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INTRODUCTION

This volume is the Proceedings of the Conference on Mathematical Biology
and Dynamical Systems that was held at The University of Texas at Tyler,
October 7-9, 2005.

The aim of this conference was to bring together a group of established
and up-and-coming researchers from a diverse range of topics in Mathemat-
ical, Computational and Theoretical Biology, to share their latest results in
a setting that would encourage informal discussion of future research direc-
tions. The conference also provided an opportunity for young researchers
and graduate students to interact with top researchers and to be exposed
to the very latest areas of research.

There were twelve one-hour plenary talks during the two and a half days
that the conference ran.

The subjects covered truly reflected the wide spectrum of Mathemati-
cal and Theoretical Biology, and researchers came from campuses from all
over the United States, from the University of Florida to Cornell Univer-
sity in New York, to The Utah State University. Talks covered subjects
as wide-ranging as predator-prey models in the chemostat, using DNA as
a computational tool, immunology and T-cell dynamics, and evolutionary
dynamics.

This proceedings contains eight papers by eight different authors and
covers articles with applications to immunology, ecology, computation and
more.

The Conference was generously supported by the National Security
Agency and The University of Texas at Tyler. The University of Texas
at Tyler made an ideal setting for this conference, and we are especially
grateful to the library staff and faculty in the Mathematics and Biology
departments for the work they did in making this conference a success.
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METHYLATION OF DNA MAY BE USEFUL AS A
COMPUTATIONAL TOOL: EXPERIMENTAL EVIDENCE

SUSANNAH GAL, NANCY MONTEITH, SARA SHKALIM,
HU HUANG and TOM HEAD

Department of Biological Sciences and
Department of Mathematics,
Binghamton University, Binghamton,
NY 18902-6000, USA

August 13, 2006

Previously we have explained the abstract concept we call ‘aqueous comput-
ing’ and illustrated it with concrete wet lab results. Here, we explore the use
of methylase enzymes to ‘write’ on double-stranded DNA molecules at sites
where restriction enzymes will cut if, and only if, the sites have not previously
been methylated. A site represents the bit zero (False, F) if the site has been
methylated and the bit one (True, T) if it has not been methylated. ‘Reading’
is done by attempting a cut at each of the sites. We found 8 commercially
available methylases and 8 corresponding restriction enzymes that would not
cut after the action of one of the methylases. We were able to confirm that
methylation by each of these 8 enzymes individually blocked cleavage only by
the restriction enzyme associated with that site and not any other enzyme. We
then used these enzymes to approach a 3-variable, 4-clause satisfiability (SAT)
problem using either plasmid DNA (pBluescript) or PCR product made from
the region containing the restriction enzyme sites on the plasmid. Pairs of
methylases were defined to represent each of the states of the operators p, q
and r, one methylase for p and another for p’, etc. We methylated the DNA in
parallel at the two sites so either the p site was methylated (making p false)
or the p’ site was methylated (making p’ false). We did that for the other two
variables as well to create a set of logically consistent DNA fragments. Then we
applied the 4 clauses using restriction enzymes to cut DNA fragments that did
not satisfy them. At the end, we found evidence for intact DNA indicating an
answer satisfying all of the clauses. To confirm the state of each of the Boolean
operators, we used cleavage by the appropriate restriction enzyme. We found
in the computation with both the plasmid and the PCR product, one site pair
to show false in both sites; q and q’, for instance. This should not be possible.
We suspected incomplete cutting during the clauses by one of these restriction
enzymes, specifically BssHII. In summary, we did successfully show the use-
fulness of DNA methylation in a scheme to do a mathematical computation.
Thus, we have added to our arsenal of potential methods of performing DNA
computing in the aqueous style.
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1. Introduction

An increasing number of groups in the world are exploring the possibili-
ties of using DNA as a computer register. This has at least one obvious
advantage over traditional computers, namely there are 4 possible bits at
each position — ‘A’, ‘C’, ‘G’, and ‘T’. Also, there are many naturally occur-
ring enzymes that work with DNA that can be harnessed to facilitate DNA
computing. Another advantage of using DNA in aqueous solution (i.e., in
water) is that with a simple split-and-mix technique, problems that require
an exponential number of steps to solve conventionally, involve only a lin-
ear number of steps with this approach. Previously we have explained this
abstract concept which we call ‘aqueous computing’ and illustrated it with
concrete wet lab results (for reviews see [3, 6]). Each aqueous computation
begins with a vast number of molecules all of identical structure. Each of
these molecules is used as a ‘nano-tablet’ having prescribed locations at
which bits can be ‘written’ by specified means. This writing step requires
an alteration such that bits where “writing” has occurred can be distin-
guished experimentally from “non-written” areas. We have generally done
these steps in pairs to represent the two possible states of a variable (such
as p and p’, etc.)

We have discussed various theoretical approaches to this, but up until
now we have concentrated on the approach of using a set of three enzymes
to do this writing. To write on DNA in this approach, it is cut first by a
restriction enzyme that leaves overhanging ends of DNA at the cut site.
Second, we use a DNA polymerase to fill in the overhang ends to make
a blunt end. Then third we ligate those pieces back together using the
third enzyme, DNA ligase. The DNA polymerase adds bases equal to
the number of overhang nucleotides from the enzyme. This allows two
things, first the site will no longer be cleaved by the original restriction
enzyme and second it increases the size of the DNA by the number of
added bases. Thus, this method writes on DNA and we can distinguish
between written and un-written DNA by size and by its ability to be
cleaved by a specific restriction enzyme. We implement the clauses for
SAT problems on the DNA molecules by performing parallel digestions
with specific restriction enzymes. In this problem, cleaved DNA does not
satisfy the condition and is removed. If there is a molecule at the end
that has remained uncut, it has satisfied all the conditions and is an
answer to the problem. We read the answers for a problem by sequenc-
ing the DNA and/or by digesting it with the appropriate restriction
enzymes. We have used this approach to address two classical problems
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in DNA computing namely a 3-variable SAT problem and a 3 x 3 Knight
problem [2-5].

But for a variety of reasons, we wished to explore other writing
approaches for aqueous computing. The three enzymes involved each require
different enzyme conditions (buffers and salts) and so must be used sequen-
tially and not simultaneously. This approach also requires the DNA be
purified between steps to remove the unwanted buffer and salt components.
These steps take significant time and result in some losses of DNA mate-
rial at each step. To alleviate some of these challenges, we explore in this
paper the use of DNA methylation as a modification that can be used
for DNA computation. DNA methylases are naturally occurring enzymes
in both prokaryotic and eukaryotic organisms that add a methyl group
either to an adenosine or a cytosine (reviewed in [1] and [7]). In the former,
they are believed to protect the organism from infection by a virus. These
prokaryotes carry restriction enzymes to cut specific DNA sequences and a
corresponding methylase that modifies the same DNA sequence in the host
DNA. This modification blocks the restriction enzyme from cutting host
DNA while incoming foreign DNA (say from a virus) does not have the
methylation modification at that specific sequence and so is cleaved. This
cleavage generally renders the viral DNA non-infectious, thus protecting
the prokaryotic organism. Eukaryotic cells tend to use DNA methylation
to affect gene regulation by DNA binding proteins. In most cases, methy-
lated DNA is not expressed by eukaryotic cells. Because of the commercial
availability of methylases and restriction enzymes, we thought it would be
worthwhile to test whether this process could be used for DNA computing.
Thus, here DNA methylation is the writing step while discerning whether a
restriction enzyme can cut the DNA is part of the reading phase. The fact
that one enzyme was going to be used at this writing step (the methylase)
instead of 3, we felt would potentially speed up the computation. Thus, in
this report, we tested 8 sets of methylases and restriction enzymes and did
two 3-variable SAT problems with these enzymes. We used both plasmid
and double-stranded PCR products for these reactions. We found this sys-
tem works fairly well with some limitations in obtaining the correct answers
to these problems.

2. Materials and Methods

The starting plasmid DNA, pBluescript SKII (Stratagene) was initially
used and also the PCR product derived from amplification of the multiple
cloning site of this plasmid with the M13-20 and reverse primers. Methylases
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were obtained either from New England Biolabs (BamHI methylase, dam
methylase, EcoRI methylase, Haelll methylase, Hhal methylase, and Hpall
methylase) or Takara (HindIII methylase and Clal methylase). Restriction
enzymes and Taq polymerase were obtained from New England Biolabs.
For methylation, generally 11-15 ug of DNA was incubated in 250 ul of the
preferred enzyme buffer in the presence of 120 uM of S-adenosyl methio-
nine and 24-48 units of the methylases. This was incubated for 12 hours
at 37°C, heated at 65°C for 15 minutes and then the DNA purified using
QIAquick PCR Purification Kit (Qiagen). Restriction enzyme digestions
occurred with approximately 0.3 ug DNA in 10 ul of the enzyme’s preferred
buffer with 4-20 units of the restriction enzyme. The samples were incu-
bated at the optimal temperature for the enzyme (37°C for all enzymes
except Smal which was incubated at 25°C and BssHII which was incu-
bated at 50°C) for 1 hour. To confirm cleavage or not of the DNA, it was
separated on an acrylamide (10% acrylamide Ready gel from BioRad) or
agarose gel (0.8% in TBE buffer 0.09M Tris, 0.09M borate, 2mM EDTA)
and visualized with ethidium bromide. Images of the gels were taken using
a Kodak Imaging system.

3. Results
3.1. FEzxplanation of the system set-up and approach

DNA methylases modify DNA so that certain restriction enzymes can no
longer cleave the site. We wanted to test DNA methylation as a possi-
ble means for DNA computations in the aqueous style we have previously
used [2, 4-6]. The overall scheme is in two stages for a standard 3-variable
SAT problem (shown in Figure 1).

We first assign the six Boolean literals (p, p’, q, q

, r and r’) spe-

cific sites on a given piece of double-stranded DNA (Figure 1A). These
sites correspond to specific restriction enzymes sites much like we have
done in other implementations [2, 4-6]. Initially, all of the sites can be
cleaved by the restriction enzymes. We define a literal as being True if
the site corresponding to this variable can be cleaved by the restriction
enzyme. Thus, initially each literal is true which is not logically consis-
tent (p and p’ cannot both true). We created the collection of logically
consistent DNA molecules by methylating the restriction enzyme sites to
prevent them from being cleaved. We did this in pairs, each with half of
the DNA (see Figure 1A where it is shown for variables p and p’). Thus, in
half of the DNA, methylation is done on the p site while in the other half,
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DNA mixture containing all logically consistent molecules for 3 variables

DNA with 8 sites for restriction enzymes (RE)
P! q P, " ' q " r T, Tp p g 4 T prq g

p p' q q' rr'ss' PP "qq "rr,p™p'q g e, p p' g q r™r, p"p'qq T
Methylase for, Methylase for RE cutting site p' \RE cutting site q'
site p site p'
Only intact molecules have "p' Only intact molecules have "q'
"pqqrrss PP qqrrss so have p (unmethylated) so have q (unmethylated)

RE p can't Cut\ RE p' can't cut \ /

o p'q g e, "pp'q g
A’ PP "G q T, p ' q"q T T, p "p "q g, p 7P q "q T
Ppqqrrss All molecules have either p OR q
P qqrrss
DNA is logically consistent at p/p'

Panel A Panel B

Figure 1. Representation of using methylation as a computation tool in a
SAT problem. A. To create the logically consistent molecules at 4 variables we start
with a plasmid DNA (or a PCR product) with 8 sites for distinct restriction enzymes
(designated p, p’, etc.). Half of these molecules are treated with the methylase for the p
site and half treated with the methylases for the p’ site. The action of each methylase
blocks the cutting by the corresponding restriction enzyme. When the product of those
two reactions are recombined, the resulting DNAs are methylated either at p or at p’
and so are considered logically consistent at this variable. This is continued for the other
3 variables to make a mixture of DNAs that are logically consistent at all 4 variables.
B. To implement the clauses, we cut with the appropriate restriction enzymes to destroy
molecules that do not satisfy the clause. In the example given, to implement p OR q, we
separate the result from part A with logically consistent molecules at 3 variables into two
pots. In one, we cut with the restriction enzyme for the p’ site which should leave intact
only those molecules where the p’ site is methylated. In the other pot, we cut with the
restriction enzyme for the q’ site which should leave intact only those molecules where
the q’ site is methylated. When these two are combined the intact molecules have either
the p site unmethylated (p’ methylated) or the q site unmethylated (q’ methylated) and
so for the intact molecules p OR q has been satisfied. We continue with this approach
for the other clauses.

methylation is put on at the p’ site. When these two parts are recombined
together, no DNA molecules contain both p and p’ sites unmethylated and
thus cleavable. By doing this reaction, we have enforced logical consistency
for the pair of literals p and p’. In the problem, we then continue with the
methylases corresponding to the sites for the literals q and q’” and then the
literals r and r’. The final resulting DNA is logically consistent with regard
to each individual Boolean variable and should contain 8 distinct types of
DNA molecules.

In the second stage, we proceeded with various cleavage steps to invoke
the chosen clauses of the SAT problem being tested. The problem we used
here was to determine if there is a truth setting for the Boolean variables
P, q, r for which each of the four clauses p OR ¢q, p’ OR q OR r’, ¢’ OR r’,
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p’ OR r is True. Simple written work will show that the answer to this is
Yes and the truth setting is p is False, q is True and r is False. To weed out
DNAs that do not satisfy specific clauses we used the restriction enzymes
associated with each of the sites. To represent the clause p OR q, we poured
the logically consistent DNA (above) into two tubes (Figure 1B). In one
tube, we cut at the p’ site (only those DNAs where p’ is True will be cut),
thus only DNA molecules where p’ is False (p is therefore True) will be
uncut or intact. In the other tube, we cut at the q’ site (only those DNAs
where ¢’ is True will be cleaved), thus only DNA molecules where q is True
will be remain uncut or intact (Figure 1B). Then, we unite the content of
these tubes and note that, the intact, uncut molecules have the property of
p OR q = T. We continued in a similar manner with each other clause. At
the end of all the clauses, we determined if there is any intact, uncut DNA
left and if so, what is the methylation status (and thus the designation) of
each literal site. In this way, we hoped to be able to use methylation instead
of the three-enzyme protocol we had used previously [2, 4, 5].

3.2. Testing available methylases and restriction enzymes

We found 8 commercially available methylases and the corresponding
restriction enzymes that we used to confirm whether this system could be
used as a binary modification on DNA and therefore a potential technique
for DNA computations. These enzymes are listed in Table 1.

We first needed to confirm the specificity of each of the methylases for its
target site and only that site on the DNA. For this experiment, we methy-
lated the DNA first with a specific methylase, then we confirmed that the
DNA was completely methylated using the target restriction enzyme. This
was done by showing this restriction enzyme could not cut the DNA. Then,
we cut the methylated DNA with all of the other restriction enzymes to
confirm that these others could cleave this methylated DNA. All 64 com-
binations were tested (8 differently methylated DNA with the 8 different
restriction enzymes), most both on plasmid and on PCR product. Check-
ing of the dam methylase was only done on PCR product as the plasmid
DNA was obtained from a dam positive host thus the DNA was already
methylated at that site. In all cases, once completely methylated DNA was
obtained, only the appropriate enzyme was blocked from cleaving the DNA.
Some representative gels are shown in Figure 2.

We had at times difficulty in obtaining completely methylated DNA due
to apparent low activity of some of the DNA methylases. We found that in
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Table 1. Listing of methylase and restriction enzymes used for computation

Methylase Seq. modified® Restriction enzyme
blocked & sequence recognized
BamHI methylase G-G-A-T-mC-C BamHI GGATCC?
Dam methylase G-MA-T-C Dpnll GATC?
Clal methylase A-T-C-G-mA-T Clal ATCGAT
EcoRI methylase G-A-MA-T-T-C EcoRI GAATTC
Haelll methylase G-G-mC-C NotI GCGGCCGC
Hhal methylase G-mC-G-C BssHII GCGCGC
HindIII methylase mA-A-G-C-T-T HindIII AAGCTT
Hpall methylases C-mC-G-G Smal CCCGGG

ISequence after methylase modification with the ™A or ™C indicating a
methylated adenine or cytosine residue, respectively.

2 Although the BamHI methylase and dam methylase overlap in their sequence
specificity, the BamHI restriction enzyme is not inhibited by dam methylase
modification while the DpnlI restriction enzyme is not inhibited by the modi-
fication of the BamHI methylase. Ndel, Sau3A and Mbol also cut at this site.
Mbol is not sensitive to methylation.

Clal methylated DNA EcoRI methylated DNA Recutting by BssHII
M U Cl C+Ba *EcHiNoSm MUEcE+Ba *ClHiNoSm M Bs UcBeBcUeU

A B C

Figure 2. Confirmation that methylation does not affect the other restric-
tion enzymes. Plasmid DNA was methylated with either Clal methylase (panel A and
C- labeled ¢B and cU) or with EcoRI methylase (panel B and C- labeled eB and eU),
then left uncut (U,cU,eU) or cut with either Clal (Cl), BamHI (Ba), EcoRI (Ec), HindIII
(Hi), NotI (No), Smal (Sm) or BssHII (cB,eB), then separated on a 0.8% agarose gel
with a A HindIII cut DNA marker (M). As a positive control, unmodified plasmid DNA
was cut with Cla (C+), EcoRI (E+) or BssHII (Bs). Uncut DNA shows up as multiple
bands on these gels representing open circular and supercoiled DNA while cut DNA
shows up as one band at 3Kb.

some cases the DNA needed to be incubated with the methylase 2 or 3 times
before the site was completely methylated (measured by complete lack of
cleavage by the corresponding restriction enzyme). This was especially true
of BamHI methylase and HindIII methylase. We tried longer incubations
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and higher concentrations of S-adenosyl methionine and methylases but
it did not always make any difference in the outcome. Thus, we showed
that each of the individual methylases modified only their corresponding
site and did not disrupt the cleavage by restriction enzymes recognizing
different sites, so we could begin with the computations.

3.3. 3-vartable SAT computation with plasmid
DNA and PCR product

We tried two different schemes for doing the same satisfiability (SAT) prob-
lem with 3 variables and 4 clauses. In one scheme, we used circular plasmid
DNA pBluescript that contains a multiple cloning site containing all the
restriction enzyme/methylase recognition sites and in the other case, a PCR
amplification product of this same region. The assignments of methylases
for the individual Boolean variables for both the plasmid and PCR products
are given in Table 2.

In both cases, we first created the self-consistent set of DNAs (ones
where either p or p’ is true, etc.) by incubating two portions of the DNA
in parallel with the two appropriate methylases, for instance the p and p’
methylase (scheme in Figure 1A). At each stage, we confirmed that each
individual methylase had completely modified the DNA by showing the
lack of cutting by the corresponding restriction enzyme before recombining
the two halves. We then separated into two equal portions to continue
with the other two methylases to represent the q and q’ literals, followed
with the methylation by the enzymes corresponding to the r and r’ literals.
In the final tube, we expect to have only logically consistent molecules (p
or p’, etc) and all 8 possibilities of the different independent combinations.
Following the preparation of this pool of different DNAs, we then performed
restriction enzyme cleavage steps to remove those DNAs that did not satisfy
the clauses using the scheme described above and in Figure 1B. Following

Table 2. Boolean variable assignments used

For plasmid For PCR product
p HindIII site P BssHII site
p’ Smal site P NotlI site
q Notl site q BamHI site
q’ BssHII site q’ Dpnll site
r Clal site r Clal site
r’ EcoRI site r’ EcoRI site
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the reduction in complexity of the DNA molecules using the clauses, we
determined whether there was an answer (intact, uncut DNA) and if so,
what the truth settings for the answer was for the 3 Boolean variables.

For plasmid DNA, we had 3 different ways to look for intact DNA. We
could look for uncut circular DNA as we had in the previous work (see [5]).
Alternatively, we could look for DNA able to transform bacteria as the
pBluescript plasmid contains an origin of replication for E. coli bacteria and
an ampicillin resistance gene for selecting bacteria containing the plasmid
and only circular, intact plasmid DNA will efficiently transform bacteria
(see [5]). Finally, we could use PCR to amplify the full multiple cloning
site using primers annealing to the two different sides of this region (M13
reverse primer and M13 -20 primer). Practically, we found too little of the
plasmid DNA to detect on a gel directly but we did find enough circular
DNA to transform bacteria (data not shown) and to produce a PCR product
(Figure 3, lane 2).

Thus, there is an answer that satisfies all the clauses. To determine the
status of each literal, we cleaved the plasmid DNA first with each of the
six restriction enzymes, then performed PCR using the primers that were
located on either side of the multiple cloning site. If a site is methylated, the
enzyme should not cut (site is defined as False) and a PCR product should

M U Ba Hi Sm Bs No Ec CI

HPEITETT

PCR product
-

Figure 3. PCR product from treated plasmid DNA following SAT compu-
tation using methylation. Circular plasmid resulting from the SAT computation was
either untreated (U) or cut with various restriction enzymes (BamHI=Ba, HindIII=Hi,
Smal=Sm, BssHII=Bs, NotI=No, EcoRI=Ec, Clal=Cl) then amplified using PCR with
M13 -20 and reverse primers and the product separated on a 1.5% agarose gel with the
A DNA cut with HindIII as molecular weight marker (M). If a PCR product is present,
that indicates the plasmid is intact and the site was not cut (presumably due to the
site being methylated) and therefore the site would be considered False. If there is no
PCR product produced, that indicates the restriction site was cut and therefore the site
would be designated True. Uncut DNA and BamHI cut DNA act as positive and negative
controls, respectively.
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be formed. If a site can be cleaved (non-methylated and is True), the sites
for the two opposing PCR primers are separated from each other and no
product is formed. We used this strategy to detect the status of the 6 sites
involved (Figure 3). The final product of the clauses can act as a template
for successful PCR to produce a 300 bp fragment. Cleavage by an enzyme
found in the multiple cloning site but not used in the computation shows
that cleavage blocks the ability to form a PCR product (Figure 3, lane 3).
Then the figure shows the pairs of sites next to each other on the gel. It is
clear that cleavage by HindIII and Clal still allow the production of a PCR
product suggesting those sites are methylated. On the other hand, cleavage
by enzymes Smal and EcoRI block the ability of the PCR to produce a
product (Figure 3, lanes 5 and 8). These sites are thus defined as true.
This makes both p and r to be False as Smal and EcoRI represent p’ and
r’, respectively. Unfortunately as can be seen in the figure, both Notl and
BssHII cleavage result in some PCR product although in both cases the
amount of product is decidedly less than that detected after HindIII or
Clal cleavage. The Notl and BssHII enzymes represent the literals q and
q’, respectively and thus we do not expect both to be false as represented
by the data presented (Figure 3). The expected answer for the problem is
p is False, q is True, and r is False. We found the correct settings for both
p and r, but not for q where the results call both q and q’ as False.

We also performed the satisfiability problem with PCR product from an
amplification of the multiple cloning region containing all of the sites used
(see above). At the end of the clauses, we separated the resulting DNA on
an acryl-amide gel to determine if any full length PCR product still existed
(Figure 4B, lane 6). The full-length PCR fragment was detected on the
gel along with many smaller cleavage products that had not been removed
from the mixture following the clauses. Next, to determine the status of each
of the literals, we incubated the remaining DNA with different restriction
enzymes followed by acrylamide gel electrophoresis (Figure 4). Cleavage
by EcoRI results in significant reduction in the amount of full-length PCR
product detected relative to cleavage by the alternative enzyme site, Clal
(Figure 4A). Likewise, cleavage by DpnllI results in more full-length DNA
than cleavage by the enzyme BamHI (Figure 4B, lanes 2 and 3). When the
DNA is incubated with either Notl or BssHII, more of the full-length PCR
product was detected after cleavage by the latter enzyme than the former
although there is still significant full-length PCR product in the case of
the sample treated with Notl. Also, still some full-length DNA is visible
in the EcoRI and BamHI digested samples suggesting incomplete cleavage
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M Ec (I M Ba Dp Bs No U

Full length
PCR product

Figure 4. Analysis of DNA following SAT computation using methylation
of PCR product. DNA fragments resulting from the SAT computation using PCR
product as the initial template was either untreated (U) or cut with various restriction
enzymes (EcoRI=Ec, Clal=Cl, BamHI=Ba, DpnlI=Dp, BssHII=Bs, NotI=No,) then
separated on a 10% acrylamide gel with the 6X174 DNA cut with Haelll as molecular
weight marker (M). The arrowheads mark the full length PCR product. If the full-
length PCR product is present, that indicates the DNA is intact and the site was not
cut (presumably due to the site being methylated) and therefore the site would be
considered False. If there is less full-length PCR product than in the untreated sample,
that indicates the restriction site was cut and therefore the site would be designated
True. Uncut DNA acts as a positive control.

of the final product and potentially incompletely methylated DNA. Thus,
through the literal assignments in Table 2, we come up with the answer p is
False, q is True and r is False with the caveat that there is still a significant
amount of uncut DNA in all samples.

4. Discussion

To analyze the possibility of using the bacterial DNA methylation system as
a means for DNA computations, we first had to explore whether the methy-
lase enzymes were functioning and specific, meaning they would alter only
the recognition of their linked restriction enzyme and would not alter the
recognition by any of the other restriction enzymes we used. This appeared
to be the case. We found evidence that the DNA methylase enzymes were
sequence specific and no evidence of cross-methylation to affect the other
restriction enzyme sites used in this study. We then used these 8 methy-
lases and 8 restriction enzymes in two DNA computations in the aqueous
style of our previous work. With this approach, we were able to perform
two 3-variable SAT problems using 4 clauses. In both cases, we found evi-
dence for an answer, however, the answer provided contained two possible
states for a single given variable. Simple analysis of the chosen clauses did
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not indicate two possible answers. Thus, we found some problems with the
implementation of our approach.

There are at least three explanations for the lack of complete success
of these SAT problems using the methylation approach, incomplete methy-
lation during preparation of the logically consistent DNA set, incomplete
digestion during implementation of the clauses or incomplete digestion dur-
ing the reading phase of the computation. If the original DNA was incom-
pletely methylated during the preparation, some DNAs in our mixture
might contain both paired sites available for cleavage. As stated above,
we often had problems getting completely methylated DNA during the
preparation of the logically consistent DNAs and had to repeat the methy-
lation step 2 and 3 times for two enzymes. We did not proceed with the
computation unless we observed complete lack of cutting by the restriction
enzyme associated with the methylation site. But, potentially if a small
amount of incompletely methylated DNA were still present, we may not
have seen it on our gels yet it may have carried through the clause steps.
However, in this case, we would have expected no answer as more DNA
would have been destroyed during the implementation of the clauses than
should have been due to the lack of a methylated (protected) site. What we
found were answers that had both True and False as states of the variable
which is not as easy to explain through lack of complete initial methyla-
tion. One alternative explanation for the partial lack of success is less than
complete digestion by the restriction enzymes during the implementation
of the clauses. This would allow some DNA to persist that should have
been removed during these steps. Related to this explanation is the one
where incomplete cutting may have occurred during the reading phase of
the computation after all the clause steps had been completed. Either of
these explanations would likely be consistent with the appearance of a DNA
answer that should not have been maintained in the population.

In both attempts at the SAT problem, the enzyme pair Notl and BssHII
was associated with the variable having the two possible answers. The lat-
ter of these two enzymes requires cutting at 50°C while the other works
at 37°C. During the implementation of the clauses, we digested the DNA
with one or the other of these enzymes to destroy the appropriate DNA
molecules. In reading the final answers, we digested with these two enzymes
as well before either performing PCR (with the plasmid) or before running
on an acrylamide gel (for the PCR product). In neither case, did we confirm
complete digestion of the material during clause implementation potentially
allowing a small bit of incompletely digested DNA to persist in the mixture.
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In the end, we only assess the presence of complete, uncut DNA from the
original mixture and if incompletely cut material has carried over from pre-
vious steps, we cannot easily distinguish this from the appropriate answer
without imposing our own biases. In both cases where the answers obtained
showed two possible states of the variable, we were using the methylases
Hhal and HaellI and the restriction enzymes BssHII and Notl to test these
sites, respectively. We expected the final answer molecule in both cases to
be methylated at the BssHII site and have the Notl site unmodified. How-
ever, the molecule with the reverse arrangement seemed also to be present
in both cases. Both answers maintained an intact molecule with a BssHII
site unmethylated when this should have been destroyed during the clauses
or the reading. If at either point, the BssHII enzyme did not cut the mate-
rial completely, it would appear to be methylated at this site. Again, due to
the challenges with this restriction enzyme, we feel that either incomplete
digestion by BssHII during the clause or reading phase may explain our
lack of complete success. Other methylases or an isoschizomer for BssHII
that cuts more reproducibly would help make this approach more practical.

We undertook this work to find an alternative to our 3-step, 3-enzyme
reaction to modify the state of each variable to make logically consistent
DNA molecules [2, 4, 5]. We hoped that the use of a single enzyme, namely
the methylases, would significantly speed up our processing. This has hap-
pened. However, our new approach has a number of limitations. In some
cases, the methylase enzymes were not as effective in modifying the DNA
and we found we needed to repeat certain methylation steps 1 or 2 times
before completely methylated DNA at a site was obtained. We were also
limited by the amount of material left at the end of the computation in
our procedure making detection sometimes difficult. With these reactions,
it is not possible to amplify the DNA material before the end of the com-
putation as the action of the Taq polymerase to copy the strands during
PCR alleviates the methylation state at these sites. It would be necessary
therefore, to start with enough material to obtain a clear answer at the end.
With the necessity of re-methylating some of the samples 1 and 2 times, the
loss of material became more acute. There may be a way to remethylate
the required strands after PCR as some DNA modification enzymes have
been isolated that will modify hemi-methylated DNA to make both strands
methylated [8]. This would have to be done after each round of PCR to rein-
state the methyl groups at the positions of the parent strands. This may
make it possible to expand this approach to make it easier to detect the
answer with a small amount of material. We did use PCR but only in the last
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reading step where we were ascertaining the existence of an intact plasmid
molecule after cleavage. The methylation approach is also limited by the
number of commercially available methylases and corresponding restriction
enzymes. Our previous approach only required a restriction enzyme that
left an overhang after cleavage that could be filled in through the action
of a DNA polymerase [2, 4, 5]. There are many hundreds of these types of
restriction enzymes that are available. In our new method, we used 8 methy-
lase enzymes and their corresponding 6-base cutting restriction enzymes.
Many more methylases are known but are not yet commercially available.
Thus we have a difficult limitation to our technique. It is possible other
DNA modifications or the use of DNA binding proteins to protect certain
sites from methylation could be used in a further expansion of this tech-
nique. Thus, this advance may make it possible to expand this approach to
a much larger number of Boolean operators in the future.
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Boolean networks are models of genetic regulatory networks. S. Kauffman
based many of his claims about spontaneous self-organization in complex sys-
tems on simulations of randomly constructed Boolean networks. Some of these
claims are precise mathematical statements. We analyze these statements using
combinatorial methods and show that there is partial agreement with some of
Kauffman’s conclusions, but in other cases there is disagreement. Our key find-
ing is an algebraic parameter that determines the likelihood of ordered behavior
in a random Boolean network. There is a threshold such that when the param-
eter is less than the threshold, ordered behavior is prevalent, and when it is
greater than the threshold, chaotic behavior is highly likely. When the param-
eter equals the threshold, some forms of ordered behavior persist, but others
do not.
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1. Introduction

The realization that the genome is a dynamic network, where some genes
regulate the activity of other genes, is not new. It can be traced as far
back as the Nobel prize winning discovery of the lac operon by Jacob and
Monod [11]. Many other regulatory genes have been discovered since then,
and a picture of the genome as a complex web of interacting genes has
gradually emerged. Although the importance of this regulatory web was
appreciated, mainstream molecular biology has largely focused on achieving
a thorough understanding of the mechanisms underlying the interactions
between individual molecular species. Until relatively recently, little atten-
tion was given to the study of the global behavior of molecular systems.
This has changed with the recognition of systems biology as an important
emerging discipline.
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Stuart Kauffman and René Thomas are among the first and most influ-
ential researchers to recognize the importance of the systems viewpoint in
molecular biology. Much of their work pertains to Boolean networks. We
will define Boolean networks more precisely later, but essentially they are
highly simplified models of the genome, where each gene is modeled by a
Boolean element called a gate. At any time, each gate is either active or
inactive, i.e., its state is either 1 or 0. The structure of the network deter-
mines how the activity of combinations of gates affects the activity of other
gates. This is only an approximation of the behavior of actual genomic net-
works, but it was a reasonable starting point for several reasons. First, pre-
cise knowledge of the speed of molecular reactions was unavailable. Second,
even if such knowledge had been available, the complexity of simulating
reactions with many different rates would have overwhelmed the capabili-
ties of existing computers. Both of these problems still exist, although much
more is known now, and computing power has greatly increased in the last
few decades.

A third reason for considering Boolean networks is that Kauffman and
Thomas were interested in general properties of genomic networks and not
in the detailed modeling of specific systems. Again, it makes sense to study
the simplest and most basic model in order to find properties that apply to
all gene nets.

Kauffman was interested in certain emergent properties of Boolean net-
works that are sometimes referred to as “spontaneous order” or “order for
free.” To summarize his thesis briefly, the genome is constructed from unre-
liable parts that are subject to damage from the environment. Further, their
function can change as a result of mutation during reproduction. Yet the
genome behaves in a robust and reliable manner. Kauffman argued that
this order and stability was not solely the result of natural selection. There
had to be a statistical tendency toward order and self-organization. In other
words, natural selection acts on self-organizing systems rather than creat-
ing them. Without this tendency toward order, almost all mutations would
be fatal, thus preventing evolution through natural selection. Kauffman
has written extensively on this subject; his thinking is consolidated in his
book [14].

Much of the evidence for Kauffman’s thesis comes from computer
simulations. The typical experiment consisted of randomly constructing
a Boolean network subject to some constraints. Each gate’s state was
randomly initialized to 0 or 1, and then the system ran synchronously. Since
the network has a finite number of gates, each of which has two possible
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states, the network itself has a finite number of states, and it will eventu-
ally return to some state that it had been in previously. Since the network
operates deterministically, it will keep returning to this state, repeating the
same sequence of states indefinitely. This sequence of states is called the
limit cycle.

According to Kauffman, the behavior of the network prior to entering
its limit cycle is analogous to the behavior of an embryonic cell as it differ-
entiates into its ultimate cell type, and the limit cycle is analogous to the
differentiated cell’s replication cycle.

Three measures of order were considered:

1. The number of weak gates, i.e., gates that can be perturbed without
changing the limit cycle that the network enters.

2. The number of gates that eventually freeze, i.e., they eventually stop
changing state.

3. The size of the limit cycle.

Ordered behavior is characteristic of genomic and other biological net-
works. They have a large proportion of weak gates and frozen gates and a
small limit cycle. Weak gates are a form of robustness—the ability to recover
from small perturbations or errors. The presence of frozen gates indicates
a degree of predictability in the network’s behavior. A small limit cycle
is another form of predictability: the system will repeat itself frequently.
The opposite kinds of behavior are characteristic of non-biological, chaotic
systems. A system where many of the gates are not weak shows sensitiv-
ity to initial conditions. The limit cycles in chaotic systems are very large,
with many elements changing state unpredictably. Thus they are similar to
strange attractors in continuous chaotic dynamical systems.

Since not all Boolean networks show ordered behavior, a basic problem
is to find properties of networks that determine whether they will be ordered
or chaotic. The degree of interconnection appears to be very important in
this regard. This was varied in Kauffman’s experiments by specifying the
number of inputs each gate had, i.e., the number of gates whose states
directly affected the gate. This number k was fixed, and a random network
was generated by choosing, for each gate, its k input gates and assigning
a Boolean function of k£ arguments to the gate. From the computer simu-
lations, networks where k& > 3 were chaotic, while those where k < 2 were
very stable in the three senses described above. This is a kind of phase
transition, where a change in microscopic conditions causes a change in
macroscopic behavior.



18 J. F. Lynch

Living cells seem to exhibit all three kinds of ordered behavior, and the
typical gene is affected by only a few other genes. Thus the simulations
provide evidence of spontaneous order in cells. In fact, Kauffman’s com-
puter simulations seemed to show a mathematical relationship between the
number of gates and the size of the limit cycle in stable Boolean networks,
which was paralleled in living cells by the number of genes and the duration
of the replication cycle. The size of the limit cycle (or the duration of the
replication cycle) appeared to be on the order of the square root of the
number of gates (respectively genes).

One possible explanation for stability in Boolean networks where the
gates had at most two inputs was that there are only 16 Boolean func-
tions of two arguments, and two of those functions are constant, i.e., the
function that always outputs 1 regardless of the values of its inputs, and
the function that always outputs 0. Thus a significant fraction (1/8) of the
gates in a random Boolean network with £ = 2 would be constant, and
this could be the source of global stability of the network. Conversely, the
chaotic behavior observed in nets with & > 3 could be a consequence of
the much smaller proportion of constant gates. However, Kauffman also
ran simulations of randomly constructed networks with k = 2 but with-
out constant gates, where the remaining 14 two argument functions were
equally likely, and the results were similar to those where all 16 functions
were used.

Kauffman proposed another category of functions as the source of order.
He called these the canalyzing functions. A canalyzing function is a Boolean
function for which there exists some argument and some Boolean value such
that the output of the function is determined if the argument has that value.
For example, the 2-argument OR function z; V x5 is canalyzing because if
either argument has the value 1, then the value of 21 Vx5 is 1. Fourteen out of
the sixteen 2-argument Boolean functions, including the constant functions,
are canalyzing, but this proportion drops rapidly among Boolean functions
with more than two arguments. Thus the hypothesis that nets with many
canalyzing gates tend to be ordered, while those with few of them tend not
to be, is consistent with the experimental results.

The sudden change in behavior between random Boolean networks with
k < 3 and those with k < 2 is also evidence of the “edge of chaos” phe-
nomenon that has been observed in many complex systems. The idea is that
very stable and highly ordered systems are too simple and rigid to adapt to
unpredictable influences from the environment; on the other hand, chaotic
systems lack the robustness to maintain favorable states. Complex adaptive
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systems such as living cells are able to survive because they exist in a region
between excessive stability and chaos. This theme has been elaborated on
by Kauffman and many other researchers in complex systems, for example
P. Bak [1] C. Langton [15], N. Packard [22], and S Wolfram [25].

All of these definitions and claims have precise mathematical formula-
tions, so a natural question is whether the experimental results are sup-
ported by proofs. Indeed, this has been proven for the two extremes in the
range of k. Networks with k& = 1 are highly ordered in the three senses
above (S. Jaffe [12]). Networks with k = n, where n is the number of gates,
are equivalent to random functions on a set of size 2”. It can be shown that
in this case, most gates will not be weak or frozen, and a classical result of
B. Harris [9] implies that average limit cycle size is (y/7/8)2"/2.

Interestingly, at about the same time that Kauffman started investi-
gating random Boolean networks, the mathematical techniques for dealing
with random networks were being developed by P. Erdés and A. Rényi [6, 7]
and E. Gilbert [8], but it was about 30 years before any of these techniques
were applied to the analysis of random Boolean networks. The first proofs
of any of Kauffman’s claims for networks with 1 < k < n appear in an arti-
cle co-authored by the mathematical biologist J. Cohen and the random
graph theorist T. Luczak [4].

Random graph theory is now a flourishing branch of combinatorics.
The most extensively studied version of random graph is the independent
edge model. In this version, there is a probability p (which may depend
on the number of vertices in the graph) such that for each pair of vertices
independently, there is an undirected edge between them with probability p.
Graph theorists have discovered many deep and interesting results about
this kind of random graph, but it does not seem to be a good model of
the random networks studied in biology, communications, and engineering.
A major distinction is that the degree distribution of this kind of graph is
Poisson, but the degree distributions of many real-world networks obey a
power law. A better model for these situations may be random graphs with
a specified degree distribution, which are considered in recent articles by
M. Molloy and B. Reed [19, 20]. Some other shortcomings of the standard
version of random graph pointed out by M. Newman, S. Strogatz, and
D. Watts [21] are that it is undirected and has only one type of vertex.
They develop some techniques for dealing with random directed graphs
with vertices of several types. However, even this model lacks the structure
needed to model the dynamic behavior of networks.
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Kauffman’s Boolean networks are a further extension of the models
in [21] that do include this additional structure. The gates of a Boolean
network are vertices assigned a type corresponding to a Boolean function,
and the directed edges indicate the inputs to each gate. But instead of
simply regarding each vertex as a static entity, we are interested in how
the functions of the gates change the state of the network over time. Our
random Boolean networks include Kauffman’s networks as a special case.
They are specified by a sequence of probabilities p1, po, ..., whose sum is 1,
where for each gate independently, p; is the probability that it is assigned
the ith Boolean function. (We are assuming some canonical ordering of the
finite Boolean functions.) Once each gate has been assigned its function, its
indegree is determined by the number of arguments of the function, and its
input gates are chosen at random using the uniform distribution. Lastly, a
random initial state is chosen.

Our main result is an algebraic parameter, derived from the distribu-
tion p1,p2, ..., whose value determines the global behavior of the network.
When the parameter is less than or equal to a certain threshold, ordered
behavior of the first two kinds mentioned above is highly likely: almost all
gates freeze quickly, and almost all gates can be perturbed without affect-
ing the long-term behavior of the network. Conversely, if the parameter is
larger than the threshold, the networks do not behave in such an ordered
fashion. Our condition for stability actually implies forms of ordered behav-
ior stronger than Kauffman’s. That is, the gates freeze in time on the order
of logn, where n is the number of gates, and the effect of a perturbation
dies out within order logn steps. Consequently, the failure of our condition
implies forms of disordered behavior that are weaker than the negations of
Kauffman’s.

We then apply our main results to the two classes of 2-input Boolean
networks mentioned above. Here, our analysis verifies Kauffman’s claims
for networks that use all 16 of the 2-argument Boolean functions, but it
casts doubt on similar claims for networks that use only the 14 noncon-
stant functions and the importance of canalyzing functions as a source
of order.

Our techniques can also be applied to the limit cycle size. Here
the picture is not as complete. However, it does provide the only case
of an analytic result which definitely contradicts the experimental con-
clusions. Using the same parameter as above, when it is strictly less
than the threshold, limit cycles are small. But when the parameter
equals the threshold, limit cycles suddenly get very large. The analy-
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sis is quite involved and the details will be presented in another arti-
cle. We sketch these results at the end of this article. We do not know
the behavior of limit cycle sizes when the parameter is greater than the
threshold.

Slightly weaker versions of the results in this article were presented
in [17] and [18]. The main contribution of this article is a more general and
uniform treatment of these results.

2. Definitions

A Boolean network B is a 3-tuple (V, E,f) where V is a set {1,...,n}
for some natural number n, E is a set of labeled directed edges on V', and
f=(f1,..., fn) is a sequence of Boolean functions such that for each v € V|
the number of arguments of f, is indeg(v), the indegree of v in E, i.e., the
number of edges entering v. These edges are labeled 1,. .., indeg(v). The
interpretation is that V is a collection of Boolean gates, F describes their
interconnections, and f describes their operation.

The gates update their states synchronously at discrete time steps

0,1,.... At any time ¢, each gate v is in some state =, € {0,1}. Letting
x = (x1,...,Z,), we say that B is in state x at time ¢. Let indeg(v) = m
and w1, ug,..., Uy, be the gates such that for ¢ = 1,...,m, (u;,v) € E

with label i. These are referred to as the in-gates of v. Then the state of
v at time t + 118 y, = fo(Tuy,---,Tu,, ). Letting y = (y1,...,Yyn), we put
B(x) =y.

The following notation will be used to describe the dynamical properties
of Boolean networks.

Definition 1. Let x € {0,1}", the set of sequences of n 0’s and 1’s indexed
by 1,...,n.

1. For t = 0,1,..., we put B¥(x) for the state of B at time ¢, given that
its state at time 0 is x. That is,

B%(x) =x, and

B'(x) = B(B'(x)) for all t.

We also put B (x) for y, where y = Bf(x).
2. Gate v freezes to y € {0,1} in ¢ steps on input x if BY (x) = y for all
t' >t
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3. For x € {0,1}" and v € {1,...,n}, we put x" for the state which is
identical to x except that ) =1 — z,,.

4. Let u,v € {1,...,n} and x € {0,1}"™. We say that v affects u at time
t on input x if Bl (x) # BL(x"). We put

Al (v,x) = {u €V : v affects u at time ¢ on input x} and

A (v,x) = {u € V : u affects v at time ¢ on input x }.
5. Gate v is t-ineffective on input x if A% (v,x) =0, i.e., B'(x) = B'(x").

Note that if v is t-ineffective for some ¢, then it is weak. In analyzing the
robustness of Boolean networks, we will estimate the number of t-ineffective
gates, for suitable ¢, since this appears more tractable than estimating the
number of weak gates. Similarly, instead of analyzing the frozen gates, we
will consider a stronger property of gates.

We will be examining randomly constructed Boolean networks. The ran-
dom model we use is sufficiently general to capture the particular classes of
random Boolean networks in the literature. Let ¢1, ¢2, ..., be some order-
ing of all the finite Boolean functions, and let py,po, ..., be a sequence of
probabilities such that Zf; p; = 1. The selection of a random Boolean
network with n gates is a three stage process. First, each gate is indepen-
dently assigned a Boolean function using the distribution p1,p2,.... That
is, for each v = 1,...,n and j = 1,2,..., the probability that gate v is
assigned ¢; is p;. The probabilities may depend on 7, the number of gates
in the network; that is, each probability is actually a function p;(n). For
example, p;(n) = 0 for any ¢; with more than n arguments. For simplic-
ity of notation, we suppress the functional notation. Next, the in-gates for
each gate are selected. If the gate has been assigned an m-argument func-
tion, then its in-gates are chosen from the n(n —1)---(n —m + 1) equally
likely possibilities. Finally, random initial states are independently chosen
for each gate.

We make several restrictions on the distribution py, po, ..., still consis-
tent with the random networks in the literature. We assume that the average
and variance of the number of arguments of a randomly selected Boolean
function, or equivalently, the average and variance of the indegree of a gate,
are finite. That is, letting each ¢; have m; arguments, ZZI pim? < co. Our
methods require that the state of a random gate be independent of the time,
i.e., for any gate v, the probability that Bf(x) = 1 is a constant. This is
ensured in the following way.
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Definition 2. For any natural number m and x € {0,1}™, let v(x) = [{i :
1<i<mand z; = 1}|. Then for any a € [0,1],

pla) = Zpi 2 Z av(x)(l _ a)mrifv(x) (1)

i=1  j=1xe{0,1}™

¢i(x)=1
is the probability that a random gate’s state is 1 at time 1, given that each
of its in-gates has probability a of being in state 1 at time 0.

Putting p¥)(a) = p(p(---(a)---)) (p iterated t times), we require that
there exists a € [0, 1] such that lim; ., p*)(b) = a, where b is the probabil-
ity that a random gate’s state is 1 at time 0. This condition is easily seen to
be satisfied by the random Boolean networks in the literature. They have
b= %, and a = % since every Boolean function and its negation have equal
probability of being assigned to a gate.

This class of random Boolean networks includes as special cases
Kauffman’s networks, networks with the classical random graph topology
with edge probability en™®, a > 1 [2], networks with power law degree
distribution o d~¢, ¢ > 1, smallworld networks ([23]) and many of their
variations ([21], [24]).

If 6 is a property of boolean nets then pr(6) denotes the probability that
a random boolean network with n gates satisfies 6. If ¢ is also a property
then pr(6 | ¢) is the probability of # over random boolean networks with n

gates, conditioned on ¢.

3. Local Structure of Networks

For small intervals of time, the dynamical properties of the network are
determined by its “local” structure. Thus, the gates affected by a given gate
over the time interval 0,1,...,¢ lie in the portion of the network consisting
of all gates reachable from the gate by a path in E of length at most t.
Similarly, the behavior of a gate over the same interval is determined by
the portion consisting of all gates that can reach the gate by such a path.
Of course, for large enough ¢, these portions will be the entire network. The
next definitions capture these notions of locality.

Definition 3. 1. For any subset I C V,

S9(I) = I,and
SN = {u: (v,u) € E for some v € S’ (I)} for t > 0.
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That is, S (I) is the set of gates at the ends of paths of length ¢ that start
in I. Similarly, S* (I) is the set of gates at the beginnings of paths of length
t that end in I.

2. Then

t
Ni(I) =[] 85(I), and
s=0

t
NY(I) = | s2(1)
s=0
are the out- and in-neighborhoods respectively of I of radius ¢.

We put S% (v) for S%.({v}) and similarly for the other notations. Thus
the state of gate v at time ¢ is determined by the states of the gates in
St (v) at time 0 and the functions assigned to the gates in N*~1(v).

We put log for log,. For the remainder of this article, o and § will
be positive constants satisfying 2alogd + 23 < 1 and alogd < (, where

Lemma 1. Let I C {1,...,n}, |I| < nP, and t < alogn. The following
events have probability 1 — o(1):

For every v € I, N (v) induces a tree in (V, E)
For every distinct u,v € I, Nt (u) N NL(v) =0
0.

=

For every v € I, N* (v) induces a tree in (
For every distinct u,v € I, Nt (u) N Nt (v)

=L

Proof. The lemma follows by showing that each of these events fails with
probability o(1). The calculations are similar for all events, and we show
the work only for event 1.

If 1. fails, then there exist distinct gates v1,...,vs such that

s < alogn,
fori=1,...,s —1, v; is an in-gate of v;11, and
vy €1,
and distinct gates wyq, ..., w, such that
r < alogn,
fori=1,...,7r—1, w; is an in-gate of w; 1,

wy € {1}1,...,1}3},
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{wa,...,w.}N{v1,...,vs} =0, and
there is a labelled edge (w,,vs) distinct from the labelled edge

(Usflv v5)~
Now s and r can be chosen in O((logn)?) ways. The gates v1,...,vs and
w, ..., w, can be chosen in O(n**"~2+7logn) ways. For each i = 1,...,

s — 2, the probability that v; is an in-gate of v;41 is

= my )
> pi— = —.
‘ n n
=1

Similarly, the probability that each w; is an in-gate of w;41 fori =1,...,
r — 1 is 0/n. The probability that both vs,_1 and w, are in-gates of v is

> mi(mi — 1) _9
i— =0 .
;p (=) (n?)
Altogether, the probability that 1. fails is
O((logn)3 x pStr=2+08 » (5/n)s+r*3 X n72) = ((log n)3620‘ log”nﬁfl)
((log n)3n2alog6+ﬁ—1)
(1). m|

Il
o

4. Branching Processes

As we showed, for ¢ not large compared to n, the typical N’ (v) induces
a tree in a Boolean network with n gates. A perturbation of the state of
such v may cause perturbations to the states of S}r(v) in the next step,
then 5% (v), and so on, in a “wave” that propagates through N (v). It
is possible that this wave dies out and the effects of the perturbation are
transient, i.e., gate v is t-ineffective. We will show that this behavior can
be approximated by a branching process. Then, by applying basic results
about branching processes, we will derive our results about ineffective gates.
Similarly, N* (v) induces a tree for almost all v. In this case, the gates
that affect v at times 0, ...t are the successive generations in a branching
process that propagates backwards through N (v).

We will summarize the results about branching processes that we need.
For more information on branching processes, see T. Harris [10].

A branching process can be identified with a rooted labelled tree. The
tree may have infinite branches. Each node will be labelled with the unique
path from the root to that node. That is, the root is labelled with the null
sequence. If the root has k children, they are labelled with the sequences
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(1), (2), ..., (k). If the second child of the root has [ children, then they are
labelled with the sequences (2,1), (2,2), ..., (2,1), and so on. Generation
t consists of all nodes labelled with a sequence of length ¢. The number
of children of any node is independent of the number of children of any
other node, but the probability of having a certain number of children is
the same for all nodes. Thus the probability space of a branching process
is determined by a sequence (g : k = 0,1,...) where g is the probability
that a node has k children. The probability measure on this space will be
denoted by bpr. In describing events in this space, P will denote a branching
process. If x is a property of branching processes, P |= x means x holds for
P, and bpr(P [ x) is the probability that x holds.

For t > 0, P | t will be the finite labelled tree which is P restricted to
its first ¢ generations. Z; will be the random variable which is the size of
generation ¢, i.e., the number of nodes of depth ¢.

The generating function of the branching process is the series

F(z)= Z "
k=0

That is, F(z) is the probability generating function of Z; since qr =
bpr(Z; = k). A basic result is that the t-th iterate of F(z) is the prob-
ability generating function of Z;. The iterates of F'(z) are defined by

Fy(2) =2 and
Fiv1(2) = F(Fy(z)) fort>0. (2)

Then

Theorem 1. The probability generating function of Zy is Fi(z), i.e.,
o0
Fi(z) = prr(Zt = k)2~
k=0

This enables us to express the moments of Z; in terms of the moments
of Z1, which in turn have simple representations in terms of the derivatives
of F(z). Let p and o2 be the first and second moments of Z;, that is,
pw=E(Z;) and 02 = var(Z;).

Theorem 2. We have

pw=F'(1) and
o2 = F'(1) + F'(1) — (F'(1))2.
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More generally, for all t > 0, the first and second moments of Z; are
E(Z) =u' and
O'QMt Mt -1 ‘
D e,
var(Z;) = p? = p
to? if p=1.
Our analysis of frozen and ineffective gates uses two branching processes,

both of which are defined in terms of a parameter that characterizes the
tendency of gates to be influenced (regulated) by their in-gates.

Definition 4. Let f(z1,...,2Zm,) be a Boolean function of m arguments,
and x = (21,...,Zm) € {0,1}™ be an assignment of 0’s and 1’s to its
arguments. For ¢ € {1,...,m}, we say that argument i directly affects f

on input x if f(x) # f(x*). We put v(f, x) for the number of i’s that directly
affect f on input x. We extend this notion to gates in a Boolean network
in the obvious way. Given a Boolean network B where gate v has in-gates
Ul,. .., U, and state x € {0,1}", for i = 1,...,m, u; directly affects v on
input x if B,(x) # B, (x").

Let

oo

A=Y S (60x)a" (1 — )i, (3)
=1 xe{0,1}™

Thus A may be regarded as the average number of arguments that directly

affect a random Boolean function with a random input.

5. Ineffective Gates

As we showed, for sufficiently small I and ¢, the “typical” N (I) and N* (1)
induce a forest on (V| E), i.e., there are no directed or undirected cycles
among their gates. If this is the case for Ni (v), then we can give a simple
recursive definition of A’ (v, x).

Lemma 2. Assume Ni(v) induces a tree on E. Then for any s < t, any
x € {0,1}", and any gate u € S5 (v), v affects u at time s on input x if
and only if

1. s=0andu=wv, or

2. s> 0 and, letting w be the unique gate such that w € S_Sfl(v) NSt (u),
v affects w at time s — 1 on input x, and w directly affects u on input
B 1(x).
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We will use the branching process defined as follows.

)\k Y

kaﬁe

for k =0,1,.... Therefore F(z) = ¢**~*. From Theorem 2,

p=A
0% =\,
E(Z;) =)', and
N -1) .
var(Z;) = A—1 ifp# L
tA if p=1.

Definition 5. Let T be a labelled tree of height ¢, B = (V, E,f) be a
Boolean network, and x € { 0,1 }" be its state. For v € {1,...,n}, we put
T = vif

Nt (A(v,x)) induces a tree in (V, E), and
there is an isomorphism from 7" onto (A7 (v,x), E).

Lemma 3. If |T| < n” and the height of T is t < alogn, then for all
x€{0,1}", pr(T = v) =bpr(P [t =2 T)(1+o0(1)).

Proof. By Lemma 1, if there is an isomorphism 7 from 7T onto
(Al (v,x), E), then almost surely N (A! (v,x)) induces a tree in (V, E).
Thus we need only analyze the probability that 7 exists. Let uq,...,up be
the non-leaf nodes of T, in lexicographic order. The construction of 7 is
recursive and proceeds in stages 1,...,h. At each stage s, 7(us) has been
defined at some previous stage, and it is extended to the children of us. (At
stage 1, 7(u1) = v has already been defined.) Also, the Boolean functions
assigned to these children are selected.

Thus, assume that at stage s, 7(u1),...,7(uk,) have already been
defined, where s < K. Let ug; have kg children. Then there are (";K)
ways of selecting the children of 7(u,) in (V, E'). Having chosen these chil-
dren, we next assign Boolean functions to them. Independently, for each
child w of 7(us), let ¢; be assigned to it. This event has probability p;,
and for j = 1,...,m;, the probability that 7(us) is the jth in-gate of
w is 1/n. Summing over all 4, we get the probability that 7(us) directly



Dynamics of Random Boolean Networks 29

affects w:

0o m;
Zpi Z Z pr(7(us)is the jth in-gate of w, the initial state is x,
=1 xe{0,1}mi j=1

and ug directly affects w on input x | fu, = ¢;)

Z v(¢hi, x)a’ ™) (1 — q)mi—v &)

x€{0,1}™i

Il
_Mg
3I®

s
I
-

31>

Therefore the probability that these ks gates are directly affected by 7(us)
is (\/n)ks

Since the events of assigning Boolean functions to all the gates are
independent, the probability that the selected gates belong to Ai(v, x) is

ﬁ(n ;K) (2) <ﬁ o ) ( %nﬁ))omﬁ)
(ﬁ ) Om*”™1)).

The probability that no other gates are in A% (v,x) is

(1 _ &)n_m — e (14O Y),

n
) (1+o0(1

t=T 1+0 O

>/

Therefore

(" = v) (H

We say that a property x of branching processes depends only on the
first ¢ generations if, for any two branching processes P; and P» such that
Py [t Py [t either P = x and Py | x, or P; ¥ x and P, ¥ x. Thus
x can be identified with a set of labelled trees of depth at most t. We will
also use the notation (A (v,x), E) |= x to mean (A (v,x), E) induces a
tree in (V) E) whose corresponding branching process satisfies x.
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Theorem 3. Let x be a property of branching processes that depends only
on the first alogn generations. Then for all x € {0,1}"

pr((A% (v,x), E) = x) = bpr(P = x) + o(1).

Proof. By the previous lemma, it suffices to show that bpr(|P [ alogn| >
nf) = o(1).

If |P | alogn| > n?, then Z; > nf/(alogn) for some t = 1,..., alogn.
Since E(Z;) = At < 8t < n®l°8d < nf/(alogn),

var(Zy)
(n#/(alogn) — B(Z,))

)\21&71 + )\21572 R 2\t

pr(Z; > n”/(alogn)) < 5 by Chebyshev’s inequality

i A1
(nf/(alogn) — )\t)Z
B A A =1
(nf/(alogn) — )\t)2
= 0(1/logn) in either case. O

A gate v such that N log"(A(j_log"(v, x)) is acyclic is « log n-ineffective
if and only if its corresponding branching process is extinct within «logn
generations. Clearly this depends only on the first alogn generations, so
Theorem 3 applies. By basic results from branching process theory, the
probability of extinction in ¢ generations is bpr(Z; = 0) = F;(0), and
lim¢_ o F;(0) = r, where r is the smallest nonnegative root of z = F(z).
Further, when o <1, r =1, and when p > 1, r < 1. Therefore

Theorem 4. There is a constant r such that for all x € {0,1}™
lim pr(v is alogn-ineffective ) = r.
n—oo

When A <1, r=1, and when A > 1, r < 1.

Corollary 1. The expected number of alogn-ineffective gates in a random
Boolean network is asymptotic to rn.

A stronger result is

Corollary 2. The number of alogn-ineffective gates in almost all Boolean
networks is asymptotic to rn.

That is, there is a function £(n) such that e(n) — 0 and, letting the random
variable X,, be the number of a log n-ineffective gates in a random Boolean
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network with n gates,

lim pr(|X,, —rn| < ne(n)) = 1.

n—oo
Proof. By the previous corollary,
E(X,) =rn+ ne(n),

where €(n) is a function such that lim, ..o e(n) = 0. When A < 1, r =1,
so0, letting the random variable Y,, = n — X,,, by Markov’s inequality

pr (Y, > ny/|e(n)]) = O(V[e(n)]).
Therefore the corollary holds for A < 1.

When A > 1, » < 1, and we need to estimate var(X,). Using meth-
ods similar to those in the proofs of Lemma 1 and Theorems 3 and 4
it can be shown that, for any two distinct gates uw and v, almost surely
Nflog"(Ailog"(u,x)) and Nflog"(Af‘rlog"(v,x)) are acyclic, their inter-
section is empty, and

lim pr(u and v are alogn-weak ) = r2.

Therefore
var(X,) = r(1 — r)n 4+ n?'(n)

for some function ¢’(n) — 0. By Chebyshev’s inequality

. r(1 —7)n + n2e'(n)
r(|X,, —rn —ne(n n "(n)]) <
pr(| e(n)| > nv/[e'(n))) FENT]
— 0,

and the corollary also holds for A > 1. O
When X\ > 1, it is also true that most of the a log n-effective gates affect
many other gates when perturbed.

Corollary 3. Let A > 1. For almost all random Boolean networks, if gate
v is alogmn-effective, then there is a positive W such that for t < alogn,
the number of gates affected by v at time t is asymptotic to WAL

Proof. For t > 0, let Wy = Z;/u' (= Z;/A! in our case). Again by
basic results from branching process theory, there is a random variable
W such that

bpr(tlim Wy=W)=1 and
tlim bpr(Z; # 0 and W = 0) = 0. 4)

From this the corollary follows. O



32 J. F. Lynch

6. Frozen Gates

Estimating the number of gates that freeze seems to be quite difficult.
However, there is a condition on gates whose in-neighborhoods are trees
that implies freezing and which is amenable to combinatorial analysis.

For the remainder of this section, ¢ will represent a natural number in
the range 0, ..., alogn, and y will be a variable taking on the values 0 and 1.
Given a Boolean function ¢(z1,...,2n) and x = (z1,...,2m) € {0,1, % }™,
we say that x forces ¢ to y if, for allx” € { 0,1 }" such that x; = z whenever
x; # *x, ¢(x) = y. The #’s are “don’t care” values, meaning their value does
not affect the value of ¢ whenever the remaining arguments agree with x.
For example, ¢ is forced by every x € {0,1}™; if ¢ is a constant function,
then it is forced by every x € {0,1,*}™; if ¢(x1,22) = x1 V 22, then it
is forced to 0 by (0,0) and to 1 by (0,1), (1,0), (1,1), (1,x*), and (x,1).
We can now give a recursive definition of forcing for the gates of a Boolean
network.

Definition 6. A gate v is forced to y in 0 steps if f, is the constant
function y.

For t > 0, v is forced to y in t + 1 steps if, letting uq,...,u,, be its
in-gates, there is x € {0, 1, * }"™ such that x forces f, to y and for each
i=1,...,m such that x; # %, f,, is forced to x; in t steps. We say that v
is forced (in some number of steps) if it is forced to 0 or 1.

It is clear that forcing is a stronger condition than freezing.

Lemma 4. If a gate in a Boolean network is forced to y in t steps, then it
freezes to y in t steps.

When the in-neighborhood of a gate is a tree, forcing is related to the
branching process where the children of a gate are its in-gates that directly
affect it. The next lemma states that forcing is equivalent to extinction in
this branching process. We put A" (v) = [J, A" (v, x).

Lemma 5. If N (v) induces a tree, then v is forced in t steps if and only

if A (v) =0.

Proof. The “only if” direction of the proof is immediate from the
definitions.

To prove the other direction, we use induction on t. When ¢t = 0, it is
again immediate from the definitions.



Dynamics of Random Boolean Networks 33

Now assume the result holds for ¢, N*™!(v) induces a tree, and v is not
forced in t+1 steps. Let uq, ..., un be as in Definition 6. Let x € {0, 1, *}™
be defined by

i forced value of u; if u; is forced intsteps
YT ] otherwise.

Since v is not forced in ¢ + 1 steps, there is some j such that x; = * and
x’ € {0,1}™ such that x; = z/ whenever z; # * and f,(x') # f,(x"?). Since
N'"'(v) induces a tree, by the induction hypothesis, A* (u;) # (. Then
there are states y and y’ such that

B! (y) = B! (y') =) fori+# j, and

;g

B,,(y) # B, (y)

But then Bt (y) # Bitl(y’), and A" (v) # 0. O

We now use another branching process to model the propagation of
gates that affect a given gate. The theorems about forced gates are similar
to those about ineffective gates, but the proofs are simpler. Therefore we
will only sketch them. This time we define the branching process by:

qE = Z pi Z av(x)(l _ a)m,;—u(a)

im; >k ze{0,1}™i
'Y(‘z”i:x):k
for Kk =10,1,.... Then u = X and by our conditions that Z;’ilpiml? < 00,
0% < 0o. Again,

E(Z;) =\, and
aZXE(AE - 1)
var(Z;) = A2 =)
to?

if p #1,
if p=1.
Definition 7. Let T be a labelled tree of height ¢, B = (V, E,f) be a

Boolean network, and x € {0,1}" be its state. For v € {1,...,n}, we put
T=wvif

At (v,x) induces a tree in (V, E), and
there is an isomorphism from T onto (A (v,x), E).

Lemma 6. If |T| < n” and the height of T is t < alogn, then for all
x€{0,1}", pr(T = v) =bpr(P [t =T)(1+o0(1)).
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Theorem 5. Let x be a property of branching processes that depends only
on the first alogn generations. Then for all x € {0,1}"

pr((A” (v,x), E) k= x) = bpr(P = x) + o(1).
Theorem 6. There is a constant r such that for all x € {0,1}™

lim pr(v is forced in alogn steps) = r.

n—oo

When A <1, r=1, and when A > 1, r < 1.

Corollary 4. The expected number of gates forced in alogn steps in a
random Boolean network is asymptotic to rn.

Corollary 5. The number of gates forced in alogn steps in almost all
Boolean networks is asymptotic to rn.

That is, there is a function £(n) such that e(n) — 0 and, letting the
random variable X,, be the number of gates forced in alogn steps in a
random Boolean network with n gates,

lim pr(|X, —rn| < ne(n)) = 1.

n—00

When A > 1, it is also true that most of the gates that are not forced
in alogn steps are affected by many other gates.

Corollary 6. Let A > 1. For almost all random Boolean networks, if gate
v is not forced in alogn steps, then there is a positive W such that for
t < alogn, the number of gates that affect v at time t is asymptotic to W AL.

7. Networks of 2-Input Gates

Since Kauffman’s nets are special cases of our networks, a natural question
is whether our analysis agrees with the conclusions of his experiments. We
will apply our results to the two classes of 2-input random Boolean networks
that Kauffman studied. In one case, we have agreement: the networks are
stable with high probability. In the other case, our theorems do not contra-
dict the experimental results, but they provide evidence that these networks
are less stable than the first kind. Further, the conjecture that random
Boolean networks with a high proportion of canalyzing gates are stable is
not supported by our analysis. To explain these results, we use the notion of
canalyzing to classify the 2-argument Boolean functions. A Boolean func-
tion f(x1,...,2Zm) is canalyzing if it is forced by some x € {0,1,*}™
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where x; # * for exactly one ¢ € {1,...,m}. We have three categories of
2-argument Boolean functions:

I. The two constant functions:

f(z1,22) =0 and f(21,22) =1
II. The twelve nonconstant canalyzing functions, consisting of
A. The four functions that depend on one argument:
fz1,22) =21 and f(z1,22) = —1
fx1,22) =22 and  f(z1,22) =~
B. The eight canalyzing functions that depend on both arguments:

r1Vzry and —xq Axe
-z Ve and 1z A-xg
x1V-xe and -z A 2o
-z V-oxrg and oz Azo

III. The two noncanalyzing functions exclusive or and equivalence:
1 Dxre and x1 = 29

Since each function is paired with its negation, Equation 1 is satisfied with
a = 1/2. Let pr, pi1, and pr1 be the respective sums of the probabilities
of the functions of type I, II, and III, i.e., p; is the probability that a gate
is assigned a function of type I, and so on. We can now express the A
parameter of Section 4 (see Equation (3)) in terms of py, pi1, and pypy. Since
a=1/2,a"®)(1 —a)?>~v® = 1/4 for every x € {0,1}2. Clearly, if ¢; is of
type I,

v(¢i,x) = 0 for every x € {0,1}>.
If ¢; is of type IL.A., say ¢;(x1,x2) = x1, then
v(¢i,x) = 1 for every x € {0, 1}>.
(

If ¢; is of type IL.B., say ¢;(x1,22) = x1 V x2, then

Z ’7(¢iax) =4.

x€{0,1}2

Altogether, the type I and II functions contribute pr; to A. Lastly, it is easily
seen that if ¢; is a type III function, then

v(pi,x) =2 for every x € {0,1}?,
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and therefore the type III functions contribute 2pr; to A, giving

A = pir + 2pm.

By Corollaries 2 and 5, for almost all Boolean networks, almost all
gates are « log n-ineffective if and only if A < 1, and for almost all Boolean
networks, almost all gates are forced in alogn steps if and only if A < 1.
Since A = pr1 + 2prr and pr + prr + prr = 1, A < 1is equivalent to pr > prrr.
Therefore both types of ordered behavior hold if and only if p; > pr1.?

Kauffman performed extensive simulations on two classes of random net-
works constructed from 2-argument Boolean functions. In the first class, all
16 of these functions were equally likely to be assigned to a gate. In the
second, no constant functions were used, and the remaining 14 functions
were equally likely. In the first case, pr = prir = 1/8. Therefore in this case,
almost all gates are a log n-ineffective and forced in «logn steps. But in the
second case, pr = 0 and pr;p = 1/7, so pr < pirr. Thus in this case, a nontriv-
ial fraction of the gates are alog n-effective and not forced in alogn steps.
This does not directly contradict the experimental conclusions because it is
possible that, even though the effect of a perturbation persists for alogn
steps, it could die out after that. And even if it persisted indefinitely, it
may not change the limit cycle that the network enters. Similarly, a gate
may not be forced, but it could still freeze.

8. Future Work and Open Problems

In [16], it was shown that, for random Boolean networks with 2-input gates,
limit cycles are bounded in size with high probability when pr > pr1. But
in [17], it was shown that limit cycles are large at the threshold pr = prr.
Specifically, the average size of the limit cycle is greater than n® for any a.
This disagrees with Kauffman’s claim that the average limit cycle size is on
the order of \/n.

These results generalize to the classes of random Boolean networks con-
sidered in this paper: when A < 1, limit cycles are bounded in size with
high probability, but when A = 1, the average size of the limit cycle is
superpolynomial in the number of gates. It is reasonable to conjecture that
the limit cycle size is monotonic in A, and that limit cycles would be very
large when A > 1. This would also agree with the experimental evidence.
However, we do not know of a proof.

aArticle [17] contains proofs that pr > prr1 implies these kinds of ordered behavior; it
was conjectured in [17] that they fail when p1 < pirr.
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Other conjectures about the long-term behavior of nets with A > 1 are
unresolved. Based on the results of this article, one would expect that the
other forms of instability would be prevalent: sensitivity to initial conditions
and many unfrozen gates.

From what we have shown, A\ = 1 appears to be the point at which com-
plex behavior begins. This idea could be investigated further by considering
Boolean networks with inputs and outputs. These are an easy generaliza-
tion of the networks studied here. Such networks can compute functions
of their inputs, and we conjecture that when A < 1, these functions are
very simple with high probability, but when A = 1, the functions can be
artibrarily complex in the senses of computational complexity.
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0. Introduction

This paper gives infinitely many examples of unknot diagrams that are
hard, in the sense that the diagrams need to be made more complicated
by Reidemeister moves before they can be simplified. In order to construct
these diagrams, we prove theorems characterizing when the numerator of
the sum of two rational tangles is an unknot. The paper then uses these
results in studying processive DNA recombination and finding minimal size
unknot diagrams. This paper is a short version of a paper in which we
include complete proofs of all statements. Many proofs are omitted in the
present paper.

See Figure 2 for a diagram that we shall refer throughout this paper as
the “Culprit.” This culprit is not the only culprit, but it is the exemplar
that we shall use, and it is the example that started this investigation. The
first author likes to use the Culprit as an example in introductory talks
about knot theory. One draws the Culprit on the board and asks whether
it is knotted or not. This gives rise to a discussion of easy and hard unknots,
and how the existence of hard unknots makes us need a theory of knots in
order to prove knottedness when it occurs. After using this example, we
began to ask how to produce other examples that were hard and to wonder
if our familiar culprit might be the smallest such example (size being the
number of crossings, in this case 10).

39
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We show that there are infinitely many examples of hard unknot dia-
grams, obtained by using the theory of rational tangles and their closures.
In order to use the theory of rational tangles, one must become familiar with
the notion of tangle and the notion of the fraction of a tangle. In Section 1
we introduce the tangle analysis and assume that the reader knows about
tangle fractions. We discuss the theory of tangle fractions in Section 2.

In Section 1 we see that the Culprit can be divided into two rational
tangles whose fractions add up to a fraction whose numerator has absolute
value equal to 1. It turns out that whenever the sum of the fractions of two
rational tangles has numerator equal to plus or minus one, then the closure
of the sum of the two tangles will be an unknot. This result is Theorem 5 in
Section 3. In Theorem 7 of Section 4 we take a further step and characterize
fractions g and % such that g — % = % in terms of their associated
continued fractions. It turns out that this last equation is satisfied if and
only if one of the two continued fractions is a convergent of the other. This
means that one continued fraction is a one-term truncate of the other. For

example
3 1
A R
2 + 2
is a convergent of
10 1
— =1+ .
7 243

Section 2 sets up the matrix representations for continued fractions that
underpin the proof of the Theorems. This completely solves the question
of when two fractions give rise to an unknot via the (numerator) closure of
the sum of their associated tangles.

In Section 5 we use these results to construct many examples of hard
unknots. The first example, K = N([1,4] —[1, 3]), of this section is given
in Figure 15 and its mirror image H in Figure 19. This culprit K is a
hard unknot diagram with only 9 crossings. We then show how our original
culprit (of 10 crossings) arises from a “tucking construction” applied to an
unknot that is an easy diagram without the tuck (Figure 17). This section
then discusses other applications of the tucking construct. In Section 6 we
prove that the 9 crossing examples of Figure 19 and some relatives obtained
by flyping and taking mirror images are the smallest hard unknot diagrams
that can be made by taking the closure of the sum of two alternating
rational tangles. In Section 7 we show the historically first hard unknot,
due to Goeritz in 1934. The Goeritz diagram has 11 crossings.
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In Section 8, we show how our unknots are related to the study of proces-
sive recombination of DNA. In the tangle model for DN A recombination, pio-
neered by DeWitt Sumners and Claus Ernst, the initial substrate of the DNA
is represented as the closure of the sum of two rational tangles. It is usual to
assume that the initial DNA substrate is unknotted. We have characterized
such unknot configurations in this paper, and so are in a position to apply
our results to the model. We show that processive recombination stabilizes,
in the sense that the form of the resulting knotted or linked DNA is obtained
by just adding twists in a single site on the closure of a certain tangle. This
result helps to understand the form of the recombination process.

1. Culprits

Combinatorial knot theory got its start in the hands of Kurt Reidemeis-
ter [31] who discovered a set of moves on planar diagrams that capture
the topology of knots and links embedded in three dimensional space. Rei-
demeister proved that the set of diagrammatic moves shown in Figure 1
generate isotopy of knots and links. That is, he showed that if we have two
knots or links in three dimensional space, then they are ambient isotopic
if and only if corresponding diagrams for them can be obtained, one from
the other, by a sequence of moves of the types shown in Figure 1.

Here is an example of a knot diagram (originally due to Ken Millett [27]),
in Figure 2. We like to call this diagram the “Culprit.” The Culprit is a
knot diagram that represents the unknot, but as a diagram, and using only
the Reidemeister moves, it must be made more complicated before it can
be simplified to an unknotted circle. We measure the complexity of a knot
or link diagram by the number of crossings in the diagram. Culprit has 10

} ’D/ - —
- g =OC
. /’\/\ /

=K

Figure 1. The Reidemeister moves.
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~
A

Figure 2. The culprit.

crossings, and in order to be undone, we definitely have to increase the num-
ber of crossings before decreasing them to zero. The reader can verify this
for himself by checking each region in the diagram of the Culprit. A sim-
plifying Reidemeister IT move can occur only on a two-sided region, but no
two-sided region in the diagram admits such a move. Similarly on the Cul-
prit diagram there are no simplifying Redeimeister I moves and there are
no Reidemeister IIT moves (note that a IIT move does not change the com-
plexity of the diagram). We view the diagram of the Culprit and other such
examples as resting on the surface of the two-dimensional sphere. Thus the
outer region of the diagram counts as much as any other region in this
search for simplifying moves.

We shall call a diagram of the unknot hard if it has the following three
properties:

1. There are no simplifying Type I moves on the diagram.
2. There are no simplifying Type II moves on the diagram.
3. There are no Type III moves on the diagram.

Hard unknot diagrams have to be made more complex before they will
simplify to the unknot, if we use Reidemeister moves. It is an unsolved
problem just how much complexity can be forced by a hard unknot.

One purpose of this paper is to give infinite classes of hard unknots by
employing an insight about the structure of our Culprit, and generalizing
this insight into results about the structure of tangles whose numerators are
unknotted. These results are of interest in working with the tangle model
of DNA recombination. See Section 8.

In order to see the Culprit in a way that allows us to generalize him,
we shall use the language and technique of the theory of tangles. The next
sections describe a bit of basic tangle theory. In Figure 3 analyze the Culprit
using this language, to illustrate our approach. The reader familiar with the
language of tangles will have no difficulty here, and will notice that we have
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Figure 3. Cutting the culprit into rational tangles.

decomposed the culprit as the numberator of the sum of two tangles whose
fractions are —3/4 and 2/3. Since —3/4+2/3 = —1/12 we see that the sum
of the fractions satisfies the conditions of Theorem 5. Other readers may
wish to read the next section and then come back to this discussion.

2. Rational Tangles, Rational Knots and Continued
Fractions

In this section we recall the subject of rational tangles and rational knots
and their relationship with the theory of continued fractions. By the term
“knots” we will refer to both knots and links, and whenever we really mean
“knot” we shall emphasize it. Rational knots and links comprise the simplest
class of links. They are also known in the literature as Viergeflechte, four-
plats or 2-bridge knots depending on their geometric representation. The
notion of a tangle was introduced in 1967 by Conway [5] in his work on
enumerating and classifying knots and links.

A 2-tangle is a proper embedding of two unoriented arcs and a finite
number of circles in a 3-ball B3, so that the four endpoints lie in the
boundary of B3. A tangle diagram is a regular projection of the tangle
on an equatorial disc of B®. By “tangle” we will mean “tangle diagram”. A
rational tangle is a special case of a 2-tangle obtained by applying consecu-
tive twists on neighbouring endpoints of two trivial arcs. Such a pair of arcs
comprise the [0] or [oo] tangles (see Figure 5), depending on their position
in the plane. We shall say that the rational tangle is in twist form when it
is obtained by such successive twists. For examples see Figure 8. Conway
defined the rational knots as “numerator” or “denominator” closures of the
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3
numeraor o I denominator )
< —

R closure closura
5 7
N(T) T=[2,-2,73 0{T)

Figure 4. A rational tangle and its closures to rational knots.

rational tangles. See Figure 4. Conway [5] also defined the fraction of a ratio-
nal tangle to be a rational number or co, obtained via a continued fraction
that is associated with the tangle. We discuss this construction below.

We are interested in tangles up to isotopy. Two tangles, T, S, in B3
are isotopic, denoted by T ~ S, if and only if any two diagrams of them
have identical configurations of their four endpoints on the boundary of
the projection disc, and they differ by a finite sequence of the Reidemeister
moves [31, 32], which take place in the interior of the disc. Of course, each
twisting operation used in the definition of a rational tangle changes the
isotopy class of the tangle to which it is applied. Rational tangles are clas-
sified by their fractions by means of the following theorem, different proofs
of which are given in [3, 4, 17, 29] and [22].

Theorem 1. (Conway, 1975) Two rational tangles are isotopic if and only
if they have the same fraction.

More than one rational tangle can yield the same or isotopic ratio-
nal knots, and the equivalence relation between the rational tangles is
mapped into an arithmetic equivalence of their corresponding fractions.
Indeed we have:

Theorem 2. (Schubert, 1956) Suppose that rational tangles with fractions

2 and 2 are given (p and q are relatively prime. Similarly for p’ and ¢'.) If

q q

K(g) and K(%) denote the corresponding rational knots obtained by taking

numerator closures of these tangles, then K(%) and K(s—:) are isotopic if
and only if

1. p=9p' and
2. either ¢ = ¢ mod p or q¢' =1 mod p.

Different proofs of Theorem 2 are given in [3, 23, 34].
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2.1. Rational Tangles and their Invariant Fractions

We shall now recall from [22] the main properties of rational tangles and of
continued fractions, which illuminate the classification of rational tangles.
The elementary rational tangles are displayed as either horizontal or vertical
twists, and they are enumerated by integers or their inverses, see Figure 5.

The crossing types of 2-tangles (and of unoriented knots) follow the
checkerboard rule: shade the regions of the tangle in two colors, starting
from the left outside region with grey, and so that adjacent regions have
different colors. Crossings in the tangle are said to be of “positive type” if
they are arranged with respect to the shading as exemplified in Figure 5 by
the tangle [+1], i.e. they have the region on the right shaded as one walks
towards the crossing along the over-arc. Crossings of the reverse type are
said to be of “negative type’ and they are exemplified in Figure 5 by the
tangle [—1].

In the class of 2-tangles we have the non-commutative operations addi-
tion and multiplication, as illustrated in Figure 6, which are denoted by
“+7 and “x” respectively. These operations are well-defined up to isotopy.
A rational tangle in twist form is created inductively by consecutive addi-
tions of the tangles [+1] on the right or on the left and multiplications by

RARANR AR
X &

gV>A

Figure 5. The elementary rational tangles and the types of crossings.

[0o] i
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O - [=]
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s 7 e

Figure 6. Addition, multiplication and rotation of 2-tangles.
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Figure 7. Finding the fraction.

the tangles [£1] at the bottom or at the top, starting from the tangle [0]
or [0o]. Since the very first crossing can be equally seen as horizontal or
vertical, we may always assume that we start twisting from the tangle [0].
In order to read out a rational tangle we transcribe it as an algebraic sum
using horizontal and vertical twists. For example, Figure 4 illustrates the
tangle (([3] * ﬁ) + [2]), see top of Figure 7, while Figure 8 illustrates a
twist form of the same tangle: [1] 4 ([1] * [3] * [_—13]) + [1].

Note that addition and multiplication do not, in general, preserve the
class of rational tangles. For example, the 2-tangle ﬁ + ﬁ is not rational.
The sum (product) of two rational tangles is rational if and only if one of
the two consists in a number of horizontal (vertical) twists.
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Figure 8. A rational tangle in twist form converted to its standard form and to its
3-strand-braid representation.

The mirror image of a tangle T, denoted —T, is T with all crossings
switched. For example, —[n] = [-n] and — ] [ 1n]. Then, the subtraction
is defined as T — S := T + (=S). The rotation of T, denoted T"°, is
obtained by rotating T on its plane counterclockwise by 90°. The inverse
of T is defined to be —T"°*. Thus, inversion is accomplished by rotation
and mirror image. Note that 77°" and the inverse of T are in general not
isotopic to T and they are order 4 operations. But for rational tangles the
inversion is an operation of order 2 (this follows from the flipping lemma
discussed below). For this reason we shall denote the inverse of a rational
tangle 7' by 1/T, and hence the rotation of the tangle T' will be denoted by
—1/T. This explains the notation for the tangles [—ib]

There is a fraction associated to a rational tangle R which characterizes
its isotopy class (Theorem 1). In fact, the fraction is defined for any 2-tangle
and always has the following three properties. These suffice for computing
the fraction F'(R) inductively for rational tangles:

o F([£1])) = 1.
o F(T+8)=F(T)+F(S).
o F(I"") = —1/F(T).

In Figure 7 we illustrate this process by using only these three rules to
compute a specific tangle fraction. In the following discussion we discuss
the fraction in more detail and how it is related to the continued fraction
structure of the rational tangles.

We shall then say that the rational tangle as shown in Figure 8 is in
standard form. In this Figure we illustrate how to convert a tangle that is
in “twist form” to standard form and to the braided form discussed below.
Twist form is obtained from two parallel strands by successive twisting at
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the top, bottom, right or left. In this sense twist form is the general picture
of a rational tangle before any simplifications have been applied to it.

It is useful to use the braid form illustrated in Figure 8. This is the
3-strand-braid representation. As illustrated in Figure 8, the 3-strand-braid
representation is obtained from the standard representation by planar rota-
tions of the vertical sets of crossings, thus creating a lower row of horizontal
crossings. Note that the type of crossings does not change by this planar
rotation. Indeed the checkerboard coloring convention for the crossing signs
identifies the signs as unchanged. Nevertheless, the crossings on the lower
row of the braid representation appear to be of opposite sign, since when
we rotate them to the vertical position we obtain crossings of the opposite
type in the local tangles.

One can associate to a rational tangle in standard form a vector of
integers (a1, az, . ..,ay), where the first entry denotes the place where the
tangle starts untwisting and the last entry where it begins to twist. For
example the tangle of Figure 4 corresponds to the vector (2, —2, 3).

Note that the set of twists of a rational tangle may be always assumed
odd. Indeed, let n be even and let the left-most twist [a1] be on the upper
part of the braid representation. Then, the right-most crossing of the last
twist [a,,] may be assumed upper, so that [a,] can break into a,, — 1 lower
crossings and one upper. Up to the ambiguity of the right-most crossing,
the vector associated to a rational tangle is unique, i.e. (a1,as2,...,a,) =
(a1,a9,...,a, — 1,1), if a, > 0, and (a1,as2,...,a,) = (a1,a2,...,0, +
1,—1), if a,, < 0. See Figure 9.

Another move that can be applied to a 2-tangle is a flip, its rotation
in space by 180°. We denote T"¥P a horizontal flip (rotation around a
horizontal axis on the plane of T') and T%P a vertical flip. See Figure 10
for illustrations. Note that a flip switches the endpoints of the tangle and, in
general, a flipped tangle is not isotopic to the original one. Rational tangles
have the remarkable property that they are isotopic to their horizontal or
vertical flips. We shall refer to this as the Flipping Lemma.

X5 - (&m

Figure 9. The ambiguity of the first crossing.
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hlip

180°
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vilip

Figure 10. The horizontal and the vertical flip.

A consequence of the Flipping Lemma is that addition and multiplica-
tion by [£1] are commutative. Another consequence of the Flipping Lemma
is that rotation and inversion of rational tangles each have order two. In
particular, rotation is defined via a ninety degree turn of the tangle either
to the left or to the right. With this in mind the reader can easily deduce
the formula below:

1 1
T T W

Indeed, rotate T x %] by ninety degrees and note that it becomes —[n] — %
Use this to deduce that the original tangle is the negative reciprocal of this
tangle. This formula implies that the two operations: addition of [+1] or
[—1] and inversion between rational tangles suffice for generating the whole
class of rational tangles. As for the fraction, we have the corresponding

formula

1 1
F (T ‘ _) -
VAN ()
The above equation for tangles leads to the fact that a rational tangle in
standard form can be described algebraically by a continued fraction built

from the integer tangles [a1], [az], ..., [as] With all numerators equal to 1,
namely by an expression of the type:

1

1
o]+ + oo

[laa], as], - - s [an]] = faa] +

for as,...,a, € Z— {0} and n even or odd. We allow [a1] to be the tangle
[0]. Then, a rational tangle is said to be in continued fraction form.
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We shall abbreviate the expression [[ai1],[az],...,[an]] by writing
[a1, a2, ...,ay], and later will use the latter expression for a numerical con-
tinued fraction as well. There should be no ambiguity between the tangle
and numerical interpretations, as these will be clear from context. Figure 4
illustrates the rational tangle [2, -2, 3].

From the above discussion it makes sense to assign to a rational tangle
in standard form, T' = [[a1], [az], . . ., [an]], for a1 € Z, aa,...,a, € Z—{0}
and n even or odd, the numerical continued fraction

F(T) = F([Ja1], [az), - -, [an]]) = |a1, az, . ., an]

1
=ai+ 1 )
a2 e

1
an,—l"l‘ﬁ

If a rational tangle T changes by an isotopy, the associated continued
fraction form may also change. However, the fraction is a topological invari-
ant of T and does not change. For example, [2,—2,3] = [1,2,2] = I, see
Figure 7. The fraction characterizes the isotopy class of T'. For the isotopy
type of a rational tangle T' with fraction % we shall use the notation [%]. We
have omitted here the proof of the invariance of the fraction. The interested
reader can consult [5, 17, 22] for various proofs of this fact.

The key to the exact correspondence of fractions and rational tangles lies
in the construction of a canonical alternating form for the rational tangle.

We shall say that the rational tangle S = [B1, Bz, . . ., Bm] is in canonical
form if S is alternating and m is odd. From the above, S alternating implies
that the 3;’s are all of the same sign. It turns out that the canonical form for
S is unique. In Figure 11 we bring our working rational tangle T' = [2, —2, 3]
to its canonical form S = [1,2,2]. As noted above, F(T) = F(5) = L.

By Euclid’s algorithm and keeping all remainders of the same sign, one

can show that every continued fraction [ai,as, ..., a,] can be transformed
to a unique canonical form [f1, B2, . . ., Bm], where all §;’s are positive or all
negative integers and m is odd. For example, [2,-2] = [1,1,1] = % There

is also an algorithm that can be applied directly to the initial continued

ARARARAS)

Figure 11. Reducing to alternating form using the swing moves.
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fraction to obtain its canonical form, which works in parallel with the algo-
rithm for the canonical form of rational tangles. Indeed, we have:

Proposition 1. The following identity is true for continued fractions and
it is also a topological equivalence of the corresponding tangles:

[...,a,=b,c,dye,..]=[..,(a—=1),1,(b—1),—c,—d,—e,..].

This identity gives a specific inductive procedure for reducing a continued
fraction to all positive or all negative terms. In the case of transforming
to all negative terms, we can first flip all signs and work with the mirror
image. Note also that

[...,a,b,0,¢c,dye,...]=1[..,a,b+c,d,e,...]

will be used in these reductions.

Proof. The technique for the reduction is based on the formula
a+1/(=b)=(a—1)+1/(1+1/(b—1)).

If a and b are positive, this formula allows the reduction of negative terms
in a continued fraction. The identity in the Proposition follows immediately
from this formula. O

2.2. Rational Knots and Continued Fractions

By joining with simple arcs the two upper and the two lower endpoints of a
2-tangle T, we obtain a knot called the Numerator of T, denoted by N(T).
A rational knot is defined to be the numerator of a rational tangle. Joining
with simple arcs each pair of the corresponding top and bottom endpoints
of T we obtain the Denominator of T, denoted by D(T), see Figure 4. We
have N(T') = D(T"") and D(T) = N(T"°). As we shall see in the next
section, the numerator closure of the sum of two rational tangles is still
a rational knot. But the denominator closure of the sum of two rational
tangles is not necessarily a rational knot, think for example of the sum
o, |

to isotopic rational knots? The answer is given in theorem 2. Schubert

Given two different rational tangle types [£] and [£7], when do they close

classified rational knots by finding canonical forms via representing them
as 2-bridge knots. In [23] we give a new combinatorial proof of Theorem 2,
by posing the question: given a rational knot diagram, at which places may
one cut it so that it opens to a rational tangle? We then pinpoint two
distinct categories of cuts that represent the two cases of the arithmetic
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equivalence of Schubert’s theorem. The first case corresponds to the special
cut, as illustrated in Figure 12. The two tangles T'= [—3] and S = [1] + ﬁ
are non-isotopic by the Conway Theorem, since F(T') = —3 = 3/ — 1, while
F(S) =1+1/2 = 3/2. But they have isotopic numerators: N(T") ~ N (),
the left-handed trefoil. Now —1 = 2mod 3, confirming Theorem 2. See [23]
for a complete analysis of the special cut.

The second case of Schubert’s equivalence corresponds to the palindrome
cut, an example of which is illustrated in Figure 13. Here we see that the

tangles
1
T=1[23,4=[2]+ T
Bl+m
and
S =439 = 4] + —
— % - Tal 1 1
Bl+
both have the same numerator closure. Their corresponding fractions are
1 30 1 30
FT)=24+ ——=— d F(S)=4 =—.
S T S

Note that 7-13 = 1 mod 30.

ool - KK

= = 1
T=[3] s= [1]+[2]

Figure 12. An example of the special cut.

+ oK

T=[2]1+ W([3]+1714]) §=[4] + 1/ [3] + 142])

L/\(f\f”\g\, :\__7 NCT) = NGS)

Figure 13. An instance of the palindrome equivalence.
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In the general case if T = [ay,as,...,a,], we shall call the tangle
S = lan,an-1,...,a1] the palindrome of T. Clearly these tangles have the
same numerator. In order to check the arithmetic in the general case of
the palindrome cut we need to generalize this pattern to arbitrary contin-
ued fractions and their palindromes (obtained by reversing the order of the
terms).

The next Theorem is a known result about continued fractions. See [22,
35] or [24]. We shall omit our proof of this statement. For this we will first
present a way of evaluating continued fractions via 2 x 2 matrices (compare
with [15, 26]). This method of evaluation is crucially important for the rest
of the paper. We define matrices M (a) by the formula

M(a) = (‘1’ (1))

These matrices M (a) are said to be the generating matrices for continued
fractions, as we have:

Theorem 3. (The matrix product interpretation for continued fractions)

Let {a1,az2,...,an} be a collection of n integers, and let
P
@ = [al,ag,...,an]
and
Pl
@ = [an, Gn-1,...,a01]
Then P = P" and QQ' = (—1)""' mod P.
In fact, for any sequence of integers {a1,aq,...,an} the value of the
corresponding continued fraction
P
@ = [al,ag,...,an]

18 given through the following matriz product

M = M(a1)M(az2) -+ - M(ay)

(P @
M_<Q U)

where this matriz also gives the evaluation of the palindrome continued
fraction

via the identity

[anaan—h" '7a1] = A7
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Proof. We omit the proof of this Theorem. O

3. Sums of Two Rational Tangles

In this section we note that the numerator of the sum of two rational tangles
is a rational knot or link. We characterize the knot or link that emerges
from this process.

Theorem 4. (Addition of Rational Tangles) Let {a1,az,... ... ,an} be a
collection of integers, so that

P

0 = [a1,ag,...,ap).
Let {b1,ba,...,bm} be another collection of integers, so that

= Duba bl

Let A = [g] and B = [£] be the corresponding rational tangles. Then the
knot or link N(A + B) is rational, and in fact

N(A+ B) = N(lan,an-1,-..,a2,a1 + b1,ba, ..., bn]).

Proof. View Figure 14. In this figure we illustrate a special case of the
Theorem. The geometry of reconnection in the general case should be clear
from this illustration. O

The next result tells us when we get the unknot.

-E3

Il {anihe fwo-sphare)

(5200

NU[123 102 =N [22,141.1.2])

ol fare!

Figure 14. The numerator of a sum of rational tangles is a rational link.
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Definition 1. Given continued fractions g = [a1,...,a,] and & =
[br,. .., bu], let
[a1, ... an] (b1, ., bm]) = [an,...,a2,a1 + b1,ba, ..., by).
If
F
5:[ana"'7a2;a1+b1;b25"'7bm]a
we shall write
PR _F
Q™S G

Note that £ is a fraction such that N([£]) = N([g] +[£]).

Theorem 5. Let

- = ]
= lay,a9,...,a,
0 1,02
and
R
— =[b1,ba,..., b
S [1; 25 9 ]

be as in the previous Theorem. Then

P R
N{|= ke
QQ] i {SD
is unknotted if and only if PS + QR = £1.

Proof. We omit the proof. O

4. Continued Fractions, Convergents and Lots of Unknots

Consider a rational fraction, its corresponding continued fraction, and its
matrix representation:

P/Q =la1,...,an]
with

M = M(@) = M(ay) - - M(ay) = (g %) .

Note that since the determinant of this matrix is (—1)™, we have the formula
PU — QQ' = (—1)™ from which it follows that

P/Q—-Q'/U=(-1)"/QU.
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Hence, by Theorem 5, the diagram
N([P/Q] - [Q'/U])

is unknotted and, as we shall see, is a good candidate to produce a hard
unknot. Furthermore, the fraction @'/U has an interpretation as the trun-
cation of our continued fraction [aq,...,ay] :

QI/U = [al,...,an_l].

To see this formula, let

N =M(a) - M(an_y) = (? f/)

so that
R/S = [(Ll, NN ,an,l].

Then
(6 ¥

0 U) =M(a1) - M(apn—1)M(a,) = NM(a,)

(R S a, 1
\SsS Vv 1 0
_ (Ra,+S" R
“\ Sa,+V §)°
This shows that Q'/U = R/S = [ay, ..., an—1], as claimed.

Definition 2. One says that J[a1,...,an—1] is a convergent of
[a1,...,an_1,a,]. We shall say that two fractions P/Q and R/S are con-
vergents if the continued fraction of one of them is a convergent of the
other.

We see from the above calculation that the two consecutive integers PU
and QQ’ produce two continued fractions P/Q = [ay,...,a,]) and Q'/U =
[a1,...,an—_1] so that the second fraction is a convergent of the first.

We have proved the following result.

Theorem 6. Let P/Q and Q'/U be fractions such that the continued frac-
tion of Q'/U is a convergent of the continued fraction of P/Q. Then

N([P/Q] - [Q'/U])

is an unknot.
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Proof. The proof is given in the discussion above. O

Remark 1. This Theorem applies to Figure 3, and our early discussion of
the Culprit.

The property of one fraction being a convergent of the other is in fact,
always a property of fractions produced from consecutive integers. We make
this statement formally in the next Lemma (see also [10]).

Lemma 1. Let P and Q be relatively prime integers and let s and r be a
pair of integers such that Ps — Qr = +1. Let R=r +tP and S = s+ tQ
where t is any integer. Then {R, S} comprises the set of all solutions to the
equation PS — QR = +1. If Ps — Qr = +1 and PS — QR = F1, Then all
solutions are given in the form R= —r 4+tP and S = —s + tQ.

Proof. We omit the proof of this Lemma. O

Theorem 7. Let P and Q be relatively prime integers and let P/Q =
[a1,...,an] be a continued fraction expansion for P/Q. Let r/s =
[a1,...,an_1] be the convergent for [ai,...,a,]. Let R = r + tP and
S = s+ tQ where t is any integer. Then R/S = [a1,...,an,t]. Thus P/Q
is a convergent of R/S. We conclude that if P/Q and R/S satisfy the con-
dition that N([P/Q] —[R/S]) is an unknot, then one of P/Q and R/S is a
convergent of the other.

Proof. We omit the proof of this Theorem. O

5. Constructing Hard Unknots

In this section we indicate how to construct hard unknots by using positive
alternating tangles A and B such that N(A — B) is unknotted. By our
main results we know how to construct infinitely many such pairs of tangles
by taking a continued fraction and its convergent, with the corresponding
tangles in reduced (alternating) form.

Let’s begin with the case of 5/4 = [1,4] = [1,3,1] and 4/3 = [1,3]. In
Figure 15 we show the standard representations of [1, 4] and [1, 3] as tangles,
and the corresponding construction for the diagram of K = N([1, 4]—[1, 3]).
The reader will note that this diagram is a hard unknot with 9 crossings,
one less than our original Culprit of Figure 3. We give another version of it
in Figure 19 (equivalent to its mirror image H). In Section 6 we show that
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Al

Figure 15. K = N([1,4] — [1,3]).

N([14] - 11,3)

H is one of a small collection of minimal hard unknot diagrams having the
form N(A — B) for reduced positive rational tangle diagrams A and B.

In most cases, if one takes the standard representations of the tangles A
and B, and forms the diagram for N(A — B), the resulting unknot diagram
will be hard. There are some exceptions however, and the next example
illustrates this phemomenon.

In Figure 16 we show the standard representations of [1,3] and [1,2] as
tangles, and the corresponding construction for the diagram of N([1,3] —
[1,2]). This diagram, while unknotted, is not a hard unknot diagram due
to the three-sided outer region. This outer region allows a type III Reide-
meister move on the surface of the two dimensional sphere. In this example,
tucking an arc does not create a hard unknot from the given diagram (there
is be a type III move available after the tuck).

The Tucking Construct. Figure 17 shows a way to remedy this situation.
Here we have replaced [1,2] by [1,2]*%P the 180 degree turn of the tangle
[1,2] about the vertical direction in the page. Now we sce that the literal
diagram of N ([1,3] — [1,2]*¥P) is of course still unknotted and is also not a

hard unknot diagram. However this diagram can be converted to an unknot

o ko

{1.2]
N3] -(1.2])

Figure 16. N([1,3] —[1,2]).
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diagram by tucking an arc as shown in the Figure. The resulting hard
unknot is the same diagram of 10 crossings that we had in Figure 3 as our
initial Culprit. Note that the other possibility of flipping both tangles in
Figure 16 or flipping the first tangle do not lead to a hard unknots. We call
this strategem the tucking construct. Tucking is accompanied by the vertical
flip of on one of the tangles to avoid the placement of a Reidemeister move
of type III as a result of the tuck.

The Culprit Revisited. Let’s consider the example in Figure 3 again.
Here we have P/QQ = F(A) = —=3/4 and R/S = F(B) = 2/3. We have
P/Q+ R/S=-3/4+2/3 =—1/12. Thus N([-3/4] + [2/3]) is an unknot
by Theorem 5. This is exactly the unknot C” illustrated in Figure 3.

We can make infinitely many examples of this type. View Figure 18. The
pattern is as follows. Suppose that T' = [P/Q] and T’ = [R/S] are rational
tangles such that PS — QR = £1. Then we know that N(T — (T")%r)
is an unknot. Furthermore we can assume that each of the tangles T and
T’ are in alternating form. The two tangle fractions have opposite sign
and hence the alternation of the weaves in each tangle will be of opposite
type. We create a new diagram for N (T — (T")*f) by putting an arc from
the bottom of the closure entirely underneath the diagram as shown in
Figure 18. This is an example of a sucessful tucking construct. Note how
in the example shown in Figure 18, the knot diagram resulting from the
tucking construction is indeed our original hard unknot diagram. There
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Knotted
Unknotting Number One

Figure 18. The tucking construct.

are no simplifying Reidemeister moves and there are no moves of type III
available on the diagram.

6. The Smallest Hard Unknots

Figure 19 illustrates two hard unknot diagrams H and J with 9 crossings.

Conjecture 1. Up to mirror images and flyping tangles in the diagrams,
the hard unknot diagrams H and J of 9 crossings, shown in Figure 19
(K = —H appears earlier in Figure 15), have the least number of crossings
among all hard unknot diagrams.

Two equivalent versions of the diagram H appear in Figure 19. The
right-hand version of H in this figure is of the form

H=N([1+1/3] = [L+1/4]) = N([1,3] - [1,4]) = N([4/3] — [5/4]).

Note that [1,3] and [1,4] = [1, 3, 1] are convergents. Note also that the
diagram K of Figure 15 is given by K = N([1,4] — [1,3]) = —N([1,3] —
[1,4]) = —H. Thus H and K are mirror images of each other.
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Figure 19. H and J are hard unknots of 9 crossings.

J

J

The diagram J in Figure 19 is of the form
N([L+1/3] = [1+1/(2+1/2)]) = N([1,3] = [1,2,2]) = N([4/3] — [7/5]).

Note that [1,3] = [1,2,1] and [1,2,2] = [1, 2,1, 1] are convergents.

Note also that the crossings in J corresponding to 1 in [1,3] and —1
in —[1,2,2] = [-1,—2,—2] can be switched and we will obtain another
diagram J’, arising as sum of two alternating rational tangles, that is also
a hard unknot. This diagram can be obtained from the diagram J without
switching crossings by performing flypes (A flype is a turn of a tangle by
7 that carries a crossing to the other side of the tangle.) on the subtangles
[1,3] and [1,2, 2] of J, and then doing an isotopy of this new diagram on the
two dimensional sphere. (We leave the verification of this statement to the
reader.) Thus the diagram J’ can be obtained from J by flyping. A similar
remark applies to the diagram H, giving a corresponding diagram H’, but in
this case H' is easily seen to be equivalent to H by an isotopy that does not
involve any Reidemeister moves. Thus, up to these sorts of modifications,
we have produced essentially two hard diagrams with 9 crossings. Other
related hard unknot diagrams of 9 crossings can be obtained from these by
taking mirror images.

We have the following result.

Theorem 8. The diagrams H and J shown in Figure 19 are, up to flyping
subtangle diagrams and taking mirror images, the smallest hard unknot dia-
grams in the form N(A— B) where A and B are rational tangles in reduced
positive alternating form.
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Proof. It is easy to see that we can assume that A = [P/Q] where P
and @ are positive, relatively prime and P is greater than (). We leave the
proof that one can choose P greater than @ to the reader, with the hint:
Verify that the closure diagram in Figure 16 is equivalent to the diagram
in Figure 19 on the surface of the two dimensional sphere, without using
any Reidemeister moves.

We then know from Theorem 8 that B = [—R/S] where one of P/Q) and
R/S is a convergent of the other. We can now enumerate small continued
fractions. We know the total of all terms in A and B must be less than or
equal to 9 since H and J each have nine crossings.

In order to make a 9 crossing unknot example of the form N(A — B)
where A and B are rational tangles in reduced positive alternating form,
we must partition the number 9 into two parts corresponding to the num-
ber of crossings in each tangle. It is not hard to see that we need to use
the partition 9 = 4 4+ 5 in order to make a hard unknot of this form. Fur-
thermore, 4 must correspond to the the continued fraction [1, 3], as [2, 2]
will not produce a hard unknot when combined with another tangle. Thus,
for producing 9 crossing examples we must take A = [1,3]. Then, in order
that A and B be convergents, and B have 5 crossings, the only possibilities
for B are B = [1,4] and B = [1,2,2]. These choices produce the diagrams
H, H' J,J. It is easy to see that no diagrams with less than 9 crossings
will suffice to produce hard unknots, due to the appearance of Reidemeister
moves related to the smaller partitions. This completes the proof. O

7. The Goeritz Unknot

The earliest appearance of a hard unknot is a 1934 paper of Goeritz [16].
In this paper Goeritz gives the hard unknot shown in Figure 20. As the
reader can see (for example by twisting vertically the tangle [—3] twice),
this example is a variant on N ([4] 4 [—3]) which is certainly unknotted. The
Goeritz example G has 11 crossings, due to the extra two twists that make
it a hard unknot. It is part of an infinite family based on N([n] 4+ [-n + 1]).

=g=}

Figure 20. The Goeritz hard unknot.
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8. Stability in Processive DNA Recombination

In this section we use the techniques of this paper to study properties of
processive DNA recombination topology. Here we use the tangle model of
DNA recombination [13, 14, 36] developed by C. Ernst and D.W. Sumners.
In this model the DNA is divided into two regions corresponding to two
tangles O and I and a recombination site that is associated with I. This
division is a model of how the enzyme that performs the recombination
traps a part of the DNA, thereby effectively dividing it into the tangles
O and I. The recombination site is represented by another tangle R. The
entire arrangement is then a knot or link K[R] = N(O + I + R). We then
consider a single recombination in the form of starting with R = [0], the zero
tangle, and replacing R with the tangle [1] or the tangle [—1]. Processive
recombination consists in consecutively replacing again and again by [1] or
by [—1] at the same site. Thus, in processive recombination we obtain the
knots and links

Kln] = N(O+1 +[n]).

The knot or link K[0] = N(O + I) is called the DNA substrate, and the
tangle O + I is called the substrate tangle. It is of interest to obtain a
uniform formula for knots and links K[n] that result from the processive
recombination.

In some cases the substrate tangle is quite simple and is represented as a
single tangle S = O+ 1. For example, we illustrate processive recombination
in Figure 21 with S = [-1/3] = [0,—-3] and I = [0] with n = 0,1,2,3,4.
Note that by Proposition 1 of Section 2.1,

K[n] = N(S +[n]) = N([0, =3] + [n]) = N([-3,0 + n]) = N([-3,7])
= N(=[3, —n]) = N(=[2,1,n = 1]).

This formula gives the abstract form of all the knots and links that arise
from this recombination process. We say that the formula

Kln] = N(=[2,1,n —1])

for n > 1 is stabilized in the sense that all the terms in the continued
fraction have the same sign and the n is in one single place in the fraction.
In general, a stabilized fraction will have the form

N(£lai,a2,...ak-1,ak + n,ak41,---,0n])

where all the terms a; are positive for ¢ # k and ay is non-negative.
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Figure 21. Processive recombination with S = [—1/3].

Let’s see what the form of the processive recombination is for an arbi-

trary sequence of recombinations. We start with

O =la1,a2,...,ar_1, 0]
I =[b1,ba,...,bs_1,bs].

Then

K[n]=N(O+ (I+n]))

= N(la1,az2,...,ar-1,a;] + [n+ b1, o, ...
K[n] = N([a7‘7a7*—17---7a27a1 +n+by,bo,. ..

) bsflv bs])
) bs—17 be])
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Proposition 2. The formula
K[TL] = N([ar,a,,_l, ..., 02,07 +n 4+ bl,bg, .- abs—labs])

can be simplified to yield a stable formula for the processive recombination
when n is sufficiently large.

Proof. Apply Proposition 1 of Section 2.1. O

Here is an example. Suppose we take O = [1,1,1,1]and I = [-1, -1, —1]
so that the DNA substrate is an (Fibonacci) unknot. (I is the negative of
the convergent of O.) Then by the above calculation

K[TL] = N([lv ]-a ]-7 1+n+ (_1)a _]-7 _1]) = N([lv ]-7 17n7 _]-7 _1])

Suppose that n is positive. Applying the reduction formula of Proposition
1, we get

K[n]=N([1,1,1,n,—1,-1)])
= N([l, 1,1,n — 1,1,0,1]) = N([l, 1,1,n — 1,2]),

and this is a stabilized form for the processive recombination.

More generally, suppose that O = [ay,as,...,a,] where all of the a;
are positive. Let I = [—a1, —azg, ..., —ap—_1]. Then K[0] = N(O +1I) is an
unknotted substrate by our result about convergents. Consider K[n] for
positive n. We have

K[n] = N([an, an-1,...,02,a1 +n — a1, —az2,...,—Gn_1])
= N([an, an-1,...,a2,1,—a2, ..., —ap_1])
= N([an,an-1,...,a2,(n—1),1,(as — 1), as,...,an—1]).

If ag — 1 is not zero, the process terminates immediately. Otherwise there
is one more step. In this way the knots and links proceeding from the
recombination process all have a uniform stabilized form. Further successive
recombination just adds more twist in one entry in the continued fraction
diagram whose closure is K[n].

The reader may be interested in watching a visual demonstration of
these properties of DNA recombination. For this, we recommend the pro-
gram Ginterface (TangleSolver) [37] of Mariel Vasquez. Her program can be
downloaded from the internet as a Java applet, and it performs and displays
DNA recombination. Figure 22 illustrates the form of display for this pro-
gram. The reader should be warned that the program uses the reverse order
from our convention when listing the terms in a continued fraction. Thus
we say [1,2,3,4] while the program uses [4, 3,2, 1] for the same structure.
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Figure 22. Processive recombination with S =[1,1,1,1] + [-1,—1, —1].
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We describe a basic mathematical model of phagocytosis. We outline the ideas
involved in building the model as well as possible directions for further devel-
opments and refinements of the current model.

1. Introduction

Our mathematical exploration of phagocytosis originated in our interest
in the mechanisms of antibody-mediated protection against C. neoformans
and the relationship between antibody dose and protective efficacy. Pas-
sive immunization with antibody to the capsule is protective but the dose-
response shows the peculiar finding that administration of large amounts of
antibody abrogates protection [4, 6], and such doses can actually enhance
the course of infection. This phenomenon has been called a “prozone-like”
effect. While studying the interaction of macrophages and C. neoformans in
vitro we noted that the efficacy of phagocytosis declines at higher antibody
concentrations [4, 6]. Given that this observation could be associated with
the prozone-like phenomenon observed in passive protection experiments
we decided to study in more detail and construct a mathematical model of
phagocytosis that would allow us to better understand the contribution of
the various parameters to opsonic efficacy.

Phagocytosis is a fundamental mechanism of host defense whereby
macrophages and neutrophils ingest and destroy microbial cells. The pro-
cess of phagocytosis follows a complex choreography whereby the microbe
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first attaches to the host cells it is subsequently ingested through various
receptor signaling paths that are not well understood. There have been
several attempts to generate mathematical models of phagocytosis in the
literature [2, 7]. However, none of the models available have addressed the
underlying biophysical mechanisms of phagocytosis and the critical contri-
bution of opsonin concentration. Moreover, the subject was last investigated
almost two decades ago.

Our goal is to use the available knowledge about phagocytosis to
construct a mathematical model that will provide a framework for the
further studies and rigorous description of the process and compare pre-
dictions from the model with experimental data. We initially drafted a
set of differential equations derived from common assumptions but found
that it did not account for the experimental observations. Consequently, we
carried out additional experimental work and model adjustments that in
turn provided new insights into this fundamentally important host defense
mechanism.

In this paper we describe the main ideas in modeling phagocytosis
and pose several questions that need to be addressed in a combination of
experimental work and mathematical modeling to understand and formally
describe this system.

2. Efficacy of Phagocytosis

Phagocytosis is a process that consists of the engulfment and destruction of
extracellularly-derived materials by phagocytic cells, such as macrophages
and neutrophils. A large number of experimental studies are described in
the literature with a variety of particles and cells, such as erythrocytes,
bacteria or yeast cells. Our modeling work is mostly based on experimental
studies of phagocytosis of Cryptococcus neoformans by macrophages but
our overall goal is to construct a general mathematical model that will
apply to a variety of organisms and systems and facilitate understanding of
common determinants of phagocytosis in different systems as well as enable
us to study the differences.

We are particularly interested in determining the variables that influence
the efficacy of phagocytosis. Efficacy of phagocytosis can be characterized
by the number or percentage of cells ingested over a certain period of time
and therefore is a variable that is by its nature quantitative. The efficacy of
phagocytosis can also be described as the percentage of phagocytic cells that
ingest microbes or particles involved. In general, the efficacy of phagocytosis
will depend on a variety of factors that differ from one biological model to
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another, but some of the main determinants like the presence or the absence
of antibody, the type and number of receptors involved and the number of
cells previously ingested or attached are common to a large class of systems
studied experimentally.

We are interested in antibody meditated phagocytosis and a model of
efficacy of phagocytosis with respect to the amount of antibody present.
We are especially interested in the the dose-response effects of antibody
overload on the efficacy of the phagocytic process as well as in its role in
the immune response in general.

We find that the most suitable measure of efficacy of phagocytosis for
modeling is the number of microbes ingested per phagocyte. This approach
enables us to use ideas from population models as well as modeling bio-
chemical reactions.

The system studied is a complex biological system that is not fully
understood and requires a combination of phenomenological and biophys-
ical modeling. Modeling such a process requires a series of successive
refinements and improvement of the model where each stage is char-
acterized by clear biophysical foundation and is also flexible enough to
allow for explorations of alternative hypothesis and adjustments of the
model. In this process we start with a phenomenological model based on
biochemical reactions models and analyze dependence of the model out-
comes on the constants involved. That modeling step identifies new vari-
ables and constraints that are then explored experimentally in an effort
to both test and refine the model and provide directions for further the-
oretical and experimental work.

3. Modeling phagocytosis

The earliest and one of a very few models of phagocytosis is developed
in [2] where the authors model phagocytosis as a bimolecular reaction and
propose the differential equation
dYr
dt
where Y7 is the total number of microbes ingested at time t, Yy is the

=—k(CPy —Y1)(Yo — Y7) (M-1)

initial number of microbes, Py the initial number of phagocytes, and C the
phagocytic capacity of a one phagocytic cell. In this model the rate k is
constant, which results in a differential equation that is easily solved for
the function that describes the growing population of ingested microbes.
We remark that a comparison with experimental data in [2] also led to
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introducing a number of modified models that fit the data better then this
basic model with modifications and adjustments for possible variations in
the capacity for phagocytosis.

Experimental results in [4-6] confirm that the population of ingested
microbes grows exponentially with respect to time, but also reveal that, in
the case of antibody mediated phagocytosis, the total number of microbes
ingested depends on the initial concentration of free antibody. That is an
expected observation since antibody facilitates phagocytosis, see Figure 1,
Panel A. However there is also an unexpected phenomenon, that is, that
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Figure 1. Antibody (IgG) binding to Cryptococcus neoformans capsule facilitates
phagocytosis through both Fc and complement receptors (Panel A). Too much anti-
body bound to the capsule might block CR binding sites on the capsule as well as Fc
receptors on the macrophage. (Panel B).
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higher concentrations of antibody result in a reduction in the efficacy
of phagocytosis. This paradoxical dose-response effect has been called a
“prozone-like effect.”

In our model we test several possible explanations for this phenomenon
and design experiments that lead to better understanding of phagocytosis.
In [3] we constructed a mathematical model of phagocytosis that describes
the dependence of the phagocytic efficacy on the initial concentration of
free antibody. Our model is based on a differential equation similar to the
equation M-1, that is

L = hynagoPo(¥o — Y1) (-2)
but our efforts are concentrated on understanding how the “constant”
kphago depends on the amount of antibody added to our in-vitro phago-
cytic system. We built our model on the assumption that kppaego is & not a
constant but a function of both the amount of antibody bound to microbes,
Ab, as well as the number R of available receptors. Both above mentioned
quantities depend on the initial concentration of free antibody: higher ini-
tial concentration of free antibody will result in more antibody bound to
the yeast capsule over time and therefore higher rate of phagocytosis. How-
ever, at the same time free antibody will also bind to Fc receptors and
block them from interacting with antibody bound to the yeast cell, pos-
sibly slowing down or even preventing phagocytosis (see Figure 1, Panel
B). Our experiments described in Figure 2 confirm that the presence of
irrelevant antibody indeed reduces the efficacy of phagocytosis.

The first step in building the model was to determine the main variables
and parameters of the system and test our understanding of experimental
conditions and their relationship to the process modeled. The process of
constructing a model of phagocytosis revealed a number of experimental
variables and conditions that could potentially influence the efficiency of
phagocytosis and that needed to be incorporated into the modeling process.

One example of such an experimental variable is the importance of the
procedure of mixing microbes and macrophages and, in particular, its tim-
ing. The importance of this step became apparent when we realized that
the dynamics of the binding of antibody capsule, and not just the equilib-
rium values, might strongly influence the outcome of this experiment since
the saturation time was comparable to the time of our experiments.

The identification of such variables led to additional experiments and
modification of the initial models.
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Figure 2. Adding irrelevant antibody, that is antibody that does not bind to the yeast
capsule but does bind to Fc receptors, reduces the efficacy of phagocytosis. The concen-
tration of (relevant) IgG in all the experiments was 10 pg/ml while the concentration of
irrelevant antibody was varied. The number of ingested microbes was counted after two
hours. The number of ingested yeast cells is given per 100 macrophages and the error
bars denote the standard deviation.

4. Modeling Goals

The long term goal of our project is to achieve a detailed mathemati-
cal description for this basic biological process and therefore to explain
biophysical mechanism and biochemical networks that are underlying the
process of phagocytosis. This challenging goal will necessarily require
sequential refinements of the model that incorporate results from both
experimental and theoretical studies of particular aspect of this complex
process. We are building a model of a process that is not phenomenolog-
ically fully understood and whose understanding could immensely benefit
from organizing the existing knowledge and data within a framework of
mathematical modeling.

In our basic model our goal is to attempt to understand how the effi-
cacy of phagocytosis depends on the amount of antibody present as well
as availability of receptors. We use our model to test a number of different
functions of Ab and R as a possible choice of for kppag0. The model indicates
that the dependence is not linear, which is consistent with the fact that we
are modeling a biological system with complex interactions and regulatory
mechanisms.
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A number of questions will need to be answered in order to explain the
dependence of kphago on the the amount of antibody bound to the yeast
capsule and the number of receptors and provide the next step in the model
refinement. We are currently conducting experiments that will contribute
to understanding of the following issues that might affect the efficacy of
phagocytosis:

(i) how does the number of receptors influence the rate of phagocytosis,

(ii) is there a minimal surface density of receptors for attachment or inges-
tion process to start and proceed,

(iii) understanding the rate at which receptors are internalized in phago-
cytosis,

(iv) the destiny of ingested receptors (recycling or degradation of receptors)
as well as synthesis of new receptors during phagocytosis,

(v) contribution of complement receptors to phagocytosis,

(vi) model of interactions and cooperation between receptors of the same
type as well as receptors of different types.

Some of these questions are present and unanswered in the literature,
and building a mathematical model enables us to connect them and organize
our knowledge into a more complete picture of phagocytosis.

In all our current experiments we use the same number of macrophages.
Since the multiplication rate for macrophages is rather low, we can assume
that the number is constant throughout the experiment. Moreover, since
we are using the 1:1 ratio of phagocytes and microbes we can consider,
according to published experimental results, that the number of ingested
microbes is well below the phagocytic capacity of macrophages even when
the loss of macrophages is taken into account. This makes the exponential
growth model M-2 very suitable for our experimental conditions.

However, at larger numbers of microbes we expect the phagocytic capac-
ity of phagocytes to limit the total number of ingested microbes. A more
advanced mathematical model will not only have to take this capacity into
account but can also be used to determine when the capacity of phagocyto-
sis is determined by the actual inherent phagocytic capacity of macrophages
or when it is limited by the number of receptors involved and the rate of
their synthesis and trafficking to the surface.

Moreover, the phagocytic capacity of macrophages is a characteristic
that is probably dependent on the rate of phagocytosis and the health of
macrophages. Consequently, this parameter requires careful and controlled
experiments when introduced in modeling.
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A more detailed mathematical model will also need to address the
question of the difference in the mechanisms of attachment and ingestion
in phagocytosis. In our basic model we still do not distinguish among
the attachment and ingestion, and results in [1] indicate that different
mechanisms govern these two steps in phagocytosis: their experimental
studies show that while the total number of attached and ingested microbes
in this system depends on the amount of antibody, the fraction of attached
microbes that also are ingested is constant and does not depend on the
amount of antibody. We predict that in a more general setting involving
different types of phagocytic receptors, the two processes will differ consid-
erably and a more detailed mathematical model will need to account for
the differences.

In our initial model presented in [3] we do not study the signaling cas-
cades that govern the macrophage response, nor the cytoskeletal movement
including a possible receptor aggregation and cooperation. These questions
can be and will need to be addressed in a more advanced model as well.

The most limiting factor in this type of a study is that we are dealing
with a biological system. The system itself is complex and tweaking exper-
imental conditions is not always easy. For example, observing phagocytosis
for longer then two hours is experimentally challenging since microbes may
impair the health and functioning of phagocytic cells.

A carefully constructed mathematical model is a powerful tool for explo-
ration of such a complex process and enables us to overcome some of the
experimental limitations. It also provides us with guidelines for designing
and preforming optimal experiments as well combining partial results into
a complete and precise description of the process studied.
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Although it is well established that T cell populations dramatically fluctuate
when the immune system responds to many diseases, many specifics of how
T cell activation occurs are not understood. We develop a model that tracks
T cell interactions with dendritic cells, which is a crucial process for activating
adaptive immune responses. We assume that the duration of stimulation by
dendritic cells in the lymph node determines the extent of T cell differentia-
tion. In this paper, we first describe the general partial differential equation
model with justifications for the modeling choices. Second, we present a few
highlights of the mathematical analysis of the model with certain simplify-
ing assumptions. Finally, we discuss some simulations of the full model and
interpret the biological predictions the model suggests.

1. Biological Background

The adaptive immune response to a pathogen typically is initiated through
cellular interactions that take place in the lymph node. In a lymph node, a
specific naive T cell may contact antigen presented on a mature dendritic
cell’s major histocompatibility complex (MHC) surface proteins. If the con-
tact is sufficient, this activates the naive T cell, and leads to differentiation
and proliferation of that clonal line of cells specific for the antigen:MHC
complex.

The dynamics of the T cell population responses are well studied for
certain pathogens such as murine Lymphocytic Choreomeningitis Virus.
Experiments show a consistent T cell response which consists of an expan-
sion phase in which T cell numbers of a specific lineage rapidly increase
several orders of magnitude, a retraction phase in which T cell numbers
dramatically drop, and a memory phase in which T cells numbers remain
relatively constant at about 5-10 % of the numbers at the peak response.
Simple mathematical models have been used to capture these dynamics and
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estimate parameters such as cell proliferation rates and apoptosis rates.
While total populations are well tracked, there is still debate in the litera-
ture about the nature of the T cell differentiation process.

Lanzavecchia and Sallusto (2000) propose that T cell differentiation is
driven by the duration of T cell receptor (TCR) stimulation and cytokine
action, and that hierarchical levels of differentiation are achieved through-
out the period of stimulation by dendritic cells [5]. In particular, they believe
that memory T cells are generated early after shorter durations of inter-
action with antigen, while effector cells are generated only from lengthier
antigen interaction intervals. This is in contrast to other models which
suggest that effector cells arise before memory cells in the differentiation
scheme.

Recently, research groups have greatly improved upon our ability to
study these dendritic cell-T cell interactions by developing the technology
to visualize the cell interactions in preparations of intact lymph nodes using
two-photon microscopy ( [1] and [7]). This research benefits from clearly laid
out mathematical models which describe and track these lymph node inter-
actions. Significant modeling contributions regarding how ligand-receptor
binding affects signaling outcomes are reviewed in [2].

In this paper, we develop a model that tracks dendritic cell-T cell inter-
actions, and assuming that T cell differentiation is a function of time spent
engaged in a synapse with antigen we create a framework to study differen-
tiation models further. We concentrate on T cell stimulation in the lymph
nodes (see Figure 1), since this is where the adaptive immune responses to
primary infections are initiated. The goal of the model presented here is to
be able to determine the distribution of cells that exit the lymph node as a
function of the duration of the TCR stimulation they experience and their
antigen avidity, beginning with a single naive cell. We can interpret the
resulting population of cells as having different functions that depend on
their degree of differentiation, and thus further investigate whether memory
cells are intermediates or terminally differentiated T cells. Additionally, we
can use our model to investigate competition and selection of T cell clones
with differing affinities for antigen.

In the next section, we describe the general model with justifications for
our modeling choices. We present some of our mathematical analysis such
as the model derivation and a much simplified ODE model that simply
defines the net growth or decay of T cells. We also provide exact solutions
of the model with certain simplifying assumptions. In the final section, we
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Figure 1. T cell activation in a lymph node. This simplified cartoon illustrates
our model of T cell-dendritic cell interactions in a lymph node. A naive T cell that
binds to antigen presentation sites on active dendritic cells may become activated, and
subsequently differentiate to a proliferating type. The population of cells of that clonal
line may continue binding to the antigen presented or leave the lymph node. The math-
ematical model presented here tracks the bound cells (shaded) and the unbound cells,
while keeping track of the total time spent bound to antigen on active dendritic cell for
each T cell.

show our results of numerical simulations on the full model and interpret
the model’s biological predictions.

2. The Model and Analysis

We wish to track T cells not only in time (¢), but also in some measure
of maturation. Since T cells mature based on the duration of TCR stimu-
lation, we define an additional independent variable, age (a), as the total
duration of TCR stimulation experienced by the cell. This variable rep-
resents the cumulative stimulation regardless of the length of individual
contacts.

We define two state variables for each lineage of T cells to describe the
system: B;(a,t) is the density of T cells from lineage ¢ bound to antigen
sites (meaning sites on a dendritic cell where antigen:MHC complexes may
bind with T cell receptors) with age a at time ¢, and U;(a, t) is the density
of unbound T cells in lineage i with age a at time ¢. We assume that the
underlying binding process to dendritic cells displaying antigen is stochastic.

We hypothesize the following rules for the model:

e T cells age (experience TCR stimulation) only while they are bound.
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e Bound cells can dissociate from their respective binding sites.
e Unbound cells can bind, depart from the lymph node, or divide.

Importantly, we also assume that the daughter cells of dividing T cells
retain the age (antigen experience) of the parent cell. This reflects our
assumption that antigen driven TCR stimulation drives a unidirectional
hierarchical cell differentiation process.

Hence, the system of partial differential equations (PDEs) given below
constitutes a general model for the evolution of these variables in the lymph
node when antigen and secondary activation signals are available:

W = \;Bi(a,t) — aU;(a,t) — kU;(a,t)
+pUi(a,t) (1)
0Bi(a,t)  OBila,t) _ ~\iBi(a,t) + aUi(a, t). @)

da ot

These equations are derived from the underlying stochastic model in
Section 2.1.

We must now more clearly define the transition rates in these equations.
We use A; for the detachment rate (or unbinding rate) of T cell lineage 1,
while « represents the attachment (or binding) rate. These rates relate
to the overall avidity of the TCR to the binding site, the availability of
binding sites, and possibly also to the maturity of the dendritic cell or T cell
involved in the interaction. An explicit dependency on age would follow
from experimental work that shows that when the two cells interact, key
cell surface proteins concentrate to form more efficient synapses [3]. We may
assume that the encounter rate « is independent of the cell lineage, and only
A depends on the TCR’s avidity for antigen. For simplicity, we will assume
that \; is constant for a given T cell lineage. This is reasonable because we
assume the dissociation rate is a property of the intrinsic conformation of
the TCR and its affinity for the antigen peptide presented on MHC. We
analyze the system without considering age dependence of a or A, but leave
that for future study.

In our most general formulation, we model o with an explicit dependence
on total available binding sites, allowing us to study the competition effects
during activation when antigen sites are limited. We let

o=a/s <s— /fo ZBida> , (3)
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where @ is some maximum binding rate when all binding sites S are
available. Then @/ is the binding rate per site, and (S — [ 3. B;da) is
the number of available binding sites. Note that the total number of bound
T cells, or the integral of B; over age, can never exceed S. We further
assume that the number of binding sites remains constant for the period of
activation. Alternatively, S itself may be a function of time to account for
an influx of mature dendritic cells from the infection site or the half-life of
the antigen:MHC complex on the dendritic cell surface.

Unbound cells are free to exit the lymph node at a rate k and can
divide at a rate p (proliferation rate), regardless of their affinity for anti-
gen presented. We assume that these rates do not depend on the particular
clone, and hence, have omitted any subscript i. Physiologically, prolifera-
tion depends chiefly on IL-2 production and concentration. Activated cells
secrete [1-2, and the locally produced IL-2 is required for cells to divide. If
we assume that activated cells produce enough IL-2 to proliferate at their
maximum, we can model proliferation with a simple step function. We let

p(a) = pH(a — ap). (4)

where H(a) denotes a Heaviside step function, a, is the age of significant
activation so that proliferation can occur, and p is the maximum prolifera-
tion rate. Hence, we make p an age dependent function, assuming that IL-2
is available and well-mixed in the lymph node. Any cell that has reached
this level of maturity is assumed to be a proliferating cell.

As for the departure rate, k, the simplest thing is to assume k is con-
stant and identical for all clones of unbound cells. More realistically, how-
ever, there may be some delay before T cells that have entered the lymph
node can depart from it. This could be due to the fact that the cells enter
one way (through high endothelial venules), then remain for a while before
they can exit into circulation. This would best be modeled with a delay
or an additional compartment in the equations. It is also possible that the
departure rate is density dependent, implying a lymph node has a lim-

ited carrying capacity (N). This could be modeled with a term such as
_ kN

R = T Bl

rate k is constant.

However, we prefer the assumption that the removal

After a certain level of maturity, T cells die due to activation induced
cell death (AICD). We could model this process with an additional term
in both equations where d = gH(a — ag) is some large death rate in both
the U; and B; equations. Again, H is a Heaviside function, and a4 is the
critical age at which cells begin to die off rapidly. More simply, we could
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instead solve the equations on the domain 0 < a < a4 and assume both
Ui(a,t) and B;(a,t) are zero beyond that domain. We are most concerned
with deriving the age distribution of cells resulting from antigen priming in
the lymph node so this death rate is not so important; we can derive the
age distribution and subsequently decide which cells are alive or dead.

Ultimately, we seek to track all the T cells that leave the lymph node
and enter the circulation, which we identify as T;(a, t). They grow according
to % = kU,(a,t). Hence, we use the integral of U;(a,t) over time as
a measure of the age distribution of total cells produced of the clonal line
with index .

Initial conditions for this problem may vary depending on what we
choose to simulate. We will generally consider the problem of how a single
naive clone activates and proliferates. When we consider only one T cell
clone we naturally drop the subscript . We assume this initially unbound
naive cell has age 0, implying the initial population mass distribution

Ul(a,0) = d(a) (5)

where 6 is the Dirac delta function. We can further assume we initially have
no bound cells, i.e.,

B(a,0) =0. (6)

The dynamics apply only in the quadrant where a > 0 and ¢t > 0. We
must translate these very singular initial conditions to the correct boundary
conditions for the equivalent Cauchy problem (see Section 2.4). For our
numerical simulations in Section 3, we use a discrete version of the Dirac
delta function.

We have introduced our model, which consists of equations 1-6. Analysis
and special solutions are given in the following section, while we return to
the full model and biological interpretations in 3.

2.1. Derivation of the age-structured PDE system

We assume a cell can be in either of two states: bound or unbound. A cell’s
age a is equal to the cumulative time spent bound to antigen on an antigen
presenting cell. U(a, t) is defined as the population density of unbound cells
of age a at time t. B(a,t) is the density of bound cells of age a at time t.
Hence, f:f U(a,t)+ B(a,t)da is interpreted as the cell population with ages
between a1 and asy at time ¢. We understand f;f U(a,t)da to be the number

of those that are in the unbound state.
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We assume cells can change their state, divide, or depart from the lymph
node, and assign the following probabilities to those events:

(AAt) — probability that a bound cell dissociates in time At as At — 0;

(aAt) — probability that an unbound cell binds in time At as At — 0;

(kAt) — probability that an unbound cell leaves the lymph node in time
At as At — 0;

(pAt) — probability that an unbound cell divides in time At as At — 0.

Hence we assume these processes are stochastic with Poisson distributions.
The state transitions are illustrated in Figure 2 with the proliferation and
departure rates omitted.

Now we can write the master equations which govern the system. The
unbound cells at age a and time t + At come from bound cells that
have dissociated, unbound cells that have not bound or departed from the
lymph node, and from births of new unbound cells. Hence, we have the
equation

U(a,t+ At) = AMAtB(a,t) + (1 — aAt)(1 — kAt)U(a, t) + pAtU(a,t)

Bound cells, on the other hand, age in exact accordance with time. After
a time step At, bound cells that have not dissociated advance an amount
Aa = At in age. They also can come from unbound cells which bind at
some arbitrary time in the interval between ¢ and ¢ + At. (Suppose this
arbitrary time is ¢ + At — Az where 0 < Az < Aa = At.) This gives us the
master equation for the bound cell density

B(a+ Aa,t + At) = (1 — MAt)B(a, t) + aAtU(a + Az, t).

By rearranging these equations we obtain:

Ula,t+ At) — Ula,t)

= AB(a,t) —aU(a,t) — kU(a,t)

At
+ akAtU(a,t) + pUl(a,t)
ral 1- o At
OB O,
ROEROS

a At

Figure 2. Stochastic transition diagram. This cartoon shows the possible transi-
tions between bound and unbound states, and the transition probabilities.
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B(a+ Aa,t + At) — B(a,t + At)  B(a,t + At) — B(a,t)
+
Aa At
= —AB(a,t) + aU(a + Aa,t)

And in the limit as Aa = At — 0 we obtain the linear hyperbolic PDE
system:

8Uéczv t) = AB(a,t) — aU(a,t) — kU(a,t)
+pU(a, 1) @
OBla.t) L OBlat) _ \pio )+ ali(a.t) ®)

da ot
This model can be written more concisely as:
U =AB—(a+k—p)U
Ba+Bt = —AB-'—O&U

or in matrix form as:

U n 0O ON|{U| [~ A
B 0 1)|B|] \a =X
t a
with vy =p — (a + k).
L . _|U _ (0 0 [y A
ettlngv—{B},C—(O 1),andD—(a _)\).wehave
vt + C’Ua =D.
Differentiating the equation 8 with respect to ¢, we can obtain a single,
second order PDE:

By + By = —AB; + aUy.
Substituting the equation 7 in for U; then yields:
By + By = —AB, + a[AB — (o — p+ k)U]
= Bio + Byt = —AB + aAB — (o« — p+ k)aU
= Bio + Byt = —ABi+ aAB — (a — p+ k) [AB + B, + By].
Finally, we have the second order equation describing the bound population
Bio+Bu+AN+a—p+k)Bi+(a—p+k)B,+AXk—p)B=0

Although we have written «, A, p and k as constant coefficients, the
derivation applies when these parameters are assumed to be functions of
time and age as well. This derivation thus gives rise to our most generally
formulated model in Section 2.
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2.2. Age independent ODFE problem

Assume «, A, p and k are constants. Let us study the age independent
problem, by integrating our equations over the age variable:

oU e
/ <8t>da——7/ Uda—i—)\/ Bda
/ (8_B+8_B> —a/ Uda — X\ / Bda
da

Then since for any ¢, B(a, t) is bounded with compact support (with respect
to a), we can change variables to u = ffooo Uda and b = ffooo Bda, and look
at the ODE system

d
d—? = —yu+ b 9)
% = au — \b. (10)

And our initial conditions of one naive unbound cell become:

u(0) =1 (11)
b(0) = 0. (12)
This linear problem is easy to solve!
Note first, that the total cell population evolves according to
d b
% — (=) (u+b), with(u+b)(0) = 1. (13)

So, when o > = the net population grows exponentially, when o =  the
population stays fixed (= 1) and when « < 7 the population decays.

The solution of the full system yields a sum of exponentials where the
growth or decay depends on the eigenvalues of the matrix D = (707 3‘)\).
The eigenvalues are always real when A, o, and  are positive real numbers.

Eigenvalues are

pra =g [~ £ VBTG - a)

with respective eigenvectors

1 1
V1o = o — 2

ma A L) = V) -G - a)
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And hence the exact solution with our initial values is

+ A +A
w= -T2 oxp(un t) + 22 exp(uat) (14)
M2 — K2 =
b= ———/(exp(u1t) +exp(uz t)) (15)
M2 — f1

The eigenvalues are real and distinct provided that
A +7)? > 4\(y — a).

Provided our parameters A and « are positive, and - is real, then we always
have real eigenvalues because

A=7)?> —dda= (A +7)? > 4\(y — a).

If v < o we have one positive (u1) and one negative (uz2) eigenvalue.
The population grows in the “direction” of the eigenvector associated with
the positive eigenvalue and decays in the “direction” associated with the
negative eigenvalue.

If @ < 7 we have two negative eigenvalues. The population decays to
zero as time proceeds.

If @ = v we have one zero and one negative eigenvalue. The popula-

tion will go to an equilibrium value. In fact, for long time, u — %—‘1-)\ and
b— aLH In this case the exact solution is
«@ A
u = oz+/\eXp(_(a+>\)t)+oz+/\ (16)
b= —— 5 exp(—(a + 1) + — (17)

This analysis confirms that T cell populations grow in the lymph
node provided that the proliferation rate, p, is greater than the rate of
departure, k.

2.3. Simplified case: No net population change

Let us consider the special case where «y is equal to a. This case is relevant
biologically if we assume cells do not leave or proliferate in the lymph node.
Or, if we consider one binding site and one cell and we wish to understand
how the total time bound evolves as a function of time. Interestingly, the
same simplified case would result from the assumption that the rate of
proliferation is exactly equal to the rate at which cells depart the lymph
node.
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In this case, we can think of U and B as true probability distributions of
unbound and bound cells over age, respectively. If we imagine starting with
a single cell of age zero which has never bound to antigen, the probability
of binding will follow a Poisson distribution ug(t) = e~**. The PDE system
applies for a > 0. Hence we have the conservation law

/OOU(a,t) + B(a,t)da +uop(t) =1 =up(0) Vt.
0

meaning that the probability a cell is unbound or bound of any age (> 0),
plus the probability that a cell has never bound equals one.

If we consider a system where v # —a the net population will change
as a function of time. We then will have

/OOU(a, £) + Bla, )da + uo(t) = n(t) V.
0

where n(t) is the equation for the total population as a function of time.
In the next section we work out the details of formulating the correct
boundary conditions for the Cauchy problem in the simplified case.

2.4. Formulation of the Cauchy problem

A PDE with side conditions is well posed if it admits a unique solution
for any values assigned to the data — or more precisely, if the solution
depends continuously on the data [6]. Hyperbolic problems such as the one
we have formulated have this attribute; however, due to the singular nature
of our initial condition, we must properly formulate boundary data along
manifolds transverse to the characteristics.

We consider the system of equations

oUu
— =—aU+ \B 18
ot~ T (18)
0B 0B
%a + o al — A (19)
for a > 0. We also assume a function ug(t) satisfies
du
d_to = —Qup, (20)

representing the naive cell distribution. Let uo(0) = u* be the initial naive
cells. Total cells will always equal the initial quantity of naive cells, so our
conservation law is:

uo(t) + /OOO(B(a,t) +U(a,t))da =u* (21)
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for any ¢ > 0. However, U(a,t) = 0 and B(a,t) = 0 for a > t so that
¢
wo(t) + / (B + U)da = u*.
0

Note that this implies

d'l.L()

% </Ot(B+U)da> = % (" —uo(t)) = ——~

Also note that the sum of equations 18 and 19 yields
o(U + B 0B
U+B) 0B _

o " oa
Fix a > 0 and observe that
a a B ~
4" Bla,t) + Ula, t))da —/ 9B(@,1) 1o _ B(0,1) - Bla,t).
dt Jo 0 0a
If @ > t then B(a,t) =0, so that
d e duo
ol B(a g 4 — B - 4%
& [ B+ U@ = Bo. = -
= B(0,t) = xaug(t). (22)

This specifies a boundary condition at a = 0.
The above calculation applies only if a is fixed. If not,

a(t)
%/0 (B(a, 1) + Ula, t))da

fl—?(B(a,t) + Ul(a,t)) + B(0,t) — B(a,t).

Letting a = t, (% =1),
(B(4,) + U(t,1)) + B(0,t) — B(t,t) = —% S U =0, (23)

This specifies a boundary condition along the characteristic curven =t = a.
We can also observe that along the curve n = a, n =t,

Furthermore, B(n = 0,t = 0) = au®, so that
B(t,t) = au” exp(—At).

It turns out that we do not need to define B at this boundary to solve the
problem as this comes from the solution of the problem itself, this curve is
itself a characteristic.
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Hence, the problem we wish to solve is formulated as follows in charac-
teristic coordinates. We change coordinates from (a,t) to (n, 7) where a =7
and t = n + 7. Then we have the equations

ou

o = —alU(n,7) + AB(n,7) (24)
-

0B

o al(n,7) = AB(n, ) (25)

and our boundary conditions are

U(n,0) =0 (26)
B(0,7) = au™ exp(—ar). (27)

2.5. Solution using Laplace transforms

To solve the problem above, we use the Laplace transforms in 7:

Bly.s) = [ e B mdr (28)
U(n,s) = / e U (n, 7)dr. (29)
0
Equations 25-27 become
. . . AB
sU-Un,0)=AB—aU = U=
S+«
OB  ~ s
— =aU - AB
on “
with
~ au®
B(0,s) = .
(0.5) =
So,
~ a\ au®
B = -
eXp{(s—Fa >n}a+s
or by rearranging
~ 1 A
B = au*e M —— exp < Al ) (30)
a+ s S+«
From [8] we have that
—a/s
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is the Laplace transform of

Ft) = (£)n/z T (2+/at)

where J,, is the Bessel function of the first kind of order n.
Hence we invert B to find

B(n,7) = au*e e Iy (2\/alT) (31)

where I, is the modified Bessel function of the first kind of order v. To find
U, we must invert

U’:

A 1 A
au*e M exp< ot > (32)
o+ s o+ s S+«

which gives

1/2
-
Un,7) = Mau*e Me 7 <OZ—>\77> I (2+/aAnT). (33)

So, the solution back in (a,t) coordinates is

— Aot e—Pag—att-a), [(E—a) —
U(a,t) = dau*e e a L (2v/aXa(t — a))

B(a,t) = au*e e = [(2\/ala(t — a))

which applies for 0 < a < t. Or we can write

\a —ouft— t—a)
U 1) = hau* Aa ,—a(t—a) (
(a,t) au*e e .

x I (2y/aXa(t —a))H(a)H(t — a) (34)
B(a,t) = au*e e =12\ /ara(t — a))H(a)H(t —a),  (35)

and this is the solution to our problem. We show plots of these solutions
in Figures 3, 4 and 5. We have U and B as functions of time and age, and
can study these dynamics for a range of parameter values, in this special
case where p = k implying there is no net population change in the lymph
node. Solutions are depicted in Figures 3—4.

It is clear that solutions for U and B are shaped like humps that move
along the a axis and deform. The amplitude decays while the support grows,
and the integral approaches a constant. Indeed this system describes some
kind of diffusion process. Note that the peaks of the solutions for U and for
B move with a speed of 3. This makes sense because this is the fraction
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Age afoed, B and U as functions of ime
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Figure 3. Solution curves with a constant total population. This figure shows
solution cross sections when A = 1, & = 2, and either a is held fixed (top), or ¢ is held
fixed (bottom). No population growth is allowed here.

a a
t t

Figure 4. Solution surfaces with a constant total population. Surface plot of
solution for @ = .5 and A = 1.
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Bownd
.
2 4 & a 1w 12
a

Figure 5. Solutions for different binding rates. The top row shows the solutions
for U and B when a = 2, middle row: a = 1, and bottom row: o = .5. In all figures
A = 1. The intensity of the color represents the amplitude of the solution. The peak

amplitude moves along the a-axis at the rate QLJW\

of time cells spend in the bound state and cells only age when they are
bound. So, the peak of the hump should move along (age) at a speed of
—2~. Furthermore, the peak of U lags behind the peak of B with a lag

a+A’

of (%M This is because (%M = %%—M which is the product of the mean
time not bound and the time aging while bound. This is shown in Figure 5.
Hence, we have characterized the peak speed and lag in this system, but

have not yet solved for the variance in the system.
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2.6. Extending the solution: Allowing population growth

The result in the simplified case is useful, but we would also like to solve
the problem when v is unequal to a and cells can divide.

Suppose the rate p — k = ¢ is small compared to «. Our system of
equations to solve in characteristic coordinates is then

g—:{ = —(a—e)U+ B (36)

OB

Gy = U -AB (37)
with

U(n,0) =0 (38)

B(0,7) = au™ exp(—ar). (39)

The boundary conditions remain the same and can be derived in a
similar manner as described for the simpler problem. Adding the € growth
term affects only the internal dynamics of the system and does not alter
what happens at the boundary. In biological terms, if cells can only divide
once they have positive age, the cells of age zero will not be effected. The
other boundary represents cells that have been bound the entire time of
simulation. Bound cells cannot divide so again the addition of € does not
affect the boundary condition.

We use the same technique to solve, and find the Laplace transform in
T to obtain

sU—U(n,0) = AB — (a — e)U

or
. AB
U= ——.
(s+a—¢)
The equation for B is
0B -
— =aU - AB
on «
with
B(0,s) = o
o+ s

exactly as before.
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That is

oB al ~ ~ aA au*
oy {(sw—e)_A]B;BB_eXpK@w—e)_A)"] ats

So, we must invert the transform:

aln :|
e
B= au*e_/\nip {Haie
a—+s

but since the denominator of the argument of the exponential function does
not match the denominator of the expression we cannot directly apply the
rule we used before.

Provided that € < a/2, we can write H;a as the sum of the infinite
geometric series

i (—e)!
— 1
= (s +a—e)Uth’

Then we can write

al
] exXp |:5+o¢77 e:|

B ay
au*e E
(s +a—e¢lth)

and

o (—e)f exp [ ;222 ]
~ - % 7)\,,7 sta—e
U = lau’e Jz::o (5+a—elt?

To invert this now use the same rule that we applied previously, namely:

f(s):SnT, n>-1

So,
o NI
B(n,7) = au*e M@ E)TZO(_E)J <—04)\77) J;(24/—anT)
or J
S r J/2
B(n,7) = au*e e (@ 6)Tz:(—e)J (04—)\77) I;(2+/aAnT)
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and

A~ (ae) i ‘ - (3+1)/2
U(n,7) = daue Ve jz:%(—e)j (‘04)\77) J;(2v/—adnT)

or

o0 /o \UTD/2
Un,T) = Aaute Me (=T ;}(—e)j (04—)\77) L;(2+/aAnT)

Let z(n,7) = 2y/a\nT and W (n,7) = au*e e~ (*=97 and then

WZ (QQ/\U)jIj(»T)
J+1
= /\WZ (mAn) L1y ().

Back in original variables the exact solution for 0 < a < ¢ is:

B(a,t) _ Oéu*ef)\aef(ozfe)(tfa)

X Z(—e)j (%}Eix—@) Ii(2v/ala(t — a)) (40)
7=0

Ula,t) = dau*e e~ (@m9)(ta)

. 1
X Z(—e)j <%}(\i—a)> Iy (2vada(t — a)) (41)

(Note that in the limit as e — 0, we have the same solution we had before.)
We can use the recurrence relation [4]

xlpi1(z) = 2l (x) — nl,(v)

to express the terms of this sum in terms of Iy and derivatives of Iy. There-
fore, we can see that if aAn = d,

B = w3 () 1w =W {hote) ~ oo + 01}

= W {Iox) = 5514(@) + O(A) } = Wio(z + ey) + O(e")

with y = 5. Or in original coordinates for 0 < a < t:

B(a,t) — Oéu*ef)\aef(ozfe)(tfa)
t—a) 9
. 42
- ) +O@). (42)

x Iy <2\/a)\a(t —a)—
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Using this recurrence we can also write U in simplified form as follows:

= )\WZ ( )H_l Ij1(x)

61’2

= \W {;dfl(x) — @Iz(m) + 0(62)}

T

=W { S h(@) - 15 (@) = L) + O }

e+ 8) 1w - S +oe)

_ A;j {(z + ey)(I (x — e9))} + O(e2)

Thus, in original coordinates for 0 < a <t :

* t _
Ula,t) = ;—ae*Me*(a*)(F“) <2 aXa(t —a)+e (04)\(?)>

I (2\/04)\@(75 —a)— t ;§)> + O(€). (43)

3. Simulation Results

The discussion of this section refers to solutions of the full model of
Section 2. Using our numerical scheme above, we investigate the model
predictions for some biological questions:

e How is the resulting age distribution of a single clonal line affected by
changes in the parameters?

e What is the effect when antigen is scarce?

e If memory cells are intermediates, how can memory be sustained?

e Do higher affinity clones produce more activated cells?

3.1. Parameter selection and assumptions

We solve equations 1-6 with the nonconstant binding rate « and prolif-
eration rate p. This full system contains only six parameters. The precise
assumptions we make for our numerical simulations are as follows:

e We assume that proliferation begins only after cells have reached the age
of a, = .83 day ~ 20 hours. (All cells of that age and beyond proliferate
with rate p, regardless of antigen affinity.)
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e Proliferation of unbound cells happens at a rate of p = 2.4 per day,
equivalent to every 10 hours on average.

e Cells leave the lymph node at a constant rate of k = .2 per day, or roughly
every 5 days on average.

e Total antigen sites available on dendritic cells is S = 100. This value
is somewhat arbitrary since the model can essentially be scaled by the
available antigen sites, but we choose 100 for convenience.

e The chance of encountering a binding site if all possible sites are available
is @ = 48 per day which means, roughly every half-hour. (We also run
simulations with other values of this parameter).

e The expected time to unbind for a particular T clone depends on the
affinity of that clone for the antigen. We look at A = 72, 48, and 24 per
day, corresponding to 20 minutes, 30 minutes, and 1 hour respectively
for the average time to dissociation. A low value of A corresponds to a
high affinity clone.

3.2. Single clone results

A numerical solution to a single clone simulation with one initial naive
cell as the initial condition is displayed in Figure 7. The top two plots
show contour lines for U(a,t) and B(a,t). Very rapidly the simulation
reveals smooth peaks that age at a rate QLH The amplitude first decays,
then grows, and the peaks spread as they evolve. The bottom plot of this
figure illustrates the age distribution of activated cells that have entered
into circulation. After 4 days a substantial number of activated cells are
released — perhaps these cells can be interpreted as My or Ag of the pre-
vious chapter. These cells, which have surpassed an activation threshold
(some fixed age), are primed to respond at a site of inflammation in the
tissues.

We numerically solved the problem for a range of values of @ and A, and
show the resulting age distributions in Figure 6. Observe that the spread
of the resulting age distribution is wider when @ and A are smaller. An
interesting observation is that the high affinity clones do not supply the
greatest number of activated clones. In fact, since cells cannot divide while
they are bound, a clone with very high affinity will age too quickly before
having the opportunity to proliferate much.

On the other hand, if the binding rate is low, then low affinity clones
do not age quickly enough to reach a proliferating age before the end of
the simulation. So, assuming that the end of simulation corresponds with
when antigen is no longer displayed, these clones will not produce many
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Figure 6. Cells in circulation for ranges of binding/dissociation rates. The
plots show the age distribution (predicted by the model) of cells that have left the lymph
node after 1, 2, 3, 4, and 5 days of activation by mature dendritic cells. The amplitude
is different depending on the values of @ and A. High values of @ indicate that T cells

make frequent encounters with the antigen sites. Low values of A are associated with
high affinity of the clone to the antigen:MHC.

activated cells either. Therefore, we have identified a trade—off: low affinity
clones will not age fast enough to reach the age of proliferation, but the
highest affinity clones will stay bound and thus be less likely to proliferate.
Indeed, the peaks shown in Figure 6 suggest that there is an optimum ratio
of @ to A that will produce the most cells. It appears that the value of a/\
is less than one. This could be something to verify experimentally, or it
could be a flaw in the model.

3.3. Scarcity of antigen

When antigen presentation sites are not numerous, encountering an avail-
able site becomes difficult early on in the simulation. Sites become rapidly
occupied, and so the binding rate « in equation 3 approaches zero. This

means that the speed of aging (aj‘_ y) also rapidly diminishes. Unbound
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Figure 7. Single clone simulation. Numerical results for the parameter values
A\ =48 per day, @ = 48 per day, k = .2 per day, p = 2.4 per day and S = 100. The
top row shows the contours of U and B with age along the horizontal axis and time
increasing up the vertical axis. The center plot shows the cross section of those results
at t = 4, and the bottom plot shows a measure of the age distribution of cells that have
left the lymph node after 1 day, 2 days, 3 days and 4 days.

cells that have surpassed age a, continue to proliferate, but aging is stalled
because « is near zero. Hence, the model suggests more cells proliferate at
a lower age when antigen is scarce. Characteristic solutions for S = 1 that
demonstrate this effect are shown in Figure 8.
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Figure 8. Results with limited antigen. Numerical results as in Figure 7 for the
parameter values A\ = 48 per day, @ = 48 per day, k = .2 per day, p = 2.4 per day and
S = 1. The scarcity of antigen causes the aging to stall.

3.4. Memory

Perhaps the most obvious criticism of a model that assumes memory cells
are intermediates is, one could argue, that such a model would not be capa-
ble of sustaining lifelong memory. In this model, memory cells can only age
their way towards activation induced cell death, and cannot move back-



An Age Structured Model of T Cell Populations 103

wards in the differentiation process. How, then, can memory be replenished
when antigen is encountered serially?

Indeed, if cells remained indefinitely in the lymph node, the model pre-
dicts that eventually intermediate cells would disappear. The support of the
solution must move to the right along the age axis. The previous section
points out, however, that aging can become slower or stall when antigen
sites are occupied, allowing activated cells to proliferate and generate more
copies of cells with the same level of maturity. This suggests one mechanism
for maintaining intermediates in cases of chronic infection.

However, more importantly, cells leave the lymph node. The necessity
of local interactions means that removed cells intrinsically store and retain
memory without aging to death. We assume that IL-2 is not available for
reuptake while cells circulate in the blood. Until they re-encounter antigen,
perhaps at the site of infection, proliferation is thereby halted.

We use the following simulation to illustrate that memory is maintained
and a multitude of effectors are generated quickly with subsequent infec-
tions. We assume at the first infection the lymph node displays antigen
for 7 days. The resulting distribution of cells is given by some multiple of
the integral of U and we assume this is enough to wipe out the infection.
To simulate a secondary response, we then take a fraction (0.10, assuming
10% of the cells survive long term) of that resultant distribution as our
initial condition and see what happens after 3 days of antigen presentation
in the lymph node. This simulates a response to a secondary infection. Our
simulation result is shown in Figure 9. Supposing that the memory cells
are those with ages between 1 and 3, while effectors are cells with ages
between 3 and 5, the contour plots show what is expected of secondary
immune responses. Numerous effectors are generated quickly (presumably
enough to clear the infection) and intermediate cells persist. This analysis
assumes nothing significant happens outside the lymph node, other than an
overall population reduction. However, more precise models of the effects
of antigen encounter at an infection site will be the topic of future research.

This type of simulation could be repeated where resulting distributions
are used as initial data. Over time is there a persistent memory or do the
intermediate cells eventually die off? The answer depends on the parameters
of simulation. If they eventually die off then we have a possible explanation
for antigenic shift in chronic or persistent infections or autoimmunity. If not,
then we have an mechanistic explanation for stable memory maintenance.
Figure 10 shows the net cell distributions after a first, second and third
encounter with antigen. The assumptions of this simulation are that again
the first infection lasts for 7 days while the subsequent infections last 3 days.
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Figure 9. Simulation of primary and secondary infections. This figure shows
the solutions for T population distributions after primary and secondary challenges. The
top row depicts contour plots after a primary infection, and the second row shows the
contours after a secondary challenge.
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Figure 10. Simulation of repeated infections. This figure shows the resulting age
distributions of cells that emerge from the lymph nodes after a first, second and third
infection. We assume that antigen is presented for 7 days in the primary infection, and
for only 3 days in the subsequent challenges.

3.5. Two clones competing for antigen sites

Another interesting topic for investigation are the competitive effects
between clones of T cells with different antigen affinities. Our model predicts
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that in some simulations, the highest affinity clone is perhaps not the fittest
due to the observations mentioned in Section 3.2. Typically the higher affin-
ity clone initially out-competes the low affinity clone because its population
ages faster and so high affinity clones reach maturity faster and can begin
proliferation. Interestingly, however, low affinity clones can catch up to the
high affinity ones and once they have reached maturity they can actually
proliferate more since they spend less time bound to antigen on dendritic
cells. We illustrate this phenomenon in Figure 11.

Are the highest affinity clones always selected? To explain this, we might
need additional mechanisms — for example, up to now we have left out any
age dependence of the binding probability « or k. It could be that as cells
reach maturity they are less inclined to bind to the antigen presented in the
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Figure 11. Two clone simulation. The frames display the population distributions
of two clones of T cells at various times after entering the lymph node together. The high
affinity clone (shown with a dotted line) is simulated with A = 24 and the low affinity
clone (solid line) has A = 72. Although in the first couple of days, the high affinity
clone matures faster and proliferates more, after the third day, the low affinity clone’s
population dominates the response. Notice the scale change in the vertical axis of the
last frame. Other parameters are assigned the same values as in Figure 7.
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lymph node. They are known to express surface proteins which make them
likely to leave the lymph node and home to tissues. In this case the highest
affinity clone could possibly restore its advantage. These precise workings
are quite interesting topics of further research.
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This expository paper provides an introduction to computational methods for
solving continuous models of certain biological systems. These systems have
important behavior in space and within the age distribution of individuals.
Very often, the spatial behavior depends critically on the age structure of
the population. The different spatial scales induce different time scales in the
problem, whereas age and time advance together.

Age- and space-structured multiscale systems arise in a wide variety of
biological problems ranging from multicellular and tissue-level phenomena to
problems in ecology and evolutionary biology. We describe a general mod-
eling framework used to represent such biological systems. We then discuss
computational methods used to solve the model equations, beginning with a
treatment of the moving-grid Galerkin method used to decouple age and time
while they advance together, introduce how this discretization in age works
with discretizations in time and space, and then review how more complicated
nonlinear problems would be treated. We close by presenting two example sys-
tems, swarm-colony development of the bacteria Proteus mirabilis and tumor
invasion, which differ in some important respects from the general model, but
which are effectively treated by the computational methods presented in this
paper.

Keywords: computation, age structure, Proteus mirabilis, tumor invasion, cell
cycle.

1. Introduction

In this expository paper we provide an introduction to the modeling
and simulation of certain biological systems where important behavior
occurs in space and in the age demographics of the individual organisms
or cells within the system. Such systems arise in the study of multicel-
lular and tissue-level phenomena, ecology, epidemiology, and population
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genetics. Excellent surveys of physiologically structured models, including
age-structure, can be found in [9, 20, 36].

The general class of partial differential equations for diffusion and age
structure considered in this paper has a long history. Among the first classic
works are Skellam (1951) [33] (who considered the effects of diffusion on
populations), and Sharpe and Lotka (1911) [32] and McKendrick (1926)
(who considered population models with linear age structure) [26, 36].
Later, Gurtin and MacCamy [17] considered models with nonlinear age
structure. Rotenberg [31] and Gurtin [16] posed models dependent on both
age and space. Gurtin and MacCamy [18] differentiated between two kinds
of diffusion in these models: diffusion due to random dispersal, and diffu-
sion toward an area of less crowding. Existence and uniqueness results can
be found for various forms of these models in Busenberg and Iannelli [8], di
Blasio [13], di Blasio and Lamberti [14], Langlais [22], MacCamy [24], and
Webb [37]. Further analysis has been done by several authors [19, 21, 23, 25].

The organization of the paper is as follows. We discuss a general partial
different equation that possesses the most common and most important
features used to model age- and space-structured biological systems, fol-
lowed by the computational method for solving the general equation in age,
including how one would view the the method in the context of a Leslie
matrix model. We then present one of the more straightforward implemen-
tations of a fully discrete method in age, time, and space and summarize
the convergence results published in the numerical analysis literature. We
close by reviewing two biological systems where both age and space struc-
ture are important. In the first system, Proteus mirabilis swarm-colony
development, the spatial-temporal dynamics are in fact an expression of
their unique lifecycle. In the second system, tumor invasion, age-structure
is important for a mechanistic representation of cell growth and division
within a spatially explicit model.

2. General Problem

In this section we derive a general model for the dynamics of a popula-
tion distributed in age and space. We begin by ignoring any behavior in
space and assume a constant death rate p > 0. The relationship between
the age distribution at time ¢ and time ¢ + At is given by the difference
equation

u(a + At, t + At) = u(a, t) — pu(a, t)At. (2.1)
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We can write this relationship as

u(a + At,t ZtAt) —ula,t) _ _pula,b). (2.2)

Adding and subtracting u(a, ¢ + At) in the numerator of the left-hand side
gives

u(a + At, t + At) — u(a,t + At) . u(a, t+ At) —u(a,t) "

At At -

As At — 0, we get uy + u, = —pu. In this paper, a subscript which is

(2.3)

an independent variable in the problem denotes partial differentiation by
that variable. Taking At — 0 in Equation (2.2) gives Du = —puu where
D is a total derivative in age and time. Although age-structured partial
differential equations are by convention written using the sum of the age
and time partial derivatives, the total derivative better suggests how we
should approach solving the equation.

If we explicitly include the ability of individuals to move in space, our
model equations may take the form

ug + uq = L(u), (2.4)

where £ is an elliptic operator and u(x, a,t) is a population distributed in
space x, age a, and time t. In models with only one spatial dimension, we
often have £(u) = kug, — pu. For systems of equations, the elliptic operator
may include additional zero-order reaction terms. To be well posed, Equa-
tion (2.4) requires suitable initial and boundary conditions. In particular,
we require a condition at u(z,0,t), called the birth condition. If individuals
are born at age 0 from parents older than themselves, we get a nonlocal
boundary condition such as

u(z,0,t) / Bla)u(z, a,t)da (2.5)

where ((a) is the birth rate, or fecundity, at age a. If u is a population of
cells where two daughter cells are created through mitosis from one mother
cell, our nonlocal boundary condition can be refined to the form

th—2/9 u(z,a,t)da (2.6)

where 6(a) is the cell-division rate and the splitting constant 2 has been
made explicit. Depending on what age represents in a given model, we may
have other forms of the “birth” condition, such as Equation (4.32d) in the
model of Proteus mirabilis presented in Section 4.1.
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A common general nonlinear model for age- and space-structured sys-
tems, and one used for the original development and analysis of the numer-
ical methods discussed in this paper [3, 5], is as follows. The population
u(z, a,t) is distributed as above, although space may have more than one
dimension. The age- and space-structured partial differential equation is

ur +uq = V- k(z,p)Vu — p(z,a,p)u, =€, a>0,t>0, (2.7)

where 2 C R” represents the spatial domain. The diffusion, V - kVu, arises
from the symmetric random motion of each individual (Fickian diffusion).
Here V and V- denote the gradient and the divergence, respectively, in x.
Isotropic random motion results in diffusion of the form V2 (ku). The choice
between diffusions should be based on biological considerations. See [2,
28, 29, 35] for discussions and derivations of different diffusions and other
continuous representations of taxis.
The total population density, p, is given by

p(z,t) = / u(z,a,t)da, x€Q, t>0. (2.8)
0

‘We have a birth condition
u(z,0,t) = B(z,u(z,-,t), z€Q,t>0, (2.9)

that is dependent on the entire population distribution. We note that B
is an operator whose second argument is a function defined on R*, where
R* denotes the non-negative real numbers. We have a Neumann boundary
condition, with v denoting the outward normal to the boundary 0f2,

kE(x,p)Vu-v=0, €9, a>0,1t>0, (2.10)
that represents an isolated habitat. The initial condition is
u(z,a,0) =up(z,a), x€Q, a>0. (2.11)

The model in equations (2.7)—(2.11) contains many, if not most, of the
features and complications that are expected to rise in the application of
this modeling framework to real biological problems. Numerical methods
designed to to solve this general model efficiently and robustly can be
expected to be effective in solving more biologically realistic models that
deviate in some of the mechanisms. This has proven to be the case in two
example systems discussed below, swarm-colony development of the bacte-
ria Proteus mirabilis (Section 4.1) and tumor invasion (Section 4.2).
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3. Computational Methods

In this section we provide a treatment of what amounts to a fairly complex
computational framework, but is hopefully more accessible to mathematical
biologists than what has been published in the numerical analysis literature.
We begin with a discussion of the moving-grid Galerkin method that forms
the core of the computational methodology. However, in the interests of
maximizing accessibility, we discuss a formulation using piecewise-constant
functions as the approximation space in age, originally developed in [3].
This is the lowest order approximation space possible, but has proven to
be effective in practice. It has the additional benefit of lending itself to an
explanation that does not require explicit reference to a Galerkin formula-
tion. This is not the case of the higher-order approximation spaces in age
developed and treated in [5]. We relate the moving-grid Galerkin method to
Leslie matrix models in the hope of increasing intuition in the former. We
then discuss one way the moving-grid Galerkin method can be combined
with methods in time and space to solve systems similar to Equations (2.7)—
(2.11). We end the section with a discussion of the convergence results and
their implications.

Some readers may be familiar with the Escalator Boxcar Train (EBT),
a method with a probabilistic derivation developed by de Roos [10, 11]
for more general physiologically-structured population models that do not
involve spatial structure. The method can also be viewed as a generalized
Leslie matrix model and involves moving the discretization along charac-
teristic curves. The formulation of de Roos’ method leaves time continuous
and thus any suitable discretization of time will be independent from the
age or size discretization. There are differences from the methods presented
in this paper in the handling of birth, death, the representation of the
approximate solution, and generalizations to higher order methods. We are
also unaware of any completed convergence analysis of the EBT method as
sought by de Roos and Metz [12].

3.1. Mowving-grid Galerkin method in age

Our approach to solving Equations (2.7)—(2.11) in age is essentially one
of discretizing the total derivative D. Solving a first-order hyperbolic term
along a total derivative in this manner is referred to as a method of charac-
teristics. The characteristic curves in this case are the lines in the age-time
plane with slope equal to one, reflecting the fact that age and time advance
together. A numerical method that solves the problem along the age and
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time characteristics will be free of numerical dispersion, a potential source
of significant numerical error. This is not generally the case with other
discretizations (see Chapter 7 of [34] for a discussion).

The discretization on the left-hand side of Equation (2.2) is the simplest
means of solving a system along age-time characteristic lines, but contains
a crippling constraint: the age and time steps are constant and must equal
one another. This constraint is a consequence of any fixed discretization,
illustrated in Figure 1(a). In models where there are also spatial dynamics,
the time step needed to solve the system accurately in space will be much
smaller than what is needed for an accurate age discretization, typically
inflating the computational cost by a factor of 10 to 100. Given the already
high computational cost of solving systems with a large number of dimen-
sions, this added and unnecessary expense can render problems unsolvable
in practice. Moreover, the requirement that the time steps remain fixed in
length prevents adaptivity in time, an important means of gaining compu-
tational efficiency without loss of accuracy.

The solution to the dilemma of solving along characteristics so as to
advance age and time together, while decoupling the age and time dis-
cretizations, is to use an age discretization where the discrete age intervals
move along characteristic lines, illustrated in Figure 1(b). The moving-grid
Galerkin methods described in this section contains the method of charac-
teristics on a fixed grid as a special case.

lengthen

new

N !
— a
Aa=At
(a) Fixed Age Grid (b) Moving Age Grid

Figure 1. (a) Use of a fixed age grid with a method of characteristics imposes the
requirement that the age steps and time steps are equal and constant. (b) Use of a moving
age grid allows movement along characteristics even with different and nonuniform age
and time steps.
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The moving grid accounts for the aging of the population as time pro-
gresses. The main complication from using a moving grid is in the nature of
the first age interval. If we introduce a new age discretization point (node)
at age 0 every time step, then we have recoupled the age and time dis-
cretizations (although we now have the capacity for variable time steps).
Instead we must allow for the first age interval (birth interval) to lengthen
during certain time steps.

To motivate our handling of the lengthening of the first age interval,
consider a situation where we ignore death and diffusion, and assume a
influx of newborns, b. Let U denote the population density in the first age
interval. The subscripts “new” and “old” denote the end and beginning of
the time step, respectively. Over a time step At, we have a conservation law

AtnewUnew = AaoiqUolg + At D. (312)

Note that Aanew = Adold + At so that Adaeld(Unew — Uold) + AtUpew = At D.
Then

Unew - Uold _ b— Unew ) (313)
At Aaola

The left-hand side is a difference approximation to the time derivative and
b in the numerator of the right-hand side accounts for the new individu-
als born into the first age interval. The term —Upey in the numerator of
the right-hand side accounts for the decrease in population density due
to conservation of population in the context of a lengthening age interval.
Equation (3.15) encompasses a more rigorous treatment of the penalty term
for the lengthening of the first age interval. A similar penalty term occurs
in the higher-order versions of the methods, although it is couched in the

notation of a Galerkin method [5].

The moving grid in age has an intuitive demographic meaning. Assume
Betty was born in March 1971. In February 2006, she will be classified as 34
years old, corresponding to a fixed age discretization. However, assuming
Betty grew up in the United States, it is likely that she graduated from
high school in 1989 and can be referred to as belonging to the Class of
’89. Sometime in March 2006, Betty will be reclassified as 35 years old and
change cohorts. However, she will remain a member of the Class of ’89 for
her entire life, as will her classmates born a few months earlier or later.
In contrast, with the standard notion of an age group, these classmates
will belong to different cohorts as the year progress. The class notion of a
cohort underlies the discretizations used in this paper, and this example
retains a critical complication of the method. In February 2006, the label
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“Class of 2024” defines an age group that is still in the process of being
formed, whereas the category of children under the age of one remains as
it has always been defined. However, once an interval is fully formed, no
additional computation is needed to figure out who has moved from one
fixed age group to the next.

More rigorously, the moving age grid constitutes a transformation of
Equations (2.7)—(2.11) to a moving reference frame in age, w(z,c,t) =
u(z, c +t,t), resulting in the system

wy =V -k(z,p)Vw — p(z,c+ t,p)w, z€Q, ¢>—t, t >0, (3.14a)
w(z, —t,t) = B(z,w(z,- —t,t)), =€, t>0, (3.14b)
k(z,p)Vw-v=0, 2€9dQ, ¢>—t, t>0, (3.14c)

pla,t) = [Fw(z,c,t)de, x€Q, t>0, (3.14d)

w(z,¢,0) =up(x,c), x€Q, ¢c>—t. (3.14e)

In order to define well the introduction of new age nodes, we discretize
age for all time by using an infinite mesh, c_, < -+ < c_1 < ¢p < 1 <
-+ Coo. Each age interval [¢;,ciy1), —00 < @ < 00, can be thought of as
defining a cohort. The infinite mesh is a useful analytic tool. The actual ¢;’s
may be determined adaptively as the calculation progresses. We denote the
partition determined by the set of points {¢;} by . If ¢;41 > —t, the active
cohort is defined by the interval C;(t) = [max(c;, —t), ¢;+1), with length
Ac;i(t). We denote by J(v,t) the space of functions which are constant
over each C;; extended to be zero for ¢ < —t. We let W; denote the age-
discrete approximation to w on C; and W(z,t) denote the corresponding
function in J(v,t). In practice we need only consider W; for ¢;;+1 in the
interval [—t, ... — t], for a suitably large choice of a,,.,. A discontinuous
piecewise-polynomial over a fixed grid in a moving reference frame in age
is illustrated in Figure 2.

Let A denote the age-averaging operator.? To motivate the birth and
death terms in the definition of the age-discrete model, we apply the age-
averaging operator to Equation (3.14a). We note that if —t € C;(t), then
%Aci (t) = 1. We can then apply the product rule to %Ai (t,w) to obtain

0
Ai(t,we) = aAi(tvw) +

Ac (Ai(t,w) — B(z,w)). (3.15)

2Let x denote the characteristic function. Formally, we define A : LllOC — J by
A(t, p)(c) = >2; Ailt, P)xc; (1) (), where A;(t, ) = ﬁ(t) fc,;(t) ¢(c) de. The operators
A and A; will be applied only to the variable ¢ in u(z, ¢+ t, p).
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N —

4 %

|

] |
C. C. C.

1 +1

Figure 2. A discontinuous piecewise polynomial over a fixed grid in a moving reference
frame. Shown are discontinuous piecewise-linear functions. Indexing begins on the right
at zero and continues to negative infinity. At any given point in time, we only need to
consider individuals whose age in the moving reference frame lies within [—¢, amax —t], for
a suitably large choice of amax. This corresponds to the normal age domain of [0, Gmax]-

For the death term, we have

Ai(t, pw) = Ai(t, At w) + At (1 — At p))w) (3.16)
= Ai(t, p)Ai(t,w) + Ai(t, (1 — Ai(t, 1) (w — Ai(t, w))).

Thus A;(t, 1)A;(t,w) is a second-order correct approximation of A;(t, pw),
if 4 and w are smooth, since u — A;(t, u) and w — A; (¢, w) are both of first-
order in age. We will obtain a second-order correct model in age by using
a parabolic equation for the population density of each cohort,

%Wi(x,t) =V - k(z, P)VW;(x,t) — f;(x, t, PYW;(z,t) + B;(x,t, W),

(3.17)
for every i such that ¢;4q > —t. If ¢;41 = —t, then W; = B(x, W). The
death modulus is

fii(z, t, ) = A (t, p(z, - +1t,0)). (3.18)
The birth term is
L (B(z,¢) — Ai(t,p)), if —teCi(t),
Biw.t, ) = 4 e (B(z, ¢) (t, ) : (t) (3.19)
0, otherwise.

We take W; = 0 for ¢;41 < —t. The term A;(t,W;)/Ac; in B;(x,t, W)
accounts for the conservation of population as the length of the active birth
interval increases. Notice that if we temporarily neglect the k and p terms,
then

% (Acz Wz) = B(a:, Wz), —t e Cz(t) (320)

The age-discrete total population density, P, is obtained by integrating W
in the age variable. The equations are coupled only through B and P.
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3.2. Relationship to Leslie matrix models

In this section we embed the Leslie matrix model of an age-structured
population into a very simple spatial patch model with interactions on a
faster time scale than the movement of individuals between age groups.
The goal is not to provide a modeling framework, but rather to build some
intuition for the idea of a moving age grid in the context of the continuous
models covered in the other sections in this paper.

The Leslie matrix model (following Chapter 22 in [20]) consists of a
discrete number of age groups or cohorts, represented by an m-vector

po(t)

p(t) = plft) , (3.21)

Pm—1 (t)
whose evolution is tracked in discrete time, t. Space is not considered. The
time-step-to-time-step survival probabilities for each cohort are given by
P, for a =0,...,m — 2. Fecundities are given by F, for a =0,...,m — 1.
The Leslie matrix model is the equation n(¢ + 1) = Ln(t) where the Leslie
matrix is

[Fo Fi Fo Fs -+ Fpy
P, 0O 0 O 0
0P OO 0
L=100p 0 0 (3.22)

100 0...Pp2 O
The solution to the model is p(t) = Ltp(0).

We now embed this representation of age structure into a discrete spatial
model. Let p;, ¢ = 0,...,n, be the population vector in one of n spatial
patches and let L; denote the Leslie matrix for that patch. If M;; = Mj; is a
matrix representing net migration between patch ¢ and patch j, and M; =
> ; Mij, then one can (albeit quite naively) use M;p; as the population
in patch ¢ after migration has occurred. The question remains: occurred
during what length of time?

Assume M, (t) changes with time, with ¢ in this case being the time at
the start of the step. Explicit time dependence in the matrix is used to
reflect the implicit time dependence of migration in the partial differen-
tial equation models due to the density dependence within diffusion and
other mechanisms of movement. We are interested in the situation where
migration occurs on faster time scales than aging. Let At = 1/N for some
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integer N where we recall that the time steps in the Leslie matrix model
have duration equal to 1. Our model with aging and migration becomes,
for patch i,

pi(t + 1) = LiMi(t + (N — I)At) .- 'Mi(t + QAt)Mi(t + At)Mi(t)pi(t).
(3.23)
This matrix model falls short of corresponding to the discretization of
the continuous models discussed in this paper, since it represents a situation
where the ages of individuals remain fixed during the sequence of migration
steps. The continuous analog of this matrix model is one where individuals
move along characteristic curves that are step functions in the age-time
plane rather than lines with slope one. A closer correspondence is obtained
by decoupling fecundity and survivorship in the Leslie matrix and attaching
a notion of age to each index a of the vector p;. Instead of a single matrix
L;, we have two m X m matrices

Foi(a) Fii(a) Fai(a) Fai(a) - Frpoi(o)

0 0 0 0 - 0
Fi(a) = . . . o . (3.24)
0 0 0 0 0
and
0 0 0 0 0]
Poi 0 0 0 0
0 P, 0 0 0
ol (3.25)

0 0 0 ...Pp—2,0]
where « is a value between 0 and 1 representing aging of a cohort during
the sequence of substeps of length At that comprise a full time step of
duration 1. For example, if at time ¢ we have a = 0, we can think of p; (t)
consisting solely of newborns with age 0 within patch ¢, p; 1(f) consisting
of individuals with age within the interval (0, 1], p; 2(t) consisting of indi-
viduals with age within the interval (1, 2], and so forth. The fecundity of p;
would be given by F;(0). After a time step of length A¢, we set @ = At and
get that the elements of p;(t + At) consist of individuals with ages within
[0, At] for a = 0, (At,1+ At] for a =1, (1 + At,2 4+ At] for a = 2, and so
forth. The fecundity of p; would now be given by F;(At). After two steps
of length At, we set o = 2At and proceed as before. When a becomes one,
we multiply by the survivorship matrix, reset a to zero, and repeat the
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process. The matrix model for this process is
pilt+1) = PAM(t + (N — DADF((N — 1)AY) - -
<o My (4 2A0) F; (AL M (t + A Fy (A M, (8 F;(0)p;(t).  (3.26)

This model is most likely inappropriate for situations where one would
typically use a linear matrix model—if the population dynamics are this
complex, then a model allowing for explicit nonlinearities is probably the
better approach. However, we have hopefully gained some insight into how
the moving-grid Galerkin method decouples the age and time discretization
while allowing age and time to advance together. We also note that the
choice of a constant substep of At was chosen for illustrative purposes.
The methods for the continuous models presented in this paper allow for
nonuniform time steps.

3.3. Time and space integration

The moving-grid Galerkin method described in Section 3.1 reduces the age-
and space-structured evolution equation described in Equations (2.7)—(2.11)
to a system of parabolic equations. We describe a means of completing the
discretizations in time and space by applying a backward-Euler method in
time and center finite difference method in space to Equation (3.17). The
original treatment in [3] used a more general Galerkin formulation in space.

Let W; () denote the approximate solution on the i-th age interval, at
the j-th time step t/ and the [-th space node x;. Define At/ = ¢/ —¢7~1 and
ACZ = Ac;(t/). We assume that the time discretization is a refinement of
the age discretization. Specifically, we require that [—t/, —t771] C [¢;, ¢;41]
for some i. We use the notation fl(¢) = f(x,t/,p). Set Wi(c,x;) =
Do Wij(xl)XCi(tj) (c), where X is the characteristic function. The term P/ is
obtained by integrating W7. The birth function is BY () = B;(x, 7, ), if
[—t7, —t7=1] C [es, ¢iz1], or B! (¢) = 0, otherwise. The fully discrete method
is defined by the system

W (x;) — Wij_l(ﬂ?z) B {l+1/2 —Ji1)2 (P ()
At 5(T11 —2-1)

= BI(W'™ ! (z1)), (3.27)

for every i, j, and [, except those corresponding to the initial condition or
boundary conditions in space. The fluxes are given by

1 .
Jip12 = 3 [k(zis1, PP (2i41))

i, P ] L Z ) )
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Jiae = 3 b P17 (@)
+ k(2i-1, P (21-1))] W (Zz : Z[l/ijl(mll) : (3.29)

By lagging P and B at each time step, the discrete equations are coupled
to each other only by values which are known before the step is taken. Thus,
for each age group, we solve a single linear system that is independent from
those of the other age groups. This allows for relatively easier parallelization
of the computations.

3.4. Convergence results

In this section we summarize convergence results for the methods discussed
above with the conditions on the general model defined by Equations (2.7)—
(2.11) needed for the analyses. The example systems to follow will deviate
from the general model and conditions without apparent loss of accuracy.
The theoretical convergence results provide confidence in the computational
framework and a sense of terra firma.

Using the lowest-order approximation space of piecewise-constant func-
tions discussed in Section 3.1, one would expect first-order convergence
in age. However, the moving-grid Galerkin method possess a superconver-
gence property: the computed constant value over each age interval is a
second-order accurate approximation of the average value over the age
interval, which is in turn a second-order accurate approximation of the
midpoint value of the true solution. A continuous piecewise-linear func-
tion constructed from the midpoint values of the computed solution is
thus a second-order accurate approximation of the true age distribution.
Constructing a higher-order piecewise-polynomial approximation from a
lower-order piecewise-polynomial approximation with a superconvergence
property is referred to as “postprocessing.” This superconvergence result
is proved in [3] for Equations (2.7)—(2.11), for the case when we use a
backward-Euler method in time and a Galerkin method in space, with the
following stipulations:

Coercivity and Boundedness of k and p: There exists constants Cy
and Cp such that for (z,p) € Q@ x R, k satisfies 0 < Cp < k(z,p) <
Cy and p satisfies 0 < Cy < p(z, a,p) < Cy for all a.

Lipschitz Conditions: The functions k(z,p) and pu(z, a,p) are uniformly
Lipschitz continuous with respect to p with Lipschitz constant K.
The derivative a%k(x,p) exists. The derivative %u(w,a, p) exists,
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is uniformly bounded by C; as a function of all its arguments, and
I %u(x, -,p)||2L2(R+) < C; uniformly as a function of x and p.

The birth condition, B : R x (L*(RT) N L2(R")) — R, satisfies
the Lipschitz condition

1Bz, o(a, 1)) — Bz, p(z, )] (3.30)
<K ((1 Hlelln) | [ (- v) da

and is bounded. Here, H~}(R") is the dual to H'(R*).
An example of the birth condition is

+ e =¥l a-1m)) »

Bz, p(x, ) = /OOO Bz, a0, ®)p(z, a,1) da, (3.31)

where 8 > 0 is the birth rate and ® is the integral of ¢ with respect
to age. This birth condition is used most often in the literature
and represents a situation where an individual’s fecundity, (3, is
dependent on its age, position in space, and the total population
density at that position. The birth condition is satisfied if § is
uniformly Lipschitz continuous as a function of ®; if 8(x,a,®),
considered as a function of a, is in H*(R™), with H!-norm bounded
independently of z and ®; and ¢ € LY(RT)NL3(R*), as a function
of age.

Initial Condition: The initial condition, ug(z,a), is bounded and non-
negative and there exists @,,., such that ug(z,a) = 0 for a > G-

The model for which convergence of the moving-grid Galerkin method
was shown, and the above conditions, were chosen for analytical and theo-
retical reasons. They provide insight into why and when we can expect the
numerical methods to succeed or fail, but do not formally cover all situa-
tions in which the methods are effective. For example, the stipulation that
the diffusivity k(x, p) is bounded away from zero is violated in both example
systems presented below. In practice this has not caused any degradation
in convergence.

Convergence using a moving-grid Galerkin method with higher-order
discontinuous piecewise-polynomial functions as the approximation space
in age was shown in [5]. In the formulation of the methods and in the
analysis, time was kept continuous so as to elucidate the decoupling of age
and time discretizations even as the solution moves along characteristics.

The convergence result in [5] indicated that the methods using these
higher-order spaces also possess a superconvergence property. Formally,



Modeling and Simulation of Age- and Space-Structured Biological Systems 121

only one additional order of convergence was obtained in age, although
example systems have indicated the expected doubling of the order of con-
vergence. For example, discontinuous piecewise-linear functions normally
provide second-order convergence. However, according to our formal super-
convergence result, we can expect third-order convergence via postpro-
cessing. In practice, we are able to obtain fourth-order convergence by
post-processing the discontinuous piecewise-linear functions to continuous
piecewise-cubic functions. This is done by interpolating the cubic over two
intervals through the quadrature points for two-point Gaussian quadrature.

Another convergence result of note is that for a step-doubling Galerkin
method for parabolic problems [6], which is used in conjunction with the
moving-grid Galerkin method to obtain the solutions in the example sys-
tems below. Step-doubling is a time integration method where a solution
obtained by backward Euler over a time step is compared to a solution
obtained by two half steps of backward Euler over the same interval. In
addition to comparing the two solutions as a measure of truncation error,
these two first-order correct approximations can be combined to form a
second-order correct method.

In all the convergence results space has been discretized using a
Galerkin finite element method for greater generality. We get second-order
convergence in space by using the center finite differences described in
Equation (3.27).

4. Example Systems

In this section we present two example systems that differ in many ways
from the general model presented in Equations (2.7)—(2.11), yet whose
model equations were solved effectively by the moving-grid Galerkin meth-
ods presented in [3, 5], in conjunction with other methods for time and
space integration. The first of these, Proteus mirabilis swarm-colony devel-
opment, differs from the general model in that age now represents time
spent in a particular cell form and as a proxy for size. These changes come
with attendant differences in “birth” and “death”, and that the age- and
space-structured partial difference equation is coupled to an ordinary dif-
ference equation at each point in space. The second system, tumor invasion,
differs from the general model in that it contains a system of age- and space-
structured equations coupled to reaction diffusion and ordinary differential
equations. Moreover, the system contains a host of additional nonlineari-
ties, in particular a haptotaxis term that accounts for movement of cells up
a chemical gradient.
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4.1. Proteus mirabilis swarm-colony development

When an inoculation of liquid medium containing Proteus cells is placed
on an agar surface, after a period of local population growth, the bacteria
begin to spread radially for another period of time before stopping and
consolidating once again. This behavior repeats itself and, after the ini-
tial swarming and stopping phase, the velocity of the colony front becomes
periodic. Spatially, this results in a bull’s-eye pattern of terraces where each
ring or terrace has the same width. Moreover, the total time spent forming
a ring (which includes the time spent swarming and the time spent con-
solidating) does not change if the agar or nutrient (glucose) concentration
is altered within wide bounds. The ring width and ratio of swarm time to
consolidation time does change with changes in the agar or glucose con-
centrations. Changes in temperature, which influence metabolic rate, do
alter the total cycle time. The invariance of the total cycle time to changes
in the substrate, along with biological observation, rules out reaction to
the chemical environment as an explanation for the regularity in Proteus
swarm-colony development. A summary of the physiology of Proteus cells
and the macroscopic colony behavior can be found in [4], and in more detail
in [30, 38].

The spatial and temporal regularity seen in Proteus is an expression of
their cell cycle and transition between two cell types, immotile “dividing”
cells (referred to as “swimmer” cells in much the literature due to their
motility in liquid media) and motile multinuclear filament “swarmer” cells.
The population dynamics of swarmer cells is described by an age- and space-
structured partial differential equation, which is coupled to an ordinary
different equation at each point in space that describes the dynamics of the
dividing cell population. The model in this section was originally presented
in [4], which drew many of its main mechanisms from the models of Esipov
and Shapiro [15] and Medvedev, Kaper, and Kopell [27].

The nondimensional model treated in [4] is as follows. The swarmer
population u(r, a, t) is distributed in space, represented by radius r, age a,
and time ¢t. The dividing-cell population v(r,t) is described at each radius
by an ordinary differential equation. Movement of swarmer cells is rep-
resented by a degenerate diffusion with diffusivity D(p) that depends on
the total swarmer biomass p. Cell differentiation from dividing-cell type to
swarmer-cell type is given by a probability £(v) that depends on the dividing
cell density. Dedifferentiation from swarmer-cell type to dividing-cell type
occurs at age a,,,.. We assume the initial inoculation contains only dividing
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cells, and use no-flux boundary conditions. The model equations are

1
Up + Ug = ;(T(D(p)u)r)r, 0<7r<1,0<a< ua, t >0, (4.32a)

vy = (1 = &)V + u(T, Gmax, t)e*™>,  0< 7 <1, t > 0,(4.32b)

p(r,t) = / ue® da, 0<r<1,t>0, (4.32¢)

min

with conditions

u(r,0,t) =&(v)v(r,t), 0<r<1,t>0, (4.32d)
(D(p(l,t))u(l, a,t))T =0, 0<a<ay., t>0, (4.32¢)
u(r,a,0) =0, 0<7r<1, 0<a< Guay, (4.32f)

and
3 2
2 (—) - L) 1), 0<r<r,
v(r,0) = Uh < o 3 (TO + ) O<r<mo (4.32g)
0, r>rg.

Proteus move through a process of raft building that requires two things:
sufficient maturity in swarmer cells to contribute to raft building (a,.;,), and
a sufficient biomass of mature cells to form the rafts (p,.i.). The diffusivity
has the form

D(r,t) = Dy max{(p(r, t) — Puin)s 0}. (4.32h)

We use a differentiation function with a lag phase that is a C! piecewise
cubic with support of length 2:

& (2lv—veP=3w—wv)?+1), Jv—u]<1,
£(v>:{ o )

0, otherwise,

(4.32i)

The interval [v. — 1, v, + 1] is the swarmer-cell production window.
Although this model differs in a number of ways from the general model
in Equations (2.7)—(2.11) and the assumptions made for the convergence
results, in particular the degenerate diffusion, it was successfully solved
using the moving-grid Galerkin method in age to reduce the problem to
a parabolic system of partial differential equations, which was then solved
using a step-doubling Galerkin method in time and space. Details of the
computation are in the manuscript [4]. The computational advantages of
this combined methodology are illustrated by a plot of the time steps taken
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Figure 3. (a) The position of the colony front showing the periodic behavior. (b) Time
steps as a function of time. The size of the age intervals after the birth interval was 1071,
significantly larger than what was needed for the time discretization. Note the connection
between the oscillations in the size of the time steps and the state of the colony within
its swarming and consolidation cycle.

during a simulation. Figure 3 shows that decoupling the time steps from the
age step gives about a factor of 40 decrease in the number of age nodes, and
that the ability to choose the time step adaptively gives roughly another
factor of 10 increase in efficiency without loss of accuracy.
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Figure 4. Convergence of the moving-grid Galerkin method for the Proteus model. The
slope of the log-log plot of the age step versus the I? error gives the order of convergence.
In this case the slope is approximately 2.07, which indicates second-order convergence.

Despite some significant differences between the Proteus model and the
general model, the use of piecewise constants as the approximation space
in age yields the expected second-order convergence in age, illustrated in
Figure 4 as a log-log plot of the age step versus the [? error.

4.2. Tumor invasion

The following model was originally presented in [7] and has two explicit
spatial dimensions denoted by (x,y) € 2, whereas the Proteus model above
assumed radial symmetry. The dependent variables of the model are

e p(x,y,a,t) = density of proliferating tumor cells at position (z,y) and
age a at time t.

e g(z,y,a,t) = density of quiescent tumor cells at position (z,y) and age
a at time t.

o f(z,y,t) = surrounding tissue macromolecule (MM) density at position
(z,y) at time ¢. It is assumed that these macromolecules are distributed
heterogeneously in €2, but immobile in 2.

e m(z,y,t) = matrix degradative enzyme (MDE) concentration at position
(z,y) at time ¢. MDE is produced by the tumor cells and diffuses in .

e c(x,y,t) = oxygen concentration at position (z,y) at time ¢. Oxygen is
produced by the extracellular MM, diffuses in §2, and is consumed by the
tumor cells.
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o Px,y,t) = anM p(z,y,a,t) da = the total population density at a given
point in space of proliferating cells at time t.

o Q(z,y,t) = anM q(z,y,a,t) da = the total population density at a given
point in space of quiescent cells at time ¢.

e N(x,y,t) = P(x,y,t) + Q(x,y,t) = total tumor population density at a

given point in space of all cell types at time t.

We use a single maximum age and size for all cell types and mutation
classes. This is a notational convenience; models are often written with
unbounded age or size domains under the quite reasonable assumption that
biological entities do not grow or age indefinitely due to death. Thus, the
domain can be truncated at the numerical level. A mathematical treatment
on truncating an infinite age domain is provided in [3]. We choose to define
these parameters beforehand and use the largest values we need to cover
all cases.

0 0
_p(xvyv avt) = - %p(mvya avt)
|

ot
cellaging
+ Dpv2p(x7 Yy, a, t) - Xv : (p(xv Y, a, t)Vf(l', Y, t))
diffusion haptotaxis

- p(x,y,a,c)p(x,y,a,t) - G(m,y,a,c)p(m,y,a,t)

celldeathfrominsufficientoxygen  divisionwithsufficientoxygen

- O'(CL’,y, a, c, N(xa y,t))p(m, a, S,t)

exit to quiescence

+ T(x’yvavc)q(xayva'vt); (433&)

entryfromquiescence

0 0
aq(xvyv avt) = - %q(xa Y, avt) - I/(l',y, a, C)Q(mvya avt)
| —

. celldeathfrominsufficientoxygen
cellaging

+ 0—(1’7 y’ a’? C? N(x’ y7 t))p(m7 y’ a’? t)

entryfromproliferation

- T(x’yvavc)q(xayva'vt); (433b)

exittoproliferation

with age-boundary conditions

apn
p(z,y,0,t) = 2/ 0(z,y,a,c)p(z,y,a,t) da. (4.33¢)
S——— 0

newborncells

division rate
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The equations governing tissue macromolecule, matrix degradative
enzyme, and oxygen densities are those originally used in [1]:

% (z,y,t) = — dm(z,y,t)f(x,y,t), (4.33d)

degradation

%m(m, y,t) = D\, V2m(z,y,t)
—_———

diffusion
+ pP(z,y,t) + wQ(z,y,t) — Am(z,y,t), (4.33e)

production decay

0
—c(z,y,t) = DV?e(z,y,t) + Bf(z,y,1)
ot N———— N—_——

diffusion production
- ’}/P((E,y,t) _nQ(xvyvt) - OéC(iL’,y,t). (433f)
——
uptake decay

All equations are combined with initial conditions and zero flux bound-
ary conditions on an (z,y)-rectangle Q. An illustrative example compu-
tation of the system defined by Equations (4.33a)-(4.33f) was presented
in [7] . Animations can be found online at http://faculty.smu.edu/ayati/
cancer.html.

As with the Proteus, this model differs in a number of ways from the gen-
eral model in Equations (2.7)—(2.11) and the assumptions made for the con-
vergence results. In addition to the diffusion terms being allowed to become
degenerate, the tumor model contains a haptotaxis term not considered in
the general model. Nonetheless, it was successfully solved using the moving-
grid Galerkin method in age to reduce the problem to a parabolic system of
partial differential equations. The parabolic system was then solved using
a step-doubling alternating-direction implicit (ADI) method in time and
space. The ADI method consists of solving the system of equations first
along the z-direction and zero-order terms, and then along the y-direction.
This has the effect of reducing a wide-banded matrix that would have been
obtained by a direct discretization to a series of smaller block-tridiagonal
matrices. A discussion of the step-doubling ADI method and other details
of the computation are in [4].

5. Conclusions

In this paper we have attempted to clarify for an audience of mathemat-
ical biologists, rather than numerical analysts, one approach to the mod-
eling and simulation of age- and space-structured biological systems. We
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began with a general model through which we presented the main aspect
of the computational methodology: the moving-grid Galerkin method used
to decouple the age and time discretizations while still having age and time
advance together. We then put it in the context of some other methods
for the time and space integration before discussing the numerical analysis
literature and presenting some example systems.

One observation has been that, in many systems, age-structure is a con-
tributing factor to the behavior of interest, but has been omitted in models
due to the costs associated with the additional complexity. A major goal
of the development of the numerical methods for age- and space-structured
systems was to encourage the use of age structure when appropriate. This
includes situations where one my settle upon using a coarse stage-structured
model. In these cases, the moving-grid Galerkin method applied to an age-
continuous model may yield a much more accurate representation of the
biological system by using an age discretization with as few as a dozen age
intervals.

As shown in the example systems, where age was used as a proxy for cell
length in the Proteus model and position within the cell cycle in the tumor
invasion model, age can often be used in place of other forms of physiological
structure when a clear relationship exists between the physiological trait of
interest and some sense of time as measured by an age variable.
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NUTRIENT-PLANKTON INTERACTION WITH A TOXIN
IN A VARIABLE INPUT NUTRIENT ENVIRONMENT
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A simple model of phytoplankton-zooplankton interaction with a periodic input
nutrient is presented. The model is then used to study a nutrient-plankton
interaction with a toxic substance that inhibits the growth rate of phytoplank-
ton. The effects of the toxin upon the existence, magnitude, and stability of
the periodic solutions are discussed.

Keywords: plankton populations, toxin, inhibitor, uniform persistence.

1. Introduction

Phytoplankton are microscopic plants that live in the ocean, sea or lake.
Through photosynthesis, phytoplankton are responsible for much of the
oxygen present in the Earth’s atmosphere. They convert inorganic materials
into new organic compounds by the process of photosynthesis [14]. Hence
the stocks of these tiny planktonic algae play a significant role for marine
reserves and fishery management. In terms of numbers, the most important
groups of phytoplankton are the diatoms, cyanobacteria and dinoflagellates,
although many other groups of algae are also very populated.

Pollution of freshwater and marine systems by anthropogenic sources
has become a concern over the last several decades. Organic (e.g. triazine
herbicides) [1, 16-18, 25, 26] and inorganic compounds (e.g. heavy metals)
[6, 13, 17-19, 23, 24] both may have harmful effects to the organsims.
For example, samples taken from the inner harbor of the Waukegan area,
located in Lake County, Illinois, on the west shore of Lake Michigan, have
shown that photosynthesis of the green algae Selenastrum capricornutum
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is inhibited due to pollutants originating from industrial and recreational
sources.

This study investigates the possible effects of toxic substances upon
nutrient-phytoplankton-zooplankton interaction. In the early 1980s, Hansen
and Hubbell [10] used antibiotic, nalidixic acid, to examine competition of
two strains of E. coli. One strain was sensitive and the other was resistant
to the inhibitor. This resistance of the population is due to a chromo-
somal mutation and it does not result in detoxification of the antibiotic.
However, resistance by bacteria to antibiotics and heavy metals frequently
comes from the acquisition of an extrachromosomal element that encodes
an enzyme, which converts the inhibitor into a less toxic form. This reduces
the intracellular toxic concentration and enables the survival of bacteria
that produce the enzyme. It also results in a significant reduction of the
inhibitor in the environment [2, 15]. This biological phenomenon motivates
our plankton-toxin model proposed here.

The model consist of a single limiting nutrient, two plankton popula-
tions and the inhibitor, where the inhibitor may include agents such as pesti-
cides or heavy metals. The phytoplankton feeds on nutrient and zooplankton
grazes on phytoplankton. The zooplankton absorbs the inhibitor without
effect, while phytoplankton’s uptake rate and consequently its growth rate
are inhibited due to the presence of an external inhibitor. Although our mod-
els are simplified systems, it is a first step in understanding complex inter-
action between the first two trophic levels and pollution. More complicated
plankton systems such as multiple nutrients can be found in Grover [8].

We first propose a simple plankton model with a periodic input nutrient
concentration and summarize its dynamical consequences. We then exam-
ine the effect of toxin upon the existence, magnitude, and stability of the
periodic solutions. Criteria for coexistence of both plankton populations
are also discussed. However, comparisons between more complex dynami-
cal behavior will only be numerically simulated. A base nutrient-plankton
model of closed ecosystem is presented in the next section. Section 3 studies
the model when phytoplankton is inhibited by the toxin. Numerical exam-
ples will be provided to illustrate complexity of the interaction. The final
section provides a brief summary and discussion.

2. The Nutrient-Phytoplankton-Zooplankton Model

In this section we shall introduce a base model which will be used to study
the effects of toxin upon plankton interaction later. For simplicity, it is
assumed that the organisms and the nutrient are uniformly distributed over
the space. Let N(t), P(t), and Z(t) denote the nutrient concentration, the



Nutrient-Plankton Interaction with a Toxin 133

phytoplankton population, and zooplankton population at time ¢, respec-
tively. For convenience, the two plankton levels are modeled in terms of
nutrient content and therefore their units are nitrogen or nitrate per unit
volume. We let § and e denote the per capita natural death rate of phy-
toplankton and zooplankton respectively. The phytoplankton’s nutrient
uptake rate is denoted by f, while g is the zooplankton’s grazing rate.
Since plankton populations are measured in terms of nutrient concentration,
f and g are functions of nutrient concentration. Both functions have the
standard monotonic assumptions as the classical Michaelis-Menton kinetics,
Ivlev, and Holling type III functional responses given below:

(H1)f, g € C1[0,00), f(0) = g(0) =0,
f(x),¢'(x) >0 forxz >0 and mlirr;o f(z) = mlirr;o g(z) =1.

Parameter m is the maximal nutrient uptake rate of phytoplankton and
¢ denotes the maximal zooplankton ingestion rate, where 8 and « are the
fraction of zooplankton grazing conversion and phytoplankton nutrient con-
version, respectively. In natural nutrient-plankton systems, waters flowing
into the system bring input of fluxes of nutrients and outflows also carry
out nutrients [3, 7, 20, 21]. Unlike the study in [11], we assume that the
input nutrient concentration N*(¢) is varied periodically around N? with
NO(t) = NV + ae(t), where N° > 0, 0 < a < N°, and e(t) is 7-periodic
with mean value zero and |e(t)] < 1 for ¢ > 0. It is assumed that the rate
of waters flowing in and out of the system is a constant and denoted by
D. Both plankton populations are also assumed to be flowing out of the
system with the same constant washout rate D.

Nutrients are consumed by the phytoplankton, which in turn is grazed
upon by the herbivorous zooplankton. Consequently, there are minus terms
—mf(N)P and —cg(P)Z in the equations for N and P, respectively. For
simplicity, we assume that the system under study is closed and hence there
are positive feedback terms 6P, €Z, (1 — a)mf(N)P, and (1 — B)cg(P)Z
appeared in the equation for N. Our model with the above biological
assumptions can be written as the following three dimensional nonau-
tonomous ordinary differential equations.

N = D(N°(t) = N) = mf(N)P + 6P +eZ + (1 — 3)cg(P)Z
+(1—a)mf(N)P
P = [amf(N)—§8 — D|P —cg(P)Z (2.1)
Z = [Beg(P) — e —D]Z
N(0), P(0),Z(0) > 0,
where 0 < o, 3 < 1, and D, N°,m,c,e,6 > 0.
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Notice the scalar periodic equation
N = D(N°(t) — N) (2.2)
N(0) >0

has a unique positive 7-periodic solution

De—Dt
T eDt ]
and solutions N(t) of (2.2) can be written as N(t) = N*(t) + (N(0) —
N*(0))e~P? for all . Hence solutions are asymptotic to the periodic solution
N*(t). Since N|y—¢ > DN°(t) >0, P|p—g = Z|z=¢ = 0, solutions of (2.1)
remain nonnegative.

Let U = N*(t) = N — P — Z. Then U = —DU and hence solutions of
(2.1) are bounded. Moreover, system (2.1) can be rewritten as

U=-DU
P =lamf(N*(t) —U —P —Z%) -6 —D]P — cg(P)Z (2.3)
Z = [Beg(P) — e — D) Z.
Since the w-limit set of (2.3) lies on the set U = 0, (2.1) has the following
limiting system:
P=
7 =

N*(t)

t+1
/ ePT[NO + ae(t))dr
¢

[amf(N*(t)— P—Z)—§ — D|P —cg(P)Z
[Beg(P) —e—D]Z (2.4)
P(0), Z(0) > 0, P(0) + Z(0) < N*(0).
As N(t)+ P(t)+ Z(t) = N*(¢) for t > 0 on the w-limit set and solutions of
(2.1) remain nonnegative, we see that P(t) + Z(t) < N*(¢t) for t > 0, i.e.,
system (2.4) is well-defined.

Let
I'={(P,Z)€R}:P+Z<N*0)}

System (2.4) has a trivial solution (0,0) for all parameter values. The Jaco-
bian derivative of the Poincaré map induced by system (2.4) evaluated at
(0,0) is given by ®¢(t), where ®¢(¢) is the fundamental matrix solution of
X = JoX with
amf(N*(t)) -6 —D 0
== . 2.

Jo ( ; O (2.5)

Let
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Theorem 2.1. If op < 0, then solutions of (2.4) satisfy lim;_, P(t) =

Proof. We may assume P(0) > 0. Since P < [amf(N*(t)) — § — D]P for
t > 0, consider the following equation
& = [amf(N*(t)) — 0 — D]z
with 2(0) = P(0). The solution can be written explicitly as
2(t) = 2(0)eilam (V" () =6-Dldr
— 2(0)eJo’ lomf (N* () =8-Didr

o elia O lam f(N* (1) —6—Dldr

= 2(0)efo” lemf(N*(r)—é=Dldr

« eJo T lamf(N*(r))=6—Dldr

for some 0 < ty < 7 and n > 0, where tg and n depend on t. Notice t — oo
if and only if n — oco. Hence lim;_.o x(t) = 0 as o9 < 0. As a result,
lim; o, P(t) = 0. Therefore for any 1 > 0, there exists ¢; > 0 such that
P(t) <n for t > t;. We choose nn > 0 such that Bcg(n) < e + D. It follows
from the equation for Z in (2.4) that lim; ., Z(t) = 0 and this completes
the proof. O

Suppose now gy > 0. Consider the linear periodic system
X = JoX (2.6)
where Jy is given in (2.5) and X is a row vector. Let ®(¢) be the fundamental
matrix solution of the linear system (2.6) with ®(0) = I, the identity matrix.
Then the Floquet multipliers of (0, 0) are the eigenvalues of ®(7) [5]. Since

ST lamf(N*(t))—6—D]dt
B(r) = (e ’ 0 >

- 0 e—(E+D)T (27)

and og > 0, we see that (0,0) is unstable.

Theorem 2.2. Suppose o9 > 0. Then (2.4) has a unique T-periodic solu-
tion (P(t),0) with P(t) > 0. Moreover, solutions of (2.4) with P(0) > 0

and Z(0) =0 converge to (P(t),0) asymptotically.
Proof. Since Z(t) = 0 for ¢ > 0 if Z(0) = 0, we consider the following
equation
P = [amf(N*(t) — P) — 6 — D|P (2.8)
0 < P(0) < N*(0).
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Let Tp : [0, N*(0)] — [0, N*(0)] denote the Poincaré map induced by equa-
tion (2.8), i.e., To(Po) = P(r, Py), where P(t, Py) is the solution of (2.8)
with P(0) = P.

Notice Ty(0) = 0, To(N*(0)) < N*(0) and Ty = 2222 — 4(7), where
v(t) satisfies

P = [amf(N*(t) — P) — 6 — D — amf'(N*(t) — P)Pv
v(0) = 1.
Therefore, Ty > 0, and in particular when Py = 0 we have
’U(T) = @for[amf(N*(t))—é—D)]dt.

Thus TO(O) > 1, and the map T has a unique positive fixed point p, p <
N*(0), which corresponds to a unique positive 7-periodic solution P(t) for
equation (2.8). Since Ty is monotone increasing, it can be easily shown that

lim,, o T (p) = p for 0 < p < N*(0). Consequently, solutions of (2.8) with
P(0) > 0 satisfy lim;_, (P(t) — P(t)) = 0. The proof is then complete. O

Let
1 (7 _
o) = ;/O [Beg(P(t)) — e — Dldt.

Theorem 2.3. Let oy > 0 and o1 < 0. Then solutions of (2.4) with P(0) >
0 satisfy lim;—oo (P(t) — P(t)) = limy_o Z(t) = 0.

Proof. We claim that lim; .. Z(t) = 0. Since P < [amf(N*(t)— P) - —
D]P for all t > 0, consider the following equation
& = [amf(N*(t) —x) — 6 — D]z
z(0) = P(0).

Observe that P(t) < x(t) for t > 0. Since z(t) — P(t) as t — oo by
Theorem 2.2, liminf; . (z(t) — P(t)) = 0. Hence for any 1 > 0 given, there
exists tg > 0 such that z(t) < P(t)+n fort > to. As aresult, P(t) < P(t)+n
for t > tg. By our assumption we can choose 1 > 0 such that

/OT[ﬂcg(P(t) +mn)—e— D]dt <0.

(2.9)

Consequently, Z < [Beg(P(t) + n) — e — D|Z for t > to implies
limy_,o Z(t) = 0.

It remains to show that limy ... (P(t) — P(t)) = 0. Consider the
Poincaré map T induced by system (2.4), T(Py, Zo) = (P(7),Z(1)),
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where (P(t),Z(t)) is the solution of (2.4) with initial condition (Py, Zy).
Since lim;_,o Z(t) = 0, lim,,—,oo T"(Fo, Zy) lies on the P-axis. Moreover,
T™(Py,0) = (T§ Po, 0), where Ty is the Poincaré map associated with equa-
tion (2.8). Since Ty has a unique positive fixed point p which is moreover
globally asymptotically stable for T in (0, N*(0)], it follows that T (P, 0)

converges to the fixed point (p,0). Therefore the periodic solution (P(t),0)
is globally asymptotically stable. O

Suppose now g, 01 > 0. Then the floquet multipliers are the eigenvalues
of ®1(7), where ®4(t) is the fundamental matrix solution of X = J; X,
where

(T —amf (N (1) — P)P(t) — cg(P(1))
h= ( 0 Beg(P(1)) — ¢ — D ) - (210

and

Ji = amf(N*(t) = P(t)) =6 — D — amf'(N*(t) — P(t)) P(t).

It follows that the periodic solution (P(t),0) is unstable as ¢y > 0. Similar
to the arguments used in [11] we can prove that both populations can
coexist by using the concepts of uniform persistence.

Theorem 2.4. If g, 01 > 0, then system (2.1) is uniformly persistent.

Proof. We first apply Theorem 3.1 of Butler and Waltman [4] to show
uniform persistence of the limiting system (2.4). Let F be the flow generated
by system (2.4) and 9F be F restricted to the boundary I'. We need to verify
that O.F is isolated and acyclic. Let My = {(0,0)} and M; = {(P(t),0) :
0 <t < 7}. Then the invariant set of OF is { My, M1 }. It is clear that OF
is acyclic as My and M; are globally attracting on the positive Z-axis and
P-axis respectively and thus no subset of { My, M;} can form a cycle.

It remains to prove that each M; is isolated for 0F and for F respec-
tively, for i = 0, 1. We only verify that M is isolated for F as the remaining
assertion can be argued similarly. Let ¢y = maxo<p<n=(0)9'(P). By our
assumption we can choose p > 0 such that

1/T[osz(N*(t)—,o)—(S—D—(:Cop]dt>0. (2.11)
0

T

Let N={(P,Z) el :d((P,Z), Myp) < p}, where d is the Euclidean metric
on R?. We show that N is an isolated neighborhood of My in T.
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If this is not true, then there exists an invariant set V' in I" such that
My CV C N and V\M, # 0. Notice we can find P(0),Z(0) > 0 such that
(P(0), Z(0)) € V\Mgy. On the other hand, V C A implies

P
5 :amf(N*(t)—P—Z)—d—D—%
>amf(N*(t) —p) — 6 — D — ccop.

Z

Hence

P(t) > P(0)eHslemI N ()=p)=3-Dcocplds

and we have lim;_.o, P(t) = oo by inequality (2.11). This is impossible
as solutions of (2.4) are bounded. Therefore My must be isolated in OF.
Furthermore, let I' denote the interior of I' and W (M;) be the stable
manifold of M;, i = 0,1. It follows from the Floquet multipliers of M;
that W (M;) is disjoint from I for i = 0, 1. Therefore (2.4) is uniformly
persistent by [4].

We now rewrite system (2.4) as Y = F(Y,t) and system (2.3) as X =
F(X,t)+ R(X,t). Therefore there exists C' = D maxo<¢<-N * () such that
|R(X,t)| < Ce Pt for t > 0 for all solution X(¢) of system (2.3). As a
result, Lemma A.4 of Hale and Somolinos [9] implies that the asymptotic
behavior of (2.3) and (2.4) are the same. Since systems (2.1) and (2.3) are
equivalent, we can conclude that system (2.1) is uniformly persistent. O

In summary, if the average maximal growth rate = ['[amf(N*(t)) —
§ — D]dt of phytoplankton is less than the total removal rate 6 + D, then
phytoplankton population goes extinct and so does the zooplankton. If the
average maximal growth rate of phytoplankton exceeds its total removal
rate then the phytoplankton population can stabilize in a positive periodic
solution fashion, P(t), in the absence of zooplankton. Consequently, zoo-
plankton population becomes extinct if its average maximal growth rate
L [, [Beg(P(t)) — e — D]dt when phytoplankton is stabilized, is less than its
total removal rate € + D, and both populations can coexist if these average
maximal growth rates are greater than the total removal rates.

3. A Nutrient-Plankton-Toxin Model with Inhibition of the
Phytoplankton

Motivated by the discussion in Section 1, in this section we will consider the
situation when toxic substance has a negative effect on the phytoplankton.
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Specifically, the uptake rate and consequently the growth rate of phyto-
plankton is inhibited by the presence of the toxin, but zooplankton can
consume the substance without any effect. An example from the field for
this scenario would be a marine planktonic community comprising mainly
diatoms and herbivorous copepods in a low silicate, elevated copper environ-
ment [22]. In this case copper will harm only diatoms and not crustaceans.
At low concentrations the herbicide triazine also affects primary producers
directly by inhibiting photosynthesis, while effects on subsequent trophic
levels only would be indirect [22]. Our goal is to study toxic effects on the
nutrient-plankton system by investigating simple solutions and asymptotic
dynamics analytically whenever it is possible.

Let S(t) denote the toxic concentration at time ¢. In addition to the
nutrient concentration, it is assumed that the toxin is continuously pour-
ing into the system with constant input concentration S° and the same
constant input rate D as the nutrient. It is assumed that zooplankton can
uptake the substance without any effect while phytoplankton’s uptake rate
of nutrient is decreased by a function h(S) depending on the toxin level S.
Zooplankton’s toxin uptake rate is denoted by u. Functions h and u are
assumed to satisfy the following assumptions.

(H2)h € C'[0,00),h(0) =1, K/ (x) <0 and h(z) >0 for all z > 0.
(H3)u € C*[0,00), u(0)=0, «'(z)>0 for x>0 and lim u(z) = 1.

Let b > 0 denote the maximum zooplankton toxin uptake rate. Similar to
the previous model we assume the ecosystem under study is closed. With
the above biological assumptions, the plankton-toxin interaction is given
below.

N = D(N°(t) = N) — mf(N)h(S)P + 6P + ¢Z

+ (1 = B)eg(P)Z + (1 — a)ymf(N)h(S)P

[amf(N)h(S) — 6 — D|P —cg(P)Z

[Beg(P) —e—D]Z (3.1)
D(S° —8) —bu(S)Z

N(0), P(0), Z(0), 5(0) > 0,

P
Z
S

where 0 < o, 3 < 1 and D, N°, S% m,b,c,e,5 > 0.

Since § < D(S° — §) for t > 0, limsup, . S(t) < S°. Consequently,
using the same argument as we did for system (2.1), it can be easily seen
that solutions of (3.1) remain nonnegative and are bounded. Moreover,
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system (3.1) has the following limiting system

lamf(N*(t) = P — Z)h(S) — 6 — D|P — cg(P)Z

[Beg(P) —e—D|Z (3:2)
D(S° — S) —bu(S)Z

P(0),2(0),5(0) = 0, P(0) + Z(0) < N*(0).

P
Z
S

Notice that system (3.2) is well defined as P(t) + Z(t) < N*(t) for t > 0
for all solutions of (3.2) with P(0) + Z(0) < N*(0). Clearly there always
exists a trivial solution (0,0, S%) for (3.2). Let

oo = l/OT[omf(N*(t)) — 4§ — Dj]dt

and

Then

po < 0p.

It is straightforward to show that (0,0, S°) is locally stable if pg < 0. Similar
to Section 2, we can show that solutions of system (3.2) asymptotically
approach (0,0, S°) if og < 0, a stronger condition than py < 0.

Proposition 3.1. If oy < 0, then solutions of (3.2) satisfy lim;_,oc P(t) =
limy .o Z(t) = 0 and lim;_, S(t) = S°.

For the autonomous case [12], numerical simulations demonstrated the exis-
tence of an attracting interior steady state when amf(N°)h(S°) < 6 + D
and amf(N°) > §+ D. Therefore, it is strongly suspected that complicated
dynamical behavior can occur for system (3.2) when og > 0 and py < 0.
We next use numerical examples to demonstrate complexity of the model.

Let N°(t) = 10 + 5sin(%), f(z) = 72 9() = 5, h(s) = e b and
u(s) = = 0.07, 6 = 0.04, ¢ = 0.01, ¢ = 0.3,
m=25,,a=09 8=04,b=1.5and S° = 4. In this case g9 = 3.6369
and pg = —0.1007. Therefore according to our earlier analysis that trivial

solution (0,0, SY) is locally stable. Simulations showing the existence of
a positive periodic solution which is locally stable. Figure 1 provides two
solutions that converge to a positive periodic solution. Figure 2 plots the
trivial periodic solution (0,0, S%) and a solution (dashed line) with initial
condition (1,1,5) that converges to the trivial periodic solution. Therefore
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Figure 1. Both solutions asymptotically converge to the positive periodic solution.
Initial conditions used are (2.5, 2, 3) for solid curve and (4, 1,1) for dashed curve.

when g > 0 and py < 0 the model exhibits a locally stable positive periodic
solution even when the trivial solution is locally stable.

Proposition 3.2. If po > 0, then (3.2) has a unique T-periodic solution of
the form (P(t),0,S°), where P(t) > 0, and solutions of (3.2) with Z(0) = 0
satisfy limy oo (P(t) — P(t)) = limy o0 Z(t) = 0 and limy_o, S(t) = S°.

Proof. Since Z(t) = 0 for t > 0 if Z(0) = 0, it is enough to consider the
following system
P = [amf(N*(t) — P)h(S) — 6 — D]P
S =D(S°-8) (3.3)
P(0),5(0) > 0, P(0) < N*(0).
As S can be decoupled from P, we see that lim;_., S(t) = S°. Hence for

any 7 > 0 there exists tg > 0 such that S° —n < S(t) < S + 7 for t > t,.
It is clear that L [[amf(N*(t))h(S° —n)— 6 — D]dt > 0. We choose n > 0
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Figure 2. The figure plots the trivial solution (0,0,S%). Another solution (dashed

curve) using initial condition (1,1, 5) converges to the trivial solution.

such that
1

1 /T[amf(N*(t))h(SO +9) =0 — Dldt > 0.
T Jo
Notice
amf(N*(t) — P)h(S° +n) — 6 — D|P
< P < [amf(N*(t) = P)h(S" — ) — 6 — D|P
for all t > tg.
Considering
i = [amf(N*(t) —2)h(S® —n) — 6 — D]x
x(0) = P(to) < N*(0),
and
g = lamf(N*(t) - y)h(S" +n) — & — Dly
y(0) = P(to) < N*(0).

(3.4)
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Let Ty and T> be the Poincaré maps induced by equations (3.4) and (3.5)
respectively, i.e., 71 : [0, N*(0)] — [0, N*(0)] by T1(zo) = z(7,x¢), where
x(t, zo) is the solution of (3.4) with initial condition z¢, and T3 is defined
similarly. It follows that T;(0) = 0, T; > 0, T;(N*(0)) < N*(0), and T;(0) >
1 for ¢ = 1,2. Thus the map T; has a unique positive fixed point ]327, ﬁi, <
N*(0) and solutions with positive initial conditions under forward iterations
of T; all converge to ﬁi, for i = 1,2. Consequently, solutions of (3.4) and
(3.5) converge to Pfl, where Pfl(t) is the corresponding positive T-periodic
solution of (3.4) and (3.5), respectively. On the other hand p;, — p as
n — 0T for i = 1,2, where p is the unique positive fixed point for the
Poincaré map induced by the equation

P = [amf(N*(t) — P)h(S°) — § — D|P (3.6)
0 < P(0) < N*(0).
Notice system (3.2) has a unique 7-periodic solution (P(t ),0 S9). Since
( =

y(t) < P(t) < x(¢) for all ¢t > to, we see that lim;_.. (P(t) — P(t))
the proof is complete. O

0 and

Let po > 0 so that (3.2) has the 7-periodic solution (P(t), 0, 5°). Define
1 A
o= [ ealP(0) -5 - Dide
0

It is clear that (P(t), 0, 5°) is locally stable if p; < 0. Similar to the analysis
in section 2, we are unable to reach the conclusion as whether (3.2) has a
positive T-periodic solution when p; > 0. We next numerically simulate the
model. We adopt the same functionals as we did for the previous two plots
but with somewhat different parameter values: o = 0.15, 5 = 0.35 and
SY = 1. In this case pp = 0.5145 > 0 and p; = —0.0199 < 0. The system
has a periodic solution (P,O,SO) which is locally stable. Figure 3 plots
three solutions with quite different behavior. The top curve using initial
condition (1,0,1) converges to the periodic solution (]5, 0,5%). The other
two solutions using initial conditions (2.5,2,3) and (4,1, 1), respectively.
Therefore the system has a complicated dynamical behavior.

On the other hand, if py > 0 and p; > 0, then apply a similar argument
as in Theorem 2.4 we can show that system (3.1) is uniformly persistent.

Theorem 3.2. If p1 > 0 and p2 > 0, then system (3.1) is uniformly
persistent.

We next use the same functionals as for previous graphs and choose the
following parameter values: D = 0.02, § = 0.04, ¢ = 0.01, ¢ = 0.3, m = 5,
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Figure 3. The figure plots three solutions. One solution with initial condition (1,0,1)
which converges to the periodic solution (P, 0,S°). Another solution (solid curve) using
initial condition (2.5,2,3) and the other solution (dotted curve) using initial condition
(47 17 1)'

a =0.15, 8 =0.35,b = 1.5 and S° = 1. Then oy = 0.5650, py = 0.0794
and p; = 0.0344 and system (3.1) is uniformly persistent according to
Theorem 3.2. The following figure provides two plots with initial condition
(2.5,2,3) for solid curve and (1, 0.1, 1) for dashed curve. Although solutions
are oscillating, both plankton populations survived.

4. Discussion

Nutrient-phytoplankton-zooplankton models are proposed to study the
effects of pollutants upon the nutrient-plankton interaction. For simplic-
ity, the nutrient-plankton interaction is assumed to be a closed ecological
system. The input nutrient concentration motivated by the seasonal and
day/night cycles is assumed to be input periodically. However, the toxin
is continuously pouring into the system with a constant concentration. It
was shown analytically that there exist population thresholds for the model



Nutrient-Plankton Interaction with o Toxin 145

I[_\tr —— .
Prgl ! " J ; | _
A |I .!' | b
I , \ " | -

o I'. i 4 i i .A“II i I'l it i _.-"ll i =k
0 50 100 150 200 250 300 350 400 450 500
B T T T T T T T T
& |'In"\ Ilr,-" |Ir\ .
] .
Fab )N / N
! k3 .l"l M !
-~ / : !
2F e ’/ et ,f'; =
- T,
o I P i— RTTH . L L e s
1} 50 100a 150 200 250 300 as0 A00 450 500
3 T T T T T T
2t .
1
| .
L T corePElh S R rerp e R Ll -
1} 50 100 1580 200 257 300 350 A00 450 500

t

Figure 4. The figure plots two solutions. One solution (solid curve) with initial con-
dition (2.5, 2,3) and the other solution (dashed curve) using initial condition (1,0.1,1).

without the toxin. Both populations can coexist if the lumped parameters
op and o, are positive. When oy < 0, then both populations go to extinc-
tion. Only the phytoplankton population can survive if g > 0 and o1 < 0.

The introduction of an inhibited substance can alter the dynamical
behavior of the plankton interaction unpredictably. The survival and/or
extinction of the populations are initial condition dependent. Unlike the
model without the toxin, phytoplankton may survive even if pg < 0. This is
very counter-intuitive as the growth rate of the phytoplankton is dimin-
ished due to the toxic substance. Therefore it needs a more delicate eco-
logical study to understand the interaction of plankton populations when
pollution is present, especially in the area when phytoplankton population
is small but with large concentration of nutrient. It would be interesting
to compare the minimum and maximum values of these periodic solutions
with the model of no toxin. What happens when the inhibition occurring
in the upper trophic level is also worth of pursuing. We shall leave these
questions as another research project to study.



146

S. R.-J. Jang and J. Baglama

References

(1]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Bester, K., Huehnerfuss, H., Brockmann, U. H., Rick, H. J., Biological effects
of triazine herbicide contamination on marine phytoplankton. Arch. Environ.
Contam. Tozicol, 29 (1995) 277-283.

Bull, A., Slater, J., Microbial interactions and community structure, Micro-
bial Interactions and Communities, Vol.1, edited by A. Bull and J. Slater,
London: Academic Press, 1982.

Busenberg, S., Kumar, S. K., Austin, P., Wake, G., The dynamics of a model
of a plankton-nutrient interaction. Bull. Math. Biol., 52 (1990) 677-696.
Butler, G. J. and Waltman, P., Persistence in dynamical systems. J. Differ.
Equations, 63 (1986) 255-262.

Coddington, E., Levinson, N., Theory of Ordinary Differential Equations,
New York: McGraw Hill, 1955.

Davies, A. G., Pollution studies with marine phytoplankton. Part II. Heavy
metals. Adv. Mar. Biol., 15 (1978) 381-508.

DeAngelis, D. L., Dynamics of Nutrient Cycling and Food Webs. New York:
Chapman & Hall 1992.

Grover, J., The impact of variable stoichiometry on predator-prey interac-
tions: a multinutrient approach. Amer. Natur., 162 (2003) 29-43.

Hale, J. K. and Somolinos, A. S., Competition for fluctuating nutrient. J.
Math. Biol., 18 (1983) 255-280

Hansen, S., Hubbell, S., Single nutrient microbial competition: agreement
between experimental and theoretical forecast outcomes, Science, 207 (1980)
1491-1493.

Jang, S. R.-J., Baglama, J., Persistence in variable-yield nutrient-plankton
models with nutrient recycling. Mathematical and Computer Modelling, 38
(2003) 281-298.

Jang, S. R.-J., Baglama, J., Rick, J., Nutrient-phytoplankton-zooplankton
models with a toxin, Math. Comput. Mod., to appear.

Kreutzweiser, D., Back, R., Sutton, T., Thompson, D., Scarr, T.,
Community-level disruptions among zooplankton of pond mesocosms treated
with a neem (azadirachtin) insecticide, Aquatic Tozicology, 56 (1998) 257—
273.

Lalli, C. M., Parsons, T. R., Biological Oceanography: An introduction,
Butterworth-Heinemann, 1997.

Lenski, R., Hattingh, S., Coexistence of two competitors on one resource
and one inhibitor: A chemostat model based on bacteria and antibiotics,
J. Theor. Biol., 122 (1986) 83-93.

Rand, G., Clark, J., Holmes, C., Use of outdoor freshwater pond microcos-
mos: II. responses of biota to pyridan, Environmental Tozicology € Chem-
stry, 19 (2000) 398-404.

Rick, H. J., Repercussions of the silicate copper interaction in marine
diatoms on planktonic systems. Habilitation Thesis, University of Kiel, Ger-
many, 2000.

Rick, H. J., Rick, S., Anthropogenic distorted Si-Cu ratios — effects
on coastal plankton communities. Presentation at SETAC 23rd Annual



[19]

[20]

[21]

22]

23]

24]

[25]

[26]

Nutrient-Plankton Interaction with a Toxin 147

Meeting: Achieving Global Environmental Quality: Integrating Sciene &
Management, 16-20 Nov. 2002, Salt Lake City, Utah, 2002.

Riedel, G. F., Influence of salinity and sulfate on the toxicity of Cr(VI) to the
estuarine diatom Thalassiosira pseudonana. J. Phycol., 20 (1998) 496-500.
Ruan, S., Persistence and coexistence in zooplankton-phytoplankton-
nutrient models with instantaneous nutrient recycling. J. Math. Biol., 31
(1993) 633-654.

Ruan, S., Oscillations in plankton models with nutrient recycling. J. Theor.
Biol., 208 (2001) 15-26.

Rueter, J. R., Chisholm, S. W., Morel, F. M. M., Effects of copper toxicity
on silicon acid uptake and growth in Thalassiosira pseudonana. J. Phycol.,
17 (1981) 270-278.

Sunda, W. G., Huntsman, S. A., Processes regulating cellular metal accumu-
lation and physiological effects. Phytoplankton as model systems. Sci. Total
Environ., 219 (1998) 165-181.

Sunda, W. G., Huntsman, S. A., Interactive effects of external manganese,
the toxic metals copper and zinc, and light in controlling cellular manganese
and growth in a coastal diatom. Limnol. Oceanogr., 43 (1998) 1467-1475.
Thomas, W. H., Seibert, D., Effects of copper on the dominance and the
diversity of algae: Controlled ecosystem pollution experiment. Bull. Mar.
Sci, 27(1) (1977) 23-33.

Werner, 1., Hinton, D., Bailey, H., Connor, V., De Vlaming, V., Deanovic, L.,
Insecticide-caused toxicity to Ceriodaphnia dubia (Cladocera) in the
Sacramento-San Joaquin River Delta, California, Environmental Tozicol-
ogy & Chemistry, 19 (2000) 215.



This page intentionally left blank



ON THE MECHANISM OF STRAIN REPLACEMENT
IN EPIDEMIC MODELS WITH VACCINATION

MAIA MARTCHEVA

Department of Mathematics,
University of Florida, 358 Little Hall,
PO Box 118105, Gainesville, FL 32611-8105

August 13, 2006

Strain replacement is the effect of substitution of a strain of higher prevalence in
the population with another. Differential effectiveness of the vaccines is thought
to be the mechanism responsible for the replacement effect. Recent theoretical
study shows that differential effectiveness of the vaccine may not be necessary
and other trade-off mechanisms can lead to it even when the vaccine is “per-
fect”. We suggest that the mechanism of strain replacement is the reciprocal
effect of vaccination on the fitness of the strains as measured by their invasion
reproduction numbers. This mechanism is responsible for the substitution of
one strain with another to occur both when the vaccine is perfect and when
it is imperfect. We review various well-known trade-off mechanisms and inves-
tigate whether they lead to replacement effect in conjunction with “perfect”
vaccination. We find that in contrast to imperfect vaccination which leads to
replacement of a strain with larger intrinsic reproduction number with a strain
with a lower intrinsic reproduction number, “perfect” vaccination seems to
have opposite effect on the intrinsic reproduction numbers.

Keywords: multiple pathogen variants, strain replacement, coinfection, cross-
immunity, vaccination, coexistence, invasion.

1. Introduction

In response to selective pressures from the host immune system pathogens
vary their genetic characteristics to escape recognition. Thus the evolution
and replacement of pathogen types is a continuous process mediated by
the host immunity. The rate at which a pathogen mutant obtains domi-
nance in the individual host is highest at intermediate level of immunity of
the host Vaccination has direct impact on host immunity and is therefore
intimately connected to the evolution of pathogens on the within-host level.
Furthermore, vaccination changes dynamically the susceptible pool for the
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pathogen variants on population level and is a mechanism that favors the
population distribution of a certain strain. The process through which the
establishment of a particular pathogen variant on within host level is related
to the establishment of this or other pathogen variant on the population
level but this relation is not well understood. Phylogenies of specific highly
mutable pathogens (such as HIV) show significant differences in the evolu-
tion on the within-host and between-host levels [12].

Vaccination plays distinctive role in the evolution of the pathogens on
each level [23], but its role as an evolutionary agent is better understood on
population level. Empirical evidence in terms of clinical trials and surveil-
lance [4, 15] as well as theoretical research [8, 19, 20, 27, 28] point to
the fact that while vaccination leads to elimination of certain strains also
facilitates the emergence at higher prevalence of strains which previously
were not widely spread. This phenomenon is now called the replacement
effect [24]. The replacement effect has been drawing significant attention in
the literature because it diminishes the effect of vaccination, particularly
for diseases caused by pathogens of considerable genetic diversity. Clearly,
vaccines should be developed in a way that minimizes the possibility for
substitution of the current strains with others. This, in turn, requires that
we understand what causes this effect.

The primary reason for strain replacement to occur is that vaccines do
not equally well protect against all strains — a property referred to as
differential effectiveness. In a recent article we [16] showed, however, that
differential effectiveness may not be necessary for the replacement to occur.
This raises the question of the mechanism of strain replacement — a mech-
anism that can explain its occurrence both in the presence and the absence
of differential effectiveness. In this article, namely in the next section, we
discuss such a mechanism strictly in the case of strong replacement effect —
that is, replacement effect in which the dominance of one strain is exchanged
with dominance of the other.

Further we observe that what is necessary for replacement to occur is the
action of some sort of trade-off mechanism — a mechanism that allows
for coexistence. In section 3 we show that differentially effective vaccines
themselves are a trade-off mechanism while equally effective, and in par-
ticular “perfect” vaccines, that provide complete protection, lead to com-
petitive exclusion. That observation explains why equally effective vaccines
when acting outside of other trade-off mechanisms cannot cause replace-
ment. However, the results in [16] show that equally effective vaccines can
act synergistically with some other trade-off mechanism (super-infection in
that case) to lead to strain replacement. Can all trade-off mechanisms fill
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that role or there is something special about super-infection? We devote
the rest of the paper to answering this question. In section 4 we investi-
gate coinfection coupled with “perfect” vaccination and we find that strain
replacement can also occur. In section 5 we investigate cross-immunity and
we touch on mutation. We find that with these two trade-off mechanisms
strain replacement in its strong form does not occur. Our results are in
accord with those in [13] where cross-immunity has been found to lead to
selection for a subdominant strain only in presence of imperfect vaccine.

Strain replacement signifies pathogen evolution under the influence of
vaccination. One of the questions that arise in that context concerns the
direction of this evolution. Is it possible that through vaccination we may
be selecting for a more virulent strain? We do not address this question here
but it has been investigated for incompletely effective vaccines in [11] where
it has been observed that virulence can evolve towards increased virulence
or decreased virulence depending on whether the vaccine blocks pathogen
growth or infection. Here we observe that the direction of evolution of the
pathogen’s intrinsic reproduction number (the reproduction number in the
absence of vaccination) depends on whether the vaccine is differentially
effective or not. Imperfect vaccines seem to lead to evolution towards lower
intrinsic reproduction numbers while “perfect” vaccines lead to evolution
to higher reproduction numbers. In section 6 we summarize our results
and discuss the differences in the the replacement effect for perfect and
imperfect vaccines.

2. The Mechanism of Strain Replacement

Intuitively, replacement on population level of one pathogen strain with
another suggests exchange of prevalence between the two strains. Such
exchange of prevalence is a result of vaccination and can occur under several
scenarios which are mathematically distinct.

e Scenario 1: The strains coexist both before and after vaccination but
before vaccination strain one is more prevalent while after vaccination
strain two is more prevalent. We will refer to this replacement as weak
replacement.

e Scenario 2: Strain one dominates (persists alone) before vaccination
but after vaccination the two strains coexist but strain two has higher
prevalence. An analogous scenario occurs if both strains coexist before
vaccination with strain one being more prevalent, while after vaccination
strain two dominates.
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e Scenario 3: Strain one dominates (persists alone) before vaccination
while after vaccination strain two dominates. We will call this strain
replacement strong replacement.

Replacement in all those three scenarios may or may not be epidemiolog-
ically significant. Replacement will be epidemiologically significant if the
prevalence of the second strain after vaccination is about or higher than
the prevalence of the first strain before vaccination, or, in other words, the
prevalence of the replacing strain is sufficiently high.

Mathematically scenario 3 is easier to investigate than scenarios one and
two because we have strict rigorous conditions which allow the prediction
of which strain will dominate. On the other hand to investigate the other
two scenarios we need to know which strain will have higher prevalence if
the two coexist — something that is not that well understood.

The conditions that govern the dominance of one strain or another are
based on the invasion reproduction numbers — the number of cases strain
¢ will generate when strain j is at equilibrium. We denote the invasion repro-
duction number of strain ¢ by R;. Thus, strain one dominates if strain one
can invade the equilibrium of strain two, Ry > 1 while strain two cannot
invade the equilibrium of strain one, Ry < 1. Analogous condition deter-
mine the dominance of strain two. The two invasion reproduction numbers
depend on the vaccination level : 7@(1!}) Suppose that strain one domi-
nates in the absence of vaccination, that is, %, (0) > 1 while Ry(0) < 1. In
order for strain two to dominate at a certain vaccination level 1[) we need
that strain one cannot invade the equilibrium of strain two, R (121) < 1,
and that strain two can invade the equilibrium of strain one, R (1[)) > 1.
If such a vaccination level 1& exists, strong replacement will occur. In other
words we need vaccination to reduce the invasion capabilities of the first
strain and to increase invasion capabilities. Without such reciprocal effect
of vaccination, strong replacement cannot occur.

Fitness is defined as the expected number of offspring contributed to
the next generation and is typically computed as the product of survival
and average number of offspring. For that reason fitness of pathogens is
often identified as their reproduction number. However, the reproduction
numbers are a measure of the reproductive success of the pathogen in an
entirely susceptible population, and, in a presence of a competitor, higher
reproduction number may not even lead to persistence [21, 25].

The invasion reproduction numbers, on the other hand, measure repro-
ductive success when the competitor is established, and guarantee per-
sistence (at the very least). Thus, they reflect better the fitness of the
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pathogens. If we take the invasion reproduction numbers for a measure of
the fitness, then the mechanism for strain replacement says that vaccina-
tion must have a reciprocal (differential in direction) effect on the fitness
of the pathogens for strong replacement to occur. Strong replacement can-
not occur without such differential in direction effect on the fitness of the
pathogens.

3. Differential Effectiveness of the Vaccine
and Strain Replacement

In this section we show two things. First, that equally effective vaccines can-
not cause coexistence, that is, if competitive exclusion is the norm in the
absence of vaccination, it is also the only outcome in the presence of vacci-
nation with equally effective vaccine. In contrast, differentially effective vac-
cines can cause coexistence, even if in the absence of vaccination competitive
exclusion is the only outcome, that is differential effectiveness of the vaccine
is a trade-off mechanism in its own right. Second, we show that differential
effectiveness of the vaccine alone leads to reciprocal impact of vaccination
on the invasion reproduction numbers of the pathogens and therefore, to
strain replacement. Consequently, differential effectiveness of the vaccine is
one manifestation of the main mechanism causing strain replacement.

We consider a host population of total size at time ¢ given by N(t)
that is being recruited at a rate A and dies at a natural death rate pu. The
number of healthy individuals who are susceptible to the disease at time
t is denoted by S(t). Healthy individuals can get infected by strain one
at a transmission rate (3; and enter the class of individuals infected and
infectious with strain one. This class is of total size I(t). Independently,
healthy individuals can get infected by strain two at a transmission rate (o
and enter the class of individuals infected and infectious with strain two
whose total size is given by J(¢). Infected individuals with strain one recover
at a recovery rate y; while infected individuals with strain two recover at
a recovery rate va. Recovered individuals comprise the class R(t). Finally,
susceptible individuals are vaccinated at a vaccination rate 1 and enter the
class of vaccinated individuals, V' (t). We assume that vaccinated individuals
can get infected by strain one at a rate (317 where J; is the coefficient of
reduction of transmission of strain one provided by the vaccine. Similarly,
vaccinated individuals can get infected by strain two at a rate (G282 where
02 is the coefficient of reduction of transmission of strain two provided by
the vaccine. We will consider two cases mainly.
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(1) The vaccine is equally effective with respect to both strains, that is,
61 = 62 = § which may or may not be zero.

(2) The vaccine has differential effectiveness. In particular, we will assume
that the vaccine is nearly perfect with respect to one of the strains, say
strain two. That means that do = 0. In contrast, the vaccine is only
partially effective with respect to strain one, that is, §; # 0. We denote
01 =9.

We consider the following two-strain model with vaccination [14].

s =850 5% s

=m—+m%1—w+wﬂ

522 +ﬂ252% = (u+2)J (3.1)

R =yI+4vJ —uR
v JV
=S — ﬂlélﬁ - 5252W —uV

Since vaccines are generally assumed to reduce transmission we must have
0 < 41,02 < 1. The reproduction numbers of the two strains are given by

Bip+ B161¢ Bap + 2027
(1 +)(p+) (14 P) (1 +2)

We note that both reproduction numbers are decreasing functions of the
vaccination rate 1. We denote the value of the reproduction numbers in the
absence of vaccination, R;(0) at ¢ = 0, with R; and we call those intrinsic
reproductive numbers. Furthermore, the value at maximal vaccination levels,
1 — o0, is R;(0)d;, and may or may not be under one. This reflects the
fact that imperfect vaccines may not be able to reduce the reproduction
number below one, and may not lead to eradication. The system above
always has a disease-free equilibrium (each equilibrium is given in terms
of the proportions of susceptible, infectives with each strain, recovered and
vaccinated individuals — € = (s, 4, j,7,v)):

Ra(v) = Ra(v) = (3-2)

B )
&_< +w000 +w)

and a unique dominance equilibrium corresponding to each strain. The
dominance equilibrium of the first strain is

£ — ( 2 0. Mt Y )
5w+u+W” " (Brovi + p)(Bri 4 1))
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and it exists when R (¢) > 1. The proportion of infected with strain one ¢
in & is given by the unique solution of the following equation:

Rip [ 019 ]
. 1+ - =1. 3.3
617f+/.£+’¢ 61511—}—” ( )
The dominance equilibrium of the second strain, correspondingly, is
E = (7/‘ 0,7 ﬁ dj“ >
Boj +p+4" 77 7 (Babog + p)(Baj + 4 1)

and it exists when Ra(¢) > 1. The system (3.1) may or may not have
coexistence equilibria.

Our first result testifies to the fact that competitive exclusion is the only
outcome in the absence of vaccination.

Proposition 3.1. Assume ¢ = 0. Then, if max{R1,R2} > 1, a competi-
tive exclusion principle holds, that is, the strain with the larger reproduction
number persists, while the other one is eliminated.

This results follows from the observation that ¢ = 0 implies that V' (¢) — 0
as t — 00. The rest of the system is similar to the one studied in [3] and the
result follows from there. Our next result shows that an equally effective
vaccine 01 = d3 = ¢ also leads to competitive exclusion, namely,

Proposition 3.2. Assume that the vaccine is equally effective with respect
to both strains, that is, & = 02 = . Then, if max{Ri(¢),R2(¢))} > 1,
a competitive exclusion principle holds, that is, the strain with the larger
reproduction number persists, while the other one is eliminated.

Proof. Assume without loss of generality that Ri(v) > Ra2(v). As a
result of the assumption that §; = 02 = J this inequality is equiva-
lent to the inequality B1(p + v2) > B2(u + 71). Consider the function
£(t) = IP2(t)/JP (). Differentiating ¢ with respect to t we see that it
satisfies the following differential equation £’(¢) = a&(t) where the constant
« is given by

p+
p+ 0y

Consequently, £(t) — oo as t — oo, and since I(t) is bounded, we must

a=[Bi(p+2) = Ba(p+71)] = [R1(¥) = R2(¥)] >0

have J(t) — 0 and ¢ — oo. That implies persistence of I(t) (at least in a
weak sense) because if we assume I(¢) — 0, then the solutions of the system
(3.1) approach the disease-free equilibrium, which on the other hand can
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be shown to be unstable because at least one of the reproduction numbers
is above one. Therefore, the assumption that I(t) — 0 is not correct. O

Now we turn to the scenario (2): differential effectiveness of the vaccine.
We work under the conditions d; = 0 and §; = §. The model (3.1) takes
the form:

ST SJ
S = A_ﬁlﬁ _52W - (M-HZJ)S
ST v
I' = ﬁlﬁ +616F — (w+y)I
SJ
J' = Py = (n+2)] (3.4)
R =yl +7yJ —pR

I
V' = ¢5—515WV —uVv

In this case equation (3.3) for j simplifies and gives the following solution:

(b +¢)(Ra(v) — 1)
fBa

and dominance equilibrium & takes the form

£ (o0 LR Y 2t R D) )
2 sz ) 52 ,N ﬂ2 7R2M .

To investigate the possible presence of a coexistence equilibrium, we intro-
duce the invasion reproduction numbers. The invasion reproduction number
of the first strain at the equilibrium of the second strain Ry (%) is the num-
ber of secondary infections one individual infected with the first strain can
produce when the second strain is at equilibrium in the population. This
number under scenario (2) takes the form

5 C Ri(p+ov)  Ra(y)
Rav) = Rop - Ra(v)

where R; = R;(0) for i = 1,2. Similarly, the invasion reproduction number
of the second strain at the equilibrium of the first strain Ry (%) is the num-
ber of secondary infections one individual infected with the second strain
can produce when the second strain is at equilibrium in the population.
The invasion reproduction number of the second strain under scenario (2)

(3.5)

takes the form
- Rop

Ra(y) = Fitut o (3.6)
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where 4 is the solution of (3.3). First we show that under scenario (2) com-
petitive exclusion is not necessarily the outcome, and coexistence is possible.
In other words unequally effective vaccines represent a trade-off mechanism
which allows for coexistence. The following result testifies to the presence of a
nontrivial region of the parameter space where coexistence may occur.

Proposition 3.3. If Ry > R1, and each strain can invade the equilibrium
of the other, that is

7%1(’!#) >1 ﬁg(w) >1

then there exists a unique coexistence equilibrium E* = (s*,i*, 7%, r*, v*).

Proof. The values of the coexistence equilibrium can be computed as

follows
N
=7
o Rop(Ra(y) ~ 1)
(Ra2 — R1)B10

. 1 .
=5 [Rop = (Bui™ + p+ )] 3.7)
RS U LV

ju I
_ Ra—TRa
 0RiR2
which gives the uniqueness. The existence will follow if all values above
are positive. This is straight forward to see under the assumptions of the
this proposition for all values except j*. To see that j* > 0 consider the

left-hand side of equation (3.3) as follows:

- Rip 0y
f@y) = g [1 515y+u] '

The fact that i — the proportion of infectives with strain one in £&; — means
that ¢ satisfies equation (3.3), that is f(i,4) = 1. On the other hand if ¢* is
the proportion of infectives in the coexistence equilibrium £*, then we have

. SRy
o0 =
pr16i" + p o T

and consequently, f(i,i*) = 7@2(1/)) > 1. Therefore, f(i,7) < f(i,7*). But

f(z,y) is a decreasing function of y which gives i* < i. Then,

v B+ pty Rap _ Pii* +p+ 9 s _
T B2 Bri* +p+ = B2 [RQW) 1}>0'

S*

*
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The persistence of both strains in this case can be observed in
simulations. O

Several remarks are in order. First, we note that R, (1) > 1 is equiv-
alent to Ri(y)) > Ra(¢)). This, in particular means that in the absence of
vaccination, 1 = 0, the conditions of this proposition are inconsistent and
coexistence does not occur. If we have Ry > R we need the vaccination
level ¥ > v¢*, where the threshold vaccination level ¥* is given by

(R2 — Ra)p
R16

so that Ri(¥) > Ra(v). Second, Ra(yp) > 1 implies that Ra(1h) > 1.
Thus, the conditions of the proposition imply that both reproduction
numbers are above one. Consequently subthreshold coexistence does not
occur.

Next, we turn our attention to strain replacement. First, we note that
vaccination has a reciprocal effect on the two invasion reproduction num-
bers. In particular, R1 (1) is a linearly increasing function of the vaccination
rate 1 such that R1 (0) = % That is, under one of the assumptions for
coexistence, Ro > R1, the invasion reproduction number of the first strain

¥ =

in the absence of vaccination is smaller than one. It is somewhat compli-
cated to express the invasion reproduction number of the second strain as a
function of the vaccination rate. Instead, we will use an upper and a lower
bound of that number as follows:

_Rall < Ry (p) < 22
B+ p+ p+
From these inequalities, it can be seen that R (v) — 0 as ¢ — oo although
it may not do so monotonically. This, in particular, implies that vaccination
has a reciprocal effect on the invasion capabilities of the two strains —
it increases the invasion capabilities of the first strain, and decreases the

(3.8)

invasion capabilities of the second strain. We illustrate in Figure 1 the graph
of the invasion reproduction number of the first strain and we plot the upper
bound and the lower bound from (3.8) to limit the region that contains the
invasion reproduction number of the second strain.

In the case of absence of vaccination, 1) = 0, the proportion infectives @
can be easily computed from (3.3) and it can be seen that Ry (0) = % That
is, under one of the assumptions for coexistence, Ro > Ri, the invasion
reproduction number of the second strain in the absence of vaccination
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Figure 1. The figure illustrates the graph of the invasion reproduction number R (%)
and Upper 7@2(1[)) give the upper bound while Lower 7@2(1[)) gives the lower bound in
(3.8). The parameters are chosen as follows: 81 =5, B2 =15, 71 = 0.5, v2 = 0.5, § = 1,
@ = 0.5 which give R1 =5 and R2 = 15.

is greater than one. Consequently, in the absence of vaccination we have
the second strain dominating in the population. As the vaccination levels
increase, the invasion capabilities of the first strain grow while the invasion
capabilities of the second decline until, at some vaccination level & we
have Ry (1)) > 1 and Ra(¢)) < 1, that is the first strain dominates in the
population. Looking at Figure 1 we can choose zﬁ to be any value greater
than seven. A replacement effect has occurred.

4. Coinfection, Perfect Vaccination and Strain Replacement

In an earlier article [16] we have reported that super-infection as a trade-
off mechanism can lead to strain replacement, even when the vaccine
is assumed perfect with respect to both strains, that is, it protects all
vaccinated individuals completely from infection with either strain. In
super-infection one of the strains (say, strain one) wins instantaneously the
within-host competition and displaces the other strain (say, strain two) in
infected individuals thus turning individuals infected with the second strain
into individuals infected with the first strain [25]. If the second strain has
better reproduction rate and would be the dominant strain in the absence
of vaccination and super-infection, super-infection as a trade-off mechanism
might be strengthening the first strain to coexist with the second strain, or
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even replace it as a dominant strain. When vaccination is applied against the
first strain, it weakens the first strain and the second strain can again take
over, that is, dominate. One question we want to address in this section is
whether coinfection, as another trade-off mechanism [25] can lead to strain
replacement even when the vaccine is perfect. In coinfection the strains are
seemingly symmetrical — they can both infect individuals infected with
the other strain and then they coexist in the host and the host can trans-
mit both. As a trade-off mechanism coinfection can also allow the weaker
strain — the one that will be eliminated in the absence of coinfection — to
persist either jointly with the stronger strain or even alone, eliminating the
stronger strain from the population [21]. When vaccination is applied, even
vaccination equally effective against both strains, it weakens the trade-off
mechanism and restores the dominance of the strain with the larger repro-
duction number in absence of vaccination. Thus the same effect is observed
when the trade-off mechanism is coinfection and leads to strain replacement
as we show below.

We consider again a host population of total size at time ¢ given by
N(t) in which individuals are recruited at a total recruitment rate A and
die at a natural death rate p. The number of healthy individuals who are
susceptible to the disease at time ¢ is denoted by S(¢). Healthy individuals
can get infected by strain one at a transmission rate 51 and enter the class
of individuals infected and infectious with strain one. This class is of total
size I1(t). Independently, healthy individuals can get infected by strain two
at a transmission rate (32 and enter the class of individuals infected and
infectious with strain two whose total size is given by I5(t). Individuals,
infected with strain one can get infected with strain two from those infected
with strain two only at a rate §; while individuals infected with strain two
can get infected with strain one from those infected with strain one only
at a rate 0o — those individuals become jointly infected with both strains
and enter the class J(t). Jointly infected individuals infect susceptibles with
strain one at a rate v; and those in the I; class with strain two — at a
rate n;. Similarly, jointly infected individuals infect susceptibles with strain
two at a rate 72 and those in the I class with strain one — at a rate ns.
Infected with strain one recover at a rate «j, those infected with strain
two — at a rate as and those jointly infected recover approximately at
the same time from both strains at a rate v. All recovered individuals
make up the class R(t). Finally, susceptible individuals are vaccinated at a
vaccination rate i and enter the class of vaccinated individuals, V(). We
note that all vaccinated individuals are fully protected against all strains
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in the system, that is, we assume “perfect” vaccination. The model takes
the form:

SI; Sis SJ

/ — J— —_— —_— _—

S'=A-p3 N B2 N (71+72)N (n+)S
ST SJ I I ILJ

B=0g +my —ranh =g —my
ST SJ I 1 IJ

I = a7 + e — (i a2)ly = o= — > (4.1)
11[2 11.] 11[2 IQJ

/_ —_— —_— _— _—

J =& N +m N + 2 N —|—T]2N (n+v)J

R =oa1h +asls +vJ — uR

V' =S — uV

The existence of equilibria depends on the reproduction numbers of the two
strains which are symmetrical:

_ P P
RO = ey YT ey 4P

We note again that both reproduction numbers are decreasing functions
of the vaccination rate . In this case both can be decreased to zero by
vaccination. The system (4.1) has the disease-free equilibrium

2 (U )
g = 705070507 )
’ <u+¢ p+

where each equilibrium consists of the proportion of susceptible, propor-
tion of infected with the first strain, proportion infected with the second
strain, proportion of jointly infected, proportion recovered, and proportion
vaccinated individuals: £ = (s, 41, 42, j,7,v). The system has two dominance
equilibria - one for each strain. The dominance equilibrium of strain one
exists if and only if Rq(¢)) > 1 and is given by:

B L W 1 aq o1 0
gl_<R1’N+0¢1 (1 RN/’))’O’O’M‘FOQ (1 Rl(w)),/ﬂ-‘{l)

Similarly, dominance equilibrium of strain two exists if and only if Ro (1)) >

1 and is given by:

B L W 1 Qo o1 0
82_<R2’/H'042 (1 R2(¢)>70’07M+0¢2 (1 Rz(ﬂ’))’/ﬂ%)

Denote by ¢; = lﬁﬁu and r; = /ﬁﬁu for 7 = 1,2. The invasion reproduction

number of the first strain at the equilibrium of the second is given by

_ B1s + 118(61 + 02)i2 + q2(p + a1 + d162)io
w4 o + 01i2 + gaiafBis

Ru(¥)

(4.3)
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where s and i, have the corresponding values from &;. Analogously, the
reproduction number of the second strain at the equilibrium of the first is
given by

R () = B25 4 125(01 4 02)i1 -|- qi(p -|- Qg + O2i1)i1

p+ az + 0211 + qri1f2s

where s and i; have the corresponding values from &;. Both invasion repro-
duction numbers depend on % only through ¢; and ¢5. Both i; and i are
decreasing functions of ¥ but the dependence of the invasion reproduction

(4.4)

numbers on 7; and i may be non-monotone. In particular, the depen-
dence of the invasion reproduction numbers on i; and i3 may be mono-
tonely decreasing, monotonely increasing or first monotonely decreasing
and then monotonely increasing. That translates to exactly opposite depen-
dence of the invasion numbers on . First, we will assume without loss of
generality that

Ri1 < Rs.

This, in particular means that in the absence of the trade-off mechanism
(coinfection in this case) strain two will dominate in the population both
in absence and in presence of vaccination of any level. Second, since the
intrinsic reproduction number of the second strain is larger, to break the
symmetry of the strains we make the following assumptions that strengthen
strain one and weaken strain two:

Assumption 4.1.

1. Suppose that strain one can coinfect individuals infected with strain two
but strain two cannot coinfect individuals infected with strain one. That,
in particular, means that we are assuming:

51 =0, m=0(q =0).

2. Suppose that jointly infected individuals, that is those in class J cannot
infect with strain two, that is,

Y2 = 0 (7’2 = 0).
Under these assumptions the invasion reproduction numbers become:
5 P18 + r1802iz + q2(p + a1 )iz
Ri(y) = ‘
B+ a1+ qeizfis

The reproduction number of the second strain at the equilibrium of the
first becomes:

(4.5)

5 525

Ra(y) = R (4.6)
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The invasion reproduction number of the second strain 7%2(1&) is now a
decreasing function of i, and consequently, an increasing function of ¢». On
the other hand, the derivative of Rq(1) with respect to iz is

oRi(0) r16a(p + 1)s + g (i + an)? {1 - (%)1 9

iz (1 + o1 + qoiafhs)?

Consequently, R1 (1) is an increasing function of i and therefore a decreas-
ing function of . This implies that vaccination has reciprocal effect of the
invasion reproduction numbers. In particular, it decreases the invasion capa-
bilities of the first strain and increases the invasion capabilities of the second
strain. Thus, if coinfection allows the first strain to dominate in the popu-
lation when no vaccination is present, that is, R1(0) > 1 while Ro(0) < 1,
increasing vaccination levels may lead to the fact that at some vaccination
level 1) we have R;(¢)) < 1 and Ra(h) > 1, that is strain two dominates
in the population. Replacement of strain one with strain two has occurred.
We illustrate that in Figure 2. We note that in Figure 2 we have the case
when Ro > R, and consequently, in the absence of coinfection strain two
will be dominating (with or without vaccination). In the absence of vacci-
nation ¥ = 0, the trade-off mechanism is strong enough to allow for the
strain with the lower reproduction number to persist while the one with the
larger reproduction number is eliminated. That is a result of the fact that
the first strain can invade the equilibrium of the second 7@1(0) = 1.44 while
the second cannot invade the equilibrium of the first 7@2(0) = 0.9091. This
outcome is a result of our Assumptions 4.1 that strengthen the first strain
in its interaction with the second. Furthermore, vaccination decreases the
impact of the trade-off mechanism and restores the strain with the larger
intrinsic reproduction number to dominate in the population.

This example raises several questions: Is it absolutely necessary that
the trade-off mechanism is strong enough to allow the strain with the lower
reproduction number to dominate in the population. Super-infection [25]
and coinfection [21] are two such mechanism which are known to gener-
ate this effect but not all trade-off mechanisms can be readily associated
with it. In particular, we have previously observed that cross-immunity as
a trade-off mechanism always leads to dominance of the strain with the
largest reproduction number [26]. Before we address the question whether
cross-immunity may trigger strain replacement, we will investigate whether
strain replacement may be exhibited under a different scenario. In partic-
ular, assume it is possible that the trade-off mechanism is weak and does
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Figure 2. The figure shows that strain replacement occurs in the model with coinfec-
tion (4.1). The left figure shows that strain one dominates while strain two is eliminated
when there is no vaccination 1 = 0. The right figure shows that strain two dominates
while strain one is eliminated when vaccination is at level ¢) = 1.5. The remaining param-
eters in this figure are chosen as follows: 81 =6, 82 =5, 4 = 0.5, v1 =8, v =0, 61 = 0,
02 =15, a1 =1, a2 = 0.5, v =0.5,1m =0, n2 =0, A = 10. These give R1 = 4 and
Ro = 5.

not lead to dominance of the strain with the smaller intrinsic reproduction
number. Is it possible that a “perfect” vaccination works in such a way
that it strengthens this weak trade-off mechanism so that at some higher
vaccination levels this mechanism allows for the strain with the lower intrin-
sic reproduction number to dominate? In the case of coinfection we could
answer this question negatively only for a special case.

Proposition 4.2. Assume that jointly infected individuals cannot coinfect
already infected individuals, that is m = na = 0. Assume that in the absence
of vaccination (1 = 0) the strain with the larger reproduction number per-
sists while the other is eliminated. Then strain replacement cannot occur in
model (4.1).
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Proof. Assume without loss of generality that Ry > 7Ro, and that
R1(0) > 1 while R5(0) < 1. The invasion reproduction number of the first
strain at the equilibrium of the second in this case becomes

5 Bis +1r15(01 + 62)ia
R =
1) W+ or + 01

(4.7)

where we recall that s and i have the corresponding values from &;. Anal-
ogously, the invasion reproduction number of the second strain at the equi-
librium of the first is given by

5 Ba2s + 1r28(81 + d2)i1

Ra(y) = P (4.8)

where we recall s and i1 have the corresponding values from &;. The deriva-
tives of the two invasion reproduction numbers with respect to i3 and i
respectively, are given by

37%1(1@ _ 718(01 + 62)(p 4 1) — 61518

Oio (b+aq + 512‘2)2

_ s(p 4 0n)[r1(01 +02) — 01R4]
(14 01 + d142)?

Analogously,

({97%2(1!1) . r98(01 + 02) (10 + ) — 6225
01 (1 + ag + d281)?

_ s( + az)[r2(d1 + d2) — 2R2]
(M + as + 52i1)2

Assume that replacement occurs. That implies that there exists a vac-
cination level ¥* such that Rq(¢*) = 1 becoming from larger than one to
smaller than one. This equality can be rewritten to give

Ro

From our assumption that R; > R it follows that the left-hand side of
this equality is positive. Since i5 > 0, that means that we must have

(it o) {& _ 1] = ia[61 — r15(61 + 6)]

01 > 7“15((51 + (52)
which implies that
(517?,2 > 7’1(51 + 52)
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or that 8%;51’) < 0 leading to the fact that R(1) is an increasing
function of v starting from a value above one and cannot be equal to one for
any . That is a contradiction. Consequently, strain replacement does not
occur. O

5. Cross-Immunity and Strain Replacement

Cross-immunity is the phenomenon where an infection with one strain
gives partial protection to infection with other strains. Cross-immunity
has been primarily investigated in connection with influenza [1, 5, 6] and
dengue [7, 10, 17]. It is well known that it can cause coexistence of the
strains. Imperfect vaccination can lead to strain replacement in conjunction
with cross-immunity only if the strains provide sufficient level of protection
against each other, that is, when the competition among them is high [8, 13].
Here we investigate the possibility that cross-immunity as a trade-off mech-
anism may cause replacement in the context of “perfect” vaccination. From
the analysis in [26] we know that the boundaries of the coexistence region
do not cross the bisector R; = Rs. That, in particular, implies that only
the strain with the higher reproduction number dominates. Here, we use
a cross-immunity model similar to the one in [5, 6] and somewhat simpler
than the one in [26]. We use that model to show that “perfect” vaccination
combined with cross-immunity in its simplest form cannot lead to strain
replacement. This suggests that not all trade-off mechanisms necessarily
induce replacement effect.

We consider again a host population of total size at time t given by
N(t) with recruitment A and natural death rate . The class of susceptible
to the disease individuals at time ¢ is denoted by S(t). Healthy individuals
who previously were never infected by any of the strains can get infected by
strain one at a rate 1 and enter the class of individuals infected and infec-
tious with strain one I (t). Those recover at a rate y; and enter the recov-
ered class R;(t). Recovered individuals in class R;(t) cannot get infected
with strain one any more but they can get infected by strain two at a some-
what reduced rate G20, where ¢ is the cross-immunity coefficient, and move
to the class of individuals currently infected and infectious with strain two
who were previously infected with train one J5(t). Individuals who recover
from J5(t) enter the class of fully immune individuals W (t) at a rate ~s.
This same process can be symmetrically undergone through a first infection
with strain two giving rise to the analogous classes I (t), Ra(t), and Jy(t).
Finally, susceptible individuals are vaccinated at a vaccination rate i and



On the Mechanism of Strain Replacement in Epidemic Models with Vaccination 167

enter the class of vaccinated individuals, V' (t). We note that all vaccinated
individuals are fully protected against all strains in the system, that is, we
again assume “perfect” vaccination. We obtain the following model:

Sl + J1) S(Iy + J2)
! _ _ I
S'=A 517]\7 B2 N (n+)S
L+ J
1=
I, + J
Ry =l — 520R1% — Ry
L+ J
Ji = 510R2(17N1) —(u+7)N
I+ J
Iy = 52M — (1 +2) 12 (5.1)
, L+J
Ry = y2ls — 510R2% — pRa
I + J
Jy = 520R1(27N2) — (1 +72)J2
W' =y1J1 + vaJo — uW
=S —uV

The reproduction numbers of the two strains are the same as in the coin-
fection case and are symmetrical:

_ B _ Bap
RO = ey Y = @)

The system (5.1) has the disease-free equilibrium

0 P >
5 = 7050705070’070’ )
’ (u+w pt+

where each equilibrium consists of the following proportions:

(5.2)

E = (s,i1,71,J1,%2,72, j2, w,v). The system has two dominance equilibria-
one for each strain. The dominance equilibrium of strain one exists if and
only if Rq(¢) > 1 and is given by:

(1w 1 oo 1 "
81_<R17M+% (1 Rl(dj)),ﬂ‘f'al (1 R1(¢)>OOOOONR)

Similarly, the dominance equilibrium of strain two exists if and only if
Ra2(v) > 1 and is given by:

E&=—,0,0,0,—— (1— , 1-—- ,0,0, ——
? <R2 B+ e ( R2(¢)> JUR D Ra(v) pR2
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The invasion reproduction number of the first strain at the equilibrium of
the second strain is given by

~ - & Rlo"')/Q B 1
Ri(v) = o Tt (1 sz)> (5.3)

The invasion reproduction number of the second strain at the equilibrium

of the first strain is given by

A RQ RQJ’yl 1

Rel0) =2 (1 R1(¢)> 54
Clearly both invasion reproduction numbers are decreasing functions of the
vaccination rate and thus vaccination does not have a reciprocal effect on
the invasion capabilities of the strains. In fact, it decreases both. Conse-
quently, strain replacement in the strong form that we are considering in
this article — the dominance of one strain is replaced by dominance of the
other — does not occur. It is possible that weak replacement in the form of
Scenario 1 or Scenario 2 may occur. For instance, it is possible that one of
the strains has a much higher prevalence but the other has a much lower

prevalence while the two strains coexist and with increased vaccination lev-
els the strain with the higher prevalence gets eliminated first and the other
strain dominates.

In this context, strain replacement in the stronger sense considered here
does not occur in the presence of another trade-off mechanism — muta-
tion — defined as one strain changing its genetic characteristic to become
another (and the host infected with it becomes a host host infected with the
new strain) [2]. It is well known that mutation leads to coexistence, but the
newly obtained mutant strain cannot exist by itself, that is, it cannot be a
dominant strain [9]. Therefore, in the case of mutation strain replacement
in the strong sense considered here does not occur.

6. Discussion

In this article we investigate the role of vaccination in strain replacement.
We understand the replacement effect in a strong sense: we assume that one
of the strains dominates in the absence of vaccination, while in the presence
of vaccination — the other strain dominates. We call this vaccine induced
replacement effect since vaccination is necessary to bring about the other
strain.

The replacement effect has been thoroughly investigated in the litera-
ture — there are both plenty of empirical evidence and theoretical studies.
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Mathematical models have been used to investigate how and why it occurs.
It has been suggested that the replacement effect is a result of the differen-
tial effectiveness of the vaccine.

In this article we add to an already existing theoretical evidence that
differential effectiveness of the vaccine may not be necessary for a vaccine
induced replacement effect to occur. We suggest a new mechanism that may
explain why strain replacement under vaccination may occur. In particular,
we suggest that vaccination leads to exchange in the dominance of strains
because it has a reciprocal effect on the fitness of the strains, that is because
it decreases the fitness of the strain dominating in the absence of vaccina-
tion, and it increases the fitness of the strain dominating in the presence of
vaccination. We define the fitness of the strain as its capability to invade the
equilibrium of the other strain, that is, its reproduction number when the
other strain is at equilibrium, given by the invasion reproduction number.

Furthermore, exchange of dominance of the strains through vaccination
appears to be possible only if the strains have the ability to coexist. There-
fore, exchange of dominance is strongly connected to the action of some
trade-off mechanism. In fact, in all known theoretical cases that detect
the phenomenon, stable coexistence of the strains is also possible as well
as competitive exclusion. To support that claim we establish that differ-
ential effectiveness is a trade-off mechanism itself by showing that in the
absence of other known trade-off mechanisms equally effective vaccines lead
to competitive exclusion of the strain with the lower reproduction number.
On the other hand, differential effectiveness of the vaccine leads to (locally
stable) coexistence. From this perspective it is hardly surprising that some
other trade-off mechanisms in combination with equally effective, and even
“perfect”, vaccines can also lead to strain replacement. We observed it an
epidemic model with perfect vaccination and super-infection as a trade-off
mechanism. We show that confection as a trade-off mechanism combined
with “perfect” vaccination can also lead to strain replacement in the strong
sense we consider here. On the other hand strain replacement in the strong
sense does not occur with perfect vaccination in the presence of several
well-known trade-off mechanisms, such as cross-immunity and mutation.
Perhaps, it may occur in some weakened sense where the strains coexist but
exchange their position as the most prevalent strain. We did not explore
that further because such exploration requires knowledge of the mechanism
that governs higher prevalence during coexistence.

So which trade-off mechanisms can lead to strain replacement in the
presence of equally effective vaccines and which cannot? We surmise that
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the trade-off mechanism should be strong enough to be capable to allow a
strain with a lower intrinsic reproduction number to dominate in the popu-
lation. Both super-infection and coinfection are known to lead to extinction
of the strain with the maximal reproduction number even in the absence of
vaccination. On the other hand, there is no evidence that cross-immunity
may cause such effect.

“Perfect” vaccination coupled with either super-infection or coinfection
seems to lead to strain replacement through exactly the same sequence of
steps: The strain with the largest intrinsic reproduction number will dom-
inate in the absence of vaccination and the trade-off mechanism. However,
in the presence of the trade-off mechanism but in the absence of vaccina-
tion — the strain with the lower intrinsic reproduction number dominates
and the strain with the larger reproduction is eliminated. Vaccination weak-
ens the effect of the trade-off mechanism and at some vaccination level the
dominance of the strain with the larger intrinsic reproduction number is
restored. Thus we see replacement of the dominance of the strain with the
lower intrinsic reproduction number with the strain with the larger intrin-
sic reproduction number. We have not been able to show that “perfect”
vaccination can lead to replacement of the strain with the larger intrinsic
reproduction number by a strain with a lower intrinsic reproduction num-
ber. We have been able to rule out this possibility for a special case of
coinfection, however, ruling it out for the more general cases remains an
open problem.

This is where the replacement effect that occurs with differential effec-
tiveness of the vaccine differs significantly compared to the one that occurs
with “perfect” vaccines. Aside the fact that most vaccines are indeed
unequally effective against different strains — differential effectiveness leads
to the replacement of the strain with the higher reproduction number which
dominates in the absence of vaccination (when competitive exclusion is the
only outcome) with the strain with a lower reproduction number (when
unequally effective vaccine acts as a trade-off mechanism). Another marked
difference is that even if “perfect” vaccines can cause replacement, that
can only happen for a certain range of vaccination levels. If the vaccination
level is sufficiently high — both strains will be eliminated from the popula-
tion. That may not be the case with differentially effective vaccines. If the
reproduction number of the strain, not primarily targeted by the vaccine,
cannot be reduced below one, no matter how high the vaccination levels,
that strain will persist, even if we successfully vaccinate all individuals in
the population.



On the Mechanism of Strain Replacement in Epidemic Models with Vaccination 171

Acknowledgments

MM was visiting Department of Zoology, UF when this paper was written.
The paper benefited significantly from interaction with faculty members
and, particularly, from discussions with B. Bolker. MM was supported by
NSF grant DMS-0408230.

References

[1]
2]

[7]
8]
[9]

[10]

[11]

[12]

[13]

[14]

V. Andreasen, J. Lin, and S. Levin. The dynamics of cocirculating influenza
strains conferring partial cross-immunity, J. Math. Biol., 35 (1997) 825-842.
S. Bonhoeffer and M. Nowak. Mutation and the evolution of virulence, Proc.
Royal Soc. London B, 258 (1994) 133-140.

H.-J. Bremermann and H. R. Thieme. A competitive exclusion principle for
pathogen virulence, J. Math. Biol., 27 (1989) 179-190.

N. Cardenosa, A. Dominguez, A. Martinez, J. Alvarez, H. Panella, P. Godoy,
S. Minguell, N. Camps, and J. A. Vézquez. Meningococcal disease in Cat-
alonia 1 year after mass vaccination campaign with meningococcal group C
polysaccharide vaccine, Infection, 31(6) (2003) p. 392-397.

C. Castillo-Chavez, H. Hethcote, V. Andreasen, S. Levin, and W. M. Liu.
Epidemiological models with age structure, proportionate mixing and cross-
immunity, J. Math. Biol., 27 (1989) 159-165.

C. Castillo-Chavez, H. Hethcote, V. Andreasen, S. Levin, and W. M. Liu.
Cross-immunity in the dynamics of homogeneous and heterogeneous popula-
tions, Mathematical Ecology (Trieste, 1986), World Sci. Publishing, Teaneck,
NJ, (1988) 303-316.

L. Esteva and C. Vargas. Coexistence of different serotypes of dengue virus,
J. Math. Biol., 46 (2003) 31-47.

E. H. Elbasha and A. P. Galvani. Vaccination against multiple HPV types,
Math. Biosci. 197 (2005) 88-117.

7. Feng, M. lannelli, and F. Milner. A two-strain tuberculosis model with
age of infection, SIAM J. Appl. Math. 62 (2002) 1634-1656.

N. Ferguson, R. Anderson, and S. Gupta. The effect of atibody-dependent
enhancement on the transmission dynamics and persistence of multiple-
strain pathogens, Proc. Natl. Acad. Sci. USA, 96 (1999) 790-794.

S. Gandon, M. J. Mackinnon, S. Nee, and A. F. Read. Imperfect vaccines
and the evolution of pathogen virulence, Nature 414 (2001) 751-756.

B. T. Grenfell, O. G. Pybus, J. R. Gog, J. L. N. Wood, J. M. Daly, J. A.
Mumford, and E. C. Holmes. Unifying the epidemiological and evolutionary
dynamics of pathogens, Science, 303 (2004) 327-332.

S. Gupta, N. M. Ferguson, and R. M. Anderson. Vaccination and the pop-
ulation structure of antigenically diverse pathogens that exchange genetic
material, Proc. R. Soc. Lond., B264 (1997) 1435-1443.

K. P. Hadeler and Castillo-C. Chavez. A core group model for disease trans-
mission, Math. Biosci., 128 (1995) 41-55.



172

[15]

[16]

[17]

[18]
[19]

[20]

21]
22]
23]
[24]
[25]

[26]

[27]

28]

M. Martcheva

S. S. Huang, R. Platt, Rifas-S. L. Shiman, S. I. Pelton, D. Goldman, and
J. A. Finkelstein. Post-PCV7 changes in colonzing pnemococcal serotypes
in 16 Massachusetts communities, 2001 and 2004, Pediatrics 116(3) (2005)
p. 408-413.

M. Iannelli, M. Martcheva, and X.-Z. Li. Strain replacement in an epi-
demic model with super-infection and perfect vaccination, Math. Biosci.,
195 (2005) p. 23-46.

I. Kawaguchi, A. Sasaki, and M. Boots. Why are dengue virus serotypes
so distantly related? Enhancement and limiting serotype similarity between
dengue virus strains, Proc. Royal Soc. London, B, 270(1530) (2003) 2241—
2247.

J. Li, Y. Zhou, Zh. Ma, and J. M. Hyman. Epidemiological models for mutat-
ing pathogens, SIAM J. Appl. Math., 65 (2004) 1-23.

M. Lipsitch. Vaccination against colonizing bacteria with multiple serotypes,
Proc. Natl. Acad. Sci. USA, 94 (1997) p. 6571-6576.

M. Lipsitch. Bacterial vaccines and serotype replacement: lessons from
Haemophilus influenzae and prospects for Streptococcus pneumoniae, Emerg.
Inf. Dis., 5(3) (1999) p. 336-345.

M. Martcheva and S. S. Pilyugin. The role of coinfection in multi-disease
dynamics, SIAM J. Appl. Math., (to appear).

R. May and M. Nowak. Coinfection and the evolution of parasite virulence,
Proc. Royal Soc. London B, 261 (1995) 209-215.

A. McLean. Development and use of vaccines against evolving pathogens:
vaccine design, in Evolution in Health and Disease, (S. C. Stearns, ed.), 138
151, Oxford University Press, Oxford, 1999.

J. D. Miller. The Replacement effect, The Scientist, May 23, 2003.

M. Nowak and R. May. Superinfection and the evolution of parasite viru-
lence, Proc. Royal Soc. London B, 255 (1994) 81-89.

M. Nuno, Z. Feng, M. Martcheva, and C. Castillo-Chavez. Dynamics of two-
strain influenza with isolation and partial cross-immunity, SIAM J. Appl.
Math., 65(3) (2005) 964-982.

T. C. Porco and S. M. Blower. Designing HIV vaccination policies: subtypes
and cross-immunity, Interfaces 28(3) (1998) p. 167-190.

T. C. Porco and S. M. Blower. HIV vaccines: The Effect of the mode of
action on the coexistence of HIV subtypes, Math. Pop. Studies, 8(2) (2000)
p. 205-229.



	CONTENTS
	Introduction
	Methylation of DNA may be Useful as a Computational Tool: Experimental Evidence Susannah Gal, Nancy Monteith, Sara Shkalim, Hu Huang and Tom Head
	1. Introduction
	2. Materials and Methods
	3. Results
	3.1. Explanation of the system set-up and approach
	3.2. Testing available methylases and restriction enzymes
	3.3. 3-variable SAT computation with plasmid DNA and PCR product

	4. Discussion
	References

	Dynamics of Random Boolean Networks James F. Lynch
	1. Introduction
	2. Definitions
	3. Local Structure of Networks
	4. Branching Processes
	5. Ineffective Gates
	6. Frozen Gates
	7. Networks of 2-Input Gates
	8. Future Work and Open Problems
	References

	Unknots and DNA Louis H. Kauffman and S. Lambropoulou
	0. Introduction
	1. Culprits
	2. Rational Tangles, Rational Knots and Continued Fractions
	2.1. Rational Tangles and their Invariant Fractions
	2.2. Rational Knots and Continued Fractions

	3. Sums of Two Rational Tangles
	4. Continued Fractions, Convergents and Lots of Unknots
	5. Constructing Hard Unknots
	6. The Smallest Hard Unknots
	7. The Goeritz Unknot
	8. Stability in Processive DNA Recombination
	Acknowledgements
	References

	Developing a Mathematical Model of Phagocytosis: A Learning Process Nataˇsa Macura, Tong Zhang and Arturo Casadevall
	1. Introduction
	2. Efficacy of Phagocytosis
	3. Modeling phagocytosis
	4. Modeling Goals
	References

	An Age Structured Model of T Cell Populations Brynja Kohler
	1. Biological Background
	2. The Model and Analysis
	2.1. Derivation of the age-structured PDE system
	2.2. Age independent ODE problem
	2.3. Simplified case: No net population change
	2.4. Formulation of the Cauchy problem
	2.5. Solution using Laplace transforms
	2.6. Extending the solution: Allowing population growth

	3. Simulation Results
	3.1. Parameter selection and assumptions
	3.2. Single clone results
	3.3. Scarcity of antigen
	3.4. Memory
	3.5. Two clones competing for antigen sites

	References

	Modeling and Simulation of Age- and Space-Structured Biological Systems Bruce P. Ayati
	1. Introduction
	2. General Problem
	3. Computational Methods
	3.1. Moving-grid Galerkin method in age
	3.2. Relationship to Leslie matrix models
	3.3. Time and space integration
	3.4. Convergence results

	4. Example Systems
	4.1. Proteus mirabilis swarm-colony development
	4.2. Tumor invasion

	5. Conclusions
	References

	Nutrient-Plankton Interaction with a Toxin in a Variable Input Nutrient Environment Sophia R.-J. Jang and James Baglama
	1. Introduction
	2. The Nutrient-Phytoplankton-Zooplankton Model
	3. A Nutrient-Plankton-Toxin Model with Inhibition of the Phytoplankton
	4. Discussion
	References

	On the Mechanism of Strain Replacement in Epidemic Models with Vaccination Maia Martcheva
	1. Introduction
	2. The Mechanism of Strain Replacement
	3. Differential Effectiveness of the Vaccine and Strain Replacement
	4. Coinfection, Perfect Vaccination and Strain Replacement
	5. Cross-Immunity and Strain Replacement
	6. Discussion
	Acknowledgments
	References




