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e Preface ==

his book grew from an article I wrote in 2008 for the centenary of

Felix Klein’s Elementary Mathematics from an Advanced Standpoint.
The article reflected on Klein’s view of elementary mathematics, which
I found to be surprisingly modern, and made some comments on how
his view might change in the light of today’s mathematics. With further
reflection I realized that a discussion of elementary mathematics today
should include not only some topics that are elementary from the
twenty-first-century viewpoint, but also a more precise explanation of
the term “elementary” than was possible in Klein’s day.

So, the first goal of the book is to give a bird’s eye view of elementary
mathematics and its treasures. This view will sometimes be “from
an advanced standpoint,” but nevertheless as elementary as possible.
Readers with a good high school training in mathematics should be
able to understand most of the book, though no doubt everyone will
experience some difficulties, due to the wide range of topics. Bear in
mind what G. H. Hardy (1942) said in a review of the excellent book
What is Mathematics? by Courant and Robbins (1941): “a book on
mathematics without difficulties would be worthless.”

The second goal of the book is to explain what “elementary” means,
or at least to explain why certain pieces of mathematics seem to be
“more elementary” than others. It might be thought that the concept
of “elementary” changes continually as mathematics advances. Indeed,
some topics now considered part of elementary mathematics are there
because some great advance made them elementary. One such advance
was the use of algebra in geometry, due to Fermat and Descartes. On the
other hand, some concepts have remained persistently difficult. One is
the concept of real number, which has caused headaches since the time
of Euclid. Advances in logic in the twentieth century help to explain
why the real numbers remain an “advanced” concept, and this idea will
be gradually elaborated in the second half of the book. We will see how
elementary mathematics collides with the real number concept from
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various directions, and how logic identifies the advanced nature of the
real numbers—and, more generally, the nature of infinity—in various
ways.

Those are the goals of the book. Here is how they are implemented.
Chapter 1 briefly introduces eight topics that are important at the
elementary level—arithmetic, computation, algebra, geometry,
calculus, combinatorics, probability, and logic—with some illustrative
examples. The next eight chapters develop these topics in more
detail, laying down their basic principles, solving some interesting
problems, and making connections between them. Algebra is used
in geometry, geometry in arithmetic, combinatorics in probability,
logic in computation, and so on. Ideas are densely interlocked, even
at the elementary level! The mathematical details are supplemented
by historical and philosophical remarks at the end of each chapter,
intended to give an overview of where the ideas came from and how
they shape the concept of elementary mathematics.

Since we are exploring the scope and limits of elementary math-
ematics we cannot help crossing the boundary into advanced mathe-
matics on occasion. We warn the reader of these incursions with a star
(*) in the titles of sections and subsections that touch upon advanced
concepts. In chapter 10 we finally cross the line in earnest, with
examples of non-elementary mathematics in each of the eight topics
above. The purpose of these examples is to answer some questions that
arose in the elementary chapters, showing that, with just small steps
into the infinite, it is possible to solve interesting problems beyond the
reach of elementary methods.

What is new in this book—apart from a hopefully fresh look
at elementary mathematics—is a serious study of what it means for
one theorem to be “more advanced” or “deeper” than others. In the
last 40 years the subject of reverse mathematics has sought to classify
theorems by the strength of axioms needed to prove them, measuring
“strength” by how much the axioms assume about infinity. With this
methodology, reverse mathematics has classified many theorems in
basic analysis, such as the completeness of the real numbers, Bolzano-
Weierstrass theorem, and Brouwer fixed point theorem. We can now
say that these theorems are definitely “more advanced” than, say,
elementary number theory, because they depend on stronger axioms.
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So, if we wish to see what lies just beyond elementary mathematics,
the first place to look is analysis. Analysis clarifies not only the scope
of elementary calculus, but also of other fields where infinite processes
occur. These include algebra (in its fundamental theorem) and com-
binatorics (in the Konig infinity lemma, which is also important in
topology and logic). Infinity may not be the only characteristic that
defines advanced mathematics, but it is probably the most important,
and the one we understand the best.

Lest it seem that logic and infinity are formidable topics for a book
about elementary mathematics, I hasten to add that we approach them
very gently and gradually. Deeper ideas will appear only when they are
needed, and the logical foundations of mathematics will be presented
only in chapter 9—at which stage I hope that the reader will understand
their value. In this respect (and many others) I agree with Klein, who
said:

In fact, mathematics has grown like a tree, which does not start at its
tiniest rootlets and grow merely upward, but rather sends its roots deeper
and deeper and at the same time and rate that its branches and leaves are
spreading upward.

Klein (1932), p.15

In chapter 9 we pursue the roots of mathematics deep enough to see,
I hope, those that nourish elementary mathematics, and some that
nourish the higher branches.

I expect that this book will be of interest to prospective mathematics
students, their teachers, and to professional mathematicians interested
in the foundations of our discipline. To students about to enter uni-
versity, this book gives an overview of things that are useful to know
before proceeding further, together with a glimpse of what lies ahead.
To those mathematicians who teach at university level, the book can be
arefresher course in the topics we want our students to know, but about
which we may be (ahem) a little vague ourselves.

Acknowledgments. For the germ of the idea that led to this book,
credit should go to Vagn Lundsgaard Hansen and Jeremy Gray, who
commissioned my article on Klein, and later suggested that I write
a book of a similar kind. I thank my wife, Elaine, as ever, for her
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tireless proofreading and general encouragement. Thanks also go to
Derek Holton, Rossella Lupacchini, Marc Ryser, and two anonymous
referees for corrections and helpful comments. I am indebted to the
University of San Francisco for their continuing support, and to
Cambridge University DPMMS for the use of their facilities while
several chapters of the book were being written. Finally, special thanks
go to Vickie Kearn and her team at Princeton University Press for
masterly coordination of all aspects of the production of this book.

John Stillwell
Cambridge, July 2, 2015
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Elementary Topics

PREVIEW

he present chapter introduces the fields of mathematics that will be

considered “elementary” in this book. They have all been considered
“elementary” at some stage in the history of mathematics education,
and they are all still taught at school level in some places today. But even
“elementary” topics have their mysteries and difficulties, which call for
explanation from a “higher standpoint.” As we will show, this applies
to the topics considered by Klein (1908)—arithmetic, algebra, analysis,
and geometry—plus a few other topics that existed only in embryonic
form in 1908 but are quite mature today.

Thus we have sections on arithmetic, algebra, and geometry, as
Klein did, plus his “analysis” interpreted as “calculus,” and the new
topics of computation, combinatorics, probability, and logic, which
matured only in the last century.

It is clear that computation looms over mathematics today, at all
levels, and that this should include the elementary level. Combinatorics
is a close relative of computation, and it has some very elementary
aspects, so it should be included for that reason alone. A second,
more classical reason, is that combinatorics is a gateway to probability
theory—another topic with elementary roots.

Finally, there is the topic of logic. Logic is the heart of mathematics,
yet logic is not viewed as a mathematical topic by many mathemati-
cians. This was excusable in 1908—when few if any theorems about
logic were known—but not today. Logic contains some of the most
interesting theorems of mathematics, and it is inextricably connected
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with computation and combinatorics. The new trio computation-
combinatorics-logic now deserves to be taken as seriously in elementary
mathematics as the old trio arithmetic-algebra-geometry.

1.1 Arithmetic

Elementary mathematics begins with counting, probably first with the
help of our fingers, then by words “one,” “two,” “three,” ..., and in
elementary school by symbols 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, .... This
symbolism, of base 10 numerals, is already a deep idea, which leads to
many fascinating and difficult problems about numbers. Really? Yes,
really. Just consider the meaning of a typical numeral, say 3671. This
symbol stands for three thousands, plus six hundreds, plus seven tens,
plus one unit; in other words:

3671 =3-1000+6-100+7-10+1
=3.10°+6-10>+7-10+1.

Thus to know the meaning of decimal numerals, one already has to
understand addition, multiplication, and exponentiation!

Indeed, the relationship between numerals and the numbers they
represent is our first encounter with a phenomenon that is common
in mathematics and life: exponential growth. Nine positive numbers
(namely, 1, 2, 3, 4, 5, 6, 7, 8, 9) are given by numerals of one digit, 90
(namely 10, 11, 12, ..., 99) by numerals of two digits, 900 by numerals
of three digits, and so on. Adding one digit to the numeral multiplies by
10 the number of positive numbers we can represent, so a small number
of digits can represent any number of physical objects that we are likely
to encounter. Five or six digits can represent the capacity of any football
stadium, eight digits the population of any city, ten digits the population
of the world, and perhaps 100 digits suffices to represent the number of
elementary particles in the known universe. Indeed, it is surely because
the world teems with large numbers that humans developed a system of
notation that can express them.

It is a minor miracle that large numbers can be encoded by small
numerals, but one that comes at a price. Large numbers can be added
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and multiplied only by operating on their numerals, and this is not
trivial, though you learned how to do it in elementary school. Indeed,
it is not uncommon for young students to feel such a sense of mastery
after learning how to add and multiply decimal numerals, that they feel
there is not much else to learn in math. Maybe just bigger numbers.
It is lucky that we gloss over exponentiation, because exponentiation of
large numbers is practically impossible! Thus it takes only a few seconds
to work out 231 4 392 + 537 by hand, and a few minutes to work out
231 x 392 x 537. But the numeral for

23 1392537

is too long to be written down in the known universe, with digits the
size of atoms.

Even with numerals of more modest length—say, those that can be
written on a single page—there are problems about multiplication that
we do not know how to solve. One such is the problem of factorization:
finding numbers whose product is a given number. If the given number
has, say, 1000 digits, then it may be the product of two 500-digit
numbers. There are about 10°%° such numbers, and we do not know
how to find the right ones substantially faster than trying them all.

Here is another problem in the same vein: the problem of recogniz-
ing prime numbers. A number is prime if it is greater than 1 and not the
product of smaller numbers. Thus the first few prime numbers are

2, 3, 5 7, 11, 13, 17, 19, 23, 29, 3lI,

There are infinitely many prime numbers (as we will see in chapter 2)
and it seems relatively easy to find large ones. For example, by consult-
ing the Wolfram Alpha website one finds that

next prime after 10'° = 10" + 19,
next prime after 10°° = 10%° + 39,
next prime after 10*° = 10%° + 121,

next prime after 10°° = 10°° + 151,
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next prime after 10" = 10" + 267,
next prime after 10°%° = 10°% + 961,

next prime after 10" = 10" 4 453,

Thus we can readily find primes with at least 1000 digits. Even more
surprising, we can test any number with 1000 digits and decide whether
it is prime. The surprise is not only that it is feasible to recognize
large primes (a problem not solved until recent decades) but that it is
feasible to recognize non-prime numbers without finding their factors.
Apparently, it is harder to find factors—as we said above, we do not
know how to do this for 1000-digit numbers—than to prove that they
exist.

These recent discoveries about primes and factorization underline
the mysterious nature of elementary arithmetic. If multiplication can
be this difficult, what other surprises may be in store? Evidently, a
complete understanding of elementary arithmetic is not as easy as it
seemed in elementary school. Some “higher standpoint” is needed to
make arithmetic clearer, and we will search for one in the next chapter.

1.2 Computation

As we saw in the previous section, working with decimal numerals
requires some nontrivial computational skills, even to add and multiply
whole numbers. The rules, or algorithms, for adding, subtracting, and
multiplying decimal numerals are (I hope) sufficiently well known
that I need not describe them here. But it is well to recall that they
involve scores of facts: the sums and products of possible pairs of digits,
plus rules for properly aligning digits and “carrying.” Learning and
understanding these algorithms is a significant accomplishment!
Nevertheless, we will usually assume that algorithms for addition,
subtraction, and multiplication are given. One reason is that the deci-
mal algorithms are fast, or “efficient,” in a sense we will explain later, so
any algorithm that is “efficient” in its use of addition, subtraction, and
multiplication is “efficient” in some absolute sense. Such algorithms
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have been known since ancient times, before decimal numerals were
invented. The original and greatest example is the Euclidean algorithm
for finding the greatest common divisor of two numbers.

The Euclidean algorithm takes two positive whole numbers and,
as Euclid put it, “repeatedly subtracts the smaller from the larger.” For
example, if one begins with the pair 13, 8 then repeated subtraction
gives the following series of pairs

13,8 —>8,13—-8=38,5
— 5,8—5=5,3
— 3,5—-3 =3,2
— 2,3-2=2,1
- 1,2—-1=1,1

—at which point the two numbers are equal and the algorithm halts.
The terminal number, 1, is indeed the greatest common divisor (gcd)
of 13 and 8, but why should the gcd be produced in this way? The first
point is: if a number d divides two numbers a and b, then d also divides
a — b. In particular, the greatest common divisor of a and b is also a
divisor of @ — b, and hence of all numbers produced by the sequence of
subtractions. The second point is: subtraction continually decreases the
maximum member of the pair, and hence the algorithm eventually halts,
necessarily with a pair of equal numbers. From this it follows that the
terminal number equals the gcd of the initial pair.

The Euclidean algorithm is an admirable algorithm because we can
easily prove that it does what it is supposed to, and with a little more
work we can prove that it is fast. To be more precise, if the initial
numbers are given as decimal numerals, and if we replace repeated
subtractions of b from a by division of a by b with remainder, then the
number of divisions needed to obtain gcd(a, b) is roughly proportional
to the total number of digits in the initial pair.

Our second example of an algorithm is more modern—apparently
dating from the 1930s—and again involving elementary arithmetic
operations. The so-called Collatz algorithm takes an arbitrary positive
whole number 7, replacing it by 72/2 if 7 is even and by 3 + 1 if z is odd,
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then repeats the process until the number 1 is obtained. Amazingly,
we do not know whether the algorithm always halts, despite the fact
that it has halted for every number 7 ever tried. The question whether
the Collatz algorithm always halts is known as the Collatz or 3n+1
problem.

Here is what the Collatz algorithm produces for the inputs 6
and 11:

6—>3—->10—->5—->16—->8—>4—>2—>1.
11—-34—>17—>52—->26—>13—-40—->20—- 10— 5— 16 —>
8§—>4—-2—1.

A century ago there was no theory of algorithms, because it was not
known that the concept of “algorithm” could be made mathematically
precise. Quite coincidentally, the Collatz problem arrived at about the
same time as a formal concept of algorithm, or computing machine,
and the discovery that the general halting problem for algorithms is
unsolvable. That is, there is no algorithm which, given an algorithm
A and input 7, will decide whether A halts for input i. This result
has no known implications for the Collatz problem, but it has huge
implications for both computation and logic, as we will see in later
chapters.

In the 1970s the theory of computation underwent a second up-
heaval, with the realization that computational complexity is important.
As pointed out in the previous section, some computations (such as ex-
ponentiation of large numbers) cannot be carried out in practice, even
though they exist in principle. This realization led to a reassessment of
the whole field of computation, and indeed to a reassessment of all fields
of mathematics that involve computation, starting with arithmetic. In
the process, many puzzling new phenomena were discovered, which
as yet lack a clear explanation. We have already mentioned one in the
previous section: it is feasible to decide whether 1000-digit numbers
have factors, but apparently not feasible to find the factors. This is
a troubling development for those who believe that existence of a
mathematical object should imply the ability to find the object.

It remains to be seen exactly how computational complexity will
affect our view of elementary mathematics, because the main problems
of computational complexity are not yet solved. In chapter 3 we will
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explain what these problems are, and what they mean for the rest of
mathematics.

1.3 Algebra

Elementary algebra has changed considerably since the time of Klein.
In his day, the term meant mainly the manipulation of polynomials—
solving equations up to the fourth degree, solving systems of linear
equations in several unknowns and related calculations with deter-
minants, simplifying complicated rational expressions, and studying
the curves defined by polynomials in two variables—skills which were
developed to a high level. Formidable examples can be found in the
“pre-calculus” books of 100 years ago, such as the Algebra of Chrystal
(1904) and the Pure Mathematics of Hardy (1908).

For example, Chrystal’s very first exercise set asks the student to

simplify

1 1 1 1 1 1
X y P4 X y z
and by the third exercise set (immediately after addition and multipli-

cation of fractions have been defined) the student is expected to show
that the following expression is independent of x:

x4 (xz _ a2)2 (xz _ b2)2

a2b? + a2(a® — b?) - b2(a? — b?)’

Today, just entering these expressions into a computer algebra
system would probably be considered a challenging exercise. But if
hand computation has suffered, abstraction has gained, and there
is now a “higher standpoint” from which elementary algebra looks
entirely different.

This is the standpoint of structure and axiomatization, which
identifies certain algebraic laws and classifies algebraic systems by the
laws they satisfy. From this standpoint, the above exercises in Chrystal
are simply consequences of the following algebraic laws, now known as
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the field axioms:

a+b=b+a, ab=ba
a+b+c)=@+b)+c, a(bc) = (ab)c
a+0=a, a-l=a
a+(—a)=0, a-a'=1 fora+#0
alb+c)=ab+ac.

The object of algebra now is not to do a million exercises, but to
understand the axiom system that encapsulates them all. The nine field
axioms encapsulate the arithmetic of numbers, high school algebra,
and many other algebraic systems. Because these systems occur so
commonly in mathematics, they have a name—fields—and an extensive
theory. As soon as we recognize that a system satisfies the nine field
axioms, we know that it satisfies all the known theory of fields (includ-
ing, if necessary, the results in Chrystal’s exercises). We also say that a
system satisfying the field axioms has the structure of a field. The first
field that we all meet is the system Q of rational numbers, or fractions,
but there are many more.

With the explosion of mathematical knowledge over the last cen-
tury, identifying structure, or “encapsulation by axiomatization,” has
become one of the best ways of keeping the explosion under control. In
this book we will see that there are not only axiom systems for parts of
algebra, but also for geometry, number theory, and for mathematics as
a whole. It is true that the latter two axiom systems are not complete—
there are some mathematical facts that do not follow from them—
but it is remarkable that an axiom system can even come close to
encapsulating all of mathematics. Who would have thought that almost
everything, in the vast world of mathematics, follows from a few basic
facts?

To return to algebraic structures, if we drop the axiom about
a~! from the field axioms (which effectively allows the existence of
fractions) we get axioms for a more general structure called a ring.
The first ring that we all meet is the system Z of integers. (The letter
7. comes from the German word “Zahlen” for “numbers.”) Notice that
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the number system we started with, the positive integers
N={1,2,3,4,5,...),

is neither a ring nor a field. We get the ring Z by throwing in the
difference m —n for any m and » in N, and then we get the field Q
by throwing in the quotient m/n of any m and n # 0 in Z. (This is
presumably where the letter Q comes from.)

Thus N, Z, and Q can be distinguished from each other not only by
their axiomatic properties, but also by closure properties:

o Nis closed under 4+ and x; that is, if 72 and » are in N then so
are m~+n and m x n.

o Zis closed under +, —, and x. In particular, 0 = a — a exists
and 0 — g, or —a, is meaningful for each g in Z.

o Qis closed under +, —, X, and =+ (by a nonzero number). In
particular, a~! = 1 + g is meaningful for each nonzero a in Q.

It is not immediately clear why Z and QQ are more useful than N, since all
properties of integers or rational numbers are inherited from properties
of positive integers. The reason must be that they have “better algebraic
structure” in some sense. Ring structure seems to be a good setting for
discussing topics such as divisibility and primes, while field structure is
good for many things—not only in algebra, but also in geometry, as we
will see in the next section.

1.4 Geometry

Over the last century there has been much debate about the place of
geometry in elementary mathematics, and indeed about the meaning
of “geometry” itself. But let’s start with something that has been an
indisputable part of geometry for over 2000 years: the Pythagorean
theorem. As everyone knows, the theorem states that the square on the
hypotenuse of a right-angled triangle is equal (in area) to the sum of the
squares on the other two sides. Figure 1.1 shows the squares in question,
with the square on the hypotenuse in gray and the squares on the other
two sides in black.
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Figure 1.1: The Pythagorean theorem.

Figure 1.2: Proof of the Pythagorean theorem.

The theorem is hardly obvious, yet there is a surprisingly simple
proof, shown in figure 1.2. The left half of the figure shows that the
square on the hypotenuse equals a certain big square minus four copies
of the triangle.

The right half shows that the sum of the squares on the other two
sides is the same: the big square minus four copies of the triangle. QED!

Given that the Pythagorean theorem belongs in any treatment of
geometry, the question remains: how best to “encapsulate” geometry
so that the centrality of the Pythagorean theorem is clear? The tra-
ditional answer was by the axioms in Euclid’s Elements, which yield
the Pythagorean theorem as the climax of Book I. This approach was
universal until the nineteenth century, and still has advocates today,
but 100 years ago it was known to be lacking in rigor and universality.
It was known that Euclid’s axiom system has gaps, that filling the gaps
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Figure 1.3: Distance from the origin.

requires quite a large number of extra axioms, and that there are other
geometries which require further modifications of the axiom system.

It seemed to Klein, for example, that the axiomatic approach
should be abandoned and that geometry should be based on the
algebraic approach pioneered by Descartes in the seventeenth century.
In algebraic geometry, points in the plane are given by ordered pairs
(x, y) of numbers, and lines and curves are given by polynomial
equations in x and y. Since the point (x, y) lies at horizontal distance
x and vertical distance y from the origin O, we define its distance
from O to be \/x? + y?, motivated by the Pythagorean theorem (see
figure 1.3).

It follows that the unit circle, consisting of the points at distance
1 from O, has equation x*+ y* = 1. More generally, the circle with
center (a, b) and radius 7 has equation (x —a)* + (y — b)* =r2.

The problem with this algebraic approach is that it goes too far:
there is no natural restriction on the equations that yields precisely the
geometric concepts in Euclid. If we stop at linear equations we get only
lines; if we stop at quadratic equations we get all the conic sections—
ellipses, parabolas, and hyperbolas—whereas Euclid has only circles.
However, there is a different algebraic concept that stops at precisely
the right place: the concept of a vector space with an inner product.
We will not give the general definition of a vector space here (see
chapter 4), but instead describe the particular vector space R? that is
suitable for Euclidean plane geometry.

This space consists of all the ordered pairs (x, y), where x and y
belong to R, the set of real numbers (we say more about R in the next
section; geometrically it is the set of points on the line). We are allowed
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)

Figure 1.4: The angle between two vectors.
to add pairs by the rule
(x,y)+(a,b)=(x+a,y+Db)
and to multiply a pair by any real number c¢ using the rule

c(x, y) = (cx, cy).

These operations have natural geometric interpretations: Adding (a, b)
to each (x, y) means translating the plane; namely, shifting all its points
through distance a horizontally and distance b vertically. Multiplying
each (x, y) by ¢ means magnifying the whole plane by the factor c.
As we will see in chapter 5, even in this simple setting we can prove
some geometrically interesting theorems. But to capture all of Euclid’s
geometry we need an extra ingredient: the inner product (also called the
dot product) defined by

(x1, Y1) - (62, Y2) = X120 + M1 2.

Notice that

(x, ) (x, y)=x>+ 9> = |(x, ),

where [(x, y)| denotes the distance of (x, y) from the origin O. Thus
the inner product gives a definition of distance agreeing with the
Pythagorean theorem. Once we have the concept of distance, we can
also obtain the concept of angle, because it turns out that

(1, y1) - (2, y2) = (%1, y)II(%2, ¥2)| cos 6,

where 6 is the angle “between” (x;, y1) and (xz, y,) as shown in
figure 1.4.
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The main advantages of using the concept of a vector space with an
inner product, rather than Euclid-style axioms, are familiarity and uni-
versality. The rules for calculating with vectors are similar to traditional
algebra; also, vector spaces and inner products occur in many parts of
mathematics, so they are worth learning as general-purpose tools.

1.5 Calculus

Calculus differs from elementary arithmetic, algebra, and geometry
in a crucial way: the presence of infinite processes. Maybe the gulf
between finite and infinite is so deep that we should use it to sep-
arate “elementary” from “non-elementary,” and to exclude calculus
from elementary mathematics. However, this is not what happens in
high schools today. A century ago, calculus was excluded, but infinite
processes certainly were not: students became familiar with infinite
series in high school before proceeding to calculus at university. And
way back in 1748, Euler wrote a whole book on infinite processes,
Introductio in analysin infinitorum (Introduction to the analysis of the
infinite), without mentioning differentiation and integration. This is
what “pre-calculus” used to mean!

So, it is probably not wise to exclude infinity from elementary
mathematics. The question is whether infinity should be explored
before calculus, in a study of infinite series (and perhaps other infinite
processes), or after.

In my opinion there is much to be said for looking at infinity first.
Infinite series arise naturally in elementary arithmetic and geometry,
and indeed they were used by Euclid and Archimedes long before
calculus was invented. Also coming before calculus, albeit by a narrower
historical margin, was the concept of infinite decimals, introduced by
Stevin (1585a). Infinite decimals are a particular kind of infinite series,
extending the concept of decimal fraction, so they are probably the
infinite process most accessible to students today.

Indeed, an infinite decimal arises from almost any ordinary fraction
when we attempt to convert it to a decimal fraction. For example

1/3=0.333333....
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So, in some ways, infinite decimals are familiar. In other ways they are
puzzling. Many students dislike the idea that

1=0.999999...,

because 0.999999 ... seems somehow (infinitesimally?) less than 1.
Examples like this show that the limit concept can, and probably
should, be discussed long before it comes up in calculus. But before
getting to the precise meaning of infinite decimals, there is plenty of fun
to be had with them. In particular, it is easy to show that any periodic
infinite decimal represents a rational number. For example, given

x =0.137137137137 . ..

we can shift the decimal point three places to the right by multiplying
by 1000, so

1000x = 137.137137137 . . . = 137 + x.

We can then solve for x, obtaining x = 137/999. A similar argument
works with any decimal that is ultimately periodic, such as

y=0.31555555. ...
In this case 1000y = 315.555555 . . . and 100y = 31.555555 . . ., so that
1000y — 100y = 315 — 31,

which means 900y = 284 and hence y = 284/900.

Conversely, any rational number has an ultimately periodic deci-
mal (perhaps ultimately all zeros). This is because only finitely many
remainders are possible in the division process that produces the
successive decimal digits, so eventually a repetition will occur.

The infinite decimals above are examples of the geometric series

a+ar+ar*+ar*+--- with |r|<1.

For example,
1 3 3 3

3T et
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Figure 1.5: Filling the parabolic segment with triangles.

which has @ =3/10 and r = 1/10. There is no compelling reason to
call these series “geometric,” but they do arise in geometry. One of the
first examples was given by Archimedes: finding the area of a parabolic
segment. This problem, which today would be solved by calculus, can
be reduced to summation of a geometric series as follows.

The idea is to fill the parabolic segment by infinitely many triangles,
and to sum their areas. It turns out, with the very simple choice of
triangles shown in figure 1.5, that the areas form a geometric series.
The first triangle has two vertices at the ends of the parabolic segment,
and its third vertex at the bottom of the parabola. The next two triangles
lie under the lower sides of the first triangle, with their third vertices on
the parabola at horizontal distance half-way between their first two, and
SO on.

Figure 1.5 shows the first three stages of the filling process for the
segment of the parabola y = x* between x = —1 and x = 1. The first
triangle (black) obviously has area 1. It can be checked that the next
two (dark gray) each have area 1/8, so together they have area 1/4. The
next four (light gray) have total area 1/4%, and so on. Hence the area of
the parabolic segment is
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We can find A by multiplying both sides of this equation by 4, obtaining

4A=4+1+ ! + ! 2+
o 4 4 ’

whence it follows by subtraction that
3A=4 and therefore A=4/3.

This example shows that, with a little ingenuity, a problem nor-
mally solved by integration reduces to summation of a geometric
series. In chapter 6 we will see how far we can go with an elementary
minimum of calculus (integration and differentiation of powers of x)
when infinite series are given a greater role. In particular, we will see
that the geometric series is the main ingredient in such celebrated
results as

1 1 1 1

1‘12:1—54-5—14‘
and

T, 1,11

4 3 5 7

1.6 Combinatorics

A fine example of a combinatorial concept is the so-called Pascal’s
triangle, which has historical roots in several mathematical cultures.
Figure 1.6 shows an example from China in 1303.
Figure 1.7 shows the same numbers as ordinary Arabic numerals.
The Chinese knew that the numbers in the (7 4+ 1)st row are the
coefficients in the expansion of (a + b)". Thus

(a+b)' = a+b

(a+b)? = a’+2ab+ b?
(a+b) = a’+3a*b+3ab* + b’
(a+b)= a*+4a’b+ 6a*b? + 4ab’® + b*

(a+by° = a°+5a*b+10a°b* +10a%b® + 5ab* + b°
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Figure 1.6: “Pascal triangle” of Zhu Shijie (1303).

Figure 1.7: Arabic numeral Pascal triangle.

(a+b)f = a® +6a°b + 15a*b* + 20a>b® + 15a%b* + 6ab® + b°
(@a+b = a’+7a°b+21a°b*+35a*b>+35a°b*+21a*b°+7ab® + b7

Because they arise from the “binomial” a + b, the numbers in the
(n+ 1)st row of the triangle are called binomial coefficients. They are
denoted by (§), (), ..., (). Looking back at figure 1.7, we notice that
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each binomial coefficient (Z) in row 7z + 1 is the sum of the two above
it, (Z:}) and (”;1), in row 7. This famous property of the binomial
coefficients is easily explained by algebra. Take (g) for example. On the
one hand, by definition

6
(3) = coefficient of 2>b* in (a + b)°.

On the other hand, (a + b)® = a(a + b)> + b(a + b)°, so there are two
ways that @*b® arises in (a + b)°: from the first term, as a - a*b®, and
from the second term, as b - a>b*. Because of this

6
( ) = coefficient of a*b’ in (a + b)® + coefficient of a*b? in (a + b)®

00

This argument is already a little bit “combinatorial,” because we con-
sider how a®b? terms arise as combinations of terms from a(a + b)° and
b(a + b)°. Now let’s get really combinatorial, and consider how akb”~*
terms can arise from the # factors a + b in (a + b)".

To get akb"*

the remaining 7 — k factors. Thus the number of such terms,

we must choose a from k of the factors and b from

k

n
< > = number of ways of choosing k items from a set of 7 items.
As a reminder of this fact, we pronounce the symbol (Z) as
“n choose k.” The combinatorial interpretation gives us an explicit

formula for (Z) , namely

n\ nn—1)n-2)---(n—k+1)
k| k! ‘

To see why, imagine making a sequence of k choices from a set of 7
items.
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The first item can be chosen in 7 ways, then 7z — 1 items remain,
Next, the second item can be chosen in 7z — 1 ways, and 7 — 2 items
remain.

Next, the third item can be chosen in # — 2 ways, and 7 — 3 items
remain.

Finally, the kth item can be chosen in 72 — k4 1 ways.

Thus there are n(n—1)(n—2)---(n—k+1) sequences of choices.
However, we do not care about the order in which items are chosen—
only the set of k items finally obtained—so we need to divide by the
number of ways of arranging k items in a sequence. This number, by
the argument just used, is

kl'=k(k—1)(k—2)---3.2-1.

This is how we arrive at the formula for the binomial coefficient (Z)
above.

Combining this evaluation of the binomial coefficients with their
definition as the coefficients in the expansion of (a + b)", we obtain the
so-called binomial theorem:

—1
(a+b)"=a"+na""'b+ n(nz)a”_zb2
nn—1)(n—2)

s a3 4.+ nab 4+ b,

This name is also used for the special case witha = 1 and b = x, namely

nn—1 nn—1)(n—2

We now have two ways to compute the binomial coefficients (Z):
by explicit formulas and by the process of forming successive rows
in Pascal’s triangle. We also have a very concise encapsulation of the
sequence (g), ('1’), s (Z) as the coefficients in the expansion of
(14 x)". A function such as (1 + x)”, which encapsulates a sequence
of numbers as the coefficients of powers of x, is called a generating
function for the sequence. Thus (1 + x)” is a generating function for

the sequence of binomial coefficients (3), (}), ..., (%)
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In chapter 7 we will find generating functions for other sequences
of numbers that arise in combinatorics. In many cases these are infinite
sequences. So combinatorics, like calculus, draws on the theory of
infinite series.

Combinatorics is sometimes called “finite mathematics” because, at
least at the elementary level, it deals with finite objects. However, there
are infinitely many finite objects, so to prove anything about all finite
objects is to prove something about infinity. This is the ultimate reason
why elementary mathematics cannot exclude infinity, and we say more
about it in section 1.8.

1.7 Probability

Given two players each of whom lacks a certain
number of games to complete the set, to find by the
arithmetic triangle what the division should be (if
they wish to separate without playing) in the light of
the games each lacks.

Pascal (1654), p. 464

The concept of probability has been in the air for as long as human
beings have gambled, yet until a few hundred years ago it was thought
too lawless for mathematics to handle. This belief began to change in the
sixteenth century, when Cardano wrote an elementary book on games
of chance, the Liber de ludo aleae. However, Cardano’s book was not
published until 1663, by which time mathematical probability theory
had begun in earnest, with the Pascal (1654) solution of the problem of
division of stakes, and the first published book on probability theory by
Huygens (1657).

We can illustrate Pascal’s solution with a simple example. Suppose
players I and II agree to flip a fair coin a certain number of times, with
the winner agreed to be the first to call the outcome correctly a certain
number of times. For some reason (police knocking at the door?) the
game has to be called off with 7 plays remaining, at which stage player
I needs k more correct calls to win. How should the players divide the
money they have staked on the game?
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Figure 1.8: Graph of the binomial coefficients ().

Pascal argued that the stakes should be divided in the ratio
probability of a win for I : probability of a win for II.

Further, since each play of the game is equally likely to be a win for I or
I1, these probabilities are in the ratio

how often I has > k wins in 7 plays : how often I has < k wins in 7
plays.

The problem is now reduced to a problem in combinatorics: in how
many ways can > k things be chosen from a set of 7 things? And the
binomial coefficients give the answer:

(Z>+<nfl>+...+(z).

Thus the ratio of probabilities, which is the ratio in which the stakes
should be divided, is:

(Z)+(nfl)+---+(’,§) ; (kf1>+<kf2)+...+(’g>.

For even moderate values of 7 and k, this ratio would be difficult to
compute, or even express, without the binomial coefficients. Suppose,
for example, that 7 = 11 and k = 7. Figure 1.8 shows a bar graph of the
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values of (2) for m =0 to 11. They range in value from 1 to 462, with
those for 72 > 7 shown in gray. Thus the ratio in this case is the ratio of
the gray area to the black area.

And in fact

Y M) (M) () (M) =330+ 1654 55+ 1141
7 8 9 10 11)

= 562.

The sum of all the binomial coefficients (1,:) is (14 1)1 =211 =2048,
so the other side of the ratio is 2048 — 562 = 1486. Thus, in this case,
562/2048 of the stake should go to player I and 1486/2048 to player II.
With larger values of 7 and k the binomial coefficients rapidly
become larger; indeed their total 2” grows exponentially. However,
an interesting thing happens as 7 increases. The shape of the graph
of binomial coefficients, when suitably scaled in the vertical direction,
approaches that of the continuous curve
y=e™
This is advanced probability theory, which involves calculus, but we will
say a little more about it in chapter 8 and give a proof in section 10.7.

1.8 Logic

The most distinctive feature of mathematics is that it proves things,
by logic; however, we postpone the details until chapter 9. Here we
discuss only the most mathematical part of logic: mathematical in-
duction, which is the simplest principle for reasoning about infinity.
Mathematical induction is also known as complete induction to distin-
guish it from the “incomplete induction” in daily use, which guesses a
general conclusion (often incorrectly) from a few special cases. Proof
by induction owes its existence to the inductive property of the natural
numbers 0, 1, 2, 3, 4, 5, ...; namely, that any natural number can be
reached by starting at 0 and repeatedly adding 1.
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Figure 1.9: The towers of Hanoi.

It follows from the inductive property that any property P true of
all natural numbers can be proved in two steps:

1. Prove that P holds for 0 (the base step).
2. Prove that P “propagates” from each number to the next; that
is, if P holds for 7 then P holds for 7 + 1 (the induction step).

Obviously, it is not essential to start at 0. If we wish to prove that some
property P holds for all natural numbers from, say, 17 onwards then
the base step will be to prove that P holds for 17.

Induction is not only a natural (and indeed inevitable) method of
proof, it is often remarkably efficient, because it “hides” the details of
why P holds for each 7. We only have to understand why P holds for
the starting value, and why it propagates from each number to the next.
Here is an example: the classic combinatorial problem known as the
towers of Hanoi (figure 1.9).

We are given a board with three pegs, on one of which is a stack of
n disks whose radii decrease with height. (The disks are pierced in the
center so that they can slip onto a peg.) The problem is to move all the
disks onto another peg, one at a time, in such a way that a larger disk
never rests on top of a smaller one.

First suppose that # = 1. With only one disk we can obviously solve
the problem by moving the disk to any other peg. Thus the problem
is solved for 7 = 1. Now suppose that it is solved for 7 = k disks and
consider what to do with k4 1 disks. First, use the solution for k disks
to shift the top k disks of the stack onto another peg; say, the middle
peg. This leaves just the bottom disk of the stack on the left peg, and we
can move it onto the empty right peg. Then use the solution for k disks
again to shift the stack of & disks on the middle peg onto the right peg.
Donel!
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It is a great virtue of this proof that we do not have to know how
to shift a stack of 7 disks—only that it can be done—because it is
quite complicated to shift stacks of only three or four. In fact, it takes
2" — 1 moves to shift a stack of # disks, and the proof is by a similar
induction:

Base step. It clearly takes 1 = 2! — 1 move to shift a stack of 1 disk.

Induction step. If it takes 2k _ 1 moves to shift a stack of k disks,
consider what it takes to shift a stack of k£ + 1. However this is done,
we must first shift the top k disks, which takes 2%k — 1 moves. Then we
must move the bottom disk to a different peg (one move), because it
cannot rest on top of any other disk. Finally we must shift the stack
of k disks back on top of the bottom disk, which takes 2% — 1 moves.
Therefore, the minimum number of moves to shift a stack of k+ 1
disks is

@ —D+1+ - =21,
as required.

To bolster my claim that induction is “inevitable,” let me point out
its role in arithmetic. As we have already seen, the natural numbers 0,
1,2, 3,4,5, ...arise from 0 by repeated applications of the successor
function S(n) = n+ 1. What is more remarkable is that all computable
functions can be built from S(7) by inductive definitions (also called
recursive definitions). Here is how to obtain addition, multiplication,
and exponentiation.

The base step in the definition of addition is

m+0=m,
which defines 72+ # for all 72 and for # = 0. The induction step is
m+ S(k) = S(m+ k),

which defines m+n for all m and for n = S(k), given that m+k is
already defined. So it follows by induction that 772+ 7 is defined for all
natural numbers 772 and 7. Essentially, induction formalizes the idea that
addition is repeated application of the successor function.
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Now that addition is defined, we can use it to define multiplication
by the following equations (base step and induction step, respectively):

m-0=0, m-S(k)=m-k+m.

This definition formalizes the idea that multiplication is repeated addi-
tion. And then, with multiplication defined, we can define exponentia-
tion by

m’ = 1, 5B — k. m,
which formalizes the idea that exponentiation is repeated multiplica-
tion.

Induction has been present in mathematics, in some form, since
the time of Euclid (see the Historical Remarks below). However, the
idea of using induction as the foundation of arithmetic is comparatively
recent. The inductive definitions of addition and multiplication were
introduced by Grassmann in 1861, and were used by him to inductively
prove all the ring properties of the integers given in section 1.3. These
imply the field structure of the rational numbers, and with it the
field structure of the real (see chapter 6) and complex numbers. Thus
induction is not only the basis for counting but also for algebraic
structure.

1.9 Historical Remarks

Once upon a time in America, Euclid was a revered figure who gave his
name to many a Euclid Avenue across the country. (This was part of
the nineteenth-century classical renaissance, during which many place
names were chosen from the Greek and Roman classics.) For example,
there is Euclid Avenue in Cleveland which became “millionaire’s row,”
and Euclid Avenue in Brooklyn which became a stop on the route of the
A train. Figure 1.10 gives a glimpse of Euclid Avenue in San Francisco,
with some appropriate geometric figures.

In nineteenth-century America, as in most of the Western world,
Euclid’s Elements was regarded as a model presentation of mathematics
and logic: essential knowledge for any educated person. One such
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Figure 1.10: Euclid Avenue, San Francisco.

person was Abraham Lincoln. Here is what he, and one of his biog-
raphers, said about Lincoln’s study of Euclid.

He studied and nearly mastered the six books of Euclid since he was a
member of Congress. He regrets his want of education, and does what
he can to supply the want.

Abraham Lincoln (writing of himself), Short Autobiography

He studied Euclid until he could demonstrate with ease all the

propositions in the six books.
Herndon’s Life of Lincoln

So what is the Elements, this book that cast such a long shadow
over mathematics and education? The Elements is a compilation of the
mathematics known in the Greek civilization of Euclid’s time, around
300 BCE. It contains elementary geometry and number theory, much
as they are understood today, except that numbers are not applied to
geometry, and there is very little algebra. There are actually thirteen
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books in the Elements, not six, but the first six contain the elementary
geometry for which the Elements is best known. They also contain the
very subtle Book V which tackles (what we would now call) the problem
of describing real numbers in terms of rational numbers. If Lincoln
really mastered Book V he was a mathematician!

The Greeks did not have a written notation for numbers such
as decimals, so the Elements contains nothing about algorithms for
addition and multiplication. Instead, there is quite a sophisticated
introduction to the abstract theory of numbers in Books VII to IX, with
numbers denoted by letters as if they were line segments. These books
contain the basic theory of divisibility, the Euclidean algorithm, and
prime numbers that remains the starting point of most number theory
courses today. In particular, Book IX contains a famous proof that there
are infinitely many primes.

We say more about the Elements in later chapters, because it has in-
fluenced elementary mathematics more than any other book in history.
Indeed, as the name suggests, the Elements have a lot to do with the
very meaning of the word “elementary.” Since we will often be referring
to particular propositions in the Elements, it will be useful to have a
copy handy. For English-speaking readers, the best edition (because of
its extensive commentary) is still Heath (1925). Another useful version
is The Bones by Densmore (2010), which lists all the definitions and
propositions of the Elements in durable and compact form.

Decimal numerals developed in India and the Muslim world.
They were introduced to Europe in medieval times, most famously
(though not first) by the Italian mathematician Leonardo Pisano in
his book Liber abaci of 1202. Leonardo is better known today by his
nickname Fibonacci, and the title of his book refers to the abacus, which
until then was synonymous with calculation in Europe. His highly
influential book had the paradoxical effect of associating the word
“abaci” with calculation not by the abacus. (Though in fact the abacus
remained competitive with pencil and paper calculation until both
were superseded by electronic calculators in the 1970s.) The famous
Fibonacci numbers

1,2,3,5,8, 13,21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, . . .,

each of which is the sum of the previous two, were introduced in
the Liber abaci as an exercise in addition. Fibonacci could not have
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Figure 1.11: Fibonacci numbers in the Liber abaci.

known that his numbers would have a long career in number theory
and combinatorics, though perhaps he wondered whether there was an
explicit formula for the #th number. This question was not answered
for more than 500 years. Finally, in the 1720s, Daniel Bernoulli and
Abraham de Moivre showed that

()]

where F,, is the nth Fibonacci number (starting, for convenience, with
Fy =0and F; = 1). For more about this, see chapter 7.

Figure 1.11 shows an early manuscript of the Liber abaci, from
the Biblioteca Nazionale in Florence. It is open at the page where the
Fibonacci numbers from 1 to 377 are displayed, in a column on the

1
Fr=—
V5
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right. (Notice that the digits for 3, 4, and 5 are rather different from
ours.)

Algebra also developed in the Muslim world, but it received a
huge boost with the solution of the cubic equation in Italy in the early
1500s. Over the next century, European mathematicians developed
great fluency in handling polynomial equations. This led in turn to
the application of algebra to geometry by Fermat and Descartes in the
1620s, then to the development of calculus by Newton in the 1660s and
Leibniz in the 1670s.

But despite all this ferment in the mathematical community, which
created most of the mathematics taught in schools today, educated
people in the 1700s could be abysmally ignorant of mathematics.
(Some things never change ...) The English diarist Samuel Pepys,
a Cambridge-educated man who later held positions such as chief
secretary to the Admiralty and president of the Royal Society, at one
point hired a tutor to teach him the multiplication table! Here is what
Pepys wrote in his diary entry for July 4, 1662 (when he was aged 29):

By and by comes Mr. Cooper, mate of the Royall Charles, of whom I
intend to learn mathematiques, and do begin with him to-day, he being
a very able man, and no great matter, I suppose, will content him. After
an hour’s being with him at arithmetique (my first attempt being to learn
the multiplication-table); then we parted till to-morrow.

A week later, he was able to report some progress:

Up by 4 a-clock, and hard at my multiplicacion[sic] table, which I am
now almost maister of.

At about the same time, in France, Pascal’s triangle made its
European debut in a small book by Pascal called The arithmetic triangle.
Working independently of the Asian mathematicians who discovered
the triangle some centuries earlier, Pascal took quite a different tack.
He proved about 20 arithmetic properties of the triangle, by induction,
then took up “Use of the arithmetical triangle for combinations.” Here
he proved that

n\ nn—1)n-2)---(n—k+1)
k| k!
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is the number of combinations of 7 things, taken k at a time. And he
made the first application of this result to probability theory; namely,
to the problem of dividing the stakes in a game of chance which is
interrrupted before completion. As we saw in section 1.7, the problem
can be solved by forming a ratio of sums of the terms (},).

By the 1700s, the mathematics had changed so much under the
influence of calculus that the concept of “elementary mathematics” had
to be revised. Some of the most eminent mathematicians took part in
this revision.

In 1707, Newton published Universal Arithmetick, originally in
Latin and later in English. He described it as a book on the “science
of computing,” but by “computing” he meant quite a general theory
that encompassed both arithmetic and algebra. His opening paragraph
made clear this new and general viewpoint (here “computation by
Species” means computation with letters for unknowns, as in high
school algebra):

Computation is either performed by Numbers, as in Vulgar Arithmetick,
or by Species, as is usual among Algebraists. They are both built on the
same Foundations, and aim at the same End, viz. Arithmetic Definitely
and Particularly, Algebra Indefinitely and Universally; so that almost all
Expressions that are found out by this Computation, and particularly
Conclusions, may be called Theorems. But Algebra is particularly ex-
cellent in this, that whereas in Arithmetick Questions are only resolv’d
by proceeding from given Quantities to the Quantities sought; Algebra
proceeds in a retrograde Order, from the Quantities sought, as if they
were given, to the Quantities given, as if they were sought, to the end
that we may, some way or other, come to a Conclusion or Equation,
from which we may bring out the Quantity sought. And after this Way
the most difficult Problems are resolved, the Resolutions whereof would
be sought in vain from only common Arithmetick. Yet Arithmetick in
all its Operations is so subservient to Algebra, as that they seem both but
to make one perfect Science of Computing; and therefore I will explain
them both together.

In 1770 Euler wrote Elements of Algebra from a similar viewpoint as
Newton’s, though with somewhat different content. At the low end,
Euler omits the algorithms for basic operations on decimal numerals,
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and at the high end, he has much more number theory. Indeed, Euler
proves some difficult results for the first time, including a claim of
Fermat that y =3 and x =5 is the only positive integer solution of
y® = x* + 2. Euler’s solution is one of the first steps in algebraic number
theory (see chapter 2).

In the late 1700s, the French Revolution brought big changes to
mathematics education in France. A new institution for advanced
studies, the Ecole Normale, was founded and the top mathematicians
were enlisted to modernize the mathematics curriculum. Among them
was Lagrange, who in 1795 wrote a book on elementary mathematics
based on lectures at the Ecole Normale. A century later it was still
popular, and was translated into English as Lectures on Elementary
Mathematics. Like Newton and Euler, Lagrange views algebra as a
“universal arithmetic,” to be studied alongside traditional arithmetic.
And like Euler, he takes arithmetic to include what is now called
“number theory”—primes, divisibility, and the solution of equations in
integers.

In the 1800s, Germany took the initiative in number theory, both
at the advanced level (Gauss, Dirichlet, Kummer, Dedekind) and at
the level of foundations (Grassmann and Dedekind). Perhaps the most
surprising event was the discovery of Grassmann, mentioned in the
previous section, that the basic functions and theorems of arithmetic
are based on induction. Grassmann, who was a high school teacher
and a leading Sanskrit scholar, attempted to spread his ideas through
a high school textbook, the Lehrbuch der Arithmetik. Not surprisingly,
this attempt failed, but the ideas took hold the second time round when
rediscovered by Dedekind (1888).

In his Elementary Mathematics from an Advanced Standpoint Klein
(1908) credits Grassmann with establishing the foundation of arith-
metic by induction. He also mentions some “fundamental rules of
reckoning” that follow from it, such as a +b=>b+a and ab=ba.
However, he stops short of discussing algebraic structures, such as rings
and fields. Klein viewed algebra as mainly the study of polynomial
equations, enriched by the algebraic geometry of curves and surfaces.
Linear algebra did not yet exist as a separate discipline, because its
fundamental concepts were buried under the concept of determinant—
a concept that is now considered relatively advanced.
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Geometry was Klein’s favorite subject, and it is present throughout
his first volume (Arithmetic, Algebra, Analysis) before becoming the
sole subject of his second. He takes the late nineteenth-century view
that all mathematics should be “arithmetized” (based on numbers),
so he bases geometry entirely on coordinates. He generally disparages
Euclid’s Elements as elementary and pedantic, and ignores the striking
new results on the axiomatic geometry found by Hilbert in 1899 (for
more on this, see chapter 5). However, it must be said that the twentieth
century was generally in favor of the arithmetization of geometry, and
that linear algebra gives a particularly efficient approach to Euclid.
Klein’s own approach to elementary geometry is not quite linear algebra
as we know it (because the very concept of linearity is still obscured by
the concept of determinant), but it is evolving in that direction.

Thus Klein’s book seems to foreshadow the modern era of math-
ematics, in which induction, abstract algebra, and linear algebra play
important roles. We continue our discussion of this era in later chap-
ters.

1.10 Philosophical Remarks

The various samples of mathematics above are considered elementary
by most mathematicians and teachers of mathematics. They are taught
at high school level or below in most parts of the world, though usually
not all in the same school. Nevertheless, though all of them have been
considered elementary in some schools, at some times, we must admit
that some are less elementary than others. This raises the question: how
far can we go before mathematics ceases to be elementary? Is there a
clear borderline between elementary and advanced mathematics?

Unfortunately, no. There is no sharp separation between elemen-
tary and advanced mathematics, but certain characteristics become
more prominent as mathematics becomes more advanced. The most
obvious ones, which we will highlight in this book, are

« infinity,
 abstraction,

e proof.
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Some mathematics programs have been tempted to use one or more
of these characteristics to separate elementary from advanced math-
ematics. In particular, in the United States it is thought possible to
postpone “introduction to proof” until the later stages of undergraduate
education. This, I believe, is a delusion.

It is no doubt a good idea to withhold the theory of proof
from junior undergraduates, but examples of proof should be part of
mathematics from high school level'—as soon as students encounter
statements that are not obvious, such as the Pythagorean theorem.
In the beginning, of course, proofs will not be very formal. Indeed,
most mathematicians dislike completely formal proofs and resist the
basic idea of mathematical logic, which is to view proofs themselves as
mathematical objects. This is why I postpone logic until the last chapter
of this book, after giving enough examples to suggest that a theory of
proof might be useful, though perhaps beyond the scope of elementary
mathematics.

Similar thoughts arise with infinity and abstraction.

Mathematics without infinity is a lot more worthwhile than mathe-
matics without proof, so it could be a candidate for “elementary mathe-
matics.” But it seems unfair to exclude harmless and easily understood
infinite objects, such as the infinite decimal

1/3=0.33333 - - .,

so it becomes a question of deciding how much infinity is “elementary.”
There is an ancient way to answer this question: by distinguishing
between “potential” and “actual” infinity.

The infinity of natural numbers 0, 1, 2, 3, . . . is a potential infinity
in the sense that we can view it as an unending process: start with 0
and repeatedly add 1. There is no need to believe that this process can
be completed—it suffices that it produce each natural number at some
finite step. The totality of real numbers, on the other hand, cannot be
viewed as a potential infinity. As we will see in chapter 9, there is no
step-by-step process for generating numbers that will produce each real

! Some of my mathematical colleagues think that proof should be introduced earlier than
this. In San Francisco a school called Proof School has recently opened, for students at middle
school level and above.
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number at some finite step. We have to view the real numbers as a
completed or actual infinity (as indeed we do when we view them as
a line, or as the path of a continuously moving point).

Thus, by allowing potential infinities and excluding actual infinities
we create a borderline between elementary and advanced mathematics,
with the natural numbers on the elementary side and the (totality of)
real numbers on the advanced side. This borderline is still somewhat
fuzzy—what about individual real numbers, such as v/22—but useful.
We will find, particularly when we discuss calculus, that mathematics
often becomes advanced to the degree that it involves the real numbers.

Finally, abstraction. Here it is even harder to draw a borderline.

If there is such a thing as mathematics without abstraction
(1+1 =2 maybe?), it is too elementary to cover all the mathematics
usually called “elementary.” We must at least include identities such as

a’—b* = (a+b)a—b), *)

where a and b can be interpreted as any numbers. In fact, as I have
argued in section 1.3, I would go so far as to include certain axiom sets,
such as those for rings and fields, since they efficiently encode all the
identities that one can prove for numbers. Indeed, justifying the steps
in the calculation

(a+b)a—b)=a(a—Db)+bla—Db)
=a*—ab+ba -V
=a*—ab+ab-b*

=a’ - b

by the ring axioms is a nice example of a proof that can be carried out
at high school level (and one that helps develop awareness of the role of
axioms).

It will be seen in chapters 4 and 5 that the ring and field axioms (and
the related vector space axioms) unify a lot of elementary algebra and
geometry, so I favor their inclusion in elementary mathematics. But I
leave it open whether there is any clear boundary between “elementary”
and “advanced” abstraction.
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PREVIEW

To most people, “arithmetic” is the humble domain of addition,
subtraction, multiplication, and division of decimal numbers and
fractions. It is learned in elementary school and quickly becomes just
a painful memory, once we can outsource such calculations to various
electronic devices.

But there is a “higher arithmetic,” or number theory, concerned
with discovering general properties of numbers, and proving them.
Number theory is an endlessly fascinating and difficult subject, which
has been cultivated by mathematicians since the time of Euclid, and
which today draws on the resources of almost all of mathematics. In
later chapters we will see how number theory permeates elementary
mathematics.

The purpose of this chapter is to introduce some perennial themes
of elementary number theory—prime numbers and solving equations
in integers—and some elementary methods of proof. These include the
principle of induction, introduced by Euclid in a form called “descent,”
and some simple algebra and geometry. Descent allows us to find the
greatest common divisor of any two positive integers by the Euclidean
algorithm, and to prove that any positive integer factorizes uniquely
into primes.

Algebra and algebraic numbers come to light when we search for
positive integer solutions of the equations y* =x?+2 and x* —2y*=1.
Surprisingly, it helps to introduce numbers of the form a + by/—2
and a + b+/2, where a, b are ordinary integers, and to pretend that
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these new numbers behave like ordinary integers. The pretense is
actually justifiable, and it allows us to develop and exploit a theory of
“primes” in the new numbers very like the ordinary theory of prime
numbers.

2.1 The Euclidean Algorithm

Given a fraction, say géggg;

that is, with no common divisor in the numerator and denominator?

, how do we know that it is in reduced form;

To answer this question, we need to find the greatest common divisor
0f 1728941 and 4356207, which looks difficult. Even finding the divisors
of 1728941 seems difficult, and indeed no good method for finding the
divisors for large numbers is yet known.

Remarkably, it can be much easier to find the common divisors
of two numbers than to find the divisors of either one of them. For
example, I immediately know that the greatest common divisor of
10000011 and 10000012 is 1, without knowing the divisors of either
number. Why? Well, if d is a common divisor of 10000011 and
10000012 we have

10000011 =dp and 10000012 = dq,
for some positive integers p and g. And therefore
10000012 — 10000011 = d(q — p),

so d also divides the difference of 10000011 and 10000012, which is 1.
But the only positive integer that divides 1 is 1, so d = 1. More generally,
if d is a common divisor of two numbers a and b, then d also divides
a — b. In particular, the greatest common divisor of a and b is also a
divisor ofa — b.

This simple fact is the basis of an efficient algorithm for finding
the greatest common divisor. It is called the Euclidean algorithm after
Euclid, who described it over 2000 years ago in the Elements, Book VII,
Proposition 2. In Euclid’s words, one “continually subtracts the lesser
number from the greater.” More formally, one computes a sequence of
pairs of numbers.
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Euclidean algorithm. Starting with a given pair a, b, wherea > b, each
new pair consists of the smaller member of the previous pair, and the
difference of the previous pair. The algorithm terminates with a pair
of equal numbers, each of which is the greatest common divisor of
a and b.

For example, if we start with the pair a = 13, b = 8, the algorithm leads
to the pair (1, 1), as we found in section 1.2, so 1 is the greatest common
divisor of 13 and 8.

The main reason that the Euclidean algorithm works is the fact
noted above: that greatest common divisor of @ and b is also a divisor
of a —b. If we denote the greatest common divisor by gcd, then
gcd(a, b) = gcd(b, a — b) and in the above example we have

gcd(13, 8) = ged(8, 5) = ged(5, 3) = ged(3, 2)
=gcd(2,1) =ged(1, 1) = 1.

(Notice that, when we start with the consecutive Fibonacci numbers 13
and 8, subtraction gives all the preceding Fibonacci numbers, ending
inevitably at the number 1. It is the same with any pair of consecutive
Fibonacci numbers, so the gcd of any such pair is 1.)

A secondary reason, also important, is that the algorithm contin-
ually produces smaller numbers, and hence it terminates (necessarily
with equal numbers) because positive integers cannot decrease forever.
This “no infinite descent” principle is obvious, and Euclid often used
it, but it is nevertheless profound. It is the first expression of proof
by induction, which underlies all of number theory, as we will see in
section 9.4.

Finally, we return to our implicit claim that the Euclidean algorithm
is a fast way of finding common divisors—faster than any known way of
finding the divisors of a single number. When we use only subtraction,
as Euclid did, this is not quite right. For example, if we attempt to find
gcd(101, 10’ + 1) by repeated subtraction, we will have to subtract
101 from 10'% + 1 nearly 10%® times. This is not fast.

However, repeatedly subtracting b from a until the difference r
becomes less than b is the same as dividing a by b and obtaining the
remainder r. This gives the following fact, on which we will base the
Euclidean algorithm from now on.

www.Engineeringbookspdf.com



38 -+ Chapter2

[ Je=l

2b gp o (¢g+ 1)
° e—O-e

o

—
r

Figure 2.1: Visualizing quotient and remainder.

Division property. For any natural numbers a and b # 0 there are
natural numbers q and 7 (“quotient” and “remainder”) such that

a=qgb+r where |r|<|b|.

The division property is also visually obvious, from figure 2.1,
because any natural number a must lie between successive multiples
of b. In particular, its distance 7 from the lower multiple gb is less than
the distance b between them.

The advantage of division with remainder is that it is at least as fast,
and generally much faster, than repeated subtraction. Each division by a
k-digit number knocks about k digits off the number being divided and
leaves a remainder with at most k digits. So the number of divisions
is at most the total number of digits in the numbers we begin with.
That’s fast enough to find the gcd of numbers with thousands of
digits.

2.2 Continued Fractions

The Euclidean algorithm, like any algorithm, produces a sequence of
events. Each event depends in a simple way on the previous event, but
one does not expect to capture the whole sequence in a single formula.
Yet in fact there is such a formula, the so-called continued fraction.

For example, when we apply the Euclidean algorithm to the pair
117, 25 it produces the sequence of quotients 4, 1, 2, 8. This sequence is
captured by the equation

117_4+ 1
25 1
14+ —

2+1

8
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The fraction on the right arises by the following process, which reflects
the divisions with remainder in the Euclidean algorithm by calculations
with fractions.

W7 _ 41 (quotient 4 inder 17)
— = — uotient 4, remainder
25 25 d
1
=4+ —— (use remainder as new divisor)
25/17
1
=4+ — (quotient 1, remainder 8)
14+ —
17
1
=44 — (use remainder as new divisor)
1+ ——
17/8
1
=4+ — (quotient 2, remainder 1)
1+ —
2+ !
8

—at which stage the process halts because the remainder 1 divides the
previous divisor 8 exactly.

Since the continued fraction algorithm perfectly simulates the
Euclidean algorithm, it produces numbers that decrease in size and
hence always halts. It follows that any positive rational number has a
finite continued fraction. And conversely, if a ratio of numbers produces
an infinite continued fraction, then the ratio is irrational. Until now,
we had not contemplated applying the Euclidean algorithm to numbers
not obviously in a rational ratio, but this observation prompts us to try.
The outcome is remarkably simple and satisfying when we apply the
continued fraction algorithm to V2+1and]l.

To allow the algorithm to run with a minimum of commentary, we
point out in advance that

1
(vV24+1)(v/2—1)=1, sothat v@—1=v§+r
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Here now is what happens:

V241=24K2-1) (separating into integer and fractional part)

1 1
=2—|—\/§+1 (because«/i—l:\/ﬂl)

No need to go any further! The denominator +/2 + 1 on the right-hand
side can now be replaced by 2 + ﬁ, in which v/2 + 1 occurs again,
and so on. Hence the continued fraction algorithm will never halt.

(This may remind you of one of those products in a box that
contains an image of itself, like the one shown in figure 2.2. The
situation is similar.)

It follows that /2 + 1 is irrational, and hence so is /2. The ancient
Greeks knew that /2 is irrational, so it is tempting to wonder whether
they knew this proof. Certainly, Euclid was aware that non-halting
of the Euclidean algorithm implies irrationality. He says so in the

Elements, Book X, Proposition 2, and his Proposition 5 of Book XIII

1+/5
1L

Thus it is possible that irrationality was first discovered this way, as

implies non-halting of the Euclidean algorithm on the pair

Fowler (1999) suggests. Another way arises more directly from the
study of divisibility, as we will see in the next section.

2.3 Prime Numbers

The prime numbers are perhaps the most wonderful objects of mathe-
matics: easy to define, yet difficult to understand. They are the positive
integers greater than 1 that are not products of smaller positive integers.
Thus the sequence of prime numbers begins with

2,3,5,7,11, 13,17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73,79,83,89,97,....
Every positive integer 7 can be factorized into primes, because if 7 is
not prime itself it is a product of smaller positive integers a and b, and

we can repeat the argument with a and b: if either of them is not a
prime then it is the product of smaller positive integers, and so on.
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Figure 2.2: Containing an image of itself.

Since infinite descent through the positive integers is impossible, this
process must eventually halt—necessarily with a factorization of #
into primes. Thus all positive integers greater than 1 can be built by
multiplying primes together.

This is hardly the simplest way to understand the positive
integers—building them by adding 1 repeatedly seems a much better
idea—but it does help us to understand the primes.

In particular, it enables us to see why there are infinitely many
primes—something that is not obvious just by looking at the sequence
above. The first proof of this is one of the great results of Euclid’s
Elements, and a modern version of Euclid’s proof goes as follows.
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Given the primes 2, 3, 5, ..., p up to p, it will suffice to find a new
prime, as this will show that there is no end to the sequence of primes.
Well, given the primes 2, 3, 5, ..., p, consider the number

Then 7 is not divisible by any of the primes 2, 3, 5, . . ., p, because they
all leave remainder 1. But # is divisible by some prime g, since it has a
factorization into primes, so g is a new prime.

Thus the infinitude of the primes is something we can prove from
the (easy) fact that every natural number has a prime factorization. A
harder, and more powerful, fact is that the prime factorization is unique.
More precisely: each prime factorization of n involves the same primes,
with each appearing the same number of times. To illustrate, consider
what happens when we break the number 60 down into smaller factors.
There are several ways to do this, but they all end with the same primes.
For example,

60=6-10=(2-3)-(2-5)=2%-3-5,
60=2-30=2-(2-3-5)=2%2.3.5.

There are various ways to prove unique prime factorization, but
none of them is obvious, so we will opt for a proof that at least uses
familiar machinery: the Euclidean algorithm.

Recall from section 2.1 that we can find ged(a, b) by starting with
a and b and making a series of subtractions. Each of these subtractions
produces an integer combination of a and b, ma + nb for some integers
m and 7. This is because we start with the integer combinations—
namelya =1-a+40-band b =0-a + 1 - b—and the difference of any
two integer combinations is again an integer combination. It follows, in
particular, that

gcd(a, b) =ma +nb  for some integers 71 and 7.

This fact now enables us to prove something about primes: if a
prime p divides a product ab of positive integers, then p divides a or p
divides b. To prove this prime divisor property, we suppose that p does
not divide a, and try to see why p must divide b.
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Well, if p does not divide a we have, since p has no divisors but
itselfand 1,

1 =gcd(a, p) = ma + np.
Multiplying both sides of this equation by b, we get
b = mab+ npb.

Now p divides both terms on the right, because it divides ab by
assumption, and pb obviously. It follows that p divides the sum of these
two terms; that is, b.

The prime divisor property was proved by Euclid, and unique
prime factorization easily follows. Suppose, for the sake of argument,
that some number has two different prime factorizations. By removing
all common prime factors from these two factorizations, we get a
certain product of primes (starting with p say) equal to a product of
entirely different primes. But if p divides a product it divides one of
the factors, by Euclid’s proposition, and this is impossible, since all the
factors are primes different from p. Thus there cannot be a positive
integer with two different prime factorizations.

It is hard to believe, at first, that the unique prime factorization of
positive integers should not be obvious. To appreciate why it is not
obvious, it may help to look at a similar system where unique prime
factorization fails. This is the case for the system of even numbers 2, 4, 6,
8, 10, .... This system is quite similar to the system of positive integers:
the sum and product of any two members is a member, and properties
like a + b = b+ a and ab = ba are inherited from the positive integers.

In this system, we would call an even number an “even prime” if
it is not the product of smaller even numbers. For example, 2, 6, and
10 are “even primes.” It follows, by the descent argument we used for
positive integers, that every even number has a factorization into “even
primes.” But notice that the number 60 has two different factorizations
into “even primes”:

60=06-10,
60 =2 -30.
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(Of course, we can explain these two factorizations by the “hidden”
odd primes 3 and 5 in the “even prime” factors, but the world of even
numbers does not know about these.) Thus unique prime factorization
must depend on something that the positive integers do not share with
the even numbers. We will get a better idea of what this is when we
study another system of numbers in section 2.6.

Irrationality of /2, Again

Unique prime factorization gives a different, and very simple, expla-
nation of the irrationality of V2. Suppose, on the contrary, that V2 is
rational, and imagine /2 written as a fraction in lowest terms. This
means that the numerator and denominator of the fraction have no
prime factor in common. So, in the square of this fraction (which equals
2), the numerator and denominator again have no common prime
factor. But then the denominator cannot divide the numerator, and we
have a contradiction.
Thus it is wrong to assume that /2 is rational.

2.4 Finite Arithmetic

There is an old rule, probably almost as old as decimal notation, called
“casting out nines.” The rule is that a number is divisible by 9 if and only
if the sum of its digits is divisible by 9. For example, 711 is divisible by
9 because 7+ 1+ 1 =9. Indeed, more than this is true, the remainder
when a number is divided by 9 equals the remainder when the sum of
the digits is divided by 9.

For example, 823 leaves remainder 4 on division by 9, because
8+ 2+ 3 leaves remainder 4. This happens because 823 =8-10% +
2-10+3 and 10%? and 10 both leave remainder 1 on division by 9,
since 10> =99+ 1 and 10 = 9 + 1. We might say that 1, 10, 10* (and,
similarly, higher powers of 10) are the “same, ignoring multiples of 9,”
and therefore 823 is the “same” as 8 + 2 4 3. This notion of “sameness”
is called congruence modulo 9.
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In general, we say that integers a and b are congruent modulo n,
written

a = b (mod n),

if a — b is a multiple of 72 (so a and b are the “same, up to multiples
of #”). The numbers that are distinct mod »n are 0, 1,2, ..., n—1,
and every other integer is congruent, mod 7, to one of these. Also, we
can add and multiply these » numbers mod 7, by adding them in the
ordinary way and then taking the remainder on division by 7. Addition
and multiplication mod 7 inherit the usual algebraic properties from
the integers, in the sense that a +b=>b+a becomes a +b=b+a
(mod 7) and so on, so we can speak of arithmetic mod n. (This is not
quite obvious, so you may wish to consult section 4.2 for the details.)

Arithmetic Mod 2

The simplest and smallest example is arithmetic mod 2, in which the
only two distinct numbers are 0 and 1. This is the same as the arithmetic
of “even” and “odd,” because all the even numbers are congruent to 0
mod 2 and all the odd numbers are congruent to 1. Replacing = by =
and omitting the mod 2 symbols for simplicity, the rules for adding and
multiplying 0 and 1 are

04+0=0, 0+4+1=1, 14+0=1, 1+4+1=0,
0-0=0, 0-1=0, 1-0=0, 1-1=1.

In particular, the rule 1 4 1 = 0 reflects the fact that “odd” + “odd” =
“even.”

Since addition and multiplication mod 2 satisfy the usual rules of
algebra, we can manipulate equations as we normally do, as long as we
bear in mind that 1 4+ 1 = 0. For example, we can solve the equation

x*+xy+y*=0 (mod?2)

by substituting all possible values of x and y. It is easy to see that the

only pair of values that does not satisfy this equationisx =1, y = 1.
Solving polynomial equations mod 2 is easy in principle, because

we need only substitute the finitely many sets of values of the variables
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and write down those, if any, that satisfy the equation. However, it
may be hard in practice, because there are 2" sequences of values for
m variables (two for the first variable; for each of these, two for the
second variable; and so on). So the number of possibilities quickly
becomes astronomical as 72 increases. And no known method for
solving m-variable equations, mod 2, is substantially faster than trying
all possibilities.

In fact, no fast method is known to decide even existence of
solutions for m-variable equations, mod 2. This is a fundamental
unsolved problem in computation and logic, as we will explain further
in chapters 3 and 9.

2.5 Quadratic Integers

Let us begin with a curious fact about the numbers 25 and 27. 25 is
a square and 27 is a cube, so these numbers give a solution of the
equation y* = x? + 2; namely, x = 5 and y = 3. Nearly 2000 years ago,
Diophantus specifically mentioned this equation and this solution in
his Arithmetica, Book VI, Problem 17. After reading this passage in
Diophantus, Fermat (1657) claimed that it is the only solution in the
positive integers. Why the equation caught their attention we do not
really know. But it was a turning point in the development of number
theory when Euler (1770), p. 401, proved Fermat’s claim by a new and
audacious method.

Observing that x% 42 = (x + +/—2)(x — v/=2), Euler’s attention
was drawn to numbers of the form a + b/—2, where a and b are
integers. Leaving aside the meaning of the “imaginary” /-2, these new
numbers are also “integers” in some sense. This is because the sum,
difference, and product of any two of them is another number of the
same kind and they satisfy the algebraic rules of a ring (mentioned
in section 1.3). The audacious part of Euler’s solution was to assume
that they also have more doubtful properties, such as unique prime
factorization. To see why this assumption comes up, we follow Euler’s
train of thought.

Assume that x and y are ordinary integers such that

V' =x2+2=(x+/-2)(x —V-2).
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Then one might think, if the factors on the right behave like ordinary
integers, that gcd(x + /=2, x — +/—2) = 1 and (imagining x + /-2
and x — /=2 factorized into primes, with no prime common to both)
that each of them is a cube, since their product is the cube y*. This is
not quite right, but it is true when x is a solution of y? = x>+ 2, as we
will see in the next subsection.

Then, writing x + J—_Z as a cube, we get

x+v=2=(a+bv=2)
=a’ +3a% bv/=2+3a - (bv=2)* + (bv/=2)
=a’ —6ab® + (3a*b — 2b*)/-2.
It follows, by equating “real and imaginary parts,” that
x=a’—6ab’ and 1=3a’b—2b=b(3a’—2b%).

Now if 1= 5b(3a> —2b%) then b divides 1 and therefore b = +1. If
b= —1 then 1 = —(3a* —2), which is impossible because 3a* — 2 is
either —2 (for a = 0) or positive. We must therefore have b =1, in
which case 1 = 34> — 2. So a?> = 1 and hence a = +1.

Substitutinga = 1, b =1 in x = a® — 6ab? gives the negative value
x = —5, so the only remaining option is @ = —1, b = 1. This gives the
value x = 5 claimed by Fermat, and with it the value y = 3.

What Is Going on in Euler’s Proof?

Euler came up with his proof before the “imaginary” number /-2
was well understood, not to mention the concept of the “integers”
a + by/—2 and their greatest common divisors and primes. Today we
know that it is valid to picture @ + b+/—2 as a point in the plane with
real coordinate a and imaginary coordinate by/2, so that the distance
of this point from the origin is +/a? + 2b?, by the Pythagorean theorem
(figure 2.3). We also call this distance the absolute value of a + by-2,
and denote it by |a + by/—2|.

The square |a + by/—2|* of this distance is the ordinary integer
a®+2b%, which is called the norm of a + b/—2. With its help we can
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a—+byv—2

bv/2

Figure 2.3: Distance to the point a + by/—2.

reduce questions about divisibility of these quadratic integers to ques-
tions about divisibility in the ordinary integers. The magical property
of the norm that makes this possible is

2 212
luv]” = [ul"v]", )

or “norm of a product equals the product of the norms.” We say more
about this multiplicative property in the next section, but we first explain
how it enables us to prove that gcd(x + /=2, x — v/—2) = 1 when x
and y are integers such that y* = x> + 2.

The magical property (*) means that if v divides w (which means
in turn that w = uv for some #) then |v|* divides |w|?. Also, the only
numbers a + by/—2 with norm 1 are %1, because a> + 2b* = 1 only if
a = =1, b=0. Thus it suffices to prove that any common divisor of
x+ /=2, x — /=2 has norm 1 when y* = x? 4 2.

First notice that

y’=0,1, or3 (mod4).
This can be seen by cubing the four possible values of y mod 4, namely
0, 1, 2, 3. On the other hand, for the even values of x mod 4 (0 and 2)

we have
x*4+2=2 (mod4).

So y* = x? + 2 only for x odd, and then the norm x* + 2 of x £ /=2 is
odd.
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Figure 2.4: Gaussian integers near 0.

Now a divisor of x + /—2 and x — +/—2 also divides their differ-
ence 24/—2, which has norm 8. The gcd of the norms 8 and the odd
number x? + 2 is 1, so any divisor of x + +/—2, x — /=2 is a number
whose norm divides 1; that is, 1 itself.

2.6 The Gaussian Integers

In the previous section we saw how a problem about ordinary integers
draws our attention to weird “integers” involving the quantity /—2.
Moreover, if we play along with these weird integers—granting them
attributes such as gcd and primes—they enable us to solve the original
problem very simply. It seems as though the factorization x*+2 =
(x + +/—2)(x — ~/—2) explains the behavior of x> + 2 better than we
can in the language of ordinary integers.

However, we have yet to make sense of the concept of “prime”
and “unique prime factorization” in the world of the quadratic integers
a+by/—2. To pave the way for this, we look first at the simplest
quadratic integers: those of the form a + b/—1, or a + bi, where a and
b are ordinary integers. These are called the Gaussian integers because
they were first studied by Gauss (1832). The Gaussian integers form a
square grid in the plane of complex numbers, part of which is shown in
figure 2.4.
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Like the integers a + by/—2, the Gaussian integers form a ring
because the sum, difference, and product of Gaussian integers are again
Gaussian integers, and the various algebraic laws are easily checked.
The distance from the origin to a + bi (also known as the absolute
value, |a + bi|) is ~/a? + b? by the Pythagorean theorem, and the square
of this distance, a® + b%, is an ordinary integer called the norm of
a + bi. Again it is true that “the norm of a product equals the product
of the norms,” but this time we will check.

Consider Gaussian integers a + bi and ¢+ di, whose norms
la+bi|* and |c+di|* are a®*+b* and ¢*+ d?, respectively. Their
product is

(a+bi)(c+di) =ac+adi + bci + bdi*
= (ac — bd) + (ad + bc)i because i*=—1.

It follows that the norm of the product is (ac — bd)* + (ad + bc)?, and
miraculously

(ac —bd)* + (ad + be)* = (a* + b*)(* + d%)

—the product of the norms. This identity can be checked by multiplying
out both sides, and finding that they both equal a®c* +a*d* + b*c* +
b*d>.

Notice that this calculation does not assume that a, b, ¢, d are
integers, so in fact it is true for any complex numbers #, v that

|v)? = |ul?|v]*.

This is why “norm of a product equals product of the norms” is also
true for the integers a + by/—2.' As for the latter integers, it follows
for the Gaussian integers that if v divides w then |v|? divides |w|?,
so divisibility of Gaussian integers depends on divisibility of ordinary
integers.

It now makes sense for us to define a Gaussian prime to be a
Gaussian integer, of norm greater than 1, which is not the product of

! Tt also follows that |uv| = |u||v], a fact which has some geometric implications for the
complex numbers, as we will see in section 10.3.
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Gaussian integers of smaller norm. Since norms are ordinary integers,
the process of factorizing a Gaussian integer into Gaussian integers of
smaller norm must eventually halt, necessarily with Gaussian primes.
So every Gaussian integer has a Gaussian prime factorization.

Examples of Gaussian Prime Factorizations

The smallest example is 2 = (1 47)(1 — 7). This is a factorization into
numbers of smaller norm, because |1 +i|> = |1 —i|> =2 and |2|* = 4.
Also, neither 147 nor 1 — 7 can be split into factors of smaller norm,
because their norm 2 is not the product of smaller integers.

It is the same story for any ordinary prime that is the sum of two
squares, such as 37 = 6> + 1%. The ordinary prime splits into Gaussian
factors of smaller norm, in this case

6*+12=(6+i)(6—1i), where |6+4i|>=]6—i|>=237,

whereas |37|% = 372.

But neither factor splits into factors of smaller norm, because 37 is not
a product of smaller ordinary integers. Thus any ordinary prime that is
a sum of two squares is a product of two Gaussian primes.

If we are given a random Gaussian integer, such as 3 +7, we can
find its Gaussian prime factors from the ordinary prime factors of its
norm. In this case

3+i>=32+1>=10=2-5.

Thus we are looking for Gaussian factors of norms 2 and 5, and they
will necessarily be Gaussian primes because their norms are ordinary
primes. We already know some Gaussian primes of norm 2; namely,
1+ and 1 —i. Apart from changing the sign of 1, these are the only
ones. And the only Gaussian primes of norm 5 are 2+ and similar
numbers obtained by changing signs (since the only squares with sum
5 are 4 and 1). Among this small number of possibilities, we soon find
that

34+i=1—-40)Q2+1).
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Division with Remainder

We now consider a rather different problem: division with remainder.
For ordinary integers we have the visually evident division property that
a =qgb+r with |r| < |b|, as we saw in section 2.1. Given a Gaussian
integer, say 5 + 37, and a Gaussian integer of smaller norm, say 3 + i, we
would like to be able to divide 5+ 37 by 34/ and obtain a remainder
r of smaller norm than 3 4. This means finding Gaussian integers g
and 7 (“quotient” and “remainder”) with

54+3i=(34i)g+r, suchthat |r|<|34+1].

This can be done by looking at the multiples 3 47 in the neighborhood
of 54 37, and picking the one, (3 +17)g, nearest to 5+ 3i. Then the
difference

r=5+3i—3+1i)g

is as small as possible, and hopefully it is smaller than 3 + 7.

Indeed, this always works, and for a rather striking reason: the
multiples of 3+ i form a grid of squares of side |3 +i|, and the distance
from any point in a square to the nearest corner is less than the length of
the side.

Why squares? Well, any Gaussian integer multiple of 3 +7, by a +
bi say, is the sum of a copies of 3 +i and b copies of i(3 +1) = —1 4+ 3i.
The points 3 47 and —1 + 3i lie at distance |3+ 1| = V10 =|—1+3i|
from 0, and in perpendicular directions. Thus the points 0, 347, and
i(3+41) = —1+ 37 form two sides of a square. Adding further copies of
3+ and —1 + 37 creates further squares, all of side length |3 + 7|, as
shown in figure 2.5.

We see from figure 2.5 that the multiple of 3 4 7 nearest to 5+ 3i is
2(3 + 1), and that their difference is

r=234+i)—(5+3i)=1—1i, with absolute value v/2 < +/10.

More generally, it is easy to prove (say, using the Pythagorean
theorem) that the distance from any point in a square to the nearest
corner is less than the side of the square. Also, the multiples #q of
any Gaussian integer # form a grid of squares of side length |«| by
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Figure 2.5: Multiples of 3 +7 near 5+ 3.

the argument just used for # = 3 4- 7, hence any Gaussian integer v has
difference

r =v—uq of absolute value < |u|

from some uq. In other words, we have the:

Division property. For any Gaussian integers #, v there are Gaussian
integers q, r such that

v=uqg+r with |r|<|u|.

Since the remainder is smaller than the divisor #, the Euclidean
algorithm by repeated division with remainder will terminate for any
pair s, t of Gaussian integers, giving us their gcd in the form

ged(s, t) =ms +nt  for some Gaussian integers 7z and 7.

Then, by the same trick used for ordinary integers in section 2.3 we can
prove:

Prime divisor property. If a Gaussian prime p divides a product v of
Gaussian integers, then p divides «# or p divides v.

As we know from section 2.3, unique prime factorization now follows.
The only difference is that it is slightly “less unique.” This is because,
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when one Gaussian prime divides another, the quotient is not necessar-
ily 1: it could also be —1 or %:. For this reason we say that Gaussian
prime factorization is unique up to factors of £1 and =i.

2.7 Euler’s Proof Revisited

Now we know how to talk about “primes” among the integers a +
b+/—2 brought to light in Euler’s solution of y* = x? + 2.

We measure the size of @ + by/—2 by its norm |a + by/—2|*> = a® +
2b%, and say that @ + by/—2 is prime if its norm is greater than 1 and
a + by/—2 is not the product of integers of smaller norm. (Incidentally,
the only integers a + by/—2 of norm 1 are %1, because a® +2b* = 1
only fora ==+1and b=0.)

We also know that we can prove unique prime factorization for
the integers a + by/—2 if we can prove the division property: for any
integers #, v of the form a + b/—2 there are integers g, 7 (also of this
form) such that

v=uq+r with |r]<|ul.
And we know how to find g and r: look at the multiples #q of u, and let
r = v — (multiple #g nearest to v).

Thus it remains only to get a view of the multiples of #—clear enough
that we can see that 7 is smaller than .

As with the Gaussian integers, we will illustrate the idea with a
particular example: in this case # = 1+ /=2, v = 5+ +/—2. Figure 2.6
shows some of the relevant points in the plane of complex numbers.

The integers a + b+/—2 form a grid of rectangles of width 1 and
height +/2. The multiples of 14 +/—2 form a grid of rectangles of the
same shape, but magnified by |1 + /—2| = /5 and rotated so that their
short sides lie in the direction of 1 + /—2.

The multiple of 1 + /=2 nearest to 5+ /=2 is

2—vV=-2)(1+v=2)=4+V-2,
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Figure 2.6: Multiples of 1 4+ +/—2 near 5+ +/—2.

~ O

sowe get g =2 — +/—2and 7 = 1. This 7 is certainly of smaller absolute
value than the divisor 1 + +/—2.

In general, the multiples of an integer # = a + by/—2 form a grid
of rectangles of the same shape as the original grid, but magnified by |u|
and rotated so that their short sides are in the direction of «. Since the
size |r| of the remainder is the distance from v to the nearest multiple
of u, it remains to show that in a rectangle with short side |u| and
long side ~/2|u|, the distance from any point to the nearest corner is less
than |u|.

To see why this is true, consider the worst-case scenario shown in
figure 2.7, where v is at the center of the rectangle.

By the Pythagorean theorem,

lul> |ul? \/3 V3
rl=A\—+—=1/-|u>=—1u| < |ul|.
|7 P 3 4|| 2|| |

This finally proves the division property for the integers a + by/—2. As
with ordinary and Gaussian integers, this gives the Euclidean algorithm,
prime divisor property, and unique prime factorization. In fact, prime
factorization is unique up to factors £1 here, since the only integers
a+b/—2 of norm 1 are +1.
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Q
|ul/2

Jul/ V2

uq
Figure 2.7: The point most distant from the corners.

Now we should recall why we want unique prime factorization for
the integers a + b/—2. In section 2.5 we had

Y =2 2= (x VD) — /D),

and we established that x ++/—2 and x —+/—2 have no common
prime factor. But each prime factor p in y occurs as p* in y?, so each
prime factor p in x ++/—2 occurs as p* = (£p)*, and each prime
factor g in x — /=2 occurs as +¢° = (£q)>. In other words, x + v/—2
is a product of cubes and hence is a cube itself; x — /=2 is a product of
cubes and hence is a cube itself.

Euler’s calculation and proof, starting with x4 J=2=(a+
by/—2)%, is now justified. The justification is probably far from any
Euler had in mind, but it is based on ideas that now belong to elemen-
tary mathematics:

o The theory of divisibility and primes, based on the division
property and the Euclidean algorithm.

 The multiplicative property of absolute value, |#v| = |u||v], for
complex numbers.

o Geometric representation of complex numbers and the
Pythagorean theorem.
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2.8 /2 and the Pell Equation

Another famous equation for which integer solutions are sought is
Xt =2y =1. *)

This equation was of interest to the ancient Greeks because, if x and y
are large integers satisfying the equation, then x*/y? is very close to 2.
This implies that the fraction x/y is very close to +/2.

In this section we will show that indeed there are arbitrarily large
solutions of (*) and we will find a simple algorithm for producing them
(and hence for finding arbitrarily close rational approximations to +/2).
We begin with the obvious solution x = 3, y = 2, which is the smallest
positive integer solution.

Now since

1=3>-2.22
then
1=(32—-2-2%" for any positive integer 7.
Also,
32-2.22=(3+2v2)3 —2V2),

so we have

1=(3+2v2)"3—2v2)".
This prompts us to look at the positive integers x;, and vy, such that

(3+2v2)" = x,+ yuv/2. ()
For example,

(+2v2)? =3242-3-2v2+ (V2 = 17+ 12V2,

s0 x; = 17 and y, = 12. We notice that x = 17, y = 12 is also a solution
of (*).
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In fact x = x,,, y = 7, is a solution of (*) for each positive integer 7.
We prove this by induction.

Base step. The statement is true for n=1 because xj—2yi=
3?-2.22=1

Induction step. We prove that if the statement is true for 7 = k (that
is, xf —2y; = 1), then it is true for 7 = k+ 1. By the definition
(**) of x4 1 and ypy1,

X1+ yk+1ﬁ =3+ 2ﬁ)k+1
=(3+2v2)"3+2v2)

= (xp + ykx/i)(3 + 2\/5)
(by definition of x, y)

= 3o + 4yp + (226 + 3y)V/2.
Equating “rational and irrational parts” we get
X1 = 3%+ 4Yes Yer1 = 2% + 3V (")
It follows that

X1 — 2Vpe1 = (Bxp + 4yp)* — 2(2x% + 3y1)’
= 9x; + 24x Yk + 16y, — 2(4x7 + 123V + 9y7)
= — 2}
=1, (by induction hypothesis)

which completes the induction.

Thus x2 — 2y2 = 1 for all positive integers 7.
It follows from the equations (***) that x;, and v, increase with 7
(in fact, very rapidly). So x,,/v, rapidly approaches /2 as 7 increases.
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The first few approximations are
x1/m=3/2=15
Xy, =17/12=1.416 - - -
x3/ys =99/70 =1.41428 - - -

X4/ys = 577/408 = 1.4142156 - - - |

which are correct in the first 1, 3, 5, 7 decimal places, respectively.

The Pell Equation

The equation x> —2y? =1 is a special case of the equation x* — my* =1,
for a nonsquare positive integer 1, called the Pell equation. A proof
similar to the one above shows that, if x = x7, y = y; # 0is one solution
to the Pell equation, then we can find arbitrarily large solutions x = x;,,
y = y, by the formula

X+ Yu/m = (x1 + y1/m)".

For example, x =2, y=1 is a solution of x* —3y? =1, and we get
further solutions by the formula

X+ yuV/3 = 24+ /3)".

In particular, using (2 + V3)? =7+ 44/3, we find the second solution
x=7,y=4
This is easy and fun to do, but two questions present themselves.

« How do we know that a solution of x* — my* = 1 exists?

o Given the smallest positive solution x = x; and y = y,, does

Xy + yn\/% = (-xl + )’1@)”

give all positive integer solutions?

These questions are most easily answered by importing some ideas
from outside number theory (the “pigeonhole principle” and some
deeper algebra), so we will defer the answers until section 10.1.
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2.9 Historical Remarks

As with many branches of mathematics, the story of number theory
begins with Euclid. The Elements contains the first known proofs by
descent (existence of prime factorization, termination of the Euclidean
algorithm), the first proof that there are infinitely many primes, and
the first extensive study of irrational numbers. Euclid also made a
breakthrough in a topic that has seen very little progress since: primes
of the form 2” — 1 and perfect numbers.

Prime Numbers and Perfect Numbers

A positive integer is called perfect if it is the sum of its divisors less than
itself (its “proper divisors” or “aliquot parts”). For example, the proper
divisors of 6 are 1, 2, and 3 and 6 = 1+ 2 + 3, s0 6 is a perfect number.
The next two perfect numbers are 28 and 496, and Euclid evidently
noticed that

6=2-3=2'22-1),
28=4.7=2*2*-1),
496 = 16-31 =2*(2° — 1),

because he noticed that 2”~1(2" — 1) is perfect when 2" — 1 is prime. His
proof is quite simple: if we write p = 2" — 1 then the proper divisors of
2"~1p are (because of unique prime factorization)

1,2,2%,...,2"" and p,2p,2%p, ..., 2" *p.

The sum of the first group is 2” — 1 and the sum of the second group
("1 —1)p = (2! —1)(2" — 1), so the sum of all proper divisors is

2" —1)A+2"1—1)=2""12"—1), asrequired.
Since Euclid reported this discovery, the only real progress on perfect
numbers has been a theorem of Euler that every even perfect number is

of Euclid’s form. We still do not have a clear description of the primes
of the form 2” — 1. We do not even know whether there are infinitely
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many of them. And, finally, we do not know whether there are any odd
perfect numbers at all!

Even less is known about the primes of the form 2” 4- 1, but they are
worth mentioning because they play an unexpected role in an ancient
geometric problem: constructing regular m-gons by straightedge and
compass. Euclid gave constructions for 72 = 3 (equilateral triangle) and
m =5 (regular pentagon), and for values of 72 derived from these by
taking their product and repeatedly doubling the number of sides (see
sections 5.4 and 5.6). No further progress was made (or expected) until
the nineteen-year-old Gauss discovered a construction of the regular
17-gon in 1796.

The key to Gauss’s discovery is that 3, 5, and 17 are primes of the
form 2” + 1, namely,

3=2'41, 5=22+41, 17=2"+1.

Gauss in fact found that the only constructible polygons with a prime
number of sides are those for which the prime is of the form 2" 4+ 1. It can
be shown quite easily that such primes are actually of the form 22 41,
but only five of them are known:

3=22 41,
5=2" 11,
17 =27 +1,
257 =22 41,

65537 =2 + 1.

Thus, notwithstanding Euclid’s proof that there are infinitely many
primes, attempts to find infinitely many primes of a particular form,
such as 2” — 1 or 2" + 1, have been a miserable failure. There is no doubt
that primes are the most “simple yet difficult” concept in mathematics,
so they are probably the concept that best epitomizes the nature of
mathematics itself. We will see them reappear, time and time again, at
places where mathematics is particularly interesting and difficult.
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Descent

But to return to the method of infinite descent ... Further novel appli-
cations of this method were discovered by Fibonacci (1202) and Fermat
(published after his death, in 1670). Fibonacci used the method to find
what are now called Egyptian fractions. The ancient Egyptians had a
curious way of dealing with fractions by writing each fraction between 0
and 1 as a sum of distinct fractions of the form 1/, called unit fractions.
Examples are

31 1
i 20w
2 1 1
37276
5 1 1 1
772 7w

It is not hard to find Egyptian fractions like these by trial and error,
but how can we be sure that we will always succeed? Fibonacci gave a
method that can be proved to succeed: namely, repeatedly remove the
largest unit fraction.

Fibonacci’s method always works because, if a/b is a fraction in
lowest terms and 1/7 is the largest unit fraction less than a /b, then

a 1 na—-b da

b n  bn  bn
is such that a’ <a. (If na—b > a thena/b > 1/(n—1), so 1/n is not
the largest unit fraction less than a/b.) Thus the numerator a’ of the
remainder continually decreases until halting occurs (necessarily with

value 1) in a finite number of steps. Here is how the method works with
5/7:

1
3= largest unit fraction < =

so consider

= — (notice 3 < 5).
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Next,
1 . .
— = largest unit fraction < —,
5 14

so consider

% — é = % (which gives termination).
Thus
5 1 1 1
7 275 7

Fermat’s result was considerably more sophisticated than
Fibonacci’s, but similar in its dependence on descent. He proved
that there are no positive integers x, y, z such that x*+ y* =2 by
showing that, for any supposed solution, there is a smaller solution.
Since positive integers cannot decrease indefinitely, we have a
contradiction. It was Fermat who introduced the term “descent” for
this kind of proof. He may have had a special kind of “descent” in
mind—which works only for a certain kind of equation—but it seems
fair to apply the word “descent” to any proof that relies on the fact that
infinite descent is impossible in the positive integers. As we will see in
chapter 9, this applies to virtually all proofs in number theory.

Algebraic Number Theory

The term “algebraic number theory” is usually understood to mean
“number theory using algebraic numbers” rather than “number theory
using algebra,” though of course one does algebra when working with
algebraic numbers. Thus our examples using the algebraic numbers
V=1, /=2, and /2 to solve problems about ordinary integers are part
of algebraic number theory. Several of these examples depend on the
miraculous identity

(ad = be)* + (ac + bd)* = (a* + b*)(c* + d*),
expressing the fact that

luv|* = |ul*|lv|>* when u=a+bi and v=c+di,
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or “norm of a product equals product of the norms.” A special case of
this fact seems to have been observed by Diophantus. It is presumably
behind his remark (Arithmetica, Book III, Problem 19) that

65 is naturally divided into two squares in two ways, namely into 7% + 47
and 8% + 12, which is due to the fact that 65 is the product of 13 and 5,
each of which is the sum of two squares.

The “two ways” come about because there are in fact two identities,
obtained by exchanging the + and — signs inside the two squares on
the left. In this case

65=13-5=(22+3%)(1>+2%)
=(2-2F3-1)*+(2-1£3-2)
=1>4+8, 72 +4°

The general form of the identity was stated by al-Khazin around 950
CE, in comments on Diophantus, and a proof by algebraic calculation
was given by Fibonacci (1225).

So it could be said that a characteristic property of the complex
numbers,

luv| = [ul|v],

was known long before the complex numbers themselves! Complex
numbers, written in terms of square roots of negative numbers, were
first used in the 1500s in connection with the solution of cubic
equations. But they were not completely understood until the 1800s
(see section 4.11). The property |uv| = |u||v| is important not only
in number theory, but also in geometry and algebra, as we will see in
section 10.3.

As we saw, the norm of u defined by |u|? also applies to integers of
the form u = a + by/—2, and in fact the concept of norm extends much
further than this. It is also useful to define the norm of an integer of the
form

a+bv2, wherea and b are ordinary integers,
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by norm(a + b/2) = a® — 2b%, because again it can be checked that
norm(#v) = norm(z#)norm(v).

As a result, questions about divisibility of the “integers” a + b+/2 reduce
to the corresponding questions about their norms, which are ordinary
integers. So we can explore the concepts of gcd and primes for integers
of the form a + b+/2. It turns out that unique prime factorization
holds “up to factors of norm 1.” But the uniqueness is much “less
unique” than for the Gaussian integers, because there are now infinitely
many integers of norm 1, thanks to the infinitely many solutions of
a*-20"=1.

This example highlights the importance of integers of norm 1,
which were called units and studied by Dirichlet in the 1840s. We can
also see the need for a concept of algebraic integer to cover the various
kinds of “integer” studied so far, and to lay a general foundation for
the concept of unique prime factorization. This was done by Dedekind
(1871b) in response to the discovery of Kummer in the 1840s that
unique prime factorization is lost for certain algebraic integers, and that
some kind of “ideal prime factors” must be invented to recover it. In
doing so, Dedekind lifted algebra to a new level of abstraction, where
there are “ideal” objects consisting of infinitely many ordinary objects.
This level is beyond the elementary level of number theory we wish to
consider in this book.

The Pell Equation

The equation x* — my? = 1, where m is a nonsquare positive integer, is
called the Pell equation. The reason for the name is rather stupid—Euler
once mistakenly attributed the equation to the seventeenth-century
English mathematician John Pell—but the name has stuck. Actually,
Pell equations are much older than that, and they seem to have arisen
independently in Greece and India.

The Pell equation with 72 = 2, as we have said, appears to have been
studied in ancient Greece in connection with the irrationality of /2.
A much fancier example occurs in a problem posed by Archimedes
called the cattle problem. This problem turns on the solution of the
Pell equation

x* — 4729494y =1,
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the smallest solution of which has 206545 decimal digits! It is incon-
ceivable that Archimedes could have found such a number, considering
the primitive state of Greek computation, but perhaps he understood
Pell equations enough to know that their solutions can be huge in
comparison with the number 7. The first manageable solution of the
cattle problem equation, using algebraic numbers rather than decimals,
was given by Lenstra (2002).

Pell equations were rediscovered by Indian mathematicians, a few
hundred years after the Greeks. They used algebra, which the Greeks
did not have, with considerable success. For example, Brahmagupta
(628) found that the least positive solution of x> —92y* =1 is x =
1151, y =120, and Bhaskara II around 1150 gave a method which
always finds a solution, though without proving that it works. He
illustrated his method with the first really hard example, x* — 61y* = 1,
for which the least positive solution is x = 1766319049, y = 226153980.

The latter example was rediscovered by Fermat (1657), who posed
it as a challenge to a colleague. Fermat was unaware of the Indian
discoveries, so he too must have known that this is the first really
hard example. Whether he could prove that each Pell equation has
a positive solution is not known: the first published proof is due to
Lagrange (1768). Lagrange pointed out that solving the Pell equation
x* —my? =1 is essentially the same as finding the continued fraction
for /m, and proving that it is periodic.

We can illustrate this connection with the continued fraction for
ﬁ. As we saw in section 2.2,

1

V241
1

so substituting 2 + A for ~/2 4 1 is a neverending, periodic process.
In fact it makes sense to write

V241=2+

V241=2+
2+
2+

1
24+ —
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The expression on the right is called the continued fraction for V241,
and it is “periodic” in the sense that denominator 2 recurs forever.
Subtracting 1 from each side, we get the continued fraction for +/2,
which is “ultimately periodic” in the sense that 2 recurs forever after
the initial 1:

V2=1+
2+
2+

1
24—

If we now truncate this fraction at finite levels, we get fractions approxi-
mating +/2, which are alternately quotients of solutions of x*> — 2y* = 1
and x? — 2y* = —1. For example,

1
l4o=20  ld——=g 4=,

3
2 1~ 5 1 12
1

Thus the continued fraction encodes not only /2 but also the solutions
of the corresponding Pell equation!

2.10 Philosophical Remarks

The arguments in the early sections of this chapter, about the Euclidean
algorithm and the infinitude of primes, are often described as pure
or elementary number theory. They are pure in the sense that they
involve only concepts that clearly belong to number theory: whole
numbers, addition, and multiplication. They are considered elementary
because of this and also because the arguments are quite simple (albeit
surprising and ingenious). We will say more about elementary number
theory when we discuss logic in chapter 9. There we explain why
elementary number theory is in some sense the theoretical minimum
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of mathematical knowledge, which must be part of any account of what
mathematics, and mathematical proof, really is.

The arguments in the later sections of the chapter are impure
in the sense that they bring in concepts from algebra and geometry.
However, they are still elementary, in my opinion, because elementary
mathematics includes algebra and geometry at the level used here.
Indeed, it is the artful use of concepts from algebra and geometry
that makes these arguments elementary. Without the introduction of
geometry, for example, it would be much harder to see why the division
property (and hence unique prime factorization) is true. And without
the guiding hand of unique prime factorization we would not know
how to carry out Euler’s proof in section 2.7.

Euler’s theorem is deeper than the infinitude of primes in the sense
that it depends on a “higher level,” or more abstract, concept (unique
prime factorization for algebraic numbers) to become comprehensible.
Clearly, the more abstract concepts we introduce, the more likely we are
to enter advanced mathematics, though in my opinion Euler’s theorem
remains on the elementary side of the line. More convincing examples
of advanced mathematics occur when unique prime factorization is
lost, as it is with the numbers discovered by Kummer in the 1840s.
As mentioned in the previous section, “ideal prime factors” must be
introduced to recover unique prime factorization in this case. “Ideal
factors” are not only more abstract than algebraic numbers—they are
in fact infinite sets of algebraic numbers—but also it takes a lot more
work to develop the theory needed to make them useful. So they are
quite far from elementary.

Irrational and Imaginary Numbers

It might seem, given the irrationality of +/2 proved in sections 2.2
and 2.3, that we are unwise to use /2 to study the Pell equation. It
seems even more unwise to use /—2 to study y* = x? + 2. If we do not
really know what /2 is, how can we trust it to give correct answers?
The reason is that we do not have to know what /2 is—only how it
behaves—and all we need to know about the behavior of /2 is that

2 Philosophers use this term, though not in a derogatory sense I hope. Mathematicians greatly
admire such proofs for their elements of surprise and creativity.
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(\/5)2 = 2. We can in fact replace the symbol V2 by a letter x, and
calculate with x as in high school algebra, replacing x* by 2 where
necessary. The usual laws of algebra apply to expressions involving
x, and hence they cannot lead to incorrect conclusions. We will see
precisely why this is so, and what the “usual laws” are, in chapter 4.

It is true that we can give general definitions of real and complex
numbers that explain what +/2 and /=2 really are. And we can also
prove that the real and complex numbers obey the “usual laws” of cal-
culation. We do this in chapter 9. However, this is deeper mathematics,
involving infinity in a serious way. As we will see in chapter 4, using v/2
and +/—2 in calculations that otherwise involve only rational numbers
is essentially just as finite as calculating with the rational numbers
themselves. It may be “higher arithmetic,” but it is still arithmetic.

Elementary School Arithmetic

To many people, the word “arithmetic” suggests something much
more elementary than the material covered in this chapter, namely
the facts about numbers one learns in elementary school. Indeed,
mathematicians often call the material of this chapter “number theory”
to distinguish it from facts about specific numbers such as

1+1=2,

or
2+3=3+2,

or (to take a more complicated example)
26-11 = 286.

But even the world of addition and multiplication facts about specific
numbers is quite complicated, and it takes several years of work to
master it in elementary school. We will explore the reasons for this
more deeply in the next chapter.

In the meantime, it may be worth pointing out that there is actually
a very concise way to encapsulate all the addition and multiplication
facts about specific numbers. By the inductive definitions given in
section 1.8, they all unfold from the four equations below, in which S(7)

www.Engineeringbookspdf.com



70+ Chapter 2

denotes the successor of 1, 7 + 1.

m+0=m, (1)
m+ S(n) = S(m+n), 2)
m-0=0, (3)
m-S(n)=m-n+m. (4)

Equation (1) defines 7+ #n for all 72 and n = 0. Equation (2) defines
m+ n for m = k+ 1, assuming it is already defined for 7 = k. Thus (1)
and (2) are the base step and induction step of the definition of m+ n
for all 72 and 7. Similarly, once + is defined, equations (3) and (4) define
m - n for all natural numbers #z and 7.

So, in principle, equations (1) to (4) generate all facts about sums
and products of specific numbers. The price we pay for this simplicity
is that we have to work with the names 0, S(0), $5(0), SSS(0), ... for
the natural numbers 0, 1, 2, 3, ..., so that the name of a number is as
large as the number itself. For example, the equation 1+ 1 =2 has to
be written in the form

S(0) 4+ S(0) = $5(0).

Similarly, 243 =3+2 becomes SS(0)+ SS55(0) = SS5(0) + S5(0),
and 26 - 11 = 286 becomes the following highly inconvenient formula,
whose right-hand side has been written in 11 rows with 26 copies of the
letter S:

SSSSSSSSSSSSSSSSSSSSSSSSSS(0)- SSSSSSSSSSS(0)
= SSSSSSSSSSSSSSSSSSSSSSSSSS
SSSSSSSSSSSSSSSSSSSSSSSSSS
SSSSSSSSSSSSSSSSSSSSSSSSSS
SSSSSSSSSSSSSSSSSSSSSSSSSS
SSSSSSSSSSSSSSSSSSSSSSSSSS
SSSSSSSSSSSSSSSSSSSSSSSSSS
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SSSSSSSSSSSSSSSSSSSSSSSSSS
SSS55SSSSSSSSSSSSSSSSSSSSS
SSSS5SSSSSSSSSSSSSSSSSSSSS
SSSSSSSSSSSSSSSSSSSSSSSSSS
SSS55SSSSSSSSSSSSSSSSSSSSS(0).
Nevertheless, anyone with sufficient patience can prove all such formu-

las by appeal to the equations (1), (2), (3), and (4). In particular, the
proof of 1+ 1 = 2 takes the form

S(0) + S(0) = S(S(0) +0) by equation (2),
= S(5(0)) by equation (1),
= 5$5(0).

Proofs of multiplication facts reduce to facts about repeated addition,
since it follows from equation (4) that

m-n=m-+m+---+m,

where there are 7 occurrences of 772 on the right-hand side.?

Thus to show that all addition and multiplication facts about
specific numbers follow from equations (1) to (4) it suffices to derive
just the addition facts. It suffices in turn to show this for all facts of the
form

sum = number,

where sum is a sum of numerals and number is a single numeral. This
is because different sums can be proved equal by showing that they
each equal the same number. Finally, we can show equations (1) to (4)
imply all true equations of the form sum = number by induction on the
number of plus signs in sum.

3 Strictly speaking, the right-hand side should contain parentheses. If there are three terms,
it should look like (72 + 112) + m1; if there are four terms it should look like ((#2 + 12) + 1) + 1, and
so on. However, the position of the parentheses is irrelevant to the argument that follows.
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If there is one plus sign in sum, then the value number of sum is
obtained as we obtained the value SS(0) for the sum S(0) + S(0) above.
If there are k+ 1 plus signs in SUM then

sum = sum; + sums,,

where sum; and sum, are sums with at most & plus signs. It follows by
induction that equations (1) to (4) imply

sum; =number; and sum, = number,,

and then it follows from the base step again that we can obtain the value
number of sum as the value of number; +-number,.

This shows (in outline) why equations (1) to (4) capture all the
addition and multiplication facts about specific numbers. We have yet
to capture the algebraic structure of the numbers, which is expressed by
rulessuchasa+b=b+a anda-b=b-a. We will discuss algebraic
structure in chapter 4, and show in chapter 9 that it too is intimately
related to induction.
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Computation

PREVIEW

omputation has always been part of the technique of mathematics,

but it did not become a mathematical concept until the twentieth
century. The best-known definition of this concept, due to Turing
(1936), is modeled on human computation with pencil and paper. To
prepare for the definition, the first sections of this chapter review the
system of decimal notation and the computations used in elementary
arithmetic. This review has the dual purpose of breaking down compu-
tations into elementary steps a machine could carry out, and estimating
the number of elementary steps as a function of the number of input
digits.

We take this dual approach because there are two main questions
about computation of interest today: whether a problem can be solved
at all by a computer and, if so, whether the computation is feasible.

The first question arises for certain very general problems in mathe-
matics and computation, such as deciding the truth of all mathematical
statements, or all statements about computation. These problems are
not solvable by computer, as we will show. It follows quite easily from
Turing’s definition.

The second question arises for certain problems which can clearly
be solved by a finite computation, but for which the known methods of
solution take an astronomical amount of time. Adding to the frustration
of such problems, it is often the case that a correct solution can
be verified quite quickly. An example is the problem of factorizing
numbers with a large number of digits.
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Problems whose answers are hard to find, by any method, but easy
to verify are not yet proved to exist (for example, there is conceivably a
fast method for factorizing large numbers which we have not discovered
yet). However, because of their great interest, we discuss some candi-
dates.

3.1 Numerals

As will be clear from the previous chapter, many interesting facts about
numbers have nothing to do with the notation used to represent them.
Proving that there are infinitely many primes, for example, does not
depend on decimal numerals. But when it comes to computation—even
simple operations such as addition and multiplication—the notation
for numbers makes a big difference. In this section we will compare
three notations for positive integers: the naive “base 1”7 or “tally”
notation which represents each number by a symbol as large as itself,
the common decimal or base 10 notation in which the symbol for a
number is exponentially smaller than the number itself, and the binary
or base 2 notation, which is somewhat longer than base 10, but still
exponentially smaller than the number itself.

In base 1 notation a number 7 is represented by a string of 7z copies
of the digit 1. Thus the base 1 numeral for # literally has length n, if we
measure length by the number of digits. In this notation, arithmetic
is very simple; in fact, it is more like geometry than arithmetic. For
example, we decide whether 7 is less than 7 by seeing whether the
numeral for # is shorter than the numeral for z. Thus it is clear that

11111 < 111111111

(which says that 5 <9, as we would write it in base 10 notation).
Addition is equally trivial. We add two numerals as we would add
lengths, by placing them end to end; for example:

11111+ 111111111 =11111111111111

(which expresses the result we would write as 549 =14 in base
10). Subtraction is equally easy, and multiplication not much worse,
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though it points towards a looming problem with base 1 numerals: if is
impractical to deal with large numbers.

Multiplication of 72 by n magnifies the length of m by 7, so
one quickly runs out of space to write down the result of repeated
multiplications. We need a more compact notation, and this can be
achieved by using two or more digits.

A base 10 numeral, as we all know, is a string of digits chosen from
among 0, 1, 2, 3,4, 5, 6,7, 8,9, and with the leftmost digit not equal
to 0. There are exactly 10” strings of 7 digits and each of them represents
a different number. (For strings beginning with zeros, the initial zeros
are ignored.) Thus base 10 notation is as compact as possible for
notations with 10 symbols, and it is “exponentially more compact” than
base 1 notation, which requires strings of length up to 10” to represent
the first 10” numbers.

But there is a price to pay for compact notation. Comparison,
addition, and subtraction are no longer as simple as they are for base
1 notation, and some operations are barely feasible at all. We discuss
arithmetic operations and the meaning of “feasibility” below. Here we
consider just comparison of numerals, since it shows how compact
notation complicates even the simplest problems.

If one base 10 numeral is shorter than another, then of course the
shorter numeral represents a smaller number. But suppose we have two
base 10 numerals of equal length, say

54781230163846 and 54781231163845.

To find which is smaller we must search for the leftmost digit where
they differ, and the smaller number is the one for which this digit is
smaller. In the present case we find:

54781230163846 < 54781231163845.

This rule for ordering numerals is called lexicographical ordering,
because it is like the rule for ordering words (of the same length) in
the dictionary. Just as one needs to know alphabetical order to look up
words in the dictionary, one needs to know “digit order” in order to
compare base 10 numerals.

The simplest “alphabet” for writing numbers compactly is the two-
letter alphabet of binary, or base 2, notation, consisting of the symbols
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0 and 1. Base 2 is worth studying, not only because it is the simplest
compact notation, but also because it helps us to become aware of the
workings of base 10 notation, which most of us have forgotten (or never
understood in the first place).

A base 2 numeral, say 101001, represents a number as a sum of
powers of 2, in this case the number (with digits written bold so that
they stand out)

n=1-224+0-2*+1-2240-2240-2"+1-2°

Thus we are writing 7 as sum of descending powers of 2, namely
n =25+ 23+ 20 Every natural number 71 can be written uniquely in
this way by removing the largest power of 2 from 7, then repeating the
process. Necessarily, a smaller power of 2 is removed each time, so the
process expresses 7 as a sum of distinct powers of 2. For example,

37=32+5
=245
=2"4+4+1
=2°+242°
=1-2°40-2"4+0-2°+1-2°+0-2"+1-2°,
so the binary numeral for 37 is 100101.
The base 10 numeral for a number 7 is obtained by the similar
process of removing, at each stage, the largest possible power of 10. The
same power of 10 can be removed as many as nine times, so the coet-

ficients of the powers can be any of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
For example, the base 10 numeral 7901 denotes the number

7-10°4+9-10*4+0-10" +1-10".
Or, as we used to say in elementary school,
7 thousands, 9 hundreds, 0 tens, and 1 unit.

In school, we got used to thinking that this is a pretty simple idea, but
look again. The formula

7901 =7-10>+9-10>4+0-10" +1-10°
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involves addition, multiplication, and exponentiation. Thus we need a
sophisticated set of concepts just to find convenient names for numbers.
It is no wonder that arithmetic is a deep subject!

In fact, some of the most intractable questions in number theory
involve the decimal or binary representation of numbers. For example:
are there infinitely many primes whose binary digits are all 1? We do
not know—this is the same as asking whether there are infinitely many
primes of the form 2" — 1.

3.2 Addition

To understand what happens to base 10 numerals when we add the cor-
responding numbers, consider the example 7924 + 6803. If we expand
the numerals as sums of powers of 10, and write the coefficients in bold
symbols as above, then
7924+ 6803 = 7-10°+9-10°+2-10+4
+6-10°+8-10°+0-10+3
=(7+6)-10°+(9+8)-10*+ (2+0) - 10+ (4+3)
=(13)-10° + (17) - 10> + (2) - 10 + (7),
collecting powers of 10. The last line does not immediately translate
into a base 10 numeral, because the coefficients are not all less than
10. Those greater than 10, such as 13 = 10 4 3, create an “overflow” of
higher powers of 10 that must be “carried” to the left and added to the
coefficients already present. In this case, we get an extra power 10°> and
an extra power 10%, because
(13)-10° 4+ (17) - 10+ (2) - 10+ (7)
=(10+3)-10°+ (10+7) - 10>+ (2) - 10+ (7)
=(104+3+1)-10°+(7) - 10>+ (2) - 10+ (7)
=1-10"+4-10°+7-10°4+2-10+7.

This is why we mumble under our breath “9 plus 8 gives 7, carry 1,” and
so forth as we add 7924 to 6803 by hand. We are concisely describing
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Figure 3.1: Written calculation and abacus calculation. Image courtesy of the
Erwin Tomash Library on the History of Computing, http://www.cbi.umn.edu
/hostedpublications/Tomash/. I thank Professor Michael Williams of the University
of Calgary for granting permission.

what happens to the 17 in the first three lines of the calculation above:
7 remains as the coefficient of 10%, while 10 contributes a coefficient
1 of 10°. “Carrying” also occurs when addition is done using the
abacus, the method generally used in Europe before the publication of
Fibonacci’s Liber abaci in 1202 (and also used extensively afterwards).
There is really no difference between abacus addition and written base
10 addition, since the underlying processing of powers of 10 is the same.

Indeed, it was not immediately clear that written computation
was superior to abacus computation, and rivalry between the two
continued for centuries. Figure 3.1, from the Margarita philosophica of
Gregor Reisch (1503), shows a duel between a calculator using written
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numerals and one using the abacus. (Strictly, he is using a counting
board, but it is essentially an abacus.)

As long as we use a compact notation, such as base 10 or base 2,
carrying is an unavoidable part of the addition process. Yet, surpris-
ingly, there are hardly any theorems about carrying. It seems as though
carrying is a necessary evil, without any interesting properties in its own
right.

Apart from carrying, the only other knowledge needed for base 10
addition is the addition table, which gives the results of adding any two
of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. It consists of 100 facts, such as “5
plus 7 gives 2, carry 1,” so it requires a certain amount of memory. But
assuming the addition table is known, and the calculator does not suffer
from fatigue, there will be a bound b on the time required to add any
two digits (plus any 1 that may be carried over from adding the previous
digits). It follows that the time needed to add two #-digit numbers will
be bounded by bn.

This is a very desirable (but quite rare) state of affairs, where
the time needed to produce an answer is roughly proportional to the
length of the question. For most computational problems, the time
required to produce an answer grows faster than the length of the
question, sometimes dramatically so. About the only other nontrivial
questions about base 10 or base 2 numerals that can be answered in time
proportional to the length of the question are comparison (is 7 < 7?)
and subtraction (what is 72 — 72?2). We invite the reader to think about
the usual methods of comparison and subtraction to see why this is so.
(An example of a computationally trivial question is deciding whether
n is even, since we need only look at the last digit of 72.)

3.3 Multiplication

Though he had both esteem and admiration for the
sensibility of the human race, he had little respect for
their intelligence: man has always found it easier to
sacrifice his life than to learn the multiplication table.

W. Somerset Maugham, “Mr. Harrington’s
Washing,” in Maugham (2000), p. 270
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Somerset Maugham knew the main difficulty that most people
have with multiplication, but the difficulty goes deeper, as one can see
by analyzing the multiplication of large numbers. The usual way to
multiply numbers given as base 10 numerals, say 4227 and 935, is to
work out the products of 4227 by the individual digits of 935:

4227 x 9 = 38043
4227 x 3 = 12681
4227 x 5=21135.

From this we conclude immediately that

4227 x 900 = 3804300
4227 x 30 = 126810
4227 x 5 =21135,

from which we get 4227 x 935 by adding the three numerals on the
right-hand side. The computation is usually set out in a concise tableau,
something like:

4227

x 935
21135

126810

3804300

3952245

The number of digits in the tableau is a reasonable measure of the
time needed for the computation, since the time needed to get each digit
is bounded by a constant. The constant reflects the maximum amount
of mental arithmetic needed to get each digit, by retrieving information
from the multiplication and addition tables in our head. If we multiply
an m-digit number M by an #-digit number N then the number of
digits in the tableau is < 27, so it is fair to say that the time needed to
compute MN is bounded by c#m, for some constant c.

For people who cannot remember the multiplication table, it is
possible to do the single-digit multiplications by repeated addition,
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since

2M=M+M
SM=M+M+M

M=M+M+M+M+M+M+ M+ M+ M.

This does not significantly change the time estimate, since the time
required to add as many as nine m-digit numbers is still bounded by
a constant times #2. Thus the time to find each line in the tableau is
bounded by a constant times 7, so the time to compute 7 lines, and
to add them, is bounded by dmn, for some constant d. People who do
not know the multiplication table just have to put up with a constant d
somewhat larger than c.

An interesting way to see directly that multiplication can be done
without the multiplication table is to do it in base 2 numerals. In this
case the only single-digit multiplications are by 1 or 0, and hence trivial.
The resulting multiples then have to be shifted by attaching zeros at
their right, and the results added. Thus the only real work is in adding
the rows of the tableau. But again we see that the time to multiply an
m-digit number by an n-digit number is bounded by emmn, for some
constant e.

There is a useful variant of base 2 multiplication which does not
require the numbers to be written in base 2. It uses only the related
fact, from section 3.1, that any positive integer can be written as a sum
of distinct powers of 2. When a number M is written in this way, we
can multiply by M using only addition and multiplication by 2. For
example, to multiply a number N by 37 we write

37 =1+42%+72°,
so that
37N=(1+2*4+2°)N= N+2°N+2°N.

Thus we need only to write down N, double it twice, then double
another three times, and add the results. This idea of “multiplication by
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Figure 3.2: Visualizing quotient and remainder.

repeated doubling” has an important consequence—“exponentiation
by repeated squaring”—which will be discussed in section 3.5.

3.4 Division

When a and b are positive integers, a is not usually divisible by b, so the
general division operation is division with remainder. That is, for given
a and b we wish to find the quotient ¢ > 0 and remainder r > 0 such
that

a=qb+r with r <b.

We saw why the existence of g and  is obvious from a picture in section
2.1. To refresh your memory we repeat the picture here (figure 3.2),
with a lying on a line among the multiples of b. The greatest multiple of
b not exceeding a is gb, and the remainder is 7 = a — gb, which is less
than the distance b between the successive multiples gb and (g + 1)b.

We were content with the existence of a remainder 7 < b when we
proved that the Euclidean algorithm produces the gcd in section 2.1.
However, we also claimed that the division process is fast enough to
compute the gcd for numbers with thousands of digits. We now make
good on this claim by proving that division with remainder can be
done in time similar to that required for multiplication. That is, the
time is roughly proportional to 727 when a and b have m and 7 digits,
respectively.

To obtain the time estimate we use a division method quite like
the “long division” process taught in schools, but somewhat simpler
to describe and analyze. We illustrate the method by dividing 34781
by 26.

The idea is to scan the digits of 34781 one by one from left to right,
at each step dividing by 26 and attaching the remainder on the left of
the next digit, then dividing this by 26 in turn. Each quotient is a single
digit number, so it is not really necessary to know how to divide by
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26—only how to multiply 26 by each single digit number. Here are the
five steps in the calculation for this example.

Divide 3 by 26,  obtaining quotient 0 and remainder 3,

then divide 34 by 26, obtaining quotient 1 and remainder 8,

then divide 87 by 26, obtaining quotient 3 and remainder 9,
then divide 98 by 26, obtaining quotient 3 and remainder 20,
then divide 201 by 26, obtaining quotient 7 and remainder 19.

The quotient of 34781 by 26 is then the sequence of quotient digits,
1337, and the remainder is the last remainder, 19.

One can see how this works by interpreting the digits in 34781 as
numbers of units, tens, hundreds, and so on. For example, 34 stands
for 34 thousands, so its quotient by 26 is 1 thousand with remainder 8
thousand. Attaching this remainder to the next digit, 7, which stands
for 7 hundreds, gives 87 hundreds. So its quotient by 26 is 3 hundreds
with 9 hundreds remaining, and so on.

In general, if we use the method to divide an m-digit number a
by an n-digit number b there are m steps, each of which multiplies
the 7-digit number b by a single digit and subtracts it from a number
previously obtained so as to obtain a remainder < b. Since there are
only 10 possible digits to be tried, the time for each step is bounded by
a constant multiple of 7. Hence the time for 7 steps is bounded by a
constant multiple of 71, as claimed.

The Euclidean Algorithm, Extended

The Euclidean algorithm in section 2.1, when speeded up by using di-
vision with remainder, is now confirmed to be efficient. The argument
about this algorithm in section 2.3, implying that gcd(a, b) = ma + nb
for some integers 1, n, can in fact be realized by extension of the
Euclidean algorithm itself, thus providing an efficient determination of
m and n. The idea is to do the same thing algebraically on the letters a
and b that we do numerically on the numbers a and b to find their ged.
The advantage of algebra is that by computing with letters we can keep
track of the coefficients of @ and b.
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Here are the two computations side by side in the case wherea =5
and b = 8:

ged(5, 8) = gcd(5,8—5) ged(a, b) = ged(a, b—a)

= gcd(3, 5) =gcd(b—a, a)
=gcd(3,5—13) =gcd(b—a,a—(b—a))

= gcd(3, 2) =gcd(b—a, 2a —b)
=gcd(2,3-2) =gcda— b, b—a—(2a—b))
=gcd(2, 1) =gcd(2a — b, —3a +2Db).

Comparing the numbers on the left with the letters on the right, we find
that 1 = —3a + 2b equals ged(5, 8) = ged(a, b).

Clearly, the algebraic computation takes the same number of steps
(and a similar amount of time) as the numerical computation. Thus
we also have an efficient algorithm for finding the 72 and 7 such that
gcd(a, b) = ma + nb. This is of interest in the next chapter, where we
discuss the concept of the inverse of an integer modulo a prime p, or of
a polynomial modulo an irreducible polynomial p(x). In both cases the
inverse arises from a Euclidean algorithm just as the number 7 does
in ged(a, b) = ma + nb. Hence it is also possible to calculate inverses
efficiently.

3.5 Exponentiation

The easiest case of exponentiation, raising 10 to the power N, gives a 1
followed by N zeros. For example, the base 10 numeral for 10'90°0% js 1
followed by a million zeros. Thus, just writing down the base 10 numeral
for MN takes exponentially longer than writing down the numerals for M
and N. The situation is similar with base 2 numerals, and it should not
be a surprise: we already know from section 3.1 that the lengths of base
10 and base 2 numerals are exponentially shorter than the numbers they
represent.

Thus, the fact that base 10 numerals can compactly represent very
large numbers has a downside: exponentiation of short numerals can
produce very long numerals. So exponentiation is not “feasible” to
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compute in the way that addition and multiplication are. Regardless
of how cleverly we compute M™N (and in fact it can be done with rela-
tively few multiplications), the time to write down the result generally
prevents the computation from being completed.

Indeed, the similar problem of computing MN mod K (the remain-
der when MN is divided by K) is perfectly feasible, simply because the
computation can be done by multiplying numbers less than K. This
is due to the fact, mentioned in section 2.4, that the remainder when
AB is divided by K equals the remainder when (A mod K)(B mod
K) is divided by K. So the only numbers we ever have to multiply are
remainders on division by K, which are necessarily less than K. We
can therefore keep the computation time small by keeping the number
of multiplications small; more precisely, to a number exponentially
smaller than the exponent N.

The trick is to use the method of exponentiation by repeated
squaring, which follows from the method of multiplication by repeated
doubling, discussed in section 3.3.

We illustrate this method with the problem of finding

79" mod107,

that is, finding the remainder when 797 is divided by 107. Since we
never have to multiply numbers bigger than 107, the main problem is to
find the 37th power using far less than 37 multiplications. To do this, we
use the representation of 37 as a sum of powers of 2, from the previous
section:

37=1+2"+2".
It follows that
79%7 = 7914242 — 79.79% . 797
Now notice that

792 = 7922 — (79%)?,
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which we obtain by squaring twice; that is, by two multiplications. After
that three more squarings give us

((((79%))2)?)? = 79%.

Thus with five multiplications (mod 107) we get 79%" and 79%". Finally,
two more multiplications give us

7937 = 791 . 792" . 797,

So seven multiplications suffice to obtain the 37th power. And (as
we have emphasized) each multiplication is of numbers less than 107,
hence bounded by the time needed to multiply such numbers plus the
time to reduce the product mod 107. Reducing mod 107 amounts to
dividing by 107 and taking the remainder, and this takes much the same
time as multiplication.

In general, the number of multiplications required to compute MN
is less than twice the length of the binary numeral for N. The worst case
is when each of the 7 digits of N is 1. In that case we have to compute
M to the exponents

1 2 1 22 2}1— 1
by squaring 7 — 1 times, and then multiply the powers
M, M, M M

which takes 7z — 1 multiplications. Thus we have less than 27z multipli-
cations. When all the multiplications are mod K, we can assume that
the numbers being multiplied are less than K. So the multiplications
take time bounded by some multiple of k2, where k is the number of
binary digits of K, as does the reduction of each product mod K.

Thus the time to find MN mod K is bounded by ek*n, for some
fairly small constant e. This makes the computation “feasible,” in the
sense that a computer can easily carry it out for numbers M, N, K with
hundreds of digits. This result is the key to one of the most important
computations in the world today—the encryption of transactions on the
internet. Many of these use the well-known RSA encryption method,
which involves raising numbers to large powers mod K. Encryption
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is feasible because of the fast exponentiation method above. As far as
we know (and hope) decryption is not feasible because it depends on
factoring large numbers. We discuss the factoring problem in the next
section.

3.6 P and NP Problems

Our study of addition, multiplication, and exponentiation has raised
the issue of feasible computation. Until now we have been vague
about what feasibility means, but there is a precise notion that seems
to capture the concept pretty well: polynomial time computation. To
define polynomial time computation properly we must first define
computation, which we will do in the next section. Right now we
will give some examples that illustrate the concept, and examples
that illustrate the related concept of nondeterministic polynomial time
computation. The examples will also help to explain why we allow time
to be measured by general polynomial functions, rather than sticking
to, say, polynomials of degree 1, 2, or 3.

In section 3.2 we observed how two 7-digit numbers (in base 10 or
base 2) can be added in time bounded by c#, for some constant c. We
can therefore say that addition is a problem solvable in linear time. It
is an ideal state of affairs when the time needed to answer a question
is proportional to the time needed to read it—but not one that is very
common. In section 3.3 we saw that multiplication of 7-digit numbers
takes time bounded by dn?, if we multiply by the usual method. There
are in fact methods that are faster, for very large numbers. But no linear
time method of multiplication is yet known, for any realistic model of
computation.

This brings us to the question of defining computation and compu-
tation time. Until now we have assumed that computation is done the
way humans do it: mostly with pencil and paper and a limited amount
of mental arithmetic (using facts in memory such as “7 plus 5 gives
2, carry 17). This turns out to be basically the right idea! It is made
precise by the Turing machine concept of computation, described in
section 3.7, which covers all known computational devices. A Turing
machine operates in a sequence of discrete steps, so it gives a precise
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measure of computation time, as the number of steps. In terms of the
pencil-and-paper image, a step means moving the pencil from one
symbol to the next, or replacing one symbol by another (which includes
writing a symbol in a blank space).

Now it happens that, in the Turing machine model, symbols are
written in a single row. For example, to add the numbers 58301 and
29946 one has to write something like

58301 + 29946

and to write the sum on the same line. This demands a lot of zigzagging
back and forth. First find the unit digits and add them

7 = 58301 + 29944

(crossing off the unit digits to avoid getting confused at the next stage).
Then find the tens digits and add them:

47 = 58301 + 29946,

and so on, carrying when necessary. After five trips back and forth we
are done:

88247 = 38301 + 29946.

If the numbers being added have 7 digits then it takes 7 trips back and
forth to add them. Since the trip itself traverses at least z symbols, doing
addition by this method takes on the order of 7* steps.

Thus, if we vary the model of computation, computation time
can change from linear to quadratic. We similarly find that doing
multiplication on a Turing machine, rather than in the usual two-
dimensional format, changes the computation time from quadratic
to cubic. To avoid worrying about such variations, we introduce the
concept of polynomial time computation.

First we define a problem P to be a set of strings of symbols that we
interpret as “instances” of the problem, or “questions.” Then P is said
to be solvable in polynomial time if there is a polynomial p and a Turing
machine M such that, given an instance I of P with 7 symbols, M will
compute the correct answer to [ in time T < p(n).
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The class of problems solvable in polynomial time is called P.

Thus P includes the problems of addition and multiplication of
base 10 numerals. It also includes the related problems of subtraction
and division, and fancier problems such as computing # decimal digits
of +/2, which can be done using the algorithm for generating integer
solutions of the equation x*> — 2y? = 1 (section 2.8). A more remarkable
example is the problem of recognizing primes. As long ago as 1801,
Gauss drew attention to this problem, insisting that

the dignity of the science itself seems to require that every possible means
be explored for the solution of a problem so elegant and so celebrated.
Gauss (1801), article 329

A polynomial time solution was not found until recently, by Agrawal
et al. (2004). An improved version of their method, due to Lenstra and
Pomerance in 2011, takes on the order of 72° steps for an 7-digit number.

The quotation from Gauss above is actually not entirely about
recognizing primes. It is actually about

the problem of distinguishing prime numbers from composite numbers
and of resolving the latter into their prime factors.
Gauss (1801), article 329

The latter part of the problem, finding the factors of composite num-
bers, is not solved by the Agrawal-Kayal-Saxena method, which in
fact identifies composite numbers without finding factors. We still do
not know a polynomial time method for finding factors of a number
M, even though correct factors can be verified in polynomial time by
multiplying and comparing the result with M. Notice that it is no
good to try dividing M by all smaller numbers, because if M has m
digits there are about 10” numbers less than M. And 10, like any
exponential function, grows faster than any polynomial function of 7.

The situation encountered in the factorization problem—where the
answer is hard to find but easy to verify—is surprisingly common. An-
other simple example is solving polynomial equations mod 2. Given a
polynomial p(xi, x,, . . ., x,,), with integer coefficients, we ask whether
the congruence

plxy, %, ..., x,) =0 (mod 2)
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has any solution. To find such a solution we seemingly have to try all
assignments of the values 0 or 1 to the variables x;, x3, ..., x,, and
there are 2" such assignments. Yet a correct assignment can be verified
in polynomial time by substituting the values and computing mod 2
sums and products.

Problems whose answers are hard to find yet easy to verify are
so ubiquitous that they too have a name: nondeterministic polynomial
time, or NP, problems. The word “nondeterministic” refers to the fact
that their polynomial time solution succeeds only with the help of
nondeterministic steps (typically, guessing the answer).

The ultimate example of an NP problem is finding proofs in math-
ematics. Ideally, the steps in a proof can be simply and mechanically
checked for correctness, so that correct proofs can be verified in poly-
nomial time, relative to the number of symbols they contain. (This ideal
has been substantially realized, as proofs of several difficult theorems
have actually been checked by computers.) But finding proofs remains
difficult. It has not been mechanized because the number of proofs
with 7 symbols grows exponentially with 7. For some reason we do
not yet understand (because we have been unable to prove that NP is
a larger class than P), exponential growth is keeping mathematicians in
business.

3.7 Turing Machines

We may compare a man in the process of computing
a real number to a machine which is capable of only a
finite number of conditions ¢1, qa, - . ., gr.

A. M. Turing (1936), p. 231

As we have seen in the preceding sections, various types of compu-
tation have been used in arithmetic for thousands of years. However,
the need for a general concept of computation was not felt until
the early twentieth century. It arose from quite a different form of
computation: symbolic logic. The idea of symbolic logic, which was a
dream of Leibniz in the seventeenth century, was to turn reasoning into
a form of calculation. It would then be possible, Leibniz thought, to
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1 0 1 + 1 1 0 1

Figure 3.3: A Turing machine tape.

resolve disputes simply by saying “let us calculate.” As it happened,
the dream was not even partially realized until the nineteenth century,
and it remains problematic today, for reasons such as the mystery of P
and NP. However, we did find out the meaning of symbolic logic and
computation.

We will say more about symbolic logic in chapter 9. For now, the
main point to grasp is that reducing all conceivable forms of reasoning
to calculation is a very general task—so general that it ought to embrace
all conceivable forms of computation as well. The first to grasp this point
was Post in 1921. He proposed a definition of computation, arrived at
by generalizing the systems of symbolic logic then in use. However,
he did not publish his results at the time—even though they included
some sensational discoveries—because he was in some doubt that his
definition really covered all possible forms of computation.

Because of Post’s doubt, the concept of computation remained
unknown to mathematics until two other definitions were proposed
in the 1930s. Credit for the first published definition goes to Church
(1935), but the first definition that was convincing enough to catch
on was the Turing machine concept, introduced later in the same year.
As indicated by the quotation at the beginning of this section, Turing
arrived at his concept of machine by analyzing how a human being
computes.

At a minimum, human computation requires a pencil, paper,
and a limited amount of mental input to guide the pencil. As we
foreshadowed in the previous section, the “paper” is a tape divided
into squares, each of which can carry a single symbol (figure 3.3). The
“pencil,” also called a read/write head, is a device that can recognize and
write a finite number of symbols [, Sy, S,, . .., S, where [J denotes
the blank square.

Finally, the machine has a finite number of internal states
Q1, @2, - - - » Qu> corresponding to the mental states needed for the given
computation. As we have seen, computations such as addition can be
carried out using only a finite number of mental states, and Turing
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argued that no computation could require infinitely many mental
states, otherwise some of them would be so similar that they would be
confused. For the same reason, a computation cannot involve infinitely
many different symbols.

This is why a Turing machine has only finitely many ¢, and §;.
How does the machine operate? It performs a series of steps: at each
step the read/write head observes the symbol §; currently in view and,
depending on its current internal state g;, it replaces S; by a symbol
Sk, moves one square to the left or right, and enters a state g;. Thus a
machine M is specified by a table of quintuples, listing the action to be
performed for certain pairs g;, S;. (If no action is listed for g;, S; then
M halts in state q; when viewing §;.) We write

g S;i S R g
if the movement is to the right, and
g Si S L q
if the movement is to the left.
Here is an example: a machine M that adds 1 to a base 2 numeral.
We assume that the read/write head starts in state g; on the right-

most digit of the input numeral. Next to each quintuple, we give its
interpretation.

a1 0 1 L g, Replace 0 by 1, move left in passive state q,
¢ 1 0 L g3 Replacelby0, move leftin “carry” state gs
@& 0 0 L ¢q Replace 0by 0, move left in passive state ¢,
¢ 1 1 L ¢q Replace1by 1, move left in passive state ¢,
g 0 1 L g, Replace0by 1, move left in passive state ¢,
g 1 0 L g5 Replacelby0, move leftin “carry” state g3
¢ O 0O L g4 Replace by, move left in halting state g4
gz O 1 L g4 Replace by 1, move left in halting state g4

Thus M crawls across the input numeral, updating its digits for as far
as the “carry” propagates, then going into a passive state that changes
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1 0 1
q1
1 0 0
q3
1 1 0
q2
1 1 0

g4

Figure 3.4: Snapshots of the computation of M.

nothing, before halting on a blank square to the left of the updated
numeral. Figure 3.4 shows “snapshots” of successive steps in the work
of M on the input numeral 101. The position of the read/write head is
enclosed in a box labeled by the current state.

The machine M can be simplified a little by noticing that the initial
state q; behaves exactly the same as the “carry” state g3, so we could
set g3 = ¢1 and get by with six quintuples instead of eight. With this
identification, the “carry,” passive, and halting states correspond rather
naturally to the three mental states a human being would need in order
to perform this computation.

Designing a Turing machine to perform a given computation,
though tedious, is basically a matter of thinking how you would do
it if allowed to view only one symbol at a time. With some practice,
one becomes convinced that any computation is possible, so it is
intuitively plausible that Turing machines can compute anything that
is computable. Further evidence comes from the competing models
of computation proposed by Post, Church, and many others. It has
been checked that all the proposed models of computation can be
simulated by Turing machines. Because of this, mathematicians have
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accepted the principle, called Church’s thesis or the Church-Turing
thesis, that the Turing machine concept captures the intuitive concept
of computability.

3.8 *Unsolvable Problems

By defining the concept of computing machine we also gain defini-
tions of algorithm and solvable problem. A problem P, as we said in
section 3.6, can be viewed as a set of instances or questions, which are
finite strings of symbols in some finite alphabet. For example, the prob-
lem of recognizing primes can be given as the set of strings of the form

Is n prime?

where 7 is a base 10 numeral. In fact we could take the instances of this
problem to be just the numerals #, since the numeral is all the machine
needs to answer the question.

An algorithm for a problem P—informally, a rule for obtaining
answers to the questions in P—is precisely a Turing machine that takes
each instance Q of P as input and, after a finite number of steps, halts
with the correct answer written on its tape. To be even more precise, if
Qs a yes/no question (such as “Is z prime?”) we can demand that M
signal yes by halting on 1 and no by halting on [.

Finally, a problem 7P is solvable if there is an algorithm that solves
it; that is, a Turing machine M that halts with the correct answer to each
input O from P. We can also elaborate this definition to give a precise
definition of solvability in polynomial time, discussed less formally in
section 3.6. And, by extending the definition of Turing machine to allow
nondeterministic computation steps—that is, by allowing a situation
qiS; to have more than one outcome—we can give a definition of
nondeterministic computation. This makes the definitions of the classes
P and NP from section 3.6 completely precise.

However, P and NP problems are definitely solvable. In this section
we wish to investigate unsolvable problems. It turns out that some of
them are quite easy to describe, and the easiest to prove unsolvable are
problems concerning Turing machines themselves.
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Consider the so-called halting problem, introduced by Turing
(1936). It can be taken to consist of the following questions:

Owm.1- Given a Turing machine M and input I, decide whether
M eventually halts on [J after receiving input I. (To be
completely specific, assume that M starts in state q; on the
rightmost symbol of I, on an otherwise blank tape.)

To see why this could be a difficult problem, suppose that I is a base
10 numeral and that M searches for a | > I such that 22’ 41 is prime.
At present we do not know whether M halts for [ =5, so there are
instances of the halting problem that are hard to answer. Turing (1936)
showed that the halting problem is unsolvable by considering questions
Owm.1 about the computation of real numbers. A somewhat simpler
approach is to study what happens when Turing machines have to
investigate their own behavior.

A Turing machine has a description, as we know from the previous
section, consisting of a finite list of quintuples. Although the description
is finite, it may contain arbitrarily many of the symbols g1, q,, . . . and
S1, S2, .. .. Thus no Turing machine can accept all such descriptions as
inputs. However, it is easy to replace each description by one in the fixed
finite alphabet {q, S, ’, R, L, (0}, by replacing each g; by the string g"
with i strokes, and each S; by the string S with ; strokes. Let d(M) be
the description of M, rewritten in this manner. It now makes sense to
ask the following questions, which form a subproblem Q of the halting
problem:

Om.d(m)- Does Turing machine M, given input d(M), eventually
halt on [J?

If T is a Turing machine that solves this problem, it is fair to assume that
T is given the question O 4m in the form of the description d(M),
since this input accurately describes M. Also, we can assume that T
follows the convention of halting on 1 for yes and on [ for no.

But then it is impossible for T to correctly answer the question
Or.4(n! If T answers no, then T halts on [J, in which case the answer is
incorrect. And if T does not halt on [J, then the answer is no, in which
case T is supposed to halt on [J. Thus T does not solve the problem O,
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because it fails to correctly answer one of the questions in Q. Thus the
problem Q is unsolvable, and hence so is the halting problem.

With a little reflection it is, I hope, obvious that the halting problem
is unsolvable. It is so easy to thwart the hypothetical solving machine by
asking it about its own behavior. Such “self-reference” has been the stuff
of paradox since ancient times. A nice example occurs in Don Quixote:

Before anyone crosses this bridge, he must first state on oath where he

is going and for what purpose. If he swears truly, he may be allowed to

pass; but if he tells a lie, he shall suffer death by hanging on the gallows

there. ... Now it happened that they once put a man on his oath, and he
swore that he was going to die on the gallows.

Miguel Cervantes, Don Quixote, Part II, Chapter LI

Translated by J. M. Cohen

What is more surprising is that genuine mathematical problems
turn out to be unsolvable for essentially the same reasons. A famous ex-
ample is Hilbert’s tenth problem, so named because it was tenth on a list
of problems that Hilbert posed to the mathematical community in 1900.

It consists of questions we may call Qy(x, ..., x,)» where p(x;, ..., x,) is
a polynomial with integer coefficients.

Op(xi,...x,): Does p(xi, ..., x,) =0 have a solution in integers
X1y v ey X8

This problem was proved unsolvable via a long series of transforma-
tions of the halting problem. The first step, in the 1930s, was to arith-
metize the Turing machine concept: that is, to encode successive tape
configurations by numbers, and steps of computation by arithmetic op-
erations (initially using addition, multiplication, and exponentiation).
The hardest part, eventually accomplished by Matiyasevich (1970), was
to eliminate the use of exponentiation,! thereby reducing questions
about computation to questions about polynomials.

With this discovery of Matiyasevich, we see unsolvability cast
a shadow even over elementary mathematics, in the arithmetic of
addition and multiplication.

LIt is not possible to eliminate either one of addition or mulitplication. The theory of
addition alone has an algorithm for deciding the truth of any sentence, and so does the theory
of multiplication. Unsolvability springs from the marriage of addition and multiplication.
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3.9 *Universal Machines

A Turing machine is essentially a computer program, written in a
very simple programming language. This is clear in the formulation
of Post (1936), which has instruction numbers instead of internal
states. Leaving aside some minor differences between Post and Turing,
Turing’s quintuple

q:S;SrLq
becomes Post’s instruction

i. Replace S; by S, move left, and go to instruction /

(and similarly when the quintuple contains a move to the right). Thus
the heart of the Turing machine programming language is the “go
to” command, a command that has largely been replaced by more
“structured” commands in modern programming languages.

When Turing machines are viewed as programs, it is natural (for
us) to seek a machine that can run all these programs, and indeed
Turing (1936) designed a universal Turing machine that does exactly
that. Its details are unimportant, because once one has accepted the
Church-Turing thesis—that any computation can be performed by a
Turing machine—then it is clear that a universal machine exists. One
simply has to think how a human being can simulate the computation
of any Turing machine M on any input I, which is quite easy to do.

The main difficulty is that the arbitrary machine M can have
arbitrarily many states ¢; and symbols S; in its description, whereas
the universal machine U (like any Turing machine) is constrained to
have only finitely many states and symbols. The inevitable way round
this difficulty is to encode each g; and §; as a string of symbols from a
fixed alphabet, say the alphabet {g, S,” }. Then the single symbol g; can
be encoded by the string ¢ (¢ with i primes) and the single symbol
S, can be encoded by the string S (S with j primes). Consequently,
when U has to simulate replacement of §; by S it has to replace the
string S by the string S®. Of course, this slows down the running of
U considerably in comparison with the running of the machine M it is
simulating, but it makes the universality of U possible.
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With the existence of a universal machine U, each unsolvable
problem about all machines M becomes an unsolvable problem about
the single machine U. For example, the halting problem becomes the
problem of deciding, for a given input I, whether U eventually halts
after starting on input I. This is because an input to U can encode both
an arbitrary machine M and an input to M.

Since Turing (1936) first outlined the description of a universal
machine there have been many attempts to design universal machines
that are as simple as possible. It is known, for example, that there
is a universal machine with only two symbols (including the blank
square) and a universal machine with only two states. It is not known,
however, what is the smallest combination of state number and symbol
number. The current record holder is a machine with four states and six
symbols, found by Rogozhin (1996). We have not yet learned anything
striking about computation from these small Turing machines, perhaps
because they are not simple enough. However, there are other models
of computation with strikingly simple universal machines, such as
Conway’s “game of life,” which is described in Berlekamp et al. (1982).

3.10 Historical Remarks

The discovery of compact notation for numbers, and methods for
computing their sums and products, go back thousands of years. In
Europe and the Far East they were initially implemented on the abacus.
Written computation became practical after the invention of a symbol
for zero, in India around the fifth century CE. The Indian notation for
numbers spread to the Arab world (hence our term “Arabic numerals”)
and then to Europe with the Moors in Spain. Computation with written
numerals in Europe began around the time of Fibonacci’s Liber abaci in
1202. As the title of the book indicates, computation until that time was
synonymous with the abacus.

Indeed, for centuries to come there was opposition to written
computation from users of the abacus, and the abacus users had a
point: written arithmetic is no faster than abacus arithmetic for basic
tasks. (As recently as the 1970s my father-in-law used the abacus in
his shop in Malaysia.) Written computation did not really advance
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mathematics until it was used for computations not conceivable on
the abacus: in algebra in the sixteenth century and in calculus in the
seventeenth century. These two fields ushered in a golden age of written
computation, with eminent mathematicians such as Newton, Euler,
and Gauss producing virtuoso displays of both numerical and symbolic
computation.

As early as the 1660s Leibniz foresaw the possibility of a calculus
ratiocinator, a symbolic language in which reasoning was done by
computation. The first concrete step towards Leibniz’s dream was taken
by Boole (1847), who created an algebraic symbolism for what we now
call propositional logic. Boole took + and - to stand for “or” and “and,”
and 0 and 1 to stand for “false” and “true.” Then his + and - satisfy
laws similar to those of ordinary algebra, and one can decide whether
certain types of statements are true by algebraic computation. In fact,
if p+q is taken to mean “p or g but not both,” then the algebraic
rules of propositional logic become exactly the same as those of mod
2 arithmetic. This remarkable parallel between arithmetic and logic is
explained in section 9.1.

Propositional logic is not the whole of logic by any means, and
checking logical truth is not generally as easy as mod 2 arithmetic. But
Boole’s success in reducing basic logic to calculation inspired Frege
(1879), Peano (1895), and Whitehead and Russell (1910) to develop
comprehensive symbolic systems for logic and mathematics. The aim
of these formal systems, as they were called, was to avoid errors or gaps
in proofs due to unconscious assumptions or other kinds of human
error. The steps of a formal proof can be followed without knowing
the meaning of the symbols so, in principle, a formal proof can be
checked by a machine. Indeed, formal proofs (and hence theorems) can
in principle be generated by a machine, by combining a machine that
generates all possible strings of symbols with one that checks whether a
given string is a proof.

At the time when the first formal systems were developed, no such
machines had been built, and computability was not imagined to be
a mathematical concept. But the idea gradually dawned that formal
systems include all possible computation processes. As mentioned in
section 3.7, Post in 1921 considered the most general symbol manip-
ulations conceivable in formal systems and broke them down into
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simple steps. His aim at first was to simplify logic to the point where
truth or falsehood became mechanically decidable, as Leibniz had
hoped. He got as far as finding some very simple systems that generate
all the theorems of Russell and Whitehead’s system. Then, to his
surprise, he found it was hard to foresee the outcomes of some very
simple processes.

One that he discovered is called Post’s tag system. The system takes
any string s of Os and 1s and repeatedly applies the following rules.

1. If the leftmost symbol of s is 0, attach 00 to s on the right, then
delete the three leftmost symbols of the resulting string.

2. If the leftmost symbol of s is 1, attach 1101 to s on the right,
then delete the three leftmost symbols of the resulting string.

Thus if s = 1010 the rules successively produce

10101101,
@110100,
#18000,
#0000,
#0900,
900,

at which point the string becomes empty and the process halts. It is fun
to see what happens with various strings s; the process can run for a very
long time, and it can also become periodic. Post was unable to find an
algorithm to decide which initial strings s eventually lead to the empty
string, and in fact this particular “halting problem” remains unsolved
to this day.

After reaching this impasse, Post’s train of thought took a dramatic
change of direction. Simple systems could simulate all possible com-
putations, yes, but this did not mean that there was an algorithm to
answer all questions about computation. On the contrary, it implied the
existence of unsolvable algorithmic problems, by an argument like that
used to prove the unsolvability of Turing’s halting problem in section
3.8. Post recounted his anticipation of Turing’s idea in Post (1941).
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However, Post paused on the brink of this momentous discovery
because he was concerned about having to make the assumption we
now call Church’s thesis. It seemed to him more like a law of nature, in
need of eternal testing, than a mathematical definition of computation.
It was only after Church himself had proposed the thesis, and Turing
was working on the same idea, that Post (1936) published one of
his systems for computation—coincidentally, one very similar to the
Turing machine concept.

In the meantime, Church and Turing had found unsolvable prob-
lems independently, and Godel (1931) had found a related and equally
momentous result: incompleteness of axiom systems for mathematics.
That is, for any sound axiom system A for mathematics, there are
theorems that A does not prove. Actually Gédel proved stronger results
than this, which I will come to in a moment.

First we should observe, as Post did in the 1920s, that any unsolv-
able problem implies an infinite amount of incompleteness. Take Tur-
ing’s halting problem for example. Suppose we want to prove theorems
about Turing machine computations, and that we have a sound formal
system A for doing so. (That is, A proves only true theorems about
Turing machines.) Since A is formal, we can mechanically generate all
its theorems, by a Turing machine T if we like. But then if Ais complete
it will prove all true facts of the form

Machine M, on input d(M), eventually halts on [J.
And for the remaining machines M’ it will prove all the facts of the form
Machine M, on input d(M’), never halts on [J.

Consequently, by looking down the list of theorems of A, we will
be able to answer all of the questions Oa 4(m), and hence solve the
halting problem. Since the halting problem is not solvable, there must
be theorems of the above form that A fails to prove (and in fact infinitely
many, because if there were only finitely many missing theorems we
could add them as axioms to A).

Godel discovered incompleteness by a different argument, which
does not assume Church’s thesis. Also, he was able to prove incom-
pleteness of formal systems for mainstream mathematics; namely, any
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system that contains basic number theory. Godel’s argument and Post’s
argument can today be seen as two aspects of the same phenomenon:
the arithmetization of symbolic computation, or logic. As mentioned in
section 3.8, this means that all the operations of a Turing machine can
be simulated by operations on numbers, ultimately definable in terms
of + and -. So, in a sense, all computation is abacus computation!

A more explicit way to express all computation in terms of + and
- is inherent in the negative solution of Hilbert’s tenth problem, also
mentioned in section 3.8. Matiyasevich (1970) actually showed that
knowing the outcome of any Turing machine computation is equivalent
to knowing whether a certain polynomial equation

plxi, ..., %) =0 *)
has a solution in integers xy, . . . , x,,. This amounts to knowing whether
there are integers xi, ..., x, that yield 0 by a certain sequence of

additions and multiplications (which produce the polynomial p).

Now suppose we replace Hilbert’s tenth problem by the
corresponding problem in mod 2 arithmetic, by asking whether
(*) has a solution with x;, ..., x, equal to 0 or 1, and + and -
interpreted as the mod 2 sum and product. Then we collapse a problem
about arbitrary computation to a problem in propositional logic, called
the satisfiability problem. The latter problem is solvable, because when
the x; can take only the values 0 and 1 there are only finitely many
solutions of (*) to try.

However, the satisfiability problem is still interesting because, as
mentioned in section 3.6, it is in NP but not known to be in P. The
obvious method of solution is to substitute all 2” values of the sequence
(x1, ..., %,) in (*), and no known method of solution is substantially
faster than this. Cook (1971) in fact showed that the satisfiability
problem is as hard as any NP problem because, if it were solvable in
polynomial time, any NP problem would be solvable in polynomial
time. Thus all the difficulties of NP problems are condensed into this
single problem of mod 2 arithmetic. (Such problems—and many of
them are now known— are called NP-complete.)

It is striking that general computation and NP computation share
a simple description in terms of polynomial equations, but so far this
common description has failed to throw any light on the baffling
question: is NP # P?
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3.11 Philosophical Remarks

In this chapter we seem to have moved seamlessly from third grade
arithmetic to the depths of unsolvability and incompleteness—a sea-
change into something rich and strange. Where, if anywhere, did we
cross the line between elementary and advanced mathematics? In my
opinion, it was not with the definition of Turing machine. Admittedly,
Turing machines are not yet part of every mathematician’s education,
but I believe they deserve to be because:

1. Computation is now one of the fundamental concepts of
mathematics.

2. The Turing machine concept is the simplest and most
convincing model of computation.

3. The concept is really very simple—not much more complicated
than the algorithms for addition and multiplication of decimal
numerals.

If this much is granted then the advanced step in the theory of
computation must be either Church’s thesis—making computability a
part of mathematics—or the “self-referential” trick used to prove the
unsolvability of the halting problem.

Despite their simplicity, both Church’s thesis and the self-
referential trick can be considered as deep ideas, and hence part of
advanced mathematics. They are deep in the sense that they were not
uncovered in the thousands of years of previous mathematical history,
and also in the sense that they underlie and support the massive edifice
of mathematical logic and set theory that has been built since their
discovery. Let me expand a little on these claims.

For thousands of years mathematicians have done computations,
so there has always been a concept of computation, albeit a vague one.
Mathematicians have also engaged in the formalization of more or less
vague concepts. This started with Euclid’s formalization of the concept
of “geometry” in the Elements, and it gathered pace around 1900,
when Peano (1889) formalized “arithmetic” with axioms for the natural
numbers and Zermelo (1908) formalized “set theory” with axioms for
sets. But formalization received a severe setback when Godel (1931)
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proved that all axiom systems for number theory and set theory are
incomplete—showing that formalization of arithmetic is not entirely
possible, after all. Godel thought that his argument would show that
the concept of computability cannot be formalized either. He became
convinced that he was wrong when he saw the Turing machine concept,
and later declared, in the paper Godel (1946), that it is a “kind of
miracle” that formalization of computability is possible.

Thus, if Church’s thesis is correct, computability is actually a more
precise and absolute concept than the concept of arithmetic! This is
surely a deep and wonderful discovery.

Now let us turn to the “self-reference” trick, whereby we prove that
no Turing machine T can solve the halting problem by confronting the
hypothetical machine T with its own description d(T). As I mentioned
in section 3.8, a similar idea turned up centuries ago in philosophy
and literature (in Don Quixote, for example) but only as a paradox—
amusing and thought-provoking, yes, but not of much consequence.
The mathematical versions have consequences of epic proportions;
namely, the completely unexpected presence of unsolvability and in-
completeness in elementary mathematics.

A less paradoxical kind of self-reference is known as the diagonal
argument or diagonal construction. I will discuss the diagonal construc-
tion more fully in section 9.7, but it is worth giving a preview of it here,
since it was actually Turing’s starting point.

Given a list of real numbers xj, x;, x3, . . ., displayed as infinite
decimals, the diagonal construction computes a number x different
from each x,, by ensuring that x differs from x;, in the #th decimal place.
The construction is called “diagonal” because the digits x has to avoid
are those lying on the diagonal of the array of digits of x;, x3, x3, . ..
(shown in bold type in figure 3.5). Now, if x1, x3, x3, . . . is a computable
list of computable numbers then x is also computable (by using a specific
rule for avoiding the diagonal digits; say, using 2 to avoid 1 and using
1 to avoid any digit other than 2). Thus the list x;, x,, x3, . . . does not
include all computable numbers.

To see why this argument leads to the halting problem, we relate
computable numbers to Turing machines. As the title “On computable
numbers ...” of Turing (1936) suggests, the first application of his
machines was to define computable real numbers. Turing defined a real
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z, 0.1374...
zo 0.9461...
x5 0.2222...
24 0.3456...

Figure 3.5: The diagonal of digits to avoid.

number x to be computable if there is a machine that prints the decimal
digits of x successively, and without later erasure, on alternate squares
of the machine’s tape. He chose this convention so as to leave infinitely
many other squares available for the computations that produce the
digits, but obviously other conventions are possible. The important
parts of the definition are:

1. For each 7, the nth digit of x is eventually printed.
2. Once printed the digit is never altered.

We can then define a list of computable numbers x;, x,, x3, ... to
be computable if there is a Turing machine that computes a list of
machine descriptions such that the #th machine on the list defines x;,.
The diagonal construction now gives a computable number x different
from the numbers xj, x,, x3, . .. in any computable list. So it would
seem, to anyone not convinced that there was a complete notion of
computability, that here is a proof that the notion is incomplete.

But Turing was convinced that he had a complete notion of
computable numbers, so he drew a different conclusion: not all Turing
machines define computable numbers, and it is impossible to compute
the list of those that do. The hard part is to confirm the two condi-
tions above, which depend on knowing the machine’s entire future
behavior. By considering what is needed to pick out the machines that
define computable numbers, Turing found the underlying difficulty:
the halting problem. This is how he proved that the halting problem is
unsolvable. Its unsolvability was later confirmed by more direct proofs,
like the one given in section 3.8.2

2 The first proof in this style that I saw was the one in Hermes (1965), §22, p. 145.
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PREVIEW

lassical algebra was what Newton called “Universal Arithmetick”;

that is, calculations involving symbols for unknowns, but subject
to the same rules as calculation with numbers. This view still holds
for elementary algebra today, but attention has shifted to the rules
themselves, and the different mathematical structures that satisfy them.

The reason for this shift was the failure of algebra to reach its orig-
inal goal, which was to solve polynomial equations by the operations
of +, —, -, =, and the so-called radicals NN N EEE In 1831 Galois
changed the direction of algebra by proving that equations of degree 5
and higher are not generally solvable by radicals. To prove such a result,
one needs to develop a general theory of algebraic operations and the
rules they satisfy. The Galois theory of algebraic operations is beyond
the scope of elementary algebra, but parts of it, such as the theory of
fields, are not.

Fields are systems with operations 4, —, -, -+~ obeying the ordinary
rules of arithmetic. So they, and the related systems called rings (which
lack the operation of ), involve calculations and concepts already
familiar from arithmetic. In fact, arithmetic inspires the development
of field theory with the concepts of division with remainder and
congruence, which prove to be useful far beyond their intended range of
application. It might truly be said that field theory is the new “Universal
Arithmetick.”

More surprisingly, field theory also builds a bridge between algebra
and geometry. The two are linked by the concept of vector space and
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the technique of linear algebra. We develop the algebraic side of vector
spaces in this chapter, and the geometric side in the next.

4.1 Classical Algebra

The word “algebra” comes from the Arabic word al-jabr, meaning
“restoring.” It was once commonly used in Spanish, Italian, and
English to mean the resetting of broken bones. The mathematical
sense of the word comes from the book Al-jabr w’al miiqabala of al-
Khwarizmi of 850, where it roughly means manipulation of equations.
Al-Khwarizmi’s algebra goes no further than the solution of quadratic
equations, which was already known to the cultures of ancient Greece,
the Middle East, and India. Nevertheless, al-Khwarizmi’s algebra was
the one to take hold in medieval Europe (his name also gave us the term
“algorithm”). There it evolved into the symbolic arithmetic we know as
“high school algebra” today.

A typical manipulation in al-Khwarizmi’s algebra is the trick
of “completing the square” to solve quadratic equations. Given the
equation

x>+ 10x = 39,
for example, we notice that x? 4+ 10x can be completed to the square
(x+5)* =x"+10x+25

by adding 25. We therefore add 25 to both sides of the original equation
and get

x% 4 10x + 25 = 39 4 25 = 64.
It follows that
(x+5)* =64 =8
SO

x+5=48
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5 5x
x 22 52
T 5

Figure 4.1: The incomplete square x* + 10x.

and therefore
x=-—13 or x=3.

Actually, al-Khwarizmi did not recognize the negative solution,
because he justified his manipulations by a geometric argument in
which x represents a length. This style of argument persisted for several
centuries in the Muslim world and Europe, such was the enduring
authority of Euclid. In the present example al-Khwarizmi began by
interpreting x* + 10x as a square of side x with two rectangles of area
5x attached as shown in figure 4.1.

Then he literally completed the square by filling the gap with a
square of side 5 (and hence area 25), as in figure 4.2.

Since we had x* + 10x = 39, the completed square has area 39 +
25 = 64, so it is the square of side 8. This makes x = 3.

Negative solutions had to wait for the acceptance of negative
numbers, which happened rather slowly in the Middle East and Europe.
In India, negative numbers were already accepted by Brahmagupta
(628), who used them to obtain the full solution of the general quadratic
equation ax? + bx + ¢ = 0. Namely,

B —b+ b —4ac

2a

X
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5 bx 25
x 22 5x
T 5

Figure 4.2: The completed square x> + 10x + 25 = (x + 5)°.

The first real advance in algebra after Brahmagupta and al-
Khwarizmi was the solution of cubic equations by the sixteenth-century
Italian mathematicians del Ferro and Tartaglia. In particular, they
found that the solution of

X’ =px+gq

This is known as the Cardano formula, due to its publication in
the book Ars magna of Cardano (1545). This remarkable formula
greatly influenced the development of mathematics. In particular, it

is

forced mathematicians to consider “imaginary numbers,” such as v/ —1.
As Bombelli (1572) observed, such numbers arise when innocuous
equations like

x> =15x+4

are solved by the Cardano formula. This particular equation has the
obvious solution x =4, but according to the Cardano formula its
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solution is

x:\3/2—|—\/22—53—|—\3/2—\/22—53
=\3/2+«/—121+\3/2—«/—121

:\3/2+11\/—1+\3/2—11\/—1.

Bombelli was able to reconcile the obvious solution with the formula
solution by assuming that the “imaginary” i = /—1 obeys the same
rules of calculation as the ordinary “real” numbers. If it does, then one
can check that

2411i=2+4)° and 2—-11i = (2 —i)?,
SO

J2411i=247i and J2—-11i=2—1,

and therefore

V2411 +72—-11i=Q+i)+Q2—i)=4. QED!

This raises the question: exactly what are the “rules of calculation”
obeyed by the real and imaginary numbers? Answering this question
leads us towards algebraic structure, the more abstract approach to
algebra developed in the nineteenth century. We say more about this
in the sections that follow. But first we should explain the problem that
finally brought algebraic structure into sharp focus.

Solution by Radicals

The formulas above for solving quadratic and cubic equations express
the roots of an equation in terms of its coefficients, using the operations
of +, —, -, =, and the so-called radicals Vi and NE Indeed, the word
“radical” comes from the Latin word radix meaning “root.” Quite soon
after the solution of the cubic became known, Cardano’s student Ferrari
found that the general quartic (fourth degree) equation could also be
solved in terms of its coefficients by means of +, —, -, =, and the same
radicals.
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This sparked a search for similar solutions of the quintic (fifth
degree) equation and equations of higher degree, admitting the possible
need for the radicals ¢/, o/, and so on. The goal of this search was called
solution by radicals.

However, no solution by radicals of the general quintic equation

ax’ +bx* +cx’ +dx* +ex+ f=0

was ever found. By 1800, suspicion was growing that the general quintic
is not solvable by radicals, and Ruffini (1799) had made an attempt
to prove it. Ruffini’s 300-page attempt was too long and unclear to
convince his contemporaries, but it foreshadowed a valid proof by Abel
(1826). Ironically, Abel’s much shorter proof was so terse that few of his
contemporaries understood it either. Doubts about Abel’s unsolvability
proof were put to rest only by the exposition of Hamilton (1839).

In the meantime, a dramatically new and elegant unsolvability
proof had appeared in 1831. It too was not understood at first, and it was
published only in 1846. This was the proof of Galois, who threw new
light on the nature of solution by radicals by identifying the algebraic
structures now called fields and groups.

Examples of fields were already well known in mathematics. The
most important example is the system Q of rational numbers with the
operations of addition and multiplication, introduced in section 1.3.
Q can be viewed as the system resulting from the positive integers by
applying the operations of +, —, -, and <. One obtains larger fields
by throwing irrational numbers into the mix. The result Q(+/2) of
throwing in (or “adjoining,” which is the technical term) /2 is the
field of numbers of the form a + b+/2, where a and b are rational.
When irrational numbers are adjoined to Q the resulting fields may
have symmetries. For example, each element a + by/2 of Q(v/2) has a
“conjugate” a — b/2 which behaves in the same way—any equation
involving members of Q(+/2) remains true when each number in the
equation is replaced by its conjugate.

Galois introduced the algebraic concept of group to study the sym-
metries arising when radicals are adjoined to Q. He was able to show
that solvability of an equation by radicals corresponds to a “solvability”
property of the group attached to the equation. This property made it

www.Engineeringbookspdf.com



112+ Chapter 4

possible to show in one fell swoop that many equations, including the
general quintic, are not solvable by radicals, because their groups lack
the necessary “solvability” property.

The group concept became one of the most important concepts in
mathematics, because it is useful in any situation where there is a notion
of symmetry. Nevertheless, I am reluctant to call it an elementary
concept. Its most impressive applications, such as the Galois theory
of equations, depend on a substantial amount of accompanying group
theory. I think, rather, that the general group concept is one of the keys
to advanced mathematics, and hence that it lies just outside elementary
mathematics.

The field concept, on the other hand, seems to lie inside elementary
mathematics. Important fields, such as Q, occur at an elementary level.
Other important elementary concepts, such as vector space, are based
on it (see section 4.6). And some ancient problems from elementary
geometry can be quite easily solved with its help (see section 5.9). In the
next two sections we approach the concept of field by reflecting on the
basic operations of arithmetic—addition, subtraction, multiplication,
and division—and their rules for calculation.

4.2 Rings

As mentioned in the previous section, we arrive at the system Q of
rational numbers by applying the operations 4, —, -, and = to the
positive integers. Before going this far, however, it is instructive to study
the effect of applying the operations +, —, and - alone. These produce
the integers

.,—3,-2,-1,0,1,2,3, ...,

which already form an interesting system. It is called Z (for “Zahlen,”
as we explained in section 1.3).

Z is the smallest collection of numbers that includes the positive
integers and is such that the sum, difference, and product of any two
members is a member. The rules for calculating with members of Z can
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be distilled down to the following eight, called the ring axioms.

a+b=b+a ab=ba (commutative laws)

a+b+c)=@+b)+c albc)=(ab)c (associative laws)

a+(—a)=0 (inverse law)
a+0=0 a-l=a (identity laws)
alb+c)=ab+ac (distributive law)

This set of rules is the result of much thought to minimize their
number, and it is not entirely obvious that all the commonly used rules
follow from them. Take a moment to think why the following facts are
consequences of the eight above.

1. For each a there is exactly one a’ such that a 4+ a’ = 0; namely,
I

a' = —a.
2. —(—a)=a.
3.a-0=0.

4. a-(—1)=—a.
5 (=1)-(-1)=1.

While you are thinking, I will point out another feature of the ring
axioms. They involve only the operations of addition, multiplication,
and negation (forming the negative, or additive inverse, —a, of a). This
is another feat of distillation, whereby the operation of subtraction is
eliminated in favor of a combination of addition and negation; namely,
we make the definition

a—b=a+(-b).

Now let’s return to the five facts enumerated above. The first follows
by solving the equation a +a’ =0, which we can do by adding —a
to both sides. This sounds obvious, but it actually takes several steps
if we strictly observe the rules. Certainly the right-hand side becomes
—a when we add —a on its left, by the identity law. The left-hand side
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becomes
(—a)+(a+a)=[(—a)+al+da by the associative law,
=la+(—a)]+d by the commutative law,
=0+a by the inverse law,
=a +0 by the commutative law,
=a by the identity law.

Equating the two sides, we finally get a’ = —a.

Now to prove —(—a) = a we observe that a’ = —(—a) is a solution
of the equation (—a) +a’ = 0 by the identity law. But a’ = a is also a
solution of this equation because

(—a)+a=a+(—a)=0 by the commutative and inverse laws.

There is only one solution, by Fact 1, so —(—a) = a.
To prove the third fact, a - 0 = 0, consider

a-1=a-(140) by the identity law,

=a-1+a-0 by the distributive law.

Now add —a -1 to both sides, obtaining 0 on the left (by the inverse
law) and a - 0 on the right (by the associative, commutative, and inverse

laws). Thus a.0 = 0.
Next we find a - (—1) by considering

0=a-0 by Fact 3,
=a-[14+(-1)] by the inverse law,
=ag-14+a-(-1) by the distributive law,
=a+a-(-1) by the identity law.

Thena - (—1) = —a by Fact 1.
Finally, to find (—1) - (—1), we have

(-1 -(-1)=—(-1) by Fact 4,
=1 by Fact 2.
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Proving these well-known facts about Z is not a waste of time
because the proofs apply to any other system that satisfies the eight
rules. These systems are very numerous, and they can be quite different
from Z. For example, they can be finite. In fact, it is probably from the
finite examples (see figure 4.3) that such systems got their name: rings.
From now on we will call the eight ring axioms the ring properties.

Finite Rings

The most important finite rings arise from the notion of congruence
mod 7, introduced in section 2.4. The idea of doing arithmetic mod
n, mentioned there, amounts to working in a ring whose members are
0,1,2,...,n—1and whose + and - operations are addition and mul-
tiplications mod 7. It is equivalent, and more convenient, to view the
members of this ring as the congruence classes [0], [1], [2], ..., [n —1]
mod 7, where

[al={...,a—2n,a—n,a,a+n,a+2n,...}

consists of all the numbers congruent to a, mod #. We can then define
addition and multiplication mod 7 very simply by

[al+ [b]=[a+b] and [a]-[b]=][a-b].

The only subtle point is to check that these operations are actually
well defined, in other words, that they do not depend on the numbers a
and b chosen to represent the congruence classes. If, instead, we choose
a’ and b/, then

a=a+cn and b =b+dn forsome integerscandd.

Then if we use @’ and &' to define sum and product we indeed get the
same congruence classes, because

@ +b]=la+cn+b+dnl=[a+b+(c+dn]=[a+b]
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Figure 4.3: A “ring” in arithmetic mod 7.

and

[@ - b]=[(a+cn)- (b+dn)]
=[a-b+adn+ ben + cdn?)
=[a-b+(ad+bc+ cdn)n] =[a-b].

This definition has two great advantages.

o We can use the ordinary + and - symbols without ambiguity.
Applied to congruence classes, they mean addition and
multiplication mod 7; applied to numbers (that is, inside the
square brackets) they mean ordinary addition and
multiplication.

o The ring properties for congruence classes mod 7 are
“inherited” from Z immediately. For example,
[a] + [b] = [b] + [a] because

[a] + [b] = [a+ D] by definition,

=[b+a] by the commutative law in Z,

= [b] + [a] by definition.

Thus the congruence classes [0], [1], [2], ..., [#— 1] form a ring

under the operations of addition and multiplication mod 7. This finite
ring is indeed “ring-shaped” in the sense that its members are naturally
arranged in a circle (figure 4.3), in which each element results from the

one before by adding [1], mod 7.
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Addition mod 7 by any element [a] fits easily into this picture: every
element advances a places around the circle. However, multiplication
mod # is more complicated.

One important way in which finite rings differ from Z is in the
presence of multiplicative inverses. Ring elements x and y are said to
be multiplicative inverses of each other if x-y=1. Thus, in Z (and
every other ring) 1 is inverse to itself and —1 is inverse to itself,
but in Z no other element has a multiplicative inverse. On the other
hand, in arithmetic mod 7, multiplicative inverses are quite common.
Sometimes every nonzero element has a multiplicative inverse. For
example, in arithmetic mod 5 we have

[1]-[1] =[1],
[2]-[3] =[6] =[1],
[3]-[2] = [6] = [1],
(4] - [4] = [16] = [1],

so each of [1], [2], [3], [4] has a multiplicative inverse. In the next
section we will find precise conditions for the existence of multiplicative
inverses.

4.3 Fields

The system QQ of rational numbers comes from the ring Z when we
include the quotient 72/7 of any two integers 72 and 7 # 0. Or, more
economically, when we include the multiplicative inverse n™' = 1/n of
each integer 7 # 0. This is because, when inversion is combined with
the operation of multiplication already present, we get all the fractions
m/n. The multiplicative inverse of the fraction 7 # 0 is literally the
inverted fraction 7.

It follows that Q has the following nine properties; eight of them
being ring properties inherited from Z and the ninth being the existence
of a multiplicative inverse a~! for each a # 0.

a+b=b+a ab=ba (commutative laws)
a+b+c)=(@+b)+c a(bc)=(ab)c (associative laws)
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a+(—a)=0 a-a'=1fora#0 (inverselaws)
a+0=0 a-l=a (identity laws)

alb+c)=ab+ac (distributive law)

Of course, the operations of + and - must first be extended to the
fractions 72/n, and this is known to cause headaches in elementary
school (which sometimes persist into later life). However, if one accepts
that

m_n_mqtnp
P q rq
m n_mn
»a" pa

then it is routine to check that the ring properties for fractions follow
from those for integers, and that 7/m is the multiplicative inverse of
m/n.

It should perhaps be added that fractions are not strictly the same
thing as rational numbers, because many fractions represent the same
rational number, for example,

So the idea of treating a class of objects as a single entity, as we did with
congruence classes in the previous section, is actually an idea you met
in elementary school—as soon as you saw that a whole class of fractions
represent the same number. We tend to identify a rational number with
just one of the fractions that represent it, but it is sometimes important
to be flexible. In particular, we use

m_ma
b P

in order to find a “common denominator” and hence explain the sum

and n_mw

q pq
formula above:

m_n_mg mp _mq+np
p aqa pq DPq pq
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As we did with Z and rings, we take the laws of calculation for Q as
the defining properties of a more general concept, called a field. We call
the nine laws the field properties or field axioms.

There are many examples of fields, some of which are among
the finite rings studied in the previous section. One of them consists
of the congruence classes [0], [1], [2], [3], [4] under addition and
multiplication mod 5. We saw that these classes form a ring, and we also
saw that each nonzero class has a multiplicative inverse, so the classes
form a field. We call this field Fs. By investigating the conditions for
multiplicative inverses to exist, we find infinitely many similar finite
fields IF,. There is one for each prime p.

The Finite Fields IF,

In arithmetic mod #, the congruence class [2] has a multiplicative
inverse [b] if

(We also say, more loosely, that b is an inverse of 2, mod 7.) This means
that the class [a] - [b] = [ab] is the same as the class

1]={..,1-2n,1—n,1,1+n, 14+2n,...},
which means in turn that
ab=1+kn for some integer k,
or finally that
ab—kn=1 for some integer k.

This is clearly not possible if a and 7 have a common divisor d > 1,
because d then divides ab — kn and hence 1. But if gcd(a, 7) = 1 we can
find a suitable b, because we know from section 2.3 that

1 =gcd(a, n) = Ma + Nn  for some integers M and N.

This gives us integers b = M and k = — N as required.
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Thus a has a multiplicative inverse, mod n, just in case
gcd(a, n) = 1. (And we can find the inverse, M, by the extended
Euclidean algorithm described in section 3.4.) When 7 is a prime num-
ber, p, this is true for each a # 0, mod 7, so in this case the congruence
classes [0], [1], [2], ..., [p — 1] form a field, which we call [F,.

The simplest example is the field [, of arithmetic mod 2 that we
studied in section 2.4. This field also plays an important role in proposi-
tional logic, as we will see in chapter 9. Indeed, I, is propositional logic
in algebraic form.

4.4 Two Theorems Involving Inverses

The concept of inverse is an old idea in ordinary arithmetic,'where
we know that subtraction reverses the process of addition and division
reverses the process of multiplication. However, the generality of the
“inverse” concept was first realized by Galois, around 1830, and it was
he who discovered finite fields. When other nineteenth-century mathe-
maticians reflected on this discovery, they realized that inverses greatly
clarify some theorems of number theory found in earlier centuries.
Here are two celebrated examples.

Fermat’s Little Theorem

In 1640 Fermat discovered an interesting theorem about prime powers.
In the language of congruence mod p, it reads

Ifa # 0 (mod p) and p is prime then a?~! =1 (mod p).

Fermat’s proof used the binomial theorem of section 1.6, but there is a
more transparent proof that uses inverses mod p.

The condition a # 0 (mod p) means that [a] is one of the nonzero
congruence classes [1], [2], ..., [p — 1]. If we multiply each of these

! One of my most vivid memories from elementary school was the day our sixth grade teacher
showed us what “inversion” meant. Announcing that he was going to show us how to divide by a
fraction, he called on the smallest boy in the front row to step forward. Then, without any warning,
he lifted the boy off the ground and turned him upside-down. That, the teacher said, was how to
divide by a fraction: “turn it upside-down and multiply.”
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classes by [a] we get the nonzero classes
[alll], [all2], ..., lallp—1]
These classes are distinct, because we can recover the distinct classes
2L ..., [p-1]
by multiplying by the inverse of [a]. This means that
[all1], [all2], ..., lallp—1]
are in fact the same classes as
2L ..., [p-1]

(only, perhaps, in a different order).
It follows that both sets of classes have the same product, namely,

[alP7'.11]- 2] -+ - [p—1=[1]-12]- - - [p—1].

Multiplying both sides of this equation by the inverses of
[1]’ [2]5 LR [p_ 1] we get

[a]?~' =[1], inotherwords, a’'=1 (mod p).

This is what we call Fermat’s little theorem today (because it is not as
big as his “last” theorem about sums of #th powers). The version found
by Fermat himself,

a’ =a (mod p),

follows by multiplying both sides by a.

Euler’s Theorem

Around 1750, Euler gave a proof of Fermat’s little theorem quite close
to the one above, and he generalized it to a theorem about congruence
mod 7, where 7 is not necessarily prime. In the language of congruence
classes and inverses, the proof goes as follows (using the term invertible
to mean “having an inverse”).
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Suppose that there are 7z invertible congruence classes mod 7, say

(], (&), ..., [a.]

If we multiply each of these by an invertible congruence class [a] we get
the classes

lallai], [allaz], ..., [lallawm],

which are again invertible, and distinct, since we can recover the
original list of invertible classes by multiplying by the inverse of [a],
mod 7. Thus the second set of congruence classes is the same as the
first, and hence they both have the same product:

[a]” - [a]-[a2] - -+ @] =[a1] - [a2] - - -+ - [@].
Multiplying each side by the inverses of [a;], [a,], . . ., [a:], we get
[a]” =[1], inotherwords 4™ =1 (modn),

where 2 is the number of invertible congruence classes, mod 7.

Now from the previous section we know that [a] is invertible just
in case gcd(a, n) = 1. So m is how many numbers ¢ among 1, 2, .. .,
n — 1 have gcd 1 with 7. Such numbers are also called relatively prime to
n. The number of them is denoted by ¢(7), and ¢ is called the Euler phi
function. Euler’s theorem is usually stated in terms of the phi function,
namely:

Ifgcd(a, n) =1 then a*" =1 (mod n).

As an illustration of Euler’s theorem, consider the numbers rela-
tively prime to 8. They are 1, 3, 5, 7, and hence there are four invertible
congruence classes mod 8,

(. 8L 6. [7].
The argument above tells us that
a*=1 (mod 8)

for any a that is relatively prime to 8. For example, if 2 =3 we get
a* = 81, which is indeed = 1 (mod 8).
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In recent years, Euler’s theorem has become one of the most
commonly used theorems in mathematics, because it is a crucial part
of the RSA cryptosystem used in many internet transactions. I will not
discuss RSA in any more detail, since it may now be found in almost
any introduction to number theory.

4.5 Vector Spaces

The concept of a vector space was not articulated until the twentieth
century, so you might think that it is very abstract and sophisticated. In
a way it is, because it builds on the already abstract concept of field. But
in another way it isn’t, because it is the foundation of a very elementary
topic—linear algebra—which goes back over 2000 years. It is one of the
quirks of mathematical history that linear algebra was, for a long time,
considered too elementary to be worth studying in its own right.

In our brief survey of polynomial equations in section 4.1 we
skipped over the linear equation

ax+b=0,

because it is indeed too simple to be worth discussing. Solving several
linear equations in several unknowns is not quite so simple, even
though it was done over 2000 years ago, using a method very similar
to what we use today. The only thing one needs to recall here about this
method is that it involves the operations of +, —, -, and +. So, if the
coefficients of the equations belong to a certain field, then the solutions
belong to the very same field.

I hope that these remarks suffice to show that the field concept
is implicit in the machinery of linear algebra. For beginners in linear
algebra, the field is usually assumed to be R, the system of real numbers
that we will discuss further in chapter 6. But the field could also be @,
IFy,, or any other field.

When the field is R, linear equations in two variables represent
lines in the plane R?. This, after all, is why such equations are called
“linear.” Linear equations in three variables represent planes in the
three-dimensional space R?, and so on. Indeed, this is where the word
“space” in “vector space” comes from. R, R?, and R? are all examples
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Figure 4.4: Vector addition in the plane.

of vector spaces. The vectors in these spaces are their points, and we
have rules for adding points and multiplying them by numbers. In
R, these operations are ordinary addition and multiplication; in the
higher-dimensional spaces they are called vector addition and scalar
multiplication.

Figure 4.4 shows what vector addition looks like in the plane R?.
Points of R? are ordered pairs (x, y) and they are added “coordinate-
wise” by the rule:

(1, W) + (22, y2) = (1 + 22, Y1 + ).

Thus the sum of points #; = (x1, y;) and u, = (x,, ;) is the fourth
vertex of a parallelogram whose other vertices are 0= (0, 0), #u;,
and u,.

This picture suggests that the concept of vector addition has some
geometric content. So does the concept of scalar magnification,

a(x, y) = (ax, ay),

which magnifies the line from 0 to (x, y) by a factor of a. Indeed, we
will see that the concept of vector space is a kind of halfway house
between algebra and geometry. On the one hand, algebra reduces
many geometric problems to routine computation; on the other hand,
geometric intuition suggests concepts like dimension, which can guide
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algebraic arguments. We study the concept of dimension in the next
section. Now it is time to give the definition of vector space.

Given a field IF and a set V of objects with an operation +, we say
that V is a vector space over F if the following conditions are satisfied.
First + must have the usual properties of addition. For any #, v, w
inV:

u+v=v+u,
u+@+w)=(u+v)+w,
u+0=u,
u+(—u)=0.

Thus, in particular, there is a zero vector 0 and a negative —u of each
vector u. Second, there must be a multiplication of vectors by members
of ¥ (the “scalars”) which is compatible with the multiplication in IF and
which makes addition in [F compatible with vector addition. That is, for
anya,binFandu, vin V:

albu) = (ab)u,
lu =u,
a(u+v)=au+av,

(@a+bu=au+bu.

Altogether, a vector space is defined by eight properties, on top of the
nine properties it takes to define a field. This is a lot, admittedly. How-
ever, all the properties resemble the rules we already use for ordinary
calculation with numbers, so we can do vector space calculations almost
without thinking.

It is easy to check, by such calculations, that the vector space
addition and scalar multiplication defined above for R satisfy the eight
conditions, so R? is a vector space over R. Analogous definitions of
vector addition and scalar multiplication show that R”, the space of
n-tuples of real numbers, is also a vector space over R.

Another interesting example is the set

Q(W?2)={a+bv2:a, bin Q).
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This set, which happens to be a field itself, is a vector space over the
field Q. The vector addition operation is ordinary addition of numbers,
and the scalar multiplication is ordinary multiplication—by rational
numbers. If we view the rational numbers a and b as the “coordinates”
of the number a + b+/2, then vector addition is “coordinatewise”—

(Cll + b]\/i) + (az + bz\/z) = (611 + 612) + (bl + bz)\/z

—just like vector addition in RZ. In fact, we will see in the next section
that Q(v/2) is two-dimensional as a vector space over Q. We will also see
that it is no coincidence that the dimension number is the same as the
degree of +/2; that is, the degree of the polynomial equation x> —2 = 0
that defines it.

This example nicely shows how the vector space concept mediates
between algebra and geometry.

4.6 Linear Dependence, Basis, and Dimension

We can see the dimension 2 of R? in its two coordinate axes, or in the
two directions of the unit vectors Z = (1, 0) and j = (0, 1). These two
vectors span R? in the sense that any vector is a linear combination of
them:

(x, y)=xi+vyj.

Also, 7 and j are linearly independent in the sense that neither is a
multiple of the other or, in other words, the linear combination

ai+bj+#0 unlessa=b=0.

These two properties—spanning and linear independence—make the
pair Z, j what we call a basis of R? (over R).

This train of thought leads us to define a basis of a vector space
V over F. A set {vy, v,, ..., v,} is called a basis of V over F if the
following conditions hold.

1. The vectors vy, vy, ..., v, span V;thatis, foreachvin V,

v=a;v, +avy,+---+a,v,, wherea;, a,,...,a,areinF.
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2. The vectors vy, vy, . . ., v, are linearly independent; that is
av+avy+---+a,v,=0, witha;, as, ..., a,inF,
onlyifa, =a,=---=a,=0.

A space with such a basis is called finite-dimensional. We will see
how “dimension” comes into play shortly. Not all vector spaces are
finite-dimensional. It may depend on the field we view them over; for
example, R has infinite dimension over Q. However, it seems fair to say
that infinite-dimensional spaces belong to advanced mathematics. So
in elementary mathematics we should consider just finite-dimensional
spaces. For them we can prove the important property that all bases
have the same size.

To do this we use the following simple but clever result. It is named
after Steinitz because of its appearance in Steinitz (1913), but it is
actually due to Grassmann (1862), Chapter 1, Section 2.

Steinitz exchange lemma. If 7 vectors span V, then no 7+ 1 vectors
are independent. (So, if there is a basis with n vectors, there cannot be a
basis with more than n vectors.)

Proof. Suppose (for the sake of contradiction) that u;, u,, ..., u,
span V and that vy, vy, ..., v,4 are linearly independent in V. The
plan is to replace one of the #; by v,, while ensuring that the remaining
u;, together with vy, still span V. We then replace one of the remaining
u; by v,, retaining the spanning property, and continue in this way
until all of the u; are replaced by vy, v, ..., v,. This means that
Vi, V2, ..., U, is a spanning set, so v,y is a linear combination of
them, contrary to the assumption that vy, v, ..., v,y are indepen-
dent.

To see why the plan succeeds, suppose that we have successfully
replaced 72 — 1 of the #; by vy, v,, . .., v,,_1, S0 now we want to replace
another of the #; by v,,. (So when 72 =1 we have done nothing yet.)
Our success so far means that vy, v, ..., v,,_; and the remaining #;
span V, so

Vy, =1V +av+- - -+ a,,_10,,1 + terms b,’M,’,
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where the coefficients a4y, . . ., a,,_; and b; are in F. Since vy, v, . . .,
v,, are linearly independent, we must have some b; # 0. But then,
dividing by bj, we obtain #; as a linear combination vy, vy, ..., V),
and the remaining #;, so #; can be replaced by v,, and we still have a
spanning set.

Thus we can continue the exchange process until all of
uy, U, ..., u, are replaced by vy, vy, . .., v,, leading to the contra-
diction foreshadowed above. This proves the Steinitz exchange lemma,
and hence all bases of a finite-dimensional vector space have the same
size. U

This result enables us to define dimension.

Definition. The dimension of a finite-dimensional vector space V is the
number of elements in a basis of V.

The concepts of basis and dimension are nicely illustrated by the

vector space Q(+/2) over Q. The numbers 1 and /2 span QW2),
because every a + b2 in Q(ﬁ) is a linear combination of 1 and /2
with coefficients g and b in Q.

Also, 1 and +/2 are linearly independent over Q, because if

a+byv2=0 witha, b rational and not both zero,
then both a, b must be nonzero, in which case
V2=-a /b,

contradicting the fact that 4/2 is irrational.
Thus 1 and +/2 comprise a basis for Q(+/2) over Q, and therefore
Q(+/2) has dimension 2 over Q.

4.7 Rings of Polynomials

In high school algebra we get used to calculating with polynomials—
objects such as x> —x+ 1 or x° + 3 which can be added, subtracted,
and multiplied according to the same rules as for numbers. Indeed, it
is because the symbol x for the “unknown” or “indeterminate” behaves
exactly like a number that Newton called this kind of algebra “Universal
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Arithmetick.” Strictly speaking, we should check that it is consistent to
assume that x behaves like a number. This amounts to checking that
the rules for adding, subtracting, and multiplying polynomials satisty
the ring properties listed in section 4.2. However, this is a routine, if
tedious, task.

What is more interesting is how closely polynomials resemble
integers in ways other than their ring properties. In particular, there is a
concept of “prime” polynomial, a Euclidean algorithm, and a unique
prime factorization theorem. These facts show that algebra imitates
arithmetic even more than Newton realized, and they suggest that it will
be interesting to see what happens when we import other ideas from
number theory into the algebra of polynomials.

To put this idea on a sound foundation we begin by specifying
the polynomials we are most interested in. They are the ring Q[x] of
polynomials in x with rational coefficients. Thus any member of Q[x]
has the form

px)=ao+a1x+---+a,x" withag, ay,...,a,inQ.

For a nonzero polynomial we can assume that a,, # 0, in which case
n is called the degree, deg p, of p(x). Any constant polynomial has
degree zero. The degree serves to measure the “size” of a polynomial.
In particular it motivates the idea that a “prime” polynomial is one
that is not the product of polynomials in Q[x] of smaller “size.” More
formally, we have:

Definition. A polynomial p(x) in Q[x] is called irreducible it p(x) is
not the product of two polynomials in Q[x] of lower degree.

For example, x* — 2 is irreducible because any factors of x* — 2 of
lower degree in (Q[x] are necessarily constant multiples of x —a and
x + a, for some rational a. But then we get a? = 2, which contradicts
the irrationality of +/2. On the other hand, x? — 1 is reducible because it
splits into the factors x — 1 and x + 1, which are of lower degree and in
Qlx].

To obtain a Euclidean algorithm for polynomials it suffices, as for
positive integers, to perform division with remainder. Recall from sec-
tion 2.1 that, for positive integers @ and b # 0, division with remainder
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gives integers g and 7 (“quotient” and “remainder”) such that
a=qb+r with|r| <|b|.

For polynomials a(x) and b(x) # 0 in Q[x] we seek polynomials g(x)
and 7(x) in Q[x] such that

a(x) = q(x)b(x) +r(x) with deg(r) < deg(b).

The polynomials g(x) and 7(x) are exactly what one obtains from
the “long division” process for polynomials sometimes taught in high
school. It goes back to Stevin (1585b), who also observed that it gives a
Euclidean algorithm for polynomials.

We illustrate long division with a(x) =2x*+1 and b(x) = x* +
x+ 1. The idea is to subtract or add multiples of b(x) by suitable
constant multiples of powers of x from a(x), successively removing the
highest powers of a(x) until what remains has degree less than that of
b(x). First, subtract 2x2b(x) from a(x) to remove the x* term:

a(x) —2x*b(x) =2x* +1 —2x*(x* +x+1) = —2x° —2x* + 1.

Next, add 2xb(x) to remove the x* term (which also removes the x?
term):

a(x) — 2x*b(x)+2xb(x) = —2x° — 2x* + 1+ 2x(x* + x + 1) =2x + 1.
That is,
a(x) — (2x* —2x)b(x) = 2x + 1,
s0 we have
a(x) = 2x* — 2x)b(x) + 2x +1).

This gives q(x) = 2x* — 2x and r(x) = 2x + 1, so deg(r) < deg(b) as
required.

Once we have division with remainder we can sail through the
remaining steps to unique prime factorization in Q[x].

o The Euclidean algorithm gives the greatest common divisor of
two polynomials a(x), b(x) (meaning, common divisor of
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highest degree) in the form

ged(a(x), b(x)) = m(x)a(x) + n(x)b(x)
with 72(x), 7(x) in Q[x].

« This representation of the gcd gives the “prime divisor
property”: if p(x) is an irreducible polynomial that divides a
product a(x)b(x) then p(x) divides a(x) or p(x) divides b(x).

« Unique factorization into irreducible polynomials follows,
though uniqueness is only “up to constant (rational number)
factors.”

As in the case of primality testing for positive integers, it is not
always easy to tell whether a polynomial is irreducible. However, we will
be able to do this in some interesting cases of low degree. We are also
interested to see what happens when we import the idea of “congruence
modulo a prime” into the world of polynomials. We know from section
4.3 that congruence of integers modulo a prime p leads to the finite field
[F;,. In the next section we will see that congruence in Q[x] modulo an
irreducible p(x) also leads to a field “of finite degree.”

The Rings R[x] and C[x]

Prime factorization is difficult in Q[x] because we insist that the factors
have rational coefficients. For example, the factorization

X —2=(x+2)(x—~2)

does not exist in Q[x] because +/2 is irrational. More generally, x” — 2
is irreducible in Q[x], so the primes of Q[x] can have arbitrarily high
degree.

We can simplify the class of irreducible polynomials by enlarging
the class of numbers allowed as coefficients. With coefficients in the real
numbers R, the irreducible polynomials include some quadratics, such
as x2 + 1, but they all have degree < 2. With coefficients in the com-
plex numbers C the irreducible polynomials are linear. These results
follow from the so-called fundamental theorem of algebra, according to
which every polynomial equation p(x) = 0 with coefficients in C has a
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solution in C. We discuss this theorem further in the Philosophical
Remarks to this chapter, because it is not entirely a theorem of algebra.
Factorization into linear factors follows from the fundamental
theorem by a simple application of division with remainder. Given that
p(x) = 0 has a solution x = ¢, use division with remainder to write

p(x) =qx)(x—c)+r(x) with deg(r) < deg(x — ¢).

Substituting x = ¢ we find that 7 (c) is necessarily zero and hence x — ¢
is a factor of p(x). Also, g(x) has degree one less than that of p(x), so we
can repeat the argument a finite number of times to get a factorization
of p(x) into linear factors.

Thus in the ring C[x] of polynomials with complex coefficients we
obtain the simplest possible factorization: every polynomial splits into
linear factors. In the ring R[x] of polynomials with real coefficients
we cannot go so far, because examples such as x% 41 do not factorize
further. However, we can obtain factors of degree at most 2 because of
the following convenient fact, due to Euler (1751).

If the coefficients of p(x) are real, any nonreal solution x = a +ib of
p(x) = 0 is accompanied by the complex conjugate solution X = a — ib.
The reason why nonreal solutions occur in conjugate pairs lies in the
“symmetry” properties (which are like those mentioned in section 4.1)

a+ca=c¢+¢ and ¢ -a=c-¢

of the complex conjugation operation. These properties are easily
checked from its definitiona +ib=a —ib.
It follows from these properties that if

p(x)=ao+aix+---+ax"

then

px)=ado+ax+---+a,x".
Soifag, a1, ..., a, are real, and hence equal to their own conjugates,
we have

M:ao+a1§+. . .+an§n — P(E)

Therefore, if p(x) = 0 then p(x) =0 =0 = p(X), as claimed.
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The conjugate solutions x =a + b and a — ib correspond to fac-
tors x —a —ib and x —a+ib, which give a real quadratic factor
because

(x—a—ib)(x—a+ib)=(x—a)*—(ib)* = x — 2ax+a* + b°.

Thus any p(x) in R[x] splits into real linear and quadratic factors, so
the irreducibles of R[x] all have degree < 2, as claimed.

4.8 Algebraic Number Fields

If we take the quotients g(x)/7(x) of all the g(x) and nonzero 7(x)
in Q[x] we get a field Q(x) called the field of rational functions with
coefficients in Q. Then if we replace x by a number « we get a field of
numbers, denoted by Q(«) and called the result of adjoining a to Q.
We have already used this notation in the special case & = +/2 when we
mentioned Q(«/i) in sections 4.5 and 4.6.

The field Q(«) is of special interest when « is an algebraic number;
that is, the solution of an equation p(x) = 0 for some p(x) in Q[x]. In
this case Q(«) is called an algebraic number field. For example, Q(+/2)
is an algebraic number field because 4/2 is a solution of the equation
x> —2=0. Since /2 is irrational, x> — 2 is in fact a polynomial of
minimal degree satisfied by +/2.

Notice that we cannot simply substitute the algebraic number « for
x in the quotients g(x)/7 (x) that define Q(x), because 7 («) is zero when
7(x) contains the factor p(x). We avoid this problem by using division
with remainder for polynomials. This gives us a field in much the same
way that we obtained the finite fields IF,, in section 4.3. The role of the
prime p is now played by an irreducible polynomial p(x).

Congruence Modulo a Polynomial

If « is any algebraic number there is a polynomial of minimal degree
such that p(«) = 0. This minimal polynomial is unique (up to multiples
by nonzero rational numbers) because if g(x) is a polynomial of the
same degree as p(x), satisfied by v, we can assume (mutiplying by some
rational) that p(x) and g(x) have the same coefficient for the highest
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power of x. Then if p(x) and g(x) are not identical, p(x) —g(x) is a
polynomial of lower degree satisfied by «, contrary to the minimality of
p(x).

Likewise, the minimal polynomial p(x) for « is irreducible, because
if p(x) = q(x)r(x), with q(x), 7(x) in Q[x] and of lower degree, then
p(a) = 0 implies g(a) = 0 or 7 (o) = 0—again contradicting the mini-
mality of p(x). The irreducible polynomial p(x) for  gives a different,
and more enlightening, way to obtain the number field Q(«). Namely,
take the congruence classes of polynomials in Q[x] under “congruence
modulo p(x).”

Polynomials a(x), b(x) in Q[x] are congruent modulo p(x), written

a(x) = b(x) (mod p(x)),

if p(x) divides a(x) — b(x) in Q[x]. Thus the congruence class [a(x)] of
a(x) consists of all the polynomials that differ from a(x) by a polyno-
mial 7(x) p(x), where 7n(x) is in Q[x]. (Informally, the polynomials in
this class are those that have to equal a(x) when we interpret x as «.)

It follows, just as for integers modulo a prime p, that the congru-
ence classes of polynomials modulo an irreducible p(x) form a field.
In particular, each polynomial a(x) has an inverse mod p(x); that is, a
polynomial a*(x) in Q[x] such that

a(x)a*(x) =1 (mod p(x)).

What is this field? Well, if « is a solution of the polynomial equation
p(x) = 0, the field is none other than Q(«)! Or, at least, it is a field with
the “same structure” as Q(«) in the following sense.

Number field construction. If « is an algebraic number with minimal
polynomial p(x), then the members of Q(«) are in one-to-one correspon-
dence with the congruence classes of polynomials in Q[x] modulo p(x).
Sums and products also correspond.

Proof. To establish the correspondence, it suffices to show that the val-
ues a(a) of polynomials a(x) in Q[x] are in one-to-one correspondence
with the congruence classes [a(x)] modulo p(x), since the inverse of a
value, 1/a(a), corresponds to the congruence class [a*(x)] inverse to

[a(x)].
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Thus we have to prove, for any polynomials a(x), b(x) in Q[x], that
a(e) =b(e) ifandonlyif a(x)=b(x) (mod p(x)),
or, letting c(x) = a(x) — b(x), that
c(a)=0 ifandonlyif c(x)=0(mod p(x)).

Certainly, if ¢(x) = 0 (mod p(x)) then c(x) = d(x)p(x) for some d(x)
in Q[x]. Hence

c(a) =d(@)p(@) =0 because p(a)=0.

Conversely, if c(«) = 0 we divide c(x) by p(x) with remainder, obtain-
ing quotient and remainder polynomials q(x) and 7(x) in Q[x] such
that

c(x) =qx)p(x)+r(x) with deg(r) < deg(p).

Since ¢(a) = 0 = p(a), it follows that 7 («) = 0 too. If 7(x) is nonzero
this contradicts the minimality of p(x). So in fact

c(x) =qg(x)p(x) and therefore c¢(x)=0 (mod p(x)).

Thus there is a one-to-one correspondence between the values and the
congruence classes of polynomials in Q[x], as required.

Finally, sums of values correspond to sums of congruence classes
because [a(x)] + [b(x)] = [a(x) + b(x)]. Namely, the values a(«) and
b(a) correspond to [a(x)] and [b(x)] and a(«)+ b(«) corresponds
to [a(x) + b(x)], which is the sum of [a(x)] and [b(x)]. Products of
values similarly correspond to products of congruence classes, because

[a(x)] - [b(x)] = [a(x) - b(x)]. O

The one-to-one correspondence, preserving sums and products, is
what we mean by saying that the field of congruence classes has the
“same structure” as the number field Q(«). This structural correspon-
dence between fields is an example of an isomorphism (from the Greek
for “same form”). The isomorphism concept is everywhere in advanced
algebra, so one might take its appearance in this theorem as a sign that
we are approaching the boundary of elementary algebra. Nevertheless, I
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prefer to view the proof above as elementary, since it hinges on another
simple application of division with remainder.

The analogy with the construction of fields from congruence classes
of integers modulo a prime is also too nice to neglect. Where the result
in the integer case is a finite field, the result in the polynomial case is
also finite, in a sense. In this case “finiteness” is in the degree, which
also equals the dimension of the field as a vector space over Q.

4.9 Number Fields as Vector Spaces

The view of Q(«) as the field of congruence classes of polynomials
mod p(x), where p(x) is the minimal polynomial for «, is enlightening
because it gives us a natural basis for Q(«) as a vector space over Q.

Basis for Q(«). If the minimal polynomial for o has degree n, then the
numbers 1, a, a?, ..., a""! form a basis for Q(a) over Q.

Proof. Suppose that p(x) =ao+ax+- - - +a,x". Then

1. The congruence classes [1], [x], .. ., [x"~1] are linearly
independent over @, because if

bo[1] + by [x] + - - -+ b1 [x" '] = [0]
with by, b1, ..., b,_; in Q, not all zero,

we have, by the correspondence in the number field
construction,

bo+ba+--+b,0" =0,

contrary to the minimality of p(x).

2. The congruence classes [1], [x], . .., [x""!] span the field of
all congruence classes mod p(x). This field is certainly spanned
by the infinitely many congruence classes [1], [x], [x?], ...,
but the subset of [1], [x], . .., [x"!] also spans, because their
linear combinations include

1
—[x"] = ;(do[ll +alxl 4+ Fa,alx"),

n
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which gives us in turn

C ] = L aolx] + @[]+ -+ ani [F]),

an

and so on.

Thus [1], [x], ..., [x""!] is a basis for the field of conguence
classes mod p(x) over QQ, and hence the corresponding numbers

1, o, &2, ..., " ! form a basis for Q(«) over Q. O

It follows in particular that the vector space Q(«) has finite dimen-
sion over Q for any algebraic number «. This is not easy to prove
directly. It is a nice exercise to prove by direct calculation of sums,
products, and inverses that

Q(2)={a+bv2:a, binQ},

thus showing that Q(+/2) has dimension 2 over Q. But try proving, say,
that Q(2'/°) has dimension 5 over Q. Just try expressing

1

VA YR YT as a linear combination of 1, 21/°, 2%/5 23/5 24/5,

There is a converse to the fact that Q(«) has finite dimension over
Q for any algebraic number «. However, we will prove only an easier
theorem, which is still surprising. In this proof we denote the vector
space by IF, because it is in fact a field.

Finite-dimensional vector spaces over Q. If I is a vector space of di-
mension n over Q, then each member of [ is algebraic of degree < n.

Proof. Let « be a member of F and consider the 7+ 1 elements

1, o, a2, ..., a" Since IF has dimension 7 over Q these elements are

linearly dependent, which means
ay+aa+---+a,a” =0 forsomeay, ai, ..., a,in Q, not all zero.

But this says that « is an algebraic number of degree < 7. g
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Since [F has a basis of 7 elements, we can in fact say that F results
from Q by adjoining 7 algebraic numbers of degree < n. There is a
theorem that in this case there is a single number o of degree 7 such
that F = Q(«); « is called a primitive element. We will not go so far as
to prove the primitive element theorem.? However, we will be interested
in the effect that successive adjunctions have on the dimension of a
number field. For this we have the following theorem about “relative
dimension,” pointed out by Dedekind (1894), p. 473.

Dedekind product theorem. If E C F C G are fields such that F has
dimension m over B and G has dimension n over T, then G has
dimension mn over E.

Proof. Let uy, u,, ..., u,, be a basis for IF over [, so each f in F can
be written
f=eu +---+euu, withey, ..., e,inE. *
Also let vy, vy, ..., v, be a basis for G over F, so each g in G can be
written
g:f1U1+"'+fnUn withfl,...,fninIF,

= (ellul 4+ +elmum)vl +-- -+ (enlul 4+ +enmum)vnv

rewriting each f; as a linear combination given by (*).

Thus each g in G can be written as a linear combination of the
elements u;v; with coefficients e;; from [E. This means the 77272 elements
u;jv;j span G over E.

Also, these elements are linearly independent over E. If we have a
linear combination of the elements #;v; with coefficients ¢;; from E
that is equal to 0 then, retracing our steps, we see that

0=(enur+- -+ etV +- - -+ (et + - - - + Cpmity,) V.

2 An example that makes a good exercise is the following. Adjoining /2 and +/3 to Q is
equivalent to adjoining the single number /2 + /3.
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Since vy, ..., v, are linearly independent over F, each of the coeffi-
cients

(et + - - -+ evmttys), ..., (emu1+- -+ eumlty)
must be zero. But then, since #,, . . ., u,, are linearly independent over

IE, each of the coefficients e;; must be zero.
Thus the 71 elements u#;v; form a basis for G over E, so G has
dimension 7 over E. O

The theorems above are useful because an algebraic number « is
often best studied by immersing it in the field Q(«). For example,
there is an ancient question in geometry (“duplication of the cube”)
that amounts to asking: can /2 be obtained from rational numbers
by means of square roots? In the next chapter we will show that the
answer is NO by comparing the dimension of the field Q(v/2) with
the dimensions of fields obtained from Q by adjoining square roots.
The latter dimensions are easily obtained from the Dedekind product
theorem.

4.10 Historical Remarks

Like geometry and number theory, algebra has been known for thou-
sands of years. Quadratic equations were solved by the Babylonians
about 4000 years ago, and systems of linear equations in several un-
knowns were solved by the Chinese about 2000 years ago. However,
algebra was slow to reach the level of generality and abstractness
attained by geometry and number theory in Euclid’s Elements. Per-
haps, this was due to the split in Greek mathematics between number
theory and geometry. Number theory dealt with whole numbers and
geometry dealt with the other magnitudes, including irrational lengths,
which were not thought to be capable of multiplication in the way
that numbers were. Perhaps, too, it was because suitable notation was
lacking. What today would be expressed by a one-line equation, might
be expressed by the Greeks as a page of prose, making it hard to
conceive the very idea of equations, let alone to compute with them
fluently.
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Whatever the reason, algebra did not really flourish until the
sixteenth century, when Italian mathematicians discovered how to
solve cubic and quartic (3rd and 4th degree) equations. The methods
of solution were published in the Ars Magna (Great Art) of Cardano
(1545), and for a moment it looked as though anything was possible:

Since this art surpasses all human subtlety and the perspicuity of mortal
talent and is a truly celestial gift and a very clear test of the capacity
of men’s minds, whoever applies himself to it will believe that there is
nothing he cannot understand.

Cardano (1545), p. 8

As it turned out, the Italian art of solving equations had almost reached
its limit with the solution of the quartic, and with Bombelli’s discovery
of the algebra of complex numbers. However, this was enough to keep
mathematicians busy for the next 300 years. Algebra was recruited to
help out in geometry by Fermat and Descartes in the 1620s, and from
there it spread to calculus in the 1660s (Newton, and later Leibniz, the
Bernoullis, and Euler in the eighteenth century). The mere existence
of written symbolic computation made all this possible, without much
conceptual input from algebra.

Calculus in fact surpassed algebra, to the extent that it was able to
solve the main algebraic problem of the time: proving the fundamental
theorem of algebra. The solution was not what had been hoped for in
the sixteenth century—a formula giving the roots of any equation in
terms of the coefficients—but a new kind of proof: a proof of existence.
We say more about this theorem in the next section, and we give a proof
in section 10.3, but the idea of an existence proof can be illustrated with
the cubic equation.

Any cubic polynomial, say x> —x —1, corresponds to a cubic
curve, in this case y=x>—x —1, whose graph for real values is
shown in figure 4.5. This picture confirms something that can also be
seen algebraically, that the polynomial function x> —x — 1 has large
positive values for large positive x and large negative values for large
negative x. We can also see something that is more subtle to explain
algebraically, that the curve is continuous, and hence that it meets
the x axis somewhere, at an x value that is a root of the equation
x’—x—1=0.
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Figure 4.5: Graph of the curve y = x* —x — 1.

Thus the fundamental theorem of algebra turns out to involve
a concept from outside algebra:® the concept of continuous function.
As we will see in chapter 6, continuity is a fundamental concept of
calculus, though its importance was not properly understood until
the nineteenth century. For many reasons, continuity is an advanced
concept, despite its apparent simplicity in cases like the graph of y =
x—x—1.

One might hope, perhaps, for a proof of the fundamental theorem
of algebra that does not involve the continuity concept. However, there
is another reason why the theorem falls short of what the Italians were
hoping for. As explained in section 4.1, the Italians sought solution “by
radicals.” They found them for equations of degree < 4, but they were
bound to fail for degree 5, as Abel (1826) and Galois (1831) showed,
since the general equation of degree 5 does not have a solution by
radicals. As mentioned in section 4.1, Galois introduced the concepts
of field and group to explain why solution by radicals fails. We know
from section 4.3 what a field is, so why do I not complete the story of
solution by radicals by explaining what a group is? Unfortunately, there

3 It is worth mentioning that some of the motivation for the fundamental theorem also came
from outside algebra; namely, from the calculus problem of integrating rational functions. To solve
this problem it is important to be able to factorize polynomials, and it turns out to be sufficient to
obtain real linear and quadratic factors, which the fundamental theorem supplies.
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is more to it than just defining the group concept.

1. The group concept is more remote from elementary
mathematical experience than the concepts of ring and field.
They encapsulate familiar calculations with numbers, while the
group concept encapsulates the concept of “symmetry,” where
calculations are not immediately evident.

2. Moreover, it is not enough to know the concept of group. One
also needs to develop a considerable amount of group theory
before the group concept can be applied to solution by radicals.
Most of group theory is remote from elementary mathematics
because the “multiplication” of group elements is generally not
commutative.

For further discussion why fields can be considered elementary, but
groups probably cannot, see the next section.

The results of Galois were not understood by his contemporaries,
but in the second half of the nineteenth century it became clear to a
few mathematicians (particular the number theorists Richard Dedekind
and Leopold Kronecker) that the abstract concepts of ring, field, and
group were needed to properly understand the behavior of numbers
and equations. As Dedekind said, in 1877:

Itis preferable, as in the modern theory of functions, to seek proofs based
immediately on fundamental characteristics, rather than on calculation,
and indeed to construct the theory in such a way that it is able to predict

the results of calculation.
Dedekind (1877), p. 37

In the 1920s, Emmy Noether became the first algebraist to fully embrace
the abstract point of view, though she modestly used to say that “es
steht schon bei Dedekind” (it’s already in Dedekind). Her viewpoint
was picked up by her students Emil Artin and B. L. van der Waerden,
the latter of whom brought it into the mathematical mainstream with
his book Moderne Algebra of 1930.

Today, “abstract algebra” is a standard topic in the undergraduate
curriculum, generally at the upper level. But does abstraction belong
at the elementary level? I believe so, but just how much abstraction
belongs there is a delicate matter. The next section explores this
question further.
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4.11 Philosophical Remarks

Irrational and Imaginary Numbers

The construction of the algebraic number field Q(«) gives a concrete,
constructive way to deal with numbers such as V2, &/—1, and /=2,
whose “arithmetic” we studied in chapter 2. As we claimed in section
2.10, we do not have to view them as infinite decimals, or points in
the plane, but merely as symbols that obey certain rules. Those rules
are the field axioms and the defining equation (minimal polynomial
equals zero) of the number in question. For example, we can take /—1
to be a symbol z that satisfies the field axioms and z* = —1. It follows
that the calculations with the numbers of the forms a + b/—1 and
a + by/—2 for rational @ and b by no means assume a theory of all real
and complex numbers. One need not believe in the infinite decimal for
/2, for example, in order to justify the use of the symbol +/2 in section
2.8 to find solutions of the Pell equation x* —2y? = 1.

More generally, if we want to use any algebraic irrational number «,
with minimal polynomial p(x), we can work instead with polynomials
in x and their congruence classes mod p(x). This is what Kronecker
(1887) called “general arithmetic,” and why he is rumored to have
said “irrational numbers do not exist.” If he said it, he did not mean
it literally, but rather that algebraic irrational numbers can be treated
symbolically just like rational numbers when we use them in calcula-
tions with actual rational numbers. In effect, the algebraic number field
construction “rationalizes” calculations with algebraic numbers.

However, not all numbers are algebraic, as we will see in section
9.8. If we wish to deal with numbers such as 7 or e, and particularly
with the totality of real numbers, we cannot avoid using concepts that
go beyond arithmetic. The need for the totality of real numbers—the
number /ine—will become clear in chapter 6, and we will see how to
“realize” the line in chapter 9.

* The Fundamental Theorem of Algebra

As mentioned in the previous section, the search for solutions of poly-
nomial equations changed direction with the so-called fundamental
theorem of algebra. According to this theorem, every polynomial
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equation with real coefficients has a root in the set C of complex num-
bers. We also showed, in section 4.8, that every polynomial equation
p(x) = 0, where p is irreducible with rational coefficients, has a root in
the field of polynomials modulo p(x).

The latter result, due to Kronecker (1887) might be called the
“algebraist’s fundamental theorem of algebra,” because it shows that an
algebraically given polynomial equation has a root in an algebraically
defined field. Some mathematicians prefer the algebraist’s fundamental
theorem to the classical version, since R and C are not obtainable from
Q “algebraically”: their construction involves infinite processes typical
of analysis rather than algebra (see chapter 6). On the other hand, the
construction of the number field of an irreducible p(x) in section 4.8 is
truly algebraic and in a certain sense it gives a “solution” of p(x) = 0—
as the congruence class [x] in the field.

A few mathematicians also prefer the algebraist’s version because it
is more constructive. Roughly speaking, a proof is called constructive
if it provides an explicit construction of all objects claimed to exist.
The construction can be infinite but, if so, only potentially infinite in
the sense of section 1.10. That is, we allow an object to be constructed
step by step, with each part of it being obtained at some finite step.
The field of polynomials modulo p(x) is “constructed” in this sense,
because one can constructively list the rational numbers, and with them
the polynomials with rational coefficients, and so on.

A proof is nonconstructive, or a “pure existence” proof, if it pro-
vides no construction of the object proved to exist. Typically, this hap-
pens when the proof involves objects dependent on an actual infinity,
because such objects themselves cannot be constructed in step-by-step
fashion. The sets R and C are actual infinities, as we will see in chapter
9, so the classical fundamental theorem of algebra is nonconstructive.
One need not object to nonconstructive proofs (and I don’t) to take
the point that there is something problematic about them. A proof that
depends on R is almost certainly advanced in some sense. We will see
in chapter 6 that there is a whole family of theorems about continuous
functions, including the fundamental theorem of algebra, that depend
in a very similar way on properties of R. These theorems mark out a
substantial section of the boundary between elementary and advanced
mathematics.
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The constructive approach to the fundamental theorem of algebra
was initiated by Kronecker (1887). He proposed replacing it with
what he called the “fundamental theorem of general arithmetic,” a
special case of which is indeed the “algebraist’s fundamental theorem
of algebra.” In a letter, Kronecker (1886) spoke in a dogmatic style that
became popular with later constructivists:

My treatment of algebra ... is in all subjects in which one makes use
of common divisors the only one possible. The place of the so-called
fundamental theorem of algebra, which is not applicable in such subjects,
is taken by my new “fundamental theorem of general arithmetic.”

For more on Kronecker’s view of the fundamental theorem of algebra,

see Edwards (2007).

*Group Theory

A group is defined to be a structure satisfying the following axioms,
which should look rather familiar.

a(bc) = (ab)c (associativity)
a-l=a (identity)
a-a =1 (inverse)

Of course, we have seen these axioms as properties of the nonzero
elements of a field but, in the absence of the other field axioms, they
have vastly greater scope. In particular, the identity element 1 need not
be the number 1.

The group operation, which combines the group elements 4 and
b into the element written ab here, could in fact be addition on Z,
in which case the combination of ¢ and b would be written a + b,
the inverse of a would be written —a, and the identity element is
the number 0. The associativity axiom in this case is a +(b+c¢) =
(a 4+ b) + ¢, which we know to be true in Z. Thus we can say that Z
is a group under the + operation. The same is true of any vector space
under the operation of vector sum (with the zero vector as the identity
element).
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Another example, in which we can revert to the “product” no-
tation, is the collection of invertible functions on any set, under the
operation of function composition (“taking function of a function”).
If £, g, b, ...are functions, we take fg to be the function defined by
fg(x) = f(g(x)), and it is easy to see that

f(gh)(x) = (fg)h(x) = f(g(h(x))),

so this “product” of functions is associative. The identity element 1 is
the identity function defined by 1(x) = x, from which it easily follows
that f-1= f. Finally, the inverse f~! of function f is its inverse
function, defined by the condition that

f(x) = yifand only if f~!(y) = x.

From this it easily follows that /- f~! =1.

It might be thought that the concept of group is simpler than that of
ring or field, because it requires fewer axioms, but in fact the opposite
is true. The example of the group of invertible functions should already
ring some alarm bells: how often have you taken function of a function
of a function? Often enough to realize that it is associative? There are
underlying mathematical reasons for the difficulty of the group concept,
but first let us consider how groups emerged historically.

In the previous section I claimed that the group concept is more
remote from elementary mathematics than the concepts of ring or field.
The reason is that representative rings and fields, namely Z and @, have
been familiar since ancient times, and the ring and field axioms describe
fundamental properties of Z and Q. The fact that the same properties
hold for certain other structures is all to the good, because it means we
can use familiar methods of calculation in other places.

The situation is quite different with the group concept. Before the
concept was identified by Galois (and perhaps glimpsed by Lagrange
a generation earlier), the only familiar groups were quite atypical,
with a commutative group operation, such as Z under addition. The
most important groups, such as those arising from general polynomial
equations, are not commutative. So the group axioms had to omit a
statement of commutativity, and mathematicians had to get used to
noncommutative multiplication. Before the time of Galois, there was
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little experience with such computation, and indeed we now know that
it is inherently difficult: we can prove it!

The reason that noncommutative multiplication is difficult is that it
is quite close to the operations of a Turing machine. If the elements of a
group are denoted by a, b, ¢, d, e, . . . then their products are “words,”
such as cat and dog. Noncommutativity means that the order of letters
generally cannot be changed, so that a “word” maintains its integrity,
in some sense, though it can be disturbed somewhat by the insertion of
adjacent inverse letters. For example,

cat = cabb™'t.

Because of this, it can be shown that the operations of a Turing machine
can be simulated in a group by a finite set of equations between words,
allowing replacement of certain strings of symbols by other strings. The
idea is to encode the initial configuration of the machine—consisting
of the input, position of the reading head, and initial state—by a
certain word, and to obtain the encodings of subsequent configurations
by replacing substrings. It takes great ingenuity to avoid too much
disturbance by inverse letters, and it was a great achievement when
P. S. Novikov (1955) first succeeded.*

However, once it is known that it can be done, it follows from
the unsolvability of the halting problem that various problems about
computation in groups are also unsolvable. In particular, one can give a
finite set of equations between words, for which the problem of deciding
whether a given word equals 1 is unsolvable. Since this “word problem”
is almost the simplest problem one can imagine about noncommutative
multiplication, I take it that groups are officially hard, and hence not as
elementary as rings and fields. (The corresponding problem becomes
solvable when letters are allowed to commute.)

* Without the inverse letters (in which case one has what is called a semigroup) the encoding
of configurations is not so difficult, and we carry it out in section 10.2. This shows quite simply
and directly why noncommutative multiplication leads to unsolvability.
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PREVIEW

eometry was the first mathematical discipline to be developed in

detail, and a large swath of elementary geometry is already in
Euclid’s Elements. The early sections of this chapter sample some of
the highlights of Euclid’s approach to geometry, which is an attractive
blend of visualization and logic. In fact, for many people it is still the
most compelling example of mathematical reasoning.

Euclid’s geometry is literally “hands on,” because it uses hand tools:
the straightedge and the compass. These tools determine the subject
matter of Euclid’s geometry—straight lines and circles—but this subject
matter embraces the measurement of length, area, and angles (and
the sometimes unexpected connections between them, such as the
Pythagorean theorem).

More surprisingly, Euclid’s geometry has a rich algebraic content.
This was unknown to Euclid, because the Greeks avoided numbers in
geometry, so algebra was not even contemplated. It came to light only
around 1630, when Fermat and Descartes introduced numbers and
equations. The middle of this chapter describes the relationship, dis-
covered by Descartes, between straightedge and compass constructions
and constructible numbers—those obtainable from rational numbers by
the operations of +, —, -, =, and i

Finally, we discuss Euclid’s modern incarnation: the Euclidean
geometry of vector spaces with an inner product. Vector spaces capture
the linearity of Euclid’s geometry, traceable back to the straightedge,
while the inner product captures the concept of length compatible
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with the Pythagorean theorem. Perhaps Euclid’s geometry is so durable
because it fits into both the ancient and modern worlds. Its ancient basis
in hand tools—straightedge and compass—is exactly equivalent to its
modern basis in vector spaces and inner products.

5.1 Numbers and Geometry

In modern mathematics, elementary geometry is arithmetized by re-
ducing it to linear algebra over the real numbers. We will see how this
is done in sections 5.7 and 5.8. Advanced geometry is arithmetized, too,
by means of algebraic or differentiable functions of real or complex
numbers. Yet somehow it is still easier for most humans to approach
geometry visually, so visual objects re-emerge from the primordial soup
of numbers and we find ways to simulate visual operations by opera-
tions on numbers. We represent points as ordered pairs (x, ) of real
numbers, lines by linear equations ax + by + ¢ = 0, circles by quadratic
equations (x — a)* + (y — b)? = r?; we find their intersection points by
solving pairs of equations; we move objects by linear transformations of
the set R? of pairs (x, y); and so on. In this way we can model Euclid’s
geometry by higher-order concepts in the world of numbers.

This process has been recapitulated, in the last few decades, in the
evolution of computers. Numbers are of course the native language
of computers and, in their early decades of existence, computers were
used mainly for processing numerical data. Then, in the 1970s, we saw
the first crude printouts of images, typically made by assembling large
arrays of symbols in a pattern printed on a long strip of paper. In the
1980s we started to program images, pixel by pixel, to be shown on
computer screens. At the resolution then available (320 x 200) the
results were usually hideous, as can be confirmed by looking at certain
mathematics books of the period. When graphics commands were
added to programming languages, it was a serious problem to program
the best-looking “straight line” between two points. Any sloping line
looked more or less like a staircase.

But resolution gradually improved and, by the 1990s, lines looked
straight, curves looked smooth, and most pictures could be reproduced
quite faithfully. This opened the floodgates of visual computing, leading
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Figure 5.1: Angles involved in the parallel axiom.

to the world today in which users (particularly of phones and tablets)
interact mainly with pictures on their screens: tapping them, translating
and rotating them, magnifying them, and flipping them over by direct
touch. It seems as though we want computers to be geometric, even
if they have to be built on numbers, so programmers have to develop
high-level programming concepts to model geometric operations.

In the present chapter we will study the interplay between numbers
and geometry. There are reasons for doing geometry without a general
concept of number, as we will see, and indeed Euclid did remarkable
things without it. In the next two sections we review some of the big
successes of his geometry: the theory of angles and the theory of area.
But on balance geometry is easier with a suitable concept of number,
and in the rest of the chapter we develop geometry on that basis.

5.2 Euclid’s Theory of Angles

We are used to measuring angles by numbers: initially by degrees and
at a higher level by radians, which involve the specific number 7. But
Euclid got by with the right angle as the unit of angle measure, and the
concept of angle equality. His main conceptual tools for determining
equality of angles were congruence of triangles and the parallel axiom.
Indeed, the parallel axiom is the characteristic feature of Euclidean
geometry, so we begin there. For convenience we use a slight variant
of the parallel axiom, but it is equivalent to Euclid’s.

Parallel Axiom. If lines / and #1 are parallel (that is, do not meet), and
line 72 crosses them, then the angles & and g made by 7 with / and m,
respectively, on the same side of 7, have sum « + B equal to two right
angles (figure 5.1).
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B

Figure 5.2: Angle sum of a triangle.

It follows that the angle adjacent to B is also «, since its sum with
B is a straight angle, which equals two right angles. This immediately
gives:

Angle sum of a triangle. The angles «, B, y of any triangle have sum
o + B+ y equal to two right angles.

Proof. Given a triangle ABC, with angles «, 8, y at the vertices
A, B, C, respectively, consider the parallel to AB through the vertex
C (figure 5.2).

Then it follows from the parallel axiom that angles « and B are
adjacent to angle y at C. Together, the angles at C below the parallel
make a straight angle, so

o + B + y = two right angles. O

Now we come to the use of congruence in establishing equality of
angles. The relevant congruence axiom is the one today called SSS (for
“side side side”): if triangles ABC and A'B’C’ have corresponding sides
equal then their corresponding angles are equal. A famous consequence
of SSS is a theorem about isosceles triangles (triangles with two equal
sides).

Isosceles triangle theorem. If ABC is a triangle with AB = AC, then
the angle at B equals the angle at C.

Proof. A stunning proof of this theorem (different from Euclid’s) was
given by Pappus, a Greek mathematician who lived some centuries later
than Euclid.

Pappus noticed that triangle ABC is congruent to triangle ACB
(yes, the same triangle, but “flipped,” as it were) by SSS, because the
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A A
BAC CAB
Figure 5.3: An isosceles triangle is congruent to itself.

C

A B

Figure 5.4: Angle in a semicircle.

corresponding sides
ABand AC, ACand AB, BCand CB

are equal (see figure 5.3).
So the corresponding angles, at B and C, are also equal. O

Now we combine these two theorems about angles to obtain:

Angle in a semicircle. If AB is the diameter of a circle, and C is another
point on the circle, then the angle at C in triangle ABC is a right angle
(figure 5.4).

Proof. Let O be the center of the circle, and draw the line segment OC.
This creates two isosceles triangles, OAC and OBC, because OA =
OB = OC (as radii of the circle). Then it follows from the isosceles
triangle theorem that we have equal angles as shown in figure 5.5.

Also, since the angle sum of the triangle ABC is two right angles,
we have

o + (¢ + B) + B = two right angles.
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A

Figure 5.5: Isosceles triangles in a semicircle.
Therefore,

o + B = angle at C = right angle. O

9.3 Euclid’s Theory of Area

According to legend, around 500 BCE the Pythagoreans discovered the
irrationality of /2, or in their terms the incommensurability of the
side and diagonal of the square. That is, there is no common unit of
measure, #, such that the side and diagonal of the square are both
integer multiples of . Thus, the concept of positive integer—the only
number concept the Pythagoreans had—is inadequate for describing all
the lengths occurring in geometry. This momentous discovery led to a
distinctive feature of Greek mathematics: the concept of length takes the
place of number, but the arithmetic of lengths is quite limited. Lengths
can be added and subtracted, but not multiplied. This means that area
and volume have to be treated as separate kinds of magnitude, with
even less capacity for addition and subtraction. In particular, the Greek
concept of equality for areas and volumes is quite complicated.

Nevertheless, the Greeks were able to develop all the theory of area
and volume needed for elementary mathematics. Here is how the theory
of area gets off the ground.

Given lengths a and b, we modern mathematicians would like to
say that the “product of @ and b” is the area of the rectangle with
adjacent sides a and b, which we may call the rectangle of a and b.

But what is area? It is certainly not a length, so from the Greek point
of view there is no such thing as the area of the rectangle, other than the
rectangle itself (figure 5.6). However there is a notion of equality for
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b
Figure 5.6: The rectangle of a and b.

rectangles which turns out to agree with the modern notion of equality
of area, not only for rectangles but for all polygons. This notion of
equality is based on the following principles, which are called “common
notions” in Book I of Euclid’s Elements.

1. Things which are equal to the same thing are also equal to each
other.

2. If equals be added to equals, the wholes are equal.

If equals be subtracted from equals, the remainders are equal.

Nt

4. Things which coincide with one another are equal to one
another.
5. The whole is greater than the part.

Notions 1, 2, 3, and 4 say essentially that objects are “equal” if one
can be converted to the other by finitely often adding or subtracting
identical (“coinciding”) pieces. We already used these notions to prove
the Pythagorean theorem in section 1.4. Notion 5 is not needed at this
stage, because it turns out that Notions 1, 2, 3, and 4 suffice to prove
that any polygons of equal area (in the modern sense) are “equal” in
Euclid’s sense.

The fact that “equal in area” is the same as “equal in Euclid’s
sense” (for polygons) is an elementary theorem. It was discovered in
the nineteenth century by F. Bolyai and Gerwien, and is rather tedious
to prove. Here we are content to show how the idea applies to the most
important areas in elementary geometry—those of parallelograms and
triangles. From now on we will say “equal in area” rather than “equal in
Euclid’s sense.”

First, we see that the rectangle R of g and b is equal in area to any
parallelogram P of height a and base b, because we can convert R to P
by adding a triangle T to one side of R and then subtracting an identical
triangle from the other side of the resulting shape (figure 5.7).
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Figure 5.7: Converting a rectangle to a parallelogram.

b

Figure 5.8: Making a parallelogram from two copies of a triangle.

Thus any parallelogram is equal in area to a rectangle with the same
base and height. It follows that a triangle with height 4 and base b
is equal in area to the rectangle with base b and half the height, a/2,
because two copies of the triangle make a parallelogram of base b and
height a (figure 5.8).

Since rectangles of equal area are actually “equal” in Euclid’s sense
we can define the product ab of lengths a and b to be the rectangle
of a and b, and call products “equal” if the corresponding rectangles
are “equal” in Euclid’s sense. Then if ab = cd, we can prove this fact by
converting the rectangle of ¢ and d to the rectangle of 2 and b by adding
and subtracting identical pieces. Thus, ab = cd is actually equivalent
to “equality” (in Euclid’s sense) of the rectangle of a and b with the
rectangle of ¢ and d.

Even without knowing this general fact (which depends on the
theorem of Bolyai and Gerwein) the Greeks could have proved “equal-
ity” of some interesting irrational rectangles, though it is not known
whether they ever did so.

Geometric Proof that /2 - /3 = /6

One of the supposed advantages of the theory of real numbers, in-
troduced by Dedekind (1872), is that it permits rigorous proofs of
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\/§ ,,,,,,,,
— V2/2
V3 2v/3
Figure 5.9: Converting the v/2 by +/3 rectangle to half height.
V2/2| — P4
2v/3 2v/3

Figure 5.10: Converting rectangle to parallelogram.

results such as /2 - +/3 = /6. Indeed, Dedekind speculated that, with
his definition of real number,

we arrive at real proofs of theorems (as, e.g., V2 -3/3 = /6) that have
never been established before.
Dedekind (1901), p. 22

It may be true that V2 - /3 = /6 had never really been proved before,
but there was nothing to stop the Greeks from proving an equivalent
proposition. Gardiner (2002), pp. 181-183 has pointed out that we can
interpret and prove this equation quite easily in terms the Greeks would
have accepted. Here is one such proof (a variation on Gardiner’s),
which is surely elementary.

By the Pythagorean theorem, /2 is the diagonal of the unit square
and /3 is a side of the right-angled triangle with hypotenuse 2 and
other side 1. Thus we can interpret V2 and /3 as lengths, and it is
meaningful to speak of the rectangle of +/2 and /3. We now transform
this rectangle, by adding and subtracting equal pieces, into a rectangle
of base 1.

First, cut the rectangle in two equal parts by a line parallel to the
base +/3, and then combine these two parts into a rectangle of height
ﬁ/Z and base 2+/3 (figure 5.9).

These rectangles are “equal” in Euclid’s sense.

Next, we convert the new rectangle into a parallelogram by cutting
off a right-angled triangle with equal sides /2/2 (and hence hypotenuse
1 by the Pythagorean theorem) from the left end and attaching it to the
right (figure 5.10).
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b 9 h

h 1

Figure 5.11: Converting parallelogram to rectangle with base 1.

The result is a parallelogram of the same width but sloping sides (at
angle 45°) of length 1, and of course the same area again.

Finally, viewing the side 1 as the base of the parallelogram, we
convert it to a rectangle with the same base and height, and hence the
same area, by adding and subtracting a triangle (figure 5.11). It remains
to find the height / of the rectangle.

We notice from figure 5.11 that / is the side of the isosceles
right-angled triangle with hypotenuse 2+4/3. Hence, by the Pythagorean
theorem again,

P+ =02V3)? =4x3=12, so h*=6.

This completes the proof that the rectangle with sides +/2 and +/3 is
equal in area to the rectangle with sides 4/6 and 1. Hence (in modern

terms) /2 - /3 = /6.

The Concept of Volume

Euclid had a theory of volume that begins in the same way as his theory
of area. The basic solid object is the box of a, b, and c; that is, with height
a and base the rectangle of b and ¢, and all faces rectangular. “Equality”
is defined by adding and subtracting identical pieces, and one finds that
a parallelepiped’ (a “squashed box” whose faces are parallelograms) is
“equal” to the box with the same height, width, and depth (figure 5.12).

Next, by cutting a parallelepiped in half one finds that a prism is
“equal” to the box with the same base but half the height. But that is

! This word is often misunderstood, misspelled, and mispronounced. It helps to read its parts
as parallel-epi-ped, literally “parallel upon the foot,” meaning that the top is parallel to the bottom,
no matter which way is up.

www.Engineeringbookspdf.com



158 -+ Chapterd

Figure 5.12: Transforming a squashed box to a box by adding and subtracting.

Figure 5.13: Two prisms in the tetrahedron.

N

Figure 5.14: Continuing the dissection of the tetrahedron.

as far as one can go using finite numbers of pieces. In the case of the
tetrahedron, Euclid was able to find an “equal” box only by cutting the
tetrahedron into an infinite number of prisms. Figure 5.13 shows the
first two prisms inside the tetrahedron, and figure 5.14 shows how to
obtain further prisms, inside the tetrahedra that remain after the first
two prisms are removed.

Much later, Dehn (1900) showed that the infinity is unavoidable: it
is not possible to convert a regular tetrahedron to a cube by adding and
subtracting finitely many pieces. This surprising discovery shows that
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volume is a deeper concept than area. If we suppose that volume be-
longs to elementary mathematics (as we presumably do), then we must
accept that infinite processes have a place in elementary mathematics
too. We pursue this train of thought further in the next chapter.

9.4 Straightedge and Compass Constructions

Many of the propositions in Euclid’s Elements are constructions; that is,
claims that certain figures in the plane can be constructed by drawing
straight lines and circles. These constructions rest upon the ability to
do two things that Euclid includes in his “postulates” (which we call
axioms):

1. To draw a straight line from a given point to any other given
point.
2. To draw a circle with given center and radius.

(Euclid actually splits the first axiom into two—drawing the line seg-
ment between given points and extending the segment arbitrarily far—
because he does not admit infinite lines.) We now call the instruments
for drawing lines and circles the “straightedge” and “compass,” respec-
tively,? so Euclid’s constructions are called straightedge and compass
constructions.

Euclid’s very first proposition is a straightedge and compass con-
struction: drawing an equilateral triangle whose base is a given line
segment AB. It nicely illustrates how the compass is not only an
instrument for drawing circles, but also for “storing” and “copying”
lengths, because it allows a length to be carried from one place to
another.

The third vertex C of the triangle is found at the intersection of the
circles with centers A and B, respectively, and radius AB (figure 5.15).
The triangle is then completed by drawing the line segments from A to
C and from B to C.

2 The straightedge is often called a ruler, but this wrongly suggests that there are marks on
its edge that could be used for measurement. The compass used to be called a “pair of compasses.”
This term is falling into disuse, but I mention it because you may still see it in older books.
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Figure 5.15: Constructing the equilateral triangle.
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w

Figure 5.16: Constructing a perpendicular.

To prove that the construction is correct we observe that

AC = AB because both are radii of the first circle,
BC = AB Dbecause both are radii of the second circle,
so AB= AC = BC,

because “things equal to the same thing are equal to one another.”

Many other constructions in elementary geometry are variations on
this one.

For example, the other intersection D of the two circles above gives
a line CD perpendicular to AB and passing through its midpoint P.
Conversely, by drawing a circle centered on an arbitrary point P on
a line / we can make P the midpoint of a segment AB, and hence
construct a line 7 perpendicular to / through P (figure 5.16).

Then, by constructing a perpendicular to 7, we get a parallel n to
the original line /. Parallels are a fundamental concept of Euclidean
geometry, and they are the key to many constructions, because of the
following theorem, which refers to figure 5.17.
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A A

B B’
Figure 5.17: Setting of Thales’ theorem.

a b a

a+b a—b

Figure 5.18: Forming the sum and difference of lengths.

Theorem of Thales. If OAB and OA' B’ are triangles such that OAA
and OBB’ are straight lines and AB is parallel to A'B’, then

OA/OA = OB/OB.

Euclid’s proof of this theorem is quite subtle, because his avoid-
ance of numbers makes it hard to interpret the ratios OA/OA" and
OB/OB’. When we accept that lengths are numbers we can argue
much more simply (see section 5.7). This paves the way for straightedge
and compass constructions that simulate all the arithmetic operations
+, —, -, +onlengths, as well as the v operation. We carry out the most
interesting parts of this program in the next section. But first we dispose
of the + and — operations, which are simple even from Euclid’s point
of view and do not involve the theorem of Thales.

Given line segments a and b, we form a + b by first extending the
line segment a sufficiently far, then copying the line segment b with the
compass and placing it alongside a in the same line. Similarly, if b is no
greater than a, we form a — b by carrying b to the interior of a with one
end of b at the end of a (figure 5.18).

9.5 Geometric Realization of Algebraic Operations

As we saw at the end of the previous section, it is easy to obtain the sum
and difference of lengths by constructions within the line. Product and
quotient are also easy to obtain, but the construction makes use of the

www.Engineeringbookspdf.com



162 + Chapter 5

ab

multiply by a

0] 1 B b B

Figure 5.19: Constructing the product of lengths.

Al

divide by a

1 B b/a B

Figure 5.20: Constructing the quotient of lengths.

plane, and parallel lines. We also need to fix a unit length. But then, if
we are given a length a, we can multiply any length b by a using the
construction shown in figure 5.19.

The construction uses two lines through O. On one of them we
mark the unit length 1 = OB; on the other, the length a = OA. Then
on the first line we add the length b = BB’. Finally, we draw AB and
its parallel A'B’ through B’. By the theorem of Thales it follows that
AA =ab.

In effect, the parallels achieve “magnification by a,” mapping the
segments of length 1, b onto segments of length a, ab. The reverse
direction gives “division by a,” and hence we can obtain b/a for any
lengths a, b as shown in figure 5.20.

Thus we now have geometric realizations of the operations
+, —, -, +. To realize the operation /is also surprisingly easy, but first
we need the following consequence of the theorem of Thales.

Proportionality of Similar Triangles. If ABC and A'B'C’ are trian-
gles whose corresponding angles are equal (that is, angle at A equals angle
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C/

B

Figure 5.21: Similar triangles.

at A" and so on) then their corresponding sides are proportional. That is

AB BC CA

A'B’ - B C - C/A/'

Proof. Move the triangle A'B’C’ to the position where A= A,
A, B, B’ are in the same line, and A, C, C’ are in the same line. We
assume A, C, C' are in that order, in which case we have the situation
shown in figure 5.21. (The argument is similar if the order is A, C’, C.)

Since the angles at C and C’ are equal, the lines BC and B'C’ are
parallel. Then it follows from the theorem of Thales that the upper and
lower sides are divided proportionally; that is, AB/A'B’'= AC/A'C'.
Similarly, by moving the triangles so that B coincides with B’, we
find that BC/B'C'=BA/B'A'= AB/A'B’. So in fact all pairs of
corresponding sides are proportional. 0

Now to construct +// for any length / we make the construction
shown in figure 5.22. This is Euclid’s construction in his Book VI,
Proposition 13.

As we saw in section 5.2, the angles « and B at A and B, respec-
tively, have sum o + 8 equal to a right angle. It follows, since the angle
sum of each triangle is two right angles, that the angles at C are also «
and S as shown. Thus triangles ADC and C DB are similar. Comparing
corresponding sides we obtain the equal ratios

1/h=h/l,
from which it follows that

b* =1, andtherefore h=/I.
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o)
4 g
1 D l
Figure 5.22: Constructing the square root of a length.

B

Moreover, we can construct /I in the following steps.

Add ! to 1 in the same line to form the line segment AB.
Bisect AB to find the center of the circle with diameter AB.
Draw this circle.

Construct the perpendicular to AB at the point D where the
segments 1 and / meet.

5. Find the intersection C of this perpendicular with the circle of
diameter AB and draw CD.

Ll s

5.6 Algebraic Realization of Geometric
Constructions

In the previous section we saw that straightedge and compass con-
structions include the algebraic operations of +, —, -, +, and /. In
this section we will show that, when straightedge and compass op-
erations are interpreted in the plane R?, all constructible lengths are
obtainable from the unit length by the above operations. Thus we have
an equivalence between geometric and algebraic concepts, and with
it the opportunity to prove existence or nonexistence of geometric
constructions by algebra. We will give an example of existence at the
end of this section, and an example of nonexistence in section 5.9.

We begin by using coordinates to interpret the two basic construc-
tions: drawing the line through two given points, and drawing the circle
with given center and radius.
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o Given points (a1, b)) and (a5, b,), the line between has slope

%, so if (x, ) is any point on the line we have

y—b _bz—bl

xX—a;, ay—a,

If we rewrite this equation in the standard form for the
equation of a line, ax + by + ¢ = 0, it is clear that a, b, and ¢
come from the given coordinates a;, by, a,, b, by the
operations +, —, -, +.

o Given a point (a, b) and radius 7, the circle with center (a, b)
and radius 7 has equation

(x—a)l+(y—b’=r>

So, again, the coefficients are obtained from the given data by
+9 T -

New points are constructed as the intersections of previously con-
structed lines and circles. We now show that the coordinates of all
such points arise from the coefficients of the lines and circles by the
operations +, —, -, =, and V-

o Given lines a;x+ by + c¢; = 0and ayx + b,y + ¢, = 0, their
intersection is found by solving for x and y. This can always be
done with the operations +, —, -, = alone, hence the
coordinates of the intersection are expressible in terms of
ay, by, c1, az, by, ¢, by the operations +, —, -, +.

o Givenalinea;x+ b;y+ ¢; = 0 and a circle
(x —a3)* + (y — by)? = r%, we can find their intersection by
solving the first equation for y (if b; # 0; else solve for x
instead) and substituting the resulting expression for y in the
second equation. This gives a quadratic equation for x whose
coefficients arise from ay, by, ¢y, a,, by, r by the operations
+, —, -, =. The quadratic formula solves this equation for x in
terms of the coefficients and the operations +, —, -, =, and /.
(This is where the  / operation becomes necessary.) Finally, the
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y coordinates of the intersection come from the solutions for x
and the first equation, again using +, —, -, +.

o Given two circles (x — a;)* + (y — by)* = r{ and
(x —a2)* + (y — by)* = r}, we expand these two equations as

X’ =2aix+a;+y' —2biy+ b =i,
X’ —2mx+a;+y —2by+ by =r;.

Subtraction cancels the x* and y? terms, leaving a linear
equation whose common solutions with either of the circle
equations can be found as in the previous case.

To sum up: the coordinates of all new points, and hence the
coefficients in the equations of all new lines and circles, are obtainable
from the coordinates of the initially given points by the operations
+, —, -, =, and v Therefore, the coordinates of all points constructible
by straightedge and compass are obtainable from 1 by these operations.
Conversely, all points whose coordinates are numbers obtainable from
1 by the operations +, —, -, =, and _/ (which we may call constructible
numbers) are constructible by straightedge and compass.

Now here is the promised example: using algebra to prove con-
structibility.

The Regular Pentagon

Figure 5.23 shows the regular pentagon with sides of length 1 and a
diagonal whose length x is sought. The other two diagonals are drawn
to create some similar triangles. The symmetry of the regular pentagon
ensures that each diagonal is parallel to the opposite side, and the
various parallels imply that the triangles ABC, A’BC, and A'B’C’ have
the equal angles o shown, and hence also equal angles £.

Thus A'BC is similar to ABC and, since they have the common
side BC, they are actually congruent. This gives the equal sides of
length 1 shown in figure 5.24, hence also the sides of length x — 1, since
all diagonals have length x.

Then similarity of triangles ABC and A'B’C’ gives

1_x—1

x 1
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Figure 5.23: Angles in the regular pentagon.

B 1 (o

Figure 5.24: Lengths in the regular pentagon.

from the proportionality of corresponding sides. This is the quadratic
equation x?> — x — 1 = 0, which has the solutions x = # The posi-
tive member of this pair is the length of the pentagon diagonal. It is a
constructible number, so we can construct the diagonal by straightedge
and compass. It is then easy to construct the triangle ABC, and to join
a series of such triangles together to form the regular pentagon.
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9.7 Vector Space Geometry

In this section we view the plane R? purely as a vector space over R and
we ask: how much of Euclidean geometry can we recover? Certainly
not everything, because the concept of length is not available. However,
there is a concept of “relative length” which allows us to compare the
lengths of line segments with the same direction. This enables us to
prove some important theorems that involve ratios of lengths, such as
the theorem of Thales.

Before we state a vector version of the theorem of Thales, we need
to express some key concepts in terms of vectors in R?. As in traditional
geometry, we will denote a line segment by writing its endpoints side by
side. Thus st will denote the line segment with endpoints s and .

Triangles. Without loss of generality we can take one vertex of the
triangle to be 0, and the other two to be nonzero vectors # and
v. But also, for the triangle to be nondegenerate, # and v must
lie in different directions from 0. That is, they must be linearly
independent: au+bv=0onlyifa =b=0.

Parallels. If s and # are points in R?, the vector # — s represents the
position of # relative to s; in particular, it gives the direction of the
line segment st. If # and v are another two points, then »v is parallel
to st if

t—s=c(v—u) forsomerealc#D0.

Relative length. For any nonzero real number a, the segments from
0 to au and from 0 to u# are in the same direction, and we call a
the length of the segment from 0 to au relative to the length of the
segment from 0 to .

With these concepts expressed in the language of vectors, the proof
is now quite easy.

Vector Thales theorem. If 0, u, v are the vertices of a triangle, s lies on
Ou, t lies on Ov, and if st is parallel to uv, then the length of 0Os relative
to the length of Ou equals the length of 0t relative to the length of 0v.
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Figure 5.25: Setup for the theorem.

Proof. Figure 5.25 summarizes the hypotheses of the theorem.
Since s lies on Ou we have

s=bu for somereal b # 0,
and similarly

t=cv forsome real c # 0.
Also, since st is parallel to #v we have

t—s=cv—bu=a(v—u) forsomereala #0,
hence
(b—a)u+(a—c)v=0.

The linear independence of # and v then implies that

b—a=a—-c=0, so a=b=c.

Thus, in fact, s = au and £ = av. So s and ¢ divide the segments 0z and

0v in the same ratio, namely a.

Remark. It is even easier to prove the converse theorem: if s and t
divide the segments Ou and Qv in the same ratio, a, then st is parallel to
uv. Because in this case s = au and t =av, so t — s = a(v — u), which

says st is parallel to uv.
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Figure 5.26: The centroid as the common point of the medians.

Other Theorems of Vector Geometry

Among the points on the segment from 0 to # is its midpoint 1u. More
generally, the midpoint of the segment from # to v is 3 (2 + v) because

1 1
E(u+v):u+§(v—u).

(“Go to u, then halfway towards v.”) Midpoints feature in several
classical theorems of geometry. Here is one, normally proved using
congruence, but which has a very simple proof using vector concepts.

Diagonals of a parallelogram. The diagonals bisect each other.

Proof. Without loss of generality, we can take three vertices of the
parallelogram to be 0, %, v. Then the fourth vertex is # + v, because
this point makes opposite sides parallel.

The diagonal from 0 to # + v has midpoint %(u + v), which is also
the midpoint of the diagonal from % to v. Thus the two diagonals bisect
other, since their midpoints coincide. g

Our second example is a theorem of Archimedes, who interpreted
it as a theorem about the center of mass of a triangle (also known as the
barycenter or centroid of the triangle; see figure 5.26).

Concurrence of medians. In any triangle, the lines from each vertex to
the midpoint of the opposite side (the medians of the triangle) have a
common point.

Proof. Let the triangle have vertices #, v, w, so one median is the line
segment from # to 3(v+ w). Making a guess (inspired perhaps by
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figure 5.26), we consider the point 2/3 of the way from u to %(v + w),
+2 (v+w)
u 3 13 v+w)—ul|,
which equals

1 1
u—i—g(v—l—w—Zu):g(u—l—v—l—w).

This point involves the symbols %, v, w symmetrically, so we will
get the same point if we travel 2/3 of the way along any other median,
either from v to 3(#+ w) or from w to 1(#+v). Thus the point
%(u + v + w) is on all three medians. O

5.8 Introducing Length via the Inner Product

We define the inner product u - v of vectors u = (a, b) and v = (¢, d)
in R? by

u-v=ac+bd.
It follows in particular that
uw-u=a*+0b,

which is the square of the “hypotenuse” |u| of the right-angled triangle
whose width @ and height b are the coordinates of #. So it is natural to
take |u| as the length of u.

More generally, it is natural to define the distance from u; =

(%1, y1) to uy = (x2, ¥2) as

ly — 1| = /(3 — )2 + (35 — )2,

because this is the distance given by the Pythagorean theorem for the
triangle with width x;, — x; and height y, — y, (figure 5.27).

Thus the inner product gives us the Euclidean concept of length if
we define the length |#| of # by

lu| = u-u.
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(-T27 y2) = Uz

Y2 — Y1

u; = (361791) - .
2 — I

Figure 5.27: Distance given by the Pythagorean theorem.

For this reason, the vector space R? with the inner product is called the
Euclidean plane.’

The concept of length determines the concept of angle, in principle,
because the angles of a triangle are determined by the lengths of its
sides. However, the concept of angle is not completely simple—in the
next chapter we will find that calculus is needed to answer some basic
questions about it—so, like Euclid, we single out the right angle as the
most important angle.

Vectors # and v of equal length make a right angle, or are per-
pendicular, precisely when # = (a, b) and v = (=b, a), as is clear from
figure 5.28. From this we see that any vectors u and v are perpendicular
if and only if

u-v=0,

because replacing either vector by a scalar multiple does not change the
value 0.

This criterion makes it possible to prove many theorems about
perpendicularity by simple algebraic calculations. These calculations
involve the following rules for the inner product, which are easily

3 1t is straightforward to define Euclidean space of any dimension 7 by making the natural
extension of the inner product to R™: (a1, az, ..., an)- (b1, by, ..., by) =a1by +azby +- - -+
a,by,. There is also a natural extension of the Pythagorean theorem to R” which gives the same
concept of length as this inner product.
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(=b,a) =

u = (a,b)

x

0

Figure 5.28: Perpendicular vectors of equal length.

0
Figure 5.29: Right-angled triangle.

verified from its definition. (Notice, again, that the rules look like rules
of ordinary arithmetic. So one can calculate almost without thinking,
even though the - symbol now applies to vectors, not numbers.)

u-v=v-u,
u-(v+w)=u-v+u-w,

(au)-v=wu-(av)=a(u-v).

First, let us verify that the Pythagorean theorem holds in complete
generality in the Euclidean plane.

Vector Pythagorean theorem. If u, v, w are the vertices of a right-
angled triangle, with the right angle at v, then

v —ul®+|w—v*=|u—w

Proof. Without loss of generality we can assume that v = 0, in which
case # - w = 0 by perpendicularity, and we wish to show (figure 5.29)
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that

lu)> + |w|* = |u— w|>.
Indeed we have
lu—wl* = (u—w)- (u—w)
=u-ut+w-w—2u-w
= |ul®>+|w|*> because u-w=0. O

The theorem about the angle in a semicircle, from section 5.2, is
another that follows by an easy calculation.

Angle in a semicircle. If u and —u are the ends of the diameter of a
circle with center 0, and if v is any point between them on the circle, then
the directions from v to u and —u are perpendicular.

Proof. Consider the inner product of the directions, v — # and v + u,
to v from u and —u, respectively.

w—u) - W+u)=v-v—u-u=v?—|u?=0

because |#|, |v| are both radii of the circle, hence equal.
Thus v — # and v + u are perpendicular. g

Finally, here is a theorem we have not yet proved, because it is hard
to prove by traditional geometric methods. Yet it is very easy with the
inner product.

Concurrence of altitudes. The perpendiculars from each vertex of a
triangle to the opposite side (its altitudes) have a common point.

Proof. Let the triangle have vertices #, v, w and choose the origin at
the intersection of the altitudes from # and v (figure 5.30).

Then the direction of # from 0 is perpendicular to the direction
w — v of the opposite side, so

u-(w—v)=0, thatis, u#-v=u-w.
Similarly, the altitude from v gives the equation

v-(w—u)=0, thatis, #-v=v w.
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Figure 5.30: Altitudes of a triangle.

Subtracting the second equation from the first gives
O=u-w—v-w=w-(u—0ov).

The latter equation says that the line from w through 0 is perpendicular
to the side from # to v. That is, 0 is also on the altitude from w. Thus 0
is the common point of all three altitudes. O

5.9 Constructible Number Fields

Vector spaces have another role to play in geometry: distinguishing
between the numbers constructible by straightedge and compass and
those that are not. The classical example is /2. Tt arose in the ancient
problem known as duplicating the cube, which asked for the construc-
tion of a cube twice the volume of a given cube. Taking the side of
the given cube as 1, this problem amounts to constructing the number
V2. And since the allowable construction tools are straightedge and
compass, this amounts, by section 5.6, to constructing the number v/2
from 1 by the operations of +, —, -, =, and v

Given a number o constructed by these operations, it is helpful to
look at the field Q(«) obtained by adjoining o to Q. As we have seen in
section 4.9, Q(«) is a vector space over (Q whose dimension equals the
degree of «. It turns out, by the Dedekind product theorem of section
4.9, that this dimension is severely limited for constructible numbers o:
it must be a power of 2. An example will make it clear why this is so.

Consider the constructible number o = v/1 + +/3. The field Q(«)
is conveniently built in two steps from Q. The first step is to adjoin
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/3 to Q, obtaining IF = Q(\/g). Since +/3 is irrational, I is of degree
2, hence dimension 2, over Q. The second step is to adjoin to F the
square root of its member 1 + /3. The number & = \/1 + +/3 is not in
F, so F(«) is an extension of [F. The extension is of degree 2, since «
satisfies the equation x> — (14 +/3) = 0 and 1 + +/3 is in F. Altogether,
we have IF of dimension 2 over Q and F(«) = Q(«) of dimension 2 over
FF. So, by the Dedekind product theorem, Q(«) is of dimension2-2 =4
over Q.

If o is any constructible number, we can build Q(«) similarly, by
a series of extensions by square roots. This is a series of extensions of
dimension 2 so, by the Dedekind product theorem, the dimension of
Q(«) over Q, for any constructible number «, is a power of 2.

Now we can definitively show that /2 is not a constructible number
by establishing the following.

Degree of v/2. The degree of v/2 is 3.

Proof. The number /2 satisfies the equation x3—2 =0, so it suffices
to show that the polynomial p(x) = x* — 2 is irreducible over Q. If not,
then p(x) has rational factors of lower degree, one of which must be
linear. Without loss of generality we can assume that it is x —m/n,
where 772 and 7 are integers.

But then 0 = p(m/n) = ’:Z’—j — 2 or, equivalently, 27 = 1.

The last equation contradicts unique prime factorization, because
the number of factors of 2 is different in the prime factorizations of the
two sides. In 773, the number of factors of 2 is a multiple of 3 (three
times the number of 2s in the prime factorization of 7), whereas in 213
the number of factors of 2 in the prime factorization is 1 plus a multiple
of 3 (the visible factor 2 plus three times the number of 2s in the prime
factorization of 7). U

Thus /2 is not a constructible number, and hence the problem of
duplicating the cube is not solvable by straightedge and compass. The
negative solution of this ancient problem was first given by Wantzel
(1837), more than 2000 years after the problem was first posed! At the
same time, Wantzel also gave a negative solution of another ancient
problem: trisection of the angle.
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The trisection problem asks for a straightedge and compass con-
struction that divides any angle into three equal parts.* If there were
such a construction, then it would be possible to construct an angle
/9 by trisecting the angle /3 occurring in the equilateral triangle
(section 5.4).

But then we could construct the length cos § by constructing a
right-angled triangle with angle 77/9 and hypotenuse 1. It can be shown
that x = cos 7 satisfies the equation

8x°—6x—1=0.

The cubic polynomial 8x> — 6x — 1 is in fact irreducible, though this is
not as easy to show as it was for x*> — 2. Once this is done, however, we
know that cos § is of degree 3, so it is not constructible, and therefore
the trisection problem is not solvable by straightedge and compass.

5.10 Historical Remarks

Euclid’s Elements is the most influential mathematics book of all time,
and it gave mathematics a geometric slant that persisted until the
twentieth century. Until quite late in the twentieth century, students
were introduced to mathematical proof in the style of the Elements,
and indeed it is hard to argue with a method that survived over 2000
years. However, we now know that Euclidean geometry has an algebraic
description (vector space with an inner product), so we have another
“eye” with which to view geometry, which we surely should use. To
see how this new viewpoint came about, we review the history of
elementary geometry.

Euclid’s geometry, illustrated in sections 5.2 to 5.4, has delighted
thinkers through the ages with its combination of visual intuition,
logic, and surprise. We can visualize what Euclid is talking about
(points, lines, areas), we are impressed that so many theorems fol-
low from so few axioms, and we are convinced by the proofs—even
when the conclusion is unexpected. Perhaps the biggest surprise is the

4 There is a straightedge and compass construction that divides an arbitrary angle into two
equal parts. It follows easily from the process for bisecting a line segment given in section 5.4.
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Pythagorean theorem. Who expected that the side lengths of a triangle
would be related via their squares?

The Pythagorean theorem reverberates through Euclid’s geometry
and all its descendants, changing from a theorem to a definition on
the way (in a Euclidean space it holds virtually by definition of the
inner product). For the ancient Greeks, the Pythagorean theorem led
to +/2 and hence to the unwelcome discovery of irrational lengths. As
mentioned in section 5.3, the Greeks drew the conclusion that lengths
in general are not numbers and that they cannot be multiplied like
numbers. Instead, the “product” of two lengths is a rectangle, and
equality of products must be established by cutting and reassembling
areas. This was complicated, though interesting and successful for the
theory of area. However, as mentioned in section 5.3, one needs to cut
volumes into infinitely many pieces for a satisfactory theory of volume.

It should be emphasized that the subject of the Elements is not
just geometry, but also number theory (Books VII to IX on primes
and divisibility) and an embryonic theory of real numbers (Book V),
in which arbitrary lengths are compared by means of their rational
approximations. Later advances in geometry, particularly Descartes
(1637) and Hilbert (1899), work towards fusing all three subjects of the
Elements into a unified whole.

The first major conceptual advance in geometry after Euclid came
with the introduction of coordinates and algebra, by Fermat and
Descartes in the 1620s. These two mathematicians seem to have arrived
at the same idea independently, with very similar results. For example,
they both discovered that the curves with equations of degree 2 are
precisely the conic sections (ellipse, parabolas, and hyperbolas). Thus,
they achieved not only a unification of geometry and algebra, but also a
unification of Euclid’s geometry with the Conics of Apollonius (written
some decades after the Elements). Indeed, they set the stage for algebraic
geometry, where curves of arbitrarily high degree could be considered.
When calculus emerged, shortly thereafter, algebraic curves of degree 3
and higher provided test problems for the new techniques for finding
tangents and areas.

However, algebra and calculus did not merely create new geomet-
ric objects; they also threw new light on Euclid’s geometry. One of
Descartes’ first steps was to break the taboo on multiplying lengths,
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which he did with the similar triangle constructions for product, quo-
tient, and square root of lengths described in sections 5.5 and 5.6. Thus,
for all algebraic purposes, lengths could now be viewed as numbers.
And by giving an algebraic description of numbers constructible by
straightedge and compass, Descartes paved the way for the nineteenth-
century proofs of nonconstructibility, such as the one given in
section 5.9.

Descartes did not intend to construct a new foundation for geom-
etry, with “points” being ordered pairs (x, y) of numbers, “lines” being
point sets satisfying linear equations, and so on. He was content to take
points and lines as Euclid described them, and mainly wished to solve
geometric problems more simply with the help of algebra. (Sometimes,
in fact, he tried to solve algebraic equations with the help of geometry.)
The question of new foundations for geometry came up only when
Euclid’s geometry was challenged by non-Euclidean geometry in the
1820s. We say more about non-Euclidean geometry in the subsection
below. The challenge of non-Euclidean geometry was not noticed at
first, because the geometry was conjectural and not taken seriously by
most mathematicians. This all changed when Beltrami (1868), building
on some ideas of Gauss and Riemann, constructed models of non-
Euclidean geometry, thereby showing that its axioms were just as
consistent as those of Euclid.

Beltrami’s discovery was an earthquake that displaced Euclidean
geometry from its long-held position at the foundation of mathematics.
It strengthened the case for arithmetization: the program of founding
mathematics on the basis of arithmetic, including the real numbers,
instead of geometry. Arithmetization was already under way in calculus
and, thanks to Descartes, arithmetic was a ready-made foundation
for Euclidean geometry. Beltrami’s models completed the triumph of
arithmetization in geometry, because they too were founded on the real
numbers and calculus.

By and large, geometry remains arithmetized today, with both
Euclidean and non-Euclidean “spaces” situated among a great variety of
manifolds that locally resemble R”, but with “curvature.” Among them,
Euclidean geometry retains a somewhat privileged position as the one
with zero curvature at all points. In this sense, Euclidean geometry is
the simplest geometry, and the non-Euclidean spaces of Beltrami are
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among the next simplest, with constant (but negative) curvature at all
points. In the modern geometry of curved spaces, Euclidean spaces
have a special place as tangent spaces. A curved manifold has a tangent
space at each point, and one often works in the tangent space to take
advantage of its simpler structure (particularly, its nature as a vector
space).

It is all very well to base geometry on the theory of real numbers, but
how well do we understand the real numbers? What is their foundation?
Hilbert (1899) raised this question, and he had an interesting answer:
the real numbers can be based on geometry! More precisely, they can be
based on a “completed” version of Euclid’s geometry. Hilbert embarked
on the project of completing Euclid’s axioms in the early 1890s, first
with the aim of filling in some missing steps in Euclid’s proofs. As
the project developed, he noticed that addition and multiplication arise
from his axioms in a quite unexpected way, so that the field concept can
be given a completely geometric foundation. See section 5.11. Then, by
adding an axiom guaranteeing that the line has no gaps, he was able to
recover a complete “number line” with the usual properties of R.

*Non-Euclidean Geometry

In the 1820s, Janos Bolyai® and Nikolai Lobachevsky independently
developed a rival geometry to Euclid’s: a non-Euclidean geometry that
satisfied all of Euclid’s axioms except the parallel axiom. The parallel
axiom has a different character from the other axioms, which describe
the outcome of finite constructions or “experiments” one can imagine
carrying out:

Given two points, draw the line segment between them.
Extend a line segment for any given distance.

Draw a circle with given center and radius.

Any two right angles are equal (that is, one can be moved to
coincide with the other).

Ll .

The parallel axiom, on the other hand, requires an experiment that
involves an indefinite wait:

> Son of the Bolyai in the Bolyai-Gerwien theorem.
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Figure 5.31: Two lines that are supposed to meet.

5. Given two lines / and 1, crossed by another line 7z making
interior angles with / and 7 together less than two right angles,
the lines / and m2 will meet, if produced indefinitely (figure 5.31).

Since the time of Euclid, mathematicians have been unhappy with
the parallel axiom, and have tried to prove it from the other, more
constructive, axioms. The most determined attempt was made by
Saccheri (1733), who got as far as showing that, if non-diverging lines
I and m did not meet, they would have a common perpendicular at
infinity. This, Saccheri thought, was “repugnant to the nature of straight
lines.” But it was not a contradiction, and in fact there is a geometry in
which lines behave in precisely this fashion.

Bolyai and Lobachevsky worked out a large and coherent body of
theorems that follow from Euclid’s axioms 1 to 4 together with the
axiom:

5. There exist two lines / and 72, which do not meet, although
they are crossed by another line 7 making interior angles with /
and m together less than two right angles.

Their results were eventually published in Lobachevsky (1829) and
Bolyai (1832) (the latter an appendix to a book by Bolyai’s father). They
found no contradiction arising from this set of axioms, and Beltrami
(1868) showed that no contradiction exists, because axioms 1, 2, 3, 4,
and 5’ are satisfied under a suitable interpretation of the words “point,”
“line,” and “angle.” (We sketch one such interpretation below.) Thus
Euclid’s geometry had a rival, and deciding how to interpret the terms

“point,” “line,” “distance,” and “angle” became an issue.

www.Engineeringbookspdf.com



182 + Chapter 5

As we have seen, Euclid’s axioms had a ready-made interpretation
in the coordinate geometry of Descartes: a “point” is an ordered pair
(x, y) of real numbers, a “line” consists of the points satisfying an
equation ax+by+c =0, and the “distance” between (x, y;) and
(x2, y2) equals /(22 — 1) + (2 — y2)*.

For Bolyai’s and Lobachevsky’s axioms, Beltrami found several ele-
gant interpretations, admittedly with a somewhat complicated concept
of “distance.” The simplest is probably the half-plane model, in which:

 “points” are points of the upper half-plane; that is, pairs (x, y)
with y > 0,

o “lines” are the open semicircles in the upper half-plane with
their centers on the x-axis, and the open half-lines
{(x,y):x=a,y>0}

o the “distance” between “points” P and Qs the integral of

\/dx?+ dy?*/y over the “line” connecting P and Q.

It turns out that “angle” in this model is just the ordinary angle
between curves; that is, the angle between their tangents. This leads
to some beautiful pictures of non-Euclidean geometric configurations,
such as the one in figure 5.32. It shows a tiling of the half-plane by
triangles which are “congruent” in the sense of non-Euclidean distance.
In particular, they each have angles 7/2, 7/3, w/7. Knowing that they
are congruent one can get a sense of non-Euclidean distance. One can
see that the x-axis is infinitely far away—which explains why it is not
included in the model—and perhaps also see that a “line” is the shortest
path joining its endpoints, if one estimates distance by counting the
number of triangles along a path.

It is also clear that the parallel axiom fails in the model. Take for
example the “line” that goes straight up the center of the picture and
the point on the far left with seven “lines” passing through it. Several of
the latter “lines” do not meet the center line.

*Vector Space Geometry

Grassmann (1861), the Lehrbuch der Arithmetik mentioned in
section 1.9, was not Grassmann’s only great contribution to the
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Figure 5.32: Congruent triangles in the half-plane model.

foundations of mathematics. The first was his Ausdehnungslehre
(“extension theory”), Grassmann (1844), in which he based Euclidean
geometry on vector spaces. The Ausdehnungslehre, like the unfortunate
Lehrbuch, was greeted at first with total incomprehension. The only
person to review it was Grassmann himself, and its virtually unsold
first edition was destroyed by the publisher. The full story of the
Ausdehnungslehre, its genesis and aftermath, is in the Grassmann
biography by Petsche (2009).

Grassmann was let down by an extremely obscure style, and ter-
minology of his own invention, in attempting to explain an utterly
new and complex idea: that of a real n-dimensional vector space
with an outer product.® The simpler concept of inner product was in
Grassmann’s view an offshoot of the outer product—one he planned
to expound in Ausdehnungslehre, volume two. Not surprisingly, the
second volume was abandoned after the failure of the first.

© We will not define the concept of outer product, but it underlies the concept of determinant,
then at the center of what was called “determinant theory” and now at a less central position in
today’s linear algebra.
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Thus, Grassmann’s contribution to geometry might well have been
lost—if not for a marvelous stroke of luck. In 1846, the Jablonowskian
Society of Science in Leipzig offered an essay prize on a question only
Grassmann was ready to answer: developing a sketchy idea of Leibniz
about “symbolic geometry.” (The aim of the prize was to commemorate
the 200th anniversary of Leibniz’s birth.) Grassmann (1847) duly won
the prize with a revised version of his 1844 theory of vector spaces—
one that put the inner product and its geometric interpretation at
the center of the theory. He pointed out that his definition of inner
product was motivated by the Pythagorean theorem, but that, once
the definition is given, all geometric theorems follow from it by pure
algebra.

Despite its greater clarity, Grassmann’s essay was not an overnight
success. However, his ideas gathered enough momentum to justify a
new version of the Ausdehnungslehre, Grassmann (1862), and they were
gradually adopted by other mathematicians. Peano was among the first
to appreciate Grassmann’s ideas, and was inspired by him to create the
first axiom system for real vector spaces in Peano (1888), section 72.
Klein (1909) brought Grassmann’s geometry to a wider audience by
restricting it to three dimensions. Klein mentioned the inner product,
but his version of Grassmann relied mainly on the determinant concept,
which gives convenient formulas for areas and volumes.

9.11 Philosophical Remarks

*Non-Euclidean Geometry

In this book I have made the judgement that non-Euclidean geometry
is more advanced than Euclidean. There is ample historical reason
to support this call, since non-Euclidean geometry was discovered
more than 2000 years after Euclid. The “points” and “lines” of non-
Euclidean geometry can be modeled by Euclidean objects, so they are
not advanced in themselves, but the concept of non-Euclidean distance
surely is.

One way to see this is to map a portion of the non-Euclidean plane
onto a piece of a surface S in R? in such a way that distance is preserved.
Then ask: how simple is S? Well, the simplest possible S is the

www.Engineeringbookspdf.com



Geometry « 185

Figure 5.33: The pseudosphere.

trumpet-shaped surface shown in figure 5.33 and known as the
pseudosphere. It is obtained by rotating the tractrix curve, with equation
/ 2
v 1T yl—y — /1=,
about the x-axis.

This formula is complicated enough, but the conceptual compli-
cation is much greater. It is possible to compare only small pieces of
the non-Euclidean plane with small pieces of a surface in R?, because a
complete non-Euclidean plane does not “fit” smoothly in R*. This was
proved by Hilbert (1901). The pseudosphere, for example, represents
just a thin wedge of the non-Euclidean plane, the edges of which are
two non-Euclidean lines that approach each other at infinity. These
two edges are joined together to form the tapering tube shown in
figure 5.33.

In contrast, Euclidean geometry is modeled by the simplest possible
surface in R®—the plane!”

7 Tt may be thought unfair to the hyperbolic plane to force it into the Euclidean straightjacket
of R3. Might not the Euclidean plane look equally bad if forced to live in non-Euclidean space?
Actually, this is not the case. Beltrami showed that the Euclidean plane fits beautifully into non-
Euclidean space, where it is a “sphere with center at infinity.”
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*Numbers and Geometry

Now let us return to the axioms of Hilbert (1899), and what they tell
us about the relationship between numbers and geometry. Hilbert’s
axioms probably capture Euclid’s concept of the line (with the finer
structure explored in Book V of the Elements). So, given the Descartes
“model” R? of Euclid’s axioms, Hilbert has shown Euclidean geometry
to be essentially equivalent to the algebra of R. However, algebraists
and logicians now prefer not to use the full set R in geometry. They
point out that the set of constructible numbers suffices, because Euclid’s
geometry “sees” only the points arising from straightedge and compass
constructions. Thus one can get by with an algebraically defined set of
points, which is only a “potential” infinity, in contrast to the “actual”
infinity R. Logicians also prefer the theory of constructible numbers
because its “consistency strength” is less than that of the theory of R.

That is, it is easier to prove the consistency of the theory of
constructible numbers (and hence the consistency of Euclid’s axioms)
than it is to prove the consistency of the theory of R (and hence the
consistency of Hilbert’s axioms).

*Geometry and “Reverse Mathematics”

In recent decades, mathematical logicians have developed a field called
reverse mathematics, whose motivation was stated by Friedman (1975)
as follows:

When the theorem is proved from the right axioms, the axioms can be
proved from the theorem.

As logicians understand it, reverse mathematics is a technical field,
concerned mainly with theorems about the real numbers (see section
9.9). However, if we understand reverse mathematics more broadly as
the search for the “right axioms,” then reverse mathematics began with
Euclid.

He saw that the parallel axiom is the right axiom to prove the
Pythagorean theorem, and perhaps the reverse—that the Pythagorean
theorem proves the parallel axiom (given his other axioms). The
same is true of many other theorems of Euclidean geometry, such as
the theorem of Thales and the theorem that the angle sum of a triangle
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is . All of these theorems are equivalent to the parallel axiom, so it is
the “right axiom” to prove them.

To formalize this and other investigations in reverse mathematics
we choose a base theory containing the most basic and obvious assump-
tions about some area of mathematics. It is to be expected that the base
theory will fail to prove certain interesting but less obvious theorems.
We then seek the “right” axiom or axioms to prove these theorems,
judging an axiom to be “right” if it implies the theorem, and conversely,
using only assumptions from the base theory.

Euclid began with a base theory now known as neutral geometry.
It contains basic assumptions about points, lines, and congruence of
triangles but not the parallel axiom. He proved as many theorems as he
could before introducing the parallel axiom—only when it was needed
to prove theorems about the area of parallelograms and ultimately the
Pythagorean theorem. He also needed the parallel axiom to prove the
theorem of Thales and that the angle sum of a triangle is 7. We now
know, conversely, that all of these theorems imply the parallel axiom in
neutral geometry, so the latter is the “right” axiom to prove them.

Neutral geometry is also a base theory for non-Euclidean geometry,
because the latter is obtained by adding to neutral geometry the “non-
Euclidean parallel axiom” stating that there is more than one parallel to
a given line through a given point.

Grassmann’s theory of real vector spaces, as we have seen, can also
be taken as a base theory for Euclidean geometry. It is quite different
from the base theory of neutral geometry because the Euclidean parallel
axiom holds in real vector spaces, and so does the theorem of Thales.
Nevertheless, this new base theory is not strong enough to prove the
Pythagorean theorem, or indeed to say anything about angles. Relative
to the theory of real vector spaces, the “right” axiom to prove the
Pythagorean theorem is existence of the inner product, because we can
reverse the implication by using the Pythagorean theorem to define
distance, hence angle and cosine, and then define the inner product by

u-v=|u|l|v|cosb.

This raises the possibility of adding a different axiom to the theory
of real vector spaces and obtaining a different kind of geometry, just as
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we obtain non-Euclidean geometry from neutral geometry by adding
a different parallel axiom. Indeed we can, and simply by asserting
the existence of a different kind of inner product. The inner product
introduced by Grassmann is what we now call a positive-definite inner
product, characterized by the property that % - # = 0 only if u is the zero
vector.

Non-positive-definite inner products also arise quite naturally.
Probably the most famous is the one on the vector space R* that defines
the Minkowski space of Minkowski (1908). If we write the typical
vector in R* as # = (w, x, y, z) then the Minkowski inner product is
defined by

Uy - Uy = —wWiwy + X1 + Y1) +2122.

In particular, the length |#| of a vector # in Minkowski space is
given by

u =u-u=—w>+x"+y* +2°,

so |u| can certainly be zero when # is not the zero vector.

Minkowski space is famous as the geometric model of Einstein’s
special relativity theory. In this model, known as flat spacetime, x, y, and
z are the coordinates of ordinary three-dimensional space and w = ct,
where ¢ is the time coordinate and c is the speed of light. As Minkowski
(1908) said:

The views of space and time which I wish to lay before you have sprung
from the soil of experimental physics, and therein lies their strength.
They are radical. Henceforth space by itself, and time by itself, are
doomed to fade away into mere shadows, and only a kind of union of
the two will preserve an independent reality.

Undoubtedly, relativity theory put non-positive-definite inner products
on the map, making them as real and important as the ancient concept
of distance. But in fact such inner products had already been consid-
ered by mathematicians, and one of them is involved in a model of
non-Euclidean geometry discovered by Poincaré (1881)—the so-called
hyperboloid model.
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To see where the hyperboloid comes from, consider the three-
dimensional Minkowski space of vectors # = (w, x, y) with one time
coordinate w and two space coordinates x, y. In this space, where
|u|*> = —w? + x* + y*, we consider the “sphere of imaginary radius”

{w:ul =v~1} = {(w, x, y): —w* + x> +y* = —1}.

This “sphere”® consists of the points (w, x, y) in R? such that

wrox =1,
so it is actually a hyperboloid; namely, the surface obtained by rotating
the hyperbola w? — y* = 1 in the (w, y)-plane about the w axis. If we
take “distance” on either sheet of the hyperboloid to be the Minkowski
distance, it turns out to be a model of the non-Euclidean plane. As with
the other models of the non-Euclidean plane, calculating distance is a
little troublesome so I omit the details. Instead, I offer figure 5.34—
a black-and-white version of a picture due to Konrad Polthier of the
Freie Universitit, Berlin—which shows what the triangle tessellation of

8 Long before the development of Minkowski space, or even the development of non-
Euclidean geometry, Lambert (1766) speculated about the geometry of a “sphere of imaginary
radius.” In particular, he guessed that the angle sum of a triangle would be less than 7 on such a
sphere—which is essentially the non-Euclidean parallel axiom.
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Figure 5.35: The Pappus configuration.

figure 5.32 looks like in the hyperboloid model. (It also relates the
hyperboloid model to another model—the conformal disk model—
which is a kind of intermediary between the hyperboloid model and
the half-plane model shown in figure 5.32.)

This elegant relationship between Minkowski space and the
non-Euclidean plane has been used for some textbook treatments of
non-Euclidean geometry, such as Ryan (1986). Just as the positive-
definite inner product is the “right axiom” to develop Euclidean geom-
etry over the base theory of real vector spaces, the Minkowski inner
product is the “right axiom” to develop non-Euclidean geometry.

*Projective Geometry

Another wonderfully “right” axiom is the theorem discovered by Pap-
pus a few hundred years after Euclid. Pappus viewed his theorem as
part of Euclidean geometry, but it does not really belong there. It is
unlike typical Euclidean theorems in making no mention of length or
angle, so its home should be a geometry that does not involve these
concepts. The statement of the theorem is the following, which refers to
the configuration shown in figure 5.35.

Theorem of Pappus. If A, B, C, D, E, F are points of the plane lying
alternately on two lines, then the intersections of the pairs of lines AB
and DE, BC and EF, CD and F A, lie on a line.
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The Pappus theorem has a Euclidean proof using the concept of
length, and also a coordinate proof using linear equations to define
lines. But it seems to have no proof using only concepts “appropriate” to
its statement: points, lines, and the membership of points in lines. The
appropriate setting for the Pappus theorem is the projective geometry
of the plane, a geometry which tries to capture the behavior of points
and lines in a plane without regard to length or angle. In projective
geometry, configurations of points and lines are considered the same
if one can be projected onto the other. Projection can of course change
lengths and angles, but the straightness of lines remains, as does the
membership of points in lines.

If one seeks axioms for projective plane geometry, the following
come easily to mind:

1. Any two points belong to a unique line.
2. Any two lines have a unique point in common.
3. There are four points, no three of which are in the same line.

The first axiom is also one of Euclid’s. The second disagrees with Euclid
in the case of parallel lines, but projective geometry demands it, because
even parallel lines can be projected so that they meet—on the “horizon.”
The third axiom is there to ensure that we really have a “plane,” and not
merely a line. However, these simple axioms are very weak, and it can
be shown that they do not suffice to prove the Pappus theorem. They
do, however, form a natural base theory to which other axioms about
points and lines can be added.

What are the “right axioms” to prove the Pappus theorem? The
answer is no less than the Pappus theorem itself, thanks to what the
Pappus theorem implies; namely, that the abstract plane of “points” and
“lines” can be given coordinates which form a field as defined in section
4.3. Thus geometry springs fully armed from the Pappus theorem! The
Pappus axiom (as we should now call it) is the right axiom to prove
coordinatization by a field, because such a coordinatization allows us
to prove the Pappus axiom. As remarked above, this follows by using
linear equations to define lines. The field properties then enable us to
find intersections of lines by solving linear equations, and to verify that
points of intersection lie on a line.
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The idea of reversing the coordinate approach to geometry began
with von Staudt (1847), who used the Pappus axiom to define addition
and multiplication of points on a line. Hilbert (1899) extended this
idea to prove that the coordinates form a field, but he had to assume
another projective axiom, the so-called theorem of Desargues, which was
discovered around 1640. (Roughly speaking, the Pappus axiom easily
implies that addition and multiplication are commutative, while the
Desargues axiom easily implies that they are associative.) Quite remark-
ably, considering how long the Pappus and Desargues theorems had
been around, Hessenberg (1905) discovered that the Pappus theorem
implies the Desargues theorem. So the single Pappus axiom is in fact
equivalent to coordinatization of the plane by a field.

This reversal of the Pappus theorem also tells us something remark-
able about algebra: the nine field axioms follow from four geometric
axioms—the three projective plane axioms plus Pappus!
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PREVIEW

Calculus has its origins in the work of Euclid and Archimedes, who
used infinite sums to evaluate certain areas and volumes. We begin
this chapter by studying the simplest kind of infinite sum, the geometric
series, which reappears later as a kind of seed that generates other
infinite series.

Calculus as we know it today—as a means of calculating the out-
comes of infinite processes—began by calculating tangents to curves.
We do this calculation for the curves of the form y = x”, and use the
results to solve the inverse problem of finding the areas beneath these
curves. Finding tangents and areas are formalized by the calculus oper-
ations of differentiation and integration, and their inverse relationship
is formalized by the fundamental theorem of calculus.

But while differentiation does not lead outside the class of known
functions, integration often does. The logarithm and circular functions,
for example, arise from rational functions by integration. From these,
in combination with rational and algebraic functions, we obtain a large
class called the elementary functions. All rational functions may be
integrated in terms of elementary functions.

This result suggests that there might be an elementary calculus
in which only elementary functions are studied. Unfortunately, this
restricted calculus is still not completely “elementary.” There remain
some intuitively obvious facts that are hard to prove, such as the
theorem that a function with zero derivative is a constant. Because
of this, in calculus one must assume certain plausible results without
proof, or else occasionally cross the line into advanced calculus.
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In this chapter we have opted to occasionally cross the line, in order
to make it clear where the line lies. The sections containing advanced
arguments or assumptions have been marked with a star (*).

6.1 Geometric Series

Before any distance can be traversed half the distance
must be traversed, and these half distances are infinite

in number.

Aristotle, Physics, 263a5

The simplest and most natural geometric series arises from the
situation described above (rather tersely) by Aristotle: going halfway
to a destination. At the halfway point we still have to traverse half the
remaining distance (which is one quarter of the whole), then half of that
(one eighth), and so on. Thus the whole is the sum of the fractions

1 1 1 1

PR RETR

This sum, in which each term is half of the one before, is an example of
an infinite geometric series. It is infinite because at every finite stage we
are a little short of the destination.

However, it is also clear that we pass any position short of the des-
tination at some finite stage, because the distance remaining becomes
arbitrarily small. So the infinite sum cannot be less than the whole
distance. In other words, we must have

1+1+1+1+ =1
2 4 8 16 -

Infinite processes, such as this one, are at the heart of calculus, and
we will not try to avoid them. However, the meaning of the infinite sum
can be clarified by comparing it with the finite sum

S—1+1+1+ +1
"T2 4 8 o’
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For this sum it is clear that

1

1 1 1
25, =14 oot —
ottt T o

So, if we subtract the expression for S, from the expression for 25, we
get
1

Since 2%, can be made as small as we please, this formula confirms that

by taking 7 terms of the series we can get as close as we please to 1.
Therefore, the only possible value for the infinite sum is 1.

This style of argument—considering arbitrary finite sums instead
of an infinite sum—Tlater came to be called the method of exhaustion,
because it exhausts all possible answers to the question, except one.
Another example, which we already saw in section 1.5, is Archimedes’
determination of the area of a parabolic segment. Archimedes found
that the area of the segment is “exhausted” by a sum of triangles with
total area

1+1+1+1+
4 42 43 ’

The sum of this series is 4/3, as we see by looking at the finite sum

S—1+1+1+ +1
" 4 42 qn’

Multiplying it by 4 gives
1 1
4Sn=4+1+Z+E+"'+F,

so subtraction gives

1
3S,=4— —,
471
and therefore
4 1
S, =-— .
T3 3.4
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It follows that the finite sum S,, is less than 4/3. On the other hand, since
7+ can be made arbitrarily small, S, can be made to exceed any number
less than 4/3. Hence, “by exhaustion,” the sum of the infinite series
is 4/3.

The general geometric series has the form

a+ar+ar*+ar’+---,
and it can be completely understood by looking first at the finite sum
Sp=a+ar+ar*+---+ar”.

Multiplying by » and subtracting gives

(1—=7)S,=a—ar™!,

so when 7 # 1 we can divide by 1 —r and get

a—ar™t!

Sn= 1—r
(And, of course, if r =1 we have S, =a+a+---+a=m+1)a, a
sum which grows beyond all bounds as 7 increases.)

It now becomes clear why our previous examples had small values
of r: the term ar"' becomes small only for |r| < 1. If |r| > 1 then the
infinite sum has no meaning. But if |7| < 1 we can make ar”*! as small
as we please, and the infinite geometric series has a sum:

a
a+ar+ar*+ar’+..-=

1—7

Expanding Functions as Geometric Series

Important special cases of the formula for the sum of an infinite
geometric series are:

=l—x4+x>—x"+-- takinga = 1,7 = —x),
14+ x ( & )

! =1—-x*4x* =+ (takinga = 1,7 = —x?)
1+ x2 ’ '
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o 1 7 o 1 ° o 1 7 o 1 °

Figure 6.1: Graphsof y=x, y=x%, y=x’,and y = x*.

Because of the restriction on 7, these formulas are valid only for x| < 1.
For these values of X, we call these formulas power series expansions
of the functions ﬁ and 1+ 5.
simple finite expression —— by the infinite one 1 —x +x* — x>+ - -,
but there are some thmgs we can do more easily with the powers
x, x, x3, ... than we can with p%x In fact, the aim of this chapter is
to develop an understanding of elementary functions such as e*, sin x,
and cos x through an understanding of powers of x.

This was the approach to calculus developed by Newton around

1665, and it remains the best elementary approach today. It is true that

It may seem idiotic to replace the

calculus is not an entirely elementary subject, and there are delicate
questions concerning the meaning of infinite series in particular. How-
ever, for the part of calculus we deal with, these questions are generally
easy to answer, or else the plausible answer can be justified with some
extra work. We will point out such questions as we go along, but will
not let them derail our train of thought.

6.2 Tangents and Differentiation

We begin our study of the powers of x by looking at their graphs y = x".
Figure 6.1 shows the first few examples: y = x, y = x?, y = x°, and
y = x*. For each of these, a fundamental geometric question, whose
answer is not obvious except for y = x, is: how do we find the tangent
to the graph at a given point? This question is answered by first
studying the simpler problem of finding the chord between two given
points on the curve.

We illustrate the method by finding the tangent to the parabola
y = x? at the point P = (1, 1). To do this we consider the chord
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Yy
Q
P
Az
12 (1+ Az)?
0] 1 1+ Ax

Figure 6.2: Approaching the tangent to the parabola.

between P and a neighboring point! Q= (1+ Ax, (1+ Ax)?) as
shown in figure 6.2.

As Ax approaches 0, the point Q approaches P and the line
through P and Q approaches the tangent. In fact, the slope of P O
approaches 2, as is clear when we calculate the slope in terms of Ax:

change in y-value

| fPO=

slope of PQ change in x-value
14+ Ax)P 17
T (1+Ax) -1

_ PH2Ax+(Ax) -1
B Ax

! We denote the horizontal distance to the neighboring point by Ax, because it represents a
difference (initial letter d or A in Greek) in the x direction. This symbolism may seem unnecessarily
fancy in the present situation, but it fits later situations better, so it is worth getting used to it.
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_ 2Ax+(Ax)
- Ax

=24 Ax,

which certainly approaches 2 as Ax approaches 0.

A similar calculation finds the slope of the tangent at any point
P = (x, x*) on y=x?, by calculating the slope to the nearby point
O=(x+ Ax, (x+ Ax)?)

(x+ Ax)? — x?

slope of PO = A% —x

X7 2x- Ax+(Ax)’ —x®  2x- Ax+(Ax)?
o Ax B Ax

=2x+ Ax,

which approaches 2x as Ax approaches 0.

The same method applies to y= x> and higher powers of x,
though with longer calculations. For example, on y=x> the slope
from the typical point P = (x, x) to the nearby point Q= (x + Ax,
(x+ Ax)?) is

(x4 Ax)’ —x’ %’ +3x- Ax+3x- (Ax)’ + (Ax)’ — &’
(x+Ax)—x Ax
=3x? 4+ 3x- Ax+ (Ax)%.

As Ax approaches 0, so do the terms 3x - Ax and (Ax)?, hence the slope
of P Qapproaches 3x2.
Similar calculations show that

for y = x* the slope of the tangent at (x, x*) equals 4x°,

for y = x” the slope of the tangent at (x, x°) equals 5x*,

for y = x” the slope of the tangent at (x, x”) equals 7x" .

To do the calculation for an arbitrary positive integer 7 the most direct
method is to use the binomial theorem of section 1.6, according to
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y = ||

(@)
Figure 6.3: Graph of the function f(x) = |x|.

which

nn—1)

5 X" Ax 4 (Ax)"

(x+Ax)"=x"+nx"' Ax+

The function 7#x"~! that gives the slope of the tangent to y = x” for any
value of x is called the derivative of x", and so we have the theorem.

Derivative of x”. The derivative of x", for every positive integer n, is
nx""1. O

For the moment, these are the only derivatives that we need, though
we will make a more general definition for future use.

Definition. A function f is called differentiable (for a certain domain
of x values) if

f(x+ Ax)— f(x)
Ax

approaches a definite value f’(x) as Ax approaches 0, for each x in the
domain of f. The function f'(x) is called the derivative of f(x).

In particular, we call f differentiable at x = a if f'(a) exists. It is
quite common for a function to have no derivative at certain points. For
example, the function f(x) = |x| has no derivative at x = 0, because the
slope from O to any point on the positive side of the graph is +1, while
the slope from O to any point on the negative side is —1. Thus there is
no common value for all slopes to approach (figure 6.3).
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When f'(x) exists we call it the limit of w as Ax
approaches 0, and we write this statement concisely as

f(x+ Ax) — f(x)
Ax ’

o= im,

also introducing the symbol — for “approaches.” It is possible to go
further and define the concepts of “approaching” and “limit,” but we
will not do so here, since we are concerned mainly with cases where it
is clear which value is being approached. For example, it is clear that
24 Ax approaches 2 as Ax approaches 0—as clear as it was in the
previous section that 1 — 5 approaches 1. In elementary calculus, limits
are usually as clear as these, so they cannot be made clearer by a deeper
explanation of the limit concept. That can wait for advanced calculus,
though advanced calculus is not very distant from elementary calculus,
as we will see.

As a further example in which the limit is clear, take the function
flx)= % In this case

f(x+Ax)—f(x)_ 1 < 1 1>

x+Ax x

Ax T Ax

1 x—(x+Ax)_ -1

Ax  (x+Ax)x (x4 Ax)x’

SO

—1 —1
)= lim ——M = —.
f'(x) A (x+Ax)x  x2
This shows, incidentally, that the above formula for the derivative of x”
is also correct for » = —1. In fact, it holds for all real values of 7, though
we will not need this result.

Other Instances of the Derivative Concept

Expressions like W, and their limits, occur not only in geom-

etry, but in any situation where a quantity is changing and we wish to
measure its rate of change. Thus, slope is the rate of change of height
with respect to horizontal distance and, as another example, speed is
the rate of change of position with respect to time.
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We estimate the speed of an object by measuring its positions
p(t + At) and p(t) at nearby times ¢ + At and ¢. This gives the average
speed between these times as

distance traveled  p(t + Az) — p(z)
time taken At ’

and the speed at the instant # is the limit of this expression as Az — 0:

speed at time £ = p/(t) = lim plt+ A0 = p(t).
A0 At

Similarly, acceleration is the rate of change of speed with respect to
time. Consequently, acceleration is the derivative of speed, which makes
it the second derivative (the “derivative of the derivative”) of position.
The second derivative of position may seem to be an esoteric concept,
but it is one we can feel! By Newton’s second law of motion, acceleration
is perceived as force, as is the case when a car starts or stops suddenly.
Later we will see that functions like e*, sin x, and cos x have infinitely
many derivatives, and all of them are important.

6.3 Calculating Derivatives

As its name suggests, calculus is a system for calculation. Its first
great success is the calculation of derivatives, due to the fact that the
derivatives of the simplest functions are obvious, and there are simple
rules for calculating the derivative of any reasonable combination of
functions whose derivatives are known. Another contribution to the
success of calculus is a notation, due to Leibniz, which reflects the origin
of the derivative concept in the calculation of limits of fractions. When
y = f(x), it is often helpful to write

dy

/

(x) = —.

f dx

Since % is the limit of the fraction %’ it often behaves like a fraction,
and this makes it easier to remember and to derive the rules for
differentiation.
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It is also convenient to denote the differentiation operation by d%’
since this naturally applies to function expressions on the left (which
the " symbol does not). For example, we can write

2
—Xx" = 2x.
dx
The simplest functions are the constant functions f(x) = k, each
of which has derivative 0, and the identity function f(x) = x, which
has derivative 1. From these we obtain the derivatives of many other
functions by the following rules.

o The derivatives of the sum, difference, product, and quotient of
differentiable functions # and v are given by:
du dv d du dv

—(u—v) =

%(u-i_v):%-i_dx’ dx

dx  dx’
d dv du d /u v%—u%
%(u-v) u%+va, %<;)_T for v #0.

o If % is the derivative of a function y = f(x), and % £0, :[jhen
the derivative ‘;—;C of the inverse function x = f~!(y)is 1 /4.

o If z= f(y) has derivative j—; (with respect to y) and y = g(x)
has derivative %, then z = f(g(x)) has derivative with respect

to x given by % = j—; . % (the chain rule).

The last two rules show that the symbol % is apt, because %
behaves like a fraction. This is no surprise, because % is the limit? of
the actual fraction %. Indeed, the proofs of the rules above are basically
manipulations of fractions, with some care to avoid zero denominators,
followed by passage to the limit. The other important ingredient in the

limits is:
Continuity of differentiable functions. If y = f(x) is differentiable at

x =a, then f(x)is continuous at x = a; thatis, f(x) — f(a)asx — a.

2 In the words of philosopher George Berkeley, dx and dy are “ghosts of departed quantities.”

www.Engineeringbookspdf.com



204 <« Chapter 6

Proof. The value of the derivative at x = a is

y f(x)— f(a)
m ———-.:

xXx—a X —da

Since the denominator x —a — 0, the limit can exist only if the
numerator also approaches 0; that is, if f(x) — f(a). O

Before applying this result, we should highlight the concept of
continuity, which has quietly slipped in here.

Definitions. A function f is called continuous at the point x = a if
f(x) — f(a)as x — a. We say that [ is continuous, on some domain,
if f is continuous at each point x of that domain.

We now illustrate the application of fractions, limits, and continuity
to the product rule for differentiation:

By definition, the left side is the limit, as Ax — 0, of the fraction

u(x+ Ax)-v(x + Ax) — u(x) - v(x)
Ax )

To create % and % in the fraction we add and subtract the term

u(x + Ax) - v(x) in the top line, obtaining

u(x+Ax)-v(x+Ax)+u(x+Ax)-v(x) —u(x+Ax) - v(x) — u(x) - v(x)
Ax

= u(x + Ax) v+ AAx; —v(x) i U(x)”(x + AAx; — u(x)

(et Ax) Y () 22
= ux X)— vixX)——.
Ax Ax

Finally, letting Ax — 0, we get u(x)% + v(x)%, because u(x + Ax) —
u(x) by the continuity of the differentiable function .
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The functions obtained from constant and identity functions by

+, —, -, = are the large class of rational functions. They include, for
example,
2 2 2 x 3 x
x°, 3x°, 143x°, , X =,
1+ 3x2 14+ 3x2
all of which we can now differentiate using the rules for +, —, -, = of

differentiable functions.
With the rule for inverse functions we can differentiate algebraic
functions such as /x. We know that y = f(x) = x? has derivative

dy
- =2x,
dx
so the derivative Z—; (with respect to y) of the inverse function x = ,/y
is

dx_1 dy_l 1 1 ),

R e N Y

Renaming the variable as x, this says

d 1

S VRS Vo)
dx 2

which conforms to the rule dixx” = nx""! already observed for positive

integer values of 7.

*A Hard Question about Derivatives

All of the above material, in my opinion, qualifies as elementary
calculus. It is basically elementary algebra with occasional routine
applications of the limit concept. However, there is a question arising
from this material that has quite a different character: if f(x) has
derivative 0, is f(x) necessarily constant?

The answer seems to be: obviously yes! How can a function change
value if its rate of change is zero? Yet, perhaps our words deceive us,
because it is not obvious how to connect the derivative of a function
with the totality of its values. This question is perhaps the simplest
example of a problem that is typical of advanced calculus: going from
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0 a att b

Figure 6.4: Curve with “global slope” from Ato B.

a “local” assumption (slope at each point = 0) to a “global” conclusion
(everywhere constant function).

The assumption f’(x) = 0 is “local” in the sense that it tells us only
how f behaves near individual points: at each point P the tangent is
horizontal, but the chord P Q to another point O need not be. All we
can say is that as Q — P the slope of P Q — 0. It turns out that this
assumption is enough to work with, but it takes (in my opinion) an
advanced argument to draw the global conclusion that f(x) = constant.
Here it is.

Zero derivative theorem. If f'(x) =0 at each point of some interval,
then f(x) is constant on that interval.

Proof. Suppose that the differentiable curve y = f(x) has points A, B
of different heights. We condense this “global slope” to a “local slope”
(at least as large) of the tangent at a point P between A and B. The
point P is found by an infinite process called repeated bisection.

We can assume that A= (a, f(a)), B= (b, (b)) as shown in
figure 6.4, and slope AB =1 (if necessary, multiply f by a suitable
constant).

We divide the interval I, =[a, b] ={x:a < x < b} in half at x =

a4 and let C = (442, f (%£2)). Then, as is clear from figure 6.4, at
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0

Figure 6.5: Local slope at P.

least one of the chords AC, CB has slope > 1. We let I, be the half of
I, on which the greater slope occurs (if the slope is the same on both
halves, take the left half to be definite), and repeat the process on I,.

In this way we obtain an infinite sequence of nested intervals,

[avb]=112122]32... ,

each one half the length of the one before. And on each interval the
slope of the curve from left end to right end is > 1. Now, there is exactly
one point P common to all these intervals. And, by construction, P
lies between arbitrarily close points O and R on the curve with slope
OR > 1 (figure 6.5); namely, the points (x, f(x)) for x at the ends of a
sufficiently small interval I.

It follows that P has arbitrarily close neighbors (O or R) on the
curve to which the slope of the chord from P is > 1. Hence the slope
of the tangent at P (which exists by the assumption that f(x) is
differentiable) is also > 1.

Thus, if f is differentiable and the curve y = f(x) has a nonzero
slope, then the curve has a tangent of nonzero slope. Consequently, if
the tangent always has zero slope, then the slope between any two points
of the curve is also zero. That is, f(x) is constant. O

The advanced features of this argument are the construction of
infinitely many nested intervals and the assumption that the intervals
have a common point. These are tied to the structure of the real number
system R—specifically its so-called completeness—which we discuss
further in the Historical and Philosophical Remarks.
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O 1 a

1
2

Figure 6.6: Area under the hyperbola y =

6.4 Curved Areas

Another problem about curves, even older than finding their tangents,
concerns the areas they bound. In section 1.5 we saw the first signif-
icant contribution to this problem: Archimedes’ determination of the
area of a parabolic segment. His solution was based on an ingenious
“exhaustion” of the parabolic segment by triangles, and there is no
guarantee that the idea will work for the curves y = x°, y = x*, and
so on. It was not until the seventeenth century that calculus triumphed
over the problem, giving a simple and uniform determination of the
areas bounded by all these curves. We present the solution in the next
section.

In the meantime, we want to present a less transparent example—
the area bounded by the hyperbola y = 1 —because it shows that the
area concept is deeper than the tangent concept, and that it gives
unexpected insights. We consider the area between the curve y = i,
the x-axis, and the vertical lines through x =1 and x =a. We will
call it the area “under y = I between x = 1 and x = a” (shown shaded
in figure 6.6). We define this curved area in terms of known areas by
approximating it from above and below by rectangles (figure 6.7).

The difference between the upper and lower approximations is
the sum of the small white rectangles through which the curve passes
in figure 6.7. This difference can clearly be made arbitrarily small
by making the rectangles sufficiently narrow. So either the upper or
lower rectangles can be used to approach the area bounded by the
curve.
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Y
0 s e
@) 1 a
Figure 6.7: Approximating the area by rectangles.
Y
x
0 1 a b ab

Figure 6.8: Proving the product property of the logarithm.

However, if we calculate, say, the sum of the lower rectangles
obtained by dividing the interval from 1 to 4 into # equal parts, we
do not see any obvious value as the limit of this sum—even though it
is geometrically clear that the limit exists. The reason is that the area
under y = 1 from 1 to a is a function of a we have not yet considered.
It is in fact the natural logarithm function, In a, best known for its
characteristic property of turning products into sums:

lnab=lna~+1nb.

This property of the logarithm function is something we can prove
easily by approximating curved areas by rectangles. Consider figure 6.8,
which compares the area under y = 1 from 1 to a with the area from b
to ab.

For convenience we have chosen b > a and divided each of the
intervals, from 1 to a and from b to ab, into four equal parts. Exactly
the same argument applies if the intervals are divided into 7 equal parts.
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Bearing in mind that y = 1, we see that each rectangle between band ab
has height 1/b times the height of the corresponding rectangle between
1 and a. However, the width of each rectangle between b and ab is
b times the width of the corresponding rectangle between 1 and a.
Therefore, the total area of each set of rectangles is the same.

This remains true if we divide the intervals between 1 and a and
between b and ab into n equal parts, for any positive integer 7. And we
know that if we let 7 grow indefinitely then each of these equal sums
approaches the area under the curve. Therefore,

1
area under y = — between 1 and a equals
X

1
area under y = — between b and ab.
x

The left-hand side of this equation is Ina, by definition of the In
function. And the right-hand side is Inab—1In b (area from 1 to ab
minus area from 1 to b). This gives the equation

lna=Ilnab—-1nb,

and so

Inab=Ina+1nb,

as claimed above.

The Logarithm Function in Nature

If follows from In ab = In a + In b that In(a”) = n 1n a, so the In func-
tion “squashes” the exponential growth of the function a” down to the
linear growth of the function 7 In a when 4 is a constant. Surprisingly,
many exponentially growing quantities in nature are perceived by us
to grow linearly, and our units of measure for these quantities are
essentially their logarithms. There is even a term for this perception of
linearity: the Weber-Fechner law of psychophysics.

For example, the natural measure of the pitch of a sound is the
number of vibrations per second, but our ears measure pitch in octaves
(or in subdivisions of the octave such as tones or semitones).
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But raising pitch by one octave corresponds to multiplying frequency
by 2, so an increase in pitch by 7 octaves corresponds to multiplication
of frequency by a factor of 2".

It is similar with volume, or intensity, of sound. It is natural to
measure intensity in units of power, such as watts. But we measure
in decibels which better correspond to the way we perceive sound
intensity. Adding 10 decibels to the intensity of a sound corresponds
to multiplying its power by 10.

Likewise with brightness of light. The brightness of stars is mea-
sured on a scale called magnitudes, with magnitude increasing as
brightness decreases. For example, the brightest star in the sky, Sirius,
has magnitude —1.46, the second brightest, Canopus, has magnitude
—0.72, and the brightest star in the constellation of Orion, Rigel, has
magnitude 0.12. Brighter than all of these is the planet Venus, which
has magnitude —4.6 at its brightest. Towards the other end of the scale,
the seven stars normally visible in the Pleiades cluster have magnitudes
between 2.86 and 5. Magnitude 6 is about the limit of typical human
vision. An increase of 5 in the magnitude scale is equivalent to a
100-fold decrease in light power.

Finally, perhaps the best known example is the measurement of
earthquake power by the Richter scale. The strongest earthquakes have
magnitude around 9 on the Richter scale, and earthquakes of magnitude
as low as 2 on the scale can be felt by humans. Yet a one point increase
on the Richter scale corresponds to a 30-fold increase in power!

I don’t know which is more remarkable: that nature produces
phenomena that tend to vary over exponential scales, or that the human
senses are able to squash these phenomena down to linear scales.

6.5 The Area under y = x”

The approach to area in the previous section—approximating it by
upper and lower rectangles—works particularly well for the parabola
y = x* and the other curves of the form y = x”. We show this only for
y= x%, because the idea works, with only minor changes, for the other
positive integer powers. To find the area under the curve y = #2 between
t =0and ¢t = x, the secret is to let x vary. It then turns out that area is a
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O m=1l, I
m

Figure 6.9: Upper and lower approximations to the area under y = 2.

L

area(r)

t

0] r x4+ Ax

Figure 6.10: Area as a function of x.

function of x we can differentiate (this is why we view vy as a function of
t—to make the area a function of x), and this allows us to find exactly
what the area function is.
Figure 6.9 shows the upper and lower approximations to the
parabola when the interval from 0 to x is divided into 72 equal parts.
The difference between the upper and lower rectangle is greatest

between m7_1x and x, where the difference in height is
m—1 \* m? —2m+1 2m—1
x?— x| =x* ([1—-————— ) = &2 .
m m? m?

Since the width of each rectangle is 1/, the difference in area between
the end rectangles is 2251 x?. It follows, since there are 72 rectangles
altogether, that the difference between the upper and lower approxima-
tions to the area under the curve is at most %xz, which approaches
0 as 7 increases. Therefore, there is a well-defined area beneath y = #?

between ¢ = 0 and ¢ = x, which we will call area(x) (figure 6.10).
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Also shown in figure 6.10 is an extra strip between x and x + Ax,
because we now want to find the derivative of area(x) with respect to x:

d area(x + Ax) — area(x)
—area(x) = lim .
dx Ax—0 Ax

The numerator area(x 4+ Ax) — area(x) represents the area beneath
y=1t* from t = x to t = x + Ax. In this interval, the height of the
curve lies between x? and (x + Ax)?, so the comparison between the
area under the curve and the lower and upper rectangles reads

x% - Ax < area(x + Ax) —area(x) < (x + Ax)* - Ax.
Then, dividing by Ax,

, _area(x + Ax) — area(x)
x° <
- Ax

< (x+ Ax)%.

It follows, since both ends of this inequality approach x* as Ax — 0,
that

. area(x + Ax) — area(x) 5
—area(x) = lim =x°.
dx Ax—0 Ax

Thus area(x) is a function whose derivative is x*. We already know

one such function, namely %x3 , because

d (1 1d, 1 _,
dx (3x>:3dxx =3 =Y

by the rules for differentiation in section 6.3. The only other functions
with derivative x* are those of the form %x3 + k, for constant k. This
is because of the zero derivative theorem in section 6.3: the difference
between two functions with derivative x? has zero derivative and hence
is constant.

Since we obviously have area(x) = 0 when x = 0, the correct area
function must be %x3 . To sum up, we have:

Area under y = t>. The area under y = t*> between t =0 and t = x is
well-defined and equals 3x°. O
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A very similar argument, using the fact that %x”“ = (n+1)x",
gives:

Area under y = t”. For any positive integer n, the area under y=1t"
between t = 0 and t = x is well-defined and equals n%rlx”“. O

It is possible to avoid using the hard zero derivative theorem in
finding these areas, but only at the cost of considerable algebra to find
exact formulas for the sums of upper and lower rectangles. This gets
harder and harder as 7 increases, and in any case it turns a blind eye
to the really important insight of these proofs: finding area is in some
sense inverse to finding derivatives. This insight is worth elaborating,
because it leads to a fundamental theorem.

6.6 *The Fundamental Theorem of Calculus

The idea of area under a curve is captured in calculus by the concept of
integral. There are several concepts of integral, but elementary calculus
deals only with the simplest one, the Riemann integral, and applies it
only to continuous functions.

Given a function y = f(¢), continuous from ¢t =a to ¢t = b, the
integral of f from a to b is written

/ab f(t)dt,

and it is defined in the same way that we defined “area under the curve
y = f(¢)” for certain functions f in the previous section. Namely, we
divide the interval [a, b] into finitely many parts and approximate the
graph of f from above and below by rectangles erected on these parts
(figure 6.11).

If it is possible to make the difference between the upper and lower
approximations arbitrarily small, then there is a single number that lies
between them (by the completeness of R), and this number is the value
of ff f(t) dt.

It is very plausible that, for a continuous function, the difference
between upper and lower approximations can be made arbitrarily small.
But proving this is a delicate matter, much like the proof of the zero
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0 a b
Figure 6.11: Approximating [, b £ (¢) dt by rectangles.

derivative theorem in section 6.3. (In fact, the heart of the proof is
an infinite bisection process, like the one used there.) For this reason,
proving the existence of the Riemann integral for continuous functions
belongs to advanced calculus.

However, if we make the plausible assumption that the integral
exists, we can proceed to differentiate this integral, just as we differ-
entiated the special area functions in the previous section. This gives:

Fundamental theorem of calculus. If f is continuous on an interval
[a, b, and

F(x) = / £ dr,

then F'(x) = f(x). O

The fundamental theorem can be used to identify functions F(x)
defined by integrals in the case where we know a function G(x) whose
derivative is f(x) (just as we did for the area functions in the previous
section). In this case, the zero derivative theorem tells us that F(x)
differs from G(x) only by a constant.

The fundamental theorem is also useful in the case where F(x)
is not among the functions whose derivatives we already know (for
example, the function In x = [ dt/t is not among the algebraic func-
tions). In this case, the fundamental theorem can be viewed as a new
differentiation rule, telling us how to differentiate functions defined
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by integrals. When combined with the other differentiation rules, this
greatly extends the class of functions we are able to differentiate.

The following subsection shows how the basic facts about logarithm
and exponential functions unfold when we apply differentiation rules to
Inx= | 1x dt/t and its inverse function.

Logarithm and Exponential Functions

Givenu=Inx= [ %, the fundamental theorem of calculus says that
du 1
dx  x’

The inverse function of # = In x is called exp (the exponential function),
so x = exp(u) and

dr_ | pdu _
du | dx

X

by the rule for the derivative of an inverse function (section 6.3).

That is, diu exp(u) = exp(u), so exp has the remarkable property of
being equal to its own derivative. This property has important “real-life”
implications, as we point out below. But first we need to get a better grip
on the exp function; in particular, we need to understand why it is called
“exponential.”

We know from section 6.4 that In has the property Inab=Ina +
In b. What does this say about exp? Well,

iflna = Athen exp(A) =a,
ifln b = B then exp(B) = b,
ifIn ab = C then exp(C) = ab = exp(A) exp(B),
and C= A+ B,
so exp(A+ B) = exp(A) exp(B).

This is the property we usually write as the law of exponents,

In fact, we can take exp(u) to be the definition of e*.
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area = 1

0] 1 e

Figure 6.12: Geometric interpretation of e.

Thus exp(u) is a certain number e raised to the power . But what
is e? Well, e = e! = exp(1), so if we take x = exp(1) = e in the equation

/x dt
Inx = —,
Lt

e dt
1= —
Lt

we get

since In and exp are inverse to each other and hence
In(exp(1)) = 1. In other words, e is the number such that the area
under y=1 between 1 and e equals 1 (figure 6.12). From this
interpretation we can estimate that e is about 2.718, so " is a function
that indeed grows “exponentially”; it grows faster than 2, for example.

Exponential growth (or decay) rates occur in nature wherever the
growth rate of a quantity is proportional to its size. For example, if there
are no constraints on living space or food supply, population grows at
a rate proportional to its size. If p(¢) denotes population at time ¢, the
growth rate % p(t) is a (positive) constant b times p(¢). This leads to a

solution

bt for some constant a,

p(t) =ae

because %et =eé'.
This is a tragic equation, because the geometry of the universe
prevents population growing at a rate faster than a constant times I
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(that is, proportional to the volume of a sphere expanding at constant
speed), assuming that the geometry is approximately Euclidean. (How-
ever, exponential growth is sustainable in non-Euclidean geometry. See
the explosive growth of triangles in figure 5.32.)

6.7 Power Series for the Logarithm

Our definition of the natural logarithm,

x dt
, ot

Inx =

goes back to the early days of calculus. It is in the book Logarithmotech-
nia by Mercator (1668), which makes a clever application of geometric
series to express the logarithm function as an infinite series in powers
of x:

2 x3 4

ln(l—i—x):x—?%—?—xz—i—--- for |x| < 1.

The train of thought leading to this formula is the following.
Replacing x by x+ 1 in the definition gives In(x+ 1) =
then replacing ¢ by ¢ + 1 we get

x+1£
1 t’

* o dt

| 1) = —_—
a(x+1) o t+1

X
=/ A—t+2 =+ )dx,
0

which we know from section 6.1 is valid for || < 1. Presumably,

/(1—t+t2—t3+---)dt:/ ldt—/ tdt
0 0 0
+/ tzdt—/ sdt+--- .
0 0
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So, since each term fox " dt = ’;"—J: by section 6.5, we finally have

2 x3 x4

| x
n(l—i—x)—x—?—i-?—z—i--'- .

But we are presuming that the integral of an infinite sum is the
infinite sum of the corresponding integrals, and we know nothing about
integrals of infinite sums. In elementary calculus it is usual to gloss over
such problems, but in this case the problem has an elementary solution.

. 1 .
We can write 1 as the finite sum

tn+1

1
——=1—t+ =+ ,
1+1¢ Tivs

as can be checked by summing the infinite geometric series of terms
that come after £¢”, namely,

tﬂ-‘rl

BEETE

tn+l—tn+2—|-tn+3—---:tn+1(l—t+t2—--')

And it follows easily from the definition of integral that the integral of
a sum of two functions (and hence of any finite number) is the sum of
their integrals.

Therefore,
x At X tn-',—l
— = l—t4+ -+ x1" dt

0 141 /0 < e

x2 x3 xn—i—l x tn—i—l
=Xx——+———--% dt. *
273 x+1 /0 1 +1 )
We do not know the exact value of [; % dt, but we know enough

to prove that it approaches 0 as 7 increases. Certainly, if x > 0 then
14+¢>1andso

x tn+1 x xn+2
/ dt < / " dr = — 0 as# increases.
0 1 +t 0 n-+ 2
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Butalso, if x < 0 we must have x > —1 for the integral to exist, in which
case ¢ varies from 0 down to some value —1 + § with 0 < § < 1. In this
casel+1 >4 so

x tn+1 1 x 1 xn+2
/ dr < - / il = Z — 0 asnincreases.
o 141 8 Jo dn+2

This allows us to conclude from (*) that

xz x3 xn+1
X——+——. .. F
2 3 n+1

o dt )
— —— =In(14+x) asnincreases,
o 141

which is precisely what it means to say

x2 X Xt

In(1 =x——4+——— 4. ok
n(l+x)=x 2—|—3 4+ ()

The careful proof that [; % dt — 0 is not just virtuous, it also brings
an extra reward: if is also valid for x = 1 (because x"*! = 1 in this case).

Thus the formula (**) is valid for x = 1, which gives the remarkable
formula

In2=1 1+1 l-l-
n2=1--+4+-—--
2 3 4

Error in Stopping at the nth Term

A nice feature of the series (**) for In(1 + x) is that it gives an easy way
to compute logarithms to a required degree of accuracy. This is because
we know that when x < 1 is positive, the error in truncating the series at
the nth term is less in absolute value than the (n 4+ 1)st term.

To see why, first note that
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Figure 6.13: Sums of an oscillating series.

when x < 1 is positive. It follows that the sums

X,
52
X — —,
2
x2+x3
x_i 7’
2 3
x2+x3 xt
x— 4+
2 3 4

oscillate up and down in value—up when the last term has a plus sign,
and down when the last term has a minus sign. And, since the size of
terms steadily decreases, the size of the oscillations steadily decreases
too. This implies that the sum of the series always lies between the last
high value and the last low value. In other words, the true value of the
logarithm always differs from the sum of 7 terms by an amount less
than the (7 + 1)st term. See figure 6.13, which illustrates the oscillation
when x = 1.

In particular, when x <1 is positive, the error in approximating
In(1 4 x) by x is less than "72 We will use this estimate of the error later,
in section 10.7.

Another Power Series for the Logarithm

We now have a nice simple power series for In(1 + x), valid for |x| < 1.
But the series is definitely not valid for x > 1. For example, with x =2
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we get the series

This infinite sum is not meaningful, because the nzth term £2” /7 grows
beyond all bounds, so the sum of the first # terms oscillates wildly
between large negative and large positive values.

To obtain a series for the logarithm of any positive number, we
combine the series

xr X Xt
In(l4x)=x——4+"——"4...
( ) 2 3 4

with series obtained by replacing x by —x, namely,

which is also valid for |x| < 1. Subtracting the second series from the
first gives

1+ X A
In—F I +x)-n(l-w=2(x+ 324X 4. ).
— 35 7
The series for In 1= is again valid only for |x| < 1, but we can get

any positive number as a value of 1+ for some x between —1 and 1.
For example,

1+x 1
if 2= + wefind 2—2x=1+x, so 1=3x and x=-.

1—x 3
It follows that

n2—2 1+11+11+11+
n2— T T T T I
3 33 53 73

This series is useful for computing In 2. Taking just the four terms
shown, we get the value 0.69313. .., which differs from the correct value
In2=0.69314 . .. only after the fourth decimal place.
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*Power Series for the Exponential Function

Mercator’s series for the natural logarithm was rediscovered by Newton
(1671), who pushed the idea further to discover the power series for
the inverse function (the exponential function, though it did not have a
name at that time). Newton set

x2+x3 x4+
=x—- — - cee,
Y 2 3 4

then, in an astounding feat of computation, solved this equation for x,
obtaining
2 3 4 5

x:y_}_%_{_%_{_yi_i_yi_f_... .

24 120
He then correctly guessed that the #th term is %, )
y ¥y oy oy

x:ﬁ+i+§+i+§+“‘ )

which is the function we call ¢” — 1.

There are simpler ways to find the power series for the exponential
function, though these methods (as indeed does Newton’s method)
require some advanced calculus for their justification. Here we are
content to give a very simple method, without complete justification.

We assume that e* is expressible as a power series,

ex=ao+a1x+a2x2+agx3+’ T,

and that it is valid to differentiate this series term by term. Then we
can find the coefficients ay, a1, a2, as, . . . in succession by repeatedly
differentiating the equation above, using d%ex = ¢%, and setting x = 0.
Before differentiating at all, setting x = 0 gives

l=ap+0+0+0+---,
so ayp = 1. The first differentiation gives

e =a1+2 ax+3-axt+4-ax 4+,
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then setting x = 0 gives
1=a.
The second differentiation gives
e =2-a,+3-2-asx+4-3-ax*+-- -,
then setting x = 0 gives
1=2-a,, so a2=1.
2
The third differentiation gives
e“=3-2-a3+4-3-2a4x+---,

then setting x = 0 gives

1
1=3-2a3, so a3=——.
’ 732
It should now be clear that we will get a, = _;_2,
continuing this process. Hence

132 as = 54320 by

f_q. ¥ x* x xt
e = +17!+27!+§+47!+”'.

In particular, x = 1 now gives

_1 1 1 1 1
e = +1*!+2*!+§+4*!+"' .

Remark. Having discovered the power series, we can turn around and
make it the definition of the exponential function:

X xr X Xt
exp(x)— +E+Z+§+Z+"'.

It is easy to prove that this infinite sum exists for all values of x, by
showing that its terms from some point onward are less than the terms
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in the geometric series 1 + 5; 4+ 55 + - - - (see the example in the next
subsection). But it is harder to prove it is valid to differentiate term
by term and hence to prove that d% exp(x) = exp(x). This involves the
advanced version of the continuity concept called uniform continuity,
which is normally reserved for advanced calculus courses.

The Irrationality of e

The series e =1+ % + % + % + % +--- is good for computation,
because the terms decrease rapidly in size. The rapid decrease is also
of theoretical value, because it gives a proof that e is irrational (due to
Joseph Fourier around 1815).

Irrationality of e. The number e is not equal to m/n for any positive
integers m and n.

Proof. Suppose on the contrary that

ol iyl Ly
no 1020 3! n!

If we multiply both sides of this equation by 7! we get

n n n n!

=1 =pl e

m-(n—1)! n.+1!+2!+3!+ +n!
1 1 1

* n+1 * (n+1)(n+2) * (n+1)(n+2)(n+3) L

1
n+1 + (n+1)(n+2)

= integer +

1
T Dy T

The left-hand side of the equation is also an integer, so we conclude that

1 1 1
il A Dm+2)  mrDmt)m+3)

is an integer.
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But clearly 7 > 1 (as the denominator of a fraction), so

1 1 1
n+1 * (n+1)(n+2) * (n+1)(n+2)(n+3) L

1 1 1 . .
S0 5+ oo T Do T ¢ is not an integer, and we have
a contradiction. Thus it is false to assume that e = m/n. 0

6.8 *The Inverse Tangent Function and

Calculus is needed for geometry at quite an elementary level, to under-
stand the circular functions sine, cosine, and tangent, and to evaluate
the number 7. To illustrate how calculus contributes to geometry, we
are going to derive the simplest possible expression for 7, namely,

T 1 1 n 1 1 n
4 3 5 7
This expression is a consequence of the power series for the inverse
tangent function,
X X
arctanx=x——+———+4+--- |,
3 * 5 7 *
which we derive first.

We view y = tan 6 as the vertical side of a right-angled triangle with
horizontal side 1 and angle 6 as shown in figure 6.14. Thus tan 6 =y
is measured along the vertical tangent to the unit circle. Its inverse
function € = arctan y is so called because 6 is also the arc length on
the unit circle spanned by the angle 6.

We now calculate d% arctan y = d—(; by estimating the ratio i—z when
A6 is a small addition to the angle 6, causing a small addition Ay to the
height y on the vertical tangent (figure 6.15).

By the Pythagorean theorem, OB = 4/1+ y?, so the arc length
A'B subtended by the angle A6 on the circle of radius /142 is
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Q?A

% y = tan@
B
N=d

0 1

Figure 6.14: Geometry of tan and arctan.

B B
AL Ay )
B
\V) B A
7 AlO\/1+ y?
favd
\\% y = tand
S
2
1 <
0 A

Figure 6.15: Estimating the derivative of arctan .

A6+/1+ y*. As A6 — 0 this arc approaches a straight line segment
and BA'B’ approaches a right-angled triangle similar to OAB. Con-
sequently, the ratio of the sides Ay and A9+/1+ y? of BA'B’ (corre-
sponding to hypotenuse and base) approaches /1 + y2, so

AO 1
— > —— as A6 —0.
Ay 14 y?
In other words,
. de 1
—arctany = — = ———.
dy y dy 1+9y2
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It follows, integrating both sides, using arctan 0 = 0 and the zero
derivative theorem from section 6.3, that

/ x dy
arctan x = .
o 1+y?

Now we know from the theory of geometric series in section 6.1 that

W:l—yz%—y‘l—yG%—--- for |yl <1.

Using this formula in the integral we get

X
arctanxz/ (1—y2+y4—y6+~~)dy for |x| <1
0

=/ 1dy—/ yzdy+/ y4dy—/ Yody+---
0 0 0 0

To justify the first step—from the integral of an infinite sum to the
infinite sum of integrals—we proceed as we did in section 6.7, using
the finite series

1 2n+2

14 y?

Yy
142

N =

and showing that [’ %; dy — 0 as n increases.
This more rigorous argument has another advantage: the finite
series is also valid for y = 1. So we can conclude that

x> X X

arctanx=x— —+ — — — 4+ -
3 5 7

is also valid for x = 1, which gives the wonderful formula

il tanl=1l—spi_Lly
—=arctanl=1—-+-——
1 37577
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6.9 Elementary Functions

We began this chapter by looking at functions we can differentiate:
starting with constant and identity functions and quickly reaching all
rational functions, by rules for differentiating +, —, -, = of functions
whose derivatives are known. The next two rules, for inverse functions
and composite functions, allow us to differentiate many algebraic
functions, such as /x, v/1+x2, v/1+x*, ..., and so on. Finally, the
fundamental theorem of calculus,

d X
- / Ft) dt = f(),
X Ja

allows us to differentiate functions defined by integrals, such as

* dt X dt
Inx = — and arctan x = .
1 ¢ o 1+12

The functions obtainable from the latter two functions and ratio-
nal functions by inversion, composition, and the rational operations
+, —, -, = are called the elementary functions. It may seem rather
arbitrary to stop at the In and arctan integrals—since many other
functions are definable as integrals of algebraic functions—but there are
good reasons to consider this the right place for elementary calculus to
stop.

The main reason is that, assuming the fundamental theorem of
algebra, the integrals of all rational functions reduce to integrals of the
In or arctan type. To see why, recall that any rational function of ¢ can
be written as a quotient of polynomials, p(¢)/q(¢). It follows from the
fundamental theorem of algebra that g(z) is a product of real linear or
quadratic factors

at+b or ct*+dt+e.

Then we can apply the algebraic technique of partial fractions (for an
example, see section 7.3) to write p(x)/q(x) as a sum of terms

A Bt+C
and ———.
at+b ct?+dt+e
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Some further easy transformations then reduce the integral of p(t)/q(%)

to integrals of  and that is, to integrals of the In or arctan type.

1.
7
Thus, the integral ofail}trationalfunction is an elementary function.
This result shows that the elementary functions are not as arbitrary
as they look. To reinforce this claim, we look at the elementary func-
tions obtainable from the arctan function. Obviously, they include its
inverse function, tan 6, but they also include the other circular func-
tions, such as cos 6 and sin 6. We devote the next subsection to deriving
the connection between the sine, cosine, and tangent functions, since it

also has a beautiful connection with number theory and geometry.

Rational Points on the Circle

Ever since the discovery of the Pythagorean theorem there has been
interest in Pythagorean triples: positive integer triples (a, b, ¢) such
that a® + b* = ¢?. The simplest Pythagorean triple is (3,4,5), and others
are (5,12,13), (7,24,25), and (8,15,17). Specific Pythagorean triples have
been known since ancient times in Europe, the Middle East, India, and
China. Around 300 BCE, Euclid (Elements, Book X, lemma following
Proposition 28) found a formula that gives them all:

a=(p*—q*r, b=2pgr, c=(p*+q")r,

as p, g, r run through all positive integers.

A few centuries later, Diophantus transformed the problem of
finding these triples into one about rational numbers, which can be
viewed as finding rational points on the unit circle. This version of the
problem arises because if a* + b* = ¢? then

a2 (b\’
(2
c c
so (a, b, ¢) corresponds to a rational point (%, %) on the circle x* +
y* = 1. This view of Pythagorean triples is revealing, because the search
for them can now be guided by geometry and algebra. See figure 6.16.
If P has rational coordinates, then the slope ¢ from Qto P is a

rational number (because the “rise” and “run” are rational). Conversely,
iftheline P Qhas rational slope # we can find P as the common solution
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00~

Figure 6.16: A rational point P on the unit circle.

of the linear equation
y=1t(x+1) (the equation of P Q)
and the quadratic equation

¥ +yi=1 (the equation of the unit circle).

Since the coefficients of these two equations are rational, their common
solutions are given by a quadratic equation in x with rational coeffi-
cients. We know that one of the solutions is x = —1 (for Q), so the
second solution (giving the x-coordinate of P) must also be rational.
We now work out exactly what the second solution is.

Substituting y=1#(x+1) in x>+ y*=1 gives the quadratic
equation

X+t (x+1)?% =1, thatis, (1+t)x*+22x+12—1=0.

The quadratic formula gives the solutions

—212 4 /(222 — 41+ ) (2 — 1)
X =
2(1+12)

2 At — 4t - 1)
B 2(1412)
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2P 42
C2(1+12)
_ 1—¢
T 14
This confirms the solution x = —1 for O, and gives x = };Z as the

x-coordinate of P. It follows from the equation of P Q that the
y-coordinate of P is

x4 1) =1 1—t2+ 14122 2t
= X = = .
y 1422 1+

Thus, the rational points on x* + y* = 1 are (—1, 0) and the points
(1-# 2t > as t runs through the rational numbers.

T+ 1+82

For example, # =1 gives the point (2, 1) corresponding to the
Pythagorean triple (3,4,5).

If we drop the restriction that ¢ be rational, this makes no difference

to the calculation of the coordinates of P,

But now these formulas tell something interesting about the sine,
cosine, and tangent functions, due to their association with the circle.

Sine and cosine formulas. If¢ = tan %, then

1 —1? _ 2t
cosf = ——, sinf =——.
1+#2 1412
Proof. These formulas can be read off figure 6.17, once it is established
that the angles are as shown. If we let 6 be the angle between the line
OP and the x-axis, then it is certainly true that P = (cos 6, sin 0), by
definition of the sine and cosine functions.
Also, it can be checked that 6/2 is the angle of the line OP, using
the facts that OP Q is an isosceles triangle, hence with equal angles at
P and O, and that the angle sum of a triangle is 7.
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Y
4
5\096
0/2 0
Q o 1 !
Figure 6.17: Angles in the circle.
Thus the slope 7 of P Qis tan £, and hence
1—t 2t
<H_t2’ 1_|_t2) = (COS 9, sin 0),
hich gi 6 ==L andsin g = 2 O
which gives cos 6 = {755 and sin 6 = 755.

6.10 Historical Remarks

Often I have considered the fact that most of the
difficulties which block the progress of students
trying to learn analysis stem from this: that although
they understand little of ordinary algebra, still they
attempt this more difficult art. From this it follows
that they remain on the fringes, but in addition they
entertain strange ideas about the concept of the
infinite, which they must try to use.

Euler (1748a), preface

Foundations of Calculus

Most of calculus as we know it, at the undergraduate level, was pro-
duced in a frenzy of activity in the late seventeenth and early eighteenth
century. Both before and after that period there was concern about the
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infinite processes that underlie the calculus—the foundations of calcu-
lus that we now call analysis. Infinite processes were already a concern
in ancient Greece, and the Greeks devised the method of exhaustion
to avoid infinity as far as possible. (Certainly, it avoids actual infinity.)
As we saw in section 6.1, Archimedes used exhaustion to determine
the area of the parabolic segment. It allowed him to conclude, using an
“arbitrarily large” but not infinite number of triangles, that the area of
the parabolic segment is 4/3 the area of the largest triangle.

The seventeenth-century mathematicians were well-schooled in the
method of exhaustion, from Euclid and Archimedes, so they assumed
they could fall back on it if necessary. But as Huygens (1659), p. 337,
remarked:

Mathematicians will never have enough time to read all the discoveries
in Geometry (a quantity which is increasing from day to day and seems
likely in this scientific age to develop to enormous proportions) if they
continue to be presented in a rigorous form according to the manner of
the ancients.

The idea that calculus could in principle be presented “in the manner of
the ancients” might have been true in 1659, when mathematicians were
still investigating curves individually. But after Newton and Leibniz
made calculus truly a method of calculation, applicable to seemingly
arbitrary formulas, the question of rigor became more acute.

When calculus became this general it was natural to ask: What
is a function? What is a continuous function? Is it the same as a
differentiable function? Newton, who thought of functions in terms
of continuous motion, seemed to assume that continuous functions
are both integrable and differentiable. As we now define continuity,
continuous functions are integrable (on closed intervals) but some of
them are nowhere differentiable. These results could not be known until
the nineteenth century, when the concept of continuous function was
first defined. The foundations of the definition were laid by Bolzano
(1817) and Cauchy (1821), but the properties of continuous functions
were not rigorously provable until Dedekind gave a definition of the
continuum R of real numbers in 1858 (published in 1872). This started
the push to arithmetize geometry and analysis, mentioned in section
5.10, after the discovery of non-Euclidean geometry.
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With a definition of R finally available (Cantor, Meray, and Weier-
strass published equivalent definitions of R about the same time as
Dedekind), the calculus was put on a sound foundation by Weierstrass
in the 1870s. It can still be asked (and perhaps can never be answered)
whether the nineteenth-century foundations of calculus are the best
possible, but most of the alternatives proposed so far give the same
results, and are not noticeably simpler.

Preparing Students for Calculus

As we have seen, the foundations of calculus involve advanced ideas,
particularly about infinity. This was realized long before the full extent
of the problem became known, and mathematicians tried to devise
appropriate and interesting material to prepare students for calculus,
without exposing them to all the challenges of infinity. The most
brilliant and fascinating book along these lines was the Introductio in
analysin infinitorum (Introduction to the analysis of the infinite) of
Euler (1748a).

In a nutshell, Euler believed that the best preparation for calculus
was the study of infinite series. He had good reasons for believing this.
As we have seen, infinite geometric series were implicitly used by Euclid
and Archimedes, so infinite series were in use long before calculus.
Another pointer from history was the contribution of Oresme (1350).
He made the important discovery that the so-called harmonic series,

1+1+1+1+
2 3 4 5 7

does not have a finite sum, even though its terms tend to zero. His proof
was by collecting the terms into the following groups,

1+ 1+1 n 1+1+1+1
2 3 4 5 6 7 8

+ +14—1+1+—1+14—1+1 +-
910 13 16 ’
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each of which has twice as many terms as the group before. It is easy to

see that
1 1 2 1
3TiTaTy
1 1 1 1 4 1
5Tet7 s sy
1 1r 1 1 1 1 1 1 8 1
st Tn TR T T T e T Y

and so on. Hence each of the infinitely many groups has sum > 1,

and so the sum of the series grows beyond all bounds. This discovery

of Oresme was the first sign that sums of infinite series have some

subtleties of their own.

Unknown to Euler, and to anyone else in Europe until the nine-
teenth century, was a collection of results giving a really spectacular
demonstration that infinite series can be studied before calculus. These

results, from the Indian mathematician Madhava, who lived around

1350-1425, include

x3 5

. . X X
smx—x—§+§—ﬁ+-- y
. x* Xt x°
COS X = —5"‘; g‘l‘ s

x> X X
tan " x=x——+———+ ;
3 5 7

the last of which gives a famous formula for 7 by substituting x = 1:

T

4

—11+11+
3 5 7 7

For more on these results, whose discovery by Indian mathematicians

was little known until recently, see Plofker (2009).
Finally, just before the dawn of calculus, Wallis (1655) discovered

that
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and his colleague Lord Brouncker discovered the mysteriously similar
result

1
12
32
2 —
2+

1+

T
4

One of Euler’s achievements was to explain how the three formulas
for 7 are related. The relation between the series and the continued
fraction is explained in section 10.9.

Thus Euler had good reason to think that infinite series, and a few
similar infinite processes, are a rich field that can be explored before
embarking upon calculus. All of the above results actually appear in
his book, together with many of Euler’s own. Indeed, Euler is now
considered to be the most brilliant and creative virtuoso of infinite
series who ever lived, so it is no surprise that his Introductio goes well
beyond the needs of a prospective calculus student. Nevertheless, we
can all marvel at what he did.

For example, by comparing the power series for sine, cosine, and
the exponential function, he discovered the formula

e’ =cosO+isinb,

with its miraculous special case
e’ =—1.

And by multiplying geometric series together he discovered that, for
any s > 1,

(=) (=5) (=) - (=)

11 111
=St atetetat o
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where p runs through all the prime numbers. The exponent s > 1 is
there to ensure that the series on the right-hand side (the so-called
zeta function of s) has a finite sum. For s =1 the sum is infinite by
Oresme’s result, but this fact too is something we can exploit. If there
are only finitely many primes, then the left side is finite, so we have a
contradiction. Therefore, we have a new proof that there are infinitely
many primes!

This result is just the first of a cornucopia of results about primes
that fall out of Euler’s formula.

The Geometric Series in Hardy’s Pure Mathematics

I have indeed in an examination asked a dozen
candidates, including several future Senior
Wranglers, to sum the series 1 + x + x* + - - -, and
have not received a single answer that was not
practically worthless—and this from men quite
capable of solving difficult problems connected with
the curvature and torsion of twisted curves.

Hardy (1908), p. vi

The humble geometric series, which we have used as a foundation
for much of this chapter, itself depends on a fundamental fact about
limits: that x” — 0 as # — 0o when |x| < 0. For beginners, this fact
seems obvious enough, and it was assumed in landmark works on the
foundations of calculus, such as Cauchy (1821) and Jordan (1887).
However, Hardy (1908), in his famous Course of Pure Mathematics,
thought it worthwhile to probe more deeply, because his hope for his
students was that

accurate thought in connexion with these matters will become an
integral part of their ordinary mathematical habit of mind. It is this
conviction that has led me to devote so much space to the most
elementary ideas of all connected with limits, to be purposely diffuse
about fundamental points, to illustrate them by so elaborate a system of
examples, and to write a chapter of fifty pages without advancing beyond
the ordinary geometrical series.

Hardy (1908), p. vii
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So Hardy embeds his discussion of the geometric series in a long
chapter about basic properties of limits. These include some properties
of increasing sequences that depend on the completeness of R (see
next section). However, the fact that x” — 0 when |x| < 0 is proved
in elementary fashion.

Hardy offers two proofs. The simpler proof, in my opinion, is to
consider 0 < x < 1 and write

1

x=——, with bh>0.
1+h

Now (14 h)" > 1+ nbh by the binomial theorem. (This can also be
proved directly, by induction on 7.) It follows, since #h — 0o as n —
00, that

1

1+h)" — 0o d theref x" = -0
( ) and therefore TEWAL

6.11 Philosophical Remarks

The line between elementary and advanced calculus is typically crossed
in two different ways:

1. By considering functions beyond the elementary functions of
section 6.9.

These usually arise from more complicated integrals, so we
can exclude them by allowing only integrals of rational
functions. As explained in section 6.9, this is quite a natural
place to draw the line between elementary and advanced.

2. By deeper study of fundamental concepts, such as the real
numbers, continuous functions, and differentiability; that is, by
studying analysis.

So, there is a line between calculus and analysis; but the line
is difficult to draw. As we saw in section 6.3, the elementary
theorem that a constant function has zero derivative has a
difficult converse—seemingly on the advanced side of the line.
In cases like this (and there are many of them in analysis) we
should at least try to glimpse what lies on the other side.
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Here then are a few remarks on some key issues of beginning
analysis.

*Completeness of R

To get anywhere in analysis we need to know that the system R of real
numbers is a good model of the line. In particular, R must have “no
gaps,” so that there is a real number for every point on the line. This
property of R is called completeness. The concept can be made precise in
two equivalent ways, the second of which involves the nested intervals
we have already used to prove the zero derivative theorem in section 6.3.
This idea goes back to Bolzano, and we will see it again in the so-called
Bolzano-Weierstrass theorem in section 7.9.

Least upper bound property. Any bounded set S has a least upper
bound; that is, a number / > each member of S, but such thatif k£ </
then k < some member of S.

Nested interval property. If I, is the closed interval
[an, byl ={x€R:a, <x<b,}

and if [; DL, 2 I3 2--- then there is an x common to all of
L. L, L, ....

This property is needed to prove many theorems about the ex-
istence of seemingly obvious points, such as the intermediate value
theorem, which says that a continuous function that takes both negative
and positive values also takes the value zero at some point.

A definition of R that ensures completeness was first given by
Dedekind in 1858. The definition is quite simple, in terms of sets of
rational numbers, but also quite profound, because it is defining an
“actual infinity” of numbers. Because of the involvement of infinity, we
postpone this definition until chapter 9 on logic. It is doubtful that a
careful study of the real numbers can really be elementary, because the
careful study of infinity is not elementary. But at least we can get closer
to it from the viewpoint of logic.
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*Continuity

The concept of continuity is related to the completeness of R, but in a
very subtle way. Our intuition is that a function f is continuous if its
graph y = f(x) has “no gaps,” like a wiggly version of R. But to make
this intuition precise we must, unfortunately, express the “absence of
gaps” quite indirectly. The usual way in analysis is to first say what it
means for f to be continuous at the point x = a. We defined this in
section 6.3 by saying that f(x) — f(a) as x — a. In other words, we
are saying that f(x) can be made as close as we please to f(a) (within
distance ¢, say) by choosing x sufficiently close to a (within distance &,
say).

Then we said that f is continuous if it is continuous at all points
(in its domain, which need not be all of R). The property of “absence of
gaps in the graph” is a consequence of this definition, partly expressed
by the intermediate value theorem.

The definition of continuous function arose from the work of
Bolzano (1817) (attempting to prove the intermediate value theorem)
and Cauchy (1821). But it was not possible to prove that continuous
functions had the expected properties until 1858, when Dedekind’s
definition of real numbers made the completeness of R provable. One
can hardly expect to prove that a continuous graph has no gaps until
one has proved that R itself has no gaps!

Given the close relationship between continuity and the complete-
ness of R, one would not expect continuity to be an elementary concept.
This is supported by two other observations about continuity:

1. To prove that certain definitions of continuity® are equivalent
requires the axiom of choice—an axiom of advanced set theory.
(For more on the axiom of choice, see section 9.10.)

2. The constructivist school of mathematicians believe that
discontinuous functions are not well-defined.

While I consider the constructivist view to be extreme, as do most
3 One very natural definition, used in the excellent analysis book of Abbott (2001), can be
stated here. A function f is continuous at x =a if f(a,) — f(a) as n — oo, for any sequence

ay, az, as, . . .such thata, — a asn — oo. To prove that this definition (“sequential continuity”)
is equivalent to the one given in section 6.3 requires the so-called countable axiom of choice.
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mathematicians, I believe that constructivists play the role of “canary
in the coal mine” for mathematics. If constructivists have doubts about
a concept or a theorem, it is a sign of a deep idea. Concepts that worry
constructivists probably belong to advanced mathematics.

Another sign that continuity is an advanced concept appears in
the famous book of G. H. Hardy, A Course of Pure Mathematics. On
p. 185 of the 8th edition, Hardy (1941) motivates the above definition
of continuity by claiming:

To be able to define continuity for all values of x we must first define
continuity for any particular value of x.

This sounds very plausible, but it is not true. Hausdorff (1914), p. 361,
introduced a very general approach to continuity via open sets. For
example, any open set in R is a union of open intervals, where an open
interval is a set of the form (a, b) = {x € R:a < x < b}. Hausdorff
defines f to be continuous at all points of its domain if each open set
in the range of f is the image of an open set in the domain of f.*
Hardy was one of the leading analysts of his time so, if he could be this
mistaken about continuity, it must be an advanced concept!

4 This is now a standard definition of continuity; if not in analysis, then certainly in topology.
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C ombinatorics is often described by terms such as “finite,” “discrete,”
or “counting.” As such, it is hard to distinguish from arithmetic.
Both look like the theory of finite sets, though this is more obvi-
ous for combinatorics, which often uses low-level set concepts such
as membership and containment. The key concepts of arithmetic—
addition, multiplication, and their algebraic structure—seem to lie at a
higher level, since they are not so easily expressed in set-theoretic terms
(though this can be done, as we will see in chapter 9).

Thus combinatorics emerges as a field, more elementary than
arithmetic, with the potential to clarify other parts of mathematics by
identifying their combinatorial content. This is mainly what we do in
this chapter: first exhibiting combinatorial content in arithmetic, then
(at greater length) in geometry.

It was the discovery of combinatorial content in geometry—with
the Euler polyhedron formula of 1752—that led to the now vast field of
topology, in which combinatorics ultimately joined forces with ideas
from analysis, such as limits and continuity. The part of topology
involving the most elementary concepts—graph theory—is now the
largest subfield of combinatorics.

Analysis itself has interesting combinatorial content. As befits a
subject that studies infinite processes, the combinatorics in analysis
can itself be infinite, but it is enlightening nevertheless. The simplest
theorem of infinite graph theory, the Kénig infinity lemma, expresses
the combinatorial content of the Bolzano-Weierstrass theorem. The
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latter theorem, in combination with Sperner’s lemma from finite graph
theory, proves the Brouwer fixed point theorem. This famous theorem
of topology was thought to be quite difficult before its combinatorial
content was uncovered.

7.1 The Infinitude of Primes

A new proof that there are infinitely many primes, with a distinctly
combinatorial flavor, was given by Thue (1897).

Infinitude of primes. There are infinitely many prime numbers.

Proof. We assume the result mentioned in section 2.3, that every
positive integer # > 1 has prime factorization. Now suppose (aiming
for a contradiction) that there are only k prime numbers: 2, 3, .. ., p.
Then it follows from prime factorization that every positive integer
n > 1 can be written in the form

n=213%"...p% forintegersai, da,, ..., ar > 0.

Obviously, if n <2™ then ay, ay, ..., ar <m. But the number of
sequences of k positive integers a; < m is just mk, because each term
in the sequence takes m different values: 0, 1, ..., m— 1.

Since k is fixed, m* < 2" for m sufficiently large; in fact 7 <
2"~1 This means that, for 7 sufficiently large, there are not enough
sequences a, da, - . . , dj, to represent all the numbers 7 < 2 in the
form 2713% . .. p%, so we have a contradiction. O

This proof illustrates the “counting” feature often used to describe
combinatorics. In this case we count how many positive integers can
be written as products of a fixed number of primes with bounded
exponents, and conclude that the number of products does not grow
fast enough to keep up with the number of positive integers. More
precisely, for exponents less than 72 we cannot keep up with the
numbers with less than 7z binary digits.
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7.2 Binomial Coefficients and Fermat’s
Little Theorem

Fermat seems to have found the theorem that we write as a?~! =1
(mod p) from considerations involving binomial coefficients. For more
on the history of the theorem, see Weil (1984). Fermat actually proved
the equivalent result a? = a (mod p), which is true for all integers a. It
can be obtained from the binomial theorem as follows.

Fermat’s version of his little theorem. If p is prime and a is any nat-
ural number, then

al’ =a (mod p).

Proof. The cases a =0 and a =1 are obvious, so consider a = 2.
Because of the binomial theorem,

p_ p_ p Py p "
2P =(1+1) _1+<1)+<2>+ +<p_1>+1. *)

Also, by the combinatorial interpretation of the binomial coefficients,
as in section 1.6,

p\ _ pp—1)---(p—k+1)
k] k! '

Since (Z) is an integer, all the factors in k! must divide factors in the

numerator. But, since k < p and p is prime, the factors in the denomi-
nator do not divide p. Therefore, p divides () fork=1,2,..., p—1,
and so it follows from (*) that

2/ =1+1=2(mod p).
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Now, supposing inductively that we have proved a? = a fora =n,
it follows for a = 1+ 1 because

(n+1)? =nf+ (f)np_l-f-"‘

+ (p b 1) n+1 by the binomial theorem again,
=n"+1(mod p), because p divides (?),
=n+1(mod p) by the induction hypothesis.

Hence it follows by induction that a? =a (mod p) for all natural

numbers a (and hence also for negative integers, since each of them
is congruent to a natural number, mod p). O

The benefits that combinatorics brings to this proof are not only
the formula

n nn—1)---(n—k+1)
k| k! ’

but also the interpretation (as the number of ways of choosing k things
from 7) which makes it clear that %ﬁ”‘kﬂ) is an integer. A proof
of the latter fact using conventional arguments about divisibility is
quite difficult. In fact, Gauss (1801), article 127, took the trouble to
give such a pure number theory proof, because “until now, as far
as we know, no one has demonstrated it directly.” Today, it seems
obvious that combinatorics owns the “best” proof of this theorem, not
number theory. It is an early example of the way in which proofs can be
simplified by importing ideas from outside those in the statement of a
theorem.

/.3 Generating Functions

Combinatorics often produces sequences of numbers in new ways, so
it is a challenge to describe these sequences in conventional arithmetic
or algebraic terms. A powerful technique for bringing combinatorics
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and algebra together is the so-called method of generating functions.
We illustrate this method with two examples: the sequence of binomial
coefficients and the sequence of Fibonacci numbers.

The Binomial Coefficients

For each 7 we have already defined the sequence of binomial coeffi-
cients, (}), each of which equals the number of ways of choosing &
things from a set of 7z things. We have also seen, in section 1.6, that these
numbers are the coefficients in the expansion of (a + b)” (hence the
name “binomial”). Now, for the sake of uniformity, we slightly change
the setup so as to use one variable, x, rather than the two variables a
and b. Namely, we package the sequence of numbers

o} G ) )

in the polynomial

(o))

As we know from the binomial theorem, this polynomial has a
more concise description, namely

(I4x)".

This concise description leads to easy proofs of certain properties of the
binomial coefficients. For example, we can prove the famous property

of Pascal’s triangle,
n\ n—1 + n—1
k] \k—1 k)’

(I4+x)"=1-(14+x)"" +x-(1+x)"".

simply by writing

This is essentially what we did in section 1.6, and it clearly illustrates the
benefits of packaging a sequence of numbers by an algebraically simple
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generating function. Our next example shows that a simple generating
function may exist even for an infinite sequence of numbers.

The Fibonacci Sequence

In the Liber abaci (Book of calculation), Fibonacci (1202) introduced
the sequence of numbers

0,1,1,2,3,5,8,13,21,34,55,89, 144,233,377,610,987,1597,2584, . . .

in which each term, from the third onwards, is the sum of the previous
two. In the time-honored tradition of bogus “applications,” he invented
a situation (the “rabbit problem”) in which these numbers arise. But
really, the sequence is an exercise in adding Arabic numerals, in keeping
with the purpose of the Liber abaci.

At any rate, the Fibonacci sequence continued to fascinate math-
ematicians long after they learned how to add. This simple process of
iterated addition produces a sequence which is surprisingly complex
and enigmatic. In particular, a formula for the nth term is so elusive
that it was not found for over 500 years. And, surprisingly, the formula
involves the irrational number /5.

The formula was found, apparently independently, by Daniel
Bernoulli (1728) and de Moivre (1730). Moreover, their proofs used the
same idea, which amounts to finding and manipulating the generating
function for the Fibonacci numbers:

Fx)=0-1+1-x4+1-224+2x+3x*+5x° +8x° +13x" +-- - .

To study F(x) we inductively introduce the following symbols for the
Fibonacci numbers:

F()ZO, F, =1, F,=F, 1+ F,, for n>2.
Then the Fibonacci generating function can be rewritten as

F(x)=Fy+ Fix+ F;x* + F3x> +- - - .
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First we compare F (x) with xF (x) and x? F (x), which are:

xF(x) = Fox+ Fix*+- -+ Fx"+- -
x*F(x) = Fox?+ -4 Fyyx 4+ .

Then, subtracting the series for x F (x) and x*F (x) from F (x) gives

(1—x—x*)F(x)= Fy+ (F, — Fo)x+- - -
+(Fn_Fn—1_Fn—2)xn+"'
=x because Fy =0, F; =1,

and Fn — Fn,1 — Fn,Z =0.

Therefore

X
F(x) = ———.
(%) 1—x—x2

Formula for F,. The coefficient of x" in F (x) is given by

(9)-(=9)]

Proof. To extract information from F(x) = —— we split its denom-
inator into linear factors, using the roots of 1 —x —x*=0. By the
quadratic formula, these are

1—4/5 1445

2 2

1
Fo=—
/5

which, since (1 — +/5)(1 4+ /5) = —4, can be seen to equal

2 2

X = s .
1445 1-4/5

So we have the factorization

l—x—x*= (1—1+ﬁx> <1—1_\/§x>.
2 2
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Next we set
x B x B A . B
l_x_xz_(l——“rz*@x) (1——172*/§x)_1—1+27‘/§x 1—1_7*@x.

Comparing coefficients in the numerator after taking a common de-

. . 1 . . .
nominator on the right, we find A= —-B = 7 This gives the partial
fraction decomposition

Fx) x 1 1 1
X)=——"—=——+ - .
l—-x—x2 /5 1—1+2‘/§x 1_1—2\/§x

1
145
— by

1

-5
—1By

Finally, we expand the fractions . and . as geometric series,

using
1 2
—=14+a+a"+---.
1—a
We find that the coefficient of x”, which is F,, by definition of F(x), is

()

/.4 Graph Theory

1

G

E,

Graphs are perhaps the simplest finite geometric objects. Certainly,
graph theory is the most visual part of combinatorics, and the part most
accessible to geometrically minded mathematicians. Figure 7.1 shows
an example of a graph in the way they are normally presented.

The points marked vy, v,, v3, vy are some of the vertices of the
graph, the lines marked e, e,, e; are some of its edges, and the sequence
V1, €1, U, €3, U3, €3, Uy is an example of a path. This path is called
simple because it contains no repeated vertex. The formal definition of
a graph is as follows.

Definition. A (finite) graph G consists of a finite set of objects v; called
its vertices, and a set of pairs e, = {v;, v;} with v; # v}, called its edges.
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U1 Uy
€1 €3

€2
V2 U3

Figure 7.1: Example of a graph.

Thus, in principle, the vertices of a graph can be any kind of
mathematical objects, such as natural numbers. In practice, we think
of vertices as points in the plane or space. Also an edge is completely
determined by a pair {v;, v;} of vertices (its “endpoints”), though in
practice we view the edge as a curve joining the points v; and v;. It
follows that there is at most one edge with given endpoints, and there is
no edge whose endpoints are the same.

It also follows that many different pictures can represent the same
graph. The positions of the vertices (as long as distinct vertices are
in different positions) and the lengths and shapes of the edges are
irrelevant. This means that the “geometry” we are doing is actually
topology. One of the important concepts of graph theory in particular,
and topology in general, is the concept of path. We have already
illustrated this concept in figure 7.1, and we formalize it (and related
concepts) as follows.

Definitions. A path in a graph G is a sequence of vertices and edges of
G of the form

V161026303 + * * Vp€pVptl,

where each e¢; = {v;, vi41}. The path is called closed if v; = v, 41, and
simple if no vertex occurs in it twice, except in the case v; = vj4;.
Finally, G is called connected if any pair of its vertices occur in a path.

In practice we are concerned mainly with connected graphs, be-
cause any graph is a union of connected graphs (called its “connected
components”) which can be considered separately.

Finally, we wish to define the concept of valency of a vertex, so-
called because it is similar to the concept of that name in chemistry.

www.Engineeringbookspdf.com



252 « Chapter7

Figure 7.2: The graphs of the regular polyhedra.

Definition. The valency of a vertex v in a graph G is the number of
edges of G to which v belongs.

For example, in figure 7.1,

valency(v;) =1,
valency(v,) = 3,

valency(vs) = 3.

The valency is often called the degree in combinatorics literature, but
I think that “valency” is clearly preferable, because it is not used
elsewhere in mathematics, whereas “degree” is used to excess. The
concept of valency appears in the first theorem of graph theory:

Total valency. In any graph, the sum of the valencies of the vertices is
even.

Proof. The sum of the valencies is the sum of contributions from the
edges. Each edge contributes 2 to the sum, so the sum of the valencies
is even. O

We conclude this section with pictures of some particularly beauti-
ful graphs, the regular polyhedral graphs, which come from projecting
regular polyhedra onto the plane (figure 7.2). In section 7.6 we will say
more about the regular polyhedra, and give a graph-theoretic proof that
there are only five of them.

7.5 Trees

A tree is a connected graph containing no simple closed path. Some
examples of trees are shown in figure 7.3.
So, yes, these graphs do look like trees—more or less.
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Figure 7.3: Some trees.

Since a tree contains no simple closed path, it is possible to draw
any tree in the plane without edges crossing. Intuitively, one imagines
building a picture of the tree one edge at a time. Each edge leads to a
new vertex (otherwise a simple closed path would be created), so it can
be drawn without crossing the edges previously drawn. This intuition
can be justified with the help of the following result, which leads to a
process for building each tree one edge at a time.

Valency in trees. Each tree with more than one vertex has a vertex of
valency 1.

Proof. Pick any vertex v, of the tree T' If v; has valency 1 we are done.
If not, follow an edge e; out of v; to a vertex v, one edge away. If v,
is not of valency 1, follow an edge e, # e; out of v,, and continue in
this way. This creates a simple path vie;v,e; - - - in T. Since T is finite
and without closed paths, vie;v,e; - - - must terminate, necessarily at a
vertex of valency 1.

(Incidentally, if v; does have valency 1, the above process leads to a
second vertex of valency 1. And if v; has valency > 1, by taking an edge
e} # ey out of v; we again arrive at a second vertex of valency 1. So in
fact a tree has at least two vertices of valency 1.) O

Once we have found a vertex v of valency 1 we can remove v, and
the edge e to which it belongs, without disconnecting the graph. Thus
the graph that remains is still a tree, and we can repeat the process until
the tree is reduced to a single vertex. By doing this process in reverse,
we can build the tree one edge at a time, and hence make a drawing of
it in the plane without edges crossing. For this reason, trees are said
to be planar graphs. We study planar graphs more generally in the
next section, but trees are the foundation for this study, because of the
following theorem.
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Figure 7.4: Plane and nonplane views of the cube graph.

Characteristic number of a tree. If a tree has V vertices and E edges,
then

V—-E=1

Proof. This is true of the smallest tree, which has one vertex and no
edges. It remains true when we add one vertex v and one edge e. So,
since any tree can be built by adding one vertex and one edge at a time,
V — E =1 for any tree. O

The invariant number 1 =V — E is sometimes called the Euler
characteristic of the tree. The idea extends to the Euler characteristic
of graphs in the plane, which is related to a characteristic number for
polyhedra, discovered by Euler in 1752. How all these ideas fit together
will be explained in the next section.

/.6 Planar Graphs

In this section we clarify what it means to “draw” a graph in the plane
without edges crossing. We wish to distinguish, for example, between
the two pictures shown in figure 7.4.

Both can be recognized as views of the same graph, whose vertices
and edges correspond to the vertices and edges of a cube. But the first is
an embedding of these vertices and edges in the plane, in the sense that
distinct points go to distinct points. We also call it a plane graph. The
second picture is not a plane graph, because in two cases (where edges
cross) two distinct points on edges of the cube go to the same point in
the plane.

The cube graph embeds quite naturally in the plane because we can
project a cube onto the plane without edges crossing, by suitably choos-
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L Ad L

Figure 7.5: The five regular polyhedra (images from Wikimedia Commons).

ing the point of projection. This also explains why the plane cube graph
has straight edges. It is in fact true that, if a graph can be embedded in
the plane, there is an embedding with straight edges, though we will not
make a detour to prove this fact. Instead, we will allow the embedded
edges to be polygonal; that is, simple paths consisting of finitely many
line segments. (We may as well allow this, since a simple closed path in
the graph is going to be polygonal in any case.)

Definition. A plane graph G is one whose vertices are points of R?
and whose edges are polygonal paths, meeting only where they have
common endpoints.

To capture the idea of a plane graph being a “picture” of another
graph we need the concept of graph isomorphism.

Definition. Graphs G and G’ are isomorphic if there is a one-to-one
correspondence v; <> v; between the vertices v; of G and the vertices v;
of G such that {v;, v;} is an edge of G if and only if {v], v} is an edge
of G.

Since we are now considering concrete graphs, whose edges may
be line segments or polygonal paths, the “edge {v;, v;}” should be
interpreted as the line segment or polygonal path with endpoints v;
and v;. Under this interpretation, the two graphs shown in figure 7.4
are isomorphic, and there are several suitable correspondences between
their vertices.

Now, finally, we can define planarity.

Definition. A graph G is planar if G is isomorphic to a plane graph G'.

Many graphs that are naturally realized by points and line segments
in R? are in fact planar. The most famous examples are the graphs of the
regular polyhedra (figure 7.5), all of which can be projected one-to-one

www.Engineeringbookspdf.com



256 + Chapter7

Figure 7.6: The plane graphs of the regular polyhedra.

onto the plane. One of them is the cube, whose plane graph has already
been shown in figure 7.4. Indeed, plane graphs for all of them have been
shown in figure 7.2.

To help you compare, figure 7.6 shows these plane graphs again.

In the Elements (Book XIII, Proposition 18), Euclid showed that
these five polyhedra are the only regular ones, using the fact that the
angle sum of an 7-sided polygon is (7 — 2)7. (This follows easily from
the theorem of section 5.2 that the angle sum of a triangle is 7.) It
follows that, if the polygon is regular, each of its angles is 2. Further,
if the polyhedron is regular, so that the number of polygons meeting at
a vertex is a constant number 77, one finds that the angle sum at a vertex
is < 27 only in the following cases:

n=3, m=23,4,5, (tetrahedron, octahedron, icosahedron)
n=4, m=3, (cube)
n=5 m=3. (dodecahedron)

Thus the five known regular polyhedra are the only ones possible.

Interestingly, one does not need concepts of Euclidean geometry
to show that the above values of 72 and 7 are the only ones possible.
They follow from pure graph theory, as one of the consequences of a
fundamental theorem about plane graphs.

/.7 The Euler Polyhedron Formula

Euler (1752) discovered that each polyhedron has a characteristic
number 2=V — E+ F, where V, E, and F are the numbers of
vertices, edges, and faces, respectively. For example, for the cube we
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Figure 7.7: Connecting points outside the tree.

have V— E+4+ F =8 —12+4+6 =2, and for the tetrahedron V — E +
F =4 —6+44=2. The theorem holds more generally for connected
plane graphs, if we use the appropriate concepts of “edge” and “face,”
and we will prove it in that more general context. A special case of the
theorem for plane graphs is the result about trees proved in section 7.5,
that V — E = 1, because F = 1 for trees, as we will see. In fact, we prove
that V — E 4+ F =2 in general by reducing to the special case of trees.

Euler plane graph formula. If G is a connected plane graph with V
vertices, E edges, and F faces, then

V—E+F=2.

The term “face” of course specializes to the face of a polyhedron,
or to the polygon in the plane which results from projecting the
polyhedron. In the case of an arbitrary connected plane graph G, the
“faces” are the connected components of R? — G, where points # and
v are in the same connected component if they may be connected by a
path in R? that does not meet G. In particular, if G is a tree then G has
one face, because any two points not in G may be connected by a path
that does not meet the tree. See, for example, figure 7.7.

Another important example is where G is a simple polygon. In this
case there are two faces, corresponding to the “inside” and “outside” of
G. To expedite the proof of the formula, we assume these two results
about faces, but we comment further on them in the subsection below.

Proof of the Euler plane graph formula. Suppose we are given a
connected plane graph G with V vertices, E edges, and F faces. If G is
a tree, then we are done, because V — E =1 by section 7.5,and F =1
by the assumption above.
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If G is not a tree, then G contains a simple closed path p. We can
remove any edge e from p, and the graph remains connected because
vertices connected using the edge e can still be connected by replacing
e by what remains of the path p.

Notice also that when e is removed:

 V remains the same, because we remove only e, not its
endpoints.

o Eisreduced by 1.

o F isreduced by 1, because the two faces on opposite sides of e
(which are distinct by the second assumption above) become
one when e is removed.

Thus removal of an edge from a closed path does not change V — E +
F, nor does it disconnect the graph, so we can repeat the process.

But the process does reduce the number of simple closed paths
by 1, so after finitely many removals we have a tree. At this stage we
know that V— E+ F =2,s0 V— E 4 F =2 for the original graph G
as well. O

The formula V — E + F = 2 applies, in particular, to any convex
polyhedron (since such a polyhedron can be projected onto R? from a
point just outside the middle of any face), and more generally to any
polyhedron whose graph is planar. Intuitively speaking, these are the
polyhedra without “holes.” For these, we call it the Euler polyhedron
formula after Euler (1752).

We now use the formula to show that the five regular polyhedra in
figure 7.5 are the only polyhedra that are regular in the combinatorial
sense. That is, they are the polyhedra in which each vertex is the meeting
point of 72 faces and each face has 7 edges, for constant 7z and 7.

Enumeration of regular polyhedra. If a polyhedron has m faces meet-
ing at each vertex, and each face has n edges, then the possible values of

(m, n) are:

(3,3), (3,4), 4,3), 3,5, (5,3).
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Proof. Suppose the polyhedron has V vertices, E edges, and F faces.
Since each face has 7 edges, we have

E =nF/2 because each edge is shared by exactly two faces.
Similarly
V =nF/m because each vertex is shared by exactly  faces.

Substituting these expressions for Vand Ein V— E+ F =2, we get

2= ’:—”FJFF F(%—f—i-) F

2n—mn—+2m

El

2m
and therefore

4m

2m~+2n—mn
Since F must be positive, we must have

2m+2n—mn >0 or, equivalently, mn—2m—2n<0. (¥)

Now we notice that mn — 2m —2n+4 = (m — 2)(n — 2). So, adding 4
to both sides of (*) gives

(m—2)(n—2)<4.

Also, n >3 because a polygon has at least three sides, and m >3
because at least three faces meet at each vertex of a polyhedron. Thus it
remains to solve

(m—2)(n—2) <4 form>3andn>3. (**)
Routine checking shows that the solutions of (**) are
(m, n) = (3, 3), (3, 4), (4, 3), (3, 5), (5, 3). O

Conversely, plane graphs actually exist for all these pairs of values
(m, n), as figure 7.6 shows. This gives a combinatorial analogue of
Euclid’s Proposition 18, Book XIII, in the Elements, mentioned in
the previous section. Interestingly, the actual construction of the
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polyhedra/plane graphs is the more difficult part of both theorems.
However, the plane graphs are easier than the polyhedra.

*Face Numbers for Trees and Polygons

There is a story about the English mathematician G. H. Hardy that goes
as follows (it is probably a myth, but still it strikes a chord!):

In the course of a lecture, Hardy started to say “It is obvious that ...,”
then checked himself. After a long pause, he left the lecture theatre and
paced up and down the corridor. Returning after about 15 minutes, he
resumed his lecture by saying “Yes, it is obvious.”

We are in a similar bind concerning the face numbers of trees and
polygons. They look obvious, and with a closer look they can be proved
by constructions involving a finite number of simple steps. Yet they
are not immediately obvious. One has to think for a long time before
their obviousness becomes, well, obvious. To my mind, this makes them
“advanced” rather than elementary.

Face number of a tree. A plane graph of a tree has one face.

Proof. Let T be a plane graph which is a tree. So the vertices of T
are points of R? and the edges of T are simple polygonal paths in R?,
which meet only at common endpoints. By considering all corners of
polygonal paths as vertices, we can reimagine T as a plane tree T* whose
edges are line segments.

To prove that T* has only one face, it suffices to show that any two
points #, v in R? but not in T* can be joined by a polygonal path not
meeting T*. To do this we construct the e-neighborhood N;(T*) of T*,
the set of points within distance at most ¢ from T%, where ¢ is chosen
small enough that the boundary of N;(T*) does not intersect itself or
T*, and so that #, v are not in N;(T™). Figure 7.8 shows an example.

The boundary of N,(T*) is a single closed curve, as can be seen by
building T* one edge at a time, as described in section 7.5, and building
N.(T*) along with it. At first, when T* is a single vertex, N.(T™*) is

! An eyewitness account of a very similar incident in a lecture by Emil Artin is given in the
book Ostermann and Wanner (2012), p. 7.
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Figure 7.8: Tree T* and its e-neighborhood.

bounded by a circle of radius €. As each edge is added, a “switchback”
is added to the previous boundary curve, so the boundary continues to
be a single curve.

Finally, to connect # and v we can extend lines from # and v until
they hit the boundary curve of N,(T*), at #’ and v’ say, and then
connect #' to v’ by the piece of the boundary curve between them.
(Strictly speaking, this path may not be polygonal, since it can contain
some small circular arcs. But these arcs can be replaced by polygonal
paths that avoid T*.) O

A sign that this proof is advanced is the business of choosing
¢ “sufficiently small,” which is typical of arguments in analysis and
topology. The same idea appears in the proof that a polygon graph has
two faces, but an extra ingredient is needed—the idea of “deforming” a
path in a series of “small” steps.

Face number of a polygon.? A plane polygon graph has two faces.

Proof. Given any polygon P, let e be one of its edges and let P — e be
the graph obtained by removing e (but not its endpoints) from P. Then
P — e isatree, so it follows from the previous proof that any two points
u, v not on P (and hence not on P — ¢) can be joined by a polygonal
path p not meeting P —e.

2 This theorem is also known as the Jordan curve theorem for polygons. It is a special case of
the more difficult theorem of Jordan (1887) that any simple closed curve in the plane divides the
plane into two regions.
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Figure 7.9: Removing two crossings.

Of course, the path p from # to v may cross the edge e. But, by
making a series of small changes in p, deforming it to p¥, p®, ..,
p® =g we can remove crossings two at a time while keeping the
deformed path away from P —e. The number of crossings finally
obtained is therefore 0 or 1. Figure 7.9 shows how two crossings
disappear in a small change from p¥) to p*+V near e.

A path that crosses e just once cannot be deformed to a path
not crossing e, because it can be arranged that each change is by
two crossings (namely, by ensuring that no edge of p® has the
same direction as e and preventing corners of p®) from touching
P —e).

Now let @ and b be points not on P that are connected by a path
crossing e exactly once. We can obviously find such points by choosing
a and b sufficiently close to e. Then it follows, for any point w not on P
that exactly one of the following possibilities holds.

1. w can be joined to a by a path not crossing e,
2. w can be joined to b by a path not crossing e.

At least one possibility holds, because paths from w to a and b, each
crossing e once, give a path from a to b (via w) crossing e twice, which
is impossible. And we cannot have both, because that gives a path from
a to b (via w) not crossing e at all.

This says that P divides the plane into regions: one containing a
and the other containing b. O

The extra, advanced, ingredient in this proof is the idea of dividing
a process into “sufficiently small” steps, so as to minimize the amount
of change that can occur in a step (in this case, a change of +2
in the number of crossings). This, too, is typical of arguments in

topology.
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Figure 7.10: Two nonplanar graphs.

/.8 Nonplanar Graphs

The surprising power of the Euler plane graph formula can be demon-
strated by using it to prove that certain graphs are nonplanar. Two
famous examples are shown in figure 7.10.

The one on the left is called Ks, the complete graph on five vertices.
Along with its five vertices, it has the ten edges connecting all pairs
of distinct vertices. The one on the right is called Kj 3, the complete
bipartite graph on two sets of three vertices. It contains an edge from
each vertex in the first set of three to each vertex in the second set of
three. K3 5 is sometimes called the “utilities graph” because of its role in
the following puzzle: given three houses and three utilities (gas, water,
electricity), is it possible to connect each house to each utility without
the lines crossing?

Any attempt to draw Ks or K3 3 in the plane without edges crossing
will fail—but it is hard to know when all possible placements of the

edges have been exhausted. The Euler plane graph formula removes all
doubt.

Nonplanarity of K5 and K3 ;. Neither Ks nor Ks 5 is a planar graph.

Proof. First suppose (looking for a contradication) that there is a plane
version of Ks. For K5 we know that V =5 and E = 10, so the number
F of faces in the plane version of K satisfies

5—10+ F =2 by the Euler plane graph formula.

Thus F = 7. But each face must have at least three edges, so F =7
implies
E>3F/2=3-7/2 > 10.

This contradicts E = 10, so Ks is not a planar graph.
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Vo

Figure 7.11: An infinite tree without infinite simple paths.

Again suppose (looking for a contradiction) that there is a plane
version of K3 3. For K3 ;3 we know that V = 6 and E = 9, so the number
F of faces in the plane version of Kj 3 satisfies

6—9+4 F =2 by the Euler plane graph formula.

Thus F =5. Now Kj 3 contains no triangles, because if vertices
A, B are both connected to C then A, B are in the same set of three,
so there is no edge AB. Therefore, any face of the plane version of K3 3
must have at least four edges, so F = 5 implies

E>4F/2=4-5/2>09.

This contradicts E =9, so K3 3 is not a planar graph. 0

7.9 *The Koénig Infinity Lemma

The first book on graph theory, Theorie der endlichen und unendlichen
Graphen (Theory of Finite and Infinite Graphs) by Kénig (1936), already
recognized the importance of infinite graphs. In it, Kénig proved a
fundamental theorem about infinite graphs, which at the same time
isolated the combinatorial content of many theorems in analysis.

Konig infinity lemma. A tree with infinitely many vertices, each of
which has finite valency, contains an infinite simple path.

Before giving the proof we remark that the definition of infinite tree
is exactly the same as the definition of finite tree, except that the set of
vertices is infinite. We also note that the finite valency condition in the
lemma is necessary. Without it, we have the counterexample shown in
figure 7.11.
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In this tree there are infinitely many vertices, and arbitrarily long
simple paths, but every simple path is finite. This happens because the
valency of the top vertex vy is infinite.

Proof of the Konig infinity lemma. Let T be a tree with infinitely
many vertices vg, V1, Vz, . . ., each of which has finite valency. Since T
is connected, the edges out of v, lead to all other vertices, so at least one
of these finitely many edges itself leads to infinitely many vertices of T.
Choose such an edge {v, v;} (say, with the minimum possible 7) as the
first edge of a simple path p.

At v; we repeat the argument. The finitely many edges out of v;,
other than {vo, v;}, together lead to infinitely many vertices of T, so
one of them itself leads to infinitely many. Choose such an edge {v;, v;}
(with minimal possible ;j if you want to be specific) as the second edge
of the path p.

We can repeat the argument at v;, and we can continue indefinitely.
Thus we obtain an infinite sequence of distinct vertices, vy, v;, vj, .. .,
each attached to the one before by an edge, so p is an infinite simple
pathin T. O

Underlying the above proof is a combinatorial principle even
simpler than the lemma itself: the infinite pigeonhole argument. This
principle states that if infinitely many objects are placed in finitely
many boxes (pigeonholes), then one of the boxes contains infinitely
many objects. The infinite pigeonhole principle seems very close to
elementary mathematics—but it is not quite there, in my opinion. Some
important theorems of analysis are proved along the same lines, and
they are generally regarded as advanced. We give an example in the
following subsection.

What the K6énig lemma and infinite pigeonhole principle do show,
I think, is that infinite combinatorics marks part of the boundary
between elementary and advanced mathematics.

*The Bolzano-Weierstrass Theorem

A special case of the K6énig infinity lemma, in which T is a subtree of the
infinite binary tree shown in figure 7.12, is the combinatorial essence of
many proofs in analysis.
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Figure 7.12: The infinite binary tree.

Typically one seeks a limit point of a set of real numbers, rather than
an infinite path in a tree, but the underlying idea is the same.

Definition. If S is an infinite set of real numbers then [ is a limit point
of § if there are members of S arbitrarily close to /.

The simplest theorem about limits, and the closest in essence to the
Kénig infinity lemma, is the following.

Bolzano-Weierstrass theorem. If S is an infinite set of points in the
unit interval [0, 1] = {x: 0 < x < 1}, then S has a limit point.

Proof. Since § is infinite, at least one half of [0,1] contains infinitely
many members of S. Let I; be the leftmost half of [0,1] (including
endpoints, so that [ is closed, as defined in section 6.11) that contains
infinitely many points of S, and repeat the argument in ;.

Since I; contains infinitely many points of S, at least one half of
I, contains infinitely many points of S. Let I, be the leftmost half of
I, (including endpoints) that contains infinitely many points of S, and
repeat the argument in .

In this way we obtain an infinite sequence of nested closed intervals

0, 1]=LD>LD>LD: -,

each of which contains infinitely many points of S. Also, each interval
is half the length of the one before, so, by the completeness of R, there
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Figure 7.13: The infinite binary tree of subintervals.

is exactly one point / common to them all. The point/ is a limit point of
S, because the endpoints of the intervals approach / arbitrarily closely,
and each of these intervals contains points of S. g

This proof implicitly involves an infinite binary “tree of subinter-
vals” of Iy = [0, 1]. Iy is the top vertex; its left and right halves are the
two vertices below Iy, and so on (see figure 7.13).

In the proof we consider the subtree T of subintervals that contain
infinitely many points of S. The pigeonhole principle implies that the
subtree is infinite. So, by the Kénig infinity lemma, T contains an
infinite simple path. The leftmost such path is the nested sequence of
intervals Iy D I; D I; D - - - thatleads to the limit point /.

The Bolzano-Weierstrass theorem is easily generalized to two or
more dimensions. In the plane, for example, one can prove that an
infinite set of points in the square or a triangle has a limit point.
The proof proceeds similarly, by repeatedly dividing the region into a
finite number of parts (say, quarters) but making the parts arbitrarily
small, and repeatedly applying the infinite pigeonhole principle. In the
next section we will show how the Bolzano-Weierstrass theorem for a
triangle can be combined with some elementary (finite) graph theory to
prove a famous theorem of topology.
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Figure 7.14: Example of a triangle subdivision.

/.10 Sperner’s Lemma

Sperner’s lemma is a strangely simple result about graphs with labeled
vertices. Sperner (1928) devised the lemma to give a new proof of a the-
orem of Brouwer about the invariance of dimension under continuous
maps. It can also be used to prove another famous theorem of Brouwer
(1910) about continuous maps, his fixed point theorem. Here we use the
lemma to direct a limit process, through an infinite sequence of graphs,
so as to prove the Brouwer fixed point theorem for the plane. (There are
similar proofs for three or more dimensions.)

The planar version of the lemma concerns graphs obtained by
subdividing a triangle v;v,v3 into subtriangles, and labeling their ver-
tices 1, 2, or 3 according to certain rules. Figure 7.14 shows one such
subdivision, with labeling that obeys the following rules.

1. The vertices vy, v, v3 are labeled 1, 2, 3, respectively.
2. Vertices on edge v, v, are labeled 1 or 2.
3. Vertices on edge v,v; are labeled 2 or 3.
4. Vertices on edge vsv; are labeled 3 or 1.

Sperner’s lemma. If triangle v,v,vs is divided into subtriangles whose
vertices are labeled according to the rules above, then at least one
subtriangle has vertices with all three labels.
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Figure 7.15: Triangle subdivision plus edges of G.

Proof. Given the subdivision of v;v,vs, we construct a graph G with
the following vertices and edges.

o A vertex inside each triangle, and also a vertex v, in the region
outside triangle v;v,vs.

« An edge joining any two of the vertices , v just described,
provided that # and v lie on opposite sides of an edge e (in the
original subdivision) whose vertices are labeled 1 and 2. In this
case the edge uv crosses the edge e.

For the subdivided triangle in figure 7.14, the edges of G are the thick
gray line segments in figure 7.15 (and the vertices of G are the ends of
these segments).

In particular, the edges in G from the vertex vy outside v,v,v3
can cross only subedges of the side v,v,, because only these have ends
labeled 1 and 2. Also, there are an odd number of such subedges, because
on any of them the label changes from one end to the other, and there
must be an odd number of changes—otherwise v; and v, would be
labeled the same. Consequently, the valency of v, is odd.

For any other vertex # of G the valency is one of the following:

o 0if u lies in a subtriangle whose vertices lack one of the labels
1,2,

e 1if ulies in a subtriangle whose vertices have all the labels
1,2,3,
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o 2 if u lies in a subtriangle whose vertices have the labels 1, 2
only (because two edges have both labels in that case).

Now recall that the sum of the valencies is even, by the theorem in
section 7.4, so G must have an even number of vertices of odd valency.
Apart from the vertex vy, the only vertices of odd valency are those of
valency 1—namely, those inside subtriangles with labels 1, 2, 3. So the
number of such triangles is odd, and therefore nonzero. O

*The Brouwer Fixed Point Theorem

In this subsection we apply Sperner’s lemma to a theorem about
continuous functions on the plane. To make the application as easy as
possible we assume that the function maps an equilateral triangle into
itself, but the argument can be transferred to many regions in the plane,
such as a circular disk.

Brouwer fixed point theorem. If f is a continous map of the equilat-
eral triangle into itself, then there is a point p of the triangle such that

f(p)=p.

Proof. For convenience we take the equilateral triangle T in R® with
vertices v; = (1, 0, 0), v, = (0, 1, 0), and v3 = (0, 0, 1). The beauty of
this triangle is that its points are precisely those x = (x, x,, x3) such
that

0<x,%,x:<1 and x;4+x+x=1.

It follows that if f(x) = (f(x)1, f(x)2, f(x)3) and if f has no fixed
point, then f always decreases at least one coordinate; that is, either

f(x); <x, or f(x)<x, or [f(x);<xs.

We label each point x in T with the least i such that f(x); < x;.
Then the following conditions hold:

1. The vertices v;, v,, vs are labeled 1, 2, 3, respectively. For
example, x; = 1 at vy, and we must have f(v;); < 1, since

f (v1) # vy by hypothesis.
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Figure 7.16: Increasingly refined subdivisions of the triangle T.

2. Vertices on v, v; are labeled 1 or 2. Points on v, v, do not get
label 3, because they are the points for which x; = 0, which
cannot decrease.

3. Vertices on v,v; are labeled 2 or 3, similarly.

4. Vertices on vs3v; are labeled 3 or 1, similarly.

Thus the labeling of points satisfies the conditions of Sperner’s lemma.
Now suppose we divide T into subtriangles in the (infinitely many)
ways suggested by figure 7.16. By Sperner’s lemma, each subdivision
contains a subtriangle with vertices labeled 1, 2, 3. These triangles
become arbitrarily small and their vertices make up an infinite set of
points in the triangle T. So, by the Bolzano-Weierstrass theorem of
section 7.9, this set has a limit point p.

This means that any neighborhood of the point p= (p1, p2, p3)
contains a triangle with labels 1, 2, 3. Now if the label of p is 1, for
example, then

f(p)1 <pr andeither f(p)>p, or [f(P);> ps.

Since f is continuous, we have, for any point g = (q1, g2, ¢3) suffi-
ciently close to p,

f(@1 <q andeither f(q),>q or [f(q)s>gs.

In that case, g also has label 1, contradicting the fact that points
arbitrarily close to p have labels 1, 2, and 3. (And similarly if p has
label 2 or 3.)

This contradiction shows that our initial assumption, that / has no
fixed point, was false. O
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/.11 Historical Remarks

Pascal’s Triangle

Pascal’s triangle has a place in the history of combinatorics like that held
by the Pythagorean theorem in the history of geometry. It is very old,
was discovered independently in several cultures, and has since become
one of the foundations of the subject.

It seems to have been observed in India, perhaps as early as
200 BCE, in the writings of Pingala on literary composition. The
binomial coefficients come up in counting the number of combina-
tions of heavy and light syllables. Later, the idea was taken up by
Indian mathematicians, and it was transmitted to the Muslim world by
al-Biruni in the eleventh century.

In China, the binomial coefficients were discovered in their al-
gebraic setting as the coefficients in the expansion of (a + b)”. Me-
dieval Chinese mathematicians used such expansions in a sophisticated
method for numerical solution of polynomial equations—a method
that became known in the West, much later, as Horner’s method after its
rediscovery by Horner in 1819. The picture of Pascal’s triangle by Zhu
Shijie (1303), shown in section 1.6, comes from this flourishing period
of Chinese mathematics.

In Italy, Pascal’s triangle is sometimes known as “Tartaglia’s tri-
angle,” due to its discovery by Niccold Tartaglia (also one of the
discoverers of a solution to cubic equations). Tartaglia tells us that he
made the discovery “on the first day of Lent, 1523, in Verona.” He
eventually published his triangle, which includes the coefficients up to
the 12th row, in Tartaglia (1556). By this time, the triangle had been
rediscovered by Michael Stifel (1544) in Germany.

Blaise Pascal himself wrote his treatise on the arithmetic triangle
in 1654, having probably learned of the triangle from Father Marin
Mersenne. So Pascal was by no means the discoverer of the triangle.
Nevertheless, The Arithmetic Triangle broke new ground with his
masterly treatment of the subject, using the first really modern proofs by
induction, and by making the first application of binomial coefficients
to probability theory.

In the next chapter we further discuss the role of the binomial coef-
ficients in probability, where they are also of fundamental importance.
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Graph Theory

Graph theory, although it began with Euler, was a fringe mathematical
topic until the twentieth century. With the exception of the Euler
polyhedron formula, its results had little influence on other branches of
mathematics. Indeed, the field of topology, which was largely inspired
by the Euler formula, rapidly overtook graph theory in the early
twentieth century, reaching a height from which certain topologists
could look down on graph theory as “the slums of topology.” This
early history of graph theory is recounted in the engaging book Graph
Theory, 1736-1936 of Biggs et al. (1976).

However, about the time when the book came out, graph theory
was entering a new era of respectability. The landmark event of 1976
was the proof of the four-color theorem, solving a problem that had
been open since 1852. Coloring maps with a minimum of colors seemed
at first to be one of those popular puzzles that graph theory might
dispose of quite easily. In fact Kempe (1879) offered a proof that four
colors suffice, which was accepted for more than a decade. Mission
accomplished. Then Heawood (1890) pointed out a flaw in Kempe’s
proof, which he could repair only as far as proving that five colors
suffice.

Their illusions shattered, graph theorists and topologists began a
long and difficult search for a rigorous proof that four colors suffice.

The search ended in 1976, though not without controversy. Appel
and Haken (1976) gave a proof, but it involved an unexpectedly long in-
vestigation of separate cases, and required over 1000 hours of computer
time. Mathematicians were dismayed: both by the lack of insight in the
proof and its reliance on computation. It was felt that such a proof was
unreliable, due to the possibility of programming errors. Also it was
disappointing that the proof gave little understanding why the theorem
is true.

The possibility of programming errors has now been virtually
eliminated, by a “computer-verifiable” proof of the theorem written by
Georges Gonthier in 2005. It remains unknown whether an insightful
proof is possible, but this perhaps increases the mystique of the four-
color theorem. Is it possible that graph theory contains a theorem that
is beyond human comprehension?
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Also in the 1970s it was found that many algorithmic graph theory
problems are hard for another reason: they are NP-complete. Three of
the best known are:

Hamiltonian path. Given a finite graph G, decide whether G contains
a “path” (connected sequence of edges) that includes each vertex
exactly once.

Traveling salesman. Given a finite graph G, with integer “length”
values for its edges, and an integer L, decide whether there is a path
of length < L that includes all the vertices.

Vertex three-coloring. Given a finite graph G, decide whether there is
an assignment of three colors to its vertices such that the end vertices
of each edge have different colors.

Another key problem—in a sense the fundamental problem of graph
theory—is the problem of deciding whether two graphs are the “same”;
that is, isomorphic in the sense of section 7.6.

Graph isomorphism. Given two finite graphs G and G’, decide
whether G is isomorphic to G'.

This problem is not known to be in P; nor is it known to be NP-
complete.

With these problems, graph theory has become inseparable from
the theory of computation, and hence a fundamental part of mathe-
matics today.

/.12 Philosophical Remarks

*Combinatorics and Arithmetic

The addition property that defines Pascal’s triangle makes it easy to
compute whole rows of binomial coefficients by repeated addition.
The first investigators of Pascal’s triangle in Europe delighted in such
computations, with Tartaglia computing all the (}) up to 7z =12 and
Mersenne up to n = 25.
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To compute an individual coefficient one has the formula derived
in section 1.6,

<n>_n(n—1)(n—2)-..(n—k+1) )

k k!

which also calls on multiplication and division. In fact, since the
binomial coefficient is an integer, immediately from its definition, the
formula (*) expresses a theorem of arithmetic:

k! divides n(n—1)(n—2)--- (n—k+1). (**)

When expressed in this way, as a theorem about addition, multiplica-
tion, and division, the integrality of (Z) is not at all obvious.

Indeed, Gauss (1801), article 127, made heavy weather of proving
(**) by pure arithmetic reasoning. Dirichlet (1863), §15, also had a
hard time giving a purely arithmetic proof. Thus a hard theorem of
arithmetic can be an easy theorem of combinatorics. To put it another
way, arithmetic can become more elementary when viewed from a
combinatorial standpoint. In section 10.1 we give a more advanced
example of the way combinatorics can simplify arithmetic.

This suggests that both arithmetic and combinatorics might benefit
from a unified viewpoint—one that allows reasoning about finite sets
as well as about numbers. In fact, finite set theory itself is capable of
reasoning about numbers, as we will explain in chapter 9.

*Discrete or Continuous?

Is the physical world discrete or continuous? Combinatorialists like
to cite the history of modern physics—from the discovery of atoms
onward—as evidence that the world is fundamentally discrete and
hence that mathematics should be fundamentally combinatorial. Be
that as it may, a believer in continuity can still appreciate how com-
binatorics gives insight into continuous structures. The proof of the
Brouwer fixed point theorem by Sperner’s lemma is a splendid example
of cooperation between discrete and continuous mathematics.
Examples like this are common in topology, which is officially
the theory of continuous functions, but historically an offshoot of
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combinatorics. The Euler polyhedron formula was first proved for
essentially discrete objects, “polyhedra,” determined by a finite number
of points called “vertices.” The “edges” of a polyhedron can be viewed
simply as pairs of vertices, and its “faces” as finite sequences of edges
(the “face boundary paths”). However, the formula remains true for
any surface, in continuous one-to-one correspondence with the sphere,
when “edges” are arbitrary continuous arcs on the surface, meeting
only at endpoints, and “faces” are the pieces obtained by removing the
edges from the surface. Given the potential complexity of curves, the
Euler formula V — E + F = 2 could hardly have been foreseen without
guidance from its discrete forerunner.

Indeed, the whole vast field of algebraic topology today owes its
existence to clues provided by its precursor “combinatorial topology,”
of which the Euler polyhedron formula is a shining example. Poincaré
(1895) launched the subject of algebraic topology in an astonishing
long paper in which he boldly drew conclusions about continuous
structures from theorems about discrete ones. Poincaré tried to prove
that certain continuous manifolds could be given a combinatorial
structure. But it took another 20 years of work, by other mathemati-
cians such as Brouwer, before all of Poincaré’s conclusions could be
justified.

*Infinite Graph Theory

The Konig infinity lemma, as we have seen in sections 7.9 and 7.10,
underlies some important constructions in analysis and topology. More
generally, as Koénig (1927) himself described it, it is a method of
reasoning from the finite to the infinite. He gave the example: if every
finite planar graph is four-colorable, then so is every infinite planar
graph. This was related to the problem of four-coloring maps, which
was still open at the time. The map coloring problem is translated into
a graph vertex coloring problem by placing a vertex in each region
of the given map M, and connecting two vertices by an edge if the
corresponding regions in M have a common boundary. The resulting
graph G is planar because it can be drawn in the plane without edges
crossing, and the vertices of G can be four-colored if and only if the
regions of M can.
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Figure 7.17: A map and the corresponding graph.
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U1

Figure 7.18: The tree of colorings of the graph with vertices vy, v, . . ..

An example of a finite map and the corresponding finite graph is
shown in figure 7.17. Vertex numbers name the colors of the corre-
sponding map regions.

We pass from finite to infinite as follows. Given an infinite planar
graph G with vertices vy, vy, v3, ..., one builds an infinite tree T
with a top vertex vy and remaining vertices below it on levels labeled
V1, U2, V3, . ... The aim is to display all possible four-colorings of G by
coloring the vertices of T with colors 1, 2, 3, 4. The first three levels of T
are shown in figure 7.18. Each vertex has four vertices attached below it,
so it has finite valency. The path with thick edges represents a coloring
in which v; has color 2 and v, has color 1.

We now prune the tree T by terminating each path at the first level
n for which the corresponding coloring of vy, vs, ..., v, is not valid;
that is, when two adjacent vertices of G receive the same color. After
pruning, the tree remains infinite. In fact, for each 7 there is a path that
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goes below level 7, because there is a valid four-coloring of the finite
graph with vertices vy, vy, . . ., v,, by assumption. Then it follows by
the Konig infinity lemma that there is an infinite path in the pruned
tree. This path represents a valid four-coloring of the infinite graph G.

In recent decades, logicians have shown that the Kénig infinity
lemma is a fundamental principle of mathematical reasoning. We say
more precisely why this is so in section 9.9.
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PREVIEW

Like combinatorics, probability is a big field with many methods
and many varieties of subject matter. However, we can show how
probability evolves from elementary to advanced by pursuing a single
question: describing the outcome of 7z coin tosses. We begin with
an experimental setup, the Galton board, which collects and displays
the results of 7 coin tosses for modest values of 7. It is a physical
realization of the binomial probability distribution, so called because
the probability of getting k heads in 7 tosses is proportional to (}).

Next, we solve one of the simplest problems involving repeated coin
tosses, the gambler’s ruin problem, which involves a method also of
interest in combinatorics: recurrence relations.

This is followed by a random walk view of coin tossing, in which
the number (number of heads — number of tails) “walks” along a line—
changing by 1 for each head and by —1 for each tail. We show by algebra
that, on average, the number has absolute value < /# for a sequence
of 1 tosses. Since /7 is much smaller than 7 for large 7, this result
suggests a “law of large numbers,” saying that heads probably occur
“about half” of the time. Using the concepts of mean, variance, and
standard deviation we prove a precise version of this law in section 8.4.

Finally, we return to the binomial distribution introduced in
section 8.1. In section 8.5 we discuss, without proof, how the “shape”
of the binomial coefficients (Z), as a function of &, tends to the curve
y=e

** as n increases. Thus probability theory is like analysis in its
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reliance on the limit concept, especially limits as 7 — oo. It is generally
a clear sign of the onset of advanced probability theory when analysis
enters the picture.

8.1 Probability and Combinatorics

The “counting” aspect of combinatorics is very useful in finite prob-
ability theory, where the probability of an event is found by counting
the number of favorable cases and comparing that number to the total
number of cases. For example, the probability of throwing a total of 12
with two dice is 1/36, since there is one favorable case (6 with each die)
out of 36 possibilities. On the other hand, the probability of throwing
a total of 8 is 5/36 because there are five favorable cases: 2+6, 3+5, 4+4,
543, 6+2, where the first number in each sum is the number on the first
die, and the second number is the number on the second die.

More sophisticated counting often involves the binomial coeffi-
cients. We have seen one example already—the “problem of points”
or division of stakes—in section 1.7. Another example, which gives a
striking visual impression of probability, is the so-called Galton board
(figure 8.1 shows a simplified model).

I first saw this device at the Museum of Science in Boston in the late
1960s. The original example, designed by Sir Francis Galton himself
in 1873, is at University College in London. The device is a board with
pegs in it like trees in an orchard. When the board is mounted vertically
so that the pegs form a lattice pattern, balls dropped on the top peg
will travel downward, bouncing randomly left or right as they hit the
pegs. Assuming that bounces left and right are equally probable, balls
will fall into containers below the bottom row of pegs with probability
proportional to the number of possible paths to each container.

The number of paths to the kth peg in the nth row is none other
than (7). This can be seen inductively: there is one path to the single
peg in row 1 and, for any other peg p, the number of paths to p is the
sum of the numbers of paths to the pegs immediately above p to left
or right (since a ball can hit peg p only by bouncing off one of these
pegs). But these are precisely the rules for generating “Pascal’s triangle”
of binomial coefficients, so the numbers of paths are identical with the
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Figure 8.1: The Galton board.

binomial coefficients. Figure 8.2 shows the first few rows of pegs, each
marked by the number of paths that lead to it.

It follows that, if # containers are placed below the gaps in row
n — 1 (including the “gap” at the left and the “gap” at the right), then the
number of paths to container k is (};). The probability of a ball falling
into container k is therefore proportional to (Z)

This distribution of probabilities—with the probability of being in
container k proportional to () —is called the binomial distribution. It
is found, to a surprisingly high degree of accuracy, in many situations
where the outcome depends on a large number of random factors. For
example, the heights of adult women, and the scores of students on the
SAT exam, both follow a distribution that is close to binomial. Thus the
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Figure 8.2: The number of paths to each peg.

binomial coefficients are just as fundamental in probability theory as
they are in combinatorics.

8.2 Gambler’s Ruin

True to its roots, probability theory has many problems motivated
by gambling. Here is one that is also of combinatorial interest: the
gambler’s ruin problem. A simple case of the problem goes as follows.
Suppose a gambler bets $1 at a time on the toss of a coin, until he
has either $0 or $100. What is the probability that he goes broke, after
starting with $7?

We let P(n) denote the probability of going broke from a start of
$n. Thus we have the following known values of P:

P(0)=1 and P(100)=0.
We can also say how P (k) is related to P(k— 1) and P(k+ 1), namely,

P(k+1)+ P(k—1)
> ;

P(k) = *)
because $k is equally likely to be followed by $k+ 1 or $k — 1.

Now (*) is an example of a linear recurrence relation, for which
there is a standard method of solution. (The reader may take this
method on faith, since the results obtained may be independently
verified. If you like, it is a method for guessing a solution, and the
solution can then be proved correct.)
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1. Substitute P (7)) = x" in the recurrence relation, and find which
values of x satisfy the resulting polynomial equation.
For the relation (*) we get

xk+1+xk—1
x=
2

SO

2xk — x/e+1 _}_xk—l.

Therefore, dividing by x*~!,

x2—2x+1:0,

which has the (double) root x = 1.

2. In the case of a double root, a second solution is P () = nx".
Thus we have two solutions of (*), P(#) = 1" =1 and
P(n) =nl"=n.

3. Because the recurrence relation is linear, a constant multiple of
a solution is a solution, and so is the sum of two solutions.
In this case, a solution of (*) is

P(n) =a+bn, wherea and b are constants.

4. Find the constants by substituting known values of P (7).
In this case, P(0) = 1 gives a = 1 and then P(100) = 0 gives
b= —1/100.

Thus we get P(n) =1 — 15, and it can be checked that this solution
indeed satisfies the known values and the recurrence relation (*). [

Remark. The method for solving linear recurrence relations gives
another way to find the formula for F,, the nth Fibonacci number,
which we found in section 7.3 with the help of generating functions.

We already know two values and a recurrence relation for F,,
namely,

Fy=0, Fi =1, Fpo=Fy+F.
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Using the method above, we first seek solutions of the recurrence
relation of the form F,, = x”. Substituting this in the relation gives
X2 = kg yk
hence

xz—x—lzo,

which has solutions

1+.5

X = .
2

Thus the general solution of Fp, = Fpy1 + Fpis

14+45) VAN
ol

Using Fyp = 0 and F; = 1 to find the values of a and b gives the formula

we found before, namely,
1+v5\" (1-v5)"
2 2 '

8.3 Random Walk

1

G

E,

A common process in mathematics and physics is random walk: a series
of steps which are random in length or direction. In this section we
study the simplest case, where the steps are all of length 1 but in a
random direction along a line; that is, randomly positive or negative.
This case models the behavior of the quantity (number of heads —
number of tails) in a series of tosses of a fair coin, since the difference is
equally likely to change by +1 or —1.

A basic question is: after 7 steps of a random walk, what is the
expected distance from the origin? For the walk along a line—one-
dimensional random walk—it is easy to give the answer to a related
question.
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Expected squared length of a random walk. In a one-dimensional
random walk with steps of unit length, the average squared distance from
O after n steps is n.

Proof. Denote the 7 steps of the random walk by sy, s,, . . ., 5,,. So each
s; = £1 and the final point of the walk is s; + s, + - - - +5,,. To find the
distance |s; 4+ s, + - - - +s,| of the final point from O we consider its
square

(514834 +5,)* :sf+522+- . -—|—s,21—|— all terms s;s;, wherei#j.

The expected value of this squared distance is the average of (s; +s, +
-+ -+s,)? over all sequences of values s; = %1, because all sequences
are equally likely.

To find the average we sum the values of

(14534 -+5,)* =512+s§+- . -+si+ all terms 2s;s;

over all 2" sequences of values (s;, s, ..., s,). Since s; = £l and s; =
+1, the term s;s; equals 1 when s;, s; have the same sign and it equals
—1 when they do not. These two possibilities occur equally often among
the sequences of values of (s, s,, . . ., s,). Therefore, the values of s;s;
cancel out, and it remains to find the average value of s 4+ s + - - - +s2.
This of course is 7, since s{ +s3 + - - - +s,. = 7 regardless of the signs
of the s;.

Thus the expected value of (s; + s, + - - - +5,)? is 7. O

Now, unfortunately, the average length |s; + s, + - - - +5,| is not
the square root, /7, of the average squared length. For example, the
average length of a two-step random walk is 1, not +/2, because there are
two walks of length 2 and two walks of length 0. However, we can prove
that the average length is bounded by /n, because of the following
inequality.

Averages and squares. If xi, X, . .., xx > 0 then the average of the xl-2
is greater than or equal to the square of the average of the x;.
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Proof. We wish to prove that

XA tx <x1+x2+"'+xn>2

n n

or, equivalently, that
2 2 2 2
n(x; +x, 4+ 4x,)— (1 +x+--+x,)">0.
Well,

n(o? + o+ xD) — (o +x e +x,)?
=n(x;+x;+- - +x) — (6] + x5+ - -+ x+all terms x;x; for i)
=(n-— 1)(x12 +x22 +- .- +x2) — (all terms x;x; for i # j)
=(n-— 1)(9612 +x22 + .- —I—xi) — (all terms 2x;x; fori < j)
= (all terms (xl»2 + x?) fori < j)— (all terms 2x;x; fori < j)
since the terms xl2 + xf fori < j include each subscript z — 1 times;
namely, paired with the 7z — 1 subscripts unequal to itself
= all terms (xl-2 —2x;xj + xf) fori <j
= all terms (x; — x,—)2 fori < j
>0, asrequired. O
Coming back to sequences of coin tosses: this theorem shows that,
in a sequence of 7 coin tosses, the expected difference between the
number of heads and the number of tails (disregarding sign) is at most
/n. For large values of 7, the value of /7 is small in comparison with
n, so there is a precise sense in which the expected number of heads is
“about half” of the total number of tosses. This is a weak form of the

so-called law of large numbers, which we will make stronger in the next
two sections.

8.4 Mean, Variance, and Standard Deviation

The calculations in the previous section bring to light some important
concepts of probability theory. The one-dimensional random walks of
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n steps sy, Sz, . . ., Sy, where each s; = =1 are 2” in number, so they
give 2” displacements

Si+s,+---+s, asthes; take all values +1 or —1.

The average of these, over all the 2” possible walks, is of course 0. This
average is called the mean displacement.

The mean displacement tells us nothing about the expected length
of a walk, which is the average of the values

|51+Sz+' . +5n|

We did not find a formula for this average, but we were able to show
that the average of the values

(514854 +s,)°

is 7. This average, which gives a measure of how widely the displace-
ments deviate from the mean, is called the variance. Indeed, the square
root of the variance (4/7 in this case) is called the standard deviation.
The inequality in the previous section, relating averages and squares,
shows that

average value of |s; +s; + - - - +5,| < standard deviation, /7.

These concepts generalize to any sequence x;, X, . . ., X of real
numbers as follows.

Definitions. The mean, u, of x1, %, . . ., X is given by

XXt X
= 7 ,

The variance, 62, is given by

s =P+ —pu)+- -+ (g —p)?
o = k .

And the standard deviation, o, is given by

\/(xl—u)2+(xz—u)2+---+(x/e—u)2
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A very simple inequality bounds the probability of a value x;
differing from the mean by more than one standard deviation. To state
the inequality we will use the notation P(x;) to denote the probability
of x; occurring, though we are interested only in the case where P (x;) =
1/k (that is, we have outcomes x; of k equiprobable events, such as
the displacements for all k =2” random walks w; of 7 steps). In this
case

s =P+ =)+ (g — p)?
7= 3
= (1 — W) P(x1) + (2 — W) P(x2) + - - - + (x5 — ) P (xp).

Chebyshev’s inequality. If x is a member of the sequence
X1, X2, ..., X with mean p and variance o? and if t > o, then
the probability that |x — ju| > t is such that

2
o
prob (|x — ul > 1) < FE

Proof. Given that the probability of x taking the value x; is P (x;),

prob(|x — p| > t) = sum of the terms P (x;) for |x; — | > ¢

2
Jo—
< sum of the terms (ltsz(x,-) for |o; — | >t
. X — )’
since — > 1when |x; — | >t
o? 2 2 2
= since 0” = (x; — )" P(xy) +- - - + (o — )" P(xp).

O

Notice that the variance enters the proof through squaring the
condition |x; — ¢| > ¢ so as to remove the absolute value sign.

Returning now to the example where x; is the displacement in the
ith random walk of # steps, we have u =0 and 0 = Jn. According to
Chebyshev’s inequality, the probability of the length of a random walk
being > ¢, where t > o, is < o2/t
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Thus for walks of 7 = 100 steps, where o = 10,

probability of a walk having length > 20 = 20 is < 02/(20)? = 1/4,
probability of a walk having length > 30 = 30 is < 0?/(30)* = 1/9,
probability of a walk having length > 40 = 30 is < 0% /(40)* = 1/16.

And for walks of 7 = 10000 steps, where o = 100,

probability of a walk having length > 200 = 20 is < 0?/(20)* = 1/4,
probability of a walk having length > 300 = 30 is < 0%/(30)* = 1/9,
probability of a walk having length > 400 = 30 is < 0%/(40)* = 1/16.

This suggests a more precise “law of large numbers,” in which we can
formalize the idea that “most” random walks have “small” length. We
pursue this idea in the next subsection.

The Law of Large Numbers for Random Walks and
Coin Tosses

Since o = /7 for a random walk of 7 steps, the probability of a walk
having length > mo = m./n is < 1/m? by Chebyshev’s inequality. We
can make this probability less than any given positive £ by suitable
choice of m; in fact, for m > 1/,/e. And then we can make the length
m./n an arbitrarily small fraction § of the number of steps, 7, in the
walk by suitable choice of #; in fact, for 7 > n2* /2.

Now if the random walk comes from a sequence of coin tosses, with
a step of +1 for each head and —1 for each tail, making the length of
the walk a fraction § of the total number of steps is equivalent to making
the number of heads differ from the number of tails by less than 7. It
follows that the fraction of heads differs from 1/2 by less than §. To sum
up, we have:

Law of large numbers for coin tosses. For any ¢ > 0 and § > 0 there
is a number N such that, for any sequence of n > N coin tosses, the
probability is less than ¢ that the fraction of heads differs from 1/2 by
more than §. O

This is called a “weak” law of large numbers, because there are many
stronger results in the same vein. However, this example gives the germ
of the idea: if an event has probability p then one can prove, in a precise
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Figure 8.3: Bar graph of the binomial coefficients (120) for k =33 to 67.

sense, that the fraction of successful trials in a “large” sequence of trials
will probably be “close” to p.

8.5 *The Bell Curve

The law of large numbers shows the importance of limit processes in
probability. We expect, and we can prove, that the net result of a large
number of trials (such as the fraction of heads in a sequence of coin
tosses) tends to a limit in a certain sense. A more spectacular example
occurs where a whole distribution of probabilities (say, the probabilities
of getting k heads in 7 tosses) tends towards a continuous distribution
as the number of trials tends to infinity. We can see this happening if
we look at the binomial coefficients (Z) for a large value of 7, such as
n =100 (figure 8.3).

This is a mathematical model of the Galton board described in
section 8.1. It seems clear that the graph of binomial coefficients is
tending towards a continuous curve shaped like a bell. This curve in
fact has the same shape, when the axes are suitably scaled, as the curve
y = e~ shown in figure 8.4. The probability distribution represented
by this curve is called the normal distribution.

The two are compared in figure 8.5, showing just how well the curve
fits the binomial distribution when 7z = 100.

The wonderful convergence of the graph of binomial coefficients to
the graph of y = ¢~ was discovered by de Moivre (1738).

A more precise statement of the result reads as follows.
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—92 0] 2

xZ

Figure 8.4: The graph of the bell curve y =e¢™*".

R .

Figure 8.5: Comparing binomial coefficients with the bell curve.

Convergence of the binomial distribution. As 7 — oo the graph of
the binomial coefficients (}}), when scaled so that the area under the curve

is 1, tends to the graph of

The proof is too ingenious to be considered elementary, so we will
not describe it in detail. However, it is related to two facts of indepen-
dent interest that are each quite close to elementary. We will show in
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section 10.7 that the second fact (Wallis’s product) is in fact sufficient

to establish the convergence to %e‘xz
1. The asymptotic formula
n\”" ) n!
nl ~ AJn (—) ., which says that ——— —
€ V(%)

constant A as 7 — o0.

This formula, discovered by de Moivre, is used to approximate
the binomial coefficients (Z) = k!(%k)! as 7 — 00.
2. Wallis’s product
4 3.3.5.5.7-7----

T 2-4-4-6-6-8----

discovered by Wallis (1655). This formula was used by Stirling
(1730) to find the constant A in de Moivre’s formula for 7!.
The resulting formula,

n
n' ~A2nn (ﬁ) ,
e

is known as Stirling’s formula.

This remarkable formula shows that geometry does not own the
number 77! It equally belongs to probability theory (and also to combi-
natorics and number theory).

8.6 Historical Remarks

Probability theory was first associated with gambling, centuries ago,
though it is not nearly as old as gambling itself. Gamblers developed
intuition about the probability of various outcomes in dice or card
games—often quite accurately—but there was no theory of probability
until around 1500. No doubt this had something to do with super-
stitions that are common among gamblers, such as the belief that
throwing tails becomes more likely after a run of heads. Superstitions
like this obviously play havoc with any scientific theory of probability.
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Figure 8.6: Portrait of Luca Pacioli, around 1496.

But even scientists could have doubted that there is such a thing as a
“law” of “chance”: the two concepts sound incompatible.

Some of the first probability calculations were made in the sixteenth
century by the Italian algebraist Girolamo Cardano. He wrote a book
on games of chance, Liber de ludo aleae (Book of games of chance)
around 1550, though it was not published until 1663. In it he used
some elementary combinatorics to enumerate outcomes, assumed to
be equiprobable, and thereby became the first to calculate a theoretical
probability correctly. However, he also made some errors, and was
unable to solve the “problem of points” (division of stakes in an
unfinished game), which had first been raised by Pacioli (1494). Though
not a renowned mathematician, Pacioli made important contributions
to subjects from accounting to magic. He is the subject of a splendid
mathematical portrait, attributed to Jacopo de’ Barbari (figure 8.6).

As mentioned in section 1.7, Pascal (1654) solved the problem
of points with the help of the binomial coefficients. He discussed the
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problem in correspondence with Fermat, who evidently knew the solu-
tion independently, having used binomial coefficients to solve problems
in number theory (as we saw in section 7.2). Another who apparently
solved the problem on his own was the Dutch scientist Christiaan
Huygens, who included a systematic treatment of it in his book De
ratiociniis in aleae ludo (Calculation in games of chance) of 1657. In
this book, Huygens correctly solved many finite probability problems,
including a formidable instance of the gambler’s ruin problem (his fifth
problem). With the publication of Huygens’s book, elementary finite
probability theory at last was on a sound foundation.

Huygens’s book was the starting point for Jakob Bernoulli, who
reissued it, with a commentary, as the first part of his book Ars
conjectandi (The art of conjecturing). Bernoulli died in 1705 before
his book was published, and it finally appeared in print as Bernoulli
(1713), edited by his nephew Nicolaus Bernoulli. The commentary
considerably extended the ideas of Huygens, going as far as describ-
ing the binomial distribution and proving some results on binomial
coefficients that pave the way for the law of large numbers. Jakob
Bernoulli proved the law in the fourth part of the Ars conjectandi,
calling it his “golden theorem.” He realized how important it was,
because it allows us to infer the probability of an event, to arbitrary
accuracy and with an arbitrary degree of certainty, by performing a
sufficiently large number of trials (now called Bernoulli trials in his
honor).

An example (which was actually first studied in Bernoulli’s time)
is the probability of a newborn child being a boy. Records of births in
the city of London between 1629 and 1710 served as Bernoulli trials for
the event of the newborn being a boy, and they showed a birth ratio
of very nearly 18 boys to 17 girls. Thus it could be concluded that the
probability of a newborn being a boy is very likely greater than 1/2. The
law of large numbers was the beginning of statistics as we know it today,
but what was missing from Jakob Bernoulli’s law was a good estimate
of how many trials are needed to ensure a close approach to the true
probability. He found estimates but they were too large to be useful. So
the most important part of his discovery was the existence of a limit (the
true probability, inferred from the number of successful trials) rather
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than a way to calculate it. The next step, towards a usable law of large
numbers, was made by de Moivre.

Abraham de Moivre first encountered probability theory while
at school in France between 1682 and 1684, when he was about 16.
He studied Huygens’s book on his own while studying logic in Saumur,
then learned more mathematics when he moved to Paris in 1684. His
studies were interrupted when French protestants lost many of their
rights with the revocation of the Edict of Nantes in 1685, and he moved
to London as a Huguenot refugee in 1687.

In London, de Moivre became one of the leading mathematicians—
a friend of Newton and a member of the Royal Society—but he was
unable to obtain a university position, and had to earn his living as
a private tutor. He spent much of his time in coffee houses, where
he did some of his tutoring, played chess for money, and answered
questions from gamblers. His great book on probability, The Doctrine of
Chances, was first published in 1718, and in expanded editions in 1738
and 1756 (the latter after his death in 1754). The 1756 edition contains
his theorem that the limit of the graph of the binomial coefficients,
suitably scaled, is the so-called “bell curve” y=e *". He had first
published this theorem in de Moivre (1733), but the version of 1756
includes further refinements. In chapter 10, when we sample some
results beyond the boundaries of elementary mathematics, we will say
more about the theorem of de Moivre and its relation to the theorem of
Wallis mentioned in section 8.5.

In passing from the binomial coefficients to the function e‘xz, de
Moivre made a decisive move towards analytic probability theory—a
theory that depends on the concepts and methods of calculus. Instead
of adding binomial coefficients (as one does in solving the problem
of points), one finds the area under sections of the bell curve, which
amounts to finding the integral | ab e~ dx between given values of a

—** is not the derivative of

and b. This is a difficult problem, because e
any elementary function. Whether it was due to the difficulty of the
integral, or its origin in what was then a fringe area of mathematics,
I do not know; but de Moivre’s marvelous discovery remained in
obscurity until it was extended and given a new proof by Gauss (1809)

and Laplace (1812). The eminence of Gauss and Laplace helped to
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bring probability theory, and the normal distribution in particular,
to the attention of other mathematicians. But it had the rather unjust
consequence that the normal distribution is now called “Gaussian,”
instead of being named after de Moivre.

From the viewpoint of today, de Moivre’s limit theorem can be seen
as the first version of the so-called central limit theorem, whose evo-
lution continued well into the twentieth century. Indeed the theorem
was first called “central” by Polya (1920), because of its central role in
probability and statistics. There is a whole book on the history of the
central limit theorem, Fischer (2011).

8.7 Philosophical Remarks

The meaning of the probability concept has been much debated by
philosophers, but in this book we are content to declare certain simple
events to be equally probable, and to calculate the probability of more
complicated events as the ratio of favorable cases to the total number of
cases. For example, we take it to be equally probable for a coin toss to
result in a head (H) or a tail (T) (by symmetry, or by definition of a “fair
coin”). It follows, when the coin is tossed twice, that the four outcomes
HH, HT, TH, and TT are equally probable, and hence that exactly one
head occurs in two cases, so the probability of getting exactly one head
is2/4=1/2.

Thus, for our purposes, probability reduces to counting the number
of favorable cases and the total number of cases, which is a problem of
combinatorics.

A more interesting problem, to the philosophical mathematician,
is that of defining “largeness” and “closeness.” A law of large numbers,
for example, is supposed to say that the proportion of heads in a “large”
sequence of coin tosses is “close” to 1/2 for “most” sequences. Making
these ideas precise is really the same as defining the concept of limit in
calculus, as we do when we define what it means to say “1/7 is close to
zero when 7 is large.”

Thus finite probability and calculus share an interest in the concept
of limit, and probability may even be a better reason to master the limit
concept, for some students. At any rate, the occurrence of the limit
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concept in two quite different contexts reinforces the case for including
it in elementary mathematics.

Just beyond the bounds of elementary probability, we can glimpse
advanced notions on the horizon when we consider infinite sequences
of coin tosses. Consider the event of throwing infinitely many heads
in succession. This event is possible, but in some sense “infinitely
unlikely.” To express this precisely we say that the event of throwing
infinitely many heads in succession has probability zero. Thus, in
infinite probability theory, probability zero does not mean impossible,
just infinitely unlikely. Another example of an event of probability zero
is the following. Suppose we have an infinitely sharp dart, which will hit
just a single point of the plane when we throw it. If we throw the dart
at random it is possible that it will hit the origin, but the probability of
this happening is zero.

While we have the dart in our hand, here is another question: what
is the probability of hitting a point (p, q) where p and g are rational? It
turns out that this event also has probability zero, for a reason we will
discuss in chapter 9. More generally, suppose we throw the dart at an ar-
bitrary set S of points in the unit square {(x, y): 0 <x <1,0<y <1}
The unit square has area 1, so the probability of hitting a point in S
ought to equal the area of S. If § is the set of points (p, q) in the unit
square with p, g rational it is indeed true that S has area zero, which is
why the probability of hitting a point of this particular S is zero.

In general, to speak of the probability of hitting a member of a set of
points we need a general concept of area, or measure, for sets of points.
(The measure concept is also needed for advanced calculus, in order
to integrate complicated functions, because the integral of a function
equals the area of the region under its graph.) We have to ask whether
it is even meaningful to speak of the probability of hitting S, because the
“area of §” may not be meaningful. The question whether every subset
of the unit square has a meaningful area leads to deep questions about
set theory and infinity, which are very advanced mathematics.
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PREVIEW

Proof, and hence logic, is essential to mathematics, but the logic used
in mathematics has several distinctive features. The simplest logic,
propositional logic, studies the effect of the words AND, OR, and NOT
on the truth values of sentences. This logic turns out to have a classical
mathematical description: it is simply mod 2 arithmetic, with 0 and 1
representing “false” and “true.”

But propositional logic is not expressive enough for mathematics. It
has to be enhanced by variables, quantifiers (“for all x” and “there is an
x”), and symbols for properties and relations. We briefly discuss how
mathematics can be expressed in the resulting logic—predicate logic—
before moving on to some important axiom systems for mathematics.

The first of these is Peano arithmetic, PA, which grew out of the
discovery that arithmetic can be based almost entirely on induction,
the signature method of mathematical proof that goes back at least as
far as Euclid. If we assume, then, that induction is part of elementary
mathematics, we can take PA as a good approximation to “elementary
mathematics.”

To see what is not elementary, we study extensions of PA. The first
of these is called ZF set theory. By reinventing PA as a certain theory of
finite sets, ZF can be viewed as PA plus an axiom stating the existence
of an infinite set. Thus one, somewhat crude, description of advanced
mathematics is what is added to PA by adding infinity.

A more refined view, called reverse mathematics, identifies distinct
low levels of advanced mathematics. One of the systems used in reverse
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mathematics, ACA,, marks the level of two theorems often seen near
the border of elementary mathematics: the completeness of R and the
Bolzano-Weierstrass theorem.

9.1 Propositional Logic

The simplest part of logic, called propositional logic, is concerned with
finding the truth value of compound propositions from the truth values
of their constituent parts, called atomic propositions. If we denote
the atomic propositions by p, q, 7, . . ., then examples of compound
propositions are p AND ¢, p OR ¢, and NOT p. Initially, we will be
concerned only with compounds formed using AND, OR, and NOT.
Thus we might wish to know

Is (NOT p) OR (g AND ) true when p is true, g is false, r is true?

Such questions can be answered mechanically with the help of truth
tables, which give the values of p AND ¢, p OR g, and NOT p for all
possible values of p and g. If we denote “true” by 1 and “false” by 0,
then the required truth tables are:

plaq| paNpg pla| porg
010 0 0|0 0 p | NoT p
01 0 01 1 0 1
110 0 1]0 1 1 0
1|1 1 1|1 1

These are also tables of functions in mod 2 arithmetic, namely pq,
pq+ p+q,and p+ 1, respectively. It is obvious that the function pgq
has the same values as p AND g, and that p + 1 has the same values as
NOT p, and it is an easy computation to check that pq + p + g has the
same values as p OR gq. Thus, finding the truth value of any proposition
compounded from AND, OR, and NOT reduces to a computation in
mod 2 arithmetic. In particular, finding the value of

(NOT p) OR(g AND7) when p=1,9g=0,r=1
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amounts to computing the value of

(p+1)orRgqr =(p+1)gr+(p+1)+qr for p=1,q=0,r=1.

Substituting these values, we get the value
(I1+1)0-1+(14+1)4+0-1=0+040=0,

soinfact (NOT p) OR (g AND 7) is false when p is true, q is false, and 7 is
true. This example illustrates a simple case of a far-reaching principle:
logic can be arithmetized.

However, we do not immediately replace all reasoning by calcu-
lations in mod 2 arithmetic. The words AND, OR, and NOT are often
more enlightening than addition and multiplication. For example, it
is obvious that any function whose arguments and values are either 0
or 1 can be expressed in terms of AND, OR, and NOT. An example will
show why. Consider the function F(p, q, r) with the following table of
values.

pla|r| Fp.qr)
0]0]0 0
0|01 1
0|1]0 1
0|11 0
1(0/0 0
1101 0
110 1
1|11 0

The table says that F(p, g, 7) is true just in the cases given by lines 2, 3,
and 7; that is, when it is true that

(NOT p) AND (NOT g) AND 7

OR

(NOT p) AND g AND (NOT 7)

OR

p AND g AND (NOT 7),
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so F(p, q, r) equals the above compound of the functions AND, OR,
and NOT.

A similar argument applies to any function F whose arguments and
values are either 0 or 1—a so-called Boolean function. F is a composite
of the special Boolean functions AND, OR, and NOT, and one such
composite may be read directly from the lines in the truth table for F.
It follows that F may also be compounded from mod 2 addition and
multiplication, though this result is not so easy to see directly.

Symbolism

It is convenient to abbreviate AND, OR, and NOT by A, Vv, and —,
respectively. The symbols A and V are chosen because of their analogy
with symbols N and U for set intersection and union, and also because
they reflect an important relationship between AND and OR—called
duality—that ordinary language does not.

An example of the duality between A and V is the following pair of
equations:

=(pAg)=(=p)V(=q),
=(pVvq)=(=p) A(=9q).

Both are true for all values of p and q. Thus we can take an identity
between two Boolean functions, interchange A and Vv, and get another
identity between Boolean functions. This is true under quite general
conditions, so AND and OR have a certain kind of interchangeability,
which our notation reflects.

Another important Boolean function that has its own symbol is the
implication function “if p then g,” which is denoted by =>. The truth
table for this function is:

pla|P=4q
010 1
0|1 1
110 0
1|1 1

It is easily checked that p=> g is the same Boolean function as
(=p)Vvgq.
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A related function is “p if and only if g,” or (p = q) A (q = D).
This function is denoted by p < ¢ and its truth table is:

<=4

—_— - O Oy

— o = o

’—‘OO#—'@

Notice that p < ¢ is the same Boolean function as p 4+ g + 1, where +
is the mod 2 sum.

9.2 Tautologies, ldentities, and Satisfiability

In logic we are particularly interested in valid formulas, that is, for-
mulas that are true for all values of the variables. Valid formulas of
propositional logic are known as tautologies. A simple example of a
tautology is p Vv (—p), which has the value 1 for all values (0 or 1) of p.
In arithmetic we are similarly interested in identities—equations that
hold for all values of the variables. Tautologies obviously correspond to
identities in mod 2 arithmetic. For example, p V (—p) corresponds to
the identity p v (—p) = 1, which we can rewrite in terms of the mod 2
sum and product as

p(p+D+p+(p+1) =1,

or more simply as the equivalent identity p(p+ 1) = 0.

Truth tables enable us to calculate the value of any formula
f(p, q,r, ...) forany values of the variables p, g, 7, . . .. Hence we can
decide whether f(p, q, 7, .. .) is a tautology simply by substituting all
possible values of p, g, 7, . . .. If there are # variables, then there are 2”
values of the sequence p, g, 7, . . ., so this problem is finite and hence
solvable. Simple as the solution may be, in principle, it suffers from the
practical defect that 2” is infeasibly large for quite small values of 7, say
n = 50. Thus it may be infeasible to decide whether f(p, q,7,...)isa
tautology, even though the formula occupies only a couple of lines.
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We do not yet know whether there is a feasible solution to the
problem of recognizing tautologies; that is, a solution that can be found
in time roughly comparable to the length of the formula /. In fact, we
do not even know a feasible solution to the satisfiability problem: the
problem of recognizing, for any formula f, whether f(p, g,7,...)=1
for some values of the variables p, g, 7, .... The latter problem is
especially frustrating because the value of f(p, g, 7, . . .) can be feasibly
computed (by truth tables) for any particular values of p, g, 7, . . .. But
even verifying satisfiability seems feasible only if we assume the magical
ability to make a “lucky guess” for satisfying values of the variables.

The difficulty of satisfiability seems surprising, particularly when
it is viewed as a problem about mod 2 sums and products, which
one would expect to be well understood. But, as we observed in
section 3.6, mod 2 arithmetic is not as easy as it looks. Deciding whether
a polynomial in many variables has a solution in mod 2 arithmetic is
an NP problem which is not known to be in P. In fact, as mentioned
in section 3.10, finding solutions of polynomial equations mod 2 is as
hard as any NP problem—it is NP-complete—so it has no polynomial
time solution unless all NP problems are in P.

This unexpected difficulty has sparked a reassessment of large
swaths of mathematics. Many problems, in many fields of mathemat-
ics, turn out to have the same NP characteristics as the satisfiability
problem.

o The problem consists of infinitely many questions, and there is
a method for answering each of them, which takes finite time
for each question.

 The time needed to verify a positive answer (if there is one) to a
question of length 7 is “short,” in the sense that it is bounded
by a polynomial function of 7 (typically 7* or 7).

« But the time to find even one positive answer is generally
long—exponentially long relative to the length of the question.

The satisfiability problem has these characteristics because:

o There are infinitely many formulas f(p, g, 7, .. .), and the
truth table method allows us to test each one for satisfiability.
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« For given values of p, q, 7, . . ., finding the value of
f(p,q,r, ...)takes time roughly equal to the length of the
formula.

» But we may have to test all of the 2” sets of values of the #
variables p, g, 7, . . . to find one that satisfies—and 7 can be
roughly as large as the length of the formula.

Recognizing tautologies seems just as hard as recognizing satisfiable
formulas, because we have to ensure that all sets of valuesof p, g, 7, . . .
satisfy the formula, not just one. In any case, the truth table method
does not seem to be an enlightened method for finding tautologies
f(p,q,r,...), because it substitutes values of p, g, 7, ... mechani-
cally without regard to the structure and meaning of f(p, q,7,...).
One would hope for a method that not only finds tautologies but proves
them in mathematical style—starting with some obvious tautologies,
such as p v (—p), and deducing further tautologies in a natural manner.

There is such a method, which we give in section 10.8. But, alas, it
is not substantially faster than the truth table method in the worst cases.
Thus it seems that even the simplest form of logic harbors some deep
mysteries.

9.3 Properties, Relations, and Quantifiers

Propositional logic is an indispensable part of logic—and not trivial
either—but it is not expressive enough for mathematics. The variables
in propositional logic can take only two values, false and true (or 0
and 1), whereas in mathematics we want variables that can take values
that are numbers, or points, or sets, and so on.

Moreover, we want to speak about properties of x, or relations
between x and y (or even between three or more variables). This calls
for a more expressive form of logic called predicate logic. “Predicates”
can be properties or relations, and they are denoted by symbols such as

P(x), read “x has property P,”
R(x, y), read “xand y are in relation R.”

Thus “x is prime” is an example of a property, and “x < y” is an
example of a relation. Notice that the formulas “x is prime” and
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“x < y” are neither true nor false, because their variables are free to take
different values. Formulas acquire truth values either by substituting
values for the variables—for example, “4 is prime” is false—or by
binding the variables by the quantifiers

Vx “forall x,”
Jx “thereisan x,”

for example, when x, y range over the natural numbers

Vx(x is prime) is false,
Jx(x is prime) is true,
Vx3dy(x < y) is true.

(The latter formula is read “for all x there is a y such that x < y.”)

As these examples suggest, the language of predicate logic can
conveniently express typical mathematical statements. In fact, the lan-
guage is arguably flexible enough to express all of mathematics. (This
becomes easier if the language is enhanced by including the equality
symbol = and symbols for functions.) We will discuss the specific cases
of arithmetic and set theory in the sections that follow.

It is quite striking how an awareness of quantifiers brings clarity
to otherwise fuzzy concepts, such as limits and continuity. It might be
said, in fact, that the foundations of calculus (analysis) become clear
only with proper attention to quantifiers.

Take, for example, the vague concepts of “large” and “small”
numbers. Our intuition is that 1/# is “small” when 7 is “large,” but
there is really no such property as “largeness.” If a natural number »
is “large” then surely # —1 is “large” too, but then we are forced to
the absurd conclusion that every natural number is “large.” What we
really mean, when we say that “z large = 1/# small” is that 1/# can
be made as small as we please by choosing 7 sufficiently large. This
is still not precise, but we are getting closer. It is clearer still to say
that we can make 1/# less than any prescribed & by choosing 7 greater
than a suitable N, depending on ¢ . Using the quantifiers V and 3 this
statement about € and N is concisely expressed as follows:

V(e >0)ANn>N=0<1/n<e¢).
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(To prove this statement one could take N as the first integer greater
than 1/¢.)

Here are some other examples of statements from analysis, written
precisely with the help of quantifiers.

1. The sequence ay, a,, as, . . . has limit /.
V(e > 0)IN(n > N=|a, —[| < ¢).
2. The function f is continuous at x = a.
V(e >0)A8(lx —al <8 =|f(x)— f(a)| <e).
3. The function f is continuous for x witha < x < b.

VxVx'V(e > 0)38(a < x, x’ < band
lx— x| <8=|f(x)— f(X)] <e).

4. The function f is uniformly continuous for x witha < x < b.

V(e > 0)3(§ > 0)VxVx'(a < x, ¥ <band
lx—x'| <8=|f(x)— f(x)] <e).

After the concept of continuity was precisely defined, around 1820, a
few more decades passed before it was realized that uniform continuity
is a distinctly different concept. For example, f(x) = 1/x is continuous
for 0 < x < 1, but it is not uniformly continuous on this domain. There
isno 8 > 0 for which |x — x'| < § guarantees ‘i — 2| <eforagivene.

Whatever § we choose (say § = 1/1000), ‘i — ﬁ‘ grows indefinitely

as x approaches 0.

Failure to distinguish between continuity and uniform continuity
is at least partly due to the difficulty of grasping the quantifier prefix
Ve3d§VxVx'. Even saying it takes some thought. One normally says: “for
all ¢ there is é such that, for all x and «x/, ....” It seems psychologically
difficult for humans to grasp alternation of quantifiers, as in Vav3 . . .
or 3V3V - . . . Outside of artificially constructed sentences, mathematics
seldom throws up quantifier prefixes worse than V3V.
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The presence of quantifiers obviously makes it difficult to find all
the valid formulas of predicate logic. Each formula now has infinitely
many possible interpretations, so we cannot simply check all possible
interpretations, as in propositional logic. Nevertheless, the method of
proving tautologies mathematically can be extended to a method for
proving all the valid formulas of predicate logic. One such method,
whose success depends on the Kénig infinity lemma, is given in
section 10.8.

9.4 Induction

In section 2.1 we noticed how Euclid used induction in its “descent”
form to prove results such as existence of prime factorization and
termination of the Euclidean algorithm. Descent is a natural style of
argument in these two cases, since they produce descending sequences
of positive integers in a natural way. In other cases, “ascent” is more
natural. For example, the numbers in Pascal’s triangle are produced by
starting with a small number, 1, and growing bigger ones, by adding
adjacent numbers in one row to form a new number in the next row.
Here it is natural to prove properties by an ascending style of induction,
and indeed Pascal (1654) did precisely this in his treatise The Arithmetic
Triangle.

Pascal’s proofs were not absolutely the first to use the ascending
style of induction—Levi ben Gershon (1321) is an earlier example—but
Pascal’s proofs are so numerous and clear as to leave no doubt about
their structure. To prove that a property P(x) holds for all natural
numbers 7 above a certain base value b (usually 0 or 1) it suffices to
prove:

Base step. That P (7) holds for the base value 7 = b.
Induction step. That if P(k) holds, then P(k+ 1) holds.

Over the next few centuries, induction became a standard tool in
number theory, in both ascending and descending forms. However,

it was not one of the foundations of the subject. As late as the mid-
nineteenth century, eminent number theorists such as Dirichlet still
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appealed to geometric intuition to justify basic properties of addition
and multiplication suchasa + b =b+a and ab = ba.

Then Grassmann (1861) made a remarkable breakthrough: the
addition and multiplication functions can be defined, and their basic
properties proved, by induction.! Thus induction is the very foundation
of arithmetic.

Assuming only the existence of the successor function S(n), the
addition function + is defined inductively by

m+0=m, m-+Sk) =S(m+k).

The first equation defines 72+ n for all 72 and for # = 0. The second
equation defines 72+ n for n = S(k), given that 72+ n is already defined
for n = k. It then follows, by induction on 7, that 72+ 7 is defined for all
natural numbers 7z and all natural numbers 7 (these being the numbers
that can be reached from 0 by applying the successor function).

Given the definition of +, the multiplication function - is defined
inductively by

m-0=0, m-S(k)=m-k+m.

Again, the first equation defines the function for all #zand for 7 = 0; the
second defines 72+ S(k), given that 772 - k and the + function are already
defined. And again it follows by induction that 72 7 is defined for all
natural numbers 72 and all natural numbers 7.

With these inductive definitions of + and - in hand, we can proceed
to give inductive proofs of their fundamental properties. In principle,
the proofs are straightforward consequences of the definitions, but the
sequence of proofs is quite long, so it takes some experimentation to
develop them in the right order. Grassmann (1861) arrived at ab = ba
only in his Proposition 72! It would be tedious to give all of these
proofs, so I will do only some of the more immediate ones by way of
example.

! Today it is common to speak of definition by recursion and proof by induction. 1 see no
harm in using the word “induction” for both.
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Successor is +1. For all natural numbers n, S(n) = n+ 1.

Proof. The number 1 is defined to be S(0), so

n+1=n+ S5(0)
=8(n+0) by definition of 4,
=S(n) since 77+ 0 = n by definition of +. [J

Commutativity of adding 1. For all natural numbersn, 1 +n=mn+ 1.

Proof. Since S(n) =n+1 by the previous proposition, it suffices to
prove S(n) = 1+ n. We do this by induction on 7.
For the base step # = 0 we have

S0)=1=1+0 by definition of +.

For the induction step we assume S(k) =1+ k, so k+1=1+k, and
consider S(S(k)):

S(S(k) =S(k+1) by the previous proposition,
=S(1+k) by the induction hypothesis,
=1+ S(k) by definition of +.

This completes the induction step, so S(7) =1+ for all natural
numbers 71. O

Next, to deal with sums of three or more terms, we need the
associative law for addition.

Associativity of addition. For all natural numbers |, m, n,
I+ (m+n)=1+m)+n

Proof. We prove this for all / and 7 by induction on 7.
For the base step we want [ + (m+ 0) = (I +m) + 0. This is true
because

[+m+0)=]+m because 71+ 0 = m by definition of +,

(l4+m+0=I14+m for the same reason.
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For the induction step, suppose [ + (m+ k) = (I + m) + k and consider
[+ (m+ S(k)):

[+(m+Sk) =1+ S(m+k) by definition of +,
=S+ (m+k) by definition of +,
=Sl +m)+k) by induction hypothesis,
= +m)+ S(k) by definition of +.

This completes the induction step, so [ + (m1+n) = (I +m) + n for all
natural numbers [, m, 7. O

Now we are ready to prove the commutative law for addition. This
is quite complex, since even the base step requires an induction.

Commutativity of addition. For all natural numbers m and n,
m+n=n+m.

Proof. We prove this, for all 72, by induction on 7.

The base step 7 = 0 depends on proving 0 + 72 = m, which we do
by induction on 7.

For m = 0,0+ m =040 = 0 = m by the definition of +.

For the induction step, we assume 0 + k = k and consider

0+S(k)=0+(k+1) because successor is +1,
=0+k+1 by associativity of +,
=k+1 by induction hypothesis,
= S(k) because successor is +1.

This completes the induction to prove 0+ = m. It follows by the
definition of 4 that 72+ 0 = 72 = 0 + 1, so we have done the base step
of induction on 7 to prove m+n =n+m.
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The induction step is to assume that 72+ k = k + m and to consider
m+ S(k). Now

m+Sk)=m+(k+1) because successor is +1,
=(m+k)+1 by associativity of +,
=(k+m)+1 by induction hypothesis,
=1+ (k+m) by commutativity of adding 1,
=1+k)+m by associativity of +,
=(k+1)+m by commutativity of adding 1,
=Sk)+m because successor is +1.

This completes the induction step, so 7+ 7 = n+m for all natural
numbers 72 and 7. U

Many readers may wonder, at this point, what we gain by hard
formal proofs of seemingly obvious facts such as m+n=n+m. I
would answer that 72+ # = 7+ m may seem obvious because of some
habitual mental image of 772 4 7, such as rods of lengths 72 and 7 placed
end to end. But most facts about numbers, such as the infinitude of
primes are not “obvious” in the same way, so we need to find the
underlying logical principles that make the infinitude of primes as
certain as 72+ n = n 4 m. Induction is the principle that underlies both
these facts—and infinitely many others—so it is worth understanding
how it underlies even simple facts such as m+n = n + m.

9.5 *Peano Arithmetic

Grassmann’s discovery that induction is the basis of arithmetic did
not immediately impress the mathematical community—in fact, it
seems to have gone unnoticed. Decades passed before the idea was
rediscovered by Dedekind (1888), apparently unaware of Grassmann’s
work. Then Peano (1889), acknowledging Grassmann’s contribution,
built induction into an axiom system for arithmetic, now known as
Peano arithmetic (PA).
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Today, the Peano axioms are usually written in the language of
predicate logic, with variables ranging over the natural numbers. The
language also has a constant 0 for zero, and function symbols S, +, and -
whose intended interpretations are successor, sum, and product. We
call the language with these constant function symbols, plus equality
and logic symbols, the language of PA.

The Peano axioms are:

1. Vua(NOT 0 = S(n)),
which says that 0 is not a successor.
2. Viivu(S(m) = S(n) = m=n),
which says that numbers with the same successor are equal.
3. VmVn(m+ 0 =m AND m+ S(n) = S(m+ n)),
which is the inductive definition of 4.
4. Vimn(m-0=0AND m- S(n) = m-n+m),
which is the inductive definition of -.
5. [¢(0) AND Vim(p(m) = ¢(S(m)))] = Vn ¢(n),
which says that if ¢ is a property that holds for 0, and if ¢ holds
for S(m) when it holds for 72, then ¢ holds for all 7.

The last is the induction axiom, or more properly the induction axiom
schema. It actually consists of infinitely many axioms; one for each
formula ¢() that can be written in the language of PA.

The arguments in the previous section show that the Peano axioms
suffice to prove the associative and commutative properties of +,
but this is just the beginning. Along the same lines we can prove
the associative and commutative laws for -, and also the distributive
law a(b+ ¢) = ab+ ac. This validates all the usual calculations with
natural numbers, and it is then possible to prove the basic facts about
divisibility and prime factorization. Moreover, there are some tricks
that make it possible to simulate the use of negative, rational, and
algebraic numbers in PA—even some calculus—so essentially all of
known number theory is within the scope of PA.

The five Peano axioms capture so much arithmetic in such a simple
way that it seems reasonable to take them as the very definition of
elementary arithmetic. It is much the same as taking the nine field
axioms to encapsulate classical algebra in section 4.3. Of course, the
Peano axioms have some very hard theorems as consequences, so
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one cannot say that all their consequences are elementary. They do,
however, give an elementary encapsulation of arithmetic.

But what of other parts of elementary mathematics, such as com-
binatorics? A more natural setting for combinatorics would seem to be
the theory of finite sets. The beauty of finite set theory is not only that it
provides objects like graphs—which are defined as certain finite sets—
but also that it provides natural numbers, allowing us to “count.”

The surprising and elegant definition of the natural numbers as
finite sets first occurs informally in Mirimanoff (1917), but it did
not become influential until formalized by von Neumann (1923). As
for Peano, for von Neumann the natural numbers arise from 0 by a
successor operation. We define 0 to be the smallest possible set, the
empty set ¢J. Then 1, 2, 3, ... are defined in turn so that 7+ 1 is the

set with members 0, 1, 2, ..., n— 1. Thus
0=40,
1={0},
2={0, 1},
n+1=10,1,2,...,n).
Notice that 7+ 1 is the union of the set # =1{0, 1, 2, ..., n— 1} with

the set {7} whose single member is 7. So we have
n+1={0,1,2,...,n—1}U{n} =nU{n}.

Since 741 is the successor of 7, this amounts to a very concise
definition of the successor function,

S(n) =nU{n},

in terms of the “native” set operations of union and forming the
singleton set {n} whose member is 7.

Even better, the < relation between numbers is simply the member-
ship relation, because

m < n < mis a member of 7,

which we write m2 € n. As a result, induction follows from a nat-
ural assumption about sets, that “infinite descent is impossible for
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membership.” In more positive terms, every set x has a member y that
is “e-least,” in the sense that no member of x is a member of y. This
assumption is called the axiom of foundation. We also need some other
axioms, asserting the existence of the empty set, and guaranteeing the
existence of unions and certain other sets, such as singletons.

The necessary axioms are more complicated than the Peano ax-
ioms, so we omit them here. (For more information, including what
must be added to capture infinite set theory, see section 9.8.) What
is important is that the axioms of finite set theory embrace both
combinatorics and arithmetic, so it might be felt that finite set theory
is superior to PA, because of its greater scope. However, this is not
strictly true, because PA is capable of “expressing” all of finite set theory,
because it can encode finite sets by numbers.

What makes this possible is that each finite set can be described by
a string of symbols using the four characters ¢, {, }, and the comma. In
particular,

0 is described by the string ¢,
2 ={0, 1} is described by the string {(}, {¢}},
so {0, 2} is described by the string {#, {#}, {#}}}, and so on.

If we now interpret the four characters as the nonzero digits 1, 2, 3, 4 of
base 5 numerals, then each string defining a finite set can be interpreted
as a number. As we said in section 3.1 (about base 10 or base 2 numerals,
but it is the same for base 5), numerals are based on the concepts of
addition, multiplication, and exponentiation. We already have the first
two functions in PA, and we can define exponentiation by

m’ =1, " =" m.

Thus PA has the necessary functions to express numerals and hence
arbitrary finite sets.

In this sense, arithmetic is the foundation for all discrete mathemat-
ics. But what about the continuous mathematics we find in geometry
and calculus? As we have already seen in chapters 5 and 6, these depend
on the real number system R, whose foundations we have not yet
discussed. We have postponed this discussion until now for a good
reason: the foundations of R are thoroughly entangled with questions
of set theory and logic.
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9.6 *The Real Numbers

The theorem that every magnitude that grows
continually, but not beyond all limits, must certainly
approach a limiting value . .. investigation convinced
me that this theorem, or any one equivalent to it, can

be regarded in some way as a sufficient basis for
differential calculus. ... It then remained to discover
its true origin in the elements of arithmetic and thus

at the same time to secure a real definition of the

essence of continuity. I succeeded Nov. 24, 1858.

Richard Dedekind (1901), p. 2

The real numbers have been part of elementary mathematics since
the time of Euclid’s Elements, but even then they were the most
difficult part. The first sign of trouble was the discovery of irrational
quantities such as +/2. As mentioned in section 5.3, this discovery
led the Greeks to distinguish between their “numbers” (which were
essentially our rational numbers) and the more general concept of
“magnitudes” (essentially our real numbers, but with severely limited
algebraic operations). It also led to an elaborate theory of “ratios of
magnitudes,” in Book V of the Elements, which compared magnitudes
by comparing their integer multiples.

For example, the length V2 might be compared with the unit
lengths 1, 2, 3, .. . by observing that

1<\/§<2,
2<2x/§<3,
7 <52 <8,

16 < 1242 < 17,
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Or, as we would say today,

1<+2<2,

3
1<\/E<5,

7 8
- <2< -,
5 5

16 17
— <2< —,
12 12

(I got these successive approximations from the continued fraction for
/2 in section 2.2.)

The existence of increasingly accurate rational approximations to
an irrational quantity is in Book V of the Elements, where Euclid proves
(in effect) that any two distinct magnitudes a < b can be distinguished
by finding a rational number between them:

m
a<—<b.
n

Thus an irrational magnitude a is determined by the rational numbers
less than it and the rational numbers greater than it. However, the
Greeks stopped short of defining an irrational a in terms of the rationals
above and below it, because infinitely many such numbers are required
to determine a exactly, and the Greeks did not believe that infinite
collections were meaningful.

The fear of infinity persisted among many mathematicians until
the nineteenth century. One of the first to overcome this fear was
Dedekind, who in 1858 finally took the logical next step beyond Euclid’s
theory of irrational quantities. Dedekind defined irrational numbers in
terms of infinite sets of rational numbers. Since any real magnitude a is
determined by the sets of rationals

Laz{ﬂsza}, UQZ{T;T>4},
n o n n o n
he took the pair of sets L,, U, (which he called the cut in the ratio-
nal numbers determined by a) to actually define a. Conversely, any
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separation of the set Q of rational numbers into a “lower set” L and
an “upper set” U, with each member of L less than every member of U,
and with U having no least member, was said to define a real number.
(Thus rational numbers a are included, when the < sign holds.)

The definition of real numbers by Dedekind cuts has several advan-
tages.

1. It is easy to define sum and product of cuts in terms of sums
and products of their members, and real numbers then
“inherit” the field properties of sum and product from the
rational numbers.

2. The definition of product makes it possible to prove
V2+/3 = /6, which is quite difficult to do geometrically.
(In fact, Dedekind thought it had never been done, though we
saw a geometric way to do it in section 5.3.)

3. Numbers are ordered by set containment, because
a<bse L,C L.

4. The correspondence between ordering and containment
implies that R is complete, as required for calculus. In
particular, if

(a1, bi] 2 [aa, b] 2 [az, bs] 2 - -

are closed intervals whose lengths — 0 then they have exactly
one point in common. (We appealed to this property to prove
the zero derivative theorem in section 6.3 and the
Bolzano-Weierstrass theorem in section 7.9.)

To see why, we unite the lower cuts L,,, L,,, L,,, .. .intoa
set L, and the upper cuts U, , Up,, Up,, . . . into a set U. Then
each member of L is less than every member of U because

ap<ay<a;<---<by<b, <b.

Also, since the size of the intervals — 0, each rational number
isin one of L or U. Thus L, U is a cut in Q. It defines a
number ¢ which clearly belongs to all the intervals.

Another consequence of completeness is that the set R of real
numbers is a good model of the line, because it has no gaps. That is,
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Figure 9.1:  Slopes to integer points on the plane.

if R is separated into two sets £, U, with each member of £ less than
every member of U, then there is either a greatest member of L or a least
member of U. To see why, unite the lower cuts of all members of £ into
a set L, and the upper cuts of all members of I/ into a set U. Then L, U
is a cut in Q. It determines a real number ¢ which is either the greatest
member of £ or the least member of /.

Thus, for the price of accepting infinite sets as mathematical
objects, we can define the system R of real numbers in such a way
as to meet the needs of algebra, geometry, and calculus. This is a
major accomplishment, which probably should be considered beyond
the bounds of elementary mathematics. Elementary mathematics needs
to use R, but a full understanding of R depends on some advanced
ideas. We will see other ways in which R calls for advanced ideas in
the next section. But first, we attempt to make Dedekind cuts a little
more elementary or, at least, more visual.

Visualizing Dedekind Cuts

Dedekind cuts are hard to visualize because the set Q of rational
numbers lies densely on the line. Rational points lie in every interval of
the line, no matter how small. However, Q is easier to see if we view the
number m/n as the slope of a line through O in the plane; namely,
the line through O and the integer point (7, 7). The integer points
in the plane are nicely spread out, so in this way we get a more
comprehensible view of Q. Figure 9.1 shows this view of some positive
rationals, with 72/ n associated with the line from O to the point (7, m).
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Figure 9.3: The lower Dedekind cut for V2.

The ordering of rationals from small to large then corresponds to
the ordering of slopes from small to large: the integer points (g, p)
below the line of slope 7/n correspond to rational numbers p/q less
than 72/ n. Figure 9.2 shows the points below the lines of slopes 1 and
2/3, respectively, which we can view as the lower Dedekind cuts for 1
and 2/3.

Figure 9.3 shows the rather more interesting set of integer points
below the line of slope /2, which we can view as the lower Dedekind
cut for /2. It differs from the cuts for the rational numbers 1 and 2/3
in having a nonperiodic pattern of “steps” immediately below the line.
The step pattern has to be nonperiodic, because if it were periodic then
the slope of the line would be rational.
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9.7 *Infinity

Now we come to analysis ... 1in a sense mathematical
analysis is but a single symphony of the infinite.

David Hilbert (1926)

Just as elementary mathematics needs to use R, without explain-
ing exactly what it is, elementary mathematics needs to use infinite
processes without a complete explanation of infinity. This is a symptom
of the open-ended nature of mathematics, which prevents us drawing
a clear line between the elementary and the advanced parts. In this
section, we try to give a glimpse of the advanced ideas that arise when
infinity is studied carefully.

The first infinite process we noticed was summing the infinite
geometric series, which is involved in questions as simple as expanding
1/3 as a decimal, or finding the area of a parabolic segment (section 1.5).
We are now going to use the geometric series to uncover a truly
astonishing property of the set R of real numbers: R is not merely
infinite; it is more infinite than the set N of natural numbers.

First we should say what it means for a set to be equinumerous
with N; that is, of the same infinite “size” as N. The members of N are
naturally arranged in an infinite list

o, 1, 2, 3, 4, 5 6, 7, ...,

with each member occurring at some finite position (for convenience,
we say that 0 is in the “zeroth position”). Sets like this used to be called
potentially infinite, because they arise from a process (start with 0 and
keep adding 1) which need not ever be thought complete. Indeed, the
classical idea of infinity was just that: a process without end. Now such
sets are called countable because we can “count” their members, so that
each one eventually gets a number:

zeroth member, first member, second member,

third member,

Many other sets of numbers can be viewed in this way, by arranging
their elements in a list so that each element occurs at some finite
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position. In each case there is some process guaranteed to produce any
particular element of the set in a finite time. Examples are:

1. The set Z of integers,
Z=10,1,—-1,2,—2,3, —3,...}.
(After 0, alternating positive and negative of members of the

list for N.)
2. The set Q7 of positive rational numbers,
+_ 1 2 1 3 1 2 3 4
Q 77251’551’19552’15'~-}

(Arranging the fractions 72/ in order of the sums 7724 7 of
their numerator and denominator, and in order of size for each
fixed value of w1+ n.)

3. The set Q of all rational numbers,

Q={o0 11 _ 12 21 13 31 12 _2
9 1’ 17 27 2’ 17 17 3’ 3’ 1’ 17 47 4’ 37 37

3 3 4 _4 }

20 21 1S

(After 0, alternating positive and negative of members of the
previous list.)

Each such set is called equinumerous with N because its members
can be put in one-to-one correspondence with the members of N. In
general, a set X is equinumerous with N if its members can be listed

X0, X1, X2, X3, X4, X5, Xg, X7, ...,

because x,, <> 7 is then a one-to-one correspondence between X and N.

Now consider the set R, which we can view as a line of infinite
length whose points are the members of R. Suppose (looking for a
contradiction) that R is equinumerous with N. In other words, there
is an infinite list

X0, X1, X2, X3, X4, X5, X6 X7, s ey

whose members are all the real numbers. Viewing the numbers as
points on the line, we cover them by intervals of lengths
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Figure 9.4: Correspondence between R and the unit interval.

respectively. Then every point of the line is covered, but the total length
of the intervals used to cover the line is at most

1 1 1 1 1 1 ]
PR TR TR TE R
Since the line has infinite length, this is a contradiction!

Thus R is not equinumerous with N. It is what we call uncountable,
and hence not potentially infinite. This discovery, first made by Cantor
(1874), was a challenge to all previous thought about infinity. It showed
that mathematics cannot avoid infinity by dealing with it only in the
potential sense. One of the most important sets in mathematics, R, is a
full-blown actual infinity.

*Sets of Natural Numbers

The uncountability of R of course infects all sets equinumerous with
R, of which there are many. One of the most important of these is the
so-called power set of N, P(N), whose members are all the subsets of N.
To show that R is equinumerous with P(N) it is convenient to begin
with a one-to-one correspondence between R and the unit interval
(0,1)={x€R:0 < x < 1}. Such a correspondence is obvious from
figure 9.4 (in which the unit interval has been bent into a semicircle).

Then one can use binary expansions of numbers in (0,1) to set up
a correspondence between (0,1) and the infinite sequences of 0s and 1s
(we skip the details, which are a little messy because of the exceptional
numbers with two different binary expansions). Finally, there is an
obvious correspondence between infinite sequences of 0s and 1s and
subsets of N: a subset S € N corresponds to the infinite sequence with
1 in the nth place if and only if 7 € S.
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So 01 0 1 0
51 01 1 1 1
S2 1 01 0 1
S3 1 1 0 0 1
S4 00 0 0 O

s 1 0 011

Figure 9.5: The diagonal construction.

Infinite sequences of Os and 1s are easier to handle than real
numbers in some ways. In particular there is a beautiful direct proof,
due to Cantor (1891), that there are uncountably many of them. (Or,
rather, that a countable list of sequences does not include all sequences.)
The proof goes as follows.

Suppose (again looking for a contradiction) that so, si, sz, s3,
S4, . .. is a list of all infinite sequences of Os and 1s. Figure 9.5 shows
part of a diagram tabulating one such hypothetical list of sequences,
with their first few digits. Just looking at this table, we can see a sequence
s that is not on the list.

The nth digit of s is simply the reverse of the #th digit in s,, (shown
as a bold digit). Then, for each 7, s # s,, because they differ in the nth
digit. This famous argument is called the diagonal argument because it
looks at the digits lying along the diagonal of the table.

We have already seen a similar argument, in section 3.8, on the
halting problem. There we hit a contradiction by confronting the
hypothetical machine T with its own description, d(T), and asking
T to halt on O if and only if it does not halt on [J. Here, we hit a
contradiction by confronting the hypothetical sequence s with its nzth
digit, and asking it to be unequal to itself (since s = some s,, if the list
of sequences is complete).

The unsolvability of the halting problem is one of several astonish-
ing discoveries made by transporting Cantor’s diagonal argument from
set theory to the related fields of logic and computation. We discussed
some of these discoveries in section 3.9.
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9.8 *Set Theory

It should be clear enough from the previous section that infinite sets
are an advanced topic. Nevertheless, it is worth describing axioms for
set theory, at least informally, in order to show that even advanced
mathematics can be encapsulated by a small set of axioms. The axioms
are not as simple as those for Peano arithmetic, but we can motivate
most of them by examples seen earlier in this chapter. They are called
the Zermelo-Fraenkel axioms, abbreviated by ZF.

Extensionality. Sets are equal if they have the same members.
This implies in particular that {1, 2} = {2, 1} = {1, 1, 2} because all
of these sets have the same members: 1 and 2.

Empty set. There is a set ) with no members.
It follows from Extensionality that there is only one empty set. As we
saw in section 9.5, ¥ can serve as the number 0.

Pairing. For any sets x, y there is a set whose members are x and y.
This is the set we denote by {x, y}. If x = y it is the singleton set
{x} by Extensionality. Since {x, y} = {y, x}, by Extensionality again,
{x, y} is not an ordered pair. However, {{x}, {x, y}} can serve as the
ordered pair of x and vy, because {{x}, {x, y}} = {{y}, {y. x}} only if
x=1.

Union. For any set x, there is a set whose members are the members of
members of x.
If x = {a, b} then the members of members of x make up the set
we call a U b, the “union of @ and b.” It is also useful to be able to
form unions of infinitely many sets. We did this in section 9.6 when
we formed the union of the lower Dedekind cuts L, , L,,, L, . . ..
This process is validated by applying the union axiom to x =
{La,, Loy, Ly, - - .}

Notice also that Pairing and Union enable us to build finite sets with
three or more members. For example, to build the set {a, b, c} we
use Pairing to build x = {a, b} and y = {c} then use Union to form
xUy={a, b, c}.
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Infinity. There is an infinite set; specifically, there is a set x whose
members include ¥ and, along with any member y, the member S(y).
Here S(y) is the successor set yU {y}, so this axiom says there is
a set that includes the natural numbers. To get the set N whose
members are exactly the natural numbers, we need an axiom that
allows us to collect sets with a particular defining property into a
set. For technical reasons, this axiom is stated in terms of function
definitions, in Replacement below.

Power set. For any set x there is a set whose members are the subsets
of x.
As we saw in the previous section, this axiom creates a surprisingly
large set P(x) when x = N. In fact, because P(N) is not countable,
there are not enough formulas in the language of ZF to define all its
members. This is why we need an axiom to guarantee existence of
the power set for N and other infinite sets.

Replacement (schema). If ¢(u, v) is a formula defining v as a function
f (u), then the range of f for u in a set x is itself a set.
Replacement generalizes the “definable subset” axiom used by
Zermelo (1908). Zermelo’s axiom was that the elements # of a set
x satisfying a formula ¢(#) form a set. Fraenkel (1922) pointed
out that the Replacement schema is needed to obtain sets such as

{N, P(N), P(P(N)), . . .}.

Foundation. Any set has an ¢-least member.
As we commented in section 9.5, this serves as an induction axiom.

If we take all of the above axioms except Infinity we get a system
of finite set theory with induction that has the same strength as the
system PA of Peano arithmetic. (Admittedly, the ZF axioms seem more
powerful than necessary in the world of finite sets; nevertheless, without
Infinity they fail to prove any more than PA.)

When we include the Infinity axiom we get the set N of natural
numbers, and its power set P(N), which is effectively the set R of real
numbers. From R we can build the concepts of geometry and analysis,
and virtually all of classical mathematics. Thus, ZF encapsulates a
vast amount of advanced mathematics. Given that ZF — Infinity is
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essentially PA, we could say that
ZF = PA + Infinity.

Or even more crudely,
advanced mathematics = elementary mathematics + Infinity.

In the next section we discuss how this idea can be refined by in-
troducing more nuanced concepts of “elementary mathematics” and
“infinity.”

What Has Set Theory Done for Elementary Mathematics?

Set theory has given us a new view of arithmetic and combinatorics—as
two ways to look at finite set theory. Whether this will push elementary
mathematics in the direction of set theory remains to be seen. However,
set theory made a contribution to elementary mathematics a long time
ago, when Cantor used it to prove the existence of transcendental
numbers.

A real number is called transcendental when it is not algebraic; that
is, not the solution of a polynomial equation with integer coefficients.
The first proof that transcendental numbers exist was given by Liouville
(1844), by means of an algebraic theorem on the approximation of
algebraic numbers by rationals. Liouville’s argument was quite close to
elementary, but even so it was outclassed by the argument of Cantor
(1874), which involves no algebra at all.

Instead, Cantor used a result learned from Dedekind, that the set of
algebraic numbers is countable. Using only the fact that each algebraic
number is a root of an equation

apx"+a, X"+ -+ax+ap=0 forintegersag, a1, ..., a,
*)
Dedekind obtained a listing of the algebraic numbers in the following
steps:

1. If we define the height of the equation (*) by
h=n+layl+- - +lail + laol,

then there are only finitely many equations of height < /. This
is because » bounds both the degree 7 of (*) and the size of its
coefficients.
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2. Since b > degree, an equation of height / has < b roots.

3. Therefore, we can list all algebraic numbers by listing the
finitely many equations of height 1, then those of height 2, and
so on; and, along with each equation, listing its finitely many
roots. By omitting complex roots, we obtain a list of all real
algebraic numbers.

The list x1, %2, x3, . . . of real algebraic numbers implies that there
is a real number x not on the list, by the uncountability of R. We can
explicitly construct such an x by applying the diagonal construction
to the decimal expansions of xi, x,, x3, . . .. We get x # each x,, for
example, by letting

) o 1 if nth decimal place of x;, is not 1,
nth decimal digit of x = ] ] .
2 if nth decimal place of x;, is 1.

(We avoid digits 0 and 9 in x so that x differs from either expansion
of x,, in case x;,, is a number with two decimal expansions, such as
1/2=0.500---=0.499---.)

Thus x is a transcendental number (whose decimal digits could,
in principle, be computed). To this day, the above argument is still the
most elementary way to prove the existence of transcendental numbers.

9.9 *Reverse Mathematics

When the theorem is proved from the right axioms,
the axioms can be proved from the theorem.

Harvey Friedman (1975)

The idea that advanced mathematics is obtained from ZF - Infinity
by adding the Infinity axiom is a very crude way to describe advanced
mathematics. The axioms of ZF - Infinity, though they prove no more
than PA, contain enormous pent-up energy in the Power Set and
Replacement axioms. When this energy is released by adding the
Infinity axiom, there is an explosion of new theorems at every level
above elementary. We are unable to differentiate between those just
above elementary level and those far above it, because they all depend
equally on the Infinity axiom.
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The idea of reverse mathematics is to determine more precisely the
axioms on which a given theorem depends. This is done by starting
with a “low-powered” elementary system, more like PA, so that adding
a simple axiom of infinity does not produce high level theorems. Then
one can explore the consequences of various axioms of infinity, and sort
theorems into levels according to the axioms they depend on. We know
exactly what axioms a theorem depends on when we are able to prove
the axioms from the theorem. This kind of reversal has been found to
occur remarkably often.

Reverse mathematics has been developed by logicians for about 40
years now, and it has been able to rank a large number of classical
theorems into five main levels above the level of PA. Since it is a very
technical subject, covering many theorems that are too advanced for
this book, I will discuss only some of its simplest results. For further
information, see the definitive book on the subject, Simpson (2009).

To illustrate the method of reverse mathematics, consider one of its
basic axiom systems, ACAy. (The ACA stands for “arithmetic compre-
hension axiom.”) ACA, is essentially PA, but with two types of variables
and one extra axiom. It has lower case variables m, n, ..., x, y, 2, . ..
standing for natural numbers as usual, and upper case variables
X, Y, Z, .. .standing for sets of natural numbers. Thus the language of
ACA can express statements about sets of natural numbers and hence
about real numbers (through the correspondence between subsets of N
and real numbers mentioned in section 9.8).

The axioms of ACAy, with one exception, are just the axioms of
PA. Thus the base theory for ACA, is essentially PA with set variables.
To that we add the arithmetic comprehension axiom (actually an axiom
schema), saying that there is a set X of natural numbers realizing any
property ¢(n) of natural numbers definable in the language of PA:

AXVn(n e X < ¢(n)). *)

This axiom schema is effectively an axiom of infinity, because it is the
only axiom of ACA, asserting the existence of infinite sets.

The effect of the arithmetic comprehension axiom is interesting.
It does not enable new theorems about natural numbers to be proved
in ACAy: the theorems of ACA, about natural numbers are the same
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as those proved by PA. But arithmetic comprehension gives proofs of
many theorems about subsets of N, and hence about real numbers.
Among them are three that we have often seen and thought to be just
beyond the elementary level:

o The completeness of R.
o A form of the Bolzano-Weierstrass theorem for R”.
o The Kénig infinity lemma.

Even more remarkable (and this is where the “reverse” happens), these
theorems are each equivalent to the arithmetic comprehension axiom
(*), and hence to each other. Thus completeness of R and Bolzano-
Weierstrass are, in a reasonable sense, equally advanced, and (*) marks
the spot where they lie beyond the elementary level of PA.

Another interesting system, slightly weaker than ACA, but with the
same base theory, is one called WKL,. The WKL stands for its added
axiom, the “weak K6nig lemma,” which is the special case of the Kénig
infinity lemma where the tree is a subtree of the infinite binary tree.
As we saw in section 7.9, this special case occurs in “infinite bisection”
arguments, such as the one we used in section 7.9 to prove the Bolzano-
Weierstrass theorem for a closed interval of R.

Thus WKL, like ACA,, is essentially PA plus variables for subsets
of N and a set existence axiom—in this case stating the existence of an
infinite branch in any infinite subtree of the infinite binary tree. It turns
out to be weaker than ACA,, but nevertheless WKL, can prove many
important theorems about continuous functions. Among them are:

 Any continuous function on a closed interval takes a maximum
value. (This is called the extreme value theorem, and we will
prove it by an infinite bisection argument in section 10.3.)

 Any continuous function on a closed interval is Riemann
integrable.

o The Brouwer fixed point theorem.

And again, we have reversals: each of these theorems implies the
weak Kénig lemma. Thus our suspicion that these theorems about
continuous functions are “advanced” is confirmed. They too lie beyond
PA, and at the same level as the weak K6nig lemma.

www.Engineeringbookspdf.com



330 <« Chapter9

f(e)
( I_ /i
s = G)) 0]
[e_, f(a)
b
[(-=E—f(a)) = 8]
Figure 9.6: Diagram from Frege’s Begriffsschrift.

9.10 Historical Remarks

As mentioned in sections 3.7 and 3.10, Leibniz dreamed of reducing
logic to calculation, but his dream was not realized until the nineteenth
century—and then only partially. We have now seen, in section 9.1, how
the Boole (1847) idea of an “algebra of logic” fits propositional logic
very well, revealing it to be essentially the same as mod 2 arithmetic.
However, by restricting logic to one that looked like algebra, Boole
failed to reach a logic strong enough to express all of mathematics;
namely, predicate logic.

Frege (1879) was the first to formulate predicate logic, albeit in a
curious diagrammatic system he called the Begriffsschrift (concept writ-
ing) that was not embraced by mathematicians. It was not embraced
by publishers either, due to the difficulty of printing Frege’s diagrams.
Figure 9.6 shows an example of a proof in Frege’s notation. Frege was
ahead of his time, because a good understanding of predicate logic was
not achieved until the 1920s, culminating in the proof of Godel (1930)
that predicate logic is complete. That is, the standard axiom systems
for predicate logic, including Frege’s, prove all (and only) the valid
formulas.

Godel’s completeness theorem is particularly surprising in the light
of his incompleteness theorem, proved in Godel (1931), for systems
containing a small amount of mathematics. We sketched how incom-
pleteness arises in section 3.9. The incompleteness theorem shows,
among other things, that mathematics is more than logic, since the
addition of a little mathematics tips the balance from completeness to
incompleteness. In fact, logic is “just barely” complete, in the sense that
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we can mechanically generate all the valid formulas, but not all the
invalid ones. It follows that there is no algorithm to decide validity of
an arbitrary formula. We say more about this after we give a proof of
the completeness theorem in section 10.8. The undecidability of validity
was first proved by Church (1935) and Turing (1936).

As we briefly explained in section 3.9, incompleteness arises in
axiom systems that are strong enough to encode the operations of
Turing machines, typically by encoding steps of computation by op-
erations on numbers. The simplest such system is one introduced by
Raphael M. Robinson (1952) and now called Robinson arithmetic. The
axioms of Robinson arithmetic are the first four Peano axioms listed
in section 9.5—thus including the inductive definitions of sum and
product but not any induction axiom. It takes considerable ingenuity to
simulate computation without the induction axiom but it can be done,
with the results that

o Robinson arithmetic is undecidable. That is, there is no
algorithm for deciding, given any formula, whether that
formula is a theorem of Robinson arithmetic or not.

« Robinson arithmetic is incompletable. That is, whatever axioms
are added to Robinson arithmetic (if they are consistent) the
resulting theory remains incomplete.

Among the theorems not provable in Robinson arithmetic are the
commutative laws for addition and multiplication. This confirms that
the induction used to prove these laws in section 9.4 really cannot be
avoided. At the same time, it shows that induction is “more advanced”
than Robinson arithmetic, in the sense that it enables more theorems to
be proved.

Since Peano arithmetic (PA) is the result of adding induction to
Robinson arithmetic, its incompleteness follows (assuming that PA
is consistent). But the incompleteness of PA is a little puzzling. The
theorems known to be unprovable in PA do not yet include any that
number theorists want to prove, such as the existence of infinitely
many primes of the form 2” — 1 or 72 + 1. All of the known unprovable
theorems of PA are ones devised by logicians.
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The situation is more satisfactory for stronger systems, such as
the axiom system of ZF set theory described in section 9.8. Many
interesting sentences of ZF are now known to be neither provable nor
disprovable from the ZF axioms so (since there is insufficient reason
to consider them false) they can be taken as new axioms. The most
common addition to the ZF axioms is the axiom of choice (AC), first
formulated by Zermelo (1904). AC says that any set X of nonempty
sets x has a choice function; that is, a function f such that f(x) € x for
eachx e X.

Zermelo introduced AC in order to prove the well-ordering
theorem, which states that any set Y can be given an ordering under
which each subset of Y has a least member. The well-ordering of N is a
theorem equivalent to induction, but well-ordering of uncountable sets,
such as R, is not generally provable without AC. In fact, well-ordering
of arbitrary sets Y is equivalent to AC because it enables us to define
a choice function for any set X of nonempty sets. Simply let Y be the
union of all the members x of X, and define f(x) to be the least member
of x in the well-ordering of Y.

To formalize his proof that AC implies well-ordering, Zermelo
(1908) gave the first axiom system for set theory. With a later revision
by Fraenkel (1922), it became the ZF system we use today. At that
time it was not known whether AC was really a new axiom—that is,
independent of ZF—but this was proved by a combination of results
by Godel (1938) (consistency of AC) and Cohen (1963). Thus we
have been able to say, since 1963, that AC and the well-ordering
theorem are more advanced than ZF itself. The same applies to many
other sentences of mathematics, as Cohen and others showed. These
sentences so far do not include any interesting sentences about the
natural numbers, but the following sentences about R are known to be
neither provable nor disprovable in ZF:

o R can be well-ordered.
 Any infinite subset of R is either countable or
in one-to-one correspondence with R (the continuum
hypothesis).
« Any infinite subset of R contains a countable subset.
R is a countable union of countable sets.
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What is additionally interesting about AC is that it is actually equivalent
to many of its consequences, such as:

o The well-ordering of arbitrary sets.

o Comparability of arbitrary sets: for any sets A and B, either A
is equinumerous with a subset of B, or B is equinumerous with
a subset of A.

o Every vector space has a basis.

So AC is the “right axiom” to prove these theorems.

These results paved the way for reverse mathematics, introduced
by Friedman (1975) with the slogan quoted at the beginning of
section 9.9. Reverse mathematics refines the situation of AC in set
theory—seeking the “right” axioms to prove theorems about R—by
starting with a system weaker than ZF (basically PA, with language
open to statements about reals) and looking for axioms just strong
enough to prove classical theorems of analysis. As Friedman’s slogan
says, the “right” axiom not only proves the theorem but is equivalent
to it. As mentioned in section 9.9, reverse mathematics has succeeded
in finding the “right” axioms to prove the completeness of R, the
Bolzano-Weierstrass theorem, Riemann integrability of continuous
functions, and the Brouwer fixed point theorem relative to a weak
system similar to PA. Another theorem for which the “right” axiom has
now been found is Godel’s completeness theorem (which we prove in
section 10.8). Simpson (2009) gives many other examples.

9.11 Philosophical Remarks

Symbolic logic may be said to be
Mathematics become self-conscious.

Emil Post (1941), p. 345

The results of mathematical logic, particularly those about un-
solvability, incompleteness, and reverse mathematics, are the first to
show precisely that some parts of mathematics are “deeper,” or more
advanced, than others.
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It seems indisputable that an unsolvable algorithmic problem is
deeper than a solvable one, though we would also like to say that some
solvable algorithmic problems are deeper than others. There are indeed
some results of the latter kind, but what we most want to know about
algorithmic problems, of course, is whether P £ NP. If it turns out that
P = NP, then we will be entitled to say, for example, that deciding which
formulas of propositional logic are satisfiable is a deeper problem than
any problem that can be solved in polynomial time.

We can be confident that an unsolvable algorithmic problem is
objectively deep, because solvability of problems is an absolute notion,
by the Church-Turing thesis. Provability of theorems is only a relative
notion, because of Godel’s incompleteness theorem, but we can still
hope to prove that some theorems are deep relative to others. As we
know from Godel’s incompleteness proof, for any sufficiently strong
(and consistent) axiom system A there are theorems T that A cannot
prove. It seems reasonable to say that such theorems T are “deeper
than,” or “more advanced,” than A itself. Unfortunately, as mentioned
in the previous section, for the system PA that is the best model of
elementary mathematics, the “deeper” theorems produced by the Godel
incompleteness argument are not yet of much interest outside logic.

Still, the unprovable theorems of PA and similar systems include a
theorem of great interest inside logic. This is the statement Con(PA)
that expresses the comsistency of PA—so PA cannot prove its own
consistency! The unprovability of Con(PA) is a corollary of Godel’s
incompleteness proof, independently noticed by von Neumann and
pointed out by him in a letter to Godel (von Neumann (1930)). In
fact, for any sufficiently strong axiom system A—it is enough for A to
include PA—the sentence Con(A) expressing consistency of A is not
provable in A, if A is consistent. This is why, whenever we claim that
a theorem is not provable in some system A, we annoyingly add “if A
is consistent.” We have to assume that A is consistent because, first, we
cannot prove this in Aand, second, if Ais not consistent, then it proves
everything—whether true or false.

As we saw in the previous section, the most natural unprovable sen-
tences arise in systems A that can make statements about real numbers.
This accords nicely with our experience of elementary mathematics,
where the statements bordering on advanced mathematics generally
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involve real numbers or equivalent concepts, such as infinite sets of
natural numbers. Reverse mathematics throws the spotlight on many
of these borderline statements by finding the “right” axioms to add to a
weak system axiom (essentially PA but with variables for real numbers)
in order to prove them. For a large number of classical theorems of
analysis we can not only say that they are “deeper than PA,” but also
assign them to “levels of depth” according to the axioms needed to
prove them. Current reverse mathematics distinguishes five different
levels of depth, the lower two of which include all the “borderline”
advanced theorems about R considered in this book. This seems rea-
sonable confirmation that these theorems are indeed near the border of
elementary mathematics.
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PREVIEW

his final chapter contains samples of the eight branches of mathe-

matics discussed in the previous chapters. Each sample takes up a
topic seen earlier at an elementary level and carries it further, mainly
with the help of principles involving infinity. As we have seen in
previous chapters, particularly in the discussion of calculus and logic,
crossing the line from elementary to advanced mathematics often
involves concepts of infinity.

One borderline advanced concept is the infinite pigeonhole princi-
ple, stating that if an infinite set is divided into finitely many parts then
one of the parts is infinite. We used this principle in section 7.9. Here
we use it in section 10.1 to prove the existence of solutions to the Pell
equation, in 10.6 to develop some Ramsey theory, and in 10.8 to prove
the completeness of predicate logic.

Quite a different use of infinity is in geometry, where the idea of
“points at infinity” is needed to formalize the idea that parallel lines
“meet at infinity.” In section 10.4 we develop this idea in the simplest
case: the real projective line.

Of the many uses of infinity in calculus or analysis, one enlists
properties of continuous functions to prove the fundamental theorem
of algebra. We give a proof in section 10.3. Another is the concept of
infinite product. A famous example is Wallis’s product for 7, which we
derive in section 10.5 and apply in 10.7 to explain why the graph of the
binomial coefficients tends to the curve y = ¢,
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Another occurrence of infinity in analysis—the uncountability of
R—is barely touched on here. However, it looms over the concepts of
unsolvability and incompleteness, which we revisit in sections 10.2 and
10.8.

10.1 Arithmetic: the Pell Equation

In section 2.8 we showed how one solution of the Pell equation
x* —my* =1 can generate infinitely many others. But we left open
the problem of finding that one solution. Even for modest values of
m, the smallest nontrivial solution of x> —#7y? =1 can be hard to
find. As mentioned in section 2.9, the smallest nontrivial solution of
x?—61y* =1is

(x, y) = (1766319049, 226153980)!

Since the smallest nontrivial solution varies quite erratically with
m, its existence is unclear in general. However, Lagrange proved in
1768 that if m is any nonsquare positive integer, the Pell equation
x? —my* = 1 has an integer solution # (£1, 0). To smooth the path to
solutions, we first explain how the theory of the equation x* — my* = 1
is related to the structure of the algebraic number field Q(,/m).

The Pell Equation and the Norm on Q(/m)

In section 2.8 we showed that solutions of the Pell equation
x? —my* =1 can be generated with the help of the irrational number
/m. In particular, if one solution is x = x;, y = y; # 0, then infinitely
many solutions x = x,,, y = Yy, are given by the formula

X+ Yu/m = (%, + y1/m)",  wheren € Z.

This trick can be better understood with the help of the concept of the

norm on the field Q(/m).
The field Q(a) was defined for any algebraic number « in

section 4.8, but in the special case « = \/m for a nonsquare natural
number 7 it may be defined more simply as

Q(Wm)={a+bym:a,beQ}.
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It is clear that Q(+/72) must include all the numbers a + b./m, and that
the product of two such numbers is another of the same kind. So, to
prove that the numbers a + b/m make up the whole field Q(,/m) it
suffices to prove that the inverse of a + b/m is another number of the
same form. This is so, because

1 B a—bym _a—bym
a+bym  (a+bym)a—bym)  a*—mb
- _—

a?—mb* a2 —mb?

which is of the same form, since o jmbz and o b > are rational if ¢ and

—mb
b are.

The norm on Q(/m) is defined by
norm(a + by/m) = a®> — mb?.
Thus the norm is a rational number, and it is an integer if a and b
are. What makes the norm particularly useful is the following property,

analogous to the multiplicative property of the complex number norm
used in section 2.6.

Multiplicative property of the norm. If u=a +by/m and v =a’ +

b’ \/m then
norm(uu') = norm(u)norm(u’).
Proof. Since u = a + by/mand ' = a’ + b/ \/m we have
ur' = (a + by/m)(a’ + b'/m) = (aa’ + mbb) + (ab' + ba')/m,
and therefore

norm(uu') = (aa’ + mbb')? — m(ab' + ba')?

= (aa")? + (mbb')? — m(ab')* — m(ba')*
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