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1. Introduction

In the modern life we depend completely on the electricity as the most useful form of energy.
The technology on the use of electricity has been developed in all directions and also in very
sophisticated manner. All the electric devices have to use electric power (energy) and they
use both direct current (DC) and alternating current (AC). Today a powerful technology of
manipulation of frequency and power becomes available due to the development of chopping
devices as IGBT and other methods. This technology of manipulating electric current and
voltage, however, unavoidably produces electromagnetic noise with high frequency. We are
now filled with electromagnetic noise in our circumstance.
This situation seems to be caused by the fact that we do not have a theory to describe the
electromagnetic noise and to take into account the effect of the circumstance in the design of
electric circuit. We have worked out such a theory in one of our papers as "Three-conductor
transmission-line theory and origin of electromagnetic radiation and noise" (Toki & Sato
(2009)). In addition to the standard two-conductor transmission-line system, we ought
to introduce one more transmission object to treat the circumstance. As the most simple
object, we introduce one more line to take care of the effect of the circumstance. This third
transmission-line is the place where the electromagnetic noise (electromagnetic wave) goes
through and influences the performance of the two major transmission-lines. If we are
able to work out the three-conductor transmission-line theory by taking care of unwanted
electromagnetic wave going through the third line, we understand how we produce and
receive electromagnetic noise and how to avoid its influence.
To this end, we had to introduce the coefficient of potential instead of the coefficient of
capacity, which is used in all the standard multi-conductor transmission line theories (Paul
(2008)). We are then able to introduce the normal mode voltage and current, which are
usually considered in ordinary calculations, and at the same time the common mode voltage
and current, which are not considered at all so far and are the sources of the electromagnetic
noise (Sato & Toki (2007)). We are then able to provide the fundamental coupled differential
equations for the TEM mode of the three-conductor transmission-line theory and solve the
coupled equations analytically. As the most important consequence we obtain that the main
two transmission-lines should have the same qualities and same geometrical shapes and their
distances to the third line should be the same in order to decouple the normal mode from
the common mode. The symmetrization is the key word to minimize the influence of the
circumstance and hence the electromagnetic noise to the electric circuit. The symmetrization
makes the normal mode decouple from the common mode and hence we are able to avoid the
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influence of the common mode noise in the use of the normal mode (Toki & Sato (2009)). The
symmetrization has been carried out at HIMAC (Heavy Ion Medical Accelerator in Chiba)
(Kumada (1994)) one and half decade ago and at Main Ring of J-PARC recently (Kobayashi
(2009)). Both synchrotrons are working well at very low noise level.
As the next step, we went on to develop a theory to couple the electric circuit theory with
the antenna theory (Toki & Sato (2011)). This work is motivated by the fact that when the
electromagnetic noise is present in an electric circuit, we observe electromagnetic radiation in
the circumstance. In order to complete the noise problem we ought to couple the performance
of electric circuit with the emission and absorption of electromagnetic radiation in the circuit.
To this end, we introduce the Ohm’s law as one of the properties of the charge and current
under the influence of the electromagnetic fields outside of a thick wire. As a consequence of
the new multi-conductor transmission-line theory with the antenna mode, we again find that
the symmetrization is the key technology to decouple the performance of the normal mode
from the common and antenna modes (Toki & Sato (2011)).
The Ohm’s law is considered as the terminal solution of the equation of motion of massive
amount of electrons in a transmission-line of a thick wire with resistance, where the collisions
of electrons with other electrons and nuclei take place. This consideration is able to put the
electrodynamics of electromagnetic fields and dynamics of electrons in the field theory. We are
also able to discuss the skin effect of the TEM mode in transmission-lines on the same footing.
In this paper, we would like to formulate the multi-conductor transmission-line theory on the
basis of electrodynamics, which includes naturally the Maxwell equations and the Lorentz
force.
This paper is arranged as follows. In Sect.2, we introduce the field theory on electrodynamics
and derive the Maxwell equation and the Lorentz force. In Sect.3, we develop the
multiconductor transmission-line (MTL) equations for the TEM mode. We naturally include
the antenna mode by taking the retardation potentials. In Sect.4, we provide a solution
of one antenna system for emission and absorption of radiation. In Sect.5, we discuss a
three-conductor transmission-line system and show the symmetrization for the decoupling
of the normal mode from the common and antenna modes. In Sect.6, we introduce a
recommended electric circuit with symmetric arrangement of power supply and electric load
for good performance of the electric circuit. Sect.7 is devoted to the conclusion of the present
study.

2. Electrodynamics

We would like to work out the multiconductor transmission-line (MTL) equation with
electromagnetic emission and absorption. To this end, we should work out fundamental
equations for a multiconductor transmission-line system by using the Maxwell equation
and the properties of transmission-lines. We shall work out electromagnetic fields
outside of multi-conductor transmission-lines produced by the charges and currents in the
transmission-lines. In this way, we are able to describe electromagnetic fields far outside
of the transmission-line system so that we can include the emission and absorption of
electromagnetic wave. For this purpose, we take the electrodynamics field theory, since
a multiconductor transmission-line system is a coupled system of charged particles and
electromagnetic fields. In this way, we are motivated to treat the scalar potential in the same
way as the vector potential and find it natural to use the coefficients of potential instead of the
coefficients of capacity as the case of the coefficients of inductance.
We discuss here the dynamics of charged particles with electromagnetic fields in terms of
the modern electrodynamics field theory. For those who are not familiar to this theory, you
can skip this paragraph and start with the equations (6) and (7). In the electrodynamics, we
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have the gauge theory Lagrangian, where the interaction of charge and current of a Fermion
(electron) field ψ with the electromagnetic field Aµ is determined by the following Lagrangian,

L =
1

4
Fµν(x)Fµν(x) + ψ̄(iγµDµ − m)ψ . (1)

with Dµ = ∂µ − ieAµ, where Aµ is the electromagnetic potential. Here, Fµν(x) = ∂µ Aν(x)−

∂ν Aµ(x) is the anti-symmetric tensor with the four-derivative defined as ∂µ = ∂
∂xµ = ( ∂

c∂t ,∇)
and the four-coordinate as xµ = (ct, x). Here, electrons are expressed by the Dirac field ψ,
which possesses spin as the source of the permanent magnet and therefore we do not have to
introduce the notion of the perfect conductor anymore (Maxwell (1876)). The vector current is
written by using the charged field as jµ = ψ̄γµψ. The variation of the above Lagrangian with
respect to Aµ provides the Maxwell equation with a source term expressed in the covariant
form (Maxwell (1876)).

∂µFµν(x) = ejν(x) (2)

They are Maxwell equations, which become clear by writing explicitly the anti-symmetric
tensor in terms of the electric field E and magnetic field B.

Fµν =

⎛

⎜

⎜

⎝

0 1
c Ex

1
c Ey

1
c Ez

− 1
c Ex 0 −Bz By

− 1
c Ey Bz 0 −Bx

− 1
c Ez −By Bx 0

⎞

⎟

⎟

⎠

(3)

Here, E = −∇V − ∂A
∂t and B = ∇ × A. The two more equations are explicitly written as

∇ · E = 1
ε q and ∇× B − 1

c2
∂E
∂t = µj by using the above equation of motion (2).

It is convenient to write the Maxwell equation in the covariant form for the symmetry of the
relevant quantities without worrying about the factors as c, µ and ε. The four-vector potential
is written by the scalar and vector potentials as Aµ(x) = (V(x)/c, A(x)) and the four-current,
which is a source term of the potentials, is given as ejµ = µ(cq, j). Here, the charge q and
current j are both charge and current densities. The contra-variant four vector xµ is related
with the co-variant four vector xµ as xµ = gµνxν. Here, the metric is gµν = 1 for µ = ν = 0
and gµν = −1 for µ = ν = 1, 2, 3 and zero otherwise (Bjorken (1970)). The Maxwell equation
(2) gives the following differential equation (Maxwell (1876)).

∂µ∂µ Aν(x)− ∂µ∂ν Aµ(x) = ejν(x) (4)

In order to simplify the differential equation and also to keep the symmetry among the scalar
and vector potentials, we take the Lorenz gauge ∂µ Aµ(x) = 0 (Lorenz (1867); Jackson (1998)).
In this case, we get a simple covariant equation for the potential with the source current.

∂µ∂µ Aν(x) = ejν(x) (5)

This expression based on the field theory shows the fact that the dynamics of the four-vector
potential Aν is purely given by the corresponding source current jν. This fact should be
contrasted with the standard notion that the time-dependent electric and magnetic fields are
the sources from each other through the Ampere-Maxwell’s law and the Faraday’s law in
the Maxwell equation. When there is no source term jν = 0 in the space outside of the
conductors, the four-vector potential satisfies the wave equation with the light velocity. In
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the electrodynamics, the propagation of electromagnetic wave with the velocity of light is the
property of a vector particle with zero mass.
We express now the four-vectors in the standard three-vector form. The scalar potential V(x, t)
and the vector potential A(x, t) should satisfy the following equations with sources in the
Lorenz gauge.

(

∂2

c2∂t2
−∇2

)

V(x, t) =
1

ε
q(x, t) (6)

(

∂2

c2∂t2
−∇2

)

A(x, t) = µj(x, t) (7)

These two second-order differential equations (6) and (7) clearly show that the charge and
current are the sources of electromagnetic fields. For the propagation of electromagnetic
power through a MTL system, we are interested in the electromagnetic fields outside of thick
electric wires with resistance. In this case, we are able to solve the differential equations by
using retardation charge and current (Lorenz (1867); Rieman (1867); Jackson (1998)).

V(x, t) =
1

4πε

∫

dx′
q(x′, t − |x−x′ |

c )

|x − x′|
(8)

A(x, t) =
µ

4π

∫

dx′
j(x′, t − |x−x′ |

c )

|x − x′|
(9)

These expressions are valid for the scalar and vector potentials outside of the
transmission-lines. The presence of the retardation effect in the time coordinate in the
integrand is important for the production of electromagnetic radiation. The retardation terms
generate a finite Poynting vector going out of a surface surrounding the MTL system not only
at a far distance but also at a boundary.
This part is related with the derivation of the Lorentz force from the field theory. You may
skip this part and directly move to the next section. It is important to derive the current
conservation equation of the field theory, which is related with the behavior of charged
particles. The current conservation is derived by writing an equation of motion for ψ using
the above Lagrangian as

(iγµ∂µ + eγµ Aµ − m)ψ(x) = 0 . (10)

Using this Dirac equation together with the complex-conjugate Dirac equation, we obtain

∂µ jµ(x) = 0 , (11)

which is the charge conservation law of the field theory. The electromagnetic potential for
a charged particle is given from the above equation as ejµ Aµ. From this expression, we are
able to derive an electromagnetic force exerted on a charged particle. To write it explicitly, we
ought to use a Lagrangian of a point particle with the electromagnetic potential ejµ Aµ, where
jµ = (c, v).

L =
1

2
m(

dx

dt
)2 − eV(x) + ev · A(x) (12)
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We use the Euler equation − ∂L
∂x + d

dt
∂L
∂v = 0, we get

m
d2x

dt2
+ e∇V(x)− e∇(A(x) · v) + e

dA(x)

dt
= 0 . (13)

Here, v = dx
dt is used. We have the relations

dA(x)

dt
=

∂A(x)

∂t
+ (v · ∇)A(x) , (14)

and

B × v = (∇× A)× v = (v · ∇)A(x)−∇(A(x) · v) . (15)

Hence, the Lorentz force is written as

FL = eE(x) + ev × B(x) . (16)

with E(x) = −∇V(x) − ∂A(x)
∂t . Charged particles are influenced by the electromagnetic

field through the Lorentz force given above. In the present discussion, we use the
phenomenological relation in terms of the Ohm’s law for the relation of the current with
the electromagnetic field. Because the total energy should be conserved, the summation of
electromagnetic power of circuit, energy of emission and absorption of electromagnetic wave,
and Joule’s heat energy is kept constant in a multiconductor transmission-line system.

3. Multiconductor transmission-line theory with radiation

We start with the properties of transmission-lines, where the charge and current are present
and they oscillate in space and time for the propagation of electromagnetic energy through
the transmission-lines. We introduce N parallel lines numbered by i (= 1, ..., N) and its
direction x with a round cross section of a thick wire with resistance. First of all, we have
the charge conservation equation (11) of the field theory, which indicates the conservation
of charge ∂q/∂t + ∇j = 0 and the continuity equation of the standard electromagnetism.
We introduce i-th current and i-th charge by integrating j and q over the cross section of
each transmission-line at a space-time position x, t taking into account the skin effect in the
transmission-line, Ii(x, t) =

∫

dsjx
i (x, y, z, t) and Qi(x, t) =

∫

dsqi(x, y, z, t), where ds = dydz.

∂Ii(x, t)

∂x
= −

∂Qi(x, t)

∂t
(17)

Here, Ii(x, t) and Qi(x, t) denote the conduction current and true electric charge of the i-th
transmission-line at a position x and a time t. The subcript i indicates the charge and
current of the i-th transmission-line. This equation indicates that a current goes through a
transmission line while satisfying the continuity equation. Hence, the next natural equation
for a transmission-line is the Ohm’s law for a current due to an electric field. The Ohm’s law
relates the electric field Ex

i (x, t) at the inner surface of the resistive conductor in the direction
of the current through the resistance Ri with the current Ii(x, t).

Ri Ii(x, t) = Ex
i (x, t) (18)

Here, the superscript x denotes the x component of the electric field of the i-th
transmission-line. We note that the resistance Ri should depend on the wave-length of the
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electromagnetic wave going through each transmission-line due to the skin effect (Takeyama

(1983)). With a finite E‖ at the surfaces of transmission-lines together with Bθ perpendicular

to both E⊥ and E‖, we have an electromagnetic wave in far distance. The boundary condition
in the direction of the current even for the resistive conductor is identical to that for the perfect

conductor so that E‖ is equivalent to Ex
i (x, t) as

E
‖
i (x, t) = Ex

i (x, t) . (19)

The electric field E
‖
i (x, t) is expressed in terms of the scalar potential Vi(x, t) and the vector

potential Ai(x, t) in the direction of the current Ii(x, t).

E
‖
i (x, t) = −

∂Vi(x, t)

∂x
−

∂Ai(x, t)

∂t
(20)

Hence, from Eqs. (18), (19) and (20) we have the following relation.

−
∂Vi(x, t)

∂x
−

∂Ai(x, t)

∂t
= Ri Ii(x, t) (21)

It is very interesting to point out that this equation with Ri = 0 corresponds to the
expression of the electromagnetic potentials at the surface of the transmission-line for the
TEM mode, which is worked out for the transverse electric and magnetic fields around the
i-th conductor-line (Toki & Sato (2009); Paul (2008)). In this sense, we want to note again
that the scalar and vector potentials here are those at the surface of the i-th conductor-line so
that the TEM mode fields are obtained by using the Maxwell equation at the boundary and
the outside of the conductor-line. The TEM mode fields are produced by the current and the
charge in thick wires and the Ohm’s law provides the effect of the TEM mode fields on these
currents. We ought to solve the resulting coupled equations for the propagation of the TEM
mode through a multiconductor transmission line system.
We consider now a MTL system consisting of many nearby parallel lines with circular cross
sections numbered by i = 1, ..N. We relate then the scalar and vector potentials at the surface
of each line with charges and currents in all the lines. The charges and currents are present
in the transmission-lines and we express them as Qi(x, t) and Ii(x, t). The relations of the
charge and current with the scalar and vector potentials have been worked out above as the
properties of each transmission-line. We take the direction of the current in the x direction
and the integral over x′ is replaced by summation over parallel lines over j and integral in

the direction x′ of the parallel lines. Because the distance |x − x′| is given as ((x − x′)2 +

d2
ij)

1/2 where dij is a distance between two parallel ij lines, we can write the scalar and vector

potentials at the surface of the i-th line as

Vi(x, t) =
1

4πε

N

∑
j=1

∫ l

0
dx′

Qj(x′, t −
√

(x − x′)2 + d2
ij/c)

√

(x − x′)2 + d2
ij

, (22)

Ai(x, t) =
µ

4π

N

∑
j=1

∫ l

0
dx′

Ij(x′, t −
√

(x − x′)2 + d2
ij/c)

√

(x − x′)2 + d2
ij

. (23)

The denominators of the above two equations indicate the distance of two points in two lines
denoted by ij. For the diagonal case i = j, dij = 0 and as will be discussed the finite size effect
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of each transmission-line is to be taken care by using the geometrical mean distance (GMD)
in the same manner as the Neumann’s formula (Takeyama (1983)). We also mention here that
we define the scalar and vector potentials at the surface of each transmission-line. Hence, we
consider that dij is of the order of the radius of each thick wire. We assume that the length
of the wire l is much larger than the radius of each wire and the distance between two lines,
l ≫ dij. Hence, we consider the case where all the transmission-lines are packed together.
These four equations; the continuity equation (17), the combined equation (21) of the Ohm’s
law (18) and the boundary condition (19), the scalar potential (22) and the vector potential
(23), are the fundamental equations of the MTL system. We are able to know the performance
of a MTL system by solving these four equations, which are now coupled integro-differential
equations. Here, it is important to comment that the expressions for the scalar potential (22)
and the vector potential (23) provide the electromagnetic fields outside of the wires and even
at far distance if we introduce other coordinates y, z in addition to x to express the entire space.
We further comment that the electromotive force (EMF) method for the input impedance of
an antenna uses back the entire radiation energy to calculate the electromagnetic field at the
surface of a wire (Stratton (1941)). Hence, these four equations are able to provide the behavior
of electromagnetic wave even far outside of the MTL system. Therefore, when we solve these
four equations we know not only the behavior of the MTL system but also the electromagnetic
fields in the entire space outside of the thick wires. We are then able to include naturally
emission and absorption of the EM waves. We comment here that the retardation charge and
current in Eqs. (22) and (23) are responsible for a Poynting vector going out at far distance.
We treat the retardation effect in the integral by considering that the coupled differential

equations are linear and all the quantities have the time dependence as Qi(x, t) = Qi(x)e−jωt

and Ii(x, t) = Ii(x)e−jωt. Inserting these expressions to the above equations, we get

Vi(x, t) =
1

4πε

N

∑
j=1

∫ l

0
dx′

Qj(x′, t)e
jω

√

(x−x′)2+d2
ij/c

√

(x − x′)2 + d2
ij

, (24)

Ai(x, t) =
µ

4π

N

∑
j=1

∫ l

0
dx′

Ij(x′, t)e
jω

√

(x−x′)2+d2
ij/c

√

(x − x′)2 + d2
ij

. (25)

These expressions for the scalar and vector potentials provide the right behaviors of
electromagnetic fields far outside of the MTL system. Hence, these relations together with the
continuity equation and the combined relation of the Ohm’s law and the boundary condition
provide a proper set of equations of electromagnetic waves with radiation. Since these
integro-differential coupled equations are difficult to handle, we shall find an appropriate
approximation.
In order to find out an appropriate approximation at a boundary of a thick wire, we study

the property of the integrand with the retardation terms. The function 1/
√

(x − x′)2 + d2
ij

has a strong peak at x′ = x and drops rapidly as x′ deviates from x. Furthermore, the

real part of the factor e
jω

√

(x−x′)2+d2
ij/c

behaves as cos(ω
√

(x − x′)2 + d2
ij/c) and provides a

further cutoff with |x − x′|. Hence, the integral has a dominant contribution in the narrow
region close to the position x′ = x. Hence, it is a good approximation to pull out the charge
Qi and current Ii from the integral by taking their arguments at x. This fact indicates that
the electric field has the perpendicular component to the transmission-line and the magnetic
field has the axial component produced by the current at the same coordinate. Hence, the
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TEM mode propagates through the transmission-lines. We shall call this as the TEM mode
approximation. It should be noted here as mentioned before that the real part of the scalar and

vector potentials could satisfy the boundary condition of E⊥ for the resistive conductor due

to the TEM mode approximation. The imaginary part behaves as sin(ω
√

(x − x′)2 + d2
ij/c)

and together with the denominator, the integrant is the zero-th order spherical Bessel function

j0(ω
√

(x − x′)2 + d2
ij/c) with some factor and drops rapidly with |x − x′| and oscillates at

large ω. We may take the TEM mode approximation for the imaginary part as well at large ω,
but it seems better to keep the charge and current in the integral. This is particularly the case
when the angular velocity ω is small. Hence, we write the scalar and vector potentials in the
TEM mode approximation for the real part and keep the integral form for the imaginary part.

Vi(x, t) =
1

4πε

N

∑
j=1

∫ l

0
dx′

cos(ω
√

(x − x′)2 + d2
ij/c)

√

(x − x′)2 + d2
ij

Qj(x, t) (26)

+j
1

4πε

∫ l

0
dx′

Qt(x′, t)sin(ω|x − x′|/c)

|x − x′|
,

Ai(x, t) =
µ

4π

N

∑
j=1

∫ l

0
dx′

cos(ω
√

(x − x′)2 + d2
ij/c)

√

(x − x′)2 + d2
ij

Ij(x, t) (27)

+j
µ

4π

∫ l

0
dx′

It(x′, t)sin(ω|x − x′|/c)

|x − x′|
.

It is very important to notice that the dij dependence is negligibly small when dij ≪
c
ω and we

drop the ij dependence in the imaginary part. Hence, we can sum up over the wire number

and write the total charge and current as Qt(x′, t) = ∑
N
j Qi(x′, t) and It(x′, t) = ∑

N
j Ii(x′, t).

We write therefore the above relations as

Vi(x, t) = ∑
j

Pij(ω)Qj(x, t) + jMeQI
t (l, x, t) , (28)

Ai(x, t) = ∑
j

Lij(ω)Ij(x, t) + jMm I I
t (l, x, t) .

Here, we have defined the integrated charge and current as

QI
t (l, x, t) =

∫ l

0
dx′

Qt(x′, t)sin(ω|x − x′|/c)

|x − x′|
(29)

I I
t (l, x, t) =

∫ l

0
dx′

It(x′, t)sin(ω|x − x′|/c)

|x − x′|
.

with the coefficients defined as Me =
1

4πε and Mm =
µ

4π . It is very important to note that the
integrals of the charge and current over the wire length generate the parallel component of
the electric field at the wire surface. This is important for the radiation of the EM wave in the
far distance.
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We shall calculate now these coefficients Pij and Lij by using the Neumann’s
formula (Takeyama (1983)). To this end, we have to take into account the finite size effect of
each transmission-line and also the skin effect. We shall study the finite size effect including
the skin effect in a future publication (Sato & Toki (2011)). We first write the well known
coefficient of inductance Lij given by the Neumann’s formula (Takeyama (1983)).

Lij(ω) =
µ

4π

∫ l

0
dx′

cos(ω
√

(x − x′)2 + d2
ij/c)

√

(x − x′)2 + d2
ij

(30)

∼
µ

4πl

∫ l

0
dx

∫ l

0
dx′

cos(ω
√

(x − x′)2 + d2
ij/c)

√

(x − x′)2 + d2
ij

=
µ

2π

(

ln
2l̃(ω)

dij
− 1

)

.

The second line of this expression is the approximation of the Neumann’s formula. We have
to take into account further the finite size effect together with the skin effect. These effects
are worked out by introducing the geometrical mean distance (GMD). The GMD is defined
as (Takeyama (1983))

ln ãij =
1

SiSj

∫ ∫

ln r(si, sj : dij)dsidsj , (31)

where r(si, sj : dij) includes the distance between the two lines dij and the skin effect. Here,

dsi(dsj) is a small area in a wire i(j) with the total area Si(Sj). With the GMD, we can finally
write the coefficient of inductance as

Lij(ω) =
µ

2π

(

ln
2l̃(ω)

ãij
− 1

)

. (32)

We can work out the coefficients of potential Pij exactly in the same way as those of inductance
Lij in the TEM mode approximation (Toki & Sato (2009)). This should be the case, because of
the continuity equation, which forces the spatial distributions of the charge and current are
the same.

Pij(ω) =
1

2πε

(

ln
2l̃(ω)

ãij
− 1

)

(33)

The usual coefficients used are the coefficients of capacity C in the MTL equations (Paul

(2008)). This coefficient Cij is the matrix inversion of the coefficients of potential C = P−1. We
mention that it is an essential feature to write P instead of C in the present derivation, because
a capacitance per unit length is no longer an adequate quantity in the MTL theory (Toki &
Sato (2009)).
We can work out the relations among the charges and currents and the scalar and vector
potentials together with the electric resistances for the TEM mode. In order to use these

241Electrodynamics of Multiconductor Transmission-line Theory with Antenna Mode

www.intechopen.com



10 Will-be-set-by-IN-TECH

relations we take time derivatives of the above coupled equations.

∂Vi(x, t)

∂t
=

N

∑
j

Pij

∂Qj(x, t)

∂t
+ jMe

∂QI
t (l, x, t)

∂t
, (34)

∂Ai(x, t)

∂t
=

N

∑
j

Lij

∂Ij(x, t)

∂t
+ jMm

∂I I
t (l, x, t)

∂t
. (35)

Here, we have dropped writing ω for the coefficients of all the terms for simplicity of writing.
By replacing the charge Qj(x, t) by the current using the continuity equation (17), the above
equation (34) provides

∂Vi(x, t)

∂t
= −

N

∑
j

Pij

∂Ij(x, t)

∂x
+ jMe

∂QI
t (l, x, t)

∂t
. (36)

We use the combined equation (21) of the Ohm’s law (18) and the boundary condition (19) in
the above equation (35) in order to write the following equation in terms of the scalar potential
as

∂Vi(x, t)

∂x
= −

N

∑
j

Lij

∂Ij(x, t)

∂t
− jMm

∂I I
t (l, x, t)

∂t
− Ri Ii(x, t) . (37)

We consider Eqs. (36) and (37) as the fundamental equations for the TEM modes in the
MTL system with emission and absorption. As we have seen the inclusion of the retardation
terms with the use of the properties of transmission-lines of thick wires with resistance is
a natural extension of the standard multiconductor transmission-line theory. We comment
here that similar equations without the retardation terms for the case of one transmission
line was derived by Kirchhoff (Kirchhoff (1857)). The development later of the Kirchhoff
work is described in a book of Ohta (Ohta (2005)). We shall see that these two retardation
terms provide naturally the emission and absorption of electromagnetic waves through the
multiconductor transmission-line system. We emphasize here that electromagnetic waves
go through a multiconductor transmission-line system in the TEM mode while making
electromagnetic radiation.

4. TEM mode of one line antenna

Since we have worked out the MTL equation including radiation, we would like to discuss
an isolated system of one-conductor transmission-line so that we write explicitly how the
electromagnetic energy is converted into Joule energy and radiation energy. In principle, we
may have to consider the influence of the circumstance even for one-line antenna. However,
for simplicity and also for the sake of understanding the antenna mode, we study the one-line
antenna system using the new theory. Here, we have in mind the case of one transmission-line
antenna and deal with the case that the current changes from its full value to the vanishing
value. We write a set of the antenna mode equation using Eqs. (36) and (37) as

∂V(x, t)

∂t
= −P

∂I(x, t)

∂x
+ jMe

∂QI(l, x, t)

∂t
. (38)

242 Electromagnetic Waves Propagation in Complex Matter

www.intechopen.com



Electrodynamics of Multiconductor Transmission-line Theory with Antenna Mode 11

and

∂V(x, t)

∂x
= −L

∂I(x, t)

∂t
− jMm

∂I I(l, x, t)

∂t
− RI(x, t) . (39)

The quantities QI and I I are those defined in Eqs. (29) by dropping the suffix t because here
we treat one-line antenna. These expressions for the integrated charge and current together
with those of the coefficients of potential P and inductance L remind us the functions of sine
and cosine integrals Si and Ci in the antenna theory (Stratton (1941)).
Hence, we write the one antenna equation as

∂V(x, t)

∂t
= −cZ

∂I(x, t)

∂x
+ jMc

∂QI(l, x, t)

∂t
, (40)

∂V(x, t)

∂x
= −

Z

c

∂I(x, t)

∂t
− j

M

c

∂I I(l, x, t)

∂t
− RI(x, t) .

Here, we would like to write explicitly the characteristic impedance Z, the resistance R and
the characteristic antenna mode coefficient M for an one-conductor transmission-line system.
Since we are dealing with one line, the characteristic impedance is written as

Z =
1

2π

√

µ

ε

(

ln
2l̃

ã11
− 1

)

. (41)

This impedance is featured to include the length of the line-antenna explicitly. The resistance is
simply the one of the transmission-line R = R1 and the characteristic antenna mode coefficient

is M = 1
4π

√

µ/ε. The characteristic impedance Z resembles the coefficient of the antenna
theory (Stratton (1941)).

The integrated quantities QI and I I are those related with the charge and current integrated

over the length, and we can fix the time dependence of the potential V(x, t) = V(x)e−jωt and

correspondingly for the current I(x, t) = I(x)e−jωt. We can write then a coupled differential
equation for a certain ω.

dV(x)

dx
= j

Zω

c
I(x)− RI(x)−

Mω

c
I I(l, x) , (42)

−jωV(x) = −Zc
dI(x)

dx
+ McωQI(l, x) .

In order to proceed from here, we consider the case of long wave length. This approximation
corresponds to the long wave length approximation in the antenna theory.

QI(l) ∼
ω

c

∫ l

0
dx′Q(x′) (43)

I I(l) ∼
ω

c

∫ l

0
dx′ I(x′) .

We insert the second equation to the first one of Eq. (42) and obtain a second order
integro-differential equation for the current.

d2 I(x)

dx2
= −

ω2

c2
I(x)− j

Rω

Zc
I(x)− j

Mω2

Zc2
I I(l) . (44)
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We note that this equation is a second order linear differential equation with a constant, if we
consider the last term is known. In this case, we can write a general solution as

I(x) = iejkx + i′e−jkx −
j

1 + j Rc
Zω

M

Z
I I(l) . (45)

Here k = kR + jkI =
ω
c

√

1 + j Rc
Zω . By inserting this solution to the second equation (42) with

the long wave length approximation, we get

V(x) =
Zkc

ω
(iejkx − i′e−jkx) + jMcQI(l) . (46)

We should keep in mind that these solutions for I(x) and V(x) are implicit solutions. Namely,

I I(l) and QI(l) are obtained by knowing the current I(x) and Q(x). Of course, when the
boundary conditions at the center and its ends of the transmission line are given, we are able
to use the above solutions for any case of interest.
As the most interesting case, we consider the standard linear antenna which could operate
for radiation-emission as a transmitter or for radiation-absorption as a receiver. For this
purpose, a power supply or a passive lumped circuit element is placed in the middle of a
transmission-line, respectively, and both ends are open. Hence, the boundary conditions in
this case are

V(x = +ε) = V(0) , (47)

V(x = −ε) = −V(0) ,

I(x = l) = 0 ,

I(x = −l) = 0 .

These boundary conditions fix a relation of i and i′ of Eq. (45) and hence the current I(x)
and the potential V(x) in terms of i. We write the equation to fix i′ in terms of i by using the
condition that the current vanishes at the end of the antenna.

I(l) = iejkl + i′e−jkl −
j

1 + j Rc
Zω

M

Z
I I(l) = 0 (48)

With this relation and Eq. (45), we are able to write I(0) in a compact form.

I(0) = (1 − ejkl)i + (1 − e−jkl)i′ (49)

In the mean time, we get an implicit expression of I I(l) by integrating I(x) of Eq. (45) from

x = 0 to x = l and find a more compact expression for I I(l) in terms of i and i′.

I I(l) =
(1 + j Rc

Zω )
jω
kc [(1 − ejkl)i − (1 − e−jkl)i′]

1 + j Rc
Zω + j Mωl

Zc

(50)

We can then solve for i′ in terms of i by using Eq. (48).

i′ = −
(1 + j Rc

Zω + j Mωl
Zc )ejkl + Mω

Zkc (1 − ejkl)

(1 + j Rc
Zω + j Mωl

Zc )e−jkl − Mω
Zkc (1 − e−jkl)

i (51)
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Substituting this expression to Eq. (49), we get I(0) in terms of i.

I(0) =
(1 + j Rc

Zω + j Mωl
Zc )(e−jkl − ejkl)− 2 Mω

Zkc (2 − ejkl − e−jkl)

(1 + j Rc
Zω + j Mωl

Zc )e−jkl − Mω
Zkc (1 − e−jkl)

i . (52)

In order to obtain V(0), we have to know QI(l), which is obtained as QI(l) = −
j
c (I(l)− I(0)).

Since we take the boundary condition I(l) = 0, we find

QI(l) =
j

c
I(0) (53)

=
j

c

(1 + j Rc
Zω + j Mωl

Zc )(e−jkl − ejkl)− 2 Mω
Zkc (2 − ejkl − e−jkl)

(1 + j Rc
Zω + j Mωl

Zc )e−jkl − Mω
Zkc (1 − e−jkl)

i .

We can obtain also I I(l) by using the above expressions.

I I(l) =
(1 + j Rc

Zω )
jω
kc (e

−jkl + ejkl − 2)

(1 + j Rc
Zω + j Mωl

Zc )e−jkl − Mω
Zkc (1 − e−jkl)

i (54)

=
(1 + j Rc

Zω )
jω
kc (e

−jkl + ejkl − 2)

(1 + j Rc
Zω + j Mωl

Zc )(e−jkl − ejkl)− 2 Mω
Zkc (2 − ejkl − e−jkl)

I(0)

We can obtain V(0) by using Eq. (46) with Eqs. (51), (52) and (53).

V(0) =
Zkc

ω
(i − i′) + jMcQI(l) (55)

=

(

Zkc

ω

(1 + j Rc
Zω + j Mωl

Zc )(e−jkl + ejkl) + Mω
Zkc (e

−jkl − ejkl)

(1 + j Rc
Zω + j Mωl

Zc )(ejkl − e−jkl)− 2 Mω
Zkc (2 − ejkl − e−jkl)

− M

)

I(0)

We can obtain now the input impedance by taking the ratio of V(0) and I(0).

Zs =
2V(x = 0)

I(x = 0)
(56)

= 2
Zkc

ω

(1 + j Rc
Zω + j Mωl

Zc )(e−jkl + ejkl) + Mω
Zkc (e

−jkl − ejkl)

(1 + j Rc
Zω + j Mωl

Zc )(ejkl − e−jkl)− 2 Mω
Zkc (2 − ejkl − e−jkl)

− 2M

Although lengthy, this expression does not depend on the initial input energy and is written in
terms of Z, R, M and l for a given ω, which are the properties of the transmission-line. It is the
first time to obtain the input impedance of one resistive conductor antenna. This expression
should be contrasted with the EMF method for the input impedance, which is obtained by
assuming the expression for the current in a line antenna. Here, the current is obtained by
solving the TEM mode wave equation with the boundary condition at the center and its ends
of a line antenna.
We try to understand the meaning of the input impedance by setting M = 0. In this case, the
input impedance is written as
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Zs = 2
Zkc

ω

e−jkl + ejkl

ejkl − e−jkl
(57)

= 2
Z(kR + jkI)c

ω

(e−jkR l + ejkR l)(ek I l + e−k I l) + (e−jkR l − ejkR l)(ek I l − e−k I l)

(e−jkR l − ejkR l)(ek I l + e−k I l) + (e−jkR l + ejkR l)(ek I l − e−k I l)

We consider the case that R is small and write k = ω
c + j R

2Z = kR + jkI . We set kI l ≪ 1 and
expand the exponent up to the first order.

Zs = 2
Z(kR + jkI)c

ω

kI l + jsin(kRl)cos(kRl)(1 − kI l)

sin2(kRl) + cos2(kRl)(kI l)2
(58)

∼ Rl
1

sin2(kRl)
+ j2Z

cos(kRl)

sin(kRl)

In the last step, we take the dominant terms for the case that sin(kRl) is not close to 0. The
above expression indicates that the real part corresponds to the resistance and the imaginary
part corresponds to the characteristic impedance for the TEM mode. We stress here that the
TEM mode can exist even for one-line antenna in contrast to the standard understanding
that the TEM mode is associated with at least two conductors. At the same time, the input
impedance has a resonance structure around kRl = nπ with n being an integer due to the
sine-function in the denominator. The real part has a peak structure at this point, while the
imaginary part changes sign and the small additional term makes the imaginary part to go
through zero around this point.
With these expressions for the current and potential and the input impedance, we are able to
calculate the electromagnetic power

P(x) =
1

4
(V(x)I∗(x) + V∗(x)I(x)) (59)

and the input power P(0). We can then write all the power consumed by this one-line antenna
system.

Ptotal(x = 0) = 2P(x = 0) =
1

2
(V∗(0)I(0) + V(0)I∗(0)) (60)

=
1

4
(Z∗

s + Zs)|I(0)|
2 =

1

2
ReZs|I(0)|

2

We note here that the power consumed by the one line antenna is not only used by the
radiation but also by the resistance to heat up the one line antenna.
We can express the change rate of the EM power using the coupled differential equation.

dP(x)

dx
=

1

4

(

dV(x)

dx
I∗(x) +

dV∗(x)

dx
I(x) + V∗(x)

dI(x)

dx
+ V(x)

dI∗(x)

dx

)

(61)

Substituting Eq. (42) to this expression, we can calculate the change rate as a sum of the
resistance and radiation terms.

dP(x)

dx
= −

1

2
R|I|2 −

1

4

Mω

c
(I I∗(l)I + I I(l)I∗)− j

1

4
Mc

(

QI∗(l)
dI

dx
− QI(l)

dI∗

dx

)

(62)
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We can write the integrated change rate in a compact form.

Pantenna
t =

∫ l

0

dPantenna(x)

dx
dx = −

1

2
M|I I(l)|2 +

1

2
Mc2|QI(l)|2 (63)

It is clear that the total change rate due to the antenna mode consists of the emission and
absorption terms, which are indicated by the minus sign term and the plus sign term.
We would like to comment here which process as emission or absorption occurs. When a
power supply is connected at the middle of one-conductor transmission-line, this antenna
operates for radiation-emission as a transmitter because the emission term is larger than
the absorption term. When a passive lumped circuit element is connected at the middle of
one-conductor transmission line, this antenna operates for radiation-absorption as a receiver
because the absorption term is larger than the emission term.

5. Three-conductor transmission-line system

We consider now the three-conductor transmission-line theory with emission and absorption
through the antenna mode. This is a very interesting case where the two-conductor
transmission-lines include the effect of the circumstance. In our previous publication (Toki
& Sato (2009)), we have discussed the case where the total current is zero and hence the case
without the antenna mode. The present situation with the antenna mode corresponds to the
realistic case. In this case we introduce the normal, common and antenna modes. They are
written with the currents and potentials of the three lines. Here, we consider that the lines 1
and 2 are the main lines and the line 3 denotes the circumstance.

In =
1

2
(I1 − I2) (64)

Ic =
1

2
(I1 + I2 − I3)

Ia =
1

2
(I1 + I2 + I3)

Vn = V1 − V2

Vc =
1

2
(V1 + V2)− V3

Va =
1

2
(V1 + V2) + V3

We work out the coupled integro-differential equations for the TEM mode with the retardation
term treated explicitly. There is a factor two difference between the antenna mode current and
the total current It = 2Ia. We write the results here for the normal, common and antenna
modes. We use first the integro-differential equations for N = 3 in Eq. (37) and express the
equations in terms of various modes,

∂Vn(x, t)

∂x
= −Ln

∂In(x, t)

∂t
− Lnc

∂Ic(x, t)

∂t
− Lna

∂Ia(x, t)

∂t
− Rn In − Rnc Ic − Rna Ia (65)

∂Vc(x, t)

∂x
= −Lcn

∂In(x, t)

∂t
− Lc

∂Ic(x, t)

∂t
− Lca

∂Ia(x, t)

∂t
− Rcn In − Rc Ic − Rca Ia

∂Va(x, t)

∂x
= −Lan

∂In(x, t)

∂t
− Lac

∂Ic(x, t)

∂t
− La

∂Ia(x, t)

∂t
− j2Mm

∂I I
t (l, x, t)

∂t
−Ran In − Rac Ic − Ra Ia
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In the above equations all the coefficients are written as follows,

Ln = L11 − 2L21 + L22 (66)

Lc =
1

4
(L11 + 2L12 + L22)− (L13 + L23) + L33

La =
1

4
(L11 + 2L12 + L22) + L13 + L23 + L33 ,

for the diagonal coefficients and

Lnc =
1

2
(L11 − L22)− (L13 − L23) (67)

Lna =
1

2
(L11 − L22) + (L13 − L23)

Lca =
1

4
(L11 + 2L12 + L22)− L33 ,

for the non-diagonal coefficients. We get the resistance terms as

Rn = R1 + R2 (68)

Rc =
1

4
(R1 + R2) + R3

Ra =
1

4
(R1 + R2) + R3

Rnc =
1

2
(R1 − R2)

Rna =
1

2
(R1 − R2)

Rca =
1

4
(R1 + R2)− R3

We obtain similar relations for transmission-line equations (36) including Pij as written below.

∂Vn(x, t)

∂t
= −Pn

∂In(x, t)

∂x
− Pnc

∂Ic(x, t)

∂x
− Pna

∂Ia(x, t)

∂x
(69)

∂Vc(x, t)

∂t
= −Pcn

∂In(x, t)

∂x
− Pc

∂Ic(x, t)

∂x
− Pca

∂Ia(x, t)

∂x

∂Va(x, t)

∂t
= −Pan

∂In(x, t)

∂x
− Pac

∂Ic(x, t)

∂x
− Pa

∂Ia(x, t)

∂x
+ j2Me

∂QI
t (l, x, t)

∂t

In the above equations all the coefficients are written as follows,

Pn = P11 − 2P12 + P22 (70)

Pc =
1

4
(P11 + 2P12 + P22)− (P13 + P23) + P33

Pa =
1

4
(P11 + 2P12 + P22) + P13 + P23 + P33 ,
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for the diagonal coefficients and

Pnc =
1

2
(P11 − P22)− (P13 − P23) (71)

Pna =
1

2
(P11 − P22) + (P13 − P23)

Pca =
1

4
(P11 + 2P12 + P22)− P33 ,

for the non-diagonal coefficients. All the coefficients of potential Pij are written in a compact
form as the coefficients of inductance Lij.

Lij =
µ

2π
(ln

2l̃

ãij
− 1) (72)

Pij =
1

2πε
(ln

2l̃

ãij
− 1)

Using these coefficients, we can write all the coefficients associated with the normal, common
and antenna modes. They are written as

Pn =
1

2πε
ln

ã2
12

ã11 ã22
(73)

Pc =
1

8πε
ln

ã4
13 ã4

23

ã11 ã22 ã2
12 ã4

33

Pa =
1

8πε
(ln

(2l̃)16

ã11 ã22 ã2
12 ã4

33 ã4
13 ã4

23

− 16)

Only the antenna mode coefficient Pa contains the length of the transmission-lines explicitly
and is appropriate for the antenna mode. The coupling terms are written as

Pnc =
1

2πε
ln

ã22a13

ã11 ã23
(74)

Pna =
1

2πε
ln

ã22a23

ã11 ã13

Pca =
1

8πε
ln

ã4
33

ã11 ã22 ã2
12

We get similar expressions for Li. They are related with Pi as Li = Pic
2. It is very interesting

to note that the coefficient of capacity for the normal mode is written as Cn = 1/Pn =

2πε/ln
ã2

12
ã11 ã22

.

The coupled differential equations tell many interesting facts. When there is a symmetry
between the lines 1 and 2 in their relations to the third line due to the symmetric arrangement,
the coupling terms of the normal mode to both the common and antenna modes can be made
zero. The normal mode decouples from the common and antenna modes. On the other hand,
when the symmetry is lost between the lines 1 and 2, the normal mode couples not only
with the common mode but also with the antenna mode. This coupling of three wave-type
modes is considered to be the origin of EM noise, which can not be understood due to the
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reflection and interference. It is therefore very important to take care of the symmetry of the
lines 1 and 2. We repeat that if the third line represents the circumstance, it is impossible to
make the coupling terms zero. Hence, the ordinary two-conductor transmission-line system is
influenced by the circumstance and the electromagnetic emission and absorption take place.
Therefore, we cannot avoid the noise problem. In addition, we comment that the common
mode always couples with the antenna mode and the emission and absorption take place
simultaneously with the generation of the EM noise in the circuit.
It is interesting to write the differential equation for the normal mode for the case of
symmetrization, where the coupling terms of the normal mode to the common and antenna
modes are zero. The TEM mode differential equations for the normal mode are written as

∂Vn(x, t)

∂t
= −Pn

∂In(x, t)

∂x
(75)

∂Vn(x, t)

∂x
= −Ln

∂In(x, t)

∂t
− Rn In .

These differential equations for the normal mode together with the coefficients Ln, Pn and Rn

agree with the two-conductor transmission-line equations (Paul (2008)). Usually the upper
equation in Eq. (75) is written in terms of 1/Cn in the place of Pn. The expression for Cn

calculated by Cn = 1/Pn = 2πε/ln
ã2

12
ã11 ã22

agrees with the capacitance per unit length of the

usual two line expression. We stress again the use of the coefficient of potential is essential
for the formulation of the three-line system. Hence, the ordinary TEM mode propagation of
the EM wave is achieved only when the symmetrization is introduced for the electric circuit
in the circumstance.
We shall calculate the electromagnetic power of the three-conductor transmission-line system.

P(x) =
1

4
(V∗

1 I1 + V∗
2 I2 + V∗

3 I3 + V1 I∗1 + V2 I∗2 + V3 I∗3 ) (76)

=
1

4
(V∗

n In + V∗
c Ic + V∗

a Ia + Vn I∗n + Vc I∗c + Va I∗a )

It is interesting to calculate the change of the power with distance so that we can pick up
only the terms which change with distance. We take the time dependence of all the modes

as exp(−jωt). We can work out the change rate
dP(x)

dx on the basis of Eqs. (65) and (69) in
exactly the same way as the case of the one-conductor transmission line. We write only the
final result.

dP(x)

dx
= −

1

2
(Rn|In(x)|2 + Rc|Ic(x)|2 + Ra|Ia(x)|2 (77)

+Rnc(In(x)I∗c (x) + I∗n(x)Ic(x)) + Rna(In(x)I∗a (x)

+I∗n(x)Ia(x)) + Rca(Ic(x)I∗a (x) + I∗c (x)Ia(x)))

−
1

2

Mω

c
(I I∗

t (l, x)Ia(x) + I I,x
t (l)I∗a (x))

−j
1

2
Mc

(

QI∗
t (l, x)

dIa(x)

dx
− QI

t (l.x)
dI∗a (x)

dx

)

This expression agrees with the one of the line-antenna (62), when the change rate is expressed

with the total current by using the relation Ia(x) = 1
2 It(x). It is interesting to point out that

the change of the electric power is made by the resistance terms and the antenna mode terms.
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There are two effects in the antenna mode terms. One is a term associated with emission and
the other is a term associated with absorption.
Here, we would like to comment the strict symmetrization of the power supply. In a standard
two-stage power supply in which two identical power supplies are connected in series but
switchings are controlled alternately, a common mode current is unavoidable. Even when
there is a symmetry between lines 1 and 2 in relation to the third line, coupling terms
between the common and antenna modes do not vanish unavoidably. This implies that
the radiation of EM wave occurs unless the common mode current is eliminated. The most
effective method of eliminating the common and antenna modes is a strict symmetrization
in which switchings of two-stage power supply should be synchronized in a symmetrized
three-conductor transmission-line system.

6. Symmetrized electric circuit

In the previous section, we have discussed the performance of two transmission-lines in the
circumstance and hence a three-conductor transmission-line system. The electromagnetic
noise in the circumstance goes through the third line in the form of electromagnetic wave.
In the standard two-stage power supply as mentioned above, the noise in the circumstance
influences the main two-lines through the common mode. Since we are not able to control the
circumstance, it is impossible to remove the electromagnetic noise in the case of the two line
electric circuit in the circumstance. At the same time, the modern power supply and also both
the inverter and converter use the chopping method and generate electromagnetic noise with
high frequency. This noise goes through the standard two line circuit and at the same time
goes out from the circuit in the form of electromagnetic wave.
The way out is to introduce a new third line to the main two line system in order to minimize
the effect of the circumstance by asking the new third line to take care of the common mode
effect. We are then able to control the whole electric circuit by arranging all the elements
(conductor-lines, powers, loads etc.) so as to minimize the effect of noise. One very important
thing is to introduce two identical power supplies and connect the third line to the middle
point of the two power supplies. In this way, the common mode noise produced in the power
supply system finds a way to go through the third line and does not go out from the electric
circuit.
It is then important to decouple the normal mode from the common mode. This is achieved
by using the same size and same quality transmission-lines for the main two lines and by
arranging the geometrical distances of the two lines to the third line equal. At the same time,
we have to arrange lumped-loads symmetrically around the third line. We have discussed
why the normal mode decouples from the common mode in a symmetrical arrangement
by calculating three-line lumped-circuit in our first publication (Sato & Toki (2007)), which
reviewed the design principle of HIMAC synchrotron (Kumada (1994)) and provided a guide
of alteration of magnet wiring of J-PARC MR (Kobayashi (2009)). The present new MTL theory
with the antenna mode tells that the conditions of the normal mode to decouple from the
common and antenna modes are to impose the symmetrization among the three-conductor
transmission-lines in addition to the symmetrization of the lumped elements.
We show one example of electric circuit to use the normal mode current with largely reduced
noise by the symmetric arrangement around the third line as shown in Fig.1. The present day
power supply uses a chopping device and produces high frequency noise. We use a standard
two-stage power supply and connect the third line at the middle point of the two-stage power
supply denoted by P to confine high frequency noise produced by the power supply. The
filtering device F should cut down high frequency noise and allows only low frequency noise
to pass through the filter. It should be noted that the filtering device F consists of the common
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P F LLij Pij R
i
M

Fig. 1. A symmetrized electric circuit for the use of the normal mode decoupled from the common and
antenna modes. Around the third line (middle line) two power supplies P, the filtering element F are
placed in the left end and the electric loads L are placed in the right end. The connecting three-conductor
transmission lines have the properties of self and mutual inductances Lij denoted by coil, self and
mutual coefficients of potential Pij denoted by short parallel lines, resistance Ri and antenna mode
coefficient M. The three-conductor transmission lines are coupled each other and their performance
follows a coupled integro-differential equation with these coefficients.

mode filter in addition to the normal mode filter in order to cut down not only the normal
mode noise but also the common mode noise. In the right end of the three-lines placed are
electric loads L symmetrically. The arrangement of these lumped devices symmetrically is the
requirement of the decoupling of the normal mode from the common mode.
Very important fact is now that these power-filter element P − F and the electric loads L are
connected by transmission-lines, which are not just structureless lines, but contain several
functions as inductance Lij, coefficient of potential Pij, resistance Ri and antenna coefficient
M. There are self- and mutual-inductances Lij and they are denoted by coils on lines and
connections of coils as usual in Fig.1. We denote the coefficients of potential Pij, which have
both self- and mutual-coefficients, by two short parallel lines and connections of short parallel
lines. We abandon here the concept of capacitor Cij and use a similar but rotated symbol for
Pij. The resistances Ri are denoted by the standard symbol and are attached to each line. In
addition, we have the antenna coefficient M for radiation, which is associated with the whole
transmission-lines and use the connection symbol with two arrows indicating radiation. The
performance of the transmission-lines is controlled then by a set of coupled integro-differential
equations with these coefficients Lij, Pij, Ri and M. At a glance of Fig.1, readers might picture
that the symmetric arrangement provides decoupling of normal mode from common and
antenna modes because of Lnc = Lna = 0 in Eq. (67), Rnc = Rna = 0 in Eq. (68) and
Pnc = Pna = 0 in Eq. (71). Consequently, the symmetric arrangement of the transmission-lines
and the lumped elements are the necessary step for the good performance of an electric circuit.
We should on top consider that the noise is EM wave and goes through the transmission-lines
in the TEM mode with loss of Joule and radiation energies.

7. Conclusion

We have constructed a new multi-conductor transmission-line (MTL) theory with the antenna
mode. To this end, we have started from the electrodynamics field theory, which denotes
that sources of electric and magnetic fields outside the conductors are true charge and
conduction current inside the conductors. Based on the definite statement of the field theory,
it is allowed to consider the dynamics of charge and current in resistive conductors of
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transmission-lines of thick wires and their coupling to the electromagnetic fields surrounding
the transmission-lines. We have used the continuity equation of the charge and current
and the combined equation of the boundary condition at the surface and the Ohm’s law
with the resistance, which controls the movement of the charge and current. The Maxwell
equation then relates the dynamics of the charge and current to the scalar and vector potentials
surrounding the transmission-lines. Since we are interested in the performance of the
electromagnetic fields outside of the MTL system, we solve the wave equations for the scalar
and vector potentials in the Lorenz gauge with the retardation charge and current. The scalar
and vector potentials are now expressed in the integral forms and they are called retarded
potentials. These four equations are the fundamental equations for the MTL system with the
antenna mode. The coupled integro-differential equations are to be solved for the propagation
of the electromagnetic wave and the energy loss due to the Joule and radiation processes.
To proceed, we have analyzed the retardation potentials for each frequency mode. The
retardation charge and current introduces the real part with a cosine function and the
imaginary part with a sine function. We are then able to make the TEM mode approximation
for the real part, but should keep the imaginary part in the integral form. This TEM
mode approximation can relate the scalar and vector potentials at the surface of each
transmission-line with the charge and current for the introduction of the coefficients of
potential Pij and inductance Lij. In this process, we consider the retardation charge and
current effect explicitly. Hence, we modify the coefficients of inductance Lij and potential

Pij by including the ω dependent term cos(ω
√

(x − x′)2 + d2
ij/c) in the integrand. As for the

imaginary terms, we have now the omega dependent term sin(ω|x − x′|/c) in the numerator
and should keep the integral form. We call the newly added integral terms coming from the
imaginary parts of the retardation charge and current as the antenna mode terms with antenna
mode coefficients Me and Mm. We are then able to express MTL integro-differential equations
for the scalar potential and the current by eliminating the charge and the vector potentials
by using the continuity equation which is equivalent to the current conservation equation of
the field theory and the combined equation of the boundary condition and the Ohm’s law
equation.
We have worked out an one-conductor transmission-line system to discuss the standard
line-antenna with the propagation of a TEM mode through the transmission-line. In this case,
we use the long wavelength approximation for the antenna mode terms originating from the
retardation terms. Due to the fact that we are able to calculate the coefficients of inductance
and potential, we can write down coupled integro-differential equations for potential V and
current I with L, P and Me, Mm and R. We solve the coupled equations formally and work
out the input impedance, which is now a function of the size, the length and the resistance of
the transmission-line. We have explicitly worked out the case for one linear transmission-line
antenna. We can provide the solution of the differential equation and give an expression of
the input impedance Zs for the first time with the long wave length approximation after the
MTL equations are fixed for the TEM mode. We work out the power of the system at the
origin, which is eventually consumed by the Joule energy and the radiation energy. We have
provided the input impedance for a typical case of a line antenna of thick wire with resistance.
We have studied also a three-conductor transmission-line system with emission and
absorption. In addition to mathematical expressions, we propose a new circuit diagram of
multi-conductors on the basis of coefficient of potential, coefficient of inductance, coefficient
of antenna mode, and resistance. There appear three kinds of waves of normal, common,
and antenna modes. All these modes propagate around the transmission-lines in the TEM
mode waves. It is very interesting to point out if there is a symmetry between the lines 1 and
2 due to a symmetric arrangement, then the normal mode decouples from the common and
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antenna modes simultaneously. On the other hand, when the symmetry between the lines 1
and 2 is lost, the normal mode couples with both the common and antenna modes. This is a
realistic situation of the ordinary two-conductor transmission-line system with the inclusion
of the circumstance. We have to introduce the third line to the main two line system, instead of
circumstance of which electrical performance is unclear, and symmetrize the system in order
to confine the electromagnetic fields within the three-line system with the help of the common
mode filter. In the near future we shall work out the skin effect by taking into account the
motion of the current to the radial direction of each transmission-line in the MTL theory with
the antenna mode (Sato & Toki (2011)).
Finally we would like to comment on a distinction between the present MTL theory
and the former standard two-conductor transmission-line theory from the view point of
electromagnetism. We consider resistive conductors for transmission-lines and abandon
the concept of perfect conductor. The TEM mode wave could exist even in the case of
one-conductor transmission line so that the TEM mode approximation is useful in the
present study. The coefficients of potential are important to determine not only the coupling
impedance between mutual transmission lines but also the characteristic impedance of a
single transmission line itself. Consequently, it is unnecessary for a transmission line theory
to introduce capacitance per unit length between two transmission lines and the displacement
current flowing through the capacitance for a transmission-line theory any more. The
boundary conditions for the electromagnetic fields at the surface of the resistive conductor
provide the propagation of the TEM mode and replaces the concept of the Kirchhoff’s current
law between two lines due to displacement current.

8. Acknowledgment

The authors are grateful to Prof. H. Kobayashi and Prof. H. Horiuchi for fruitful discussions
and encouragements.

9. References

Toki, H. and Sato, K., Journ. Phys. Soc. Jap. 78 No.9 (2009) 094201.
Paul, C.R., ’Analysis of Multiconductor Transmission Lines’, (Wiley-Internscience (IEEE),

New Jersey, 2008) 1.
Sato, K. and Toki, H., Nucl. Instr. Meth. (NIM) A565 (2007) 351.
Toki, H. and Sato, K., to be published in Journ. Phys. Soc. Jap. (2011).
Kumada, M. et al., Proc. 4th Euro. Part. Acc. Conf. (EPAC) (1994) 2338.
Kobayashi, H., Proc. of Particle Accelerator Conf. (2009) PAC09-WE1GRI02.
Takeyama, S., "Phenomenological Electromagnetic Theory" (Japanese), Maruzen pub. (1983)

1.
Maxwell, J. C., A Treatise on Electricity & Magnetism (Dover Publication Inc., New York, 1876)

Vols. 1 and 2.
Bjorken, J.D. and Drell, S.D., ’Relativistic quantum mechanics’ McGraw Hill (New-York)

(1970) 1.
Lorenz, L., Dansk. Vid. Selsk. Forch. (1867) 26.
Rieman, B., Ann. Phys. 131 (1867) 237.
Jackson,J.D., ’Classical Electrodynamics’, 3rd ed. (John Wiley & Sons, 1998).
Sato, K. and Toki, H., to be published (2011).
Kirchhoff, G., Ann. Phys. 100 (1857) 193.
Ohta, K. (2005). Vortex of Maxwell and Watch of Einstein in Japanese, Tokyo University Press.
Stratton, J.A., ’Electromagnetic Theory’, McGraw-Hill Book Company, New York and London

(1941).

254 Electromagnetic Waves Propagation in Complex Matter

www.intechopen.com



Electromagnetic Waves Propagation in Complex Matter
Edited by Prof. Ahmed Kishk

ISBN 978-953-307-445-0
Hard cover, 292 pages
Publisher InTech
Published online 24, June, 2011
Published in print edition June, 2011

InTech Europe
University Campus STeP Ri 
Slavka Krautzeka 83/A 
51000 Rijeka, Croatia 
Phone: +385 (51) 770 447 
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai 
No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 
Fax: +86-21-62489821

This volume is based on the contributions of several authors in electromagnetic waves propagations. Several
issues are considered. The contents of most of the chapters are highlighting non classic presentation of wave
propagation and interaction with matters. This volume bridges the gap between physics and engineering in
these issues. Each chapter keeps the author notation that the reader should be aware of as he reads from
chapter to the other.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Hiroshi Toki and Kenji Sato (2011). Electrodynamics of Multiconductor Transmission-line Theory with Antenna
Mode, Electromagnetic Waves Propagation in Complex Matter, Prof. Ahmed Kishk (Ed.), ISBN: 978-953-307-
445-0, InTech, Available from: http://www.intechopen.com/books/electromagnetic-waves-propagation-in-
complex-matter/electrodynamics-of-multiconductor-transmission-line-theory-with-antenna-mode



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed
under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike-3.0 License, which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited and
derivative works building on this content are distributed under the same
license.

https://creativecommons.org/licenses/by-nc-sa/3.0/

