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Chapter 1

BROUWER DEGREE THEORY

Let R be the real numbers, Rn = {x = (x1, x2, · · · , xn) : xi ∈ R for i =
1, 2, · · · , n} with |x| = (

∑n
i=1 x

2
i )

1
2 and let Ω ⊂ Rn, and let f : Ω → Rn

be a continuous function. A basic mathematical problem is: Does f(x) = 0
have a solution in Ω? It is also of interest to know how many solutions are
distributed in Ω. In this chapter, we will present a number, the topological
degree of f with respect to Ω and 0, which is very useful in answering these
questions. To motivate the process, let us first recall the winding number of
plane curves, a basic topic in an elementary course in complex analysis. Let
C be the set of complex numbers, Γ ⊂ C an oriented closed C1 curve and
a ∈ C \ Γ. Then the integer

w(Γ, a) =
1

2πi

∫
Γ

1
z − a

dz (1)

is called the winding number of Γ with respect to a ∈ C \ Γ. Now, let G ⊂ C
be a simply connected region and f : G→ C be analytic and Γ ⊂ G a closed
C1 curve such that f(z) 6= 0 on Γ. Then we have

w(f(Γ), 0) =
1

2πi

∫
f(Γ)

1
z
dz =

1
2πi

∫
Γ

f ′(z)
f(z)

dz =
∑

i

w(Γ, zi)αi, (2)

where zi are the zeros of f in the region enclosed by Γ and αi are the corre-
sponding multiplicites. If we assume in addition that Γ has positive orientation
and no intersection points, then we know from Jordan’s Theorem, which will
be proved later in this chapter, that w(Γ, zi) = 1 for all zi. Thus (2) becomes

w(f(Γ), 0) =
∑

i

αi. (3)

So we may say that f has at least |w(f(Γ), 0)| zeros in G. The winding number
is a very old concept which goes back to Cauchy and Gauss. Kronecker,
Hadamard, Poincare, and others extended formula (1). In 1912, Brouwer [32]
introduced the so-called Brouwer degree in Rn (see Browder [35], Sieberg [277]
for historical developments). In this chapter, we introduce the Brouwer degree
theory and its generalization to functions in VMO. This chapter is organized
as follows:

In Section 1.1 we introduce the notion of a critical point for a differentiable
function f . We then prove Sard’s Lemma, which states that the set of critical

1
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2 Topological Degree Theory and Applications

points of a C1 function is “small”. Our final result in this section shows how
a continuous function can be approximated by a C∞ function.

In Section 1.2 we begin by defining the degree of a C1 function using the
Jacobian. Also we present an integral representation which we use to define
the degree of a continuous function. Also in this section we present some
properties of our degree (see theorems 1.2.6, 1.2.12, and 1.2.13) and some
useful consequences. For example, we prove Brouwer’s and Borsuk’s fixed
point theorem, Jordan’s separation theorem and an open mapping theorem. In
addition we discuss the relation between the winding number and the degree.

In Section 1.3 we discuss some properties of the average value function and
then we introduce the degree for functions in VMO.

In Section 1.4 we use the degree theory in Section 1.2 to present some exis-
tence results for the periodic and anti-periodic first order ordinary differential
equations.

1.1 Continuous and Differentiable Functions

We begin with the following Bolzano’s intermediate value theorem:

Theorem 1.1.1. Let f : [a, b] → R be a continuous function, then, for m
between f(a) and f(b), there exists x0 ∈ [a, b] such that f(x0) = m.

Corollary 1.1.2. Let f : [a, b] → R be a continuous function such that
f(a)f(b) < 0. Then there exists x0 ∈ (a, b) such that f(x0) = 0.

Corollary 1.1.3. Let f : [a, b] → [a, b] be a continuous function. Then
there exists x0 ∈ [a, b] such that f(x0) = x0.

Let Ω ⊂ Rn be an open subset. We recall that a function f : Ω → Rn

is differentiable at x0 ∈ Ω if there is a matrix f ′(x0) such that f(x0 + h) =
f(x0) + f ′(x0)h+ o(h), where x0 + h ∈ Ω and |o(h)|

|h| tends to zero as |h| → 0.

We use Ck(Ω) to denote the space of k-times continuously differentiable
functions. If f is differentiable at x0, we call Jf (x0) = detf ′(x0) the Jacobian
of f at x0. If Jf (x0) = 0, then x0 is said to be a critical point of f and we use
Sf (Ω) = {x ∈ Ω : Jf (x) = 0} to denote the set of critical points of f , in Ω. If
f−1(y) ∩ Sf (Ω) = ∅, then y is said to be a regular value of f . Otherwise, y is
said to be a singular value of f .

Lemma 1.1.4. (Sard’s Lemma) Let Ω ⊂ Rn be open and f ∈ C1(Ω).
Then µn(f(Sf (Ω)) = 0, where µn is the n-dimensional Lebesgue measure.

Proof. Since Ω is open, Ω = ∪∞i=1Qi, where Qi is a cube for i = 1, 2, · · · .
We only need to show that µn(f(Sf (Q))) = 0 for a cube Q ⊂ Ω. In fact, let
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BROUWER DEGREE THEORY 3

l be the lateral length of Q. By the uniform continuity of f ′ on Q, for any
given ε > 0, there exists an integer m > 0 such that

|f ′(x)− f ′(y)| ≤ ε

for all x, y ∈ Q with |x− y| ≤
√

nl
m . Therefore, we have

|f(x)− f(y)− f ′(y)(x− y)| ≤
∫ 1

0

|f ′(y + t(x− y))− f ′(y)||x− y|dt

≤ ε|x− y|

for all x, y ∈ Q with |x − y| ≤
√

nl
m . We decompose Q into r cubes, Qi, of

diameter
√

nl
m , i = 1, 2, · · · , r. Since l

m is the lateral length of Qi, we have
r = mn. Now, suppose that Qi∩Sf (Ω) 6= ∅. Choosing y ∈ Qi∩Sf (Ω), we have
f(y+x)−f(y) = f ′(y)x+R(y, x) for all x ∈ Qi−y, where |R(y, x+y)| ≤ ε

√
nl

m .
Therefore, we have

f(Qi) = f(y) + f ′(y)(Qi − y) +R(y,Qi).

But f ′(y) = 0, so f ′(y)(Qi−y) is contained in an (n−1)- dimensional subspace
of Rn. Thus, µn(f ′(y)(Qi − y)) = 0, so we have

µn(f(Qi)) ≤ 2nεn(
√
nl

m
)n.

Obviously, f(Sf (Q)) ⊂ ∪r
i=1f(Qi), so we have

µn(f(Sf (Q)) ≤ r2nεn(
√
nl

m
)n = 2nεn(

√
nl)n.

By letting ε→ 0+, we obtain µn(f(Sf (Q))) = 0. Therefore, µn(f(Sf (Ω))) =
0. This completes the proof.

Proposition 1.1.5. Let K ⊂ Rn be a bounded closed subset, and f : K →
Rn continuous. Then there exists a continuous function f̃ : Rn → convf(K)
such that f̃(x) = f(x) for all x ∈ K, where convf(K) is the convex hull of
f(K).

Proof. Since K is bounded closed subset, there exists at most countable
{ki : i = 1, 2, · · · } ⊂ K such that {ki : i = 1, 2, · · · } = K. Put

d(x,K) = inf
y∈K

|x− y|, αi(x) = max{2− |x− ki|
d(x,A)

, 0}

for any x /∈ K and

f̃(x) =

{
f(x), x ∈ K,
P

i≥1 2−iαi(x)f(ki)
P

i≥1 2−iαi(x) , x /∈ K.
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4 Topological Degree Theory and Applications

Then f̃ is the desired function.

Proposition 1.1.6. Let K ⊂ Rn be a bounded closed subset and f :
K → Rn continuous. Then there exists a function g ∈ C∞(Rn) such that
|f(x)− g(x)| < ε.

Proof. By Proposition 1.1.5, there exists a continuous extension f̃ of f to
Rn. Define the following function

φ(x) =

{
ce−

1
1−|x| , |x| < 1,

0, |x| ≥ 1,
(1.1)

where c satisfies
∫

Rn φ(x)dx = 1. Set φλ(x) = λ−nφ(x
λ ) for all x ∈ Rn and

fλ(x) =
∫

Rn

f̃(y)φλ(y − x)dx for all x ∈ Rn, λ > 0.

It is obvious that suppfλ = {x ∈ Rn : fλ(x) 6= 0} = {x : |x| ≤ λ} for all
λ > 0. Consequently, we have fλ ∈ C∞ and fλ(x) → f(x) uniformly on K
as λ → 0+. Taking g as fλ for sufficiently small λ, g is the desired function.
This completes the proof.

1.2 Construction of Brouwer Degree

Now, we give the construction of Brouwer degree in this section as follows:

Definition 1.2.1. Let Ω ⊂ RN be open and bounded and f ∈ C1(Ω). If
p /∈ f(∂Ω) and Jf (p) 6= 0, then we define

deg(f,Ω, p) =
∑

x∈f−1(p)

sgnJf (x),

where deg(f,Ω, p) = 0 if f−1(p) = ∅.

The next result gives another equivalent form of Definition 1.2.1.

Proposition 1.2.2. Let Ω, f and p be as in Definition 1.2.1 and let

φε(x) =

{
cε−ne

− 1
1−|ε−1x|2 , |x| < 1,

0, otherwise,
(1.2)

where c is a constant such that
∫

Rn φ(x) = 1. Then there exists ε0 = ε0(p, f)
such that

deg(f,Ω, p) =
∫

Ω

φε(f(x)− p)Jf (x)dx for all ε ∈ (0, ε0).

Copyright 2006 by Taylor & Francis Group, LLC



BROUWER DEGREE THEORY 5

Proof. The case f−1(p) = ∅ is obvious. Assume that

f−1(p) = {x1, x2, · · · , xn}.

We can find disjoint balls Br(xi) and a neighborhood Vi of p such that f :
Br(xi) → Vi is a homeomorphism and sgnJf (x) = sgnJf (xi) in Bi(xi). We
may take r0 > 0 such that Br0(p) ⊂ ∩n

i=1Vi and set Ui = Br(xi)∩f−1(Br0(p)).
Then |f(x) − p| ≥ δ on Ω\ ∪n

i=1 Ui for some δ > 0 and so, for any ε < δ, we
have ∫

Ω

φε(f(x)− p)Jf (x)dx =
n∑

i=1

sgnJf (xi)
∫

Ui

φε(f(x)− p)|Jf (x)|dx.

But we have

Jf (x) = Jf−p(x),∫
Ui

φε(f(x)− p)|Jf (x)|dx =
∫

Br0

φε(x)dx = 1,

ε < min{r0, δ}.

This completes the proof.

Definition 1.2.3. Let Ω ⊂ RN be open and bounded and f ∈ C2(Ω). If
p /∈ f(∂Ω). Then we define

deg(f,Ω, p) = deg(f,Ω, p′),

where p′ is any regular value of f that |p′ − p| < d(p, f(∂Ω)).

We need to check that, for any two regular values p1 and p2 of f ,

deg(f,Ω, p1) = deg(f,Ω, p2).

For any ε < d(p, f(∂Ω))−max{|p− pi| : i = 1, 2}, we have

deg(f,Ω, pi) =
∫

Ω

φε(f(x)− pi)Jf (x)dx for i = 1, 2.

Notice that
φε(x− p2)− φε(x− p1) = divw(x),

where

w(x) = (p1 − p2)
∫ 1

0

φε(x− p1 + t(p1 − p2))dt.

We show that there exists a function v ∈ C1(RN ) such that supp(v) ⊂ Ω and

[φε(f(x)− p2)− φε(f(x)− p1)]Jf (x) = divv(x) for all x ∈ Ω.

Copyright 2006 by Taylor & Francis Group, LLC



6 Topological Degree Theory and Applications

Lemma 1.2.4. Let Ω ⊂ RN be open, f ∈ C2(Ω) and let dij be the cofactor
of ∂fj

∂xi
in Jf (x) and

vi(x) =
{∑N

j=1 wj(f(x))dij(x) x ∈ Ω,
0, otherwise.

Then (v1(x), v1(x), · · · , vN (x)) satisfies divv(x) = divw(f(x))Jf (x).

Proof. Since supp(w) ⊂ B(p, r) for r ≤ max{|p − pi| : i = 1, 2} + ε <
d(p, ∂Ω), we have

supp(v) ⊂ Ω,

∂ivi(x) =
N∑

j,k=1

djk∂kWj(f(x))∂ifk(x) +
N∑

j=1

Wj(f(x))∂idij(x),

where ∂k = ∂
∂xk

. Now, we claim that∑
i=1

N∂idij(x) = 0 for j = 1, 2, · · · , N.

For any given j, let fxk
denote the column

(∂kf1, · · · , ∂kfj−1, ∂kfj+1, · · · , ∂kfn).

Then we have

dij(x) = (−1)i+jdet(fx1 , · · · , fi−1, fi+1, · · · , fN ).

Therefore, it follows that

∂idij(x) = (−1)i+j
N∑

k=1

det(fx1 , · · · , fxi−1 , fxi+1 , · · · , ∂ifxk
, · · · , fxN

).

Set

aki = det(∂ifxk
, fx1 , · · · , fxi−1 , fxi+1 , · · · , fxk−1 , fxk+1 , · · · , fxN

),

then we have aki = aik and

(−1)i+j∂idij(x) =
N∑

i,k=1

(−1)k−1aki +
∑
k>i

(−1)k−2aki

=
N∑

k=1

(−1)k−1δkiaki,
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BROUWER DEGREE THEORY 7

where δki = 1 for k < i, δii = 0 and δki = −δik for i, k = 1, 2, · · · , N . Hence
we have

(−1)j
N∑

i=1

∂idij(x) =
N∑

i,k=1

(−1)k−1+iγkiaki =
N∑

k,i=1

(−1)i−1+kγikaik

= −
N∑

i,k=1

(−1)k−1+iγkiaki = 0.

Now, we have

∂ivi(x) =
N∑

j,k=1

di,j∂kwj(f(x))∂ifk(x) +
N∑

j=1

wj(f(x))∂idij(x).

On the other hand,
∑N

i=1 dij∂ifk(x) = δjkJf (x) with Kronecker’s δjk.
Therefore, it follows that

divv(x) =
N∑

k,j=1

∂kwj(f(x))δjkJf (x) = divw(f(x))Jf (x).

This completes the proof.

Finally, we are ready to introduce the following definition:

Definition 1.2.5. Let Ω ⊂ RN be open and bounded, f ∈ C(Ω) and
p /∈ f(∂Ω). Then we define

deg(f,Ω, p) = deg(g,Ω, p),

where g ∈ C2(Ω) and |g − f | < d(p, f(∂Ω)).

Now, one may check the following properties by a reduction to the regular
case.

Theorem 1.2.6. Let Ω ⊂ RN be an open bounded subset and f : Ω →
RN be a continuous mapping. If p /∈ f(∂Ω), then there exists an integer
deg(f,Ω, p) satisfying the following properties:

(1) (Normality) deg(I,Ω, p) = 1 if and only if p ∈ Ω, where I denotes the
identity mapping;

(2) (Solvability) If deg(f,Ω, p) 6= 0, then f(x) = p has a solution in Ω;

(3) (Homotopy) If ft(x) : [0, 1]×Ω → RN is continuous and p 6∈ ∪t∈[0,1]ft(∂Ω),
then deg(ft,Ω, p) does not depend on t ∈ [0, 1];

(4) (Additivity) Suppose that Ω1, Ω2 are two disjoint open subsets of Ω
and p /∈ f(Ω−Ω1∪Ω2). Then deg(f,Ω, p) = deg(f,Ω1, p)+deg(f,Ω2, p);

Copyright 2006 by Taylor & Francis Group, LLC



8 Topological Degree Theory and Applications

(5) deg(f,Ω, p) is a constant on any connected component of Rn \ f(∂Ω).

As consequences of Theorem 1.2.6, we have the following results:

Theorem 1.2.7. Let f : B(0, R) ⊂ Rn → B(0, R) be a continuous map-
ping. If |f(x)| ≤ R for all x ∈ ∂B(0, R), then f has a fixed point in B(0, R).

Proof. We may assume that x 6= f(x) for all x ∈ ∂B(0, R). Put H(t, x) =
x − tf(x) for all (t, x) ∈ [0, 1] × B(0, R). Then 0 6= H(t, x) for all [0, 1] ×
∂B(0, R). Therefore, we have

deg(I − f,B(0, R), 0) = deg(I,B(0, R), 0) = 1.

Hence f has a fixed point in B(0, R). This completes the proof.

From Theorem 1.2.7, we have the well-known Brouwer fixed point theorem:

Theorem 1.2.8. Let C ⊂ Rn be a nonempty bounded closed convex subset
and f : C → C be a continuous mapping. Then f has a fixed point in C.

Proof. Take B(0, R) such that C ⊂ B(0, R) and let r : B(0, R) → C be a
retraction. By Theorem 1.2.7, there exists x0 ∈ B(0, R) such that frx0 = x0.
Therefore, x0 ∈ C, and so we have rx0 = x0. This completes the proof.

Theorem 1.2.9. Let f : Rn → Rn be a continuous mapping and 0 ∈ Ω ⊂
Rn with Ω an open bounded subset. If (f(x), x) > 0 for all x ∈ ∂Ω, then
deg(f,Ω, 0) = 1.

Proof. Put H(t, x) = tx + (1 − t)f(x) for all (t, x) ∈ [0, 1] × Ω. Then
0 /∈ H([0, 1]× ∂Ω), and so we have

deg(f,Ω, 0) = deg(I,Ω, 0) = 1.

This completes the proof.

Corollary 1.2.10. Let f : Rn → Rn be a continuous mapping. If

lim
|x|→∞

(f(x), x)
|x|

= +∞,

then f(Rn) = Rn.

Proof. For any p ∈ Rn, it is easy to see that there exists R > 0 such that
(f(x)−p, x) > 0 for all x ∈ ∂B(0, R), where B(0, R) is the open ball centered
at zero with radius R. By Theorem 1.2.9, we have

deg(f − p,B(0, R), 0) = 1

and so f(x)− p = 0 has a solution in B(0, R). This completes the proof.
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Theorem 1.2.11. (Borsuk’s Theorem) Let Ω ⊂ Rn be open bounded
and symmetric with 0 ∈ Ω. If f ∈ C(Ω) is odd and 0 /∈ f(∂Ω), then d(f,Ω, 0)
is odd.

Proof. Without loss of generality, we may assume that f ∈ C1(Ω) with
Jf (0) 6= 0. Next, we define a mapping g ∈ C1(Ω) sufficiently close to f by
induction as follows:

Let φ ∈ C1(R) be an odd mapping with φ′(0) = 0 and φ(t) = 0 if and
only if t = 0. Put Ωk = {x ∈ Ω : xk 6= 0} and h(x) = f(x)

φ(x1)
for all x ∈ Ω1.

Choose |y1| sufficiently small such that y1 is a regular value for h on Ω1. Put
g1(x) = f(x)− φ(x1)y1, then 0 is a regular value for g1 on Ω1.

Suppose that we have already an odd gk ∈ C1(Ω) close to f such that 0 is
a regular value for gk on Ωk. Then we define gk+1(x) = gk(x)− φ(xk+1)yk+1

with |yk+1| small enough such that 0 is a regular value for gk+1 on Ωk+1.
If x ∈ Ωk+1 and xk+1 = 0, then

x ∈ Ωk, gk+1(x) = gk(x), g′k+1(x) = g′k(x)

and hence Jgk+1(x) 6= 0. By induction, we also have g′n(0) = g′1(0) = f ′(0)
and so 0 is a regular value for gn. By Definition 1.2.5 and Definition 1.2.1, we
know that

deg(f,Ω, 0) = deg(gn,Ω, 0) = sgnJgn
(0) +

∑
x∈g−1(0),x 6=0

sgnJgn
(x)

and thus deg(f,Ω, 0) is odd. This completes the proof.

The following theorem shows the relationship between Brouwer degrees in
different dimensional spaces:

Theorem 1.2.12. Let Ω ⊂ Rn be an open bounded subset, 1 ≤ m < n, let
f : Ω → Rm be a continuous function and let g = I − f . If y /∈ (I − f)(∂Ω),
then

deg(g,Ω, y) = deg(gm,Ω ∩Rm, y),

where gm is the restriction of g on Ω ∩Rm.

Proof. We may assume that f ∈ C2(Ω) and y is a regular value for g on
Ω. A direct computation yields that Jg(x) = Jgm

(x) and so the conclusion
follows from Definition 1.2.1. This completes the proof.

Let Ω ⊂ Rn be open and bounded and let f ∈ C(Ω). By the homotopy
invariance of deg(f,Ω, y), we know that deg(f,Ω, y) is the same integer as y
ranges through the same connected component U of Rn \f(∂Ω). Therefore, it
is reasonable to denote this integer by deg(f,Ω, U). The unbounded connected
component is denoted by U∞. Now, we have the product formula:

Theorem 1.2.13. Let Ω ⊂ Rn be an open bounded subset, f ∈ C(Ω),
g ∈ C(Rn) and let Ui be the bounded connected components of Rn \ f(∂Ω).
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10 Topological Degree Theory and Applications

If p /∈ (gf)(∂Ω), then

deg(gf,Ω, p) =
∑

i

deg(f,Ω, Ui)deg(g, Ui, p), (1.2.1)

where only finitely many terms are not zero.

Proof. We first prove (1.2.1) only has finitely many non-zero terms. Take
r > 0 such that f(Ω) ⊂ Br(0). Then it follows that M = Br(0) ∩ g−1(p)
is compact, M ⊂ Rn \ f(∂Ω) = ∪i≥1Ui and there exists finitely many i, say
i = 1, 2, · · · , t, such that ∪t+1

i=1Ui ⊇M , where Ut+1 = U∞ ∩Br+1. We have

deg(f,Ω, Ut+1) = 0, deg(g, Ui, p) = 0

for i ≥ t+ 2 since Uj ⊂ Br(0) and g−1(y) ∩ Uj = ∅ for j ≥ t+ 2. Therefore,
the right side of (1.2.1) has only finitely many terms different from zero.

We first suppose that f ∈ C1(Ω), g ∈ C1(Rn) and p is a regular value of
gf , so we have

deg(gf,Ω, p) =
∑

x∈(gf)−1(p)

sgnJgf (x) =
∑

x∈(gf)−1(p)

sgnJg(f(x))sgnJf (x)

and note ∑
x∈f−1(z),z∈g−1(p)

sgnJg(z)sgnJf (x)

=
∑

z∈g−1(p),z∈f(Ω)

sgnJg(z)[
∑

x∈f−1(z)

sgnJf (x)]

=
∑

z∈f(Ω),g(z)=p

sgnJg(z)deg(f,Ω, z)

=
t∑

i=1

∑
z∈Ui

sgnJg(z)deg(f,Ω, z)

=
∑

i

deg(f,Ω, Ui)deg(g, Ui, p).

For the general case f ∈ C(Ω) and g ∈ C(Rn), Put

Vm = {z ∈ Br+1(0) \ f(∂Ω) : deg(f,Ω, z) = m},

Nm = {i ∈ N : deg(f,Ω, Ui) = m}.

Obviously, Vm = ∪i∈Nm
Ui and thus we have∑

i

deg(f,Ω, Ui)deg(g, Ui, p) =
∑
m

[
∑

i∈Nm

deg(g, Ui, p)] =
∑
m

deg(g, Vm, p).
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Therefore, we need to show

deg(gf,Ω, p) =
∑
m

deg(g, Vm, p) (1.2.2)

Since ∂Vm ⊂ f(∂Ω), we take g0 ∈ C1(Rn) such that

deg(g0f,Ω, p) = deg(gf,Ω, p), deg(g0, Vm, p) = deg(g, Vm, p).

We may assume that M0 = Br+1(0) ∩ g−1
0 (p) is not empty and then we have

ρ(M0, f(∂Ω)) = inf{|x− z| : x ∈M0, z ∈ f(∂Ω)} > 0.

Now we take f0 ∈ C1(Ω) such that

max
x∈Ω

|f(x)− f0(x)| < ρ(M0, f(∂Ω)), f0(Ω) ⊂ Br+1(0)

and put
V ′m = {z ∈ Br+1(0) \ f0(∂Ω) : deg(f0,Ω, z) = m}.

Then we have Vm ∩M0 = V ′m ∩M0 and

deg(g0, Vm, p) = deg(g0, Vm ∩ V ′m, p) = deg(g0, V ′m, p).

Therefore, we have

deg(g0f0,Ω, p) =
∑
m

mdeg(g0, V ′m, p) =
∑
m

mdeg(g, Vm, p).

By a simple homotopy argument, one gets deg(g0f0,Ω, p) = deg(g0f,Ω, p).
Thus the conclusion of Theorem 1.2.13 is true. This completes the proof.

By using the product formula, we can prove the following version of Jordan’s
separation theorem:

Theorem 1.2.14. Let Ωi ⊂ Rn, i = 1, 2, be two compact sets which are
homeomorphic to each other. Then Rn\Ω1 and Rn\Ω2 have the same number
of connected components.

Proof. Let h : Ω1 → Ω2 be a homeomorphism onto Ω2, h′ be a continuous
extension of h to Rn and h−1 be a continuous extension of h−1 : Ω2 → Ω1 to
Rn. Assume that Ui are bounded components of Rn \Ω1 and Vj are bounded
components of Rn \ Ω2. Notice that ∂Ui ⊂ Ω1 and Vj ⊂ Ω2. For any fixed i,
let Wk denote the components of Rn \ h(∂Ui). Since

∪jVj = Rn \ Ω2 ⊂ Rn \ h(∂Ui)) = ∪kWk

for each j, there exists a k such that Vj ⊂ Wk, so, in particular, V∞ ⊂ W∞.
For any p ∈ Ui, notice that h−1h′x = x for x ∈ ∂Ui, so, by Theorem 1.2.13,
we have

1 = deg(h−1h′, Ui, p) =
∑

k

deg(h′, Ui,Wk)deg(h−1,Wk, p).
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12 Topological Degree Theory and Applications

Put Nk = {j : Vj ⊂Wk}. Then we have

deg(h−1,Wk, p) =
∑

j∈Nk

deg(h−1, Vj , p),

deg(h′, Ui,Wk) = deg(h′, Ui, Vj)

for all j ∈ Nk. Therefore, we have

1 =
∑

k

∑
j∈Nk

deg(h′, Ui, Vj)deg(h−1, Vj , p)

=
∑

j

deg(h′, Ui, Vj)deg(h−1, Vj , Ui),
(1.2.3)

since p ∈ Ui ⊂ Rn \ (h−1(Ω)) ⊂ Rn \ h−1(∂Vj). For any fixed j, the same
argument implies that

1 =
∑

i

deg(h′, Ui, Vj)deg(h′, Ui, Vj)deg(h−1, Vj , Ui). (1.2.4)

From (1.2.3) and (1.2.4), it follows that Rn \ Ω1 and Rn \ Ω2 have the same
number of connected components. This completes the proof.

Theorem 1.2.15. Let φ : Rn → R1 be continuously differentiable, gradφ(x) 6=
0 for |x| sufficiently large and lim|x|→∞ φ(x) = +∞. Then

lim
r→∞

deg(gradφ,Br(0), 0) = 1.

Proof. We may assume that φ ∈ C∞(Rn). Otherwise, we use the same
technique as in Proposition 1.1.5. Define

m(x) =

{
ce−

1
1−|x| , |x| < 1,

0, |x| ≥ 1,

where c satisfies
∫

Rn m(x)dx = 1. Set mλ(x) = λ−nm(x
λ ) for all x ∈ Rn and

φλ(x) =
∫

Rn

φ(y)mλ(y − x)dx for all x ∈ Rn, λ > 0.

Then we consider φλ instead of φ for sufficiently small λ > 0. The initial
value problem {

u′(t) = −gradφ(u(t)), t > 0,
u(0) = x ∈ Rn

(E 1.2.1)

has a unique local solution u(t, x) for all x ∈ Rn. Since ψ(t) = φ(u(t, x))
satisfies ψ′(t) = −|gradφ(u(t, x))|2 ≤ 0, we have φ(u(t, x)) ≤ φ(x) on the
interval, where u(t, x) exists. By assumption lim|x|→∞ φ(x) = +∞, u(t, x)
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can be extended to a unique solution on [0,∞). We may also assume that
φ(x) ≥ 0 by adding a constant. Take r0 > 0 such that gradφ(x) 6= 0 for
|x| ≥ r0, put M = max

x∈Br0 (0)
φ(x). Choose r1 > r0 such that φ(x) ≥M + 1

for |x| ≥ r1 and set
M1 = max

x∈∂Br1 (0)
φ(x).

Again, by φ(u(t, x)) = φ(x) −
∫ t

0
|gradφ(u(s, x))|2ds, we know that if x ∈

∂Br1(0), then φ(u(t, x)) ≤ M1. Let β = min{|gradφ(x)| : |x| ≥ r0 and
φ(x) ≤M1}. Then, if |x| = r1, we have

φ(u(t, x)) ≤M1 − β2t as long as |u(t, x))| ≥ r0.

Thus |u(t, x)| ≤ r0 for some t < M1
β2 , which implies that

u(M1β
−2, x) ∈ Br1(0) for all x ∈ ∂Br1(0).

This implies that the Poincaré operator Px = u(M1β
−2, x) must satisfy

deg(I − P,Br1(0), 0) = 1. Next, define

h(t, x) =

{
(x− u(M1β

−2t, x)[t+ (1− t)(tM1β
−2)−1], t 6= 0,

gradφ(x) t = 0.

It is easy to check that h is continuous and h(t, x) 6= 0 for all x ∈ ∂Br1(0).
Thus we have deg(gradφ,Br1(0), 0) = deg(I − P,Br1(0), 0) = 1. This com-
pletes the proof.

Theorem 1.2.16. Let Ω ⊂ Rn be an open subset and f : Ω → Rn be
continuous and locally one to one. Then f is an open mapping.

Proof. For each x0 ∈ Ω, we prove that there exists r > 0 such that
f(Br(x0)) contains a ball with center at f(x0). Without loss of generality,
we may assume that x0 = 0. Otherwise, put Ω1 = Ω − {x0} and f1(x) =
f(x+ x0)− f(x0).

Choose r > 0 such that f is one to one on Br(0). Set h(t, x) = f( 1
1+tx)−

f(− t
1+tx) for all (t, x) ∈ [0, 1]× Br(0). Then h is continuous and h(t, x) 6= 0

for all (t, x) ∈ [0, 1]× ∂Br(0). Otherwise, h(t, x) = 0 for some (t, x) ∈ [0, 1]×
∂Br(0) and so then 1

1+tx = − t
1+tx since f is one to one and x = 0, which is

a contradiction. Therefore, we have

deg(f,Br(0), 0) = deg(h(1, ·), Br(0), 0) 6= 0

since h(1, ·) is odd. Choose t > 0 such that t < inf{|f(x)| : x ∈ ∂Br(0)}.
Then

deg(f,Br(0), y) = deg(f,Br(0), 0).

Now, we have Bt ⊂ f(Br(0)) and thus f is open. This completes the proof.
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14 Topological Degree Theory and Applications

Theorem 1.2.17. Let 0 ∈ Ω be open bounded and symmetric. If Ai ⊂ ∂Ω
is closed, Ai∩ (−Ai) = ∅ for i = 1, 2, · · · , k and ∪k

i=1Ai = ∂Ω, then k ≥ n+1.

Proof. Assume the contrary, k ≤ n. Set fi(x) = 1 on Ai, fi(x) = −1
on −Ai for i = 1, 2 · · · , k − 1, fi(x) = 1 on Ω for i = k, · · · , n, and f =
(f1, f2, · · · , fn). Extend f continuously to Ω. Then f(−x) 6= λf(x) on ∂Ω
for all λ ≥ 0. Otherwise, f(−x0) = λf(x0) for some λ ≥ 0 and x0 ∈ ∂Ω.
Now, λ > 0 since f(x) 6= 0 on ∂Ω. Also x0 /∈ Ai ∪ (−Ai) for i ≤ k − 1 since
fi(−x) = −fi(x). Thus x0 ∈ Ak. Also x0 /∈ −Ak, so we have −x0 ∈ Ai

for some i ≤ k − 1 and thus x0 ∈ −Ai, which is a contradiction. Therefore,
f(−x) 6= λf(x) on ∂Ω for all λ ≥ 0. Thus we have deg(f,Ω, 0) = 0, i.e.,
f(x) = 0 for some x ∈ Ω, which is a contradiction to fn(x) = 1 on Ω. This
completes the proof.

Next, we prove that the winding number is a special case of the Brouwer
degree.

Theorem 1.2.18. Let B(0, 1) ⊂ C be the unit ball, Γ = ∂B(0, 1) and
f : B(0, 1) → C be a C1 function. Assume that a /∈ f(Γ). Then

deg(f,B(0, 1), a) =
1

2πi

∫
f(Γ)

1
z − a

dz. (1.2.5)

Proof. It is sufficient to prove (1.2.5) in the case when a /∈ f(Sf ). Let
f−1(a) = {z1, z2, · · · , zk}. Then we need to show

1
2πi

∫
f(Γ)

1
z − a

dz =
k∑

i=1

sgnJf (zi). (1.2.6)

Take ε > 0 small enough such that the Vi’s are disjoint, where Vi = B(zi, ε),
sgnJf (z) = sgnJf (zi) for z ∈ Vi, Vi ⊂ B(0, 1) and the restriction of f to Vi is
a homeomorphism for i = 1, 2, · · · , k. Put Si = ∂Vi. Then f(Si) is a Jordan
curve such that a lies in its interior region, f(Si) has the same orientation as
Si if Jf (zi) > 0 and the opposite orientation if Jf (zi) < 0.

Now, set U = B(0, 1) \ ∪k
i=1Vi. Then |f(z) − a| > α in U for some α > 0.

We can divide U into small rectangles Rj such that |f(z) − f(w)| < α on
each Rj . Since the image f(∂(Rj ∩ V )) does not wind around a, we have
w(f(∂(Rj ∩ V )), a) = 0, and summing over all Rj yields∫

f(Γ)

1
z − a

dz =
k∑

i=1

∫
f(Si)

1
z − a

dz.

Since the orientation of f(Si) is determined by Jf (zi), f(Si) winds exactly
once around a. Thus, we have∫

f(Si)

1
z − a

dz = sgnJf (zi)
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and so (1.2.5) is true. This completes the proof.

Remark. (1.2.5) is also correct if f is continuous on B(0, 1).

Theorem 1.2.19. Let B(0, 1) ⊂ C be the unit ball, Γ = ∂B(0, 1) and
f(z) =

∑
n=0 anzn : B(0, 1) → C with

∑∞
n=1 nanan < ∞. Suppose that

f(Γ) ⊂ Γ. Then
∑∞

n=1 nanan is a non-negative integer.

Proof. Since 0 /∈ Γ, by Theorem 1.2.18, we have

deg(f,B(0, 1), 0) =
1

2πi

∫
f(Γ)

1
z
dz

and

1
2πi

∫
f(Γ)

1
z
dz =

1
2πi

∫
Γ

f ′(z)
f(z)

dz =
1

2πi

∫
Γ

f ′(z)f(z)dz =
∞∑

n=1

nanan.

Thus the conclusion is true. This completes the proof.

1.3 Degree Theory for Functions in VMO

Let Ω ⊂ Rn be an open bounded subset and f : Ω → Rn a measurable
function such that

∫
Ω
|f(x)|dx < ∞. For any ball Br(x) ⊂ Ω, we define

Arf(x) to be the average value of f as follows:

Arf(x) =
1

m(Br(x))

∫
Br(x)

f(y)dy.

Lemma 1.3.1. Arf(x) is continuous in r for each x and measurable in x
for each r.

Proof. Since m(Br(x)) = rnm(B(0, 1)) and m(∂Br(x)) = 0, we have
χBr(x)(y) → χBs(x)(y) almost everywhere as r → s, where χE(y) = 1 if
y ∈ E, while χE(y) = 0 if y /∈ E. By Lebesgue’s dominated convergence
theorem, we know that Arf(x) is continuous in r. Also, we have

Arf(x) = r−n(m(B(0, 1)))−1

∫
Ω

χBr(x)(y)f(y)dy,

χBr(x)(y) is clearly measurable, so the measurability of Arf(x) follows from
Fubini’s theorem. This completes the proof.

Lemma 1.3.2. Let φ be any collection of open balls in Rn and U = ∪B∈φB.
If 0 < c < m(U), then there exist disjoint B1, B2, · · · , Bk ∈ φ such that∑k

i=1m(Bi) > 3−nc.
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Proof. Since c < m(U), there exists a compact subsetK ⊂ U withm(K) >
c, and finitely many of the balls in φ, say, A1, A2, · · · , Am, cover K. Let B1 be
the largest of the Ai’s (that is, choose B1 to have maximal radius), let B2 be
the largest of the Ai’s which are disjoint from B1 and so on until the sequence
of Ai’s is exhausted. If Aj is not one of the Bi’s, there exists i such that
Aj ∩Bi 6= ∅ and the radius of Aj is at most that of Bi. Therefore, Aj ⊂ B∗i ,
where B∗i is the ball concentric with Bi whose radius is three times that of
Bi. But then K ⊂ ∪iB

∗
i , so

c < m(K) ≤
∑

i

m(B∗i ) = 3n
∑

i

m(Bi).

This completes the proof.

Next, if f ∈ L1(Ω), we define its Hardy Littlewood maximal function Hf
by

Hf(x) = sup
r>0

Ar|f |(x) = sup
r>0

1
m(Br(x))

∫
Br(x)

|f(y)|dy.

Theorem 1.3.3. There is a constant β > 0 such that, for all f ∈ L1(Ω)
and α > 0,

m({x : Hf(x) > α}) ≤ β

α

∫
Ω

|f(x)|dx.

Proof. Let Eα = {x : Hf(x) > α}. For each x ∈ Eα, we can choose
rx > 0 such that Arx

|f |(x) > α. The balls Brx
(x) cover Eα and so, by

Lemma 1.3.2, if c < m(Eα), there exist x1, x2, · · · , xk ∈ Eα such that the
balls Bi = Brxi

(xi) are disjoint and
∑k

i=1m(Bi) > 3−nc. But then

c < 3n
k∑

i=1

m(Bi) ≤
3n

α

k∑
i=1

∫
Bi

|f(y)|dy ≤ 3n

α

∫
Ω

|f(y)|dy.

By letting c→ m(Eα), we obtain the desired result. This completes the proof.

Theorem 1.3.4. If f ∈ L1(Ω), then limr→0Arf(x) = f(x) for almost all
x ∈ Ω.

Proof. For any ε > 0, there exists a continuous function g such that∫
Ω

|f(x)− g(x)|dx < ε.

Continuity of g implies that for every x ∈ Ω and δ > 0, there exists r > 0
such that |g(y)− g(x)| < δ whenever |y − x| < r, and hence

|Arg(x)− g(x)| < δ.
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Therefore, Arg(x) → g(x) as r → 0 for all x ∈ Ω, so we have

lim sup
r→0

|Arf(x)− f(x)|

= lim sup
r→0

|Ar(f − g)(x) + (Arg(x)− g(x)) + (g − f)(x)|

≤ H(f − g)(x) + |f(x)− g(x)|.

Hence, if

Eα = {x : lim sup
r→0

|Ar(f − g)(x) > α}, Fα = {x : |f(x)− g(x)| > α},

then we have
Eα ⊂ Fα

2
∪ {x : H(f − g)(x) >

α

2
}.

However, αm(Fα) ≤
∫

Fα
|f(x) − g(x)|dx < ε and so, by Theorem 1.3.3, we

have

m(Eα) ≤ 2ε
α

+
2βε
α
.

By letting ε→ 0, we get m(Eα) = 0 for all α > 0. This completes the proof.

In the following, let Ω be a smooth open bounded domain in Rn or a smooth
compact Riemannian manifold. (For the definition of Riemannian manifold,
we refer the reader to [171].

Next, we introduce the following concept:

Definition 1.3.5. Let f ∈ L1(Ω) and Br ⊂ Ω a (geodesic) ball with radius
r > 0. If supr>0

1
m(Br)

∫
Br

1
m(Br)

∫
Br
|f(x)− f(y)|dxdy <∞, then f is called

a bounded mean oscillation function. The set of all bounded mean oscillation
functions is denoted by BMO.

If limr→0
1

m(Br)

∫
Br

1
m(Br)

∫
Br
|f(x) − f(y)|dxdy = 0, then f is called a

vanishing mean oscillation function. The set of all vanishing mean oscillation
functions is denoted by VMO.

Example 1.3.6. If f ∈ L1(Ω), then f ∈ BMO.

Example 1.3.7. f(x) = | log |x|| ∈ BMO.

In the following, 1 ≤ p < +∞, letW 1,p(Ω) = {u(·) : Ω → R such that u(·) ∈
Lp(Ω), u′(·) ∈ Lp(Ω)}.

Proposition 1.3.8. If f(·) ∈W 1,n, then f(·) ∈ VMO.

Proof. By Poincaré’s inequality, we have∫
Br

|f(y)− 1
m(Br)

∫
Br

|f(x)|dx|dy ≤ cm(B)
1
n

∫
Br

|∇f(x)|dx.
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18 Topological Degree Theory and Applications

Then we deduce, by using the Hölder inequality, that

1
m(Br)

∫
Br

|f(y)− 1
m(Br)

∫
Br

|f(x)| ≤ c(
∫

Ω

|∇f(x)|dx) 1
n .

Thus the conclusion is true.

Recall that, for 0 < s < 1, 1 < p < +∞, the fractional Sobolev space
W s,p(Ω) is characterized by

W s,p(Ω) = {f(·) ∈ Lp(Ω),
∫

Ω

∫
Ω

|f(x)− f(y)|p

|x− y|n+sp
< +∞}.

Proposition 1.3.9. If sp = n, then W s,p(Ω) ⊂ VMO.

Proof. Clearly, one has∫
B

∫
B

|f(x)− f(y)|dxdy

=
∫

B

∫
B

|f(x)− f(y)|
|x− y|(

n
p )+s

|x− y|(
n
p )+sdxdy

≤ c(m(B))
1
p + s

n

∫
B

∫
B

|f(x)− f(y)|
|x− y|(

n
p )+s

dxdy

for some constant c > 0. By using Hölder’s inequality, we deduce that∫
B

∫
B

|f(x)− f(y)|
|x− y|(

n
p )+s

dxdy ≤ cm(B)
1
p + s

n +2− 2
p

∫
B

∫
B

|f(x)− f(y)|p

|x− y|n+sp

and thus, when sp = n,

1
m(B)2

∫
B

∫
B

|f(x)− f(y)|dxdy ≤ c[
∫

B

∫
B

|f(x)− f(y)|p

|x− y|n+sp
]
1
p .

This completes the proof.

Lemma 1.3.10. Let B(0, 1) be the unit ball of Rn+1, Sn = ∂B(0, 1) and
f ∈ L1(Sn, Sn) be such that f ∈ VMO. ThenArf(x) = 1

m(Br(x))

∫
Br(x)

f(y)dy
is continuous in x for small r > 0 and limr→0 |Arf(x)| = 1 uniformly on Sn.

Proof. The continuity of Arf(x) is guaranteed since f ∈ VMO. To prove
the uniform convergence of Arf(x) on Sn, we set

δr(x) =
1

m(Br(x))2

∫
Br(x)

∫
Br(x)

|f(y)− f(z)|dydz.

Then δr(x) → 0 as r → 0 uniformly on Sn and we have

1− δr(x) ≤ |Arf(x)| ≤ 1.
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Thus |Arf(x)| → 1 uniformly on Sn as r → 0. This completes the proof.

Now, assume that f ∈ L1(Sn, Sn) and f ∈ VMO. By Lemma 1.3.10,
there exists r0 > 0 such that Arf(x) 6= 0 for all x ∈ Sn and 0 < r <
r0. Let Ãrf(x) be a continuous extension of Arf(x) to B(0, 1). Then the
Brouwer deg(Ãrf,B(0, 1), 0) is well defined for r ∈ (0, r0). It does not depend
on the extension Ãrf . Consider the homotopy { ˜Atr1+(1−t)r2f}t∈[0,1] for all
r1, r2 ∈ (0, r0). It follows from Lemma 1.3.10 that Atr1+(1−t)r2f(x) 6= 0 for all
(t, x) ∈ [0, 1]×Sn and thus deg( ˜Arf,B(0, 1), 0) does not depend on r ∈ (0, r0).
Now, we define the topological degree by

deg(f, Sn) = lim
r→0

deg( ˜Arf,B(0, 1), 0). (1.3.1)

Proposition 1.3.11. We have

lim
r→0

deg( ˜Arf,B(0, 1), 0) = lim
r→0

deg(
Ãrf

|Ãrf |
, B(0, 1), 0).

Proof. Consider the homotopy Hr(t, x) = Ãrf(x)

(1−t)+t|Ãrf(x)| for all (t, x) ∈
[0, 1] × B(0, 1). By Lemma 1.3.10, we know that Hr(t, x) 6= 0 for all (t, x) ∈
[0, 1]×Sn for r sufficiently small and so the conclusion follows from Theorem
1.2.6.

Remark. For more results regarding the degree defined by (1.3.1), we refer
the reader to Brezis and Nirenberg [29] (see also [25], [27], [28], [175] for more
results on the computation of the degree for Sobolev maps).

1.4 Applications to ODEs

In this section, we give some applications of results in section 1.2 to periodic
and anti-periodic problems of ordinary differential equations in Rn.

Theorem 1.4.1. Let f : R × Rn → Rn be a continuous function and
f(t + T, x) = f(t, x) for all (t, x) ∈ R × Rn. Suppose that the following
conditions are satisfied:

(1) There exists r > 0 such that (f(t, x), x) < 0 for all t ∈ [0, T ] and |x| = r.

(2) For each x ∈ Rn, there exist rx > 0, Lx > 0 such that

|f(t, y)− f(t, z)| ≤ Lx|y − z| for all t ∈ R, y, z ∈ B(x, rx).
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20 Topological Degree Theory and Applications

Then the following equation:{
x′(t) = f(t, x(t), t ∈ [0,+∞),
x(0) = x(T )

(E 1.4.1)

has a solution.

Proof. For each x0 ∈ B(0, r), by Peano’s Theorem, the initial value prob-
lem {

x′(t) = f(t, x(t)), t ∈ (0, t0),
x(0) = x0

(E 1.4.2)

has a solution for some t0 > 0. If (E 1.4.2) has two solutions x(·), y(·), then

d

dt
|x(t)− y(t)|2 = 2(x′(t)− y′(t), x(t)− y(t)) ≤ Lx0 |x(t)− y(t)| (1.4.1)

for some t1 ∈ (0, t0) and t ∈ (0, t1). From (1.4.1), we get

|x(t)− y(t)| ≤ eLx0 t|x(0)− y(0)| for all t ∈ (0, t1),

so x(t) = y(t) for all t ∈ (0, t1). Therefore, x(t) = y(t) for t ∈ [0, t0], so the
solution of (E 1.4.2) is unique.

If x(t) = r, then d
dt |x(t)|

2 = 2(x′(t), x(t)) = (f(t, x(t)), x(t)) < 0. Thus x(t)
must stay in B(0, r) for all t ∈ [0, t0], so x(t) can be extended to [0,+∞) and
also x(t) ∈ B(0, r) for t ∈ [0,+∞).

Now, we define a mapping S : B(0, r) → B(0, r) as follows:

Sy = x(y, T ) for all y ∈ B(0, r),

where x(y, t) is the unique solution of (E 1.4.2) with initial value y.
Again, by using (1.4.1), one can easily prove that S is continuous. Thus, by

Brouwer’s fixed point theorem, S has a fixed point in B(0, r), i.e., (E 1.4.1)
has a solution. This completes the proof.

Theorem 1.4.2. Let G : Rn → R be an even continuous differentiable
function such that ∂G is Lipschitzian and f : R → Rn be a continuous
function such that f(t+T ) = −f(t) for all t ∈ R, then the following equation:{

x′(t) = ∂Gx(t) + f(t), t ∈ R,
x(t+ T ) = −x(t), t ∈ R

(E1.4.3)

has a solution.

Proof. First, if x(t) is a solution of (E 1.4.3), then

|x′(t)|2 = (∂Gx(t), x′(t)) + (f(t), x′(t)) for all t ∈ R.
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Integrate over [0, T ] and notice that
∫ T

0
(∂Gx(t), x′(t))dt = 0, we have∫ T

0

|x′(t)|2dt =
∫ T

0

(f(t), x′(t))dt

and thus (
∫ T

0
|x′(t)|2dt) 1

2 ≤ (
∫ T

0
|f(t)|2dt) 1

2 .
In addition, 2x(t) =

∫ t

0
x′(s)ds−

∫ t

T
x′(s)ds and thus we have

max
t∈[0,T ]

|x(t)| ≤
√
T

2
(
∫ T

0

|f(t)|2dt) 1
2 = M.

We take an even continuous differentiable function φ with φ(x) = 1 for |x| ≤
M and ∂φ(x) = 0 for |x| > 2M .

Now, we consider the following equation:{
x′(t) + x(t) = ∂(φ(x(t))[G(x(t)) + 1

2 |x(t)|
2]) + f(t), t ∈ R,

x(0) = y ∈ Rn.
(E 1.4.4)

Since ∂φ is uniformly bounded, we have, for each solution x(t) of (E 1.4.4),

d

dt
(|x(t)|2) + |x(t)|2 ≤ 2L|x(t)|+ 2|f(t)||x(t)|

for some constant L > 0. Thus, if there exists a N > 0 such that |x(0)| ≤ N ,
then |x(T )| ≤ N .

Now, we define a map S : Rn → Rn by Sy = −x(T ), where x(·) is the
unique solution of (E 1.4.4) with x(0) = y. It is obvious that S is continuous,
so, by Brouwer’s fixed point theorem, Theorem 1.2.7, there exists y ∈ Rn such
that Sy = y, i.e., x(T ) = −y. Thus |x(t)| ≤M for all t ∈ R and, consequently,
it follows that

∂(φ(x(t))[G(x(t)) +
1
2
|x(t)|2]) = ∂Gx(t) + x(t).

Therefore, x(·) is a solution of (E 1.4.3). This completes the proof.

Corollary 1.4.3. Let A be a n × n symmetric matrix and f : R → Rn

be a continuous function such that f(t+ T ) = −f(t) for all t ∈ R. Then the
following equation: {

x′(t) = Ax(t) + f(t), t ∈ R,
x(t+ T ) = −x(t), t ∈ R

(E 1.4.5)

has a solution.

Proof. Since A is symmetric, put Gu = 1
2 (Au, u) for u ∈ Rn and then

A = ∂G. Thus the conclusion follows from Theorem 1.4.2.
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Example 1.4.4. The following equation:
x′1(t) = 2x1(t)− αx2(t) + sint, t ∈ R,
x′2(t) = −αx1(t)− 3x2(t) + sin3t, t ∈ R,
x1(t+ π) = −x1(t), x2(t+ π) = −x2(t), t ∈ R,

(E 1.4.6)

has a solution, where α ∈ R is a constant. In fact, set

A =
(

2 −α
−α −3

)
, x =

(
x1

x2

)
, f(t) =

(
sin t
sin3 t

)
.

Then A is symmetric and the conclusion follows from Corollary 1.4.3.

1.5 Exercises

1. Let Ω ⊂ Rn be open bounded and 0 ∈ Ω and f : Ω → Rn be continuous
and (f(x), x) ≥ 0. Show 0 ∈ f(Ω).

2. Let Ω ⊂ R2 be open bounded and u(x, y), v(x, y) : Ω → R be contin-
uously differentiable functions with ux = vy and uy = −vx. Assume
that f(x, y) = (u(x, y), v(x, y)) : Ω → R2 has m many zero points in
Ω \ Sf (Ω). Show that deg(f,Ω, 0) = m.

3. Prove the fundamental theorem of algebra by using Brouwer degree.

4. Let B(0, 1) be the unit ball in Rn and f : Rn → Rn be a continuous func-
tion such that f(∂B(0, 1)) = ∂B(0, 1). Show that deg(fm, B(0, 1), 0) =
(deg(f,B(0, 1), 0)m for all positive integer m.

5. For any integer n, show that there exists an open bounded subset Ω ⊂ R
and a continuous function f : Ω → R such that deg(f,Ω, 0) = n.

6. Let Ω ⊂ Rn be open bounded, f, g ∈ C(Ω) and |g(x)| < |f(x)| for all
x ∈ ∂Ω. Show deg(f − g,Ω, 0) = deg(f,Ω, 0).

7. Let B(0, 1) be the unit ball of R2n+1 and f : ∂B(0, 1) → ∂B(0, 1) be
continuous. Show that there exists x0 ∈ ∂B(0, 1) such that f(x0) = x0

or f(x0) = −x0.

8. Let Ω ⊂ Rn be open bounded symmetric, 0 ∈ Ω and f : ∂Ω → Rm be a
function with m < n. Show that f(x) = f(−x) for some x ∈ ∂Ω

9. Let Ω ⊂ Rn be open bounded and f ∈ C(Ω). Suppose that there exists
x0 ∈ Ω such that f satisfies the following condition:

f(x)− x0 = t(x− x0) for some x ∈ ∂Ω.

Then t ≤ 1. Show that f has a fixed point in Ω.
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10. Let φ : B(0, 1) ⊂ Rn → Rn be a continuous function such that φ(∂B(0, 1)) ⊂
Rn \ {0}, ψ(x) = φ(x)

|φ(x)| for all x ∈ ∂B(0, 1) and ∂B(0, 1) 6= ψ(∂B(0, 1)).
Show that

deg(φ,B(0, 1), 0) = deg(ψ,B(0, 1), p)

for all p ∈ ∂B(0, 1) \ ψ(∂B(0, 1)).

11. If f ∈ L1(Ω), show that limr→0
1

m(Br(x))

∫
Br(x)

|f(y) − f(x)|dy = 0 for
almost all x ∈ Ω.

12. If f(θ) =
∑∞

n=0 aie
inθ ∈ L2(S1, S1) and

∑∞
n=0 n|an|2 < +∞, show that

deg(f, S1) =
∞∑

n=0

n|an|2.

13. Show that the following equation:{
x′(t) = x3(t) + sin5t, t ∈ R,
x(t+ π) = −x(t) t ∈ R,

has a solution.
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Chapter 2

LERAY SCHAUDER DEGREE
THEORY

Many problems in science lead to the equation Tx = y in infinite dimensional
spaces rather than to the finite dimensional case in Chapter 1. In particu-
lar, ordinary and partial differential equations, and integral equations can be
formulated as abstract equations on infinite dimensional spaces of functions.
For the equation Tx = y, we again are interested in the questions raised at
the beginning of Chapter 1.

In 1934, Leray and Schauder [185] generalized Brouwer degree theory to an
infinite Banach space and established the so-called the Leray Schauder degree.
It turns out that the Leray Schauder degree is a very powerful tool in proving
various existence results for nonlinear partial differential equations (see [135],
[185], [203], [228], etc.).

In this chapter, we will introduce the Leray Schauder degree. This chapter
consists of five sections.

Section 2.1 gathers together some well known results on compact maps.
In Section 2.2, we first show how a compact map can be approximated

by maps with finite dimensional ranges and from here we define the Leray
Schauder degree for compact maps. The main properties of this degree are
presented in theorems 2.2.4, 2.2.8 and 2.2.16. Also, various consequences, for
example, Schauder’s fixed point theorem, the Leray Schauder alternatives and
compression and expansion fixed point theorems, are presented in this section.

Section 2.3 presents a degree theory for multi-valued maps, and the theory
is based on the fact that a upper semicontinuous map admits an approximate
continuous selection (see Lemma 2.3.7). We use the degree theory in this
chapter to discuss bifurcation problems in Section 2.4 and ordinary (initial
and anti-periodic) and partial differential equations in Section 2.5.

2.1 Compact Mappings

In this section, we give some properties of compact operators in topological
spaces.

25
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Definition 2.1.1. Let X be a topological space. A subset M ⊂ X is
called compact if every open covering of M has an finite covering, i.e., if
M ⊂ ∪i∈IVi, where Vi is an open subset of X for all i ∈ I, then there exist
ij ∈ I, j = 1, 2, · · · , k, such that M ⊂ ∪k

j=1Vij
.

M is called relatively compact if M is compact.

Definition 2.1.2. Let X be a nonempty subset and d(·, ·) : X ×X → R
be a function satisfying the following conditions:

(1) d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 iff x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then we call d a metric on X and (X, d) a metric space.

Let (X, d) be a metric space, x ∈ X and r > 0. Let B(x, r) = {y ∈ X :
d(x, y) < r} be a open ball with center x and radius r.

Proposition 2.1.3. Let (E, d) be a metric space. Then, a subset M ⊂ X is
compact if and only if every infinite sequence (xn)∞n=1 ⊂M has a convergent
subsequence in M .

Proof. Assume that M is compact and (xn)∞n=1 ⊂ M . If (xn)∞n=1 does
not have a convergent subsequence in M , then, for any y ∈ M , there exist
ry > 0 and an integer Ny > 0 such that B(y, ry) ∩ {xn : n ≥ ny} = ∅.
Notice that ∪y∈MB(y, ry) ⊃ M , so there exist finitely many y1, y2, · · · , yk

such that M ⊂ ∪k
i=1B(yi, ryi

). However, B(yi, ryi
) ∩ {xn : n ≥ m} = ∅ for

i = 1, 2, · · · , k, where m = max{nyi
: i = 1, 2 · · · , k}. Thus

{xn : n ≥ m} = M ∩ {xn : n ≥ m}
⊂ ∪k

i=1B(yi, ryi
) ∩ {xn : n ≥ m}

= ∅,

which is a contradiction and so (xn)∞n=1 has a convergent subsequence in M .
On the other hand, assume that every infinite sequence (xn)∞n=1 ⊂ M has

a convergent subsequence in M . We prove that M is compact. Let (Ui)i∈I

be an open covering of M . For any x ∈ M , there exists Ui such that x ∈ Ui.
Since Ui is open, there exists r > 0 such that B(x, r) ⊂ Ui. Put rx = sup{r >
0 : B(x, r) ⊂ Bi for some i ∈ I} and set r0 = inf{rx : x ∈M}. We next prove
that r0 > 0. There exists a sequence (xn)∞n=1 ⊂ M such that ri = rxi

→ r0.
By assumption, there exists a subsequence (xnk

)∞k=1 such that xnk
→ y0 ∈M ,

so there exists an integer N > 0 such that xnk
∈ B(x0, 4−1rx0) for k > N .

Thus it follows that B(xnk
, 4−1rx0) ⊂ B(x0, 2−1rx0) ⊂ Bi for some i ∈ I.

Consequently, we have r0 ≥ 2−1rx0 . For any x1 ∈ M , if B(x1, 2−1r0) 6⊃ M ,
there exists x2 ∈M \B(x1, 2−1r0), and if ∪2

i=1B(2−1xi, r0) 6⊃M , there exists
x3 ∈ M \ ∪2

i=1B(2−1xi, r0), and we claim that this process will terminate at
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some finite step. If not, there exist xn ∈ M \ ∪n−1
i=1 B(xi, 2−1r0) for n ≥ 4, so

we have

d(xn, xm) ≥ 2−1r0 for n 6= m,

which is a contradiction to our assumption. Thus, there exist finitely many
x1, x2, · · · , xn such that M ⊂ ∪n

i=1B(xi, 2−1r0) ⊂ ∪n
i=1Uji and M is compact.

This completes the proof.

Definition 2.1.4. Let E be a real vector space. A function ‖ · ‖ : E → R
satisfying the following conditions:

(1) ‖x‖ ≥ 0 for all x ∈ E, and ‖x‖ = 0 if and only if x = 0;

(2) ‖αx‖ = |α|‖x‖ for all α ∈ R, x ∈ E,

(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ E

is called a norm on E and (E, ‖ · ‖) a real normed space or, simply, E is a
normed space. If E is also complete, then we say E a real Banach space.

Now, we give some well-known Banach spaces in functional analysis.

Example 2.1.5. Let 1 ≤ p <∞ and

lp = {(xi) : xi ∈ R for i = 1, 2, · · · , Σ∞i=1|xi|p < +∞}.

Then lp is a Banach space.

Example 2.1.6. Let

c = {(xi) : xi ∈ R for i = 1, 2, · · · , and lim
i→∞

xi exists}.

Then c is a Banach space.

Example 2.1.7. Let c0 = {(xi) : xi ∈ R for i = 1, 2, · · · , and limi→∞ xi =
0}. Then c0 is a Banach space.

Example 2.1.8. Let Ω ⊂ Rn be a bounded measurable subset, 1 ≤ p <∞,
and Lp(Ω) = {f(·) : Ω → R such that

∫
Ω
|f(x)|pdx < ∞}. Then Lp(Ω) is a

Banach space.

Lemma 2.1.9. (Riesz’s Theorem) Let E be a real normed space and
M ⊂ E be a proper closed subspace. Then, for any ε ∈ (0, 1), there exists
x0 ∈ E such that ‖x0‖ = 1 and d(x0,M) = infy∈M ‖x0 − y‖ > ε.

Proof. Since M 6= E, there exists y0 ∈ E \M such that d(y0,M) = δ0 > 0.
Take y1 ∈ M such that ‖y0 − y1‖ < ε−1δ0 and put x0 = y0−y1

‖y0−y1‖ . Then
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‖x0‖ = 1 and

d(x0,M) = inf
y∈M

‖ y0 − y1
‖y0 − y1‖

− y‖

= inf
y∈M

‖y0 − y1‖−1‖y0 − y1 − ‖y0 − y1‖y‖

> εδ−1
0 δ0

= ε,

which is the desired result. This completes the proof.

As a consequence of Lemma 2.1.9, we get the following:

Proposition 2.1.10. Let E be a real normed space. Then, the unit closed
ball B(0, 1) = {x : ‖x‖ ≤ 1} is compact if and only if dim(E) < +∞.

Definiton 2.1.11. Let E be a real normed space. A mapping T : D(T ) ⊂
E → E is called compact if T maps every bounded subset of D(T ) to a
relatively compact subset in E. T is said to be completely continuous if T is
continuous and compact.

Definition 2.1.12. Let X,Y be two real Banach spaces and Ω ⊂ X be an
open subset. A mapping F : Ω → Y is said to be Fréchet differentiable at
x0 ∈ Ω if there is an F ′(x0) ∈ L(X,Y ) such that

F (x0 + h) = Fx0 + F ′(x0)h+ δ(x0, h), lim
h→0

δ(x0, h)
‖h‖

= 0,

where L(X,Y ) is the set of all bounded linear operators from X → Y .

Proposition 2.1.13. Let X,Y be two real Banach spaces and Ω ⊂ X be
an open subset. If F : Ω → Y is a continuous compact mapping and F is
Fréchet differentiable at x0 ∈ Ω, then F ′(x0) is compact.

Proof. Take any sequence (hn)∞n=1 ⊂ X with ‖hn‖ = 1 for n = 1, 2, · · · .
Let ε > 0. There exists δ0 > 0 such that w(x0,δh)

δ < ε
2 for all h ∈ X with

‖h‖ = 1 and δ ≤ δ0. Since F is compact, (F (x0 + δ0hn)) has a convergent
subsequence, say, (F (x0 + δ0hnk

))∞k=1. We also have

F ′(x0)hnk
− F ′(x0)xnl

= δ−1
0 [F (x0 + δ0hnk

)− F (x0 + δ0xnl
)]

+δ−1
0 [w(x0, δ0hnk

)− w(x0, δ0hnl
)].

Then we deduce, by letting k, l→∞, that

‖F ′(x0)hnk
− F ′(x0)xnl

‖ ≤ ε.

Again, by letting ε→ 0, we get that (F ′(x0)hnk
)∞k=1 is convergent; thus F ′(x0)

is compact. This completes the proof.
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Let E be a real Banach space and C([0, T ], E) be the space of continuous
functions from [0, T ] to E with the norm ‖x(·)‖ = maxt∈[0,T ] ‖x(t)‖, then
C([0, T ], E) is a Banach space. A subset B ⊂ C([0, T ], E) is called equicontin-
uous if, for any ε > 0, there exists δ(ε) > 0 such that ‖x(t1) − x(t2)‖ < ε for
all x(·) ∈ B and t1, t2 ∈ [0, T ] satisfying |t1 − t2| < δ.

Theorem 2.1.14. (Ascoli Arzela’s Theorem) A subsetM ⊂ C([0, T ], E)
is relatively compact if and only if

(1) M is equicontinuous and
(2) for each t ∈ [0, T ], M(t) = {x(t) : x(·) ∈M} is relatively compact in E.

Proof. The proof follows easily from Theorem 3.1.16 in the next chapter.

Theorem 2.1.15. Let E be a real Banach space, T : E → E be a contin-
uous compact mapping with λ ∈ R, Tλ = T − λI and σ(T ) be the spectrum
of T . Then the following conclusions hold:

(1) If E is infinite dimensional, then 0 ∈ σ(T );

(2) If 0 6= λ ∈ σ(T ), then λ is an eigenvalue of T ;

(3) σ(T ) is a countable subset;

(4) If λ /∈ σ(T ), then Tλ is a homeomorphism onto X;

(5) E = N(T k
λ ) ⊕ R(T k

λ ) for all λ 6= 0, k > 0, where dim(N(T k
λ )) < +∞,

and R(N(T k
λ )) is closed in E.

Proof. (4) is obvious. For (1) suppose that 0 /∈ σ(T ). Then T−1 : E → E is
continuous. Since E is infinite dimensional, there exists a sequence (xn)∞n=1 ⊂
such that ‖xn‖ = 1 and ‖xn − xm‖ ≥ 1

2 for n 6= m. Put yn = Txn, then (yn)
has a convergence subsequence, but T−1yn = xn will have a convergence
subsequence, which is a contradiction. Thus 0 ∈ σ(T ).

For (5) denote by Ni = N(T i
λ) and Ri = R(T i

λ) for i = 1, 2, · · · . The finite
dimensional property of Ni follows directly from the compactness of T . To
prove the closedness of Ri, first, note there exists a closed subspace M of E
such that E = Ni ⊕M . Define an operator S : M → E by

Sx = T i
λx for all x ∈M.

Observe that R(S) = R(T i
λ), so we only need to prove R(S) is closed. It is

obvious that S is one to one. Now, we prove that there exists γ > 0 such that

‖Sx‖ ≥ γ‖x‖ for all x ∈M. (2.1.1)

If this is not true, there exist xn ∈M with ‖xn‖ = 1 such that ‖Sxn‖ ≤ n−1.
Since S = (T − λI)i = (−λ)iI + Σi

j=1C
j
i (−λ)i−jT j , one easily sees that

(xn)∞n=1 has a convergence subsequence (xnk
) with xnk

→ x0. Thus Sx0 = 0,
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which implies that x0 ∈ Ni and so x0 = 0, which contradicts ‖x0‖ = 1. From
(2.1.1), we deduce that M = R(T i

λ) is closed.
For (2) notice that N1 ⊆ N2 ⊆ · · · and R1 ⊇ R2 ⊇ · · · . We cannot have

Ni 6= Ni+1 for all i. Otherwise, by Lemma 2.1.9, there exists a sequence of
xi ∈ Ni+1 \ Ni such that ‖xi‖ = 1 and ‖xi − xj‖ ≥ 1

2 for i 6= j and thus we
have

‖Txi − Txj‖ ≥ 2−1λ for all j < i,

which is impossible since T is compact. Thus Nj = Ni for some i and all
j > i and, consequently, Rj = Ri for all j > i. If λ 6= 0 is not an eigenvalue
of T , then Tλ is one to one. For any y ∈ Ri−1, we have Tλy ∈ Ri = Ri+1

and thus there exists x such that Tλy = T i+1
λ x. Therefore, y = T i

λx ∈ Ri and
Ri−1 = Ri, so on. Thus we get R(Tλ) = E. Therefore, λ /∈ σ(T ).

To prove (3), we prove that, for any r > 0, {λ ∈ σ(T ) : |λ| > r} is a
finite subset. Suppose the contrary, i.e., there exist λn, |λn| > r, n = 1, 2, · · · ,
and xn ∈ E with |xn| = 1 such that Txn = λnxn and {x1, x2, · · · , xn} is
linearly independent. Put Mn = span{x1, x2, · · · , xn}. Then Mn ⊂ Mn+1.
By Lemma 2.1.9, there exist yn+1 ∈ Mn+1 \Mn such that ‖yn+1‖ = 1 and
d(yn+1,Mn) ≥ 1

2 for n = 1, 2, · · · . Let yn+1 = Σn+1
i=1 α

n
i xi. Then

λn+1yn+1 −Ayn+1 = Σn
i=1α

n
i (λn+1 − λi)xi = zn ∈Mn.

From which we deduce, for m > n, that

‖Tym − Tyn‖ = ‖(λmym − λnyn)− (zm−1 − zn−1)‖

≥ |λm|d(ym,Mm−1) ≥
r

2
,

which contradicts the compactness of T . Thus σ(T ) is countable. This com-
pletes the proof.

2.2 Leray Schauder Degree

In this section, we construct the Leray Schauder degree. First, we need
the following result on the approximation of a compact mapping by finite
dimensional mappings.

Lemma 2.2.1. Let E be a real Banach space, Ω ⊂ E be an open bounded
subset and T : Ω → E be a continuous compact mapping. Then, for any
ε > 0, there exist a finite dimensional space F and a continuous mapping
Tε : Ω → F such that

‖Tεx− Tx‖ < ε for all x ∈ Ω.
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Proof. Since TΩ is relatively compact in E, for any ε > 0, there exists a
finite subset {x1, x2, · · · , xn} ⊂ Ω such that

T (Ω) ⊂ ∪n
i=1B(Txi, ε).

Now, we define a mapping Tε : Ω → F = span{Tx1, Tx2, · · · , Txn} as
follows:

Tεx = Σn
i=1

φi(x)
Γ(x)

Txi for all x ∈ Ω,

where φi(x) = max{0, ε−‖Tx−Txi‖} and Γ(x) = Σn
i=1φi(x). Then it is easy

to check that Tε satisfies the conditions of Lemma 2.2.1, so the conclusion
follows. This completes the proof.

Lemma 2.2.2. Let E be a real Banach space, B ⊂ E be a closed bounded
subset and T : B → E be a continuous compact mapping. Suppose Tx 6= x
for all x ∈ B. Then there exists ε0 > 0 such that x 6= tTε1x+ (1− t)Tε2x for
all t ∈ [0, 1] and x ∈ B, where εi ∈ (0, ε0) and Tεi

: B → Fεi
for i = 1, 2 as in

Lemma 2.2.1.

Proof. Suppose the conclusion is not true. There exist εj1 → 0, εj2 → 0,
tj → t0, xj ∈ B such that tjTεj

1
xj + (1− tj)Tεj

2
xj = xj for j = 1, 2, · · · .

By compactness of T , (Txj)∞j=1 has a subsequence, say (Txjk
), converging

to y ∈ E. By Lemma 2.2.1, T
ε

jk
i

xjk
→ y for i = 1, 2. Thus xjk

→ y ∈ B.
Therefore, Ty = y, which is a contradiction.

Definition 2.2.3. Let E be a real Banach space, Ω ⊂ E be an open
bounded set and T : Ω → E be a continuous compact mapping. Now, suppose
that 0 6∈ (I − T )(∂Ω). Then, by Lemma 2.2.2, there exists ε0 > 0 such that

x 6= tTε1x+ (1− t)Tε2x for all t ∈ [0, 1], x ∈ ∂Ω,

where εi ∈ (0, ε0) and Tεi : Ω → Fεi for i = 1, 2 as in Lemma 2.2.1. Hence
Brouwer’s degree deg(I − Tε,Ω ∩ Fε, 0) is well defined, and so we define

deg(I − T,Ω, 0) = deg(I − Tε,Ω ∩ Fε, 0),

where ε ∈ (0, ε0).

By the homotopy property of Brouwer degree, we have

deg(I − Tε1 ,Ω ∩ span{Fε1 ∪ Fε2}, 0) = deg(I − Tε2 ,Ω ∩ span{Fε1 ∪ Fε2}, 0).

But Tεi : Ω ∩ span{Fε1 ∪ Fε2} :→ Fi for i = 1, 2, so by Theorem 1.2.12 we
have

deg(I − Tε1 ,Ω ∩ span{Fε1 ∪ Fε2}, 0) = deg(I − Tε1 ,Ω ∩ Fε1 , 0)

and

deg(I − Tε2 ,Ω ∩ span{Fε1 ∪ Fε2}, 0) = deg(I − Tε2 ,Ω ∩ Fε2 , 0).
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Thus we have

deg(I − Tε1 ,Ω ∩ Fε1 , 0) = deg(I − Tε2 ,Ω ∩ Fε2 , 0)

and the degree defined in Definition 2.2.3 is well defined. For the general case,
if p /∈ (I − T )(∂Ω), we define deg(I − T,Ω, p) = deg(I − T − p,Ω, 0).

We recall some properties of the Leray Schauder degree as follows:

Theorem 2.2.4. The Leray Schauder degree has the following properties:

(1) (Normality) deg(I,Ω, 0) = 1 if and only if 0 ∈ Ω;

(2) (Solvability) If deg(I − T,Ω, 0) 6= 0, then Tx = x has a solution in Ω,

(3) (Homotopy) Let Tt : [0, 1]×Ω → E be continuous compact and Ttx 6= x
for all (t, x) ∈ [0, 1] × ∂Ω. Then deg(I − Tt,Ω, 0) doesn’t depend on
t ∈ [0, 1];

(4) (Additivity) Let Ω1,Ω2 be two disjoint open subsets of Ω and 0 /∈
(I − T )(Ω− Ω1 ∪ Ω2). Then

deg(I − T,Ω, 0) = deg(I − T,Ω1, 0) + deg(I − T,Ω2).

Proof. The proof follows from the corresponding properties of the Brouwer
degree.

The following is the well-known Schauder fixed point theorem:

Theorem 2.2.5. Let C ⊂ E be a nonempty bounded closed convex subset
and T : C → C be a continuous compact mapping. Then T has a fixed point
in C.

Proof. The proof is the same as the proof of Brouwer’s fixed point theorem.

If we only require the continuous condition on the mapping T , then the
conclusion of Theorem 2.2.5 fails as the following example shows:

Example 2.2.6. Let T : l2 → l2 be a mapping defined by

T (x1, x2, · · · ) = (1− ‖x‖, x1, x2, · · · )

for all x = (x1, x2, · · · ) ∈ l2. Then T : B(0, 1) → B(0, 1) is continuous without
a fixed point in B(0, R).

The Schauder fixed point theorem can be applied to yield the following
result on hyper-invariant subspaces of a linear bounded operator:

Theorem 2.2.7. Let E be a Banach space, T : E → E be a nonzero linear
continuous compact mapping and Γ(T ) = {S ∈ L(E) : TS = ST}. Then
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there exists a nontrival hyper-invariant subspace F of T , i.e., SF ⊆ F for all
S ∈ Γ(T ).

Proof. Assume that the conclusion is not true. Then T does not have
eignvalues. Take x0 ∈ E such that ‖x0‖ = 2. Then, for any x ∈ E, we have
Tx 6= 0 and {STx : S ∈ Γ(T )} is a space which is invariant under Γ(T ) and
so we have

{Sx : S ∈ Γ(T )} = E.

Now, for any y ∈ B(x0, 1), there exists Sy ∈ Γ(T ) such that ‖SyTy−x0‖ <
1. By continuity of S, there exists δ(y) > 0 such that ‖SyTx − x0‖ < 1 for
all x ∈ B(x0, 1). Since {B(y, δ(y)) : y ∈ B(x0, 1)} is an open covering of
B(x0, 1), there exists a locally finite open refinement {Vi}i∈I of {B(y, δ(y)) :
y ∈ B(x0, 1)}.

Let {φi}i∈I be a partition of unity subordinated to {Vi}i∈I and define a
mapping K : B(x0, 1) → B(x0, 1) as follows:

Kx = Σi∈Iφi(x)SiTx for all x ∈ B(x0, 1).

Since T is compact, K is a continuous compact mapping and hence T has a
fixed point y0 ∈ B(x0, 1), i.e.,

Σi∈Iφi(y0)SiTy0 = y0.

Put Z = {y ∈ E : Σi∈Iφi(y0)SiTy = y}. Then Z is a finite dimensional
subspace of E, and T : Z → Z and hence T has an eigenvalue, which is a
contradiction. This completes the proof.

Theorem 2.2.8. Let E be a Banach space and Ω ⊂ E be an open bounded
subset. If T : Ω → E, S : E → E are continuous compact mappings and
p /∈ (I − S)(I − T )(∂Ω), then

deg((I − S)(I − T ),Ω, p) = Σi∈Ideg(I − T,Ω, Ui)deg(I − S,Ui, p), (2.2.1)

where {Ui}i∈I are connected component of E\(I−T )(∂Ω) and deg(I−T,Ω, Ui)
is deg(I − T,Ω, z) for any z ∈ Ui.

Proof. We first prove that (2.2.1) only has finitely many nonzero terms.
Take r > 0 such that (I − T )(Ω) ⊂ Br(0), then M = Br(0) ∩ (I − S)−1(p)
is compact, M ⊂ Rn \ f(∂Ω) = ∪i≥1Ui and there exists finitely many i, say
i = 1, 2, · · · , t, such that ∪t+1

i=1Ui ⊇M , where Ut+1 = U∞ ∩Br+1.
We have deg(I−T,Ω, Ut+1) = 0 and deg(I−S,Ui, p) = 0 for i ≥ t+2 since

Uj ⊂ Br(0) and g−1(y) ∩ Uj = ∅ for j ≥ t + 2. Therefore, the right side of
(2.2.1) has only finitely many terms different from zero. Let

Vm = {z ∈ Br+1(0) \ (I − T )(∂Ω) : deg(I − T,Ω, z) = m}.

The same proof as in Theorem 1.2.13 yields

Σi∈Ideg(I − T,Ω, Ui)deg(I − S,Ui, p) = Σmmdeg(I − S, Vm, p).
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Now, we may choose ε sufficiently small. Let F be a finite dimensional sub-
space, p ∈ F and T1 : Ω → F , S1 : Br+1(0) → F be two continuous compact
mappings such that

‖Tx− T1x‖ < ε, x ∈ Ω, ‖Sy − S1y‖ < ε for all y ∈ Br+1(0).

Then, by the homotopy argument, we have

deg((I − S)(I − T ),Ω, p) = deg((I − S1)(I − T1),Ω, p)

and

Σmmdeg(I − S, Vm, p) = Σmmdeg(I − S1, Vm, p)
= Σmmdeg(I − S1, Vm ∩ F, p).

Therefore, by Theorem 1.2.13, we have

Σi∈Ideg(I − T,Ω, Ui)deg(I − S,Ui, p) = deg((I − S1)(I − T1),Ω ∩ F, p).

One easily gets

deg((I − S1)(I − T1),Ω, p) = deg((I − S1)(I − T1),Ω ∩ F, p).

Thus the conclusion of Theorem 2.2.8 is true. This completes the proof.

Theorem 2.2.9. Let E be a Banach space, E0 be a closed subspace of
E and Ω ⊂ E be an open bounded subset. If T : Ω → E0 is a continuous
compact mapping and p ∈ E0, then deg(I − T,Ω, p) = deg(I − T,Ω ∩ E0, p).

Proof. Since T (Ω) ⊂ E0, we may choose a finite dimensional space F ⊂ E0

with p ∈ F and T1 : Ω → F such that ‖Tx− T1x‖ < ε in Definition 2.2.3 for
small ε > 0. Then we have

deg(I − T,Ω, p) = deg(I − T1,Ω ∩ F, p) = deg(I − T,Ω ∩ E0, p).

Theorem 2.2.10. Let E be a Banach space and 0 ∈ Ω ⊂ E with Ω be an
open bounded subset. If T : Ω → E is a continuous compact mapping, then
one of the following statements holds:

(1) T has a fixed point in Ω;

(2) There exist λ > 1 and x ∈ ∂Ω such that Tx = λx.

Proof. If (2) holds, we are finished. Otherwise, put H(t, x) = x− tTx for
all (t, x) ∈ [0, 1] × Ω. If Tx = x for some x ∈ ∂Ω, then (1) holds. Thus, we
may assume that Tx 6= x for all x ∈ ∂Ω. Therefore, we have

x /∈ tTx for all (t, x) ∈ [0, 1]× ∂Ω.
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By Theorem 2.2.4, we have

deg(I − T,Ω, 0) = deg(I,Ω, 0) = 1

and so T has a fixed point in Ω. This completes the proof.

Lemma 2.2.11. Let E be an infinite dimensional Banach space and 0 /∈ ∂Ω
with Ω be an open bounded subset of E. Let T : Ω → E be a continuous
compact mapping. Suppose that Tx 6= µx for all µ ∈ [0, 1], x ∈ ∂Ω and
0 /∈ T∂Ω. Then deg(I − T,Ω, 0) = 0.

Proof. First, we claim that there exists ε0 > 0 such that

‖Tx− Tεx‖ < ε, µx 6= Tεx

for all µ ∈ [0, 1], x ∈ ∂Ω and ε ∈ (0, ε), where Tε is the same as in Lemma
2.2.1.

If this is not true, there exist εj → 0, xj ∈ ∂Ω, µj → µ0 ∈ [0, 1] such that
µjxj = Tεjxj and so we have Txj − µjxj → 0. Now, we have 0 /∈ T∂Ω and
so µ0 6= 0, (xj) has a subsequence converging to x0 ∈ ∂Ω and Tx0 = µ0x0,
which is a contradiction.

From the definition of the Leray Schauder degree, we know that

deg(I − T,Ω, 0) = deg(I − Tε,Ω ∩ F, 0)

for sufficiently small ε and any F ⊃ spanR(Tε). The homotopy invariance of
Brouwer degree implies that

deg(I − Tε,Ω ∩ F, 0) = deg(−Tε,Ω ∩ F, 0).

Since E is an infinite dimensional Banach space, we may choose a finite di-
mensional subspace F of E such that spanR(Tε) is a proper subspace of F ,
and deg(−Tε,Ω ∩ F, 0) = deg(−Tε,Ω ∩ F, p) for any p ∈ F with p sufficiently
close to 0, so we must have deg(−Tε,Ω ∩ F, 0) = 0. Thus it follows that

deg(I − T,Ω, 0) = 0.

This completes the proof.

Theorem 2.2.12. Let E be an infinite dimensional Banach space, 0 ∈ Ω0 ⊂
Ω with Ω0 and Ω be two open bounded subsets of E. Let T : Ω \ Ω0 → E
be a continuous compact mapping and suppose that the following conditions
hold:

(1) Tx 6= λx for all λ > 1, x ∈ ∂Ω0,

(2) Tx 6= µx for all µ ∈ [0, 1), x ∈ ∂Ω, and 0 /∈ T∂Ω.
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Then T has a fixed point in Ω \ Ω0.

Proof. We may assume that T is defined on Ω. Also, we assume that
Tx 6= x for all x ∈ ∂Ω0 ∪ ∂Ω. From (1) and Theorem 2.2.4, we have deg(I −
T,Ω0, 0) = 1.

By (2) and Lemma 2.2.11, deg(I − T,Ω, 0) = 0. Therefore, we have

deg(I − T,Ω \ Ω0, 0) = deg(I − T,Ω, 0)− deg(I − T,Ω0, 0) = −1.

Consequently, T has a fixed point in Ω \ Ω0. This completes the proof.

From Theorem 2.2.12, we easily get the following result of Guo [141]:

Corollary 2.2.13. Let E be a infinite Banach space and Ω0 ⊂ Ω with 0 ∈
Ω0, Ω be two open bounded subsets of E. Let T : Ω \ Ω0 → E be a continuous
compact mapping and, further, suppose that the following conditions hold:

(1) ‖Tx‖ ≤ ‖x‖ for all x ∈ ∂Ω0;

(2) ‖Tx‖ ≥ ‖x‖ for all x ∈ ∂Ω.

Then T a fixed point in Ω \ Ω0.

Remark. The conclusion of Theorem 2.2.12 fails if we drop the infinite
dimensional condition. The following example illustrates this:

Example 2.2.14. Let Ω = {(x, y) : x2+y2 < 4}, Ω1 = {(x, y) : x2+y2 < 1}
and T : Ω \ Ω1 → R2 be a rotation defined by

T (x, y) =
(√

x2 + y2 cos
(
θ +

π

4

)
,
√
x2 + y2 sin

(
θ +

π

4

))
for all (x, y) ∈ Ω \ Ω1, where x+ yi =

√
x2 + y2eiθ. Then we have T (x, y) 6=

µ(x, y) for all µ ∈ [0, 1], x2 + y2 = 1 and T (x, y) 6= λ(x, y) for all λ ≥ 1,
x2 + y2 = 4. However, the mapping T does not have a fixed point in Ω \ Ω1.

We have the following result in any dimensional Banach spaces:

Theorem 2.2.15. Let E be a Banach space and 0 ∈ Ω0 ⊂ Ω with Ω0, Ω
two open bounded subsets of E. Let T : Ω \ Ω0 → E be a continuous compact
mapping and, further, suppose that the following conditions hold:

(1) Tx 6= λx for all λ > 1 and x ∈ ∂Ω0;

(2) Tx 6= µx for all µ ∈ [0, 1), x ∈ ∂Ω and 0 /∈ ConvT∂Ω.

Then T has a fixed point in Ω \ Ω0.

Proof. As in the proof of Theorem 2.2.12, we may assume that Tx 6= x for
x ∈ ∂Ω0 ∪ ∂Ω. We only need to show that

deg(I − T,Ω, 0) = 0.
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Assume that this is not true. Then there exists a compact mapping T1 : Ω →
ConvT∂Ω such that T1x = Tx for x ∈ ∂Ω. For k > 1, it is easy to see that

x 6= tTx+ (1− t)kT1x for all (t, x) ∈ [0, 1]× ∂Ω.

Thus we have

deg(I − kT1,Ω, 0) = deg(I − T,Ω, 0) 6= 0

and so kT1x = x has a solution in Ω for k > 1, which contradicts the fact
that Ω is unbounded. Hence we have deg(I − T,Ω, 0) = 1. This completes
the proof.

Theorem 2.2.16. Let E be a Banach space, Ω with 0 ∈ Ω be an open
bounded subset of E and L : Ω → E be a linear continuous compact mapping.
If λ 6= 0 and λ−1 is not an eigenvalue of L, then

deg(I − λL,Ω, 0) = (−1)m(λ),

where m(λ) is the sum of the algebraic multiplicities of the eigenvalues µ
satisfying µλ > 1, and, if L has no such eigenvalues µ, then m(λ) = 0.

Proof. Put S = I −λL, then S is a homeomorphism onto E. There are at
most finitely many eigenvalues of L such that µλ > 1, say, µi, i = 1, 2, · · · , k.
Set F = ⊕k

i=1N(µi) and W = ∩k
i=1R(µi), where N(µi) = {x : Lx− µix = 0}

and R(µi) = (L − µi)(E) for i = 1, 2, · · · , k. We know from the spectral
theory of linear compact mappings that N(µi) are finitely dimensional spaces,
i = 1, 2, · · · , k. It is easy to see that E = F ⊕ W . There are projections
P : E → F , and Q : E → W . Set L1 = SP +Q and L2 = P + SQ. Then we
have

I − L1 = −λLP1, I − L2 = −λLQ, S = L1L2,

(I − L1)(F ) ⊂ F, (I − L2)(W ) ⊂W.

Moreover, Li is one to one for i = 1, 2. Thus, by product formula, we have

deg(S,Ω, 0) = deg(L1L2,Ω, 0) = deg(L1,Ω, 0)deg(L2,Ω, 0).

By Theorem 2.2.9, we have

deg(L1,Ω, 0) = deg(L1,Ω ∩ F, 0)

and
deg((L2,Ω, 0) = deg(L2,Ω ∩W, 0).

But I − tλL has no solution on ∂Ω ∩W and so we have

deg(L2,Ω ∩W, 0) = deg(I,Ω ∩W, 0) = 1.

On the other hand, the eigenvalues of L1 are the eigenvalues of I − λL on
F , i.e., 1− λµi for i = 1, 2, · · · , k. Thus we have

deg(L1,Ω ∩ F, 0) = sgndet(L1|F ) = sgnΠk
i=1(1− λµi)dim(N(µi)

= (−)Σ
k
i=1dim(N(µi)) = (−1)m(λ).
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2.3 Leray Schauder Degree for Multi-Valued Mappings

In this section, we describe the Leray Schauder degree for upper semicon-
tinuous compact mapping with closed convex values. First, we introduce
several multi-valued maps, which play very important roles in the study of
nonsmooth analysis, differential inclusions and nonlinear partial differential
equations. We begin with the following definitions:

Definition 2.3.1. Let X, Y be two topological spaces and T : X → 2Y be
a multi-valued mapping, i.e., Tx is a subset of Y for all x ∈ X.

(1) T is said to be lower semicontinuous at x0 if, for any open set V of Y
with Tx0∩V 6= ∅, the set U = {x : Tx∩V 6= ∅} is open in X, and if T is lower
semicontinuous at every point of X, T is said to be lower semicontinuous on
X,

(2) T is said to be upper semicontinuous at x0 if, for any open neighborhood
V (Tx0) of Tx0, there exists an open neighborhood of U(x0) such that TU ⊂
V , and T is said to be upper semicontinuous onX if T is upper semicontinuous
at every point of X,

(3) T is said to be continuous at x0 if T is both upper semicontinuous and
lower semicontinuous at x0, and if T is continuous at all points of X, then T
is said to be continuous on X.

Definition 2.3.2. Let X be a topological space and Y be a normed space.
A mapping T : X → 2Y is called Hausdorff continuous at x0 if

lim
x→x0

H(Tx, Tx0) = 0

and, if T is Hausdorff continuous at all points of X, then T is said to be
Hausdorff continuous on X.

Next, we give some examples of multi-valued mappings, which have ap-
peared in several fields of mathematics.

Example 2.3.3. Let f : Rn → Rn be a bounded function (not necessarily
continuous). We define a multi-valued mapping F : Rn → 2Rn

as follows:

Fx = {y : there exist xj ∈ Rn such that xj → x, fxj → y}.

Then F is upper semicontinuous. Such a mapping has been used to study
differential equations with discontinuous right-hand sides (see [12], [114]).

Example 2.3.4. Let X be a Banach space and f : X → R be a locally
Lipschitz function. The Clarke derivative of f at x in the direction v is defined
by

fo(x; v) = lim sup
t↓0,y→x

f(y + tv)− f(y)
t
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and the Clarke subdifferential of f at x is defined by

∂f(x) = {φ ∈ X∗ : φ(v) ≤ fo(x; v)}.

This subdifferential is a multi-valued mapping and it is a powerful tool in
non-smooth analysis (see [72]).

Example 2.3.5. Let u : Rn → R be a continuous function. We define

D+u(x) =
{
p ∈ RN : lim sup

y→x,y∈Ω

u(y)− u(x)− p(y − x)
|y − x|

≤ 0
}
,

D−u(x) =
{
p ∈ RN : lim inf

y→x,y∈Ω

u(y)− u(x)− p(y − x)
|y − x|

≥ 0
}
.

D+u and D−u are used to define the viscosity solutions for fully nonlinear
partial differential equations (see [75]).

Example 2.3.6. Let X be a infinite Banach space, r > 0 be a constant
and F : X → 2X be defined as follows:

Fx = B(x, r) for all x ∈ X.

Then F is lower semicontinuous on X, but not upper semicontinuous.
Indeed, for any x0 ∈ X and y ∈ B(x0, r), we have (y − x0) + x ∈ F (x) =

B(x, r) and so (y− x0) + x→ y as x→ x0. Therefore, F is lower semicontin-
uous at x0. To see that F is not upper semicontinuous, we know, since X is
infinite dimensional, that there exists a sequence {xn} ⊂ X such that

‖xn‖ = 1, ‖xn − xm‖ ≥ ε,

where ε ∈ (0, 1) is a constant. Then we have (r + 1
n )xn + x0 ∈ F (x0 + 1

nxn),
but V = X \ {(r + 1

n )xn + x0 : n = 1, 2 · · · , } is open and F (x0, r) ⊂ V .
Therefore, F (x0 + 1

nxn) 6⊂ V , i.e., F is not upper semicontinuous. Moreover,
it is easy to check that F is Hausdorff continuous on X.

Lemma 2.3.7. Let X be a metric space, Y be a normed space and T :
X → 2Y be an upper semicontinuous mapping with closed convex values.
Then, for any ε > 0, there exists a continuous mapping fε : X → conv(TX)
such that, for any x ∈ X, there exist y ∈ X and z ∈ Ty such that

d(x, y) < ε, ‖fεx− z‖ < ε.

Proof. For any x ∈ X and ε > 0, there exists δx > 0 such that

TB(x, δx) ⊂ B(Tx, ε).

We may require δx < ε. Let {Ui}i∈I be a locally finite open refinement of
{B(x, δx

2 ) : x ∈ X} and {φi}i∈I be a partition of the unity subordinated
{Ui}i∈I .
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Now, we define a mapping fε : X → Y as follows:

fεx = Σi∈Iφi(x)yi for all x ∈ X,

where Ui ⊂ B(xi,
δx

2 ) and yi ∈ Txi. It is obvious that fε : X → conv(TX) is
continuous. For any given x ∈ X, let I0 = {i ∈ I : φi(x) 6= 0}. Then there
exists i0 ∈ I0 such that

δxi0
= max

i∈I0
{δxi}.

We put y = xi0 . For i ∈ I0, we have x ∈ Ui ⊂ B(xi,
δxi

2 ) and hence xi ∈
B(xi0 , δxi0

). Therefore, we have

fεx = Σi∈I0φi(x)yi ∈ B(Ty, ε).

Take z ∈ Ty such that ‖fεx− z‖ < ε. This completes the proof.

Theorem 2.3.8. Let X be a metric space, Y be a Banach space and
T : X → 2Y be a lower semicontinuous mapping with closed convex values.
Then there exists a single-valued continuous mapping f : X → Y such that
f(x) ∈ Tx for all x ∈ X.

Proof. First, we prove that, for any ε > 0, there exists a continuous
mapping f : X → Y such that f(x) ∈ Tx+ Bε(0) for all x ∈ X. To see this,
if we put U(y) = {x ∈ X : x ∈ T−1(y − Bε)}, then U(y) is open in X by
the lower semicontinuity of T . Now, since we have X = ∪y∈Y U(y), there is a
locally finite open refinement {Wi}i∈I of {U(y)}y∈Y and a partition of unity
{αi}i∈I subordinated to {Wi}i∈I . Pick yi such that Wi ⊂ U(yi) and define a
mapping f : X → Y as follows:

f(x) = Σi∈Iαi(x)yi for all x ∈ X.

Then f is continuous. Obviously, if αi(x) 6= 0, then x ∈ Wi ⊂ U(yi) and so
we have yi ∈ Fx+Bε(0). Thus it follows that

f(x) ∈ F (x) +Bε(0)

since the right hand side is convex. Now, for εn = 2−n for n = 1, 2, · · · , by
the above conclusion, we have a sequence {fn} of continuous mappings such
that

fn ∈ fn−1(x) + 2Bεn(0), fn(x) ∈ Tx+Bεn(0)

for all x ∈ X. Indeed, assume that we have defined mappings f1, f2, · · · , fn

for some n > 1, respectively, and put Gx = Tx ∩ (fn + Bε(0)) for all x ∈ X.
Then G is lower semicontinuous with convex values.

By the first step, there exists fn+1 : X → Y such that fn+1(x) ∈ G(x) +
Bεn+1 and so we have

fn+1(x) ∈ T (x) +Bεn+1 , fn+1(x) ∈ fn(x) + 2Bεn .

Copyright 2006 by Taylor & Francis Group, LLC



LERAY SCHAUDER DEGREE THEORY 41

Evidently, since {fn} is a Cauchy sequence, let f(x) = limn→∞ fn(x). Then
f is continuous since the convergence is uniform and f(x) ∈ Tx for all x ∈ X.
This completes the proof.

In the above result, we considered approximate selections and continuous
selections of multi-valued mappings. In some cases, we need to find a measur-
able selection for a given multi-valued mapping. Let (Ω,A) be a measurable
space, (X, d) be a separable metric space and f : Ω → 2X be a multi-valued
mapping. Then f is called a measurable function if f−1(B) ∈ A for all open
subset B ⊂ X.

Theorem 2.3.9. Let (Ω,A) be a measurable space, (X, d) be a separable
complete metric space and F : Ω → 2X be a measurable multi-valued mapping
with closed values. Then there exists a single valued measurable mapping
f : Ω → X such that f(x) ∈ Fx for all x ∈ Ω.

Proof. Since X is separable, there exists a countable subset {x1, x2, · · · }
of X such that

{x1, x2, · · · } = X.

We shall define a sequence {fn} of measurable functions satisfying the follow-
ing:

(1) d(fn(x), fn+1(x)) < 2−n+1 for all x ∈ Ω;

(2) d(fn(x), F (x)) < 2−n for all x ∈ Ω

and define a mapping f1 : Ω → X by f1(z) = xk if k is the smallest integer
such that

Fz ∩B(xk, 1) 6= ∅.

Since f−1(xk) = F−1(B(xk, 1) \ ∪m<kF
−1(B(xm, 1)), it follows that f1 is

measurable.
Now, assume that we have defined f1, f2, · · · , fk satisfying (1) and (2)

for some k > 1. For each z ∈ Ω, we have z ∈ f−1
k (xi) for some i. Now, if

z ∈ f−1
k (xi), then we define

fk+1(z) = xp,

where p is the smallest integer such that

Fz ∩B(xi, 2−k) ∩B(xp, 2−k−1) 6= ∅.

Obviously, fk+1 is well defined and it is also measurable and, moreover, it
satisfies (1) and (2).

Finally, if we put f(x) = limn→∞ fn(x), then f is measurable and f(x) ∈
Fx for all x ∈ Ω. This completes the proof.

Example 2.3.10. Let F : Rn → 2R \∅ be a upper semicontinuous function
with bounded closed values. Assume that |y| ≤ M |x| + f(x) for all y ∈ Fx
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and x ∈ Rn, where M > 0 is a constant and f(·) ∈ Lp(Rn) for p ∈ [1,∞).
We define a mapping F : C([0, 1];Rn) → Lp(Rn) by

Fu(t) = {g(·) ∈ Lp([0, 1]) : g(t) ∈ Fu(t), a.e.t ∈ [0, 1]}

for all u(·) ∈ C([0, 1];Rn). Since Fu(t) : [0, 1] → 2R is upper semicontinuous
with closed values, it is measurable. By Theorem 2.3.9, we know that there
exists a measurable selection g(t) ∈ Fu(t) and, by assumption, we have

|g(t)| ≤M |u(t)|+ f(u(t)) for all t ∈ [0, 1].

Therefore, it follows that g(·) ∈ Lp([0, 1]) and hence F is well defined.

Next, we show that the Leray Schauder degree can be generalized to multi-
valued upper semicontinuous compact mappings with closed convex values:

Proposition 2.3.11. Let E be a real Banach space, Ω ⊂ E be an open
bounded set and T : Ω → 2E be an upper semicontinuous mapping with
closed convex values. If TΩ is relatively compact and x /∈ Tx for all x ∈ ∂Ω,
then there exists ε0 > 0 such that x 6= fεx for all x ∈ ∂Ω and ε ∈ (0, ε0),
where fε is defined as in Lemma 2.3.7.

Proof. Suppose that the conclusion is not true. Then there exist εj → 0
and xj ∈ ∂Ω such that xj = fεj

xj . By Lemma 2.3.7, there exist yj ∈ Ω and
zj ∈ Tyj such that

‖xj − yj‖ ≤ εj , ‖fεjxj − zj‖ < εj .

Since T is compact, we may assume that zj → z0 and hence we have

fεj
xj → z0, xj → z0 ∈ ∂Ω

and thus yj → z0. Using the upper semicontinuity of T , we get z0 ∈ Tz0,
which is a contradiction. This completes the proof.

Definition 2.3.12. Let E be a real Banach space, Ω ⊂ E be an open
bounded set and T : Ω → 2E be an upper semicontinuous mapping with
closed convex values. Suppose that TΩ is relatively compact and x /∈ Tx for
all x ∈ ∂Ω. Then we define

deg(I − T,Ω, 0) = lim
ε→0

deg(I − fε,Ω, 0),

where fε is defined as in Lemma 2.3.7.

We show that Definition 2.3.12 is reasonable. By Proposition 2.3.11, there
exists ε0 > 0 such that x 6= fεx for all x ∈ ∂Ω and ε ∈ (0, ε0). It is obvious
that fε(Ω) is compact. Thus deg(I − fε,Ω, 0) is well defined for all ε ∈ (0, ε0).
We claim that there exists ε1 < ε0 such that tfεx + (1 − t)fδx 6= x for all

Copyright 2006 by Taylor & Francis Group, LLC



LERAY SCHAUDER DEGREE THEORY 43

(t, x) ∈ [0, 1] × ∂Ω and ε, δ ∈ (0, ε1). If not, there exist tj → t0, εj → 0,
δj → 0, and xj ∈ ∂Ω such that

tjfεj
xj + (1− tj)fδj

xj = xj .

By Lemma 2.3.7, there exist y1
j , y

2
j and z1

j ∈ Ty1
j , z

2
j ∈ Ty2

j satisfying

‖y1
j − xj‖ < εj , ‖y2

j − xj‖ < δj , ‖z1
j − fεj

xj‖ < εj , ‖z2
j − fδj

xj‖ < δj .

By compactness of T , we may assume that xj → x0 ∈ ∂Ω. Therefore, y1
j → x0

and y2
j → x0. Consequently, (z1

j ) has a subsequence (z1
jk

) with z1
jk
→ z1 ∈

Tx0, (z2
j ) has a subsequence (z2

jk
) with z2

jk
→ z2 ∈ Tx0 and tz1 + (1− t)z2 =

x0 ∈ Tx0, which is a contradiction.

The following property follows from Theorem 2.2.4, and we leave the proofs
to the reader:

Theorem 2.3.13. The degree defined by Definition 2.3.12 has the following
properties:

(1) (Normality) deg(I,Ω, 0) = 1 if and only if 0 ∈ Ω;

(2) (Solvability) If deg(I − T,Ω, 0) 6= 0, then x ∈ Tx has a solution in Ω;

(3) (Homotopy) Let Tt : [0, 1]×Ω → E be a upper semicontinuous compact
mapping with closed convex values and x /∈ Ttx for all (t, x) ∈ [0, 1]×∂Ω.
Then deg(I − Tt,Ω, 0) does not depend on t ∈ [0, 1];

(4) (Additivity) If Ω1, Ω2 are two disjoint open subsets of Ω and 0 /∈ (I −
T )(Ω− Ω1 ∪ Ω2), then

deg(I − T,Ω, 0) = deg(I − T,Ω1, 0) + deg(I − T,Ω2).

2.4 Applications to Bifurcations

In this section, we give some applications to bifurcation.

Definition 2.4.1. Let X,Y be two Banach spaces, α0 > 0, δ > 0, I =
(−α0 − δ, α0 + δ), x0 ∈ Ω ⊂ X be an open subset and F : I ×Ω → Y be such
that F (α, x0) = 0 on I. If there exists αn → α0, xn ∈ Ω \ {x0}, xn → x0 such
that F (αn, xn) = 0, then we call (α0, x0) a bifurcation point for F (α, x) = 0.

Theorem 2.4.2. Let X be an infinite dimensional Banach space, Ω ⊂ X
be an open subset with 0 ∈ Ω and F : Ω → X be a continuous compact
operator with F0 = 0. Suppose lim infx→0

‖Fx‖
‖x‖ = +∞. Then (0, 0) is a

bifurcation point for x− αFx = 0.
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Proof. Take αn → 0. Consider the mapping H(t, x) = x − αntFx for
(t, x) ∈ [0, 1]× Ω. Since lim infx→0

‖Fx‖
‖x‖ = +∞, there exist rn < 1

n such that

‖Fx‖ > α−1
n ‖x‖, x ∈ ∂B(0, rn).

By Lemma 2.2.11, we have deg(I − αnF,B(0, rn), 0) = 0. However, it follows
that

deg(I,B(0, rn), 0) = 1,

so there must exist tn ∈ (0, 1), xn ∈ ∂B(0, rn) such that H(tn, xn) = 0, i.e.,
xn − αntnFxn = 0. Thus (0, 0) is a bifurcation point. This completes the
proof.

Lemma 2.4.3. Let (M,d) be a compact metric space, A1 ⊂ M be a
component and A2 ⊂ M closed such that A1 ∩ A2 = ∅. Then there exist
compact sets M1,M2 such that Ai ⊂ Mi, i = 1, 2, M1 ∩M2 = ∅ and M =
M1 ∪M2.

Proof. For ε > 0, a, b ∈ M , if there exist finitely many xi ∈ M , i =
1, 2, · · · , n, such that x1 = a, xn = b and d(xi+1, xi) < ε for i = 1, 2, · · · , n−1,
then we call a, b ε chainable. Put

Aε = {x ∈M : there exists a ∈ A1 such that x and aareε chainable}.

Clearly, A1 ⊂ Aε and Aε is both open and closed in M .
Now, we prove that there exists ε0 > 0 such that Aε0 ∩A2 = ∅. If this is not

true, for εj → 0, there exist yj ∈ Aεj ∩ A2. So there exist aj ∈ A1 such that
yj , aj are εj-chainable. However, A1, A2 are compact, so we may assume that
aj → x0, bj → y0. Consequently, we have εj chains joining x0, y0 for every
j ≥ 1. We set

C = {x ∈ m : there exist jk →∞, xjk
∈Mjk

such that xjk
→ x}.

Obviously, C is compact and x0, y0 ∈ C. Notice that any two points in C
are εj-chainable, so C must be connected. However, C ∩ A1 6= ∅, so we have
C ⊂ A1, and thus y0 ∈ A1 ∩ A2, which is a contradiction. Therefore, there
exist ε0 > 0 such that Aε0 ∩ A2 = ∅. Set M1 = Aε0 and M2 = M \M1, then
we get the desired result.

Theorem 2.4.4. Let X be a real Banach space, Ω ⊂ R × X be a open
neighborhood of (α0, 0) and T : Ω → X be a continuous compact mapping
with T (α, x) = o(‖x‖) as x → 0 uniformly in α. Let S : X → X be a
linear continuous compact mapping, α−1

0 be an eigenvalue of odd algebraic
multiplicity and

M = {(α, x) ∈ Ω : x− αSx+ T (α, x) = 0, x 6= 0}.

Then the component C ofM containing (α0, 0) has at least one of the following
properties:

Copyright 2006 by Taylor & Francis Group, LLC



LERAY SCHAUDER DEGREE THEORY 45

(1) C ∩ ∂Ω 6= ∅.

(2) C contains an odd number of trivial zeros (αi, 0) 6= (α0, 0), where α−1
i

is an eigenvalue of S of odd algebraic multiplicity.

Proof. First, if C ∩∂Ω 6= ∅, then C is compact and contains another (α, 0)
with α 6= α0. The compactness of C follows from the compactness of S and
T . Suppose C ∩R× {0} = {(α0, 0)}. For any δ > 0, set

Nδ = {(α, x) ∈ Ω : d((α, x), C) < δ}.

If Nδ ∩M = C, we put Ω0 = Nδ. Otherwise, by Lemma 2.4.3, there exist
compact sets C1, C2 such that C ⊂ C1, M ∩ ∂Nδ ⊂ C2, C1 ∩ C2 = ∅ and
C1 ∪ C2 = Nδ ∩M . Set γ = d(C1, C2), then γ > 0. We put Ω0 = Nδ ∩ {x :
d(x,C1) < γ

2 }. It is obvious that

C ⊂ Ω0 ⊂ Ω0 ⊂ Ω, M ∩ ∂Ω0 = ∅.

Now, we may take δ > 0 small enough such that no other eigenvalue α−1 of
S satisfies |α − α0| ≤ 2δ and the intersection of M and the real line is given
by I = [α0 − δ, α0 + δ]. Since M ∩ ∂Ω0 = ∅, deg(I − αS − T (α, ·),Ω(α), 0) is
constant on I, where Ω(α) = {x : (α, x) ∈ Ω0}.

Now, we choose α0 − δ < α1 < α0 < α0 + δ. For r sufficiently small, we
have

deg(I − αiS − T (αi, ·),Ω(αi), 0)
= deg(I − αiS − T (αi, ·),Ω(αi) \B(0, r), 0)

+deg(I − αiS − T (αi, ·), B(0, r), 0)

for i = 1, 2. However, deg(I − α1S, T (α1, ·), B(0, r), 0) is different to deg(I −
α2S, T (α2, ·), B(0, r)Ω, 0) by a factor −1 and deg(I − αiS − T (αi, ·),Ω(αi) \
B(0, r), 0) = 0, which is a contradiction. Clearly, a bounded open neighbor-
hood Ω0 of C satisfying M ∩∂Ω0 = ∅ contains a finite number of points (αi, 0)
with α−1

i ∈ σ(S), say, α1 < · · · < αj−1 < α0 < αj+1 < · · · < αN . We may
take δ > 0 sufficiently small such that

Ω0 ∩R× {0} = (∪N
i=1[αi − δ, αi + δ])× {0}.

Choose αj1, αj2 such that

αj − δ < αj1 < αj < αj2 < αj + δ.

We have deg(I − αS − T (α, ·),Ω0(α), 0) = m on [α1 − δ, αN + δ] for some
m ∈ Z and

m = deg(I − αjiS − T (αji, ·),Ω0(αji), 0)

= deg(I − αjiS − T (αji, ·),Ω0(αji) \B(0, r), 0)
+deg(I − αjiS − T (αji, ·), B(0, r), 0)
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for i = 1, 2, where r > 0 is sufficiently small.
Moreover, it follows that

deg(I − α11S − T (α11, ·),Ω0(α11) \B(0, r), 0)
= deg(I − αN2S − T (αN2, ·),Ω0(αN2) \B(0, r), 0)
= 0

and

deg(I − αj2S − T (αj2, ·),Ω0(αj2) \B(0, r), 0)

= deg(I − α(j+1)1S − T (α(j+1)1, ·),Ω0(α(j+1)1) \B(0, r), 0)
= 0.

Therefore, we have

ΣN−1
j=1 [deg(I − αj2S − T (αj2, ·), B(0, r), 0)

−deg(I − αj1S − T (αj1, ·), B(0, r), 0) = 0.

Since the degree has a jump at α0 and the jumps occur only at eigenvalues
of odd algebraic multiplicity, it follows that the degree has an even number
of jumps. Consequently, C contains an odd number of trivial zeros (αi, 0) 6=
(α0, 0).

2.5 Applications to ODEs and PDEs

In this section, we give some applications of the Leray Schauder theory to
existence of solutions for ordinary differential equations and partial differential
equations.

Theorem 2.5.1. (Peano’s Theorem) Let f : R × B(x0, r) ⊂ Rn → Rn

be a continuous function. Then there exists t0 > 0 such that the following
equation: {

x′(t) = f(t, x(t)), t ∈ (0, t0),
x(0) = x0

(E 2.5.1)

has a solution.
Proof. Since f is continuous, there exist t1 > 0, r1 < r, and M > 0 such

that
|f(t, x)| ≤M, t ∈ [−t1, t1], |x− x0| ≤ r1,

where | · | is the norm in Rn. Take t0 ∈ (0, t1) such that Mr0 < r1. We set

E = C([0, t0], Rn) = {x(t) : [0, t0] → Rn is continuous}
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with the norm |x(·)| = maxt∈[0,t0] |x(t)|. Then C([0, t0], Rn) is a Banach space.
Put

K = {x(·) ∈ E : x(0) = x0, |x(t)− x0| ≤ r1, t ∈ [0, t0]}.

Then it is easy to see that K is a bounded closed convex subset.
Now, we define a mapping T : E → E by

Tx(t) = x0 +
∫ t

0

f(s, x(s))ds for all x(·) ∈ E.

It is easy to check that T is continuous. Moreover, T : K → K is a mapping
and TK is compact. Thus, by Schauder’s fixed point theorem, T has a fixed
point x(·) in K, i.e., x(t) = x0 +

∫ t

0
f(s, x(s))ds. Therefore,

x′(t) = f(t, x(t)) for all t ∈ (0, t0).

Thus the problem (E 2.5.1) has a solution. This completes the proof.

In the following, let Ω ⊂ RN be an open bounded subset with smooth
boundary and ai, b : Ω×R×RN → R, i = 1, 2, · · · , N , be continuous functions
such that

(1) ∂ai

∂ηj
ξiξj ≥ |ξ|2 for all (x, z, ξ) ∈ Ω×R×Rn;

(2) |ai(x, z, 0) ≤ g(z), i = 1, 2, · · · , N , where g(·) ∈ Lq(Ω), and q > N ;

(3) (1 + |ξ|2)|∂ai

∂ξj
|+ (1 + |ξ|)(|∂ai

∂z |+ |ai|) + | ∂ai

∂xj
|+ |b| ≤ µ(|z|)(1 + |ξ|2) for

i, j = 1, 2 · · · , N , where µ : [0,+∞) → [0,+∞) is a increasing function;

(4) −b(x, z, ξ)signz ≤ L(|ξ| + f(x)) for all (x, z, ξ) ∈ Ω × R × RN , where
L > 0 is a constant.

Consider the following Dirichlet problem:{
−Diai(x, u(x), Du(x)) + b(x, u(x), Du(x)) = 0, x ∈ Ω,
u(x) = φ(x), x ∈ ∂Ω.

(E 2.5.2)

Theorem 2.5.2. Suppose that ∂Ω is smooth and (1)-(4) hold and ai ∈
C1,α(Ω × R × RN ), b ∈ C0,α(Ω × R × RN ), φ ∈ C2,α(Ω), where α ∈ (0, 1) is
a constant. Then the problem (E 2.5.2) has a solution u ∈ C2,α(Ω).

Proof. For each v ∈ C1,α(Ω) and t ∈ [0, 1], consider the following linear
Dirichlet problem:

−[t ∂ai

∂ηj
(x, v(x), Dv(x))Diju(x) + (1− t)∆u(x)]

+t[ ∂ai

∂xi
+ ∂ai

∂zi
ηi + b](x,z,η)=(x,v(x),Dv(x)) = 0, x ∈ Ω,

u(x) = tφ(x), x ∈ ∂Ω.

(E 2.5.3)
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Since the coefficients belong to Cα(Ω), it is well known that (E 2.5.3) has a
unique solution u ∈ C2,α(Ω) (see [132]). We define a mapping T : [0, 1] ×
C1,α(Ω) → C1,α(Ω) by

T (t, v) = u for all (t, v) ∈ [0, 1]× C1,α(Ω).

It is easy to see that T is continuous compact. Also, by prior estimation,
there exist constants M > 0, 0 < γ < 1 such that |u|1,γ;Ω ≤ M (see [135]).
Therefore, u ∈ Cαγ(Ω) and there exist a constant C which does not depend
on t and u such that

|u|2,αγ ≤ C.

Thus |u|1,α ≤ M . Therefore, T (·, 1) has a fixed point u, i.e., T (1, u) = u,
which is a solution of (E 2.5.2) and u ∈ C2,α(Ω).

In the following, suppose that H is a real Hilbert space, A : D(A) ⊆ H → H
is a linear self-adjoint operator and F (t, u) : R × H → H is a nonlinear
mapping. Consider the anti-periodic problem:{

u′ +Au(t) + ∂Gu(t) + F (t, u(t)) = 0, a.e. t ∈ R,
u(t) = −u(t+ T ), t ∈ R.

(E 2.5.4)

Definition 2.5.3. A function u(·) is called a weak anti-periodic solution
of (E 2.5.4) if u(t+ T ) = −u(t) for t ∈ R,

∫ T

0
|u′(t)|2dt <∞ and

u′ +Au(t) + ∂Gu(t) + F (t, u(t)) = 0 for almost all t ∈ R.

Lemma 2.5.4. If u, u′ ∈ L2(0, T ;H) and u(t + T ) = −u(t) for all t ∈ R,
then

|u|∞ ≤
√
T

2

(∫ T

0

|u′(s)|2ds
) 1

2
.

Proof. Since u(t) = u(0) +
∫ t

0
u′(s)ds and u(t) = u(T ) −

∫ T

t
u′(s)ds, we

have

u(t) =
1
2
[
∫ t

0

u′(s)ds−
∫ T

t

u′(s)ds].

Thus the conclusion follows.

Lemma 2.5.5. Let H be a real separable Hilbert space and A : D(A) ⊆
H → H be a linear densely defined closed self-adjoint operator that only has a
point spectrum, i.e., eigenvalues. Suppose that f : R→ H is a T -anti-periodic
function, i.e., f(T + t) = −f(t) for t ∈ R, and f(·) ∈ L2(0, T ;H). Then the
following problem: {

u′ +Au(t) + f(t) = 0, a.e.t ∈ R,
u(t+ T ) = −u(t), t ∈ R,

(E 2.5.5)
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has a unique weak solution.

Proof. Since σ(A) only has point spectrum and H is separable, A has
a countable family of eigenvalues {λi}∞i=1. Assume that {ei : i = 1, 2, · · · }
is the orthogonal family of eigenvectors associated with the eigenvalue λi

satisfying |ei| = 1 for each i, i = 1, 2 · · · . A is densely defined and we have
span{ei : i = 1, 2, · · · } = H, so f(t) = Σ∞i=1fi(t)ei, where fi : R→ R satisfies
Σ∞i=1

∫ T

0
f2

i (t)dt <∞. It is obvious that fi(t+ T ) = −fi(t) for t ∈ R.
Now, we consider the one dimensional evolution equation:{

u′i(t) + λiui(t) + fi(t) = 0, t ∈ R,
ui(t+ T ) = −ui(t), t ∈ R,

(E 2.5.6)

for each i = 1, 2, · · · . By Corollary 1.2 of [148] or by a direct computation,
the problem (E 2.5.6) has a unique solution ui(t).

Now, multiply (E 2.5.6) by u′i(t) and integrate over (0, T ) to get∫ T

0

|u′i(t)|2dt+
∫
fi(t)u′i(t)dt = 0.

Therefore, we have ∫ T

0

|u′i(t)|2dt ≤
∫ T

0

|fi(t)|2dt. (2.5.1)

By Lemma 2.5.4, we get

|ui|2∞ ≤ T 2

4

∫ T

0

|fi(t)|2dt. (2.5.2)

Put u(t) = Σ∞i=1ui(t)ei. Then it follows from (2.5.2) that u is well defined. By
(2.5.1), we know that u′(t) = Σ∞i=1u

′
i(t)ei belongs to L2(0, T ;H). Therefore,

Σ∞i=1λiui(t)ei belongs to L2(0, T ;H). Since A is closed, u(t) ∈ D(A) for
almost all t ∈ R and

Au(t) = Σ∞i=1λiui(t)ei for almost all t ∈ R.

In view of (E 2.5.6), we know that u is a weak solution of the problem (E
2.5.5).

If u and v are two weak anti-periodic solutions of (E 2.5.5), then∫ T

0

[|u′(t)− v′(t)|2 + (Au(t)−Av(t), u′(t)− v′(t))]dt = 0.

However,
∫ T

0
(Au(t)−Av(t), u′(t)− v′(t))dt = 0, so the uniqueness is obvious.

This completes the proof.

Theorem 2.5.6. Let H be a real separable Hilbert space, A : D(A) ⊆
H → H be a linear densely defined closed self-adjoint operator that only has
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a point spectrum and G : H → R be a even continuous differentiable function
such that the gradient ∂G is continuous and bounded, i.e., maps bounded sets
of H to bounded sets in H. Suppose that F : R × H → H is a continuous
function and the following conditions are satisfied:

(1) D(A) is compactly embedded into H.

(2) F (t+ T,−u) = −F (t, u) for all (t, u) ∈ R×H.

(3) |F (t, u)| ≤ f(t), a. e. t ∈ R, where f(·) ∈ L2(0, T ;R) is non-negative.

Then the following equation:{
u′ +Au(t) + ∂Gu(t) + F (t, u) = 0, a.e. t ∈ R,
u(t+ T ) = −u(t), t ∈ R,

(E 2.5.7)

has a weak solution.

Proof. Let

Wa = {u : R→ H is continuous, u(t+ T ) = −u(t)},

W 1,2
a = {u ∈Wa :

∫ T

0

|u′(t)|2dt <∞)}.

For each v(·) ∈Wa, we consider the following equation:{
u′ +Au(t) + ∂Gv(t) + F (t, v(t)) = 0, a.e. t ∈ R,
u(t) = −u(t+ T ), t ∈ R.

(E 2.5.8)

Since A only has a point spectrum, Lemma 2.5.5 implies that the problem
(E 2.5.8) has a unique solution u ∈ W 1,2

a . Now, we define a mapping K :
Wa →Wa as follows: For each v ∈Wa, Kv is the unique solution of (E 2.5.8).
Next, we prove that K is continuous. Suppose that vn → v0 in Wa. Then,
by Lemma 2.5.4, |vn − v|∞ → 0 as n → ∞. Now, ∂G and F are continuous
functions, so

|∂Gvn(·)− ∂Gv0(·)|∞ → 0, |F (·, vn(·))− F (·, v0(·))|∞ → 0

as n→∞. Also, we have

(Kvn(t))′ − (Kv0(t))′ +A(Kvn(t)−Kv0(t))
+ (∂GKvn(t)− ∂GKv0(t)) + F (t, vn(t))− F (t, v0(t))

= 0 for almost all t ∈ R.
(2.5.3)
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Multiply both sides of (2.5.3) by (Kvn(t)−Kv0(t))′ and integrate over (0, T ),
and we have∫ T

0

|(Kvn(t)−Kv0(t))′|2dt

+
∫ T

0

〈A(Kvn(t))−Kv0(t)), (Kvn(t)−Kv0(t))′〉dt

+
∫ T

0

〈∂GKvn(t)− ∂GKv0(t), (Kvn(t)−Kv0(t))′〉dt

+
∫ T

0

〈F (t, vn(t))− F (t, v0(t)), (Kvn(t)−Kv0(t))′〉dt = 0.

Thus we have(∫ T

0

|(Kvn(t)−Kv0(t))′|2dt
) 1

2

≤
√
T |∂Gvn(·)− ∂Gv0(·)|∞ +

√
T |F (·, vn(·))− F (·, v0(·))|∞

→ 0 (n→∞).

Therefore, it follows that Kvn(·) → Kv0(·) in Wa. For each v ∈ Wa, again,
by (E 2.5.8), we get∫ T

0

((Kv(t))′)2dt+
∫ T

0

〈∂Gv(t), (Kv(t))′〉dt+
∫ T

0

〈F (t, v(t)), (Kv(t))′〉dt = 0.

This and assumption (3) of Theorem 2.5.6 imply that

(∫ T

0

|(Kv(t))′|2dt
) 1

2 ≤
(∫ T

0

|∂Gv(t)|2dt
) 1

2
+
(∫ T

0

f2(t)dt
) 1

2
. (2.5.4)

By (2.5.4) and the boundedness of ∂G, we know that K maps bounded sets of
Wa to bounded sets in Wa The compact embedding of D(A) into H implies
that K is a compact mapping. In view of Lemma 2.5.4, we may simply take
|u′|L2 as the norm of u in Wa.

Now, we prove that Kv 6= λv for v ∈ Wa with |v′|L2 > (
∫ T

0
f2(t)dt)

1
2 and

λ > 1. In fact, if this is not true, then there exist λ0 > 1 and v0 ∈ Wa with
|v′0|L2 > (

∫ T

0
f2(t)dt)

1
2 such that Kv0 = λ0v0, i.e.,

λ0v
′
0(t) + λ0Av0(t) + ∂Gv0(t) + F (t, v0(t)) = 0. (2.5.5)

Multiply both sides of (2.5.5) by v′0(t) and integrate over [0, T ], we obtain∫ T

0

〈λ0v
′
0(t) + λ0Av0(t) + ∂Gv0(t) + F (t, v0(t)), v′0(t)〉dt = 0.
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However,
∫ T

0
〈Av0(t), v′0(t)〉dt = 0 and

∫ T

0
∂〈Gv0(t), v′0(t)〉dt = 0 and so we

have ∫ T

0

〈λ0v
′
0(t) + F (t, v0(t)), v′0(t)〉dt = 0.

Therefore, it follows that(∫ T

0

λ0|v′0(t)|2dt
) 1

2 ≤
(∫ T

0

f2(t)dt
) 1

2
,

which is a contradiction. Now, if we take r0 > (
∫ T

0
f2(t)dt)

1
2 , then, by the

above arguments and the homotopy invariance property of the Leray Schauder
degree, we know that

deg(I −K,B(0, r0), 0) = deg(I,B(0, r0), 0) = 1,

where B(0, r0) is the open ball centered at 0 with radius r0 in Wa. Thus K
has a fixed point in B(0, r0), i.e., there exists v ∈ Wa such that Kv = v.
Hence the problem (E 2.5.7) has a solution. This completes the proof.

From Theorem 2.5.6, we have the following:

Corollary 2.5.7. Let H be a real separable Hilbert space, A : D(A) ⊆
H → H be a linear densely defined closed self-adjoint operator that only
has a point spectrum, 0 /∈ σ(A) and G : H → R be a even continuous
differentiable function such that the gradient ∂G is Lipschitz. Suppose that
F : R×H → H is a continuous function and the conditions (1)-(3) in Theorem
2.5.6 are satisfied. Then the problem (E 2.5.7) has a solution.

Example 2.5.8. Consider the anti-periodic solution problem:
u′1(t) = 2u1(t)− αu2(t) + 2

1+u2
2(t)

sin t, t ∈ R,
u′2(t) = −αu1(t)− 5u2(t) + 1

1+u4
1(t)

sin3 t, t ∈ R,
u1(t+ π) = −u1(t), u2(t+ π) = −u2(t), t ∈ R,

(E 2.5.9)

where α ∈ R is a constant. Set

A =
(

2 −α
−α −5

)
, u =

(
u1

u2

)
, F (t, u) =

(
2

1+u2
2(t)

sin t
1

1+u4
1(t)

sin3 t

)
.

Then A is a linear self-adjoint operator on R2 and F (t + π,−u) = −F (t, u)
for all (t, u) ∈ R × R2. It is obvious that |F (t, u)| ≤ 3 for (t, u) ∈ R × R2.
Now, the problem (E 2.5.9) is equivalent to the equation:{

u′(t) = Au(t) + F (t, u(t)), t ∈ R,
u(t+ π) = −u(t), t ∈ R.

(E 2.5.10)
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From Theorem 2.5.6, we know that the problem (E 2.5.10) has a solution, so
(E 2.5.9) has a solution.

Remark. The degree theory in this chapter can be established in locally
convex spaces (see [197]) or admissible topological vector spaces (see [170],
[235], [307]).

2.6 Exercises

1. Let f(x, y) : R × R → R be a continuous function and T : C[a, b] →
C[a, b] be defined by Tx(·)(s) =

∫ s

a
f(t, x(t))dt for all x(·) ∈ C[a, b] and

s ∈ [a, b]. Show that T is continuous and compact.

2. Let T : C[0, π] → C[0, π] be defined by

Tx(t) =
2
π

∫ π

0

[sin t sin s+ c sin 2t sin 2s][2x(s) + x3(s)]ds

for all x(·) ∈ C[0, π]. Compute T ′(x) and the eigenvalues of T ′(0).

3. Let T : c0 → c0 be defined by T (x1, x2, · · · ) = (x2
1, x

,
2 · · · ). Show that

T ′(x) is compact for all x ∈ c0, but T is not compact.

4. Let E be a infinite dimensional Banach space. Show that the unit sphere
of E is not compact.

5. Let E be a real Banach space and Ω be an open subset of E. Let
T : Ω → E be a continuous compact mapping and I − T is locally one
to one. Show that I − T is an open mapping.

6. Let E be a real Banach space, T : B(0, R) → E be a continuous com-
pact mapping and L : X → X be a compact linear operator. Sup-
pose that ‖Tx − Lx‖ < ‖x − Lx‖ for all x ∈ ∂B(0, R). Show that
deg(I − T,B(0, R), 0) is odd.

7. Let E be a real Banach space, Ω ⊂ E be an open bounded symmetric
subset with 0 ∈ Ω and T : Ω → E be a continuous compact mapping
such that 0 /∈ (I − T )(∂Ω) and (I − T )(−x) 6= t(I − T )(x) on ∂Ω for all
t ≥ 1. Show that deg(I − T,Ω, 0) is odd.

8. Let E be a real Banach space and T : E → E be a continuous compact
mapping such that lim‖x‖→∞

‖Tx‖
‖x‖ = 0. Show (I − T )(E) = E

9. Let E be a real Banach space and A,B ⊂ E be two closed bounded
subsets. Suppose that there exists a continuous compact mapping T :
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A→ E such that I −T : A→ B is a homeomorphism. Show that E \A
and E \B have the same number of components.

10. Let E be a locally convex space and Ω ⊂ E be an open subset. Suppose
that T : Ω → E is continuous such that T (Ω) is compact in E and
0 /∈ (I−T )(∂Ω). Show that there is a topological degree deg(I−T,Ω, 0).

11. Is a Hausdorff continuous mapping continuous?

12. Let E be a real Banach space, Ω ⊂ E be an open bounded symmetric
subset with 0 ∈ Ω and T : Ω → 2E be an upper semicontinuous compact
mapping with closed convex values such that 0 /∈ (I − T )(∂Ω) and
T (−x) = −Tx for all x ∈ ∂Ω. Show that deg(I − T,Ω, 0) is odd.

13. Let G : Rn → R be an even continuous differentiable function and
f : R→ Rn be a continuous function such that f(t+ T ) = −f(t) for all
t ∈ R. Show that the following equation{

x′(t) = ∂Gx(t) + f(t), t ∈ R,
x(t+ T ) = −x(t), t ∈ R,

has a solution.

14. Let g ∈ C1([0, a]), h ∈ C1([0, b]) with g(0) = h(0) and f : [0, a] ×
[0, b] × R2 → R be continuous such that |f(x, y, z, 0)| ≤ M(1 + |z|)
and |f(x, y, z, u)− f(x, y, z, v)| ≤ L|u− v|, where a, b, L,M are positive
constants. Show that the following equation

∂u
∂x∂y = f(x, y, u(x, y), ∂u

∂x ), (x, y) ∈ [0, a]× [0, b],
u(x, 0) = g(x), x ∈ [0, a],
u(0, y) = h(y), y ∈ [0, b],

has a solution u ∈ C1([0, a]× [0, b]).
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Chapter 3

DEGREE THEORY FOR SET
CONTRACTIVE MAPS

The Leray Schauder degree theory is very useful in solving an operator equa-
tion of the type (I − T )x = y, where T is compact. In many applications T
is not compact, so one may ask it is possible to give an analogue of the Leray
Schauder theory in the noncompact case. In 1936, Leray [184] constructed an
example to show that it is impossible to define a degree theory for mappings
with only a continuity condition. So a very natural question which arises is
the following:

For what kind of mappings in infinite dimensional spaces can we establish
a degree theory ?

Browder, Nussbaum, Sadovski, Vath, etc., showed that it is possible to
define a complete analogue of the Leray Schauder theory for condensing type
mappings T .

In this Chapter, we will introduce the degree theory for k-set contraction
mappings and condensing mappings. This chapter consists of three sections.

In Section 3.1, we define measures of non-compactness and present some
properties (see propositions 3.1.5, 3.1.7 and theorems 3.1.14, 3.1.15). Also,
countably condensing maps, etc., are defined here and, in particular, a fixed
point theorem for countably condensing self-mappings is presented in Corol-
lary 3.1.18.

Section 3.2 presents a degree theory for countably condensing mappings and
the theory is based on the use of retractions and the Leray Schauder degree.
Again, various properties and consequences are presented.

In Section 3.3, we use the degree of Section 3.2 to discuss the initial and
anti-periodic ordinary differential equations in Banach spaces.

3.1 Measure of Noncompactness and Set Contractions

Let (X, d) be a metric space and A ⊂ X be a subset. We call diam(A) =
supx,y∈Ad(x, y) the diameter of A. If diam(A) < +∞, then we call A

55
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bounded. For two bounded sets A,B, the Hausdorff metric H is defined
by

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)}.

Let B(X) be the collection of all bounded subsets of X.

Proposition 3.1.1. If A ⊂ B, then diam(A) ≤ diam(B) and diam(A) =
diam(A).

Proposition 3.1.2. Let X be a Banach space and A,B ⊂ X. Then we
have the following:

(1) diam(λB) = |λ|diam(B);

(2) diam(x+B) = diam(B);

(3) diam(A+B) ≤ diam(A) + diam(B);

(4) diam(conv(A)) = diam(A).

Proof. (1)-(3) are obvious. To see (4), let x, y ∈ conv(A). There exist
si ∈ (0, 1), xi ∈ X, i = 1, 2, · · · , k, ti ∈ (0, 1), yi ∈ A, i = 1, 2, · · · ,m, such
that x = Σk

i=1sixi and y = Σm
i=1siyi. Now, we have

‖x− y‖ = ‖Σk
i=1sixi − Σm

i=1siyi‖
= Σk

i=1Σ
m
j=1sitjxi − Σk

i=1Σ
m
j=1sitjyj‖

≤ Σk
i=1Σ

m
j=1sitj‖xi − yj‖

≤ Σk
i=1Σ

m
j=1sitjdiam(A).

Thus diam(conv(A)) ≤ diam(A), and the converse is obvious. Therefore, the
conclusion is true. This completes the proof.

Proposition 3.1.3. Let (X, d) be a metric space. Then (B(X),H) is a
metric space.

Proof. Obviously, H(A,B) ≥ 0 for any A,B ∈ B(X), H(A,B) = 0 if only
if A = B and H(A,B) = H(B,A).

For A,B,C ∈ B(X), we have

d(x,B) ≤ d(x, z) + d(z,B), d(y,A) ≤ d(y, z) + d(z,A)

for all z ∈ C, x ∈ A and y ∈ B. Thus

d(x,B) ≤ inf
z∈C

d(x, z) + sup
z∈C

d(z,B),

d(y,A) ≤ inf
z∈C

d(y, z) + sup
z∈C

d(z,A)

Copyright 2006 by Taylor & Francis Group, LLC



DEGREE THEORY FOR SET CONTRACTIVE MAPS 57

and so

H(A,B)
≤ max{sup

x∈A
d(x,C) + sup

z∈C
d(z,B), sup

y∈B
d(y, C) + supz∈Cd(z,A)}

≤ max{sup
x∈A

d(x,C), supz∈Cd(z,A)}+ max{sup
z∈C

d(z,B), sup
y∈B

d(y, C)}

= H(A,C) +H(C,B).

Thus (B(X),H) is a metric space. This completes the proof.

Definition 3.1.4. Let (X, d) be a metric space, B be the collection of all
bounded subsets of X and A,B ∈ B. A function α : β → [′,+∞) defined by

α(A) = inf{δ > 0 : A is covered by finitely
many sets each having diameter less than δ}

is called the (Kuratowski) measure of noncompactness. If we replace α(A) by

β(A) = inf{δ > 0 : A is covered by finitely many balls with radius δ},

then we call β(A) as the ball (Hausdorff) measure of noncompactness.

The relation between α and β is given by the following inequality.

Proposition 3.1.5. β(A) ≤ α(A) ≤ 2β(A) for all A ∈ B.

Proof. For any δ > α(A), there exist finitely many sets A1, A2, · · · , Ak

such that A ⊂ ∪k
i=1Ai and diam(Ai) < δ for i = 1, 2, · · · , k. Choose xi ∈ Ai.

Then Bδ(xi) ⊃ Ai, so we have A ⊂ ∪k
i=1Bδ(xi) and thus β(A) ≤ δ. By letting

δ → α(A), we get the first inequality.
For the second inequality, if δ > β(A), then there exist finitely many balls

Bδ(y1), Bδ(y2), · · · , Bδ(ym) such that A ⊂ ∪m
i=1Bδ(yi). It is obvious that

diam(Bδ(yi)) = 2δ,

so we have α(A) ≤ 2δ and, by letting δ → β(A), we deduce the desired
inequality. This completes the proof.

Proposition 3.1.6. Let X be a metric space and B be the collection of
all bounded subsets of X. Let φ be the Kuratowski measure or Hausdorff
measure of noncompactness and A,B ∈ B. Then the following properties
hold:

(1) φ(A) = 0 if and only if A is relatively compact;

(2) φ(A) = φ(A);

(3) If A ⊂ B, then φ(A) ≤ φ(B);
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(4) φ(A ∪B) = max{φ(A), φ(B)};

(5) φ(A ∩B) ≤ min{φ(A), φ(B)};

(6) |φ(A)− φ(B)| ≤ 2H(A,B);

(7) If X is a Banach space, then

φ(λA) = |λ|φ(A), λ ∈ R, φ(A+B) ≤ φ(A)+φ(B), φ(conv(A)) = φ(A).

Proof. In (1)–(5), φ(λA) = |λ|φ(A) for any λ ∈ R and φ(A + B) ≤
φ(A) + φ(B) follow easily from the definition.

We only need to prove (6) and φ(conv(A)) = φ(A). Assume that φ = α.
The proof is the same for φ = β.

For any ε > 0, there exists a finite cover {A1, A2, · · · , Ak} of A with
diam(Ai) ≤ α(A) + ε for i = 1, 2, · · · , k. Set

η = H(A,B) + ε, Bi = {y ∈ B : there exists x ∈ Ai, d(x, y) < η}

for i = 1, 2, · · · , k. Since H(A,B) < η, we have B ⊂ ∪k
i=1Bi. Obviously,

diam(Bi) ≤ 2η + diam(Ai) < 2H(A,B) + α(A) + 3ε

for i = 1, 2, · · · and thus α(B) ≤ 2H(A,B) + α(A).
Similarly, we have α(A) ≤ 2H(A,B) + α(B). Therefore, we have

|α(A)− α(B)| ≤ 2H(A,B).

For (7): Obviously, α(A) ≤ α(conv(A)). For any ε > 0, there exists a finite
cover {A1, A2, · · · , Ak} of A with diam(Ai) < α(A) + ε for i = 1, 2, · · · , k.
We may also assume that Bi is convex since diam(conv(Bi)) = diam(Bi) for
i = 1, 2, · · · , k. Put

Λ = {(λi, λ2, · · · , λk) : λi ≥ 0, i = 1, 2, · · · , k, Σk
i=1λi = 1}

and B(λ) = Σk
i=1λiBi for each λ = (λ1, λ2, · · · , λk) ∈ Λ. We have

α(B(λ)) ≤ α(A) + ε for all λ ∈ Λ.

Now, we show that ∪λ∈ΛB(λ) is convex. For λ = (λ1, λ2, · · · , λk), µ =
(µ1, µ2, · · · , µk) ∈ Λ and x = Σk

i=1λixi ∈ B(λ), y = Σk
i=1µiyi ∈ B(µ), where

xi, yi ∈ Bi for i = 1, 2, · · · , k, we have

tx+ (1− t)y = Σk
i=1(tλi + (1− t)µi)[

tλi

tλi + (1− t)µi
xi +

(1− t)µi

tλi + (1− t)µi
yi].

Thus it follows that ∪λ∈ΛB(λ) is convex. Therefore, we have

conv(A) ⊂ conv(∪k
i=1Bi) ⊂ ∪λ∈ΛB(λ).
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Since Λ is compact, there exist finitely many λ1, λ2, · · · , λn ∈ Λ such that

∪λ∈ΛB(λ) ⊂ ∪n
i=1B(λi) + εB1(0).

Therefore, we have

conv(A) ⊂ ∪n
i=1B(λi) + εB1(0),

which implies that
α(conv(A)) ≤ α(A) + 3ε.

By letting ε → 0+, we get α(conv(A)) ≤ α(A). Thus α(conv(A)) = α(A)).
This completes the proof.

Proposition 3.1.7. Let X be a infinite dimensional Banach space and
B(0, 1) be the unit ball. Then α(B(0, 1)) = 2.

Proof. It is obvious that diam(B(0, 1)) = 2, so α(B(0, 1)) ≤ 2.
If α(B(0, 1)) < 2, then there exists A1, A2, · · · , Ak such that diam(Ai) < 2

for i = 1, 2 · · · , k and B(0, 1) ⊂ ∪k
i=1Ai. Take a k-dimensional subspace Xk

of X and set Bk(0, 1) = B(0, 1) ∩Xk, Bi = Ai ∩Xk for i = 1, 2, · · · , k. Then
we have

Bk(0, 1) ⊂ ∪k
i=1Bi, diam(Bi) < 2, i = 1, 2, · · · , k,

which is a contradiction to Theorem 1.2.17. Thus α(B(0, 1)) = 2. This
completes the proof.

Proposition 3.1.8. Let X be a separable Banach space and β be the
Hausdorff measure of noncompactness. Then there exists an increasing se-
quence of finite dimensional subspaces (Xn) with X = ∪∞n=1Xn such that, for
any bounded countable subset {xn : 1 ≤ n <∞},

β({xn}) = lim
n→∞

lim sup
m→∞

d(xm, Xn).

Proof. Since X is separable, there exists a countable subset {y1, y2, · · · }
of X such that {y1, y2, · · · } = X. Put Xn = span{y1, y2, · · · , yn} for n =
1, 2, · · · . Then X1 ⊂ X2 ⊂ · · · and X = ∪∞n=1Xn. For any ε > 0 and integer
n > 0, set rn = lim supm→∞ d(xm, Xn). One can easily see that r1 ≥ r2 ≥ · · ·
since Xn is increasing. Choose an integer L > 0 such that d(xm, Xn) < rn + ε
for all m ≥ L.

Next, we define

Y = {y ∈ Xn : there exists m ≥ L, d(xm, Xn) = ‖xm − y‖}.

Then it follows that Y ∪{x1, x2, · · · , xL} is compact. Thus there exist finitely
many {z1, z2, · · · , zk} such that

Y ∪ {x1, x2, · · · , xL} ⊂ ∪k
i=1B(zi, ε).
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Therefore, we have

{x1, x2, · · · } ⊂ {x1, x2, · · · , xL} ∪B(Y, rn + ε) ⊂ ∪k
i=1B(zi, rn + 2ε).

Thus β({xn}) ≤ rn + 2ε, i.e.,

β({xn}) ≤ inf{rn, n ≥ 1} = lim
n→∞

lim sup
m→∞

d(xm, Xn).

On the other hand, for ε > 0, put r = β({xi : i ≥ 1}) and there exists
finitely many wi, 1 ≤ i ≤ s, such that {x1, x2, · · · } ⊂ ∪s

i=1B(wi, r + ε). By
the construction of Xn, we know that there exists an integer K > 0 such that
d(wi, Xn) < ε for i = 1, 2, · · · , s and n > K. Therefore, we have

d(xm, Xn) ≤ inf{‖xm − wi‖ : 1 ≤ i ≤ s}+ sup{d(wi, Xn) : 1 ≤ i ≤ s}
≤ r + 2ε

for m ≥ 1 and n > K. From this, we get

lim
n→∞

lim sup
m→∞

d(xm, Xn) ≤ r.

Thus we have limn→∞ lim supm→∞ d(xm, Xn) = β({xi : i ≥ 1}). This com-
pletes the proof.

Definition 3.1.9. Let X be a real normed space, T : D → X be a mapping
and α be the measure of noncompactness.

(1) T is called a k-set contraction if α(TB) ≤ kα(B) for all bounded subsets
B ⊂ D, where k > 0 is a constant;

(2) T is said to be condensing if α(TB) < α(B) for all bounded subsets
B ⊂ D with α(B) > 0.

Example 3.1.10. Let X be a real normed space and T : X → X be a
linear bounded operator. Then L is a ‖L‖-set contraction.

Example 3.1.11. Let X be a real normed space and T : D ⊂ X → X be a
Lipschitz mapping with Lipschitz constant l. Then T is an l-set contraction.

Proposition 3.1.12. Let X be a real normed space, B(0, 1) be the unit
ball of X and T : X → B(0, 1) be defined by

Tx =

{
x
‖x‖ , ‖x‖ ≥ 1,

x, x ∈ B(0, 1).

Then T is an 1-set contraction.

Proof. Let A ⊂ X be a bounded set. It is obvious that T (A) ⊂ conv({0}∪
A), so we have

α(T (A)) ≤ α(conv({0} ∪A)) = α({0} ∪A) = α(A).
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Proposition 3.1.13. Let X be a infinite dimensional Banach space, φ :
[0, 1] → [0, 1] be a strictly decreasing and continuous function, B(0, 1) be the
unit ball of X and T : B(0, 1) → B(0, 1) be defined by

Tx = φ(|x|)x for all x ∈ B(0, 1).

Then α(T (B)) < α(B) for B ⊂ B(0, 1) with α(B) > 0.

Proof. Let B ⊂ B(0, 1) be such that α(B) = c > 0. Take r ∈ (0, c
2 )

and define the sets B1 = B ∩ B(0, r), B2 = B \ B(0, r). It is obvious that
T (B) = T (B1) ∪ T (B2), so we have

α(T (B)) = α(T (B1) ∪ T (B2)) ≤ max{α(T (B1)), α(T (B2))}.

Moreover, it follows that

α(T (B1)) ≤ α(conv({0} ∪B1)) = α(B1) ≤ diam(B1) ≤ 2r < c

and
T (B2) ⊂ conv({0} ∪ φ(r)B),

so α(T (B2)) ≤ α(φ(r)B) < α(B). Thus we have α(T (B)) < α(B). This
completes the proof.

Definition 3.1.14. Let X be a real Banach space, T : D → X be a
mapping and α be the measure of noncompactness.

(1) T is called a countably k-set contraction if α(TB) ≤ kα(B) for all
countably bounded subsets B ⊂ D, where k > 0 is a constant;

(2) T is said to be countably condensing if α(TB) < α(B) for all countably
bounded subsets B ⊂ D with α(B) > 0;

(3) H(t, x) : [0, 1]×D → X is said to be a homotopy of countably condensing
mappings if α(H([0, 1]×B)) < α(B) for all countably bounded subsets
B ⊂ D with α(B) > 0.

One can easily see that a condensing mapping is a countably condensing
mapping.

Theorem 3.1.15. Let E be a Banach space and B ⊂ C([a, b], E) be a
bounded equicontinuous subset. Then α(B(t)) is continuous on [a, b], where
B(t) = {x(t) : x(·) ∈ B}, and

α({
∫ b

a

x(t)dt : x(·) ∈ B}) ≤
∫ b

a

α(B(t))dt.

Proof. First, we prove that α({x(t) : x(·) ∈ B}) is a continuous function
on [a, b]. For any ε > 0, since B is equicontinuous, there exists γ > 0 such
that ‖x(t)− x(t′)‖ < ε for all t, t′ ∈ [a, b] satisfying |t− t′| < γ. Thus we have

H({x(t) : x(·) ∈ B}, {x(t′) : x(·) ∈ B}) ≤ ε
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for t, t′ ∈ [a, b] satisfying |t− t′| < γ. From this and (6) of Proposition 3.1.6,
we infer that

|α({x(t) : x(·) ∈ B})− α({x(t′) : x(·) ∈ B})| ≤ 2ε

for t, t′ ∈ [a, b] satisfying |t−t′| < γ. Thus α({x(t) : x(·) ∈ B}) is a continuous
function on [a, b].

For any division of [a, b]: a = t0 < t1 < · · · < tn = b, where ti = a + i b−a
n ,

i = 0, 1, · · · , n. For any ε > 0, from the equicontinuity of B, there exists
N > 0 such that, if n > N , then

‖x(ti)− x(t)‖ < ε for all x(·) ∈ B, t ∈ [ti−1, ti]

for i = 1, 2, · · · , n. Thus we have

‖Σn
i=1x(ti)

b− a

n
−
∫ b

a

x(t)dt‖ = ‖Σn
i=1

∫ ti

ti−1

(x(ti)− x(t))dt‖ < ε(b− a)

for all n > N . Therefore, we have

|α({Σn
i=1x(ti)

b− a

n
: x(·) ∈ B})− α({

∫ b

a

x(t)dt : x(·) ∈ B})| ≤ 2ε(b− a),

i.e.,

lim
n→∞

α({Σn
i=1x(ti)

b− a

n
: x(·) ∈ B}) = α({

∫ b

a

x(t)dt : x(·) ∈ B}).

On the other hand, by (6) of Proposition 3.1.6, we have

α({Σn
i=1x(ti)

b− a

n
: x(·) ∈ B}) ≤ Σn

i=1α({x(ti) : x(·) ∈ B})b− a

n
.

Therefore, it follows that

α({
∫ b

a

x(t)dt : x(·) ∈ B}) ≤
∫ b

a

α(B(t))dt.

This completes the proof.

Theorem 3.1.16. Let E be a Banach space and B ⊂ C([a, b], E) be a
bounded equicontinuous subset, where a, b ∈ R. Then

α(B) = max
t∈[a,b]

α({x(t) : x(·) ∈ B}).

Proof. First, by Theorem 3.1.15, we know that α({x(t) : x(·) ∈ B}) is a
continuous function on [a, b].

Copyright 2006 by Taylor & Francis Group, LLC



DEGREE THEORY FOR SET CONTRACTIVE MAPS 63

Next, for α(B) < δ, there exist B1, B2, · · · , Bm ⊂ C([a, b), E) such that
diam(Bi) ≤ δ and B ⊂ ∪m

i=1Bi. Hence, for each t ∈ [a, b], we have

{x(t) : x(·) ∈ B} ⊂ ∪m
i=1{x(t) : x(·) ∈ Bi}.

Also, we have

diam({x(t) : x(·) ∈ Bi} = sup
x(·),y(·)∈Bi

‖x(t)− y(t)‖ ≤ diam(Bi) ≤ δ.

Therefore, α({x(t) : x(·) ∈ B}) ≤ δ for all t ∈ [a, b] and thus

maxα({x(t) : x(·) ∈ B}) ≤ α(B).

On the other hand, since B is equicontinuous, there exist finitely many
t1, t2, · · · , tn ∈ [a, b] such that

{x(t) : x(·) ∈ B} ⊂ ∪n
i=1{x(ti) : x(·) ∈ B}+Bε(0) for all t ∈ [a, b].

If δ > maxt∈[a,b] α({x(t) : x(·) ∈ B}), we can find finitely many subsets
A1, A2, · · · , As ⊂ E such that

diam(Ai) ≤ δ, ∪n
i=1{x(ti) : x(·) ∈ B} ⊂ ∪s

i=1Ai.

Obviously, B is the union of finitely many sets {x(·) ∈ B : x(ti) ∈ Aji
, i =

1, 2, · · · , n} and each of these sets has diameter less than δ+2ε. Thus we have
α(B) ≤ δ + 2ε and we get the desired result. This completes the proof.

Proposition 3.1.17. Let E be a Banach space, Ω ⊂ E be an bounded
subset and T : Ω → E be a countably condensing mapping. Put F = {x ∈
Ω : Tx = x}. Then there exists a convex compact subset C such that

(1) F ⊆ C;

(2) if x0 ∈ conv(C ∪ {Tx0}), then x0 ∈ C;

(3) C = conv(T (C ∩ Ω)).

Proof. Put

F = {K : F ⊂ K ⊂ E closed convex, T (K ∩ Ω) ⊆ K and (2) holds for K}.

Then F is nonempty since conv(TΩ) ∈ F . We set C = ∩K∈FK. Obviously,
C satisfies (1),(2), (3), and C is closed convex.

Now, we prove that C is compact. Assume that this is not true. Then
there exists C1 = {x1, x2, · · · } ⊂ C without a Cauchy subsequence. Note that
C = conv(T (C ∩ Ω)). Thus there exists a countable subset A1 ∈ C ∩ Ω such
that C1 ⊆ conv(TA1). One can easily prove that H1 = conv(T (C1 ∩ Ω)) is
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separable and H1 ∩ Ω is separable, so there exist countable subsets B1 ⊂ H1

andD1 ⊂ H1∩Ω such that B1 = H1, D1 = H1∩Ω. Put C2 = C1∪A1∪B1∪D1.
One can check that

C1 ⊂ C2, (3.1.1)

conv(T (C1 ∩ Ω)) ⊂ C2, (3.1.2)

conv(T (C1 ∩ Ω) ∩ Ω ⊂ C2 ∩ Ω. (3.1.3)

In general, we define inductively a sequence (Cn) of countable subsets Cn of
C satisfying

Cn ⊂ Cn+1, (3.1.4)

conv(T (Cn ∩ Ω)) ⊂ Cn+1, (3.1.5)

conv(T (Cn ∩ Ω) ∩ Ω ⊂ Cn+1 ∩ Ω. (3.1.6)

Finally, we put L = ∪∞n=1Cn. Then

L ⊆ convT (L ∩ Ω.

Thus we have
α(L) ≤ α(convT (L ∩ Ω) < α(L ∩ Ω),

which is a contradiction. Therefore, C is compact. This completes the proof.

Proposition 3.1.18. [291] Let E be a Banach space, Ω ⊂ E be a bounded
subset and T : Ω → E be a countably condensing mapping. Set C1 =
conv(TΩ), Cn+1 = conv(T (Cn ∩ Ω)) for n ≥ 1 and C = ∩∞n=1Cn. Then
C is convex and compact.

Proof. This is a special case of Lemma 7.2.1.

Corollary 3.1.19. Let C ⊂ E be a nonempty bounded closed convex
subset and let T : C → C be a continuous countably condensing mapping.
Then T has a fixed point in C.

Proof. We first assume that T is k-set countably condensing for some
k ∈ [0, 1). Let C1 = convTC and Ci+1 = convTCi for i = 1, 2, · · · . By
Proposition 3.1.18, K = ∩∞i=1Ci is convex and compact and also T : K → K
is a mapping.

Now, we prove that K is non-empty. Take x0 ∈ C, then T ix0 ∈ Ci for
i ≥ 1. We have α({T ix0, i ≥ n}) ≤ knα({T i

0, i ≥ 0}) for n ≥ 1. Obviously,

α({T ix0, i ≥ n}) = α({T ix0, i ≥ 0}),

so α({T ix0, i ≥ 0}) = 0. Therefore, (T ix0)∞i=1 has a subsequence which
converges to a point in K and hence K is nonempty. Therefore, T has a fixed
point.
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Now, assume that T is countably condensing. Take x0 ∈ C and, for any
k ∈ (0, 1), put Sx = kTx+ (1− k)x0 for all x ∈ C. Then S is k-set countably
condensing, so S has a fixed point in C. Let kn → 1. Then there are xn ∈ C
such that

knTxn + (1− kn)x0 = xn,

which implies that α({Txn : n ≥ 1}) = α({xn : n ≥ 1}). Since T is countably
condensing, (xn)∞n=1 has a subsequence xnj

→ y ∈ C. By the continuity of T ,
we have Ty = y. This completes the proof.

3.2 Degree Theory for Countably Condensing Mappings

In this section, we introduce a degree theory for condensing mappings.

Construction of the degree for a countably condensing mapping.

Let E be a Banach space and Ω ⊂ E be an open bounded subset. Let
T : Ω → E be a continuous and countably condensing mapping and 0 /∈
(I − T )(∂Ω). If 0 /∈ (I − T )(Ω), we define deg(I − T,Ω, 0) = 0. Otherwise,
put F = {x ∈ Ω : Tx = x} and let C be the convex compact subset satisfying
Proposition 3.1.17. Now, C is nonempty since F ⊂ C. Obviously, T : C∩Ω →
C is a mapping. If r : E → C is a retraction, then Tr is compact and
r−1(Ω) is open in E. By assumption, 0 /∈ (I − T )(∂Ω) and we know that 0 /∈
(I−Tr)(∂(r−1(Ω)∩Ω), so the Leray Schauder degree deg(I−Tr, r−1(Ω)∩Ω, 0)
is well defined for each retraction r. Now, we define

deg(I − T,Ω, 0) = deg(I − Tr, r−1(Ω) ∩ Ω, 0), (3.2.1)

where deg(I − Tr, r−1(Ω) ∩ Ω, 0) is the Leray Schauder degree.
To see this definition is reasonable, we show that, if r1, r2 : X → C are two

retractions, then

deg(I − Tr1, r
−1
1 (Ω) ∩ Ω, 0) = deg(I − Tr2, r

−1
2 (Ω) ∩ Ω, 0).

Put r(t, x) = tr1x + (1 − t)r2x for all (t, x) ∈ [0, 1] × E. Then r(t, ·) :
E → C is a retraction for each t ∈ [0, 1]. Obviously, x 6= Tr(t, x) for
(t, x) ∈ [0, 1]∂(r−1

1 (Ω) ∩ r−1
2 (Ω) ∩ Ω). Thus, by the homotopy property of

Leray Schauder degree, we have

deg(I − Tr1, r
−1
1 (Ω) ∩ r−1

2 (Ω) ∩ Ω, 0)
= deg(I − Tr2, r

−1
1 (Ω) ∩ r−1

2 (Ω) ∩ Ω, 0).

It is simple to check that

0 /∈ r−1
1 (Ω) ∩ Ω \ r−1

1 (Ω) ∩ r−1
2 (Ω) ∩ Ω
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and
0 /∈ r−1

2 (Ω) ∩ Ω \ r−1
1 (Ω) ∩ r−1

2 (Ω) ∩ Ω.

Thus the excision property of the Leray Schauder degree implies that

deg(I − Tr1, r
−1
1 (Ω) ∩ Ω, 0) = deg(I − Tr1, r

−1
1 (Ω) ∩ r−1

2 (Ω) ∩ Ω, 0)

and

deg(I − Tr2, r
−1
2 (Ω) ∩ Ω, 0) = deg(I − Tr2, r

−1
1 (Ω) ∩ r−1

2 (Ω) ∩ Ω, 0).

Therefore, we have

deg(I − Tr1, r
−1
1 (Ω) ∩ Ω, 0) = deg(I − Tr2, r

−1
1 (Ω) ∩ r−1

2 (Ω) ∩ Ω, 0).

One may also define a degree by taking the set C as in Proposition 3.1.18.
This degree will coincide with the above one by the excision property of the
Leray Schauder degree.

Theorem 3.2.1. The degree defined by 3.2.1 has the following properties:

(1) (Normality) deg(I,Ω, 0) = 1 if and only if 0 ∈ Ω;

(2) (Solvability) If deg(I − T,Ω, 0) 6= 0, then Tx = x has a solution in Ω;

(3) (Homotopy) Let H(t, x) : [0, 1]×Ω → E be a continuous and countably
condensing mappings, i.e., α([0, 1]×B) < α(B) for all countable subset
B of Ω with α(B) > 0 and H(t, x) 6= x for all (t, x) ∈ [0, 1]× ∂Ω. Then
deg(I −H(t, ·),Ω, 0) doesn’t depend on t ∈ [0, 1];

(4) (Additivity) Let Ω1,Ω2 be two disjoint open subsets of Ω and 0 /∈
(I − T )(Ω− Ω1 ∪ Ω2). Then

deg(I − T,Ω, 0) = deg(I − T,Ω1, 0) + deg(I − T,Ω2).

Proof. (1), (2), and (4) follow directly from the definition and properties
of the Leray Schauder degree.

To prove (3), we set

C0 = conv(H([0, 1]× Ω)), Cn = conv(H([0, 1]× (Cn−1 ∩ Ω)))

for n ≥ 1. Then C = ∩∞n=0Cn is compact by virtue of Proposition 3.1.18 and
H([0, 1]× C) → C. Let r : E → C be a retraction. Then x 6= H(t, rx) for all
x ∈ ∂(r−1(Ω∩C)∩Ω). Thus deg(I−H(t, ·)r, r−1(C∩Ω)∩Ω, 0) doesn’t depend
on t. Therefore, the conclusion follows from the definition of the degree and
the excision property of the Leray Schauder degree. This completes the proof.

Theorem 3.2.2. Let E be a Banach space, Ω ⊂ E be an open bounded
subset with 0 ∈ Ω and T : Ω → E be a continuous and countably condensing
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mapping. Suppose x 6= λTx for all λ ∈ [0, 1), x ∈ ∂Ω. Then T has a fixed
point in Ω.

Proof. We may assume that Tx 6= x for all x ∈ ∂Ω. Put H(t, x) = tTx
for all (t, x) ∈ [0, 1] × Ω. It is easy to see that {H(t, ·)}t∈[0,1] is a homotopy
of countably condensing mappings. By assumption, we have H(t, x) 6= x for
all x ∈ ∂Ω. As a result, deg(I − T,Ω, 0) = deg(I,Ω, 0) = 1. Thus Tx = x has
a solution in Ω, which is the desired result. This completes the proof.

Corollary 3.2.3. Let E be a Banach space, Ω ⊂ E be an open bounded
subset with 0 ∈ Ω and T : Ω → E be a continuous and countably condensing
mapping. Suppose ‖Tx‖ ≤ ‖x‖ for all x ∈ ∂Ω. Then T has a fixed point in
Ω.

Proof. We may assume that Tx 6= x for all x ∈ ∂Ω. Otherwise, the
conclusion is true. Thus we have Tx 6= λx for all x ∈ ∂Ω and λ ≤ 1. By
Theorem 3.2.2, T has a fixed point in Ω.

Theorem 3.2.4. Let E be a Banach space and T : E → E be a continuous
and countably condensing mapping. Then one of the following conclusions
holds:

(1) T has a fixed point in E;

(2) {x : Tx = λx for some λ > 1} is unbounded.

Proof. Assume that {x : Tx = λx for some λ > 1} is bounded. Take
r > 0 such that {x : Tx = λx for some λ > 1} ⊂ B(0, r). If Tx = x
for some x ∈ ∂B(0, r), then (1) holds. So we may assume that Tx 6= x
for all x ∈ ∂B(0, r). Thus x 6= tTx for all t ∈ [0, 1] and x ∈ ∂B(0, r), so
deg(I − T,B(0, r), 0) = 1 and T has a fixed point in B(0, r). This completes
the proof.

Theorem 3.2.5. Let E be a infinite dimensional Banach space, Ω ⊂ E
be an open bounded subset with 0 ∈ Ω, T : Ω → E be a continuous and
countably condensing mapping and S : ∂Ω → E be a continuous compact
mapping. Suppose tTx + (1 − t)Sx 6= x and ‖Sx‖ ≥ ‖x‖ for all x ∈ ∂Ω and
t ∈ [0, 1]. Then deg(I − T,Ω, 0) = 0.

Proof. First, there exists a continuous compact mapping L : Ω → E such
that Lx = Sx for all x ∈ ∂Ω. Obviously, we have tTx+ (1− t)Lx 6= x for all
(t, x) ∈ [0, 1]× ∂Ω. Thus

deg(I − T,Ω, 0) = deg(I − L,Ω, 0).

By Lemma 2.2.11, we have deg(I − L,Ω, 0) = 0 and so deg(I − T,Ω, 0) = 0.

Corollary. 3.2.6. Let E be a infinite dimensional Banach space, Ω ⊂ E an
open bounded subset with 0 ∈ Ω, x0 ∈ E such that ‖x0‖ > supx∈∂Ω ‖x‖, and
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let T : Ω → E be a continuous and countably condensing mapping. Suppose
‖Tx‖ > ‖x‖ and Tx 6= λx + (λ − 1)x0 for all x ∈ ∂Ω, and λ > 1. Then
deg(I − T,Ω, 0) = 0. This completes the proof.

Proof. Define a mapping S : ∂Ω → E by Sx = x0. Then S is continuous,
compact and tTx + (1 − t)Sx 6= x for all x ∈ ∂Ω and t ∈ [0, 1]. Obviously,
‖Sx‖ > ‖x‖ for all x ∈ ∂Ω. Thus the conclusion follows from Theorem 3.2.5.

Theorem 3.2.7. Let E be a infinite dimensional Banach space, Ωi ⊂ E,
i = 1, 2, be two open bounded subsets such that 0 ∈ Ω1 ⊂ Ω2, x0 ∈ E be such
that ‖x0‖ > supx∈∂Ω2

‖x‖ and T : Ω2 → E be a continuous and countably
condensing mapping. Suppose that the following conditions are satisfied:

(1) ‖Tx‖ ≤ ‖x‖ for all x ∈ ∂Ω1;

(2) ‖Tx‖ ≥ ‖x|| and Tx 6= λx+ (λ− 1)x0 for all x ∈ ∂Ω and λ > 1.

Then T has a fixed point in Ω2 \ Ω1.

Proof. We may assume that Tx 6= x for x ∈ ∂Ω1∪∂Ω2. By assumption (1),
we know x− tTx 6= 0 for t ∈ [0, 1] and x ∈ ∂Ω1. Thus deg(I − T,Ω1, 0) = 1.

On the other hand, by assumption (2) and Corollary 3.2.6, we have deg(I−
T,Ω2, 0) = 0. Thus

deg(I − T,Ω2 \ Ω1, 0) = deg(I − T,Ω2, 0)− deg(I − T,Ω1, 0) = −1

and so T has a fixed point in Ω2 \ Ω1. This completes the proof.

Remark. One can define a degree theory for the so-called fundamentally
restrictive mapping (see [291]).

3.3 Applications to ODEs in Banach Spaces

In this section, we give some applications to the ordinary differential equa-
tions in Banach spaces by using the degree theory for set contractive mappings.

Theorem 3.3.1. Let E be a Banach space and f(t, x) : [0, 1]×B(x0, r0) →
E be a continuous mapping satisfying

α(f([0, 1]×B(x0, r)) ≤ kα(B(x0, r)) for all r ∈ (0, r0),

where k ∈ (0, 1) and r0 > 0 are constants. Then there exists t0 ∈ (0, 1] such
that the initial value problem{

x′(t) = f(t, x(t)), t ∈ (0, t0),
x(0) = x0

(E 3.3.1)
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has a solution.

Proof. Set

M = sup{‖f(t, x)‖ : (t, x) ∈ [0, 1]×B(x0, r0}, t0 = min{1, r0
M
}.

Obviously, (E 3.3.1) is equivalent to the following integral equation:

x(t) = x0 +
∫ t

0

f(s, x(s))ds. (E 3.3.2)

Put X = C([0, t0], E) with the norm ‖x(·)‖ = max{‖x(t)‖ : t ∈ [0, t0]}. Then
X is a Banach space. We also set K = {x(·) ∈ X : x(t0) = x0, ‖x(t)−x(t0)‖ ≤
r0}. Then K is a bounded closed convex subset of X.

Now, we define a mapping T : K → K by

Tx(t) = x0 +
∫ t

0

f(s, x(s))ds for all x(·) ∈ K.

It is easy to see that T is continuous. Now, we prove that T is condensing.
In fact, for any subset B of K with α(B) > 0, we have

α(TB) = sup
t∈[0,t0]

α({Tx(t) : x(·) ∈ B})

= sup
t∈[0,t0]

α({x0 +
∫ t

0

f(s, x(s)) : x(·) ∈ B})

≤ sup
t∈[0,t0]

α({x0 + tconv(f(s, x(s)) : s ∈ [0, t0])}) : x(·) ∈ B})

≤ sup
t∈[0,t0]

α({x0 + tconv(f([0, t0]×B))})

≤ t0 sup
t∈[0,t0]

α(f([0, t0]×B))

≤ t0kα(B).

Thus T is a condensing mapping, so T has a fixed point in K, i.e., (E 3.3.2)
has a solution. Consequently, (E 3.3.1) has a solution. This completes the
proof.

Theorem 3.3.2. Let H be a real Hilbert space, T > 0 be a constant,
f(t, x) : R×H → H be a continuous mapping satisfying

α(f([0, T ]×B) ≤ kα(B)

for all bounded subsets B of H, where k ∈ (0, 1) is a constant, and kT < 1.
If f(t+ T,−x) = −f(t, x) and ‖f(t, x)‖ ≤M‖x‖+ g(t) for all (t, x) ∈ R×E,
where 0 ≤ MT < 2 is a constant, and g(·) ∈ L2(0, T ), then the following
problem {

x′(t) = f(t, x(t)), t ∈ R,
x(t+ T ) = −x(t)

(E 3.3.3)
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has a solution.

Proof. Let Ca = {x(·) : R → H is continuous , x(t + T ) = −x(t), t ∈ R}.
Define ‖x(·)‖a = maxt∈[0,T ] for x(·) ∈ Ca, and it is easy to check that Ca

is a Banach space under this norm. It is simple to check that (E 3.3.3) is
equivalent to the following equation:

x(t) = −1
2

∫ T

t

f(s, x(s))dt+
1
2

∫ t

0

f(s, x(s))ds. (E 3.3.4)

We define a mapping S : Ca → Ca by

Sx(t) = −1
2

∫ T

t

f(s, x(s))dt+
1
2

∫ t

0

f(s, x(s))ds for all x(·) ∈ Ca.

For any bounded subset U of Ca, we have, by Theorem 3.1.16, that

α(SU) = max
t∈[0,T ]

{α({Sx(t) : x(·) ∈ U})}.

By the same reasoning as in Theorem 3.3.1, we get

α(SU) ≤ kTα(U).

Thus S is a kT -set contraction.
Now, we prove that Sx(·) 6= λx(·) for all λ > 1 and x(·) ∈ Ca with

‖x(·)‖a > (1− MT

2
)−1

√
T

2
(
∫ T

0

g2(t)dt)
1
2 .

In fact, suppose that there exists x(·) ∈ Ca with

‖x(·)‖ > (1− MT

2
)−1

√
T

2
(
∫ T

0

g2(t)dt)
1
2

such that Sx(·) = λx(·). Then we have

λx′(t) = f(t, x(t)). (3.3.1)

Multiply both sides of (3.3.1) by x′(t) and integrate over [0, T ], we have

λ

∫ T

0

‖x′(t)‖2dt =
∫ T

0

f(t, x(t))x′(t)dt

≤ M

∫ T

0

‖x(t)‖‖x′(t)‖dt+
∫ T

0

g(t)‖x′(t)‖dt.

In view of Lemma 2.5.4, we have

λ

∫ T

0

‖x′(t)‖2dt ≤ MT

2

∫ T

0

‖x′(t)‖2dt+ (
∫ T

0

g2(t)dt)
1
2 (
∫ T

0

‖x′(t)‖2dt) 1
2 ,
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i.e.,

(
∫ T

0

‖x′(t)‖2dt) 1
2 ≤ (1− MT

2
)−1(

∫ T

0

g2(t)dt)
1
2 .

Again, by Lemma 2.5.4, we get

‖x(·)‖a ≤ (1− MT

2
)−1

√
T

2
(
∫ T

0

g2(t)dt)
1
2 ,

which is a contradiction. Thus by Theorem 3.2.4, S has a fixed point in Ca,
i.e., the problem (E 3.3.3) has a solution. This completes the proof.

3.4 Exercises

1. Let Ai ⊂ C([0, 1]), i = 1, 2, 3, be defined by

A1 = {x(·) : x(0) = 0, x(1) = 1 and 0 ≤ x(t) ≤ 1 for t ∈ [0, 1]};
A2 = {x(·) : 0 ≤ x(t) ≤ 1

2 , t ∈ [0, 1
2 ], 1

2 ≤ x(t) ≤ 1, t ∈ [ 12 , 1]} ∩A1;

A3 = x(·) : 0 ≤ x(t) ≤ 2
3 , t ∈ [0, 1

2 ], 1
3 ≤ x(t) ≤ 1, t ∈ [ 12 , 1]} ∩A1;

Show β(A1) = 1
2 , i = 1, 2, 3, and α(A1) = 1, α(A2) = 1

2 , α(A3) = 2
3 .

2. Let E be a Banach space, C1([a, b], E) be the space of continuously
differentiable functions with the norm

‖x(·)‖1 = max
t∈[a,b]

‖x(t)‖+ max
t∈[a,b]

‖x′(t)‖

and α1 is the Kuratowski measure of noncompactness in C1([a, b], E).
Let B ⊂ C1([a, b], E) be a bounded subset such that B′ = {x′(·) : x(·) ∈
B} is equicontinuous. Show that

α1(B) = max{max
t∈[a,b]

α({x(t) : x(·) ∈ B}), max
t∈[a,b]

α({x′(t) : x(·) ∈ B})}.

3. Let X be a complete metric space and Ai ⊂ X be a closed subset for
i = 1, 2, · · · . Suppose that A1 ⊃ A2 ⊃ A3 ⊃ · · · , and limn→∞ φ(An) =
0, where φ is the Kuratowski measure or the Hausdorff measure of non-
compactness. Show that ∩∞n=1An 6= ∅.

4. Let X be a Banach space and T : X → X be a continuous and compact
mapping. Suppose that there exists a linear bounded mapping L : X →
X such that lim‖x‖→∞

‖Tx−Lx‖
‖x‖ = 0, i.e., T is asymptotically linear.

Show that L is compact.
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5. Let B be the closed unit ball of l2 and T : B → B is defined by

T (x1, x2, · · · ) = (
√

1− ‖x‖2, x1, x2, · · · )

for all x = (x1, x2, · · · ) ∈ B. Show that T is an 1-set contraction.

6. Let X be a real Banach space, B(0, R) ⊂ X be the open ball of origin
with radius R and T : B(0, R) → X be a condensing mapping. Suppose
that one of the following condition is satisfied:

(1) T (∂B(0, R)) ⊂ B(0, R);

(2) ‖Tx− x‖2 ≥ ‖Tx‖2 − ‖x‖2 for all x ∈ ∂B(0, R).

Show that T has a fixed point in B(0, R).

7. Let X be a real Banach space, Ω ⊂ X be an open bounded subset with
0 ∈ Ω and T : Ω → X be an 1-set contraction such that (I − T )(Ω) is
closed and, if Tx = λx for all x ∈ ∂Ω, then λ ≤ 1. Show that T has a
fixed point in Ω.

8. Let X be a Banach space with a Schauder basis {ei : i ∈ N} for each
x = Σn

i=1ai(x)ei and Rnx = Σ∞i=n+1ai(x)ei for n = 1, 2, · · · . For each
bounded subset B ⊂ X, define µ(B) = lim supn→∞ sup{‖Rnx‖ : x ∈
B}. Show that µ has the following properties:

(1) µ(B) = 0 if and only if B is relatively compact;

(2) µ(A ∪B) = max{µ(A), µ(B)};
(3) µ(conv(A)) = µ(A).

9. LetX be a real Banach space, C ⊂ X be a bounded closed convex subset
and T : C → C be an 1-set contraction. Show that infx∈C{‖x−Tx‖} =
0.

10. Let X be a real Banach space, Ω ⊂ X an open bounded subset and
T : Ω → X be a k-set contraction with k ∈ (0, 1). Suppose that I−T is a
homeomorphism from Ω → (I−T )(Ω). Show that α([I−(I−T )−1]B) ≤
k(1− k)−1α(B) for all bounded subset B of Ω.

11. Let X be a real Banach space, Ω ⊂ X be an open bounded subset
with 0 ∈ Ω, T : Ω → X be a countably condensing mapping and
A : D(A) ⊆ E → 2E be a m−accretive mapping such that 0 ∈ A0.
Suppose that ‖Tx‖ ≤ ‖x‖ for all x ∈ ∂Ω. Show that −A+T has a fixed
point in Ω ∩D(A).

12. Let X be a complete metric space, and Ai ⊂ X a clsoed subset for i =
1, 2, · · · . Suppose that A1 ⊃ A2 ⊃ A3 ⊃ · · · , and limn→∞ α(An) = 0,
A∞ = ∩∞n=1An. Show limn→∞H(An, A∞) = 0.
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13. Show that the equation
∂u(s,t)

∂s = 1
2u(s, 2t) + 1

2u(s, 0) + sinπs, t ∈ [0, 1
2 ], s ∈ R

∂u(s,t)
∂s = 1

2u(s, 2t− 1) + 1
2u(s, 1) + sinπs, t ∈ [ 12 , 1], s ∈ R

u(s+ 1, t) = −u(s, t), t ∈ [0, 1], s ∈ R,

has a solution u(s, t) such that u(s, ·) ∈ C([0, 1]) for all s ∈ R.
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Chapter 4

GENERALIZED DEGREE
THEORY FOR A-PROPER MAPS

To solve an infinite dimensional equation Tx = y, a very natural method is
to approximate the original equation by finite dimensional equations, as we
have seen in the Leray Schauder theory. The well-known Galerkin method has
proved to be a very efficient tool in finite dimensional approximation. In the
1960s, Browder and Petryshyn systematically studied the finite dimensional
method for a large class of mappings, which they called A-proper mappings,
and they developed a similar theory to the Brouwer degree.

Our goal of this chapter is to introduce Petryshyn’s generalized degree the-
ory for A-proper mappings. This chapter has five main sections.

In Section 4.1, we define projection schemes and A-Proper mappings. Var-
ious examples (see lemmas 4.1.8 and 4.1.10) are also discussed.

Section 4.2 presents a degree theory for A-proper mappings and various
properties are presented (see Theorem 4.2.3 and Proposition 4.2.5).

A variety of existence results are presented in Section 4.3 for the semilinear
situation S − L where L is a Fredholm map of index zero and S − λN is
A-Proper for each λ ∈ (0, 1], where N is a mapping satisfying some specific
conditions (see theorems 4.3.3 and 4.3.4).

In Section 4.4, we introduce the notion of a Fredholm mapping of index
zero type. We present a degree (coincidence) theory for maps L−N where L
is a Fredholm mapping of index zero type and N is such that either (i) N is
L-A-Proper or (ii) L + λJP − N is A-proper for all λ ∈ (0, λ0) with λ0 > 0
or (iii) I − (L+ λJP )−1(N + λJP ) is A-proper for some λ > 0 hold.

The results of Section 4.3 and 4.4 are used in Section 4.5 to present the
existence results for the periodic semilinear ordinary and partial differential
equations.

4.1 A-Proper Mappings

Definition 4.1.1. Let X and Y be real separable Banach spaces.

(1) If there is a sequence of finite dimensional subspaces Xn ⊂ X and a

75
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sequence {Pn} of linear projections Pn : X → Xn such that Pnx → x
for all x ∈ X, then we say that X has a projection scheme {Xn, Pn}.

(2) If X and Y have projection schemes {Xn, Pn} and {Yn, Qn}, respec-
tively, and dimXn = dimYn for all positive integers n, then we call
Π = {Xn, Pn;Yn, Qn} an operator projection scheme.

Example 4.1.2. Let X = C([0, 1]). For n ∈ N , partition [0, 1] into n
equal parts and set t0 = 0 < t1 = 1

n < t2 = 2
n < · · · < tn = 1. Let Xn be

the subspace of all x ∈ X which are linear in every subinterval [ti, ti+1] and
P : X → Xn be the projection satisfying Pnx(ti) = x(ti) for i = 1, 2, · · · , n.
Then {Xn, Pn} is a projection scheme for X.

Example 4.1.3. Let X be a Banach space with a Schauder basis {ei : i ∈
N}. Then X has a projection scheme {Xn, Pn} defined by

Xn = span{e1, e2, · · · , en}, Pnx = Σn
i=1αi(x)ei

for x = Σ∞i=1αi(x)ei. In the case of a separable Hilbert space, we may choose
an orthonormal basis {ei : i ∈ N}, then the projection Pnx = Σn

i=1(x, ei)ei

satisfies P ∗n = Pn and ‖Pn‖ = 1.

Example 4.1.4. Let X be a reflexive Banach space with a projection
scheme such that PnPm = Pmin{m,n}. Then {P ∗nX∗, P ∗n} is a projection
scheme for X∗.

Proof. Notice that P ∗nP
∗
nf(x) = f(P 2

nx) = P ∗nf(x) on X and thus P ∗n is a
projection. We also have

dimP ∗nX = dimN(I∗ − P ∗) = dimN(I − Pn) = dimXn.

We claim that X∗ = ∪∞i=1P
∗
i X

∗. If not, there is x0 ∈ X \ {0} such that
f(x) = 0 for all f ∈ ∪∞i=1P

∗
i X

∗ since X∗∗ = J(X), where J(x)(f) = f(x) for
all f ∈ X∗ and x ∈ X. Thus, we have f(Pnx) = 0 for all n and f ∈ X∗, so
f(x) = 0 for all f ∈ X∗ and so x = 0, which is a contradiction. Therefore,
X∗ = ∪∞i=1P

∗
i X

∗. We also have P ∗nX
∗ ⊂ P ∗mX

∗ for n < m. Thus, for any
f ∈ X∗ and ε > 0, we may choose g ∈ P ∗nX

∗ such that ‖f − g‖ < ε and we
then have

‖Pmf − f‖ ≤ ‖Pm(f − g)‖+ ‖g − f‖ ≤ (sup
n≥1

‖Pn‖+ 1)ε,

which gives P ∗mf → f as m→∞.

Example 4.1.5. If both X and Y have Schauder basis, then there exists
an operator projection scheme.

Proof. Let {en} be a Schauder basis of X and {e′n} be a Schauder basis
of Y . Put Xn = span{e1, e2, · · · , en} and Yn = span{e′1, e′2, · · · , e′n}. For
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x = Σ∞i=1αiei and y = Σ∞i=1βie
′
i, set Pnx = Σn

i=1αiei and Qny = Σn
i=1βie

′
i.

Then Π = {Xn, Pn;Yn, Qn} is an operator projection scheme.

Definition 4.1.6. LetX,Y be real Banach spaces and Π = {Xn, Pn;Yn,Qn}
be an operator projection scheme. Then a mapping T : D ⊂ X → Y is
called A- proper (respectively, pseudo A-proper) with respect to Π if, for any
bounded xm ∈ D ∩Xm and QmTxm → y, there exists a subsequence {xmk

}
such that xmk

→ x ∈ D and Tx = y, (respectively, there exists x ∈ D(T ),
such that Tx = y). We denote by AΠ(D,Y ) the class of all A-proper mappings
F : D → Y .

Recall that, in a normed space X, the semi-inner products (·, ·)− and (·, ·)+
are defined by

(x, y)− = lim
h→0+

h−1(‖x‖ − ‖x− hy‖) for all x, y ∈ X,

(x, y)+ = lim
h→0+

h−1(‖x+ hy‖ − ‖x‖) for all x, y ∈ X.

An operator T : D(T ) ⊆ X → X is called accretive if

(x− y, Tx− Ty)+ ≥ 0 for all x, y ∈ D(T )

and strongly accretive if

(x− y, Tx− Ty)+ ≥ c‖x− y‖2 for some constant c > 0.

For some properties of accretive operators, we refer the reader to [17] and
[60]. One can show that a continuous strongly accretive operator T : X → X
is A-proper, and the proof is left to the reader as an exercise.

Definition 4.1.7. Let X be a separable Banach space with a projection
scheme Π = {Xn, Pn}. Then T : D ⊆ X → X is called a P1 compact mapping
if λI − T is A-proper with respect to Π for all λ ≥ 1.

In the following, letX,Y be separable Banach spaces, S : X → Y be a linear
Fredholm mapping of index zero with N(S) 6= {0} and C : D ⊂ X → Y be
a nonlinear mapping. Consider the semilinear problem Sx − Cx = y for all
x ∈ D(L)∩D and y ∈ Y . Since S is Fredholm of index zero (see Chapter V),
there exist closed subspaces X ′ of X and Y ′ of Y with dimY ′ = dimN(S)
such that

X = N(S)⊕X ′, Y = Y ′ ⊕R(S).

Let P : X → N(S) be a projection, Q : Y → Y ′ be a projection and
M : N(S) → Y ′ be a isomorphism. Put T = MP . Then T is a compact
linear operator. It is known that S + T is also a Fredholm mapping with
ind(S + T ) = ind(S) = 0 and S + T is bijective with (S + T )−1 : Y → X
bounded. Set S1 = S|X′∩D(S). Then S1 is injective and closed and so S−1

1 is
continuous on R(S).
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Suppose Y has a sequence of finite dimensional subspaces Yn with a se-
quence of projections Qn : Y → Yn such that Qny → y for all y ∈ Y
as n → ∞. If S : X → Y is a Fredholm mapping of index zero, we set
Xn = (S + T )−1Yn and then ΓS = {Xn, Yn, Qn} is an admissible scheme for
(X,Y ).

Lemma 4.1.8. Let S : X → Y be a Fredholm mapping of index zero.
Then S is A-proper with respect to ΓS .

Proof. Obviously, QnS : Xn → Yn is continuous. Let (xnj ) ∈ Xnj be a
bounded sequence such that Qnj

Sxnj
→ y ∈ Y . Since Qn(S+T )x = (S+T )x

for all x ∈ Xn, we have

Qnj
(S + T )xnj

= (S + T )xnj
.

Since T is compact, we may assume that Txn → z by taking a subsequence.
Therefore, we have

xnj
= (S + T )−1[Qnj

Sxnj
+Qnj

Txnj
] → x = (S + T )−1(y + z)

and Tx = z. Thus Sx = y, i.e., S is A-proper with respect to ΠS .

Definition 4.1.9. Let X,Y be real Banach spaces, Π = {Xn, Pn;Yn,Qn}
be an operator projection scheme and D ⊂ X. A family of mappings H(t, x) :
[0, 1]×D → Y is called A-proper homotopy with respect to Π if

(1) for any bounded sequence (xm) inD∩Xm, tm → t0 andQmH(tm, xm) →
y, there exists a subsequence (xmk

) of (xm) such that xmk
→ x ∈ D

and H(t0, x) = y;

(2) QnH(t, x) : [0, 1]×D ∩Xn → Yn is continuous for n = 1, 2, · · · .

If S : D(S) ⊂ X → Y is a Fredholm mapping, then it is known from [283]
that

l(S) = sup{r ∈ R+ : rγ(B) ≤ γ(S(B)), B ⊂ D(S) is bounded} > 0.

Lemma 4.1.10. Suppose that S is Fredholm of index zero, Ω ⊂ X is
an open bounded subset, ΓS is as above, N : Ω ∩ D(S) → Y is a bounded
continuous mapping and Tλ = S − λN for λ ∈ (0, 1]. Assume that one of the
following conditions holds:

(1) N or S−1
1 : R(S) → X is compact;

(2) N is k-ball contractive with k ∈ [0, l(S)) and ‖Qn‖ = 1;

(3) N(S+T )−1 : (S+T )(Ω∩D(S)) → Y is ball condensing and ‖Qn‖ = 1.
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Then Tλ is A-proper with respect to ΓS for each λ ∈ (0, 1].

Proof. (1) If N is compact, then it is trivial that SλN is A-proper with
respect to ΠS . Suppose now that S−1

1 is compact. Let (xnj
) ∈ Ω ∩ Xnj

be
any sequence such that

gnj
= Qnj

Sxnj
− λQnj

Nxnj
→ g ∈ Y.

Since Qn(S + T )x = (S + T )x for all x ∈ Xn, we have

gnj = (S + T )xnj − λQnjNxnj −QnjTxnj → g.

But T is compact, so we have Sxnj
− λQnj

Nxnj
→ g. Therefore, it follows

that
(I −Q)Sxnj − λ(I −Q)QnjNxnj → (I −Q)g ∈ R(S).

Thus we have

(I − P )xnj
− λS−1

1 (I −Q)Qnj
(Nxnj

) → S−1
1 (I −Q)g.

Since P and S−1
1 (I − Q) are compact, it is easy to see that (xnj

)∞j=1 has a
subsequence (x′nj

)∞j=1 converging to x0. From the continuity of N , it follows
that Sx′nj

→ g + λNx0. The closedness of S implies that

Sx0 − λNx0 = g

and thus S − λN is A-proper.
(2) Let xnj

∈ Ω ∩ Xnj be any bounded sequence such that QnjSxnj −
λQnj

Nxnj
→ g. As in (1), we have Sxnj

− λQnj
Nxnj

→ g.
On the other hand, γ({Sxnj

}) ≤ λkγ({xnj
}) ≤ kγ({xnj

}). This and the
assumption that k < l(S) imply that γ({xnj}) = 0, so we may assume that
xnj → x0 and, consequently, Sxnj → g + λNx0. Hence Sx0 − λNx0 = g and
so S − λN is A-proper.

(3) Let (xnj ) be any bounded sequence in Ω ∩ Xnj
such that Qnj

Sxnj
−

λQnjNxnj → g. Then we have

(S + T )xnj
− λQnj

Nxnj
−Qnj

Txnj
→ g.

Set ynj
= (S + T )xnj

. We have

ynj
− λQnj

N(S + T )−1(ynj
)−Qnj

T (S + T )−1(ynj
) → g.

By the compactness of T (S + T )−1 and the assumption (3), it follows that
(ynj

)∞j=1 has a subsequence (y′nj
) with y′nj

→ y0. Thus x′nj
= (S+T )−1ynj

→
x0, and it is simple to check that Sx0−λNx0 = g. This completes the proof.
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4.2 Generalized Degree for A-Proper Mappings

Let X, Y be real separable Banach spaces and Π = {Xn, Pn;Yn, Qn} be an
operator projection scheme. Let Ω ⊂ X be an open bounded subset and L be
a dense subspace of X with ∪∞n=1Xn ⊂ L. We let ΩL = Ω ∩ L.

Lemma 4.2.1. Let T ∈ AΠ(Ω∩L, Y ). Suppose that p /∈ T (∂Ω∩L). Then
there exists an integer n0 > 0 such that

Qnp /∈ QnT (∂(Ω ∩Xn)) for all n > n0.

Proof. Suppose that the assertion of Lemma 4.2.1 is not true. Then
there exists nk → ∞ and xnk

∈ ∂Ω ∩ Xnk
such that Qnk

p = Qnk
Txnk

.
Obviously, xnk

∈ ∂Ω ∩ L. Thus we have Qnk
Txnk

→ p as k →∞ and the A-
properness of T guarantees the existence of a subsequence (xnkl

)∞l=1 such that
xnkl

→ x0 ∈ ∂Ω ∩ L, and Tx0 = p, which is a contradiction. This completes
the proof.

Definition 4.2.2. Let T ∈ AΠ(Ω ∩ L, Y ). Suppose that p /∈ T (∂Ω ∩ L)
and QnT is continuous. We define a generalized degree D(T,Ω, p) by

Deg(T,Ω ∩ L, p) = {k ∈ Z ∪ {±∞} : deg(Qnj
T,Ω ∩Xnj

, Qnj
p) → k

for some nj →∞},

where Z is the set of all integers.

By Lemma 4.2.1, we know that there exists an integer n0 > 0 such that p /∈
QnT (∂Ω ∩Xn) and QnT is continuous, so the Brouwer degree deg(QnT,Ω ∩
Xn, Qnp is well defined for n > n0. Thus Deg(T,Ω ∩ L, p) is nonempty and
the definition is well defined.

Theorem 4.2.3. Let T ∈ AΠ(Ω ∩ L, Y ) and p /∈ T (∂Ω ∩ L). Then the
generalized degree has the following properties:

(1) If Deg(T,Ω ∩ L, p) 6= {0}, then Tx = p has a solution in Ω ∩ L;

(2) If Ωi ⊂ Ω for i = 1, 2, Ω1 ∩ Ω2 = ∅ and p 6∈ (Ω \ Ω1 ∪ Ω2) ∩ L, then

Deg(T,Ω ∩ L, p) ⊆ Deg(T,Ω1 ∩ L, p) +Deg(T,Ω2 ∩ L, p),

here we use the convention that +∞+ (−∞) = Z ∪ {±∞};

(3) If H(t, x) : [0, 1]× Ω ∩ L→ Y is a A-proper homotopy and p /∈ H(t, x)
for all (t, x) ∈ [0, 1]×∂Ω∩L, then Deg(H(t, ·),Ω∩L, p) does not depend
on t ∈ [0, 1];
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(4) If 0 ∈ Ω, Ω is symmetric about 0, T : Ω ∩ L → Y is an odd A-proper
mapping and 0 /∈ T (∂Ω ∩ L), then Deg(T,Ω ∩ L, 0) contains no even
numbers.

Proof. (1) If Deg(T,Ω ∩ L, p) 6= {0}, then there exists nk →∞ such that

deg(Qnk
T,Ω ∩Xnk

, Qnk
p) 6= 0.

Thus there exists xnk
∈ Ω ∩ L such that Qnk

Txnk
= Qnk

p. By the A-
properness of T , there is a subsequence (xnkj

) with xnkj
→ x0 ∈ Ω ∩ L and

Tx0 = p.
(2) Since p 6∈ (Ω \ Ω1 ∪ Ω2) ∩ L, there exists n0 > 0 such that

Qnp /∈ (Ω \ Ω1 ∪ Ω2) ∩Xn for all n > n0.

Therefore, we have

deg(QnT,Ω, p) = deg(QnT,Ω1, p) + deg(QnT,Ω2, p) for all n > n0.

If k = limj→∞ deg(Qnj
T,Ω ∩Xnj

, Qnj
p), then we have

k = lim
j→∞

[deg(QnjT,Ω1 ∩Xnj , Qnjp) + deg(QnjT,Ω2 ∩Xnj , Qnjp).

If limj→∞ deg(QnjT,Ω1∩Xnj , Qnjp) and limj→∞[deg(QnjT,Ω2∩Xnj , Qnjp)
are both equal to +∞ or −∞, then k = +∞ or k = −∞ and so the conclusion
holds. If one of them equals to +∞ and the other one is −∞, then, by the
convention, we have k ∈ Z ∪ {±∞}. For the case,

lim sup
j→∞

|deg(QnjT,Ω1 ∩Xnj , Qnjp)| < +∞

and
lim sup

j→∞
|deg(QnjT,Ω2 ∩Xnj , Qnjp)| < +∞

and so the conclusion is obvious.
(3) We claim that there exists an integer n0 > 0 such that

Qnp /∈ ∪t∈[0,1]H(t, ∂Ω ∩Xn) for all n > n0.

Assume the assertion is false. Then there exist nj → ∞, tj → t0, xnj
∈

∂Ω ∩ Xnj
such that Qnj

p = Qnj
H(tj , xnj

). Therefore, (xnj
) has a subse-

quence (x′nj
) which converges to x0 ∈ ∂Ω ∩ L and H(t0, x0) = p, which is a

contradiction. Thus the Brouwer degree deg(QnH(t, ·),Ω∩Xn, Qnp) does not
depend on t ∈ [0, 1] for n > n0, so Deg(H(t, ·),Ω ∩ L, p) does not depend on
t ∈ [0, 1].

(4) Since Ω ∩ Xn is symmetric about 0, by Borsuk’s theorem, we have
deg(QnT,Ω ∩ Xn, 0) is odd for n sufficiently large. Thus Deg(T,Ω ∩ L, 0)
contains no even numbers. This completes the proof.
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Corollary 4.2.4. Let X,Y be separable Banach spaces, S : D(S) ⊆ X →
Y be a Fredholm mapping of index zero and (Yn, Qn) be a projection scheme
for Y . If Ω is an open bounded subset of X with Ω ∩ D(L) 6= ∅ and N :
Ω ∩ D(S) → Y is a nonlinear mapping such that S − N is A-proper with
respect to ΓS , then we have the following:

(1) If p /∈ (S − N)(∂Ω ∩ D(S)) and Deg(S − N,Ω ∩ L, p) 6= {0}, then
Sx−Nx = p has a solution in Ω ∩D(S);

(2) If Ω is symmetric about 0, N is odd and 0 /∈ (S − N)(∂Ω ∩ L), then
Deg(S −N,Ω ∩D(S), 0) contains no even numbers.

Proof. The proof follows from Theorem 4.2.3.

Proposition 4.2.5. Let X,Y be separable Banach spaces, S : D(S) ⊆
X → Y be a Fredholm mapping of index zero and (Yn, Qn) be a projection
scheme for Y . If Ω is an open bounded subset of X with Ω ∩D(L) 6= ∅ and
A : X → Y is a linear continuous compact mapping, then S − A is A-proper
with respect to ΓS . If N(S −A) = {0}, then

Deg(S −A,Ω ∩D(S), 0) =

{
{0}, 0 /∈ Ω,
{1} or {−1}, 0 ∈ Ω.

Proof. It is easy to see that S − A is A-proper with respect to ΠS . Since
N(S − A) = {0}, S − A is injective, it follows that Sx − Ax 6= 0 for all
x ∈ ∂Ω∩D(S). Thus, if 0 /∈ Ω, then Deg(S−A,Ω∩D(S), 0) 6= 0 would imply
that Sx−Ax = 0 has a solution in Ω∩D(S), which contradictsN(S−A) = {0}.

On the other hand, if 0 ∈ Ω, then 0 ∈ Ω∩Xn for all n, Qn(S−A) : Xn → Yn

is injective for sufficiently large n and we have

deg(Qn(S −A),Ω ∩Xn, 0) = 1 or − 1.

This completes the proof.

4.3 Equations with Fredholm Mappings of Index Zero

In this section, all the notations are the same as in previous sections.

Proposition 4.3.1. Let X,Y be separable Banach spaces, S : D(S) ⊆
X → Y be a Fredholm mapping of index zero and (Yn, Qn) be a projection
scheme for Y . Suppose that Ω ⊂ X is symmetric about 0. Let N : Ω∩D(S) →
Y be a mapping such that
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(1) H(t, x) = Sx − [ 1
1+tN(x) − t

1+tN(−x)] is A-proper with respect to ΓS

for all t ∈ [0, 1];

(2) ‖N(x) +N(−x)‖ ≤ d for all x ∈ ∂Ω ∩D(S) and some d > 0;

(3) S(x)−N(x) 6= λ[S(−x)− T (−x)] for all x ∈ ∂Ω ∩D(S) and λ ∈ [0, 1].

Then Sx−Nx = 0 has a solution in D(S).

Proof. By (1) and (2), it is simple to check that (H(t, ·))t∈[0,1] is an
A-proper homotopy. Moreover, in view of (3), H(t, x) 6= 0 for all (t, x) ∈
[0, 1]×∂Ω∩D(S). Thus Deg(H(t, ·),Ω∩D(S), 0) does not depend on t ∈ [0, 1].
But H(1, x) = Sx− 1

2 [N(x)−N(−x)] is an odd mapping, so Deg(H(1, ·),Ω∩
D(S), 0) contains no even numbers. Thus Deg(L −N,Ω ∩D(S), 0) contains
no even numbers, so Lx−Nx has a solution in Ω∩D(S). This completes the
proof.

Proposition 4.3.2. Assume that the following conditions hold:

(a) S−λN : Ω∩D(S) → Y is A-proper with respect to ΓS for each λ ∈ (0, 1]
with N(Ω ∩D(S)) bounded;

(b) Sx 6= λNx+ λp for λ ∈ (0, 1) and x ∈ ∂Ω ∩D(S);

(c) QNx+Qp 6= 0 for x ∈ S−1(0) ∩ ∂Ω ∩D(S), where Q is the projection
of Y onto Y ′;

(d) Deg(S − [QN +Qp],Ω ∩D(S), 0) 6= {0}.

Then there exists x ∈ Ω ∩D(S) such that Sx−Nx = p.

Proof. Since QN is compact and S − tN is A-proper with respect to
ΓS for all t ∈ [0, 1], it follows from N(Ω ∩ D(S)) bounded that H(t, x) =
Sx− (1− t)[QNx+Qp]− tNx− tp is an A-proper homotopy with respect to
ΓS .

We may assume that Sx − Nx /∈ p for all x ∈ ∂Ω ∩ D(S) (otherwise,
Sx − Nx = p has a solution, and we are done). We claim that H(t, x) 6= 0
for all (t, x) ∈ [0, 1]× ∂Ω ∩D(S). Indeed, if H(t0, x0) = 0 for some (t0, x0) ∈
[0, 1]× ∂Ω ∩D(S), then t0 ∈ [0, 1).

Case (1) If t0 = 0, then Sx0 = QNx0 + Qp, but Y ′ ∩ R(S) = {0}, so
Sx0 = 0, which contradicts (c).

Case (2) If t0 ∈ (0, 1), then Sx0 = (1− t0)[QNx0 +Qp] + t0Nx+ t0p. By
(b), QNx0 +Qp 6= 0, so we have

0 = QSx0 = (1− t0)Q[QNx0 +Qp] + t0QNx0 + t0Qp = QNx0 +Qp,

which is a contradiction. Thus the claim is true and, as a consequence,

Deg(S −QN −Qp,Ω ∩D(S), 0) = Deg(S −N − p,Ω ∩D(S), 0).
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By the assumption (d), Sx − Nx = p has a solution in Ω ∩ D(S). This
completes the proof.

In the following, we assume that there exists a continuous bilinear form [·, ·]
on Y ×X such that

y ∈ R(S) if and only if [y, x] = 0 for all x ∈ N(S). (4.3.1)

If {e1, e2, · · · , em} is a basis in N(S), then (4.3.1) implies that J : R(Q) =
Y ′ → N(S) given by

Jy = Σm
i=1[y, ei]ei

is an isomorphism and, if y = Σm
i=1ciei, then [J−1ei, ej ] = δij and [J−1y, ei] =

ci for 1 ≤ i, j ≤ m.
For subsequent use, let P : X → N(S), Q : Y → Y ′ be the projections and

set A = J−1P .

Theorem 4.3.3 Let X,Y be separable Banach spaces, S : D(S) ⊆ X → Y
be a Fredholm mapping of index zero and (Yn, Qn) be a projection scheme for
Y . If Ω is an open bounded subset of X with 0 ∈ Ω and [·, ·] is a continuous
bilinear form on Y ×X such that (4.3.1) holds. Also, assume that the following
conditions hold:

(1) S−λN : Ω∩D(S) → Y is A-proper with respect to ΓS for each λ ∈ (0, 1]
with N(Ω) bounded;

(2) Sx 6= λNx+ λp for all x ∈ N(S) ∩ ∂Ω ∩D(S) and λ ∈ (0, 1);

(3) QNx+Qp 6= 0 for all x ∈ N(S) ∩ ∂Ω;

(4) One of the following conditions holds:

(4a) [QNx+Qp, x] ≥ 0 for all x ∈ N(S) ∩ ∂Ω;

(4b) [QNx+Qp, x] ≤ 0 for all x ∈ N(S) ∩ ∂Ω.

Then Sx−Nx = p has a solution.

Proof. Consider the homotopy H : [0, 1]× Ω ∩D(S) → Y given by

H(t, x) = Sx− (1− t)(QNx+Qp)− tNx− tp

for all (t, x) ∈ [0, 1]×Ω∩D(S). Since QN is compact, it follows from (1) that
H is an A-proper homotopy.

Now, we claim that H(t, x) 6= 0 for all (t, x) ∈ [0, 1]× ∂Ω ∩D(S). If this is
not true, then there exists (t0, x0) ∈ [0, 1]× ∂Ω ∩D(S) such that

Sx0 = (1− t0)(QNx0 +Qp) + t0Nx0 + t0p.

If t0 = 0, then Sx0 = QNx0 +Qp, so we have 0 = Sx0 = QNx0 +Qp, which
contradicts (3). If t0 = 1, then Sx0 = Nx0 + p, which contradicts (2).
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If t0 ∈ (0, 1), then Sx0−t0Nx0−t0p = (1−t0)(QNx0+Qp), soQNx0+Qp 6=
0. Therefore, we have

0 = QSx0 = QNx0 +Qp,

which contradicts (3). Therefore, the claim is true. Consequently, we have

Deg(S −QN −Qp,Ω ∩D(S), 0) = Deg(S −N − p,Ω ∩D(S), 0).

Now, we prove Deg(S−QN −Qp,Ω∩D(S), 0) 6= {0}. To achieve this goal,
we consider the homotopy H1(t, x) : [0, 1]× Ω ∩D(S) → Y given by

H1(t, x) = Sx− (1− t)Ax− t(QNx+Qp)

for all (t, x) ∈ [0, 1]×Ω∩D(S), where A = J−1P if (4a) holds and A = −J−1P
if (4b) holds.

Also, we prove that H1(t, x) 6= 0 for all (t, x) ∈ [0, 1] × ∂Ω ∩D(S). If this
is not true, then there exists (t0, x0) ∈ [0, 1]× ∂Ω ∩D(S) such that

Sx0 − (1− t)Ax0 − t0(QNx0 +Qp) = 0.

Since N(S −A) = {0}, it follows that t0 6= 0. If t0 = 1, then Sx0 = QNx0 +
Qp = 0, which contradicts (3). Therefore, t0 ∈ (0, 1), so we have Sx0 = 0 =
(1− t0) +Ax0 + t0(QNx0 +Qp).

Assume that (4a) holds. Since Px = x, we have (1− t0)J−1x0 + t0(QNx0 +
Qp) = 0 and x0 6= 0. Therefore, we have

(1− t0)[J−1x0, x0] + t0[QNx0 +Qp, x0] = 0.

Thus x0 = 0, which is impossible.
If (4b) holds, then a similar argument shows that x0 = 0, which is a con-

tradiction. Thus we have

Deg(S −QN −Qp,Ω ∩D(S), 0) = Deg(S −A,Ω ∩D(S), 0).

But S −A is a linear injection, so Deg(S −A,Ω∩D(S), 0) 6= {0}. Therefore,
it follows that Deg(S −N − p,Ω∩D(S), 0) 6= 0. Consequently, Sx−Nx = p
has a solution. This completes the proof.

Theorem 4.3.4. LetX,Y be separable Banach spaces, S : D(S) ⊆ X → Y
be a Fredholm mapping of index zero, (Yn, Qn) be a projection scheme for Y ,
Ω be open bounded and symmetric about 0 ∈ Ω and [·, ·] be a continuous
bilinear form on Y × X. If N : Ω ∩ D(S) → Y is a bounded continuous
mapping such that

(1) S−λN : Ω∩D(S) → Y is A-proper with respect to ΓS for all λ ∈ (0, 1];

(2) Sx 6= λNx+ λp for all x ∈ N(S) ∩ ∂Ω ∩D(S) and λ ∈ (0, 1);
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(3) [Q(Nx+ p), x][Q(N(−x) + p), x] < 0 for all x ∈ N(S) ∩ ∂Ω.

Then Sx−Nx = p has a solution in Ω ∩D(S).

Proof.If Sx − Nx = p has a solution on ∂Ω ∩ D(S), we are done, so we
may assume that Sx−Nx 6= p for x ∈ ∂Ω ∩D(S).

Consider the homotopy H : [0, 1]× Ω ∩D(S) → Y given by

H(t, x) = Sx− (1− t)[Q(N(x) + p)]− tNx− tp

for all (t, x) ∈ [0, 1] × Ω ∩ D(S). Since QN is compact, it follows from (1)
that H(t, ·) is A-proper for all t ∈ [0, 1] and N is bounded. Therefore, H is
an A-proper homotopy.

Now, we prove thatH(t, x) 6= 0 for (t, x) ∈ [0, 1]×∂Ω∩D(S). In fact, assume
the contrary, there exists (t0, x0) ∈ [0, 1]×∂Ω∩D(S) such that H(t0, x0) = 0,
i.e.,

Sx0 − (1− t)[Q(N(x0) + p)]− t0N(x0)− t0p = 0.

By (2), we know that t0 6= 1. If t0 = 0, then Sx0 = Q(N(x0) + p). But
R(L) ∩ Y ′ = {0}, so we have Sx0 = 0 and Q(N(x0) + p) = 0. Therefore,
[Q(N(x0) + p), x0] = 0, which contradicts (3). Thus we must have t0 ∈ (0, 1).
Therefore,

0 = QSx0 = (1− t0)Q(N(x0) + p) + t0Q(N(x0) + p),

i.e., Q(N(x0)+p) = 0 which contradicts (3) again. By the homotopy property
of the generalized degree, we get

Deg(S −N − p,Ω ∩D(S), 0) = Deg(S −Q(N + p),Ω ∩D(S), 0).

Now, we prove that {0} 6= Deg(S −Q(N + p),Ω ∩D(S), 0). To reach this
goal, we consider the homotopy H1(t, x) : [0, 1]× Ω ∩D(S) → Y given by

H1(t, x) = Sx− 1
1 + t

[Q(N(x) + p)− t(Q(N(−x) + p)]

for all (t, x) ∈ [0, 1]×Ω∩D(S). Obviously, H1 is an A-proper homotopy. We
claim that H1(t, x) 6= 0 for all (t, x) ∈ [0, 1]× ∂Ω ∩D(S). If not, there exists
(t1, x1) ∈ [0, 1]× ∂Ω ∩D(S) such that H1(t1, x1) = 0, i.e.,

Sx− 1
1 + t1

[Q(N(x1) + p)− t1(Q(N(−x1) + p)] = 0.

If t1 = 0, then Sx1 = Q(N(x1) + p) = 0, which contradicts (3). So t1 6= 1,
thus Lx0 = 0 and Q(N(x1) + p) − t1(Q(N(−x1) + p) = 0, which lead again
to a contradiction to (3). Therefore, we have

Deg(S −Q(N + p),Ω ∩D(S), 0) = Deg(S − 1
2
[Q(N(·) + p)−Q(N(−·) + p)].

Copyright 2006 by Taylor & Francis Group, LLC



GENERALIZED DEGREE THEORY FOR A-PROPER MAPS 87

But S − 1
2 [Q(N(·) + p)−Q(N(−·) + p)] is odd, so

0 /∈ Deg(S − 1
2
[Q(N(·) + p)−Q(N(−·) + p)].

Thus we have Deg(S−N−p,Ω∩D(S)) 6= {0} and, consequently, Sx−Nx = p
has a solution. This completes the proof.

4.4 Equations with Fredholm Mappings of Index Zero
Type

In this section, we show the existence of solutions of the equations with
Fredholm mappings of index zero type in Banach spaces.

Definition 4.4.1. Let X,Y be two real Banach spaces and L : D(L) ⊆
X → Y be a linear mapping. We say that L is a Fredholm mapping of index
zero type if

(1) Ker(L) = {x ∈ X : Lx = 0} and Im(L) = {Lx : x ∈ D(L)} are closed
in H;

(2) X = Ker(L)⊕X1 for some subspace X1 of X and Y = Y1 ⊕ Im(L) for
some subspace Y1 of Y ;

(3) Ker(L) is linearly homeomorphic to Coker(L) = Y/Im(L).

Remark. Obviously, if X is linearly homeomorphic to Y , L = 0 is a
Fredholm mapping of index zero type but not a Fredholm mapping of index
zero. If L is a Fredholm mapping of index zero, then

dim(Ker(L)) = dim(Coker(L)) < +∞,

so Ker(L) is linearly homeomorphic to Coker(L) and thus L is a Fredholm
mapping of index zero type.

Now, assume that L : D(L) ⊂ X → Y is a Fredholm mapping of index zero
type. Then there exist linear projections P : X → X and Q : Y → Y such
that

Im(P ) = Ker(L), Im(Q) = Y1.

Obviously, the restriction of LP of L to D(L) ∩ Ker(P ) is one to one and
onto Im(L), so its inverse KP : Im(L) → D(L) ∩ Ker(P ) is defined. Let
J : Ker(L) → Y1 be a linear homeomorphism and set KPQ = KP (I −Q)

Proposition 4.4.2. L + λJP : X → Y is a bijective mapping for each
λ 6= 0.
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Proof. For each λ 6= 0, if Lx + λJPx = 0, then JPx = 0 and Lx = 0,
so x ∈ Ker(L). Thus x = 0. On the other hand, for y = y1 + y2 ∈ Y ,
y1 ∈ Y1, y2 ∈ Im(L), put x = λ−1J−1y1 + KP y2, then Lx + λJPx = y.
Therefore, L+ λJP is bijective.

Proposition 4.4.3. Let X,Y be real separable Banach spaces, (Yn, Qn)
be a projection scheme for Y and L : D(L) ⊂ X → Y be a Fredholm mapping
of zero index type. Then, for each λ 6= 0, there exists a projection scheme
Γλ,L for (X,Y ).

Proof. For each λ 6= 0, put Kλ = L + λJP . By Proposition 4.4.2, Kλ is
bijective. Set Xn = K−1

λ Yn for n = 1, 2, · · · . Obviously, we have

dim(Xn) = dim(Yn), X = ∪∞n=1Xn.

Thus Γλ,L = {Xn, Yn, Qn} is a projection scheme for (X,Y ).

Proposition 4.4.4. Let L : D(L) ⊂ X → Y be a Fredholm mapping of
zero index type. Assume that X is reflexive. If G ⊂ X is bounded closed and
convex, then L : G ∩D(L) → Y is pseudo A-proper with respect to Γλ,L for
each λ 6= 0.

Proof. For any sequence (xnk
) in G∩D(L)∩Xnk

with Qnk
Lxnk

→ y, we
may assume that xnk

⇀ x0 ∈ G by taking subsequences. Notice that

Qnk
(Lxnk

+ λJPxnk
) = Lxnk

+ λJPxnk
, JPxnk

⇀ JPx0,

so we have

xnk
= (L+ JP )−1(Qnk

(Lxnk
+ JPxnk

) ⇀ (L+ JP )−1(y + JPx0) = x0.

Thus x0 ∈ D(L) and Lx0 = y. Therefore, L is pseudo A-proper with respect
to Γλ,L.

Definition 4.4.5. Let X be a real separable Banach space, Γ0 = (Xn, Pn)
be a projection scheme for X, Y be a real Banach space, L : D(L) ⊂ X → Y
be a Fredholm mapping of zero index type and N : D ⊂ X → Y be a mapping.

(1) If I −P − (J−1Q+KPQ)N is A-proper with respect to Γ0, then we say
that N is L-A-proper with respect to Γ0;

(2) If I−P − (J−1Q+KPQ)N is pseudo A-proper with respect to Γ0, then
we say that N is pseudo L-A-proper with respect to Γ0;

(3) A family of mappings H(t, x) : [0, 1] × D → Y is called a homotopy
of L-A-proper mappings with respect to Γ0 if H(t, ·) is a L-A-proper
mapping with respect to Γ0 for all t ∈ [0, 1].

Proposition 4.4.6. Let L : D(L) ⊆ X → Y be a linear mapping with
Ker(L) = {0} and Im(L) = Y , then the following conclusions hold:
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(1) If Γ0 = (Xn, Pn) is a projection scheme for X, then 0 is L-A-proper
with respect to Γ0;

(2) If (Yn, Qn) is a projection scheme for Y and L−1 is continuous, then
L is A-proper with respect to Γ1,L, where Γ1,L is constructed as in
Proposition 4.4.3.

Proof. (1) We have P = 0, Q = 0 and the identity mapping I : X → X
is obviously A-proper with respect to Γ0. Thus 0 is L−A-proper with respect
to Γ0.

(2) Since Ker(L) = {0}, the mapping K in the proof of Proposition 4.4.3 is
just the mapping L. Thus Xn = L−1Yn. If xnk

∈ Xnk
such that Qnk

Lxnk
→

y, then Lxnk
= Qnk

Lxnk
→ y. Therefore, we have xnk

→ L−1y. The
conclusion is true.

Proposition 4.4.7. Let L : D(L) ⊂ X → Y be a Fredholm mapping of
zero index type and Γ0 = (Xn, Pn) be a projection scheme for X. If G ⊂ X is
a bounded closed convex subset, T : G→ Y is a weakly continuous mapping
and X is reflexive, then T is pseudo L-A-proper with respect to Γ0.

Proof. For any subsequence (xnk
) in Xnk

such that Pnk
(I−P −J−1QT −

KPQT )xnk
→ y, we may assume that xnk

⇀ x0 ∈ G by taking a subsequence.
Thus we have

(I − P )xnk
⇀ x0, J−1QTxnk

⇀ J−1QTx0

and
KPQTxnk

⇀ KPQTx0

and, consequently, (I − P − J−1QT −KPQT )x0 = y. So T is pseudo L−A-
proper with respect to Γ0.

Proposition 4.4.8. Let X,Y be real separable Banach spaces, (Yn, Qn) be
a projection scheme for Y . Let L : D(L) ⊂ X → Y be a Fredholm mapping
of zero index type, G ⊂ X be a bounded closed subset and N : G → Y be a
continuous compact mapping. Then L + λJP − N is A-proper with respect
Γλ,L for each λ > 0.

Proof. For any sequence (xnk
) in G ∩D(L) ∩Xnk

with Qnk
(L + λJP −

N)xnk
→ y, in view of the compactness of N , we may assume that Nxnk

→
y0 ∈ Y by taking a subsequence. Notice that

Qnk
(Lxnk

+ λJPxnk
) = Lxnk

+ λJPxnk
,

so we have

xnk
= (L+ JP )−1[Qnk

(L+ λJP −N)xnk
+Qnk

Nxnk
]

→ (L+ λJP )−1(y + y0) = x0.
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Thus x0 ∈ D(L), Nx0 = y0 and (L+λJP−N)x0 = y. Therefore, L+λJP−N
is A-proper with respect to Γλ,L.

In the following, suppose that X,Y are real separable Banach spaces, L :
D(L) ⊆ X → Y is a Fredholm mapping of index zero type with D(L) dense
in X and N : Ω ⊂ X → Y is a nonlinear mapping. We consider the semilinear
operator equation Lx −Nx = 0 and we apply the generalized degree theory
in Section 4.2 to study such an equation.

Lemma 4.4.9. Let L : D(L) ⊆ X → Y be a Fredholm mapping of index
zero type, Ω ⊂ X an open bounded subset and N : Ω → Y be a mapping. If
0 /∈ (L−N)(∂Ω ∩D(L)), then 0 /∈ [I − P − (J−1Q+KPQ)N ](∂Ω).

Proof. Suppose the contrary. Then there exists x0 ∈ ∂Ω such that 0 ∈
x0 − Px0 − (J−1Q + KPQ)Nx0. Since J−1QTx0 ∈ Ker(L) = Im(P ), x0 −
Px0 ∈ Ker(P ) and KpQTx0 ∈ D(L) ∩Ker(P ), we must have

J−1QNx0 = 0, x0 − Px0 −KPQNx0 = 0.

Therefore, we have

QNx0 = 0, x0 − Px0 −KPNx0 = 0, i.e., Lx0 −Nx0 = 0,

which contradicts 0 /∈ (L−N)(∂Ω ∩D(L)). This completes the proof.

Now, let L : D(L) ⊆ X → Y be a Fredholm mapping of index zero type,
Γ0 = (Xn, Pn) be a projection scheme for X, Ω ⊂ X be an open bounded
subset and N : Ω → Y be a L-A-proper mapping respect to Γ0. Suppose that
0 /∈ (L− T )(∂Ω ∩D(L)). By Lemma 4.4.9, we have

0 /∈ [I − P − (J−1Q+KPQ)N ](∂Ω).

Since I − P − (J−1Q +KPQ)N is an A-proper mapping with respect to Γ0,
the generalized degree deg(I −P − (J−1Q+KPQ)N,Ω, 0) is well defined and
we define

degΓ0,J(L−N,Ω, 0) = deg(I − P − (J−1Q+KPQ)N,Ω, 0), (4.4.1)

which is called the generalized coincidence degree of L and N on Ω.

Theorem 4.4.10. The generalized coincidence degree of L and N defined
by (4.4.1) on Ω has the following properties:

(1) If Ω1 and Ω2 are disjoint open subsets of Ω such that 0 /∈ (L−N)(D(L)∩
Ω \ (Ω1 ∪ Ω2), then

degΓ0,J(L−N,Ω, 0) ⊆ degΓ0,J(L−N,Ω1) + degΓ0,J(L−N,Ω2, 0);

(2) If H(t, x) : [0, 1]× Ω → Y is a homotopy of L-A-proper mappings with
respect to Γ0 and 0 6= Lx − H(t, x) for all (t, x) ∈ [0, 1] × ∂Ω ∩ D(L),
then degΓ0,J(L−H(t, ·),Ω, 0) doesn’t depend on t ∈ [0, 1];
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(3) If degΓ0(L−N,Ω, 0) 6= {0}, then 0 ∈ (L−N)(D(L) ∩ Ω);

(4) If L : D(L) ⊆ X → Y is a linear mapping such that L−1 : Y → D(L) is
continuous, then degΓ0,J(L,Ω, 0) = {1} if 0 ∈ Ω;

(5) If Ω is a symmetric neighborhood of 0 and N : Ω → Y is an odd L-
A-proper mapping respect to Γ0 with 0 /∈ (L − N)(∂Ω ∩ D(L)), then
degΓ0,J(L−N,Ω, 0) does not contain even numbers.

Proof. (1)-(3) follows directly from the definition and the properties of
generalized degree.

(4) SinceKer(L) = {0}, P = 0 and Q = 0, the zero mapping is L−A-proper
with respect to Γ0. Thus degΓ0,J(L,Ω, 0) = deg(I,Ω, 0) = {1}.

(5) Since N is odd, the mapping I − P − (J−1Q + KPQ)N is odd and
thus deg(I − P − (J−1Q+KPQ)N,Ω, 0) doesn’t contain even numbers. The
conclusion follows by definition.

Corollary 4.4.11. Let L : D(L) ⊆ X → Y be a linear mapping such that
L−1 : Y → D(L) is continuous, Ω ⊂ X be an open bounded subset with 0 ∈ Ω
and N : Ω → Y be a mapping such that {L− tN}t∈[0,1] is a homotopy of L-A-
proper mappings respect to Γ0. If Lx /∈ tNx for all (t, x) ∈ [0, 1]×∂Ω∩D(L),
then deg(L−N,Ω, 0) = 1.

In the following, let L : D(L) ⊂ X → Y be a densely defined Fredholm
mapping of zero index type. We assume that Γ0 = (Yn, Qn) is a projection
scheme for Y , Γλ,L is the same as in Proposition 4.4.3 and L + λJP − N is
A-proper with respect to Γλ,L for λ ∈ (0, λ0), where λ0 > 0 is a constant.
Suppose that 0 /∈ (L−N)(D(L) ∩ ∂Ω). Then there exists λ1 < λ0 such that

0 /∈ (L+ λJP −N)(D(L) ∩ ∂Ω) for all λ ∈ (0, λ1).

We define a generalized degree by

deg(L−N,Ω, 0) = ∩0<λ<λ1 ∪0<ε≤λ deg(L+ εJP −N,Ω, 0), (4.4.2)

where deg(L+εJP−N,Ω, 0) is the generalized degree for A-proper mappings.
Notice that, if 0 /∈ (L+ λJP −N)(D(L)∩ ∂Ω) for all λ ∈ (0, λ2), then it is

easy to check that

∩0<λ<λ1 ∪0<ε≤λ deg(L+ εJP −N,Ω, 0)
= ∩0<λ<λ2 ∪0<ε≤λ deg(L+ εJP −N,Ω, 0).

Thus (4.4.2) is well defined.

Theorem 4.4.12. The generalized degree defined by (4.4.2) has the fol-
lowing properties:
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(1) If Ω1 and Ω2 are two open subsets of Ω such that Ω1 ∩ Ω2 = ∅ and
0 /∈ (L−N)(D(L) ∩ Ω \ (Ω1 ∪ Ω2)), then

deg(L−N,Ω, 0) ⊆ deg(L−N,Ω1) + deg(L−N,Ω2, 0);

(2) If H(t, x) : [0, 1] × Ω → Y satisfies 0 /∈ ∪t∈[0,1](L−H(t, ·)(D(L) ∩ ∂Ω)
and {L+λJP −H(t, ·)}t∈[0,1] is a homotopy of A-proper mappings with
respect to Γλ,L for each λ ∈ (0, λ0), where λ0 > 0 is a constant, then
deg(L−H(t, ·),Ω, 0) does not depend on t ∈ [0, 1];

(3) If degΓ0(L−N,Ω, 0) 6= {0}, then 0 ∈ (L−N)(D(L) ∩ Ω);

(4) If Ω is a symmetric neighborhood of 0 and N : Ω → Y is an odd mapping
such that L+ λJP −N is A-proper with respect to Γλ,L for all λ > 0,
and 0 /∈ (L−N)(∂Ω ∩D(L)), then deg(L − N,Ω, 0) does not contain
even numbers;

(5) deg(L,Ω, 0) ⊆ {±1} if 0 ∈ Ω.

Proof. (1) By assumption, there exists λ0 > 0 such that

0 /∈ (L+ λJP −N)(D(L) ∩ Ω \ (Ω1 ∪ Ω2))

for all λ ∈ (0, λ0). If m ∈ deg(L−N,Ω, 0), then there exist λj → 0+, λj < λ0,
j = 1, 2, · · · , such that m ∈ deg(L+ λjJP −N,Ω, 0). By Theorem 4.2.3, we
have

deg(L+ λjJP −N,Ω, 0)
⊆ deg(L+ λjJP −N,Ω1, 0) + deg(L+ λjJP −N,Ω2, 0)

for j = 1, 2, · · · . By (4.4.2), (1) is true.
(2) Since 0 /∈ ∪t∈[0,1](L−H(t, ·)(D(L) ∩ ∂Ω), there exists λ1 > 0 such that

0 /∈ ∪t∈[0,1](L+ λJP −H(t, ·))(∂Ω ∩D(L)) for all λ ∈ (0, λ1).

By Theorem 4.2.3, deg(L+ λJP −H(t, ·),Ω, 0) does not depend on t ∈ [0, 1]
for λ ∈ (0,min{λ0, λ1}). So the conclusion of (2) follows from (4.4.2).

(3) If degΓ0(L−N,Ω, 0) 6= {0}, then there exists 0 6= m ∈ degΓ0(L−N,Ω, 0),
so there exists λj → 0+ such that m ∈ deg(L + λjJP −N,Ω, 0). Therefore,
(L + λjJP − N)x has a solution in Ω ∩ D(L) for j = 1, 2, · · · . By letting
j →∞, we get 0 ∈ (L−N)(D(L) ∩ Ω).

(4) The proof is left to the reader.
(5) Now, L+λJP is A-proper with respect to Γλ,L and 0 /∈ (L+λJP )(∂Ω∩

D(L)) for all λ > 0. Since L+ λJP ) is bijective, deg(L+ λJP,Ω, 0) ⊆ {±1}
for all λ > 0, so we have

deg(L−N,Ω, 0) ⊆ {±1}.
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This completes the proof.

Theorem 4.4.13. Let X,Y be real separable Banach spaces and (Yn, Qn)
be a projection scheme for Y . Let L : D(L) ⊂ X → Y be a Fredholm
mapping of zero index type, 0 ∈ Ω ⊂ X be a bounded subset and N : Ω → Y
be a continuous compact mapping. Suppose that the following conditions are
satisfied:

(1) 0 /∈ (L−N)(∂Ω ∩D(L));

(2) 0 /∈ QN(∂Ω ∩D(L)).

Then deg(L−N,Ω, 0) = deg(L−QN,Ω, 0).

Proof. For each λ ∈ (0, λ0), a similar proof to Proposition 4.4.3 shows that
{L+λJP − tN − (1− t)QN}t∈[0,1] is a homotopy of A-proper mappings with
respect to Γλ,L.

Now, we claim that

0 /∈ ∪t∈[0,1](L− tN − (1− t)QN)(D(L) ∩ ∂Ω).

If this is not true, then there exist tj ∈ [0, 1] with tj → t0 and xj ∈ ∂Ω∩D(L)
such that Lxj − tjNxj − (1− tj)QNxj → 0.

Case (1) If t0 = 1, then Lxj −Nxj → 0, which contradicts the assumption
(1).

Case (2) If t0 6= 1, then QLxj − QNxj → 0 and thus we have QNxj → 0
and xj ∈ D(L), which contradicts the assumption (2).

By (2) of Theorem 4.4.12, we get deg(L−N,Ω, 0) = deg(L−QN,Ω, 0).

Finally, let L : D(L) ⊆ X → Y be a Fredholm mapping of index zero type,
Γ0 = (Xn, Pn) be a projection scheme for X and Ω ⊂ X an open bounded
subset. Let N : Ω → Y be a mapping such that I − (L+ λJP )−1(N + λJP )
is A-proper with respect Γ0 for some λ > 0. One can easily see that

0 ∈ Lx−Nx if and only if 0 ∈ (I − (L+ λJP )−1(N + λJP ))x.

Assume that 0 /∈ (L−N)(∂Ω ∩D(L)). Then we have

0 /∈ (I − (L+ λJP )−1(N + λJP ))(∂Ω) for all λ > 0

and we define a generalized degree by

degΓ0(L−N,Ω, 0) = ∪0<λdeg(I − (L+ λJP )−1(N + λJP ),Ω, 0), (4.4.3)

where deg(I − (L+ λJP )−1(N + λJP ),Ω, 0) is the generalized degree for A-
proper mappings if I − (L + λJP )−1(N + λJP ) is A-proper. Otherwise, we
have

deg(I − (L+ λJP )−1(N + λJP ),Ω, 0) = ∅.

Theorem 4.4.14. The generalized degree defined by (4.4.3) has the fol-
lowing properties:
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(1) If Ω1 and Ω2 are disjoint open subsets of Ω such that 0 /∈ (L−N)(D(L)∩
Ω \ (Ω1 ∪ Ω2), then

deg(L−N,Ω, 0) ⊆ deg(L−N,Ω1) + deg(L−N,Ω2, 0);

(2) If H(t, x) : [0, 1] × Ω → Y satisfies 0 /∈ ∪t∈[0,1](L −H(t, ·)(D(L) ∩ ∂Ω)
and {I − (L+λJP )−1(H(t, ·) +λJP )}t∈[0,1] is a homotopy of A-proper
mappings with respect to Γλ,L for all λ > 0, then deg(L−H(t, ·),Ω, 0)
does not depend on t ∈ [0, 1];

(3) If deg(L−N,Ω, 0) 6= {0}, then 0 ∈ (L−N)(D(L) ∩ Ω);

(4) If Ω is a symmetric neighborhood of 0 and N : Ω → Y is an odd mapping
such that I − (L + λJP )−1(N + λJP ) is A-proper with respect to Γ0

for some λ > 0 and 0 /∈ (L−N)(∂Ω∩D(L)), then deg(L−N,Ω, 0) does
not contain even numbers.

Proof. The proof is standard. We prove (2) and skip the others. Since
0 /∈ ∪t∈[0,1](L−H(t, ·)(D(L) ∩ ∂Ω), it follows that

0 /∈ ∪t∈[0,1](I − (L+ λJP )−1(H(t, ·) + λJP )(∂Ω) for all λ > 0.

By Theorem 4.2.3, we know that

deg(I − (L+ λJP )−1(H(t, ·) + λJP ),Ω, 0)

does not depend on t ∈ [0, 1] for each λ > 0. Thus the conclusion of (2) follows
from (4.4.3). This completes the proof.

Theorem 4.4.15. Suppose that (L + λJP )−1 : Y → X is a continuous
compact mapping for each λ > 0, Ω ⊂ X is an open bounded subset with
0 ∈ Ω and N : Ω → Y is a continuous bounded mapping such that Lx 6= Nx
and QNx 6= ηJPx for all x ∈ ∂Ω∩D(L) and η > 0, where P,Q are projections
as in the beginning of this section. Then deg(L−N,Ω, 0) = {1}.

Proof. Since (L + λJP )−1 : Y → X is continuous and compact for each
λ > 0, it follows that {I − (L + λJP )−1t(N + λJP )}t∈[0,1] is a homotopy of
A-proper mappings.

Now, we claim that

x 6= (L+ λJP )−1t(N + λJP )x

for all (t, x) ∈ [0, 1]×(∂Ω∩D(L)) and λ > 0. If this is not true, then there exist
λ0 > 0 and (t0, x0) ∈ [0, 1)×∂Ω such that x0 = (L+λ0JP )−1t0(Nx0+λJPx0).
Thus we have x0 ∈ D(L) and

Lx0 + λ0JPx0 = t0(Nx0 + λ0JPx0).

Copyright 2006 by Taylor & Francis Group, LLC



GENERALIZED DEGREE THEORY FOR A-PROPER MAPS 95

Obviously, t0 6= 1 and so (1 − t0)λ0JPx0 = t0QNx0, which contradicts our
assumption. Consequently, the A-proper degree

deg(I − (L+ λJP )−1(N + λJP ),Ω, 0) = deg(I,Ω, 0) = {1}.

Therefore, from (4.4.3), we get

deg(L− T,Ω, 0) = {1}.

This completes the proof.

Corollary 4.4.16. Suppose that H is a separable Hilbert space, (L +
λJP )−1 : H → X is a continuous compact mapping for each λ > 0 and
Ω ⊂ X is an open bounded subset 0 ∈ Ω, N : Ω → H is a continuous
bounded mapping such that Lx 6= Nx for all x ∈ ∂Ω ∩ D(L), QNx 6= 0
for x ∈ ∂Ω ∩D(L) ∩Ker(P ) and (QNx, JPx) < 0 for all x ∈ ∂Ω ∩D(L) ∩
(Ker(P ))c, where P,Q are projections as in the begining of this section. Then
deg(L−N,Ω, 0) = {1}.

Proof. From our assumption, we have QNx 6= ηJPx for all x ∈ ∂Ω∩D(L)
and η > 0. Thus the conclusion follows from Theorem 4.4.15.

4.5 Applications of the Generalized Degree

In this section, we apply the results in Sections 4.3 and 4.4 to the periodic
semilinear ordinary and partial differential equations.

First, consider the periodic ordinary differential equations:{
x′′(t) = f(t, x(t), x′(t), x′′(t))− g(t), t ∈ [0, T ],
x(0) = x(T ), x′(0) = x′(T )

(E 4.5.1)

where f : [0, T ]×R3 → R is a continuous function.

Lemma 4.5.1. Let f : [0, T ]×R3 → R be a continuous function satisfying
the following:

(a) there exist constants M > 0 and c, d ∈ R with c ≤ gm ≤ gM ≤ d, and
x ≤ M implies that d < f(t, x, 0, r) for all t,∈ [0, T ] and r ∈ R3, while
x ≤ −M implies that f(t, x, 0, r) < c for all t ∈ [0, T ] and r ∈ R3, where
gm = min{g(t) : t ∈ [0, T ]} and gM = max{g(t) : t ∈ [0, T ]}.

If x(t) is a C2 solution of (E 4.5.1) and |x(t)| does not achieve its maximum
at t = 0 or t = T , then

|x(t)| ≤M for all t ∈ [0, T ].
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Proof. Assume that |x(t)| achieves its maximum at t0 ∈ (0, T ). We claim
that |x(t0)| ≤M . If not, then |x(t0)| > M .

Case (1) If x(t0) > M , then x′(t0) = 0 and x′′(t0) ≤ 0. Therefore, we have

f(t0, x(t0), 0, x′′(t0))− g(t0) ≤ 0.

By (a), we have d− g(t0) < 0, so g(t0) < d, which contradicts gM ≤ d.
Case (2) If x(t0) < −M , then x′(t0) = 0 and x′′(t0) ≥ 0. Therefore, we

have
f(t0, x(t0), 0, x′′(t0))− g(t0) ≥ 0.

By (a), we have b− g(t0) > 0, so c > g(t0), which contradicts gm > c.
Therefore, from the above arguments, we know that |x(t0)| ≤ M and

Lemma 4.5.1 is proved. This completes the proof.

Lemma 4.5.2. Suppose that the condition (a) of Lemma 4.5.1 holds. Then
any solution x(·) of the problem (E 4.5.1) satisfies

|x(t)| ≤M for all t ∈ [0, T ].

Proof. Let x(·) be a solution of (E 4.5.1). Assume that |x(t)| achieves its
maximum at t = 0. Then x′(0) = 0. Otherwise, |x(t)| can not achieve its
maximum at t = 0. Therefore, |x(0)| = |x(T )| ≤M .

Lemma 4.5.3. Suppose the following conditions hold:

(1) There exists a constant M > 0 such that, for each solution x(·) of (E
4.4.1), |x(t)| ≤M for t ∈ [0, T ];

(2) There exist constants A,C > 0 and B ∈ [0, 1] such that

|f(t, x, r, q)| ≤ Ar2 +B|q|+ C

for all (t, x) ∈ [0, T ]× [−M,M ] and r, q ∈ R.

Then there are constants M1,M2 > 0 depending only on M,A,B,C and gM

such that
|x′(t)| ≤M1, |x′′(t)| ≤M2 for all t ∈ [0, T ]

for each solution x(·) of (E 4.5.1).

Proof. Since x′(t) vanishes at least once in [0, T ], each point t ∈ [0, T ] for
which x′(t) 6= 0 belongs to an interval [µ, γ] such that x′(t) maintains a fixed
sign on [µ, γ] and x(µ) or x(γ) is 0. Without loss of generality, we may assume
that x(µ) = 0 and x′(t) ≥ 0 for t ∈ [µ, γ]. Therefore, it follows from (2) that

|x′′(t)| ≤ Ax′(t)2 +B|x′′(t)|+ C +D, (4.5.1)
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where D = max{|gm|, |gM |}. Multiply (4.5.1) by x′(t) and rearrange the
terms, we obtain

(1−B)|x′′(t)x′(t)| ≤ (Ax′(t)2 + C +D)x′(t).

Set α = A
1−B and β = C+D

1−B , we get

2αx′′(t)x′(t)
αx′(t)2 + β

≤ 2αx′(t).

Integrate the last inequality over [µ, t] and use |x(t)| ≤ M and x′(µ) = 0, we
obtain

ln(
αx′(t)2 + β

β
) ≤ 2αM.

Therefore, we have

|x′(t)| ≤ [
β

α
(e2αM − 1)]

1
2 = M1.

This and the condition (2) implies that |x′′(t)| ≤M2 for some M2 depending
on M,A,B, and C. This completes the proof.

Combine Lemma 4.5.1 and Lemma 4.5.2 with Lemma 4.5.3, we get the
following:

Proposition 4.5.4. Assume that the condition of Lemma 4.4.1 holds.
If there are continuous functions A(t, x), C(t, x) > 0 which are bounded on
compact subsets of [0, T ]×R and a constant B ∈ [0, 1] such that

|f(t, x, r, q)| ≤ A(t, x)r2 +B|q|+ C(t, x)

for all (t, x) ∈ [0, T ]× [−M,M ] and r, q ∈ R, then there are constants M1 and
M2 such that, for any solution of (E 4.5.1),

|x(t)| ≤M, |x′(t)| ≤M1, |x′′(t)| ≤M2 for all t ∈ [0, T ].

Now, we consider a family of the periodic problems:{
x′′(t) = λf(t, x(t), x′(t), x′′(t))− λg(t), t ∈ [0, T ],
x(0) = x(T ), x′(0) = x′(T ),

(E 4.5.2)

where λ ∈ [0, 1].

Lemma 4.5.5. Suppose that the following conditions hold:

(1) Let M > 0 and c, d be the same as in Lemma 4.5.1 and the condition of
Lemma 4.5.1 holds;
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(2) Let A,C > 0 and B ∈ [0, 1] be such that

|f(t, x, r, q)| ≤ Ar2 +B|q|+ C

for all (t, x) ∈ [0, T ]× [−M,M ] and r, q ∈ R.

Then there are constants M1,M2 > 0 such that, for λ ∈ [0, 1] and any solution
xλ(·) of (E 4.5.2),

|xλ(t)| ≤M, |x′λ(t)| ≤M1, |x′′λ(t)| ≤M2 for all t ∈ [0, T ].

Proof. Replace f by λf and g by λg in Lemma 4.5.2 and Lemma 4.5.3,
respectively, one easily gets the conclusions.

To formulate an existence result for the problem (E 4.5.1), let Y = C[0, T ]
be the Banach space of continuous functions on [0, T ] with the supremum
norm and Ck([0, T ]) be the Banach space of k-times continuously differentiable
functions with the norm ‖x(·)‖k = max{‖x(i)(·)‖ : 0 ≤ i ≤ k}, where ‖ · ‖ is
the norm in C([0, T ]). Set

X = {x(·) ∈ C2([0, T ]) : x(0) = x(T ), x′(0) = x′(T )},

and let S : X → Y be a mapping defined by

Sx(t) = x′′(t) for all x(·) ∈ X, t ∈ [0, T ].

It is well known that S is a Fredholm mapping of index zero, N(S) = {x(·) ∈
X : x(t) is constant}, R(S) = {y(·) ∈ Y :

∫ T

0
y(t)dt = 0}, X = N(S) ⊕ X ′

and Y = N(S) ⊕ R(S). It is easy to see that K = S − I : X → Y is
a linear isomorphism. Let (Yn, Qn) be a projection scheme for Y and set
Xn = K−1Yn, then d(x,Xn) → 0 as n → ∞, so ΠS = (Xn, Yn, Qn) is
admissible for mappings from X to Y . Now, S is A-proper with respect to
ΠS .

Finally, we set N : X → Y by

Nx(t) = f(t, x(t), x′(t), x′′(t)) for all t ∈ [0, T ], x(·) ∈ X.

Then N is continuous and maps bounded subsets in X to bounded subsets in
Y .

Now, we have the following:

Theorem 4.5.6. Let g(·) ∈ Y , f(t, x, r, q) : [0, T ]×R3 → R be a continuous
function and S, ΠS , N be the same as the above. Suppose that the following
conditions hold:

(1) S − λN is A-proper with respect to ΠS for each λ ∈ (0, 1];
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(2) There exist constants M > 0 and c, d ∈ R with c ≤ gm ≤ gM ≤ d, and
x ≤ M implies that d < f(t, x, 0, r) for all t ∈ [0, T ] and r ∈ R3, while
x ≤ −M implies that f(t, x, 0, r) < c for all t ∈ [0, T ] and r ∈ R3, where
gm = min{g(t) : t ∈ [0, T ]} and gM = max{g(t) : t ∈ [0, T ]};

(3) There are continuous functions A(t, x), C(t, x) > 0 which are bounded
on compact subsets of [0, T ]×R and a constant B ∈ [0, 1] such that

|f(t, x, r, q)| ≤ A(t, x)r2 +B|q|+ C(t, x)

for all (t, x) ∈ [0, T ]× [−M,M ] and r, q ∈ R.

Then the problem (E 4.5.1) has a solution.

Proof. Take r > {M,M1,M2}, where M,M1,M2 are the same as in
Lemma 4.5.5. Put Ω = B(0, r) = {x(·) : ‖x(·)‖2 < r}. Then Sx 6= λNx− λg

for all λ ∈ (0, 1] and x ∈ ∂Ω. Set Qu = 1
T

∫ T

0
u(t)dt for all u ∈ Y , then

Q : Y → N(S) is a projection.
We define a bilinear form on Y ×X by

[u, x] =
∫ T

0

u(t)x(t)dt for all (u, x) ∈ Y ×X.

If x(·) ∈ ∂Ω∩N(S), then ‖x‖2 = r > M , so x ≡ r or −r. Thus the assumption
(2) implies that

QN(c)−Qg =
∫ T

0

[f(t, c, 0, 0)− g(t)]dt 6= 0

and

[QN(c)−Qg, c] =
∫ T

0

[f(t, c, 0, 0)− g(t)]cdt = 0,

where c = r or −r. From Theorem 4.3.3, we know that the problem (E 4.5.1)
has a solution. This completes the proof.

A special case of (E 4.5.1) is the following:{
x′′(t) = f(t, x(t), x′(t))− g(t), t ∈ [0, T ],
x(0) = x(T ), x′(0) = x′(T ).

(E 4.5.3)

In this case, the mapping given by N(x)(t) = f(t, x(t), x′(t)) for all t ∈ [0, T ]
is compact, so S − λN is A-proper with respect to ΠS . From Theorem 4.5.6,
the following immediately holds:

Corollary 4.5.7. Let g(·) ∈ Y , f(t, x, r) : [0, T ]×R2 → R be a continuous
function and S, ΠS , N be the same as above. Suppose that the following
conditions hold:
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(1) There exist constants M > 0 and c, d ∈ R with c ≤ gm ≤ gM ≤ d, and
x ≤M implies that d < f(t, x, 0) for all t ∈ [0, T ], while x ≤ −M implies
that f(t, x, 0) < c for all t ∈ [0, T ], where gm = min{g(t) : t ∈ [0, T ]}
and gM = max{g(t) : t ∈ [0, T ]};

(2) There are continuous functions A(t, x), C(t, x) > 0 which are bounded
on compact subsets of [0, T ]×R such that

|f(t, x, r)| ≤ A(t, x)r2 + C(t, x) for all (t, x) ∈ [0, T ]× [−M,M ].

Then the problem (E 4.5.3) has a solution.

Next, we consider the wave equation:
utt(t, x)− uxx(t, x)− h(u(t, x)) = f(t, x),
t ∈ (0, 2π), x ∈ (0, π),
u(t, 0) = u(t, π) = 0, t ∈ (0, 2π),
u(0, x) = u(2π, x), x ∈ (0, π),

(E 4.5.4)

where h : R→ R is a continuous function satisfying

|h(u)| ≤ δ|u|+ γ (4.5.4)

and f(·) ∈ L2((0, 2π)× (0, π)), where δ > 0 and γ > 0 are constants.
We say that u ∈ L2((0, 2π) × (0, π)) is a weak solution of the problem (E

4.5.4) if
(u, vtt − vxx)− (h(u(t, x)), v) = (f(t, x), v)

for all v ∈ C2([0, 2π] × [0, π]) with v(t, 0) = v(t, π) = 0 for all t ∈ [0, 2π] and
v(2π, x) = v(0, x) for all x ∈ [0, π].

Let L : D(L) ⊂ L2((0, 2π)×(0, π)) → L2((0, 2π)×(0, π)) be the wave opera-
tor Lu = utt−uxx. Then it is well known that L is self-adjoint, densely defined,
and closed, and Ker(L) is infinite dimensional with Ker(L)⊥ = Im(L). Thus
L is a Fredholm mapping of zero index type. Let P : L2((0, 2π) × (0, π)) →
Ker(L) be the projection. Then (L+ λP )−1 : L2((0, 2π)× (0, π)) → D(L) is
compact for all λ > 0.

For each η > 0, consider the following equation:
utt(t, x)− uxx(t, x) + ηu(t, x)− h(u(t, x)) = f(t, x),
t ∈ (0, 2π), x ∈ (0, π),
u(t, 0) = u(t, π) = 0, t ∈ (0, 2π),
u(0, x) = u(2π, x), x ∈ (0, π),

(E 4.5.5)

where h, f is the same as in (E 4.5.4). Let uη be the weak solution of (E 4.5.5)
if it exists, and we set S = {uη : η > 0}.
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Theorem 4.5.8. One of the following conclusion holds:
(1) The problem (E 4.5.4) has a weak solution;
(2) S is unbounded in L2((0, 2π)× (0, π).

Proof. Let N : L2((0, 2π)× (0, π)) → L2((0, 2π)× (0, π)) be defined by

Nu(t, x) = h(u(t, x)) + f(t, x) for all u(t, x) ∈ L2((0, 2π)× (0, π)).

By (4.5.4), N is a bounded and continuous mapping. We may assume that
(2) does not hold, i.e., S is bounded, so there exists r0 > 0 such that

‖uη‖L2 < r0 for all uη ∈ S. (4.5.5)

Let Ω = {u(t, x) ∈ L2((0, 2π)×(0, π)) : ‖u‖L2 < r0}. By (4.5.5), we know that
PNu 6= ηPu for all u ∈ C2([0, 2π]× [0, π]) ∩ ∂Ω and η > 0. We may assume
that Lu 6= Nu for all u ∈ C2([0, 2π] × [0, π]) ∩ ∂Ω. By Theorem 4.4.16, we
have deg(L−N,Ω, 0) = {1}. Thus the problem (E 4.5.4) has a weak solution.
This completes the proof.

Remark. The results of Sections 4.1-4.3 in this chapter can be found in
[239].

4.6 Exercises

1. Let X be a separable Banach space with a projection scheme Π =
{Xn, Pn}, Ω ⊂ X be an open bounded subset with x0 ∈ Ω and T :
Ω → X be a P1 compact mapping satisfying

Tx− x0 6= λ(x− x0) for all x ∈ ∂Ω, λ > 1.

Show that T has a fixed point in Ω.

2. Let X be a separable Banach space with a projection scheme Π =
{Xn, Pn}, Ω ⊂ X be an open bounded subset with 0 ∈ Ω and tΩ ⊂ Ω
for λ ∈ (0, 1) and T : Ω → X be a P1 compact mapping satisfying
T (∂Ω) ⊆ Ω. Show that T has a fixed point in Ω.

3. Let X be a separable Banach space with a projection scheme Π =
{Xn, Pn}, Ω ⊂ X be an open bounded subset with 0 ∈ Ω and T : Ω → X
be a P1 compact mapping satisfying

‖x−Nx‖2 ≥ ‖Nx‖2 − ‖x‖2 for all x ∈ ∂Ω.

Show that T has a fixed point in Ω.
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4. Let H be a real separable Hilbert space and T : H → H be a continuous
mapping satisfying (Tx − Ty, x − y) ≥ c‖x − y‖2 for all x, y ∈ H and
some c > 0. Show that T is A-proper.

5. Let X be a separable Banach space with a projection scheme Π =
{Xn, Pn}, Ω ⊂ X be an open bounded subset and T : Ω → X be a
continuous A-proper mapping. Show that T−1y for all y ∈ T (Ω) is
compact.

6. Let X be a separable Banach space with a projection scheme Π =
{Xn, Pn}, c = supn ‖Pn‖ = c, D ⊂ X be closed and T : D → X
be a mapping satisfying β(T (B)) ≤ kβ(B) for all bounded subset B of
D. Show that λI − T is A-proper for each λ > kc.

7. Let X be a separable Banach space with an operator scheme Π =
{Xn, Pn} and T : X → X be a continuous strongly accretive mapping,
i.e.,

(x− y, Tx− Ty)+ ≥ c‖x− y‖2 for all x, y ∈ X, some c > 0.

Show that T is A-proper.

8. Let X be a separable Banach space with an operator scheme Π =
{Xn, Pn} and T : X → X be a linear bounded operator. Show that T is
A-proper and one to one if and only if R(T ) = X and ‖PnTx‖ ≥ c‖x‖
on Xn for some c > 0 and all n ≥ n0.

9. Let L : D(L) ⊂ X → Y be a Fredholm mapping of zero index type
and {Yn, Qn} be a projection scheme for Y . Assume that X is reflexive.
Show that, if G ⊂ X is bounded closed, convex and N : G → Y is
continuous compact, then L+ kN : G ∩D(L) → Y is pseudo A-proper
with respect to Γλ,L for each λ 6= 0.

10. Let L : D(L) ⊂ X → Y be a Fredholm mapping of zero index, {Yn, Qn}
be a projection scheme for Y and Ω ⊂ be an open bounded subset. Let
N : Ω → Y be a bounded mapping such that the following conditions
are satisfied:

(1) L− λN is A-proper with respect to ΓL for each λ ∈ (0, 1];
(2) There are sets E1 ⊂ E2 ⊂ R(L) such that 0 ∈ E1 and λE2 ⊂ E1

for all λ ∈ (0, 1) and, for all x ∈ ∂(Ω∩D(L)) such that Nx ∈ R(L),
one has Lx /∈ E1 and Nx ∈ E2.

If Deg(L−QN,D(L)∩Ω, 0) 6= 0, show that Lx−Nx = 0 has a solution,
where Q is as in Section 4.1.

11. Let L : D(L) ⊂ X → Y be a Fredholm mapping of zero index, {Yn, Qn}
be a projection scheme for Y , Ω ⊂ be an open bounded subset. Let
N : Ω → Y be a bounded mapping such that the following conditions
are satisfied:
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(1) L− λN is A-proper with respect to ΓL for each λ ∈ (0, 1];

(2) Nx /∈ R(L) for all x ∈ L−1 ∩ ∂Ω;

(3) ‖Lx−Nx‖2 ≥ ‖Nx‖2 − ‖Lx‖2 for all x ∈ D(L) \ (N(L) ∩ ∂Ω);

(4) Deg(L−QN,D(L) ∩ Ω, 0) 6= 0.

Show Lx = Nx has a solution in Ω ∩D(L).
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Chapter 5

COINCIDENCE DEGREE
THEORY

In the 1970s, Mawhin systematically studied a class of mappings of the form
L + T , where L is a Fredholm mapping of index zero and T is a nonlinear
mapping, which he called a L- compact mapping. Based on the Lyapunov-
Schmidt method, he was able to construct a degree theory for such mapping.

The goal of this chapter is to introduce Mawhin’s degree theory for L-
compact mappings. This chapter has four main sections.

We present some introductory material on Fredholm mappings and their
relations with A-proper mappings in Section 5.1.

In Section 5.2, we define L-compact mappings (here L is a Fredholm map-
ping) and we introduce the coincidence degree. Various properties of this
degree (see Theorem 5.2.2 and Lemma 5.2.6) are also discussed in this sec-
tion.

In Section 5.3, various consequences of the degree theory in Section 5.2 are
presented (see, in particular, Theorem 5.3.5).

An application to the periodic ordinary differential equations is presented
in Section 5.4.

5.1 Fredholm Mappings

Definition 5.1.1. Let X and Y be normed spaces. A linear mapping
L : D(L) ⊂ X → Y is called a Fredholm mapping if

(1) Ker(L) has finite dimension;

(2) Im(L) is closed and has finite codimension.

Proposition 5.1.2. Let X be a Banach space and T : X → X be a linear
bounded mapping. Then dim(Ker(T )) < ∞ and Im(T ) is closed if and
only if, for xn ∈ B(0, 1) such that Txn → y, thus (xn)∞n=1 has a convergent
subsequence.

105
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Proof. For the ”if” part, we know from our assumption that {x : Tx =
0, ‖x‖ ≤ 1} is compact and thus Ker(T ) is finite dimensional. We have
X = Ker(T ) ⊕M for some closed subspace M of X. Obviously, we have
T (M) = Im(T ). Since T : M → Im(T ) is one to one, it follows that

‖Tx‖ ≥ c‖x‖ for all x ∈M, some c > 0

and, from this, we deduce that T (M) is closed. Therefore, Im(T ) is closed.
For the ”only if” part, assume that xn ∈ B(0, 1) such that Txn → y. As

before, X = Ker(T ) ⊕ M , so xn = zn + mn for some xn ∈ Ker(T ) and
mn ∈M . Thus Tmn → y. However, the restriction of T to M is continuous,
one to one and onto Im(T ), so mn → m ∈ M . Recall that dim(N(T )) is
finite, so (xn)∞n=1 has a convergent subsequence. This completes the proof.

Proposition 5.1.3. Let X be a Banach space, T : X → X be a linear
bounded Fredholm operator and K : X → X be a linear continuous compact
mapping. Then T +K is a Fredholm mapping.

Proof. The proof is left to the reader as an exercise.

Recall that the codimension of Im(L) is the dimension of Coker(L) =
Y/Im(L). If L is a Fredholm mapping, then its index is defined by

Ind(L) = dim(Ker(L))− dim(Coker(L)).

Now, assume that L is a Fredholm mapping. Then there exist two linear
continuous projections P : X → X and Q : Y → Y such that

Im(P ) = Ker(L), Ker(Q) = Im(L).

Also, we have

X = Ker(L)⊕Ker(P ), Y = Im(L)⊕ Im(Q)

as the topological direct sums.
Obviously, the restriction of LP of L to D(L) ∩Ker(P ) is one to one and

onto Im(L) and so its inverse KP : Im(L) → D(L) ∩Ker(P ) is defined. We
denote by KPQ : Y → D(L)∩Ker(P ) the generalized inverse of L defined by
KPQ = KP (I −Q).

Proposition 5.1.4. Let X,Y be separable Banach spaces and L : D(L) ⊂
X → Y be a densely defined Fredholm mapping with Ind(L) = m ≥ 0.
Then there exist a sequence of monotonically increasing finite dimensional
subspaces (Xn)∞n=1 ⊂ D(L) such that ∪∞n=1Xn is dense in X, and let (Pn)∞n=1

be a sequence of linear continuous projections on X with Im(Pn) = Xn for
each n ≥ 1 and Pnx→ x for all x ∈ X as n→∞ and (Qn)∞n=1 be a sequence
of linear continuous projections on Y with Im(Qn) = Yn for each n ≥ 1 such
that dim(Xn)− dim(Yn) = m for each n ≥ 1.
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Proof. Since L is Fredholm, there exist two linear continuous projections
P : X → X and Q : Y → Y such that

Im(P ) = Ker(L), Ker(Q) = Im(L),

X = Ker(L)⊕Ker(P ), Y = Im(L)⊕ Im(Q).

By the assumption D(L) is dense in X, we may choose a a sequence (Xn)∞n=1

of monotonically increasing finite dimensional subspaces of D(L) such that
∪∞n=1Xn is dense in X and Ker(L) ⊂ Xn, a sequence (Pn)∞n=1 of linear con-
tinuous projections on X with Im(Pn) = Xn for each n ≥ 1 and Pnx → x
for each x ∈ X as n→∞. Obviously, PPn = P , Pn(Ker(P )) ⊂ Ker(P ) and
(I −Pn)(X) ⊂ Ker(P ). Set Qn = Q+LPnKPQ, then Qn is continuous. It is
easy to check that Q2

n = Qn for each n ≥ 1. Thus, Qn is a linear continuous
projection for each n ≥ 1. Finally, set Yn = Qn(Y ); then Im(Q) ⊂ Qn,
QnLx = LPnx for all x ∈ D(L) and dim(Xn)− dim(Yn) = m for each n ≥ 1.
This completes the proof.

In the sequel, we denote the approximation scheme constructed in Propo-
sition 5.1.4 by Γm = {Xn, Pn;Yn, Qn}.

Definition 5.1.5. Let G ⊂ X be a non-empty set, Gn = G ∩ Xn for
n = 1, 2, · · · . A mapping T : G → Y is said to be A-proper (respectively,
pseudo A-proper) with respect to Γm if Tn = QnT : Gn → Yn is continuous
and, if xnk

∈ Gnk
such that (xnk

)∞k=1 is bounded and Qnk
(Txnk

− g) → 0
as k → ∞ for some g ∈ Y , then there exists a subsequence (xnkl

) with
xnkl

→ x0 ∈ G (resp., x0 ∈ G exists) such that Tx = g.

Proposition 5.1.6. Let X,Y be separable Banach spaces and L : D(L) ⊂
X → Y be a densely defined Fredholm mapping of index m > 0. Then L is
A-proper with respect to Γm.

Proof. Let xnk
∈ Gnk

be such that (xnk
)∞k=1 is bounded and Qnk

(Txnk
−

g) → 0 as k → ∞ for some g ∈ Y . Notice that Qnk
= Q + LPnk

KPQ, so we
get

gnk
= Qnk

(Txnk
− g) = Lxnk

−Qg − LPnk
KPQg → 0.

So L(xnk
− Pnk

KPQg) = gnk
+ Qg → Qg. However, Im(L) is closed, so we

have Qg = 0 and L(xnk
− Pnk

KPQg) → 0. From which we deduce that

KPL(xnk
− Pnk

KPQg) = (I − P )(xnk
− Pnk

)KPQg) → 0.

Now, the compactness of P implies that (xnk
) has a subsequence (xnkl

) such
that xnkl

→ x0 and x0 −KPQg = Px0 − PKPQg. Since L is closed, we have
L(x0 −KPQg) = 0. Thus Lx0 = g. This completes the proof.

More precisely, we have the following result between the A-proper mapping
and the Fredholm mapping:
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Proposition 5.1.7. Let X,Y be separable Banach spaces and L : X → Y
be a linear bounded mapping. Then L is a Fredholm mapping of index m ≥ 0
if and only if L is A-proper with respect to some projectional scheme.

Proposition 5.1.8. Let X,Y be Banach spaces, L : D(L) ⊂ X → Y be a
Fredholm mapping of index m > 0, J ′ : Im(Q→ Ker(L) be a monomorphism
and N : D(N) ⊂ X → Y be a mapping. Then Lx−Nx = y if and only if

x− Px− J ′QNx−KPQNx = KPQy + J ′Qy.

Proof. If Lx−Nx = y, then we have

L(I − P )x−QNx− (I −Q)Nx = Qy + (I −Q)y,

so −QNx = Qy and L(I−P )x−(I−Q)Nx = (I−Q)y, i.e., −J ′QNx = JQy
and x− Px−KPQNx = KPQy. Thus we have

x− Px− J ′QNx−KPQNx = KPQy + J ′Qy.

On the other hand, if x− Px− J ′QNx−KPQNx = KPQy + J ′Qy, then,
since J ′Nx ∈ Ker(L) = Im(P ) and KPQNx ∈ D(L) ∩ Ker(P ), we have
x− Px−KPQNx = KPQy and −J ′QNx = J ′Qy and so Lx− (I −Q)Nx =
(I −Q)y and −QNx = Qy. Thus Lx−Nx = y. This completes the proof.

Proposition 5.1.9. Let X,Y be separable Banach spaces, L : D(L) ⊂
X → Y be a densely defined Fredholm mapping of index m > 0 and Γm

the same as Proposition 5.1.4. Let Ω ⊂ X be an open bounded subset and
N : Ω → Y be a bounded mapping. If I − P − J ′QN −KpQN is A-proper
with respect to Γ = {Xn, Pn}, then L−N is A-proper with respect to Γm.

Proof. For any xnk
∈ Ω∩D(L)∩Xnk

such that Qnk
(Lxnk

−Nxnk
−y → 0

as k →∞ for some y ∈ Y , we recall that Qnk
= Q+ LPnk

KpQ, so we have

Qnk
(Lxnk

−Nxnk
− y)

= L(I − Pnk
)xnk

−Q(Nxnk
+ y)− LPnk

(I −Q)(Nxnk
+ y)

→ 0

as k →∞. Therefore, we have

yk = L(I − Pnk
)xnk

− LPnk
(I −Q)(Nxnk

+ y) → 0,

zk = QNxnk
+Qy → 0

and thus

hk = KP yk = (I − P )xnk
− PkKPQ(Nxnk

+ y) → 0,

wk = J ′zk = J ′QNxnk
+ J ′Qy → 0.
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From which we deduce that

xnk
− Pxnk

− Pnk
KpNxnk

→ KPQy,

J ′QNxnk
→ −J ′Qy,

which immediately implies that

Pnk
(I − P − J ′QN −KpQN)xnk

→ KpQy + J ′Qy.

So (xnk
)∞k=1 has a convergence subsequence (xnkl

) with xnkl
→ x0 and x0 −

Px0 − J ′QNx0 − KpQNx0 = KpQy + J ′Qy. By Proposition 5.1.8, we have
Lx0−Nx0 = y. Thus L−N is A-proper with respect to Γm. This completes
the proof.

Assume now that L is a Fredholm mapping of index zero. Then, for any
isomorphism J : Im(Q) → Ker(L), the mapping JQ+KPQ is an isomorphism
from Y onto D(L) and

(JQ+KPQ)−1x = (L+ J−1P )x for all x ∈ D(L).

In fact, if y ∈ Y , we have

(JQ+KPQ)y = x ⇔ JQy = Px,

KPQy = (I − P )x ⇔ Qy = J−1Px,

LPKPQy = L(I − P )x ⇔ Qy = J−1Px,

(I −Q)y = Lx ⇔ y = (J−1P + L)x.

Example 5.1.10. Let X be a real Banach space and T : X → X be a
linear continuous compact mapping. Then, by (5) of Theorem 2.1.15, we know
that dim(ker(I + T )) = dim(codim(I + T )) < +∞, so I + T is a Fredholm
mapping of index zero.

Example 5.1.11. Let f : [0, T ] → R be in L1 and consider the following
problem: {

x′(t) = f(t), t ∈ (0, T ),
x(0) = x(T ).

(E 5.1.1)

We set X = C([0, T ], R), the space of all continuous function from [0, T ] to
R, Y = L1([0, T ], R)×R, y0 = (f(·), 0) and define a mapping L : X → Y by

Lx(·) = (x′(·), x(0)− x(T )) for all x(·) ∈ dom(L),

where dom(L) = {x(·) ∈ C([0, T ], R) : x′(·) ∈ L1([0, T ], R)}.
One can easily see that (E 5.1.1) is equivalent to the following equation:

Lx(·) = y0.
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It is easy to see that

ker(L) = {x(·) ∈ C([0, T ], R) : x(t) = c, t ∈ [0, T ], c ∈ R},

Im(L) = (f(·),−
∫ T

0

f(s)ds) for all f(·) ∈ L1([0, T ], R).

Obviously, Im(L) is closed and dim(Ker(L)) = dim(Coker(L)) = 1. Thus L
is a Fredholm mapping of index zero.

5.2 Coincidence Degree for L-Compact Mappings

In this section, we define coincidence degree for L-compact mappings and
give some properties of coincidence degree.

Definition 5.2.1. Let L : D(L) ⊂ X → Y be a Fredholm mapping, E be
a metric space and T : E → Y be a mapping. We say that T is L-compact
on E if QT : E → Y , KPQT : E → X are continuous and QT (E), KPQT (E)
are compact, where all notations are the same as in Section 5.1.

Now, we are ready to introduce the conincidence degree:

Coincidence degree. LetX,Y be real normed spaces, L : D(L) ⊂ X → Y
be a Fredholm mapping of index zero and Ω be an open bounded subset of X.
Suppose that F = L+ T : D(L) ∩ Ω → Y is a mapping and T : Ω → Y is L-
compact on Ω. Suppose also that 0 /∈ F (D(L)∩∂Ω). Let J : Im(Q) → Ker(L)
be an isomorphism. Put HJ

PQ = JQ+KPQ. It is easy to check that

HJ
PQF = KPQL+HJ

PQT = I − P + (JQ+KPQ)T.

Consequently, 0 /∈ HJ
PQF (D(L) ∩ ∂Ω) (if 0 ∈ HJ

PQF (D(L) ∩ ∂Ω, then 0 =
KPQ(Lx + Tx) + JQTx for some x ∈ D(L) ∩ ∂Ω, so QTx = 0 and (I −
Q)(Lx + Tx) = 0. Thus Lx + Tx = 0, which is a contradiction). By the L-
compactness of T , the Leray Schauder degree deg(I−P +(JQ+KPQ)T,Ω, 0)
is well defined.

Now, we define a degree by

DJ(L+ T,Ω, 0) = deg(I − P + (JQ+KPQ)T,Ω, 0),

which is called the coincidence degree of L and−T on Ω∩D(L). One can easily
prove that this definition does not depend on the choice of P,Q. It is known
that DJ(L + T,Ω, 0) is a constant for some J depending on orientations on
Ker(L) and Coker(L) (see [203]), so the coincidence degree in [203] is defined
only for those J ′s. The definition given here depends on the J .
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Remark. (1) If dim(X) = dim(Y ) < +∞ and we take L = 0, then any
continuous mapping T on Ω is L-compact. If we take P = I and Q = I, then
it follows that KPQ = 0, so HJ

PQF = JT and thus we have

DJ(T,Ω, 0) = deg(JT,Ω, 0) = sign(detJ)deg(T,Ω, 0).

Therefore, if we only take those J such that detJ > 0, then we haveDJ(T,Ω, 0) =
deg(T,Ω, 0), which is the Brouwer degree.

(2) If X = Y and we take L = I, then any continuous compact mapping T
on Ω is L-compact. If we take P = Q = 0, then KPQ = I, J = 0 : {0} → {0}
and HJ

PQF = I + T . Thus DJ(I + T,Ω, 0) = deg(I + T,Ω, 0), which is the
Leray Schauder degree.

Theorem 5.2.2. The coincidence degree of L and −T on Ω has the fol-
lowing properties:

(1) If Ω1 and Ω2 are disjoint open subsets of Ω such that 0 /∈ F (D(L) ∩
Ω \ (Ω1 ∪ Ω2), then

DJ(L+ T,Ω, 0) = DJ(L+ T,Ω1) +DJ(L+ T,Ω2, 0);

(2) If H(t, x) : [0, 1]×Ω → Y is L-compact on [0, 1]×Ω and 0 6= Lx+H(t, x)
for all (t, x) ∈ [0, 1]× ∂Ω, then DJ(L+H(t, ·),Ω, 0) does not depend on
t ∈ [0, 1];

(3) If DJ(L+ T,Ω, 0) 6= 0, then 0 ∈ (L+ T )(D(L) ∩ Ω).

Corollary 5.2.3. If T1, T2 are L-compact mappings on Ω and T1x = T2x
for all x ∈ D(L) ∩ ∂Ω, then

DJ(L+ T1,Ω, 0) = DJ(L+ T2,Ω, 0).

Proof. We define H(t, x) : [0, 1]× Ω → Y by

H(t, x) = tT1x+ (1− t)T2x for all (t, x) ∈ [0, 1]× Ω.

Then H is L-compact. Therefore, it follows from (3) of Theorem 5.2.2 that
DJ(L+ T1,Ω, 0) = DJ(L+ T2,Ω, 0).

Proposition 5.2.4. Let X, Y be real normed spaces, L : D(L) ⊂ X → Y
be a Fredholm mapping of index zero, Y0 be a finite dimensional subspace of
Y satisfying Y = Im(L)⊕Y0 algebraically and Ω be an open bounded subset
of X. If T is L-compact on Ω ∩D(L), and T (Ω) ⊂ Y0, then

DJ(L+ T,Ω, 0) = signdet(J)deg(T,Ω ∩Ker(L), 0),

where deg(·, ·, ·) is the Brouwer degree.
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Proof. Since L is a Fredholm mapping of index zero, we get Y = Im(L)⊕Y0

topologically. Take Q : Y → Y with Im(Q) = Y0, then QTx = Tx for x ∈ Ω
and

HJ
PQF = (JQ+KPQ)(L+ T ) = I − P + JT.

Note that (P − JT )(Ω) ⊂ Ker(L) and I = P on Ker(L); thus, by Theorem
2.2.9, we have

DJ(L+ T,Ω, 0) = deg(I − P + JT,Ω, 0) = deg(I − P + JT,Ω ∩Ker(L), 0).

But I = P on Ker(L) and thus we get

DJ(L+ T,Ω, 0) = deg(JT,Ω ∩Ker(L), 0)
= signdet(J)deg(T,Ω ∩Ker(L), 0).

This completes the proof.

Lemma 5.2.5. Let A : Im(Q) → D(L) be a linear mapping such that
PA : Im(Q) → Ker(L) is an isomorphism. Then HA

PQ = AQ + KPQ is an
algebraic isomorphism from Y onto D(L) and

(HA
PQ)−1 = L− LA(PA)−1P + (PA)−1P.

Moreover, if T is L-compact on Ω, then

HA
PQ(L+ T ) = I − P +HA

pQT

with HA
PQT : Ω → X continuous and compact.

Proof. For any x ∈ D(L), HA
PQz = x if and only if PAQz = Px and

(I − P )AQz +KPQz = (I − P )x, i.e.,

Qz = (PA)−1Ox,LAQz + (I −Q)z = Lx,

z = Lx− LA(PA)−1Px+ (PA)−1Px.

Finally, we have

HA
PQ(L+ T ) = (AQ+KPQ)(L+ T )

= KPQL+ (AQ+KPQ)T
= (I − P ) +HA

PQT.

By the assumption, QT and KPQT are continuous and compact on Ω, so
HA

PQT is continuous and compact on Ω. This completes the proof.

Lemma 5.2.6. Let A,B : Im(Q) → D(L) be linear mappings such that
PA, PQ : Im(Q) → Ker(L) are isomorphisms and T is L-compact. Then

deg(I − P +HB
PQT,Ω, 0)

= deg(I − (A−B)(PA)−1P,B(0, r), 0)deg(I − P +KA
PQT,Ω, 0)
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for any r > 0.

Proof. First, we have

(I − (A−B)(PA)−1P )(I − P +KA
PQT )

= I − P +AQ+KpQ)T − (A−B)(PA)−1PAQT

= I − P +HB
PQT.

Therefore, it follows that

deg(I −P +HB
PQT,Ω, 0) = deg(I − (A−B)(PA)−1P )(I −P +KA

PQT ),Ω, 0).

Moreover, if x− (A−B)(PA)−1Px = 0, then PB(PA)−1Px = 0, so Px = 0.
Thus x = 0 and so I− (A−B)(PA)−1P is a homeomorphism of X onto itself.
By the product formula of Theorem 2.2.8, we know that

deg(I − (A−B)(PA)−1P )(I − P +KA
PQT ),Ω, 0)

= Σideg(I − (A−B)(PA)−1P, (Ui, 0)deg(I − P +KA
PQT,Ω, Ui),

where Ui are connected components of X \ (I − P +KA
pQT )(∂Ω).

There are now two cases:
Case (1) If 0 ∈ Ui, then 0 /∈ Uk for k 6= i. Thus deg(I−(A−B)(PA)−1P,Uk, 0) =

0, so we have

deg(I − (A−B)(PA)−1P )(I − P +KA
PQT ),Ω, 0)

= deg(I − (A−B)(PA)−1P,Ui, 0)deg(I − P +KA
PQT,Ω, 0).

By the excision property of Leray Schauder degree, the conclusion is true.
Case (2) If 0 /∈ Ui for all i ≥ 1, then deg(I − (A − B)(PA)−1P,Ui, 0) = 0

for all i ≥ 1 and thus the conclusion holds. This completes the proof.

From Lemma 5.2.6, the following holds immediately:

Corollary 5.2.7. Let T be L-compact on Ω∩D(L) and A be the same as
in Lemma 5.2.6. Then

DJ(L+ T,Ω, 0)
= deg(I − (A− J)(PA)−1P,B(0, r))deg(I − P +HA

PQT,Ω, 0)

for all r > 0.

Proposition 5.2.8. If T : X → Y is linear and L-completely continuous,
Ker(L+ T ) = {0} and Ω ⊂ X is a nonempty open bounded subset such that
0 6∈ ∂Ω, then

|DJ(L+ T,Ω, 0)| =

{
0, 0 /∈ Ω,
1, 0 ∈ Ω.
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Proof. By definition, we have

DJ(L+ T,Ω, 0) = deg(I − P +KPQT,Ω, 0).

Thus the conclusion follows from the assumption and Theorem 2.2.4.

Theorem 5.2.9. If Ω ⊂ X is open bounded with 0 ∈ Ω, Ω is symmetric
with respect to 0 and T is L-compact on Ω ∩D(L) such that T (−x) = −Tx
for all x ∈ ∂Ω ∩D(L), then |DJ(L+ T,Ω, 0)| is an odd number.

Proof. Since DJ(L+T,Ω, 0) = deg(I −P +KPQT,Ω, 0), by the definition
of the Leray Schauder degree and Borsuk’s Theorem (Theorem 1.2.11), we
know that the conclusion is true.

In the following, let L : D(L) ⊂ X → Y be a Fredholm mapping of index
zero, and L = L1 + L2, where L1, L2 satisfying the following conditions:

(1) L1 : D(L) → Y is a Fredholm mapping of index zero;

(2) L2 : X → Y is linear and L1-completely continuous on X.

Now, assume that Ω ⊂ X is a nonempty open bounded subset of X, T :
Ω → Y is L-compact on Ω and T is also L1-compact on Ω. Set T1 = L2 + T .
Then T1 is L1-compact on D(L) ∩ Ω and L+ T = L1 + T1.

Let P,Q, J be the linear mapping associated with L as in Section 5.1 and
P1, Q1, J1 be the corresponding ones for L1. Put H = JQ+KPQ and H1 =
J1Q1 +KP1Q1 . Then H,H1 : Y → D(L) are algebraic isomorphisms, H−1 =
L+J−1P and H−1

1 = L1+J−1
1 P1. We set K1 = L2+J−1P . It is easy to check

that J−1P is L1-completely continuous and hence K1 is also L1-completely
continuous.

We have seen that

H(L+ T ) = I − P +HT, H1(L+ T ) = H1(L1 + T1) = I − P1 +H1T1,

(I − P +HT )(D(L) ∩ Ω) = H(L+ T )(D(L) ∩ Ω) ⊂ D(L),

so we have
I − P1 +H1T1 = H1H

−1(I − P +HT ). (5.2.1)

On the other hand, H1H
−1 = H1(L1 +K1) = (I −P1 +H1K1). Therefore,

we have come to the following conclusion:

Proposition 5.2.10. I −P1 +H1T1 = (I −P1 +H1K1)(I −P +HT ) and
I − P1 +H1K1 is a linear homeomorphism on X.

Proof. We have seen that

I − P1 +H1T1 = (I − P1 +H1K1)(I − P +HT ).
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Note that Ker(I − P1 + H1T1 = Ker(H1H
−1) = {0} and P1, H1T1 are

compact linear mappings, so I − P1 + H1K1 is a linear homeomorphism on
X.

Corollary 5.2.11. Under the above assumptions, we have

|DJ1(L1 + T1,Ω, 0)| = |DJ(L+ T,Ω, 0)|.

Proof. By the definition of coincidence degree and Proposition 5.2.10, we
have

DJ1(L1 + T1,Ω, 0)
= deg((I − P1 +H1K1)(I − P +HT ),Ω, 0)
= Σideg(I − P1 +H1K1, Ui, 0)deg(I − P +HT,Ω, Ui),

where Ui are connected components of X \ (I − P +HT )(∂Ω).
We have the following two cases:
Case (1) If 0 ∈ Ui, then 0 /∈ Uk for k 6= i, so we have

DJ1(L1 + T1,Ω, 0) = deg(I − P1 +H1K1, Ui, 0)deg(I − P +HT,Ω, 0).

Since I − P1 +H1K1 is a homeomorphism on X, by Theorem 2.2.4, we know
that |DJ1(L1 + T1,Ω, 0)| = |DJ(L+ T,Ω, 0)|.

Case (2) If 0 /∈ Ui for all i ≥ 1, then 0 /∈ (I − P +HT )(Ω), so we have

|DJ1(L1 + T1,Ω, 0)| = |DJ(L+ T,Ω, 0)| = 0.

This completes the proof.

Let X, Y be real normed spaces, L : D(L) ⊂ X → Y be a Fredholm
mapping of index zero, Ω ⊂ X be an open bounded subset and T : Ω → Y be
L-compact. Assume that a is an isolated zero of L− T , then we define

iJ(L− T, a) = lim
r→0

DJ(L− T,B(a, r) ∩D(L), 0),

which is called the coincidence index of L and T at a. One may easily see
that this definition is well defined by using the excision property of coincidence
degree.

The following result follows immediately from the definition:

Proposition 5.2.12. Let Ω ⊂ X be an open bounded subset and T : Ω →
Y be L-compact. If (L− T )−1(0) = {a1, a2, · · · , ak} ⊂ Ω, then

DJ(L− T,Ω ∩D(L), 0) = Σk
i=1iJ(L− T, ai).

Proposition 5.2.13. Let Ω ⊂ X be an open bounded subset with 0 ∈ Ω
and T : Ω → Y be L-compact. Suppose that A : X → Y is a linear mapping
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such that A is L-compact on any bounded subset of X. Assume that

lim
‖x‖→0

‖QTx‖+ ‖KPQTx‖
‖x‖

= 0, (5.2.2)

and Ker(L−A) = {0}. Then 0 is an isolated zero of L−A− T and

iJ(L−A− T, 0) = iJ(L−A, 0).

Proof. By assumption, A is L-compact on any bounded suubset, so I−P−
JQA−KPQA is a linear completely continuous perturbation of the identity.
Also, Ker(I−P −JQA−KPQA) = {0} and thus there exists c > 0 such that

‖(I − P − JQA−KPQA)x‖ ≥ c‖x‖, x ∈ X.

From the assumption (5.2.2), we know that there exists r > 0 such that

B(0, r) ⊂ Ω, ‖QTx‖+ ‖KPQTx‖ ≤ 2−1c‖x‖ for all x ∈ B(0, r),

which implies that

‖(I − P − JQA−KPQA− tJQT − tKPQT )x‖ ≥ 2−1c‖x‖

for all x ∈ B(0, r) and t ∈ [0, 1]. Thus we have

DJ(L−A− T,B(0, r) ∩D(L), 0) = DJ(L−A,B(0, r) ∩D(L), 0),

i.e., iJ(L−A− T, 0) = iJ(L−A, 0). This completes the proof.

5.3 Existence Theorems for Operator Equations

Let X,Y be real normed spaces, L : D(L) ⊆ X → Y be a linear Fredholm
mapping of index zero and Ω ⊂ X be an open bounded subset withD(L)∩Ω 6=
∅.

Theorem 5.3.1. Let 0 ∈ Ω, and Ω symmetric with respect to 0 and
T : Ω → Y be L-compact. If Lx − Tx 6= t(−Lx − T (−x)) for all (t, x) ∈
(0, 1]×D(L) ∩ ∂Ω, then Lx− Tx = 0 has a solution in D(L) ∩ Ω.

Proof. Let a mapping H(t, x) : [0, 1]× Ω → Y be defined by

H(t, x) =
1 + t

2
Tx− 1− t

2
T (−x) for all (t, x) ∈ [0, 1]× Ω.
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Then H(t, ·) is a homotopy of L-compact mappings. If Lx −H(t, x) = 0 for
some (t, x) ∈ [0, 1)×D(L) ∩ ∂Ω, then

Lx− Tx =
1− t

1 + t
(−Lx− T (−x)),

which is a contradiction. We may also assume that Lx − Tx 6= 0 for x ∈
∂Ω. Otherwise, the conclusion is true. By Theorem 5.2.9, we have DJ(L −
T,Ω, 0) 6= 0, thus Lx − Nx = 0 has a solution in D(L) ∩ Ω. This completes
the proof.

Theorem 5.3.2. Let T1, T2 : Ω → Y be L-compact. If the following
conditions are satisfied:

(1) Lx− tT1x+ (1− t)T2x 6= 0 for all (t, x) ∈ (0, 1)×D(L) ∩ ∂Ω;

(2) DJ(L+ T2,Ω, 0) 6= 0;

then Lx− T1x has a solution in D(L) ∩ Ω.

Proof. We may also assume that Lx− T1x 6= 0 for all x ∈ ∂Ω. Otherwise,
the conclusion is true. Let H(t, x) : [0, 1]× Ω → Y be defined by

H(t, x) = tT1x− (1− t)T2x for all (t, x) ∈ (t, x) ∈ [0, 1]× Ω.

By assumption, we have Lx −H(t, x) 6= 0 for all (t, x) ∈ [0, 1] ×D(L) ∩ ∂Ω.
Thus we have

DJ(L− T1,Ω, 0) = DJ(L− T2,Ω, 0) 6= 0

and so Lx− T1x has a solution in D(L) ∩ Ω. This completes the proof.

Theorem 5.3.3. Let T1, T2 : Ω → Y be L-compact. If L + T2 is one to
one on Ω and

Lx− t1Tx+ (1− t)(T2x− p) for all (t, x) ∈ (0, 1)×D(L) ∩ ∂Ω,

where p ∈ (L+ T2)(D(L) ∩ Ω), then Lx− T1x has a solution in D(L) ∩ Ω.

Proof. Since L + T2 is one to one and p ∈ (L + T2)(D(L) ∩ Ω), we have
|DJ(L+ T2 − p,Ω, 0)| = 1. Thus, the conclusion follows from Theorem 5.3.2.

Theorem 5.3.4. Let A : X → Y be a linear continuous L-compact map-
ping with Ker(L − A) = {0} and T : Ω → Y be L-compact. Suppose that
the following conditions hold:

(1) 0 ∈ Ω and λ∂Ω ⊂ Ω for all λ ∈ (0, 1);

(2) (T −A)(D(L) ∩ ∂Ω) ⊂ (L−A)(D(L) ∩ Ω.
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Then Lx = Tx has a solution in D(L) ∩ Ω.

Proof. Put H(t, x) = (1− t)Ax+ tTx for all (t, x) ∈ [0, 1]× Ω. We claim
that

Lx 6= H(t, x) for all (t, x) ∈ (0, 1)×D(L) ∩ ∂Ω.

If this is not true, then there exist (t, x) ∈ (0, 1) × D(L) ∩ ∂Ω such that
Lx 6= H(t, x). Then we have

(L−A)x = λ(T −A)x
∈ λ(T −A)(D(L) ∩ ∂Ω
⊂ λ(T −A)(D(L) ∩ Ω
= (L−A)(D(L) ∩ λΩ
⊂ (L−A)(D(L) ∩ Ω),

which is impossible because L−A is one to one.
By assumption and Proposition 5.2.8, |DJ(L−A,Ω, 0)| = 1. If Lx−Tx = 0

for some x ∈ D(L) ∩ ∂Ω, then the conclusion is true. Otherwise, we have

DJ(I − T,Ω, 0) = DJ(L−A,Ω, 0) 6= 0,

thus Lx− Tx = 0 has a solution in D(L) ∩ Ω. This completes the proof.

Theorem 5.3.5. Let T1, T2 : Ω → Y be L-compact. Let Z ⊂ Y be a
subspace with Y = Im(L) ⊕ Z algebraically and T2(Ω) ⊂ Z. Suppose that
the following conditions hold:

(1) Lx− (1− t)T2 − tT1 6= 0 for all (t, x) ∈ (0, 1)×D(L) ∩ ∂Ω;

(2) T2x 6= 0 for all x ∈ Ker(L) ∩ ∂Ω;

(3) deg(TKer(L),Ω ∩Ker(L), 0) 6= 0, where TKer(L) is the restriction of T2

to Ker(L) ∩ Ω.

Then Lx = T1x has a solution in D(L) ∩ Ω.

Proof. Put H = L − T2x and let Q : Y → Y be the projection such that
Im(Q) = Z and Ker(Q) = Im(L). Then QT2 = T2 and Hx = 0 if and only
if QHx = 0, (I − Q)Hx = 0, i.e., T2x = 0 and Lx = 0. Therefore, by the
assumption (2) and Proposition 5.2.4, we have

|DJ(L− T2,Ω, 0)| = |deg(TKer(L),Ω ∩Ker(L), 0)| 6= 0.

Thus, it follows from Theorem 5.3.2 that Lx = T1x has a solution in D(L)∩Ω.
This completes the proof.

Corollary 5.3.6. Let T : Ω → Y be L-compact. Suppose that the follow-
ing conditions hold:
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(1) Lx− tT 6= 0 for all (t, x) ∈ (0, 1)× (D(L) \Ker(L)) ∩ ∂Ω;

(2) Tx /∈ Im(L) = 0 for all x ∈ Ker(L) ∩ ∂Ω;

(3) deg(QTKer(L),Ω ∩Ker(L), 0) 6= 0, where Q : Y → Y is the projection
such that Ker(Q) = Im(L).

Then Lx = Tx has a solution in D(L) ∩ Ω.

Proof. Put Z = Im(Q) and T2 = QT in Theorem 5.3.5. By the assumption
(2), we know that

QTx 6= 0 for all x ∈ Ker(L) ∩ ∂Ω.

Now, if Lx− (1− t)QTx− tTx = 0 for some (t, x) ∈ (0, 1)∩D(L)∩ ∂Ω, then
we have

QNx = 0, Lx− tTx = 0.

It easily follows that x ∈ D(L)\Ker(L))∩∂Ω, which contradicts the assump-
tion (1). Thus the conditions of Theorem 5.3.5 are satisfied and, consequently,
Lx = Tx has a solution in D(L) ∩ Ω.

5.4 Applications to ODEs

In this section, we give some applications of the results to differential equa-
tions.

Let f(t, x, y) : [0, π]×Rn×Rn → Rn be a function satisfying the Caradéodory
condition, i.e.,

(1) For almost all t ∈ [0, π], f(t, x, y) is continuous in (x, y);

(2) For all (x, y) ∈ Rn ×Rn, f(t, x, y) is measurable in t;

(3) For all r > 0, there exists gr(·) ∈ L1([0, π], [0,+∞)) such that, For
almost all t ∈ [0, π],

|f(t, x, y)| ≤ gr(t) for all x, y ∈ Rn, |x| ≤ r, |x| ≤ r.

Consider the Picard boundary value problem:{
−x′′(t) = f(t, x(t), x′(t)), t ∈ [0, π],
x(0) = x(π) = 0.

(E 5.4.1)
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Put X = C1
0 ([0, π], Rn), Y = L1([0, π], Rn) and let L : D(L) ⊂ X → Y be

defined by Lx(·) = x′′(·), where

D(L) = {x ∈ X : x′(·) is absolutely continuous in [0, π], x′′(·) ∈ Y }.

Then Ker(L) = {0} and Im(L) = Y . Let a mapping N : C1
0 ([0, π], Rn) → Y

be defined by

(Nx)(t) = f(t, x(t), x′(t)) for all t ∈ [0, π].

Then, by Lebesgue’s Theorem, N is a continuous bounded mapping. Now,
the problem (E 5.4.1) is equivalent to the following equation:

Lx = Nx, x ∈ D(L). (E 5.4.2)

Since L−1 : Y → X0 is given by

(L−1y)(t) =
t

π

∫ π

0

∫ s

0

y(l)dl −
∫ t

0

∫ s

0

y(l)dl,

i.e.,

(L−1y)(t) =
1
π

[
∫ t

0

s(π − t)y(s)ds+
∫ π

x

t(π − s)y(s)ds,

L−1 is continuous and compact, and consequently, it follows that N is L-
compact on any bounded subset of X.

Theorem 5.4.1. Suppose that the following conditions hold:

(1) There exist a, b > 0 such that a + b < 1 and g(·) ∈ L1([0, π], R+) such
that, for almost all t ∈ [0, π],

(x, f(t, x, y)) ≤ a|x|2 + b|x||y|+ g(t)|x| for all (x, y) ∈ Rn ×Rn;

(2) There exist c ≥ 0 and h(·) ∈ L1([0, π], R+) such that, for all x ∈ Rn

with |x| ≤ π(1− a− b)−1‖g‖L1 ,

|f(t, x, y)| ≤ c|y|2 + h(t) for almost all t ∈ [0, π], y ∈ Rn.

Then the problem (E 5.4.1) has a solution.

Proof. Consider the family of problem:{
−x′′(t) = λf(t, x(t), x′(t)), t ∈ [0, π],
x(0) = x(π) = 0.

(E 5.4.3)

Let x be a possible solution of (E 5.4.3) for some λ ∈ (0, 1). Then we have

−(x′′(t), x(t)) = λ(f(t, x(t), x′(t)), x′(t))
≤ a|x(t)|2 + b|x(t)||x′(t)|+ g(t)|x(t)|.

Copyright 2006 by Taylor & Francis Group, LLC



COINCIDENCE DEGREE THEORY 121

So, by integrating over [0, π], it follows that

‖x′‖2L2 ≤ a‖x‖2L2 + b‖x‖L2‖x′‖L2 + ‖g‖L1‖x‖0, (5.4.1)

where ‖x‖0 = maxt∈[0,π]‖x(t)‖. Notice that ‖x‖L2 ≤ ‖x′‖L2 and ‖x‖0 ≤√
π‖x′‖L2 , so (5.4.1) implies that

‖x‖20 ≤ π(1− a− b)−1‖g‖L1‖x‖0,

and thus we have

‖x‖0 ≤ π(1− a− b)−1‖g‖L1 = r1. (5.4.2)

By (5.4.2) and (5.4.1), we get

‖x′‖L2 ≤
√
π(1− a− b)−1‖g‖L1 = r2. (5.4.3)

Now, from (E 5.4.3) and the assumption (2), we get

|x′′(t)| ≤ c|x′(t)|2 + h(t),

so x ∈ D(L), and by (5.4.3) it follows that

‖x′′‖L1 ≤ cπ(1− a− b)−2‖g‖2L1 + ‖h‖L1 = r3. (5.4.4)

On the other hand, by the boundary condition, there exists si ∈ [0, π] such
that x′i(si) = 0 for 1 ≤ i ≤ n and thus

|x′i(t)| ≤ |
∫ t

si

x′′i (s)ds| ≤ ‖x′′‖L1 ,

which together with (5.4.4) imply that

‖x′‖0 ≤ r3. (5.4.5)

Now, we take r = 1 + r1 + r3. Then ‖x‖C1 ≤ r for all λ ∈ (0, 1) and every
possible solution x of (E 5.4.3). Put Ω = B(0, r) ⊂ C1

0 ([0, π], Rn). Then we
have Lx 6= tNx for all (t, x) ∈ (0, 1) × ∂Ω. If Lx = Nx for some x ∈ ∂Ω, we
know that the problem (E 5.4.1) has a solution. Otherwise, we have

Lx 6= tNx for all (t, x) ∈ [0, 1]× ∂Ω.

Thus DJ(L −N,Ω, 0) = DJ(L,Ω, 0) 6= 0, consequently, it follows that Lx =
Nx has a solution in Ω. Thus the problem (E 5.4.1) has a solution. This
completes the proof.

In the following, let X = C([0, 1], Rn), Y = L1([0, 1], Rn), Q : Y → Y be a
mapping such that Qy(·) =

∫ 1

0
y(s)ds and L : D(L) ⊂ C([0, 1], Rn) → Y be a

mapping defined by

Lx(t) = x′(t) for all x(·) ∈ D(L),
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where

D(L) = {x(·) is absolutely continuous on [0, 1] : x(0) = x(1)}.

Then L is a Fredholm mapping of index zero.

Lemma 5.4.2. Let r > 0 and v(·) ∈ C1(Rn, R) be such that v′(x) 6= 0
for |x| = r, where v′ is the gradient of v, and let V : X → Z be defined by
V (x(·))(t) = v′(x(t)) for all t ∈ [0, 1]. Then we have

DJ(L− V,B(0, r) ∩D(L), 0) = DJ(L−QV,B(0, r) ∩D(L), 0).

Proof. Consider the homotopy T (α, x)) = αV (x(·))− (1− α)QV (x(·)) for
all α ∈ [0, 1] and x(·) ∈ X. We claim that Lx(·) 6= T (α, x(·)) for all α ∈ [0, 1]
and x(·) ∈ X. If not, there exist α ∈ [0, 1] and x(·) ∈ X such that

Lx(t) 6= T (α, x(t)) for all t ∈ [0, 1]. (5.4.6)

Multiply both sides of (5.4.6) by x′(t) and integrate over [0, 1], one gets∫ 1

0

|x′(s)|2ds = 0.

Thus x(t) is a constant, |x(t)| = r and v(x(0)) = 0, which is a contradiction.
Thus it follows from Theorem 5.2.2 that

DJ(L− V,B(0, r) ∩D(L), 0) = DJ(L−QV,B(0, r) ∩D(L), 0).

This completes the proof.

Theorem 5.4.3. Suppose that the following conditions are satisfied:

(1) There exist v(·) ∈ C1([0, 1], Rn) such that lim|x|→∞ v(x) = +∞ and
β(·) ∈ L1([0, 1], [0,+∞)) such that (v′(x), f(t, x)) ≤ β(t) for all x ∈ Rn

and almost all t ∈ [0, 1].

(2) There exist r > 0 and w(·) ∈ C1(Rn, R) such that (v′(x), w(x)) > 0 for
all x with |x| ≥ r and

∫ 1

0
(w′(x(s)), f(s, x(s))ds) ≤ 0 for all x(·) ∈ D(L)

satisfying mint∈[0,1] |x(t)| ≥ r.

Then the following equation:{
x′(t) = f(t, x(t)), t ∈ [0, 1],
x(0) = x(1),

(E 5.4.4)

has a solution.
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Proof. First, we claim that there exists r0 > 0 such that the solution xλ(·)
of the following equation:{

x′(t) = −(1− λ)v′(x(t)) + λf(t, x(t)), t ∈ [0, 1],
x(0) = x(1),

(E 5.4.5)

satisfies ‖x(·)‖0 ≤ r0. If not, there exist a sequence (λn) ⊂ [0, 1] and a
sequence (xλn

(·)) of solutions such that ‖xλn
‖0 ≥ n. By the assumption (1),

we have

d

dt
v(xλn

(t)) = −(1− λn)|v′(xλn
(t))|2 + λn(v′(xλn

(t)), f(t, xλn
(t))) ≤ β(t).

Extend xλn(·) and β(·) to R with period 1 and then we have

v(xλn
(t)) ≤ v′(xλn

(s)) +
∫ t

s

β(s)ds, s ∈ R for all t ∈ [s, s+ 1].

Therefore, we have

max
t∈[0,1]

v(xλn
(t)) ≤ min

t∈[0,1]
v(xλn

(t)) + ‖β‖1. (5.4.7)

Now, from ‖xλn
‖0 ≥ n and (5.4.7), we deduce mint∈[0,1] v(xλn

(t)) →∞, which
implies that mint∈[0,1] |xλn

(t)| → ∞. Thus there exists N > 0 such that, for
n ≥ N ,

min
t∈[0,1]

|xλn(t)| ≥ r. (5.4.8)

Now, we have

d

dt
w(xλn(t)) = −(1− λn)(v′(xλn(t)), w′(xλn(t)))

+λn(w′(xλn
(t)), f(t, xλn

(t))).

From (5.4.9) and the assumption (2), one deduces that

0 =
∫ 1

0

d

dt
w(xλn

(t))dt < 0,

which is a contradiction. Thus the claim is true. Choose r1 > max{r, r0}. By
Lemma 5.4.2, we have

|DJ(L− V,B(0, r) ∩D(L), 0)| = |DJ(L−QV,B(0, r) ∩D(L), 0)|.

By Proposition 5.2.4 and Theorem 1.2.15, we get

|DJ(L− V,B(0, r) ∩D(L), 0)| = 1.

Thus the problem (E 5.4.4) has a solution.
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5.5 Exercises

1. Let X be a Banach space, T : X → X be a linear bounded Fredholm
operator and K : X → X be a linear continuous compact mapping.
Show that T +K is a Fredholm mapping.

2. Assume that the conditions of Exercise 1 hold and Ind(T ) = 0. Show
that

Ind(T +K) = 0.

3. Let L : D(L) ⊂ C([0, 1], Rn) → L1([0, 1];Rn)×Rn be defined by

Lx(t) = (x′(t),Mx(0) +Nx(1)) for all x(·) ∈ D(L),

where M,N are n×n real matrices. Show that L is a Fredholm mapping
of index zero.

4. Let L be defined as in Exercise 3. Construct the projections P,Q such
that Im(P ) = Ker(L) and Im(L) = Ker(Q).

5. Let X,Y be real normed spaces, L : D(L) ⊂ X → Y be a Fredholm
mapping of index zero and A : X → Y be a linear mapping such that A is
L-compact on any bounded subset of A. Assume thatKer(L−A) = {0}.
Show that

(L−A)(D(L)) = Y,

(L−A)−1 = (I − P − JQA−KPQA)−1(JQA+KPQA).

6. Let T : Ω → Y be L-compact. Assume that L − T is one to one on
D(L) ∩ Ω. Show that, for all z ∈ (L− T )(D(L) ∩ Ω),

|DJ(L− T − z,D(L) ∩ Ω, )| = 1.

7. Let T : Ω → Y be L-compact. Suppose the following conditions hold:

(1) ‖Lx− Tx‖2 ≥ ‖Tx‖2 − ‖Lx‖2 for all x ∈ (D(L) \Ker(L)) ∩ ∂Ω;

(2) Tx /∈ Im(L) = 0 for all x ∈ Ker(L) ∩ ∂Ω;

(3) deg(QTKer(L),Ω∩Ker(L), 0) 6= 0, where Q : Y → Y is the projec-
tion such that Ker(Q) = Im(L).

Show that Lx = Tx has a solution in D(L) ∩ Ω.

8. Let H be a Hilbert space, T : Ω → H L-compact. Suppose the following
conditions hold:

(1) (Lx− Tx,Lx) ≥ 0 for all x ∈ (D(L) \Ker(L)) ∩ ∂Ω;
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(2) Tx /∈ Im(L) = 0 for all x ∈ Ker(L) ∩ ∂Ω;
(3) deg(QTKer(L),Ω ∩Ker(L), 0) 6= 0, where Q : H → H is the pro-

jection such that Ker(Q) = Im(L).

Show that Lx = Tx has a solution in D(L) ∩ Ω.

9. Let f : [0, π]×Rn×Rn → Rn be a function satisfying the Carathéodory
condition. Assume that the following condtions hold:

(1) There exist a, b ∈ R such that a+ b < 1 and

(x− u, f(t, x, y)− f(t, u, v)) ≤ a|x− u|2 + b|x− u||y − u|

for all x, y, u, v ∈ Rn and a.e. t ∈ [0, π].
(2) There exist c ≥ 0 and h ∈ L1([0, π], [0,+∞)] such that, for all

x ∈ Rn with |x| ≤ π(1− a− b)−1‖f(t, 0, 0)‖L1 ,

|f(t, x, y)| ≤ c|y|2 + h(t) for all y ∈ Rn, and almost all t ∈ [0, π].

Show that the following equation:{
−x′′(t) = f(t, x(t), x′(t)), t ∈ [0, π],
x(0) = x(π) = 0

has a unique solution.

10. Let f : [0, π]×Rn×Rn → Rn be a function satisfying the Carathéodory
condition. Assume that there exist a, b ∈ R such that a+ b < 1 and

|f(t, x, y)− f(t, u, v)| ≤ a|x− u|+ b|y − u|

for all x, y, u, v ∈ Rn and almost all t ∈ [0, π]. Show that the following
equation: {

−x′′(t) = f(t, x(t), x′(t)), t ∈ [0, π],
x(0) = x(π) = 0

has a unique solution.

11. Let f : [0, π]×Rn → Rn be a function satisfying the Carathéodory condi-
tion. Assume that there exist a number a < 1 and g ∈ L1([0, π], [0,+∞)])
such that

(x, f(t, x)) ≤ a|x|2 + g(t)|x| for all x ∈ Rn, and alomst allt ∈ [0, π].

Show that the following equation:{
−x′′(t) = f(t, x(t)), t ∈ [0, π],
x(0) = x(π) = 0

has a solution.
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12. Let f : [0, 1]×Rn×Rn → Rn be a function satisfying the Carathéodory
condition and v ∈ C1(Rn, R). Suppose that the following conditions are
satisfied:

(1) There exists r > 0 such that (v′(x), f(t, x)) ≤ 0 for all x ∈ Rn with
|x| ≥ r and almost all t ∈ [0, 1];

(2) v′(x) 6= 0 for all x ∈ Rn with |x| ≥ r and lim|x|→∞ v(x) = +∞.

Show that the following equation:{
x′(t) = f(t, x(t)), t ∈ [0, 1],
x(0) = x(1)

has a solution.

13. Let L : D(L) ⊂ X → Y be a Fredholm mapping of index zero, Ω ⊂
X be an open bounded subset, D(L) ∩ Ω 6= ∅ and T : Ω → 2Y be
a mapping with closed convex values. Assume that QT and KPQT
are upper semicontinuous mapping such that QT (Ω) and KPQT (Ω) are
relatively compact and Lx /∈ Tx for all x ∈ ∂Ω ∩D(L). Construct the
coincidence degree for L and T on Ω ∩D(L).

14. Let L : D(L) ⊂ X → Y be a Fredholm mapping of index zero, Ω ⊂ X
be an open bounded subset, D(L)∩Ω 6= ∅ and T : Ω → Y be a mapping
such that QT and KPQT are continuous countably condensing mapping
and Lx 6= Tx for all x ∈ ∂Ω ∩D(L). Construct the coincidence degree
for L and T on Ω ∩D(L).
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Chapter 6

DEGREE THEORY FOR
MONOTONE-TYPE MAPS

Monotone-type mappings are a class of mappings without continuous and
compact conditions. The concept of monotone mapping was introduced by
Kachurovski, Vainberg, Zarantonello in 1960, and it plays a very impor-
tant role in studying the weak solution of the partial differential equations
in divergence form and variational inequality problems. Minty, Browder,
Brézis, Rockafellar, Crandall, Gossez, etc., made significant contributions to
monotone operator theory. It was shown by Skrypnik, Browder, Berkovitz,
Mustonen, Kartsatos, and others that it is possible to construct the degree
theory for monotone-type mappings.

The goal of this chapter is to introduce the degree theory for monotone-type
mapping. Chapter 6 has seven sections.

In Section 6.1, we introduce some basic geometric properties of Banach
spaces and various types of monotone and pseudomonotone maps and also
(S+), (S+)0,L and L-(S+)-mappings. Many examples and properties of these
maps are presented in Section 6.1.

Section 6.2 presents the degree theory for monotone mappings of class (S+).

In Section 6.3, using the results of Section 6.2, we present the degree theory
for perturbations of maximal monotone mappings and various properties are
also presented.

In Section 6.4, using the results of chapters 2, 3, we present the topological
degree for multivalued mappings of class (S+)0,L. Some properties of this
degree are presented in theorems 6.4.4, 6.4.5, and 6.4.6.

A degree for multivalued mappings of class L-(S+) type is presented in
Section 6.5 (here L is a Fredholm mapping of index zero type). Various
properties are presented in Theorems 6.5.2, 6.5.3 and 6.5.5. The coincidence
degree of L and a pseudomonotone mapping is also presented in this section.

Section 6.6 presents various results concerning the computation of the topo-
logical degree for a variety of mappings.

Section 6.7 gives various existence results for the partial differential equa-
tions and evolution equations.

127
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6.1 Monotone Type-Mappings in Reflexive Banach Spaces

In this section, we introduce some monotone-type mappings and discuss
their properties. We first recall some geometrical properties of Banach spaces.

Definition 6.1.1. Let X be a normed space, X∗∗ be the second dual space
of X and K : X → X∗∗ be defined by Kx(f) = f(x). If KX = X∗∗, then X
is said to be reflexive.

Theorem 6.1.2. Let X be a normed space and X∗ be the dual space of
X. Then the following are equivalent:

(1) X is reflexive;

(2) X∗ is reflexive;

(3) The closed unit ball ofX is sequentially weak compact, i.e., each (xn)∞n=1

in the closed unit ball has a weakly convergent sequence;

(4) For all f ∈ X∗ \ {0}, there exists x ∈ X with ‖x‖ = 1 such that
f(x) = ‖f‖.

Definition 6.1.3. Let X be a Banach space. X is said to be strictly convex
if, for any x, y ∈ X, ‖x‖ = ‖y‖ = 1 and ‖x+ y‖ = 2 imply that x = y.

The following proposition follows directly from Definition 6.1.3.

Proposition 6.1.4. Let X be a Banach space. The following statements
are equivalent:

(1) X is strictly convex;

(2) If, for any x, y ∈ X, ‖x‖ = ‖y‖ = 1 and x 6= y, then ‖x+ y‖ < 1;

(3) Every point on the unit sphere is an extreme point;

(4) If f ∈ X∗ is nonzero and ‖x‖ = ‖y‖ = 1 such that f(x) = f(y) = ‖f‖,
then x = y.

Definition 6.1.5. A Banach space X is said to be locally uniform convex
if, for any x ∈ X with ‖x‖ = 1 and ε ∈ (0, 2], there exists δ(x) > 0 such that,
for any y ∈ X with ‖y − x‖ ≥ ε, we have ‖x+ y‖ < 2− δ(x).

Definition 6.1.6. A Banach space X is said to be uniformly convex if, for
any ε ∈ (0, 2], there exists δ > 0 such that, for any x, y ∈ X with ‖y− x‖ ≥ ε,
we have ‖x+ y‖ < 2− δ.

Some well-known uniformly convex spaces are Hilbert spaces, lp, Lp, and
the Sobolev space Wm,p, where p > 1 and m > 0 is an integer.
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Proposition 6.1.7. A uniformly convex Banach space is reflexive.

In the sequel, let E be a real reflexive Banach space and E∗ be the dual
space of E, and ⇀ represents the weak convergence. By [287], we may assume
that both E and E∗ are locally uniformly convex. Let J : E → E∗∗ be the
duality mapping, i.e.,

‖Jx‖ = ‖x‖, (Jx, x) = ‖x‖2.

Proposition 6.1.8. Let E be a real reflexive Banach space and J : E →
E∗∗ be the duality mapping. Then we have the following:

(1) If E∗ is locally uniform convex, then J is single valued and continous;

(2) If E is locally uniform convex, (xn)∞n=1 ⊂ E is a sequence converging
weakly to x0 as n → ∞, ‖xn‖ → ‖x0‖ and Jxn(x0) → ‖x0‖2, then
xn → x0.

Proof. (1) For all x 6= 0, if f1, f2 ∈ Jx, then we have (f1 + f2)(x) = 2‖x‖2
and thus ‖f1 + f2‖ = 2‖x‖. In addition, ‖f1‖ = ‖f2‖ = ‖x‖, and so it follows
from the locally uniform convexity of E∗ that f1 = f2.

Next, assume that xn → x0 in E and we may assume also that (Jxn)) has
a weakly convergent sequence (Jxnk

) with Jxnk
⇀ f0 by reflexivity of E∗.

Then we have

Jxnk
(xnk

) → ‖x0‖2, Jxnk
(x0) → f0(x0).

In addition, we have

‖J(xnk
)(xnk

)− J(xnk
)(x0)‖ = 0.

Therefore, we get f0(x0) = ‖x0‖2 and, from this, we deduce that

‖f0‖ = ‖x0‖, ‖J(xnk
)‖ → ‖x0‖, ‖J(xnk

) + f0‖ → ‖x0‖ = ‖f0‖.

From the locally uniform convexity of E∗, we deduce J(xnk
) → Jx0.

(2) For simplicity, we may assume that Jxn ⇀ f0 by taking a subsequence
since E∗ is reflexive. By assumption, we have

Jxn(xn + x0) = ‖xn‖2 + Jxn(x0) → 2‖x0‖2

and so ‖xn + x0‖ → ‖x0‖. From the locally uniformly convexity of E, we
deduce xn → x0. This completes the proof.

The following is the well-known Mazur’s separation theorem for convex sets:

Theorem 6.1.9. Let X be a Banach space, C1 be an compact convex set
and C2 be a closed convex set such that C1 ∩ C2 = ∅. Then there exists a
f ∈ X∗ \ {0} such that

sup
x∈C1

f(x) < inf
x∈C2

f(x).
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Next, we recall some terminology as follows:

Definition 6.1.10. Let E be a real reflexive Banach space and E∗ be the
dual space of E.

(1) An operator T : D(T ) ⊆ E → 2E∗
is said to be monotone if

(f − g, x− y) ≥ 0

for all x, y ∈ D(T ), f ∈ Tx and g ∈ Ty;

(2) T is said to be maximal monotone if T is monotone and does not have
a proper monotone extension.

Note that when E is a Hilbert space the mapping T is said to be pseudo-
contractive if I − T is maximal monotone (see [51]).

As a consequence of Zorn’s Lemma, every monotone mapping has a maximal
monotone extension. We leave the details to the reader.

Definition 6.1.11. Let E be a reflexive Banach space. A multi-valued
operator T : D(T ) ⊆ E → 2E∗

is said to be a mapping of class (S+) if it
satisfies the following conditions:

(1) Tx is bounded closed and convex for each x ∈ D(T );

(2) T is weakly upper semicontinuous in each finite dimensional space, i.e.,
for each finite dimensional space F with F ∩D(T ) 6= ∅, T : F ∩D(T ) →
2E∗

is upper semicontinuous in the weak topology;

(3) if {xn} ⊂ D(T ) and {xn} converges weakly to x0 in E such that

lim sup
n→∞

(fn, xn − x0) ≤ 0 for some fn ∈ Txn,

then xn → x0 ∈ D(T ) and {fn} has a subsequence which converges
weakly to f0 ∈ Tx0 in E∗.

When E is a Hilbert space, we say that T is pseudocompact if I − T is a
mapping of class (S+) (see [51]). One may easily see that a compact mapping
is pseudocompact.

Definition 6.1.12. Let E be a reflexive Banach space. A family of oper-
ators {Tt : D(Tt) ⊆ E → 2E∗}t∈[0,1] is said to be a homotopy of mappings of
class (S+) if Tt satisfies the conditions (1), (2) in Definition 6.1.11 for each
t ∈ [0, T ] and the following condition:

(3)’ If tn → t0 and xn ∈ D(Ttn
), {xn} converges weakly to x0 in E such that

lim sup
n→∞

(fn, xn − x0) ≤ 0 for some fn ∈ Ttnxn,
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then xn → x0 ∈ D(Tt0) and {fn} has a subsequence converging weakly
to some f0 ∈ Tt0x0 in E∗.

Definition 6.1.13. Let T : D(T ) ⊆ E → 2E∗
be a mapping satisfying the

conditions (1), (2) in Definition 6.1.11. Let (xj) ⊂ D(T ), xj ⇀ x0 ∈ D(T )
and fj ∈ Txj .

(1) If lim supj→∞(fj , xj − x0) ≤ 0 implies that

(f0, x0 − v) ≤ lim inf
j→∞

(fj , xj − v) for all v ∈ D(T ), f0 ∈ Tx0,

then T is said to be a pseudomonotone mapping;

Let (xj) ⊂ D(T ), xj ⇀ x0 ∈ D(T ), fj ∈ Txj and fj ⇀ f0.

(2) If lim supj→∞(fj , xj − x0) ≤ 0 implies that

f0 ∈ Tx0, (f0, x0) = lim
j→∞

(fj , xj),

then T is said to be a generalized pseudomonotone mapping.

Lemma 6.1.14. If J : E → E∗ is the duality mapping, then J is a
continuous mapping of class (S+) and J is also monotone.

Proof. Let xn → x0. We may assume that Jxn ⇀ f0 ∈ E∗. Since
limn→∞(Jxn, xn − x0) = 0, we have (f0, x0) = ‖x0‖2. Therefore, we get
‖Jxn‖ → ‖x0‖ = ‖f0‖. The local uniform convexity of E∗ implies that
Jxn → Jx0, and so J is continuous and, furthermore, J monotone is obvious.

Next, we prove that J is a mapping of class (S+). Let

xn ⇀ x0, lim sup
n→∞

(Jxn, xn − x0) ≤ 0.

We may assume that Jxn ⇀ f0 ∈ E∗. Since

‖x0‖2 ≤ lim inf
n→∞

(Jxn, xn) ≤ (f0, x0),

we have ‖xn‖ → ‖x0‖, ‖f0‖ = ‖x0‖. Thus by Proposition 6.1.8, xn → x0 and
Jxn → Jx0. This completes the proof.

Definition 6.1.15 [163] Let E be a separable reflexive Banach space and
L be a dense subspace of E. A mapping T : D(T ) ⊂ E → E∗ is said to be
a mapping of class (S+)L if, for any sequence of finite dimensional subspaces
Fj of L with ∪∞j=1Fj = E, h ∈ E∗, {uj}∞j=1 ⊂ D(T ) with uj ⇀ u0 and

lim sup
j→∞

(Tuj − h, uj) ≤ 0, lim
j→∞

(Tuj − h, v) = 0

for all v ∈ ∪∞j=1Fj , we have uj → u0, and u0 ∈ D(T ), Tu0 = h. If h = 0, then
we call T a mapping of class (S+)0,L.

Copyright 2006 by Taylor & Francis Group, LLC



132 Topological Degree Theory and Applications

Definition 6.1.16. Let E be a reflexive Banach space and L be a subspace
of E. A multi-valued mapping T : D(T ) ⊆ E → 2E∗

is said to be a mapping
of class (S+)L if it satisfies the following conditions:

(i) Tx is bounded closed and convex for each x ∈ D(T );

(ii) T is weakly upper semicontinuous in each finite dimensional space, i.e.,
for each finite dimensional space F of L with F ∩ D(T ) 6= ∅, T : F ∩
D(T ) → 2E∗

is upper semicontinuous in the weak topology;

(iii) if, for any sequence of finite dimensional subspaces Fj of L with L ⊆
∪∞j=1Fj , h ∈ E∗, {xj}∞j=1 ⊂ D(T ) ∩ L and xj ⇀ x0 such that

lim sup
j→∞

(fj − h, xj) ≤ 0, lim
j→∞

(fj − h, v) = 0

for all v ∈ ∪∞j=1Fj and some fj ∈ Txj , then xj → x0 ∈ D(T ) and
h ∈ Tx0. If h = 0, then we call T a mapping of class (S+)0,L.

Remark. If T is a mapping of class (S+)L, then, for any p ∈ E∗, T − p is
a mapping of class (S+)0,L.

When E is a Hilbert space, we say that T is L-pseudocompact if I − T is a
mapping of class (S+)L, and T is L0-pseudocompact if I − T is a mapping of
class (S+)0,L.

Definition 6.1.17. Let E be a reflexive Banach space and let L be a
subspace of E. A family of mappings {Tt : D(Tt) ⊆ E → 2E∗}t∈[0,1] is
called a homotopy of mappings of class (S+)L if the conditions (i) and (ii) in
Definition 6.1.16 hold for each t ∈ [0, T ] and the following condition holds:

(iii) If, for any sequence of finite dimensional subspaces Fj of L with L ⊆
∪∞j=1Fj , h ∈ E∗, tj → t0, xj ∈ D(Ttj

) ∩ L and xj ⇀ x0 such that

lim sup
j→∞

(fj − h, xj) ≤ 0, lim
j→∞

(fj − h, v) = 0,

for all v ∈ ∪∞j=1Fj and some fj ∈ Ttj
xj , then xj → x0 ∈ D(Tt0),

h ∈ Tt0x0. If h = 0, then we call {Tt : D(Tt)}t∈[0,1] a homotopy of
mappings of class (S+)0,L.

Proposition 6.1.18. If L is dense in E, then the duality mapping J is a
mapping of class (S+)L.

Proof. Let (Fj)∞j=1 be a sequence of finite dimensional subspaces of L with
∪∞j=1Fj = E, h ∈ E∗, xj ∈ L and xj ⇀ x0 such that

lim sup
j→∞

〈Jxj − h, xj〉 ≤ 0, lim
j→∞

(Jxj − h, v) = 0
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for all v ∈ ∪∞j=1Fj . Without loss of generality, we may assume that Jxj ⇀ f0
in E∗. Then we have

‖x0‖2 ≤ lim sup
j→∞

(Jxj , xj) ≤ (h, x0), (f0 − h, v) = 0

for all v ∈ ∪∞j=1Fj . But ∪∞j=1Fj is dense in E, so we have f0 = h. Therefore
it follows that

‖x0‖2 ≤ lim sup
j→∞

(Jxj , xj) ≤ (h, x0) ≤ ‖x0‖2.

Thus ‖xj‖ → ‖x0‖ as j → ∞. This and the local uniform convexity of E
together with xj ⇀ x0 imply that xj → x0 and Jx0 = h. Therefore, J is a
mapping of class (S+)L.

Now, assume that L is a Fredholm mapping of index zero type. Then there
exist two linear continuous projections P : H → H and Q : H → H such that

Im(P ) = Ker(L), Ker(Q) = Im(L).

Also, we have

H = Ker(L)⊕Ker(P ), H = Im(L)⊕ Im(Q)

as the topological direct sums.
Obviously, the restriction of LP of L to D(L) ∩Ker(P ) is one to one and

onto Im(L), so its inverse KP : Im(L) → D(L) ∩ Ker(P ) is defined. We
denote by KPQ : H → D(L)∩Ker(P ) the generalized inverse of L defined by
KPQ = KP (I −Q). Let J : Im(Q) → Ker(L) be a linear homeomorphism.

Definition 6.1.19. Let H be real Hilbert space, L : D(L) ⊆ H → H
be a Fredholm mapping of index zero type and T : D(T ) ⊆ H → 2H be a
set-valued mapping.

(1) If I −P − (JQ+KPQ)T is maximal monotone mapping, then T is said
to be L-maximal monotone;

(2) if I − P − (JQ +KPQ)T is pseudomonotone (respectively, generalized
pseudo monotone), then T is L-pseudomonotone (respectively, general-
ized L-pseudomonotone). If I−P −(JQ+KPQ)T is also bounded, then
T is said to be bounded L-pseudomonotone;

(3) If I − P − (JQ+KPQ)T is a mapping of class (S+), then T is called a
mapping of class L-(S+).

Remark. (1) If T is a mapping of class (S+), L = 0, P = I, Q = I, and
J = −I, then T is a mapping of class 0-(S+).
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(2) If I−T is a mapping of class (S+), in this case, T is called pseudocompact
in [51], and L = I, P = 0, Q = 0, J = I, then T is a mapping of class I-(S+).
As a special consequence, if T is upper semicontinuous compact mapping with
bounded closed convex values, then I − T is a mapping of class (S+), so T is
a mapping of class I-(S+).

(3) One may also easily see that, if T is L-compact, then T is a mapping of
class L-(S+).

Proposition 6.1.20. Let H be real Hilbert space, L : D(L) ⊂ H → H be
a generalized Fredholm mapping of index zero type and Ti : D(Ti) ⊆ H → 2H

be a mapping of class L-(S+) for i = 1, 2. Then tT1 + (1− t)T2 is a mapping
of class L-(S+) on D(T1) ∩D(T2) for all t ∈ [0, T ].

Now, we give some examples of monotone-type mappings.

Example 6.1.21. Let Ω ⊂ Rn be an open bounded subset with smooth
boundary. Assume that ai, bi : R → [0,+∞) are continuous functions for
i = 1, 2, · · · , n. Suppose the following conditions are satisfied:

(1) c1 ≤ ai(x) ≤ c2 for all (t, x) ∈ R2, where c1, c2 > 0 are constants;

(2) Σi[bi(xi)− bi(yi)](xi − yi) ≥ 0, where x = (xi), y = (yi) ∈ RN ;

(3) |bi(x)| ≤ β|x|+ γ for all x ∈ R and i = 1, 2, · · · , n;

(4) Σibi(xi)xi ≥ α|x|2 − c0 for all x = (xi) ∈ Rn.

Let A : L2(Ω)×H1
0 (Ω) → H∗ be defined as follows:

(A(u, v), w) =
∫

Ω

[Σn
i=1ai(u)bi(Div)Diw]dx

for all u,w ∈ H1
0 (Ω). Then we have the following:

(a) for each v ∈ L2(Ω),

(A(v, u), w) ≤ c2β

√∫
Ω

(Σn
i=1|Diu|2)dx

√∫
Ω

(Σn
i=1|Diw|2)dx

for all u,w ∈ H1
0 (Ω),

(b) (A(v, u1) − A(v, u2), u1 − u2) ≥ 0 for t ∈ R, u1, u2,∈ H1
0 (Ω) and v ∈

L2(Ω) and A(v, ·) is continuous and monotone for all v ∈ R×L2(Ω) and
so it is also pseudomonotone.

A special case of Example 6.1.21 is that, if ai(x) = 1 and bi(x) = x for all
x ∈ R, then we get the Laplace operator

(−∆u, v) =
∫

Ω

(∇u,∇v)dx for all u, v ∈ H1
0 (Ω).
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Example 6.1.22. Let Ω be as in Example 6.1.21 and let f(x, y) : R2 → R
be a continuous function satisfying

|f(x, y)| ≤M |y|+ g(x) for all (x, y) ∈ R2,

where M > 0 is a constant and g(·) ∈ L2(Ω). Then the following mapping A
defined by

(Au, v) =
∫

Ω

[(∇u,∇v) + f(x, u)v]dx for all u, v ∈ H1
0 (Ω)

is a mapping of class (S+) and it is also pseudomonotone.

Example 6.1.23. Let Ω be as in Example 6.1.17, p > 1, and aα : Ω×Rn →
R be a Caratheodory function, i.e., aα(x, ξ) is measurable in x and continuous
in ξ, where α = (α1, α2, · · · , αN ) is a multi-index. Assume that

|aα(x, ξ)| ≤ C|ξ|p−1 + g(x)

for almost everywhere x ∈ Ω, where ξ = (ξα : |α| ≤ m}, C > 0 is a constant,
g(·) ∈ Lq and p−1 + q−1 = 1.

We consider the following partial differential equation:{
Σ|α|≤m(−1)|α|Dαaα(x, u,Du, · · · , Dmu) + f(x, u) = 0, x ∈ Ω,
u(x) = 0, x ∈ ∂Ω,

and we define a mapping A : Hm
0 (Ω) → (Hm

0 (Ω)∗ by

(Au, v) =
∫

Ω

[Σ|α|≤maα(x, u,Du, · · · , Dmu)Dαv + f(x, u)v]dx

for all u, v ∈ Hm
0 (Ω). By imposing suitable conditions on aα, the above

mapping A will be maximal monotone, pseudomonotone or of class (S+).

Example 6.1.24. Consider the following wave equation with discontinuity:
utt(t, x)− uxx(t, x) + g(u(t, x)) + h(u(t, x)) = f(t, x),
t ∈ (0, 2π), x ∈ (0, π),
u(t, 0) = u(t, π) = 0, t ∈ (0, 2π),
u(0, x) = u(2π, x), x ∈ (0, π),

where g : R→ R is a nondecreasing function with

|g(u)| ≤ α|u|+ β for all u ∈ R,

h : R→ R is a continuous function satisfying

|h(u)| ≤ δ|u|+ γ
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and f(·) ∈ L2((0, 2π)× (0, π)), where α > 0, β > 0, δ > 0, γ > 0 are constants.

Set
g−(u) = lim inf

s→u
g(s), g+(u) = lim sup

s→u
g(s),

Gu = [g−(u), g+(u)].

Then G : R → 2R is a maximal monotone mapping. Let a mapping N :
L2((0, 2π)× (0, π)) → L2((0, 2π)× (0, π)) be defined by

N(u(t, x)) = {v(t, x) ∈ L2((0, 2π)× (0, π)) : v(t, x) ∈ Gu(t, x)}

for all u(t, x) ∈ L2((0, 2π)× (0, π)).
From our assumption on g, we know that D(N) = L2((0, 2π)× (0, π)) and

N is also maximal monotone, so N is upper semicontinuous from the strong
topology of L2((0, 2π)× (0, π)) to the weak topology of L2((0, 2π)× (0, π)).

Let L : D(L) ⊂ L2((0, 2π) × (0, π)) → L2((0, 2π) × (0, π)) be the wave
operator Lu = utt− uxx. Then it is well known that L is self-adjoint, densely
defined and closed andKer(L) is infinite dimensional withKer(L)⊥ = Im(L).
Thus L is a Fredholm mapping of zero index type and also the right inverse
of L denoted by L−1 : Im(L) → Im(L) is compact.

Let P : L2((0, 2π) × (0, π) → Ker(L) be a projection. We assume that
lim infi→∞(P (fj +h(uj)), uj −u0) ≥ 0 for any uj ⇀ u0 in L2((0, 2π)× (0, π))
and fj ∈ Nuj (for example, take g(x) = x for x < 0, g(x) = x + 1 for x ≥ 0
and h(x) = xsinx for x ∈ R). Then N(u) + h(u) is L-pseudomonotone. In
fact, if uj ⇀ u0 in L2((0, 2π) × (0, π)), fj ∈ Nuj with fj ⇀ f0, h(uj) ⇀ h0

and

lim sup
j→∞

((I − P )uj + P (fj + h(uj)) + L−1(I − P )(fj + h(uj)), uj − u0) ≤ 0,

then, since
lim sup

j→∞
(P (fj + h(uj)), uj − u0) ≥ 0

and L−1 is compact, we have

lim sup
j→∞

(L−1(I − P )(fj + h(uj)), uj − u0) = 0

and so lim supj→∞((I − P )uj , uj − u0) ≤ 0. Thus (I − P )uj → (I − P )u0.
Consequently, we get

lim
j→∞

((I − P )uj + P (fj + h(uj)) + L−1(I − P )(fj + h(uj)), uj)

= ((I − P )u0 + P (f0 + h0) + L−1(I − P )(f0 + h0), u0).

Thus N + h is L-pseudomonotone.
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Lemma 6.1.25. Let X be a real Banach space and T : D(T ) ⊂ E → 2E∗

be a monotone mapping. Then T is locally bounded on the interior of D(T ).

Proof. Let x0 ∈ int(D(T )). Without loss of generality, we assume that
x0 = 0. There exists r > 0 such that Br(0) ⊂ D(T ). By the monotonicity of
T , we have

(f − f0, x− z) ≥ 0

where f0 ∈ Tz is given and x ∈ D(T ), f ∈ Tx. For each n ≥ 1, let

Mn = {z ∈ Br(0) : (f, x− z) ≥ −n, x ∈ Br(0), f ∈ Tx}.

Then we have
Br(0) = ∪∞n=1Mn.

By the Baire’s category theorem, there exists n0 such that Mn0 has nonempty
interior and so there exist z0 ∈ Br(0), r0 > 0 such that Br0(z0) ⊂Mn0 . Since
−z0 ∈ Br(0), there exists m > 0 such that

(f, x+ z0) ≥ m for all x ∈ Br(0), f ∈ Tx.

Therefore, we have

(f, 2x− y) ≥ −(n0 +m0) for all y ∈ Br0(0).

Now, for all x ∈ B r
4
(0), f ∈ Tx and z ∈ B r0

2
(0), we have

(f, z) = (f, 2x− (2x− z)) ≥ −(n0 +m0)

and so
‖f‖ ≤ 2

r
(n0 +m0).

This completes the proof.

Proposition 6.1.26. Let P : E → 2E∗
be a bounded pseudomonotone

mapping and {xn} ⊂ E be such that xn ⇀ x0. If fn ∈ Pxn such that fn ⇀ f0
and lim supn→∞(fn, xn − x0) ≤ 0, then f0 ∈ Px0 and (fn, xn) → (f0, x0).

Proof. Since lim supn→∞(fn, xn − x0) ≤ 0, we have

(f, x0 − v) ≤ lim inf
n→∞

(fn, xn − v) for all v ∈ E, f ∈ Px0. (6.1.1)

Putting v = x0 in (6.1.1), it follows that

lim inf
n→∞

(fn, xn − x0) ≥ 0

and so we have (fn, xn) → (f0, x0). Now, (6.1.1) becomes

(f, x0 − v) ≤ (f0, x0 − v) for all v ∈ E, f ∈ Px0. (6.1.2)
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But since Px0 is bounded, closed and convex, by Mazur’s separation theorem
of convex subsets, we get f0 ∈ Px0. This completes the proof.

Lemma 6.1.27. Let E be a real reflexive Banach space, T : D(T ) ⊂ E →
2E∗

be a maximal monotone mapping and let P : E → E∗ be a bounded,
coercive and demicontinuous pseudomonotone mapping. Then there exists
x0 ∈ C such that

(f + Px0, x− x0) ≥ 0 for all x ∈ D(T ), f ∈ Tx.

Proof. We first prove that, for any finite dimensional subspace F of E
such that F ∩D(T ) 6= ∅, there exists xF ∈ F such that

(f + PxF , x− xF ) ≥ 0 for all x ∈ F ∩D(T ), f ∈ Tx. (6.1.3)

Since P is coercive, we notice that if the above conclusion is true, xF must
be in a bounded ball B(0, R). Therefore, we may first prove that the above
conclusion is true in the case that D(T ) is bounded. For the unbounded case,
we find xn ∈ D(T ) such that

(f + Pxn, x− xn) ≥ 0

for all x ∈ F ∩ D(T ) ∩ B(0, n) and f ∈ Tx. But since {xn} is bounded, we
may assume that xn → x0 as n→∞ and then we can use the demicontinuity
of P to conclude that x0 is the desired point.

In the following, we assume that D(T ) is bounded and suppose that the
conclusion is not true. Then, for any x ∈ F ∩D(T ), there exist z ∈ F ∩D(T )
and fz ∈ Tz such that

(fz + Px, z − x) < 0. (6.1.4)

Now, if we take a compact set C such that F ∩ D(T ) ⊂ C, then C =
∪z∈D(T )Uz, where Uz = {x ∈ F : (fz + Px, z − x) < 0 for some fz ∈ Tz}.
Notice that each Uz is open and so there exist finite many zi ∈ F ∩D(T ) for
i = 1, 2, · · · , N such that

C = ∪N
i=1Uzi .

Let {α1, α2, · · · , αN} be a partition of unity subordinated to the covering
{Uzi

}. Then we define a mapping K : C → C by

Kx = ΣN
i=1αi(x)zi for all x ∈ C.

Then K has a fixed point x0 ∈ C, i.e., x0 = ΣN
i=1αi(x0)zi.

We may assume that αi(x0) > 0 for i = 1, 2, · · · , N . Otherwise, we exclude
it. Now, we have

0 = (Kx0 − x0,ΣN
i=1αi(x)fzi + Px0)

= Σn
i,j=1αi(x0)αj(x0)(fzj + Px0, zj − x0)

< 0,
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which is a contradiction. Thus (6.1.3) is true.
Finally, for each finite dimensional subspace F of E, we put

WF = {(xF , GxF ) : (xF , GxF ) satisfies (6.1.3)}.

Obviously, we have
∩n

i=1WFi 6= ∅.

If we denote by WF
∗

the weak closure of WF in E, then we have

∩F⊂E,dimF<∞WF
∗ 6= ∅.

Take (x0, g0) ∈ ∩F⊂E,dimF<∞WF
∗

and, for any x ∈ D(T )∩C, a finite dimen-
sional subspace F of E such that x, x0 ∈ F . Then there exists {(xj , Pxj)} ⊂
WF such that

xj ⇀ x0, Pxj ⇀ g0 as j →∞.

Therefore, we have

(f + Pxj , x− xj) ≥ 0 for all x ∈ F ∩D(T ), f ∈ Tx.

Since P is pseudomonotone and C is closed and convex, it follows from Propo-
sition 6.1.21 that

lim sup
j→∞

(Pxj , xj) ≥ (g0, x0)

and so we have

(f + g0, x− x0) ≥ 0 for all x ∈ F ∩D(T ), f ∈ Tx.

But since F is arbitrary, (f + g0, x − x0) ≥ 0 for all x ∈ D(T ) and f ∈ Tx.
Hence x0 ∈ D(T ), which implies that

lim sup
j→∞

(Pxj , xj − x0) ≤ 0.

Thus we have (Pxj , xj) → (Px0, x0) and so

(f + Px0, x− x0) ≥ 0 for all x ∈ D(T ), f ∈ Tx.

This completes the proof.

Let T : D(T ) ⊆ E → 2E∗
be a maximal monotone operator. Let Tλ =

(λJ−1 + T−1)−1 denote the Yosida approximation and Rλ = I − λJ−1Tλ the
resolvent with respect to Tλ, respectively.

As a direct consequence of Lemma 6.1.27, we get the following:

Proposition 6.1.28. If T : D(T ) → 2E∗
is a monotone mapping, then T

is maximal monotone if and only if T + εJ is surjective for any ε > 0.
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Proof. We assume that both the spaces E and E∗ are locally uniform
convex. If T is maximal monotone, then, for any p∗ ∈ E∗, J − p∗ is a
continuous bounded coercive monotone mapping and, thus, pseudomonotone.
By Lemma 6.1.27, there exists x0 ∈ E such that

(f + εJx0 − p∗, x− x0) ≥ 0 for all x ∈ D(T ), f ∈ Tx.

So x0 ∈ Tx0 and −εJx0 + p∗ ∈ Tx0, i.e., p∗ ∈ Tx0 + εJx0.
Conversely, suppose that (f − g, x− x0) ≥ 0 for all x ∈ D(T ) and f ∈ Tx.

Then there exist y0 ∈ D(T ) and f0 ∈ Ty0 such that f0 + Jy0 = Jx0 + g.
Therefore, it follows that

(Jx0 − Jy0, y0 − x0) ≥ 0.

So we must have x0 = y0. This completes the proof.

Lemma 6.1.29. Let T : D(T ) ⊆ E → E∗ be a maximal monotone map-
ping. If x ∈ D(T ), then

lim
λ→0+

Rλx = x, lim
λ→0+

Tλx = f,

where f ∈ Tx and ‖f‖ = min{‖g‖, g ∈ Tx}.

Proof. By the monotonicity of T , it follows that

‖Rλx‖2 ≤ −λ(Rλx− y, g)− (x− y, Tλx) (6.1.5)

for all x, y ∈ D(T ) and g ∈ Ty. Put y = x in (6.1.5) and then we have

‖Tλx‖ ≤ min{‖g‖ : g ∈ Tx} = ‖f‖. (6.1.6)

By letting λ → 0+, it immediately yields that Rλx → x. Without loss of
generality, we may assume that Tλx ⇀ f0 as λ → 0+. Then the maximal
monotonicity of T yields that f0 ∈ Tx, and so from (6.1.6) and the locally
uniform convexity of E∗ we infer that limλ→0+ Tλx = f0 and f0 = f . This
completes the proof.

Proposition 6.1.30. The following conclusions hold:

lim
λ→λ0

Tλx = Tλ0x, lim
λ→λ0

Rλx = Rλ0x

where λ0 > 0 and x ∈ D(T ).

Proof. Since

(J(Rλx− x)− J(Rλ0x− x), Rλx−Rλ0x)

≤ λ− λ0

λ0
(J(Rλ0x− x), Rλx−Rλ0x)
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and

(‖Rλx− x‖ − ‖Rλ0x− x‖)2 ≤ (J(Rλx− x)− J(Rλ0x)− x), Rλx−Rλ0x),

we have
lim

λ→0+
‖Rλx− x‖ = ‖Rλ0x− x‖,

lim
λ→0+

(J(Rλ0x− x), Rλx)− x) = ‖Rλ0x− x‖2.

Thus the locally uniform convexity of E and E∗ imply that

lim
λ→λ0

Tλx = Tλ0x, lim
λ→λ0

Rλx = Rλ0x.

This completes the proof.

Proposition 6.1.31. Let A : D(A) ⊆ E → 2E∗
be a multi-valued mapping

of class (S+). Then we have the following:

(1) If T : D(A) → 2E∗
is an upper semicontinuous operator with closed

convex values and T maps each bounded subset of D(A) into a relatively
compact subset of E∗, then T + A is a multi-valued mapping of class
(S+);

(2) If M : D(M) ⊆ E → 2E∗
is a maximal monotone operator, then Mλ +A

is a multi-valued mapping of class (S+);

(3) If P : E → 2E∗
is a pseudomonotone mapping, then P +A is a mapping

of class (S+);

(4) If P : E → 2E∗
is a bounded generalized pseudomonotone mapping,

then P +A is a mapping of class (S+).

The proof of Proposition 6.1.31 is left to the reader as an exercise.

Proposition 6.1.32. If T1 and T2 are two bounded mappings of class (S+),
then {tT1 + (1− t)T2 : t ∈ [0, 1]} is a homotopy of mappings of class (S+).

Proof. To show that tT1 + (1− t)T2 satisfies the conditions (1) and (2) of
Definition 6.1.12 is trivial.

Now, suppose that tj → t0, xj ⇀ x0 and f i
j ∈ Tixj such that

lim sup
j→∞

(tjf1
j + (1− tj)f2

j , xj − x0) ≤ 0. (6.1.7)

Since T1 and T2 are mappings of class (S+), we have

lim inf(f1
j , xj − x0) ≥ 0, lim inf(f2

j , xj − x0) ≥ 0.
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By virtue of (6.1.7), we get limj→∞(f1
j , xj−x0) = 0 or limj→∞(f2

j , xj−x0) =
0. Hence we have xj → x0 and

lim
j→∞

(f1
j , xj − x0) = 0, lim

j→∞
(f2

j , xj − x0) = 0.

Therefore, {f1
j } and {f2

j } have subsequences {f1
jk
} and {f2

jk
} that converge

weakly to f1 ∈ T1x0 and f2 ∈ T2x0, respectively. Therefore, we have

tjk
f1

jk
+ (1− tjk

)f2
jk
⇀ t0f

1 + (1− t)f2 ∈ t0T1x0 + (1− t0)T2x0.

This completes the proof.

6.2 Degree Theory for Mappings of Class (S+)

In this section, we present a degree theory for multi-valued mappings of
class (S+). In the single valued case it was constructed by Browder [35], and
for a degree theory for other monotone-type mapping, see [51]. For some
notations, we refer to Section 6.1.

Lemma 6.2.1. Let F be a finite dimensional subspace, Ω ⊂ F be an open
bounded subset and 0 ∈ Ω. Let T : Ω → 2F∗

be an upper semicontinuous
mapping with compact convex values, F0 be a proper subspace of F , ΩF0 =
Ω ∩ F0 6= φ and TF0 = j∗F0

T : ΩF0 → 2F∗
0 be the Galerkin approximation of

T , where j∗F0
is the adjoint mapping of natural inclusion jF0 : F0 → F . If

deg(T,Ω, 0) 6= deg(TF0 ,ΩF0 , 0). Then there exist x ∈ ∂Ω and f ∈ Tx such
that

(f, x) ≤ 0, (f, v) = 0 for all v ∈ F0,

where deg(·, ·, ·) is the topological degree for upper semicontinuous mappings
with compact convex values in finite dimensional spaces.

Proof. Since F is finite dimensional, we may assume that F is a Hilbert
space and hence F ∗ = F and j∗F0

is the projection P : F → F0. Let F1 =
F 	 F0 and then F = F0 ⊕ F1. Let B1 be the open unit ball of F1 and then
Ω1 = ΩF0 ⊕B1 is an open subset of F .

Now, we define a mapping T1 : Ω1 → 2F by

T1(u+ v) = TF0u+ v for all u ∈ ΩF0 , v ∈ B1.

Then we have

deg(T1,Ω1, 0) = deg(TF0 ,ΩF0 , 0) 6= deg(T,Ω1, 0).

Again, we define a mapping T ∗ : Ω → 2F by

T ∗u = PTu+ (I − P )u for all u ∈ Ω.
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One can easily see that

deg(T1,Ω1, 0) = deg(T1,Ω ∩ Ω1, 0),

deg(T ∗,Ω, 0) = deg(T ∗,Ω ∩ Ω1, 0).

Consider the homotopy class {Tt : 0 ≤ t ≤ 1}, where Tt : Ω ∩ Ω1 → 2F is
defined by Ttu = tT1u+ (1− t)T ∗ for all u ∈ Ω ∩ Ω1 and 0 ≤ t ≤ 1. It is easy
to see that, if 0 ∈ Tt0u0, then we have

u0 ∈ F0 ∩ Ω ∩ Ω1

and so

deg(T ∗,Ω, 0) = deg(T ∗,Ω ∩ Ω1, 0)
= deg(T1,Ω ∩ Ω1, 0)
= deg(T,Ω1, 0)
= deg(T0,Ω0, 0).

Therefore, we get
deg(T ∗,Ω, 0) 6= deg(T,Ω, 0). (6.2.1)

Let

Htu = (tI + (1− t)P )Tu+ (1− t)(I − P )u for all (t, u) ∈ [0, 1]× Ω.

It follows from (6.2.1) that there exist t1 ∈ [0, 1] and u1 ∈ ∂Ω such that
0 ∈ Ht1u1. Hence there exists f1 ∈ Tu1 such that

tf1 + (1− t1)Pf1 + (1− t)(I − P )u1 = 0. (6.2.2)

Multiplying (6.2.2) by v ∈ F0 and u1, respectively, we obtain

(f1, v) = 0, (f1, u1) = 0.

This completes the proof.

Lemma 6.2.2. Let {Tt}t∈[0,1] be a homotopy of mappings of class (S+).
If 0 /∈ Tt(∂Ω) for all t ∈ [0, 1], then there exists a finite dimensional subspace
F0 such that 0 /∈ Tt,F (∂Ω) for all F with F0 ⊂ F and dimF < ∞, where
Tt,F = j∗FTt for all t ∈ [0, 1].

Proof. Suppose that the conclusion is not true. For finite dimensional
subspaces F0 and F with F0 ⊂ F , we define a set WF as follows:

WF = {(t, x) ∈ [0, 1]× ∂Ω : there exists f ∈ Ttx

such that (f, x) ≤ 0 and (f, v) = 0 for all v ∈ F}.
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Then WF is nonempty. Let WF be the closure of WF in [0, 1] × E with E
endowed with weak topology.

Consider the following family of sets:

F = {WF : F0 ⊂ F, dim(F ) ≤ ∞}.

It is easy to show that ∩F∈FWF 6= φ. Let (t0, x0) ∈ ∩F∈FWF . For all v ∈ E,
if we take a finite dimensional subspace F such that F0 ⊂ F , v ∈ F and
x0 ∈ F , then there exist (tvj , x

v
j ) ∈WF and fv

j ∈ Ttv
j
xv

j such that

tvj → t0, xv
j ⇀ x0, (fv

j , x
v
j ) ≤ 0, (fv

j , v) = 0

for j = 0, 1, 2, · · · . Hence we have lim supj→∞(fv
j , x

v
j − x0) ≤ 0. But since

{Tt : t ∈ [0, 1]} is a homotopy of mappings of class (S+), it follows that
xv

j → x0 ∈ ∂Ω and (fv
j ) has a subsequence (fv

jk
) that converges weakly to

fv
0 ∈ Tt0x0. Therefore, we have (fv

0 , v) = 0 for all v ∈ E. By Mazur’s
separation theorem, we get 0 ∈ Tt0x0, which is a contradiction. This completes
the proof.

Lemma 6.2.3. Let {Tt}t∈[0,1] be a homotopy of mappings of class (S+).
If 0 /∈ Tt(∂Ω) for all t ∈ [0, 1], then there exists a finite dimensional subspace
F0 such that the topological degree deg(Tt,F ,ΩF , 0) is well defined and does
not depend on t ∈ [0, 1] and each finite dimensional subspace F with F0 ⊂ F .

Proof. By Lemma 6.2.2, there exists a finite dimensional subspace F ′ such
that 0 /∈ Tt,F (∂Ω) for all t ∈ [0, 1] and F with F ′ ⊂ F and dimF < ∞. It
is easy to see Tt,F : ΩF → 2F∗

is upper semicontinuous with compact convex
values. Thus, by Definition 6.3.12, the topological degree deg(Tt,F ,ΩF , 0) is
well defined.

Now, we show that there exists a finite dimensional subspace F0 such that
F ′ ⊂ F0, deg(Tt,F ,Ω, 0) does not depend on t ∈ [0, 1] and F with F0 ⊂ F and
dimF <∞. In fact, if this is not true, then, as in the proof of Lemma 6.2.2,
we define

WF = {(t, x) ∈ [0, 1]× ∂Ω : there exists f ∈ Ttx

such that (f, x) ≤ 0 and (f, v) = 0 for all v ∈ F}.

Then WF is nonempty by Lemma 6.2.1. Let WF be the closure of WF in
[0, 1]× E with E endowed with the weak topology.

Consider again the following family of sets:

F = {WF : F0 ⊂ F, dim(F ) ≤ ∞}.

It is easy to show that ∩F∈FWF 6= φ. Let (t0, x0) ∈ ∩F∈FWF . Then, for all
v ∈ E, if we take a finite dimensional subspace F such that F0 ⊂ F , v ∈ F
and x0 ∈ F , then there exist (tvj , x

v
j ) ∈WF and fv

j ∈ Ttv
j
xv

j such that

tvj → t0, xv
j ⇀ x0, (fv

j , x
v
j ) ≤ 0, (fv

j , v) = 0
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for j = 0, 1, 2, · · · . Hence we have limj→∞(fv
j , x

v
j − x0) ≤ 0. But since {Tt :

t ∈ [0, 1]} is a homotopy of mappings of class (S+), we have xv
j → x0 ∈ ∂Ω

and (fv
j ) has a subsequence (fv

jk
) which converges weakly to fv

0 ∈ Tt0x0.
Therefore, we have (fv

0 , v) = 0 for all v ∈ E and so, by Mazur’s separation
theorem, 0 ∈ Tt0x0, which is a contradiction. This completes the proof.

Now, let T : Ω → 2E∗
be a mapping of class (S+) with 0 6∈ ∂Ω. By Lemma

6.2.3, there exists a finite dimensional subspace F0 such that 0 /∈ TF (∂Ω) for
all F with F0 ⊂ F and dimF <∞, and the topological degree deg(TF ,ΩF , 0)
is well defined and does not depend on F .

Now, we define the topological degree deg(T,Ω, 0) as the common value of
deg(TF ,ΩF , 0).

Theorem 6.2.4. Let E be a reflexive Banach space, Ω ⊂ E be an open
bounded subset and T : Ω → 2E∗

be a mapping of class (S+). If 0 6∈ T (∂Ω),
then the topological degree deg(T,Ω, 0) defined as above has the following
properties:

(1) deg(J,Ω, 0) = 1 if 0 ∈ J(Ω);

(2) If deg(T,Ω, 0) 6= 0, then 0 ∈ Tx has a solution in Ω;

(3) If Ω1 and Ω2 ⊂ Ω are two open subsets with Ω = Ω1∪Ω2 and Ω1∩Ω2 = φ,
then

deg(T,Ω, 0) = deg(T,Ω1, 0) + deg(T,Ω2, 0);

(4) If {Tt}t∈[0,1] is a homotopy of mappings of class (S+), Ω ⊂ D(Tt) and
0 /∈ Tt(∂Ω) for all t ∈ [0, 1], then deg(Tt,Ω, 0) does not depend on
t ∈ [0, 1].

6.3 Degree for Perturbations of Monotone-Type Map-
pings

In this section, based on the results in Sections 6.1 and 6.2, we establish
various topological degree theories for monotone type mappings. In the sequel,
T : Ω → 2E∗

is a bounded mapping of class (S+), where Ω is an open bounded
subset in E.

Lemma 6.3.1. Let M : D(M) ⊆ E → 2E∗
be a maximal monotone

mapping with D(M)∩Ω 6= ∅. If 0 /∈ (M + T )(∂Ω ∩D(M)), then there exists
λ0 > 0 such that

0 /∈ (Mλ + T )(∂Ω) for all λ < λ0,
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where Mλ is the Yosida approximation of M .

Proof. Suppose this is not true. Then there exist xj ∈ ∂Ω with xj ⇀ x0,
λj → 0+, fj ∈ Txj with fj ⇀ f0 such that

Mλj
xj + fj = 0.

We have (Mλjxj + fj , xj − x0) = 0. Since T is a mapping of class (S+), we
have lim infj→∞(fj , xj − x0) ≥ 0. Thus we get

lim sup
j→∞

(Mλj
xj , xj − x0) ≤ 0.

Hence
lim sup

j→∞
(Mλj

xj , xj) ≤ (−f0, x0). (6.3.1)

On the other hand, it follows that (m − Mλjxj , x − Rλjxj) ≥ 0 for all
x ∈ D(M) and m ∈Mx, i.e.,

(m−Mλj
xj , x− xj + λjJ

−1Mλj
xj ≥ 0. (6.3.2)

By (6.3.1) and (6.3.2), we get

(m,x− x0)− (−f0, x) ≥ −(−f0, x0), x ∈ D(M),m ∈ Tx.

Thus x0 ∈ D(M), and −f0 ∈Mx0. Notice that (Mλjxj−Mλjx0, xj−x0) ≥ 0.
By Lemma 6.1.29, we get

lim inf
j→∞

(Mλj
xj , xj − x0) ≥ 0

and so we have
lim sup

j→∞
(fj , xj − x0) ≤ 0.

Therefore, it follows that xj → x0 ∈ ∂Ω∩D(M), f0 ∈ Tx0 and 0 ∈Mx0+Tx0,
which is a contradiction.

Now, suppose that T and M satisfy the conditions of Lemma 6.3.1. By
Lemma 6.3.1, there exists λ0 > 0 such that

0 6∈ (Mλ + T )(∂Ω ∩D(M)).

Since Mλ + T is a mapping of class of (S+), deg(Mλ + T,Ω, 0) is well defined
for any λ < λ0. By Proposition 6.1.30, it is easy to check that

{Mtλ1+(1−t)λ2 + T : t ∈ [0, 1]}

is a homotopy of mappings of class (S+). Therefore, deg(Mλ + T,Ω, 0) does
not depend on λ ∈ (0, λ0).
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Now, we define

deg(M + T,Ω ∩D(T ), 0) = lim
λ→0+

deg(Mλ + T,Ω, 0). (6.3.3)

Theorem 6.3.2. The topological degree defined by (6.3.3) has the follow-
ing properties:

(1) deg(J,Ω, 0) = 1 if and only if 0 ∈ J(Ω);

(2) If deg(M + T,Ω, 0) 6= 0, then 0 ∈ (M + T )x has a solution in Ω;

(3) If Ω1 and Ω2 ⊂ Ω are two open subsets with Ω = Ω1∪Ω2 and Ω1∩Ω2 = φ,
then

deg(M + T,Ω, 0) = deg(M + T,Ω1, 0) + deg(M + T,Ω2, 0);

(4) If {Tt}t∈[0,1] is a homotopy of mappings of class (S+), M is a maximal
monotone mapping, Ω ∩D(M) 6= ∅, Ω ⊂ D(Tt) and 0 /∈ (M + Tt)(∂Ω ∩
D(M)) for any t ∈ [0, 1], then

deg(M + T0,Ω, 0) = deg(M + T1,Ω, 0).

Proof. The proof is straightforward.

Remark. The condition (4) of Theorem 6.3.2 is not in its most general
form. In applications one may find different homotopy properties in which M
may depend on t.

Lemma 6.3.3. Let M : D(M) ⊆ E → 2E∗
be a maximal monotone

mapping. If xj ∈ D(T )∩Ω, xj ⇀ x0, (εj) is a positive sequence with εj → 0+

and 0 ∈ (M + εjT )xj , then xj → x0 ∈ D(M) and 0 ∈Mx0.

Proof. By our assumptions, there exists fj ∈ Txj such that

(εjfj − εifi, xj − xi) ≤ 0 for i, j = 1, 2, · · · .

By letting i→∞, we get

εj(fj , xj − x0) ≤ 0.

But since T is a mapping of a class (S+), and so xj → x0, we have x0 ∈ D(M)
and 0 ∈Mx0. This completes the proof.

Lemma 6.3.4. Let T1, T2 be two mappings of class (S+), εi > 0 and
λi > 0 for i = 1, 2. Then {Mtλ1+(1−t)λ2 + tε1T1 + (1− t)ε2T2 : t ∈ [0, 1]} is a
homotopy of mappings of class (S+).
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Proof. Let tj → t0 and xj ⇀ x0 be such that

lim
j→∞

(Mtjλ1+(1−tj)λ2xj + tjεjf
1
j + (1− tj)f2

j , xj − x0) ≤ 0.

By the monotonicity of M and Proposition 6.1.30, we have

limj→∞(Mtjλ1+(1−tj)λ2xj , xj − x0) ≥ 0.

Consequently, we have

lim
j→∞

(tjεjf1
j + (1− tj)f2

j , xj − x0) ≤ 0.

But, since {tε1T1 + (1− t)ε2T2 : t ∈ [0, 1]} is a homotopy of mappings of class
(S+), it follows that xj → x0, (f1

j ) and (f2
j ) have subsequences (f1

jk
) and (f2

jk
)

such that f1
jk
⇀ f1 ∈ T1x0 and f2

jk
⇀ f2 ∈ T 2x0, respectively. Moreover, we

have
lim

j→∞
(Mtjλ1+(1−tj)λ2xj = Mt0λ1+(1−t0)λ2x0.

This completes the proof.

Now, suppose that 0 6∈ M(∂Ω ∩ D(M)). By Lemma 6.3.3, there exists
ε0 > 0 such that

0 /∈ (M + εT )(∂Ω ∩D(M)) for all ε ∈ (0, ε0)

and so deg(M+εT,Ω∩D(M), 0) is well defined for any ε ∈ (0, ε0). By Lemma
6.3.4, deg(M + εT,Ω ∩D(M), 0) does not depend on ε ∈ (0, ε0).

Now, we define

deg(M,Ω ∩D(M), 0) = lim
ε→0

deg(M + εT,Ω ∩D(M), 0). (6.3.4)

Theorem 6.3.5. The topological degree defined by (6.3.4) has the follow-
ing properties:

(1) deg(J,Ω, 0) = 1 if and only if 0 ∈ J(Ω);

(2) If deg(M,Ω, 0) 6= 0, then 0 ∈Mx has a solution in Ω;

(3) If Ω1 and Ω2 ⊂ Ω are two open subsets with Ω = Ω1∪Ω2 and Ω1∩Ω2 = ∅,
then

deg(M,Ω, 0) = deg(M,Ω1, 0) + deg(M,Ω2, 0);

(4) IfM1,M2 are two maximal monotone mappings, Ω∩D(M1)∩D(M2) 6= ∅
and

0 /∈ (tM1+(1−t)M2)(∂Ω∩D(M1)∩D(M2))∪(tM1,λ +(1−t)M2,λ)(∂Ω)

for all t ∈ [0, 1] and λ ∈ (0, λ0), then

deg(M1,Ω, 0) = deg(M2,Ω, 0).
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Proof. The proof follows from (6.3.4), (6.3.3), and Theorem 6.2.4.

Remark. A degree theory can also be developed for pseudomonotone map-
pings and generalized pseudomonotone mappings and their perturbations with
a maximal monotone mappings by using Proposition 6.1.31, which is a method
similar to the one employed above, and so we leave it to the reader as an ex-
ercise.

6.4 Degree Theory for Mappings of Class (S+)L

In this section, we construct a topological degree theory for multi-valued
mappings of class (S+)0,L, and the topological degree for multi-valued map-
pings of class (S+)L follows from definition 6.1.16.

In the following, we assume that E is also separable, L ⊂ E is a dense
subspace of E and Ω ⊂ E is a nonempty open bounded subset. Let {Tt}t∈[0,1]

be a homotopy of mappings of class (S+)0,L which has a common domain D
and ΩF = Ω ∩D ∩ F for each finite dimensional subspace F of L is open in
F . We may choose a sequence of finite dimensional subspaces Fj of L such
that Fj ⊆ Fj+1 and ∪∞j=1Fj = E. This is possible because E is separable and
L is dense in E.

Lemma 6.4.1. Let T : Ω∩D(T ) → 2E∗
be a mapping of (S+)0,L. Suppose

that 0 /∈ T (∂Ω ∩D(T )). Then there exists an integer N > 0 such that

0 /∈ Tn(∂Ω ∩D(T ) ∩ Fn) for all n > N,

where Tn = j∗Fn
T .

Proof. Suppose that the conclusion is not true. Then there exists xnk
∈

∂Ω ∩ D(T ) ∩ Fnk
such that 0 ∈ Tnk

xnk
, i.e., there exists fnk

∈ Txnk
such

that 0 = j∗Fnk
fnk

for k = 1, 2, · · · . Without loss of generality, we may assume
that xnk

⇀ x0. Now we have (fnk
, x) = 0 for all x ∈ Fnk

, k = 1, 2, · · · .
Thus (fnk

, xnk
) = 0 and limk→∞(fnk

, v) = 0 for all v ∈ ∪∞j=1Fj . Since T is
a mapping of class (S+)0,L, it follows that xnk

→ x0 ∈ ∂Ω ∩D and 0 ∈ Tx0,
which is a contradiction. This completes the proof.

Under the conditions of Lemma 6.4.1, we know from Section 2.3 that the
topological degree deg(Tn,Ω ∩ D(T ) ∩ Fn, 0) is well defined for sufficiently
large n, and we have the following:

Lemma 6.4.2. Let T be the same as in Lemma 6.4.1. Then there exists
an integer N > 0 such that the topological degree deg(Tn,Ω ∩D(T ) ∩ Fn, 0)
does not depend on n > N , where Tn = j∗Fn

T .
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Proof. Suppose that the conclusion is not true. By Lemma 6.2.1, there
exist xnk

∈ ∂Ω∩D∩Fnk
, fnk

∈ Txnk
such that (fnk

, xnk
) ≤ 0 and (fnk

, x) = 0
for all x ∈ Fnk

, k = 1, 2, · · · . We may assume that xnk
⇀ x0. By the same

proof as in Lemma 6.4.2, we get xnk
→ x0 ∈ ∂Ω ∩D and 0 ∈ Tx0, which is a

contradiction. This completes the proof.

Suppose that {Ej}∞j=1 is another sequence of finite dimensional subspaces
of L and ∪∞j=1Ej = E. Then we have the following:

Lemma 6.4.3. Let T be the same as in Lemma 6.4.1. Then there exists
an integer N > 0 such that

deg(Tn,Ω ∩D(T ) ∩ Fn, 0) = deg(Tn,Ω ∩D(T ) ∩ En, 0) for all n > N.

Proof. Put Kn = En ∪ Fn. By using the same proof as in Lemma 6.4.2,
there exist two integers N1 > 0 and N2 > 0 such that

deg(Tn,Ω ∩D(T ) ∩ Fn, 0) = deg(Tn,Ω ∩D(T ) ∩Kn, 0) for all n > N1

and

deg(Tn,Ω ∩D(T ) ∩ En, 0) = deg(Tn,Ω ∩D(T ) ∩Kn, 0) for all n > N2.

Therefore, the conclusion of Lemma 6.4.3 is true. This completes the proof.

Now, let L be a dense subspace of E, Ω ⊂ E be a nonempty open bounded
subset and T : D(T ) ⊂ E → 2E∗

be a mapping of class (S+)0,L. Assume
that Ω ∩D(T ) ∩ F is open in F for each finite dimensional subspace F of L.
Suppose that 0 6∈ T (∂Ω ∩ D(T )). In view of lemmas 6.4.1 to 6.4.3, we may
define the topological degree by

Deg(T,Ω ∩D(T ), 0) = lim
n→∞

deg(Tn,Ω ∩D(T ) ∩ Fn, 0).

In general, if T is a mapping of class (S+)L and p 6∈ T (∂Ω ∩ D(T )), then
we can define the topological degree by

Deg(T,Ω ∩D(T ), p) = Deg(T − p,Ω ∩D(T ), 0).

The topological degree defined above has the following properties:

Theorem 6.4.4. Let E be a reflexive Banach space, L be a dense subspace
of E, Ω ⊂ E be an open bounded subset and T : D(T ) ∩ Ω → 2E∗

be a
mapping of class (S+)0,L. If 0 6∈ T (∂Ω ∩D(T )), then the topological degree
Deg(T,Ω ∩D(T ), 0) defined above has the following properties:

(1) Deg(J,Ω, 0) = 1 if 0 ∈ J(Ω);

(2) If Deg(T,Ω ∩D(T ), 0) 6= 0, then 0 ∈ Tx has a solution in Ω ∩D(T );
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(3) If Ω1 and Ω2 ⊂ Ω are two open subsets with Ω = Ω1∪Ω2 and Ω1∩Ω2 = ∅,
then

Deg(T,Ω ∩D(T ), 0) = Deg(T,Ω1 ∩D(T ), 0) +Deg(T,Ω2 ∩D(T ), 0);

(4) If {Tt}t∈[0,1] is a homotopy of mappings of class (S+)0,L with D(Tt) = D
and 0 /∈ Tt(∂Ω ∩ D) for all t ∈ [0, 1], then Deg(Tt,Ω ∩ D, 0) does not
depend on t ∈ [0, 1].

Proof. (1) to (3) follow easily from the definition and the properties of
degree theory in finite dimensional spaces.

We only need to prove (4). Assume that (Fj)∞j=1 is a sequence of finite
dimensional subspaces of L with ∪∞j=1Fj = E. We claim that there exists an
integer N > 0 such that

0 /∈ Tt,n(∂Ω ∩D ∩ Fn) for all n > N, t ∈ [0, 1],

where Tt,n = j∗Fn
Tt. If not, then there exist tnk

→ t0, xnk
∈ ∂Ω ∩ D ∩ Fnk

with xnk
⇀ x0, fnk

∈ Ttnk
xnk

such that 0 = j∗Fnk
fnk

, which implies that

(fnk
, xnk

) = 0, (fnk
, v) = 0 for all v ∈ Fnk

.

Since {Tt}t∈[0,1] is a homotopy of mappings of class (S+)0,L, we get xnk
→

x0 ∈ ∂Ω ∩D and 0 ∈ Tt0x0, which is a contradiction. Thus the claim is true.
Now, for all n > N , we know from Section 2.3 that deg(Tt,n,Ω∩D∩L∩Fn, 0)

is a constant for t ∈ [0, 1], where Tt,n = j∗Fn
Tt. In view of Lemma 6.4.3, we

see that the conclusion of (4) is true. This completes the proof.

Theorem 6.4.5. Let T : D(T ) ⊂ E → 2E∗
be a mapping of class (S+)0,L

and Ω ⊂ E be an open bounded subset such that Ω ∩D(T ) ∩ F is open in F
for each finite dimensional subspace F of L. If 0 ∈ Ω ∩D(T ) and (f, x) > 0
for all x ∈ ∂Ω ∩D(T ) and f ∈ Tx, then

Deg(T,Ω ∩D(T ), 0) = 1.

Proof. Assume that (Fj)∞j=1 is a sequence of finite dimensional subspaces
of L with ∪∞j=1Fj = E. It is easy to check that

0 6∈ (tj∗Fn
T + (1− t)j∗Fn

J)(∂Ω ∩D(T ) ∩ Fn)

for all t ∈ [0, 1] and n = 1, 2, · · · . Therefore, we have

deg(j∗Fn
T,Ω ∩D(T ) ∩ Fn, 0) = deg(j∗Fn

J,Ω ∩D(T ) ∩ Fn, 0) = 1

for all n = 1, 2, · · · such that Fn ∩ Ω ∩ D(T ) 6= ∅. By the definition of
topological degree Deg(T,Ω ∩D(T ), 0), we get

Deg(T,Ω ∩D(T ), 0) = 1.
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This completes the proof.

Theorem 6.4.6. Let H be a real separable Hilbert space, L be a dense
subspace of H, Ω ⊂ H be an open bounded subset such that Ω∩D(T )∩F is
open in F for each finite dimensional subpace F of L and T : D(T ) → 2H be
a L0-pseudocompact mapping. Suppose that 0 ∈ D(T ) ∩ Ω and

(Tx, x) ≤ ‖x‖2 for all x ∈ ∂Ω ∩D(T ).

Then T has a fixed point in Ω ∩D(T ).

Proof. We may assume that x 6∈ Tx for all x ∈ ∂Ω ∩D(T ). Assume that
(Fj)∞j=1 is a sequence of finite dimensional subspaces of L with ∪∞j=1Fj = H.
We claim that there exists an integer N > 0 such that

0 /∈ [(tPn(I − T ) + (1− t)Pn](∂Ω ∩D(T ) ∩ Fn

for all n > N and t ∈ [0, 1], where Pn : H → Fn is the projection. Assume
this is not true. Then there exist tj → t0, xj ∈ ∂Ω∩D∩Fnj

with xj ⇀ x0 and
fj ∈ Txj such that PFnj

(xj−tjfj) = 0 for j = 1, 2, · · · , where PFnj
: H → Fnj

is the projection. Thus it follows that (xj − tjfj , xj) = 0. This and our
assumption imply that tj = 1, so we have

(xj − fj , xj) = 0, (xj − fj , v) = 0 for all v ∈ Fnj
, j = 1, 2, · · · .

From which we get xj → x0 ∈ ∂Ω ∩D(T ) and x0 ∈ Tx0, which is a contra-
diction. Thus we get

deg(Pn(I − T ),Ω ∩D(T ) ∩ Fn, 0) = deg(Pn,Ω ∩ Fn, 0) = 1.

Thus it follows that Deg(I − T,Ω∩D(T ), 0) = 1. By Theorem 6.4.4, T has a
fixed point in Ω ∩D(T ). This completes the proof.

6.5 Coincidence Degree for Mappings of Class L-(S+)

In this section, we construct a topological degree theory for multi-valued
mappings of class L-(S+).

Lemma 6.5.1. Let L be a Fredholm mapping of index zero type, Ω ⊂ H
be an open bounded subset and T : Ω → 2H be a mapping. If 0 /∈ (L −
T )(∂Ω ∩D(L)), then 0 /∈ [I − P − (JQ+KPQ)T ](∂Ω).

Proof. Suppose the contrary. Then there exists x0 ∈ ∂Ω such that 0 ∈
x0 − Px0 − (JQ+KPQ)Tx0, and so there exist f0 ∈ Tx0 such that

x0 − Px0 − JQf0 −KPQf0 = 0.
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Since

JQf0 ∈ Ker(L) = Im(P ), x0 − Px0 ∈ Ker(P ), KpQf0 ∈ D(L) ∩Ker(P ),

we must have
JQf0 = 0, x0 − Px0 −KPQf0 = 0.

Therefore, we have

Qf0 = 0, x0 − Px0 −KP f0 = 0, i.e., Lx0 − f0 = 0,

which is a contradiction to 0 /∈ (L−T )(∂Ω∩D(L)). This completes the proof.

Now, let L be a Fredholm mapping of index zero type, Ω ⊂ H be an open
bounded subset and T : Ω → 2H be a mapping of class L-(S+). Suppose that
0 /∈ (L − T )(∂Ω ∩ D(L)). By Lemma 6.5.1, we have 0 /∈ [I − P − (JQ +
KPQ)T ](∂Ω). As a result, deg(I − P − (JQ + KPQ)T,Ω, 0) is well defined.
We define

degJ(L− T,Ω, 0) = deg(I − P − (JQ+KPQ)T,Ω, 0),

which is called the coincidence degree of L and T on Ω.
Notice that the projections P,Q in Hilbert spaces are uniquely determined,

so degJ(L− T,Ω, 0) is well defined.

The following result follows directly from Theorem 6.2.4:

Theorem 6.5.2. The coincidence degree of L and T on Ω has the following
properties:

(1) If Ω1 and Ω2 are disjoint open subsets of Ω such that 0 /∈ (L−T )(D(L)∩
Ω \ (Ω1 ∪ Ω2), then

degJ(L− T,Ω, 0) = degJ(L− T,Ω1) + degJ(L− T,Ω2, 0);

(2) If H(t, x) : [0, 1]×Ω → Y is a mapping of class L-(S+) on [0, 1]×Ω and,
if 0 6= Lx−H(t, x) for all (t, x) ∈ [0, 1]×∂Ω, then degJ(L−H(t, ·),Ω, 0)
does not depend on t ∈ [0, 1];

(3) If degJ(L− T,Ω, 0) 6= 0, then 0 ∈ (L− T )(D(L) ∩ Ω);

(4) If L : D(L) ⊆ H → H is a linear mapping such that L−1 : H → D(L)
is continuous, then degJ(L,Ω, 0) = 1 if 0 ∈ Ω.

Theorem 6.5.3. Let L be a Fredholm mapping of index zero type with
Ker(L) = {0}, 0 ∈ Ω ⊂ H be an open bounded subset and T : Ω → 2H be a
mapping of class L-(S+). Suppose that Lx /∈ tTx for all x ∈ ∂Ω ∩D(L) and
t ∈ [0, 1]. Then degJ(L− T,Ω ∩D(T ), 0) = 1.
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Proof. SinceKer(L) = {0}, we take P = Q = 0 and J = I. Now, I−L−1T
is mapping of class (S+) and {I − tL−1T ]}t∈[0,1] is a homotopy of mappings
of class (S+). From our assumption, one can easily see that 0 /∈ (x− tL−1Tx)
for all x ∈ ∂Ω, t ∈ [0, 1]. From Theorem 6.2.4, we have

deg(I − L−1T,Ω, 0) = deg(I,Ω, 0) = 1,

i.e., degJ(L− T,Ω ∩D(T ), 0) = 1. This completes the proof.

Corollary 6.5.4. Let L be a Fredholm mapping of index zero type with
Ker(L) = {0} and T : H → 2H be a mapping of class L-(S+). Then one of
the following conditions hold:

(1) Lx ∈ Tx has a solution in D(T );

(2) {x : Lx ∈ λTx for some λ ∈ (0, 1)} is unbounded.

Theorem 6.5.5. Let L be a Fredholm mapping of index zero type, Ω ⊂ H
an open bounded subset and Ti : Ω → 2H be a mapping of class L-(S+) for
i = 1, 2. Suppose that T1x = T2x for all x ∈ ∂Ω ∩D(L). Then we have the
following:

degJ(L− T1,Ω, 0) = degJ(L− T2,Ω, 0).

Proof. Since T1x = T2x for all x ∈ ∂Ω, we have

0 /∈ (I − P − (JQ+KPQ(tT1 + (1− t)T2)))x for all x ∈ ∂Ω.

Moreover, J is linear, so

I − P − (JQ+KPQ)(tT1 + (1− t)T2)
= I − P − t(JQ+KPQ)T1 − (1− t)(JQ+KPQ)T2

is a homotopy of mappings of class (S+). Therefore, it follows from Theorem
6.2.4 that

deg(I − P − (JQ+KPQ)T1,Ω, 0) = deg(I − P − (JQ+KPQ)T2,Ω, 0)

and so
degJ(L− T1,Ω, 0) = degJ(L− T2,Ω, 0).

This completes the proof.

Suppose that L is a Fredholm mapping of index zero type, Ω ⊂ H be an
open bounded subset, Ω∩D(L)∩D(T ) 6= ∅ and T : D(T ) → 2H is a L-maximal
monotone mapping. Also, suppose that 0 /∈ (L−T )(∂Ω∩D(L)∩D(T )). Then,
by Lemma 6.5.1, we have

0 /∈ [I − P − (JQ+KPQ)T ](∂Ω ∩D(T )).
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Since I − P − (JQ +KPQ)T is maximal monotone, the degree deg(I − P −
(JQ+KPQ)T,Ω, 0) is well defined, and we may define a degree

degJ(L− T,Ω, 0) = deg(I − P − (JQ+KPQ)T,Ω, 0),

and one may deduce results similar to Theorem 6.5.3.

Lemma 6.5.6. Let T : D(T ) ⊆ H → 2H be a bounded multi-valued
mapping and 0 /∈ (L− T )(∂Ω ∩D(L) ∩D(T )). Then there exists ε0 > 0 such
that

0 /∈ [I − P − (JQ+KPQ)T + εI](∂Ω ∩D(T )) for all ε ∈ (0, ε0).

Proof. Assume that the conclusion is false. Then there exist εn → 0 and
xn ∈ ∂Ω ∩D(T ) such that

0 ∈ (I − P − (JQ+KPQ)T + εn)xn.

Thus there exist fn ∈ Txn such that 0 = xn − Pxn − (JQ+KPQ)fn + εnxn.
Therefore, we have

(1 + εn)(I − P )xn + (εnPxn + JQfn) +KPQfn = 0.

Consequently, it follows that

JQfn = −εnPxn, (1 + εn)(I − P )xn +KPQfn = 0

and so we have (1 + εn)Lxn− fn− εnJ−1Pxn = 0. By the boundedness of T ,
we get Lxn − fn → 0, which is a contradiction. This completes the proof.

Now, we assume that T : Ω → H is a bounded mapping and T is L-
pseudomonotone. Suppose that 0 /∈ (L− T )(∂Ω ∩D(L)). Then by Lemma
6.5.6, there exists ε0 > 0 such that

0 /∈ [I − P − (JQ+KPQ)T + εI](∂Ω) for all ε ∈ [0, ε0).

Since I−P − (JQ+KPQ)T is pseudomonotone, I−P − (JQ+KPQ)T + εI is
a mapping of class (S+) and the degree deg(I −P − (JQ+KPQ)T + εI,Ω, 0)
is well defined for all ε ∈ (0, ε0). We define

degJ(L− T,Ω, 0) = lim
ε→0+

deg(I − P − (JQ+KPQ)T + εI,Ω, 0),

which is easily seen to be well defined if we note that {I−P −(JQ+KPQ)T +
[tε1 + (1− t)ε2]I}t∈[0,1] is a homotopy of mappings of class (S+).

Theorem 6.5.7. The coincidence degree of L and the pseudomonotone
mapping T on Ω has the following properties:
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(1) If Ω1 and Ω2 are open subsets of Ω such that

Ω1 ∩ Ω2 = ∅, 0 /∈ (L− T )(D(L) ∩ Ω \ (Ω1 ∪ Ω2),

then we have

degJ(L− T,Ω, 0) = degJ(L− T,Ω1) + degJ(L− T,Ω2, 0);

(2) If Ti : Ω → H, i = 1, 2, are bounded mapping such that tT1 + (1− t)T2

is L-pseudomonotone on [0, 1]× Ω and

0 /∈ ∪t∈[0,1][L− tT1 + (1− t)T2](∂Ω ∩D(L)),

then we have

degJ(L− T1,Ω, 0) = degJ(L− T2,Ω, 0);

(3) If degJ(L− T,Ω, 0) 6= 0, then 0 ∈ (L− T )(D(L) ∩ Ω).

6.6 Computation of Topological Degree

In this section, we compute the topological degree of some monotone-type
mappings under certain boundary conditions.

Theorem 6.6.1. Let T : Ω ⊂ E → 2E∗
be a mapping of class (S+). If

0 ∈ Ω and (f, x) > 0 for all x ∈ ∂Ω and f ∈ Tx, then deg(T,Ω, 0) = 1.

Proof. Consider the family {tT +(1− t)J : t ∈ [0, 1]} of mappings. By our
assumptions, we know that 0 6∈ (tT + (1− t)J)(∂Ω) for all t ∈ [0, 1], and so a
direct proof shows that {tT + (1− t)J : t ∈ [0, 1]} is a homotopy of mappings
of class (S+). By Theorem 6.2.4, we have

deg(T,Ω, 0) = d(J,Ω, 0) = 1.

This completes the proof.

Theorem 6.6.2. Let T : Ω ⊂ E → 2E∗
be a mapping of class (S+) and

M : D(M) ⊆ E → 2E∗
be a maximal monotone mapping. If x0 ∈ Ω ∩D(M)

and
(f, x− x0) > −‖f‖‖x− x0‖

for all x ∈ ∂Ω ∩D(M) and f ∈ (M + T )x, then deg(M + T,Ω, 0) = 1.

Proof. It is easy to see that

0 6∈ (tM + (1− t)T + (1− t)J(· − x0))(∂Ω ∩D(M)) for all t ∈ [0, 1].

Copyright 2006 by Taylor & Francis Group, LLC



DEGREE THEORY FOR MONOTONE-TYPE MAPS 157

Now, we prove that there exists λ0 > 0 such that

0 6∈ (tMλ + (1− t)T + (1− t)J(· − x0))(∂Ω) for all t ∈ [0, 1].

In fact, if this is not true, then there exist tj → t0, xj ∈ ∂Ω, xj ⇀ y0, fj ∈ Txj

and λj → 0+ such that

0 = tjMλjxj + (1− tj)fj + (1− tj)J(xj − x0). (6.6.1)

Multiplying (6.6.1) by xj − y0, we obtain

(tjMλj
xj + (1− tj)fj + (1− tj)J(xj − x0), xj − y0) = 0. (6.6.2)

We consider the following two cases:
Case (i) t0 = 0. Multiplying (6.6.1) by xj − x0, we obtain

(tjMλj
xj + (1− tj)fj + (1− tj)J(xj − x0), xj − x0) = 0.

By Lemma 6.1.29, we have tjMλjx0 → 0 and so we obtain

lim sup
j→∞

((1− tj)fj + (1− tj)J(xj − x0), xj − x0) = 0.

It follows that xj → x0, which is a contradiction.
Case (ii) t0 6= 0. Since T and J(·−x0) are mappings of class (S+), it follows

that
lim inf
j→∞

((1− tj)fj + (1− tj)J(xj − x0), xj − y0) ≥ 0.

By (6.6.2), we have

lim sup
j→∞

(tjMλjxj , xj − y0) ≤ 0. (6.6.3)

Without loss of generality, we may assume that Mλj
xj ⇀m0. By (6.6.3), we

have
lim sup

j→∞
(Mλj

xj , xj ≤ (m0, y0). (6.6.4)

The monotonicity of M implies that

(Mλj
xj −m,xj − λjJ

−1Mλj
xj − x) ≥ 0 (6.6.5)

for all x ∈ D(M) and m ∈Mx. By letting j →∞ in (6.6.5), we get

lim sup
j→∞

(Mλj
xj , xj) ≥ (m, y0 − x) + (m0, x) (6.6.6)

for all x ∈ D(M) and m ∈Mx. Thus, from (6.6.4) and (6.6.6), it follows that

(m0 −m, y0 − x) ≥ 0 for all x ∈ D(M), m ∈Mx,
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which implies that y0 ∈ D(M). Therefore, (6.6.3) becomes the following:

lim
j→∞

(tjMλjxj , xj − y0) = 0

and hence we have

lim
j→∞

((1− tj)fj + (1− tj)J(xj − x0), xj − y0) = 0.

Therefore, xj → y0, and (6.6.1) implies that

0 ∈ (t0M + (1− t0)T + (1− t0)J(· − x0))(∂Ω ∩D(M),

which is a contradiction. By Theorem 6.2.4, we conclude that

deg(Mλ + T,Ω, 0) = deg(J(· − x0),Ω, 0) = 1 for all λ ∈ (0, λ0).

By the definition of deg(T +M,Ω, 0), we finally obtain

deg(T +M,Ω, 0) = 1.

This completes the proof.

Theorem 6.6.3. Let f : D(f) ⊆ E → R ∪ {+∞,−∞} be a proper lower
semicontinuous convex function. If lim inf‖x‖→∞ f(x) = +∞, then

lim
R→∞

deg(∂f,B(0, R) ∩D(∂f), 0) = 1,

where B(0, R) is the open ball with radius R in E.

Proof. Since f is a lower semicontinuous convex function, ∂f is maximal
monotone. By our assumptions, we know that there exists x0 ∈ D(∂f) such
that 0 ∈ ∂f(x0). Hence we have

(g, x− x0) ≥ 0 for any g ∈ ∂f(x), x ∈ D(∂f).

If we take R sufficiently large such that 0 6∈ (D(∂f) ∩ B(0, R)), then, in
addition, we have

(g + εJ(x− x0), x− x0) > 0 for all x ∈ D(∂f) ∩B(0, R), g ∈ ∂f.

By Theorem 6.5.2, we conclude that

deg(∂f + εJ(· − x0), B(0, R) ∩D(∂f), 0) = 1.

By the definition of deg(∂f,B(0, R) ∩D(∂f), 0), we get

deg(∂f,B(0, R) ∩D(∂f), 0) = 1.

This completes the proof.
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Theorem 6.6.4. Let H be real Hilbert space, 0 ∈ Ω ⊂ H be an open
bounded subset and T : Ω → 2H be a pseudocompact mapping. Suppose that

λx 6∈ Tx for all x ∈ ∂Ω, λ > 1.

Then T has a fixed point in Ω.

Proof. We may assume that x 6∈ Tx for all x ∈ ∂Ω and λ > 1. Put
H(t, x) = t(I − T )x + (1 − t)x for (t, x) ∈ [0, 1] × Ω. Then H(t, ·) is a
homotopy mapping of a class (S+). Moreover, we have 0 6∈ H(t, x) for all
(t, x) ∈ [0, 1]× Ω. Therefore, we have

deg(I − T,Ω, 0) = deg(I,Ω, 0) = 1.

Hence T has a fixed point in Ω. This completes the proof.

Theorem 6.6.5. Let H be real Hilbert space, 0 ∈ Ω ⊂ H be an open
bounded subset and T : Ω → 2H be a pseudo-contractive mapping. Suppose
that

λx 6∈ Tx for all x ∈ ∂Ω, λ > 1.

Then T has a fixed point in Ω.

Proof. We may assume that x 6∈ Tx for all x ∈ ∂Ω and λ > 1. Put
H(t, x) = t(I−T )x+(1−t)x for all (t, x) ∈ [0, 1]×Ω. Then we can obtain the
conclusion by using the same argument as in Theorem 6.6.4. This completes
the proof.

6.7 Applications to PDEs and Evolution Equations

In this section, we give some applications of our degree theory in the previ-
ous sections to periodic nonlinear evolution equations and existence problems
of partial differential equations.

In the following, let E be a separable reflexive Banach space which is densely
embedded in a real Hilbert space H and E∗ be the dual space of E. Let ‖ · ‖
and ‖ · ‖∗ be the norms in E and E∗, respectively. We always assume that
both E and E∗ are locally uniformly convex. The following function spaces
will be used in the sequel:

Lp(0, T ;E) =
{
f(t) : [0, T ] → E,

∫ T

0

‖f(s)‖pds <∞
}

with the norm ‖f(·)‖p = (
∫ T

0
‖f(s)‖pds)

1
p and Lq(0, T ;E∗) is the dual space

of Lp(0, T ;E) with the norm ‖g(·)‖∗,q = (
∫ T

0
‖g(s)‖qds)

1
q , where 1

p + 1
q = 1.
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For all u(·) ∈ Lp(0, T ;E) and v(·) ∈ Lq(0, T ;E∗), let

〈u, v〉 =
∫ T

0

(u(s), v(s))ds

and denote

W 1,p(0, T ;E) = {u(·) ∈ Lp(0, T ;E) : u′(·) ∈ Lq(0, T ;E∗), u(0) = u(T )}

with the norm ‖u‖w = ‖u‖p + ‖u′‖∗,q, where u′ is the generalized derivative
of u and ‖ · ‖p, ‖ · ‖∗,q are norms of the spaces Lp(0, T ;E) and Lq(0, T ;E∗),
respectively. Let W ∗ be the dual space of W 1,p(0, T ;E).

Theorem 6.7.1. Let A(t) : E → 2E∗
be an operator of class (S+) for all

t ∈ R. Suppose the following conditions are satisfied:

(1) For all u(t) ∈W 1,p(0, T ;E), A(t)u(t) is E∗-measurable on [0, T ];

(2) There exist a constant C > 0 and C1(·) ∈ Lq(0, T ) such that

‖f‖∗ ≤ C‖x‖p−1 + C1(t)

for all x ∈ E and f(t) ∈ A(t)x for almost everywhere t ∈ [0, T ];

(3) There exist a constant α > 0 and a function γ(·) ∈ L(0, T ) such that

(f, x) ≥ α‖x‖p − γ(t)

for all x ∈ E and f(t) ∈ A(t)x for almost everywhere t ∈ [0, T ].

Then we have the following:{
x′(t) ∈ −A(t)x(t), a.e. t ∈ (0, T ),
x(0) = x(T )

(E 6.7.1)

has a solution x(t) ∈W 1,p(0, T ;E).

First, we define a multi-valued operator A : W 1,p(0, T ;E) →W ∗ by

Au(·) = {f(·) ∈W ∗ : f(t) ∈ A(t)u(t)} for a.e. t ∈ [0, T ]}.

By the condition (1) and Theorem 2.3.9, A is well defined.
Next, for each n ≥ 1, we define a multi-valued operator Sn : W 1,p(0, T ;E) →

W ∗ as follows:
For all u ∈W 1,p(0, T ;E) and g ∈ Snu, there exists f ∈ Au such that

(g, v) = (u′(·), v(·)) + (f, v(·)) +
1
n

(Ju, v) for all v ∈W 1,p(0, T ;E), (6.7.1)

where J : W 1,p(0, T ;E) →W ∗ is the duality mapping.
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Lemma 6.7.2. Sn defined by (6.7.1) is an operator of class (S+) for each
positive integer n.

Proof. The bounded closed convexity of Snu is obvious. To prove the finite
dimensional weak upper semicontinuity of Sn, we show that Sn is actually
upper semicontinous from the strong topology in W 1,p(0, T ;E) to the weak
topology in W ∗. Note that the condition (2) implies that Sn is bounded and
so it is relatively weakly compact in W ∗. Hence, we only need to show that
Sn is weakly closed (see [12]). Let un → u0 in W 1,p(0, T ;E), gn ∈ Sun and
gn ⇀ g0 in W ∗.

Now, we prove that g0 ∈ Snu0. In fact, there exists fn ∈ Aun such that

fn ⇀ g0 − u′0 −
1
n
Ju0

and there exists a subsequence (unk
) such that unk

(t) → u0(t) for almost
everywhere t ∈ [0, T ]. Therefore, it follows from the condition (2) that

lim
nk→∞

(fnk
(t), unk

(t)− u0(t)) = 0

for almost everywhere t ∈ [0, T ] and A(t) is a mapping of class (S+) and so
(fnk

(t)) has a subsequence converging weakly to f0(t) ∈ A(t)u0(t) for almost
everywhere t ∈ [0, T ]. Hence we have g0 ∈ Snu0.

Let uj ∈ W 1,p(0, T ;E) with uj ⇀ u0 in W 1,p(0, T ;E) and gj ∈ Snuj such
that

limj→∞(gj , uj − u0) ≤ 0.

Then, by (6.7.1), there exist fj ∈ Auj such that

limj→∞

∫ T

0

[
(fj , uj − u0) +

1
n

(Juj , uj − u0)
]
dt ≤ 0. (6.7.2)

Now, using the fact that A(t) is a mapping of class (S+), the conditions (2)
and (3), we have

limj→∞(fj(t), uj(t)− u0(t)) ≥ 0 (6.7.3)

for almost everywhere t ∈ [0, T ] and thus uj → u0 in W 1,p. There is a
subsequence (ujk

) such that ujk
(t) → u0(t) for almost everywhere t ∈ [0, T ].

Thus, condition (2) implies that

lim
j→∞

(fjk
(t), ujk

(t)− u0(t)) = 0

for almost everywhere t ∈ [0, T ] and A(t) is a mapping of class (S+) and so
(fjk

) has a subsequence (fjk′ ) such that fjk′ (t) ⇀ f0(t) ∈ A(t)u0(t). Hence,
(gjk′ ) converges weakly to g0 ∈ Snu0, where g0 satisfies

(g0, v) = (u′0, v) + (f0, v) +
1
n

(Ju0, v) for all v ∈W 1,p(0, T ;E).
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This completes the proof.

Proof of Theorem 6.7.1. First, by the condition (3), we have

(g, u) ≥ α

∫ T

0

‖u‖pdt−
∫ T

0

γ(t)dt+
1
n

∫ T

0

[‖u‖p + ‖u′‖q
∗]dt

for all g ∈ Snu and so there exists rn
0 > 0 such that

(g, u) > 0 for all u ∈W 1,p(0, T ;E), ‖u‖w = rn
0 , g ∈ Snu.

It is easy to prove that tSn +(1− t)J is a homotopy of operators of class (S+)
for all t ∈ [0, 1]. By Theorem 6.2.4, we get

deg(Sn, B(0, rn
0 ), 0) = deg(J,B(0, rn

0 ), 0) = 1,

where B(0, rn
0 ) is the open ball with radius rn

0 in W 1,p(0, T ;E). Therefore,
0 ∈ Snu has a solution un ∈ B(0, rn

0 ), i.e., there exists fn(t) ∈ A(t)un(t) for
almost everywhere t ∈ [0, T ] such that

(u′n, v) + (fn, v)dt+
1
n

(Jun, v) = 0 for all v ∈W 1,p(0, T ;E). (6.7.4)

Put v = un in (6.7.4). Then, by the condition (3), we know that there exists
N > 0 such that

‖un‖p ≤ N,
1√
n
‖u′n‖∗,q ≤ N for all n ≥ 1.

By the condition (2), u′n is bounded in Lq(0, T ;E∗).
Now, we may assume that un ⇀ u0 in W 1,p(0, T ;E). Again, by the condi-

tion (2), we know that (fn) is bounded in Lq(0, T ;E∗), and so we may assume
that fn ⇀ f0 in Lq(0, T ;E∗). Let v = un − u0. It follows from (6.7.4) that

lim
n→∞

∫ T

0

(fn(s), un(s)− u0(s))ds = 0.

Since A(t) is a mapping of class (S+), it is easy to show that (fn(s), un(s)−
u0(s)) → 0 in measure and hence there exists a subsequence ((fnk

, unk
− u0))

such that (fnk
(s), unk

(s)− u0(s)) → 0 for almost everywhere s ∈ [0, T ]. Thus
unk

(s) → u0(s) for almost everywhere s ∈ [0, T ] and fnk
converges weakly to

f0(s) ∈ A(s)u(s). By letting nk →∞ in (6.7.4), we get

u′0(s) ∈ A(s)u(s) for almost everywhere s ∈ (0, T ).

It is obvious that u0(0) = u0(T ). This completes the proof.

Example 6.7.3. Let Ω ⊂ RN be a bounded domain with a smooth bound-
ary ∂Ω. Let ai(x, u, ξ) : Ω×R ×RN → R be continuous with respect to u, ξ
and measurable with respect to x for 1 ≤ i ≤ N . Suppose that
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(1) |ai(x, u, ξ)| ≤ L(|u|m1 + ‖ξ‖m−1) + M(x) for 1 ≤ i ≤ n, where L > 0,
m1 <

N
N−m , 2 ≤ m < N are constants and M(x) ∈ L

m
m−1 (Ω);

(2) ρ is continuous on R and

0 ≤ ρ(u) ≤ µ
(
‖
∫ u

0

ρ(s)ds‖+ 1
)r

for all u ∈ R,

where µ > 0 and 0 ≤ r < N
N−2 are constants;

(3) Σn
i=1[ai(x, u, ξ)− ai(x, u, η)](ξi − ηi) ≥ k‖ξ − η‖m;

(4) f(x, z) : Ω×R→ R satisfy the following conditions:

(4a) There exists Ω0 ⊂ Ω with mes(Ω0) = 0 such that

Df =
⋃

x6∈Ω0

{z ∈ R : f(x, .) is discontinuous at z}

has measure zero;

(4b) x→ f(x, z) is measurable for all z 6∈ Df ;

(4c) There exist k > 0 and l > 0 such that

|f(x, z)| ≤ k|z|m−1 + l for all z ∈ Dc
f , a.e.x ∈ Ω.

We consider the boundary value problem with discontinuous nonlinearity:{
ΣN

i=1
∂

∂xi
[ρ2(u) ∂u

∂xi
+ ai(x, u, ∂u

∂x )] + f(x, u) = 0, a.e.x ∈ Ω.
u(x) = 0, x ∈ ∂Ω.

(E 6.7.2)

Choose Ω1 ⊂ Ω such that mesΩ1 = 0 and (4c) holds for all x ∈ Ω1. By
(4a), there exists a countable subset D ⊂ Dc

f satisfying D = R. For all
(x, z) ∈ Ω×R, we define

F (x, z) =

{⋂
k∈N co(f(x, [z − k−1, z + k−1] ∩D)), x 6∈ Ω1,

R, otherwise.

It is known that F (x, z) is nonempty closed convex and compact for all x ∈ Ωc
1

(see [58]). Moreover, F (x, z) is measurable in x and z → F (x, z) is upper
semicontinuous for almost all x ∈ Ω.

Next, we define a mapping Ψ : W 1,m
0 (Ω) → 2Lq(Ω) by

Ψ(u) = {v ∈ Lq(Ω) : v(x) ∈ F (x, u(x)), a.e.x ∈ Ω}

for all u ∈ W 1,m
0 (Ω), where 1

m + 1
q = 1. By Chen, Cho, and Yang [58], we

know that Ψ(u) is well defined and closed convex and the following properties
hold:
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(i) un → u ∈ W 1,p
0 (Ω) and vn ∈ Ψt(un), vn ⇀ v in Lq(Ω) imply that

v ∈ Ψ(t, u);

(ii) Ψ maps bounded subsets of W 1,p
0 (Ω) to weakly relatively compact sub-

sets of Lq(Ω).

Finally, we define a mapping A : W 1,m
0 (Ω) →W−1,m by

(Au, v) =
∫

Ω

{
Σn

i=1

[
ρ2(u)

∂u

∂xi
+ ai

(
x, u,

∂u

∂x

)]∂v(x)
∂xi

}
dx

for all u ∈ D(A) and v ∈W 1,m
0 (Ω), where

D(A) =
{
u ∈W 1,m

0 (Ω) : ρ2(u)
∂u

∂x
∈ L

m
m−1

}
.

Since F (x, z) = {f(x, z)} for all x ∈ Ωc
1, z ∈ Dc

f , the equation (E 6.7.2) is
equivalent to the following equation:

0 ∈ Au+ Ψu, u ∈W 1,m
0 (Ω).

Theorem 6.7.4. A+ Ψ is a mapping of class (S+)0,L, where L = C∞0 (Ω).

Proof. Let (Fj)∞j=1 be a sequence of finite dimensional subspace ofW 1,m
0 (Ω)

such that L ⊂ ∪∞j=1Fj . Let (uj) ⊂ L satisfy

lim sup
j→∞

(gj , uj) ≤ 0, lim
j→∞

(gj , v) = 0 for all v ∈ ∪∞j=1Fj ,

where gj ∈ Auj + Ψuj . Let gj = Auj + fj , where fj ∈ Ψuj . We have

k

∫
Ω

|∂(uj − v)
∂x

|mdx

≤
N∑

i=1

∫
Ω

[ai(x, uj ,
∂uj

∂x
)− ai(x, uj ,

∂v

∂x
)](
∂uj

∂x
− ∂v

∂x
)dx

= (gj , uj − v)− (fj , uj − v)

−
N∑

i=1

∫
Ω

[ρ2(uj)
∂uj

∂x
+ ai(x, uj ,

∂v

∂x
)](
∂uj

∂x
− ∂v

∂x
)dx.

(6.7.5)

Put v(x) ≡ 0. Then, by (1) and (4c), there exists a constant M > 0 such that

lim sup
j→∞

∫
Ω

ρ2(uj)|
∂uj

∂x
|2dx ≤M. (6.7.6)

By (6.7.6), we may also assume that

lim
j→∞

∫
Ω

ρ2(uj)|
∂uj

∂x
|2dx = M1 (6.7.7)

Copyright 2006 by Taylor & Francis Group, LLC



DEGREE THEORY FOR MONOTONE-TYPE MAPS 165

by taking a subsequence, where M1 is a constant. Set

ρ̃(u) =
∫ u

0

ρ(s)ds, ũj(x) = ρ̃(uj(x)).

Then ũj ∈ W 1,2
0 (Ω). We may assume that (ũj) converges strongly in Lp(Ω),

p < 2N
N−2 , to some ũ0. Otherwise, take a subsequence. From this, we obtain

that ũj converges in measure to ũ0 and ˜ρ(u0). Consequently, we have

ũ0(x) = ˜ρ(u0)(x). (6.7.8)

By the assumption (2) and the boundedness of (ũj) in L
2N

2N−2 (Ω), we get
(ρ(uj)) is bounded in L

2N
2N−2 (Ω). Since ρ(uj) converges in measure, we obtain

ρ(uj) → ρ(u0) in L2(Ω).
Now, we can pass to the limit in (6.7.5) for all v ∈ ∪∞j=1Fj to obtain

k

∫
Ω

|∂(uj − v)
∂x

|mdx

≤ −M1 − (f0, u0 − v) + ΣN
i=1ρ

2(u0)
∂u0

∂xi

∂v

∂xi
dx

−
N∑

i=1

∫
Ω

ai(x, u0,
∂v

∂x
)
∂(u0 − v)

∂xi
dx ≤ −(f0, u0 − v)

−
N∑

i=1

∫
Ω

[ρ2(u0)
∂u0

∂xi
+ ai(x, u0,

∂v

∂x
)]
∂(u0 − v)

∂xi
dx,

(6.7.9)

where f0 ∈ Ψu0. By taking limits in (6.7.9), we know that (6.7.9) is also true
for all v ∈ W 1,q

0 (Ω) for q = 2[1 − N−2
N r]−1, where r is the same as in the

assumption (2).
Now, consider the following functional on W 1,q

0 (Ω) defined by

h(φ) = ΣN
i=1

∫
Ω

ρ2(u0)
∂u0

∂xi

∂φ

∂xi
dx. (6.7.10)

It follows from (6.7.9) that h is bounded on W 1,q
0 (Ω). Consequently, h can be

extended to a linear functional on W 1,m
0 (Ω) and we denote this extension by

h̃. Notice that the Laplace operator ∆ : W 1,m′

0 (Ω) → (W 1,m
0 (Ω))∗, m′ = m

m−1 ,

is a homeomorphism and there exists u′ ∈W 1,m′

0 (Ω) such that

h̃(φ) = ΣN
i=1

∫
Ω

∂u′

∂xi

∂φ

∂xi
dx for all φ ∈W 1,m

0 (Ω). (6.7.11)

From (6.7.10) and (6.7.11), we get

ΣN
i=1

∫
Ω

∂(u′′(x)− u′(x))
∂xi

∂φ

∂xi
dx = 0 for all φ ∈W 1,m

0 (Ω), (6.7.12)
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where u′′(x) =
∫ u0(x)

0
ρ2(s)ds. Thus u′′(x) = u′(x) and, consequently, we have

ρ2(u0)
u0(x)
∂xi

=
u′(x)
∂xi

∈ Lm′
(Ω). (6.7.13)

Therefore u0 ∈ D(A). Notice that (6.6.9) is also true for all v ∈W 1,m
0 (Ω). Put

v(x) = u0(x) + tw(x) for all t > 0 and w ∈ W 1,m
0 (Ω) in (6.7.9). Then, divide

the resulting inequality by t and pass to the limit. We obtain 0 ∈ Au0 +Ψu0.
Finally, we prove that uj → u0 ∈W 1,m

0 (Ω). We may assume that

ai(x, uj(x),
uj(x)
∂x

) ⇀ bi(x) in Lm′
(Ω).

Take u′j ∈ ∪∞j=1Fj such that u′j → u0 in W 1,m
0 (Ω). By using the assumption

(3), we have

k

∫
Ω

|
∂(uj − u′j)

∂x
|mdx

≤ ΣN
i=1

∫
Ω

[ai(x, uj ,
∂uj

∂x
)− ai(x, uj ,

∂u′j
∂x

)](
∂uj

∂x
−
∂u′j
∂x

)dx

= (gj , uj)−
∫

Ω

ρ2(uj)|
∂uj

∂x
|2dx− (fj , uj)

− ΣN
i=1

∫
Ω

ai(x, uj ,
∂uj

∂x
)
∂u′j
∂x

dx

− ΣN
i=1

∫
Ω

ai(x, uj ,
∂u′j
∂x

)
∂(uj − u′j)

∂x
dx.

(6.7.14)

By letting j →∞ in (6.7.14), we get

k

∫
Ω

|
∂(uj − u′j)

∂x
|mdx

≤ −(f0, u0)−
∫

Ω

ρ2(u0)|
∂u0

∂x
|2dx− ΣN

i=1

∫
Ω

hi(x)
∂u0(x)
∂xi

dx.

(6.7.15)

Now, using the fact limj→∞(Auj + fj , v) = 0 for all v ∈ ∪∞j=1Fj , we obtain

(f0, v) + ΣN
i=1

∫
Ω

[ρ2(u0)
∂u0(x)
∂xi

+ hi(x)]
∂v(x)
∂xi

dx = 0 (6.7.16)

for all v ∈ ∪∞j=1Fj . From (6.7.16) and (6.7.15), it follows that uj → u0 ∈
W 1,m

0 (Ω). This completes the proof.

From Theorem 6.7.4, we know that, if for some open bounded subset U ⊂
W 1,m

0 (Ω) and 0 /∈ Au+Ψu for all u ∈ ∂U∩D(A), then deg(A+Ψ, U∩D(A), 0)
is well defined.
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Corollary 6.7.5. If deg(A + Ψ, U ∩ D(A), 0) 6= 0, then the problem (E
6.7.2) has a solution.

Remark. Some results on degree theory in this chapter can also be given
in locally convex space.

6.8 Exercises

1. Let A : D(A) ⊆ E → 2E∗
be a set-valued mapping of class (S+) and

P : E → 2E∗
be a bounded pseudomonotone mapping. Show that P+A

is a mapping of class (S+).

2. Let A : D(A) ⊆ E → 2E∗
be a multi-valued mapping of class (S+),

T : D(A) → 2E∗
be an upper semicontinuous operator with closed

convex values and T maps each bounded subset of D(A) into a relatively
compact subset of E∗. Show that T + A is a multi-valued mapping of
class (S+).

3. Let A : D(A) ⊆ E → 2E∗
be a multi-valued mapping of class (S+) and

M : D(M) ⊆ E → 2E∗
be a maximal monotone operator. Show that

Mλ +A is a multi-valued mapping of class (S+).

4. Let M : D(M) ⊆ E → 2E∗
be a maximal monotone operator and

P : E → 2E∗
be a bounded pseudomonotone mapping. Suppose that

lim
‖x‖→∞

(g, x− x0)
‖x‖

= +∞ for some x0 ∈ D(M) and all g ∈ Px.

Show that (M + P )(D(M)) = E∗.

5. Let φ : D(φ) ⊆ E → R = R ∪ {+∞} be a proper lower semicontinuous
convex function and

∂φ(x) = {f ∈ E∗ : φ(y) ≥ φ(x) + f(y − x) for all y ∈ D(φ)}.

Show that ∂φ is maximal monotone.

6. Let φ : D(φ) ⊆ E → R = R ∪ {+∞} be a proper lower semicontinuous
convex function and

φλ(x) = inf
y∈D(φ)

(
1
2λ
‖x− y‖2 + φ(y)).

Show that (∂φ)λ = ∂φλ and φλ(x) → φ(x).
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7. Let φ : D(φ) ⊆ E → R = R ∪ {+∞} be a proper lower semicontinuous
convex function. Show that ∂φ is surjective and (∂φ)−1 is bounded if
and only if lim‖x‖→∞

φ(x)
‖x‖ = +∞.

8. Let M : D(M) ⊆ E → 2E∗
be a linear monotone operator. Show that

M is single valued if D(M)) = E, and M is maximal monotone if and
only if Graph(M) is closed and M∗ is monotone.

9. Let M : D(M) ⊆ E → 2E∗
be a maximal monotone mapping. Show

that M is surjective if and only if M−1 is locally bounded.

10. Construct the degree theory for a bounded pseudomonotone mapping.

11. Construct the degree theory for a bounded generalized pseudomonotone
mapping.

12. Construct the degree theory for the sum of a bounded pseudomontone
mapping and a maximal monotone mapping.

13. Construct the degree theory for the sum of a bounded generalized pseudo-

monotone mapping and a maximal monotone mapping.

14. Construct the degree theory for the sum of a maximal monotone map-
ping and an upper semicontinuous compact mapping with closed convex
values.

15. Let H be a real Hilbert space and L : D(L) ⊆ H → H be a linear, one
to one maximal monotone mapping. Compute deg(L,D(L)∩B(0, r), 0)
for all r > 0.

16. Let H be a real Hilbert space, L : D(L) = H → H be a linear one-to-
one maximal monotone mapping and φ : D(φ) ⊆ H → R be a proper
lower semicontinuous convex function such that φ(0) = 0 ≤ φ(x) for all
x ∈ D(φ). Compute deg(L+ ∂φ,B(0, r), 0) for all r > 0.
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Chapter 7

FIXED POINT INDEX THEORY

The study of non-negative solutions to the nonlinear equations, especially
the ordinary or partial differential equations and integral equations, is a very
important problem in nonlinear functional analysis. The non-negativity con-
dition can be described by a closed convex subset P in a Banach space which
satisfies λP ⊂ P for all λ ≥ 0 and P ∩−P = {0}. We are interested in solving
the equation Tx = y in P . The fixed point index theory has proved to be a
useful tool in studying such an equation.

It is our goal to introduce this theory in this chapter. Chapter 7 has six
main sections.

Some introductory material on cones (normal, minihedral, etc.) is presented
in Section 7.1.

In Section 7.2, we present a fixed point index for countably condensing
mappings based on Dugundji’s extension theorem and the Leray Schauder
degree. Various properties of this index are given in Theorem 7.2.2.

Section 7.3 presents a variety of fixed point theorems for mappings defined
in cones of Banach spaces (see, in particular, theorems 7.3.1, 7.3.3, 7.3.7, and
7.3.13).

The results in Section 7.3 are used in Section 7.4 to prove various fixed
point results for perturbations of condensing maps (see Theorem 7.4.1 and
7.4.3).

In Section 7.5, we present a fixed point index for continuous generalized
inward mappings.

Finally, some applications to integral and differential equations are given in
Section 7.6.

7.1 Cone in Normed Spaces

We begin this section by first introducing the concept of partial order.

Definition 7.1.1. LetX be a nonempty set. There is an equivalent relation
≤ such that

(1) If x ≤ y, y ≤ z for some x, y, z ∈ X, then x ≤ z;
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(2) x ≤ x for all x ∈ X;

(3) If x ≤ y and y ≤ x for some x, y ∈ X, then x = y.

Then ≤ is said to be a partial order on X and (X,≤) is said to be a partially
ordered set.

Let (X,≤) be a partially ordered set and M ⊂ X. For any x, y ∈ M , if
x ≤ y or y ≤ x holds, then we say M is a well-ordered set. If x∗ ∈ X satisfies
y ≤ x∗ (respectively, x∗ ≤ y) for all y ∈ D, then x∗ is said to be an upper
bound (respectively, lower bound) of M . If x0 ∈ X satisfies x0 ≤ y for some
y ∈ X and y = x0, then x0 is said to be a maximal element of X. Similarly,
if x0 ≥ y for some y ∈ X and x0 = y, then x0 is said to be a minimal element
of X.

Theorem 7.1.2. (Zorn Lemma) If every well-ordered set in X has an
upper bound (lower bound), then X has a maximal element (minimal ele-
ment).

A cone is a very useful concept that can be used to generate a partial order
in a linear space. Usually, this method is easy to manipulate and has been
widely used in searching for positive solutions of nonlinear equations (see [8],
[176]). Now, we recall this concept as follows:

Definition 7.1.3. Let E be a linear vector space and P be a nonempty
convex subset of E. Then P is called a cone if

(1) λx ∈ P for all x ∈ P and λ > 0;

(2) P ∩ (−P ) = {0}.

If E is a linear space and P ⊂ E is a cone, we define an order ≤ on E as
follows:

x ≤ y if and only if y − x ∈ P.

Note that ≤ is a well-defined partial order on X.

Example 7.1.4. Let P ⊂ Rn be given by P = {(x1, x2, · · · , xn) ∈ Rn :
xi ≥ 0, i = 1, 2, · · · , n}. Then P is a cone.

Example 7.1.5. Let Ω be a nonempty Lebesgue measurable set in Rn and
0 < m(Ω) < ∞. Suppose that Lp(Ω) = {f(·) : Ω → R is measurable and∫
Ω
|f(x)|pdx <∞}, where 0 < p < 1. Put

P = {f ∈ Lp(Ω) : f(x) ≥ 0 for almost everywhere x ∈ Ω}.

Then P is a cone in Lp(Ω).

The following well-known order principle is due to Brezis and Browder [30]:
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Theorem 7.1.6. Let (X,≤) be a partially ordered set and S(x) = {y ∈
X : x ≤ y}. Suppose that ψ : X → R is a function satisfying the following
conditions:

(1) For x ≤ y with x 6= y, ψ(x) ≤ ψ(y);

(2) For x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · , if {ψ(xn)} bounded, then there exists
y ∈ X such that xn ≤ y;

(3) ψ(S(x)) is bounded for all x ∈ X.

Then, for all x ∈ X, there exists z ∈ S(x) such that z is maximal in X.

Proof. For each x ∈ X, we prove that supS(x) exists and it belongs to
S(x). To see this, let F ⊂ S(x) be a well-ordered set. Set α = supx∈F φ(x).
Then there exists a sequence (yn) ⊂ F such that φ(y1) ≤ φ(y2) ≤ · · · → α.
By the assumption (1), we must have y1 ≤ y2 ≤ y3 ≤ · · · . By assumption
(2), there exists y ∈ X such that yn ≤ y. Notice that x ≤ yn, so we have
x ≤ y. Thus y ∈ S(x) and φ(y) ≥ α, so y ≥ z for all z ∈ F . Therefore, y is
an upper bound of F in S(x). By the Zorn Lemma, supS(x) exists in S(x).
Assume that z ∈ X such that supS(x) ≤ z. Then z ∈ S(x), so we must have
z = supS(x). Thus supS(x) is a maximal element. This completes the proof.

Definition 7.1.7. Let X be a normed space, P ⊂ X be a cone and ≤ be
the partial ordering defined by P . Then

(1) P is said to be normal if inf{x+ y‖ : x, y ∈ P, ‖x‖ = ‖y‖ = 1} > 0;

(2) P is said to be quasinormal if there exist y ∈ P with y 6= 0 and σ(y) > 0
such that ‖x+ y‖ ≥ σ(y)‖x‖ for any x ∈ P .

We set σ(y) = inf{‖x+y‖
‖x‖ : x ∈ P, x 6= 0} for y ∈ P with y 6= 0 and define

σ = sup{σ(y) : y ∈ P, y 6= 0}, which is called the quasinormality of P . Then
we have 1

2 ≤ σ ≤ 1 (see [180], [246]).

Let P ⊂ E be a cone and D ⊂ E be a nonempty set. If y, z ∈ E satisfies
the following:

(i) x ≤ y for all x ∈ D;

(ii) x ≤ z for all x ∈ D and so y ≤ z;

then y is said to be an supremum of D and we denote it by supD.
Similarly, if (i) x ≥ y for all x ∈ D, (ii) x ≥ z for all x ∈ D and so y ≥ z,

then y is said to an infimum of D and we denote it by infD.

Definition 7.1.8. Let X be a normed space, P ⊂ X be a cone and ≤ be
the partial ordering defined by P . Then

(1) P is said to be reproducing if P − P = X and total if P − P = X;
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(2) P is said to be regular if every increasing sequence which is bounded
from above is already convergent, and is fully regular if every bounded
increasing sequence is convergent;

(3) P is said to be lastering if there exist a cone P1 and a constant α > 0
such that B(x, α‖x‖) ⊂ P1 for all x ∈ P \ {0};

(4) P is said to be minihedral if sup{x, y} exists for all x, y ∈ X and strongly
minihedral if every set which is bounded from above has a supremum.

Definition 7.1.9. Let X be a normed space, P ⊂ X be a cone and ≤ be
the partial ordering defined by P . Then

(1) The norm ‖ · ‖ is said to be monotonic if 0 ≤ x ≤ y implies that
‖x‖ ≤ ‖y‖;

(2) The norm ‖ · ‖ is said to be semimonotonic if 0 ≤ x ≤ y implies that
‖x‖ ≤ α‖y‖ for some α > 0.

Proposition 7.1.10. Let X be a Banach space and P ⊂ X be a cone.
Then we have

(1) P is quasinormal;

(2) P is normal if and only if ‖ · ‖ is semimonotonic;

(3) If P 0 6= ∅, then P is reproducing.

Proof. (1) Suppose that P is not quasinormal. Then, for any y ∈ P with
‖y‖ = 1, there exist xn ∈ P such that

‖xn + y‖ < n−1‖xn‖ for n = 1, 2, · · · .

Therefore, if ‖xn‖ is bounded, then xn +y → 0, i.e., xn → −y ∈ P , which is a
contradiction. If ‖xn‖ is unbounded, then ‖xn‖−1xn → 0, which is impossible.
Therefore, P is quasinormal.

(2) If ‖ · ‖ is semimonotonic, then, for any x, y ∈ P with ‖x‖ = ‖y‖ = 1,
we have ‖x+ y‖ ≥ α−1‖y‖ = α−1, and so P is normal. On the other hand, if
P is normal and ‖ · ‖ is not semimonotonic, then there exist xn and yn such
that 0 < xn ≤ yn and ‖xn‖ > n‖yn‖ for n = 1, 2, · · · . Put

vn = ‖xn‖−1xn, wn = ‖yn‖−1yn, zn = ‖n−1wn − vn‖−1(n−1wn − vn).

Then we have zn ∈ P and ‖vn + zn‖ → 0 as n → ∞, i.e., P is not normal,
which is a contradiction.

(3) Take x0 ∈ P 0 and r > 0 such that B(x0, 2r) ⊂ P . For any x ∈ X with
x 6= 0, we have x0 + r‖x‖−1x ∈ P . Moreover,

x = ‖x‖r−1(x0 + r‖x‖−1x)− ‖x‖r−1x0 ∈ P − P,
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thus P is reproducing. This completes the proof.

By Proposition 7.1.10, if P is normal, then we set

σ(P ) = min{N : if 0 ≤ x ≤ y, then ‖x‖ ≤ N‖y‖},

which is called the normality of P .

The following result gives a relation between various cones:

Proposition 7.1.11. Let X be a Banach space and P ⊂ X be a cone.
Then we have the implications: P allows plastering ⇒ P is fully regular ⇒
P is regular ⇒ P is normal.

Proof. (1) Assume that P1 is a plastering cone of P . Take x0 /∈ P1; then
there exists r0 > 0 such that B(x0, r0) ∩ P1 = ∅. By Mazur’s separation
theorem for convex sets, there exist f ∈ X∗ and β ∈ R such that f(y) ≥ β for
all y ∈ P1 and f(y) < β for all y ∈ B(x0, r0). This and λx ∈ P1 for all λ > 0
and x ∈ P1 imply that f(y) > 0 for all y ∈ P1. But B(x, α‖x‖) ⊂ P1 for all
x ∈ P , so we have f(x) ≥ α‖x‖‖f‖.

Assume that x1 ≤ x2 ≤ · · · ≤ xn · · · and (xn)∞n=1 is bounded. Then we
have

f(xn+m − xn) ≥ α‖xn+m − xn‖‖f‖.

Thus (xn)∞n=1 is a Cauchy sequence and, consequently, (xn)∞n=1 is convergent.
(2) To show that P is fully regular implies that P is regular, we first show

that P is fully regular implies that P is normal. Assuming this is false, there
exist xn, yn ∈ P ∩ ∂B(0, 1) such that ‖xn + yn‖ ≤ 1

2n for n = 1, 2, · · · . Put

z2n = Σ2n
i=1(xi + yi), z2n+1 = z2n + x2n+1,

then (zn) is increasing and bounded, so (zn) is convergent, which contradicts
‖z2n+1 − z2n‖ = 1.

Now, suppose that x1 ≤ x2 ≤ · · · ≤ xn ≤ y. Then y−xn ≤ y−x1 for n > 1,
so we have ‖y − xn‖ ≤ α‖y − x1‖ for some α > 0. Thus (xn) is convergent.

(3) Assume that P is regular, but P is not normal. Then there exist xn, yn ∈
P ∩ ∂B(0, 1) such that ‖xn + yn‖ ≤ 1

2n for n = 1, 2, · · · . Then we have

zn = Σn
i=1xi ≤ Σ∞i=1(xi + yi) ∈ P

and (zn) is increasing, so (zn) is convergent, which contradicts ‖zn− zn−1‖ =
‖xn‖ = 1. Thus P is regular ⇒ P is normal. This completes the proof.

Proposition. 7.1.12. Let X be a normed space and P ⊂ E be a regular
cone. Then we have the following:

(1) If D ⊂ E is a well-ordered set and has an upper bound, then supD
exists.

(2) If D ⊂ E is a well-ordered set and has a lower bound, then infD exists.
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Proof. (2) follows from (1) by replacing D by −D.
Now, we prove (1). By Proposition 7.1.11, E is normal. Let x0 be an upper

bound of D. Define a function φ : D → [0,+∞) as follows:

φ(x) = sup{‖z − y‖ : x ≤ y ≤ z, y, z ∈ D}.

Note that z−y ≤ x0−x and we have φ(x) ≤ σ(P )‖x0−x‖. Obviously, if x ≤ y,
then φ(x) ≥ φ(y). We claim that infx∈D φ(x) = 0. If not, infx∈D φ(x) = δ >
0, there exists x1 ∈ D such that φ(x1) > δ, so there are x1 ≤ y1 ≤ z1 such
that ‖z1 − y1‖ > δ. Again, since φ(z1) > δ, there are z1 ≤ y2 ≤ z2 such that
‖z2 − y2‖ > δ. Repeat the above process, we get a sequence (yn) in D such
that

y1 ≤ z1 ≤ y2 ≤ z2 ≤ · · · ≤ x0

with ‖zi − yi‖ > δ for i = 1, 2, · · · , so it does not converge, which contradicts
the fact that P is regular. Thus there exist (xn)∞n=1 ⊂ D such that φ(xn) → 0.
Since D is well ordered, put yn = max{x1, x2, · · · , xn}. Then y1 ≤ y2 ≤ · · · ≤
x0 and so φ(yn) → 0. Since P is regular, there exists y0 ∈ E such that
yn → y0. It is easy to see that y0 = sup{yi : i = 1, 2, · · · }.

Next, we prove that y0 = supD. To see this, we only need to prove that y0
is an upper bound of D. For any x ∈ D, we have two cases: (1) x ≤ yn for
some n and (2) yn ≤ x.

In case (1), we have x ≤ y0.
In case (2), we have y0 ≤ x and 0 ≤ x− y0 ≤ x− yn and thus

‖x− y0‖ ≤ N‖yn − x‖ ≤ Nφ(yn) → 0 as n→∞.

Thus x = y0. Combine (1) and (2), then we have x ≤ y0, so y0 is an upper
bound of D. Thus y0 = supD. This completes the proof.

Proposition 7.1.13. Let P ⊂ E be a cone. If P is regular and minihedral,
then P is strongly minihedral.

Proof. Let D ⊂ E and D has an upper bound x0. Set

U = {x : x is an upper bound of D},

then x0 ∈ U . Consider any well-ordered set F of U . Obviously, any element
in D is a lower bound for F . By Proposition 7.1.12, we know that f = inf F
exists and x ≤ f for all x ∈ D, and thus f ∈ U . By the Zorn Lemma, U has
a minimal element x∗.

Now, we prove that x∗ = supD. To see this, we only need to prove x∗ ≤ y
for all y ∈ U . For any y ∈ U , put z = inf{x∗, y}. We have z ≤ x∗, z ≤ y, but
x ≤ x∗, x ≤ y. Thus we must have x ≤ z and so z ∈ U . Since x∗ is minimal,
we must have z = x∗ and hence x∗ ≤ y, as desired. This completes the proof.

Example 7.1.14. Let E = l∞ and P = {(xi) ∈ l∞ : xi ≥ 0, i = 1, 2, · · · }.
Then P is normal. For any set D with a upper bound, it is easy to see
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that supD = z = (z1, z2, · · · ), where zi = supx∈D x(i) and x(i) is the i-th
coordinate of x for i = 1, 2 · · · . Thus, P is strongly minihedral. For any
integer n ≥ 1, let xn ∈ l∞ be defined by

xn(i) =

{
1, if i ≤ n,

0, if i > n.

Then x1 ≤ x2 ≤ · · · ≤ (1, 1, 1, · · · , 1, · · · ). However, (xn) does not converge
in l∞. Thus, P is not regular.

Proposition 7.1.15. Let E be a Banach space, P ⊂ E be a cone and
B = {x : ‖x‖ ≤ 1}. The the following conclusions are equivalent:

(1) P is reproducing;

(2) There exists r > 0 such that, for any x ∈ E, there exist y, z ∈ P with
‖y‖ ≤ r‖x‖, ‖z‖ ≤ r‖x‖ and x = y − z;

(3) There exists α > 0 such that αB ⊂ B ∩ P −B ∩ P ;

(4) There exists β > 0 such that βB ⊂ B ⊂ B ∩ P −B ∩ P .

Proof. It is obvious that (2) is equivalent to (3), (2) implies (1), and (3)
implies (4), so we only need to prove (1) implies (2) and (4) implies (3).

(1) ⇒ (2) Since P is reproducing, we have E = ∪∞n=1En, where

En = {x ∈ E : there exists y ∈ P such that x ≤ y, ‖y‖ ≤ n‖x‖}

for n = 1, 2, · · · . By Baire’s Theorem, there exist an integer n0 > 0, x0 ∈ E,
r > s > 0 such that

T = {x ∈ E : s < ‖x− x0‖ < r} ⊂ En0 .

Let y0, z0 ∈ P be such that −x0 = y0 − z0. Take an integer n1 > 0 such that
‖y0‖ ≤ n1‖x0‖. Set T0 = {x ∈ E : s ≤ ‖x‖ < r}. Take an integer n2 such
that

n2 > n0 +
1
s
(n0 + n1)‖x0‖.

We prove that T0 ⊂ En3 . In fact, for any x ∈ T0, we have y + x0 + x ∈ T ,
so there exist xi ∈ En0 , i = 1, 2, · · · , such that xi → y. We also assume
that xi ∈ T . There exist yi ∈ P such that xi ≤ yi and ‖yi‖ ≤ n0‖xi‖ for
i = 1, 2, · · · . We also have xi − x0 ≤ yi + y0 ∈ P and

‖yi − y0‖ ≤ n0‖xi‖+ n1‖x0‖ ≤ (n0 + n1)‖x0‖+ n0‖xi − x0‖

≤ [(n0 + n1)
‖x0‖
s

+ n0]‖xi − x0‖ ≤ n2‖xi − x0‖.
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Therefore, xi − x0 ∈ En2 for i = 1, 2, · · · . Obviously, xi − x0 → y− x0 = x as
i→∞, so x ∈ En2 .

Finally, we prove that E = E3n2 . For any x ∈ E \ {0}, take x1 ∈ En2 such
that

‖x− x1‖ <
1
2
‖x‖.

There exist y1 ∈ P such that x1 ≤ y1 and ‖y1‖ ≤ n2‖x1‖. Similarly, there
exist x2 ∈ En3 and y2 ∈ P such that

‖x− x1 − x2‖ <
1
22
‖x‖, x2 ≤ y2, ‖y2‖ ≤ n2‖x2‖.

Repeating this process, we get two sequences (xk)∞k=1 ⊂ En2 , (yk)∞k=1 ∈ P
such that

‖x− x1 − x2 − · · · − xk‖ <
1
2k
‖x‖, xk ≤ yk, ‖yk‖ ≤ n2‖xk‖

for k = 1, 2, · · · . Obviously, x = Σ∞i=1xi and ‖xk‖ < 3‖x‖
2k for k = 1, 2, · · · .

Thus, Σ∞i=1‖yi‖ ≤ 3n2‖x‖. Put y = Σ∞i=1yi; then x ≤ y and ‖y‖ ≤ 3n2‖x‖.
Thus, x ∈ E3n2 .

(4)⇒ (3) Set C = B∩P−B∩P . Let β > 0 be such that βB ⊂ C. We prove
that β

2B ⊂ C. For any y ∈ β
2B, there exists 2y1 ∈ C such that ‖2y−2y1‖ < β

2 .
Again, there exists 22y2 ∈ C such that ‖22y − 22y1 − 22y2‖ < β

2 . Repeat this
process, we get a sequence (yn)∞n=1 ⊂ E such that 2nyn ∈ C and

‖y − y1 − y2 − · · · − yn‖ <
β

2n+1
for n = 1, 2, · · · .

Thus, we have

y = σ∞i=1yi, yn = xn − zn, xn, zn ∈ P, ‖xn‖ ≤
1
2n
, ‖zn‖ ≤

1
2n

for n = 1, 2, · · · . Put x = Σ∞i=1xi, z = Σ∞i=1zi. Then x, z ∈ P , ‖x|| ≤ 1,
‖z‖ ≤ 1 and x ∈ C. Thus, β

2B ⊂ C. This completes the proof.

7.2 Fixed Point Index Theory

In this section, let E be a Banach space and P ⊂ E be a cone.

Lemma 7.2.1. [291] Let B ⊂ P be a bounded closed subset and T :
B → P a countably condensing mapping. Set C1 = conv(TB), Cn+1 =
conv(T (Cn ∩B)) for n ≥ 1 and C = ∩∞n=1Cn. If M ⊂ E and M \Cn is finite
for n = 1, 2, · · · , then M is relatively compact. In particular, C is compact.
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Proof. Let F be the family of all subsets M such that M \ Cn is finite
for n = 1, 2, · · · and FB be the family of all countable subsets M ∈ F with
M ⊂ B.

Step 1 We prove that there exists B∗ ∈ FB such that α(K) ≤ α(B∗)
for all K ∈ FB . In fact, since α(K) ≤ α(B) for all K ∈ FB , we have
s = supK∈FB

α(K) < +∞, and let Kn ∈ FB such that α(Kn) → s as n→∞.
Put B∗ = ∪∞n=1Kn, then B∗ is countable and α(B∗) = s ≥ α(K) for all
K ∈ FB .

Step 2 If M ∈ F , and xn ∈M for n = 1, 2, · · · and no xn appears infinitely
many times, then there exist A ∈ FB and yn ∈ conv(TA) such that ‖xn −
yn‖ → 0 as n→∞. To see this, observe that M \C1 is finite and it contains
at most finitely many xn, and so we may assume that xn ∈ C1 for all n ≥ 1.
For any given integer n, let kn be the largest integer such that xn ∈ Ckn . If
no such integer exists, put kn = n. For any integer k, M \ Ck is finite, thus
{n : xn /∈ Ck} is finite. One can easily see that

Ik = {n : kn ≤ k} ⊂ Ik+1 ∪ {1, 2, · · · , k}

by virtue of C1 ⊃ C2 ⊃ · · · and thus Ik is finite for all k. We have

xn ∈ Ckn = conv(T (Ckn−1 ∩B)) for any n.

Hence there exists yn ∈ conv((T (Ckn−1 ∩B)) such that ‖xn − yn‖ < n−1. In
particular, we can find some finite An ⊂ Ckn−1∩B such that yn ∈ conv(TAn).

Now, if we put A = ∪∞n=1An, then A is the required subset. To see this,
we have to check that A ∈ FB . Since C1 ⊃ C2 ⊃ · · · , we have An ⊂ Ci for
i ≤ kn − 1, and thus we have

A \ Cn = ∪∞i=1(Ai \ Cn) = ∪i;n>ki−1(Ai \ Cn) ⊂ ∪i∈In
Ai,

but the last set is finite, so we get the desired result.
Step 3 We prove that any K ∈ FB is finite. For any K ∈ FB , if K is finite,

we are done. So we assume that K is infinite. Replace K by K ∪B∗, we get
α(K) = s. The countability of K implies that K = {xn : n ≥ 1}.

By Step 2, there exist A ∈ FB and yn ∈ conv(TA) such that ‖xn−yn‖ → 0
as n→∞. Obviously, K ∪A ∈ FB and thus α(A ∪K) = α(K) = s. Put

Kn = {x1, x2, · · · , xn, yn+1, yn+2}, K0 = {y1, y2, · · · }.

We have α(K0) = α(K) = s. On the other hand,

s = α(K0) ≤ α(conv(TA)) ≤ α(T (A ∪K)).

But T is countably compact, so we must have s = 0. Consequently, K is
relatively compact.
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Step 4 We prove that any F ∈ F is relatively compact. For any sequence
(xn) ⊂ F , if xn appears infinitely many times for some n, we are done already.
Otherwise, by Step 2, we may take yn and A as in Step 2. By Step 3, A is
relatively compact, so conv(T (A) is relatively compact. Thus {yi : i ≥ 1} is
relatively compact and so F is relatively compact. This completes the proof.

Construction of Index Theory. Let Ω ⊂ E be an open bounded subset
and Ω∩P 6= ∅. Let T : Ω∩P → P be a countably condensing and continuous
mapping. Put

C0 = conv(T (Ω ∩ P )), Cn = conv(T (Cn−1 ∩ Ω) for n ≥ 1,

then, by Lemma 7.2.1, C = ∩∞n=1Cn is compact and T : C → C is a mapping.
Now, assume also that Tx 6= x for all x ∈ ∂Ω∩P . Then we have the following
two cases:

Case (1) If C = ∅, we define ind(T,Ω ∩ P ) = 0.
Case (2) If C 6= ∅ and r : E → C is a retraction, then r−1(Ω ∩ C) is open

in E. It is easy to see that Trx 6= x for all x ∈ ∂(Ω∩ r−1(Ω)) and a mapping
Tr : Ω ∩ r−1(Ω) → C, so the Leray Schauder degree deg(I−Tr,Ω∩r−1(Ω), 0)
is well defined. We define

ind(T,Ω ∩ P ) = deg(I − Tr,Ω ∩ r−1(Ω), 0),

which is called the fixed point index of T .
A slight modification of the argument in Section 2 of Chapter 3 guarantees

that deg(I −Tr,Ω∩ r−1(Ω), 0) does not depend on r, so ind(T,Ω∩P ) is well
defined.

Theorem 7.2.2. The fixed point index ind(T,Ω∩P ) satisfying the follow-
ing properties:

(1) ind(x0,Ω ∩ P ) = 1 if x0 ∈ Ω ∩ P ;

(2) If ind(T,Ω ∩ P ) 6= 0, then x = Tx has a solution in Ω;

(3) If Ωi ⊂ Ω for i = 1, 2, Ω1 ∩Ω2 = ∅ and 0 /∈ (I − T )[(Ω \ (Ω1 ∪Ω2))∩P ],
then

ind(T,Ω ∩ P ) = ind(T,Ω1 ∩ P ) + ind(T,Ω2 ∩ P );

(4) If H(t, x) : [0, 1] × Ω ∩ P → P is a continuous mapping satisfying
α(H([0, 1]×B)) < α(B) for any countable subset B of Ω∩P with α(B) 6=
0 and x 6= H(t, x) for all (t, x) ∈ [0, 1] × ∂Ω, then ind(H(t, ·),Ω ∩ P )
does not depend on t ∈ [0, 1].

Proof. It is similar to the proof of Theorem 3.2.1.
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Note that, in the case that T : Ω ∩ P → P is continuous and compact and
x 6= Tx for all x ∈ ∂Ω ∩ P , one can define the fixed point index by

ind(T,Ω ∩ P ) = deg(I − Tr, r−1(Ω ∩ P ) ∩ Ω, 0),

where r : E → P is a retraction. One can check easily this definition does not
depend on r and we have the following properties:

Theorem 7.2.3. The fixed point index ind(T,Ω∩P ) satisfies the following
properties:

(1) ind(x0,Ω ∩ P ) = 1 if x0 ∈ Ω ∩ P ;

(2) If ind(T,Ω ∩ P ) 6= 0, then x = Tx has a solution in Ω;

(3) If Ωi ⊂ Ω for i = 1, 2, Ω1 ∩Ω2 = ∅ and 0 /∈ (I − T )[(Ω \ (Ω1 ∪Ω2))∩P ],
then

ind(T,Ω ∩ P ) = ind(T,Ω1 ∩ P ) + ind(T,Ω2 ∩ P );

(4) If H(t, x) : [0, 1] × Ω ∩ P → P is a continuous compact such that x 6=
H(t, x) for all (t, x) ∈ [0, 1] × ∂Ω, then ind(H(t, ·),Ω ∩ P ) does not
depend on t ∈ [0, 1].

7.3 Fixed Point Theorems in Cones

In this section, we derive some fixed point theorems by using fixed point
index theory.

Theorem 7.3.1. Let E be a Banach space, P be a cone in E, Ω be
an open bounded subset of E, 0 ∈ Ω1 ⊂ Ω be an open subset of Ω, and
T : Ω \ Ω1 ∩ P → P be a completely continuous mapping. Suppose that one
of the following conditions is satisfied:

(1) Tx ≥ x for all x ∈ ∂Ω ∩ P and Tx ≤ x for all x ∈ ∂Ω1 ∩ P ;

(2) Tx ≥ x for all x ∈ ∂Ω1 ∩ P and Tx ≤ x for all x ∈ ∂Ω ∩ P .

Then T has a fixed point in Ω \ Ω1 ∩ P .

To prove Theorem 7.3.1, we first prove the following result:

Lemma 7.3.2. Suppose that C ⊂ P is a compact set such that 0 6∈ C.
Then 0 6∈ Conv(C).

Proof. Since 0 /∈ C and C is compact, there exists ε0 > 0 such that

d(0, C) ≥ ε0.
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We also have C ⊂ ∪x∈CBx(ε0), so there exist finitely many xi for i =
1, 2, · · · , n such that

C ⊂ ∪n
i=1Bxi

(ε0).

Therefore, it follows that

Conv(C) = Conv(∪n
i=1Bxi

(ε0) ∩ C).

If 0 ∈ Conv(C), then there exists yi ∈ Bxi
(ε0) ∩ C, αi ∈ (0, 1) for i =

1, 2, · · · , n and Σn
i=1αi = 1 such that

0 = Σn
i=1αiyi,

which contradicts yi > 0 for i = 1, 2, · · · , n. This completes the proof.

Proof of Theorem 7.3.1. We may assume that (1) holds (the proof is
similar when (2) holds). By our assumption, we have 0 6∈ T (∂Ω ∩ P ). In view
of Lemma 7.3.2, it follows that

0 6∈ Conv(T∂Ω ∩ P )).

Hence, we can find a completely continuous mapping T1 : E → conv(T∂Ω ∩ P ))
such that T1x = Tx for all x ∈ ∂Ω ∩ P .

Now, for any k > 1, we have tTx + (1 − t)kT1x 6= x for all (t, x) ∈ [0, 1] ×
∂Ω ∩ P , and so by Theorem 7.2.3

ind(kT1,Ω ∩ P ) = ind(T,Ω ∩ P ) for all k > 1.

Therefore, ind(T,Ω ∩ P ) must equal to 0 (otherwise, Ω is unbounded, which
is a contradiction). It is easy to see that ind(T,Ω1 ∩ P ) = 1, and so we have

ind(T,Ω \ Ω1 ∩ P ) = 1.

Therefore, T has a fixed point in Ω \ Ω1 ∩ P . This completes the proof.

By the same proof as in Theorem 7.3.1, we get the following more general
result:

Theorem 7.3.3. Let P be a cone in a Banach space E, Ω be an open
bounded subset of E, Ω1 ⊂ Ω be an open subset of Ω with 0 ∈ Ω1, and
T : Ω \ Ω1 ∩ P → P be a completely continuous mapping. Suppose that one
of the following conditions is satisfied:

(1) Tx 6= λx for all λ > 1 and x ∈ ∂Ω ∩ P ;

(2) Tx 6= αx for all x ∈ ∂Ω1 ∩ P and α < 1;

(3) inf{‖Tx‖ : x ∈ ∂Ω1 ∩ P} > 0.
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Then T has a fixed point in Ω \ Ω1 ∩ P .

From Theorem 7.3.3, we have the following:

Corollary 7.3.4. Let P be a cone in a Banach space E, Ω be an open
bounded subset of E, Ω1 ⊂ Ω be an open subset of Ω with 0 ∈ Ω1 and
T : Ω \ Ω1 ∩ P → P be a completely continuous mapping. Suppose that one
of the following conditions is satisfied:

(1) ‖Tx‖ ≤ ‖x‖ for all x ∈ ∂Ω ∩ P ;

(2) ‖Tx‖ ≥ ‖x‖ for all x ∈ ∂Ω1 ∩ P .

Then T has a fixed point in Ω \ Ω1 ∩ P .

Another variant form of Theorem 7.3.3 is as follows:

Theorem 7.3.5. Let P be a cone in a Banach space E, Ω be an open
bounded subset of E, Ω1 ⊂ Ω be an open subset of Ω with 0 ∈ Ω1 and
T : Ω \ Ω1 ∩ P → P be a completely continuous mapping. Suppose that one
of the following conditions is satisfied:

(1) Tx 6≥ x for all x ∈ ∂Ω ∩ P ;

(2) Tx 6≤ x for all x ∈ ∂Ω1 ∩ P ;

(3) inf{‖Tx‖ : x ∈ ∂Ω1 ∩ P} > 0.

Then T has a fixed point in Ω \ Ω1 ∩ P .

Theorem 7.3.3 fails if we assume that T is a k-set contraction with k < 1.
This can be seen with the following example:

Example 7.3.6. Let a mapping T : l2 → l2 be defined by

T (x1, x2, · · · ) =
1
3
(0, x1, x2, · · · ) for all (x1, x2, · · · ) ∈ l2.

Now, T is obviously 1
3 -set contraction. Take P = {(xi) : xi ≥ 0 for i =

1, 2, · · · } and Ω = B(0, 2), Ω1 = B(0, 1). Then T has no fixed point in
Ω \ Ω1 ∩ P .

In the following, we provide sufficient conditions such that the conclusion
of Theorem 7.3.3 still holds in the case of k-set contractions.

Theorem 7.3.7. Let X be a real Banach space,Ω be an open bounded
subset of X with 0 ∈ Ω and P a quasinormal cone in X. If T : Ω ∩ P → P
is a continuous countably condensing mapping and the following condition is
satisfied:

inf
{‖Tx‖
‖x‖

: x ∈ ∂Ω ∩ P
}
>

1
σ
,

Copyright 2006 by Taylor & Francis Group, LLC



182 Topological Degree Theory and Applications

where σ is the quasinormality constant of P , then ind(T,Ω ∩ P ) = 0.

Proof. For any ε > 0, by the definition of the quasinormality constant of
P , there exists yε ∈ P with yε 6= 0 such that

‖x+ λyε‖ ≥ (σ − ε)‖x‖ for all x ∈ P.

By assumption, we may fix ε > 0 such that

inf
{‖Tx‖
‖x‖

: x ∈ ∂Ω ∩ P
}
>

1
σ − ε

. (7.3.1)

For any m > 0, we claim that x−Tx 6= tmyε for all x ∈ ∂Ω∩P and t ∈ [0, 1].
If not, then there exist x0 ∈ ∂Ω ∩ P , t0 ∈ [0, 1] such that x0 = Tx0 + t0myε,
and so we have

‖x0‖ = ‖Tx0 + t0myε‖ ≥ (σ − ε)‖Tx0‖.

Hence we get
‖Tx0‖
‖x0‖

≤ 1
σ − ε

,

which contradicts (7.3.1). By the homotopy property (4) of Theorem 7.2.3,
we get

ind(T,Ω ∩ P ) = ind(T +m0yε,Ω ∩ P )

and thus, we must have

ind(T +myε,Ω ∩ P ) = 0

(since Ω is bounded and T (E) is bounded for any countably bounded subset
E of Ω ∩ P ). Consequently, ind(T,Ω ∩ P ) = 0. This completes the proof.

Corollary 7.3.8. Let X be a real Banach space, Ω be an open bounded
subset of X with 0 ∈ Ω and P be a quasinormal cone in X. If T : Ω∩P → P
is a continuous countably k-set contraction and the following conditions are
satisfied:

(1) Tx 6= αx for all x ∈ ∂Ω ∩ P and α ∈ [0, 1];

(2) inf
{
‖µTx‖
‖x‖ : x ∈ ∂Ω ∩ P

}
> 1

σ , where 1 ≤ µ < 1
k and σ is the quasi-

normality constant of P ;

then ind(T,Ω ∩ P ) = 0.

Proof. If we put T1x = µTx for all x ∈ Ω ∩ P, then T1 is countably
condensing and T1 satisfies all the conditions of Theorem 7.3.7. Thus, we
have

ind(T1,Ω ∩ P ) = 0.
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From the assumption (1) and the homotopy property (4) of Theorem 7.2.3,
we know that

ind(T,Ω ∩ P ) = ind(µT,Ω ∩ P ).

Therefore, we have ind(T,Ω ∩ P ) = 0. This completes the proof.

Corollary 7.3.9. Let X be a real Banach space, Ω be an open bounded
subset of X with 0 ∈ Ω and P be a quasinormal cone in X. If T : Ω ∩ P →
P is a continuous countably k-set contraction with k < σ, where σ is the
quasinormality constant of P and the following conditions are satisfied:

(1) Tx 6= x for all x ∈ ∂Ω ∩ P ;

(2) ‖Tx‖ ≥ ‖x‖ for all x ∈ ∂Ω ∩ P ;

then ind(T,Ω ∩ P ) = 0.

Proof. We take ε0 > 0 such that k + ε0 < min{1, σ} and put T1 = 1
k+ε0

T .
Then T1 is a countably k

k+ε0
-contraction, and we know, by the assumption

(2), that

inf
{‖T1x‖
‖x‖

: x ∈ ∂Ω ∩ P
}
≥ 1
k + ε0

>
1
σ

for all x ∈ ∂Ω ∩ P.

We also have T1x 6= αx for all x ∈ ∂Ω ∩ P and α ∈ [0, 1]. Therefore, by
Theorem 7.3.7, we have ind(T1,Ω ∩ P ) = 0. This completes the proof.

Theorem 7.3.10. Let X be a real Banach space, Ω be an open bounded
subset of X with 0 ∈ Ω and P be a cone in X. Let T : Ω ∩ P → P be a
continuous countably condensing mapping. Suppose that there exists y0 ∈
P \ {0} such that x − Tx 6= λy0 for all x ∈ ∂Ω ∩ P and λ ≥ 0. Then
ind(T,Ω ∩ P ) = 0.

Proof. For any m > 0, by the homotopy property (4) of Theorem 7.2.3,
we have

ind(T,Ω ∩ P ) = ind(T +my0,Ω ∩ P )

and thus it follows that ind(T,Ω ∩ P ) = 0.

Corollary 7.3.11. Let X be a real Banach space, Ω1, Ω2 be two open
bounded subsets of X and P be a cone in X. If 0 ∈ Ω1 ⊂ Ω2, T : Ω2∩P → P
is a continuous countably condensing mapping and the following conditions
are satisfied:

(1) Tx 6> x for all x ∈ ∂Ω1 ∩ P ;

(2) Tx 6< x for all x ∈ ∂Ω2 ∩ P ;

then T has a fixed point in Ω2 \ Ω1 ∩ P .
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Proof. We may assume that x 6= Tx for all x ∈ ∂Ωi ∩ P , i = 1, 2. By the
assumption (1) and the homotopy property (4) of Theorem 7.2.2, we have

ind(T,Ω1 ∩ P ) = 1.

On the other hand, for any y0 ∈ P with y0 6= 0, we know, by the assumption
(2), that x 6= Tx + λy0 for all x ∈ ∂Ω2 ∩ P and λ ≥ 0. Therefore, it follows
from Theorem 7.3.10 that ind(T,Ω2 ∩ P ) = 0 and so

ind(T, (Ω2 \ Ω1) ∩ P ) = −1.

Therefore, T has a fixed point in (Ω2 \ Ω1) ∩ P . This completes the proof.

Corollary 7.3.12. Let X be a real Banach space, Ω1, Ω2 be two open
bounded subsets of X and P be a quasinormal cone in X. If 0 ∈ Ω1 ⊂ Ω2,
T : Ω2 ∩ P → P is a continuous countably k-set contraction with k < σ,
where σ is the quasinormality constant of P and the following conditions are
satisfied:

(1) ‖Tx‖ ≤ ‖x‖ for all x ∈ ∂Ω1 ∩ P ;

(2) ‖Tx‖ ≥ ‖x‖ for all x ∈ ∂Ω2 ∩ P ;

then T has a fixed point in Ω2 \ Ω1 ∩ P .

Proof. We may assume that x 6= Tx for all x ∈ ∂Ωi ∩ P , i = 1, 2. By the
assumption (1) and the homotopy property (4) of Theorem 7.2.2, we have

ind(T,Ω1 ∩ P ) = 1.

On the other hand, we have, by the assumption (2) and Corollary 7.3.9,
that ind(T,Ω2 ∩ P ) = 0 and so

ind(T, (Ω2 \ Ω1) ∩ P ) = −1.

Therefore, T has a fixed point in (Ω2 \ Ω1) ∩ P . This completes the proof.

Theorem 7.3.13. Let X be a real Banach space, Ω be an open bounded
subset of X and P be a cone in X. If T : Ω∩P → P is a continuous countably
condensing mapping, S : ∂Ω ∩ P → P is a continuous compact mapping and
the following conditions are satisfied:

(1) inf{‖Sx‖ : x ∈ ∂Ω ∩ P} > 0;

(2) x 6= Tx+ λSx for all x ∈ ∂Ω ∩ P and λ > 0;

then ind(T,Ω ∩ P ) = 0.

Proof. By the assumption (1), we know that 0 /∈ S(∂Ω ∩ P ). and thus, it
follows from the well-known argument, (see Lemma 7.3.2) that

0 /∈ Conv(S(∂Ω ∩ P )).
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By Dugundji’s extension theorem, there exists a continuous mapping S∗ :
Ω ∩ P → Conv(S(∂Ω ∩ P )) such that S∗x = Sx for all x ∈ ∂Ω∩P and so S∗

is compact.
From assumption (2) and the homotopy property (4) of Theorem 7.2.2, we

have
ind(T,Ω ∩ P ) = ind(T +mS∗,Ω ∩ P ) for all m > 0

and thus ind(T,Ω ∩ P ) = 0, for, otherwise, x = Tx+mS∗x has a solution in
Ω ∩ P for any m > 0, which is a contradiction (note that Ω is bounded and
infx∈Ω∩P ‖S∗x‖ = a > 0). This completes the proof.

Theorem 7.3.14. Let X be a real Banach space, Ω1, Ω2 be two open
bounded subsets of X such that 0 ∈ Ω1 ⊂ Ω2 and P is a cone in X. If T :
Ω2∩P → P is a continuous countably condensing mapping, S : ∂Ω2∩P → P
is a continuous compact mapping and the following conditions are satisfied:

(1) inf{‖Sx‖ : x ∈ ∂Ω2 ∩ P} > 0;

(2) Tx 6= αx for all x ∈ ∂Ω1 ∩ P , α ≥ 1;

then one of the following conclusion holds:

(I) T has a fixed point in (Ω2 \ Ω1) ∩ P ;

(II) x = Tx+ λSx has a solution in ∂Ω2 ∩ P for some λ > 0.

Proof. Assume that (II) is not true. Then, by Theorem 7.3.13, we have
ind(T,Ω2 ∩ P ) = 0. On the other hand, by the assumption (2), we have
ind(T,Ω1 ∩ P ) = 1 and thus,

ind(T, (Ω2 \ Ω1) ∩ P ) = −1.

Therefore, T has a fixed point in (Ω2 \ Ω1) ∩ P .

Theorem 7.3.15. Let X be a real Banach space, Ωi, i = 1, 2, 3, be open
bounded subsets of X such that 0 ∈ Ω1, Ωi ⊂ Ωi+1, i = 1, 2, and P is a
cone in X. If T : Ω3 ∩ P → P is a continuous countably condensing mapping
satisfying the following conditions:

(1) ‖Tx‖ ≤ ‖x‖, for all x ∈ ∂Ω1 ∩ P ;

(2) inf
{
‖Tx‖
‖x‖ : x ∈ ∂Ω2 ∩ P

}
> 1

σ , where σ is the quasinormality constant
of P ;

(3) ‖Tx‖ ≤ ‖x‖, for all x ∈ ∂Ω3 ∩ P .

Then T has two positive fixed points in (Ω3 \ Ω1) ∩ P .
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Proof. We first prove that T has a fixed point in (Ω2 \Ω1)) ∩ P . We may
also assume that Tx 6= x for all x ∈ ∂Ω1 ∩P . By the assumption (1), we then
have x 6= tTx for all x ∈ ∂Ω1 ∩ P and t ∈ [0, 1]. Thus,

ind(T,Ω1 ∩ P ) = 1. (7.3.2)

By the assumption (2) and Theorem 7.3.7, we have

ind(T,Ω2 ∩ P ) = 0. (7.3.3)

From (7.3.2) and (7.3.3), we deduce ind(T, (Ω2 \ Ω1) ∩ P ) = −1 and, conse-
quently, T has a fixed point in (Ω2 \Ω1)∩P . To see that T has a fixed point
in (Ω3 \ Ω2)) ∩ P , we may also assume that Tx 6= x for all x ∈ ∂Ω3 ∩ P . By
the assumption (3), we then have x 6= tTx for all x ∈ ∂Ω3 ∩ P and t ∈ [0, 1].
Thus,

ind(T,Ω3 ∩ P ) = 1. (7.3.4)

From (7.3.3) and (7.3.4), we deduce ind(T, (Ω3 \ Ω2) ∩ P ) = 1 and, conse-
quently, T has a fixed point in (Ω3 \ Ω2) ∩ P . This completes the proof.

Finally, we give a different version of Theorem 7.3.15 as follows:

Theorem 7.3.16. Let X be a real Banach space, Ωi, i = 1, 2, 3, be open
bounded subsets of X such that 0 ∈ Ω1, Ωi ⊂ Ωi+1, i = 1, 2, and P is a
cone in X. If T : Ω3 ∩ P → P is a continuous countably condensing mapping
satisfying the following conditions:

(1) Tx 6> x for all x ∈ ∂Ω1 ∩ P ;

(2) Tx 6≤ x for all x ∈ ∂Ω2 ∩ P ;

(3) Tx 6> x for all x ∈ ∂Ω3 ∩ P ;

then T has two positive fixed points in (Ω3 \ Ω1) ∩ P ;

7.4 Perturbations of Condensing Mappings

In this section, let X be a real Banach space, P be a quasinormal cone in
X, T : D(T ) ⊂ X → X be a completely continuous or condensing mapping
and A : D(A) ⊂ X → 2X be an accretive operator. We consider the existence
of solutions to the mapping equation x ∈ −Ax+Tx and prove some existence
results by using the index theory in Section 7.2

Theorem 7.4.1. Let P be a cone in a Banach space E, A : D(A) ⊆ P → 2P

be an accretive operator with P = (I+A)(D(A)), 0 ∈ Ω be an open bounded
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subset of E and K : Ω ∩ P → P be a continuous compact mapping. Suppose
that

Kx ≤ x for all x ∈ ∂Ω ∩ P.

Then −A+K has a fixed point in Ω ∩D(A).

Proof. It is easy to see that x ∈ −Ax+Kx if and only if x = (I+A)−1Kx.
If x ∈ −Ax+Kx for some x ∈ ∂Ω∩D(A), then the conclusion is true and so
we may assume that x /∈ −Ax+Kx for all x ∈ ∂Ω ∩D(A).

Put H(t, x) = (I +A)−1tKx for all (t, x) ∈ [0, 1]× Ω ∩ P . Then we have

x 6= (I +A)−1tKx for all (t, x) ∈ [0, 1]× ∂Ω ∩ P.

Indeed, if x = (I +A)−1tKx for some (t, x) ∈ [0, 1]× ∂Ω ∩ P , then t 6= 1 and
tKx ∈ x+ Ax. However, Ax ≥ 0 and hence we have tKx ≥ x. Therefore, it
follows that t > 0 and Kx ≥ t−1x > x, which is a contradiction. Hence we
have

ind(I +A)−1K,Ω ∩ P ) = deg(0,Ω ∩ P ) = 1.

Therefore, −A+K has a fixed point in Ω ∩D(A). This completes the proof.

Theorem 7.4.2. Let P be a cone in a Banach space E, A : D(A) ⊆ P → 2P

be an accretive operator with P = (I+A)(D(A)), 0 ∈ Ω be an open bounded
subset of E and K : Ω ∩ P → P be a continuous compact mapping. Suppose
that

‖Kx‖ ≤ ‖x‖ for all x ∈ ∂Ω ∩ P.

Then −A+K has a fixed point in Ω ∩D(A).

Proof. We may assume that x /∈ −Ax + Kx for all x ∈ ∂Ω ∩D(A). Let
H(t, x) be defined as in Theorem 7.4.1. Then we have

x 6= H(t, x) for all (t, x) ∈ [0, 1]× ∂Ω ∩ P.

Indeed, if x = (I +A)−1tKx for some (t, x) ∈ [0, 1]× ∂Ω ∩ P , then we have

‖x‖ ≤ ‖(I +A)−1tKx‖ ≤ ‖tKx‖

since (I + A)−10 = 0 and (I + A)−1 is nonexpansive. Therefore t = 1, which
contradicts our assumption. Thus, we have

ind(I +A)−1K,Ω ∩ P ) = ind(0, ,Ω ∩ P ) = 1

and so T has a fixed point. This completes the proof.

Theorem 7.4.3. Let X be a real Banach space, P be a quasinormal cone
inX, A : D(A) ⊆ P → 2P be an accretive mapping with P = (I+λA)P for all
λ > 0 and Ωi, i = 1, 2, be two open bounded subsets of X with 0 ∈ Ω1 ⊂ Ω2.
Let T : Ω2∩P → P be a continuous countably condensing mapping. Suppose
that the following conditions are satisfied:
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(1) ‖Tx‖ ≤ ‖x‖ for all x ∈ ∂Ω1 ∩ P ;

(2) inf
{

‖Tx‖
‖x‖+‖v‖ : x ∈ ∂Ω ∩ P, v ∈ Ax

}
> 1

σ ; where σ is the quasinormality
constant of P .

Then −A+ T has a fixed point in Ω2 \ Ω1 ∩ P .

Proof. We may assume that x /∈ −Ax+Tx for all x ∈ ∂Ωi∩P for i = 1, 2.
Set

U1 = (I +A)(Ω1 ∩ P ), U2 = (I +A)(Ω2 ∩ P ).

Since (I + A)−1 is nonexpansive, it follows that U1, U2 are open subsets of
P and T (I + A)−1 is countably condensing. It is easy to see that −A + T
has a fixed point in Ω2 \ Ω1 ∩ P if and only if T (I + A)−1 has a fixed point
in U2 \ U1 and the set of fixed points of T (I + A)−1 are bounded in U2 \ U1,
and so we may simply assume that U1 and U2 are bounded. It is obvious that
H(·, ·) : [0, 1]× Ω1 ∩ P → P defined by

H(t, x) = tT (I +A)−1x for all (t, x) ∈ [0, 1]× Ω1 ∩ P

is a homotopy of countably condensing mappings.
Now, we claim that x 6= H(t, x) for all (t, x) ∈ [0, 1]× ∂U1. In fact, if not,

then there exist t0 ∈ [0, 1] and x0 ∈ ∂U1 such that x0 = t0T (I +A)−1x0. Put
z0 = (I + A)−1x0, then z0 ∈ ∂Ω1 ∩ P . Take v0 ∈ Az0 such that x0 = z0 + v0
and then we have

‖z0‖ ≤ ‖z0 + v0‖ = ‖x0‖ = t0‖Tz0‖.

From the assumption (1), we must have t0 = 1, which contradicts the fact
that −A+ T has no fixed point on ∂Ω1 ∩ P . Thus we have

ind(T (I +A)−1, U1) = ind(0, U1) = 1

since 0 ∈ A0 ⊂ U1. By the definition of quasinormality constant of P and
the assumption (2), we may take ε > 0 and y0 6= 0 ∈ P such that ‖x+ y0‖ ≥
(σ − ε)‖x‖ for all x ∈ P and

inf
{ ‖Tx‖
‖x‖+ ‖v‖

: x ∈ ∂Ω ∩ P, v ∈ Ax
}
>

1
σ − ε

. (7.4.1)

Next, we claim that x 6= T (I + A)−1x+ λy0 for all x ∈ ∂U2 and λ ≥ 0. If
not, then there exist x0 ∈ ∂U2 and λ0 > 0 such that x0 = T (I+A)−1x0 +λy0.
Put z0 = (I + A)−1x0, and then z0 ∈ ∂Ω2 ∩ P . There exists v0 ∈ Az0 such
that x0 = z0 + v0, and so we have

‖z0 + v0‖ = ‖x0‖ = ‖Tz0 + λy0‖ ≥ (σ − ε)‖Tz0‖,
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which contradicts (7.4.1). By the homotopy property (4) of Theorem 7.2.2,
we get

ind(T (I +A)−1, U2) = ind(T (I +A)−1 + λy0) for all λ > 0

and so ind(T (I +A)−1, U2) = 0. Therefore, we have

ind(T (I +A)−1, U2 \ U1) = −1

and so T (I +A)−1 has a fixed point in U2 \U1, i.e., −A+T has a fixed point
in (Ω2 \ Ω1) ∩ P . This completes the proof.

Remark. Nonexpansive mappings with dissipative perturbations in cones
have been studied by Chang et al. [53].

7.5 Index Theory for Nonself Mappings

In this section, first, let K ⊂ Rn be a nonempty cone, Ω ⊂ Rn be a
nonempty bounded subset with Ω ∩ K 6= ∅ and f : Ω ∩ K → Rn be a
continuous mapping. We recall the following definition from [177].

Definition 7.5.1. [182] A mapping f : Ω∩K → Rn is said to be generalized
inward if d(x, f(x)) 6= d(f(x),K) for all x ∈ Ω ∩ K with f(x) /∈ K, where
d(f(x),K) = infy∈K d(f(x), y).

Now, assume that f : Ω ∩ K → Rn is a continuous generalized inward
mapping. Let r : Rn → K be a metric projection, i.e., d(x, r(x)) = d(x,K)
for all x ∈ Rn. Such a mapping always exists and is unique. We know that
rf : Ω ∩K → K is continuous and rf(x) 6= x for all x ∈ ∂Ω ∩K. Otherwise,
if rf(x) = x for some x ∈ ∂Ω ∩ K, then d(x, f(x)) = d(rf(x), f(x)) =
d(f(x),K), which is a contradiction.

Now, we define
ind(f,Ω ∩K) = ind(rf,Ω ∩K), (7.5.1)

where ind(rf,Ω∩K) is the fixed point index in Section 7.2, and this is called
the fixed point index for generalized inward mapping.

Theorem 7.5.1. The fixed point index for generalized inward mapping
has the following properties:

(1) ind(x0,Ω ∩K) = 1 if x0 ∈ Ω ∩K;

(2) If ind(f,Ω ∩K) 6= 0, then f(x) = x has a solution in Ω ∩K;

(3) If Ω1,Ω2 are two open bounded disjoint subsets, then ind(f, (Ω1∪Ω2)∩
K) = ind(f,Ω1 ∩K) + ind(f,Ω2 ∩K);
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(4) Let H(t, x) : [0, 1] × Ω ∩ K → Rn be a continuous mapping satisfy-
ing H(t, x) 6= x for all (t, x) ∈ [0, 1] × ∂Ω ∩ K and d(f(x),H(t, x)) 6=
d(f(x), x) for all (t, x) ∈ Ω∩K with H(t, x) /∈ K. Then ind(H(t, ·),Ω∩
K) does not depend on t ∈ [0, 1].

Now, we assume that E is a real Banach space, Ω ⊂ E is open and bounded
and P ⊂ E is a cone with Ω ∩ P 6= ∅. For all x ∈ P , IP (x) = {x+ λ(y − x) :
λ ≥ 1, y ∈ P} is called the inward set of x relative to P .

Definition 7.5.2. Let T : Ω ∩ P → E be a mapping.

(1) If d(Tx, P ) 6= d(x, Tx) for all Tx /∈ P , then T is said to be a generalized
inward mapping.

(2) If Tx ∈ IP (x) for all x ∈ Ω ∩ P , then T is said to an inward mapping.

(3) If Tx ∈ IP (x) for each x ∈ Ω ∩ P , then T is said to a weakly inward
mapping.

It is obvious that an inward mapping is weakly inward.

Proposition 7.5.3. If T : Ω ∩ P → E is weakly inward, then T is gener-
alized inward.

Proof. For all x ∈ Ω ∩ P with Tx /∈ P , we have d(Tx, IP (x)) = 0. Thus,
there exists y ∈ IP (x) such that d(Tx, y) < d(x, Tx). On the other hand,
there exists z ∈ P such that z = ty + (1 − t)x for some t ∈ (0, 1). Thus, we
have

d(Tx, P ) < d(Tx, z) = d(Tx, ty + (1− t)x)
≤ td(Tx, y) + (1− t)d(x, Tx) = d(x, Tx).

Therefore, T is generalized inward on Ω ∩ P . This completes the proof.

In the following, we assume that there exists a continuous metric projection
r : E → P . Assume that Tx 6= x for all x ∈ ∂Ω∩P and then we have rTx 6= x
for all x ∈ ∂Ω ∩ P . Otherwise, we have rTx = x for some x ∈ ∂Ω ∩ P .
Then d(x, Tx) = d(rTx, Tx) = d(Tx, P ), which is a contradiction. Thus,
ind(rT,Ω ∩ P ) is well defined. Now, we define

ind(T,Ω ∩ P ) = ind(rT,Ω ∩ P ). (7.5.2)

If r1, r2 : E → P are two continuous metric projections, then {(tr1 + (1 −
t)r2}t∈[0,1] is a family of continuous metric projections. One can easily see
that (tr1+(1−t)r2)Tx 6= x for all x ∈ ∂Ω∩P , thus ind([tr1+(1−t)r2]T,Ω∩P )
does not depend on t ∈ [0, 1] by Theorem 7.2.3. Therefore, ind(rT,Ω ∩ P )
does not depend on r, and so ind(T,Ω ∩ P ) is well defined.

Theorem 7.5.4. The fixed point index defined by (7.5.2) has the following
properties:
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(1) ind(x0,Ω ∩ P ) = 1 if x0 ∈ Ω ∩ P ;

(2) If ind(T,Ω ∩K) 6= 0, then Tx = x has a solution in Ω ∩K;

(3) If Ω1,Ω2 are two open bounded disjoint subsets, then ind(T, (Ω1∪Ω2)∩
P ) = ind(T,Ω1 ∩ P ) + ind(T,Ω2 ∩ P );

(4) Let H(t, x) : [0, 1] × Ω ∩ P → E be a continuous compact mapping
satisfying H(t, x) 6= x for all (t, x) ∈ [0, 1]× ∂Ω ∩ P and d(x,H(t, x)) 6=
d(H(t, x), P ) for all (t, x) ∈ Ω∩P withH(t, x) /∈ P . Then ind(H(t, ·),Ω∩
P ) does not depend on t ∈ [0, 1].

Remark. For more details about the results in this section, we refer the
reader to [182].

7.6 Applications to Integral and Differential
Equations

In this section, we give some applications to the integral and differential
equations by using the results of the previous sections.

Example 7.6.1. Let K(t, s) : [a, b] × [a, b] → [0,+∞) be a continous
function and f(t, x) : [a, b)×R→ [0,+∞) be a continuous function. Suppose
the following conditions are satisfied:

(1) For each t ∈ [a, b], f(t, x) is increasing in x;

(2)
∫ b

a
f(s, c)ds < cM−1, where M = max{K(t, s) : (t, s) ∈ [a, b] × [a, b]}

and c > 0 is a constant;

(3) f(t, s) ≥ αsγ for all s ∈ [0, ε0), where ε0 > 0, α > 0 and 0 < γ < 1 are
constants;

(4) K(t, s) 6≡ 0 for all (t, s) ∈ [a, b]× [a, b].

Then the integral equation:

x(t) =
∫ b

a

K(t, s)f(t, x(s))ds (E 7.6.1)

has a nontrivial non-negative solution in C([a, b]).

Proof. Define a mapping T : C([a, b]) → C([a, b]) by

Tx(t) =
∫ b

a

K(t, s)f(t, x(s))ds for all x(·) ∈ C([a, b]). (7.6.1)
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Obviously, T is continuous and compact and finding a solution of (E 7.6.1) is
equivalent to finding a fixed point of T . Put

P = {x(·) ∈ C([a, b]) : x(t) ≥ 0, t ∈ [a, b]}.

Then P is a cone in C([a, b]). By the assumption (1) and (2), we have

‖Tx(·)‖ < c, ‖x(·)‖ = c, x(·) ∈ P. (7.6.2)

By the assumption (4), there exist (t0, s0) ∈ [a, b] × [a, b], δ > 0 and β > 0
such that K(t, s) ≥ β for all (t, s) ∈ [t0 − δ, t0 + δ]× [s0 − δ, s0 + δ]. Thus we
have

‖Tx(·)‖ ≥
∫ s0+δ

s0−δ

βf(s, x(s))ds.

By the assumption (3), if ‖x(·)‖ < min{1, ε0}, we have

‖Tx(·)‖ ≥ 2βδ‖x(·)‖γ . (7.6.3)

Therefore, we have ‖Tx(·)‖ > ‖x(·)‖ for ‖x(·)‖ = r and x(·) ∈ P with r
sufficiently small. We take Ω = B(0, c) and Ω0 = B(0, r). By Corollary 7.3.4,
we know that T has a fixed point in Ω \ Ω0∩P , i.e., (E 7.6.1) has a nontrivial
non-negative solution.

Example 7.6.2. Consider the boundary value problem:{
x′′(t) + f(t, x(t)) = 0, t ∈ [0, 1],
x(0) = x(1), x′(0) = −x′(1).

(E 7.6.2)

Assume that f is continuous and satisfies the following conditions:

(1) For all t ∈ [0, 1], f(t, x) is increasing in x;

(2)
∫ 1

0
f(s, c)ds < 3c

4 ;

(3) f(t, s) ≥ αsγ for all s ∈ [0, ε0), where ε0 > 0, α > 0 and 0 < γ < 1 are
constants.

Then (E 7.6.2) has a nontrivial non-negative C2 solution.

Proof. It is well known that (E 7.6.2) is equivalent to the following integral
equation:

x(t) =
∫ 1

0

G(t, s)f(s, x(s))ds, (E 7.6.3)

where G(t, s) is the Green function defined by

G(t, s) =

{
1
3 (t+ 1)(2− s), t ≤ s,
1
3 (s+ 1)(2− t), t > s.

One may easily see that M = max{G(t, s) : (t, s) ∈ [0, 1]× [0, 1]} < 4
3 and f,G

satisfy the conditions of Example 7.6.1. Therefore, (E 7.6.3) has a nontrivial
non-negative solution in C([0, 1]), i.e., (E 7.6.1) has a nontrivial non-negative
C2 solution.

Copyright 2006 by Taylor & Francis Group, LLC



FIXED POINT INDEX THEORY 193

7.7 Exercises

1. Let Ω ⊂ Rn be measurable subset with m(Ω) < +∞, 1 ≤ p ≤ ∞ and
P ⊂ Lp(Ω) be given by P = {f(·) ∈ Lp(Ω) : f(x) ≥ 0, almost all x ∈
Ω}. Show that P is fully regular.

2. Let P ⊂ c0 be given by P = {(xi) ∈ c0 : xi ≥ 0, i = 1, 2, · · · }. Show
that P is regular, but not fully regular.

3. Let E be a reflexive Banach space and P ⊂ E be a cone. Prove that
the following conclusions are equivalent:

(a) P is normal;

(b) P is regular;

(c) P is fully regular.

4. Let E be a normed space and P ⊂ E be a cone. If P has the nonempty
interior, then show that P is reproducing.

5. Let E be a normed space, P ⊂ E be a cone and P ∗ ⊂ E∗ be defined by
P ∗ = {f ∈ E∗ : f(x) ≥ 0 for all x ∈ P}. If P is reproducing, then show
that P ∗ is a cone in E∗.

6. Let P ⊂ L1(Ω) be defined by P = {f(·) ∈ L1(Ω) : f(x) ≥ 0, almost all x ∈
Ω}, where m(Ω) <∞. Show that P allows plastering.

7. Let E be a Banach space, P ⊂ be a normal cone, [a, b] = {x ∈ E :
a ≤ x ≤ b} and T : [a, b] → [a, b] be a continuous condensing mapping
satisfying Ax ≤ Ay for all x, y ∈ [a, b] with x ≤ y. Show that T has a
fixed point in [a, b].

8. Let E be a locally convex space, P ⊂ E be a cone, Ω ⊂ E be an open
subset with Ω ∩ P 6= ∅ and T : Ω ∩ P → P be a continuous mapping
such that T (Ω∩P ) is relatively compact in E. Assume that x 6= Tx for
all x ∈ ∂Ω ∩ P . Construct the fixed point index theory for T on Ω ∩ P .

9. Let E be a locally convex space, P ⊂ E be a cone, Ω ⊂ E be an open
subset with 0 ∈ Ω and Ω ∩ P 6= ∅ and T : Ω ∩ P → P be a continuous
mapping such that T (Ω ∩ P ) is relatively compact in E. Assume that
x 6= tTx for all x ∈ ∂Ω∩P and t ∈ [0, 1). Show that T has a fixed point
in Ω ∩ P .

10. Let E be a Banach space, P ⊂ E be a cone and A : P → E be a
continuous accretive operator. Assume that, for all x ∈ P , there exists
α(x) > 0 such that Ax ≤ α(x)x. Show that (λI + A)(P ) ⊇ P for all
λ > 0.
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11. Let a(s, t) : [0, 1]× [0, 1] → [0,+∞) be a continuous function satisfying
the following conditions:

(1) [a(s, t)− a(s, r)](t− r) ≥ 0;

(2) a(s, t) ≤ ct for some constant c > 0 and all (s, t) ∈ [0, 1] × [0, 1].
Let k(s, t) : [0, 1]× [0, 1] → [0,+∞) be a continuous function such that
k(s, t) ≤ αt+ β for all (s, t) ∈ [0, 1]× [0, 1], where α ∈ (0, 1), β > 0 are
constant. Show that the following integral inequation:

x(t) + a(t, x(t))−
∫ 1

0

k(t, x(s))ds = 0 for all t ∈ [0, 1]

has a solution x(·) ∈ C([0, 1]).

12. Let a, b, c, d be non-negative numbers such that e = ac + bc + ad > 0
and f(x, y) : [0, 1] × R → R be defined by f(x, y) = Σm

i=1ai(x)yαi for
all (x, y) ∈ [0, 1] × R, where ai(t) : [0, 1] → [0,+∞) is continuous for
i = 1, 2 · · · ,m and αi > 0 for i = 1, 2 · · · ,m. Suppose that there exist
1 ≤ j, k ≤ m such that αj(t) < 1, αk > 1, aj(t)ak(t) > 0 for all
t ∈ [0, 1] and Σm

i=1

∫ 1

0
ai(t)dt < f−1, where f = e−1(4ac)−1 if ac 6= 0,

f = e−1(bc+ bd) if a = 0 and f = e−1(ad+ bd) if c = 0. Show that the
following equation:{

x′′(t) = −f(t, x(t)), t ∈ [0, 1],
ax(0)− bx′(0) = 0, cx(1) + dx′(1) = 0

has two non-negative nontrivial solutions in C2([0, 1]) by using the Green
function G(t, s) defined as

G(t, s) =

{
e−1(at+ b)[c(1− s) + d], t ≤ s,

e−1(as+ b)[(c(1− t) + d], t > s.
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11. J. Appell, M. Väth and A. Vignoli, Compactness and existence results
for ordinary differential equations in Banach spaces, Z. Anal. Anw.
18(1988), 469–484.

12. J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag,
Berlin, 1984.

195

Copyright 2006 by Taylor & Francis Group, LLC



196 Topological Degree Theory and Applications

13. J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New
York, 1984.

14. J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston,
1990.

15. R. Bader, A topological fixed-point index theory for evolution inclusions,
Z. Anal. Anw. 20 (2001) 3–16.

16. S. Banach, Theory of linear operations (English translation), North-
Holland, 1987.

17. V. Barbu, Nonlinear Semigroups and Differential Equations in Banach
Spaces, Noordhoff, Leyden, 1976.

18. R. I. Becker, Periodic solutions of semilinear equations of evolution of
compact type, J. Math. Anal. Appl. 82(1982 ), 33–48.

19. V. Benci, A geometrical index for the group S1 and some applications to
the study of periodic solutions of ordinary differential equations, Comm.
Pure Appl. Math. 34(1981), 393–432.

20. J. Berkovits and V. Mustonen, On the degree for mappings of monotone
type, Nonlinear Anal. 12(1986), 1373–1383.

21. J. Berkovits and V. Mustonen, Topological degree for perturbation of
linear maximal monotone mappings and applications to a class of par-
abolic problems, Rend. Mat. VII(1992), 597–621.

22. U. G. Borisovic, B. D. Gelman, A. D. Myskis and V. V. Obuhowskii,
Topological methods in fixed point theory of multivalued mappings, Us-
piehi Mat. Nauk. 1(1980), 59–126.

23. K. Borsuk, Drei Sätze über die n-dimensional Euklidische Sphäre, Fund.
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29. H. Brézis, L. Nirenberg, Degree theory and BMO, Part I: compact man-
ifolds without boundaries, Selecta Math. 1(1995), 197–263.
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Techn. Univ. Dresden 12(1963), 1149–1152.

Copyright 2006 by Taylor & Francis Group, LLC



212 Topological Degree Theory and Applications

257. T. Riedrich, Der Raum S(0, 1) ist zulässig, Wiss Z. TU Dresden 13(1964),
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