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Chapter 1

BROUWER DEGREE THEORY

Let R be the real numbers, R" = {z = (z1,22, - ,2,) : ; € Rfori =
1,2,---,n} with |z] = (X7, 22)? and let @ C R", and let f : Q — R"
be a continuous function. A basic mathematical problem is: Does f(z) = 0
have a solution in Q7 It is also of interest to know how many solutions are
distributed in €. In this chapter, we will present a number, the topological
degree of f with respect to €2 and 0, which is very useful in answering these
questions. To motivate the process, let us first recall the winding number of
plane curves, a basic topic in an elementary course in complex analysis. Let
C be the set of complex numbers, I' C C an oriented closed C' curve and
a € C\T. Then the integer

21 zZ—a

w(l,a) = L/F ! dz (1)

is called the winding number of I" with respect to a € C'\T. Now, let G C C
be a simply connected region and f : G — C be analytic and I' C G a closed
C* curve such that f(z) # 0 on I'. Then we have

1 1 1 f'(2)

w(f(T),0) = v - ;dz =5 ) dz = ;w(F,zi)ai, (2)

where z; are the zeros of f in the region enclosed by I' and «; are the corre-
sponding multiplicites. If we assume in addition that I" has positive orientation
and no intersection points, then we know from Jordan’s Theorem, which will
be proved later in this chapter, that w(T', z;) = 1 for all z;. Thus (2) becomes

w(F().0) =3 o (3

So we may say that f has at least |w(f(T'), 0)| zeros in G. The winding number
is a very old concept which goes back to Cauchy and Gauss. Kronecker,
Hadamard, Poincare, and others extended formula (1). In 1912, Brouwer [32]
introduced the so-called Brouwer degree in R" (see Browder [35], Sieberg [277]
for historical developments). In this chapter, we introduce the Brouwer degree
theory and its generalization to functions in VM O. This chapter is organized
as follows:

In Section 1.1 we introduce the notion of a critical point for a differentiable
function f. We then prove Sard’s Lemma, which states that the set of critical
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2 Topological Degree Theory and Applications

points of a C! function is “small”. Our final result in this section shows how
a continuous function can be approximated by a C*° function.

In Section 1.2 we begin by defining the degree of a C'' function using the
Jacobian. Also we present an integral representation which we use to define
the degree of a continuous function. Also in this section we present some
properties of our degree (see theorems 1.2.6, 1.2.12, and 1.2.13) and some
useful consequences. For example, we prove Brouwer’s and Borsuk’s fixed
point theorem, Jordan’s separation theorem and an open mapping theorem. In
addition we discuss the relation between the winding number and the degree.

In Section 1.3 we discuss some properties of the average value function and
then we introduce the degree for functions in VMO.

In Section 1.4 we use the degree theory in Section 1.2 to present some exis-
tence results for the periodic and anti-periodic first order ordinary differential
equations.

1.1 Continuous and Differentiable Functions
We begin with the following Bolzano’s intermediate value theorem:

Theorem 1.1.1. Let f : [a,b] — R be a continuous function, then, for m
between f(a) and f(b), there exists o € [a,b] such that f(xo) =m.

Corollary 1.1.2. Let f : [a,b] — R be a continuous function such that
f(a)f(b) < 0. Then there exists zg € (a,b) such that f(z) =0.

Corollary 1.1.3. Let f : [a,b] — [a,b] be a continuous function. Then
there exists xg € [a, b] such that f(xzg) = zo.

Let 2 C R™ be an open subset. We recall that a function f : @ — R"
is differentiable at xo € Q if there is a matrix f’(x¢) such that f(zo + h) =
f(xo) + f'(xo)h + o(h), where xg + h € Q and |0‘(hh‘)| tends to zero as |h| — 0.

We use C*(Q2) to denote the space of k-times continuously differentiable
functions. If f is differentiable at zo, we call Jy(x¢) = det f'(zo) the Jacobian
of fat zg. If Jp(xo) = 0, then x is said to be a critical point of f and we use
Sp(Q2) ={z € Q: Jr(x) = 0} to denote the set of critical points of f, in Q. If
I (y) N S§(Q) = 0, then y is said to be a regular value of f. Otherwise, y is
said to be a singular value of f.

Lemma 1.1.4. (Sard’s Lemma) Let Q C R" be open and f € C'(Q).
Then p, (f(Sf(Q)) = 0, where p, is the n-dimensional Lebesgue measure.

Proof. Since Q2 is open, ) = US2,Q);, where @); is a cube for ¢ =1,2,---.
We only need to show that p,(f(Sf(Q))) = 0 for a cube @ C Q. In fact, let
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BROUWER DEGREE THEORY 3

[ be the lateral length of ). By the uniform continuity of f/ on Q, for any
given € > 0, there exists an integer m > 0 such that

[f'(@) = f'(y)l < e

for all z,y € Q with |z —y| < @ Therefore, we have

@) — F) — ) —y)| < / /(0 + tx — ) — /()| — vt

< ez -yl

for all z,y € Q with |z — y| < % We decompose Q into r cubes, Q?, of

diameter %, i =1,2,---,r. Since -k is the lateral length of Q°, we have
r =m". Now, suppose that Q'NS¢(Q) # 0. Choosing y € Q*NSf(£), we have

fly+2)—f(y) = f'()2+R(y, ) for all € Qi —y, where | R(y, 7+y)| < L2,
Therefore, we have

@) = fy) + F'W)(Q" —y) + Ry, Q).
But f'(y) = 0,0 f'(y)(Q°—y) is contained in an (n—1)- dimensional subspace
of R™. Thus, u,(f'(y)(Q" —y)) = 0, so we have

pn(£(Q1) < 27¢™(

Obviously, f(S(Q)) C Ur_; f(Q"), so we have

n(F(S5(Q)) < 722 (L2 = gty

By letting € — 07, we obtain j, (f(Sf(Q))) = 0. Therefore, u,(f(Sf(R))) =
0. This completes the proof.

Proposition 1.1.5. Let K C R" be a bounded closed subset, and f : K —
R™ continuous. Then there exists a continuous function f : R" — convf(K)
such that f(x) = f(z) for all x € K, where convf(K) is the convex hull of

JK).

Proof. Since K is bounded closed subset, there exists at most countable
{ki:i=1,2,---} C K such that {k; :i=1,2,---} = K. Put

|1‘—k’i|

d(z,K) = ylél}f( |z —y|, o«;i(z)=max{2— A A) }
for any « ¢ K and
. fla), €K,
o= { s 75
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4 Topological Degree Theory and Applications

Then f is the desired function.

Proposition 1.1.6. Let K C R™ be a bounded closed subset and f :
K — R™ continuous. Then there exists a function g € C°°(R"™) such that

() —g(a)] <e

Proof. By Proposition 1.1.5, there exists a continuous extension f of f to
R™. Define the following function

b(z) = {ce_llw, x| <1, (1.1)

0, x| > 1,

where ¢ satisfies [, ¢(z)dz = 1. Set ¢px(x) = A""¢(%) for all z € R" and

fa(x) = f()or(y — z)dz for all z € R™, X > 0.
Rn

It is obvious that suppfy = {x € R": fa(x) #0} = {z : |z| < A} for all
A > 0. Consequently, we have fy € C* and fi(z) — f(z) uniformly on K
as A — 07. Taking g as fy for sufficiently small ), g is the desired function.
This completes the proof.

1.2 Construction of Brouwer Degree
Now, we give the construction of Brouwer degree in this section as follows:

Definition 1.2.1. Let Q C RY be open and bounded and f € C*(Q). If
p ¢ f(0) and J¢(p) # 0, then we define

deg(f,p)= ) sgnJy(a),
z€f~1(p)
where deg(f,Q,p) = 0if f~(p) = 0.
The next result gives another equivalent form of Definition 1.2.1.

Proposition 1.2.2. Let 2, f and p be as in Definition 1.2.1 and let

de(z) =

{ce”e_l—lelﬂ7 |z < 1, (1.2)

0, otherwise,

where ¢ is a constant such that [, ¢(z) = 1. Then there exists ey = eo(p, f)
such that

deg(f,Q,p) = /ngg(f(x) —p)Js(z)dz for all €€ (0,¢).
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BROUWER DEGREE THEORY 5

Proof. The case f~!(p) = () is obvious. Assume that

fHp) = {1, 22, 2a )

We can find disjoint balls B,(z;) and a neighborhood V; of p such that f :
B, (z;) — V; is a homeomorphism and sgnJs(z) = sgnJy(z;) in B;(x;). We
may take ro > 0 such that B, (p) C N, V; and set U; = B,.(z;)Nf~(By, (p)).
Then |f(z) —p| > & on Q\ U, U; for some 6 > 0 and so, for any € < §, we
have

/que(f( p)Js(x dx—ngan () / be(f p)|J¢(x)|dx.

But we have

Jf p( )
/ 6 (f() = p)| T3 (@) |da = /B be(2)dz = 1,
€ < min{rg, d}.

This completes the proof.

Definition 1.2.3. Let Q € RY be open and bounded and f € C?(Q). If
p ¢ f(0). Then we define

deg(f, 2 p) = deg(f,Q,p"),

where p’ is any regular value of f that [p’ — p| < d(p, f(99Q)).

We need to check that, for any two regular values p; and ps of f,

deg(fa val) = deg(f, va2)'

For any € < d(p, f(02)) — max{|p — p;| : i = 1,2}, we have

deg(f, €2, pi) /d)e —pi)Jy(z)dx fori=1,2.

Notice that
dje(x —p2) - ¢6($ - pl) = divw(x),

where

1
w(z) = (1 —pz)/ ¢e(z — p1 +t(p1 — p2))dt.
0
We show that there exists a function v € C*(RY) such that supp(v) C Q and

(e (f(z) — p2) — Pe(f(z) — p1)]Js(x) = divv(x) for all z € Q.
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6 Topological Degree Theory and Applications

Lemma 1.2.4. Let Q C RY be open, f € C*(Q) and let d;; be the cofactor
of;
of 5.5 in Jy(z) and

vi(z) = {Zj—l w;(f(z))dij(z) = e€Q,

0, otherwise.

Then (vq(z),v1(z), -+ ,vn(x)) satisfies divv(z) = divw(f(x))Jf(x).
Proof. Since supp(w) C B(p,r) for r < max{|p —pi| : i = 1,2} + € <
d(p,09), we have

supp(v) C Q,
N N
Orvi(x) = Y dj0kWi(f(2)0i fr(x) + > Wi(f(2))idij (),
7,k=1 j=1
where 0, = %. Now, we claim that

ZNaidij<$) =0 forj=1,2,---,N.
i=1

For any given j, let f;, denote the column

(O frs Ok fim1, Ok fig1s -+ Ok fn)-

Then we have
dlj(x) = (_1)i+jdet(fw1’ e 7fi717fi+11 o 7fN)

Therefore, it follows that

N
81d1](x) = (_l)i—HZdet(.f‘ww"' 7f1'i717f"15'i+1".' 78ifwk7"' vfl'N)'
k=1

Set

Aki :det(aifwkafma"' 7f$i71’fwi+l7.'. )fwk—l7fil?k+1".. 7fIN)7

then we have ax; = a;; and

N
(D)™ 0dy(x) = > ()" ag + Y (-1 2ag
i,k=1 k>i
N
=) (1) opian,
k=1
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BROUWER DEGREE THEORY 7

where dg; = 1 for k < i, 6;; = 0 and 6p; = —d; for i,k =1,2,--- ,N. Hence

we have
(—1) ) oid Z VT iag = Y (1) T Eykag,
i=1 ik kyi=1
N .
Z D1y = 0.
i,k=1
Now, we have
N
divi(x Z di j0kw; (f (2))0: fr(x) + > w;(f(x))didij ().
G k=1 =1

On the other hand, Zf\; dij0i fx(x) = 6 Jy(x) with Kronecker’s §;y.
Therefore, it follows that

divo(z Z Oww; (f(2))0ix s () = divw(f(x))Js ().

k,j=1
This completes the proof.
Finally, we are ready to introduce the following definition:

Definition 1.2.5. Let Q@ C RY be open and bounded, f € C(Q) and
p ¢ f(0). Then we define

deg(f,$,p) = deg(g,Q,p),
where g € C%(Q) and |g — f| < d(p, f(0Q)).

Now, one may check the following properties by a reduction to the regular
case.

Theorem 1.2.6. Let Q C RY be an open bounded subset and f : Q —
RY be a continuous mapping. If p ¢ f(0€), then there exists an integer
deg(f, <, p) satistying the following properties:

(1) (Normality) deg(I,€Q,p) =1 if and only if p € 2, where I denotes the
identity mapping;

(2) (Solvability) If deg(f,,p) # 0, then f(x) = p has a solution in ;

(3) (Homotopy) If fy(z) : [0,1]xQ2 — R is continuous and p & Use(o,1)f:(092),
then deg(ft, 2, p) does not depend on ¢t € [0, 1];

(4) (Additivity) Suppose that 2y, €y are two disjoint open subsets of
and p ¢ f(Q—Q1UQ). Then deg(f,Q,p) = deg(f,Q1,p)+deg(f,Qa,p);
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8 Topological Degree Theory and Applications

(5) deg(f,,p) is a constant on any connected component of R™\ f(99).

As consequences of Theorem 1.2.6, we have the following results:

Theorem 1.2.7. Let f: B(0,R) C R" — B(0, R) be a continuous map-
ping. If |f(z)| < R for all x € dB(0, R), then f has a fixed point in B(0, R).

Proof. We may assume that « # f(z) for all z € 9B(0, R). Put H(t,
x —tf(x) for all (t,x) € [0,1] x B(0,R). Then 0 # H(t,z) for all [0,
0B(0, R). Therefore, we have

x) =
1] x

deg(I - faB(OvR)aO) = deg(ij(OvR)aO) =1
Hence f has a fixed point in B(0, R). This completes the proof.
From Theorem 1.2.7, we have the well-known Brouwer fixed point theorem:

Theorem 1.2.8. Let C' C R" be a nonempty bounded closed convex subset
and f : C — C be a continuous mapping. Then f has a fixed point in C.

Proof. Take B(0, R) such that C C B(0, R) and let r : B(0,R) — C be a
retraction. By Theorem 1.2.7, there exists ¢ € B(0, R) such that frzg = zo.
Therefore, o € C, and so we have rxy = . This completes the proof.

Theorem 1.2.9. Let f: R™ — R™ be a continuous mapping and 0 € 2 C
R™ with  an open bounded subset. If (f(z),z) > 0 for all x € 99, then
deg(f,Q,0) = 1.

Proof. Put H(t,r) = tx + (1 — t)f(x) for all (t,x) € [0,1] x Q. Then
0 ¢ H([0,1] x 992), and so we have

deg(f,2,0) = deg(I,9,0) = 1.
This completes the proof.

Corollary 1.2.10. Let f: R™ — R™ be a continuous mapping. If
L (),)

= +o00,
then f(R™) = R™.

Proof. For any p € R", it is easy to see that there exists R > 0 such that
(f(x)—p,z) > 0 for all x € IB(0, R), where B(0, R) is the open ball centered
at zero with radius R. By Theorem 1.2.9, we have

deg(f —p,B(0,R),0) =1

and so f(z) — p = 0 has a solution in B(0, R). This completes the proof.
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BROUWER DEGREE THEORY 9

Theorem 1.2.11. (Borsuk’s Theorem) Let 2 C R" be open bounded
and symmetric with 0 € 2. If f € C(2) is odd and 0 ¢ f(092), then d(f,€2,0)
is odd.

Proof. Without loss of generality, we may assume that f € C*(Q) with
J¢(0) # 0. Next, we define a mapping g € C*(Q) sufficiently close to f by
induction as follows:

Let ¢ € C'(R) be an odd mapping with ¢’(0) = 0 and ¢(t) = 0 if and
only if t = 0. Put Q) = {z € Q: 2 # 0} and h(x) = (;C((fl)) for all x € Q.
Choose |y ] sufficiently small such that y; is a regular value for h on ;. Put
g1(x) = f(x) — ¢(r1)y1, then 0 is a regular value for g; on ;.

Suppose that we have already an odd g € C*(Q) close to f such that 0 is
a regular value for g on Q. Then we define gr11(2) = gr(z) — A(Tp+1)Yk+1
with |yk+1| small enough such that 0 is a regular value for g1 on Q1.

If z € Qp41 and x4 =0, then

v €Qy, gry1(w) = gr(z), 92+1(~’C) = gi(z)
and hence J,

gri1(T) # 0. By induction, we also have g;,(0) = ¢1(0) = f/(0)
and so 0 is a regular value for g,,. By Definition 1.2.5 and Definition 1.2.1, we
know that

deg(f,9,0) = deg(gn, 2,0) = sgnJy, (0)+ > sgny, ()
z€g—1(0),z#£0

and thus deg(f,,0) is odd. This completes the proof.

The following theorem shows the relationship between Brouwer degrees in
different dimensional spaces:

Theorem 1.2.12. Let  C R" be an open bounded subset, 1 <m < n, let
f:Q — R™ be a continuous function and let g =1 — f. If y ¢ (I — [)(99),
then

deg(g,Q,y) = deg(gm, 2N R™,y),

where g,, is the restriction of g on QN R™.

_ Proof. We may assume that f € C?(Q2) and y is a regular value for g on
Q. A direct computation yields that J,(z) = J,, () and so the conclusion
follows from Definition 1.2.1. This completes the proof.

Let Q C R"™ be open and bounded and let f € C(2). By the homotopy
invariance of deg(f,€,y), we know that deg(f,(2,y) is the same integer as y
ranges through the same connected component U of R™\ f(9). Therefore, it
is reasonable to denote this integer by deg(f, 2, U). The unbounded connected
component is denoted by Us,. Now, we have the product formula:

Theorem 1.2.13. Let Q@ C R™ be an open bounded subset, f € C(Q),
g € C(R™) and let U; be the bounded connected components of R™ \ f(9£2).
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10 Topological Degree Theory and Applications
If p & (9£)(9), then

deg(gf,Qp) = 3 deg(f, Q, Ui)deg(g, Ui, p), (1.2.1)

K2
where only finitely many terms are not zero.

Proof. We first prove (1.2.1) only has finitely many non-zero terms. Take
r > 0 such that f(Q) C B,(0). Then it follows that M = B,.(0) N g~ *(p)
is compact, M C R™\ f(0f?) = U;>1U; and there exists finitely many i, say
i=1,2,---,t, such that Uﬁi}Ui DO M, where U141 = Uy N Byy1. We have

deg(f7Q7Ut+1) :07 deg(g7 Uzvp) =0

for i >t + 2 since U; C B,.(0) and g~ '(y) NU; = 0 for j > ¢ + 2. Therefore,
the right side of (1.2.1) has only finitely many terms different from zero.

We first suppose that f € C1(Q),g € C}(R") and p is a regular value of
gf, so we have

deg(gf,2p)= Y sgndes(z)= Y sgnJy(f(x))sgnJs ()
z€(gf)~1(p) z€(gf)~1(p)

and note

Z sgndg(z)sgnds(x)
zef~1(2),z€97(p)

= Z sgndg(2)[ Z sgnJy(z)]

z€g~1(p),z€f () z€f~1(z)

= ) sgndy(2)deg(f,9,2)
=€ /(Q).9()=p
t

Do sgndy(z)deg(f, 9, 2)

=1 z€U;

= deg(f,Q,Ui)deg(g,Us, p).

For the general case f € C(Q) and g € C(R"), Put
Vm = {Z € BT+1(O) \ f(aQ) : deg(f,Q,z) = m}'?
Ny, ={i € N : deg(f,Q,U;) =m}.

Obviously, Vi, = Uien,, U; and thus we have

Zdeg(f, 0, U)deg(g,Us,p) = Y [ Y deg(g,Ui,p)] = > _ deg(g, Vin, p).

m 1€EN,
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BROUWER DEGREE THEORY 11

Therefore, we need to show

deg(gf,9,p) Zdeg 9:Vin: D) (1.2.2)

Since 9V, C f(09), we take go € C*(R") such that

deg(gof,$%p) = deg(gf. % p), deg(go, Vim,p) = deg(g, Vim,p).
We may assume that My = B,11(0) N gy *(p) is not empty and then we have
p(My, f(OQ)) = inf{|z — 2| : © € My, z € f(OQ)} > 0.
Now we take fo € C'(Q) such that
max | (@) = fo(@)| < p(Mo, F(02)). fo() € Br+1(0)
and put

V! ={z€ B,11(0)\ fo(09Q) : deg(fo,9,2) = m}.
Then we have V,,, N My =V, N My and

deg (90, Vi, p) = deg(go, Vin N'V,,, p) = deg(go, Vyy, D).

Therefore, we have

deg(gofo, %p) =Y _ mdeg(go, Vi, p) = > _ mdeg(g, Vin, p)-

By a simple homotopy argument, one gets deg(gofo,$,p) = deg(gof, 2, p).
Thus the conclusion of Theorem 1.2.13 is true. This completes the proof.

By using the product formula, we can prove the following version of Jordan’s
separation theorem:

Theorem 1.2.14. Let Q; C R™, i = 1,2, be two compact sets which are
homeomorphic to each other. Then R™\; and R™\ 5, have the same number
of connected components.

Proof. Let h : Q0 — €5 be a homeomorphism onto €25, A’ be a continuous
extension of h to R™ and h—! be a continuous extension of h~!: Qs — Q; to
R™. Assume that U, are bounded components of R™\ {2; and V; are bounded
components of R™\ €. Notice that OU; C ©; and V; C Q. For any fixed ¢,
let W}, denote the components of R™ \ h(9U;). Since

Uj‘/j =R" \ Qs CR" \ h(@Uz)) = U Wy

for each j, there exists a k such that V; C Wy, so, in particular, Voo C W

For any p € U;, notice that h—1h'z = x for = € dU;, so, by Theorem 1.2.13,
we have

1= deg(Fh/a U’Lap) = Z deg(hl7 Ui7 Wk)deg(Fa Wkap)
k
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12 Topological Degree Theory and Applications
Put Ny = {j : V; C Wi}. Then we have
deg(Fv Wkap) = Z deg(Fv‘/jvp)a
JENK
deg(W',U;, W) = deg(W',U;, V)
for all j € Ni. Therefore, we have

1= Z Z deg(l',U;, V;)deg(h=1,V;, p)
k jEN

—Zdegh Ui, V;)deg(h=1,V;,U;),
J

(1.2.3)

since p € U; € R™\ (h™1(2)) € R™\ h=*(dV;). For any fixed j, the same
argument implies that

1= "deg(h',U;,V;)deg(l,Us, V;)deg(h=1,V;,U;). (1.2.4)

From (1.2.3) and (1.2.4), it follows that R™ \ Q; and R™ \ 2 have the same
number of connected components. This completes the proof.

Theorem 1.2.15. Let ¢ : R* — R! be continuously differentiable, gradeg(z) #
0 for |z| sufficiently large and lim;| . ¢(2) = +o0o. Then

lim deg(grade, B-(0),0) = 1.

T—00

Proof. We may assume that ¢ € C*°(R"). Otherwise, we use the same
technique as in Proposition 1.1.5. Define

m(z) = ce_lfl\z\, x| < 1,
o o > 1,

where ¢ satisfies [, m(z)dr = 1. Set my(z) = A""m(§) for all z € R and
oa(z) = d(y)ymx(y — x)dx for all z € R", A >0.
Rn

Then we consider ¢) instead of ¢ for sufficiently small A\ > 0. The initial
value problem

/ e
u(O) =reR"
has a unique local solution u(t,z) for all x € R"™. Since 9(t) = ¢(u(t,x))

satisfies ¢/ (t) = —|gradé(u(t,x))|* < 0, we have ¢(u(t,r)) < ¢(x ) on the
interval, where u(t,z) exists. By assumption lim|,_, ¢(z) = 400, u(t, )
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BROUWER DEGREE THEORY 13

can be extended to a unique solution on [0,00). We may also assume that
¢(xz) > 0 by adding a constant. Take rg > 0 such that grad¢(xz) # 0 for

|z| > ro, put M = max, gy ¢(x). Choose r1 > rg such that ¢(z) > M +1
ro

for |z| > r and set

My, = o(x).

max
z€0Br, (0)
Again, by ¢(u(t,z)) = ¢(x) — fot lgradp(u(s, x))|?ds, we know that if x €
0By, (0), then ¢(u(t,z)) < My. Let § = min{|grade(z)| : |z| > ro and
¢(x) < My}. Then, if |z| = r1, we have

d(u(t,z)) < My — %t aslong as |u(t,z))| > ro.
Thus |u(t, z)| < 7o for some t < %, which implies that
u(M,572,x) € B, (0) forall z € dB,,(0).

This implies that the Poincaré operator Px = wu(M;3~2,z) must satisfy
deg(I — P, B,,(0),0) = 1. Next, define
W) = (z —u(MS72t,2)[t + (1 — t)(EM1572) 7], ¢ #0,
") grade(x) t=0.
It is easy to check that h is continuous and h(t,z) # 0 for all € 9B, (0).

Thus we have deg(gradg, B, (0),0) = deg(I — P, B,,,(0),0) = 1. This com-
pletes the proof.

Theorem 1.2.16. Let 2 C R™ be an open subset and f : & — R" be
continuous and locally one to one. Then f is an open mapping.

Proof. For each zg € 2, we prove that there exists r > 0 such that
f(Br(z0)) contains a ball with center at f(z). Without loss of generality,
we may assume that xp = 0. Otherwise, put Q1 = Q — {0} and fi(z) =

f(x+z0) — f(20)-

Choose r > 0 such that f is one to one on B, (0). Set h(t,x) = f(%ﬂ ) —

f(fl%_tx) for all (¢t,x) € [0,1] x B,(0). Then h is continuous and h(t,z) # 0
for all (¢,x) € [0,1] x B,-(0). Otherwise, h(t,x) = 0 for some (¢,z) € [0,1] x
0B,(0) and so then %Hx = —ﬁm since f is one to one and x = 0, which is
a contradiction. Therefore, we have

deg(f, Br(o)a O) = deg(h(17 ')a BT(O)70) #0

since h(1,-) is odd. Choose t > 0 such that ¢ < inf{|f(z)| : = € 0B, (0)}.
Then

deg(f, B:(0),y) = deg(f, Br(0),0).
Now, we have B; C f(B,(0)) and thus f is open. This completes the proof.
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14 Topological Degree Theory and Applications

Theorem 1.2.17. Let 0 € Q be open bounded and symmetric. If A; C 9Q
is closed, A;N(—A4;) =0 fori=1,2,--- ,k and UF_ | A; = 9, then k > n+1.

Proof. Assume the contrary, k < n. Set fi(z) = 1 on A4;, fi(z) = —1
on —A; fori = 1,2--- k-1, fi(x) = 1on Q for i = k,---,n, and f =
(fi, f2,--+, fn). Extend f continuously to Q. Then f(—x) # Af(z) on 99
for all A > 0. Otherwise, f(—zo) = Af(xzg) for some A > 0 and zy € 9N.
Now, A > 0 since f(z) # 0 on 0. Also o ¢ A; U (—A;) for i < k — 1 since
fi(—x) = —fi(x). Thus zg € Ak. Also zg ¢ —Ay, so we have —zg € A;
for some i < k — 1 and thus zg € —A;, which is a contradiction. Therefore,
f(=x) # Mf(z) on 0Q for all A > 0. Thus we have deg(f,Q,0) = 0, i.e.,
f(x) = 0 for some = € €2, which is a contradiction to f,(r) = 1 on Q. This
completes the proof.

Next, we prove that the winding number is a special case of the Brouwer
degree.

Theorem 1.2.18. Let B(0,1) C C be the unit ball, I' = 0B(0,1) and
f:B(0,1) — C be a C* function. Assume that a ¢ f(I'). Then

1 1
d B(0,1 = — dz. 1.2.5
colf. DO =5 [ T (125)
Proof. It is sufficient to prove (1.2.5) in the case when a ¢ f(Sy). Let
f~Y(a) = {z1,22, - ,2}. Then we need to show
! d Z Jr(2). (1.2.6)
2ms f(F)zfaz_ sgneJy (zi o

i=1

Take € > 0 small enough such that the V;’s are disjoint, where V; = B(z;, €),
sgnJ¢(z) = sgndg(z;) for z € V;, V; C B(0,1) and the restriction of f to V; is
a homeomorphism for ¢ = 1,2,--- | k. Put S; = V;. Then f(5;) is a Jordan
curve such that a lies in its interior region, f(S;) has the same orientation as
S; if J¢(2;) > 0 and the opposite orientation if J¢(z;) < 0.

Now, set U = B(0,1) \ U¥_,V;. Then |f(z) —a|] > a in U for some a > 0.
We can divide U into small rectangles R; such that |f(z) — f(w)| < « on
each R;. Since the image f(O(R; N'V)) does not wind around a, we have
w(f(O(R; NV)),a) =0, and summing over all R; yields

dz = /
/f(l‘)z_a Z S)Z_a

Since the orientation of f(S;) is determined by J¢(z;), f(S;) winds exactly
once around a. Thus, we have

1
/f(S - adz = sgnJ¢(z;)
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BROUWER DEGREE THEORY 15

and so (1.2.5) is true. This completes the proof.
Remark. (1.2.5) is also correct if f is continuous on B(0,1).

Theorem 1.2.19. Let B(0,1) C C be the unit ball, I' = 9B(0,1) and
f(z) = X ,—panzn : B(0,1) — C with Y7 na,a, < co. Suppose that
f(T) CT. Then Y 7, na,a, is a non-negative integer.

Proof. Since 0 ¢ T, by Theorem 1.2.18, we have

deg(f,B(O, 1)5()) = i/ ldz
f

21 Sy 2

and

1 1 1
— —dz = — f(2)dz = nGn.
21 Jpry 2 ‘ 21 Jp ~ omi / 1z = Zna an

Thus the conclusion is true. This completes the proof.

1.3 Degree Theory for Functions in VMO

Let © C R" be an open bounded subset and f : @ — R"™ a measurable
function such that [, |f(z)|dz < oo. For any ball B.(z) C Q, we define
A, f(z) to be the average value of f as follows:

Arf(x) =

Lemma 1.3.1. A, f(z) is continuous in r for each x and measurable in x
for each r.

Proof. Since m(B,(z)) = r"m(B(0,1)) and m(dB,(x)) = 0, we have
XB,.(2)(¥) — XB.(x)(y) almost everywhere as r — s, where xg(y) = 1 if
y € E, while xg(y) = 0if y ¢ E. By Lebesgue’s dominated convergence
theorem, we know that A, f(x) is continuous in r. Also, we have

A f(@) = r"(m(B(0,1)))! /Q X, oy (0) 0,

XB,(z)(y) 18 clearly measurable, so the measurability of A, f(z) follows from
Fubini’s theorem. This completes the proof.

Lemma 1.3.2. Let ¢ be any collection of open balls in R” and U = UgeyB.
If 0 < ¢ < m(U), then there exist disjoint By, Bs, -+ ,Br € ¢ such that

S m(B;) > 37 "¢
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16 Topological Degree Theory and Applications

Proof. Since ¢ < m(U), there exists a compact subset K C U with m(K) >
¢, and finitely many of the balls in ¢, say, A1, As, -+, A, cover K. Let By be
the largest of the A;’s (that is, choose By to have maximal radius), let Bs be
the largest of the A;’s which are disjoint from B; and so on until the sequence
of A;’s is exhausted. If A; is not one of the B;’s, there exists ¢ such that
A; N B; # 0 and the radius of A; is at most that of B;. Therefore, A; C B,
where B} is the ball concentric with B; whose radius is three times that of
B;. But then K C U; B}, so

c<m(K <Z B;)=3"Y m(B).
This completes the proof.

Next, if f € L'(Q), we define its Hardy Littlewood maximal function H f
by

H f(w) = sup Ar|f|(z) = sup £ (y)ldy.

1
>0 m(BT' (.13)) ~/B7(w)

Theorem 1.3.3. There is a constant 3 > 0 such that, for all f € L*()
and a > 0,

m({z: Hf(x) > a}) < t/u )|dz.

Proof. Let E, = {z : Hf(z) > «a}. For each z € E,, we can choose
ry > 0 such that A, |f|(z) > «. The balls B, (z) cover E, and so, by
Lemma 1.3.2, if ¢ < m(E,), there exist x1,x2, -,z € E, such that the

balls B; = B, (v;) are disjoint and Zle m(B;) > 3 "c. But then

c<wzm <y /u Ny < = [ 15y

By letting ¢ — m(FE,), we obtain the desired result. This completes the proof.

Theorem 1.3.4. If f € L'(Q), then lim, .o A, f(z) = f(z) for almost all
x €.

Proof. For any € > 0, there exists a continuous function g such that

/\f x)|dx < e.

Continuity of g implies that for every x € © and 6 > 0, there exists r > 0
such that |g(y) — g(x)| < 0 whenever |y — z| < r, and hence

[A,g(2) — g(a)| < 6.
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Therefore, A,g(x) — g(x) as r — 0 for all € Q, so we have

liriljélp |Arf () — f(2)]
= lirf‘ljélp A (f — 9)(z) + (Arg(z) — 9(2)) + (9 — f)(@)]
< H(f = g)(x) + |f(z) — g(z)].

Hence, if

Eo={z: limsgp |Ar(f —g)(z) > a}, Fo={z:|f(z)—g(z)] > a},

T—

then we have N
Eo CFs U{z: H(f —g)(z) > 5}

However, am(F,) < [ [f(z) — g(z)|dz < € and so, by Theorem 1.3.3, we
have
2 v

m(Ea) (% «

By letting e — 0, we get m(E,) = 0 for all & > 0. This completes the proof.

In the following, let 2 be a smooth open bounded domain in R™ or a smooth
compact Riemannian manifold. (For the definition of Riemannian manifold,
we refer the reader to [171].

Next, we introduce the following concept:

Definition 1.3.5. Let f € L(Q) and B, C Q a (geodesic) ball with radius

r > 0. If sup,- ﬁ I5, ﬁ I, |f(2) = f(y)ldzdy < oo, then f is called
a bounded mean oscillation function. The set of all bounded mean oscillation
functions is denoted by BMO.

If limy—o o5y S5, mmy Js, [f(@) = f(y)ldedy = 0, then f is called a
vanishing mean oscillation function. The set of all vanishing mean oscillation

functions is denoted by VMO.
Example 1.3.6. If f € L}(Q), then f € BMO.
Example 1.3.7. f(z) =|log|x|| € BMO.

In the following, 1 < p < +o00, let W1P(Q) = {u(-) : @ — R such that u(-) €
LP(Q), /() € LP(Q)}.

Proposition 1.3.8. If f(-) € W1 then f(-) € VMO.
Proof. By Poincaré’s inequality, we have

1 1
S i [, sy < eme)® |95
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18 Topological Degree Theory and Applications

Then we deduce, by using the Holder inequality, that
1

— |f<y)—# 1f(@)| < e | |Vf()|dz)r.
m(B,) B, m(B,) B, Q

Thus the conclusion is true.

Recall that, for 0 < s < 1, 1 < p < 400, the fractional Sobolev space
W#P(Q) is characterized by

[f(x) = fFW)IP

o g < +00}.

Wer@) = (10 € (@), [

QJQ

Proposition 1.3.9. If sp = n, then W*?(Q2) C VMO.

Proof. Clearly, one has

[ [ 15w swlasay

:/ |f( ) )|| |(%)+sdxdy

B |yt

< c(m(B))%+5 /B dedy

5 Jo =y

for some constant ¢ > 0. By using Holder’s inequality, we deduce that

/ |f(x) — fly )|d$dy<cm(B)%+%+2_%/ |f(z) = f)IP
B BJB

B lo—y/r @ — y[rtep

and thus, when sp = n,

i [ [ ) sy < et [ VS0

This completes the proof.

Lemma 1.3.10. Let B(0,1) be the unit ball of R"*1 S" = 9B(0,1) and
f e LY(S™, S") besuchthat f € VMO. Then A, f(z) = m fBr(m) fly)dy
is continuous in x for small » > 0 and lim,_¢ |A, f(z)| = 1 uniformly on S™.

Proof. The continuity of A, f(x ) is guaranteed since f € VMO. To prove
the uniform convergence of A, f(x) on S™, we set

b0 (x) = / . /B . F(2)\dydz.

Then 0,(z) — 0 as r — 0 uniformly on S™ and we have

1—06,(z) <[A f2)] < 1.
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Thus |A, f(z)] — 1 uniformly on S™ as r — 0. This completes the proof.

Now, assume that f € L'(S",S") and f € VMO. By Lemma 1.3.10,
there exists ro > 0 such that A,.f(z) # 0 for all z € S™ and 0 < r <
ro. Let A,.f(x) be a continuous extension of A, f(z) to B(0,1). Then the
Brouwer deg(A, f, B(0,1),0) is well defined for r € (0, 7). It does not depend
on the extension A,f. Consider the homotopy {Atr1+(1—t)r2f}te[0,1] for all
r1,72 € (0,70). It follows from Lemma 1.3.10 that A, 4 (1—4)r, f(x) # O for all
(t,z) € [0,1] x S™ and thus deg(A, f, B(0,1),0) does not depend on r € (0, o).
Now, we define the topological degree by

deg(f, ") = lim deg(A, f, B(0,1),0). (1.3.1)

Proposition 1.3.11. We have

~ A f
lim deg( A, f, B(0,1),0) = lim deg(———, B(0,1),0).
lim deg (4, B(0.1),0) = lim deg( T B0.1),0
Proof. Consider the homotopy H,(t,z) = _Ad@) g ) (t,x) €

_ (1=t)+t| A, f ()]
[0,1] x B(0,1). By Lemma 1.3.10, we know that H,(t,z) # 0 for all (t,z) €
[0,1] x S™ for r sufficiently small and so the conclusion follows from Theorem
1.2.6.

Remark. For more results regarding the degree defined by (1.3.1), we refer
the reader to Brezis and Nirenberg [29] (see also [25], [27], [28], [175] for more
results on the computation of the degree for Sobolev maps).

1.4 Applications to ODEs

In this section, we give some applications of results in section 1.2 to periodic
and anti-periodic problems of ordinary differential equations in R™.

Theorem 1.4.1. Let f : R x R® — R" be a continuous function and
f&+T,2) = f(t,z) for all (t,z) € R x R™. Suppose that the following
conditions are satisfied:

(1) There exists r > 0 such that (f(¢,z),z) < O0for allt € [0,T] and |z| = r.
(2) For each x € R™, there exist r, > 0, L, > 0 such that

|f(t,y) — f(t,2)] < Lgly — 2| forall t € R, y,z € B(z,ry).
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Then the following equation:
(F1.4.1)

has a solution.

Proof. For each 2y € B(0,r), by Peano’s Theorem, the initial value prob-

lem
{x'(t) = f(t,z(t)), t € (0,ty),

#(0) = 7o (E 1.4.2)

has a solution for some ¢y > 0. If (E 1.4.2) has two solutions z(-), y(:), then

Llo(t) — yO? = 20 (6) — o/ (), (0) — y(1)) < Laglolt) —y(d)]  (14.1)

for some t1 € (0,tg) and ¢t € (0,¢1). From (1.4.1), we get
(1) = y(t)] < eP=o*lz(0) — y(0)] for all ¢ € (0,11),

so z(t) = y(t) for all t € (0,¢1). Therefore, xz(t) = y(¢t) for t € [0,1¢], so the
solution of (£ 1.4.2) is unique.

If 2(t) = r, then 4 |x(t)|? = 2(2/(t), 2(t)) = (f(t,z(t)), z(t)) < 0. Thus z(t)
must stay in B(0,r) for all ¢ € [0, o], so z(t) can be extended to [0, +00) and
also z(t) € B(0,r) for t € [0, +00).

Now, we define a mapping S : B(0,r) — B(0,r) as follows:

Sy =ax(y,T) forall ye B(0,r),

where z(y,t) is the unique solution of (£ 1.4.2) with initial value y.

Again, by using (1.4.1), one can easily prove that S is continuous. Thus, by
Brouwer’s fixed point theorem, S has a fixed point in B(0,r), i.e., (E 1.4.1)
has a solution. This completes the proof.

Theorem 1.4.2. Let G : R — R be an even continuous differentiable
function such that G is Lipschitzian and f : R — R™ be a continuous
function such that f(t+7) = —f(t) for all t € R, then the following equation:

{x’(t) = 0Gax(t) + f(t), tER, (E1.4.3)

z(t+T)=—x(t), teR
has a solution.

Proof. First, if z(t) is a solution of (£ 1.4.3), then

|2/ (t)]> = (0Gx(t), 2" (t)) + (f(t),2'(t)) for all t € R.
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Integrate over [0,7] and notice that fOT(an(t), x'(t))dt = 0, we have

T T
/0 ! (1) 2dt = / (1), 2/ (t))dt

and thus ( fo |2’ (¢ |2dt 3 < fo |f(t) |2dt 3,
In addition, 2z (¢ fo s)ds — fT s)ds and thus we have

T
ma [2(t)] < YL ( JRCIRCEE

te[0,T] 2

We take an even continuous differentiable function ¢ with ¢(z) = 1 for |z| <
M and 9¢(x) = 0 for |z| > 2M.
Now, we consider the following equation:

{xqt) +a(t) = 0(@M)GW) + 3l OP) + O, te R py )
z(0) =y € R".

Since ¢ is uniformly bounded, we have, for each solution z(t) of (E 1.4.4),

d
dt(

for some constant L > 0. Thus, if there exists a N > 0 such that |z(0)] < N,
then |z(T)| < N.

Now, we define a map S : R* — R™ by Sy = —«(T), where z(-) is the
unique solution of (F 1.4.4) with z(0) = y. It is obvious that S is continuous,
so, by Brouwer’s fixed point theorem, Theorem 1.2.7, there exists y € R™ such
that Sy =y, i.e., (T) = —y. Thus |z(t)| < M for allt € R and, consequently,
it follows that

() + |2(O)* < 2Lla(®)] + 2/ f(®)l|=(t)]

A(P(x(t))|G(x(t)) + %Ix(t)lg]) = 0Gx(t) + x(1).

Therefore, x(-) is a solution of (E 1.4.3). This completes the proof.

Corollary 1.4.3. Let A be a n X n symmetric matrix and f : R — R"
be a continuous function such that f(t +7) = —f(t) for all t € R. Then the
following equation:

{x’(t) =Az(t) + f(t), tER, (E 1.4.5)

z(t+T) = —x(t), teR
has a solution.

Proof. Since A is symmetric, put Gu = %(Au,u) for v € R™ and then
A = 0G. Thus the conclusion follows from Theorem 1.4.2.
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Example 1.4.4. The following equation:

x)(t) = 221 (t) — axa(t) + sint, teR,
zh(t) = —axy(t) — 3xa(t) + sin’t, teR, (E 1.4.6)
1t +m) = —21(t),x2(t + m) = —22(t), t€R,

has a solution, where a € R is a constant. In fact, set

(5 e () - (3)

Then A is symmetric and the conclusion follows from Corollary 1.4.3.

1.5

1.

Exercises

Let 2 C R™ be open bounded and 0 € 2 and f : Q — R™ be continuous
and (f(z),x) > 0. Show 0 € f().

Let Q@ C R? be open bounded and u(z,y),v(z,y) : @ — R be contin-
uously differentiable functions with u, = v, and u, = —v,. Assume
that f(z,y) = (u(z,y),v(x,y)) : @ — R? has m many zero points in
Q\ Sf(€Q). Show that deg(f,2,0) =m.

Prove the fundamental theorem of algebra by using Brouwer degree.

Let B(0, 1) be the unit ball in R™ and f : R™ — R™ be a continuous func-
tion such that f(0B(0,1)) = 0B(0,1). Show that deg(f™, B(0,1),0) =
(deg(f, B(0,1),0)™ for all positive integer m.

For any integer n, show that there exists an open bounded subset {2 C R
and a continuous function f : ) — R such that deg(f,2,0) = n.

Let 2 C R™ be open bounded, f,g € C(Q) and |g(z)| < |f(z)]| for all
x € 0. Show deg(f — ¢g,9Q,0) = deg(f,,0).

Let B(0,1) be the unit ball of R*"*1 and f : 9B(0,1) — 9B(0,1) be
continuous. Show that there exists xg € dB(0, 1) such that f(zo) = o
or f(zo) = —mo.

Let Q C R™ be open bounded symmetric, 0 € Q2 and f: 9Q — R™ be a
function with m < n. Show that f(z) = f(—=x) for some x € 02

Let  C R™ be open bounded and f € C(Q). Suppose that there exists
xp €  such that f satisfies the following condition:

f(x) —xg =t(x —xp) for some x € IN.
Then ¢ < 1. Show that f has a fixed point in Q.
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10. Let ¢ : B(0,1) C R™ — R™ be a continuous function such that ¢(0B(0,1)) C
R\ {0}, vh(x) = (55, for all 2 € 9B(0,1) and OB(0, 1) # $(2B(0,1)).
Show that

deg(¢, B(0,1),0) = deg(¢, B(0,1), p)
for all p € 9B(0,1) \ ¥(9B(0,1)).

11. If f € LY(Q), show that lim, g m fBT(x) |f(y) — f(z)|dy = 0 for
almost all z € Q.

12. If f(0) = Y307 jae™? € L2(S1, S1) and Y o2 nlan|* < +oo, show that
deg(f, ") = nlan|*.
n=0

13. Show that the following equation:

2/ (t) = 23(t) + sin®t, t€E R,
z(t+m) = —x(t) teR,

has a solution.
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Chapter 2

LERAY SCHAUDER DEGREE
THEORY

Many problems in science lead to the equation Tz = y in infinite dimensional
spaces rather than to the finite dimensional case in Chapter 1. In particu-
lar, ordinary and partial differential equations, and integral equations can be
formulated as abstract equations on infinite dimensional spaces of functions.
For the equation Tx = y, we again are interested in the questions raised at
the beginning of Chapter 1.

In 1934, Leray and Schauder [185] generalized Brouwer degree theory to an
infinite Banach space and established the so-called the Leray Schauder degree.
It turns out that the Leray Schauder degree is a very powerful tool in proving
various existence results for nonlinear partial differential equations (see [135],
[185], [203], [228], etc.).

In this chapter, we will introduce the Leray Schauder degree. This chapter
consists of five sections.

Section 2.1 gathers together some well known results on compact maps.

In Section 2.2, we first show how a compact map can be approximated
by maps with finite dimensional ranges and from here we define the Leray
Schauder degree for compact maps. The main properties of this degree are
presented in theorems 2.2.4, 2.2.8 and 2.2.16. Also, various consequences, for
example, Schauder’s fixed point theorem, the Leray Schauder alternatives and
compression and expansion fixed point theorems, are presented in this section.

Section 2.3 presents a degree theory for multi-valued maps, and the theory
is based on the fact that a upper semicontinuous map admits an approximate
continuous selection (see Lemma 2.3.7). We use the degree theory in this
chapter to discuss bifurcation problems in Section 2.4 and ordinary (initial
and anti-periodic) and partial differential equations in Section 2.5.

2.1 Compact Mappings

In this section, we give some properties of compact operators in topological
spaces.

25
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Definition 2.1.1. Let X be a topological space. A subset M C X is
called compact if every open covering of M has an finite covering, i.e., if
M C Ui V;, where V; is an open subset of X for all i € I, then there exist
1;€1,7=1,2,---,k, such that M C U;‘f:lVij.

M is called relatively compact if M is compact.

Definition 2.1.2. Let X be a nonempty subset and d(-,-) : X x X — R
be a function satisfying the following conditions:

(1) d(z,y) >0 for all x,y € X and d(x,y) =0 iff x = y;
(2) d(z,y) = d(y,x) for all z,y € X;
(3) d(z,y) < d(z,z) +d(z,y) for all x,y,z € X.

Then we call d a metric on X and (X, d) a metric space.

Let (X,d) be a metric space, x € X and r > 0. Let B(z,r) = {y € X :
d(x,y) < r} be a open ball with center = and radius r.

Proposition 2.1.3. Let (F,d) be a metric space. Then, a subset M C X is
compact if and only if every infinite sequence (z,,)22; C M has a convergent
subsequence in M.

Proof. Assume that M is compact and (x,)52, C M. If (2,)5, does
not have a convergent subsequence in M, then, for any y € M, there exist
ry > 0 and an integer N, > 0 such that B(y,r,) N {z, : n > n,} = 0.
Notice that UyenmB(y,my) D M, so there exist finitely many y1,y2, - ,¥x
such that M C Uj_,B(y;,ry,). However, B(y;,ry,) N {z, : n > m} = 0 for
i=1,2,--- ,k, where m = max{n,, : i =1,2--- ,k}. Thus

{zp:n>m}=Mn{z,:n>m}
C UF_ B(yi, my,) N {zn s n > m}
:@7

which is a contradiction and so (x,)$2; has a convergent subsequence in M.

On the other hand, assume that every infinite sequence (x,)52; C M has
a convergent subsequence in M. We prove that M is compact. Let (U;)ier
be an open covering of M. For any = € M, there exists U; such that x € U;.
Since U; is open, there exists r > 0 such that B(xz,r) C U;. Put r, = sup{r >
0: B(z,r) C B; for some i € I'} and set 7o = inf{r, : £ € M}. We next prove
that 7o > 0. There exists a sequence (z,)52; C M such that r; = ry, — ro.
By assumption, there exists a subsequence (z,, )72 ; such that z,, — yo € M,
so there exists an integer N > 0 such that z,, € B(xg,4 'ry,) for k > N.
Thus it follows that B(z,,,4 'ry,) C B(xe,27'r,,) C B; for some i € I.
Consequently, we have ro > 271r, . For any 21 € M, if B(z1,2 ) 7 M,
there exists o € M \ B(x1,271rg), and if U?_, B(271x;,70) 7 M, there exists
r3 € M\ U2_B(2712;,70), and we claim that this process will terminate at
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some finite step. If not, there exist x,, € M \ U?;llB(xi, 271rg) for n > 4, so
we have

d(Tpy Tin) > 27y forn % m,

which is a contradiction to our assumption. Thus, there exist finitely many
T1,T2, T, such that M C U?_ B(z;,27'ry) C UM, U;, and M is compact.
This completes the proof.

Definition 2.1.4. Let E be a real vector space. A function |- || : £ — R
satisfying the following conditions:

(1) ||lz|| > 0 for all z € E, and ||z|| = 0 if and only if z = 0;
(2) |laz|| = |a|ljz|| for all « € R, xz € E,
B3) Nz +yll <zl + llyll for all 2,y € E

is called a norm on E and (F, || - ||) a real normed space or, simply, E is a
normed space. If E is also complete, then we say E a real Banach space.

Now, we give some well-known Banach spaces in functional analysis.

Example 2.1.5. Let 1 < p < oo and
P={(x;):ax; €R for i =1,2,--+, 32 |x;|P < +00}.

Then [P is a Banach space.

Example 2.1.6. Let

c={(z;):z; e Rfori=1,2,---, and lim z; exists}.

11— 00
Then c is a Banach space.

Example 2.1.7. Let ¢g = {(2;) : z; € Rfor i =1,2,---, and lim; o 2; =
0}. Then ¢ is a Banach space.

Example 2.1.8. Let  C R" be a bounded measurable subset, 1 < p < oo,
and LP(Q) = {f(-) : @ — R such that [, |f(x)[Pdz < co}. Then LP(Q) is a
Banach space.

Lemma 2.1.9. (Riesz’s Theorem) Let E be a real normed space and
M C E be a proper closed subspace. Then, for any € € (0,1), there exists
xo € E such that ||zg|| =1 and d(x¢, M) = infyear ||zo — y|| > €.

Proof. Since M # E, there exists yo € E'\ M such that d(yo, M) = §p > 0.

Take y; € M such that ||y — y1]] < € 16y and put zo = =i, Then
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||zo]| = 1 and

. Yo — U
d(zo, M) = inf |- 91 _
( 0 ) yE]W” ||y0_y1|| H

— inf — -1 — — —
Jnf llyo =y~ llyo =1 = llvo — snllyll
> 650_160
= 6’
which is the desired result. This completes the proof.
As a consequence of Lemma 2.1.9, we get the following:

Proposition 2.1.10. Let FE be a real normed space. Then, the unit closed
ball B(0,1) = {x : ||z|| < 1} is compact if and only if dim(F) < +oo.

Definiton 2.1.11. Let E be a real normed space. A mapping T': D(T) C
E — E is called compact if T maps every bounded subset of D(T) to a
relatively compact subset in E. T is said to be completely continuous if T is
continuous and compact.

Definition 2.1.12. Let X,Y be two real Banach spaces and 2 C X be an
open subset. A mapping F' : Q — Y is said to be Fréchet differentiable at
xo € Q if there is an F'(xo) € L(X,Y) such that

6($0, h)
lim =0,
h=0 ||h|

F(.”L'() + h) = Fxo+ Fl(l‘o)h + 6({1}0, h),

where L(X,Y) is the set of all bounded linear operators from X — Y.

Proposition 2.1.13. Let X,Y be two real Banach spaces and 2 C X be
an open subset. If F': Q@ — Y is a continuous compact mapping and F is
Fréchet differentiable at zg € €, then F'(z) is compact.

Proof. Take any sequence (hy)5>, C X with ||h,|| =1forn=1,2,---.
Let € > 0. There exists dy > 0 such that M < & for all h € X with
Il =1 and 6 < dg. Since F' is compact, (F(xo + dohy)) has a convergent
subsequence, say, (F(xo + dohn,))7> ;. We also have

F'(@0)hn, = F'(20)n, = 05 ' [F (20 + dohn) — F(wo + don, )]
41;0_1 [w(fﬂo, 5Ohnk) - w(l‘o, 50hnl )]

Then we deduce, by letting &k, — oo, that
[F" (20)hany, = F' (o), || < €.

Again, by letting e — 0, we get that (F’(x¢)hn, )52, is convergent; thus F'(z)
is compact. This completes the proof.
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Let E be a real Banach space and C([0,T], E) be the space of continuous
functions from [0,7] to E with the norm |z(-)|| = max,c(o 7 [|z(t)||, then
C([0,T], E) is a Banach space. A subset B C C([0,T], E) is called equicontin-
uous if, for any € > 0, there exists d(¢) > 0 such that ||z(t1) — z(t2)|| < € for
all z(-) € B and ty,t5 € [0, T] satisfying |t; — 2] < 4.

Theorem 2.1.14. (Ascoli Arzela’s Theorem) A subset M C C([0,T], E)
is relatively compact if and only if

(1) M is equicontinuous and

(2) for each t € [0,T], M(t) = {z(t) : z(-) € M} is relatively compact in E.

Proof. The proof follows easily from Theorem 3.1.16 in the next chapter.

Theorem 2.1.15. Let E be a real Banach space, T : E — E be a contin-
uous compact mapping with A € R, Ty =T — AI and o(T) be the spectrum
of T. Then the following conclusions hold:

1) If E is infinite dimensional, then 0 € o(T');

2) If 0 # X € o(T), then A is an eigenvalue of T

4

(1)

(2)

(3) o(T) is a countable subset;

(4) If X ¢ o(T), then T) is a homeomorphism onto X;
(5)

5 E = N(Tk) @® R(T¥) for all A # 0, k > 0, where dim(N(T¥)) < +oo,
and R(N(T¥)) is closed in E.

Proof. (4) is obvious. For (1) suppose that 0 ¢ o(T). Then T~ : E — E'is
continuous. Since F is infinite dimenbional there exists a sequence (z,,)22; C
such that ||z,| = 1 and ||z, — 2] > % for n # m. Put y, = Tz, then (y,)
has a convergence subsequence, but T Yy, = x, will have a convergence
subsequence, which is a contradiction. Thus 0 € o(T).

For (5) denote by N; = N(T%) and R; = R(T%) for i = 1,2,---. The finite
dimensional property of N; follows directly from the compactness of T. To
prove the closedness of R;, first, note there exists a closed subspace M of F
such that £ = N; & M. Define an operator S : M — E by

Sx=Tix forall z € M.

Observe that R(S) = R(T%), so we only need to prove R(S) is closed. It is
obvious that S is one to one. Now, we prove that there exists v > 0 such that

|[Sz|| > ~||z|| for all x € M. (2.1.1)
If this is not true, there exist z,, € M with |z,|| = 1 such that ||Sz,| <n~!

Since S = (T = AI)" = (=A)'I 4+ ¥, C](=\)""7T7, one easily sces that
(25)22, has a convergence subsequence (z, ) with z,, — z¢. Thus Sz =0,
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which implies that zo € N; and so zg = 0, which contradicts ||zg]| = 1. From
(2.1.1), we deduce that M = R(T}) is closed.
For (2) notice that Ny C Ny C -+ and Ry 2O Ry O ---. We cannot have

N; # N;y; for all i. Otherwise, by Lemma 2.1.9, there exists a sequence of
x; € Niz1 \ N; such that ||z;|| =1 and |lz; — z;|| > § for i # j and thus we
have

|Tx; — Tx;|| > 27"\ for all j < i,

which is impossible since T" is compact. Thus N; = N; for some i and all
j > 1 and, consequently, R; = R; for all j > 4. If A # 0 is not an eigenvalue
of T, then T) is one to one. For any y € R;_1, we have Thy € R; = R;11
and thus there exists x such that Thy = Ti“x. Therefore, y = Tiz € R; and
R;,_1 = R;, so on. Thus we get R(T\) = E. Therefore, \ ¢ o(T).

To prove (3), we prove that, for any r > 0, {A € o(T) : |A\| > r} is a
finite subset. Suppose the contrary, i.e., there exist A,, |An| > 7, n=1,2,---,
and z,, € E with |z,| = 1 such that Tz, = \,x, and {z1,22, - ,2,} is
linearly independent. Put M, = span{zi,x2, - ,2,}. Then M, C M, ;.
By Lemma 2.1.9, there exist yn+1 € Mp41 \ M, such that ||y,4+1]] = 1 and
d(ynt1, My) > 3 forn=1,2,---. Let y,11 = /" 'alz;. Then

Ant1Yn+1 — AYny1 = i 05 (Ang1 — Ai)xi = 2n € Mp,.
From which we deduce, for m > n, that

HTym - TynH = ”(/\mym - )‘nyn) — (Zm-1— Zn—l)ll
Z ‘)\m|d(ym7Mm—1) Z

)

N3

which contradicts the compactness of T. Thus o(T") is countable. This com-
pletes the proof.

2.2 Leray Schauder Degree

In this section, we construct the Leray Schauder degree. First, we need
the following result on the approximation of a compact mapping by finite
dimensional mappings.

Lemma 2.2.1. Let F be a real Banach space, {2 C E be an open bounded
subset and T : Q — E be a continuous compact mapping. Then, for any
e > 0, there exist a finite dimensional space F' and a continuous mapping
T.:Q — F such that

|Tex — Tz| < e forall z € Q.
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Proof. Since T is relatively compact in E, for any € > 0, there exists a
finite subset {1, 22, - ,x,} C Q such that

T(Q) € U, B(Tx;, ).

Now, we define a mapping T. : Q — F = span{Txy,Txs, -+ ,Tx,} as
follows:

=X 1F( )Txi for all z € Q,

where ¢;(z) = max{0,e — ||Tx —Tz;||} and T'(x) = X7, ¢;(x). Then it is easy
to check that T, satisfies the conditions of Lemma 2.2.1, so the conclusion
follows. This completes the proof.

Lemma 2.2.2. Let E be a real Banach space, B C E be a closed bounded
subset and T': B — F be a continuous compact mapping. Suppose Tx # x
for all x € B. Then there exists ¢y > 0 such that « # tT., x4+ (1 — )T,z for
all t € [0,1] and « € B, where ¢; € (0,¢0) and T¢, : B — F, for i = 1,2 as in
Lemma 2.2.1.

Proof. Suppose the conclusion is not true. There exist €] — 0, €} — 0,
tj — to, x; € B such that ;T j2; + (1 —t~)Tja:j =gjforj=1,2,---.

By compactness of T, (ij) 1 has a subsequence say (T'zj,), converging
toy € E. By Lemma 2.2.1, Tka]k — y for i = 1,2. Thus z;, — y € B.

Therefore, Ty = y, which is a contradiction.

Definition 2.2.3. Let E be a real Banach space,  C E be an open
bounded set and T : {2 — E be a continuous compact mapping. Now, suppose
that 0 € (I — T)(02). Then, by Lemma 2.2.2, there exists ¢y > 0 such that

x#£tT.,x+ (1 —t)T.,x foralltel0,1], z€ 09,

where €; € (0,e0) and T, : Q@ — F,, for i = 1,2 as in Lemma 2.2.1. Hence
Brouwer’s degree deg(I — T, 2 N F,,0) is well defined, and so we define

deg(I — T,Q,0) =deg(I — T, QN F,,0),
where € € (0, €p).
By the homotopy property of Brouwer degree, we have
deg(I — Te,, QN span{F,, UF,},0) =deg(I — T,, Q2N span{F, U F,},0).

But T¢, : QN span{F., UF.,} :— F; for i = 1,2, so by Theorem 1.2.12 we
have

deg(I —Te,, Q2N span{F, UF,,},0) =deg(I —T.,,Q2NF,0)
and

deg(I —T.,,Q2Nspan{F., UF.,},0)=deg(I -T,,Q2NF,0).
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Thus we have
deg(I — T, , QN F,,,0) =deg(I —Te,,Q2N F,,0)

and the degree defined in Definition 2.2.3 is well defined. For the general case,
if peg (I —T)(09), we define deg(I —T,Q,p) =deg(I — T —p,Q,0).

We recall some properties of the Leray Schauder degree as follows:
Theorem 2.2.4. The Leray Schauder degree has the following properties:
(1) (Normality) deg(I,€,0) =1 if and only if 0 € Q;

(2) (Solvability) If deg(I —T,Q,0) # 0, then Tw = x has a solution in €,

(3) (Homotopy) Let Ty : [0,1] x 2 — E be continuous compact and Tz # x
for all (¢,2) € [0,1] x 9. Then deg(I — Tt,2,0) doesn’t depend on
t €10,1];

(4) (Additivity) Let Q1,9 be two disjoint open subsets of Q and 0 ¢
(I — T)(Q — Ql U QQ) Then

deg(I —T,9Q,0) =deg(I —T,Q1,0) + deg(I — T, Qs).

Proof. The proof follows from the corresponding properties of the Brouwer
degree.

The following is the well-known Schauder fixed point theorem:

Theorem 2.2.5. Let C' C F be a nonempty bounded closed convex subset
and T : C — C be a continuous compact mapping. Then T has a fixed point
in C.

Proof. The proof is the same as the proof of Brouwer’s fixed point theorem.

If we only require the continuous condition on the mapping 7', then the
conclusion of Theorem 2.2.5 fails as the following example shows:

Example 2.2.6. Let T : 12 — [? be a mapping defined by

T(.’Eh.’lﬁg,' ) = (1 - ||.’I,'||,.’)31,$27"')

for all z = (21,29, --) € 2. Then T : B(0,1) — B(0,1) is continuous without
a fixed point in B(0, R).

The Schauder fixed point theorem can be applied to yield the following
result on hyper-invariant subspaces of a linear bounded operator:

Theorem 2.2.7. Let E be a Banach space, T': E — E be a nonzero linear
continuous compact mapping and I'(T)) = {S € L(EF) : T'S = ST}. Then
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there exists a nontrival hyper-invariant subspace F' of T, i.e., SF C F for all

S € I(T).

Proof. Assume that the conclusion is not true. Then T does not have
eignvalues. Take xo € E such that ||zg| = 2. Then, for any z € E, we have
Tx # 0 and {STxz : S € I'(T)} is a space which is invariant under I'(T") and
so we have

(Sz:Sel(T)} =E.

Now, for any y € B(zo, 1), there exists S, € I'(T") such that ||.S, Ty — x| <
1. By continuity of S, there exists 6(y) > 0 such that ||S, Tz — z¢|| < 1 for

all € B(xo,1). Since {B(y,d(y)) : y € B(xo,1)} is an open covering of
B(zg, 1), there exists a locally finite open refinement {V;};cr of {B(y,d(y)) :
Yy € B(LU(), 1)}

Let {¢;}icr be a partition of unity subordinated to {V;};c; and define a
mapping K : B(xg,1) — B(xo, 1) as follows:

Kx = Yicr¢:(x)S;Tx  for all x € B(xp, 1).

Since T' is compact, K is a continuous compact mapping and hence T" has a

fixed point yo € B(zo,1), i.e.,

Yie19i(y0)SiTyo = yo.

Puww Z ={y € E : Bic1¢i(y0)S:Ty = y}. Then Z is a finite dimensional
subspace of E, and T : Z — Z and hence T has an eigenvalue, which is a
contradiction. This completes the proof.

Theorem 2.2.8. Let F be a Banach space and 2 C E be an open bounded

subset. If T : Q — E, S : E — E are continuous compact mappings and
pe¢ (I—S)I —T)(09N), then

deg((I —S)(I —T),Q,p) = Eicrdeg(I — T,Q,U;)deg(I — S,U;,p), (2.2.1)

where {U; };¢1 are connected component of E\(I—T)(02) and deg(I-T,Q,U;)
is deg(I — T,9, z) for any z € U;.

Proof. We first prove that (2.2.1) only has finitely many nonzero terms.
Take 7 > 0 such that (I —T)(Q) C B,(0), then M = B,.(0)N (I —S)"(p)
is compact, M C R™\ f(0f?) = U;>1U; and there exists finitely many i, say
i=1,2,---,t, such that Uﬁi}Ui O M, where Up11 = Us N Bry1.

We have deg(I —T,9Q,Uy1) = 0 and deg(I — S, U;,p) = 0 for ¢ > ¢t +2 since
U; C B.(0) and g~ *(y) NU; = 0 for j > t + 2. Therefore, the right side of
(2.2.1) has only finitely many terms different from zero. Let

Vin ={2€ Br11(0)\ (I = T)(0R) : deg(I — T,Q,z) = m}.
The same proof as in Theorem 1.2.13 yields
Eiefdeg(l - Ta Qv Uz)deg(I - Sv Ulap) = Em."ndeg(l - Sa Vm;p)
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Now, we may choose € sufficiently small. Let F' be a finite dimensional sub-
space, p € Fand Ty : Q@ — F, Sy : B,4+1(0) — F be two continuous compact
mappings such that

|Tx — Thz|| < e,z € Q,||Sy — S1y|| < e for all y € B,11(0).
Then, by the homotopy argument, we have
deg((I = S)(I = T),2,p) = deg((I — $1)(I —T1), 2, p)
and

Ymmdeg(I — S, Vy,,p) = Symdeg(I — Sy, Vi, p)
= Xmdeg(I — S1,V,, N F,p).

Therefore, by Theorem 1.2.13, we have
Sierdeg(I — T,Q,U;)deg(I — S,U;,p) = deg((I — S1)(I —T1),2N F,p).
One easily gets
deg((I — S1)(I — 1), p) = deg((I — S1)(I —T1), QN F,p).
Thus the conclusion of Theorem 2.2.8 is true. This completes the proof.

Theorem 2.2.9. Let E be a Banach space, Ey be a closed subspace of
E and ©Q C E be an open bounded subset. If T : Q — E; is a continuous
compact mapping and p € Egy, then deg(I — T,Q, p) = deg(I — T,Q2N Ey, p).

Proof. Since T(QLC FEy, we may choose a finite dimensional space F' C Ej
with p € Frand Ty : Q — F such that | T2z — T1z|| < € in Definition 2.2.3 for
small € > 0. Then we have

deg(I — T,Q,p) =deg(I —T1,QN F,p) =deg(I — T,Q2N Ey,p).

Theorem 2.2.10. Let E be a Banach space and 0 € 2 C E with Q be an
open bounded subset. If T': 2 — E is a continuous compact mapping, then
one of the following statements holds:

(1) T has a fixed point in €;
(2) There exist A > 1 and z € 092 such that Tz = Az.
Proof. If (2) holds, we are finished. Otherwise, put H(t,z) = x — tTx for

all (t,z) € [0,1] x Q. If Tx = x for some x € 99, then (1) holds. Thus, we
may assume that Tz # zx for all x € 0. Therefore, we have

x ¢ tTx for all (¢,x) € [0,1] x 0.
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By Theorem 2.2.4, we have
deg(I —T,Q,0) = deg(I,Q,0) =1

and so T has a fixed point in 2. This completes the proof.

Lemma 2.2.11. Let E be an infinite dimensional Banach space and 0 ¢ 92
with © be an open bounded subset of E. Let T : Q@ — E be a continuous
compact mapping. Suppose that Ta # pz for all p € [0,1], z € 9Q and
0 ¢ T0Q. Then deg(I —T,,0) =0.

Proof. First, we claim that there exists ¢y > 0 such that
|Tx — Tex|| <€, px#Tex

for all p € [0,1], z € 90 and € € (0,€), where T, is the same as in Lemma
2.2.1.

If this is not true, there exist ¢; — 0, x; € 08, u; — po € [0,1] such that
pjzj = T, z; and so we have Tx; — pjz; — 0. Now, we have 0 ¢ T0€) and
so o # 0, (z;) has a subsequence converging to xp € 0Q and Tzy = poxo,
which is a contradiction.

From the definition of the Leray Schauder degree, we know that

deg(I —T,9Q,0) =deg(I — T, Q2N F,0)

for sufficiently small € and any F' D spanR(T.). The homotopy invariance of
Brouwer degree implies that

deg(I —T., QN F,0) = deg(—T.,Q2N F,0).

Since F is an infinite dimensional Banach space, we may choose a finite di-
mensional subspace F' of E such that spanR(T.) is a proper subspace of F,
and deg(—T., QN F,0) = deg(—T., 2N F,p) for any p € F with p sufficiently
close to 0, so we must have deg(—T., 2N F,0) = 0. Thus it follows that

deg(I —T,9Q,0) =0.
This completes the proof.

Theorem 2.2.12. Let F be an infinite dimensional Banach space, 0 € Qg C
Q with Qp and © be two open bounded subsets of E. Let T : Q\ Qy — F
be a continuous compact mapping and suppose that the following conditions
hold:

(1) Tx # Az for all A > 1, z € 99y,

(2) Tx # px for all p € [0,1), z € 09, and 0 ¢ TON.
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Then T has a fixed point in Q \ Q.

Proof. We may assume that 7" is defined on Q. Also, we assume that
Tx # x for all z € 9Q¢ U IQ. From (1) and Theorem 2.2.4, we have deg(] —
T,9,0) = 1.

By (2) and Lemma 2.2.11, deg(I — T, 2,0) = 0. Therefore, we have

deg(I —T,Q\ Q9,0) = deg(I —T,Q,0) — deg(I — T, Q,0) = —1.
Consequently, T has a fixed point in  \ Qg. This completes the proof.

From Theorem 2.2.12, we easily get the following result of Guo [141]:

Corollary 2.2.13. Let E be a infinite Banach space and Q¢ C 2 with 0 €
Qo, Q2 be two open bounded subsets of E. Let T': 2\ Q9 — E be a continuous
compact mapping and, further, suppose that the following conditions hold:

(1) ||Tz|| < ||=| for all x € 9y;
(2) || Tz| > ||=| for all z € 9Q.
Then T a fixed point in Q\ Q.

Remark. The conclusion of Theorem 2.2.12 fails if we drop the infinite
dimensional condition. The following example illustrates this:

Example 2.2.14. Let Q = {(z,y) : 22+y? < 4}, Q1 = {(x,y) : 2% +y? < 1}
and T : Q\ Q1 — R? be a rotation defined by

T(x,y) = (\/Wcos <0+ Z),msm <9+ %))

for all (z,y) € Q\ Q, where z + yi = /22 + y2¢. Then we have T(z,y) #
w(z,y) for all u € [0,1], 22 +y? = 1 and T(z,y) # M z,y) for all X\ > 1,
22 + y? = 4. However, the mapping 7 does not have a fixed point in Q\ ;.

We have the following result in any dimensional Banach spaces:

Theorem 2.2.15. Let F be a Banach space and 0 € ¢ C Q with ¢, Q2
two open bounded subsets of E. Let T : Q\ Q9 — F be a continuous compact
mapping and, further, suppose that the following conditions hold:

(1) Tx # Mx for all A > 1 and x € 9Qy;
(2) Tz # px for all p € [0,1), z € 9Q and 0 ¢ ConvTINN.
Then T has a fixed point in 2\ .

Proof. As in the proof of Theorem 2.2.12, we may assume that Tz # x for
x € 00 U IN. We only need to show that

deg(I —T,9Q,0) =0.
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Assume that this is not true. Then there exists a compact mapping 77 : Q —
ConvT0f) such that Tix = Tx for x € 0). For k > 1, it is easy to see that

x #tTx + (1 —t)kTyx  for all (¢,z) € [0,1] x 9.
Thus we have
deg(I — kT1,9Q,0) = deg(I — T,9Q,0) #0

and so kTixz = x has a solution in € for £ > 1, which contradicts the fact
that € is unbounded. Hence we have deg(I — T,9Q,0) = 1. This completes
the proof.

Theorem 2.2.16. Let E be a Banach space, © with 0 € 2 be an open
bounded subset of ' and L : Q) — E be a linear continuous compact mapping.
If A # 0 and A~! is not an eigenvalue of L, then

deg(I — \L,Q,0) = (—1)™W,
where m(A) is the sum of the algebraic multiplicities of the eigenvalues

satisfying pA > 1, and, if L has no such eigenvalues pu, then m(\) = 0.

Proof. Put S = I — AL, then S is a homeomorphism onto E. There are at
most finitely many eigenvalues of L such that pA > 1, say, u;, it =1,2,--- | k.
Set F' = @®F | N(p;) and W = n¥_, R(u;), where N(u;) = {z : Lz — p;z = 0}
and R(p;) = (L — p;)(E) for i = 1,2,--- k. We know from the spectral
theory of linear compact mappings that N(u;) are finitely dimensional spaces,
i =1,2,--- k. It is easy to see that £ = F & W. There are projections
P:EF—F,andQ:FE—W. Set L1 =SP+Q and Ly = P+ SQ. Then we
have

I—Li=-ALP,, I—Ly=-)ALQ, S=0LiLo,

(I—-L)(F)CF, (I-Ly)(W)cCW.
Moreover, L; is one to one for ¢ = 1,2. Thus, by product formula, we have
deg(S,Q,0) = deg(L1L2,Q,0) = deg(L1,$,0)deg(Lo, £2,0).
By Theorem 2.2.9, we have
deg(L1,9Q,0) = deg(L1,2N F,0)

and
deg((L2,2,0) = deg(L2, 2N W, 0).

But I — t\L has no solution on 92 N W and so we have
deg(La, QN W,0) =deg(I,QNW,0) = 1.

On the other hand, the eigenvalues of L are the eigenvalues of I — AL on
F ie,1—MAy; fori=1,2,--- k. Thus we have

deg(L1,QN F,0) = sgndet(Ly|p) = sgnIIf_; (1 — Ap) @V (we)
_ (_)E,’ledz’m(N(/u)) — (_1)m,()\).

Copyright 2006 by Taylor & Francis Group, LLC



38 Topological Degree Theory and Applications

2.3 Leray Schauder Degree for Multi-Valued Mappings

In this section, we describe the Leray Schauder degree for upper semicon-
tinuous compact mapping with closed convex values. First, we introduce
several multi-valued maps, which play very important roles in the study of
nonsmooth analysis, differential inclusions and nonlinear partial differential
equations. We begin with the following definitions:

Definition 2.3.1. Let X, Y be two topological spaces and T : X — 2¥ be
a multi-valued mapping, i.e., Tz is a subset of Y for all z € X.

(1) T is said to be lower semicontinuous at xq if, for any open set V of Y’
with TzogNV # 0, the set U = {z : TxNV # (O} is open in X, and if T is lower
semicontinuous at every point of X, T is said to be lower semicontinuous on
X7

(2) T is said to be upper semicontinuous at x if, for any open neighborhood
V(Txg) of Txg, there exists an open neighborhood of U(zg) such that TU C
V', and T is said to be upper semicontinuous on X if 7" is upper semicontinuous
at every point of X,

(3) T is said to be continuous at xq if T' is both upper semicontinuous and
lower semicontinuous at xg, and if T is continuous at all points of X, then T
is said to be continuous on X.

Definition 2.3.2. Let X be a topological space and Y be a normed space.
A mapping T : X — 2V is called Hausdorff continuous at xq if

lim H(Tz,Txo) =0

rT—x0

and, if T is Hausdorff continuous at all points of X, then T is said to be
Hausdorff continuous on X.

Next, we give some examples of multi-valued mappings, which have ap-
peared in several fields of mathematics.

Example 2.3.3. Let f: R™ — R" be a bounded function (not necessarily
continuous). We define a multi-valued mapping F' : R™ — 21" as follows:

Fa = {y: there exist z; € R" such that z; — z, fx; — y}.

Then F is upper semicontinuous. Such a mapping has been used to study
differential equations with discontinuous right-hand sides (see [12], [114]).

Example 2.3.4. Let X be a Banach space and f : X — R be a locally
Lipschitz function. The Clarke derivative of f at x in the direction v is defined

by
f°(x;v) = limsup w
t|0,y—x t
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and the Clarke subdifferential of f at z is defined by
Of(x) ={p € X" : ¢(v) < f(z;v)}.

This subdifferential is a multi-valued mapping and it is a powerful tool in
non-smooth analysis (see [72]).

Example 2.3.5. Let u: R™ — R be a continuous function. We define

Dt u(x) = {p e RY : limsup uly) —ulz) —ply = @) < 0},

y—2,yEQ ly — |
D u(z) = {p € RY : liminf uly) —u(@) —ply — o) > 0}.
Yy—x,y€) |y — fE|

D%y and D~ u are used to define the viscosity solutions for fully nonlinear
partial differential equations (see [75]).

Example 2.3.6. Let X be a infinite Banach space, r > 0 be a constant
and F : X — 2% be defined as follows:

Fz = B(z,r) forallzeX.

Then F' is lower semicontinuous on X, but not upper semicontinuous.
Indeed, for any 2o € X and y € B(zg,r), we have (y — z¢) + © € F(x) =
B(x,r) and so (y — xg) +x — y as © — xg. Therefore, F is lower semicontin-
uous at xg. To see that F' is not upper semicontinuous, we know, since X is
infinite dimensional, that there exists a sequence {z,,} C X such that

[enll =1, flzn —zm| > ¢

where € € (0,1) is a constant. Then we have (r + %)xn +xp € F(xo + %xn),
but V.= X\ {(r+ &)z, + xo : n = 1,2---,} is open and F(zo,7) C V.
Therefore, F(xg + %xn) ¢ V,i.e., F'is not upper semicontinuous. Moreover,
it is easy to check that F' is Hausdorff continuous on X.

Lemma 2.3.7. Let X be a metric space, Y be a normed space and T :
X — 2Y be an upper semicontinuous mapping with closed convex values.
Then, for any € > 0, there exists a continuous mapping f. : X — conv(TX)
such that, for any x € X, there exist y € X and z € Ty such that

d(z,y) <e, |fexr—2z| <e

Proof. For any x € X and € > 0, there exists 6, > 0 such that
TB(z,0;) C B(Tz,¢).

We may require d, < e. Let {U;};esr be a locally finite open refinement of
{B(z, %ﬂ”) cx € X} and {¢;}ier be a partition of the unity subordinated
{Uitier

Copyright 2006 by Taylor & Francis Group, LLC



40 Topological Degree Theory and Applications

Now, we define a mapping f. : X — Y as follows:
fer = Sierdi(x)y; forall x € X,

where U; C B(x;, %) and y; € Tx;. It is obvious that f. : X — conv(TX) is
continuous. For any given « € X, let Iy = {i € I : ¢;(x) # 0}. Then there

exists ig € Iy such that
)

Tig = r}g()]{{&vl}
5;") and hence z; €

We put y = x;,. For i € Iy, we have z € U; C B(x,,
B(ziy, 6z,,). Therefore, we have

fex = ElGIO¢Z(x)y1 € B(Tyv 6)‘
Take z € Ty such that ||fex — z|| < e. This completes the proof.

Theorem 2.3.8. Let X be a metric space, ¥ be a Banach space and
T : X — 2Y be a lower semicontinuous mapping with closed convex values.
Then there exists a single-valued continuous mapping f : X — Y such that
f(z) € Tz for all z € X.

Proof. First, we prove that, for any ¢ > 0, there exists a continuous
mapping f : X — Y such that f(x) € Tx + B.(0) for all x € X. To see this,
if we put U(y) = {z € X : x € T"(y — Be)}, then U(y) is open in X by
the lower semicontinuity of T'. Now, since we have X = U,y U (y), there is a
locally finite open refinement {W;};c; of {U(y)}yey and a partition of unity
{@;}ier subordinated to {W;};er. Pick y; such that W; C U(y;) and define a
mapping f : X — Y as follows:

f(z) = Bicra;(x)y; forall xz € X.

Then f is continuous. Obviously, if «;(x) # 0, then x € W; C U(y;) and so
we have y; € Fx + B(0). Thus it follows that

f(z) € F(x) + B(0)

since the right hand side is convex. Now, for ¢, = 27" forn = 1,2,---, by
the above conclusion, we have a sequence {f,} of continuous mappings such
that

frn € fa—1(z) + 2B, (0), fu(x) € Tax+ B, (0)

for all x € X. Indeed, assume that we have defined mappings f1, f2, -, fn
for some n > 1, respectively, and put Gz = Tz N (f, + B.(0)) for all z € X.
Then G is lower semicontinuous with convex values.

By the first step, there exists f,11 : X — Y such that f,1(x) € G(z) +
and so we have

frs1(@) €T(2) + Be,yy  fas1(®) € ful(z) + 2B,

B

€En41
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Evidently, since {f,} is a Cauchy sequence, let f(x) = lim,— oo fn(z). Then
f is continuous since the convergence is uniform and f(z) € Tz for all x € X.
This completes the proof.

In the above result, we considered approximate selections and continuous
selections of multi-valued mappings. In some cases, we need to find a measur-
able selection for a given multi-valued mapping. Let (£2,.4) be a measurable
space, (X,d) be a separable metric space and f : Q — 2% be a multi-valued
mapping. Then f is called a measurable function if f~1(B) € A for all open
subset B C X.

Theorem 2.3.9. Let (€2, A) be a measurable space, (X, d) be a separable
complete metric space and F : Q — 2% be a measurable multi-valued mapping
with closed values. Then there exists a single valued measurable mapping
f:9Q — X such that f(x) € Fz for all z € Q.

Proof. Since X is separable, there exists a countable subset {x1,zq, -}
of X such that
{l‘1,$2,"-} = X.

We shall define a sequence {f,} of measurable functions satisfying the follow-
ing:

(1) d(fn(x), far1(z)) <27 for all x € Q;

(2) d(fn(z),F(z)) <27 for all z € Q

and define a mapping f1 : @ — X by f1(z) = x if k is the smallest integer
such that
Fzn B(xg, 1) # 0.

Since f~1(zx) = F~Y(B(zk, 1) \ Un<pF 1 (B(zm, 1)), it follows that f; is
measurable.

Now, assume that we have defined f1, fo, ---, fr satisfying (1) and (2)
for some k > 1. For each z € Q, we have z € f, '(v;) for some i. Now, if
z € fi'(%;), then we define

fit1(2) = ap,
where p is the smallest integer such that
Fz0 B(z;,27%) N B(x,, 2751 # 0.

Obviously, frxi1 is well defined and it is also measurable and, moreover, it
satisfies (1) and (2).

Finally, if we put f(x) = lim,,— fn(x), then f is measurable and f(x) €
Fx for all x € . This completes the proof.

Example 2.3.10. Let F : R" — 2%\ () be a upper semicontinuous function
with bounded closed values. Assume that |y| < M|z| + f(z) for all y € Fx
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and z € R™, where M > 0 is a constant and f(-) € LP(R") for p € [1,00).
We define a mapping F : C([0,1]; R™) — LP(R™) by

Fu(t) ={g(-) € L*([0,1]) : g(t) € Fu(t), a.e.t €[0,1]}

for all u(-) € C([0,1]; R™). Since Fu(t) : [0,1] — 2% is upper semicontinuous
with closed values, it is measurable. By Theorem 2.3.9, we know that there
exists a measurable selection ¢(t) € Fu(t) and, by assumption, we have

lg(t)] < Mlu(®)| + f(u(t)) for all £ € [0,1].
Therefore, it follows that g(-) € LP([0, 1]) and hence F is well defined.

Next, we show that the Leray Schauder degree can be generalized to multi-
valued upper semicontinuous compact mappings with closed convex values:

Proposition 2.3.11. Let E be a real Banach space, 0 C E be an open
bounded set and T : @ — 2F be an upper semicontinuous mapping with
closed convex values. If TS is relatively compact and = ¢ Tz for all z € 99,
then there exists ¢y > 0 such that x # fex for all x € 9Q and € € (0, €p),
where f. is defined as in Lemma 2.3.7.

Proof. Suppose that the conclusion is not true. Then there exist €; — 0
and z; € 0Q such that z; = f.,z;. By Lemma 2.3.7, there exist y; € 2 and
z;j € T'y; such that

o —yill <€y 1fe,m5 — 2l <
Since T' is compact, we may assume that z; — 2o and hence we have
f€jxj — 20, Xj — 29 € 0N
and thus y; — z9. Using the upper semicontinuity of T, we get zop € Tz,

which is a contradiction. This completes the proof.

Definition 2.3.12. Let E be a real Banach space, ! C F be an open
bounded set and T' : @ — 2F be an upper semicontinuous mapping with
closed convex values. Suppose that T is relatively compact and x ¢ Tx for
all z € 9. Then we define

deg(j - T,Q,O) - hn(l)deg(f - fEaQ70)a

where f. is defined as in Lemma 2.3.7.

We show that Definition 2.3.12 is reasonable. By Proposition 2.3.11, there
exists eg > 0 such that x # fex for all x € 9Q and € € (0,¢p). It is obvious
that f.(Q) is compact. Thus deg(I — f.,,0) is well defined for all € € (0, ).
We claim that there exists €1 < €y such that tfex + (1 — t)fsz # x for all
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(t,z) € [0,1] x O and €,§ € (0,€1). If not, there exist t; — tg, ¢, — 0,
d; — 0, and x; € 0Q such that

tife,r; + (1 —t5) fs,05 = ;.

By Lemma 2.3.7, there exist yj,y; and zj € Tyj, 27 € Ty; satisfying

lyi — a5l < €5, Ny — x50l <85, llz) — fe,a5ll < €5, 1127 = f5,25] < 65

By compactness of T', we may assume that ; — x¢ € 9Q2. Therefore, yjl — Ty
and yjz — xp. Consequently, (z]l) has a subsequence (z]lk
Tz, (ij) has a subsequence (zjzk) with zjzk — 29 € Tag and tz1 + (1 —t)2ze =
xg € Txy, which is a contradiction.

) with zjlk — 2 €

The following property follows from Theorem 2.2.4, and we leave the proofs
to the reader:

Theorem 2.3.13. The degree defined by Definition 2.3.12 has the following
properties:

(1) (Normality) deg(I,€,0) =1 if and only if 0 € Q;
(2) (Solvability) If deg(I —T,§,0) # 0, then « € Tz has a solution in Q;

(3) (Homotopy) Let T} : [0,1] x Q — E be a upper semicontinuous compact
mapping with closed convex values and = ¢ Tz for all (¢, x) € [0, 1] x 9.
Then deg(I — T3,,0) does not depend on ¢ € [0, 1];

(4) (Additivity) If Q, Qg are two disjoint open subsets of Q2 and 0 ¢ (I —
T)(Q — Ql @] Qg), then

deg(I —T,9Q,0) =deg(I —T,Q1,0) + deg(I — T, Q32).

2.4 Applications to Bifurcations
In this section, we give some applications to bifurcation.

Definition 2.4.1. Let X,Y be two Banach spaces, g > 0, 6 > 0, [ =
(—ag— 0,0+ 9), o € Q2 C X be an open subset and F': I x Q — Y be such
that F(a,x0) = 0 on I. If there exists a,, — g, 2, € Q\ {20}, 2, — 20 such
that F(ay,,z,) = 0, then we call (ag,zo) a bifurcation point for F(a,z) = 0.

Theorem 2.4.2. Let X be an infinite dimensional Banach space, 2 C X
be an open subset with 0 € Q and F : 2 — X be a continuous compact
operator with FO0 = 0. Suppose liminf,_,q H@gﬁ” = +o00. Then (0,0) is a

bifurcation point for x — aFx = 0.
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Proof. Take c,, — 0. Consider the mapping H(t,z) = = — a,tFx for
(t,x) € [0,1] x Q. Since liminf, g ”‘f;ﬂ“ = 400, there exist r,, < L such that

||Fx|| > a;leH,m € 0B(0,7y,).

By Lemma 2.2.11, we have deg(I — a,, F, B(0,r,),0) = 0. However, it follows
that
deg(1,B(0,1,),0) =1,

so there must exist ¢, € (0,1), z, € dB(0,r,) such that H(t,,x,) = 0, i.e.,
ZTp — aplyFax, = 0. Thus (0,0) is a bifurcation point. This completes the
proof.

Lemma 2.4.3. Let (M,d) be a compact metric space, Ay C M be a
component and A, C M closed such that A; N Ay = (). Then there exist
compact sets My, My such that A; C M;, i = 1,2, My N My = () and M =
My U Ms.

Proof. For € > 0, a,b € M, if there exist finitely many z; € M, i =
1,2,--- ,n, such that x; = a,2,, = band d(z;4+1,2;) < efori=1,2,--- ;n—1,
then we call a, b € chainable. Put

A ={z € M : there exists a € A; such that z and aaree chainable}.

Clearly, A; C A, and A, is both open and closed in M.

Now, we prove that there exists ey > 0 such that A, N Ay = 0. If this is not
true, for €; — 0, there exist y; € Ac, N Az. So there exist a; € A; such that
Y;,a; are €;-chainable. However, A, Ay are compact, so we may assume that
a; — xo, bj — yo. Consequently, we have ¢; chains joining xg,yo for every
7 >1. We set

C ={z € m: there exist j, — o0, x;, € M;, such that z;, — z}.

Obviously, C' is compact and xg,y9 € C. Notice that any two points in C
are €;-chainable, so C' must be connected. However, C' N Ay # (), so we have
C C Ay, and thus yy € A; N Ay, which is a contradiction. Therefore, there
exist €9 > 0 such that A, N Ay = (). Set My = A., and My = M \ My, then
we get the desired result.

€0

Theorem 2.4.4. Let X be a real Banach space,  C R x X be a open
neighborhood of (ag,0) and T :  — X be a continuous compact mapping
with T'(o,2) = o(||z||) as  — 0 uniformly in a. Let S : X — X be a
linear continuous compact mapping, oy, ! be an eigenvalue of odd algebraic
multiplicity and

M={(a,z) € Q: 2z —aSz+T(a,z) =0, x # 0}

Then the component C of M containing (g, 0) has at least one of the following
properties:
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(1) C N #0.

(2) C contains an odd number of trivial zeros (a;,0) # (g, 0), where a; !

is an eigenvalue of S of odd algebraic multiplicity.

Proof. First, if CNoQ # 0, then C is compact and contains another (a, 0)
with a # ag. The compactness of C follows from the compactness of S and
T. Suppose CN R x {0} = {(a,0)}. For any ¢ > 0, set

Ns ={(a,z) € Q:d((a, 2),C) < &}

If NsN M = C, we put Qy = Ns. Otherwise, by Lemma 2.4.3, there exist
compact sets C1,Cy such that C € Cy, M NINs C Cy, C; N Cy = § and
C1UCy = NsNM. Set v = d(Cy,Cy), then v > 0. We put Qy = Ns N {z :
d(z,C1) < 3}. It is obvious that

CCQ()CQi()CQ, Mﬂ&QO:(Z)

Now, we may take § > 0 small enough such that no other eigenvalue a~! of
S satisfies | — ag| < 26 and the intersection of M and the real line is given
by I = [og — 8,0 + 6]. Since M NIy = 0, deg(I — oS — T(a,-), (), 0) is
constant on I, where Q(a) = {z : (a, ) € Qo}.

Now, we choose ag — d < a1 < ag < ag + J. For r sufficiently small, we
have

deg(I — ;S — T(av;, ), Q(a;),0)
=deg(l — ;S — T(a, ), 2a;) \ B(0,7),0)
+deg(I -5 — T(aia ')a B(Oa T)a 0)
for i = 1,2. However, deg(I — 15, T(a1,-), B(0,7),0) is different to deg(I —
a5, T (a2, ), B(0,7)82,0) by a factor —1 and deg(I — a;S — T'(av, -), () \
B(0,7),0) = 0, which is a contradiction. Clearly, a bounded open neighbor-
hood Qg of C satisfying M N9 = () contains a finite number of points (a;,0)

with a;l €o0(S),say, oy < -+ < jo1 < ag < jp1 < -+ < ay. We may
take § > 0 sufficiently small such that

QN R x {0} = (Ufil[ai — 6, a; + 6]) x {0}.
Choose a1, ajo such that
Oéj—5<()éj1 < Qj <01j2<01j+(5.

We have deg(I — aS — T(a,-),Q(a),0) = m on [ay — 6, an + 6] for some
m € Z and
m = deg(I — ;S — T(aji,-), Qo( i), 0)
= deg(I — a;iS = T(ai, ), Qo(egi) \ B(0,7),0)
+d€g([ - ajiS - T(aji, ),B(O ) 0)
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for i = 1,2, where r > 0 is sufficiently small.
Moreover, it follows that

deg(I — a11S — T(cu1,-), Q1) \ B(0,7),0)
= deg(I — an2S — T(anz, ), Qo(anz) \ B(0,r),0)
=0

and

deg([ — OéjQS — T(Oéjg, '), QO(@jQ) \ B(O, ’I“), 0)

= deg(I — agi4115 — T(ag+1)157), Qola1y1) \ B(0,7),0)
=0.

Therefore, we have

SN deg(I — ajoS — T(aye, ), B(0,7),0)
—deg(I — aj1S — T(ay1,-), B(0,r),0) = 0.

Since the degree has a jump at ay and the jumps occur only at eigenvalues
of odd algebraic multiplicity, it follows that the degree has an even number
of jumps. Consequently, C' contains an odd number of trivial zeros («,0) #
(040, O) .

2.5 Applications to ODEs and PDEs

In this section, we give some applications of the Leray Schauder theory to
existence of solutions for ordinary differential equations and partial differential
equations.

Theorem 2.5.1. (Peano’s Theorem) Let f : R x B(zg,7) C R — R"
be a continuous function. Then there exists tg > 0 such that the following
equation:

{x'(t) = f(t,2(t)), t€(0,t), (E 2.5.1)

has a solution.
Proof. Since f is continuous, there exist ¢t; > 0, r; < r, and M > 0 such
that
|[f(t, )] <M, te[-t,t1], [z—z0] <714

where | - | is the norm in R™. Take ty € (0,¢1) such that Mry < r;. We set

E =C(]0,t0], R™) = {z(t) : [0,t9] — R" is continuous}
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with the norm |z(-)| = max;e(o 4 [2(t)|. Then C([0,%0], R") is a Banach space.
Put
K= {IE() eFE: (E(O) = Xy, |1’(t) — {E()| <r,te [O,to]}

Then it is easy to see that K is a bounded closed convex subset.
Now, we define a mapping T : £ — E by

Tx(t) = xo +/0 f(s,z(s))ds for all z(-) € E.

It is easy to check that 7' is continuous. Moreover, T': K — K is a mapping
and TK is compact. Thus, by Schauder’s fixed point theorem, T has a fixed
point z(-) in K, i.e., z(t) = zo + fot f(s,z(s))ds. Therefore,

2'(t) = f(t,x(t)) for all t € (0,t).
Thus the problem (E 2.5.1) has a solution. This completes the proof.

In the following, let © C RY be an open bounded subset with smooth
boundary and a;,b: Qx RxRN — R,i=1,2,---, N, be continuous functions
such that

(1) Ge&ig; > [¢f° for all (z,2,€) € 2 x R x R™;
(2) lai(x,2,0) <g(z),i=1,2,--- N, where g(-) € LI(f2), and ¢ > N;

(3) (L+ 1€ Ge] + (L + NG+ laal) + 12 + 18] < p(|z)) (1 + [€]*) for
i,7=1,2--- )N, where u : [0,+00) — [0, +00) is a increasing function;

(4) —b(x,z,&)signz < L(|¢] + f(x)) for all (x,2,€) € Q@ x R x RN, where
L > 0 is a constant.

Consider the following Dirichlet problem:

{Diaxz,u(a:), Dufe)) + bl u(@), Du(@) =0, z€R oo

u(z) = ¢(z), z € 0Q.

Theorem 2.5.2. Suppose that JQ is smooth and (1)-(4) hold and a; €
CH*(Qx Rx RN),be C™(Qx RxRY), ¢ € C>*(Q), where o € (0,1) is
a constant. Then the problem (E 2.5.2) has a solution u € C%*(0Q).

Proof. For each v € C**(Q) and ¢ € [0,1], consider the following linear
Dirichlet problem:

—[t5% (@, v(w), Do()) Digu(@) + (1 — ) Au(x)]

+t[§§? + ?)? i+ b](E,Z,n):(w,v(m),Dfu(z)) =0, T € €, (F 2.5.3)

i

u(z) = to(x), x € 0N
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Since the coefficients belong to C*(€2), it is well known that (E 2.5.3) has a
unique solution u_ € C**(Q) (see [132]). We define a mapping T" : [0,1] X
CH(Q) — Ch*(Q) by

T(t,v) =u forall (t,v) € [0,1] x C+*(Q).

It is easy to see that T is continuous compact. Also, by prior estimation,
there exist constants M > 0, 0 < v < 1 such that |u|1 4,0 < M (see [135]).
Therefore, u € C*?(Q) and there exist a constant C' which does not depend
on t and w such that

2.0 < C.
Thus |u|1,o < M. Therefore, T'(-,1) has a fixed point u, i.e., T(1,u) = u,
which is a solution of (E 2.5.2) and u € C%*(Q).

In the following, suppose that H is a real Hilbert space, A: D(A) C H — H
is a linear self-adjoint operator and F(t,u) : R x H — H is a nonlinear
mapping. Consider the anti-periodic problem:

(E 2.5.4)

u' + Au(t) + 0Gu(t) + F(t,u(t)) =0, ae.teR,
u(t) = —u(t+1T), t € R.

Definition 2.5.3. A function u(-) is called a weak anti-periodic solution
of (E254)ifu(t+T)= —u(t) fort € R, fOT |u’(t)|?dt < oo and

o + Au(t) + 0Gu(t) + F(t,u(t)) =0 for almost all t € R.

Lemma 2.5.4. If u,u’ € L?(0,T; H) and u(t +T) = —u(t) for all t € R,
then . .
T 3
Juloo < f(/ ' (s)2ds ) .
2 \Jo
T _,

) Proof. Since u(t) = u(0) + fg u'(s)ds and u(t) = w(T) — [ u'(s)ds, we

u(t) = 7[/ u'(s)ds —/ u'(s)ds].
2°Jo t
Thus the conclusion follows.

Lemma 2.5.5. Let H be a real separable Hilbert space and A : D(A) C
H — H be a linear densely defined closed self-adjoint operator that only has a
point spectrum, i.e., eigenvalues. Suppose that f : R — H is a T-anti-periodic
function, i.e., f(T +t) = —f(t) for t € R, and f(-) € L*(0,T; H). Then the
following problem:

{u' +Au(t) + f(t) =0,  aet€R, (E 2.5.5)

u(t+T) = —u(t), teR,
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has a unique weak solution.

Proof. Since o(A) only has point spectrum and H is separable, A has
a countable family of eigenvalues {\;}2,. Assume that {e; : i = 1,2,---}
is the orthogonal family of eigenvectors associated with the eigenvalue \;
satisfying |e;| = 1 for each i, ¢ = 1,2---. A is densely defined and we have
span{e; :i=1,2,---} = H, so f(t) = X2, fi(t)e;, where f; : R — R satisfies
222, [ f2(t)dt < oo. Tt is obvious that fi(t +T) = —f;(t) for t € R.

Now, we consider the one dimensional evolution equation:

i) + Ajug(t i(t) =0, ¢ 5
W) + Nl + [:() =0, tER 256)
uz(t—i—T):—ul(t), tGR,
for each i = 1,2,---. By Corollary 1.2 of [148] or by a direct computation,

the problem (FE 2.5.6) has a unique solution u;(%).
Now, multiply (E 2.5.6) by u.(¢) and integrate over (0,7") to get

T
/ s () 2dt + / fi(t)ui(t)dt = 0.

0

Therefore, we have
T T
/ |uj(t)[dt < / | f:(2)|2dt. (2.5.1)
0 0
By Lemma 2.5.4, we get
2

T T
luwilsZe < — [ |fi()]dt. (2.5.2)
0

Put u(t) = X2, u;(t)e;. Then it follows from (2.5.2) that u is well defined. By
(2.5.1), we know that u/(t) = X°,ul(t)e; belongs to L?(0,T; H). Therefore,
¥, A\u;(t)e; belongs to L?(0,T; H). Since A is closed, u(t) € D(A) for
almost all £ € R and

Au(t) = E52, \u;(t)e; for almost all t € R.

In view of (E 2.5.6), we know that u is a weak solution of the problem (E
2.5.5).
If u and v are two weak anti-periodic solutions of (F 2.5.5), then

T
/O [ (t) — ' (1))? + (Au(t) — Av(t), ' (t) — o' (t))]dt = 0.

However, fOT(Au(t) — Av(t),u/(t) —v'(t))dt = 0, so the uniqueness is obvious.
This completes the proof.

Theorem 2.5.6. Let H be a real separable Hilbert space, A : D(A4) C
H — H be a linear densely defined closed self-adjoint operator that only has
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a point spectrum and G : H — R be a even continuous differentiable function
such that the gradient dG is continuous and bounded, i.e., maps bounded sets
of H to bounded sets in H. Suppose that F': R x H — H is a continuous
function and the following conditions are satisfied:

(1) D(A) is compactly embedded into H.

(2) F(t+T,—u) = —F(t,u) for all (t,u) € R x H.

(3) |F(t,u)| < f(t), a. e. t € R, where f(-) € L?(0,T; R) is non-negative.

Then the following equation:

u' 4+ Au(t) + 0Gu(t) + F(t,u) =0, a.e.t € R, (E 2.5.7)
u(t +T) = —ult), t€ R, o
has a weak solution.
Proof. Let
W, ={u: R — H is continuous, u(t + T) = —u(t)},
T
W2 = fue W, / W (8)[2dt < 50)}.
0
For each v(-) € W,, we consider the following equation:
o' + Au(t) + 0Gu(t) + F(t,v(t)) = 0, a.e.t € R, (E 25.8)
u(t) = —u(t+1T), t€R. o

Since A only has a point spectrum, Lemma 2.5.5 implies that the problem
(E 2.5.8) has a unique solution u € W12, Now, we define a mapping K :
W, — W, as follows: For each v € W,,, Kv is the unique solution of (E 2.5.8).
Next, we prove that K is continuous. Suppose that v, — vg in W,. Then,
by Lemma 2.5.4, |v, — v|c — 0 as n — oco. Now, OG and F' are continuous
functions, so

[0Gvn () = 0Gvo(+)|oc = 0, [F(-,0n(-)) = F(-,v0())[ec — 0
as n — 00. Also, we have

(Kvn(t)) = (Kuvo(t)) + A(Kvn(t) — Kuvo(t))
+ (0GKwv,(t) — 0GKuwy(t)) + F(t,vn(t)) — F(t,v0(t)) (2.5.3)
=0 for almost all t € R.
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Multiply both sides of (2.5.3) by (Kv,(t) — Kvo(t))" and integrate over (0,7),
and we have

T
/0 (Ko (t) — Kuo(t))' Pt
T
+ / (A(K v (£)) — Ko (1)), (Kun(t) — Kvo(t)))dt
+ /T<(9GKvn(t) — OGKuvy(t), (Kv,(t) — Kug(t))')dt
0

+/0 (F(t,v,(t)) — F(t,vo(t)), (Kv,(t) — Kvo(t))")dt = 0.

Thus we have

r ;
(] 1020.6) = uogoy) Par)
< VTI0G,() — 0G| + VTIF(,va()) = F( o)

-0 (n— o0).

Therefore, it follows that Kv,(-) — Kuvg(-) in W,. For each v € W,, again,
by (E 2.5.8), we get

/O((Kv(t))/)QdH/o <6Gv(t),(Kv(t))'>dt+/0 (Pt 0()), (Ko(t)))dt = 0,

This and assumption (3) of Theorem 2.5.6 imply that

T 1 T i
(/0 \(Kv(t))’Ith) g(/o |0Gw(t) |2dt /f2 dt . (2.5.4)

By (2.5.4) and the boundedness of G, we know that K maps bounded sets of
W, to bounded sets in W, The compact embedding of D(A) into H implies

that K is a compact mapping. In view of Lemma 2.5.4, we may simply take
|u'| 2 as the norm of u in Wj,.

Now, we prove that Kv # v for v € W, with |[v/|z2 > ( fo F2(t)dt)? and
A > 1. In fact, if this is not true, then there exist \g > 1 and vy € W, with
[vglrz > ( fo f2(t)dt)z such that Kvy = Aoy, i.e.,

Aovh(t) + Ao Awg(t) + OGug(t) + F(t, vo(t)) = 0. (2.5.5)

Multiply both sides of (2.5.5) by v (t) and integrate over [0, 7], we obtain

/T<)\0'U6(t) + )\()A’U()(t) + aGU()(t) + F(t, ’Uo(t)), ’Ué(t»dt =0.
0
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However, [i (Avy(t),vh(t))dt = 0 and [, 9(Guo(t), vh(t))dt = 0 and so we
have

T
/0 (Movg(t) + F(t,vo(t)), vj(t))dt = 0.

Therefore, it follows that

r :
(] rolutto CROK / i)
0

which is a contradiction. Now, if we take ro > (fOT F2(t)dt)z, then, by the
above arguments and the homotopy invariance property of the Leray Schauder
degree, we know that

deg(I — K, B(0,r9),0) = deg(I, B(0,79),0) = 1,

where B(0, 1) is the open ball centered at 0 with radius ro in W,. Thus K
has a fixed point in B(0,ry), i.e., there exists v € W, such that Kv = v.
Hence the problem (FE 2.5.7) has a solution. This completes the proof.

From Theorem 2.5.6, we have the following:

Corollary 2.5.7. Let H be a real separable Hilbert space, A : D(A) C
H — H be a linear densely defined closed self-adjoint operator that only
has a point spectrum, 0 ¢ o(A) and G : H — R be a even continuous
differentiable function such that the gradient 0G is Lipschitz. Suppose that
F: RxH — H is a continuous function and the conditions (1)-(3) in Theorem
2.5.6 are satisfied. Then the problem (F 2.5.7) has a solution.

Example 2.5.8. Consider the anti-periodic solution problem:

uy (t) = 2uq(t) — aua(t) +

2 .
/1 Wslnt, te R,
5

(t) = —auy () — Sua(t) + ﬁ sin®t, t€R, (F 2.5.9)
1
’U,l(t—f'ﬂ') =—u1(t),u2(t—|-ﬂ') = —U2<t), t € R,

u

where o € R is a constant. Set

2 .
— — 5 sint
A= 2 —a cu= ("), F(t,u) = H%g(t) .3, -
—a —H U Wsm t
Then A is a linear self-adjoint operator on R? and F(t + m, —u) = —F(t,u)

for all (t,u) € R x R? Tt is obvious that |F(t,u)| < 3 for (t,u) € R x R2.
Now, the problem (£ 2.5.9) is equivalent to the equation:

u'(t) = Au(t) + F(t,u(t)), t€ R,
{u(t +7) = —u(t), teR. (E 2.5.10)
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From Theorem 2.5.6, we know that the problem (E 2.5.10) has a solution, so
(E 2.5.9) has a solution.

Remark. The degree theory in this chapter can be established in locally
convex spaces (see [197]) or admissible topological vector spaces (see [170],

[235], [307]).
2.6 [Exercises
1. Let f(z,y) : R x R — R be a continuous function and T : Cla,b] —

Cla,b] be defined by Tx(-)(s) = [ f(t,x(t))dt for all z(-) € C[a,b] and
s € [a,b]. Show that T is continuous and compact.

. Let T': C[0, 7] — C[0, 7] be defined by

2 us
Tx(t) = - /0 [sin ¢ sin s + csin 2t sin 2s][22(s) + 23(s)]ds

for all 2(-) € C[0, 7]. Compute T'(z) and the eigenvalues of T"(0).

Let T : ¢g — co be defined by T'(z1,22,--+) = (22,25 ). Show that
T'(x) is compact for all x € ¢y, but T is not compact.

Let F be a infinite dimensional Banach space. Show that the unit sphere
of E is not compact.

Let E be a real Banach space and 2 be an open subset of E. Let
T :Q — E be a continuous compact mapping and I — T is locally one
to one. Show that I — T is an open mapping.

Let E be a real Banach space, T': B(0, R) — E be a continuous com-
pact mapping and L : X — X be a compact linear operator. Sup-
pose that |Txz — Lz|| < ||z — Lz|| for all x € 0B(0,R). Show that
deg(I —T,B(0,R),0) is odd.

Let E be a real Banach space, 2 C E be an open bounded symmetric
subset with 0 € Q and T : Q — E be a continuous compact mapping
such that 0 ¢ (I —T)(0Q) and (I —T)(—=z) # t(I — T)(x) on 99 for all
t > 1. Show that deg(I — T,,0) is odd.

Let E be a real Banach space and T : E — E be a continuous compact

mapping such that lim,| s % =0. Show I -T)(E)=FE

Let E be a real Banach space and A, B C E be two closed bounded
subsets. Suppose that there exists a continuous compact mapping 7T :
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10.

11.
12.

13.

14.
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A — E such that I =T : A — B is a homeomorphism. Show that £\ A
and E \ B have the same number of components.

Let E be a locally convex space and 2 C F be an open subset. Suppose

that T : Q — F is continuous such that 7(Q) is compact in £ and
0¢ (I-T)(09). Show that there is a topological degree deg(I —T, (2, 0).

Is a Hausdorff continuous mapping continuous?

Let E be a real Banach space, {2 C E be an open bounded symmetric
subset with 0 € Q and T :  — 2% be an upper semicontinuous compact
mapping with closed convex values such that 0 ¢ (I — T)(992) and
T(—z) = =T for all z € 9Q. Show that deg(I — T,,0) is odd.

Let G : R™ — R be an even continuous differentiable function and
f: R — R"™ be a continuous function such that f(t+7T) = —f(¢t) for all
t € R. Show that the following equation

2'(t) = 0Gx(t) + f(t), teR,
x(t+T)=—z(t), teR,

has a solution.

Let g € CY([0,a]), h € C*(]0,b]) with g(0) = h(0) and f : [0,a] x
[0,0] x R?* — R be continuous such that |f(z,y,2,0)] < M(1 + |z|)
and |f(z,y,z,u) — f(x,y,2,v)| < Llu —v|, where a,b, L, M are positive
constants. Show that the following equation

2 = f(a,yu(x,y), 2%),  (z,y) € [0,a] x [0,0]
u(,0) = g(a), 0.4
U(O’y) = h(y)7 [ ’b}v

has a solution u € C*([0,a] x [0,b]).
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Chapter 3

DEGREE THEORY FOR SET
CONTRACTIVE MAPS

The Leray Schauder degree theory is very useful in solving an operator equa-
tion of the type (I — T)x = y, where T is compact. In many applications T'
is not compact, so one may ask it is possible to give an analogue of the Leray
Schauder theory in the noncompact case. In 1936, Leray [184] constructed an
example to show that it is impossible to define a degree theory for mappings
with only a continuity condition. So a very natural question which arises is
the following:

For what kind of mappings in infinite dimensional spaces can we establish
a degree theory ?

Browder, Nussbaum, Sadovski, Vath, etc., showed that it is possible to
define a complete analogue of the Leray Schauder theory for condensing type
mappings 7.

In this Chapter, we will introduce the degree theory for k-set contraction
mappings and condensing mappings. This chapter consists of three sections.

In Section 3.1, we define measures of non-compactness and present some
properties (see propositions 3.1.5, 3.1.7 and theorems 3.1.14, 3.1.15). Also,
countably condensing maps, etc., are defined here and, in particular, a fixed
point theorem for countably condensing self-mappings is presented in Corol-
lary 3.1.18.

Section 3.2 presents a degree theory for countably condensing mappings and
the theory is based on the use of retractions and the Leray Schauder degree.
Again, various properties and consequences are presented.

In Section 3.3, we use the degree of Section 3.2 to discuss the initial and
anti-periodic ordinary differential equations in Banach spaces.

3.1 Measure of Noncompactness and Set Contractions

Let (X,d) be a metric space and A C X be a subset. We call diam(A) =
supg yead(z,y) the diameter of A. If diam(A) < 400, then we call A

55
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bounded. For two bounded sets A, B, the Hausdorff metric H is defined
by

H(A, B) = max{sup d(z, B), sup d(y, A) }.
€A yeB

Let B(X) be the collection of all bounded subsets of X.

Proposition 3.1.1. If A C B, then diam(A) < diam(B) and diam(A) =
diam(A).

Proposition 3.1.2. Let X be a Banach space and A, B C X. Then we
have the following;:

(AB) = |A|diam(B);

(z + B) = diam(B);

3) diam(A + B) < diam(A) + diam(B);
4) diam(conv(A)) = diam(A).

Proof. (1)-(3) are obvious. To see (4), let x,y € conv(A). There exist
€0,1),z; € X,i=1,2,--- ,k, t; € (0,1),y;, € A, i =1,2,--- ;m, such
that ©z = Zlesixi and y = X2 5;9;. Now, we have
lz = yll = 1=y siws — T2y siil
=L 1 2L sityTi — Elez}lﬁitjyjll
< Ek 12J 15it; |z — ZUjH
< EizlEjzlsitjdzam(A).

Thus diam(conv(A)) < diam(A), and the converse is obvious. Therefore, the
conclusion is true. This completes the proof.

Proposition 3.1.3. Let (X,d) be a metric space. Then (B(X),H) is a
metric space.

Proof. Obviously, H(A, B) > 0 for any A, B € B(X), H(A, B) =0 if only
if A= B and H(A,B) = H(B, A).
For A, B,C € B(X), we have
d(z, B) < d(x,z) +d(z,B), d(y,A) <d(y,2) +d(z,A)
forall ze C, z € Aand y € B. Thus

d(z,B) < 1nf d(x,z) + sup d(z, B),
zeC

d(y, A) < inf d(y,z) + supd(z, A)
zeC z€C
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and so

H(A,B)

< max{sup d(z,C) + sup d(z, B), sup d(y, C) + sup.ccd(z, A)}
z€A zeC yeEB

< max{sup d(z, C), sup.eccd(z, A)} + max{sup d(z, B), sup d(y,C)}
z€A zeC yeB

=H(A,C)+ H(C,B).
Thus (B(X), H) is a metric space. This completes the proof.

Definition 3.1.4. Let (X, d) be a metric space, B be the collection of all
bounded subsets of X and A, B € B. A function o : 8 — [/, +00) defined by

a(A) = inf{d > 0: A is covered by finitely
many sets each having diameter less than ¢}

is called the (Kuratowski) measure of noncompactness. If we replace a(A) by
B(A) =1inf{d > 0 : A is covered by finitely many balls with radius 4},

then we call (A) as the ball (Hausdorff) measure of noncompactness.
The relation between « and f is given by the following inequality.
Proposition 3.1.5. 3(A) < a(A) < 28(A) for all A € B.

Proof. For any & > a(A), there exist finitely many sets Ay, Ag,--- , Ag
such that A C U¥_| A; and diam(A;) < 6 for i =1,2,--- k. Choose z; € A;.
Then Bs(z;) D A;, so we have A C UX_, Bs(z;) and thus 3(A) < §. By letting
d — a(A), we get the first inequality.

For the second inequality, if 6 > B(A), then there exist finitely many balls
Bs(y1), Bs(y2), -+, Bs(ym) such that A C U™, Bs(y;). It is obvious that

diam(Bs(y;)) = 20,

so we have «(A4) < 2§ and, by letting § — [(A), we deduce the desired
inequality. This completes the proof.

Proposition 3.1.6. Let X be a metric space and B be the collection of
all bounded subsets of X. Let ¢ be the Kuratowski measure or Hausdorff
measure of noncompactness and A, B € B. Then the following properties
hold:

(1) ¢(A) =0 if and only if A is relatively compact;
(2) ¢(A) = p(A);
(3) If A C B, then ¢(A) < ¢(B);
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(4) ¢(AU B) = max{¢(A),»(B)};
(5) ¢(AN B) <min{¢(A), ¢(B)};
(6) [0(A) — ¢(B)| < 2H(A, B);

(7) If X is a Banach space, then

p(AA) = [Mo(A),A € R, ¢(A+B) < ¢(A)+9(B), ¢(conv(A)) = ¢(A).

Proof. In (1)-(5), ¢(AA) = |\|¢p(A) for any A € R and ¢(A + B) <
#(A) 4+ ¢(B) follow easily from the definition.

We only need to prove (6) and ¢(conv(A)) = ¢(A). Assume that ¢ = a.
The proof is the same for ¢ = .

For any € > 0, there exists a finite cover {4y, Ag, -, Ax} of A with
diam(4;) < a(A)+efori=1,2,--- k. Set

n=H(A,B)+e B;={yec B: there exists z € A;,d(z,y) < n}
for i =1,2,--- k. Since H(A, B) <7, we have B C U¥_, B;. Obviously,
diam(B;) < 2n+ diam(4;) < 2H(A, B) + a(A) + 3¢

for i =1,2,--- and thus a(B) < 2H(A, B) + a(4).
Similarly, we have a(A) < 2H (A, B) + a(B). Therefore, we have

la(A) — a(B)| < 2H(A, B)

For (7): Obviously, a(A) < a(conv(A)). For any € > 0, there exists a finite
cover {Ay,Ag, -, A} of A with diam(A;) < a(A) + € for i = 1,2,--- k.
We may also assume that B; is convex since diam(conv(B;)) = diam(B;) for
i=1,2,-- k. Put

A={ 2, M) X 20, i =120k, B\ = 1}
and B(\) = ¥ \;B; for each A = (A1, A2, -+, Ax) € A. We have

a(B(A) < a(A)+e forall A € A.

Now, we show that UyeaB(\) is convex. For A = (A1, Ag, -+, Ag), o =
(p1, p2, - s pug) € A and 2 = X5 Niz; € B(N), y = X5y € B(p), where
i, y; € By fori =1,2,---  k, we have

129 (1 —t)p;

tw+ (1 —t)y = S5 (th + (1 — )] Yil-

tA; + (1 — t)uixi + th; + (1 - t),ui
Thus it follows that Uxea B(A) is convex. Therefore, we have

conv(A) C conv(UF_; B;) C UxeaB(N).
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Since A is compact, there exist finitely many A!, A2,--- , A" € A such that
UxeaB(X) € UL, B(AY) + By (0).

Therefore, we have
conv(A) C U B(\) + €By(0),

which implies that
aconv(A)) < a(A) + 3e.

By letting € — 07, we get a(conv(A)) < a(A). Thus a(conv(A)) = a(4)).
This completes the proof.

Proposition 3.1.7. Let X be a infinite dimensional Banach space and
B(0,1) be the unit ball. Then «(B(0,1)) = 2.

Proof. It is obvious that diam(B(0,1)) = 2, so a(B(0,1)) < 2.

If a(B(0,1)) < 2, then there exists Ay, Ag, - -+ , Ay such that diam(A;) < 2
fori =1,2--- k and B(0,1) C U¥_, A;. Take a k-dimensional subspace X}
of X and set By(0,1) = B(0,1)N Xy, B; = A; N X, for i =1,2,--- | k. Then
we have

Br(0,1) C UF_|B;, diam(B;) <2,i=1,2,--- ,k,

which is a contradiction to Theorem 1.2.17. Thus «(B(0,1)) = 2. This
completes the proof.

Proposition 3.1.8. Let X be a separable Banach space and (3 be the
Hausdorff measure of noncompactness. Then there exists an increasing se-
quence of finite dimensional subspaces (X,,) with X = U2 ; X,, such that, for
any bounded countable subset {z, : 1 <n < oo},

B{xn}) = nlim lim sup d(x,, X,).

— 0 m—oo

Proof. Since X is separable, there exists a countable subset {y1,y2, -}
of X such that {y1,y2, -} = X. Put X,, = span{y1,y2, - ,yn} for n =
1,2,---. Then X; C X C --- and X = U2, X,,. For any ¢ > 0 and integer

n > 0, set r,, = limsup,, ., d(€m, X,). One can easily see that 4 > ry > -
since X, is increasing. Choose an integer L > 0 such that d(x,,, X,) <1, +€
for all m > L.

Next, we define

Y ={y € X,, : there exists m > L, d(z,, X,) = ||xm — yl|}-

Then it follows that Y U{x1, 22, -+ ,21} is compact. Thus there exist finitely
many {z1, 22, , 2} such that

Y U{z1,22, - 21} C UleB(zi,e).
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Therefore, we have
{x1,29, -} C{x1,20, - , 2L} UB(Y, 7 +€) C UF_ B(2i, 7 + 2e).
Thus S({zn}) < + 2, ie,
B({zn}) <inf{r,,n > 1} = lim limsupd(z,,, X,).

n—0 m-—oo

On the other hand, for € > 0, put r = B({z; : ¢ > 1}) and there exists
finitely many w;, 1 < ¢ <'s, such that {zy,22,---} C Ui_;B(w;,r +¢€). By
the construction of X,,, we know that there exists an integer K > 0 such that
d(w;, Xp) < efori=1,2,--- s and n > K. Therefore, we have

A( X, X)) < Inf{||xm — w1 1 <i < s} +sup{d(w;, Xp,) :1 <@ < s}
<r+42e

for m > 1 and n > K. From this, we get

lim limsup d(z,, X,) < 7.

N—00 m—oo

Thus we have lim,, o limsup,,, . d(xm, X,) = B({x; : ¢ > 1}). This com-
pletes the proof.

Definition 3.1.9. Let X be a real normed space, T': D — X be a mapping
and a be the measure of noncompactness.

(1) T is called a k-set contraction if o(TB) < ka(B) for all bounded subsets
B C D, where k > 0 is a constant;

(2) T is said to be condensing if a(T'B) < «(B) for all bounded subsets
B C D with a(B) > 0.

Example 3.1.10. Let X be a real normed space and T : X — X be a
linear bounded operator. Then L is a || L||-set contraction.

Example 3.1.11. Let X be a real normed spaceand T': D C X — X be a
Lipschitz mapping with Lipschitz constant . Then T is an [-set contraction.

Proposition 3.1.12. Let X be a real normed space, B(0,1) be the unit

ball of X and T : X — B(0,1) be defined by
T — | T =] = 1,
x, x € B(0,1).
Then T is an 1-set contraction.

Proof. Let A C X be a bounded set. It is obvious that T'(A) C conv({0} U
A), so we have

a(T(A)) < afconv({0} U A)) = a({0} UA) = a(A).
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Proposition 3.1.13. Let X be a infinite dimensional Banach space, ¢ :
[0,1] — [0, 1] be a strictly decreasing and continuous function, B(0, 1) be the
unit ball of X and T': B(0,1) — B(0,1) be defined by

Tx = ¢(|z])x for all z € B(0,1).
Then o(T(B)) < a(B) for B € B(0,1) with a(B) > 0.

Proof. Let B C B(0,1) be such that a(B) = ¢ > 0. Take r € (0,%)
and define the sets By = BN B(0,r), Bs = B\ B(0,r). It is obvious that
T(B) =T(B1) UT(B3), so we have

a(T(B)) = a(T(B1) UT(Bz)) < max{a(T(By)),a(T(Bz))}-

Moreover, it follows that
a(T(B1)) < a(conv({0} U By)) = a(B1) < diam(By) < 2r <c

and

T(B3) C conv({0} U ¢(r)B),
so a(T(B2)) < a(¢(r)B) < a(B). Thus we have a(T(B)) < a(B). This

completes the proof.

Definition 3.1.14. Let X be a real Banach space, T : D — X be a
mapping and « be the measure of noncompactness.

(1) T is called a countably k-set contraction if a(TB) < ka(B) for all
countably bounded subsets B C D, where k£ > 0 is a constant;

(2) T is said to be countably condensing if a(T'B) < a(B) for all countably
bounded subsets B C D with a(B) > 0;

(3) H(t,x):[0,1]xD — X is said to be a homotopy of countably condensing
mappings if a(H([0,1] x B)) < a(B) for all countably bounded subsets
B C D with a(B) > 0.

One can easily see that a condensing mapping is a countably condensing
mapping.

Theorem 3.1.15. Let E be a Banach space and B C C([a,b],E) be a
bounded equicontinuous subset. Then a(B(t)) is continuous on [a, b], where
B(t) = {xz(t) : z(-) € B}, and

b

b
a({/ x(t)dt;x(-)eB})g/ a(B(t))dt.

a

Proof. First, we prove that a({z(t) : z(-) € B}) is a continuous function
on [a,b]. For any ¢ > 0, since B is equicontinuous, there exists v > 0 such
that ||z(t) — z(t)|| < € for all ¢,t’ € [a, b] satisfying |t — /| < y. Thus we have

H({z(t) : z() € B}, {a(t') : 2(-) € B}) < ¢
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for t,t' € [a, b] satistying |t — ¢'| < . From this and (6) of Proposition 3.1.6,
we infer that

la({z(t) : x(-) € B}) — a({x(t)) : 2() € B})| < 2¢

for t,t' € [a,b] satistying |t —t'| < . Thus a({z(t) : z(-) € B}) is a continuous
function on [a, b].

For any division of [a,b]: a =ty < t; < -+ < t, = b, where t; = a + ib—T“,
i =0,1,--- ,n. For any € > 0, from the equicontinuity of B, there exists
N > 0 such that, if n > N, then

lx(t;) —z(t)|| <e forall z(-) € B, t € [t;i_1,t]
fori=1,2,---,n. Thus we have

b—a

b t;
iz 2(t) —/ w(t)dt]| = ||2?=1/ (@(t:) — x(t))dt]| < e(b—a)

ti_

for all n > N. Therefore, we have

a({Sw(t)

z(-) € B}) —a{/ t)dt : x(-) € B})| < 2¢(b— a),

b—

lim a({X2  x(¢;)

lim. (EB}—a{/ Bt : 2(-) € BY).

On the other hand, by (6) of Proposition 3.1.6, we have

o({Sir(t)? % () € BY) < Sijalfatt) s a() € BHL

Therefore, it follows that

{/ t)dt : x(-) € B}) < /ab a(B(t))dt.

This completes the proof.

Theorem 3.1.16. Let E be a Banach space and B C C([a,b], E) be a
bounded equicontinuous subset, where a,b € R. Then

a(B) = tgl[%a({w( ) - () € B}).

Proof. First, by Theorem 3.1.15, we know that a({z(t) : z(-) € B}) is a
continuous function on [a, b].
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Next, for a(B) < 4, there exist By, Bo, -+, By, C C(|a,b), E) such that
diam(B;) < ¢ and B C U™, B;. Hence, for each t € [a, b], we have

{z(t) : z(-) € B} cUZ {z(t) : 2(-) € B;}.
Also, we have

diom({z(t) : z(-) € B;} = sup  ||z(t) —y(t)|| < diam(B;) < 6.
z(),y(-)EB;

Therefore, a({z(t) : z(-) € B}) < ¢ for all t € [a,b] and thus
max a({z(t) : z(-) € B}) < a(B).

On the other hand, since B is equicontinuous, there exist finitely many
ti,ta, - ,tn € [a,b] such that

{z(t) 1 2(-) € B} c U_1{z(t;) : z(-) € B} + B.(0) for all ¢ € [a,b].

If § > maxyepqp a({z(t) : z(-) € B}), we can find finitely many subsets
Ay, As, -+, As C E such that

dzam(AZ) < 5, Ule{x(tl) : CE() € B} C UleAi.

Obviously, B is the union of finitely many sets {z(-) € B : z(t;) € A,,,i =
1,2,--- ,n} and each of these sets has diameter less than ¢ 4+ 2¢. Thus we have
a(B) < 0 4 2¢ and we get the desired result. This completes the proof.

Proposition 3.1.17. Let E be a Banach space, 2 C E be an bounded
subset and 7" : 2 — E be a countably condensing mapping. Put F' = {z €
1: Tz = z}. Then there exists a convex compact subset C' such that

(1) FC

(2) if zg € conv(C U {Tx}), then z¢ € C;

(3) C = conv(T(CNQ)).

Proof. Put

F={K:F CK CE closed convex, T(K N) C K and (2) holds for K}.

Then F is nonempty since conv(TQ) € F. We set C = NgerK. Obviously,
C satisfies (1),(2), (3), and C is closed convex.

Now, we prove that C is compact. Assume that this is not true. Then
there exists C7 = {1, z2, -+ } C C without a Cauchy subsequence. Note that
C = conv(T(C' NQ)). Thus there exists a countable subset A; € C' N Q such

that C; C conv(T'Ay). One can easily prove that Hy = conv(T(Cy NQ)) is
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separable and Ii 1NQis sep;xrable, sﬁhere exis;u countable subsets B; C H;
and D1 C H1NQ) such that By = Hl, Dy = HiNQ. Put Cy = C1UAUBUD;.
One can check that

Cy C Oy, (3.1.1)
conv(T(C1 NQ)) C Oy, (3.1.2)
conv(T(C1NQ)NQ C Con Q. (3.1.3)

In general, we define inductively a sequence (C,,) of countable subsets C,, of
C satistying

C C Chs1, (3.1.4)
conv(T(C,, N Q)) C Crya, (3.1.5)
conv(T(C,, NQ)NQ C Cpry1 N (3.1.6)

Finally, we put L = U2, C),. Then
L C convT(LNA.

Thus we have _ -
a(L) < alconvT(LNY) < a(LNQ),

which is a contradiction. Therefore, C' is compact. This completes the proof.

Proposition 3.1.18. [291] Let E be a Banach space, Q2 C E be a bounded

subset and T : Q — E be a countably condensing mapping. Set C; =
conv(TQ), Cpy1 = conv(T(C, NQ)) for n > 1 and C = N%,C,,. Then
C is convex and compact.

Proof. This is a special case of Lemma 7.2.1.

Corollary 3.1.19. Let C' C FE be a nonempty bounded closed convex
subset and let T': C — C be a continuous countably condensing mapping.
Then T has a fixed point in C.

Proof. We first assume that T is k-set countably condensing for some
k € [0,1). Let C; = convTC and C;11 = convTC; for i = 1,2,---. By
Proposition 3.1.18, K = N2, C; is convex and compact and also 7' : K — K
is a mapping.

Now, we prove that K is non-empty. Take xzo € C, then Tz, € C; for
i > 1. We have a({T"zq,i > n}) < k"a({T¢,i > 0}) for n > 1. Obviously,

a({T'zo,i > n}) = a({Txg,i > 0}),
so a({T%zg,i > 0}) = 0. Therefore, (T%z¢)2; has a subsequence which

converges to a point in K and hence K is nonempty. Therefore, T has a fixed
point.
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Now, assume that T is countably condensing. Take xg € C and, for any
ke (0,1), put Sx = kTx+ (1 —k)xo for all z € C. Then S is k-set countably
condensing, so S has a fixed point in C. Let k,, — 1. Then there are x,, € C
such that

knTx, + (1 — ky)xg = T,

which implies that a({T'zy, : n > 1}) = a({z, : n > 1}). Since T is countably
condensing, (x,);2; has a subsequence z,,, — y € C. By the continuity of T’
we have Ty = y. This completes the proof.

3.2 Degree Theory for Countably Condensing Mappings

In this section, we introduce a degree theory for condensing mappings.
Construction of the degree for a countably condensing mapping.

Let F be a Banach space and Q2 C E be an open bounded subset. Let
T : Q — E be a continuous and countably condensing mapping and 0 ¢
(I-T)09Q). f0 ¢ (I—T)(), we define deg(I —T,9,0) = 0. Otherwise,
put F = {z € Q: Tz =z} and let C be the convex compact subset satisfying
Proposition 3.1.17. Now, C is nonempty since F C C. Obviously, T : CNQ —
C is a mapping. If r : E — C is a retraction, then Tr is compact and
r~1() is open in E. By assumption, 0 ¢ (I —7T)(9€2) and we know that 0 ¢
(I-Tr)(d(r=1(2)NQ), so the Leray Schauder degree deg(I—Tr,r~1(Q)N,0)
is well defined for each retraction r. Now, we define

deg(I —T,9Q,0) = deg(I — Tr,r~1(Q) N Q,0), (3.2.1)

where deg(I — Tr,r~1() N Q,0) is the Leray Schauder degree.
To see this definition is reasonable, we show that, if r1,r5 : X — C are two
retractions, then

deg(I — Trl,rfl(Q) NQ,0) =deg(I — Trg,rgl(ﬂ) N$0,0).

Put r(t,x) = triz + (1 — t)rqzx for all (¢,z) € [0,1] x E. Then r(t,-) :
E — C is a retraction for each t € [0,1]. Obviously, x # Tr(t,z) for
(t,x) € [0,1]0(r7 () Nry 1 (2) N Q). Thus, by the homotopy property of
Leray Schauder degree, we have

deg(I — Try,r7H(Q)Nry 1 (Q) N Q,0)
= deg(I — Try, 7 () Ny H(Q2) N, 0).

It is simple to check that
0¢r (QNQ\r 7 Q) Nry N (Q) NN
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and
0¢ r;l(ﬂ) ﬂQ\r{l(Q) ﬂr;l(Q) N Q.

Thus the excision property of the Leray Schauder degree implies that

deg(I — Try,r;1(Q)NQ,0) = deg(I — Try,ry 1 (Q)Nry 1 (2)NQ,0)
and

deg(I — Tro,r5 1 (Q) N Q,0) = deg(I — Tra,ry 1 (Q) Nry 1 (2) N Q,0).
Therefore, we have

deg(I — Try,r7H(Q) N Q,0) = deg(I — Tra,ri (Q) Nry 1 (2) N Q,0).

One may also define a degree by taking the set C' as in Proposition 3.1.18.
This degree will coincide with the above one by the excision property of the
Leray Schauder degree.

Theorem 3.2.1. The degree defined by 3.2.1 has the following properties:
(1) (Normality) deg(I,€,0) =1 if and only if 0 € Q;
(2) (Solvability) If deg(I —T,,0) # 0, then T'x = x has a solution in €;

(3) (Homotopy) Let H(t,x) :[0,1] xQ — E be a continuous and countably
condensing mappings, i.e., a([0, 1] x B) < a(B) for all countable subset
B of Q with a(B) > 0 and H(t,z) # = for all (t,x) € [0,1] x Q. Then
deg(I — H(t,-),€,0) doesn’t depend on ¢ € [0, 1];

(4) (Additivity) Let 1,9 be two disjoint open subsets of 2 and 0 ¢
(I - T)(ﬁ— Ql U Qg) Then

deg(I —T,9Q,0) =deg(I —T,Q1,0) + deg(I — T, Qs).
Proof. (1), (2), and (4) follow directly from the definition and properties

of the Leray Schauder degree.
To prove (3), we set

Co = conv(H([0,1] x Q)), C,, = conv(H([0,1] x (Cr_1 NQ)))

for n > 1. Then C = N;2,C,, is compact by virtue of Proposition 3.1.18 and
H([0,1] x C) — C. Let r : E — C be a retraction. Then x # H(¢,rx) for all
x € 0(r~1(QNC)NQ). Thus deg(I—H (t,)r,r~1(CNN)NN, 0) doesn’t depend
on t. Therefore, the conclusion follows from the definition of the degree and
the excision property of the Leray Schauder degree. This completes the proof.

Theorem 3.2.2. Let £ be a Banach space, {2 C E be an open bounded
subset with 0 € Q and T :  — E be a continuous and countably condensing
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mapping. Suppose z # ATz for all A € [0,1),z € 0. Then T has a fixed
point in Q.

Proof. We may assume that Tx # z for all x € 0Q2. Put H(t,z) = tTx
for all (t,z) € [0,1] x Q. It is easy to see that {H(t,-)}tcpo,1) is a homotopy
of countably condensing mappings. By assumption, we have H(t,z) # x for
all x € 90. As a result, deg(I —T,Q,0) = deg(I,Q,0) = 1. Thus Tx = z has
a solution in €2, which is the desired result. This completes the proof.

Corollary 3.2.3. Let E be a Banach space, 2 C E be an open bounded
subset with 0 € Q and T : 2 — E be a continuous and countably condensing
mapping. Suppose ||Tz|| < ||z|| for all z € 9Q. Then T has a fixed point in
Q.

Proof. We may assume that Tz # z for all x € 0. Otherwise, the
conclusion is true. Thus we have Tz jé Az for all x € 9Q and A < 1. By
Theorem 3.2.2, T has a fixed point in 2.

Theorem 3.2.4. Let E be a Banach space and T : E — E be a continuous
and countably condensing mapping. Then one of the following conclusions
holds:

(1) T has a fixed point in E;
(2) {x:Tx = Az for some A > 1} is unbounded.

Proof. Assume that {z : Te = Az for some A > 1} is bounded. Take
r > 0 such that {z : Te = Az forsome A\ > 1} C B(0,r). If Tx = x
for some x € 9B(0,r), then (1) holds. So we may assume that Tz # z
for all x € 0B(0,r). Thus x # tTx for all t € [0,1] and = € JB(0,r), so
deg(I — T, B(0,7),0) = 1 and T has a fixed point in B(0,r). This completes
the proof.

Theorem 3.2.5. Let E be a infinite dimensional Banach space, Q C E
be an open bounded subset with 0 € Q, T : Q — E be a continuous and
countably condensing mapping and S : 02 — FE be a continuous compact
mapping. Suppose tTz + (1 — t)Sz # = and ||Sz| > ||z| for all z € 9Q and

t €10,1]. Then deg(I —T,,0) = 0.

Proof. First, there exists a continuous compact mapping L : Q — E such
that Lz = Sz for all x € 99Q2. Obviously, we have tTx + (1 — ¢)La # « for all
(t,x) € [0,1] x 0. Thus

deg(I —T,9Q,0) =deg(I — L,Q,0).
By Lemma 2.2.11, we have deg(I — L,€Q,0) = 0 and so deg(I — T,,0) = 0.

Corollary. 3.2.6. Let E be a infinite dimensional Banach space, 2 C E an
open bounded subset with 0 € Q, zy € E such that ||zo|| > sup,cpq ||z]/, and
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let T:Q — E be a continuous and countably condensing mapping. Suppose
ITz|| > ||z|| and Tz # Az + (A — 1)zg for all x € 9Q, and A > 1. Then
deg(I —T,9Q,0) = 0. This completes the proof.

Proof. Define a mapping S : 92 — E by Sx = x¢. Then S is continuous,
compact and tTx + (1 — t)Sz # z for all x € 9 and ¢ € [0,1]. Obviously,
[ISz|| > ||z| for all x € Q. Thus the conclusion follows from Theorem 3.2.5.

Theorem 3.2.7. Let E be a infinite dimensional Banach space, Q; C FE,
1 =1,2, be two open bounded subsets such that 0 € 21 C Qs, g € E be such
that [lzo|| > sup,coq, [2]| and T : Q3 — E be a continuous and countably
condensing mapping. Suppose that the following conditions are satisfied:

(1) ITz| < ||z| for all x € 0€;
(2) ITz|| > ||=]| and Tx # Ax + (A — 1)z for all x € 9N and A > 1.
Then T has a fixed point in Q5 \ ;.

Proof. We may assume that Tz # x for x € 90Q,UIQ,. By assumption (1),
we know x — tTx # 0 for ¢ € [0,1] and x € 9Qy. Thus deg(I — T,$4,0) = 1.

On the other hand, by assumption (2) and Corollary 3.2.6, we have deg(I —
T,Q9,0) = 0. Thus

deg(I —T,Q2\ Q1,0) = deg(I — T,2,0) — deg(I — T,94,0) = —1
and so T has a fixed point in Q \ Q1. This completes the proof.

Remark. One can define a degree theory for the so-called fundamentally
restrictive mapping (see [291]).

3.3 Applications to ODEs in Banach Spaces

In this section, we give some applications to the ordinary differential equa-
tions in Banach spaces by using the degree theory for set contractive mappings.

Theorem 3.3.1. Let E be a Banach space and f(¢, ) : [0,1] x B(zo,r0) —
FE be a continuous mapping satisfying

a(f([0,1] x B(zo,r)) < ka(B(xg,r)) for all r € (0,r9),

where k € (0,1) and r¢o > 0 are constants. Then there exists ¢y € (0, 1] such
that the initial value problem

{x’(t) = f(t.z(t), te(0.to),

#(0) = 7o (E 3.3.1)
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has a solution.
Proof. Set
_ o
M = sup{||f(t,x)] = (t.%) € [0,1] x B(zo, 7o}, to = min{1, 77},

Obviously, (F 3.3.1) is equivalent to the following integral equation:

t) = xo +/O f(s,z(s))ds. (F 3.3.2)

Put X = C([0,%0], £) with the norm ||z(-)|| = max{||z(¢)| : t € [0,%0]}. Then
X is a Banach space. We also set K = {z(-) € X : z(t9) = xo, ||z(t) —z(to)] <
ro}. Then K is a bounded closed convex subset of X.

Now, we define a mapping 7 : K — K by

t) =z —l—/o f(s,z(s))ds for all z(:) € K.

It is easy to see that T' is continuous. Now, we prove that T is condensing.
In fact, for any subset B of K with «(B) > 0, we have

o(TB) = tes[lélz ]oz({Tx(t) :x(-) € B})

= sup a{xo—i-/fsx z(-) € B})

te(0,to]

< teS[BIE) ]a({xo + tconv(f(s,xz(s)) : s € [0,t0])}) : z(-) € B})

< Sup ]a({xo + teonv(f((0, to] x B))})

<ty sup a(f([0,to] x B))
te0,to]

S tok’Oz(B).

Thus T is a condensing mapping, so T has a fixed point in K, i.e., (E 3.3.2)
has a solution. Consequently, (E 3.3.1) has a solution. This completes the
proof.

Theorem 3.3.2. Let H be a real Hilbert space, T" > 0 be a constant,
f(t,x) : R x H — H be a continuous mapping satisfying

a(f([0,T] x B) < ka(B)

for all bounded subsets B of H, where k € (0,1) is a constant, and kT < 1.
If f(¢+T,—z) = —f(t,x) and [|f(t,2)[| < M||z| + g(¢) for all (t,z) € R x E,
where 0 < MT < 2 is a constant, and g(-) € L?(0,T), then the following
problem

(E 3.3.3)
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has a solution.

Proof. Let C, = {z(-) : R — H is continuous ,z(t + T) = —x(t),t € R}.
Define [|z(-)|ls = max;ep,r) for z(-) € C,, and it is easy to check that C,
is a Banach space under this norm. It is simple to check that (E 3.3.3) is
equivalent to the following equation:

T ¢
t) = —%/t f(s,z(s))dt + %/0 f(s,z(s))ds. (E 3.34)

We define a mapping S : C, — C, by

1T 1/t
Sxz(t) = —5/ f(s,z(s))dt + 5/ f(s,z(s))ds for all z(-) € C,,.
t 0
For any bounded subset U of C,, we have, by Theorem 3.1.16, that

a(SU) = max {a({Sz(t) : «() € U})}

te[0,T]
By the same reasoning as in Theorem 3.3.1, we get
a(SU) < kTa(U).

Thus S is a kT-set contraction.
Now, we prove that Sz(-) # Az(-) for all A > 1 and z(-) € C, with

T
el > 0= 25020 [ g oany.

In fact, suppose that there exists z(-) € C, with

T
Je1 > 0= 2505 [ o

Nl=

such that Sz(-) = Axz(-). Then we have
AT/ (t) = f(t,z(t)). (3.3.1)
Multiply both sides of (3.3.1) by 2/(¢) and integrate over [0, 7], we have

/|m )|[2dt = /ftm (1)t
<M/mewmw+/<muwﬁ

In view of Lemma 2.5.4, we have

T/2 HT:E/2 T2 %TxIZ%
3[R < 25 [P ([ @oat [ eop?
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[NIE

T ’ 2 71\3 7ﬂ71 T2
([ lpant < =257 ot

Again, by Lemma 2.5.4, we get

Nl

el < (1 = L)1 YT PR

which is a contradiction. Thus by Theorem 3.2.4, S has a fixed point in C,,
i.e., the problem (E 3.3.3) has a solution. This completes the proof.

3.4 Exercises

1.

Let A; € C([0,1]), ¢ =1,2,3, be defined by

Ar={z(:):2(0) =0, z(1) =1 and 0 < z(t) <1 for t € [0,1]};

Ay ={a():0<a(t) < 5, t€[0,3], 5 <az(t) <1, te[i 1]} N A
Az=a():0<a(t) <2, te[0,4], 5 <a(t) <1, te (5,1} N Ay
Show (A1) = 3,i=1,2,3, and a(A;) =1, a(A2) = 3, a(A3) = 2.

N[ =

. Let E be a Banach space, C'([a,b], E) be the space of continuously

differentiable functions with the norm

lz ()l = max e(@)] + max 2" (£l

t€la,b] t€la,b
and o is the Kuratowski measure of noncompactness in C*([a,b], E).
Let B C C*([a,b], E) be a bounded subset such that B’ = {2'(:) : (-) €

B} is equicontinuous. Show that

a1 (B) = max{ max a({z(t) : z(-) € B}), max a({z'(t) : z(-) € B})}.

te(a,b] te(a,b]

Let X be a complete metric space and A; C X be a closed subset for
i=1,2,---. Suppose that 41 D A3 D A3 D ---, and lim, o ¢(A,) =
0, where ¢ is the Kuratowski measure or the Hausdorff measure of non-
compactness. Show that N2, A, # 0.

Let X be a Banach space and T : X — X be a continuous and compact
mapping. Suppose that there exists a linear bounded mapping L : X —

HTgﬁ;HLJ:” = 0, i.e., T is asymptotically linear.

X such that hm\|a:|\~>oo
Show that L is compact.
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5. Let B be the closed unit ball of 2 and T : B — B is defined by
T(x1,22, ) = (V1—z|* 21,22, )
for all x = (x1,x2,---) € B. Show that T is an 1-set contraction.

6. Let X be a real Banach space, B(0, R) C X be the open ball of origin
with radius R and T': B(0, R) — X be a condensing mapping. Suppose
that one of the following condition is satisfied:

(1) TOB(, R)) C B, B);
(2) [Tz —z||® > ||Tx||* — ||=||* for all x € dB(0, R).

Show that T has a fixed point in B(0, R).

7. Let X be a real Banach space, 2 C X be an open bounded subset with
0€Qand T:Q — X be an 1-set contraction such that (I —T)(f) is
closed and, if Tx = Ax for all x € 91, then A < 1. Show that T has a
fixed point in Q.

8. Let X be a Banach space with a Schauder basis {¢; : i € N} for each
r =X} ja;(r)e; and Ryx = 52, a;(x)e; for n = 1,2,---. For each
bounded subset B C X, define u(B) = limsup,, . sup{||Rnz| : = €
B}. Show that p has the following properties:

(1) u(B) =0 if and only if B is relatively compact;
(2) w(AUB) = max{u(A), u(B)};
(3) p(conv(A)) = p(A).

9. Let X be areal Banach space, C C X be a bounded closed convex subset
and T': C' — C be an 1-set contraction. Show that inf,cc{||x —Tz||} =
0.

10. Let X be a real Banach space, 2 C X an open bounded subset and
T :Q — X be a k-set contraction with k € (0,1). Suppose that I —T is a
homeomorphism from Q — (I —T)(Q2). Show that «([I—(I-T)"'|B) <
k(1 —k)~ta(B) for all bounded subset B of ).

11. Let X be a real Banach space, 2 C X be an open bounded subset
with 0 € Q, T : Q@ — X be a countably condensing mapping and
A : D(A) C E — 2F be a m—accretive mapping such that 0 € A0.
Suppose that | Tz|| < ||z|| for all z € 9Q. Show that —A+ T has a fixed
point in QN D(A).

12. Let X be a complete metric space, and A; C X a clsoed subset for ¢ =

1,2,---. Suppose that A; D Ay D A3 D -+, and lim, . a(4,) = 0,
Ao =N, Ay Show limy, oo H(An, Ax) = 0.
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13. Show that the equation

% = 1u(s,2t) + 2u(s,0) + sinms, t € [0,4], s€R
%:%u(s,%—1)+%u(s,1)—|—sin7rs, tel3,1,seR

u(s +1,t) = —u(s, t), te0,1], s € R,

has a solution u(s,t) such that u(s,-) € C([0,1]) for all s € R.
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Chapter 4

GENERALIZED DEGREE
THEORY FOR A-PROPER MAPS

To solve an infinite dimensional equation Tz = y, a very natural method is
to approximate the original equation by finite dimensional equations, as we
have seen in the Leray Schauder theory. The well-known Galerkin method has
proved to be a very efficient tool in finite dimensional approximation. In the
1960s, Browder and Petryshyn systematically studied the finite dimensional
method for a large class of mappings, which they called A-proper mappings,
and they developed a similar theory to the Brouwer degree.

Our goal of this chapter is to introduce Petryshyn’s generalized degree the-
ory for A-proper mappings. This chapter has five main sections.

In Section 4.1, we define projection schemes and A-Proper mappings. Var-
ious examples (see lemmas 4.1.8 and 4.1.10) are also discussed.

Section 4.2 presents a degree theory for A-proper mappings and various
properties are presented (see Theorem 4.2.3 and Proposition 4.2.5).

A variety of existence results are presented in Section 4.3 for the semilinear
situation S — L where L is a Fredholm map of index zero and S — AN is
A-Proper for each A € (0,1], where N is a mapping satisfying some specific
conditions (see theorems 4.3.3 and 4.3.4).

In Section 4.4, we introduce the notion of a Fredholm mapping of index
zero type. We present a degree (coincidence) theory for maps L — N where L
is a Fredholm mapping of index zero type and N is such that either (i) N is
L-A-Proper or (ii) L + AJP — N is A-proper for all A € (0, Ag) with A\g > 0
or (iii) I — (L + AJP)~1(N + A\JP) is A-proper for some A > 0 hold.

The results of Section 4.3 and 4.4 are used in Section 4.5 to present the
existence results for the periodic semilinear ordinary and partial differential
equations.

4.1 A-Proper Mappings
Definition 4.1.1. Let X and Y be real separable Banach spaces.

(1) If there is a sequence of finite dimensional subspaces X,, C X and a

75
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sequence {P,} of linear projections P, : X — X,, such that P,x — z
for all z € X, then we say that X has a projection scheme {X,,, P, }.

(2) If X and Y have projection schemes {X,, P,} and {Y,,Q,}, respec-
tively, and dimX,, = dimY,, for all positive integers n, then we call
II={X,,P,;Y,,Q,} an operator projection scheme.

Example 4.1.2. Let X = C([0,1]). For n € N, partition [0, 1] into n
equal parts and set tg =0 < t; = = <ty =2 < ... <t, = 1. Let X, be
the subspace of all z € X which are linear in every subinterval [t;,t,11] and
P : X — X, be the projection satisfying P,xz(t;) = x(¢;) for i = 1,2,--- n.

Then {X,, P,} is a projection scheme for X.

Example 4.1.3. Let X be a Banach space with a Schauder basis {e; : i €
N}. Then X has a projection scheme {X,,, P} defined by

X, = span{ei,ea, -+ ,ent, Pox =X 0i(z)e;

for x = 32, o ()e;. In the case of a separable Hilbert space, we may choose
an orthonormal basis {e; : ¢« € N}, then the projection P,x = X, (z,¢e;)e;
satisfies P = P, and ||P,|| = 1.

Example 4.1.4. Let X be a reflexive Banach space with a projection
scheme such that P,P, = Pupinfmmn}. Then {P;X* Py} is a projection
scheme for X*.

Proof. Notice that PP} f(x) = f(P?z) = P f(x) on X and thus P} is a
projection. We also have

dimP: X = dimN(I* — P*) = dimN(I — P,) = dimX,,.

We claim that X* = U, PFX*. If not, there is zyp € X \ {0} such that
f(z) =0 for all f € U, PFX* since X** = J(X), where J(z)(f) = f(z) for
all f € X* and z € X. Thus, we have f(P,z) = 0 for all n and f € X*, so
f(xz) =0 for all f € X* and so = 0, which is a contradiction. Therefore,
X" = U2, PFX*. We also have Py X* C P; X" for n < m. Thus, for any
f € X* and € > 0, we may choose g € P*X* such that ||f — g|| < € and we
then have

[P f = FI < 1Pa(f =)l +llg = FIl < (SI;I; [Pl +1)e,

which gives P¥ f — f as m — oo.

Example 4.1.5. If both X and Y have Schauder basis, then there exists
an operator projection scheme.

Proof. Let {e,} be a Schauder basis of X and {e],} be a Schauder basis
of Y. Put X,, = span{ej,ea,- - ,e,} and Y,, = span{el,eh, - -, e, }. For
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x = X2 5e; and y = X2, Biel, set Pox = X7 aye; and Qpy = X, Giel.
Then II = {X,,, P; Y, Qn} is an operator projection scheme.

Definition 4.1.6. Let X, Y be real Banach spaces and I = {X,,, P,,; Y,,,Q, }
be an operator projection scheme. Then a mapping 7' : D C X — Y is
called A- proper (respectively, pseudo A-proper) with respect to II if, for any
bounded z,, € DN X, and Q,,Tx,,, — y, there exists a subsequence {z,, }
such that x,,, — = € D and Tx = y, (respectively, there exists z € D(T),
such that Tz = y). We denote by A (D,Y") the class of all A-proper mappings
F:D-—-Y.

Recall that, in a normed space X, the semi-inner products (-,-)_ and (-, )+
are defined by

(z,y)_ = hlir0n+ h_l(HmH — ||z — hy||) for all z,y € X,

(0,9) = Jim A~ (e +hy| — o) forall 2,y € X.
An operator T : D(T) C X — X is called accretive if
(x —y,Tx —Ty)y >0 forall z,y € D(T)
and strongly accretive if
(x—y,Tx—Ty)y > cz—y|* for some constant ¢ > 0.

For some properties of accretive operators, we refer the reader to [17] and
[60]. One can show that a continuous strongly accretive operator T : X — X
is A-proper, and the proof is left to the reader as an exercise.

Definition 4.1.7. Let X be a separable Banach space with a projection
scheme I = {X,,, P,}. Then T : D C X — X is called a P; compact mapping
if \I — T is A-proper with respect to II for all A > 1.

In the following, let X, Y be separable Banach spaces, S : X — Y be a linear
Fredholm mapping of index zero with N(S) # {0} and C : D C X — Y be
a nonlinear mapping. Consider the semilinear problem Sz — Cz = y for all
x € D(L)ND and y € Y. Since S is Fredholm of index zero (see Chapter V),
there exist closed subspaces X’ of X and Y’ of YV with dimY’ = dimN(S)
such that

X=NS)ae X', Y=Y &R(S).

Let P : X — N(S) be a projection, @ : ¥ — Y’ be a projection and
M : N(S) — Y’ be a isomorphism. Put T = MP. Then T is a compact
linear operator. It is known that S + T is also a Fredholm mapping with
ind(S+T) = ind(S) = 0 and S + T is bijective with (S+T)7!: Y — X
bounded. Set S = S|x/np(s). Then S is injective and closed and so Sl_l is
continuous on R(S).
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Suppose Y has a sequence of finite dimensional subspaces Y,, with a se-
quence of projections @, : Y — Y, such that Q,y — y for all y € YV
asn — oo. If S: X — Y is a Fredholm mapping of index zero, we set
X, = (S+T)71Y, and then I's = {X,,,Y,,Q,} is an admissible scheme for
(X,Y).

Lemma 4.1.8. Let S : X — Y be a Fredholm mapping of index zero.
Then S is A-proper with respect to I'g.

Proof. Obviously, @,S : X, — Y, is continuous. Let (z,,) € X,, be a
bounded sequence such that Q,,; Sz, — y € Y. Since Q,(S+T)x = (S+T)z
for all x € X,,, we have

an (S + T)l'nj = (S + T):L'nj.

Since T is compact, we may assume that Tz,, — z by taking a subsequence.
Therefore, we have

Tn, = (S+T) 7 [@Qn, STn, + Qn,Tan)] —» 2= (S+T) " (y+2)

and Tx = z. Thus Sz =y, i.e., S is A-proper with respect to Ilg.

Definition 4.1.9. Let X,Y be real Banach spaces, II = {X,,, P,;Y,,,Q.}
be an operator projection scheme and D C X. A family of mappings H(¢,x) :
[0,1] x D — Y is called A-proper homotopy with respect to II if

(1) for any bounded sequence (z,,) in DN X, t — to and Qu H (t, Tm) —
y, there exists a subsequence (z,,) of (z,,) such that z,,, — = € D
and H(tg,z) = y;

(2) Q.H(t,x):[0,1] x DN X,, — Y, is continuous for n =1,2,---.

If S: D(S) C X — Y is a Fredholm mapping, then it is known from [283]
that

1(S) = sup{r € R : ry(B) < ~(S(B)), B C D(S) is bounded} > 0.

Lemma 4.1.10. Suppose that S is Fredholm of index zero, Q C X is
an open bounded subset, I's is as above, N : 2N D(S) — Y is a bounded
continuous mapping and T\ = S — AN for A € (0,1]. Assume that one of the
following conditions holds:

(1) Nor S;': R(S) — X is compact;
(2) N is k-ball contractive with k € [0,1(S)) and ||Q,| = 1;

(3) N(S+T)~1: (S+T)(QND(S)) — Y is ball condensing and ||Q,|| = 1.
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Then T) is A-proper with respect to I's for each A € (0, 1].

Proof. (1) If N is compact, then it is trivial that SxN is A-proper with
respect to IIg. Suppose now that 51—1 is compact. Let (z,;) € QN X, be
any sequence such that

In; = an anj - >\an anj — g€ Y.
Since Qn (S +T)x = (S +T)x for all z € X,,, we have
gn; = (S +T)xn, = ANQn,Nxp, — Qn,Txn, — g.

But T' is compact, so we have Sz,,; — AQn; Nz, — g. Therefore, it follows
that

(I = Q)S@n, — A(I = Q)Qn, N, — (I — Q)g € R(S).

Thus we have
(I - P)'rn] - )‘SII(I - Q)QHJ(N‘TTL]) - SII(I_ Q)g

Since P and S;'(I — Q) are compact, it is easy to see that (zn;)52; has a
subsequence (z;, )32, converging to zo. From the continuity of IV, it follows
that Sz;,  — g+ ANwzo. The closedness of S implies that

Srg—ANzg =g

and thus S — AN is A-proper.

(2) Let =, € Qn X, be any bounded sequence such that Q, Sz, —
AQn; Nxy,; — g. As in (1), we have Sz, — AQn, Nxpn; — g.

On the other hand, y({Szy,}) < Aey({zn,}) < Ey({zn,}). This and the
assumption that k& < [(S) imply that y({z,,}) = 0, so we may assume that
Ty, — xo and, consequently, Sz,; — g+ ANzg. Hence Sxg — ANxo = g and
so S — AN is A-proper.

(3) Let (25,) be any bounded sequence in QN X, such that Q,,Sz,, —
AQn;Nz,; — g. Then we have

(S + T)xnj - )\an anj - anTxnj — 9.
Set Yy, = (S + T)xy,;. We have
Yn; — /\QnJN(S + T)_l(ynj) - anT(S + T)_l(ynj) - 4g-
By the compactness of T(S + T)~! and the assumption (3), it follows that

(yn,;)j21 has a subsequence (y;, ) with y;, — yo. Thus 27, = (S+T) tyn, —
xo, and it is simple to check that Szg — ANz¢ = ¢g. This completes the proof.
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4.2 Generalized Degree for A-Proper Mappings

Let X, Y be real separable Banach spaces and I = {X,,, P,,; Y,,, @, } be an
operator projection scheme. Let 2 C X be an open bounded subset and L be
a dense subspace of X with U;2 X, C L. Welet Q;, = QN L.

Lemma 4.2.1. Let T € Ag(QNL,Y). Suppose that p ¢ T(0QNL). Then
there exists an integer ng > 0 such that

Qnp ¢ Q,T(0(2N X)) for all n > ny.

Proof. Suppose that the assertion of Lemma 4.2.1 is not true. Then
there exists ny — oo and z,, € QN X,, such that Q. p = Qn, Ty, .
Obviously, z,, € 022N L. Thus we have Q,, Tz,, — p as k — oo and the A-
properness of T guarantees the existence of a subsequence (mnkl )72, such that
Tp,, — To € I N L, and Txy = p, which is a contradiction. This completes
the proof.

Definition 4.2.2. Let T € Ag(QNL,Y). Suppose that p ¢ T(0Q N L)
and @, T is continuous. We define a generalized degree D(T, €, p) by

Deg(T,QN L,p) = {k € ZU{£oo} : deg(Qn, T, Q2N Xy, Qn,p) — k
for some n; — oo},
where Z is the set of all integers.

By Lemma 4.2.1, we know that there exists an integer ng > 0 such that p ¢
Q.T(00N X,,) and Q,T is continuous, so the Brouwer degree deg(Q,T, 2N
Xn, Qnp is well defined for n > ng. Thus Deg(T,Q N L, p) is nonempty and
the definition is well defined.

Theorem 4.2.3. Let T € Ag(QNL,Y) and p ¢ T(0Q N L). Then the
generalized degree has the following properties:

(1) If Deg(T,Q2N L,p) # {0}, then Tz = p has a solution in QN L;
(2 fQCcQfori=1,2 0% N%=0andp¢g (Q\ Q2 UQ)NL, then
Deg(T, QN L,p) C Deg(T,Q1 N L,p) + Deg(T, Q2N L, p),
here we use the convention that 400 + (—00) = Z U {£o0};

(3) If H(t,z): [0,1] x QN L — Y is a A-proper homotopy and p ¢ H(t,z)
for all (t,z) € [0,1] x QN L, then Deg(H(t,-),2NL,p) does not depend
ont € [0,1];
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(4) If 0 € Q, Q is symmetric about 0, T: QN L — Y is an odd A-proper
mapping and 0 ¢ T(0Q2 N L), then Deg(T,2 N L,0) contains no even
numbers.

Proof. (1) If Deg(T,2N L, p) # {0}, then there exists ni — oo such that

deg(Qn, T, 2N X, , Qn,p) # 0.

Thus there exists x,, € QN L such that Q,, Tz, = Qn,p. By the A-
properness of T', there is a subsequence (z, ) with z,, — x9 € QN L and
Txy = p. ’ ’

(2) Since p & (2\ Q1 UQg) N L, there exists ng > 0 such that

Qup & (Q\ QL UQ)N X, forall n > ng.
Therefore, we have
deg(Q,T,Q,p) = deg(QnT,Q1,p) + deg(QnT,Qa,p) for all n > ng.
If k = lim; o0 deg(Qn,T,2N Xy, Qn,;p), then we have

k = Jli{lolo[deg(an T’ Ql ﬁ an ) anp) + deg(QTLJ T7 QQ m an l) anp)
If limj o0 deg(Qn, T, 2 N Xy, Qn,p) and lim; oo [deg(Qn, T, 2N Xy, , Qn, )
are both equal to +00 or —oo, then k = 400 or £k = —oo and so the conclusion
holds. If one of them equals to 400 and the other one is —oo, then, by the
convention, we have k € Z U {£oo}. For the case,

hm Sup |deg(Q’n7 T7 Ql ﬂ XTL]’ I Qn]p” < +OO
j—o0
and
lim sup |deg(Qn,; T, Q2 N Xy, Qn,p)| < +00
j—oo
and so the conclusion is obvious.
(3) We claim that there exists an integer ng > 0 such that

Qnp & Upejo,nH(t, 002N X,,)  for all n > ng.

Assume the assertion is false. Then there exist n; — oo, t; — to, T, €
0Q N Xy, such that Q,,p = Q,,H(tj,z,,). Therefore, (z,,) has a subse-
quence (z}, ) which converges to g € QN L and H(tg,zo) = p, which is a
contradiction. Thus the Brouwer degree deg(Q, H(t,),2NX,,, Q,p) does not
depend on ¢ € [0,1] for n > ng, so Deg(H(t,-),22N L, p) does not depend on
t € 0,1].

(4) Since Q N X,, is symmetric about 0, by Borsuk’s theorem, we have
deg(Q,T,Q2 N X,,0) is odd for n sufficiently large. Thus Deg(T,Q N L,0)

contains no even numbers. This completes the proof.
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Corollary 4.2.4. Let X,Y be separable Banach spaces, S : D(S) C X —
Y be a Fredholm mapping of index zero and (Y,,,@,,) be a projection scheme
for Y. If © is an open bounded subset of X with QN D(L) # () and N :
QN D(S) — Y is a nonlinear mapping such that S — N is A-proper with
respect to I'g, then we have the following:

(1) If p ¢ (S — N)(02N D(S)) and Deg(S — N,Q N L,p) # {0}, then
Sz — Nz = p has a solution in QN D(S);

(2) If © is symmetric about 0, N is odd and 0 ¢ (S — N)(92 N L), then
Deg(S — N,2nN D(S),0) contains no even numbers.

Proof. The proof follows from Theorem 4.2.3.

Proposition 4.2.5. Let X,Y be separable Banach spaces, S : D(S) C
X — Y be a Fredholm mapping of index zero and (Y;,,@,) be a projection
scheme for Y. If © is an open bounded subset of X with Q N D(L) # § and
A: X — Y is a linear continuous compact mapping, then S — A is A-proper
with respect to I's. If N(S — A) = {0}, then

Deg(S — A,QN D(S),0) = {?1){701“ {-1} 8 z g’

Proof. It is easy to see that S — A is A-proper with respect to IIg. Since
N(S — A) = {0}, S — A is injective, it follows that Sz — Az # 0 for all
x € 90N D(S). Thus, if 0 ¢ Q, then Deg(S— A, Q2N D(S),0) # 0 would imply
that Sx— Az = 0 has a solution in QND(.S), which contradicts N (S—A) = {0}.

On the other hand, if 0 € 2, then 0 € QN X, for alln, Q,(S—A4) : X, = Y,
is injective for sufficiently large n and we have

deg(Qn(S — A),2N X,,0)=1or — 1.

This completes the proof.

4.3 Equations with Fredholm Mappings of Index Zero
In this section, all the notations are the same as in previous sections.

Proposition 4.3.1. Let X,Y be separable Banach spaces, S : D(S) C
X — Y be a Fredholm mapping of index zero and (Y;,,@,) be a projection
scheme for Y. Suppose that  C X is symmetric about 0. Let N : QN D(S) —
Y be a mapping such that
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(1) H(t,z) = Sz — [ N(2) — 155 N(—x)] is A-proper with respect to I's
for all ¢t € [0, 1];

(2) ||IN(z) + N(—=z)|| <d for all x € 9Q N D(S) and some d > 0;
(3) S(z) = N(x) # A[S(—x) = T(—x)] for all z € 90N D(S) and X € [0,1].
Then Sz — Nz = 0 has a solution in D(S).

Proof. By (1) and (2), it is simple to check that (H(t,-))iep,1] is an
A-proper homotopy. Moreover, in view of (3), H(t,x) # 0 for all (¢,2) €
[0,1] x9QND(S). Thus Deg(H(t,-),2ND(S),0) does not depend on ¢ € [0, 1].
But H(1,2) = Sz — 1[N (z) — N(—)] is an odd mapping, so Deg(H(1,-), 2N
D(S),0) contains no even numbers. Thus Deg(L — N,Q N D(S),0) contains
no even numbers, so Lz — N has a solution in 2N D(S). This completes the
proof.

Proposition 4.3.2. Assume that the following conditions hold:

(a) S—AN : QND(S) — Y is A-proper with respect to I's for each X € (0,1]
with N(2N D(S)) bounded;

(b) Sz # ANz + Ap for A € (0,1) and = € 92 N D(S);

(c) QNz +Qp # 0 for x € S1(0) N9 N D(S), where Q is the projection
of Y onto Y;

(d) Deg(S —[QN + @p], 2N D(5),0) # {0}.
Then there exists € QN D(S) such that Sz — Nz = p.

Proof. Since QN is compact and S — tN is A-proper with respect to
I for all t € [0,1], it follows from N(Q N D(S)) bounded that H(t,z) =
Sz — (1-1t)[QNx + Qp] —tNx —tp is an A-proper homotopy with respect to
Ts.

We may assume that Sz — Nz ¢ p for all x € 9Q N D(S) (otherwise,
Sz — Nx = p has a solution, and we are done). We claim that H(t,x) # 0
for all (¢,z) € [0,1] x QN D(S). Indeed, if H(to, o) = 0 for some (tg, zo) €
[0,1] x 92 N D(S), then t, € [0,1).

Case (1) If tg = 0, then Szg = QNzo + Qp, but Y' N R(S) = {0}, so
Szg = 0, which contradicts (c).

Case (2) If tg € (0,1), then Szg = (1 — t0)[@Nzo + Qp] + toNz + top. By
(b), QNzo + Qp # 0, so we have

0=QSzo=(1—-1ty)QQNzo+ Qp] + toQNzo + toQp = QNzo + Qp,

which is a contradiction. Thus the claim is true and, as a consequence,

Deg(S — QN — Qp,Q2N D(S),0) = Deg(S — N —p, QN D(S),0).
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By the assumption (d), Sz — Nz = p has a solution in Q N D(S). This
completes the proof.

In the following, we assume that there exists a continuous bilinear form [ -]
on Y x X such that

y € R(S) if and only if [y,z] =0 for all z € N(S). (4.3.1)

If {e1,e2, -+ ,en} is a basis in N(S), then (4.3.1) implies that J : R(Q) =
Y’ — N(S) given by
Jy =Xy, eile;
is an isomorphism and, if y = ¥, ¢;e;, then [J~te;, e5] = 6;; and [J 1y, e;] =
c; for 1 <45 <m.
For subsequent use, let P : X — N(S), @ : Y — Y’ be the projections and
set A=J1P.

Theorem 4.3.3 Let X,Y be separable Banach spaces, S: D(S) C X — Y
be a Fredholm mapping of index zero and (Y, Q) be a projection scheme for
Y. If Q is an open bounded subset of X with 0 €  and [-, -] is a continuous
bilinear form on Y x X such that (4.3.1) holds. Also, assume that the following
conditions hold:

(1) S—=AN : QND(S) — Y is A-proper with respect to I's for each A € (0, 1]

with N () bounded;
(2) Sz # ANz + Ap for all z € N(S) NI N D(S) and A € (0,1);
(3) QNz + Qp # 0 for all x € N(S) N oQ;

(4) One of the following conditions holds:
(4a) [QNz + Qp,z] > 0 for all z € N(S) N OQ;
(4b) [QNz + Qp,z] <0 for all x € N(S) N oQ.

Then Sx — Nz = p has a solution.

Proof. Consider the homotopy H : [0,1] x QN D(S) — Y given by
H(t,z) =Sz — (1 —t)(QNxz+ Qp) —tNx —tp
for all (t,x) € [0,1] x QN D(S). Since QN is compact, it follows from (1) that
H is an A-proper homotopy.
Now, we claim that H(¢,z) # 0 for all (¢,z) € [0,1] x 92 N D(S). If this is
not true, then there exists (to, zo) € [0,1] x 92 N D(S) such that
Szo = (1 —t0)(@Nwo + Qp) + toNzo + top.

If to = 0, then Szg = QNzo + Qp, so we have 0 = Szg = QNzg + Qp, which
contradicts (3). If tg = 1, then Sxzg = Nz + p, which contradicts (2).
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Iftg € (0, 1)7 then Sxg—toNxo—top = (17t0)(QNI0+Qp), 0 QNzo+Qp 7£
0. Therefore, we have

0=0QSzo = QNxo + Qp,

which contradicts (3). Therefore, the claim is true. Consequently, we have
Deg(S — QN — Qp, 2N D(S),0) = Deg(S — N —p, Q2N D(S),0).

Now, we prove Deg(S —QN —Qp, 2N D(S),0) # {0}. To achieve this goal,
we consider the homotopy Hi(t,x) : [0,1] x QN D(S) — Y given by

Hy(t,z) =Sz — (1 —t)Axz — t(QNz + Qp)

for all (t,z) € [0,1] xQND(S), where A = J~ 1P if (4a) holds and A = —J P
if (4b) holds.

Also, we prove that Hi(t,z) # 0 for all (¢,z) € [0,1] x 90N D(S). If this
is not true, then there exists (tg,zg) € [0,1] x 92 N D(S) such that

SSL’O - (]. - t)AiCO - to(QN.’EQ + Qp) =0.

Since N(S — A) = {0}, it follows that o # 0. If tg = 1, then Sxo = QNzo +
Q@p = 0, which contradicts (3). Therefore, tg € (0,1), so we have Szg =0 =
(1 —to) + Azo + to(Q@Nzo + Qp).

Assume that (4a) holds. Since Px = x, we have (1 —to)J 'zg+to(QNzo +
Qp) = 0 and zy # 0. Therefore, we have

(1 —to)[J w0, mo] + to[QNzo + Qp, x0] = 0.

Thus zg = 0, which is impossible.
If (4b) holds, then a similar argument shows that xy = 0, which is a con-
tradiction. Thus we have

Deg(S — QN — Qp,Q2N D(S),0) = Deg(S — A, QN D(S),0).

But S — A is a linear injection, so Deg(S — A,Q N D(S),0) # {0}. Therefore,
it follows that Deg(S — N —p, Q2N D(S),0) # 0. Consequently, Sx — Nx = p
has a solution. This completes the proof.

Theorem 4.3.4. Let X, Y be separable Banach spaces, S : D(S) C X - Y
be a Fredholm mapping of index zero, (Y,,,@,) be a projection scheme for Y,
Q) be open bounded and symmetric about 0 € Q and [-,-] be a continuous
bilinear form on Y x X. If N : QN D(S) — Y is a bounded continuous
mapping such that

(1) S—=AN : QN D(S) — Y is A-proper with respect to I's for all A € (0, 1];
(2) Sz # ANz + Ap for all z € N(S)NnoQN D(S) and A € (0,1);
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(3) [Q(Nz +p),z][Q(N(—x) 4+ p),x] <0 for all z € N(S) N Q.
Then Sz — Na = p has a solution in QN D(S).

Proof.If Sx — Na = p has a solution on 92 N D(S), we are done, so we
may assume that Sz — Nx # p for z € 90N D(S).
Consider the homotopy H : [0,1] x QN D(S) — Y given by

H(t,z) = Sz — (1 = t)[Q(N(x) + p)] — tNx — tp

for all (t,x) € [0,1] x QN D(S). Since QN is compact, it follows from (1)
that H(t,-) is A-proper for all ¢ € [0,1] and N is bounded. Therefore, H is
an A-proper homotopy.

Now, we prove that H (¢, z) # 0 for (¢, z) € [0, 1]x0QND(S). In fact, assume
the contrary, there exists (¢g,zo) € [0, 1] x 92N D(S) such that H(ty,z) = 0,
ie.,

Szo — (1 = t)[Q(N(x0) +p)] — toN(20) — top = 0.

By (2), we know that to # 1. If ¢ = 0, then Sxg = Q(N(zo) + p). But
R(L)NY’' = {0}, so we have Szyp = 0 and Q(N(zo) + p) = 0. Therefore,
[Q(N(x0) + p), xo] = 0, which contradicts (3). Thus we must have ¢y € (0,1).
Therefore,

0= QSzo = (1 —1t0)Q(N(x0) +p) + toQ(N(x0) + p),

ie., Q(N(xzo)+p) = 0 which contradicts (3) again. By the homotopy property
of the generalized degree, we get

Deg(S — N —p, Q2N D(S),0) = Deg(S — Q(N + p),2N D(S),0).

Now, we prove that {0} # Deg(S — Q(N + p), 2N D(S),0). To reach this
goal, we consider the homotopy Hi (¢, ) : [0,1] x 2N D(S) — Y given by

1
Hi(t,z) = S — m[@(N(x) +p) — t(Q(N(—z) +p)]
for all (¢,z) € [0,1] x QN D(S). Obviously, H; is an A-proper homotopy. We
claim that Hy(t,x) # 0 for all (t,z) € [0,1] x 92 N D(S). If not, there exists
(t1,z1) € [0,1] x 092N D(S) such that Hy(t1,21) =0, i.e.,

1

S _
YT,

[Q(N(21) +p) — 1l (Q(N(=21) + p)] = 0.
If ;1 = 0, then Sz; = Q(N(z1) + p) = 0, which contradicts (3). So t; # 1,
thus Lzg = 0 and Q(N(z1) + p) — t1(Q(N(—z1) + p) = 0, which lead again

to a contradiction to (3). Therefore, we have

Deg(5 ~ QN +9).901 D(5),0) = Deg($ ~ J[QIN() +p) ~ QN(~) + 7))
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But S — LQ(N(-) +p) — Q(N(—) +p)] is odd, so
1
0 ¢ Deg(S — g[Q(N(-) +p) = Q(N(—) +p)].

Thus we have Deg(S—N —p, QND(S)) # {0} and, consequently, Sx— Nz = p
has a solution. This completes the proof.

4.4 Equations with Fredholm Mappings of Index Zero
Type

In this section, we show the existence of solutions of the equations with
Fredholm mappings of index zero type in Banach spaces.

Definition 4.4.1. Let X,Y be two real Banach spaces and L : D(L) C
X — Y be a linear mapping. We say that L is a Fredholm mapping of index
zero type if

(1) Ker(L) ={x € X : Lv =0} and Im(L) = {Lx : x € D(L)} are closed
in H;

(2) X = Ker(L) ® X; for some subspace X; of X and Y =Y; & Im(L) for
some subspace Y7 of Y,

(3) Ker(L) is linearly homeomorphic to Coker(L) =Y/Im(L).

Remark. Obviously, if X is linearly homeomorphic to Y, L = 0 is a
Fredholm mapping of index zero type but not a Fredholm mapping of index
zero. If L is a Fredholm mapping of index zero, then

dim(Ker(L)) = dim(Coker(L)) < +o0,

so Ker(L) is linearly homeomorphic to Coker(L) and thus L is a Fredholm
mapping of index zero type.

Now, assume that L : D(L) C X — Y is a Fredholm mapping of index zero
type. Then there exist linear projections P : X — X and @ : Y — Y such
that

Im(P) = Ker(L), Im(Q) =Y.

Obviously, the restriction of Lp of L to D(L) N Ker(P) is one to one and
onto Im(L), so its inverse Kp : Im(L) — D(L) N Ker(P) is defined. Let
J : Ker(L) — Y7 be a linear homeomorphism and set Kpg = Kp(I — Q)

Proposition 4.4.2. L+ AJP : X — Y is a bijective mapping for each
A#£0.
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Proof. For each \ # 0, if Lx + AJPzx = 0, then JPx = 0 and Lz = 0,
so x € Ker(L). Thus « = 0. On the other hand, for y = y; + y2 € Y,
y1 € Y1,y2 € Im(L), put z = A"'J ly; + Kpys, then Lz + \JPx = y.
Therefore, L + AJ P is bijective.

Proposition 4.4.3. Let X,Y be real separable Banach spaces, (Y, Q)
be a projection scheme for Y and L : D(L) C X — Y be a Fredholm mapping

of zero index type. Then, for each A # 0, there exists a projection scheme
F)\’L for (X,Y)

Proof. For each A # 0, put K = L + AJP. By Proposition 4.4.2, K is
bijective. Set X,, = K;lYn forn=1,2,---. Obviously, we have

dim(X,) = dim(Yy,), X =U>,X,.
Thus T'x . = {Xn, Yn,@Qn} is a projection scheme for (X,Y).

Proposition 4.4.4. Let L : D(L) C X — Y be a Fredholm mapping of
zero index type. Assume that X is reflexive. If G C X is bounded closed and
convex, then L : GND(L) — Y is pseudo A-proper with respect to I'y 1, for
each A # 0.

Proof. For any sequence (z,,) in GND(L)N X, with Q,, Lz, — y, we
may assume that x,, — x¢ € G by taking subsequences. Notice that

Qn,, (L2, + AJPxy,, ) = Lx,, + AJPxy,,, JPx,, — JPxg,
so we have
Tp, = (L + JP) Y Qn, L2y, + JPx,,) — (L+ JP)"*(y + JPxy) = 0.

Thus o € D(L) and Lz = y. Therefore, L is pseudo A-proper with respect
to F)\)L.

Definition 4.4.5. Let X be a real separable Banach space, T'g = (X,,, P,)
be a projection scheme for X, Y be a real Banach space, L: D(L) C X — Y
be a Fredholm mapping of zero index type and N : D C X — Y be a mapping.

(1) fI—P—(J7'Q+ Kpg)N is A-proper with respect to I'g, then we say
that N is L-A-proper with respect to I'g;

(2) fI—P—(J'Q+ Kpg)N is pseudo A-proper with respect to Iy, then
we say that N is pseudo L-A-proper with respect to I'g;

(3) A family of mappings H(t,z) : [0,1] x D — Y is called a homotopy
of L-A-proper mappings with respect to T'g if H(¢,-) is a L-A-proper
mapping with respect to I'g for all ¢ € [0, 1].

Proposition 4.4.6. Let L : D(L) C X — Y be a linear mapping with
Ker(L) = {0} and Im(L) =Y, then the following conclusions hold:
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(1) If Ty = (X,, P,) is a projection scheme for X, then 0 is L-A-proper
with respect to I'g;

(2) If (Y,,,Q,) is a projection scheme for Y and L~! is continuous, then
L is A-proper with respect to I'y ;, where I'y 1, is constructed as in
Proposition 4.4.3.

Proof. (1) We have P = 0, Q@ = 0 and the identity mapping I : X — X
is obviously A-proper with respect to I'g. Thus 0 is L—A-proper with respect
to Fo.

(2) Since Ker(L) = {0}, the mapping K in the proof of Proposition 4.4.3 is
just the mapping L. Thus X,, = L7Y,,. If z,,, € X,,, such that Q,,, Lz,, —
y, then Lz,, = Qn,Lz,, — y. Therefore, we have z,, — L~'y. The
conclusion is true.

Proposition 4.4.7. Let L : D(L) C X — Y be a Fredholm mapping of
zero index type and I'g = (X,,, P,) be a projection scheme for X. If G C X is
a bounded closed convex subset, T : G — Y is a weakly continuous mapping
and X is reflexive, then T is pseudo L-A-proper with respect to I'g.

Proof. For any subsequence (z,, ) in X,, such that P,, (I —P—J1QT —
KpoT)xy, — y, we may assume that z,, — x¢ € G by taking a subsequence.
Thus we have

(I — P)xy, — 20, J 'QTxp, — J 'QTxo
and
KpQTl‘nk — KPQT.QTQ
and, consequently, (I — P — J'QT — KpgT)xo = y. So T is pseudo L—A-
proper with respect to I'g.

Proposition 4.4.8. Let X,Y be real separable Banach spaces, (Y;,, Q) be
a projection scheme for Y. Let L : D(L) C X — Y be a Fredholm mapping
of zero index type, G C X be a bounded closed subset and N : G — Y be a
continuous compact mapping. Then L + AJP — N is A-proper with respect
L'y, for each X > 0.

Proof. For any sequence (z,,) in GN D(L) N X, with @, (L + A\JP —
N)z,, — y, in view of the compactness of N, we may assume that Nx,, —
Yo € Y by taking a subsequence. Notice that

Qn, (Lp, + AJPxy, ) = La,, + AJPxy,,
so we have

Ty, = (L+JP)_1[QM(L+)‘JP_N)$M +anank]
— (L+MJP) Yy +vo) = 0.
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Thus zp € D(L), Nxg = yo and (L+AJP—N)zg = y. Therefore, L+-AJP—N
is A-proper with respect to I'y 1.

In the following, suppose that X,Y are real separable Banach spaces, L :
D(L) C X — Y is a Fredholm mapping of index zero type with D(L) dense
in X and N : Q C X — Y is a nonlinear mapping. We consider the semilinear
operator equation Lx — Nz = 0 and we apply the generalized degree theory
in Section 4.2 to study such an equation.

Lemma 4.4.9. Let L : D(L) € X — Y be a Fredholm mapping of index
zero type, 2 C X an open bounded subset and N : 2 — Y be a mapping. If
0¢ (L—N)O2ND(L)), then 0¢ [I — P— (J7'Q + Kpg)N](89).

Proof. Suppose the contrary. Then there exists xg € 02 such that 0 €
zo — Pxog — (J7'Q + Kpg)Nxo. Since J 'QTzy € Ker(L) = Im(P), zo —
Pzy € Ker(P) and KpoTxo € D(L) N Ker(P), we must have

J'QNzo = 0,29 — Pxo — KpoNzo = 0.
Therefore, we have
QNxog =0,20 — Pxo — KpNxzg =0, ie., Lrg — Nxg =0,
which contradicts 0 ¢ (L — N)(0Q2 N D(L)). This completes the proof.

Now, let L : D(L) € X — Y be a Fredholm mapping of index zero type,
Iy = (X,, P,) be a projection scheme for X, Q C X be an open bounded
subset and N : Q — Y be a L-A-proper mapping respect to I'y. Suppose that
0¢ (L—T)(002N D(L)). By Lemma 4.4.9, we have

0¢[I—P—(J'Q+ Kpg)N](09).

Since I — P — (J7'Q + Kpg)N is an A-proper mapping with respect to I'o,
the generalized degree deg(I — P — (J7'Q + Kpg)N, Q,0) is well defined and
we define

degr, 7(L — N,Q,0) = deg(I — P — (J7'Q + Kpg)N, Q,0), (4.4.1)
which is called the generalized coincidence degree of L and N on €.

Theorem 4.4.10. The generalized coincidence degree of L and N defined
by (4.4.1) on € has the following properties:

(1) If Q4 and Qs are disjoint open subsets of Q such that 0 ¢ (L—N)(D(L)N
Q\ (Ql U Qg), then

degro,J(L — N,Q,O) - dengJ(L — N, Ql) + degFOJ(L — N, QQ, O),
(2) If H(t,z) : [0,1] x Q — Y is a homotopy of L-A-proper mappings with

respect to I'g and 0 # Lx — H(¢t,z) for all (¢,2) € [0,1] x 0Q N D(L),
then degr, s(L — H(t,-),€,0) doesn’t depend on ¢ € [0, 1];
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(3) If degr, (L — N,,0) # {0}, then 0 € (L — N)(D(L) N Q);

(4) If L: D(L) C X — Y is a linear mapping such that L= : Y — D(L) is
continuous, then degr, s(L,Q,0) = {1} if 0 € ;

(5) If Q is a symmetric neighborhood of 0 and N : Q — Y is an odd L-
A-proper mapping respect to I'g with 0 ¢ (L — N)(9Q N D(L)), then
degr,,;(L — N, ,0) does not contain even numbers.

Proof. (1)-(3) follows directly from the definition and the properties of
generalized degree.

(4) Since Ker(L) = {0}, P = 0 and Q = 0, the zero mapping is L—A-proper
with respect to I'g. Thus degr,,s(L,,0) = deg(1,9,0) = {1}.

(5) Since N is odd, the mapping I — P — (J7'Q + Kpg)N is odd and
thus deg(I — P — (J7'Q + Kpg)N,,0) doesn’t contain even numbers. The
conclusion follows by definition.

Corollary 4.4.11. Let L: D(L) € X — Y be a linear mapping such that
L=':Y — D(L) is continuous, {2 C X be an open bounded subset with 0 €
and N : Q — Y be a mapping such that {L —tN }4ejo,1) is a homotopy of L-A-
proper mappings respect to I'g. If Lz ¢ tNx for all (t,z) € [0,1] x 9QND(L),
then deg(L — N,Q,0) = 1.

In the following, let L : D(L) C X — Y be a densely defined Fredholm
mapping of zero index type. We assume that Ty = (Y,,,@,) is a projection
scheme for Y, I'y 1, is the same as in Proposition 4.4.3 and L + AJP — N is
A-proper with respect to I'y ;, for A € (0, Ao), where Ao > 0 is a constant.
Suppose that 0 ¢ (L — N)(D(L) N o). Then there exists Ay < Ag such that

0¢ (L+AJP—N)(D(L)NoQ) forall A € (0,\).
We define a generalized degree by
deg(L — ]\[7 Q, O) = ﬂo<)\<,\1 U0<5S/\ d@g(L + GJP — N, Q, O), (442)

where deg(L+eJP— N, Q,0) is the generalized degree for A-proper mappings.
Notice that, if 0 ¢ (L + AJP — N)(D(L)NdN) for all X € (0, \z), then it is
easy to check that

No<x<a; Yoce<n deg(L + eJP — N,Q,0)
= No<a<r, Yo<e<r deg(L +eJP — N,Q,0).

Thus (4.4.2) is well defined.

Theorem 4.4.12. The generalized degree defined by (4.4.2) has the fol-
lowing properties:
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(1) If Q; and Qs are two open subsets of Q such that Q3 N Qs = @ and
0¢ (L—N)D(L)NQ\ (21 UQy)), then

deg(L 7N,an) g deg(L 7N,Q1) +d€g(L7N79270)7

(2) If H(t,z) : [0,1] x @ — Y satisfies 0 ¢ Usejo,1)(L — H(t,-)(D(L) N 0Q)
and {L+AJP—H(t,-)}+e[0,1] is a homotopy of A-proper mappings with
respect to I'y  for each A € (0, A¢), where A\g > 0 is a constant, then
deg(L — H(t,-),$,0) does not depend on t € [0, 1];

(3) If degr, (L — N,Q,0) # {0}, then 0 € (L — N)(D(L) N Q);

(4) If Q is a symmetric neighborhood of 0 and N :  — Y is an odd mapping
such that L + AJP — N is A-proper with respect to I'y j, for all A > 0,
and 0 ¢ (L — N)(0Q2N D(L)), then deg(L — N,,0) does not contain

even numbers;

(5) deg(L,©,0) C {£1}if 0 € Q.

Proof. (1) By assumption, there exists A\g > 0 such that
0¢ (L+AJP—N)(DL)NOQ\ (2:UQ))

for all A € (0, Xg). If m € deg(L— N, ,0), then there exist \; — 07, \; < Ao,
j=1,2,---, such that m € deg(L + A\;JP — N,,0). By Theorem 4.2.3, we
have

deg(L + X;JP — N,Q,0)
C deg(L+ \;JP — N,1,0) + deg(L + A, JP — N, Q»,0)

for j =1,2,---. By (4.4.2), (1) is true.
(2) Since 0 ¢ Ugepo,1(L — H(t,-)(D(L) N OSY), there exists A; > 0 such that

0 ¢ Urcpoay (L + AJP — H(t,-))(0QN D(L)) for all A € (0, Ay).

By Theorem 4.2.3, deg(L + A\JP — H(t,-),,0) does not depend on ¢ € [0, 1]
for A € (0, min{Ag, A1}). So the conclusion of (2) follows from (4.4.2).

(3) If degr,(L—N, Q,0) # {0}, then there exists 0 # m € degr,(L—N, 2, 0),
so there exists A; — 07 such that m € deg(L + \;JP — N,Q,0). Therefore,
(L 4+ X\;jJP — N)z has a solution in QN D(L) for j = 1,2,---. By letting
j— o0, weget0e (L—N)(D(L)NQ).

(4) The proof is left to the reader.

(5) Now, L+ AJP is A-proper with respect to I'y 1, and 0 ¢ (L+AJP)(9Q2N
D(L)) for all A > 0. Since L + AJP) is bijective, deg(L + AJP,,0) C {£1}
for all A > 0, so we have

deg(L — N,Q,0) C {£1}.
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This completes the proof.

Theorem 4.4.13. Let X,Y be real separable Banach spaces and (Y, Q»)
be a projection scheme for Y. Let L : D(L) C X — Y be a Fredholm
mapping of zero index type, 0 € O C X be a bounded subset and N : Q — Y
be a continuous compact mapping. Suppose that the following conditions are
satisfied:

(1) 0¢ (L—N)(02nD(L));
(2) 0¢ QN(0Q2N D(L)).
Then deg(L — N,Q,0) = deg(L — QN,,0).

Proof. For each A € (0, \g), a similar proof to Proposition 4.4.3 shows that
{L+AJP —tN —(1—t)QN }4c(o,1) is a homotopy of A-proper mappings with
respect to I'y .

Now, we claim that

0 ¢ Urepy(L — IN — (1~ HQN)(D(L) N o%).

If this is not true, then there exist t; € [0, 1] with t; — to and z; € 9QND(L)
such that Lz; —t;Nx; — (1 —t;)QNz; — 0.

Case (1) If tyg = 1, then Lz; — Nz; — 0, which contradicts the assumption
(1).

Case (2) If tg # 1, then QLz; — QNz; — 0 and thus we have QNz; — 0
and z; € D(L), which contradicts the assumption (2).

By (2) of Theorem 4.4.12, we get deg(L — N,Q,0) = deg(L — QN,Q,0).

Finally, let L : D(L) C X — Y be a Fredholm mapping of index zero type,
Iy = (Xn, Py) be a projection scheme for X and © C X an open bounded
subset. Let N : Q — Y be a mapping such that I — (L +AJP)"1(N + A\JP)
is A-proper with respect I'y for some A > 0. One can easily see that

0€ Lr— Nz ifandonlyif 0€ (I —(L+AJP) (N +\JP))x.
Assume that 0 ¢ (L — N)(0QN D(L)). Then we have
0¢ (I —(L+AP)"H(N+XJP))(0) forall A >0
and we define a generalized degree by
degry (L — N,Q,0) = Up<rdeg(I — (L + XJP)" (N + AJP),Q,0), (4.4.3)

where deg(I — (L +AJP)"Y(N + AJP),Q,0) is the generalized degree for A-
proper mappings if I — (L + AJP)"}(N + AJP) is A-proper. Otherwise, we
have

deg(I — (L +AJP) (N 4+ \JP),Q,0) = (.

Theorem 4.4.14. The generalized degree defined by (4.4.3) has the fol-
lowing properties:
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(1) If Q; and Q5 are disjoint open subsets of 2 such that 0 ¢ (L—N)(D(L)N
Q\ (21 UQy), then

deg(L 7N,an) g deg(L 7N,Q1) +d€g(L7N79270)7

(2) If H(t,x) : [0,1] x Q@ — Y satisfies 0 ¢ Usejo,1(L — H(t,-)(D(L) N 9RQ)
and {I — (L+AJP)" (H(t,-) + AJP)};c[0,1] is a homotopy of A-proper
mappings with respect to I'y ;, for all A > 0, then deg(L — H(t,-),$,0)
does not depend on t € [0, 1];

(3) If deg(L — N,,0) # {0}, then 0 € (L — N)(D(L) N Q);

(4) If Q is a symmetric neighborhood of 0 and N :  — Y is an odd mapping
such that I — (L + AJP)™1(N + AJP) is A-proper with respect to I'g
for some A > 0 and 0 ¢ (L — N)(0QND(L)), then deg(L — N,Q,0) does

not contain even numbers.

Proof. The proof is standard. We prove (2) and skip the others. Since
0 ¢ Upepo,1)(L — H(t,-)(D(L) N 0Q), it follows that

0 ¢ Urepoa](I — (L + AJP) " (H(t,) + AJP)(8Q) for all A > 0.
By Theorem 4.2.3, we know that
deg(I — (L +A\JP) Y (H(t, ) + A\JP),Q,0)

does not depend on ¢ € [0, 1] for each A > 0. Thus the conclusion of (2) follows
from (4.4.3). This completes the proof.

Theorem 4.4.15. Suppose that (L + AJP)™! : Y — X is a continuous
compact mapping for each A > 0, 2 C X is an open bounded subset with
0€Qand N:Q — Y is a continuous bounded mapping such that Lz # Nx
and QNz # nJ Pz for all x € 9QND(L) and n > 0, where P, ) are projections
as in the beginning of this section. Then deg(L — N,Q,0) = {1}.

Proof. Since (L +AJP)™! :Y — X is continuous and compact for each
A >0, it follows that {I — (L + AJP)"'(N + AJP)}sep0,1) is a homotopy of
A-proper mappings.

Now, we claim that

x# (L +MP) 't(N + \JP)x
for all (¢t,z) € [0,1]x (0Q2ND(L)) and A > 0. If this is not true, then there exist
Ao > 0 and (tg, z0) € [0,1)x9 such that zg = (L+XoJ P) " to(Nzo+AJ Pxg).
Thus we have xy € D(L) and

LSUO + )\0JP£L’0 = to(NiL’() + )\0JPSUO)
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Obviously, tg # 1 and so (1 — tg)A\oJ Pz = toQNxo, which contradicts our
assumption. Consequently, the A-proper degree

deg(I — (L +AJP)" (N 4+ \JP),Q,0) = deg(I1,9,0) = {1}.
Therefore, from (4.4.3), we get
deg(L —T,8,0) = {1}.
This completes the proof.

Corollary 4.4.16. Suppose that H is a separable Hilbert space, (L +
AJP)™! : H — X is a continuous compact mapping for each A > 0 and
Q) C X is an open bounded subset 0 € Q, N : Q — H is a continuous
bounded mapping such that Lz # Nz for all x € 9Q N D(L), QNx # 0
for x € 90N D(L) N Ker(P) and (QNz, JPzx) < 0 for all z € 9Q N D(L) N
(Ker(P))¢, where P, @Q are projections as in the begining of this section. Then
deg(L — N,,0) = {1}.

Proof. From our assumption, we have QNz # nJPx for all z € 0QND(L)
and 1 > 0. Thus the conclusion follows from Theorem 4.4.15.

4.5 Applications of the Generalized Degree

In this section, we apply the results in Sections 4.3 and 4.4 to the periodic
semilinear ordinary and partial differential equations.

First, consider the periodic ordinary differential equations:

{I"(t) = f(t,z(t),2'(t), 2" (1)) — g(t), t€]0,T],

2(0) = x(T), 2'(0) = 2'(T) (E 4.5.1)

where f:[0,7] x R® — R is a continuous function.

Lemma 4.5.1. Let f : [0,7] x R> — R be a continuous function satisfying
the following:

(a) there exist constants M > 0 and ¢,d € R with ¢ < g, < gu < d, and
x < M implies that d < f(t,z,0,7) for all ¢, € [0,T] and r € R, while
x < —M implies that f(t,2,0,7) < cfor all t € [0,T] and r € R, where
gm =min{g(t) : t € [0,T]} and gp = max{g(t) : t € [0,T7]}.

If z(t) is a C? solution of (E 4.5.1) and |z(¢)| does not achieve its maximum
att=0ort="1T, then

|z(t)| < M forall ¢e0,T].
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Proof. Assume that |z(t)| achieves its maximum at to € (0,7). We claim
that |z(to)| < M. If not, then |z(to)| > M.
Case (1) If z(t9) > M, then 2/(tp) = 0 and 2" (t9) < 0. Therefore, we have

fto, x(tg),0,2" (tg)) — g(te) < 0.

By (a), we have d — g(to) < 0, so g(to) < d, which contradicts gps < d.
Case (2) If x(tg) < —M, then 2'(ty) = 0 and z”(¢ty) > 0. Therefore, we
have
f(to,2(t0),0,2" (to)) — g(to) = 0.

By (a), we have b — g(tp) > 0, so ¢ > g(tg), which contradicts g,, > c.
Therefore, from the above arguments, we know that |z(tp)] < M and
Lemma 4.5.1 is proved. This completes the proof.

Lemma 4.5.2. Suppose that the condition (a) of Lemma 4.5.1 holds. Then
any solution z(-) of the problem (E 4.5.1) satisfies

|z(t)] < M forall te0,T).

Proof. Let z(:) be a solution of (E 4.5.1). Assume that |z(¢)| achieves its
maximum at ¢ = 0. Then 2/(0) = 0. Otherwise, |z(¢)| can not achieve its
maximum at ¢t = 0. Therefore, |z(0)| = |z(T)| < M.

Lemma 4.5.3. Suppose the following conditions hold:

(1) There exists a constant M > 0 such that, for each solution z(-) of (E
4.4.1), lz(t)| < M for t € [0,T;

(2) There exist constants A,C' > 0 and B € [0, 1] such that
[f(t,z,r,9)| < Ar? + Blg| + C
for all (t,z) € [0,T] X [-M,M] and r,q € R.

Then there are constants My, My > 0 depending only on M, A, B,C and g/
such that

|z’ (t)] < My, |z"(t)] < My for all t € [0,T]
for each solution z(-) of (E 4.5.1).

Proof. Since z’'(t) vanishes at least once in [0, T, each point ¢t € [0, T] for
which #'(t) # 0 belongs to an interval [u, ] such that 2/(¢) maintains a fixed
sign on [p, ] and 2(p) or z(7y) is 0. Without loss of generality, we may assume
that z(u) = 0 and 2/(t) > 0 for ¢ € [u,7]. Therefore, it follows from (2) that

12 (t)] < Az’ (£)* + Bla" (t)| + C + D, (4.5.1)
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where D = max{|gm|, |grs|}. Multiply (4.5.1) by 2/(t) and rearrange the
terms, we obtain

(1= B)la"(t)a' ()] < (A2'(t)* + C + D)a'(1).

Set a = 125 and 8= 2 we get

1-B
20z’ (t)2! (¢) ,
— L <2 t).
ar'(t)2+ 8 — oz (?)
Integrate the last inequality over [u,t] and use |z(¢)] < M and z’(u) = 0, we
obtain o
t
ln(w) < 2aM.
5
Therefore, we have
! ﬂ 2aM 3 —
(o) < (2 - ) = .

This and the condition (2) implies that |z”(t)| < M for some My depending
on M, A, B, and C. This completes the proof.

Combine Lemma 4.5.1 and Lemma 4.5.2 with Lemma 4.5.3, we get the
following:

Proposition 4.5.4. Assume that the condition of Lemma 4.4.1 holds.
If there are continuous functions A(t,z), C(t,z) > 0 which are bounded on
compact subsets of [0,T] x R and a constant B € [0, 1] such that

|[f(t.,r,q)| < Alt,2)r® + Blg| + C(t,x)

for all (t,z) € [0,T] x [-M, M] and r,q € R, then there are constants M; and
M> such that, for any solution of (E 4.5.1),

lz(t)| < M, |2'(t)| < My, |2"(t)| < My for all t € [0,T].

Now, we consider a family of the periodic problems:

2 (t) = Af(t,x(t), ' (1), 2" (1)) — Ag(t), € [0,T],
{33(0) =z(T), 2'(0) = 2/(T), (E 4.5.2)

where A € [0,1].
Lemma 4.5.5. Suppose that the following conditions hold:

(1) Let M > 0 and ¢, d be the same as in Lemma 4.5.1 and the condition of
Lemma 4.5.1 holds;
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(2) Let A,C > 0 and B € [0,1] be such that
|f(t,x,7,q)| < Ar? + Blg| + C
for all (t,x) € [0,T] x [-M, M] and r,q € R.

Then there are constants M, Mz > 0 such that, for A € [0, 1] and any solution
xx(+) of (E4.5.2),

lza ()| < M, |24\ (t)] < My, |25(t)] < My for all t € [0, T).

Proof. Replace f by Af and g by Ag in Lemma 4.5.2 and Lemma 4.5.3,
respectively, one easily gets the conclusions.

To formulate an existence result for the problem (E 4.5.1), let Y = C[0,T)
be the Banach space of continuous functions on [0,7] with the supremum
norm and C*([0, T) be the Banach space of k-times continuously differentiable
functions with the norm |z(-)||x = max{[|z®(-)|| : 0 < i < k}, where || - | is
the norm in C([0,T]). Set

X = {z(-) € C*([0,T]) : 2(0) = 2(T), 2'(0) = 2'(T)},
and let S : X — Y be a mapping defined by
Sx(t) =z"(t) forall z(-) € X, t e 0,T)].

It is well known that S is a Fredholm mapping of index zero, N(S) = {z(:) €
X : x(t) is constant}, R(S) = {y(-) € Y : [ y(t)dt = 0}, X = N(S) & X'
and Y = N(S) @ R(S). It is easy to see that K = S—1: X — Y is
a linear isomorphism. Let (Y;,,Q,) be a projection scheme for Y and set
X, = K1Y, then d(z,X,) — 0 as n — oo, so [Ig = (X,,Y,,Q,) is
admissible for mappings from X to Y. Now, S is A-proper with respect to
M.
Finally, we set N : X — Y by

Nz(t) = f(t,z(t),2'(t),2"(t)) forallte[0,T], z(-) € X.

Then N is continuous and maps bounded subsets in X to bounded subsets in
Y.

Now, we have the following:

Theorem 4.5.6. Let g(-) € Y, f(t,z,7,q) : [0,T]x R?> — R be a continuous
function and S, I1g, N be the same as the above. Suppose that the following
conditions hold:

(1) S — AN is A-proper with respect to IIg for each A € (0,1];
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(2) There exist constants M > 0 and ¢,d € R with ¢ < g,,, < g < d, and
x < M implies that d < f(t,2,0,r) for all t € [0,T] and r € R®, while
x < —M implies that f(t,2,0,7) < cfor all t € [0,T] and r € R, where
gm = min{g(t) : t € [0,T]} and gy = max{g(t) : t € [0,T]};

(3) There are continuous functions A(t, z), C(t,x) > 0 which are bounded
on compact subsets of [0,7] x R and a constant B € [0, 1] such that

£t 7, q) < A(t,2)r® + Blg| + C(t, @)
for all (t,x) € [0,7] x [-M,M] and r,q € R.
Then the problem (F 4.5.1) has a solution.

Proof. Take r > {M, My, My}, where M, My, M, are the same as in
Lemma 4.5.5. Put Q = B(0,r) = {z(-) : [|[(-)|]]2 < r}. Then Sz # ANz — Ag
for all A € (0,1] and = € 0. Set Qu = %fOTu(t)dt for all w € Y, then
Q:Y — N(S) is a projection.

We define a bilinear form on Y x X by

[wﬂ:AZMWwﬁ for all (u,7) € ¥ x X.

If x(-) € IQNN(S), then ||z||2 = r > M, so x = r or —r. Thus the assumption
(2) implies that

QN(c) - Qg = / F(t,¢,0,0) — g(t)]dt £ 0

and
(QN(c) — Q. = / [F(t,¢,0,0) — g(t)]edt = 0,

where ¢ = r or —r. From Theorem 4.3.3, we know that the problem (E 4.5.1)
has a solution. This completes the proof.

A special case of (E 4.5.1) is the following:

{x”(t) = ft,2(t), (1)) — g(t), t€[0,T], (E 4.5.3)

z(0) = 2(T), 2'(0) = 2/(T).

In this case, the mapping given by N(z)(t) = f(t,z(t),2'(t)) for all t € [0, T
is compact, so S — AN is A-proper with respect to Ilg. From Theorem 4.5.6,
the following immediately holds:

Corollary 4.5.7. Let g(-) € Y, f(t,z,7) : [0,T] x R> — R be a continuous
function and S, IIg, N be the same as above. Suppose that the following
conditions hold:
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(1) There exist constants M > 0 and ¢,d € R with ¢ < g,,, < g < d, and
x < M implies that d < f(t,z,0) for all ¢t € [0, T], while x < —M implies
that f(t,2,0) < c for all ¢ € [0,T], where g,, = min{g(¢) : t € [0,T]}
and gy = max{g(t) : t € [0,T|};

(2) There are continuous functions A(t, z), C(t,x) > 0 which are bounded
on compact subsets of [0,7] x R such that

|f(t,z, )] < A(t,x)r? + O(t,x) for all (t,x) € [0,T] x [-M, M].

Then the problem (E 4.5.3) has a solution.

Next, we consider the wave equation:

uge(t, ) — uge (t, ) — h(u(t,z)) = f(¢, x),
t € (0,2n), x € (0,7),

E 454
u(t,0) =u(t,m) =0, te(0,2n), ( )
u(0,x) =u(2m,z), € (0,7),
where h : R — R is a continuous function satisfying
[h(u)| < 0lul +~ (4.5.4)

and f(-) € L?((0,27) x (0,7)), where § > 0 and « > 0 are constants.

We say that u € L?((0,27) x (0,7)) is a weak solution of the problem (E

4.5.4) if

(’U,, Vet — /UTI) - (h(u(t7 CE)), U) = (f(t7 (E)7 U)
for all v € C?([0,27] x [0,7]) with v(¢,0) = v(¢,7) = 0 for all ¢ € [0,27] and
v(2m,z) = v(0,x) for all x € [0, ]

Let L : D(L) C L?((0,27)x (0,7)) — L2((0,27) x (0, 7)) be the wave opera-
tor Lu = s —Uzs,. Then it is well known that L is self-adjoint, densely defined,
and closed, and Ker(L) is infinite dimensional with Ker(L)* = I'm(L). Thus
L is a Fredholm mapping of zero index type. Let P : L?((0,2m) x (0,7)) —
Ker(L) be the projection. Then (L + AP)~1: L?((0,27) x (0,7)) — D(L) is
compact for all A > 0.

For each 1 > 0, consider the following equation:

utt(tax) - uzz(twr) + 77”(75735) - h(u(t,x)) = f(t,!E)7
t € (0,2m),xz € (0,7),

u(t,0) =u(t,m) =0, te(0,2n),

w(0,2) = u2m,z), x¢€(0,7),

(E 4.5.5)

where h, f is the same as in (F'4.5.4). Let u,, be the weak solution of (£ 4.5.5)
if it exists, and we set S = {u, : n > 0}.
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Theorem 4.5.8. One of the following conclusion holds:
(1) The problem (F 4.5.4) has a weak solution;
(2) S is unbounded in L2((0,27) x (0, ).

Proof. Let N : L?((0,27) x (0,7)) — L?((0,27) x (0, 7)) be defined by
Nu(t,x) = h(u(t,z)) + f(t,x) for all u(t,x) € L*((0,2m) x (0,7)).

By (4.5.4), N is a bounded and continuous mapping. We may assume that
(2) does not hold, i.e., S is bounded, so there exists ro > 0 such that

lup|| 2 < 7o for all u, € S. (4.5.5)

Let Q = {u(t,z) € L*((0,27) x (0, 7)) : ||ul|zz < 70}. By (4.5.5), we know that
PNu # nPu for all u € C?([0,27] x [0,7]) N9 and 1 > 0. We may assume
that Lu # Nu for all u € C?([0,27] x [0,7]) N 9. By Theorem 4.4.16, we
have deg(L — N,,0) = {1}. Thus the problem (F 4.5.4) has a weak solution.
This completes the proof.

Remark. The results of Sections 4.1-4.3 in this chapter can be found in
[239].

4.6 Exercises

1. Let X be a separable Banach space with a projection scheme II =
{Xn, Pp}, © C X be an open bounded subset with zp € Q and T :
Q2 — X be a P; compact mapping satisfying

Tx —x9 # Mz — xo) for all z € 90, A > 1.
Show that T has a fixed point in Q.

2. Let X be a separable Banach space with a projection scheme Il =
{X,,P,}, Q C X be an open bounded subset with 0 € Q and tQ C Q
for A € (0,1) and T : Q@ — X be a P, compact mapping satisfying
T(052) C . Show that T has a fixed point in Q.

3. Let X be a separable Banach space with a projection scheme II =
{Xn, P.}, 2 C X be an open bounded subset with 0 € Qand T : Q) — X
be a P; compact mapping satisfying

|z — Nz||* > || Nz||® — ||=||* for all x < 9.

Show that T has a fixed point in Q.
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4. Let H be a real separable Hilbert space and T': H — H be a continuous
mapping satisfying (Ta — Ty,x —y) > c||lx — y||? for all 2,y € H and
some ¢ > 0. Show that T is A-proper.

5. Let X be a separable Banach space with a projection scheme II =
{X,, P,}, © C X be an open bounded subset and 7 : @ — X be a
continuous A-proper mapping. Show that 7'y for all y € T(Q) is
compact.

6. Let X be a separable Banach space with a projection scheme II =
{Xn,P.}, ¢ = sup, |P.]] = ¢, D C X beclosed and T : D — X
be a mapping satisfying 5(T'(B)) < kB(B) for all bounded subset B of
D. Show that \I — T is A-proper for each \ > kc.

7. Let X be a separable Banach space with an operator scheme II =
{X,,P,} and T : X — X be a continuous strongly accretive mapping,
ie.,

(x—y,Tx —Ty)4 > cllz —y||*> forallz,y € X, some c > 0.
Show that T is A-proper.

8. Let X be a separable Banach space with an operator scheme II =
{X,,Pp}and T : X — X be a linear bounded operator. Show that T is
A-proper and one to one if and only if R(T) = X and ||P,Tx| > ||z
on X,, for some ¢ > 0 and all n > ng.

9. Let L : D(L) C X — Y be a Fredholm mapping of zero index type
and {Y,,Q,} be a projection scheme for Y. Assume that X is reflexive.
Show that, if G C X is bounded closed, convex and N : G — Y is
continuous compact, then L + kN : GN D(L) — Y is pseudo A-proper
with respect to I'y 1, for each A # 0.

10. Let L : D(L) C X — Y be a Fredholm mapping of zero index, {Y,,, Q. }
be a projection scheme for Y and €2 C be an open bounded subset. Let
N : Q — Y be a bounded mapping such that the following conditions
are satisfied:

(1) L — AN is A-proper with respect to I'y, for each A € (0, 1];

(2) There are sets By C Es C R(L) such that 0 € E; and \E> C E
for all A € (0,1) and, for all x € (2N D(L)) such that Nz € R(L),
one has Lz ¢ E; and Nz € Es.

If Deg(L—QN, D(L)N,0) # 0, show that Lz — Nz = 0 has a solution,
where @ is as in Section 4.1.

11. Let L : D(L) C X — Y be a Fredholm mapping of zero index, {Y,,, Q. }
be a projection scheme for Y, £ C be an open bounded subset. Let
N : Q — Y be a bounded mapping such that the following conditions
are satisfied:
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(1) L — AN is A-proper with respect to I';, for each A € (0, 1];

(2) Nx ¢ R(L) for all x € L=1 N 9Q;

(3) |Lx — Nz||* > |[Nz|* — || Lz||? for all z € D(L) \ (N(L) N ON);
(4) Deg(L — QN,D(L)N,0) £ 0.

Show Lz = Nz has a solution in QN D(L).

Copyright 2006 by Taylor & Francis Group, LLC



Chapter 5

COINCIDENCE DEGREE
THEORY

In the 1970s, Mawhin systematically studied a class of mappings of the form
L + T, where L is a Fredholm mapping of index zero and T is a nonlinear
mapping, which he called a L- compact mapping. Based on the Lyapunov-
Schmidt method, he was able to construct a degree theory for such mapping.

The goal of this chapter is to introduce Mawhin’s degree theory for L-
compact mappings. This chapter has four main sections.

We present some introductory material on Fredholm mappings and their
relations with A-proper mappings in Section 5.1.

In Section 5.2, we define L-compact mappings (here L is a Fredholm map-
ping) and we introduce the coincidence degree. Various properties of this
degree (see Theorem 5.2.2 and Lemma 5.2.6) are also discussed in this sec-
tion.

In Section 5.3, various consequences of the degree theory in Section 5.2 are
presented (see, in particular, Theorem 5.3.5).

An application to the periodic ordinary differential equations is presented
in Section 5.4.

5.1 Fredholm Mappings

Definition 5.1.1. Let X and Y be normed spaces. A linear mapping
L:D(L) C X —Y is called a Fredholm mapping if

(1) Ker(L) has finite dimension;

(2) Im(L) is closed and has finite codimension.

Proposition 5.1.2. Let X be a Banach space and T : X — X be a linear
bounded mapping. Then dim(Ker(T)) < oo and Im(T) is closed if and
only if, for z,, € B(0,1) such that Tx, — y, thus (2,)%2; has a convergent
subsequence.

105
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Proof. For the ”if” part, we know from our assumption that {x : Tz =
0,||z|| < 1} is compact and thus Ker(T') is finite dimensional. We have
X = Ker(T) @ M for some closed subspace M of X. Obviously, we have
T(M) =Im(T). Since T : M — Im(T) is one to one, it follows that

|Tz| > c||z|| forall z € M, some ¢>0

and, from this, we deduce that T'(M) is closed. Therefore, Im(T) is closed.
For the ”only if” part, assume that z,, € B(0,1) such that Tx,, — y. As
before, X = Ker(T) ® M, so z, = z, + m, for some z, € Ker(T) and
my, € M. Thus Tm,, — y. However, the restriction of T to M is continuous,
one to one and onto Im(T), so m, — m € M. Recall that dim(N(T)) is
finite, so (,,)22; has a convergent subsequence. This completes the proof.

Proposition 5.1.3. Let X be a Banach space, T : X — X be a linear
bounded Fredholm operator and K : X — X be a linear continuous compact
mapping. Then T + K is a Fredholm mapping.

Proof. The proof is left to the reader as an exercise.

Recall that the codimension of I'm(L) is the dimension of Coker(L) =
Y/Im(L). If L is a Fredholm mapping, then its index is defined by

Ind(L) = dim(Ker(L)) — dim(Coker(L)).

Now, assume that L is a Fredholm mapping. Then there exist two linear
continuous projections P : X — X and @) : Y — Y such that

Im(P) = Ker(L), Ker(Q)=Im(L).
Also, we have
X =Ker(L)® Ker(P), Y =Im(L)® Im(Q)

as the topological direct sums.

Obviously, the restriction of Lp of L to D(L) N Ker(P) is one to one and
onto Im(L) and so its inverse Kp : Im(L) — D(L) N Ker(P) is defined. We
denote by Kpg : Y — D(L)N Ker(P) the generalized inverse of L defined by
Kpo = Kp(I - Q).

Proposition 5.1.4. Let X,Y be separable Banach spaces and L : D(L) C
X — Y be a densely defined Fredholm mapping with Ind(L) = m > 0.
Then there exist a sequence of monotonically increasing finite dimensional
subspaces (X,,)52; C D(L) such that U ; X, is dense in X, and let (P,,)22,
be a sequence of linear continuous projections on X with I'm(P,) = X,, for
eachn > 1 and P,z — x for all z € X as n — oo and (@,)5; be a sequence
of linear continuous projections on Y with I'm(Q,,) =Y., for each n > 1 such

that dim(X,,) — dim(Y,) = m for each n > 1.
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Proof. Since L is Fredholm, there exist two linear continuous projections
P:X — Xand Q:Y — Y such that

Im(P) = Ker(L), Ker(Q)=Im(L),

X =Ker(L)® Ker(P), Y =Im(L)®Im(Q).

By the assumption D(L) is dense in X, we may choose a a sequence (X,,)22
of monotonically increasing finite dimensional subspaces of D(L) such that
U2, X, is dense in X and Ker(L) C X, a sequence (P,)52; of linear con-
tinuous projections on X with Im(P,) = X,, for each n > 1 and P,z —
for each x € X as n — oo. Obviously, PP, = P, P, (Ker(P)) C Ker(P) and
(I—-P,)(X)C Ker(P). Set Q, = Q+ LP,Kpq, then @, is continuous. It is
easy to check that Q2 = Q,, for each n > 1. Thus, @, is a linear continuous
projection for each n > 1. Finally, set Y,, = Q,(Y); then Im(Q) C Q,,

QnLx = LP,z for all x € D(L) and dim(X,,) — dim(Y,) = m for each n > 1.
This completes the proof.

In the sequel, we denote the approximation scheme constructed in Propo-
sition 5.1.4 by T';, = { Xy, Pn; Yo, Qn }-

Definition 5.1.5. Let G C X be a non-empty set, G,, = G N X,, for
n=1,2---. A mapping T : G — Y is said to be A-proper (respectively,
pseudo A-proper) with respect to T'y, if T,, = Q,T : G,, — Y}, is continuous
and, if z,, € Gy, such that (z,,)32, is bounded and @, (T'z,, —g) — 0
as k — oo for some g € Y, then there exists a subsequence (xnkl) with
Tn,, — o € G (resp., zg € G exists) such that Tz = g.

Proposition 5.1.6. Let X,Y be separable Banach spaces and L : D(L) C
X — Y be a densely defined Fredholm mapping of index m > 0. Then L is
A-proper with respect to I',,.

Proof. Let z,, € G, be such that (z,,)72, is bounded and Q,, (Tz,, —
g) — 0 as k — oo for some g € Y. Notice that Q,, = Q@ + LP,, Kpg, so we
get

n;, = an (Txnk - g) = ank - Qg - LpnkKPQg — 0.

So L(zn, — Pn,Kpqgg) = gn, + Qg — Qg. However, Im(L) is closed, so we
have Qg = 0 and L(z,, — P,,Kpgg) — 0. From which we deduce that

KpL(zy, — P, Kpgg) = (I — P)(xn, — Pn.)Kpgg) — 0.

Now, the compactness of P implies that (z,, ) has a subsequence (2, ) such
that Tp,, — %o and zg — Kpgg = Pxg — PKpgg. Since L is closed, we have
L(zo — Kpgg) = 0. Thus Lzg = ¢g. This completes the proof.

More precisely, we have the following result between the A-proper mapping
and the Fredholm mapping:

Copyright 2006 by Taylor & Francis Group, LLC



108 Topological Degree Theory and Applications

Proposition 5.1.7. Let X,Y be separable Banach spacesand L : X — Y
be a linear bounded mapping. Then L is a Fredholm mapping of index m > 0
if and only if L is A-proper with respect to some projectional scheme.

Proposition 5.1.8. Let X,Y be Banach spaces, L : D(L) C X — Y be a
Fredholm mapping of index m > 0, J' : Im(Q — Ker(L) be a monomorphism
and N : D(N) C X — Y be a mapping. Then Lz — Nz = y if and only if

r—Pr— JQNz — KpoNz = Kpoy + J'Qy.

Proof. If Lx — Nx = y, then we have
L(I-P)z—QNz— (I -Q)Nz =Qy+ (I - Q)y,

0 —QNz =Qyand L(I—P)z—(I-Q)Nz = (I —-Q)y, i.e., —J' QNz = JQy
and x — Px — KpgNx = Kpgy. Thus we have

r—Px— JQNz— KpoNz = Kpgy + J'Qy.

On the other hand, if * — Pr — J'QNz — KpgNz = Kpgy + J'Qy, then,
since J'Nx € Ker(L) = Im(P) and KpgNz € D(L) N Ker(P), we have
x—Pr— KpogNz = Kpgy and —J'QNz = J'Qy and so Lz — (I — Q)Nz =
(I —Q)y and —QNz = Qy. Thus Lz — Nx = y. This completes the proof.

Proposition 5.1.9. Let X,Y be separable Banach spaces, L : D(L) C
X — Y be a densely defined Fredholm mapping of index m > 0 and [,
the same as Proposition 5.1.4. Let 2 C X be an open bounded subset and
N : Q — Y be a bounded mapping. If I — P — J'QN — K,oN is A-proper
with respect to I' = {X,,, P}, then L — N is A-proper with respect to T',,.

Proof. For any z,,, € QND(L)N X, such that Q,, (Lz,, —Nz,, —y — 0
as k — oo for some y € Y, we recall that Q,, = Q + LF,, K,q, so we have

an (ank - N‘Tnk - y)
= LI - P”lk)xnk - Q(ank +y) — LPnk:(I - Q)(ank +9)

— 0
as k — oo. Therefore, we have
Yk = L(I = Py, ), — LPy, (I = Q)(Nzp, +y) — 0,

2k :Qank +Qy_)0
and thus

hi = Kpyr = (I — P)zn, — PuKpq(Nan, +y) — 0,

wy = J'zp = JJQNx,, +J'Qy — 0.
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From which we deduce that
Tp,, — Py, — P, Ky Nxy, — Kpgy,

J'QNay, — —J'Qy,

which immediately implies that

Po, (I =P —JQN — KpoN)an, — Kpoy+J'Qu.

So (2n, )32, has a convergence subsequence (2, ) with z,, — xo and z¢ —
Py — JQNxzo — KygNzo = Kpqy + J'Qy. By Proposition 5.1.8, we have
Lzyg— Nzg=1vy. Thus L — N is A-proper with respect to I',,. This completes
the proof.

Assume now that L is a Fredholm mapping of index zero. Then, for any
isomorphism J : Im(Q) — Ker(L), the mapping JQ+K pq is an isomorphism
from Y onto D(L) and

(JQ+ Kpg)'a = (L+J'P)x forall z € D(L).
In fact, if y € Y, we have
(JQ+ Kpg)y=2 & JQy = Px,
Kpoy= (I - P)z & Qy=J 'Px,
LpKpoy=L(I — P)z & Qy=J 'Pu,
(I-Qy=Lr & y=(J"'P+ L.

Example 5.1.10. Let X be a real Banach space and T : X — X be a
linear continuous compact mapping. Then, by (5) of Theorem 2.1.15, we know
that dim(ker(I +T)) = dim(codim(I + T)) < 400, so I + T is a Fredholm
mapping of index zero.

Example 5.1.11. Let f : [0,7] — R be in L' and consider the following
problem:

(E 5.1.1)

{x’(t) = f(t), te(0,T),
z(0) = z(T).

We set X = C([0,T], R), the space of all continuous function from [0,7] to
R, Y =LY ([0,T],R) x R, yo = (f(-),0) and define a mapping L : X — Y by
Lz(-) = (2'(+),=(0) — z(T)) for all z(-) € dom(L),

where dom(L) = {x(-) € C([0,T], R) : 2'(-) € L*([0,T], R)}.

One can easily see that (E 5.1.1) is equivalent to the following equation:

Lz() = yo.
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It is easy to see that

ker(L) ={z(-) e C([0, T, R) : x(t) = ¢, t € [0,T], ¢ € R},

Im(L) = (f(-),—/0 F(s)ds) for all £(-) € LX([0,T], R).

Obviously, Im(L) is closed and dim(Ker(L)) = dim(Coker(L)) = 1. Thus L
is a Fredholm mapping of index zero.

5.2 Coincidence Degree for L-Compact Mappings

In this section, we define coincidence degree for L-compact mappings and
give some properties of coincidence degree.

Definition 5.2.1. Let L : D(L) C X — Y be a Fredholm mapping, F be
a metric space and T : E — Y be a mapping. We say that T is L-compact
on Eif QT : E —-Y, KpgT : E — X are continuous and QT (E), KpoT(E)
are compact, where all notations are the same as in Section 5.1.

Now, we are ready to introduce the conincidence degree:

Coincidence degree. Let X,Y be real normed spaces, L : D(L) C X —» Y
be a Fredholm mapping of index zero and 2 be an open bounded subset of X.
Suppose that F = L+ T : D(L)NQ — Y is a mapping and T : Q — Y is L-
compact on . Suppose also that 0 ¢ F(D(L)NdR). Let J : Im(Q) — Ker(L)
be an isomorphism. Put Hg,Q =JQ + Kpg. It is easy to check that

H{oF = KpoL+ HpoT =1— P+ (JQ+ Kpg)T.

Consequently, 0 ¢ HpoF(D(L) N 8Q) (if 0 € HpoF(D(L) N8, then 0 =
Kpg(Lz + Tx) + JQTx for some x € D(L) N0, so QTx = 0 and (I —
Q)(Lx + Tx) = 0. Thus Lz 4+ Tz = 0, which is a contradiction). By the L-
compactness of T', the Leray Schauder degree deg(I — P+ (JQ+ Kpg)T,2,0)
is well defined.

Now, we define a degree by

Dy(L+T,Q,0) =deg(I — P+ (JQ+ Kpg)T,,0),

which is called the coincidence degree of L and —T on QND(L). One can easily
prove that this definition does not depend on the choice of P, Q. It is known
that D;(L 4+ T,Q,0) is a constant for some J depending on orientations on
Ker(L) and Coker(L) (see [203]), so the coincidence degree in [203] is defined
only for those J's. The definition given here depends on the J.
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Remark. (1) If dim(X) = dim(Y) < +oo and we take L = 0, then any
continuous mapping 7" on 2 is L-compact. If we take P = I and Q = I, then
it follows that Kpg =0, so HI%QF = JT and thus we have

D;(T,9,0) = deg(JT,,0) = sign(detJ)deg(T,,0).

Therefore, if we only take those J such that detJ > 0, then we have D ;(T,2,0) =
deg(T,,0), which is the Brouwer degree.

(2) If X =Y and we take L = I, then any continuous compact mapping T'
on Q is L-compact. If we take P = Q =0, then Kpg =1, J =0: {0} — {0}
and HI{.QF =TI+T. Thus D;(I+T,9Q,0) = deg(I +T,9,0), which is the
Leray Schauder degree.

Theorem 5.2.2. The coincidence degree of L and —T on 2 has the fol-
lowing properties:

(1) If Q1 and Qs are disjoint open subsets of Q such that 0 ¢ F(D(L) N
Q\ (Ql U Qg), then

DJ(L+T,Q,O) :DJ(L+T,91)+DJ(L+T,QQ,O);

x ) — Y is L-compact on [0,1] xQ and 0 # Lz +H (¢, x)

(2) It H(t,2) : [0,1]
[0,1] x 092, then D;(L+ H(t,-),2,0) does not depend on

for all (¢t,z) €
t € [0,1];

(3) If Dy(L+T,9Q,0) #0, then 0 € (L + T)(D(L) N Q).

Corollary 5.2.3. If T}, T, are L-compact mappings on Q and Tiz = Thz
for all x € D(L) N 0%, then

DJ(L+T17Q,O) = DJ(L+T2,Q,O).

Proof. We define H(t,z) : [0,1] x @ — Y by

H(t,z) =tThe + (1 —t)Trx for all (t,z) € [0,1] x Q.

Then H is L-compact. Therefore, it follows from (3) of Theorem 5.2.2 that
DJ(L+T17Q70) = DJ(L+T27Q’O)

Proposition 5.2.4. Let X, Y be real normed spaces, L : D(L) C X — Y
be a Fredholm mapping of index zero, Y; be a finite dimensional subspace of
Y satisfying Y = I'm(L) @Y} algebraically and € be an open bounded subset
of X. If T is L-compact on QN D(L), and T(Q) C Yy, then

D;(L+T,Q,0) = signdet(J)deg(T,Q2N Ker(L),0),

where deg(-, -, ) is the Brouwer degree.
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Proof. Since L is a Fredholm mapping of index zero, we get Y = Im(L)®Yo
topologically. Take @ : Y — Y with Im(Q) = Yp, then QTz = Tx for x € Q
and

H{oF =(JQ+ Kpg)(L+T)=1-P+JT.

Note that (P — JT)(?) C Ker(L) and I = P on Ker(L); thus, by Theorem
2.2.9, we have

Dy(L+T,9,0)=deg(I — P+ JT,Q,0) =deg(I — P+ JT,Q2N Ker(L),0).
But I = P on Ker(L) and thus we get
Dy(L+T,Q,0) =deg(JT,Q2N Ker(L),0)
= signdet(J)deg(T, 2N Ker(L),0).
This completes the proof.

Lemma 5.2.5. Let A : Im(Q) — D(L) be a linear mapping such that
PA : Im(Q) — Ker(L) is an isomorphism. Then H}“}Q = AQ + Kpg is an
algebraic isomorphism from Y onto D(L) and

(Hpo)™' = L— LA(PA)™'P+ (PA)"'P.
Moreover, if T is L-compact on €, then
Hpo(L+T)=1-P+HjuT
with H ﬁQT : Q — X continuous and compact.

Proof. For any x € D(L), HﬁQz = z if and only if PAQz = Pz and
(I - P)AQz+ Kpgz= (I — P)z, i.e.,

Qz = (PA)'0z,LAQz + (I — Q)z = Lu,
2z = Lz — LA(PA)"'Pz + (PA)"' Px.
Finally, we have

Hpo(L+T) = (AQ+ Kpg)(L+T)
= KpqL + (AQ + KpQ)T
= (- P)+Hp,T.

By the assumption, QT and KpqgT are continuous and compact on Q, so
H ﬁQT is continuous and compact on 2. This completes the proof.

Lemma 5.2.6. Let A, B : Im(Q) — D(L) be linear mappings such that
PA, PQ: Im(Q) — Ker(L) are isomorphisms and T is L-compact. Then

deg(I — P+ HpoT,Q,0)
= deg(I — (A— B)(PA)"'P,B(0,r),0)deg(I — P + Kp,T,9,0)
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for any r > 0.

Proof. First, we have
(I—(A-B)(PA)'P)I—-P+Kp,T)
=1—-P+AQ+ K,Q)T — (A— B)(PA)"'PAQT
=1— P+ Hp,T.
Therefore, it follows that
deg(I — P+ HE,T,Q,0) = deg(I — (A— B)(PA)"'P)(I - P+ K{,T),,0).

Moreover, if x — (A — B)(PA)~'Pxz = 0, then PB(PA)™'Pz =0, so Pz = 0.
Thus z = 0 and so [ — (A — B)(PA)~! P is a homeomorphism of X onto itself.
By the product formula of Theorem 2.2.8, we know that

deg(I — (A— B)(PA)"'P)(I — P+ K$,T),9Q,0)
= Sydeg(I — (A — B)(PA)"'P,(U;,0)deg(I — P+ Kp,T,Q,Uy),
where U; are connected components of X \ (I — P + K;‘QT)(&Q).
There are now two cases:
Case (1) If 0 € U;, then 0 ¢ Uy, for k # i. Thus deg(I—(A—B)(PA)~'P,U;,0) =
0, so we have
deg(I — (A— B)(PA)"'P)(I — P+ Kp,T),Q,0)
= deg(I — (A— B)(PA)"'P,U;,0)deg(I — P+ Kp,T,Q,0).
By the excision property of Leray Schauder degree, the conclusion is true.

Case (2) If 0 ¢ U; for all i > 1, then deg(I — (A — B)(PA)~'P,U;,0) =0
for all 4 > 1 and thus the conclusion holds. This completes the proof.

From Lemma 5.2.6, the following holds immediately:

Corollary 5.2.7. Let T be L-compact on 2N D(L) and A be the same as
in Lemma 5.2.6. Then

Dy(L+T,9,0)
= deg(I - (A - J)(PA)_1P7B(O,’I"))d€g(I - P + H}éQTaﬂa())

for all » > 0.

Proposition 5.2.8. If T': X — Y is linear and L-completely continuous,
Ker(L+T) = {0} and Q C X is a nonempty open bounded subset such that
0 & 99, then

0, 0¢Q,

Dy(L+T,0,0)| =
IDs(L+ ) {1, 0€ Q.
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Proof. By definition, we have
Dy(L+T,Q,0)=deg(I — P+ KpgT,Q,0).

Thus the conclusion follows from the assumption and Theorem 2.2.4.

Theorem 5.2.9. If  C X is open bounded with 0 € €, € is symmetric
with respect to 0 and T is L-compact on Q N D(L) such that T(—z) = —Tx
for all z € 902N D(L), then |D;y(L + T,9,0)| is an odd number.

Proof. Since D;(L+1T,Q,0) = deg(I — P+ KpgT,,0), by the definition
of the Leray Schauder degree and Borsuk’s Theorem (Theorem 1.2.11), we
know that the conclusion is true.

In the following, let L : D(L) C X — Y be a Fredholm mapping of index
zero, and L = Ly + Loy, where Ly, Lo satisfying the following conditions:

(1) Ly : D(L) — Y is a Fredholm mapping of index zero;

(2) Ly : X — Y is linear and Lj-completely continuous on X.

Now, assume that 2 C X is a nonempty open bounded subset of X, T :
Q — Y is L-compact on Q and T is also Li-compact on Q. Set Ty = Ly + 7.
Then T} is Li-compact on D(L)NQ and L +T = Ly + 1.

Let P, @, J be the linear mapping associated with L as in Section 5.1 and
P1,Q1,J1 be the corresponding ones for L. Put H = JQ + Kpg and H; =
J1Q1 + Kp,o,- Then H,H; : Y — D(L) are algebraic isomorphisms, H~! =
L+J~1P and Hfl = L1+Jf1P1. We set K1 = Lo+J ' P. It is easy to check
that J~!P is L;-completely continuous and hence K, is also L;-completely
continuous.

We have seen that

H(L+T)=1-P+HT, H(L+T)=H\(L,+T\)=1—- P, + HT\,

(I - P+HT)(D(L)NQ) = H(L+T)(D(L)nQ) c D(L),

so we have
I—-P +HT =HH*YI—-P+HT). (5.2.1)

On the other hand, H; H~* = Hy(L, + K1) = (I — P, + H; K;). Therefore,
we have come to the following conclusion:

Proposition 5.2.10. I — P+ HyTy = (I - Pi+ Hi K1) (I — P+ HT) and
I — P; + H{K; is a linear homeomorphism on X.

Proof. We have seen that

I—P +HT =(—-P +HK)I-P+HT).
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Note that K@T([ — P1 + H1T1 = K@T(HlHil) = {0} and Pl, H1T1 are
compact linear mappings, so I — P; + Hy K3 is a linear homeomorphism on
X.

Corollary 5.2.11. Under the above assumptions, we have

|DJ1(L1 +T17970)| = ‘DJ(L+TaQ7O)|

Proof. By the definition of coincidence degree and Proposition 5.2.10, we
have

Dy (L +T1,9Q,0)
= deg((I — P, + HiK,)(I — P+ HT),Q,0)
= Eldeg(l - P1 +H1K1,Uz,0)deg(l - P+HT,Q7U1)7

where U, are connected components of X \ (I — P+ HT)(0Q).
We have the following two cases:
Case (1) If 0 € U;, then 0 ¢ Uy, for k # 4, so we have

D]l(Ll +T1,Q,0) = deg([ — P+ HlKl,Ui,O)deg(I — P+ HT,Q,O).

Since I — P, + H1 K is a homeomorphism on X, by Theorem 2.2.4, we know
that |Dy, (L1 +T1,9Q,0)| = |Dy(L+T,Q,0)|.
Case (2) If 0 ¢ U, for all i > 1, then 0 ¢ (I — P+ HT)(Q2), so we have

Dy, (L1 +T1,9,0)| = |Dy(L+T,Q,0)] =0.
This completes the proof.

Let X, Y be real normed spaces, L : D(L) C X — Y be a Fredholm
mapping of index zero, 2 C X be an open bounded subset and T': 2 — Y be
L-compact. Assume that a is an isolated zero of L — T, then we define

iy(L—T,a) = 1iI%DJ(L —T,B(a,r) N D(L),0),

which is called the coincidence index of L and T at a. One may easily see
that this definition is well defined by using the excision property of coincidence
degree.

The following result follows immediately from the definition:

Proposition 5.2.12. Let Q C X be an open bounded subset and T : Q —
Y be L-compact. If (L — T)71(0) = {ay,az,--+ ,ax} C Q, then

Dy(L—-T,QND(L),0) =¥ iy (L —T,a;).

Proposition 5.2.13. Let € C X be an open bounded subset with 0 €
and T : Q — Y be L-compact. Suppose that A : X — Y is a linear mapping
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such that A is L-compact on any bounded subset of X. Assume that

o l@Ta] + | KpoTal| _
llz]|—0 Izl

0, (5.2.2)

and Ker(L — A) = {0}. Then 0 is an isolated zero of L — A — T and
iy(L—A—T,0)=1i,(L— A,0).

Proof. By assumption, A is L-compact on any bounded suubset, so [ — P —
JQA — KpgA is a linear completely continuous perturbation of the identity.
Also, Ker(I—P—JQA—KpgA) = {0} and thus there exists ¢ > 0 such that

|1 = P JQA - KpgA)e| = clall,z € X,
From the assumption (5.2.2), we know that there exists r > 0 such that
B(0,7) € Q, ||QTz| + |[KpgTz| <27 c||z|| for all z € B(0,r),
which implies that
(I —P—JQA— KpoA—tJQT —tKpoT)z| > 27 ¢|z||
for all 2 € B(0,7) and t € [0,1]. Thus we have
D;(L—-A-T,B(0,r)NnD(L),0)=D;(L— A,B(0,r) N D(L),0),

ie.,iy(L—A—-T,0)=14i,;(L— A,0). This completes the proof.

5.3 Existence Theorems for Operator Equations

Let X,Y be real normed spaces, L : D(L) € X — Y be a linear Fredholm
mapping of index zero and 2 C X be an open bounded subset with D(L)N$2 #

Theorem 5.3.1. Let 0 € , and Q symmetric with respect to 0 and

T:Q — Y be L-compact. If Lv —Tx # t(—Lz — T(~x)) for all (t,z) €
(0,1] x D(L) N 99, then Lz — Tx = 0 has a solution in D(L) N Q.

Proof. Let a mapping H(t,z) : [0,1] x Q@ — Y be defined by

T4+¢, 11—t _
H(t,z) — %Tx — S T(-) forall (te) € [0,1] x 0.
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Then H(t,-) is a homotopy of L-compact mappings. If Lz — H(t,z) = 0 for
some (t,x) € [0,1) x D(L) N 0N, then
Lx —Tx = i(—Lx —T(-x))
1+t ’

which is a contradiction. We may also assume that Lz — Tz # 0 for z €
0. Otherwise, the conclusion is true. By Theorem 5.2.9, we have D (L —
T,9Q,0) # 0, thus Lz — N2 = 0 has a solution in D(L) N Q. This completes
the proof.

Theorem 5.3.2. Let 71,75 : Q@ — Y be L-compact. If the following
conditions are satisfied:

(1) Lz —tThz + (1 — t)Tex # 0 for all (t,z) € (0,1) x D(L) NI,
(2) Dy(L +T3,9,0) # 0;
then Lx — Ty x has a solution in D(L) N .

Proof. We may also assume that Lz —Tiz # 0 for all z € 9Q2. Otherwise,
the conclusion is true. Let H(t,z) : [0,1] x @ — Y be defined by

H(t,x) =tThx — (1 —t)Thx for all (t,z) € (t,x) € [0,1] x Q.

By assumption, we have Lz — H(t,x) # 0 for all (¢,z) € [0,1] x D(L) N 09Q.
Thus we have
Dy(L—-T1,9,0)=D;(L—1T5,9,0)#0

and so Lz — Thz has a solution in D(L) N Q. This completes the proof.

Theorem 5.3.3. Let 71,75 : Q@ — Y be L-compact. If L 4 T is one to
one on ) and

Lr —t1Tx+ (1 —t)(Tow —p) for all (¢,2) € (0,1) x D(L) N0,

where p € (L + T3)(D(L) N Q), then Lx — Ty x has a solution in D(L) N €.

Proof. Since L + T» is one to one and p € (L + T3)(D(L) N ), we have
|Dy(L+ Ty —p,Q,0)] = 1. Thus, the conclusion follows from Theorem 5.3.2.

Theorem 5.3.4. Let A: X — Y be a linear continuous L-compact map-
ping with Ker(L — A) = {0} and T : Q@ — Y be L-compact. Suppose that
the following conditions hold:

(1) 0 € Q and AOQ C Q for all A € (0,1);

(2) (T — A)(D(L)Nd9Q) C (L — A)(D(L) N Q.
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Then Lz = Tz has a solution in D(L) N Q.

Proof. Put H(t,z) = (1 — t)Az + tTz for all (t,z) € [0,1] x Q. We claim
that
Lz # H(t,z) for all (¢,x) € (0,1) x D(L) N oN.

If this is not true, then there exist (t,z) € (0,1) x D(L) N 9 such that
Lz # H(t,z). Then we have

which is impossible because L — A is one to one.
By assumption and Proposition 5.2.8, |Dj(L—A,Q,0)| =1. If Lt - Tz =0
for some x € D(L) N 9N, then the conclusion is true. Otherwise, we have

Dy(I—T,9Q,0) = Dy(L— A,Q,0) 0,
thus Lz — Tw = 0 has a solution in D(L) N Q. This completes the proof.

Theorem 5.3.5. Let T1,T» :  — Y be L-compact. Let Z C Y be a
subspace with Y = Im(L) @ Z algebraically and T5(2) C Z. Suppose that
the following conditions hold:

(1) Lz — (1 —¢)T5 — tTy # 0 for all (¢,2) € (0,1) x D(L) N oY
(2) Tox # 0 for all z € Ker(L) N 08,

(3) deg(Tker(r), XN Ker(L),0) # 0, where Tk () is the restriction of T
to Ker(L) N Q.
Then Lz = Tyz has a solution in D(L) N €.

Proof. Put H =L —Thx and let Q : Y — Y be the projection such that
Im(Q) = Z and Ker(Q) = Im(L). Then QT> = T» and Hz = 0 if and only
if QHz = 0,(I — Q)Hxz = 0, i.e., Tox = 0 and Lz = 0. Therefore, by the
assumption (2) and Proposition 5.2.4, we have

IDs(L — T, Q,0)| = |deg(Txer(ry, 2 N Ker(L),0)] # 0.

Thus, it follows from Theorem 5.3.2 that Lz = Ty has a solution in D(L)NQ.
This completes the proof.

Corollary 5.3.6. Let T: Q — Y be L-compact. Suppose that the follow-
ing conditions hold:
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(1) Lz —tT # 0 for all (¢t,z) € (0,1) x (D(L) \ Ker(L)) N oQ;
(2) Tx ¢ Im(L) =0 for all z € Ker(L) N 0Q;

(3) deg(QTger(ry, 2N Ker(L),0) # 0, where Q : Y — Y is the projection
such that Ker(Q) = Im(L).

Then Lz = Tz has a solution in D(L) N .

Proof. Put Z = I'm(Q) and T = QT in Theorem 5.3.5. By the assumption
(2), we know that

QTz #0 for all z € Ker(L)NoQ.

Now, if Lz — (1 —t)QT'z — tT'z = 0 for some (¢t,z) € (0,1) N D(L) NS, then
we have
QNz=0,Lx —tTx =0.

It easily follows that © € D(L)\ Ker(L))N0S2, which contradicts the assump-
tion (1). Thus the conditions of Theorem 5.3.5 are satisfied and, consequently,
Lz = Tx has a solution in D(L) N .

5.4 Applications to ODEs

In this section, we give some applications of the results to differential equa-
tions.

Let f(t,z,y) : [0, 7] x R"xR™ — R™ be a function satistying the Caradéodory
condition, i.e.,

(1) For almost all t € [0, 7], f(¢,z,y) is continuous in (x,y);
(2) For all (z,y) € R" x R", f(t,z,y) is measurable in ¢;

(3) For all r > 0, there exists g.(-) € L'([0,7],[0,+00)) such that, For
almost all ¢ € [0, 7],

[f(t,z,y)| < gr(t) forallz,y e R", |z] <7, |z| <r

Consider the Picard boundary value problem:

{—J;"(t) = f(t,x(t),2'(t), te0,], (E 5.4.1)
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Put X = C}([0, 7], R"), Y = L*([0,7], R") and let L : D(L) C X — Y be
defined by Lax(-) = 2" (), where

D(L) = {z € X : 2'(-) is absolutely continuous in [0, 7], 2"/ (-) € Y'}.

Then Ker(L) = {0} and Im(L) =Y. Let a mapping N : C3([0, 7], R") - Y
be defined by

(Nz)(t) = f(t,z(t),2'(t)) forallt € [0,7].

Then, by Lebesgue’s Theorem, N is a continuous bounded mapping. Now,
the problem (F 5.4.1) is equivalent to the following equation:

Lz = Nz,z € D(L). (E 5.4.2)

Since L™!: Y — Xj is given by
t s S t s
wro=2 [ [woa- [ [oa
™Jo Jo o Jo

L)) = 2 / s(a—o(s)ds + [ "t — s)y(s)ds,

™

i.e.,

L~! is continuous and compact, and consequently, it follows that N is L-
compact on any bounded subset of X.

Theorem 5.4.1. Suppose that the following conditions hold:

(1) There exist a,b > 0 such that a + b < 1 and g(-) € L*([0, n], R+) such
that, for almost all ¢ € [0, 7],

(z, f(t,z,9)) < alz|* + blz|ly| + g(t)|x| for all (x,y) € R™ x R™;

(2) There exist ¢ > 0 and h(-) € L'([0,7], Ry) such that, for all z € R™
with |z] < 7(1 —a—b)"g| L1,

|f(t,z,y)| < c|y|* + h(t) for almost all ¢t € [0, 7], y € R™.

Then the problem (F 5.4.1) has a solution.

Proof. Consider the family of problem:

—x"(t) = Af(t,x(t),2'(t)), te]0,7],
{x(O) =z(r) =0. (E 5.4.3)

Let x be a possible solution of (E 5.4.3) for some A € (0,1). Then we have

—(.’L’H(t)7.7;‘(t)) = )\(f(t,x(t),sc'(t)), m/(t))
< alz(t)]* + bz (t)||2' ()] + g(t)]x(t)]-
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So, by integrating over [0, 7], it follows that
l2'[172 < allelZe + bllall2ll2’llz2 + lgllzellzlo, (5.4.1)

where ||z]lo = mazicioqllz(t)|. Notice that [z|z. < [2'[|z2 and [Jzflo <
V7|2’ L2, so (5.4.1) implies that

|2)l5 < (1 —a—0)" gl llo,
and thus we have
lallo < 7(1 —a—B)Higllor = 1. (5.42)
By (5.4.2) and (5.4.1), we get
"2 < VA1 —a—b)"lgllzr =72 (5.4.3)
Now, from (E 5.4.3) and the assumption (2), we get
2" (£)] < el (t)]* + h(t),
so x € D(L), and by (5.4.3) it follows that
l2"ler < em(1 —a=b)2llgllze + Al = 7s. (5.4.4)

On the other hand, by the boundary condition, there exists s; € [0, 7] such
that z}(s;) = 0 for 1 <4 < n and thus

t
() < | / 2(s)ds| < |11,
Si

which together with (5.4.4) imply that
2]l < 73. (5.4.5)

Now, we take 7 = 1+ 71 + r3. Then ||z|cx < r for all A € (0,1) and every
possible solution x of (E 5.4.3). Put Q = B(0,7) C C}([0,x], R™). Then we
have Lx # tNx for all (¢t,z) € (0,1) x Q. If Lx = Nz for some z € 9%, we
know that the problem (E 5.4.1) has a solution. Otherwise, we have

Ly #tNz for all (¢,x) € [0,1] x 9.

Thus Dy(L — N,Q,0) = D;(L,Q,0) # 0, consequently, it follows that Lz =
Nz has a solution in . Thus the problem (FE 5.4.1) has a solution. This
completes the proof.

In the following, let X = C([0,1],R"), Y = L([0,1],R"), Q:Y — Y be a
mapping such that Qy(-) = fol y(s)ds and L : D(L) C C([0,1],R") — Y be a
mapping defined by

Lz(t) =2'(t) for all z(-) € D(L),
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where

D(L) = {«(-) is absolutely continuous on [0,1] : 2(0) = z(1)}.
Then L is a Fredholm mapping of index zero.

Lemma 5.4.2. Let r > 0 and v(-) € C*(R", R) be such that v'(z) # 0
for |x| = r, where v’ is the gradient of v, and let V' : X — Z be defined by
V(z(-))(t) = v'(x(t)) for all t € [0,1]. Then we have

DJ(L_ KB(Ovr) ﬁD(L),O) = DJ(L —Q‘/,B(O,T) ﬂD(L),O)
Proof. Counsider the homotopy T(«, z)) = oV (z(-)) — (1 — a)QV (z(+)) for
all @ € [0,1] and z(-) € X. We claim that Lz(-) # T'(«, z(-)) for all a € [0, 1]
and z(-) € X. If not, there exist « € [0,1] and z(-) € X such that
Lx(t) # T(a,z(t)) for all ¢ € [0,1]. (5.4.6)

Multiply both sides of (5.4.6) by 2’(t) and integrate over [0, 1], one gets

1
/ 12/ (s)[2ds = 0.
0

Thus x(t) is a constant, |z(t)| = r and v(x(0)) = 0, which is a contradiction.
Thus it follows from Theorem 5.2.2 that

DJ(L_ ‘/,B(O/l") ﬁD(L),O) = DJ(L_QMB(O7T) ﬂD(L)7O)
This completes the proof.
Theorem 5.4.3. Suppose that the following conditions are satisfied:
(1) There exist v(-) € C'([0,1], R™) such that lim|;_ v(z) = +oo0 and
B(+) € LY([0,1],]0,+00)) such that (v'(x), f(t,x)) < B(t) for all z € R
and almost all ¢ € [0, 1].

(2) There exist r > 0 and w(-) € C1(R", R) such that (v/(z),w(z)) > 0 for
all z with |z| > r and fol(w’(m(s)), f(s,z(s))ds) <0 for all z(-) € D(L)
satisfying minseo,17 |2(t)| > 7.

Then the following equation:

{x’(t) = f(t,x(t), telo1], (E 5.4.4)

has a solution.
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Proof. First, we claim that there exists 7o > 0 such that the solution x(+)
of the following equation:

{x'(t> B _(11) = NV (x(t)) + M (t,x(1), te0,1], (E 5.4.5)

satisfies ||z(-)|jo < ro. If not, there exist a sequence (A,) C [0,1] and a
sequence (x, (+)) of solutions such that ||y, |0 > n. By the assumption (1),
we have

d

0@ () = —(1 = A (@, (O + (v (2, (1)), f(t2a, (1)) < B(E).

Extend zy, (-) and §(-) to R with period 1 and then we have

v(zy, (1) <V'(zy,(5)) +/ B(s)ds,s € R for all t € [s,s+ 1].

Therefore, we have

) < mi t . 5.4.7
t‘é}%ﬁ]“(“n())—tﬁéﬂ] (zx, () + 1Bl (5.4.7)

Now, from ||z, [[o > n and (5.4.7), we deduce min,c[,1] v(2x, (t)) — oo, which
implies that min,ejo 1) |2, (t)] — oo. Thus there exists N > 0 such that, for
n >N,

i D > 5.4.8
min, [z5, (D) =7 (5.4.8)

Now, we have

iw(mn () = =(1 = X)) (V' (z,, (1)), w' (2, (1))

dt
+)‘n(w/(l'/\n (t))v f(t’ Tx, (t)»

From (5.4.9) and the assumption (2), one deduces that

'd
= — t))dt
0= [ Guta. @) <o

which is a contradiction. Thus the claim is true. Choose r; > max{r,ro}. By
Lemma 5.4.2, we have

|Ds(L =V, B(0,7) N D(L),0)| = [Dy(L — QV,B(0,7) N D(L),0)].
By Proposition 5.2.4 and Theorem 1.2.15, we get
[Ds(L—=V,B(0,r) N D(L),0)] = 1.

Thus the problem (E 5.4.4) has a solution.
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5.5 Exercises

1. Let X be a Banach space, T': X — X be a linear bounded Fredholm
operator and K : X — X be a linear continuous compact mapping.
Show that T'+ K is a Fredholm mapping.

2. Assume that the conditions of Exercise 1 hold and Ind(T) = 0. Show
that
Ind(T+ K) = 0.

3. Let L: D(L) C C([0,1], R™) — L([0,1]; R™) x R™ be defined by
Lx(t) = (' (t), Mz(0) + Nx(1)) for all z(-) € D(L),

where M, N are n xn real matrices. Show that L is a Fredholm mapping
of index zero.

4. Let L be defined as in Exercise 3. Construct the projections P, ) such
that Im(P) = Ker(L) and Im(L) = Ker(Q).

5. Let X,Y be real normed spaces, L : D(L) C X — Y be a Fredholm
mapping of index zero and A : X — Y be a linear mapping such that A is
L-compact on any bounded subset of A. Assume that Ker(L—A) = {0}.
Show that

(L= A)(D(L) = Y,

(L-A)'=(I—-P-JQA—-KpgA) N (JQA + KpgA).

6. Let T :g — Y be L-compact. Assume that L — T is one to one on
D(L) N Q. Show that, for all z € (L —T)(D(L)NQ),

IDJ(L—T -2 D(L)NQ,)| = 1.

7. Let T:Q — Y be L-compact. Suppose the following conditions hold:
(1) ||[Lz — Tz|* > ||Tz||® — || Lz||?® for all z € (D(L) \ Ker(L)) N o%Q;
(2) Tx ¢ Im(L) =0 for all x € Ker(L) NI

(3) deg(QTxer(r), 2N Ker(L),0) # 0, where Q : Y — Y is the projec-
tion such that Ker(Q) = Im(L).

Show that Lz = T'z has a solution in D(L) N Q.

8. Let H be a Hilbert space, T : Q — H L-compact. Suppose the following
conditions hold:

(1) (Le — Tz, Lz) > 0 for all x € (D(L) \ Ker(L)) N o
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(2) Tx ¢ Im(L) =0 for all z € Ker(L) N o

(3) deg(QTker(ry, 2N Ker(L),0) # 0, where Q : H — H is the pro-
jection such that Ker(Q) = Im(L).

Show that Lz = T'z has a solution in D(L) N Q.

9. Let f: [0,7] x R" x R™ — R" be a function satisfying the Carathéodory
condition. Assume that the following condtions hold:

(1) There exist a,b € R such that a +b < 1 and
(I‘ _U,f(t,l‘,y) - f(t7u,’U)) < a|33—u|2 +b|$ —’LLHy—’U/‘

for all z,y,u,v € R™ and a.e. t € [0, 7].

(2) There exist ¢ > 0 and h € L'([0,7],[0,+00)] such that, for all
x € R™ with |z| < 7(1 —a— b)Y f(¢,0,0)] 11,

|f(t,z,y)| < cly|* + h(t) for all y € R™, and almost all ¢ € [0, 7].
Show that the following equation:
{ﬁ%ﬂ=f@ﬂﬂwﬁﬁat€mmL
z(0)=z(r) =0
has a unique solution.

10. Let f : [0, 7] x R™ x R™ — R™ be a function satisfying the Carathéodory
condition. Assume that there exist a,b € R such that a +b < 1 and

|f(tax7y) _f(t7u7v)‘ S Cl|$_u| +b|y_u|

for all z,y,u,v € R™ and almost all ¢ € [0, 7]. Show that the following
equation:

{%Wﬂ=f@ﬂﬂwﬁD,tGWmL

has a unique solution.

11. Let f : [0,7]x R™ — R™ be a function satisfying the Carathéodory condi-
tion. Assume that there exist anumber a < 1 and g € L([0, 7], [0, +00)])
such that

(z, f(t,x)) < alz|* + g(t)|x| for all z € R™, and alomst allt € [0, 7].

Show that the following equation:

{w%oszxwm t e (0,7,
z(0) =x(m) =0

has a solution.
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12. Let f:[0,1] x R™ x R™ — R" be a function satisfying the Carathéodory
condition and v € C'(R"™, R). Suppose that the following conditions are
satisfied:

(1) There exists r > 0 such that (v'(x), f(¢,2)) <0 for all z € R"™ with
|z| > r and almost all ¢ € [0, 1];

(2) v'(x) # 0 for all x € R™ with |z| > r and lim;|_ v(z) = +00.

Show that the following equation:

{x’(t) = f(t,x(1), telo.1],
x(0) = z(1)

has a solution.

13. Let L : D(L) € X — Y be a Fredholm mapping of index zero,  C
X be an open bounded subset, D(L) N2 # () and T : Q@ — 2Y be
a mapping with closed convex values. Assume that QT and KpgT
are upper semicontinuous mapping such that Q7'(Q) and KpgT(Q) are
relatively compact and Lz ¢ Tz for all x € 9Q N D(L). Construct the

coincidence degree for L and T on Q2N D(L).

14. Let L : D(L) C X — Y be a Fredholm mapping of index zero,  C X
be an open bounded subset, D(L)NQ # ) and T : Q — Y be a mapping
such that QT and KpgT are continuous countably condensing mapping
and Lx # Tx for all z € 9Q N D(L). Construct the coincidence degree
for L and T on QN D(L).
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Chapter 6

DEGREE THEORY FOR
MONOTONE-TYPE MAPS

Monotone-type mappings are a class of mappings without continuous and
compact conditions. The concept of monotone mapping was introduced by
Kachurovski, Vainberg, Zarantonello in 1960, and it plays a very impor-
tant role in studying the weak solution of the partial differential equations
in divergence form and variational inequality problems. Minty, Browder,
Brézis, Rockafellar, Crandall, Gossez, etc., made significant contributions to
monotone operator theory. It was shown by Skrypnik, Browder, Berkovitz,
Mustonen, Kartsatos, and others that it is possible to construct the degree
theory for monotone-type mappings.

The goal of this chapter is to introduce the degree theory for monotone-type
mapping. Chapter 6 has seven sections.

In Section 6.1, we introduce some basic geometric properties of Banach
spaces and various types of monotone and pseudomonotone maps and also
(S+), (S4+)o,r and L-(S4+)-mappings. Many examples and properties of these
maps are presented in Section 6.1.

Section 6.2 presents the degree theory for monotone mappings of class (S5).

In Section 6.3, using the results of Section 6.2, we present the degree theory
for perturbations of maximal monotone mappings and various properties are
also presented.

In Section 6.4, using the results of chapters 2, 3, we present the topological
degree for multivalued mappings of class (S4)o,r. Some properties of this
degree are presented in theorems 6.4.4, 6.4.5, and 6.4.6.

A degree for multivalued mappings of class L-(S,) type is presented in
Section 6.5 (here L is a Fredholm mapping of index zero type). Various
properties are presented in Theorems 6.5.2, 6.5.3 and 6.5.5. The coincidence
degree of L and a pseudomonotone mapping is also presented in this section.

Section 6.6 presents various results concerning the computation of the topo-
logical degree for a variety of mappings.

Section 6.7 gives various existence results for the partial differential equa-
tions and evolution equations.

127
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6.1 Monotone Type-Mappings in Reflexive Banach Spaces

In this section, we introduce some monotone-type mappings and discuss
their properties. We first recall some geometrical properties of Banach spaces.

Definition 6.1.1. Let X be a normed space, X** be the second dual space
of X and K : X — X** be defined by Kz(f) = f(z). If KX = X**, then X
is said to be reflexive.

Theorem 6.1.2. Let X be a normed space and X* be the dual space of
X. Then the following are equivalent:

(1) X is reflexive;

(2) X* is reflexive;

0o
n=1

(3) The closed unit ball of X is sequentially weak compact, i.e., each (z,,)
in the closed unit ball has a weakly convergent sequence;

(4) For all f € X*\ {0}, there exists z € X with ||z|]| = 1 such that
f(@) =111l
Definition 6.1.3. Let X be a Banach space. X is said to be strictly convex
if, for any x,y € X, ||z|]| = ||ly|| = 1 and ||z + y|| = 2 imply that z = y.
The following proposition follows directly from Definition 6.1.3.

Proposition 6.1.4. Let X be a Banach space. The following statements
are equivalent:

(1) X is strictly convex;

(2) If, for any z,y € X, ||z| = |ly|| = 1 and = # y, then |z + y|| < 1;

(3) Every point on the unit sphere is an extreme point;

(4) If f € X* is nonzero and ||z|| = ||y|| = 1 such that f(z) = f(y) = ||f],
then z = y.

Definition 6.1.5. A Banach space X is said to be locally uniform convex
if, for any x € X with ||z|| = 1 and € € (0, 2], there exists §(x) > 0 such that,
for any y € X with ||y — z|| > €, we have ||z + y|| < 2 — §(x).

Definition 6.1.6. A Banach space X is said to be uniformly convex if, for
any € € (0, 2], there exists 6 > 0 such that, for any z,y € X with ||y — x| > e,
we have ||z +y|| <2 — 4.

Some well-known uniformly convex spaces are Hilbert spaces, [P, LP, and
the Sobolev space WP where p > 1 and m > 0 is an integer.
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Proposition 6.1.7. A uniformly convex Banach space is reflexive.

In the sequel, let E be a real reflexive Banach space and E* be the dual
space of E, and — represents the weak convergence. By [287], we may assume
that both F and E* are locally uniformly convex. Let J : F — E** be the
duality mapping, i.e.,

[Tz = llzll,  (Jo,z) = |||

Proposition 6.1.8. Let E be a real reflexive Banach space and J : E —
E** be the duality mapping. Then we have the following:

(1) If E* is locally uniform convex, then J is single valued and continous;

(2) If E is locally uniform convex, (z,)52,; C E is a sequence converging
weakly to xg as n — o0, ||z.|| — ||zo|| and Jz,(z9) — ||z0||?, then
ITn — 2Q.

Proof. (1) For all z # 0, if f1, fo € Jx, then we have (f1 + f2)(x) = 2||z|?
and thus ||f1 + f2|| = 2||z|]. In addition, ||f1]| = ||f2]| = ||=||, and so it follows
from the locally uniform convexity of E* that f; = fs.

Next, assume that x,, — xg in E and we may assume also that (Jx,)) has
a weakly convergent sequence (Jz,,) with Jz,, — fo by reflexivity of E*.
Then we have

Tt (2n,,) = llzoll®,  Jwn, (z0) — folwo).
In addition, we have
1T (@, ) (@) = J (2, ) (20)]| = 0.
Therefore, we get fo(xo) = ||zo||? and, from this, we deduce that
[foll = llzoll, [T (@)l = llzoll, I (zni) + foll = llzoll = [l foll-

From the locally uniform convexity of E*, we deduce J(z,,) — Jxo.
(2) For simplicity, we may assume that Jx,, — fo by taking a subsequence
since E* is reflexive. By assumption, we have

Jn(Tn + 20) = ||33nH2 + Jzn(z0) — 2”550”2

and so ||z, + xo|| — ||zo||. From the locally uniformly convexity of E, we
deduce x,, — x¢. This completes the proof.

The following is the well-known Mazur’s separation theorem for convex sets:

Theorem 6.1.9. Let X be a Banach space, C; be an compact convex set
and Cs be a closed convex set such that C; N Cy = (. Then there exists a
f € X*\ {0} such that

sup f(x) < inf f(z).

zeCq zeCls
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Next, we recall some terminology as follows:

Definition 6.1.10. Let E be a real reflexive Banach space and E* be the
dual space of F.

(1) An operator T : D(T) C E — 2F" is said to be monotone if

(f—g,2—y)=0
for all z,y € D(T), f € Tx and g € Ty;

(2) T is said to be maximal monotone if T' is monotone and does not have
a proper monotone extension.

Note that when E is a Hilbert space the mapping T is said to be pseudo-
contractive if I — T is maximal monotone (see [51]).

As a consequence of Zorn’s Lemma, every monotone mapping has a maximal
monotone extension. We leave the details to the reader.

Definition 6.1.11. Let E be a reflexive Banach space. A multi-valued
operator T : D(T) € E — 2F" is said to be a mapping of class (S) if it
satisfies the following conditions:

(1) Tz is bounded closed and convex for each x € D(T);

(2) T is weakly upper semicontinuous in each finite dimensional space, i.e.,
for each finite dimensional space F with FND(T) # 0, T : FND(T) —
2E” is upper semicontinuous in the weak topology;

(3) if {z,} € D(T) and {z,,} converges weakly to z¢ in E such that

limsup(fn, 2n — o) <0 for some f,, € Tx,,
n—oo
then z, — z9 € D(T) and {f,} has a subsequence which converges
weakly to fy € Txg in E*.

When FE is a Hilbert space, we say that T is pseudocompact if I — 7T is a
mapping of class (54 ) (see [51]). One may easily see that a compact mapping
is pseudocompact.

Definition 6.1.12. Let E be a reflexive Banach space. A family of oper-
ators {T} : D(T}) C E — 257 }eeqo,1) is said to be a homotopy of mappings of
class (S4) if T; satisfies the conditions (1), (2) in Definition 6.1.11 for each
t € [0,7] and the following condition:

(3) Ift,, — to and =, € D(Ty, ), {xn} converges weakly to zq in E such that

limsup(fp, xn — 29) <0 for some f,, € Ty, xp,
n—oo
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then x, — zo € D(T},) and {f,} has a subsequence converging weakly
to some fy € Ty, zo in E*.

Definition 6.1.13. Let T': D(T) C E — 2 be a mapping satisfying the
conditions (1), (2) in Definition 6.1.11. Let (z;) C D(T), z; — zo € D(T)
and f; € T'x;.

(1) If limsup,_, . (fj,; — xo) < 0 implies that

(fo,xo —v) <liminf(f;,z; —v) for all ve D(T), fo € Txo,
J—00

then T is said to be a pseudomonotone mapping;
Let (z;) C D(T), xj = xo € D(T), f; € Txj and f; — fo.
(2) If limsup,_,(fj,7; — o) < 0 implies that
fo € Txo,  (fo,wo) = lim (f}, ;).

then T is said to be a generalized pseudomonotone mapping.

Lemma 6.1.14. If J : £ — E* is the duality mapping, then J is a
continuous mapping of class (Sy) and J is also monotone.

Proof. Let z, — zy. We may assume that Jx, — fy € E*. Since
limy, o0 (JTp, Ty — 9) = 0, we have (fo,z0) = ||20]|>. Therefore, we get
Tzl — llzoll = |lfol|- The local uniform convexity of E* implies that
Jx, — Jxg, and so J is continuous and, furthermore, J monotone is obvious.

Next, we prove that J is a mapping of class (S4). Let

Ty — xo, limsup(Jx,,z, —x9) < 0.

n—oo

We may assume that Jz,, — fy € E*. Since

lzol* < liminf(Jp, 2) < (fo,0).

we have ||z,|| — ||zoll, [[foll = llzo||. Thus by Proposition 6.1.8, x,, — z7 and
Jx, — Jxg. This completes the proof.

Definition 6.1.15 [163] Let E be a separable reflexive Banach space and
L be a dense subspace of E. A mapping T : D(T) C E — E* is said to be
a mapping of class (S )y, if, for any sequence of finite dimensional subspaces
Fjof L with U2, Fy = E, h € E*, {u;}32, C D(T) with u; — up and

limsup(Tu; — h,u;) <0, lim (Tu; —h,v) =0

j—)OO J—00

for all v € U2 Fj, we have u; — ug, and ug € D(T), Tug = h. If h = 0, then
we call T' a mapping of class (S4)o, L.
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Definition 6.1.16. Let E be a reflexive Banach space and L be a subspace
of E. A multi-valued mapping T : D(T) C E — 27" is said to be a mapping
of class (S1)r if it satisfies the following conditions:

(i) T is bounded closed and convex for each x € D(T);

(ii) T is weakly upper semicontinuous in each finite dimensional space, i.e.,
for each finite dimensional space F of L with FND(T) # 0, T : F N
D(T) — 2" is upper semicontinuous in the weak topology;

(iii) if, for any sequence of finite dimensional subspaces F; of L with L C
U, Fy, b€ B*, {z;}32, C D(T) N L and x; — x0 such that

limsup(f; — h,z;) <0, lim (f; —h,v) =0
: J—00

J—00

for all v € U2, F; and some f; € Txj, then z; — z¢ € D(T) and
h € Txy. If h =0, then we call T' a mapping of class (S4+)o, L.

Remark. If T is a mapping of class (S ), then, for any p € E*, T —p is
a mapping of class (S4)o,L-

When E is a Hilbert space, we say that T is L-pseudocompact if I — T is a
mapping of class (S4)r, and T is Lo-pseudocompact if I — T is a mapping of
class (S1)o,rL-

Definition 6.1.17. Let E be a reflexive Banach space and let L be a
subspace of E. A family of mappings {7} : D(T3) C F — 2E*}te[071] is
called a homotopy of mappings of class (S1), if the conditions (i) and (ii) in
Definition 6.1.16 hold for each t € [0, 7] and the following condition holds:

(iii) If, for any sequence of finite dimensional subspaces F; of L with L C
U, Fy, h € E*, t; — to, x; € D(T3;) N L and x; — xo such that

limsup(f; — h,z;) <0, lim (f; —h,v) =0,

j—o0 J—0

for all v € U2, F; and some f; € Ti x;, then z; — zo € D(Ty,),
h € Tyywo. If h = 0, then we call {T} : D(T})}sep,1] @ homotopy of
mappings of class (S1)o,r.

Proposition 6.1.18. If L is dense in E, then the duality mapping J is a
mapping of class (S1)r.

Proof. Let (F})32, be a sequence of finite dimensional subspaces of L with
U Fj = E, he€ B, zj € L and z; — xo such that

limsup(Jz; — h,z;) <0, lim (Jz; —h,v) =0

j—o0 J—00
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for all v € U7Z, F;. Without loss of generality, we may assume that Jz; — fo
in E*. Then we have

lzwol|* < limsup(Jaj, 2;) < (h. o), (fo—h,v) =0

J—00

for all v € U2, Fj. But U2, F} is dense in E, so we have fo = h. Therefore
it follows that

lzwo||* < limsup(Jz;, x;) < (h,20) < [lao|*.

j—o0

Thus ||z;|| — ||zoll as j — oo. This and the local uniform convexity of E
together with x; — z¢ imply that z; — xo and Jxg = h. Therefore, J is a
mapping of class (S1)r.

Now, assume that L is a Fredholm mapping of index zero type. Then there
exist two linear continuous projections P : H — H and @ : H — H such that

Im(P) = Ker(L), Ker(Q)=Im(L).
Also, we have
H=Ker(L)® Ker(P), H=1Im(L)®Im(Q)

as the topological direct sums.

Obviously, the restriction of Lp of L to D(L) N Ker(P) is one to one and
onto I'm(L), so its inverse Kp : Im(L) — D(L) N Ker(P) is defined. We
denote by Kpg : H — D(L)N Ker(P) the generalized inverse of L defined by
Kpg=Kp(I—Q). Let J: Im(Q) — Ker(L) be a linear homeomorphism.

Definition 6.1.19. Let H be real Hilbert space, L : D(L) C H — H
be a Fredholm mapping of index zero type and T : D(T) € H — 2% be a
set-valued mapping.

(1) fI—P—(JQ+ Kpg)T is maximal monotone mapping, then T is said
to be L-maximal monotone;

(2) if I — P—(JQ+ Kpg)T is pseudomonotone (respectively, generalized
pseudo monotone), then T is L-pseudomonotone (respectively, general-
ized L-pseudomonotone). If I — P —(JQ+ Kpg)T is also bounded, then
T is said to be bounded L-pseudomonotone;

(3) f I — P— (JQ + Kpg)T is a mapping of class (S ), then T is called a
mapping of class L-(S5).

Remark. (1) If T is a mapping of class (S4), L =0, P =1, Q = I, and
J = —I, then T is a mapping of class 0-(S).
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(2) If I-T is a mapping of class (S5 ), in this case, T is called pseudocompact
in[51],and L=1, P=0,Q =0, J =1, then T is a mapping of class I-(S;).
As a special consequence, if T' is upper semicontinuous compact mapping with
bounded closed convex values, then I — T is a mapping of class (5S4 ), so T' is
a mapping of class I-(S;).

(3) One may also easily see that, if T' is L-compact, then T is a mapping of
class L-(Sy).

Proposition 6.1.20. Let H be real Hilbert space, L : D(L) C H — H be
a generalized Fredholm mapping of index zero type and T} : D(T;) C H — 2H
be a mapping of class L-(Sy) for ¢ = 1,2. Then tT} + (1 — t)T5 is a mapping
of class L-(S1) on D(T1) N D(Tz) for all ¢ € [0, T].

Now, we give some examples of monotone-type mappings.

Example 6.1.21. Let 2 C R™ be an open bounded subset with smooth
boundary. Assume that a;, b; : R — [0,+00) are continuous functions for
i=1,2,--- ,n. Suppose the following conditions are satisfied:

(1) ¢1 < a;(z) < cp for all (t,z) € R%, where ¢, co > 0 are constants;
(2) Sulbil:) — bi ()] (i — i) > 0, where & = (1), y = (1) € RV
(3) |bi(x)] < Blz|+~vyforallz € Rand i=1,2,--- ,m;

(4) Bibi(zi)w; > alz|? — ¢o for all x = (z;) € R™.

Let A: L?(Q) x H}(Q) — H* be defined as follows:
(A, v),w) = / [ as(u)bs(Div) Dyw]da
Q

for all u,w € H (). Then we have the following:
(a) for each v € L?(Q),

(A(v, u),w) < 025\/ / <2?_1Diu|2>dx\/ / (S, | Daw[2)de

for all u,w € H (),

(b) (A(v,u1) — A(v,uz),u1 —uz) > 0 for t € R, uy,uz, € HF () and v €
L?(Q) and A(v,-) is continuous and monotone for all v € R x L?(£2) and
so it is also pseudomonotone.

A special case of Example 6.1.21 is that, if a;(z) = 1 and b;(z) = = for all
x € R, then we get the Laplace operator

(—Au,v) = / (Vu, Vo)dr for all u,v € Hj(Q).
Q
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Example 6.1.22. Let ) be as in Example 6.1.21 and let f(z,y): R? — R
be a continuous function satisfying

[f(z,y)] < Myl +g(z) forall (z,y) € R?,

where M > 0 is a constant and g(-) € L?(Q2). Then the following mapping A
defined by

(Au,v) = /Q[(Vu, Vo) + f(z,u)v)dz for all u,v € H} ()

is a mapping of class (S;) and it is also pseudomonotone.

Example 6.1.23. Let 2 be as in Example 6.1.17, p > 1, and a,, : QX R" —
R be a Caratheodory function, i.e., ay(, ) is measurable in = and continuous
in &, where a = (a1, a9, -+ ,ay) is a multi-index. Assume that

|aa(z,)| < ClEP™ + g(2)

for almost everywhere x € Q, where £ = (£, : |a|] < m}, C > 0 is a constant,
g()eLland p~t+¢ 1 =1.

We consider the following partial differential equation:

E‘Mgm(—l)'“'Daaa(:ﬂ,u,Du, oo, D) + f(x,u) =0, z€Q,
u(z) =0, x € 08,

and we define a mapping A : H*(Q) — (HJ"(Q)* by
(Au,v) = / [Ejaj<malz, u, Du,- -+, D" u) D + f(x,u)v]dz
Q

for all w,v € H{*(Q). By imposing suitable conditions on a,, the above
mapping A will be maximal monotone, pseudomonotone or of class (S, ).

Example 6.1.24. Consider the following wave equation with discontinuity:

Ut (t, ) — gy (t, ) + g(ult, ) + h(u(t,x)) = f(t,z),
t € (0,2m),z € (0,m),

u(t,0) =u(t,m) =0, te(0,2n),

u(0,2) = u(2m,x), «x € (0,m),

where g : R — R is a nondecreasing function with
lg(u)] < alul+ 5 for all u € R,
h: R — R is a continuous function satisfying

|h(w)] < dluf +~
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and f(-) € L?((0,27) x (0, 7)), where o > 0,3 > 0,5 > 0,7 > 0 are constants.

Set
g—(u) =liminf g(s), g4 (u) = limsupg(s),

s—U s—u

Gu = [g-(u), g+ (u)]-

Then G : R — 2% is a maximal monotone mapping. Let a mapping N :
L2((0,27) x (0,7)) — L2((0,27) x (0, 7)) be defined by

N(u(t,z)) = {v(t,z) € L*((0,27) x (0,7)) : v(t,x) € Gu(t,z)}

for all u(t,z) € L*((0,27) x (0,)).

From our assumption on g, we know that D(N) = L?((0,27) x (0, 7)) and
N is also maximal monotone, so N is upper semicontinuous from the strong
topology of L2((0,27) x (0,7)) to the weak topology of L?((0,2m) x (0,)).

Let L : D(L) C L*((0,2m) x (0,7)) — L*((0,27) x (0,7)) be the wave
operator Lu = us — Ugzy;. Then it is well known that L is self-adjoint, densely
defined and closed and Ker(L) is infinite dimensional with Ker(L)t = I'm(L).
Thus L is a Fredholm mapping of zero index type and also the right inverse
of L denoted by L=!: Im(L) — Im(L) is compact.

Let P : L?((0,27) x (0,7) — Ker(L) be a projection. We assume that
lim inf; o (P(f; 4+ h(u;)), uj —ug) > 0 for any u; — ug in L*((0,27) x (0, 7))
and f; € Nu; (for example, take g(x) = z for x < 0, g(z) =z + 1 for z > 0
and h(z) = xzsinz for x € R). Then N(u)+ h(u) is L-pseudomonotone. In
fact, if u; — ug in L2((0,2m) x (0,7)), f; € Nu; with f; = fo, h(u;) = ho
and

limsup((I — P)u; + P(f; + h(u;)) + L~ (I = P)(f; + h(uy)), u; — ug) <0,

Jj—00
then, since
limsup(P(f; + h(u;)), uj — ug) >0
J—00

and L~! is compact, we have

limsup(L™ (I — P)(f; + h(u;)),u; —ug) =0

j—o0

and so limsup,_, (I — P)uj,uj —up) < 0. Thus (I — P)u; — (I — P)ug.
Consequently, we get

Jim (1= Pyug + P(f; + h(u)) + L7 = P)(fs + h(uz), us)

= ((I = P)ug + P(fo+ ho) + L™ (I = P)(fo + ho), uo)-

Thus N + h is L-pseudomonotone.

Copyright 2006 by Taylor & Francis Group, LLC



DEGREE THEORY FOR MONOTONE-TYPE MAPS 137

Lemma 6.1.25. Let X be a real Banach space and T : D(T) C E — 2F°
be a monotone mapping. Then T is locally bounded on the interior of D(T).

Proof. Let zg € int(D(T)). Without loss of generality, we assume that
xo = 0. There exists > 0 such that B,(0) C D(T). By the monotonicity of
T, we have

(f = fo,2=2) 20

where fo € Tz is given and © € D(T), f € Tz. For each n > 1, let
M, ={z€ B.(0): (f,x —2) > —n, = € B.(0), f € Tx}.

Then we have
B.(0) = U2 M,.

By the Baire’s category theorem, there exists ng such that M, has nonempty
interior and so there exist zg € B, (0), ro > 0 such that B,,(z9) C M,,. Since
—2zp € B,(0), there exists m > 0 such that

(fix+20) >m forall x € B,(0), f € Tz.
Therefore, we have

(f,2x —y) > —(ng + mg) for all y € B,,(0).

Now, for all z € B: (0 B:(0), f €Tz and z € By (0), we have

(f,Z) Z(f,2x—(2x—z)) 2 _(n0+m0)

and so 5
1711 < (o + mo).

This completes the proof.

Proposition 6.1.26. Let P : E — 22" be a bounded pseudomonotone
mapping and {z,} C E be such that x,, — x¢. If f,, € Px, such that f,, — fo
and limsup,,, .o (fn, Tn — o) <0, then fy € Pz and (fn,xn) — (fo,x0)-

Proof. Since limsup,, ,.(fn,Zn — o) < 0, we have

(f,x0 —v) <liminf(f,,x, —v) forallv € E, f € Pxy. (6.1.1)

n—oo

Putting v = zg in (6.1.1), it follows that

lim inf(f,, 2, —x¢) >0

n—oo

and so we have (f,,z,) — (fo,20). Now, (6.1.1) becomes

(fyxo —v) < (fo,x0 —v) forallveFE, f e Pux. (6.1.2)
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But since Pz is bounded, closed and convex, by Mazur’s separation theorem
of convex subsets, we get fo € Pxg. This completes the proof.

Lemma 6.1.27. Let E be a real reflexive Banach space, T': D(T) C E —
2F" be a maximal monotone mapping and let P : E — E* be a bounded,
coercive and demicontinuous pseudomonotone mapping. Then there exists
xg € C such that

(f+ Pxog,x —x9) >0 forall z € D(T), f € Tx.

Proof. We first prove that, for any finite dimensional subspace F' of E
such that F'N D(T) # 0, there exists zr € F such that

(f+ Prp,x —xp)>0forallz € FND(T), f € Tx. (6.1.3)

Since P is coercive, we notice that if the above conclusion is true, xp must
be in a bounded ball B(0, R). Therefore, we may first prove that the above
conclusion is true in the case that D(T') is bounded. For the unbounded case,
we find z,, € D(T') such that

(f+ Pxp,x—x,) >0

for all z € FND(T)NB(0,n) and f € Tx. But since {z,} is bounded, we
may assume that z,, — x¢ as n — oo and then we can use the demicontinuity
of P to conclude that x¢ is the desired point.

In the following, we assume that D(T) is bounded and suppose that the
conclusion is not true. Then, for any € F'N D(T), there exist z € F N D(T)
and f, € Tz such that

(f:+ Px,z—x) <0. (6.1.4)

Now, if we take a compact set C' such that FF N D(T) C C, then C =
U.ep(r)Uz, where U, = {z € F : (f. + Px,z —x) < 0 for some f, € Tz}.
Notice that each U, is open and so there exist finite many z; € ' N D(T') for
i=1,2,---, N such that

C=u;,U,,.

Let {a1,a9, - ,an} be a partition of unity subordinated to the covering
{U.,}. Then we define a mapping K : C' — C by

Kz =% a;(z)z foralzecC.

Then K has a fixed point zg € C, i.e., 1o = LN, a;(z0)z;.
We may assume that «;(z9) > 0 for i = 1,2,--- , N. Otherwise, we exclude
it. Now, we have
0 = (Kzo — x0, 2 i () f., + Pxo)
= X jm10i(wo) oy (o) (fz; + Pwo, 2 — o)

<0,
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which is a contradiction. Thus (6.1.3) is true.
Finally, for each finite dimensional subspace F' of E, we put

Wp ={(zp,Gzp) : (xp, Grr) satisfies (6.1.3)}.

Obviously, we have
m?ZIWFi 7é 0.

If we denote by WF* the weak closure of Wr in E, then we have
NrcBdimp<coWr 7 0.

Take (x9,g0) € ﬂch7dimF<mW7F* and, for any € D(T)NC, a finite dimen-
sional subspace F' of E such that x, g € F. Then there exists {(z;, Pz;)} C
Wr such that

x; =~ x9, Pxj—g9 asj— oo.

Therefore, we have
(f +Pzxj,x—x;) >0 forallz e FND(T), f € Tx.

Since P is pseudomonotone and C'is closed and convex, it follows from Propo-
sition 6.1.21 that
limsup(Pz;, z;) > (g0, o)

Jj—0o0

and so we have
(f + g0,z —x9) >0 forallze FND(T), feTx.

But since F is arbitrary, (f + go,x — x¢) > 0 for all x € D(T) and f € Tx.
Hence x¢ € D(T'), which implies that

limsup(Pz;,z; — xo) < 0.

Jj—00
Thus we have (Pxj,2;) — (Pzg, o) and so
(f+ Pxo,x —x9) >0 foralze D), feT.

This completes the proof.

Let T : D(T) € E — 2% be a maximal monotone operator. Let T\ =
(AJ~1 +T71)~! denote the Yosida approximation and Ry = I — AJ 1T} the
resolvent with respect to T), respectively.

As a direct consequence of Lemma 6.1.27, we get the following:

Proposition 6.1.28. If T : D(T) — 2" is a monotone mapping, then T
is maximal monotone if and only if 7"+ €J is surjective for any € > 0.
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Proof. We assume that both the spaces £ and E* are locally uniform
convex. If T is maximal monotone, then, for any p* € E* J — p* is a
continuous bounded coercive monotone mapping and, thus, pseudomonotone.
By Lemma 6.1.27, there exists xg € E such that

(f+eJzg—p*,x—xo) >0 forallze D(T), f € Tx.

So zg € Txg and —eJzg +p* € Txg, ie., p* € Txg + eJxg.

Conversely, suppose that (f — g, — ) > 0 for all z € D(T) and f € Tz.
Then there exist yo € D(T') and fy € Tyo such that fo + Jyo = Jzo + g.
Therefore, it follows that

(Jxo — Jyo,y0 — xo) > 0.

So we must have xg = yo. This completes the proof.

Lemma 6.1.29. Let T : D(T) C E — E* be a maximal monotone map-
ping. If z € D(T), then

lim Ryx == lim Thx =
A0+ A ) A0+ A fa

where f € Tx and || f|| = min{||g||,g € Tz}.

Proof. By the monotonicity of T, it follows that
[Rxz|? < =MRaz —y,9) — (x —y, Thx) (6.1.5)
for all z,y € D(T) and g € Ty. Put y = z in (6.1.5) and then we have
[Tae|| < minllgl| : g € Tz} = [|f]. (6.1.6)

By letting A — 07, it immediately yields that Ryz — x. Without loss of
generality, we may assume that Thx — fo as A — 07. Then the maximal
monotonicity of T' yields that fo € Tz, and so from (6.1.6) and the locally
uniform convexity of E* we infer that limy_,qo+ Thax = fo and fy = f. This
completes the proof.

Proposition 6.1.30. The following conclusions hold:

lim Thx =T\ x lim Ryxz = Ry x
A= Ao LA VG VS 0

where Ao > 0 and x € D(T).
Proof. Since
(J(Rax —x) — J(Ragx — @), Ry — Ry )

_ A%
<

(J(R)\O.’E — 1’), R)\SU — R)\O.’E)
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and
([Raz — || = [[Ragz — z])* < (J(Rax — ) — J (R, @) — ), Rax — Ry, ),

we have
lim ||Ryz — z|| = [|Ra,x — ]|,
A—0t

)\h%{r(t](R/\ox —2), Raz) — 2) = ||Ry,7 — ||
Thus the locally uniform convexity of £ and E* imply that

lim Thz =T)\,z, lim Ryz = Ry, z.

A— Ao A—Xo
This completes the proof.

Proposition 6.1.31. Let A : D(A) C E — 2" be a multi-valued mapping
of class (S1). Then we have the following:

(1) If T : D(A) — 27" is an upper semicontinuous operator with closed
convex values and 7' maps each bounded subset of D(A) into a relatively
compact subset of E*, then T + A is a multi-valued mapping of class

(S4);

(2) If M : D(M) C E — 2¥" is a maximal monotone operator, then My + A
is a multi-valued mapping of class (S5 );

3) IfP:FE— 2" is a pseudomonotone mapping, then P+ A is a mapping
of class (S4);

4 IfP:FE — 28" is a bounded generalized pseudomonotone mapping,
then P + A is a mapping of class (S5 ).
The proof of Proposition 6.1.31 is left to the reader as an exercise.

Proposition 6.1.32. If 77 and T3 are two bounded mappings of class (S;),
then {tTh + (1 —t)T5 : t € [0,1]} is a homotopy of mappings of class (S ).

Proof. To show that tT7 + (1 — ¢)T» satisfies the conditions (1) and (2) of
Definition 6.1.12 is trivial.
Now, suppose that t; — to, x; = 2o and f} € Tjx; such that

limsup(t; f} + (1 — t;)f7,@; — x0) <O0. (6.1.7)

j—oo
Since T7 and T% are mappings of class (S ), we have

liminf(fjl,mj — ) >0, liminf(sz,xj —xp) > 0.
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By virtue of (6.1.7), we get lim; o (f},2; —20) = 0 or limj_ o (f7, 2 —20) =
0. Hence we have x; — xg and

J

Therefore, {f}} and {f?} have subsequences {f} } and {f7 } that converge
weakly to f! € Tizg and f2 € Ty, respectively. Therefore, we have

im (fjl,xj —x9) =0, lim (ij,a:j — o) =0.
—00 J—0

tin i+ L=t )7 = tof + (1 —t)f* € toThimo + (1 — to) Tawo.

This completes the proof.

6.2 Degree Theory for Mappings of Class (S,)

In this section, we present a degree theory for multi-valued mappings of
class (S4). In the single valued case it was constructed by Browder [35], and
for a degree theory for other monotone-type mapping, see [51]. For some
notations, we refer to Section 6.1.

Lemma 6.2.1. Let F be a finite dimensional subspace, {2 C F' be an open
bounded subset and 0 € Q. Let 7' : Q@ — 2F" be an upper semicontinuous
mapping with compact convex values, F; be a proper subspace of F, Qp, =
QN Fy # ¢ and Tr, = jp, T : Qp, — 255 be the Galerkin approximation of
T, where jz, is the adjoint mapping of natural inclusion jg, : Fo — F. If
deg(T,Q,0) # deg(Tr,,r,,0). Then there exist x € 9Q and f € Ta such
that

(f,z) <0, (f,v)=0 forallve F,

where deg(-, -, ) is the topological degree for upper semicontinuous mappings
with compact convex values in finite dimensional spaces.

Proof. Since F is finite dimensional, we may assume that F' is a Hilbert
space and hence F'* = F and jf, is the projection P : F' — Fy. Let Fy =
F © Fy and then F = Fy ® F;. Let B; be the open unit ball of F} and then
Qy = Qp, ® B; is an open subset of F.

Now, we define a mapping 17 : Q1 — 2F by

Ti(u+v)=Tru+v foralue€Qg, ve B.
Then we have
deg(T1,91,0) = deg(Tr,, 2r,,0) # deg(T, 1, 0).
Again, we define a mapping 7% : Q — 2% by
T*u= PTu+ (I — P)u for all u € Q.
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One can easily see that
deg(Th Qh 0) = deg(Th an Ql, 0),

deg(T*,,0) = deg(T™*, 2N Q4,0).

Consider the homotopy class {T; : 0 < ¢t < 1}, where T3 : QN — 2F ig
defined by Tiu = tThu+ (1 —t)T* for allu € QN Qy and 0 < ¢t < 1. It is easy
to see that, if 0 € T}, up, then we have

ug € Fo NNy
and so

deg(T™,,0) = deg(T*,Q2 N Q4q,0)

(
= deg(T1,2NQ,0)
(
(

= deg Taﬂlao)
— deg(To, 90, 0).

Therefore, we get
deg(T*,Q,0) # deg(T, Q,0). (6.2.1)

Let
Hu=(tl+(1—t)P)Tu+ (1 —t)(I — P)u for all (t,u) € [0,1] x Q.

It follows from (6.2.1) that there exist ¢t; € [0,1] and u; € 0N such that
0 € Hy,uy. Hence there exists fi; € Tuy such that

tfi+(1—-t)Pfr+(1—t)I — P)u; =0. (6.2.2)
Multiplying (6.2.2) by v € Fy and ug, respectively, we obtain

(flav):07 (flaul):()-
This completes the proof.

Lemma 6.2.2. Let {T}}:c[o,1) be a homotopy of mappings of class (S).
If 0 ¢ T,(09) for all ¢t € [0, 1], then there exists a finite dimensional subspace
Fy such that 0 ¢ T, p(0R) for all F' with Fy C F and dimF < oo, where
Tt,F = j;‘Tt for all t € [0, 1]

Proof. Suppose that the conclusion is not true. For finite dimensional
subspaces Fj and F' with Fy C F, we define a set W as follows:

Wr = {(t,z) €[0,1] x 90 : there exists f € Tyx
such that (f,z) <0 and (f,v) =0 for all v € F'}.
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Then Wr is nonempty. Let Wr be the closure of Wr in [0,1] x E with E
endowed with weak topology.
Consider the following family of sets:

F ={Wg:F, CF, dim(F) < cc}.

It is easy to show that NpexrWr # ¢. Let (to,20) € NperWp. For allv € E,
if we take a finite dimensional subspace F' such that F, C F, v € F and
xo € F, then there exist (t7,2%) € Wr and f} € Tiyxj such that

t?—>t0, 1';‘)41'0) (.fjvax_;))goa (f;,’U)ZO

for j = 0,1,2,---. Hence we have limsup;_,..(f}, 2] — z9) < 0. But since
{T} : t € [0,1]} is a homotopy of mappings of class (S}), it follows that
r? — 9 € 00 and (f}) has a subsequence (f} ) that converges weakly to
1§ € Ti,xg. Therefore, we have (f§,v) = 0 for all v € E. By Mazur’s
separation theorem, we get 0 € T3, z¢, which is a contradiction. This completes

the proof.

Lemma 6.2.3. Let {T}}c[0,1) be a homotopy of mappings of class (S ).
If 0 ¢ T, (09) for all ¢t € [0, 1], then there exists a finite dimensional subspace
Fp such that the topological degree deg(T; ,$2p,0) is well defined and does
not depend on t € [0, 1] and each finite dimensional subspace F with Fy C F.

Proof. By Lemma 6.2.2, there exists a finite dimensional subspace F’ such
that 0 ¢ T; p(0R2) for all ¢ € [0,1] and F with F’ C F and dimF < oco. It
is easy to see T}  : Qp — 27 is upper semicontinuous with compact convex
values. Thus, by Definition 6.3.12, the topological degree deg(T},r,2r,0) is
well defined.

Now, we show that there exists a finite dimensional subspace Fy such that
F' C Fy, deg(T},r,2,0) does not depend on ¢ € [0, 1] and F with Fy C F and
dimF < oo. In fact, if this is not true, then, as in the proof of Lemma 6.2.2,
we define

Wr ={(t,z) €[0,1] x 90 : there exists f € Tyx
such that (f,z) <0 and (f,v) =0 for all v € F'}.
Then Wr is nonempty by Lemma 6.2.1. Let Wr be the closure of W in

[0,1] x E with E endowed with the weak topology.
Consider again the following family of sets:

F={Wr:FyCF, dim(F) < oco}.

It is easy to show that NpezWr # ¢. Let (to,20) € NperWr. Then, for all
v € F, if we take a finite dimensional subspace F' such that fy C F, v € F
and zg € F, then there exist (t;’w;’) € Wp and f} € thvmy such that

tj —to, xj =m0, (ff,27) <0, (ff,v)=0
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for j = 0,1,2,---. Hence we have lim; . (f;, 2] —z0) < 0. But since {7; :
t € [0,1]} is a homotopy of mappings of class (S ), we have 2} — zo € 00
and (fj) has a subsequence (fj ) which converges weakly to fi € Ti,o.
Therefore, we have (f§,v) = 0 for all v € E and so, by Mazur’s separation
theorem, 0 € Ty, 20, which is a contradiction. This completes the proof.

Now, let 7 : © — 2F" be a mapping of class (S) with 0 ¢ 9Q. By Lemma
6.2.3, there exists a finite dimensional subspace Fy such that 0 ¢ Tr(9Q) for
all F' with Fy C F and dimF < oo, and the topological degree deg(Tr, 2, 0)
is well defined and does not depend on F.

Now, we define the topological degree deg(T,{2,0) as the common value of
deg(Tr,Qr,0).

Theorem 6.2.4. Let E be a reflexive Banach space, 2 C E be an open
bounded subset and T : Q@ — 27" be a mapping of class (S, ). If 0 ¢ T(0Q),
then the topological degree deg(T,2,0) defined as above has the following
properties:

(1) deg(J,9,0) =11if 0 € J(Q);
(2) If deg(T,Q,0) # 0, then 0 € Tz has a solution in €;

(3) If Q2 and Qo C Q are two open subsets with Q = QU5 and Q1NQs = ¢,
then

deg(Ta Qv 0) = deg(T, Qla 0) + deg(Tv Q27 0)7

(4) If {T};}icq0,1) is a homotopy of mappings of class (S, ), @ C D(T;) and
0 ¢ T;(0Q) for all t € [0,1], then deg(T%, £2,0) does not depend on
t € 0,1].

6.3 Degree for Perturbations of Monotone-Type Map-
pings

In this section, based on the results in Sections 6.1 and 6.2, we establish

various topological degree theories for monotone type mappings. In the sequel,

T : Q — 2F is a bounded mapping of class (S, ), where € is an open bounded
subset in F.

Lemma 6.3.1. Let M : D(M) C E — 27 be a maximal monotone
mapping with D(M)NQ # 0. If 0 ¢ (M +T)(0Q2N D(M)), then there exists
Ao > 0 such that

0¢ (Mx+T)(09) forall A< Ao,
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where M) is the Yosida approximation of M.

Proof. Suppose this is not true. Then there exist z; € 0Q with z; — o,
Aj — 0%, f; € Tx; with f; = fo such that

M)\jlvj +f =0

We have (My,z; + fj,x; — x0) = 0. Since T' is a mapping of class (S ), we
have liminf; .o (f;, z; — o) > 0. Thus we get

lim sup(My, x;, 2 — x0) < 0.

j—o0o
Hence

lim sup(My; x5, ;) < (= fo, o). (6.3.1)

Jj—oo

On the other hand, it follows that (m — My,z;,x — Ry,x;) > 0 for all
x € D(M) and m € Mz, i.e.,

(m — My, zj,x —x; + N\ J "My, z; > 0. (6.3.2)
By (6.3.1) and (6.3.2), we get
(m,x —x9) — (—fo,2) > —(—fo,x0),x € D(M),m € Tx.

Thus zo € D(M), and —fo € Mxo. Notice that (My;x;—My,x0,7;—20) > 0.
By Lemma 6.1.29, we get

liminf(Mijj,xj — SC()) > 0

Jj—00
and so we have

limsup(f;,x; — zo) < 0.

Jj—00

Therefore, it follows that ; — xg € 0QND(M), fo € Txo and 0 € Mzo+Txo,
which is a contradiction.

Now, suppose that T" and M satisfy the conditions of Lemma 6.3.1. By
Lemma 6.3.1, there exists Ag > 0 such that

0 ¢ (My + T)(QN D(M)).

Since My + T is a mapping of class of (S;.), deg(My + T,,0) is well defined
for any A < Ag. By Proposition 6.1.30, it is easy to check that

{Mtlir(lft))\Q + T 0t S [0, 1]}

is a homotopy of mappings of class (S;). Therefore, deg(My + T, £2,0) does
not depend on A € (0, \g).
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Now, we define

deg(M +T,Q2N D(T),0) = /\li%lJr deg(My + T,,0). (6.3.3)

Theorem 6.3.2. The topological degree defined by (6.3.3) has the follow-
ing properties:

(1) deg(J,£,0) =1 if and only if 0 € J(£2);
(2) If deg(M +T,9,0) # 0, then 0 € (M + T)z has a solution in €2;

(3) IfQ; and Qs C Q are two open subsets with Q = QU and Q110 = ¢,
then

deg(M+TvQ70) = deg(M—’_TanvO) +deg(M+T79270)a

(4) If {T}}+e(0,1) is @ homotopy of mappings of class (S5), M is a maximal
monotone mapping, QN D(M) # 0, Q@ € D(T}) and 0 ¢ (M + 13)(0Q N
D(M)) for any ¢ € [0,1], then

deg(M + Ty, Q2,0) = deg(M + Ty, 9,0).

Proof. The proof is straightforward.

Remark. The condition (4) of Theorem 6.3.2 is not in its most general
form. In applications one may find different homotopy properties in which M
may depend on t.

Lemma 6.3.3. Let M : D(M) C E — 28" be a maximal monotone
mapping. If z; € D(T)NQ, x; — x, (¢;) is a positive sequence with ¢; — 0
and 0 € (M + ¢;T)x;, then z; — x9p € D(M) and 0 € M.

Proof. By our assumptions, there exists f; € T'z; such that
(Ejfijfi,.%j*ibi)go fOI‘ Z,j:1,2, .
By letting i — oo, we get

€j(fj, x5 —x0) <0.

But since T is a mapping of a class (S5 ), and so z; — g, we have zg € D(M)
and 0 € Mxzy. This completes the proof.

Lemma 6.3.4. Let T3, T be two mappings of class (Sy), ¢, > 0 and
A >0 for i = 1,2. Then {Mt>\1+(1—t))\2 + teid7 + (1 — t)EQTQ it e [0, 1]} is a
homotopy of mappings of class (S).
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Proof. Let t; — tg and x; — x¢ be such that
jlifgo(MtjAﬁ(l—tj)Aﬂj e f] + (1 —t5)f7, 25 — x0) <0

By the monotonicity of M and Proposition 6.1.30, we have

Lim; o (M x,4+(1-t5)00 %55 T — o) = 0.
Consequently, we have

leIlolo(tjijjl + (1 - tj)szvxj - ‘TO) <0.
But, since {te;T1 + (1 —t)exT5 : t € [0, 1]} is a homotopy of mappings of class
(S4), it follows that x; — xo, (f]) and (f7) have subsequences (f}, ) and (f7.)
such that fj — f' € Tixg and f7 — f? € T?xo, respectively. Moreover, we
have

jli*{lg.lo(Mtjkl—‘r(l—tj)Ang = Mt())\l—‘r(l—to))\gx()'

This completes the proof.

Now, suppose that 0 ¢ M(0Q N D(M)). By Lemma 6.3.3, there exists
€g > 0 such that

0¢ (M+eT)(02ND(M)) forall e € (0,€)

and so deg(M +€T, QN D(M),0) is well defined for any € € (0,¢p). By Lemma
6.3.4, deg(M + €T,Q2 N D(M),0) does not depend on € € (0, ¢€).

Now, we define

deg(M, Q2N D(M),0) = liH(l) deg(M + €T,Q2N D(M),0). (6.3.4)

Theorem 6.3.5. The topological degree defined by (6.3.4) has the follow-
ing properties:

(1) deg(J,£,0) =1 if and only if 0 € J(£2);
(2) If deg(M,2,0) # 0, then 0 € Mz has a solution in €;

(3) IfQ; and Q3 C Q are two open subsets with Q = Q;UQs and Q1NQs = 0,
then
deg(Ma Q7 0) = deg(Ma Qla 0) + deg(Ma 927 O)a

(4) If My, M are two maximal monotone mappings, QND(M71)ND(Ms) # 0
and

0¢ (tM1+(1—t)M3)(0QND(M1)ND(Ma2))U(tMix+ (1 —t) M »)(08)
for all ¢ € [0,1] and A € (0, Ag), then
d@g(M]_, Q7 0) = deg(M27 Qa 0)
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Proof. The proof follows from (6.3.4), (6.3.3), and Theorem 6.2.4.

Remark. A degree theory can also be developed for pseudomonotone map-
pings and generalized pseudomonotone mappings and their perturbations with
a maximal monotone mappings by using Proposition 6.1.31, which is a method
similar to the one employed above, and so we leave it to the reader as an ex-
ercise.

6.4 Degree Theory for Mappings of Class (S.).

In this section, we construct a topological degree theory for multi-valued
mappings of class (Sy)o,r, and the topological degree for multi-valued map-
pings of class (S )y, follows from definition 6.1.16.

In the following, we assume that E is also separable, L. C F is a dense
subspace of E and 2 C F is a nonempty open bounded subset. Let {Tt}te[o,l]
be a homotopy of mappings of class (S4)or, which has a common domain D
and Qp = QN DN F for each finite dimensional subspace F' of L is open in
F. We may choose a sequence of finite dimensional subspaces F; of L such
that F; C Fj4; and U2, F; = E. This is possible because E is separable and
L is dense in FE.

Lemma 6.4.1. Let T : QN D(T) — 2" be a mapping of (S, )o.z,. Suppose
that 0 ¢ T(0Q2 N D(T)). Then there exists an integer N > 0 such that

0¢ T,00ND(T)NF,) foraln>N,

where T, = ji T.

Proof. Suppose that the conclusion is not true. Then there exists z,, €
oYN D(T) N F,, such that 0 € T, x,,, i.e., there exists f,, € Tx,, such
that 0 = j}nk fn, for k=1,2,--.. Without loss of generality, we may assume
that x,, — zo. Now we have (f,,,z) = 0forallz € F,_, k =1,2,---.
Thus (fny, Tn,) = 0 and limg—.c0(fn,,v) = 0 for all v € U2, F;. Since T' is
a mapping of class (54 )o.r, it follows that z,, — xo € 92N D and 0 € Tz,
which is a contradiction. This completes the proof.

Under the conditions of Lemma 6.4.1, we know from Section 2.3 that the
topological degree deg(T,,,Q2 N D(T) N F,,0) is well defined for sufficiently
large n, and we have the following:

Lemma 6.4.2. Let T be the same as in Lemma 6.4.1. Then there exists
an integer N > 0 such that the topological degree deg(T,,2 N D(T) N F,,0)
does not depend on n > N, where T}, = ji. T.
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Proof. Suppose that the conclusion is not true. By Lemma 6.2.1, there
exist x,,, € OONDNE,,, fn, € Txp, suchthat (fp,,2s,) <0and (f,,,z) =0
forall z € F,,, k=1,2,---. We may assume that z,, — z¢. By the same
proof as in Lemma 6.4.2, we get x,, — 2o € 002N D and 0 € T'xo, which is a
contradiction. This completes the proof.

Suppose that {£;}72, is another sequence of finite dimensional subspaces
of L and U2, E; = E. Then we have the following:

Lemma 6.4.3. Let T be the same as in Lemma 6.4.1. Then there exists
an integer N > 0 such that

deg(T,, 2N D(T)N F,,0) = deg(T,,, 2N D(T)N E,,0) for all n > N.

Proof. Put K,, = E, U F,,. By using the same proof as in Lemma 6.4.2,
there exist two integers N7 > 0 and Ny > 0 such that

deg(T,, QN D(T)NF,,0) = deg(T,, 2N D(T)N K,,0) for all n > N,
and

deg(T,, QN D(T)N E,,0) = deg(T,,, 2N D(T) N K,,0) for all n > Na.
Therefore, the conclusion of Lemma 6.4.3 is true. This completes the proof.

Now, let L be a dense subspace of E,  C E be a nonempty open bounded
subset and T : D(T) € E — 2¥" be a mapping of class (Sy)o,r. Assume
that QN D(T) N F is open in F for each finite dimensional subspace F' of L.
Suppose that 0 ¢ T'(0Q2 N D(T)). In view of lemmas 6.4.1 to 6.4.3, we may
define the topological degree by

Deg(T,2N D(T),0) = lim deg(T,,2ND(T)NF,,0).

In general, if T is a mapping of class (Sy)r and p € T(0Q2 N D(T)), then
we can define the topological degree by

Deg(T,QN D(T),p) = Deg(T — p, 2N D(T),0).

The topological degree defined above has the following properties:

Theorem 6.4.4. Let E be a reflexive Banach space, L be a dense subspace
of B, Q C E be an open bounded subset and T : D(T) N Q — 2F" be a
mapping of class (S1)o,r. If 0 € T(0Q2 N D(T)), then the topological degree
Deg(T,QN D(T),0) defined above has the following properties:

(1) Deg(J,Q,0)=11if 0 € J();
(2) If Deg(T,Q2N D(T),0) # 0, then 0 € Tz has a solution in QN D(T);
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(3) If Q; and Qs C Q are two open subsets with Q = Q;UQs and Q1NQs = 0,
then

Deg(T,QN D(T),0) = Deg(T, N D(T),0) + Deg(T, Q2N D(T),0);

(4) If{T}}1cp0,1) is a homotopy of mappings of class (S )o,z with D(T;) = D
and 0 ¢ T:(0Q N D) for all ¢t € [0,1], then Deg(T:, 2N D,0) does not
depend on t € [0, 1].

Proof. (1) to (3) follow easily from the definition and the properties of
degree theory in finite dimensional spaces.
We only need to prove (4). Assume that (F})52; is a sequence of finite

dimensional subspaces of L with U2 U2, F; = E. We claim that there exists an
integer N > 0 such that

0¢ T;,(0Q2NDNF,) foralln>N,tec][0,1],

where T , = ji Ti. If not, then there exist t,, — to, zn, € 00N DN F,,
with z,, — 2o, fn, €T}, Tn, such that 0 = j}nk fni, which implies that

(fresTny) =0, (fn,,v)=0forallveF,,.

Since {T}}+e[0,1] is a homotopy of mappings of class (S )o,, we get z,, —
o € 02N D and 0 € T}, xp, which is a contradiction. Thus the claim is true.

Now, for all n > N, we know from Section 2.3 that deg(T} ,, QN DNLNF,,0)
is a constant for t € [0, 1], where T} ,, = ji T;. In view of Lemma 6.4.3, we
see that the conclusion of (4) is true. This completes the proof.

Theorem 6.4.5. Let T : D(T) C E — 2P be a mapping of class (S )o.z
and € C F be an open bounded subset such that QN D(T) N F' is open in F
for each finite dimensional subspace F of L. If 0 € QN D(T) and (f,z) > 0
for all x € 90N D(T) and f € Tz, then

Deg(T, 2N D(T),0) = 1.
Proof. Assume that (/)52 is a sequence of finite dimensional subspaces
of L with U2 U, F; = E. 1t is easy to check that
0 (tjp, T+ (1 —1t)jp J)(OQN D(T)NFy)
for allt € [0,1] and n = 1,2,---. Therefore, we have
deg(jr, 7,20 D(T) N F,,0) = deg(j, J, QN D(T) N F,,0) =1

for all n = 1,2,--- such that F, N QN D(T) # 0. By the definition of
topological degree Deg(T,Q2N D(T),0), we get

Deg(T,2N D(T),0) = 1.
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This completes the proof.

Theorem 6.4.6. Let H be a real separable Hilbert space, L be a dense
subspace of H, 1 C H be an open bounded subset such that QN D(T) N F is
open in F for each finite dimensional subpace F of L and T : D(T) — 2H be
a Lo-pseudocompact mapping. Suppose that 0 € D(T) N Q and

(Tz,z) < |z|* for all x € QN D(T).
Then T has a fixed point in QN D(T).

Proof. We may assume that « ¢ Tz for all z € 002N D(T). Assume that
(Fj)72, is a sequence of finite dimensional subspaces of L with U2, F; = H.
We claim that there exists an integer N > 0 such that

0¢[(tP,(I-T)+ (1—1)P,)(0QND(T)NF,

for all n > N and ¢ € [0,1], where P, : H — F, is the projection. Assume
this is not true. Then there exist t; — to, z; € 92N DNF,, with z; — z¢ and
f;j € Tx; such that PFnj (x;—t;f;) =0for j=1,2,---, where Ppnj tH — Fy,
is the projection. Thus it follows that (z; — ¢;f;,z;) = 0. This and our
assumption imply that ¢; = 1, so we have

(xj — fj,2;) =0, (x;—fj,v)=0forallveF,,j=1,2---.

From which we get x; — z9 € 0Q N D(T) and z¢ € Txo, which is a contra-
diction. Thus we get

deg(P,(I = T),QND(T)N F,,0) = deg(P,, 2N F,,0) = 1.

Thus it follows that Deg(I —T,Q2N D(T'),0) = 1. By Theorem 6.4.4, T has a
fixed point in Q@ N D(T). This completes the proof.

6.5 Coincidence Degree for Mappings of Class L-(5,)

In this section, we construct a topological degree theory for multi-valued
mappings of class L-(S).

Lemma 6.5.1. Let L be a Fredholm mapping of index zero type, Q2 C H
be an open bounded subset and 7 : @ — 27 be a mapping. If 0 ¢ (L —
T)(OQND(L)), then 0 ¢ [I — P — (JQ + Kpg)T](09).

Proof. Suppose the contrary. Then there exists xg € 02 such that 0 €
xzo — Pxo — (JQ + Kpg)Txo, and so there exist fo € T'xg such that

zo — Pzo — JQfo — Kpqfo = 0.
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Since
JQfo € Ker(L) = Im(P), 9 — Pxo € Ker(P), Kyofo € D(L)N Ker(P),
we must have
JQfo= 0,20 — Prog — Kpgfo = 0.
Therefore, we have
Qfo=0,20 — Pxrg — Kpfo =0, ie., Lxg— fo=0,
which is a contradiction to 0 ¢ (L —T)(0Q2ND(L)). This completes the proof.

Now, let L be a Fredholm mapping of index zero type, 2 C H be an open
bounded subset and T : Q — 2 be a mapping of class L-(S, ). Suppose that
0¢ (L—-T)0Qn D(L)). By Lemma 6.5.1, we have 0 ¢ [ — P — (JQ +
Kpg)T)(0R). As a result, deg(I — P — (JQ + Kpg)T,,0) is well defined.
We define

dng(L - T,Q,O) = deg(‘[ —-P- (JQ + KPQ)T,Q,O),

which is called the coincidence degree of L and T on 2.
Notice that the projections P, @ in Hilbert spaces are uniquely determined,
so degy (L —T,9,0) is well defined.

The following result follows directly from Theorem 6.2.4:

Theorem 6.5.2. The coincidence degree of L and T on (2 has the following
properties:

(1) If Q4 and Qs are disjoint open subsets of Q such that 0 ¢ (L—T)(D(L)N
Q\ (Ql U Qg), then

degy(L —T,Q,0) =deg;(L —T,Q) + deg; (L —T,2,0);

(2) If H(t,z) : [0,1] x Q — Y is a mapping of class L-(S;) on [0, 1] x Q and,
if 0 #£ Lz — H(t,z) for all (¢,x) € [0,1] x 09, then deg;(L— H(t,-),,0)
does not depend on t € [0,1];

(3) If degs (L — T,Q,0) # 0, then 0 € (L — T)(D(L) N Q);
(4) If L : D(L) C H — H is a linear mapping such that L=! : H — D(L)
is continuous, then deg;(L,Q,0) = 1if 0 € Q.

Theorem 6.5.3. Let L be a Fredholm mapping of index zero type with
Ker(L) = {0}, 0 € Q2 C H be an open bounded subset and T : Q — 2 be a
mapping of class L-(S;). Suppose that Lx ¢ tTx for all z € 022N D(L) and
t €10,1]. Then degs(L —T,2N D(T),0) = 1.
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Proof. Since Ker(L) = {0}, wetake P =Q =0and J = I. Now, [—-L™'T
is mapping of class (S4) and {I — tL*IT]}tE[O,l] is a homotopy of mappings
of class (94 ). From our assumption, one can easily see that 0 ¢ (z —tL~1Tx)
for all z € 99, ¢ € [0,1]. From Theorem 6.2.4, we have

deg(I — L™'T,9Q,0) = deg(1,9Q,0) = 1,
ie., deg;(L—T,2N D(T),0) = 1. This completes the proof.

Corollary 6.5.4. Let L be a Fredholm mapping of index zero type with
Ker(L) = {0} and T : H — 2 be a mapping of class L-(Sy). Then one of
the following conditions hold:

(1) Lz € Tz has a solution in D(T);

(2) {x: Lz € ATz for some X € (0,1)} is unbounded.

Theorem 6.5.5. Let L be a Fredholm mapping of index zero type, 2 C H
an open bounded subset and T; : Q — 2¥ be a mapping of class L-(S,) for
i = 1,2. Suppose that Tyx = Tox for all z € 0Q N D(L). Then we have the

following:
dng(L - T1, Q, 0) = dng(L - Tg, Q, 0)

Proof. Since Tix = Thx for all x € 9, we have
0¢ (I -P—(JQ+ Kpo(tTy + (1 —t)T2)))z for all z € 0.
Moreover, J is linear, so

I—-P— (JQ+KPQ)(tT1 + (1 —t)T5)
= I*P*i(JQJrKPQ)Tl — (1 7t)(JQ+KpQ)T2

is a homotopy of mappings of class (S, ). Therefore, it follows from Theorem
6.2.4 that

deg(I — P — (JQ + Kpg)T1,9Q,0) =deg(I — P — (JQ + Kpq)T>,,0)

and so
degs(L —T1,9,0) = deg; (L — T»,9,0).

This completes the proof.

Suppose that L is a Fredholm mapping of index zero type,  C H be an
open bounded subset, QND(L)ND(T) # ( and T : D(T) — 2 is a L-maximal
monotone mapping. Also, suppose that 0 ¢ (L—T)(0QND(L)ND(T)). Then,
by Lemma 6.5.1, we have

0¢[I—P—(JQ+ Kpo)T)(0Q N D(T)).
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Since I — P — (JQ + Kpg)T is maximal monotone, the degree deg(I — P —
(JQ+ Kpg)T,,0) is well defined, and we may define a degree

dng(L - T,Q,O) = d@g([ —-P- (JQ + KPQ)T,an)a

and one may deduce results similar to Theorem 6.5.3.

Lemma 6.5.6. Let T : D(T) C H — 2% be a bounded multi-valued
mapping and 0 ¢ (L — T)(02 N D(L) N D(T)). Then there exists ey > 0 such
that

0¢[I—P—(JQ+ Kpg)T + eI](02N D(T)) for all € € (0, ).

Proof. Assume that the conclusion is false. Then there exist ¢, — 0 and
xn € 002N D(T) such that

0e(I—-P—-(JQ+ Kpg)T +€,)xp.

Thus there exist f, € Tz, such that 0 = z,, — Pz, — (JQ + KpQ)fn + entn.
Therefore, we have

(1 +e)I = P)xn + (€n Py + JQfn) + Kpgfan = 0.
Consequently, it follows that
Jan:*EnPCL'n, (1+€n)(I7P)l'n+KPan:0

and so we have (1+¢€,)Lx, — f, — €, J 1Pz, = 0. By the boundedness of T
we get Lx,, — f,, — 0, which is a contradiction. This completes the proof.

Now, we assume that T : @ — H is a bounded mapping and T is L-
pseudomonotone. Suppose that 0 ¢ (L —T)(0Q2N D(L)). Then by Lemma
6.5.6, there exists ¢y > 0 such that

0¢[I—P—(JQ+ Kpg)T +€I](002) forall € € [0,¢p).

Since I — P — (JQ+ Kpg)T is pseudomonotone, I — P — (JQ+ Kpq)T +€l is
a mapping of class (S ) and the degree deg(l — P — (JQ+ Kpg)T +€I,9,0)
is well defined for all € € (0,¢). We define

deg;(L —T,Q,0) = lirél+ deg(I — P — (JQ+ Kpq)T + €I,9,0),

which is easily seen to be well defined if we note that {I —P—(JQ+ Kpg)T +
[ter + (1 —t)ea]I }4eqo,1) is a homotopy of mappings of class (Sy).

Theorem 6.5.7. The coincidence degree of L and the pseudomonotone
mapping 71" on €2 has the following properties:
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(1) If 1 and 5 are open subsets of Q such that

QN =0, 0¢(L—T)(D(L)NON (2 U0),
then we have

dng(L - T7Qa0) = dng(L - T791) + dng(L - Ta Q?ao)a

(2) IfT;: Q — H,i=1,2, are bounded mapping such that t77 + (1 — ¢)T3
is L-pseudomonotone on [0,1] x Q and

0¢ Utelo,1] [L—tT) + (1 —t)T3](0Q2 N D(L)),
then we have

dng(L — Tl, 970) = dng(L — TQ, 970);

(3) If degy(L —T,9,0) # 0, then 0 € (L —T)(D(L) N Q).

6.6 Computation of Topological Degree

In this section, we compute the topological degree of some monotone-type
mappings under certain boundary conditions.

Theorem 6.6.1. Let T : Q@ C E — 27 be a mapping of class (S;). If
0€Qand (f,z) >0 for all z € 9Q and f € Tx, then deg(T,$2,0) = 1.

Proof. Consider the family {¢t7T'+ (1 —t)J : ¢t € [0,1]} of mappings. By our
assumptions, we know that 0 ¢ (t7 + (1 —¢)J)(99) for all t € [0, 1], and so a
direct proof shows that {tT+ (1 —¢).J : ¢t € [0,1]} is a homotopy of mappings
of class (S1). By Theorem 6.2.4, we have

deg(T,Q,0) =d(J,Q,0) = 1.
This completes the proof.

Theorem 6.6.2. Let T: Q C E — 2P be a mapping of class (Sy) and
M : D(M) C E — 2F" be a maximal monotone mapping. If zo € Q N D(M)
and

(f;x = x0) > —|[flllz — ol
for all x € 00N D(M) and f € (M + T')x, then deg(M + T,,0) = 1.

Proof. It is easy to see that

0 (M +(1—-O)T+ (1 —t)J(-—0))(02N D(M)) for all ¢t € [0,1].
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Now, we prove that there exists A\g > 0 such that
0 (tMx+(1—-t)T+ (1 —t)J(- —20))(09) for all ¢ € [0, 1].

In fact, if this is not true, then there exist t; — to, z; € 0, ; — yo, f; € Tx;
and \; — 07 such that

OthM)\jin—f'(l—tj)fj—f—(l—tj)J(l‘j—l‘o). (661)
Multiplying (6.6.1) by z; — yo, we obtain
(i My;xj + (1 =15) f5 + (L= 15)J (2 = x0), 25 — yo) = 0. (6.6.2)

We consider the following two cases:
Case (i) tp = 0. Multiplying (6.6.1) by x; — zo, we obtain

(t; My, + (1 —t5) f; + (1 —t;)J (x5 — x0), 2 — x9) = 0.
By Lemma 6.1.29, we have ¢; M);xr¢o — 0 and so we obtain

limsup((1 —¢;)f; + (1 = t;)J(2; — x0),z; — 20) = 0.

j—oo

It follows that x; — x¢, which is a contradiction.
Case (ii) t9 # 0. Since T and J (- —xo) are mappings of class (Sy), it follows
that
lim inf((1 —2;) f5 + (1 = 15)J (2 = x0), 25 = yo) = 0.

J—00

By (6.6.2), we have

limsup(t; M, xj, 2 —yo) < 0. (6.6.3)

Jj—00

Without loss of generality, we may assume that My;z; — mg. By (6.6.3), we
have
lim sup(My; x5, 25 < (mo, yo)- (6.6.4)
Jj—oo
The monotonicity of M implies that
(My,x; —m,x; — \jJJ "My,z; —x) >0 (6.6.5)
for all x € D(M) and m € Mz. By letting j — oo in (6.6.5), we get

limsup(My; x5, 2;) > (m,yo — ) + (Mo, ) (6.6.6)

Jj—oo
for all x € D(M) and m € Mz. Thus, from (6.6.4) and (6.6.6), it follows that

(mg —m,yo—2x) >0 forallz € D(M), m € Mz,
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which implies that yo € D(M). Therefore, (6.6.3) becomes the following:

Lim (2;M;25,25 = yo) =0

J

and hence we have

lim ((1—¢;)f; + (1 —t;)J(x; — 20),xj — yo) = 0.

j—o0
Therefore, 2; — yo, and (6.6.1) implies that
0€ (toM+ (1 —ty)T+ (1 —to)J(- —x0)) (02N D(M),
which is a contradiction. By Theorem 6.2.4, we conclude that
deg(My +T,Q,0) = deg(J(- — 20),Q,0) =1 for all A € (0, \o).
By the definition of deg(T + M,,0), we finally obtain
deg(T + M,$,0) = 1.
This completes the proof.

Theorem 6.6.3. Let f: D(f) C E — RU {+00,—00} be a proper lower
semicontinuous convex function. If liminf) ;o f(z) = 400, then

Jin_deg(0£. B(0,R) N D). 0) = 1.

where B(0, R) is the open ball with radius R in E.

Proof. Since f is a lower semicontinuous convex function, df is maximal
monotone. By our assumptions, we know that there exists g € D(9f) such
that 0 € 9f(xo). Hence we have

(9, —xg) >0 for any g € 0f (x), x € D(Of).

If we take R sufficiently large such that 0 ¢ (D(9f) N B(0,R)), then, in
addition, we have

(g+eJ(x —xp),z—x0) >0 for all x € D(3f) N B(0, R), g € f.
By Theorem 6.5.2, we conclude that
deg(df + eJ(- — zp), B(0, R) N D(8f),0) = 1.
By the definition of deg(df, B(0, R) N D(9f),0), we get
deg(df, B(0, R) N D(Af),0) = 1.

This completes the proof.
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Theorem 6.6.4. Let H be real Hilbert space, 0 € 2 C H be an open
bounded subset and T : Q — 2 be a pseudocompact mapping. Suppose that

Ax ¢ Tx forall z € 00, A > 1.

Then T has a fixed point in Q.

Proof. We may assume that = ¢ Tz for all x € 92 and A > 1. Put
H(t,x) = t(I — T)z + (1 — t)z for (t,z) € [0,1] x Q. Then H(t,-) is a
homotopy mapping of a class (S;). Moreover, we have 0 ¢ H(t,z) for all
(t,z) € [0,1] x Q. Therefore, we have

deg(I —T,9Q,0) = deg(I,Q,0) = 1.
Hence T has a fixed point in Q. This completes the proof.

Theorem 6.6.5. Let H be real Hilbert space, 0 € Q C H be an open
bounded subset and T : Q — 2¥ be a pseudo-contractive mapping. Suppose
that

Ax ¢ Tx forallz € 00, A > 1.

Then T has a fixed point in Q.

Proof. We may assume that © ¢ Tx for all x € 0Q and A > 1. Put
H(t,x) =t(I-T)z+ (1—t)x for all (¢,z) € [0,1] x Q. Then we can obtain the
conclusion by using the same argument as in Theorem 6.6.4. This completes
the proof.

6.7 Applications to PDEs and Evolution Equations

In this section, we give some applications of our degree theory in the previ-
ous sections to periodic nonlinear evolution equations and existence problems
of partial differential equations.

In the following, let E be a separable reflexive Banach space which is densely
embedded in a real Hilbert space H and E* be the dual space of E. Let || - ||
and || - ||« be the norms in E and E*, respectively. We always assume that
both F and E* are locally uniformly convex. The following function spaces
will be used in the sequel:

P0.1E) = {£0): 0.7~ B | C(s)1rds < )

with the norm || f(-)|l, = fo IIf(s) ||pds)% and L7(0,T; E*) is the dual space
of L?(0,T; E) with the norm ||g(:)|/+,q = fo llg(s)]|2ds) q where L + = =1.
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For all u(-) € LP(0,T; E) and v(-) € L(0,T; E*), let

T
(u,v) = / (u(s), v(5))ds
and denote
WP (0,T; E) = {u(-) € LP(0,T; E) : '(-) € LY(0,T; E*), u(0) = u(T)}

with the norm [Ju|l, = |Jullp + ||@/]+,q, where v’ is the generalized derivative
of wand | - ||y, || - |l+,4 are norms of the spaces L”(0,T; E) and L?(0,T; E*),
respectively. Let W* be the dual space of W1P(0,T; E).

Theorem 6.7.1. Let A(t) : E — 2F" be an operator of class (S ) for all
t € R. Suppose the following conditions are satisfied:

(1) For all u(t) € WHP(0,T; E), A(t)u(t) is E*-measurable on [0, 77;
(2) There exist a constant C' > 0 and C4(-) € L(0,T') such that
£l < Cllz|P~ + Ca ()
for all z € E and f(t) € A(t)x for almost everywhere t € [0, T7;
(3) There exist a constant a > 0 and a function v(-) € L(0,T) such that
(fs2) = allz]|” —~(t)
for all z € E and f(¢) € A(t)z for almost everywhere ¢ € [0, T].

Then we have the following;:

{x’(t) € —A(t)x(t), ae.te(0,T), (E 6.7.1)

has a solution z(t) € WP(0,T; E).
First, we define a multi-valued operator A : W'P(0,T; E) — W* by
Au(-) ={f(-) e W*: f(t) € A(t)u(t)} for a.e.t € [0,T]}.

By the condition (1) and Theorem 2.3.9, A is well defined.

Next, for each n > 1, we define a multi-valued operator S,, : WP(0,T; E) —
W* as follows:
For all w € WP(0,T; E) and g € S,u, there exists f € Au such that

(g,v) = (W' (-),v()) + (f,v(")) + %(Ju,v) for all v € W'P(0,T; E), (6.7.1)

where J : WLP(0,T; E) — W* is the duality mapping.
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Lemma 6.7.2. S, defined by (6.7.1) is an operator of class (S;) for each
positive integer n.

Proof. The bounded closed convexity of S,,u is obvious. To prove the finite
dimensional weak upper semicontinuity of S,,, we show that S, is actually
upper semicontinous from the strong topology in W1P(0,T; E) to the weak
topology in W*. Note that the condition (2) implies that S, is bounded and
so it is relatively weakly compact in W*. Hence, we only need to show that
S, is weakly closed (see [12]). Let u, — ug in WP(0,T; E), g, € Su,, and
Gn — go in W,

Now, we prove that gy € S, ug. In fact, there exists f,, € Au, such that

1
fn = g0 —uy — —Jug
n

and there exists a subsequence (uy,) such that wu,, (t) — ug(t) for almost
everywhere t € [0, T]. Therefore, it follows from the condition (2) that

nllinoo(fnk (t)7 Uny, (t) - U’O(t)) =0
for almost everywhere ¢ € [0,7] and A(t) is a mapping of class (S;) and so
(fn, (%)) has a subsequence converging weakly to fo(t) € A(t)ug(t) for almost
everywhere t € [0, T]. Hence we have g9 € S, uo.
Let u; € Wh(0,T; E) with u; — ug in WHP(0,T; E) and g; € Spu; such
that
lim; o (g5, u; — uo) < 0.

Then, by (6.7.1), there exist f; € Au; such that

T
. 1
limj_,oo / [(fj, Uj; — UO) + E(Ju]', Uj; — UO)j| dt < 0. (672)
0

Now, using the fact that A(t) is a mapping of class (S ), the conditions (2)
and (3), we have

B, o (5(8),u5(£) — u(£)) > 0 (6.7.3)

for almost everywhere ¢ € [0,T] and thus u; — wug in WP, There is a
subsequence (uj, ) such that u;, (t) — uo(t) for almost everywhere ¢ € [0,77].
Thus, condition (2) implies that

lim (fjk (t), Ujy, (t) - U()(t)) =0

J—o0

for almost everywhere t € [0, 7] and A(¢) is a mapping of class (S;) and so
(fj.) has a subsequence (f;,,) such that f; ,(t) = fo(t) € A(t)uo(t). Hence,
(g94,,) converges weakly to go € S,ug, where go satisfies

1
(gO,'U) = (UE)’IU) + (anU) + ﬁ(‘]u()?v) for all v € Wl’p(O’T;E)'
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This completes the proof.
Proof of Theorem 6.7.1. First, by the condition (3), we have

T T 1 /7
gy za [ ulrde~ [ aar+ [ lalp e+
0 0 nJo
for all g € S,,u and so there exists rj > 0 such that
(g,u) >0 forallue WhP(0,T; E), ||ullw =7y, g € Shu.

It is easy to prove that tS,, 4 (1 —t).J is a homotopy of operators of class (Sy)
for all ¢t € [0,1]. By Theorem 6.2.4, we get

deg(S,, B(0,7(),0) = deg(J, B(0,r3),0) = 1,

where B(0,r{) is the open ball with radius r% in W1?(0,T; E). Therefore,
0 € S,u has a solution u,, € B(0,r), i.e., there exists f,(t) € A(t)un(t) for
almost everywhere ¢ € [0, 7] such that

(u,v) + (f,v)dt + i(Jun,v) =0 forallve W"P(0,T;E). (6.7.4)
n

Put v = u, in (6.7.4). Then, by the condition (3), we know that there exists
N > 0 such that

1
lunll, < N, %Hu'nﬂ*q <N foralln>1.
By the condition (2), u}, is bounded in L9(0,T; E*).
Now, we may assume that u, — ug in W1P(0,T; E). Again, by the condi-
tion (2), we know that (f,,) is bounded in L(0,T'; E*), and so we may assume
that f, — fo in L9(0,T; E*). Let v = u,, — ug. It follows from (6.7.4) that

T

lim (fn(8),un(s) — ug(s))ds = 0.

n—oo 0
Since A(t) is a mapping of class (S ), it is easy to show that (f,,(s), un(s) —
uo(s)) — 0 in measure and hence there exists a subsequence ((fn, , Un, — to))
such that (fy, (), Un,(s) —uo(s)) — 0 for almost everywhere s € [0,T]. Thus
Un, () — up(s) for almost everywhere s € [0,7] and f,, converges weakly to
fo(s) € A(s)u(s). By letting ny, — oo in (6.7.4), we get

ug(s) € A(s)u(s) for almost everywhere s € (0, 7).
It is obvious that ug(0) = ug(T'). This completes the proof.

Example 6.7.3. Let Q C RY be a bounded domain with a smooth bound-
ary 0. Let a;(x,u,&) : Q x R x RN — R be continuous with respect to u, £
and measurable with respect to x for 1 <i < N. Suppose that
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(1) |a;(x,u, &) < L(|u|™ + ||€[™1) + M(z) for 1 < i < n, where L > 0,
my < 52—, 2 < m < N are constants and M(z) € L#=1(9);

(2) p is continuous on R and
0<plu) < u(ll/ p(s)ds|| + 1) for all u € R,
0

where ¢ > 0 and 0 < r < = are constants;
@)E&ﬂ%ﬂuf%%M%wnM&—m)ZMK—MW;
(4) f(z,z): Q x R — R satisfy the following conditions:
(4a) There exists Qo C Q with mes(29) = 0 such that
Dy = U {z € R: f(z,.) is discontinuous at z}
$€90

has measure zero;
(4b) x — f(z, z) is measurable for all z & Dy;
(4c) There exist k > 0 and ! > 0 such that

|f(z,2)] < klz|™ ' +1 forall z € D}, a.e.x € Q.
We consider the boundary value problem with discontinuous nonlinearity:

{Efv 19z; [pZ(u) ox; + a"(w u, Bm )] + f(I u) - 0 a.e.r € & (E 672)

() =0, x € O90.

Choose Q1 C € such that mesQ; = 0 and (4c) holds for all z € Q;. By
(4a), there exists a countable subset D C D¢ satisfying D = R. For all
(z,z) € Q x R, we define

R, otherwise.

It is known that F'(z, z) is nonempty closed convex and compact for all €
(see [58]). Moreover, F(x,z) is measurable in « and z — F(z,z) is upper
semicontinuous for almost all x € Q.

Next, we define a mapping ¥ : Wy (Q) — 25 by

U(u) ={ve LYN) :v(z) € F(z,u(x)), a.ex € Q}

for all u € W)™ (Q), where L4 % = 1. By Chen, Cho, and Yang [58], we
know that ¥(u) is well defined and closed convex and the following properties
hold:
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(i) un — u € WyP(Q) and v, € ¥'(u,), v, — v in LI(Q) imply that
v e U(t,u);

(i) ¥ maps bounded subsets of W, () to weakly relatively compact sub-
sets of LI(9).

Finally, we define a mapping A : W™ () — W1 by

(Au,v):/ﬁ{zy:l [p2(u)gxl tafzu gx)}agi;}dx

for all u € D(A) and v € W™ (Q), where

D(A) = {u e W (@) : p2w) 2 € L }

Since F(z,2) = {f(x,2)} for all z € Qf, 2 € D%, the equation (£ 6.7.2) is
equivalent to the following equation:

0 € Au+ Bu,u € Wy ™(Q).

Theorem 6.7.4. A+ ¥ is a mapping of class (S1)o,1, where L = C§°(2).

Proof. Let (F})52; be a sequence of finite dimensional subspace of Wy ™ (Q)
such that L C U Fy. Let (u;) C L satisfy

limsup(g;,u;) <0, hm (gj, v) =0 forallveUjZ,Fj,

]*)OO

where g; € Au; + Vu;. Let g; = Au; + f;, where f; € Wu;. We have
k / 100 = ) g,
ou; ov,, Ouj Ov
< Z/[(wu B — aufa, g, SN~ SN
= (gj,u; —v) — (fj,uj —v)
ov,, Ou; Ov
_ 3 Uy 2
Z/ +G,Z(IIT uJ’ax)}( am 8x)d

Put v(z) = 0. Then, by (1) and (4c), there exists a constant M > 0 such that

(6.7.5)

limsup/ pz(uj)|%|2dx < M. (6.7.6)
Q ox

Jj—00

y (6.7.6), we may also assume that

lim p2(uj)\—|2 =M, (6.7.7)

j—oo Q
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by taking a subsequence, where M is a constant. Set
o) = [ ple)ds, i) = (@),

Then u; € W 2(9). We may assume that (u;) converges strongly in LP(2),
p < %, to some 1. Otherwise, take a subsequence. From this, we obtain

that 1; converges in measure to g and p({m). Consequently, we have

to(z) = plug)(z). (6.7.8)
By the assumption (2) and the boundedness of (u;) in L7 (@), we get

(p(u;)) is bounded in L7 (). Since p(u;) converges in measure, we obtain
p(u;) = p(uo) in L*(Q).
Now, we can pass to the limit in (6.7.5) for all v € U2, F; to obtain

k/\ “1 |md

Oug 0
< =M — (fo,uo — ) + ZiLip (uO)aanv
_ (6.7.9)
—Z/ a;(x uo,@ 9(uo v)dx < —(fo,up —v)
ox ox;
v 0(ug — v)
_ Z/ —Q—al(x ug. )=,
where fj € \I/uo By taking limits in (6.7.9), we know that (6.7.9) is also true
for all v € Wy'%(Q) for ¢ = 2[1 — NZ2p]71, where r is the same as in the
assumption (2).
Now, consider the following functional on Wy'?(2) defined by
8’11,0 8¢
=N 2 : 7.1
o) =2, [ ) G o (6.7.10)

It follows from (6.7.9) that & is bounded on W, %(Q). Consequently, i can be

extended to a linear functional on W "(Q) and we denote this extension by
h. Notice that the Laplace operator A : W™ (Q) — (W™ (Q))*, m' = -+,

m

is a homeomorphism and there exists u’ € W, ’m,(Q) such that

ou' 9¢
8501 ox;

From (6.7.10) and (6 7.11), we get

h(¢) =xN, ——dz for all ¢ € W™ (Q). (6.7.11)

// _
val/ ol 8ac v(@) gj =0 forall ¢ € Wy ™(Q), (6.7.12)
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where v (x) = fouo(m) p?(s)ds. Thus u”(x) = u/(x) and, consequently, we have

pZ(uo)“gf) - “;f) e L™ (9). (6.7.13)

Therefore ug € D(A). Notice that (6.6.9) is also true for all v € Wy (). Put
v(z) = ug(z) + tw(x) for all t > 0 and w € W, ™ (Q) in (6.7.9). Then divide

the resulting inequality by ¢ and pass to the limit. We obtain 0 € Aug + Puy.
Finally, we prove that u; — ug € Wy "™ (€2). We may assume that

ui(@),
a;(x,uj(z), 83:) bi(z) in L™ ().

Take uj € U2, Fy such that u}; — ug in Wy ™ (Q). By using the assumption
(3), we have

/ | ———= |md£E

=(9j7ug‘)—/ﬂ ?(uy) |7| dz — (fj,u5) (6.7.14)
u;  Ouj
_ VN J
lel/ﬂal(x uj,—(9 )8x dx

oul; O(uj —ul)
72i]\;1/ﬂai(xvujvaixj)#d‘r

By letting j — oo in (6.7.14), we get

/ B |md$ (6.7.15)
Lt

Now, using the fact lim; o (Au; + f;,v) = 0 for all v € U2, F;, we obtain

(fo,0) + =N, /Q [pQ(uo)ang(_x) + hi(2)] ax_)da; =0 (6.7.16)

for all v € U2, F;. From (6.7.16) and (6.7.15), it follows that u; — ug €
Wy (Q). This completes the proof.

From Theorem 6.7.4, we know that, if for some open bounded subset U C
Wy (Q) and 0 ¢ Au+Tu for all u € JUND(A), then deg(A+¥, UND(A),0)
is well defined.
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Corollary 6.7.5. If deg(A+ ¥,U N D(A),0) # 0, then the problem (F
6.7.2) has a solution.

Remark. Some results on degree theory in this chapter can also be given
in locally convex space.

6.8

1.

Exercises

Let A: D(A) C E — 27 be a set-valued mapping of class (S, ) and
P : E — 2F" be a bounded pseudomonotone mapping. Show that P+ A
is a mapping of class (S4).

Let A: D(A) C E — 2F" be a multi-valued mapping of class (S.),
T : D(A) — 2E" be an upper semicontinuous operator with closed
convex values and T maps each bounded subset of D(A) into a relatively
compact subset of E*. Show that T + A is a multi-valued mapping of
class (S4).

Let A: D(A) C E — 2P be a multi-valued mapping of class (Sy) and
M : D(M) C E — 2F" be a maximal monotone operator. Show that
M) + A is a multi-valued mapping of class (Sy).

Let M : D(M) C E — 2F be a maximal monotone operator and
P: E — 27 be a bounded pseudomonotone mapping. Suppose that

| IT (g’THxO) =400 for some g € D(M) and all g € Pxz.
z||—o0 T
Show that (M + P)(D(M)) = E*.

Let ¢ : D(¢) C E — R = RU {+0c0} be a proper lower semicontinuous
convex function and

O¢(x) ={f € E: ¢(y) = ¢(x) + f(y — x) for all y € D(¢)}.
Show that J¢ is maximal monotone.

Let ¢ : D(¢) C E — R = RU{+c0} be a proper lower semicontinuous
convex function and

, 1
pA(z) = yé}}f@(ﬁ”x —ylI> + ().

Show that (0¢)x = d¢x and ¢y (z) — ¢(z).
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10.
11.

12.

13.

14.

15.

16.

Topological Degree Theory and Applications

Let ¢ : D(¢) C E — R = RU {+0c0} be a proper lower semicontinuous
convex function. Show that d¢ is surjective and (9¢)~! is bounded if
and only if lim;| o % = +00.

Let M : D(M) C E — 2P be a linear monotone operator. Show that
M is single valued if D(M)) = E, and M is maximal monotone if and
only if Graph(M) is closed and M* is monotone.

Let M : D(M) C E — 2F" be a maximal monotone mapping. Show
that M is surjective if and only if M ! is locally bounded.

Construct the degree theory for a bounded pseudomonotone mapping.

Construct the degree theory for a bounded generalized pseudomonotone
mapping.

Construct the degree theory for the sum of a bounded pseudomontone
mapping and a maximal monotone mapping.

Construct the degree theory for the sum of a bounded generalized pseudo-

monotone mapping and a maximal monotone mapping.

Construct the degree theory for the sum of a maximal monotone map-
ping and an upper semicontinuous compact mapping with closed convex
values.

Let H be a real Hilbert space and L : D(L) C H — H be a linear, one
to one maximal monotone mapping. Compute deg(L, D(L) N B(0,r),0)
for all » > 0.

Let H be a real Hilbert space, L : D(L) = H — H be a linear one-to-
one maximal monotone mapping and ¢ : D(¢) € H — R be a proper
lower semicontinuous convex function such that ¢(0) = 0 < ¢(x) for all
z € D(¢). Compute deg(L + 0¢, B(0,7),0) for all r > 0.
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Chapter 7

FIXED POINT INDEX THEORY

The study of non-negative solutions to the nonlinear equations, especially
the ordinary or partial differential equations and integral equations, is a very
important problem in nonlinear functional analysis. The non-negativity con-
dition can be described by a closed convex subset P in a Banach space which
satisfies \P C P for all A > 0 and PN—P = {0}. We are interested in solving
the equation Tr = y in P. The fixed point index theory has proved to be a
useful tool in studying such an equation.

It is our goal to introduce this theory in this chapter. Chapter 7 has six
main sections.

Some introductory material on cones (normal, minihedral, etc.) is presented
in Section 7.1.

In Section 7.2, we present a fixed point index for countably condensing
mappings based on Dugundji’s extension theorem and the Leray Schauder
degree. Various properties of this index are given in Theorem 7.2.2.

Section 7.3 presents a variety of fixed point theorems for mappings defined
in cones of Banach spaces (see, in particular, theorems 7.3.1, 7.3.3, 7.3.7, and
7.3.13).

The results in Section 7.3 are used in Section 7.4 to prove various fixed
point results for perturbations of condensing maps (see Theorem 7.4.1 and
7.4.3).

In Section 7.5, we present a fixed point index for continuous generalized
inward mappings.

Finally, some applications to integral and differential equations are given in
Section 7.6.

7.1 Cone in Normed Spaces

We begin this section by first introducing the concept of partial order.

Definition 7.1.1. Let X be a nonempty set. There is an equivalent relation
< such that

(1) If z < y,y < z for some z,y,z € X, then z < z;
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(2) z <z forall z € X;
(3) If z <y and y < z for some z,y € X, then z = y.

Then < is said to be a partial order on X and (X, <) is said to be a partially
ordered set.

Let (X, <) be a partially ordered set and M C X. For any xz,y € M, if
x <y ory <z holds, then we say M is a well-ordered set. If z* € X satisfies
y < a* (respectively, * < y) for all y € D, then x* is said to be an upper
bound (respectively, lower bound) of M. If zy € X satisfies 2y < y for some
y € X and y = xg, then zq is said to be a maximal element of X. Similarly,
if xg > y for some y € X and zg = y, then zq is said to be a minimal element
of X.

Theorem 7.1.2. (Zorn Lemma) If every well-ordered set in X has an
upper bound (lower bound), then X has a maximal element (minimal ele-
ment).

A cone is a very useful concept that can be used to generate a partial order
in a linear space. Usually, this method is easy to manipulate and has been
widely used in searching for positive solutions of nonlinear equations (see [8],
[176]). Now, we recall this concept as follows:

Definition 7.1.3. Let E be a linear vector space and P be a nonempty
convex subset of F. Then P is called a cone if

(1) Ax € P for all z € P and A > 0;
(2) Pn(—P)={0}.
If F is a linear space and P C FE is a cone, we define an order < on E as

follows:
x <y ifand only if y —x € P.

Note that < is a well-defined partial order on X.

Example 7.1.4. Let P C R™ be given by P = {(x1,z2, -+ ,z,) € R" :
2; >0,4i=1,2,--- ,n}. Then P is a cone.

Example 7.1.5. Let 2 be a nonempty Lebesgue measurable set in R™ and
0 < m(Q) < oo. Suppose that LP(Q) = {f(:) : @ — R is measurable and
Jo I f(@)[Pdx < oo}, where 0 < p < 1. Put

P={feL”Q): f(x) >0 for almost everywhere = € Q}.

Then P is a cone in LP(Q).

The following well-known order principle is due to Brezis and Browder [30]:
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Theorem 7.1.6. Let (X, <) be a partially ordered set and S(z) = {y €
X 1z < y}. Suppose that ¢ : X — R is a function satisfying the following

conditions:
(1) For x <y with z # y, ¥(z) < ¢(y);
(2) For 7 < @9 < -+ <, < -+, if {¢(x,)} bounded, then there exists

y € X such that z,, <w;
(3) ¥(S(x)) is bounded for all z € X.
Then, for all z € X, there exists z € S(z) such that z is maximal in X.

Proof. For each z € X, we prove that sup S(z) exists and it belongs to
S(x). To see this, let F' C S(z) be a well-ordered set. Set a = sup ¢y ¢(z).
Then there exists a sequence (y,) C F' such that ¢(y1) < ¢(y2) < -+ — a.
By the assumption (1), we must have y; < yo < y3 < ---. By assumption
(2), there exists y € X such that y, < y. Notice that < y,, so we have
x <y. Thus y € S(z) and ¢(y) > o, so y > z for all z € F. Therefore, y is
an upper bound of F' in S(z). By the Zorn Lemma, sup S(x) exists in S(x).
Assume that z € X such that sup S(z) < z. Then z € S(x), so we must have
z = sup S(z). Thus sup S(x) is a maximal element. This completes the proof.

Definition 7.1.7. Let X be a normed space, P C X be a cone and < be
the partial ordering defined by P. Then

(1) P is said to be normal if inf{z +y|| : z,y € P, ||z| = |ly|]| = 1} > 0;

(2) P is said to be quasinormal if there exist y € P with y # 0 and o(y) > 0
such that ||z +y|| > o(y)||lz| for any x € P.

We set o(y) = inf{M cx € P, x # 0} for y € P with y # 0 and define

[
o =sup{o(y) : y € P, y # 0}, which is called the quasinormality of P. Then
we have £ < o <1 (see [180], [246]).

Let P C E be a cone and D C E be a nonempty set. If y,z € E satisfies
the following:

(i) « <y for all x € D;
(ii) x < zforall z € D and so y < z;

then y is said to be an supremum of D and we denote it by sup D.
Similarly, if (i) > y for all z € D, (ii) « > z for all x € D and so y > z,
then y is said to an infimum of D and we denote it by inf D.

Definition 7.1.8. Let X be a normed space, P C X be a cone and < be
the partial ordering defined by P. Then

(1) P is said to be reproducing if P — P = X and total if P — P = X
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(2) P is said to be regular if every increasing sequence which is bounded
from above is already convergent, and is fully regular if every bounded
increasing sequence is convergent;

(3) P is said to be lastering if there exist a cone P; and a constant o > 0
such that B(x,al|z||) C P, for all z € P\ {0};

(4) P is said to be minihedral if sup{z, y} exists for all 2,y € X and strongly
minihedral if every set which is bounded from above has a supremum.

Definition 7.1.9. Let X be a normed space, P C X be a cone and < be
the partial ordering defined by P. Then

(1) The norm || - || is said to be monotonic if 0 < z < y implies that
]l < llyll;
(2) The norm || - || is said to be semimonotonic if 0 < z < y implies that

lz|l < «fly|| for some « > 0.

Proposition 7.1.10. Let X be a Banach space and P C X be a cone.
Then we have

(1) P is quasinormal;
(2) P is normal if and only if || - || is semimonotonic;

(3) If P° # (), then P is reproducing.

Proof. (1) Suppose that P is not quasinormal. Then, for any y € P with
lly]| = 1, there exist x,, € P such that

lzn +yl| <n |z, forn=1,2---.

Therefore, if ||z, || is bounded, then z, +y — 0, i.e., z,, — —y € P, which is a
contradiction. If ||z, || is unbounded, then ||z, ||~ 2, — 0, which is impossible.
Therefore, P is quasinormal.

(2) If || - || is semimonotonic, then, for any =,y € P with ||z|| = |ly|| = 1,
we have ||z + y|| > a7 !|y|| = ™!, and so P is normal. On the other hand, if
P is normal and || - || is not semimonotonic, then there exist x,, and y, such
that 0 < x, <y, and ||z, || > n|lys| for n=1,2,---. Put

||—1 1

O = |20l T 0, wo = [Ynll T 0, 20 = 0T wn — o] T T ey, — vg).

Then we have z, € P and ||v, + 2z,|| — 0 as n — oo, i.e., P is not normal,
which is a contradiction.

(3) Take xg € PY and r > 0 such that B(xg,2r) C P. For any z € X with
x # 0, we have xg + r||z|| "'z € P. Moreover,

= |lellr (@0 + rllalT'2) - [lallrT w0 € P~ P,
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thus P is reproducing. This completes the proof.
By Proposition 7.1.10, if P is normal, then we set
o(P)=min{N : if 0 <z <y, then ||z| < N|yl},
which is called the normality of P.
The following result gives a relation between various cones:

Proposition 7.1.11. Let X be a Banach space and P C X be a cone.
Then we have the implications: P allows plastering = P is fully regular =
P is regular = P is normal.

Proof. (1) Assume that P; is a plastering cone of P. Take xy ¢ P;; then
there exists 7o > 0 such that B(zg,r9) N P, = . By Mazur’s separation
theorem for convex sets, there exist f € X* and 8 € R such that f(y) > g for
all y € Py and f(y) < S for all y € B(xg,ro). This and Az € Py for all A > 0
and z € P; imply that f(y) > 0 for all y € P;. But B(z,al|z|]) C P, for all
x € P, so we have f(z) > alz||| f]]-

Assume that 21 < 29 < -+ < @, -+ and (2,)22; is bounded. Then we
have

f@ngm = 2n) = o @nim — @[ f]-

Thus (z,)52 4 is a Cauchy sequence and, consequently, (z,,)52; is convergent.
(2) To show that P is fully regular implies that P is regular, we first show

that P is fully regular implies that P is normal. Assuming this is false, there

exist x,,,y, € PNOB(0,1) such that ||z, + yn|| < 5= forn=1,2,---. Put

2n
Zop = X500 (2 + i), Zont1 = Zon + Tong,

then (z,) is increasing and bounded, so (z,,) is convergent, which contradicts
|z2n+1 — 22n|| = 1.
Now, suppose that x1 <z <--- <z, <y. Theny—z, <y—x; forn > 1,
so we have ||y — z,|| < ally — 1] for some o > 0. Thus (z,,) is convergent.
(3) Assume that P is regular, but P is not normal. Then there exist z,,, y, €

PN dB(0,1) such that ||z, 4+ yn| < 5 for n =1,2,---. Then we have
Zn =S qx; < X2 (wi+y) €P

and (z,) is increasing, so (z,) is convergent, which contradicts ||z, — z,—1|| =
|z || = 1. Thus P is regular = P is normal. This completes the proof.

Proposition. 7.1.12. Let X be a normed space and P C E be a regular
cone. Then we have the following:

(1) If D C FE is a well-ordered set and has an upper bound, then sup D
exists.

(2) If D C E is a well-ordered set and has a lower bound, then inf D exists.

Copyright 2006 by Taylor & Francis Group, LLC



174 Topological Degree Theory and Applications

Proof. (2) follows from (1) by replacing D by —D.
Now, we prove (1). By Proposition 7.1.11, F is normal. Let 2y be an upper
bound of D. Define a function ¢ : D — [0, +00) as follows:

¢(x)=sup{\|z—y||x§y§z7 y,zED}.

Note that z—y < zg—=z and we have ¢(x) < o(P)||zo—=z||. Obviously, if z < y,
then ¢(z) > ¢(y). We claim that inf,cp ¢(x) = 0. If not, infrep ¢(x) =6 >
0, there exists x1 € D such that ¢(x1) > §, so there are 7 < y; < 21 such
that ||z1 — y1]| > d. Again, since ¢(z1) > J, there are z; < y3 < 25 such that
|[z2 — y2|| > . Repeat the above process, we get a sequence (y,,) in D such
that

Y1 <21 <y <23 < - <

with [|z; —y;|| > for i =1,2,-- -, so it does not converge, which contradicts
the fact that P is regular. Thus there exist (z,,)22; C D such that ¢(z,) — 0.
Since D is well ordered, put y, = max{z1,z2, - ,2p}. Theny; <yo < -+ <
2o and so ¢(y,) — 0. Since P is regular, there exists yo € E such that
Yn — Yo. It is easy to see that yo = sup{y; : ¢ =1,2,---}.

Next, we prove that yg = sup D. To see this, we only need to prove that yq
is an upper bound of D. For any x € D, we have two cases: (1) z < y,, for
some n and (2) y, < x.

In case (1), we have < yo.

In case (2), we have yg < x and 0 < z — yg < & — y,, and thus

2 = yoll < Nllyn — [l < Ne(yn) — 0 asn — oo.

Thus = = yo. Combine (1) and (2), then we have = < yg, so yo is an upper
bound of D. Thus yg = sup D. This completes the proof.

Proposition 7.1.13. Let P C E be a cone. If P is regular and minihedral,
then P is strongly minihedral.

Proof. Let D C E and D has an upper bound zg. Set
U = {z : z is an upper bound of D},

then zy € U. Consider any well-ordered set F' of U. Obviously, any element
in D is a lower bound for F'. By Proposition 7.1.12, we know that f = inf
exists and x < f for all x € D, and thus f € U. By the Zorn Lemma, U has
a minimal element x*.

Now, we prove that z* = sup D. To see this, we only need to prove x* <y
for all y € U. For any y € U, put z = inf{z*,y}. We have z < z*,z <y, but
z < z*,x <y. Thus we must have x < z and so z € U. Since z* is minimal,
we must have z = x* and hence z* < y, as desired. This completes the proof.

Example 7.1.14. Let E=1[>* and P = {(z;) € [*® :2; >0,i=1,2,--- }.
Then P is normal. For any set D with a upper bound, it is easy to see
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that supD = z = (21, 22, -+ ), where z; = sup,cp (i) and z(¢) is the i-th
coordinate of x for ¢ = 1,2---. Thus, P is strongly minihedral. For any
integer n > 1, let ™ € [*° be defined by

o
x”(i){l’ if i<n,

0, if i>n.

Then 2! < 22 <-.. < (1,1,1,---,1,--+). However, (z") does not converge
in [®°. Thus, P is not regular.

Proposition 7.1.15. Let E be a Banach space, P C E be a cone and
B ={z: ||z|| <1}. The the following conclusions are equivalent:

(1) P is reproducing;

(2) There exists 7 > 0 such that, for any © € E, there exist y,z € P with
lyll < rllzll, Izl < rllef] and 2 =y — 2

(3) There exists & > 0 such that «aB C BN P — BN P;

(4) There exists 8 > 0 such that BB C BC BNP - BNP.

Proof. It is obvious that (2) is equivalent to (3), (2) implies (1), and (3)
implies (4), so we only need to prove (1) implies (2) and (4) implies (3).
(1) = (2) Since P is reproducing, we have E = U2, E,,, where

E, ={x € E: there exists y € P such that z <y, ||y|]| < n|z|}

forn =1,2,---. By Baire’s Theorem, there exist an integer ng > 0, zg € E,
r > s > 0 such that

T={zxeFE:s<|z—uxo|| <r}C Ey,.

Let yo, 20 € P be such that —xg = yg — 29. Take an integer n; > 0 such that
lyoll < nillwo||. Set Ty = {z € E : s < ||z|| < r}. Take an integer ny such
that

1
Ny > ng + g(no + n1)||zo]|-

We prove that Ty C E,,. In fact, for any = € Ty, we have y + 29 + = € T,
so there exist z; € E,,, ¢ = 1,2,---, such that z; — y. We also assume
that z; € T. There exist y; € P such that z; < y; and ||y;|| < nol|z;| for
i=1,2,---. We also have x; — x¢g < y; + yo € P and

lyi — voll < nollzil| + nil|zoll < (no + na)llzoll + nollzi — 0|

[zl
S

< [(no +m1) +nolllzi — zol| < na2llzi — o]
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Therefore, x; —x9 € E,, fort =1,2,---. Obviously, x; —x9 — y— 29 = as
1— 00,8507 € E,,.

Finally, we prove that E = Es,,. For any « € E \ {0}, take z; € E,, such
that

1
lz =21l < 5llzl.

There exist y; € P such that 1 < y; and ||y1]] < nal||z1]]. Similarly, there
exist 9 € E,, and ya € P such that

1
lz =21 = 22| < Hllzll, 22 < y2, [ly2]l < mzfjze]|-

Repeating this process, we get two sequences (zx)32, C En,, (yr)i2, € P
such that

1
lz =21 =22 = —all < Gpllell, e < ye, lywll < nallw]
for k = 1,2,---. Obviously, x = X2, x; and |Jzx| < ng” for k =1,2,---.
Thus, X2, |ly;|| < 3ne|z||. Put y = X2, y;; then x < y and ||y|| < 3nalz|.
Thus, z € E3y,,. -

(4) = (3) Set C = BNP—BNP. Let 8 > 0 be such that 3B C C. We prove
that gB C C. Forany y € gB, there exists 2y, € C such that ||2y—2y || < g
Again, there exists 22y, € C such that |22y — 22y; — 22y, < % Repeat this
process, we get a sequence (y,)o2; C F such that 2"y, € C' and

B
[v= 32—l < gy form=1.2..

Thus, we have

1 1
Y= U;‘)ilyia Yn = Ty — Zn, Tp,2n € Pa ||-'If'nH < 277 ||Zn|| < 27
forn =1,2,---. Put z = ¥X2;, 2 = £°,2,. Then z,z € P, |Jz|| < 1,

Izl <1 and x € C. Thus, %B C C. This completes the proof.

7.2 Fixed Point Index Theory

In this section, let E' be a Banach space and P C E be a cone.

Lemma 7.2.1. [291] Let B C P be a bounded closed subset and T :
B — P a countably condensing mapping. Set C; = conv(TB), Cpy1 =
conv(T(Cp, N B)) forn >1and C =nN2,C,,. If M C E and M \ C,, is finite
forn=1,2,---, then M is relatively compact. In particular, C' is compact.
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Proof. Let F be the family of all subsets M such that M \ C,, is finite
for n = 1,2,--- and Fp be the family of all countable subsets M € F with
M CB.

Step 1 We prove that there exists B* € Fp such that a(K) < «a(B*)
for all K € Fp. In fact, since a(K) < a(B) for all K € Fp, we have
5 = SUpger, @(K) < 400, and let K,, € Fp such that a(K,) — s asn — ooc.
Put B* = U2, K,, then B* is countable and a(B*) = s > «a(K) for all
K e Fg.

Step 2 If M € F, and z,, € M for n =1,2,--- and no z,, appears infinitely
many times, then there exist A € Fp and y,, € conv(TA) such that ||z, —
Ynl| — 0 as n — oo. To see this, observe that M \ C} is finite and it contains
at most finitely many x,,, and so we may assume that z, € C; for all n > 1.
For any given integer n, let k, be the largest integer such that x,, € Cy, . If
no such integer exists, put k, = n. For any integer k, M \ Cy is finite, thus
{n:x, ¢ Ci} is finite. One can easily see that

IkZ{’I’le‘ngk}CIk_i_lU{l,Q,-" ,ki}

by virtue of Cy D C3 D -+ and thus Iy is finite for all k. We have

Ty € Cy, = conv(T(Ck, -1 N B)) for any n.

Hence there exists y,, € conv((T(Ck, -1 N B)) such that ||z, — yn|| <n~ ! In
particular, we can find some finite 4,, C Cj, -1 N B such that y,, € conv(TA4,,).

Now, if we put A = U2 A,, then A is the required subset. To see this,
we have to check that A € Fg. Since C; D Cy D ---, we have A,, C C; for
i < k, — 1, and thus we have

A \ Cn = U;.il(Ai \Cn) = Ui;n>ki—1(Ai \ C’n) - UiEInAiv

but the last set is finite, so we get the desired result.

Step 3 We prove that any K € Fp is finite. For any K € Fp, if K is finite,
we are done. So we assume that K is infinite. Replace K by K U B*, we get
a(K) = s. The countability of K implies that K = {x,, : n > 1}.

By Step 2, there exist A € Fp and y,, € conv(T A) such that ||z, —yn| — 0
as n — o0o. Obviously, K U A € Fp and thus a(AUK) = a(K) = s. Put

K, = {1'1,1'2, s Tns Ynt 1, yn+2}a Ky = {y17y27 ce }
We have a(Ky) = a(K) = s. On the other hand,
s = a(Kp) < alconv(TA)) < a(T(AUK)).

But T is countably compact, so we must have s = 0. Consequently, K is
relatively compact.
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Step 4 We prove that any F' € F is relatively compact. For any sequence
(zn) C F, if z,, appears infinitely many times for some n, we are done already.
Otherwise, by Step 2, we may take y, and A as in Step 2. By Step 3, A is
relatively compact, so conv(T(A) is relatively compact. Thus {y; : ¢ > 1} is
relatively compact and so F' is relatively compact. This completes the proof.

Construction of Index Theory. Let 2 C E be an open bounded subset
and QNP # (. Let T : QNP — P be a countably condensing and continuous
mapping. Put

Co = conv(T(QNP)), C, = conv(T(Cr_1NQ) forn>1,

then, by Lemma 7.2.1, C' =N3>, C), is compact and 1" : C — C' is a mapping.
Now, assume also that Tz # « for all x € QN P. Then we have the following
two cases:

Case (1) If C = @, we define ind(T,Q2N P) = 0.

Case (2) If C # () and r : E — C is a retraction, then r—1(2 N C) is open
in E. It is easy to see that Trz # z for all x € (QNr~1(N)) and a mapping
Tr:QNr=1(Q) — C, so the Leray Schauder degree deg(I —Tr,Q2Nr~1(),0)
is well defined. We define

ind(T, Q2N P) = deg(I — Tr,QNr~1(Q),0),

which is called the fixed point index of T

A slight modification of the argument in Section 2 of Chapter 3 guarantees
that deg(I —Tr,QNr~=1(£2),0) does not depend on r, so ind(T, 2N P) is well
defined.

Theorem 7.2.2. The fixed point index ind(T, 2N P) satisfying the follow-
ing properties:

(1) ind(zo, 2N P)=11if 2o € QN P;
(2) If ind(T, 2N P) # 0, then = Tz has a solution in €;

(3) If Q, c Qfori= 1,2, Q1 NQy = () and 0 ¢ (I—T)[(ﬁ\(Qlqu))ﬂP],
then
ind(T, Q2N P) =ind(T, N P) +ind(T, 2 N P);
(4) If H(t,z) : [0,1] x QN P — P is a continuous mapping satisfying
a(H([0,1]x B)) < a(B) for any countable subset B of QNP with a(B) #

0 and x # H(t,z) for all (¢t,z) € [0,1] x 99, then ind(H(t,-),Q2 N P)
does not depend on ¢ € [0, 1].

Proof. It is similar to the proof of Theorem 3.2.1.
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Note that, in the case that T : QN P — P is continuous and compact and
x # Tx for all z € 92 N P, one can define the fixed point index by

ind(T,QN P) = deg(I — Tr,r (2N P)NQ,0),
where r : F — P is a retraction. One can check easily this definition does not
depend on r and we have the following properties:

Theorem 7.2.3. The fixed point index ind(T, 2N P) satisfies the following
properties:

(1) ind(zo, QN P)=1if 2y € QN P;
(2) If ind(T, Q2N P) # 0, then = Tz has a solution in €;

B) IfQCcQfori=1,2, 0N =0and0¢ (I -T)[(Q\ (2 UQ))NP],
then
ind(T, Q2N P) =ind(T, % N P) +ind(T, 2 N P);

(4) If H(t,z) : [0,1] x QN P — P is a continuous compact such that = #
H(t,z) for all (¢t,x) € [0,1] x 9Q, then ind(H(t,-),Q2 N P) does not
depend on t € [0, 1].

7.3 Fixed Point Theorems in Cones

In this section, we derive some fixed point theorems by using fixed point
index theory.

Theorem 7.3.1. Let E be a Banach space, P be a cone in E, € be
an open bounded subset of E, 0 € ©Q; C Q be an open subset of €, and
T:Q\ QNP — P be a completely continuous mapping. Suppose that one
of the following conditions is satisfied:

(1) Te >z for all z € 90N P and Tx < x for all x € 90y N P;

(2) Te >z for all x € 90y NP and Tx < z for all z € 90N P.
Then T has a fixed point in Q\ Q; N P.

To prove Theorem 7.3.1, we first prove the following result:

Lemma 7.3.2. Suppose that C C P is a compact set such that 0 &€ C.
Then 0 € Conv(C).

Proof. Since 0 ¢ C and C is compact, there exists ¢y > 0 such that

d(O, C) 2 €0-
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We also have C C UgecBay(€p), so there exist finitely many x; for ¢ =
1,2,--- ,n such that
C C U B, (eo).

Therefore, it follows that
Conv(C) = Conv(U}_ By, (e0) N C).

If 0 € Conu(C), then there exists y; € By, () NC, o € (0,1) for ¢ =
1,2,---,n and X7 ;a; = 1 such that

0 =X, i,
which contradicts y; > 0 for i = 1,2, --- ,n. This completes the proof.

Proof of Theorem 7.3.1. We may assume that (1) holds (the proof is
similar when (2) holds). By our assumption, we have 0 ¢ T'(92 N P). In view
of Lemma 7.3.2, it follows that

0 ¢ Conv(TONN P)).

Hence, we can find a completely continuous mapping 77 : E — conv(T0Q N P))
such that Tyx = Tx for all x € 9Q N P.

Now, for any k > 1, we have tTz + (1 — t)kTix # z for all (¢,x) € [0,1] x
dQN P, and so by Theorem 7.2.3

ind(kTy, QN P) =ind(T,Q2NP) forall k> 1.

Therefore, ind(T,2 N P) must equal to 0 (otherwise, 2 is unbounded, which
is a contradiction). It is easy to see that ind(T,Q; N P) =1, and so we have

ind(T,Q\ Q1 NP)=1.
Therefore, T has a fixed point in Q \ €1 N P. This completes the proof.

By the same proof as in Theorem 7.3.1, we get the following more general
result:

Theorem 7.3.3. Let P be a cone in a Banach space E, 2 be an open
bounded subset of E, 21 C  be an open subset of 2 with 0 € ;, and
T:Q\ QNP — P be a completely continuous mapping. Suppose that one
of the following conditions is satisfied:

(1) Tx # Xx for all A > 1 and x € 90 N P;
(2) Tx # ax for all z € 9Q; N P and a < 1;

(3) inf{||Tz|| : z € 021 NP} > 0.
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Then T has a fixed point in Q\ Oy N P.
From Theorem 7.3.3, we have the following:

Corollary 7.3.4. Let P be a cone in a Banach space F, 2 be an open
bounded subset of E, 21 C Q be an open subset of Q with 0 € Q; and
T:Q\ QNP — P be a completely continuous mapping. Suppose that one
of the following conditions is satisfied:

(1) ITz|| < ||z|| for all x € QN P;
(2) [|Tx| > ||z|| for all x € 92 N P.
Then T has a fixed point in Q\ Q; N P.
Another variant form of Theorem 7.3.3 is as follows:

Theorem 7.3.5. Let P be a cone in a Banach space E, €2 be an open
bounded subset of E, 1 C Q be an open subset of Q with 0 € Q; and
T:Q\ QNP — P be a completely continuous mapping. Suppose that one
of the following conditions is satisfied:

(1) Tx # x for all x € 00 N P;

(2) Tx £ x for all x € 9 N P;

(3) inf{||Tz| : x € 9 NP} > 0.
Then T has a fixed point in m NnP.

Theorem 7.3.3 fails if we assume that T is a k-set contraction with k£ < 1.
This can be seen with the following example:

Example 7.3.6. Let a mapping T : [? — [2 be defined by

1
T(x1, 29, ) = g(O,xl,xg,-~~) for all (z1,x9,--+) € I%
Now, T is obviously 3-set contraction. Take P = {(z;) : ; > 0 for i =
1,2,---} and Q@ = B(0,2), & = B(0,1). Then T has no fixed point in
0\ QNP

In the following, we provide sufficient conditions such that the conclusion
of Theorem 7.3.3 still holds in the case of k-set contractions.

Theorem 7.3.7. Let X be a real Banach space,{} be an open bounded
subset of X with 0 € Q and P a quasinormal cone in X. If T: QNP — P
is a continuous countably condensing mapping and the following condition is

satisfied: T .
inf{M .z easmp} >,
B4l o
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where o is the quasinormality constant of P, then ind(T,Q2 N P) = 0.

Proof. For any € > 0, by the definition of the quasinormality constant of
P, there exists y. € P with y. # 0 such that

| + Ayel| > (0 —€)||z|| forall z € P.

By assumption, we may fix € > 0 such that

[T
mf{ T .zG@QﬂP}>

. 7.3.1
o—c¢ ( )
For any m > 0, we claim that x — Tz # tmy, for all z € Q2N P and ¢ € [0, 1].
If not, then there exist xg € 92 N P, ¢y € [0,1] such that xg = Txo + tomye,
and so we have

[zoll = 1 Tzo + tomye|| > (o — €)||Txol|.
Hence we get
ITzoll T
[zoll o —e

which contradicts (7.3.1). By the homotopy property (4) of Theorem 7.2.3,
we get
ind(T, Q2N P) =ind(T + moy., 2N P)

and thus, we must have
ind(T +my., QN P)=0

(since €2 is bounded and T'(E) is bounded for any countably bounded subset
E of QN P). Consequently, ind(T,Q2 N P) = 0. This completes the proof.

Corollary 7.3.8. Let X be a real Banach space, €2 be an open bounded
subset of X with 0 € Q and P be a quasinormal cone in X. If T: QNP — P
is a continuous countably k-set contraction and the following conditions are
satisfied:

(1) Tz # az for all z € QN P and a € [0,1];

(2) inf{”“Tw” cx € 00N P} > 1 where 1 < p < 1 and o is the quasi-

[E]l
normality constant of P;

then ind(T,Q2N P) = 0.

Proof. If we put Tyx = uTx for all z € QN P, then T} is countably
condensing and 77 satisfies all the conditions of Theorem 7.3.7. Thus, we
have

nd(Ty,QN P)=0.
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From the assumption (1) and the homotopy property (4) of Theorem 7.2.3,
we know that

ind(T, Q2N P) =ind(uT, Q2N P).
Therefore, we have ind(T,Q2 N P) = 0. This completes the proof.

Corollary 7.3.9. Let X be a real Banach space, {2 be an open bounded
subset of X with 0 € Q and P be a quasinormal cone in X. If T: QN P —
P is a continuous countably k-set contraction with k¥ < o, where o is the
quasinormality constant of P and the following conditions are satisfied:

(1) Tx # x for all x € QN P;
(2) || Tz|| > ||=| for all z € 92N P;
then ind(T,Q2N P) = 0.

Proof. We take ¢y > 0 such that k + ¢p < min{l,0} and put T3 = ﬁT.

Then 77 is a countably ﬁ—contraction, and we know, by the assumption
(2), that

inf{”leH :J?G@QHP}Z 3 1

> l forallz € 92N P.
] o

€0

We also have Tz # ax for all z € 90N P and a € [0,1]. Therefore, by
Theorem 7.3.7, we have ind(Ty, 2N P) = 0. This completes the proof.

Theorem 7.3.10. Let X be a real Banach space, €2 be an open bounded
subset of X with 0 € Q and P be a conein X. Let T : QNP — P be a
continuous countably condensing mapping. Suppose that there exists yo €
P\ {0} such that z — Tz # Ayp for all z € 92N P and A > 0. Then
nd(T,QNP)=0.

Proof. For any m > 0, by the homotopy property (4) of Theorem 7.2.3,
we have

ind(T, Q2N P) = ind(T + myo, 2N P)
and thus it follows that ind(T,Q N P) = 0.

Corollary 7.3.11. Let X be a real Banach space, 1, 25 be two open
bounded subsets of X and P beaconein X. If0 € Qy C Qy, T: QNP — P
is a continuous countably condensing mapping and the following conditions
are satisfied:

(1) Tz # « for all x € 90O N P;
(2) Tx £ « for all z € 90 N P;

then T has a fixed point in Q5 \ Q1 N P.
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Proof. We may assume that z # Tx for all x € 9Q; N P, i = 1,2. By the
assumption (1) and the homotopy property (4) of Theorem 7.2.2, we have

ind(T, QN P) = 1.

On the other hand, for any yo € P with yg # 0, we know, by the assumption
(2), that © # Tz + Ayo for all x € 903 N P and A > 0. Therefore, it follows
from Theorem 7.3.10 that ind(T, Q2 N P) =0 and so

ind(T,(Q2\ Q)N P) =—1.
Therefore, T has a fixed point in (5 \ Q1) N P. This completes the proof.

Corollary 7.3.12. Let X be a real Banach space, (11, {25 be two open
bounded subsets of X and P be a quasinormal cone in X. If 0 € Q; C Q,
T : QNP — P is a continuous countably k-set contraction with k < o,
where o is the quasinormality constant of P and the following conditions are
satisfied:

(1) |ITx| < ||z| for all x € 024 N P;
(2) |ITx|| > ||=| for all x € 0025 N P;
then T has a fixed point in Q5 \ Q4 N P.

Proof. We may assume that z # Tx for all x € 9Q; N P, i = 1,2. By the
assumption (1) and the homotopy property (4) of Theorem 7.2.2, we have

ind(T, Q1 N P) =1.

On the other hand, we have, by the assumption (2) and Corollary 7.3.9,
that ind(T, Qs N P) = 0 and so

ind(T,(Q2\ Q)N P) =—1.
Therefore, T has a fixed point in (5 \ Q1) N P. This completes the proof.

Theorem 7.3.13. Let X be a real Banach space, 2 be an open bounded
subset of X and P be a cone in X. If T : QNP — P is a continuous countably
condensing mapping, S : 92N P — P is a continuous compact mapping and
the following conditions are satisfied:

(1) inf{||Sz| : z € QN P} > 0;
(2) x #Tx+ ASz for all z € QN P and A > 0;
then ind(T, QN P) = 0.

Proof. By the assumption (1), we know that 0 ¢ S(9Q N P). and thus, it
follows from the well-known argument, (see Lemma 7.3.2) that

0 ¢ Conv(S(002N P)).
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By Dugundji’s extension theorem, there exists a continuous mapping S* :
QNP — Conv(S(0QN P)) such that S*x = Sz for all x € 902N P and so S*
is compact.
From assumption (2) and the homotopy property (4) of Theorem 7.2.2, we
have
ind(T,QNP) =ind(T +mS*,QNP) forallm>0

and thus ind(T,Q N P) = 0, for, otherwise, x = Tz + mS*x has a solution in
QN P for any m > 0, which is a contradiction (note that € is bounded and
inf__g~p [IS*2] = a > 0). This completes the proof.

Theorem 7.3.14. Let X be a real Banach space, 21, 25 be two open
bounded subsets of X such that 0 € 1 C 5 and P is a cone in X. If T :
Q,NP — P is a continuous countably condensing mapping, S : 9Q; NP — P
is a continuous compact mapping and the following conditions are satisfied:

(1) inf{||Sz| : z € 022 N P} > 0;

(2) Te#azforallz € 0 NP, a>1;
then one of the following conclusion holds:

(I) T has a fixed point in m N P;

(II) & =Tz + ASx has a solution in 9, N P for some A > 0.

Proof. Assume that (II) is not true. Then, by Theorem 7.3.13, we have
nd(T,Q2 N P) = 0. On the other hand, by the assumption (2), we have
ind(T, 3 N P) =1 and thus,

ind(T,(Q\ Q)N P)=—1.
Therefore, T' has a fixed point in (2 \ Q1) N P.
Theorem 7.3.15. Let X be a real Banach space, ;, i = 1,2, 3, be open

bounded subsets of X such that 0 € €, Q C Q1,4 =1,2, and Pis a
cone in X. If T: 23N P — P is a continuous countably condensing mapping

satisfying the following conditions:

(1) ITz| < ||z||, for all x € 94 N P;

(2) inf { ”ﬁ;ﬁ‘” tx € 0 N P} > %, where o is the quasinormality constant
of P;

(3) [|Tx| < ||z||, for all x € 9Q3 N P.

Then T has two positive fixed points in (Q3 \ Q1) N P.
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Proof. We first prove that T has a fixed point in (Q2 \ 1)) N P. We may
also assume that Tz # « for all x € 9Q; N P. By the assumption (1), we then
have z # tTx for all x € 9Q; N P and ¢ € [0,1]. Thus,

ind(T, NP)=1. (7.3.2)
By the assumption (2) and Theorem 7.3.7, we have
ind(T,Q2NP)=0. (7.3.3)

From (7.3.2) and (7.3.3), we deduce ind(T, (Q2 \ Q1) N P) = —1 and, conse-
quently, T has a fixed point in (22 \ Q1) N P. To see that T has a fixed point
in (Q3\ Q2)) N P, we may also assume that Tz # x for all x € 9Q3 N P. By
the assumption (3), we then have xz # tTx for all z € 9Q3 N P and ¢ € [0, 1].
Thus,

ind(T, Q3N P) =1. (7.3.4)

From (7.3.3) and (7.3.4), we deduce ind(T,(Qs \ Q) N P) = 1 and, conse-
quently, T has a fixed point in (23 \ Q2) N P. This completes the proof.

Finally, we give a different version of Theorem 7.3.15 as follows:

Theorem 7.3.16. Let X be a real Banach space, ;, i = 1,2, 3, be open

bounded subsets of X such that 0 € €y, ; C Qi41, @ = 1,2, and P is a
cone in X. If T: Q23N P — P is a continuous countably condensing mapping
satisfying the following conditions:

(1) Tz # « for all x € 9 N P;
(2) Tx £ x for all z € 90 N P;
(3) Tx # x for all x € 903 N P;

then T has two positive fixed points in (Q3 \ Q1) N P;

7.4 Perturbations of Condensing Mappings

In this section, let X be a real Banach space, P be a quasinormal cone in
X, T:D(T) C X — X be a completely continuous or condensing mapping
and A : D(A) C X — 2% be an accretive operator. We consider the existence
of solutions to the mapping equation z € — Az 4+ Tz and prove some existence
results by using the index theory in Section 7.2

Theorem 7.4.1. Let P be a cone in a Banach space E, A: D(A) C P — 2F
be an accretive operator with P = (I + A)(D(A4)), 0 € 2 be an open bounded
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subset of £ and K : QN P — P be a continuous compact mapping. Suppose
that
K<z forallze QNP

Then —A + K has a fixed point in QN D(A).

Proof. It is easy to see that * € —Azx+ Kz if and only if v = (I+ A) "1 Kx.
If x € —Ax + Kz for some x € 902N D(A), then the conclusion is true and so
we may assume that v ¢ —Ax 4+ Kz for all z € 9Q N D(A).

Put H(t,z) = (I + A)~'tKz for all (¢,z) € [0,1] x QN P. Then we have

r# (I+A)~"tKx forall (t,z) €[0,1] x 92N P.

Indeed, if z = (I + A)"'tKz for some (t,z) € [0,1] x Q2N P, then t # 1 and
tKz € x + Az. However, Az > 0 and hence we have tKx > x. Therefore, it
follows that t > 0 and Kz > t~'z > a, which is a contradiction. Hence we
have

ind(I +A)"'K, QN P) =deg(0,QN P) = 1.

Therefore, —A + K has a fixed point in QN D(A). This completes the proof.

Theorem 7.4.2. Let P be a cone in a Banach space E, A : D(A) C P — 2F
be an accretive operator with P = (I + A)(D(A)), 0 €  be an open bounded
subset of £ and K : QN P — P be a continuous compact mapping. Suppose
that

|Kz| < ||z|| forall z € QN P.

Then —A + K has a fixed point in QN D(A).

Proof. We may assume that x ¢ —Ax + Kz for all x € 0Q N D(A). Let
H(t,z) be defined as in Theorem 7.4.1. Then we have

x # H(t,z) forall (¢,2) €[0,1] x 9Q N P.
Indeed, if z = (I + A)~'tKz for some (t,x) € [0,1] x dQ N P, then we have
lzll < (1 + A)""tKz| < |[tKa]|

since (I + A)7'0 =0 and (I + A)~! is nonexpansive. Therefore ¢t = 1, which
contradicts our assumption. Thus, we have

ind(I +A)"'K,QN P) =ind(0,,QN P) =1
and so T has a fixed point. This completes the proof.

Theorem 7.4.3. Let X be a real Banach space, P be a quasinormal cone
in X, A: D(A) C P — 2F be an accretive mapping with P = (I+\A)P for all
A>0and Q;, i = 1,2, be two open bounded subsets of X with 0 € 0y C Q.
Let T : Q3N P — P be a continuous countably condensing mapping. Suppose
that the following conditions are satisfied:
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(1) |ITz| < ||z|| for all z € 024 N P;
(2) inf {% € dQNPve Ax} > %; where o is the quasinormality

constant of P.

Then —A + T has a fixed point in Q5 \ Q1 N P.

Proof. We may assume that « ¢ —Az+ Tz for all x € 9Q; NP fori=1,2.
Set
Uh=I+A)(UNP), Us=I+A)(Q2NP).

Since (I + A)~! is nonexpansive, it follows that Uj, U, are open subsets of
P and T(I + A)~! is countably condensing. It is easy to see that —A + T
has a fixed point in Qg \ Q1 N P if and only if T(I + A)~! has a fixed point
in Uy \ U; and the set of fixed points of T'(I + A)~! are bounded in Us \ Uy,
and so we may simply assume that U; and U, are bounded. It is obvious that
H(-,+):[0,1] x Q3 N P — P defined by

H(t,z) =tT(I + A)~ 'z forall (t,2) €[0,1] x QNP

is a homotopy of countably condensing mappings.

Now, we claim that @ # H(t, ) for all (¢,z) € [0,1] x OU;. In fact, if not,
then there exist ¢y € [0,1] and x¢ € OU; such that zg = toT(I + A) " txg. Put
20 = (I + A)~txg, then 2o € 901 N P. Take vy € Azg such that zg = 29 + v
and then we have

Iz0ll < ll20 + voll = llzoll = tol[T=0-

From the assumption (1), we must have ¢, = 1, which contradicts the fact
that —A + T has no fixed point on 9Q; N P. Thus we have

ind(T(I + A)~',Uy) = ind(0,U;) = 1

since 0 € A0 C U;. By the definition of quasinormality constant of P and
the assumption (2), we may take € > 0 and yo # 0 € P such that ||z + yo| >
(o —€)||z|| for all x € P and

T
inf{&:meaﬂﬂP,veAx} >
=] + [lv]]

(7.4.1)

o —¢€

Next, we claim that z # T'(I + A) "tz + \yo for all x € Uy and X > 0. If
not, then there exist zg € AU, and Ao > 0 such that zq = T'(I+A) 1z + Ayo.
Put 29 = (I + A)~lxg, and then zg € 90y N P. There exists vy € Azy such
that g = 29 4+ v, and so we have

1z0 + wvol| = [lzoll = IT20 + Aoll = (o — €)[|T 20,
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which contradicts (7.4.1). By the homotopy property (4) of Theorem 7.2.2,
we get

ind(T(I 4+ A)~"Uy) = ind(T(I + A" + Ayo) forall A >0
and so ind(T(I + A)~1,Us) = 0. Therefore, we have
ind(T(I+ AL U, \Tp) = —1

and so T'(I + A)~! has a fixed point in Uy \ Uy, i.e., —A+ T has a fixed point
in (Q2\ 1) N P. This completes the proof.

Remark. Nonexpansive mappings with dissipative perturbations in cones
have been studied by Chang et al. [53].

7.5 Index Theory for Nonself Mappings

In this section, first, let K C R"™ be a nonempty cone, 2 C R" be a
nonempty bounded subset with QN K # @ and f : QN K — R™ be a
continuous mapping. We recall the following definition from [177].

Definition 7.5.1. [182] A mapping f : QNK — R" is said to be generalized
inward if d(z, f(z)) # d(f(z),K) for all z € QN K with f(z) ¢ K, where
d(f(z), K) = infyex d(f(z),y).

Now, assume that f : QN K — R" is a continuous generalized inward
mapping. Let r : R — K be a metric projection, i.e., d(z,r(x)) = d(z, K)
for all x € R™. Such a mapping always exists and is unique. We know that
rf: QN K — K is continuous and rf(x) # z for all z € 92N K. Otherwise,
if rf(z) = x for some x € 9N N K, then d(z, f(x)) = d(rf(x), f(x)) =
d(f(z), K), which is a contradiction.

Now, we define
ind(f,QNK) =ind(rf,QNK), (7.5.1)

where ind(r f, QN K) is the fixed point index in Section 7.2, and this is called
the fixed point index for generalized inward mapping.

Theorem 7.5.1. The fixed point index for generalized inward mapping
has the following properties:

(1) ind(zo, QN K)=1if 20 € QN K;
(2) If ind(f,2N K) # 0, then f(z) = « has a solution in N K;

(3) If Qq, Qs are two open bounded disjoint subsets, then ind(f, (1 UQs)N
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(4) Let H(t,z) : [0,1] x QN K — R" be a continuous mapping satisfy-
ing H(t,xz) # x for all (t,z) € [0,1] x 9Q N K and d(f(z), H(t,z)) #
d(f(z),z) for all (t,z) € QN K with H(t,z) ¢ K. Then ind(H(t,-), 2N
K) does not depend on ¢ € [0,1].

Now, we assume that F is a real Banach space, {2 C E is open and bounded
and P C E is a cone with QNP # (. For all z € P, Ip(z) = {z + ANy — ) :
A > 1,y € P} is called the inward set of z relative to P.

Definition 7.5.2. Let T : QN P — E be a mapping.

(1) If d(Tx, P) # d(x,Tx) for all Tx ¢ P, then T is said to be a generalized
inward mapping.

(2) If Tz € Ip(x) for all z € QN P, then T is said to an inward mapping.

(3) If Tw € Ip(z) for each x € QN P, then T is said to a weakly inward
mapping.

It is obvious that an inward mapping is weakly inward.

Proposition 7.5.3. If T : QN P — E is weakly inward, then T is gener-
alized inward.

Proof. For all x € QN P with Tz ¢ P, we have d(Tx, Ip(z)) = 0. Thus,
there exists y € Ip(x) such that d(Tx,y) < d(xz,Tz). On the other hand,
there exists z € P such that z = ty + (1 — t)z for some ¢ € (0,1). Thus, we
have

d(Tz,P) < d(Tx,z) = d(Tz,ty + (1 — t)x)
<tdTz,y)+ (1 —t)d(x,Tx) = d(z,Tx).

Therefore, T is generalized inward on Q N P. This completes the proof.

In the following, we assume that there exists a continuous metric projection
r: E — P. Assume that Tz # z for all x € 9QN P and then we have rTx # x
for all z € 9Q N P. Otherwise, we have rTx = z for some x € 9Q N P.
Then d(z,Tz) = d(rTz,Tz) = d(Tz, P), which is a contradiction. Thus,
ind(rT, Q2N P) is well defined. Now, we define

ind(T, 2N P) =ind(rT,Q2N P). (7.5.2)

If r1,75 : E — P are two continuous metric projections, then {(¢tr; + (1 —
t)r2}ief0,1) is a family of continuous metric projections. One can easily see
that (tr1+(1—t)re)Ta # x for all z € OQNP, thus ind([tr1+(1—t)r2]T, QN P)
does not depend on t € [0,1] by Theorem 7.2.3. Therefore, ind(rT,Q N P)
does not depend on r, and so ind(T,Q2 N P) is well defined.

Theorem 7.5.4. The fixed point index defined by (7.5.2) has the following
properties:
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(1) ind(zo, 2N P)=11if 2o € QN P;
(2) If ind(T, 2N K) # 0, then T = x has a solution in QN K;

(3) If Q1,89 are two open bounded disjoint subsets, then ind(T, (21 UQ2)N
P) = ind(T, Q2 N P) + ind(T, Q2 N P);

(4) Let H(t,z) : [0,1] x QN P — E be a continuous compact mapping
satisfying H(t,x) # « for all (¢,z) € [0,1] x 9QN P and d(z, H(t,z)) #
d(H(t,z), P) for all (t,z) € QNP with H(t,z) ¢ P. Then ind(H(t,-), QN
P) does not depend on ¢ € [0,1].

Remark. For more details about the results in this section, we refer the
reader to [182].

7.6 Applications to Integral and Differential
Equations

In this section, we give some applications to the integral and differential
equations by using the results of the previous sections.

Example 7.6.1. Let K(t,s) : [a,b] X [a,b] — [0,400) be a continous
function and f(¢,z) : [a,b) x R — [0, +00) be a continuous function. Suppose
the following conditions are satisfied:

(1) For each t € [a,b], f(t, ) is increasing in x;

(2) f; f(s,c)ds < cM~t, where M = max{K(t,s) : (t,s) € [a,b] x [a,b]}
and ¢ > 0 is a constant;

(3) f(t,s) > as” for all s € [0,¢p), where ¢ > 0, > 0 and 0 < v < 1 are
constants;

(4) K(t,s) #0 for all (t,s) € [a,b] x [a,b].
Then the integral equation:

b
2(t) = / Kt 5)f(t, 2(s))ds (E 7.6.1)

has a nontrivial non-negative solution in C([a, b]).

Proof. Define a mapping 7 : C([a,b]) — C([a,b]) by

b
Tz(t) = / K(t,s)f(t,z(s))ds for all z(-) € C([a,?]). (7.6.1)
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Obviously, T is continuous and compact and finding a solution of (F 7.6.1) is
equivalent to finding a fixed point of T. Put

P={z(-) € C(la,b]) : z(t) > 0, t € [a,b]}.
Then P is a cone in C([a,b]). By the assumption (1) and (2), we have
[Tz < e[l = ¢ x() € P, (7.6.2)
By the assumption (4), there exist (¢, so) € [a,b] X [a,b],6 > 0 and 8 > 0

such that K (t,s) > g for all (¢, s) € [to — 0,t0 + ] X [so — I, S0 + ¢]. Thus we
have

So-‘r(s
720> [ Bfsa(o)is
S0—
By the assumption (3), if ||z(-)|| < min{1, e}, we have
1Tz()]| = 260)|z()[]. (7.6.3)
Therefore, we have | Tz(-)|| > [|z(-)| for ||z(-)|| = r and z(-) € P with r
sufficiently small. We take Q = B(0, ¢) and Q¢ = B(0,r). By Corollary 7.3.4,

we know that T has a fixed point in '\ QN P, i.e., (E 7.6.1) has a nontrivial
non-negative solution.

Example 7.6.2. Consider the boundary value problem:

(¢ t,z(t)) = t 1

21 + F(t,3(0) =0, te 0,1, 5762
z(0) = z(1), 2'(0) = —a'(1).

Assume that f is continuous and satisfies the following conditions:

(1) For all ¢t € [0,1], f(t, x) is increasing in z;

(2) fol f(s,e)ds < %‘:;

(3) f(t,s) > as? for all s € [0,¢), where ¢g >0, a > 0 and 0 < v < 1 are
constants.

Then (E 7.6.2) has a nontrivial non-negative C? solution.

Proof. Tt is well known that (E 7.6.2) is equivalent to the following integral
equation:

1
o) = [ Glt.5)f (s, a(s))ds, (B 763)
0
where G(t, s) is the Green function defined by

Ht+1)(2— t<
G = (30D, 1<s
s(s+1)(2~1), t>s
One may easily see that M = max{G(t,s) : (t,s) € [0,1]x[0,1]} < § and f,G
satisfy the conditions of Example 7.6.1. Therefore, (E 7.6.3) has a nontrivial

non-negative solution in C([0,1]), i.e., (£ 7.6.1) has a nontrivial non-negative
C? solution.
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7.7 Exercises

1. Let  C R™ be measurable subset with m(2) < 400, 1 < p < oo and
P C LP(Q2) be given by P = {f(-) € LP(Q) : f(x) > 0, almost all z €
Q}. Show that P is fully regular.

2. Let P C ¢ be given by P = {(z;) € ¢p : ¢; > 0,4 =1,2,---}. Show
that P is regular, but not fully regular.

3. Let E be a reflexive Banach space and P C F be a cone. Prove that
the following conclusions are equivalent:

(a) P is normal;
(b) P is regular;
(c) P is fully regular.

4. Let E be a normed space and P C E be a cone. If P has the nonempty
interior, then show that P is reproducing.

5. Let E be a normed space, P C E be a cone and P* C E* be defined by
P*={f e E*: f(x) >0 for all x € P}. If P is reproducing, then show
that P* is a cone in E*.

6. Let P C L*(Q) be defined by P = {f(-) € L*(Q) : f(z) > 0, almost all x €
1}, where m(€2) < oco. Show that P allows plastering.

7. Let E be a Banach space, P C be a normal cone, [a,b] = {z € FE :
a<z<b}and T : [a,b] — [a,b] be a continuous condensing mapping
satisfying Az < Ay for all z,y € [a,b] with < y. Show that T has a
fixed point in [a, b].

8. Let E be a locally convex space, P C F be a cone, {) C E be an open
subset with QN P # () and T : QN P — P be a continuous mapping
such that T(Q N P) is relatively compact in E. Assume that z # Tz for
all z € 90 N P. Construct the fixed point index theory for T on QN P.

9. Let E be a locally convex space, P C F be a cone, {) C E be an open
subset with 0 € Q and QNP # @ and T : QN P — P be a continuous
mapping such that T(Q N P) is relatively compact in E. Assume that
x#tTx forallz € 90N P and ¢ € [0,1). Show that T has a fixed point
inQNP.

10. Let E be a Banach space, P C E be a cone and A : P — FE be a
continuous accretive operator. Assume that, for all x € P, there exists
a(x) > 0 such that Az < a(z)z. Show that (Al 4+ A)(P) D P for all
A > 0.
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11. Let a(s,t) : [0,1] x [0,1] — [0, +00) be a continuous function satisfying
the following conditions:
(1) [a(s,t) —a(s,r)](t —r) > 0;
(2) a(s,t) < ct for some constant ¢ > 0 and all (s,t) € [0,1] x [0, 1].
Let k(s,t) : [0,1] x [0,1] — [0,400) be a continuous function such that
k(s,t) < at+ g for all (s,t) € [0,1] x [0, 1], where a € (0,1), 8 > 0 are
constant. Show that the following integral inequation:

1
x(t) + alt, z(t)) — /0 k(t,xz(s))ds =0 forall t €[0,1]

has a solution z(-) € C([0,1]).

12. Let a,b, ¢, d be non-negative numbers such that e = ac + bc + ad > 0

and f(z,y) : [0,1] x R — R be defined by f(z, y) = X" a;(z)y* for
all (z,y) € [0,1] x R, where a;(t) : [0,1] — [0,+00) is continuous for
1=1,2--- ' mand a; >0 for i =1,2--- ,m. Suppose that there exist
1< j, k < m such that o;(t) < 1, ax > 1, aj(t)ar(t) > 0 for all

€ [0,1] and X", fo a;(t)dt < f=1, where f = e~!(4ac)™! if ac # 0,
f= e_l(bc +bd)ifa=0 and f =-e(ad +bd) if c = 0. Show that the
following equation:

a(t) = —f(t,z(t), tel0,1],
az(0) —b2’(0) =0, cx(l)+dz’(1) =0

has two non-negative nontrivial solutions in C?([0, 1]) by using the Green
function G(t,s) defined as

JeHat+b)[c(1—s)+d], t<s,
G<t78)_{ “as+b)[(c(1—1t)+d], t>s.
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