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Preface

This book provides sufficient materials for a one-semester linear algebra course
at the sophomore level. It is based on the lecture notes for the linear algebra
course that the author taught several years to undergraduate students in sci-
ence and mathematics at the University of Texas at Dallas. The level and pace
of the course can be adjusted by balancing the time for theoretical illustration
and that for computational aspects of the subject. The author usually taught
up to Chapter 7, spending one lecture per section on average, while the re-
maining two chapters can be left for students’ reading homework or supervised
individual study.

It seems that many undergraduate students have only one linear algebra
course before graduation, and may have missed many important topics of
linear algebra which may be remedied later by self-studying on demand. This
book is written to accommodate the needs for classroom teaching in order
to effectively deliver the essential topics of the subject, and for self-studying
beyond a first linear algebra course.

The following is an introduction to each chapter of the book.

1. Chapter 1 deals with vectors, linear combinations and dot products in
R

n. In Section 1.3 we discuss matrix representations for linear systems
and for elementary row operations.

2. Chapter 2 illustrates Guassian elimination and Gauss–Jordan elimina-
tion for solving linear systems, along with basic matrix theory, LU -
decomposition and permutation matrices.

3. Chapter 3 starts with four subspaces of Rn associated with a real matrix.
Then we discuss bases and dimensions of general vector spaces.

4. Chapter 4 deals with orthogonality between subspaces. Related topics
include matrix representation of orthogonal projection, least squares so-
lutions, Gram–Schmidt process and QR-decomposition.

5. Chapter 5 presents an axiomatic method of determinants which nat-
urally leads to the permutation formula, co-factor expansion, product
formula and Cramer’s rule.

6. In Chapter 6 we introduce the notions of eigenvalues and eigenvectors
which open the door for more applications of linear algebra, including
the immediate application on diagonalizability, spectral decomposition
of symmetric real matrices, quadratic forms, positive definite matrices
and Rayleigh quotient.

ix

www.Engineeringbookspdf.com



x Preface

7. Chapter 7 continues to discuss the application of eigenvalues and eigen-
vectors and presents singular value decomposition of general matrices.
Principal component analysis is also introduced as a real-world applica-
tion of linear algebra.

8. Chapter 8 discusses the matrix representation, range and null spaces
for linear transformations on general vector spaces. Then we introduce
invariant subspaces, decomposition of vector spaces and Jordan normal
form and its computation, where the treatment of the Jordan normal
form does not require a formal exposition of polynomial theory.

9. Chapter 9 presents basic theory of linear programming along with the
simplex method which is another concrete real-world application of lin-
ear algebra and which has been widely used in management and industry.

The book contains typical topics for linear algebra courses and can be used
in many ways depending on the different mathematical background of the
audiences. The book provides limited examples and exercises, while it is best
used for readers who would like to have a broad coverage of the topics of linear
algebra and who are motivated to customize questions for the materials of each
section. Comments and suggestions from readers are highly appreciated and
are welcome to be sent by e-mail to qingwen@utdallas.edu.

Qingwen Hu
January 2017

www.Engineeringbookspdf.com
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Chapter 1

Vectors and linear systems

1.1 Vectors and linear combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Length, angle and dot products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

A central goal of linear algebra is to solve systems of linear equations. We
have seen the simplest linear equation ax = b, where x ∈ R (the symbol “∈”
means “in”) is the unknown variable and a, b ∈ R are constants. It is known
that there are three scenarios for the solutions: 1) if a , 0, there is a unique
solution x = b

a ; 2) if a = 0, b , 0, there is no solution; 3) if a = b = 0, there
are infinitely many solutions. We are then motivated to investigate systems of
equations with multiple unknown variables. The following system







x + 2y + 3z = 3

2x + 5y + 8z = 9

3x + 6y + 18z = 18

(1.1)

is a system of linear equations with three equations and three unknowns. In
this chapter, we learn how to use vectors to represent a linear system and
learn the ideas of elimination which will be applied to solve systems of linear
equations. The general form of linear systems is as follows:







a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1x1 + am2x2 + · · · + amnxn = bm,

(1.2)

where x = (x1, x2, · · · , xn) ∈ Rn is the unknown vector in n-dimensional
Euclidean space; ai, j and bi with i ∈ {1, 2, · · · , m}, j ∈ {1, 2, · · · , n} are
constants.

1.1 Vectors and linear combinations

Before we discuss how to solve general linear systems, we use system (1.1)
as a prototype to introduce the machinery of vectors. One may rewrite sys-

1
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2 Concise Introduction to Linear Algebra

tem (1.1) as

x





1
2
3



+ y





2
5
6



+ z





3
8
18



 =





3
9
18



 . (1.3)

System (1.3) makes sense only if we have defined addition and scalar multi-
plication of vectors in Euclidean spaces, where we have identified the vector
(x1, x2, x3) with the column of numbers





x1

x2

x3



 ,

which is called a column matrix. In what follows we will always regard a
vector in Rn as a column matrix.

Definition 1.1.1. Let x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) be
vectors in Rn, α a scalar. We define addition x + y and scalar multi-
plication αx by

x + y = (x1 + y1, x2 + y2, · · · , xn + yn),

αx = (αx1, αx2, · · · , αxn).

Definition 1.1.2. Let x1, x2, · · · , xn ∈ R
N be vectors, and

c1, c2 · · · , cn ∈ R be scalars. We call

c1x1 + c2x2 + · · · cnxn

a linear combination of x1, x2, · · · , xn.

System (1.3) now can be interpreted as finding a proper linear combina-
tion of the vectors (1, 2, 3), (2, 5, 6) and (3, 8, 18) to produce the given vector
(3, 9, 18) on the right hand side. Certainly we can also interpret it as finding
the common point (x, y, z) of three planes determined by each of the equa-
tions. If we visualize a linear system with this interpretation of a linear system,
we obtain a row picture, while with the previous one, a column picture.

Example 1.1.3. 1. Let v =

[
1
1

]

, w =

[
1
3

]

. Then

3v + 5w = 3

[
1
1

]

+ 5

[
1
3

]

=

[
8
18

]

is a linear combination of v and w.
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Vectors and linear systems 3

1

2

3

1 2 3 4

A

B

P

O
b

FIGURE 1.1: Slope of
−→
OA = 2−0

1−0 = 2,
−−→
BP = 4−2

2−1 = 2. Slope of
−−→
OB =

3−0
1−0 = 3,

−→
AP = 4−1

3−2 = 3.

2. Let v =

[
1
2

]

. Then {cv : 0 ≤ c ≤ 2} represents a line segment from (0, 0)

to (2, 4) in R2.

3. Let v =

[
1
0

]

and w =

[
0
1

]

. Then {cv + dw : c ∈ R, d ∈ R} represents the

whole two dimensional plane R2.

4. Let v =





1
1
0



 and w =





1
1
1



. Then S = {cv + dw : c ∈ R, d ∈ R}

represents a two dimensional plane in R3, but not the whole space R3,

because there exists the vector





1
2
3



 which is not in S.

�

Example 1.1.4. (The parallelogram law for vector addition) A vector x =

(x1, x2, · · · , xn) ∈ Rn can be visualized by the directed line segment
−→
OA from

the origin O = (0, 0, · · · , 0) to the point A = (x1, x2, · · · , xn) ∈ Rn. If we
denote the end point of the vector y = (y1, y2, · · · , yn) by B and that of x + y
by P , then we have a parallelogram OAP B, with OA parallel to BP and AP
parallel to OB, since the opposite segments have the same slopes.

�

Exercise 1.1.5.

1. Let u =

[
1
1

]

, v =

[
2
3

]

. i) Sketch the directed line segments in R2 that
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4 Concise Introduction to Linear Algebra

represents u and v, respectively; ii) Use the parallelogram law to visualize the
vector addition u + v; iii) Find 2u, 2u + 5v and 2v − 5u; iv) Solve the system

of equations xu + yv =

[
−1

1

]

for (x, y) ∈ R2 and draw the row picture and

the column picture.

2. Let u =

[
1
1

]

, v =

[
2
3

]

. Is w =

[
1

−1

]

a linear combination of u and v?

3. Is it true every vector (x, y) ∈ R2 can be represented as a linear combination
of v = (1, 0) and w = (1, 1)?

4. Find vectors u, v, w ∈ R3 such that the following system







x + z = 1

2x + 5y + 8z = −1

x + y = 1

can be rewritten as xu + yv + zw = b, where b = (1, −1, 1).

5. Show that R2 =

{

x

[
1
0

]

+ y

[
0
1

]

: x ∈ R, y ∈ R
}

.

1.2 Length, angle and dot products

In order to discuss geometry in Euclidean spaces, we introduce the notions
of length and angle, which can be defined with dot products.

Definition 1.2.1. Let x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) be vectors
in Rn; the dot product x · y is defined by

x · y = x1y1 + x2y2 + · · · + xnyn =
n∑

i=1

xiyi.

Example 1.2.2. 1. Let v =

[
1
1

]

, w =

[
2
3

]

. Then

v · w =

[
1
1

]

·
[
2
3

]

= 1 · 2 + 1 · 3 = 5.

2. Let v =





1
1
0



 and w =





1
1
1



. Then v · w = 1 · 1 + 1 · 1 + 1 · 0 = 2.

www.Engineeringbookspdf.com



Vectors and linear systems 5

3. Let v =

[
1
1

]

, w =

[
1

−1

]

. Then

v · w = 1 · 1 + 1 · (−1) = 0.

We say v and w are orthogonal to each other and write v ⊥ w.

4. Consider the distance from A = (1, 2) to the origin O. We have

‖−→
OA‖ =

√

(1 − 0)2 + (2 − 0)2

=
√

1 · 1 + 2 · 2.

If we denote by v the vector
−→
OA, we have the length of v

‖v‖ =
√

v · v.

5. Consider unit vectors u, v ∈ R2. Then there exist α, β ∈ [0, 2π) such
that

u = (cos α, sin α), v = (cos β, sin β).

Then we have

u · v = cos α cos β + sin α sin β = cos(α − β).

�

One can check directly that dot product satisfies the following

Lemma 1.2.3. Let u, v, w ∈ Rn be vectors. Then

u · v =v · u,

u · (v + w) =u · v + u · w.

Definition 1.2.4. Let v = (v1, v2, · · · , vn) be a vector in Rn. The length ‖v‖
of v is defined by

‖v‖ =
√

v · v =

(
n∑

i=1

v2
i

) 1
2

.

A vector with unit length is called a unit vector.

Example 1.2.5.

Consider unit vectors u, v ∈ R2. Then there exist α, β ∈ [0, 2π) such that

u = (cos α, sin α), v = (cos β, sin β).

Then we have

u · v = cos α cos β + sin α sin β = cos(α − β).

There exists θ ∈ [0, π] such that cos θ = cos(α − β). Then we call θ the angle
between the vectors u and v.
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6 Concise Introduction to Linear Algebra

Consider nonzero vectors u, v ∈ R2. Then u
‖u‖ and v

‖v‖ are unit vectors and

there exist α, β ∈ [0, 2π) such that

u

‖u‖ = (cos α, sin α),
v

‖v‖ = (cos β, sin β).

We have

u

‖u‖ · v

‖v‖ = cos(α − β) = cos θ, (1.4)

where θ ∈ [0, π] is the angle between u
‖u‖ and v

‖v‖ . Notice that u and u
‖u‖ have

the same direction, so do v and v
‖v‖ . θ ∈ [0, π] is also the angle between u and

v. By (1.4) we have
u · v = ‖u‖‖v‖ cosθ,

where u and v can be zero. Then we have derived

Lemma 1.2.6. (Cosine formula) Let u, v ∈ R2. We have

u · v = ‖u‖‖v‖ cosθ,

where θ ∈ [0, π] is the angle between u and v.

An immediate consequence of the cosine formula is that |v · w| =
‖u‖‖v‖| cosθ| ≤ ‖u‖‖v‖ which is the Schwarz inequality in R2. We show the
general version of the Schwartz inequality in Rn:

Lemma 1.2.7. (Schwarz inequality) Let u, v ∈ Rn. We have

|u · v| ≤ ‖u‖‖v‖.

Proof. The inequality is true if v = 0. We assume that v , 0 and let w = u+tv,
t ∈ R. Then ‖w‖ ≥ 0 for every t ∈ R. We have

0 ≤ ‖w‖ = (u + tv) · (u + tv)

= u · u + 2(u · v)t + (v · v)t2,

for every t ∈ R. Therefore the discriminant of the quadratic polynomial (u +
tv, u + tv) of t satisfies

4(u · v)2 − 4(u · u)(v · v) ≤ 0,

which is equivalent to |u · v| ≤ ‖u‖‖v‖. �
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Vectors and linear systems 7

With the Schwarz inequality, we can then define angles between vectors in
R

n:

Definition 1.2.8. Let u, v ∈ Rn. We define θ ∈ [0, π] such that

u · v = ‖u‖‖v‖ cosθ,

the angle between u and v.

By properties of dot products and the Schwarz inequality, we have

Lemma 1.2.9. (Triangle inequality) Let u, v ∈ Rn. We have

‖u + v‖ ≤ ‖u‖ + ‖v‖.

Proof. We have

‖u + v‖2 =(u + v) · (u + v)

=u · u + 2u · v + v · v

≤u · u + 2‖u‖ · ‖v‖ + v · v

=‖u‖2 + 2‖u‖ · ‖v‖ + ‖v‖2

=(‖u‖ + ‖v‖)2.

Therefore we have ‖u + v‖ ≤ ‖u‖ + ‖v‖. �

Exercise 1.2.10.

1. Let u =

[
1
1

]

, v =

[
2
3

]

. i) Find u · v; ii) Find ‖u‖ and ‖v‖; iii) Find the

angle θ between u and v; iv) Verify that |u · v| ≤ ‖u‖‖v‖; v) Verify that
‖u + v‖ ≤ ‖u‖ + ‖v‖.

2. Find all possible real values of a such that the quadratic polynomial x2 +
ax + 1 has i) two positive roots; ii) two negative roots; iii) one negative and
one positive root; iv) no real roots, respectively.

3. Let u =

[
1
1

]

. Find all possible vectors w such that u ⊥ w, i.e., u · w = 0.

4. Let u =





1
1
1



, v =





−1
1
0



 and w =





1
1

−1



. i) Find u · v and v · w. ii) Is it

possible to find (x, y) , (0, 0) such that v = xu + yw? Justify your answer.

5. Let u, v ∈ Rn. Show that

|u · v| = ‖u‖‖v‖,

if and only if v = 0 or there exists a scalar t ∈ R such that u = tv.
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8 Concise Introduction to Linear Algebra

1.3 Matrices

Recall that system (1.3) can be interpreted as finding a proper linear com-
bination of the vectors u = (1, 2, 3), v = (2, 5, 8) and w = (3, 6, 18) to
produce the given vector b = (3, 9, 18) on the right hand side. That is, we
are looking for scalars x, y, z such that

xu + yv + zw = b,

which looks to be a certain product between (u, v, w) and (x, y, z). To wit,
we write

[u v w]





x
y
z



 = b,

which is a “row” multiplied by a “column.” The reason why we put the letters
for vectors horizontally becomes clear when we recover the values of u, v, w
and b:





1 2 3
2 5 8
3 6 18









x
y
z



 =





3
9
18



 , (1.5)

where we obtain a rectangular array of numbers called a matrix, and if u, v, w
were placed vertically, we would not know how to place their values!

Let

A =





1 2 3
2 5 8
3 6 18



 , x =





x
y
z



 , b =





3
9
18



 .

System (1.3) becomes the familiar form of

Ax = b. (1.6)

By comparing system (1.3) with system (1.5), we know that the so far unde-
fined product Ax between matrices A and x essentially consists of rows of A
taking dot products with x. That is,





(Row 1 of A) · x
(Row 2 of A) · x
(Row 3 of A) · x



 = b.

Example 1.3.1.

[
1 2 3

−2 −4 6

]




4
−1

0



 =

[
(1, 2, 3) · (4, −1, 0)

(−2, −4, 6) · (4, −1, 0)

]

=

[
2

−4

]

.
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Vectors and linear systems 9





3 −2
−1 0

2 5





[
2
1

]

=





(3, −2) · (2, 1)
(−1, 0) · (2, 1)

(2, 5) · (2, 1)



 =





4
−2

9



 .





1 0 0
0 1 0
0 0 1









x1

x2

x3



 =





x1

x2

x3



 .

�

Remark 1.3.2.

For an m × n matrix A, we write A = (ai j) when we emphasize the general
form of its entries. We also write (A)i j , A(i, j) or simply Ai j to denote the
entry at the (i, j)-position.

If A = (ai j) is an n × n square matrix, we call the entries aii, i = 1, 2, · · · , n
the main diagonal entries. If every main diagonal entry of A is one, and every
other entries are zero, that is,

ai j =

{

1 if i = j

0 if i , j,

we call A an identity matrix and denote it by I. Note that

Ix = x for every x ∈ Rn.

Example 1.3.3. Let u = (1, 0, 0), v = (1, 1, 0) and w = (1, 1, 1). b =
(b1, b2, b3). We solve system

Ax = b,

where

A = [u v w] =





1 1 1
0 1 1
0 0 1



 , x =





x
y
z



 .

That is, we solve




1 1 1
0 1 1
0 0 1









x
y
z



 =





b1

b2

b3



 .

We notice that A is a triangular matrix in the sense that the nonzero entries
are above the main diagonal. Such type of matrix is convenient for solving the
system by back substitution. Namely, we first solve for z, then y and x. We
obtain 



x
y
z



 =





b1 − b2 − b3

b2 − b3

b3



 .
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10 Concise Introduction to Linear Algebra

To have a solution resembling the solution x = a−1b of the single variable
linear equation ax = b, a , 0, we wish to write (x, y, z) in terms of b =
(b1, b2, b3). We rewrite the solution as follows:





x
y
z



 =





b1 − b2 − b3

b2 − b3

b3





=





b1

0
0



+





−b2

b2

0



+





−b3

−b3

b3





=b1





1
0
0



+ b2





−1
1
0



+ b3





−1
−1

1





=





1 −1 −1
0 1 −1
0 0 1









b1

b2

b3



 .

Let

B =





1 −1 −1
0 1 −1
0 0 1



 .

We have the solution x = Bb. We write B = A−1 and x = A−1b. Note
that we did not specify the values of b. The system in question has a unique
solution for every given b ∈ R3. �

Example 1.3.4. Let u = (1, 0, 0), v = (1, 1, 0) and w∗ = (0, 1, 0). b =
(b1, b2, b3). We solve system

Ax = b,

where

A = [u v w∗] =





1 1 0
0 1 1
0 0 0



 , x =





x
y
z



 .

That is, we solve




1 1 0
0 1 1
0 0 0









x
y
z



 =





b1

b2

b3



 .

We notice that A is also a triangular matrix but we cannot solve the system
by back substitution. The third equation of the system is

0 = b3,

which may or may not be true depending on the value of b3.

If b3 , 0, system Ax = b has no solution.
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Vectors and linear systems 11

If b3 = 0, system Ax = b becomes

[
1 1 0
0 1 1

]




x
y
z



 =

[
b1

b2

]

,

which has a free variable z that can be parameterized by z = t, t ∈ R. Then
we have





x
y
z



 =





b1 − b2 + t
b2 − t

t



 =





b1 − b2

b2

0



+ t





1
−1

1



 , t ∈ R, (1.7)

which represents infinitely many solutions on a straight line in R3. �

Let us make some observations on the previous two examples. In Exam-
ple 1.3.4, for arbitrary b ∈ R3, we have a unique solution x = A−1b. That is,
the vector equation

xu + yv + zw = b

always has a unique solution for the linear combination coefficients (x, y, z).
This implies that the set of vectors {u, v, w} can span the whole space R3.

In Example 1.3.3, there exists b = (b1, b2, b3) ∈ R3 with b3 , 0, which is
not a linear combination of {u, v, w∗}. That is, the set of vectors {u, v, w∗}
cannot span the whole space R3. But why can {u, v, w}, while both sets have
three different vectors? The answer is that {u, v, w∗} has redundant vectors,
but {u, v, w} does not. Namely, the role of some vectors in {u, v, w∗} can be
replaced by other vectors. To identify the redundancy, we set up the following
model:

x1u + x2v + x3w∗ = 0,

solving for (x1, x2, x3). By (1.7), we have at least one nonzero solution
(x1, x2, x3) = (1, −1, 1). That is,

1u + (−1)v + 1 w∗ = 0 ⇐⇒ v = u + w∗.

That is, v can be replaced with u + w∗. Therefore, the spanning role of
{u, v, w∗} is the same as that of {u, w∗}, which cannot span a three di-
mensional space.

Next we verify that there is no redundancy in {u, v, w} for spanning R3.
We also set up the following model:

x1u + x2v + x3w = 0,

solving for (x1, x2, x3). By the solution in Example 1.3.4, we have the only
solution (x1, x2, x3) = (0, 0, 0). This means that none of the vectors in
{u, v, w} can be replaced by a linear combination of the other ones. They
are linearly independent.
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12 Concise Introduction to Linear Algebra

Definition 1.3.5. Let {u1, u2, · · · , um} be a set of vectors in Rn. If
the vector equation

x1u1 + x2u2 + · · · + xnun = 0

has only the trivial solution x1 = x2 = · · · = xn = 0, {u1, u2, · · · , um}
is said to be linearly independent. Otherwise, {u1, u2, · · · , um} is said
to be linearly dependent.

We finish this chapter with examples on matrix multiplication with ele-
mentary matrices.

Example 1.3.6. Elementary matrices

• Consider Ex = b, where b =

[
b1

b2

]

, x =

[
x1

x2

]

, E =

[
1 0
l 1

]

. Then Ex =
[

x1

x2 + lx1

]

. Note that the effect of multiplication by E from the left of x is

“adding l-multiple of row 1 to row 2.” The solution is

x =

[
b1

b2 − lb1

]

=

[
1 0

−l 1

] [
b1

b2

]

.

Denote by E−1 =

[
1 0

−l 1

]

. We have the solution x = E−1b. The effect of

multiplication by E−1 from the left of b is “subtracting l-multiple of row 1
from row 2.” Moreover, using x = E−1b and the original system Ex = b, we
have

E(E−1b) = b, E−1(Ex) = x.

That is, the multiplication actions from the left of a vector by E and E−1

are canceling each other. If we treat the action A : x 7→ Ax as a function
determined by the matrix A, then the effect from E−1 ◦ E and E ◦ E−1 is the
same as the identity matrix I.

• Consider Ex = b, where b =

[
b1

b2

]

, x =

[
x1

x2

]

, E =

[
0 1
1 0

]

. Then Ex =

[
x2

x1

]

.

Note that the effect of multiplication by E from the left of x is “exchanging
positions of row 1 and row 2.” The solution is

x =

[
b2

b1

]

=

[
0 1
1 0

] [
b1

b2

]

.
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Vectors and linear systems 13

Denote by E−1 =

[
0 1
1 0

]

, which is identical to E itself. We have the solution

x = E−1b. The effect of multiplication by E−1 from the left of b is “exchang-
ing positions of row 1 and row 2.” Moreover, using x = E−1b and the original
system Ex = b, we have

E(E−1b) = b, E−1(Ex) = x.

That is, the multiplication actions from the left of a vector by E and E−1 are
canceling each other. The multiplication effects from E−1 ◦ E and E ◦ E−1

are the same as the identity matrix I.

• Consider Ex = b, where b =

[
b1

b2

]

, x =

[
x1

x2

]

, E =

[
1 0
0 c

]

with c , 0. Then

Ex =

[
x1

cx2

]

. Note that the effect of multiplication by E from the left of x is

“multiplying row 2 by c”. The solution is

x =

[
b1
1
c b2

]

=

[
1 0
0 1

c

] [
b1

b2

]

.

Denote by E−1 =

[
1 0
0 1

c

]

. We have the solution x = E−1b. The effect of

multiplication by E−1 from the left of b is “dividing row 2 by c”. Moreover,
using x = E−1b and the original system Ex = b, we have

E(E−1b) = b, E−1(Ex) = x.

That is, the multiplication actions from the left of a vector by E and E−1

are canceling each other. If we treat the action A : x 7→ Ax as a function
determined by the matrix A, then the effect from E−1 ◦ E and E ◦ E−1 is the
same as the identity matrix I.

The aforementioned three type of matrices are called elementary ma-
trices which can be obtained by operating on the identity matrices with the
elementary row operation in question. �

Exercise 1.3.7.

1. Let A =





1 0 0
1 1 0
1 1 1



 and B =





1 0 0
−1 1 0

0 −1 1



. Compute i) A + B, A + 2B

and A − 3B; ii) AB and BA.

2. Let A =

[
1 2
3 4

]

and B =

[
0 1
1 0

]

. i) Compute AB and BA; ii) Is AB =

BA?
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14 Concise Introduction to Linear Algebra

3. Find matrices A and b such that the system







x + z = 1

2x + 5y + 8z = −1

x + y = 1

can be rewritten into matrix form Ax = b, where x = (x, y, z).

4. Let e1 =





1
0
0



, e2 =





0
1
0



 and e3 =





0
0
1



 . Determine that {e1, e2, e3} is a

linearly independent set of vectors in R3.

5. Let v1 =





1
1
0



, v2 =





0
1
1



 and v3 =





1
0
1



 . Determine whether or not

{v1, v2, v3} is a linearly independent set of vectors in R3.

6. Let u = (1, 0), v = (1, 1) and w = (1, 2). Show that {u, v, w} is not
linearly independent.

7. Let S = {u1, u2, · · · , un} be a set of vectors in Rn. If one of them is the
zero vector, is S linearly independent?

8. Let {v1, v2, v3} ⊂ Rn be a set of linearly independent vectors. Determine
whether {v1 + v2, v2 + v3, v3 + v1} is linearly independent or not.

9. Show that every set of four vectors in R3 is linearly dependent.

10. Find the canceling matrices E−1 of the following E’s.

E =





1 0 0
0 1 0
0 1 1



 , E =





1 0 0
0 0 1
0 1 0



 , E =





1 0 0
0 10 0
0 0 1



 .
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With the preparation of Chapter 1, we start the discussion of how to solve
linear systems, using matrix representation of linear systems and matrix mul-
tiplications. In the process we certainly will develop related properties of ma-
trices.

2.1 Vectors and linear equations

Solving a linear system Ax = b means that we use certain operations on
the system to reduce it into the form x = c, or equivalently Ix = c, where I
is the identity matrix. Such operations should be reversible, in the sense that
the solution x = c should be equivalent to the original system. By default,
we agree on the fact that if u = v, u, v ∈ Rn, then Bu = Bv for every m × n
matrix B. Using the language of matrix, to reduce Ax = b into Ix = c, we
need to find a sequence of matrices E1, E2, · · · Eq such that

E1Ax = E1b ⇒ E2E1Ax = E2E1b ⇒ · · · ⇒ Eq · · · E2E1Ax = Eq · · · E2E1b.

Namely, we keep multiplying both sides of the equation by the same ma-
trix. The question is at which step we should stop. If the solution is unique,
that is, the solution x must be a definite value, we should be able to ar-
rive at the situation that the coefficient matrix of x becomes the identity
matrix I. That is, Eq · · · E2E1A = I. In order to make sure the solution
x = c is equivalent to the original system, ideal candidates for the matrices
E1, E2, · · · Eq are those elementary matrices, because we know their canceling

15
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16 Concise Introduction to Linear Algebra

matrices E−1
1 , E−1

2 , · · · E−1
q such that we have

Ax = b ⇐ E−1
1 E1Ax = E−1

1 E1b ⇐ · · · ⇐ E−1
q Eq · · · E1Ax = E−1

q Eq · · · E1b.

Example 2.1.1.

We solve the following system Ax = b, which is in system form:
{

x − y = 1

x + y = 2.

We follow our basic idea of eliminating variables, and at the same time use
matrices to represent the elimination processes. We use the notation Ri to
denote the i-th row or the i-th equation.
Solution:

System Matrix representation Elementary matrix
{

x − y = 1
x + y = 2

[
1 −1
1 1

] [
x
y

]

=

[
1
2

]

⇓ R2 + R1 E1 =

[
1 0
1 1

]

{
x − y = 1

2x = 3

[
1 0
1 1

] [
1 −1
1 1

] [
x
y

]

=

[
1 0
1 1

] [
1
2

]

⇓ R2 ↔ R1

[
1 −1
2 0

] [
x
y

]

=

[
1
3

]

E2 =

[
0 1
1 0

]

{
2x = 3

x − y = 1

[
0 1
1 0

] [
1 −1
2 0

] [
x
y

]

=

[
0 1
1 0

] [
1
3

]

⇓ R2 − 1
2 R1

[
2 0
1 −1

] [
x
y

]

=

[
3
1

]

E3 =

[
1 0

− 1
2 1

]

{
2x = 3

−y = −1

2

[
1 0

− 1
2 1

] [
2 0
1 −1

] [
x
y

]

=

[
1 0

− 1
2 1

] [
3
1

]

⇓ R1 · 1
2

[
2 0
0 −1

] [
x
y

]

=

[
3

− 1
2

]

E4 =

[
1
2 0
0 1

]







x =
3

2

−y = −1

2

[
1
2 0
0 1

] [
2 0
0 −1

] [
x
y

]

=

[
1
2 0
0 1

] [
3

− 1
2

]

⇓ R2 · (−1)

[
1 0
0 −1

] [
x
y

]

=

[ 3
2

− 1
2

]

E5 =

[
1 0
0 −1

]
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x =
3

2

y =
1

2

[
1 0
0 −1

] [
1 0
0 −1

] [
x
y

]

=

[
1 0
0 −1

] [ 3
2

− 1
2

]

[
1 0
0 1

] [
x
y

]

=

[ 3
2
1
2

]

.

Indeed, in the process we have E5E4E3E2E1A = I and the solution is obtained
when an identity matrix appears in the last step. Let us also observe that the
so far undefined matrix multiplication between 2 × 2 matrices actually can be
done column by column on the second matrix. (Please verify it in the
computation.) For general matrices, we will follow this convention which will
formally become our definition of matrix multiplication — we are actually
justifying how convenient it is for solving linear systems.

Let us observe that during the elimination process in Example 2.1.1, if the
first step was R2 −R1, then interchanging of two rows in the second step could
have been avoided. The upper leftmost nonzero entry 1 in row 1 is called a
pivot or a leading 1. One could use this pivot to eliminate all entries below
it. If we have a pivot in each row during the elimination, we can reduce every
nonpivot entry of a square matrix into zeros. �

Notice that the variables (x, y) in the matrix representation are actually
unnecessarily carried in each step. We use the so-called augmented matrix,
which is the coupling of the coefficient matrix and the right hand side of
the system, to represent the system by a single matrix, completely dropping
(x, y).

Example 2.1.2. Solve system (1.1):






x + 2y + 3z = 3

2x + 5y + 8z = 9

3x + 6y + 18z = 18.

Solution: We re-write the system of linear equations in the matrix form
Ax = b, where

A =





1 2 3
2 5 8
3 6 18



 , x =





x
y
z



 and b =





3
9
18



 .

Then the corresponding augmented matrix is

[A : b] =





1 2 3 3
2 5 8 9
3 6 18 18



 .

By the elementary row operations on [A : b] we have




1 2 3 3
2 5 8 9
3 6 18 18




R2−2R1=====⇒





1 2 3 3
0 1 2 3
3 6 18 18
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R3+(−3)R1

========⇒





1 2 3 3
0 1 2 3
0 0 9 9





R3/9
===⇒





1 2 3 3
0 1 2 3
0 0 1 1





R2−2R3=====⇒





1 2 3 3
0 1 0 1
0 0 1 1





R1−3R3
=====⇒





1 2 0 0
0 1 0 1
0 0 1 1





R1−2R2
=====⇒





1 0 0 −2
0 1 0 1
0 0 1 1



 .

Then we have an equivalent system with augmented matrix





1 0 0 −2
0 1 0 1
0 0 1 1



 .

The solution is 



x
y
z



 =





−2
1
1



 .

�

We remark that in the solution of Example 2.1.2, the coefficient matrix
has been reduced into an upper triangular matrix (the entries below the main
diagonal are all zeros) after two eliminations. Once an upper triangular ma-
trix is obtained, we can use back substitution to solve for z, and y and x.
The remaining steps are eliminating the entries above the pivots so that we
obtain an equivalent system with a diagonal/identity coefficient matrix whose
solution will be directly displayed.

The following example deals with the situation that the solution is not

unique, but we still carry out the elimination process until we arrive at the
situation that the maximal number of variables has coefficients 1.

Example 2.1.3. Solve the following system of linear equations.







x1 + x2 + x3 + 2x4 = −1

2x1 + x2 + 3x3 + x4 = −2

2x1 − 2x2 + 4x3 + 2x4 = −3.
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Solution: We re-write the system of linear equations in the matrix form
Au = b, where

A =





1 1 1 2
2 1 3 1
2 −2 4 2



 , u =







x1

x2

x3

x4







and b =





−1
−2
−3



 .

Then the corresponding augmented matrix is

[A : b] =





1 1 1 2 −1
2 1 3 1 −2
2 −2 4 2 −3



 .

By the elementary row operations on [A : b] we have





1 1 1 2 −1
2 1 3 1 −2
2 −2 4 2 −3




R3+(−2)R1

========⇒
R2−2R1





1 1 1 2 −1
0 −1 1 −3 0
0 −4 2 −2 −1





R2(−1)
=====⇒





1 1 1 2 −1
0 1 −1 3 0
0 −4 2 −2 −1





R1−R2=======⇒
R3+(4)R2





1 0 2 −1 −1
0 1 −1 3 0
0 0 −2 10 −1





R3/(−2)
======⇒





1 0 2 −1 −1
0 1 −1 3 0
0 0 1 −5 1

2





R1−2R3=====⇒
R2+R3





1 0 0 9 −2
0 1 0 −2 1

2

0 0 1 −5 1
2



 .

Then we have a system with augmented matrix





1 0 0 9 −2
0 1 0 −2 1

2

0 0 1 −5 1
2



 .

Let x4 = t, where t is an arbitrary real number. The solution is







x1

x2

x3

x4







=







−2 − 9t
1
2 + 2t
1
2 + 5t

t







, t ∈ R.

�
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Notice that the reduced system does not have an identity coefficient matrix,
even if it is close to it. We say such a matrix is in reduced row echelon
form, which is a matrix satisfying the following:

i) If a row is not entirely zero, the first nonzero entry is 1, which we
call the pivot 1 or leading 1;

ii) The zero rows are exchanged to the bottom;

iii) For every two pivot 1’s (leading 1’s), the one in the higher row is
closer from the left of the matrix;

iv) Each column has a leading 1 and has zeros everywhere else in the
column.

A matrix satisfying conditions i), ii) and iii) is said to be in row echelon
form. The elimination process to obtain a row echelon form is called Gaussian
elimination. The elimination process to obtain a reduced row echelon form
is called Gauss–Jordan elimination.

Example 2.1.4. Consider matrices

A =





1 0 0 9 −2
0 0 1 −5 1

2

0 0 0 1 4



 , B =





1 0 0 9 −2
0 0 0 1 4

0 0 1 −5 1
2



 .

A is in row echlon form, but B is not because the pivot in row 2 is farther
from the left of the matrix than the pivots in row 3. The pivots should be
positioned in the matrix in a staircase shape.

1
1

1
1

1
1

1
1

*

0



























�

The following example illustrates how we determine a system has a unique
solution, has no solution or has infinitely many solutions.

Example 2.1.5. Let k be a real number. Consider the following linear system
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of equations:







x2 + x3 + x4 = −1

2x1 + x2 + 3x3 + x4 = −2

2x1 − 2x2 + 4x3 + 2x4 = −3

3x2 − x3 − x4 = k.

(2.1)

Find all possible values of k such that system (2.1) has a unique solution, has
no solutions and has infinitely many solutions.
Solution: We re-write the system of linear equations in the matrix form
Au = b, where

A =







0 1 1 1
2 1 3 1
2 −2 4 2
0 3 −1 −1







, u =







x1

x2

x3

x4







and b =







−1
−2
−3

k







.

Then the corresponding augmented matrix is

[A : b] =







0 1 1 1 −1
2 1 3 1 −2
2 −2 4 2 −3
0 3 −1 −1 k







.

By the elementary row operations on [A : b] we have







0 1 1 1 −1
2 1 3 1 −2
2 −2 4 2 −3
0 3 −1 −1 k







R3↔R2=====⇒







2 1 3 1 −2
0 1 1 1 −1
2 −2 4 2 −3
0 3 −1 −1 k







R3+(−1)R1

========⇒
R4−3R2







2 1 3 1 −2
0 1 1 1 −1
0 −3 1 1 −1
0 0 −4 −4 k + 3







R1−R2=====⇒
R3+3R2







2 0 2 0 −1
0 1 1 1 −1
0 0 4 4 −4
0 0 −4 −4 k + 3







R4+R3=====⇒







2 0 2 0 −1
0 1 1 1 −1
0 0 4 4 −4
0 0 0 0 k − 1
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R3/4
===⇒







2 0 2 0 −1
0 1 1 1 −1
0 0 1 1 −1
0 0 0 0 k − 1







R2−R3=====⇒
R1/2







1 0 1 0 − 1
2

0 1 0 0 0
0 0 1 1 −1
0 0 0 0 k − 1







R1−R3=====⇒







1 0 0 −1 1
2

0 1 0 0 0
0 0 1 1 −1
0 0 0 0 k − 1







.

Then we arrive at 





1 0 0 −1 1
2

0 1 0 0 0
0 0 1 1 −1
0 0 0 0 k − 1







,

which can immediately lead to the reduced echelon form of the augmented
matrix [A : b] if we know the value of k.

i) If k , 1, then the system is not consistent and has no solution because the
last equation is 0 = 1 which is contradictory.

ii) If k = 1, then the system is consistent and has infinitely many solutions.
Let x4 = t, where t is an arbitrary real number. The solution is







x1

x2

x3

x4







=







1
2 + t

0
−1 − t

t







, t ∈ R.

�

Exercise 2.1.6.

1. Redo Example 2.1.1 with the first elementary row operation R2 − R1.

2. Determine whether the following matrices are in reduced row echelon form
and row echelon form, respectively:





1 0 0 9 −2
0 1 0 −2 1

2

0 0 1 −5 1
2



 ,





1 0 0 9
0 1 0 1
0 0 1 −5



 ,





1 1 0 1
0 1 0 1

2

0 0 1 1
2



 .

3. Solve the following systems using Gauss–Jordan eliminations:

a)







x + 3z = 1

2x + 3y = 3

4y + 5z = 5

b)







x + 2y + 3z = 1

2x + 3y + 4z = 3

3x + 4y + 5z = 5

c)







x + 2y + 3z = 1

2x + 3y + 4z = 3

5x + 9y + 13z = 7
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4. Consider a linear system Ax = b with A an m × n matrix and b an m × 1
matrix. Is it true if there is more than one solution for x in Rn, there must be
infinitely many? You may use the fact that

A(x + y) = Ax + Ay

A(tx) = tAx,

for every x, y ∈ Rn and t ∈ R,

which is called the linearity of matrix multiplication.

5. Let k be a real number. Consider the following linear system of equations:







x2 + 2x3 + x4 = 1

2x1 + x2 + 3x3 = 2

x1 + 4x3 + 2x4 = 3

kx2 + x4 = 1.

(2.2)

Find all possible values of k such that system (2.2) i) has a unique solution;
ii) has no solutions and iii) has infinitely many solutions.

2.2 Matrix operations

We have dealt with matrix multiplication when we represent systems of
linear equations into matrix form Ax = b, where Ax is a m × n matrix times
an n × 1 matrix. In this section, we discuss matrix operations for general
matrices.

Definition 2.2.1. Let A, B be m × n matrices, c ∈ R a scalar. Then A + B
and cA are m × n matrices defined by

(A + B)i j = (A)i j + (B)i j , (cA)i j = c(A)i j ,

where (A)i j denotes the entry at the (i j) position of A.

Example 2.2.2. Let A =

[
1 2 3
3 4 5

]

, B =

[
5 4 3
3 2 1

]

. Then we have

A + B =

[
6 6 6
6 6 6

]

, 2A =

[
2 4 6
6 8 10

]

.

�
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24 Concise Introduction to Linear Algebra

Recall that in Example 2.1.1, we multiplied square matrices with the con-
vention that the first matrix multiplies column by column on the second matrix
of the product AB. One point to note is that a product Ax with a column
matrix x exists if the number of columns of A equals the number of rows of
x.

We have

Definition 2.2.3. Let A be an m × n matrix, B be an n × r matrix. Then
AB is an m × r matrix.

AB = [Ab1 : Ab2 : · · · : Abr],

where B = [b1 : b2 : · · · : br].

Example 2.2.4. A =

[
1 2
3 4

]

, B =

[
5 4 3
3 2 1

]

. Then we have

AB =

[
11 8 5
27 20 13

]

.

�

Let A be an m × n matrix, B be an n × r matrix. If we partition A into
rows and B into columns, we have

AB =








a1

a2

...
am








[
b1 : b2 : · · · : br

]

=







a1b1 a1b2 · · · a1bn

a2b1 a2b2 · · · a2bn

· · · · · · · · · · · ·
amb1 amb2 · · · ambr







,

from which we have

AB =








a1B
a2B

...
amB








,

and that
(AB)i, j = (Row i of A) · (Column j of B).

We have the following associative property of matrix products.

Theorem 2.2.5. Let A, B and C be m × n, n × p and p × q matrices,
respectively. Then we have

(AB)C = A(BC).
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Proof. First of all we know that both products are m × q. For every position
(i, j) in the product matrix, we have

((AB)C)i j = (Row i of AB) · (Column j of C)

=

p
∑

s=1

(AB)i sCs j

=

p
∑

s=1

[(Row i of A) · (Column s of B)]Cs j

=

p
∑

s=1

[
n∑

t=1

Ai tBt s

]

Cs j

=

n∑

t=1

Ai t

[
p
∑

s=1

Bt sCs j

]

= (Row i of A) · (Column j of BC)

= (A(BC))i j .

�

By the approach of comparing corresponding positions in the related ma-
trices, we have the following distributive properties:

Lemma 2.2.6. Let A and B be m × n; C and D be n × p matrices;
t ∈ R be a scalar. We have

A(C + D) = AC + AD;

(A + B)C = AC + BC;

t(A + B) = tA + tB.

Unfortunately there is no commutative property in general for matrix prod-
ucts.

In general,
AB , BA.

Example 2.2.7. Let A =

[
1 2
3 4

]

, B =

[
0 1
1 0

]

. We have

AB =

[
2 1
4 3

]

, BA =

[
3 4
1 2

]

,

which illustrates that AB , BA. Observe that B is an elementary matrix
which exchanges rows of A if multiplied on the left of A, but exchanges columns
of A if multiplied on the right. We will understand this after we have learned
transposition in the later sections. �
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26 Concise Introduction to Linear Algebra

We finish this section with the definition of matrix powers:

Am = AAA · · · A
︸          ︷︷          ︸

m copies of A

.

Exercise 2.2.8.

1. Let A =

[
1 2
3 4

]

, B =

[
1 0 1 0
0 1 0 1

]

. i) Compute AB. ii) Does BA exist?

2. Let A =

[
1 2
3 4

]

, B =

[
1 −1 0 1
1 1 1 0

]

. i) Compute AB. ii) If B is block

partitioned into B = [B1 : B2], is it true AB = [AB1 : AB2]?

3. Show Lemma 2.2.6.

4. Let A = [a1 : a2 · · · : an], B =








b1

b2

...
bn








be m × n and n × r matrices. Show

that AB = a1b1 + a2b2 + · · · + anbn.

5. Let A =

[
1 2
3 4

]

, B =

[
1 −1 0 1
1 1 1 0

]

. Use Question 4 to compute AB.

6. Let A and B be m × n and n × r matrices. Show that i) every column of
AB is a linear combination of the columns of A; ii) every row of AB is a linear
combination of the rows of B.

7. Let A =

[
1 2
3 4

]

. Find all matrices B such that AB = BA.

8. Let A and B be n × n matrices. Explain that in general we have (A −
B)(A − B) , A2 − B2 and (A + B)2

, A2 + 2AB + B2.

9. Let A be an n × n matrix. Define V = {B : AB = BA}. Show that i)
V , ∅; ii) if B1 ∈ V and B2 ∈ V , then every linear combination of B1 and B2

is in V .

10. Give an example that A2 = 0 but A , 0.

11. Give an example that A2 = I but A , ±I.

12. Let A be an n × n matrix. If we want to define a limit limm→∞ Am, how
would you define the closeness (distance) between matrices?
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2.3 Inverse matrices

To solve the linear system Ax = b where A is an n × n matrix and b is an
arbitrary n×1 vector, we use the elimination process to reduce it into Ix = x0,
where I is the n × n identity matrix. We know each step of elimination can
be represented by a left multiplication of an elementary matrix on both sides
of the current linear system. That is,

EmEm−1 · · · E2E1Ax = EmEm−1 · · · E2E1b.

If the eliminations reduce A into the identity matrix I, that is,
EmEm−1 · · · E2E1A = I, we obtain the solution x = EmEm−1 · · · E2E1Ab.
For notational convenience, we write B = EmEm−1 · · · E2E1. We have

BA = I and x = Bb.

If we bring x = Bb back into the original system, we have

ABb = b.

Since b is assumed to be arbitrary, we have ABb = b for every b. Then we
have

AB = I.

In summary, in order to have a unique solution for Ax = b with arbitrary b,
we need

BA = I = AB. (2.3)

We notice that

Lemma 2.3.1. If there exists an n × n matrix B satisfying BA = I =
AB, then it is unique.

This is because if CA = I = AC we have

C = CI = C(AB) = (CA)B = IB = B.

Definition 2.3.2. Let A be an n × n matrix. If there exists B such
that BA = I = AB, A is said to be invertible. B is called the inverse
of A and is denoted by A−1. If there is no such matrix B satisfying
AB = I = BA, A is said to be singular, or not invertible.

An immediate application of the definition of inverse is that if a matrix
has a zero row or zero column, it cannot be invertible. Say A has a row of
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28 Concise Introduction to Linear Algebra

zeros, then by matrix multiplication, for every matrix B such that AB exists,
AB will have a row of zeros, which cannot be equal to the identity matrix.

If A has a zero row or zero column, A is not invertible.

Example 2.3.3. 1. Since I2 = II = I, the identity matrix is invertible
with I−1 = I.

2. Let A = diag{d1, d2, · · · , dn}. If d1d2 · · · dn , 0, then A is invertible with
A−1 = diag{d−1

1 , d−1
2 , · · · , d−1

n }. To be more specific, if d1d2 · · · dn , 0,
then we have

A =








d1

d2

. . .

dn








=⇒ A−1 =








d−1
1

d−1
2

. . .

d−1
n








.

3. All elementary matrices are invertible. For instance,

E31 =





1 0 0
0 1 0
2 0 1



 =⇒ E−1
31 =





1 0 0
0 1 0

−2 0 1



 ,

P21 =





0 1 0
1 0 0
0 0 1



 =⇒ P −1
21 =





0 1 0
1 0 0
0 0 1



 = P21,

E33 =





1 0 0
0 1 0
0 0 10



 =⇒ E−1
33 =





1 0 0
0 1 0
0 0 1

10



 .

�

Now we show two equivalent conditions for invertibility of a matrix.

Theorem 2.3.4. The following are equivalent:

i) A is invertible.

ii) Ax = 0 has only the trivial solution x = 0.

iii) A is equal to a product of elementary matrices.

Proof. i) ⇒ ii) Since A is invertible, the inverse A−1 exists. Then Ax = 0
leads to A−1Ax = A−10 and Ix = x = 0.

ii) ⇒ iii) If Ax = 0 has only the trivial solution x = 0, then by Gaussian
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elimination, the augmented matrix [A : 0] can be reduced to [I : 0]. That is,
there exist elementary matrices E1, E2, · · · , Em such that

EmEm−1 · · · E2E1[A : 0] = [I : 0].

Hence EmEm−1 · · · E2E1A = I and we have A = E−1
1 E−1

2 · · · E−1
m . Since

E−1
i , i = 1, 2, · · · , m are again elementary matrices, A is a product of ele-

mentary matrices.
iii) ⇒ i). Suppose A is a product of elementary matrices with A =

E−1
1 E−1

2 · · · E−1
m . Let B = EmEm−1 · · · E2E1. We have

BA =(EmEm−1 · · · E2E1)(E−1
1 E−1

2 · · · E−1
m )

=I

=(E−1
1 E−1

2 · · · E−1
m )(EmEm−1 · · · E2E1)

=AB.

�

Theorem 2.3.5. Let A and B be n × n matrices.

i) If BA = I, then B = A−1.

ii) If AB = I, then B = A−1.

Proof. i) If A is invertible, we immediately have B = B(AA−1) = (BA)A−1 =
A−1. To show A is invertible by Theorem 2.3.4, we show that Ax = 0 has only
the trivial solution. Indeed, if Ax = 0, we have BAx = B0 which implies that
Ix = x = 0. Ax = 0 has only the trivial solution. Hence A is invertible.

ii) By 1), we have A = B−1 and B is invertible. Notice that BB−1 =
B−1B = I. B−1 is invertible with inverse equal to B. Therefore, A is invertible
with A−1 = (B−1)−1 = B. That is, B = A−1. �

Theorem 2.3.6. Let A and B be n × n matrices. Then A and B are
invertible if and only if AB is invertible.

Proof. “=⇒” If A and B are invertible, A−1 and B−1 exist. Then we have

(B−1A−1)(AB) = (AB)(B−1A−1) = I,

which imply that AB is invertible.
“⇐=” If AB is invertible, then there exists a matrix C such that C(AB) =

(AB)C = I. By associative property of matrix product, we have

(CA)B = A(BC) = I,

in which by Theorem 2.3.5 A and B are both invertible. �
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Lemma 2.3.7. Let A =

[
a b
c d

]

.

A is invertible if and only if ad − bc , 0.

If A is invertible, then

A−1 =
1

ad − bc

[
d −b

−c a

]

.

Proof. We show the first part. The second part can be directly verified by
computing AA−1.

“=⇒” If A is invertible, it cannot have a zero row. Therefore, c and d
cannot be simultaneously zero. Suppose ad − bc = 0, then the system Ax = 0
has a nontrivial solution

x =

[
d

−c

]

, 0.

By Theorem 2.3.4, A is not invertible. This is a contradiction. Hence ad−bc ,
0.

“⇐=” If ad − bc , 0, the matrix

B =
1

ad − bc

[
d −b

−c a

]

exists and satisfies BA = I. Therefore, A is invertible with A−1 = B =

1
ad−bc

[
d −b

−c a

]

. �

From Lemma 2.3.7, we know that the invertibility is determined by a scalar
quantity ad − bc. We call it the determinant of A. In the later chapters we
will come back to this notion.

Example 2.3.8. (Dominant matrices are invertible) We call an n × n matrix
A = (ai j) a dominant matrix if for every i ∈ {1, 2, · · · , n}, we have

|aii| >
∑

j,i

|aij |.

We show that if A is dominant, then it is invertible.

Proof. We show that if x , 0 then Ax , 0 so that Theorem 2.3.4 applies. Let
|xi0

| be the largest coordinate of x in absolute value. Then we have

|(Ax)i01| = |(Row i0 of A) · x|
=|ai01x1 + ai02x2 + · · · + ai0i0

xi0
+ · · · + ai0nxn|

≥|ai0i0
xi0

| − |ai01x1 + ai02x2 + · · · + ai0(i0−1)xi0−1

+ ai0(i0+1)xi0+1 · · · + ai0nxn|
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≥|ai0i0
xi0

| − |ai01x1| − |ai02x2| − · · · − |ai0(i0−1)xi0−1|
− |ai0(i0+1)xi0+1| · · · − |ai0nxn|

≥|ai0i0
xi0

| − |ai01xi0
| − |ai02xi0

| − · · · − |ai0(i0−1)xi0
|

− |ai0(i0+1)xi0
| · · · − |ai0nx0|

=



|ai0i0
| −
∑

j,i0

|ai0j |



 |xi0
| > 0.

�

We finish this section by a concrete example on how to find the inverse of
a square matrix, if it exists. The idea is the same as solving the linear system
by elimination. If we can find elementary matrices E1, E2, · · · , Em such that
EmEm−1 · · · E1A = I, then we obtain A−1 = EmEm−1 · · · E1. The problem is
that it is not economical that we compute the matrix product after we have
found all of the elementary matrices. We must find a device to record the
product at the same time of elimination. Indeed the coupled matrix [A : I]
serves this purpose very well. Namely, we have

A−1[A : I] = [A−1A : A−1] = [I : A−1].

The inverse A−1 is recorded at the second part of the coupled matrix when
the first part becomes I.

Example 2.3.9. For the given matrix A, we use elimination to find A−1 and
record elementary row operation and the corresponding elementary matrix at
the same time.

A =





3 0 7
2 1 4
1 −1 2



 .

Solution:




3 0 7 1 0 0
2 1 4 0 1 0
1 −1 2 0 0 1



 Row operation Elementary Matrix

⇓ R1 ↔ R3 E1 =





0 0 1
0 1 0
1 0 0









1 −1 2 0 0 1
2 1 4 0 1 0
3 0 7 1 0 0



 Row operation Elementary Matrix

⇓ R2 − 2R1 E2 =





1 0 0
−2 1 0

0 0 1
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1 −1 2 0 0 1
0 3 0 0 1 −2
3 0 7 1 0 0



 Row operation Elementary Matrix

⇓ R3 − 3R1 E3 =





1 0 0
0 1 0

−3 0 1









1 −1 2 0 0 1
0 3 0 0 1 −2
0 3 1 1 0 −3



 Row operation Elementary Matrix

⇓ R3 − R2 E4 =





1 0 0
0 1 0
0 −1 1









1 −1 2 0 0 1
0 3 0 0 1 −2
0 0 1 1 −1 −1



 Row operation Elementary Matrix

⇓ R2/3 E5 =





1 0 0
0 1

3 0
0 0 1










1 −1 2 0 0 1

0 1 0 0 1
3 − 2

3

0 0 1 1 −1 −1




 Row operation Elementary Matrix

⇓ R1 + R2 E6 =





1 1 0
0 1 0
0 0 1











1 0 2 0 1
3

1
3

0 1 0 0 1
3 − 2

3

0 0 1 1 −1 −1







Row operation Elementary Matrix

⇓ R1 − 2R3 E7 =





1 0 −2
0 1 0
0 0 1











1 0 0 −2 7
3

7
3

0 1 0 0 1
3 − 2

3

0 0 1 1 −1 −1







Then we have

A−1 =







−2 7
3

7
3

0 1
3 − 2

3

1 −1 −1







,

which can be written as the product of elementary matrices E7E6E5E4E3E2E1.
�
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Exercise 2.3.10.

1. Determine whether or not the following matrices are invertible. Find the
inverse of each matrix if it exists.

a)

[
1 2
3 4

]

, b)

[
−1 2

3 6

]

, c)

[
1 2
3 6

]

.

2. Determine whether or not the following matrices are invertible. Find the
inverse of each matrix if it exists.

a)





0 0 1
0 1 0
1 0 0



 , b)





1 0 0
2 1 0
0 3 1



 , c)





1 0 0
0 6 0
0 0 1



 .

3. Determine whether or not the following matrices are invertible. Find the
inverse of each matrix if it exists.

a)





1 2 0
3 4 0
0 0 1



 , b)





1 0 0
0 −1 2
0 3 6



 , c)





1 2 0
3 6 0
0 0 1



 .

4. For the given matrix A, use elimination to find A−1 and record each ele-
mentary row operation and the corresponding elementary matrix at the same
time.

A =





3 0 1
2 4 2
1 −1 5



 .

5. For what values of λ ∈ R is the following matrix

A =





3 0 1
2 4 2
1 −1 λ





invertible?

6. Let A be an n × n matrix. If A =








r1

r2

...
rn








satisfies that r2 = r3 + r1, is A

invertible?

7. Let A be an n×n matrix. If A =
[
c1 : c2 : · · · : cn

]
satisfies that c2 = c3+c1,

is A invertible?

8. Let v, w ∈ Rn be vectors. Is the matrix A =

[
‖v‖ 1

|v · w| ‖w‖

]

invertible?
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9. Give an example of a 3 × 3 dominant matrix and find its inverse.

10. Find a sufficient condition on a, b, c and d ∈ R such that the matrix

A =

[
a2 + b2 2ab

2cd c2 + d2

]

is invertible.

11. Let A =





0 1 1
0 0 1
0 0 0



. i) Compute A2; ii) Show that for every k ≥ 3, k ∈ N,

Ak = 0.

12. Let A be an n × n matrix. Show that if Ak = 0, then I − A is invertible
and

(I − A)−1 = I + A + A2 + · · · + Ak−1.

13. Let A be an n × n matrix and A = tI + N , t ∈ R with N4 = 0 for some
k ∈ N. Compute A4 in terms of t and N .

14. Let D = diag{λ1, λ2, · · · , λn} be a diagonal matrix with the main diago-
nal entries λ1, λ2, · · · , λn. Show that D is invertible if and only if λi , 0, for
every i = 1, 2, · · · , n.

15. Let A be an n × n matrix. i) If A3 = I, find A−1; ii) If Ak = I for
some k ∈ N, find A−1; iii) If Ak = 0 for some k ∈ N, is it possible that A is
invertible?

16. Show that A is invertible if and only if Ak is invertible for every k ∈
N, k ≥ 1.

17. Let A and B be n × n invertible matrices. i) Give an example to show
that A+B may not be invertible; ii) Show that A+B is invertible if and only
if A−1 + B−1 is invertible.

2.4 LU decomposition

We have observed in solving Ax = b with A an n × n matrix that once we
have a triangular coefficient matrix, say Ux = c, we can use back substitu-
tion to solve the system. Indeed, if elementary matrices E1, E2, · · · , Em are
lower triangular and reduce A into an upper triangular matrix without row
exchanges, then the product L = E−1

1 E−1
2 · · · E−1

m is lower triangular. In such
a case, Ax = b is equivalent to

LUx = b,
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and we can solve the system by solving two systems with triangular matrices:

Lc = b, Ux = c,

which can be solved by forward and backward substitution, respectively.
Next we explain that L can be obtained without really carrying out the ma-

trix multiplications. Assume that each elementary matrix in E1, E2, · · · , Em

deals with a different position (i, j) of an n × n matrix with i > j and
we assume that the elimination on A was carried out with the order E1,
E2,· · · , Em, successively on A. Then the product L = E−1

1 E−1
2 · · · E−1

m =
E−1

1 E−1
2 · · · E−1

m I is acting on I backward adding the −li,j multiple of the
j-th row to the i-th row, where li,j is the multiplier from Ei, j . With p < q,
the row with the position to be altered by E−1

p is not altered (relative to the
identity matrix) when E−1

q acts. To be specific, let us examine the following
example:

Example 2.4.1. Let

A =





2 −1 0
−1 2 −1

0 −1 2



 , E21 =





1 0 0
1
2 1 0
0 0 1



 , E32 =





1 0 0
0 1 0
0 2

3 1



 .

We have

E32E21A = U =





2 −1 0
0 3

2 −1
0 0 4

3



 .

Then the LU decomposition is A = LU with

L = E−1
21 E−1

32 =





1 0 0
− 1

2 1 0
0 0 1









1 0 0
0 1 0
0 − 2

3 1



 =





1 0 0
− 1

2 1 0
0 − 2

3 1



 .

We see that the multipliers −l3, 2 = − 2
3 and −l2, 1 = − 1

2 of the elementary
matrices are placed directly into the identity matrix to form the product L.
Row 2 for the position (2, 1) which will be altered by E−1

21 is not altered when
E−1

32 sends −l3, 2 to the (3, 2)-position. When E−1
21 acts after E−1

32 , it sends
−l2, 1 to the (2, 1)-position using unchanged Row 1 to produce a new Row 2,
but this new Row 2 has no effect on E−1

32 anymore.
If we compute

E−1
32 E−1

21 =





1 0 0
− 1

2 1 0
1
3 − 2

3 1



 ,

E−1
21 produces a nontrivial entry at (2, 1) in Row 2. When E−1

32 acts, it uses an
already altered Row 2 and produces an unwanted entry at (3, 1). In summary,
we have
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If E1, E2, · · · , Em are lower triangular elementary matrices which op-
erate on distinct positions (i, j), i > j of the n × n matrix A and are
such that EmEm−1 · · · E2E1A = U is an upper triangular matrix, then
A = LU , where L = E−1

1 E−1
2 · · · E−1

m is lower triangular with

(L)i j = −li j ,

and li j is the multiplier of the corresponding elementary matrix in
E1, E2, · · · , Em which operates on position (i, j).

�

Exercise 2.4.2.

1. Let −li j be the entry of the 4 × 4 E−1
ij matrix below the main diago-

nal. Which one of the following products can be obtained by directly writ-
ing −li j into the (i, j) position of the products? i) E−1

31 E−1
32 E−1

41 E−1
42 E−1

43 ; ii)
E−1

32 E−1
21 E−1

31 E−1
42 E−1

43 .

2. Find the LU decomposition of

A =





3 0 1
2 4 2
1 −1 5



 .

3. Let b = (1, 2, 3) and A =





3 0 1
2 4 2
1 −1 5



. Use the LU decomposition of A to

solve system Ax = b.

4. Is it true that a matrix A does not have an LU decomposition? Justify your
answer.

2.5 Transpose and permutation

Definition 2.5.1. Let A be an m×n matrix. The transpose of A is an n×m
matrix denoted AT and is defined by

(AT )ij = (A)ji.

Example 2.5.2. We have the following examples.

1. If A =
[
1 2 3

]
, then AT =





1
2
3



 .
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2. If A =





1 2 3
4 5 6
7 8 9



 , then AT =





1 4 7
2 5 8
3 6 9



 .

3. If x, y ∈ Rn are treated as n × 1 matrices, then x · y = xT y.

�

Theorem 2.5.3. Suppose that A and B are matrices such that A+B,
AB and A−1 exist. We have

(A + B)T = AT + BT , (2.4)

(AB)T = BT AT , (2.5)

(A−1)T = (AT )−1. (2.6)

We show (2.5) while the others can be proved similarly. For every (i, j)
position of (AB)T we have

((AB)T ))ij =(AB)ji

=(Row j of A) · (Column i of B)

=(Column i of B) · (Row j of A)

=(Row i of BT ) · (Column j of AT )

=(BT AT )ij .

Next we show (2.6). We need only to show AT (A−1)T = I, which is by
(2.5) immediately true since AT (A−1)T = (A−1A)T = IT = I.

Definition 2.5.4. Let A be an n × n matrix. If A = AT , A is called a
symmetric matrix.

Example 2.5.5. 1. Diagonal matrices are symmetric.

2. If A =





1 2 3
2 5 4
3 4 6



 , then we have AT = A and A is symmetric.

3. If A is an m × n matrix, then both AAT and AT A are square matrices
and are symmetric.

4. If x, y ∈ Rn are treated as n × 1 matrices, then xyT is an n × n matrix,
but NOT symmetric in general.

�

Theorem 2.5.6. Let A be an m × n matrix. Then AT A is invertible
if and only if the columns of A are linearly independent.
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Proof. “=⇒” If the columns of A are not linearly independent, then the system
Ax = 0, which is equivalent to

Ax = [c1 : c2 : · · · : cn]








x1

x2

...
xn








= 0 ⇔ x1c1 + x2c2 + · · · xncn = 0,

has nontrivial solutions. Then AT Ax = 0 also has nontrivial solutions since
Ax = 0 implies AT Ax = AT 0 = 0. By Theorem 2.3.4, AT A is not invertible.
This is a contradiction.

“⇐=” Consider AT Ax = 0. We note that

Ax ⊥ every column of A (or every row of AT );

Ax itself is a linear combination of columns of A (or every row of AT ).

Ax must be orthogonal to itself. Hence Ax = 0. Since the columns of A are lin-
early independent, x = 0 is the only solution of AT Ax = 0. By Theorem 2.3.4,
AT A is invertible. �

LU decomposition of symmetric matrices

Recall that if an n × n matrix A has n pivots (nonzero), its LU decom-
position can be written as A = LDU where D is the diagonal matrix whose
main diagonal entries are the pivots. Then L−1A = DU , where L−1 is actually
the product of all elementary matrices (without row exchange matrix) which
reduce A into the upper triangular matrix DU .

Assume that A is symmetric. Then the lower triangular part (below the
main diagonal) of A is the same as that of (DU)T — noting that DU is the
remaining upper triangular part of A after elimination! Therefore, by the same
set of eliminations, we can reduce (DU)T into D. That is

L−1(DU)T = D,

which is equivalent to (L−1UT − I)D = 0. Since the diagonal matrix D has
all pivots at the main diagonal which are all nonzero, we have

L−1UT − I = 0.

That is, L = UT . To summarize, we have

If A is an n × n symmetric matrix with n pivots and no row exchange
needed to have the decomposition A = LDU , then we have U = LT

and
A = LDLT .
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Example 2.5.7. Let A =





1 2 3
2 5 6
3 6 7



 . Then A is a symmetric matrix. We

have




1 2 3
2 5 6
3 6 7




R2−2R1=====⇒





1 2 3
0 1 0
3 6 7





R3−3R1=====⇒





1 2 3
0 1 0
0 0 −2



 =





1 0 0
0 1 0
0 0 −2









1 2 3
0 1 0
0 0 1



 = DU,

where D and U denote the diagonal and upper triangular matrices in the last
equality, respectively. We have E31E21A = DU, where

E21 =





1 0 0
−2 1 0
0 0 1



 , E31 =





1 0 0
0 1 0

−3 0 1



 ,

with

E−1
21 =





1 0 0
2 1 0
0 0 1



 , E−1
31 =





1 0 0
0 1 0
3 0 1



 .

We have L = E−1
21 E−1

31 =





1 0 0
2 1 0
3 0 1



. Then the LDLT decomposition of A is

A =





1 0 0
2 1 0
3 0 1









1 0 0
0 1 0
0 0 −2









1 2 3
0 1 0
0 0 1



 .

�

Remark 2.5.8. So far we have avoided an exchange of rows for LU de-
composition. However, there are indeed cases where an exchange of rows is
necessary to reduce a matrix into upper triangular form. For instance, the fol-
lowing elimination has to have a row exchange to obtain an upper triangular
form:

A =





1 2 3
4 8 10
0 1 0



 =⇒





1 2 3
0 0 −2
0 1 0



 .

In this example if we do know in advance row 2 and row 3 should be exchanged
to have a LU decomposition, we could decompose P32A such that P32A =
LDU .
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If A is invertible, then there exists a permutation matrix P such that
P A = LDU where L and U are lower and upper triangular matrices,
respectively.

Permutations

Definition 2.5.9. An n × n matrix P is called a permutation matrix if
the identity matrix can be obtained by rearranging the rows of P .

By definition, there are n! permutation matrices of order n.

Example 2.5.10. Consider 3 × 3 permutation matrices.

I =





1 0 0
0 1 0
0 0 1



 , P21 =





0 1 0
1 0 0
0 0 1



 , P31 =





0 0 1
0 1 0
1 0 0



 , P32 =





1 0 0
0 0 1
0 1 0



 ,

P31P32 =





0 1 0
0 0 1
1 0 0



 , P21P32 =





0 0 1
1 0 0
0 1 0



 , P21P31 =





0 1 0
0 0 1
1 0 0



 .

Notice that a permutation matrix P which represents a single permutation
is symmetric and the inverse is itself. That is, P −1 = P = P T . Let us call
it a simple permutation matrix. For a general permutation matrix E which
represents multiple permutations, it is a product of simple permutation ma-
trices. Assume that E = P1P2P3 · · · Pn, where Pi, i = 1, 2, · · · , n are simple
permutation matrices. Then we have

ET =(P1P2P3 · · · Pn)T

=P T
n P T

n−1 · · · P T
1

=PnPn−1 · · · P1, (2.7)

which is not equal to E anymore. Therefore E may NOT be symmetric. How-
ever, by (2.7) we have

E−1 = (P1P2P3 · · · Pn)−1

= P −1
n P −1

n−1 · · · P −1
1

= PnPn−1 · · · P1

= ET .

That is, if E is a permutation matrix, then EET = I = ET E which imply
that

(Row i of E) · (Row j of E) =

{

1 if i = j,

0 if i , j,
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and

(Column i of E) · (Column j of E) =

{

1 if i = j,

0 if i , j.

The rows (columns) of E are orthogonal to each other. �

Definition 2.5.11. If A satisfies that A−1 = AT , we call it an orthogonal
matrix.

If P is a permutation matrix, it is an orthogonal matrix. That is,
P −1 = P T .

Example 2.5.12. Let A =





1 2 3
2 5 6
3 6 7



 , and P =





0 1 0
0 0 1
1 0 0



 . Then A is

symmetric and P is a nonsymmetric permutation matrix. So P A is a permu-
tation of the rows of A, row 1 to row 3, row 3 to row 2 and row 2 to row 1.
That is

P A =





2 5 6
3 6 7
1 2 3



 .

Since 1, 5, 7 have to be on the main diagonal, in order to restore symmetry
from P A, column 1 has to be placed in column 3, column 3 goes to column 2
and column 2 to column 1. We know that a permutation matrix that multiplies
from the right of a matrix will manipulate the columns. The aforementioned
operations can be achieved by a right multiplication of

Q =





0 0 1
1 0 0
0 1 0



 .

That is, P AQ =





5 6 2
6 7 3
2 3 1



. Note that QT = P and P AP T is always sym-

metric if A is symmetric. Therefore, if the symmetry of a matrix is destroyed
by multiplication of a permutation matrix, we can restore symmetry from the
product with a multiplication of its transpose from the other side. �

Example 2.5.13. Let P =







0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0







. Then P is a permutation matrix

and hence the inverse can be obtained by taking the transpose of P :

P −1 = P T =







0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0







.

www.Engineeringbookspdf.com



42 Concise Introduction to Linear Algebra

Exercise 2.5.14.

1. Let A =







0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0







. Find A−1 and AT .

2. Let A =







0 1 0
0 0 1
0 0 0
1 0 0







. i) Find AAT and AT A. ii) Determine which one of

AAT and AT A is invertible. iii) If one of AAT and AT A is invertible, does it
contradict Theorem 2.3.6?

3. Let

A =







0 1 2 3
1 2 3 4
2 3 4 5
3 4 5 6







, B =







1 2 3 4
0 1 2 3
3 4 5 6
2 3 4 5







.

i) Find a permutation matrix P1 such that B = P1A; ii) Find a permutation
matrix P2 such that A = P2B. iii) Compute P1P2 and P2P1.

4. Let

A =







7 1 2 3
1 2 3 4
2 3 4 5
3 4 5 7







.

Find a permutation matrix P , a lower triangular matrix L and a diagonal
matrix D such that A = LDLT .

5. Let Rθ =

[
cos θ − sin θ
sin θ cos θ

]

. Show that Rθ is an orthogonal matrix.

6. Let x ∈ Rn with xT x = 1. Define the Householder matrix by

H = I − 2xxT .

i) Show that H is an orthogonal matrix; ii) Show that H is symmetric.

7. Let S =

[
I A

AT O

]

, where I is m × m and A is m × n, O the zero matrix.

Find a block diagonal matrix D and block lower triangular matrix L such that

S = LDLT .

8. Show that AAT is invertible if and only if the rows of A are linearly inde-
pendent.

www.Engineeringbookspdf.com



Solving linear systems 43

9. We say A is skew-symmetric if AT = −A. i) Show that if A is a skew-
symmetric n × n matrix then aii = 0 for every i = 1, 2, · · · , n. ii) If A is both
symmetric and skew-symmetric, then A = 0.

10. Let A be an n × n matrix. Show that i) A + AT is symmetric; ii) A −
AT is skew-symmetric; iii) For every square matrix B, there exist a unique
symmetric matrix B1 and a unique skew-symmetric matrix B2 such that B =
B1 + B2.

11. A matrix is called lower triangular if every entry above the main di-
agonal is zero and is called upper triangular if every entry below the main
diagonal is zero. Let A be an n×n invertible matrix. i) Show that if A is lower
triangular, A−1 is also lower triangular; ii) Show that if A is upper triangular,
then A−1 is also upper triangular.
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3.1 Spaces of vectors

We know that the operations addition and scalar multiplication in Eu-
clidean space Rn produce vectors within Rn. Namely Rn is closed under ad-
dition and scalar multiplication. In addition, the derived operations, such as
exchange of order of addition, do not produce a vector different from the one
before the operation. To be specific, for u, v, w ∈ Rn, s, t ∈ R, Rn satisfies
the following properties:

i) (Commutative property) u + v = v + u;

ii) (Associative property) (u + v) + w = u + (v + u);

iii) (Identity element of addition) u + 0 = u = 0 + u;

iv) (Existence of addition inverse) u + (−u) = 0;

v) (Associative property on scalars) (st)u = s(tu);

vi) (Distributive properties on vectors) s(u + v) = su + sv;

vii) (Distributive properties on scalars) (s + t)u = su + tu;

viii) (Identity element of scalar multiplication) 1u = u.

Notice that for different sets we have different definitions of addition and scalar
multiplication. The properties we described for Rn are not anymore for free
for every sets of objects.

Example 3.1.1. If we consider the set S of all 2 × 2 invertible matrices, we
cannot expect that addition of two invertible matrices is again invertible; for
instance,

A =

[
1 0
0 1

]

, B =

[
0 1
1 0

]

,

45
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both are invertible, but A + B is not. That is, invertibility is not preserved
under addition and the set S does not satisfy the closedness property. �

However, we do have many occasions that a common property is automati-
cally preserved under innocent operations without the need to have additional
verifications, and we expect the same easiness as in Rn when working on differ-
ent sets of objects equipped with their own operations of addition and scalar
multiplication. We can check the following sets with the questions we asked
for Rn:

Example 3.1.2.

i) The set of all m × n matrices;

ii) The set of all m × m symmetric matrices;

iii) The set of all m × m skew-symmetric matrices A with AT = −A;

iv) The set of all solutions of Ax = 0 in Rn;

v) The set of all linear combinations of vectors in {(1, 1, 0), (1, 0, 0)} ⊂ R3

vi) The set with addition identity only: {0};

vii) The set of all polynomials;

viii) The set of all convergent sequences in R;

ix) The set of all continuous real functions;

x) The set of all differentiable real functions;

xi) The set of all Riemann integrable real functions on [a, b]. �

Definition 3.1.3. Let V be a set equipped with addition + and scalar
multiplication over a scalar field K (we assume it is either R or C). If
V is closed under addition and scalar multiplication, and the following
conditions (A1)–(A8) are satisfied, we call V a vector space (or linear
space) over the field K. If the scalar field K is R, we call V a real
vector space. If K = C, we call V a complex vector space. We discuss
real vector space by default.

A1) For every x, y ∈ V , x + y = y + x.

A2) For every x, y, z ∈ V , we have (x + y) + z = x + (y + z).

A3) There exists a 0 ∈ V such that x + 0 = x = 0 + x for every x ∈ V .

A4) For every x ∈ V , there exists w ∈ V such that x + w = 0.

A5) For every x, y ∈ V and k ∈ K, k(x + y) = kx + ky.

A6) For every x ∈ V and k, t ∈ K, (k + t)x = kx + tx.

A7) For every x ∈ V and k, t ∈ K, k(tx) = (kt)x.

A8) For every x ∈ V , 1x = x.
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We know that Rn has many subspaces. We also have the notion of sub-
space of general vector space.

Definition 3.1.4. Let V be a vector space. A subset E ⊂ V is called a
subspace if it is closed under addition and scalar multiplication. That
is, for every x, y ∈ E, k a scalar,

x + y ∈ E, kx ∈ E.

We can verify that

Lemma 3.1.5. If E is a subspace of a vector space V , then (A1)–(A8)
are also satisfied by E and E itself is a vector space.

Example 3.1.6.

Let Mn×n denote the vector space of all n × n matrices. Then the set of all
n × n symmetric matrices is a subspace of Mn×n.

Let V be a vector space and v0 ∈ V . Then {kv0 : k ∈ R} is a subspace of V .

For every vector space V , the set {0} is a (trivial) subspace of V . �

Example 3.1.7. Let V be a vector space and {u, v} ⊂ V . Let E be the set
of all linear combinations of u, v. Then E is a subspace of V . Indeed, we need
only to check the closure property for S.

Closed under addition: For every x, y ∈ S, there exist scalars c1, c2, c′
1, c′

2 such
that x = c1u + c2v, y = c′

1u + c′
2v. Then we have

x + y = (c1 + c′
1)u + (c2 + c′

2)v,

which is again a linear combination of u, v. We have x + y ∈ S.

Closed under scalar multiplication: For every x ∈ S, there exist scalars c1, c2

such that x = c1u + c2v. Then for every scalar t we have

tx = t(c1u + c2v) = tc1u + tc2v,

which is also a linear combination of u, v. We have tx ∈ S. By definition of
subspaces, S is a subspace of V . �

We call the set of all linear combinations of vectors from a given subset
S ⊂ V the span of S, denoted by span(S). Note that a linear combination of
vectors is a linear combination of finitely many vectors. By the same token
of Example 3.1.7, we can show that

Lemma 3.1.8. If S is a subset of the vector space V , then span(S) is
a subspace of V .
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We notice that if we add a linear combination of the vectors from a span-
ning set, say S = {u, v}, it will not change the span of S. For instance,

span{u, v} = span{u, v, u + v}.

If a spanning set S is linearly independent, it has the minimal number of
vectors to span the vector space span(S). At the same time, S also has the
maximal number of linearly independent vectors in span(S) because any ad-
ditional one from span(S) will create redundancy in S. As such, we have the
following definition,

Definition 3.1.9. If S is linearly independent, we call the number of
vectors in S the dimension of the vector space V = span(S), denoted
dim V , and call S a basis of the vector space V = span(S).

Notice in the definition, a set of vectors S qualifies for a basis of a vector
space V , if and only if,

1) S is linearly independent in V ;
2) S spans V .

Moreover, we notice that the dimension of a vector space is independent
of a specific basis. Indeed we have the following dimension theorem,

Theorem 3.1.10. All bases for a vector space have the same number
of vectors.

Proof. We consider bases with finitely many vectors. Suppose the vector space
V has two bases {v1, v2, · · · , vm} and {w1, w2, · · · , wn} with m > n. Then
there exists an m × n matrix A = (aij) such that

[v1, v2, · · · , vm] = [w1, w2, · · · , wm]A.

Then Ax = 0 has at least one nontrivial solution x = x0 since the reduced
row echelon form of A will always have zero row. Then

[v1, v2, · · · , vm] x0 = [w1, w2, · · · , wm]Ax0 = 0.

That is, there exists a nontrivial linear combination of {v1, v2, · · · , vm} that
equals zero vector. {v1, v2, · · · , vm} is linearly dependent. This is a contra-
diction. �

Example 3.1.11. Let S = {u, v} be linearly independent vectors. Justify
that {u + v, u − v} is a basis of span(S) and find the dimension of span(S).
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Proof. We show that the set of vectors {u + v, u − v} is linearly independent
and spans the vector space span(S). Consider the vector equation:

c1(u + v) + c2(u − v) = 0,

and we have (c1 + c2)u + (c1 − c2)v = 0. Since u, v are linearly independent,
we have

{

c1 + c2 = 0

c1 − c2 = 0
⇒
{

c1 = 0

c2 = 0,

{u + v, u − v} is linearly independent and is a basis of span {u + v, u − v}.
Since {u + v, u − v} ⊂ span {u, v}, we have

span {u + v, u − v} ⊂ span {u, v}.

Notice that u = u+v
2 + u−v

2 , v = u+v
2 − u−v

2 . We have

span {u, v} ⊂ span {u + v, u − v},

and hence
span {u, v} = span {u + v, u − v}.

Therefore, {u+v, u−v} is also a basis of span(S). The dimension of span {u+
v, u − v} is 2.

�

We close this section with an example on how to find the span of vectors
in R3.

Example 3.1.12. Find the equation of the plane in R3 spanned by v1 =
(1, 1, 0) and v2 = (0, 1, 1).

Solution: Let S denote the plane. For every (x, y, z) ∈ S, it is a linear
combination of v1 and v2. That is, the vector equation

c1v1 + c2v2 = (x, y, z)

is always consistent for c1 and c2. Applying Gaussian elimination to the aug-
mented matrix, we have





1 0 x
1 1 y
0 1 z




R2−R1=====⇒





1 0 x
0 1 y − x
0 0 z




R3−R2=====⇒





1 0 x
0 1 y − x
0 0 z − (y − x)



 .

Then we have x − y + z = 0, which is the equation of the plane.
�

Exercise 3.1.13.
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1. Which of the following subsets of R3 are subspaces of R3? If yes, find a
basis and the dimension of each of the subspaces.

i) {(x, y, z) : x + y + z = 0};

ii) {(x, y, z) : xyz = 0};

iii) {(x, y, z) : x + y + z = 1};

iv) {(x, y, z) : x = y = z};

v) {(x, y, z) : y = z}.

2. Let V be a vector space. Show that the zero vector 0 is unique.

3. Let V be a vector space. For every x ∈ V , the negative w such that x+w = 0
is unique.

4. Let V be a vector space. For every x ∈ V , 0x = 0.

5. Find a basis and the dimension of the {A ∈ M22 : AT = −A}, where M22

denotes the vector space of all 2 × 2 matrices.

6. Find a basis and the dimension of the {A ∈ M33 : AT = −A}, where M33

denotes the vector space of all 3 × 3 matrices.

7. Show that S = {(1, 1), (1, 0)} is a basis of R2.

8. Let A be an n × n matrix. Show that V = {B : AB = BA} is a subspace
of Mnn.

9. Let V be a vector space. U and W are subspaces of V . Show that U ∩ W
is a subspace of V .

10. Give an example to show that the union of two subspaces may not be a
subspace.

11. Let V be a vector space. U and W are subspaces of V . Define U + W by

U + W = {x + y : x ∈ U, y ∈ W }.

Show that U + W is a subspace of V .

12. Let u and v be linearly independent vectors in R2. Show that R2 =
span{u, v}.

13. Show that if the subset S has m vectors in the n-dimensional space V
with m > n, then S must be linearly dependent. (One may use the proof
method for Theorem 3.1.10.)

14. Find the equation of the plane in R3 spanned by v1 = (−1, 1, 0) and
v2 = (0, 1, −1).

15. We call an (n − 1)-dimensional subspace of an n-dimensional vector space
V a hyperplane in V . Find the equation of the hyperplane in R4 spanned by
v1 = (−1, 1, 0, 0), v2 = (0, −1, 1, 0) and v3 = (0, 0, −1, 1).
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3.2 Nullspace, row space and column space

Let A be an m×n matrix. The set of all solutions N(A) = {x ∈ Rn : Ax =
0} is a subspace of Rn. Indeed, by linearity of matrix multiplication, for every
u, v ∈ N(A) and for every scalar t, we have

A(u + v) = Au + Av = 0 + 0 = 0,

A(tu) = tAu = t0 = 0,

which imply that u + v ∈ N(A) and tu ∈ N(A).

Definition 3.2.1. Let A be an m × n matrix. The set of all vectors

N(A) = {x ∈ Rn : Ax = 0}

is called the nullspace of A.

We can obtain a nullspace by means of elimination. Indeed, if E is a
product of elementary matrices, then

EAx = 0 ⇔ Ax = 0.

Therefore, the nullspace of A is not changed after elimination. We can find
the nullspace using the reduced row echelon form.

Example 3.2.2. Let E =

[
1 0 0 1
0 0 1 0

]

. Then in the solution of Ex = 0 with

x = (x1, x2, x3, x4), x1, x3 are leading variables and x2, x4 are free variables.






x1

x2

x3

x4







=







−x4

x2

0
x4







=







0
x2

0
0







+







−x4

0
0

x4







= x2







0
1
0
0







+ x4







−1
0
0
1







.

Therefore, we have

N(E) = span













0
1
0
0







,







−1
0
0
1













,

and dim N(E) = 2. We call







0
1
0
0







and







−1
0
0
1







special solutions of Ex = 0, which

constitute a basis of N(E). The number of free variables is the dimension of
the nullspace. �
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We know an m × n matrix A is a rectangular array of numbers. Every row
of A can be regarded as a vector in Rn and we call it a row vector. Every
column of A can be regarded as a vector in Rm and we call it a column vector.

Definition 3.2.3. Let A be an m × n matrix. The span of all rows of
A is a subspace of Rn, and is called the row space of A denoted by
R(A). The span of all columns of A is a subspace of Rm, and is called
the column space of A denoted by C(A).

Example 3.2.4. Let A =

[
1 0 0
0 1 0

]

. Then we have the row space

R(A) = span{(1, 0, 0), (0, 1, 0)}
= {u ∈ R3 : u = x(1, 0, 0) + y(0, 1, 0), x, y ∈ R}
= {u ∈ R3 : u = (x, y, 0), x, y ∈ R}
= the xy-plane in R3,

and the column space

C(A) = span{(1, 0), (0, 1)}
= {v ∈ R2 : v = x(1, 0) + y(0, 1), x, y ∈ R}
= {v ∈ R2 : v = (x, y), x, y ∈ R}
=R2.

�

We have seen in Example 3.2.4 that the row space can be obtained when
the matrix is in reduced row echelon form (See Example 2.1.3 for the definition
of reduced row echelon form.) To be specific,

If a matrix R is in reduced row echelon form, the row space of R is
spanned by the row vectors with pivots.

If a matrix is not in reduced row echelon form, we can reduce it into
reduced row echelon form whose basis for row space is the pivot rows. The
question is: will the row space be the same after elementary row operations?
To find out an answer, let us assume we have an m × n matrix A, which has
been reduced into B by a left multiplication of the elementary matrix E. Then
we have

A = EB and B = E−1A.

By matrix multiplication, we have

Row i of A =(Row i of E)B
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=(Row i of E)








r1

r2

...
rm








=(a linear combination of the rows of B).

Therefore, every row of A is a linear combination of the rows of B. That is,
R(A) ⊂ R(B). By the same token on B = E−1A, we have R(B) ⊂ R(A).
Therefore, R(A) = R(B).

Lemma 3.2.5. The row space of A is not changed after elementary
row operations.

Unfortunately elementary row operations may change the column space of
a matrix. For example,

A =

[
1 2
2 4

]

, E =

[
1 0

−2 1

]

, EA =

[
1 2
0 0

]

.

The column space of A is span{(1, 2)}. But after the row operation, the row
space of EA becomes span{(1, 0)}, which is not equal to span{(1, 2)}. How-
ever, this inequality does not mean row operations are useless for finding col-
umn space. Indeed, a row operation E on A does not change linear dependency
among the columns of A, noticing that Ax = 0 ⇔ EAx = 0, i.e.,

Ax = [c1 : c2 : · · · : cn]








x1

x2

...
xn








= 0 ⇔ EAx = 0.

If the only solution of Ax = 0 is the trivial solution x = (x1, x2, · · · , xn) = 0,
then all columns of A are linearly independent; so are the columns of EA.

If Ax = 0 has the nontrivial solution x = (x1, x2, · · · , xn) , 0, say,
x = (1, 1

2 , 1, 0, · · · , 0), then we have the following linear dependency among
columns of A:

1 · (Column 1 of A) +
1

2
· (Column 2 of A) + 1 · (Column 3 of A) = 0.

Since x is also a solution of EAx = 0, we have

1 · (Column 1 of EA) +
1

2
· (Column 2 of EA) + 1 · (Column 3 of EA) = 0,

which is the same set of linear combinations for the corresponding columns
of A.
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Lemma 3.2.6. The linear dependency of columns of A is not changed
after elementary row operations.

Example 3.2.7. Consider the 4×5 matrix A = [α1 | α2 | α3 | α4 | α5], where
the columns are

α1 =







1
−1

0
1







, α2 =







−2
3
1
2







, α3 =







1
0
1
5







, α4 =







1
2
3

13







, α5 =







2
−2

4
5







.

a) Find a set of vectors in {α1, α2, α3, α4, α5} which is a basis of the column
space of A.

b) Find the dimension of the column space of A.

c) Given the basis of the column space of A which has been obtained in part
a), write the nonbasis vectors in {α1, α2, α3, α4, α5} as linear combinations
of the basis vectors.

Solution: a) By the elementary row operations on A we have







1 −2 1 1 2
−1 3 0 2 −2

0 1 1 3 4
1 2 5 13 5







R2+R1=====⇒
R4−R1







1 −2 1 1 2
0 1 1 3 0
0 1 1 3 4
0 4 4 12 3







R1+2R2; R3−R2

===========⇒
R4−4R2







1 0 3 7 2
0 1 1 3 0
0 0 0 0 4
0 0 0 0 3







R3/(4)
====⇒







1 0 3 7 2
0 1 1 3 0
0 0 0 0 1
0 0 0 0 3







R1−2R3=====⇒
R4−3R3







1 0 3 7 0
0 1 1 3 0
0 0 0 0 1
0 0 0 0 0







.

We note that the leading 1’s are in columns 1, 2 and 5 of the reduced row
echelon form of A. Then, correspondingly, {α1, α2, α5} is a basis of the column
space of A.

b) Since {α1, α2, α5} is a basis of the column space of A, the dimension
of the column space of A is 3.
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c) Let c1, c2, c3, c4, c5 be the columns of the reduced row echelon form of
A which is derived in part a). Then we have

c3 = 3c1 + c2, c4 = 7c1 + 3c2.

Since elementary row operations do not change linear dependence of the
columns of A, we have

α3 = 3α1 + α2, α4 = 7α1 + 3α2.

�

Exercise 3.2.8.

1. Let

A =





1 4 9 1
2 5 1 −1
3 7 0 3



 .

i) Find the columns of A which constitute a basis of its column space; ii) Write
the nonbasis columns of A into linear combinations of the basis columns; iii)
Find the nullspace of A and determine a basis.

2. Find the rows of A (not its reduced row echelon form) which constitute a
basis of its row space, where

A =







1 2 3
4 5 7
9 1 0
1 −1 3







.

3. Show that N(A) = N(EA) if E is invertible.

4. Construct an example of a matrix A and an elementary matrix E such that

C(A) , C(EA).

5. Let f : Rn → Rm be a function defined by f(x) = Ax where A is an m × n
real matrix. i) Show that the range of f is the column space of A. ii) Show
that f is a linear function. (See Exercise 2.1.6 for the definition of linearity.)

6. Let A be an m × n real matrix. Find a linear function g : Rm → R
n such

that the range of g is the row space of A.

7. Let f : Rn → R
m be a linear function. Show that there exists a unique

m × n real matrix A such that f(x) = Ax.

8. Let f : Rn → R
m and g : Rm → R

r be a linear function. i) Show that
g ◦ f : Rn → R

r is also a linear function; ii) Find a matrix C such that
(g ◦ f)(x) = Cx for every x ∈ Rn.
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9. Let V be a real vector space and u, v ∈ V . Show that

span{u, v} = span{3u + 2v, 4u − 5v}.

10. Let V and W be real vector spaces and A a subset of V . Let f(A) be the
image of A under the function f : V → W . That is, f(A) = {f(x) : x ∈ A}.
Show that if f is linear then f(span(A)) = span(f(A)).

3.3 Solutions of Ax = b

Now we turn to discuss the solution structure of Ax = b. We examine the
following example:

Example 3.3.1. Let E =

[
1 0 0 1
0 0 1 0

]

and consider Ex = b with b =

[
b1

b2

]

.

We have the augmented matrix

[E : b] =

[
1 0 0 1 b1

0 0 1 0 b2

]

.

Then in the solution x = (x1, x2, x3, x4), x1, x3 are still pivot (leading) vari-
ables and x2, x4 are free variables.






x1

x2

x3

x4







=







b1 − x4

x2

b2

x4







=







b1

0
b2

0







+







0
x2

0
0







+







−x4

0
0
x4







=







b1

0
b2

0







+ x2







0
1
0
0







+ x4







−1
0
0
1







.

We notice that xp = (b1, 0, b2, 0) is a particular solution when we set the free
variables zero, and xn = x2(0, 1, 0, 0 + x4(−1, 0, 0, 1). Namely the solution can
be written x = xp + xn. �

It is not by chance we have the phenomenon in Example 3.3.1 that a
solution of Ax = b is the sum of its particular solution xp and a general
solution xn of the homogeneous system Ax = 0.

Theorem 3.3.2. x is a solution of Ax = b if and only if x = xp + xn,
where xp is a particular solution of Ax = b and xn a solution of the
homogeneous system Ax = 0.

Proof. “⇐” If x = xp+xn, we have Ax = A(xp+xn) = Axp+Axn = b+0 = b.
That is x = xp + xn is a solution.

“⇒” If x is a solution of Ax = b, then for every particular solution xp, we
have A(x − xp) = Ax − Axp = b − b = 0. That is, xn = x − xp is a solution of
the homogeneous system Ax = 0. �
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By Theorem 3.3.2, we know that every two solutions of Ax = b differ by
a solution of the homogeneous system Ax = 0. Hence the general solution of
Ax = b is a particular solution of Ax = b plus the general solution of Ax = 0.

There is one more question remaining: when is Ax = b solvable? Recall
that Ax is just a linear combination of the columns of A, we have

Theorem 3.3.3. Ax = b is solvable if and only if b ∈ C(A).

In terms of augmented matrix, Ax = b is solvable if and only if the last
column of the reduced row echelon form of [A : b] is not a pivot column. We
rephrase Theorem 3.3.3 as

Theorem 3.3.4. Ax = b is solvable if and only if rank(A) = rank([A :
b]), where rank(A) is the dimension of the column space of A, which
equals the number of pivots.

Example 3.3.5. (Example 2.1.5 revisited.) Let k be a real number. Consider
the following linear system of equations:







x2 + x3 + x4 = −1

2x1 + x2 + 3x3 + x4 = −2

2x1 − 2x2 + 4x3 + 2x4 = −3

3x2 − x3 − x4 = k.

(3.1)

Find all possible values of k such that system (3.1) has a unique solution, has
no solutions and has infinitely many solutions.
Solution: We re-write the system of linear equations in the matrix form
Au = b, where

A =







0 1 1 1
2 1 3 1
2 −2 4 2
0 3 −1 −1







, u =







x1

x2

x3

x4







and b =







−1
−2
−3
k







.

Then the corresponding augmented matrix is

[A : b] =







0 1 1 1 −1
2 1 3 1 −2
2 −2 4 2 −3
0 3 −1 −1 k







.

By the elementary row operations on [A : b] we have






0 1 1 1 −1
2 1 3 1 −2
2 −2 4 2 −3
0 3 −1 −1 k







eliminations
==========⇒







1 0 0 −1 1
2

0 1 0 0 0
0 0 1 1 −1
0 0 0 0 k − 1
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from which we can tell that rank(A) = 3, but rank([A : b]) depends on the
value of k.

i) If k , 1, rank([A : b]) = 4 , rank(A). By Theorem 3.3.4, system Ax = b has
no solution. From the point of view of Theorem 3.3.3, system Ax = b has no
solution since b < C(A). Recall that elementary row operations do not change
linear dependency among the columns of a matrix.

ii) If k = 1, rank([A : b]) = 3 = rank(A). By Theorem 3.3.4, system Ax = b
has at least one solution. Note that the homogeneous system Ax = 0 has a
nontrivial nullspace because rank(A) = 3 is less than the column number 4
of A and there is a free variable for the solution. Hence system Ax = b has
infinitely many solutions. Let x4 = t, where t is an arbitrary real number. The
solution is 





x1

x2

x3

x4







=







1
2 + t

0
−1 − t

t







=







1
2

0
−1

0







+ t







1
0

−1
1







, t ∈ R,

where xp =
(

1
2 , 0, −1, 0

)
is a particular solution of Ax = b and xn =

t
(
1, 0, −1, 1

)
, t ∈ R is the general solution of the homogeneous system

Ax = 0.
�

Exercise 3.3.6.

1. Let the following matrices be the augmented matrices [A : b] of the system
Ax = b. i) Determine whether the system is consistent or not. ii) Find all
possible solutions if Ax = b is consistent. iii) If Ax = b is consistent, write b
into a linear combination of the columns of A.

a)

[
1 3 5 7
3 0 2 6

]

, b)





1 3 5 7
3 0 2 6
0 1 2 5



 , c)





1 3 6 7
3 0 0 6
0 1 2 5



 .

2. Let A be an n × n matrix. Show that Ax = b has a unique solution if and
only if A is invertible.

3. Let

A =







1 3 5 7
3 0 2 6
0 1 2 5
3 0 3 12







, b =







1
2
3
k







.

Find conditions on k ∈ R such that Ax = b, x ∈ Rn has 1) a unique solution;
2) no solution; 3) infinitely many solutions, respectively.

4. Let A be an m × n matrix. Show that if Ax = b has two distinct solutions,
then it has infinitely many solutions.
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5. Show that if x1, x2 are both solutions of Ax = b, then i) x1 −x2 is a solution
of Ax = 0; ii) for every t ∈ R, x1 + t(x1 − x2) is a solution of Ax = b.

6. Let A and B be n × n real matrices and x0 ∈ Rn a solution of Ax = b.
Show that i) x0 is also a solution of BAx = Bb; ii) a solution of BAx = Bb
may not be a solution of Ax = b.

3.4 Rank of matrices

By Lemma 3.2.5 and Lemma 3.2.6, for a given m×n matrix, the dimension
of the row space is the number of leading 1’s (or pivot 1’s) in the reduced row
echelon form. The dimension of the column space is the number of leading 1’s,
too. Therefore, we have

Lemma 3.4.1. Let A be an m × n matrix. The dimensions of the row
space and column space of A are equal.

We call the dimension of the row space of a matrix A the rank of A, which
is also equal to the dimension of the column space. We call the dimension of
the nullspace of A the nullity of A.

Example 3.4.2. Let

A =





1 3 5 7
3 0 2 6
0 1 2 5



 .

To find the rank of A, we use elementary row operations to reduce A into row
echelon form:





1 3 5 7
3 0 2 6
0 1 2 5




R2−3R1=====⇒





1 3 5 7
0 −9 −13 −15
0 1 2 5





R2+9R3=====⇒





1 3 5 7
0 0 5 30
0 1 2 5





R3↔R2=====⇒





1 3 5 7
0 1 2 5
0 0 5 30





R3/5
===⇒





1 3 5 7
0 1 2 5
0 0 1 6



 .

Since the row echelon form of A has three pivot 1’s, rank(A) = 3. �
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Our next question is how to relate dim R(A), dim C(A) and dim N(A).
Recall that if the leading 1’s in the reduced row echelon form E of A corre-
sponds to leading variables in the solution, the zero rows corresponds to free
variables in the solution. Since the number of the leading variables plus the
number of free variables is exactly the number of the columns of A, we have
the following counting theorem,

Theorem 3.4.3. Let A be an m × n matrix. Then we have

dim R(A) + dim N(A) = n.

Remark 3.4.4. Notice that dim R(A) ≤ m. If m < n, that is, number of
columns of A is larger than its number of rows, then dim N(A) = n − m ≥ 1.
That is, N(A) is nontrivial.

Let A be an m × n matrix. We call

N(AT ) = {x ∈ Rm : AT x = 0} = {x ∈ Rm : xT A = 0}

the left nullspace of A. Notice that dim R(A) = dim C(A) = dim R(AT )
because they all are equal to the number of pivots in the reduced row echelon
form. Then by Lemma 3.4.3, we have

dim R(AT ) + dim N(AT ) = m.

That is,

Lemma 3.4.5. Let A be an m × n matrix. Then we have

dim C(A) + dim N(AT ) = m.

Rank one matrix

For matrices with rank one, we can simplify its representation into a prod-
uct of vectors. Indeed, if rank(A) = 1 where A is m × n, then every row of A
is a scalar multiple of a pivot row, say uT , where by default the vector u is
regarded as a column matrix. That is, there exist scalars c1, c2, · · · , cm such
that

A =








c1uT

c2uT

...
cmuT








=








c1

c2

...
cm








uT .
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Let v =








c1

c2

...
cm








. Then v , 0 and A = vuT , where u ∈ Rm, v ∈ Rn. More

importantly, we have

If rank(A) = 1, then Ax = 0 is equivalent to uT x = 0, where uT is a
nonzero row of A.

Rank of products

Let A be m × n and B be n × r. We are interested how rank(A), rank(B)
and rank(AB) are related. Indeed, by matrix multiplication:

AB = A[b1 : b2 : · · · : br] = [Ab1 : Ab2 : · · · : Abr],

which implies that each column of AB is a linear combination of the columns
of A. Therefore we have rank(AB) ≤ rank(A). Moreover,

AB =








a1

a2

...
am








B =








a1B
a2B

...
amB








,

which implies that each row of AB is a linear combination of the rows of B.
Therefore we have rank(AB) ≤ rank(B). In summary, we have

Theorem 3.4.6.

rank(AB) ≤ min{rank(A), rank(B)}.

Exercise 3.4.7.

1. Find the ranks and dimensions of the nullspaces of the following matrices .

a)
[
1 3 0 7

]
, b)





0 3 0
3 9 5
2 5 5



 , c)





1 3 0 7
3 9 5 1
2 5 5 3



 , d)





1
3
2



 .

2. Let A be an m × n matrix with m > n. Show that AAT is not invertible.

3. Let A be an m × n matrix. Find all possible vectors x such that x ∈
R(A) ∩ N(A).

4. Let A be an m × n matrix. If x0 , 0 is a solution of Ax = 0, then Ax = 0
has infinitely many nontrivial solutions.
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5. Let A be an m × n matrix. Show that system Ax = b has a unique solution
if and only if

rank(A) = rank([A : b]) = n.

6. Let A be an m × n matrix. Show that system Ax = b has infinitely many
solutions if and only if

rank(A) = rank([A : b]) < n.

7. Let

A =





1 3 5 7
3 9 15 21
9 27 45 63



 .

Show that rank(A) = 1 and find u ∈ R3, v ∈ R4 such that A = vuT . Is this
decomposition of A unique?

8. Show that if rank(A) = 1, then every column of A is a scalar multiple of
one specific column of A.

9. Use block multiplication of matrices to show that

rank(A + B) ≤ rank(A) + rank(B).

10. Let rank(A) = s. Find the ranks of the following matrices

2A,
[
A A

]
,

[
A
A

]

,

[
A A
A A

]

.

3.5 Bases and dimensions of general vector spaces

Using the notion of span we defined basis and dimension of vector spaces
which is spanned by a priori known linearly independent set of vectors. We
say a vector space is finite dimensional if it can be spanned by a finite
set of vectors. Otherwise, we say a vector space is infinite dimensional.
However, so far there is no guarantee that every vector space has a basis. In
this section, we explain this issue and show through examples how to find a
basis for a given vector space.

Example 3.5.1. Let M22 be the set of all 2 × 2 matrices, which is a vector
space with matrix addition and scalar multiplication. For every A ∈ M22, we
can represent A as

A =

[
a b
c d

]
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=

[
a 0
0 0

]

+

[
0 b
0 0

]

+

[
0 0
c 0

]

+

[
0 0
0 d

]

=a

[
1 0
0 0

]

+ b

[
0 1
0 0

]

+ c

[
0 0
1 0

]

+ d

[
0 0
0 1

]

.

Therefore we have

M22 = span

([
1 0
0 0

]

,

[
0 1
0 0

]

,

[
0 0
1 0

]

,

[
0 0
0 1

])

.

Next we show that

{[
1 0
0 0

]

,

[
0 1
0 0

]

,

[
0 0
1 0

]

,

[
0 0
0 1

]}

is linearly indepen-

dent and consider the vector equation:

c1

[
1 0
0 0

]

+ c2

[
0 1
0 0

]

+ c3

[
0 0
1 0

]

+ c4

[
0 0
0 1

]

= 0,

which has only the trivial solution: (c1, c2, c3, c4) = (0, 0, 0, 0). Then by
definition of basis, we have verified that

{[
1 0
0 0

]

,

[
0 1
0 0

]

,

[
0 0
1 0

]

,

[
0 0
0 1

]}

is a basis of M22. �

Example 3.5.2. Let A be an n × n invertible matrix. Then the set of the
columns of A is a basis of Rn, and C(A) = R(A) = Rn. Indeed, the reduced
row echelon form U of A is I and hence the set of n-columns of A is linearly
independent. If the set of n-columns of A is not a basis, then a basis would
have more than n vectors, which is impossible by Theorem 3.1.10 as we know
that Rn has a standard basis {e1, e2, · · · , en} where

e1 =








1
0
...
0








, e2








0
1
...
0








, · · · , en =








0
0
...
1








and the only nonzero entry of ei is 1 at the i-th coordinate. �

Example 3.5.3. Find a basis of E = {x = (x1, x2, x3) ∈ R3 : x1−2x2+3x3 =
0}. E is a plane in R3 passing through (0, 0, 0). For every x = (x1, x2, x3) ∈ E
we have x1 = 2x2 − 3x3 and





x1

x2

x3



 =





2x2 − 3x3

x2

x3



 =





2x2

x2

0



+





3x3

0
x3



 = x2





2
1
0



+ x3





3
0
1



 .

That is, E = span









2
1
0



 ,





3
0
1







. Since c1





2
1
0



+c2





3
0
1



 = 0 implies c1 = c2 =
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0,











2
1
0



 ,





3
0
1










is linearly independent and is a basis for E. We remark that

E can be rewritten as

E =
{

x = (x1, x2, x3) ∈ R3 : x1 − 2x2 + 3x3 = 0
}

=
{

x = (x1, x2, x3) ∈ R3 : x · (1, −2, 3) = 0
}

=
{

x = (x1, x2, x3) ∈ R3 : x ⊥ (1, −2, 3)
}

,

which means E is the set of all vectors which is orthogonal to the given vector
(1, −2, 3) which is called the normal of the plane. Indeed, every vector of E
is orthogonal to every vector from the subspace F = {k(1, −2, 3) : k ∈ R}. �

Example 3.5.4. Consider the set Pn of all polynomials with degree less than
or equal to n ∈ R. For every f ∈ Pn, we have

f(x) = a0 + a1x + a2x2 + · · · + anxn,

which is a linear combination of the set of polynomials S = {1, x, · · · , xn}.
That is, Pn = span(S). We claim that S is a basis for Pn. To check linear
independency in S, we consider the vector equation

a0 + a1x + a2x2 + · · · + anxn = 0, for all x ∈ R.

If (a0, a1, · · · , an) , 0, then the vector equation has at most n solutions
(instead of all x ∈ R). Therefore, we have (a0, a1, · · · , an) = 0 and the
set of polynomials S = {1, x, · · · , xn} is linearly independent. That is,
S = {1, x, · · · , xn} is a basis of Pn, and dim Pn = n + 1. �

Remark 3.5.5. From Example 3.5.4, we notice that if the basis S =
{1, x, · · · , xn} is fixed, every f ∈ Pn is uniquely determined by the vector con-
sisting of the coefficients (a0, a1, · · · , an) ∈ Rn+1. We call (a0, a1, · · · , an) ∈
R

n+1 the coordinate vector of f with respect to the basis S.

Lemma 3.5.6. Let V be a finite dimensional vector space with a basis
S = {v1, v2, · · · , vn}. Then the coordinate vector [x]S ∈ Rn of every
vector x ∈ V is unique.

Proof. Suppose not. Then there exists [x]′S ∈ Rn such that

x = [v1, v2, · · · , vn][x]S = [v1, v2, · · · , vn][x]′S ,

which lead to
[v1, v2, · · · , vn] ([x]S − [x]′S) = 0.

Since S = {v1, v2, · · · , vn} is a basis and is linearly independent, we have
[x]S − [x]′S = 0 and hence [x]S = [x]′S . This is a contradiction. �
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Change of basis

Let V be a vector space with two bases B = {v1, v2, · · · , vn} and B′ =
{w1, w2, · · · , wn}. Then every vi, i = 1, 2, · · · , n, is a linear combination of
the vectors in B′. That is, there exists an n × n matrix P such that

[v1, v2, · · · , vn] = [w1, w2, · · · , wn]P.

Then P is invertible because system P x = 0 has only the trivial solution.
Indeed,

P x = 0 ⇒ [w1, w2, · · · , wn]P x = 0

⇒ [v1, v2, · · · , vn]x = 0

⇒ x = 0.

We call P the transition matrix from the basis B to the basis B′ and write
P = PB→B′ .

We are interested how the coordinate vectors are related when a basis is
changed into another. Let x ∈ V be a vector with coordinate vector [x]B ∈ Rn

under the basis B, and [x]B′ ∈ Rn under the basis B′. Then, on the one hand,
we have

x =[v1, v2, · · · , vn][x]B

= ([w1, w2, · · · , wn]P ) [x]B

=[w1, w2, · · · , wn](P [x]B).

On the other hand, we have

x = [w1, w2, · · · , wn][x]B′ .

Since B′ = {w1, w2, · · · , wn} is a basis, [w1, w2, · · · , wn](P [x]B) =
[w1, w2, · · · , wn][x]B′ implies that

P [x]B = [x]B′ .

In summary we have

Lemma 3.5.7. Let V be a vector space with two bases B =
{v1, v2, · · · , vn} and B′ = {w1, w2, · · · , wn}. Then there is an n × n
invertible transition matrix PB→B′ such that

[v1, v2, · · · , vn] = [w1, w2, · · · , wn]PB→B′

and for every x ∈ V its coordinate vectors with respect to the bases B
and B′ satisfy

PB→B′ [x]B = [x]B′ .
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For many vector spaces, we have certain bases such as the standard bases
with which the coordinate vectors are easy to compute. For example, Rn has
the standard basis {e1, e2, · · · , en} with which every vector of Rn coincides
with its coordinate vector, and Pn has a standard basis {1, x, x2, · · · , xn} with
which the coordinate vector of a polynomial is the vector in Rn+1 consisting
of its coefficients. Moreover, for a general n-dimensional vector space V , each
column of the transition matrix PB→S from the basis B = {v1, v2, · · · , vn}
to the (standard) basis S is its coordinate vector with respect to S:

PB→S = [[v1]S : [v2]S : · · · : [vn]S ].

Similarly, for a basis B′ = {w1, w2, · · · , wn}, we have

PB′→S = [[w1]S : [w2]S : · · · : [wn]S ].

Then for every x ∈ V , we have

PB→S [x]B = [x]S = PB′→S [x]B′ .

Therefore we have
[x]B′ = P −1

B′→SPB→S [x]B .

Since x is arbitrary, we have

P −1
B′→SPB→S = PB→B′ .

In summary we have

Lemma 3.5.8. Let V be an n-dimensional vector space with bases S,
B and B′. Then we have

PB→B′ = P −1
B′→SPB→S .

When the dimension n is large, P −1
B′→SPB→S can be obtained by Gauss-

Jordan elimination:

[PB′→S : PB→S ]
Elementary row operations

=================⇒ [I : P −1
B′→SPB→S ].

Example 3.5.9. Let B = {(1, 1), (1, 0)}, B′ = {(0, 1), (1, −1)} be two bases
of R2 (why are they bases?).

1) Find the transition matrix PB→B′ ;

2) If a vector x has coordinate [x]B = (−1, 1), find [x]B′ .
Solution: 1) To find PB→B′ , we make use of the standard basis S of R2. Note
that

PB→S =

[
1 1
1 0

]

, PB′→S =

[
0 1
1 −1

]

.
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Then we have

PB→B′ = P −1
B′→SPB→S =

[
0 1
1 −1

] [
0 1
1 −1

]

=

[
1 −1

−1 2

]

.

2)

[x]B′ = PB→B′ [x]B =

[
1 −1

−1 2

] [
1

−1

]

=

[
2

−3

]

.

�

Remark 3.5.10. (optional) For every vector space V , {0} ⊂ V is a subspace.
By convention, we accept that the empty set is a basis for {0} and is linearly
independent. Hence we say dim{0} = 0.

Now we consider a nontrivial vector space V , which has at least one nonzero
vector, say v1 , 0; then S1 = {v1} is linearly independent. If V = span(S1),
then we find a basis for V . Otherwise, there exists v2 < span(S1). We add
v2 into S1 to obtain a linearly independent set of vectors S2 = S1 ∪ {v2}.
If V = span(S2), then we find a basis for V . Otherwise, we continue to add
vectors from V \ span(S2) to obtain a new linearly independent set of vectors
S3. If the process stops at a finite step n with V \ span(Sn) = ∅, we obtain a
basis with finitely many vectors for the vector space V . Otherwise, the space
is infinite dimensional. Certainly this is not an efficient way of finding bases
for infinite dimensional spaces and it is often not trivial to find a basis for a
specific infinite dimensional space.

Define

Y = The collection of all linearly independent subsets of V ,

then Y is partially ordered by set containment ⊂, where a partial order is a
relation on Y which is

1) reflective: for every x ∈ Y with x ⊂ x;

2) transitive: for every x, y, z ∈ Y with x ⊂ y, y ⊂ z we have x ⊂ z;

3) anti-symmetric: for every x, y ∈ Y with x ⊂ y, y ⊂ x we have x = y.
If V is an infinite dimensional vector space, then the process of constructing

a basis gives a sequence of linearly independent sets:

S1 ⊂ S2 ⊂ · · · ⊂ Sn ⊂ · · · .

Then X = {Sn : n ∈ N} is a totally ordered subcollection of Y . (Every pair in
X can be ordered by set containment ⊂.)

Zorn’s lemma in set theory claims that if every totally ordered subset X of
a partially ordered set Y has a upper bound, then Y has a maximal element.

If we take union to obtain the upper bound for every totally ordered sub-
collection such as X , Zorn’s lemma applies to our current situation and asserts
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the existence of a maximal element in Y , which is the maximal linearly inde-
pendent set of vectors, namely, a basis of V . We arrive at

Theorem 3.5.11. Every vector space has a basis.

The notion of basis we discussed so far is called algebraic basis or Hamel
basis. Other types of basis of a vector space may be defined when the vector
space has extra structures.

Exercise 3.5.12.

1. For the following matrices, determine whether or not i) the rows are linearly
dependent; ii) the columns are linearly dependent.

a)

[
1 2 3
2 3 4

]

, b)





1 2 3
2 3 4
3 4 5



 , c)





1 2
2 3
3 4



 .

2. Let V be a vector space. Show that if {v1, v2, v3, v4} ⊂ V is linearly
independent, then {v1 − v2, v2 − v3, v3 − v4, v4 − v1} is linearly independent.

3. Let P2 be vector space of all polynomials with degree less than or equal to
2. Let W = {p ∈ P2 : p(1) = 0}. Show that W is a subspace of P2 and find a
basis of W .

4. Let P3 be vector space of all polynomials with degree less than or equal to
3. Let W = {p ∈ P3 : p(1) = p(2) = 0}. Show that W is a subspace of P3 and
find a basis of W .

5. Let S = {v1, v2, · · · , vn} be a set of nonzero vectors in a vector space V
with the orthogonal property that

vi · vj = 0, if i , j.

Show that S is linearly independent in V .

6. Let S be the plane x − 2y + 3z = 0 in R3. i) Find the normal of S; ii) Show
that S is a subspace of R3; iii) Show that R3 = S +span(n) and S ∩span(n) =
{0}, where n is the normal of S. See Exercise 3.1.13 for the definition of set
addition.

7. Let S be the plane x − 2y = 0 in R3. i) Find the normal of S; ii) Show that
S is a subspace of R3; iii) Show that R3 = S +span(n) and S ∩span(n) = {0},
where n is the normal of S.

8. Let

B ={(1, 1, 1), (1, 1, 0), (1, 0, 0)}
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and

B′ ={(0, 1, −1), (1, −1, 0), (−1, 0, 0)}

be two bases of R3 (why are they bases?) i) Find the transition matrix PB→B′ ;
ii) If a vector x has coordinate [x]B = (−1, 1, 0), find [x]B′ .

9. Let

B ={(1, 0, 1), (0, 1, 1), (1, 1, 0)}

and

B′ ={(1, 0, −1), (1, −1, 0), (−1, 0, 2)}

be two bases of R3. i) Find the transition matrix PB→B′ ; ii) If a vector x has
coordinate [x]B = (−1, 1, 1), find [x]B′ .

10. Let

P =





1 2 3
2 0 4
0 4 0



 , Q =





1 0 0
2 1 4
0 1 0



 .

Suppose P is the transition matrix from the basis B to the standard basis
S = {e1, e2, e3} of R3, and Q is the transition matrices from the basis B′ to
the standard basis S. i) Find the transition matrix from B to B′; ii) Find the
bases B and B′.

11. Let f(x) = 2x2
1 + 2x2

2 + 2x2
3 + 4x1x2 + 4x2x3 + 4x3x1. Find a change of

variables x = P y, with x = (x1, x2, x3) and y = (y1, y2, y3) where P is an
invertible 3 × 3 matrix such that

f(P y) = λ1y2
1 + λ2y2

2 + λ3y2
3 ,

for some λ1, λ2, λ3 ∈ R.

12. Let A be an m × n matrix with m < n. Show that the columns of A are
linearly dependent.

13. Let S be a linearly independent set in a vector space V . If x ∈ V but
x < span(S), then S ∪ {x} is linearly independent.

14. Let S be a set of vectors in a vector space V . If x ∈ S and x ∈ span(S \
{x}), then span(S) = span(S \ {x}).

15. Show that the vector space F of all continuous functions f : R → R is
infinite dimensional.

16. Show that every subspace of Rn is the nullspace of a matrix.
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17. Let {v1, v2, · · · , vn} be a basis of Rn. Show that for every r < n, r ∈ N,
if s , t with s, t ∈ R, then

span{v1, v2, · · · vr−1, vr + svn} , span{v1, v2, · · · vr−1, vr + tvn}.

18. Show that for every r < n, r ∈ N, Rn has infinitely many r-dimensional
subspaces.
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4.1 Orthogonality of the four subspaces

Example 4.1.1. (Example 3.5.3 revisited.) Let E = {x = (x1, x2, x3) ∈ R3 :
x1 −2x2 +3x3 = 0} be a subset of R3. Then E is a plane in R3 passing through
(0, 0, 0). For every x = (x1, x2, x3) ∈ E we have x1 = 2x2 − 3x3 and





x1

x2

x3



 =





2x2 − 3x3

x2

x3



 =





2x2

x2

0



+





3x3

0
x3



 = x2





2
1
0



+ x3





3
0
1



 .

That is, E = span









2
1
0



 ,





3
0
1







. Moreover, E can be rewritten as

E =
{

x = (x1, x2, x3) ∈ R3 : x ⊥ (1, −2, 3)
}

,

which means E is the set of all vectors which is orthogonal to the given
vector (1, −2, 3) and hence orthogonal to every vector from the subspace F =
{k(1, −2, 3) : k ∈ R}. Namely the subspaces E and F of R3 are orthogonal.
We write E ⊥ F . �

71
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Definition 4.1.2. Let V and W be subspaces of Rn. If for every
(x, y) ∈ V × W we have

x · y = 0,

V and W are said to be orthogonal, denoted V ⊥ W .

Remark 4.1.3. For a general real vector space V , orthogonality can be es-
tablished if we can define a product 〈·, ·〉 between elements which satisfies the
following properties,

for every u, v, w ∈ V and for every scalar k ∈ R,

1. 〈u, v〉 = 〈v, u〉;

2. 〈u + v, w〉 = 〈u, v〉 + 〈v, w〉;

3. 〈ku, v〉 = k〈v, u〉;

4. 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 if and only of v = 0.

We call 〈·, ·〉 an inner product and call V an inner product space.
x, y ∈ V are said to be orthogonal if 〈x, y〉 = 0.

For example, for p, q ∈ Pn, with p(x) = a0 + a1x + a2x2 + · · · + anxn and
q(x) = b0 + b1x + b2x2 + · · · + bnxn, we can define inner product between p
and q by

〈p, q〉 = a0b0 + a1b1 + · · · + anbn.

Then Pn becomes an inner product space. p, q ∈ Pn is said to be orthogonal
if

〈p, q〉 = a0b0 + a1b1 + · · · + anbn = 0.

In what follows in this chapter, we assume that a vector space is equipped
with an inner product. �

Let A be an m×n matrix. Consider N(A) = {x ∈ Rn : Ax = 0}. For every
x ∈ N(A) we have








(Row 1 of A) · x
(Row 2 of A) · x

...
(Row m of A) · x








= 0.

That is, x is orthogonal to every row of A. Therefore, we have

N(A) ⊥ R(A).

Recall that the counting theorem says

dim R(A) + dim N(A) = n.
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Notice that both R(A) and N(A) are subspaces of Rn. A natural question is
that for every x ∈ Rn can we split x into two pieces xr ∈ R(A) and xn ∈ N(A),
such that x = xr +xn? That is, for every x ∈ Rn, if x ⊥ N(A), then x ∈ R(A).

Let us take a basis Sr = {v1, v2, · · · , vr} for R(A), and Sn =
{w1, w2, · · · , vn−r} for N(A), where r = rank(A). If Sr ∪Sn is a basis for Rn,
then the answer is affirmative. Consider the vector equation

c1v1 + c2v2 + · · · + crvr + d1w1 + d2w2 + · · · dn−rwn−r = 0. (4.1)

We show that Sr ∪ Sn is linearly independent. Otherwise, there exist
(c1, c2, · · · , cr) , 0 and (d1, d2, · · · , dn−r) , 0 such that (4.1) holds. There-
fore, there exist x ∈ R(A) and y ∈ N(A) such that

x + y = 0.

That is, x, y ∈ R(A) ∩ N(A). Note that we have R(A) ∩ N(A) = {0}, since
the only vector orthogonal to itself is the zero vector. Therefore, x = y = 0
and

c1v1 + c2v2 + · · · + crvr = 0

with (c1, c2, · · · , cr) , 0. This is a contradiction since Sr = {v1, v2, · · · , vr}
is a basis for R(A). Sr ∪ Sn is linearly independent and hence a basis for Rn.

Returning to our original question, for every x ∈ Rn, it can be represented
by the basis Sr ∪ Sn as

x = c1v1 + c2v2 + · · · + crvr + d1w1 + d2w2 + · · · dn−rwn−r. (4.2)

Put xr = c1v1 +c2v2 + · · ·+crvr, xn = d1w1 +d2w2 + · · · dn−rwn−r. We obtain
the split:

x = xr + xn

where xr ∈ R(A) and xn ∈ N(A). The next question is, is the split unique?
Suppose not. We have x = xr +xn = x′

r +x′
n where x′

r ∈ R(A) and x′
n ∈ N(A).

Then we have
xr − x′

r = x′
n − xn ∈ R(A) ∩ N(A),

and xr − x′
r = x′

n − xn = 0. The split is unique. In summary we have

Theorem 4.1.4. Let A be an m × n matrix. Then for every x ∈ Rn,
there exists a unique orthogonal decomposition

x = xr + xn,

where xr ∈ R(A) and xn ∈ N(A). That is,

R
n = R(A) ⊕ N(A), and N(A) ⊥ R(A),

where R(A) ⊕ N(A) is the direct sum of the subspaces R(A) and
N(A) of Rn whose only common element is the zero vector.
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Definition 4.1.5. Let W be a subspace of the vector space V . Then
W ⊥ defined by

W ⊥ = {x ∈ V : x ⊥ y, for every y ∈ W }

is also a subspace of W and is called the orthogonal complement
of W .

From Theorem 4.1.4, we know that

N(A) = R(A)⊥, N(A)⊥ = R(A).

Example 4.1.6. Let A =

[
1 2
3 6

]

. We split x = (4, 3) into two parts with

x = xr + xn where xr ∈ R(A) and xn ∈ N(A).

Solving Ax = 0 we obtain N(A) = span

([
−2

1

])

. Let xn = t(−2, 1) with

t , 0. Note that
x − xn ⊥ xn.

We have
(x − t(−2, 1)) · t(−2, 1) = 0,

which leads to t = −1. We have

xn = (2, −1), xr = x − xn = (2, 4).

�

Corollary 4.1.7. Let A be an m × n matrix. Then for every x ∈ Rm,
there exists a unique orthogonal decomposition

x = xr + xn,

where xr ∈ C(A) and xn ∈ N(AT ). That is,

R
m = C(A) ⊕ N(AT ), and N(AT ) ⊥ C(A).

An important interpretation of Corollary 4.1.7 is the so-called Fredholm
alternative:
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Corollary 4.1.8. If b ∈ Rm is not in the column space of the m × n
matrix A, then it is not orthogonal to N(AT ). Using matrix language,
we have
either system

Ax = b

or system
AT y = 0, with yT b = 1

has a solution.

Example 4.1.9. Consider







x + 2y + 3z = 0

4x + 5y + 6z = 1

7x + 8y + 9z = 1.

(4.3)

Let A =





1 2 3
4 5 6
7 8 9



 and b =





0
1
1



 . We have the augmented matrix,

[A : b] =





1 2 3 0
4 5 6 1
7 8 9 1




R2−4R1=====⇒
R3−7R1





1 2 3 0
0 −3 −6 1
0 −6 −12 1





R3−2R2=====⇒





1 2 3 0
0 −3 −6 1
0 0 0 −1



 ,

which show that rank(A) , rank([A : b]) and hence Ax = b has no solution.
By Corollary 4.1.8, system

AT y = 0, with yT b = 1

has a solution. Indeed, we have

AT =





1 4 7
2 5 8
3 6 9




R2−2R1=====⇒
R3−3R1





1 4 7
0 −3 −6
0 −6 −12





R3−2R2=====⇒





1 4 7
0 −3 −6
0 0 0





R1+ 4
3

R2

======⇒





1 0 −1
0 −3 −6
0 0 0



 ,
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which has a one-dimensional nullspace N(AT ) = span









1
−2

1







. Let y =

t





1
−2
1



, t ∈ R and solve

yT b = 1 ⇔ t
[
1 −2 1

]





0
1
1



 = 1.

We have t = 1. That is, AT y = 0 with yT b = 1 has a solution y =





1
−2

1



 .

Exercise 4.1.10.

1. Let A =





1 2 3
4 5 6
7 8 9



. i) Find N(A) and split x = (1, 1, 1) into x = xr + xn

with xn ∈ N(A) and xr ∈ R(A); ii) Find the orthogonal complement of N(A).

2. Let A =





1 2 3
2 3 4
3 4 5



. i) Find N(A) and split x = (1, 1, 1) into x = xr + xn

with xn ∈ N(A) and xr ∈ R(A); ii) Find the orthogonal complement of N(A).

3. Let S be the plane x − z = 0 in R3. Find the orthogonal complement of S.

4. Let S be the plane x + y + z = 0 in R3. Find the orthogonal complement
of S.

5. Show that every triangle inscribed in a semicircle is a right triangle.

6. Show that the function 〈, 〉 : R2 × R2 → R defined by

〈x, y〉 = 2x1y1 − x2y1 − x1y2 + 2x2y2

is an inner product on R2, where x = (x1, x2) ∈ R2 and y = (y1, x2) ∈ R2.

7. Define inner product on the vector space of polynomials Pn by

〈f, g〉 =

∫ 1

0

f(t)g(t)dt.

i) Show that W = {p ∈ P4 : p(1) = 0} is a subspace of P4.

ii) Find the orthogonal complement of W in P4.

8. Let A and B be subspaces of a real inner product space. Show that

A⊥ ∩ B⊥ = (A ∪ B)⊥, (A ∩ B)⊥ = A⊥ ∪ B⊥.
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9. Let β ∈ Rn be a nonzero vector. Show that i) V = {x : x · β = 0} is a
subspace of Rn; ii) dim V = n − 1.

10. Let C([a, b];R) denote the set of all real-valued continuous functions de-
fined on [a, b]. i) Show that

〈f, g〉 =

∫ b

a

f(t)g(t)dt

defines an inner product on C([a, b];R).

ii) Show that cos mx and sin nx are orthogonal in C([0, 2π];R) if m , n.

iii) Show that cos mx and cos nx are orthogonal in C([0, 2π];R) if m , n.

iv) Show that sin mx and sin nx are orthogonal in C([0, 2π];R) if m , n.

v) Let W = {1, cos nx, sin nx}N
n=1. Suppose f ∈ C([0, 2π];R) is a linear

combination of the vectors in W . Find the linear combination coefficients.

11. Let W ⊂ Mnn be the set of all skew-symmetric matrices, V ⊂ Mnn be
the set of all symmetric matrices. Show that Mnn = V ⊕ W .

12. Let F denote the vector space of all functions f : R→ R. Let W ⊂ F be
the set of even functions, V ⊂ F be the set of all even functions. Show that
F = V ⊕ W .

13. Let A ∈ Mnn be such that A2 = A and AT = A. Show that Rn =
C(A) ⊕ C(I − A) and C(A) ⊥ C(I − A), where C(A) denotes the column
space of A.

14. Let A ∈ Mnn be such that A2 = −A and AT = A. Show that Rn =
C(A) ⊕ C(I + A) and C(A) ⊥ C(I + A), where C(A) denotes the column
space of A.

15. Let A be an n × n matrix with rank n. Suppose A is partitioned into two

parts A =

[
A1

A2

]

. Let W1 = {x ∈ Rn : A1x = 0} and W2 = {x ∈ Rn : A2x = 0}.

Show that Rn = W1 ⊕ W2.

16. Let A be an orthogonal matrix. Define a map TA : Rn → Rn by TA(x) =
Ax. i) Show that for every x, y ∈ Rn, we have (Ax) ·(Ay) = x ·y; ii) Show that
if V ⊂ Rn is an invariant subspace with respect to TA, that is, TA(V ) ⊂ V ,
then V ⊥ is also invariant with respect to TA.

17. Let P∞ be the set of all polynomials with real coefficients. Define the
inner product on P∞ by

〈f, g〉 = a0b0 + a1b1 + · · · + arbr,

where f(x) = a0 + a1x + · · · + amxm, g(x) = b0 + b1x + · · · + bnxn and
r = max{m, n}. Let V = {f ∈ P∞ : f(0) = 0}. i) Show that V is a subspace
of P∞; ii) Find the orthogonal complement of V ⊥ in P∞; iii) Define a map
T : P∞ → P∞ by T (f)(x) = xf(x). Show that T (V ) ⊂ V but T (V ⊥) 1 V ⊥.
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18. Verify the Fredholm alternative, for system Ax = b with

A =





1 3 5
7 9 11
13 15 17



 and b =





0
−2

1



 .
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4.2 Projections

In the last example of the previous section, we projected an arbitrary
vector x ∈ Rn onto a line in order to obtain a split x = xr + xn such that
xr ⊥ xn. With such a split we have ‖x‖2 = ‖xr‖2 + ‖xn‖2 and xn is the best
approximation for x from vectors in the line where xn lies in. In this section
we deepen the understanding of the mechanisms of projections onto general
subspaces of Rn and their matrix representations. In the next section, we
discuss how to find the best approximation for a given vector using projections.
In what follows, by projection of a vector x in a (inner product) vector space
V onto a subspace W we mean a map P : V → W ⊂ V such that

x − P x ⊥ W.

b

b

O
P b

b − P b

W

V

FIGURE 4.1: A projection P from V to the subspace W satisfies b−P b ⊥ W .

Example 4.2.1. For b = (b1, b2, b3) ∈ R3, the projections of x onto subspaces
such as the x-axis, y-axis, z-axis, the xy-plane, xz-plane and yz-plane can be
obtained by picking out the nonzero coordinates in the subspaces leaving the
others zero. Note that to show a vector is orthogonal to a subspace, we need
only to show it is orthogonal to every vector of a basis of the subspace.

1) The projection P from R3 to the x-axis is given by

P b = (b1, 0, 0),

with matrix representation




1 0 0
0 0 0
0 0 0



 .
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Indeed we have b−P b = (0, b2, b3) and the x-axis is spanned by (1, 0, 0).
Moreover, b − P b ⊥ (1, 0, 0) and b − P b is orthogonal to the x-axis.

2) The projection P from R3 to the xy-plane is given by

P b = (0, b2, b3),

with matrix representation





1 0 0
0 1 0
0 0 0



 .

Indeed we have b − P b = (0, 0, b3) and the xy-plane is spanned by
(1, 0, 0) and (0, 1, 0). Moreover b−P b ⊥ (1, 0, 0) and b−P b ⊥ (0, 1, 0).
Hence b − P b is orthogonal to the xy-plane.

In both cases the projection matrix P satisfies P 2 = P .

Projection onto a line

Let b ∈ Rn and l be the line spanned by the nonzero vector a ∈ Rn.
Then the projection P b in l is a scalar multiple of a. Suppose P b = x̂a. With
b − P b ⊥ a we have a · (b − x̂a) = 0 and

x̂ =
a · b

a · a
=

aT b

aT a
.

That is, P b = x̂a = aT b
aT a

a. To obtain the representation matrix, we have

P b =
aT b

aT a
a = a

aT b

aT a
=

aaT b

aT a
=

aaT

aT a
b.

Lemma 4.2.2. The projection of b onto the line through a in Rn is

P b =
aaT

aT a
b,

and the representation matrix of the projection is

P =
aaT

aT a
.

Example 4.2.3. Project b =





1
0

−1



 onto the line l through a =





4
5
6



 to find

P b such that b − P b ⊥ l.
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Solution: The projection matrix is

P =
aaT

aT a
=

1

77





4
5
6




[
4 5 6

]
=

1

77





16 20 24
20 25 30
24 30 36



 .

Then P b = 1
77





16 20 24
20 25 30
24 30 36









1
0

−1



 = 1
77





−8
−10
−12



. By Lemma 4.2.2, we have

b − P b ⊥ l. �

Note the projection matrix P = aaT

aT a satisfies

P 2 =
aaT

aT a

aaT

aT a
=

aaT

aT a
= P.

Projection onto a subspace

Let b ∈ Rn and W be a subspace with a basis S = {a1, a2, · · · , am}. Then
the projection P b in W satisfies that

1) P b is a linear combination of the basis S = {a1, a2, · · · , am}. That is,
there exists x̂ = (x̂1, x̂2, · · · , x̂m) ∈ Rm such that

P b = x̂1a1 + x̂2a2 + · · · + x̂mam = [a1 : a2 : · · · : am]x̂.

2) b − P b is orthogonal to W if and only if b − P b is orthogonal to every
vector in the basis S = {a1, a2, · · · , am}. That is,








a1 · (b − P b)
a2 · (b − P b)

...
am · (b − P b)








=








aT
1

aT
2
...

aT
m








(b − P b) = 0.

Let A = [a1 : a2 : · · · : am]. We have P b = Ax̂ and AT (b − Ax̂) = AT b −
AT Ax̂ = 0. Notice that by Theorem 2.5.6, AT A is invertible since its columns
are a basis and hence linearly independent. Therefore, we have

x̂ = (AT A)−1AT b,

and
P b = Ax̂ = A(AT A)−1AT b.

In summary, we have
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Lemma 4.2.4. Let W be a subspace of Rn with a basis S =
{a1, a2, · · · , am} and A = [a1 : a2 : · · · : am]. Then for every b ∈ R,
the projection of b onto the subspace W is

P b = A(AT A)−1AT b,

and the representation matrix of the projection is

P = A(AT A)−1AT .

Example 4.2.5. Let

A =







1 1 1
1 0 0
0 1 0
0 0 1







, b =







1
1
1
1







.

Find the orthogonal projection P b of b onto the column space of A.
Solution: We notice that the columns of A are linearly independent because
rank(A) = 3 and A has exactly three columns. Then Lemma 4.2.4 applies. We
solve the system AT Ax̂ = AT b where

AT A =





1 1 0 0
1 0 1 0
1 0 0 1











1 1 1
1 0 0
0 1 0
0 0 1







=





2 1 1
1 2 1
1 1 2



 , AT b =





2
2
2



 .

We use Gauss-Jordan elimination to determine the inverse of AT A.

[AT A : I] =





2 1 1 1 0 0
1 2 1 0 1 0
1 1 2 0 0 1





R1+R2+R3========⇒





4 4 4 1 1 1
1 4 1 0 1 0
1 1 4 0 0 1





R1/4
===⇒





1 1 1 1
4

1
4

1
4

1 2 1 0 1 0
1 1 2 0 0 1





R2−R1=====⇒
R3−R1






1 1 1 1
4

1
4

1
4

0 1 0 −1
4

3
4

−1
4

0 0 1 −1
4

−1
4

3
4






R1−R2=====⇒
R1−R3






1 0 0 3
4

−1
4

−1
4

0 1 0 −1
4

3
4

−1
4

0 0 1 −1
4

−1
4

3
4




 .
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Then the inverse of AT A is

(AT A)−1 =






3
4

−1
4

−1
4

−1
4

3
4

−1
4

−1
4

−1
4

3
4




 .

Therefore, the orthogonal projection P b of b onto the column spaces of A is

P b = Ax̂ = A(AT A)−1AT b =







1 1 1
1 0 0
0 1 0
0 0 1












3
4

−1
4

−1
4

−1
4

3
4

−1
4

−1
4

−1
4

3
4










2
2
2



 =








3
2
1
2
1
2
1
2








.

Remark 4.2.6. We remark that the projection matrix P = A(AT A)−1AT

satisfies

P 2 = A(AT A)−1AT A(AT A)−1AT = A(AT A)−1AT = P,

P T = (A(AT A)−1AT )T = A(AT A)−1AT = P.

That is,

P 2 = P and P is symmetric.

Then we have

P (b − P b) = P b − P 2b = P b − P b = 0,

which imply that b − P b ∈ N(P ). The symmetry of P implies that the row
space of P is the same as the column space of P . Then for every b ∈ Rn, b has
an orthogonal decomposition

b = bn + br,

with bn = b − P b ∈ N(P ) and br = P b ∈ C(P ) = R(P ).

Exercise 4.2.7.

1. Let W = span









1
−1
2



 ,





0
1
0







. Find the projection matrix P for the pro-

jection onto W .

2. Find the orthogonal projection of the vector b = (1, 2, 4) ∈ R3 onto the
line

l :
x

2
=

y

3
=

z

4
,

and find the distance from the point (1, 2, 4) to the line l.
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3. Find the orthogonal projection of the vector b = (1, 2, 4) ∈ R3 onto the
plane S : x − y + z = 0 and find the distance from the point (1, 2, 4) to the
plane S.

4. Find the orthogonal projection of the vector b = (1, 0, 4) ∈ R3 onto the
plane S : x + y = 0 and find the distance from the point (1, 0, 4) to the plane
S.

5. Find the distance from α = (−1, 1, 1, 0) to W = span(β1, β2, β3) in R4,
where β1 = (1, 0, 0, 1), β2 = (1, 1, 0, 2) and β3 = (1, 1, 4, 1).

6. Find the distance from α = (−1, 1, 1, 0) to W = span(β1, β2, β3) in R4,
where β1 = (1, 0, 0, 1), β2 = (1, 1, 0, 2) and β3 = (0, 1, 0, 1).

7. Let u and v be vectors in R3. Show that

(u + v) · (u − v) = ‖u‖2 − ‖v‖2.

8. Show that the diagonals of a parallelogram in R3 with equal sides are
perpendicular to each other.

9. Let A(0, 1, 1), B(1, 1, 1) and C(−1, −1, 0) be the vertices of the triangle
∆ABC. Find the area of ∆ABC.

10. Let u and v be nonzero vectors in R3. Show that the area of the triangle
determined by u and v is

1

2

√

‖u‖2‖v‖2 − (u · v)2.

11. (Parallelogram law) Let u and v be vectors in Rn. Show that

2(‖u‖2 + ‖v‖2) = ‖u + v‖2 + ‖u − v‖2.

12. Let A be an m × n matrix with linearly independent rows. Find the
representation matrix P of the orthogonal projection onto the row space of A.

13. Let s and l be lines in R3 given by

s :
x − 1

2
=

y − 1

3
=

z − 1

4
, l :

x

2
=

y

2
=

z

2
.

Find the distance d between s and l:

d = min
p∈s, q∈l

‖p − q‖.

14. Let W be a subspace of Rn. Show that the orthogonal projection P : V →
W is a linear map.
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15. What is the representation matrix P for the projection from Rn onto
itself?

16. Let P be the representation matrix for the projection onto a (true) sub-
space W of Rn. i) For every x <W , is it possible P x = x? ii) Is P invertible?
Explain your answer.

17. Let P be the representation matrix for the projection onto a (true) sub-
space W of Rn. Is P dependent on your choice of the basis for W ? Explain
your answer.

18. Let P be an n × n matrix and satisfy P T = P and P 2 = P . Is it true that
P is the representation matrix for the projection onto a (true) subspace W of
R

n? Namely, for every b ∈ Rn, is b − P b orthogonal to P b?

19. Let P be the representation matrix for the projection onto a subspace W
of Rn. Is it true that W equals the column space of P ?

20. Let C([0, 2π];R) denote the set of all real-valued continuous functions de-
fined on [0, 2π]. Let W = span{1, cos nx, sin nx}N

n=1. Define an inner product
on C([0, 2π];R) by

〈f, g〉 =

∫ 2π

0

f(t)g(t)dt, f, g ∈ C([0, 2π];R).

i) For every f ∈ C([0, 2π];R), find the orthogonal projection fp of f onto W ;

ii) For every f ∈ C([0, 2π];R), find the distance d of f to W defined by

d = 〈f − fp, f − fp〉 1
2 ,

where fp is the orthogonal projection of f onto W .

iii) Let f0(x) = 1 + x2 be a function in C([0, 2π];R). Find the orthogonal
projection fp0

of f0 onto W and 〈f0 − fp0
, f0 − fp0

〉 1
2 .
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b

P b

w

b − P b

P b − w

b − w

W

FIGURE 4.2: ‖b − P b‖ ≤ ‖b − w‖ for every w ∈ W .

4.3 Least squares approximations

We have learned that a linear system Ax = b does not have a solution if
b < C(A). Let W = C(A). A natural question is how to find a br ∈ W which
best approximates b? Geometrically, the answer is the projection br = P b of
b onto W , where P is the representation matrix of the projection onto W .
Indeed, for every w ∈ W ,

b − w = b − P b + P b − w,

where (b − P b) ⊥ (P b − w) since P b − w ∈ W and (b − P b) ⊥ W . By the
Pythagorean theorem, we have

‖b − w‖2 = ‖b − P b‖2 + ‖P b − w‖2,

which implies that

‖b − P b‖ ≤ ‖b − w‖, for every w ∈ W,

and the equality happens only if w = P b.

Theorem 4.3.1. Let W be a subspace of Rn and P the representation
matrix of the projection onto W . Then for every b ∈ R,

‖b − P b‖ ≤ ‖b − w‖, for every w ∈ W,

and the equality happens only if w = P b.
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Definition 4.3.2. Let A be an n × m matrix and b ∈ Rn. We call
x̂ ∈ Rm a least squares solution to system Ax = b if Ax̂ = P b,
where P b is the projection of b onto the column space of A.

Certainly Ax̂ = P b is always consistent with at least one solution since
P b is by definition in the column space of A. The question is how to find x̂
without having to find the representation matrix P ?

Let us first find a necessary condition that x̂ must satisfy. Notice that by
definition of projection we have b − P b ⊥ C(A) = R(AT ). That is, b − P b is
orthogonal to each row of AT . Therefore we have

AT (b − P b) = AT (b − Ax̂) = 0,

which is equivalent to

AT Ax̂ = AT b. (4.4)

That is, if x̂ is a least squares solution, it must satisfy (4.4) which we call the
normal system corresponding to Ax = b. This also shows that the normal
system AT Ax̂ = AT b is always consistent.

A question remaining is that if x̂ satisfies the normal system (4.4), is it a
solution to Ax̂ = P b and hence a least squares solution? Indeed, if x̂ satisfies
the normal system (4.4), b − Ax̂ is orthogonal to C(A) = R(AT ). Then we
have an orthogonal decomposition of b:

b = b − Ax̂ + Ax̂.

Another orthogonal decomposition of b is

b = b − P b + P b.

By uniqueness of orthogonal decomposition with respect to the subspace W =
C(A), we have

Ax̂ = P b,

which means that every solution of the normal system is a least squares solu-
tion.

Theorem 4.3.3. Let A be an n × m matrix and b ∈ Rn. x̂ ∈ Rm is a
least squares solution to system Ax = b if and only if AT Ax̂ = AT b.
Moreover, AT Ax̂ = AT b is always consistent.

Corollary 4.3.4. Let A be an n×m matrix and b ∈ Rn. If the columns
of A are linearly independent, then the least squares solution to system
Ax = b is

x̂ = (AT A)−1AT b.
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Example 4.3.5. (Example 4.2.5 revisited.) Let

A =







1 1 1
1 0 0
0 1 0
0 0 1







, b =







1
1
1
1







.

Find a least squares solution to Ax = b.
Solution: We solve the system AT Ax̂ = AT b where

AT A =





1 1 0 0
1 0 1 0
1 0 0 1











1 1 1
1 0 0
0 1 0
0 0 1







=





2 1 1
1 2 1
1 1 2



 , AT b =





2
2
2



 .

We use Gauss–Jordan elimination to determine the inverse of AT A and obtain

(AT A)−1 =






3
4

−1
4

−1
4

−1
4

3
4

−1
4

−1
4

−1
4

3
4




 .

Therefore, the least squares solution x̂ of Ax = b is

x̂ = (AT A)−1AT b =






3
4

−1
4

−1
4

−1
4

3
4

−1
4

−1
4

−1
4

3
4










2
2
2



 =






1
2
1
2
1
2




 .

Example 4.3.6. Let (x1, y1), (x2, y2), · · · , (xm, ym) be a set of data for the
pair (x, y) ∈ R2. Suppose that x and y are related by a polynomial

y = p(x) = a0 + a1x + a2x2 · · · + anxn.

We wish to use the observed data to solve for the unknown coefficients
a0, a1, · · · , an and set up the following equations







y1 = p(x1)

y2 = p(x2)

...

yn = p(xn),

⇔







y1 = a0 + a1x1 + a2x2
2 · · · + anxn

1

y2 = a0 + a1x2 + a2x2
2 · · · + anxn

2

...

ym = a0 + a1xm + a2x2
m · · · + anxn

m

,

which can be written as Au = b, where

A =








1 x1 x2
1 · · · xn

1

1 x2 x2
2 · · · xn

2
...

...
...

1 xm x2
m · · · xn

m








, u =








a0

a1

...
an








, b =








y1

y2

...
yn








.
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Such an inhomogeneous system may not have a solution for u, especially
when the system is over-determined with m > n. However, we can find a
least squares solution û of Au = b which minimizes ‖b − Au‖. Namely, a least
squares solution û of Au = b is a solution to the minimization problem

min
u∈Rn

‖b − Au‖,

and
‖b − Aû‖ = min

u∈Rn
‖b − Au‖.

By Theorem 4.3.3, every solution of AT Aû = AT b is a least squares solution
to Au = b. We remark that the process of using a set of data to fit in a
polynomial is called polynomial interpolation.

Exercise 4.3.7.

1. Is it true a least squares solution may not be unique? Explain your answer.

2. Let A be an m × n matrix and b is n × 1. Is it true a least squares solution
to Ax = b always exists? Explain your answer.

3. Let x0 be a least squares solution of Ax = b. Show that bT Ax0 ≥ 0.

4. Let

A =








1 x1 x2
1 · · · xn

1

1 x2 x2
2 · · · xn

2
...

...
...

1 xm x2
m · · · xn

m








.

Suppose that there are at least n+1 distinct values among {x1, x2, · · · , xm}.
Show that the columns of A are linearly independent. (Hint: check the maximal
number of distinct roots of a nontrivial polynomial p(x) = a0 + a1x + a2x2 +
· · · + anxn. A is called a Vandermonde matrix.)

5. Use the polynomial h = bt+c to fit in the data in the sense of least squares:

h 3 2 1 2 0
t 0 1 2 3 4

.

6. Use the polynomial h = at2 + bt + c to fit in the data in the sense of least
squares:

h 3 2 1 2 0

t 0 1 2 3 4
.

7. Let Ax = b be consistent. i) Is it true that every least squares solution of
Ax = b is also a solution of Ax = b? Justify your answer. ii) Is it true that
every solution of Ax = b is also a least squares solution of Ax = b? Justify
your answer.
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8. Let n = (1, −1, 1, 0) be the normal of the hyperplane (see Exercise 3.1.13
for the definition) S in R4 passing through the point (1, 2, 3, 4). i) Find the
equation for S; ii) Find the distance from b = (1, 2, 4, 5) to S.

9. Show that if u0 is a solution of

min
u∈Rn

‖b − Au‖,

then AT Au0 = AT b. That is, u0 is a least squares solution of Ax = b.

10. Show that if u0 is a least squares solution of Ax = b, then u0 is a solution
of

min
u∈Rn

‖b − Au‖.
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4.4 Orthonormal bases and Gram–Schmidt

Orthonormal bases

We know that if W is a subspace of Rn with basis S = {a1, a2, · · · , am},
then the projection onto W has a representation matrix

P = A(AT A)−1AT ,

where A = [a1 : a2 : · · · : am]. The real application of the matrix P will
involve the computation of the inverse of the m × m matrix AT A, which is
usually not convenient. It would be a big relief if AT A = I, namely, if A is
an orthogonal matrix (see Definition 2.5.11). Indeed, if A is an orthogonal
matrix, we have the following observations:

1) AT A = I implies that the columns of A are unit vectors and are orthogonal
to each other:

aT
i aj =

{

1 if i = j

0 if i , j.
(4.5)

We call S = {a1, a2, · · · , am} an orthonormal basis if (4.5) is satis-
fied.

2) The representation matrix of the projection onto W is simplified to P =
AAT .

3) For every b ∈ Rn, its orthogonal projection onto W is

P b = AAT b = [a1 : a2 : · · · : am]








aT
1

aT
2
...

aT
m








b = a1aT
1 b+a2aT

2 b+· · ·+amaT
mb.

Note that aia
T
i b =

aiaT
i

aT
i

ai
b is exactly the projection of b onto the one-

dimensional subspace of W spanned by ai, i = 1, 2, · · · , m. This implies
that if W has an orthonormal basis, namely, if a basis consists of unit and
orthogonal vectors, the projection onto W is the sum of the projections
along the individual vectors in the orthonormal basis.

Orthogonal basis

Suppose that the subspace W has an orthogonal basis S =
{a1, a2, · · · , am}, which are not necessarily unit vectors. Namely, AT A is
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a diagonal matrix with

aT
i aj =

{

, 0 if i = j

0 if i , j.
(4.6)

We call S = {a1, a2, · · · , am} an orthogonal basis if (4.6) is satisfied. In
this case, the orthogonal projection onto W has an easy representation. In
fact,

AT A =









aT
1 a1 0 · · · 0
0 aT

2 a2 · · · 0
...

...
. . .

...

0 0
... aT

mam









.

For every b ∈ Rn, its orthogonal projection onto W is

P b = A(AT A)−1AT b = [a1 : a2 : · · · : am]










1
aT

1
a1

0 · · · 0

0 1
aT

2
a2

· · · 0

...
...

. . .
...

0 0
... 1

aT
mam

















aT
1

aT
2
...

aT
m








b

=
a1aT

1

aT
1 a1

b +
a2aT

2

aT
2 a2

b + · · · +
amaT

m

aT
mam

b

=
aT

1 b

aT
1 a1

a1 +
aT

2 b

aT
2 a2

a2 + · · · +
aT

mb

aT
mam

am.

Similar to the case of orthonormal basis, P b =
a1aT

1

aT
1

a1
b +

a2aT
2

aT
2

a2
b + · · · +

amaT
m

aT
mam

b

implies that the projection onto W is the sum of the projections along the

individual vectors in the orthogonal basis. P b =
aT

1 b

aT
1

a1
a1 +

aT
2 b

aT
2

a2
a2 + · · · +

aT
mb

aT
mam

am indicates that the coefficient of the decomposition for P b along the

ai direction is
aT

i b

aT
i

ai
. In summary, we have

www.Engineeringbookspdf.com



Orthogonality 93

Lemma 4.4.1. Let W be a subspace of Rn with an orthogonal basis
S = {a1, a2, · · · , am}. For every b ∈ Rn, its orthogonal projection
onto W is

P b =

(
a1aT

1

aT
1 a1

+
a2aT

2

aT
2 a2

+ · · · +
amaT

m

aT
mam

)

b

=
aT

1 b

aT
1 a1

a1 +
aT

2 b

aT
2 a2

a2 + · · · +
aT

mb

aT
mam

am.

If S is orthonormal, then

P b =
(
a1aT

1 + a2aT
2 + · · · + amaT

m

)
b

=(aT
1 b)a1 + (aT

2 b)a2 + · · · + (aT
mb)am.

Note that if W = Rn, the projection is just the identity map with P = I.
For every b ∈ Rn, its orthogonal projection onto W is

b =
aT

1 b

aT
1 a1

a1 +
aT

2 b

aT
2 a2

a2 + · · · +
aT

mb

aT
mam

am,

which is a orthogonal decomposition of b along each of the vectors in the
orthogonal basis S = {a1, a2, · · · , am}.

A natural question next is how to find orthogonal and orthonormal basis
from a given basis? The Gram-Schmidt process is a procedure for this purpose.
Before we detail the process of creating orthogonal basis, let us first observe
that a set of nonzero orthogonal vectors S = {a1, a2, · · · , am} in Rn are
linearly independent. Indeed, consider the vector equation

c1a1 + c2a2 + · · · cmam = 0.

Multiply both sides by aT
i , i = 1, 2, · · · , m. We have

aT
i (c1a1 + c2a2 + · · · + cmam) = 0 ⇒ cia

T
i ai = 0,

which leads to ci = 0 since ai is nonzero. That is

Lemma 4.4.2. If S = {a1, a2, · · · , am} is a set of orthogonal nonzero
vectors in Rn, then S is linearly independent.

Gram–Schmidt orthogonalization process

Let W be a subspace of Rn with an orthogonal basis S = {a1, a2, · · · , am}.
We want to convert it into a new basis S′ = {b1, b2, · · · , bm}. The idea is
that for every i = 1, 2, · · · , m and beginning with b1 = a1, use orthogonal
projection to find bi+1 such that

bi+1 ⊥ span{a1, a2, · · · , ai},
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and that
span{a1, a2, · · · , ai+1} = span{b1, b2, · · · , bi+1}.

When the process terminates, we obtain a set of orthogonal basis S′ =
{b1, b2, · · · , bm} for W . To be specific, we carry out the following steps.

1) Let b1 = a1;

2) Find an orthogonal decomposition of a2 with respect to span{b1} =
span{a1} and let b2 be the component of a2 orthogonal to span{b1} =
span{a1}:

b2 = a2 − b1bT
1

bT
1 b1

a2 = a2 − bT
1 a2

bT
1 b1

b1.

Then b2 , 0 since a2 < span{a1} = span{b1}. Then {b1, b2} is linearly
independent since b2 ⊥ span{b1}. Moreover the orthogonal set {b1, b2}
is contained in the two-dimensional space span{a1, a2}. Therefore, we
have

span{a1, a2} = span{b1, b2}.

3) Find an orthogonal decomposition of a3 with respect to span{b1, b2} =
span{a1, a2} and let b3 be the component of a3 orthogonal to
span{b1, b2} = span{a1, a2}:

b3 = a3 − b1bT
1

bT
1 b1

a3 − b2bT
2

bT
2 b2

a3 = a3 − bT
1 a3

bT
1 b1

b1 − bT
2 a3

bT
2 b2

b2.

Then b3 , 0 since a3 < span{a1, a2} = span{b1, b2}. Then {b1, b2, b3}
is linearly independent since b3 ⊥ span{b1, b2}. Moreover the or-
thogonal set {b1, b2, b3} is contained in the three-dimensional space
span{a1, a2, a3}. Therefore, we have

span{a1, a2, a3} = span{b1, b2, b3}.

4) Successively find an orthogonal decomposition of am+1 with respect to

span{b1, b2, · · · , bm} = span{a1, a2, · · · , am},

and let bm+1 be the component of am+1 which is orthogonal to
span{b1, b2, · · · , bm}:

bm+1 =am+1 − b1bT
1

bT
1 b1

am+1 − b2bT
2

bT
2 b2

am+1 − · · · − bmbT
m

bT
mbm

am+1 (4.7)

=am+1 − bT
1 am+1

bT
1 b1

b1 − bT
2 am+1

bT
2 b2

b2 − · · · − bT
mam+1

bT
mbm

bm. (4.8)

Then we have bm+1 , 0 since

am+1 < span{a1, a2, · · · , am} = span{b1, b2, · · · , bm}.
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We obtain that {b1, b2, · · · , bm} is linearly independent since

bm+1 ⊥ span{b1, b2, · · · , bm}.

Moreover the orthogonal set {b1, b2, · · · , bm+1} is contained in the m+1-
dimensional space span{b1, b2, · · · , bm+1}. Therefore, we have

span{a1, a2, · · · , am+1} = span{b1, b2, · · · , bm+1}.

Example 4.4.3. Let W = span{w1, w2, w3} be a subspace of R3, where

w1 = (1, −1, 0), w2 = (−2, 3, 1), w3 = (1, 2, 4).

i) Show that {w1, w2, w3} is linearly independent. Then use the Gram-
Schmidt process to convert {w1, w2, w3} into an orthogonal basis V =
{v1, v2, v3} of W ;

ii) Let u = (1, 1, 2). Find the coordinate vector [u]V relative to the orthog-
onal basis V obtained in i).

Solution: i) To show that W is linearly independent, we consider the vector
equation

c1w1 + c2w2 + c3w3 = 0,

which is equivalent to





1 −2 1
−1 3 2

0 1 4









c1

c2

c3



 =





0
0
0



 .

Next we reduce the coefficient matrix to row echelon form to determine the
solution for (c1, c2, c3).





1 −2 1
−1 3 2

0 1 4




R2+R1

=====⇒





1 −2 1
0 1 3
0 1 4




R3−R2

=====⇒





1 −2 1
0 1 3
0 0 1



 ==⇒





c1

c2

c3



 =





0
0
0



 .

That is, the vector equation has only the trivial solution for the coefficients.
Therefore W is linearly independent.

Now we use the Gram–Schmidt process to obtain an orthogonal basis:

v1 =w1 = (1, −1, 0);

v2 =w2 − vT
1 w2

vT
1 v1

v1 = w2 − v1 · w2

‖v1‖2
v1

=(−2, 3, 1) − (−5)(1, −1, 0)

2
=

(
1

2
,

1

2
, 1

)

;

v3 =w3 − vT
1 w3

vT
1 v1

v1 − vT
2 w3

vT
2 v2

v2 = w3 − v1 · w3

‖v1‖2
v1 − v2 · w3

‖v2‖2
v2
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=(1, 2, 4) − (−1)(1, −1, 0)

2
− (− 11

2 )
(

1
2 , 1

2 , 1
)

3/2
=

(

−1

3
, −1

3
,

1

3

)

.

Then {v1, v2, v3} is an orthogonal basis of W .
ii) Since {v1, v2, v3} is an orthogonal basis, we have

u =
vT

1 u

vT
1 v1

v1 +
vT

2 u

vT
2 v2

v2 +
vT

3 u

vT
3 v3

v3.

Therefore, we have

[u]V =

(
vT

1 u

vT
1 v1

,
vT

2 u

vT
2 v2

,
vT

3 u

vT
3 v3

)

=

( 〈u, v1〉
‖v1‖2

,
〈u, v2〉
‖v2‖2

,
〈u, v3〉
‖v3‖2

)

= (0, 2, 0).

�

Remark 4.4.4. (QR decomposition) Let A = [u1 : u2 : · · · : um] be an
n × m matrix with m linearly independent vectors. Then using the Gram-
Schmidt process the columns of A can be converted into an orthonormal set
of vectors which are columns of Q = [q1 : q2 : · · · : qm]. Then the transition
matrix from basis {u1, u2, · · · , um} to {q1, q2, · · · , qm} is

R =








uT
1 q1 uT

2 q1 · · · uT
mq1

uT
1 q2 uT

2 q2 · · · uT
mq2

...
...

. . .
...

uT
1 qm uT

2 qm · · · uT
mqm








.

By the Gram–Schmidt process we know that uT
i qj = 0 for every i < j because

qj ⊥ span{u1, u2, · · · , uj−1}. Therefore R is a upper triangular matrix with

R =








uT
1 q1 uT

2 q1 · · · uT
mq1

0 uT
2 q2 · · · uT

mq2

...
...

. . .
...

0 0 · · · uT
mqm








.

That is, A = QR and A is decomposed into the product of an orthogonal
matrix and an upper triangular matrix. �

Example 4.4.5. Find the QR decomposition of the matrix

A =









0 −1 4
1 1 −5
1 0 0
0 1 0
0 0 1









= [c1 c2 c3],

where c1, c2 and c3 are the columns of A.
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Solution: The matrix contains a block of the identity matrix I3. Therefore
we have rank(A) = 3. Then the dimension of the column space of A is 3 and
the columns of A form a basis. Applying the Gram-Schmidt process to the
basis c1, c2 and c3 of the column space we have

β1 = c1,

β2 = c2 − cT
1 β1

βT
1 β1

· β1 =
1

2
(−2, 1, −1, 2, 0),

β3 = c3 − cT
3 β2

βT
2 β2

· β2 − cT
3 β1

βT
1 β1

· β1 =
1

5
(7, −6, 6, 13, 5).

Normalization on {β1, β2, β3} gives

q1 =
1√
2

(0, 1, 1, 0, 0),

q2 =
1√
10

(−2, 1, −1, 2, 0),

q3 =
1√
315

(7, −6, 6, 13, 5).

Then the matrix Q is

Q =










0 −2√
10

7√
315

1√
2

1√
10

−6√
315

1√
2

−1√
10

6√
315

0 2√
10

13√
315

0 0 5√
315










and the matrix R is

R =





cT
1 q1 cT

2 q1 cT
3 q1

0 cT
2 q2 cT

3 q2

0 0 cT
3 q3



 =







√
2

√
2

2 − 5
√

2
2

0
√

10
2 − 13√

10

0 0
√

63√
5







.

Therefore we have

A =









0 −1 4
1 1 −5
1 0 0
0 1 0
0 0 1









=










0 −2√
10

7√
315

1√
2

1√
10

−6√
315

1√
2

−1√
10

6√
315

0 2√
10

13√
315

0 0 5√
315
















√
2

√
2

2 − 5
√

2
2

0
√

10
2 − 13√

10

0 0
√

63√
5







.

�

Exercise 4.4.6.
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u

x

Hx

O

S

FIGURE 4.3: Hx is the mirror reflection of x with respect to the hyperplane
S with unit normal u.

1. Let W = span{w1, w2, w3} be a subspace of R4, where

w1 = (1, −1, 0, 1), w2 = (2, −2, 3, 1), w3 = (1, 2, 4, 0).

i) Show that {w1, w2, w3} is linearly independent. Then use the Gram-
Schmidt process to convert {w1, w2, w3} into an orthogonal basis V =
{v1, v2, v3} of W . ii) Find the coordinate vector [u]V of u = (1, 0, 2, 0) rela-
tive to the orthogonal basis V .

2. Show that there exists an m × n, n < m matrix A such that AT A = In

but AAT
, Im, where In and Im are n × n and m × m identity matrices,

respectively.

3. Show that every finite dimensional inner product space has an orthonormal
basis.

4. Let A =







−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1







. Find a QR decomposition of A, if it exists.

5. Let A =







−1 1
1 −1
1 1
1 1







. Find a QR decomposition of A, if it exists.
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6. Let A = [c1 : c2 : · · · : cm] be an n × m matrix with m linearly independent
vectors. Suppose that the Gram-Schmidt process converted the columns of A
into an orthogonal set of vectors which are columns of B = [b1 : b2 : · · · : bm].
Find the matrix R such that

A = BR.

7. Let S = {1, x, x2} be a basis for P2. Define inner product on P2 by

〈f, g〉 =

∫ 1

−1

f(x)g(x)dx.

If we replace the dot product in the Gram-Schmidt process with inner product,
can you convert S into an orthogonal basis for P2?

8. Let u ∈ Rn be a unit vector. What is the representation matrix H of the
mirror reflection about the plane orthogonal to u? Is H an orthogonal matrix?
See Figure 4.3.

9. Let v be a unit vector in Rn. Show that the matrix P = I − 2vvT is an
orthogonal and symmetric matrix. We call P = I − 2vvT with vT v = 1 a
Householder matrix and call the map x → P x, x ∈ Rn a Householder
transformation.

10. Let x, y ∈ Rn be such that x , y and ‖x‖ = ‖y‖. Let u = x−y
‖x−y‖ and

P = I − 2uuT .

i) Show that P x = y and P y = x.

ii) Show that for every x ∈ Rn, y = ±‖x‖e1, where e1 is the first vector of the
standard basis of Rn, there exists a Householder matrix P such that P x = y.

11. Let x = (3, 4, 0, 0) ∈ R4 and y = (5, 0, 0, 0) ∈ R4. Find a Householder
matrix such that P x = y.

12. Let A =





1 −1 0
1 1 0
0 1 1



 . Use the Householder transformation to find an

orthogonal matrix Q such that QT A is upper triangular.

13. Let A be an m × n matrix with linearly independent columns. Show that
there exists a sequence of orthogonal matrices P1, P2, · · · , Pm such that

PmPm−1 · · · P2P1A = R

is upper triangular.

14. Explain that a product of symmetric orthogonal matrices is orthogonal
but may not be symmetric.
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Chapter 5

Determinants

5.1 Introduction to determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Determinant of permutation matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Determinants of n × n matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Properties of determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1 Introduction to determinants

We know that the 2 × 2 matrix A =

[
a b
c d

]

is invertible if and only if the

scalar ad− bc , 0. And we also learned that elementary row operations do not
change invertibility of a matrix. If we regard the scalar ad − bc as the value of
a function, called determinant det acting on the matrix A, we wish to know
how elementary row operations will change the function value.

1) Multiply a row of A by a constant t. Then

det

([
ta tb
c d

])

= tad − tbc

= t(ad − bc)

= t det(A).

Namely, det is a homogeneous function of its rows. Moreover, let E1 =
[

t 0
0 1

]

. We have

det(E1A) = det(E1) det(A).

2) Add a multiple of one row to another. Then

det

([
a b

ta + c tb + d

])

= a(tb+d)−b(ta+c) = tab+ad−tab−bc = det(A).

That is, adding a multiple of one row to another does not change the

determinant. Moreover, let E2 =

[
1 0
t 1

]

. We have

det(E2A) = det(E2) det(A).

101
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3) Interchange two rows. Then

det

([
c d
a b

])

= bc − ad = − det(A).

That is, interchanging two rows changes the sign of the determinant.

Let E3 =

[
0 1
1 0

]

. We have

det(E3A) = det(E3) det(A).

Items 1) and 2) hinted that det may be a linear function of the rows of a
matrix. Indeed,

det

([
a + e b + f

c d

])

=d(a + e) − c(b + f) = ad − bc + ed − fc

= det

([
a b
c d

])

+ det

([
e f
c d

])

det

([
ta tb
c d

])

=t det(A).

Let Mnn be the vector space of n × n matrices. We want to define a function
det : Mnn → R called a determinant which satisfies the following properties.

P1) det is linear in each of the rows of A ∈ Mnn. For every A =








a1

a2

...
an








in

Mnn, f ∈ Rn, t ∈ R,

det













a1

a2

...
ai + f

...
an













= det













a1

a2

...
ai

...
an













+ det













a1

a2

...
f
...

an













, det













a1

a2

...
tai

...
an













= t det













a1

a2

...
ai

...
an













.

P2) det changes sign if two rows of A ∈ Mnn are interchanged:

det


















a1

a2

...
aj

...
ai

...
an


















= − det


















a1

a2

...
ai

...
aj

...
an
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P3) Let I be the identity matrix.

det(I) = 1.

Determinant of permutation matrices

A permutation matrix P is a matrix obtained by interchanging rows of the
identity matrix I, and we know that P T = P −1. By property P2) and P3),
we know that

det(P ) = ±1.

The sign of det(P ) is determined by the number of interchangings (or called
transpositions) of the rows of I in order to obtain P . If the number is
odd, det(P ) = −1; if it is even, det(P ) = 1. To determine the number of
transpositions, we assume that the rows of P are a permutation of the row
of I, which is an ordering of the numbers {1, 2, · · · , n}. Let S denote the
set of all permutations of the set of numbers {1, 2, · · · , n}. Every member
σ = (σ(1), σ(2), · · · , σ(n)) ∈ S can be represented as

σ =

(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)

,

where the first row of σ denotes the row number of I and the value of σ(i)
indicates that the current i-th row of P was the σ(i)-th row of I. For example,
the following representation of the permutation σ,

σ =

(
1 2 3 4 5
5 3 2 1 4

)

,

implies that the current first row of P was the fifth row of I, the current
second row of P was the third row of I, the current third row of P was the
second row of I, and so on.

Now we count how many transpositions to achieve σ from the (12 · · · n).
We use the so-called total inversions τ(σ) in σ which is the cardinality of all
the occurrences that σ(j) < σ(i) with j > i. That is,

τ(σ) =

n∑

i=1

number of (i, j)’s with σ(i) > σ(j) and i < j.

For example τ(53214) = 4+2+1+0+0 = 7, τ(13542) = 0+1+2+1+0 = 4.
It turns out that τ(σ) is the minimal number of transpositions to achieve σ
from the (12 · · · n). Then by Property P3), we have

Lemma 5.1.1.
det(P ) = (−1)τ(σ),

where σ is the permutation of the rows of I to obtain the permutation
matrix P and τ(σ) is the total inversions of σ.
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Example 5.1.2.

1) Let

P =





0 1 0
1 0 0
0 0 1



 .

Then P is a permutation matrix obtained from I by the permutation σ = (213)

with representation σ =

(
1 2 3
2 1 3

)

and with τ(σ) = τ(213) = 1 + 0 + 0 = 1.

Then det(P ) = (−1)1 = −1.

2) Let

P =









0 1 0 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0









.

Then P is a permutation matrix obtained from I by the permutation

σ = (24153) with representation σ =

(
1 2 3 4 5
2 4 1 5 3

)

and with τ(σ) =

τ(24153) = 1 + 2 + 0 + 1 + 0 = 4. Then det(P ) = (−1)4 = 1. �

Before we discuss determinants of general n × n matrices, let us count the
inversions of the inverse σ−1 of a permutation σ ∈ S, which is the permutation
which restores the permutation σ into identity id. That is, σ−1 ◦ σ = id. For
example,

σ =

(
1 2 3 4 5
5 3 2 1 4

)

, σ−1 =

(
1 2 3 4 5

σ−1(1) σ−1(2) σ−1(3) σ−1(4) σ−1(5)

)

=

(
1 2 3 4 5
4 3 2 5 1

)

.

By examining the matrix representation of permutations, we have

τ(σ) = number of {(i, j) : σ(i) > σ(j) with i < j}
= number of {(σ−1(s), σ−1(t)) : s > t with σ−1(s) < σ−1(t)}
= number of {(s, t) : s > t with σ−1(s) < σ−1(t)}
= τ(σ−1).

In summary we have

Lemma 5.1.3. Let σ be a permutation of the set {1, 2, · · · , n}. Then
we have

τ(σ) = τ(σ−1),

where τ(σ) is the total of the inversions of σ.
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Determinants of n × n matrices

Let A = (aij) be an n × n matrix with rows a1, a2, · · · , an. Let
{e1, e2, · · · , en} be the standard basis of Rn. Then we have

a1 =a11eT
1 + a12eT

2 + · · · + a1neT
n ,

a2 =a21eT
1 + a22eT

2 + · · · + a2neT
n ,

...
...

an =an1eT
1 + an2eT

2 + · · · + anneT
n .

By linearity property of determinants, we have

det(A) = det















a11eT
1

a2

...
an















+ det















a12eT
2

a2

...
an















+ · · · + det















a1neT
n

a2

...
an















=a11 det















eT
1

a2

...
an















+ a12 det















eT
2

a2

...
an















+ · · · + a1n det















eT
n

a2

...
an















=

n∑

k1=1

a1k1
det















eT
k1

a2

...
an















=

n∑

k1=1

a1k1








n∑

k2=1

a2k2
det















eT
k1

eT
k2

...
an






















=

n∑

k1=1

a1k1

n∑

k2=1

a2k2
· · ·

n∑

kn=1

ankn
det















eT
k1

eT
k2

...
eT

kn















=

n∑

k1=1

n∑

k2=1

· · ·
n∑

kn=1

a1k1
a2k2

· · · ankn
det








eT
k1

eT
k2

...
eT

kn








=
∑

σ∈S

a1σ(1)a2σ(2) · · · anσ(n)(−1)τ(σ),
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where the last step is based on the observation that, by P2),

det








eT
k1

eT
k2

...
eT

kn








= 0, if ki = kj ,

since switching the identical two rows will not change the matrix but will
reverse the sign of the determinant. Therefore only the permutation matrices
survive to have nonzero determinants in the summation. That is, the determi-
nant of an n × n matrix is the sum of every such signed product of n entries
of A that contains a unique entry from each row and each column. Therefore,
we have

Theorem 5.1.4. If det : Mnn → R satisfies properties P1), P2) and
P3), then its value is uniquely determined by

det(A) =
∑

σ∈S

(−1)τ(σ)a1σ(1)a2σ(2) · · · anσ(n),

where S is the set of all permutations of the set {1, 2, · · · , n} and τ(σ)
is the inversion of σ.

An immediate consequence is that

Corollary 5.1.5.

i) If A ∈ Mnn has a zero row or zero column, then det(A) = 0.

ii) If A = (aij) is a triangular matrix, then det(A) = a11a22 · · · ann.

We leave it as an exercise to show that the function f : Mnn → R defined
by

f(A) =
∑

σ∈S

(−1)τ(σ)a1σ(1)a2σ(2) · · · anσ(n)

must satisfy properties P1), P2) and P3).

Exercise 5.1.6.

1. Let A be an n×n matrix. If A has two proportional rows, then det(A) = 0.

2. Let S be the set of all permutations of the numbers (1, 2, 3, · · · , n). We call
a permutation an even (odd) permutation if its total inversion is even (odd,
respectively). Show that there are the same number of odd permutations and
even permutations.

3. Let S be the set of all permutations of the numbers (1, 2, 3, · · · , n) and
σ ∈ S. Show that every transposition on σ changes its parity.
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4. Find the total inversion, parity and matrix representation of each of the
following permutations

i) (123564);

ii) (456213);

iii) (123456).

5. Let A be a 5 × 5 matrix. Find the coefficient of each the following products
in the permutation expansion of det(A).

i) a15a24a33a42a51;

ii) a13a25a31a42a54;

iii) a14a23a32a45a51;

iv) a12a23a34a45a51.

6. Find the coefficients of the terms of x3 and x4 for the polynomial f defined
by

f(x) = det







x 2 x 1
1 3x 1 −1
2 1 x −2
3 1 2 x







.

7. Find the determinants of the following matrices.

A =










0 1 0 · · · 0
0 0 2 · · · 0
...

...
...

. . . 0
0 0 0 · · · n − 1
n 0 0 · · · 0










, B =










0 0 1 0 · · · 0
0 0 0 2 · · · 0
...

...
...

...
. . . n − 2

n − 1 0 0 0 · · · 0
0 n 0 0 · · · 0










.

8. Let A be an n × n matrix such that

aij =

{

1 if i + j = n + 1

0 otherwise.

Find det(A).

9. Let A be an n×n matrix. Show that if A has more than n2 −n zero entries,
then det(A) = 0.

10. Show that the function f : Mnn → R defined by

f(A) =
∑

σ∈S

(−1)τ(σ)a1σ(1)a2σ(2) · · · anσ(n)

must satisfy properties P1), P2) and P3).
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5.2 Properties of determinants

We know that for 2 × 2 matrix A, det(A) = det(AT ). Indeed it is valid for
A ∈ Mnn.

Theorem 5.2.1. det(A) = det(AT ).

Proof. We have

det(A) =
∑

σ∈S

(−1)τ(σ)a1σ(1)a2σ(2) · · · anσ(n).

Consider a1σ(1)a2σ(2) · · · anσ(n), where σ ∈ S is the column permutation with
the row permutation fixed with (12 · · · n). If the column permutation is fixed
with (12 · · · n), the row permutation is exactly σ−1. By Lemma 5.1.3, we have
τ(σ) = τ(σ−1). Namely, the total of the inversions created by σ is restored by
σ−1 to 0. Hence τ(σ) = τ(σ−1). Therefore, one can fix the column permutation
to (12 · · · n) and obtain that

det(A) =
∑

σ∈S

(−1)τ(σ)aσ−1(1) 1aσ−1(2) 2 · · · aσ−1(n) n

=
∑

σ∈S

(−1)τ(σ−1)aT
1, σ−1(1)a

T
2, σ−1(2) · · · aT

n, σ−1(n)

=
∑

σ−1∈S

(−1)τ(σ−1)aT
1, σ−1(1)a

T
2, σ−1(2) · · · aT

n, σ−1(n)

= det(AT ).

�

A significant consequence of Theorem 5.2.1 is that the properties of de-
terminants described at P1) and P2) with respect to rows are also valid in
terms of columns. Now we use Theorem 5.2.1 to establish the co-factor formula
which can be used to compute determinants.

Let A = (aij) be an n×n matrix with rows a1, a2, · · · , an. Let Mij denote
the submatrix of A with the i-th row and the j-th column deleted. We have

ai = ai1eT
1 + ai2eT

2 + · · · + aineT
n

and

det(A) = det





















a1

...
ai1eT

1
...

an





















+ det





















a1

...
ai2eT

2
...

an





















+ · · · + det





















a1

...
aineT

n
...

an
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=ai1 det





















a1

...
eT

1
...

an





















+ ai2 det





















a1

...
eT

2
...

an





















+ · · · + ain det





















a1

...
eT

n
...

an





















.

By means of interchanging rows and columns, we can manage to put the entry
1 of eT

j from row i into the (n, n)-position, using (n−i)+(n−j) interchangings.

Then by property 2), and noticing (−1)n−i+n−j = (−1)i+j , we have

det(A) =ai1(−1)i+1 det

[
Mi1 ∗
0 1

]

+ · · · + aij(−1)i+j det

[
Mij ∗
0 1

]

+ · · · + ain(−1)i+n det

[
Min ∗

0 1

]

=ai1(−1)i+1 det Mi1 + · · · + aij(−1)i+j det Mij

+ · · · + ain(−1)i+n det Min.

Theorem 5.2.2. (co-factor expansion) Let A = (aij) be an n × n
matrix and Mij be the submatrix of A after the i-th row and the j-th
column of A are deleted. Then

det(A) = ai1(−1)i+1 det Mi1 + · · · + aij(−1)i+j det Mij

+ · · · + ain(−1)i+n det Min.

Define Cij = (−1)i+j det Mij . We call Cij the co-factor associated with
the entry aij . We leave it as an exercise to show that co-factor expansion is
also valid in terms of columns.

Example 5.2.3. Let A =





1 2 3
4 5 6
7 8 9



 . By the co-factor expansion formula,

we have

det(A) = 4 · (−1)2+1 det

[
2 3
8 9

]

+ 5 · (−1)2+2 det

[
1 3
7 9

]

+ 6 · (−1)2+3 det

[
1 2
7 8

]

= (−4) · (−6) + 5 · (−12) + (−6) · (−6)

= 0.

In principle, one can use the co-factor formula to compute the determinant
of every n × n matrix, by recursively reducing the sizes of the submatrices
involved in the co-factor formula. However, the amount of computation is
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huge when n is large. In fact, elementary row operations also play important
roles in the computation of determinants.

Theorem 5.2.4. Let A = (aij) be an n × n matrix. If E is an elemen-
tary matrix, then

det(EA) = det(E) det(A).

Proof. We distinguish three cases:

i) If E denotes the row operation of interchanging two rows, say, row i inter-
changed with row j (i > j), then E is a permutation matrix which is obtained
by interchanging row i with row j of I, involving 2(j − i) − 1 transpositions.
Therefore

det(E) = (−1)2(j−i)−1 = −1.

On the other hand, by Property 2), we have det(EA) = − det(A) =
(−1) det(A). That is, det(EA) = det(E) det(A).

ii) If E denotes the row operation of adding r-multiple of one row to another,
then E is a triangular matrix with 1 in every main diagonal position. By
Corollary 5.1.5, we have det(E) = 1. On the other hand, by Property 1), we
have

det(EA) = det







...
ai + raj

...







= det







...
ai

...







+ r det







...
aj

...







,

where the displayed aj is in the i-th row. Then det







...
aj

...







= 0 since interchang-

ing its i-th row and the j-th row does not change the matrix, but by Property
3), the determinant has to change sign. Then we have det(EA) = det(A).
That is, det(EA) = det(E) det(A).

iii) If E denotes the row operation of multiplying a row by a constant c , 0,
say, row i multiplied by c, then E is a diagonal matrix with 1 in every main di-
agonal position except for the c at the (i, i)-position. Then by Corollary 5.1.5,
det(E) = c. On the other hand, by Property 2), we have det(EA) = c det(A).
That is, det(EA) = det(E) det(A). �

Corollary 5.2.5. Let A = (aij) be an n × n matrix. If two rows of A
are proportional, then

det(A) = 0.
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Theorem 5.2.6. A is invertible if and only if det(A) , 0.

Proof. “=⇒” If A is invertible, then by Theorem 2.3.4, A is a product of ele-
mentary matrices. That is, there exist elementary matrices E1, E2, · · · , Ek

such that A = EkEk−1 · · · E1. By Theorem 5.2.7, we have det(A) =
det(Ek)) det(Ek−1) · · · det(E1) which is nonzero because the determinant of
every elementary matrix is nonzero.

“⇐=” Suppose not. That is, A is not invertible, then by Theorem 2.3.4
Ax = 0 has nontrivial solutions. Hence the reduced row echelon form U
of A has at least one zero row. That is, there exist elementary matrices
E1, E2, · · · , Ek such that EkEk−1 · · · E1A = U. We have

det(EkEk−1 · · · E1A) = det(Ek) det(Ek−1) · · · det(E1) det(A) = det(U) = 0,

which lead to det(A) = 0 since det(Ei) , 0, i = 1, 2, · · · , k. This is a contra-
diction. �

Theorem 5.2.7. Let A and B be n × n matrices. Then

det(AB) = det(A) det(B).

Proof. If A is not invertible, then by Theorem 2.3.6, AB is not invertible.
By Theorem 5.2.7, det(AB) = 0 and det(A) = 0. That is, det(AB) =
det(A) det(B).

If A is invertible, then by Theorem 2.3.4, A is a product of elementary
matrices. That is, there exist elementary matrices E1, E2, · · · , Ek such that
A = EkEk−1 · · · E1. By Theorem 5.2.7, we have

det(AB) = det(EkEk−1 · · · E1B)

= det(Ek) det(Ek−1) · · · det(E1) det(B)

= det(A) det(B).

�

Example 5.2.8. Compute the determinants of the following matrices

a) A =

[
46159 46059
70281 70181

]

;

b) B =







4 2 2 2
2 4 2 2
2 2 4 2
2 2 2 4







.
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Solution: a) Subtracting the second column from the first column we have

det(A) = det

[
100 46059
100 70181

]

= 100(70181 − 46059) = 2412200.

b) Adding the second, the third and the fourth row to the first row, we
get a row of 10’s without changing the determinant.

det(B) = det







10 10 10 10
2 4 2 2
2 2 4 2
2 2 2 4







(Add row 2, 3, 4 to row 1)

=5 · det







2 2 2 2
2 4 2 2
2 2 4 2
2 2 2 4







(Factor 5 from row 1)

=5 · det







2 2 2 2
0 2 0 0
0 0 2 0
0 0 0 2







(Subtract row 1 from row 2, 3, 4)

=5 · 2 · 2 · 2 · 2 (Determinant of a triangular matrix)

=80.

Since AA−1 = I, by Theorem 5.2.7 we have

Corollary 5.2.9. If A is an invertible matrix, then

det(A−1) =
1

det(A)
.

Another application of Theorem 5.2.7 is the Cramer’s rule. Consider Ax =
b, where A is an n × n invertible matrix and x, b ∈ Rn. Let {e1, e2, · · · , en}
be the standard basis of Rn. Since Ax = b is consistent, the following matrix
product holds:

A[e1 : · · · : ei−1 : x : ei+1 : · · · : en] = [a1 : · · · : ai−1 : b : ai+1 : · · · : an]. (5.1)

Since the i-th coordinate of x is the only nontrivial entry in the i-th row of
[e1 : · · · : ei−1 : x : ei+1 : · · · : en], we have by co-factor expansion

det[e1 : · · · : ei−1 : x : ei+1 : · · · : en] = xi.

Let Bi denote the matrix obtained by replacing the i-th column of A with b.
Equality (5.1) can be rewritten as

A[e1 : · · · : ei−1 : x : ei+1 : · · · : en] = Bi,
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which by Theorem 5.2.7 leads to

det(A)xi = det(Bi).

In summary, we have

Corollary 5.2.10. (Cramer’s rule) If A is an invertible matrix, then
the solution of Ax = b for x = (x1, x2, · · · , xn) is

x1 =
det(B1)

det(A)
, x2 =

det(B2)

det(A)
, · · · , xn =

det(Bn)

A
,

where Bi, i = 1, 2, · · · , n, is the matrix obtained by replacing the i-th
column of A with b.

Example 5.2.11. Solve the following system of equations using Cramer’s
rule.







2x − y + 3z = 0

x + 4y + 2z = 1

3x + 2y + z = 2.

Solution: The system of linear equations can be written as




2 −1 3
1 4 2
3 2 1









x
y
z



 =





0
1
2



 .

We note that

det





2 −1 3
1 4 2
3 2 1



 = −35 , 0.

Therefore, Cramer’s rule applies. By Cramer’s rule we have

x =

det





0 −1 3
1 4 2
2 2 1





det





2 −1 3
1 4 2
3 2 1





=
−21

−35
, y =

det





2 0 3
1 1 2
3 2 1





det





2 −1 3
1 4 2
3 2 1





=
−9

−35

and

z =

det





2 −1 0
1 4 1
3 2 2





det





2 −1 3
1 4 2
3 2 1





=
11

−35
.

www.Engineeringbookspdf.com



114 Concise Introduction to Linear Algebra

That is, the solution is

(x, y, z) =

(
21

35
,

9

35
, −11

35

)

.

We close this section with an application of the co-factor formula and
Theorem 5.2.7. Consider A ∈ Mnn with rows a1, a2, · · · , an, · · · , n. We have
for every i = 1, 2, · · · , n,

det(A) = ai1Ci1 + ai2Ci2 + · · · + ainCin.

It is interesting to examine aj1Ci1 +aj2Ci2 + · · · +ajnCin as well. It turns out
that aj1Ci1 + aj2Ci2 + · · · + ajnCin is a cofactor expansion of the determinant
of such a matrix that is NOT A, but is the matrix obtained by replacing the
i-th row of A with its j-th row. Such a matrix has determinant zero because
it has two identical rows. Therefore we have

aj1Ci1 + aj2Ci2 + · · · + ajnCin =

{

det(A) if i = j,

0 if i , j

or equivalently

A








C11 C21 · · · Cn1

C12 C22 · · · Cn2

...
...

. . .
...

C1n C2n · · · Cnn








= det(A)I.

Definition 5.2.12. We call the transpose of the matrix of cofactors of A the
adjoint of A, denoted by adj(A).

Theorem 5.2.13. Let A be an n × n matrix. Then

A adj(A) = det(A)I.

In particular, if A is invertible, then

A−1 =
adj(A)

det(A)
.

Exercise 5.2.14.

1. Let

A =





6 7 2
1 5 9
8 3 4



 .

Find det(A) by the following three methods: 1) Co-factor expansion; 2) Ele-
mentary row operations; 3) The permutation formula for determinants.
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2. Find the determinants of the following matrices.

1) A =





1 3 5
3 5 7
5 7 9



 ; 2) B =





6 7 2
1 5 9
8 3 4



 ;

3) C =





3 0 0
1 5 0

−2 −1 7



 ; 4) D =





0 0 2
0 5 9
8 3 4



 .

3. Find the determinants of the following matrices.

1) A =







1 3 5 7
3 5 7 9
5 7 9 11
7 9 11 13







; 2) B =







0 7 2 0
1 5 9 5
8 3 4 0

−1 2 5 0







;

3) C =







0 0 2 0
1 5 0 5
8 0 4 0
0 2 5 0







, 4) D =







0 0 0 2
0 0 2 5
0 2 4 0
4 2 5 0







.

4. Find the determinants of the following matrices.

1) A =







1 3 5 7
3 5 7 1
5 7 3 1
7 1 5 3







; 2) B =







5 1 1 1
1 5 1 1
1 1 5 1
1 1 1 5







;

3) C =







a b c d
b a d c
c d a b
d c b a







; 4) D =







x y y y
y x y y
y y x y
y y y x







.

5. If A is an n × n matrix with det(A) = 2: i) Find det(adj(A)); ii) If
(adj(A))ij = 1, which entry of A−1 do you know the explicit value of?

6. Show that if A is symmetric, then adj(A) is also symmetric.

7. Show that if det(A) = 0, then det(adj(A)) = 0. (Hint: Note that

adj(A)A = Aadj(A) = det(A)I,

and show that adj(A) has a nontrivial null space if det(A) = 0.)

8. Let A =

[
a b
c d

]

. Show that the area of the parallelogram determined by

the vectors 0, (a b), (c, d) and (a + c, b + d) is | det(A)|.
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9. Let

A =








1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2
...

...
...

1 xn x2
n · · · xn−1

n








.

Find det(A).

10. Let n ≥ 2, n ∈ N and An be an n × n tridiagonal matrix given by

An =












3 2 0 0 · · · 0
1 3 2 0 · · · 0
0 1 3 2 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · 1 3 2
0 0 · · · 0 1 3












.

Compute Dn where Dn = det(An).

11. Let x = (x1, x2, · · · , xn) ∈ Rn and y = (1, 1, · · · , 1) ∈ Rn. Let A =
I + yxT . Find det(A).

12. Let x = (1, 1, · · · , 1) ∈ Rn. Let A = xxT − I. Find det(A) and A−1.

13. Let det(A) = a, det(B) = b. Compute

det

[
A C
0 B

]

.

14. Use Cramer’s rule to solve the following systems, if applicable.

1)






x + 2y + 3z = 1

x + 3y = 1

y + z = 1;

2)






2y + 3z = 1

x + 3y = −1

x + y + z = 1;

3)






x + 2y + 3z = 1

2x + 3y + 4z = 1

5x + 3y + 4z = −1;
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4)







x − 2y + 3z = 1

x + 3y + 4z = −1

y + z = 1.

15. Let A = (aij) be an n × n matrix and Mij be the submatrix of A after
the i-th row and the j-th column of A are deleted. Then

det(A)

= aij(−1)1+j det M1j + · · · + aji(−1)j+i det Mji + · · · + ani(−1)n+i det Mni.
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Eigenvalues and eigenvectors
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6.1 Introduction to eigenvectors and eigenvalues

There are many occasions that we model the input xk at the discrete
instance k ∈ N and the output yk at instance k with a linear relation

yk = Axk,

where A is an n × n matrix. Then the output at any instant can be predicted
by yk = Akx1, and sometimes we are even interested in the existence of the
limit limk→+∞ yk. It is usually time consuming to compute Ak when k and
the dimension n of A are large. However, if A is diagonal, then Ak can be
easily computed. Indeed, we have

A =








λ1 0
λ2

. . .

0 λn








and Ak =








dk
1 0

dk
2

. . .

0 dk
n








.

Certainly not every matrix is diagonal. The question is how to reduce a non-
diagonal matrix into a diagonal one. Since we will compute successive multi-
plication of A, we assume there exists an invertible matrix P such that

A = P −1DP,

119
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where D is diagonal. Then we have

A2 = (P −1DP )(P −1DP ) = P −1D2P, Ak = P −1DkP.

This means that if we are able to find an invertible matrix P such that
A = P −1DP , we can easily compute Ak with Ak = P −1DkP . Now the ques-
tion is transformed into finding a decomposition of A with A = P −1DP ,
where D is diagonal. To be more specific, let P = [p1 : p2 : · · · : pn],
D = diag{λ1, λ2, · · · , λn}. Then A = P −1DP is equivalent to

A[p1 : p2 : · · · : pn] = [λ1p1, λ2p2, · · · , λnpn].

Namely, to achieve A = P −1DP , we need to find the scalar-vector pairs
(λi, pi), i = 1, 2, · · · , n such that

Api = λipi,

and pi, i = 1, 2, · · · , n are linearly independent.

Definition 6.1.1. Let A be an n×n matrix. If there exists a nonzero
x ∈ Cn such that

Ax = λx

for some λ ∈ C, we call x , 0 an eigenvector of A and λ the
eigenvalue of A corresponding to x. If there are n linearly indepen-
dent eigenvectors p1, p2, · · · , pn of A with corresponding eigenvalues
λ1, λ2, · · · , λn, then the matrix P = [p1 : p2 : · · · : pn] is such that

P −1AP =








λ1 0
λ2

. . .

0 λn








,

and we say that A is diagonalizable.

Now we develop methods for computing eigenvalues of A. Notice from the
definition of eigenvectors that every eigenvector x is nonzero and satisfies

Ax = λx ⇔ (A − λI)x = 0,

which implies that A − λI is not invertible. Then it is necessary that every
eigenvalue λ of A satisfies

det(A − λI) = 0,

which is a n-th degree polynomial of λ and which has n roots in the complex
domain C. Conversely, if λ ∈ C satisfies det(A − λI) = 0, then A − λI is not
invertible and there exists nonzero x which satisfies

(A − λI)x = 0 ⇔ Ax = λx.
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Theorem 6.1.2. Let A be an n × n matrix. λ ∈ C is an eigenvalue of
A if and only if

det(A − λI) = 0.

For every n × n matrix A, we call det(A − λI) the characteristic poly-
nomial of A, and call N(A − λI) the eigenspace of A corresponding to the
eigenvalue λ.

Example 6.1.3. Let A be the following matrix:

A =





−1 0 1
−6 2 3

0 0 1



 .

i) Find the eigenvalues λ1, λ2, λ3 of A with λ1 ≤ λ2 ≤ λ3;

ii) Find an eigenvector associated to each eigenvalue obtained in i) with 1
as its first non-zero component;

iii) Determine whether A is diagonalizable or not. If yes, find a matrix P
such that P −1AP is diagonal.

Solution: i) We solve the characteristic equation det(λI − A) = 0 for the
eigenvalues. That is

det





λ + 1 0 1
6 λ − 2 −3
0 0 λ − 1



 = 0 ⇒(λ + 1)(λ − 1)(λ − 2) = 0

⇒λ1 = −1, λ2 = 1, λ3 = 2.

ii) We solve the homogeneous system (λI−A)x = 0 with x = (x1, x2, x3) ∈
R

3 for an eigenvector corresponding to every λ ∈ {λ1, λ2, λ3}.
• For λ = λ1 = −1, we have





0 0 −1
6 −3 −3
0 0 −2









x1

x2

x3



 =





0
0
0



 ⇒





1 − 1
2 0

0 0 1
0 0 0









x1

x2

x3



 =





0
0
0





⇒ x1 +

(

−1

2

)

x2 = 0, x3 = 0

⇒ x =





x1

x2

x3



 =





1
2 t
t
0



 , t ∈ R.

Putting t = 2 in x, we obtain an eigenvector associated with the eigenvalue
λ1:

p1 =





1
2
0



 .
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• For λ = λ2 = 1, we have





2 0 −1
6 −1 −3
0 0 0









x1

x2

x3



 =





0
0
0



 ⇒





1 0 − 1
2

0 −1 0
0 0 0









x1

x2

x3



 =





0
0
0





⇒ x1 +

(

−1

2

)

x3 = 0, x2 = 0

⇒ x =





x1

x2

x3



 =





1
2 t
0
t



 , t ∈ R.

Putting t = 2 in x, we obtain an eigenvector associated with the eigenvalue
λ2:

p2 =





1
0
2



 .

• For λ = λ3 = 2, we have





3 0 −1
6 0 −3
0 0 1









x1

x2

x3



 =





0
0
0



 ⇒





1 0 0
0 0 1
0 0 0









x1

x2

x3



 =





0
0
0





⇒ x1 = 0, x3 = 0

⇒ x =





x1

x2

x3



 =





0
t
0



 , t ∈ R.

Putting t = 1 in x, we obtain an eigenvector associated with the eigenvalue
λ3:

p3 =





0
1
0



 .

iii) Let P = [p1 : p2 : p3]. Then det(P ) = −2 , 0. Then A has three
linearly independent eigenvectors p1, p2, p3 and is diagonalizable. We have

P =





1 1 0
2 0 1
0 2 0





which satisfies that

P −1AP =





−1 0 0
0 1 0
0 0 2



 .

�
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Notice that det(λI − A)λ=0 = (−1)n det(A). Then by Theorem 6.1.2, we
have

Theorem 6.1.4. Let A be an n × n matrix. A is invertible if and only
if λ = 0 is not an eigenvalue of A.

Example 6.1.5.

A projection matrix P with P 2 = P, P T = P is not invertible and λ = 0 is
always an eigenvalue.

An orthogonal matrix Q with QT Q = I is invertible and λ = 0 is not an
eigenvalue.

Exercise 6.1.6.

1. For the following matrices, find the eigenvalues and a basis of the associated
eigenspaces.

A =





1 0 0
0 1 0
0 0 1



 , B =





1 1 1
1 1 1
1 1 1



 , C =





1 1 0
0 1 1
0 0 1



 .

2. Find a 3×3 matrix A whose eigenvalues are −1, 2, 3 and the corresponding
eigenvectors are columns of

P = [c1 : c2 : c3] =





1 1 0
0 1 1
0 0 1



 ,

respectively.

3. Find a 3×3 matrix A whose eigenvalues are −1, 2, 2 and the corresponding
eigenvectors are columns of

P = [c1 : c2 : c3] =





1 1 0
0 1 1
0 0 1



 ,

respectively.

4. Let A be an n × n matrix. Show that if λ is an eigenvalue of A and x a
corresponding eigenvector, then for every k ∈ N, λk is an eigenvalue of AK

with x a corresponding eigenvector.

5. Let A be an n × n invertible matrix. Show that if λ is an eigenvalue of A
and x a corresponding eigenvector, then for every k ∈ Z, λk is an eigenvalue
of AK with x a corresponding eigenvector.
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6. Let f be a polynomial and A an n×n matrix. Show that if λ is an eigenvalue
of A and x a corresponding eigenvector, then f(λ) is an eigenvalue of f(A)
with x a corresponding eigenvector.

7. Let f and g be polynomials and A an n × n matrix. Show that

(f + g)(A) =f(A) + g(A),

(fg)(A) =f(A)g(A).

8. Let A be an n × n matrix. Show that there exists a nonzero polynomial f
such that f(A) = 0.

9. Let A and P be n × n matrices and P is invertible. Show that for every
polynomial f ,

f(P −1AP ) = P −1f(A)P.

10. Let A and P be n × n real matrices and P is invertible. Show that there
exists a λ ∈ C such that A + λP is not invertible.

11. Let A and P be n×n real matrices and P is invertible. Show that if n ∈ N
is odd, then there exists a λ ∈ R such that A + λP is not invertible.

12. Let A be an n × n diagonalizable matrix. Show that if every eigenvalue of
A satisfies |λ| < 1, then

lim
k→∞

det(Ak) = 0.

6.2 Diagonalizability

We have seen in Section 6.1 that if an n × n matrix A is diagonalizable,
namely, A has n linearly independent eigenvectors, then the powers of A can
be easily obtained. However, not every matrix A has n linearly independent

eigenvectors. For example the matrix J =

[
1 1
0 1

]

has an eigenvalue λ = 1

with algebraic multiplicity 2 as a root of the characteristic polynomial p(λ) =
(λ − 1)2. However the null space of A − 1 · I is

N(A − I) = span

([
1
0

])

,

which is one dimensional. That is, we cannot find two linearly independent
eigenvectors necessary to diagonalize A. Therefore, A is non-diagonalizable.
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Definition 6.2.1. Let A be an n × n matrix. λ0 ∈ C is an eigenvalue. We
call the order of the factor λ− λ0 in the characteristic polynomial det(A − λ0)
the algebraic multiplicity of λ0. We call the dimension of the nullspace
N(A − λ0I) the geometrical multiplicity of λ0.

Example 6.2.2. For the matrix J =

[
1 1
0 1

]

, the algebraic multiplicity of the

eigenvalue λ0 = 1 is 2 because the order of the factor λ−1 in the characteristic
polynomial det(A − λ0) = (λ − 1)2 is 2. The geometrical multiplicity of the
eigenvalue λ0 = 1 is 1 because

dim N(A − I) = dim span

([
1
0

])

= 1.

�

Theorem 6.2.3. Let A be an n × n matrix. Let λ1, λ2, · · · , λk be a
set of distinct eigenvalues of A. Let S1 = {v11, v12, · · · , v1n1

}, S2 =
{v21, v22, · · · , v2n2

},· · · , Sk = {vk1, vk2, · · · , vknk
} be bases of the

nullspaces N(A − λjI), j = 1, 2, · · · , k. Then the union of the bases
S1 ∪ S2 ∪ · · · Sk is linearly independent.

Proof. We first show that S1 ∪ S2 is linearly independent. Regard Sj as a
matrix of basis vectors contained in Sj. Let cj = (c11, c12, · · · , c1nj

), j =
1, 2, · · · , k and consider

S1c1 + S2c2 = 0. (6.1)

Suppose, for the sake of contradiction, that S1 ∪S2 is linearly dependent, then
c1 , 0 and c2 , 0; otherwise, one of S1 and S2 is linearly dependent which is
impossible. Multiplying both sides of (6.1) by A, we obtain that

λ1S1c1 + λ2S2c2 = 0.

Multiplying both sides of S1c1 + S2c2 = 0 by λ1 and subtracting it from the
above equality we have

(λ2 − λ1)S2c2 = 0,

which leads to c2 = 0. This is a contradiction. Therefore, S1 ∪ S2 is linearly
independent.

Suppose that S1 ∪ S2 ∪ · · · Sj, j < k is linearly independent. Consider

S1c1 + S2c2 + · · · + Sjcj + Sj+1cj+1 = 0. (6.2)

Multiplying both sides of (6.2) by A, we obtain that

λ1S1c1 + λ2S2c2 + · · · + λjSjcj + λj+1Sj+1cj+1 = 0. (6.3)
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Multiplying both sides of (6.2) by λj+1 and subtracting it from (6.3) we have

(λ1 − λj+1)S1c1 + (λ2 − λj+1)S2c2 + · · · + (λj − λj+1)Sjcj = 0. (6.4)

Then c1 = c2 = · · · = cj = 0 since S1∪S2∪· · · Sj , j < k is linearly independent.
Then by (6.2) we have cj+1 = 0 and hence S1 ∪ S2 ∪ · · · Sj ∪ Sj+1 is linearly
independent.

By mathematical induction, S1 ∪ S2 ∪ · · · ∪ Sk is linearly independent. �

An immediate consequence of Theorem 6.2.3 is that

Corollary 6.2.4. Let A be an n × n matrix.

i) If A has n distinct eigenvalues, then A is diagonalizable.

ii) Eigenvectors associated with distinct eigenvalues are linearly inde-
pendent.

A necessary and sufficient condition for diagonalizability is the following

Theorem 6.2.5. Let A be an n × n matrix. Then

i) for every eigenvalue λ0 of A,

algebraic multiplicity of λ0 ≥ geometrical multiplicity of λ0.

ii) A is diagonalizable if and only if for every eigenvalue λ0,

algebraic multiplicity of λ0 = geometrical multiplicity of λ0.

Proof. i) Let m be the geometrical multiplicity of λ0. Let Sλ0
=

{v1, v2, · · · , vm} be a basis of N(A − λ0I). Then we can extend Sλ0
into

a basis {v1 : v2 : · · · : vm : vm+1 : · · · : vn} of Rn. Then we have

A[v1 : v2 : · · · : vm : vm+1 : · · · : vn]

=[v1 : v2 : · · · : vm : vm+1 : · · · : vn]

[
λ0Im×m B

0 C

]

,

where Im is the m × m identity matrix, B is an m × (n − m) matrix and C is
an (n − m) × (n − m) matrix.

Let P = [v1 : v2 : · · · : vm : vm+1 : · · · : vn]. Then we have

P −1AP =

[
λ0Im B

0 C

]

,

and

P −1(A − λI)P =

[
(λ0 − λ)Im B

0 C − λI(n−m)

]

.
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Then we have

det(A − λI) = det((λ0 − λ)Im) det(C − λI(n−m))

=(λ − λ0)m det(C − λI(n−m)).

Therefore, we obtain that

algebraic multiplicity of λ0 ≥ m = geometrical multiplicity of λ0.

ii) “=⇒” If A is diagonalizable, then A has n linearly independent eigen-
vectors. Note that the sum of algebraic multiplicities of all eigenvalues is n. If
there exists an eigenvalue λ0 with algebraic multiplicity of λ0 strictly larger
than the geometrical multiplicity of λ0, then the sum of the dimensions of all
the eigenspaces is less than n. By Theorem 6.2.3, A has less than n linearly
independent eigenvectors. This is a contradiction.

“⇐=” If for every eigenvalue λ0,

algebraic multiplicity of λ0 = geometrical multiplicity of λ0

then the sum of the dimensions of all the eigenspaces is n. By Theorem 6.2.3,
A has n linearly independent eigenvectors. A is diagonalizable. �

Similar matrices

The idea of diagonalizing a square matrix extends to the situation that a
matrix is not diagonalizable. For a given matrix A, we say that B is similar
to A if there exists an invertible matrix P such that B = P −1AP . It is evident
that B is similar to A is equivalent to that A is similar to B. If A is similar
to B, we write A ∼ B. It turns out similar matrices share many important
properties which are listed below:

Theorem 6.2.6. Let A, B be n×n matrices with A = P −1BP . Then
we have

i) det(A) = det(B) and det(A − λI) = det(B − λI);

ii) rank(A) = rank(B);

iii) trace(A) = trace(B), where trace(A) =
∑n

i=1 aii.

Proof. i) We have

det(A) = det(P −1BP )

= det(P −1) det(B) det(P )

=
1

det(P )
det(B) det(P )
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= det(B).

Moreover, we have

det(A − λI) = det(P −1BP − λI)

= det(P −1(B − λI)P )

= det(B − λI).

ii) By Theorem 3.4.6, we have

rank(A) ≤ min{rank(P −1), rank(B), rank(P )} ≤ rank(B).

Since B = P AP −1, we also have

rank(B) ≤ min{rank(P −1), rank(A), rank(P )} ≤ rank(A).

Therefore, we have rank(A) = rank(B).
iii) We first show that for every m × n matrix C and n × m matrix D, we

have

trace(CD) =

m∑

i=1

(CD)ii

=

m∑

i=1

(row i of C) · (column i of D)

=

m∑

i=1

n∑

j=1

CijDji

=

n∑

j=1

m∑

i=1

DjiCij

=

n∑

j=1

(DC)jj

= trace(DC).

Therefore, we have trace(A) = trace(P −1BP ) = trace(P P −1B) = trace(B).
�

Example 6.2.7. Let A =

[
1 2
3 4

]

, P =

[
0 1
1 0

]

, B = P −1AP =

[
4 3
2 1

]

.

Then we have i) det(A) = −2 = det(B), det(A − λI) = λ2 − 5λ − 2 =
det(B − λI); ii) rank(A) = rank(B) = 2; iii) trace(A) = 5 = trace(B). �
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Estimates of eigenvalues

Usually elementary row operations do not preserve eigenvalues. For exam-

ple the permutation matrix E =

[
0 1
1 0

]

has eigenvalues λ = ±1. But EE = I

has eigenvalues λ12 = 1 only. However, we still have certain estimates for the
information of the eigenvalues without practically computing them. Consider
the characteristic polynomial

det(A − λI),

and assume it can be factored into

det(A − λI) = (λ1 − λ)(λ2 − λ) · · · (λn − λ),

where λi, i = 1, 2, · · · , n are eigenvalues of A. Putting λ = 0, then we have

det(A) = λ1λ2 · · · λn.

The next estimate on eigenvalues makes use of the fact that every square
matrix A can be triangularized by an invertible matrix P such that

P −1AP = D,

where D is either a diagonal matrix with eigenvalues of A in the main diagonal,
or D is the Jordan form (see Theorem 6.3.8) of A which is a triangular
matrix with eigenvalues of A in the main diagonal. Note repeated eigenvalues
all appear in the main diagonal of D. Then we have

trace(D) = trace(P −1AP ) = trace(P P −1A) = trace(A).

In summary, we arrived at

trace(A) = λ1 + λ2 + · · · + λn,

where λi, i = 1, 2, · · · , n are eigenvalues of A.

Another estimate of eigenvalues makes use of the dominant matrix. Recall
that every dominant matrix is invertible (See Example 2.3.8). However, we
know that if λ0 is an eigenvalue of A, A − λ0I is not invertible and hence not
dominant. That is, there exists a row number k ∈ {1, 2, · · · , n} such that λ0

is in the following so-called Gershgorin disc:

|akk − λ0| ≤
n∑

i=1, i,k

|aki|.

That is,
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Theorem 6.2.8 (Gershgorin’s disc theorem). Let A be an n × n
matrix. Then every eigenvalue λ0 of A lies in at least one of the circles
around the main diagonal entry:

λ0 ∈ ∪n
i=1Di,

where

Di = {z ∈ C : |z − akk| ≤
n∑

i=1, i,k

|aki|, i ∈ {1, 2, · · · , n}.

Note that since A and AT share the same set of eigenvalues, Gershgorin’s
disc theorem also applies with Gershgorin’s discs obtained according to the
columns of A.

Example 6.2.9. Consider A =





1 −1 0
−1 2 0

2 −1 4



. Then we have D1 = {z ∈ C :

|z − 1| ≤ 1}, D2 = {z ∈ C : |z − 2| ≤ 1} and D3 = {z ∈ C : |z − 4| ≤ 3}. Then
every eigenvalue of A is in the union D1 ∪ D2 ∪ D3.

Theorem 6.2.10 (Gershgorin’s second disc theorem). (op-
tional) Let A be an n × n matrix. A subset S of the Gershgorin discs
is called a disjoint group of discs if no disc in the group S intersects a
disc which is not in S. If a disjoint group S contains r nonconcentric
discs, then there are r eigenvalues in S.

Proof. Let A(t) be the matrix obtained from A with the off diagonal elements
multiplied by the variable t, where t ∈ [0, 1]. Note A(0) is the diagonal matrix
with the same diagonal of A, and A(1) = A.

Then A(0) has the n main diagonal entries of the eigenvalues and the n
Gershgorin discs are themselves. As t ranges from 0 to 1, the Gershgorin discs
will also change its radius with centers fixed at the main diagonals. Moreover,
the eigenvalues will also change inside the Gershgorin discs.

Since the roots of the characteristic polynomial det(A(t) − λI) of A(t)
change continuously with respect to t ∈ [0, 1], the traces of the eigenvalues
are continuous curves inside the Gershgorin discs. If a disjoint group S contains
r nonconcentric discs, then there are r eigenvalues which never escape from
the group S during the change of t from 0 to 1. �

Cayley–Hamilton theorem (optional)

Let p(x) = a0 + a1x + a2x2 + · · · + amxm be a polynomial and A an
n × n matrix. If A has an eigenvalue λ and eigenvector u ∈ Cn, how to obtain
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eigenvalue and eigenvector of p(A) = a0I + a1A + a2A2 + · · · + amAm? Note
that we have

Au = λu

A2u = λ2u

· · ·
Amu = λmu.

Then we have

p(A)u = p(λ)u.

Namely, every eigenvector of A is an eigenvector of the polynomial p(A) of
A, and if λ is an eigenvalue of A then p(λ) is an eigenvalue of p(A). It is
then interesting to ask whether it is possible that for some polynomial p, p(A)
has eigenvectors which are not that of A. It turns out the Cayley-Hamilton
theorem claims that there exists a polynomial p such that p(A) = 0, which
means every nonzero vector x is an eigenvector of p(A). Therefore, there exists
eigenvectors of p(A) which are not that of A.

Suppose that p is the characteristic polynomial of A, and A is diagonal-
izable. Then we have n linearly independent eigenvectors and p(λ) = 0. It
follows that p(A) = 0 because the eigenvectors form a basis for Rn. Moreover,
it seems that p(A) = 0 holds true even if A is not diagonalizable. For example,
p(λ) = (λ − 1)2 is the characteristic polynomial of

J =

[
1 1
0 1

]

,

and J is not diagonalizable. But p(J) = (J − I)2 = 0.
Consider the adjoint of λI − A. Let B = adj(λI − A). By definition of

adjoint, B can be represented as

B =

n−1∑

i=0

λiBi.

We have
(λI − A)adj(λI − A) = det(λI − A)I = p(λ)I,

where p(λ) = a0 + a1λ + a2λ2 + · · · + anλn is the characteristic polynomial of
A. Then we have

p(λ)I =(a0 + a1λ + a2λ2 + · · · + anλn)I

=(λI − A)adj(λI − A)

=(λI − A)B

=(λI − A)
n−1∑

i=0

λiBi
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=λnBn−1 +

n−1∑

i=1

λi(Bi−1 − ABi) − AB0.

By comparing coefficient matrices of λi, i = 0, 1, 2, · · · , n, we have

Bn−1 =anI,

Bi−1 − ABi =aiI, 1 ≤ i ≤ n − 1,

−AB0 =a0I.

Then multiplying both sides of the above equalities by An, An−1,...A0, respec-
tively, we have a telescoping sum on the left hand side that

AnBn−1 + An−1(Bn−2 − ABn−1) + An−2(Bn−2 − ABn−2) + · · ·
+A(B0 − AB1) − AB0 = 0,

but the right hand side is p(A). Therefore, we have p(A) = 0.

Theorem 6.2.11. Let A be an n × n matrix with characteristic poly-
nomial p(λ). Then we have

p(A) = 0.

The Cayley-Hamilton theorem has many applications. The following ex-
amples shed some light on how it can be applied.

Example 6.2.12. Let A =





1 3 5
0 1 0
1 0 2



 . The characteristic polynomial is

p(λ) = λ3 − 4λ2 + 5λ + 3. By the Cayley-Hamilton theorem we have

A3 − 4A2 + 5A + 3I = 0.

which gives an expression of the highest term A3 with

A3 = 4A2 − 5A − 3I,

and an expression for the inverse of A,

A−1 = −1

3

(
A2 − 4A + 5I

)
.

�

Exercise 6.2.13.

1. Determine the diagonalizability of the following matrices:

A =





1 1 0
0 1 1
0 0 0



 , B =





1 1 0
0 1 0
0 0 1



 , C =





1 1 0
0 1 1
0 0 1



 .
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2. Let P 2 = P . Is it true that λ = 1 and λ = 0 are both eigenvalues of P ?
Justify your answer.

3. Let A, B be n × n matrices. Show that AB and BA have the same char-

acteristic polynomial. Hint: Use block eliminations on the matrix

[
A λI
I B

]

to

produce λI − AB and λI − BA, respectively.

4. Let A, B be similar n×n matrices with A = P −1BP . Show that if λ0 is an
eigenvalue of A with x0 a corresponding eigenvector, then λ0 is an eigenvalue
of B with P x0 a corresponding eigenvector.

5. Let A =





2 2 2
2 2 2
2 2 2



 and B =





0 0 0
0 0 0
0 0 6



. Show that A and B are similar.

6. Let A =





1 2 3
0 1 2
3 1 0



 and B =





1 2 0
1 0 3
2 3 1



. Show that A and B are similar.

7. Let A, B be similar n × n matrices. Show that

i) A and B have the same nullity, namely, dim N(A) = dim N(B);

ii) A and B have the same set of eigenvalues;

iii) If λ0 is an eigenvalue of A, then dim N(A − λ0I) = dim N(B − λ0I);

iv) A is invertible if and only if B is invertible;

v) A is diagonalizable if and only if B is diagonalizable.

8. Let A be an n × n matrix. Show that A and AT have the same set of
eigenvalues.

9. Let A, B be n × n matrices. Show that AB and BA have the same set of
eigenvalues.

10. Show that similarity is an equivalence relation on Mnn. Namely,

i) (Reflectivity) For every A ∈ Mnn, A ∼ A;

ii) (Symmetry) For every A, B ∈ Mnn, A ∼ B implies B ∼ A;

iii) (Transitivity) For every A, B, C ∈ Mnn, A ∼ B and B ∼ C imply A ∼ C.

11. Find the Gershgorin’s discs for possible location of each of the eigenvalues
of each of the following matrices.

A =





1 0 0
0 4 0
0 0 6



 , B =





1 2 3
3 4 −5
4 5 0



 , C =





1 2 0
3 0 2
0 3 6



 , D =





1 2 0
0 4 2
0 0 6



 .
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12. Let A =





1 2 3
3 1 2
2 3 1



. Which ones of the following discs in C may contain

eigenvalues of A?

a) {z ∈ C : |z + 4| ≤ 10}; b) {z ∈ C : |z − 6| ≤ 10};
c) {z ∈ C : |z| ≤ 6}; d) {z ∈ C : |z + 6| ≤ 1}.

13. Let A and B be n × n real matrices, and A is diagonalizable such
that P −1AP is diagonal for some invertible matrix P . Let r be the value
‖P −1BP )‖∞, where ‖ · ‖∞ is the infinity norm of n × n matrices defined by

‖A‖∞ = max
1≤i≤n

n∑

j=1

|aij |.

Use Gershgorin’s theorem to show that for every eigenvalue λA+B of A + B,
there exists an eigenvalue λA of A, such that

|λA+B − λA| ≤ r.

14. Let A be an n × n real matrix. Show that if ‖A‖∞ < 1, then I − A is
invertible and

(I − A)−1 =

∞∑

n=1

An = A + A2 + · · · + An + · · · .

15. Let A be an m × n matrix and x ∈ Rn. Show that

‖Ax‖∞ ≤ ‖A‖∞‖x‖∞.

16. Use the Cayley-Hamilton theorem to compute A−1 if




1 1 0
0 1 1
0 0 1



 .

6.3 Applications to differential equations

Recall that the power series expansion of et converges uniformly on every
closed interval [−L, L], L > 0. Namely

et =
∞∑

n=0

tn

n!
= 1 +

t

1!
+

t2

2!
+ · · · +

tn

n!
+ · · · ,
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for every |t| ≤ L. If we have definition of metric (or magnitude) for matrices

in Mnn, for instance, define the magnitude of A by ‖A‖ =
(
∑n

i, j a2
ij

) 1
2

, we

can define eA, A ∈ Mnn by the power series

eA =

∞∑

n=0

An

n!
= I +

A

1!
+

A2

2!
+ · · · +

An

n!
+ · · · ,

which converges uniformly for every A ∈ Mnn with ‖A‖ ≤ L.

Proposition 6.3.1. If A B ∈ Mnn are such that AB = BA, then
eA+B = eAeB.

Proof. If AB = BA, then by the binomial formula we have

(A + B)n =

n∑

k=0

n!

(n − k)!k!
An−kBk.

Moreover, we have

eA+B =

∞∑

n=0

1

n!

n∑

k=0

n!

(n − k)!k!
An−kBk

=
∞∑

j=0

∞∑

k=0

1

j!k!
AjBk

=
∞∑

j=0

1

j!
Aj

∞∑

k=0

1

k!
Bk

=eAeB.

�

The following matrix-valued function is welldefined in R:

R ∋ t → eAt ∈ Mnn,

with

eAt =
∞∑

n=0

(At)n

n!
= I +

A

1!
t +

A2

2!
t2 + · · · +

An

n!
tn + · · · .

We have

d

dt
eAt = A +

A2

1!
t +

A3

2!
t2 + · · · +

An

(n − 1)!
tn−1 + · · · = AeAt = eAtA.
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For every c ∈ Rn, let x(t) = eAtc. We have

d

dt
x(t) =

d

dt
eAtc = AeAtc = Ax(t).

Namely, x(t) = eAtc is a solution of the differential equation

d

dt
x(t) = Ax(t),

with initial data x(0) = c. Conversely, if d
dt x(t) = Ax(t), with x(t) ∈ Rn we

multiply both sides by e−At to obtain

e−At d

dt
x(t) = e−AtAx(t),

which leads to
d

dt

(
e−Atx(t)

)
= 0.

Hence e−Atx(t) is a constant vector c for all t ∈ R which satisfies

e−Atx(t) t=0 = c.

That is, c = x(0).

Theorem 6.3.2. The solution of the system of linear differential equa-
tions







d

dt
x(t) = Ax(t)

x(0) = c

is x(t) = eAtc.

Remark 6.3.3. We call ϕ(t) = eAt the standard fundamental solution
matrix of the system of linear differential equations x′(t) = Ax(t), which
satisfies ϕ(0) = I. Note that for every invertible matrix P ∈ Mnn, eAtP
satisfies that

d

dt
(eAtP ) = A(eAtP ).

Namely each column of eAtP is a solution of x′(t) = Ax(t). Therefore, we call
eAtP a fundamental solution matrix.

Remark 6.3.4. By Proposition 6.3.1, we have

eA(t+s) = eAteAs,

for all s, t ∈ R and hence

e−AteAt = I, for all t ∈ R.

�
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Since eAt is defined by an infinite series, it is in general not efficient to use
a series to compute the exact solutions of differential equations. We need to
find alternative methods for computing eAt.

A is diagonalizable

If A is diagonalizable, there exists an invertible matrix

P = [x1 : x2 : · · · : xn] ∈ Mnn

such that

P −1AP = Λ =








λ1 0
λ2

. . .

0 λn








.

We know that xi, i = 1, 2, · · · , n are eigenvectors of A associated with eigen-
values λi, i = 1, 2, · · · , n, respectively. Then we have

eAt =eP ΛP −1t

=I +
P ΛP −1

1!
t +

P Λ2P −1

2!
t2 + · · · +

P ΛnP −1

n!
tn + · · ·

=P eΛtP −1

=P








eλ1t 0
eλ2t

. . .

0 eλnt








P −1.

Then the solution of d
dt x(t) = Ax(t) with initial value x(0) = c can be written

x(t) =P eΛtP −1c

=x1eλ1tc1 + x2eλ2tc2 + · · · + xneλntcn,

where








c1

c2

...
cn








= P −1c. In summary, we have
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Theorem 6.3.5. If A is diagonalizable, there exists P = [x1 : x2 :
· · · : xn] ∈ Mnn such that

P −1AP = Λ =








λ1 0
λ2

. . .

0 λn








.

The solution of the system of linear differential equations







d

dt
x(t) = Ax(t)

x(0) = c,

is
x(t) = P eΛtP −1c = x1eλ1tc1 + x2eλ2tc2 + · · · + xneλntcn,

where
[
c1 c2 · · · cn

]T
= P −1c.

Example 6.3.6. Consider the system of linear equations
{

ẋ1 =x1 + x2,

ẋ2 =3x1 − x2.

We have

d

dt

[
x1

x2

]

=

[
1 1
3 −1

] [
x1

x2

]

.

The characteristic polynomial of A =

[
1 1
3 −1

]

is (λ − 1)(λ + 1) − 3. The

eigenvalues are λ1 = 2, λ2 = −2. Solving system (A − λ1)x = 0 we obtain
an eigenvector x1 = (1, 1). Similarly (A − λ2)x = 0 leads to an eigenvector
x2 = (1, −3). Therefore, the solution is

x(t) = x1eλ1tc1 + x2eλ2tc2 =

[
1
1

]

e2tc1 +

[
1

−3

]

e−2tc2,

where (c1, c2) is determined by initial values of x(t). For instance, if x(0) =
(1, 1), then we have

[
c1

c2

]

= [x1 : x2]−1x(0) =

[
1 1
1 −3

]−1 [
1
1

]

=

[
1
0

]

.

Remark 6.3.7. If there is a complex eigenvalue λ = a ± bi, we can replace
the complex valued solutions e(a±bi)t with the following real-valued ones,

eat+bti + eat−bti

2
=

1

2
eat cos bt, and

eat+bti − eat−bti

2i
=

1

2
eat sin bt.
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A is not diagonalizable (optional)

If A is not diagonalizable, then there exists at least one eigenvalue with
geometrical multiplicity less than its algebraic multiplicity. Then A is similar
to a matrix J which is called the Jordan form. (See Chapter 8 for details.)

Theorem 6.3.8. If A ∈ Mnn has s < n linearly independent
eigenvectors, it is similar to a matrix J which has s Jordan blocks
J1, J2, · · · , Js, where

J =








J1

J2

. . .

Js








, Jj =








λi 1
λi 1

. . . 1
λi








,

j = 1, 2, · · · , s, and the size nj of Jj is the algebraic multiplicity of
the eigenvalue λj with n1 + n2 + · · · + ns = n.

Let A = P JP −1, where J is the Jordan form of A. We have

eAt =P eJtP −1

=P








eJ1t

eJ2t

. . .

eJst








P −1.

Notice that for every Jordan block Jj it can be written as Jj = λjI+(Jj −λjI)
with

Jj =








λi

λi

. . .

λi








+








0 1
0 1

. . . 1
0








.

Moreover, the line of 1’s in Nj = (Jj − λjI) moves parallel with the main
diagonal to the upper right corner when the power of Nk

j increases from

k = 1, 2, · · · , nj , and N
nj

j = 0. Notice that identity matrix multiplication
is commutative with any matrix. We have

eJjt =eλjt+Njt = eλjt

(

I + tNj +
t2

2
N2

j + · · · +
tnj−1

(nj − 1)!
N

nj−1
j

)
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=eλjt













1 t t2

2! · · · tnj −1

(nj−1)!

1 t · · · tnj −2

(nj−2)!

1
. . .

...
. . . t

0 1













.

Notice by Remark 6.3.3, we know that eAtP is a fundamental solution matrix.
That is,

eAtP = P eJt

is a fundamental solution matrix. Ideally once we have the Jordan form J ,
we also have matrix P to obtain the fundamental solution matrix. However,
in the practice of solving linear system of differential equations, the matrix P
for producing the Jordan form J = P −1AP is not a priori known while we
know its existence when we have found that A is non-diagonalizable. In the
following, we assume that J is known, but P is unknown, and we try to figure
how to obtain P .

Let {rj1, rj2, · · · , rjnj
} be the columns of P corresponding to the Jordan

block eJjt in P eJt. Then we have

A[rj1 : rj2 : · · · : rjnj
] = [rj1 : rj2 : · · · : rjnj

]Jj .

That is,







Arj1 =λjrj1

Arj2 =rj1 + λjrj2

Arj3 =rj2 + λjrj3

· · · · · ·
Arjnj

=rj(nj −1) + λjrjnj
,

which is equivalent to







(A − λjI)rj1 = 0

(A − λjI)rj2 = rj1

(A − λjI)rj3 = rj2

· · · · · ·
(A − λjI)rjnj

= rj(nj −1)

⇒







(A − λjI)rj1 = 0

(A − λjI)2rj2 = 0

(A − λjI)3rj3 = 0

· · · · · ·
(A − λjI)nj rjnj

= 0.

Then {rj1, rj2, · · · , rjnj
} are all nonzero vectors; otherwise, the above

equalities lead to rj1 = 0 contradicting the assumption that rj1 is an eigen-
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vector. Moreover, we have







(A − λjI)nj rjnj
= 0

rj(nj −1) = (A − λjI)rjnj

rj(nj −2) = (A − λjI)rj(nj −1) = (A − λjI)2rjnj

rj(nj −3) = (A − λjI)rj(nj −2) = (A − λjI)3rjnj

· · · · · ·
rj2 = (A − λjI)rj3 = (A − λjI)nj−2rjnj

rj1 = (A − λjI)rj2 = (A − λjI)nj−1rjnj
.

Now the algorithm for P is clear: First we solve (A − λjI)nj rjnj
= 0 for

a nonzero vector rjnj
. Then obtain the set {rj1, rj2, · · · , rjnj

} backward in
order by multiplying (A−λjI)s, s = 1, 2, · · · , nj −1 on rjnj

, to obtain rjnj−1
,

rjnj−2
, · · · , rj1.

Note that (A − λjI)nj rjnj
= 0 has at least one nonzero solution rjnj

since
det((A−λjI)) = 0. One can show that {rj1, rj2, · · · , rjnj

} determined by the
above equalities is linearly independent (see exercise). Then by Lemma 6.2.3,
the matrix P so obtained is invertible.

The columns of P eJt corresponding to the block for λj are then

eλjtrj1; eλjt (trj1 + rj2) ; · · · ; eλjt

(
tnj−1

(nj − 1)!
rj1 +

tnj−2

(nj − 2)!
rj2 + · · · + rjnj

)

.

Example 6.3.9. Find the general solution of ẋ = Ax with A =




3 1 0
−4 −1 0

4 −8 −2



 . Then det(A − λI) = −(λ+ 2)(λ− 1)2 which has eigenvalues

λ1 = −2 and λ2 = 1 with algebraic multiplicity 2.
For λ1 = −2, solving (A − λ1I)x = 0 we obtain an eigenvector

r1 =





0
0
1



 .

For λ2 = 1, we solve (A − λ2I)2x = 0 to obtain

r22 =





−11
−7

0



 , r20 =





−3
−6
20



 .

We note that

r21 = (A − λ2I)r22 =





15
−30
100



 , 0, but(A − λ2I)r20 =





0
0
0



 .
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Therefore eλ2r20 can become an independent column of the fundamental so-
lution matrix. But according our algorithm, we use r22 instead, which can
produce another independent vector r21. Then the matrix P is

[

eλ1tr1

... eλ2tr21

... eλ2t(tr21 + r22)

]

=





0 15et (11 + 15t)et

0 −30et (−7 − 30t)et

e−2t 100et 100tet



 .

Exercise 6.3.10.

1. Solve the following systems of linear equations.

1)

{

ẋ1 =x1 + x2,

ẋ2 =x1 − x2.

2)

{

ẋ1 =x1 + x2,

ẋ2 =x1 + x2.

3)






ẋ1 = − x1 + x2,

ẋ2 =x2 − x3,

ẋ3 =x1 − 4x3.

4)






ẋ1 =2x1 + 2x2,

ẋ2 = − x2 + x3,

ẋ3 =2x3.

2. Use change of variables to transform the following different equations into
systems of differential equations, and then solve them.

i) x′′ − x′ − x = 0.

ii) x′′′ − x′′ − 2x′ = 0.

iii) x′′ + 3x′ + 2x = 0.

iv) x′′′ + 3x′′ + 2x′ = 0.

3. Solve the following system of differential equations
{

ẋ1 = x1 + x2,

ẋ2 = − x1 + x2.
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4. Solve the following system of differential equations
{

ẋ1 = αx1 − βx2,

ẋ2 = βx1 + αx2,

where α, β ∈ R with β , 0.

5. Solve the following system of differential equations






ẋ1 = x1 + x2,

ẋ2 = x2 + x3,

ẋ3 = x3.

6. Let v , 0 be a nonzero vector in Cn and B ∈ Mnn. If there exists k ∈ N
such that Bkv = 0 but Bjv , 0 for 1 ≤ j < k, then {v, Bv, B2v, · · · , Bk−1v}
is linearly independent.

6.4 Symmetric matrices and quadratic forms

Example 6.4.1. Let p(x) = 2x2
1 + 2x2

2 + 2x1x2 be a real-valued polynomial
of x = (x1, x2) ∈ R2. Then p(x) can be rewritten as

p(x) = xT Ax = [x1 x2]

[
2 1
1 2

] [
x1

x2

]

,

where A =

[
2 1
1 2

]

is a symmetric real matrix. In order to remove the mixed

term x1x2, we may find a change of variables x = P y with P invertible such
that

p(x) = (P y)T AP y = yT (P T AP )y,

and P T AP = diag(λ1, λ2) is diagonal. Namely

p(P y) = yT diag(λ1, λ2)y = λ1y2
1 + λ2y2

2 .

Indeed, if P =

[ √
2

2 −
√

2
2√

2
2

√
2

2

]

, then the change of variables x = P y leads to

p(x) = p(P y) = yT (P T AP )y = [y1 y2]

[
3 0
0 1

] [
y1

y2

]

.

That is,
p(P y) = yT diag(3, 1)y = 3y2

1 + y2
2.

�
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From the above example, it is natural to ask whether or not for every real
quadratic polynomial in x ∈ Rn there exists a change of variable x = P y such
that p(x) = xT Ax can be rewritten

p(P y) = yT diag(λ1, λ2, · · · , λn)y,

with P an invertible matrix and P T AP = diag(λ1, λ2, · · · , λn). That is, we
find P such that P T AP is diagonal. Recall that A is diagonalizable if there is
an invertible matrix P such that P −1AP is diagonal and that P T = P −1 if P
is an orthogonal matrix.

Definition 6.4.2. A matrix A is called orthogonally diagonalizable if
there is an orthogonal matrix P and a diagonal matrix D for which
P T AP = D.

Now we are interested in what kind of matrices are orthogonally diagonal-
izable. First we have

Theorem 6.4.3. If A is orthogonally diagonalizable, then it is sym-
metric.

Proof: Since A is orthogonally diagonalizable, there is an orthogonal
matrix P and a diagonal matrix D for which P T AP = D. Then we have
A = (P T )−1DP −1 = P DP T since P T = P −1. Therefore,

AT = (P DP T )T = P DP T = A.

A is symmetric. �

Next we are curious whether every real symmetric matrix is orthogonally
diagonalizable. It turns out to be true. But we need some preparations.

Theorem 6.4.4. If A is a real symmetric matrix, it has n real eigen-
values. That is, every eigenvalue of A is real.

Proof: Suppose that Ax = λx. Then we have Ax = λx which leads to
Ax = λx. Taking transposes on both sides we obtain

xT A = λxT ⇒ xT Ax = λxT x.

Multiplying xT on both sides of Ax = λx, we obtain that

xT Ax = λxT x.

Then we have
xT Ax = λxT x = λxT x,

leading to (λ − λ)xT x = 0. Hence λ = λ. λ is real. �

We leave it as an exercise to show that
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Theorem 6.4.5. If A is a real symmetric matrix, then every eigen-
vectors of A are perpendicular. That is, eigenvectors corresponding to
different eigenvalues are orthogonal.

Theorem 6.4.6. A real matrix A is orthogonally diagonalizable if and
only if A is symmetric.

Proof: “=⇒”: Done with Theorem 6.4.3.
“⇐=”: We use mathematical induction on the size of the n × n matrix

A. For n = 1, A is a single element matrix, say A = [a]. Let Q = [1]. Then
QT AQ = [1]T [a][1] = [a] is diagonal and Q = [1] is an orthogonal matrix.

Now we consider the general case n and for an inductive assumption, we
suppose that every (n − 1) × (n − 1) matrix is orthogonally diagonalizable.

Let λ1 be a real eigenvalue of A and v1 a real unit eigenvector of A. We can
extend v1 into an orthonormal basis B of Rn. Group the basis into a matrix
U = [v1 : v2 : · · · : vn]. Then U is an orthogonal matrix with UT = U−1 and
U−1AU is symmetric. Moreover, the first column of U−1AU is

U−1AUe1 = U−1Av1 = λ1U−1v1 = λ1e1,

where e1 is the first vector of the standard basis (e1, e2, · · · , en). Therefore,
we have

U−1AU =

[
λ1 0
0 C

]

where C is an (n−1)×(n−1) symmetric real matrix. By inductive assumption,
C is orthogonally diagonalizable. That is, there exists an (n − 1) × (n − 1)
orthogonal matrix P such that

P T CP = diag(λ2, λ3, · · · , λn).

Let V =

[
1 0
0 P

]

. Then V is orthogonal and

V −1U−1AUV =

[
1 0
0 Q−1

] [
λ1 0
0 C

] [
1 0
0 Q

]

= diag(λ1, λ2, λ3, · · · , λn).

Let Q = UV . Then Q is an orthogonal matrix such that QT AQ is diagonal. �
An immediate consequence of Theorem 6.4.6 is the following spectral

decomposition theorem:
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Theorem 6.4.7. If A is an n × n real symmetric matrix A, then A
has an orthogonal eigenvector matrix Q = [q1 : q2 : · · · : qn] such that

A = QΛQT = λ1q1qT
1 + λ2q2qT

2 + · · · + λnqnqT
n ,

where Λ = diag(λ1, λ2, λ3, · · · , λn) and the main diagonals are eigen-
values of A.

Example 6.4.8. Let A =





2 −2 0
−2 1 −2

0 −2 0



. Find a spectral decomposition of

A.
Solution: Consider det(A−λI) = 0. We have det(A−λI) = −(λ−1)(λ−4)(λ+
2) = 0 and the eigenvalues λ1 = 1, λ2 = 4, λ3 = −2. Solving (A − λ1I)x = 0
we have a unit eigenvector,

q1 =






− 2
3

− 1
3
2
3




 .

Similarly, solving (A−λ2I)x = 0 and (A−λ3I)x = 0, we have unit eigenvectors
corresponding to eigenvalues λ2 = 4 and λ3 = −2, respectively:

q2 =






2
3

− 2
3
1
3




 , q3 =






1
3
2
3
2
3




 .

Then we have an orthogonal matrix,

Q =
1

3





−2 2 1
−1 −2 2

2 1 2



 ,

such that

QT AQ =





1 0 0
0 4 0
0 0 −2



 .

Moreover, we have

A =QΛQT = λ1q1qT
1 + λ2q2qT

2 + λ3q3qT
3

=
1

9





4 2 −4
2 1 −2

−4 −2 4



+
16

9





4 −4 2
−4 4 −2
−2 −2 1



+
−2

9





1 2 2
2 4 4
2 4 4



 .

�
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Example 6.4.9. Let f(x) = x2
1 + 2x2

2 + 3x3
3 − 4x1x2 − 4x2x3 with x =

(x1, x2, x3) ∈ R3. Find an orthogonal transformation x = P y so that f(P y)
has no mixed terms of y.
Solution: f(x) = xT Ax with

A =





1 −2 0
−2 2 −2

0 −2 3



 .

The characteristic polynomial of A is det(A − λI) = −(λ − 2)(λ + 1)(λ − 5)
with eigenvalues λ1 = 2, λ2 = 5, λ3 = −1. Solving (A − λI)x = 0 for each of
the eigenvalues, we obtain the following unit eigenvectors:

p1 =






2
3

− 1
3

− 2
3




 , p2 =






1
3

− 2
3
2
3




 , p3 =






2
3
2
3
1
3




 .

Then we have the orthogonal matrix P given by

P = [p1 : p2 : p3] =
1

3





2 1 2
−1 −2 2
−2 2 1



 .

Then we have

f(P y) = yT P T AP y = yT





2 0 0
0 5 0
0 0 −1



 y = 2y2
1 + 7y2

2 − y2
3 .

Exercise 6.4.10.

1. Find a real symmetric matrix A such that the following polynomials can
be represented as xT Ax, x = (x1, x2, · · · , xn) ∈ Rn, and find a change of
variables x = P y with y = (y1, y2, · · · , yn) ∈ Rn such that f(P y) contains no
mixed terms yiyj , i , j from y.

1) f(x) = x2
1 + x2

2 + x1x2.

2) f(x) = x2
1 + x2

2 + 2x1x2.

3) f(x) = x2
1 + x2

2 + x2
3 + x1x2 + x1x3 + x2x3.

4) f(x) = x2
1 + x2

2 + x2
3 + 2x1x2 + 2x1x3 + 2x2x3.

5) f(x) = x2
1 + x2

2 + x1x4.

6) f(x) = −x2
1 − x2

2 + x1x4 + 2x2x3.

7) f(x) = x2
1 + x2

2 − x2
3 + x2

4.

8) f(x) =
∑n

i=1 x2
i +

∑n−1
i=1 xixi+1.
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2. Let p(x) = xT Ax be a quadratic polynomial of x ∈ R3 with

A =





2 2 −2
2 5 −4

−2 −4 5



 .

Find a change of variables x = P y with y = (y1, y2, y3) ∈ R3 such that

p(P y) = λ1y2
1 + λ2y2

2 + λ3y2
3,

for some λi ∈ R, i = 1, 2, 3.

3. Find a spectral decomposition of each of the following matrices.

A =





2 2 2
2 2 2
2 2 2



 , B =





0 0 2
0 2 0
2 0 0



 .

4. Find a spectral decomposition of each of the following matrices.

A =







0 0 2 2
0 2 2 0
2 2 0 0
2 0 0 0







, B =







0 0 2 2
0 2 2 2
2 2 2 0
2 2 0 0







.

5. Let u =
[
1 1 · · · 1

]
be a 1×n matrix and A = I +uT u. Find a spectral

decomposition of A.

6. Prove Theorem 6.4.5.

7. Let A be a real symmetric matrix with rank k. Show that A can be written
as the sum of k symmetric matrices with rank 1.

8. Let A be a 2 × 2 real symmetric matrix with eigenvalues λ = ±1. Show
that A is an orthogonal matrix.

9. Let A be an n × n skew-symmetric real matrix. Show that every nonzero
eigenvalue of A is purely imaginary.

10. Let A and B be real symmetric matrices. Show that A is similar to B if
and only if A and B have the same set of eigenvalues.

11. Let A be an invertible symmetric real matrix and B a skew-symmetric
real matrix. Show that if AB = BA, then

i) A + B and A − B are invertible;

ii) (A + B)−1(A − B) and (A − B)−1(A + B) are orthogonal matrices.

12. (Schur factorization). Let A be an n × n real matrix with n real eigen-
values. Show that there exists an orthogonal matrix Q such that QT AQ is
upper triangular. (Hint: Use mathematical induction.)
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6.5 Positive definite matrices

We have confirmed that every real symmetric matrix is orthogonally diag-
onalizable. Therefore, for every quadratic polynomial p(x) = xT Ax with A a
real symmetric matrix, there exists a change of variables x = P y where P is
an orthogonal matrix such that

p(P y) = yT P T AP y = yT diag(λ1, λ2, λ3, · · · , λn)y = λ1y2
1 +λ2y2

2 +· · ·+λny2
n,

where λ1, λ2, λ3, · · · , λn are eigenvalues of A. It follows that if every eigen-
value of A is positive, then for every x , 0, y = P T x , 0, hence

p(x) = xT Ax = p(P y) = λ1y2
1 + λ2y2

2 + · · · + λny2
n > 0.

Conversely, if
p(x) = xT Ax > 0,

for every x , 0, let A = P T diag(λ1, λ2, λ3, · · · , λn)P with P an orthogonal
matrix. Then

p(x) = p(P y) = λ1y2
1 + λ2y2

2 + · · · + λny2
n > 0

for every y , 0. It follows that every eigenvalue of A is positive.

Definition 6.5.1. A real symmetric matrix A is said to be positive
definite if xT Ax > 0 for every x , 0.

We have shown that

Theorem 6.5.2. Let A be a real symmetric matrix A. Then A is
positive definite if and only if every eigenvalue of A is positive.

However, it can be computationally inefficient to work out all eigenvalues
in order to confirm positive definiteness of a matrix. We have the following
equivalent conditions:

Theorem 6.5.3. Let A be a real symmetric n×n matrix A. Then the
following are equivalent.

i) A is positive definite.

ii) Every eigenvalue of A is positive.

iii) A = BT B for a matrix B with independent columns.

iv) All pivots obtained without row exchange or scalar multiplication
of A are positive.

v) All n upper left determinants are positive.
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Proof: 1) We have shown i)⇔ ii) with Theorem 6.5.2.
2) Next we show ii)⇔ iii). “ii)⇒iii)” Let A = QΛQT , where Λ =

diag(λ1, λ2, λ3, · · · , λn) and Q is an orthogonal matrix. Let Λ
1
2 =

diag(λ
1
2

1 , λ
1
2

2 , λ
1
2

3 , · · · , λ
1
2
n ) and B = Λ

1
2 QT . Then we have A = BT B and

columns of B are linearly independent since det(B) > 0.
“ii)⇐iii)” For every x , 0, then Bx , 0 since columns of B are linearly

independent. Then we have

xT Ax = xT BT Bx = (Bx)T Bx > 0.

That is, A is positive definite. By Theorem 6.5.2, every eigenvalue of A is
positive.

3) Then we show iii)⇔iv).
“iii)⇒iv)”
Let B = QR be the QR decomposition of B with Q an orthogonal matrix

and R an upper triangular matrix. We can manage to make the main diag-
onals of R positive by multiplying the corresponding columns of Q by (-1)
if necessary. Then we have A = BT B = RT QT QR = RT R. That is, A can
be written as a product of a lower triangular matrix and an upper triangu-
lar matrix with the main diagonal positive. (We call such a decomposition
Cholesky decomposition.) Therefore, all pivots of A are positive.

“iii)⇐iv)” If all pivots of A are positive, then by LU decomposition (see
Section 2.5), there exist an invertible matrix L and a diagonal matrix D with
the main diagonal positive such that

A = LDLT .

Let B = LT D
1
2 . We have

A = BT B,

and columns of B are linearly independent.
4) Lastly we show v)⇔i). “i)⇒v)”: Denote by Ak, k = 1, 2, · · · , n the

upper left submatrices of A. Since A is positive definite, for every x , 0 we
have xT Ax > 0. Then for every x = (x1, x2, · · · , xk, 0, · · · , 0) , 0 we have

xT Ax = [x1 : x2 : · · · : xk]Ak








x1

x2

...
xk








> 0.

That is, every Ak, k = 1, 2, · · · , n is positive definite. Then by equivalence of
i) and ii) every eigenvalue of Ak is positive. Hence det(Ak) > 0.

“i)⇐v)”: Since det(A1) > 0, we have the first pivot p1 = a11 > 0. Then
there exists a lower triangular matrix E1 with 1’s in the main diagonal such
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that

E1A =








p1 ∗
0 p2

... ∗ . . .

0 ∗ ann








.

Letting E12 be the 2 × 2 upper left submatrix of E1, we have

E12A2 =

[
p1 ∗
0 p2

]

.

Since det(E12A2) = det(A2) > 0, we have the second pivot p2 > 0. Then there
exists a lower triangular matrix E2 with 1’s in the main diagonal such that

E2A =













p1 ∗
0 p2

0 0 p3 · · · ∗
0 0 ∗ . . .
...

...
. . .

0 0 ∗ · · · ann













.

Letting E22 be the 3 × 3 upper left submatrix of E2, we have

E1
2A3 =





p1 ∗ ∗
0 p2 ∗
0 0 p3



 .

Since det(E22A3) = det(A3) > 0, we have the second pivot p3 > 0. By the
same token we can show every pivots pk, k = 1, 2, · · · , n are positive.

�

Example 6.5.4. Let A =





1 −1 1
−1 2 0

1 0 1



 .

To check the positive definiteness of A, if we solve det(A−λI) = 0 we have
λ3 −4λ2 +5λ−3 = 0, the roots of which are not trivial to obtain. However, we
can compute the left upper determinants: det(A1) = 1 > 0, det(A2) = 1 > 0,
det(A3) = det(A) = 3 > 0. Then by Theorem 6.5.3 A is positive definite.

Exercise 6.5.5.

1. Let A =







0 0 0
√

10
0 −1 0 0
0 0 −2 0√

10 0 0 −3







. Find all possible values of t ∈ R such

that A + tI is positive definite.

www.Engineeringbookspdf.com



152 Concise Introduction to Linear Algebra

2. Let A =







0 0 0 2
0 −1 0 0
0 0 −2 0
2 0 0 −3







. Find all possible values of t ∈ R such that

A + tI is positive definite.

3. Show that if A and B are positive definite, so is A + B.

4. Let A be a symmetric real matrix. Show that if A is positive definite, then
A−1 is also positive definite.

5. Show that if A and B are similar and A is positive definite, then B is also
positive definite.

6. Let A and B be n × n positive definite matrices. Is it true AB and BA are
positive definite? Justify your answer. (Hint: Use 2 × 2 matrices to construct
examples.)

7. Show that A is positive definite if and only if for every n ∈ N, there exists
a positive definite matrix B such that A = Bn.

8. Let A be an n × n real symmetric matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤
λn. Show that for every x ∈ Rn we have

λ1xT x ≤ xT Ax ≤ λnxT x.

9. Show that if A is positive definite, then the function f : Rn → R defined
by

f(x) = xT Ax − xT b

achieves minimum at x with 2Ax = b. (Hint: Compute f(y) − f(x) for every
y ∈ Rn.)

10. Let A be a real symmetric n × n matrix A. We call A positive semidef-
inite if xT Ax ≥ 0 for every x , 0. Show that every eigenvalue of A is non-
negative.

11. Let A be an n×n matrix. Show that A is a skew-symmetric matrix if and
only if xT Ax = 0 for every x ∈ Rn.

12. Let A be an n × n symmetric matrix. Show that if xT Ax = 0 for every
x ∈ Rn, then A = 0.

13. Let A be an n × n symmetric real matrix. Show that there exists c > 0
such that

|xT Ax| ≤ cxT x,

for every x ∈ Rn.

14. Let A be an n × n symmetric real matrix. Show that there exists t0 ∈ R
such that for every t > t0, A + tI is positive definite.
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15. Let A be an n × n symmetric real matrix. Show that there exists t0 > 0
such that for every 0 < t < t0, tA + I is positive definite.

16. Let A be an n × n symmetric real matrix. Show that if det(A) < 0, then
there exists x ∈ Rn such that xT Ax < 0.

17. Let A be an n × n symmetric real matrix. Show that A is positive definite
if and only if for every k ∈ N, there exists a positive definite matrix such that
A = Bk.

18. Let A and B be n × n symmetric real matrices and B be positive definite.
Show that AB may not be symmetric, but all of the eigenvalues of AB are
real.

19. Let A be an n × n real invertible matrix.

i) Show that there exists a positive definite matrix B such that AT A = B2;

ii) Show that AB−1 is an orthogonal matrix;

iii) Show that every real invertible matrix A = QB, where Q is orthogonal
and B is positive definite.

20. Show that every real invertible matrix A = BQ, where B is positive
definite and Q is orthogonal.
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Chapter 7

Singular value decomposition
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7.1 Singular value decomposition

We have learned that every real symmetric square matrix is orthogonally
diagonalizable and enjoy the spectral decomposition according to the eigenval-
ues and eigenvectors. For general nonsymmetric or nonsquare matrices, there
is no spectral decomposition anymore. However, making use of the real sym-
metric matrix AT A, we may develop a generalized spectral theorem in this
section.

We begin with the following theorem which reveals important properties
shared by A and AT A.

Theorem 7.1.1. Let A be an m × n matrix. Then we have

i) A and AT A have the same nullspace.

ii) A and AT A have the same row space.

iii) A and AT A have the same rank.

Proof: i) Let Ax0 = 0. Then we have AT Ax0 = 0. Hence N(A) ⊂
N(AT A). Conversely if AT Ax0 = 0, we have

Ax0 ⊥ every column of A (or every row of AT );

Ax0 itself is a linear combination of columns of A (or every row of AT ).

Ax0 must be orthogonal to itself. Hence Ax0 = 0. That is, N(A) ⊃ N(AT A).
Therefore we have N(A) = N(AT A).

ii) By Theorem 4.1.4, we have Rn = N(A) ⊕ R(A) = N(AT A) ⊕ R(AT A)
where the direct sums are orthogonal. By i) we have N(A) = N(AT A). There-
fore, we have R(AT A) = R(A).

155

www.Engineeringbookspdf.com



156 Concise Introduction to Linear Algebra

iii) By ii), since R(A) = R(AT A), A and AT A have the same rank. �

We know that AT A is a real symmetric matrix; therefore, it has orthogonal
decomposition

AT A = V DV T ,

where D = diag{λ1, λ2, · · · , λn} is a diagonal matrix whose main diagonal
entries are eigenvalues of AT A, and V = [v1 : v2 : · · · : vn] is an orthogonal
matrix the columns of which are the eigenvectors of AT A corresponding to
the eigenvalues λ1, λ2, · · · , λn, respectively.

Since for every x ∈ Rn, and for y = (y1, y2, · · · , yn) = V T x, we have

xT AT Ax = xT V DV T x = λ1y2
1 + λ2y2

2 + · · · + λny2
n ≥ 0.

Then all eigenvalues λ1, λ2, · · · , λn are nonnegative; otherwise we can choose
y such that λ1y2

1 + λ2y2
2 + · · · + λny2

n < 0.

Definition 7.1.2. Let A be an m × n matrix. Then every eigenvalues
λ1, λ2, · · · , λn of AT A are nonnegative. We call the numbers

σ1 =
√

λ1, σ2 =
√

λ2, · · · , σn =
√

λn

the singular values of A.

Assume that the rank of A is k. Then by Theorem 7.1.1, the rank of AT A
is also k. It follows that D also has rank k since D is similar to AT A. That is,

D = diag{λ1, λ2, · · · , λk, 0, · · · , 0}.

Notice that
Avi · Avj = vT

j AT Avi = vj · λivi = λivi · vj .

We have

Avi · Avj = λivi · vj =

{

0 if i , j,

λi if i = j.

Therefore, {Av1, Av2, · · · , Avk} is an orthogonal set of vectors in the column
space of A. Normalization of {Av1, Av2, · · · , Avk} leads to

u1 =
Av1

‖Av1‖ =
Av1√

λ1

, u2 =
Av2

‖Av2‖ =
Av2√

λ2

, · · · , uk =
Avk

‖Avk‖ =
Avk√

λk

.

That is, Avi =
√

λ1ui, i = 1, 2, · · · , k. Since by Theorem 7.1.1, A and
AT A have the same null space, we have that AT Avi = 0, i = k+1, k+2, · · · , n
and hence Avi = 0 for i = k + 1, k + 2, · · · , n. Therefore, we have

AV =A[v1 : v2 : · · · : vk : vk+1 : · · · : vn]
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=[u1 : u2 : · · · : uk : 0 : · · · : 0]















√
λ1 0√

λ2

. . . √
λk

0
. . .

0 0















.

Noticing that V is orthogonal, we have

A = [u1 : · · · : uk : 0 : · · · : 0]















√
λ1 0√

λ2

. . . √
λk

0
. . .

0 0















V T

=
√

λ1u1vT
1 +

√

λ2u2vT
2 + · · · +

√

λkukvT
k .

If we extend the orthogonal set {u1 : u2 : · · · : uk} into a full orthonormal
basis {u1 : u2 : · · · : uk : uk+1 : · · · : um} for Rm in an arbitrary fashion, we
have proved the singular value decomposition theorem

Theorem 7.1.3. Let A be an m × n real matrix with rank k. Then
there exist an orthogonal m × m matrix U , an m × n matrix

Σ =

[

Σ̂ 0
0 0

]

,

where Σ̂ = diag{
√

λ1,
√

λ2, · · · ,
√

λk}, and λ1, λ2, · · · , λk are posi-
tive eigenvalues of AT A, and an n × n orthogonal matrix V = [v1 : v2 :
· · · : vn], such that

A = UΣV T =
√

λ1u1vT
1 +

√

λ2u2vT
2 + · · · +

√

λkukvT
k ,

where the columns of V = [v1 : v2 : · · · : vn] are eigen-
vectors of AT A corresponding to the n nonnegative eigenvalues
λ1, λ2, · · · , λk, 0, · · · , 0, and U = [u1 : u2 : · · · : uk : uk+1 : · · · : um]
satisfies

ui =
Avi√

λi

, i = 1, 2, · · · , k.

The decomposition in Theorem 7.1.3 is called the full singular value
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decomposition. According to the partition of Σ, we can have the following
reduced singular value decomposition:

Theorem 7.1.4. Let A be an m × n real matrix with rank k. Then
there exist an m×k matrix Û with orthonormal columns, an k×k diago-
nal matrix Σ̂ = diag{ √

λ1,
√

λ2, · · · ,
√

λk}, where λ1, λ2, · · · , λk are
positive eigenvalues of AT A, and an n×k matrix V̂ = [v1 : v2 : · · · : vk]
with orthonormal columns, such that

A = ÛΣ̂V̂ T =
√

λ1u1vT
1 +

√

λ2u2vT
2 + · · · +

√

λkukvT
k ,

where the columns of V̂ = [v1 : v2 : · · · : vk] are eigenvectors of
AT A corresponding to the k positive eigenvalues λ1, λ2, · · · , λk, and
Û = [u1 : u2 : · · · : uk] satisfies

ui =
Avi√

λi

, i = 1, 2, · · · , k.

Example 7.1.5. Find a singular value decomposition of the matrix

A =





0 1
1 0
0 1



 .

Solution: We have

AT A =

[
1 0
0 2

]

,

which has eigenvalues λ1 = 1, λ2 = 2 with corresponding eigenvectors

v1 =

[
1
0

]

, v2 =

[
0
1

]

.

These unit eigenvectors form the columns of V :

V = [v1 : v2] =

[
1 0
0 1

]

.

The singular values of A are σ1 =
√

λ1 = 1, σ2 =
√

λ2 =
√

2. Then we have

Σ =

[

Σ̂
0

]

=





1 0

0
√

2
0 0



 .

To have U = [u1 : u2 : u3], we firstly compute

u1 =
Av1√

λ1

=





0
1
0



 , u2 =
Av2√

λ2

=
1√
2





1
0
1



 .
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To extend {u1, u2} into an orthonormal basis for R3 we need a unit vector
u3 = (x, y, z) such that

{

uT
1 u3 = 0,

uT
2 u3 = 0,

which leads to y = 0 and x + z = 0. Hence we can choose

u3 =
1√
2





1
0

−1



 .

Then we obtain the full singular decomposition of A:

A =UΣV T =






0 1√
2

1√
2

1 0 0

0 1√
2

− 1√
2










1 0

0
√

2
0 0





[
1 0
0 1

]T

= 1 · u1vT
1 +

√
2u2vT

2

=





0
1
0




[
1 0

]
+

√
2





1√
2

0
1√

2




[
0 1

]
.

The reduced singular value decomposition is

A =ÛΣ̂V̂ T =






0 1√
2

1 0

0 1√
2






[
1 0

0
√

2

] [
1 0
0 1

]T

= 1 · u1vT
1 +

√
2u2vT

2

=





0
1
0




[
1 0

]
+

√
2





1√
2

0
1√

2




[
0 1

]
.

�

Remark 7.1.6. An alternate method to compute the orthogonal matrix U
for a singular value decomposition of the m × n matrix A = UΣV T is based
on the observation that

AT A = V ΣT ΣV T , AAT = UΣΣT UT ,

where ΣT Σ and ΣΣT share the same set of positive diagonals λ1, λ2, · · · , λk,
k = rank(A), with possibly a different number of zeros. Namely, U can be
obtained by solving for the set of unit orthogonal eigenvectors of AAT . �
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The Rayleigh quotient

Let A be an n × n real symmetric matrix. The function r : Rn \ {0} → R
defined by

r(x) =
xT Ax

xT x

is called the Rayleigh quotient. We are interested in when r assumes max-
imum and minimum. Noticing that xT x = ‖x‖2, we need only consider the
extreme values on the unit sphere in Rn. Since A is real symmetric, all eigen-
values are real with λ1 ≥ λ2 ≥ · · · λn and there exists an orthogonal matrix
P = [v1 : v2 : · · · : vn] such that

P T AP = diag{λ1, λ2, · · · , λn}.

Let x = P y where ‖x‖ = 1. We have ‖y‖ = 1 and

r(x) = r(P y) =
yT P T AP y

yT P T P y

=
yT P T AP y

yT y

=
λ1y2

1 + λ2y2
2 + · · · + λny2

n

y2
1 + y2

2 + · · · + y2
n

=λ1y2
1 + λ2y2

2 + · · · + λny2
n

≤λ1y2
1 + λ1y2

2 + · · · + λ1y2
n

=λ1,

where the maximum λ1 is achieved at y = e1 = (1, 0, · · · , 0) by r(P y). That
is, the maximum λ1 is achieved by r(x) at x = P e1 = v1, which is the first
column of P and is the eigenvector of A corresponding to λ1. Similarly,

r(x) = r(P y) =
yT P T AP y

yT P T P y

=λ1y2
1 + λ2y2

2 + · · · + λny2
n

≥λny2
1 + λny2

2 + · · · + λ1y2
n

=λn,

where the minimum λn is achieved at y = en = (0, 0, · · · , 0, 1) by r(P y).
That is, the minimum λn is achieved by r(x) at x = P en = vn, which is the
last column of P and is the eigenvector of A corresponding to λn.

We can also check that if x equals the unit eigenvectors v1 and vn, corre-
sponding to λ1 and λn, we have

r(x1) =
xT

1 Ax1

xT
1 x1

= λ1, r(xn) =
xT

n Axn

xT
n xn

= λn.
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That is, the Rayleigh quotient assumes maximum and minimum at the direc-
tion of the eigenvectors corresponding to the maximum and minimum eigen-
values.

The next question is, are there any more? Namely, can the Rayleigh quo-
tient assumes maximum and minimum at non-eigenvector directions? The
answer is no. Note that for x = (x1, x2, · · · , xj , · · · , xn), we have

∂r

∂xj
=

(eT
j Ax + xT Aej)

xT x
−

xT Ax(eT
j x + xT ej)

(xT x)2

=
2(Ax)j

xT x
− xT Ax(2xj)

(xT x)2
.

If r(x) assumes extreme values at x0, we have dr
dx(x0) = 0. That is,

2(Ax)

xT x
− xT Ax(2x)

(xT x)2 x=x0
= 0,

which is equivalent to
Ax0 = r(x0)x0.

That is, the Rayleigh quotient assumes extreme values only at the directions
of eigenvectors.

Example 7.1.7. Find the maximum and minimum of f(x) = x2
1 + 2x2

2 +
6x1x3 + x2

3 on the unit sphere ‖x‖ = 1.

Solution: Since f(x) = f(x)
xT x , we can use the results about the Rayleigh quo-

tient to find the maximum and minimum of f . We first write f in quadratic
form f(x) = xT Ax with

A =





1 0 3
0 2 0
3 0 1



 .

The characteristic polynomial is (2 − λ)(1 − λ)2 − 9(2 − λ). The eigenvalues
are λ1 = 4, λ2 = 2 and λ3 = −2.

• The unit eigenvector corresponding to λ1 = 4 is

v1 =
1√
2





1
0
1



 .

• The unit eigenvector corresponding to λ3 = −2 is

v2 =
1√
2





1
0

−1



 .

f achieves maximum value λ1 = 4 at v1 and achieves minimum value λ3 = −2
at v2. �
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Exercise 7.1.8.

1. Find a singular value decomposition of A =

[
1 0 1
0 1 0

]

.

2. Find a singular value decomposition of A =





1 0
0 1
1 0



 .

3. Let

A =





2 −2 0
−2 1 −2

0 −2 0



 .

Find the vectors xmax, xmin in

{x ∈ R3 : xT x = 1},

where f(x) = xT Ax assumes maximum and minimum, respectively.

4. Let

A =





2 2 2
2 2 2
2 2 2



 .

Find the vectors xmax, xmin in

{x ∈ R3 : xT x = 1},

where f(x) = xT Ax assumes maximum and minimum, respectively.

5. Let u =
[
1 1 · · · 1

]
be a 1 × n matrix and A = I + uuT . Find the

vectors xmax, xmin in
{x ∈ Rn : xT x = 1},

where f(x) = xT Ax assumes maximum and minimum, respectively.

6. Show that for every n×n matrix A, there exists an orthogonal matrix such
that

AT A = QT AAT Q.

7. Let A be an n × n real matrix. Let R : Rn → R be defined by

R(x) =
‖Ax‖
‖x‖ .

Find the maximum and minimum of R.

www.Engineeringbookspdf.com



Singular value decomposition 163

8. Let A = UkDV T
k = σ1u1vT

1 + σ2u2vT
2 + · · · + σkukvT

k be a singular value
decomposition of the m × n real matrix A where the matrices Uk = [u1 : u2 :
· · · : uk] and Vk = [v1 : v2 : · · · : vk] both have orthonormal columns, and

D =








σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σk








is an k × k diagonal matrix with σ1 ≥ σ2 ≥ · · · ≥ σk > 0.

i) Explain that A and Uk have the same column space.

ii) Explain that for every b ∈ Rm, b̃ = UkUT
k b is the orthogonal projection of

b onto the column space of A.

iii) Verify that x̃ = VkD−1UT
k b is a least squares solution of Ax = b.

9. Let A be an n × n matrix. Show that there exists a positive semidefinite
matrix P and an orthogonal matrix Q such that A = P Q. We call the A = P Q
a polar decomposition.

10. Let A be an n × n positive definite matrix. Show that for every n × n
matrix B, BT AB and B have the same rank.

7.2 Principal component analysis

Example 7.2.1. Let X = [x1 : x2 : · · · : xn] be an m × n matrix with each
column an observation vector of a measurement made on an object x. For
example, a survey of n = 1000 families on the vector x = (x1, x2, · · · , x8)
where xi, i = 1, 2, · · · , 8 stand for annual income, annual expenses on cars,
computers, food, medicine, insurance, education, entertainment, respectively,
may be written as an 8×1000 matrix X . Then row i of X is a set of observations
on the variable xi contained in x.

One may analyze the data contained in X for different purposes. For exam-
ple, we may investigate how annual income is correlated with annual expenses
on insurance and medicine. Certainly, we assume the underlying correlation
is linear, so that we may use the notion of linear dependency to study linear
dependency among row 1, row 5 and row 6 of X . �

For convenience, we translate the mean of the observed data to have zero
mean, by setting

x̂i = xi − M,
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where M = 1
n

∑n
i=1 xi is the mean of the columns of X . This is a analogy of

translating a graph to have the center at the origin. Then the columns of

X̂ = [x̂1 : x̂2 : · · · : x̂n]

have zero mean. We say that X̂ is in mean-deviation form. Recall that the
dot product x · y with x, y ∈ Rn is x · y = ‖x‖ · ‖y‖ cosθ, where θ is defined to
be the angle between x and y. We observe that

cos θ =
x

‖x‖ · y

‖y‖
implies that if cos θ = 0, x ⊥ y and x, y are linearly independent; if cos θ =
1, x, y are co-linear and are linearly dependent. Therefore, the dot product
x · y may be regarded as a measure of how much x and y are correlated. For
instance, if the first row r1 of X is the annual income, second row r2 the
annual expenses on cars, then r1 · r2 gives an indication of how annual income
is correlated with annual expenses on cars.

We call the matrix,

S =
1

n − 1
XXT ,

the sample covariance matrix, where Si j measures how much the i-th row

of X̂ are correlated to the j-th row of X̂. We call

Sjj =
1

n − 1

n∑

i=1

(X)ji(X
T )ij =

1

n − 1

n∑

i=1

(X)2
ji

the variance of the j-th variable xj of the object vector x. The variance of xj

measures the spread of the values of xj around the zero mean.
The trace of S,

trace(S) =
1

n − 1

m∑

j=1

Sjj ,

is called the total variance of the data X .
In this section, we introduce the so-called principal component anal-

ysis, which is a procedure that uses an orthogonal transformation x = P y
to convert the observations of x whose variables are possibly correlated into
a set y of linearly uncorrelated variables. We call the linearly uncorrelated
variables of y the principal components.

To wit, we assume that the m × n matrix X = [x1 : x2 : · · · : xn] has
zero mean and S = 1

n−1 XXT is the covariance matrix. We find an orthogonal
m × m matrix P such that the change of variables,

x = P y ⇐⇒








x1

x2

...
xm








= P








y1

y2

...
ym








,
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has the property that the new variables y1, y2, · · · , yp of y are uncorrelated.
That is, the row of the values for yi is orthogonal to that for yj , if i , j. Let
Y = [y1 : y2 : · · · : ym] = P T X . We want the covariance matrix

1

n − 1
Y Y T =

1

n − 1
[P T x1 : P T x2 : · · · : P T xn][P T x1 : P T x2 : · · · : P T xn]T

=
1

n − 1
P T XXT P

=P T SP

to be diagonal. Since S = 1
n−1 XXT is real symmetric, such an orthogonal

matrix P exists. Moreover, since S is positive semidefinite (i.e., xT Sx ≥ 0 for
every x , 0, see Exercise 6.5.5), the eigenvalues satisfy λ1 ≥ λ2 ≥ · · · ≥ λm ≥
0. Let

D = diag{λ1, λ2, · · · , λm}.

Then P T SP = D. That is, SP = P D. The unit vectors of columns of P = [p1 :
p2 : · · · : pm] are eigenvectors of the covariance matrix S and are called the
(directions of) principal components of the data of observations. We call
the eigenvector corresponding to the largest eigenvalue the first principal
component; and call the eigenvector corresponding to the second largest
eigenvalue the second principal component, and so on. Moreover, y with

yi = pT
i x, i = 1, 2, · · · , m,

becomes the new variable with uncorrelated coordinates and λi measures the
variance of the new variable yi.

Notice that by Theorem 6.2.6, trace(S) = trace(P T SP ). The total variance
of S is not changed after orthogonal diagonalization. Then the fraction

λi

trace(S)
=

λi

λ1 + λ2 + · · · + λm

indicates the portion of variance contributed by the i-th principal component
pi.

Example 7.2.2. Let the following table list the data of the annual income
and annual living expenses of five families (in thousand dollars):

1 2 3 4 5

income 70 125 125 135 250
living expenses 50 60 61 64 70

i) Find the covariance matrix for the data;
ii) Make a principal component analysis of the data to find all the principal

components;
iii) Find the total variance T in the data, and the fraction contributed by

the first principal component.
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Solution: i) Let Xi, i = 1, 2, · · · , 5 denote the i-th column of the table of
the data. The sample mean vector is

m =
1

5

5∑

i=1

Xi =

[
141
61

]

.

Let A = [X1 − m : X2 − m : · · · : X5 − m]. Then

A =

[
−71 −16 −16 6 109
−11 −1 0 3 9

]

.

The covariance matrix S is then

S =
1

5 − 1
AAT

=
1

4

[
17470 1796
1796 212

]

.

ii) The eigenvalues of S are

λ1 ≈ 4413.73, λ2 ≈ 6.76899.

The corresponding vectors are

u1 ≈
[
−0.994741
−0.102423

]

, u2 ≈
[

0.102423
−0.994741

]

,

where u1 is the first principal component and u2 the second principal compo-
nent.

iii) The total variance T is

T = λ1 + λ2 = 4420.5 = trace(S).

The fraction contributed by the first principal component is λ1

T = 4413.73
4420.5 ≈

99.8468%. �

Exercise 7.2.3.

1. The following table lists the data of the scores of five students:

1 2 3 4 5

Exam I 70 75 85 95 60
Exam II 50 60 75 65 70
Exam III 76 59 61 80 80

i) Find the covariance matrix for the data;

ii) Make a principal component analysis of the data to find all the principal
components;

iii) Find the total variance T in the data, and the fraction contributed by the
first principal component.
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2. Let X = [x1 : x2 : · · · : xn] be an m × n matrix with zero mean and P an
m × m invertible matrix. Show that Y = [P T x1 : P T x2 : · · · : P T xn] has zero
mean.
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A fundamental theme of many branches of mathematics is the study of func-
tions, or transformations, between vector spaces. A function can be first clas-
sified as linear or nonlinear. For example, f : R→ R with f(x) = 2x is a linear
function, while g : R → R with g(x) = x2 is a nonlinear function. A linear
function can be further classified as homogeneous linear or nonhomogeneous
linear. For example, f : R → R with f(x) = 2x is homogeneous linear while
h : R → R with h(x) = 2x + 1 is nonhomogeneous linear. As an important
application of matrix theory, we devote this chapter to a brief discussion of
homogeneous linear functions between vector spaces. In what follows, if no
confusion otherwise arises, we say that a function is linear when it is homo-
geneous linear.

8.1 Linear transformation and matrix representation

Definition 8.1.1. If T : V → W is a function where V and W are
vector spaces such that for every u, v ∈ V and scalar k,

T (u + v) = T (u) + T (v),

T (ku) = kT (u),

then we call T : V → W a linear transformation. If, in addition,
V = W we call T a linear operator on V .

Example 8.1.2. Let A be an m×n real matrix. Then the map T : Rn → Rm

169
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defined by T (x) = Ax is a linear transformation, since for every u, v ∈ Rn

and scalar k ∈ R,

T (u + v) = A(u + v) = Au + Av = T (u) + T (v),

T (ku) = A(ku) = kAu = kT (u).

�

Example 8.1.3. Let A = [c1 : c2 : · · · : cn] be an m × n real matrix with
rank(A) = n. Then the projection P : Rn → R

m is a linear transformation
from Rn to Rm. Indeed, for every b ∈ Rn, we have the orthogonal projection
P b = A(AT A)−1AT b. Then for every u, v ∈ Rn and scalar k ∈ R,

P (u + v) = A(AT A)−1AT (u + v) = P u + P v,

P (ku) = kP (u).

P is a linear transformation from Rn to Rm. �

Example 8.1.4. Let Pn denote the vector space of all real polynomials with
degree less than or equal to n. The map T : P2 → P3 defined by

T (p)(x) = xp(x)

is a linear transformation. Indeed, for every f, g ∈ P2 and k ∈ R, we have

T (f + g)(x) = x(f(x) + g(x)) = xf(x) + xg(x) = T (f)(x) + T (g)(x),

T (kf)(x) = x(kf(x)) = k(xf(x)).

Therefore T is a linear transformation. �

Example 8.1.5. Let V be a real vector space with dim V = n and a basis
{v1, v2, · · · , vn}. The coordinate map [ ] : V → Rn defined by

[ ](x) = [x]V

is a linear transformation. Indeed, for every u, v ∈ V and scalar k ∈ R, we
have

[ ](u + v) = [u + v]V

=
[
[v1 : v2 : · · · : vn][u]V + [v1 : v2 : · · · : vn][v]V

]

V

=
[
[v1 : v2 : · · · : vn]([u]V + [v]V ]V )

]

V

= [u]V + [v]V ]V

= [ ](u) + [ ](v),

[ ](ku) = [ku]V

=
[
k[v1 : v2 : · · · : vn][u]V

]

V

=
[
[v1 : v2 : · · · : vn]k[u]V

]

V
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= k[u]V

= k[ ](u).

That is, the coordinate map [ ] : V → Rn is a linear transformation. �

Remark 8.1.6. Recall that a function f : A → B is said to be one to one,
or injective , if for every x1, x2 ∈ A with f(x1) = f(x2) we have x1 = x2.
f : A → B is said to be onto, or surjective , if for every y ∈ B there exists
x ∈ A such that y = f(x). If f : A → B is both injective and surjective, f is
called a bijection.

Using the fact that a basis of a vector space V with dim V = n is linearly
independent, we can show that the coordinate map [ ] : V → Rn is a one-to-
one and onto map. �

Theorem 8.1.7. Let T : V → W be a function from a vector space
V to a vector space W with dim V = n and dim W = m. Let S =
{v1, v2, · · · , vn} be a basis of V and L = {w1, w2, · · · , wm} be a basis
of W . T is a linear transformation if and only if there exists an m × n
matrix A such that for every x ∈ V ,

[T (x)]L = A[x]S .

Moreover, if T is a linear transformation, then

A =
[
[T (v1)]L : [T (v2)]L : · · · : [T (vn)]L

]
.

Proof. “=⇒” Let {v1, v2, · · · , vn} be a basis of V . For every x ∈ V , there
exists a coordinate vector [x]v = (x1, x2, · · · , xn) ∈ Rn such that

x = [v1 : v2 : · · · : vn][x]S .

Then by linearity of A we have

T (x) =T ([v1 : v2 : · · · : vn][x]S)

=T (x1v1 + x2v2 + · · · + xnvn)

=x1T (v1) + x2T (v2) + · · · + xnT (vn)

=x1[w1 : w2 : · · · : wm][T (v1)]L + x2[w1 : w2 : · · · : wm][T (v2)]L

+ · · · + xn[w1 : w2 : · · · : wm][T (vn)]L

=[w1 : w2 : · · · : wm] (x1[T (v1)]L + x2[T (v2)]L + · · · + xn[T (vn)]L)

=[w1 : w2 : · · · : wm]
[
[T (v1)]L : [T (v2)]L : · · · : [T (vn)]L

]
[x]S .

That is,
[T (x)]L = A[x]S ,

www.Engineeringbookspdf.com



172 Concise Introduction to Linear Algebra

where
A =

[
[T (v1)]L : [T (v2)]L : · · · : [T (vn)]L

]
.

“⇐=” If for every x ∈ V ,

[T (x)]L = A[x]S .

Then we have

T (x) =[w1 : w2 : · · · : wm][T (x)]L

=[w1 : w2 : · · · : wm]A[x]S .

For every u, v ∈ V and scalar k we have

T (u + v) =[w1 : w2 : · · · : wm]A[u + v]S

=[w1 : w2 : · · · : wm]A([u]S + [v]S)

=T (u) + T (v),

T (ku) =[w1 : w2 : · · · : wm]A[ku]S

=[w1 : w2 : · · · : wm]Ak[u]S

=kT (u).

That is, T is a linear transformation. �

Remark 8.1.8. Fix a basis S = {v1, v2, · · · , vn} of V and a basis L =
{w1, v = w2, · · · , wm} of W . We call the matrix A = [[T (v1)]L : [T (v2)]L :
· · · : [T (vn)]L] defined in Theorem 8.1.7 the representation matrix of the
transformation T : V → W with respect to basis S and L, and denote it by
[T ] when the bases of V and W are clear.

When T : V → W is a linear transformation with V = W , we call T a
linear operator on V . In this case we usually choose the same basis S for
both of the range and domain of T and use [T ]S to denote the representation
matrix of T . �

Theorem 8.1.7 shows that a linear transformation between finite dimen-
sional vector spaces can be completely described by a matrix multiplication
of the coordinate vectors. Note also that the coordinate map [ ] : V → Rn de-
fined by [ ](x) = [x]V is a bijection. Thus properties of linear transformations
can be investigated by studying the representation matrix.

Example 8.1.9. Let T : P2 → P3 be defined by

T (p)(x) = xp(x).

Then by Example 8.1.4 T is a linear transformation. Let {1, x, x2} be a basis
of P2 and {1, x, x2, x3} be a basis of P3. Then the matrix representation
matrix A of T is

A =[[T (1)]P3
: T (x)]P3

: T (x2)]P3
]
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=







0 0 0
1 0 0
0 1 0
0 0 1







.

Let f(x) = 1 + x2. Then we have

[T (f)]P3
=A[f ]P2

=







0 0 0
1 0 0
0 1 0
0 0 1











1
0
1





=







0
1
0
1







.

Therefore we have

T (f)(x) =
[
1 x x2 x3

]
[T (f)]P3

=
[
1 x x2 x3

]







0
1
0
1







=x + x3.

�

Exercise 8.1.10.

1. Determine whether each of the following functions from Rn → R
m is a

linear transformation.

i) f(x) = 1, x ∈ R;

ii) f(x) = x, x ∈ R;

iii) f(x) = x + 1, x ∈ R;

iv) f(x) = 2x, x ∈ R;

v) f(x) = x1 + x2, x = (x1, x2) ∈ R2;

vi) f(x) = (2x1, x2), x = (x1, x2) ∈ R2;

vii) f(x) = (x1, x1), x = (x1, x2) ∈ R2;

viii) f(x) = (0, 0), x = (x1, x2) ∈ R2.

2. Let T : P2 → P2 be defined by

T (p)(x) = p(x) − p(0).
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i) Show that T is a linear transformation;

ii) Find the representation matrix of T under the standard basis of P2 and
find its rank;

iii) Determine whether or not T is injective and whether or not T is surjec-
tive.

3. Let V be a vector space with dim V = n. Let B1 = {v1, v2, · · · , vn} be a
basis of V . For every set {x1, x2, · · · , xn} in V , there exists a unique linear
transformation T : V → V such that T (vi) = xi, i = 1, 2, · · · , n.

4. Let Mnn(R) be the vector space of all n×n real matrices. Let B ∈ Mnn(R)
and define T : Mnn(R) → Mnn(R) by

T (A) = AB − BA.

i) Show that T is a linear operator.

ii) Find the matrix representation [T ] of T under the standard basis of
Mnn(R).

iii) Show that for every A, C ∈ Mnn(R), T (AC) = AT (C) + CT (A).

5. Let V be a vector space and T : V → V a linear operator on V . If W ⊂ V
is a subspace of V , then

dim(T V ) + dim W − dim(T W ) ≤ n.

6. Let V be a vector space and T : V → V a linear operator on V . We say that
T is an invertible linear transformation if there exists an operator S on V
such that T S = ST = I, where I is the identity map. Let S = {ǫ1, ǫ2, · · · , ǫn}
be a basis of V .

i) Show that T is invertible if and only if {T ǫ1, T ǫ2, · · · , T ǫn} is linearly
independent;

ii) Show that T is invertible if and only if T is one to one;

iii) Show that T is invertible if and only if T is onto.

8.2 Range and null spaces of linear transformation

Definition 8.2.1. Let T : V → W be a linear transformation where V and
W are vector spaces. We call

ker(T ) = {x ∈ V : T x = 0}
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the kernel of T , and call

Range(T ) = {T x : x ∈ V }

the range of T .

By linearity of T , we have that for every x1, x2 ∈ ker(T ) and for every
scalar k1 and k2,

T (k1x1 + k2x2) = T (k1x1) + T (k2x2) = k1T (x1) + k2T (x2) = 0.

That is, k1x1 + k2x2 ∈ ker(T ). Therefore, ker(T ) is a subspace of V . Simi-
larly, for every y1, y2 ∈ Range(T ) and for every scalar k1 and k2, there exists
x1, x2 ∈ V such that T (x1) = y1, T (x2) = y2 and

k1y1 + k2y2 = k1T (x1) + k2T (x2) = T (k1x1 + k2x2).

That is, k1x1 + k2x2 ∈ Range(T ). Therefore, Range(T ) is a subspace of W .
We arrive at

Theorem 8.2.2. Let T : V → W be a linear transformation where V
and W are vector spaces. Then ker(T ) is a subspace of V and Range(T )
is a subspace of W .

Let T : V → W be a linear transformation where V and W are vector
spaces with dim V = n and dim W = m. Let {v1, v2, · · · , vn} be a basis of V
and {w1, w2, · · · , wm} be a basis of W . Then by Theorem 8.1.7, there exists
an m × n matrix A such that [T (x)]W = A[x]v . Then we have

ker(T ) ={x ∈ V : T x = 0}
={x ∈ V : [w1 : w2 : · · · : wm][T x]W = 0}
={x ∈ V : [T x]W = 0}
={x ∈ V : A[x]v = 0}.

That is,

The kernel of T is the set of all vectors in V whose coordinate vectors
are in N(A).

Then by Example 8.1.5 and Remark 8.1.6 that the coordinate map [ ] :
V → Rn is a bijection we have

dim ker(T ) = dim N(A).

Similarly, we have

Range(T ) ={T x : x ∈ V }
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= {[w1 : w2 : · · · : wm][T x]W : x ∈ V }
= {[w1 : w2 : · · · : wm]A[x]v : x ∈ V } .

We have dim Range(T ) = dim C(A). That is,

The range of T is the set of all vectors in W whose coordinate vectors
are in C(A).

Recall that for an m×n real matrix A, we have dim N(A)+dim C(A) = n.
For linear transformations we have the following similar results.

Theorem 8.2.3. Let T : V → W be a linear transformation where V
and W are vector spaces with dim V = n and dim W = m. Then we
have

dim ker(T ) + dim Range(T ) = n.

Example 8.2.4. (Example 8.1.9 revisited) Let T : P2 → P3 be defined by

T (p)(x) = xp(x).

Then the matrix representation matrix A of T is

A =[[T (1)]P3
: T (x)]P3

: T (x2)]P3
]

=







0 0 0
1 0 0
0 1 0
0 0 1







.

Then we have N(A) = {0} ∈ R3 and

ker(T ) = {0} ⊂ P2.

Moreover, C(A) = {(0, x) ∈ R4 : x ∈ R3). Therefore we have

Range(T ) =







[
1 x x2 x3

]







0
x1

x2

x3







: (x1, x2, x3) ∈ R3







= span{x, x2, x3}.

�

Theorem 8.2.5. Let V and W be vector spaces, T : V → W a linear
transformation. Then T is one to one if and only if ker(T ) = {0}.
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Proof. “=⇒” Suppose ker(T ) , {0}. Then there exists x1 , 0, x1 ∈ V such
that T (x1) = 0 = T (0). T is not one to one. This is a contradiction.

“⇐=” Let T (x1) = T (x2), x1, x2 ∈ V . Then we have T (x1 − x2) = 0 and
x1 = x2 since ker(T ) = {0}. �

By Theorems 8.2.3 and 8.2.5, we have that

Theorem 8.2.6. Let T : V → W be a linear transformation where V
and W are vector spaces with dim V = dim W = n. Then T is one to
one if and only if T is onto.

Let T : V → V be a linear operator on V . It turns out the representation
matrices of T with respect to different bases are similar. To be more specific
we have

Theorem 8.2.7. Let V be a vector space with dim V = n. Let T :
V → V be a linear transformation. Let S = {v1, v2, · · · , vn} and
L = {w1, w2, · · · , wn} be bases of V . Then we have

[T ]S = P [T ]LP −1,

where P is the transition matrix from basis L to S.

Proof. For every x ∈ V , we have

T x =[v1 : v2 : · · · : vn][T x]S

=[v1 : v2 : · · · : vn][T ]S [x]S

=[w1 : w2 : · · · : wn]P −1[T ]SP [x]L.

We also have

T x = [w1 : w2 : · · · : wn][T x]L = [w1 : w2 : · · · : wn][T ]L[x]L.

Then we have
P −1[T ]SP [x]L = [T ]L[x]L.

Since x is arbitrary, we have [T ]L = P −1[T ]SP . �

Example 8.2.8. Let T : R3 → R3 be a linear operator which has the repre-
sentation matrix

[T ]L =





1 0 −1
1 1 0

−1 2 1



 ,

under the basis L = {η1, η2, η3} where

η1 =





−1
0
1



 , η2 =





0
−1

1



 , η3 =





−1
1
0



 .
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Find the representation matrix [T ]S , where S = {ǫ1, ǫ2, ǫ3} is the standard
basis of R3.

Solution: The transition matrix from L to S is

Q =
[
η1 : η2 : η3

]

=





−1 0 −1
0 −1 1
1 1 0



 .

That is, [η1 : η2 : η3] = [ǫ1 : ǫ2 : ǫ3]Q. Then the transition matrix from S to L

is Q−1 = 1
3





−1 0 1
0 −1 1

−1 1 0



. Therefore we have

[T ]S =Q[T ]LQ−1

=
1

3





−1 0 −1
0 −1 1
1 1 0









1 0 −1
1 1 0

−1 2 1









−1 0 1
0 −1 1

−1 1 0





=
1

3





0 2 −2
1 0 −1

−1 −2 3



 .

That is,
T [ǫ1 : ǫ2 : ǫ3] = [ǫ1 : ǫ2 : ǫ3][T ]S .

�

Exercise 8.2.9.

1. Let T : R3 → R3 be a linear operator which has the representation matrix

[T ]L =





−4 0 −4
0 −1 −1
3 6 9



 ,

under the basis L = {η1, η2, η3} where

η1 =





−1
0
1



 , η2 =





0
1
1



 , η3 =





3
−1

0



 .

Find the representation matrix [T ]S , where S = {ǫ1, ǫ2, ǫ3} is the standard
basis of R3.
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2. Let S = {v1, v2, v3, v4} be a basis of a vector space V . Let T : V → V be
a linear transformation with

[T ]S =







1 3 1 0
0 2 −6 0
0 0 4 0
0 −9 −3 1







.

i) Find [T ]N if N is a basis of V with the transition matrix from N to S
given by

P =







1 3 1 0
0 2 3 0
0 0 3 0
0 0 0 1







.

ii) Find ker(T ) and Range(T ).

iii) Find a basis of ker(T ) and extend it into a basis of V .

iv) Find a basis of Range(T ) and extend it into a basis of V .

3. Let T : V → V be a linear operator. Show that T V ⊂ ker(T ) if and only
of T 2 = 0.

4. Let V be a finite dimensional vector space. Let T1, T2 : V → V be linear
operators. Show that T1V ⊂ T2V if and only if there exists linear operator T
on V such that T1 = T2T .

5. Let V be a finite dimensional vector space. Let T1, T2 : V → V be linear
operators. Show that ker T1 ⊂ ker T2 if and only if there exists linear operator
T on V such that T2 = T1T .

8.3 Invariant subspaces

Definition 8.3.1. Let V be a vector space and W ⊂ V a subspace. Let
T : V → V be a linear operator. If T W ⊂ W , that is, for every w ∈ W ,
T w ∈ W , then we call W a T -invariant subspace of V .

Example 8.3.2. Let T : V → V be a linear operator. Then the linear space
V and {0} are T -invariant. �

Lemma 8.3.3. Let T : V → V be a linear operator. Then ker(T ) and
Range(T ) are T -invariant subspaces of V .
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Proof. For every w ∈ ker(T ) we have T w = 0 ∈ ker(T ) and hence T (ker(T )) ⊂
ker(T ). For every y ∈ Range(T ), there exists v ∈ V such that y = T v ∈ V
and T y = T (T v) ∈ Range(T ). �

We are interested in one-dimensional T -invariant subspaces, say, W =
span(v) with v , 0. If W is T -invariant, then for every w = αv ∈ W with
α , 0 a scalar, T w = kv for some scalar k. That is,

T (αv) = kv =⇒ T (v) =
k

α
v.

Definition 8.3.4. Let V be a vector space over the scalar field K and
T : V → V a linear operator. If x , 0 is such that

T x = λx,

for some scalar λ ∈ K, we call x an eigenvector of T associated with
the eigenvalue λ.

If V is finite dimensional, there exists a matrix representation [T ] under a
given basis. Then T (v) = k

αv can be rewritten

[T ][v] =
k

α
[v],

where [v] is the coordinate vector of v. Therefore, if W = span(v) is a one-
dimensional T -invariant subspace of V , then the spanning vector is an eigen-
vector of the representation matrix.

Conversely, if v , 0 is an eigenvector of T associated with the eigenvalue
λ, then for every w ∈ W = span(v), we have w = αv for some α ∈ K and
that T w = λw = λαv ∈ W . That is, W is T -invariant.

We have arrived at

Lemma 8.3.5. Let T : V → V be a linear operator. W is a one-
dimensional T -invariant subspace of V if and only if W is an eigenspace
of T .

Remark 8.3.6. For linear operators on general vector spaces, we usually
specify the scalar field on which we have eigenvalues and eigenvectors. For
example, the map T : R2 → R2 defined by

T (x, y) =

[
0 −1
1 0

] [
x
y

]

has no eigenvalues in the underlying scalar field R. But T has eigenvalues
λ1, 2 = ±i in C if T is defined on C2. �
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We know that every linear operator T on a finite dimensional space V has
a square matrix representation [T ], which is dependent on the choice of the
basis of the vector space. A question is how to choose a proper basis of V such
that the matrix representation [T ] is diagonal?

Suppose S = [v1 : v2 : · · · : vn] is a basis of V . We seek for a basis
L = [w1 : w2 : · · · : wn] of V such that [T ]L is diagonal. By Theorem 8.2.7, we
have

[T ]L = P −1[T ]SP,

where P is the transition matrix from L to S. To have a diagonal [T ]L we need
the columns of the invertible matrix P to be eigenvectors of [T ]S . Namely, we
need only to choose L = [w1 : w2 : · · · : wn] such that

[w1 : w2 : · · · : wn] = [v1 : v2 : · · · : vn]P.

In summary, we have

Lemma 8.3.7. Let T : V → V be a linear operator on an n dimen-
sional vector space V with a basis S = [v1 : v2 : · · · : vn]. If [T ]S is
diagonalizable, then N = [v1 : v2 : · · · : vn]P is a basis of V such that
[T ]N is diagonal, where P is such that

[T ]N = P −1[T ]SP.

Example 8.3.8. Let S = {v1, v2, v3, v4} be a basis of a vector space V . Let
T : V → V be a linear transformation with

[T ]S =







1 3 1 0
0 −1 −1 0
0 0 4 0
0 −1 −3 −2







i) Find [T ]N if N is a basis of V with the transition matrix from N to S
given by

P =







1 3 1 1
0 2 3 2
0 0 3 0
0 0 0 1







.

ii) Find a basis L of V such that [T ]L is diagonal.

Solution: i) Since P is the transition matrix from N to S, we have

[T ]N =P −1[T ]SP

=







1 3 1 1
0 2 3 2
0 0 3 0
0 0 0 1







−1 





1 3 1 0
0 27 −6 0
0 0 4 0
0 −9 −3 18













1 3 1 1
0 2 3 2
0 0 3 0
0 0 0 1
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=







1 8 12 2

0 1 3 3

0 0 4 0
0 −2 −12 −4







.

ii) To find a basis L such that [T ]L is diagonal, we need to find the eigenvalues
of [T ]S and a diagonalizing matrix Q whose columns are eigenvectors of [T ]S .
Solving det([T ]S − λI) = 0, we have

(λ − 4)(λ + 2)(λ + 1)(λ − 1) = 0 =⇒ λ1 = 4, λ2 = 2, λ3 = −1, λ4 = 1.

Corresponding to the eigenvectors λi, i = 1, 2, 3, 4, the eigenvectors qi are
chosen:

q1 =







−2
3

−15
7







, q2 =







0
0
0
1







, q3 =







3
−2

0
2







, q4 =







1
0
0
0







.

That is, if we choose Q = [q1 : q2 : q3 : q4] as the transition matrix from basis
L to S, where

L =[w1 : w2 : w3 : w4]

=[v1 : v2 : v3 : vn]







−2 0 3 1
3 0 −2 0

−15 0 0 0
7 1 2 0







,

then [T ]L =







4 0 0 0
0 −2 0 0
0 0 −1 0
0 0 0 1







, which is diagonal. �

Theorem 8.3.9. Let T : V → V be a linear operator on an n di-
mensional vector space V over the complex numbers C with a basis
S = [v1 : v2 : · · · : vn]. If [T ]S is diagonalizable, then V assumes a
direct sum decomposition of the eigenspaces:

V = Wλ1
⊕ Wλ2

⊕ · · · ⊕ Wλn
,

where Wλi
, i = 1, 2, · · · , n are eigenspaces of T corresponding to the

eigenvalues λi, i = 1, 2, · · · , n.

Proof. Note that [T ]S is diagonalizable and has n linearly independent eigen-
vectors. Then correspondingly T has n linearly independent eigenvectors
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which span the whole space V . That is, for every x ∈ V , there exists xi ∈ Wλi

such that
x = x1 + x2 + · · · + xn.

Since the n eigenvectors are linearly independent, we have

Wλi
∩ Wλj

= ∅, if i , j.

Therefore, we have
V = Wλ1

⊕ Wλ2
⊕ · · · ⊕ Wλn

.

�

Exercise 8.3.10.

1. Let S = {v1, v2, v3} be a basis of a vector space V . Let T : V → V be a
linear transformation with

[T ]S =





1 3 1
0 27 −6
0 0 4



 .

i) Find [T ]N if N is a basis of V with the transition matrix from N to S
given by

P =





1 3 1
0 2 3
0 0 3



 .

ii) Find a basis L of V such that [T ]L is diagonal.

2. Let P3 denote the vector space of all polynomials with real coefficients. Let
T : P3 → P3 be defined by

T (f)(x) = x2f ′′(x).

i) Find [T ] under the standard basis {1, x, x2, x3} of P3;

ii) Find all eigenvalues and eigenvectors of T .

3. Let S, T : V → V be linear operator on a vector space V . Suppose that
S ◦ T = T ◦ S. Show that the range of S is a T -invariant subspace of V .

4. Let T : V → V be a linear operator on an n-dimensional vector space
V over the real numbers R with a basis S = [v1 : v2 : · · · : vn]. If [T ]S is
symmetric, then V assumes a direct sum decomposition of the eigenspaces:

V = Wλ1
⊕ Wλ2

⊕ · · · ⊕ Wλn
,

where Wλi
, i = 1, 2, · · · , n are eigenspaces of T corresponding to the eigen-

values λi, i = 1, 2, · · · , n.

5. Let T : V → V be a linear operator on a vector space V . Let f, g be
polynomials. Show that f(T )g(T ) = g(T )f(T ).

6. Let T : V → V be a linear operators on a vector space V . Let f be a
polynomial and W = ker f(T ). Then W is a T -invariant subspace of V .
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8.4 Decomposition of vector spaces

In the last section we have related the problem of diagonalization of the
representation matrix of a linear operator on finite dimensional spaces to that
of decomposition of a vector space into one-dimensional subspaces.

A natural question is what if the representation matrix is not diagonaliz-
able? We show in the next two sections that in this case, the representation
matrix can be reduced into block diagonal form and further to Jordan
normal form, which is a block diagonal form of a matrix. Moreover, the vec-
tor space is decomposed into a direct sum of generalized eigenspaces associated
with each of the Jordan blocks.

Theorem 8.4.1. Let p, p1 and p2 be polynomials which satisfy that

i) p = p1p2;

ii) p1 and p2 are polynomials with degree larger than or equal to
1;

iii) the greatest common divisor of p1 and p2 is 1.

Let T : V → V be a linear operator on a vector space V . If p(T ) = 0,
then

V = W1 ⊕ W2,

where W1 = ker(p1(T )) and W2 = ker(p2(T )).

Proof. Since the greatest common divisor of p1 and p2 is 1, by the Euclidean
algorithm, there exist polynomials q1 and q2 such that

1 = p1(t)q1(t) + p2(t)q2(t),

which lead to
I = p1(T )q1(T ) + p2(T )q2(T ).

Then for every v ∈ V , we have the following decomposition of v,

v = p1(T )q1(T )v + p2(T )q2(T )v, (8.1)

where the first part satisfies

p2(T )p1(T )q1(T )v =p1(T )p2(T )q1(T )v

=q1(T )p1(T )p2(T )v

=q1(T )p(T )v

=0,
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and the second part satisfies

p1(T )p2(T )q2(T )v =q2(T )p1(T )p2(T )v

=q2(T )p(T )v

=0.

That is, p1(T )q1(T )v ∈ W2 and p1(T )q1(T )v ∈ W1. To prove the uniqueness
of the decomposition, let v = w1 + w2 = w′

1 + w′
2 with w1, w′

1 ∈ W1 and
w2, w′

2 ∈ W2. Then we have

q1(t)p1(T )v = q1(t)p1(T )(w1 + w2), q1(t)p1(T )v = q1(t)p1(T )(w′
1 + w′

2),

which lead to

q1(t)p1(T )v = q1(t)p1(T )w2, q1(t)p1(T )v = q1(t)p1(T )w′
2.

Applying (8.1) to w2, w′
2 we have

w2 = p1(t)q1(T )w2, w′
2 = p1(t)q1(T )w′

2.

Then we have
w2 = q1(t)p1(T )v = w′

2,

and w1 = v − w2 = v − w′
2 = w′

1. That is, w1 = w′
1, w2 = w′

2. The decompo-
sition is unique. �

An example of the polynomial p such that p(T ) = 0 can be seen from
the Cayley-Hamilton theorem, where we know that if p is the characteristic
polynomial of the representation matrix A of the linear operator T , then
p(A) = 0. In the following we apply Theorem 8.4.1 to obtain a decomposition
of a finite dimensional vector space according to the eigenspaces of a linear
operator on the space.

Theorem 8.4.2. Let T : V → V be a linear operator on a finite
dimensional vector space V over the scalar field of complex numbers.
Assume that p is a polynomial with p(T ) = 0 and that

p(t) = (t − λ1)m1 (t − λ2)m2 · · · (t − λr)mr ,

is a factorization of p where λi, i = 1, 2, · · · , r are distinct roots of p.
Let Wi = ker(T − λiI)mi , i = 1, 2, · · · , r. Then we have

V = W1 ⊕ W2 ⊕ · · · ⊕ Wr.

Proof. Let pi = (t − λ1)m1 (t − λ2)m2 · · · (t − λi)
mi , p−i = (t − λi+1)mi+1(t −

λ2)m2 · · · (t − λr)mr with i = 1, 2, · · · , r. By Theorem 8.4.1, we have the
following decomposition of V :

V = W1 ⊕ W−1,
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where W−1 = ker(p−i(T )) is a subspace of V . Notice that p−1(T )w = 0 for
every w ∈ W−1. Regarding W−1 as the whole space, by Theorem 8.4.2, we
have the following decomposition of W−1:

W−1 = W2 ⊕ W−2.

It is known that W2 is a subspace of V . W−2 is a subspace of W−1; hence it
is also a subspace of V . Then we have

V = W1 ⊕ W2 ⊕ W−2.

By mathematical induction, we can then obtain that

V = W1 ⊕ W2 ⊕ · · · ⊕ Wr.

�

Remark 8.4.3. By Theorem 8.4.2, we can group the bases of each of the
subspaces Wi, i = 1, 2, · · · to obtain a basis of V . Then the representation
matrix of T on V is a block diagonal form:

[T ]V =








A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 · · · · · · Ar








,

where Ai is the representation matrix of T restricted to the subspaces Wi =
ker(T − λi)

mi which is called a generalized eigenspace of T . �

Example 8.4.4. Let T : V → V be a linear operator on an n dimensional
vector space. Suppose that T 2 = I. Show that

i) T has eigenvalues λ1 = 1, λ2 = −1.

ii) V = Wλ1
⊕Wλ2

, where Wλi
, i = 1, 2 are eigenspaces of T corresponding

to the eigenvalues λi.

Solution: i) Let λ be a eigenvalue with v a corresponding eigenvector. Then
we have

T v = λv =⇒ T 2v = λT v = λ2v.

Since T 2 = T , we have T 2v = T v = λv. Therefore we obtain

λ2v = λv =⇒ λ = ±1.

ii) Let p(t) = (t − 1)(t + 1). We have p(T ) = 0. By Theorem 8.4.2, we have

V = Wλ1
⊕ Wλ2

where Wλi
, i = 1, 2 are eigenspaces of T corresponding to the eigenvalues

λi. �
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Exercise 8.4.5.

1. Let T : V → V be a linear operator over an n dimensional vector space.
Suppose that T 2 = T . Show that

i) T has eigenvalues λ1 = 1, λ2 = 0.

ii) V = Wλ1
⊕Wλ2

, where Wλi
, i = 1, 2 are eigenspaces of T corresponding

to the eigenvalues λi.

2. Let T : V → V be a linear operator over an n dimensional vector space.
Let λi, i = 1, 2, · · · , m be the set of all distinct eigenvalues of T . Suppose that
the representation matrix [T ] under a basis of V is diagonalizable. Show that
there exist linear operators Ti, i = 1, 2, · · · , m such that

i) T =
∑m

i=1 λiTi;

ii) I =
∑m

i=1 Ti;

iii) TiTj = 0 if i , j, i, j ∈ {1, 2, · · · , m};

iv) T 2
i = Ti, i = 1, 2, · · · , m;

v) TiV = Vλi
.

3. Let p, p1 and p2 be polynomials which satisfy that

i) p = p1p2;

ii) p1 and p2 are polynomials with degree larger than or equal to 1;

iii) the greatest common divisor of p1 and p2 is 1.

Let T : V → V be a linear operator on a vector space V . If p(T ) = 0, then
ker(p1(T )) = Range(p2(T )).

8.5 Jordan normal form

We improve the results of the previous section to show that the blocks
of the block diagonal decomposition of the representation matrix [T ] can be
reduced to a type of triangular matrices called Jordan blocks, if the bases
of the decomposed subspaces are properly chosen.

Let T : V → V be a linear operator on the n dimensional vector space V
and v ∈ V be a nonzero vector. If we repeatedly use T to act on v to produce
the sequence

v, T v, T 2v, · · · ,

then there exists a positive integer k ∈ N such that T kv = 0, because of the
finite dimensionality of V .
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With the decomposition in Theorem 8.4.2, we seek basis of W = ker(T −
λI)k where λ is an eigenvalue of T . Let v ∈ W be such that (T − λI)k−1v , 0.
Then (T − λI)iv , 0 for every 0 ≤ i ≤ k − 1. Consider the vector equation

c0v + c1(T − λI)v + c2(T − λI)2v + · · · + ck−1(T − λI)k−1v = 0.

Applying (T − αI)k−1 repeatedly on both sides of the above vector equation
and using the fact that v is k-periodic, we successively obtain c0 = 0, c1 =
0, · · · , ck−1 = 0. Therefore, the set of vectors

{
(T − λI)k−1v, (T − λI)k−2v, · · · , (T − λI)v, v

}

is linearly independent. We have shown

Lemma 8.5.1. Let v ∈ V be such that (T − λI)kv = 0 but (T −
λI)k−1v , 0. Then the set of vectors

{
(T − λI)k−1v, (T − λI)k−2v, · · · , (T − λI)v, v

}

is linearly independent.

Lemma 8.5.1 implies that

{
(T − λI)k−1v, (T − λI)k−2v, · · · , (T − λI)v, v

}

is an ordered basis for W = ker(T −λI)k, if v ∈ W is such that (T −λI)k−1v ,
0. Note that

T (T − λI)iv = (T − λI)i+1v + λ(T − λI)iv, for every 0 ≤ i ≤ k − 2,

T (T − λI)k−1v = (T − λI)kv + λ(T − λI)k−1v = λ(T − λI)k−1v.

Then the representation matrix of T on W with respect to this basis is

J =












λ 1 0 · · · 0

0 λ 1
. . .

...

0
. . .

. . .
. . . 0

... · · · 0 λ 1
0 · · · 0 0 λ












,

which is called the Jordan block associated with the eigenvalue λ of T . The
basis

{
(T − λI)k−1v, (T − λI)k−2v, · · · , (T − λI)v, v

}

is called a Jordan basis and the finite sequence of vectors is called a Jordan
chain. The vector (T − λI)k−1v is an eigenvector of T and is called the initial
vector of the Jordan chain. v is called the end of the Jordan chain.
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Suppose that V has been decomposed into

V = W1 ⊕ W2 ⊕ · · · ⊕ Wr,

where Wi = ker(T − λi)
mi , i = 1, 2, · · · , r. If we choose a Jordan basis for

each of the Wi, then the union of the Jordan basis is a basis for V and the
representation matrix of T on V is then

[T ] =









J1 0 · · · 0

0 J2
. . .

...
...

. . .
. . . 0

0 · · · 0 Jr









,

where Ji, i = 1, 2, · · · , r are Jordan blocks. We call this form of [T ] the
Jordan normal form for T .

Theorem 8.5.2. Let T : V → V be a linear operator on a finite
dimensional vector space V over the scalar field of complex numbers.
Then there exists a Jordan basis of V with which the representation
matrix [T ] is in the Jordan normal form.

Proof. Let T be restricted to a generalized eigenspace W = ker(T − λiI)mi .
Then the representation matrix of T has only one eigenvalue, say λ. Let m
be the least integer such that (T − λI)m = 0, namely, for every x ∈ W,
(T − λI)mw = 0.

We show that there exists a Jordan basis of W such that the representation
matrix of [T ] is in the Jordan normal form. Then by Theorem 8.4.2, the
union of the Jordan bases of every generalized eigenspaces is such that the
representation matrix of [T ] restricted to W is in Jordan normal form.

We proceed with induction on the dimension of W = ker(T − λI)m. If
dim W = 1, the statement of the theorem is trivially true. Assume that for
dim W ≤ n − 1 the statement of the theorem holds. We prove it holds for
dim W = n.

Let B = T − λI and r = dim ker B. Note that there exists w ∈ W with
Bm−1w , 0 and Bm−1w ∈ ker B. Then the formula dim BW + dim ker B = n
implies that BW is a proper subspace of W and dim BW ≤ n−1. By induction
assumption, BW can be decomposed into subspaces Wi, i = 1, 2, · · · , k:

BW = W1 ⊕ W2 ⊕ · · · ⊕ Wk,

and for each Wi, i = 1, 2, · · · , k, there exists a Jordan chain,

Bli−1ui, · · · , Bui, ui,

and the union of which is a Jordan basis of BW with n − r vectors.
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Next we extend the union of the Jordan basis of BW into a basis of W .
Note for every ui ∈ BW , i = 1, 2, · · · , k, there exists a nonzero vi ∈ W , such
that Bvi = ui. Then the Jordan basis of BW is extended into

Bli vi, Bli−1vi, · · · , vi, i = 1, 2, · · · , k.

Notice that Bli vi = Bli−1ui ∈ ker B, i = 1, 2, · · · , k. We can extend the set
{Blivi}k

i=1 into a basis of ker B by adding more vectors, say, w1, w2, · · · , wr−k,
where each of the w′

is is a Jordan chain of length 1.
It remains to show that

k⋃

i=1

{
vi, Bvi, · · · , Bli vi

}
∪ {wi}r−k

i=1 (8.2)

is linearly independent. Consider the vector equation

k∑

i=1

li∑

j=1

cijBjvi +

r−k∑

j=1

djwj = 0, (8.3)

where the c′
ijs and d′

is are constants to be determined. Applying B on both
sides of the vector equation, we have

k∑

i=1

li∑

j=1

cijBj+1vi = 0 =

k∑

i=1

li∑

j=1

cijBjui.

Note that Bli ui = 0 for every i = 1, 2, · · · , k. Then we have

k∑

i=1

li−1∑

j=1

cijBjui = 0,

which by induction assumption leads to cij = 0 for every i = 1, 2, · · · , k,
j = 1, 2, · · · , li − 1. Then by (8.3) we have

k∑

i=1

cili
Blivi +

r−k∑

j=1

djwj = 0,

which leads to cili
= 0, for i = 1, 2, · · · , k and dj = 0, j = 1, 2, · · · , r − k

since this is a linear combination of the basis of ker B. Therefore, the set of n
vectors at (8.2) is linearly independent and is a Jordan basis of W .

�

Remark 8.5.3. If we identify a linear operator with its matrix representation,
Theorem 8.5.2 indicates that every n × n matrix over the complex numbers
has a Jordan normal form. �
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Example 8.5.4. Let A =





−1 −2 6
−1 0 3
−1 −1 4



 be the representation matrix of a

linear operator T : V → V . Find the Jordan normal form of A.

Solution: Let p(t) = det(A − λI) be the characteristic polynomial. Solving
p(λ) = det(A − λI) = 0, we have −(λ − 1)3 = 0 and the eigenvalues λ123 = 1.

Solving (A − λI)x = 0 we obtain two linearly independent eigenvectors:

u1 =





−1
1
0



 , u2 =





3
1
0



 .

Since the algebraic multiplicity of the eigenvalue λ = 1 is 3, but geometrical
multiplicity is 2, by Theorem 6.2.5 A is not diagonalizable. By Theorem 8.5.2,
there exists a Jordan basis such that the representation matrix of T is in
Jordan form, or, equivalently, A is similar to a matrix in Jordan form.

Next we compute the least number m such that (A − λI)m = 0. We have

A − I =





−2 −2 6
−1 −1 3
−1 −1 3



 , (A − I)2 = 0.

This means that a basis of generalized eigenvectors consists of a Jordan chain
of length 2 and one of length 1. The Jordan form is

J =





1 0 0
0 1 1
0 0 1





�

Exercise 8.5.5.

1. Let A be an n × n complex matrix. Show that A can be decomposed into
the sum of a diagonal matrix and a nilpotent matrix. That is A = D + N ,
where D is diagonal and Nm = 0 for some m ∈ N.

2. Let A =

[
1 1
ǫ 1

]

, where ǫ ∈ R is a parameter. Show that if ǫ = 0, A is not

diagonalizable; otherwise, A is diagonalizable.

8.6 Computation of Jordan normal form

In the last section we have proved existence of Jordan normal form. We
show in this section that the Jordan normal form is unique up to the order of
Jordan blocks. We also develop a method to compute Jordan normal form.
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Theorem 8.6.1. Let T : V → V be a linear operator on an n dimen-
sional vector space V over the scalar field of complex numbers. Let
λ ∈ C be an eigenvalue of T . Then for every positive integer m ∈ N,
the number of m × m Jordan blocks

Jλ, m =











λ 1 0 · · · 0

0 λ 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 λ 1
0 · · · 0 0 λ











is

Nm = rank(T − λI)m−1 − 2 rank(T − λI)m + rank(T − λI)m+1.

Proof. Suppose that under a Jordan basis, T is in a Jordan normal form with
Jordan blocks Jλi, mi

, i = 1, 2, · · · , k and m1 + m2 + · · · + mk = n,

[T ] =









Jλ1, m1
0 · · · 0

0 Jλ2, m2

. . .
...

...
. . .

. . . 0
0 · · · 0 Jλk, mk









,

where the Jordan blocks associated with the same eigenvalue are grouped
together. Then the map T − λI, where λ is one of the eigenvalues, has a
Jordan normal form with two types of Jordan blocks. One type is those with
zero main diagonals, and the other with nonzero main diagonals. Namely, we
have

[T − λI] =















J0, m1
0 · · · · · · · · · 0

0
. . . 0

...
...

. . . J0, mi

. . .
...

...
. . . Jλi+1, mi+1

. . . 0
...

. . .
. . . 0

0 · · · · · · · · · 0 Jλk, mk















,

where we placed the blocks with zero main diagonals in the left uppermost
positions just for convenience of visualization.

Notice that rank(Jj
0, mi

) = mi − j for every 0 ≤ j ≤ mi and Jmi

0, mi
= 0.

Moreover, for every Jordan block Jµ, mi
in [T −λI] with µ , 0, rank(Jj

µ, mi
) =

mi, for every positive j ∈ N.
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For every m ∈ N, we note that rank(Jm
0,m) = 0, rank(Jm

0,m+1) = 1,
rank(Jm

0,m+2) = 2 and so on. Then we have

rank(T − λI)m = Nm+1 + 2Nm+2 + · · · + (n − m)Nn +
∑

λk,0

rank(Jm
λk, mk

).

By the same token, we have

rank(T −λI)m+1 = Nm+2 +2Nm+3 + · · ·+(n−m−1)Nn +
∑

λk,0

rank(Jm
λk, mk

).

Then we have

rank(T − λI)m − rank(T − λI)m+1 = Nm+1 + Nm+2 + · · · + Nn. (8.4)

Since m is arbitrary, we have

rank(T − λI)m−1 − rank(T − λI)m = Nm + Nm+1 + · · · + Nn. (8.5)

Note that if m = 1, (8.5) is valid and we have rank(T − λI)m−1 = rank(T −
λI)0 = n. This is because each Jordan block with all zeros in the main diagonal
is 1 rank in deficiency from the full rank and Nm + Nm+1 + · · · + Nn counts
the total rank deficiencies for every Jordan block. Therefore, (8.5) combined
with (8.4) gives

Nm = rank(T − λI)m−1 − 2 rank(T − λI)m + rank(T − λI)m+1.

�

Remark 8.6.2. By Theorem 8.6.1 we know that the number of a specific
size of Jordan blocks is independent of the choice of the Jordan basis since
representation matrices under different bases are similar. Hence the Jordan
normal form is unique up to the order of the Jordan blocks. �

Example 8.6.3. Let A =





−1 −2 6
−1 0 3
−1 −1 4



 be the representation matrix of a

linear operator T : V → V . Find the number of 1 × 1, 2 × 2 and 3 × 2 Jordan
blocks of A.

Solution: Let p(t) = det(A − λI) be the characteristic polynomial. Solving
p(λ) = det(A − λI) = 0, we have −(λ − 1)3 = 0 and the eigenvalues λ123 = 1.

By Theorem 8.6.1, we know that for the eigenvalue λ+123 = 1, we have

N1 =rank(A − I)0 − 2rank(A − I)1 + rank(A − I)2,

N2 =rank(A − I)1 − 2rank(A − I)2 + rank(A − I)3,

N3 =rank(A − I)2 − 2rank(A − I)3 + rank(A − I)3.
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We have

A − I =





−2 −2 6
−1 −1 3
−1 −1 3



 , (A − I)2 = 0.

We have rank(A − I)0 = 3, rank(A − I)1 = 1, rank(A − I)m = 0 for m ≥ 2.
Therefore, we have

N1 =3 − 2 · 1 + 0 = 1,

N2 =1 − 2 · 0 + 0 = 1,

N3 =0.

The Jordan form is then

J =





1 0 0
0 1 1
0 0 1



 .

�

Theorem 8.6.4. Let x1, x2, · · · , xk be linearly independent eigen-
vectors of T corresponding to the same eigenvalue λ. Suppose that for
i = 1, 2, · · · , k, there exists ui such that

xi = (T − λI)mi−1ui , 0, T xi = (T − λI)mi ui = 0.

Let Ji be the Jordan chain of {(T − λI)mi−1ui, (T −
λI)mi−2ui, · · · , ui}. Then J =

⋃k
i=1 Ji is linearly independent.

Proof. We first show that Ji ∩Jj = ∅ if i , j. Otherwise, there exists k, l with
1 ≤ k ≤ mi and 1 ≤ l ≤ mj such that

(T − λI)mi−kui = (T − λI)mj −luj . (8.6)

Then applying (T −λI)k−1 and (T −λI)l−1 on both sides of (8.6), respectively,
we have

xi = (T − λI)mj −l+k−1uj, xj = (T − λI)mi−k+l−1ui.

If k = l, we have xi = xj which is a contradiction since xi and xj are linearly
independent eigenvectors. If k > l, then mj − l + k − 1 ≥ mj and we have
xi = 0, which is also a contradiction. If k < l, then mi − k + l − 1 ≥ mi and
we have xj = 0, which is a contradiction, too.

Next, we show that
⋃k

i=1 Ji is linearly independent. Let W = span
⋃k

i=1 Ji

and restrict B = T − λI to W . Then BW is an invariant subspace of W . We
proceed with mathematical induction on the number of vectors in

⋃k
i=1 Ji.

If the number of vectors in
⋃k

i=1 Ji is less than or equal to 1, then the
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statement of the theorem is trivially true. Assume that the statement of the
theorem is true with the number of vectors in

⋃k
i=1 Ji less than n − 1. We

consider the statement with the number of vectors in
⋃k

i=1 Ji equal to n.
Then we have dim W ≤ n.

Next we find a basis of BW . Let J ′ =
⋃k

i=1 Ji \ {ui}. Then on the one
hand, we have span(J ′) ⊂ BW. On the other hand, for every v ∈ BW , there
exists w ∈ W such that v = Bw ∈ span(J ′). Therefore, span(J ′) = BW and
by induction, J ′ is a basis for BW since the initial vector of the Jordan chains
is not changed from J to J ′. It follows that dim BW = n − k.

Note that the k initial vectors of the Jordan chains in J ′ are in ker B and
we have dim ker B ≥ k. By Theorem 8.2.3, we have

n ≥ dim W = dim BW + dim ker B ≥ n − k + k = n.

It follows that dim W = dim span(J) = n and J is linearly independent. �

The next question is how to find a Jordan basis to reduce a representation
matrix into Jordan form. We may proceed with the following steps.

(1) Find the number of Jordan blocks of every possible size of m and deter-
mine the Jordan normal form.

(2) For every eigenvalue λ and every Jordan block size m, compute u1 such
that

(T − λI)mu1 = 0, (T − λI)m−1u1 , 0.

Then we obtain a Jordan chain of

{(T − λI)m−1u1, (T − λI)m−2u1, · · · , u1}.

Notice that (T − λI)m−1u1 is an eigenvector of T .

(3) Group all Jordan chains to form a Jordan basis, or equivalently an in-
vertible matrix M such that M−1[T ]M is in Jordan normal form.

Example 8.6.5. Let A =





−1 −2 6
−1 0 3
−1 −1 4



 be as in Example 8.6.3. From Ex-

ample 8.6.3, we know that the eigenvalues are λ123 = 1 and the Jordan normal
form is

J =





1 0 0
0 1 1
0 0 1



 .

For the Jordan block with size 1, we solve for an eigenvector with

(A − I)u =





−2 −2 6
−1 −1 3
−1 −1 3









x
y
z



 = 0,
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which lead to

u1 =





−1
1
0



 , u′
1 =





3
0
1



 .

Either {u1} or {u′
1} forms a Jordan chain of length 1.

For the Jordan block with size 2, we have (A − I) , 0 and (A − I)2 = 0.
Take an arbitrary nonzero vector, say u2 = (1, 0, 0) such that (A − I)u2 , 0
and set

u1
2 = (A − I)u2 =





−2
−1
−1



 .

Then {u1
2, u2} forms a Jordan chain of length 2.

According to Theorem 8.6.4, we need to choose linearly independent initial
vectors for the Jordan chains. Indeed, by inspection we note that both {u1

2, u1}
and {u1

2, u′
1} are linearly independent. Therefore, we may choose

M = [u1 : u1
2 : u2] =





−1 −2 1
1 −1 0
0 −1 0



 ,

or

M = [u′
1 : u1

2 : u2] =





3 −2 1
0 −1 0
1 −1 0



 ,

such that
M−1AM = J.

Example 8.6.6. Find the Jordan normal form J of

A =







2 0 0 0
0 2 1 0
0 0 1 1
0 0 0 1







,

and find M such that M−1AM = J .

Solution: The characteristic polynomial is det(A−λI) = (λ−2)2(λ−1)2 and
eigenvalues are λ12 = 2 and λ34 = 1. For each eigenvalue, there are possibly
1×1 and 2×2 Jordan blocks. We use Theorem 8.6.1 to determine the number
of each possible Jordan block.

For λ12 = 2, we consider (A − 2I) and have

(A − 2I) =







0 0 0 0
0 0 1 0
0 0 −1 1
0 0 0 −1







, (A − 2I)2 =







0 0 0 0
0 0 −1 1
0 0 1 −2
0 0 0 1







,
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and

(A − 2I)3 =







0 0 0 0
0 0 1 −2
0 0 −1 3
0 0 0 −1







.

Then rank(A − 2I) = rank(A − 2I)2 = rank(A − 2I)3 = 2. By Theorem 8.6.1,
for the eigenvalue λ12 = 2, we have

N1 =rank(A − I)0 − 2rank(A − I)1 + rank(A − I)2 = 4 − 4 + 2 = 2,

N2 =rank(A − I)1 − 2rank(A − I)2 + rank(A − I)3 = 2 − 4 + 2 = 0.

For λ34 = 1, we consider (A − I) and have

(A−I) =







1 0 0 0
0 1 1 0
0 0 0 1
0 0 0 0







, (A−I)2 =







1 0 0 0
0 1 1 1
0 0 0 0
0 0 0 0







, (A−I)3 =







1 0 0 0
0 1 1 1
0 0 0 0
0 0 0 0







.

Then rank(A − I) = 3, rank(A − I)2 = rank(A − I)3 = 2. By Theorem 8.6.1,
for the eigenvalue λ12 = 2, we have

N1 =rank(A − I)0 − 2rank(A − I)1 + rank(A − I)2 = 4 − 6 + 2 = 0,

N2 =rank(A − I)1 − 2rank(A − I)2 + rank(A − I)3 = 3 − 4 + 2 = 1.

Therefore, the Jordan normal form is

J =







2 0 0 0
0 2 0 0
0 0 1 1
0 0 0 1







.

Next we find M such that M−1AM = J . For λ12 = 2, we solve (A − 2I)x = 0
to obtain the corresponding eigenspace

N(A − 2I) = span(u1, u′
1) = span













1
0
0
0







,







0
1
0
0













,

where {u1} and {u′
1} are Jordan chains of length 1.

For λ34 = 1, we solve (A − I)2x = 0 and (A − I)x , 0 to obtain

u2 = (0, −1, 1, 0), u′
2 = (0, −1, 0, 1).

If we choose u2 to form a Jordan chain of length 2, then (A−I)u2 = (0, 0, 0, 0)
which is not desired. If we choose u′

2 to form a Jordan chain of length 2, then
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u1
2 = (A − I)u′

2 = (0, −1, 1, 0) , 0 and we obtain the desired Jordan chain
{u1

2, u′
2} of length two. Then {u1, u′

1, u1
2, u′

2} is a Jordan basis for A. That is,

M =







1 0 0 0
0 1 −1 −1
0 0 1 0
0 0 0 1







is such that M−1AM = J .
�

Exercise 8.6.7.

1. Find the Jordan normal form of the following matrix.

[
2 2
0 2

]

,

[
3 0
3 3

]

,

[
4 4
4 4

] [
5 −5
5 −5

]

.

2. For each of the following matrices A, find a matrix M such that M−1AM
is in Jordan normal form.







1 0 0 0
0 1 −1 −1
0 0 1 0
0 0 0 1







,





1 1 −1
−2 −2 2
−3 −3 3



 .

3. Use the Jordan normal form to prove the Cayley-Hamilton Theorem.

4. Let A be a square matrix with all eigenvalues {λ1, λ2, · · · , λk}. Show that
for every positive m ∈ N, the eigenvalues of Am are {λm

1 , λm
2 , · · · , λm

k }.

5. Let A be a square matrix. Show that the eigenvalues of A are all zeros if
and only if there exists a positive m ∈ N such that Am = 0.

6. Let A be a square matrix. Show that if there exists a positive m ∈ N such
that Am = 0, then det(A + E) = 1.

7. Let A be a square matrix with Am = I for some positive m ∈ N. Show that
A is diagonalizable and every eigenvalue of A is a root of p(t) = tm − 1.

8. Let A be a square matrix with A2 = A. Show that A is diagonalizable and
every eigenvalue of A is a root of p(t) = t2 − t.

9. Let A be an n × n matrix with 0 the m times repeated eigenvalue. Show
that rank(A) = rank(A2) if and only if rank(A) = n − m.
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10. Let

J =











λ 1 0 · · · 0

0 λ 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 λ 1
0 · · · 0 0 λ











be an n × n Jordan block, p a polynomial. Show that

p(J) =













p(λ) 1
1! p

′(λ) 1
2!p

′′(λ) · · · 1
(n−1)! p

(n−1)(λ)

0 p(λ) 1
1! p

′(λ)
. . . 1

(n−2)! p
(n−2)(λ)

...
. . .

. . .
. . . 0

0 · · · 0 p(λ) 1
1! p

′(λ)

0 · · · 0 0 p(λ)













.
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Chapter 9

Linear programming

9.1 Extreme points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
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Transfer of extreme points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
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9.3 Simplex tableau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Many optimization problems in management and industry are modeled in the
form of optimizing a linear function over the solution set of a system of linear
equations.

minimize
x

dT x

subject to Ax = b, and x ≥ 0,
(9.1)

where d, x ∈ Rn, A is an m×n real matrix, b ∈ Rm and x ≥ 0 means that each
coordinate of x is nonnegative. Certainly when m = n and A is invertible, we
may first solve for x and obtain a unique optimal solution if x ≥ 0 is satisfied
at the same time. The issue is that in practice we may have

rank(A) = m < n, (9.2)

and hence Ax = b has infinitely many solutions. It becomes a nontrivial task
to examine the nonnegativity and optimality among infinitely many solutions.
We call the optimization problem at (9.1) a linear programming problem.
We devote this chapter to a short illustration of the mathematical theories
and techniques related to solving this optimization problem.

9.1 Extreme points

Let us begin with an example.

201
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x1

x2

x3

K

FIGURE 9.1: Feasible region for (9.20)

Example 9.1.1. Consider

minimize
x

x1 + x2

subject to
[
1 1 1

]





x1

x2

x3



 = 1, and x = (x1, x2, x3) ≥ 0.
(9.3)

The linear equation is the plane x1 +x2 +x3 = 1 and is under the assumption
that x ≥ 0 gives a triangular region K in R3, as is shown in Figure 9.1. Every
point in the triangular region K which satisfies the constraints is called a
feasible solution of this linear programming problem. To find a minimizing
point for the linear function f(x) = x1 + x2, which is called the objective
function, we can do some elementary analysis from the constraints: x1 +x2 ≥
0 since x ≥ 0 and the equality holds only if x1 = x2 = 0, x3 = 1. Then
we located the minimizing point x∗ = (0, 0, 1) such that the optimal value
f(x∗) = 0 + 0 = 0.

Among infinitely many points in the region K we successfully find the
optimal solution, which is located in a corner of the feasible region K. It is
not by chance that the optimal solution is in the corner. Imagine that we hold
the family of the planes x1 + x2 = c, c ∈ R, and move it according to different
values of c which becomes closer to the origin if the value of c becomes smaller.
The value of c becomes minimal when the plane x1 +x2 = c touches the corner
(0, 0, 1). It seems that the corner points are very special. Indeed, they are not
a linear combination of any other vectors in the feasible region and are called
extreme points. �
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Definition 9.1.2. A set C in a vector space V is called a convex set if for
every x1, x2 ∈ C and for every λ ∈ (0, 1), we have

λx1 + (1 − λ)x2 ∈ C.

That is, the line segment between x1 and x2 is completely contained in C. We
call sy1 + (1 − s)y2 with y1, y2 ∈ V and s ∈ (0, 1) a convex combination of
y1, y2.

A point x in a convex set C is called an extreme point if x is not a
convex combination of any two distinct vectors in C.

Example 9.1.3. Let A be an m × n real matrix with rank(A) = m < n and
b ∈ Rm. Let

K = {x ∈ Rn : Ax = b, and x ≥ 0}.

Then K is a convex set in Rn. Indeed, for every x1, x2 ∈ K, we have x1 ≥ 0,
x2 ≥ 0, and

Ax1 = b, Ax2 = b.

It follows that for every λ ∈ (0, 1), λx1 + (1 − λ)x2 ≥ 0 and

A(λx1 + (1 − λ)x2) = λAx1 + (1 − λ)Ax2 = λb + (1 − λ)b = b.

That is, x1, x2 ∈ K and every λ ∈ (0, 1), the convex combination λx1 + (1 −
λ)x2 ∈ K. K is a convex set in Rn. �

Next question is how to describe the extreme points of a feasible solution
set defined by K = {x ∈ Rn : Ax = b, and x ≥ 0}?

Theorem 9.1.4. Let A be an m×n real matrix with rank(A) = m < n
and b ∈ Rm. Let

K = {x ∈ Rn : Ax = b, and x ≥ 0}.

Then x ∈ K is an extreme point of K if and only if x =
(x1, x2, · · · , xn) ∈ K has at most m nonzero coordinates and the
columns of A corresponding to the nonzero coordinates of x for Ax are
linearly independent.

Proof. “=⇒” Suppose that x = (x1, x2, · · · , xn) ∈ K is an extreme point of
K. Without loss of generality, assume that the first k coordinates of x are
nonzero. Then we have

x1c1 + x2c2 + · · · + xkck = b,

where c1, c2, · · · , ck are the corresponding columns of A for Ax with A = [c1 :
c2 : · · · : cn]. We show that c1, c2, · · · , ck are linearly independent and hence
k ≤ m = rank(A).
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Suppose not. Then there exists (y1, y2, · · · , · · · , yk) , 0 such that

y1c1 + y2c2 + · · · + ykck = 0.

Let y = (y1, y2, · · · , · · · , yk, 0, · · · , 0). Then there exists ǫ > 0 small enough
such that

x + ǫy ≥ 0, x − ǫy ≥ 0,

since x ≥ 0 and xi > 0 for 1 ≤ i ≤ k. Moreover, we have A(x + ǫy) = b =
A(x − ǫy) which imply that x + ǫy, x − ǫy ∈ K and

x =
1

2
(x + ǫy) +

1

2
(x − ǫy).

That is, x is a convex combination of two distinct points in K and x is not
an extreme point in K. This is a contradiction.

“⇐=” Without loss of generality, let the first k ≤ m coordinates of x
be nonzero with x = (x1, x2, · · · , xk, 0, · · · , 0) and the first k columns of
A = [c1 : c2 : · · · : cn] are linearly independent. Then we have

x1c1 + x2c2 + · · · + xkck = b. (9.4)

Suppose, for contradiction, that x is not an extreme point. Then there exist
y, z ∈ K with y , z and 0 < s < 1 such that

x = sy + (1 − s)z.

Since y ≥ 0, z ≥ 0 and the last n − k coordinates of x zero, it follows
that the last n − k coordinates of y and z are zero, too. Then we have
y = (y1, y2, · · · , yk, 0, · · · , 0) ∈ K, z = (z1, z2, · · · , zk, 0, · · · , 0) ∈ K and

y1c1 + y2c2 + · · · + ykck = b, z1c1 + z2c2 + · · · + zkck = b. (9.5)

Since {c1, c2, · · · , ck} are linearly independent, by (9.4) and (9.5) we have

x = y = z.

This is a contradiction. �

Definition 9.1.5. Let A be an m × n real matrix with rank(A) =
m < n and b ∈ Rm. Let

K = {x ∈ Rn : Ax = b, and x ≥ 0}.

Let B be an m×m invertible submatrix of A whose columns constitute
a basis for the column space of A. If x ∈ K assumes zero values for
all n − m coordinates not associated with B, x is called a basic fea-
sible solution with respect to the basis B. The coordinates of basic
feasible solution x associated with B are called basic variables. The
coordinates of basic feasible solution x not associated with B are called
nonbasic variables.
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The conclusion of Theorem 9.1.4 implies that x ∈ K is an extreme point if and
only if x is a basic feasible solution with respect to some basis of the column
space of A.

Now we discuss how a basic feasible solution is related to optimality.

Theorem 9.1.6. Let A be an m×n real matrix with rank(A) = m < n
and b ∈ Rm. Let

K = {x ∈ Rn : Ax = b, and x ≥ 0}.

i) If K , ∅, then there exists a basic feasible solution x ∈ K;

ii) If K contains an optimal solution, then it contains a basic feasible
solution which is optimal.

Proof. i) Suppose that K , ∅. Then there exists x = (x1, x2, · · · , xn) ∈ K
such that

x1c1 + x2c2 + · · · + xncn = b,

where A = [c1 : c2 : · · · : cn]. Assume that x has k nonzero coordinates.
Without loss of generality, we assume that

x1c1 + x2c2 + · · · + xkck = b. (9.6)

If {c1, c2, · · · , ck} is linearly independent, then k ≤ m and x is a basic feasible
solution.

If {c1, c2, · · · , ck} is linearly dependent, there exists a nontrivial linear
combination of {c1, c2, · · · , ck} such that

y1c1 + y2c2 + · · · + ykck = 0. (9.7)

Then for every ǫ ∈ R, we obtain from (9.6) and (9.7) that

(x1 − ǫy1)c1 + (x2 − ǫy2)c2 + · · · + (xk − ǫyk)ck = b.

Let

ǫ0 = min
i∈{1, 2, ··· ,k}

{
xi

yi
: yi > 0

}

> 0.

Then x − ǫ0y ∈ K where y = (y1, y2, · · · , yk) has at most k − 1 positive
coordinates. By the same token we repeat the same process on x − ǫ0y ∈ K
to obtain a feasible solution x − ǫ′y ∈ K until the corresponding columns of
A are linearly independent and hence x − ǫ′y is a basic feasible solution.

ii) Let x = (x1, x2, · · · , xn) ∈ K be an optimal feasible solution. Assume
that x has k nonzero coordinates. Without loss of generality, we assume that

x1c1 + x2c2 + · · · + xkck = b. (9.8)
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If the columns {c1, c2, · · · , ck} of A are linearly independent, then k ≤ m
and x is a basic feasible solution and is optimal.

If the columns {c1, c2, · · · , ck} of A are linearly dependent, by the same
procedure as for the proof of i), we can reduce x into a basic feasible solution.
It remains to show that x − ǫy is optimal for every ǫ. Note that x − ǫy is a
feasible solution for every ǫ and the value of the objective function at x − ǫy
is

cT x − ǫcT y.

If cT y , 0, we can choose ǫ , 0 so that cT x−ǫ′cT y , cT x and x−ǫy is another
optimal feasible solution. This is a contradiction. Hence cT y = 0 and x − ǫy is
an optimal feasible solution for every ǫ, which can be reduced into an optimal
basic feasible solution. �

Theorems 9.1.4 and 9.1.6 imply that we need only to search among the
extreme points, or, equivalently, the basic feasible solutions for optimal solu-
tions, instead of searching among infinitely many feasible solutions. For small
scale problems we may visualize the feasible region to locate the extreme
points and find the optimal solution. In the next section, we introduce the
simplex method for solving linear programming problems which includes an
approach to transfer from one extreme point to another without geometrical
visualization of the feasible region.

Exercise 9.1.7.

1. Determine whether the following problem has a feasible solution.

minimize
x

x1 + x2

subject to

[
1 1 1

−1 1 −1

]




x1

x2

x3



 =

[
1
2

]

, and x = (x1, x2, x3) ≥ 0.

2. Draw a graph of the feasible region of the following optimization problem
and find an optimal solution.

minimize
x

x1 − x2

subject to
[
1 1 1

]





x1

x2

x3



 = 1, and x = (x1, x2, x3) ≥ 0.

3. Show that every vector space is a convex set.

4. Let V be a real vector space. Let A = {x1, x2, · · · , xn} be a subset of V
and

co(A) =

{
n∑

i=1

λixi : λ1 + λ2 + · · · + λn = 1, λi ≥ 0, i = 1, 2, · · · , n

}

.

Show that co(A) is a convex set. (We call it the convex hull of A.)
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5. Let A be an m × n real matrix with rank(A) = m < n and b ∈ Rm. Let

K = {x ∈ Rn : Ax = b, and x ≥ 0}.

Show that there are finitely many extreme points in K.

6. Let A be an m × n real matrix, b, y ∈ Rm and d, x ∈ Rn. Consider the
following two optimization problems:

minimize
x

dT x

subject to Ax ≤ b, and x ≥ 0
(A)

and

minimize
(x, y)

dT x

subject to [A : I]

[
x
y

]

= Ax + y = b, and x ≥ 0, y ≥ 0.
(B)

Show that x∗ is an optimal solution of (A) if and only if (x∗, 0) is an optimal
solution of (B).

9.2 Simplex method

In the last section, we learned that optimal solutions of linear program-
ming are among the extreme points, or, equivalently, among the basic feasible
solutions. The simplex method for solving linear programming problems
developed by George B. Dantzig in 1947 is a procedure which transfers from
a basic feasible solution to another until an optimality condition is satisfied.

Initial basic feasible solution

The first question is how to find the initial basic feasible solution in order
to begin the procedure of the simplex method. Let A be an m × n real matrix
with rank(A) = m < n and b ∈ Rm and c, x ∈ Rn. Consider

minimize
x

dT x

subject to Ax = b, and x ≥ 0.
(9.9)

We assume b ≥ 0 since we may multiply the corresponding equation by minus
one if there exists a negative coordinate of b. However, it is not obvious to
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identify a basic feasible solution for problem (9.9). So we consider the following
auxiliary problem

minimize
(x, u)

m∑

i=1

ui

subject to Ax + u = b, and x ≥ 0, u ≥ 0.

(9.10)

The auxiliary problem (9.10) has a trivial basic feasible solution (x, u) = (0, b)
from which we may proceed with the simplex method to find an optimal
solution if it exists.

If the minimum value of (9.10) is zero with u = 0, then it has a basic
feasible solution (x∗, 0) where x∗ is a basic feasible solution of problem (9.9).
If the minimum value of (9.10) is nonzero then u , 0 and (9.9) has no feasible
solution because, otherwise, (9.10) should have achieved zero minimum.

Transfer of extreme points

In the following, we illustrate how to transfer from one basic feasible so-
lution to another. For notational convenience, we assume that A = [Im : cm :
· · · : cn] and problem (9.9) has a basic feasible solution (xB , 0) ∈ Rn where
xB = (x1, x2, · · · , xm). (In practice the columns of Im may appear in any
column of A.) Then we have

x1c1 + x2c2 + · · · + xmcm = b. (9.11)

Noticing that {c1, c2, · · · , cm} are linearly independent, each column cp, p >
m can be written as a linear combination of the columns {c1, c2, · · · , cm}
which are a basis for the column space of A. Namely,

a1pc1 + a2pc2 + · · · + ampcm = cp. (9.12)

For every ǫ > 0, multiplying (9.12) by ǫ and subtracting from (9.11) we have

(x1 − ǫa1p)c1 + (x2 − ǫa2p)c2 + · · · + (xm − ǫamp)cm + ǫcp = b. (9.13)

If ǫ = 0, we have the old basic feasible solution. If ǫ > 0 changes from zero,
the coefficients of the linear combination in (9.13) are positive, until ǫ reaches
the value:

ǫ0 = min
i

{
xi

aip
: aip > 0

}

. (9.14)

Let i0 be the row index where ǫ0 is achieved. Then the basis vector ci0
at

the i0-th column is to be moved out. Since ai0p > 0, {c1, c2, · · · , cm, cp}\{ci0
}

is linearly independent and we obtained a new basic feasible solution:

(x1 − ǫ0a1p, · · · , xi0−1 − ǫ0ai0−1,p, 0, xi0+1 − ǫai0+1p,
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xm − ǫ0amp, 0, · · · , 0, ǫ, 0, · · · , 0), (9.15)

where the ǫ is the p-th coordinate. Let us use an example to show the above
process.

Example 9.2.1. Consider the system Ax = b with augmented matrix given
by

c1 c2 c3 c4 c5 b

1 0 0 −2 1 3

0 1 0 4 1 2
0 0 1 5 −3 1

where x = (3, 2, 1, 0, 0) is a basic feasible solution with the corresponding
columns {c1, c2, c3} linearly independent. Namely, x1, x2, x3 are basic vari-
ables. If we want to bring c5 into the basis for the column space, we choose

ǫ0 = min
i

{
xi

ai5
: ai5 > 0

}

= min

{
3

1
,

2

1

}

=2,

which is achieved at x2 = 2, a25 = 1. Namely i0 = 2. c2 will be removed and
{c1, c3, c5} is the new basis. Using the expressions at (9.15), the new basic
feasible solution is

(3 − 2 · 1, 2 − 2 · 1, 1 − 2 · (−3), 0, 2) = (1, 0, 7, 0, 2).

If we use the pivot a25 in c5 to reduce other entries in the column to zero, we
obtain

c1 c2 c3 c4 c5 b

1 −1 0 −6 0 1

0 1 0 4 1 2
0 3 1 17 0 7

The new basic variables are x1, x3, x5 whose values are contained in the last
column for b. �

Remark 9.2.2. From Example 9.2.1, we know that if the augmented matrix
[A : b] is in the reduced row echelon form, there is a basic feasible solution
contained in the last column. During the process of transferring from one ex-
treme point to another, if we reduce the basis vectors to have only one nonzero
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entry, then a basic feasible solution can be constructed according to the or-
der of the basic variables. For instance, in the second tableau, {c1, c3, c5} are
basis columns and the corresponding basic feasible solution is (1, 0, 7, 0, 2).

Remark 9.2.3. If none of the aip’s in (9.14) is positive, then all the coeffi-
cients of the column vectors in (9.13) increase, as ǫ increases, while no new
basic feasible solution can be identified. However, this means that there exists
feasible solutions with arbitrarily large coefficients and the feasible region K
is unbounded.

Remark 9.2.4. It may happen that the ǫ0 =
xi0

ai0p
= 0 in (9.14), which implies

that the new and old basic variables during the transfer are both zero, and
the objective function will not change value. In such a case the process of
carrying out the simplex method may enter into a cycle. We call this case a
degenerate case. However, cycling is not common and can be avoided in the
coding practice.

Optimality condition

After we learn how to transfer from one extreme point to another, we need
to know when optimality has been achieved so that the process should stop.

Let A be an m × n real matrix with rank(A) = m < n and b ∈ Rm and
d, x ∈ Rn. Consider problem (9.9). Suppose that (xB , 0) with xB ∈ Rm is a
basic feasible solution and that A = [Im : cm+1 : · · · cn] which is achievable
using elementary row operations and/or renaming of the variables.

The value of the objective function at (xB , 0) = (b, 0) is

z0 = dT
Bb,

where dT
B = [d1, d2, · · · , dm]. To justify the current basic feasible solution x =

(xB , 0) is optimal, we need to show that any other possible feasible solution
will not lower the value of the objective function. Let {e1, e2, · · · , em} be the
standard basis of Rm. We have for every feasible solution x = (x1, x2, · · · , xn)
of Ax = b with A = [Im : cm+1 : · · · : cn],

x1e1 + x2e2 + · · · + xmem = b − xm+1cm+1 − xm+2cm+2 − · · · − xncn.
(9.16)

Multiplying both sides of (9.16) with dT
B, we have

m∑

i=1

dixi = d1x1 + d2x2 + · · · + dmxm

= dT
Bb − xm+1dT

Bcm+1 − xm+2dT
Bcm+2 − · · · − xndT

Bcn

= z0 − xm+1dT
Bcm+1 − xm+2dT

Bcm+2 − · · · − xndT
Bcn.

(9.17)
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Then we have

dT x =z0 + (dm+1 − dT
Bcm+1)xm+1 + (dm+2 − dT

Bcm+2)xm+1

+ · · · + (dn − dT
Bcn)xn. (9.18)

Notice that any other feasible solution x satisfies x ≥ 0. If rj = dj − dT
Bcj ≥ 0

for every j ∈ {1, 2, · · · , n}, we have the value of the objective function:

z = dT x ≥ z0.

Namely z0 is the optimal value achieved at the current basic feasible solution
(xB , 0). We have arrived at the following optimality condition theorem.

Theorem 9.2.5. Let A = [c1 : c2 : · · · : cn] be an m × n real matrix
with rank(A) = m < n, b ∈ Rm, d, x ∈ Rn and d = [d1, d2, · · · , dn].
Consider the linear programming problem

minimize
x

dT x

subject to Ax = b, and x ≥ 0.

If (xB, 0) ∈ Rn is a basic feasible solution, and rj = dj − dT
Bcj ≥ 0 for

every j ∈ {1, 2, · · · , n}, then (xB , 0) is an optimal solution.

Remark 9.2.6. Suppose that the initial basic variables are corresponding to
the first m columns of A, which is the m × m identity matrix Im; then for
j = 1, 2, · · · , m, we have

rj = dj − dj
Bcj = dj − dj = 0.

Namely, rj corresponding to basic variables are zero. �

Exercise 9.2.7.

1. Let A be an m × n real matrix with rank(A) = m < n and b ∈ Rm and
d, x ∈ Rn. Consider

minimize
x

dT x

subject to Ax = b, and x ≥ 0.

Let x be a basic feasible solution with respect to a basis B which is an m × m
submatrix of A and each column of B contains only one nonzero entry which
is 1. Suppose that the i0-th column of A contained in B is replaced with
the p-th column of A not contained in B in order to transfer from one basic
feasible solution x = a0 to another basic feasible solution, resulting in a new

www.Engineeringbookspdf.com



212 Concise Introduction to Linear Algebra

equivalent system A′x = b′ where the new basic feasible solution corresponds
to a basis which contains only one nonzero entry 1. Show that

a′
ij =aij − aip

ai0p
ai0j , i , i0,

a′
i0j =

ai0j

ai0p
.

9.3 Simplex tableau

We have discussed the theory for the simplex method in the last section.
We discuss in this section the technical details how to carry out the algorithm
of the simplex method. Since the method for the transfer of extreme points
of Ax = b, x ≥ 0 was shown in the last section on augmented matrix, what
is left is the details on how to check the optimality conditions at each step of
the transfer.

The optimality condition is derived from the objective function z = dT x,
or explicitly

d1x1 + d2x2 + · · · + dnxn − z = 0. (9.19)

If we want to append this equation to the augmented matrix [A : b], then we
need a separate column to record the coefficients of z during elementary row
operations. However, this is not necessary since if we do include the coefficients
of z with Ax = Ax + 0z = b, the coefficients of z will be all zeros and the only
nonzero coefficient of z would always be −1 in the last row. Namely, if we do
carry coefficients of z, the corresponding column of coefficients will always be
[
0, 0, · · · , 0, −1

]T
.

At the initial tableau, we append the coefficient d of x to the augmented
matrix [A : b] and place the right hand side 0 of (9.19) at the last column.
Using elementary row operations we can eliminate the basic variables from the
objective function so that we have (9.18) and the first tableau for the linear
programming problem, which is called a simplex tableau. Namely, we have

rm+1xm+1 + rm+2xm+2 + · · · + rnxn − z = −z0,

from which we check the optimality condition whether rj ≥ 0 for every j =
1, 2, · · · , n. Let us use a concrete example to show the implementation of
the simplex method, which contains two phases: Phase I shows how to find
the initial basic feasible solution; Phase II shows how we begin with the last
tableau of Phase I to find the optimal solution of the linear programming
problem. We summarize the algorithm after the example.
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Example 9.3.1.

minimize 2x + 3y

subject to x + 2y + z = 8
3x + 4y + z = 18

x, y, z ≥ 0.

(9.20)

Solution: To find the initial basic feasible solution, we consider the following
auxiliary problem:

minimize u1 + u2

subject to x + 2y + z + u1 = 8
3x + 4y + z + u2 = 18

x, y, z, u1, u2 ≥ 0.

(9.21)

The initial simplex tableau is

c1 c2 c3 c4 c5 b

1 2 1 1 0 8
3 4 1 0 1 18

0 0 0 1 1 0

where the last row stands for the objective function u1 + u2 − f = 0. We use
elimination to reduce the entries of the last row under the basic variable zero.
Then the first simplex tableau is

R3−R1=====⇒
R3−R1

c1 c2 c3 c4 c5 b

1 2 1 1 0 8

3 4 1 0 1 18

−4 −6 −2 0 0 −26

{c4, c5} is the current basis with basic feasible solution x = (0, 0, 0, 8, 18).
To have a basic feasible solution, we use two steps to remove {c4, c5} from
the basis. First we bring c1 into the basis,

ǫ = min
i

{
xi

ai1
: ai1 > 0

}

= min

{
8

1
,

18

3

}

= 6,

which is achieved at i0 = 2. Note that in this case the basic variables are not
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in the first columns and the subscript i for xi indicates the value of the basic
variable in the i-th row.
Using the pivot circled in the first simplex tableau, we have

R2
3==⇒ R1−R2

=====⇒
R3−R2

c1 c2 c3 c4 c5 b

0 2
3

2
3 1 − 1

3 2

1 4
3

1
3 0 1

3 6

0 − 2
3 − 2

3 0 4
3 −2

We have the new basis {c4, c1}. Next we bring c2 into the basis and obtain

ǫ = min
i

{
xi

ai2
: ai2 > 0

}

= min

{
2
2
3

,
6
4
3

}

= 3,

which is achieved at i = 1. We obtain that

3
2

R1

===⇒ R3+ 2
3

R1

======⇒
R2− 4

3
R1

c1 c2 c3 c4 c5 b

0 1 1 3
2 − 1

2 3

1 0 −1 −2 1 2

0 0 0 1 1 0

Therefore (2, 3, 0, 0, 0) is a basic feasible solution such that the auxiliary
problem (9.21) is minimized with objective function value 0. Hence (2, 3, 0)
is a basic feasible solution of the original problem (9.20).
Notice that the columns c1, c2, c3 and b are common for both (9.20) and
(9.21). Therefore we can reuse it for the next steps. We remove the columns
for c4 and c5 and update the last row by the coefficients of the new objective
function.

c1 c2 c3 b

0 1 1 3

1 0 −1 2

2 3 0 0
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Eliminating the entries below the basic variables, we have the first simplex
tableau:

R3−3R1=====⇒
R3−2R2

c1 c2 c3 b

0 1 1 3

1 0 −1 2

0 0 −1 −13

Since the optimality condition is not achieved with r3 = −1, we bring c3 into
the basis:

ǫ = min
i

{
xi

ai3
: ai2 > 0

}

= min

{
3

1

}

= 3,

which is achieved at i = 1. We have

R2+R1=====⇒
R3+R1

c1 c2 c3 b

0 1 1 3

1 1 0 5

0 1 0 −10

which implies that the optimality is achieved and the basic feasible solution
is (5, 0, 3) with minimal objective function value 10. �

In summary, we carried out the following algorithm for the linear program-
ming problem (9.9):

Step 1: Write the system Ax = b such that b ≥ 0, remove any redun-
dant equations such that rank(A) = m < n and formulate the
auxiliary problem (9.10) for a basic feasible solution of (9.9);

Step 2: Write the augmented matrix [A : Im : b] for Ax+u = b and place
the coefficients d for the objective function dT x − z = 0 at the
last row with zero in the column for b, ignoring coefficients for z.
We call the matrix so obtained the initial tableau for (9.10);

Step 3: Use elementary row operations to reduce the nonzero entries un-
der the columns of the basic variables u into zero. We call the
matrix so obtained the first tableau for (9.10);
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Step 4: Transfer the extreme points so that u is no longer the basic vari-
able. At each transfer, the column to be moved out and to be
replaced by a specified column cp, 1 ≤ p ≤ n − m is the one
corresponding to the basic variable whose value is in row i0 such
that

ǫ = min
i

{
xi

aip
: aip > 0

}

;

Step 5: Check the optimality condition, that is, whether coefficients in
the last row satisfy rj ≥ 0 for 1 ≤ j ≤ n + m, and whether the
objective function is zero. If the optimal solution is nonzero, (9.9)
has no feasible solution. The algorithm stops. Otherwise, the first
n−m coordinates of the basic feasible solution currently obtained
are a basic feasible solution for (9.9);

Step 6: Delete the columns for u and the last row of the last tableau
obtained in Step 5, and update the last row by the coefficients of
the new objective function of (9.9). We obtain the initial tableau
for (9.9);

Step 7: Use elementary row operations to reduce the nonzero entries un-
der the columns of the basic variables into zero. We call the
matrix so obtained the first tableau for (9.9);

Step 8: Check the optimality condition on the current tableau, that is,
whether coefficients in the last row satisfy rj ≥ 0 for 1 ≤ j ≤ n.
If yes, then the values of the basic feasible solution are given in
the last column and the negative of the objective function value
−z0 is in the right lower corner;

Otherwise, transfer the extreme points to achieve optimality. At
each transfer, the column to be moved out and replaced by a
specified column cp, 1 ≤ p ≤ n is the row number i0 such that

ǫ = min
i

{
xi

aip
: aip > 0

}

.

Exercise 9.3.2.

1. Determine whether the following linear program has a basic feasible solu-
tion:

minimize 2x + 3y

subject to x + 2y + z = 8
3x + 4y + z = 28

x, y, z ≥ 0.
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2. Solve the following linear programming problem.

minimize x + y

subject to x + 2y + z = 8
3x + 4y + z = 18

x, y, z ≥ 0.

3. Solve the following linear programming problem.

minimize 2x + 3y

subject to x + 2y ≥ 8
3x + 4y ≥ 18

x, y ≥ 0.

4. Solve the following linear programming problem.

maximize 2x + 3y

subject to x + 2y ≤ 8
3x + 4y ≤ 18

x, y ≥ 0.

5. Solve the following linear programming problem.

minimize 2x − 3y

subject to x + 2y + z = 8
3x + 4y + z = 18

x, y, z ≥ 0.

6. Solve the following linear programming problem.

maximize −2x + 3y

subject to x + 2y + z = 8
3x + 4y + z = 18

x, y, z ≥ 0.
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LU decomposition, 36
QR decomposition, 96

algebraic multiplicity, 125
augmented matrix, 17

basic feasible solution, 204
basic variables, 204
bijection, 171
block diagonal form, 184

Cayley–Hamilton theorem, 130
characteristic polynomial, 121
Cholesky decomposition, 150
co-factor expansion, 109
column space, 52
convex combination, 203
convex hull, 206
coordinate vector, 64
cosine formula, 6
covariance matrix, 164
Cramer’s rule, 113

determinant, 102
diagonalizable matrix, 120
direct sum, 73
dot product, 4

eigenspace, 121
eigenvalue, 120
eigenvector, 120
elementary matrices, 13
even permutation, 106
extreme points, 202

feasible solution, 202
first principal component, 165

Fredholm alternative, 74
full singular value decomposition,

158
fundamental solution matrix, 136

Gauss–Jordan elimination, 20
Gaussian elimination, 20
generalized eigenspace, 186
geometrical multiplicity, 125
Gershgorin disc, 129
Gram–Schmidt process, 93

Householder matrix, 42, 99
Householder transformation, 99
hyperplane, 50

identity matrix, 9
infinity norm, 134
injective map, 171
inner product, 72
inner product space, 72
invariant subspace, 77, 179
inverse, 27
inversions, 103
invertible linear transformation,

174
invertible matrix, 27

Jordan basis, 188
Jordan block, 188
Jordan chain, 188
Jordan normal form, 184, 189

kernel of linear transformation,
175

least squares solution, 87
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linear combination, 2
linear operator, 169, 172
linear programming, 201
linear space, 46
linear transformation, 169
linearity, 23
linearly dependent, 11
lower triangular matrix, 43

matrix, 8
mean-deviation form, 164

nonbasic variables, 204
normal system, 87
nullspace, 51

objective function, 202
odd permutation, 106
one-to-one map, 171
onto map, 171
orthogonal, 72
orthogonal basis, 92
orthogonal complement, 74
orthogonal matrix, 41
orthonormal basis, 91

parallelogram law, 84
permutation matrix, 40
pivot, 17
polar decomposition, 163
polynomial interpolation, 89
positive definite matrix, 149
positive semidefinite, 152
principal component analysis, 164

projection, 79

quadratic forms, 143

range of linear transformation,
175

rank, 59
Rayleigh quotient, 160
reduced singular value

decomposition, 158
representation matrix of linear

transformation, 172
row space, 52

Schur factorization, 148
Schwarz inequality, 6
similar matrices, 127
singular matrix, 27
singular value decomposition, 157
singular values, 156
skew-symmetric, 43
spectral decomposition, 145
surjective map, 171
symmetric matrix, 37

trace, 127
transition matrix, 65
transpositions, 103
triangle inequality, 7

upper triangular matrix, 43

Vandermonde matrix, 89
vector space, 46
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