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Preface

This book is designed to be a general, descriptive, and didactic introduction about
the use of systems simulation with probability distributions, in this way might
become a tool that helps to solve real-life problems, by evaluating alternative
scenarios and finding answers to questions like “what would happen if?”.

This book aims the application of systems simulation as the main contribution in
the teaching-learning model. We will analyze the different types of methodologies
used in teaching to solve real-life problems, followed by process of building a
simulation model by using a computer and probability distributions, allowing the
correlation between a real model and a simulated model.

The conceptual part aims that the different methods are understood as a research
instrument subjected to continuous review that allows a progressive refinement in
the compression of system, which leads to a suitable position to make decisions in
the problem solutions.

The systems’ simulation is based on the concept of experimentation itself of the
scientific method, according to which, the experiments are carried out on a dynamic
model instead of the real system so that the model results might be a valid repre-
sentation of the system.

Consequently, one goal of this book is to help understand how the different
simulation methods might be used to analyze phenomena and problems, and make
decisions about them, i.e., to demonstrate the role of simulation in the processes of
decision-making, especially in computer systems with a pedagogical teaching-
learning approach.

The simulation allows getting better analysis and evaluation of the system’s
performance before they are built. Thus it becomes a vital design tool, in any of its
phases, and moreover, to estimate a priori the impact of proposed changes in the
existent systems. It is expected to illustrate how the simulation can be applied in
wide situations, through small projects such as: transport system analyze, logistics,
queue’s theory, inventory’s theory, medicine.
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Finally, to help the reader not only to the conceptual understanding of different
methods of systems simulation, but also to understand how they work; when they
should be used, and when not; what can expect from the simulation; what errors
must be avoided in the development and use; and how the simulation might help to
improve the performance of systems.

Guayaquil, Ecuador Lorenzo Cevallos-Torres
December 2018 Miguel Botto-Tobar
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Chapter 1
The System Simulation and Their
Learning Processes

In the 21st century, Education is undergoing a series of transformations both inside
and outside the classroom.Despite changes in education, knowing and understanding
the teaching-learning process is key to creating effective pedagogical action. In the
process, the most significant teacher task is to accompany the student’s learning.
Being this accompaniment through a concise and legible exhibition of concepts
and projects performed in the classroom; that is to say, a way of driving theory
into practice the basic processes around the systems simulation as well as their
implications regarding analysis, and implementation of information technology.

1.1 Introduction

To determine a way to carry the students training process at the university level.
It is necessary to consider the appropriate use of teaching tools that will be used
to complete the different formative stages of this student. A project-based learning
methodology (PBL) has been used where the student develops competencies in a
collaborative approach in search of real solutions [1–3].

Simulation is a way of approaching the study of any real dynamic system where
it is feasible to have a behavior model, and in which the variables and parameters
that characterize it can be distinguished. In order to make this possible, we proceed
to the use of mathematical and probabilistic tools [4, 5].

One of the difficulties faced by the university student is to understand the proper
use of the learning of the simulation subject. For this, the student must possess very
marked skills within the teaching-learning process, as it is, the domain of the previous
mathematical and statistical problems [6–9].

In this book, we expose the experiences achieved of applying the PBL method-
ology in teaching of “systems simulation” subject. The most significant result is the
evidence that the use of this educational alternative favors the students’ motivation

© Springer Nature Switzerland AG 2019
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2 1 The System Simulation and Their Learning Processes

for the subject insofar as it manages to relate it to their profession and recognize its
importance in solving problems of society and the environment where they coexist
daily [6, 10–12].

1.2 Fundamentals of Simulation

In the first analysis of these definitions, it reveals the relationship between simula-
tion as a teaching method and modeling as a general scientific method of obtaining
knowledge. Through simulation, the student will not work directly with the study
object, but with a representation of such an object, from which the most important
elements are abstracted, taking into account the purposes pursued. This invariable
situation means modeling [13–15].

There are several simulation modalities: experimental, methodological, instru-
mental and decision-making. This last variant is based on the fact that the student
must develop the exercise by making decisions to reach a final result and thereby
determine the path to follow in the process. The use of simulation makes it possible
to accelerate the learning process and contributes to raising its quality [16–18].

The importance of simulation as a method is that it reproduces real objects when,
due to problems of time, resources or security, it is not possible to carry out the
activity in its natural environment, with its true components. Hence, the wide use
of this method arises, since it is practically applied in all disciplines and branches
of science. Similarly, modeling facilitates the analysis of the original processes in
those cases in which it is expensive, difficult or impossible to investigate real objects
[19, 20].

1.3 Simulation as a Teaching Method and Its Link
with Engineering Careers

In theUniversity ofGuayaquil context, the systemsimulation is a fundamental subject
in the curriculum in the computer systems engineering career. It is studied in the
sixth semester, and it provides the knowledge related to the application of real-
life problems, simulated in a computer environment, which allows the student to
develop specific strategies that help him/her to efficient learning and the capacity of
self-learning [21–23].

In Project-Based Learning (PBL), the university teacher in charge of the group of
students of the system simulation course acts as a tutor instead of being a conventional
master expert in the area and a knowledge transmitter; which will help the students
to reflect, identify the needed information and motivate them to continue with the
work, in the other words, they will guide them to reach the proposed learning goals
[24–26].
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In order to achieve the success of the PBL methodology in the classroom; the
tutor should not be considered as a simple passive observer, on the contrary, he/she
should be active in guiding the learning process making sure that the group does not
lose the goal set. And also identifies the most important issues to meet the resolution
of the problem, making the student progress appropriately towards the achievement
of learning objectives, in addition to identify what they need to study for a better
understanding, meaning, what they learn in theory to apply it in practice based on
learning real-life problems [27–29].

The tutor who is in charge of the subject supports the development of the skills
that the student needs to get ahead, so it can assure that the tutor turns out to be a
fundamental piece for the development of thePBLmethodology, in fact, the dynamics
of the work process of the group depends on its good performance [30–32].

In order to understand the use of simulation as a base tool in the educational
process; it has been considered to analyze it through two major uses:

• During teaching-learning.
• In the evaluation.

During teaching-learning, the use of the system simulation allows to the student
modeling different work environments, so that, through a small data collection in the
experimentation, the student will improve their learning process to handle diagnostic,
treatment and problem-solving techniques properly. It will also help them to improve
their cognitive and critical thinking skills. The simulation allows learners to focus
on a specific teaching goal; it enables the reproduction of a particular procedure or
technique and to apply a standardized criterion [33, 34].

It is important to be clear that simulation imitates but does not reproduce what
happens in a real environment exactly, and we also consider certain aspects regarding
the use of simulation models that might be presented [35].

• There are aspects of reality that cannot be simulated, a matter that must be kept in
mind whenever we use any simulation.

• It is necessary to bevery cautious in predicting; basedon the response to a simulated
situation and how a person will be led in the face of real situations.

• We cannot restrict the development of skills nor the evaluation of students’ perfor-
mance only through simulation, therefore, combining the use of different methods
and resources in order to obtain consistent and closely results to real situations
[36].

It is important to be clear that the use of systems simulation has two main pillars
of teaching and learning such as mathematical modeling and the proper use of high-
generation computer programs. The student in the systems engineering career has
many skills in computing management and advanced computer packages, otherwise,
when the student has to interpret the information mathematically, it is complicated,
since he has no skills in the management of mathematical modeling [37–39].
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1.4 Teaching-Learning Process

The teaching-learning process is conceived as the space in which the main protago-
nist is the student, and the teacher fulfills a function as a facilitator. It is also consid-
ered as a procedure, through which special or general knowledge about a particular
subject is transmitted, its dimensions in the phenomenon of academic performance
from the factors that determine its behavior in the classroom. Teachers in the search
for solutions to routine situations are concerned with developing a particular type
of motivation in their students, which encourages their interest in learning, which
consists of many elements [40, 41].

The collaborative interaction between teachers and students and/or between them-
selves determines that learning can be evidenced through a test or evaluation to stu-
dents of a given semester or student cycle. The learningmust be evidenced since to be
considered as reached it has to maintain a sufficient duration. Besides, the reflection
of motivation, behavior, social relationships and other factors converges [42, 43].

Learning is a relatively permanent change in the behavior of an individual that
reflects an increase in knowledge and expands the area of potential development,
also strengthens the intelligence or skills achieved that are reflected in practice [44].

1.5 Project Based Learning (PBL)

Project Based Learning (PBL) can be defined as a teaching and learning modality
focused on real-life tasks and projects, whose main objective is to obtain a product
that helps the student to understand with clarity what they have learned, theoretically
in the classroom. It is important to indicate that this method promotes individual
and autonomous learning within a work plan defined by objectives and procedures,
that is, to determine what extent the student achieves the goals set out in advance;
to achieve it important that students take responsibility for their learning, discover
their preferences and strategies in the process [11, 21, 27].

An advantage of PBL is that the student acquires throughout the teaching pro-
cess, skills and competencies such as collaboration, project planning, communica-
tion, decision making, and time management. In other words, PBL is a learning
model in which students pose, implement and evaluate projects that have real-world
application [10, 15, 34].

It is important to be clear that in the PBL model, interdisciplinary, long-term
and student-centered learning activities are developed beyond the classroom [45]. It
motivates the students to learn, and it particularly gives them the option of selecting
subjects that interest them and that are important for their professional life, bymaking
that connection between the learning they acquire in the university in a theoretical
and not very comprehensible way, combined with the reality of the environment
where we live, and it makes students retain more knowledge and skills, this is as long
as the student is really committed to the project development, which at one point
throughout their learning process become stimulants [46–48].
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In seeking to connect the universitywith the realworld [49], the teachermust adopt
a different role to the one he has been carrying for a long time, that is, the teacher
must change the way he has been teaching traditionally [50]. From this point the
teacher stops being a simple transmitter of knowledge, and must become a planner,
a facilitator [26], since, his/her function will be planning, observing, accompanying,
stimulating and evaluating the learning situations, that is, the teacher role focuses on
[51]:

• Prepare the learning process meticulously.
• Keep themselves in the second plane as much as possible taking note of what
works and what does not.

• Be available to answer questions and solve concerns from students.
• Encourage students to learn themselves and ask the right questions.
• Encourage students to self-assess their work and experiences.
• Rememberwhat is forgotten and overlooked, but it should be considered and devel-
oped, together with students, the needed content based on practical experience.

• Pay special attention to cooperation aspects, tasks organization, group work
methodology, and include them in conversations with other students.

• Evaluate.

The PBL is a learning process centered on the student, and it hopes a behavior series
and different participation to those required in the conventional learning process.
Some desirable characteristics in the students who participate in the PBL are pre-
sented below. Besides, it is important to point out that if the students do not have
these qualities, they must be willing to develop or improve them. Deep and clear
motivation about the needed learning [12, 34, 38, 42, 52].

• Disposition to work in a group.
• Tolerance to face ambiguous situations.
• Skills for personal interaction both intellectual and emotional.
• Development of the imaginative and intellectual powers.
• Skills for problem-solving.
• Communication skills.
• See your study field from a broader perspective.
• Critical, reflective, imaginative and sensitive thinking skills.
• Target content for teaching and learning.

The PBL is one of the active teaching-learning methods that has had the most sig-
nificant impact on higher education in recent years. Due to the path is taken by the
conventional process is reverted [11, 13].

The goal of this study is to present the implementation results of the PBL method
throughout the simulation course in the computer systems engineering career at the
UG [21].

Basedonour experience, thePBL is students-centered andhighly effectivemethod
to stimulate their activities and educate their creative scientific thinking. For its
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application, we organize students in groups and select experiment as a teaching
activity [27].

Regarding the student learning process, it is important to recognize the existence
of several tools, from a computational scope as general purpose computing resources
or general-purpose programs, which are the computer applications that can be useful
for all types of computer users [13].

1.6 Role of the Teacher in the Teaching Process

This learningmodel requires teachers to adopt a different role than usual in traditional
teaching. They stop being mere “transmitters of knowledge” becoming facilitators
and planners of learning their function is to plan, observe, accompany, stimulate and
evaluate learning situations.

1.6.1 Observe

At this point, the teacher tends to observe processes, changes, behaviors, relation-
ships, difficulties, and potentials that can help students to develop the process, to
establish changes or improvements and reach the achievement of the objectives
[53–55].

1.6.2 Accompany

In the projects, the faculty assumes the role of accompanist or mediator and provides
support regarding content and method. In any case, there may be a “client” who
is responsible for the project, but at other times, the same teacher will have to say
what is required both at the beginning and throughout the project. Also, it takes into
account the fit with related training contents and with others of a professional and
systematic nature [56–58].

1.6.3 Stimulate

Project development work offers a lot of room to make decisions of your own and
to develop creative possibilities. The key is to trust the students in such a way that
they can improve themselves, as a team, a plan of solutions to the problem and solve
it. It is important that the teacher is clear about what he/she is trying to achieve and,
thus, helps the student to discover what these objectives are to capture their interest
[59–61].
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1.6.4 Evaluate

There must be a reward for the student’s and the group’s achievements, in the begin-
ning, during and at the end of the learning. The evaluation is a process that accom-
panies the entire training project. Working for projects changes the relationships
between teachers and students. It reduces competition among students and allows
students to collaborate and work with each other. The contributions of others are
accepted as help and not as competition. Also, projects can change the approach to
learning: from the simple memorization of facts to the exploration of ideas and the
development of skills and tools [62–64].

1.7 The Use of ICT in the Teaching Process

Information and communication technologies currently have a great influence on
university education, as well as within the academic curriculum of the curriculum of
the UG computer systems engineering career; the simulation program has acquired
an important degree of importance in recent times because these programs help
solve real-life problems through the use of systems simulation. It is important to
keep in mind that there is no ideal teaching method, so it is necessary to determine a
selection of suitable applications that depend on the existing conditions for learning.
The method used must correspond to the scientific level of the content, which will
stimulate the creative activity and motivate the development of cognitive interests
that link the school with life. It must, therefore, break the scholastic, rigid, traditional
schemes and promote the systematization of the learner’s learning, bringing it closer
and preparing it for its work in society [2, 24, 26].

The simulation techniques are developed by looking for mathematical algo-
rithms that speed up the calculations and especially incorporate the object-oriented
technologies of the modern programming languages to create flexible, expandable
and exportable code prototypes. The development of computer technologies will
undoubtedly facilitate the opening of new projects; it may never be possible to define
a complete computer learning system given that the basic technologies are constantly
advancing [65, 66].

The use of simulation in educational processes in the computer systems engineer-
ing career at the University of Guayaquil is an effective teaching and learningmethod
to achieve in our students the development of a set of skills that make it possible to
achieve superior modes of action. As a result of the work carried out, it was possible
to obtain the data corresponding to the unknowns raised and determined that: as for
the analysis of the number of people who arrived at the IESS stop between 6:00 pm
and 7:00 pm during the five days during the week. It was possible to determine that
the average of people per day was around 2500 to 3000 people. The Poisson dis-
tribution was applied, which allowed generating the following graphs using Monte
Carlo to increase the base data [6, 33, 67].
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The purpose of system simulation is to offer to the sixth-semester students the
opportunity to practice in the classroom, in such a way that there is an interaction
with reality in the different areas in question; being these in the inventories area,
logistics, and queuing theory. The simulation consists in situating the student in a
context that imitates some aspect of reality and in establishing in that environment,
problematic or reproductive situations, similar to those that he would have to face in
real situations [37, 38, 67].
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Chapter 2
Process Sampling

This chapter provides a basic introduction to descriptive statistic including
sampling techniques such as population, simple random sampling, systematic ran-
dom sampling, stratified sampling, cluster sampling, and non-probabilistic sampling
to have enough knowledge to be able to decide which is the most appropriate sam-
pling technique.

2.1 Population

A population is defined as a finite or infinite set of people or objects that have
common characteristics. In other words, it is this whole phenomenon to be studied,
where the population units have a common feature, which is studied and gives rise
to the research data [1–3].

In Statistics, the elements of a population are defined as those individual units
that constitute a population. It is also defined as any complete group, either people,
animals or things. It is the whole set under consideration, and it refers to a finite
group of elements (see Fig. 2.1) [4, 5].

2.1.1 Population Types

According to the number of individuals that conform the statistical population [7–9],
it could be classified into:

1. Finite Population. Set of a limited number of elements, such as the number
of species at Galapagos Islands, the number of students at the University of
Guayaquil, the number of workers in an automobile factory [10–12]

2. Infinite Population. It has a large number of components, such as the set of
species in the animal kingdom.
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Fig. 2.1 Population [6]

3. Real Population. It is the whole group of concrete elements, such as people
who are engaged in artistic activities in Europe.

4. Hypothetical Population. It is the set of possible imaginable situations in which
an event may occur, such as the ways a person responds to a catastrophe as the
earthquake in Ecuador in 2016 [13, 14].

5. Stable Population. Its features do not present variations, or if they do exists but
in a small amount, they may be negligible, such as the earth rotation, the light
speed [15].

6. Unstable Population. It contains values constantly change. This change occur
in time or space.

7. Random Population. It presents changes in its heats due to chance, without
an apparent cause, such as the variability found in the content of the product,
whether its shape, size, length, among other characteristics [16].

8. Dependent Population. It changes its values due to a determined and measured
cause. Its dependence can be total, such as the variations obtained in a mathe-
matical function, or linear regression; or partial when the cause influences in the
dependent variable in a lower proportion, for example: the increase in sales from
higher advertising spending. This last influence is not proportional [17–19].

9. Binomial Population. It seeks the presence or absence of a characteristic, for
example, the presence of a pest in the cultivation of a product, normally repre-
sented in such a way that it can be said that there is the presence of such a pest
(p), or the absence of the plague (q), where p, q represent probabilities [20].

10. Polynomial Population. It has several characteristics that must be defined, mea-
sured or estimated, such as obedience, intelligence and postgraduate students age
of graduate department at the University of Guayaquil [16, 21].
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2.1.2 Population Elements

When a specific work is carried out, it is convenient to distinguish between the
theoretical population: set of elements to which the results are to be extrapolated,
and the population studied: set of accessible elements in our study [8, 22].

Sometimes, it is possible to study each element that constitutes to the population
through a census [23, 24]. In other words, the study of all the elements that conform
to the population [25]. The realization of a census is not always possible, for different
reasons: (a) Economy: It is usually a costly problem in time, money if the population
is large; (b) Destructive test; or (c) infinite population.

In sampling, the population is understood as thewhole universe, and it is necessary
that it be well defined so that it is knownwhat elements constitute it at all times. If the
numbering of elements is done on the accessible or studied population, and not on
the theoretical population, the process is called a sampling frame or space [26–28].

2.2 Sampling

Sampling is the process of selecting a set of individuals from a population in order
to study them and characterize the total population. It is the method used to choose
a sample from the population, since in most cases it is not possible to study the
entire population, and a sample can represent its individuals. This sample must be
representative of all features of all elements [29–31].

In other words, it is a procedure or technique to know the population based on a
sample drawn from it. It is also the study or procedure to determine characteristics
of a population based on the information given by the sample in its data, and because
it represents to the population, the sampling can be used for everything related to
quality control, production, salaries, and wages, etc [8, 28].

2.2.1 Terminology

• Population. Set of individuals from whom we want to obtain information.
• Sampling units. Number of elements of population, not overlapping, that will be
studied. Every member of the population will belong to one and only one sampling
unit.

• Units of analysis. It is an object or individual from which the information must
be obtained.

• Sample frame. It is a list of units or sampling elements.
• Sample. Set of units or elements of analysis taken from the frame.
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2.2.2 Sampling Types

According to [28, 32] “samples can be chosen through various techniques or proce-
dures” [33]. These techniques are classified into two broad groups:

• Probabilistic sampling or random sampling.
• Non-probabilistic sampling or non-random sampling.

2.2.2.1 Probabilistic Sampling

It is the process of selecting individuals in such a way that each subject has a positive
and independent probability of being chosen to integrate the sample. In other words,
it consists of choosing a sample of a random population [34, 35]. It is subdivided
into:

• Simple random sampling.
• Systematic sampling.
• Stratified sampling.
• Sampling by conglomerates.

Simple Random Sampling.
It is the sampling technique in which all the population elements have the same
probability of being part of the sample According to [36] “Simple random sampling
is a method of selection of n units taken from N, in such a way that each of the
samples has the same probability of being chosen”, meaning that, all those who
form part of the selection may be chosen. This method ensures that all individuals
who compose the target population have the same opportunity to be included in the
sample. It means that the probability of selecting a subject to study X is independent
(see Fig. 2.2) [37].
There are two forms of simple random sampling:

• Sampling with replacement. An element can be selected more than once in the
sample. For that, an element is extracted from the population, it is observed and is
returned to the population so that in this way can be done infinite extractions from
the population although it is finite [39–41].

• Sampling without replacement. The extracted elements are not returned to the
population until all the elements of the population that conform to the sample are
extracted [42, 43].

Advantages

• The procedure is efficient if the population is not large.
• It is relatively easy and cheap to find the units show them.

Disadvantages

• It requires the identification and cataloging of the population, which is sometimes
very expensive.
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Fig. 2.2 Simple random sampling [38]

• It requires an equal selection probability for all the elements that make up the
population.

• It requires a larger sample size than the other types of sampling.

When can I use this type of simple random sampling?

• It is recommended when the population is small.
• When there is a low level of heterogeneity in the data.
• When the population is located in a small space.
• When there is no previous information about the population.

Steps to get a simple random sampling. According to [28, 36] to make a simple
random sample we must comply with the following steps:

1. Define the study population.
2. Enumerate all the analysis units that make up the population, assigning an identity

number or identification.
3. Determine the optimal sample size for the study.
4. Select the sample systematically using a computer-generated random number

table to ensure that you have a random order.

Simple random sampling formula:

n = Nz2α/2 pq

(N − 1)e2 + z2αn pq
(2.1)
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where:
n = Sample size.
N = Population size.
Zα/2 = Confidence level.
p ∗ q = Proportional variance.
e = Error.
p ∗ q e = Probability.

Exercise 1. Determine quality and service level. Suppose that you want to deter-
mine the quality and level of service offered by the Archivist Information Unit. So
it is necessary to interview the different users that come to our file to know your
opinion. How would calculate the sample size? For this case, it gets a frame master
of 43,700 records corresponding to the visit log.

(a) Set the confidence level to 95% and an error of 5%.
N = 43,700
P = 0.5
q = 0.5
Zα/2 = 95%
e = 0.05
Zα/2 = 1.96

n = (43,700)(1.96)2(0.5)(0.5)

(43,700 − 1)(0.5)2 + (1.96)2(0.5)(0.5)
n = 38

(b) Set the confidence level to 90% and an error of 10%.
N = 43,700
P = 0.5
q = 0.5
Zα/2 = 90%
e = 0.10
Zα/2 = 1.65

n = (43,700)(1.65)2(0.5)(0.5)

(43,700 − 1)(0.1)2 + (1.65)2(0.5)(0.5)
n = 67.95

(c) Set the confidence level to 95% and an error of 10%.
N = 43,700
P = 0.5
q = 0.5
Zα/2 = 95%
e = 0.10
Zα/2 = 1.65
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n = (43,700)(1.96)2(0.5)(0.5)

(43,700 − 1)(0.1)2 + (1.96)2(0.5)(0.5)
n = 95.83

Exercise 2. Money draw. A specific company has generated significant profits for
the sale of a certain product, the company’s policy is to reward its employees with a
voucher on its excellent performance, the company can not give that bonus to all its
employees. Thus, an “X” amount of money is drawn between 4500. It is desired to
know how many employees would choose to give them a voucher. What would be
the optimal number of bonus winners?
Consider, for this calculation, a margin error of 20% and the confidence level of 96%.
(1 − α) − 100% = 96%
1 − α = 96%

100% → 1 − α = 0.96 → α = 1 − 0.96
α = 0.04 = 2.05
Z0.04/2 = Z0.02

N = 4,500
P = 0.5
q = 0.5
Zα/2 = 96%
e = 0.20
Zα/2 = 2.05

n = (4,500)(2.05)2(0.5)(0.5)

(4,500 − 1)(0.2)2 + (2.05)2(0.5)(0.5)
n = 38.73

Exercise 3. Awards competition. The National Lottery of Guayaquil has launched a
newsweepstakes, forwhich a contest is held. The shareholders of theNationalLottery
in conjunction with the planning department, elaborate 5,790 cartons. Therefore, it is
desired to know fromall the cartons that have beenmade, howmanyof themshould be
rewarded. To get this information, the specialist in the Statistics department suggests
that a sample will determine the number of cartons. How many prize cartons should
be awarded? Consider for this calculation, an error level of 6% and a confidence level
of 90%.
(1 − α) − 100% = 90%
1 − α = 90%

100% → 1 − α = 0.90 → α = 1 − 0.90
α = 0.1 = 1.65
Z0.01/2 = Z0.05

n = (5,790)(1.65)2(0.5)(0.5)

(5,790 − 1)(0.06)2 + (1.65)2(0.5)(0.5)
n = 183
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Exercise 4. Determining the consumption of a product. In a study carried out
for the company “Great Milk”, it was desired to determine in what proportion the
children of a certain region in the Guayas province would take milk powder brand
“Pediasure” at breakfast. It is known that there are 1,500 children, the companywants
to know by a sample, the optimal amount of children who would try that product. To
determine the sample size of children that consume Pediasure, consider a 10% error,
with a confidence level of 95%.
(1 − α) − 100% = 95%
1 − α = 95%

100% → 1 − α = 0.95 → α = 1 − 0.95
α = 0.5 = 1.96
Z0.05/2 = Z0.025

n = (1,500)(1.96)2(0.5)(0.5)

(1,500 − 1)(0.1)2 + (1.96)2(0.5)(0.5)
n = 90

Exercise 5. Deterioration of a product. In a particular fruit shop located in the north
of Guayaquil, it is bought daily 4000 oranges for sale. The fruit shop receives many
complaints from its customers, because every time they acquire a certain amount of
oranges, it turns out that some are damaged. The shop owner needs to know by using
a sample the number of oranges that might be in bad condition.

Consider for this calculation, a 10% error level and a confidence level of 95%.
(1 − α) − 100% = 99%
1 − α = 99%

100% → 1 − α = 0.99 → α = 1 − 0.99
α = 0.01 = 2.58
Z0.01/2 = Z0.005

n = (400)(2.58)2(0.5)(0.5)

(400 − 1)(0.1)2 + (2.58)2(0.5)(0.5)
n = 117.73

Systematic random sampling.

It consists of choosing an initial individual randomly between the population and
then selecting for the sample each nth individual available in the sample frame.
Systematic sampling is a straightforward process, and it only requires the choice of a
random individual. Hence, we consider it as trivial and fast, knowing that the results
we obtain are representative of the population [43, 44].

Similar to simple random sampling: “the first individual is chosen at random, and
the rest is conditioned by it, this method is straightforward to apply in practice and
has the advantage that it does not need to have an elaborated survey framework” (see
Fig. 2.3) [45, 46].
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Fig. 2.3 Systematic sampling [47]

When can I use this type of simple random sampling?

• It is recommended when the population is large.
• When a list of the population elements can be available.
• When the elements of the population do not keep any periodicity with an important
characteristic for the investigation.

Advantages

• Easy to apply.
• It is not always necessary to have a list of the whole population.
• When the population is ordered following a known trend, it ensures a coverage of
units of all types.

Disadvantages

• If the sampling constant is associated with the phenomenon of interest, biased
estimates can be found.

Steps. Concretely, the steps that we would continue to get a systematic sampling
will be as follows:

1. Produce an ordered list with n individuals of the population, which would be the
sampling frame.

2. Divide the sampling frame in n fragments, where n is the sample size desired.
The fragments size will be

k = N

n

where k gets the range or the lift coefficient.
3. The start number: It gets a random integer A, less than or equal to the interval.

This number will be the first individual that we select for the sample within the
first fragment from the divided population.
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4. The remaining n − 1 selection: It selects the following individuals from the
individual picked randomly through an arithmetic succession, by selecting indi-
viduals from the rest of the fragments into which we have divided the sample that
they occupy the same position as the original subject. This amounts to saying that
we will select individuals.

A, A + K , A + 2K , A + 3K , . . . ., A + (n − 1)K

Example. Suppose we have a sampling frame of 100 individuals, and it is desired to
obtain a sample of 25.We divided into first place the sampling frame in 25 fragments
of 4 individuals. Then, we select a random number between 1 and 4 to extract the first
individual at random from the first fragment: for example 2. From this individual,
the sample will be by removing individuals from the list with four units intervals.

k = N

n

N = 100
n = 25

k = N

n
→ k = 100

25
→ k = 4

Exercise 1. Records of departments. It has a population of 3,000 records of some
departments at the University of Guayaquil, and it is desired to take a systematic
sample of 26 records.

k = 3,000
26 → k = 115

Exercise 2. Survey. It is desired to know the opinion about a teacher of a lecture
with 60 people. These people are sorted in alphabetical order according to lecture
students list. To do the survey, 12 people are selected. Thus, N = 60, and n = 12.
The fixed interval is 5.

k = 60
12 → k = 5

Exercise 3. Dinner. From a total of 200 different dishes, it is desired to reduce to
samples of 5 elements of dishes to show in a dinner.

k = 200
5 → k = 40

Exercise 4. Shoe models. It is desired to divide a sample of 500 shoe types in groups
of 50 elements to choose which n show in a shop showcase.

k = 500
50 → k = 10
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Exercise 5. Cell phone models. From a total of 400 different cell models, it is
necessary to divide into samples of 20 to choose which to put in a promotion.

k = 400
20 → k = 20

Exercise 6. Employers. A company has 120 employees, and it is desired to extract
a sample of 30 of them.

k = 120
30 → k = 4

Exercise 7. Teenagers. It is desired to extract a sample with an error of 10% and
95% of confidence from a population of 1500 adolescents.

n = (1,500)(1.96)2(0.5)(0.5)
(1,500−1)(0.1)2+(1.96)2(0.5)(0.5) → n = 91

k = 1,500
91 → k = 16

Stratified sampling.

It consists of dividing the entire population under study into different subgroups or
disjoint strata so that an individual can only belong to a stratum. In other words,
“Stratified sampling is one in which we divide the population into subgroups or
strata. Stratification can be based on a wide variety of attributes or characteristics
found in the population as a profession, stature, age, gender, etc.” [48–50].

“In stratified sampling, a partition of the population is first performed in subpopu-
lations called strata, and sampling is carried out independently within each stratum”
(see Fig. 2.4) [51, 52].

Fig. 2.4 Stratified sampling [53]
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Table 2.1 Registration in Departments

Strata Stratum 1 Stratum 2 Stratum 3 Stratum 4 Total population

Size 1,192 220 1,131 457 3,000

Table 2.2 Students

Strata Stratum 1 Stratum 2 Stratum 3 Stratum 4 Total population

Size 950 230 315 505 2,000

Table 2.3 Products

Strata Stratum 1 Stratum 2 Stratum 3 Stratum 4 Total population

Size 100 167 125 58 450

Exercise 1. Registration in Departments. It has a population of 3,000 records of
some departments at theUniversity ofGuayaquil, and it is desired to take a systematic
sample of 26 records (see Table 2.1).

ni = n Ni
N where N = 3,000, n = 26

n1 = 26 ∗ 1192
3,000 = 10.33 = 11

n2 = 26 ∗ 220
3,000 = 1.91 = 2

n3 = 26 ∗ 1131
3,000 = 9.81 = 9

n4 = 26 ∗ 457
3,000 = 3.96 = 4

26

Exercise 2. Students sample. It has a population of 2,000 records, and it is desired
to take a systematic sample of 100 records (see Table 2.2).

ni = n Ni
N where N = 2,000, n = 100

n1 = 100 ∗ 950
2,000 = 47.5 = 47

n2 = 100 ∗ 230
2,000 = 11.5 = 11

n3 = 100 ∗ 315
2,000 = 15.75 = 17

n4 = 100 ∗ 505
2,000 = 25.25 = 25

100

Exercise 3. Products sample. It is desired to extract a sample that contains 450
elements. How many elements are to be allocated to each stratum? (see Table 2.3)
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Table 2.4 Unemployed people

Strata Stratum 1 Stratum 2 Stratum 3 Stratum 4 Total population

Size 45 95 39 691 870

ni = n Ni
N where N = 450, n = 50

n1 = 50 ∗ 100
450 = 11.11 = 11

n2 = 50 ∗ 167
450 = 18.55 = 19

n3 = 50 ∗ 125
450 = 13.88 = 14

n4 = 50 ∗ 58
450 = 6.44 = 6

50

Exercise 4. Unemployed people sample. It has a population of 870 unemployed
people in Ecuador, and it is desired to take a stratified sample of 15 first records (see
Table 2.4).

ni = n Ni
N where N = 870, n = 15

n1 = 15 ∗ 45
870 = 0.77 = 1

n2 = 15 ∗ 95
870 = 1.63 = 1

n3 = 15 ∗ 39
870 = 0.67 = 1

n4 = 15 ∗ 691
870 = 11.91 = 12

15

Exercise 5. Professional people sample. It is desired to extract a sample of people
who are professionals, for instance: engineers, architects, lawyers, etc., from a pop-
ulation of 9345 elements. How many elements have to be assigned to each stratum,
knowing that n is 893? (see Table 2.5).

ni = n Ni
N where N = 9, 345, n = 893

n1 = 893 ∗ 4,528
9,345 = 432.69 = 433

n2 = 893 ∗ 1,333
9,345 = 127.38 = 127

Table 2.5 Professional people

Strata Stratum 1 Stratum 2 Stratum 3 Stratum 4 Total population

Size 4,528 1,333 1,428 2,056 9,345
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n3 = 893 ∗ 1,428
9,345 = 136.45 = 136

n4 = 893 ∗ 2,056
9,345 = 196.46 = 197

893

Exercise 6. Cellphone models sample. It has a population of 500 models of cell-
phone in Guayaquil, and it is desired to take a stratified sample of 45 first models
(see Table 2.6).

ni = n Ni
N where N = 500, n = 45

n1 = 45 ∗ 45
500 = 4.05 = 4

n2 = 45 ∗ 85
500 = 7.65 = 8

n3 = 45 ∗ 220
500 = 19.8 = 20

n4 = 45 ∗ 150
500 = 13.5 = 13

45

Exercise 7. Population sample. It is desired to extract a global sample of 500
elements from a population divided into strata as shown in the Table 2.7. How many
items are to be allocated to each stratum?

ni = n Ni
N where N = 2,057, n = 500

n1 = 500 ∗ 466
2,057 = 113.27 = 113

n2 = 500 ∗ 125
2,057 = 30.38 = 30

n3 = 500 ∗ 549
2,057 = 133.44 = 134

n4 = 500 ∗ 917
2,057 = 222.9 = 223

500

Table 2.6 Cellphone models

Strata Stratum 1 Stratum 2 Stratum 3 Stratum 4 Total population

Size 45 85 220 150 500

Table 2.7 Population

Strata Stratum 1 Stratum 2 Stratum 3 Stratum 4 Total population

Size 466 125 549 917 2,057



2.2 Sampling 27

Cluster Sampling.

It is a technique used when there are relatively homogeneous “natural” clusters
in a statistical population. “It is a probabilistic sampling design by conglomerate;
a conglomerate is considered a grouping of elements that present characteristics
similar to the whole population” [34].

“It is a technique that takes advantage of the existence of groups or conglom-
erates in the population that correctly represent to the total population about the
characteristic that is desired to measure where the groups contain all the popula-
tion variability” [54]. “It consists of randomly choosing certain neighborhoods or
conglomerates within a region, city, commune, etc., and then choosing smaller units
such as blocks, streets, etc., and finally smaller ones, such as schools, clinics, homes”
(see Fig. 2.5) [55, 56].

Advantages and Disadvantages

• The main advantage is operational type: select a conglomerate to study tends to
be easier and more economical than a simple random or systematic.

• Interestingly, it is usual to make studies over the Internet that are still thinking in
terms of study only a few geographical areas, when in reality via the Internet we
do not get any operating profit; on the contrary, incur higher risk of having lower
precision by differences among the regions studied and the rest of the population.
This practice is an unjustified inheritance of techniques that were good in personal
interviews, but who are not using other methodologies.

• The main drawback when using sampling cluster run a major risk: that the con-
glomerates are not homogeneous among them. For example, we have the case over

Fig. 2.5 Cluster sampling [57]
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smoking in Ecuador, and it could happen in one of the provinces there is more
likely to smoke, for being amore urban region, for cultural reasons, for commercial
purposes.

Exercise. It is desired to know the degree of work satisfaction the professors’ in high
school, so that it is needed a sample of 700 subjects. Given the difficulty of accessing
to these individuals, it is decided to make a sample by conglomerates. Knowing that
the number of professors per institute is approximately 35. Therefore, the steps to
follow would be the following:

• Collect a list of all institutes.
• Choose by using simple or systematic random sampling the 20 institutes (700/35
= 20) that will provide the 700 teachers it needs.

Proposed Exercises

1. A school has 120 high school students listed from 1 to 120, and it is desired to
extract a sample of 30 students.

(a) Through the simple random sampling.
(b) Through the systematic random sampling.

2. To obtain a sample of students from a school to apply a survey. The enrolled
students were listed and a total of 700 was obtained, and a sample of 75 was
required.

(a) Through the simple random sampling.
(b) Through the systematic random sampling.

3. A student organization wants to estimate the proportion of students who are in
favor of a school disposition. There is a list of the names and addresses of the 645
students enrolled in this quarter. It is desired to determine the first 10 students
who will be selected using a simple random sampling.

4. It supposes it is going to take a simple random sample of 12 of 372 physicians in
a given city. A medical organization gives the doctors names.

5. If it has to select a sample of 40 people from a community of 500 inhabitants to
provide them with a survey of the health services they receive. The inhabitants
are divided into five colonies: San Miguel, San Rafael, San Vicente, San Marcos,
San Pedro where the size of each stratum is: 100, 150, 50, 125, 75, respectively.
It is desired to determine the samples per stratum.

6. There is a list of pre-numbered checks with a population of 800, and it is desired
to extract a systematic sample of 40.

7. To estimate the average of a certain variable, it has divided the data into four
strata. Each of these strata contains the number of items indicated in Table 2.8:
It is desired to extract a sample that globally contains 150 elements. How many
items have to be assigned to be selected from each stratum?

8. Considering as a population the odd natural numbers from 1 to 40 estimate the
population average using a random sample of 8 elements using the following
sampling techniques:
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Table 2.8 Exercise Strata Stratum 1 Stratum 2 Stratum 3 Stratum 4

Size 110 512 653 221

(a) The simple random sampling.
(b) The systematic random sampling.

9. In a factory of electronic articles usually, 10% of the articles present some man-
ufacturing defect. It is desired to estimate the proportion of defects electronic
articles from 2,000 items ready to be shipped. How many items should be chosen
from the lot if it the confidence values is 95% and the estimation error is no greater
than 0.05?
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Chapter 3
Pseudo-Random Numbers
and Congruential Methods

The pseudo numbers are the essential basis of the simulation. Usually, all randomness
involved in the model is obtained from a random number generator that produces a
succession of values that are supposed to be realizations of a sequence of independent
random variables and identically distributed uniforms U (0, 1). To be more explicit
about the use of pseudo numbers, we will analyze concepts such as mixed or linear
congruencemethod,multiplicative congruencemethod, additive congruencemethod.

3.1 Pseudo-Random Numbers

Real systems often have time and quantity values that vary within a range and accord-
ing to a specific density function, defined by a probability distribution. For example,
if the time that takes a machine to process a part is distributed between 2.2 and
4.5min, this will be defined as a probability distribution in the simulation model
[1–3].

In the simulation experiments, it is necessary to generate values for the ran-
dom variables represented these using probability distributions. In order to generate
stochastic inputs (probabilistic) for a simulation model, you must have a pseudo
number generator [1, 4–6].

Pseudo numbers are numbers generated in a process that seems to produce random
numbers. A pseudo-random number is only the value of a random variable x that has
a uniform probability distribution defined in the range (0, 1) [7–11].
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3.2 Pseudo Number Properties

It is desirable that uniform pseudo numbers possess the following characteristics
[12, 13]:

1. Uniformly distributed.
2. Statistically independent.
3. Reproducible.
4. Long period.
5. Generated by a quick method.
6. Generated by a method that does not require a lot of storage capacity of the

computer.

A random (pseudo) number generator is a structure G = (X; x0; T ; U ; g), where X
is a finite set of states, x0 ∈ X is the initial state (seed), the application T : X− > X is
the transition function, U is the finite set of possible observations, and G : X− > U
is the output function [8, 14].

Example.

To get a pseudo-random number in Excel, we must use the rand() function. It has
no arguments, so it will be enough to place its name followed by both parentheses. It
has entered the function in A1 cell, and as a result, a random number will be obtained
(see Fig. 3.1) [11, 15–18].

If it is desired to generate more random numbers; it would be enough to copy
the formula to other cells (See Figure). As it can be noticed in Fig. 3.2, the value of
A1 cell has changed after the formula has copied down. This is because the random
function is re-calculated every time that there is a change in the sheet, and therefore,
it will have a new value in cell A1. Conversely, if it is desired to leave “fixed” the
random numbers generated, it will be needed to copy them to another cell range by
using the Values in Paste option. In this way, the random function in the new cells
will be eliminated, and it will have the random numbers previously generated.

Fig. 3.1 Simulation of 1 pseudo-random number in Excel
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Fig. 3.2 Simulation of 10 pseudo-random numbers in Excel

3.3 Methods for Generating Pseudo Numbers

The independent variables in themathematicalmodel for a simulation are treatedwith
randomnumbers (because they represent the variables that cannot be controlled). The
“random” numbers through a Personal Computer (PC) are pseudo numbers generated
by algorithms, and it is done from the following methods:

3.3.1 Manual Methods

They are the most straightforward and slowest methods. For examples, coin releases,
dice, cards and roulettes. The numbers produced by these methods meet the statis-
tical conditions mentioned earlier, though it is impossible to reproduce a sequence
generated by these methods.

3.3.2 Random Number Tables

These numbers can be generated by employing a spreadsheet or by any generator of
any programming language reason why their behavior is deterministic.
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3.3.3 Employing the Computer

There are three methods to produce random numbers:

• External provision.
• Internal generation through a random physical process.
• Generation through a recurrence rule.

3.4 Arithmetic Methods to Generate Pseudo Numbers

3.4.1 Mean Square Method

The procedure for obtaining pseudo numbers with this type of generator is as follows:

• A seed is defined.
• The seed is raised squared.
• Depending on the number of digits is desired to have the pseudo-random number,
It is taken from the central part of the resulting number in the previous step the
number of digits required. If it is not possible to determine the central part, the
number is completed by adding zeros at the beginning or end.

• It should be noted that pseudo numbers are desired between 0 and 1. Consequently,
the result should be normalized, that is, if the numbers are two digits is normalized
by dividing by 100, if it is three digits per thousand and so on.

Example. Generate 3 random numbers of 4 digits from a medium square generator
using the seed number 445.

As it is desired 4-digit pseudo-numbers Ri, it will take the four digits from the
central part of the seed square, as follows:

(445)2 = 198025 = 9802 then R1 = 9802

10000
= 0.9802

(9802)2 = 96079204 = 0792 then R2 = 0792

10000
= 0.0792

(792)2 = 627264 = 2726 then R3 = 2726

10000
= 0.2726

Note: As the pseudo numbers must be between 0 and 1, and are 4 digits, it normalizes
by dividing between 10000.
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3.4.2 Medium Product Method

This method is somewhat similar to the previous one, but it should start with two
seeds each with k digits, the resulting number is taken as the central figures of the
product of the two previous numbers. For example, taking as seeds to X0 = 13 and
X1 = 15. The method would be as follows:

X2 = (13 ∗ 15) = 0195 = 19 then R2 = 19

100
= 0.19

X3 = (15 ∗ 19) = 0285 = 28 then R3 = 28

100
= 0.28

X4 = (19 ∗ 28) = 0532 = 53 then R4 = 53

100
= 0.53

3.4.3 Modified Medium Product Method

This method consists of using a multiplication constant instead of a variable, that
is Xn+1 = (K ∗ Xn). It should be noted that the previous methods have relatively
short periods, which are significantly affected by the initial values chosen, and are
statistically unsatisfactory. It should also be noted that a generator with a short period
is not used to make a considered number of simulation tests.

3.5 Congruence Methods

We have developed three methods of congruence to generate pseudo numbers, which
are derived from the use of different versions of the fundamental relationship of con-
gruence. The objective of each of the methods is the generation in a minimum time,
of random number successions with maximum periods. The congruence methods are
the mixed, the multiplicative and the additive [19, 20].

3.5.1 Mixed or Linear Congruence Method

Amixedor linear congruencemethod is an algorithm that allowsobtaining a sequence
of pseudo numbers calculated with a linear function defined as discontinuous pieces.
Linear congruence generators generate a sequence of pseudo numbers in which the
next pseudo-random number is determined from the last generated number, i.e., The
pseudo-random number Xn+1 is derived from the pseudo-random number Xn .
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The recurrence ratio for the mixed congruence generator is Xn+1 = (aXn + c)
mod m, where:
x0 is the seed x0 > 0.
a the multiplier (a > 0).
c is the additive constant (c < 0).
m is the module (m > x0,m > a and m > c).
ri is the random number.
X0, a, c > 0.

This recurrence ratio tells us that Xn+1 is the remainder of dividing to Xn+c

between the module. The above means that the possible values of Xn+1 are 0, 1,
2, 3 . . .m − 1, that is, it represents the possible number of different values that can
be generated.
xi+1 = (axi + c) mod (m)
xi = x0
a = 1 + 4k
m = 2g

k = integer
g = integer

ri = xi

(m − 1)

Exercise 1. Mixed or linear congruence method.
Find a sequence of pseudo-random numbers for the following data:

x k a c g m

6 8 33 5 2 4

a = 1 + 4k m = 2G

a = 1 + 4(8) m = 22

a = 33 m = 4

xi = (axi + c) mod (m)

x1 = (33(6) + 5) mod (4)
x1 = 203 mod (4)
0.75 ∗ 4 = 3
x1 = 3

r1 = 3

4 − 1

r1 = 3

3

r1 = 1



3.5 Congruence Methods 39

x2 = (33(3) + 5) mod (4)
x2 = 104 mod (4)
x2 = 26.00
00.00 ∗ 4 = 0
x2 = 0

r2 = 0

4 − 1

r2 = 0

3

r2 = 0

x3 = (33(0) + 5) mod (4)
x3 = 5 mod (4)
x3 = 1

r3 = 1

4 − 1

r3 = 1

3

r3 = 0.33

x4 = (33(1) + 5) mod (4)
x4 = 38 mod (4)
x4 = 9.5
0.50 ∗ 4 = 2
x4 = 2

r4 = 2

4 − 1

r4 = 2

3

r4 = 0.66

x5 = (33(2) + 5) mod (4)
x5 = 71 mod (4)
x5 = 17.75
0.75 ∗ 4 = 3
x5 = 3
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r5 = 3

4 − 1

r5 = 3

3

r5 = 1

The method finishes when it is observed that the numbers are repeated, in this case,
if we look at the value of x5. We can realize that it is equal to x1, but what if I do to
x6, then we can see that it repeats, and it will be equal to x2, as it is shown below:
x6 = (33(3) + 5) mod (4)
x6 = 104 mod (4)
x6 = 26.00
0.00 ∗ 4 = 0
x6 = 0

r6 = 0

4 − 1

r6 = 0

3

r6 = 0

x1 3 0 1 2
ri 1 0 0.33 0.66

When it is desired to build a random number generator to simulate the values of
a random variable; it must choose the parameters in such a way that a long period is
guaranteed so that all the simulation tests can be done. Therefore, it must take into
account the following conditions:

• a must be an impair number, not divisible by 3 or by 5.
• c can be usually any constant; however, to ensure good results, it must be selected

a so that, a mod 8 = 5 for a binary computer, or mod 200 = 21 for the decimal
computer.

• m must be the largest integer the computer. accepts.

According to Hull and Dobell, the best results for a mixed congruence generator
on a binary computer are:
c = 8 ∗ A3
a = any integer
X0 = any impair integer
m = 2b where b > 2, and m is accepted by the computer.
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Exercise 2. Generate mixed pseudo numbers.
“NoviCompu” wants to make an inventory of its products, to choose the products
the company needs to generate 17 random numbers. The specialist in the statistics
department suggests to apply the linear congruence method, given the sequence of
integers where: x = 34, k = 15, c = 10 and G = 5

x k a c g m
34 15 61 10 5 32

x1 = (61(34) + 10) mod (32)
x1 = 2084 mod (32)
x1 = 65.125
x1 = 0.125 ∗ 32
x1 = 4

r1 = 4

32 − 1

r1 = 4

31

r1 = 0.129

x2 = (61(4) + 10) mod (32)
x2 = 254 mod (32)
x2 = 7.9375
x2 = 0.9375 ∗ 32
x2 = 30

r2 = 30

32 − 1

r2 = 30

31

r2 = 0.967

x3 = (61(30) + 10) mod (32)
x3 = 1840 mod (32)
x3 = 57.5
x3 = 0.5 ∗ 32
x3 = 16

r3 = 16

32 − 1
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r3 = 16

31

r3 = 0.516

x4 = (61(16) + 10) mod (32)
x4 = 986 mod (32)
x4 = 30.81245
x4 = 0.81245 ∗ 32
x4 = 26

r4 = 26

32 − 1

r4 = 26

31

r4 = 0.839

x5 = (61(26) + 10) mod (32)
x5 = 1596 mod (32)
x5 = 49.875
x5 = 0.875 ∗ 32
x5 = 28

r5 = 28

32 − 1

r5 = 28

31

r5 = 0.903

x6 = (61(28) + 10) mod (32)
x6 = 1718 mod (32)
x6 = 53.6875
x6 = 0.6875 ∗ 32
x6 = 22

r6 = 22

32 − 1

r6 = 22

31

r6 = 0.709
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x7 = (61(22) + 10) mod (32)
x7 = 1352 mod (32)
x7 = 42.25
x7 = 0.25 ∗ 32
x7 = 8

r7 = 8

32 − 1

r7 = 8

31

r7 = 0.258

x8 = (61(8) + 10) mod (32)
x8 = 498 mod (32)
x8 = 15.5625
x8 = 0.5625 ∗ 32
x8 = 18

r8 = 18

32 − 1

r8 = 18

31

r8 = 0.581

x9 = (61(18) + 10) mod (32)
x9 = 1108 mod (32)
x9 = 34.625
x9 = 0.625 ∗ 32
x9 = 20

r9 = 20

32 − 1

r9 = 20

31

r9 = 0.645

x10 = (61(20) + 10) mod (32)
x10 = 1230 mod (32)
x10 = 38.4375
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x10 = 0.4375 ∗ 32
x10 = 14

r10 = 14

32 − 1

r10 = 14

31

r10 = 0.452

x11 = (61(14) + 10) mod (32)
x11 = 864 mod (32)
x11 = 27.00
x11 = 0.00 ∗ 32
x11 = 0

r11 = 0

32 − 1

r11 = 0

31

r11 = 0

x12 = (61(0) + 10) mod (32)
x12 = 10 mod (32)
x12 = 0.3125
x12 = 0.3125 ∗ 32
x12 = 10

r12 = 10

32 − 1

r12 = 10

31

r12 = 0.323

x13 = (61(10) + 10) mod (32)
x13 = 620 mod (32)
x13 = 19.375
x13 = 0.375 ∗ 32
x13 = 12

r13 = 12

32 − 1
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r13 = 12

31

r13 = 0.387

x14 = (61(12) + 10) mod (32)
x14 = 742 mod (32)
x14 = 21.1875
x14 = 0.1875 ∗ 32
x14 = 6

r14 = 6

32 − 1

r14 = 6

31

r14 = 0.194

x15 = (61(6) + 10) mod (32)
x15 = 376 mod (32)
x15 = 11.75
x15 = 0.75 ∗ 32
x15 = 24

r15 = 24

32 − 1

r15 = 24

31

r15 = 0.774

x16 = (61(24) + 10) mod (32)
x16 = 1474 mod (32)
x16 = 40.0625
x16 = 0.0625 ∗ 32
x16 = 2

r16 = 2

32 − 1

r16 = 2

31

r16 = 0.064
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x17 = (61(2) + 10) mod (32)
x17 = 132 mod (32)
x17 = 4.125
x17 = 0.125 ∗ 32
x17 = 4

r17 = 4

32 − 1

r17 = 4

31

r17 = 0.129

Exercise 3. Generate mixed pseudo numbers.
“Acromax” needs to know if the product “XYZ’ is expired. There is a stock of
150.000 elements, so it proceeds to take a sample, to perform this work has been
considered, generate 257 random numbers, but only be shownManually 11 numbers
applying the linear congruence method. The following values give the sequence of
numbers Xi+1 = (aXi + c) mod (m)

ri = Xi

m − 1

x a c g m
89 385 78 9 512

The random numbers generated by the mixed congruence method are shown in
Table3.1.

Table 3.1 Random number generation by mixed congruence method

n Xn (a Xn+c) mod m Xn+1 (Remainder) Random numbers (Ri)

1 89 34343 mod 512 39 0.07632

2 39 15093 mod 512 245 0.47945

3 245 94325 mod 512 117 0.22896

4 117 45123 mod 512 67 0.13111

5 67 25873 mod 512 273 0.53424

6 273 105105 mod 512 145 0.28375

7 145 55903 mod 512 0 0

8 0 78 mod 512 78 0.15264

9 78 30108 mod 512 412 0.80626

10 412 158698 mod 512 490 0.958904

11 490 188728 mod 512 312 0.61056
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Exercise 4. Generate mixed pseudo numbers.
Movistar needs to recycle a large number of old generation cell phones, as some of
its components are required as extra material, the company, want to take a sample,
for which will generate random numbers, all this process is It will do so by applying
the linear congruence method.

Xi+1 = (aXi + c) mod (m)

ri = Xi

m − 1

x a c m
45 47 58 288

x1 = (47(45) + 58) mod (288) r1 = 0.5470383275
x2 = (47(157) + 58) mod (288) r2 = 0.8257839721
x3 = (47(237) + 58) mod (288) r3 = 0.881533101
x4 = (47(253) + 58) mod (288) r4 = 0.4912891986
x5 = (47(141) + 58) mod (288) r5 = 0.212543554
x6 = (47(61) + 58) mod (288) r6 = 0.1567944251
x7 = (47(45) + 58) mod (288) r7 = 0.5470383275
As a result we have:

Xi 157 237 253 141 61 45 157
Ri 0.547 0.82578 0.882 0.491 0.2125 0.1568 0.547

where i = 1, 2, 3, 4, 5, 6, 7.

Exercise 5. Generate mixed pseudo numbers.
Find the sequence of pseudo-random numbers with the following data.

Xi+1 = (aXi + c) mod (m)

ri = Xi

m − 1

x a c G K m
6 36 5 2 5 4

x1 = (33 ∗ 6 + 5) mod (4) = 3 r1 = 3
3 = 1

x2 = (33 ∗ 3 + 5) mod (4) = 0 r2 = 0
3 = 0
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x3 = (33 ∗ 0 + 5) mod (4) = 1 r3 = 1
3

x4 = (33 ∗ 1 + 5) mod (4) = 2 r4 = 2
3

x5 = (33 ∗ 2 + 5) mod (4) = 3 r5 = 3
3 = 1

Exercise 6. Generate mixed pseudo numbers.
Find pseudo-random number sequence with the following data.

Xi+1 = (aXi + c) mod (m)

ri = Xi

m − 1

x a c G K m
3 2 9 3 5 8

x1 = (21 ∗ 3 + 9) mod (8) = 0 r1 = 0
7 = 0

x2 = (21 ∗ 0 + 9) mod (8) = 1 r2 = 1
7 = 0.1428

x3 = (21 ∗ 1 + 9) mod (8) = 6 r3 = 6
7 = 0.8571

x4 = (21 ∗ 6 + 9) mod (8) = 7 r4 = 7
7 = 1

x5 = (21 ∗ 7 + 9) mod (8) = 4 r5 = 4
7 = 0.5714

x6 = (21 ∗ 5 + 9) mod (8) = 2 r6 = 2
7 = 0.2857

x7 = (21 ∗ 2 + 9) mod (8) = 3 r7 = 3
7 = 0.4285

3.5.2 Multiplicative Congruence Method

Computes a Xn sequence of non-negative integers, each of which is less than M
by the relationship Xn+1 = aXn( mod M). It is a special case of the congruence
relationship in which c = 0, this method behaves satisfactorily statistically, i.e., the
numbers generated by this method are uniformly distributed and are not correlated.
This method has a maximum period of less than M, but conditions can be imposed
on a and x0, so that the maximum period is obtained. From a computational point of
view it is the fastest of all [21–23].

Therefore, the recursive equation is:
xi+1 = (axi ) mod (m)

xi = x0
a = 1 + 4k
m = 2g

k = an integer number.
g = an integer number.
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Ri = Xi

m − 1

where:
x0 > 0 represents the seed and is a value selected by the researcher;
a > 0 is the multiplier;
m is the module, being m > x0,m > a.

Exercise 1. Generate numbers pseudo congruence multiplicative.
Use themultiplicative congruencemethod to generate five possible random numbers.

xi+1 = (axi ) mod (m)

Ri = Xi

m − 1

x a m
85 32 95

x1 = (32(85)) mod (95)
x1 = 270 mod (95)
x1 = 28.63157895
x1 = 0.63157895 ∗ 95
x1 = 60

r1 = 60

95 − 1

r1 = 60

94

r1 = 0.6382978723

x2 = (32(6)) mod (95)
x2 = 1920 mod (95)
x2 = 20.21052632
x2 = 0.21052632 ∗ 95
x2 = 20

r2 = 20

95 − 1

r2 = 20

94
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r2 = 0.2127659574

x3 = (32(20)) mod (95)
x3 = 640 mod (95)
x3 = 6.736842105
x3 = 0.736842105 ∗ 95
x3 = 70

r3 = 70

95 − 1

r3 = 70

94

r3 = 0.7446808511

x4 = (32(70)) mod (95)
x4 = 2240 mod (95)
x4 = 23.57894737
x4 = 0.57894737 ∗ 95
x4 = 55

r4 = 55

95 − 1

r4 = 55

94

r4 = 0.585106383

x5 = (32(55)) mod (95)
x5 = 1760 mod (95)
x5 = 1.71587
x5 = 0.71587 ∗ 95
x5 = 50

r5 = 50

95 − 1

r5 = 50

94

r5 = 0.5319148936

Exercise 2. Generate numbers pseudo congruence.
Find the sequence of pseudo-random numbers with the following data.
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xi+1 = (axi ) mod (m)

Ri = Xi

m − 1

x k a g m
17 2 21 5 32

a = 5 + 8k m = 2g

a = 5 + 8(2) m = 25

a = 5 + 16 m = 32
a = 21

x1 = (21 ∗ 17) mod (32) = 5 r1 = 5
31 = 0.1616

x2 = (21 ∗ 5) mod (32) = 9 r2 = 9
31 = 0.2903

x3 = (21 ∗ 9) mod (32) = 29 r3 = 29
31 = 0.9355

x4 = (21 ∗ 29) mod (32) = 1 r4 = 1
31 = 0.0322

x5 = (21 ∗ 1) mod (32) = 21 r5 = 21
31 = 0.6774

x6 = (21 ∗ 21) mod (32) = 25 r6 = 25
31 = 0.8064

x7 = (21 ∗ 25) mod (32) = 13 r7 = 13
31 = 0.4194

x8 = (21 ∗ 13) mod (32) = 17 r8 = 17
31 = 0.5484

Exercise 3. Generate numbers pseudo congruence multiplicative.
Find the sequence of pseudo-random numbers with the following data.

xi+1 = (axi ) mod (m)

Ri = Xi

m − 1

x k a g m
13 3 29 4 16

x1 = (21 ∗ 13) mod (16) = 9 r1 = 9
15 = 0.6

x2 = (21 ∗ 9) mod (16) = 5 r1 = 5
15 = 0.33

x3 = (21 ∗ 5) mod (16) = 1 r1 = 1
15 = 0.067

x4 = (21 ∗ 1) mod (16) = 13 r1 = 13
15 = 0.867

Exercise 4. Generate numbers pseudo congruence multiplicative.
Perform the following exercise, by themultiplicative congruencemethod, to generate
random numbers using the following data.
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xi+1 = (axi ) mod (m)

Ri = Xi

m − 1

x k a g m
235 87 701 6 64

a = 5 + 8k m = 2g

a = 5 + 8(87) m = 26

a = 5 + 696 m = 64
a = 701

Exercise 5. Generate numbers pseudo congruence multiplicative.
Solve the following exercise, by the multiplicative congruence method to generate
possible random numbers.

xi+1 = (axi ) mod (m)

Ri = Xi

m − 1

x a m
90 67 520

Exercise 6. Generate numbers pseudo congruence multiplicative.
Apply the multiplicative congruence method to generate random numbers using the
following data:

xi+1 = (axi ) mod (m)

Ri = Xi

m − 1

x k a g m
432 123 989 10 1024
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3.5.3 Additive Congruence Method

Calculates a succession of pseudo numbers using the ratio xi+1 = Xn + Xn−k

mod (m). To use this method, you need K initial values, being K integer. The
statistical properties of the sequence tend to be improved as K increases. This is the
only method that produces periods greater than M [24, 25]
Its recursive equation is:

Xi+1 = Xn + Xn−k mod (m) i = n + 1, n + 2, n + 3, . . . , N

The numbers ri can be generated by the equation:

ri = Xi

m − 1

Exercise 1. Generate numbers pseudo congruence additive.
Generate 7 pseudo-random numbers from the following data with M = 100.

Xi = Xi−1 + Xi−n mod (m)

ri = Xi

m − 1

x1 x2 x3 x4 x5
65 89 98 3 69

x1 = (69 ∗ 65) mod (100) = 34 r1 = 34
99 = 0.34

x2 = (34 ∗ 89) mod (100) = 23 r2 = 23
99 = 0.23

x3 = (23 ∗ 98) mod (100) = 21 r3 = 21
99 = 0.21

x4 = (21 ∗ 3) mod (100) = 24 r4 = 24
99 = 0.24

x5 = (24 ∗ 69) mod (100) = 93 r5 = 93
99 = 0.24

x6 = (93 ∗ 34) mod (100) = 27 r6 = 27
99 = 0.27

x7 = (27 ∗ 23) mod (100) = 50 r7 = 50
99 = 0.5

Exercise 2. Generate numbers pseudo congruence additive.
Generate 10 pseudo numbers from the following data with M = 86.

Xi = Xi−1 + Xi−n mod (m)

ri = Xi

m − 1
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x1 x2 x3 x4 x5
3 17 73 31 42

x1 = (42 + 3) mod (86) = 45 r1 = 45
85 = 0.5294

x2 = (45 + 17) mod (86) = 62 r2 = 62
85 = 0.7294

x3 = (62 + 73) mod (86) = 49 r3 = 49
85 = 0.5767

x4 = (49 + 31) mod (86) = 80 r4 = 80
85 = 0.9411

x5 = (80 + 42) mod (86) = 36 r5 = 36
85 = 0.4235

x6 = (36 + 45) mod (86) = 81 r6 = 81
85 = 0.9829

x7 = (81 + 62) mod (86) = 57 r7 = 57
85 = 0.6705

x8 = (57 + 49) mod (86) = 20 r8 = 20
85 = 0.2352

x9 = (20 + 80) mod (86) = 14 r9 = 14
85 = 0.1647

x10 = (14 + 36) mod (86) = 50 r10 = 50
85 = 0.5882

Exercise 3. Generate numbers pseudo congruence additive.
Generate 10 random numbers from the integer sequence with M = 10.

Xi = Xi−1 + Xi−n mod (m)

ri = Xi

m − 1

x1 x2 x3 x4 x5
2 9 4 6 8

x1 = (8 + 2) mod (10)
x1 = 10 mod (10)
x1 = 1
x1 = 0.0 ∗ 10
x1 = 0

r1 = 0

10 − 1

r1 = 0

9

r1 = 0

x2 = (0 + 9) mod (10)
x2 = 9 mod (10)
x2 = 0.9
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x2 = 0.9 ∗ 10
x2 = 9

r2 = 9

10 − 1

r2 = 9

9

r2 = 1

x3 = (9 + 4) mod (10)
x3 = 13 mod (10)
x3 = 1, 3
x3 = 0.3 ∗ 10
x3 = 3

r3 = 3

10 − 1

r3 = 3

9

r3 = 0.333

x4 = (3 + 6) mod (10)
x4 = 9 mod (10)
x4 = 0.9
x4 = 0.9 ∗ 10
x4 = 9

r4 = 9

10 − 1

r4 = 9

9

r4 = 1

Exercise 4. Generate numbers pseudo congruence additive.
Generate 9 random numbers from the integer sequence with m = 7.

Xi = Xi−1 + Xi−n mod (m)

ri = Xi

m − 1
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x1 x2 x3 x4 x5
12 5 9 11 4

Exercise 5. Generate numbers pseudo congruence additive.
Generate 12 random numbers from the integer sequence with M = 210.

Xi = Xi−1 + Xi−n mod (m)

ri = Xi

m − 1

x1 x2 x3 x4 x5
23 22 67 32 45

Exercise 6. Generate numbers pseudo congruence additive.
Generate 10 random numbers from the integer sequence with M = 110.

Xi = Xi−1 + Xi−n mod (m)

ri = Xi

m − 1

x1 x2 x3 x4 x5
92 94 96 98 99

Exercise 7. Generate numbers pseudo congruence additive.
Generate 20 random numbers from the integer sequence with M = 320.

Xi = Xi−1 + Xi−n mod (m)

ri = Xi

m − 1

x1 x2 x3 x4 x5
123 435 678 567 129



3.6 Proposed Problems 57

3.6 Proposed Problems

Determine the period of the following mixed congruence generators:
Xn+1 = (8Xn + 16) mod 100 and X0 = 15.
Xn+1 = (50 Xn+17) mod 64 and X0 = 13.
Xn+1 = (5 Xn+24) mod 32 and X0 = 7.
Xn+1 = (5 Xn+21) mod 100 and X0 = 3.
Xn+1 = (9 Xn+13) mod 32 and X0 = 8.

Determine the period of the following multiplicative congruence generators:
Xn+1 = 203 Xn mod 105 and X0 = 17.
Xn+1 = 211 Xn mod 108 and X0 = 19.
Xn+1 = 221 Xn mod 103 and X0 = 3.
Xn+1 = 5 Xn mod 64 and X0 = 7.
Xn+1 = 11 Xn mod 128 and X0 = 9.

Generate randomnumbers between 0 and 1with the following congruence generators
and determine the life cycle of each one.
Xn+1 = (40 Xn+13) mod 33 and X0 = 302.
Xn+1 = (71 Xn+57) mod 341 and X0 = 71.
Xn+1 = (71 Xn+517) mod 111 and X0 = 171.
Xn+1 = (71561 Xn+56822117) mod 341157 and X0 = 31767.
Xn+1 = (723 Xn+531) mod 314 and X0 = 927.
Xn+1 = (452 Xn+37452) mod 1231 and X0 = 4571.
Xn+1 = (17 Xn) mod 37 and X0 = 51.
Xn+1 = (16 Xn+4) mod 14 and X0 = 22.

Generate 15 random numbers if the first 5 sequence numbers are:
1, 13, 17, 12, 4 with m = 19
6, 2, 7, 15, 5 with m = 24
14, 11, 10, 16, 18 with m = 30
40, 61, 81, 4, 25 with m = 100
987, 173, 451, 438, 611 with mod 1000
86, 95, 110, 73, 91 with m 500
99, 61, 118, 142, 95 with m 320
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Chapter 4
Random Variable Generation Methods

Simulation is the process of designing and developing a computerized model of a
system or process and conducting experiments. To understand the system behavior
or to evaluate several strategies which the system can be operated based on proba-
bilistic models that allow to generate random variables and obtain significant results
through methods such as inverse transform, accept-reject, composition and convo-
lution methods.

4.1 Introduction

The generation of random variables is a process that confronts the simulation because
it has variables that have a probabilistic behavior, and where the variability could
be classified within some known probability distribution. The generation of any
random variable is based on the generation of a uniform distribution (0, 1), and the
transformations of these generated numbers in values of other distributions [1–4].

There are usually several algorithms that can be used to generate values from a
given distribution, and different factors that can be considered to determine what
algorithm to use in a particular case, though these factors often conflict with one
another [5, 6]. Some of these factors are as follows:

• Accuracy. Values must be obtained from a variable with a given precision. Some-
times, it has enough with getting an approximation and some not.

• Efficiency. The algorithm that implements the buildmethodhas associated runtime
and a memory expense. We will choose a method that is efficient in time and the
amount of memory required.

• Complexity.We look formethods that haveminimal complexity, as long as certain
accuracy is guaranteed.
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4.1.1 Types of Random Variables

Once it is clear what exactly is a random variable, the next thing is to define the
types of variables that are counted to experiment; this is how the topics of discrete
and continuous random variables will be addressed. For the generation of discrete or
continuous random variables, it is necessary to have the specific information of the
desired distribution, as well as the application of a method for the generation of the
random variable, and the computational implementation for Used in the simulation
[7, 8].

Withwhatwas said in the preceding paragraph,we reached the first type of random
variable, called discrete. When experimenting, we are generally interested in some
function of the result rather than the result itself. Thus, for example, when throwing
a dice twice we could be interested only in the sum of the points obtained and not in
the pair of values that gave rise to that value of the sum [3, 4].

In addition to the discrete, there is also another type of random variable called
continuous. In this case, the range we work with will cover all the real numbers that
exist. When a continuous random variable is used, it works from specific quantities
that can be accessed within our experiment. For example, the duration of a call.
The operating time of an industrial equipment, the time of repair of a machine, etc.
Therefore, for each of these examples, we will be able to set a specified time interval
either between 1min to 5min or from 1h up to 8h, the important thing is to identify
that time range there are infinite real numbers [8].

4.1.2 Methods for Generating Random Variables

The generation of any random variable is based on the previous generation of a
uniform distribution (0, 1). And, the transformations of these generated numbers in
values from other distributions. Most of the techniques used for the generation can
be grouped into:

• Inverse transform method.
• Acceptance-rejection method
• Composition method.
• Convolution method.

4.1.3 Inverse Transform Method

This method is applied to the accumulated distribution F(x), from the probability
distribution f (x), which will be simulated either by a summation, if it is a dis-
crete variable or through an integration if it is a continuous variable [9, 10]. Since
F(x) is between the interval (0, 1), a uniform random number can be generated Ri ,
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to determine the value of the random variable whose accumulated distribution is the
same, Ri , which leads solving the following equation:

F(x) = Ri (4.1)

x = F−1(Ri ) (4.2)

4.2 Inverse Transform and Discrete Random Variables

If we have a discrete variable X , it takes values x − 1 with probabilities P − 1. The
sum is equal to 1, an algorithm to simulate X would be:

Generate values of a uniform U variable (0, 1) and make X = x1, if U ≤ Pi , and
do X = x j then

∑ j−1
i=0 pi < U ≤ ∑ j

i=0 pi

This method consists of the following steps:

• Define the f density function (x) that represents the variable to the model.
• Calculate the accumulated function F(x).
• Clear the random variable x and obtain the inverse cumulative function, F(X)−1.
• Generate random variables x , substituting values with numbers pseudo ri U (0,
1) in inverse cumulative function.

The inverse transform method can be used to simulate discrete random variables,
such as Poisson, Bernoulli, binomial, geometric, general discrete. The generation is
carried out through the accumulated probability P(x) and the production of pseudo
numbers ri U (0, 1).

4.2.1 Bernoulli Probability Distribution

For this type of distribution only two results are possible: success or failure; where
the possibility of success is defined as p and failure 1 − p; with this argument we
can build a probability function of Bernoulli type (Fig. 4.1), as follows [11, 12]:

p(x) = px (1 − p)1−x

where x = 0, 1. The probabilities are calculated to x = 0 and x = 1, to get:

x 0 1
p(x) 1 − p p



62 4 Random Variable Generation Methods

Fig. 4.1 Bernoulli density
function graph [13]

Where its distribution function is given by:

p(x) =
{
1-p if x = 0

p if x = 1

Accumulating the P(x) values, it obtains:

x 0 1
p(x) 1 − p p

F(x) =
∫ 1

0
a − p dt = 1 − p(t)

0
1 = 1 − p(1 − 0)

F(x) = 1 − p If 0 ≤ x

1 − x = Ri

x = 1 − Ri

Generating pseudo numbers ri U (0, 1), it applies the rule:

f (x) =
{
if ri (0, 1 − p); x = 0

ri (1 − p, 1) x = 1
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Exercise. Below table shows the daily demand for mobile headphones sold in “Mi
comisariato” supermarkets [14].

Day 1 2 3 4 5 6 7 8 9
Demand 1 2 2 1 3 0 3 1 3

Simulate the demand behavior using a inverse transform method. From the his-
torical information, the punctual and accumulated probabilities are calculated for
x = 0, 1, 2, 3 (see below table).

x p(x) P(x)

0 0.1111 0.1111
1 0.2222 0.3333
2 0.3333 0.6666
3 0.3333 1

The rule to generate this random variable would be given by:

f (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

if ri (0 − 0.1111); x = 0

ri (0.1111 − 0.3333); x = 1

ri (0.3333 − 0.6666); x = 2

ri (0.6666 − 1); x = 3

With the list of pseudo numbers ri U (0, 1), and the previous rule, it is possible
to simulate the daily demand for mobile headphones, as it is shown in below table.

Day ri Daily demand
1 0.213 1
2 0.345 2
3 0.021 0
4 0.987 3
5 0.543 2

4.2.2 Variables That Follow a Binomial Distribution

Since the binomial distribution is the sum of n Bernoulli random variables; then the
generation of random numbers that follow a binomial distribution implies adding
the simulated values of n Bernoulli random variables [15, 16] (see Fig. 4.2). The
procedure is as follows:
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Fig. 4.2 Binomial density
function graph [17]

1. Generate n uniform numbers Ri .
2. Count how many of these generated numbers are less than p.
3. The quantity found in step 2 is the simulated value of the random variable x .
4. Repeat the above steps as many times as you want.

Its distribution f (x) is:

f (x) =
{

n
x px (1 − p)n−x ; ∀x ∈ {0, 1, . . . , n}
0 otherwise

where:
n It is the sample size.
x The integer value that takes the random variable: 0,1, 2,…,n.
p It is the probability of success.
1 − p It is the probability of failure.

Its accumulated function F(x) is:

F(x) =
∫ n

0

n

x
px (1 − p)n−x dt

Changing variable:

F(x) =
i=0∑

x

x
x

1
pi (1 − p)i

x =
i=0∑

x

Ri
20
i

30
16

2i

Exercise. If the number of products a customer selects from a specific perch in a
small supermarket follows a Binomial distribution with n = 15 and p = 0.4, simulate
purchases from 10 customers and determine:
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• What is the total number of products purchased by the 10 customers?
• What is the average of products that were selected?
• What was the minimum and maximum number of products that were selected by
a specific customer?

4.2.3 Variables That Follow a Discrete Uniform Distribution

It is considered an arbitrary random experiment, and a numerical characteristic is
observed in such a way that the result of a random experience can be a finite set of n
possible outcomes, all equally probable [18] (see Fig. 4.3). Its distribution f (x) is:

f (x) = 1

j + i + 1
if ∈ i, i + 1, . . . , j

Its accumulated function, F(x) is:

F(x) =
∫ x

i

1

j − i + 1
dt = 1

j − i + 1
[x − 1] = x − 1

j − i + 1

F(x) = x − i

j − i + 1

x − i

j − i + 1
= Ri

x = Ri ( j − i + 1) + i

Fig. 4.3 Discrete uniform
density function graph [19]
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4.2.4 Variables That Follow a Poisson Distribution

The Poisson distribution is used to describe certain types of processes, including
number of telephone calls arriving at a commutator, request numbers from patients
requiring services in a health institution, car and trucks arrival to a toll, and the
accident number registered at certain intersections [20–22] (see Fig. 4.4).

Its distribution f (x) is:

p(x) =
{

e−λλx

x ! ; if x ∈ 0, 1, . . .

0 otherwise

Its accumulated function, F(x) is:

F(x) =
∫ x

0

e−λλx

x ! dt

F(x) = e−λ
∑

xi=0
λi

i ! + c

F(x) = e−8
∑

xi=0
8i

i !

e−8
∑

xi=0
8i

i ! = Ri

Fig. 4.4 Poisson density
function graph [23]
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4.2.5 Calculation of the Poisson Distribution

The Poisson probability distribution has to do with certain processes that can be
described by a discrete random variable. Generally, the letter X represents this dis-
crete variable and can take values (0, 1, 2, 3, 4, 5…).Where X represents the random
variable and the x represents a specific value that that variable can take [24].

Poisson distribution is calculated with the following formula.

P(x) = λx e−λ

x !
Let’s suppose we are re investigating the safety of a dangerous intersection. The

records of the Comisión de Tránsito del Guayas (CTG) indicate that on average there
are five monthly accidents at the intersection of VíctorManuel Rendon and Córdova.
The number of crashes is distributed according to a Poisson distribution. Thus, the
CTG wants to calculate the probability that any month will occur exactly 0, 1, 2, 3,
4 accidents.

Applying the Poisson distribution formula, we have:

P(x) = λx e−λ

x !
Now, we calculate the probabilities, taking into account that it is a discrete distri-

bution where:
λ = 5
x = 0, 1, 2, 3, 4

The probability that crashes will not occur at this intersection is given by:

P(0) = 50e−5

0!
P(0) = 1 ∗ 0.00674

1

P(0) = 0.00674

The probability of precisely a crash occurs:

P(1) = 51e−5

1!

P(1) = 5 ∗ 0.00674

1

P(1) = 0.03370
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The probability of exactly two crashes occurring:

P(2) = 52e−5

2!

P(2) = 25 ∗ 0.00674

2 ∗ 1

P(2) = 0.08425

The probability of exactly three crashes occurring:

P(3) = 53e−5

3!

P(3) = 125 ∗ 0.00674

3 ∗ 2 ∗ 1

P(3) = 0.14042

The probability of exactly four crashes occurring:

P(4) = 54e−5

4!

P(4) = 625 ∗ 0.00674

4 ∗ 3 ∗ 2 ∗ 1

P(4) = 0.17552

Our calculations will answer several questions. We may want to know the prob-
ability of having 0, 1, 2 monthly crashes. We can figure out this by adding up the
probability of having exactly 0, 1 and 2 accidents, as follows:

P(0) + P(1) + P(2) = 0.12469

To improve the security of the intersection, the CTG has been proposed to take
security measures, so they indicate that to do so the number of accidents that occur
monthly must exceed 65% (P(x) = 0.65).

To solve this problem, you need to calculate the probability of having 0, 1, 2 or
3 crashes and then subtract the result from 1 to get the probability of more than 3
crashes.
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P(0) + P(1) + P(2) + P(3) = 0.2651

As the Poisson probability of three or fewer accidents occurring is 0.26511, and
the likelihood of having more than three accidents should be 0.73489 (1– 0.26511).
Because 0.73489 is more significant than 0.65, it is necessary to take steps to improve
the intersection of the streets. We could continue to calculate the odds for more than
four accidents and eventually build a Poisson probability distribution of the number
of monthly accidents at this intersection.

Exercise. It knows that the number of customerswho arrive everyminute to a banking
institution can be modeled with a Poisson distribution with average = 7 people/min.
It is known that 40% of the customers who arrive at the institution are going to cancel
taxes, 20% to make deposits and the rest are directed to the credit bureaus. Simulate
1h of bank operation and determine the total number of customers who visited each
bank section.

4.2.6 Variables That Follow a Geometric Distribution

See Fig. 4.5.

f (x) = p(1 − p)x if x ∈ 0, 1, . . .

F(x) =
∫ x

0
p(1 − p)x dx = 1 − (1 − p)[x+1]

1 − (1 − p)[x+1]

(1 − p)(x+1) = 1 − Ri

Fig. 4.5 Geometric density function graph [25]



70 4 Random Variable Generation Methods

(x + 1) log(1 − p) = log 1 − Ri

x + 1 = log Ri − log 0.75

x = log Ri − 0.87506

4.3 Inverse Transform and Continuous Random Variables

Be F a distribution function (strictly growing) of a continuous random variable X
andU a uniform random variable in (0, 1). Thus, X = f − 1(U ), is a random variable
with distribution F [9, 26].

This method consists of the following steps:

1. Given the probability density function f (x), the cumulative distribution function
is developed as:

f (x) =
∫ x

−∞
f (t)dt

2. A random number is generated r ∈ [0, 1].
3. F(x) = R is set and the value of X is determined. The variable x is then a

continuous random variable of the distribution whose function is given by f (x).

The inverse transformmethod can also be used to simulate discrete random variables,
such as Poisson, Bernoulli, binomial, geometric, general discrete distributions.

4.3.1 Variables That Follow a Uniform Distribution

Given a continuous random variable x defined in the interval [a, b] of a real line
[27, 28]. In this case, we will say that x has a uniform distribution in the interval
[a, b] when its density function is given by [29] (see Fig. 4.6).

p(x) =
{

1
b−a ; a ≤ x ≤ b

0 else

The accumulated function is calculated.

F(x) =
∫ x

a

1

b − a
dt = 1

b − a

∫ x

a
dt = 1

b − a
(x − a) = x − a

b − a
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Fig. 4.6 Uniform density
function graph [19]

F(x) =

⎧
⎪⎨

⎪⎩

0 x < a
x−a
b−a ; a ≤ x ≤ b

1 x > b

The inverse function of each segment is cleared, and the r intervals are found.

F(x) = r

x − a

b − a
= r

x − a = r(b − a)

x = a + r(b − a)

[h]F(x) =
{

a + r(b − a) 0 ≤ r ≤ 1

0 Otherwise

Exercise. Find x for r = 0.4764; 0.8416; 0.9434; 0.3420; 0.6827; with b = 12 and
a = 8.

x = 8 + 0.4764(12 − 8)

x = 8 + 4(0.4764)

x = 9.9056

x = 8 + 0.8416(12 − 8)

x = 8 + 4(0.8416)
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x = 11.3664

x = 8 + 0.9434(12 − 8)

x = 8 + 4(0.9434)

x = 11.7736

x = 8 + 0.3420(12 − 8)

x = 8 + 4(0.3420)

x = 9.368

x = 8 + 0.6827(12 − 8)

x = 8 + 4(0.6827)

x = 10.7308

4.3.2 Variables That Follow a Triangular Distribution

It is called triangular distribution, when it is given by three parameters, which rep-
resent the minimum value and the maximum value of the random variable, and the
value of the point at which the triangle takes its maximum height. In this case the
triangle is not necessarily equilateral [30–33] (see Fig. 4.7).

f (x) =
⎧
⎨

⎩

2(x−a)

(c−a)(b−a)
if a ≤ x ≤ b

2(c−x)

(c−a)(c−b)
if b ≤ x ≤ c

Its accumulated distribution is:

F(x) =
∫ x

a

2(x − a)

(c − a)(b − a)
dt = 2(x − a)

(c − a)(b − a)
(x − a)

= 2(x − a)2

(c − a)(b − a)

F(x) =
∫ c

x

2(c − x)

(c − a)(c − b)
dt = 2(c − x)

(c − a)(c − b)
(c − x)
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Fig. 4.7 Triangular density
function graph [34]

= 2(c − x)2

(c − a)(c − b)

f (x) =
⎧
⎨

⎩

2(x−a)2

(c−a)(b−a)
if a ≤ x ≤ b

2(c−x)2

(c−a)(c−b)
if b ≤ x ≤ c

For the first interval, we have a ≤ x ≤ b:

2(x − a)2 = Ri (c − a)(b − a)

(x − a)2 = Ri (c − a)(b − a)

2

x =
√

Ri (c − a)(b − a)

2
− a a ≤ x ≤ b

For the first interval, we have b ≤ x ≤ c:

2(c − x)2 = Ri (c − a)(b − a)

(c − x)2 = Ri (c − a)(b − a)

2

−x =
√

Ri (c − a)(b − a)

2
− c

x = c −
√

Ri (c − a)(b − a)

2
if b ≤ x ≤ c
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Exercise. Given the following function, whose probability distribution F(x) is given
by:

f (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2 (x − 2) 2 ≤ x ≤ 3

1
2 (2 − x

3 ) 3 ≤ x ≤ 6

0 Otherwise

The accumulated function is calculated.

F1(x) =
∫ x

2
(t − 2)dt = 1

4
(x − 2)2

F2(x) =
∫ x

3

1

2

(

2 − t

3

)

dt = − 1

12
(x2 − 12x + 24)

F(x) =
{

1
4 (x − 2)2 2 ≤ x ≤ 3

− 1
12 (x2 − 12x + 24) 3 ≤ x ≤ 6

The inverse function of each segment is cleared and the r intervals are found; for the
first interval of the function we have:

F1(x) = r
1
4 (x − 2)2 = r

x − 2 = √
4r

x = 2 + √
4

The r -values for the first interval:
2 = 2 + √

4r
0 = √

4r
0 = 4r
0 = r

3 = 2 + √
4r

1 = √
4r

1 = 4r
0.25 = r
For the second function interval we have:
F2(x) = r
− 1

12 (x2 − 12x + 24) = r
x2 − 12x = −24 − 12r
x2 − 12x + 36 = 36 − 24 − 12r
(x − 6)2 = 12 − 12r
x − 6 = √

12 − 12r
x = 6 − 2

√
3 − 3r



4.3 Inverse Transform and Continuous Random Variables 75

The r -values for the second interval
3 = 6 − 2

√
3 − 3r

−3 = −2
√
3 − 3r

1.5 = √
3 − 3r

2.25 = 3 − 3r
−0.75 = −3r
0.25 = r

6 = 6 − 2
√
3 − 3r

0 = −2
√
3 − 3r

0 = √
3 − 3r

0 = 3 − 3r
−3 = −3r
1 = r

x =
{
2 + √

4r; 0 ≤ r ≤ 0.25

6 − 2
√
3 − 3r; 0.25 ≤ r ≤ 1

Find x for ri = 0.8; 0.63; 0.17

x = 6 − 2
√
3 − 3 ∗ 0.8

x = 6 − 2
√
0.6

x = 4.45

x = 6 − 2
√
3 − 3 ∗ 0.63

x = 6 − 2
√
1.11

x = 3.89

x = 2
√
4 ∗ 0.17

x = 2
√
0.68

x = 2.82

4.3.3 Variables That Follow an Exponential Distribution

The density function is [35–37] (see Fig. 4.8):

f (x) =
{

λe−λ ≥ 0

0 x < 0

Its accumulated distribution is:

F(x) = 1 − e
(
− x

λ

)

if x ≥ 0
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Fig. 4.8 Exponential
density function graph [38]

F(x) =
∫ x

0
λe− λ

x dx = [e−λx ]|2
0

= 1 − e−λx

1 − e−λx = Ri

lne−λx = Ri

lne−λx = ln1 − Ri

−λxlne = ln(1 − Ri )

x = −1

λ
ln(1 − Ri )

x =
{

− 1
λ
ln(r) 0 ≤ r ≤ 1

0 otherwise

Exercise 1. Find x for r = 0.4466; 0.6427; 0.5902; 0.0318; 0.5901 with λ = 0.01.
x = − 1

0.01 ∗ ln(0.4466)
x = −100 ∗ ln(0.4466)
x = 80.6

x = − 1
0.01 ∗ ln(0.6427)

x = −100 ∗ ln(0.6427)
x = 44.2
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x = − 1
0.01 ∗ ln(0.5902)

x = −100 ∗ ln(0.5902)
x = 52.7

x = − 1
0.01 ∗ ln(0.0318)

x = −100 ∗ ln(0.0318)
x = 344.8

x = − 1
0.01 ∗ ln(0.5901)

x = −100 ∗ ln(0.5901)
x = 52.7

Exercise 2. The data of the service time in one of the Invoice collection box of the
electric Company of Ecuador behave exponentially with average of 3 minutes/client.
A list of numbers pseudo ri U (0, 1) and the exponential generating equation xi =
−3ln(1 − ri ) allows us to simulate the behavior of the random variable, as shown in
below table.

Customer ri Time service (min)
1 0.64 3.06
2 0.83 5.31
3 0.03 0.09
4 0.5 2
5 0.21 0.7

4.3.4 Variables That Follow a Weibull Distribution

The Weibull distribution is a continuous model associated with variables of the type
lifetime, failure time, obtaining adequate results of the reliability. Furthermore, this
distribution can be defined to include a failure rate or increased or declining risk rate
[39–41] (see Fig. 4.9).

The density function is:

f (x) =
{

σβ−σ x−σ−1e−( x
β

σ
) if x > 0

0 otherwise

f (x) =
∫ x

0
σβ−σ xσ−1e− x

β

σ

dy

f (x) =
∫ x

0
σβ−σ yσ−1e− x

β

σ

dy
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Fig. 4.9 Weibull density
function graph [42]

It proceeds to change a variable 2y = (xy)σ .
f (x) = 1 − e− x

β

σ

σ = 3;β = 1
f (x) = 1 − e−x3

1 − e−x3 = Ri

e−x3 = 1 − Ri

x3lne = 1 − Ri

x3 = 1 − Ri

x = 3
√

ln Ri

4.4 Inverse Transform and Empirical Distribution

Sometimes the data observed directly will be used to specify a distribution called
empirical distribution rather than a theoretical distribution. This will be done when
the data does not conform to any known probability distribution [43–46].

A clear disadvantage of the empirical distributions is that the random variables
generated during the simulation are never less than Xi or greater than Xn .
Exercise 1.

f (x) =
{

3
2 x2 −1 ≤ x ≤ 1

0 otherwise



4.4 Inverse Transform and Empirical Distribution 79

Its accumulated function is:

F(x) =
∫ 2

−1

3

2
t2dt = 3

2

∫ x

a
t2dt = 1

2
(x3 + 1)

F(x) = 1

2
(x3 + 1)

The inverse function of each segment is cleared and the r intervals are found.
F(x) = r
1
2 (x3 + 1) = r
(x3 = 2r − 1
x = 3

√
2r − 1

−1 = 3
√
2r − 1

−1 = 2r − 1
0 = 2r − 1
0 = r

0 = 3
√
2r − 1

0 = 2r − 1
1 = 2r
1
2 = r

1 = 3
√
2r − 1

1 = 2r − 1
2 = 2r
1 = r

f (x) =
{

3
√
2r − 1 0 ≤ x ≤ 1

0 otherwise

Exercise 2.

f (x) =
{

1
4 0 ≤ x ≤ 1
3
4 1 ≤ x ≤ 2

Its accumulated function is:

F1(x) =
∫ x

0

1

4
dt = 1

4

∫ x

0
dt = x

4

F1(x) = x

4
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F2(x) =
∫ x

1

1

4
dt = 1

4
+ 3

4

∫ x

0
dt = 1

4
+ 3x

4
− 3

4
= 3x

4
− 2

4

F2(x) = 3x − 2

4

f (x) =
{

x
4 0 ≤ x ≤ 1
3x−2
4 1 ≤ x ≤ 2

The inverse function of each segment is cleared and the r intervals are found.
F1(x) = r
x
4 = r
x = 4r

0 = 4r
0 = r

1 = 4r
1
4 = r
F2(x) = r
3x−2
4 = r

3x = 4r + 2
x = 4r+2

3

1 = 4r+2
3

3 = 4r + 2
1 = 4r
1
4 = r

2 = 4r+2
3

6 = 4r + 2
4 = 4r
1 = r

x =
{
4r; 0 ≤ r ≤ 0.25
4r+2
3 0.25 ≤ r ≤ 2

Find x for r = 0.8; 0.2; 0.5.

x = 4(0.8)+2
3

x = 5.2
3
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x = 1.73

x = 4(0.2)
x = 0.8

x = 4(0.5)+2
3

x = 4
3

x = 1.33

Exercise 3. Given the following empirical probability distribution, apply the inverse
transform method to simulate 100 numbers that follow this probability distribution.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f (x) 0.0067 0.0337 0.0842 0.1404 0.1755 0.1755 0.1462 0.1044 0.0653 0.0363 0.0181 0.0082 0.0034 0.0013 0.0005 0003

4.5 Accept-Reject Method

This method is more probabilistic than the previous one. The methods of investment,
composition, and convolution are direct generation methods, in the sense that they
deal directly with the distribution function. The accept-reject method is less direct
in its approximation [47–49].

In this case, we have the density function f (x) of the variable, and we need a
function t (x) that the dimension, i.e., t (x)3 f (x)x . Note that t (x) is not generally a
function of density.

c =
∫ +∞

−∞
t (x)dx ≥

∫ +∞

−∞
f (x)dx = 1

but the function r(x) = t (x)

c , if it is clearly a function of density. (We assume that t is
such that c <. We must be able to generate (we hope that easily and quickly) value
of the random variable that follows the function r(x). The general algorithm is as
follows:Generate x that follows the distribution r(x) generateU U (0, 1) independent
of x

if u ≤ f (x)

t (x)

then return x if you do not repeat the algorithm the algorithm continues to repeat
until a value is generated that is accepted.

To make the least number of possible points reject the function t (x) must be the
minimum function that dimension to f (x).
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4.6 Composition Method

This method will be able to be applied when the density function is easy to

f (x) =
n∑

i=1

ti x

being n the number of pieces in which the function has been divided. Each one of
the fragments can be expressed as a product of a distribution function and a weight

ti (x) = fi (x)wi

and the global distribution function we can get as

f (x) =
n∑

i=1

wi fi (x) with
n∑

i=1

wi = 1.

The method is to generate two random numbers, one serves to select one piece,
and the other is used to generate a value of a variable that follows the distribution of
that piece. The value of the variable obtained is the value sought.

The general algorithm is as follows:
Generate U1, U2 U (0.1)
If u1 = W1 then generate x f1(x)
Yes No
if u1 = w1 + W2 then generate x F2(x)

4.7 Convolution Method

Many random variables including normal, binomial, Poisson, Gamma, Erlang, etc.,
They can be expressed precisely or approximately by the linear sum of other random
variables. The convolution method can be used as long as the random variable x can
be expressed as a linear combination of k random variables:

x = b1x1 + b2x2 + · · · + bn xn

In this method, you need to generate K random numbers (u1, u2, . . . , u(k)) to
generate (u1, u2, . . . , u(k)) random variables using any of the above methods to
obtain a value of the variable that is desired to get by convolution.
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Table 4.1 Daily demand Daily demand p(x)

0 0.1111

1 0.2222

2 0.3333

3 0.3333

4.8 Proposed Exercises

Find the accumulated and inverse transform of the following distribution functions
and find x for the random numbers between 0 and 1 corresponding.

1.

f (x) =
{

σβ(βx)σ−1 ∗ e−(βx)σ x ≥ 0

0 otherwise

for R = 0.1562; 0.6184; 0.9553 with σ = 2 and β = 3.
2. f (x) = 2

x3 ; 1 ≤ x < ∞, for R = 0.7986; 0.8373; 0.4866.
3. f (x) = ax−(a+1); 1 ≤ x < ∞, for R = 0.1536; 0.0795; 0.2704 with a = 5.
4. From the following empirical function that determines the probability of the daily

demand X of a product with R = 0213; 0345; 0.021 0987; 0543 for the next 5 days
(see Table 4.1).

5. (x) = 1
π(1+x2)

0 ≤ x ≤ 1; for R = 0.0717; 0.3613; 0.5461.
6.

f (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2(x−a)

(b−a)(c−a)
a ≤ x ≤ c

2
b−a x = c

2(b−x)

(b−a)(b−c) c ≤ x ≤ b

0 otherwise

For a = 12.2; b = 35.8; c = 19.8; R = 0.3961; 0.1223; 0.6101.
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Chapter 5
Monte Carlo Simulation Method

The sequential use of random numbers, to sample the values of probability variables,
allows obtaining solutions to mathematical problems such as the Monte Carlo
method, that allows tomodel stochastic parameters or deterministic based on random
sampling. To justify the use of this method is needed knowing concepts such as the
weak law of large numbers and the central boundary theorem.

5.1 Introduction

The Monte Carlo method is a technique of numerical analysis that is based on the
use of a sequence of random numbers, with the purpose of sampling the values
corresponding to the probabilistic variables of a certain problem. Due to the high
number of possible states of the system, it becomes impossible to calculate the
average value of all these states, so it is decided to take a sample and estimate those
average values, from probability distributions [1–4].

The first component of a Monte Carlo method calculation is numerical sampling
of random variables with specific probability density functions. This is done from
different techniques, which are useful for generating random values of a x variable
distributed in the range xmin ≤ x ≤ xmax according to probability density function
p(X) [5–9].

Due to the Monte Carlo method is a research and planning tool; It is an artificial
sampling technique used to operate complex systems that have random components
numerically. Because of the large amounts of data [9], tools are needed to generate
random numbers, that is how, thanks to the advancement of technology and pro-
gramming languages, it is preferable to use pseudo names because, from a seed,
a sequence of numbers is always produced Random equal and evenly distributed
between 0 and 1 [10–12]. To further explore this topic, the reader is encouraged to
review Chap.3.
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From a generator of pseudo numbers evenly distributed in the interval (0–1),
it is possible to build generators with uniform distributions p(x) trough different
procedures, such as the inverse transform, the accept-reject and compositionmethods.
Besides, these methods are analyzed more clearly in Chap.4 [13, 14].

5.2 Monte Carlo Method Justification

The initial justification for the use of Monte Carlo comes from two central theorems
of probability and statistics: the weak law of large numbers and the central boundary
theorem (or the central boundary theorem).

5.2.1 Weak Law of Large Numbers

To better understand this concept, we will proceed to explain it through the following
example: Let’s imagine that an experiment consists of throwing a coin in the air an
X number of times, half times approximately appears “face”. Similarly, if a dice of
six same faces are repeatedly thrown, each of the faces leaves about one-sixth of the
times the dice was rolled [15–18].

If the coin or the dice is thrown a certain number of times, let’s say 10 or 15 times;
the indicated approximation can be reduced to half the times for each side of the
coin, or to the sixth of the times for each face of the dice. It would not be unthinkable
that 10 times as a result, in nine appears face and only one is cross, in the coin, or,
when the dice roll 10 or 15 times, it does not appear the 3 on any occasion.

However, it happens that the higher the number of times the dice is thrown, or
that the coin is released, the higher the approximation of the relative frequency (the
number of times the event is divided by the total number of times the experiment
was performed) to the event probability [19].

It is doubtful that if you throw a coin 3,000 times, the three thousand times the
same face appears. And more unlikely is the larger the number of times the roll is
repeated. Each face tends to come out the same number of times, that is, half the
time, which coincides with the probability 1/2 of each face. In the case of a dice, the
frequency tends to approximate to 1/6.

In general, for any event xn = xn(A). xn → p for n large enough. If the event “A”
is a face coin: xn → 1/2, and if it is a dice face: xn → 1/6, for n large enough.

This experimental law known as the law of frequency stability has a clear math-
ematical backing in a group of rigorous theorems that together shape what we call
the law of the high numbers.

In otherwords, theweak lawof the high numbers establishes that if X1, X2, X3, . . .

is an infinite succession of independent random variables that have the same expected
value μ and variance σ 2, then the average X̄ = (X1+···+Xn)

n converges in probability
to μ. In other words, for any positive number ε must be fulfilled in:
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lim
n→∞ P(|X̄n − μ| < ε) = 1

Example 1.
“Emelec” is a local football team of Guayaquil, at this season it has won the last nine
games; then, by the law of large numbers, it is probable that this Sunday will lose
against “Liga Universitaria de Quito”. In Emelec’s case, the fact that it has won nine
consecutive matches, it can deduce that it is a strong team and well equipped to win
to the next adversary, even if it were “Liga de Quito”.
Example 2.
There is a tv show named “Quiero ser millonario” transmitted Ecuadorian TV station
“Ecuavisa”. The game is to turn a roulette; so far it has given 120 turnswithout leaving
the jackpot (2.000 USD); thus, by the law of large numbers, in the next turn, there is
a lot of chance that this prize will come out.

If we analyze it better, we can interpret that there is no relation between the
previous spins of roulette and the next turn; at every turn, all the numbers will have
the same probability of going out, independently of numbers that have come out so
far.
Example 3.
We suppose to repeat for many times the same experiment, like the dice roll: the
probability that leaves 1 is equal to 1/6, that is 16.66%. Now, if we throw more times
the dice, implies that the output frequency of number 1 will approach the probability
of 16.6%. In analyzing carefully, we can indicate that the law of large numbers is
present in this exercise. Because, when conducting the experiment after 20 roll, this
frequency can be both 5 and 25%, after 100 roll it is probable that it between 14 and
20%, after 5,000 roll it is difficult that it is not understood between 16 and 17% and
then, the more it advances, the more that value will be closer to 16.6%. since the
probability that the numbers 2 come out, 3, 4, 5, 6 is always equal to 16.6%, also
the output relative frequencies will tend to flatten all about 16.6%, as you advance
with the releases of the die, the output frequencies of the 6 numbers They are always
close to a value of 16.6%. Figure 5.1 the relative statistics corresponding to a repeated
release of dice [17, 20, 21].

5.2.2 The Central Boundary Theorem

It tells us that if a sample is large enough (usually when the sample size n exceeds
30), regardless of the sample distributionmean, it will follow approximately a normal
distribution. In other words, given any random variable, if we extract samples of n
size (n > 30) and calculate the sample averages, these averages will follow a normal
distribution. Moreover, the average will be the same as that of the variable of interest,
and the standard deviation of the sample mean will be approximately the standard
error [22–24].
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Fig. 5.1 Statistics on the dice roll

Table 5.1 Dice roll
probabilities

Number 1 2 3 4 5 6

Probability 1/6 1/6 1/6 1/6 1/6 1/6

In other words, the central boundary theorem establishes that if we have a sample
with x1, x2, and xn . Random variables independent and identically distributed, each
one with mean σ and standard deviation μ, and are defined as sn = x1 + x2 + · · · +
xn . The sn distribution is normal asymptotically with a normal mean nμ and variance
nσ 2, independently of the original distribution x1, x2, . . . , xn [25, 26].

A specific case of the central boundary theorem is the binomial distribution. From
n = 30, the binomial distribution behaves statistically as a normal; thus, we can apply
the appropriate statistical tests for this distribution [27–30].

5.2.2.1 The Central Boundary Theorem Proved with a Dice Roll

The dice roll results follow a uniform distribution. Each one from 1 to 6 has the same
probability of “getting out” in an honest pitch with a professional casino dice. The
distribution will be like as shown in Table 5.1.

Let’s see what happens when we simulate the dice roll a couple of thousand times.
A histogram of its frequencies is shown in Fig. 5.2.

The expected result from a total of 2.173 rolls, is that each number appears approx-
imately 1/6, that is 362 times. No matter how many times it is simulated the dice roll,
it will always approach a uniform distribution.

Now, let’s roll a dice ten times, and we’ll determine the average of these rolls (see
Table 5.2).
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Fig. 5.2 Dice roll

Table 5.2 Dice roll
probabilities (10 times)

Number 1 2 3 4 5 6 7 8 9 10

Result 4 3 3 2 3 3 2 4 6 2

And, what happens if we do the same thing several times? Let’s say 1,500 (see
Table 5.3), and then, we do a histogram its averages.

According to the central boundary theorem, the histogram should look like a
normal distribution, as it is seen in the chart in Fig. 5.3.

On the other hand, we have the next question: What will happen if we make
a histogram with the sum of the samples of 10? Probably the histogram of n-size
sample sums also behaves as a normal distribution, as shown in Fig. 5.4.

5.2.2.2 Exercise Applying Monte Carlo Simulation

Table 5.4 depicts a historical analysis of telephone calls by certain clients in “Claro”
call center. From day 1 to day 200; the goal is to measure the number of daily claims
that customers make regarding the dissatisfaction n their cable television service.

We can interpret the relative frequency as the probability of occurring an associ-
ated event; in this case, the probability of a certain claimnumbers (e.g., the probability
of three claims given in one day would be 0.30). Thus, Table5.4 provides the proba-
bility distribution associated with a discrete random variable (the random variable is
the number of claims to Claro call center, which can only take integer values between
0 and 5).

Let’s say we would like to know the expected number (or half) of customer claims
per day. To answer this question, we resort to the theory of probability; denoting by
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Table 5.3 Dice roll probabilities (1500 times)

Roll Dice 1 Dice 2 Dice 3 Dice 4 Dice . . . Dice n–1 Dice 1500

1 5 5 3 4 . . . 6 3

2 5 5 4 3 . . . 4 2

3 6 1 3 1 . . . 3 5

4 6 3 5 1 . . . 3 4

5 5 3 5 1 . . . 6 5

6 5 3 6 4 . . . 4 3

7 1 3 3 1 . . . 2 5

8 4 6 4 4 . . . 2 3

9 3 2 4 3 . . . 2 5

10 3 2 3 4 . . . 2 5

Average 4.3 3.3 4 2.6 . . . 3.4 4

Sum 43 33 40 26 . . . 34 40

Fig. 5.3 Histogram of 1.500
averages n = 10

X to the random variable that represents the daily number of claims in the call center,
we know:

E[X ] =
5∑

i=0

xi ∗ P(X = xi ) = 0 ∗ 0.05 + 1 ∗ 0.10 + · · · + 5 ∗ 0.15 = 2.95

where E[X ] is the expected value and it is equal to the mean μ.
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Fig. 5.4 Histogram of 1.500
sums n = 10

Table 5.4 Probabilities of claims

Number of claims Absolute daily
frequency

Probability f (x) Cumulated F(x)

0 10 0.05 0.05

1 20 0.1 0.15

2 40 0.2 0.35

3 60 0.3 0.65

4 40 0.2 0.85

5 30 0.15 1

Total 200 1

On theother hand,wecan alsouseMonteCarlo simulation to estimate the expected
number of daily claims (in this case it has been possible to obtain the exact value
using probability theory; however, it will not always be feasible). Let’s see how:

When the probability distribution associated with a discrete random variable is
known, it will be possible to use the accumulated relative frequency column to obtain
the called “random number intervals associated with each event”.

In this case, the intervals obtained are:

• (0.00; 0.05) for the event 0.
• (0.05; 0.15) for the event 1.
• (0.15; 0.35) for the event 2.
• (0.35; 0.65) for the event 3.
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Fig. 5.5 Number of calls

Table 5.5 10 random numbers

Random R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Ri 0.3296 0.0899 0.9261 0.9232 0.1485 0.6686 0.3697 0.3368 0.7160 0.8069

Table 5.6 Inverse transform F(x) F(x) = Ri

0.05 0.00 < x ≤ 0.05

0.15 0.05 < x ≤ 0.15

0.35 0.15 < x ≤ 0.35

0.65 0.35 < x ≤ 0.65

085 0.65 < x ≤ 0.85

1 0.85 < x ≤ 1.00

• (0.65; 0.85) for the event 4.
• (0.85; 1.00) for the event 5.

Figure 5.5 shows each of probabilities about the number of customer claims. It
depicts the relationship between the probability of each event, and the area that it
occupies is appreciated.

Figure 5.5means, by generating a pseudo-random number with the computer help
(from a uniform distribution between 0 and 1); we will be conducting an experiment
whose result, obtained randomly and according to the probability distribution previ-
ous, it will be associated with an event. Thus, for example, if the computer gives us
0.2567 as number pseudo-random, we can assume that day there have been 2 phone
calls from particular clients.

Then, we generate 10 random numbers (see Table 5.5).
Then, we use the inverse transform method (see Table 5.6).
We determine the x value, for the generation of random variables based on the

corresponding range and the number Ri , i.e., from these accumulated frequencies can
be obtained the intervals of random numbers associated with each operation, each
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number be linked to a range whose probability is less than or equal to the random
number obtained.

x 2 1 5 5 1 4 3 2 4 4

Finally, the average of x values column is calculated:

μ = 2.9999

In this case, an estimated value is obtainedwhich corresponds an approximatewith
the actual value previously calculated via the theoretical definition of the mean. In
this case, they are not the same as expected, due to the random component intrinsic
to the model, we usually will obtain “close” values to the real value, being those
values different from each other (each simulation will provide its results). If instead
of using a random sample consisting of 10 observations or hoping that if it had been
used 1,000 (or better yet 10,000) observations, the values we would get would be all
very close to the actual value corresponding to the expected value, and therefore to
the average.

Here, we do not have the number of simulations necessary to be able to conclude,
it is instead an example to capture a bit the method. Usually, when we analyze with
Monte Carlo, we have 1,000 or 2,000 simulations, as indicated in the preceding
paragraph.

In the following chapter of this book, we will use the Monte Carlo simulation,
with the different probability distribution functions, these with continuous, discrete
or empirical variables.
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Chapter 6
Case Study: Logistical Behavior
in the Use of Urban Transport Using
the Monte Carlo Simulation Method

This study presents a proposal to determine solutions to the models of queue theory
through the use of simulation. The main objective is to evaluate the number of
people who arrive at a public transport service station in order to be able to minimize
monetary losses, the product of the defection of the people of the waiting line of
this station. To evaluate the model, we proceeded to use tools that allow simulating
randomvalues based on probability distributions; such as theLog-Normal probability
distribution, and the Binomial distribution. Our study case was a public taxi transport
stop located in Victor Manuel Rendon and Pedro Moncayo streets in Guayaquil
city, where it was likely to observe all people waiting for the taxi service. We used
simulation methods to obtain estimations from real cases.

6.1 Introduction

The search for explanations for phenomena that happen randomly has led the human
being to the need to usemechanisms that allowhim toquantify in an imperfectway the
possibility of an event occurring. A tool that measures results under some uncertainty
event is the probability. To model real situations under probabilistic reasoning, it is
essential to use of procedures that allow reasonably to emulate these situations; A
resource that helps to obtain estimates or approximations of cases of a real situation
is the simulation [1–5].

The construction of a simulation tool has allowed giving feasible and optimal
solutions to a problem that is presented daily in a public transport service station,
and the citizens very request that at different times of the day. This tool constitutes
an alternative to a certain extent economic; for the evaluation of the service quality,
and it is useful for supporting decision making, and moreover, allows to define and
evaluate common performance measures of waiting for lines, such as the arrival and
waiting time of people in the transport station [6–8].
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6.1.1 Related Work

Martinez et al. [9] proposed obtaining a quantitative predictive model as an effective
way to address the problem of daily demand of passengers in a bus line. In order to
solve the problem, the author has used SQLServerManagement to tackle andmanage
simulated data through a database. However, this environment requires users with
enough knowledge in this tool.

In the study carried out by Lojano et al. [10] used a hybrid model combining,
as they are, the multi-indicator and multiple-cause (MIMIC) model, and the the-
ory of random utility. In order to simulate the demand for passengers, they use the
Quito-Cable, the data were obtained by predictions of quantifiable variables such
as time, service operational costs, and service prices. However, this research pro-
posed the inverse transformed and Monte Carlo method for obtaining the data; and
a computational tool was used for processing them.

6.2 Case Study

A circumstance is given on a daily basis in a taxi’s company that transport passenger
to Duran city. By using the observation [11, 12] in order to reach this goal, we started
by taking data such as the arrival time (time in which people arrive at the transport
station), during an hour per day, and also identify the number of people who left
the queue for different reasons; this results are marked by “*” and are presented in
Table6.1.

Table6.1 also presents the time conversion in hours by applying the following
formula:

conversion = hour(cell) + minutes(cell)
60+seconds(cell)

3600

(6.1)

Reducing the formula is:

conversion = cell ∗ 24 (6.2)

6.2.1 Queue Theory Model

Queuemanagement or line-of-waitingmodels consist of some elements that generate
waits on entities or agents waiting to be served. In general, queue models have two
components. The elements that are processed in the system are entities, and these
entities are handled according to a defined criterion [13].
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Table 6.1 Arrivals data to the station

Time Conversion Time Conversion

1 0:00:31 0.00861 26 0:00:40 0.01111

2 0:00:45 0.01250 27 0:01:13 0.02028

3 0:00:27 0.00750 28 0:02:06 0.03500 *

4 0:01:02 0.01722 29 0:01:02 0.01722

5 0:00:50 0.01389 30 0:01:08 0.01889

6 0:01:10 0.01944 * 31 0:00:06 0.00167

7 0:00:59 0.01639 32 0:00:15 0.00417

8 0:00:40 0.01111 33 0:00:34 0.00944 *

9 0:00:52 0.01444 * 34 0:01:02 0.01722

10 0:01:08 0.01889 35 0:01:04 0.01778

11 0:02:03 0.03417 36 0:00:43 0.01194

12 0:00:35 0.00972 37 0:00:19 0.00528 *

13 0:00:27 0.00750 38 0:00:53 0.01472

14 0:00:51 0.01417 39 0:01:32 0.02556

15 0:01:25 0.02361 * 40 0:02:08 0.03556

16 0:01:04 0.01778 41 0:01:21 0.02250

17 0:01:30 0.02500 42 0:01:03 0.01750 *

18 0:01:16 0.02111 43 0:02:02 0.03389

19 0:00:58 0.01611 * 44 0:01:02 0.01722 *

20 0:01:08 0.01889 45 0:01:15 0.02083

21 0:00:44 0.01222 46 0:01:07 0.01861

22 0:00:11 0.00306 * 47 0:00:55 0.01528

23 0:00:17 0.00472 48 0:02:37 0.04361 *

24 0:00:54 0.01500 49 0:00:42 0.01167

25 0:00:37 0.01028 50 0:01:05 0.01806

Two phases were followed for the construction of the simulation model. The first
was the identification of the cases to be modeled, and then data time was taken
corresponding to the times to arrivals to the system. To adjust the data in a statistical
distribution, we proceeded to use stat-fit. that was very helpful to be able to identify
which is the probability allocation that best fits our problem [14, 15].

6.2.2 Using Computer Tools: Stat-Fit

It is used to analyze and determine the type of probability distribution of a dataset, in
such a way that allows to compare the results between several distributions analyzed
by a qualification. Once the data have been compiled, an analysis is performed, and
then the generated data are shown.
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Fig. 6.1 Verification of rejected and non-rejected distributions. Log-normal Distribution Graph

Figure 6.1 shows Stat-Fit probability distributions results, in both distributions
that are accepted and those rejected. For this case study, we will use Log-Normal
probability distribution [16–18].

6.2.3 Log-Normal Distribution

The log-normal distributions was used in [19] to determine arrivals times of buses.
Therefore, in this we applied similarly, to simulate the arrival time people to the
waiting queue [17].

The log-normal distribution is obtained when the normal distribution describes
the logarithms of a variable [20, 21].
Where:

μ = It is the mean of ln(x).
σ = It is the standard deviation of ln(x).
ln(x) = It is a random variable that has a normal distribution.
We built a simulator using a log-normal distribution, to this, the verification pro-

cess was done that consisted of making the pilot runs and observe the behavior of
these.

Then, we determine a procedure that allows creating pseudo values by applying
the probability log distribution formula-Normal and the Monte Carlo method [22].
Later, the final results are made the conversion in time format (hh:mm:ss), and it was
obtained the probability of each outcome of the arrival people (see Algorithm1).
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Algorithm 1 ResultLognormal()
Range(“J25”).Select
ActiveCell.Formula R1C1 ← “N”
Range(“J2”).Select
ActiveCell.Formula R1C1 ← “1”
Range(“K25”).Select
ActiveCell.Formula R1C1 ← “Random”
Range(“K76”).Select
ActiveWindow.SmallScroll Down ← −42
Range(“K26”).Select
ActiveCell.Formula R1C1 ← “ = R AN D()”
Range(“L25”).Select
ActiveCell.Formula R1C1 ← “Lognormal f ormula”
Range(“L75”).Select
ActiveWindow.SmallScroll Down ← −33
Range(“L26”).Select
ActiveCell.Formula R1C1 ← “RC[−1] ∗ Lognorm(0.015981, 0.007985,
T runcate(0.00167, 0.04361))”
Range(“M25”).Select
ActiveCell.Formula R1C1 ← “ArriveP E Rs”
Range(“M26”).Select
ActiveCell.Formula R1C1 ← “ = RC[−1]/24”
Range(“N25”).Select
ActiveCell.Formula R1C1 ← “P RO B”
Range(“N26”).Select
ActiveCell.Formula R1C1 ← “ ← RC[−1]/R76C13”
Range(“O25”).Select
ActiveCell.Formula R1C1 ← “ACU M”
Range(“O75”).Select
ActiveWindow.SmallScroll Down ← −36
Range(“O26”).Select
ActiveCell.Formula R1C1 ← “RC[−1]”
Range(“O27”).Select

Once the verification is carried out, this behavior is contrastedwith the information
provided in Table 6.2, where the process of the log-normal distribution is presented
using random numbers to generate arrival times for people with their respective
probability percentage (Fig. 6.2).

After taking the data, the service times were analyzed with Algorithm 2. We
determined the procedure allow to create pseudo values by applying the binomial

Fig. 6.2 Data generated
from the Log-normal
distribution
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Table 6.2 Data generated from the log-normal distribution

No Random Log-normal formula Arrive PERs PROB (%) ACUM (%)

1 0.683 0.00852698 0:00:31 2.38 2

2 0.165 0.00333393 0:00:12 0.93 3

3 0.753 0.00913470 0:00:33 2.55 6

4 0.091 0.00204823 0:00:07 0.57 6

5 0.388 0.00526711 0:00:19 1.47 8

6 0.592 0.00660240 0:00:24 1.84 10

7 0.422 0.00536830 0:00:19 1.50 11

8 0.316 0.00277153 0:00:10 0.77 12

9 0.426 0.00647585 0:00:23 1.81 14

10 0.076 0.00069473 0:00:03 0.19 14

11 0.861 0.01592467 0:00:57 4.44 18

12 0.450 0.00602272 0:00:22 1.68 20

13 0.618 0.00738569 0:00:27 2.06 22

14 0.471 0.00462775 0:00:17 1.29 23

15 0.139 0.00170623 0:00:06 0.48 24

16 0.092 0.00162126 0:00:06 0.45 24

17 1.000 0.01798504 0:01:05 5.02 29

18 0.641 0.00968650 0:00:35 2.70 32

19 0.587 0.00983501 0:00:35 2.74 35

20 0.213 0.00584133 0:00:21 1.63 37

21 0.724 0.01254751 0:00:45 3.50 40

22 0.713 0.00514247 0:00:19 1.43 41

23 0.443 0.00896722 0:00:32 2.50 44

24 0.636 0.00512337 0:00:18 1.43 45

25 0.040 0.00057840 0:00:02 0.16 46

26 0.859 0.01065522 0:00:38 2.97 48

27 0.711 0.00723388 0:00:26 2.02 51

28 0.815 0.00567573 0:00:20 1.58 52

29 0.353 0.00320361 0:00:12 0.89 53

30 0.084 0.00090140 0:00:03 0.25 53

31 0.668 0.00712541 0:00:26 1.99 55

32 0.449 0.00976155 0:00:35 2.72 58

33 0.580 0.01360042 0:00:49 3.79 62

34 0.807 0.02654637 0:01:36 7.40 69

35 0.446 0.00417016 0:00:15 1.16 70

36 0.296 0.00289687 0:00:10 0.81 71

37 0.001 0.00002162 0:00:00 0.01 71

38 0.384 0.00342935 0:00:12 0.96 72

(continued)
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Table 6.2 (continued)

No Random Log-normal formula Arrive PERs PROB (%) ACUM (%)

39 0.330 0.00765315 0:00:28 2.13 74

40 0.279 0.00652828 0:00:24 1.82 76

41 0.279 0.00358722 0:00:13 1.00 77

42 0.691 0.02696885 0:01:37 7.52 85

43 0.379 0.00661347 0:00:24 1.84 86

44 0.688 0.00495803 0:00:18 1.38 88

45 0.589 0.01350218 0:00:49 3.77 92

46 0.613 0.01027003 0:00:37 2.86 94

47 0.305 0.00825954 0:00:30 2.30 97

48 0.033 0.00029565 0:00:01 0.08 97

49 0.492 0.00642460 0:00:23 1.79 99

50 0.273 0.00500267 0:00:18 1.40 100

0:21:31 100.00

Algorithm 2 ResultBinomial()
Range(“J25”).Select
ActiveCell.Formula R1C1 ← “N”
Range(“J26”).Select
ActiveCell.Formula R1C1 ← “1”
Range(“K25”).Select
ActiveCell.Formula R1C1 ← “Random”
Range(“K26”).Select
ActiveCell.Formula R1C1 ← “R AN D()”
Range(“L25”).Select
ActiveCell.Formula R1C1 ← “Binomial f ormula”
Range(“L26”).Select
ActiveCell.Formula R1C1 ← “B I N O M.DI ST (1000 + (20 ∗ RC[−1]), 2000, 0.5, 0)”
Range(“M25”).Select
ActiveCell.Formula R1C1 = “P RO B”
Range(“M26”).Select
ActiveCell.Formula R1C1 ← “((RC[−1]/24) ∗ 10) − 0.002”
Range(“N25”).Select
ActiveCell.Formula R1C1 ← “RE SU LT ”
Range(“N26”).Select
ActiveCell.Formula R1C1 ← “I F(RC[−1] >= 0.005, ““1”′′, ““0”′′)”
Range(“O25”).Select
ActiveCell.Formula R1C1 ← “C O N T ”
Range(“O26”).Select
ActiveCell.Formula R1C1 ← “C OU N T I F(RC[−1] : R[49]C[−1], 1)”
Range(“O27”).Select
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probability distribution formula and the Montecarlo method. Later, the final results
are compared with the probability obtained, if it is greater than 0.5, it is added a
counter, which is counting all interactions, and finally, it shows the number of people
who leave the queue for some reason.

6.2.4 Binomial Probability Distribution

It is a discrete probability distribution that counts the number of successes in a
sequence of n trials of Bernoulli independent among themselves, with a fixed prob-
ability of occurrence of success between trials [23, 24].

It is applied the distribution of binomial probability to know the probability of
success of finding algae within 1 quadrant. In our study, we implemented the same
distribution to determine the probability of a person leaving the waiting line at the
taxi station [25, 26].

p(x) =
(

n

x

)
px (1 − p)n−x∀x ∈ {0, 1, . . . , n} (6.3)

where:

• n. It’s the number of tests.
• k. It’s the number of hits.
• p. It’s the probability of success.
• q. It’s the probability of failure.

According to the result generated by Algorithm 2. Table 6.3 shows the process of
binomial distribution using random numbers to generate the probability each person
has when leaving the queue and the total number of people of leaving it (Fig. 6.3).

Fig. 6.3 Data from people
leaving the queue
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Table 6.3 Data from people leaving the queue

No Random Binomial formula Prob (%) RESULT Contd

1 0.843 0.01381154 0.38 0 21

2 0.019 0.01783901 0.54 1

3 0.774 0.01424622 0.39 0

4 0.275 0.01739878 0.52 1

5 0.281 0.01739878 0.52 1

6 0.704 0.01466523 0.41 0

7 0.955 0.01243539 0.32 0

8 0.380 0.01698638 0.51 1

9 0.142 0.01776783 0.54 1

10 0.453 0.01645167 0.49 0

11 0.005 0.01783901 0.54 1

12 0.563 0.01580689 0.46 0

13 0.142 0.01776783 0.54 1

14 0.320 0.01720853 0.52 1

15 0.818 0.01381154 0.38 0

16 0.297 0.01739878 0.52 1

17 0.580 0.01580689 0.46 0

18 0.518 0.01614218 0.47 0

19 0.456 0.01645167 0.49 0

20 0.041 0.01783901 0.54 1

21 0.954 0.01243539 0.32 0

22 0.907 0.01290393 0.34 0

23 0.314 0.01720853 0.52 1

24 0.610 0.01544764 0.44 0

25 0.111 0.01776783 0.54 1

26 0.011 0.01783901 0.54 1

27 0.500 0.01614218 0.47 0

28 0.894 0.01336338 0.36 0

29 0.370 0.01698638 0.51 1

30 0.016 0.01783901 0.54 1

31 0.591 0.01580689 0.46 0

32 0.579 0.01580689 0.46 0

33 0.583 0.01580689 0.46 0

34 0.497 0.01645167 0.49 0

35 0.888 0.01336338 0.36 0

36 0.148 0.01776783 0.54 1

37 0.641 0.01544764 0.44 0

38 0.882 0.01336338 0.36 0

39 0.710 0.01466523 0.41 0
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Table 6.3 (continued)

No Random Binomial formula Prob (%) RESULT Contd

40 0.243 0.01755600 0.53 1

41 0.376 0.01698638 0.51 1

42 0.637 0.01544764 0.44 0

43 0.325 0.01720853 0.52 1

44 0.593 0.01580689 0.46 0

45 0.416 0.01673361 0.50 0

46 0.083 0.01782119 0.54 1

47 0.756 0.01424622 0.39 0

48 0.555 0.01580689 0.46 0

49 0.683 0.01506640 0.43 0

50 0.181 0.01767926 0.54 1

0.80184529 23

6.3 Results

By using Algorithm 3, the results of the simulation processes are presented with the
purpose of showing the effect of people arriving at the station and those who leave the
queue, for different reasons, using Binomial probability distribution and log-normal
probability distribution.

Tables6.4, 6.5, and 6.6 present the total number of people entering the queue and
leaving the line for different reasons marked with *.

Table 6.4 Simulation results of month 1

Monday Tuesday Wednesday Thursday Friday Sum Prob

Week 1 129 55 129 60 148 521 0,33

Leave 21* 24* 17* 22* 15* 99*

Week 2 112 48 44 46 51 301 0,19

Leave 18* 20* 18* 15* 22* 93*

Week 3 82 56 39 63 59 299 0,19

Leave 14* 21* 20* 17* 18* 90*

Week 4 117 92 70 115 50 444 0,28

Leave 14* 18* 12* 24* 26* 94*

Subtotal 1565 1

Lost 376* 0,24

Total 1189 0,76
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In the simulation of the first month, the total number of people entering the queue
is 1,565 of which 376 leave the queue for different reasons; being 1,189 the number
of people using the service, generating $1,189 gain and $376 loss.

In the simulation of the second month, the total number of people entering the
queue is 1,844 of which 381 leave the queue for different reasons; being 1,463 the
number of people using the service, generating $1,463 gain and $381 loss.

In the simulation of the third month, the total number of people entering the queue
is 1,714 of which 382 leave the queue for different reasons; being 1,332 the number
of people using the service, generating $1,332 gain and $382 loss.

Monthly the taxi station loses about 23% of the profits being equivalent to $380.

Table 6.5 Simulation results of month 2

Monday Tuesday Wednesday Thursday Friday Sum Prob

Week 1 59 113 150 79 76 477 26

Leave 19 23 20 21 24 107 *

Week 2 58 143 35 65 128 429 23

Leave 17 25 14 23 19 98 *

Week 3 60 39 97 38 139 373 20

Leave 18 12 17 20 15 82 *

Week 4 115 150 54 129 117 565 31

Leave 20 27 13 19 15 94 *

Subtotal 1844 1

Lost 381 * 21

Total 1463 0,79
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Table 6.6 Simulation results of month 3

Monday Tuesday Wednesday Thursday Friday Sum Prob

Week 1 32 44 101 52 94 323 19

Leave 14 19 22 24 20 99 *

Week 2 138 90 145 123 59 555 0,32

Leave 16 22 20 15 17 90 *

Week 3 64 114 72 69 140 459 27

Leave 21 14 17 20 18 90 *

Week 4 100 50 65 33 129 377 22

Leave 22 24 19 17 21 103 *

Subtotal 1714 1

Lost 382 * 22

Total 1332 0,78

6.4 Conclusion

Analyzing the results obtained in 3months, we can conclude that the taxi cooperative
can lose about 23%of the profits in eachmonth If youkeep the samewayofmanaging.
It can be solved in different ways, for example, the acquisition of new vehicles in
order to meet daily demand, preventing people from leaving the queue.

Finally, it can be concluded that using the log-normal probability distribution tools
and the Binomial probability distribution, Montecarlo and Visual Basic for Excel,
the simulated data of the consecutive three months can be obtained and their possible
losses. Thus, it is recommended for future work a meticulous analysis of one year to
make the results more accurate.
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Chapter 7
Case Study: Project-Based Learning
to Evaluate Probability Distributions
in Medical Area

This study presents the use of probability distributions and the theory of systems
simulation applied to real-life problems, with the aim of giving researchers and
Students a guide to facilitate its applicationwithin of investigativework. Itwas carried
out project-based learning (PBL) through a project in the classroom in order to help
students to recognize, develop and apply feasibly the different types of probability
distributions in real life problems.

7.1 Introduction

Project-Based Learning (PBL) is a methodology of teaching and learning focused
on tasks, and it is essential to be clear that this method promotes individual and
autonomous learning within a work plan defined by objectives and procedures. To
achieve this goal, students are responsible for their learning,in other words, discover
their preferences and strategies throughout the process [1–5].

In order to have the PBL methodology clearer, it has been considered its appli-
cation in the field of probability theory, in such a way that the student achieves to
deepen in the learning of the distributions of probability, and can obtain the necessary
significant knowledge that will help him to solve problems of real situations related
in your professional field [6–9].

It was evident the students in the class of systems simulation at the University of
Guayaquil do not have a solid knowledge of probability issues. In other words, the
students do not have sufficient experience to simulate probability distributions by
using methods such as inverse transformed and Montecarlo simulation, since they
do not have the adequate fluency for the resolution and application of these issues in
real-life situations [10–13].
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On the other hand, it is essential that the teacher enable continuous feedback
and evaluation. In other words, he/she must create an optimal learning environment
guiding the process, encouraging the use of meta cognitive strategies and reinforcing
the efforts both individual as a group, keeping a thorough follow-up the design of
projects. Furthermore, the professor has to give feedback on the contents and to carry
out a group level evaluation of the learning acquired by each student [14–17].

7.1.1 Related Work

Osorio et al. in [18] proposes the use of different techniques and programs for the
learning of probability, as well as the concepts related to it. In this situation, learning
is not enough because students do not have a deeper understanding of the theory of
odds. Therefore, they do not develop skills to simulates events from real life [19–21].

Burbano et al. in [22] the main problem is that the simulations were performed
directly by using computing programs, and the students are not able to do the process
on their own [23–25].

Flowers-Cano et al. in [26] used the distributions Gamma,Weibull, Gumbel, Log-
normal and Log-logistic jointly with the simulated data simulates, to see if these are
adapted to the probability distribution and in this way reject or accept the simulation
by using evidence such as the Anderson-Darling [27, 28].

7.2 Case Study

For the development of teaching process it was considered that the sixth-semester
students of the simulation course had a cautious attitude regarding the use of prob-
ability distributions; due to many associated factors, such is the case of information
provided by colleagues who already approved the subject and are in the highest
semesters.

It is essential to be clear that the student feels uncertainty and even a little fear of
subject because they have not applied appropriate pedagogical strategies to help him
develop his cognitive skills that lead to critical thinking. The current model that the
student receives takes him to a by the rote process andmerely the use of a guiding text,
which does not allow the development of investigative capacities by not knowing the
positions of other authors regarding the subjects treated. This situation allowed us to
reflect on the pedagogical model, the methodologies and teaching strategies used in
our teaching [29, 30].

For work on project-based learning projects to the application of probability dis-
tributions in simulation, it is proposed to solve a problem in the medicine area. A
sample of patients arriving at a particular officewas collected through the observation
in an eight-hour period in two working days. It was also considered to determine the
period that each patient took to arrive at the clinic as well as the type of disease that
the patient has.
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7.2.1 Evaluation

To properly carry out the methodology PBL, it is important to have clear the follow-
ing:

1. To analyze the comprehension of topics, the participation of the students should
be observed during the development of the activity.

2. To ask students what was the most challenging question and why? It will allow
visualizing the handling of the concepts.

3. It is important to observe and analyze the different processes applied by the
students.

4. The acceptance of the activity (positive and negative aspects) should be analyzed.
5. To complement the activity, it is essential to take into account the recommenda-

tions and suggestions on the part of the students for the next opportunity.

7.2.2 Data Collection

The PBL methodology looks for the students to take an active role. This method
motivates them to learn more, integrating probability distribution and simulation
knowledge in any area. It aims for the students to leave that passive role, in which
they received information, memorized it and over time was forgotten.

7.2.3 Activity Process

This stage applies to a real problem, where the students begin to collect the patients’
arrival information in a doctor’s office, as well as the type of disease they suffer.
We obtained a small sample to the application of random numbers and Montecarlo
simulation.

To simulate data from a real sample, you must determine the behavior that fol-
lows this data. For this, it should know which kind of probability distribution is the
most suited; Then, we used the inverse transform, to be able to determine a formula
that generates as many values as possible. Also, the distribution of Weibull and the
empirical probability distribution was used.

7.2.3.1 Probability Distribution of Weibull

It is a continuous probability distribution that allows modeling fault events (or other
event) in systems when they are proportional in a time [31, 32].
Distribution function applied:
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f (x) = ∞B−∞t∞−1e
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Accumulated distribution:
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B )
∞

(7.2)

7.2.3.2 Inverse Transform Application

Since the inverse transformed can only be performed with continuous probability
distributions that have a cumulative function; the probability distribution of Weibull
is the most suitable for this research. Its process is as follows:

F(x) = 1 − e−( x
B )

∞

r = 1 − e−( x
B )

1 − r = e−( x
B )

log(1 − r) = log
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log(1 − r) = − (
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)

−B(log(1 − r)) = x

x = −B(log(1 − r))

x = −B ∗ log(r)

where:
B = The average time of arrival of patients to the particular office.
r = Random number.
x = Random number applicable to the probability function. In this case, these num-
bers are the arrival times between each patient.

7.2.3.3 Empirical Probability Distribution

Its equation is as follows:

f (x) = #(xiεA)

n
(7.3)

It’s a probability distribution discrete. It models the randomness of a variable that
can only take specific values. This formula was used because it explains in a simple
way that it is going to divide the number of appearances of a xi. In our case, the
disease which belongs to A set (our disease set) to n (our total number of cases) [33].
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7.2.3.4 Other Applications of This Probability Distribution

In studies as cardiovascular disease, risk factors in the area of health [34]. An empir-
ical distribution is used to analyze the results of the clinical histories and surveys
carried out.
Distribution function applied:

f (x) =

⎧
⎪⎨
⎪⎩

4%, Intestinal infection

42%, Seasonal influenza

52%, Other diseases

(7.4)

Accumulated distribution:

F(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Intestinal infection, If 0 ≤ X < 0.0047

Seasonal influenza, If 0.0047 ≤ X ≤ 0.428

Other diseases, If 0.428 ≤ X ≤ 1

0, Otherwise

(7.5)

where:
X = variable to be replaced by a random number to get a random disease.
Other diseases=Rare or less common diseases than intestinal infection and seasonal
influenza.

By this, it was obtained the followings results (Table7.1):
From this data, the average is calculated which gets a value of 62.19. It will be the

value to use in the formula to simulate a more significant amount of data to obtain a
better precision in the results.

The values to determine the empirical probability appearance of diseases are
presented in Table 7.2.

For other illnesses, we refer to rare or unusual diseases that do not represent a
significant sample by themselves to make their accurate simulation.

7.3 Results and Discussion

With the design of these activities for the learning of these probability distributions
through the PBL methodology, it is intended that the teacher and the student find
a complementary approach to acquire the mathematical knowledge of these distri-
butions so that they might be used more efficiently in the learning of the subject of
simulation of systems.

It is worth to remember that we took a few data. However, it is necessary to
proceed to obtain a more significant amount of data, that is why simulation is made
based on the data collected previously. For this, we use, the inversed transformation
to determine a formula that generates as many values as possible. It was done by
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Table 7.1 Patient arrival time to a particular office

Day 1 Day2

Patient Time Disease Patient Time Disease

1 6 Other diseases 1 19 Seasonal influenza

2 14 Other diseases 2 75 Seasonal influenza

3 87 Seasonal influenza 3 18 Seasonal influenza

4 165 Seasonal influenza 4 52 Other diseases

5 14 Seasonal influenza 5 184 Other diseases

6 56 Infection Intestinal 6 17 Other diseases

7 161 Other diseases 7 66 Other diseases

8 28 Seasonal influenza 8 26 Other diseases

9 26 Other diseases 9 22 Other diseases

10 100 Seasonal influenza 10 21 Other diseases

11 149 Seasonal influenza

Table 7.2 Frequencies’ table for the different diseases in the sample

Case Frequency Relative frequency (FR) FR accumulated

Intestinal infection 1 0.047619048 0.047619048

Seasonal influenza 9 0.428571429 0.476190476

Other diseases 11 0.523809524 1

Total 21 1

Table 7.3 Simulation of a
working day

# Patient Time hold on Type disease

1 253 Another

2 33 Intestinal infection

3 56 Seasonal influenza

4 28 Another

5 7 Another

6 36 Seasonal influenza

7 123 Seasonal influenza

8 8 Another

9 75 Another

using a distribution of Weibull, which was the probability distribution used in the
arrival time between patients. Besides, we simulate waiting times and the possible
illnesses that each patient contains through the empirical distribution accumulated.

By simulating data based on a probability distribution, we ensure that the results
obtained through simulation will be similar to the input data, previously obtained in
the field, this is something that is wanted to do a simulation because it tells us that
We are doing the process correctly.
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Table 7.4 Results of the
simulation of a working day

Day 1

Patient Time Disease

1 48 Seasonal influenza

2 2 Other diseases

3 24 Other diseases

4 20 Seasonal influenza

5 11 Intestinal infection

6 24 Seasonal influenza

7 132 Other diseases

8 123 Seasonal influenza

9 96 Other diseases

10 34 Other diseases

11 55 Other diseases

12 23 Other diseases

13 37 Other diseases

14 9 Other diseases

Algorithm 1 simulateDay()
DeleteDay
band ← True
Dn1 ← 3
Dn2 ← 9
sum ← 0
while band = True do

val ← Sheet2.Cells(Rnd ∗ 100 + 1,Rnd ∗ 100 + 2)
val2 ← Sheet3.Cells(Rnd ∗ 100 + 1,Rnd ∗ 100 + 2)
if val > 0 then
sum ← sum + val
if sum ≥ 660 ORDn1 ≥ 22 then
band ← False

else
loadData(Dn1,Dn2, val, val2, 2)
Dn1 ← Dn1 + 1

end if
end if

end while

By observing Table 7.3, it indicates that nine patients will be cared for, of which
three will have seasonal influenza (common influenza), one will have an intestinal
infection and the others come with other types of illnesses. This is normal and easy
to see day to day result of any medical establishment. Several conclusions can be
obtained from such a result, and for example, in this case, we could say that there
is no need to make any changes. However, we do not recommend concluding such
a small simulation. Table 7.4 shows the obtained values from simulation. Algorithm
1 allows to generate the simulation of a working day.
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Table 7.5 Average time in
25 one-month simulations

Month Average

1 69.8685

2 78.1293

3 58.5625

4 65.2532

5 65.0144

6 62.3604

7 67.2957

8 64.8036

9 62.2071

10 64.781

11 64.3979

12 61.5663

13 64.549

14 56.5884

15 62.4214

16 55.3251

17 64.6355

18 64.7992

19 72.6303

20 57.139

21 55.2761

22 60.58

23 65.7796

24 57.3675

25 66.2452

Total mean 63.503

Before to start analyzing and draw conclusions from the simulated results; we
must make sure that these are correct. There are several ways to validate whether or
not you are simulating the system correctly, but because of its easy implementation,
the mean will be checked.

To validate the system is giving the correct values, it must find the time average
(μ) in each simulated day and verify if the obtained value is not far from the average
of our original data. Besides, if we want to confirm that our system is valid, we could
considerate the following:

1. The average of simulated data will hardly become the same as the average of
original data since these data are not the same, what should be verified is that the
variability of those data is not far from the average.

2. Themean, being an average of all values can be hugely affected by atypical values,
in some cases it will give us values far from the average of our original data, this
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Table 7.6 20-week simulation results

Index People served People who arrived
with seasonal
influenza

People who arrived
with intestinal
infection

People who arrived
other illnesses

1 62 12 6 32

2 59 14 2 34

3 64 21 4 29

4 68 22 5 34

5 64 20 3 24

6 63 27 1 26

7 65 26 5 22

8 72 19 5 34

9 69 21 3 31

10 74 17 4 30

11 72 19 4 34

12 71 27 3 30

13 80 26 4 37

14 78 15 2 32

15 75 18 4 32

16 71 26 3 24

17 71 26 5 23

18 66 14 4 25

19 68 11 3 24

20 76 23 3 38

does not mean that the model is wrong unless something is repeated too many in
time.

3. It must have the mean of a significant sample of simulations because if we have
very little information can be misinterpreted data

Given this, we proceed to validate that the system is getting correct data:

Average of original data = μ = 62.35

Table 7.5 shows the daily mean of the patients’ arrival time in 25 different simu-
lations in one month. (The simulation consisted in simulating their days.)

The averages total (Table 7.5) of simulations is similar to the average of original
data collected in the field, so we can say that the simulation if it is giving values that
represent or resemble the reality.

Having assured us that correct results are being obtained, we then proceed to use
these results to make decisions in the real world.
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Algorithm 2 simulateMontLab()
DeleteMonth
Mmonth ← 1
while Mmonth ← 4 do
Mweek ← 58 + (24 ∗ (Mmonth − 1))
Sday ← 1
Dn2 ← 9
while Sday ≤ 5 do
band ← True
Dn2 ← Mweek
sum ← 0
while band = True do

val ← Sheet2.Cells(Rnd ∗ 100 + 1,Rnd ∗ 100 + 2)
val2 ← Sheet3.Cells(Rnd ∗ 100 + 1,Rnd ∗ 100 + 2)
if val > 0 then
sum ← sum + val
if sum ≥ 660 ORDn1 ≥ Mweek + 19 then
band ← False

else
loadData(Dn1,Dn2, val, val2,Mweek − 1)
Dn1 ← Dn1 + 1

end if
end if
Dn2 ← Dn2 + 3
Sday ← Sday + 1

end while
Mmonth ← Mmonth + 1

end while
end while

To facilitate decision making and to obtain results with better precision, many
simulations were carried out; this was done thanks to the implementation and devel-
opment of a small algorithm, performed in Visual Basic programming for Excel,
whose Result presents us the number of patients attended for a month.

With the obtained data from 20-week simulations, it is already possible to make
decisions, for example, to know if we should focus on the needs of a group of patients
with a particular disease, and thus be able to prepare for possible epidemics. Table
7.6 shows simulations 7, 16 and 17 that the disease that most affected the population
was seasonal influenza. It means that in the real-life case, there is a high degree of
possibility that in 20-weeks appear small flu epidemics.

7.4 Conclusion

The methodology PBL was well accepted by the students in the engineering degree
of computer systems. The students agreed to change the role in the classroom to be
more active and being able to develop skills in the subject of system simulation.
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On the other hand, it was possible to determine that the learning of probability
distributions applied to the subject of system simulation is essential and useful to use
it in issues of real-life.
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Chapter 8
Case Study: Probabilistic Estimates
in the Application of Inventory Models
for Perishable Products in SMEs

The goal of this study is to create an inventory management model that will be able
to estimate the control of the perishable products of a business by using probabilistic
distributions. The problem arises since the stores or mini markets owners have not
defined a clear concept in how to maintain an inventory in optimal conditions, espe-
cially regarding perishable products because they only have a maximum time of a
week to be sold them. To solve this problem, we used specific algorithms that will
help us in the handling of large amounts of data such as Monte Carlo simulation,
so that we were able to use probabilistic distributions to determine the economic
order quantity (EOQ) of perishable products based on weekly demand. As a result,
we obtained an inventory management model, which is based on the maximum and
minimum quantity of products to be ordered by the company, and also a model EOQ
with an adjustment in the reorder point which it was verified a small increment in
business sales by 5% during the first 11 days.

8.1 Introduction

Any company, either production, marketing or services requires the products supply
of products to carry out its production and/or sale activities. Therefore, inventory
management constitutes one complex logistical aspect, and this study aims to draw
up a guide for the implementation of processes regarding inventory management in
products of rapid deterioration.

Quantitative techniques have supported the typical decisions to be taken in respect
of the inventory, in this case, in particular, probability distributions allow to obtain an
estimate of possible outcomes. In other words, to help to estimate or prevent events,
whether they applied in any field of research. For this study, the field of has been
considered inventories of perishable products, because the inadequate use, would
generate certain difficulties for the managers of a business, because they do not have
an adequate control of this type of inventory based on supply and demand, also
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because they do not have much time to be able to sell them, so they decide to buy
them in less quantity because of the fear of being damaged.

The important thing of this work is to make known about techniques to implement
an inventory management model based on the daily or weekly demand of these
products, as well as determine the optimal quantity of the order that will be made,
determine the point of optimal reorder that will not generate shortages in the business.

8.1.1 Related Work

CausadoRodriguez et al. in [1] developed a proposal to improve the inventory system
for a food trader in a city in Colombia. To achieve the reduction of inventory costs and
have an increase in the economic benefit of the organization, through the planning
and control of purchases and sales of products. The process applied by [1] consisted
of classification of products by the ABC model according to the importance of each
product in the sales total of the distributor. Later, the authors used the model of
economic order quantity (EOQ), to systematize the periodic counts in the stored
products. Also, to determine the optimal amount of orders and the exact moment in
which merchandise could be ordered from suppliers and the minimum quantities of
reordering, however, the author’s did not use computer tools or simulation to help to
generate more values to measure the proposed model.

Escobar et al. in [2] raised a policy with security stock to a probabilistic model that
maximizes the expected maximum utility, considering that the products are perish-
able, and therefore, it might be stored for amaximum number of days. They proposed
amethodology based on theMonteCarlo simulationwith computational experiments
using real instances obtained from a fish marketing company in the Colombian mar-
ket. They showed the efficiency and effectiveness of their methodology based on
expected net utility maximization.

Jara et al. in [3], the authors showed the application of a method to calculate the
economic order quantity (EOQ), and the reorder point (ROP) for an international
trading company of auto parts. The goal was to reduce back orders and improve cus-
tomer service. As a result, they managed to adjust the logistic costs by having higher
sales, and therefore, a more significant economic benefit. Although the company had
an inventory system with EOQ and ROP, this was not very effective; therefore, they
had to recalculate and update the inventory control system with the new values of
EOQ/ROP and with each of the products of the company.

Rodriguez et al. in [4] presented in their study the application of business-oriented
computational technologies with adjustments of mathematical models for Inventory
Control. They evaluated the performance of such techniques that considerably helped
to visualize the movement of each product within the warehouse, and in turn with
those data they were able to determine the optimal quantity to order, the frequency
of the orders, the period of each order and the products with the highest incidence
using the ABC classification model.
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References [2–4] do not use complex algorithms to handle or simulate large
amounts of data. Consequently, they based on the mathematical part. For this rea-
son, we propose in this study, the use of simulation models and computer tools, to
simulate the sales of products (bananas) for a week, and know what decisions can
be taken based on the results obtained.

8.2 Case Study

The owners of stores or mini markets do not have defined a concept that allows
them to obtain the necessary quantity of perishable products for their establishment,
without that they reach a state of rot. Therefore, generate economic losses in the
store, to obtain a better knowledge of the process that is being carried out, it has been
considered a study In the Inventory Systems Management [5, 6].

The objective of this study was to determine how many people enter a perishable
products store to make a purchase. The considered variable was the time of arrival
of the person to the premises in two hours, and another variable considered was
the purchase of the product. In other words, whether the person upon entering the
establishment wearing one of the products perishable, in this case (banana).

8.2.1 Inventory Management

The management of inventories constitutes one of the most complex functions of the
organizations since it implies to keep stored products to protect against uncertainties
at the lowest possible cost and to satisfy a demand in the future [1, 7, 8].

Inmathematical terms,we can say inventorymanagement raises frommaximizing
profitability and minimizing costs. Thus, the inventory management is defined as a
set of decisions, rules, guidelines and/or policies through which the inventory levels
to be maintained are determined when stocks are to be replenished and the size by
which orders are to be made [9–12].

8.2.2 EOQ Inventory Model

It is the fundamental model for inventory control. Inventory in the process and fin-
ished product constitute an aspect of great importance for the organization and are
a starting point for strategic decisions of the company. In this sense, inventory man-
agement becomes a tool to register the amounts owned by the company; which play
a fundamental role in the stage of supply, and the development of demand, resulting
in reliable States in the control of materials and products [13–15].
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Parameters:
Q∗ = Optimal quantity of orders.
D = Demand.
S = The cost of issuing an order/cost for ordering.
H = The cost associated with maintaining a unit in inventory in one year.
Formula (8.1) will allow determining the optimal quantity of orders to be made in
order not to have a loss of products [16, 17].

ROP = d ∗ LT (8.1)

Parameters:
ROP = Reorder Point.
d = Daily demand.
LT = Wait time.
To get the reorder point, we must have the daily demand that will be multiplied by
the timeout.

d = D

365
(8.2)

where:
d = Daily demand.
D = Demand.
To obtain the daily demand of the product, we must divide the product demand for
365.

t = Q

D
∗ #working days. (8.3)

We have:
t = Cycle time.
Q = Optimal quantity of orders.
D = Demand.
To obtain the cycle time, we must have the optimal quantity of orders that will be
divided for the demand and then multiplied by the number of working days.

CT A = H

(
Q

2

)
+

(
D

Q

)
(8.4)

We have:
t = Cycle time.
Q = Optimal quantity of orders.
D = Demand.
To obtain the cycle time, we must have the optimal quantity of orders that will be
divided for the demand and then multiplied by the number of working days.

On the other hand, it is essential to be clear that data which were taken as part
of the sample, and the management of the inventory was performed during a five
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Algorithm 1 Use of the EOQ model algorithm that will help optimize the loss of
perishable products from the store or mini-market to which is conducting the study.
for i = 120 To 130 do
demand ← Cells(112, k).Value
if z = 1 then
if d = p then
Cells(i, 2).Value ← inv I ni tial + Cells(114, 6).Value
Cells(i, 2).Select

else
Cells(i, 2).Value ← inv I ni tial
Cells(i, 2).Select

end if
else {z = 0}
Cells(i, 2).Value ← inv I ni tial
Cells(i, 2).Select

end if
Cells(i, 3).Value ← demand
Cells(i, 3).Select
invFinal ← Cells(i, 2).Value − Cells(i, 3).Value
Cells(i, 4).Value ← invFinal
Cells(i, 4).Select
if Cells(i, 4).Value < Cells(114, 6).Value then
Cells(i, 5).Value ← 1
Cells(i, 5).Select

else
Cells(i, 5).Value ← 0
Cells(i, 5).Select

end if
end for

day period. The sample taken was not sufficient to obtain a favorable outcome, so
we proceeded to enter these values in a computer (Stat:Fit) software. Therefore,
identify the probability distribution that arrived in the local customers; and with that
distribution, we immediately proceeded to perform the simulation process to obtain
more information. It should be noted that this was done using the Monte Carlo
method.

8.2.3 Stat:Fit

It is a discrete event simulation technology is used for is, design and improve man-
ufacturing systems, logistics and other types of new systems or existents. Also, it
allows you to accurately represent real-world processes, including their inherent vari-
ability and interdependencies to carry out predictive analysis of changes subsidies
according to the environment and their key performance indicators [18–22].
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Fig. 8.1 Stat:Fit. Probability representations

Table 8.1 Total number of
people who entered the store
in 2h

Day Time (h) People (Days)

1 2 17

2 2 24

3 2 21

4 2 22

5 2 26

Table 8.2 Daily demand for
people

1 2 3 4 5 6 People (Days)

4 6 4 2 0 1 17

7 9 4 2 1 1 24

5 8 4 3 1 0 21

8 7 1 3 1 2 22

11 7 4 1 2 1 26

Stat:Fit is an essential tool because it helped us to obtain the correct acquisition
of the probability distributions that will be used to perform the simulation [18, 20].
Table8.1 shows the data obtained in the 5 days (Fig. 8.1).

Table8.2 shows the demand for the product per person. In other words, the total
of time which could be observed people in the establishment the purchase perishable
(bananas).

8.3 Results and Discussion

The results obtained from the simulation of the sale of a perishable product were
evaluated, by using the distribution of exponential probability. It was possible to get
an approximation of the time and the quantity of the daily sale of bananas which are
shown in Table8.3.
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Table 8.3 Values obtained with the Montecarlo simulation algorithm and exponential

People Random Exponential Time elapsed Bananas per person

1 0.07746816 0.46819385 0.46819385 1

2 0.23803562 1.57851563 2.04670948 2

3 0.06706321 0.40307128 2.44978076 1

4 0.83529049 10.472353 12.9221338 4

5 0.20217848 1.31150534 14.2336391 2

6 0.77430505 8.6433152 22.8769543 4

7 0.97705376 21.9170395 44.7939939 6

8 0.79892236 9.31392103 54.1079149 4

9 0.48047233 3.8022689 57.9101838 3

10 0.68185514 6.64982984 64.5600137 4

11 0.27710855 1.88417152 66.4441852 2

12 0.08064276 0.48820938 66.9323946 1

13 0.33965683 2.40965201 69.3420466 2

14 0.24126452 1.60317335 70.9452199 2

15 0.43799174 3.3459023 74.2911222 3

16 0.33065921 2.33106937 76.6221916 2

17 0.64160943 5.95818529 82.5803769 3

18 0.42940086 3.25781622 85.8381931 3

19 0.8416003 10.6991633 96.5373564 4

20 0.46578079 3.64034919 100.177706 3

21 0.44840288 3.45447498 103.632181 3

22 0.6225459 5.6572624 109.289443 3

23 0.67158902 6.46542266 115.754866 4

24 0.99754316 34.8902578 150.645124 6

25 0.03793025 0.22452576 150.869649 1

26 0.54952043 4.63031163 155.499961 3

27 0.05399549 0.32230418 155.822265 1

28 0.6103335 5.47237184 161.294637 3

29 0.16952991 1.07862602 162.373263 2

30 0.49480933 3.96475755 166.338021 3

31 0.44786513 3.44881701 169.786838 3

32 0.9895156 26.4650347 196.251872 6

33 0.59961057 5.31474749 201.56662 3

34 0.75168651 8.08875449 209.655374 4

35 0.28587615 1.95502575 211.6104 2

36 0.89955479 13.3440553 224.954455 5

37 0.84727621 10.9110443 235.8655 4

38 0.32533997 2.28510801 238.150608 2

39 0.8649646 11.6257839 249.776392 5

40 0.51214296 4.16748112 253.943873 3

(continued)
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Table 8.3 (continued)

People Random Exponential Time Elapsed Bananas per person

41 0.20995116 1.36835138 255.312224 2

42 0.88599676 12.6088746 267.921099 5

43 0.48694932 3.87511349 271.796212 3

44 0.98432356 24.1292695 295.925482 6

45 0.02900505 0.17090717 296.096389 1

46 0.97204798 20.7712218 316.867611 6

47 0.84915698 10.9829936 327.850604 4

48 0.28661662 1.96104953 329.811654 2

49 0.20537782 1.33483656 331.14649 2

50 0.44317383 3.39968998 334.54618 3

51 0.68504703 6.70837909 341.254559 4

52 0.28114372 1.91667389 343.171233 2

53 0.96520472 19.4996521 362.670885 6

Sales Total 168

Table 8.4 Daily demand, reorder point and banana delivery time

Initial
inventory

Daily
demand

Final
inventory

Order Random Delivery
time

300 190 110 1 0.015328944 1

410 173 237 1 0.771438122 2

237 203 34 1 0.738401115

334 181 153 1 0.069140553 1

453 192 261 1 0.569536984 2

261 213 48 1 0.028003454

348 190 158 1 0.461136758 1

458 211 247 1 0.673638701 2

247 191 56 1 0.687927306

356 196 160 1 0.127178192 1

460 189 271 1 0.050575435 1

Once obtained the daily store sales demand, proceeded to calculate the optimal
quantity of order of business (EOQ). The initial inventory of bananas during theweek
was 300 units that will vary depending on the demand which is generated during the
day. Furthermore, the reorder point is defined and determined a value below 200 units
in the ending inventory of the day; which allowed to simulate a model of maximal
and minimal (see Table8.4).

It must be considered that the time it takes for the order made to the supplier to
arrive will depend on the random number generated by the algorithm, where if the
random number is ≤ 0.5 it will take one day for the product to arrive, whereas, if the
random one is >0.5 and ≤ 1 the product will arrive in a maximum of two days.



8.3 Results and Discussion 131

It is demonstrated that the management model of maximum and minimum
inventories if it can be applied to our research, since it allows us to have a max-
imum stock at each replenishment point, as long as the supplier complies with the
agreed upon delivery date to business.

8.4 Conclusion

After carrying out the corresponding processes and using the methods of distribution
and modeling mentioned above, it is concluded that the store or mini-market has
a small loss in the estimated product (banana). Therefore, it is suggested that the
orders be applied according to what was simulated in this work, to reduce the losses
of products, which if this is controlled; could generate more savings in these products
that will not be sold, for the reason that they will lose over time.

8.5 Future Work

This study can use a queue model, which will allow us to realize if the establishment
has enough servers to supply the demand, and also, obtain a greater profit.

Finally, the implementation stage of this design can be done in a GUI with a
high-level programming language which is aimed at solving the problems of this
magnitude.

References

1. Rodríguez, Edwin Causado. 2015. Modelo de inventarios para control económico de pedidos
en empresa comercializadora de alimentos. Revista de Ingenierías: Universidad de Medellín
14 (27): 15–15.

2. Escobar, John Willmer, Rodrigo Linfati, and Wilson Adarme Jaimes. 2017. Gestión de inven-
tarios para distribuidores de productos perecederos. Ingeniería y Desarrollo 35 (1): 219–239.

3. Jara-Cordero, Sergio, Diana Sánchez-Partida, and José Luis Martínez-Flores. 2017. Análisis
para la mejora en el manejo de inventarios de una comercializadora. Septiembre 1 (1): 1–18.

4. Rodríguez López,Manuel Guillermo, Flor Salazar Vázquez, and JorgeGonzálezUrgiles. 2018.
Control de inventarios con ajuste dinámico del punto de reorden - Un caso de estudio para
empresas con productos perecibles y no perecibles, usando técnicas computacionales 23: 13–
20.

5. Osorio, Carlos Andrés. 2013. Modelos para el control de inventarios en las pymes. Panorama
2 (6).

6. Valdivia,Mudarra, Cicely Jobana, Zavaleta Contreras, and Santa Fania. 2018. El control interno
de inventarios y su relación con la rentabilidad de la empresa minimarket san marcos SAC,
periodo 2016.

7. Gutiérrez,Valentina, andCarlos JulioVidal. 2014.Modelos degestiónde inventarios en cadenas
de abastecimiento: revisión de la literatura. Revista Facultad de Ingeniería 43: 134–149.



132 8 Case Study: Probabilistic Estimates in the Application of Inventory Models …

8. Peña, Omaira, and Rafael Da Silva Oliveira. 2016. Factores incidentes sobre la gestión de
sistemas de inventario en organizaciones venezolanas. Telos: Revista de Estudios Interdisci-
plinarios en Ciencias Sociales 18 (2): 187–207.

9. William, Richard, and Lopez Prado. 2018. El control de inventario como estrategia para el logro
de rentabilidad en las mypes comerciales de la actividad ferretera ubicada en la comunidad
urbana autogestionaria de huaycán distrito de ate-lima, periodo 2016.

10. Cubas García, Marleny Janet. 2016. El control de inventarios y su incidencia en la rentabilidad
de la empresa artceramics imagen SAC, 2015.

11. Molina, Dolores. 2015. Gestión de inventarios: una herramienta útil para mejorar la rentabili-
dad.

12. Landeta, Juan Manuel Izar, Carmen Berenice Ynzunza Cortés, and Orlando Guarneros García.
2016. Variabilidad de la demanda del tiempo de entrega, existencias de seguridad y costo del
inventario. Contaduría y administración 61 (3): 499–513.

13. Eduardo, Gutiérrez-González, Panteleeva Olga Vladimirovna, Hurtado-Ortiz Moisés Fer-
nando, and González-Navarrete Carlos. 2013. Aplicación de un modelo de inventario con
revisión periódica para la fabricación de transformadores de distribución. Ingeniería, investi-
gación y tecnología 14 (4): 537–551.

14. García, Jesús Fernando Isaac, Sara Oranday Dávila, et al. 2012. Modelo probabilístico
de quiebra de la pequeña y mediana empresa española. evidencia empírica. un modelo
econométrico. Contribuciones a la Economía 67.

15. Ruiz Torres, Alex Jesús, José Humberto Ablanedo Rosas, and Jorge Ayala Cruz. 2012. Mod-
elo de asignación de compras a proveedores considerando su flexibilidad y probabilidad de
incumplimiento en la entrega. Estudios gerenciales 28 (122).

16. Garza, Juvencio Jaramillo, Jesús Fernando Isaac García, et al. 2014. Modelo probabilístico
para medir, pronosticar, y prevenir la quiebra de las empresas pyme en nuevo león méxico. una
herramienta para la planeación financiera y la toma de decisiones empresariales con evidencia
empírica. Observatorio de la Economía Latinoamericana 195.

17. Jaramillo, Juvencio, G. Jesús Fernando Isaac, et al. 2015. Determinantes de la quiebra empre-
sarial pyme en zacatecas. desarrollo de unmodelo probabilístico-predictivo de la quiebra pyme.
Observatorio de la Economía Latinoamericana 213: 1–24.

18. Benneyan, James C. 1998. Software review: Stat: Fit. OR/MS Today 25 (1): 38–41.
19. Klingstam, Pär, and Per Gullander. 1999. Overview of simulation tools for computer-aided

production engineering. Computers in Industry 38 (2): 173–186.
20. Leemis, Lawrence M. 2002. Software review: Stat: Fit fitting continuous and discrete distribu-

tions to data. OR/MS Today 29 (3): 52–55.
21. Chi, Rosa Imelda Garcia, Arturo Eguia Alvarez, Gloria Emilia Izaguirre Cardenas, et al. 2015.

Uso de la herramienta de software promodel como estrategia didáctica en el aprendizaje basado
en competencias de simulación de procesos y servicios. TECTZAPIC 1.

22. Cabanillas, Alberto Cossa. 2012.Modelo de simulación para programar y controlar los recursos
en una gestión hospitalaria. Interfases 5: 83–100.


	Preface
	Acknowledgements
	Contents
	About the Authors
	1 The System Simulation and Their Learning Processes
	1.1 Introduction
	1.2 Fundamentals of Simulation
	1.3 Simulation as a Teaching Method and Its Link  with Engineering Careers
	1.4 Teaching-Learning Process
	1.5 Project Based Learning (PBL)
	1.6 Role of the Teacher in the Teaching Process
	1.6.1 Observe
	1.6.2 Accompany
	1.6.3 Stimulate
	1.6.4 Evaluate

	1.7 The Use of ICT in the Teaching Process
	References

	2 Process Sampling
	2.1 Population
	2.1.1 Population Types
	2.1.2 Population Elements

	2.2 Sampling
	2.2.1 Terminology
	2.2.2 Sampling Types

	References

	3 Pseudo-Random Numbers  and Congruential Methods
	3.1 Pseudo-Random Numbers
	3.2 Pseudo Number Properties
	3.3 Methods for Generating Pseudo Numbers
	3.3.1 Manual Methods
	3.3.2 Random Number Tables
	3.3.3 Employing the Computer

	3.4 Arithmetic Methods to Generate Pseudo Numbers
	3.4.1 Mean Square Method
	3.4.2 Medium Product Method
	3.4.3 Modified Medium Product Method

	3.5 Congruence Methods
	3.5.1 Mixed or Linear Congruence Method
	3.5.2 Multiplicative Congruence Method
	3.5.3 Additive Congruence Method

	3.6 Proposed Problems
	References

	4 Random Variable Generation Methods
	4.1 Introduction
	4.1.1 Types of Random Variables
	4.1.2 Methods for Generating Random Variables
	4.1.3 Inverse Transform Method

	4.2 Inverse Transform and Discrete Random Variables
	4.2.1 Bernoulli Probability Distribution
	4.2.2 Variables That Follow a Binomial Distribution
	4.2.3 Variables That Follow a Discrete Uniform Distribution
	4.2.4 Variables That Follow a Poisson Distribution
	4.2.5 Calculation of the Poisson Distribution
	4.2.6 Variables That Follow a Geometric Distribution

	4.3 Inverse Transform and Continuous Random Variables
	4.3.1 Variables That Follow a Uniform Distribution
	4.3.2 Variables That Follow a Triangular Distribution
	4.3.3 Variables That Follow an Exponential Distribution
	4.3.4 Variables That Follow a Weibull Distribution

	4.4 Inverse Transform and Empirical Distribution
	4.5 Accept-Reject Method
	4.6 Composition Method
	4.7 Convolution Method
	4.8 Proposed Exercises
	References

	5 Monte Carlo Simulation Method
	5.1 Introduction
	5.2 Monte Carlo Method Justification
	5.2.1 Weak Law of Large Numbers
	5.2.2 The Central Boundary Theorem

	References

	6 Case Study: Logistical Behavior  in the Use of Urban Transport Using  the Monte Carlo Simulation Method
	6.1 Introduction
	6.1.1 Related Work

	6.2 Case Study
	6.2.1 Queue Theory Model
	6.2.2 Using Computer Tools: Stat-Fit
	6.2.3 Log-Normal Distribution
	6.2.4 Binomial Probability Distribution

	6.3 Results
	6.4 Conclusion 
	References

	7 Case Study: Project-Based Learning  to Evaluate Probability Distributions  in Medical Area
	7.1 Introduction
	7.1.1 Related Work

	7.2 Case Study
	7.2.1 Evaluation
	7.2.2 Data Collection
	7.2.3 Activity Process

	7.3 Results and Discussion
	7.4 Conclusion 
	References

	8 Case Study: Probabilistic Estimates  in the Application of Inventory Models for Perishable Products in SMEs
	8.1 Introduction 
	8.1.1 Related Work

	8.2 Case Study 
	8.2.1 Inventory Management 
	8.2.2 EOQ Inventory Model 
	8.2.3 Stat:Fit 

	8.3 Results and Discussion 
	8.4 Conclusion 
	8.5 Future Work 
	References




