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This book is an introduction to the key methods and underlying concepts of 
mathematical models in ecology and evolution. It is intended to serve the 
needs of a broad range of undergraduate and postgraduate ecology and evo-
lution students who need to access the mathematical and statistical modelling 
literature essential to their subjects. It assumes minimal mathematics and 
statistics knowledge (see below) while covering a wide variety of methods, 
many of which are at the forefront of ecological and evolutionary research. 
The book will also highlight the applications of modelling to practical prob-
lems such as sustainable harvesting and biological control.

There are many other ways in which this book could have been written 
and you will fi nd examples of quite different treatments of modelling in the 
literature. In particular the book could focus on (and be lead by) applications, 
for example by asking whether models are helpful in understanding climate 
change or saving cod populations or reducing the incidence of malaria. The 
answer is yes to all of these but it was felt that it is better to try to understand 
the general principles underlying the models and then examine the applica-
tions. Doubtless my ideas of synthesis and generality are not those of others 
but it is an attempt to detect and reveal order. I also wanted to write a book 
with a lighter touch and so have avoided writing lengthy descriptions of 
method. Hopefully this makes the book accessible to a wider readership.

Understanding of the text will be helped by a familiarity with the basics 
of the following mathematical and statistical methods and concepts:

• manipulation of algebraic equations,
• logarithms and powers,
• differentiation,
• variance and standard error,
• signifi cance and hypothesis testing.

Many thanks to Hils and Ed for encouragement and valuable comments. I 
have learnt much from interactions with colleagues at the Open University 
and previously at Imperial College. My interest in mathematical models was 
inspired by the lectures of Brian Goodwin and John Maynard Smith.

Michael Gillman
September 2008
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CHAPTER 1

Introduction

1.1 What is a model?

A model is some representation of reality. In everyday life we are familiar 
with physical models of reality such as toy cars and fi lm sets. Physical models 
have also been used extensively in science, perhaps most famously as the 
ball-and-stick model of DNA by Crick and Watson. Such physical models 
have been largely replaced by computer images and/or mathematical repre-
sentations. In ecology and evolution the models are almost entirely of a 
mathematical nature. Reference to models and modelling in this book can 
therefore be read as mathematical models or modelling. Fortunately we do 
not have to be highly skilled mathematicians to construct and use such 
models. This text will show how to develop ecological and evolutionary 
models which have a wide application across the life sciences and are relevant 
to many other branches of science. Indeed, the understanding of modelling 
benefi ts from interplay between the sciences.

An important fi rst step is to understand the overlap between statistical 
analysis and mathematical modelling. One of the central aims of statistical 
analysis is the description of trends and distributions in sets of data. For 
example, we might wish to provide a description of the change over time in 
the average size of a population. We can do this by using the statistical 
method of regression which provides a mathematical description of a line or 
curve of best fi t through the data. The equation of the resulting line or curve 
is also a mathematical model of the population and could be used to predict 
change over time, with the possibility of extrapolating beyond the last time 
point. Of course, we need to be cautious over the extent to which extrapola-
tions are performed, or, at the very least, make the user aware of the possible 
problems. Regression is introduced in the next section. A mathematical 
summary that allows prediction and extrapolation is therefore one valuable 
use of models. Expressing the model as a mathematical formula provides a 
brevity and formality of description. It also allows manipulation of the model 
and provides the opportunity for discovery of emergent properties not appar-
ent from non-mathematical reasoning. Another related use of models is that 
they allow a simplifi cation of reality. An alternative to producing models 
from observed temporal or spatial data is that we can build them from 
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observed processes within the study system – for example, levels of survival 
or migration – and test them against observed data. Both of these modelling 
activities will be described in this book.

Ecological and evolutionary patterns in space and time are intrinsically 
mathematical. That is, events at one point in time or space can be related to 
events at previous points with the use of mathematical operators. This idea 
is illustrated by the Fibonacci sequence which starts with the numbers 1 and 
1 and then continues by adding the previous two numbers to produce the 
sequence 1, 1, 2, 3, 5, 8 and so on. The sequence was named after Leonardo 
of Pisa who was known as Fibonacci (c. 1170–1250) and published in his 
Liber Abaci in 1202. This simple arithmetic sequence was originally used to 
predict changes in rabbit numbers and so is an early, perhaps the earliest, 
example of an ecological model. Although the underlying assumptions about 
how rabbits reproduce were naïve – for example, that female rabbits always 
produce one pair of rabbits every month, which contains one male and one 
female – they did consider appropriate biological issues of sex ratio and 
delayed reproduction (female rabbits were assumed to start reproducing after 
2 months). In the model the fi rst two numbers of the sequence (1, 1) repre-
sent one pair of rabbits in months 1 and 2. At the start of month 3 one new 
pair is born so the total is 2. At the start of month 4 another pair is born to 
the fi rst pair making the total 3 and at the start of month 5 the original pair 
again reproduces as does the second pair (total of 5). The model sequence 
generates an increase with time which, at least in the short term, looks 
something like population increase (Fig. 1.1; we will see similar examples of 
population increase later).

This very simple model of rabbit population dynamics can be contrasted 
with modern complex models which incorporate features such as disease 

Fig. 1.1 Increase in population size represented by the Fibonacci sequence increase. The 
fi t of the curve through the Fibonacci sequence is discussed in Section 1.4.
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(myxomatosis, rabbit haemorrhagic disease), variation in numbers of off-
spring per litter and random variation (Scanlan et al. 2006).

In the next two sections we will introduce the statistical methods used to 
generate mathematical models from observed data sets; that is, the fi rst of 
the two types of modelling approach described above.

1.2 Regression and its use in mathematical modelling

Regression techniques are used widely in science for determining the signifi -
cance and shape of relationships between two or more variables. An impor-
tant distinction is between correlation and regression. While correlation 
measures the strength of a relationship between variables, regression also 
aims to describe the relationship between two or more variables. The use of 
regression implies that there is a causal relationship between the variables; 
that is, that there is an independent and dependent variable. Changes in the 
independent variable may be generated in an experiment, for example by 
varying temperature and measuring the response in a dependent variable 
such as chemical reaction time, or naturally generated, for example due to 
different climatic conditions. In regression analysis with two variables, the 
dependent variable is plotted on the vertical axis and the independent vari-
able on the horizontal axis. Regression fi ts a line through the data (a line of 
best fi t), which is a mathematical representation of the relationship between 
the variables (Fig. 1.2). If the causal relationship is linear then the equation 
of the line is y  =  mx  +  c, where y and x are the dependent and independent 
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Fig. 1.2 A line of best fi t through a set of data points (x, y) will pass through the means 
of the x and y values (indicated by the square symbol in the centre).
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variables respectively and m and c are the gradient and y intercept. This is a 
mathematical model of the data set, allowing a prediction of y for a given 
value of x. An important feature of regression analysis is that it allows an 
estimate of the mean values of the parameters m and c and the reliability of 
those estimates, indicated by the standard error (SE) of the estimate. The 
same principle applies to more complex regressions.

Signifi cance testing can be used in various ways in regression. The most 
basic question is whether the dependent variable changes with the indepen-
dent variable. The null hypothesis of no change is represented by a horizontal 
line; that is, a gradient of zero. Therefore, in a linear model, a test of whether 
the gradient is different from zero is also a test of whether the overall regres-
sion model is signifi cant. Regression analysis uses the same principles for 
signifi cance testing as analysis of variance (ANOVA). In regression the sum 
of squares (SS) is determined from the sum of the squared differences between 
an observed dependent value and its corresponding predicted value on the 
regression line at the same independent value. It is helpful to imagine the 
regression line pivoting through the mean of the dependent and independent 
values (Fig. 1.2). When the line is horizontal, the SS of the observed values 
is equal to the total SS because all the predicted values are the same as the 
mean of the dependent value. As the line pivots, the SS reduces until the 
line of best fi t is reached. The difference (or deviation) of an observed value 
from the predicted value in the regression is called the residual. From the 
residuals we calculate an error or residual SS, so called because it is not 
explained by the regression. The difference between the total SS and the 
error SS is the regression SS; that is, the amount explained by the regression. 
Thus the SS terms are additive:

Total SS regression SS error SS= +

The regression SS and error SS are divided by their respective degrees of 
freedom to give the regression and error mean squares (MS). The signifi cance 
of the regression is then measured by the relative sizes of the regression MS 
and the error MS (F  =  regression MS/error MS), just as with the F test in 
ANOVA. An example is given below.

Signifi cance testing also applies to the parameters of the regression model. 
In the linear example the overall signifi cance is the same as the signifi cance 
of the parameter m because we are usually looking for signifi cant departures 
from the horizontal; that is, a value of zero for m. However, it is possible that 
our null hypothesis requires tests of departures from gradients other than 
zero. We will see later how signifi cant parameter values can be used in a 
variety of ecological and evolutionary models.

The method of linear regression will be illustrated with a grassland eco-
system example. A study by Hui and Jackson (2006) explored the relation-
ship between climate variables and above- and below-ground biomass in 
different grassland ecosystems across the world. The examples came from 
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Asia, North and Central America and Africa. The authors’ main interest was 
in the fraction of the total net primary production (NPP) below ground and 
its contribution to global carbon cycling. Here we will use their data on 
above- and below-ground NPP and mean temperature and rainfall at the 
different sites (Fig. 1.3). Note that the units of NPP are g of dry matter (DM) 
m−2 that accumulated over a fi xed period of time; that is, it is a measure of 
the growth of the grassland species above and below ground.

Several trends are suggested from the best-fi t lines in Fig. 1.3. Below-
ground NPP appears to decline with increasing temperature and rainfall 
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whereas above-ground NPP appears to increase with temperature and rain-
fall. The distribution of points in the two graphs looks rather similar, which 
makes us suspect that temperature and rainfall are closely correlated 
(Fig. 1.4)

In fact the correlation coeffi cient is 0.777, which is statistically signifi cant 
(P  <  0.01). This high and signifi cant correlation means that either rainfall or 
temperature can be used for the analysis. Notice that we have not fi tted a 
line through the points in Fig. 1.4. This is because we do not wish to imply 
that one variable is dependent on the other.

Although trends are suggested in Fig. 1.3 we need to run the regression 
analysis to check the signifi cance. The null hypothesis is that there is no 
change in the NPP with either rainfall or temperature. The results for above-
ground NPP and temperature are F  =  1.435, P  =  0.256. Therefore the slope is 
not signifi cantly different from zero. The regression analysis also provides an 
estimate of the values of m and c (gradient and intercept; the gradient is 
sometimes indicated by the letter b). However, this estimation is less useful 
when the regression is non-signifi cant. In this case the value of m is 8.014 
and the intercept is 272.39. Therefore, the regression equation would be:

Above-ground NPP temperature= ×( ) +8 014 272 39. .  (1.1)

Equation 1.1 could be used for predicting the value of above-ground NPP for 
a given value of temperature, but we would be wary of using it because the 
regression is not signifi cant.

In fact, none of the four regressions in Fig. 1.3 are signifi cant! This seems 
odd as we might expect temperature and/or rainfall to have a major effect 
on biomass. It may of course be that the non-signifi cance is the correct result 
and that grassland NPP accumulation, when measured across different geo-
graphical areas, is independent of climate. An inspection of the data suggests 
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that some of the problems may lie in the large amount of variation in the 
data around the regression. We can consider this by examining the residuals; 
that is, the size of the difference of the observed values from the predicted 
value on the regression line (Fig. 1.5)

The pattern of residuals of below-ground NPP with respect to the rainfall 
shows a large scatter of values (positive and negative) between approximately 
200 and 700 mm of rainfall, with small residuals for the higher values there-
after. This is a common distribution of residuals and a source of concern as 
regression analyses require that the residuals follow the same distribution 
pattern across the full range of independent values. A consequence of this 
deviant pattern is that the larger values of rainfall have a large effect on the 
regression. Indeed, it is possible to have a completely non-signifi cant scatter 
of points at low values and for one point with a high value (for both variables) 
to generate a signifi cant positive regression. Generally this means that more 
samples are needed in the intermediate range. In this case there is one large 
value with a mean temperature above 25°C and rainfall of nearly 1600  mm 
(you can see this clearly on the plot of rainfall against temperature, Fig. 1.4). 
Not surprisingly this occurs in a tropical region (Thailand). If we remove this 
value the regressions are even further away from signifi cance.

Whereas the NPP above or below ground did not show a signifi cant 
response to the climate variables, the fraction of below-ground NPP was sig-
nifi cant (Fig. 1.6).

This study illustrates the importance of exploring your data. Although 
above-ground and below-ground NPP show no signifi cant effects, the fraction 
of NPP below ground declines signifi cantly with increasing temperature. 
Alternatively, we could also use the fraction of NPP above ground (what 
slope would you expect for this regression?). The same effect is seen with 
rainfall, which is expected as rainfall and temperature are positively corre-
lated. The relationship of fraction of below-ground NPP with temperature is 
given by the equation:
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Fraction of below-ground NPP temperature= − ×( ) +0 01255 0 8299. .  (1.2)

Therefore for each increase of 1°C of mean temperature there is predicted to 
be a corresponding decrease of 0.01225 in the fraction of below-ground NPP. 
The high signifi cance of the regression (P  <  0.001) gives us greater confi dence 
in using equation 1.2 over equation 1.1. Furthermore the residuals appear 
to be well behaved along the full range of independent values. However, 
there still appears to be a reasonable amount of scatter around the predicted 
line. The amount of variation explained by the regression is summarized by 
the value of r2, the correlation coeffi cient squared. It has a particular meaning 
in regression analysis where it is known as the coeffi cient of determination. 
The r2 indicates the fraction of variation in the dependent variable explained 
by variation in the independent variable. Therefore, in this example, an r2 of 
0.651 means that 0.651 (or 65.1%) of the variation in fraction of below-
ground NPP is explained by variation in temperature. From a modelling 
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perspective this may be suffi cient to provide a useful model of the effects of 
climate change on grassland ecosystems. Conversely, about one-third of the 
variation remains unexplained. We will see in the next section how to 
improve these models by using more than one explanatory variable.

1.3 Multiple regression

In the previous section we had two possible independent variables which 
were correlated. This meant that either could be used and, indeed, it was 
only appropriate to use one. However, it is often the case that there are two 
or more independent variables that are not correlated and we wish to under-
stand their overall contribution to the regression. This is the domain of mul-
tiple regression. With two independent variables, instead of fi tting a line 
through a set of points as in linear regression, we are now fi tting a two-
dimensional plane through a set of points. With three independent variables 
it becomes diffi cult to visualize the process, but the mathematical principle 
of reducing the unexplained variation still applies.

We will now consider the application of multiple regression to an ecosys-
tem analysis. The hypothesis was that methane production from wetlands 
was being suppressed by acid rain. As methane is a powerful greenhouse gas 
the reduction may have important consequences for global climate change. 
An experiment was undertaken involving treatments simulating acid-rain 
deposition on a peat bog with the levels of methane fl ux recorded (Gauci 
et al. 2002). A further analysis considered the relationship of the extent of 
methane fl ux with peat temperature and water-table depth; that is, two 
naturally occurring variables. This required use of multiple regression and is 
considered here.

The dependent variable is methane fl ux and the independent variables are 
peat temperature and peat water table. The data can be plotted as two sepa-
rate graphs (Fig. 1.7) or combined in a three-dimensional graph in which the 
two independent axes are at right angles to each other (these may look 
impressive but it is often very diffi cult to read the values and so they are not 
included here).

The plots of the dependent against the independent values separately 
show that the percentage of methane fl ux increases with temperature and 
with water-table depth. Notice that the r2 values of these two are quite low 
(30 and 24% of variance explained respectively) although the regressions are 
signifi cant (P  =  0.0045 and 0.012). There is also the suggestion that there is 
a problem with the distribution of the residuals (Fig. 1.8). There are ways of 
dealing with these issues without further sampling, such as transformations 
of data, which were undertaken by the authors of the paper: we will consider 
this later. Here we will focus on the raw data and ignore the odd patterns of 
the residuals.
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Fig. 1.7 Percentage of methane fl ux plotted against the two independent variables (peat 
temperature and water-table depth).

First, we check that there is no relationship between the (assumed) inde-
pendent variables. It is true in this case although we note that there is a 
curious shape to the data with little variation in the water table at high and 
low temperatures but large variation at intermediate values (Fig. 1.9). 
Whereas it is possible to analyse the relationship between each independent 
variable and the dependent variable separately, we suspect that it is a com-
bination of factors that contribute to the methane fl ux and we wish to 
capture that information in one mathematical statement. Rather than 
y  =  mx  +  c we now have two independent variables so the overall equation 
will look like this:

Methane flux temperature water-table depth= ×( ) + ×( ) +a b c  (1.3)

Or in general terms:

y ax bx c= + +1 2  (1.4)
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Like the simple regression counterparts these equations allow prediction of 
the dependent variable with given values of independent variables. Equation 
1.3 indicates that for given values of temperature and water-table depth a 
value for methane fl ux can be predicted. The estimates of a, b and c are gen-
erated from the multiple regression analysis. Methane fl ux can then be 
modelled under a range of scenarios of temperature and water-table depth.

The multiple regression signifi cance results are given in Table 1.1a with 
the parameter estimates (regression coeffi cients) detailed in Table 1.1b. The 
estimates are 1.99 and 2.65 for temperature (a in equation 1.3) and water-
table depth (b in equation 1.3), respectively, in agreement with the predic-
tions from the simple regressions. Notice that all the estimates are highly 
signifi cant; that is, they are all highly signifi cantly different from 0. This is 
not always the case in multiple regression. If variables are not signifi cant then 
they are dropped from the analysis until we are left with the model (regres-
sion) that only contains signifi cant components. The r2 is also improved in 
this model (0.556) over the linear regression. This is expected as we have 
combined two signifi cant elements which are independent. Thus 55.6% of 
variation in methane fl ux is predicted by variation in temperature and water 
table. The full predictive equation is therefore:

Methane flux temperature water-table depth= − + ×( ) + ×44 8 1 99 2 65. . .(( )

In summary, multiple regression can be used as a tool for reducing complex 
models to their statistically signifi cant components and for exploring the 
interplay between different explanatory variables. In this example we con-
sidered two linear relationships. The next section will address nonlinear 

Table 1.1 (a) Regression model statistics and (b) parameter estimates and signifi cance in 
methane fl ux regression model (n  =  25).

(a)

Sum of 
squares 
(SS)

Degrees of 
freedom 
(df)

Mean squares 
(MS; calculated 
as SS/df)

F (regression 
MS/residual 
MS)

Probability 
(P)

Regression 1656.311  2 828.1554 13.799 0.000131
Residual 1320.312 22  60.0142
Total 2976.623

(b)

Regression coeffi cient SE t-test value P

Intercept −44.802 5.846 −7.664 <0.00001
Temperature   1.993 0.505  3.946  0.00069
Water-table depth   2.653 0.746  3.556  0.0018
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regression methods and from there move into an important class of mathe-
matical models which has been used to describe a wide range of scientifi c 
phenomena.

1.4 Nonlinear regression and power laws

To illustrate nonlinear regression let us return to the familiar example of the 
Fibonacci sequence. Imagine that the Fibonacci sequence is used to model 
change in population size over time. According to this model the population 
size at any point in time can be predicted given the starting values and the 
simple mathematical operation of adding the two previous values. In Fig. 1.1 
we saw the increase in size over 19 time points. The striking result is that 
the values appear to increase slowly at fi rst but then increasingly rapidly. 
This is typical of geometric or exponential increase in which the values at 
one time point are some multiple of the values at the previous time point. 
Geometric sequences are in contrast to arithmetic sequences where a term 
in the sequence is produced by adding a constant value to the previous term. 
In the Fibonacci sequence, the values at the current time are the sum of the 
values at the previous two time points, which simulates geometric growth. 
Geometric growth or geometric sequences in general can be summarized 
using the mathematical notation of powers. For example, the geometric 
sequence 1, 2, 4, 8, 16, 32  .  .  .  is produced by starting with 1 and multiplying 
it by 2; this multiplication is then repeated. If the terms of the sequence are 
themselves numbered 0, 1, 2, 3, 4  .  .  .  then the geometric sequence is seen 
as 20, 21, 22, etc. Furthermore, if the sequence term is represented by the 
letter t, then the sequence value for term t is simply 2t. Population and evolu-
tion models of this form will be considered in Chapter 2.

In Fig. 1.1 a curve is fi tted through the points with the following 
equation:

N et
t= 0 4676 0 4778. .  (1.5)

where t is time and Nt is the population size at time t. This is an example of 
a nonlinear regression in which a curve is fi tted through the points. The best 
fi t is determined in a similar manner to a linear fi t, for example by minimiz-
ing the squared differences between the observed and predicted values which 
we encountered with linear regression, a technique known as least squares. 
Comparison of equation 1.5 with 2t suggests that it is a mathematical summary 
of a geometric sequence. Equation 1.5 is slightly more complex in that it uses 
the number e instead of 2, t is multiplied by the value 0.4778 and e0.4778t is 
multiplied by 0.4676.

The number e is a special (natural) number with particular properties and 
an illustrious history involving Napier, Mercator, Bernoulli, Leibniz and 
fi nally Euler, who gave a full description of the value of e to 18 decimal places 
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in 1748 (www-history.mcs.st-andrews.ac.uk/HistTopics/e.html). For example, 
if we plot the curve y  =  ex we discover that the gradient of the curve at any 
point x is equal to y (Fig. 1.10). Mathematically this is stated as dy/dx  =  ex 
(this type of equation is explained in detail in later chapters). e is an irrational 
number (like π) with a value of 2.718.  .  .  .

Instead of fi tting a curve through the points we can employ a mathemati-
cal transformation to convert an exponential curve to a straight line and then 
use linear regression. The appropriate transformation for exponential func-
tions involves logarithms (abbreviated to logs). If y  =  10x then taking the 
logarithm to the base 10 (written as log10) of both sides gives:

log10 y x=

Similarly, if y  =  10ax then log10 y  =  ax. If the exponential function is of the form 
y  =  b10ax then taking logs gives log y  =  log b  +  ax. Therefore we can see that 
taking logs transforms a nonlinear function to a linear function. Plotting log y 
against x will give a straight line with log b as the intercept and a gradient of a.

Logarithms can be given to any base number. The base number e provides 
an important type of logarithm called natural or Naperian logarithms. Instead 
of writing loge we use the abbreviation ln. So if we take the natural log (ln) 
of both sides of equation 1.5 we can produce a linear equation (i.e. one with 
an equation y  =  mx +c; Fig. 1.11):

ln ln . .y x= ( ) +0 4676 0 4778  (1.6)

This is a useful result as it allows us to use linear regression to estimate the 
parameters of the exponential equation. The straight line equation is y  =  
−0.7601  +  0.4778x. We can see that 0.4778 agrees with the exponent or 
power value in equation 1.5; ln(0.4676) is also equal to −0.7601. The fi t of 
the regression is very high, the r2 has a value of 0.999 indicating that 0.999 
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Fig. 1.10 Examples of exponential functions. Notice the effect of a negative power.
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or 99.9% of the variation in the dependent variable is explained by variation 
in the independent variable. This fi t can be improved further by seeing that 
the fi rst two values are high residuals (1 and 1 were fi xed start points). 
Removing those two values and fi tting through the remainder gives 
y  =  −0.7938  +  0.4804x with an r2 of 1. Actually, it is not quite a perfect fi t 
(r2  =  0.9999)!

Let us recap what we have done here. We have made a model of popula-
tion dynamics with the Fibonacci series. This model can be described math-
ematically by either a nonlinear function (y  =  aebx) or an equivalent linear 
equation (ln y  =  ln(a)  +  bx). This means that we could predict the numbers of 
rabbits at any time. In doing this we have introduced several important 
methods: linear and nonlinear regression, exponential or geometric growth 
and logarithmic transformation. All of these methods will be used and 
explained in further detail later in the book.

Just as e was identifi ed as a natural number it is clear that many biological 
and other scientifi c phenomena are naturally nonlinear. Let us consider a 
classic ecological example of a nonlinear relationship and then step back to 
consider why such relationships might arise. It has long been known that 
(other things being equal) habitats with larger areas contain more species. 
These areas may have natural boundaries, such as islands within an ocean, 
or be different sample areas within a larger area of suitable habitat. Whereas 
the increase of species number with habitat area is perhaps intuitive, the 
precise form of the relationship and interpretations of the mechanisms are 
not so straightforward (Fig. 1.12).

In general it has been shown that species/area relationships can be 
modelled as a power function:

S cAz=  (1.7)
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linear relationship.
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Fig. 1.12 Mathematical relationship of species on islands with island area. The data 
(a) are shown on a log-transformed linear plot. The shape of the curve without the 
logarithmic transformation is shown in (b). Note that the graph in (b) does not cover the 
full range of values in graph (a). Graph from Lonsdale (1999) reprinted in Williamson 
et al. (2001).

where A is area (independent) and S is the number of species (dependent). 
Note the difference between power functions as exemplifi ed by equation 1.7 
and the exponential function such as equation 1.5. In the case of the expo-
nential function the independent variable (x) is the power, e.g. y  =  a10bx and 
the linear transformation is achieved by plotting log y against x. In the case 
of the power function the independent variable is the base (e.g. y  =  axb) with 
the corresponding linear transformation of log y against log x. So in the case 
of S  =  cAz taking the logarithms of both sides yields:

log log logS c z A= +  (1.8)
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With this transformation we could regress log S against log A and determine 
z and log c from the gradient and intercept respectively. In Fig. 1.12a, the axes 
are log-transformed (the original untransformed values are given on loga-
rithmic axes; equally one could show the log values, e.g. −1 to 8 on the area 
axis) showing a linear relationship between numbers of native species and 
island area. The fi tted line is:

log . . logS A= + ( )1 96 0 27  (1.9)

Thus z  =  0.27 and log c  =  1.96 (therefore c  =  101.96  =  91.2).
Species/area relationships fi tted to power functions have been shown to 

occur across a variety of plant and animal groups leading to the suggestion 
that this is a natural ecological ‘law’. Describing it as a law as opposed to an 
empirical generalization depends on whether there is a consistent underlying 
mechanism. The semantics of these debates are beyond the scope of this book 
but it is certainly the case that power functions of the general form y  =  cxb 
not only describe species/area relationships but also arise frequently across a 
range of scientifi c phenomena. These include various relationships with body 
mass including respiration (metabolic) rate, population density and genera-
tion time; variance/mean relationships applied to populations and numbers 
of cells in bodies and evolutionary processes such as species inter-
actions through time.

Why should power functions be so prevalent? One answer is that power 
functions can occur when two variables are linked by a third common vari-
able. To illustrate this answer we will consider a simple physical example.

Imagine a set of spheres of different sizes. The size of the sphere is given 
by the radius (r). We can calculate the surface area and the volume of each 
sphere (surface area  =  4πr2 and volume  =  (4/3)πr3). If we then plot the surface 
area against the volume for each sphere we obtain a power function (Fig. 
1.13a), which when log-transformed gives a linear function (Fig. 1.13b).

The equation of the power function is:

Surface area volume= ×4 836 2 3.

which when log-transformed is:

Log surface area volume= ( ) +log . log4 836 2 3

The volume and surface area of a sphere are related through a common third 
variable (radius). We can see this from the ratio of surface area to volume:

Surface area of sphere volume of sphere = ( ) =4 4 3 32 3π πr r r

As surface area is proportional to r2 and volume is proportional to r3, increas-
ing the radius r will produce a power function which increases by r2/r3; that 
is, 2/3. So the value of the power is 2/3. If volume is plotted against surface 
area the power value would be 3/2. This reasoning can be applied to biologi-
cal phenomena. Imagine that we are plotting the rate of heat loss of different 
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Fig. 1.13 Relationship of surface area and volume of spheres of different radius. 
(a) Power function and (b) corresponding log-transformed plots.

organisms against their mass. We might expect that heat loss will be propor-
tional to the surface area of the organism. As mass will be proportional to 
volume, a power function with an exponent of about 2/3 would be expected. 
As organisms are generally not perfect spheres and have various physiological 
contraptions that, for example, reduce heat loss, deviations from 2/3 may 
occur. Similarly there will be errors in measurement which will contribute 
to variation around the regression line. However, you can see that power 
laws may be expected simply as a consequence of scaling of body size. These 
phenomena have been widely studied and are referred to as allometric 
processes.

The principle of a common third variable generating power functions 
through scaling can be applied to other ecological and evolutionary processes. 
Take the −3/2 thinning rule (or law) as an example. The −3/2 power law has 
been much discussed among plant ecologists as it was considered as one of the 
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few ‘laws’ in ecology. The phenomenon is observed when plants of a particular 
species are grown or occur naturally at different densities (Fig. 1.14). If the 
mean masses of plants are plotted against plant density then, as the plants 
grow, they reach and then follow a boundary which has a gradient of 
approximately −3/2. The following of the boundary (and therefore reduced 
density) indicates that plants are lost and therefore thinning.

An explanation of this rule is that mean plant mass is proportional to 
volume (l3) whereas density is inversely proportional to area (l2). Therefore 
density (N)  =  k/l2 and mean plant mass (m)  =  pl3 where k and p are constants. 
These two equations can be rearranged to make equations in terms of l:

l k N= ( )1 2

l m p= ( )1 3

This shows that:

k N m p( ) = ( )1 2 1 3  (1.10)

A power of 1/2 means a square root of a number whilst a power of 1/3 means 
the cube root. If we cube both sides of equation 1.10 we obtain:

k N m p( )( ) =1 2 3

k N m p1 2 1 2 3−( ) =

k N m p3 2 3 2( )( ) =−

m p k N= ( )( )−3 2 3 2
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Fig. 1.14 Example of self-thinning rule with a marine alga (Phyllariopsis purpurascens). 
A signifi cant frond mean mass (m) to density (d) relationship was obtained 
(log10 m  =  0.6  −  1.4 log10 d) where the slope of −1.4 was not signifi cantly different from the 
expected −1.5 (Flores-Moya et al. 1996).
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Combine p and k3/2 into a new constant, s:

m sN= −3 2

So, mean plant mass (m) is related to density (N) to the power −3/2. In fact, 
the −3/2 rule has been subsumed within a more general −4/3 rule relating 
average mass to maximum density (Enquist et al. 1998).

1.5 Conclusion

As you may be starting to appreciate, there are few areas of science which 
cannot benefi t from an understanding of mathematical models or cannot be 
couched in mathematical terms. The introductory methods covered in this 
book should allow you to start developing your own models and provide an 
insight into the methods commonly used by a wide variety of practitioners. 
Hopefully you will begin to appreciate the wide range of applications, 
including biological control, sustainable harvesting and conservation 
management.

An important distinction in mathematical modelling, and one which 
informs the organization of the next two chapters, is between deterministic 
and stochastic processes. In a deterministic world everything should be pre-
dictable. For example, if population dynamics are deterministic we should be 
able to predict the population size at time t given a knowledge of the processes 
(described by mathematical equations) underlying the dynamics. Simple 
models with deterministic dynamics are the subject of Chapter 2. This notion 
of the deterministic world is undermined in two distinct ways. First, deter-
ministic processes do not necessarily lead to predictable outcomes (as we shall 
see in Chapter 5) and second that stochastic or random events may be as 
important in ecological and evolutionary dynamics, as we will discover in 
Chapter 3. In most cases a combination of stochastic and deterministic model-
ling is the best way to proceed. To use the regression analogy, we need to 
identify and quantify the deterministic signal (the variation due to the regres-
sion) and we need to fi nd ways of modelling the unexplained variance, which 
may be the result of extrinsic random events and/or sampling error. We also 
need to be aware that processes which are stochastic at one temporal or 
spatial scale may be much more predictable at larger scales. So, while it is 
diffi cult to predict the occurrence of storms from day to day, we may be much 
more certain about their occurrence and even their strength from month to 
month.
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CHAPTER 2

Simple models of temporal change

2.1 Introduction

In this chapter we will begin constructing some simple models which describe 
change in an ecological or evolutionary variable such as population size or 
number of species over time (change over time is referred to as temporal 
change). Similar models can be constructed to describe spatial change and 
this is the subject of Chapter 8. The models that we generate can be used to 
predict particular sizes of the study variables or particular properties of those 
variables. These properties include their tendency to return to certain values, 
the possibility of cycles and the movement to either very high or very low 
values, including zero (Fig. 2.1).

Although population outbreaks or species extinctions may grab the news 
it is also true that populations of a wide range of species can persist at similar 
levels for many years, whereas the fossil record demonstrates the persistence 
of groups of similar species over many millions of years. Why do some popula-
tions fl uctuate enormously while others persist at or around a particular size 
over time? What governs the dynamics of populations? Why do some species 
persist while others go extinct? Clearly, modelling cannot answer all of these 
questions, but it can help in identifying some of the major processes and help 
quantify the different levels of fl uctuation and the likelihood of certain dynam-
ics including the end point of extinction. This chapter starts off the investiga-
tion into stability in temporal models that concludes in Chapter 5.

Modelling of temporal dynamics can be used in various applications. For 
example, we may be interested in the long-term fl uctuations in a herbivore 
population which is believed to a keystone species in an ecosystem. We may 
wish to harvest that herbivore in a sustainable manner; that is, without 
causing the herbivore to become locally extinct and thereby undermine the 
ecosystem. By modelling the changes in herbivore numbers over time we 
may be able to determine the levels of sustainable harvesting and predict 
whether the ecosystem of which it is part will persist. Similarly we may wish 
to determine how a pathogen such as the malaria parasite (various Plasmo-
dium species) responds to the introduction of a control measure such as 
spraying of the mosquito vector (Anopheles species) or reduction in bite rate 
due to use of nets.
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In order to pursue these lines of enquiry we need to understand some key 
terms: stability, equilibrium and perturbation. A simple physical model will 
illustrate these terms. Imagine that a ball is placed in a centre of a cup (Fig. 
2.2). The ball is at rest but is it stable? We can only know this if we move 
the ball; that is, we perturb it. Upon release the ball returns to the base of 
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Fig. 2.1 Illustration of dynamics of ecological and evolutionary variables with time.

Fig. 2.2 Stability and equilibrium illustrated by a ball in a cup. (a) Displacement of ball 
from (apparent) equilibrium at position 1 to position 2. (b) Release of ball from position 
2 (or equivalent position 3). (c) Displacement of ball beyond local stability boundary at A 
or A′. (d) Unstable equilibrium.
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the cup. Therefore we can say that the ball at the bottom of the cup is at a 
position of stable equilibrium, defi ned as the steady state to which the ball 
will return after perturbation. Stability is related to equilibrium in that it 
describes the tendency of a population or other system to stay at or move 
towards or around the equilibrium. However, the stability of this equilibrium 
depends on the degree of perturbation. If we push the ball beyond the edge 
of the cup it falls out of the cup and away from the stable local equilibrium 
(Fig. 2.2c). The equilibrium is therefore locally stable but not globally stable. 
The same ideas can be applied to ecosystems or components of ecosystems, 
such as populations of herbivores or decomposers. Thus for a population or 
ecosystem the equilibrium or steady state can be defi ned as the state (e.g. 
density) to which the population or ecosystem returns after perturbation. 
The stability of the whole ecosystem can be considered with respect to energy 
fl ow, nutrient cycling or the interactions between its components. The dis-
tinction between local and global properties of stability is also important here. 
A population may persist under small amounts of perturbation from its equi-
librium value but move towards extinction or outbreak conditions under 
larger perturbations.

There are other properties of the locally stable equilibrium that we might 
wish to consider, for example, the rate of return of the ball to the equilibrium 
after perturbation. The local stability in the physical model of Fig. 2.2 also 
relies on friction slowing the ball down after release (from position 2); oth-
erwise, with the aid of gravity, it would be like a frictionless pendulum 
switching continuously from position 2 to 3.

Imagine a second physical model in which we balance the ball on the tip 
of a pin-head (Fig. 2.2d). The ball is at rest but the equilibrium is highly 
unstable – any very minor perturbation will send the ball off to another place. 
Such an unrealistic view of stability features in some ecological models, as 
you will appreciate later.

As with the physical model, we can reveal the stability boundaries of the 
ecological system by perturbation experiments. For example, consider two 
interacting species such as two competitors or a predator and prey species. 
Experimental perturbations of the densities of A or B may reveal any stability 
boundaries (Fig. 2.3). In the example of Fig. 2.3, reduction of the density of 
species A to value y results in return to the initial (equilibrium) density (x), 
whereas reduction to z pushes the system beyond the local stability boundary. 
This could be undertaken in the fi eld as a removal experiment in which the 
density of species A is reduced by different amounts and its and other (pos-
sibly competing) species return to the apparent equilibrium investigated. 
There are many examples of such experiments involving both removal and 
addition of species. These studies have been complemented by investigations 
of the effects of altering abiotic components such as nitrogen levels. 
Often the results are viewed in terms of the whole community or ecosystem 
and so a fuller discussion of these studies is reserved for later chapters. 
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Experimental investigation of stability over an ecologically realistic range of 
densities will reveal the global stability of the system.

Alternatively, one can look at the dynamics of a population or set of 
species over time, perturb them to different degrees at certain times and see 
whether they return to the same (apparent) equilibrium. For example, in 
Fig. 2.4, increase above or decrease below the steady state reveals the popula-
tion to be locally stable between the densities x and y. These perturbations 
are much easier to undertake on a computer than in the fi eld but the possi-
bility does exist for such examinations of stability. Indeed, they may occur 
as a result of natural perturbations; for example, extreme weather events 
such as drought or hurricane.

As indicated above, ecosystem stability has been considered, like popula-
tion stability, as the tendency to move to or return to a stable state. In fact, 
this embraces two properties of ecosystems: resistance and resilience. Resis-
tance is a measure of the ability of an ecosystem to resist change following 
a disturbance such as fi re or harvesting or following some change in condi-
tions or resource supply. It is usually assessed in terms of the size of the 
response made to the disturbance or change. Resilience is a measure of the 
speed with which an ecosystem recovers after a disturbance and returns to 
a steady state. The effects of fi re provide a good illustration of the two terms. 
Thus northern coniferous forest (taiga) burns easily in summer when condi-
tions are dry, so it has a low resistance to fi re. However, because some com-
ponents such as black spruce (Picea mariana) are adapted to fi re (e.g. causing 
the release of seeds from cones) and because fi re releases nutrients from 
biomass and litter layers, a rapid and predictable secondary succession may 

Fig. 2.3 Density of species A plotted against the density of species B and illustration of 
local stability boundaries by displacement from equilibrium (x) to position y or z.
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follow fi re: the system has high resilience after fi re. The same arguments can 
be made for Californian and Mediterranean ecosystems. The idea of resilience 
was introduced by C.S. Holling in a seminal paper in 1973. Measures of 
return rates in population studies (Sibly et al. 2007) mirror the ideas of 
resilience in ecosystems.

2.2 Simple and complex models

Before we begin constructing our fi rst models it is appropriate to pause and 
think about the rationale of model construction. The complexity of ecology 
and evolution provide both their fascination and frustration. We are faced 
with a myriad of species interacting with a variety of abiotic factors, both of 
which vary in time and space. How then can we begin to model these 
systems? There are two extremes of approach which have been described by 
various authors; for example, Maynard Smith’s (1974) distinction between 
practical ‘simulations’ for particular cases and general ‘models’, May’s (1973a) 
distinction, following Holling (1966), between detailed ‘tactical’ models and 
general strategic models and Levins’ (1966) ‘contradictory desiderata of gen-
erality, realism and precision’.

At the ‘tactical’ end of the spectrum we attempt to measure all the relevant 
factors and determine how they interact with the target system, such as a 
population. For example, in producing a model of change in plant numbers 

Fig. 2.4 Perturbation of a population away from equilibrium by reduction to density x or 
increase to density y. In both cases the population returns to the equilibrium, showing it 
to be locally stable.
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with time we might fi nd that the plants are affected by 12 factors, such as 
summer rainfall, winter temperatures and levels of herbivory. This informa-
tion is obtained through fi eld observations and fi eld or laboratory experi-
ments. All the information is combined into a computer program, initial 
conditions are set (e.g. the number of plants at time 1), values for the differ-
ent factors entered (e.g. the amount of summer rainfall) and the model run. 
The output of the model, in this case the number of plants at time t, is then 
revealed after different periods of time. This is a classic simulation exercise 
which has become feasible and easy to execute with high computer process-
ing speeds and wide availability of appropriate software.

Now comes the tricky part. We have produced a realistic model in the 
sense that it mimics closely what we believe is happening in the fi eld. 
However, we do not really know why it produces a certain answer. The 
model is intractable (and perhaps unpredictable) owing to its complexity. 
Tweaking a variable such as rainfall may radically change the output but we 
may not know why. In other words we have produced a black box which 
receives a set of variables and generates numbers that vary in time and space. 
One value of such a model is that it can speed up natural processes so that 
we do not have to wait 100 years to see how the plant population will (pos-
sibly) change, assuming factors remain the same or change in a predictable 
manner. To get closer to the mechanism(s) in these types of model we have 
two options. The fi rst is to alter the variables systematically and see how the 
output responds. This is perhaps best undertaken after the second option, 
which is to strip the model down to its statistically signifi cant components. 
You will recall from Chapter 1 that one feature of multiple regression is the 
removal of non-signifi cant explanatory variables. This will include removing 
explanatory variables that are correlated. Multiple regression is one example 
of a set of statistical methods which allow the removal of non-signifi cant 
terms, resulting in the simplest realistic model (often referred to as the 
minimal adequate model, especially in connection with particular statistical 
applications). These methods are consistent with the guiding principle of 
parsimony which states that the simplest explanation is the best one (Occam’s 
razor). This principle is relevant to all branches of science. The identifi cation 
of a common third and hidden variable in the power functions in Chapter 1 
follows the principle of parsimony as it replaces two variables by one. In 
evolutionary biology parsimony has been of fundamental importance in the 
construction of phylogenetic trees.

From the ‘strategic’ end of the spectrum we can create a model which is 
so simple that it is known to be unrealistic. What is the value in such an 
approach? Here the objective is rather different to the simplest realistic model 
generated from the tactical end. We are using mathematical modelling as a 
way of formalizing generalizations about the study system. The model is not 
derived out of consideration of one particular example. It can be argued that 
strategic models are the most important types of model as they lie at the core 
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of realistic models. If we do not understand the mode of operation of strategic 
models then we can never understand why the particular realistic models do 
what they do. From a mathematical perspective, strategic models are often 
designed so that their properties can be revealed through analytical solutions 
of the underlying equations. For example, the stability boundaries of some 
simple mathematical models can be determined by manipulation of the equa-
tions whereas more complex models cannot be solved in this manner. Exam-
ples of these types of solution will be given later in the book.

In the light of this discussion we will begin by exploring the properties of 
some simple strategic models. In fact the following could be argued as stra-
tegic models arising from realistic considerations, encompassing the best of 
the strategic and tactical approaches.

2.3 Density-independent population dynamics

A species with population dynamics that are relatively easy to model is one 
that reproduces and then dies in the same year. Certain insect species and 
annual plants fall into this category.

Consider populations of a hypothetical annual plant. The seed germinates 
in spring, the seedlings grow in the summer and reach a size for fl owering 
and seed set in late summer. The seed are produced and over-winter in the 
soil. The life cycle is then repeated (Fig. 2.5). There are many variations on 
this theme but this is a good starting point. We will assume that the popula-
tion is closed, meaning that there is no immigration or emigration.

10 at start of year 1,
20 at start of year 2 

Germinating seed

200 in year 1,
400 in year 2

× 0.2
survival

× 0.1
survival

× 100
seed
per
plantSeed at end of year t

Flowering plants

2 in year 1,
4 in year 2

Fig. 2.5 Life cycle of an annual plant, showing change from germinating seed in spring 
of year t, through fl owering and seed production in the same year. The survival and 
fecundity values associated with changes from one stage to the next are shown next to 
the arrows. The italicized values are an example of the change in numbers, starting with 
10 germinating seeds.
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To model the temporal dynamics of populations of this annual plant we 
need to estimate survival and fecundity values at different stages in the life 
cycle (Fig. 2.5). Assume we start with 10 seeds germinating in spring. Of 
these, just two survive to fl ower and set seed. Therefore the fraction of ger-
minating seed surviving to fl owering plant and seed set is 0.2. We will see 
later that these survival values can be divided further into different ages or 
stages of the plant (or other study organism). The fecundity of the plant is 
given by the average number of seeds per plant. We will take this to be 100. 
To take us round the life cycle to the germinating seed we now need to know 
the fraction of seed surviving over winter. This will be taken as 0.1. An equa-
tion can now be written for the number of germinating seed next year as a 
function of numbers this year:

Number of germinating seed next year number of seed germinating thi= ss
year fraction surviving to seed set average number of seed× ( ) ×0 2. ss
produced fraction surviving over winter100 0 1( ) × ( ).

If number of seed germinating this year is replaced by Nt (number at time t) 
and number of seed germinating next year is replaced by Nt+1 (number at 
time t  +  1) then we can replace the above expression with a simple algebraic 
expression. Note that we are assuming that the survival and fecundity rates 
are constant between years, which allow them to be combined as one 
parameter:

N N

N N

t t

t t

+

+

= × × ×

=

1

1

0 2 100 0 1

2

. .

 (2.1)

The two survival fractions combine to give an overall value of fraction of 
germinating seed surviving to the equivalent point after one generation (in 
this case the value is 0.02). We could have done the same thing starting at 
a different point in the life cycle. This overall survival is then multiplied by 
the fecundity to give an overall measure of the change in numbers from one 
generation to the next. In this example the value is 2, so that the population 
doubles in size each year.

In mathematical models of temporal change there are two ways of repre-
senting time, which have important implications for the methods used in the 
modelling and the outputs of the models. In the fi rst case, time may be con-
sidered as continuous, so that, in theory, it can be divided up into smaller 
and smaller units. In the second case, time is considered to be discrete in 
units of, for example, years. The fi rst case is appropriate to populations of 
individuals with asynchronous and continuous reproduction such as human 
populations, whereas the second is appropriate to populations with seasonal 
or otherwise synchronized reproduction. The population of annual plants 
treated here fall into the discrete time category. The subscripts t and t  +  1 
show that we are dealing with a discrete time process, with units of years, 
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due to the fact that reproduction is annual. Such processes are modelled with 
difference equations (also known as recurrence equations) which relate 
events at one time point to those of previous time (variable) points. Equation 
2.1 is an example of a difference equation. Difference equations could also 
be used to link different points in space. Continuous processes are modelled 
with differential equations. The hypothetical extremes of discrete and con-
tinuous time are not always encountered or obvious in the fi eld. Most envi-
ronments have some form of seasonality, even in tropical habitats. Within 
the breeding season, there may be one reproduction period or there may be 
several, possibly overlapping, periods of reproduction. In the latter example 
a combination of difference and differential equations may be required.

The model in equation 2.1 can be represented as a general algebraic equa-
tion (see equation 2.2, below), by letting λ equal the average overall survival 
value multiplied by the fecundity. λ is known as the fi nite rate of population 
change. This value was referred to by May (1981) as the ‘multiplicative 
growth factor per generation’. We will see later an equivalent term represent-
ing the change in numbers of species or other taxonomic unit during evolu-
tion. In the example in equation 2.2, λ is equivalent to the number of 
germinating seed produced in year t  +  1 for every germinating seed in year t 
(Nt+1 divided by Nt). λ could also give a measure of the number of fl owering 
plants in year t  +  1 relative to the number in year t. Thus, in different versions 
of equation 2.2, λ can be used (and will take the same value) for any stage 
of the life cycle as long as it is expressed relative to the same stage in the 
previous cycle and the survival and fecundity values remain constant. 
Numbers of seeds or other stages are often represented as densities; for 
example, numbers per unit area.

N Nt t+ =1 λ  (2.2)

If the survival and fecundity values remain constant the population will 
change by a multiple of λ every year. The population will increase if λ  >  1 
and decrease if λ  <  1 (Fig. 2.6). At values of λ  >  1 we see that increase is 
geometric or exponential (as expected because the values at time t are mul-
tiplied by a fi xed amount). Note the similarity of the output in equation 2.2 
to the exponential functions shown in Chapter 1 (Fig. 1.10). Equation 2.2 is 
an example of a density-independent model because the value of λ does not 
change with population density. The Fibonacci model discussed in Chapter 
1 is also an example of a density-independent model.

The serious limitation of density-independent dynamics is that they predict 
an unrealistic world either eventually covered in one species (when λ  >  1) 
or without a given species (when λ  <  1). There is also the possibility of no 
change in population size if the death rates are exactly balanced by the birth 
rates: λ  =  1. This is also unrealistic because birth and death rates have to be 
exactly matched or balanced by immigration/emigration for an indefi nite 
period of time. This is the model of the ball balanced on the pin-head (Fig. 
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2.2). However, equation 2.2 may accurately predict dynamics over a short 
period of time, when the assumptions of constant rates of survival and fecun-
dity will hold. This is likely to occur at relatively low population densities, 
such as when an annual plant species is colonizing a recently ploughed fi eld. 
In Chapter 5 we will see how to model systems to achieve a more realistic 
process of stability; that is, the model of the ball in the cup (Fig. 2.2).

2.4 Density-independent growth in numbers of lineages

Just as populations increase or decrease in the numbers of individuals with 
time, so clades will change in the numbers of species or other taxon with 
time. A clade is defi ned as all the descendants of a common ancestor; that 
is, it is a monophyletic group. It is also usual to describe the number of lin-
eages in a clade, with lineages either branching (origination events) or 
becoming extinct. The temporal dynamics of populations and clades have 
much in common in terms of modelling. Understanding the temporal dynam-
ics of clades allows us to address some fundamental questions in evolution. 
For example, we may ask whether rates of evolution change signifi cantly 
with events such as the end of the Cretaceous or the more recent ice ages of 
the Pleistocene. Formerly this type of question could be answered only with 
reference to the numbers of fossil types. With the development of (molecular) 
phylogenetic and molecular clock methods the potential for answering these 
questions is greatly improved.
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Fig. 2.6 Density-independent dynamics generated by equation 2.2 with different values 
of λ (top line λ  =  1.5, middle line λ  =  1 and bottom line λ  =  0.5).



SIMPLE MODELS OF TEMPORAL CHANGE  31

Imagine a clade in the early stages of diversifi cation. For convenience we 
will assume time units of millions of years (Myr) and that each end point is 
a species. At time point 1 there are two species in existence (Fig. 2.7). During 
the next million years (up to 2  Myr after the clade has existed) each of the 
existing two species splits to form two new species; that is, four in total. If 
this process continues at the same rate during subsequent million-year 
periods the numbers will increase geometrically: 2, 4, 8, 16 and so on. This 
scenario does not assume any extinction events. We can model extinction in 
a simple manner by assuming that a certain fraction of taxa go extinct during 
each time period – for example 0.25 – and therefore 0.75 survive. This model 
is identical to the density-independent population model (equation 2.2). In 
this case:

N Nt t+ = × ×1 2 0 75.

N Nt t+ =1 1 5.

where Nt is the number of species at the end of a given time period. You will 
see that we also have a parameter equivalent to λ, the fi nite rate of popula-
tion increase. This can be defi ned as a diversifi cation rate, for which we will 
use the symbol R. In Chapter 3 we will discuss ways in which these processes 
can be modelled as probabilities (or as values sampled from a probability 
distribution) rather than fi xed values.

In Chapter 1 we saw that equations such as 2.1 and 2.2, in which terms are 
multiplied, can be log-transformed to produce an additive model. A log-
transformation of the diversifi cation equivalent of equations 2.1 or 2.2 yields:

log log logN R Nt t+ = +1  (2.3)

Note that, for a given base, log(ab)  =  log(a)  +  log(b). As R represents origina-
tions (‘births’, B) of lineages multiplied by the fraction not going extinct (S, 
surviving) we can write R  =  BS. Evolutionary biologists are interested in the 
extinction rate (E) so we can replace S with 1  −  E:

R B E= −( )1

−1

−2

Million years

−0

Fig. 2.7 Diversifi cation of a clade with dichotomous branching of taxa every million 
years.
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If R is replaced by B(1  −  E) in equation 2.3 we have:

log log logN B E Nt t+ = −( )( ) +1 1

which can be rewritten as:

log log log logN B E Nt t+ = ( ) + −( ) +1 1  (2.4)

The additive components of origination and survival are clearly shown in the 
log-transformed equation 2.4. A second way of writing equations such as 2.1 
and 2.2 is to consider the relationship between N and t. For example, after 
two time periods we can write an equation for Nt+2:

N R Nt t+ =2
2

More generally, after d time periods:

N R Nt d
d

t+ =

If Nt is the number at time 0 and therefore equal to 1 we are left with:

N Rd
d=  (2.5)

Using this equation we only need to know the extant number of lineages 
(Nd) and the total time period over which they have been in existence (d) to 
estimate the diversifi cation rate. Later we will consider how to describe these 
processes in continuous time.

The branching patterns of real clades are far more complex than that given 
in Fig. 2.7. Phylogenetic trees (phylogenies) which describe the relationship 
between different extant or fossil groups have been determined for many 
clades (some examples are given in Fig. 2.8). Phylogenies are constructed by 
comparing the character sets of different organisms and determining their 
similarity. Guiding principles of phylogenetic (re)construction include parsi-
mony, which produces a hypothesis of the simplest way of arranging the 
organisms by minimizing the number of transitions between character states. 
The statistical methods of phylogeny construction could fi ll a book on their 
own and so are not treated here.

In addition to realization of the overall structure or topology of the phy-
logeny, the lengths of branches can be calibrated using molecular clock tech-
niques. Again, there is a large literature on the methods, which include the 
use of multiple calibration points. For our purposes, we only need to know 
that phylogenies can provide details of branch length and that this is propor-
tional to time. Knowledge of the branching pattern and branch lengths means 
that we can plot the change in numbers through time. As an example con-
sider the amphibian phylogeny shown in Fig. 2.8a. At time 0 (before 368.8  Myr 
ago) there is one branch (Table 2.1). At 368.8  Myr ago this is hypothesized 
to have branched into two lineages. At 357.8  Myr ago one of the branches 
again split to yield a total of three lineages, and so on. Sometimes the 
split will produce three or more branches but generally phylogenies are 
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Sirenidae

Ambystomatidae

Salamandridae

Plethodontidae

Uraeotyphlus
“Ichthyophis”
Caudocaecilia
Ichthyophis

Scolecomorphus
Boulengerula
Herpele
Caecilia
Typhlonectes
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Gegeneophis
Hypogeophis
Praslinia
Geotrypetes
Dermophis
Schistometopum
Microcaecilia
Luetkenotyphlus
Siphonops
Andrias
Batrachuperus
Hynobius
Siren

Ambystoma
Dicamptodon
Salamandra
Pleurodeles
Tylototriton
Taricha
Calotriton
Triturus
Proteus
Necturus

Plethodon
Desmognathus
Ensatina
Hydromantes
Speleomantes
Ascaphus

Leiopelma
Alytes
Discoglossus
Bombina
Rhinophrynus
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Fig. 2.8 Three examples of phylogenies. (a) Amphibians (Roelants et al. 2007). 
(b) Angiosperms (see Angiosperm Phylogeny website, www.mobot.org/MOBOT/research/
APweb/). (c) Primates including fossil groups (Seiffert et al. 2005).

Continued
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(b)
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Fig. 2.8 Continued
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(c)
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Fig. 2.8 Continued
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resolved to produce just dichotomous branches. A straightforward way of 
summarizing such data is to list the node (branching-point) ages and use this 
to generate a cumulative number of nodes with time (Table 2.1). As this 
phylogeny is based on extant lineages, it underestimates the level of extinc-
tion. However, it does represent a valuable description of temporal changes 
in lineages leading to extant groups. An example of a phylogeny which 
includes extinct groups is given in Fig. 2.8c.

Often we are interested in deviation from a null model of constant diver-
sifi cation. One way of exploring this is to plot the log of the number of lin-
eages (N) against time (Fig. 2.9). Because the process is multiplicative, 
constant diversifi cation should produce a linear increase in the log of number 
of lineages with time (see also section 1.2). Later we will see that there are 
good reasons for expecting systematic deviation from a linear fi t.

A linear fi t through all the data (Fig. 2.9) gives the following regression 
equation:

ln . .N t= +0 0136 5 2882  (2.6)

Note that time before present is given a negative value so that the rate of 
increase is positive. The equivalent equation using raw numbers (without 
natural-log transformation) is:

N e

N e e

N e

t

t

t

=
=
=

+5 2882 0 0136

5 2882 0 0136

0 0136197 99

. .

. .

..  (2.7)

Table 2.1 List of amphibian phylogeny node ages in order of decreasing age and 
cumulative number of lineages (Roelants et al. 2007). Only the fi rst 12 nodes (branching 
points) are given. The log of the number of lineages is used in consideration of the 
diversifi cation rate (Fig. 2.9).

Node ages (Myr ago) Cumulative number of lineages ln (number of lineages)

368.8  2 0.693147
357.8  3 1.098612
248.7  4 1.386294
242.5  5 1.609438
233.9  6 1.791759
232.2  7 1.94591
228.8  8 2.079442
226.4  9 2.197225
222 10 2.302585
209.8 11 2.397895
202.9 12 2.484907
202.5 13 2.564949
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The term e0.0136 gives the average rate of increase of lineages per unit time. 
This is equivalent to 1.0137, which is the average rate of multiplication of 
lineages every million years. Another approach to estimating the average rate 
of diversifi cation is to take the known number of extant species and use 
equation 2.5. With 6009 extant species and a start point of 368.8  Myr ago 
we have:

6009 368 8= R .

In other words R is the 368.8th root of 6009! This can be written as 60091/368.8 
or 60090.00271 and has a value of 1.023873. So, starting with one lineage 
368.8  Myr ago, multiplication every million years by 1.023873 gives approxi-
mately 6009 at the present day. Note that with so many multiplications 
rounding error is important here. More sophisticated measures of diversifi ca-
tion rate assume certain levels of extinction. Using these amphibian data 
Roelants et al. (2007) estimated the diversifi cation rate with no extinction as 
1.0217 and with a very high extinction rate of 0.95 times that of birth rate 
they estimated the diversifi cation rate as 1.0154.

It is clear from Fig. 2.9 that there are some major deviations in the values 
around the regression (which we could explore by examining the residuals 
of the regression). For example, the numbers build from a low value at 
approximately 250  Myr ago to a maximum at about 190  Myr ago. There is 
also a dip at about 75  Myr ago. Analyses of deviations from constant 
diversifi cation are of considerable interest as they may indicate periods of 
high origination or high extinction. If such patterns are found across 
different clades then this may constitute evidence for global patterns of high 
extinction; for example, at the Cretaceous/Palaeogene boundary 65.5  Myr 
ago.

Full data set y = 0.0136x + 5.2882

r2  = 0.9827

First two points omitted

y = 0.0142x + 5.3262

r2 = 0.9869
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Fig. 2.9 Natural log of the number of amphibian lineages against time, based on the 
phylogeny in Fig. 2.8a.



38  CHAPTER 2

The point at which the line cuts the x axis will be the point at which ln 
(number of lineages)  =  0 and so the number of lineages  =  1. In other words 
this would be an estimate of the time of the ancestral lineage. Of course we 
already have this value from the molecular phylogeny, but it is interesting 
to see if the regression agrees with this by removing the early values. In Fig. 
2.9 there may be an effect of the two very early branches on this estimate 
(recall the effect of points a long distance from the midpoint of the regres-
sion). This can be explored by undertaking the regression with these two 
points omitted. The resulting regression equation is:

ln . .numbers of lineages( ) = +0 0142 5 3262t

This can be rearranged with ln (number of lineages)  =  0 to give t:

t = − = −5 3262 0 0142 375 1. . .

Therefore this predicts a start point of 375.1  Myr ago.
An important systematic deviation in plots of ln (lineages) against time 

for molecular phylogenies is due to changes in the extinction rate (Nee 2006). 
As molecular phylogenies are based on extant species they tend to underes-
timate extinction, especially as graphs such as Fig. 2.9 approach the present, 
where the slope is more likely to approach the origination value (b; Fig. 2.10). 
The birth/death process described in the legend refers to a different model 
from that used above and one which we will consider later, although the 
principle of change in slope is still relevant. In Chapter 5 we will discover 
other sources of deviation from the linear plot in Fig. 2.10.
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Fig. 2.10 The expected cumulative increase in the logarithm red correction of number of 
lineages in a molecular phylogeny growing according to a birth (b)/death (d) process 
(Nee 2006). The birth/death process is described in Chapter 3.
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2.5 Population dynamics and diversifi cation in continuous time

What of organisms whose life cycles do not fi t the simple assumptions of 
annual plants or insects? From the point of view of population dynamics 
there are three important differences between long-lived organisms and 
annual organisms. First, the former may begin reproducing after more than 
1 year. Second, they may survive after reproduction and possibly reproduce 
again. The dynamics of such populations needs to be described with respect 
to particular ages or stages of the population and will be the subject of 
Chapter 4. Finally, in populations with overlapping generations, reproduc-
tion may not be discrete or synchronous. Individuals in human populations, 
for example, do not synchronize their reproduction! In this case we need to 
think of reproduction as a continuous rather than a discrete process. Simi-
larly, in describing the diversifi cation of clades it may be more appropriate 
to describe change as continuous.

In section 2.3 we considered an equation in discrete time (Nt+1  =  λNt) to 
represent density-independent population change. In section 2.4, the use of 
an analogous discrete time model was applied to diversifi cation rates. If 
reproduction or diversifi cation in a large clade is continuous then the differ-
ence between t and t  +  1 is vanishingly small and therefore change is continu-
ous and described by differential equations. In the following example we will 
discuss population change but the same ideas apply to diversifi cation rates.

In the discrete-time model it was found that population change was geo-
metric in form (Fig. 2.11a). Now consider a continuously reproducing popu-
lation. For a description of continuous geometric population change the 
separate points in Fig. 2.11a need to be replaced by a smooth curve (Figs 
2.11b–2.11d).

If a population is changing geometrically (exponentially) then the curve 
(Fig. 2.11c or 2.11d) can be described by an equation which we have met 
for the discrete-time process (equation 2.7):

N N et
rt= 0  (2.8)

where Nt is the population size at time t and N0 is the initial population size. 
Because equation 2.8 is describing continuous change, t can take any value. 
At each point on the smooth exponential curve it is possible to determine 
the rate of population change by differentiation. This is equivalent to the 
gradient of the tangent at that point. Tangents represent linear rates of 
change at one point on a nonlinear curve. Differentiation, which is one 
branch of calculus, provides a way of fi nding the gradient at a given point 
on a curve produced by a known function. Differentiation therefore provides 
a means of determining the rate of change of one variable in response to 
another. Moreover, whereas drawing a tangent is only an approximate way 
of fi nding a rate of change at a particular point, differentiation provides a 
precise value. Differentiation essentially provides a method of quantifying 
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very small changes in the dependent variable with very small changes in the 
independent variable at a given value of the independent variable.

In the terminology of differentiation, the rate of population change at a 
given time t (Fig. 2.11c or 2.11d) is referred to as the derivative of Nt with 
respect to t and is written as dN/dt (this is described in speech as ‘dN by dt’). 
When dN/dt is positive the population is increasing with increasing time (Fig. 
2.11c); conversely when dN/dt is negative the population is decreasing with 
time (Fig. 2.11d) and when dN/dt  =  0 there is no change in population size. 
There are various rules for differentiating different functions. We will not go 
through all these here but it is helpful to know a couple of them. One you 
have already met in Chapter 1 is if y  =  ex then dy/dx  =  ex. This is a special 
property of the exponential curve in which the gradient of the curve at point 
x is equal to the value of y at that point x. The derivative of the function 
y  =  axn is given by:

d dy x anxn= −1

For example, for the quadratic equation y  =  3x2  +  2x  +  4 we can treat the three 
added components separately (note that 4 is lost because we are multiplying 
by a power of 0):

d dy x x x= + +3 2 2 1 4 01 0. . .

d dy x x= +6 2

Fig. 2.11 (a) Geometric or exponential growth in discrete time. (b) Geometric growth in 
continuous time. (c, d) Geometric growth in continuous time showing tangent to curve 
for (c) positive and (d) negative rates of change.
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The value of the gradient at, for example, x = 2 could then be determined 
(dy/dx  =  14). A useful application of differentiation is when we wish to 
examine maxima and minima in curves of population change. Maxima and 
minima are defi ned as points where no change occurs (therefore dy/dx  =  0). 
However, they differ in the way that dy/dx changes with x (Fig. 2.12). For 
example, consider increasing values of x approaching and passing a maximum 
value. Before the maximum, the value of dy/dx is positive. These positive 
values reduce towards zero at the maximum value and thereafter become 
increasingly negative. Therefore dy/dx declines from high positive to zero to 
negative values with increasing values of x across a maximum. The rate of 
change of dy/dx with x is known as the second derivative (the derivative of 
the derivative, written as d2y/dx2) and can be used to distinguish between 
maxima, minima and points of infl exion (Fig. 2.12).

Returning to equation 2.8 we can now see that the population increase 
at a particular time is found by differentiating Nt with respect to t:

d dN t rN ert= 0  (2.9)

By substituting Nt  =  N0e
rt into equation 2.9 we obtain:

d dN t rNt=  (2.10)

Fig. 2.12 Illustration of maximum and minimum values of a function y  =  f(x).
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Equation 2.10 shows that the rate of population change at time t (dN/dt) is 
equal to the population size at that time (Nt) multiplied by r. The parameter 
r is referred to as the intrinsic rate of population change. Despite its name, 
there is nothing intrinsic about r. Its value will change as rates of birth, death 
and dispersal change. So it is better to reserve the term intrinsic for the 
maximum value of r (rm) which occurs under optimum conditions of tem-
perature, light, food supply and so on. The actual instantaneous rate of 
increase, r, will always be lower than rm and will vary with time for a par-
ticular species. r or rm is also called the Malthusian parameter.

In a closed population r represents the difference between the birth and 
death rates per individual. Thus r can be replaced by b  −  d, where b is the 
instantaneous birth rate and d is the instantaneous death rate. The same 
notation can be applied to origination and extinction of lineages in clades 
(see Fig. 2.10). If the birth rate exceeds the death rate then b  >  d and so r  >  0, 
meaning that dN/dt is positive and the population will increase in size. Con-
versely, if b  <  d or r  <  0 then the population will decrease in size (dN/dt  <  0). 
There is also an unstable steady state given by b  =  d (analogous to λ  =  1), so 
that b  −  d  =  0 and there is no change in population size; that is, dN/dt  =  0.

To illustrate the estimation of r we will use the example of population 
change in the USA from 1790 to 1910. Although these data were presented 
by Pearl and Reed (1920) to illustrate a different point, it is interesting to use 
them here to contrast with their analysis, which we will discuss in Chapter 
5. To estimate the parameter r we linearize equation 2.8 by taking the natural 
log of both sides:

ln lnN N rtt( ) = ( ) +0

r can be estimated by linear regression of ln(Nt) against t, giving a value of 
0.027 (Fig. 2.13a). The linear fi t is apparently very good, explaining 99.5% 
of the variance. However, the pattern of residuals around the regression sug-
gests that extrapolation of the linear model beyond 1910 may not be appro-
priate (Fig. 2.13b). If the linear model was appropriate we would expect an 
even scatter of points around the line. In this example the value of r is esti-
mated over a period of time when high levels of immigration were occurring 
in the USA and therefore is likely to be higher than r estimated for a closed 
population.

Finally, let us consider the relationship between the differential equation 
dN/dt  =  rNt (equation 2.10) and the difference equation Nt+1  =  λNt (equation 
2.2). Both of these equations describe geometric or exponential population 
change; the fi rst in continuous time and the second in discrete time. The rate 
of population change is given by r and λ respectively. But what is the rela-
tionship between these two parameters? Consider values of population 
density at two consecutive points in time. The differential equation is derived 
from Nt  =  N0e

rt (equation 2.8). With N0  =  1, at t  =  1 N1  =  er and at t  =  2 N2  =  e2r. 
(Remember that this continuous model can have values between t  =  1 and 
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2, unlike the discrete-time model.) Dividing N at time 2 by N at time 1 gives 
e2r/er  =  er (note that e2r  =  er  ×  er and that any value of N0 could have been used 
as it would cancel out here). So, the continuously growing population 
increases by er between all consecutive integer time values. By comparison, 
the difference equation describes a change between two consecutive integer 
time values as Nt  +  1/Nt  =  λ. Thus λ is seen to be equal to er, or ln λ  =  r.

Fig. 2.13 (a) Growth of the human population in the USA from 1790 to 1910 (data in 
Pearl and Reed 1920). Data plotted as ln (population size/1000) against year (t). For 
example, in 1910 the population was estimated as 19 970 000. (b) Residuals of the linear 
regression in (a).
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CHAPTER 3

Stochastic models

3.1 Probability distributions

In a deterministic world everything would be predictable. If speciation rates 
were deterministic we would be able to predict exactly the number of species 
at time t  +  1 given the numbers of species at time t and a knowledge of the 
underlying processes governing speciation. This notion of a deterministic and 
therefore predictable world is upset by two important phenomena. First, and 
most obviously, many environmental phenomena are not deterministic! 
Randomly occurring, or generally unpredictable, events make an important 
contribution to ecological and evolutionary processes. In these cases we use 
the term stochastic. The second issue is that, even when processes are deter-
ministic, the results may appear to be random. Thus chaotic phenomena, 
generated by strictly deterministic processes, produce apparently random 
output (Chapter 5).

Many unpredictable phenomena have a set of possible outcomes. In 
some cases there may be only two possibilities, such as whether or not it 
rains on a given day. Similarly, we may consider whether or not a species 
will go extinct in a given time period. Other phenomena will have more 
than two outcomes. The probability of a particular outcome can be deter-
mined based on considerations of different temporal or spatial scales. The 
probability that it rains tomorrow could be judged on how many days it 
has rained in the last month; for example, 28 out of 30 days. We might 
wish to contrast this probability (28/30) with that of equal probability (1/2) 
that it rains or does not. The much higher probability of rain during that 
month may indicate that we are in a wet season or simply an area of high 
rainfall.

Let us assume that the probability that it rains on a given day is 0.75 based 
on past events over several years. This might suggest that we can predict the 
weather (!) but we cannot be certain whether it will rain on a given day. In 
fact, we have a probability of 0.75 that it rains on a given day and 0.25 that 
it does not rain. Assuming that rain today is not affected by rain yesterday – 
that is, that rain on a given day is independent of rain on another day (this 
is an important assumption and one we will modify later) – we can generate 
a binomial distribution of events as follows.
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Over 2 days, the probability that it rains on both days is 0.75  ×  0.75; the 
probability that it rains on one day is 0.75  ×  0.25 (× 2 as it can happen in 
either order) and the probability that it does not rain on both days is 
0.25  ×  0.25. The distribution of probabilities that it will rain or not over dif-
ferent numbers of days builds in the following manner:

1 day: 0.25 or 0.75;
2  days: 0.25  ×  0.25 (no rain), 2  ×  0.75  ×  0.25 (rain on 1 day), 0.75  ×  0.75 (rain 

on both days);
3  days: 0.25  ×  0.25  ×  0.25 (no rain), 3  ×  0.75  ×  0.25  ×  0.25 (rain on 1 day), 

3  ×  0.75  ×  0.75  ×  0.25 (rain on 2 days), 0.75  ×  0.75  ×  0.75 (rain on 3 days).

In each case the probabilities sum to 1 (day 1, 0.25  +  0.75  =  1; day 2, 0.0625 
 +  0.375  +  0.5625  =  1 and so on). The distribution of probabilities rapidly 
becomes complex as the number of days increases, even though we are only 
dealing with two events (rain or not). For this reason statisticians have 
devised shorthand algebra to summarize the probability distributions. In the 
case of the binomial distribution, let p equal the probability of one event and 
q equal the probability of the other (p  +  q  =  1). If n is the number of days we 
can determine the probabilities of rain on zero up to n days by expansion of 
(p  +  q)n; the following are expansions for n  =  1–4:

p  +  q
p2  +  2pq  +  q2

p3  +  3p2q  +  3q2p  +  q3

p4  +  4p3q  +  6p2q2  +  4pq3  +  q4

Notice that the coeffi cients (the number of p and/or q combinations) increases 
in a predictable manner, this is known as Pascal’s triangle:

1 1
1 2 1

1 3 3 1
1 4 6 4 1

Here each coeffi cient is the sum of the above two in the previous row. The 
coeffi cient can be generalized by a formula, n!/(s!(n  −  s)!) where s is the 
number of events with probability p and n! is n factorial. n factorial means 
that the integers from n to 1 are multiplied; for example, 3! is 3  ×  2  ×  1  =  6. 
So, the coeffi cient for three rainy days out of four is:

4 3 4 3 4 3 2 1 3 2 1 4 3 4! ! ! !−( )( ) = × × × × × −( )( ) =

p  =  q  =  0.5 is an example of a uniform distribution, which also occurs for more 
than two outcomes; for example, in the roll of a die where the values 1–6 
have an equal probability of occurring (1/6).

A probability density function (pdf) is a set of mathematical statements 
that tell us the probability that a variable will take a given value. The sum 
of probabilities in a pdf is 1. Pdfs can be discrete, such as the binomial example 
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or the uniform distribution of rolls of a die, or continuous, such as the normal 
distribution (Fig. 3.1). For a continuous distribution we cannot say that a 
variable will have a certain value but instead we say that it can lie between 
different values with a certain probability. For a normal distribution, the 
probability that a variable will lie between one standard deviation either side 
of the mean is 0.6827 whereas the probability of it lying within two standard 
deviations either side of the mean is 0.9544 (Fig. 3.1). So, if a variable is 
normally distributed we expect 68.27% of the values to lie within one stan-
dard deviation of the mean.

A process by which events occur at random in space or time is known as 
a Poisson process. The distribution of those events – the number of events 
occurring per unit of time or space – is described by the Poisson distribution. 
The Poisson distribution is an example of a discrete pdf as it is concerned 
with counts of events. A Poisson process is recognized by its properties of 
homogeneity and independence. By homogeneity, we mean that the proba-
bility of an event occurring per unit time or space remains constant. The 
assumptions of independence and homogeneity mean that the Poisson dis-
tribution is a useful null model in ecology and evolution. For example, we 
might hypothesize that the distribution of plants in a fi eld are clumped or 
aggregated because the plant reproduces asexually from its roots. This hypoth-
esis can be tested against the null model of random distribution in space 
which can be modelled with the Poisson distribution. If the mean number of 
plants per square metre is given as x, then the terms of the Poisson distribu-
tion are:

e xe x e x e x n ex x x x n x− − − − −( ) ( ) ( ), , ! , ! . . . !2 32 3

The fi rst term gives the probability of 1  m2 of ground containing zero plants, 
the second term gives the probability of 1  m2 containing one plant and so on. 

–3σ –2σ –1σ µ 1σ
68.27%

95.44%

99.73%

2σ 3σ

Fig. 3.1 Areas under the normal probability density function, showing the percentage of 
events occurring between one, two or three standard deviations (σ) either side of the 
mean (µ).
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The fact that the terms can be summed to 1 means that we can determine 
the probability that a square metre contains at least one plant by calculating 
1  −  e−x. Note that the Poisson distribution is concerned with relatively rare 
events. In this case, it requires that the mean number of plants (x) per square 
metre is small compared with the maximum possible number of plants in 
that area. The number of samples predicted to contain 0, 1, 2, 3, etc. plants 
can be found by multiplying the probabilities in the Poisson terms by the 
total number of samples. The observed distribution can then be tested against 
this predicted Poisson distribution. A suitable signifi cance test can determine 
whether this is just chance or a signifi cant departure from random. Note that 
inspection of the data is important here as the distribution could depart from 
random but be regular rather than clumped. The same principles of null 
hypothesis testing apply to clumping in time.

An alternative to testing for clumping against a Poisson process is to fi nd 
a distribution that assumes a clumped distribution. The negative binomial is 
an example of such a distribution, with an extra parameter k which refl ects 
the degree of clumping. As k increases, the negative binomial approaches the 
Poisson distribution.

Any set of environmental dynamics is likely to be composed of determin-
istic and stochastic elements. A major issue in modelling is to tease apart 
these two elements and determine their relative importance. The regression 
analogy is helpful here in that we seek to quantify the relative amount of 
explained (deterministic) and unexplained (stochastic) variation: these two 
components are sometimes referred to as the signal and the noise. Just as 
there may be several components of the deterministic variation (as revealed 
by multiple regression) the unexplained variation may have several sources. 
In population dynamics the unexplained variance is composed of extrinsic 
random events (environmental stochasticity), variation between individuals 
in survival and fecundity, sampling error and non-signifi cant deterministic 
factors. Although the overall levels of variation in survival and fecundity may 
be predictable, in smaller populations they combine with sampling error to 
generate essentially random mixes of individuals, a phenomenon termed 
demographic stochasticity. In this chapter we will consider how to begin 
modelling stochastic events.

3.2 Random walks and evolution

3.2.1 Generating a random walk

A random walk proceeds from a start point and travels a fi xed distance from 
one point to the next in a random direction (no one direction is more likely 
than another; Fig. 3.2). Random walks can be in space or time. Both of these 
are useful in developing null models in ecology and evolution. For example, 
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a study of foraging in insects may wish to compare observed foraging dis-
tances with those generated from a random walk. Similarly, we may contrast 
the evolutionary change through time in a particular character or the number 
of species against that expected from random.

Let us imagine a random walk as a model of change in number of species 
over time. We start at time 0 with 100 species. At each time step the number 
of species can increase or decrease. For a purely random model we would 
assume that the mean increase is 0 (there will be situations in which we will 
want to change this assumption, giving clades or populations net rates of 
increase or decrease). Therefore, at each step in the time series we choose a 
value at random from a probability distribution. An important consideration 
is whether the model is additive or multiplicative. This also applies to similar 
models of change in population size over time (Lewontin & Cohen 1969). In 
a simple additive model the number of species (or individuals in the case of 
a population model) to be added is independent of the number of species or 
individuals at that time. This is likely to be an oversimplifi cation. A better 
model is that used in equation 2.2; that is, that the number of species or 
individuals in the next time period is a multiple of the number now:

N Nt t+ =1 λ

If we want no mean change in size with time λ is set to 1. In the new model 
we include a variable ε that can take values at random:

N Nt t+ =1 λ ε  (3.1)

As the model is multiplicative it is best to transform to log values so that 
increases and decreases are displayed as equal values. For example, in a 

–2.5

–2

–1.5

–1

–0.5

0
0.5 1 1.5 20–0.5

Fig. 3.2 The result of a random-walk model in two dimensions. The walk starts at (0,0) 
and proceeds a fi xed distance of 1 unit in a random direction. Note the difference in 
scale of the x and y directions.
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multiplicative model multiplying by 10 and multiplying by 1/10 are equal 
but opposite. To express these multiples as the same size (magnitude) they 
are transformed to log values; for example, log10 10  =  1 and log10 1/10  =  −1. 
The new model (equation 3.2) can be expressed with log values:

log log log logN Nt t+ = + +1 λ ε  (3.2)

Using this transformation will also help when we come to estimate parameter 
values with linear regression techniques. Mean increase in the multiplicative 
model over time is seen to be 0 when using log values.

Consider an example in which ε is a value taken at random from a normal 
distribution with a mean of 0 and standard deviation of 1 (Fig. 3.3a). We can 
use a series of these random numbers to generate a time series with different 
values of λ. In this case we illustrate λ  =  1 (Fig. 3.3b). Notice the relatively 
smooth shape of this walk compared with the spiky nature of the random 
values (Fig. 3.3c).

The contrast between the two time series in Figs 3.3b and 3.3c can be 
revealed by correlation of the numbers at time t  +  1 with those at time t (Fig. 
3.4). This shows that there is a strong positive correlation for the random-
walk model (Fig. 3.4a) compared with no correlation between the random 
time series (Fig. 3.4b). This is correct because the random numbers are drawn 
independently from a normal distribution whereas the speciation model 
(equation 3.1 or 3.2) makes Nt+1 a function of Nt. Correlations between sets 
of time series data are referred to as autocorrelations. In this case we have 
considered an autocorrelation of lag 1; that is, a difference of one time step. 
Autocorrelations with lags of more than one can also be studied and may be 
expected to occur when different species interact (Chapter 6). In general, 
autocorrelation is a useful technique for starting to explore signals in a time 
series with some level of stochasticity.

Random walks have been used as null models in studies of change in 
marine fossil diversity with time (Cornette & Lieberman 2004). This study 
made use of Sepkoski’s compendium of fossil marine genera and showed 
that changes in diversity over the last 540 Myr are consistent with a random 
walk. This does not necessarily mean that the underlying processes are sto-
chastic, but that the net result of the processes causing change appears to be 
random. Indeed, the same data set has also been used to address periodicity 
in the fossil record. Most famously, it was the basis of Raup and Sepkoski’s 
analysis that led to the idea of mass extinction events, such as the end-
Permian and end-Cretaceous (Raup & Sepkoski 1982), which, in turn, were 
linked with periodicity of approximately 26  Myr and a galactic cause of 
extinction (Raup & Sepkoski 1984). More recently, Sepkoski’s fossil data set 
has been reanalysed to reveal 62 and 140  Myr periodicity (Rohde & Muller 
2005). Therefore, this fossil data set, spanning the entire duration of the 
Phanerozoic, illustrates both deterministic (periodic) and stochastic (random-
walk) processes.
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Fig. 3.3 (a) Frequency distribution of 1000 random numbers drawn from a normal 
distribution with mean of 0 and standard deviation of 1. The curve shows the normal 
density function drawn from the mean and standard deviation of the observed data 
(mean of −0.0002 and standard deviation of 0.991). (b) Random-walk time series with 
λ  =  1 and equation 3.2. (c) Time series of random numbers used in (b).
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3.2.2 Birth/death processes in evolution

We have a number of options in constructing models of diversifi cation. We 
can use discrete or continuous time models with deterministic processes as 
in Chapter 2. Alternatively we can employ stochastic models in discrete or 
continuous time (Nee 2006). The random-walk model above is an example 
of a discrete time process. Running this simulation many times would produce 
a set of possible values of clade richness which could serve as a null model 
for diversifi cation. A key difference to the deterministic model is that there 
is no single outcome; instead the set of possible outcomes is defi ned by a 
particular distribution. These outcomes include complete extinction of the 
clade. Understanding and quantifying that distribution of possibilities is an 
important goal in evolutionary study.
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Fig. 3.4 (a) Autocorrelation between numbers at time t  +  1 and t in the time series 
of Fig. 3.3b (equation 3.1 model) and (b) the random numbers used in that model 
(Fig. 3.3c).
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The simplest and earliest model of diversifi cation was the pure birth model 
in which each species has a constant probability of producing a new species 
and there is no extinction. This leads to the prediction of exponential growth, 
as with the deterministic analogue. The pure birth process is also known as 
the Yule process (Yule 1924). Yule’s paper is a rich source of information on 
the ways in which evolution can be modelled. He shows how a mathematical 
model of evolution can be constructed from fi rst principles and the various 
predictions that can be made. This includes examples of the probability dis-
tributions that arise from iterations of all possible outcomes of the model. In 
Fig. 3.5 the fi rst two steps of the simplest model are shown. p is the probabil-
ity of a species producing a new species (Yule referred to these as mutations) 
and q is the probability of that event not happening (p  +  q  =  1). Yule was 
interested in the distribution of species within genera. Row 1 in Fig. 3.5 
shows the probability of a genus containing one species after two time inter-
vals. The time intervals were considered to be suffi ciently small that two p 
events were highly unlikely. Rows 2 and 3 are then two outcomes that result 
in two species per genus. Notice that in all cases the values of p and q are 
multiplied together as they are independent events. After two time steps the 
probabilities associated with one, two, three or four species per genus are as 
follows: q2, pq  +  pq2, 2p2q and p3 respectively.

These terms sum to 1 as required (you can check this by substituting 1  −  p 
for q). Yule extended the process to a large number of time steps, demon-
strating that the terms formed a geometric series. The process was also devel-
oped for different-aged clades and tested against different data sets.

A natural development of the model is to include an extinction term. The 
characteristics of the stochastic birth/death process are as follows (Magallon & 
Sanderson 2001). Speciation and extinction are assumed to occur at constant 
rates, b and d respectively, which produces exponentially declining or increas-
ing diversity. The diversifi cation rate is defi ned as b  −  d whereas the relative 
extinction rate is d/b. The probability distribution for the number of lineages 
at a given time, t, is also known, as are the confi dence limits for diversifi cation 
rates. The fact that clades may go extinct before they are sampled is just one 
of several problems that face the interpretation of birth and birth/death 
models, especially when using phylogenies based on extant data. The example 
from Nee (2006) in Chapter 2 (Fig. 2.10) illustrates how, under a stochastic 
birth/death model, the cumulative increase in the logarithm of lineage 
numbers is expected to approach b with increasing time (towards the present). 
Rates of diversifi cation are generally presented under different extinction 
scenarios, for example 0 and 0.9 (Magallon & Sanderson 2001).

3.3 Probability of population extinction

In the last section we considered extinction events with an evolutionary 
perspective, which generally includes long timescales and large-scale extinc-
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tion events (not necessarily ‘mass’ extinctions – see the review in Bambach 
2006 – but perhaps of many species). The corollary of these activities is a 
focus on extinction today, where activity may be aimed at smaller taxonomic 
units. Conservation biologists have addressed both the mechanisms underly-
ing population extinctions and ways of assessing the likelihood of extinction 
(e.g. Pimm et al. 1988, Foley 1994, Holmes et al. 2007). A recurring problem 
in conservation biology is how to use population abundance data and popula-
tion dynamics theory to evaluate which populations of which species should 
be protected or managed. International conservation organizations, such as 
the International Union for Conservation of Nature and Natural Resources 
(IUCN), have become increasingly interested in the application of population 
biology theory to conservation problems, beginning with Mace and Lande 
(1991). This process and its outcomes are referred to as population viability 
analysis (PVA). Here we will examine how modelling techniques can be used 
to assess the likelihood that a population will become extinct over a given 
time period.

Extinction may be caused by both stochastic and deterministic processes. 
Deterministic processes might include habitat loss or hunting (although these 
will be stochastic in the short term), whereas stochastic processes may include 
extreme weather events. To model extinction we may think of stochastic 
processes as reducing population size in the short term but not affecting mean 
population size, whereas deterministic events reduce the mean population 
size in a predictable manner. A combination of these two types of process 
can also be envisaged; that is, a population with a declining mean size that 
also fl uctuates about the mean (Fig. 3.6).
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Fig. 3.6 Types of population extinction. (a) Extinction due to fl uctuations around a 
constant mean population size (a stochastic process). (b) Extinction due to a decreasing 
mean population size (a deterministic process). (c) A combination of (a) and (b).

Fluctuations in population size over time may be large and unpredictable. 
Populations can be modelled by equation 3.1 in a similar manner to species 
or other taxonomic diversity through time. In a given period of time there 
is the possibility that a suffi ciently large fl uctuation will cause the population 
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to become extinct. An estimate of the probability of extinction allows 
us to quantify that possibility. The random-walk model described above 
gives one method of modelling these processes. We need to defi ne probabili-
ties of extinction for populations over a given time period; for example, a 
population may have a 1 in 10 chance of becoming extinct in any one 
year.

We will apply these ideas to the density-independent model Nt+1  =  λNt. In 
Chapter 2 λ was assumed to be held constant and in equation 3.1 it was 
multiplied by a value drawn at random from a probability distribution, ε. In 
this example we will retain the stochastic element but simplify the probability 
distribution. As before, we are going to assume that the changes in λ are 
random in their operation so there are good and bad years for populations 
and these are entirely unpredictable in their occurrence over time. These 
unpredictable factors could affect λ through either the survival of different 
stages and/or the fecundity of individuals. If λ can take a range of values, 
each with a certain probability, it is no longer described by its mean, but by 
a pdf. In this case we will assume a discrete pdf of six values, each of which 
has the same probability (an example of a uniform distribution; Fig. 3.7). If 
we take a value of λ at random from this distribution and multiply it by an 
initial size at time 1 (N1), this will give the value of N2. N2 is then multiplied 
by a new value of λ, plucked again at random from the pdf, to give N3 and 
so on. The six possible values of λ can be matched into three pairs: 1/10, 10; 
1/2, 2 and 3/4, 4/3. So, for example, the population has the same chance of 
being halved as being doubled. We might therefore expect the net change in 
population size to be zero; that is, that the population will fl uctuate around 
its original level. However, there is a chance of a number of bad years in a 
row, which might lead to extinction. For example, fi ve very bad years in a 
row, starting from an initial population size of 1, would give a population 
size of 1  ×  (1/10)5.

It is necessary to set an arbitrary extinction density greater than zero 
because the population will not reach zero given the assumptions of the 
model. In fact, the population moves asymptotically towards zero. Once the 
extinction size (or density) is set a proportion of the population following the 
dynamics described by Nt+1  =  λNt and the pdf in Fig. 3.7 may become extinct 
over a given time period. A simulation using initial population sizes of 1, 5 
and 10 is shown in Table 3.1. The simulation was repeated 10 times for each 
initial population size and stopped after 20 time periods if the population had 
not become extinct. An arbitrary extinction density of 0.5 was assumed. It 
can be seen that increasing the initial population size from 1 through to 10 
decreased the probability of population extinction and increased the mean 
persistence time, which is what we would expect. It may seem surprising 
that, with an initial population size of 1, any of these populations persisted 
at all. The fact that three out of 10 did persist is a consequence of the high 
variance in the distribution of λ.
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(a)

(b)

Fig. 3.7 Probability distribution for λ used in the extinction exercise: (a) raw values and 
(b) log-transformed values.

Table 3.1 Simulation results for a density-independent model Nt+1  =  λNt. Each simulation 
was for a maximum of 20 time periods and was replicated 10 times with the pdf 
illustrated in Fig. 3.7.

Initial population size Probability of extinction Mean persistence time (generations)

 1 0.7  8.8
 5 0.6 12.4
10 0.3 16.7

λ was made to follow a uniform distribution, the arithmetic mean of which 
is 2.45. Despite this it is not predicted that the population would increase in 
size if it persists. This is because we need to consider the mean effect of mul-
tiplying Nt by λ, not the mean effect of adding λ. In this example, the pdf 
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was so simple that we could see that, on average, the mean effect would be 
as if λ was 1 (indeed, the values were chosen for that reason!). So, the net 
effect of multiplying Nt by the six λ values was to multiply by 1 (as with 
equation 3.1); that is, not to change the original value of N when averaged 
over many years. Rather than the arithmetic mean of N it is the geometric 
mean that is relevant here. This applies to all models of the type Nt+1  =  λNt. 
The geometric mean of a set of r numbers is found by multiplying them 
together and taking the rth root (recall the method of determining the diver-
sifi cation rate in Chapter 2). This is equivalent to taking the logarithm (to a 
given base) of the raw values, taking the arithmetic mean of those values 
and then back-transforming to get the geometric mean. As we saw with 
equations 3.1 and 3.2, using the logarithms of the numbers gives us an addi-
tive rather than a multiplicative model. Thus, Nt+1  =  λNt is transformed to log
 Nt+1  =  log λ  +  log Nt. If we look at the pdf of log10 λ we see that the arithmetic 
mean is zero (see Fig. 3.7, where the bars are symmetrical about zero) and 
therefore, on average, log Nt+1  =  log Nt. Back-transforming (taking the antilog) 
gives the geometric mean of 1.

Models of population extinction have used these ideas to estimate proba-
bilities of extinction and mean times to extinction (or, conversely, persistence 
time) for a wide range of species. Foley (1994) used the density-independent 
model ln Nt+1  =  ln λ  +  ln Nt, assuming that ln λ was normally distributed with 
a variance vr and mean 0, and that the population started at size N0 and pro-
ceeded on a random walk with a maximum value of k and a minimum value 
of 0: extinction. The mean time to extinction, Te, is then given as:

T N v k Ne r= ( )( ) ( ) − ( )( )2 20 0ln ln ln

This model was applied to different species, showing times to extinction of 
19–237 years for fi ve populations of the wolf (Canis lupus) and 1378–6107 
years for six populations of the mountain lion (Felis concolor). It would be 
unwise to accept these and other estimates of Te or probability of extinction 
as absolute estimates. They are based on simple models with a series of 
assumptions. Perhaps their most useful function is to provide an estimate of 
the relative likelihood of extinction, as a contribution to a population or 
species viability assessment, such as that of the IUCN Red List.

3.4 Extension material

It is worth commenting that this chapter on stochastic processes is the tip of 
a statistical iceberg of methods and results. Some key concepts and tech-
niques that accompany these ideas include the types (colours) of noise and 
their relationship to autocorrelation, Markovian processes (Chapter 4), cal-
culation of confi dence intervals and maximum likelihood techniques. All of 
these methods require an appreciation of statistics which is generally far 
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beyond that in a standard undergraduate course in ecology and evolution. 
However, there is no doubting the importance of these subjects for research 
in these fi elds where their study is unavoidable. There are also subjects that 
we have not touched on at all here, such as genetic drift and lottery 
models.
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CHAPTER 4

Modelling structured populations

4.1 Modelling complex life cycles

The population models in the previous chapters have assumed that all the 
individuals are the same age or at the same stage in their life cycle. Here we 
will introduce models which can take account of individuals of different age, 
stage, or size. In particular we will use matrices to summarize the structure 
and parameters of a population composed of organisms with complex life 
histories. There is only space here for a short treatment of what is a rich and 
fascinating area of ecological modelling (Caswell 2000a).

Individuals of long-lived species may have widely varying patterns of pre-
reproductive and reproductive life (Fig. 4.1). It will be assumed that, although 
generations overlap, reproduction occurs at certain times of year and there-
fore discrete time models are appropriate. From the perspective of population 
dynamics there are two important differences between long-lived organisms 
with overlapping generations and annual or short-lived organisms with sepa-
rate generations. First, long-lived organisms may delay reproduction for 1 or 
more years and, second, they may survive after reproduction to reproduce 
again. In all of these cases the life history of an individual may be categorized 
according to its age (e.g. time of fi rst reproduction), stage (e.g. adult or juve-
nile) or size (e.g. only plants over a certain size can reproduce).

Imagine a species, the individuals of which breed once a year, starting at 
age 3 years and which live to a maximum of 5 years. The reproduction and 
survival of these organisms can be described by a set of fi rst-order difference 
equations. These give either the survival of individuals of different age or the 
reproductive output of individuals aged 3–5 years. Assume that the age-
specifi c fecundity and survival parameter values are density-independent and 
are constant from year to year. For example, survival from birth to age 1 is 
described as:

Number of individuals aged in year number born aged in year1 1 0t t+( ) = (( )
× fraction surviving from age to0 1

This can be represented algebraically:

N N st t1 1 0 0 1, , ,+ =  (4.1)
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In equation 4.1 the double subscript for the number of individuals (N) indi-
cates the age class and the time (year). For the survival parameter (s) the 
double subscript describes the ages over which survival is considered. We can 
write similar equations describing the survival for the other age classes:

N N st t2 1 1 1 2, , ,+ =  (4.2)

N N st t3 1 2 2 3, , ,+ =  (4.3)

N N st t4 1 3 3 4, , ,+ =  (4.4)

N N st t5 1 4 4 5, , ,+ =  (4.5)

The fraction of individuals surviving from birth (age 0) to age 5 is therefore 
the multiple of the separate survival values from ages 0 to 1, 1 to 2 and so 
on; that is, s0,1s1,2s2,3s3,4s4,5. We will assume that any individuals surviving to 
reproduce at age 5 then die. Therefore for any given value of N0, N5 could 
be predicted.

An equation is also required for the production of offspring (age 0 indi-
viduals in year t) by individuals aged 3–5 in the same year (t):

N N f N f N ft t t t0 3 3 4 4 5 5, , , ,= + +

f3, f4 and f5 are age-specifi c fecundity parameters representing the average 
number of offspring per individual of that age in year t. Multiplying by s0,1 
gives an equation determining the number of offspring surviving to age 1 in 
year t  +  1 (see equation 4.1):

N s N f N f N ft t t t1 1 0 1 3 3 4 4 5 5, , , , ,+ = + +( )  (4.6)

Equations 4.1–4.6 provide a complete description of the density-independent 
survival and fecundity of individuals in this age-structured population. We 
could explore by simulation the dynamics of this population, using these 

Fig. 4.1 Representations of life cycles of plant and animal species. Arrows show all 
possible transitions between stages, both within and between years.
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equations. Alternatively we can employ analytical techniques, in which case 
it is helpful to rewrite the equations in a different form, employing a matrix 
structure. As we do so, you might wish to consider whether you expect any 
fundamental differences in the dynamics of this population to the one 
described by equation 2.2.

Equations 4.2 to 4.6 can be represented as three matrices:
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(4.7)

Three matrices are required to summarize the fi ve difference equations. 
There are two column matrices representing the number of individuals at 
ages 1–5 at times t  +  1 and t (vt+1 and vt respectively). These column matrices 
are referred to as the population-structure vectors or age-distribution vectors. 
There is also one square matrix, M, which gives all of the fecundity and 
survival values and is known as the population projection matrix. To check 
that equation 4.7 is equivalent to equations 4.2–4.6 you can multiply out the 
matrix and population-structure vector on the right-hand side of the equa-
tion. For readers unfamiliar with matrix multiplication, you begin by multi-
plying the fi ve coeffi cients in the top row of the square matrix M by the 
corresponding population sizes in the column matrix vt (0  ×  N1, 0  ×  N2, 
s0,1f3  ×  N3 and so on) and add the resulting fi ve multiplied pairs of values to 
give N1 in vt+1. This process is then repeated with the next row, again multi-
plying by the corresponding values of N1–N5 in vt and summing the fi ve 
multiples. This process is repeated for all fi ve rows of the matrix M. Repre-
sentation of age-structured populations in this manner was fi rst described by 
Bernardelli (1941), Lewis (1942) and Leslie (1945, 1948).

Matrix equations such as equation 4.7, representing a set of difference 
equations, can be written in a general form to describe any age- or stage-
structured population:

v Mvt t+ =1  (4.8)

where vt and vt+1 are population vectors of the numbers of individuals at 
different ages (or sizes or stages) at t and t  +  1 respectively, and M is a square 
matrix in which the number of columns and rows is equal to the number of 
age classes. You will see the similarity of this to equation 2.2, Nt+1  =  λNt. This 
similarity is considered in the next section as we proceed with an analytical 
study of the dynamics of equation 4.8.
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4.2 Determination of the eigenvalue and eigenvector

To proceed with the analytical investigation we will take a much simpler 
age-structured population and then discuss more complicated examples in 
the light of results from the simpler version. Consider a population of bien-
nial plants (Fig. 4.2). The plant population has two age classes, which corre-
spond to particular developmental stages. In the fi rst year the plant forms 
rosettes following the germination of over-wintering seed. In the second year 
the surviving rosettes fl ower, set seed and then die. We will assume that the 
plant is a strict biennial: it always fl owers in the second year (assuming it 
survives) and always dies after fl owering. This model could also be described 
as a stage-structured population (Lefkovitch 1965; see Manly 1990 for an 
overview of matrix models of stage-structured populations) composed of 
rosettes and fl owering plants. It is a coincidence in this case that each stage 
survives for one unit of time: in most cases this would not be true; for 
example, a tree species may spend many years at one defi ned stage. The 
dynamics of the population can be summarized with two fi rst-order 
equations:

R fs Ft t+ =1 0 1,  (4.9)

F s Rt t+ =1 1 2,  (4.10)

where R is the number or density of rosette plants, F is the number of fl ow-
ering plants, f is the average number of viable seed per fl owering plant, s0,1 
represents the fraction of seed surviving between dispersal from the mother 
plant to rosette formation and s1,2 describes the fraction of rosettes surviving 
until fl owering.

In constructing such models it is often the case that stages such as seed 
are omitted. This will depend on the units of time chosen for the model and 
the census time. For example, we could have examined changes from spring 
to autumn and autumn to spring in which case seed may need to be included 
as a specifi ed stage, or at least a seed/small rosette stage.

Fig. 4.2 Representation of the life cycle of a biennial plant species with fecundity (f) and 
survival at two different stages (s0,1 and s1,2). Seed as a separate stage is not included in 
this model.
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As before, it is possible to write equations 4.9 and 4.10 in matrix notation 
(the algebraic shorthand for the matrices is indicated below them):
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(4.11)

We will now describe a mathematical analysis which will reveal two impor-
tant results. First, it will provide the ratio of R to F, the composition or 
structure of the population. Second, it will give the fi nite rate of change of 
the biennial population, which will be seen to be equivalent to the fi nite rate 
of change (λ) in equation 2.2. Therefore this analysis makes the important 
assumption about the square matrix, M, that it can be replaced by a single 
value (λ) and therefore that Mvt  =  λvt. If this is true then the matrix equation 
4.11 can be written as the density-independent equation 2.1, except now 
that vt+1 and vt are population vectors rather than single numbers:

v vt t+ =1 λ  (4.12)

You should note that in multiplying the vector, vt, by λ, that all elements of 
the matrix are multiplied by λ. (λ is a scalar.) Equating the right-hand side 
of equations 4.11 and 4.12 – values at time t – we have:
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It is helpful to have the right-hand side of equation 4.13 in a matrix form 
similar to the left-hand side. To do this we employ the identity matrix, I. 
Multiplying any matrix by the identity matrix leaves the matrix unchanged 
(therefore M  ◊  I = M on the left-hand side):
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Now multiply the identity matrix I by the scalar λ:
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 (4.14)

We can now fi nd a value for λ. Subtract the right from the left-hand side of 
equation 4.14:
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The left-hand side can be simplifi ed by taking out the common vector (vt) 
and subtracting the two square matrices:
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 (4.15)

If the matrix M - λI in equation 4.15 has an inverse then we could multiply 
both sides of the equation by the inverse matrix:
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Multiplying the square matrix M - λI by its inverse on the left-hand side 
would give the identity matrix, I (by defi nition), whereas the right-hand side 
would reduce to 0:
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This is unhelpful as we are left with the trivial solution that R and F are equal 
to 0. To overcome this problem we need to assume that the matrix M - λI 
does not have an inverse. This is true if the determinant of the matrix is equal to 
0. This assumption can then be used to fi nd a value for λ:
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,

 (4.16)

The determinant in equation 4.16 is referred to as the characteristic determi-
nant. The whole equation 4.16 is called the characteristic equation. We can now 
evaluate the characteristic determinant and therefore solve the characteristic 
equation:
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We are now left with a quadratic equation (4.17). Initially this poses a 
problem because a quadratic equation has two solutions (or roots); in other 
words, λ can have two values. But earlier we had assumed that the square 
matrix M could be replaced by a single value, λ. Effectively this becomes true 
as the larges of the two λ values, referred to as the dominant root, has most 
infl uence on the dynamics. Note that the dominant root may be complex or 
negative. A negative dominant root is biologically meaningless in this applica-
tion (but see Chapter 7) whereas complex roots are discussed in Chapter 7. 
In mathematics the values of λ are called the eigenvalues and the correspond-
ing values of R and F are the eigenvectors. The eigenvalues may also be referred 
to as the latent roots or the characteristic values of the matrix, M. Similarly, 
the eigenvectors are known as the latent or characteristic vectors. (In passing 
it is worth noting that in fi nding values for R and F we have found solutions 
for the equations 4.9 and 4.10. Matrix methods have a wide application in 
the solving of simultaneous equations.) Finally, it may be helpful to know 
that equations 4.13–4.16 can be written in a general mathematical shorthand 
for any size of matrix M and vector v (as equation 4.8):

Mv vt t= λ

Mv Ivt t− =λ 0

M I v−( ) =λ t 0

The requirement for the non-trivial solution is that

M I− =λ 0

with values of λ being found by solution of the characteristic equation.
To reinforce all these theoretical points let us consider a specifi c example. 

If f = 100, s0,1 = 0.1 and s1,2 = 0.5 then from equation 4.17:

λ2 100 0 1 0 5= × ×. .

λ2 5=

λ = ± 5

+ 5  is both the larger value (and therefore the dominant root) and the one 
which is ecologically meaningful. We can now use this value of λ to produce 
a prediction of the rate of increase of R and F (based on equation 4.12):

v vt t+ =1 5

or
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It is important to note that the model predicts that both R and F increase at 
the same rate of 5 , and therefore predicts that they maintain the same ratio 
of R to F over time; that is, that they maintain a stable age structure. A quirk 
of this model is that it produces oscillations from year to year (Fig. 4.3). The 
yearly increase by 5  (λ) therefore needs to be viewed over a 2-year period; 
for example, from years 4 to 6 the rosette numbers increase 5-fold from 500 
to 2500, equivalent to two yearly increases ( 5 5× ).

We can quantify the eigenvector and therefore determine the ratio of R 
to F as follows, using equation 4.13:
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Using the given values for f, s0,1 and s1,2 and multiplying out the left- and 
right-hand sides:
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In effect we now have two equations: 10 5F R=  and 0 5 5. .R F=  These 
two equations are equivalent because rearrangement of either produces 

R F= 2 5 .

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16 18

Time (years)

ln
 (

n
u

m
b
e
rs

 o
f 
g

iv
e
n

 s
ta

g
e
)

Rosettes
Flowering plants

Fig. 4.3 Simulation of population dynamics of rosettes and fl owering plants (equations 
4.9 and 4.10) with values of f  =  100, s0,1  =  0.1 and s1,2  =  0.5.
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We have now achieved both parts of the analysis described at the begin-
ning of this section: we have found a value for λ, the fi nite rate of change, 
by determining the eigenvalue of the matrix and we have calculated the ratio 
of R to F by quantifying the eigenvector.

These techniques can be applied to more complex examples in which there 
are more than two ages, stages or sizes of organisms. The number of eigen-
values is equivalent to the number of rows or columns and therefore the 
number of ages, stages or sizes in the projection matrix M. Although the 
determination of eigenvalues becomes more diffi cult as the matrix increases 
in size, the principle continues to hold that it is the dominant eigenvalue that 
is important. However large the projection matrix is, it can always be reduced 
to the dominant eigenvalue to describe the dynamics of the component stages 
of the population. Furthermore, the assumption of a stable age structure 
continues, given by the values in the eigenvector. Although we have focused 
on an age-structured population, it should be noted that many of the details 
of construction and results of the model are also relevant to stage- or size-
structured populations.

The modelling of structured populations can be progressed by investigating 
the contributions of the various survival and fecundity values to the overall 
rate of change summarized by the eigenvalue (λ). These analyses have appli-
cations in harvesting and conservation of populations (Caswell 2000b). Sen-
sitivity and elasticity are two related methods for determining contributions 
to the change in λ. Sensitivity quantifi es the absolute changes in λ while 
elasticity quantifi es relative changes in λ in response to proportional changes 
in elements of the projection matrix (de Kroon et al. 2000). Because the 
elasticity values sum to 1 the different components of the projection or tran-
sition matrix, such as the fecundity values, can be contrasted to show their 
importance to λ. This property has been used in comparative studies of life 
history across different taxa (e.g. Franco & Silvertown 2004).

4.3 Stochastic matrix models and succession

In Chapter 3 we saw how deterministic models of the form Nt+1  =  λNt intro-
duced in Chapter 2 can be developed by incorporating stochastic processes. 
Similarly, the deterministic matrix models outlined above have a stochastic 
counterpart (Fieberg & Ellner 2001) in which the various components of the 
matrix fl uctuate in response to environmental change. These fl uctuations are 
usually assumed to be like those of the random-walk example in Chapter 3; 
that is, independent and drawn from the same probability distribution. This 
type of process is referred to as a Markov process or Markov chain. The 
precise probability distribution used may vary within a given matrix or the 
probability distribution may be the same but the size of fl uctuation may vary. 
There is also the possibility of including a deterministic signal. Fieberg and 
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Ellner (2001) discuss the ways in which stochastic matrix models can be used 
to estimate population extinction parameters.

Succession is the directional change in plant and animal species over time 
in a particular area. Mathematical models of this phenomenon have repre-
sented it as a Markov chain (Horn 1975, 1981). This involves determining 
the probability that a given plant (or other species or suite of species) will be 
replaced in a specifi ed time by another individual(s) of the same or different 
species. Under Markov chain assumptions these replacement probabilities do 
not change with time. At each point in time, the relative abundances of 
species are multiplied by the transition probabilities to generate new relative 
abundances. This is iterated over a given number of time intervals. For 
example, Horn (1975, 1981) gave the values for 50 year tree-by-tree replace-
ment between four species (Table 4.1). The model can be represented in 
matrix form:
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These models predict a stationary end point; that is, that there will be a fi xed 
ratio of grey birch to blackgum to red maple to beech. This is analogous to 
the result of a stable age structure in a population model. Interactions over 
different periods of time and the end point of the Horn example are given 
in Table 4.2. The predicted end-point is compared with the observed composi-
tion in old growth forest.

Other studies have looked at successional transitions between woodland 
and other types of vegetation. For example, Callaway and Davis (1993) used 
aerial photographs to measure transition rates between grassland, coastal 
sage scrub, chaparral and oak woodland and their relationship to burning 

Table 4.1 Fifty-year tree-by-tree transition matrix for grey birch, blackgum, red maple 
and beech. Each value is a transition probability.

Now 50 years hence

Grey birch (GB) Blackgum (BG) Red maple (RM) Beech (B)

Grey birch 0.05 0.36 0.50 0.09
Blackgum 0.01 0.57 0.25 0.17
Red maple 0 0.14 0.55 0.31
Beech 0 0.01 0.03 0.96
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Table 4.3 The percentage of vegetation type from aerial photographs in 1947 and 1989 
in central coastal California.

Year Vegetation (%)

Grassland Coastal sage Chaparral Oak woodland

1947 21.5 26.4 28 24.1
1989 23.3 25.9 24 26.8

Fig. 4.4 Annual transition rates among plant communities in (a) burned plots (n  =  53) 
and (b) unburned plots (n  =  78) as determined from changes in vegetation between 1947 
and 1989 shown on aerial photographs. The numbers in the boxes represent the 
probabilities that a given community will stay the same (from year to year) whereas the 
numbers on the arrows estimate the probability that a community will change in the 
indicated direction.

Table 4.2 Predicted composition of a succession at different time points.

Age of forest 
(years)  .  .  .  

0 50 100 150 200 End point Observed very 
old forest

Grey birch 100 5 1 0 0 0 0
Blackgum 0 36 29 23 18 5 3
Red maple 0 50 39 30 24 9 4
Beech 0 9 31 47 58 86 93

and grazing in Gaviota State Park in central coastal California, USA, between 
1947 and 1989. The percentages of vegetation (community) types in 1947 
and 1989 are given in Table 4.3 based on 0.25  ha plots sampled from aerial 
photographs.
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Although the overall percentage cover was very similar there was consid-
erable fl ux between the years within plots. Transitions between vegetation 
type occurred in 71 out of 220 plots (32%). The transition probabilities were 
determined using these data (Fig. 4.4).

The current state could then be repeatedly multiplied by the four transi-
tions (including no change) in the 42 year period to generate a Markov chain 
of predicted change in vegetation under particular environmental conditions. 
The predictions for three combinations of burning and grazing are given in 
Fig. 4.5.

Markov models are important tools in understanding landscape change 
and management. Modellers are using these tools in conjunction with statisti-
cal methods to assess spatial heterogeneity and rapidly improving data sets 
to provide more accurate predictions of primary and secondary succession 
(for example, Pueyo & Begueria 2007).

Fig. 4.5 Markov chain model predictions of future change in proportions of plant 
communities. Final community proportions at the end point (defi ned as <0.1% change 
over 42 years) are presented at the right, opposite each curve.
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CHAPTER 5

Regulation in temporal models

5.1 Importance of density dependence

In the previous chapters we made some key simplifi cations concerning the 
dynamics of populations and clades. In particular, we assumed that under 
fl uctuating environmental conditions the numbers of populations or lineages 
may drift continually upwards or downwards (until extinction) over time 
and that under constant conditions they may increase or decrease geometri-
cally. Such continual drifting and/or geometric change is unrealistic under 
most conditions. Real populations often seem to be limited in their size and 
to be relatively abundant or relatively rare. The same may be true of clades 
in terms of the number of lineages. Populations that persist over long periods 
of time are presumed to be regulated in some way. The mechanism underly-
ing this regulation is referred to as density-dependent change in survival or 
fecundity or, more succinctly, density dependence. For example, as the 
density of organisms increases there is an increase in the fraction of individu-
als dying (Fig. 5.1); that is, mortality is no longer constant for a particular 
age or stage of organism but is determined by the density of organisms (recall 
that density may refer to numbers or biomass per unit area or volume). 
Density dependence can be driven by processes such as competition or preda-
tion. For example, as population density increases, resources may become 
depleted and intraspecifi c competition become increasingly important, or 
predators may preferentially select prey at higher density. It is these assump-
tions of factors altering with population density that underlie the regulation 
of populations. Most ecologists agree that only density dependence can regu-
late populations. Later we will consider the extent to which clades may also 
show such density-dependent processes.

There are many examples of density dependence in the ecological litera-
ture (Fig. 5.1). These may be derived from laboratory or fi eld experiments 
in which the density of organisms is altered (Figs 5.1a and 5.1b) or from 
natural variation in density in the fi eld (Figs 5.1c and 5.1d).

An alternative to the detection of density dependence by experimentation 
is to examine the population dynamics for evidence of density dependence. 
The change in numbers from one time period (e.g. a year) to the next can 
be expressed as Nt+1/Nt or log Nt+1  −  log Nt. This change is plotted against density 
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(Nt) to look for density dependence (Fig. 5.2). The null hypothesis is that 
there is no relationship between the change in population density and density 
itself. If density dependence is occurring then when density is low population 
size is likely to increase (Nt+1/Nt will be greater than 1) and when density is 
higher the population size is likely to decrease. Therefore we would expect 
a negative slope on a graph of change in population density against density 
under conditions of density dependence. The statistical signifi cance of devia-
tion from the null hypothesis of a gradient of 0 can be determined (although 
these analyses are problematic as we will see later). This method can also be 
applied within years to look for density-dependent survival or fecundity, both 
of which may contribute to a change in population numbers over time.

If we are to make our models more realistic then we must understand 
how density dependence affects population dynamics and incorporate it into 
these models.

5.2 Equations for modelling density dependence

The essence of density-dependent mechanisms for models of population 
dynamics is that, as the density increases, there is an alteration in the 

(a) (b)

(c) (d)

Egg density (arbitrary units) Egg density (arbitrary units)

Fig. 5.1 Examples of survival and fecundity altering with population density in (a,b) 
Drosophila melanogaster (Prout & McChesney 1985) and (c, d) great tits (Parus major; data 
of Kluiver in Hutchinson 1978).
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fecundity or fraction of individuals surviving and therefore a change in λ, 
the fi nite rate of population change. In open systems we can invoke density-
dependent changes in migration, but these are not considered in this chapter. 
In Fig. 5.3 a set of lines have been drawn, illustrating some possible density-
dependent functions (the vertical axis is labelled s to indicate the fraction 
surviving). In order to include these in population models we need to describe 
them in mathematical terms. For example, the linear decline in s with 
increasing density is expressed as the equation of a straight line:

1
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r2 = 0.42

P = 0.024

Fig. 5.2 Detection of density dependence by linear regression. In this example the 
population change in common sardine (Strangomera bentincki) from one year to the next 
(Rt  =  log Xt  −  log Xt−1) is regressed against its density in year t  −  1 (Pedraza-Garcia & 
Cubillos 2008). Note that the use of t and t  −  1 could be replaced by t  +  1 and t.
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Fig. 5.3  Exponential and linear decline in fraction surviving (s) with density (N). Notice 
the change in shape with increasing values of a (see text for details). The intercept of the 
exponentially declining function can be easily altered (dashed line).
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s c mN= −  (5.1)

where c is the intercept on the vertical (s) axis and m is the magnitude of the 
gradient of the line. c must lie between 0 and +1 as we are considering the 
fraction surviving. Equation 5.1 tells us that at the lowest (non-zero) density 
the value of s is close to maximum (c) and that with increasing density the 
fraction of individuals surviving decreases linearly according to the gradient 
m. The linear reduction in s with N assumes that there is a density, Nmax, at 
which s  =  0. In other words there is an upper (Nmax) and lower boundary (0) 
of possible extinction. If a population goes above Nmax it will become extinct. 
This upper boundary clearly creates some problems for modelling purposes. 
To overcome this we will consider a second mathematical function of expo-
nential decline:

s e aN= −  (5.2)

The change in s with increasing values of N for three different values of a 
(0.5, 0.1 and 0.01) is shown in Fig. 5.3 (recall that equation 5.2 can be 
natural-log transformed to give ln(s)  =  −aN, showing that the natural log of 
s declines linearly with N). The parameter a can be thought of as denoting 
the strength of density dependence. At any given value of N, the fraction 
surviving will decrease as a increases. When N  =  0, s will be equal to 1, regard-
less of the value of a; that is, the model is designed so that at very low densi-
ties s tends towards a maximum value. Conversely, at very high densities, 
the value of s tends towards 0 but never reaches it (an example of an asymp-
tote) unlike the linear density dependence. The function can be altered to 
s  =  be−aN to give a maximum value different from 1 at N  =  0.

Some of the different curves in Fig. 5.2 can be considered to represent 
different types of intraspecifi c competition. An important distinction is 
between scramble and contest competition (Hassell 1975). In pure scramble 
competition, resources are divided equally among competing individuals. The 
consequence of this is that above a certain density the mean resource per 
individual is too low for survival, and therefore s plummets to zero. The upper 
boundary in the discrete logistic model (Section 5.4) could be interpreted as 
representing perfect scramble competition. The other extreme is contest 
competition, in which the superior competitors monopolize the resource. 
Consequently, a certain number of individuals always survive, even at high 
densities. In this case, s would approach zero at high densities, but never 
reach it, in agreement with the exponentially declining curve.

5.3 A density-dependent model of population dynamics

Let us return to the annual plant model from Chapter 2 and consider how 
density dependence may be incorporated into that density-independent 
model. Imagine that competition for space occurs between juvenile and adult 
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plants: that there is intraspecifi c competition. The effect of competition on 
individual survival is expected to increase as plant density increases. In years 
of low plant density there will be relatively high survival but increasing 
density will result in reduced survival. We have seen that the simplest 
model for density dependence is a linear change represented by s  =  −mN  +  c 
(equation 5.1). In the following example we will use d as the density of 
individuals subjected to density dependence. In the density-independent 
model we assumed that an average of 0.2 plants survived after germination 
up to seed set. In the new density-dependent model, 0.2 can be taken as 
the value of c; that is, when the effects of density are negligible. Therefore 
s is close to c at the lowest population densities and, with any increase 
in density, s declines linearly according to the gradient m. The linear 
reduction assumes that there is a density, dmax, at which s  =  0, so that m  =  0.2/
dmax (i.e. c/dmax). Therefore the linear density dependence equation can 
be written as s  =  0.2  −  (0.2/dmax)d or s  =  0.2(1  −  d/dmax). A new model, incor-
porating density dependence, now replaces the old density-independent 
model:

Number of germinating seed next year number of seed
germinat

Nt+( ) =1

iing this year fraction surviving to seed setN d dt( ) × −( )( )
×

0 2 1. max

aaverage number of seeds produced fraction surviving over
wi

100( ) ×
nnter 0 1.( )

If the fecundity and survival values are combined, as before, into the single 
value, λ (=0.2  ×  100  ×  0.1), we produce the equation:

N N d dt t+ = −( )1 1λ max  (5.3)

In this case the interpretation of density dependence is that the fraction of 
germinating seed that survives is reduced by increasing density, which could 
be caused by intraspecifi c competition. In year t, d will be equal to 0.2Nt. If 
0.2/dmax is replaced by 1/K we obtain:

N N N Kt t t+ = −( )1 1λ  (5.4)

Equation 5.4, incorporating density dependence, is known as the discrete 
logistic equation and represents a strategic model for the population dynam-
ics of annual species. K is the carrying capacity, defi ned as the maximum 
number of individuals a habitat can support. Equation 5.4 is sometimes 
written as Nt+1  =  λNt(1  −  αNt); that is, replacing 1/K by α. Berryman (1992) 
and Elliott (1994) review the use of the discrete logistic and similar equations 
whereas May et al. (1974) and May (1981) discuss the density-dependent 
terms.

Modelling of intraspecifi c competition has lead to a variety of equations 
incorporating density dependence. The model of Hassell (1975), described by 
the equation Nt+1  =  λNt(1  +  aNt)

−b, provides parameters a and b which can 
describe change from contest to scramble competition. a gives the threshold 
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density at which density dependence occurs and b is the strength of the 
density dependence. This model, derived from earlier studies of insects 
(Morris 1959, Varley & Gradwell 1960), was related to models of fi sheries 
(Nt+1  =  λNt(1  +  aNt)

−1 (Beverton & Holt 1957). In turn, the model of Hassell 
was developed by Watkinson (1980) to describe the population dynamics of 
annual plants:

N N aN w Nt t t
b

t+ = +( ) +( )1 1λ λ

where a and b are the parameters of the Hassell model, w is the degree of 
self thinning and λ is the fi nite rate of population change.

We will now consider some of the properties of equation 5.4 and compare 
them with the density-independent equations in Chapter 2. If we multiply 
out the right-hand side of equation 5.4 we see an important attribute of the 
density-dependent equation:

N N N Kt t t+ = − ( )1
2

�
λ λ  (5.5)

Equation 5.5 clearly demonstrates that the discrete logistic is a nonlinear 
equation; in particular it is a quadratic equation, indicated by the presence 
of Nt

2. Its full title is a fi rst-order nonlinear difference equation. It is fi rst order 
because it relates values at time t  +  1 to the previous time points (t). A second-
order difference equation would relate values at time t  +  1 to the previous 
two time points (t and t  −  1). It is the non-linear component that gives this 
and similar equations (May 1976) some fascinating properties which we will 
now explore.

5.4 Exploration of the dynamics produced by 
the discrete logistic equation

We have two options in exploring the behaviour of equations such as the 
discrete logistic. First, given initial conditions, for example an initial number 
of germinating plants, and values for the parameters K and λ, we can gener-
ate a series of plant values as we did for the density-independent model. This 
is a simulation approach to the exploratory process: it will show us what the 
equation (model) can do but not necessarily tell us much about why it does 
it. If we want to know why, then we have to carry out some form of math-
ematical analysis, which is referred to as the analytical approach. Some ana-
lytical techniques are detailed after the simulations.

Values of N generated from simulations using equation 5.4 are displayed in 
Fig. 5.4. Starting with 10 germinating plants, Fig. 5.4a shows a fl ow diagram 
of the sequence of calculations in the simulation (such simulations can be 
written in widely available spreadsheet packages). This is an iterative process 
in which we generate a value for Nt+1 and then use it as the new Nt and so on. 
You should check the fi rst few iteration values given in Fig. 5.4b.
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Fig. 5.4 (a) Flow diagram of the sequence of calculations showing how to generate 
successive values of Nt using the discrete logistic equation (equation 5.4). Change in 
density (Nt) with time generated from the discrete logistic equation with K  =  100 and 200 
and λ taking the values: (b) 2, (c) 3.1, (d) 3.5 and (e) 4. All graphs start with N1  =  10.
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Fig. 5.4 Continued

The dynamics of the model population over time at different values of λ 
can be summarized as follows. At λ  =  2 the population approaches an equi-
librium value of K/2 at which it remains (Fig 5.4b); that is, this appears to 
be a stable equilibrium value. Recall from Chapter 2 that the equilibrium is 
defi ned as the population density to which or around which a population 
will move, whereas stability describes the tendency of a population to stay 
at or move towards or around the equilibrium. We have seen that density-
independent dynamics can only produce a steady state if λ  =  1. In contrast, 
density dependence allows an ecologically feasible stable equilibrium with 
different values of λ. At λ  =  3.1 (Fig. 5.4c) the population oscillates between 
two densities; this is referred to as a two-point limit cycle. At λ  =  3.5 (Fig. 
5.4d) four-point limit cycles are produced whereas at λ  =  4 (Fig. 5.4e) the 
initially regular cycles break up, so that the population fl uctuates, apparently 
unpredictably, between a series of densities. This is referred to as chaotic 
dynamics: the mathematical defi nition of chaos and its importance in ecology 
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is considered below. In this equation the values of K do not affect the dynam-
ics and only contribute to the size of the equilibrium.

To be certain of the stability of the equilibrium with λ  =  2 we need to dis-
place the population from the assumed equilibrium and check its return. This 
can be achieved by running the model from different initial conditions and 
would show that the equilibrium of 50 is indeed stable; in fact it is globally 
stable for all ecologically realistic values. ‘Global stability’ has to be qualifi ed 
to accommodate a fl aw in the model, which is that it will crash if values of 
Nt exceed K (because 1  −  Nt/K becomes negative). The two-point limit cycle 
is also stable; for a given value of λ (within the range of values giving two-
point cycles) the population will always settle out to fl uctuate between the 
same two densities so that there are now two stable equilibriums. In contrast, 
the chaotic dynamics do not have this property. Here, the particular sequence 
of values is dependent upon initial conditions, although the size of the fl uc-
tuations will be determined by the values of λ and K.

The possibility of chaotic dynamics means that if ‘random’ or unpredict-
able dynamics are recorded this does not necessarily imply that the underly-
ing mechanisms are random (stochastic). Some or all of the ‘randomness’ 
could be produced by predictable deterministic processes expressed as chaos. 
Thus, if population change is described by the discrete logistic equation each 
population size at t  +  1 (Nt+1) is given by a particular value of Nt. We can see 
this clearly by plotting Nt+1 against Nt (Fig. 5.5a) using the parameter values 
for λ and K of 4 and 100 (Fig. 5.4e). The chaotic system shows the mathemati-
cal relationship of the discrete logistic: a quadratic equation. A fi t through 
the points gives (as expected) a perfect fi t indicated by the r2 of 1. The coef-
fi cients of −0.04 and +4 agree with equation 5.5 (−λ/K for Nt

2 and λ for Nt). 
This can be compared with a truly random sequence of values where Nt+1 
plotted against Nt is a cloud of points (Fig. 5.5b).

The challenge of detecting chaos in real population dynamics is therefore 
to distinguish it from random events. The fi rst study to try to detect chaos in 
laboratory and fi eld populations was by Hassell et al. (1976). They used the 
technique of assuming an underlying mathematical model (described by the 
equation Nt+1  =  λNt(1  +  aNt)

−b discussed above) and determining the values of 
λ, a and b for different populations of insects. They were then able to compare 
these values with those known to produce limit cycles and chaos (Fig. 5.6). 
So Hassell and colleagues were testing whether the model that is fi tted to the 
data has parameter values which would give chaos. The parameter values of 
b and λ for each species were superimposed on the regions of different 
dynamic behaviour predicted by the model; for example, stable equilibrium, 
limit cycles and chaos.

Only one species had values consistent with chaotic dynamics and one 
consistent with limit cycles. All the other populations were in the stable-
equilibrium region. It is worth noting that the apparently chaotic population 
was a laboratory population of blowfl ies studied by Nicholson (1954). The 
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Fig. 5.5 Nt+1 plotted against Nt for (a) chaotic and (b) random time series (the time series 
is shown in (c)). The chaotic time series is given in Fig. 5.4e.
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Fig. 5.6 Estimated values of λ and b (see text) for 28 populations of insect, overlaid on 
regions of different dynamic behaviour (open circles are data for laboratory populations, 
closed circles for fi eld populations; Hassell et al. 1976).

debate on the importance of chaos in ecology rumbled on in the 1990s as 
new analytical techniques were explored. A study by Ellner and Turchin 
(1995) using three analyses suggested that Nicholson’s blowfl ies were on the 
edge of chaos and no population (either in the laboratory or the fi eld) was 
chaotic for all analyses. This might suggest that chaos is rare in ecological 
systems. However, extension to multi-species systems suggests that this is not 
the case (Chapter 7).

The possible presence of chaos in natural systems cautions us against 
assuming that all fl uctuations are caused by stochastic events. The implication 
for population regulation is that density dependence is only stabilizing under 
certain conditions. If density dependence is coupled with high rates of popu-
lation increase then chaos may result, which destabilizes the population.

We will now consider how to gain an analytical insight into the dynamic 
behaviour of the discrete logistic. First, the local equilibrium value for stable 
dynamics can be found. This is achieved by realizing that at equilibrium 
Nt+1  =  Nt; thus there is no change in the population density over time. If we 
replace Nt+1 by Nt in equation 5.4:

N N N Kt t t= −( )λ 1  (5.6)

we can then divide both sides by Nt to give 1  =  λ(1  −  Nt/K) and rename Nt as 
N*, defi ned as the equilibrium value. This equation can be rearranged to 
make N* the subject of the equation:
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If we now substitute the values for K (100) and λ (2) we can see that N*  =  
100(1  −  (1/2))  =  50, which agrees with the result obtained in the simulation. 
The value of λ at which limit cycles begin can now be determined analyti-
cally. This is possible because it is known that limit cycles start when the 
gradient at equilibrium is equal to −1 (May & Oster 1976). For example, 
with the discrete logistic, we begin by differentiating equation 5.5 with 
respect to N:

d dN N N Kt t t+ = − ( )1 2λ λ

d dN N N Kt t t+ = − ( )( )1 1 2λ

Set dNt+1/dNt equal to −1:

− = − ( )( )1 1 2λ N Kt  (5.8)

Now solve this at equilibrium N* by substituting K(1  −  (1/λ)) from equation 
5.7 for Nt in equation 5.8:

− = − − ( )( )( )( )1 1 2 1 1λ λK K

Cancel the Ks to give:

− = − +1 2 2λ λ

− = −3 λ

λ = 3

Therefore the single stable equilibrium ends and limit cycles begin at λ  =  3, 
which agrees with the simulations in Fig. 5.4. Note again that the analytical 
method shows that the carrying capacity, K, is not relevant to the dynamics 
in this model.

A useful graphical method for analysis of fi rst-order nonlinear difference 
equations is to plot Nt+1 against Nt (a Ricker–Moran plot; more generally these 
are known as return maps and can be used with second- and higher-order 
processes). This was introduced above in the context of distinguishing 
between random and chaotic dynamics. These plots can be used to iterate 
the values of the time series as follows. Plot out the curve described by the 
equation, for example, at λ  =  3.1 (Fig. 5.7) and then draw the line of Nt+1  =  Nt 
(the line of unity). The point of intersection of the straight line and the curve 
tells us the value of N at which the equilibrium occurs. This is a graphical 
method of solving equation 5.6. To follow the dynamics on a Ricker–Moran 
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plot we begin at an initial value of Nt, say 20. The next value of N (Nt+1) is 
read off the curve and, using the line of unity, Nt+1 is changed to Nt and the 
process repeated. This eventually gives us the two-point limit cycles seen in 
Fig. 5.4c.

5.5 Re-evaluating the probability of extinction with 
density dependence

We will now introduce a stochastic element into the discrete logistic model 
in the same way that we did with the density-independent model (Chapter 
3). λ is made to follow the probability density function as in Chapter 3 and 
the model is run for 20 generations with initial population sizes of one, fi ve 
and 10. The results of 10 such simulations are illustrated in Table 5.1.

Comparison of the results in Table 5.1 with those in Table 3.1 shows that 
the probability of extinction has increased and mean persistence time has 
decreased. Indeed the probability of extinction is the maximum of 1 in each 
case. At fi rst this seems counter-intuitive, as density dependence has been 
introduced into the model, which should have a stabilizing infl uence. 
However, the high probability of extinction is a result of the assumptions (or 
model fl aw!) inherent in equation 5.4, in particular that at the maximum 

Fig. 5.7 Iterations of Nt on a Ricker–Moran plot using the discrete logistic equation with 
λ  =  3.1 and K  =  100.
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density of K and above survival is zero. When close to K, the population may 
still leap above it in one generation, with the result that it becomes extinct 
in the next generation. So there is now an upper boundary as well as a lower 
boundary at which the population goes extinct. To remove the upper bound-
ary at K and still retain the density dependence we need to replace the linear 
density dependence with a nonlinear function.

Instead of the linear density dependence we will use an exponentially 
declining function (Fig. 5.3) in which the fraction of individuals surviving (s) 
declines with density (N) according to equation 5.2 (s  =  e−aN). This leads to a 
new equation representing the population dynamics of a species with non-
linear density dependence:

N N et t
aNt

+
−=1 λ  (5.9)

Equation 5.9, like equation 5.4, is a fi rst-order nonlinear difference equation 
and is known as the Ricker equation (Ricker 1954). This equation has been 
used extensively in fi sheries studies to describe the relationship between 
recruitment (the number of offspring) and the size of the spawning stock 
(measured in terms of numbers or biomass). So these examples do not use 
a full life cycle (Nt+1 as a function of Nt) but instead are considering density-
dependent relationships between different stages or ages of a population. We 
will consider these functions in more detail in Chapter 6 when we discuss 
the concept of sustainable harvesting (Fig. 5.8 gives an example of a Ricker-
type curve used to address concerns about a crash in the North Sea cod stocks; 
Cook et al. 1997).

Once again, simulations to determine the probability of extinction can 
be generated (Table 5.2) to compare with the two previous models 
(density-independent and linear density dependence). Both the probabilities 
of extinction and the mean persistence times are comparable with the density-
independent model (Table 3.1). This is because the model has no upper 
extinction boundary (unlike the fi rst density-dependent model) but has the 
same lower extinction boundaries as both previous models. Holmes et al. 
(2007) describe methods for statistical modelling of population extinction 
which address issues of density dependence, age structure and species 
interactions.

Table 5.1 Simulation results for a density-dependent model (equation 5.4) with a 
probability density function (pdf) for λ as defi ned in Chapter 3.

Initial population size Probability of extinction Mean persistence time (generations)

 1 1  4.3
 5 1  6.8
10 1 10.3
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Fig. 5.8 Example of a Ricker-type curve used to address concerns about a crash in the 
North Sea cod stocks (Cook et al. 1997). The fi tted curve is in fact a Shepherd stock-
recruitment function (R  =  aS/(1  +  (S/b)c)) which produces a similar shape to the Ricker 
curve but in this case had a slightly better fi t (r2  =  0.255, r2 for Ricker curve  =  0.234). 
Numbers indicate years.

Table 5.2 Results from 10 simulations of a density-dependent model (equation 5.9) with 
a  =  0.001 and a pdf for λ as defi ned in Fig. 3.7.

Initial population size Probability of extinction Mean persistence time 
(generations)

 2 0.8  8.8
 5 0.6 12.3
10 0.4 15.9

5.6 Estimation of parameters from fi eld data and incorporation 
of density dependence at different stages in the life cycle

So far we have guessed the parameter values for the density dependence in 
our model, whereas λ has either been assumed to be constant or drawn from 
a hypothetical distribution. How can we use fi eld data to estimate the param-
eter values of the model and therefore make them more realistic? It is possible 
to set up fi eld or microcosm experiments in which population densities and 
habitat variables (such as food resources) are manipulated so that density-
dependence parameters can be assessed. A second complementary method 
of estimating density dependence that can also be used to estimate values for 
λ is to use time-series data; for example, a series of annual censuses, prefer-
ably from several sites. Consider the density-dependent model described by 
the Ricker equation (5.9). A convenient way of estimating the two parameter 
values (λ and a) is to use linear regression. To start, divide both sides by Nt 
and take the natural logarithms:
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ln lnN N aNt t t+( ) = ( ) −1 λ  (5.10)

Now using linear regression of ln(Nt+1/Nt) against Nt we can estimate ln(λ) 
from the intercept and a from the gradient. With these estimated parameter 
values we can explore the dynamics of a given population under this model 
using either simulation or analytical techniques.

Woiwod and Hanski (1992) used regression of the Ricker equation as one 
of several measures of density dependence for 94 species of aphid and 263 
species of moth collected in the Rothampsted insect survey. This comprehen-
sive analysis showed that detection of density dependence increased with 
census duration to between 60 and 80% with the Ricker equation being one 
of two methods to give the highest detection rate (Fig. 5.9).

Although the regression method for detecting density dependence is 
straightforward we need to be cautious as this method can also detect density 
dependence from a time series composed of random values. Therefore it may 
detect density dependence when it is not there (Dennis & Taper 1994, 
Gillman & Dodd 2000).

Fig. 5.9 Percentage of time series with signifi cant (P  <  0.05) density dependence detected 
using three methods in (a) aphids and (b) moths. Methods used were Bulmer’s ( ), 
Ricker’s ( ) and Pollard et al.’s ( ). The methods are also shown combined 
( ).
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Density dependence may operate at one or more points in the life cycle, 
which is especially relevant when dealing with species with more complex 
life cycles. For example, plant species may experience density dependence at 
the seed, seedling and reproductive stages. Density dependence can operate 
among seeds if there is a limited number of microsites for germination and 
only one seed can germinate per microsite. If this is the case, as the density 
of seeds increases there will be a decreasing fraction that can germinate. 
Similarly, at the other end of the life cycle, if plants are insect pollinated and 
there is a fi xed number of pollinators, higher densities of fl owers may result 
in a decreased fraction of insect visits. In this case, there may be the opposite 
effect of enhanced visits to higher-density clumps, although the overall visita-
tion decline will occur at some point of overall fl ower density.

Some studies have actively sought to investigate density dependence at 
different stages (Gillman et al. 1993). An example of the inclusion of density 
dependence in a stage-structured model is that of de Kroon et al. (1987). 
They investigated the effects of mowing as a management regime on the 
perennial rosette-forming Hypochaeris radicata. Density dependence was 
incorporated at both germination and seedling establishment, which were in 
turn functions of gaps in the vegetation. Their stage-structured model had 
four stages (seeds and three stages of rosette, the latter two of which were 
further divided into fl owering and non-fl owering; Fig. 5.10a). The time steps 
were between seasons rather than years. The authors also argued that a sig-
moidal (s-shaped) rather than negative exponential form of density depen-
dence was most appropriate (see Gillman & Crawley 1990 for an example of 
how tweaking a sigmoidal density-dependent function can lead to the differ-
ent outcomes of stability, limit cycles and chaos). The results of their model 
under different mowing frequencies are shown in Fig. 5.10b. Increasing 
mowing frequency produced more gaps in the vegetation and higher germi-
nation, seedling establishment/survival and rosette survival. The net result 
was that population growth rates were predicted to be higher with increased 
mowing frequency. The highest mowing frequency produced damped oscil-
lations in the model (Fig. 5.10b).

Given that density dependence can occur at different life-cycle stages and 
we know that it may cause different dynamical behaviours, it is of interest 
to know how different types of density dependence may interact. This issue 
has been explored by Buckley et al. (2001), who contrasted the behaviour 
of a single difference equation incorporating density dependence (the model 
of Hassell et al. 1976) and a second model which included a maximum of 
three density-dependent functions which affected probability of fl owering, 
probability of survival to reproduction and fecundity per fl owering plant. 
Both models performed well as a description of the dynamics while a sys-
tematic removal of the components of the second model showed the impor-
tance of the strong density dependence in fecundity. Other examples of 
modelling of annual plants and the importance of factors such as density 
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Fig. 5.10 (a) Life history of Hypochaeris radicata as used in the model of de Kroon et al. 
(1987). The three main life-history pathways are survival of adults (A), vegetative 
propagation (B) and sexual reproduction (C). (b) Simulated population growth of 
H. radicata with three mowing frequencies.
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dependence, spatial dynamics and parameter uncertainty can be found in the 
review of Holst et al. (2007) and the discussion in Freckleton et al. (2008).

5.7 Density dependence in models of continuous populations

Both Nt+1  =  λNt (equation 2.2) and dN/dt  =  rNt (equation 2.11) are density-
independent equations because the growth parameters λ and r are unaffected 
by density. We can incorporate the ecological realism of density dependence 
into differential equations for population change in the same way that we 
did for the difference equation model in section 5.3 (equation 5.4). As there, 
the simplest of several possible forms of density dependence is a linear reduc-
tion in r with density. This is achieved by multiplying r by (1  −  Nt/K):

d dN t rN N Kt t= −( )1  (5.11)

Equation 5.11 is known as the logistic equation, in contrast to its discrete 
counterpart (equation 5.4). When Nt is close to 0, 1  −  Nt/K is close to 1, so 
the value of r is relatively unaffected. r is steadily reduced as N increases until 
Nt  =  K (carrying capacity). At this point there is no change in population size 
because 1  −  Nt/K  =  0 and hence dN/dt  =  0. If Nt  >  K then 1  −  Nt/K becomes 
negative, and therefore dN/dt is negative and population size decreases back 
towards Nt  =  K. Thus K is a stable equilibrium point. There is a smooth 
approach to the equilibrium value of K (Fig. 5.11a).

The logistic equation was fi rst used by Verhulst (1838) to describe the 
growth of human populations and independently by Pearl and Reed (1920) 
to describe human population growth in the USA (Fig. 5.11b). Hutchinson 
(1978) and Kingsland (1985) provide fascinating insights into the history of 
this work. When we fi rst considered the work of Pearl and Reed in Chapter 
2 it was to estimate r. It was clear from the residuals of ln (population size) 
against time that the relationship was nonlinear. Pearl and Reed wanted to 

Fig. 5.11 (a) Shape of the logistic curve and relationship to parameters, reprinted from 
Pearl and Reed (1920). (b) Logistic growth of the human population of the USA from 
Pearl and Reed (1920) and subsequent data.
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Fig. 5.12 Change in ln (population) size of USA during the twentieth century (www.
census.gov/popest/archives/1990s/popclockest.txt).

fi nd a general mathematical description of population growth which starts 
as exponential growth, but thereafter in their words ‘must develop a point 
of infl ection, and from that point on present a concave face to the x axis and 
fi nally become asymptotic, the asymptote representing the maximum number 
of people which can be supported on the given fi xed area’. For this purpose 
they chose the logistic equation (although in a different form from that dis-
cussed here). Pearl and Reed fi tted their equation to the population data in 
Fig. 2.13 to give values of r  =  0.0313 and K  =  197 000 000. The value of r is 
close to our linear estimate of 0.027 in Chapter 2. With the benefi t of hind-
sight we know that, in April 2008, the current population of the USA exceeds 
Pearl and Reed’s estimate of K by about 107 million (www.census.gov/
population/www/popclockus.html). The data set for the twentieth century 
summarized on the US census website shows an approximately linear increase 
in ln (population size) with time (Fig. 5.12). There is no evidence yet of an 
approach towards carrying capacity although there is a suggestion of slowing 
since about 1990. The linear fi t gives a value of r of 0.0127 during the 
twentieth century.

The lack of agreement between Pearl and Reed’s estimated maximum and 
the current population size for the USA is due to a variety of causes. For 
example, the logistic curve is symmetrical so that the population increase 
before the point of infl exion must equal the population increase after that 
point (Fig. 5.11a). This may be unrealistic for many population growth 
curves. Related to this point, Pearl and Reed’s estimates were based on data 
prior to the point of infl exion. Human carrying capacity is also dependent on 
changing technology, so that predicted values of carrying capacity based on 
agricultural productivity and health care in the nineteenth century would 
inevitably be much lower following the green, biotechnology and medical 
revolutions of the twentieth century. Pearl and Reed, however, believed that 
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their model provided a simple and useful description of the mechanisms 
underlying population growth (human or otherwise) and poetically invoked 
processes of density dependence and migration, as shown below.

In a new and thinly populated country the population already existing there, 
being impressed with the boundless opportunities, tends to reproduce freely, to 
urge friends to come from older countries and by the example of their well-
being, actual or potential, to induce strangers to immigrate. As the population 
becomes more dense and passes into a phase where the still unutilized poten-
tialities of subsistence, measured in terms of population, are measurably smaller 
than those which have already been utilized, all of these forces tending to 
increase the population will become reduced.
Pearl and Reed (1920), p. 287

The logistic curve has also been fi tted to the growth of nonhuman popula-
tions, such as bacteria or yeast, with varying success. The best examples are 
cultures of algae, bacteria, insects and yeast (Fig. 5.13) where the simple 
assumptions of the logistic equation are most appropriate. The examples in 
Fig. 5.13 illustrate the sensitivity of r and K to genotype and environmental 
conditions.

Finally, given the models for the USA population it is of interest to con-
sider what is happening to the world population (Fig. 5.14). Here, the raw 
data suggest that population increase has been approximately linear since the 
1960s. This would suggest that the per-capita rate of growth is slowing. This 
is clear when we examine the ln (population size) (Fig. 5.15). Fitting a qua-
dratic equation to the data since 1960 provides a very good fi t (r2  =  0.9999). 
Using the quadratic function we can predict the increase and point of 
maximum population size assuming the same growth pattern since 1960. 
This is shown for the raw data (Fig. 5.16). The maximum value of 9.172 
billion is predicted to occur in the year 2062. The addition of approximately 
2.7 billion more people is clearly going to place profound stresses on the 
resources of the planet.

5.8 Density dependence in diversifi cation rate

The importance of density dependence in population dynamics is refl ected 
in studies of cladogenesis. In Chapters 2 and 3 we saw how clades might be 
expected to grow exponentially. Just as it is unrealistic to expect populations 
to continue to grow exponentially so it is unreasonable to expect clades to 
continue to diversify exponentially. As niche space becomes fi lled we may 
expect diversifi cation rates to slow down. In this case the density is a density 
of species, rather than of individuals in the case of population dynamics. Tests 
of this hypothesis took on a new impetus in the 1990s with the advent of 
molecular phylogenies. In a seminal paper, Nee et al. (1992) demonstrated 



Fig. 5.13 Examples of applications of the logistic growth curve. (a) Growth of yeast 
populations in culture. From Allee et al. (1949) reprinted in Maynard Smith (1974). 
(b) Growth of Drosophila melanogaster populations: (i) wild type, (ii) heterozygous or 
homozygous individuals for fi ve recessive mutations including vestigial wing and (iii) 
wild type in half volume of (i). (c) Growth of Moina macrocarpa populations at three 
different temperatures. (b) and (c) reprinted from Hutchinson (1978).
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Fig. 5.14 Change in global human population size (raw numbers) from the mid-
nineteenth to the early twenty-fi rst century.

Fig. 5.15 Natural log of world human population size.
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Fig. 5.16 Predicted human population size in the twenty-fi rst to early twenty-second 
centuries based on the quadratic regression in Fig. 5.15.
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a smooth reduction in the rate of diversifi cation of birds (Fig. 5.17) using the 
molecular phylogeny of Sibley and Ahlquist (1990). The reduction of diver-
sifi cation rate was modelled by dividing the average diversifi cation rate (p) 
by a function of the density of lineages (N) at that time; that is, p/Na.

The analysis of Nee and colleagues has been supported by more recent 
work using improved phylogenies for a range of bird clades (Phillimore & 
Price 2008). This analysis took into account the possibility that, even with 
the same diversifi cation rate, larger clades are expected to slow down more 
than small clades. Despite this, 57% of the large clades studied (more than 
20 species) showed a signifi cant slow down in diversifi cation.
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Fig. 5.17 Number of bird lineages against time. From Nee et al. (1992), Fig. 1.
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CHAPTER 6

Modelling interactions

I agree with him [Lotka] in his conclusion that these studies and these methods 
of research deserve to receive greater attention from scholars, and should give 
rise to important applications.
Vito Volterra (from Lotka 1927)

6.1 Overview of interactions

The dynamics of populations are affected by a variety of interactions with 
other populations (which are themselves dynamic). We begin by considering 
predator–prey interactions, encompassing all interactions between an organ-
ism and its natural enemies, specifi cally plant–herbivore, host–parasitoid (an 
insect that feeds in or on its host, leading to the host’s death), herbivore–
carnivore and host–pathogen interactions. Whereas each of these interactions 
has been modelled independently (and we will consider examples of these 
later) there are a set of results relevant to all predator–prey interactions which 
we will explore fi rst. Foremost among these is the propensity of predators 
and their prey to cycle in abundance. The phenomenon is found in both 
invertebrates and vertebrates (Fig. 6.1).

Not all predators and prey show such cycles and some species do it in one 
part of their range but not in others. In the fi rst part of this chapter we will 
use models to help us understand the dynamics of cycling in predators and 
prey and the variation within and between species. We will also consider 
some important applications of the dynamics of predator–prey interactions. 
These include the sustainable harvesting of animals and plants for food and 
the biological control of pest species; that is, the introduction of a natural 
enemy to control a pest species and control of human disease.

6.2 Cyclical dynamics arising from predator–prey interactions

6.2.1 Early continuous-time models

The origins of modelling of predator–prey dynamics are to be found in the 
independent work in New York of Lotka (1925) and in Rome of Volterra 
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Fig. 6.1 Examples of cycling of abundance of predators and prey. (a) Cycles in the 
number of lynx (Lynx canadensis) fur returns of the Hudson’s Bay Company, from 1821 
to 1934, grouped into fi ve regions. Note the different scales (Elton and Nicholson 1942). 
(b) Cycles of abundance of the monophagous larch bud-moth (Zeiraphera diniana) and 
the larch (variation in needle length). An 8–9 year cycle with a 10 000-fold change in 
larval density from peak to trough has occurred 16 times since 1850 in Switzerland 
(Baltensweiler 1993).
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(1926, 1928), who also derived equations to describe competition. The inde-
pendence of their work is illustrated in their communications to the journal 
Nature from which the opening quotation to this chapter is taken (Lotka 
1927). The premise of their predator–prey models, framed in continuous 
time, was that of:

.  .  .  two associated species, of which one, fi nding suffi cient food in its environ-
ment, would multiply indefi nitely when left to itself, while the other would 
perish for lack of nourishment if left alone; but the second feeds upon the fi rst, 
and so the two species can coexist together.
Volterra (1926)

Lotka and Volterra originally assumed that prey density (N) increased expo-
nentially, quantifi ed by r1, in the absence of predators (see also equation 
2.10):

d

d

N

t
r N= 1  

(6.1)

This was made more realistic by Volterra by assuming that change in prey 
density was described by the logistic equation that we met in Chapter 2; that 
is, the prey population would move towards an equilibrium of K in the 
absence of predation:

d

d

N

t
r N N K= −( )1 1  (6.2)

In the presence of predators the rate of change of prey population size with 
time, dN/dt, is assumed to be reduced in proportion a to the density of pre-
dators (P) multiplied by the density of prey (N):

d

d

N

t
r N N K aPN= −( ) −1 1  (6.3)

As we are modelling a dynamic system in which the predator population 
density may also fl uctuate, we need to develop an equation for dP/dt. Lotka 
and Volterra assumed that, in the absence of prey, the predator population 
size would decline exponentially, quantifi ed by r2; that is, they assumed that 
the predator species specialized on one species of prey:

d

d

P

t
r P= − 2

In the presence of prey, this decline would be counteracted by an increase 
in predator density, again in proportion to the density of predators (P) mul-
tiplied by the density of prey (N):

d

d

P

t
r P bPN= − +2  (6.4)
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Equations 6.3 and 6.4 provide a system of two coupled fi rst-order nonlinear 
differential equations. In section 6.2.2 we will consider a graphical technique 
for analysing the behaviour of coupled differential equations. This technique 
is very useful because systems of differential equations may arise in all the 
types of interaction considered in this chapter.

6.2.2 Phase plane analysis

To understand the dynamics produced by the Lotka–Volterra equations we 
will examine their behaviour in a phase plane where the densities of predator 
and prey at time t are plotted and linked to their rate of change at those 
densities. This method of analysis was developed by Rosenzweig and MacAr-
thur (1963). A phase plane can be used to describe change in coupled dif-
ferential equations.

Begin at time 1 with a value of P1 for predators and N1 for prey (Fig. 6.2). 
To these densities we attach a vector showing the change in P and N from 
that point. The vector is a combination of two orthogonal vectors (vectors at 
right angles): one representing the value of dP/dt and one representing the 
value of dN/dt. The two vectors are added together to give the resultant 
vector (Fig. 6.2).

It is not necessary to know the precise direction of change from any given 
combination of N and P. Indeed, the beauty of phase-plane analysis is that 
the dynamics of the system can be understood by sketching some of the 
vectors based on the signs; that is, positive or negative values of dP/dt and 
dN/dt. Assume the following parameter values for equations 6.3 and 6.4: 

Fig. 6.2 Prey (N) and predator (P) densities and representation of associated dynamics in 
the phase plane.
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r1  =  3 and r2  =  2 (prey  >  predator), a  =  0.1, b  =  0.3 and K  =  10. Therefore dN/
dt  =  3N  −  3N2/10  −  0.1PN and dP/dt  =  −2P  +  0.3PN.

Initially, we need to determine when dN/dt  =  0 and dP/dt  =  0 (known as 
zero-growth isoclines). First, dN/dt  =  0 when 3N  −  3N2/10  −  0.1PN  =  0. This 
is equivalent to (3  −  3N/10  −  0.1P)N  =  0 so that either N  =  0 (the trivial solu-
tion in which prey are absent) or 3  −  3N/10  −  0.1P  =  0. The latter can be 
rearranged to give P  =  30  −  3N. This is a straight line equation that can be 
plotted on the phase plane (Fig. 6.3).

Similarly, dP/dt  =  0 when −2P  +  0.3PN  =  0 or P(−2  +  0.3N)  =  0. The solu-
tions are either P  =  0 (trivial solution) or −2  +  0.3N  =  0; N  =  2/0.3  =  6.667. 
This solution is plotted on the phase plane as a vertical line. The intersection 
of the two lines representing dN/dt  =  0 and dP/dt  =  0 is important, as this is 
where neither P nor N changes in density. The stability of this equilibrium 
point will be seen to be of great signifi cance to the dynamics of the 
predator–prey system. The phase plane is divided up into four regions pro-
duced by the intersection of dN/dt  =  0 and dP/dt  =  0. Each region is character-
ized by a particular combination of positive or negative values of dN/dt and 
dP/dt (Fig. 6.4).

This is helpful as any point (N,P) in a given region will have a particular 
combination of vectors attached to it. Although the relative magnitudes of 
the vectors will depend on where the points are in the region, the overall 
direction of change in N and P (represented by the resultant vector) 
will always be the same. These directions are indicated as thicker arrows in 
Fig. 6.4.

Fig. 6.3 Lines representing no change in prey density (dN/dt  =  0) and predator density 
(dP/dt  =  0) on a phase plane.
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So, to fi nd the directions of the vectors in any region we need to determine 
whether dN/dt and/or dP/dt are positive or negative. For dP/dt, if N  >  6.7 then 
−2  +  0.3N  >  0 and dP/dt is positive (and vice versa). Therefore to the left of 
the dP/dt zero-growth isocline (at N  =  6.7) all the change in P is negative 
(arrows point down in Fig. 6.4), whereas to the right the arrows point up. 
When dP/dt    =    0 there is no change in P, so there can only be change in N, 
as indicated by the horizontal arrows. The direction of the horizontal arrows 
is only known when the regions of dN/dt greater or less than zero have been 
determined.

Now consider the two regions either side of dN/dt  =  0. dN/dt    <    0 occurs 
above the line of dN/dt    =    0. You can check this by substituting values for N 
and P; for example P  =  40 and N  =  0 in the inequality 3  −  3N/10  −  0.1P  <  0 
gives 3  −  0  −  4  =  −1. Therefore above the line of dN/dt    =    0 the horizontal 
arrows point to the left and below the line they point to the right. When 
dN/dt  =  0 there is no change in N so there can only be change in P, indicated 
by the vertical arrows with the direction determined by whether they are to 
the left or right of dP/dt  =  0.

Now, for any point (N,P) in the phase plane we know the direction of 
change. Taking any starting point on the phase plane it is possible to look at 
the dynamics of N and P as a trajectory across the phase plane. With the 
above parameter values, starting at any point away from the equilibrium will 
send the population spiralling into the equilibrium point. An example of a 
trajectory under these conditions is given in Fig. 6.5.

Fig. 6.4 Overall direction of change in prey and predator densities in four regions of the 
phase plane.
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If the dP/dt  =  0 line is kept vertical and the slope of dN/dt  =  0 is altered, 
what is the effect on dynamics and stability? In particular, what happens 
when dN/dt  =  0 is horizontal, which is equivalent to removing the prey 
density dependence? In this case, starting at any point simply sends the tra-
jectory on an elliptical path back to where it started (Fig. 6.6a). This is an 
example of neutral stability, for which the Lotka–Volterra model received 
much criticism. Neutral stability, akin to a frictionless pendulum, is referred 
to as a structurally unstable model (May 1973a), in which the amplitude of 
cycles is determined by initial conditions and the cycles persist with unchang-
ing amplitude. This is in contrast to the limit cycles in Chapter 5 where the 
cycles fl uctuate between particular densities regardless of the initial condi-
tions; that is, the starting density. If the gradient of dN/dt  =  0 is positive then 
the trajectory spirals out leading to unrealistically high values of predator and 
prey (Fig. 6.6b). When the gradient of dN/dt is negative, as in the above 
example, the result will be a stable equilibrium (Fig. 6.6c).

In fact, with the Lotka–Volterra equations, the only cycles produced are 
neutrally stable. Although Volterra considered the possibility of using equation 
6.2 in his predator–prey model, noting that the fl uctuations would be damped 
and the system would tend towards the stationary state, he did not pursue this 
line of enquiry. Most of his emphasis in predator–prey systems was on the 
possibility of cycles using equation 6.3 without prey regulation and equation 
6.4. For structurally stable cycles we need a time delay of some description, 
which may be expressed either as a delay differential equation (Hutchinson 
1948) or, as in the next section, by coupled difference equations.

Fig. 6.5 An example of a plot of the trajectory of predator and prey dynamics on a phase 
plane.
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6.2.3 Explaining cycles of abundance with models in discrete time

We will now consider a discrete version of the Lotka–Volterra model (May 
1973b) and then generalize this to a new type of equation. By analogy with 
equations 6.3 and 6.4:

Fig. 6.6 Effect of changing the gradient of dN/dt  =  0 on stability in Lotka–Volterra 
models. (a) Neutrally stable cycles of predators and prey (gradient of dN/dt  =  0). 
(b) Densities of predators and prey spiral out (gradient of dN/dt  =  0 is positive). 
(c) Densities of predators and prey spiral into a stable equilibrium (gradient of dN/dt  =  0 
is negative). Reprinted from Maynard Smith (1974).
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N N N K aP Nt N t t t t+ = −( ) −1 1λ  (6.5)

P P bP Nt t t t+ = +1 λP  (6.6)

Therefore, in the absence of predation the prey are self-regulated according 
to the discrete logistic (equation 6.5, with the fi nite rate of prey population 
change given by λN), and in the absence of prey the predators decline at the 
rate of λP (if it is assigned a value less than 1). If the time subscript for the 
predator equation 6.6 is reduced on both sides by 1:

P P bP Nt t t t= +− − −λP 1 1 1

and the right-hand side substituted for Pt in equation 6.5:

N N N K a P bP N Nt N t t t t t t+ − − −= −( ) − +( )1 1 1 11λ λP  (6.7)

then we are left with a second-order nonlinear difference equation. The 
equation is second order because Nt+1 is explained by terms which are two 
time steps (Pt−1 and Nt−1) earlier, along with a term one time step earlier, Nt.

Therefore, a pair of coupled fi rst-order difference equations is equivalent 
to a second-order difference equation. The dynamics produced by second-
order nonlinear difference equations are very interesting and quite different 
from their fi rst-order cousins. Second-order equations can produce cycles 
which are similar to those of predators and prey observed in the fi eld. To test 
this type of model we need to know a little more about the mechanisms 
underpinning predator–prey interactions.

As an example consider the dynamics of the larch bud-moth (Zeiraphera 
diniana), which periodically defoliates its host tree, larch (Larix decidua), and 
the pine looper moth (Bupalus piniaria), which specializes on Scots pine (Pinus 
sylvestris). Detailed sampling of the larvae of the larch bud-moth has shown 
that the optimum area for survival and fecundity is the subalpine region of 
the Swiss Alps between 1700 and 2000  m (Baltensweiler 1993). In this region 
the larch bud-moth reaches carrying capacity within four or fi ve generations 
and has cycle lengths of 8–9 years (Fig. 6.1). The clear cycles of Zeiraphera 
are in contrast to the rather irregular and sometimes absent cycles of Bupalus 
(Fig. 6.7).

Larch bud-moth cycles are an example of a herbivore population cycle 
explained by density-dependent changes in their food which may be modi-
fi ed by climate conditions. As larval densities increase, defoliation of the larch 
affects its physiology, reducing the quality and quantity (needle length) of 
the herbivore’s food that, in turn, triggers the collapse of the herbivore popu-
lations in the following years. Alteration in the plant (food) quality includes 
decreased nitrogen content and greater fi bre content. This explanation of 
cycles has been contested by some ecologists, who claim that interactions 
between herbivores and their natural enemies generate the cycles. Note that 
forest trees, as prey, may fl uctuate or cycle in the abundance of biomass or 
components such as nitrogen, rather than numbers.



MODELLING INTERACTIONS  105

The larch bud moth example is a clear case of delayed density dependence 
in which the effects of density dependence are carried over to the next gen-
eration via an interaction with the host plant. Delayed density dependence, 
fi rst described by Varley (1947), underpins the dynamics of many predator–
prey systems and can be described by second-order nonlinear difference 
equations. Broekhuizen et al. (1993) identifi ed a delayed density-dependent 
mechanism by which population cycles may be produced in the pine looper 
moth, detailed below.

There is a strong negative correlation between annual growth increment of 
Pinus sylvestris in Tentsmuir forest and the pupal density of Bupalus piniaria in 
the previous two years (Straw 1991). This indicates that B. piniaria may have a 
substantial infl uence upon their host trees’ physiologies. This may ‘feed back’ 
upon the B. piniaria population such that the one year’s B. piniaria [population] 
infl uence the reproductive success of the next year’s population.

To explore models of delayed density dependence we will consider a second-
order nonlinear difference equation which can be parameterized from census 
data. This covers the work of Turchin (1990; see also Turchin & Taylor 1992) 
who used a second-order Ricker equation to investigate the likelihood of 
delayed density dependence among herbivorous forest insects, including 
Zeiraphera and Bupalus. We met the fi rst-order version of the Ricker equation 
in Chapter 5 and will use the same regression technique to estimate param-
eters. The second-order version is:

N N et t
aN bNt t

+
+ +( )= −

1
1r  (6.8)

Fig. 6.7 Cycles of population abundance of pine looper (Bupalus piniaria) at three sites.
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The parameters a and b represent the strength of direct and delayed density 
dependence respectively. Note that the right-hand side of equation 6.8 is 
equivalent to λNte

(aNt+bNt−1). If b  =  0 then equation 6.8 reverts back to the fi rst-
order equation. For regression purposes we also assume an unexplained 
variance term in the model. To estimate the parameters a and b in equation 
6.8 we divide by Nt and take natural logs:

ln N N r aN bNt t t t+ −( ) = + +1 1  (6.9)

ln (Nt+1/Nt) can then be regressed against Nt and Nt−1. This was the method 
used by Turchin (1990), who showed signifi cant delayed density dependence 
(i.e. values of b signifi cantly different from 0) in 10 out of 14 data sets. In 
considering the signifi cance of the parameters we should recall the possibility 
of overestimating the signifi cance of a or b using this regression model. The 
values of a, b and r for Bupalus and Zeiraphera are given in Table 6.1.

The dynamics resulting from the estimated parameter values can be found 
by simulation using equation 6.8 (Fig. 6.8). You will see that the predicted 
dynamics for the two species are quite different, with Bupalus predicted to 
be stable with an equilibrium population size of about 150. Zeiraphera, in 
contrast, is predicted to cycle with periods of 6–7 years, slightly shorter than 
the 8–9 year cycles observed in the fi eld. These results are in agreement with 
the clearly defi ned cycles of Zeiraphera and poorly defi ned cycles of Bupalus. 
Analysis of equation 6.9 therefore suggests a much stronger deterministic 
signal for cycle production in Zeiraphera compared with Bupalus.

Simulation of another second-order model in Broekhuizen et al. (1993) 
also suggests a stable equilibrium for Bupalus populations. The critical param-
eter determining cyclical behaviour in equation 6.8 is r. Indeed, whereas 10 
out of 14 of Turchin’s data sets showed delayed density dependence, only 
three have values of r high enough to produce cycles. Turchin and Taylor 
(1992) noted that focusing on direct density dependence rather than delayed 
density dependence leads to potentially misleading results. They gave the 
example of the analysis of Hassell et al. (1976), who estimated density depen-
dence and then looked at the stability (or otherwise) of insect population 

Table 6.1 Parameter values derived from regression of equation 6.9 (Turchin 1990). 
Both values of a and b are signifi cantly different from 0. Variance (%) is the percentage 
of variance in the dependent variable explained by variance in the independent variable 
(recall that this is a measure of goodness of fi t of the regression and written as r2; not to 
be confused with the r in column 2, which is the intrinsic rate of change).

r a b Variance (%)

Bupalus 0.34 −0.0005 −0.0018 24.1
Zeiraphera 1.20 −0.0001 −0.02 51.1
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dynamics (Chapter 5). Hassell et al. classifi ed the larch bud-moth in the 
Engadine Valley, Switzerland, as stable, although this population, was, 
according to Turchin and Taylor ‘arguably the most convincing example of 
a  .  .  .  cyclical system in our data set’. For further insights into the mechanisms 
underpinning cyclical and other population dynamics see Turchin (2003).

6.3 Competition models

In Chapter 5 we considered the possibility of intraspecifi c competition as a 
mechanism producing density dependence. In this chapter our attention is 
on competition between species, or interspecifi c competition. This will serve 

Fig. 6.8 Predicted dynamics of (a) Bupalus and (b) Zeiraphera using equation 6.8 and the 
parameter values in Table 6.1. The fi gure for Bupalus shows the population moving 
smoothly (and sigmoidally) from initial conditions of N1  =  10 and N2  =  10 towards a stable 
equilibrium. The fi gure for Zeiraphera is shown once the population has settled down 
from its initial conditions.
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as a prelude to a generalized description of interactions between species in 
Chapter 7.

Much of the classic work on interspecifi c competition involved insects and 
micro-organisms including beetles in stored grain (Crombie 1945, 1946, 
1947, Park et al. 1964), aquatic protozoa (Gause 1934, 1935) and yeast 
(Gause 1932, 1934). For example, the experiments of Crombie (1945, 1946) 
showed how three combinations of the beetles Tribolium confusum and Ory-
zaephilus surinamensis converged to the same population equilibrium. The 
beetles were fed on wheat, presented as either cracked grain or fl our. In 
cracked wheat each species cultured in isolation increased to between 420–
450 adults in 150 days (represented as carrying capacities K1 and K2 in Table 
6.2). The change in numbers over time is plotted on the phase plane in Fig. 
6.9. However, when the species were combined, Tribolium reached 360 indi-
viduals and Oryzaephilus 150 individuals; thus the total was greater than the 
species in monoculture (represented as N1* and N2* in Table 6.2). The results 
were independent of the initial number of beetles, indicating that this was a 
globally stable equilibrium. As Pontin (1982) noted, ‘the total number of 
beetles in mixed culture at equilibrium is equal to or greater than the carry-
ing capacity number of either (species) alone so the combination may be 
more effi cient at converting grain to beetles.’ Changing the medium from 
fl our grains to fi ne fl our resulted in the extinction of Oryzaephilus. Small 
pieces of tubing which provided shelter for Oryzaephilus allowed the latter to 
survive under fi ne-fl our conditions (Table 6.2). The same general effects of 
habitat structure on coexistence were found in the predator–prey experi-
ments of Huffaker (1958).

Tribolium individuals are carnivorous: the larvae and adults eat eggs and 
pupae of their own species and also those of Oryzaephilus. Adult Oryzaephilus 
also consume Tribolium eggs but at a lower rate than its own are consumed 
by Tribolium. Therefore this interaction is part predation and part competition 
for resource. This emphasizes the need for a generalized model in which a 
variety of interactions are encompassed.

Table 6.2 Values of carrying capacity of Tribolium confusum (species 1) and Oryzaephilus 
surinamensis (species 2) in isolation (K1 and K2) and at equilibrium in mixtures (N1* and 
N2*) estimated from experiments. Values for the competition coeffi cients (β12, β21) are 
derived in the text (data in Pontin 1982 from Crombie 1946).

Equilibrium numbers Competition 
coeffi cients

Alone Together

K1 K2 N1* N2* β12 β21

Cracked wheat 425 445 360 150 0.4 0.8
Fine fl our, 1  mm tubes 175 400 175  80 Small 1.8
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A pair of competing species such as Tribolium and Oryzaephilus can be 
described by a pair of simultaneous nonlinear differential equations similar 
to those used for the predator–prey interactions by Lotka and Volterra and, 
indeed, developed by Volterra (1926, 1928) and Gause (1934):

d dN t r N K N N K1 1 1 1 1 12 2 1= − −( )β  (6.10)

d dN t r N K N N K2 2 2 2 2 21 1 2= − −( )β  (6.11)

where N1 and N2 are the densities of the competing species. β12 describes the 
fraction of species 1 converted into species 2. This is known as the competi-
tion coeffi cient and is generalized to interactions between species i and j as 
βij. r is the intrinsic rate of change for a given species and K1 and K2 are the 
carrying capacities of species 1 and 2 in isolation. Note that equation 6.10 
could also be written as:

d dN t r N K N N K1 1 1 1 1 12 2 1= − +( )( )( β

As β12 is the fraction of species 1 converted to species 2 then N1  +  β12N2 is 
effectively the density of N1, replacing N1 in the ordinary logistic equation 
(Chapter 5).

Investigation of stability with the phase plane begins, as with the 
predator–prey system, with the zero-growth isoclines (dN1/dt  =  0 and dN2/
dt  =  0). We will go through this more rapidly than the predator–prey example 
as many of the principles are the same. If we take the example of Tribolium 
and Oryzaephilus we fi nd the values of K1, K2 and N1* and N2* (the equilibrium 

Fig. 6.9 Population trajectories from three competition experiments started with 
different numbers of Tribolium (N1) and Oryzaephilus (N2) in cracked-wheat cultures. The 
lines represent zero-growth isoclines of each species (from Crombie 1946, reprinted in 
Pontin 1982).
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densities in mixtures) from the experiment (Table 6.2). With zero growth, 
equations 6.10 and 6.11 are:

0 1 1 1 1 12 2 1= − −( )r N K N N K* * *β  (6.12)

0 2 2 2 2 21 1 2= − −( )r N K N N K* * *β  (6.13)

From equation 6.12 we have either r1N1*  =  0 (the trivial solution) or 
K1  −  N1*  −  β12N2*  =  0, which gives N1*  =  K1  −  β12N2*. Similarly, equation 6.13 
yields N2*  =  K2  −  β21N1*. As the values of N1*, N2*, K1 and K2 are known we 
can use these equations to fi nd β12 and β21 and plot the zero-growth lines 
(Figs 6.9 and 6.10).

The outcomes of competition can now be investigated on the phase plane 
in the same way as for predator–prey interactions. These outcomes are (i) 
stable competition in which both species coexist, (ii) unstable competition in 

Fig. 6.10 Three outcomes of interspecifi c competition based on three combinations of 
zero growth isoclines from equations 6.12 and 6.13.
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which one species always displaces the second species – that is, there is a 
fi xed hierarchy of competition – and (iii) unstable competition in which 
either species can win (Fig. 6.10). The assessment of competition coeffi cients 
in the fi eld is developed in the context of generalized Lotka–Volterra models 
in Chapter 7. Another interesting development is the use of Lotka–Volterra 
competition models in combination with Markov models (Spencer & Tanner 
2008)

Other competition models have been developed using discrete-time ver-
sions of equations 6.10 and 6.11; for example, the model of Hassell and 
Comins (1976):

N N a N Nt t t t
b

1 1 1 1 1 1 1 21 1
, , , ,+

−= + +( )( )λ β

N N a N Nt t t t
b

2 1 2 2 2 2 2 11 2
, , , ,+

−= + +( )( )λ β

β1 and β2 are the competition coeffi cients, a1 and a2 give the threshold densi-
ties at which density dependence begins and b1 and b2 are parameters that 
describe the different types of intraspecifi c competition, with extremes of 
scramble and contest (see Chapter 5 for discussion of the one-species ana-
logue of this model). λ is the fi nite rate of population change for each species. 
Atkinson and Shorrocks (1981) used the model of Hassell and Comins to 
explore the effect of aggregation of competing Drosophila species on coexis-
tence. The degree of aggregation was modelled using the negative binomial 
distribution. An increased aggregation of the superior competitor promoted 
coexistence. The importance of aggregation is highlighted in the next section 
with respect to host–parasitoid models.

6.4 Models of host–parasitoid interactions

Although delayed density dependence may arise due to interactions between 
herbivores and plant (section 6.2) this does not mean that interactions with 
the food plant are always the reason for the cycles in herbivores. Delayed 
density dependence may also occur due to interactions between a herbivore 
and its natural enemies; for example, parasitoids. Parasitoids are primarily 
wasps which lay their eggs on or inside a host larva, such as a moth or a fl y. 
Indeed, Varley originally coined the term delayed density dependence because 
of his work on the parasitoids of the herbivorous fl y, Urophora jaceana, which 
feeds on black knapweed, Centaurea nigra.

It has been estimated that more than 10% of all metazoan animals are 
parasitoids (Hassell & Godfray 1992) so it is important to understand how 
parasitoids interact with their hosts and, in particular, the type of dynamics 
which may be produced. Certain characteristics of parasitoid behaviour and 
life history may affect their dynamic interaction with their hosts (usually 
herbivorous insects, although there are parasitoids of parasitoids called 
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hyperparasitoids) including (i) searching area of the female parasitoid and 
(ii) interactions between female parasitoids.

The earliest model of host–parasitoid interactions was constructed by Nich-
olson and Bailey (1935). Their model was important as it made the case for 
time delays rather than the continuous time Lotka–Volterra equations 
described above. The main assumptions of their model are given below and 
illustrated in Fig. 6.11.

1 Either zero or one parasitoid is produced per host (even if more than one 
egg is laid on a host).
2 Each female parasitoid searches an area a, fi nding all the hosts. Therefore 
the probability of a host being attacked is a/A where A is the total area and 
the probability of not being parasitized is 1  −  a/A. If P is the density of para-
sitoids and A is the total area then there are AP female parasitoids. If para-
sitoids search independently and at random then the probability of a host 
not being attacked by any parasitoid is (1  −  a/A)AP. If a/A is replaced by α 
(defi ned as the proportion of total hosts encountered by one parasitoid per 
unit time) then we have (1  −  α)AP which is equal to e−αP, the fi rst term of the 

Female searching
area, a

Total area, A

Host larva

Female parasitoid
find all hosts in area a

Density of parasitoids
P x area A =

AP individuals

Area A

A fraction (e-aP)
of larvae escape

Fig. 6.11 Summary of the assumptions of the Nicholson–Bailey model.
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Poisson distribution; that is, the probability of the host not containing para-
sitoids. The probability of being attacked at least once is then 1  −  (probability 
of not being attacked), or 1  −  e−αP.
3 The fi nite rate of increase of hosts (λH, in the absence of parasitoids) and 
parasitoids (λP) and the density of hosts (H) are known.

Using the above reasoning and assumptions Nicholson and Bailey produced 
a set of two equations in discrete time, one for the dynamics of the host (H) 
and one for the dynamics of the parasitoid (P):

P H et t
Pt

+
−= −( )1 1λ α

P  (6.14)

H h et t
Pt

+
−=1 λ α

H  (6.15)

Thus the number of parasitoids at time t  +  1 (Pt+1) is equal to the number of 
hosts at time t (Ht) multiplied by the fraction of hosts which are attacked 
(1  −  e−αPt) multiplied by the fi nite rate of increase of the parasitoids (λP); 
whereas the number of hosts at t  +  1 (Ht+1) is equal to the number of hosts 
at t (Ht) multiplied by the fraction of hosts which are not attacked (e−αP) 
multiplied by the fi nite rate of increase of the host (λH).

The dynamics produced by these two equations have an unstable equilib-
rium and therefore produce cycles which can very easily become divergent 
(Fig. 6.12a) and lead to the local extinction of the parasitoid.

One option to stabilize the host populations is to introduce host (prey) 
density dependence. Host stability can be achieved by multiplying the fi nite 
rate of increase of the host (λH) by a linear term 1  −  Ht/K, which can represent 
intraspecifi c competition among hosts. Beddington et al. (1975) examined 
the effect of including host density-dependent regulation. Stability was indeed 
much more likely and new types of dynamics were produced, such as fi ve 
and 20 point cycles. This was compared with the host equation in the absence 
of predation which followed the standard period-doubling route to chaos 
(Chapter 5).

Other possibilities exist for stabilizing the host–parasitoid system; for 
example, the two assumptions of fi xed search area and random searching by 
parasitoids have been shown to be unrealistic and to affect the stability of 
the interaction (Hassell & Godfray 1992). The effect of search area on stability 
was demonstrated by assuming competition between the parasitoids (Hassell 
& Varley 1969, Hassell & May 1973), which produces cycles or a stable equi-
librium dependent on the intensity of interference (Fig. 6.12b). The effect of 
an aggregated distribution of parasitoids on host–parasitoid stability has been 
modelled using the negative binomial (May 1978). This will also produce a 
stable equilibrium or cycles dependent on the degree of aggregation.

The latter is an example of positive spatial density dependence in which, 
at one point in time, densities of hosts are spatially variable and high host 
densities receive an increased rate of parasitism. The density dependence 
discussed in previous chapters was temporal density dependence where 
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Fig. 6.12 Dynamics of host and parasitoid (a) without density-dependent regulation of 
host or parasitoid. Observed fl uctuations from an interaction between the greenhouse 
whitefl y, Trialeurodes vaporariorum (closed circles) and a parasitoid wasp Encarsia formosa 
(open circles). Thin lines show results of the Nicholson–Bailey model. (b) Model with 
increasing levels of competition between parasitoids. Parasitoid (open circles) and prey 
(closed circles) oscillations from a modifi ed Nicholson–Bailey model showing the 
progressive stability as the interference constant (m) increases from 0.3 to 0.6 (Hassell & 
Varley 1969). Figure reprinted from Hassell (1976).
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densities fl uctuated between years or other time periods. Field populations 
may be expected to show both temporal and spatial density dependence. 
However, it is not always the case that parasitoids show aggregation in 
response to local host density. The degree of parasitoid aggregation was 
determined from fi eld data relating to the successful biological control of 
California red scale insects by their parasitoids (Reeve & Murdoch 1985). In 
this case no evidence was found for parasitoid aggregation at any spatial scale, 
despite the fact that it had been believed to stabilize the interaction. This was 
important because local extinction of the host is undesirable as the parasitoid 
becomes extinct too and therefore the biological control agent will not estab-
lish. The ideal end point to biological control is that both the host and the 
control agent remain at low equilibrium densities, as illustrated by the control 
of the prickly pear, Opuntia sp., by the moth Cactoblastis cactorum in Australia 
(Krebs 1994). Although lauded as a major success, Raghu and Walton (2007) 
consider that it may be atypical of biological control and cite the enormous 
effort involved in distributing the 2 billion egg sticks (each stick containing 
approximately 50–100 eggs) of C. cactorum across the infested region of eastern 
Australia.

In Chapter 8 the role of spatial scale is explored with the basic 
Nicholson–Bailey model and the consequences for dynamics and stability 
examined. As a conclusion to this section and looking forward to Chapter 8, 
it is interesting to note that Nicholson and Bailey recognized many of the 
possible developments of their model, leading to persistence. This included 
regulation of the host (as above):

When the density of a species becomes very great as a result of increasing oscil-
lation the retarding infl uence of such factors as scarcity of food or of suitable 
places to live is bound to be felt. Clearly these factors will prevent unlimited 
increase in density so  .  .  .  that the oscillation is perpetually maintained at a large 
constant amplitude in a constant environment.

and the anticipation of a spatial element:

A probable ultimate effect of increasing oscillation is the breaking up of the 
species-population into numerous small widely separated groups which wax 
and wane and then disappear, to be replaced by new groups in previously 
un occupied situations.
Nicholson and Bailey (1935)

6.5 An application of predator–prey models: 
harvesting populations

Much of our understanding of the harvesting of wild populations has come 
from the fi sheries literature, with classic long-term studies in the North 
Sea, Atlantic and Pacifi c. These studies have used both continuous- and 
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discrete-time population models. These have been complemented by studies 
on terrestrial populations including high-profi le animals such as the African 
elephant. In this section we will consider how population models can be used 
to determine appropriate levels of harvesting. We will start with an unstruc-
tured model in continuous time and then explore how much more can be 
learned from a structured model.

6.5.1 Unstructured population models

Assume that population growth is continuous and described by the logistic 
equation. Although in many cases the logistic equation is too simple a 
description of population change (see discussion in Chapter 5), it provides a 
useful entry point to understanding the dynamic possibilities of harvesting. 
We begin by plotting the rate of population growth, dN/dt, against population 
size, Nt (Fig. 6.13).

You should note that the curve in Fig. 6.13 is a parabola, which is the 
shape generated by a quadratic equation (recall that the right-hand side of 
the logistic equation in expanded form is rNt  −  rNt

2/K). All population sizes 
which yield values of dN/dt  >  0 can, in theory, be subject to harvesting. This 
means that a fraction of any growing population should be able to be har-
vested without causing the population to become extinct. The maximum 
sustainable yield occurs where the maximum value of dN/dt occurs; that is, 
when the population is growing most rapidly. This result is generally true for 
all population growth curves (see the discussion in May & Watts 1992).

Fig. 6.13 Population growth dN/dt described by the logistic equation plotted against 
population size (N). K is the carrying capacity.
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To determine the population density corresponding to the maximum sus-
tainable yield we note that the maximum occurs when the gradient of the 
curve equals 0:

d d d dN t N( ) = 0  (6.16)

We will drop the subscript t to make the equations easier to read (N will still 
mean the population density at time t). For the logistic curve in Fig. 6.13 the 
derivative of the expression rN  −  rN2/K with respect to N is r  −  2rN/K. 
Therefore

r N K1 2 0− ( )( ) =

The solution to this equation is either r  =  0 (a trivial solution) or (1  −  
2(N/K))  =  0. Rearranging the latter yields the solution that N  =  K/2. So the 
population is growing at its fastest when it is half its maximum density. This 
agrees with the shape of the logistic curve where the point of infl exion (the 
maximum gradient) was at K/2 (Figs 5.11 and 6.13).

To fi nd the maximum value of dN/dt we need to substitute the size at 
which the maximum occurs (K/2) for N in the logistic equation dN/
dt  =  rN(1  −  N/K). This gives dN/dt  =  rK/4. This method of fi nding the maximum 
value is useful if the function for population growth is more complex than 
the logistic equation.

To develop these ideas let us assume a general form of population growth 
equation dN/dt  =  f(N) which describes the rate of change in population size 
as some function (f) of population size. If this function f(N) has a maximum 
value or values of dN/dt over a certain range of values of N then differentia-
tion can be used to fi nd the maximum value. You should note that the cri-
terion of d(dN/dt)dN  =  0 (equation 6.16) is not suffi cient to identify a 
maximum value. It might equally identify a minimum value or a point of 
infl exion. A harvesting function can be incorporated into the general popula-
tion growth equation (Beddington 1979):

d dN t f N h N= ( ) − ( )  (6.17)

where h(N) gives the reduction in dN/dt at a particular value of N due to 
harvesting. The population change and harvesting functions of the general-
ized form of equation 6.17 can be combined on one graph as they are both 
functions of N (Figs 6.14 and 6.15). We will now consider several harvesting 
possibilities with a logistic growth curve.

If h(N) is constant and therefore independent of N, harvesting is repre-
sented by a horizontal line on the graph. We know that sustainable harvest-
ing can only occur when dN/dt  >  0; when f(N)  >  h(N) in equation 6.17. The 
area on the graph when this condition is met is shaded in Fig. 6.14 and lies 
between N  =  20 and N  =  80. What happens to the population at different 
population sizes? For example, consider a population of size 70. Here 
f(N)  >  h(N) and therefore population size increases (dN/dt  >  0, equation 6.17). 
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In other words, from population size 70 we move to the right on the graph. 
Conversely, for a population of size 90, f(N)  <  h(N) and so dN/dt  <  0 and the 
population size decreases.

By this reasoning it can be seen where h(N)  =  f(N) at N  =  80 (and therefore 
dN/dt  =  0) there is a locally stable equilibrium point. A population which 
receives a small displacement away from that equilibrium point will tend to 
return to it. What then of the other point at which dN/dt  =  0, at N  =  20? If 

Fig. 6.14 Constant harvesting h(N) and logistic population growth f(N) plotted against N 
(equation 6.17). The shaded area shows where f(N)  >  h(N). Where the two lines 
(functions) intersect the rate of population change is 0.

Fig. 6.15 Linear increase in harvesting (h(N)) and logistic population growth (f(N)) 
plotted against population size (N).
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N  <  20 then f(N) is less than h(N) and therefore dN/dt  <  0. So, the population 
will continue to decrease if reduced below 20 until it reaches N  =  0, which 
is local extinction (N  =  0 is effectively a third equilibrium point, which is 
locally stable). If the population size is increased above N  =  20 then f(N)  >  h(N) 
and therefore the population size will continue to increase until it reaches 
the stable equilibrium point at N  =  80.

Even the very simple scenario of constant harvesting combined with logis-
tic growth provides the dynamic possibilities of extinction (below N  =  20) and 
local stability (at N  =  80). A second possibility for the harvesting function is 
that it increases linearly with prey population size (Fig. 6.15), so that the 
more fi sh there are, the more people go fi shing. Again, N  =  80 is seen as a 
stable equilibrium. In both this and the previous example, if the prey popula-
tion is pushed beyond K (100) then it is predicted from the model that it will 
return towards K, but it will not stay there as h(N) is still greater than f(N) 
and therefore it continues to return to 80.

6.5.2 Structured population models

We begin by considering an unstructured population in discrete time in 
which the population dynamics are described by λ, the fi nite rate of popula-
tion change, which is equivalent to the dominant eigenvalue of the popula-
tion projection matrix for a structured population. We know that a population 
with λ    <    1 will decline in numbers, so if a harvesting policy is to be sustain-
able it should not decrease the value of λ below 1. It is therefore possible to 
arrive at a simple defi nition of the maximum amount of a population which 
can be harvested. For example, if λ  =  2, the maximum amount which can be 
removed is that which keeps λ  =  1:

Fraction harvested = −( ) =λ λ1 1 2

If λ  =  3, the maximum fraction of the population which could be harvested 
is 2/3. This assumes that λ is constant from year to year and that a constant 
fraction is removed in each time period.

Now consider the implications of age, size or stage structure. To explore 
the effect of population structure on harvesting consider the two-stage model 
of biennial plants used previously (equations 4.9 and 4.10):
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The characteristic equation was λ2  =  fs0,1s1,2 (equation 4.17). We know that 
the maximum fraction which can be harvested is given by (λ  −  1)/λ, so it 
becomes of interest to see how manipulation of f, s0,1 and s1,2 affects 
(λ  −  1)/λ.
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Assume that a fraction m1 of fl owering plants is harvested prior to setting 
seed and therefore the fraction of surviving plants is represented by the frac-
tion (1  −  m1). Note that removal of fl owering plants after seed set for a 
monocarpic species is not going to affect the population dynamics. This har-
vesting mortality can be incorporated into the model as follows:
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In a similar way, we might imagine that a fraction m2 of rosette plants is 
harvested (of course, either m1 or m2 or both can have zero values). This can 
also be included in the model:
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 (6.18)

We can now determine λ for the new model with the harvesting mortalities. 
The characteristic equation of the matrix equation 6.18 is:

λ2
0 1 2 1 2 11 1= −( ) −( )fs m s m, ,  (6.19)

This is obviously similar to the characteristic equation without harvesting. 
Indeed, if we defi ne λu as λ when the population is unharvested and λh as λ 
when the population is harvested, then we can derive a useful result from 
equation 6.19. Taking the square root of that equation:
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Thus the value for λh is given by the original λ(λu) multiplied by the square root 
of (1  −  m2)(1  −  m1). Using matrices we can approach the problem from a slightly 
different angle to shed more light on the expression 1 12 1−( ) −( )m m .

Let us factorize the square matrix from equation 6.18:
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The left-hand matrix is the original transition matrix for the unharvested 
population and has an eigenvalue of λu. The right-hand matrix is composed 
of the two harvesting ‘survivals’ and can therefore be referred to as a harvest-
ing matrix (Lefkovitch 1967). We could use this method for any structured 
population to explore the effects of harvesting of different ages, sizes or stages 
on population dynamics. Whereas matrix models can be valuable for analysis 
of the effects of harvesting and other management we need to be cautious 
as variations across time and space may alter λ and possibly reduce the 
maximum sustainable yield well below its theoretical value. For this reason, 
modellers have increasingly considered the role of stochasticity in harvesting 
models (Caswell 2000b). Sensitivity and elasticity analyses (Chapter 4) also 
help in interpretation of effects of harvesting.

Matrix models are now used routinely in investigating the effects of har-
vesting on structured populations. For example, Olmstead and Alvarez Buylla 
(1995) have explored the possibility of sustainable harvesting of two tropical 
palm species using matrix models. They calculated the population growth 
rates from stage-structured models and estimated the amount of adult trees 
which could be harvested per unit area. They concluded that only one species 
could be harvested as the λ of the other species was only 1.05. Similarly, a 
study of harvesting of Quercus in Mexico confi rmed that removal of just 5% 
of adults could cause population decline (Alfonso-Corrado et al. 2007). Other 
studies have been applied to organisms as diverse as capybara (the world’s 
largest rodent; Federico & Canziani 2005) and red coral (Santangelo et al. 
2007). Inevitably, such studies also have conservation applications as har-
vesting threatens the viability of a wide range of species.
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CHAPTER 7

Community models

7.1 Introduction to modelling of ecological communities

So far the emphasis has been on population dynamics of a single species or 
clade and two interacting species such as predators and prey or competitors. 
These pairwise interactions rarely occur in isolation. In this chapter we con-
sider sets of interactions between an assemblage of species in a given locality, 
the dynamics of an ecological community. The evolutionary equivalent has 
been addressed briefl y in terms of the diversity-dependent reductions in 
diversifi cation rate. We will be asking similar questions of an ecological com-
munity as we did of a population; in particular we will be interested in the 
long-term stability of the community. In addition to the density of the 
population(s) a new variable arises in community dynamics: the diversity of 
the community. Although diversity is a major topic in its own right, for our 
purposes we simply need to know that the diversity of ecological has two 
components: species richness (the number of species) and the relative abun-
dance of species; that is, their evenness (or not). It is these two components 
that are incorporated into diversity indices such as the Simpson and Shannon–
Weiner indices.

The modelling of community dynamics has three related problems, which 
will be tackled in this chapter. First, there is a need to consider the full range 
of interactions between species (Chapter 6), described by all combinations of 
0/+/− where 0 represents no interaction,  +  is a positive (benefi cial) effect of 
species A on B and  −  is a detrimental effect of A on B (Fig. 7.1). The second 
problem is that we need to assign a strength – that is, a magnitude – to these 
interactions. The sign and magnitude of the interactions will be combined in 
a community matrix. Matrix methods will be used to investigate the stability 
and dynamics of communities. The fi nal problem is the large number of 
species that may be present in a community. In response to this we will see 
how species can be objectively removed from the model to move towards 
the aim of the simplest realistic model.

These models of ecological communities will mostly assume a pool of 
species within a given area, each of which can change in abundance over 
time (including becoming locally extinct) but do not assume any immigration 
or possible replacement of species as seen during successional change.
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In addressing the structure and dynamics of large communities we should 
recognize that even the addition of one species to the two-species interactions 
of Chapter 6 produces important changes in the dynamics of the component 
species (Gilpin 1979, Guckenheimer & Holmes 1983, Schaffer 1985). An 
investigation of a food-chain model composed of just three species revealed 
that chaotic dynamics occurred within biologically feasible parameter values, 
whereas chaos was not possible in two species models (Hastings & Powell 
1991).

7.2 Food-web structure and the community matrix

7.2.1 Introduction

Measures of complexity in ecological communities are often based on the 
composition of the community represented by the number and relative 
abundance of species. These measures, which include the myriad diversity 
indices, do not tell us very much about the functioning of communities and 
their properties, such as stability. To quantify functional aspects of the com-
munity and understand how they may respond to perturbations, we need to 
quantify the interactions between species. The potential complexity of such 
interactions in real ecological communities is illustrated by the food webs in 
Fig. 7.2.

The food web can be characterized by the number of component species 
and the average number of links between them. The latter is known as 
linkage density. This idea can be extrapolated to other interactions between 
species, such as mutualisms. A motivation of this work has been to under-
stand how communities with different linkage densities might respond to 
environmental perturbations, for example pollution events. A naïve view of 
this suggests two alternative outcomes. A highly connected community (high 
linkage density) might be predicted to be more resistant to perturbations, for 
example because any one species will have many possible food sources. 
Alternatively we might imagine that a highly connected community will be 
less resistant because harmful effects on just a few species will potentially 

Fig. 7.1 Classifi cation of interactions. Signs and magnitudes of aij are considered in 
section 7.2.
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No. of observations 

(a)

1–10 

11–100

101–1000

>1000

Alopecurus pratensis

Elymus repens

Ammophila arenaria

Alamagrostis epigejos

Eschampsia cespitosa

Dactylis glomerata

Phalaris arundinacea

Phleum pratense

Hypodium sylvaticum

Festuca rubra

Tetramesa brevicornis

Tetramesa brevicollis

Ahtola atra

Tetramesa angustipennis

Tetramesa linearis

Tetramesa hyalipennis

Tetramesa cornuta

Tetramesa eximia

Tetramesa calamagrostidis

Tetramesa petiolata

Tetramesa airae

Tetramesa longula

Tetramesa longicomis

Tetramesa albomaculata

Tetramesa phleicola

Tetramesa fulvicollis

Eurytoma sp.

Bracon sp.1

Homoporus sp.2

Homoporus febriculosus3

Homoporus sp.4

Homoporus sp6

Homoporus fulviventris

Bracon erythorstictus

Sycophila sp.1

Sycophila sp.3

Sycophila sp.6

Syntomaspis baudysi 

Bracon sp.7

Endromopoda sp.

Sycophila sp.4 

Pediobius sp.4 nr claridgei

Eurytoma sp. nr festucae2

Eurytoma tapio 

Eurytoma flavimana4

Eurytoma sp.4 nr apicalis 

Eurytoma roseni 

Eurytoma sp. nr steffani

Eurytoma danuvica6

Eurytoma pollux

Eurytoma appendigaster

Eurytoma castor8

Eurytoma erdoesi

Eurytoma phalaridis

Pediobius sp. 

Bracon sp. 

Eurytoma collaris

Endromopoda sp. 

Pediobius claridgei

Pediobius 
festuscae

Pediobius 
calamagrostidis

Pediobius 
deschampiae

Pediobius 
dactylicola

Pediobius 
planiventris

Pediobius 
phalaridis

Chlorocytus
deschampiae

Chlorocytus
phalaridis

Chorocytus
formosus

Chorocytus
ulticonus

Pediobius 
eubius

Eupelmus 
atropurpureus

Macroneura
vesicularis

Mesopolopus
graminum

Endromopoda
sp.

Endromopoda
sp.

Bracon sp. 

Homoporus sp.

Pediobius sp. nr phralaridis8

Homoporus luniger7

Endromopoda sp.3

Eurytoma sp.

Chlorocytus pulchripes 

Chlorocytus agropyri5

Chlorocytus harmolitae

Chlorocytus sp.8

Pediobius alaspharus5

Eurytoma sp.

Fig. 7.2 Examples of food webs. (a) A grass–insect herbivore–parasitoid community used 
to demonstrate the effects of sampling effort (Martinez et al. 1999). (b) A diagrammatic 
view of a salt-marsh food web illustrating the complexity with inclusion of parasites 
(Lafferty et al. 2006, 2008). Parasites are light-coloured and free-living species are 
dark-coloured.
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(b)

Fig. 7.2 Continued

cause major problems throughout the community. It is these types of ques-
tions that we will address in this chapter.

One way of describing the strength of interactions in a community is to 
construct a matrix of interaction coeffi cients. For example, a hypothetical 
four-species community can be represented as shown in Table 7.1. The rep-
resentation can include both feeding and non-feeding interactions. For 
example, the effect of species A on species B is negative with a strength of 
0.5. The intraspecifi c interactions (e.g. A on A) are all negative. Some of the 
interactions are symmetric, for example a positive effect of A on D and D on 
A, which is a fully mutualistic interaction. A value of 0 indicates no link 
between the species.

The analysis of ecological community stability is part of a wider debate 
about the stability or not of complex systems. Gardner and Ashby (1970) 
asked whether large systems (biological or otherwise) which were assembled 

Table 7.1 A matrix of interaction coeffi cients for a hypothetical four-species community.

On species  .  .  . Interaction coeffi cient

A B C D

Effect of species  .  .  . A −1.0 −0.5 0 +1.0
B +0.5 −1.0 +0.5 0
C 0 +0.5 −1.0 +0.8
D +1.0 0 −0.8 −1.0
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at random would be stable. In their words, they were concerned with ‘an 
airport with 100 planes, slum areas with 104 persons or the human brain 
with 1010 neurons  .  .  .  [where] stability is of central importance’. Forty years 
on and these questions are no less pertinent; indeed, we may add an order 
of magnitude to some of these problems and present entirely new problems 
for solution; for example, global access to the Internet. Gardner and Ashby 
showed that for small numbers of components (n; e.g. neurons or species) 
stability declines with connectance between components (Fig. 7.3). As the 
number of components increases, the system moves rapidly to a breakpoint 
situation when a small change in connectance will result in a switch from 
stability to complete instability.

These results were developed by May (1972) in an ecological context. He 
concluded that increased numbers of species do not automatically imply 
community stability and in fact may produce just the opposite effect (see 
Jansen & Kokkoris 2003 and references therein for further debate on these 
results). Increased stability with complexity was promoted by Elton (1958), 
whose conclusions were partly based on detailed case studies of invasive 
species, such as the giant snail Achatina fulica into Hawaii and the red deer 
Cervus elaphus into New Zealand, which contributed to dramatic declines in 
the endemic species of those islands (see May 1984 and Pimm 1984 for a 
critique of Elton’s views). May also demonstrated that a species that interacts 
widely with many other species (high connectance) does so weakly (small 
interaction coeffi cient) and, conversely, those that interact strongly with 

Fig. 7.3 The relationship between stability, connectance and component richness. A 
breakpoint or threshold of stability is observed at higher numbers of components. From 
Gardner and Ashby (1970).
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others do so with a smaller number of species. He predicted that communities 
which are compartmentalized into blocks (effectively communities within 
communities) may be stable while the whole may not be. These ideas were 
explored further by Tregonning and Roberts (1979) who examined the stabil-
ity of a randomly constructed model community in which the interaction 
coeffi cients were non-zero and the values chosen randomly. They began by 
running the model with 50 species, and used two methods of species elimi-
nation: a species was either chosen at random or the species with the most 
negative equilibrium value selected. Therefore, in the latter case they removed 
the most ecologically unrealistic species, as all species needed to have a posi-
tive equilibrium value. This process was continued until all species had a 
positive equilibrium value. This was defi ned by Tregonning and Roberts as 
the homeostatic system: one that was ecologically feasible and at equilibrium. 
Under selective removal the mean number of species comprising a homeo-
static system was 25 and the largest 29. However, if elimination was random 
then the largest homeostatic system was 4 and the mean 3.3. Further under-
standing of these results requires a deeper insight into the nature of the 
community matrix used by May, Tregonning and Roberts and others. This is 
the subject of the next section.

7.2.2 Construction and stability of the community matrix

Levins (1968) fi rst devised a matrix of Lotka–Volterra competition coeffi -
cients to describe community structure and predict community stability. This 
was a multi-species version of the two-species competition model (described 
earlier). This idea was developed by May (1972, 1973a) giving a general 
version of the matrix called the community matrix (sometimes referred to as 
the stability matrix) which expressed the effect of species j on species i near 
equilibrium. The community matrix makes some assumptions about the 
dynamics of its constituent species; in particular, it assumes that prey and 
competitors will be regulated so that in the absence of any interspecies inter-
actions they will return to equilibrium. It is also assumed that predators 
decline exponentially in the absence of prey.

The community matrix allows insights into the stability of the community, 
with the dynamics of each species described by a nonlinear fi rst-order dif-
ferential equation. The aim is to create a matrix M of all interactions between 
the species in the community. It is assumed that species will be regulated so 
that, in the absence of any interspecies interactions, they will return to equi-
librium. The following notation will be used:

αij the interaction coeffi cients between species i and j (expressed as the effect 
of species j on the growth rate of species i), including αii, the intraspecifi c 
interaction; the magnitude of α ranges from 1 to 0, which represents no 
interaction (the sign of α is considered below);
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Ni density or biomass of species i;
ri the intrinsic rate of change of species i;
s the number of species.

A generalized Lotka–Volterra model following Roberts (1974) and Tregon-
ning and Roberts (1979) and referred to by them as the multi-species quad-
ratic model, is summarized for any number of species by:

d dN t N r Ni i i ij j
i

s

= +⎛
⎝

⎞
⎠=

∑α
1

 (7.1)

where ri is positive for a producer (prey, competitor) and negative for a con-
sumer (predator, pathogen) following the convention in Chapter 6. Therefore 
consumers decline exponentially in the absence of producers. Producers 
show density-dependent regulation as illustrated by the one-species version 
of equation 7.1:

d dN t N r N1 1 1 11 1= +( )α

or

d dN t r N N1 1 1 11 1
2= + α  (7.2)

This equation is equivalent to the logistic equation dN/dt  =  r1N1  −  r1N1
2/K with 

α11 equal to −r1/K. Equation 7.2 shows why Tregonning and Roberts referred 
to the model as the (multi-species) quadratic model. In Chapter 5 it was 
shown that populations described by the logistic equation had a stable 
equilibrium of K. The equilibrium occurs at dN/dt  =  0; therefore, for 
equation 7.2:

0 1 11 1
2= +rN N* *α

where N1* is the equilibrium population size. Factorize the right-hand side 
to give N1*(r  +  α11N1*) and rearrange the non-trivial solution (r  +  α11N1*)  =  0 
to give:

N r1 11* = − α

As r must be positive for a single producer species, α needs to be negative to 
give a positive value of N1*. The sign of α is important and we will return to 
it later. (Note that the trivial solution is N*  =  0.)

With two species, equation 7.1 gives:

d dN t N r N N N N1 1 1 11 1 1 12 2 1= + +α α  (7.3)

d dN t N r N N N N2 2 2 21 1 2 22 2 2= + +α α  (7.4)

We can compare the parameters α11, α12, α21 and α22 with the parameters in 
the competition and predator–prey equations in Chapter 6. In comparison 
with the competition equations, α11  =  −r1/K1, α12  =  −β12r1/K1, α21  =  −β21r2/K2 
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and α22  =  −r2/K2. Generalizing for interactions between species i and j, αij  =  −βij 
ri/Ki and substituting αii for −ri/Ki, αij  =  βijαii; that is, the competition coeffi -
cient multiplied by the intraspecifi c interaction coeffi cient. Compared with 
the predator–prey equations 6.3 and 6.4 (assuming N1 is prey and N2 is preda-
tor): α11  =  −r1/K1, α12  =  −a, α22  =  0 and α21  =  b. Also r2 will be negative and r1 
will be positive.

We can therefore see how, with different values of r and αij, equation 7.1 
can provide a generalized description of Lotka–Volterra dynamics covering 
interactions such as competition and predation.

The community matrix is then derived by considering the community at 
equilibrium. If we take the two-species example:

0 1 1 11 1 1 12 2 1= + +N r N N N N* * * * *α α  (7.5)

0 2 2 21 1 2 22 2 2= + +N r N N N N* * * * *α α  (7.6)

The species densities can be evaluated at equilibrium:

− = +r N N1 11 1 12 2α α* *

− = +r N N2 21 1 22 2α α* *

In matrix form this is

−
−

⎛
⎝⎜

⎞
⎠⎟ = ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

r

r

N

N
1

2

11 12

21 22

1

2

α α
α α

*

*
 (7.7)

The values of N1* and N2* can be calculated using matrix algebra by fi nding 
the inverse of the matrix of coeffi cients and multiplying both sides to give:

N
r r

1
22 1 12 2

11 22 21 12

* = − +
−

⎛
⎝⎜

⎞
⎠⎟

α α
α α α α

 (7.8)

N
r r

2
21 1 11 2

11 22 21 12

* = −
−

⎛
⎝⎜

⎞
⎠⎟

α α
α α α α

 (7.9)

Matrix equation 7.7 can be generalized for any number of species as:

− =r AN*

where A is the square matrix of interaction coeffi cients and r and N* are 
column matrices of intrinsic rates of change and equilibrium densities respec-
tively. Equilibrium values can then be found by matrix algebra as for equa-
tion 7.7 (equivalent to the solution of s simultaneous equations):

− =−rA N1 *

To determine the community matrix we need to linearize the population 
growth equation (7.1) at equilibrium. This is achieved with a Taylor expan-
sion or series. A series is defi ned in mathematics as the sum of a sequence 
of numbers. We have seen how sequences may arise in ecological processes 
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in Chapter 1 (Fibonacci sequence). Various functions such as ex or sin(x) can 
be expressed as a series. Using a Taylor series a function f(x  +  h) can be 
expressed as:

f x h f x hf x h f x h f x+( ) = ( ) + ′( ) + ′′( ) + ′′′( ) +2 32 3! ! . . .

where x and h are both variables. f ′(x) means the derivative of the function 
evaluated at x whereas f ″ is the second derivative. If x represents the equi-
librium density of a population which is described by a nonlinear function 
then when h is small (a perturbation from the equilibrium) the function near 
the equilibrium can be expressed according to the Taylor series as:

f x h f x hf x+( ) = ( ) + ′( )  (7.10)

That is, ignoring terms with h2 and higher because h is relatively small. Equa-
tion 7.10 describes the linear tangent at equilibrium. In ecological communi-
ties we may be dealing with the abundances of many species, all of which 
have an equilibrium. In this case linearized dynamics are represented as 
partial derivatives in the Taylor series. Partial differentiation is a method of 
determining change in one variable while one or more other variables are 
held constant. Partial derivatives are indicated by ∂. Returning to equation 
7.1 and writing it in general terms as:

d dN t F Ni i= ( )

the Taylor expansion around the equilibrium is:

d

d
*

d

d second- and high
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N
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F N
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eer-order terms  (7.11)

where nj is a small perturbation from equilibrium. Fi(N*) is 0 and second- 
and higher-order terms can be ignored. The partial derivatives ∂(dNi/dt)/∂Nj 
at equilibrium are αijNi*; that is, the interaction coeffi cient multiplied by 
the equilibrium population density of the ith species. You could check 
this for the two-species example. For example, to fi nd ∂(dN1/dt)/∂N1 
at N*:

∂( )
∂

= + +

d

d * *

N

t
N

r N N

1

1
1 11 1 12 22α α  (7.12)

Substitute for N1* and N2* to give:

r
r r r r

1
11 22 1 12 2

11 22 21 12

12 21 1 11 2

11 22

2+ − +( )
−

+ −( )
−

α α α
α α α α

α α α
α α αα α21 12

This reduces to:
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α α α
α α α α
11 1 22 12 2

11 22 21 12

− +( )
−

r r

which is α11N1*.
The full community matrix for the two-species example is:

α α
α α

11 1 12 1

21 2 22 1

N N

N N

* *

* *
⎛
⎝⎜

⎞
⎠⎟

The stability of the community is found by determining the eigenvalue(s) of 
the community matrix. This tells us about the growth of a perturbation (nj) 
from equilibrium. If the sign of the largest eigenvalue of the community 
matrix is negative then the community is stable; that is, the perturbations 
reduce back in size towards the equilibrium. A positive value indicates growth 
of the perturbation away from the equilibrium. Therefore we can see why 
the community matrix is sometimes referred to as the stability matrix. The 
magnitude of the dominant eigenvalue determines the return time of the 
community (Pimm & Lawton 1977), which measures the time taken for a 
perturbation to decay to 1/e of its initial value.

To conclude this section we link up the graphical interpretation of stability 
of the logistic equation with the analytical method of the community matrix, 
following May (1973a) and Pimm (1982). Recall that there are two equilibria 
with the logistic equation (N*  =  0 and N*  =  K). To examine the stability of 
those equilibria in Chapter 6 we used a graphical method to examine per-
turbations (displacements) from equilibrium and asked whether those dis-
placements will become larger with time. If the perturbations do become 
larger then the equilibrium is locally unstable. From the community matrix 
analysis we expect that the stable equilibrium of the logistic model is given 
by a negative slope of dN/dt with respect to N at equilibrium; that is, the 
single ‘eigenvalue’ is negative. This is indeed the case (Fig. 7.4).

Fig. 7.4 Logistic curve showing unstable and stable equilibria. Note the gradient of the 
curves at N*  =  0 and N*  =  K.
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7.3 Estimations of community stability and structure in 
the fi eld

Seifert and Seifert (1976) provided one of the earliest fi eld tests of the com-
munity matrix using insects in the water-fi lled bracts of Heliconia fl owers in 
Central America (Fig. 7.5). The insects included larvae of chrysomelid beetles 
and syrphid fl ies, all of which were potential competitors.

Seifert and Seifert combined experimental manipulations with a multiple 
regression method which allowed them to estimate the magnitude and signs 
of the interaction coeffi cients from a generalized Lotka–Volterra model. This 
meant that statistical signifi cance could be attached to each of the coeffi cients. 
The experiment involved emergent buds of Heliconia being enclosed in plastic 
bags to restrict immigration and oviposition. After a certain amount of growth, 
water was added and varying numbers of four species of insects were intro-
duced. Following this the per-capita change in numbers with time was deter-
mined using a linearized version of equation 7.1, calculated as the change 
from initial density divided by the number of days over which the change 
took place. The initial densities of each species were used as the explanatory 

Fig. 7.5 Stylized view of Heliconia wagneriana showing the dissected bract with common 
insect inhabitants. The species include Gillisius located on the dissected bract just above 
the water, Quichuana located at the base of the fl ower below Gillisius, Copestylum located 
just inside the fl ower and Beebeomyia located at the base of the seed. From Seifert and 
Seifert (1976).
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variables to calculate the partial regression coeffi cients of the per capita rates 
of change against all species; that is, this gave r and αij. (Note that the rates 
of change were not estimated from equilibrium as assumed by the commu-
nity matrix.) A negative value of the regression coeffi cient indicated competi-
tion while a positive value indicated mutualism (the possibility of predation 
was ignored given the choice of insect species). From Table 7.2 we see that 
nine of the inter-specifi c interactions were not signifi cant and therefore were 
set to zero. Of the signifi cant ones, two were negative (competitors) and one 
was positive (mutualism).

The equilibrium densities estimated from the model by Ni*  =  A−1ri are 
shown in Table 7.3 compared with those observed in the fi eld. The fact that 
there are two negative (unrealistic) densities for H. wagneriana suggests that 
the observed mean densities either are not equilibrium densities or are results 
of processes not dependent on species interactions, or that the model is 
inappropriate.

The eigenvalues of the community matrix were determined to examine 
the stability of the community. The four values were −0.0221, 0.052, −0.042 
and −0.239. The positive eigenvalue indicated an unstable community. Seifert 
and Seifert’s conclusion was that H. wagneriana insect communities were 
indeed unstable and that migration, oviposition and local extinction processes 
may be important in structuring these communities. In other words it is 
probably not correct to model these communities in isolation. The effects of 
migration and local extinction are the subject of Chapter 8.

Table 7.2 Interaction matrix for Heliconia wagneriana. Non-signifi cant coeffi cients are set 
to zero (Seifert & Seifert 1976).

Quichuana Gillisius Copestylum Beebeomyia

Quichuana 0.001 0 −0.018 0.027
Gillisius 0 −0.003 0 0
Copestylum 0 0 −0.005 0
Beebeomyia 0 −0.005 0 −0.033

Table 7.3 Equilibrium densities predicted from the model compared with mean densities 
observed in the fi eld (Seifert & Seifert 1976).

Mean densities in 
unmanipulated examples

Estimated species 
equilibrium densities

Quichuana 51.00 −112
Gillisius 7.56 −23.2
Copestylum 8.78 4.09
Beebeomyia 6.67 10.62
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Subsequent studies of the community matrix have covered a wide range 
of species. Wilson and Roxburgh (1992) provided examples of the application 
of the community matrix to plant species mixtures. They predicted that ini-
tially unstable six-species mixtures will, by selective deletion (following Tre-
gonning & Roberts 1979), drop down to stable four-species mixtures. A study 
of the persistence of chironomid communities in the River Danube demon-
strated differences in return times of perturbed communities at different sites 
(Schmid 1992). An analysis of local and global stability in six small mammal 
communities showed that all the community matrices were locally and glob-
ally stable, due to a reduction in connectance with increasing number of 
species (Hallett 1991).

The above examples show that it is possible to parameterize community 
matrix models using fi eld data (with or without manipulations) and make 
testable predictions about stability, structure and return times after perturba-
tion. Such predictions can be related to species richness and connectance. 
However, we need to be cautious as analysis of the community matrix is in 
the neighbourhood of an assumed equilibrium. For many applications we 
are likely to be interested in communities away from equilibrium or where 
non-equilibrium processes such as physical disturbance or pollution may be 
important. Local extinction and colonization processes may also mean that 
equilibrium has to be judged at larger spatial scales (Chapter 8).
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Spatial models

8.1 Spatial dynamics of host–parasitoid systems

In Chapter 6 we noted that Nicholson and Bailey had anticipated that spatial 
structure, in particular migration and local extinction, would lead to persis-
tence in their model of host–parasitoid interactions. Comins et al. (1992) used 
the Nicholson–Bailey model to explore the possible outcomes of spatial 
dynamics. In this study it was assumed that the host and parasitoid were 
distributed among a square grid of square cells or patches of width n. These 
types of model systems, known collectively as cellular automata, have been 
widely used in both plant and animal studies to address a variety of issues 
including ecological stability and effects of invasive species (e.g. Crawley & 
May 1987, Silvertown et al. 1992, Colasanti & Grime 1993, Huang et al. 2008; 
see Wolfram 1984 for a mathematical overview).

Comins et al. (1992) had two phases of dynamics: reproduction/parasitism 
and dispersal. The former was modelled using the Nicholson–Bailey model. 
The latter had the following rules.

1 A fraction of the hosts and parasitoids leave the patch (grid cell) and the 
remainder stay to reproduce in their patch.
2 The fraction dispersing is equally divided between the eight neighbouring 
patches. There is only one movement per generation. Longer-range dispersal 
is excluded.
3 There are refl ective boundary conditions in which dispersing individuals 
are prevented from crossing the boundary and remain in the edge patch. 
Thus there is an explicit edge effect in this model, in contrast to some other 
cellular automata models.

In small arenas of less than 10 cells by 10 cells extinction of host and para-
sitoid occurred within a few hundred generations of the simulations, under-
lining the inherent instability of the Nicholson–Bailey model. However, when 
the arena size was increased to between 15 and 30 patches, three general 
types of spatial dynamics were found which Comins et al. described as spirals, 
spatial chaos and crystal lattices (Fig. 8.1a). The key feature of the three 
dynamic types is that they permit long-term persistence of the host and para-
sitoid within a relatively narrow range of population densities (Fig. 8.1b), as 
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Fig. 8.1 (a) Spatial dynamics of model host and parasitoid. Population density at one 
point in time from simulations after many generations of the dispersal model of Comins 
et al. (1992) using an arena width of 30 cells and with Nicholson–Bailey local dynamics. 
Different levels of shading represent different densities of hosts and parasitoids. Black 
squares represent empty patches. (i) Spirals, (ii) spatial chaos, (iii) crystalline structures. 
Case (iv) is a similar diagram obtained with Lotka–Volterra local dynamics which exhibits 
highly variable spirals. (b) Phase plane showing changes of host and parasitoid over time 
with the same corresponding parameters as in ai, aii and aiii.
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did the incorporation of host density dependence or aggregation of parasit-
oids. Similar results were also found with the oscillatory unstable discrete 
version of the Lotka–Volterra model (Fig. 8.1a, panel iv). Other studies have 
explored the role of spatial dynamics of predators and prey as a contribution 
to the stability of their temporal dynamics. For example, McCauley et al. 
(1993) used an individual-based model to determine the relative importance 
of predator and prey mobility on stability.

In conclusion, a spatially explicit model can produce long-term population 
persistence in contrast to an unstable local population model. Mark–release–
recapture data collected in the fi eld are shedding light on the short- and 
long-distance dispersal capabilities of hosts and parasitoids. Jones et al. 
(1996), in a study of the movements of a tephritid fl y (which feeds on thistle 
seed heads) and its parasitoids showed frequent movements across a patch 
of thistles of about 50  m  ×  50  m. The parasitoids moved further than the hosts 
within the patch. Longer-distance dispersal in similar organisms has been 
demonstrated by Dempster et al. (1995) using rubidium and other chloride 
salts in plants to mark herbivores and parasitoids. This work demonstrated 
that distances of up to 800  m are not a barrier to colonization.

In the next section we develop the theme of spatial models, focusing on 
analytical techniques rather than on the results of cellular automata 
simulations.

8.2 Metapopulation models

8.2.1 Introduction to the metapopulation concept

A metapopulation is defi ned as a set of local populations linked by dispersal. 
This could be described and modelled by cellular automata but we will focus 
on results arising from analytical considerations. In the original model of 
Levins (1969, 1970) it was assumed that all local populations were of equal 
size and that a local population could either become extinct or reach carrying 
capacity instantaneously following colonization. Therefore only two states of 
local population were envisaged: full (carrying capacity) or empty (extinct).

In reality, the defi nition of a local population, and therefore a metapopula-
tion, is very diffi cult. Hanski and Gilpin (1991) defi ned a local population as 
a ‘set of individuals [of the same species] which all interact with each other 
with a high probability’. But how high is that probability? Furthermore, 
‘local’ may be different for different interactions. For example, two plants 
may show intraspecifi c competition over a scale of a few centimetres but be 
reproductively linked by pollination over hundreds of metres. It is also very 
diffi cult to say over what distance colonization of new areas, and therefore 
the ‘birth’ of new local populations, may occur. Typically the frequency of 
movements of propagules such as seeds over short distances is known, but 
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longer-distance movement is poorly known, partly because it may be a rare 
event and partly because it is diffi cult to record. This excludes species which 
show seasonal and predictable long-distance migration.

Even when local populations can be identifi ed, the pure Levins model of 
local populations with equal carrying capacity is unusual. More realistically, 
it is reasonable to envisage a spectrum of possibilities from mainland/island 
or core/satellite to pure Levins populations (Fig. 8.2). These and other possi-

(a) (b)

(c)
(d)

(e)

Fig. 8.2 Various types of spatial distribution of populations. Closed ovals represent 
occupied habitat patches and open ovals represent vacant habitat patches. Dashed lines 
indicate the boundaries of populations. Arrows indicate migration and colonization. 
(a) Levins metapopulation. (b) Core/satellite metapopulation (Boorman & Levitt 1973). 
(c) Patchy population. (d) Non-equilibrium metapopulation (differs from (a) in that there 
is no recolonization). (e) An intermediate case that combines (b) and (c) (Harrison 
1991).
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bilities have been discussed by Harrison (1991), who considered the rarity of 
true Levins metapopulations in the fi eld, and by Hanski and Gyllenberg 
(1993), who showed how to model both mainland/island and pure Levins 
with related equations. Hanski (1999) provides an overview of the whole 
subject.

Various processes will promote something close to a metapopulation struc-
ture in the fi eld or at least create conditions under which local extinction 
and colonization are integral features of the population dynamics:

• gap creation or other disturbance generating new recruitment habitat 
(includes habitat fragmentation);
• a mosaic of successional habitats where, for example, an annual plant must 
move from one transient early successional habitat to another (may be a 
function of the previous feature);
• sedentary and localized resources such as plants, dung or decaying logs, all 
of which may be colonized by various insects, fungi and other organisms. 
The resources may have a short colonization period allowing a maximum of 
one or a few generations of the attacking organism, thereby necessitating 
dispersal to other similar resources.

8.2.2 The metapopulation model of Levins

Despite the problems of fi nding Levins metapopulations in the fi eld it is 
instructive to consider its dynamics before proceeding to more complex 
models. Levins (1969, 1970) was interested in the number of islands or 
island-like habitats occupied by a species. Later Levins and Culver (1971) 
modifi ed the model to investigate the effect of competition on migration and 
extinction rates. Levins began by considering the number of local populations 
(N), the total number of sites (T), an extinction rate (e) and a migration rate 
(m′). The rate of change of N with time (t) could then be expressed as a dif-
ferential equation:

d dN t m N T N eN= ′ −( ) −

This equation was simplifi ed by using p  =  N/T where p represents the fraction 
of habitat patches occupied by a species and replacing m′T by m. The rate of 
change in the fraction of habitat patches occupied by a species, dp/dt – that 
is, the rate of change in the proportion of local populations (p) at a given 
time – was now described by:

d dp t mp p ep= −( ) −1  (8.1)

where m defi nes the colonization rate of local populations and e the extinc-
tion rate of local populations. Therefore ep represents loss (or extinction) of 
local populations from metapopulations. The birth rate of local populations 
is represented by mp(1  −  p). The reason why p is multiplied by 1  −  p can be 
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conceptualized as a local neighbourhood problem. If there is one occupied 
patch surrounded by eight empty patches then the probability of colonization 
of any one empty patch is likely to be less than if there was one empty patch 
surrounded by eight occupied patches. Thus in determining the colonization 
probability the density of occupied patches and unoccupied patches needs to 
be combined, for example by multiplying them. In reality, the colonization 
(m) and extinction (e) parameters are likely to be complex functions of a set 
of variables. For example, m involves fi nding a new site, which depends on 
propagule dispersal (in turn dependent on the taxon and habitat under scru-
tiny and perhaps wind or water current speed or abundance of animal dis-
persers), the spatial distribution of occupied and unoccupied sites, initial 
establishment of propagules and subsequent population growth.

Now let us consider the dynamics of the system described by equation 8.1. 
What are the conditions for metapopulation increase, no change or decline? 
No change in p is given by dp/dt  =  0:

0 1= −( ) −mp p ep

which gives

p e m= −1

Increase in p will occur if dp/dt  >  0 and therefore p  <  1  −  e/m. In considering 
these results we need to think about the original formulation of the meta-
population concept. If extinction and colonization rates (death and birth) are 
balanced (e  =  m) there should be no change in metapopulation size. Similarly, 
if the extinction rate (e) is greater than the colonization rate (m) then the 
metapopulation size should decrease (and vice versa). These requirements 
are only partly supported by the manipulation of equation 8.1. The problem 
is that when dp/dt  =  0, if e  =  m we are left with the result that p  =  1  −  1  =  0. 
Thus, when extinction balances colonization there are no local populations. 
If colonization is greater than extinction then e/m is less than 1 but greater 
than 0 and therefore 1  −  e/m lies between 1 and 0. Therefore a steady value 
of p occurs when colonization exceeds extinction. Hanski (1991) considers 
various refi nements and developments of the basic Levins model. Despite the 
drawbacks of equation 8.1 we will see in the next section how it can be used 
to explain limits to species range and how more complex models can give 
similar predictions.

8.2.3 The Carter and Prince model of geographic range

The plant metapopulation model of Carter and Prince (1981, 1988) linked 
the ideas of Levins with models of infectious disease to provide an explana-
tion for the geographical range limits of plant species. In particular, they 
challenged the view that distribution was determined solely by correlation 
to climate variables; for example, that the northerly distribution limit of plant 



SPATIAL MODELS  141

species in Britain was determined by physiological intolerance of cold winters 
(see examples in Carter & Prince 1988). Carter and Prince used a differential 
equation to describe a strategic model of plant distribution:

d dy t bxy cy= −  (8.2)

where x is the number of susceptible sites (sites available to be colonized), y 
is the number of infective sites (occupied sites from which seed is produced 
and dispersed), b is the infection rate and c is the removal rate. b and c are 
essentially local population birth (colonization) and death (extinction) rates 
and therefore equivalent to m and e in the Levins equation (8.1). Similarly, 
x and y are related to 1  −  p and p where p is the proportion of local popula-
tions which are occupied and potentially ‘infective’ and 1  −  p is the propor-
tion of vacant and therefore susceptible sites.

These comparisons show that any conclusions from the Carter and Prince 
model are relevant to metapopulations in general as defi ned by Levins. The 
important conclusion of Carter and Prince was that, along a climatic gradient, 
a very small change in, for example, temperature might tip the balance from 
metapopulation persistence to metapopulation extinction. In Carter and 
Prince’s words: ‘a climatic factor might lead to distribution limits that are 
abrupt relative to the gradient in the factor, even though the physiological 
responses elicited might appear too small to explain such limits.’ Thus climate 
and physiological factors are still important but their effects are amplifi ed and 
made nonlinear by the threshold properties of equation 8.2.

The results of these simple models are supported by the conclusions from 
more complex models. For example, the model of Herben, Rydin and 
Soderstrom (1991) examined the dynamics of the moss Orthodontium lineare 
which occurs on temporary substrates such as rotting wood. The model 
addressed not only the metapopulation structure of the moss but also the 
fact that the species was spreading throughout western and central Europe. 
The model included deterministic increase on occupied logs with a carrying 
capacity and the assumptions that dispersal by spores was in proportion to 
local population size and that spore dispersal distance declined exponentially 
from an occupied log. The results of this model suggested, like the simpler 
models, that there is a threshold for metapopulation persistence. In this case 
the percentage of logs occupied was a nonlinear function of probability of 
local population establishment (pest; Fig. 8.3).

At a pest value of about 0.0002 the model predicted a sudden increase in 
the percentage of occupied sites. So here was a threshold value above which 
metapopulation persistence was likely to be high. If pest is a function of climate 
then this would produce exactly the type of sharp break in species range 
predicted by Carter and Prince. It seems that such thresholds may be gener-
ated in a variety of ways. Below we consider how changes in gap frequency 
in grassland can generate a threshold for plant population abundance and 
how diffusion processes can lead to thresholds.
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An alternative formulation for the metapopulation equation 8.1 is to use 
the logistic equation to model metapopulation dynamics and consider again 
the possibility of a threshold determining the edge of a species range. One 
key feature of the model needs to be retained; that is, that there is some 
interaction between the densities of infectives (occupied patches) and sus-
ceptibles (empty patches) in determining colonization rates. This interaction 
is represented by p(1  −  p) in equation 8.1 and xy in equation 8.2. This can be 
taken further by considering the relationship between the relative or net 
colonization rate (m/e or m  −  e) and the density of susceptibles with respect 
to infectives (S/I). In the absence of any effect of S/I the change in infectives 
(dI/dt) can be described as the net colonization rate multiplied by the number 
of susceptible patches:

d dI t m e S= −( )  (8.3)

The relative colonization rate m  −  e will be expected to vary with S and I. If 
S/I is high then m  −  e should be low. If S/I is low then we expect m  −  e to be 
close to its maximum value. There is a clear analogy with the logistic equa-
tion. m  −  e can be replaced by a value r (births minus deaths) and S/I by S′. 
The simplest reduction of r is linear with respect to S′ which is described by 
1  −  S′/K. The resultant equation is:

d dI t rS S K= − ′( )1  (8.4)

Note that, in contrast to the logistic equation, the rate of change variable (I) 
on the left-hand side is not the same as the variable on the right-hand side. 
At equilibrium, dI/dt  =  0 so rS  =  0, which can be interpreted as r  =  0 (e  =  m), 
and/or S  =  0 (no remaining susceptible sites) or 1  −  S′/K  =  0 and therefore 

Fig. 8.3 Threshold in occupied sites produced by small increments in probability of 
establishment (model of Herben et al. 1991).
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S′  =  K (as expected from the logistic equation). If S′  >  K then 1  −  S′/K is nega-
tive and so dI/dt is negative. Therefore I decreases and consequently S/I 
continues to increase. Thus K is a threshold condition. If S′ is too high (above 
K) then the metapopulation cannot persist and the number of infectives 
declines (and so the proportion of susceptibles, S′, increases).

8.3 Gap models and plant population thresholds

Plant population studies in the 1980s (Crawley & May 1987, Klinkhamer & 
De Jong 1989, Silvertown & Smith 1989) described apparent thresholds 
for plant population persistence determined by gap density in grassland 
(Fig. 8.4).

These studies showed that for short-lived herbaceous plants such as Cirsium 
vulgare small changes in gap density due to, for example, disturbance by 

Fig. 8.4 Threshold for plant population persistence with a change in gap density. 
(a) Field data showing the relationship between Cirsium vulgare rosette numbers and the 
probability of emergence of seeds sown (Silvertown & Smith 1989); (b–d) Predictions 
from models of (b) Silvertown and Smith (1989), (c) Crawley and May (1987) and 
(d) Klinkhamer and De Jong (1989).
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grazing animals or absence of perennials, resulted in large changes in the 
density of plants recruiting solely by seed. A simple model below explains 
this threshold and illustrates how it can be related to the simulation models 
of Crawley and May (1987) and Silvertown and Smith (1989) and the ana-
lytical model of Klinkhamer and De Jong (1989). The threshold arises directly 
from a spatially explicit model in which the seed are distributed in a particular 
way across a set of gaps.

Assume a fi eld of area A is covered with n gaps of equal size (g); the area 
of gaps  =  ng and the fraction of fi eld covered by gaps (f) is:

f ng A=

Now consider the proportion of gaps receiving one or more seeds, as only 
these seeds may be expected to germinate. Assume that a maximum of one 
seed can germinate per gap. To estimate the proportion of gaps receiving 
one or more seeds we could assume that the seeds are distributed accord-
ing to the Poisson distribution (Chapter 3). The proportion of gaps contain-
ing no seeds is e−m where m is the mean number of seeds per gap. Therefore 
the proportion of gaps containing one or more seeds is 1  −  e−m. This was 
assumed by Crawley and May (1987) and Klinkhamer and De Jong (1989). 
Similarly, we could assume a negative binomial distribution with no aggre-
gation which was used in Silvertown and Smith’s simulation (Fig. 8.4b; the 
degree of aggregation did not affect the outcome) and which we will use 
below. The effect of distributing seeds between gaps in this way, with a 
maximum of one survivor per gap, is to introduce density dependence into 
the model.

With the negative binomial and no aggregation of seed the proportion of 
gaps containing one or more seeds is m/m  +  1 where m, the mean number 
of seeds per gap, is given by the total number of seeds (s) multiplied by the 
fraction falling into gaps divided by the number of gaps (n). We will assume 
that the fraction of seed falling into gaps is equivalent to the fraction of 
ground covered by gaps (f). Therefore

m sf n=  (8.5)

Now let us incorporate these details into a model of biennial population 
dynamics. The number of fi rst-year rosettes (R) in year t  +  1 is given by the 
proportion of gaps which contain one or more seeds (m/m  +  1) multiplied by 
the number of gaps (n) and the probability of survival from seed to rosette 
(p1):

R mnp mt+ = +1 1 1  (8.6)

Substitute the right-hand side of equation 8.5 for m in the numerator in 
equation 8.6 and cancel n:

R sfp mt+ = +1 1 1  (8.7)
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Now assume that the fi rst-year rosettes survive with probability p2 to become 
fl owering plants (F) in the next year:

F p Rt t+ +=2 2 1

and that, in the same year, each fl owering plant produces an average of q 
seeds. Therefore, the total number of seeds (s) in year t  +  2 is related to the 
number of rosettes in the previous year (t  +  1):

s qp Rt t+ +=2 2 1  (8.8)

Substitute the right-hand side of equation 8.7 into equation 8.8:

s s fp m qpt t+ = +( )2 1 21

Let qp1p2  =  λ to give:

s s f mt t+ = +( )2 1λ  (8.9)

Set equation 8.9 at equilibrium (and cancel s*) and rearrange to make m the 
subject of the equation:

m f= −λ 1

Now substitute for m from equation 8.5:

s f n f* = −λ 1

s n n f* = − ( )λ

We know that f  =  ng/A and therefore n/f  =  A/g. A/g represents the ratio of the 
size of the fi eld to the size of the gap and can be replaced by α:

s n* = −λ α  (8.10)

The relationship between the equilibrium number of seeds (s*) and the gap 
density (n) is shown in Fig. 8.5, illustrating the threshold effect of gap 
density. If nT is the threshold gap density, then when n  <  nT the result is 
that s*  =  0 (s* can theoretically also be negative but this is not ecologically 
realistic). The analytical results of equation 8.10 therefore support the 
results of the simulations of Silvertown and Smith (1989). The model of 
Klinkhamer and de Jong (1989) reached similar conclusions showing that 
if dsc  <  1 (where d is the density of gaps, s is the seed production and c is 
the gap area) the population would become extinct and if dsc  >  1 then a 
population equilibrium would exist. This may begin to sound familiar. dsc 
is acting like a fi nite rate of increase for a gap-dependent grassland plant. 
The same is true of nλ in equation 8.10. The threshold result is therefore 
as predicted by the discrete-time density-independent and density-
dependent models; that is, the requirement for λ  ≥  1 for a population not 
to decline towards zero. The results in this section are applicable beyond 
plant populations in grassland where recruitment into gaps is important; 
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Fig. 8.5 Threshold in s* predicted from equation 8.10.

for example, seedlings of tree species into forest gaps or planktonic larvae 
of barnacles into gaps in the rocky shore.

8.4 Diffusion processes

Many population models ignore the details of the dispersal phase. Too little 
is usually known about dispersal to model it in anything other than the 
simplest way (but see the work of Pacala on neighbourhood models for an 
exception to this, e.g. Pacala & Silander 1990). One simple approximation 
which leads to interesting results is to assume that the individuals diffuse out 
from a source population. This may describe the expansion of an invading 
species across suitable habitat or the movement of individuals between local 
populations across uncolonizable habitat. Diffusion is a random and continu-
ous process with each particle or individual going on a random walk from 
its source position. Although the concept is straightforward, diffusion models 
are complex because they require a method of summarizing all the random 
movements at each point in time. Applications of spatial diffusion models in 
ecology include the work of Morris (1993) on pollen dispersal and insect 
movement and marine ecologists studying the movement of algae in water 
bodies (see below). Segel (1984) gives an introduction to diffusion models of 
bacteria movement.

Diffusion can be described by partial differential equations, or PDEs. These 
are needed because movement and/or abundance of individuals is dependent 
on two variables: spatial position and time. Maynard Smith (1968) provides 
an accessible introduction to partial differentiation applied to biological prob-
lems. He describes the diffusion of a substance along a tube. The change in 
concentration (x) with time (t) is related to the change in concentration with 
distance (s) according to the following PDE:
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where µ is a constant. This equation is well known in the mathematical lit-
erature as the one-dimensional heat equation. An ecological use of this 
equation is the dispersal of individuals along a linear route, such as plants 
dispersing along a road side. In this case the constant might combine fi nite 
rate of change and mean dispersal distance. A major problem is that only 
linear PDEs have analytical solutions. Despite this it is worth considering the 
results of PDE analyses of diffusion processes in ecology as they have pro-
duced results which support the results of boundaries and thresholds above. 
Also, as Maynard Smith observed (and this applies to many mathematical 
results), ‘a familiarity with the notation enables one to follow other people’s 
arguments, even if one could not have developed the argument oneself’.

A relatively simple model was used by Kierstead and Slobodkin (1953) 
who related the size of a plankton patch to the degree of turbulent diffusion. 
Kierstead and Slobodkin wanted to determine whether or not there is a 
minimum water mass size below which no increase in phytoplankton con-
centration is possible. They determined the existence of a threshold condition 
for a patch of algae to cause a red tide. Steele (1974) also looked at diffusion 
in marine systems, again asking what causes patchiness of algae in the sea. 
He considered that ‘lateral turbulent diffusion of the water is a dominant 
physical process and can be expressed in a mathematical formulation’. Steele 
compared this physical process with the ecological process of herbivory using 
a pair of PDEs and showed that if the system without turbulence is unstable 
then diffusion under certain conditions could stabilize the system and, above 
a critical value, the system would destabilize again. Steele concluded that ‘if 
an ecosystem is basically unstable when considered without diffusion pro-
cesses then diffusion can remove the instability at smaller scales but not larger 
ones’.

Spatially explicit models continue to be one of the most exciting areas of 
ecological research. Increasingly, a spatial dimension is being combined into 
temporal models with interplay between the different concepts covered in 
this book. Spatial models reveal how independent lines of enquiry can lead 
to similar ecological principles; for example, the production of thresholds. 
They also have important implications for the relationship between theory 
and application. For example, metapopulation models have demonstrated the 
clear requirement for detailed fi eld study of colonization and extinction rates 
and associated parameters such as fragmentation of habitat (Hanski’s analysis 
of metapopulations is an exemplar of combining theory and fi eld work). 
Spatial models caution us against simplistic interpretations of large spatial 
scale anthropogenic effects such as global climate change. The preponderance 
of threshold possibilities shows that we must expect a nonlinear response to 
climate change. Species will not simply shift their range in linear procession; 
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there will be extinctions and outbreaks as predators and prey uncouple, 
metapopulation parameters are tweaked and fi nite rates of increase shift 
around their thresholds. These applications alone should encourage us to 
take greater interest in the methods and results of mathematical models. With 
such applications in mind, I should remark on a major omission from this 
book: ecosystem models. While many of the principles covered here, such as 
stability and spatial methods, apply to ecosystem modelling, there is no 
doubting the need for further understanding of ecosystem models, especially 
those aimed at understanding the biogeochemical properties and dynamics 
of the whole Earth. Fortunately there is no shortage of texts and review 
articles covering the subject.
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