=P +=L.
1 1+30

2. For o > 1/2, r =1, we have

417
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If the channel is symmetric, F = G.
In both cases, for a symmetric channel, we obtain A; = 0 for a > 0. We
have

U=ug+eug+--,
V:52+av2+...7

dUO
Ao —29
p1+ 2dy )

us(X,y) =2 [yln <1/2_y)2 —2

1 1 1/2+y\’ Opy  dA,

- ——y|In|l 77— 29| == — —uo -
<2 “’) (2 y) " <1/2—y) TIOX Ty
Note 5.3. If the function F' (and the function G) depends on £ and can be expanded
at least to first order as

F(z,e) = Fi(X)+eF(X)+---

then, it is possible that Az # 0. The condition F; = G; leads to A; = 0. The
condition F5 = G5 leads to A = 0.
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