
1

Introduction to Automata
Theory

Reading: Chapter 1

2

What is Automata Theory?
 Study of abstract computing devices, or

“machines”
 Automaton = an abstract computing device

 Note: A “device” need not even be a physical
hardware!

 A fundamental question in computer science:
 Find out what different models of machines can do

and cannot do
 The theory of computation

 Computability vs. Complexity

3

Alan Turing (1912-1954)
 Father of Modern Computer

Science
 English mathematician
 Studied abstract machines called

Turing machines even before
computers existed

 Heard of the Turing test?

(A pioneer of automata theory)

4

Theory of Computation: A
Historical Perspective

1930s • Alan Turing studies Turing machines
• Decidability
• Halting problem

1940-1950s • “Finite automata” machines studied
• Noam Chomsky proposes the
 “Chomsky Hierarchy” for formal
 languages

1969 Cook introduces “intractable” problems
 or “NP-Hard” problems

1970- Modern computer science: compilers,
computational & complexity theory evolve

5

Languages & Grammars

Or “words”

Image source: Nowak et al. Nature, vol 417, 2002

 Languages: “A language is a
collection of sentences of
finite length all constructed
from a finite alphabet of
symbols”

 Grammars: “A grammar can
be regarded as a device that
enumerates the sentences of
a language” - nothing more,
nothing less

 N. Chomsky, Information
and Control, Vol 2, 1959

6

The Chomsky Hierachy

Regular
(DFA)

Context-
free

(PDA)

Context-
sensitive

(LBA)

Recursively-
enumerable

(TM)

• A containment hierarchy of classes of formal languages

7

The Central Concepts of
Automata Theory

8

Alphabet
An alphabet is a finite, non-empty set of

symbols
 We use the symbol ∑ (sigma) to denote an

alphabet
 Examples:

 Binary: ∑ = {0,1}
 All lower case letters: ∑ = {a,b,c,..z}
 Alphanumeric: ∑ = {a-z, A-Z, 0-9}
 DNA molecule letters: ∑ = {a,c,g,t}
 …

9

Strings
A string or word is a finite sequence of symbols

chosen from ∑
 Empty string is ε (or “epsilon”)

 Length of a string w, denoted by “|w|”, is

equal to the number of (non- ε) characters in the
string
 E.g., x = 010100 |x| = 6
 x = 01 ε 0 ε 1 ε 00 ε |x| = ?

 xy = concatentation of two strings x and y

10

Powers of an alphabet
Let ∑ be an alphabet.

 ∑k = the set of all strings of length k

 ∑* = ∑0 U ∑1 U ∑2 U …

 ∑+ = ∑1 U ∑2 U ∑3 U …

11

Languages
L is a said to be a language over alphabet ∑, only if L ⊆ ∑*

 this is because ∑* is the set of all strings (of all possible
length including 0) over the given alphabet ∑

Examples:
1. Let L be the language of all strings consisting of n 0’s

followed by n 1’s:
 L = {ε,01,0011,000111,…}

2. Let L be the language of all strings of with equal number of
0’s and 1’s:

 L = {ε,01,10,0011,1100,0101,1010,1001,…}

Definition: Ø denotes the Empty language
 Let L = {ε}; Is L=Ø?

NO

Canonical ordering of strings in the language

12

The Membership Problem
Given a string w ∈∑*and a language L

over ∑, decide whether or not w ∈L.

Example:
 Let w = 100011
 Q) Is w ∈ the language of strings with

equal number of 0s and 1s?

13

Finite Automata
 Some Applications

 Software for designing and checking the behavior
of digital circuits

 Lexical analyzer of a typical compiler
 Software for scanning large bodies of text (e.g.,

web pages) for pattern finding
 Software for verifying systems of all types that

have a finite number of states (e.g., stock market
transaction, communication/network protocol)

14

Finite Automata : Examples
 On/Off switch

 Modeling recognition of the word “then”

Start state Final state Transition Intermediate
state

action

state

15

Structural expressions
 Grammars
 Regular expressions

 E.g., unix style to capture city names such
as “Palo Alto CA”:
 [A-Z][a-z]*([][A-Z][a-z]*)*[][A-Z][A-Z]

Start with a letter

A string of other
letters (possibly
empty)

Other space delimited words
(part of city name)

Should end w/ 2-letter state code

16

Formal Proofs

17

Deductive Proofs
From the given statement(s) to a conclusion

statement (what we want to prove)
 Logical progression by direct implications

Example for parsing a statement:
 “If y≥4, then 2y≥y2.”

(there are other ways of writing this).

given conclusion

18

Example: Deductive proof
Let Claim 1: If y≥4, then 2y≥y2.

Let x be any number which is obtained by adding the squares

of 4 positive integers.
Claim 2:
Given x and assuming that Claim 1 is true, prove that 2x≥x2

 Proof:
1) Given: x = a2 + b2 + c2 + d2

2) Given: a≥1, b≥1, c≥1, d≥1
3)  a2≥1, b2≥1, c2≥1, d2≥1 (by 2)
4)  x ≥ 4 (by 1 & 3)
5)  2x ≥ x2 (by 4 and Claim 1)

 “implies” or “follows”

On Theorems, Lemmas and Corollaries
We typically refer to:
 A major result as a “theorem”
 An intermediate result that we show to prove a larger result as a

“lemma”
 A result that follows from an already proven result as a

“corollary”

19

An example:
Theorem: The height of an n-node binary
tree is at least floor(lg n)
Lemma: Level i of a perfect binary tree has
2i nodes.
Corollary: A perfect binary tree of height h
has 2h+1-1 nodes.

20

Quantifiers
“For all” or “For every”

 Universal proofs
 Notation*=?

“There exists”
 Used in existential proofs
 Notation*=?

Implication is denoted by =>
 E.g., “IF A THEN B” can also be written as “A=>B”

*I wasn’t able to locate the symbol for these notation in powerpoint. Sorry! Please follow the standard notation
for these quantifiers. These will be presented in class.

21

Proving techniques
 By contradiction

 Start with the statement contradictory to the given
statement

 E.g., To prove (A => B), we start with:
 (A and ~B)
 … and then show that could never happen

What if you want to prove that “(A and B => C or D)”?

 By induction

 (3 steps) Basis, inductive hypothesis, inductive step
 By contrapositive statement

 If A then B ≡ If ~B then ~A

22

Proving techniques…
 By counter-example

 Show an example that disproves the claim

 Note: There is no such thing called a
“proof by example”!
 So when asked to prove a claim, an example that

satisfied that claim is not a proof

23

Different ways of saying the same
thing

 “If H then C”:
i. H implies C
ii. H => C
iii. C if H
iv. H only if C
v. Whenever H holds, C follows

24

“If-and-Only-If” statements
 “A if and only if B” (A <==> B)

 (if part) if B then A (<=)
 (only if part) A only if B (=>)

 (same as “if A then B”)
 “If and only if” is abbreviated as “iff”

 i.e., “A iff B”
 Example:

 Theorem: Let x be a real number. Then floor of x =
ceiling of x if and only if x is an integer.

 Proofs for iff have two parts
 One for the “if part” & another for the “only if part”

25

Summary
 Automata theory & a historical perspective
 Chomsky hierarchy
 Finite automata
 Alphabets, strings/words/sentences, languages
 Membership problem
 Proofs:

 Deductive, induction, contrapositive, contradiction,
counterexample

 If and only if

 Read chapter 1 for more examples and exercises

	Introduction to Automata Theory
	What is Automata Theory?
	Alan Turing (1912-1954)
	Theory of Computation: A Historical Perspective
	Languages & Grammars
	The Chomsky Hierachy
	The Central Concepts of Automata Theory
	Alphabet
	Strings
	Powers of an alphabet
	Languages
	The Membership Problem
	Finite Automata
	Finite Automata : Examples
	Structural expressions
	Formal Proofs
	Deductive Proofs
	Example: Deductive proof
	On Theorems, Lemmas and Corollaries
	Quantifiers
	Proving techniques
	Proving techniques…
	Different ways of saying the same thing
	“If-and-Only-If” statements
	Summary	

