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Introduction to Automata 
Theory 

Reading: Chapter 1 



2 

What is Automata Theory? 
 Study of abstract computing devices, or 

“machines” 
 Automaton = an abstract computing device 

 Note: A “device” need not even be a physical 
hardware! 

 A fundamental question in computer science:  
 Find out what different models of machines can do 

and cannot do 
 The theory of computation 

 Computability vs. Complexity 
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Alan Turing (1912-1954) 
 Father of Modern Computer 

Science 
 English mathematician 
 Studied abstract machines called 

Turing machines even before 
computers existed 

 Heard of the Turing test? 

(A pioneer of automata theory) 
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Theory of Computation: A 
Historical Perspective 

1930s • Alan Turing studies Turing machines 
• Decidability 
• Halting problem 

1940-1950s • “Finite automata” machines studied 
•  Noam Chomsky proposes the  
   “Chomsky Hierarchy” for formal  
    languages 

1969 Cook introduces “intractable” problems 
 or “NP-Hard” problems 

1970- Modern computer science: compilers,  
computational & complexity theory evolve 
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Languages & Grammars 

Or “words” 

Image source: Nowak et al. Nature, vol 417, 2002  

 Languages: “A language is a 
collection of sentences of 
finite length all constructed 
from a finite alphabet of 
symbols” 

 Grammars: “A grammar can 
be regarded as a device that 
enumerates the sentences of 
a language” - nothing more, 
nothing less 
 

 N. Chomsky, Information 
and Control, Vol 2, 1959 
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The Chomsky Hierachy 

Regular 
(DFA) 

Context- 
free 

(PDA) 

Context- 
sensitive  

(LBA) 

Recursively- 
enumerable  

(TM) 

• A containment hierarchy of classes of formal languages 
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The Central Concepts of 
Automata Theory 
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Alphabet 
An alphabet is a finite, non-empty set of 

symbols 
 We use the symbol ∑ (sigma) to denote an 

alphabet 
 Examples: 

 Binary: ∑ = {0,1}  
 All lower case letters: ∑ = {a,b,c,..z} 
 Alphanumeric: ∑ = {a-z, A-Z, 0-9} 
 DNA molecule letters: ∑ = {a,c,g,t} 
 … 
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Strings 
A string or word is a finite sequence of symbols 

chosen from ∑ 
 Empty string is ε (or “epsilon”) 

 
 Length of a string w, denoted by “|w|”, is 

equal to the number of (non- ε) characters in the 
string 
 E.g., x = 010100     |x| = 6 
 x = 01 ε 0 ε 1 ε 00 ε  |x| = ? 

 
 xy = concatentation of two strings x and y  
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Powers of an alphabet  
Let ∑ be an alphabet. 

 
 ∑k = the set of all strings of length k  

 
 ∑* = ∑0 U ∑1 U ∑2 U … 

 
 ∑+ = ∑1 U ∑2 U ∑3 U … 

 



11 

Languages 
L is a said to be a language over alphabet ∑, only if L ⊆ ∑* 

 this is because ∑* is the set of all strings (of all possible 
length including 0) over the given alphabet ∑ 

Examples: 
1. Let L be the language of all strings consisting of n 0’s 

followed by n 1’s:  
 L = {ε,01,0011,000111,…} 

2. Let L be the language of all strings of with equal number of 
0’s and 1’s:  

  L = {ε,01,10,0011,1100,0101,1010,1001,…} 
 

 
Definition: Ø denotes the Empty language 
 Let L = {ε}; Is L=Ø?  

 
NO 

Canonical ordering of strings in the language 
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The Membership Problem 
Given a string w ∈∑*and a language L 

over ∑, decide whether or not w ∈L. 
 
Example: 
 Let w = 100011 
 Q) Is w ∈ the language of strings with 

equal number of 0s and 1s? 
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Finite Automata 
 Some Applications 

 Software for designing and checking the behavior 
of digital circuits 

 Lexical analyzer of a typical compiler 
 Software for scanning large bodies of text (e.g., 

web pages) for pattern finding 
 Software for verifying systems of all types that 

have a finite number of states (e.g., stock market 
transaction, communication/network protocol) 
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Finite Automata : Examples 
 On/Off switch 

 
 

 Modeling recognition of the word “then” 
 

Start state Final state Transition Intermediate  
state 

action 

state 
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Structural expressions 
 Grammars 
 Regular expressions 

 E.g., unix style to capture city names such 
as “Palo Alto CA”: 
 [A-Z][a-z]*([ ][A-Z][a-z]*)*[ ][A-Z][A-Z] 

 
Start with a letter 

A string of other  
letters (possibly 
empty) 

Other space delimited words 
(part of city name) 

Should end w/ 2-letter state code 
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Formal Proofs 
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Deductive Proofs 
From the given statement(s) to a conclusion 

statement (what we want to prove) 
 Logical progression by direct implications 
 
Example for parsing a statement: 
 “If y≥4,    then 2y≥y2.” 

 
 
(there are other ways of writing this). 

given conclusion 
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Example: Deductive proof  
Let Claim 1: If y≥4, then 2y≥y2.  
 
Let x be any number which is obtained by adding the squares 

of 4 positive integers. 
Claim 2: 
Given x and assuming that Claim 1 is true, prove that 2x≥x2 

 Proof: 
1) Given: x = a2 + b2 + c2 + d2 

2) Given: a≥1, b≥1, c≥1, d≥1 
3)  a2≥1, b2≥1, c2≥1, d2≥1 (by 2) 
4)  x ≥ 4   (by 1 & 3) 
5)  2x ≥ x2   (by 4 and Claim 1)  

        “implies” or “follows” 



On Theorems, Lemmas and Corollaries 
We typically refer to:  
 A major result as a “theorem” 
 An intermediate result that we show to prove a larger result as a 

“lemma” 
 A result that follows from an already proven result as a 

“corollary” 
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An example: 
Theorem: The height of an n-node binary 
tree is at least floor(lg n) 
Lemma: Level i of a perfect binary tree has 
2i nodes.  
Corollary: A perfect binary tree of height h 
has 2h+1-1 nodes. 
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Quantifiers 
“For all” or “For every”  

 Universal proofs 
 Notation*=?   

“There exists” 
 Used in existential proofs 
 Notation*=? 

Implication is denoted by => 
 E.g., “IF A THEN B” can also be written as “A=>B”  

*I wasn’t able to locate the symbol for these notation in powerpoint. Sorry! Please follow the standard notation 
for these quantifiers. These will be presented in class. 
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Proving techniques 
 By contradiction 

 Start with the statement contradictory to the given 
statement 

 E.g., To prove (A => B), we start with: 
 (A and ~B) 
 … and then show that could never happen 

 
What if you want to prove that “(A and B => C or D)”? 

 
 By induction 

 (3 steps) Basis, inductive hypothesis, inductive step 
 By contrapositive statement 

 If A then B  ≡ If ~B then ~A 
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Proving techniques… 
 By counter-example 

 Show an example that disproves the claim 
 

 Note: There is no such thing called a  
“proof by example”!  
 So when asked to prove a claim, an example that 

satisfied that claim is not a proof  
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Different ways of saying the same 
thing  

 “If H then C”: 
i. H implies C 
ii. H => C  
iii. C if H 
iv. H only if C 
v. Whenever H holds, C follows 
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“If-and-Only-If” statements 
 “A if and only if B”   (A <==> B) 

 (if part) if B then A   ( <= ) 
 (only if part) A only if B  ( => ) 

   (same as “if A then B”) 
 “If and only if” is abbreviated as “iff” 

 i.e., “A iff B” 
  Example: 

 Theorem: Let x be a real number. Then floor of x = 
ceiling of x if and only if x is an integer. 

 Proofs for iff have two parts  
 One for the “if part” & another for the “only if part” 
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Summary  
 Automata theory & a historical perspective 
 Chomsky hierarchy  
 Finite automata 
 Alphabets, strings/words/sentences, languages 
 Membership problem 
 Proofs: 

 Deductive, induction, contrapositive, contradiction, 
counterexample 

 If and only if 
 

 Read chapter 1 for more examples and exercises 
 


	Introduction to Automata Theory
	What is Automata Theory?
	Alan Turing (1912-1954)
	Theory of Computation: A Historical Perspective
	Languages & Grammars
	The Chomsky Hierachy
	The Central Concepts of Automata Theory
	Alphabet
	Strings
	Powers of an alphabet 
	Languages
	The Membership Problem
	Finite Automata
	Finite Automata : Examples
	Structural expressions
	Formal Proofs
	Deductive Proofs
	Example: Deductive proof 
	On Theorems, Lemmas and Corollaries
	Quantifiers
	Proving techniques
	Proving techniques…
	Different ways of saying the same thing 
	“If-and-Only-If” statements
	Summary	

